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ABSTRACT

THEORETICAL MODELING OF ULTRAFAST OPTICAL-FIELD INDUCED
PHOTOELECTRON EMISSION FROM BIASED METAL SURFACES

By
Yi Luo

Laser-induced electron emission from nanostructures offers a platform to coherently control
electron dynamics in ultrashort spatiotemporal scales, making it important to both fundamental
research and a broad range of applications, such as to ultrafast electron microscopy, diffraction,
attosecond electronics, strong-field nano-optics, tabletop particle accelerators, free electron lasers,
and novel nanoscale vacuum devices. This thesis analytically studies nonlinear ultrafast
photoelectron emission from biased metal surfaces, by solving the time-dependent Schrodinger
equation exactly. Our study provides better understanding of the ultrafast control of electrons and
offers useful guidance for the future design of ultrafast nanoelectronics.

First, we present an analytical model for photoemission driven by two-color laser fields. We
study the electron energy spectra and emission current modulation under various laser intensities,
frequencies, and relative phase between the two lasers. We find strong modulation for both the
energy spectra and emission current (with a modulation depth up to 99%) due to the interference
effect of the two-color lasers. Using the same input parameter, our theoretical prediction for the
photoemission current modulation depth (93.9%) is almost identical to the experimental
measurement (94%).

Next, to investigate the role of dc field, we construct an analytical model for two-color laser
induced photoemission from dc biased metal surfaces. We systematically examine the combined
effects of a dc electric field and two-color laser fields. We find the strong modulation in two-color

photoemission persists even with a strong dc electric field. In addition, the dc field opens up more



tunneling emission channels and thus increases the total emission current. Application of our
model to time-resolved photoelectron spectroscopy is also demonstrated, showing the dynamics
of the n-photon excited states depends strongly on the applied dc field.

We then propose to utilize two lasers of the same frequency to achieve the interference
modulation of photoemission by their relative phase. This is motivated by the easier access to
single-frequency laser pairs than two-color lasers in experiments. We find a strong current
modulation (> 90%) can be achieved with a moderate ratio of the laser fields (< 0.4) even under a
strong dc bias. Our study demonstrates the capability of measuring the time-resolved photoelectron
energy spectra using single-frequency laser pairs.

We further extend our exact analytic model to photoelectron emission induced by few-cycle
laser pulses. The single formulation is valid from photon-driven electron emission in low intensity
optical fields to field-driven emission in high intensity optical fields, and is valid for arbitrary pulse
length from sub-cycle to CW excitation, and for arbitrary pulse repetition rate. We find the emitted
charge per pulse oscillatorily increases with pulse repetition rate, due to varying coherent
interaction of neighboring laser pulses. For a well-separated single pulse, our results recover the
experimentally observed vanishing carrier-envelope phase sensitivity in the optical-field regime.
We also find that applying a large dc field to the photoemitter is able to greatly enhance the
photoemission current and in the meantime substantially shorten the current pulse.

Finally, we construct analytical models for nonlinear photoelectron emission in a nanoscale
metal-vacuum-metal gap. Our results reveal the energy redistribution of photoelectrons across the
two interfaces between the gap and the metals. Additionally, we find that decreasing the gap
distance tends to extend the multiphoton regime to higher laser intensity. The effect of dc bias is

also studied in detail.
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CHAPTER 1

INTRODUCTION

1.1 Background

Ultrafast science concerns the study of electronic dynamics and motion in ultrashort timescale with
the aid of ultrafast lasers. This field has been widely explored in atomic and molecular systems.
The main observation includes above-threshold ionization [1][2] and high-order harmonic
generation [3]. In recent decade, a new research direction has emerged in the ultrafast science field,
which is the study of laser-induced electron emission from solid nanostructures [4]-[6]. Utilizing
the solid-state nanostructures [7]-[23], especially those made of metals, enables the nanoscopic
confinement of optical fields and the resulting large field enhancement factor on the nanosurface.
The former provides the possibility for the control of ultrafast electron emission on the nanometer
scale, which is fundamentally important to the development of high-resolution electron
microscopy [24]-[27], highly coherent electron sources [28]-[30] and novel nano-vacuum
electronic devices [31]-[36]; the latter enables the access to strong-field optics with low laser
intensity, which can reduce the requirement for the laser experimental system and avoid thermal
damage on the structure when illuminated by strong laser fields [4][37]. Photoemission is also
important to the development of vacuum electronics, high power electromagnetic sources and
amplifiers, and high current cathodes [38]-[45].

The initial work on ultrafast laser-induced electron emission from nanostructure is reported by
Hommelhoff and his colleagues [7]. They demonstrated the nonlinearity of ultrafast photoelectron
emission from a tungsten nanotip driven by low-power femtosecond laser. A variety of
photoemission properties from metallic nanostructures were subsequently revealed, including the

transition from multiphoton emission to strong optical-field emission [11], dc-assisted tunneling



emission [6][8][46], surface-plasmon boosted emission [20][37][47]-[49], dense-arrays
enhancement effect [50][51], dependence of emission distribution on optical orientation [52][53],
carrier-envelope-phase (CEP) sensitivity [13][54]-[56], modulation effect of two-color lasers

[57]-[62], and rectification effect of metal-vacuum-metal nanogap [63]-[66].

1.2 Photoelectron Emission Mechanisms
Photoemission mechanisms in general depend on the local optical field intensity. This section

summarizes the photoemission processes from metal surface in different field intensity regimes.

1.2.1 Multiphoton Over-Barrier Emission

Under the illumination of a weak laser field, the main photoemission process is multiphoton over-
barrier emission, where the electron inside the metal is excited to a continuum state by absorbing
a threshold number of photons or more photons and then escapes from the metal surface (see Figure
1.1). The photoemission yield follows a power law in the incident laser intensity, and the exponent
denotes the threshold number of photons needed to overcome the potential barrier. Figure 1.2
displays the experimentally measured multiphoton emission current from a sharp gold tip as a
function of the incident laser power [9]. For zero dc bias (see the blue line in Figure 1.2), the
fourth-order power dependence indicates the electron inside the tip needs to absorb at least four
photons for the emission, which is consistent with the ratio of the work function of gold (= 5 eV)

over incident single photon energy of 1.5 eV (for 828 nm laser), W/hw = 3.3.
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Figure 1.1: Multiphoton over-barrier emission. Electron inside the metal is excited to a continuum
state by absorbing enough photon energy and then escapes from the metal surface. W and E are
the work function and Fermi energy of metal, respectively.
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Figure 1.2: Log-scale plot of photoelectron yield from a sharp gold tip as a function of laser power
with 800 V dc bias (red curve) and without dc bias (blue curve) [9].

1.2.2 Tunneling Emission

Optical field emission

Optical field emission occurs in the strong laser field regime, where the potential barrier near the
metal surface greatly oscillates with time, enabling the electron tunneling into the vacuum with

less photon absorption than multiphoton over-barrier emission (see Figure 1.3). Optical field



emission only occurs during the positive half laser cycles, as shown in Figure 1.3. Bormann et al,
[11] firstly reported the optical field emission from nanostructure, and their main experimental
observation is displayed in Figure 1.4. With increasing laser energy, the slope of photoemission
current decreases, indicating the transition of dominant emission from multiphoton over-barrier

emission to optical field emission.
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Figure 1.3: Optical field emission. The potential barrier near the metal surface greatly oscillates
with time under the illumination of strong laser field, enabling the electron tunneling emission. W
and E are the work function and Fermi energy of metal, respectively.
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Figure 1.4: Log-scale plot of photoelectron yield from sharp gold nanotip as a function of laser
energy. The decreasing slope with the increasing incident energy indicates the transition of the
dominant emission process from multiphoton over-barrier emission to optical field emission [11].

Photon-assisted tunneling emission

For the sharp metallic tip, a strong dc field can be easily obtained at the apex due to strong field
enhancement near the tip, inducing a narrow barrier near the metal surface. This makes the electron
tunneling emission possible, even in the weak laser field regime (see Figure 1.5), which is referred
as photon-assisted tunneling emission (or dc-assisted optical tunneling). Figure 1.6 displays the
experimentally measured photoelectron energy spectra from a tungsten nanotip with strong dc field,

where the photon-assisted tunneling emission is the main emission process [46].
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Figure 1.5: Photon-assisted tunneling emission. The tunneling potential barrier near the metal
surface is formed under the strong dc field. Electron tunneling emission is possible even with a
weak laser field. W and Eg are the work function and Fermi energy of metal, respectively.
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Figure 1.6: Experimentally measured photoelectron energy spectra from tungsten nanotip with
strong dc field [46].



In addition, due to the image charge effect (or Schottky effect) induced by the strong dc field, a

significant reduction of potential barrier AW appears at the surface (see Figure 1.5), which is given

by,

AW = \/e3FDc/4‘7T80 (1)

where e is the elementary charge, Fp is the local dc field, and g, is the free space permittivity.

The decreased barrier height can greatly increase the photoelectron emission yield.

1.2.3 Keldysh Parameter
Keldysh parameter y is used to define the limit between multiphoton over-barrier emission and

optical field emission [67]. It is given by,

Y= |57 (2)

where W is the work function of metal and U, is the ponderomotive energy which describes the
time-averaged kinetic energy of an electron with charge -e and mass m,, in an oscillating electric

field with the angular frequency w and field amplitude F,

€2F2

4m,w?

(3)

Up

For y > 1 (weak optical field), the dominant emission mechanism is multiphoton over-barrier
emission. For y < 1 (strong optical field), the optical field emission dominates. When the Keldysh
parameter y is close to 1, the contribution from multiphoton over-barrier and optical field emission

COexists.



1.3 Theoretical Models for Photoemission from Metal Surfaces

A variety of theoretical approaches have been developed to describe and understand the underlying
photoelectron emission mechanisms, such as Fowler-Dubridge model [68]-[71], three-step model
[72]-[74], perturbative theory [11][75][76], Floquet method [76][77], Fowler-Nordheim tunneling
approximation [8][19][55], and directly solving the time-dependent Schrédinger equation (TDSE)
[6]1[7][13][76][78]-[80]. In this section, we introduce the commonly used three-step model,

Fowler-Nordheim equation, and quantum analytical model based on the TDSE.

1.3.1 Three-Step Model

Three-step model considers photoelectron emission as three sequentially independent processes:
(1) Electrons inside the metal are excited to higher energy states by absorbing the incident photon;
(2) Excited electrons migrate to the metal surface, where electron-electron scattering effect is
included; (3) Electrons with the energy larger than the potential barrier energy escape from the
metal surface. The photoemission quantum efficiency (QE), defined as the ratio of the number of
emission electrons over that of incident photons, is expressed in terms of the probabilities of these

three steps [72][73],

QE(w)

(o]

Ep+Weff—hw

dE[1 = frp (E + ha)fen(E) [ g d(c0s0) Fy—o(E, ,0) [, dd
dE[1 ~ fup(E + hoo)lfen (E) [, d(cos) [I" d

= [1 = R(w)]

(o]

fEF—fl(J)

(4)

where R(w) is the metal surface reflectivity as a function of optical frequency w, frp(E) =
1/{1 + exp [ (E — Er)/kgT]} is the Fermi-Dirac function, describing the distribution of electron

energy states inside the metal, £y is the Fermi energy of metal, W, ;¢ is the effective work function



including the Schottky effect, F,_. (E, w, 8) is the probability an electron reaches the metal surface

without electron-electron scattering, 6 is the angle between the electron velocity and the surface

normal, @ is the azimuthal angle, cos6,,,, = \/(EF + Wesr)/(E + hw), where 6,4, is the
maximum escape angle for electrons with the total energy E + Aw.

At low temperature (kgT < Eg), the Fermi-Dirac function fzp(E) can be approximated by
Heaviside step function H(Er — E). When the photon energy hw is close to the effective work
function of the metal, 6,,,, Will be nearly normal to the metal surface. Thus, the angle 6
dependence of F,_.(E,w,0) can be ignored. With these assumptions, Equation (4) can be

simplified to [72][73],

Ep+fl(1) EF+Weff EF+Weff
E =|1—R F,_ —_— 1 -2 .
QE@) = [1 = R@)Foce(@) == x |1 4 =l | 5)

As shown in Figure 1.7, the QE calculated from Equation (5) exhibits good agreement with the

experimental measurements for copper surfaces. However, this model is constructed by the
classical treatment, thus it only works in the multiphoton over-barrier emission regime instead of

the strong optical field regime with quantum mechanical tunneling [74].
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Figure 1.7: Comparison between the experimentally measured QE under low dc electric field
(black points) and calculated QE under low (red solid line) and high (blue dashed line) dc
electric field [72].

1.3.2 Fowler-Nordheim Equation
Fowler-Nordheim equation describes the field emission where electrons tunnel through a narrow
potential barrier due to a strong static electric field. The formula is given by [8][81][82],

e3F? 8 Zme(b%

Jey = grnatz@) &P | T 3her W (6)

where jgy is the field emission current density, e is the elementary charge, F is the local dc electric
field, h is the Planck constant, ® is the effective work function, t?(w) =~ 1 for field emission, me
is the electron mass, and v(w) = 1 — w + wlnw/6 wWith w = e3F /4me,®.

Fowler-Nordheim equation is also frequently used to calculate the photoemission rate j for the

dc-assisted optical tunneling or strong optical field emission by directly replacing the electric field
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F in Equation (6) with the sum of applied dc field F, and time-dependent laser electric field F; (t)

[8][83]
Jj= jFN(FO + F1(t)) (7)

Figure 1.8 shows that the experimentally measured field emission, dc-assisted optical tunneling
emission and optical field emission can be well described by the Fowler-Nordheim scaling.
Nevertheless, Fowler-Nordheim equation is only valid in the strong optical field regime instead of

the multiphoton over-barrier emission regime.
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Figure 1.8: (a) Fowler-Nordheim plots of field emission (blue squares) and dc-assisted optical

tunneling (red circles) [8]. (b) Fowler-Nordheim fit to the experimental measurements (bright
orange dashed line) [19].

1.3.3 Quantum Analytical Model
Solving the TSDE is a quantum approach to describe the photoelectron emission, where the

interaction between the electrons inside the metal is ignored. In 2016, Zhang and Lau [6] developed
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an quantum analytical model for the photoemission due to a combination of a dc field F, and a
laser field F; cos(wt), by exactly solving the TDSE,

W)  h? %YP(x D)

" n
! at 2m, 0x?

+ O(x, )Y (x, t) (8)

where # is the reduced Plank constant, me is the electron mass, and ®(x, t) is the time-dependent
potential energy being 0 inside the metal (x < 0) and Er + W, ¢ — eFyx — eF;x cos(wt) in the
vacuum (x = 0) respectively, with Er being the Fermi energy of the metal, W, the effective
work function including the Schottky effect and e the elementary charge. Here, both external
electric fields are assumed to be perpendicular to the flat metal surface. Based on the triangular
potential barrier, the exact solution of electron wavefunction y; (x, t) inside the metal and ¥, (x, t)

in the vacuum are obtained [6],

ist - £+ nhw
i(x,t) =exp|——+ ikox ) + nexp|—i——=t—ik, x|, x<
Wiet) = ep (= bikox) + Y Rewp(<impt - ikex), x <0 ©

n=-—oo

Ye(x, t) = Z T,.[Ai(—n,) — iBi(—n,)] X exp (—i%t — ina)t)

n=—oo

ieF; sin(wt) ie?F? sin(Qwt) ie?F,F; sin(wt)
X exp x + -
hw 8hm,w3 hm,w3

), x>0 (10)

where ko = \/2m,e/h% and k,, = \/2m, (¢ + nhw)/h? are the electron wave number, Ai and Bi

are the Airy functions of the first kind and second kind respectively, n, = [an+x+
0

eF; cos(wt), ,2emFy
I(

1
— ), the drift kinetic energy E, =&+ nhw —Ep —Werr—U,, and the

Mmew?

ponderomotive energies U, = e?F2/4m,w?. The transmission coefficient T,, can be obtained
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from the boundary conditions that both the electron wave function ¥(x,t) and its derivative
0y (x, t)/0x are continuous at x = 0 (see Reference [6]).

Using the probability current density, the time-averaged normalized emission current density,
defined as the time-averaged ratio of the transmitted probability current density over the incident

probability current density, (w(e, x,t)) = (J;/J;), can be obtained as,

- Foh/[2m,)!/3
WEN = Y ), (e = T (1)

n=-—oo

where (w,,) denotes the normalized emission current density through the nth channel with emitted

electron energy € + nhw due to the n-photon contribution.
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Figure 1.9: (a) Photoelectron energy spectra with increasing laser field. Left three plots show the
experimental measurements [54]. Right three plots show the calculation from Zhang’s quantum
analytical model [6]. (b) Photoemission current as a function of applied dc field. Left plot is the
experimental result [9]. Right plot is Zhang’s quantum analytical results [6].

As shown in Figure 1.9, the calculation from the quantum model recovers the experimentally

measured trends on the energy spectra for the transition from multiphoton to optical field emission
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and the voltage and laser power dependence of photoelectron yield. These good agreement with
the experimental results display the validity of Schrddinger-based analytical model in both
multiphoton over-barrier regime and optical field regime. Our theoretical model in this thesis is

also derived from the TDSE.

1.4 Organization of This Thesis

In this thesis, we develop analytical quantum models to study ultrafast optical-field induced
photoelectron emission from biased metal surfaces, by solving TDSE exactly. We consider two-
color laser induced photoelectron emission with and without dc bias, interference modulation of
photoemission using two lasers of the same frequency, nonlinear ultrafast photoemission from a
dc-biased surface triggered by few-cycle laser pulses, and laser induced photoelectron transport in
nanogaps.

Chapter 2 presents analytical models for nonlinear ultrafast photoelectron emission from metal
surface induced by two-color laser fields without and with dc bias, by exactly solving the TDSE.
The photoelectron energy spectra, emission current density and current modulation under various
combinations of laser intensities, frequencies, dc fields, and phase differences of the two-color
lasers are analyzed. The application of our model to the time-resolved photoelectron spectroscopy
of one dimensional (1D) system is exemplified.

Chapter 3 explores the modulation to photoemission current and dynamics of multiphoton
excited states using two lasers of the same frequency. The effects of different laser fields,
wavelengths, cathode materials, and dc bias are analyzed in detail. The capability of measuring the
time-resolved photoelectron energy spectra using single-frequency laser pairs is demonstrated.

Chapter 4 presents an analytical model for nonlinear ultrafast photoemission from a dc-biased

surface triggered by few-cycle laser pulses, by exactly solving the TDSE. Our exact model is valid
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for arbitrary pulse length from sub-cycle to CW excitation, and for arbitrary pulse repetition rate.
The photoelectron energy spectra, emission current and emission charge density with different
combinations of laser pulse repetitions, durations, laser intensities, CEP and dc fields are explored,
showing good agreement with the experimental observations. This work offers clear insights to
the photoelectron energy distribution and spatiotemporal dynamics of electron emission with
different ultrashort pulses and dc fields.

Chapter 5 presents analytical models for ultrafast photoelectron emission in a nanoscale metal-
vacuum-metal gap driven by a single-frequency laser field. We study the dependence of
photoelectron spectra and emission current on gap distance, laser intensity, wavelength, and metal
materials. This work may provide useful guidance for the future design of ultrafast optoelectronic
devices, such as photodetectors.

