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ABSTRACT 

THEORETICAL MODELING OF ULTRAFAST OPTICAL-FIELD INDUCED 

PHOTOELECTRON EMISSION FROM BIASED METAL SURFACES 

By 

Yi Luo 

Laser-induced electron emission from nanostructures offers a platform to coherently control 

electron dynamics in ultrashort spatiotemporal scales, making it important to both fundamental 

research and a broad range of applications, such as to ultrafast electron microscopy, diffraction, 

attosecond electronics, strong-field nano-optics, tabletop particle accelerators, free electron lasers, 

and novel nanoscale vacuum devices. This thesis analytically studies nonlinear ultrafast 

photoelectron emission from biased metal surfaces, by solving the time-dependent Schrödinger 

equation exactly. Our study provides better understanding of the ultrafast control of electrons and 

offers useful guidance for the future design of ultrafast nanoelectronics.  

First, we present an analytical model for photoemission driven by two-color laser fields. We 

study the electron energy spectra and emission current modulation under various laser intensities, 

frequencies, and relative phase between the two lasers. We find strong modulation for both the 

energy spectra and emission current (with a modulation depth up to 99%) due to the interference 

effect of the two-color lasers. Using the same input parameter, our theoretical prediction for the 

photoemission current modulation depth (93.9%) is almost identical to the experimental 

measurement (94%).  

Next, to investigate the role of dc field, we construct an analytical model for two-color laser 

induced photoemission from dc biased metal surfaces. We systematically examine the combined 

effects of a dc electric field and two-color laser fields. We find the strong modulation in two-color 

photoemission persists even with a strong dc electric field. In addition, the dc field opens up more 



  

 

tunneling emission channels and thus increases the total emission current. Application of our 

model to time-resolved photoelectron spectroscopy is also demonstrated, showing the dynamics 

of the n-photon excited states depends strongly on the applied dc field.  

We then propose to utilize two lasers of the same frequency to achieve the interference 

modulation of photoemission by their relative phase. This is motivated by the easier access to 

single-frequency laser pairs than two-color lasers in experiments. We find a strong current 

modulation (> 90%) can be achieved with a moderate ratio of the laser fields (< 0.4) even under a 

strong dc bias. Our study demonstrates the capability of measuring the time-resolved photoelectron 

energy spectra using single-frequency laser pairs.  

We further extend our exact analytic model to photoelectron emission induced by few-cycle 

laser pulses. The single formulation is valid from photon-driven electron emission in low intensity 

optical fields to field-driven emission in high intensity optical fields, and is valid for arbitrary pulse 

length from sub-cycle to CW excitation, and for arbitrary pulse repetition rate. We find the emitted 

charge per pulse oscillatorily increases with pulse repetition rate, due to varying coherent 

interaction of neighboring laser pulses. For a well-separated single pulse, our results recover the 

experimentally observed vanishing carrier-envelope phase sensitivity in the optical-field regime. 

We also find that applying a large dc field to the photoemitter is able to greatly enhance the 

photoemission current and in the meantime substantially shorten the current pulse.  

Finally, we construct analytical models for nonlinear photoelectron emission in a nanoscale 

metal-vacuum-metal gap. Our results reveal the energy redistribution of photoelectrons across the 

two interfaces between the gap and the metals. Additionally, we find that decreasing the gap 

distance tends to extend the multiphoton regime to higher laser intensity. The effect of dc bias is 

also studied in detail. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Ultrafast science concerns the study of electronic dynamics and motion in ultrashort timescale with 

the aid of ultrafast lasers. This field has been widely explored in atomic and molecular systems. 

The main observation includes above-threshold ionization [1][2] and high-order harmonic 

generation [3]. In recent decade, a new research direction has emerged in the ultrafast science field, 

which is the study of laser-induced electron emission from solid nanostructures [4]–[6]. Utilizing 

the solid-state nanostructures [7]–[23], especially those made of metals, enables the nanoscopic 

confinement of optical fields and the resulting large field enhancement factor on the nanosurface. 

The former provides the possibility for the control of ultrafast electron emission on the nanometer 

scale, which is fundamentally important to the development of high-resolution electron 

microscopy [24]–[27], highly coherent electron sources [28]–[30] and novel nano-vacuum 

electronic devices [31]–[36]; the latter enables the access to strong-field optics with low laser 

intensity, which can reduce the requirement for the laser experimental system and avoid thermal 

damage on the structure when illuminated by strong laser fields [4][37]. Photoemission is also 

important to the development of vacuum electronics, high power electromagnetic sources and 

amplifiers, and high current cathodes [38]–[45].    

The initial work on ultrafast laser-induced electron emission from nanostructure is reported by 

Hommelhoff and his colleagues [7]. They demonstrated the nonlinearity of ultrafast photoelectron 

emission from a tungsten nanotip driven by low-power femtosecond laser. A variety of 

photoemission properties from metallic nanostructures were subsequently revealed, including the 

transition from multiphoton emission to strong optical-field emission [11], dc-assisted tunneling 
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emission [6][8][46], surface-plasmon boosted emission [20][37][47]–[49], dense-arrays 

enhancement effect [50][51], dependence of emission distribution on optical orientation [52][53], 

carrier-envelope-phase (CEP) sensitivity [13][54]–[56], modulation effect of two-color lasers 

[57]–[62], and rectification effect of metal-vacuum-metal nanogap [63]–[66]. 

1.2 Photoelectron Emission Mechanisms 

Photoemission mechanisms in general depend on the local optical field intensity. This section 

summarizes the photoemission processes from metal surface in different field intensity regimes. 

1.2.1 Multiphoton Over-Barrier Emission  

Under the illumination of a weak laser field, the main photoemission process is multiphoton over-

barrier emission, where the electron inside the metal is excited to a continuum state by absorbing 

a threshold number of photons or more photons and then escapes from the metal surface (see Figure 

1.1). The photoemission yield follows a power law in the incident laser intensity, and the exponent 

denotes the threshold number of photons needed to overcome the potential barrier. Figure 1.2 

displays the experimentally measured multiphoton emission current from a sharp gold tip as a 

function of the incident laser power [9]. For zero dc bias (see the blue line in Figure 1.2), the 

fourth-order power dependence indicates the electron inside the tip needs to absorb at least four 

photons for the emission, which is consistent with the ratio of the work function of gold (≃ 5 eV) 

over incident single photon energy of 1.5 eV (for 828 nm laser), W/ℏ𝜔 ≈⁡3.3.  
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Figure 1.1: Multiphoton over-barrier emission. Electron inside the metal is excited to a continuum 

state by absorbing enough photon energy and then escapes from the metal surface. W and 𝐸𝐹 are 

the work function and Fermi energy of metal, respectively.  

 

Figure 1.2: Log-scale plot of photoelectron yield from a sharp gold tip as a function of laser power 

with 800 V dc bias (red curve) and without dc bias (blue curve) [9].  

1.2.2 Tunneling Emission 

Optical field emission  

Optical field emission occurs in the strong laser field regime, where the potential barrier near the 

metal surface greatly oscillates with time, enabling the electron tunneling into the vacuum with 

less photon absorption than multiphoton over-barrier emission (see Figure 1.3). Optical field 
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emission only occurs during the positive half laser cycles, as shown in Figure 1.3. Bormann et al, 

[11] firstly reported the optical field emission from nanostructure, and their main experimental 

observation is displayed in Figure 1.4. With increasing laser energy, the slope of photoemission 

current decreases, indicating the transition of dominant emission from multiphoton over-barrier 

emission to optical field emission.  

  

Figure 1.3: Optical field emission. The potential barrier near the metal surface greatly oscillates 

with time under the illumination of strong laser field, enabling the electron tunneling emission. W 

and 𝐸𝐹 are the work function and Fermi energy of metal, respectively. 
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Figure 1.4: Log-scale plot of photoelectron yield from sharp gold nanotip as a function of laser 

energy. The decreasing slope with the increasing incident energy indicates the transition of the 

dominant emission process from multiphoton over-barrier emission to optical field emission [11]. 

Photon-assisted tunneling emission 

For the sharp metallic tip, a strong dc field can be easily obtained at the apex due to strong field 

enhancement near the tip, inducing a narrow barrier near the metal surface. This makes the electron 

tunneling emission possible, even in the weak laser field regime (see Figure 1.5), which is referred 

as photon-assisted tunneling emission (or dc-assisted optical tunneling). Figure 1.6 displays the 

experimentally measured photoelectron energy spectra from a tungsten nanotip with strong dc field, 

where the photon-assisted tunneling emission is the main emission process [46].   
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Figure 1.5: Photon-assisted tunneling emission. The tunneling potential barrier near the metal 

surface is formed under the strong dc field. Electron tunneling emission is possible even with a 

weak laser field. W and 𝐸𝐹 are the work function and Fermi energy of metal, respectively. 

 

Figure 1.6: Experimentally measured photoelectron energy spectra from tungsten nanotip with 

strong dc field [46]. 
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In addition, due to the image charge effect (or Schottky effect) induced by the strong dc field, a 

significant reduction of potential barrier ∆𝑊 appears at the surface (see Figure 1.5), which is given 

by, 

∆𝑊 = √𝑒3𝐹𝐷𝐶/4𝜋𝜀0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

where 𝑒 is the elementary charge, 𝐹𝐷𝐶 is the local dc field, and 𝜀0 is the free space permittivity. 

The decreased barrier height can greatly increase the photoelectron emission yield. 

1.2.3 Keldysh Parameter 

Keldysh parameter 𝛾 is used to define the limit between multiphoton over-barrier emission and 

optical field emission [67]. It is given by,  

𝛾 = √
𝑊

2𝑈𝑝
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

where 𝑊 is the work function of metal and 𝑈𝑝 is the ponderomotive energy which describes the 

time-averaged kinetic energy of an electron with charge -e and mass 𝑚𝑒 in an oscillating electric 

field with the angular frequency 𝜔 and field amplitude F, 

𝑈𝑃 =
𝑒2𝐹2

4𝑚𝑒𝜔2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

For 𝛾 > 1 (weak optical field), the dominant emission mechanism is multiphoton over-barrier 

emission. For 𝛾 < 1 (strong optical field), the optical field emission dominates. When the Keldysh 

parameter 𝛾 is close to 1, the contribution from multiphoton over-barrier and optical field emission 

coexists.  
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1.3 Theoretical Models for Photoemission from Metal Surfaces 

A variety of theoretical approaches have been developed to describe and understand the underlying 

photoelectron emission mechanisms, such as Fowler-Dubridge model [68]–[71], three-step model 

[72]–[74], perturbative theory [11][75][76], Floquet method [76][77], Fowler-Nordheim tunneling 

approximation [8][19][55], and directly solving the time-dependent Schrödinger equation (TDSE) 

[6][7][13][76][78]–[80]. In this section, we introduce the commonly used three-step model, 

Fowler-Nordheim equation, and quantum analytical model based on the TDSE.  

1.3.1 Three-Step Model 

Three-step model considers photoelectron emission as three sequentially independent processes: 

(1) Electrons inside the metal are excited to higher energy states by absorbing the incident photon; 

(2) Excited electrons migrate to the metal surface, where electron-electron scattering effect is 

included; (3) Electrons with the energy larger than the potential barrier energy escape from the 

metal surface. The photoemission quantum efficiency (QE), defined as the ratio of the number of 

emission electrons over that of incident photons, is expressed in terms of the probabilities of these 

three steps [72][73], 

𝑄𝐸(𝜔)

= [1 − 𝑅(𝜔)]
∫ 𝑑𝐸[1 − 𝑓𝐹𝐷(𝐸 + ℏ𝜔)]𝑓𝐹𝐷(𝐸)
∞

𝐸𝐹+𝑊𝑒𝑓𝑓−ℏ𝜔
∫ 𝑑(𝑐𝑜𝑠𝜃)
1

𝑐𝑜𝑠𝜃𝑚𝑎𝑥
𝐹𝑒−𝑒(𝐸, 𝜔, 𝜃) ∫ 𝑑Φ

2𝜋

0

∫ 𝑑𝐸[1 − 𝑓𝐹𝐷(𝐸 + ℏ𝜔)]𝑓𝐹𝐷(𝐸)
∞

𝐸𝐹−ℏ𝜔
∫ 𝑑(𝑐𝑜𝑠𝜃)
1

−1
∫ 𝑑Φ
2𝜋

0

 

(4) 

where 𝑅(𝜔)  is the metal surface reflectivity as a function of optical frequency 𝜔 , 𝑓𝐹𝐷(𝐸) =

1/{1 + exp⁡[⁡(𝐸 − 𝐸𝐹)/𝑘𝐵𝑇]} is the Fermi-Dirac function, describing the distribution of electron 

energy states inside the metal, 𝐸𝐹 is the Fermi energy of metal, 𝑊𝑒𝑓𝑓 is the effective work function 
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including the Schottky effect, 𝐹𝑒−𝑒(𝐸, 𝜔, 𝜃) is the probability an electron reaches the metal surface 

without electron-electron scattering, 𝜃 is the angle between the electron velocity and the surface 

normal, Φ  is the azimuthal angle, cos 𝜃𝑚𝑎𝑥 = √(𝐸𝐹 +𝑊𝑒𝑓𝑓)/(𝐸 + ℏ𝜔) , where 𝜃𝑚𝑎𝑥  is the 

maximum escape angle for electrons with the total energy 𝐸 + ℏ𝜔.     

At low temperature (𝑘𝐵𝑇 ≪ 𝐸𝐹 ), the Fermi-Dirac function 𝑓𝐹𝐷(𝐸) can be approximated by 

Heaviside step function 𝐻(𝐸𝐹 − 𝐸). When the photon energy ℏ𝜔 is close to the effective work 

function of the metal, 𝜃𝑚𝑎𝑥  will be nearly normal to the metal surface. Thus, the angle 𝜃 

dependence of 𝐹𝑒−𝑒(𝐸, 𝜔, 𝜃)  can be ignored. With these assumptions, Equation (4) can be 

simplified to [72][73], 

𝑄𝐸(𝜔) = [1 − 𝑅(𝜔)]𝐹𝑒−𝑒(𝜔)
𝐸𝐹 + ℏ𝜔

2ℏ𝜔
× [1 +

𝐸𝐹 +𝑊𝑒𝑓𝑓

𝐸𝐹 + ℏ𝜔
− 2√

𝐸𝐹 +𝑊𝑒𝑓𝑓

𝐸𝐹 + ℏ𝜔
].⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

As shown in Figure 1.7, the QE calculated from Equation (5) exhibits good agreement with the 

experimental measurements for copper surfaces. However, this model is constructed by the 

classical treatment, thus it only works in the multiphoton over-barrier emission regime instead of 

the strong optical field regime with quantum mechanical tunneling [74]. 
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Figure 1.7: Comparison between the experimentally measured QE under low dc electric field 

(black points) and calculated QE under low (red solid line) and high (blue dashed line) dc 

electric field [72]. 

1.3.2 Fowler-Nordheim Equation 

Fowler-Nordheim equation describes the field emission where electrons tunnel through a narrow 

potential barrier due to a strong static electric field. The formula is given by [8][81][82], 

𝑗𝐹𝑁 =
𝑒3𝐹2

8𝜋ℎΦ𝑡2(𝜔)
exp [−

8𝜋√2𝑚𝑒Φ
3
2

3ℎ𝑒𝐹
𝑣(𝜔)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where 𝑗𝐹𝑁 is the field emission current density, e is the elementary charge, F is the local dc electric 

field, ℎ is the Planck constant, Φ is the effective work function, 𝑡2(𝜔) ≈ 1 for field emission, me 

is the electron mass, and 𝑣(𝜔) ≈ 1 − 𝜔 + 𝜔In𝜔/6 with 𝜔 = 𝑒3𝐹/4𝜋𝜀0Φ. 

Fowler-Nordheim equation is also frequently used to calculate the photoemission rate j for the 

dc-assisted optical tunneling or strong optical field emission by directly replacing the electric field 
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F in Equation (6) with the sum of applied dc field 𝐹0 and time-dependent laser electric field 𝐹1(𝑡) 

[8][83] 

𝑗 = 𝑗𝐹𝑁(𝐹0 + 𝐹1(𝑡))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Figure 1.8 shows that the experimentally measured field emission, dc-assisted optical tunneling 

emission and optical field emission can be well described by the Fowler-Nordheim scaling.  

Nevertheless, Fowler-Nordheim equation is only valid in the strong optical field regime instead of 

the multiphoton over-barrier emission regime. 

       

Figure 1.8: (a) Fowler-Nordheim plots of field emission (blue squares) and dc-assisted optical 

tunneling (red circles) [8]. (b) Fowler-Nordheim fit to the experimental measurements (bright 

orange dashed line) [19]. 

1.3.3 Quantum Analytical Model  

Solving the TSDE is a quantum approach to describe the photoelectron emission, where the 

interaction between the electrons inside the metal is ignored. In 2016, Zhang and Lau [6] developed 

(a) (b) 
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an quantum analytical model for the photoemission due to a combination of a dc field 𝐹0 and a 

laser field 𝐹1 cos(𝜔𝑡), by exactly solving the TDSE,  

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= −

ℏ2

2𝑚𝑒

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2
+Φ(𝑥, 𝑡)𝜓(𝑥, 𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

where ℏ is the reduced Plank constant, me is the electron mass, and Φ(𝑥, 𝑡) is the time-dependent 

potential energy being 0 inside the metal (𝑥 < 0) and 𝐸𝐹 +𝑊𝑒𝑓𝑓 − 𝑒𝐹0𝑥 − 𝑒𝐹1𝑥 cos(𝜔𝑡) in the 

vacuum (𝑥 ≥ 0) respectively, with 𝐸𝐹  being the Fermi energy of the metal, 𝑊𝑒𝑓𝑓 the effective 

work function including the Schottky effect and 𝑒 the elementary charge. Here, both external 

electric fields are assumed to be perpendicular to the flat metal surface. Based on the triangular 

potential barrier, the exact solution of electron wavefunction⁡𝜓𝑖(𝑥, 𝑡) inside the metal and 𝜓𝑡(𝑥, 𝑡) 

in the vacuum are obtained [6], 

⁡𝜓𝑖(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅𝑛 exp (−𝑖

𝜀 + 𝑛ℏ𝜔

ℏ
𝑡 − 𝑖𝑘𝑛𝑥)

∞

𝑛=−∞

,⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

𝜓𝑡(𝑥, 𝑡) = ∑ 𝑇𝑛[𝐴𝑖(−𝜂𝑛) − 𝑖𝐵𝑖(−𝜂𝑛)] × exp (−𝑖
𝜀

ℏ
𝑡 − 𝑖𝑛𝜔𝑡)

∞

𝑛=−∞

 

× exp (
𝑖𝑒𝐹1 sin(𝜔𝑡)

ℏ𝜔
𝑥 +

𝑖𝑒2𝐹1
2 sin(2𝜔𝑡)

8ℏ𝑚𝑒𝜔3
−
𝑖𝑒2𝐹0𝐹1 sin(𝜔𝑡)

ℏ𝑚𝑒𝜔3
) ,⁡⁡⁡⁡𝑥 ≥ 0⁡⁡⁡ (10) 

where 𝑘0 = √2𝑚𝑒𝜀/ℏ
2 and 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔)/ℏ2 are the electron wave number, 𝐴𝑖 and 𝐵𝑖 

are the Airy functions of the first kind and second kind respectively, 𝜂𝑛 = [
𝐸𝑛

𝑒𝐹0
+ 𝑥 +

𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2 ](
2𝑒𝑚𝑒𝐹0

ℏ2
)
1

3 , the drift kinetic energy 𝐸𝑛 = 𝜀 + 𝑛ℏ𝜔 − 𝐸𝐹 −𝑊𝑒𝑓𝑓 − 𝑈𝑝 , and the 

ponderomotive energies 𝑈𝑝 = 𝑒2𝐹1
2/4𝑚𝑒𝜔

2 . The transmission coefficient 𝑇𝑛  can be obtained 
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from the boundary conditions that both the electron wave function 𝜓(𝑥, 𝑡) and its derivative 

𝜕𝜓(𝑥, 𝑡)/𝜕𝑥 are continuous at x = 0 (see Reference [6]). 

Using the probability current density, the time-averaged normalized emission current density, 

defined as the time-averaged ratio of the transmitted probability current density over the incident 

probability current density, 〈𝑤(𝜀, 𝑥, 𝑡)〉 = 〈𝐽𝑡/𝐽𝑖〉, can be obtained as,  

〈𝑤(𝜀)〉 = ∑ 〈𝑤𝑛(𝜀)〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)〉 =
(𝑒𝐹0ℏ/√2𝑚𝑒)

1/3

𝜋√𝜀
|𝑇𝑛|

2,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

where 〈𝑤𝑛〉 denotes the normalized emission current density through the 𝑛th channel with emitted 

electron energy 𝜀 + 𝑛ℏ𝜔 due to the n-photon contribution. 

 

Figure 1.9: (a) Photoelectron energy spectra with increasing laser field. Left three plots show the 

experimental measurements [54]. Right three plots show the calculation from Zhang’s quantum 

analytical model [6]. (b) Photoemission current as a function of applied dc field. Left plot is the 

experimental result [9]. Right plot is Zhang’s quantum analytical results [6].  

As shown in Figure 1.9, the calculation from the quantum model recovers the experimentally 

measured trends on the energy spectra for the transition from multiphoton to optical field emission 
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and the voltage and laser power dependence of photoelectron yield. These good agreement with 

the experimental results display the validity of Schrödinger-based analytical model in both 

multiphoton over-barrier regime and optical field regime. Our theoretical model in this thesis is 

also derived from the TDSE.  

1.4 Organization of This Thesis 

In this thesis, we develop analytical quantum models to study ultrafast optical-field induced 

photoelectron emission from biased metal surfaces, by solving TDSE exactly. We consider two-

color laser induced photoelectron emission with and without dc bias, interference modulation of 

photoemission using two lasers of the same frequency, nonlinear ultrafast photoemission from a 

dc-biased surface triggered by few-cycle laser pulses, and laser induced photoelectron transport in 

nanogaps. 

Chapter 2 presents analytical models for nonlinear ultrafast photoelectron emission from metal 

surface induced by two-color laser fields without and with dc bias, by exactly solving the TDSE. 

The photoelectron energy spectra, emission current density and current modulation under various 

combinations of laser intensities, frequencies, dc fields, and phase differences of the two-color 

lasers are analyzed. The application of our model to the time-resolved photoelectron spectroscopy 

of one dimensional (1D) system is exemplified.  

Chapter 3 explores the modulation to photoemission current and dynamics of multiphoton 

excited states using two lasers of the same frequency. The effects of different laser fields, 

wavelengths, cathode materials, and dc bias are analyzed in detail. The capability of measuring the 

time-resolved photoelectron energy spectra using single-frequency laser pairs is demonstrated.  

Chapter 4 presents an analytical model for nonlinear ultrafast photoemission from a dc-biased 

surface triggered by few-cycle laser pulses, by exactly solving the TDSE. Our exact model is valid 
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for arbitrary pulse length from sub-cycle to CW excitation, and for arbitrary pulse repetition rate. 

The photoelectron energy spectra, emission current and emission charge density with different 

combinations of laser pulse repetitions, durations, laser intensities, CEP and dc fields are explored, 

showing good agreement with the experimental observations.  This work offers clear insights to 

the photoelectron energy distribution and spatiotemporal dynamics of electron emission with 

different ultrashort pulses and dc fields. 

Chapter 5 presents analytical models for ultrafast photoelectron emission in a nanoscale metal-

vacuum-metal gap driven by a single-frequency laser field. We study the dependence of 

photoelectron spectra and emission current on gap distance, laser intensity, wavelength, and metal 

materials. This work may provide useful guidance for the future design of ultrafast optoelectronic 

devices, such as photodetectors. 

Chapter 6 gives a summary and an outlook to future works.  

  



  16 

 

CHAPTER 2 

TWO-COLOR LASER INDUCED PHOTOEMISSION 

2.1 Introduction 

Two-color laser induced photoelectron emission from nanostructure is reported by Förster and his 

colleagues [57] in 2016. They found a substantial emission current modulation of 94% for tungsten 

nanotips via the control of the relative phase between a strong fundamental laser and a weak 

second-harmonic laser, due to the interference effect between quantum emission pathways. This 

provides a new platform for coherently controlling electron dynamics in ultrashort spatiotemporal 

scales by the phase difference between the two-color lasers. By optimizing the employed laser and 

dc electric fields, Paschen et al [59] reported a nearly perfect two-color emission current 

modulation of up to 97.5% for tungsten nanotip in 2017. Other aspects of two-color photoemission 

from metallic nanostructures are also studied, including laser polarization dependence [58], 

interaction of two-color lasers with free electron beams [84] and plasmon-assisted emission [85]. 

Despite these recent studies on two-color photoemission from metallic nanostructure, the 

correlation between laser fields, applied dc bias and various underlying emission processes is still 

not well understood. The parametric dependence of the photoelectron emission needs substantial 

further study. 

In this chapter, we present quantum analytical models for nonlinear ultrafast photoelectron 

emission from metal surface induced by two-color laser fields without and with dc bias, by exactly 

solving the TDSE [61][62]. Our models are valid for arbitrary laser intensities, harmonic orders, 

phase differences between the two lasers, dc bias and metal work function and Fermi level. Various 

emission processes, including multiphoton over-barrier emission, dc-assisted tunneling emission 

and optical field emission, are all included in the single formulation. We comprehensively analyze 
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the photoelectron emission properties, including energy spectra, emission current density, and 

current modulation, under various combinations of laser intensities and frequencies, dc fields, and 

relative phase of the two-color lasers. We study the effects of image charge induced by the dc field 

on the emission current, which gives an examination on the sensitivity of photoemission to the 

shape of potential barrier. The application of our analytical model to the time-resolved 

photoelectron spectroscopy of one dimensional (1D) system is also demonstrated. The material of 

this chapter is based on our published papers References [61] and [62], and is presented with 

permission from the copyright holders.  

2.2 Photoemission Without DC Bias 

2.2.1 Analytical Model 

Our one-dimensional (1D) model (see Figure 2.1) considers electrons with initial energy 𝜀 are 

excited to the higher energy state by absorbing photon energy and then get emitted from the metal-

vacuum interface at x = 0, under the illumination of two-color laser fields, 𝐹1cos⁡(𝜔𝑡)  and 

𝐹2cos⁡(𝛽𝜔𝑡 + 𝜃), where 𝐹1 and 𝐹2 are the magnitudes of the laser fields, 𝜔 is the fundamental 

laser frequency, 𝛽 is a positive integer, and 𝜃 is the relative phase. We assume both laser fields are 

perpendicular to the metal surface, and cut off abruptly at the surface. The sudden screening of 

external fields is justified [6], because the laser penetration depth (i.e., skin depth) is typically 

much smaller than the laser wavelength (e.g., for the gold, the skin depth of 800 nm laser 

wavelength is around 4 nm). 
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Figure 2.1: Energy diagram for electron emission through a wiggling potential barrier induced by 

two-color laser fields across the metal-vacuum interface at x = 0. Electrons with initial energy of 

𝜀 are excited to emit through n-photon absorption, with a transmitted energy of 𝜀 + 𝑛ℏ𝜔, with 𝑛 

being an integer. The fundamental and the harmonic laser fields are 𝐹1cos⁡(𝜔𝑡) and 𝐹2cos⁡(𝛽𝜔𝑡 +
𝜃), respectively. 𝐸𝐹 and 𝑊 are the Fermi energy and work function of the metal, respectively. 

A time-varying potential barrier would be created at the metal-vacuum interface x = 0,                            

 Φ(𝑥, 𝑡) = {
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑉0 − 𝑒𝐹1𝑥 cos(𝜔𝑡) − 𝑒𝐹2𝑥 cos(𝛽𝜔𝑡 + 𝜃), ⁡⁡𝑥 ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12)

 

where 𝑉0 = 𝐸𝐹 +𝑊, 𝐸𝐹 and 𝑊 are the Fermi energy and work function of the metal respectively, 

and 𝑒 is the elementary charge. To make the analytical treatment possible, image charge effects 

are not included in Equation (12). However, our previous work [6] demonstrated a very good 

approximation to include the image charge potential in our model, by simply replacing the work 

function W with the effective work function due to Schottky barrier lowering.   

