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ABSTRACT 

QUANTIFYING, MONITORING, AND MANAGING BIODIVERSITY ACROSS MULTIPLE 
SPATIAL SCALES 

 
By 

Alexander D. Wright 

This dissertation aims to investigate how science can effectively inform management and 

policy decisions, leading to positive conservation outcomes for vulnerable wildlife communities. 

Successful conservation requires the incorporation of ecological uncertainty and socio-ecological 

complexity into the decision-making process. To navigate the uncertainty and complexity 

pertinent to landscape conservation, I demonstrate a multi-scaled approach to quantify, monitor, 

and manage amphibians in a case study of a regional network of national parks. In Chapter 1, I 

quantify biodiversity across multiple spatial scales by fitting a multi-region community 

occupancy model to regional amphibian monitoring data to elucidate the drivers and threats(s) to 

biodiversity and the relevant scale(s) to target management. In Chapter 2, I explore the efficacy 

of different monitoring programs and identify strategies to monitor biodiversity across multiple 

spatial scales to minimize uncertainty in system dynamics. In Chapter 3, I predict the impacts of, 

and then spatially prioritize, management to increase biodiversity across multiple spatial scales 

by incorporating governance complexity in the decision-making process. In Chapter 4, I 

synthesize findings from previously published studies to determine the extent, and conditions 

under which, decision support frameworks can lead to positive conservation outcomes. The 

chapters of this dissertation provide critical guidance on how to scale up conservation science to 

match the scope and scale of the ecological systems and governance structures it is meant to 

inform. The application of this knowledge can help conservation scientists, managers, and policy 

makers address the complex and multi-scaled biodiversity crisis. 
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INTRODUCTION 

 

In the midst of the Anthropocene, we are experiencing an unprecedented era of 

environmental challenges. Ecosystem degradation and subsequent losses in biodiversity are 

occurring at alarming rates (Johnson et al. 2017). The rate of biodiversity loss is predicted to 

increase markedly over this century (Leclère et al. 2020), with extinction risk for bird and 

mammal species predicted to more than double by 2060 (Tilman et al. 2017). Despite clear 

global goals and commitment to maintaining biodiversity (e.g. the 2020 Aichi Targets; 

Convention on Biological Diversity 2010), progress in addressing biodiversity loss has not been 

sufficient to reach the stated targets (Tittensor et al. 2014, Diaz et al. 2019).  

The challenges associated with preventing biodiversity loss are not just enormous, but 

immensely difficult to solve. The pressing issues of the day are ‘wicked’—clouded in 

uncertainty, complexity, and conflicting or competing interests (Game et al. 2013). Climate 

change, habitat loss, and other global threats to biodiversity are vast and complex—they directly 

or indirectly impact every organism on the plant. The extent of their reach thus encompasses a 

diversity of stakeholder interests, a high amount of system and future uncertainty, and complex, 

overlapping governance systems. As a result, solving these challenges requires the integration of 

the scope and scale of these problems directly into conservation science and decision making to 

effectively tackle the inherent uncertainties and diverse stakeholder interests.  

Recognizing that ecological processes and governance structures are scaled hierarchically 

(Heffernan et al. 2014, Armsworth et al. 2015), it is necessary to similarly structure science and 

conservation across spatial scales to successfully address biodiversity threats and reach 

conservation targets. To achieve this, advanced analytical approaches are required to incorporate 
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multi-scaled processes directly into statistical models, monitoring programs, and landscape 

conservation decision making. In this dissertation, I develop a multi-scaled modeling approach 

and apply it to a regional research and conservation program that aims to quantify, monitor, and 

manage amphibian biodiversity across a network of protected areas. In the sections below, I 

provide background description of this case study and an overview of the individual chapters that 

comprise this dissertation. 

 

Case Study Background 

Through the creation of the Inventory & Monitoring Program (I&M), the U.S. National 

Park Service (NPS) has established a long-term monitoring and research program of various 

natural resources to inform management of protected areas through the long-term monitoring and 

research of various natural resources (National Parks Omnibus Management Act of 1998). The 

National Capital Region Network (NCRN) is one of 32 administrative networks within the I&M 

Program that monitors a number of ‘vital signs’ to support and guide park management (NPS 

2005). The NCRN encompasses 11 National Parks within the urbanized region surrounding 

Washington, DC in the mid-Atlantic region of the United States, which vary in their recreational, 

cultural, and natural resource objectives.  

Amphibians are one of the fastest declining taxa globally, threatened by a myriad of 

additive and interacting stressors (Stuart et al. 2004, Hof et al. 2011, Grant et al. 2016). Chief 

among those threats are land use and climate change, as amphibians are bi-phasic and rely on 

climate- and land use-sensitive habitat (e.g., ephemeral wetlands) to complete their life cycle 

(Pounds 2001, Cushman 2006).  The mid-Atlantic region of the United States is home to many 

wetland-breeding amphibian species, which are particularly vulnerable to the effects of climate 
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change as rapidly increasing urbanization in the region isolates protected areas (Stottelemeyer 

1987, Lookingbill et al. 2014). Amphibians were selected as a vital sign within the NCRN in part 

because they are (1) presumed to be useful indicators of environmental change; and (2) 

management actions aimed at improving habitat quality for amphibians will likely have ancillary 

benefits to other components of the ecosystem (NPS 2005). 

Across the I&M networks, there is a desire to detect, understand, and respond to declines 

in vital signs, but there are few examples of how this might be accomplished at a broad scale. 

Park resource managers and regional staff in the NCRN have demonstrated interest in linking 

monitoring data to management decisions for amphibian communities (Grant et al. 2013). The 

challenge is to identify strategies to improve amphibian biodiversity at the regional scale in the 

face of threats to park resources, while incorporating monitoring data and differing management 

objectives from individual parks. Incorporating a multi-scaled approach to this challenge 

provides a synthesis of amphibian community data with immediate relevance for monitoring and 

managing amphibian populations throughout the NCRN. Beyond this case study, this work 

illustrates an approach for understanding, predicting, and evaluating impacts of environmental 

changes and management responses in landscape conservation.   

 

Dissertation Overview 

In the first three chapters, I develop a multi-scaled framework demonstrating how to 

quantify (Ch. 1), monitor (Ch. 2), and manage (Ch. 3) biodiversity in a landscape conservation 

case study. More broadly, this research revolves around the following central question: how do 

we ensure science directly informs management and policy decisions, leading to positive 
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conservation outcomes? Thus, I follow the first three chapters with a broader reflection on the 

application of decision support frameworks in conservation.  

In Chapter One I describe how to quantify biodiversity patterns across spatial scales. I fit 

a multi-region community occupancy model to 13 years of monitoring data on amphibians in the 

NRCN, revealing the magnitude and direction of effects on amphibian biodiversity patterns from 

ecological drivers (habitat area, connectivity, and quality) at both local and regional scales. I also 

highlight how the spatial scale of observation and analysis can influence statistical inference on a 

study system and its dynamics. This approach can be applied to other systems in which 

conservation professionals must determine the drivers of relevant biodiversity patterns and the 

spatial scale(s) at which management should be addressed.  

In Chapter Two I present how to monitor biodiversity patterns across spatial scales. I 

simulate data obtained via different large-scale monitoring designs and evaluate the bias and 

precision of occupancy parameter estimates describing the status, trends, and drivers of wildlife 

communities at both local and regional scales. These results can be used to modify the existing 

regional monitoring design by evaluating tradeoffs in each parameter and/or scale. Further, this 

chapter offers general guidance concerning the design of large-scale monitoring programs 

needed to inform conservation management. 

In Chapter Three I present how to manage biodiversity across spatial scales. I use 

parameter estimates from the multi-region occupancy model (described in Ch. 1) to predict the 

impacts of wetland management on amphibian diversity and demonstrate how to spatially 

prioritize management actions relative to objective weights that vary by stakeholders within and 

among spatial scales. These results provide a framework for the NCRN to spatially prioritize 

management (using limited resources) to conserve the amphibians. Beyond the application of the 
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case study, I provide a framework that can incorporate the complexity of large, multi-scaled 

ecological systems and governance structures into the conservation decision making process.  

In Chapter Four I present how decision support frameworks can be used to achieve 

desired conservation outcomes. In this chapter, I review previously published amphibian 

conservation studies that use a decision support framework to evaluate how the use of these 

frameworks does, or does not, help reach defined conservation objectives and to identify barriers 

for implementing recommended decisions. These findings provide a plan of action to help guide 

the application and development of decision support frameworks to ensure science effectively 

informs decisions and leads to positive conservation outcomes.  

Despite the specificity of the case study, the frameworks I developed here are broadly 

applicable to other species and systems given that the overall goal of my dissertation research is 

to infuse multi-scale considerations into hierarchical models and decision making. With these 

approaches, researchers and managers can conduct analyses and implement management efforts 

at scales that are relevant for conservation planning. By doing so, we are one step closer to 

addressing global biodiversity loss more effectively. 
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CHAPTER 1: A HIERARCHICAL ANALYSIS OF HABITAT AREA, CONNECTIVITY, 

AND QUALITY ON AMPHIBIAN DIVERSITY ACROSS SPATIAL SCALES 

 

Abstract  

Habitat fragmentation can alter species distributions and lead to reduced diversity at 

multiple scales. Yet, the literature describing fragmentation effects on biodiversity patterns is 

contradictory, possibly because most studies fail to integrate spatial scale into experimental 

designs and statistical analyses. Thus, it is difficult to extrapolate the effects of fragmentation to 

large-scaled systems in which conservation management is of immediate importance. To 

examine the influence of fragmentation on biodiversity across scales, we (1) estimated the effects 

of habitat area, connectivity, and quality at both local (i.e. community) and regional (i.e. 

metacommunity) scales; and (2) evaluated the direction, magnitude, and precision of these 

estimates at both spatial scales. We developed a multi-region community occupancy model to 

analyze 13 years (2005-2017) of amphibian monitoring data within the National Capital Region, 

a network of U.S. National Parks. Overall, we found a positive effect of park size and a negative 

effect of isolation on species richness at the park-level (i.e. metacommunity), and generally 

positive effects of wetland area, connectivity, and quality on species richness at the wetland-level 

(i.e. community), although parameter estimates varied among species. Covariate effects were 

less precise, but effect sizes were larger, at the local wetland-level as compared to the park-level 

scale. Our analysis reveals how scale can mediate interpretation of results from scientific studies, 

which might help explain conflicting narratives concerning the impacts of fragmentation in the 

literature. Our hierarchical framework can help managers and policymakers elucidate the 

relevant spatial scale(s) to target conservation efforts.  
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Material from: Wright, A. D., Grant, E. H. C., & Zipkin, E. F. (2020). A hierarchical analysis of 

habitat area, connectivity, and quality on amphibian diversity across spatial scales. Landscape 

Ecology, 35(2), 529-544. 

 

For full text of this work, please go to: https://doi.org/10.1007/s10980-019-00963-z 
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CHAPTER 2: A COMPARISON OF MONITORING DESIGNS TO ASSESS WILDLIFE 

COMMUNITY PARAMETERS ACROSS SPATIAL SCALES 

 

Abstract  

Dedicated long-term monitoring at appropriate spatial and temporal scales is necessary to 

understand biodiversity losses and develop effective conservation plans. Wildlife monitoring is 

often achieved by obtaining data at a combination of spatial scales, ranging from local to broad, 

to understand the status, trends, and drivers of individual species or whole communities and their 

dynamics. However, limited resources for monitoring necessitates tradeoffs in the scope and 

scale of data collection. Careful consideration of the spatial and temporal allocation of finite 

sampling effort is crucial for monitoring programs that span multiple spatial scales. Here we 

evaluate the ability of five monitoring designs - stratified random, weighted effort, indicator unit, 

rotating panel, and split panel - to recover parameter values that describe the status (occupancy), 

trends (change in occupancy), and drivers (a site-specific covariate and an autologistic term) of 

wildlife communities at two spatial scales. Using an amphibian monitoring program that spans a 

network of U.S. National Parks as a motivating example, we conducted a simulation study for a 

regional community occupancy sampling program to compare the monitoring designs across 

varying levels of sampling effort (ranging from 10 to 50%). We found that the stratified random 

design outperformed the other designs for most parameters of interest at both scales, and was 

thus generally preferable in balancing the estimation of status, trends, and drivers across scales. 

However, we found that other designs had improved performance in specific situations. For 

example, the rotating panel design performed best at estimating spatial drivers at a regional level. 

Thus, our results highlight the nuanced scenarios in which various design strategies may be 
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preferred, and offer guidance as to how managers can balance common tradeoffs in large-scale 

and long-term monitoring programs in terms of the specific knowledge gained. Monitoring 

designs that reduce biases in parameter estimates are needed to guide conservation policy and 

management decisions in the face of broad scaled environmental challenges, but the optimal 

design is sensitive to the specific objectives of a monitoring program. 

 

Introduction  

Monitoring programs are essential for natural resource management as they provide data 

to address scientific questions, develop predictive models, trigger and guide management 

actions, and assess the impacts of policies and interventions in support of evidence-based 

conservation (Yoccoz et al. 2001, Sutherland et al. 2004, Nichols et al. 2006). The need for 

ecological monitoring has increased over the last several decades as global pressures have grown 

in severity and biodiversity loss has accelerated (Butchart et al. 2010, Nicol et al. 2019). 

However, determining the efficient allocation of limited resources is a critical impediment to the 

development of effective monitoring programs (Lindenmayer and Likens 2010, Buxton et al. 

2020). This is particularly important when considering heterogeneous landscapes over large 

spatial scales and complex governance networks with multiple management jurisdictions 

(Carlson and Schmiegelow 2002, Bennett et al. 2018). 

Recognition that biodiversity change stems from interacting local, regional, and global 

drivers (Keller et al. 2008, Lindenmayer and Likens 2010) has spurred the design of monitoring 

programs to match these scales (e.g., NSF NEON, Thorpe et al. 2016; TEAM, Beaudrot et al. 

2016; USGS BBS, Sauer et al. 2017). Large-scale monitoring programs are used to track the 

status, trends, and drivers of wildlife species and communities across individual and/or 
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independent spatial units. Such programs are often organized as part of a regional or national 

administrative network to detect and understand changes in biodiversity (Yoccoz et al. 2001). In 

contrast, conservation management decisions are often implemented at the local level (e.g., 

individual parks, refuges, etc.). As such, large-scale monitoring programs must be able to both 

detect biodiversity changes across broad scales while also providing specific information at local 

scales to inform management activities that can help mitigate declines when and where they arise 

(Adams and Muths 2019).  

Designing and implementing robust monitoring programs to meet these multiple 

priorities, often with limited resources, remains a challenge (Scholes et al. 2008, Lindenmayer & 

Likens 2010, Jones 2011, Blanchet et al. 2020). Monitoring programs typically fall into one of 

three categories: ‘landscape’, ‘surveillance’, or ‘targeted’ (Eyre et al. 2011). These approaches 

range in spatial extent, information content, and purpose (Sparrow et al. 2020). Landscape 

monitoring primarily aims to measure population status (e.g., species distribution or abundance) 

through descriptive and spatially continuous information collected across broad spatial scales. 

