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ABSTRACT 

THREE RESEARCH TOPICS IN EDUCATION: (1) ASSOCIATIONS BETWEEN 

APPROACHES TO LEARNING AND ACADEMIC ACHIEVEMENT; (2) A META-

ANALYTIC REVIEW ON APPROACHES TO LEARNING AND ACADEMIC 

ACHIEVEMENT; (3) POWER ANALYSIS IN META-ANALYSIS: A THREE-LEVEL 

MODEL 

By 

Bixi Zhang 

This dissertation is a three-piece dissertation, including two empirical research (Chapter 1 

and Chapter 2) and a methodological improvement of prior work (Chapter 3), to address issues 

of the effects of approaches to learning on academic achievement in childhood and power 

analysis for a three-level model in meta-analysis. 

Approaches to learning as a key domain of school readiness has shown significant effects 

on student academic achievement. The study in Chapter 1 was designed to examine the potential 

moderation effects of problem behaviors on the association between approaches to learning and 

academic achievement (mathematics, reading, and science) in early grades using a recent 

nationwide longitudinal dataset (ECLS-K:2011). The correlated random effects estimation was 

applied to deal with the omitted variable issue. At the same time, the estimation method was 

allowed to compute the impacts of important time-constant variables (e.g., socioeconomic status) 

on academic achievement. The results indicated non-significant moderation effects of problem 

behaviors on the relations between approaches to learning and academic outcomes. However, the 

main effects of approaches to learning were significant associated with academic achievement. 

Complete data analysis and bootstrap with multiple imputation were conducted in the research to 

address the missing data issue in large-scale assessments. Similar results were shown in the two 

approaches, which demonstrated robust findings in the study. 



To better understand the general relations of approaches to learning on academic 

performance in childhood in recent years, the study in Chapter 2 conducted a systematic review 

employing meta-analytic methodology to combine and summarize the results from empirical 

quasi-experimental studies. The study filled the literature gap and extended the theory to 

understand the relations between approaches to learning and achievement. The results indicated 

medium effect sizes of the relations on approaches to learning and concurrent/future achievement 

(reading and mathematics). The effects on reading achievement were slightly larger than the 

effects on mathematics achievement. The single timepoint evidence showed stronger effects 

compared with longitudinal designs. In conclusion, the meta-analysis emphasized the positive 

and significant effects of approaches to learning on academic achievement in childhood. 

The methodological improvement in Chapter 3 aimed to address the potential biased 

power statistics when introducing group dependence in meta-analysis. The study extended the 

prior work about power analysis for two-level random-effects models to three-level models in 

the univariate case. The three-level model assumed research teams/labs at the third level. A 

three-level random-effects model provides more accurate estimates of power under the 

assumption that variability between research teams is not negligible. Each model in the study 

was followed by an illustrated example to show how to calculate the power. A simulation study 

provided evidence about how group-level heterogeneity affected statistical power in meta-

analysis in the three-level model. The present study introduced more complicated data structures 

in meta-analysis and provided the power measures in advanced meta-analytic models. 
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CHAPTER 1 APPROACHES TO LEARNING AND ACADEMIC ACHIEVEMENT IN 

ELEMENTARY SCHOOL: TESTING MODERATING ROLES OF PROBLEM 

BEHAVIOURS 

 

Introduction 

When children start their school years, a fundamental aspiration for schoolers is to 

prepare school readiness and later success. Schools often focus on children’s cognitive 

development (e.g., academic achievement), especially elementary schools, however, approaches 

towards learning is another key component that can help students succeed in schools. In 2019, 

the U.S. Department of Health and Human Services published a framework of school readiness, 

Head Start Early Learning Outcomes (revised version), which was designed to represent the 

continuum of learning in early childhood. Approaches to Learning (ATL) was designed as a core 

domain in this framework, which refers to the skills and behaviors that children use to engage in 

learning activities. ATL is essential for children in early grades which was emphasized by prior 

theories and frameworks. Kagan et al. (1995) stated that “ATL frame the child’s entire being and 

are at the core of social/emotional and cognitive interactions” (p.28). U.S. Department of Health 

and Human Services (2019) claims that supporting skills and behaviors that children use to 

engage in learning could help them develop well in all domains and contributes to school success 

directly. The improvement and mastery of learning approaches is associated both with students’ 

school transition, school performance as well as social-emotional outcomes (McClelland & 

Morrison, 2003; Atkins-Burnett, 2007). For instance, children who were at kindergarten with 

inadequate learning-related skills were at a greater risk in elementary school and lower academic 
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performance (McClelland et al., 2006). ATL was highly related to kindergarten retention (Hong 

& Raudenbush, 2005). 

There is an increasing interest in investigating the importance of the effects of learning-

related behaviors on academic outcome in childhood (McClelland & Morrison, 2003). 

Considering the potential influence of ATL on student academic achievement, the current study 

examines the association between ATL and reading, mathematics and science achievement from 

kindergarten to fifth grade, in order to understand generally how ATL have impacts on those 

cognitive achievement. In addition, besides ATL, problem behaviors (PB), which is another type 

of behaviors that could influence school success significantly, were tested by previous studies. 

For example, Malecki et al. (2002) showed that problem behaviors were negatively associated 

with academic achievement in elementary school years. Because ATL relates to the behaviors 

during learning tasks, problem behaviors could possibly change the association of ATL and 

student achievement. However, few longitudinal studies using the evidence from elementary 

school test the effect of problem behaviors in the relations between ATL and achievement. The 

present study aims to investigate the impact of problem behaviors on the relationship between 

ATL and achievement by using a recent national longitudinal assessment. 

 

Literature Review 

History of Approaches to Learning 

Back to 1970s, Anderson and Messick (1974) created twenty-nine statements which 

represented a group of theory-guided components systematically in social competency among 

young children. The statements showed some relevant components of learning 

dispositions/approaches which were defined later. In 1980s, Katz (1985) emphasized the 
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importance of learning disposition as one of the three goals for early childhood education. 

Leaning dispositions were defined by Katz as “relatively enduring ‘habits of mind’ or the 

characteristic ways of responding to experience across types of situations” (p.1). Those 

definitions helped later researchers to generate a group of components which represent 

approaches toward learning. In 1990s, the Nation Education Goals Panel (NEGP) defined ATL 

as “inclinations, dispositions, or styles that reflects the myriad ways that children become 

involved in learning.” (Kagan et al., 1995, p.4). Because of the lack of ATL instruments 

matching with definitions from NEGP and Katz (Meisels et al., 1996), Atkins-Burnett developed 

a rating scale for ATL which covered the considerations from the definitions and met the needs 

of the Early Childhood Longitudinal Study (ECLS) in the United States in the late 1990s.  

Moving to 21st century, to get a comprehensive understanding about the approaches and 

behaviors that students show in the learning process, the Habit of Mind framework was 

developed. The framework indicated that learning dispositions, such as persisting and managing 

impulsivity, could facilitate children’s thinking and learning, at the same time, building a 

thoughtful classroom environment (Costa & Kallick, 2008). Recent framework showed that 

academic enablers contributed to achievement (DiPerna et al., 2002; DiPerna & Elliott, 2002). 

The academic enablers could help to improve the academic skill so that improve the academic 

achievement (DiPerna, 2006). The learning-related behaviors from academic enablers are often 

referred to ATL (Anthony et al., 2014). Specifically, ATL includes students’ behaviors, 

strategies and attitudes in learning contexts or educational tasks with components such as self-

regulation, persistence and attentiveness (Li-Grining et al., 2010; McWayne et al., 2004).  
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Approaches to Learning and Academic Achievement  

Previous empirical research has shown that ATL reliably predicts student achievement. In 

particular, McWayne et al. (2004) found that ATL significantly impacted performance on the 

kindergarten version of the Early Screening Inventory, which is a test that reflects children’s 

early academic success. ATL significantly predicted gains in science and mathematics among a 

group of preschoolers from low-income families (Bustamante et al., 2017). Other studies also 

established that several important components from ATL definitions and frameworks were 

closely related to academic outcomes in childhood. For instance, behavioral self-regulation and 

executive function were strongly related to academic growth in mathematics, literacy and 

vocabulary in prekindergarten and kindergarten (McClelland et al., 2014). Children’s emotional 

regulation and behavioral self-regulation were also found to be positively related with academic 

achievement in kindergarten and early grades (Howse et al., 2003; McClelland & Cameron, 

2011). Furthermore, preschooler’s persistence can predict academic achievement in kindergarten 

to a greater degree than demographic variables and cognitive-linguistic skills (Mokrova et al., 

2013). 

