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ABSTRACT

QUANTIFYING, MONITORING, AND MANAGING BIODIVERSITY ACROSS MULTIPLE
SPATIAL SCALES

By
Alexander D. Wright

This dissertation aims to investigate how science can effectively inform management and
policy decisions, leading to positive conservation outcomes for vulnerable wildlife communities.
Successful conservation requires the incorporation of ecological uncertainty and socio-ecological
complexity into the decision-making process. To navigate the uncertainty and complexity
pertinent to landscape conservation, I demonstrate a multi-scaled approach to quantify, monitor,
and manage amphibians in a case study of a regional network of national parks. In Chapter 1, I
quantify biodiversity across multiple spatial scales by fitting a multi-region community
occupancy model to regional amphibian monitoring data to elucidate the drivers and threats(s) to
biodiversity and the relevant scale(s) to target management. In Chapter 2, I explore the efficacy
of different monitoring programs and identify strategies to monitor biodiversity across multiple
spatial scales to minimize uncertainty in system dynamics. In Chapter 3, I predict the impacts of,
and then spatially prioritize, management to increase biodiversity across multiple spatial scales
by incorporating governance complexity in the decision-making process. In Chapter 4, 1
synthesize findings from previously published studies to determine the extent, and conditions
under which, decision support frameworks can lead to positive conservation outcomes. The
chapters of this dissertation provide critical guidance on how to scale up conservation science to
match the scope and scale of the ecological systems and governance structures it is meant to
inform. The application of this knowledge can help conservation scientists, managers, and policy

makers address the complex and multi-scaled biodiversity crisis.
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INTRODUCTION

In the midst of the Anthropocene, we are experiencing an unprecedented era of
environmental challenges. Ecosystem degradation and subsequent losses in biodiversity are
occurring at alarming rates (Johnson et al. 2017). The rate of biodiversity loss is predicted to
increase markedly over this century (Leclére et al. 2020), with extinction risk for bird and
mammal species predicted to more than double by 2060 (Tilman et al. 2017). Despite clear
global goals and commitment to maintaining biodiversity (e.g. the 2020 Aichi Targets;
Convention on Biological Diversity 2010), progress in addressing biodiversity loss has not been
sufficient to reach the stated targets (Tittensor et al. 2014, Diaz et al. 2019).

The challenges associated with preventing biodiversity loss are not just enormous, but
immensely difficult to solve. The pressing issues of the day are ‘wicked’—clouded in
uncertainty, complexity, and conflicting or competing interests (Game et al. 2013). Climate
change, habitat loss, and other global threats to biodiversity are vast and complex—they directly
or indirectly impact every organism on the plant. The extent of their reach thus encompasses a
diversity of stakeholder interests, a high amount of system and future uncertainty, and complex,
overlapping governance systems. As a result, solving these challenges requires the integration of
the scope and scale of these problems directly into conservation science and decision making to
effectively tackle the inherent uncertainties and diverse stakeholder interests.

Recognizing that ecological processes and governance structures are scaled hierarchically
(Heffernan et al. 2014, Armsworth et al. 2015), it is necessary to similarly structure science and
conservation across spatial scales to successfully address biodiversity threats and reach

conservation targets. To achieve this, advanced analytical approaches are required to incorporate



multi-scaled processes directly into statistical models, monitoring programs, and landscape
conservation decision making. In this dissertation, I develop a multi-scaled modeling approach
and apply it to a regional research and conservation program that aims to quantify, monitor, and
manage amphibian biodiversity across a network of protected areas. In the sections below, |
provide background description of this case study and an overview of the individual chapters that

comprise this dissertation.

Case Study Background

Through the creation of the Inventory & Monitoring Program (1&M), the U.S. National
Park Service (NPS) has established a long-term monitoring and research program of various
natural resources to inform management of protected areas through the long-term monitoring and
research of various natural resources (National Parks Omnibus Management Act of 1998). The
National Capital Region Network (NCRN) is one of 32 administrative networks within the I&M
Program that monitors a number of ‘vital signs’ to support and guide park management (NPS
2005). The NCRN encompasses 11 National Parks within the urbanized region surrounding
Washington, DC in the mid-Atlantic region of the United States, which vary in their recreational,
cultural, and natural resource objectives.

Amphibians are one of the fastest declining taxa globally, threatened by a myriad of
additive and interacting stressors (Stuart et al. 2004, Hof et al. 2011, Grant et al. 2016). Chief
among those threats are land use and climate change, as amphibians are bi-phasic and rely on
climate- and land use-sensitive habitat (e.g., ephemeral wetlands) to complete their life cycle
(Pounds 2001, Cushman 2006). The mid-Atlantic region of the United States is home to many

wetland-breeding amphibian species, which are particularly vulnerable to the effects of climate



change as rapidly increasing urbanization in the region isolates protected areas (Stottelemeyer
1987, Lookingbill et al. 2014). Amphibians were selected as a vital sign within the NCRN in part
because they are (1) presumed to be useful indicators of environmental change; and (2)
management actions aimed at improving habitat quality for amphibians will likely have ancillary
benefits to other components of the ecosystem (NPS 2005).

Across the &M networks, there is a desire to detect, understand, and respond to declines
in vital signs, but there are few examples of how this might be accomplished at a broad scale.
Park resource managers and regional staff in the NCRN have demonstrated interest in linking
monitoring data to management decisions for amphibian communities (Grant et al. 2013). The
challenge is to identify strategies to improve amphibian biodiversity at the regional scale in the
face of threats to park resources, while incorporating monitoring data and differing management
objectives from individual parks. Incorporating a multi-scaled approach to this challenge
provides a synthesis of amphibian community data with immediate relevance for monitoring and
managing amphibian populations throughout the NCRN. Beyond this case study, this work
illustrates an approach for understanding, predicting, and evaluating impacts of environmental

changes and management responses in landscape conservation.

Dissertation Overview

In the first three chapters, I develop a multi-scaled framework demonstrating how to
quantify (Ch. 1), monitor (Ch. 2), and manage (Ch. 3) biodiversity in a landscape conservation
case study. More broadly, this research revolves around the following central question: how do

we ensure science directly informs management and policy decisions, leading to positive



conservation outcomes? Thus, I follow the first three chapters with a broader reflection on the
application of decision support frameworks in conservation.

In Chapter One I describe how to quantify biodiversity patterns across spatial scales. I fit
a multi-region community occupancy model to 13 years of monitoring data on amphibians in the
NRCN, revealing the magnitude and direction of effects on amphibian biodiversity patterns from
ecological drivers (habitat area, connectivity, and quality) at both local and regional scales. I also
highlight how the spatial scale of observation and analysis can influence statistical inference on a
study system and its dynamics. This approach can be applied to other systems in which
conservation professionals must determine the drivers of relevant biodiversity patterns and the
spatial scale(s) at which management should be addressed.

In Chapter Two I present how to monitor biodiversity patterns across spatial scales. I
simulate data obtained via different large-scale monitoring designs and evaluate the bias and
precision of occupancy parameter estimates describing the status, trends, and drivers of wildlife
communities at both local and regional scales. These results can be used to modify the existing
regional monitoring design by evaluating tradeoffs in each parameter and/or scale. Further, this
chapter offers general guidance concerning the design of large-scale monitoring programs
needed to inform conservation management.

In Chapter Three I present how to manage biodiversity across spatial scales. I use
parameter estimates from the multi-region occupancy model (described in Ch. 1) to predict the
impacts of wetland management on amphibian diversity and demonstrate how to spatially
prioritize management actions relative to objective weights that vary by stakeholders within and
among spatial scales. These results provide a framework for the NCRN to spatially prioritize

management (using limited resources) to conserve the amphibians. Beyond the application of the



case study, I provide a framework that can incorporate the complexity of large, multi-scaled
ecological systems and governance structures into the conservation decision making process.

In Chapter Four I present how decision support frameworks can be used to achieve
desired conservation outcomes. In this chapter, I review previously published amphibian
conservation studies that use a decision support framework to evaluate how the use of these
frameworks does, or does not, help reach defined conservation objectives and to identify barriers
for implementing recommended decisions. These findings provide a plan of action to help guide
the application and development of decision support frameworks to ensure science effectively
informs decisions and leads to positive conservation outcomes.

Despite the specificity of the case study, the frameworks I developed here are broadly
applicable to other species and systems given that the overall goal of my dissertation research is
to infuse multi-scale considerations into hierarchical models and decision making. With these
approaches, researchers and managers can conduct analyses and implement management efforts
at scales that are relevant for conservation planning. By doing so, we are one step closer to

addressing global biodiversity loss more effectively.



CHAPTER 1: A HIERARCHICAL ANALYSIS OF HABITAT AREA, CONNECTIVITY,

AND QUALITY ON AMPHIBIAN DIVERSITY ACROSS SPATIAL SCALES

Abstract

Habitat fragmentation can alter species distributions and lead to reduced diversity at
multiple scales. Yet, the literature describing fragmentation effects on biodiversity patterns is
contradictory, possibly because most studies fail to integrate spatial scale into experimental
designs and statistical analyses. Thus, it is difficult to extrapolate the effects of fragmentation to
large-scaled systems in which conservation management is of immediate importance. To
examine the influence of fragmentation on biodiversity across scales, we (1) estimated the effects
of habitat area, connectivity, and quality at both local (i.e. community) and regional (i.e.
metacommunity) scales; and (2) evaluated the direction, magnitude, and precision of these
estimates at both spatial scales. We developed a multi-region community occupancy model to
analyze 13 years (2005-2017) of amphibian monitoring data within the National Capital Region,
a network of U.S. National Parks. Overall, we found a positive effect of park size and a negative
effect of isolation on species richness at the park-level (i.e. metacommunity), and generally
positive effects of wetland area, connectivity, and quality on species richness at the wetland-level
(i.e. community), although parameter estimates varied among species. Covariate effects were
less precise, but effect sizes were larger, at the local wetland-level as compared to the park-level
scale. Our analysis reveals how scale can mediate interpretation of results from scientific studies,
which might help explain conflicting narratives concerning the impacts of fragmentation in the
literature. Our hierarchical framework can help managers and policymakers elucidate the

relevant spatial scale(s) to target conservation efforts.



Material from: Wright, A. D., Grant, E. H. C., & Zipkin, E. F. (2020). A hierarchical analysis of
habitat area, connectivity, and quality on amphibian diversity across spatial scales. Landscape

Ecology, 35(2), 529-544.

For full text of this work, please go to: https://doi.org/10.1007/s10980-019-00963-z




CHAPTER 2: A COMPARISON OF MONITORING DESIGNS TO ASSESS WILDLIFE

COMMUNITY PARAMETERS ACROSS SPATIAL SCALES

Abstract

Dedicated long-term monitoring at appropriate spatial and temporal scales is necessary to
understand biodiversity losses and develop effective conservation plans. Wildlife monitoring is
often achieved by obtaining data at a combination of spatial scales, ranging from local to broad,
to understand the status, trends, and drivers of individual species or whole communities and their
dynamics. However, limited resources for monitoring necessitates tradeoffs in the scope and
scale of data collection. Careful consideration of the spatial and temporal allocation of finite
sampling effort is crucial for monitoring programs that span multiple spatial scales. Here we
evaluate the ability of five monitoring designs - stratified random, weighted effort, indicator unit,
rotating panel, and split panel - to recover parameter values that describe the status (occupancy),
trends (change in occupancy), and drivers (a site-specific covariate and an autologistic term) of
wildlife communities at two spatial scales. Using an amphibian monitoring program that spans a
network of U.S. National Parks as a motivating example, we conducted a simulation study for a
regional community occupancy sampling program to compare the monitoring designs across
varying levels of sampling effort (ranging from 10 to 50%). We found that the stratified random
design outperformed the other designs for most parameters of interest at both scales, and was
thus generally preferable in balancing the estimation of status, trends, and drivers across scales.
However, we found that other designs had improved performance in specific situations. For
example, the rotating panel design performed best at estimating spatial drivers at a regional level.

Thus, our results highlight the nuanced scenarios in which various design strategies may be



preferred, and offer guidance as to how managers can balance common tradeoffs in large-scale
and long-term monitoring programs in terms of the specific knowledge gained. Monitoring
designs that reduce biases in parameter estimates are needed to guide conservation policy and
management decisions in the face of broad scaled environmental challenges, but the optimal

design is sensitive to the specific objectives of a monitoring program.

Introduction

Monitoring programs are essential for natural resource management as they provide data
to address scientific questions, develop predictive models, trigger and guide management
actions, and assess the impacts of policies and interventions in support of evidence-based
conservation (Yoccoz et al. 2001, Sutherland et al. 2004, Nichols et al. 2006). The need for
ecological monitoring has increased over the last several decades as global pressures have grown
in severity and biodiversity loss has accelerated (Butchart et al. 2010, Nicol et al. 2019).
However, determining the efficient allocation of limited resources is a critical impediment to the
development of effective monitoring programs (Lindenmayer and Likens 2010, Buxton et al.
2020). This is particularly important when considering heterogeneous landscapes over large
spatial scales and complex governance networks with multiple management jurisdictions
(Carlson and Schmiegelow 2002, Bennett et al. 2018).

Recognition that biodiversity change stems from interacting local, regional, and global
drivers (Keller et al. 2008, Lindenmayer and Likens 2010) has spurred the design of monitoring
programs to match these scales (e.g., NSF NEON, Thorpe et al. 2016; TEAM, Beaudrot et al.
2016; USGS BBS, Sauer et al. 2017). Large-scale monitoring programs are used to track the

status, trends, and drivers of wildlife species and communities across individual and/or



independent spatial units. Such programs are often organized as part of a regional or national
administrative network to detect and understand changes in biodiversity (Yoccoz et al. 2001). In
contrast, conservation management decisions are often implemented at the local level (e.g.,
individual parks, refuges, etc.). As such, large-scale monitoring programs must be able to both
detect biodiversity changes across broad scales while also providing specific information at local
scales to inform management activities that can help mitigate declines when and where they arise
(Adams and Muths 2019).