Surveillance monitoring (sometimes referred to as omnibus monitoring) aims to detect and 

observe population trends through repeated, standardized surveys that can be conducted at local 

to broad spatial scales. Targeted monitoring aims to evaluate and understand the drivers of 

population dynamics through a hypothesis-driven approach that is often executed at small and 

discrete scales (Eyre et al. 2011). Yet, monitoring programs that accurately and precisely 

estimate status, trends, and drivers simultaneously across multiple scales are increasingly 

necessary for understanding, and reacting to, rapidly changing environmental conditions 

(Scholes et al. 2008, Albert et al. 2010, Sparrow et al. 2020).  
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Here, we evaluate the ability of different monitoring designs to make inference on 

wildlife species and community status, trends, and drivers within and across multiple 

management units and spatial scales. To do this, we conducted a simulation study comparing the 

effectiveness of common designs that combine various elements of targeted, surveillance, and 

landscape monitoring. We used a regional amphibian monitoring program within a network of 

mid-Atlantic National Parks as a case study (National Park Service 2005, Grant and Brand 

2012). Like many natural resource agencies charged with large-scale monitoring initiatives, the 

National Capital Region Inventory & Monitoring Network of the U.S. National Park Service 

(NCRN, National Park Service 2005) wishes to maximize the information gained from annual 

amphibian occupancy surveys within budget constraints. The use of a relevant case study for our 

analyses ensures the logistical feasibility of each strategy and the real-world applicability of our 

simulation results. However, our approach is general in scope and thus our results should be 

broadly informative to researchers and managers developing sampling schemes across taxa, 

scales, and landscape configurations. 

We reviewed existing large-scale monitoring programs to choose sampling designs that 

could allow the simultaneous estimation of species status (e.g., occupancy), trends, and drivers of 

species and community changes, and considered these in a hierarchical framework to allow 

inference across multiple spatial scales. Our comparisons focused on five commonly-employed 

monitoring designs: stratified random, indicator, rotating panel, split-panel, and weighted effort 

(each described in more details in the Methods). We simulated and assessed the effectiveness of 

the monitoring designs (i.e., the allocation of sampling sites across a network of independent 

units) across various levels of sampling effort (i.e., 10%, 20%, 30%, 40%, or 50% of available 

sites sampled across the total potential habitat). We evaluated the accuracy and precision of 
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multi-region community occupancy parameter estimates, including metrics of population status 

(mean occupancy), trend (a year-specific effect), and drivers (a site-specific effect as well as a 

temporal autologistic effect), across two nested spatial scales. Our results quantify the tradeoffs 

of common designs for large- and multi-scale monitoring programs within the real-world context 

of allocation decisions regularly faced by management agencies. 

 

Simulation Study 

Large-scale Monitoring Designs 

Five monitoring designs – stratified random, indicator, rotating panel, split-panel, and 

weighted effort – were selected for the simulation study because they are representative of 

existing large-scale monitoring programs that balance some combination of targeted, 

surveillance, and landscape monitoring (Eyre et al. 2011). For all designs, we defined site as the 

sampling location within a unit, the local spatial area (e.g., park, reserve, etc.), and region as the 

overall geographical extent encompassing all of the local units. The monitoring designs vary in 

their allocation of effort across units to evaluate status, trends, and drivers of population and 

community change within a defined region. Below, we describe each design, including pros and 

cons of the various approaches. 

The “stratified random design” makes use of an approach in which a fixed percentage of 

sites randomly selected from each unit (weighted by the number of sites available at each unit) 

are surveyed periodically, usually annually (Thompson 2012). For example, the North American 

Breeding Bird Survey uses a uniform number of randomly selected sites (i.e., routes) for each 

one degree of latitude and longitude block in every US state (and parts of Canada and Mexico), 

which are targeted for annual sampling (Ziolkowski et al. 2010, Sauer et al. 2013). Stratified 
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random sampling designs are intended to provide information on each unit, including the status, 

trends, and drivers of monitored populations or communities, although the precision of 

inferences depends on the number of sites monitored in each unit.  

The “weighted effort design” is an approach in which all relevant units are available for 

sampling, however sampling effort is unevenly distributed across units each year (i.e., intense 

monitoring of sites at a subset of units, limited monitoring of sites at the remaining units). For 

example, amphibian monitoring of National Parks in the National Capital Region Inventory & 

Monitoring Network (National Park Service 2005) conducts a disproportionate level of replicate 

visits at select parks that have a long history of or higher need for monitoring (Wright et al. 

2020b). This design incorporates elements of the stratified random design described above, but 

also distributes effort to provide a more granular perspective at a subset of units. Thus, its ability 

to estimate parameters for units is not equitable in a region; high accuracy and precision of 

parameter estimates is achieved in some units at the expense of others in the region.  

The “indicator design” is an approach in which a subset of units, which are selected to 

represent political or biological domains, are surveyed intensively while remaining available 

units are not sampled at all. The National Science Foundation’s Long-Term Ecological Research 

(LTER) Network is an example of this approach, as 28 representative units (of specific landscape 

types) across the United States are monitored intensely through time (Callahan 1984). This 

approach ensures robust temporal coverage within each unit, but limited spatial replication. The 

indicator unit design assumes that relevant parameter estimates of the indicator units are 

indicative of similar unmonitored units, that the relationship between monitored and 

unmonitored units is known and constant over time, and/or that parameter estimates at 

unmonitored units are not of central interest.  
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The “rotating panel design” is a spatio-temporal varying design in which units are 

surveyed at specific, rotating intervals (McDonald 2003, Dobbie et al. 2008). For example, 

within the Alberta Biodiversity Monitoring Program, every available site across the province is 

sampled once each five-year period on a rotating basis (Stadt et al. 2006), ensuring extensive 

spatial coverage at the expense of limited temporal replication. The rotating panel design 

allocates some degree of monitoring effort in all units across the temporal extent of the 

monitoring program, ensuring high spatial coverage and representation across the region. 

However, temporal coverage is minimal because repeated visits to individual units occur 

infrequently.  

The “split panel design” is a spatio-temporal varying design in which a set of core units 

are consistently monitored over time while the remaining set of units are monitored on a variable 

or rotating basis (McDonald 2003, Dobbie et al. 2008). The National Ecological Observatory 

Network (NEON) uses this approach with a set of established study areas that are fixed and 

sampled every year as well as relocatable units that can be moved every 5–10 years (Kao et al. 

2008, Keller et al. 2008, Thorpe et al. 2016). This design integrates elements of both the 

indicator and rotating panel strategies, attempting to alleviate the limited spatial coverage of the 

indicator design and the limited temporal coverage of the rotating panel design. As such, it 

emphasizes intensive monitoring at a select number of units across time while also attempting to 

achieve broader spatial coverage.  

 

Data Simulation 

To assess the effectiveness of each of the five monitoring designs in estimating species 

and community status, trend, and driver estimates within and across scales, we simulated 500 
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datasets for each monitoring design at five sampling effort levels, defined as the percentage of 

sites in the region sampled (10%, 20%, 30%, 40%, 50%) for a total combination of 25 simulation 

scenarios and 12,500 unique datasets (Appendix A). For each dataset, we simulated 10 years of 

multi-species occupancy data (25 total observed species, though this varies by unit and 

simulation) across 10 hypothetical spatial units. The number of available sites in each spatial unit 

was randomly drawn from a uniform distribution with a minimum bound of 10 sites and a 

maximum bound of 100 sites (16, 21, 23, 35, 40, 47, 66, 72, 90, 98). We chose 10 units (and the 

corresponding number of sites at each unit) to closely resemble the network of monitoring units 

in our case study (NCRN, National Park Service 2005). Administrative evaluation is typically on 

5-year cycles in U.S. federal programs, and thus 10 years is a reasonable timeframe for both 

assessment (sufficient time series for estimation) and enacting management activities 

(Government Performance and Results Act of 1993).  

Datasets were simulated using occupancy and detection parameter estimates from an 

analysis of the long-term, regional amphibian monitoring data collected in the NCRN (Wright et 

al. 2020b), which is characterized by a regional amphibian community with low mean detection 

(p = 0.3) and low mean occupancy (ψ = 0.3). We assumed moderate heterogeneity (standard 

deviation of 0.5) across unit-level parameter means (i.e., metacommunity), and moderate 

heterogeneity (sd of 0.5) across all species-level parameter means (i.e., community). By 

incorporating a reasonable range of variability in the generation of simulation parameters across 

runs, there is considerable heterogeneity in the simulation of unit- and species-level parameters, 

resulting in a much broader parameter space. We categorized covariate effects as moderate |0.4| 

or strong |0.8|. We used the same model to both generate and analyze the latent occurrence state 

for species and the community (described in full detail below in the Analysis section). 
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Following simulation of the latent occurrence state for all species in all units and sites on 

12,500 occasions, we then simulated sampling according to one of the unique monitoring design 

and sampling effort level combinations (e.g., stratified random design with 10% of sites across 

the region sampled) to obtain corresponding datasets. We assumed that each site selected for 

sampling was surveyed on four replicate visits per year (unless otherwise indicated), which is 

sufficient for detecting declines in occupancy (Field et al. 2005) and consistent with the current 

protocol in the NCRN. Within each sampling effort level, the total number of sites visited 

annually within the region across the monitoring designs was consistent which ensured that our 

results were comparable. Thus, designs only differed in which sites, across spatial units, were 

sampled, not in how many total sites were sampled at the regional level. 

To implement sampling in the stratified random design, the same proportion of 

randomly-selected sites at each unit, relative to each effort level, was sampled continuously for 

all ten years (Table B.1). For the weighted effort design, all units were sampled similar to the 

stratified random design, however, the number of replicate visits per site in each year varied 

among units (6 replicate visits for sites in half of the units, and 2 for the remaining half of units; 

Table B.1). For the indicator design, the same random sample of sites at a subset of units 

(containing half of all available sites across the region) was sampled every year (Table B.2). For 

the rotating panel design, two sets of units containing an equal number of randomly selected sites 

were sampled on alternate two-year rotations (Table B.3). For the split panel design, the same 

random sample of sites at a subset of units (containing half of all available sites across the 

region) was sampled every year, while the remaining units were split into two equal sets that 

were surveyed on alternate two-year periods (Table B.4).  
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Analysis 

Multi-species (community) occupancy models are often used in the analysis of 

biodiversity monitoring data to estimate richness as well as species and community dynamics 

(Dorazio and Royle 2005, Dorazio et al. 2006). These models utilize replicate observations to 

incorporate detection probability (p) in the estimation of the true latent state of species 

occurrence (present or absent) at a sampling site (MacKenzie et al. 2002). By incorporating 

detection and also assuming a shared link across species within a community, multi-species 

occupancy models can accommodate data from rare, cryptic, and unobserved species to produce 

accurate estimates of individual species occupancy probabilities (ψ) and species richness 

(Boulinier et al. 1998, Zipkin et al. 2010). The recent development of multi-region community 

occupancy models incorporates both multiple species and multiple independent spatial units 

through a unified statistical analysis (Sutherland et al. 2016), allowing for the investigation of 

community occupancy dynamics across spatial scales (e.g., ranging from local to regional 

levels).  

We fit a multi-region community occupancy model (Sutherland et al. 2016, Wright et al. 

2020b; Appendix C) to each simulated dataset to evaluate how the estimated parameters 

compared to the true parameter values for each of the 25 allocation strategies (five designs at five 

effort levels) using the same biological process model that was used to generate the data. We 

summarized the data into an array, 𝑋௜,௥,௝,௧,௞, with the detection (𝑋௜,௥,௝,௧,௞ = 1) and nondetection 

(𝑋௜,௥,௝,௧,௞ = 0) histories for each species i within unit r at site j during year t on replicate k. We 

assumed the detection of a species was conditional on the presence of species i within unit r at 

site j during year t (𝑍௜,௥,௝,௧ = 1 if the species was there and a structural 0 otherwise) and the 
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probability of detecting species i within unit r at site j during year t on replicate k (𝑝௜,௥,௝,௧,௞) 

according to a Bernoulli process: 

𝑋௜,௥,௝,௧,௞ ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑍௜,௥,௝,௧ ∗ 𝑝௜,௥,௝,௧,௞). 

We then modeled detection probability assuming that detection could change by species or unit 

where: 𝑙𝑜𝑔𝑖𝑡(𝑝௜,௥,௝,௧,௞) = 𝛽௜,௥, in which 𝛽௜,௥ is an intercept term indicating the detection 

probability for each species i in each unit r on the logit scale.  

We similarly modeled species occupancy state, 𝑍௜,௥,௝,௧, with a Bernoulli random process: 

𝑍௜,௥,௝,௧ ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓௜,௥,௝,௧),  

where 𝜓௜,௥,௝,௧ is the occupancy probability of species i within unit r at site j of year t. We 

incorporated covariates on species occupancy probability using a logit link function: 

𝑙𝑜𝑔𝑖𝑡൫𝜓௜,௥,௝,௧൯ = 𝛼0௜,௥ + 𝛼1௜,௥ ∗ 𝑌𝑒𝑎𝑟௧ +  𝛼2௜,௥ ∗ 𝑆𝑖𝑡𝑒 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒௝,௥ + 𝛼3௜,௥ ∗ 𝑍௝,௧ିଵ,௜,௥ . 

We included species- and unit-specific intercept terms for mean occupancy (𝛼0௜,௥), and effects 

for year (𝛼1௜,௥), a spatially varying covariate (𝛼2௜,௥), and an autologistic process (𝛼3௜,௥). The 

covariate that influences species occupancy probabilities (𝑆𝑖𝑡𝑒 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒௝,௥ ) varies by sites and 

was randomly generated during the data simulation process (from a normal distribution with a 

mean of 0 and a standard deviation of 1). The autologistic term incorporates the processes of 

colonization (when 𝑍௝,௬ିଵ,௜,௥ = 0) and extinction (when 𝑍௝,௬ିଵ,௜,௥ = 1) that drive occupancy 

patterns for many species, including amphibians (Dorazio et al. 2010, Zipkin et al. 2012).  

We categorized ‘status’ as mean occupancy (𝛼0, the spatial distribution of occupancy in a 

moment of time), ‘trend’ as the effect of year (𝛼1, the increase or decrease of occupancy over 

time), and ‘drivers’ as the effects of the spatially varying covariate (𝛼2) and the autologistic 

process (𝛼3, the underlying processes that can influence occupancy status and trend). To link the 

single-species occupancy models at a community level, we assumed that each parameter was 
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drawn from a common unit-level normal distribution (e.g., 𝛼0௜,௥~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇ఈ଴,௥, 𝜎ఈ଴
ଶ )), and each 

unit-level distribution was drawn from a common region-level normal distribution 

(𝜇ఈ଴,௥~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇̅ఈ଴, 𝜎തఈ଴
ଶ )), matching the data generation process. This allowed us to estimate 

and compare parameters at both the unit (e.g., for status: 𝜇ఈ଴,௥) and region (e.g., for status: 𝜇̅ఈ଴) 

levels. 