Research has also indicated that higher levels of learning-related skills were linked to 

higher reading and mathematics achievement, however, learning-related skills appeared to have a 

stronger effect on children’s test scores in kindergarten and early primary school grades than in 

later grades (McClelland et al., 2006). Along the same lines, ATL at kindergarten entry was a 

reliable predictor of growth in reading and mathematics achievement from kindergarten through 

fifth grade (Li-Grining et al., 2010). Moreover, students with higher teacher report ATL ratings 

had higher achievement in reading and mathematics in early grades (Hong & Yu, 2007). 

Bodovski and Farkas (2007) found that ATL measures had a strong association with 
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mathematics growth from kindergarten to third grade. Recent research showed that a significant 

association between ATL and mathematics achievement from kindergarten to second grades 

(Ribner, 2020). 

Researchers have also examined the relationship between ATL and student academic 

achievement in higher education (Duff et al., 2004). For example, self-regulated learning and 

motivation have been linked to academic achievement among undergraduate students (Mega et 

al., 2014).  In addition, a recent study showed that improvements in self-regulation were related 

with higher levels of achievement for college freshmen (Wibrowski et al., 2017).  

Trainings and interventions for learning approaches have been utilized to help children 

decrease the risk of various problems they may face and improve their learning (Zin, 2004). 

Evaluation results indicated that the improvement of ATL would facilitate student academic 

performance. Preschoolers who participated in an eight-week self-regulation intervention got 

higher academic achievement gain compared with the control group (Schmitt et al., 2015). Perels 

et al. (2009) showed that trainings on self-regulative strategies significantly improved student 

mathematics achievement. Preventive curricula about enhancing attention skills could be helpful 

to improve young children’s future academic success (Rhoades et al., 2011).  

 

The Role of Problem Behaviors in the Relation 

Besides ATL, children’s problem behaviors strongly influence students’ school success 

in early grades as well. Problem behaviors are stable and could affect later social, emotional and 

academic functioning (Campbell, 1995). Previous studies have shown consistently that problem 

behaviors are negatively predictive of academic achievement in elementary school (Malecki et 

al., 2002; Nelson et al., 2004; Algozzine et al., 2011). In addition, problem behaviors potentially 
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reflect learning disabilities and emotional disturbance in early grades (Algozzine et al., 2011). 

Schaefer and colleagues (2004) found that learning-related behaviors were negatively associated 

with problem behaviors in kindergarten. Early problem behaviors predicted lower academic 

outcomes and lower rating of approaches to learning, such as attention and persistence 

(Bulotsky-Shearer et al., 2011). Razza and colleagues (2015) found that early problem behaviors 

in kindergarten could influence the relationship between ATL at age 5 and social competence in 

later. However, rare study tested the relationship among ATL, problem behaviors and academic 

achievement before. Therefore, the current study hypothesizes that problem behaviors possibly 

have moderation effect on the relationship between ATL and academic achievement.  

The hypothesized role of problem behaviors in the relationship is called a moderator. A 

moderator is a qualitative or quantitative variable that affects the direction and/or strength of the 

relation between an independent or predictor variable and a dependent or criterion variable 

(Baron & Kenny, 1986). The moderation effect of problem behaviors could also be called the 

interaction effect between ATL and problem behaviors in the statistical model. In the current 

study, the term “interaction effect” and “moderation effect” would be used interchangeably. 

 

Present Study 

The present study moved forward to examine the interaction effect of ATL and problem 

behaviors on academic achievement using a nationwide longitudinal dataset. In other words, the 

study investigated a more complex mechanism among ATL, problem behaviors and academic 

performance. The results of the study shed lighter about how problem behaviors moderated the 

association between learning-related skills and academic outcomes in elementary school from a 

longitudinal perspective. Additionally, most prior studies applied growth models or traditional 
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regression models to examine the association between ATL and academic achievement (Li-

Grining et al., 2010; McClelland et al., 2006). However, these methods may potentially suffer 

from omitted variable bias. To address this caveat, this study introduced a linear unobserved 

effects panel data model, which controlled well for unobserved student-level time-constant 

effects. Specifically, the correlated random-effects (CRE) model (Wooldridge, 2005; 

Wooldridge, 2010), was proposed first by Mundlak (1978). It can eliminate unobserved 

individual time-constant variables effects to get unbiased estimates, meanwhile report estimates 

of observed time-constant variables (Wooldridge, 2010). Thus, the CRE estimation is a good fit 

to answer the research questions because the data at hand are panel (longitudinal), and in such 

cases, this estimation reduces selection bias due to time-constant unobserved variables and could 

provide the estimates of relevant time-constant covariates. Therefore, the purpose of this study 

was to investigate three research questions:  

 

(1) Is there any interaction effect of ATL and problem behaviors (moderation effect) 

on achievement (reading, mathematics, science) in elementary school grades, K-5? 

 

(2) If no moderation effect of problem behaviors exist, does ATL have an effect on 

student achievement from kindergarten to fifth grade controlling for problem behaviors? 

 

(3) Are any time-constant covariates significant? 

 

The study had following novelties. First, it extended previous works on the relationship 

between ATL and achievement from early childhood to the whole childhood by conducting a 

longitudinal analysis and introduced problem behaviors as potential moderators in the 
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association between ATL and achievement. Second, the study used appropriate statistical 

methods that control for all unobserved individual-level time-constant effects, at the same time, 

provided important observed time-constant effects on achievement. Third, by using the most 

recent nationwide longitudinal assessment in education under current demographic environment, 

the results were timing and convincing. Fourth, from a practical perspective, the finding could 

help educators and teachers understand students’ behaviors better, thus taking quick instructions 

and interventions could possibly facilitate students’ learning and school success. 

 

Methods 

Data Sources 

The Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011) 

is a large-scale longitudinal educational assessment survey supported by the National Center for 

Education Statistics (NCES), under the U.S. Department of Education. The assessment traced 

students for six years from kindergarten (2010) to fifth grade (2016). ECLS-K:2011 is a more 

recent dataset that focuses on academic achievement in the 21st century and provides researchers 

with an opportunity to analyze data that includes the information of the latest school 

developments and effects. Compared with the previous round of ECLS-K (ECLS-K:1998), 

policies in education and demographic environment have changed significantly after a decade. 

For instance, the policy of No Child Left Behind has been passed and children have broader 

choices of schools (NCES, n.d.).  In addition, ECLS-K:1998 did not collect information from the 

second-grade year and the fourth-grade year. ECLS-K:2011 shows high reliability and validity of 

its measurement. The information could get from the User’s Manual for the ECLS-K:2011 

Kindergarten-Fourth Grade Data File and Electronic Codebook, Public Version, which was 
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written and reported by Tourangeau and colleagues (2018). The study could provide more 

convening evidence by using ECLS-K:2011 dataset. All measures used in the study were from 

spring semester assessment (kindergarten to fifth grade). Table A.1 in Appendix A shows the 

name and description of the variables used in the study from ECLS-K:2011. 

 

Outcomes 

Children’s reading, mathematics and science IRT scale scores were used as dependent 

variables in the analysis. Reading test specifications include basic reading skills, vocabulary, 

comprehension, mathematics test specifications include number properties and operations, 

measurement, geometry, data analysis and probability, and algebra, and science test 

specifications include scientific inquiry, life science, physical science and earth/space science. 

The reliability estimates were over 0.90 for each round of reading, mathematics and science 

assessments. The high validity of test scores has been verified by a review of standards from the 

nation and states, and the frameworks of tests were developed by referring other national 

assessment in education (i.e., National Assessment of Educational Progress) (Tourangeau et al., 

2018). 