Designing and implementing robust monitoring programs to meet these multiple
priorities, often with limited resources, remains a challenge (Scholes et al. 2008, Lindenmayer &
Likens 2010, Jones 2011, Blanchet et al. 2020). Monitoring programs typically fall into one of
three categories: ‘landscape’, ‘surveillance’, or ‘targeted’ (Eyre et al. 2011). These approaches
range in spatial extent, information content, and purpose (Sparrow et al. 2020). Landscape
monitoring primarily aims to measure population status (e.g., species distribution or abundance)
through descriptive and spatially continuous information collected across broad spatial scales.
Surveillance monitoring (sometimes referred to as omnibus monitoring) aims to detect and
observe population trends through repeated, standardized surveys that can be conducted at local
to broad spatial scales. Targeted monitoring aims to evaluate and understand the drivers of
population dynamics through a hypothesis-driven approach that is often executed at small and
discrete scales (Eyre et al. 2011). Yet, monitoring programs that accurately and precisely
estimate status, trends, and drivers simultaneously across multiple scales are increasingly
necessary for understanding, and reacting to, rapidly changing environmental conditions

(Scholes et al. 2008, Albert et al. 2010, Sparrow et al. 2020).
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Here, we evaluate the ability of different monitoring designs to make inference on
wildlife species and community status, trends, and drivers within and across multiple
management units and spatial scales. To do this, we conducted a simulation study comparing the
effectiveness of common designs that combine various elements of targeted, surveillance, and
landscape monitoring. We used a regional amphibian monitoring program within a network of
mid-Atlantic National Parks as a case study (National Park Service 2005, Grant and Brand
2012). Like many natural resource agencies charged with large-scale monitoring initiatives, the
National Capital Region Inventory & Monitoring Network of the U.S. National Park Service
(NCRN, National Park Service 2005) wishes to maximize the information gained from annual
amphibian occupancy surveys within budget constraints. The use of a relevant case study for our
analyses ensures the logistical feasibility of each strategy and the real-world applicability of our
simulation results. However, our approach is general in scope and thus our results should be
broadly informative to researchers and managers developing sampling schemes across taxa,
scales, and landscape configurations.

We reviewed existing large-scale monitoring programs to choose sampling designs that
could allow the simultaneous estimation of species status (e.g., occupancy), trends, and drivers of
species and community changes, and considered these in a hierarchical framework to allow
inference across multiple spatial scales. Our comparisons focused on five commonly-employed
monitoring designs: stratified random, indicator, rotating panel, split-panel, and weighted effort
(each described in more details in the Methods). We simulated and assessed the effectiveness of
the monitoring designs (i.e., the allocation of sampling sites across a network of independent
units) across various levels of sampling effort (i.e., 10%, 20%, 30%, 40%, or 50% of available

sites sampled across the total potential habitat). We evaluated the accuracy and precision of
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multi-region community occupancy parameter estimates, including metrics of population status
(mean occupancy), trend (a year-specific effect), and drivers (a site-specific effect as well as a
temporal autologistic effect), across two nested spatial scales. Our results quantify the tradeoffs
of common designs for large- and multi-scale monitoring programs within the real-world context

of allocation decisions regularly faced by management agencies.

Simulation Study
Large-scale Monitoring Designs

Five monitoring designs — stratified random, indicator, rotating panel, split-panel, and
weighted effort — were selected for the simulation study because they are representative of
existing large-scale monitoring programs that balance some combination of targeted,
surveillance, and landscape monitoring (Eyre et al. 2011). For all designs, we defined site as the
sampling location within a unit, the local spatial area (e.g., park, reserve, etc.), and region as the
overall geographical extent encompassing all of the local units. The monitoring designs vary in
their allocation of effort across units to evaluate status, trends, and drivers of population and
community change within a defined region. Below, we describe each design, including pros and
cons of the various approaches.

The “stratified random design” makes use of an approach in which a fixed percentage of
sites randomly selected from each unit (weighted by the number of sites available at each unit)
are surveyed periodically, usually annually (Thompson 2012). For example, the North American
Breeding Bird Survey uses a uniform number of randomly selected sites (i.e., routes) for each
one degree of latitude and longitude block in every US state (and parts of Canada and Mexico),

which are targeted for annual sampling (Ziolkowski et al. 2010, Sauer et al. 2013). Stratified
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random sampling designs are intended to provide information on each unit, including the status,
trends, and drivers of monitored populations or communities, although the precision of
inferences depends on the number of sites monitored in each unit.

The “weighted effort design” is an approach in which all relevant units are available for
sampling, however sampling effort is unevenly distributed across units each year (i.e., intense
monitoring of sites at a subset of units, limited monitoring of sites at the remaining units). For
example, amphibian monitoring of National Parks in the National Capital Region Inventory &
Monitoring Network (National Park Service 2005) conducts a disproportionate level of replicate
visits at select parks that have a long history of or higher need for monitoring (Wright et al.
2020b). This design incorporates elements of the stratified random design described above, but
also distributes effort to provide a more granular perspective at a subset of units. Thus, its ability
to estimate parameters for units is not equitable in a region; high accuracy and precision of
parameter estimates is achieved in some units at the expense of others in the region.

The “indicator design” is an approach in which a subset of units, which are selected to
represent political or biological domains, are surveyed intensively while remaining available
units are not sampled at all. The National Science Foundation’s Long-Term Ecological Research
(LTER) Network is an example of this approach, as 28 representative units (of specific landscape
types) across the United States are monitored intensely through time (Callahan 1984). This
approach ensures robust temporal coverage within each unit, but limited spatial replication. The
indicator unit design assumes that relevant parameter estimates of the indicator units are
indicative of similar unmonitored units, that the relationship between monitored and
unmonitored units is known and constant over time, and/or that parameter estimates at

unmonitored units are not of central interest.
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The “rotating panel design” is a spatio-temporal varying design in which units are
surveyed at specific, rotating intervals (McDonald 2003, Dobbie et al. 2008). For example,
within the Alberta Biodiversity Monitoring Program, every available site across the province is
sampled once each five-year period on a rotating basis (Stadt et al. 2006), ensuring extensive
spatial coverage at the expense of limited temporal replication. The rotating panel design
allocates some degree of monitoring effort in all units across the temporal extent of the
monitoring program, ensuring high spatial coverage and representation across the region.
However, temporal coverage is minimal because repeated visits to individual units occur
infrequently.

The “split panel design” is a spatio-temporal varying design in which a set of core units
are consistently monitored over time while the remaining set of units are monitored on a variable
or rotating basis (McDonald 2003, Dobbie et al. 2008). The National Ecological Observatory
Network (NEON) uses this approach with a set of established study areas that are fixed and
sampled every year as well as relocatable units that can be moved every 5-10 years (Kao et al.
2008, Keller et al. 2008, Thorpe et al. 2016). This design integrates elements of both the
indicator and rotating panel strategies, attempting to alleviate the limited spatial coverage of the
indicator design and the limited temporal coverage of the rotating panel design. As such, it
emphasizes intensive monitoring at a select number of units across time while also attempting to

achieve broader spatial coverage.

Data Simulation
To assess the effectiveness of each of the five monitoring designs in estimating species

and community status, trend, and driver estimates within and across scales, we simulated 500

14



datasets for each monitoring design at five sampling effort levels, defined as the percentage of
sites in the region sampled (10%, 20%, 30%, 40%, 50%) for a total combination of 25 simulation
scenarios and 12,500 unique datasets (Appendix A). For each dataset, we simulated 10 years of
multi-species occupancy data (25 total observed species, though this varies by unit and
simulation) across 10 hypothetical spatial units. The number of available sites in each spatial unit
was randomly drawn from a uniform distribution with a minimum bound of 10 sites and a
maximum bound of 100 sites (16, 21, 23, 35, 40, 47, 66, 72, 90, 98). We chose 10 units (and the
corresponding number of sites at each unit) to closely resemble the network of monitoring units
in our case study (NCRN, National Park Service 2005). Administrative evaluation is typically on
5-year cycles in U.S. federal programs, and thus 10 years is a reasonable timeframe for both
assessment (sufficient time series for estimation) and enacting management activities
(Government Performance and Results Act of 1993).

Datasets were simulated using occupancy and detection parameter estimates from an
analysis of the long-term, regional amphibian monitoring data collected in the NCRN (Wright et
al. 2020b), which is characterized by a regional amphibian community with low mean detection
(p = 0.3) and low mean occupancy (y = 0.3). We assumed moderate heterogeneity (standard
deviation of 0.5) across unit-level parameter means (i.e., metacommunity), and moderate
heterogeneity (sd of 0.5) across all species-level parameter means (i.e., community). By
incorporating a reasonable range of variability in the generation of simulation parameters across
runs, there is considerable heterogeneity in the simulation of unit- and species-level parameters,
resulting in a much broader parameter space. We categorized covariate effects as moderate |0.4|
or strong |0.8|. We used the same model to both generate and analyze the latent occurrence state

for species and the community (described in full detail below in the Analysis section).
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Following simulation of the latent occurrence state for all species in all units and sites on
12,500 occasions, we then simulated sampling according to one of the unique monitoring design
and sampling effort level combinations (e.g., stratified random design with 10% of sites across
the region sampled) to obtain corresponding datasets. We assumed that each site selected for
sampling was surveyed on four replicate visits per year (unless otherwise indicated), which is
sufficient for detecting declines in occupancy (Field et al. 2005) and consistent with the current
protocol in the NCRN. Within each sampling effort level, the total number of sites visited
annually within the region across the monitoring designs was consistent which ensured that our
results were comparable. Thus, designs only differed in which sites, across spatial units, were
sampled, not in how many total sites were sampled at the regional level.

To implement sampling in the stratified random design, the same proportion of
randomly-selected sites at each unit, relative to each effort level, was sampled continuously for
all ten years (Table B.1). For the weighted effort design, all units were sampled similar to the
stratified random design, however, the number of replicate visits per site in each year varied
among units (6 replicate visits for sites in half of the units, and 2 for the remaining half of units;
Table B.1). For the indicator design, the same random sample of sites at a subset of units
(containing half of all available sites across the region) was sampled every year (Table B.2). For
the rotating panel design, two sets of units containing an equal number of randomly selected sites
were sampled on alternate two-year rotations (Table B.3). For the split panel design, the same
random sample of sites at a subset of units (containing half of all available sites across the
region) was sampled every year, while the remaining units were split into two equal sets that

were surveyed on alternate two-year periods (Table B.4).
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Analysis

Multi-species (community) occupancy models are often used in the analysis of
biodiversity monitoring data to estimate richness as well as species and community dynamics
(Dorazio and Royle 2005, Dorazio et al. 2006). These models utilize replicate observations to
incorporate detection probability (p) in the estimation of the true latent state of species
occurrence (present or absent) at a sampling site (MacKenzie et al. 2002). By incorporating
detection and also assuming a shared link across species within a community, multi-species
occupancy models can accommodate data from rare, cryptic, and unobserved species to produce
accurate estimates of individual species occupancy probabilities (y) and species richness
(Boulinier et al. 1998, Zipkin et al. 2010). The recent development of multi-region community
occupancy models incorporates both multiple species and multiple independent spatial units
through a unified statistical analysis (Sutherland et al. 2016), allowing for the investigation of
community occupancy dynamics across spatial scales (e.g., ranging from local to regional
levels).

We fit a multi-region community occupancy model (Sutherland et al. 2016, Wright et al.
2020b; Appendix C) to each simulated dataset to evaluate how the estimated parameters
compared to the true parameter values for each of the 25 allocation strategies (five designs at five
effort levels) using the same biological process model that was used to generate the data. We
summarized the data into an array, X; .. ; + k., with the detection (X; . ; - x = 1) and nondetection
(Xirjtk = 0) histories for each species i within unit 7 at site j during year ¢ on replicate k. We
assumed the detection of a species was conditional on the presence of species i within unit 7 at

site j during year ¢ (Z; » j; = 1 if the species was there and a structural 0 otherwise) and the
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probability of detecting species i within unit 7 at site j during year ¢ on replicate k (p; 1 j ¢ k)
according to a Bernoulli process:

Xirjtx ~ Bernoulli(Zy i * Dirjei)-

We then modeled detection probability assuming that detection could change by species or unit
where: logit(p;r j¢r) = Bir, in which ;. is an intercept term indicating the detection
probability for each species i in each unit » on the logit scale.

We similarly modeled species occupancy state, Z; .. ; ., with a Bernoulli random process:

Ziy,je ~ Bernoulli(yy, j¢),
where ;- ; + 1s the occupancy probability of species i within unit 7 at site j of year 7. We
incorporated covariates on species occupancy probability using a logit link function:

logit(lpi,r,j,t) =a0;, + al;, *xYear, + a2;, * Site Covariate;, + a3;, *Zj; 1.
We included species- and unit-specific intercept terms for mean occupancy (a0; ,.), and effects
for year (a1;,), a spatially varying covariate (a2; ,.), and an autologistic process (a3; ;). The
covariate that influences species occupancy probabilities (Site Covariate;,. ) varies by sites and
was randomly generated during the data simulation process (from a normal distribution with a
mean of 0 and a standard deviation of 1). The autologistic term incorporates the processes of
colonization (when Z; ,,_; ;» = 0) and extinction (when Z;,,_; ;, = 1) that drive occupancy
patterns for many species, including amphibians (Dorazio et al. 2010, Zipkin et al. 2012).

We categorized ‘status’ as mean occupancy (a0, the spatial distribution of occupancy in a
moment of time), ‘trend’ as the effect of year (a1, the increase or decrease of occupancy over
time), and ‘drivers’ as the effects of the spatially varying covariate (a¢2) and the autologistic
process (a3, the underlying processes that can influence occupancy status and trend). To link the

single-species occupancy models at a community level, we assumed that each parameter was
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drawn from a common unit-level normal distribution (e.g., @0; .~Normal(pqg - 02)), and each
unit-level distribution was drawn from a common region-level normal distribution
(Haor~Normal(fiyg, G2y)), matching the data generation process. This allowed us to estimate
and compare parameters at both the unit (e.g., for status: p4q,) and region (e.g., for status: fi,g)
levels.