We ranked the five monitoring designs in terms of their abilities to accurately and 

precisely recover estimates of the status, trend, and driver parameters across the two spatial 

scales: for local units individually and the region collectively. We calculated the root mean 

square error (RMSE) for all parameters in each monitoring design and sampling effort level 

combination to evaluate differences between parameter values used to simulate the data and 

those estimated by the model. We estimated the parameters in our models for each simulated 

dataset using a Bayesian framework in R (R Core Team 2016) with the program JAGS and 

corresponding ‘jagsUI’ package (Plummer 2003, Kellner 2015; see Appendix A and Appendix 

C). We set vague priors for each parameter: mean regional-level intercept parameters for 

occupancy (𝜇̅ఈ଴) and detection (𝜇̅௕଴) had normal prior distributions with a mean of 0 and a 

variance of 2.70 (Lunn et al. 2012), and variance parameters with gamma prior distributions with 

shape and scale parameters of 0.1. The mean regional-level slope parameters (e.g., 𝜇̅ఈଵ) had 

normal prior distributions with a mean of 0 and a variance of 10, and similar prior distributions 

for the variance term as the intercept parameters. Convergence for each parameter was assessed 

using the Gelman and Rubin convergence diagnostic (R෡ statistic < 1.1; Gelman & Rubin 1992, 

Gelman & Shirley 2011).  
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Results 

Status 

At the regional level, the stratified random design had the lowest RMSE in estimating 

mean community-level occupancy (𝜇̅ఈ଴) across all effort levels, followed closely by the split 

panel design (average RMSE was 2% higher compared to the stratified random design), rotating 

panel design (6%), and the weighted-effort design (13%), with the indicator unit design 

performing much more poorly than the other four approaches (290%; Table 2.1). For the 

stratified random design, RMSE decreased with increased effort (by as much as half when going 

from 10% to 50% effort), however, the gains were substantially larger when the effort was low 

(i.e., a change from 10% to 20% effort yielded more improvement than a change from 40% to 

50% effort). Across sampling designs, the relative decrease in RMSE was tempered as effort 

increased, indicating a general decrease in returns of estimation bias and accuracy for the higher 

effort levels. The differences in RMSE across monitoring designs were most pronounced when 

effort was low (Fig. 2.1a), indicating that the differences in performance among monitoring 

designs diminish as effort is increased. 

At the unit level, the stratified random design again had the lowest mean RMSE (across 

all units) in estimating the mean occupancy across species within a unit (𝜇ఈ଴,௥) for the individual 

r units across all effort levels, and the lowest variation of RMSE across all units in each effort 

level (Fig. 2.1b, Table 2.1). However, while the mean and variance were low, the lower bound of 

unit-level RMSE values was highest in the stratified random design (RMSE = 0.126), as 

compared with the weighted (0.117), rotating panel (0.120), split panel (0.120), and indicator 

unit designs (0.110). Thus, while stratified random design provided the most equitable estimates 

across all units in a region, other designs resulted in more accurate and precise estimates of some 
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individual units at the expense of parameter accuracy and precision in other units (Table 2.1). 

The importance or significance of individual units may vary according to management or 

monitoring objectives, and equitability in parameter accuracy or precision across units may not 

be necessary in every monitoring scenario.  

 

Trends 

Unsurprisingly, monitoring design performance for estimating trends at the regional level 

were similar to those for estimating status. The stratified random design had the lowest RMSE in 

estimating a linear year effect on occupancy (𝜇̅ఈଶ) across effort levels (Fig. 2.1c), followed 

closely by the weighted effort design (average RMSE was 3% higher compared to the stratified 

random design), split panel design (6%), rotating panel design (9%), and lastly the indicator unit 

design (350%, Table 2.1). For the stratified random design, RMSE decreased by 17% when 

effort was increased from 10 to 20%, 20% when effort was increased to 30%, 28% when effort 

was increased to 40%, and 29% when effort was increased to 50% (Fig. 2.1c). Other designs 

showed a similar plateau of increased precision and accuracy as effort increased.  

At the unit level, the stratified random design again had the lowest mean RMSE in 

estimating the year effect parameter (𝜇ఈଶ,௥) across all effort levels, and the lowest variation of 

RMSE across all units in each effort level (Fig. 2.1d, Table 2.1). However, while RMSE 

estimates per unit were more equitable for the stratified random design, the lower bounds of the 

unit-specific RMSE distributions for the other four designs were again less than that of the 

stratified random design. Of those other designs, the indicator unit and rotating panel designs had 

the lowest individual unit-specific RMSE estimates (0.102, Table 2.1). This again reveals that 
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while the stratified random design performs better for average trend estimates, the other designs 

are capable of estimating trends more accurately and precisely for a subset of units.  

 

Drivers 

Our results on drivers differed somewhat from the status and trends parameters. At the 

regional level, the rotating panel design had the lowest RMSE in estimating the effect of a site-

specific covariate on occupancy (𝜇̅ఈଵ) across effort levels (Fig. 2.1e), which was comparable to 

estimates for the split panel design (average RMSE was < 1% higher compared to the rotating 

panel design), and then followed by the stratified random design (8%), weighted effort design 

(11%), and the indicator unit design (313%, Table 2.1). Similarly, at the unit level, the rotating 

panel design had the lowest mean RMSE in estimating the spatially-varying covariate parameter 

(𝜇ఈଵ,௥) across all effort levels, and the lowest variation of RMSE across all units in each effort 

level (Fig. 2.1f, Table 2.1). However, again, the lowest individual unit RMSE estimate was from 

the indicator unit design.  

In estimating the autologistic effect on occupancy (𝜇̅ఈଷ) at the regional level, the 

stratified random design had the lowest RMSE across effort levels (Fig. 2.1g), followed by the 

weighted effort design (average RMSE was 16% higher compared to the stratified random 

design), split panel design (19%), rotating panel design (33%), and then the indicator unit design 

(234%, Table 2.1). Likewise, at the unit level, the stratified random design had the lowest mean 

RMSE in estimating the autologistic slope parameter (𝜇ఈଷ,௥), and the lowest variation of RMSE 

across all units in each effort level (Fig. 2.1h, Table 2.1). However, both the indicator unit and 

weighted effort designs had lower individual unit RMSE estimates (0.148 and 0.155, 

respectively) relative to the stratified random design (0.171).  



23 
 

Discussion 

Our results suggest that stratified random sampling remains the most precise, accurate, 

and efficient monitoring approach for understanding wildlife occupancy at multiple spatial 

scales. With the exception of the spatially-varying parameter on occupancy (𝛼2), the stratified 

random design consistently had the lowest RMSE estimate across parameters at the regional 

level, and the lowest mean and variation of RMSE estimates at the unit level. This is not 

unexpected and, indeed, one of the reasons that stratified random sampling is so widely used. A 

stratified random design ensures that data come from a representative sample that accounts for 

spatial heterogeneity, leading to an efficient use of monitoring effort (Schreuder et al. 2004). 

Further, stratified random sampling avoids subjective decision making, and potential biases, in 

site or unit representation in a monitoring program (Dobbie et al. 2008). Despite its many 

advantages, other monitoring designs may be preferable if inference across parameters or scales 

is not a primary goal of a monitoring program. For example, the rotating panel design 

outperformed all other designs in estimating the site-specific effect, suggesting that the optimal 

choice of monitoring effort depends on the parameters of interest to managers. While the other 

designs (rotating panel, split panel, and weighted effort) had higher RMSE values relative to the 

stratified random design for most parameters, that difference was marginal in many instances 

(i.e., < 15% difference in RMSE; Table 2.1), particularly when effort was high. Additionally, the 

stratified random design had the lowest mean and variation of unit-level estimates but other 

designs typically performed better for individual units (most consistently the indicator unit 

design; Table 2.1). Thus, the optimal design for data collection depends on the monitoring 

objectives and spatial scale of interest and there will necessarily be trade-offs in parameter 

accuracy and precision (Fig. 2.2).  
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Our analyses were motivated by our work with the NCRN Inventory and Monitoring 

program of the U.S. National Park Service. The NCRN ‘Vital Signs’ monitoring program seeks 

to provide an understanding of the condition of National Parks in the Washington, D.C. 

metropolitan area, and identify appropriate management actions necessary to maintain natural 

resources in the network of parks (Fancy et al. 2009). As the program considers optimal 

monitoring strategies to meet their objectives and budget constraints, we aimed to evaluate the 

effectiveness of multiple proposed monitoring designs to inform one of their key Vital Signs, 

amphibian occurrence and distribution (National Park Service 2005). For the NCRN, and other 

hierarchically-organized systems, the stratified random monitoring design performs best across 

their primary objectives of understanding the status, trends, and drivers of amphibian occurrence 

at individual parks and across the network. However, the optimal allocation of monitoring 

resources must also consider whether equal precision is needed at all parks (i.e., units), which 

may not be the case for decision-making. For example, parks with amphibian populations near an 

ecological or management threshold (Martin et al. 2011) may require increased precision when 

deciding whether to implement management interventions. While the stratified random design 

did perform marginally better than the weighted effort design at the regional-level (and across 

the average of unit-level estimates), the weighted effort design had a lower bound to unit-specific 

estimates across all four parameters. Thus, the selection of an optimal monitoring design will 

depend on the need of information across scales and among individual parks in the network. 

Importantly, we found that the return on monitoring investment was not linear, meaning that the 

magnitude of increase in precision and accuracy declined as additional sites were sampled. While 

our results provide valuable information concerning the trade-offs of different sampling designs 

applicable to real-world decision making (e.g., in the NCRN and other hierarchically structured 
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amphibian networks), these results are also generalizable as the parameter space we use is 

relevant to a variety of taxa and systems (Sanderlin et al. 2014, Sutherland et al. 2016). 

Monitoring objectives and constraints will vary across programs, and thus a balance of 

scale and/or parameters of focus may not always be necessary, beneficial, or efficient. Here, we 

evaluated the performance across three parameter estimates common to published monitoring 

programs—status, trends, and drivers֫—at two management-relevant scales to identify and 

understand tradeoffs that might arise in large-scale and long-term monitoring programs. 

Although we demonstrated that the stratified random design is preferable in most cases, real-

world factors may support the implementation of other sampling designs. For example, if 

information is needed primarily to understand drivers of species distributions across space, a 

hypothesis-based approach (Nichols and Williams 2006) that emphasizes spatial replication and 

increased sample size may be preferential. In this case, the rotating panel design, which 

sacrifices temporal replication (across years) for an increased number of sites, may be the 

preferred design. However, this design choice would limit the ability of the monitoring program 

to detect and respond to declines as they arise.  

The importance of information for individual management or governance units (e.g., 

refuges, states, etc.) may not be equal across a broad geographical extent. This can occur when 

the system at an individual unit is far from the decision or management threshold or the decision 

at that unit is insensitive to the system state (Martin et al. 2012). The stratified random design 

had the lowest mean and variation among RMSE estimates across all units, but other designs had 

lower bounds to the RMSE estimates at the unit level (e.g., Fig. 2.1b). In cases in which 

regional-level estimates are of lesser importance relative to management objectives at select 

units, designs such as the weighted effort or split panel, in which a subset of the units receive a 
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disproportionate amount of effort, may be preferred. Selection of one of those two designs will 

vary depending on the focus of the monitoring program: the weighted effort design better 

captured temporal variation (e.g., trend and autologistic effect) whereas the split panel design 

better captured spatial variation (e.g., status and site-specific effect; Fig. 2). Further, not all large-

scale monitoring programs are meant to extrapolate findings to a broader spatial extent. For 

example, the NSF LTER network is designed to provide highly detailed information to 

understand long-term ecological phenomena at spatially independent locations (Callahan 1984). 

In such cases, when the regional-level estimates are not of primary importance, the indicator unit 

design, in which resources are targeted at select units instead of balancing at the regional level, 

may be most efficient. 

Evaluating monitoring program designs is important as we seek to understand, manage, 

and conserve the world’s ecosystems. The use of evidence-based decision making to guide the 

design and objectives of large-scale monitoring programs is necessary to ensure justification and 

accountability of relevant information-gathering investments (Wintle et al. 2010). There are a 

number of considerations in designing and implementing effective programs aimed at monitoring 

biological communities across spatial scales (Olsen et al. 1999). Past research has focused on 

developing monitoring approaches that account for observation biases (MacKenzie and Royle 

2005, Guillera-Arroita et al. 2010), spatial variation in species distributions and/or abundance 

(Pollock et al. 2002), and species rarity (Pacifici et al. 2012, Sanderlin et al. 2014). However, 

less research has focused on dealing with monitoring objectives that differ across and within 

scales in a collaborative monitoring network. Our results help inform the trade-offs of various 

monitoring objectives under fixed budgets in such multi-scaled systems. However, adjusting the 

design of large-scale monitoring programs may be logistically challenging or infeasible. Thus, 
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optimizing the data collection process may not always be the appropriate response. With 

increased access to data from other monitoring programs, various research labs, and citizen 

science initiatives, future research that leverages integrative analyses and multiple data sources 

(e.g., integrated population models) can further enhance existing and future monitoring programs 

(Saunders et al. 2019, Zipkin et al. 2021).  

Only 25% of the necessary budgets to implement threatened species recovery plans in the 

United States is allocated annually (Gerber et al. 2016). Approximately half of the recovery 

resources are dedicated to research and monitoring—not on-the-ground management actions 

(Buxton et al. 2020). Hence, increasing the efficiency of monitoring programs has the potential 

to free up resources for management activities. At the center of this issue is how to most 

efficiently use available resources (e.g., targeted vs. surveillance monitoring; Nichols and 

Williams 2006, Wintle et al. 2010). Careful consideration of the management context, objectives, 

and specification of desired accuracy and precision of various parameters can help achieve the 

objectives of large-scale monitoring programs that aim to inform and guide science, 

management, and policy at multiple scales.  
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Table 2.1: Comparison of root mean square error (RMSE) estimates for each monitoring design 

and parameter of interest. RMSE values are summarized across effort levels. Region-level 

estimates for RMSE were characterized for the regional mean parameter (e.g., for status: 𝜇̅ఈ଴). 

Unit-level estimates were characterized for the unit mean parameters (e.g., for status: 𝜇ఈ଴,௥) and 

include: the average RMSE of all units and the lower and upper bounds (in parentheses) of the 

distribution of unit-level RMSE estimates for each parameter.  