Chapter 6 gives a summary and an outlook to future works.
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CHAPTER 2
TWO-COLOR LASER INDUCED PHOTOEMISSION

2.1 Introduction

Two-color laser induced photoelectron emission from nanostructure is reported by Forster and his
colleagues [57] in 2016. They found a substantial emission current modulation of 94% for tungsten
nanotips via the control of the relative phase between a strong fundamental laser and a weak
second-harmonic laser, due to the interference effect between quantum emission pathways. This
provides a new platform for coherently controlling electron dynamics in ultrashort spatiotemporal
scales by the phase difference between the two-color lasers. By optimizing the employed laser and
dc electric fields, Paschen et al [59] reported a nearly perfect two-color emission current
modulation of up to 97.5% for tungsten nanotip in 2017. Other aspects of two-color photoemission
from metallic nanostructures are also studied, including laser polarization dependence [58],
interaction of two-color lasers with free electron beams [84] and plasmon-assisted emission [85].
Despite these recent studies on two-color photoemission from metallic nanostructure, the
correlation between laser fields, applied dc bias and various underlying emission processes is still
not well understood. The parametric dependence of the photoelectron emission needs substantial
further study.

In this chapter, we present quantum analytical models for nonlinear ultrafast photoelectron
emission from metal surface induced by two-color laser fields without and with dc bias, by exactly
solving the TDSE [61][62]. Our models are valid for arbitrary laser intensities, harmonic orders,
phase differences between the two lasers, dc bias and metal work function and Fermi level. Various
emission processes, including multiphoton over-barrier emission, dc-assisted tunneling emission

and optical field emission, are all included in the single formulation. We comprehensively analyze
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the photoelectron emission properties, including energy spectra, emission current density, and
current modulation, under various combinations of laser intensities and frequencies, dc fields, and
relative phase of the two-color lasers. We study the effects of image charge induced by the dc field
on the emission current, which gives an examination on the sensitivity of photoemission to the
shape of potential barrier. The application of our analytical model to the time-resolved
photoelectron spectroscopy of one dimensional (1D) system is also demonstrated. The material of
this chapter is based on our published papers References [61] and [62], and is presented with

permission from the copyright holders.

2.2 Photoemission Without DC Bias

2.2.1 Analytical Model

Our one-dimensional (1D) model (see Figure 2.1) considers electrons with initial energy ¢ are
excited to the higher energy state by absorbing photon energy and then get emitted from the metal-
vacuum interface at x = 0, under the illumination of two-color laser fields, F;cos (wt) and
F,cos (Bwt + 0), where F; and F, are the magnitudes of the laser fields, w is the fundamental
laser frequency, S is a positive integer, and 6 is the relative phase. We assume both laser fields are
perpendicular to the metal surface, and cut off abruptly at the surface. The sudden screening of
external fields is justified [6], because the laser penetration depth (i.e., skin depth) is typically
much smaller than the laser wavelength (e.g., for the gold, the skin depth of 800 nm laser

wavelength is around 4 nm).
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Figure 2.1: Energy diagram for electron emission through a wiggling potential barrier induced by
two-color laser fields across the metal-vacuum interface at x = 0. Electrons with initial energy of
€ are excited to emit through n-photon absorption, with a transmitted energy of € + nhw, withn
being an integer. The fundamental and the harmonic laser fields are F; cos (wt) and F,cos (Bwt +
0), respectively. Er and W are the Fermi energy and work function of the metal, respectively.

A time-varying potential barrier would be created at the metal-vacuum interface x = 0,

D(x,t) = { k x<0
6= Vo — eFyx cos(wt) — eF,x cos(Bwt + 0), x =0, (12)

where V, = Ep + W, Er and W are the Fermi energy and work function of the metal respectively,
and e is the elementary charge. To make the analytical treatment possible, image charge effects
are not included in Equation (12). However, our previous work [6] demonstrated a very good
approximation to include the image charge potential in our model, by simply replacing the work
function W with the effective work function due to Schottky barrier lowering.

The electron wave function y(x, t) is solved from the TDSE,

0P (x, h% %y (x,
if ll’g; B _ o lg)(; t) + 006 OV D), 3

where h is the reduced Plank constant, me is the electron mass, and ®(x, t) is the potential energy

given in Equation (12).
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An exact solution to Equation (13) for x > 0 is obtained [61] (see Appendix A for the method),

Y(x, t) = Z T,, exp(—iet/h — inwt) X exp (iE\/ZmeEn/hZ)

n=—oo

ie ie? ie?F, F,
x exp (£ Lx + M — N), x20 (14)

eF; cos(wt) | eF, cos(Bwt+0) L = F; sin(wt) + F, sin(Bwt+6) M = FZsin(2wt)

where & =x+ —— e - 5w , =

F# sin(2Bwt+26)
B3w3

sin[(B-1)wt+6] _ sin[(B+1)wt+6]
B-Dw B+Dw

, N = , T, 1s the transmission coefficient, the drift

kinetic energy E, = € + nhw — Er — W — U,; — Uy, the ponderomotive energies U,; = e*F¢/
4mew?, and Uy, = e*F7 /4m,B?w?, and ¢ is the electron initial energy. Because of the time
periodicity, Equation (14) represents the superposition of transmitted electron plane waves with
energies € + nhw, due to multiphoton absorption (n > 0), tunneling (n = 0), and multiphoton
emission (n < 0) [6][76].

For x < 0, the solution to Equation (13) is [61],

oo

&+ nhw

£t
P(x,t) =exp (—% + ikox) + Z R, exp (—th — iknx), x<0 (15)

n=—oo

which denotes the superposition of an incident wave and a set of reflected waves, where k, =

J2mee/2, k, = \[2m, (e + nhw)/h2, and R,, is the reflection coefficient. It has been verified
that most of the reflected current is through the initial energy level (n = 0) [6]. .

By matching the solutions in Equations (14) and (15) from the boundary conditions that both
Y(x,t) and 0y (x,t)/dx are continuous at X = 0, and taking Fourier transform, we obtain, in
nondimensional quantities [6], £ = /W, @ = wh/W,t = tW /h, Ep = Ex/W,x = x/1y, A9 =
JRZ[2m W, Fy = Fiedg/W , F, = Fyedg/W , Upy = Upy /W, Upy = Upy /W, the following

equation,
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oo

2WESWD) = ) Tu[VET loPaans + nins)] (16)

n=-—oo

where §(1) is the Dirac delta function, and P, and Zy, ¢,y are given by,

1 27T o 1 2T R
P =50 f P(@De 1Pt d(@), Qu =5 f pn(@D)zy(@De™ % d(@D),  (172)
0 0

pu(@D) = q@DS @D, 2,(@D = [F, + sin(@D) + [f—;sm(ﬁwﬂ 6, b

. = [Fi cos(@t) , F, cos(Bwt+6)
q(wt) =e12JE_"[ C (17¢)

; FZ sin(2wb)  Ff sinBwi+260)
f(@b) =e 4@w3 4p3m3

iF F(sin[(B—1)®t+6] sin[(ﬁ+1)€)f+9]}

x e Botl  (B-Do F+w (17d)

with E, = € + n@ — Ep — U,; — Uy, — 1. Since Equation (17) is derived from the conditions that
electron wave function and its first derivative are continuous at the metal-vacuum interface (x =
0), p,, and z, in Equation (17b) denote the phase factor of the wave function in the nth state and
of its spatial derivative at x = 0, respectively. P,,; and Q,,; are the lth Fourier coefficients of p,, and
the product of p, and z,, respectively. The transmission coefficient T,, (and therefore the
reflection coefficient R,,) is obtained from Equation (16). The emission current density is then
calculated from the probability current density J(x,t) = (ih/2m)(Yoy*/dx — Y™ 0P /ox) =
(ih/2my) Y —co Dim—oo (W Oy /Ox — Py, O, 0x), Where Y (x,t) = Yin-_o Yn(x, t) is obtained

from Equation (14).
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The normalized emission current density, defined as the ratio of the transmitted probability
current density over the incident probability current density, w(e, x,t) = J:(g,x,t)/J; (g, x, t), is
found in nondimensional form as,

1 o o ' B '
W(g,f;a = \/—_(ET z z Re[el(l_n)“’tTnTl*el@D], (18)

n=—o |l=—o

where 0 = [\/En - (\/E) ] [JE + i_—ﬁzlcos(ﬁt_) + ;222 cos(Bwt + 9)] , and D= (\/E) +
%sin(af) + %sin(ﬁaf+ 0). The normalized time-averaged emission current density is found

to be,

(w(&) = Z (wy(8),  (wn(8)) =Re (lTnIZ /En/§>r (19)

n=-—oo
where (w,,) represents the emission current density through the nth channel, with emitted electrons

of energy € + nhw due to the n-photon contribution.

2.2.2 Results and Discussion
In this chapter, unless mentioned otherwise, the default values for the calculation are as follows:
the wavelength of the fundamental laser field F; is 800 nm (hw = 1.55 eV), the harmonic laser
field F, is with the frequency of 2w (i.e. § =2), the metal is assumed to be gold
[6][11][56][61][62][76], with Fermi energy Er=5.33 eV and the work function W =5.1 eV, and
since most of the emission electrons from sources are located near the Fermi level
[6][61][62][76][86][87], we choose the electron initial energy ¢ = E for simplicity.

First, in order to understand the detailed underlying emission processes, the photoelectron
energy spectra, under different two-color laser fields F; (at frequency w) and F, (at second

harmonic 2w), for various phase differences 8 between two laser fields are displayed in Figure
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2.2. It can be seen that the dominant emission process is the four-photon absorption (n = 4) for
the fundamental laser (or two-photon absorption for the second-harmonic laser), where electrons
at the Fermi level need to absorb at least four photons to overcome the potential barrier (W /hw =
3.29) (see Figure 2.1). The tunneling emission channels (n < 4) is closed. When the two laser
fields are in phase (8 = 0), the photoelectron emission spectrum becomes broader and the total
emission current density (w) = ).,(w,,) increases when either F; or F, increases, since more
channels open up for electron emission. When F; is small (see Figure 2.2(a)), the emission
spectrum is very close to that driven by the second harmonic laser F, alone, indicating F,
dominates the emission process. As F; increases (from Figure 2.2(a) to 2.2(e)), the emission
spectrum gradually transits to that driven by F, alone, indicating the laser field dominating the
emission process changes from F, to F;. During the transition process, the competition between
F, and F, for dominating the electron emission process causes the dip in Figure 2.2(c). In
Figures 2.2(d) and 2.2(e), the dip shifts to larger n as F; increases, due to the channel closing effect
[6][76]. When either F; = 0 or F, = 0, the results recover those of single frequency laser induced
photoemission [6][76]. Figures 2.2(f)-(j) show that the emission spectra can be greatly modified
as 8 changes, due to the interference effect between two lasers. For example, when 6 changes from
/2 to 3m/2 , the emission process with the highest probability shifts from the four-photon (n =
4) to five-photon (n = 5) absorption.

Figure 2.3 shows the normalized total time-averaged emission current density (w) under various
combinations of F; and F,, for the phase difference 8 =0 and m. In Figures 2.3(a) and 2.3(b), when
F, is small (F;/F, >10), (w) is insensitive to F,, because the fundamental laser F;, dominates the
emission process. As F, increases, the current density gradually approaches the scale (w) « F™

with n = 2 (see Figures 2.3(a) and 2.3(b)), indicating two-photon absorption for the second-
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harmonic laser (or four-photon with respect to the fundamental laser) is the main emission process.
The gradual change of the slope of (w) is due to the opening of higher emission channels, as seen
in Figure 2.2. When 6 = m (see Figure 2.3 (b)), a series of new dips appear in the curves as
compared to those when 8 = 0 (see Figure 2.3 (a)), indicating strong interference effects between
the two lasers. The interference effect is also reflected in that the total current density (w) with F;
=1 V/nm changes from being larger than (w) with F; = 0 to being smaller (see the green and dark
blue lines in Figures 2.3(a) and 2.3(b)). The sharp drops of (w) at F, = 13 V/nm in Figures 2.3 (a)
and 2.3(b) are due to the channel closing effect [6][76],which is accurately predicted by taking
E, =e+4hw — Ep — W — Uy, — Uy, = 0, giving F, = 12.4 V/nm. Similar behaviors of (w) as

a function of F; are observed in Figures 2.3 (c) and 2.3(d).
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Figure 2.2: Photoelectron energy spectra, calculated from Equation (19). (a)-(e) Energy spectra
under different combinations of two-color laser fields F; (at frequency w) and F, (at frequency
2w), for the special case of 8 = 0. (f)-(j) Energy spectra for various phase differences 6. The unit
of laser fields F; and F, is V/nm in all figures.
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Figure 2.3: Normalized total time-averaged emission current density for the phase differences 6 =
0 and 7. (a)-(b) total time-averaged current density (w) as a function of the second-harmonic laser
field F,, under various fundamental laser fields F;. (c)-(d) (w) as a function of F;, under various
F,. The laser intensity is related to the laser electric field as | [W/cm?] = 1.33 x 101tx (F1 [V/nm])2.
The dotted lines represent the scale (w) oc F2™,

The total time-averaged emission current density (w) as a function of 6 is shown in Figures
2.4(a)-2.4(c), for various 2w laser fields F, with fixed F; = 1.6 VV/nm. The total emission current
density (w) oscillates as a sinusoidal function of 6, showing striking resemblance to the

experimentally measured emission current (see Figure 2(b) in Reference [57]). As F, decreases,
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the maximum and minimum of (w) both decrease, but the corresponding 6 for the maximum and
minimum (w) remain almost unchanged. The modulation depth, defined as I' = ((W);nax —
W)min)/ (W)max + (W)min), reaches a maximum value of approximately 99% when F, /F; =
0.1375 (or intensity ratio of 2%). For tungsten and the fundamental laser wavelength of 1560 nm
as in Reference [57], we obtain the modulation depth of 95.5% and of 93.9%, when setting the
work function in Equation (12) to be 4.3 eV and 3.6 eV (effective work function with Schottky
effect), respectively. The latter is almost identical to the experimentally measured modulation
depth of 94% in Reference [57]. Despite the excellent agreement between the theoretical
predictions and experimental results, we should stress that our model assumed one-dimensional
flat metal surface, whereas the experiment used nanometer scale sharp emitter [57]. The sharpness
of the emitter may introduce varying field enhancement and Schottky lowering factor along the
emission surface, nonuniform off-tip electron emission [53], and even quantized energy levels
inside the emitter [88]. In addition, our model neglects the image charge potential, laser pulse
shape, laser penetration depth, incident electron energy distribution inside the meal, and surface
effects (e.g., local surface roughness, grain boundaries, and different crystal plane terminations).
As F, further decreases, I' drops. When F, reaches 0, (w) becomes a constant, with zero I' as
expected, as shown in Figure 2.4(c). Figure 2.4(d) compares the electron energy spectra at the peak
and valley of the current modulation for F, /F; = 0.1375, where the dominant emission process
shifts from four-photon to five-photon absorption. Figure 2.4(e) summarizes the modulation depth
I" as a function of F, /F,, for different strengths of the fundamental w laser field F;. As the w laser
field F; increases, the location of the peak modulation depth shifts to larger F, /F;, since a larger

2w laser field F, is needed to balance the increase of F; for achieving the same modulation depth.
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Figure 2.4: Current modulation depth. (a) Normalized total time-averaged emission current density
(w) as a function of the phase difference 6, under different F, /F;. (b) Magnification of the bottom
area of (a). (c) Semi-log plot of (w) in (a). F; is fixed at 1.6 V/nm in (a)-(c). (d) Electron energy
spectra of (W)qx (pOINt A) and (w),,.;r, (point B) for F, /F;=0.1375in (c). (e) Current modulation
depth T as a function of the field ratio F,/F; for different F; = 0.5, 1.6, and 10 VV/nm.

Figure 2.5 shows the time-dependent electron emission current density w(x, t) as a function of
the space x and time t, for w laser field F; = 1.6 V/nm and 2w laser field F, = 0.22 V/nm
(experimental laser parameters in Reference [57]). When X is greater than 20 (beyond the strong
surface current oscillation region), the emission current keeps the same temporal profile with only
a phase shift as x increases (see Figures 2.5(a) and 2.5(b)), which is primarily due to the drift and
acceleration motion of electrons under the influence of laser fields. As the phase difference 6
varies from 0 to , w(x, t) becomes significantly smaller, due to the interference effect of two
lasers, which also causes the total time-averaged emission current density (w) to decrease from
5.23x 10719 to 7.31x 10711, Figures 2.5(c) and 2.5(d) show the total emission current density

w(t) at x = 100 as a function of time t. It is shown that w(t) and the total laser field F(t) have a
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clear phase shift, which means the peak value of time-dependent total emission current density
does not occur at the peak value of the total incident laser field. As the phase difference 8 changes,
the temporal profile of emission current density w(x, t) for a fixed x also has a phase shift due to
the interference effect between the two lasers. The full width at half maximum (FWHM) of the
modulation of the ultrafast current pulses in Figure 2.5 is approximately 0.62 fs, which is

significantly shorter than the period of the fundamental laser period of 2.67 fs.
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Figure 2.5: Total time-dependent emission current density for the phase differences 8 = 0 and .
(a)-(b) Total time-dependent emission current density w(x, t) as a function of the space x and time
t. (¢)-(d) Total emission current density w(t) at x = 100 as a function of time t. Dotted lines in (c)
and (d) are for the total time-dependent laser field F = F;cos (wt) + F,cos (Bwt + 6). The
fundamental laser field F;= 1.6 VV/nm. The second harmonic (8 = 2) laser field F, = 0.22 V/nm
(experimental laser parameters in Reference [57]). When 6 = 0, the normalized time-averaged
emission current density (w) =5.23x 1071%; when 8 = m, (w) = 7.31x 10711,
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The effects of harmonic number £ on the emission current modulation I" are shown in Figure
2.6. As f increases, modulation depth I" decreases, due to the reduced interference between the
two-color lasers. Note that superimposing the fourth harmonic laser (# = 4) on the fundamental
laser leads to the largest (W), qx @aNd (W)min. This is in agreement with the prediction [6] that the
maximum emission current occurs when the single photon energy (that is the fourth harmonic

photon here) roughly equals the potential barrier, 4hw /W =~ 1.
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Figure 2.6: Effects of the harmonic order. The emission current modulation depth I, the maximum
and minimum time-averaged current density, (W),,q4, and (w),,;» as a function of harmonic order
f. The fundamental laser field F; and the harmonic laser field F, are 1.6 V/nm and 0.22 V/nm,
respectively (intensity ratio of 2%).

2.2.3 Summary on Photoemission without DC Bias

In this section, an analytical model for ultrafast electron emission from a metal surface due to two-
color lasers is constructed, by solving the TDSE exactly. Our model demonstrates great tunability
on the photoelectron spectra, emission current, and current modulation, via the control of the phase
delay, relative intensity, and harmonic order of the two-color lasers. We identify the condition for

the maximum emission current modulation depth (99%) by superimposing a weak harmonic laser
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on a fundamental laser. Using the same input parameters, our theoretical prediction for the
photoemission current modulation depth (93.9%) is almost identical to the experimental results
(94%). Such two-color induced photoemission may inspire new route towards the design of future

ultrafast nanoelectronics.

2.3 Photoemission with DC bias

2.3.1 Analytical model

The addition of dc bias to the metal makes the potential barrier near the metal-vacuum interface at
x =0 narrower, compared to the case without dc bias (see Figure 2.7). The time-dependent potential

barrier near the interface reads [62],

O(x,t) = { , x <0
6= Vo — eFyx — eFyx cos(wt) — eF,x cos(Bwt + 6), x >0, (20)
E
Metal Vacuum
£+ 4hw g=-r Vacuum level
Sl =l
&+ 2hw G==>
e+ hw 6--»

Electron (E-_..