 

Instruments of Approaches to Learning and Problem Behaviors 

The study used teacher-report ATL scores which were constructed by ECLS-K:2011. In 

particular, ECLS-K:2011 created a composite score of ATL that consists of seven items about 

students’ learning-related behaviors: keeps belongings organized; shows eagerness to learn new 

things; works independently; easily adapts to changes in routine; persists in completing tasks; 

pays attention well and follows classroom rules. A four-point Likert scale (from 1 to 4) was used 
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for each item to rate students’ learning behaviors from never to very often. Higher scale scores 

indicate that the child exhibited positive learning behaviors more often according to the teacher 

(Tourangeau et al., 2018). The Approaches to Learning Scale were developed specifically for 

ECLS-K studies. It used the same frequency scale of social skill items, which were adapted from 

the Social Skills Rating System (SSRS) by Pearson. The ATL scale has a high internal 

consistency reliability (0.91) for each round of assessment in ECLS-K:2011, which was reported 

in the psychometrics reports (Najarian et al., 2018a; Najarian et al., 2018b; Najarian et al., 2019). 

ECLS-K:2011 statistical/psychometrics team computed a mean score when the respondent 

provided a rating on at least four of the seven items. Therefore, the ATL composite score could 

be treated as a continuous variable in the analysis. 

The study used teacher-report problem behaviors scores constructed by ECLS-K:2011. 

The items were adapted from the Social Skills Rating System (SSRS) by Pearson. The problem 

behaviors scales include two scales, externalizing and internalizing problem behaviors. The six-

item externalizing behaviors scale measured the frequency with which a child argues, fights, gets 

angry, acts impulsively, disturbs ongoing activities, child’s tendency to talk at times when the 

child was not supposed to be talking. The four-item internalizing behaviors scale measured the 

extent that the child exhibits anxiety, loneliness, low self-esteem, and sadness. A four-point 

Likert scale (from 1 to 4) was used for each item to rate students’ problem behaviors from never 

to very often (Tourangeau et al., 2018). Both problem behaviors scales have high internal 

consistency reliability for each round of assessment in ECLS-K:2011 in spring semester. ECLS-

K:2011 statistical/psychometrics team computed two mean score when the respondent provided 

a rating on at least four of the six items from externalizing problem behaviors scale and at least 

three of the fourth items from internalizing problem behaviors scale. Thus, two composite scores 
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of externalizing and internalizing problem behaviors used in the study could be treated as a 

continuous variable.  

 

Time-Varying and Time-Constant Covariates 

The study selected proper time-varying variables as control variables in the model. These 

variables include teacher experience, school enrollment and school socioeconomic status (school 

SES). Finally, whether students changed schools or not was also included as a covariate in the 

statistical analysis. Because the study used teacher-report items as ATL and problem behaviors 

measures in the model, controlling teacher’s experience might be beneficial to avoid potential 

rating bias. The teacher’s experience was a continuous covariate in the model. School SES was 

represented by the variable that showed the percent of students eligible for free or reduced-price 

lunch in school.  Due to the limitation of the dataset, school enrollment and school SES were 

ordinal variables in the dataset. The study recoded them as continuous variables using midpoints 

of the initial categories. Changing school or not was a binary variable in the model. 

The study also selected proper observed time-constant variables to investigate whether 

these variables were the correlates of student academic achievement. These variables included 

age, socioeconomic status (SES), speaking non-English at home, gender, and race. Four race 

dummies (Black students, Hispanic students, Asian student, and other) were created to examine 

race differences in achievement (White students being the reference group). The interaction term 

between ATL and SES was included in the model to control the potential influence. 
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Missing Data Issue 

Because the present study used a secondary large-scale longitudinal dataset, missing data 

issue potentially existed in the analysis. The study conducted a complete data analysis first to get 

a result from students who continuously provided data from kindergarten to fifth grade. The 

study also conducted resampling methods to deal with potential missing values. Bootstrap and 

multiple imputation strategy was applied in the study. Bootstrap is a computer-based simulation 

method and could reduce the bias and prediction error to achieve high statistical accuracy (Efron 

& Tibshirani, 1986). Multiple imputation is shown as a convenient and popular paradigm in the 

analysis of missing data (Schafer, 1999). The combination of bootstrap and multiple imputation 

is possible to deal with missing data issue and get robust results. Such strategy has been 

discussed and used in the previous studies (Comulada, 2015; Schomaker & Heumann, 2018). In 

detail, the study resampled the incomplete data with missing, then conducted multiple imputation 

with five times to get imputed data points for the dataset. The next step was to estimate the 

coefficients by using the same model in the complete data analysis. The analysis did bootstrap 

1000 times to get more robust results. Every time the study resampled the data and imputed the 

missing data would give standard errors that account for the imputation. Therefore, the study 

would get the regression coefficients and the bootstrap standard errors.  

 

Participants 

The complete data analysis included 5735 students who had all data information in the 

six time periods. The bootstrap with multiple imputation analysis included over 10000 students 

(10702) who had part of information from the dataset. 
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Statistical Analysis 

The present study applied a linear unobserved effects panel data model, which is called 

the correlated random effects (CRE) model, to find the potential relationships among ATL, 

problem behaviors and academic achievement in early grades. CRE approach allows us to 

include time-constant variables and simultaneously delivers the fixed effects estimates of the 

time-varying variables. The CRE model produced the coefficients of interest (i.e., ATL, problem 

behaviors, and the interaction between ATL and problem behaviors) where the potential impact 

of the time-constant confounding variables was removed (under the assumption that the fixed 

effects are linear). To conduct this analysis, the study used the panel data from six time periods 

(kindergarten to fifth grade).  

 

Introduction to Correlated Random Effects Model 

A linear unobserved effects panel data model is displayed in Equation (1.1).  It presents a 

general equation of a linear unobserved effects panel data model with time-varying measure of 

the interested variables (𝒙𝒊𝒕), time-varying covariates (𝒘𝒊𝒕), time dummies (𝑫𝒕), and individual-

level unobserved time-constant effect (𝑐𝑖). The model could be treated as a fixed effects model in 

panel data analysis. Traditional fixed effects model could get the coefficients of time-varying 

variables. However, the estimations of observed time-constant variables are unavailable. The 

main idea of CRE model is to use time-constant and time-average variables to model the 

unobserved individual effect. An example of a CRE model is shown in equations as: 

𝑦𝑖𝑡 = 𝒙𝒊𝒕𝜷 +  𝒘𝒊𝒕𝜸 + 𝑫𝒕𝜹 + 𝑐𝑖 + 𝑢𝑖𝑡,                                       (1.1) 

𝑐𝑖 = 𝜓 + 𝒛𝒊𝜼 + 𝐱̅𝐢𝛏 + 𝒘̅𝒊𝜻 + 𝑎𝑖.                                            (1.2) 
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Equation (1.2) separates the individual-level unobserved time-constant effect into several parts, 

including an intercept (𝜓), time average of measure the interested variable (𝒙𝒊), time-constant 

covariates (𝒛𝒊), and time averages of time-varying covariates (𝒘̅𝒊). Therefore, Equation (1.2) 

allows 𝑐𝑖 to be correlated with the time-varying variables through its average levels over time 

(where 𝜓 is the intercept and 𝑎𝑖 is the error term) (see Wooldridge, 2010). To note that variables 

and parameters are in boldface indicate vectors in the equations. 

Thus, replacing 𝑐𝑖 in Equation (1.1) by using the model in Equation (1.2) could get the 

CRE estimating equation:  

𝑦𝑖𝑡 = 𝒙𝒊𝒕𝜷 + 𝒘𝒊𝒕𝜸 + 𝑫𝒕𝜹 + 𝒛𝒊𝜼 + 𝜓 + 𝒙𝒊𝝃 + 𝒘̅𝒊𝜻 + 𝑣𝑖𝑡,                         (1.3) 

where 𝑣𝑖𝑡 =  𝑎𝑖 + 𝑢𝑖𝑡  are the composite error at time period t. The error term is a sum of two 

parts error from Equation (1.1) and (1.2). From Equation (1.3), the CRE model allows us to get 

the estimates of the interested independent variables (𝒙𝒊𝒕) and time-constant variables (𝒛𝒊) from a 

single estimation model. 