The electron wave function 𝜓(𝑥, 𝑡) is solved from the TDSE, 

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= −

ℏ2

2𝑚𝑒

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2
+Φ(𝑥, 𝑡)𝜓(𝑥, 𝑡),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

where ℏ is the reduced Plank constant, me is the electron mass, and Φ(𝑥, 𝑡) is the potential energy 

given in Equation (12).  
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An exact solution to Equation (13) for 𝑥 ≥ 0 is obtained [61] (see Appendix A for the method), 

⁡𝜓(𝑥, 𝑡) = ∑ 𝑇𝑛 exp(−𝑖𝜀𝑡/ℏ − 𝑖𝑛𝜔𝑡)

∞

𝑛=−∞

× exp (𝑖𝜉√2𝑚𝑒𝐸𝑛/ℏ2) 

× exp (
𝑖𝑒

ℏ
𝐿𝑥 +

𝑖𝑒2

8ℏ𝑚𝑒
𝑀−

𝑖𝑒2𝐹1𝐹2

2𝛽ℏ𝑚𝑒𝜔2𝑁) ,⁡⁡⁡⁡𝑥 ≥ 0⁡⁡⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡(14)                                  

where 𝜉 = 𝑥 +
𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2
+

𝑒𝐹2 cos(𝛽𝜔𝑡+𝜃)

𝑚𝑒𝛽2𝜔2
, 𝐿 =

𝐹1 sin(𝜔𝑡)

𝜔
+

𝐹2 sin(𝛽𝜔𝑡+𝜃)

𝛽𝜔
, ⁡𝑀 =

𝐹1
2 sin(2𝜔𝑡)

𝜔3
+

𝐹2
2 sin(2𝛽𝜔𝑡+2𝜃)

𝛽3𝜔3  , 𝑁 =
sin[(𝛽−1)𝜔𝑡+𝜃]

(𝛽−1)𝜔
−

sin[(𝛽+1)𝜔𝑡+𝜃]

(𝛽+1)𝜔
, 𝑇𝑛  is the transmission coefficient, the drift 

kinetic energy 𝐸𝑛 = 𝜀 + 𝑛ℏ𝜔 − 𝐸𝐹 −𝑊 −𝑈𝑝1 − 𝑈𝑝2, the ponderomotive energies 𝑈𝑝1 = 𝑒2𝐹1
2/

4𝑚𝑒𝜔
2 , and 𝑈𝑝2 = 𝑒2𝐹2

2/4𝑚𝑒𝛽
2𝜔2 , and 𝜀  is the electron initial energy. Because of the time 

periodicity, Equation (14) represents the superposition of transmitted electron plane waves with 

energies 𝜀 + 𝑛ℏ𝜔, due to multiphoton absorption (n > 0), tunneling (n = 0), and multiphoton 

emission (n < 0) [6][76].  

For x < 0, the solution to Equation (13) is [61], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅𝑛 exp (−𝑖

𝜀 + 𝑛ℏ𝜔

ℏ
𝑡 − 𝑖𝑘𝑛𝑥)

∞

𝑛=−∞

,⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

which denotes the superposition of an incident wave and a set of reflected waves, where 𝑘0 =

√2𝑚𝑒𝜀/ℏ
2, 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔)/ℏ2, and 𝑅𝑛 is the reflection coefficient. It has been verified 

that most of the reflected current is through the initial energy level (n = 0) [6]. . 

By matching the solutions in Equations (14) and (15) from the boundary conditions that both 

𝜓(𝑥, 𝑡) and 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥  are continuous at x = 0, and taking Fourier transform, we obtain, in 

nondimensional quantities [6], 𝜀̅ = 𝜀/𝑊, 𝜔̅ = 𝜔ℏ/𝑊, 𝑡̅ = 𝑡𝑊/ℏ,  𝐸̅𝐹 = 𝐸𝐹/𝑊, 𝑥̅ = 𝑥/𝜆0, 𝜆0 =

√ℏ2/2𝑚𝑒𝑊 , 𝐹̅1 = 𝐹1𝑒𝜆0/𝑊 , 𝐹̅2 = 𝐹2𝑒𝜆0/𝑊 , 𝑈̅𝑝1 = 𝑈𝑝1/𝑊 , 𝑈̅𝑝2 = 𝑈𝑝2/𝑊 , the following 

equation,  
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⁡⁡⁡2√𝜀𝛿̅(𝑙) = ∑ 𝑇𝑛[√𝜀̅ + 𝑙𝜔̅𝑃𝑛(𝑛−𝑙) + 𝑄𝑛(𝑛−𝑙)]

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

where 𝛿(𝑙) is the Dirac delta function, and 𝑃𝑛(𝑛−𝑙), and 𝑍𝑛(𝑛−𝑙) are given by, 

𝑃𝑛𝑙 =
1

2𝜋
∫ 𝑝𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡𝑄𝑛𝑙 =
1

2𝜋
∫ 𝑝𝑛(𝜔̅𝑡̅)𝑧𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17a) 

𝑝𝑛(𝜔̅𝑡)̅ = 𝑞(𝜔̅𝑡)̅𝑓(𝜔̅𝑡̅),⁡⁡⁡𝑧𝑛(𝜔̅𝑡)̅ = √𝐸̅𝑛 +
𝐹̅1
𝜔̅
sin(𝜔̅𝑡)̅ +

𝐹̅2
𝛽𝜔̅

sin(𝛽𝜔̅𝑡̅ + 𝜃),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17b) 

𝑞(𝜔̅𝑡̅) = e
𝑖2√𝐸̅𝑛[

𝐹1 cos(𝜔̅𝑡̅)

𝜔̅2 +
𝐹̅2 cos(𝛽𝜔̅𝑡̅+𝜃)

𝛽2𝜔̅2 ]
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17c) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝜔̅𝑡)̅ = 𝑒
𝑖[
𝐹1
2 sin(2𝜔̅𝑡̅)

4𝜔̅3 +
𝐹̅2
2 sin(2𝛽𝜔̅𝑡̅+2𝜃)

4𝛽3𝜔̅3 ]

× 𝑒
−
𝑖𝐹1𝐹2
𝛽𝜔̅2 {

sin[(𝛽−1)𝜔̅𝑡̅+𝜃]
(𝛽−1)𝜔̅

−
sin[(𝛽+1)𝜔̅𝑡̅+𝜃]

(𝛽+1)𝜔̅
}
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17𝑑) 

with 𝐸̅𝑛 = 𝜀̅ + 𝑛𝜔̅ − 𝐸̅𝐹 − 𝑈̅𝑝1 − 𝑈̅𝑝2 − 1. Since Equation (17) is derived from the conditions that 

electron wave function and its first derivative are continuous at the metal-vacuum interface (x = 

0), 𝑝𝑛 and 𝑧𝑛 in Equation (17b) denote the phase factor of the wave function in the 𝑛th state and 

of its spatial derivative at 𝑥⁡̅= 0, respectively. 𝑃𝑛𝑙 and 𝑄𝑛𝑙 are the 𝑙th Fourier coefficients of 𝑝𝑛 and 

the product of 𝑝𝑛  and 𝑧𝑛 , respectively. The transmission coefficient 𝑇𝑛  (and therefore the 

reflection coefficient 𝑅𝑛) is obtained from Equation (16). The emission current density is then 

calculated from the probability current density 𝐽(𝑥, 𝑡) = (𝑖ℏ/2𝑚)(𝜓𝜕𝜓∗/𝜕𝑥 − 𝜓∗ ∂𝜓/𝜕𝑥) =

(𝑖ℏ/2𝑚𝑒)∑ ∑ (𝜓𝑛 ∂𝜓𝑙
∗/𝜕𝑥 − 𝜓𝑛

∗ ∂𝜓𝑙𝜕𝑥)
∞
𝑙=−∞

∞
𝑛=−∞ , where 𝜓(𝑥, 𝑡) = ∑ 𝜓𝑛(𝑥, 𝑡)

∞
𝑛=−∞  is obtained 

from Equation (14). 



  21 

 

The normalized emission current density, defined as the ratio of the transmitted probability 

current density over the incident probability current density, 𝑤(𝜀, 𝑥, 𝑡) = 𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡), is 

found in nondimensional form as,  

𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ 𝑅𝑒[𝑒𝑖(𝑙−𝑛)𝜔̅𝑡̅𝑇𝑛𝑇𝑙

∗𝑒𝑖Θ𝐷]

∞

𝑙=−∞

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

where Θ = [√𝐸̅𝑛 − (√𝐸̅𝑙)
∗

] [𝑥̅ +
2𝐹1

𝜔̅2 cos(𝜔̅𝑡̅) +
2𝐹2

𝛽2𝜔̅2 cos(𝛽𝜔̅𝑡̅ + 𝜃)] , and 𝐷 = (√𝐸̅𝑙)
∗

+

𝐹1

𝜔̅
sin(𝜔̅𝑡̅) +

𝐹2

𝛽𝜔̅
sin(𝛽𝜔̅𝑡̅ + 𝜃). The normalized time-averaged emission current density is found 

to be, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡〈𝑤(𝜀)̅〉 = ∑ 〈𝑤𝑛(𝜀)̅〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)̅〉 = Re (|𝑇𝑛|
2√𝐸̅𝑛/𝜀)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19) 

where 〈𝑤𝑛〉 represents the emission current density through the 𝑛th channel, with emitted electrons 

of energy 𝜀 + 𝑛ℏ𝜔 due to the n-photon contribution.  

2.2.2 Results and Discussion 

In this chapter, unless mentioned otherwise, the default values for the calculation are as follows: 

the wavelength of the fundamental laser field 𝐹1 is 800 nm (ℏ𝜔 = 1.55 eV), the harmonic laser 

field 𝐹2  is with the frequency of 2𝜔  (i.e. 𝛽 = 2 ), the metal is assumed to be gold 

[6][11][56][61][62][76], with Fermi energy 𝐸𝐹=5.33 eV and the work function W =5.1 eV, and 

since most of the emission electrons from sources are located near the Fermi level 

[6][61][62][76][86][87], we choose the electron initial energy 𝜀 = 𝐸𝐹 for simplicity.  

First, in order to understand the detailed underlying emission processes, the photoelectron 

energy spectra, under different two-color laser fields 𝐹1  (at frequency 𝜔 ) and 𝐹2  (at second 

harmonic 2𝜔), for various phase differences 𝜃 between two laser fields are displayed in Figure 
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2.2. It can be seen that the dominant emission process is the four-photon absorption (𝑛 = 4) for 

the fundamental laser (or two-photon absorption for the second-harmonic laser), where electrons 

at the Fermi level need to absorb at least four photons to overcome the potential barrier (𝑊/ℏ𝜔 =

3.29) (see Figure 2.1). The tunneling emission channels (𝑛 < 4) is closed. When the two laser 

fields are in phase (𝜃 = 0), the photoelectron emission spectrum becomes broader and the total 

emission current density 〈𝑤〉 = ∑ 〈𝑤𝑛〉𝑛  increases when either 𝐹1  or 𝐹2  increases, since more 

channels open up for electron emission. When 𝐹1  is small (see Figure 2.2(a)), the emission 

spectrum is very close to that driven by the second harmonic laser 𝐹2  alone, indicating 𝐹2 

dominates the emission process. As 𝐹1  increases (from Figure 2.2(a) to 2.2(e)), the emission 

spectrum gradually transits to that driven by 𝐹1 alone, indicating the laser field dominating the 

emission process changes from 𝐹2 to 𝐹1. During the transition process, the competition between 

𝐹1  and 𝐹2  for dominating the electron emission process causes the dip in Figure 2.2(c). In 

Figures 2.2(d) and 2.2(e), the dip shifts to larger n as 𝐹1 increases, due to the channel closing effect 

[6][76]. When either 𝐹1 = 0 or 𝐹2 = 0, the results recover those of single frequency laser induced 

photoemission [6][76]. Figures 2.2(f)-(j) show that the emission spectra can be greatly modified 

as 𝜃 changes, due to the interference effect between two lasers. For example, when 𝜃 changes from 

𝜋/2 to 3𝜋/2⁡, the emission process with the highest probability shifts from the four-photon (𝑛 =

4) to five-photon (𝑛 = 5) absorption. 

Figure 2.3 shows the normalized total time-averaged emission current density 〈𝑤〉 under various 

combinations of 𝐹1 and 𝐹2, for the phase difference 𝜃 = 0 and 𝜋. In Figures 2.3(a) and 2.3(b), when 

𝐹2 is small (𝐹1/𝐹2 >10), 〈𝑤〉 is insensitive to 𝐹2, because the fundamental laser 𝐹1 dominates the 

emission process. As 𝐹2 increases, the current density gradually approaches the scale 〈𝑤〉 ∝ 𝐹2
2𝑛 

with n = 2 (see Figures 2.3(a) and 2.3(b)), indicating two-photon absorption for the second-
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harmonic laser (or four-photon with respect to the fundamental laser) is the main emission process. 

The gradual change of the slope of 〈𝑤〉 is due to the opening of higher emission channels, as seen 

in Figure 2.2. When 𝜃 = 𝜋 (see Figure 2.3 (b)), a series of new dips appear in the curves as 

compared to those when 𝜃 = 0 (see Figure 2.3 (a)), indicating strong interference effects between 

the two lasers. The interference effect is also reflected in that the total current density 〈𝑤〉 with 𝐹1 

= 1 V/nm changes from being larger than 〈𝑤〉 with 𝐹1 = 0 to being smaller (see the green and dark 

blue lines in Figures 2.3(a) and 2.3(b)). The sharp drops of 〈𝑤〉 at 𝐹2 = 13 V/nm in Figures 2.3 (a) 

and 2.3(b) are due to the channel closing effect [6][76],which is accurately predicted by taking 

𝐸4 = 𝜀 + 4ℏ𝜔 − 𝐸𝐹 −𝑊 −𝑈𝑝1 − 𝑈𝑝2 = 0, giving 𝐹2 = 12.4 V/nm. Similar behaviors of 〈𝑤〉 as 

a function of 𝐹1 are observed in Figures 2.3 (c) and 2.3(d). 

 

Figure 2.2: Photoelectron energy spectra, calculated from Equation (19). (a)-(e) Energy spectra 

under different combinations of two-color laser fields 𝐹1 (at frequency 𝜔) and 𝐹2 (at frequency 

2𝜔), for the special case of 𝜃 = 0. (f)-(j) Energy spectra for various phase differences 𝜃. The unit 

of laser fields 𝐹1 and 𝐹2 is V/nm in all figures.     
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Figure 2.3: Normalized total time-averaged emission current density for the phase differences 𝜃 = 

0 and 𝜋. (a)-(b) total time-averaged current density 〈𝑤〉 as a function of the second-harmonic laser 

field 𝐹2, under various fundamental laser fields 𝐹1. (c)-(d) 〈𝑤〉 as a function of 𝐹1, under various 

𝐹2. The laser intensity is related to the laser electric field as I [W/cm2] = 1.33 × 1011× (F1 [V/nm])2. 

The dotted lines represent the scale 〈𝑤〉 ∝ 𝐹2𝑛. 

The total time-averaged emission current density 〈𝑤〉 as a function of 𝜃 is shown in Figures 

2.4(a)-2.4(c), for various 2𝜔 laser fields 𝐹2 with fixed 𝐹1 = 1.6 V/nm. The total emission current 

density 〈𝑤〉  oscillates as a sinusoidal function of 𝜃 , showing striking resemblance to the 

experimentally measured emission current (see Figure 2(b) in Reference [57]). As 𝐹2 decreases, 
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the maximum and minimum of 〈𝑤〉 both decrease, but the corresponding 𝜃 for the maximum and 

minimum 〈𝑤〉  remain almost unchanged. The modulation depth, defined as Γ = (〈𝑤〉𝑚𝑎𝑥 −

〈𝑤〉𝑚𝑖𝑛)/(〈𝑤〉𝑚𝑎𝑥 + 〈𝑤〉𝑚𝑖𝑛), reaches a maximum value of approximately 99% when 𝐹2/𝐹1⁡= 

0.1375 (or intensity ratio of 2%). For tungsten and the fundamental laser wavelength of 1560 nm 

as in Reference [57], we obtain the modulation depth of 95.5% and of 93.9%, when setting the 

work function in Equation (12) to be 4.3 eV and 3.6 eV (effective work function with Schottky 

effect), respectively. The latter is almost identical to the experimentally measured modulation 

depth of 94% in Reference [57]. Despite the excellent agreement between the theoretical 

predictions and experimental results, we should stress that our model assumed one-dimensional 

flat metal surface, whereas the experiment used nanometer scale sharp emitter [57]. The sharpness 

of the emitter may introduce varying field enhancement and Schottky lowering factor along the 

emission surface, nonuniform off-tip electron emission [53], and even quantized energy levels 

inside the emitter [88]. In addition, our model neglects the image charge potential, laser pulse 

shape, laser penetration depth, incident electron energy distribution inside the meal, and surface 

effects (e.g., local surface roughness, grain boundaries, and different crystal plane terminations). 

As 𝐹2  further decreases, Γ drops. When 𝐹2  reaches 0, 〈𝑤〉 becomes a constant, with zero Γ as 

expected, as shown in Figure 2.4(c). Figure 2.4(d) compares the electron energy spectra at the peak 

and valley of the current modulation for 𝐹2/𝐹1⁡= 0.1375, where the dominant emission process 

shifts from four-photon to five-photon absorption. Figure 2.4(e) summarizes the modulation depth 

Γ as a function of 𝐹2/𝐹1, for different strengths of the fundamental 𝜔 laser field 𝐹1. As the 𝜔 laser 

field 𝐹1 increases, the location of the peak modulation depth shifts to larger 𝐹2/𝐹1, since a larger 

2𝜔 laser field 𝐹2 is needed to balance the increase of 𝐹1 for achieving the same modulation depth. 
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Figure 2.4: Current modulation depth. (a) Normalized total time-averaged emission current density 
〈𝑤〉 as a function of the phase difference 𝜃, under different 𝐹2/𝐹1. (b) Magnification of the bottom 

area of (a). (c) Semi-log plot of 〈𝑤〉 in (a). 𝐹1 is fixed at 1.6 V/nm in (a)-(c). (d) Electron energy 

spectra of 〈𝑤〉𝑚𝑎𝑥 (point A) and 〈𝑤〉𝑚𝑖𝑛 (point B) for 𝐹2/𝐹1= 0.1375 in (c). (e) Current modulation 

depth Γ as a function of the field ratio 𝐹2/𝐹1 for different 𝐹1 = 0.5, 1.6, and 10 V/nm. 

Figure 2.5 shows the time-dependent electron emission current density 𝑤(𝑥̅, 𝑡) as a function of 

the space 𝑥̅  and time t, for 𝜔  laser field 𝐹1 = 1.6  V/nm and 2𝜔  laser field 𝐹2 = 0.22  V/nm 

(experimental laser parameters in Reference [57]). When 𝑥̅ is greater than 20 (beyond the strong 

surface current oscillation region), the emission current keeps the same temporal profile with only 

a phase shift as 𝑥̅ increases (see Figures 2.5(a) and 2.5(b)), which is primarily due to the drift and 

acceleration motion of electrons under the influence of laser fields. As the phase difference 𝜃 

varies from 0 to 𝜋, 𝑤(𝑥̅, 𝑡) becomes significantly smaller, due to the interference effect of two 

lasers, which also causes the total time-averaged emission current density 〈𝑤〉  to decrease from 

5.23× 10−10 to 7.31× 10−11. Figures 2.5(c) and 2.5(d) show the total emission current density 

𝑤(𝑡) at 𝑥̅ = 100 as a function of time t. It is shown that 𝑤(𝑡) and the total laser field 𝐹(𝑡) have a 
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clear phase shift, which means the peak value of time-dependent total emission current density 

does not occur at the peak value of the total incident laser field. As the phase difference 𝜃 changes, 

the temporal profile of emission current density 𝑤(𝑥̅, 𝑡) for a fixed 𝑥̅ also has a phase shift due to 

the interference effect between the two lasers. The full width at half maximum (FWHM) of the 

modulation of the ultrafast current pulses in Figure 2.5 is approximately 0.62 fs, which is 

significantly shorter than the period of the fundamental laser period of 2.67 fs.  

 

Figure 2.5: Total time-dependent emission current density for the phase differences 𝜃 = 0 and 𝜋. 

(a)-(b) Total time-dependent emission current density 𝑤(𝑥̅, 𝑡) as a function of the space 𝑥̅ and time 

t. (c)-(d) Total emission current density 𝑤(𝑡) at 𝑥̅ = 100 as a function of time t. Dotted lines in (c) 

and (d) are for the total time-dependent laser field 𝐹 = 𝐹1cos⁡(𝜔𝑡)+𝐹2cos⁡(𝛽𝜔𝑡 + 𝜃) . The 

fundamental laser field 𝐹1= 1.6 V/nm. The second harmonic (𝛽 = 2) laser field 𝐹2 = 0.22 V/nm 

(experimental laser parameters in Reference [57]). When 𝜃 = 0, the normalized time-averaged 

emission current density 〈𝑤〉 = 5.23× 10−10; when 𝜃 = 𝜋, 〈𝑤〉 = 7.31× 10−11. 



  28 

 

The effects of harmonic number 𝛽 on the emission current modulation⁡Γ are shown in Figure 

2.6. As 𝛽 increases, modulation depth Γ decreases, due to the reduced interference between the 

two-color lasers. Note that superimposing the fourth harmonic laser (β = 4) on the fundamental 

laser leads to the largest 〈𝑤〉𝑚𝑎𝑥 and 〈𝑤〉𝑚𝑖𝑛. This is in agreement with the prediction [6] that the 

maximum emission current occurs when the single photon energy (that is the fourth harmonic 

photon here) roughly equals the potential barrier, 4ℏ𝜔/𝑊 ≈ 1. 

 

Figure 2.6: Effects of the harmonic order. The emission current modulation depth Γ, the maximum 

and minimum time-averaged current density, 〈𝑤〉𝑚𝑎𝑥 and 〈𝑤〉𝑚𝑖𝑛 as a function of harmonic order 

β. The fundamental laser field 𝐹1 and the harmonic laser field 𝐹2 are 1.6 V/nm and 0.22 V/nm, 

respectively (intensity ratio of 2%).  

2.2.3 Summary on Photoemission without DC Bias 

In this section, an analytical model for ultrafast electron emission from a metal surface due to two-

color lasers is constructed, by solving the TDSE exactly. Our model demonstrates great tunability 

on the photoelectron spectra, emission current, and current modulation, via the control of the phase 

delay, relative intensity, and harmonic order of the two-color lasers. We identify the condition for 

the maximum emission current modulation depth (99%) by superimposing a weak harmonic laser 
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on a fundamental laser. Using the same input parameters, our theoretical prediction for the 

photoemission current modulation depth (93.9%) is almost identical to the experimental results 

(94%). Such two-color induced photoemission may inspire new route towards the design of future 

ultrafast nanoelectronics.  

2.3 Photoemission with DC bias 

2.3.1 Analytical model 

The addition of dc bias to the metal makes the potential barrier near the metal-vacuum interface at 

x = 0 narrower, compared to the case without dc bias (see Figure 2.7). The time-dependent potential 

barrier near the interface reads [62], 

Φ(𝑥, 𝑡) = {
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑉0 − 𝑒𝐹0𝑥 − 𝑒𝐹1𝑥 cos(𝜔𝑡) − 𝑒𝐹2𝑥 cos(𝛽𝜔𝑡 + 𝜃), ⁡⁡𝑥 ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20)

 

 

Figure 2.7: Energy diagram for photoemission under two-color laser fields and a dc bias. Electrons 

with initial energy 𝜀 are emitted from the dc biased metal-vacuum interface at x = 0, with the 

transmitted energy of 𝜀 + 𝑛ℏ𝜔, due to the n-photon contribution [multiphoton absorption (n > 0), 

tunneling (n = 0), and multiphoton emission (n < 0)], where n is an integer. The fundamental and 

harmonic laser fields are 𝐹1cos⁡(𝜔𝑡) and 𝐹2cos⁡(𝛽𝜔𝑡 + 𝜃), respectively. The dc electric field is 

𝐹0. The photon energy of the fundamental (harmonic) laser is ℏ𝜔 (𝛽ℏ𝜔). 𝐸𝐹 and 𝑊 are the Fermi 

energy and work function of the metal, respectively. 
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where 𝐹0 is the applied dc electric field which is assumed to be perpendicular to the flat metal 

surface. Other parameters have the same definition as that in Equation (12). 

By solving the TDSE subjected to the potential energy given in Equation (20), the exact solution 

for 𝑥 ≥ 0 is found to be [62] (see Appendix B for the method), 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜓(𝑥, 𝑡) = ∑ 𝑇𝑛[𝐴𝑖(−𝜂𝑛) − 𝑖𝐵𝑖(−𝜂𝑛)] × exp (−𝑖
𝜀

ℏ
𝑡 − 𝑖𝑛𝜔𝑡)

∞

𝑛=−∞

 

× exp (
𝑖𝑒

ℏ
𝐿𝑥 +

𝑖𝑒2

8ℏ𝑚𝑒
𝑀 −

𝑖𝑒2𝐹1𝐹2

2𝛽ℏ𝑚𝑒𝜔2𝑁 −
𝑖𝑒2𝐹0

ℏ𝑚𝑒
𝑄) ,⁡⁡⁡⁡𝑥 ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (21)                                     

where 𝐿 =
𝐹1 sin(𝜔𝑡)

𝜔
+

𝐹2 sin(𝛽𝜔𝑡+𝜃)

𝛽𝜔
, 𝑀 =

𝐹1
2 sin(2𝜔𝑡)

𝜔3 +
𝐹2
2 sin(2𝛽𝜔𝑡+2𝜃)

𝛽3𝜔3 , 𝑁 =
sin[(𝛽−1)𝜔𝑡+𝜃]

(𝛽−1)𝜔
−

sin[(𝛽+1)𝜔𝑡+𝜃]

(𝛽+1)𝜔
, 𝑄 =

𝐹1 sin(𝜔𝑡)

𝜔3 +
𝐹2 sin(𝛽𝜔𝑡+𝜃)

𝛽3𝜔3 , 𝜂𝑛 = [
𝐸𝑛

𝑒𝐹0
+ 𝑥 +

𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2 +

𝑒𝐹2 cos(𝛽𝜔𝑡+𝜃)

𝑚𝑒𝛽2𝜔2 ](
2𝑒𝑚𝑒𝐹0

ℏ2
)
1

3 , the drift kinetic energy 𝐸𝑛 = 𝜀 + 𝑛ℏ𝜔 − 𝐸𝐹 −𝑊 −𝑈𝑝1 − 𝑈𝑝2 , the 

ponderomotive energies 𝑈𝑝1 = 𝑒2𝐹1
2/4𝑚𝑒𝜔

2 , and 𝑈𝑝2 = 𝑒2𝐹2
2/4𝑚𝑒𝛽

2𝜔2 , 𝐴𝑖  and 𝐵𝑖  are the 

Airy functions of the first kind and second kind respectively, showing an outgoing wave traveling 

to the +x direction (see Figure 2.7)  [6][62][82][86], 𝑇𝑛 represents the transmission coefficient, and 

𝜀 is the initial energy of the electron. It is easy to find that Equation (21) is periodic with the time 

period of 2𝜋/𝜔, therefore Equation (21) is readily to be recast into a Fourier series, which denotes 

the superposition of transmitted traveling electron waves with energies 𝜀 + 𝑛ℏ𝜔. These ladder 

eigenenergies are made possible by multiphoton absorption (n > 0), tunneling (n = 0), and 

multiphoton emission (n < 0) [6][61][62][76].  