£—hw o--+
& — 2hw e-=» E,

& — 3hwe——»

Figure 2.7: Energy diagram for photoemission under two-color laser fields and a dc bias. Electrons
with initial energy € are emitted from the dc biased metal-vacuum interface at x = 0, with the
transmitted energy of € + nhw, due to the n-photon contribution [multiphoton absorption (n > 0),
tunneling (n = 0), and multiphoton emission (n < 0)], where n is an integer. The fundamental and
harmonic laser fields are F;cos (wt) and F,cos (fwt + @), respectively. The dc electric field is
F,. The photon energy of the fundamental (harmonic) laser is hw (fAw). Er and W are the Fermi
energy and work function of the metal, respectively.
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where F, is the applied dc electric field which is assumed to be perpendicular to the flat metal
surface. Other parameters have the same definition as that in Equation (12).
By solving the TDSE subjected to the potential energy given in Equation (20), the exact solution

for x > 0 is found to be [62] (see Appendix B for the method),

Y(x, t) = Z T,[Ai(—n,) — iBi(—n,)] X exp (—iit — inwt)

h
n=—oo
xexp (Sl + oy e Bl g _Lhg) s (21)
€Xp h x 8hm, 2Bhmew? hme » X =
. . 2 . 2 . . _
where I = F; sin(wt) + F, sin(Bwt+0) M= F{ sin(2wt) + F5 sin(2Bwt+26) N = sin[(f-1)wt+6] _
Bw w3 B3w3 B-Dw
sin[(B+1)wt+6] __ Fysin(wt) | F;sin(Bwt+0) _ 1En eF; cos(wt)
(B+1)w ' Q N w3 .83(1’3 ' Tln - [EFO txt mewz +

ZemeFO l

1¢ = )z, the drift Kinetic energy E, = ¢ + nhw — Ep — W — Uy — Uy, , the

eF, cos(Bwt+6)
mef2w?

ponderomotive energies U,, = e*F{/4m,w?, and U,, = e*F; /4m,B*w?*, Ai and Bi are the
Airy functions of the first kind and second kind respectively, showing an outgoing wave traveling
to the +x direction (see Figure 2.7) [6][62][82][86], T,, represents the transmission coefficient, and
€ is the initial energy of the electron. It is easy to find that Equation (21) is periodic with the time
period of 2w /w, therefore Equation (21) is readily to be recast into a Fourier series, which denotes
the superposition of transmitted traveling electron waves with energies € + nhw. These ladder
eigenenergies are made possible by multiphoton absorption (n > 0), tunneling (n = 0), and
multiphoton emission (n < 0) [6][61][62][76].

The exact solution of electron wavefunction for x < 0 is,

oo

€+ nhw

£t
Y(x, t) =exp (—% + ikox) + Z R, exp (—th - iknx), x<0 (22)

n=—oo
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which denotes the superposition of an incident plane wave and a set of reflected waves with

reflection coefficient R, and energies &+ nhw , where ky,=./2me/h? , and k, =

J2m(e + nhw)/h2.
Applying the boundary conditions that both ¥ (x, t) and dy(x,t)/dx are continuous at x = 0,

Fourier transform yields, in nondimensional quantities [6][61][62], ¢ = /W, ®w = wh/W,t =

tW/h, EF=EF/W, EZX/Ao, /10=\/fl2/2meW, F0=F06/10/W, F1=F16/10/W, FZ =

Fyedo/W, Uyy = Upy /W, Uy, = Uy, /W, the following equations,

(0]

2\/55([) = z Tn[V§+ l@Pn(n_l) + Qn(n—l)]r (23)

n=-—oo
where 8 (1), Pyn-1), and Qpn,—y) are given by,

1, [ =0,
5() = {0, [ %0, (24a)

1 2m L 1 2m P
Pu=s ), Po@De @D, Q=5 | au@e @D, @)

pn(@8) = ¢p(wb)[Ai(a,) — iBi(ay)], (24c)
qn(@t) = ¢p(@t)z, (@0), (24d)
.—_iﬁl_z— o
@D = e ot x gmi2RQ, (24e)
_1/3
7n(@) = L[Ai(an) = iBilan)] +——[iA1 () + Bi' ()] (24
T S B _— —  FZsinQwi) | Ffsin@Bwi+20) = _ sin[(f—1)wi+6] _
with L = - sin(wt) + o sin(Bwt+6), M = o3 VIR , N = —Gvs
sin[(B+1)@E+6] ~ F . B o o= =B,  2F _
—Gio Q= @—135111((»@ + ﬁ3;3 sin(Bwt+0) , a,= —F03[FTZ + m—;cos(wa +
2F, — _

=

cos(Bwt + 0)], and E, = €+ nw — Ep — Uy, — Uy, — 1. p,(@7) and g, (@1) in Equations

ﬁZa—)Z
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(24c) and (24d) represent the phase factor of the nth-state wave function and of its spatial derivative
at x = 0 respectively. P,; and Q,,; are the [th Fourier coefficients of p,, and g, respectively. The
transmission coefficient T,, (and therefore the reflection coefficient R, ) is calculated from
Equation (23).

The normalized emission current density is defined as the ratio of the transmitted probability
current density over the incident probability current density, w(e, x,t) = J.(&,x,t)/]i (g, x,t),
where the probability current density is J(x,t) = (ih/2m)(Yoy*/dx —Y* oy /ox) = (ih/
2m) Yoo Dim—oo(Wn Y[ JOx — Yy, OY0x) . Thus, the normalized instantaneous emission
current density is found as,

w(E, x, ) \/_ Z Z Im[e!t-MatT T7(C + iD)], (25a)

n=-—oo [=—o0o

C = LIAi(=m)Bi(-7,) — Ai(—=7) Bi(=7)]

1/3

+ Fy U [Ai(=) Ai' (=) + Bi(=17,)Bi' (=), (25b)

D = L[Ai(-7)Ai(—7,) + Bi(—m)Bi(—7,)]

—1/30 . et — N aerr —
+ Fy P [Ai(—)BI (—17) — Bi(—T) A (=), (25¢)
where 7, = Fy "/ 3[’2;‘ + 25 cos(@h) + BZ " cos(B@E+6) + %], and L is defined in Equation

(24f). The normalized time-averaged emission current density is obtained as,

— 1/3

F
w(@) = Z(wn(e» (W) = T, 12— (26)

n=—oo
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2.3.2 Results and Discussion
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Figure 2.8: Photoelectron energy spectra under different in-phase (i.e., 8 = 0) laser fields F; (at
frequency w) and F, (at frequency 2w) and dc fields F,. In (a)-(c) F, is fixed as 1 V/nm, and in
(d)-(f) F; is fixed as 10 V/nm. The n-photon process (that is the horizontal axis) is given with
respect to the fundamental laser frequency, which measures the energy of the emitted electrons.
The units of dc field F, and laser fields F; and F, are VV/nm in all figures.

The photoelectron energy spectra for different combinations of in-phase (6 = 0) two-color laser
fields F; (at frequency w) and F, (at frequency 2w) and dc fields F, are shown in Figure 2.8. The
results are calculated from Equation (26), except for the dc field F, = 0 cases (Figures 2.8(a) and
2.8(d)), which are obtained from Equation (19). When the dc field F, is turned off (see Figures
2.8(a) and 2.8(d)), the dominant emission process is the four-photon absorption (n = 4) for the
fundamental laser, indicating the electron at the Fermi level needs to absorb at least four photons
to overcome the potential barrier W (see Figure 2.7). This is consistent with the ratio of the work

function over the fundamental laser photon energy, W /hw = 3.29. Applying a strong dc field F,
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to the metal is able to open the tunneling emission channels below the over-barrier emission
threshold (n < 4), as shown in Figures 2.8(b)-2.8(c) and 2.8(e)-2.8(f). This is because the dc field
could sufficiently narrow the potential barrier at the metal-vacuum interface (x = 0) (see Figure
2.7), enabling the dc-assisted tunneling emission process for n < 4. As F, increases from Figures
2.8(b) to 2.8(c) and 2.8(e) to 2.8(f), the potential barrier becomes narrower, increasing the
probability of electron emission through the tunneling channels, and the emission channel with the
highest probability shifts towards the direct tunneling process (n = 0), which is consistent with the
observation in Reference [6]. For a given dc field F,, as either of laser fields (F; or F,) increases,
the energy spectra become broader, because more emission channels are open up and contribute
to photoemission. In the meantime, the dominant emission process shifts to the channel with larger
n, which is due to the fact that electrons have to absorb sufficient number of photons to overcome
the increasing ponderomotive energies Uy, = e?F{/4m,w?* and U,, = e*F; /4m,B*w?* with
increasing laser fields strength, exhibiting the transition from the multiphoton regime to optical-
strong-field regime. These observations are consistent with previous experimentally and
theoretically obtained energy spectra [6][12][14][54][61]. Since F, is fixed at 1 VV/nm in Figures
2.8(a)-2.8(c), whereas F; is fixed at a larger value of 10 V/nm in Figures 2.8(d)-2.8(f), the spectra
in Figures 2.8(d)-2.8(f) are generally broader than those in Figures 2.8(a)-2.8(c).

In general, when the dc field F, or the laser field F; or F, becomes much stronger than the other
two, the total current emission is dominated by this largest field. Figure 2.9 shows the normalized
total time-averaged emission current density (w) as a function of the fundamental laser field F;,
for different second harmonic laser fields F, and dc fields F,, when 6 = 0 and 7. When the second
harmonic field F, increases, (w) becomes less sensitive to F;, since F, gradually dominates the

emission process. For single-frequency laser-induced electron emission [6], it is confirmed that, in
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the multiphoton regime, the slope of the curve of (w) versus F; follows the scale {(w) o« F2"; this
indicates that the dominant emission process is the n-photon process. This scale is not strictly valid
for the two-color photoemission here; however, the change of the slope of the curves could still
manifest the shift of the main n-photon emission process. For instance, as the dc field F,, increases
from Figures 2.9(a) to 2.9(c) for 6 = 0 and from 2.9(d) to 2.9(f) for & = m, the slope of (w) for a

given F, decreases, since the dominant emission process shifts to the lower emission channels.
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Figure 2.9: Normalized total time-averaged emission current density (w), for the phase difference
between the two-color lasers (a)-(c) 8 =0, and (d)-(f) & = m, as a function of the fundamental laser
field F;, under various combinations of the second-harmonic laser field F, and dc electric field F,,.
The laser intensity is related to the laser electric field as I+, (W/cm?) = 1.33 x 10'!x (F12 (V/nm))2.
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Figure 2.10: Normalized time-averaged emission current density (w,,) through the nth channel, for
the phase difference between the two-color lasers (a)-(c) 8 = 0, and (d)-(f) 8 = m, as a function of
the fundamental laser field F;, for various dc electric fields F,,, when the second harmonic laser
field F, =5 V/nm. Dotted lines represent the normalized total emission current (w) = Y. ,,(wy,).

The above trend is also reflected in Figure 2.10, which shows the normalized time-averaged
emission current density (w,,) through the nth channel as a function of the fundamental laser field
F;, for fixed F, = 5 V/nm. For both cases of 6 = 0 and & = m, when F, increases from 1 to 4
V/nm, the dominant emission channel shifts from n = 3 to n = 2 in general (see Figures 2.10(a),
2.10(b), 2.10(d), and 2.10(e)). When F, reaches 8 V/nm, the dominant emission process transits
from the two-photon absorption (n = 2) for F; <7 V/nm to single-photon absorption (n = 1) for
F; > 7 VInm (see Figures 2.10(c) and 2.10(f)). It is clear that the direct tunneling (n = 0) is almost

independent of the laser field F; but very sensitive to the dc field F,.
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When the phase difference 8 changes from 0 to m, due to the interference effect between the
two lasers, new dips appear in the curves of (w,), which can cause changes of the dominant
emission process when F; increases. For example, in Figure 2.10(e), the dip in the curve of n = 2
at around F; = 5.5 V/nm changes the dominant emission to the n = 3 process instead of the n =
2 process otherwise observed. The dips are also reflected in the total emission current (w) (see
Figures 2.9(d) and 2.9(e)), which is consistent with our previous observation of two-color laser
induced emission without a dc bias (see Figure 2.3). As the dc field F, becomes larger, these new
dips gradually disappear, as shown in Figures 2.9(f) and 2.10(f), because the interference effect of
the two lasers is masked by the strong dc field.

The total emission current density (w) as a function of the dc field F, for different laser fields
F; and F, is shown in Figure 2.11. When the phase difference of the two lasers 6 = 0, the total
emission current density (w) increases as either of the laser fields (F; or F,) increases. When the
dc field F, becomes larger, (w) becomes less sensitive to the laser fields, since the Fowler-
Nordheim-like field emission [81] due to the dc electric field becomes more important than the
over-barrier photoemission. The curves in Figure 2.11(a) resemble the experimentally measured
trends of the voltage- and power-dependent electron flux (see Figure 2 in Reference [9]). As shown
in Figures 2.11(d)-2.11(f), when 8 = m, due to the interference effect of the two lasers, the curves
are intertwined, indicating strong nonlinear dependence of the emission current on the laser fields.
For large F, (= 7 V/nm) and small F, (= 1 V/nm) in Figure 2.11(d), (w) remains almost the same

as that with & = 0 in Figure 2.11(a), since the interference effect is suppressed by the dc field.
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Figure 2.11: Normalized total time-averaged emission current density (w) for the phase difference
between the two-color lasers (a)-(c) 8 = 0, and (d)-(f) & = m, as a function of the dc electric field
F,, for different fundamental laser fields F; and second-harmonic laser fields F,. Intertwined
curves in (d)-(f) indicate the strong interference effect of the two lasers.

Figure 2.12 shows the emission current density (w,,) as a function of the dc field F, for the case
of F; =7 V/nm. It is clear that the dominant multiphoton emission process shifts to smaller n as
F, increases. As F, increases, these shifts would occur at larger dc field F,. For example, when
6 = 0, the shifts of three-photon emission to two-photon emission occur at F, = 3.5, 4, and 4.5
V/nm when F, = 1, 5, and 10 V/nm in Figures 2.12(a)-2.12(c), respectively. The shifts of the
dominant emission process also depend strongly on the phase difference 8. For F, =5 V/nm, a

new dip appears in the curve of n = 2 when 8 = m as compared to the case of 8 = 0, leading to
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the change of the dominant emission channel (i.e., two-photon process in Figure 2.12(b) vs single-

photon process in Figure 2.12(e) at Fy = 7.5 V/nm).

6=0
a Fz2=1Vinm b F,=5V/ihm F,=10V/nm
( )10'1 I - ( )10'1 — (0)10-1 A
<.W.>----"' <'!v'>-‘.--
107 107 1072
A _ Y
: 10 =107 =107
107’ 10”7 10”7
-9 1 1 1 AR -9 1 1 1 Lo 1 -9 1 1 1 [
10 1 Fo [V/nm] 8 10 1 Fy [Vinm] 8 10 1 F, [VInm] 8
6=n
d Fs=1V/inm Fp,=5V/inm f F, =10 V/nm
( )10-1 '2 ' r LI (e)10-1 |2 T T T T T ()10_1 T T T T T

1 IFO [\I//nr.n] . l8 1 I Fo [I\//nrln]l l I8 - 1 I Fo I[V/nm]l 8
Figure 2.12: Normalized time-averaged emission current density (w,,) through the nth channel for
the phase difference (a)-(c) 8 = 0, and (d)-(f) & = m, as a function of the dc electric field F,, for

various second-harmonic laser fields F,, when the fundamental laser field is F; = 7 VV/nm. Dotted
lines represent the normalized total emission current (w) = Y.,,(wy,).

The combined effects of the dc field and the interference between two-color lasers on the energy
spectra and total emission current are shown in Figure 2.13; this reveals the strong effects of the
dc bias on the photoemission current modulation depth. Figure 2.13(a) shows the effects of phase
difference 6 of the two-color lasers on the total emission current density (w), under different dc
fields F,. Here, the w-laser-field F; and the 2w-laser-field F, are fixed as 1.6 V/nm and 0.22 V/nm
respectively (intensity ratio of 2%). It is clear that (w) oscillates as a function of 8 with a period

of 2w, which shows a close resemblance to the experimental observation (see Figure 2(b) in
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Reference [57]). As the dc field F, increases, (w) also increases. The maximum (minimum) values
of (w) occur around 8 = 0 (8 = m), when the two-color lasers are in phase (180° out of phase).
Figure 2.13(b) shows the photoelectron energy spectra of (w) at different 6 in a single period for
the case of F, = 1 V/nm in Figure 2.13(a). When 6 =0 (A), /2 (B), and 3t/2 (D), the electron
emission probability through the dominant channel (n = 3) driven by two-color lasers is larger than
that driven by the strong fundamental laser field F; alone. However, when 6 = r (C), the emission
through n = 3 driven by the two-color lasers becomes smaller than that driven by F; alone, due to
the strong interference effect. The emission current driven by the two-color lasers is always larger
than that driven by the weak second harmonic laser field F, alone, regardless of 6. These
observations are in excellent agreement with the experimentally measured electron spectra (see
Figure 3 in Reference [57]).

Figure 2.13(c) summarizes the modulation depth in Figure 2.13(a), defined as T = ((W)max —
W)imin)/ (W) max + (W)min), as a function of the dc field F,. When F is zero, the modulation
depth T' is as high as 99% [61]. As F, increases, I" decreases because the interference effect is
gradually suppressed by F,. When F, = 8 V/nm, I" drops to approximately 2.98%, showing a
strong dependence of current modulation on the dc bias. It is important to note that even when the
dc bias F, reaches 3 V/nm (significantly larger than the laser fields F; = 1.6 V/nmand F, = 0.22
V/nm, corresponding to a ratio of Fy: F;: F, = 1:0.5:0.07), a current modulation I' > 70% can
still be achieved. This suggests a practical way to maintain a strong current modulation, while
increasing the total emission current by orders of magnitude, by simply adding a strong dc bias for

two-color laser induced electron emission.
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Figure 2.13: Emission current modulation depth. (a) Normalized total time-averaged emission
current density (w) as a function of the phase difference 0, for different dc electric fields F,, with
w-laser-field F; and 2w-laser-field F, fixed at 1.6 VV/nm and 0.22 VV/nm respectively (experimental
laser parameters in Reference [57]). (b) Energy spectra of the emission current at different 6 for
the case of F, = 1 V/nmiin (a). A, B, C, and D denote the cases of 6 =0, ©/2, m, and 37/2 in (a),
respectively. (c) Current modulation depth I in (a) as a function of the dc field F,,. The unit of dc
field F, is V/nm in all figures.

Since photoelectron emission paths (or channels) depend strongly on the incident laser
frequencies, as well as the interferences between them, superimposing different order of harmonic
lasers on the fundamental laser can lead to different photoemission currents. Figure 2.14 shows
the effects of the harmonic order 8 on the total emission current density (w) induced by the two-
color lasers of frequency w and Sw under various dc fields. When the dc field F, = 0, the
maximum value of (w) occurs when § = 4. This is because the maximum emission current
happens when the single-photon energy (of the fourth-harmonic laser in this case) roughly equals
the potential barrier (4hw /W = 1) [6][61]. By comparing Figure 2.14 with Figure 2.8, it is found

that the harmonic order 8 where the maximum emission current occurs coincides with the channel
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number n of the dominant n-photon process (with respect to the fundamental frequency w), for a
given combination of F,, F;, and F,. As observed in Figure 2.14, as F, increases, the value of 8
for the maximum (w) shifts to a smaller number. This is consistent with the observation in Figure
2.8 that a larger dc field F,, changes the dominant n-photon process to a smaller n. When F, > 7
V/nm, the electron emission becomes almost independent of the frequency (Sw) of harmonic laser,
since the Fowler-Nordheim-like field emission dominates the emission process. When 6 changes
from 0 to mr, for small F, (< 4 V/nm) and S (< 4), the emission current density (w) has a distinct
reduction due to the interference effect of the two lasers. However, for large F, (= 7 V/nm), the

emission current (w) is almost independent of 8, for all harmonic orders of the second laser.
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Figure 2.14: Normalized total time-averaged emission current density (w) as a function of
harmonic order g, for the phase difference (a) & =0, and (b) & = &. The fundamental w-laser field
F; = 1.6 VInm, and the harmonic Sw-laser field F, = 0.22 VV/nm.