Traditional models in panel data analysis are the fixed-effects and random-effects 

estimation. The fixed-effects model is highly used in research because it allows the correlations 

between the unobserved heterogeneity and time-varying predictors (Wooldridge, 2005).  

However, these two approaches could not compute time-constant estimators. The CRE model 

has its advantages in getting the estimations of time-constant effects. At the same time, the CRE 

model can obtain the same estimators from the fixed-effects model. Thus, it increases flexibility 

in a straightforward model with a decomposition of within and between effects and combines 

advantages of fixed effects and random effects estimation (Schunck, 2013). 
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Correlated Random Effects Model with Interactions 

The present study aimed to investigate the relationship between ATL and academic 

approaches to learning, and the potential moderation effects of problem behaviors in the relation. 

Univariate analyses were conducted in the study, which means the study had three similar 

models with different academic outcomes. The interaction terms (testing moderation effects) in 

the model were the products of time-demeaned variables. Thus, the interaction terms represented 

the within-unit association between interested variables (ATL) and outcome (academic 

achievement) with the intra-unit variation of the moderators (problem behaviors). These terms 

could control the effect of heterogeneity (Giesselmann & Schmidt-Catran, 2020). And it could 

avoid the potential multicollinearity of the main variables. Therefore, the CRE model with 

interaction terms could be written as: 

 

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝜷 + (𝑥𝑖𝑡 − 𝑥̅𝑖.) × (𝒘𝒊𝒕 − 𝒘̅𝒊.)𝝀 +  𝒘𝒊𝒕𝜸 + 𝒏𝒊𝒕𝝋 + 𝑫𝒕𝜹 + 𝒛𝒊𝜼 + 𝜓 + 𝑥̅𝑖.𝜉 

 + (𝑥𝑖𝑡 − 𝑥̅𝑖.) × (𝒘𝒊𝒕 − 𝒘̅𝒊.)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝝆 + 𝒘̅𝒊.𝜻 + 𝒏̅𝒊.𝝓 + 𝑣𝑖𝑡 ,                                     (1.4) 

 

where t = K spring, 1st spring, …, 5th spring (six time periods), 

𝑦𝑖𝑡 is the reading/mathematics/science IRT score in time t for individual i, 

𝑥𝑖𝑡 is the ATL measure in time t for individual i, 

𝒘𝒊𝒕 are problem behaviors (externalizing and internalizing) measures in time t for individual i, 

𝒏𝒊𝒕 are proper time-varying covariates in time t for individual i, 

𝒛𝒊 include proper observed time-constant covariates for individual i, 

𝑫𝒕 are time dummies (controlling for time/grade effects), 

𝒙𝒊. is the time average of ATL measure for individual i, 
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𝒘̅𝒊. are the time average of problem behaviors for individual i, 

𝒏̅𝒊. are the time average of time-varying covariates for individual i, 

𝜓 is the intercept and 𝑎𝑖 is the error term from 𝑐𝑖 for individual i, 

And 𝑣𝑖𝑡 = 𝑢𝑖𝑡 + 𝑎𝑖 is the error term, where 𝑢𝑖𝑡 is the error term from the unobserved effects 

model. 

Note. Variables and parameters are in boldface indicate vectors. 

 

Clustered robust standard errors were obtained to correct for potential heteroskedasticity 

and correlation in the residuals caused by clustered structure and making fully robust inference. 

The analysis also included time dummies 𝑫𝒕 to account for aggregate changes over time (the 

reference group was spring kindergarten). Failure to control for time effects can induce serial 

correlation in the residual 𝑢𝑖𝑡 (Wooldridge, 2010). The interaction between demeaned ATL and 

SES was added into the model as time-varying covariate to control the potential influence. 

Feasible generalized least squares (feasible GLS) estimation was conducted to estimate the 

model. Specially, this study was interested in following parameters: the interaction effects of 

ATL and problem behaviors (moderation effects of problem behaviors) (𝝀), the main effects of 

ATL and problem behaviors (𝛽) and (𝜸) if there were no interaction effects, and the effects of 

observed time-constant variables on the achievement (𝜼). 
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Results 

Complete Data Analysis 

The descriptive statistics and correlation coefficients of the variables in the study are 

summarized in Appendix A Table A.2 and Table A.3. The results from the CRE estimation using 

complete data are presented in Table 1.1, Table 1.2 and Table 1.3. The regression coefficients of 

interactions between ATL and problem behaviors were non-significant for all three subjects 

(Table 1.1), which indicated that there were no moderation effects of problem behaviors in the 

relation between ATL and academic performance. The main effect of ATL was statistically 

significant for reading (𝛽̂ = 1.394, p <.05), mathematics (𝛽̂  = 0.848, p <.05), and science 

achievement (𝛽̂ = 0.431, p <.05), when controlling for problem behaviors and other covariates. 

However, two types of problem behaviors - externalizing problem behaviors (EPB) and 

internalizing problem behaviors (IPB) did not show significant effects on academic achievement 

when controlling for learning-related behaviors and other covariates in the model. 

 

Table 1.1 Interactions and main effects in complete data analysis 

 Reading Mathematics Science 

ATL 1.394* 

(0.116) 

0.848* 

(0.109) 

0.431* 

(0.082) 

EPB -0.162 

(0.131) 

-0.075 

(0.130) 

-0.034 

(0.099) 

IPB 0.135 

(0.118) 

-0.012 

(0.112) 

-0.082 

(0.087) 

ATL×EPB -0.458 

(0.289) 

-0.199 

(0.259) 

0.382 

(0.201) 

ATL×IPB 0.093 

(0.281) 

0.173 

(0.264) 

-0.315 

(0.202) 

Note. p* <.05. Clustered robust standard errors are shown in parentheses. Sample size = 5735. 
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The CRE model allows the estimations of time-constant variables while getting the same 

estimations of time-varying variables from the fixed effects estimation. The longitudinal study 

results indicated that student SES, gender, English learner status, and race significantly impacted 

academic achievement (see Table 1.2).  

 

Table 1.2 Coefficients of time-constant covariates in complete data analysis 

 Reading Mathematics Science 

SES  3.574* 

(0.210) 

 3.297* 

(0.219) 

 2.511* 

(0.158) 

Female  -0.177* 

(0.274) 

 -6.918* 

(0.289) 

 -3.017* 

(0.208) 

Non-English at home  -3.446* 

(0.463) 

 -2.047* 

(0.484) 

 -3.153* 

(0.358) 

Age -0.040 

(0.030) 

0.045 

(0.033) 

0.055* 

(0.024) 

Race/Ethnicity: Reference group – White students 

Black -2.077* 

(0.510) 

 -8.172* 

(0.553) 

 -5.206* 

(0.393) 

Hispanic -0.636 

(0.422) 

 -3.244* 

(0.439) 

 -2.486* 

(0.323) 

Asian  2.133* 

(0.627) 

 1.732* 

(0.650) 

-0.434 

(0.483) 

Other 1.029 

(0.550) 

-0.671 

(0.617) 

-0.198 

(0.439) 

Note. p* <.05. Clustered robust standard errors are shown in parentheses. Sample size = 5735. 

 

In detail, the students with higher SES got higher scores in reading, mathematics, and 

science from kindergarten to fifth grade. Female students had lower average scores compared 

with their male peers, especially in mathematics. English learners had lower academic 
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achievement from kindergarten to fifth grade. The reference group of race and ethnicity in the 

model is white students. Compared with white students, black and American African students 

got lower scores in three subjects. Hispanic students had a similar average reading score but 

lower math and science score. Asian and Asian American students got higher achievement scores 

in reading and mathematics, but not in science. Students in other races had no significant 

difference in reading, mathematics and science achievement. Age only shows a significant effect 

on science performance. 