The exact solution of electron wavefunction for x < 0 is, 

𝜓(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅𝑛 exp (−𝑖

𝜀 + 𝑛ℏ𝜔

ℏ
𝑡 − 𝑖𝑘𝑛𝑥)

∞

𝑛=−∞

,⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡(22) 
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which denotes the superposition of an incident plane wave and a set of reflected waves with 

reflection coefficient 𝑅𝑛  and energies 𝜀 + 𝑛ℏ𝜔 , where 𝑘0 = √2𝑚𝜀/ℏ2 , and 𝑘𝑛 =

√2𝑚(𝜀 + 𝑛ℏ𝜔)/ℏ2.  

Applying the boundary conditions that both 𝜓(𝑥, 𝑡) and 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥 are continuous at x = 0, 

Fourier transform yields, in nondimensional quantities [6][61][62], 𝜀̅ = 𝜀/𝑊, 𝜔̅ = 𝜔ℏ/𝑊, 𝑡̅ =

𝑡𝑊/ℏ , 𝐸̅𝐹 = 𝐸𝐹/𝑊 , 𝑥̅ = 𝑥/𝜆0 , 𝜆0 = √ℏ2/2𝑚𝑒𝑊 , 𝐹̅0 = 𝐹0𝑒𝜆0/𝑊 , 𝐹̅1 = 𝐹1𝑒𝜆0/𝑊 , 𝐹̅2 =

𝐹2𝑒𝜆0/𝑊, 𝑈̅𝑝1 = 𝑈𝑝1/𝑊, 𝑈̅𝑝2 = 𝑈𝑝2/𝑊, the following equations, 

2√𝜀𝛿̅(𝑙) = ∑ 𝑇𝑛[√𝜀̅ + 𝑙𝜔̅𝑃𝑛(𝑛−𝑙) + 𝑄𝑛(𝑛−𝑙)]

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(23) 

where 𝛿(𝑙), 𝑃𝑛(𝑛−𝑙), and 𝑄𝑛(𝑛−𝑙) are given by, 

𝛿(𝑙) = {
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑙 ≠ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24𝑎)

 

𝑃𝑛𝑙 =
1

2𝜋
∫ 𝑝𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡𝑄𝑛𝑙 =
1

2𝜋
∫ 𝑞𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24b) 

𝑝𝑛(𝜔̅𝑡)̅ = 𝜙(𝜔̅𝑡̅)[𝐴𝑖(𝛼𝑛) − 𝑖𝐵𝑖(𝛼𝑛)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24𝑐) 

𝑞𝑛(𝜔̅𝑡)̅ = 𝜙(𝜔̅𝑡̅)𝑧𝑛(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24𝑑) 

𝜙(𝜔̅𝑡̅) = 𝑒
𝑖𝑀̅−

𝑖𝐹1𝐹2
𝛽𝜔̅2 𝑁̅ × 𝑒−𝑖2𝐹̅0𝑄̅ ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24𝑒) 

𝑧𝑛(𝜔̅𝑡̅) = 𝐿̅[𝐴𝑖(𝛼𝑛) − 𝑖𝐵𝑖(𝛼𝑛)] +
𝐹̅0

1/3

𝜆0
[𝑖𝐴𝑖′(𝛼𝑛) + 𝐵𝑖′(𝛼𝑛)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(24f) 

with 𝐿̅ =
𝐹1

𝜔̅
sin(𝜔̅𝑡̅) +

𝐹2

𝛽𝜔̅
sin(𝛽𝜔̅𝑡̅ + 𝜃), 𝑀̅ =

𝐹1
2 sin(2𝜔̅𝑡̅)

4𝜔̅3 +
𝐹2
2 sin(2𝛽𝜔̅𝑡̅+2𝜃)

4𝛽3𝜔̅3 , 𝑁̅ =
sin[(𝛽−1)𝜔̅𝑡̅+𝜃]

(𝛽−1)𝜔̅
−

sin[(𝛽+1)𝜔̅𝑡̅+𝜃]

(𝛽+1)𝜔̅
, 𝑄̅ =

𝐹1

𝜔̅3 sin(𝜔̅𝑡)̅ +
𝐹2

𝛽3𝜔̅3 sin(𝛽𝜔̅𝑡̅ + 𝜃) , 𝛼𝑛 = −𝐹̅0
1

3[
𝐸̅𝑛

𝐹0
+

2𝐹1

𝜔̅2 cos(𝜔̅𝑡)̅ +

2𝐹2

𝛽2𝜔̅2 cos(𝛽𝜔̅𝑡̅ + 𝜃)], and 𝐸̅𝑛 = 𝜀̅ + 𝑛𝜔̅ − 𝐸̅𝐹 − 𝑈̅𝑝1 − 𝑈̅𝑝2 − 1. 𝑝𝑛(𝜔̅𝑡̅) and 𝑞𝑛(𝜔̅𝑡̅) in Equations 
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(24c) and (24d) represent the phase factor of the nth-state wave function and of its spatial derivative 

at 𝑥⁡̅ = 0 respectively. 𝑃𝑛𝑙 and 𝑄𝑛𝑙 are the 𝑙th Fourier coefficients of 𝑝𝑛 and 𝑞𝑛 respectively. The 

transmission coefficient 𝑇𝑛  (and therefore the reflection coefficient 𝑅𝑛 ) is calculated from 

Equation (23).  

The normalized emission current density is defined as the ratio of the transmitted probability 

current density over the incident probability current density, 𝑤(𝜀, 𝑥, 𝑡) = 𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡), 

where the probability current density is 𝐽(𝑥, 𝑡) = (𝑖ℏ/2𝑚)(𝜓𝜕𝜓∗/𝜕𝑥 − 𝜓∗ ∂𝜓/𝜕𝑥) = (𝑖ℏ/

2𝑚)∑ ∑ (𝜓𝑛 ∂𝜓𝑙
∗/𝜕𝑥 − 𝜓𝑛

∗ ∂𝜓𝑙𝜕𝑥)
∞
𝑙=−∞

∞
𝑛=−∞ . Thus, the normalized instantaneous emission 

current density is found as, 

𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ Im[𝑒𝑖(𝑙−𝑛)𝜔̅𝑡̅𝑇𝑛𝑇𝑙

∗(𝐶 + 𝑖𝐷)]

∞

𝑙=−∞

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25𝑎) 

𝐶 = 𝐿̅[𝐴𝑖(−𝜂𝑙̅)𝐵𝑖(−𝜂𝑛̅̅ ̅) − 𝐴𝑖(−𝜂𝑛̅̅ ̅)𝐵𝑖(−𝜂𝑙̅)]

+ 𝐹̅0
1/3

[𝐴𝑖(−𝜂𝑛̅̅ ̅)𝐴𝑖
′(−𝜂𝑙̅) + 𝐵𝑖(−𝜂𝑛̅̅ ̅)𝐵𝑖

′(−𝜂𝑙̅)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25𝑏) 

𝐷 = 𝐿̅[𝐴𝑖(−𝜂𝑙̅)𝐴𝑖(−𝜂𝑛̅̅ ̅) + 𝐵𝑖(−𝜂𝑙̅)𝐵𝑖(−𝜂𝑛̅̅ ̅)]

+ 𝐹̅0
1/3

[𝐴𝑖(−𝜂𝑛̅̅ ̅)𝐵𝑖
′(−𝜂𝑙̅) − 𝐵𝑖(−𝜂𝑛̅̅ ̅)𝐴𝑖

′(−𝜂𝑙̅)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(25𝑐) 

where 𝜂𝑛̅̅ ̅ = 𝐹̅0
1/3

[
𝐸̅𝑛

𝐹̅0
+

2𝐹1

𝜔̅2
cos(𝜔̅𝑡)̅ +

2𝐹2

𝛽2𝜔̅2
cos(𝛽𝜔̅𝑡̅ + 𝜃) + 𝑥̅] , and 𝐿̅  is defined in Equation 

(24f). The normalized time-averaged emission current density is obtained as, 

⁡⁡〈𝑤(𝜀)̅〉 = ∑ 〈𝑤𝑛(𝜀)̅〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)̅〉 = |𝑇𝑛|
2
𝐹̅0

1/3

𝜋√𝜀̅
.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(26) 
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2.3.2 Results and Discussion 

 

Figure 2.8: Photoelectron energy spectra under different in-phase (i.e., 𝜃 = 0) laser fields 𝐹1 (at 

frequency 𝜔) and 𝐹2 (at frequency 2𝜔) and dc fields 𝐹0. In (a)-(c) 𝐹2 is fixed as 1 V/nm, and in 

(d)-(f) 𝐹1 is fixed as 10 V/nm. The 𝑛-photon process (that is the horizontal axis) is given with 

respect to the fundamental laser frequency, which measures the energy of the emitted electrons. 

The units of dc field 𝐹0 and laser fields 𝐹1 and 𝐹2 are V/nm in all figures. 

The photoelectron energy spectra for different combinations of in-phase (𝜃 = 0) two-color laser 

fields 𝐹1 (at frequency 𝜔) and 𝐹2 (at frequency 2𝜔) and dc fields 𝐹0 are shown in Figure 2.8. The 

results are calculated from Equation (26), except for the dc field 𝐹0 = 0 cases (Figures 2.8(a) and 

2.8(d)), which are obtained from Equation (19). When the dc field 𝐹0 is turned off (see Figures 

2.8(a) and 2.8(d)), the dominant emission process is the four-photon absorption (n = 4) for the 

fundamental laser, indicating the electron at the Fermi level needs to absorb at least four photons 

to overcome the potential barrier 𝑊 (see Figure 2.7). This is consistent with the ratio of the work 

function over the fundamental laser photon energy, 𝑊/ℏ𝜔 = 3.29. Applying a strong dc field 𝐹0 
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to the metal is able to open the tunneling emission channels below the over-barrier emission 

threshold (n < 4), as shown in Figures 2.8(b)-2.8(c) and 2.8(e)-2.8(f). This is because the dc field 

could sufficiently narrow the potential barrier at the metal-vacuum interface (x = 0) (see Figure 

2.7), enabling the dc-assisted tunneling emission process for 𝑛 < 4. As 𝐹0 increases from Figures 

2.8(b) to 2.8(c) and 2.8(e) to 2.8(f), the potential barrier becomes narrower, increasing the 

probability of electron emission through the tunneling channels, and the emission channel with the 

highest probability shifts towards the direct tunneling process (n = 0), which is consistent with the 

observation in Reference [6]. For a given dc field 𝐹0, as either of laser fields (𝐹1 or 𝐹2) increases, 

the energy spectra become broader, because more emission channels are open up and contribute 

to photoemission. In the meantime, the dominant emission process shifts to the channel with larger 

n, which is due to the fact that electrons have to absorb sufficient number of photons to overcome 

the increasing ponderomotive energies 𝑈𝑝1 = 𝑒2𝐹1
2/4𝑚𝑒𝜔

2  and 𝑈𝑝2 = 𝑒2𝐹2
2/4𝑚𝑒𝛽

2𝜔2  with 

increasing laser fields strength, exhibiting the transition from the multiphoton regime to optical-

strong-field regime. These observations are consistent with previous experimentally and 

theoretically obtained energy spectra [6][12][14][54][61]. Since 𝐹2 is fixed at 1 V/nm in Figures 

2.8(a)-2.8(c), whereas 𝐹1 is fixed at a larger value of 10 V/nm in Figures 2.8(d)-2.8(f), the spectra 

in Figures 2.8(d)-2.8(f) are generally broader than those in Figures 2.8(a)-2.8(c).  

In general, when the dc field 𝐹0 or the laser field 𝐹1 or 𝐹2 becomes much stronger than the other 

two, the total current emission is dominated by this largest field. Figure 2.9 shows the normalized 

total time-averaged emission current density 〈𝑤〉 as a function of the fundamental laser field 𝐹1, 

for different second harmonic laser fields 𝐹2 and dc fields 𝐹0, when 𝜃 = 0 and 𝜋. When the second 

harmonic field 𝐹2 increases, 〈𝑤〉 becomes less sensitive to 𝐹1, since 𝐹2 gradually dominates the 

emission process. For single-frequency laser-induced electron emission [6], it is confirmed that, in 
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the multiphoton regime, the slope of the curve of 〈𝑤〉 versus 𝐹1 follows the scale 〈𝑤〉 ∝ 𝐹1
2𝑛; this 

indicates that the dominant emission process is the n-photon process. This scale is not strictly valid 

for the two-color photoemission here; however, the change of the slope of the curves could still 

manifest the shift of the main 𝑛-photon emission process. For instance, as the dc field 𝐹0 increases 

from Figures 2.9(a) to 2.9(c) for 𝜃 = 0 and from 2.9(d) to 2.9(f) for 𝜃 = 𝜋, the slope of 〈𝑤〉 for a 

given 𝐹2 decreases, since the dominant emission process shifts to the lower emission channels.  

 

Figure 2.9: Normalized total time-averaged emission current density 〈𝑤〉, for the phase difference 

between the two-color lasers (a)-(c) 𝜃 = 0, and (d)-(f) 𝜃 = 𝜋, as a function of the fundamental laser 

field 𝐹1, under various combinations of the second-harmonic laser field 𝐹2 and dc electric field 𝐹0. 

The laser intensity is related to the laser electric field as I1,2 (W/cm2) = 1.33 × 1011× (F1,2 (V/nm))2. 
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Figure 2.10: Normalized time-averaged emission current density 〈𝑤𝑛〉 through the nth channel, for 

the phase difference between the two-color lasers (a)-(c) 𝜃 = 0, and (d)-(f) 𝜃 = 𝜋, as a function of 

the fundamental laser field 𝐹1, for various dc electric fields 𝐹0, when the second harmonic laser 

field 𝐹2 = 5 V/nm. Dotted lines represent the normalized total emission current 〈𝑤〉 = ∑ 〈𝑤𝑛〉𝑛 . 

The above trend is also reflected in Figure 2.10, which shows the normalized time-averaged 

emission current density 〈𝑤𝑛〉 through the nth channel as a function of the fundamental laser field 

𝐹1, for fixed 𝐹2 = 5 V/nm. For both cases of 𝜃 = 0 and 𝜃 = 𝜋, when 𝐹0 increases from 1 to 4 

V/nm, the dominant emission channel shifts from n = 3 to n = 2 in general (see Figures 2.10(a), 

2.10(b), 2.10(d), and 2.10(e)). When 𝐹0 reaches 8 V/nm, the dominant emission process transits 

from the two-photon absorption (n = 2) for 𝐹1 ≤ 7 V/nm to single-photon absorption (n = 1) for 

𝐹1 > 7 V/nm (see Figures 2.10(c) and 2.10(f)). It is clear that the direct tunneling (n = 0) is almost 

independent of the laser field 𝐹1 but very sensitive to the dc field 𝐹0.  
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When the phase difference 𝜃 changes from 0 to 𝜋, due to the interference effect between the 

two lasers, new dips appear in the curves of 〈𝑤𝑛〉, which can cause changes of the dominant 

emission process when 𝐹1 increases. For example, in Figure 2.10(e), the dip in the curve of n = 2 

at around 𝐹1 = 5.5 V/nm changes the dominant emission to the 𝑛 = 3 process instead of the 𝑛 =

2 process otherwise observed. The dips are also reflected in the total emission current 〈𝑤〉 (see 

Figures 2.9(d) and 2.9(e)), which is consistent with our previous observation of two-color laser 

induced emission without a dc bias (see Figure 2.3). As the dc field 𝐹0 becomes larger, these new 

dips gradually disappear, as shown in Figures 2.9(f) and 2.10(f), because the interference effect of 

the two lasers is masked by the strong dc field.  

The total emission current density 〈𝑤〉 as a function of the dc field 𝐹0 for different laser fields 

𝐹1 and 𝐹2 is shown in Figure 2.11. When the phase difference of the two lasers 𝜃 = 0, the total 

emission current density 〈𝑤〉 increases as either of the laser fields (𝐹1 or 𝐹2) increases. When the 

dc field 𝐹0  becomes larger, 〈𝑤〉  becomes less sensitive to the laser fields, since the Fowler-

Nordheim-like field emission [81] due to the dc electric field becomes more important than the 

over-barrier photoemission. The curves in Figure 2.11(a) resemble the experimentally measured 

trends of the voltage- and power-dependent electron flux (see Figure 2 in Reference [9]). As shown 

in Figures 2.11(d)-2.11(f), when 𝜃 = 𝜋, due to the interference effect of the two lasers, the curves 

are intertwined, indicating strong nonlinear dependence of the emission current on the laser fields. 

For large 𝐹0 (≥ 7 V/nm) and small 𝐹2⁡(= 1⁡V/nm) in Figure 2.11(d), 〈𝑤〉 remains almost the same 

as that with 𝜃 = 0 in Figure 2.11(a), since the interference effect is suppressed by the dc field. 
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Figure 2.11: Normalized total time-averaged emission current density 〈𝑤〉 for the phase difference 

between the two-color lasers (a)-(c) 𝜃 = 0, and (d)-(f) 𝜃 = 𝜋, as a function of the dc electric field 

𝐹0 , for different fundamental laser fields 𝐹1  and second-harmonic laser fields 𝐹2 . Intertwined 

curves in (d)-(f) indicate the strong interference effect of the two lasers. 

 Figure 2.12 shows the emission current density 〈𝑤𝑛〉 as a function of the dc field 𝐹0 for the case 

of 𝐹1 = 7 V/nm. It is clear that the dominant multiphoton emission process shifts to smaller 𝑛 as 

𝐹0 increases. As 𝐹2 increases, these shifts would occur at larger dc field 𝐹0. For example, when 

𝜃 = 0, the shifts of three-photon emission to two-photon emission occur at 𝐹0 ≈ 3.5, 4, and 4.5 

V/nm when 𝐹2 = 1, 5, and 10 V/nm in Figures 2.12(a)-2.12(c), respectively. The shifts of the 

dominant emission process also depend strongly on the phase difference 𝜃. For 𝐹2 = 5 V/nm, a 

new dip appears in the curve of n = 2 when 𝜃 = 𝜋 as compared to the case of 𝜃 = 0, leading to 
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the change of the dominant emission channel (i.e., two-photon process in Figure 2.12(b) vs single-

photon process in Figure 2.12(e) at 𝐹0 ≈ 7.5 V/nm).     

 

Figure 2.12: Normalized time-averaged emission current density 〈𝑤𝑛〉 through the nth channel for 

the phase difference (a)-(c) 𝜃 = 0, and (d)-(f) 𝜃 = 𝜋, as a function of the dc electric field 𝐹0, for 

various second-harmonic laser fields 𝐹2, when the fundamental laser field is 𝐹1 = 7 V/nm. Dotted 

lines represent the normalized total emission current 〈𝑤〉 = ∑ 〈𝑤𝑛〉𝑛 . 

The combined effects of the dc field and the interference between two-color lasers on the energy 

spectra and total emission current are shown in Figure 2.13; this reveals the strong effects of the 

dc bias on the photoemission current modulation depth. Figure 2.13(a) shows the effects of phase 

difference 𝜃 of the two-color lasers on the total emission current density 〈𝑤〉, under different dc 

fields 𝐹0. Here, the 𝜔-laser-field 𝐹1 and the 2𝜔-laser-field 𝐹2 are fixed as 1.6 V/nm and 0.22 V/nm 

respectively (intensity ratio of 2%). It is clear that 〈𝑤〉 oscillates as a function of 𝜃 with a period 

of 2𝜋, which shows a close resemblance to the experimental observation (see Figure 2(b) in 
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Reference [57]). As the dc field 𝐹0 increases, 〈𝑤〉 also increases. The maximum (minimum) values 

of 〈𝑤〉 occur around 𝜃 = 0 (𝜃 = 𝜋), when the two-color lasers are in phase (180° out of phase). 

Figure 2.13(b) shows the photoelectron energy spectra of 〈𝑤〉 at different 𝜃 in a single period for 

the case of 𝐹0 = 1 V/nm in Figure 2.13(a). When 𝜃 = 0 (A), 𝜋/2 (B), and 3𝜋/2 (D), the electron 

emission probability through the dominant channel (n = 3) driven by two-color lasers is larger than 

that driven by the strong fundamental laser field 𝐹1 alone. However, when 𝜃 = 𝜋 (C), the emission 

through n = 3 driven by the two-color lasers becomes smaller than that driven by 𝐹1 alone, due to 

the strong interference effect. The emission current driven by the two-color lasers is always larger 

than that driven by the weak second harmonic laser field 𝐹2  alone, regardless of 𝜃 . These 

observations are in excellent agreement with the experimentally measured electron spectra (see 

Figure 3 in Reference [57]).  

Figure 2.13(c) summarizes the modulation depth in Figure 2.13(a), defined as Γ = (〈𝑤〉𝑚𝑎𝑥 −

〈𝑤〉𝑚𝑖𝑛)/(〈𝑤〉𝑚𝑎𝑥 + 〈𝑤〉𝑚𝑖𝑛), as a function of the dc field 𝐹0. When 𝐹0 is zero, the modulation 

depth Γ is as high as 99% [61]. As 𝐹0  increases, Γ decreases because the interference effect is 

gradually suppressed by 𝐹0 . When 𝐹0  = 8 V/nm, Γ drops to approximately 2.98%, showing a 

strong dependence of current modulation on the dc bias. It is important to note that even when the 

dc bias 𝐹0 reaches 3 V/nm (significantly larger than the laser fields 𝐹1 = 1.6⁡V/nm and 𝐹2 = 0.22 

V/nm, corresponding to a ratio of 𝐹0: 𝐹1: 𝐹2 ≅ 1: 0.5: 0.07), a current modulation Γ ≥ 70% can 

still be achieved. This suggests a practical way to maintain a strong current modulation, while 

increasing the total emission current by orders of magnitude, by simply adding a strong dc bias for 

two-color laser induced electron emission.  
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Figure 2.13: Emission current modulation depth. (a) Normalized total time-averaged emission 

current density 〈𝑤〉 as a function of the phase difference 𝜃, for different dc electric fields 𝐹0, with 

𝜔-laser-field 𝐹1 and 2𝜔-laser-field 𝐹2 fixed at 1.6 V/nm and 0.22 V/nm respectively (experimental 

laser parameters in Reference [57]). (b) Energy spectra of the emission current at different 𝜃 for 

the case of 𝐹0 = 1 V/nm in (a). A, B, C, and D denote the cases of 𝜃 = 0, 𝜋/2, 𝜋, and 3𝜋/2 in (a), 

respectively. (c) Current modulation depth Γ in (a) as a function of the dc field 𝐹0. The unit of dc 

field 𝐹0 is V/nm in all figures. 

Since photoelectron emission paths (or channels) depend strongly on the incident laser 

frequencies, as well as the interferences between them, superimposing different order of harmonic 

lasers on the fundamental laser can lead to different photoemission currents. Figure 2.14 shows 

the effects of the harmonic order 𝛽 on the total emission current density 〈𝑤〉 induced by the two-

color lasers of frequency 𝜔  and 𝛽𝜔  under various dc fields. When the dc field 𝐹0  = 0, the 

maximum value of 〈𝑤〉  occurs when 𝛽  = 4. This is because the maximum emission current 

happens when the single-photon energy (of the fourth-harmonic laser in this case) roughly equals 

the potential barrier (4ℏ𝜔/𝑊 ≈ 1) [6][61]. By comparing Figure 2.14 with Figure 2.8, it is found 

that the harmonic order 𝛽 where the maximum emission current occurs coincides with the channel 
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number 𝑛 of the dominant 𝑛-photon process (with respect to the fundamental frequency 𝜔), for a 

given combination of 𝐹0, 𝐹1, and 𝐹2. As observed in Figure 2.14, as 𝐹0 increases, the value of 𝛽 

for the maximum 〈𝑤〉 shifts to a smaller number. This is consistent with the observation in Figure 

2.8 that a larger dc field 𝐹0 changes the dominant 𝑛-photon process to a smaller 𝑛. When 𝐹0 ≥ 7 

V/nm, the electron emission becomes almost independent of the frequency (𝛽𝜔) of harmonic laser, 

since the Fowler-Nordheim-like field emission dominates the emission process. When 𝜃 changes 

from 0 to 𝜋, for small 𝐹0 (≤ 4 V/nm) and 𝛽 (≤ 4), the emission current density 〈𝑤〉 has a distinct 

reduction due to the interference effect of the two lasers. However, for large 𝐹0 (≥ 7 V/nm), the 

emission current 〈𝑤〉 is almost independent of 𝜃, for all harmonic orders of the second laser. 

 

Figure 2.14: Normalized total time-averaged emission current density 〈𝑤〉  as a function of 

harmonic order β, for the phase difference (a) 𝜃 = 0, and (b) 𝜃 = 𝜋. The fundamental 𝜔-laser field 

𝐹1 = 1.6 V/nm, and the harmonic 𝛽𝜔-laser field 𝐹2 = 0.22 V/nm. 

Our calculations so far are based on the sharp triangular potential profile (see Figure 2.7), which 

does not include the image charge effects (or Schottky effect) due to the applied dc field. Our 

earlier work [6] demonstrated that the effects of image-charge-induced Schottky barrier lowering 

on photoemission can be accurately approximated in our model, by simply replacing the work 

function W in Equation (20) with the effective work function 𝑊𝑒𝑓𝑓 = 𝑊 − 2√𝑒3𝐹0/16𝜋𝜀0 ,  
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Figure 2.15: Effects of the image-charge-induced barrier lowering on the total emission current 
〈𝑤〉 for various 𝐹0, 𝐹1, 𝐹2, and 𝜃. The solid (dotted) lines represent the cases with (without) the 

image charge effect, calculated using effective work function 𝑊𝑒𝑓𝑓 (work function 𝑊). The gray 

dashed lines show the scale 〈𝑤〉 ∝ 𝐹1
2𝑛.    

where 𝜖𝑜 is the free space permittivity. A comparison between the total emission current density 

〈𝑤〉 with and without the image-charge-induced barrier lowering is shown in Figure 2.15. Due to 

the reduction of potential barrier (𝑊𝑒𝑓𝑓 < W), the emission current increases when considering the 

image charge effect. A larger dc field 𝐹0 increases the emission current more significantly (𝐹0 =

1V/nm in Figures 2.15(a), 2.15(b) vs 𝐹0 = 5V/nm in 2.15(c), 2.15(d)), since a smaller effective 

barrier 𝑊𝑒𝑓𝑓  is created. As 𝐹2  increases, the difference between the emission current 〈𝑤〉 with 

𝑊𝑒𝑓𝑓 and with W becomes smaller. The increase of the emission current due to the inclusion of 

the image effect is relative insensitive to the phase delay 𝜃  of the two-color lasers. It is also 
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important to note that with the inclusion of 𝑊𝑒𝑓𝑓, the slope of 〈𝑤〉 decreases, as observed from the 

value of n in the scale 〈𝑤〉 ∝ 𝐹1
2𝑛, which indicates that the number of photons involved in the 

dominant emission process decreases, because of the deduction of the potential barrier near the 

metal surface.   

2.3.3 Application to Time-Resolved Photoelectron Spectroscopy  

Photoelectron spectroscopy is one of the most popular techniques to study the composition and 

electronic states of solid surfaces by analyzing the energy spectra [89], [90]. Particularly, the time-

resolved photoemission spectroscopy enables the measurement of short lifetime of the 

intermediate states, such as the image-potential states on metal surface, via control of the time 

delay between the pump and probe photons [91]–[93]. In this part, we demonstrate the application 

of our analytical model to describe the dynamics of different n-photon excited states in time and 

energy.  