We ranked the five monitoring designs in terms of their abilities to accurately and
precisely recover estimates of the status, trend, and driver parameters across the two spatial
scales: for local units individually and the region collectively. We calculated the root mean
square error (RMSE) for all parameters in each monitoring design and sampling effort level
combination to evaluate differences between parameter values used to simulate the data and
those estimated by the model. We estimated the parameters in our models for each simulated
dataset using a Bayesian framework in R (R Core Team 2016) with the program JAGS and
corresponding ‘jagsUI’ package (Plummer 2003, Kellner 2015; see Appendix A and Appendix
C). We set vague priors for each parameter: mean regional-level intercept parameters for
occupancy (fi,o) and detection (o) had normal prior distributions with a mean of 0 and a
variance of 2.70 (Lunn et al. 2012), and variance parameters with gamma prior distributions with
shape and scale parameters of 0.1. The mean regional-level slope parameters (e.g., fi,1) had
normal prior distributions with a mean of 0 and a variance of 10, and similar prior distributions
for the variance term as the intercept parameters. Convergence for each parameter was assessed
using the Gelman and Rubin convergence diagnostic (R statistic < 1.1; Gelman & Rubin 1992,

Gelman & Shirley 2011).
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Results
Status

At the regional level, the stratified random design had the lowest RMSE in estimating
mean community-level occupancy (fi,q) across all effort levels, followed closely by the split
panel design (average RMSE was 2% higher compared to the stratified random design), rotating
panel design (6%), and the weighted-effort design (13%), with the indicator unit design
performing much more poorly than the other four approaches (290%; Table 2.1). For the
stratified random design, RMSE decreased with increased effort (by as much as half when going
from 10% to 50% effort), however, the gains were substantially larger when the effort was low
(i.e., a change from 10% to 20% effort yielded more improvement than a change from 40% to
50% effort). Across sampling designs, the relative decrease in RMSE was tempered as effort
increased, indicating a general decrease in returns of estimation bias and accuracy for the higher
effort levels. The differences in RMSE across monitoring designs were most pronounced when
effort was low (Fig. 2.1a), indicating that the differences in performance among monitoring
designs diminish as effort is increased.

At the unit level, the stratified random design again had the lowest mean RMSE (across
all units) in estimating the mean occupancy across species within a unit ({4 ) for the individual
r units across all effort levels, and the lowest variation of RMSE across all units in each effort
level (Fig. 2.1b, Table 2.1). However, while the mean and variance were low, the lower bound of
unit-level RMSE values was highest in the stratified random design (RMSE = 0.126), as
compared with the weighted (0.117), rotating panel (0.120), split panel (0.120), and indicator
unit designs (0.110). Thus, while stratified random design provided the most equitable estimates

across all units in a region, other designs resulted in more accurate and precise estimates of some
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individual units at the expense of parameter accuracy and precision in other units (Table 2.1).
The importance or significance of individual units may vary according to management or
monitoring objectives, and equitability in parameter accuracy or precision across units may not

be necessary in every monitoring scenario.

Trends

Unsurprisingly, monitoring design performance for estimating trends at the regional level
were similar to those for estimating status. The stratified random design had the lowest RMSE in
estimating a linear year effect on occupancy (fi,,) across effort levels (Fig. 2.1c¢), followed
closely by the weighted effort design (average RMSE was 3% higher compared to the stratified
random design), split panel design (6%), rotating panel design (9%), and lastly the indicator unit
design (350%, Table 2.1). For the stratified random design, RMSE decreased by 17% when
effort was increased from 10 to 20%, 20% when effort was increased to 30%, 28% when effort
was increased to 40%, and 29% when effort was increased to 50% (Fig. 2.1c). Other designs
showed a similar plateau of increased precision and accuracy as effort increased.

At the unit level, the stratified random design again had the lowest mean RMSE in
estimating the year effect parameter (14, ,-) across all effort levels, and the lowest variation of
RMSE across all units in each effort level (Fig. 2.1d, Table 2.1). However, while RMSE
estimates per unit were more equitable for the stratified random design, the lower bounds of the
unit-specific RMSE distributions for the other four designs were again less than that of the
stratified random design. Of those other designs, the indicator unit and rotating panel designs had

the lowest individual unit-specific RMSE estimates (0.102, Table 2.1). This again reveals that
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while the stratified random design performs better for average trend estimates, the other designs

are capable of estimating trends more accurately and precisely for a subset of units.

Drivers

Our results on drivers differed somewhat from the status and trends parameters. At the
regional level, the rotating panel design had the lowest RMSE in estimating the effect of a site-
specific covariate on occupancy (fi,,) across effort levels (Fig. 2.1¢), which was comparable to
estimates for the split panel design (average RMSE was < 1% higher compared to the rotating
panel design), and then followed by the stratified random design (8%), weighted effort design
(11%), and the indicator unit design (313%, Table 2.1). Similarly, at the unit level, the rotating
panel design had the lowest mean RMSE in estimating the spatially-varying covariate parameter
(g1 ) across all effort levels, and the lowest variation of RMSE across all units in each effort
level (Fig. 2.1f, Table 2.1). However, again, the lowest individual unit RMSE estimate was from
the indicator unit design.

In estimating the autologistic effect on occupancy (ji,3) at the regional level, the
stratified random design had the lowest RMSE across effort levels (Fig. 2.1g), followed by the
weighted effort design (average RMSE was 16% higher compared to the stratified random
design), split panel design (19%), rotating panel design (33%), and then the indicator unit design
(234%, Table 2.1). Likewise, at the unit level, the stratified random design had the lowest mean
RMSE in estimating the autologistic slope parameter (i3 ), and the lowest variation of RMSE
across all units in each effort level (Fig. 2.1h, Table 2.1). However, both the indicator unit and
weighted effort designs had lower individual unit RMSE estimates (0.148 and 0.155,

respectively) relative to the stratified random design (0.171).
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Discussion

Our results suggest that stratified random sampling remains the most precise, accurate,
and efficient monitoring approach for understanding wildlife occupancy at multiple spatial
scales. With the exception of the spatially-varying parameter on occupancy (a2), the stratified
random design consistently had the lowest RMSE estimate across parameters at the regional
level, and the lowest mean and variation of RMSE estimates at the unit level. This is not
unexpected and, indeed, one of the reasons that stratified random sampling is so widely used. A
stratified random design ensures that data come from a representative sample that accounts for
spatial heterogeneity, leading to an efficient use of monitoring effort (Schreuder et al. 2004).
Further, stratified random sampling avoids subjective decision making, and potential biases, in
site or unit representation in a monitoring program (Dobbie et al. 2008). Despite its many
advantages, other monitoring designs may be preferable if inference across parameters or scales
is not a primary goal of a monitoring program. For example, the rotating panel design
outperformed all other designs in estimating the site-specific effect, suggesting that the optimal
choice of monitoring effort depends on the parameters of interest to managers. While the other
designs (rotating panel, split panel, and weighted effort) had higher RMSE values relative to the
stratified random design for most parameters, that difference was marginal in many instances
(i.e., < 15% difference in RMSE; Table 2.1), particularly when effort was high. Additionally, the
stratified random design had the lowest mean and variation of unit-level estimates but other
designs typically performed better for individual units (most consistently the indicator unit
design; Table 2.1). Thus, the optimal design for data collection depends on the monitoring
objectives and spatial scale of interest and there will necessarily be trade-offs in parameter

accuracy and precision (Fig. 2.2).
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Our analyses were motivated by our work with the NCRN Inventory and Monitoring
program of the U.S. National Park Service. The NCRN *Vital Signs’ monitoring program seeks
to provide an understanding of the condition of National Parks in the Washington, D.C.
metropolitan area, and identify appropriate management actions necessary to maintain natural
resources in the network of parks (Fancy et al. 2009). As the program considers optimal
monitoring strategies to meet their objectives and budget constraints, we aimed to evaluate the
effectiveness of multiple proposed monitoring designs to inform one of their key Vital Signs,
amphibian occurrence and distribution (National Park Service 2005). For the NCRN, and other
hierarchically-organized systems, the stratified random monitoring design performs best across
their primary objectives of understanding the status, trends, and drivers of amphibian occurrence
at individual parks and across the network. However, the optimal allocation of monitoring
resources must also consider whether equal precision is needed at all parks (i.e., units), which
may not be the case for decision-making. For example, parks with amphibian populations near an
ecological or management threshold (Martin et al. 2011) may require increased precision when
deciding whether to implement management interventions. While the stratified random design
did perform marginally better than the weighted effort design at the regional-level (and across
the average of unit-level estimates), the weighted effort design had a lower bound to unit-specific
estimates across all four parameters. Thus, the selection of an optimal monitoring design will
depend on the need of information across scales and among individual parks in the network.
Importantly, we found that the return on monitoring investment was not linear, meaning that the
magnitude of increase in precision and accuracy declined as additional sites were sampled. While
our results provide valuable information concerning the trade-offs of different sampling designs

applicable to real-world decision making (e.g., in the NCRN and other hierarchically structured
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amphibian networks), these results are also generalizable as the parameter space we use is
relevant to a variety of taxa and systems (Sanderlin et al. 2014, Sutherland et al. 2016).

Monitoring objectives and constraints will vary across programs, and thus a balance of
scale and/or parameters of focus may not always be necessary, beneficial, or efficient. Here, we
evaluated the performance across three parameter estimates common to published monitoring
programs—status, trends, and drivers—at two management-relevant scales to identify and
understand tradeoffs that might arise in large-scale and long-term monitoring programs.
Although we demonstrated that the stratified random design is preferable in most cases, real-
world factors may support the implementation of other sampling designs. For example, if
information is needed primarily to understand drivers of species distributions across space, a
hypothesis-based approach (Nichols and Williams 2006) that emphasizes spatial replication and
increased sample size may be preferential. In this case, the rotating panel design, which
sacrifices temporal replication (across years) for an increased number of sites, may be the
preferred design. However, this design choice would limit the ability of the monitoring program
to detect and respond to declines as they arise.

The importance of information for individual management or governance units (e.g.,
refuges, states, etc.) may not be equal across a broad geographical extent. This can occur when
the system at an individual unit is far from the decision or management threshold or the decision
at that unit is insensitive to the system state (Martin et al. 2012). The stratified random design
had the lowest mean and variation among RMSE estimates across all units, but other designs had
lower bounds to the RMSE estimates at the unit level (e.g., Fig. 2.1b). In cases in which
regional-level estimates are of lesser importance relative to management objectives at select

units, designs such as the weighted effort or split panel, in which a subset of the units receive a
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disproportionate amount of effort, may be preferred. Selection of one of those two designs will
vary depending on the focus of the monitoring program: the weighted effort design better
captured temporal variation (e.g., trend and autologistic effect) whereas the split panel design
better captured spatial variation (e.g., status and site-specific effect; Fig. 2). Further, not all large-
scale monitoring programs are meant to extrapolate findings to a broader spatial extent. For
example, the NSF LTER network is designed to provide highly detailed information to
understand long-term ecological phenomena at spatially independent locations (Callahan 1984).
In such cases, when the regional-level estimates are not of primary importance, the indicator unit
design, in which resources are targeted at select units instead of balancing at the regional level,
may be most efficient.

Evaluating monitoring program designs is important as we seek to understand, manage,
and conserve the world’s ecosystems. The use of evidence-based decision making to guide the
design and objectives of large-scale monitoring programs is necessary to ensure justification and
accountability of relevant information-gathering investments (Wintle et al. 2010). There are a
number of considerations in designing and implementing effective programs aimed at monitoring
biological communities across spatial scales (Olsen et al. 1999). Past research has focused on
developing monitoring approaches that account for observation biases (MacKenzie and Royle
2005, Guillera-Arroita et al. 2010), spatial variation in species distributions and/or abundance
(Pollock et al. 2002), and species rarity (Pacifici et al. 2012, Sanderlin et al. 2014). However,
less research has focused on dealing with monitoring objectives that differ across and within
scales in a collaborative monitoring network. Our results help inform the trade-offs of various
monitoring objectives under fixed budgets in such multi-scaled systems. However, adjusting the

design of large-scale monitoring programs may be logistically challenging or infeasible. Thus,
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optimizing the data collection process may not always be the appropriate response. With
increased access to data from other monitoring programs, various research labs, and citizen
science initiatives, future research that leverages integrative analyses and multiple data sources
(e.g., integrated population models) can further enhance existing and future monitoring programs
(Saunders et al. 2019, Zipkin et al. 2021).

Only 25% of the necessary budgets to implement threatened species recovery plans in the
United States is allocated annually (Gerber et al. 2016). Approximately half of the recovery
resources are dedicated to research and monitoring—not on-the-ground management actions
(Buxton et al. 2020). Hence, increasing the efficiency of monitoring programs has the potential
to free up resources for management activities. At the center of this issue is zow to most
efficiently use available resources (e.g., targeted vs. surveillance monitoring; Nichols and
Williams 2006, Wintle et al. 2010). Careful consideration of the management context, objectives,
and specification of desired accuracy and precision of various parameters can help achieve the
objectives of large-scale monitoring programs that aim to inform and guide science,

management, and policy at multiple scales.
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Table 2.1: Comparison of root mean square error (RMSE) estimates for each monitoring design
and parameter of interest. RMSE values are summarized across effort levels. Region-level
estimates for RMSE were characterized for the regional mean parameter (e.g., for status: fi,g).
Unit-level estimates were characterized for the unit mean parameters (e.g., for status: pqg,) and
include: the average RMSE of all units and the lower and upper bounds (in parentheses) of the

distribution of unit-level RMSE estimates for each parameter.