Other covariates in the CRE model were time-varying variables which were controlled in 

the model. Table 1.3 summarized the estimation results. The results found that time-varying 

covariates from teacher and school’s characteristics (i.e., teacher experience, school enrolment 

and school SES) did not influence achievement significantly (Table 1.3). Also, students who 

changed school at each grade and the interaction between ATL and student SES did not 

significantly impact academic achievement from kindergarten to fifth grade. Time dummies in 

the model were significant, which indicated that grade effects exist in the model. Controlling the 

grade effects (time effects) is necessary in the CRE model. 
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Table 1.3 Coefficients of time-varying covariates in complete data analysis 

 Reading Mathematics Science 

Teacher Experience -0.002 

(0.005) 

 0.003 

(0.004) 

0.003 

(0.004) 

School Enrollment -0.001 

(0.001) 

-0.001 

(<0.001) 

<0.001 

(<0.001) 

School SES <-0.001 

(0.005) 

-0.005 

(0.005) 

-0.004 

(0.003) 

Change School -0.226 

(0.217) 

0.379 

(0.209) 

0.266 

(0.162) 

ATL×SES -0.081 

(0.137) 

0.011 

(0.126) 

-0.014 

0.095 

Time Dummies: Reference group - Kindergarten Spring  

1st Spring  26.896* 

(0.151) 

 23.118* 

(0.117) 

 9.527* 

(0.087) 

2nd Spring  44.223* 

(0.166) 

 40.858* 

(0.146) 

 19.199* 

(0.105) 

3rd Spring  52.472* 

(0.172) 

 54.454* 

(0.156) 

 26.837* 

(0.111) 

4th Spring  60.593* 

(0.165) 

 63.110* 

(0.157) 

 33.443* 

(0.114) 

5th Spring  67.692* 

(0.178) 

 70.149* 

(0.157) 

 40.233* 

(0.126) 

Note. p* <.05. Clustered robust standard errors are shown in parentheses. Sample size = 5735. 

 

Bootstrap and Multiple Imputation 

Overall, 10702 students were included in the bootstrap and multiple imputation analysis. 

Those students had their achievement outcomes in reading, mathematics and science in six time 

periods, but some independent variables (time-varying and time-constant variables) were missing 

at some time periods. The missing rate of the main predictors (ATL and problem behaviors) is 
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about 10%. The regression coefficients shown in the following tables were the averages from 

1000 times bootstrap with multiple imputation and the standard errors came from the bootstrap 

inference. The CRE model in the section was same as the model in the complete case analysis. 

The coefficients of the interested variables and time-constant variables from bootstrap with 

multiple imputation are discussed in the section. 

Table 1.4 presents the interaction effects and main effects from bootstrap with multiple 

imputation. The results for reading and mathematics achievement (coefficient directions and 

significant levels) were similar to the results from the complete data analysis.  

 

Table 1.4 Interactions and main effects in bootstrap and multiple imputation 

 Reading Mathematics Science 

ATL  1.093* 

(0.083) 

 0.736* 

(0.079) 

 0.283* 

(0.059) 

EPB -0.171 

(0.096) 

-0.155 

(0.090) 

-0.185* 

(0.074) 

IPB -0.057 

(0.080) 

-0.060 

(0.081) 

-0.057 

(0.061) 

ATL×EPB -0.062 

(0.202) 

-0.036 

(0.176) 

0.283 

(0.154) 

ATL×IPB -0.217 

(0.200) 

0.046 

(0.182) 

 -0.283* 

(0.141) 

Note. p* <.05. Bootstrap standard errors are shown in parentheses. Sample size = 10702. 

 

The coefficients of problem behaviors were larger than the model using complete data, 

but there were no interaction effects between ATL and problem behaviors. The coefficients of 

ATL in the bootstrap sample were smaller than the coefficients in the previous analysis. 

However, the main effects of ATL were still positive and significant on reading (𝛽̂ = 1.093, p 
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<0.5) and mathematics (𝛽̂ = 0.736, p <.05) when controlling for problem behaviors and other 

covariates in the CRE model. The bootstrap standard errors were smaller than the clustered 

robust standard errors in complete data analysis. The 95% confidence intervals (95% CI) of the 

bootstrap coefficients (Table 1.5) showed the range of possible values of the regression 

coefficients from bootstrap and multiple imputation. The results were consistent with the 

previous findings.  

The results for science achievement were slightly different from the previous results. The 

interaction between ATL and internalizing problem behaviors was significant (𝛽̂ = -0.283, p 

<.05). It indicated that the effect of ATL on science achievement decreased among the students 

with higher internalizing problem behaviors. The main effect of externalizing problem behaviors 

was significant on science (𝛽̂ = -0.185, p <.05), which demonstrated students with higher 

externalizing problem behaviors would have lower science scores. However, when we look at 

the 95% confidence intervals from Table 1.5, the upper bound of confidence interval of the 

interaction term (ATL×IPB) and the main effect (EPB) were very close to zero. Thus, it might 

suggest the effect of interaction between ATL and internalizing problem behaviors and the main 

effect of externalizing problem behaviors might not be considerable. When we go back to look at 

the results in the complete data analysis, these two coefficients were close to the range of 95% 

confidence interval in the simulation analysis, it demonstrated that the differences are due to the 

data processing methods. However, the differences were not influential. 

  

 

 

 



 23 

Table 1.5 The 95% CI of interactions and main effects in bootstrap and multiple imputation 

 Reading Mathematics Science 

ATL [0.930, 1.256] [0.582, 0.898] [0.166, 0.399] 

EPB [-0.360, 0.018] [-0.320, 0.022] [-0.330, -0.040] 

IPB [-0.213, 0.099] [-0.219, 0.099] [-0.178, 0.063] 

ATL×EPB [-0.459, 0.334] [-0.382, 0.310] [-0.020, 0.585] 

ATL×IPB [-0.609, 0.176] [-0.310, 0.401] [-0.559, -0.007] 

Note. Sample size = 10702. 

 

Figure 1.1 to Figure 1.3 display the distributions of ATL coefficients from bootstrap with 

multiple imputation on different academic achievement (reading, mathematics and science). The 

distributions showed the range of bootstrap ATL coefficients. It also suggests that the data-based 

simulation resampling method works on the problem and the coefficients are normally 

distributed because of a large number of repeated times (1000 times). 

 

Figure 1.1 The distribution of ATL coefficients from bootstrap for reading 
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Figure 1.2 The distribution of ATL coefficients from bootstrap for mathematics 

 

Figure 1.3 The distribution of ATL coefficients from bootstrap for science 

 

 

The results from Table 1.6 indicates the coefficients and standard errors of time-constant 

variables in bootstrap with multiple imputation analysis. The results (coefficient directions and 

significant levels) were very similar to the results from the complete data analysis. The effect of 

age was significant for all three subjects, which differed from the results in the complete case 

analysis. However, compared with other time-constant covariates, the size of age effect was not 

large.  
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Table 1.6 Coefficients of time-constant covariates in bootstrap and multiple imputation 

 Reading Mathematics Science 

SES  3.646* 

(0.168) 

 3.920* 

(0.178) 

 2.545* 

(0.121) 

Female  -1.393* 

(0.195) 

 -6.535* 

(0.217) 

 -3.000* 

(0.160) 

Non-English at home   -2.045* 

(0.308) 

 -1.131* 

(0.321) 

-2.787* 

(0.237) 

Age  0.072* 

(0.023) 

 0.162* 

(0.025) 

 0.150* 

(0.018) 

Race/Ethnicity: Reference group – White students 

Black -1.910* 

(0.384) 

-7.200* 

(0.407) 

-5.012* 

(0.266) 

Hispanic -1.122* 

(0.305) 

-3.280* 

(0.319) 

-2.502* 

(0.154) 

Asian  1.667* 

(0.373) 

 2.520* 

(0.409) 

-0.658* 

(0.279) 

Other 0.601 

(0.464) 

-0.860 

(0.479) 

            -0.478 

(0.337) 

Note. p* <.05. Bootstrap standard errors are shown in parentheses. Sample size = 10702. 