As shown in Figure 2.16(a), our 1D model is able to provide excellent fitting to the measured 

photoelectron spectra in Reference [57] for the tungsten nanotip, by using a dc field of 𝐹0 = 0.01 

V/nm and an effective work function of 𝑊𝑒𝑓𝑓 = 3.85 eV. Furthermore, the current modulation 

profile (both magnitude and shape) obtained from our 1D model in section 2.2 [61] agrees very 

well with the experimentally observed sinusoidal variation with a period of 2𝜋 for the relative 

phase delay 𝜃, as shown in Figure 2.16(b). Notably, other models, including simple tunneling rate 

model and 1D time-dependent density functional theory (TDDFT), fail to describe the 

experimental results of the sinusoidal profile (see supplementary material of Reference [57]).  
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Figure 2.16: Time-resolved photoelectron energy spectra for the tungsten nanotip. (a) Comparison 

between the experimentally measured electron counts from Figure 3 in Reference [57] (see solid 

lines) and fitting results 〈𝑤𝑛〉 (see dotted lines). (b) Normalized total time-averaged emission 

current density 〈𝑤〉 as a function of the phase difference between the two-color lasers 𝜃 , for 

different 𝐹2/𝐹1, with fixed 𝐹1 = 1.6 V/nm. Blue and red lines denote the experimentally observed 

emission electron current and the sine fit from Figure 2(b) of Reference [57], respectively. (c),(d) 

Energy spectra for various dc fields 𝐹0 when (c) 𝜃 = 0, and (d) 𝜃 = 𝜋. (e),(f) Photoelectron spectra 

at different phase delays 𝜃 for the dc field (e) 𝐹0 = 0.01 V/nm and (f) 𝐹0 = 0.09 V/nm. (g),(h) 

Projection of the spectra in (e) and (f) on the 𝜃 plane, respectively. Except (b), the fundamental 

laser (1560 nm) field 𝐹1 = 1.8 V/nm and the second-harmonic laser field 𝐹2 = 0.3 V/nm for all 

other figures (experimental laser parameters in Reference [57]). 

The photoelectron energy spectra from the tungsten nanotip under various dc fields are shown 

in Figures 2.16(c) and 2.16(d), for 𝜃 = 0 and 𝜃 = 𝜋, respectively. In the calculation, for each dc 

field, the effective work function 𝑊𝑒𝑓𝑓  is approximated by determining the peak value in the 

surface barrier profile under dc bias [94][95], Φdc(𝑥) = 𝑊 − 𝑒𝐹0𝑑In(
2𝑥+𝑟

𝑟
)/In(

2𝑑

𝑟
+ 1) −

𝐶𝑠
2𝑟/2𝑒(𝑥2 − 𝑟2), where the second term is the axial potential profile near a parabolic tip of radius 

of curvature r with d being a constant (= 83 nm to fit the spectra in Figure 2.16(a)) [95], and the 

third term is the image charge potential of a spherical surface, with 𝐶𝑠 = √𝑒3/4𝜋𝜖0 =

1.199985⁡eV(V/nm)−1/2  being the Schottky constant [94]. It is important to note that the 
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photoelectron spectra are very sensitive to the applied dc field 𝐹0, as shown in Figures 2.16(c) and 

2.16(d). The shift of the dominant emission process to a smaller 𝑛 with larger dc field 𝐹0 agrees 

with the trend in Figure 2.8. More importantly, the emission current density is increased by more 

than three orders of magnitude as 𝐹0 is gradually increased from 0.01 to 0.09 V/nm, which could 

strongly facilitate the experimental detection of photoemission.  

When the relative time delay 𝜃 changes from -𝜋 to 𝜋, the variations of the spectra during one 

period for 𝐹0 = 0.01 and 0.09 V/nm are shown in Figures 2.16(e) and 2.16(f), respectively. To 

clearly observe the dynamics of different excited states in time, Figures 2.16(g) and 2.16(h) show 

the projection of the energy spectra in Figures 2.16(e) and 2.16(f) on the 𝜃 − 〈𝑤𝑛〉  plane 

respectively. When the dc field is small, with 𝐹0 = 0.01 V/nm (see Figure 2.16(g)), all the n-photo 

orders of the spectra are modulated in the same way as a function of the relative phase delay 𝜃, in 

agreement with the results in Reference [57]. The rising tendency of the points along the phase 

difference 𝜃 from –𝜋 to 0 indicates the population of the n-photon excited intermediate states 

induced by lasers, while the decreasing signal from 0 to 𝜋 implies the decay of the excited states. 

When 𝐹0 is increased to 0.09 V/nm (see Figure 2.16(h)), it is interesting to find that due to the 

effect of the dc field, various n-photon excited states behave differently with respect to time delay 

𝜃. For instance, the one-photon tunneling state is almost invariable as 𝜃 changes from – 𝜋 to 𝜋, but 

the two-photon state decreases significantly at 𝜃 = −3𝜋/4. This is in contrast to the two same-

frequency induced photoemission, where the dynamics of multiphoton excited states remains same 

under different dc bias 𝐹0 (see Figure 3.1). In addition, for a small dc field, the value of n for the 

dominant excitation state remains unchanged over the relative phase delay 𝜃 (see Figure 2.16(g)), 

which means the energy of the n-photon excited intermediate state is independent of the time delay 
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[91]. However, when the dc field is larger, n for the dominant excitation state changes with the 

relative phase delay 𝜃 (see Figure 2.16(h)). 

For electron emitters under a dc bias, it is important to prevent breakdown and premature failure 

of the emitter tips. Table I lists the local dc fields (after field enhancement) of sharp tips that have 

already been achieved in experiments before breakdown for eight materials. It is known that 

nanostructures survive large fields better for short pulse durations. Thus, local dc field up to 10 

V/nm or larger value at sharp tips may be realized in experiments via either laboratory-scale setup 

based on pulsed capacitor discharge [9][96], or powerful THz pulses [97].. 

Table 1: List of achieved strong local dc fields (after field enhancement) of sharp tips before 

breakdown for eight materials. 

 Achieved local dc field 

(V/nm) 

Au 8.8 [9] 

W 9.64 [96] 

Cu 10.35 [96] 

Mo 

Pt/Ir 

Carbon fiber 

Carbon nanotube 

8.09 [96] 

16 [97] 

10.46 [41] 

14 [98] 

CNT fiber 9.85 [42]–[44] 

 

2.3.4 Summary on Photoemission with DC Bias  

In this section, we construct an exact analytical model for photoelectron emission from a dc biased 

metal surface induced by two-color laser fields, by solving the time-dependent Schrödinger 

equation. Our calculations reveal underlying various emission process, including multiphoton 

over-barrier emission, dc-assisted tunneling emission and optical field emission, for different dc 
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and laser fields, and recover the trend in the experimentally measured energy spectra and voltage- 

and power-dependent electron flux. Besides the properties of the two-color lasers, including 

relative phase, intensity and frequency, our model shows the addition of a dc field to the metal 

surface can provide great tunability of the photoemission energy spectra and current modulation 

depth for two-color laser-induced photoemission. Furthermore, the dc bias can increase the 

emission current by orders of magnitude. This increase of the current emission is due to the 

combined effects of potential barrier narrowing and barrier lowering. Our results suggest a 

practical way to maintain a strong current modulation while increasing the total emission current 

by orders of magnitude in two-color laser induced electron emission, by simply adding a strong dc 

bias and a weak harmonic laser. This work will enable applications requiring both high current 

level and strong current modulation, such as miniaturized particle accelerators, photoelectron 

microscopy, and ultrafast electron sources. Moreover, being verified against the experimentally 

measured time-resolved photoelectron energy spectra, the results from our model are expected to 

guide future experiments on time-resolved photoemission spectroscopy.  

2.5 Conclusion 

In this chapter, we present quantum analytical solutions for highly nonlinear ultrafast 

photoelectron emission from metal surfaces driven by two-color laser fields with and without a dc 

bias, by exactly solving the TDSE. We systematically study the photoelectron energy spectra, 

emission current density, and current modulation under various combinations of laser intensities 

and frequencies, dc bias, and phase differences of the two-color lasers. Our model shows great 

tunability on the photoelectron spectra, emission current, and current modulation depth, via the 

control of the phase delay, relative intensity, harmonic order of the two-color lasers and dc fields. 

The results are in good agreement with experimental measurements on the two-color photoelectron 
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energy spectra and current modulation from a sharp nanotip. Our results suggest a practical way 

to maintain a strong current modulation in the meantime to increase the total photoemission current 

by orders of magnitude, by simply adding a strong dc bias and a weak harmonic laser. Application 

of our model to time-resolved photoelectron spectroscopy is also exemplified, showing the 

dynamics of the n-photon two-color excited electronic states depends strongly on the applied dc 

field. Our study may inspire new routes towards many applications requiring both high 

photoemission current and strong current modulation, such as tabletop particle accelerator, X-ray 

sources and time-resolved photoelectron microscopy. 
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CHAPTER 3 

PHOTOEMISSION MODULATION BY TWO LASERS OF THE SAME-FREQUENCY 

3.1 Introduction 

Although two-color laser induced electron emission from nanoemitters provides an attractive 

platform for modulating photoelectron emission by the relative phase difference between the two-

color lasers and shows promises for the potential application of time-resolved photoelectron 

spectroscopy [62][99], the two-color laser system typically relies on the generation of higher order 

harmonics of a fundamental laser [57]–[60][85], which, because of its stringent requirements on 

the experimental setup and its relative low efficiency, greatly limits the accessibility of the two-

color laser system. For higher intensity lasers, harmonic generation becomes increasingly complex 

and difficult to control [100][101].  

In this Chapter, we propose to utilize two lasers of the same frequency to modulate the 

photoelectron emission by their relative phase delay. This is motivated by the simple experimental 

implementation of single-frequency laser pairs, e.g. via a beam splitter with various coating 

materials to control the reflection and transmission of incident light [102]–[105]. The two same-

frequency lasers may be tuned to have virtually arbitrary ratio of intensities (in contrast to a small 

harmonic-to-fundamental intensity ratio in the two-color laser system [57]–[60][85]), thus 

providing a much larger parameter space to assess the interference effect of the two lasers and the 

induced photoelectron emission. Using the quantum mechanical model in Reference [6], we study 

the photoemission modulation properties for a dc-biased metal cathode illuminated by two laser 

fields with the same frequency. We investigate the modulation of photoemission current and the 

dynamics of multiphoton excited states for different laser fields, wavelengths, cathode materials, 

and dc fields. Our study demonstrates the capability of measuring the time-resolved photoelectron 
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energy spectra using single-frequency laser pairs. The material of this chapter is based on our 

published paper in Reference [106] and is presented with permission from the copyright holder.  

3.2 Analytical model 

Under the action of two same-frequency laser fields 𝐹1cos⁡(𝜔𝑡) and 𝐹2cos⁡(𝜔𝑡 + 𝜃) and a dc 

electric field 𝐹0 , the time-dependent potential barrier near the surface of the cathode reads 

[6][61][62][74][106], 

Φ(𝑥, 𝑡) = {
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝐸𝐹 +𝑊𝑒𝑓𝑓 − 𝑒𝐹0𝑥 − 𝑒𝐹𝑥 cos(𝜔𝑡 + 𝜑) ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(27)  

where 𝐸𝐹 is the Fermi energy of the metal cathode, 𝑊𝑒𝑓𝑓 = 𝑊 − 2√𝑒3𝐹0/16𝜋𝜀0 is the effective 

work function with Schottky effect [6], with 𝑊  being the nominal work function, 𝑒  is the 

elementary charge, 𝜀0  is the free space permittivity, 𝑥  is the distance away from the cathode 

surface (𝑥 = 0) , and 𝐹  is the magnitude of the total laser field due to the two laser fields 

𝐹1cos⁡(𝜔𝑡) and 𝐹2cos⁡(𝜔𝑡 + 𝜃), 

𝐹 = √(𝐹1 + 𝐹2 cos 𝜃)2 + (𝐹2 sin 𝜃)2.                                      (28) 

From Equation (28), it is clear that the magnitude of the total laser field depends strongly on the 

phase delay of the two lasers 𝜃, which is expected to provide similar current modulation to that in 

the two-color laser setup [61][62]. The resultant phase 𝜑 = arcsin(𝐹2 sin 𝜃 /𝐹), the effect of 

which becomes important for photoemission only in very short laser pulses when carrier-envelope 

phase matters. For laser pulses longer than about 10 cycles, it can be well approximated by 

continuous-wave excitation for photoemission [6]. Thus, in the calculation of this chapter, we 

ignore the effects of the absolute phase and set 𝜑 = 0 without loss of generality [106]. Based on 

the quantum analytical theory of photoemission in References [6][74], the time-averaged 

normalized emission current density, defined as the time-averaged ratio of the transmitted 
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probability current density over the incident probability current density, 〈𝑤(𝜀, 𝑥, 𝑡)〉 = 〈𝐽𝑡/𝐽𝑖〉, can 

be obtained as,  

〈𝑤(𝜀)〉 = ∑ 〈𝑤𝑛(𝜀)〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)〉 =
(𝑒𝐹0ℏ/√2𝑚𝑒)

1/3

𝜋√𝜀
|𝑇𝑛|

2,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(29) 

where 〈𝑤𝑛〉 denotes the normalized emission current density through the 𝑛th channel with emitted 

electron energy 𝜀 + 𝑛ℏ𝜔 due to the n-photon contribution, ℏ is the reduced Plank constant, m is 

the electron mass and 𝑇𝑛 represents the transmission coefficient of electron wave functions, which 

is calculated from,  

2√𝜀𝛿(𝑙) = ∑ 𝑇𝑛 [√𝜀 + 𝑙ℏ𝜔𝑃𝑛(𝑛−𝑙) +
ℏ

√2𝑚𝑒

𝑄𝑛(𝑛−𝑙)]

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(30) 

where 𝛿(𝑙) is the Dirac delta function, 𝑙 and 𝑛 are integers, 𝑃𝑛𝑙 =
1

2𝜋
∫ 𝑝𝑛(𝜔𝑡)𝑒

−𝑖𝑙𝜔𝑡𝑑(𝜔𝑡)
2𝜋

0
 and 

𝑄𝑛𝑙 =
1

2𝜋
∫ 𝑞𝑛(𝜔𝑡)𝑒

−𝑖𝑙𝜔𝑡𝑑(𝜔𝑡)
2𝜋

0
 are the Fourier coefficients, with 𝑝𝑛(𝜔𝑡) = exp⁡[−(𝑖𝑒2𝐹0𝐹/

𝑚𝑒ℏ𝜔
3)sin𝜔𝑡 + (𝑖𝑒2𝐹2/8𝑚𝑒ℏ𝜔

3)sin2𝜔𝑡]𝑟(𝛼𝑛)  and 𝑞𝑛(𝜔𝑡) = exp⁡[−(𝑖𝑒2𝐹0𝐹/

𝑚𝑒ℏ𝜔
3)sin𝜔𝑡 + (𝑖𝑒2𝐹2/8𝑚𝑒ℏ𝜔

3)sin2𝜔𝑡][(𝑒𝐹/ℏ𝜔)𝑟(𝛼𝑛)sin𝜔𝑡 + (2𝑚𝐹0𝑒/ℏ
2)1/3𝑠(𝛼𝑛)⁡] , 

where 𝑟(𝛼𝑛) = 𝐴𝑖(𝛼𝑛) − 𝑖𝐵𝑖(𝛼𝑛) , 𝑠(𝛼𝑛) = 𝑖𝐴𝑖′(𝛼𝑛) + 𝐵𝑖′(𝛼𝑛) , and 𝛼𝑛 = −[𝐸𝑛/𝑒𝐹0 + (𝑒𝐹/

𝑚𝑒𝜔
2)cos𝜔𝑡](2𝑒𝑚𝑒𝐹0/ℏ

2)1/3 with 𝐸𝑛 = 𝜀 + 𝑛ℏ𝜔 − 𝐸𝐹 −𝑊𝑒𝑓𝑓 − 𝑈𝑝. Here, 𝐴𝑖 and 𝐵𝑖 are the 

Airy functions of the first kind and second kind respectively, 𝑈𝑝 = 𝑒2𝐹2/4𝑚𝑒𝜔
2  is the 

ponderomotive energy, and a prime denotes derivative with respect to the argument. For the special 

case of zero dc field 𝐹0 = 0, the time-averaged normalized emission current density becomes 

[6][74], 

〈𝑤(𝜀)〉 = ∑ 〈𝑤𝑛(𝜀)〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)〉 = Re(|𝑇𝑛|
2√𝐸𝑛/𝜀),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(31) 
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where 𝑇𝑛 is still calculated from Equation (30) with 𝑃𝑛𝑙 and 𝑄𝑛𝑙 unchanged, but with 𝑝𝑛(𝜔𝑡) =

exp⁡[(𝑖𝑒2𝐹2/8𝑚𝑒ℏ𝜔
3)sin2𝜔𝑡 + (𝑖𝑒𝐹√2𝑚𝑒𝐸𝑛/𝑚𝑒ℏ𝜔

2)cos𝜔𝑡]  and 𝑞𝑛(𝜔𝑡) =

𝑝𝑛(𝜔𝑡)[√2𝑚𝑒𝐸𝑛/ℏ + 𝑒𝐹sin𝜔𝑡/ℏ𝜔. 

3.3 Results and Discussion 

 

Figure 3.1: Time-resolved photoelectron energy spectra. (a),(b) Energy spectra as a function of the 

phase difference between the two lasers 𝜃, for dc field (a) 𝐹0 = 0 and (b) 𝐹0 = 0.8 V/nm. (c),(d) 

Projections of the spectra in (a),(b) on the 𝜃-〈𝑤𝑛〉 plane respectively. (e),(f) Projections of the 

spectra in (a),(b) on the n-〈𝑤𝑛〉 plane respectively. Here, the laser fields 𝐹1 = 1.8 V/nm and 𝐹2 = 

0.3 V/nm (experimental parameters in Reference [57]).  

In Figure 3.1, we plot the calculated photoelectron energy spectra as a function of the phase 

difference between the two lasers 𝜃 for different dc fields 𝐹0. The wavelength of both lasers is 800 

nm (ℏ𝜔 = 1.55 eV). The metal is assumed to be tungsten [7][13][57], with a Fermi energy 𝐸𝐹 = 

7 eV and a work function W = 4.31 eV. Since most of the electrons emitted from sources are 
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located near the Fermi level [6][76][86][87], we choose the electron initial energy 𝜀 = 𝐸𝐹  for 

simplicity. Note with laser fields 𝐹1 = 1.8 V/nm and 𝐹2 = 0.3 V/nm for the special case of 𝜃 = 0, 

the total normalized emission current density in Figure 3.1 is 〈𝑤〉 = 6.67 × 10−7 and 8.71×10-5, 

for the DC field 𝐹0 = 0 and 0.8 V/nm respectively. Using free-electron theory of metal [74], we 

find the corresponding emission current density is 5.74×102 A/cm2 and 6.75×104 A/cm2, 

respectively.    

When the dc field 𝐹0 is turned off, the dominant emission process is three-photon absorption (n 

= 3) (see Figures 3.1(a) and 3.1(e)). This is consistent with the ratio of the work function of 

tungsten over the photon energy, 𝑊/ℏ𝜔 ≈ 2.8. By changing the phase difference θ between the 

two lasers, the electron emission varies sinusoidally (see Figures 3.1(a) and 3.1(c)). When applying 

a large dc field 𝐹0 to the cathode, the tunneling emission channels (n ≤ 2) are opened up, as shown 

in Figures 3.1(b) and 3.1(f). This is because the dc field adequately narrows the surface potential 

barrier, in addition to the Schottky-effect-induced barrier lowering, enabling the tunneling 

emission process. In the case of 𝐹0 = 0.8 V/nm, the dominant emission process is shifted to two-

photon absorption. From Figures 3.1(c) and 3.1(d), it is found that the multiphoton excited states 

(n ≥ 3) vary with respect to the phase delay θ sinusoidally in the same way, with the maximum at 

𝜃 = 0 and the minimum at 𝜃 = ±𝜋, for both values of dc bias 𝐹0. This is in contrast to the two-

color laser induced photoemission, where the dynamics of multiphoton excited states changes 

under different dc bias 𝐹0 (see Figure 2.16(g) and 2.16(h)). The one-photon (n = 1) absorption and 

direct tunneling (n = 0) process are almost independent of θ for the case of 𝐹0 = 0.8 V/nm, as 

shown in Figures 3.1(d) and 3.1(f).   
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Figure 3.2: Photoemission current modulation. (a) Normalized total time-averaged emission 

current density <w> as a function of phase difference 𝜃 for different 𝐹2/𝐹1, when the dc field 𝐹0 

= 0. (b) Semilog plot of <w> in (a). (c) Current modulation depth Γ (solid lines) as a function of 

the laser field ratio 𝐹2/𝐹1  for different dc fields 𝐹0 . Dotted (dashed) lines in (c) are for the 

maximum (minimum) emission current density <w> at 𝜃 = 0 (𝜃 = 𝜋). Here, the laser field 𝐹1 is 

fixed as 1.8 V/nm.  

The sinusoidal modulation in the total emission current density 〈𝑤〉 is shown in Figures 3.2(a) 

and 3.2(b), for the case of 𝐹0 = 0 V/nm. When the laser field ratio 𝐹2/𝐹1 increases, the maximum 

emission current 〈𝑤〉𝑚𝑎𝑥 at 𝜃 = 0 increases, while the minimum emission current 〈𝑤〉𝑚𝑖𝑛 at 𝜃 = 𝜋 

decreases, due to the more profound interference of the two lasers. Figure 3.2(c) shows the 

modulation depth, Γ = (〈𝑤〉𝑚𝑎𝑥 − 〈𝑤〉𝑚𝑖𝑛)/(〈𝑤〉𝑚𝑎𝑥 + 〈𝑤〉𝑚𝑖𝑛), as a function of laser field ratio 

𝐹2/𝐹1 under different dc fields 𝐹0. For a given 𝐹0, Γ increases as 𝐹2/𝐹1 increases, and it reaches 

the maximum value of 100% when 𝐹1 = 𝐹2. It is important to note that, in order to reach a large 

modulation depth (Γ ≥ 90%), only a small laser field ratio 𝐹2/𝐹1 is needed even with a strong dc 
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field, e.g., 𝐹2/𝐹1 ≤ 0.4 when 𝐹0⁡= 1 V/nm. The dependence of Γ on the dc field 𝐹0 (see Figure 

3.2(c)) is not monotonic and will be examined further in Figure 3.3 below. 

 

Figure 3.3: (a) Emission current modulation depth Γ (solid lines) as a function of the dc field 𝐹0 

with and without the image-charge-induced potential barrier lowering (or the Schottky effect), for 

laser fields 𝐹1 = 1.8 V/nm and 𝐹2 = 0.3 V/nm. The case without Schottky effect is calculated by 

replacing Weff with the nominal work function of metal W in Equation (27). (b) Modulation depth 

Γ (solid lines) as a function of 𝐹0 for different laser field ratios 𝐹2/𝐹1, with the effective work 

function Weff. 𝐹1⁡is fixed at 1.8 V/nm in (b). In (a),(b), the dotted (dashed) lines are for the 

maximum (minimum) emission current density <w> at 𝜃 = 0 (𝜃 = 𝜋).  

As discussed before, besides making the surface potential barrier narrower, the dc bias induces 

a reduction of the barrier height via the image charge effect (or the Schottky effect), which strongly 

influences the photoemission processes [6][62]. In Figure 3.3(a), we compare the emission current 

modulation depth Γ as a function of the dc field 𝐹0 with and without the Schottky effect. When 

Schottky effect is not considered, Γ gradually decreases with 𝐹0. It is clear that the Schottky effect 

greatly alters the dependence of modulation depth Γ on the dc field 𝐹0 (see solid lines in Figure 

3.3(a)). The change of Γ  originates from the change of the maximum (minimum) values of 

emission current 〈𝑤〉 with the Schottky effect, as shown by dotted (dashed) lines in Figure 3.3(a). 

As 𝐹0 varies, the effective potential barrier 𝑊𝑒𝑓𝑓 changes, which induces an increase (decrease) in 
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the emission current when the ratio 𝑊𝑒𝑓𝑓/ℏ𝜔 becomes closer to (further away from) an integer, 

where resonant 𝑛-photon absorption occurs (see Figures 6 and 7 of Reference [6]). This resonant 

emission process causes the nonlinear behavior of Γ as a function of dc field 𝐹0.  

Figure 3.3(b) shows the modulation depth Γ as a function of the dc field 𝐹0 for different laser 

field ratios 𝐹2/𝐹1  with fixed 𝐹1 = 1.8 V/nm. As 𝐹2/𝐹1  approaches 1, the modulation depth Γ 

gradually approaches the maximum value of 1 for the full range of dc field 𝐹0 from 0 to 1 V/nm. 

This is consistent with the observation in Figure 3.2(c). Note that when 𝐹0 is increased from 0 to 

1 V/nm, the total emission current density can be increased by orders of magnitude.  

 

Figure 3.4: Normalized total time-averaged emission current density <w> as a function of the 

phase difference 𝜃, for various (a) cathode materials and (b) incident wavelengths. In (a), the laser 

wavelength λ = 800 nm (ℏ𝜔 = 1.55 eV). The nominal work function of different materials is WAg 

= 4.26 eV [107], Ww = 4.31 eV [57][60], WMo = 4.6 eV [107], WCu = 4.65 eV [107], and WAu = 5.1 

eV [6][107]. In (b), the metal is tungsten. Here, the dc field 𝐹0 is 0.8 V/nm and the laser fields 𝐹1 

and 𝐹2 are fixed at 1.8 and 0.3 V/nm, respectively. 

We also examine the photoemission current modulation depth Γ for cathode materials with 

different work functions in Figure 3.4(a) and for various incident laser wavelengths in Figure 

3.4(b). We fix the dc field 𝐹0 = 0.8 V/nm and laser fields 𝐹1 = 1.8 V/nm and 𝐹2 = 0.3 V/nm. Under 

the same illumination condition, the electron emission current depends strongly on the work 
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function; however, the modulation depth Γ varies only slightly. This is because Γ is predominantly 

determined by the ratio of the laser field strengths. Figure 3.4(b) shows the effect of laser 

wavelength on both emission current and modulation depth for a tungsten cathode. The nonlinear 

dependence may also be attributed to the change of the ratio 𝑊𝑒𝑓𝑓/ℏ𝜔 near resonant 𝑛-photon 

processes [6]. 

3.4 Conclusion 

In this chapter, we propose to utilize two lasers of the same frequency to modulate the 

photoelectron emission by their phase delay. Compared to the two-color laser configuration, 

single-frequency laser pairs can be more easily implemented in experiments since they relax the 

requirement of higher order harmonic generation, which becomes increasingly difficult in the high 

laser intensity regimes. The intensity ratio of the single-frequency laser pairs can be tuned over a 

much wider range than the two-color laser system. Using the quantum model, we find a strong 

current modulation (> 90%) can be achieved with a moderate ratio of the laser fields (< 0.4) even 

under strong dc bias. The nonlinear effects of dc field, cathode materials, and laser wavelength on 

both the emission current level and modulation depth are also examined. The strong dependence 

of photoelectron energy spectra on the phase delay of the two lasers demonstrates a promising 

potential for the application of time-resolved photoelectron spectroscopy using single-frequency 

laser pairs.  
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CHAPTER 4  

FEW-CYCLE LASER PULSES INDUCED PHOTOEMISSION 

4.1 Introduction 

Ultrashort pulsed laser induced photoelectron emission from nanostructure enables the control of 

electron motion on the sub-optical-cycle time scale, by tuning the laser pulse’s carrier-envelope 

phase (CEP) [13][19][54]. This may pave the way towards the subfemtosecond and subnanometer 

probing of electron motion in solid-state systems and the generation and measurement of 

attosecond electron pulses. While there have been recent efforts to develop analytical quantum 

models for continuous-wave laser excitation (see Chapters 2 and 3) [6][61][62][74], numerical 

simulations are typically implemented to study photoemission due to ultrashort pulsed lasers 

[13][76][78]. Fowler-Nordheim equation based models are commonly used to calculate the 

ultrashort pulsed photoemission rate [8][19][55] but it is only valid in the strong optical field 

regime (see section 1.3). To explicitly reveal the interplay of various emission processes under 

different regimes and to systematically characterize the parametric scalings of photoemission 

characteristics, an exact quantum theory under ultrashort pulsed condition is highly desirable. 

In this chapter, we present a quantum analytical solution for ultrafast photoelectron emission 

from a dc-biased metal surface illuminated by few-cycle laser pulses, by exactly solving the TDSE. 