Our calculations so far are based on the sharp triangular potential profile (see Figure 2.7), which
does not include the image charge effects (or Schottky effect) due to the applied dc field. Our
earlier work [6] demonstrated that the effects of image-charge-induced Schottky barrier lowering

on photoemission can be accurately approximated in our model, by simply replacing the work

function W in Equation (20) with the effective work function W,z = W — 2,/e3F,/16mns, ,
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Figure 2.15: Effects of the image-charge-induced barrier lowering on the total emission current
(w) for various F,, F;, F,, and 6. The solid (dotted) lines represent the cases with (without) the
image charge effect, calculated using effective work function W, (work function W). The gray
dashed lines show the scale (w) « F3™,

where €, is the free space permittivity. A comparison between the total emission current density
(w) with and without the image-charge-induced barrier lowering is shown in Figure 2.15. Due to
the reduction of potential barrier (W, < W), the emission current increases when considering the
image charge effect. A larger dc field F, increases the emission current more significantly (F, =
1V/nm in Figures 2.15(a), 2.15(b) vs F, = 5V/nm in 2.15(c), 2.15(d)), since a smaller effective
barrier W, is created. As F, increases, the difference between the emission current (w) with
Werr and with W becomes smaller. The increase of the emission current due to the inclusion of

the image effect is relative insensitive to the phase delay 8 of the two-color lasers. It is also
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important to note that with the inclusion of W, the slope of (w) decreases, as observed from the

value of n in the scale (w) o< F2™, which indicates that the number of photons involved in the
dominant emission process decreases, because of the deduction of the potential barrier near the
metal surface.

2.3.3 Application to Time-Resolved Photoelectron Spectroscopy

Photoelectron spectroscopy is one of the most popular techniques to study the composition and
electronic states of solid surfaces by analyzing the energy spectra [89], [90]. Particularly, the time-
resolved photoemission spectroscopy enables the measurement of short lifetime of the
intermediate states, such as the image-potential states on metal surface, via control of the time
delay between the pump and probe photons [91]-[93]. In this part, we demonstrate the application
of our analytical model to describe the dynamics of different n-photon excited states in time and
energy.

As shown in Figure 2.16(a), our 1D model is able to provide excellent fitting to the measured
photoelectron spectra in Reference [57] for the tungsten nanotip, by using a dc field of F, = 0.01

Vinm and an effective work function of W, s = 3.85 eV. Furthermore, the current modulation

profile (both magnitude and shape) obtained from our 1D model in section 2.2 [61] agrees very
well with the experimentally observed sinusoidal variation with a period of 2r for the relative
phase delay 8, as shown in Figure 2.16(b). Notably, other models, including simple tunneling rate
model and 1D time-dependent density functional theory (TDDFT), fail to describe the

experimental results of the sinusoidal profile (see supplementary material of Reference [57]).
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Figure 2.16: Time-resolved photoelectron energy spectra for the tungsten nanotip. (a) Comparison
between the experimentally measured electron counts from Figure 3 in Reference [57] (see solid
lines) and fitting results (w,,) (see dotted lines). (b) Normalized total time-averaged emission
current density (w) as a function of the phase difference between the two-color lasers 8, for
different F, /F;, with fixed F;, = 1.6 V/nm. Blue and red lines denote the experimentally observed
emission electron current and the sine fit from Figure 2(b) of Reference [57], respectively. (c),(d)
Energy spectra for various dc fields F, when (c) 8 =0, and (d) 6 = «. (¢),(f) Photoelectron spectra
at different phase delays 6 for the dc field (e) F, = 0.01 V/nm and (f) F, = 0.09 V/nm. (g),(h)
Projection of the spectra in (e) and (f) on the 6 plane, respectively. Except (b), the fundamental
laser (1560 nm) field F; = 1.8 V/nm and the second-harmonic laser field F, = 0.3 VV/nm for all
other figures (experimental laser parameters in Reference [57]).

The photoelectron energy spectra from the tungsten nanotip under various dc fields are shown
in Figures 2.16(c) and 2.16(d), for 8 = 0 and 6 = m, respectively. In the calculation, for each dc

field, the effective work function W, is approximated by determining the peak value in the

2x+1r

surface barrier profile under dc bias [94][95], ®4.(x) = W — eFydIn( )/In(?+ 1) —

T

C2r/2e(x? — r?), where the second term is the axial potential profile near a parabolic tip of radius

of curvature r with d being a constant (= 83 nm to fit the spectra in Figure 2.16(a)) [95], and the
third term is the image charge potential of a spherical surface, with C, = ./e3/4me, =

1.199985 eV(V/nm)~/2 being the Schottky constant [94]. It is important to note that the
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photoelectron spectra are very sensitive to the applied dc field F,, as shown in Figures 2.16(c) and
2.16(d). The shift of the dominant emission process to a smaller n with larger dc field F, agrees
with the trend in Figure 2.8. More importantly, the emission current density is increased by more
than three orders of magnitude as F; is gradually increased from 0.01 to 0.09 VV/nm, which could
strongly facilitate the experimental detection of photoemission.

When the relative time delay 8 changes from - to m, the variations of the spectra during one
period for F, = 0.01 and 0.09 V/nm are shown in Figures 2.16(e) and 2.16(f), respectively. To
clearly observe the dynamics of different excited states in time, Figures 2.16(g) and 2.16(h) show
the projection of the energy spectra in Figures 2.16(e) and 2.16(f) on the 6 — (w,,) plane
respectively. When the dc field is small, with F, = 0.01 VV/nm (see Figure 2.16(g)), all the n-photo
orders of the spectra are modulated in the same way as a function of the relative phase delay &, in
agreement with the results in Reference [57]. The rising tendency of the points along the phase
difference 6 from —m to 0 indicates the population of the n-photon excited intermediate states
induced by lasers, while the decreasing signal from 0 to = implies the decay of the excited states.
When F, is increased to 0.09 V/nm (see Figure 2.16(h)), it is interesting to find that due to the
effect of the dc field, various n-photon excited states behave differently with respect to time delay
6. For instance, the one-photon tunneling state is almost invariable as 6 changes from - to m, but
the two-photon state decreases significantly at & = —3m /4. This is in contrast to the two same-
frequency induced photoemission, where the dynamics of multiphoton excited states remains same
under different dc bias F, (see Figure 3.1). In addition, for a small dc field, the value of n for the
dominant excitation state remains unchanged over the relative phase delay 8 (see Figure 2.16(Q)),

which means the energy of the n-photon excited intermediate state is independent of the time delay
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[91]. However, when the dc field is larger, n for the dominant excitation state changes with the
relative phase delay 6 (see Figure 2.16(h)).

For electron emitters under a dc bias, it is important to prevent breakdown and premature failure
of the emitter tips. Table I lists the local dc fields (after field enhancement) of sharp tips that have
already been achieved in experiments before breakdown for eight materials. It is known that
nanostructures survive large fields better for short pulse durations. Thus, local dc field up to 10
V/nm or larger value at sharp tips may be realized in experiments via either laboratory-scale setup
based on pulsed capacitor discharge [9][96], or powerful THz pulses [97]..

Table 1: List of achieved strong local dc fields (after field enhancement) of sharp tips before
breakdown for eight materials.

Achieved local dc field

(V/nm)
Au 8.8 9]
w 9.64 [96]
Cu 10.35 [96]
Mo 8.09 [96]
Pt/Ir 16 [97]
Carbon fiber 10.46 [41]
Carbon nanotube 14 [98]
CNT fiber 9.85 [42]-[44]

2.3.4 Summary on Photoemission with DC Bias

In this section, we construct an exact analytical model for photoelectron emission from a dc biased
metal surface induced by two-color laser fields, by solving the time-dependent Schrddinger
equation. Our calculations reveal underlying various emission process, including multiphoton

over-barrier emission, dc-assisted tunneling emission and optical field emission, for different dc
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and laser fields, and recover the trend in the experimentally measured energy spectra and voltage-
and power-dependent electron flux. Besides the properties of the two-color lasers, including
relative phase, intensity and frequency, our model shows the addition of a dc field to the metal
surface can provide great tunability of the photoemission energy spectra and current modulation
depth for two-color laser-induced photoemission. Furthermore, the dc bias can increase the
emission current by orders of magnitude. This increase of the current emission is due to the
combined effects of potential barrier narrowing and barrier lowering. Our results suggest a
practical way to maintain a strong current modulation while increasing the total emission current
by orders of magnitude in two-color laser induced electron emission, by simply adding a strong dc
bias and a weak harmonic laser. This work will enable applications requiring both high current
level and strong current modulation, such as miniaturized particle accelerators, photoelectron
microscopy, and ultrafast electron sources. Moreover, being verified against the experimentally
measured time-resolved photoelectron energy spectra, the results from our model are expected to

guide future experiments on time-resolved photoemission spectroscopy.

2.5 Conclusion

In this chapter, we present quantum analytical solutions for highly nonlinear ultrafast
photoelectron emission from metal surfaces driven by two-color laser fields with and without a dc
bias, by exactly solving the TDSE. We systematically study the photoelectron energy spectra,
emission current density, and current modulation under various combinations of laser intensities
and frequencies, dc bias, and phase differences of the two-color lasers. Our model shows great
tunability on the photoelectron spectra, emission current, and current modulation depth, via the
control of the phase delay, relative intensity, harmonic order of the two-color lasers and dc fields.

The results are in good agreement with experimental measurements on the two-color photoelectron
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energy spectra and current modulation from a sharp nanotip. Our results suggest a practical way
to maintain a strong current modulation in the meantime to increase the total photoemission current
by orders of magnitude, by simply adding a strong dc bias and a weak harmonic laser. Application
of our model to time-resolved photoelectron spectroscopy is also exemplified, showing the
dynamics of the n-photon two-color excited electronic states depends strongly on the applied dc
field. Our study may inspire new routes towards many applications requiring both high
photoemission current and strong current modulation, such as tabletop particle accelerator, X-ray

sources and time-resolved photoelectron microscopy.
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CHAPTER 3
PHOTOEMISSION MODULATION BY TWO LASERS OF THE SAME-FREQUENCY

3.1 Introduction

Although two-color laser induced electron emission from nanoemitters provides an attractive
platform for modulating photoelectron emission by the relative phase difference between the two-
color lasers and shows promises for the potential application of time-resolved photoelectron
spectroscopy [62][99], the two-color laser system typically relies on the generation of higher order
harmonics of a fundamental laser [57]-[60][85], which, because of its stringent requirements on
the experimental setup and its relative low efficiency, greatly limits the accessibility of the two-
color laser system. For higher intensity lasers, harmonic generation becomes increasingly complex
and difficult to control [100][101].

In this Chapter, we propose to utilize two lasers of the same frequency to modulate the
photoelectron emission by their relative phase delay. This is motivated by the simple experimental
implementation of single-frequency laser pairs, e.g. via a beam splitter with various coating
materials to control the reflection and transmission of incident light [102]-[105]. The two same-
frequency lasers may be tuned to have virtually arbitrary ratio of intensities (in contrast to a small
harmonic-to-fundamental intensity ratio in the two-color laser system [57]-[60][85]), thus
providing a much larger parameter space to assess the interference effect of the two lasers and the
induced photoelectron emission. Using the quantum mechanical model in Reference [6], we study
the photoemission modulation properties for a dc-biased metal cathode illuminated by two laser
fields with the same frequency. We investigate the modulation of photoemission current and the
dynamics of multiphoton excited states for different laser fields, wavelengths, cathode materials,

and dc fields. Our study demonstrates the capability of measuring the time-resolved photoelectron
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energy spectra using single-frequency laser pairs. The material of this chapter is based on our
published paper in Reference [106] and is presented with permission from the copyright holder.
3.2 Analytical model

Under the action of two same-frequency laser fields F;cos (wt) and F,cos (wt + 6) and a dc
electric field F,, the time-dependent potential barrier near the surface of the cathode reads
[61[61][62][74][106],

(0, x <0
o(x,t) = {EF + Weps — eFox — eFx cos(wt + ¢), x 20, (27)

where Er. is the Fermi energy of the metal cathode, W, s = W — 2./e3F,/16ms, is the effective
work function with Schottky effect [6], with W being the nominal work function, e is the
elementary charge, ¢, is the free space permittivity, x is the distance away from the cathode
surface (x = 0), and F is the magnitude of the total laser field due to the two laser fields

F;cos (wt) and F,cos (wt + ),

F = /(F, + F, cos 8)% + (F, sin §)2, (28)
From Equation (28), it is clear that the magnitude of the total laser field depends strongly on the
phase delay of the two lasers 6, which is expected to provide similar current modulation to that in
the two-color laser setup [61][62]. The resultant phase ¢ = arcsin(F, sin@ /F), the effect of
which becomes important for photoemission only in very short laser pulses when carrier-envelope
phase matters. For laser pulses longer than about 10 cycles, it can be well approximated by
continuous-wave excitation for photoemission [6]. Thus, in the calculation of this chapter, we
ignore the effects of the absolute phase and set ¢ = 0 without loss of generality [106]. Based on
the quantum analytical theory of photoemission in References [6][74], the time-averaged

normalized emission current density, defined as the time-averaged ratio of the transmitted

51



probability current density over the incident probability current density, (w(e, x, t)) = {(J;/J;), can

be obtained as,

1/3
(eF"h/n ngme) T 12, 29)

W)= > Wa(@), (wa(e)) =

n=-—oo

where (w,,) denotes the normalized emission current density through the nth channel with emitted
electron energy € + nhw due to the n-photon contribution, # is the reduced Plank constant, m is
the electron mass and T, represents the transmission coefficient of electron wave functions, which

is calculated from,

2VES (L) = z T, I\/£+lthn(n_D+ (30)

" Q
£ \/Z_rne nn=0\|»
n=-oo

where (1) is the Dirac delta function, [ and n are integers, P,;; = ifozn pn(wt)e 0t d(wt) and
Qn = %Tfozn gn(wt)e @td(wt) are the Fourier coefficients, with p, (wt) = exp [—(ie?F,F/
myhw3)sinwt + (ie?F?/8m, hw3)sin2wt]r(a,) and gn(wt) = exp [—(ie?FyF/
mehw3)sinwt + (ie?F? /8m hw?)sin2wt][(eF /hw)r(ay)sinwt + (2mFye/h)Y3s(a,) ]
where r(a,) = Ai(a,) — iBi(ay,), s(a,) = idi'(a,) + Bi'(a,), and a,, = —[E,/eF, + (eF/
mew?)coswt](2em,Fy/h?)*/3 with E,, = € + nhw — Ep — W,z — U,. Here, Ai and Bi are the
Airy functions of the first kind and second kind respectively, U, = e?F?/4m,w? is the

ponderomotive energy, and a prime denotes derivative with respect to the argument. For the special

case of zero dc field F, = 0, the time-averaged normalized emission current density becomes

[61[74],

W) = ) (W@, (@) = Re(TalVEn/2) 3D

n=-—oo
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where T, is still calculated from Equation (30) with P,,; and Q,,; unchanged, but with p,,(wt) =
exp [(ie?F?/8m hw3)sin2wt + (ieF/2m E,/m ,hw?)coswt] and gn(0t) =

pr(wt)[/2m.E,/h + eFsinwt/hw.

3.3 Results and Discussion
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Figure 3.1: Time-resolved photoelectron energy spectra. (2),(b) Energy spectra as a function of the
phase difference between the two lasers 8, for dc field (a) F, = 0 and (b) F, = 0.8 V/nm. (c),(d)
Projections of the spectra in (a),(b) on the 8-(w,,) plane respectively. (e),(f) Projections of the
spectra in (a),(b) on the n-(w,,) plane respectively. Here, the laser fields F; = 1.8 V/nm and F, =
0.3 V/nm (experimental parameters in Reference [57]).

In Figure 3.1, we plot the calculated photoelectron energy spectra as a function of the phase
difference between the two lasers 6 for different dc fields F,. The wavelength of both lasers is 800
nm (hw = 1.55 eV). The metal is assumed to be tungsten [7][13][57], with a Fermi energy Er =

7 eV and a work function W = 4.31 eV. Since most of the electrons emitted from sources are
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located near the Fermi level [6][76][86][87], we choose the electron initial energy € = E for
simplicity. Note with laser fields F; = 1.8 V/nm and F, = 0.3 VV/nm for the special case of 8 = 0,
the total normalized emission current density in Figure 3.1 is (w) = 6.67 x 10~7 and 8.71x107,
for the DC field F, = 0 and 0.8 VV/nm respectively. Using free-electron theory of metal [74], we
find the corresponding emission current density is 5.74x10%> A/cm? and 6.75x10* Alcm?,
respectively.

When the dc field F, is turned off, the dominant emission process is three-photon absorption (n
= 3) (see Figures 3.1(a) and 3.1(e)). This is consistent with the ratio of the work function of
tungsten over the photon energy, W/Aw =~ 2.8. By changing the phase difference 6 between the
two lasers, the electron emission varies sinusoidally (see Figures 3.1(a) and 3.1(c)). When applying
a large dc field F, to the cathode, the tunneling emission channels (n < 2) are opened up, as shown
in Figures 3.1(b) and 3.1(f). This is because the dc field adequately narrows the surface potential
barrier, in addition to the Schottky-effect-induced barrier lowering, enabling the tunneling
emission process. In the case of F, = 0.8 VV/nm, the dominant emission process is shifted to two-
photon absorption. From Figures 3.1(c) and 3.1(d), it is found that the multiphoton excited states
(n = 3) vary with respect to the phase delay 8 sinusoidally in the same way, with the maximum at
6 = 0 and the minimum at & = +m, for both values of dc bias F,. This is in contrast to the two-
color laser induced photoemission, where the dynamics of multiphoton excited states changes
under different dc bias F, (see Figure 2.16(g) and 2.16(h)). The one-photon (n = 1) absorption and
direct tunneling (n = 0) process are almost independent of & for the case of F, = 0.8 VV/nm, as

shown in Figures 3.1(d) and 3.1(f).
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Figure 3.2: Photoemission current modulation. (a) Normalized total time-averaged emission
current density <w> as a function of phase difference 0 for different F, /F,, when the dc field F,
= 0. (b) Semilog plot of <w> in (a). (c) Current modulation depth T (solid lines) as a function of
the laser field ratio F,/F; for different dc fields F,. Dotted (dashed) lines in (c) are for the
maximum (minimum) emission current density <w> at 8 = 0 (6 = m). Here, the laser field F; is
fixed as 1.8 V/nm.

The sinusoidal modulation in the total emission current density (w) is shown in Figures 3.2(a)
and 3.2(b), for the case of F, = 0 V/nm. When the laser field ratio F,/F; increases, the maximum
emission current (W),,q, at 8 = 0 increases, while the minimum emission current (W), at0 =
decreases, due to the more profound interference of the two lasers. Figure 3.2(c) shows the
modulation depth, I' = ((W)max — Wmin) /W) max + (W)min), as a function of laser field ratio
F, /F; under different dc fields F,. For a given F,, I' increases as F,/F, increases, and it reaches
the maximum value of 100% when F; = F,. It is important to note that, in order to reach a large

modulation depth (T’ > 90%), only a small laser field ratio F,/F; is needed even with a strong dc

55



field, e.g., F,/F; < 0.4 when F, = 1 V/nm. The dependence of I" on the dc field F, (see Figure

3.2(c)) is not monotonic and will be examined further in Figure 3.3 below.
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Figure 3.3: (a) Emission current modulation depth I'" (solid lines) as a function of the dc field F,
with and without the image-charge-induced potential barrier lowering (or the Schottky effect), for
laser fields F; = 1.8 V/nm and F, = 0.3 VV/nm. The case without Schottky effect is calculated by
replacing Wes with the nominal work function of metal W in Equation (27). (b) Modulation depth
I" (solid lines) as a function of F, for different laser field ratios F,/F;, with the effective work
function Wesr. F; is fixed at 1.8 V/nm in (b). In (2),(b), the dotted (dashed) lines are for the
maximum (minimum) emission current density <w=> at 6 =0 (6 = n).