 

The bootstrap standard errors were smaller than the clustered robust standard errors in 

complete data analysis. The 95% confidence intervals from Table 1.7 also indicated the similar 

results. The findings confirmed that demographic variables are strongly influence the academic 

trajectories of reading, mathematics and science in early grades in recent years.  
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Table 1.7 The 95% CI of time-constant covariates coefficients in bootstrap and multiple 

imputation 

 Reading Mathematics Science 

SES [3.318, 3.975] [3.043, 3.740] [2.308, 2.782] 

Female [-1.775, -1.010] [-6.961, -6.110] [-4.391, -2.683] 

Non-English at home  [-2.649, -1.441] [-1.759, -5.027] [-3.252, -2.322] 

Age [0.026, 0.118] [0.133, 0.211] [0.080, 0.150] 

Race/Ethnicity: Reference group – White students 

Black  [-2.663, -1.157] [-8.000, -6.403] [-5.534, -4.490] 

Hispanic  [-1.719, -0.524] [-3.906, -2.655] [-2.934, -2.071] 

Asian  [0.935, 2.398] [1.717, 3.322] [-1.204, -0.112] 

Other  [-0.309, 1.511] [-1.800, 0.079] [-1.137, 0.182] 

Note. Sample size = 10702. 

 

Discussion 

The empirical study in Chapter 1 investigated the moderation effect of problem behaviors 

on the relationship between ATL and achievement using a recent longitudinal dataset in 

education. The CRE model was applied in the study to control the omitted bias issue better. At 

the same time, the model could provide the estimations of the effects of critical time-constant 

variables (e.g., demographic variables) on the outcomes. The study conducted two parts of 

analyses, complete data analysis and bootstrap with multiple imputation analysis. The second 

analysis aimed to deal with the missing data issue and showed the possibility of the strategy in 

panel (longitudinal) data analysis. 

The results from complete data analysis and bootstrap with multiple imputation indicated 

no significant interactions between problem behaviors (externalizing and internalizing) and ATL 

on reading and mathematics achievement from kindergarten to fifth grade. In other words, the 
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moderation effects of problem behaviors non-significantly impacted the relationship between 

ATL and academic achievement. It indicated that students with different degrees of problem 

behaviors had a similar relationship between their learning-related behaviors and cognitive 

testing scores. However, the main effects of ATL were significant when controlling for problem 

behaviors, which suggested that ATL was strongly associated with academic achievement in 

early grades. The results were consistent with the previous findings that ATL was an important 

indicator for academic trajectories in childhood (Li-Grining et al., 2010; McClelland et al., 

2006). The findings also showed that the effect of ATL on reading achievement was more 

significant than the effect on mathematics. However, the main effects of problem behaviors on 

achievement were non-significant when controlling for ATL. The finding was also consistent 

with the result from McWayne’s study (2004), which showed that behavioral problems did not 

influence the academic success significantly when controlling ATL among students in preschool. 

The present study extended the results to elementary grades and provided a robust evidence from 

longitudinal perspective. The results from two statistical analyses on science achievement 

showed some differences. One possibility is that the internalizing problem behaviors affected the 

relationship between ATL and science performance. However, the moderation effect was around 

a significant level. It might be more sensitive to the data size in this case. Therefore, the effect 

was detected only by the complete data analysis. 

Based on the results from a nationwide large-scale educational data with a group measure 

of ATL, the findings showed more convincing evidence that children should have some 

instruction about “how to learn” during their school years to help them achieve higher cognitive 

performance. Considering “ATL frame the child’s entire being and are at the core of 
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social/emotional and cognitive interactions (Kagan et al., 1995)”, the empirical results suggest 

that ATL is worthwhile to gain more attention from educators and policymakers.  

From a practical perspective, the findings of this study imply that interventions and 

training are important to help students build learning-related skills in early grade. Indeed, 

teachers and parents could play a crucial role in improving ATL. Previous studies have found 

that learning-related skills could be improved in daily learning activities in the classroom or at 

home. For example, tutoring inattentive students helped them perform better in reading (Rabiner 

et al., 2004). Moreover, students could be trained to develop self-regulation skills during 

homework activities (Ramdass & Zimmerman, 2011). Students whose parents participated more 

in a learning-related behavioral intervention got better outcomes to a greater extent (McCormick 

et al., 2016). An eight-week class-based intervention on self-regulation was helpful for children 

to enhance school readiness and improve academic achievement in preschool, especially for 

English language learners (Schmitt et al., 2015). A famous intervention is called Tools of Mind, 

which was designed to foster children’s regulation skills and attention (Bodrova & Leong, 1996; 

Bodrova & Leong, 2019). Thus, it could improve children’s skills of social competency and 

ATL. The Tools of Mind curriculum applies in class with regular teachers. Teacher guide 40 

small activities, such as self-regulatory private speech, dramatic play, and provide dynamic 

instructional and emotional support depending on children’s accomplishment (Diamond et al., 

2007). As a result, both teachers and parents are presented with great opportunities to facilitate 

learning approaches during routine learning activities either in school or at home. Although 

focusing on effective teaching and instruction are key enablers of learning, the results suggest 

that helping students build great learning-related behaviors continuously in early grades is 
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important as well. Hence, it may be beneficial to encourage educators and parents to provide 

appropriate training to students in early grades to improve their learning-related skills.  

The present study applied a CRE model, which could get the same estimations of time-

varying variables from a fixed effects estimation model. Meanwhile, the important time-constant 

variables could be evaluated in the same model. Student SES, gender, English learner status and 

race/ethnicity were included in the model to investigate the effects on academic achievement 

from the recent longitudinal large-scale dataset. The results presented that most demographic 

variables significantly influenced academic performance. Specifically, student SES showed a 

substantial effect on reading, mathematics and science achievement. Female students showed a 

lower score in mathematics than male students significantly. English learners had lower 

academic performance in three subjects. Also, the students with different races/ethnicities 

performed differently in three subjects in early grades. The results suggested that those 

differences in demographic variables related to students’ academic and cognitive performance in 

the current education systems. Educators and policymakers need to keep reforming education to 

close the gaps. 

The study also used a strategy to deal with missing data from the dataset. Multiple 

imputation is widely used in the research with missing data. The bootstrap is a statistical 

inference method based on resampling from the data. Each coefficient after bootstrap has a 

distribution and the bootstrap standard error is computed to support a robust inference. The 

combination of these two methods helps to get a robust result when dealing with the missing 

data. The comparison between the coefficients from two analyses (complete data analysis and 

bootstrap with multiple imputation) in the chapter showed the similar results for the main 

variables, including the directions and significant levels of the regression coefficients. The 
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bootstrap standard errors were smaller than the robust clustered standard errors. It is possible 

because when applying multiple imputation to deal with missing data issues, the total sample 

size increases. Overall, the results suggested that the complete data analysis could reflect the 

existing effects on academic growth. Also, it demonstrated that the bootstrap with multiple 

imputation works for the panel data analysis. 

Although the coefficient directions and statistical inferences were very similar in the two 

approaches, the values of coefficients from the two approaches possibly had some differences. 

For instance, the coefficients of interactions and main predictors were smaller in the second 

approach with more minor standard errors. Future work could include additional tests to test the 

value differences between the same coefficients from complete case analysis and bootstrap with 

multiple imputation. Advanced tests might be involved due to the dependence of the coefficients.  

Additionally, the Hausman test (Hausman, 1978) could be added to compare the differences 

statistically between regression coefficients in different methods (fixed-effects vs. random-

effects), thus determining the best approach for the data.  