Monitoring Design
Parameter of Interest

& Scale
Status Trends Drivers
Year-specific
Mean Occupancy Site-specific effect Autologistic effect
effect
a0 al a2 a3

Stratified Random

Region 0.0607 0.0477 0.0593 0.0800

Unit 0.155(0.126-0.197)  0.128 (0.110-0.159)  0.152 (0.112-0.231)  0.223 (0.171-0.301)
Weighted Effort

Region 0.0684 0.0491 0.0605 0.0929

Unit 0.175(0.117-0.257)  0.135(0.108 —0.169)  0.159 (0.109-0.251)  0.248 (0.155-0.338)
Indicator Unit

Region 0.177 0.168 0.171 0.187

Unit 0.348 (0.110-0.568)  0.336 (0.102-0.560)  0.337 (0.0999-0.556)  0.377 (0.148-0.566)
Rotating Panel

Region 0.0643 0.0518 0.0547 0.106
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Table 2.1 (cont’d)
Unit

Split Panel
Region

Unit

0.162 (0.120-0.203)

0.0619

0.159 (0.120-0.206)

0.136 (0.102-0.182)

0.0505

0.135 (0.106-0.186)

0.143 (0.111-0.190)

0.0550

0.147 (0.110-0.212)

0.268 (0.182-0.344)

0.0955

0.248 (0.175-0.336)
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Figure 2.1: Estimated root mean square error (RMSE) for each monitoring design and effort
combination for each parameter at the regional scale (a, c, e, and g). The unit-level RMSE
estimates are organized by individual units (dots) and box plots describing the distribution of
RMSE values across the units (b, d, f, and h). The Indicator Unit design is not shown as its

RMSE values were much higher than the others (see main text).
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Figure 2.2: The recommended monitoring design(s) for each spatial scale, objective, and
parameter combination. Recommendations were determined by which design(s) had the lowest
root mean square error (RMSE) estimates within the simulation study. Parameters evaluated
were: a0 (mean occupancy) for Status, al (year-specific effect) for Trend, a2 (site-specific
effect) for Driver — spatial, and a3 (autologistic effect) for Driver — autologistic. Parameters

were assessed at the regional (e.g., for status: fi,0) and unit (e.g., for status: pgy ) levels.
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Driver —
spatial
Driver —
autologistic
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CHAPTER 3: PRIORITIZING BIODIVERSITY MANAGEMENT ACROSS

NETWORKS OF PROTECTED AREAS

Abstract

Biodiversity is declining rapidly despite ambitious global targets to mitigate impacts of
anthropogenic-induced change on biodiversity. The lack of progress on this issue is partly due to
the complex decision-making contexts that necessitate a multi-scaled approach to design and
implement conservation management. This complexity arises because the scope and scale of
environmental challenges encompasses multiple decision makers across discrete and/or
overlapping management units. Here, we applied a multi-scaled modeling and decision
framework to a case study focusing on amphibian biodiversity across a network of national
parks. Amphibian communities were found to be declining at 8 of 9 monitored parks within the
region and thus management is needed to mitigate these losses and reverse species trajectories.
Using data from a long-term regional monitoring program, we predicted changes in amphibian
species richness following a management intervention designed to increase richness at individual
wetlands within parks. To quantify the multi-scale decision contexts, we used a sensitivity
analysis to compare different allocations of management resources across parks to balance
objectives at both local and regional levels. We included objective weights that quantify how
decision makers value the conservation of amphibians at each scale, and how they value their
goals relative to the goals of decision makers at different spatial units and scales (i.e.,
collaboration). We found that the impacts of the management intervention (increase in wetland
hydroperiod) vary from park to park. Further, we found that the prioritization of wetlands to

manage across the region, and the resulting increase in wetland-specific species richness, varied

32



depending on the unique combinations of conservation and collaboration objective weights at
each scale. More broadly, our results demonstrate the importance of balancing trade-offs in local
and regional objectives to collaboratively address biodiversity declines at multiple spatial scales

and provide a path forward for successful implementation of conservation management.

Introduction

Failure to reach global biodiversity targets stems in part from the conservation
management required to protect biodiversity across space is increasingly interrelated, complex,
and difficult (Cash et al. 2006, Game et al. 2013, Diaz et al. 2019, Leclére et al. 2020). Threats to
biodiversity, such as land use and climate change, are broad but also multi-scaled (Heffernan et
al. 2014)—requiring the coordination of management actions across geographic scales (Dietz et
al. 2003, Armsworth et al. 2015). While ambitious goals and policies to mitigate biodiversity loss
are typically set at continental or even global scales (e.g., Convention on Biological Diversity
2010), decisions are often made locally (Stewart et al. 2013). Resource management decisions
may vary because of geographic variation in types and intensity of threats (e.g., Richgels et al.
2017), responses of local biodiversity to management (Muths et al. 2017, Grant et al. 2020), and
local stakeholder values (McDaniels et al. 2006, Robinson et al. 2016). As a result, land
management is often fragmented by geography, organization, and policy (Lubbel 2013, Tallis et
al. In Review).

Coordination of the management needed to achieve large-scale goals is hindered by the
fragmented jurisdictions of management entities within a governance network (Lubbel 2013,
Michaels & Tyre 2012). Effectively executing a conservation decision requires the legal or

regulatory authority to make a decision, the power to carry out a decision, and the resources
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needed to implement related actions. In the context of landscape conservation, these components
are often distributed unevenly across different organizations, administrative levels, or geographic
locations, requiring collaboration across multiple decision makers to meet landscape objectives
(Ostrom 2010). For example, while federal or regional agencies may have some central
organizing authority, individual resource managers may have differential power to make or
implement decisions within protected areas under their jurisdiction, while the resources needed
for successful conservation may come from a mixture of national, regional, and/or local budgets.
Without recognizing and navigating such complexities of collaborative landscape conservation,
desired conservation outcomes may not be realized at scales relevant to biodiversity.

Incorporating a multi-scaled approach to conservation decision making and
implementation can lead to more effective management than if the hierarchical structure of
governance and management is ignored (Cash et al. 2006). Policy and management decisions are
recommended to reflect the scale and structure of the target ecological processes and governance
systems (Crowder et al. 2006, Gunderson et al. 2016, Wright et al. 2020a). Multi-scaled
approaches can allow for achievement of large-scale goals while simultaneously framing the
local decisions that need to be made with respect to varying constraints, objectives, and uneven
resource distribution. Collaboration steeped and strengthened by shared objectives, or
recognition of where objectives, needs, and constraints differ within and across scales, can
facilitate the optimal allocation and coordination of resources for effective landscape
conservation (Reed et al. 2016, Scarlett & McKinney 2016, Berardo & Lubbell 2019).

We outline a process that is designed to understand, predict, and then prioritize
management across a multi-scaled governance network. Specifically, the analytical steps in this

process include the (1) analysis of existing data to understand system dynamics across ecological
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scales, (2) prediction of changes to the system following management interventions, and (3)
prioritization of management across the system relative to stakeholder objectives at different
scales of governance. Guidance on the implementation of steps one and two across scales are
well documented in the literature (e.g., Heffernan et al. 2014, Tallis et al. In Review); however,
the third step is perhaps the most challenging to implement in multi-scale management problems.
Thus, we specifically evaluate how to prioritize management across scales by incorporating
discrete value weights on the conservation and collaboration goals at each relevant decision-
making scale.

We apply this analytical process to a case study to improve the status of the amphibian
community in the National Capital Region Network (NCRN) of the National Park Service
(NPS), a network of national parks in the Mid-Atlantic region of the United States (NPS 2005).
Previous work has demonstrated the desire in the NCRN to maximize mean wetland-specific
richness of amphibians, which is considered a ‘vital sign’ within the region as an important
natural resource (NPS 2005, Grant et al. 2013). A recent synthesis of monitoring data
demonstrated that hydroperiod (the length of time a wetland holds water and is available for
amphibian development) is a major determinant of wetland occupancy and species richness of
amphibians within national parks in the NCRN (Zipkin et al. 2012, Wright et al. 2020b).
Wetland hydroperiod is also among the most feasible amphibian population and habitat attributes
for park managers to modify without disturbing other natural and cultural resources in the parks
(Grant et al. 2013). Thus, increasing the hydroperiod of individual wetlands has been identified
as a potential approach to increase mean wetland richness given available resources and

constraints.
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Our objective is to evaluate the optimal allocation of resources across space to maximize
mean wetland-specific amphibian richness in this multi-scaled governance network—balancing
both local and regional needs, constraints, and objectives. To do this, we first fit a multi-region
community occupancy model to data from the long-term, regional amphibian monitoring
program in the NCRN. Next, we use parameter estimates from the model to predict the
improvement in the conservation objective (wetland-specific species richness) following
management intervention (increase in hydroperiod) of individual wetlands within each of the
parks. Finally, we use a sensitivity analysis to demonstrate how to prioritize wetlands for
management across the region relative to different weights of the conservation and collaboration
objectives at local (individual parks) and regional (the entire network of parks) scales. Our
results provide a framework for a regional network of national parks to mitigate amphibian
declines. More broadly, our study provides insight into approaches to balance the needs,
constraints, and objectives of biodiversity conservation across multiple scales in collaborative

landscape conservation.

Methods

The Northeast Amphibian Research and Monitoring Initiative collects data on the
occurrence of wetland-breeding species in individual wetlands (hereafter, occupancy data) at 9 of
11 national parks throughout the NCRN. Each year, field crews conduct repeat surveys of
(randomly selected) monitored wetlands throughout the breeding season and record the detection
(or not) of individual species. See Mattfeldt et al. (2009) for the initial design of the monitoring

program and Grant & Brand (2012) for full sampling protocols.
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We fit a multi-region community occupancy model (Sutherland et al. 2016, Wright et al.
2020b) to the monitoring data collected between 2005-2020 to estimate individual species
dynamics as well as community and metacommunity richness patterns. This hierarchical
modelling approach allowed us to incorporate imperfect detection of species throughout the
sampling season and to include data-deficient species and parks in our analyses. We categorized
the hydroperiod of each wetland (the length of time that a wetland holds water) as temporary
(dries up annually during the summer), semi-permanent (dries up every few years), and
permanent (never dries) and then incorporated this categorical covariate in our occupancy model.
We included other sources of environmental variation (i.e., annual wetland area, annual wetland
conductivity, and wetland connectivity, which is fixed from year to year) on the occurrence
probability (¥) of species i at wetland j in park » during year y. We also included a trend effect of
year y to determine which species and parks have experienced declines and which might
therefore be at risk for future declines. For each variable, we model an effect for each species i
and park » combination:

1ogit(l}’j,y,i,r) = a0i 7 temporary + ocli,r,hydmj * hydroperiod; + a2;, * area;, + a3;, *
connectivity; + a4, , * conductivity;, + a5;, * trend,, .
We included a day of year covariate within the observation component of the model (Wright et
al. 2020b). Species-specific parameters at each park are linked at the community level, e.g.,
a5; ~Norm(ugs r, a&s,r), and each park community is linked together at the metacommunity
level for the region, e.g., Uys ,~Norm(iiys, 045). We calculated a derived parameter of annual
wetland-specific richness, N; ,, -, by summing the latent occurrences of all species at each

sampled wetland ;j for each year y from 2005-2020 in all parks. We estimated the parameters in
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the model using a Bayesian approach with the software R and JAGS (see Appendix D for full
model and implementation details).

Using the estimated posterior distributions of the species- and park-specific wetland
occupancy parameters, we predicted occupancy rates for each species i at wetland ; in park
during year y. We made predictions for the five years immediately following the last year of
available data (i.e., 2021-2026). For future years, we held the temporally varying covariates
(wetland area and conductivity) constant as the mean of the recorded values across the sampling
period for wetland j, but we assumed that the trend effect continues. We used estimated
occupancy probabilities, ¥, and whether or not species i is estimated to exist in park », W, to
predict the presence or absence, Z, of each species i at each wetland j in year y for each posterior
iteration s in future years:

Zsjyir ~ Binomial(¥Ws .y ir * Wsir) .
We estimated W using a data augmentation parameter (2,., the probability that species i is at park
r, Ws i » ~ Binomial(£2,.). We summed the latent Z values for all i species at wetland j in year y
to project species richness, N, of each wetland in each year at all parks.

We predicted species richness values at wetlands under two scenarios. The first scenario
includes management intervention (N; 5 action), Where the hydroperiod for each of the temporary
wetlands (241 temporary wetlands in the NCRN out of total of 296 monitored wetlands) is
manipulated to semi-permanent. The second scenario uses a ‘business as usual’ approach (BAU;
Nj, pau) that assumes the wetland hydroperiod is unchanged (Tallis et al. In Review). We then
calculate the net impact, I, to species richness from the action on wetland j in year y:

Iiy = Njyaction — Njypav -
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Note that I = 0 for any wetland j that was semi-permanent or permanent to begin with (because
there is no management intervention and thus no change to species richness). The average
difference for expected richness of each wetland j is calculated across all posterior distribution
iterations to estimate the mean impact of management at each wetland. We assumed that the
management intervention occurs immediately after the last year of available data (i.e., following
the 2020 sampling season), and that the effects of increasing a wetland’s hydroperiod are
immediate and durable (i.e., management is implemented perfectly and the effects last the
duration of the prediction interval). Thus, when comparing the impacts of management on
species richness, we only focused on those impacts in the first year (2021).

We then prioritized wetlands for management intervention across the region with the
objective of maximizing mean wetland-specific species richness at both the unit- (i.e., park) and
regional-levels (i.e., network). To do so, we estimated the cumulative value (V) of each wetland ;
relative to the expected increase in species richness of wetland j with the management
intervention (/); increasing a wetland’s species richness results in an increase in the average
species richness at the unit and regional levels, the effect of which depends on the value of the
increase (i.e., the number of species expected to be gained via management) and the number of
wetlands at each level. In addition to the net impact at wetland j, we also included terms
describing how managers at each scale value amphibians (Wygion and wy;;; both are > 0.0 and
<1.0) and the relative importance of improving the state of amphibian populations (i.e.,

increasing wetland-level richness) at the local and regional scales (Syegion and sypi¢; sum = 1.0):

~ __ region Unit
=y 4y,

Vregion = .

j j,2021 * Wyegion * Sregion

unit __
Vj = lj2021 * Wunitj * Sunitj
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Sregion = 1- Sunit]-
We incorporated the objective weights at the two relevant decision scales: the extent to which
regional decision makers value maximizing mean wetland richness across the region, Wyegion,
and the extent that unit (i.e., park) decision makers value maximizing mean wetland richness for
their individual management unit, w,,,;;. Objective weights can be interpreted as the proportional
value each manager places on amphibians relative to other relevant conservation objectives
under their jurisdiction: a value near 1 indicates amphibians are a high priority, while a value
near zero indicates amphibians do not influence natural resource management decisions at that
jurisdiction. Thus, we can incorporate the relative importance of the conservation objective to
each decision maker individually.