As discussed before, besides making the surface potential barrier narrower, the dc bias induces
a reduction of the barrier height via the image charge effect (or the Schottky effect), which strongly
influences the photoemission processes [6][62]. In Figure 3.3(a), we compare the emission current
modulation depth I" as a function of the dc field F,, with and without the Schottky effect. When
Schottky effect is not considered, I' gradually decreases with F,,. It is clear that the Schottky effect
greatly alters the dependence of modulation depth I" on the dc field F, (see solid lines in Figure
3.3(a)). The change of I originates from the change of the maximum (minimum) values of
emission current (w) with the Schottky effect, as shown by dotted (dashed) lines in Figure 3.3(a).

As F, varies, the effective potential barrier W, changes, which induces an increase (decrease) in
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the emission current when the ratio W, ;¢ /hw becomes closer to (further away from) an integer,

where resonant n-photon absorption occurs (see Figures 6 and 7 of Reference [6]). This resonant
emission process causes the nonlinear behavior of T as a function of dc field F,.

Figure 3.3(b) shows the modulation depth T as a function of the dc field F, for different laser
field ratios F,/F; with fixed F; = 1.8 V/nm. As F,/F; approaches 1, the modulation depth I
gradually approaches the maximum value of 1 for the full range of dc field F, from 0 to 1 V/nm.
This is consistent with the observation in Figure 3.2(c). Note that when F; is increased from 0 to

1 V/Inm, the total emission current density can be increased by orders of magnitude.
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Figure 3.4: Normalized total time-averaged emission current density <w> as a function of the
phase difference 6, for various (a) cathode materials and (b) incident wavelengths. In (a), the laser
wavelength A = 800 nm (hw = 1.55 eV). The nominal work function of different materials is Wagq
=4.26 eV [107], Ww = 4.31 eV [57][60], Wmo = 4.6 eV [107], Wcy = 4.65 eV [107], and Wau = 5.1
eV [6][107]. In (b), the metal is tungsten. Here, the dc field F, is 0.8 V/nm and the laser fields F;
and F, are fixed at 1.8 and 0.3 VV/nm, respectively.

We also examine the photoemission current modulation depth I for cathode materials with
different work functions in Figure 3.4(a) and for various incident laser wavelengths in Figure
3.4(b). We fix the dc field F, = 0.8 V/nm and laser fields F; = 1.8 V/nm and F, = 0.3 V/nm. Under

the same illumination condition, the electron emission current depends strongly on the work
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function; however, the modulation depth I" varies only slightly. This is because I" is predominantly
determined by the ratio of the laser field strengths. Figure 3.4(b) shows the effect of laser
wavelength on both emission current and modulation depth for a tungsten cathode. The nonlinear

dependence may also be attributed to the change of the ratio W,s/Aw near resonant n-photon

processes [6].

3.4 Conclusion

In this chapter, we propose to utilize two lasers of the same frequency to modulate the
photoelectron emission by their phase delay. Compared to the two-color laser configuration,
single-frequency laser pairs can be more easily implemented in experiments since they relax the
requirement of higher order harmonic generation, which becomes increasingly difficult in the high
laser intensity regimes. The intensity ratio of the single-frequency laser pairs can be tuned over a
much wider range than the two-color laser system. Using the quantum model, we find a strong
current modulation (> 90%) can be achieved with a moderate ratio of the laser fields (< 0.4) even
under strong dc bias. The nonlinear effects of dc field, cathode materials, and laser wavelength on
both the emission current level and modulation depth are also examined. The strong dependence
of photoelectron energy spectra on the phase delay of the two lasers demonstrates a promising
potential for the application of time-resolved photoelectron spectroscopy using single-frequency

laser pairs.
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CHAPTER 4
FEW-CYCLE LASER PULSES INDUCED PHOTOEMISSION

4.1 Introduction

Ultrashort pulsed laser induced photoelectron emission from nanostructure enables the control of
electron motion on the sub-optical-cycle time scale, by tuning the laser pulse’s carrier-envelope
phase (CEP) [13][19][54]. This may pave the way towards the subfemtosecond and subnanometer
probing of electron motion in solid-state systems and the generation and measurement of
attosecond electron pulses. While there have been recent efforts to develop analytical quantum
models for continuous-wave laser excitation (see Chapters 2 and 3) [6][61][62][74], numerical
simulations are typically implemented to study photoemission due to ultrashort pulsed lasers
[13][76][78]. Fowler-Nordheim equation based models are commonly used to calculate the
ultrashort pulsed photoemission rate [8][19][55] but it is only valid in the strong optical field
regime (see section 1.3). To explicitly reveal the interplay of various emission processes under
different regimes and to systematically characterize the parametric scalings of photoemission
characteristics, an exact quantum theory under ultrashort pulsed condition is highly desirable.

In this chapter, we present a quantum analytical solution for ultrafast photoelectron emission
from a dc-biased metal surface illuminated by few-cycle laser pulses, by exactly solving the TDSE.
Our solution is valid from the photon-driven emission regime in low intensity optical fields to the
optical-field-driven regime in high intensity optical fields, and is applicable for arbitrary laser
parameters (i.e., intensity, pulse duration, carrier frequency and CEP), dc bias, and metal properties
(i.e., work function and Fermi level). The model is also applicable to a train of laser pulses with
arbitrary pulse repetition rate. Using the analytical formulation, we examine the photoemission

properties, including energy spectra, photocurrent or emission charge density, with various
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combinations of laser parameters and dc bias, exhibiting good agreement with the experimental
observations [13][54][55]. This work offers clear insights to the photoelectron energy distribution
and spatiotemporal dynamics of electron emission under different driving pulsed laser and dc
electric fields. The material of this chapter is based on our published paper in Reference [56] and
is presented with permission from the copyright holder.

4.2 Analytical Formulation

Our one-dimensional (1D) model considers electrons with the initial energy ¢ emitted from the
metal-vacuum interface at x = 0 under a dc electric field Fy and an optical electric field (see Figure

4.1) of a Gaussian laser pulse train with a time period T = 2L of the form,

F(t) = Fie™t*/9" cos(wt + ¢), Ql-1L< t<@l+1)L,withl=0,+1,42,.., (32)
where F is the peak of optical field strength, o = 7,,/ (2VIn2) = 7,/1.665 with T, being the full
width at half maximum (FWHM) of the field envelope, w is the angular frequency of the carrier
wave, and ¢ is the CEP. All the laser pulses are CEP stabilized with w = mn/L = mwg, with m
being a positive integer and wg the pulse repetition frequency [108]. When L/7, > 1, the

temporal interaction between consecutive laser pulses becomes negligible and F(t) can be used to
study photoemission due to a single laser pulse. By taking the Fourier series, the laser field in

Equation (32) can be expressed as,

+00

F(t) = Fiagcos ¢ + z Fia, cos(nwgt + ¢) (33)
n=-—oo
n+0

where ay = %foL e~t*/9" cos(mwpgt) dt, and a,, = %fOL e~t*/9" cos [(n — m)wgt]dt. From Equation
(33), it is clear that the incident laser pulse train is a superposition of sine waves with frequencies
separated by wg. We assume the laser electric field is spatially uniform and perpendicular to the

metal surface; thus the time-dependent potential barrier near the meatal-vacuum interface is
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[6][56][61][62][74][106],

(a) e” (b) Field strength

Laser pulse

Figure 4.1: (a) Sketch of photoelectron emission from a biased emitter under the illumination of a
laser pulse train with a time period T. (b) A single laser pulse with carrier-envelope phase (CEP)
¢ and full width at half maximum (FWHM) of the field envelope z,,. The red curve and black
dotted lines denote the time evolution of laser electric field and laser pulse envelope, respectively.

olx ) = 0, x<0
0D =\ Ep + Weps — eFox — eF (D, x>0, (34)

where Ef is the Fermi energy of the metal cathode, W,rr = W — 2 /e3F o/16meg is the effective

work function with Schottky effect [6][62], with W being the nominal work function, e is the
elementary charge, ¢ is the free space permittivity, and F(t) is given by Equation (33).
By solving the TDSE with the potential energy given in Equation (34), the exact solution of

electron wave function for x = 0 (in the vacuum) is found to be (see Appendix C for the method),

. . . ] S ]
YOt = D TAI(-n) — Bi(-n)] x exp (=it = ilwgt)
l=—00
ieF, ie?F? ie?(F, + Fiaycosp)F; ie?F?
X ex Gx + M — N — R|), x=0 (35
p( h 8hm, hm, 4hm,w? (35)
where ¢ 1s the electron initial energy, G = Z:l_io—oo,niow ; M=
E
. a? sinnwgt+2¢)+ana_p sin(2nwgt) © ansin (Mwgt+¢)

Zz—oo,niO - n3wl - ) N = Z:l_=—00,n¢0n3—wl?§ 5 R =
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+00 +00 Aman {sin [(n-m)wEgt] __sin [(n+m)wEt+2¢>]}

E
n=—con#0 Zam=—oco,m=0,n,—n ;=1 l +x+
) ) n, mn (n-m)wg (n+m)wg l

e(Fo+Fiagcosg)

+00 eFia, cos(nwEt+q,’))] [Zeme(F0+F1aocosq.'>)] 1/3

n=—oo,n#0 n2 w%me hz

; the drift kinetic energy E; = € + lhwg — Ep —

22142
+o0 e“Filap+ana_ncosP)]. 4 .
n=—o0,n%0 yo— ; Ai and Bi are the
e Wk

Werr — Uy, the ponderomotive energy U, =X

Airy functions of the first kind and second kind respectively, showing an outgoing wave traveling
towards the +x direction [6][81][86]; and T, represents the transmission coefficient.

For x < 0 (inside the cathode), the exact solution of electron wave function is,
it . - &+ lhwg )
Y(x,t) = exp (—7 + lkox) + z R; exp (—LTt — Lklx), x<0 (36)

l=—00

which shows the superposition of an incident plane wave with initial energy € and a set of reflected

plane waves with reflection coefficient R; and energies € + lhwg, where the wavenumbers kg =

/Zmes/hz and k; = J 2m, (e + lhwg) /R°.

By imposing the boundary conditions that both the electron wave function ¥ (x,t) and its

derivative i (x,t)/0dx are continuous at x = 0 and taking the Fourier transform, we obtain, in

nondimensional quantities [6][56][61][62], &€ = &/W,fs, @p = wgh/Wesp, T = tWess/h, Ep =

Ep/Wesr, X = x/A0, Ao = ,fhz/zmeWeff, Fo = Foedo/Weps, F1 = F1edo/Wesr, Uy = Up /W sy,

2\/2_6(1() = Z Tl[\lg‘l' kEEPl(l_k) + Ql(l—k)] (37)

l[=—0

where 8 (k), Pyg—), and Ql(l_k) are,

1, k=0,
§(k) = {o, k%0, (38a)
1o N
Pnlzﬁfo p, (@pHe 1P d(@g), Q”lzﬁfo q, @D @id@gH,  (38b)
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P, (@pt) = p(@pD[Ai(ay) — iBi(ay)], (38¢)

q,(@gt) = G(@pt)z,(DED), (384d)

FZ_ _ I o
LM -2i(Fo+F agcosd)F N—i—25R
20g

Pp(wgh) =e * , (38¢)

2,@0) = F1[Ai(ay) — iBi(ay)]G + (Fo + Fragcosp) /*[idi (a,) + Bi (@,)],  (38f)

where G = Z+oo aysin (nch)Ef+¢) , M = Z+Oo a2 sin2nadgt+2¢)+ana_, sin(2n@gt) N =

n=—oo,n+=0 n=—oo,n*0 353 >
nwg n wg

Z+oo apsin (nogt+¢) R= Z+Oo Z+Oo aman (sin [(m—m)@gt] _ sin [(n+m)@gt+2¢]
n=—oo,n#0 n36),35 > = an=—oo,n#0 4m=—o,m*0,n,—n pmn (n—-m)ag (n—-mag

3

En

2F1q; cos(lwpt+¢)
Fo+Fagcos¢

ok

a, = —(F0+F1aocosq.’))1/3[ + 252 0 ], and E, =&+ nwp — Ef —

(_Jp — 1. Here, p, (@gt) and q, (@gt) in Equations (38c) and (38d) denote the phase factor of the
nth-state wave function and of its spatial derivative at X = 0, respectively. P,; and Q,; are the /th
Fourier coefficient of pn((T)Ef) and qn((DEf), respectively. Then, the transmission coefficient T,
(and reflection coefficient R,) can be obtained from Equation (37).

Following the probability current density J/(x,t) = (ih/2m)(Yoy*/dx — Y* oY /ox) = (ih/
2Mmy) Yo — oo Do —oo(Wn OW; /0x — Py, 01 /0x) , the normalized emission current density is
defined as the ratio of the transmitted probability current density over the incident probability
current density, w(e, x,t) = J:(&,x,t)/]J;(g, x,t). Thus, we obtain the normalized instantaneous
photoemission current density,

w(E %, t) = \/i_g_ Z Z Im[e!t-M@EtT, T (C +iD)], (39)
n=—00 l=—00

whereC = F1[Ai(—7,)Bi(-7,) — Ai(=7, )Bi(—7)]G + (Fo + F1agcosg)”° [Ai(—ﬁn)Ai (7)) +

Bi(-7,)Bi (-7)| : D = F1[Ai(=7,)Ai(=7,) + Bi(=7,)Bi(=7)]G + (Fo +
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Fiagcos®)”” |4i(=7,)Bi (=) = Bi(=T, )AL (=T)|, G = TiZ g 0D | and 77, =

nwg

1/3 [£+nwE Epr—U 2F1a; cos(logt+¢)

F0+F1a0cos¢> Zl__"o #0 Fas

(Fo + Fragcose) + %] . The normalized time-

averaged photoemission current density over one laser pulse is defined as the ratio of the total
emission charge density Q due to a single laser pulse and the length 7,,,

(Fo + Fiagcosg)/3 2L
TL'\/E_ Tp ’

w(&) = Z<Wn(3)) (Wn(8)) = |T,|?

n=-—oo

(40)

where (w,,(€)) denotes the time-averaged emission current density through the nth channel, with
emitted electron energy € + nhwg.

For the special case of dc field Fy = 0 and CEP ¢ = m/2, the electron wave function for x > 0
is revised by displacing [Ai(—n,) —iBi(-—n,)] in Equation (35) with exp{i x+

+00 eFya, cos(nwgt+¢)
n=-—oo,n+0

1V 2m,E;/h}. The transmission coefficient T, is still calculated from

nZwim,

Equation (37) with P, and Q. unchanged, but with  p (wt) =

2F l F in(lopt
P @pDexpli / En Xt oiz0 1“”"5“’5”"”] and g, (@) = p, (WO |En + Tf7 g g 228006

l(JJE

The normalized photoemission current density becomes,

w(E, %, \/_ Z Z Im[ie!t-M@ELT, T A E], (41)
n=—oo [=—o0
w e )
o _ o 2L
<W(€))_n=Zoo(W"(g»' W@ = ————7, (42)
with A=( f E) +zm__mm¢0F1“mSijn<§E@E“¢) and = f ( f E) 1(x+

+oo 2F1am cos(mogt+¢)
m=—oo,m#0

(see Appendix C for the method).

m2ws
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4.3 Results and Discussion

For the calculation of this chapter, unless specified otherwise, the default value of the laser
wavelength is 800 nm (or laser period T, of 2.67 fs), the cathode metal is assumed to be gold
[6][11][76], with Fermi energy Er = 5.53 eV and work function ¥ = 5.1 eV, the pulse width 7, =
8.8 fs (i.e., ~ 3 cycles), the laser pulse repetition period T'= 267 fs (3> 1, to isolate a single laser
pulse and avoid temporal interaction between adjacent laser pulses), the CEP ¢p = 0, the dc field
Fo=1x10* V/m and the peak laser field F; = 1 x 10° V/m. Since most of the electrons are

emitted with initial energies near the Fermi level [6][76][86][87], we choose the electron initial

energy € = E for simplicity.
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Figure 4.2: Effects of time separation T between adjacent laser pulses on photoelectron energy
spectra and total emission charge density Q. (a) Laser electric field for different T. From top to
bottom, T =13, 29, 160, and 276 fs, corresponding to T /T,, = 5, 11, 60, and 100, respectively. (b)
Energy spectra for different T. n,, denotes the laser photon order (with single photon energy hAw =
1.55eV). (c) Q as a function of T /T,,. The inset shows the magnification of (c) between T/T,, =
9 and 30, where A, B, C and D denote T/T,, =9, 11, 13 and 15 respectively. (d) Photoelectron
energy spectra near the maximum at A, B, C and D in the inset of (c).
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In Figure 4.2, we show the photoelectron energy spectra and total emission charge density O (=
(w)T,) for various time intervals T between adjacent laser pulses. It is found that as T decreases,
photoelectron emission is gradually confined to a smaller number of emission channels but with
more electron yield, because of the decreasing frequency ratio between laser carrier w and pulse
repetition frequency wg (see Figure 4.2(b)). The interaction of consecutive laser pulses leads to
the smearing of multiphoton absorption peaks (with respect to laser photon energy hw) in the
photoelectron energy spectra envelope with decreasing T. Figure 4.2(c) shows that when T /T,, <
9 the closely spaced laser pulse train induces a total emission charge Q per pulse that is
significantly higher than that due to a well-separated single laser pulse. When T increases, QO
decreases and eventually becomes independent of T when T /T,, > 60, indicating the laser pulses
are well separated and the results may be regarded as that from a single laser pulse. It is interesting
to note the oscillatory feature of Q in the range of 9 < T/T,, < 60 (see the inset of Figure 4.2(c)),
due to the varying coherence interaction between neighboring pulses. Figure 4.2(d) compares the
photoelectron energy spectra with different 7 in this oscillation regime (see A, B, C and D in the
inset of Figure 4.2(c)), where both the peak electron emission yield and the dominant emission

channel vary with 7.

We evaluate the effect of CEP ¢ on the photoelectron energy spectra and total emission current
density (w) for different pulse duration 7, in Figure 4.3. For small 7, (e.g., 4.4 fs, or 1.7 optical
cycles), the spectral features are sinusoidally modulated with ¢ (see Figure 4.3(b)). This is
consistent with the experimental observation of CEP modulation in photoemission spectra with a
few-cycle laser pulse [13][54]. As pulse width 7, increases, the CEP modulation on spectra
becomes less pronounced, and the multiphoton peaks in spectra become narrower (see Figure

4.3(c)), gradually approaching those from continuous-wave excitation [6]. The energy spectra for
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small 7, (= 4.4 fs) is enlarged in Figure 4.3(d), showing a higher electron yield and broader
spectrum for ¢ = 0 than ¢ = . Figures 4.3(e) and 4.3(f) show that CEP modulation is important
for a short laser pulse up to 7, /T, ~ 4 and the modulation of total photoemission current with ¢

decreases for larger pulse width 7,,.
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Figure 4.3: CEP modulation in energy spectra with different pulse duration z,,. (a) Laser electric
field for different 7, when CEP ¢ = 0 and m. (b) Energy spectra as a function of ¢ for different
T,,. () Extracted energy spectra of ¢ =0 and 7 from (b). (d) Linear plot of energy spectrum for
= 4.4 fsin (c). (e) Normalized current modulation magnitude A = (SW> - <W>4ve)/<W>ae as a
function of ¢ for different 7,,. Here, <w>ave = (SW>max + <W>min)/2 denotes the averaged value of
<w> with respect to ¢. (f) Current modulation depth I' =(<W>max - <W=>min)/(SW>max + <W>min)
as a function of z,,.