Future work could also consider more complex structures based on the CRE model. For 

instance, it is possible to model fixed effects as having varying effects over time, such as testing 

the time-varying effects of the time-constant covariates in the model. Potential mediators or 

moderators (e.g., psychological functioning) might be taken into account in the relationship 

between ATL and academic achievement in childhood.  
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CHAPTER 2 A META-ANALYTIC REVIEW ON THE RELATIONS BETWEEN 

APPROACHES TO LEARNING AND ACADEMIC ACHIEVEMENT IN CHILDHOOD 

FROM QUASI-EXPERIMENTAL EVIDENCE  

 

Introduction 

The previous chapter focused on a longitudinal study of ATL and achievement 

considering moderation effects of problem behaviors. Although previous evidence has 

demonstrated that the components of ATL had strong associations with academic achievement, 

DiPerna and Elliott (2002) suggested building a more comprehensive model to understand 

contributions of the combinations of enablers (including learning approaches). The present 

chapter extended the external validity of the studies. A systematic review with meta-analysis was 

conducted to get a general understanding of the relationship between ATL and academic 

achievement in childhood from quasi-experimental evidence. Meta-analysis is widely used in 

psychology, social science, and medicine. It is a quantitative method to summarize the results of 

several empirical research studies from similar topics (Hedges, 1992). It refers to statistical 

modeling in systematic reviews. Meta-analysis offers a rigorous methodology for quantitative 

research synthesis, follows specific guidelines/criteria, and has structured processes. Thus, it has 

high external validity and greater statistical power from measurement perspectives, and it is 

considered an evidence-based resource. 

One prior meta-analysis was conducted to detect the effects of learning-related skills 

interventions on student learning in the late 90s. Hattie and co-researchers (1996) found a mean 

weighted effect size of learning-related skills on achievement was 0.45 with a standard error of 

0.03. The effect size indicates a medium effect size. Moderation effects of age and academic 
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ability were found in their study. In detail, the interventions conducted in primary schools 

showed the strongest effect size, and students with medium ability showed the strongest effect 

size. However, that study focused on intervention designs. Only a small proportion of studies in 

the meta-analysis had a similar definition of ATL. Also, the meta-analysis was published nearly 

25 years ago, new and recent evidence is not available. Additionally, some previous meta-

analyses mainly focused on one specific component of ATL and how to improve it, but they did 

not test the effects on academic achievement. For instance, Dignath et al. (2008) examined the 

effects of students learn self-regulated learning strategies in elementary school on several self-

regulation training programs. Therefore, to fill the gap, the present meta-analysis using recent 

evidence would provide a general view of ATL components' associations and achievement in 

early grades among quasi-experimental designs. 

 

Literature Review 

As mentioned in Chapter 1, ATL faded in educational researchers’ sight at the end of the 

last century. ATL was considered as the least research domain for school readiness (NEGP, 

1991). However, ATL as a general domain related to learning might be the most critical indicator 

for school readiness because the components of ATL might serve as “causal protective resilience 

factors during the transition to school” (George & Greenfield, 2005, p.70). The U.S. Department 

of Health and Human Services also suggests ATL as a key domain contributing to school success 

directly (U.S. Department of Health and Human Services, 2019). To emphasize that ATL is 

separated from social-emotional learning as an independent school readiness domain by the 

framework. The following paragraphs in the section review the common measurement scales of 
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ATL components and the prior findings of the relationship of ATL and academic achievement in 

early grades from different quasi-experimental research designs. 

 

How to Measure 

Prior studies mainly used two tools to measure children’s ATL or learning-related 

behaviors. Atkins-Burnett developed a rating scale of ATL for ECLS in the 1990s. The rating 

scale has been used in two rounds of ECLS assessment (ECLS-K:1998 and ECLS-K:2011) for 

measuring students’ learning approaches in early grades. Studies used ECLS datasets (e.g., Li-

Grining et al., 2010; Tach & Farkas, 2006; Robinson & Mueller, 2014) usually choose the ATL 

composite score as a measure of ATL. The composite score was computed by the ECLS research 

team considering the missing rate of the items. The ATL instruments include seven components 

related to behaviors, inclinations, and dispositions during learning activities. The ECLS datasets 

provide both teacher rating and parent rating score of ATL. Some studies (e.g., Razza et al., 

2015) extracted and adjusted the ECLS scale of ATL and used it to measure ATL in their own 

studies. 

On the other hand, ATL was measured by learning behaviors scales in previous studies. 

Preschool Learning Behaviors Scale (PLBS) was developed by McDermott et al. (2000) to assess 

3 to 5-year-old preschooler’s learning-related behaviors. Three dimensions, including 

Competence Motivation, Attention/Persistence, and Attitude Toward Learning, are measured by 

29 items. Further, McDermott and co-researchers tested its validation and evidenced that the 

scale provided a structured and robust measure of learning-related behaviors (McDermott et al., 

2002; McDermott et al., 2012). Learning Behaviors Scale (LBS) is similar to PLBS, but it was 

developed for older children in kindergarten, elementary and secondary school (McDermott, 
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1999). Compared with PLBS, it has one more dimension, which is called Strategy/Flexibility. 

Both scales are teacher rating scales. Other researchers (e.g., McWayne et al., 2004; Durbrow et 

al., 2001; Rikoon et al., 2012) applied these scales to their studies as a measurement tool to 

analyze ATL. 

Besides these two popular scales, some studies chose other scales or methods to measure 

ATL. Stipek et al. (2010) extracted four items from the Teacher Rating Scale of School 

Adjustment (TRSSA; Birch & Ladd, 1997) to measure students’ learning-related behaviors in 

elementary school. McClelland et al. (2006) used a subscale from the Cooper-Farran Behavioral 

Rating Scales (CFBRS; Cooper & Farran, 1991) as a measure of children’s learning-related 

skills. Williams et al. (2016) extracted ATL-related items from the Social Skills Rating Scale 

(SSRS; Gresham & Elliott, 1990) and defined the components under the attentional/cognitive 

regulation dimension. George and Greenfield (2005) designed a structured problem-solving 

flexibility task to reflect ATL levels. They have demonstrated that the task score was 

significantly correlated to the teacher rating ATL score. 

 

Single Timepoint Evidence 

Previous findings indicated a significant association between ATL and academic 

achievement from single timepoint analyses using diverse samples. Bustamante and Hindman 

(2019) found ATL could directly influence preschooler’s academic readiness when testing the 

relationship between classroom quality and academic readiness using Family and Child 

Experiences Survey data. George and Greenfield’s study (2005) suggested the strong influence 

of ATL on concurrent achievement in kindergarten. Children from the Fragile Families and 

Child Wellbeing Study showed their ATL significantly impacted reading and mathematics 
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achievement at age 5 (Razza et al., 2015). Several studies selected subsamples from the ECLS-K 

dataset in different grades. One study showed that ATL and mathematic outcomes were 

significantly correlated in kindergarten when controlling class-level covariates into the model 

(Robinson & Mueller, 2014). Bumgarner et al. (2013) showed a positive relationship between 

ATL and mathematics achievement among Hispanic immigrant children (known as English 

language learners) in kindergarten, first grade, and third grade. 

 

Longitudinal Evidence 

The potential positive relationship between ATL and academic achievement in childhood 

was found from longitudinal evidence. Li-Grining and co-researchers (2010) used the ECLS-

K:1998 dataset to investigate the impact of early ATL on academic performance. The results 

from the large-scale assessment demonstrated that ATL at kindergarten entry was significantly 

associated with reading and mathematics achievement trajectories through fifth grade. 