Additionally, we incorporated two discrete, spatial discounting parameters to reflect the
balance of the importance of these priorities across scales (Perrings & Hannon 2001). First, S;,;¢
reflects how much local decision makers value their own local goals relative to the larger,
regional goal. This parameter weights the importance of the increase in local species richness of
a managed wetland, and the difference from 1 weights the importance of increase in species
richness not at the local site, but for the region collectively (Sregion = 1 — Synit)- A value of 0.5
for syni¢ (and thus S;.¢gi0, as well) would assume that the local decision maker values the
increase in amphibian richness at their park equal to an increase in amphibian richness in the
region, whereas a value near one indicates local decision makers only care about goals at their
jurisdiction, with a value near zero indicating the opposite. Through this parameterization, we
can incorporate the relative importance of broader shared goals to the individual goals of each

decision maker.
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We evaluated the utility of our approach (and the ranking of wetlands) under multiple
scenarios to determine the sensitivity of the prioritization of management to the weights of the
multi-scaled objective and spatial discounting parameters. Thus, we used hypothetical values as
opposed to actual objectives weights (case specific values can be derived from managers through
various elicitation techniques; e.g., Martin et al. 2012). We compared how mean wetland-
specific species richness in the region would be altered (by examining the mean impact, /, of the
top quarter of wetlands ranked by V) across different values of the local and regional objective
weights ranging from 0 to 1 (in increments of 0.1). We evaluated these values under four
hypothetical scenarios to examine how variation in local objectives among parks influences the
management metric as well. These scenarios assume: (1) the value that individual park managers
place on amphibians in their park (w,,,;;) is proportional to the number of wetlands (amount of
amphibian habitat) at the park, (2) the value that individual park managers place on amphibians
at their park (w,,,,;¢) 1s inversely proportional to the number of wetlands at each park, (3) the
value of improving the state of amphibian populations at parks relative to the regional goal for
individual park managers (s,,;¢) 1s proportional to the number of wetlands at each park, and (4)
the value of improving the state of amphibian populations at parks relative to the regional goal
for individual park managers (s,,;¢) is inversely proportional to the number of wetlands at each
park. Because we are using hypothetical values, we used a metric (such as the number of
wetlands) as an objective approach to distinguishing between different scenarios. By using the
weights as proportional and inversely proportional to this metric, we are able to see how these

scenarios would differ across the extremes of this metric.
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Results

At the regional level, mean species occupancy declined over the time frame of our study
(2005-2020) as indicated by a negative trend effect (i,5; Mean: -0.76; Credible Interval [CI]: -
0.25 —-1.34), indicating a broad decline of amphibian occupancy and species richness across the
NCRN (Fig. 3.1). Of the 9 monitored parks in the region, 5 parks had a significant (non-
overlapping 95% CI with 0), negative trend for community occupancy, 3 parks had a negative
(but not significant) trend, and 1 park had no trend (us ,; Table 3.1). At the regional level, the
effect (on the logit scale) of hydroperiod classification led to significantly higher species
occupancy rates in wetlands with semi-permanent hydroperiod relative to a temporary
hydroperiod (g1 semi; 0.67, 0.11 — 1.24 CI), with all 9 parks demonstrating this community-
level effect to varying degrees (Uqy semir; Table 3.1). In the final year of sampling (2020), mean
wetland-specific species richness for permanent wetlands was 3.82 (2.70 standard deviation
[sd]), for semi-permanent wetlands was 2.97 (1.78 sd), and for temporary wetlands was 1.79
(1.26 sd) across all sampled parks in the region.

Of all temporary wetlands that were sampled, 91% are projected to increase in species
richness if they were to be altered to semi-permanent, although the magnitude of increases varies
by both wetland and park (Fig. 3.1). The mean projected gain (/) in species richness per wetland
of the top quarter of wetlands is 2.16 (0.45 sd). If all 241 monitored temporary wetlands were
managed to become semi-permanent, expected wetland-specific species richness would increase
by 0.92 (0.82 sd) for all sampled wetlands in the region. Expected wetland richness would
increase by 0.77 (0.92 sd) and 0.54 (0.96 sd) if the top half (if ranked by /) and the top quarter of
wetlands were managed, respectively (Fig. 3.2). These gains are mostly driven by a single park

(Manassas [MANA], Table 3.2 and Fig. 3.1), which had the highest mean difference in species
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richness between temporary and semi-permanent wetlands (Table 3.1). After Manassas, the
prioritization of wetlands by impact becomes more evenly distributed across parks (Table 3.2). If
the number of managed wetlands was allocated equally across all parks (ranked by net increase
and park), the mean expected gain in wetland specific richness (/) would be reduced to 1.03
(0.68 sd) for increasing hydroperiod for the top quarter of wetlands, less than half of what it
would be if ranked solely by net impact.

The expected change in species richness due to implementing the management action (/)
on the top quarter of wetlands is sensitive to the objective and spatial discounting weights at both
unit and regional scales that we evaluate, ranging from an increase of 0.42 to 2.16 species per
wetland on average across the four scenarios and range of possible values (Fig. 3.3). Higher
values for the amphibian objective at the regional level (Wy.¢g;0,) generally led to higher impacts
on mean wetland-specific species richness for the region, whereas higher values for the
amphibian objective at local levels (w,,,;¢), and the focus on local objectives relative to regional
goals (Synit), generally led to lower mean impacts of the highly ranked wetlands (Fig. 3.3).
These estimates were also sensitive to whether local goals were proportional or inversely
proportional to the amount of habitat (Fig. 3.3), which is to be expected given the differences in
impact of management intervention across parks (Fig. 3.1) and the amount of habitat at each
park. For example, MANA has a disproportionate amount of wetland habitat, a large amount of
temporary wetlands, and the highest impact of wetland management. Thus, when the value local
decision makers place on increasing mean wetland-specific species richness (W ;¢ ) 1S
proportional (Fig. 3.3a) or inversely proportion to the amount of habitat at each unit (Fig. 3.3b),
the net impact of management (/) can vary by up to one additional species per wetland

(particularly when the value of local goals relative to regional goals is high; s,,;¢ 1s close to 1).
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Discussion

A major challenge in landscape conservation is the fragmentation of conservation areas,
and landscape decisions, with individual local decision makers. Governance structures that
organize these discrete units into a collaborative are believed to improve regional conservation
outcomes by organizing efforts to achieve a large-scale objective. Here, we demonstrate how
incorporating network governance structure explicitly in the decision analytic process (i.e., the
value function) can provide a solution for balancing collaborative landscape conservation goals
for amphibian communities within a network of protected areas. Our results show amphibian
communities are in decline across the NCRN (at 8 of 9 parks) but that the potential impacts of
management intervention differ across the landscape, within and among parks (Fig. 3.1 & Fig.
3.2). Most importantly, our results demonstrate how different weightings of objectives and
spatial discounting parameters at both scales impact the prioritization of wetlands for
management, and the resulting increase of amphibian richness, across the NCRN (Fig. 3.3).
These variable impacts highlight a common tradeoff in conservation management: the decision
to distribute resources across parks to meet local-scale goals or the concentration of resources to
meet regional goals, which often has the highest absolute impact. This choice can lead to
markedly different results for the amphibian community as a whole. Hierarchical governance
results in complex decision tradeoffs both within and across scales—but here we demonstrate
why it is necessary to transparently and explicitly incorporate that complexity into prioritization
of management action when financial resources are often limited.

The NCRN offers a tractable example useful for demonstrating how to balance discrete
decision makers with non-overlapping jurisdictions and differential authority in collaborative

landscape conservation. Within the NCRN, individual parks make and implement management
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decisions. Network-level objectives can add structure to address the scale, complexity, and
uncertainty of regional and global threats. As a result, network-level objectives can help
coordinate the strategic allocation of individual and shared resources to management actions
across a collaborative network of individual parks. However, individual park constraints and
motivations must be considered to reflect individual park capacity and interest to support these
larger-scale objectives. This problem is characteristic of, and universal to, conservation, which is
inherently local and collaborative (Wyborn & Bixler 2013). Larger entities often do not, and are
not necessarily meant to, act across space — they may set goals to guide individual actors (e.g.,
Convention on Biological Diversity 2020), enact policy to guide, limit, or review individual
actions (e.g., U.S. National Environmental Policy Act of 1969), direct resources across space to
support local actions (Armsworth et al. 2020), or implement management actions in discrete
locations. Success in landscape-scale conservation is thus an emergent property of the individual
actions of multiple decision makers.

Conservation for common and widely distributed natural resources is challenging because
the fragmented jurisdiction for management necessitates multiple decision makers and the
coordination of a combination of individual and shared resources. How objectives are organized
and weighted across scales is relative to the “decision space” for this and other landscape
problems (Fig. 3.4). Landscape decision spaces can be organized across two dimensions: the
extent that governance (in this context, decision making authority) is centralized and the extent
that resources to support or implement actions are centralized. Our case study falls in the
“collaborative” spaces — in which conservation objectives need to be considered at multiple
scales to efficiently pool or allocate some amount of shared resources. This space is emblematic

of cross-boundary conservation issues more broadly (e.g. migratory bird management, wildlife
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disease management, Great Lakes ecosystem management, etc.), and our results demonstrate the
sensitivity of the management prioritization to diverse stakeholders’ objectives.

Discounting is a process that incorporates changes in perceived benefits that occur at
different points in time (e.g., immediate vs future costs; Frederick et al. 2002). Recent
advancements have extended this approach to space by including a distance-decay function in
cost-benefit analyses (Perrings & Hannon 2001, Baum & Easterling 2010). While treating
distance as a continuous variable may work for individual actors, governance operates at discrete
(and often multiple) spatial scales and not just continuously across space. Previous research has
provided a solution to a spatially nested resource allocation decision with multiple discrete
spatial scales (Armsworth et al. 2020). However, their problem assumes that decision making is
centralized within a single authority—and not collaborative across decision makers that occur,
and who may have individual objectives and tradeoffs, across spatial scales (Ernstson et al. 2008,
Mills et al. 2014). Instead, we consider the two scales over which the amphibian community may
be considered and allow for differential weighting of these two spatially-referenced objectives.
This effectively discretizes spatial discounting relative to the multiple governance scales in a
decision, and we can thus separately estimate the value of direct, local impacts and indirect,
regional impacts of management for each wetland for all relevant decision makers.

We present a simplified approach to multi-scaled prioritization, and there are a number of
developments and complexities that could be incorporated in future research. First, we assumed
the region cares about the improvement in the amphibian community within all parks equally,
but that may vary (e.g., the region may want to target areas where declines are the highest) and
could be incorporated in the decision-making approach via differential values for the spatial

weights. Second, we assumed that the cost of managing each wetland is the same, but that may
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vary, and decision makers may choose to incorporate cost in the value function. We also
assumed that management is immediate and durable, however, both a delay in reaching the
maximum species richness as well as the uncertainty and variation in the efficacy of management
could be incorporated (e.g., Tallis et al. In Review). Lastly, we keep the metric to be maximized
at the same scale (wetland-specific richness) and allow the weights to vary across and within
scales, but the metric may vary by scale as well (e.g., the number of species in the region vs. the
number of species in a park).

Overall, this approach can help spatially prioritize management action by discretizing
objective weights (how each decision maker cares about a conservation goal) and spatial
discounting parameters (how each decision maker cares about individual vs collaborative goals).
Recognizing that conservation is collaborative, such an approach allows for the incorporation of
decision makers operating at different scales, and having access to different resources, in a
landscape conservation problem. Space and spatial scale matters—as population and community

declines, impacts of management, and management objectives may vary across a landscape.
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Table 3.1: Park-level mean effects on occupancy (on the normal scale) of trend and the semi-
permanent wetland hydroperiod classification, summarized by the mean of the posterior
distribution (and 95% Credible Intervals). Parks include: Catoctin Mountain Park (CATO),
Chesapeake & Ohio Canal National Historical Park (CHOH), George Washington Memorial
Parkway (GWMP), Harpers Ferry National Historical Park (HAFE), Manassas National
Battlefield Park (MANA), Monocacy National Battlefield (MONO), National Capital Parks —

East (NACE), Prince William Forest Park (PRWI), and Rock Creek Park (ROCR).

Park Trend Effect Semi-permanent Effect
CATO -0.60 (-1.36 - 0.22) 0.96 (0.15-1.95)
CHOH 0.01 (-0.27 - 0.26) 0.46 (-0.08 — 0.97)
GWMP -1.32(-2.24 - -0.55) 0.64 (-0.03 - 1.31)
HAFE -1.05 (-2.58 — 0.06) 0.62 (-0.39 — 1.65)
MANA -0.63 (-1.13 —-0.16) 1.02 (0.38 — 1.70)
MONO -1.09 (-1.87 —-0.36) 0.68 (-0.53 - 1.94)
NACE -0.62 (-1.53 - 0.40) 0.40 (-0.59 - 1.19)
PRWI -0.95 (-1.73 —-0.33) 0.58 (-0.04 - 1.19)
ROCR -0.67 (-1.21 —-0.10) 0.67 (-0.60 — 1.86)
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Table 3.2: Ranking of wetlands by impact, 7, to species richness at each wetland (for 2021),
including the species richness with (Nyti0r) and without management intervention

(Npay) as well as the park in which each wetland is located. Parks include: Catoctin Mountain
Park (CATO), Chesapeake & Ohio Canal National Historical Park (CHOH), George Washington
Memorial Parkway (GWMP), Harpers Ferry National Historical Park (HAFE), Manassas
National Battlefield Park (MANA), Monocacy National Battlefield (MONO), National Capital

Parks — East (NACE), Prince William Forest Park (PRWI), and Rock Creek Park (ROCR).