We next examine the CEP sensitivity of photoelectron emission charge O under different laser
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fields F1. As shown in Figures 4.4(a) and 4.4(b), in general, the CEP modulation on Q increases
as Fq increases. Also, the position of ¢ for the maximum (or minimum) Q shifts when the laser
field F increases for a fixed pulse duration 7, (see the dashed lines in Figures 4.4(a) and 4.4(b)).
To investigate the CEP sensitivity more closely, in Figure 4.4(c), we plot the difference between
the maximum and minimum values of Q in the curves of Figures 4.4(a) and 4.4(b) as a function of
F,. Following Reference [55], by fitting the O vs ¢ curves with a sinusoidal function of
cos(¢p+ £ ), we can identify the phase shift of the maximum Q with F1, as shown in Figure 4.4(d).
We see a pronounced dip in Omax-Omin at large laser field F1 = 9 V/nm for both cases of 7, = 4.7
and 8.8 fs, and for 7, = 8.8 fs another dip appearing at F1=5 V/nm (see Figure 4.4(c)). From Figure
4.4(d), phase shifts of  in ¢ are found near these dips. These behaviors agree very well with the
varnishing CEP sensitivity of photoemission accompanied by a  phase shift in the optical-field
regime observed in recent experiments [55].

@ t,=47fs (b) 1,=88fs (¢
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Q-Q,. (arb. units)
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012 34 012 3 4 4 10
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Figure 4.4: CEP sensitivity of total emission charge density Q under different laser fields F;. (a),(b)
Difference between Q and its averaged value Qave as a function of ¢ for different F; with pulse
duration (a) 7, = 4.7 fs and (b) 7, = 8.8 fs. For a given F;, Qave = (Qmax + Qmin)/2. Dashed lines
indicate the shift of the phase for the CEP modulation. (c) Difference between the maximum and
minimum values of charge Qmax-Qmin in the curves of (a) and (b), as a function F; for different ,,.
Points A, B and C denote F; = 7, 9, and 10 V/nm, respectively. (d) Photoemission charge phase
<Q as a function of F; for different 7,,. £Q is obtained by using Bcos(¢+4Q) to fit the curves in

(a.) and (b), with B = Qmax'Qmin.
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t (fs)

Figure 4.5: Time-dependent emission current density w(?) at the surface (X = 0, with surface
oscillatory current excluded) as a function of time # for pulse duration 7, = 4.7 fs at CEP ¢ when

Omax (top row) or Omin (bottom row) occurs, under different laser fields at (a),(b) F; = 7 V/nm;
(¢),(d) F; =9 V/nm; and (e),(f) F; = 10 V/nm. The values of laser field F; correspond to case A,
B and C in Figure 4.4(c), respectively. The value of CEP ¢ in each panel corresponds to the
occurrence of Opax (top row) or Opin (bottom row) in Figure 4.4(a). The blue lines are for emission
current density, red lines for laser field, and black dotted lines for laser pulse envelope. The optical
half cycles of the laser field in (a), (b), (e), (f) are numbered as 0, £1, +2 and £3, with “0” being
the center cycle with the highest peak. Only positive optical half cycles are shown.

To uncover the physical origin of the vanishing CEP sensitivity behavior and the CEP phase
shift in the photoemission charge, we plot the time-dependent electron emission current density
w(t) at the surface (x = 0) as a function of time, under different laser fields F; and CEP ¢ for 7,
= 4.7 fs, as shown in Figure 4.5. The laser field strengths of 7, 9, and 10 VV/nm used in Figure 4.5
correspond to cases A, B and C in Figure 4.4(c), respectively. By observing these time-dependent
current pulses, it is clear that electron emission starts at the beginning of each positive half cycle
in a given laser field pulse. When F; =7 V/nm (case A before the dip in CEP sensitivity in Figure
4.4(c)), even-numbered positive optical half cycles (Figure 4.5(a)) drive more photoelectron

emission than odd-numbered positive optical half cycles (Figure 4.5(b)). However, as the laser
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field F; is increased to 10 V/nm (case C after the dip in CEP sensitivity in Figure 4.4(c)), odd-
numbered positive half cycles trigger more electron emission than even-numbered cycles (cf.
Figures. 4.5(e) and 4.5(f)). This indicates in the strong field regime, there exists a competition
between even and odd positive half-cycle contributions to photoelectron emission, and thus a
phase shift in ¢ as shown in Figure 4.4(d), with varying CEP. At F; =9 V/nm (case B at the dip
in CEP sensitivity in Figure 4.4(c)), Qmax-Qmin becomes minimal, where Qmax and Qmin Occur at
¢ = 1.6m and 0.4, respectively. The competition between electron emission from neighboring
positive optical half cycles also leads to the dips in CEP sensitivity and phase shifts at F; =5 V/nm
and 9 V/nm for t,, = 8.8 fs in Figures 4.4(c) and 4.4(d).

It is important to note that, for clarity, we plot in Figure 4.5 only the emitted current density that
eventually escapes from the surface, whereas the local strong oscillatory current density near the
surface typically associated with photoemission (e.g. see Figures 4.6(a) and 4.6(b) below, and also
References [6][61][62][76][109][110]) is filtered out. This is possible in our exact analytical
calculation using Equation (39), by excluding the high n-order (and l-order) terms, which is
verified to give the strong oscillatory surface currents only. This is also consistent with previous
study that the high energy regime in the photoelectron spectra is due to surface oscillations and
rescattering (cf. Figure 4 in Reference [109]).

It is also noteworthy that, though electron emission starts at the beginning of every positive
optical half cycles in the laser pulse, there is typically a time delay between the peak of the positive
optical half cycle and the peak of the emission current pulse, as seen in Figure 4.5. Furthermore, a
stronger positive optical half cycle does not necessarily lead to a higher current pulse emission,
which, however, depends strongly on the emission from neighboring half cycles in a laser pulse.

These observations indicate that further examination is needed on the validity of the widely used
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Fowler-Nordheim rate equations, in which current emission follows closely the optical positive

half cycles, to study the CEP sensitive, time-dependent strong-field photoemission [55].
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Figure 4.6: Total time-dependent emission current density w(x, t) under the dc field F, = 1 x 10*
V/m and 1 x 10° V/m. (a),(b) w(x, t) including surface oscillation currents as a function of the
space x and time t. Solid white lines show the corresponding classical trajectories. Dotted white
lines show the positive half cycles of the laser electric field. (c),(d) Emission current density w(t)
at x = 50 and 100, as a function of time t. The time-dependent current in all figures is normalized
in terms of the time-averaged emission current (w). Here, the laser pulse duration ,, = 8.8 fs and
the peak laser field F; = 1 V/nm. When F, = 1 x 10* V/m, (w) = 25x 1071!; When F, =
1x10°V/m, (w)=2.1x10"".

In Figure 4.6, we plot the total time-dependent photoemission current density w(x, ¢), including
oscillatory surface currents, as a function of the space x and time ¢ under different dc bias. The
strong oscillatory surface currents are confined to the very limited region near the surface only. It
is found that increasing the dc field from Foy = 1 x 10* V/m to 1 x 10° V/m increases the time-

averaged emission current density from (w) = 2.5% 107! to 2.1 x 10~7. More importantly, the
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emission current pulse is significantly shortened (from 19.7 fs to 4.8 fs of FWHM at x = 50). Also,
due to the strong acceleration of the larger F, the shape of the pulse is retained (without
consideration of space charge effect) as the current pulse travels further from the surface (see
Figure 4.6(d)). This may provide a practical way to shorten the photoemission current pulse by
simply adding a large dc bias. The solid white lines are the corresponding classical trajectories
[76], showing good agreement with the electron dynamics from our quantum model. Note because
of the relatively small optical field used, the trajectories of the emitted photoelectrons in Figure
4.6(a) show fewer oscillatory features compared to those cases with strong laser fields (cf. Figure
3 of Reference [110]). This is due to the weaker backpropagation and acceleration processes of
emitted electrons (i.e., smaller quiver motion) under weak laser electric fields. When adding a
strong dc bias, most of electrons are able to escape from the metal surface with negligible quiver
motion, as shown in Figure 4.6(b), similar to the DC field emission process. The classical
trajectories in Figures 4.6(a) and 4.6(b) suggest that, in Figure 6(c), the narrow current peak is due
to electron emission by the left-to-center and the center positive optical half cycles, and the broad
peak is driven by the right-to-center positive optical half cycle. In Figure 4.6(d), the single
dominant current peak is mainly driven by the center positive optical half cycle of the laser field

under strong dc bias.

4.4 Conclusion

In this chapter, we present a quantum analytical solution for few-cycle photoelectron emission
from a dc-biased surface induced by Gaussian laser pulses, by solving the TDSE. Our exact model
is valid for arbitrary pulse length from sub-cycle to CW excitation, and for arbitrary pulse
repetition rate. Our calculations show the emitted charge per pulse oscillatorily increases as the

laser pulse separation decreases due to varying coherence interaction of neighboring laser pulses.
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Our results recover the experimentally measured features of sinusoidal CEP modulation to
photoelectron emission and varnishing CEP sensitivity with a 7t phase shift in optical-field regime
under strong optical fields. Moreover, we find adding a large dc field greatly enhances the

photoelectron current and shortens the current pulse.
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CHAPTER 5
PHOTOELECTRON EMISSION IN A NANOSCALE GAP

5.1 Introduction

Due to the promise for potential applications to ultrafast and highly sensitive photodetection in the
room temperature, laser-driven electron emission in the nanometer-scale two-tip junctions has
drawn strong recent interests [17][20][23][63]-[66][111]. Rybka et al. [17] reported laser-induced
sub-femtosecond photoelectron tunneling in a nanoscale metal-vacuum-metal gap. Higuchi et
al. [63] explored the rectification effect of dc-biased two-metal-nanotip junction in ultrafast
multiphoton photoemission. Ludwig et al. [23] presented the strong dependence of dynamics of
nanoscale electron transport between two metal tips on the temporal profile of driving laser pulses.
Turchetti et al. [66] studied the impact of dc bias on photoemission from metal surfaces
surrounding a nano-vacuum gap. Typically, numerical solutions of the time-dependent density
function theory [23][64][65][112][113] and Schrédinger equation [66][114] are implemented to
study the photoemission properties in nanoscale gaps, but the underlying physics for the interplays
between electron emission process, laser field, gap size and materials is not always transparent,
especially when transitioning among different emission regimes.

In this chapter, by exactly solving the TDSE, we present analytical models for nonlinear ultrafast
electron emission and dynamics in a nanoscale metal-vacuum-metal junction without and with dc
bias driven by a single-frequency laser field. Using the analytical formulation, we investigate the
photoelectron transport with various gap distances, laser intensities, wavelengths, dc bias and
metal materials. Our results provide clear insights to the energy distribution of emitted

photoelectron and spatiotemporal emission dynamics inside the metal-vacuum-metal junction. Part
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of the material of this chapter is submitted to Optics Letters and another journal article is also

planned.

5.2 Photoelectron Transport without DC Bias

5.2.1 Analytical Model

Our one-dimensional (1D) model (see Figure 5.1) considers electrons with initial energy & emitted
from the surface at x = 0, under the action of laser field F; cos (wt), where F; is the amplitude of
the laser field and w is the angular frequency. The laser field is assumed to be perpendicular to the
flat emitter surface, and cuts off abruptly at the surface [6][66], thus the time-dependent potential

energy in the entire regime reads [6][61][62][74][106],

0 x<0
®(x,t) ={Er + W — eFyxcos(wt) 0<x<d (43)
—eF,dcos(wt) x=>d,

where Er and W are the Fermi energy and work function of the left metal respectively, and e is
the elementary charge.
By solving the TDSE subjected to the potential energy given in Equation (43), the electron wave

function for x < 0 is found to be,

o)

&€+ nhw

£t
Y(x,t) =exp <—% + ik0x> + z R, exp (—LTt — iknx> , <0 (44)

n=-—oo

which denotes the superposition of an incident plane wave with initial energy € and a set of

reflected plane waves with reflection coefficient R, and energies €+ nhw , where the

wavenumber k, = /2m,e/h? and k,, = /2m, (& + nhw) /A2
For 0 < x < d (in the gap), the exact solution of electron wave function is (see Appendix D for

the method),
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Figure 5.1: Energy diagram for photoelectron emission in a nanoscale metal-vacuum-metal
junction under a single-frequency laser field. Electrons with the initial energy € are emitted from
the surface at x = 0, with an energy of € + nhw, due to n-photon contribution. Here, by symmetry,
electron emission from the surface at x = d can be modeled in the same way (but with an opposite
sign of instantaneous laser field).

(o]

Y(x, t) = Z exp [—i%t} exp

n=—oo

{Tm exp |i l /2 h";E"( + &4 Cos(wt) l + Ty exp[ ’ ";;E” + &4 C:Z(;)t))l}, 0<x<d (45

which shows the superposition of a set of electron waves travelling towards +x direction with

hw 8m,hw?3

ixeF, sin(wt) N ie?F? sin(Zwt)l

coefficient Ty,, and towards -x direction with coefficient T,,, inside the gap, where the drift kinetic
energy E, = € + nhw — Er — W — U, and the ponderomotive energy U, = e?F¢/4m,w?

For x > d, an exact solution of electron wave function is easily obtained,

€ +nhw eF,dsin(wt)
Y(x, t) = 2 T3nexp< f— )exp[tk x+lT,x2d (46)

n=-—oo

which represents the superposition of transmitted electron plane waves with energies € + nhw,

due to multiphoton absorption (n>0), direct tunneling (n=0) and multiphoton emission (n<0)

[6][76], where the wavenumber k, =./2m,(e + nhw)/h? and T,, is the transmission

coefficient.
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By imposing the boundary conditions that both the electron wave function ¥ (x,t) and its
derivative 0y (x, t)/dx are continuous at x = 0 and x = d, and taking Fourier transform, we obtain,
in nondimensional quantities [6][61][62], € = ¢/W, @ = wh/W,t = tW /h, Ep = Ex/W, x =

x/Ao, d =d/Ag, Ag = R%/2m W, F; = Fiedo/W, U, = U,/W, the following equations,

Z Tln [V £+ maPln(n—m) + an(n—m)] + TZn[V £+ maPZn(n—m) + QZn(n—m)]

n=-—oo
= 2V&s(m) (47)
z [VE+ maUln(n—m) - Vln(n—m)]Tln + [V £+ m(‘_)UZn(n—m) - VZn(n—m)]TZn =0 (48)
n=—oo
Z Tln Uln(n—m) + TZnUZn(n—m) = T3meXp(i&V £+ m@) (49)
n=-—oo

where 6(m), Pln(n—m)l an(n—m)1 PZn(n—m)a QZn(n—m)’ Uln(n—m)a Vln(n—l)i UZn(n—m)! and

[’Zn(n—l) are given by,
{ ,
( ) 0, +* 0, (50(1)

1 2T o 1 2T o
Plnl = _f pln(wf)e_llwtd(af)' anl = _f Q1n(af)e_llwtd(af): (SOb)
21 J, 21 J,

1 21 o 1 21 o
Pan = %f pZn(af)e_llwtd(wf)' Qan = %f QZn(af)e_llwtd(af)r (SOC)
0 0
_ i@cos(&)f) _
pin(@f) = e @? f(@?), (50d)
_ — P _
Qi (@D = [ﬁ + 55111(0)@] pin(@D), (500)
_ —i@cos((f)f) _
pan(@t) =e @7 f(@?), (50f)
_ Fp _ _
qon(@F) = [Esm(wf) - \/;”l Pan(@0), (509)
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= 2

. F . -
f(aﬂ _ elﬁsm(z(ut)' (SOh)

_ iJE,d _ iJE, d :
Ulnl - Plnle ", Vlnl - anle e, (501)

_iJE,a
)

Upni = Poie Vani = Qame™ VEn 1, (50))
with E,, = € + n@ — Ep — U, — 1. The coefficients T;,, T2, and T3, (and therefore R,,) is then
calculated from Equations (47), (48) and (49).

The normalized transmitted current density is defined as the ratio of the transmitted probability
current density over the incident probability current density, w(e, x,t) = J.(&,x,t)/]i (g, x,t),
where the probability current  density j(x,t) = (ih/2m,)(WYVyY* —Y*VyY) = (ih/

2Mmy) Y — oo Die—o(Wn VY1 — Y5 ViP;). Thus, the normalized instantaneous current density inside

the gap (0 <x<d) s,

1 oo 0 ) L
W(g’ X, E) — _Z Z Re et (I-n)wt
\/E_ n=—oo l=—0 {

X {TynT5Ds + Tin T30y + TonT5iDs + Ton T304} (51)
e 01 =gV () ) ¢+ LI () <SSy o
i (JE)) (£ B (B 55250 g (s
(VB o+ )] (B +5550) sy = e (V) V) o+

*

M)] [(\/E) — @]. The corresponding time-averaged emission current density is

(1_.)2
obtained from the numerical integration of Equation (52) over time,

1 2T
W@ =5 | w(es D@, (52)
21 ),
In the metal on the right-hand side (x > d), the normalized instantaneous transmitted current

density is found as,
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- 1 E:m 2:00 | -ty
w(§ X, t) = \/__5 l Re{e T3nT31D}’ (53)
n=-—oo =—0o0

where D = el Ve+no-(Ve+lo)1* (/& 1 1%)*. The time-averaged transmitted current density is,

(0]

w(&) = Z Wn(8), (W, (8)) = Re(ITsnl*y 1 + n&/2), (54)

n=—oo

where (w,,) represents the time-averaged transmitted current density through n-photon process,
with transmitted electrons of energy € + naw [6,76]. Due to current continuity, the time-averaged
current density obtained from Equation (52) and Equation (54) are equal, which has been verified

in our calculations.

5.2.2 Results and Discussion

Using the analytical solution presented above, we analyze the photoelectron emission properties
under different combinations of gap distances and laser fields. Unless mentioned otherwise, the
default value of the laser wavelength is 800 nm (Aw = 1.55 eV), the metals on both sides of the
gap are assumed to be gold [17][20][65][111], with Fermi energy Er = 5.53 eV and work function
W = 5.1 eV, and the photoemission current is calculated from Equation (54). Since most of the
electrons are emitted with initial energies near the Fermi level [6][76][86][87], we choose the
electron initial energy € = E for simplicity.