Our solution is valid from the photon-driven emission regime in low intensity optical fields to the 

optical-field-driven regime in high intensity optical fields, and is applicable for arbitrary laser 

parameters (i.e., intensity, pulse duration, carrier frequency and CEP), dc bias, and metal properties 

(i.e., work function and Fermi level). The model is also applicable to a train of laser pulses with 

arbitrary pulse repetition rate. Using the analytical formulation, we examine the photoemission 

properties, including energy spectra, photocurrent or emission charge density, with various 
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combinations of laser parameters and dc bias, exhibiting good agreement with the experimental 

observations [13][54][55]. This work offers clear insights to the photoelectron energy distribution 

and spatiotemporal dynamics of electron emission under different driving pulsed laser and dc 

electric fields. The material of this chapter is based on our published paper in Reference [56]  and 

is presented with permission from the copyright holder.  

4.2 Analytical Formulation 

Our one-dimensional (1D) model considers electrons with the initial energy 𝜀 emitted from the 

metal-vacuum interface at x = 0 under a dc electric field 𝐹0 and an optical electric field (see Figure 

4.1) of a Gaussian laser pulse train with a time period T = 2L of the form,  

𝐹(𝑡) = 𝐹1𝑒
−𝑡2/𝜎2 cos(𝜔𝑡 + 𝜙),           (2𝑙 − 1)𝐿 < ⁡𝑡 ≤ (2𝑙 + 1)𝐿, with 𝑙 = 0,±1,±2,… ,    (32) 

where 𝐹1 is the peak of optical field strength, 𝜎 = 𝜏𝑝/(2√𝑙𝑛2) ≅ 𝜏𝑝/1.665 with 𝜏𝑝 being the full 

width at half maximum (FWHM) of the field envelope, 𝜔 is the angular frequency of the carrier 

wave, and 𝜙 is the CEP. All the laser pulses are CEP stabilized with 𝜔 = 𝑚𝜋/𝐿 = 𝑚𝜔𝐸, with m 

being a positive integer and 𝜔𝐸  the pulse repetition frequency [108]. When 𝐿/𝜏𝑝 ≫ 1 , the 

temporal interaction between consecutive laser pulses becomes negligible and 𝐹(𝑡) can be used to 

study photoemission due to a single laser pulse. By taking the Fourier series, the laser field in 

Equation (32) can be expressed as,  

𝐹(𝑡) = 𝐹1𝑎0 cos𝜙 + ∑ 𝐹1𝑎𝑛 cos(𝑛𝜔𝐸𝑡 + 𝜙)

+∞

𝑛=−∞
𝑛≠0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(33) 

where 𝑎0 =
1

𝐿
∫ 𝑒−𝑡

2/𝜎2𝐿

0
cos(𝑚𝜔𝐸𝑡)𝑑𝑡, and 𝑎𝑛 =

1

𝐿
∫ 𝑒−𝑡

2/𝜎2𝐿

0
cos⁡[(𝑛 −𝑚)𝜔𝐸𝑡]𝑑𝑡. From Equation 

(33), it is clear that the incident laser pulse train is a superposition of sine waves with frequencies 

separated by 𝜔𝐸. We assume the laser electric field is spatially uniform and perpendicular to the 

metal surface; thus the time-dependent potential barrier near the meatal-vacuum interface is 
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[6][56][61][62][74][106], 

 

Figure 4.1: (a) Sketch of photoelectron emission from a biased emitter under the illumination of a 

laser pulse train with a time period T. (b) A single laser pulse with carrier-envelope phase (CEP) 

𝜙 and full width at half maximum (FWHM) of the field envelope 𝜏𝑝. The red curve and black 

dotted lines denote the time evolution of laser electric field and laser pulse envelope, respectively. 

Φ(𝑥, 𝑡) = {
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝐸𝐹 +𝑊𝑒𝑓𝑓 − 𝑒𝐹0𝑥− 𝑒𝐹(𝑡)𝑥,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(34)  

where 𝐸𝐹 is the Fermi energy of the metal cathode, 𝑊𝑒𝑓𝑓 =𝑊−2√𝑒3𝐹0/16𝜋𝜀0 is the effective 

work function with Schottky effect [6][62], with 𝑊  being the nominal work function, 𝑒  is the 

elementary charge, 𝜀0 is the free space permittivity, and 𝐹(𝑡) is given by Equation (33). 

By solving the TDSE with the potential energy given in Equation (34), the exact solution of 

electron wave function for x ≥ 0 (in the vacuum) is found to be (see Appendix C for the method), 

𝜓(𝑥, 𝑡) = ∑ 𝑇𝑙[𝐴𝑖(−𝜂𝑙) − 𝑖𝐵𝑖(−𝜂𝑙)] × exp (−𝑖
𝜀

ℏ
𝑡 − 𝑖𝑙𝜔𝐸𝑡)

∞

𝑙=−∞

 

× exp (
𝑖𝑒𝐹1
ℏ

𝐺𝑥 +
𝑖𝑒2𝐹1

2

8ℏ𝑚𝑒
𝑀 −

𝑖𝑒2(𝐹0 + 𝐹1𝑎0cos𝜙)𝐹1
ℏ𝑚𝑒

𝑁 −
𝑖𝑒2𝐹1

2

4ℏ𝑚𝑒𝜔𝐸
2 𝑅) ,⁡⁡⁡⁡𝑥 ≥ 0⁡⁡⁡(35) 

where 𝜀  is the electron initial energy, 𝐺 = ∑
𝑎𝑛sin⁡(𝑛𝜔𝐸𝑡+𝜙)

𝑛𝜔𝐸

+∞
𝑛=−∞,𝑛≠0  ; 𝑀 =

∑
𝑎𝑛
2 sin(2𝑛𝜔𝐸𝑡+2𝜙)+𝑎𝑛𝑎−𝑛 sin(2𝑛𝜔𝐸𝑡)

𝑛3𝜔𝐸
3

+∞
𝑛=−∞,𝑛≠0  ; 𝑁 = ∑

𝑎𝑛sin⁡(𝑛𝜔𝐸𝑡+𝜙)

𝑛3𝜔𝐸
3

+∞
𝑛=−∞,𝑛≠0  ; 𝑅 =
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∑ ∑
𝑎𝑚𝑎𝑛

𝑚𝑛
{
sin⁡[(𝑛−𝑚)𝜔𝐸𝑡]

(𝑛−𝑚)𝜔𝐸
−

sin⁡[(𝑛+𝑚)𝜔𝐸𝑡+2𝜙]

(𝑛+𝑚)𝜔𝐸
}+∞

𝑚=−∞,𝑚≠0,𝑛,−𝑛
+∞
𝑛=−∞,𝑛≠0  ; 𝜂

𝑙
= [

𝐸𝑙
𝑒(𝐹0+𝐹1𝑎0cos𝜙)

+ 𝑥+

∑
𝑒𝐹1𝑎𝑛 cos(𝑛𝜔𝐸𝑡+𝜙)

𝑛2𝜔𝐸
2𝑚𝑒

+∞
𝑛=−∞,𝑛≠0 ][

2𝑒𝑚𝑒(𝐹0+𝐹1𝑎0cos𝜙)

ℏ
2 ]

1/3
 ; the drift kinetic energy 𝐸𝑙 = 𝜀+ 𝑙ℏ𝜔𝐸−𝐸𝐹 −

𝑊𝑒𝑓𝑓 −𝑈𝑝 ; the ponderomotive energy 𝑈𝑝 = ∑
𝑒2𝐹1

2[𝑎𝑛
2+𝑎𝑛𝑎−𝑛 cos(2𝜙)]

4𝑚𝑒𝑛2𝜔𝐸
2

+∞
𝑛=−∞,𝑛≠0  ; 𝐴𝑖  and 𝐵𝑖  are the 

Airy functions of the first kind and second kind respectively, showing an outgoing wave traveling 

towards the +x direction [6][81][86]; and 𝑇𝑙 represents the transmission coefficient.  

For x < 0 (inside the cathode), the exact solution of electron wave function is,    

𝜓(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅𝑙 exp (−𝑖

𝜀 + 𝑙ℏ𝜔𝐸

ℏ
𝑡 − 𝑖𝑘𝑙𝑥)

∞

𝑙=−∞

,⁡⁡⁡𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(36) 

which shows the superposition of an incident plane wave with initial energy 𝜀 and a set of reflected 

plane waves with reflection coefficient 𝑅𝑙 and energies 𝜀 + 𝑙ℏ𝜔𝐸, where the wavenumbers 𝑘0 =

√2𝑚𝑒𝜀/ℏ
2
 and 𝑘𝑙 = √2𝑚𝑒(𝜀 + 𝑙ℏ𝜔𝐸)/ℏ

2
. 

By imposing the boundary conditions that both the electron wave function 𝜓(𝑥, 𝑡)  and its 

derivative 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥 are continuous at x = 0 and taking the Fourier transform, we obtain, in 

nondimensional quantities [6][56][61][62], 𝜀̅ = 𝜀/𝑊𝑒𝑓𝑓 , 𝜔̅𝐸 = 𝜔𝐸ℏ/𝑊𝑒𝑓𝑓 , 𝑡̅ = 𝑡𝑊𝑒𝑓𝑓/ℏ , 𝐸̅𝐹 =

𝐸𝐹/𝑊𝑒𝑓𝑓, 𝑥̅ = 𝑥/𝜆0, 𝜆0 = √ℏ2/2𝑚𝑒𝑊𝑒𝑓𝑓, 𝐹̅0 = 𝐹0𝑒𝜆0/𝑊𝑒𝑓𝑓, 𝐹̅1 = 𝐹1𝑒𝜆0/𝑊𝑒𝑓𝑓, 𝑈̅𝑝 = 𝑈𝑝/𝑊𝑒𝑓𝑓, 

2√𝜀𝛿̅(𝑘) = ∑ 𝑇𝑙[√𝜀̅ + 𝑘𝜔̅𝐸𝑃𝑙(𝑙−𝑘) +𝑄𝑙(𝑙−𝑘)]

∞

𝑙=−∞

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(37) 

 where 𝛿(𝑘), 𝑃𝑙(𝑙−𝑘), and 𝑄𝑙(𝑙−𝑘) are, 

𝛿(𝑘) = {
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 ≠ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(38𝑎)

 

𝑃𝑛𝑙 =
1

2𝜋
∫ 𝑝𝑛(𝜔̅𝐸𝑡̅)𝑒−𝑖𝑙𝜔̅𝐸𝑡𝑑(𝜔̅𝐸𝑡̅)
2𝜋

0
,⁡⁡⁡𝑄𝑛𝑙 =

1

2𝜋
∫ 𝑞𝑛(𝜔̅𝐸𝑡̅)𝑒−𝑖𝑙𝜔̅𝐸𝑡𝑑(𝜔̅𝐸𝑡̅)
2𝜋

0
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(38b) 
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𝑝𝑛(𝜔̅𝐸𝑡̅) = 𝜙(𝜔̅𝐸𝑡̅)[𝐴𝑖(𝛼𝑛)− 𝑖𝐵𝑖(𝛼𝑛)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(38𝑐) 

𝑞𝑛(𝜔̅𝐸𝑡̅) = 𝜙(𝜔̅𝐸𝑡̅)𝑧𝑛(𝜔̅𝐸𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(38𝑑) 

𝜙(𝜔̅𝐸𝑡)̅ = 𝑒
𝑖
𝐹1
2

4
𝑀̅−2𝑖(𝐹0+𝐹1𝑎0cos𝜙)𝐹1𝑁̅−𝑖

𝐹1
2

2𝜔̅𝐸
2 𝑅̅
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(38𝑒) 

𝑧𝑛(𝜔̅𝑡̅) = 𝐹̅1[𝐴𝑖(𝛼𝑛)− 𝑖𝐵𝑖(𝛼𝑛)]𝐺̅ + (𝐹̅0 + 𝐹̅1𝑎0cos𝜙)
1/3

[𝑖𝐴𝑖′(𝛼𝑛)+𝐵𝑖′(𝛼𝑛)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(38f) 

where 𝐺̅ = ∑
𝑎𝑛sin⁡(𝑛𝜔̅𝐸𝑡+𝜙)

𝑛𝜔̅𝐸

+∞
𝑛=−∞,𝑛≠0  , 𝑀̅̅̅ = ∑

𝑎𝑛
2 sin(2𝑛𝜔̅𝐸𝑡̅+2𝜙)+𝑎𝑛𝑎−𝑛 sin(2𝑛𝜔̅𝐸𝑡)

𝑛3𝜔̅𝐸
3

+∞
𝑛=−∞,𝑛≠0  , 𝑁̅ =

∑
𝑎𝑛sin⁡(𝑛𝜔̅𝐸𝑡̅+𝜙)

𝑛3𝜔̅𝐸
3

+∞
𝑛=−∞,𝑛≠0  , 𝑅̅ = ∑ ∑

𝑎𝑚𝑎𝑛
𝑚𝑛

{
sin⁡[(𝑛−𝑚)𝜔̅𝐸𝑡̅]

(𝑛−𝑚)𝜔̅𝐸
−

sin⁡[(𝑛+𝑚)𝜔̅𝐸𝑡̅+2𝜙]

(𝑛−𝑚)𝜔̅𝐸
}+∞

𝑚=−∞,𝑚≠0,𝑛,−𝑛
+∞
𝑛=−∞,𝑛≠0  , 

𝛼𝑛 = −(𝐹̅0+ 𝐹̅1𝑎0cos𝜙)
1/3

[
𝐸̅𝑛

𝐹̅0+𝐹̅1𝑎0cos𝜙
+ ∑

2𝐹̅1𝑎𝑙 cos(𝑙𝜔̅𝐸𝑡+𝜙)

𝑙
2
𝜔̅𝐸
2

+∞
𝑙=−∞,𝑙≠0 ] , and 𝐸̅𝑛 = 𝜀̅ + 𝑛𝜔̅𝐸 − 𝐸̅𝐹 −

𝑈̅𝑝− 1. Here, 𝑝𝑛(𝜔̅𝐸𝑡̅) and 𝑞𝑛(𝜔̅𝐸𝑡̅) in Equations (38c) and (38d) denote the phase factor of the 

nth-state wave function and of its spatial derivative at 𝑥̅ = 0, respectively. 𝑃𝑛𝑙 and 𝑄𝑛𝑙 are the lth 

Fourier coefficient of 𝑝𝑛(𝜔̅𝐸𝑡̅)  and 𝑞𝑛(𝜔̅𝐸𝑡̅) , respectively. Then, the transmission coefficient 𝑇𝑛 

(and reflection coefficient 𝑅𝑛) can be obtained from Equation (37). 

Following the probability current density 𝐽(𝑥, 𝑡) = (𝑖ℏ/2𝑚)(𝜓𝜕𝜓∗/𝜕𝑥 − 𝜓∗ ∂𝜓/𝜕𝑥) = (𝑖ℏ/

2𝑚𝑒)∑ ∑ (𝜓𝑛 ∂𝜓𝑙
∗/𝜕𝑥 − 𝜓𝑛

∗ ∂𝜓𝑙/𝜕𝑥)
∞
𝑙=−∞

∞
𝑛=−∞  , the normalized emission current density is 

defined as the ratio of the transmitted probability current density over the incident probability 

current density, 𝑤(𝜀, 𝑥, 𝑡) = 𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡). Thus, we obtain the normalized instantaneous 

photoemission current density, 

𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ Im[𝑒𝑖(𝑙−𝑛)𝜔̅𝐸𝑡̅𝑇𝑛𝑇𝑙

∗(𝐶̅ + 𝑖𝐷̅)]

∞

𝑙=−∞

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(39) 

where𝐶̅ = 𝐹̅1[𝐴𝑖(−𝜂̅𝑙)𝐵𝑖(−𝜂̅𝑛)−𝐴𝑖(−𝜂̅
𝑛
)𝐵𝑖(−𝜂̅

𝑙
)]𝐺̅ + (𝐹̅0 + 𝐹̅1𝑎0cos𝜙)

1/3
[𝐴𝑖(−𝜂̅𝑛)𝐴𝑖

′
(−𝜂̅

𝑙
)+

𝐵𝑖(−𝜂̅
𝑛
)𝐵𝑖′(−𝜂̅

𝑙
)] , 𝐷̅ = 𝐹̅1[𝐴𝑖(−𝜂̅𝑛)𝐴𝑖(−𝜂̅𝑙)+𝐵𝑖(−𝜂̅

𝑛
)𝐵𝑖(−𝜂̅

𝑙
)]𝐺̅ + (𝐹̅0 +
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𝐹̅1𝑎0cos𝜙)
1/3

[𝐴𝑖(−𝜂̅𝑛)𝐵𝑖
′
(−𝜂̅

𝑙
)−𝐵𝑖(−𝜂̅

𝑛
)𝐴𝑖′(−𝜂̅

𝑙
)],  𝐺̅ = ∑

𝑎𝑛sin⁡(𝑛𝜔̅𝐸𝑡+𝜙)

𝑛𝜔̅𝐸

+∞
𝑛=−∞,𝑛≠0  , and 𝜂̅

𝑛
=

(𝐹̅0 + 𝐹̅1𝑎0cos𝜙)
1/3

[
𝜀̅+𝑛𝜔̅𝐸−𝐸̅𝐹−𝑈̅𝑝−1

𝐹̅0+𝐹̅1𝑎0cos𝜙
+ ∑

2𝐹̅1𝑎𝑙 cos(𝑙𝜔̅𝐸𝑡+𝜙)

𝑙
2
𝜔̅𝐸
2

+∞
𝑙=−∞,𝑙≠0 + 𝑥̅] . The normalized time-

averaged photoemission current density over one laser pulse is defined as the ratio of the total 

emission charge density Q due to a single laser pulse and the length 𝜏𝑝, 

⁡⁡〈𝑤(𝜀)̅〉 =
𝑄

𝜏𝑝
= ∑ 〈𝑤𝑛(𝜀)̅〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)̅〉 = |𝑇𝑛|
2
(𝐹̅0 + 𝐹̅1𝑎0cos𝜙)

1/3

𝜋√𝜀̅

2𝐿

𝜏𝑝
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(40) 

where 〈𝑤𝑛(𝜀̅)〉 denotes the time-averaged emission current density through the 𝑛th channel, with 

emitted electron energy 𝜀 + 𝑛ℏ𝜔𝐸.  

For the special case of dc field 𝐹0 = 0 and CEP 𝜙 = π/2, the electron wave function for x ≥ 0 

is revised by displacing [𝐴𝑖(−𝜂
𝑙
)− 𝑖𝐵𝑖(−𝜂

𝑙
)]  in Equation (35) with exp{i[ 𝑥 +

∑
𝑒𝐹1𝑎𝑛 cos(𝑛𝜔𝐸𝑡+𝜙)

𝑛2𝜔𝐸
2𝑚𝑒

+∞
𝑛=−∞,𝑛≠0 ]√2𝑚𝑒𝐸𝑙/ℏ}. The transmission coefficient 𝑇𝑛 is still calculated from 

Equation (37) with 𝑃𝑛𝑙  and 𝑄𝑛𝑙  unchanged, but with 𝑝𝑛(𝜔𝑡) =

𝜙(𝜔̅𝐸𝑡̅)exp[𝑖√𝐸̅𝑛∑
2𝐹̅1𝑎𝑙 cos(𝑙𝜔̅𝐸𝑡+𝜙)

𝑙
2
𝜔̅𝐸
2

+∞
𝑙=−∞,𝑙≠0 ]  and 𝑞𝑛(𝜔𝑡) = 𝑝𝑛(𝜔𝑡)[√𝐸̅𝑛 + ∑

𝐹̅1𝑎𝑙 sin(𝑙𝜔̅𝐸𝑡+𝜙)

𝑙𝜔̅𝐸

+∞
𝑙=−∞,𝑙≠0 ] . 

The normalized photoemission current density becomes, 

𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ Im[𝑖𝑒𝑖(𝑙−𝑛)𝜔̅𝐸𝑡̅𝑇𝑛𝑇𝑙

∗𝐴̅𝑒𝑖𝐵̅]

∞

𝑙=−∞

∞

𝑛=−∞

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(41) 

〈𝑤(𝜀̅)〉= ∑ 〈𝑤𝑛(𝜀̅)〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀̅)〉 =

Re (|𝑇𝑛|2√𝐸̅𝑛)

√𝜀̅

2𝐿

𝜏𝑝
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(42) 

with 𝐴̅ = (√𝐸̅𝑙)
∗

+ ∑
𝐹̅1𝑎𝑚sin⁡(𝑚𝜔̅𝐸𝑡̅+𝜙)

𝑚𝜔̅𝐸

+∞
𝑚=−∞,𝑚≠0   and 𝐵̅ = [√𝐸̅𝑛− (√𝐸̅𝑙)

∗

](𝑥̅ +

∑
2𝐹̅1𝑎𝑚 cos(𝑚𝜔̅𝐸𝑡̅+𝜙)

𝑚2𝜔̅𝐸
2

+∞
𝑚=−∞,𝑚≠0  (see Appendix C for the method). 
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4.3 Results and Discussion 

For the calculation of this chapter, unless specified otherwise, the default value of the laser 

wavelength is 800 nm (or laser period 𝑇𝜔 of 2.67 fs), the cathode metal is assumed to be gold 

[6][11][76], with Fermi energy 𝐸𝐹 = 5.53 eV and work function W = 5.1 eV, the pulse width 𝜏𝑝 = 

8.8 fs (i.e., ~ 3 cycles), the laser pulse repetition period T = 267 fs (≫ 𝜏𝑝 to isolate a single laser 

pulse and avoid temporal interaction between adjacent laser pulses), the CEP 𝜙 = 0, the dc field 

𝐹0 = 1× 104  V/m and the peak laser field 𝐹1 = 1× 109  V/m. Since most of the electrons are 

emitted with initial energies near the Fermi level [6][76][86][87], we choose the electron initial 

energy 𝜀 = 𝐸𝐹 for simplicity.  

 

Figure 4.2: Effects of time separation 𝑇 between adjacent laser pulses on photoelectron energy 

spectra and total emission charge density Q. (a) Laser electric field for different 𝑇. From top to 

bottom, 𝑇 = 13, 29, 160, and 276 fs, corresponding to 𝑇/𝑇𝜔 = 5, 11, 60, and 100, respectively. (b) 

Energy spectra for different 𝑇. n𝜔 denotes the laser photon order (with single photon energy ℏ𝜔 = 

1.55 eV). (c) Q as a function of 𝑇/𝑇𝜔. The inset shows the magnification of (c) between 𝑇/𝑇𝜔 = 

9 and 30, where A, B, C and D denote 𝑇/𝑇𝜔 = 9, 11, 13 and 15 respectively. (d) Photoelectron 

energy spectra near the maximum at A, B, C and D in the inset of (c).  
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In Figure 4.2, we show the photoelectron energy spectra and total emission charge density Q (= 

〈𝑤〉𝜏𝑝) for various time intervals 𝑇 between adjacent laser pulses. It is found that as 𝑇 decreases, 

photoelectron emission is gradually confined to a smaller number of emission channels but with 

more electron yield, because of the decreasing frequency ratio between laser carrier 𝜔 and pulse 

repetition frequency 𝜔𝐸 (see Figure 4.2(b)). The interaction of consecutive laser pulses leads to 

the smearing of multiphoton absorption peaks (with respect to laser photon energy ℏ𝜔 ) in the 

photoelectron energy spectra envelope with decreasing 𝑇. Figure 4.2(c) shows that when 𝑇/𝑇𝜔 < 

9 the closely spaced laser pulse train induces a total emission charge Q per pulse that is 

significantly higher than that due to a well-separated single laser pulse. When 𝑇  increases, Q 

decreases and eventually becomes independent of 𝑇 when 𝑇/𝑇𝜔 > 60, indicating the laser pulses 

are well separated and the results may be regarded as that from a single laser pulse. It is interesting 

to note the oscillatory feature of Q in the range of 9 < 𝑇/𝑇𝜔 < 60 (see the inset of Figure 4.2(c)), 

due to the varying coherence interaction between neighboring pulses. Figure 4.2(d) compares the 

photoelectron energy spectra with different T in this oscillation regime (see A, B, C and D in the 

inset of Figure 4.2(c)), where both the peak electron emission yield and the dominant emission 

channel vary with T. 

We evaluate the effect of CEP 𝜙 on the photoelectron energy spectra and total emission current 

density 〈𝑤〉 for different pulse duration 𝜏𝑝 in Figure 4.3. For small 𝜏𝑝 (e.g., 4.4 fs, or 1.7 optical 

cycles), the spectral features are sinusoidally modulated with 𝜙  (see Figure 4.3(b)). This is 

consistent with the experimental observation of CEP modulation in photoemission spectra with a 

few-cycle laser pulse [13][54]. As pulse width 𝜏𝑝  increases, the CEP modulation on spectra 

becomes less pronounced, and the multiphoton peaks in spectra become narrower (see Figure 

4.3(c)), gradually approaching those from continuous-wave excitation [6]. The energy spectra for 
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small 𝜏𝑝  (= 4.4 fs) is enlarged in Figure 4.3(d), showing a higher electron yield and broader 

spectrum for 𝜙 = 0 than 𝜙 = 𝜋. Figures 4.3(e) and 4.3(f) show that CEP modulation is important 

for a short laser pulse up to 𝜏𝑝/𝑇𝜔 ~ 4 and the modulation of total photoemission current with 𝜙 

decreases for larger pulse width 𝜏𝑝.  

 

Figure 4.3: CEP modulation in energy spectra with different pulse duration 𝜏𝑝. (a) Laser electric 

field for different 𝜏𝑝 when CEP 𝜙 = 0 and 𝜋. (b) Energy spectra as a function of 𝜙 for different 

𝜏𝑝. (c) Extracted energy spectra of 𝜙 = 0 and 𝜋 from (b). (d) Linear plot of energy spectrum for 𝜏𝑝 

= 4.4 fs in (c). (e) Normalized current modulation magnitude Δ = (<w> - <w>ave)/<w>ave as a 

function of 𝜙 for different 𝜏𝑝. Here, <w>ave = (<w>max + <w>min)/2 denotes the averaged value of 

<w> with respect to 𝜙. (f) Current modulation depth Γ =(<w>max - <w>min)/(<w>max + <w>min) 

as a function of 𝜏𝑝.  

We next examine the CEP sensitivity of photoelectron emission charge Q under different laser 
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fields 𝐹1. As shown in Figures 4.4(a) and 4.4(b), in general, the CEP modulation on Q increases 

as 𝐹1 increases. Also, the position of 𝜙 for the maximum (or minimum) Q shifts when the laser 

field 𝐹1 increases for a fixed pulse duration 𝜏𝑝 (see the dashed lines in Figures 4.4(a) and 4.4(b)). 

To investigate the CEP sensitivity more closely, in Figure 4.4(c), we plot the difference between 

the maximum and minimum values of Q in the curves of Figures 4.4(a) and 4.4(b) as a function of 

𝐹1 . Following Reference [55], by fitting the Q vs 𝜙  curves with a sinusoidal function of 

cos(𝜙+∠Q), we can identify the phase shift of the maximum Q with 𝐹1, as shown in Figure 4.4(d). 

We see a pronounced dip in Qmax-Qmin at large laser field 𝐹1 = 9 V/nm for both cases of 𝜏𝑝 = 4.7 

and 8.8 fs, and for 𝜏𝑝 = 8.8 fs another dip appearing at 𝐹1=5 V/nm (see Figure 4.4(c)). From Figure 

4.4(d), phase shifts of 𝜋 in 𝜙 are found near these dips. These behaviors agree very well with the 

varnishing CEP sensitivity of photoemission accompanied by a 𝜋 phase shift in the optical-field 

regime observed in recent experiments [55].  