Rank Ngay Nyction 1 Park
1 2.51(1.43) 5.25(1.65) 2.74 (2.05) MANA
2 2.76 (1.43) 5.45 (1.67) 2.69 (2.06) MANA
3 2.36(1.33) 5.04 (1.62) 2.68 (2.00) MANA
4 2.24 (1.32) 4.91 (1.57) 2.67 (1.99) MANA
5 2.10(1.29) 4.75 (1.58) 2.66 (1.95) MANA
71 1.58 (1.16) 2.68 (1.38) 1.10 (1.72) PRWI
72 1.40 (1.07) 2.49 (1.52) 1.09 (1.75) ROCR
73 1.31 (1.04) 2.40 (1.52) 1.08 (1.74) ROCR
74 1.31 (1.08) 2.37(1.33) 1.06 (1.64) PRWI
75 2.63 (1.36) 3.62 (1.44) 1.00 (1.98) CHOH
146 0.60 (0.76) 1.17 (1.03) 0.57 (1.26) GWMP
147 1.07 (0.97) 1.64 (1.16) 0.57 (1.33) NACE
148 0.59 (0.74) 1.16 (1.01) 0.57 (1.21) GWMP
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Table 3.2 (cont’d)
149 0.35(0.57) 0.91 (0.99) 0.56 (1.16) MONO

150 0.55 (0.74) 1.10 (1.00) 0.56 (1.20) GWMP
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Figure 3.1: Estimated annual mean wetland-specific species richness by park (black points) with
50% Credible Intervals (dark gray area) and 95% Credible Intervals (light gray area) from 2015-
2020. Predicted annual mean wetland-specific species richness under the business as usual
scenario by park (red points) with 50% Credible Intervals (dark red area) and 95% Credible
Intervals (light red area) from 2021-2026, and under the management intervention (if every
temporary wetland was manipulated to semi-permanent) scenario by park (blue points) with 50%
Credible Intervals (dark blue area) and 95% Credible Intervals (light blue area) from 2021-2026.
Parks include: Catoctin Mountain Park (CATO), Chesapeake & Ohio Canal National Historical
Park (CHOH), George Washington Memorial Parkway (GWMP), Harpers Ferry National
Historical Park (HAFE), Manassas National Battlefield Park (MANA), Monocacy National
Battlefield (MONO), National Capital Parks — East (NACE), Prince William Forest Park

(PRWI), and Rock Creek Park (ROCR).
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Figure 3.2: The net increase to mean wetland-specific richness by the percentage of temporary
wetlands that are managed for the region (NCRN) and for each park. Parks include: Catoctin
Mountain Park (CATO), Chesapeake & Ohio Canal National Historical Park (CHOH), George
Washington Memorial Parkway (GWMP), Harpers Ferry National Historical Park (HAFE),
Manassas National Battlefield Park (MANA), Monocacy National Battlefield (MONO), National
Capital Parks — East (NACE), Prince William Forest Park (PRWT), and Rock Creek Park

(ROCR).
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Figure 3.3: The mean impact of management, /, to wetland-specific species richness of the top
quarter of wetlands across the NCRN ranked by different values of regional objective weights
(Wregion) as well as (a-b) local spatial discounting parameters (Syn;¢) and (c-d) objective weights
(Wynit)- We compare these values under four different hypothetical scenarios to visualize the
variability among parks within each parameter: (a) Syp;; and Wy¢g;0, vary from 0 to 1 (in
increments of 0.1) but w,,,,;; for each park is inversely proportional the amount of wetland
habitat in the park; (b) Synir and Wyegion vary from 0 to 1 (in increments of 0.1) but wy,y;, for
each park is proportional to the amount of wetland habitat in the park; (¢) Wy and wyeg;on vary
from 0 to 1 (in increments of 0.1) but s,,,,;; for each park is proportional to the amount of
wetland habitat in the park; and (d) Wy, and Wy gion vary from 0 to 1 (in increments of 0.1) but
Sunit for each park is proportional to the amount of wetland habitat in the park. w,,,,;; reflects
how local decision makers value increasing amphibian wetland richness at their unit, and Wy.¢g;0n
reflects how regional decision makers value the same objective across their regional jurisdiction.
sunit reflects how local decision makers value these goals at their local level relative to the
broader region, and ;¢ 40y, reflects the importance of these goals elsewhere in the region (both

parameters sum to 1).
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Figure 3.3 (cont’d)
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Figure 3.4: The different landscape decision spaces relative to the centralization of decision
making authority (‘governance’) and management resources, using the approximate location of

our case study (NCRN) in this space as an example (oval).
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CHAPTER 4: MOVING FROM DECISION TO ACTION IN CONSERVATION

SCIENCE

Abstract

Biodiversity loss is a major threat to the integrity of ecosystems and is projected to
worsen, yet the path to successful conservation remains elusive. Decision support frameworks
(DSFs) are increasingly applied by resource managers to navigate the complexity, uncertainty,
and differing socio-ecological objectives inherent to conservation problems. Most published
conservation research that uses DSFs focuses on analytical stages (e.g., identifying an optimal
decision), making it difficult to assess and learn from previous examples in a conservation
practice context. Here, we (1) evaluate the relationship between the application of decision
science and the resulting conservation outcomes, and (2) identify and address existing barriers to
the application of DSFs to conservation practice. To do this, we develop a framework for
evaluating conservation initiatives using decision science that emphasizes setting attainable
goals, building momentum, and obtaining partner buy-in. We apply this framework to a
systematic review of amphibian conservation decision support projects, including a follow-up
survey of the pertinent conservation practitioners, stakeholders, and scientists. We found that all
projects identified optimal solutions to reach stated objectives, but positive conservation
outcomes were limited when implementation challenges arose. Further, we identified multiple
barriers (e.g., dynamic and hierarchical leadership, scale complexity, limited resource
availability) that can inhibit the progression from decision identification to action
implementation (i.e., ‘decision-implementation gap’), and to successful conservation outcomes.

Based on these results, we provide potential actionable steps and avenues for future development
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of DSFs to facilitate the transition from decision to action and the realization of conservation

SUCCESSES.

Material from: Wright, A. D., Bernard, R. F., Mosher, B. A., O'Donnell, K. M., Braunagel, T.,
DiRenzo, G. V., Fleming, J., Shafer, C., Brand, A. B., Zipkin, E. F., & Grant, E. H. C. (2020).

Moving from decision to action in conservation science. Biological Conservation, 249, 108698.

For full text of this work, please go to: https://doi.org/10.1016/j.biocon.2020.108698
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APPENDIX A: Data simulation and analysis code for simulations.

Data simulation and analysis code for the stratified random design at the 10% effort level.
The full data simulation and analysis code is available on Zenodo (10.5281/zenodo.4577521).
The symbols corresponding to the slope parameters for each effect term do not match directly as
represented in the manuscript. In the manuscript, al corresponds to the time effect but is denoted
by a2 in the code. Likewise, a2 in the manuscript corresponds to the site effect but is denoted by
al in the code.

URiRIER iRt
## Part - General Code Description
URiRIER iRt

## Author: A.D. Wright
## Project: NCRN Amphibians - Monitoring Optimization
## Code: Data simulation and analysis for the Random Stratified case study

#rm(list = 1s())
#options(max.print = 1000)

## TABLE OF CONTENTS
## Packages, working directory, and data
## Global parameters for simulation
## General f() to simulate data
## Generating data for each scenario

it
## Part - Packages, working directory, and data
it

#it
#### Install Packages
#it

#tidyverse
if(!require(tidyverse)) {install.packages('tidyverse');require(tidyverse)}

#jagsUI
if(!require(jagsUI)) {install.packages('jagsUI');require(jagsUI)}

HIHHHHEH
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## Part - Global parameters for simulation
it

set.seed(25)

#it
#### Sampling dimensions
#it

#Years

Y <-10

#Sampling Occassions per Year
K<-6

Kmed <- 4

Klow <- 2

#Units

R<-10

#Sites per unit

JMax <- 100

JMin <- 10

Jr <- as.integer(runif(n = R, min = JMin, max = JMax))

#Species Total (will vary by park)
I<-25
M <-25

#Datasets per scenario

#5 sampling scenarios:

scenarios <- c('stratified','indicator’,'rotating','split','weighted")
#5 sampling efforts: #(10%, 20%, 30%, 40%, 50%)

effort <- ¢(0.1, 0.2, 0.3, 0.4, 0.5)

H
#### Global, regional, and species parameters
H

#Global

#Unit Occupancy
mean.cO <- 0.4

sd.cO <- 0.25

#Site Occupancy
#Intercept
mean.a0.global <- 0.3
sd.a0.global <- 0.5
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sd.a0 <- 0.5

#Site effect
mu.al.global <- 0.8
sd.al.global <- 0.5
sd.al <- 0.5

#Year effect
mu.a2.global <- -0.4
sd.a2.global <- 0.5
sd.a2 <- 0.5
#Autologistic effect
mu.a3.global <- 0.4
sd.a3.global <- 0.5
sd.a3 <- 0.5
#Detection
mean.b0.global <- 0.3
sd.b0.global <- 0.5
sd.b0 <- 0.5

#Hit
#### Generate covariate data
#Hit

Site effect al <- array(rnorm(JMax*R, 0, 1), dim = ¢(100,10))
Year <- 1:10
Year effect a2 <- (Year - mean(Year))/sd(Year)

HiHERHHHH
## Part - f()'s
HiHERHHHH

H
#### Simulation f() - A blend of Sutherland et al. 2016 S2 & simDCM
H

#Basic Function
sim_community <- function(R. = R, # of spatial units
L. =1, # of species
M. =M, # of augmented species
Y. =Y, # of years
K. =K, # of sampling occassions per year
JMax = max(Jr), # sites max per unit
Jr. = Jr, # of sites per spatial unit
mean.c(. = mean.c0, sd.c0. = sd.c0, #unit occupancy
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mean.a0.global. = mean.a0.global, sd.a0.global. = sd.a0.global, sd.a0. = sd.a0,
#site occupancy

mu.al.global. = mu.al.global, sd.al.global. = sd.al.global, sd.al. =sd.al,
#site effect on occupancy

mu.a2.global. = mu.a2.global, sd.a2.global. = sd.a2.global, sd.a2. = sd.a2,
#year effect on occupancy

mu.a3.global. = mu.a3.global, sd.a3.global. = sd.a3.global, sd.a3. = sd.a3,
#auto effect on occupancy

mean.b0.global. = mean.b0.global, sd.b0.global. = sd.b0.global, sd.bo. = sd.bO0,
#detection

Site effect al.=Site effect al, Year effect a2. = Year effect a2
#covariates

N

#Create empty objects for loops

#Region (and species - in 2nd loop)

mu.a0 <- mu.al <- mu.a2 <- mu.a3 <- mu.b0 <- omega <- N_unit <- array(NA, dim = R)
a0 <- al <- a2 <- a3 <- b0 <- array(NA, dim = ¢(I+M,R))

W_mat <- array(NA, c¢(I+M,R))

Z mat <- logit psi <- array(NA, c(JMax, Y, [+M, R))

X mat <- array(NA, c(JMax, K, Y, I+M, R))

#Generate park and species parameters
for(r in 1:R){
omega[r] <- plogis(rnorm(1,qlogis(mean.c0),sd.c0))
#Occupancy
mu.a0[r] <- rnorm(1, mean = qlogis(mean.a0.global), sd = sd.a0.global)
mu.al[r] <- rnorm(1, mean = mu.al.global, sd = sd.al.global)
mu.a2[r] <- rnorm(1, mean = mu.a2.global, sd = sd.a2.global)
mu.a3[r] <- rnorm(1, mean = mu.a3.global, sd = sd.a3.global)
#Detection
mu.b0[r] <- rnorm(1, mean = gqlogis(mean.b0.global), sd = sd.b0.global)
for(iin 1:(I+M)){
W_mat[i,r] <- rbinom(1, 1, omega[r])
#Species
#Occupancy
a0[1,r] <- rnorm(1, mean = mu.a0[r], sd = sd.a0)
al[ir] <- rnorm(1, mean = mu.al[r], sd = sd.al)
a2[i,r] <- rnorm(1, mean = mu.a2[r], sd = sd.a2)
a3[i,r] <- rnorm(1, mean = mu.a3[r], sd = sd.a3)

#Detection

b0[1,r] <- rnorm(1, mean = mu.bO[r], sd = sd.b0)
h
N_unit[r] <- sum(W_mat[,r])

}
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#Generate data
for(r in 1:R){
for(i in 1:(I+M)){
for(j in 1:Jr[r]) {
logit_psi[j,1,i,r] <- aO[i,r] + al[i,r]*Site effect al[j,r] +a2[ir]*Year effect a2[1]
Z mat[j,1,i,r] <- rbinom(1, 1, plogis(logit psi[j,1,i,r])*W_mat[i,r])
for(y in 2:Y){
logit psi[j,y,i,r] <- aO[i,r] + al[i,r]*Site effect al[j,r] + a2[i,r]*Year effect a2[y] +
a3[i,r]*Z_mat[j,y-1,i,1]
Z mat[j,y,i,r] <- rbinom(1, 1, plogis(logit psi[j,y,i,r])*W_mat[i,r])
} #y
for(y in 1:Y){
for(k in 1:K){
X _mat[j,k,y,i,r] <- rbinom(1, 1, Z mat[j,y,i,r]*plogis(b0[i,r]))
}#k
} #y
§#
}#i
} #Hr

return(list(X_mat = X mat, logit psi = logit psi, Z mat=Z mat,
#the simulated data
R=R, I=LM=M,Y =Y, K=K, JMax = JMax, Jr=Jr,
#the dimensions used to simulate the data
Site _effect al = Site effect al, Year effect a2 = Year effect a2,
#the covariates used to simulate the data
mean.cO = mean.c0, sd.cO = sd.cO, omega = omega, W_mat =W _mat, N _unit = N_unit,
#the parameters used to simulate data - unit occupancy
mean.a0.global = mean.a0.global, sd.a0.global = sd.a0.global, sd.a0 = sd.a0, mu.a0 =
mu.a0, a0 = a0, #the parameters used to simulate data - site occupancy (intercept)
mu.al.global = mu.al.global, sd.al.global = sd.al.global, sd.al =sd.al, mu.al = mu.al,

al =al, #the parameters used to simulate data - site occupancy (slope - site)

mu.a2.global = mu.a2.global, sd.a2.global = sd.a2.global, sd.a2 = sd.a2, mu.a2 = mu.a2,
a2 =a2, #the parameters used to simulate data - site occupancy (slope - year)

mu.a3.global = mu.a3.global, sd.a3.global = sd.a3.global, sd.a3 = sd.a3, mu.a3 = mu.a3,
a3 =a3, #the parameters used to simulate data - site occupancy (slope - auto)

mean.b0.global = mean.b0.global, sd.b0.global = sd.b0.global, sd.b0 = sd.b0, mu.b0 =
mu.b0, b0 =b0  #the parameters used to simulate data - detection (intercept)