Figure 5.2(a) shows the dependence of total time-averaged transmitted current density (w) on
the gap distance d under different laser fields F;. When the laser field is off (i.e., F;, = 0), the
current (w) is contributed only by direct tunneling, which rapidly decreases as gap distance
increases. After applying a laser field, the current (w) decreases initially as d increases, closely
following the scaling for the case of F; = 0, where direct tunneling dominates. As d increases

further, for a given laser field, the current (w) oscillates around a constant value (cf. the dashed
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lines), which is found to be the photoemission current from a single metal surface (i.e., when the
metal on the right-hand side in Figure 5.1 is removed). The oscillation behavior is attributed to the
interference of electron waves inside the gap due to reflections from the metal-vacuum interfaces,
for various gap distances d. Here, we ignore the effects of image charge and space charge, thus the
oscillation amplitude of (w) remains almost unchanged with increasing d. This oscillation
behavior is similar to that found in field emission from dielectric coated surfaces [115][116]. The
quantum interference of electron waves is also demonstrated experimentally in Reference [13],
where the distinct peaks in energy spectra arise from the interference of electron waves re-
scattering at the emitter tip. Figure 5.2(b) shows the energy spectra for photoelectrons transmitted
into the right-side metal for different gap distances d and laser fields F;. It can be seen that for a

smaller laser field (F; =1 V/nm), as d decreases, the dominant emission shifts from four-photon
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Figure 5.2: Normalized time-averaged photoemission current density under various gap sizes and
laser fields. (a) Total emission current density (w) as a function of gap distance d for different laser
fields F;. Dashed lines denote the emission current density from a single surface when the metal
on the right-hand side in Figure 5.1 is removed, which is obtained from Reference [6]. (b) Energy
spectra for photoelectrons transmitted into the metal on the right-hand side for different d and F;.
(c) Photoelectron energy spectra for electrons inside the vacuum gap and in the metal on the right-
hand side under different F; for d = 2 nm. For the curves for photoelectrons inside the gap, white-
filled diamond markers denote the absolute value of negative emission current density (w,,)
through the nth channel.
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over-barrier emission (n = 4, cf. the ratio of metal work function over single photon energy
W/hw = 3.29) to tunneling emission (n < 4). As laser field increases (F; =4 V/nm and 8 VV/nm),
this shift of the dominant emission process becomes less prominent, because the potential barrier
inside the gap becomes less sensitive to the gap distance d under strong laser fields.

Figure 5.2(c) compares the energy spectra for photoelectrons inside the gap and in the right-side
metal for d = 2 nm. It is found that although the total emission current (w) is equal in these two
regions, the energy distribution of photoelectrons is quite different. In particular, the time-averaged
current densities for all n-photon channels are positive in the right-side metal, while some of them
are negative inside the gap (see the open diamond markers in Figure 5.2(c)). Negative value of
(w,,) means electrons excited through those n-photon processes are reflected backwards inside the
gap. Additionally, n-photon processes with n < 4 contribute more significantly for transmitted
electrons in the right-side metal than those inside the gap, which becomes more pronounced for
larger laser intensity.

In Figure 5.3(a), we plot the total time-averaged emission current density (w) as a function of
laser field F; with various gap distances d. For the vacuum gap with d < 1 nm, the slope of (w)
increases with F; , indicating the dominant emission process shifts to higher order n-photon
absorption. This is consistent with the results shown in Figure 5.2(b). For the cases with larger gap
distances, the slope of (w) becomes insensitive to the gap distance d and follows that of
photoemission current from a single metal surface. The scale approaches (w) o« F£™ with n = 4,
indicating four-photon absorption dominates the emission process. Figure 5.3(b) displays the
difference between the total emission current in a nanogap and emission current from a single
surface (w) — (w)gg, where the difference becomes more pronounced in the larger laser intensity

regime. Besides, it is interesting to find that the location of channel-closing-induced drop of
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Figure 5.3: (a) Normalized total time-averaged emission current density (w) and (b) difference
between total emission current (w) and emission current from a single surface (w)ssas a function
of laser field F; for different gap distances d. The single surface case (w)ss is obtained from
Reference [6]. The dashed line in (a) denotes the scale of (w) o< F2™ with n = 4. (c) Emission
current density (w) as a function of laser field F; for gap spacing d = 3, 5, and 11 nm. Here, laser
field regimes are labeled with n = 4 and n =5 (cf. the areas filled with different colors), which
means the dominant emission process in this field regime is four- or five- photon absorption.
emission current density (w) (i.e., the location of transition between the dominant four- and five-
photon absorption in Figure 5.3(c), determined by observing the shift of the peak of the emitted
electron energy spectra) shifts to larger laser field F; for smaller gap distance d. This indicates that
decreasing the gap distance (before entering the direct tunneling regime) can extend the
multiphoton regime to higher laser intensity. This may be explained by the fact that the shape of
the potential barrier becomes less sensitive to the laser field strength for a smaller gap distance,
thus allowing the dominant n-photon process to remain over a larger range of laser fields (or laser
intensities).

Figure 5.4 shows the time-dependent current density w(x, t) as a function of space x and time
t for different combinations of laser field F; and gap distance d. It is seen that, besides the surface

oscillation current near the metal-vacuum interface at x = 0, some electrons are back reflected

from the vacuum-metal interface at x = d into the vacuum gap approximately at the beginning of
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Figure 5.4: Total time-dependent current density w(x, t) as a function of time ¢ and space x, under
various laser fields F; and gap distances d. Here, the time-dependent current density w(x,t) is
normalized in terms of the time-averaged current density (w). In all figures, the units of F; and d
are V/nm and nm, respectively. The dotted lines show the position of x = d.
second half cycle of the laser fields (i.e., wt = m). This is shown by the change of w(x, t) from
red to dark blue around wt = m in Figures 5.4(e), 5.4(f), 5.4(h) and 5.4(i), where the red region
denotes positive current density propagates in the +x direction and the dark blue region in -x
direction. As the gap distance d increases, more interference patterns of current density w(x, t)
inside the gap are formed. The full width at half maximum (FWHM) of the emission current pulse
is about 0.63 fs, which is greatly shorter than laser period of 2.67 fs.

We examine the total emission current density (w) as a function of gap distance d for different
incident wavelengths in Figure 5.5(a) and for metals with various work functions in Figure 5.5(b).

It is found that the oscillation amplitude of (w) increases when the laser photon energy hw (

1/A, with A being the laser wavelength) becomes closer to the metal work function W, indicating
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stronger interference of electron waves inside the gap when W /hw — 1. Figures 5.5(c) and 5.5(d)
show the photoelectron energy spectra for different laser wavelengths in Figure 5.5(a) and for
different metals in Figure 5.5(b) with d = 2 nm, respectively. The shift of the dominant emission

to larger n-photon process is due to the increasing ratio of W /Aw.
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Figure 5.5: Normalized total time-averaged emission current density (w) as a function of gap
distance d for various (a) laser wavelengths and (b) metal materials. Photoelectron energy spectra
for different (c) laser wavelengths and (d) metals, for d =2 nm. In (a) and (c), the metal is assumed
to be gold. In (b) and (d), the incident wavelength is 800 nm. The work function of different
materials is Wag=4.26 eV [107], Ww=4.31 ¢V [106], Wmo= 4.6 €V [107], Wcu=4.65 eV [107],
and Wau= 5.1 eV [6][107]. The laser field F; is fixed as 4 V/nm for all the cases.

5.2.3 Summary on Photoelectron Transport without DC Bias

In this section, we present an analytical solution for photoelectron emission and transport in a
nanoscale metal-vacuum-metal junction driven by a single-frequency laser field, by exactly
solving the time-dependent Schrodinger equation. The analytical model is valid for arbitrary gap
distance, laser intensity, wavelength and metal work function and Fermi level. Our calculation

exhibits the transition from direct tunneling to multiphoton induced electron emission and the
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oscillatory dependence of photoemission current on the gap distance in the multiphoton regime.
Our results demonstrate the energy redistribution of emitted photoelectrons across the two
interfaces of the nanogap. We also find that decreasing the gap distance (but before transiting into
the direct tunneling regime) can extend the multiphoton regime to higher laser intensity. The

nonlinear effects of laser wavelength and materials on the gap-size dependence are examined.

5.3 Photoelectron Transport with DC Bias

5.3.1 Analytical model

With the external applied dc voltage V shown in Figure 5.6(a), the symmetry of the metal-vacuum-
metal system is broken, which means under the same illumination condition, the left and right
metal surfaces of the nanogap in Figure 5.6(a) have different photoemission properties. Therefore,

we analytically model photoelectron emission from the left and right metal surfaces, respectively.

(@)

Metal 'i- Metal

Metal | Vacuum | Metal Metal © Vacuum . Metal

+
W
Fo>0 Fy <0

Figure 5.6: (a) Schematic of metal-vacuum-metal nanogap with a dc bias V under the illumination
of laser field. d is the gap distance. (b) Energy diagram for photoelectron emission from left metal-
vacuum interface of the gap in (a). Electrons with the initial energy € would see a potential barrier
subjected to a positive dc electric field F, =V /d (> 0) and laser field F;cos (wt). (c) Energy
diagram for photoelectron emission from right metal-vacuum interface of the gap in (a). Electrons
would see a potential barrier with a negative dc electric field F, = =V /d (< 0) and laser field
F;cos (wt) with F; of opposite sign of that in (b) at any time instant for a given laser field.

For the photoemission from the left metal-vacuum interface of the nanogap in Figure 5.6(a),

electrons with the initial energy € would see a potential barrier subjected to a positive dc electric
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field F, =V /d (> 0) and laser field F;cos (wt), as shown in Figure 5.6(b). Thus, the time-

dependent potential energy in the whole regime reads as [6][61][62][74][106],

0 x <0
®(x,t) ={Er + W —eVx/d — eFyxcos(wt) 0<x<d (55)
—eV — eF,dcos(wt) x=>d,

where Er and W are the Fermi energy and work function of the left-side metal in Figure 5.6(a)
respectively, and V' is the magnitude of the applied dc bias. Other parameters have the same
definition as that in Equation (43).

By solving the TDSE with the potential energy given in Equation (55), the electron wave

function for x < 0 is,

£+nhw

Y(x,t) = exp (—— + lkox) Z Rin exp( 5 iknx) ,x<0 (56)

n=—oo

which denotes the superposition of an incident plane wave with initial energy ¢ and a set of

reflected plane waves with reflection coefficient Ry, and energies & + nAw , where the

wavenumber k, = /2m,&/h% and k,, = /2m, (¢ + nhw) /A2
For 0 < x < d (in the gap), the exact solution of electron wave function is found to be (see

Appendix E for the method),

[00]

&£+ nhw ie?VF, sin(wt) ixeF; sin(wt)
Yoot = Z exp [_l h t] exp I_ hdm,w?3 * hw
n=-—oo

ie?F? sin(2wt)
8m,hw?3

X [TlnAi(_T]n) + TZnBi(_nn)] ) 0<x<d (57)

which represents the superposition of a set of transmitted and reflected electron waves inside the

e+nhw—Ep—-W—e?FZ /4amew? eF, cos(wt), ,2emgV
L d+x+ (= 2
ev Mew

gap, where n,, = [ )3 and Ty, and T,,, are the

coefficients.

For x > d, an exact solution of electron wave function is,
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_eF;dsin(wt)

- &+ nhw ]
Y(x, t) = z T3, exp (—th) exp |iky,x + i ” ,x=>d (58)

n=-—oo

which shows the superposition of transmitted electron plane waves with energies € + nhw, due to

multiphoton absorption (n>0), direct tunneling (n=0) and multiphoton emission (n<0), where the

wavenumber k,, = \/2m, (e + nhw + eV)/h2 and Ts,, is the transmission coefficient.

By applying the boundary conditions that both the electron wave function i (x,t) and its
derivative 0y (x, t)/dx are continuous at x = 0 and x = d, and taking Fourier transform, we obtain,
in nondimensional quantities [6][61][62], § = ¢/W, @ = wh/W,t = tW /h, Ep = Ex/W, X =
x/Ao, d =d/Ny, Ao = [R2[2m,W , V = Ve/W ,F, = Fiedo/W, U, = U,/W, the following

equations,

z Tln [V &+ m(‘_)Pln(n—m) + an(n—m)] + TZn[V &+ maPZn(n—m) + QZn(n—m)]

n=_m = 2+/&6(m) (59)
Z V& +m® + VUsntnem) = Vintnem) ) Tin + [VE + M + VUsntnemy = Vancaomy| Ton
e
=0 (60)
Z Tin Usnnemy + TanUzn(n-m) = Tsmexp (idve+ma +7) (61)

n=—oo

where 5(m)’ Pln(n—m)’ an(n—m)v PZn(n—m)’ QZn(n—m)a Uln(n—m)i Vln(n—l)a UZn(n—m)v and

Von(n—ry are given by,

1, m
§(m) = {0, m# 0, (62a)

1 21 o 1 2T o
Plnl = _f pln(wae_llwtd(aa' anl = _f qln(a_@e—”“’td(@ﬂ, (62b)
21 J, 21 J,

1 21 o 1 2T o
Pont = — j Do (@D e~ 1 A(GT), Qo = — j don(@De- 13 (@D,  (620)
21T 0 2T 0
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p1n(@t) = Ai(a,)f (@1), (62d)

qin(@F) = [Ai(an)M +i4i' (a,)(V/d)3 ]f(a@ (62e)
Pan(@t) = Bi(ay)f (wt), (621)
@) = [BiCa) 2D i, 71351 @), (629)
1 21T o 1 2 o
Ui = EJ. uln(aae_llwtd(af)’ Vi = %[ vln(af)e_llwtd(af): (62h)
0 0

1 21 o 1 2 o
Uan = _f uZn(at_)e_llwtd(af): V2nl = _f UZn(EDe_llwtd(af)’ (621)
2m J, 2m ),

U1 (@) = Ai(y,) f(@1), (62))

_ ) Fy si ( £)
Vin(@8) = [Ai(yn) ——— + Al (Vn)(V/d)3]f(wﬂ (62k)
Upn (@F) = Bi(yn)f(at_): (620)
Van (@F) = [Bi(yn) M +iBi' (Yn)(V/d)3]f(wt_) (62m)

= 2
F
sin(@f) + iﬁsin@at_) , (62n)

2F,V
f(@T) = exp |[—i ==
dw3

with a, = —[E,d/7 + 2F,cos (@b)/@?|(V/A): , y, = —[E,d/V + d + 2F,cos (@F)/@?](V/
j)%l and E,, = £+ n@ — Ep — U, — 1. The coefficients T, T, and Tz, (and therefore R;,) is
then calculated from Equations (59), (60) and (61).

The normalized transmitted current density is defined as the ratio of the transmitted probability
current density over the incident probability current density, w(e, x,t) = J.(&,x,t)/]i (g, x,t),

where the probability current density j(x,t) = (ih/2m,)(WYVyY* — Y*VyY) = (ih/

88



2my) Yoo 2o — (W VY — Y V). Thus, the normalized instantaneous transmitted current

density in the metal on the right-hand side of Figure 5.6(a) (i.e., x > d) is found to be,

= = 1 ® * i (I-n)wt *
wEED=) > Rele! 09T, D) (63)
n=-—oo =—00
where D = el Vern@+V-(Ve+lo+V)I2(\/# 4+ 155 + V)* . The time-averaged transmitted current
density is,
(w(&)) = Z (wn(8)), (wn(&))=Re <|T3n|2J1 +nw/é+ ‘7/8_), (64)

n=-—oo

where (w,,) represents the time-averaged transmitted current density through n-photon process,
with transmitted electrons of energy € + naw [6].

For the photoemission from right metal-vacuum interface of the gap in Figure 5.6(a), electrons
would see a potential barrier subjected to a negative dc electric field F, = —V /d(< 0) and laser
field F;cos (wt), as shown in Figure 5.6(c). Thus, the time-dependent potential barrier in Figure

5.6(c) is [6][61][62][74][106],

0 x<0
®(x,t) ={Ep + W + eVx/d — eF;xcos(wt) 0<x<d (65)
eV — eF;dcos(wt) x =d,

where Er and W are the Fermi energy and work function of the right metal in Figure 5.6(a)
respectively, and V' is the magnitude of the applied dc bias. Other parameters have the same
definition as that in Equation (43), with F, of opposite sign (i.e., 180 degree out of phase) of that
in Figure 5.6(b) at any time instant for a given laser field.

Solving the TDSE with the potential energy given in Equation (65) yields the electron wave

function for x < 0,

£+ nhw .
Y(x,t) = exp (—— + lkox) Z Ryp exp( 5 lknx) ,x<0 (66)

n=-—oo
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where the wavenumber ko = +/2m.e/h? and k, = /2m,(¢ + nhw)/h%, and R,, is the
reflection coefficient.
For 0 < x < d (in the gap), the exact solution of electron wave function is found to be (see

Appendix E for the method),

oo

e+nha) ie?VF, sin(wt) ixeF,sin(wt) ie?F?sin(Qwt
w(x't)zzexp[ ]el 1sin(t) | ixeFy sin(wt) | le®Fy sinQot)

hdm,w3 hw 8m,hw?3
n=—oo
X [TynAi(—1y) + TsnBi(—ny)], 0<x<d (67)
e v 22 1
where 7,, = [— ZRAe-Er V:Ve FE/Amew” ) 4 x 4 €0 Coi(zw t)](ziT;V)E, and T,, and Ts, are the

coefficients.

For x > d, an exact solution of electron wave function is,

_eF;dsin(wt)

KX + ,
expll nX +i ™

( M) x>d (68)

P o) = Z Ton exp

n=—oo

where the wavenumber k,, = \/2m, (s + nhw — eV) /A2 and Ty, is the transmission coefficient.
By applying the boundary conditions that both the electron wave function ¥(x,t) and its
derivative 0y (x, t)/dx are continuous at x = 0 and x = d, and taking Fourier transform, we obtain

the following equations,

Z T4n [V &+ ma_)P4n(n—m) + Q4n(n—m)] + TSn[V &+ maPSn(n—m) + QSn(n—m)]

nz_m = 2V&s(m) (69)
z [VE+m& — VUsntn-m) = Vantn-m)|Tan + [\/ €+ m® — VUsnn-m) — Vsn(n- m)] Tsn
n——co
=0 (70)
2 Tan Usnin-m) + TsnUsnn-m) = TemeXP (i&m) (71)

n=-—oo
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where 6(771), P4n(n—m)l Q4n(n—m)’ PSn(n—m)’ QSn(n—m)’ U4n(n—m)a V4n(n—l)! USn(n—m)a and

Vsn(n—r) are given by,

m=20,
m

1,
50"):{Q #0,

1 2T o 1 2T o
Pini = _J. Pan(@D)e (D), Qun = _f qan(@D)e "@td (1),
2 J, 2m ),

1 2T o 1 2T o
Popt = — f Pen (@D 1T A(@D), Qomt = — j Gsn (@D e~ 158 d(@D),
21T 0 2T 0

pSn(aﬂ = Ai(an)f@ﬂ,

5n(@D) = (A1) D gy (a7 /Y31 @),

p6n((‘_)f) = Bi(an)f(af),

Gon@D) = [Bi(a) 2D i1, (7/ ) @D,

1 2T o 1 2T o
Usni = _f u4n(0_)f)e_llwtd(5t_): Va1 = _f U4n(5t_)e_llwtd(af)'
21 J, 21 J,

1

2 o 1 2 o
Usni = E,f Usy (D) e " d(@t), Vsn = %f s, (@) et d(@l),
0 0

u4n(5t_) = Ai(yn)f(at_):

von @B) = [AiG) D a1y, (73RN @D,

usy (@t) = Bi(yn)f (@0),

von @) = [BiCr) 2D _ i) (7 /31 (@),

_ 2RV RS
f(@t) =exp|i 7= sin(wt) + lmsm(Zwt_) ,
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with a,, = [2F,cos (wt)/@w? — E,d/V] (17/&)? Yn = [d + 2F,cos (wt)/w? — E,d/V] (17/&)5,
and E,, = £+ n@ — Ep — U, — 1. The coefficients T,,, Tsy, and Ty, (and therefore R,,) is then
calculated from Equations (69), (70) and (71).