Monitoring Design 

& Scale 
Parameter of Interest 

 Status Trends Drivers 

 
Mean Occupancy 

Year-specific 

effect 
Site-specific effect Autologistic effect 

 𝛼0 𝛼1 𝛼2 𝛼3 

Stratified Random     

Region 0.0607 0.0477 0.0593 0.0800 

Unit 0.155 (0.126–0.197) 0.128 (0.110–0.159) 0.152 (0.112–0.231) 0.223 (0.171–0.301) 

Weighted Effort     

Region 0.0684 0.0491 0.0605 0.0929  

Unit 0.175 (0.117 – 0.257) 0.135 (0.108 – 0.169) 0.159 (0.109–0.251) 0.248 (0.155–0.338) 

Indicator Unit     

Region 0.177  0.168  0.171 0.187 

Unit 0.348 (0.110–0.568) 0.336 (0.102–0.560) 0.337 (0.0999–0.556) 0.377 (0.148–0.566) 

Rotating Panel     

Region 0.0643  0.0518 0.0547 0.106 
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Table 2.1 (cont’d) 

Unit 0.162 (0.120–0.203) 0.136 (0.102–0.182) 0.143 (0.111–0.190) 0.268 (0.182–0.344) 

Split Panel     

Region 0.0619  0.0505 0.0550  0.0955 

Unit 0.159 (0.120–0.206) 0.135 (0.106–0.186) 0.147 (0.110–0.212) 0.248 (0.175–0.336) 
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Figure 2.1: Estimated root mean square error (RMSE) for each monitoring design and effort 

combination for each parameter at the regional scale (a, c, e, and g). The unit-level RMSE 

estimates are organized by individual units (dots) and box plots describing the distribution of 

RMSE values across the units (b, d, f, and h). The Indicator Unit design is not shown as its 

RMSE values were much higher than the others (see main text). 
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Figure 2.2: The recommended monitoring design(s) for each spatial scale, objective, and 

parameter combination. Recommendations were determined by which design(s) had the lowest 

root mean square error (RMSE) estimates within the simulation study. Parameters evaluated 

were: 𝛼0 (mean occupancy) for Status, 𝛼1 (year-specific effect) for Trend, 𝛼2 (site-specific 

effect) for Driver – spatial, and 𝛼3 (autologistic effect) for Driver – autologistic. Parameters 

were assessed at the regional (e.g., for status: 𝜇̅ఈ଴) and unit (e.g., for status: 𝜇ఈ଴,௥) levels. 
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CHAPTER 3: PRIORITIZING BIODIVERSITY MANAGEMENT ACROSS 

NETWORKS OF PROTECTED AREAS 

 

Abstract  

Biodiversity is declining rapidly despite ambitious global targets to mitigate impacts of 

anthropogenic-induced change on biodiversity. The lack of progress on this issue is partly due to 

the complex decision-making contexts that necessitate a multi-scaled approach to design and 

implement conservation management. This complexity arises because the scope and scale of 

environmental challenges encompasses multiple decision makers across discrete and/or 

overlapping management units. Here, we applied a multi-scaled modeling and decision 

framework to a case study focusing on amphibian biodiversity across a network of national 

parks. Amphibian communities were found to be declining at 8 of 9 monitored parks within the 

region and thus management is needed to mitigate these losses and reverse species trajectories. 

Using data from a long-term regional monitoring program, we predicted changes in amphibian 

species richness following a management intervention designed to increase richness at individual 

wetlands within parks. To quantify the multi-scale decision contexts, we used a sensitivity 

analysis to compare different allocations of management resources across parks to balance 

objectives at both local and regional levels. We included objective weights that quantify how 

decision makers value the conservation of amphibians at each scale, and how they value their 

goals relative to the goals of decision makers at different spatial units and scales (i.e., 

collaboration). We found that the impacts of the management intervention (increase in wetland 

hydroperiod) vary from park to park. Further, we found that the prioritization of wetlands to 

manage across the region, and the resulting increase in wetland-specific species richness, varied 
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depending on the unique combinations of conservation and collaboration objective weights at 

each scale. More broadly, our results demonstrate the importance of balancing trade-offs in local 

and regional objectives to collaboratively address biodiversity declines at multiple spatial scales 

and provide a path forward for successful implementation of conservation management. 

 

Introduction 

Failure to reach global biodiversity targets stems in part from the conservation 

management required to protect biodiversity across space is increasingly interrelated, complex, 

and difficult (Cash et al. 2006, Game et al. 2013, Díaz et al. 2019, Leclère et al. 2020). Threats to 

biodiversity, such as land use and climate change, are broad but also multi-scaled (Heffernan et 

al. 2014)—requiring the coordination of management actions across geographic scales (Dietz et 

al. 2003, Armsworth et al. 2015). While ambitious goals and policies to mitigate biodiversity loss 

are typically set at continental or even global scales (e.g., Convention on Biological Diversity 

2010), decisions are often made locally (Stewart et al. 2013). Resource management decisions 

may vary because of geographic variation in types and intensity of threats (e.g., Richgels et al. 

2017), responses of local biodiversity to management (Muths et al. 2017, Grant et al. 2020), and 

local stakeholder values (McDaniels et al. 2006, Robinson et al. 2016). As a result, land 

management is often fragmented by geography, organization, and policy (Lubbel 2013, Tallis et 

al. In Review).  

Coordination of the management needed to achieve large-scale goals is hindered by the 

fragmented jurisdictions of management entities within a governance network (Lubbel 2013, 

Michaels & Tyre 2012). Effectively executing a conservation decision requires the legal or 

regulatory authority to make a decision, the power to carry out a decision, and the resources 
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needed to implement related actions. In the context of landscape conservation, these components 

are often distributed unevenly across different organizations, administrative levels, or geographic 

locations, requiring collaboration across multiple decision makers to meet landscape objectives 

(Ostrom 2010). For example, while federal or regional agencies may have some central 

organizing authority, individual resource managers may have differential power to make or 

implement decisions within protected areas under their jurisdiction, while the resources needed 

for successful conservation may come from a mixture of national, regional, and/or local budgets. 

Without recognizing and navigating such complexities of collaborative landscape conservation, 

desired conservation outcomes may not be realized at scales relevant to biodiversity. 

Incorporating a multi-scaled approach to conservation decision making and 

implementation can lead to more effective management than if the hierarchical structure of 

governance and management is ignored (Cash et al. 2006). Policy and management decisions are 

recommended to reflect the scale and structure of the target ecological processes and governance 

systems (Crowder et al. 2006, Gunderson et al. 2016, Wright et al. 2020a). Multi-scaled 

approaches can allow for achievement of large-scale goals while simultaneously framing the 

local decisions that need to be made with respect to varying constraints, objectives, and uneven 

resource distribution. Collaboration steeped and strengthened by shared objectives, or 

recognition of where objectives, needs, and constraints differ within and across scales, can 

facilitate the optimal allocation and coordination of resources for effective landscape 

conservation (Reed et al. 2016, Scarlett & McKinney 2016, Berardo & Lubbell 2019). 

We outline a process that is designed to understand, predict, and then prioritize 

management across a multi-scaled governance network. Specifically, the analytical steps in this 

process include the (1) analysis of existing data to understand system dynamics across ecological 
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scales, (2) prediction of changes to the system following management interventions, and (3) 

prioritization of management across the system relative to stakeholder objectives at different 

scales of governance. Guidance on the implementation of steps one and two across scales are 

well documented in the literature (e.g., Heffernan et al. 2014, Tallis et al. In Review); however, 

the third step is perhaps the most challenging to implement in multi-scale management problems. 

Thus, we specifically evaluate how to prioritize management across scales by incorporating 

discrete value weights on the conservation and collaboration goals at each relevant decision-

making scale.  

We apply this analytical process to a case study to improve the status of the amphibian 

community in the National Capital Region Network (NCRN) of the National Park Service 

(NPS), a network of national parks in the Mid-Atlantic region of the United States (NPS 2005). 

Previous work has demonstrated the desire in the NCRN to maximize mean wetland-specific 

richness of amphibians, which is considered a ‘vital sign’ within the region as an important 

natural resource (NPS 2005, Grant et al. 2013). A recent synthesis of monitoring data 

demonstrated that hydroperiod (the length of time a wetland holds water and is available for 

amphibian development) is a major determinant of wetland occupancy and species richness of 

amphibians within national parks in the NCRN (Zipkin et al. 2012, Wright et al. 2020b). 

Wetland hydroperiod is also among the most feasible amphibian population and habitat attributes 

for park managers to modify without disturbing other natural and cultural resources in the parks 

(Grant et al. 2013). Thus, increasing the hydroperiod of individual wetlands has been identified 

as a potential approach to increase mean wetland richness given available resources and 

constraints.  
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Our objective is to evaluate the optimal allocation of resources across space to maximize 

mean wetland-specific amphibian richness in this multi-scaled governance network—balancing 

both local and regional needs, constraints, and objectives. To do this, we first fit a multi-region 

community occupancy model to data from the long-term, regional amphibian monitoring 

program in the NCRN. Next, we use parameter estimates from the model to predict the 

improvement in the conservation objective (wetland-specific species richness) following 

management intervention (increase in hydroperiod) of individual wetlands within each of the 

parks. Finally, we use a sensitivity analysis to demonstrate how to prioritize wetlands for 

management across the region relative to different weights of the conservation and collaboration 

objectives at local (individual parks) and regional (the entire network of parks) scales. Our 

results provide a framework for a regional network of national parks to mitigate amphibian 

declines. More broadly, our study provides insight into approaches to balance the needs, 

constraints, and objectives of biodiversity conservation across multiple scales in collaborative 

landscape conservation. 

 

Methods 

The Northeast Amphibian Research and Monitoring Initiative collects data on the 

occurrence of wetland-breeding species in individual wetlands (hereafter, occupancy data) at 9 of 

11 national parks throughout the NCRN. Each year, field crews conduct repeat surveys of 

(randomly selected) monitored wetlands throughout the breeding season and record the detection 

(or not) of individual species. See Mattfeldt et al. (2009) for the initial design of the monitoring 

program and Grant & Brand (2012) for full sampling protocols.  
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We fit a multi-region community occupancy model (Sutherland et al. 2016, Wright et al. 

2020b) to the monitoring data collected between 2005-2020 to estimate individual species 

dynamics as well as community and metacommunity richness patterns. This hierarchical 

modelling approach allowed us to incorporate imperfect detection of species throughout the 

sampling season and to include data-deficient species and parks in our analyses. We categorized 

the hydroperiod of each wetland (the length of time that a wetland holds water) as temporary 

(dries up annually during the summer), semi-permanent (dries up every few years), and 

permanent (never dries) and then incorporated this categorical covariate in our occupancy model. 

We included other sources of environmental variation (i.e., annual wetland area, annual wetland 

conductivity, and wetland connectivity, which is fixed from year to year) on the occurrence 

probability (Ψ) of species i at wetland j in park r during year y. We also included a trend effect of 

year y to determine which species and parks have experienced declines and which might 

therefore be at risk for future declines. For each variable, we model an effect for each species i 

and park r combination:  

logit൫𝛹௝,௬,௜,௥൯ = α0௜,௥,௧௘௠௣௢௥௔௥௬ + α1௜,௥,௛௬ௗ௥௢ೕ
∗ hydroperiod௝ +  α2௜,௥ ∗ area௝,௬ + α3௜,௥ ∗

connectivity௝ + α4௜,௥ ∗ conductivity௝,௬ +  α5௜,௥ ∗ trend௬  . 

We included a day of year covariate within the observation component of the model (Wright et 

al. 2020b). Species-specific parameters at each park are linked at the community level, e.g., 

α5௜,௥~𝑁𝑜𝑟𝑚(𝑢஑ହ,௥ , 𝜎஑ହ,௥
ଶ ), and each park community is linked together at the metacommunity 

level for the region, e.g., 𝑢஑ହ,௥~𝑁𝑜𝑟𝑚(𝑢ത஑ହ, 𝜎஑ହ
ଶ ). We calculated a derived parameter of annual 

wetland-specific richness, 𝑁௝,௬,௥, by summing the latent occurrences of all species at each 

sampled wetland j for each year y from 2005-2020 in all parks. We estimated the parameters in 
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the model using a Bayesian approach with the software R and JAGS (see Appendix D for full 

model and implementation details).  

Using the estimated posterior distributions of the species- and park-specific wetland 

occupancy parameters, we predicted occupancy rates for each species i at wetland j in park r 

during year y. We made predictions for the five years immediately following the last year of 

available data (i.e., 2021-2026). For future years, we held the temporally varying covariates 

(wetland area and conductivity) constant as the mean of the recorded values across the sampling 

period for wetland j, but we assumed that the trend effect continues. We used estimated 

occupancy probabilities, Ψ, and whether or not species i is estimated to exist in park r, 𝑊, to 

predict the presence or absence, Z, of each species i at each wetland j in year y for each posterior 

iteration s in future years: 

𝑍௦,௝,௬,௜,௥ ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛹௦,௝,௬,௜,௥ ∗ 𝑊௦,௜,௥) . 

We estimated 𝑊 using a data augmentation parameter 𝛺௥, the probability that species i is at park 

r, 𝑊௦,௜,௥ ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝛺௥). We summed the latent Z values for all i species at wetland j in year y 

to project species richness, N, of each wetland in each year at all parks. 

 We predicted species richness values at wetlands under two scenarios. The first scenario 

includes management intervention (𝑁௝,௬,஺௖௧௜௢௡), where the hydroperiod for each of the temporary 

wetlands (241 temporary wetlands in the NCRN out of total of 296 monitored wetlands) is 

manipulated to semi-permanent. The second scenario uses a ‘business as usual’ approach (BAU; 

𝑁௝,௬,,஻஺௎) that assumes the wetland hydroperiod is unchanged (Tallis et al. In Review). We then 

calculate the net impact, 𝐼, to species richness from the action on wetland j in year y: 

𝐼௝,௬ = 𝑁௝,௬,஺௖௧௜௢௡ −  𝑁௝,௬,஻஺௎ . 
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Note that 𝐼 = 0 for any wetland j that was semi-permanent or permanent to begin with (because 

there is no management intervention and thus no change to species richness). The average 

difference for expected richness of each wetland j is calculated across all posterior distribution 

iterations to estimate the mean impact of management at each wetland. We assumed that the 

management intervention occurs immediately after the last year of available data (i.e., following 

the 2020 sampling season), and that the effects of increasing a wetland’s hydroperiod are 

immediate and durable (i.e., management is implemented perfectly and the effects last the 

duration of the prediction interval). Thus, when comparing the impacts of management on 

species richness, we only focused on those impacts in the first year (2021).  