)

} #£() - sim_community

H
#### Base function to create tables of results for plotting purposes
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#it
org_results <- function(jagsOut, td){

nPark <- td$R
nSpp <- dim(td$W_mat)[1]*dim(td$W_mat)[2]

#Global

simTab_g <- data.frame(mean.cO = NA,
sd.cO =NA,
mu.a0.global = NA,
sd.a0.global = NA,
sd.a0 = NA,
mu.b0.global = NA,
sd.b0.global = NA,
sd.b0 =NA,
mu.al.global = NA,
sd.al.global = NA,
sd.al = NA,
mu.a2.global = NA,
sd.a2.global = NA,
sd.a2 = NA,
mu.a3.global = NA,
sd.a3.global = NA,
sd.a3 =NA

)

simTab_g$mean.cO <- jagsOut$mean$mean.cO - td$Smean.c0
simTab_g$sd.cO <- jagsOut$mean$sd.cO - td$sd.cO
simTab_g$mu.a0.global <- jagsOut$mean$mu.a0.global - mean(td$mu.a0)
simTab_g$sd.a0.global <- jagsOut$mean$sd.a0.global - td$sd.a0.global
simTab_g$sd.a0 <- jagsOut$mean$sd.a0 - td$sd.a0
simTab_g$mu.al.global <- jagsOut$mean$mu.al.global - mean(td$mu.al)
simTab_g$sd.al.global <- jagsOut$mean$sd.al.global - td$sd.al.global
simTab_g$sd.al <- jagsOut$mean$sd.al - td$sd.al
simTab_g$mu.a2.global <- jagsOut$mean$mu.a2.global - mean(td$mu.a2)
simTab_g$sd.a2.global <- jagsOut$mean$sd.a2.global - td$sd.a2.global
simTab_g$sd.a2 <- jagsOut$mean$sd.a2 - td$sd.a2
simTab_g$mu.a3.global <- jagsOut$mean$mu.a3.global - mean(td$mu.a3)
simTab_g$sd.a3.global <- jagsOut$mean$sd.a3.global - td$sd.a3.global
simTab_g$sd.a3 <- jagsOut$mean$sd.a3 - td$sd.a3
simTab_g$mu.b0.global <- jagsOut$mean$mu.b0.global - mean(td$mu.b0)
simTab_g$sd.b0.global <- jagsOut$mean$sd.b0.global - td$sd.b0.global
simTab_g$sd.b0 <- jagsOut$Smean$sd.b0 - td$sd.b0

#Park
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simTab_p <- data.frame(mu.a0 = rep(NA,nPark),
mu.b0 = rep(NA,nPark),
mu.al = rep(NA,nPark),
mu.a2 = rep(NA,nPark),
mu.a3 = rep(NA,nPark)

)

simTab_p$mu.a0[1:nPark] <- (jagsOut$mean$mu.a0 - apply(td$a0,2,mean))
simTab_p$mu.al[l:nPark] <- (jagsOut$mean$mu.al - apply(td$al,2,mean))
simTab_p$mu.a2[l:nPark] <- (jagsOut$mean$mu.a2 - apply(td$a2,2,mean))
simTab_p$mu.a3[1:nPark] <- (jagsOut$mean$mu.a3 - apply(td$a3,2,mean))
simTab_p$mu.bO[1:nPark] <- (jagsOut$mean$mu.b0 - apply(td$b0,2,mean))

#Species
simTab_s <- data.frame(a0 = rep(NA,nSpp),
b0 = rep(NA,nSpp),
al = rep(NA,nSpp),
a2 =rep(NA,nSpp),
a3 =rep(NA,nSpp)

simTab_s$a0[1:nSpp] <- as.vector(jagsOut$mean$a0*na_if(tdSW_mat, 0)) -
(td$a0*na_if(td$W_mat, 0))

simTab_s$b0[1:nSpp] <- as.vector(jagsOut$mean$b0*na_if(tdSW_mat, 0)) -
(td$b0*na_if(tdSW _mat, 0))

simTab_s$al[1:nSpp] <- as.vector(jagsOut$mean$al*na_if(tdSW_mat, 0)) -
(td$al*na_if(td$W_mat, 0))

simTab_s$a2[1:nSpp] <- as.vector(jagsOut$mean$a2*na_if(tdSW_mat, 0)) -
(td$a2*na_if(td$W_mat, 0))

simTab_s$a3[1:nSpp] <- as.vector(jagsOut$mean$a3*na_if(tdSW_mat, 0)) -
(td$a3*na_if(td$W_mat, 0))

#Put results all together
x <- list(global = simTab_g, park = simTab_p, species = simTab _s)
return(x)

}

URiRIER iRt
## Part - Loop to run multiple simulations
URiRIER iRt

## Looping Variables

65



start <- 1

end <- 10 #Run this script 65 times in HPCC for a total of 650 sims: for i in {1..65}; do sbatch
amphibianRS.sb; done

results <- Jr_temp <- maxJr_temp <- K_temp <- list()

converge <- vector()

##Loop
for(i in start:end){

#Remove seed so simulations in parallel are all different
set.seed(NULL)

#Simulate a data set
td <- sim_community()

## Simulation specific variables
strategy <- "randomStrat"

effort <- 0.5

Jr_temp[[i]] <- round(td$Jr*effort)
maxJr_temp[[i]] <- max(Jr_temp[[i]])
K temp([i]] <-4

#Need to rewrite Z mat and W_mat based on effort for initial values
for(r in 1:td$R){
for(m in 1:(td$I-+td$M)){
for(j in (Jr_temp[[i]][r]+1):td$IMax) {
for(y in 1:td$Y){
td$Z_mat[j,y,m,r] <- NA
for(k in 1:6){
td$X mat[j,k,y,m,r] <- NA
+ #k
} #y
5 #
}#i
} #Hr

td$X mat <- td$X mat[l:maxJr_temp[[i]],1:K,1:10,1:50,1:10]
td$Z mat <- td$Z mat[1:maxJr temp[[i]],1:10,1:50,1:10]

# Organize data for jags
jagsDat <- list(X = td$X mat, #Detection data
R =td$R, I =td$I, M =td$M, Y =tdSY, K=K templ[[i]], Jr =Jr temp[[i]],
#Looping variables
Site effect al =td$Site effect al, Year effect a2 =td$Year effect a2 #Covariates

)
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# Compile inititial values for jags
jagsIni <- function(){

list(Z=td$Z mat, W=td$W _mat)
}

# Paramaters to monitor for jags

jagsPar <- ¢("'mean.c0', 'sd.c0',
'mu.a0.global’, 'sd.a0.global', 'sd.a0’, 'mu.a0', 'a0',
'mu.al.global, 'sd.al.global, 'sd.al’, 'mu.al’, 'al’,
'mu.a2.global, 'sd.a2.global’, 'sd.a2', 'mu.a2', 'a2',
'mu.a3.global', 'sd.a3.global’, 'sd.a3', 'mu.a3', 'a3’,
'mu.b0.global', 'sd.b0.global’, 'sd.b0’, 'mu.b0', 'b0'

#Run jags()

jagsFit <- autojags(data = jagsDat,
inits = jagslIni,
parameters.to.save = jagsPar,
model.file = "mrcm_jags.txt",
parallel=T,
n.chains=3,
n.adapt=1000,
iter.increment=10000,
max.iter=50000,
n.burnin=5000,
n.thin=10,
Rhat.limit=1.11

)

# Append this run to one full results object
results[[1]] <- org results(jagsOut = jagsFit, td = td)
converge[i] <- max(unlist(jagsFit$Rhat))

1# END OF LOOP

##Save results file

#unit occupancy

#site occupancy (intercept)
#site occupancy (slope)
#site occupancy (slope)
#site occupancy (slope)
#detection (intercept)

date <- gsub(pattern = c(":| "), replacement = "-", x = as.character(Sys.time()))

file str <- paste("jagsFit ","Simul ", effort*100, strategy," ",date,".R",sep="")

#Save
save(results, converge, file=file str)
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APPENDIX B: Monitoring design sampling schemes for simulations.

Table B.1: The percentage of sites sampled at each unit across all years in the stratified random
and weighted effort designs at 10% effort. In the stratified random design, each site sampled has
4 replicate visits per year. In the weighted effort design, sites at units 1-5 received 6 replicate

visits per year, and sites at units 6-10 received 2 replicate visits per year.

Unit / Year

# of Total
Sites

1(16) 10% 10%  10%  10% 10% 10%  10%  10%  10%  10%
221) 10% 10% 10% 10% 10% 10%  10% 10%  10%  10%
347 10% 10% 10% 10% 10% 10%  10% 10%  10%  10%
4(72) 10% 10%  10% 10% 10% 10% 10% 10% 10%  10%
508 10% 10%  10%  10%  10%  10%  10% 10%  10%  10%
6(23) 10% 10% 10% 10% 10% 10%  10% 10% 10%  10%
740) 10% 10% 10% 10% 10% 10% 10% 10%  10%  10%
8(©6) 10% 10% 10% 10% 10% 10%  10%  10%  10%  10%
935 10% 10% 10% 10% 10% 10% 10% 10%  10%  10%

10(90) 10% 10%  10%  10% 10%  10% 10%  10% 10%  10%
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Table B.2: The percent of sites sampled at each unit across all years in the indicator unit design

at 10% effort. Each site sampled has 4 replicate visits per year.

Unit / Year

#OsfitTeztal 2 3 4 5 6 7 8 9 10
1(16)  20% 20%  20% 20% 20% 20% 20%  20%  20%  20%
221 20%  20%  20%  20%  20% 20% 20%  20%  20%  20%
3(47)  20%  20%  20%  20%  20%  20% 20%  20%  20%  20%
4(72)  20% 20% 20% 20% 20% 20% 20%  20%  20%  20%
5(98)  20%  20%  20%  20%  20% 20% 20%  20%  20%  20%
6 (23)

7 (40)

8 (66)

9 (35)

10 (90)
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Table B.3: The percent of sites sampled at each unit across all years in the rotating panel design

at 10% effort. Each site sampled has 4 replicate visits per year.

Unit / Year

#OsfitTeztal 2 3 4 5 6 7 8 9 10
1(16)  20%  20% 20%  20% 20%  20%
2021)  20%  20% 20%  20% 20%  20%
3(47)  20%  20% 20%  20% 20%  20%
4(72)  20%  20% 20%  20% 20%  20%
5(98)  20%  20% 20%  20% 20%  20%
6 (23) 20%  20% 20%  20%

7 (40) 20%  20% 20%  20%

8 (66) 20%  20% 20%  20%

9 (35) 20%  20% 20%  20%

10 (90) 20%  20% 20%  20%
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Table B.4: The percent of sites sampled at each unit across all years in the split panel design at

10% effort. Each site sampled has 4 replicate visits per year.

Unit / Year
# OSfitTeztal 2 3 4 5 6 7 8 9 10

1(16)  10% 10% 10% 10% 10% 10% 10%  10% 10%  10%
221 10%  10%  10% 10% 10% 10% 10% 10% 10%  10%
3(47) 10%  10%  10%  10% 10% 10% 10%  10%  10%  10%
4(72)  10%  10% 10% 10% 10% 10% 10% 10% 10%  10%
5(98)  10% 10%  10% 10% 10% 10% 10%  10% 10%  10%
6(23) 20%  20% 20%  20% 20%  20%
7(40)  20%  20% 20%  20% 20%  20%
8(66) 20%  20% 20%  20% 20%  20%
9 (35) 20%  20% 20%  20%

10 (90) 20%  20% 20%  20%
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APPENDIX C: Multi-region community occupancy model for simulations.
The full data simulation and analysis code is available on Zenodo

(10.5281/zenodo.4577521). The symbols corresponding to the slope parameters for each effect

term do not match directly as represented in the manuscript. In the manuscript, al corresponds to
the time effect but is denoted by a2 in the code. Likewise, a2 in the manuscript corresponds to
the site effect but is denoted by al in the code.