The normalized instantaneous transmitted current density in the metal on the left-hand side of
Figure 5.6(a), defined as the ratio of the transmitted probability current density over the incident

probability current density, w(e, x, t) = J:(&,x,t) /] (g, x, t), is obtained as

1 (o] (00 i o
w(g x,t) = \/_—e‘z Zl Re{e! t=motT, T7 D}, (73)
n=-—oo =—00
where D = el Vern@-V-(Ve+lo-V)I%(\/# + |55 — 7)* . The time-averaged transmitted current
density is,
(w(8)) = Z (Wn(8)), (wn(8))=Re <|T6n|2J1 +nw/é— ‘7/8_)- (74)

n=-—oo

5.3.2 Results and Discussion
In the calculation of this section, positive dc field (F, > 0) and negative dc field (F, < 0) cases
denote the electron emission from left metal surface and right metal surface of the vacuum nanogap
with the external dc voltage V (= |F,|d) shown in Figure 5.6(a), respectively. Unless mentioned
otherwise, the default value of the laser wavelength is 800 nm (hAw = 1.55 eV), the metals on both
sides of the gap are assumed to be gold [17][20][65][111], with Fermi energy Er = 5.53 eV and
work function W = 5.1 eV, and the photoemission current is calculated from Equations (64) and
(74). Since most of the electrons are emitted with initial energies near the Fermi level
[6][76][86][87], we choose the electron initial energy € = E for simplicity.

In Figure 5.7, we plot the photoelectron energy spectra under different applied dc bias with fixed
gap distance d = 5 nm. Increasing the dc field F, from 1 to 3 V/nm increases the left-to-right

photoelectron transmission current by about two orders of magnitude and shifts the corresponding
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dominant electron emission process from three-photon absorption to two-photon absorption, as
shown in Figure 5.7(a). This is because under a larger dc field, the potential barrier near the left
metal-vacuum interface becomes narrower, enabling the less photon transition process (cf. Figure
5.7(b)). Nevertheless, with the larger dc field, the right-to-left photoelectron current dramatically
decreases and the dominant emission shifts to the higher order multiphoton absorption (see Figure
5.7(c)). This can be explained by that under a stronger dc bias V, electrons from the right-side
metal surface of the gap need to absorb more photons to overcome the potential barrier with
increased height in the gap for the emission, as shown in Figure 5.7(d). These observed changes
are also well reflected in Figures 5.8(a) and 5.8(b) which show the total time-averaged
transmission current density (w) from left (Figure 5.8(a)) and right (Figure 5.8(b)) metal surface
of the nano gap of Figure 5.6(a) as a function of laser field F; with different applied dc bias. Here,
the increasing (decreasing) slope of the curve of (w) with dc field F, manifests the shift of main
emission process to the larger (smaller) n-photon absorption. Also, the slop of (w) versus F;
follows the power-law scaling of photoemission (w) o F2", indicating the dominant n-photon
emission process. The value of n is consistent with the observation in Figures 5.7(a) and 5.7(c) (cf.

the cases with F, = +1 and +3 VV/nm)).
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Figure 5.7: Photoelectron energy spectra for dc field (a) F, = 1 and 3 V/nm and (c) F, =-1 and -3
V/nm. Emission mechanisms when (b) F, =1 and 3 V/nm and (d) F, =-1 and -3 VV/nm. Here, laser
field F; =1 V/nm and gap distance d = 5 nm.
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Figure 5.8: Normalized total time-averaged emission current density (w) as a function of laser
field F; for various dc fields F,. The gap distance d is fixed at 5 nm. The black dashed lines display
the scale (w) « FZ™. Here,n=2.8,1.9,6.5and 12.4 when F, = 1, 3, -1, and -3 VV/nm is consistent
with the observed orders of domination multiphoton emission channel in Figures 5.7(a) and 5.7(c).

In Figure 5.9, we plot the total time-averaged emission current density (w) as a function of gap
distance d under various dc fields F,, and laser fields F;. Without the dc field (F, = 0), the emission

current (w) from left or right metal surface would continuously oscillate around the current from
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a single surface (cf. the dashed lines) as d increases, which is due to the interference of electron
plane waves inside the gap, and the oscillation amplitude remains unchanged, due to the exclusion
of image charge and space charge effects in our calculation. After applying a strong dc field, it is
found that the oscillation behavior in the photocurrent is gradually suppressed with the increasing
d, and the left-to-right emission current eventually approaches that from single metal surface.
Besides, our calculation shows with a very narrow gap (d < 0.5 nm), the emission current from the
left and right surfaces has the same order of magnitude, regardless of applied laser intensity and
dc bias. This is because the gap-dependent direct tunneling emission dominates the transmission.
As the gap distance d increases, compared to the emission current from left metal surface, the
current from right surface is more greatly suppressed. This manifests that varying the gap distance
is able to greatly tune the dc-induced rectification on the photoelectron emission in a nanogap. Our

calculation displays the gap distance of larger than 1 nm is enough to achieve full rectification.
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Figure 5.9: Normalized total time-averaged emission current density (w) as a function of gap

distance d for different dc fields F, and laser fields F;. Dashed lines denote the emission current
density from single surface, which is obtained from Reference [6].

Figures 5.10(a) and 5.10(b) show the total emission current density (w) as a function of dc field
F, under different laser fields F;. The calculated exponentially increasing and decreasing trend
with dc field F, exhibits good coincidence with the numerical simulation (see Figure 3 in

Reference [66]). Figure 5.10(c) displays the net emission current density, defined as the difference
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between the left-to-right and the right-to-left emission current, as a function of dc field F, for laser
field F; =0.4,0.8 and 1 VV/nm. It can be seen that as dc bias approaches 0, the net emission current
also approaches the minimum value of 0. When the dc bias increases, the net current exponentially
increases, indicating it is gradually dictated by the left-to-right photocurrent. This uncovers the
rectification effect of external dc bias on the photoemission in a nanoscale gap [17].

In Figures 5.11 and 5.12, we plot the spatiotemporal evolution of emitted electron density from
left and right metal surfaces respectively, under different combinations of dc and laser electric
fields. Here, the gap distance d is fixed at 5 nm. As clearly seen in Figure 5.11(a), with the external
dc field F, =1 V/nm and laser field F;=0.1 VV/nm, parts of electrons emitted from left metal surface
are reflected back and forth inside the gap, which is in line with the numerical simulation results

in Figure 2(a) of Reference [66]. Also, our calculation shows increasing the laser field F; causes
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Figure 5.10: (a),(b) Normalized total time-averaged emission current density (w) as a function of
dc field F, for different laser fields F;. (c) The dependence of net emission current density (w) on
the applied dc bias for different laser fields F;. Here, gap distance d is fixed at 5 nm.
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more oscillatory emission features within the gap (cf. Figures 5.11(a)-5.11(c)), which is due to the
stronger quiver motion of emitted electrons under strong laser electric fields. When adding a large
dc field F, = 5 V/nm (see Figures 5.11(d)-5.11(f)), dc field-like electron emission pattern
dominates the whole regime, and due to the strong acceleration, electrons enter the right-side metal
with higher velocity (cf. the slope of classical trajectories). On the other hand, for the photoelectron
emission from right surface (see Figure 5.12), the addition of 1 V/nm dc field confines most of
electrons inside the vacuum gap, and only when the laser field F; is increased up to 8 VV/nm could
a small part of electrons escape from the gap into the left metal (cf. Figure 5.12(c)). Similar trend
with the increasing F; is observed in Figures 5.12(d)-5.12(f), except that most electrons are

constrained in the strong surface oscillation regime when applied dc field is 5 V/nm.
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Figure 5.11: Time-dependent emission electron density from left metal surface of the nanogap in
Figure 5.6(a) as a function of time t and space x under various combinations of dc and laser fields.
Solid white lines show the corresponding classical trajectories [76]. Dotted white lines show the
laser electric field. Here, gap distance d is fixed at 5 nm. The units of dc field F,, and laser field F;
are V/nm in all figures.
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Figure 5.12: Time-dependent emission electron density from right metal surface of the nanogap in
Figure 5.6(a) as a function of time t and space x under various combinations of dc and laser fields.
Here, gap distance d is fixed at 5 nm. The units of dc field F, and laser field F; are V/nm in all
figures.

5.3.3 Summary on Photoelectron Transport with DC Bias

In this section, by exactly solving the TDSE, we present analytical models for photoelectron
emission from left- and right-side surfaces of a dc-biased nanoscale metal-vacuum-metal gap
driven by a single-frequency laser field. Our results reveal the underlying photoemission process,
time-averaged emission current and spatiotemporal dynamics of photoelectrons from both sides of
the nano gap under different combinations of dc bias, laser fields and gap distances. Our
calculation shows the addition of a large dc field can greatly reduce the interference effect induced
oscillation in the total emission current, and demonstrates that in addition to the applied dc bias,
changing the gap distance is also able to achieve strong rectification to the photoelectron emission

in a dc-biased nano-vacuum gap. Our results may be helpful for the future design of ultrafast

optoelectronic devices, such as photodetectors.
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CHAPTER 6
SUMMARY AND SUGGESTED FUTURE WORK

6.1 Summary

In this thesis, we develop quantum analytical models to study nonlinear ultrafast optical-field
induced photoelectron emission from biased metal surfaces, by exactly solving the TDSE. We
consider two-color laser induced photoelectron emission with and without dc bias, interference
modulation of photoemission using two lasers of the same frequency, nonlinear ultrafast
photoemission from a dc-biased surface triggered by few-cycle laser pulses, and laser induced
photoelectron transport in nanogaps. Our analytical solution is valid for arbitrary laser parameters,
including laser frequency, intensity, relative phase between two lasers, pulse duration, repetition
rate, carrier-envelope phase, applied dc fields, gap distances, metal work function and Fermi level.
Various emission processes, such as multiphoton over-barrier emission, dc-assisted optical
tunneling emission and dc or optical field emission, are all included in our simple formulation. We
provide comprehensive analysis of the photoelectron emission properties under different
combinations of laser parameters and dc fields.

Under the illumination of two-color laser fields, our results show strong tunability on the
photoelectron spectra, emission current, and current modulation, via the control of the phase delay,
relative intensity, harmonic order of the two-color lasers, and dc bias, exhibiting good agreement
with the experimental measurements. Application of our model to time-resolved photoelectron
spectroscopy is demonstrated. Our study also suggests a practical way to maintain a strong current
modulation, in the meantime, greatly increase the total emission current in two-color laser-induced

electron emission, by simply adding a strong dc bias and a weak harmonic laser.
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For the two-same frequency lasers induced photoelectron emission, we find strong interference
modulation on electron emission can be achieved with low threshold value of the laser field ratio
even with a strong dc field. Our study demonstrates the capability of using interference modulation
by single-frequency laser pairs for practical measurements of time-resolved photoelectron energy
spectra.

With few-cycle laser pulses, we identify the new signature of coherent interaction of adjacent
laser pulses on photoemission, that is, the emitted charge per pulse oscillatorily changes as the
laser pulse separation increases. For a well-separated single pulse, our calculations recover the
experimentally measured features of sinusoidal CEP modulation to photoelectron emission and
vanishing CEP sensitivity with a r phase shift in strong optical-field regime. Moreover, we find
adding a large dc field is able to greatly enhance the photoelectron current and shorten the current
pulse.

For the photoelectron emission in a metal-vacuum-metal nanogap, our calculation reveals the
underlying photoemission processes, including direct tunneling, dc-assisted optical tunneling and
over-barrier emission, and the transition between them, under different combinations of gap
distance increases, dc bias and laser fields. For the zero dc field, our results show the oscillatory
dependence of photoemission current on the gap distance in the multiphoton regime and the energy
redistribution of photoelectrons across the two interfaces between the gap and the metals. We also
find that decreasing the gap distance (before entering the direct tunneling regime) tends to extend
the multiphoton regime to higher laser intensity. With the addition of large dc bias, the interference
induced oscillation in photocurrent from metal-vacuum interface of the gap is found to be

significantly reduced with the increasing gap spacing. Additionally, our calculation demonstrates
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that besides the applied dc bias, changing the gap distance is also able to achieve great rectification

to the photoelectron emission in a dc-biased nano-vacuum gap.

6.2 Suggested future work

As the works in this thesis are analytically solving the TDSE exactly, it is important to compare
our solutions with those of perturbative treatments widely used in the literature, and the inverse
LEED and LEED wave functions used for scattering problems [67][118]-[120]. It is also important
to consider the effect of space charge in the electron emission process [34][36]. Suggested future
work would also include the theoretical modeling of ultrashort pulsed laser induced photoelectron
transport in nano-vacuum gaps and the rectification effects in nanogaps formed with dissimilar
materials. It would also be interesting to study the effects surface states and materials (e.g.,
semiconductor and two-dimensional materials) by considering the energy dependent electron
supply function inside the material and work function variations along the emission surface in the
future. Ultimately, it is envisioned to build a hybrid model using our exact analytical solutions for
simulating electron emission in practical geometries, such as sharp metal tips or cathodes with
surface roughness, where effects such as the electron emission angle and space charge can be
incorporated. The time-dependent field distribution near the emitter may be first calculated using
a Maxwell solver. Next, our exact model can be applied along the surface of the emitter to give
the instantaneous photoemission current. The emitted electrons can then be loaded into particle-
in-cell pusher to account for the detailed space charge effects and electron dynamics. Once such a
tool becomes available, it would find immense applications in various areas, such as solid-state

physics, strong fields, ultrafast sciences, vacuum electronics, and accelerators and beams.
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EXACT SLOTUION OF ELECTRON WAVE FUNCTION

Following Truscott [6][117], the time-dependent potential energy for x > 0 (see Appendix A, B,
and C) or 0 < x < d (see Appendix D and E) can be written as ®(x,t) = V(x,t) — xf(t). Thus,

the TDSE can be transformed to the coordinate system &, t, where £ = x — q(t), the displacement
q(t) = (1/m,) [ p(tHdt’, and p(t) = [* F(¢))dt', by assuming that Y(x, ) = ¢(&, Dx(x, b),
with y(x,t) = exp [—iEt/h + ixp(t)/h — (i/2hm) ft p2(t")dt'], and E being a constant. Then,

we have,

n 2280 - [ 24 yg,0) — E| p(,0), (A1)

at 2me 8_52

with U(&,t) = V(&,t). By separation of variables, ¢ (&, t) in Equation (Al) can be easily solved.

From ¥ (x,t) = ¢ (&) x(x,t), we obtain exact solution of electron wave function.

APPENDIX A: Two-color laser induced photoemission without dc field

Based on the method above, we have the potential energy ®(x,t) = V(x,t) —xf(t), with

V(x,t) =V,and f(t) = eF; cos(wt) + eF, cos(fwt + ) in the vacuum (x > 0), and
BE 1) = §(§) = VeI, (A2)

From y(x,t) = ¢p(&)x(x,t), we obtain Equation (14) with E = & + nhw — e?F2/4m, w? —
e?F}/4m, B?w?.
APPENDIX B: Two-color laser induced photoemission with dc field

We have the potential energy ®(x,t) = V(x,t) — xf(t), with V(x) =V, — eFyx, and f(t) =

eF; cos(wt) + eF, cos(fwt + ) in the vacuum (x > 0), and
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e?FyF; sin(wt) | e?FyF, sin(Bwt+0)
ihmew3 ihmeB3w3

P, t) = g(exp| 1, (A3)

where g(&) = Ai(—n) — iBi(—n) is the solution of the equation —(A?%/2m,)0%g(&)/0é? +
(Vo —E —eFy&)g(§) =0, where n= (2em,F,/h*)/3[(E —V,)/eF, + &] [81][86]. From
Y(x, t) = p(E)x(x,t), we obtain Equation (21) with E = £ + nhw — e?F? /4m,w? — e?F}/
4m, B2 w?.

APPENDIX C: Few-cycle laser pulses induced photoemission

We have the potential energy ®(x,t) = V(x,t) —xf(t), with V(x) = Ep + Wesr — e(Fo +

Fiagcos@)x and f(t) = e X2 oo nzo Fran cos("L—” t + ¢) (see Equations (33) and (34)), and

e2anF, (Fo+F1ag cos @)sin (nwgt+¢)
ihmen3w}

P, 1) = g()exp[XnZ o nzo 1, (A4)

where g(&) = Ai(—n) — iBi(—n) is the solution of the equation —(h%/2m,)0%g(&)/0&? +
[Er + Wepp — E — e(Fy + Fiagcos ¢)E]g(§) =0 ,  where n=[2em,(F, + Fiaqcos¢)/
h2]1/3[(E — Ep — Werr)/e(Fo + Frag cos @) + €] [81][86]. From y(x,t) = ¢(&, ) x(x,t), we

e?Ff[ad+ana_p cos(2¢)]

2,2
amenlwg

obtain Equation (35) with E = ¢ + lhwg — U, and U, = 32

n=-—oo,n*0

For the special case of dc field F, = 0 and carrier-envelope phase ¢ = (2n + 1)m/2, with n

being an integer, the solution of Y (x, t) is revised by merely displacing g(¢) in Equation (A4)
with exp[ié\/2mE /h].
APPENDIX D: Photoelectron transport in a nanoscale gap without dc bias

We have the potential energy ®(x,t) = V(x,t) —xf(t), with V(x,t) = Ep + W and f(t) =

eF; cos(wt), and
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P(E, 1) = p(§) = eTBV2ZmeE-Vo)/A?, (A5)

Here, “+” in ¢(&) denotes the electron wave travelling towards +x direction; “—” denotes the
electron wave travelling towards —x direction. Due to the reflection of electron waves at metal-
vacuum surfaces of x=0 and d (see Figure 5.1), the electron wave function ¥ (x, t) inside the
vacuum gap (0 < x < d) should be the superposition of wave functions towards +x direction and
—x direction. Then, from ¥(x,t) = ¢(&)x(x, t), we obtain Equation (45) with E = &€ + nhw —

e?FE/4m,w?.
APPENDIX E: Photoelectron transport in a nanoscale gap with dc bias

For the photoemission from left metal-vacuum interface of the gap in Figure 5.6(a), we have the
potential energy ®(x,t) =V (x,t) —xf(t), with V(x,t) =V, —eVx/d where and f(t) =
eF; cos(wt), and

e2VF, sin(wt)
ihdmew3

d(&,t) = g(&exp| ] (A6)

where g(&) = Ai(—n) + iBi(—n) is the solution of the equation —(A%/2m,)0%g(&)/0&? +
(Vo — E — eVE/d)g(§) = 0, where n = (2em,V/dh?*)Y/3[(E — Vy)d/eV + &] [81][86]. Here,
“—in g (&) denotes the electron wave travelling towards +x direction; “+” denotes the electron
wave travelling towards —x direction. Due to the reflection of electron waves at metal-vacuum
surfaces of x=0 and d (see Figure 5.6(a)), the electron wave function ¥ (x, t) inside the vacuum
gap (0 < x < d) should be the superposition of wave functions towards +x direction and —x
direction. Then, from ¥ (x,t) = ¢(&)x(x,t), we obtain Equation (57) with E = € + nhw —

e?Ft/4am, w?.
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For the photoemission from right metal-vacuum interface of the gap in Figure 5.6(a), we have
the potential energy ®(x,t) = V(x,t) — xf(t), with V(x,t) =V, + eVx/d where and f(t) =
eF; cos(wt), and

e2VF; sin(wt)
ihdmew3

¢(S,t) = g(§exp[ ] (A7)

where g(&) = Ai(n) + iBi(n) is the solution of the equation —(h2/2m,)0%g(§)/0E? +
(Vo — E +eVE/d)g(§) =0, where n = (2em,V/dh*)Y3[§ — (E — V,)d/eV] [81][86].
Here, “+” in g(&) denotes the electron wave travelling towards +x direction; “—"" denotes the
electron wave travelling towards —x direction. Due to the reflection of electron waves at
metal-vacuum surfaces of x=0 and d (see Figure 5.6(a)), the electron wave function ¥ (x, t)
inside the vacuum gap (0 < x < d) should be the superposition of wave functions towards
+x direction and —x direction. Then, from ¥ (x,t) = ¢(&)x(x,t), we obtain Equation (67)

with E = ¢ + nhw — e?F /4m, w?.
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