We then prioritized wetlands for management intervention across the region with the 

objective of maximizing mean wetland-specific species richness at both the unit- (i.e., park) and 

regional-levels (i.e., network). To do so, we estimated the cumulative value (V) of each wetland j 

relative to the expected increase in species richness of wetland j with the management 

intervention (I); increasing a wetland’s species richness results in an increase in the average 

species richness at the unit and regional levels, the effect of which depends on the value of the 

increase (i.e., the number of species expected to be gained via management) and the number of 

wetlands at each level. In addition to the net impact at wetland j, we also included terms 

describing how managers at each scale value amphibians (𝑤௥௘௚௜௢௡ and 𝑤௨௡௜௧; both are ≥ 0.0 and 

≤ 1.0) and the relative importance of improving the state of amphibian populations (i.e., 

increasing wetland-level richness) at the local and regional scales (𝑠௥௘௚௜௢௡ and 𝑠௨௡௜௧; sum = 1.0):  

𝑉௝ = 𝑉௝
௥௘௚௜௢௡

+ 𝑉௝
௎௡௜௧  

𝑉௝
௥௘௚௜௢௡

=  𝐼௝,ଶ଴ଶଵ ∗  𝑤௥௘௚௜௢௡ ∗ 𝑠௥௘௚௜௢௡  

𝑉௝
௨௡௜௧ =  𝐼௝,ଶ଴ଶଵ ∗  𝑤௨௡௜௧ೕ

∗ 𝑠௨௡௜௧ೕ
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𝑠௥௘௚௜௢௡ = 1 − 𝑠௨௡௜௧ೕ
  

We incorporated the objective weights at the two relevant decision scales: the extent to which 

regional decision makers value maximizing mean wetland richness across the region, 𝑤௥௘௚௜௢௡, 

and the extent that unit (i.e., park) decision makers value maximizing mean wetland richness for 

their individual management unit, 𝑤௨௡௜௧. Objective weights can be interpreted as the proportional 

value  each manager places on amphibians relative to other relevant conservation objectives 

under their jurisdiction: a value near 1 indicates amphibians are a high priority, while a value 

near zero indicates amphibians do not influence natural resource management decisions at that 

jurisdiction. Thus, we can incorporate the relative importance of the conservation objective to 

each decision maker individually.  

Additionally, we incorporated two discrete, spatial discounting parameters to reflect the 

balance of the importance of these priorities across scales (Perrings & Hannon 2001). First, 𝑠௨௡௜௧ 

reflects how much local decision makers value their own local goals relative to the larger, 

regional goal. This parameter weights the importance of the increase in local species richness of 

a managed wetland, and the difference from 1 weights the importance of increase in species 

richness not at the local site, but for the region collectively (𝑠௥௘௚௜௢௡ = 1 − 𝑠௨௡௜௧). A value of 0.5 

for 𝑠௨௡௜௧ (and thus 𝑠௥௘௚௜௢௡ as well) would assume that the local decision maker values the 

increase in amphibian richness at their park equal to an increase in amphibian richness in the 

region, whereas a value near one indicates local decision makers only care about goals at their 

jurisdiction, with a value near zero indicating the opposite. Through this parameterization, we 

can incorporate the relative importance of broader shared goals to the individual goals of each 

decision maker. 
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We evaluated the utility of our approach (and the ranking of wetlands) under multiple 

scenarios to determine the sensitivity of the prioritization of management to the weights of the 

multi-scaled objective and spatial discounting parameters. Thus, we used hypothetical values as 

opposed to actual objectives weights (case specific values can be derived from managers through 

various elicitation techniques; e.g., Martin et al. 2012). We compared how mean wetland-

specific species richness in the region would be altered (by examining the mean impact, I, of the 

top quarter of wetlands ranked by V) across different values of the local and regional objective 

weights ranging from 0 to 1 (in increments of 0.1). We evaluated these values under four 

hypothetical scenarios to examine how variation in local objectives among parks influences the 

management metric as well. These scenarios assume: (1) the value that individual park managers 

place on amphibians in their park (𝑤௨௡௜௧) is proportional to the number of wetlands (amount of 

amphibian habitat) at the park, (2) the value that individual park managers place on amphibians 

at their park (𝑤௨௡௜௧)  is inversely proportional to the number of wetlands at each park, (3) the 

value of improving the state of amphibian populations at parks relative to the regional goal for 

individual park managers (𝑠௨௡௜௧) is proportional to the number of wetlands at each park, and (4) 

the value of improving the state of amphibian populations at parks relative to the regional goal 

for individual park managers (𝑠௨௡௜௧) is inversely proportional to the number of wetlands at each 

park. Because we are using hypothetical values, we used a metric (such as the number of 

wetlands) as an objective approach to distinguishing between different scenarios. By using the 

weights as proportional and inversely proportional to this metric, we are able to see how these 

scenarios would differ across the extremes of this metric. 
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Results 

 At the regional level, mean species occupancy declined over the time frame of our study 

(2005–2020) as indicated by a negative trend effect (𝑢ത஑ହ; Mean: -0.76; Credible Interval [CI]: -

0.25 – -1.34), indicating a broad decline of amphibian occupancy and species richness across the 

NCRN (Fig. 3.1). Of the 9 monitored parks in the region, 5 parks had a significant (non-

overlapping 95% CI with 0), negative trend for community occupancy, 3 parks had a negative 

(but not significant) trend, and 1 park had no trend (𝑢஑ହ,௥; Table 3.1). At the regional level, the 

effect (on the logit scale) of hydroperiod classification led to significantly higher species 

occupancy rates in wetlands with semi-permanent hydroperiod relative to a temporary 

hydroperiod (𝑢ത஑ଵ,ୱୣ୫୧; 0.67, 0.11 – 1.24 CI), with all 9 parks demonstrating this community-

level effect to varying degrees (𝑢஑ଵ,௦௘௠௜,௥; Table 3.1). In the final year of sampling (2020), mean 

wetland-specific species richness for permanent wetlands was 3.82 (2.70 standard deviation 

[sd]), for semi-permanent wetlands was 2.97 (1.78 sd), and for temporary wetlands was 1.79 

(1.26 sd) across all sampled parks in the region.  

Of all temporary wetlands that were sampled, 91% are projected to increase in species 

richness if they were to be altered to semi-permanent, although the magnitude of increases varies 

by both wetland and park (Fig. 3.1). The mean projected gain (I) in species richness per wetland 

of the top quarter of wetlands is 2.16 (0.45 sd). If all 241 monitored temporary wetlands were 

managed to become semi-permanent, expected wetland-specific species richness would increase 

by 0.92 (0.82 sd) for all sampled wetlands in the region. Expected wetland richness would 

increase by 0.77 (0.92 sd) and 0.54 (0.96 sd) if the top half (if ranked by I) and the top quarter of 

wetlands were managed, respectively (Fig. 3.2). These gains are mostly driven by a single park 

(Manassas [MANA], Table 3.2 and Fig. 3.1), which had the highest mean difference in species 
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richness between temporary and semi-permanent wetlands (Table 3.1). After Manassas, the 

prioritization of wetlands by impact becomes more evenly distributed across parks (Table 3.2). If 

the number of managed wetlands was allocated equally across all parks (ranked by net increase 

and park), the mean expected gain in wetland specific richness (I) would be reduced to 1.03 

(0.68 sd) for increasing hydroperiod for the top quarter of wetlands, less than half of what it 

would be if ranked solely by net impact.  

The expected change in species richness due to implementing the management action (I) 

on the top quarter of wetlands is sensitive to the objective and spatial discounting weights at both 

unit and regional scales that we evaluate, ranging from an increase of 0.42 to 2.16 species per 

wetland on average across the four scenarios and range of possible values (Fig. 3.3). Higher 

values for the amphibian objective at the regional level (𝑤௥௘௚௜௢௡) generally led to higher impacts 

on mean wetland-specific species richness for the region, whereas higher values for the 

amphibian objective at local levels (𝑤௨௡௜௧), and the focus on local objectives relative to regional 

goals (𝑠௨௡௜௧), generally led to lower mean impacts of the highly ranked wetlands (Fig. 3.3). 

These estimates were also sensitive to whether local goals were proportional or inversely 

proportional to the amount of habitat (Fig. 3.3), which is to be expected given the differences in 

impact of management intervention across parks (Fig. 3.1) and the amount of habitat at each 

park. For example, MANA has a disproportionate amount of wetland habitat, a large amount of 

temporary wetlands, and the highest impact of wetland management. Thus, when the value local 

decision makers place on increasing mean wetland-specific species richness (𝑤௨௡௜௧) is 

proportional (Fig. 3.3a) or inversely proportion to the amount of habitat at each unit (Fig. 3.3b), 

the net impact of management (I) can vary by up to one additional species per wetland 

(particularly when the value of local goals relative to regional goals is high; 𝑠௨௡௜௧ is close to 1).  
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Discussion 

A major challenge in landscape conservation is the fragmentation of conservation areas, 

and landscape decisions, with individual local decision makers. Governance structures that 

organize these discrete units into a collaborative are believed to improve regional conservation 

outcomes by organizing efforts to achieve a large-scale objective. Here, we demonstrate how 

incorporating network governance structure explicitly in the decision analytic process (i.e., the 

value function) can provide a solution for balancing collaborative landscape conservation goals 

for amphibian communities within a network of protected areas. Our results show amphibian 

communities are in decline across the NCRN (at 8 of 9 parks) but that the potential impacts of 

management intervention differ across the landscape, within and among parks (Fig. 3.1 & Fig. 

3.2). Most importantly, our results demonstrate how different weightings of objectives and 

spatial discounting parameters at both scales impact the prioritization of wetlands for 

management, and the resulting increase of amphibian richness, across the NCRN (Fig. 3.3). 

These variable impacts highlight a common tradeoff in conservation management: the decision 

to distribute resources across parks to meet local-scale goals or the concentration of resources to 

meet regional goals, which often has the highest absolute impact. This choice can lead to 

markedly different results for the amphibian community as a whole. Hierarchical governance 

results in complex decision tradeoffs both within and across scales—but here we demonstrate 

why it is necessary to transparently and explicitly incorporate that complexity into prioritization 

of management action when financial resources are often limited.  

The NCRN offers a tractable example useful for demonstrating how to balance discrete 

decision makers with non-overlapping jurisdictions and differential authority in collaborative 

landscape conservation. Within the NCRN, individual parks make and implement management 
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decisions. Network-level objectives can add structure to address the scale, complexity, and 

uncertainty of regional and global threats. As a result, network-level objectives can help 

coordinate the strategic allocation of individual and shared resources to management actions 

across a collaborative network of individual parks. However, individual park constraints and 

motivations must be considered to reflect individual park capacity and interest to support these 

larger-scale objectives. This problem is characteristic of, and universal to, conservation, which is 

inherently local and collaborative (Wyborn & Bixler 2013). Larger entities often do not, and are 

not necessarily meant to, act across space – they may set goals to guide individual actors (e.g., 

Convention on Biological Diversity 2020), enact policy to guide, limit, or review individual 

actions (e.g., U.S. National Environmental Policy Act of 1969), direct resources across space to 

support local actions (Armsworth et al. 2020), or implement management actions in discrete 

locations. Success in landscape-scale conservation is thus an emergent property of the individual 

actions of multiple decision makers. 

Conservation for common and widely distributed natural resources is challenging because 

the fragmented jurisdiction for management necessitates multiple decision makers and the 

coordination of a combination of individual and shared resources. How objectives are organized 

and weighted across scales is relative to the “decision space” for this and other landscape 

problems (Fig. 3.4). Landscape decision spaces can be organized across two dimensions: the 

extent that governance (in this context, decision making authority) is centralized and the extent 

that resources to support or implement actions are centralized. Our case study falls in the 

“collaborative” spaces – in which conservation objectives need to be considered at multiple 

scales to efficiently pool or allocate some amount of shared resources. This space is emblematic 

of cross-boundary conservation issues more broadly (e.g. migratory bird management, wildlife 
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disease management, Great Lakes ecosystem management, etc.), and our results demonstrate the 

sensitivity of the management prioritization to diverse stakeholders’ objectives.  

Discounting is a process that incorporates changes in perceived benefits that occur at 

different points in time (e.g., immediate vs future costs; Frederick et al. 2002). Recent 

advancements have extended this approach to space by including a distance-decay function in 

cost-benefit analyses (Perrings & Hannon 2001, Baum & Easterling 2010). While treating 

distance as a continuous variable may work for individual actors, governance operates at discrete 

(and often multiple) spatial scales and not just continuously across space. Previous research has 

provided a solution to a spatially nested resource allocation decision with multiple discrete 

spatial scales (Armsworth et al. 2020). However, their problem assumes that decision making is 

centralized within a single authority—and not collaborative across decision makers that occur, 

and who may have individual objectives and tradeoffs, across spatial scales (Ernstson et al. 2008, 

Mills et al. 2014). Instead, we consider the two scales over which the amphibian community may 

be considered and allow for differential weighting of these two spatially-referenced objectives.  

This effectively discretizes spatial discounting relative to the multiple governance scales in a 

decision, and we can thus separately estimate the value of direct, local impacts and indirect, 

regional impacts of management for each wetland for all relevant decision makers.  

 We present a simplified approach to multi-scaled prioritization, and there are a number of 

developments and complexities that could be incorporated in future research. First, we assumed 

the region cares about the improvement in the amphibian community within all parks equally, 

but that may vary (e.g., the region may want to target areas where declines are the highest) and 

could be incorporated in the decision-making approach via differential values for the spatial 

weights. Second, we assumed that the cost of managing each wetland is the same, but that may 
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vary, and decision makers may choose to incorporate cost in the value function. We also 

assumed that management is immediate and durable, however, both a delay in reaching the 

maximum species richness as well as the uncertainty and variation in the efficacy of management 

could be incorporated (e.g., Tallis et al. In Review). Lastly, we keep the metric to be maximized 

at the same scale (wetland-specific richness) and allow the weights to vary across and within 

scales, but the metric may vary by scale as well (e.g., the number of species in the region vs. the 

number of species in a park).  

 Overall, this approach can help spatially prioritize management action by discretizing 

objective weights (how each decision maker cares about a conservation goal) and spatial 

discounting parameters (how each decision maker cares about individual vs collaborative goals). 

Recognizing that conservation is collaborative, such an approach allows for the incorporation of 

decision makers operating at different scales, and having access to different resources, in a 

landscape conservation problem. Space and spatial scale matters—as population and community 

declines, impacts of management, and management objectives may vary across a landscape.  
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Table 3.1: Park-level mean effects on occupancy (on the normal scale) of trend and the semi-

permanent wetland hydroperiod classification, summarized by the mean of the posterior 

distribution (and 95% Credible Intervals). Parks include: Catoctin Mountain Park (CATO), 

Chesapeake & Ohio Canal National Historical Park (CHOH), George Washington Memorial 

Parkway (GWMP), Harpers Ferry National Historical Park (HAFE), Manassas National 

Battlefield Park (MANA), Monocacy National Battlefield (MONO), National Capital Parks – 

East (NACE), Prince William Forest Park (PRWI), and Rock Creek Park (ROCR). 

Park Trend Effect Semi-permanent Effect 

CATO -0.60 (-1.36 – 0.22) 0.96 (0.15 – 1.95) 

CHOH 0.01 (-0.27 – 0.26) 0.46 (-0.08 – 0.97) 

GWMP -1.32 (-2.24 – -0.55) 0.64 (-0.03 – 1.31) 

HAFE -1.05 (-2.58 – 0.06) 0.62 (-0.39 – 1.65) 

MANA -0.63 (-1.13 – -0.16) 1.02 (0.38 – 1.70) 

MONO -1.09 (-1.87 – -0.36) 0.68 (-0.53 – 1.94) 

NACE -0.62 (-1.53 – 0.40) 0.40 (-0.59 – 1.19) 

PRWI -0.95 (-1.73 – -0.33) 0.58 (-0.04 – 1.19) 

ROCR -0.67 (-1.21 – -0.10) 0.67 (-0.60 – 1.86) 
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Table 3.2: Ranking of wetlands by impact, I, to species richness at each wetland (for 2021), 

including the species richness with (𝑁஺௖௧௜௢௡) and without management intervention  

(𝑁஻஺௎) as well as the park in which each wetland is located. Parks include: Catoctin Mountain 

Park (CATO), Chesapeake & Ohio Canal National Historical Park (CHOH), George Washington 

Memorial Parkway (GWMP), Harpers Ferry National Historical Park (HAFE), Manassas 

National Battlefield Park (MANA), Monocacy National Battlefield (MONO), National Capital 

Parks – East (NACE), Prince William Forest Park (PRWI), and Rock Creek Park (ROCR). 