 

Figure 4.4: CEP sensitivity of total emission charge density Q under different laser fields 𝐹1. (a),(b) 

Difference between Q and its averaged value Qave as a function of 𝜙 for different 𝐹1 with pulse 

duration (a) 𝜏𝑝 = 4.7 fs and (b) 𝜏𝑝 = 8.8 fs. For a given 𝐹1, Qave = (Qmax + Qmin)/2. Dashed lines 

indicate the shift of the phase for the CEP modulation. (c) Difference between the maximum and 

minimum values of charge Qmax-Qmin in the curves of (a) and (b), as a function 𝐹1 for different 𝜏𝑝. 

Points A, B and C denote 𝐹1 = 7, 9, and 10 V/nm, respectively. (d) Photoemission charge phase 

∠Q as a function of 𝐹1 for different 𝜏𝑝. ∠Q is obtained by using Bcos(𝜙+∠Q) to fit the curves in 

(a) and (b), with B = Qmax-Qmin.   
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Figure 4.5: Time-dependent emission current density w(t) at the surface (𝑥̅ = 0 , with surface 

oscillatory current excluded) as a function of time t for pulse duration 𝜏𝑝 = 4.7 fs at CEP 𝜙 when 

Qmax (top row) or Qmin (bottom row) occurs, under different laser fields at (a),(b) 𝐹1 = 7⁡V/nm; 

(c),(d) 𝐹1 = 9 V/nm; and (e),(f) 𝐹1 = 10⁡V/nm. The values of laser field 𝐹1 correspond to case A, 

B and C in Figure 4.4(c), respectively. The value of CEP 𝜙  in each panel corresponds to the 

occurrence of Qmax (top row) or Qmin (bottom row) in Figure 4.4(a). The blue lines are for emission 

current density, red lines for laser field, and black dotted lines for laser pulse envelope. The optical 

half cycles of the laser field in (a), (b), (e), (f) are numbered as 0, ±1, ±2 and ±3, with “0” being 

the center cycle with the highest peak. Only positive optical half cycles are shown. 

To uncover the physical origin of the vanishing CEP sensitivity behavior and the CEP phase 

shift in the photoemission charge, we plot the time-dependent electron emission current density 

w(t) at the surface (𝑥̅ = 0) as a function of time, under different laser fields 𝐹1 and CEP 𝜙 for 𝜏𝑝 

= 4.7 fs, as shown in Figure 4.5. The laser field strengths of 7, 9, and 10 V/nm used in Figure 4.5 

correspond to cases A, B and C in Figure 4.4(c), respectively. By observing these time-dependent 

current pulses, it is clear that electron emission starts at the beginning of each positive half cycle 

in a given laser field pulse. When 𝐹1 = 7 V/nm (case A before the dip in CEP sensitivity in Figure 

4.4(c)), even-numbered positive optical half cycles (Figure 4.5(a)) drive more photoelectron 

emission than odd-numbered positive optical half cycles (Figure 4.5(b)). However, as the laser 
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field 𝐹1 is increased to 10 V/nm (case C after the dip in CEP sensitivity in Figure 4.4(c)), odd-

numbered positive half cycles trigger more electron emission than even-numbered cycles (cf. 

Figures. 4.5(e) and 4.5(f)). This indicates in the strong field regime, there exists a competition 

between even and odd positive half-cycle contributions to photoelectron emission, and thus a 𝜋 

phase shift in 𝜙 as shown in Figure 4.4(d), with varying CEP. At 𝐹1 = 9 V/nm (case B at the dip 

in CEP sensitivity in Figure 4.4(c)), Qmax-Qmin becomes minimal, where Qmax and Qmin occur at 

𝜙 = 1.6𝜋 and 0.4𝜋, respectively. The competition between electron emission from neighboring 

positive optical half cycles also leads to the dips in CEP sensitivity and phase shifts at 𝐹1 = 5 V/nm 

and 9 V/nm for 𝜏𝑝 = 8.8 fs in Figures 4.4(c) and 4.4(d).  

It is important to note that, for clarity, we plot in Figure 4.5 only the emitted current density that 

eventually escapes from the surface, whereas the local strong oscillatory current density near the 

surface typically associated with photoemission (e.g. see Figures 4.6(a) and 4.6(b) below, and also 

References [6][61][62][76][109][110]) is filtered out. This is possible in our exact analytical 

calculation using Equation (39), by excluding the high n-order (and l-order) terms, which is 

verified to give the strong oscillatory surface currents only. This is also consistent with previous 

study that the high energy regime in the photoelectron spectra is due to surface oscillations and 

rescattering (cf. Figure 4 in Reference [109]).  

It is also noteworthy that, though electron emission starts at the beginning of every positive 

optical half cycles in the laser pulse, there is typically a time delay between the peak of the positive 

optical half cycle and the peak of the emission current pulse, as seen in Figure 4.5. Furthermore, a 

stronger positive optical half cycle does not necessarily lead to a higher current pulse emission, 

which, however, depends strongly on the emission from neighboring half cycles in a laser pulse. 

These observations indicate that further examination is needed on the validity of the widely used 
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Fowler-Nordheim rate equations, in which current emission follows closely the optical positive 

half cycles, to study the CEP sensitive, time-dependent strong-field photoemission [55].  

 

Figure 4.6: Total time-dependent emission current density w(𝑥̅, t) under the dc field 𝐹0 = 1 × 104 

V/m and 1 × 109 V/m. (a),(b) w(𝑥̅, t) including surface oscillation currents as a function of the 

space 𝑥̅ and time t. Solid white lines show the corresponding classical trajectories. Dotted white 

lines show the positive half cycles of the laser electric field. (c),(d) Emission current density w(t) 

at 𝑥̅ = 50 and 100, as a function of time t. The time-dependent current in all figures is normalized 

in terms of the time-averaged emission current 〈𝑤〉. Here, the laser pulse duration 𝜏𝑝 = 8.8 fs and 

the peak laser field 𝐹1 = 1  V/nm. When 𝐹0 = 1 × 104  V/m, 〈𝑤〉  = 2.5× 10−11 ; When 𝐹0 =
1 × 109 V/m, 〈𝑤〉 = 2.1 × 10−7.  

In Figure 4.6, we plot the total time-dependent photoemission current density w(𝑥̅, t), including 

oscillatory surface currents, as a function of the space 𝑥̅ and time t under different dc bias. The 

strong oscillatory surface currents are confined to the very limited region near the surface only. It 

is found that increasing the dc field from 𝐹0 = 1× 104 V/m to 1 × 109 V/m increases the time-

averaged emission current density from 〈𝑤〉 = 2.5× 10−11 to 2.1 × 10−7. More importantly, the 
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emission current pulse is significantly shortened (from 19.7 fs to 4.8 fs of FWHM at 𝑥̅ = 50). Also, 

due to the strong acceleration of the larger 𝐹0 , the shape of the pulse is retained (without 

consideration of space charge effect) as the current pulse travels further from the surface (see 

Figure 4.6(d)). This may provide a practical way to shorten the photoemission current pulse by 

simply adding a large dc bias. The solid white lines are the corresponding classical trajectories 

[76], showing good agreement with the electron dynamics from our quantum model. Note because 

of the relatively small optical field used, the trajectories of the emitted photoelectrons in Figure 

4.6(a) show fewer oscillatory features compared to those cases with strong laser fields (cf. Figure 

3 of Reference [110]). This is due to the weaker backpropagation and acceleration processes of 

emitted electrons (i.e., smaller quiver motion) under weak laser electric fields. When adding a 

strong dc bias, most of electrons are able to escape from the metal surface with negligible quiver 

motion, as shown in Figure 4.6(b), similar to the DC field emission process. The classical 

trajectories in Figures 4.6(a) and 4.6(b) suggest that, in Figure 6(c), the narrow current peak is due 

to electron emission by the left-to-center and the center positive optical half cycles, and the broad 

peak is driven by the right-to-center positive optical half cycle. In Figure 4.6(d), the single 

dominant current peak is mainly driven by the center positive optical half cycle of the laser field 

under strong dc bias. 

4.4 Conclusion 

In this chapter, we present a quantum analytical solution for few-cycle photoelectron emission 

from a dc-biased surface induced by Gaussian laser pulses, by solving the TDSE. Our exact model 

is valid for arbitrary pulse length from sub-cycle to CW excitation, and for arbitrary pulse 

repetition rate. Our calculations show the emitted charge per pulse oscillatorily increases as the 

laser pulse separation decreases due to varying coherence interaction of neighboring laser pulses. 
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Our results recover the experimentally measured features of sinusoidal CEP modulation to 

photoelectron emission and varnishing CEP sensitivity with a 𝜋 phase shift in optical-field regime 

under strong optical fields. Moreover, we find adding a large dc field greatly enhances the 

photoelectron current and shortens the current pulse.  
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CHAPTER 5  

PHOTOELECTRON EMISSION IN A NANOSCALE GAP 

5.1 Introduction 

Due to the promise for potential applications to ultrafast and highly sensitive photodetection in the 

room temperature, laser-driven electron emission in the nanometer-scale two-tip junctions has 

drawn strong recent interests [17][20][23][63]–[66][111]. Rybka et al. [17] reported laser-induced 

sub-femtosecond photoelectron tunneling in a nanoscale metal-vacuum-metal gap. Higuchi et 

al. [63] explored the rectification effect of dc-biased two-metal-nanotip junction in ultrafast 

multiphoton photoemission. Ludwig et al. [23] presented the strong dependence of dynamics of 

nanoscale electron transport between two metal tips on the temporal profile of driving laser pulses. 

Turchetti et al. [66] studied the impact of dc bias on photoemission from metal surfaces 

surrounding a nano-vacuum gap. Typically, numerical solutions of the time-dependent density 

function theory [23][64][65][112][113] and Schrödinger equation [66][114] are implemented to 

study the photoemission properties in nanoscale gaps, but the underlying physics for the interplays 

between electron emission process, laser field, gap size and materials is not always transparent, 

especially when transitioning among different emission regimes.  

In this chapter, by exactly solving the TDSE, we present analytical models for nonlinear ultrafast 

electron emission and dynamics in a nanoscale metal-vacuum-metal junction without and with dc 

bias driven by a single-frequency laser field. Using the analytical formulation, we investigate the 

photoelectron transport with various gap distances, laser intensities, wavelengths, dc bias and 

metal materials. Our results provide clear insights to the energy distribution of emitted 

photoelectron and spatiotemporal emission dynamics inside the metal-vacuum-metal junction. Part 
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of the material of this chapter is submitted to Optics Letters and another journal article is also 

planned. 

5.2 Photoelectron Transport without DC Bias 

5.2.1 Analytical Model 

Our one-dimensional (1D) model (see Figure 5.1) considers electrons with initial energy 𝜀 emitted 

from the surface at x = 0, under the action of laser field 𝐹1cos⁡(𝜔𝑡), where 𝐹1 is the amplitude of 

the laser field and 𝜔 is the angular frequency. The laser field is assumed to be perpendicular to the 

flat emitter surface, and cuts off abruptly at the surface [6][66], thus the time-dependent potential 

energy in the entire regime reads [6][61][62][74][106], 

Φ(𝑥, 𝑡) = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0
𝐸𝐹 +𝑊 − 𝑒𝐹1𝑥𝑐𝑜𝑠(𝜔𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑥 < 𝑑

−𝑒𝐹1𝑑cos(𝜔𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 𝑑,
                               (43) 

where 𝐸𝐹 and 𝑊 are the Fermi energy and work function of the left metal respectively, and 𝑒 is 

the elementary charge.  

By solving the TDSE subjected to the potential energy given in Equation (43), the electron wave 

function for 𝑥 < 0 is found to be, 

𝜓(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅𝑛 exp (−𝑖

𝜀 + 𝑛ℏ𝜔

ℏ
𝑡 − 𝑖𝑘𝑛𝑥)

∞

𝑛=−∞

, 𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(44) 

which denotes the superposition of an incident plane wave with initial energy 𝜀  and a set of 

reflected plane waves with reflection coefficient 𝑅𝑛  and energies 𝜀 + 𝑛ℏ𝜔 , where the 

wavenumber 𝑘0 = √2𝑚𝑒𝜀/ℏ2 and 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔)/ℏ2.  

For 0 ≤ 𝑥 < 𝑑 (in the gap), the exact solution of electron wave function is (see Appendix D for 

the method), 
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Figure 5.1: Energy diagram for photoelectron emission in a nanoscale metal-vacuum-metal 

junction under a single-frequency laser field. Electrons with the initial energy 𝜀 are emitted from 

the surface at x = 0, with an energy of 𝜀 + 𝑛ℏ𝜔, due to n-photon contribution. Here, by symmetry, 

electron emission from the surface at x = d can be modeled in the same way (but with an opposite 

sign of instantaneous laser field).   

𝜓(𝑥, 𝑡) = ∑ exp [−𝑖
𝜀 + 𝑛ℏ𝜔

ℏ
𝑡]

∞

𝑛=−∞

exp [
𝑖𝑥𝑒𝐹1 sin(𝜔𝑡)

ℏ𝜔
+
𝑖𝑒2𝐹1

2 sin(2𝜔𝑡)

8𝑚𝑒ℏ𝜔3
] × 

{𝑇1𝑛 exp [𝑖√
2𝑚𝑒𝐸𝑛

ℏ2
(𝑥 +

𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2 )] + 𝑇2𝑛 exp [−𝑖√
2𝑚𝑒𝐸𝑛

ℏ2
(𝑥 +

𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2 )]} , 0 ≤ 𝑥 < 𝑑⁡⁡⁡(45) 

which shows the superposition of a set of electron waves travelling towards +x direction with 

coefficient 𝑇1𝑛 and towards -x direction with coefficient 𝑇2𝑛 inside the gap, where the drift kinetic 

energy 𝐸𝑛 = 𝜀 + 𝑛ℏ𝜔 − 𝐸𝐹 −𝑊 −𝑈𝑝, and the ponderomotive energy 𝑈𝑝 = 𝑒2𝐹1
2/4𝑚𝑒𝜔

2.  

For x ≥ d, an exact solution of electron wave function is easily obtained, 

𝜓(𝑥, 𝑡) = ∑ 𝑇3𝑛 exp (−𝑖
𝜀 + 𝑛ℏ𝜔

ℏ
𝑡) exp [𝑖𝑘𝑛𝑥 + 𝑖

𝑒𝐹1𝑑sin(𝜔𝑡)

ℏ𝜔
]

∞

𝑛=−∞

, 𝑥 ≥ 𝑑⁡⁡⁡⁡⁡⁡⁡⁡(46) 

which represents the superposition of transmitted electron plane waves with energies 𝜀 + 𝑛ℏ𝜔, 

due to multiphoton absorption (n>0), direct tunneling (n=0) and multiphoton emission (n<0) 

[6][76], where the wavenumber 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔)/ℏ2  and 𝑇3𝑛  is the transmission 

coefficient. 
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By imposing the boundary conditions that both the electron wave function 𝜓(𝑥, 𝑡)  and its 

derivative 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥 are continuous at x = 0 and x = d, and taking Fourier transform, we obtain, 

in nondimensional quantities [6][61][62], 𝜀̅ = 𝜀/𝑊 , 𝜔̅ = 𝜔ℏ/𝑊 , 𝑡̅ = 𝑡𝑊/ℏ, 𝐸̅𝐹 = 𝐸𝐹/𝑊 , 𝑥̅ =

𝑥/𝜆0, 𝑑̅ = 𝑑/𝜆0, 𝜆0 = √ℏ2/2𝑚𝑒𝑊, 𝐹̅1 = 𝐹1𝑒𝜆0/𝑊, 𝑈̅𝑝 = 𝑈𝑝/𝑊, the following equations,  

∑ 𝑇1𝑛

∞

𝑛=−∞

[√𝜀̅ + 𝑚𝜔̅𝑃1𝑛(𝑛−𝑚) + 𝑄1𝑛(𝑛−𝑚)] + 𝑇2𝑛[√𝜀̅ + 𝑚𝜔̅𝑃2𝑛(𝑛−𝑚) + 𝑄2𝑛(𝑛−𝑚)]

= 2√𝜀𝛿̅(𝑚)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(47) 

∑ [√𝜀̅ + 𝑚𝜔̅𝑈1𝑛(𝑛−𝑚) − 𝑉1𝑛(𝑛−𝑚)]𝑇1𝑛

∞

𝑛=−∞

+ [√𝜀̅ + 𝑚𝜔̅𝑈2𝑛(𝑛−𝑚) − 𝑉2𝑛(𝑛−𝑚)]𝑇2𝑛 = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(48) 

∑ 𝑇1𝑛

∞

𝑛=−∞

𝑈1𝑛(𝑛−𝑚) + 𝑇2𝑛𝑈2𝑛(𝑛−𝑚) =⁡𝑇3𝑚exp(𝑖𝑑̅√𝜀̅ + 𝑚𝜔̅)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(49) 

where 𝛿(𝑚) , 𝑃1𝑛(𝑛−𝑚) , 𝑄1𝑛(𝑛−𝑚) , 𝑃2𝑛(𝑛−𝑚) , 𝑄2𝑛(𝑛−𝑚) , 𝑈1𝑛(𝑛−𝑚) , 𝑉1𝑛(𝑛−𝑙) , 𝑈2𝑛(𝑛−𝑚) , and 

𝑉2𝑛(𝑛−𝑙) are given by, 

𝛿(𝑚) = {
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 ≠ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑎)

 

𝑃1𝑛𝑙 =
1

2𝜋
∫ 𝑝1𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑄1𝑛𝑙 =
1

2𝜋
∫ 𝑞1𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50b) 

𝑃2𝑛𝑙 =
1

2𝜋
∫ 𝑝2𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑄2𝑛𝑙 =
1

2𝜋
∫ 𝑞2𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50c) 

𝑝1𝑛(𝜔̅𝑡)̅ = e
𝑖
2√𝐸̅𝑛𝐹1
𝜔̅2 cos(𝜔̅𝑡̅)

𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑑) 

𝑞1𝑛(𝜔̅𝑡)̅ = [√𝐸̅𝑛 +
𝐹̅1
𝜔̅
sin(𝜔̅𝑡)̅] 𝑝1𝑛(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑒) 

𝑝2𝑛(𝜔̅𝑡)̅ = e
−𝑖
2√𝐸̅𝑛𝐹1
𝜔̅2 cos(𝜔̅𝑡̅)

𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑓) 

𝑞2𝑛(𝜔̅𝑡̅) = [
𝐹̅1
𝜔̅
sin(𝜔̅𝑡)̅ − √𝐸̅𝑛] 𝑝2𝑛(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑔) 
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𝑓(𝜔̅𝑡)̅ = e
𝑖
𝐹1

2

4𝜔̅3 sin(2𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50ℎ) 

𝑈1𝑛𝑙 = 𝑃1𝑛𝑙e
𝑖⁡√𝐸̅𝑛⁡𝑑̅, 𝑉1𝑛𝑙 = 𝑄1𝑛𝑙e

𝑖⁡√𝐸̅𝑛⁡𝑑̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑖) 

𝑈2𝑛𝑙 = 𝑃2𝑛𝑙e
−𝑖⁡√𝐸̅𝑛⁡𝑑̅,⁡⁡⁡⁡⁡𝑉2𝑛𝑙 = 𝑄2𝑛𝑙e

−𝑖⁡√𝐸̅𝑛⁡𝑑̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(50𝑗) 

with 𝐸̅𝑛 = 𝜀̅ + 𝑛𝜔̅ − 𝐸̅𝐹 − 𝑈̅𝑝 − 1. The coefficients 𝑇1𝑛, 𝑇2𝑛, and 𝑇3𝑛 (and therefore 𝑅𝑛) is then 

calculated from Equations (47), (48) and (49).  

The normalized transmitted current density is defined as the ratio of the transmitted probability 

current density over the incident probability current density, 𝑤(𝜀, 𝑥, 𝑡) = 𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡), 

where the probability current density 𝑗(𝑥, 𝑡) = (𝑖ℏ/2𝑚𝑒)(𝜓∇𝜓
∗ − 𝜓∗∇𝜓) = (𝑖ℏ/

2𝑚𝑒)∑ ∑ (𝜓𝑛∇𝜓𝑙
∗ − 𝜓𝑛

∗∇𝜓𝑙)
∞
𝑙=−∞

∞
𝑛=−∞ . Thus, the normalized instantaneous current density inside 

the gap (0 < x < d) is, 

𝑤(𝜀,̅ 𝑥̅, 𝑡)̅ =
1

√𝜀̅
∑ ∑ 𝑅𝑒 {e𝑖⁡(𝑙−𝑛)𝜔̅𝑡̅

∞

𝑙=−∞

∞

𝑛=−∞

× {𝑇1𝑛𝑇1𝑙
∗𝐷1 + 𝑇1𝑛𝑇2𝑙

∗ 𝐷2 + 𝑇2𝑛𝑇1𝑙
∗𝐷3 + 𝑇2𝑛𝑇2𝑙

∗ 𝐷4}}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(51) 

where 𝐷1 = exp [𝑖 (√𝐸̅𝑛 − (√𝐸̅𝑙)
∗

) (𝑥̅ +
2𝐹1 cos(𝜔̅𝑡̅)

𝜔̅2 )] [(√𝐸̅𝑙)
∗

+
𝐹1 sin(𝜔̅𝑡̅)

𝜔̅
] , 𝐷2 =

−exp [𝑖 (√𝐸̅𝑛 + (√𝐸̅𝑙)
∗

) (𝑥̅ +
2𝐹1 cos(𝜔̅𝑡̅)

𝜔̅2 )] [(√𝐸̅𝑙)
∗

−
𝐹1 sin(𝜔̅𝑡̅)

𝜔̅
] , 𝐷3 = exp [−𝑖 (√𝐸̅𝑛 +

(√𝐸̅𝑙)
∗

) (𝑥̅ +
2𝐹1 cos(𝜔̅𝑡̅)

𝜔̅2 )] [(√𝐸̅𝑙)
∗

+
𝐹1 sin(𝜔̅𝑡̅)

𝜔̅
] , and 𝐷4 = −exp [𝑖 ((√𝐸̅𝑙)

∗

−√𝐸̅𝑛) (𝑥̅ +

2𝐹1 cos(𝜔̅𝑡̅)

𝜔̅2
)] [(√𝐸̅𝑙)

∗

−
𝐹1 sin(𝜔̅𝑡̅)

𝜔̅
]. The corresponding time-averaged emission current density is 

obtained from the numerical integration of Equation (52) over time,  

〈𝑤(𝜀)̅〉 =
1

2𝜋
∫ 𝑤(𝜀,̅ 𝑥̅, 𝑡̅)𝑑(𝜔̅𝑡̅)
2𝜋

0

.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(52) 

In the metal on the right-hand side (x > d), the normalized instantaneous transmitted current 

density is found as, 
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𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ 𝑅𝑒{e𝑖⁡(𝑙−𝑛)𝜔̅𝑡̅𝑇3𝑛𝑇3𝑙

∗ 𝐷},
∞

𝑙=−∞

∞

𝑛=−∞
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(53) 

where 𝐷 = e𝑖⁡[√𝜀̅+𝑛𝜔̅−(√𝜀̅+𝑙𝜔̅)
∗]𝑥̅(√𝜀̅ + 𝑙𝜔̅)∗. The time-averaged transmitted current density is, 

〈𝑤(𝜀)̅〉 = ∑ 〈𝑤𝑛(𝜀)̅〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)̅〉 = Re(|𝑇3𝑛|
2√1 + 𝑛𝜔̅/𝜀)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(54) 

where 〈𝑤𝑛〉 represents the time-averaged transmitted current density through 𝑛-photon process, 

with transmitted electrons of energy 𝜀 + 𝑛ℏ𝜔 [6,76]. Due to current continuity, the time-averaged 

current density obtained from Equation (52) and Equation (54) are equal, which has been verified 

in our calculations. 

5.2.2 Results and Discussion 

Using the analytical solution presented above, we analyze the photoelectron emission properties 

under different combinations of gap distances and laser fields. Unless mentioned otherwise, the 

default value of the laser wavelength is 800 nm (ℏω = 1.55 eV), the metals on both sides of the 

gap are assumed to be gold [17][20][65][111], with Fermi energy 𝐸𝐹 = 5.53 eV and work function 

W = 5.1 eV, and the photoemission current is calculated from Equation (54). Since most of the 

electrons are emitted with initial energies near the Fermi level [6][76][86][87], we choose the 

electron initial energy 𝜀 = 𝐸𝐹 for simplicity.  

Figure 5.2(a) shows the dependence of total time-averaged transmitted current density 〈𝑤〉 on 

the gap distance d under different laser fields 𝐹1. When the laser field is off (i.e., 𝐹1 = 0), the 

current 〈𝑤〉  is contributed only by direct tunneling, which rapidly decreases as gap distance 

increases. After applying a laser field, the current 〈𝑤〉 decreases initially as 𝑑 increases, closely 

following the scaling for the case of 𝐹1 = 0, where direct tunneling dominates. As 𝑑 increases 

further, for a given laser field, the current 〈𝑤〉 oscillates around a constant value (cf. the dashed 
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lines), which is found to be the photoemission current from a single metal surface (i.e., when the 

metal on the right-hand side in Figure 5.1 is removed). The oscillation behavior is attributed to the 

interference of electron waves inside the gap due to reflections from the metal-vacuum interfaces, 

for various gap distances d. Here, we ignore the effects of image charge and space charge, thus the 

oscillation amplitude of 〈𝑤〉  remains almost unchanged with increasing d. This oscillation 

behavior is similar to that found in field emission from dielectric coated surfaces [115][116]. The 

quantum interference of electron waves is also demonstrated experimentally in Reference [13], 

where the distinct peaks in energy spectra arise from the interference of electron waves re-

scattering at the emitter tip. Figure 5.2(b) shows the energy spectra for photoelectrons transmitted 

into the right-side metal for different gap distances d and laser fields 𝐹1. It can be seen that for a 

smaller laser field (𝐹1 = 1 V/nm), as d decreases, the dominant emission shifts from four-photon  

 

Figure 5.2: Normalized time-averaged photoemission current density under various gap sizes and 

laser fields. (a) Total emission current density 〈𝑤〉 as a function of gap distance d for different laser 

fields 𝐹1. Dashed lines denote the emission current density from a single surface when the metal 

on the right-hand side in Figure 5.1 is removed, which is obtained from Reference [6]. (b) Energy 

spectra for photoelectrons transmitted into the metal on the right-hand side for different d and 𝐹1. 

(c) Photoelectron energy spectra for electrons inside the vacuum gap and in the metal on the right-

hand side under different 𝐹1 for d = 2 nm. For the curves for photoelectrons inside the gap, white-

filled diamond markers denote the absolute value of negative emission current density 〈𝑤𝑛〉 
through the nth channel. 
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over-barrier emission (n = 4, cf. the ratio of metal work function over single photon energy 

W/ℏ𝜔 ≈ 3.29) to tunneling emission (n < 4). As laser field increases (𝐹1 = 4 V/nm and 8 V/nm), 

this shift of the dominant emission process becomes less prominent, because the potential barrier 

inside the gap becomes less sensitive to the gap distance 𝑑 under strong laser fields.  

Figure 5.2(c) compares the energy spectra for photoelectrons inside the gap and in the right-side 

metal for d = 2 nm. It is found that although the total emission current 〈𝑤〉 is equal in these two 

regions, the energy distribution of photoelectrons is quite different. In particular, the time-averaged 

current densities for all n-photon channels are positive in the right-side metal, while some of them 

are negative inside the gap (see the open diamond markers in Figure 5.2(c)). Negative value of 

〈𝑤𝑛〉 means electrons excited through those n-photon processes are reflected backwards inside the 

gap. Additionally, n-photon processes with 𝑛 < 4 contribute more significantly for transmitted 

electrons in the right-side metal than those inside the gap, which becomes more pronounced for 

larger laser intensity.  