JAGS code:

model{

HHRHH ]
## Part - General Model Description
I

# Author: A.D. Wright
# Description: This dynamic (autologistic) occupancy model analyzes simulated data. It treats species &
park hierarchically - an "MRCM" model (Sutherland et al 2016)

# Subscripts:
# i = Species; | = nSpecies; M = nZeroes
# j = Site; Jr = nSites per Unit; Jsamp = nSites per Unit that were sampled
# r = Unit; R = nUnit
# k = Visit; K = nVisits
#y =Year; Y =nYears

# Effects
# Omega: Intercept
# Occupancy: Intercept + Site_effect + Year_effect + Autologistic_effect
# Detection: Intercept

HHHHHHEHHHE
## Part - Priors
HHHHHHHHHE

#H
#HH Global-level priors
#H

#Data Augmentation
#Intercept
mean.c0 ~ dunif(0,1)
mu.c0 <- log(mean.c0/(1-mean.c0))
sd.cO ~ dunif(0,10)
tau.c0 <- pow(sd.cO, -2)

#Occupancy
#Intercepts
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mu.a0.global ~ dnorm(0, 0.37)
sd.a0.global ~ dunif(0,10)
sd.a0 ~ dunif(0,10)
tau.a0.global <- pow(sd.a0.global, -2)
tau.a0 <- pow(sd.a0, -2)
#Slopes
#Site Effect
mu.a1.global ~ dnorm(0,0.1)
sd.a1.global ~ dunif(0,10)
sd.a1 ~ dunif(0,10)
tau.a1.global <- pow(sd.a1.global, -2)
tau.a1 <- pow(sd.a1, -2)
#Time effect
mu.a2.global ~ dnorm(0,0.1)
sd.a2.global ~ dunif(0,10)
sd.a2 ~ dunif(0,10)
tau.a2.global <- pow(sd.a2.global, -2)
tau.a2 <- pow(sd.a2, -2)
#Autologistic effect
mu.a3.global ~ dnorm(0,0.1)
sd.a3.global ~ dunif(0,10)
sd.a3 ~ dunif(0,10)
tau.a3.global <- pow(sd.a3.global, -2)
tau.a3 <- pow(sd.a3, -2)

#Detection

#Intercepts
mu.b0.global ~ dunif(0,0.37)
sd.b0.global ~ dunif(0,10)
sd.b0 ~ dunif(0,10)
tau.b0.global <- pow(sd.b0.global, -2)
tau.b0 <- pow(sd.b0, -2)

#Ht
##HH Region-level priors
#Ht

for (rin 1:R) {

#Data Augmentation
l.omega[r] ~ dnorm(mu.c0, tau.c0)
logit(omegalr]) <- l.omegalr]
#Occupancy
#Intercept
mu.a0[r] ~ dnorm(mu.a0.global, tau.a0.global)
#Slopes
mu.a[r] ~ dnorm(mu.a1.global, tau.a1.global)
mu.a2[r] ~ dnorm(mu.a2.global, tau.a2.global)
mu.a3[r] ~ dnorm(mu.a3.global, tau.a3.global)

#Detection
#Intercept
mu.b0[r] ~ dnorm(mu.b0.global, tau.b0.global)

#H
#HHE Species-level priors
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#Ht
for (i in 1:(I+M)) {

#Data Augmentation
WI[i,r] ~ dbern(omegalr])

#Occupancy
#Intercepts
a0[i,r] ~ dnorm(mu.a0Jr],tau.a0)
#Slopes
al[i,r] ~ dnorm(mu.a1[r],tau.a1)
aZ2[i,r] ~ dnorm(mu.a2[r],tau.a2)
a3[i,r] ~ dnorm(mu.a3jr],tau.a3)

#Detection
#Intercepts
bO[i,r] ~ dnorm(mu.bO0[r],tau.b0)

R
## Part - Likelihood
HHHHHHHHHE

##
##HH Estimating Occupancy (Z-Array)
##

for (jin 1:Jr[r]) {

logit(psi[j,1,i,r]) <- aO[i,r] + a1[i,r]*Site_effect_a1[j,r] + a2[i,r]*Year_effect_a2[1]
Z[j,1,i,r] ~ dbern(psi[j,1,i,r]*"WI[i,r])

for (yin 2:Y){

logit(psi[j,y,i,r]) <- a0[i,r] + a1[i,r]*Site_effect_a1[j,r] + a2[i,r]*Year_effect_a2[y] + a3][i,r]*Z[j,y-1,i,r]
Z[j,y,i,r] ~ dbern(psi[j,y,i,r1*WI[i,r])

}#y
H#H

#### Estimating Detection (Data-Array)
##

for (yin 1:Y) {
for (k in 1:K) {

logit(plj,k,y,i,r]) <- bO[i,r]
X[j.k,y,i,r] ~ dbern(p[j,k,y.i,r]*Z[j,y,i,r])

} #k
3 #y
i

} #i

}#r
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#H
#HH Imputation model (this is needed for the 1U design)
#H
for (rin 1:R) {

for (jin 1:Jr[r]) {

Site_effect_a1[j,r] ~ dnorm(0, 1)

} #i

} #r

HHEHHHHH
## Part - END
HEHHHHHE

} #model
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APPENDIX D: JAGS model for analysis of 2005-2020 data.

We conducted our analyses within a Bayesian program using JAGS (Plummer 2003), R
(R Core Team 2016), and the ‘jagsUI’ package (Kellner 2016). All continuous covariates were
standardized to have a mean of zero and a standard deviation of one, and missing covariate data
were estimated using an imputation approach (Kéry and Royle 2015). We assessed structural
parameters for convergence by visually monitoring the corresponding trace plots and assuring
that the Gelman and Rubin diagnostic was less than 1.1 (Gelman and Rubin 1992; Gelman and
Shirley 2011; Kéry and Royle 2015).
JAGS code:

model{

]
## Part - General Model Description
]

# Author: A.D. Wright
# Description: This occupancy model analyzes 2005-2020 NCRN data (collected by NEARMI and NCR).
It treats species & park hierarchically.

#Uses components of Zipkin et al 2009 (based on Dorazio & Royle 2005, Dorazio et al 2006) and
Sutherland et al 2016.

# Subscripts:

#i = Species; | = nSpecies; M = nZeroes

# j = Site; J = nSites; mind = Vector containing indices of first site in a region; maxJ = ....of last site in a
region

# r = Region; R = nRegions
# k = Visit; K = nReps (in years that site[j] is not sampled, K is set to 1 to generate missing data)
#y = Year; Y =nYears; minY = Vector containg indices of first year of sampling for a site

# Effects
# Omega: Intercept
# Occupancy: Hydroperiod (Intercept) + Maximum Wetland Area + Connectivity + Conductivity + Trend
# Detection: Intercept + Julian Date + (Julian Date)*2 + RE of Year (for variation among technicians)

R
#i Part - Priors
R HE

#HH

##HH Global-level priors
#Ht
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#Data Augmentation
#Intercept

mu.omega ~ dnorm(0,0.37)

tau.omega ~ dgamma(0.1,0.1)

#Occupancy
#Intercept (temporary wetlands)
logit(mean.a0.global) <- mu.a0.global
mu.a0.global ~ dnorm(0,0.37)
tau.a0.global ~ dgamma(0.1,0.1)
tau.a0 ~ dgamma(0.1,0.1)
#Hydroperiod effects
mu.al1_S.global ~ dnorm(0,0.1)
tau.a1_S.global ~ dgamma(0.1,0.1)
tau.a1_S ~ dgamma(0.1,0.1)
mu.a1_P.global ~ dnorm(0,0.1)
tau.a1_P.global ~ dgamma(0.1,0.1)
tau.a1_P ~ dgamma(0.1,0.1)
#Other effects
mu.a2.global ~ dnorm(0,0.1)
species
tau.a2.global ~ dgamma(0.1,0.1)
tau.a2 ~ dgamma(0.1,0.1)
mu.a3.global ~ dnorm(0,0.1)
each species
tau.a3.global ~ dgamma(0.1,0.1)
tau.a3 ~ dgamma(0.1,0.1)
mu.a4.global ~ dnorm(0,0.1)
each species
tau.a4.global ~ dgamma(0.1,0.1)
tau.a4 ~ dgamma(0.1,0.1)
mu.ab.global ~ dnorm(0,0.1)
species
tau.a5.global ~ dgamma(0.1,0.1)
tau.a5 ~ dgamma(0.1,0.1)

#Detection
#Intercepts
mu.b0.global ~ dnorm(0,0.37)
tau.b0.global ~ dgamma(0.1,0.1)
tau.b0 ~ dgamma(0.1,0.1)
#Slopes
mu.b1.global ~ dnorm(0,0.1)
species
tau.b1.global ~ dgamma(0.1,0.1)
tau.b1 ~ dgamma(0.1,0.1)
mu.b2.global ~ dnorm(0,0.1)
species
tau.b2.global ~ dgamma(0.1,0.1)
tau.b2 ~ dgamma(0.1,0.1)
#Random-effect of time
tau.b.time ~ dgamma(0.1,0.1)
annual field crew (p)
for (y in 1:YX
etaly] ~ dnorm(0,tau.b.time)
}#y

#Defines mean of a2][i,r], slope of Area (psi) for each

#Defines precision (1/sd"2) of mu.a2[r]
#Defines precision (1/sd"2) of a2]i,r]
#Defines mean of a3]i,r], slope of Connectivity (psi) for

#Defines precision (1/sd"2) of mu.a3Jr]

#Defines precision (1/sd"2) of a3[i,r]

#Defines mean of a4]i,r], slope of Conductivity (psi) for
#Defines precision (1/sd"2) of mu.a4|r]

#Defines precision (1/sd"2) of a4[i,r]

#Defines mean of aj][i,r], slope of Year (psi) for each

#Defines precision (1/sd"2) of mu.a5][r]
#Defines precision (1/sd"2) of a5][i,r]

#Defines mean of bO[i,r], intercept (p) for each species
#Defines precision (1/sd"2) of mu.bO[r]
#Defines precision (1/sd"2) of bO[i,r]
#Defines mean of b1[i,r], slope of JDay (p) for each
#Defines precision (1/sd"2) of mu.b1][r]
#Defines precision (1/sd"2) of b1[i,r]
#Defines mean of b2][i,r], slope of JDay*2 (p) for each

#Defines precision (1/sd"2) of mu.b2[r]
#Defines precision (1/sd"2) of b2]i,r]

#Defines precision (1/sd"2) of eta[y], random effect of

#Defines random effect of annual field crew
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#Ht
##HH Region-level priors
#Ht

for (rin 1:R) {

#Data Augmentation
l.omega[r] ~ dnorm(mu.omega, tau.omega)
logit(omegalr]) <- l.omegalr]

#Occupancy
#Intercept
mu.a0[r] ~ dnorm(mu.a0.global, tau.a0.global)
#Effects
mu.al_S[r] ~ dnorm(mu.a1_S.global,tau.a1_S.global)
mu.al_P[r] ~ dnorm(mu.a1_P.global,tau.a1_P.global)
mu.a2[r] ~ dnorm(mu.a2.global, tau.a2.global)
mu.a3[r] ~ dnorm(mu.a3.global, tau.a3.global)
mu.a4[r] ~ dnorm(mu.a4.global, tau.a4.global)
mu.a5[r] ~ dnorm(mu.a5.global, tau.a5.global)

#Detection
#Intercept
mu.b0[r] ~ dnorm(mu.b0.global, tau.b0.global)
#Slopes
mu.b1[r] ~ dnorm(mu.b1.global, tau.b1.global)
mu.b2[r] ~ dnorm(mu.b2.global, tau.b2.global)

#H
#HHE Species-level priors
#H

for (i in 1:(I+M)) {

#Data Augmentation
WI[i,r] ~ dbern(omegalr])

#Occupancy
#Intercepts
a0[i,r] ~ dnorm(mu.a0fr],tau.a0)
#Effects
a1_S[i,r] ~ dnorm(mu.a1_Sjr],tau.a1_S)
al_P[i,r] ~ dnorm(mu.a1_PJr],tau.a1_P)
aZ2[i,r] ~ dnorm(mu.a2[r],tau.a2)
a3[i,r] ~ dnorm(mu.a3jr],tau.a3)
a4[i,r] ~ dnorm(mu.a4]r],tau.a4)
a5[i,r] ~ dnorm(mu.a5jr],tau.a5)

#Detection
#Intercepts
bO[i,r] ~ dnorm(mu.bO0[r],tau.b0)
#Slopes
b1[i,r] ~ dnorm(mu.b1[r],tau.b1)
b2[i,r] ~ dnorm(mu.b2[r],tau.b2)
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HHHHHHEHHHE
## Part - Likelihood
HHHHHHHHHE

#Ht
##HHt Estimating Occupancy (Z-Array)
#H

for (j in minJ[r]:maxJ[r]) {
for (y in minY[r]:Y) {

logit(psi[j,y,i,r]) <- a0[i,r] + a1_S][i,r]*Hydro_state[j,2] + a1_P[i,r]*Hydro_state][j,3] +
aZ2[i,r]*Site_area(j,y] + a3[i,r]*Connlj] + a4[i,r]*Cond][j,y] + a5[i,r]*Year[y]
Z[j,y,i,r] ~ dbern(psij,y,i,r]*WI[i,r])

}#y
zLast[j,i] <- Z[j,16,i,r]

##
#### Estimating Detection (Data-Array)
#i#

for (y in minY[r]:Y) {
for (k in 1:K[j,y]) {

logit(plj,k,V,i,r]) <- bO[i,r] + b1[i,r]*JDay[j,k,y] + b2[i,r1*(JDay][j,k,y]*2) + eta[y]
X[j.k,y,i,r] ~ dbern(p[j,k,y.i,r]*Z[j,y,i,r])

} #k
3 #y
i
} #i
}#r

##
##HH Generating Missing Covariate Data
##
for (rin 1:R) {
for (j in minJ[r]:maxJ[r]) {
for (y in minY[r]:Y) {

Site_area]j,y] ~ dnorm(0, 1)
Cond][j,y] ~ dnorm(0, 1)

for (k in 1:K[j,y]) {
JDay]j,k,y] ~ dnorm(0, 1)
} #k
} #y
} #i
Y #r

HHEHHHHH
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## Part - Derived Parameters
HHHHHHEHHHE

#Ht

##HHt Estimating mean occupancy and detection rates of observed species (and their corresponding
intercepts)

#Ht

for(rin 1:R) {
for(iin 1:1) {
for(y in minY[r]:Y) {
psi.avgly,i,r] <- mean(psi[minJ[r]:maxJ[r],y,i,r])
} #y
}H#i
Y #r
#H

##HH Estimating region-level species richness
#Ht

for(rin 1:R) {
Npark[r] <- sum(WI,r])
}#r
##
#HHt Estimating site-level species richness by year
##
for(rin 1:R) {
for (j in mind[rl:maxJ[r]) {
for (y in minY[r]:Y) {
nSite[j,y] <- sum(Z[j.y.r])
} #y

} #i
Y #r

for(rin 1:R) {
for (y in minY[r]:Y) {

Nsite.avg[r,y] <- mean(nSite[minJ[r]:maxJ[r],y])

Hy
}#r

HHEHHHHH
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## Part - END
HHHEHHHHH

} #model
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