Rank 𝑁஻஺௎ 𝑁஺௖௧௜௢௡ I Park 

1 2.51 (1.43) 5.25 (1.65) 2.74 (2.05) MANA 

2 2.76 (1.43) 5.45 (1.67) 2.69 (2.06) MANA 

3 2.36 (1.33) 5.04 (1.62) 2.68 (2.00) MANA 

4 2.24 (1.32) 4.91 (1.57) 2.67 (1.99) MANA 

5 2.10 (1.29) 4.75 (1.58) 2.66 (1.95) MANA 

… … … … … 

71 1.58 (1.16) 2.68 (1.38) 1.10 (1.72) PRWI 

72 1.40 (1.07) 2.49 (1.52) 1.09 (1.75) ROCR 

73 1.31 (1.04) 2.40 (1.52) 1.08 (1.74) ROCR 

74 1.31 (1.08) 2.37 (1.33) 1.06 (1.64) PRWI 

75 2.63 (1.36) 3.62 (1.44) 1.00 (1.98) CHOH 

… … … … … 

146 0.60 (0.76) 1.17 (1.03) 0.57 (1.26) GWMP 

147 1.07 (0.97) 1.64 (1.16) 0.57 (1.33) NACE 

148 0.59 (0.74) 1.16 (1.01) 0.57 (1.21) GWMP 
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Table 3.2 (cont’d) 

149 0.35 (0.57) 0.91 (0.99) 0.56 (1.16) MONO 

150 0.55 (0.74) 1.10 (1.00) 0.56 (1.20) GWMP 

… … … … … 
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Figure 3.1: Estimated annual mean wetland-specific species richness by park (black points) with 

50% Credible Intervals (dark gray area) and 95% Credible Intervals (light gray area) from 2015-

2020. Predicted annual mean wetland-specific species richness under the business as usual 

scenario by park (red points) with 50% Credible Intervals (dark red area) and 95% Credible 

Intervals (light red area) from 2021-2026, and under the management intervention (if every 

temporary wetland was manipulated to semi-permanent) scenario by park (blue points) with 50% 

Credible Intervals (dark blue area) and 95% Credible Intervals (light blue area) from 2021-2026. 

Parks include: Catoctin Mountain Park (CATO), Chesapeake & Ohio Canal National Historical 

Park (CHOH), George Washington Memorial Parkway (GWMP), Harpers Ferry National 

Historical Park (HAFE), Manassas National Battlefield Park (MANA), Monocacy National 

Battlefield (MONO), National Capital Parks – East (NACE), Prince William Forest Park 

(PRWI), and Rock Creek Park (ROCR). 
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Figure 3.2: The net increase to mean wetland-specific richness by the percentage of temporary 

wetlands that are managed for the region (NCRN) and for each park. Parks include: Catoctin 

Mountain Park (CATO), Chesapeake & Ohio Canal National Historical Park (CHOH), George 

Washington Memorial Parkway (GWMP), Harpers Ferry National Historical Park (HAFE), 

Manassas National Battlefield Park (MANA), Monocacy National Battlefield (MONO), National 

Capital Parks – East (NACE), Prince William Forest Park (PRWI), and Rock Creek Park 

(ROCR). 
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Figure 3.3: The mean impact of management, I, to wetland-specific species richness of the top 

quarter of wetlands across the NCRN ranked by different values of regional objective weights 

(𝑤௥௘௚௜௢௡) as well as (a-b) local spatial discounting parameters (𝑠௨௡௜௧) and (c-d) objective weights 

(𝑤௨௡௜௧). We compare these values under four different hypothetical scenarios to visualize the 

variability among parks within each parameter: (a) 𝑠௨௡௜௧ and 𝑤௥௘௚௜௢௡ vary from 0 to 1 (in 

increments of 0.1) but 𝑤௨௡௜௧ for each park is inversely proportional the amount of wetland 

habitat in the park; (b) 𝑠௨௡௜௧ and 𝑤௥௘௚௜௢௡ vary from 0 to 1 (in increments of 0.1) but 𝑤௨௡௜௧ for 

each park is proportional to the amount of wetland habitat in the park; (c) 𝑤௨௡௜௧ and 𝑤௥௘௚௜௢௡ vary 

from 0 to 1 (in increments of 0.1) but 𝑠௨௡௜௧ for each park is proportional to the amount of 

wetland habitat in the park; and (d) 𝑤௨௡௜௧ and 𝑤௥௘௚௜௢௡ vary from 0 to 1 (in increments of 0.1) but 

𝑠௨௡௜௧ for each park is proportional to the amount of wetland habitat in the park. 𝑤௨௡௜௧ reflects 

how local decision makers value increasing amphibian wetland richness at their unit, and 𝑤௥௘௚௜௢௡ 

reflects how regional decision makers value the same objective across their regional jurisdiction. 

𝑠௨௡௜௧ reflects how local decision makers value these goals at their local level relative to the 

broader region, and 𝑠௥௘௚௜௢௡ reflects the importance of these goals elsewhere in the region (both 

parameters sum to 1). 
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Figure 3.3 (cont’d) 
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Figure 3.4: The different landscape decision spaces relative to the centralization of decision 

making authority (‘governance’) and management resources, using the approximate location of 

our case study (NCRN) in this space as an example (oval). 
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CHAPTER 4: MOVING FROM DECISION TO ACTION IN CONSERVATION 

SCIENCE 

 

Abstract  

Biodiversity loss is a major threat to the integrity of ecosystems and is projected to 

worsen, yet the path to successful conservation remains elusive. Decision support frameworks 

(DSFs) are increasingly applied by resource managers to navigate the complexity, uncertainty, 

and differing socio-ecological objectives inherent to conservation problems. Most published 

conservation research that uses DSFs focuses on analytical stages (e.g., identifying an optimal 

decision), making it difficult to assess and learn from previous examples in a conservation 

practice context. Here, we (1) evaluate the relationship between the application of decision 

science and the resulting conservation outcomes, and (2) identify and address existing barriers to 

the application of DSFs to conservation practice. To do this, we develop a framework for 

evaluating conservation initiatives using decision science that emphasizes setting attainable 

goals, building momentum, and obtaining partner buy-in. We apply this framework to a 

systematic review of amphibian conservation decision support projects, including a follow-up 

survey of the pertinent conservation practitioners, stakeholders, and scientists. We found that all 

projects identified optimal solutions to reach stated objectives, but positive conservation 

outcomes were limited when implementation challenges arose. Further, we identified multiple 

barriers (e.g., dynamic and hierarchical leadership, scale complexity, limited resource 

availability) that can inhibit the progression from decision identification to action 

implementation (i.e., ‘decision-implementation gap’), and to successful conservation outcomes. 

Based on these results, we provide potential actionable steps and avenues for future development 



57 
 

of DSFs to facilitate the transition from decision to action and the realization of conservation 

successes.  

 

Material from: Wright, A. D., Bernard, R. F., Mosher, B. A., O'Donnell, K. M., Braunagel, T., 

DiRenzo, G. V., Fleming, J., Shafer, C., Brand, A. B., Zipkin, E. F., & Grant, E. H. C. (2020). 

Moving from decision to action in conservation science. Biological Conservation, 249, 108698. 

 

For full text of this work, please go to: https://doi.org/10.1016/j.biocon.2020.108698 
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APPENDIX A: Data simulation and analysis code for simulations. 
 

Data simulation and analysis code for the stratified random design at the 10% effort level. 

The full data simulation and analysis code is available on Zenodo (10.5281/zenodo.4577521). 

The symbols corresponding to the slope parameters for each effect term do not match directly as 

represented in the manuscript. In the manuscript, a1 corresponds to the time effect but is denoted 

by a2 in the code. Likewise, a2 in the manuscript corresponds to the site effect but is denoted by 

a1 in the code.  

######### 
## Part - General Code Description 
######### 
 
## Author: A.D. Wright 
## Project: NCRN Amphibians - Monitoring Optimization 
## Code: Data simulation and analysis for the Random Stratified case study 
 
#rm(list = ls()) 
#options(max.print = 1000) 
 
## TABLE OF CONTENTS 
  ## Packages, working directory, and data                 
  ## Global parameters for simulation 
  ## General f() to simulate data 
  ## Generating data for each scenario 
 
######### 
## Part - Packages, working directory, and data   
######### 
 
## 
#### Install Packages 
## 
 
#tidyverse 
if(!require(tidyverse)) {install.packages('tidyverse');require(tidyverse)} 
#jagsUI 
if(!require(jagsUI)) {install.packages('jagsUI');require(jagsUI)} 
 
 
######### 
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## Part - Global parameters for simulation 
######### 
 
set.seed(25) 
 
## 
#### Sampling dimensions 
## 
 
#Years 
Y <- 10 
#Sampling Occassions per Year 
K <- 6 
Kmed <- 4  
Klow <- 2 
 
#Units 
R <- 10 
#Sites per unit  
JMax <- 100      
JMin <- 10 
Jr <- as.integer(runif(n = R, min = JMin, max = JMax)) 
 
#Species Total (will vary by park) 
I <- 25 
M <- 25 
 
#Datasets per scenario 
#5 sampling scenarios: 
scenarios <- c('stratified','indicator','rotating','split','weighted') 
#5 sampling efforts: #(10%, 20%, 30%, 40%, 50%)  
effort <- c(0.1, 0.2, 0.3, 0.4, 0.5)  
 
 
## 
#### Global, regional, and species parameters 
## 
 
#Global 
#Unit Occupancy 
mean.c0 <- 0.4       
sd.c0 <- 0.25  
#Site Occupancy 
#Intercept 
mean.a0.global <- 0.3  
sd.a0.global <- 0.5 
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sd.a0 <- 0.5 
#Site effect   
mu.a1.global <- 0.8  
sd.a1.global <- 0.5 
sd.a1 <- 0.5 
#Year effect 
mu.a2.global <- -0.4  
sd.a2.global <- 0.5 
sd.a2 <- 0.5 
#Autologistic effect 
mu.a3.global <- 0.4  
sd.a3.global <- 0.5 
sd.a3 <- 0.5 
#Detection 
mean.b0.global <- 0.3  
sd.b0.global <- 0.5 
sd.b0 <- 0.5 
 
## 
#### Generate covariate data 
## 
 
Site_effect_a1 <- array(rnorm(JMax*R, 0, 1), dim = c(100,10)) 
Year <- 1:10 
Year_effect_a2 <- (Year - mean(Year))/sd(Year) 
 
 
######### 
## Part - f()'s 
######### 
 
 
## 
#### Simulation f() - A blend of Sutherland et al. 2016 S2 & simDCM 
## 
 
#Basic Function 
sim_community <- function(R. = R, # of spatial units 
                          I. = I, # of species 
                          M. = M, # of augmented species 
                          Y. = Y, # of years 
                          K. = K, # of sampling occassions per year 
                          JMax = max(Jr), # sites max per unit  
                          Jr. = Jr, # of sites per spatial unit 
                          mean.c0. = mean.c0, sd.c0. = sd.c0,  #unit occupancy 
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                          mean.a0.global. = mean.a0.global, sd.a0.global. = sd.a0.global, sd.a0. = sd.a0,  
#site occupancy 
                          mu.a1.global. = mu.a1.global, sd.a1.global. = sd.a1.global, sd.a1. = sd.a1,      
#site effect on occupancy 
                          mu.a2.global. = mu.a2.global, sd.a2.global. = sd.a2.global, sd.a2. = sd.a2,      
#year effect on occupancy 
                          mu.a3.global. = mu.a3.global, sd.a3.global. = sd.a3.global, sd.a3. = sd.a3,      
#auto effect on occupancy 
                          mean.b0.global. = mean.b0.global, sd.b0.global. = sd.b0.global, sd.bo. = sd.b0,  
#detection    
                          Site_effect_a1. = Site_effect_a1, Year_effect_a2. = Year_effect_a2               
#covariates 
){ 
   
  #Create empty objects for loops 
  #Region (and species - in 2nd loop) 
  mu.a0 <- mu.a1 <- mu.a2 <- mu.a3 <- mu.b0 <- omega <- N_unit <- array(NA, dim = R) 
  a0 <- a1 <- a2 <- a3 <- b0 <- array(NA, dim = c(I+M,R)) 
  W_mat <- array(NA, c(I+M,R)) 
  Z_mat <- logit_psi <- array(NA, c(JMax, Y, I+M, R)) 
  X_mat <- array(NA, c(JMax, K, Y, I+M, R)) 
   