In Figure 5.3(a), we plot the total time-averaged emission current density 〈𝑤〉 as a function of 

laser field 𝐹1 with various gap distances d. For the vacuum gap with d ≤ 1 nm, the slope of 〈𝑤〉 

increases with 𝐹1 , indicating the dominant emission process shifts to higher order n-photon 

absorption. This is consistent with the results shown in Figure 5.2(b). For the cases with larger gap 

distances, the slope of 〈𝑤〉  becomes insensitive to the gap distance 𝑑  and follows that of 

photoemission current from a single metal surface. The scale approaches 〈𝑤〉 ∝ 𝐹1
2𝑛 with n = 4, 

indicating four-photon absorption dominates the emission process. Figure 5.3(b) displays the 

difference between the total emission current in a nanogap and emission current from a single 

surface 〈𝑤〉 − 〈𝑤〉SS, where the difference becomes more pronounced in the larger laser intensity 

regime. Besides, it is interesting to find that the location of channel-closing-induced drop of 
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Figure 5.3: (a) Normalized total time-averaged emission current density 〈𝑤〉 and (b) difference 

between total emission current 〈𝑤〉 and emission current from a single surface 〈𝑤〉SSas a function 

of laser field 𝐹1  for different gap distances d. The single surface case 〈𝑤〉SS  is obtained from 

Reference [6]. The dashed line in (a) denotes the scale of 〈𝑤〉 ∝ 𝐹1
2𝑛 with n = 4. (c) Emission 

current density 〈𝑤〉 as a function of laser field 𝐹1 for gap spacing d = 3, 5, and 11 nm. Here, laser 

field regimes are labeled with n = 4 and n = 5 (cf. the areas filled with different colors), which 

means the dominant emission process in this field regime is four- or five- photon absorption.   

emission current density 〈𝑤〉 (i.e., the location of transition between the dominant four- and five- 

photon absorption in Figure 5.3(c), determined by observing the shift of the peak of the emitted 

electron energy spectra) shifts to larger laser field 𝐹1 for smaller gap distance d. This indicates that 

decreasing the gap distance (before entering the direct tunneling regime) can extend the 

multiphoton regime to higher laser intensity. This may be explained by the fact that the shape of 

the potential barrier becomes less sensitive to the laser field strength for a smaller gap distance, 

thus allowing the dominant n-photon process to remain over a larger range of laser fields (or laser 

intensities).   

Figure 5.4 shows the time-dependent current density 𝑤(𝑥, 𝑡) as a function of space 𝑥 and time 

t for different combinations of laser field 𝐹1 and gap distance d. It is seen that, besides the surface 

oscillation current near the metal-vacuum interface at 𝑥 = 0, some electrons are back reflected 

from the vacuum-metal interface at 𝑥 = 𝑑 into the vacuum gap approximately at the beginning of  
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Figure 5.4: Total time-dependent current density 𝑤(𝑥, 𝑡) as a function of time t and space x, under 

various laser fields 𝐹1 and gap distances d. Here, the time-dependent current density 𝑤(𝑥, 𝑡) is 

normalized in terms of the time-averaged current density 〈𝑤〉. In all figures, the units of 𝐹1 and d 

are V/nm and nm, respectively. The dotted lines show the position of 𝑥 = 𝑑. 

second half cycle of the laser fields (i.e., 𝜔𝑡 = 𝜋). This is shown by the change of 𝑤(𝑥, 𝑡) from 

red to dark blue around 𝜔𝑡 = 𝜋 in Figures 5.4(e), 5.4(f), 5.4(h) and 5.4(i), where the red region 

denotes positive current density propagates in the +x direction and the dark blue region in -x 

direction. As the gap distance d increases, more interference patterns of current density 𝑤(𝑥, 𝑡) 

inside the gap are formed. The full width at half maximum (FWHM) of the emission current pulse 

is about 0.63 fs, which is greatly shorter than laser period of 2.67 fs. 

We examine the total emission current density 〈𝑤〉 as a function of gap distance d for different 

incident wavelengths in Figure 5.5(a) and for metals with various work functions in Figure 5.5(b). 

It is found that the oscillation amplitude of 〈𝑤〉 increases when the laser photon energy ℏ𝜔 (∝

1/𝜆, with 𝜆 being the laser wavelength) becomes closer to the metal work function 𝑊, indicating 
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stronger interference of electron waves inside the gap when 𝑊/ℏ𝜔 → 1. Figures 5.5(c) and 5.5(d) 

show the photoelectron energy spectra for different laser wavelengths in Figure 5.5(a) and for 

different metals in Figure 5.5(b) with d = 2 nm, respectively. The shift of the dominant emission 

to larger n-photon process is due to the increasing ratio of 𝑊/ℏ𝜔.  

 

Figure 5.5: Normalized total time-averaged emission current density 〈𝑤〉  as a function of gap 

distance d for various (a) laser wavelengths and (b) metal materials. Photoelectron energy spectra 

for different (c) laser wavelengths and (d) metals, for d = 2 nm. In (a) and (c), the metal is assumed 

to be gold. In (b) and (d), the incident wavelength is 800 nm. The work function of different 

materials is WAg = 4.26 eV [107], WW = 4.31 eV [106], WMo = 4.6 eV [107], WCu = 4.65 eV [107], 

and WAu = 5.1 eV [6][107]. The laser field 𝐹1 is fixed as 4 V/nm for all the cases.  

5.2.3 Summary on Photoelectron Transport without DC Bias 

In this section, we present an analytical solution for photoelectron emission and transport in a 

nanoscale metal-vacuum-metal junction driven by a single-frequency laser field, by exactly 

solving the time-dependent Schrödinger equation. The analytical model is valid for arbitrary gap 

distance, laser intensity, wavelength and metal work function and Fermi level. Our calculation 

exhibits the transition from direct tunneling to multiphoton induced electron emission and the 
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oscillatory dependence of photoemission current on the gap distance in the multiphoton regime. 

Our results demonstrate the energy redistribution of emitted photoelectrons across the two 

interfaces of the nanogap. We also find that decreasing the gap distance (but before transiting into 

the direct tunneling regime) can extend the multiphoton regime to higher laser intensity. The 

nonlinear effects of laser wavelength and materials on the gap-size dependence are examined.  

5.3 Photoelectron Transport with DC Bias 

5.3.1 Analytical model 

With the external applied dc voltage V shown in Figure 5.6(a), the symmetry of the metal-vacuum-

metal system is broken, which means under the same illumination condition, the left and right 

metal surfaces of the nanogap in Figure 5.6(a) have different photoemission properties. Therefore, 

we analytically model photoelectron emission from the left and right metal surfaces, respectively. 

 

Figure 5.6: (a) Schematic of metal-vacuum-metal nanogap with a dc bias V under the illumination 

of laser field. d is the gap distance. (b) Energy diagram for photoelectron emission from left metal-

vacuum interface of the gap in (a). Electrons with the initial energy 𝜀 would see a potential barrier 

subjected to a positive dc electric field 𝐹0 = 𝑉/𝑑 (> 0) and laser field 𝐹1cos⁡(𝜔𝑡). (c) Energy 

diagram for photoelectron emission from right metal-vacuum interface of the gap in (a). Electrons 

would see a potential barrier with a negative dc electric field 𝐹0 = −𝑉/𝑑 (< 0) and laser field 

𝐹1cos⁡(𝜔𝑡) with 𝐹1 of opposite sign of that in (b) at any time instant for a given laser field.  

 

For the photoemission from the left metal-vacuum interface of the nanogap in Figure 5.6(a), 

electrons with the initial energy 𝜀 would see a potential barrier subjected to a positive dc electric 
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field 𝐹0  = 𝑉/𝑑  (> 0) and laser field 𝐹1cos⁡(𝜔𝑡) , as shown in Figure 5.6(b). Thus, the time-

dependent potential energy in the whole regime reads as [6][61][62][74][106], 

Φ(𝑥, 𝑡) = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0
𝐸𝐹 +𝑊 − 𝑒𝑉𝑥/𝑑 − 𝑒𝐹1𝑥𝑐𝑜𝑠(𝜔𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑥 < 𝑑

−𝑒𝑉 − 𝑒𝐹1𝑑cos(𝜔𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 𝑑,
                   (55) 

where 𝐸𝐹 and 𝑊 are the Fermi energy and work function of the left-side metal in Figure 5.6(a) 

respectively, and 𝑉  is the magnitude of the applied dc bias. Other parameters have the same 

definition as that in Equation (43). 

By solving the TDSE with the potential energy given in Equation (55), the electron wave 

function for 𝑥 < 0 is, 

𝜓(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅1𝑛 exp (−𝑖

𝜀 + 𝑛ℏ𝜔

ℏ
𝑡 − 𝑖𝑘𝑛𝑥)

∞

𝑛=−∞

, 𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(56) 

which denotes the superposition of an incident plane wave with initial energy 𝜀  and a set of 

reflected plane waves with reflection coefficient 𝑅1𝑛  and energies 𝜀 + 𝑛ℏ𝜔 , where the 

wavenumber 𝑘0 = √2𝑚𝑒𝜀/ℏ2 and 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔)/ℏ2.  

For 0 ≤ 𝑥 < 𝑑 (in the gap), the exact solution of electron wave function is found to be (see 

Appendix E for the method), 

⁡𝜓(𝑥, 𝑡) = ∑ exp [−𝑖
𝜀 + 𝑛ℏ𝜔

ℏ
𝑡]

∞

𝑛=−∞

exp [−
𝑖𝑒2𝑉𝐹1 sin(𝜔𝑡)

ℏ𝑑𝑚𝑒𝜔3
+
𝑖𝑥𝑒𝐹1 sin(𝜔𝑡)

ℏ𝜔

+
𝑖𝑒2𝐹1

2 sin(2𝜔𝑡)

8𝑚𝑒ℏ𝜔
3

] × [𝑇1𝑛𝐴𝑖(−𝜂𝑛) + 𝑇2𝑛𝐵𝑖(−𝜂𝑛)]⁡, 0 ≤ 𝑥 < 𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(57)⁡ 

which represents the superposition of a set of transmitted and reflected electron waves inside the 

gap, where 𝜂𝑛 = [
𝜀+𝑛ℏ𝜔−𝐸𝐹−𝑊−𝑒2𝐹1

2/4𝑚𝑒𝜔
2

𝑒𝑉
𝑑 + 𝑥 +

𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2
](
2𝑒𝑚𝑒𝑉

ℏ2𝑑
)
1

3, and 𝑇1𝑛 and 𝑇2𝑛 are the 

coefficients. 

For x ≥ d, an exact solution of electron wave function is, 
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𝜓(𝑥, 𝑡) = ∑ 𝑇3𝑛 exp (−𝑖
𝜀 + 𝑛ℏ𝜔

ℏ
𝑡) exp [𝑖𝑘𝑛𝑥 + 𝑖

𝑒𝐹1𝑑sin(𝜔𝑡)

ℏ𝜔
] , 𝑥 ≥ 𝑑

∞

𝑛=−∞

⁡⁡⁡⁡⁡⁡⁡⁡⁡(58) 

which shows the superposition of transmitted electron plane waves with energies 𝜀 + 𝑛ℏ𝜔, due to 

multiphoton absorption (n>0), direct tunneling (n=0) and multiphoton emission (n<0), where the 

wavenumber 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔 + 𝑒𝑉)/ℏ2 and 𝑇3𝑛 is the transmission coefficient. 

By applying the boundary conditions that both the electron wave function 𝜓(𝑥, 𝑡)  and its 

derivative 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥 are continuous at x = 0 and x = d, and taking Fourier transform, we obtain, 

in nondimensional quantities [6][61][62], 𝜀̅ = 𝜀/𝑊 , 𝜔̅ = 𝜔ℏ/𝑊 , 𝑡̅ = 𝑡𝑊/ℏ, 𝐸̅𝐹 = 𝐸𝐹/𝑊 , 𝑥̅ =

𝑥/𝜆0 , 𝑑̅ = 𝑑/𝜆0 , 𝜆0 = √ℏ2/2𝑚𝑒𝑊 , 𝑉̅ = 𝑉𝑒/𝑊 , 𝐹̅1 = 𝐹1𝑒𝜆0/𝑊 , 𝑈̅𝑝 = 𝑈𝑝/𝑊 , the following 

equations,  

∑ 𝑇1𝑛

∞

𝑛=−∞

[√𝜀̅ + 𝑚𝜔̅𝑃1𝑛(𝑛−𝑚) + 𝑄1𝑛(𝑛−𝑚)] + 𝑇2𝑛[√𝜀̅ + 𝑚𝜔̅𝑃2𝑛(𝑛−𝑚) + 𝑄2𝑛(𝑛−𝑚)]

= 2√𝜀𝛿̅(𝑚)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(59) 

∑ [√𝜀̅ + 𝑚𝜔̅ + 𝑉̅𝑈1𝑛(𝑛−𝑚) − 𝑉1𝑛(𝑛−𝑚)]𝑇1𝑛

∞

𝑛=−∞

+ [√𝜀̅ + 𝑚𝜔̅ + 𝑉̅𝑈2𝑛(𝑛−𝑚) − 𝑉2𝑛(𝑛−𝑚)] 𝑇2𝑛

= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(60) 

∑ 𝑇1𝑛

∞

𝑛=−∞

𝑈1𝑛(𝑛−𝑚) + 𝑇2𝑛𝑈2𝑛(𝑛−𝑚) =⁡𝑇3𝑚exp (𝑖𝑑̅√𝜀̅ + 𝑚𝜔̅ + 𝑉̅)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(61) 

where 𝛿(𝑚) , 𝑃1𝑛(𝑛−𝑚) , 𝑄1𝑛(𝑛−𝑚) , 𝑃2𝑛(𝑛−𝑚) , 𝑄2𝑛(𝑛−𝑚) , 𝑈1𝑛(𝑛−𝑚) , 𝑉1𝑛(𝑛−𝑙) , 𝑈2𝑛(𝑛−𝑚) , and 

𝑉2𝑛(𝑛−𝑙) are given by, 

𝛿(𝑚) = {
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 ≠ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑎)

 

𝑃1𝑛𝑙 =
1

2𝜋
∫ 𝑝1𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑄1𝑛𝑙 =
1

2𝜋
∫ 𝑞1𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62b) 

𝑃2𝑛𝑙 =
1

2𝜋
∫ 𝑝2𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑄2𝑛𝑙 =
1

2𝜋
∫ 𝑞2𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62c) 
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𝑝1𝑛(𝜔̅𝑡̅) = 𝐴𝑖(𝛼𝑛)𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑑) 

𝑞1𝑛(𝜔̅𝑡)̅ = [𝐴𝑖(𝛼𝑛)
𝐹̅1 sin(𝜔̅𝑡̅)

𝜔̅
+ 𝑖𝐴𝑖′(𝛼𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑒) 

𝑝2𝑛(𝜔̅𝑡̅) = 𝐵𝑖(𝛼𝑛)𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑓) 

𝑞2𝑛(𝜔̅𝑡̅) = [𝐵𝑖(𝛼𝑛)
𝐹̅1 sin(𝜔̅𝑡)̅

𝜔̅
+ 𝑖𝐵𝑖′(𝛼𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑔) 

𝑈1𝑛𝑙 =
1

2𝜋
∫ 𝑢1𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑉1𝑛𝑙 =
1

2𝜋
∫ 𝑣1𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62h) 

𝑈2𝑛𝑙 =
1

2𝜋
∫ 𝑢2𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑉2𝑛𝑙 =
1

2𝜋
∫ 𝑣2𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62i) 

𝑢1𝑛(𝜔̅𝑡)̅ = 𝐴𝑖(𝛾𝑛)𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑗) 

𝑣1𝑛(𝜔̅𝑡̅) = [𝐴𝑖(𝛾𝑛)
𝐹̅1 sin(𝜔̅𝑡)̅

𝜔̅
+ 𝑖𝐴𝑖′(𝛾𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑘) 

𝑢2𝑛(𝜔̅𝑡̅) = 𝐵𝑖(𝛾𝑛)𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑙) 

𝑣2𝑛(𝜔̅𝑡̅) = [𝐵𝑖(𝛾𝑛)
𝐹̅1 sin(𝜔̅𝑡̅)

𝜔̅
+ 𝑖𝐵𝑖′(𝛾𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑚) 

𝑓(𝜔̅𝑡)̅ = exp [−𝑖
2𝐹̅1𝑉̅

𝑑̅𝜔̅3
sin(𝜔̅𝑡̅) + 𝑖

𝐹̅1
2

4𝜔̅3
sin(2𝜔̅𝑡̅)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(62𝑛) 

with 𝛼𝑛 = −[𝐸̅𝑛𝑑̅/𝑉̅ + 2𝐹̅1cos⁡(𝜔̅𝑡)̅/𝜔̅
2](𝑉̅/𝑑̅)

1

3 , 𝛾𝑛 = −[𝐸̅𝑛𝑑̅/𝑉̅ + 𝑑̅ + 2𝐹̅1cos⁡(𝜔̅𝑡)̅/𝜔̅
2](𝑉̅/

𝑑̅)
1

3, and 𝐸̅𝑛 = 𝜀̅ + 𝑛𝜔̅ − 𝐸̅𝐹 − 𝑈̅𝑝 − 1. The coefficients 𝑇1𝑛, 𝑇2𝑛, and 𝑇3𝑛 (and therefore 𝑅1𝑛) is 

then calculated from Equations (59), (60) and (61).  

The normalized transmitted current density is defined as the ratio of the transmitted probability 

current density over the incident probability current density, 𝑤(𝜀, 𝑥, 𝑡) = 𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡), 

where the probability current density 𝑗(𝑥, 𝑡) = (𝑖ℏ/2𝑚𝑒)(𝜓∇𝜓
∗ − 𝜓∗∇𝜓) = (𝑖ℏ/
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2𝑚𝑒)∑ ∑ (𝜓𝑛∇𝜓𝑙
∗ − 𝜓𝑛

∗∇𝜓𝑙)
∞
𝑙=−∞

∞
𝑛=−∞ . Thus, the normalized instantaneous transmitted current 

density in the metal on the right-hand side of Figure 5.6(a) (i.e., x > d) is found to be, 

𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ 𝑅𝑒{e𝑖⁡(𝑙−𝑛)𝜔̅𝑡̅𝑇3𝑛𝑇3𝑙

∗ 𝐷},
∞

𝑙=−∞

∞

𝑛=−∞
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(63) 

where 𝐷 = e𝑖⁡[√𝜀̅+𝑛𝜔̅+𝑉̅−(√𝜀̅+𝑙𝜔̅+𝑉̅)
∗]𝑥̅(√𝜀̅ + 𝑙𝜔̅ + 𝑉̅)∗ . The time-averaged transmitted current 

density is, 

〈𝑤(𝜀)̅〉 = ∑ 〈𝑤𝑛(𝜀)̅〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)̅〉 = Re (|𝑇3𝑛|
2√1 + 𝑛𝜔̅/𝜀̅ + 𝑉̅/𝜀)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(64) 

where 〈𝑤𝑛〉 represents the time-averaged transmitted current density through 𝑛-photon process, 

with transmitted electrons of energy 𝜀 + 𝑛ℏ𝜔 [6].  

For the photoemission from right metal-vacuum interface of the gap in Figure 5.6(a), electrons 

would see a potential barrier subjected to a negative dc electric field 𝐹0 = −𝑉/𝑑(< 0) and laser 

field 𝐹1cos⁡(𝜔𝑡), as shown in Figure 5.6(c). Thus, the time-dependent potential barrier in Figure 

5.6(c) is [6][61][62][74][106], 

Φ(𝑥, 𝑡) = {

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 0
𝐸𝐹 +𝑊 + 𝑒𝑉𝑥/𝑑 − 𝑒𝐹1𝑥𝑐𝑜𝑠(𝜔𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑥 < 𝑑

𝑒𝑉 − 𝑒𝐹1𝑑cos(𝜔𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 𝑑,
                   (65) 

where 𝐸𝐹  and 𝑊  are the Fermi energy and work function of the right metal in Figure 5.6(a) 

respectively, and 𝑉  is the magnitude of the applied dc bias. Other parameters have the same 

definition as that in Equation (43), with 𝐹1 of opposite sign (i.e., 180 degree out of phase) of that 

in Figure 5.6(b) at any time instant for a given laser field. 

Solving the TDSE with the potential energy given in Equation (65) yields the electron wave 

function for 𝑥 < 0, 

𝜓(𝑥, 𝑡) = exp (−
𝑖𝜀𝑡

ℏ
+ 𝑖𝑘0𝑥) + ∑ 𝑅2𝑛 exp (−𝑖

𝜀 + 𝑛ℏ𝜔

ℏ
𝑡 − 𝑖𝑘𝑛𝑥)

∞

𝑛=−∞

, 𝑥 < 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(66) 
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where the wavenumber 𝑘0 = √2𝑚𝑒𝜀/ℏ2  and 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔)/ℏ2 , and 𝑅2𝑛  is the 

reflection coefficient.  

For 0 ≤ 𝑥 < 𝑑 (in the gap), the exact solution of electron wave function is found to be (see 

Appendix E for the method), 

⁡𝜓(𝑥, 𝑡) = ∑ exp [−𝑖
𝜀 + 𝑛ℏ𝜔

ℏ
𝑡]

∞

𝑛=−∞

exp [
𝑖𝑒2𝑉𝐹1 sin(𝜔𝑡)

ℏ𝑑𝑚𝑒𝜔3
+
𝑖𝑥𝑒𝐹1 sin(𝜔𝑡)

ℏ𝜔
+
𝑖𝑒2𝐹1

2 sin(2𝜔𝑡)

8𝑚𝑒ℏ𝜔3
]

× [𝑇4𝑛𝐴𝑖(−𝜂𝑛) + 𝑇5𝑛𝐵𝑖(−𝜂𝑛)]⁡, 0 ≤ 𝑥 < 𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(67) 

where 𝜂𝑛 = [−
𝜀+𝑛ℏ𝜔−𝐸𝐹−𝑊−𝑒2𝐹1

2/4𝑚𝑒𝜔
2

𝑒𝑉
𝑑 + 𝑥 +

𝑒𝐹1 cos(𝜔𝑡)

𝑚𝑒𝜔2 ](
2𝑒𝑚𝑒𝑉

ℏ2𝑑
)
1

3 , and 𝑇4𝑛  and 𝑇5𝑛  are the 

coefficients. 

For x ≥ d, an exact solution of electron wave function is, 

𝜓(𝑥, 𝑡) = ∑ 𝑇6𝑛 exp (−𝑖
𝜀 + 𝑛ℏ𝜔

ℏ
𝑡) exp [𝑖𝑘𝑛𝑥 + 𝑖

𝑒𝐹1𝑑sin(𝜔𝑡)

ℏ𝜔
] , 𝑥 ≥ 𝑑

∞

𝑛=−∞

⁡⁡⁡⁡⁡⁡⁡(68) 

where the wavenumber 𝑘𝑛 = √2𝑚𝑒(𝜀 + 𝑛ℏ𝜔 − 𝑒𝑉)/ℏ2 and 𝑇6𝑛 is the transmission coefficient. 

By applying the boundary conditions that both the electron wave function 𝜓(𝑥, 𝑡)  and its 

derivative 𝜕𝜓(𝑥, 𝑡)/𝜕𝑥 are continuous at x = 0 and x = d, and taking Fourier transform, we obtain 

the following equations,  

∑ 𝑇4𝑛

∞

𝑛=−∞

[√𝜀̅ + 𝑚𝜔̅𝑃4𝑛(𝑛−𝑚) + 𝑄4𝑛(𝑛−𝑚)] + 𝑇5𝑛[√𝜀̅ + 𝑚𝜔̅𝑃5𝑛(𝑛−𝑚) + 𝑄5𝑛(𝑛−𝑚)]

= 2√𝜀𝛿̅(𝑚)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(69) 

∑ [√𝜀̅ + 𝑚𝜔̅ − 𝑉̅𝑈4𝑛(𝑛−𝑚) − 𝑉4𝑛(𝑛−𝑚)]𝑇4𝑛

∞

𝑛=−∞

+ [√𝜀̅ + 𝑚𝜔̅ − 𝑉̅𝑈5𝑛(𝑛−𝑚) − 𝑉5𝑛(𝑛−𝑚)] 𝑇5𝑛

= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(70) 

∑ 𝑇4𝑛

∞

𝑛=−∞

𝑈4𝑛(𝑛−𝑚) + 𝑇5𝑛𝑈5𝑛(𝑛−𝑚) =⁡𝑇6𝑚exp (𝑖𝑑̅√𝜀̅ + 𝑚𝜔̅ − 𝑉̅)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(71) 
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where 𝛿(𝑚) , 𝑃4𝑛(𝑛−𝑚) , 𝑄4𝑛(𝑛−𝑚) , 𝑃5𝑛(𝑛−𝑚) , 𝑄5𝑛(𝑛−𝑚) , 𝑈4𝑛(𝑛−𝑚) , 𝑉4𝑛(𝑛−𝑙) , 𝑈5𝑛(𝑛−𝑚) , and 

𝑉5𝑛(𝑛−𝑙) are given by, 

𝛿(𝑚) = {
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 = 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑚 ≠ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑎)

 

𝑃4𝑛𝑙 =
1

2𝜋
∫ 𝑝4𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡𝑄4𝑛𝑙 =
1

2𝜋
∫ 𝑞4𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72b) 

𝑃5𝑛𝑙 =
1

2𝜋
∫ 𝑝5𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑄5𝑛𝑙 =
1

2𝜋
∫ 𝑞5𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72c) 

𝑝5𝑛(𝜔̅𝑡̅) = 𝐴𝑖(𝛼𝑛)𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑑) 

𝑞5𝑛(𝜔̅𝑡)̅ = [𝐴𝑖(𝛼𝑛)
𝐹̅1 sin(𝜔̅𝑡̅)

𝜔̅
− 𝑖𝐴𝑖′(𝛼𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑒) 

𝑝6𝑛(𝜔̅𝑡̅) = 𝐵𝑖(𝛼𝑛)𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑓) 

𝑞6𝑛(𝜔̅𝑡̅) = [𝐵𝑖(𝛼𝑛)
𝐹̅1 sin(𝜔̅𝑡)̅

𝜔̅
− 𝑖𝐵𝑖′(𝛼𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑔) 

𝑈4𝑛𝑙 =
1

2𝜋
∫ 𝑢4𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑉4𝑛𝑙 =
1

2𝜋
∫ 𝑣4𝑛(𝜔̅𝑡)̅𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡)̅
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72h) 

𝑈5𝑛𝑙 =
1

2𝜋
∫ 𝑢5𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡𝑉5𝑛𝑙 =
1

2𝜋
∫ 𝑣5𝑛(𝜔̅𝑡̅)𝑒

−𝑖𝑙𝜔̅𝑡̅𝑑(𝜔̅𝑡̅)
2𝜋

0

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72i) 

𝑢4𝑛(𝜔̅𝑡)̅ = 𝐴𝑖(𝛾𝑛)𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑗) 

𝑣4𝑛(𝜔̅𝑡̅) = [𝐴𝑖(𝛾𝑛)
𝐹̅1 sin(𝜔̅𝑡)̅

𝜔̅
− 𝑖𝐴𝑖′(𝛾𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡̅),⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑘) 

𝑢5𝑛(𝜔̅𝑡̅) = 𝐵𝑖(𝛾𝑛)𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑙) 

𝑣5𝑛(𝜔̅𝑡̅) = [𝐵𝑖(𝛾𝑛)
𝐹̅1 sin(𝜔̅𝑡̅)

𝜔̅
− 𝑖𝐵𝑖′(𝛾𝑛)(𝑉̅/𝑑̅)

1
3]𝑓(𝜔̅𝑡)̅,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑚) 

𝑓(𝜔̅𝑡̅) = exp [𝑖
2𝐹̅1𝑉̅

𝑑̅𝜔̅3
sin(𝜔̅𝑡̅) + 𝑖

𝐹̅1
2

4𝜔̅3
sin(2𝜔̅𝑡̅)],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(72𝑛) 
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with 𝛼𝑛 = [2𝐹̅1cos⁡(𝜔̅𝑡)̅/𝜔̅
2 − 𝐸̅𝑛𝑑̅/𝑉̅](𝑉̅/𝑑̅)

1

3 , 𝛾𝑛 = [𝑑̅ + 2𝐹̅1cos⁡(𝜔̅𝑡)̅/𝜔̅
2 − 𝐸̅𝑛𝑑̅/𝑉̅](𝑉̅/𝑑̅)

1

3 , 

and 𝐸̅𝑛 = 𝜀̅ + 𝑛𝜔̅ − 𝐸̅𝐹 − 𝑈̅𝑝 − 1. The coefficients 𝑇4𝑛, 𝑇5𝑛, and 𝑇6𝑛 (and therefore 𝑅2𝑛) is then 

calculated from Equations (69), (70) and (71).  