  #Generate park and species parameters 
  for(r in 1:R){ 
    omega[r] <- plogis(rnorm(1,qlogis(mean.c0),sd.c0)) 
    #Occupancy 
    mu.a0[r] <- rnorm(1, mean = qlogis(mean.a0.global), sd = sd.a0.global) 
    mu.a1[r] <- rnorm(1, mean = mu.a1.global, sd = sd.a1.global) 
    mu.a2[r] <- rnorm(1, mean = mu.a2.global, sd = sd.a2.global) 
    mu.a3[r] <- rnorm(1, mean = mu.a3.global, sd = sd.a3.global) 
    #Detection 
    mu.b0[r] <- rnorm(1, mean = qlogis(mean.b0.global), sd = sd.b0.global) 
    for(i in 1:(I+M)){ 
      W_mat[i,r] <- rbinom(1, 1, omega[r]) 
      #Species  
      #Occupancy 
      a0[i,r] <- rnorm(1, mean = mu.a0[r], sd = sd.a0) 
      a1[i,r] <- rnorm(1, mean = mu.a1[r], sd = sd.a1) 
      a2[i,r] <- rnorm(1, mean = mu.a2[r], sd = sd.a2) 
      a3[i,r] <- rnorm(1, mean = mu.a3[r], sd = sd.a3) 
      #Detection 
      b0[i,r] <- rnorm(1, mean = mu.b0[r], sd = sd.b0) 
    } 
    N_unit[r] <- sum(W_mat[,r]) 
  } 
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  #Generate data 
  for(r in 1:R){ 
    for(i in 1:(I+M)){   
      for(j in 1:Jr[r]) { 
        logit_psi[j,1,i,r] <- a0[i,r] + a1[i,r]*Site_effect_a1[j,r] + a2[i,r]*Year_effect_a2[1] 
        Z_mat[j,1,i,r] <- rbinom(1, 1, plogis(logit_psi[j,1,i,r])*W_mat[i,r])  
        for(y in 2:Y){ 
          logit_psi[j,y,i,r] <- a0[i,r] + a1[i,r]*Site_effect_a1[j,r] + a2[i,r]*Year_effect_a2[y] + 
a3[i,r]*Z_mat[j,y-1,i,r] 
          Z_mat[j,y,i,r] <- rbinom(1, 1, plogis(logit_psi[j,y,i,r])*W_mat[i,r])  
        } #y 
        for(y in 1:Y){ 
          for(k in 1:K){ 
            X_mat[j,k,y,i,r] <- rbinom(1, 1, Z_mat[j,y,i,r]*plogis(b0[i,r])) 
          } #k 
        } #y 
      } #j 
    } #i 
  } #r 
   
  return(list(X_mat = X_mat, logit_psi = logit_psi, Z_mat = Z_mat,                                                     
#the simulated data 
              R = R, I = I, M = M, Y = Y, K = K, JMax = JMax, Jr = Jr,                                                 
#the dimensions used to simulate the data 
              Site_effect_a1 = Site_effect_a1, Year_effect_a2 = Year_effect_a2,                                        
#the covariates used to simulate the data 
              mean.c0 = mean.c0, sd.c0 = sd.c0, omega = omega, W_mat = W_mat, N_unit = N_unit,                         
#the parameters used to simulate data - unit occupancy 
              mean.a0.global = mean.a0.global, sd.a0.global = sd.a0.global, sd.a0 = sd.a0, mu.a0 = 
mu.a0, a0 = a0,     #the parameters used to simulate data - site occupancy (intercept) 
              mu.a1.global = mu.a1.global, sd.a1.global = sd.a1.global, sd.a1 = sd.a1, mu.a1 = mu.a1, 
a1 = a1,         #the parameters used to simulate data - site occupancy (slope - site) 
              mu.a2.global = mu.a2.global, sd.a2.global = sd.a2.global, sd.a2 = sd.a2, mu.a2 = mu.a2, 
a2 = a2,         #the parameters used to simulate data - site occupancy (slope - year) 
              mu.a3.global = mu.a3.global, sd.a3.global = sd.a3.global, sd.a3 = sd.a3, mu.a3 = mu.a3, 
a3 = a3,         #the parameters used to simulate data - site occupancy (slope - auto) 
              mean.b0.global = mean.b0.global, sd.b0.global = sd.b0.global, sd.b0 = sd.b0, mu.b0 = 
mu.b0, b0 = b0      #the parameters used to simulate data - detection (intercept) 
  )) 
   
} #f() - sim_community 
 
 
 
## 
#### Base function to create tables of results for plotting purposes 
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## 
 
org_results <- function(jagsOut, td){ 
 
  nPark <- td$R  
  nSpp <- dim(td$W_mat)[1]*dim(td$W_mat)[2] 
   
  #Global 
  simTab_g <- data.frame(mean.c0 = NA, 
                         sd.c0 = NA, 
                         mu.a0.global = NA,  
                         sd.a0.global = NA, 
                         sd.a0 = NA, 
                         mu.b0.global = NA,  
                         sd.b0.global = NA, 
                         sd.b0 = NA, 
                         mu.a1.global = NA, 
                         sd.a1.global = NA, 
                         sd.a1 = NA, 
                         mu.a2.global = NA, 
                         sd.a2.global = NA, 
                         sd.a2 = NA, 
                         mu.a3.global = NA, 
                         sd.a3.global = NA, 
                         sd.a3 = NA 
                        ) 
 
  simTab_g$mean.c0 <- jagsOut$mean$mean.c0 - td$mean.c0 
  simTab_g$sd.c0 <- jagsOut$mean$sd.c0 - td$sd.c0 
  simTab_g$mu.a0.global <- jagsOut$mean$mu.a0.global - mean(td$mu.a0)   
  simTab_g$sd.a0.global <- jagsOut$mean$sd.a0.global - td$sd.a0.global 
  simTab_g$sd.a0 <- jagsOut$mean$sd.a0 - td$sd.a0 
  simTab_g$mu.a1.global <- jagsOut$mean$mu.a1.global - mean(td$mu.a1)    
  simTab_g$sd.a1.global <- jagsOut$mean$sd.a1.global - td$sd.a1.global 
  simTab_g$sd.a1 <- jagsOut$mean$sd.a1 - td$sd.a1 
  simTab_g$mu.a2.global <- jagsOut$mean$mu.a2.global - mean(td$mu.a2)    
  simTab_g$sd.a2.global <- jagsOut$mean$sd.a2.global - td$sd.a2.global 
  simTab_g$sd.a2 <- jagsOut$mean$sd.a2 - td$sd.a2 
  simTab_g$mu.a3.global <- jagsOut$mean$mu.a3.global - mean(td$mu.a3)    
  simTab_g$sd.a3.global <- jagsOut$mean$sd.a3.global - td$sd.a3.global 
  simTab_g$sd.a3 <- jagsOut$mean$sd.a3 - td$sd.a3 
  simTab_g$mu.b0.global <- jagsOut$mean$mu.b0.global - mean(td$mu.b0)   
  simTab_g$sd.b0.global <- jagsOut$mean$sd.b0.global - td$sd.b0.global 
  simTab_g$sd.b0 <- jagsOut$mean$sd.b0 - td$sd.b0 
 
  #Park 
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  simTab_p <- data.frame(mu.a0 = rep(NA,nPark), 
                         mu.b0 = rep(NA,nPark), 
                         mu.a1 = rep(NA,nPark), 
                         mu.a2 = rep(NA,nPark), 
                         mu.a3 = rep(NA,nPark) 
                        ) 
   
  simTab_p$mu.a0[1:nPark] <- (jagsOut$mean$mu.a0 - apply(td$a0,2,mean))  
  simTab_p$mu.a1[1:nPark] <- (jagsOut$mean$mu.a1 - apply(td$a1,2,mean))  
  simTab_p$mu.a2[1:nPark] <- (jagsOut$mean$mu.a2 - apply(td$a2,2,mean))  
  simTab_p$mu.a3[1:nPark] <- (jagsOut$mean$mu.a3 - apply(td$a3,2,mean))  
  simTab_p$mu.b0[1:nPark] <- (jagsOut$mean$mu.b0 - apply(td$b0,2,mean))  
 
  #Species 
  simTab_s <- data.frame(a0 = rep(NA,nSpp), 
                         b0 = rep(NA,nSpp), 
                         a1 = rep(NA,nSpp), 
                         a2 = rep(NA,nSpp), 
                         a3 = rep(NA,nSpp) 
  ) 
 
    simTab_s$a0[1:nSpp] <- as.vector(jagsOut$mean$a0*na_if(td$W_mat, 0)) - 
(td$a0*na_if(td$W_mat, 0))  
    simTab_s$b0[1:nSpp] <- as.vector(jagsOut$mean$b0*na_if(td$W_mat, 0)) - 
(td$b0*na_if(td$W_mat, 0))  
    simTab_s$a1[1:nSpp] <- as.vector(jagsOut$mean$a1*na_if(td$W_mat, 0)) - 
(td$a1*na_if(td$W_mat, 0))  
    simTab_s$a2[1:nSpp] <- as.vector(jagsOut$mean$a2*na_if(td$W_mat, 0)) - 
(td$a2*na_if(td$W_mat, 0))  
    simTab_s$a3[1:nSpp] <- as.vector(jagsOut$mean$a3*na_if(td$W_mat, 0)) - 
(td$a3*na_if(td$W_mat, 0))  
 
   
  #Put results all together 
  x <- list(global = simTab_g, park = simTab_p, species = simTab_s) 
  return(x) 
   
} 
 
 
######### 
## Part - Loop to run multiple simulations 
######### 
 
 
## Looping Variables 
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start <- 1 
end <- 10 #Run this script 65 times in HPCC for a total of 650 sims: for i in {1..65}; do sbatch 
amphibianRS.sb; done 
results <- Jr_temp <- maxJr_temp <- K_temp <- list() 
converge <- vector() 
 
##Loop 
for(i in start:end){  
   
  #Remove seed so simulations in parallel are all different 
  set.seed(NULL) 
   
  #Simulate a data set 
  td <- sim_community() 
   
  ## Simulation specific variables 
  strategy <- "randomStrat" 
  effort <- 0.5 
  Jr_temp[[i]] <- round(td$Jr*effort)  
  maxJr_temp[[i]] <- max(Jr_temp[[i]]) 
  K_temp[[i]] <- 4 
   
  #Need to rewrite Z_mat and W_mat based on effort for initial values 
  for(r in 1:td$R){ 
    for(m in 1:(td$I+td$M)){ 
      for(j in (Jr_temp[[i]][r]+1):td$JMax) { 
        for(y in 1:td$Y){ 
            td$Z_mat[j,y,m,r] <- NA 
          for(k in 1:6){ 
            td$X_mat[j,k,y,m,r] <- NA 
          } #k 
        } #y 
      } #j 
    } #i 
  } #r 
 
  td$X_mat <- td$X_mat[1:maxJr_temp[[i]],1:K,1:10,1:50,1:10] 
  td$Z_mat <- td$Z_mat[1:maxJr_temp[[i]],1:10,1:50,1:10] 
   
  # Organize data for jags 
  jagsDat <- list(X = td$X_mat, #Detection data 
                  R = td$R, I = td$I, M = td$M, Y = td$Y, K = K_temp[[i]], Jr = Jr_temp[[i]], 
#Looping variables 
                  Site_effect_a1 = td$Site_effect_a1, Year_effect_a2 = td$Year_effect_a2 #Covariates 
                  ) 
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  # Compile inititial values for jags 
  jagsIni <- function(){ 
    list(Z=td$Z_mat, W=td$W_mat)  
  } 
   
  # Paramaters to monitor for jags 
  jagsPar <- c('mean.c0', 'sd.c0',                                                   #unit occupancy 
               'mu.a0.global', 'sd.a0.global', 'sd.a0', 'mu.a0', 'a0',        #site occupancy (intercept) 
               'mu.a1.global', 'sd.a1.global', 'sd.a1', 'mu.a1', 'a1',        #site occupancy (slope) 
               'mu.a2.global', 'sd.a2.global', 'sd.a2', 'mu.a2', 'a2',        #site occupancy (slope) 
               'mu.a3.global', 'sd.a3.global', 'sd.a3', 'mu.a3', 'a3',        #site occupancy (slope) 
               'mu.b0.global', 'sd.b0.global', 'sd.b0', 'mu.b0', 'b0'         #detection (intercept) 
  ) 
   
   
  #Run jags() 
  jagsFit <- autojags(data = jagsDat, 
                      inits = jagsIni, 
                      parameters.to.save = jagsPar, 
                      model.file = "mrcm_jags.txt", 
                      parallel=T, 
                      n.chains=3, 
                      n.adapt=1000, 
                      iter.increment=10000, 
                      max.iter=50000, 
                      n.burnin=5000, 
                      n.thin=10, 
                      Rhat.limit = 1.11 
                    ) 
   
  # Append this run to one full results object 
  results[[i]] <- org_results(jagsOut = jagsFit, td = td) 
  converge[i] <- max(unlist(jagsFit$Rhat)) 
   
}# END OF LOOP 
 
 
##Save results file 
date <- gsub(pattern = c(":| "), replacement = "-", x = as.character(Sys.time())) 
 
file_str <- paste("jagsFit_","Simul_", effort*100, strategy,"_",date,".R",sep="") 
#Save 
save(results, converge, file=file_str) 
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APPENDIX B: Monitoring design sampling schemes for simulations. 

Table B.1: The percentage of sites sampled at each unit across all years in the stratified random 

and weighted effort designs at 10% effort. In the stratified random design, each site sampled has 

4 replicate visits per year. In the weighted effort design, sites at units 1-5 received 6 replicate 

visits per year, and sites at units 6-10 received 2 replicate visits per year. 

 
Unit /  

# of Total 
Sites 

Year 

1 2 3 4 5 6 7 8 9 10 

1 (16) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

2 (21) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

3 (47) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

4 (72) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

5 (98) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

6 (23) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

7 (40) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

8 (66) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

9 (35) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

10 (90) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 
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Table B.2: The percent of sites sampled at each unit across all years in the indicator unit design 

at 10% effort. Each site sampled has 4 replicate visits per year.  

 
Unit /  

# of Total 
Sites 

Year 

1 2 3 4 5 6 7 8 9 10 

1 (16) 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 

2 (21) 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 

3 (47) 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 

4 (72) 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 

5 (98) 20% 20% 20% 20% 20% 20% 20% 20% 20% 20% 

6 (23)           

7 (40)           

8 (66)           

9 (35)           

10 (90)           
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Table B.3: The percent of sites sampled at each unit across all years in the rotating panel design 

at 10% effort. Each site sampled has 4 replicate visits per year. 

 
Unit /  

# of Total 
Sites 

Year 

1 2 3 4 5 6 7 8 9 10 

1 (16) 20% 20%   20% 20%   20% 20% 

2 (21) 20% 20%   20% 20%   20% 20% 

3 (47) 20% 20%   20% 20%   20% 20% 

4 (72) 20% 20%   20% 20%   20% 20% 

5 (98) 20% 20%   20% 20%   20% 20% 

6 (23)   20% 20%   20% 20%   

7 (40)   20% 20%   20% 20%   

8 (66)   20% 20%   20% 20%   

9 (35)   20% 20%   20% 20%   

10 (90)   20% 20%   20% 20%   
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Table B.4: The percent of sites sampled at each unit across all years in the split panel design at 

10% effort. Each site sampled has 4 replicate visits per year. 

 
Unit /  

# of Total 
Sites 

Year 

1 2 3 4 5 6 7 8 9 10 

1 (16) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

2 (21) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

3 (47) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

4 (72) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

5 (98) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 

6 (23) 20% 20%   20% 20%   20% 20% 

7 (40) 20% 20%   20% 20%   20% 20% 

8 (66) 20% 20%   20% 20%   20% 20% 

9 (35)   20% 20%   20% 20%   

10 (90)   20% 20%   20% 20%   
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APPENDIX C: Multi-region community occupancy model for simulations. 

The full data simulation and analysis code is available on Zenodo 

(10.5281/zenodo.4577521). The symbols corresponding to the slope parameters for each effect 

term do not match directly as represented in the manuscript. In the manuscript, a1 corresponds to 

the time effect but is denoted by a2 in the code. Likewise, a2 in the manuscript corresponds to 

the site effect but is denoted by a1 in the code. 

JAGS code: 

model{ 
 
######### 
## Part - General Model Description 
######### 
 
# Author: A.D. Wright 
# Description: This dynamic (autologistic) occupancy model analyzes simulated data. It treats species & 
park hierarchically - an "MRCM" model (Sutherland et al 2016) 
 
# Subscripts: 
  # i = Species; I = nSpecies; M = nZeroes 
  # j = Site; Jr = nSites per Unit; Jsamp = nSites per Unit that were sampled 
  # r = Unit; R = nUnit 
  # k = Visit; K = nVisits  
  # y = Year; Y = nYears 
 
# Effects  
  # Omega:     Intercept 
  # Occupancy: Intercept + Site_effect + Year_effect + Autologistic_effect 
  # Detection: Intercept 
 
######### 
## Part - Priors 
######### 
 
## 
#### Global-level priors 
## 
 
#Data Augmentation 
  #Intercept 
mean.c0 ~ dunif(0,1) 
mu.c0 <- log(mean.c0/(1-mean.c0))  
sd.c0 ~ dunif(0,10) 
tau.c0 <- pow(sd.c0, -2)   
 
#Occupancy 
  #Intercepts 
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mu.a0.global ~ dnorm(0, 0.37) 
sd.a0.global ~ dunif(0,10) 
sd.a0 ~ dunif(0,10) 
tau.a0.global <- pow(sd.a0.global, -2)  
tau.a0 <- pow(sd.a0, -2)  
  #Slopes 
    #Site Effect 
mu.a1.global ~ dnorm(0,0.1)                                   
sd.a1.global ~ dunif(0,10) 
sd.a1 ~ dunif(0,10) 
tau.a1.global <- pow(sd.a1.global, -2)                        
tau.a1 <- pow(sd.a1, -2)     
    #Time effect 
mu.a2.global ~ dnorm(0,0.1)                                   
sd.a2.global ~ dunif(0,10) 
sd.a2 ~ dunif(0,10) 
tau.a2.global <- pow(sd.a2.global, -2)                         
tau.a2 <- pow(sd.a2, -2)  
    #Autologistic effect 
mu.a3.global ~ dnorm(0,0.1)                                   
sd.a3.global ~ dunif(0,10) 
sd.a3 ~ dunif(0,10) 
tau.a3.global <- pow(sd.a3.global, -2)                         
tau.a3 <- pow(sd.a3, -2)                                       
 
#Detection 
  #Intercepts 
mu.b0.global ~ dunif(0,0.37) 
sd.b0.global ~ dunif(0,10) 
sd.b0 ~ dunif(0,10) 
tau.b0.global <- pow(sd.b0.global, -2)                         
tau.b0 <- pow(sd.b0, -2)                                       
 
## 
#### Region-level priors 
## 
     
for (r in 1:R) { 
 
  #Data Augmentation 
  l.omega[r] ~ dnorm(mu.c0, tau.c0) 
  logit(omega[r]) <- l.omega[r] 
  #Occupancy 
    #Intercept   
  mu.a0[r] ~ dnorm(mu.a0.global, tau.a0.global) 
    #Slopes   
  mu.a1[r] ~ dnorm(mu.a1.global, tau.a1.global) 
  mu.a2[r] ~ dnorm(mu.a2.global, tau.a2.global) 
  mu.a3[r] ~ dnorm(mu.a3.global, tau.a3.global) 
 
  #Detection 
    #Intercept 
  mu.b0[r] ~ dnorm(mu.b0.global, tau.b0.global) 
     
## 
#### Species-level priors 
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## 
 
  for (i in 1:(I+M)) { 
 
    #Data Augmentation 
    W[i,r] ~ dbern(omega[r]) 
 
    #Occupancy 
      #Intercepts 
    a0[i,r] ~ dnorm(mu.a0[r],tau.a0) 
      #Slopes 
    a1[i,r] ~ dnorm(mu.a1[r],tau.a1) 
    a2[i,r] ~ dnorm(mu.a2[r],tau.a2) 
    a3[i,r] ~ dnorm(mu.a3[r],tau.a3) 
 
    #Detection 
      #Intercepts 
    b0[i,r] ~ dnorm(mu.b0[r],tau.b0) 
 
 
######### 
## Part - Likelihood 
######### 
 
## 
#### Estimating Occupancy (Z-Array) 
## 
 
    for (j in 1:Jr[r]) { 
     
        logit(psi[j,1,i,r]) <- a0[i,r] + a1[i,r]*Site_effect_a1[j,r] + a2[i,r]*Year_effect_a2[1] 
        Z[j,1,i,r] ~ dbern(psi[j,1,i,r]*W[i,r])   
     
      for (y in 2:Y) {  
 
          logit(psi[j,y,i,r]) <- a0[i,r] + a1[i,r]*Site_effect_a1[j,r] + a2[i,r]*Year_effect_a2[y] + a3[i,r]*Z[j,y-1,i,r] 
          Z[j,y,i,r] ~ dbern(psi[j,y,i,r]*W[i,r])   
           
      } #y 
 
## 
#### Estimating Detection (Data-Array) 
## 
 
      for (y in 1:Y) {  
       
        for (k in 1:K) { 
       
          logit(p[j,k,y,i,r]) <- b0[i,r]  
          X[j,k,y,i,r] ~ dbern(p[j,k,y,i,r]*Z[j,y,i,r]) 
 
        } #k 
      } #y 
    } #j 
  } #i 
} #r 
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## 
#### Imputation model (this is needed for the IU design) 
## 
 
for (r in 1:R) { 
 
  for (j in 1:Jr[r]) { 
     
    Site_effect_a1[j,r] ~ dnorm(0, 1) 
     
  } #j 
} #r 
 
 
######### 
## Part -  END 
######### 
 
} #model 
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APPENDIX D: JAGS model for analysis of 2005-2020 data. 
 

We conducted our analyses within a Bayesian program using JAGS (Plummer 2003), R 

(R Core Team 2016), and the ‘jagsUI’ package (Kellner 2016). All continuous covariates were 

standardized to have a mean of zero and a standard deviation of one, and missing covariate data 

were estimated using an imputation approach (Kéry and Royle 2015). We assessed structural 

parameters for convergence by visually monitoring the corresponding trace plots and assuring 

that the Gelman and Rubin diagnostic was less than 1.1 (Gelman and Rubin 1992; Gelman and 

Shirley 2011; Kéry and Royle 2015). 

JAGS code: 

model{ 
 
######### 
## Part - General Model Description 
######### 
 
 
# Author: A.D. Wright 
# Description: This occupancy model analyzes 2005-2020 NCRN data (collected by NEARMI and NCR). 
It treats species & park hierarchically. 
          #Uses components of Zipkin et al 2009 (based on Dorazio & Royle 2005, Dorazio et al 2006) and 
Sutherland et al 2016. 
 
# Subscripts: 
  # i = Species; I = nSpecies; M = nZeroes 
  # j = Site; J = nSites; minJ = Vector containing indices of first site in a region; maxJ = ....of last site in a 
region 
  # r = Region; R = nRegions 
  # k = Visit; K = nReps (in years that site[j] is not sampled, K is set to 1 to generate missing data) 
  # y = Year; Y = nYears; minY = Vector containg indices of first year of sampling for a site 
 
# Effects  
  # Omega:     Intercept  
  # Occupancy: Hydroperiod (Intercept) + Maximum Wetland Area  + Connectivity + Conductivity + Trend 
  # Detection: Intercept + Julian Date + (Julian Date)^2 + RE of Year (for variation among technicians) 
 
 
######### 
## Part - Priors 
######### 
 
## 
#### Global-level priors 
## 
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#Data Augmentation 
  #Intercept 
mu.omega ~ dnorm(0,0.37)     
tau.omega ~ dgamma(0.1,0.1)     
 
#Occupancy 
  #Intercept (temporary wetlands) 
logit(mean.a0.global) <- mu.a0.global 
mu.a0.global ~ dnorm(0,0.37) 
tau.a0.global ~ dgamma(0.1,0.1) 
tau.a0 ~ dgamma(0.1,0.1) 
  #Hydroperiod effects 
mu.a1_S.global ~ dnorm(0,0.1)  
tau.a1_S.global ~ dgamma(0.1,0.1)  
tau.a1_S ~ dgamma(0.1,0.1) 
mu.a1_P.global ~ dnorm(0,0.1) 
tau.a1_P.global ~ dgamma(0.1,0.1)  
tau.a1_P ~ dgamma(0.1,0.1) 
  #Other effects 
mu.a2.global ~ dnorm(0,0.1)                                   #Defines mean of a2[i,r], slope of Area (psi) for each 
species 
tau.a2.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.a2[r] 
tau.a2 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of a2[i,r] 
mu.a3.global ~ dnorm(0,0.1)                                   #Defines mean of a3[i,r], slope of Connectivity (psi) for 
each species 
tau.a3.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.a3[r] 
tau.a3 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of a3[i,r] 
mu.a4.global ~ dnorm(0,0.1)                                   #Defines mean of a4[i,r], slope of Conductivity (psi) for 
each species 
tau.a4.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.a4[r] 
tau.a4 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of a4[i,r] 
mu.a5.global ~ dnorm(0,0.1)                                   #Defines mean of a5[i,r], slope of Year (psi) for each 
species 
tau.a5.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.a5[r] 
tau.a5 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of a5[i,r] 
 
#Detection 
  #Intercepts 
mu.b0.global ~ dnorm(0,0.37)                                  #Defines mean of b0[i,r], intercept (p) for each species 
tau.b0.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.b0[r] 
tau.b0 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of b0[i,r] 
  #Slopes 
mu.b1.global ~ dnorm(0,0.1)                                   #Defines mean of b1[i,r], slope of JDay (p) for each 
species 
tau.b1.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.b1[r] 
tau.b1 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of b1[i,r] 
mu.b2.global ~ dnorm(0,0.1)                                   #Defines mean of b2[i,r], slope of JDay^2 (p) for each 
species 
tau.b2.global ~ dgamma(0.1,0.1)                               #Defines precision (1/sd^2) of mu.b2[r] 
tau.b2 ~ dgamma(0.1,0.1)                                      #Defines precision (1/sd^2) of b2[i,r] 
  #Random-effect of time 
tau.b.time ~ dgamma(0.1,0.1)                                  #Defines precision (1/sd^2) of eta[y], random effect of 
annual field crew (p)  
for (y in 1:Y){ 
  eta[y] ~ dnorm(0,tau.b.time)                                #Defines random effect of annual field crew 
} #y 
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## 
#### Region-level priors 
## 
     
for (r in 1:R) { 
 
  #Data Augmentation 
  l.omega[r] ~ dnorm(mu.omega, tau.omega) 
  logit(omega[r]) <- l.omega[r] 
   
  #Occupancy 
    #Intercept   
  mu.a0[r] ~ dnorm(mu.a0.global, tau.a0.global) 
    #Effects  
  mu.a1_S[r] ~ dnorm(mu.a1_S.global,tau.a1_S.global) 
  mu.a1_P[r] ~ dnorm(mu.a1_P.global,tau.a1_P.global) 
  mu.a2[r] ~ dnorm(mu.a2.global, tau.a2.global) 
  mu.a3[r] ~ dnorm(mu.a3.global, tau.a3.global) 
  mu.a4[r] ~ dnorm(mu.a4.global, tau.a4.global)  
  mu.a5[r] ~ dnorm(mu.a5.global, tau.a5.global)  
 
  #Detection 
    #Intercept 
  mu.b0[r] ~ dnorm(mu.b0.global, tau.b0.global) 
    #Slopes 
  mu.b1[r] ~ dnorm(mu.b1.global, tau.b1.global) 
  mu.b2[r] ~ dnorm(mu.b2.global, tau.b2.global) 
     
     
## 
#### Species-level priors 
## 
 
  for (i in 1:(I+M)) { 
 
    #Data Augmentation 
    W[i,r] ~ dbern(omega[r]) 
 
    #Occupancy 
      #Intercepts 
    a0[i,r] ~ dnorm(mu.a0[r],tau.a0) 
      #Effects 
    a1_S[i,r] ~ dnorm(mu.a1_S[r],tau.a1_S) 
    a1_P[i,r] ~ dnorm(mu.a1_P[r],tau.a1_P) 
    a2[i,r] ~ dnorm(mu.a2[r],tau.a2) 
    a3[i,r] ~ dnorm(mu.a3[r],tau.a3) 
    a4[i,r] ~ dnorm(mu.a4[r],tau.a4) 
    a5[i,r] ~ dnorm(mu.a5[r],tau.a5) 
 
    #Detection 
      #Intercepts 
    b0[i,r] ~ dnorm(mu.b0[r],tau.b0) 
      #Slopes 
    b1[i,r] ~ dnorm(mu.b1[r],tau.b1) 
    b2[i,r] ~ dnorm(mu.b2[r],tau.b2) 
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######### 
## Part - Likelihood 
######### 
 
## 
#### Estimating Occupancy (Z-Array) 
## 
 
    for (j in minJ[r]:maxJ[r]) { 
      for (y in minY[r]:Y) {  
 
        logit(psi[j,y,i,r]) <- a0[i,r] + a1_S[i,r]*Hydro_state[j,2] + a1_P[i,r]*Hydro_state[j,3] + 
a2[i,r]*Site_area[j,y] + a3[i,r]*Conn[j] + a4[i,r]*Cond[j,y] + a5[i,r]*Year[y] 
        Z[j,y,i,r] ~ dbern(psi[j,y,i,r]*W[i,r])   
         
      } #y 
       
      zLast[j,i] <- Z[j,16,i,r]  
 
## 
#### Estimating Detection (Data-Array) 
## 
 
      for (y in minY[r]:Y) {  
        for (k in 1:K[j,y]) { 
       
          logit(p[j,k,y,i,r]) <- b0[i,r] + b1[i,r]*JDay[j,k,y] + b2[i,r]*(JDay[j,k,y]^2) + eta[y] 
          X[j,k,y,i,r] ~ dbern(p[j,k,y,i,r]*Z[j,y,i,r]) 
 
        } #k 
      } #y 
    } #j 
  } #i 
} #r 
 
## 
#### Generating Missing Covariate Data 
## 
 
for (r in 1:R) { 
  for (j in minJ[r]:maxJ[r]) { 
    for (y in minY[r]:Y) { 
 
      Site_area[j,y] ~ dnorm(0, 1) 
      Cond[j,y] ~ dnorm(0, 1) 
 
      for (k in 1:K[j,y]) { 
 
        JDay[j,k,y] ~ dnorm(0, 1) 
 
      } #k 
    } #y 
  } #j 
} #r 
 
######### 
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## Part -  Derived Parameters 
######### 
 
 
## 
#### Estimating mean occupancy and detection rates of observed species (and their corresponding 
intercepts) 
## 
 
 
for(r in 1:R) { 
  for(i in 1:I) { 
    for(y in minY[r]:Y) { 
     
      psi.avg[y,i,r] <- mean(psi[minJ[r]:maxJ[r],y,i,r]) 
 
    } #y 
  } #i 
} #r 
 
## 
#### Estimating region-level species richness 
## 
 
for(r in 1:R) { 
 
  Npark[r] <- sum(W[,r]) 
 
} #r 
 
## 
#### Estimating site-level species richness by year 
## 
 
for(r in 1:R) { 
  for (j in minJ[r]:maxJ[r]) { 
    for (y in minY[r]:Y) { 
 
      nSite[j,y] <- sum(Z[j,y,,r]) 
 
    } #y 
  } #j   
} #r 
 
 
for(r in 1:R) { 
  for (y in minY[r]:Y) { 
   
   Nsite.avg[r,y] <- mean(nSite[minJ[r]:maxJ[r],y])  
   
    } #y   
} #r 
 
 
 
######### 
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## Part -  END 
######### 
 
} #model 
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