The normalized instantaneous transmitted current density in the metal on the left-hand side of 

Figure 5.6(a), defined as the ratio of the transmitted probability current density over the incident 

probability current density, 𝑤(𝜀, 𝑥, 𝑡) = 𝐽𝑡(𝜀, 𝑥, 𝑡)/𝐽𝑖(𝜀, 𝑥, 𝑡), is obtained as 

𝑤(𝜀,̅ 𝑥̅, 𝑡̅) =
1

√𝜀̅
∑ ∑ 𝑅𝑒{e𝑖⁡(𝑙−𝑛)𝜔̅𝑡̅𝑇6𝑛𝑇6𝑙

∗ 𝐷},
∞

𝑙=−∞

∞

𝑛=−∞
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(73) 

where 𝐷 = e𝑖⁡[√𝜀̅+𝑛𝜔̅−𝑉̅−(√𝜀̅+𝑙𝜔̅−𝑉̅)
∗]𝑥̅(√𝜀̅ + 𝑙𝜔̅ − 𝑉̅)∗ . The time-averaged transmitted current 

density is, 

〈𝑤(𝜀)̅〉 = ∑ 〈𝑤𝑛(𝜀)̅〉

∞

𝑛=−∞

,⁡⁡⁡⁡⁡〈𝑤𝑛(𝜀)̅〉 = Re (|𝑇6𝑛|
2√1 + 𝑛𝜔̅/𝜀̅ − 𝑉̅/𝜀)̅.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(74) 

5.3.2 Results and Discussion 

In the calculation of this section, positive dc field (𝐹0⁡> 0) and negative dc field (𝐹0 < 0) cases 

denote the electron emission from left metal surface and right metal surface of the vacuum nanogap 

with the external dc voltage V (= |𝐹0|𝑑) shown in Figure 5.6(a), respectively. Unless mentioned 

otherwise, the default value of the laser wavelength is 800 nm (ℏω = 1.55 eV), the metals on both 

sides of the gap are assumed to be gold [17][20][65][111], with Fermi energy 𝐸𝐹 = 5.53 eV and 

work function W = 5.1 eV, and the photoemission current is calculated from Equations (64) and 

(74). Since most of the electrons are emitted with initial energies near the Fermi level 

[6][76][86][87], we choose the electron initial energy 𝜀 = 𝐸𝐹 for simplicity.  

In Figure 5.7, we plot the photoelectron energy spectra under different applied dc bias with fixed 

gap distance d = 5 nm. Increasing the dc field 𝐹0 from 1 to 3 V/nm increases the left-to-right 

photoelectron transmission current by about two orders of magnitude and shifts the corresponding 
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dominant electron emission process from three-photon absorption to two-photon absorption, as 

shown in Figure 5.7(a). This is because under a larger dc field, the potential barrier near the left 

metal-vacuum interface becomes narrower, enabling the less photon transition process (cf. Figure 

5.7(b)). Nevertheless, with the larger dc field, the right-to-left photoelectron current dramatically 

decreases and the dominant emission shifts to the higher order multiphoton absorption (see Figure 

5.7(c)). This can be explained by that under a stronger dc bias V, electrons from the right-side 

metal surface of the gap need to absorb more photons to overcome the potential barrier with 

increased height in the gap for the emission, as shown in Figure 5.7(d). These observed changes 

are also well reflected in Figures 5.8(a) and 5.8(b) which show the total time-averaged 

transmission current density 〈𝑤〉 from left (Figure 5.8(a)) and right (Figure 5.8(b)) metal surface 

of the nano gap of Figure 5.6(a) as a function of laser field 𝐹1 with different applied dc bias. Here, 

the increasing (decreasing) slope of the curve of 〈𝑤〉 with dc field 𝐹0 manifests the shift of main 

emission process to the larger (smaller) n-photon absorption. Also, the slop of 〈𝑤〉 versus 𝐹1 

follows the power-law scaling of photoemission 〈𝑤〉 ∝ 𝐹1
2𝑛, indicating the dominant n-photon 

emission process. The value of n is consistent with the observation in Figures 5.7(a) and 5.7(c) (cf. 

the cases with 𝐹0 = ±1 and ±3 V/nm)).  
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Figure 5.7: Photoelectron energy spectra for dc field (a) 𝐹0 = 1 and 3 V/nm and (c) 𝐹0 = -1 and -3 

V/nm. Emission mechanisms when (b) 𝐹0 = 1 and 3 V/nm and (d) 𝐹0 = -1 and -3 V/nm. Here, laser 

field 𝐹1 = 1 V/nm and gap distance d = 5 nm.  

 

Figure 5.8: Normalized total time-averaged emission current density 〈𝑤〉 as a function of laser 

field 𝐹1 for various dc fields 𝐹0. The gap distance d is fixed at 5 nm. The black dashed lines display 

the scale 〈𝑤〉 ∝ 𝐹1
2𝑛. Here, n = 2.8, 1.9, 6.5 and 12.4 when 𝐹0 = 1, 3, -1, and -3 V/nm is consistent 

with the observed orders of domination multiphoton emission channel in Figures 5.7(a) and 5.7(c). 

In Figure 5.9, we plot the total time-averaged emission current density 〈𝑤〉 as a function of gap 

distance d under various dc fields 𝐹0 and laser fields 𝐹1. Without the dc field (𝐹0 = 0), the emission 

current 〈𝑤〉 from left or right metal surface would continuously oscillate around the current from 
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a single surface (cf. the dashed lines) as d increases, which is due to the interference of electron 

plane waves inside the gap, and the oscillation amplitude remains unchanged, due to the exclusion 

of image charge and space charge effects in our calculation. After applying a strong dc field, it is 

found that the oscillation behavior in the photocurrent is gradually suppressed with the increasing 

d, and the left-to-right emission current eventually approaches that from single metal surface. 

Besides, our calculation shows with a very narrow gap (d < 0.5 nm), the emission current from the 

left and right surfaces has the same order of magnitude, regardless of applied laser intensity and 

dc bias. This is because the gap-dependent direct tunneling emission dominates the transmission. 

As the gap distance d increases, compared to the emission current from left metal surface, the 

current from right surface is more greatly suppressed. This manifests that varying the gap distance 

is able to greatly tune the dc-induced rectification on the photoelectron emission in a nanogap. Our 

calculation displays the gap distance of larger than 1 nm is enough to achieve full rectification.  

 

Figure 5.9: Normalized total time-averaged emission current density 〈𝑤〉 as a function of gap 

distance d for different dc fields 𝐹0 and laser fields 𝐹1. Dashed lines denote the emission current 

density from single surface, which is obtained from Reference [6]. 

Figures 5.10(a) and 5.10(b) show the total emission current density 〈𝑤〉 as a function of dc field 

𝐹0 under different laser fields 𝐹1. The calculated exponentially increasing and decreasing trend 

with dc field 𝐹0  exhibits good coincidence with the numerical simulation (see Figure 3 in 

Reference [66]). Figure 5.10(c) displays the net emission current density, defined as the difference 
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between the left-to-right and the right-to-left emission current, as a function of dc field 𝐹0 for laser 

field 𝐹1 = 0.4, 0.8 and 1 V/nm. It can be seen that as dc bias approaches 0, the net emission current 

also approaches the minimum value of 0. When the dc bias increases, the net current exponentially 

increases, indicating it is gradually dictated by the left-to-right photocurrent. This uncovers the 

rectification effect of external dc bias on the photoemission in a nanoscale gap [17]. 

In Figures 5.11 and 5.12, we plot the spatiotemporal evolution of emitted electron density from 

left and right metal surfaces respectively, under different combinations of dc and laser electric 

fields. Here, the gap distance d is fixed at 5 nm. As clearly seen in Figure 5.11(a), with the external 

dc field 𝐹0 = 1 V/nm and laser field 𝐹1=0.1 V/nm, parts of electrons emitted from left metal surface 

are reflected back and forth inside the gap, which is in line with the numerical simulation results 

in Figure 2(a) of Reference [66]. Also, our calculation shows increasing the laser field 𝐹1 causes 

 

Figure 5.10: (a),(b) Normalized total time-averaged emission current density 〈𝑤〉 as a function of 

dc field 𝐹0 for different laser fields 𝐹1. (c) The dependence of net emission current density 〈𝑤〉 on 

the applied dc bias for different laser fields 𝐹1. Here, gap distance d is fixed at 5 nm.   
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more oscillatory emission features within the gap (cf. Figures 5.11(a)-5.11(c)), which is due to the 

stronger quiver motion of emitted electrons under strong laser electric fields. When adding a large 

dc field 𝐹0  = 5 V/nm (see Figures 5.11(d)-5.11(f)), dc field-like electron emission pattern 

dominates the whole regime, and due to the strong acceleration, electrons enter the right-side metal 

with higher velocity (cf. the slope of classical trajectories). On the other hand, for the photoelectron 

emission from right surface (see Figure 5.12), the addition of 1 V/nm dc field confines most of 

electrons inside the vacuum gap, and only when the laser field 𝐹1 is increased up to 8 V/nm could 

a small part of electrons escape from the gap into the left metal (cf. Figure 5.12(c)). Similar trend 

with the increasing 𝐹1  is observed in Figures 5.12(d)-5.12(f), except that most electrons are 

constrained in the strong surface oscillation regime when applied dc field is 5 V/nm. 

 

Figure 5.11: Time-dependent emission electron density from left metal surface of the nanogap in 

Figure 5.6(a) as a function of time t and space x under various combinations of dc and laser fields. 

Solid white lines show the corresponding classical trajectories [76]. Dotted white lines show the 

laser electric field. Here, gap distance d is fixed at 5 nm. The units of dc field 𝐹0 and laser field 𝐹1 

are V/nm in all figures.  
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Figure 5.12: Time-dependent emission electron density from right metal surface of the nanogap in 

Figure 5.6(a) as a function of time t and space x under various combinations of dc and laser fields. 

Here, gap distance d is fixed at 5 nm. The units of dc field 𝐹0 and laser field 𝐹1 are V/nm in all 

figures.  

5.3.3 Summary on Photoelectron Transport with DC Bias 

In this section, by exactly solving the TDSE, we present analytical models for photoelectron 

emission from left- and right-side surfaces of a dc-biased nanoscale metal-vacuum-metal gap 

driven by a single-frequency laser field. Our results reveal the underlying photoemission process, 

time-averaged emission current and spatiotemporal dynamics of photoelectrons from both sides of 

the nano gap under different combinations of dc bias, laser fields and gap distances. Our 

calculation shows the addition of a large dc field can greatly reduce the interference effect induced 

oscillation in the total emission current, and demonstrates that in addition to the applied dc bias, 

changing the gap distance is also able to achieve strong rectification to the photoelectron emission 

in a dc-biased nano-vacuum gap. Our results may be helpful for the future design of ultrafast 

optoelectronic devices, such as photodetectors.  
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CHAPTER 6  

SUMMARY AND SUGGESTED FUTURE WORK 

6.1 Summary 

In this thesis, we develop quantum analytical models to study nonlinear ultrafast optical-field 

induced photoelectron emission from biased metal surfaces, by exactly solving the TDSE. We 

consider two-color laser induced photoelectron emission with and without dc bias, interference 

modulation of photoemission using two lasers of the same frequency, nonlinear ultrafast 

photoemission from a dc-biased surface triggered by few-cycle laser pulses, and laser induced 

photoelectron transport in nanogaps. Our analytical solution is valid for arbitrary laser parameters, 

including laser frequency, intensity, relative phase between two lasers, pulse duration, repetition 

rate, carrier-envelope phase, applied dc fields, gap distances, metal work function and Fermi level. 

Various emission processes, such as multiphoton over-barrier emission, dc-assisted optical 

tunneling emission and dc or optical field emission, are all included in our simple formulation. We 

provide comprehensive analysis of the photoelectron emission properties under different 

combinations of laser parameters and dc fields.  

Under the illumination of two-color laser fields, our results show strong tunability on the 

photoelectron spectra, emission current, and current modulation, via the control of the phase delay, 

relative intensity, harmonic order of the two-color lasers, and dc bias, exhibiting good agreement 

with the experimental measurements. Application of our model to time-resolved photoelectron 

spectroscopy is demonstrated. Our study also suggests a practical way to maintain a strong current 

modulation, in the meantime, greatly increase the total emission current in two-color laser-induced 

electron emission, by simply adding a strong dc bias and a weak harmonic laser.  
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For the two-same frequency lasers induced photoelectron emission, we find strong interference 

modulation on electron emission can be achieved with low threshold value of the laser field ratio 

even with a strong dc field. Our study demonstrates the capability of using interference modulation 

by single-frequency laser pairs for practical measurements of time-resolved photoelectron energy 

spectra. 

With few-cycle laser pulses, we identify the new signature of coherent interaction of adjacent 

laser pulses on photoemission, that is, the emitted charge per pulse oscillatorily changes as the 

laser pulse separation increases. For a well-separated single pulse, our calculations recover the 

experimentally measured features of sinusoidal CEP modulation to photoelectron emission and 

vanishing CEP sensitivity with a 𝜋 phase shift in strong optical-field regime. Moreover, we find 

adding a large dc field is able to greatly enhance the photoelectron current and shorten the current 

pulse. 

For the photoelectron emission in a metal-vacuum-metal nanogap, our calculation reveals the 

underlying photoemission processes, including direct tunneling, dc-assisted optical tunneling and 

over-barrier emission, and the transition between them, under different combinations of gap 

distance increases, dc bias and laser fields. For the zero dc field, our results show the oscillatory 

dependence of photoemission current on the gap distance in the multiphoton regime and the energy 

redistribution of photoelectrons across the two interfaces between the gap and the metals. We also 

find that decreasing the gap distance (before entering the direct tunneling regime) tends to extend 

the multiphoton regime to higher laser intensity. With the addition of large dc bias, the interference 

induced oscillation in photocurrent from metal-vacuum interface of the gap is found to be 

significantly reduced with the increasing gap spacing. Additionally, our calculation demonstrates 
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that besides the applied dc bias, changing the gap distance is also able to achieve great rectification 

to the photoelectron emission in a dc-biased nano-vacuum gap. 

6.2 Suggested future work 

As the works in this thesis are analytically solving the TDSE exactly, it is important to compare 

our solutions with those of perturbative treatments widely used in the literature, and the inverse 

LEED and LEED wave functions used for scattering problems [67][118]-[120]. It is also important 

to consider the effect of space charge in the electron emission process [34][36]. Suggested future 

work would also include the theoretical modeling of ultrashort pulsed laser induced photoelectron 

transport in nano-vacuum gaps and the rectification effects in nanogaps formed with dissimilar 

materials. It would also be interesting to study the effects surface states and materials (e.g., 

semiconductor and two-dimensional materials) by considering the energy dependent electron 

supply function inside the material and work function variations along the emission surface in the 

future. Ultimately, it is envisioned to build a hybrid model using our exact analytical solutions for 

simulating electron emission in practical geometries, such as sharp metal tips or cathodes with 

surface roughness, where effects such as the electron emission angle and space charge can be 

incorporated. The time-dependent field distribution near the emitter may be first calculated using 

a Maxwell solver. Next, our exact model can be applied along the surface of the emitter to give 

the instantaneous photoemission current. The emitted electrons can then be loaded into particle-

in-cell pusher to account for the detailed space charge effects and electron dynamics. Once such a 

tool becomes available, it would find immense applications in various areas, such as solid-state 

physics, strong fields, ultrafast sciences, vacuum electronics, and accelerators and beams. 
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EXACT SLOTUION OF ELECTRON WAVE FUNCTION 

Following Truscott [6][117], the time-dependent potential energy for x ≥ 0 (see Appendix A, B, 

and C) or 0 ≤ 𝑥 < 𝑑 (see Appendix D and E) can be written as Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡). Thus, 

the TDSE can be transformed to the coordinate system 𝜉, t, where 𝜉 = 𝑥 − 𝑞(𝑡), the displacement 

𝑞(𝑡) = (1/𝑚𝑒) ∫ 𝑝(𝑡′)𝑑𝑡′
𝑡

, and 𝑝(𝑡) = ∫ 𝑓(𝑡′)𝑑𝑡′
𝑡

, by assuming that 𝜓(𝑥, 𝑡) = 𝜙(𝜉, 𝑡)𝜒(𝑥, 𝑡), 

with 𝜒(𝑥, 𝑡) = exp⁡[−𝑖𝐸𝑡/ℏ + 𝑖𝑥𝑝(𝑡)/ℏ − (𝑖/2ℏ𝑚)∫ 𝑝2(𝑡′)𝑑𝑡′
𝑡

], and 𝐸 being a constant. Then, 

we have, 

𝑖ℏ
𝜕𝜙(𝜉,𝑡)

𝜕𝑡
= [−

ℏ2

2𝑚𝑒

𝜕2

𝜕𝜉2
+ 𝑈(𝜉, 𝑡) − 𝐸] 𝜙(𝜉, 𝑡),                                (A1) 

with 𝑈(𝜉, 𝑡) = 𝑉(𝜉, 𝑡). By separation of variables, 𝜙(𝜉, 𝑡) in Equation (A1) can be easily solved. 

From 𝜓(𝑥, 𝑡) = 𝜙(𝜉)𝜒(𝑥, 𝑡), we obtain exact solution of electron wave function.  

APPENDIX A: Two-color laser induced photoemission without dc field 

Based on the method above, we have the potential energy Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡) , with 

𝑉(𝑥, 𝑡) = 𝑉0 and 𝑓(𝑡) = 𝑒𝐹1 cos(𝜔𝑡) + 𝑒𝐹2 cos(𝛽𝜔𝑡 + 𝜃) in the vacuum (x ≥ 0), and 

                                           𝜙(𝜉, 𝑡) = 𝜙(𝜉) = 𝑒𝑖𝜉√2𝑚𝑒(𝐸−𝑉0)/ℏ2.                                        (A2) 

From 𝜓(𝑥, 𝑡) = 𝜙(𝜉)𝜒(𝑥, 𝑡) , we obtain Equation (14) with 𝐸 = 𝜀 + 𝑛ℏ𝜔 − 𝑒2𝐹1
2/4𝑚𝑒𝜔

2 −

𝑒2𝐹2
2/4𝑚𝑒𝛽

2𝜔2.  

APPENDIX B: Two-color laser induced photoemission with dc field 

We have the potential energy Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡), with 𝑉(𝑥) = 𝑉0 − 𝑒𝐹0𝑥 , and 𝑓(𝑡) =

𝑒𝐹1 cos(𝜔𝑡) + 𝑒𝐹2 cos(𝛽𝜔𝑡 + 𝜃) in the vacuum (x ≥ 0), and 
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⁡𝜙(𝜉, 𝑡) = 𝑔(𝜉)exp[
𝑒2𝐹0𝐹1 sin(𝜔𝑡)

𝑖ℏ𝑚𝑒𝜔3
+

𝑒2𝐹0𝐹2 sin(𝛽𝜔𝑡+𝜃)

𝑖ℏ𝑚𝑒𝛽3𝜔3
],                         (A3) 

where 𝑔(𝜉) = 𝐴𝑖(−𝜂) − 𝑖𝐵𝑖(−𝜂)  is the solution of the equation −(ℏ2/2𝑚𝑒)𝜕
2𝑔(𝜉)/𝜕𝜉2 +

(𝑉0 − 𝐸 − 𝑒𝐹0𝜉)𝑔(𝜉) = 0 , where 𝜂 = (2𝑒𝑚𝑒𝐹0/ℏ
2)1/3[(𝐸 − 𝑉0)/𝑒𝐹0 + 𝜉] [81][86]. From 

𝜓(𝑥, 𝑡) = 𝜙(𝜉)𝜒(𝑥, 𝑡) , we obtain Equation (21) with 𝐸 = 𝜀 + 𝑛ℏ𝜔 − 𝑒2𝐹1
2/4𝑚𝑒𝜔

2 − 𝑒2𝐹2
2/

4𝑚𝑒𝛽
2𝜔2.  

APPENDIX C: Few-cycle laser pulses induced photoemission 

We have the potential energy Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡) , with 𝑉(𝑥) = 𝐸𝐹 +𝑊𝑒𝑓𝑓 − 𝑒(𝐹0 +

𝐹1𝑎0 cos𝜙)𝑥 and 𝑓(𝑡) = 𝑒∑ 𝐹1𝑎𝑛 cos(
𝑛𝜋

𝐿
𝑡 + 𝜙)+∞

𝑛=−∞,𝑛≠0  (see Equations (33) and (34)), and 

𝜙(𝜉, 𝑡) = 𝑔(𝜉)exp[∑
𝑒2𝑎𝑛𝐹1(𝐹0+𝐹1𝑎0 cos𝜙)sin⁡(𝑛𝜔𝐸𝑡+𝜙)

𝑖ℏ𝑚𝑒𝑛3𝜔𝐸
3

+∞
𝑛=−∞,𝑛≠0 ],                (A4) 

where 𝑔(𝜉) = 𝐴𝑖(−𝜂) − 𝑖𝐵𝑖(−𝜂)  is the solution of the equation −(ℏ2/2𝑚𝑒)𝜕
2𝑔(𝜉)/𝜕𝜉2 +

[𝐸𝐹 +𝑊𝑒𝑓𝑓 − 𝐸 − 𝑒(𝐹0 + 𝐹1𝑎0 cos𝜙)𝜉]𝑔(𝜉) = 0 , where 𝜂 = [2𝑒𝑚𝑒(𝐹0 + 𝐹1𝑎0 cos𝜙)/

ℏ2]1/3[(𝐸 − 𝐸𝐹 −𝑊𝑒𝑓𝑓)/𝑒(𝐹0 + 𝐹1𝑎0 cos𝜙) + 𝜉] [81][86]. From 𝜓(𝑥, 𝑡) = 𝜙(𝜉, 𝑡)𝜒(𝑥, 𝑡), we 

obtain Equation (35) with 𝐸 = 𝜀 + 𝑙ℏ𝜔𝐸 − 𝑈𝑝 and 𝑈𝑝 = ∑
𝑒2𝐹1

2[𝑎𝑛
2+𝑎𝑛𝑎−𝑛 cos(2𝜙)]

4𝑚𝑒𝑛2𝜔𝐸
2

+∞
𝑛=−∞,𝑛≠0 .  

For the special case of dc field 𝐹0 = 0 and carrier-envelope phase 𝜙 = (2𝑛 + 1)π/2, with n 

being an integer, the solution of 𝜓(𝑥, 𝑡) is revised by merely displacing 𝑔(𝜉) in Equation (A4) 

with exp[i𝜉√2𝑚𝑒𝐸/ℏ]. 

APPENDIX D: Photoelectron transport in a nanoscale gap without dc bias 

We have the potential energy Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡) , with 𝑉(𝑥, 𝑡) = 𝐸𝐹 +𝑊  and 𝑓(𝑡) =

𝑒𝐹1 cos(𝜔𝑡), and 
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                                       𝜙(𝜉, 𝑡) = 𝜙(𝜉) = 𝑒±𝑖𝜉√2𝑚𝑒(𝐸−𝑉0)/ℏ2.                             (A5)  

Here, “+” in 𝜙(𝜉) denotes the electron wave travelling towards +x direction; “‒” denotes the 

electron wave travelling towards –x direction. Due to the reflection of electron waves at metal-

vacuum surfaces of x=0 and d (see Figure 5.1), the electron wave function 𝜓(𝑥, 𝑡) inside the 

vacuum gap (0 ≤ 𝑥 < 𝑑) should be the superposition of wave functions towards +x direction and 

–x direction. Then, from 𝜓(𝑥, 𝑡) = 𝜙(𝜉)𝜒(𝑥, 𝑡), we obtain Equation (45) with 𝐸 = 𝜀 + 𝑛ℏ𝜔 −

𝑒2𝐹1
2/4𝑚𝑒𝜔

2.  

APPENDIX E: Photoelectron transport in a nanoscale gap with dc bias 

For the photoemission from left metal-vacuum interface of the gap in Figure 5.6(a), we have the 

potential energy Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡) , with 𝑉(𝑥, 𝑡) = 𝑉0 − 𝑒𝑉𝑥/𝑑  where and 𝑓(𝑡) =

𝑒𝐹1 cos(𝜔𝑡), and 

                                   𝜙(𝜉, 𝑡) = 𝑔(𝜉)exp[
𝑒2𝑉𝐹1 sin(𝜔𝑡)

𝑖ℏ𝑑𝑚𝑒𝜔3 ]                                              (A6)  

where 𝑔(𝜉) = 𝐴𝑖(−𝜂) ± 𝑖𝐵𝑖(−𝜂)  is the solution of the equation −(ℏ2/2𝑚𝑒)𝜕
2𝑔(𝜉)/𝜕𝜉2 +

(𝑉0 − 𝐸 − 𝑒𝑉𝜉/𝑑)𝑔(𝜉) = 0 , where 𝜂 = (2𝑒𝑚𝑒𝑉/𝑑ℏ
2)1/3[(𝐸 − 𝑉0)𝑑/𝑒𝑉 + 𝜉]  [81][86]. Here, 

“−” in 𝑔(𝜉) denotes the electron wave travelling towards +x direction; “+” denotes the electron 

wave travelling towards –x direction. Due to the reflection of electron waves at metal-vacuum 

surfaces of x=0 and d (see Figure 5.6(a)), the electron wave function 𝜓(𝑥, 𝑡) inside the vacuum 

gap (0 ≤ 𝑥 < 𝑑 ) should be the superposition of wave functions towards +x direction and –x 

direction. Then, from 𝜓(𝑥, 𝑡) = 𝜙(𝜉)𝜒(𝑥, 𝑡) , we obtain Equation (57) with 𝐸 = 𝜀 + 𝑛ℏ𝜔 −

𝑒2𝐹1
2/4𝑚𝑒𝜔

2. 
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For the photoemission from right metal-vacuum interface of the gap in Figure 5.6(a), we have 

the potential energy Φ(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑥𝑓(𝑡), with 𝑉(𝑥, 𝑡) = 𝑉0 + 𝑒𝑉𝑥/𝑑  where and 𝑓(𝑡) =

𝑒𝐹1 cos(𝜔𝑡), and 

                                   𝜙(𝜉, 𝑡) = 𝑔(𝜉)exp[
𝑒2𝑉𝐹1 sin(𝜔𝑡)

𝑖ℏ𝑑𝑚𝑒𝜔3
]                                              (A7)  

where 𝑔(𝜉) = 𝐴𝑖(𝜂) ± 𝑖𝐵𝑖(𝜂)  is the solution of the equation −(ℏ2/2𝑚𝑒)𝜕
2𝑔(𝜉)/𝜕𝜉2 +

(𝑉0 − 𝐸 + 𝑒𝑉𝜉/𝑑)𝑔(𝜉) = 0 , where 𝜂 = (2𝑒𝑚𝑒𝑉/𝑑ℏ
2)1/3[𝜉 − (𝐸 − 𝑉0)𝑑/𝑒𝑉] [81][86]. 

Here, “+” in 𝑔(𝜉) denotes the electron wave travelling towards +x direction; “−” denotes the 

electron wave travelling towards –x direction. Due to the reflection of electron waves at 

metal-vacuum surfaces of x=0 and d (see Figure 5.6(a)), the electron wave function 𝜓(𝑥, 𝑡) 

inside the vacuum gap (0 ≤ 𝑥 < 𝑑) should be the superposition of wave functions towards 

+x direction and –x direction. Then, from 𝜓(𝑥, 𝑡) = 𝜙(𝜉)𝜒(𝑥, 𝑡), we obtain Equation (67) 

with 𝐸 = 𝜀 + 𝑛ℏ𝜔 − 𝑒2𝐹1
2/4𝑚𝑒𝜔

2.  
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