McClelland and colleagues (2006) showed a similar result using a different sample that early 

learning-related behaviors at kindergarten strongly impact reading and mathematics growth 

through elementary school years. Williams et al. (2016) found that ATL at 6-7 years of age 

predicted later mathematics achievement at 8-9 years of age. Other results indicated that prior 

learning-related behaviors in early elementary school years could predict later literacy 

performance among students from low-income families (Stipek et al., 2010). Also, research 

showed similar results of the relationship of early ATL and later academic achievement when 

considering different subgroups from the ECLS-K dataset (Tach & Farka, 2006; Mattew et al., 

2010). 
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Potential Moderators in the Relation 

Some moderators were introduced and tested in the relationship between ATL and 

academic achievement in early grades. Robinson (2013) provided results that poor or low-

income students could moderate the effect of behavioral engagement on mathematics gains. The 

finding suggested that it could be beneficial for poor students with high behavioral engagement 

on achievement. Second, gender moderated the relation between ATL and academic 

performance. Li-Grining et al. (2010) showed that ATL at kindergarten was more protective for 

female students’ mathematics growth and male students’ reading growth in elementary school 

years. Mattews et al. (2010) indicated a significant interaction effect among race, gender and 

ATL on reading achievement. In addition, academic competence at early ages could be a 

potential moderator from previous evidence. The studies found that ATL would benefit more on 

later academic achievement for students with low academic skills in early grades (Razza et al., 

2015; Li-Grining et al., 2010). Other possible moderators were shown some evidence from 

previous studies. For instance, the moderation effect of English proficiency existed in 

kindergarten and third grade (Bumgarner et al., 2013). Additionally, class and school level 

moderators possibly existed, such as the frequency of reading activities in class and school 

enrollment (Musu-Gillette et al., 2015). 

 

ATL as A Mediator or Moderator 

When testing potential predictors for academic achievement in early grades, ATL was 

used as a mediator or moderator in research. ATL was investigated as a mediator for the 

relationship between psychological functioning and academic achievement in childhood. For 

instance, Sánchez-Pérez and colleagues (2018) found the mediation effect of ATL on effortful 



 37 

control and reading/mathematics performance in elementary school. ATL was indicated as a 

mediator in the relationship between cognitive flexibility and academic school readiness for 

Headstart children in preschool (Vitiello et al., 2011). Moreover, ATL mediated the relation 

between children’s executive function skills and concurrent and later academic achievement 

(Nesbitt et al., 2015; Sasser et al., 2015).  

Other prior research focused on testing the associations of parenting characteristics and 

student academic performance. ATL was found as an important mediator of these associations. 

Smith-Adcock et al. (2019) targeted students with low socioeconomic scores and showed that 

ATL has a mediation effect between parenting stress and reading achievement in kindergarten. 

ATL could be a significant mediator for divorce and academic achievement in elementary grades 

(Anthony et al., 2014). Additionally, studies showed that school-level involvement was 

indirectly associated with achievement through ATL (Anthony and Ogg, 2019; Smith-Adcock et 

al., 2019). ATL moderated the relationship between classroom quality and writing/spelling skills 

among Head Start children (Meng, 2015). 

 

Present Study 

The aim of this study was to fill in this gap in the literature, to conduct a systematic 

review with meta-analyses to detect an average effect of ATL (learning-related behaviors) on 

reading and mathematics achievement in childhood from different quasi-experimental study 

designs (i.e., single timepoint analysis, longitudinal analysis). Specifically, the study addressed 

the following research questions: 
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(1) Is there a significant relationship between ATL and achievement in childhood 

from quasi-experimental designs? 

 

(2) How large is the average effect of ATL on student achievement from quasi-

experimental designs? 

 

(3) What kind of variables could moderate the effect on achievement? 

 

Therefore, the present study conducted a systematic review employing meta-analytic 

methodology to combine and summarize the quasi-experimental results of empirical research 

studies about the relation of ATL and achievement approximately from 2000 through 2020. 

Detailly, four meta-analysis conditions were conducted in the study: single timepoint results for 

reading achievement, single timepoint results for mathematics achievement; longitudinal results 

for reading achievement, and longitudinal results for mathematics achievement. The study 

extended the theory and understanding of the relations between ATL and achievement in recent 

years by using the meta-analysis method. The study could get more clear results because of 

including both one timepoint and longitudinal results. For practical significance, results from the 

present study could help researchers, educators, and policymakers make decisions to use proper 

ATL educational programs under a current education environment. 
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Methods 

Literature Search 

This study aimed to conduct a meta-analysis about the relationship between ATL and 

student achievement (reading and mathematics) in childhood in the recent 20 years (2000-2020) 

from quasi-experimental designs. The meta-analysis used quasi-experimental evidence because 

few interventions directly focused on combined ATL components and the results are hard to 

classify from designs with other components (e.g., components from social-emotional learning, 

problem behaviors, social competence, or class management). A computer search of potential 

databases, including Web of Science, ERIC and PsycINFO, was conducted to identify the 

relevant literature using keywords, “approaches to learning; learning behaviors; achievement” or 

“learning-related behaviors; achievement”. The possible year range was from 2000 till 2020. The 

age group focuses on childhood (preschool to elementary school). The initial literature search 

yielded 819 studies with over ten dissertations. Additional four possible studies came from 

references of relevant papers. After getting an initial study pool, 113 non-relevant and duplicated 

studies were excluded from the pool. 

 

Study Selection Criteria 

A detailed protocol was created in the study to define explicitly the criteria for including 

and excluding studies and to create a final sample of studies eventually. After getting the initial 

study pool, a screening phase selected the studies by reviewing abstracts. The studies were 

excluded in the screening phase because 1) they were not written in English; 2) the definitions of 

ATL or learning-related behaviors did not fit in the current analysis; 3) there was no appropriate 

reading and mathematics achievement score reported in the study; 4) participants were not in 
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childhood; 5) no relationship of ATL and achievement was reported in the study. Fifty-eight full-

text articles were eligible after screening. The eligibility phase excluded several studies after full-

text reading. The first reason is that no ATL composite score was used to test the relationships 

(using components separately into the analyses). Second, there was only one component 

representing ATL in the study.  

The present study decided to extract bivariate correlations as effect sizes in the final 

phase because quasi-experimental designs did not report mean differences as intervention 

studies. The Pearson correlation is one of the most common and important effect sizes used in 

meta-analysis (Rosenthal, 1994; Rosenthal, 1995). The studies without the selected statistics 

were excluded from the final sample. The studies which reported the standardized regression 

coefficients or used a combined achievement test only were included in the study report table 

(see Appendix B Table B.1). However, they were not included in the meta-analysis because 

different and complex model designs make the coefficients incomparable. There were several 

extra selection criteria at the final stage. If the study provided a range of correlation coefficients, 

the midpoint was used to represent the correlation coefficient of the study (only one study in the 

pool). If two studies had very similar sample (same survey and participants at the same grade), 

the effect size with smaller sample size was excluded in the study. If a study had more than one 

independent sample, the effect sizes were included in the study. Overall, 21 studies were 

included in the final sample for meta-analysis. Figure 2.1 is a flow chart to show the detailed 

procedures of choosing final meta-analysis samples in the study from searching, initial screening, 

to eligibility and final selection.  
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Figure 2.1 A flowchart of searching and screening results 
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Statistical Analysis 

Fixed-effects and random-effects model in meta-analysis (Hedges & Olkin, 2014; 

Borenstein et al., 2007) were applied in the present study. The fixed-effects model could be 

treated as “a linear weighted regression” and assumes all studies estimate the same true effect 

size. The method generalizes studies in the sample. Compared with the fixed-effects model, the 

random-effects model assumes each study is estimating a unique effect. The random sample is 

from a larger population. It provides a more general statement and gets inference from the 

sample. In other words, the random-effects model generalizes to a larger population of studies. 

All analyses applied Fisher’s Z transformation to eliminate the potential bias from correlation 

coefficients. The transformation provides a correction for a skewed sampling distribution of 

correlations (Fisher, 1921). 

 

Fixed-Effects Model 

The observed effect size in study i equals to a sum of a true (population) effect size and 

within-study error from the fixed-effects model, which is shown as 

𝑇𝑖 = 𝜇 + 𝜀𝑖.                                                            (2.1) 

The model is an intercept only linear regression model. The variances of error term are 

assumed known. Thus, by using the weighted linear regression estimation method, the average 

weight effect size 𝑇̅∙ from k studies could be calculated by  

𝑇̅∙ =
∑ 𝑤𝑖𝑇𝑖
𝑘
𝑖=1

∑ 𝑤𝑖
𝑘
𝑖=1

,                                                          (2.2) 

where 𝑤𝑖  is the inverse of the within-study variance (𝑣𝑖) for study i. The standard error of the 

average weighted effect size in the fixed-effects model is shown as 
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𝑆𝐸(𝑇̅∙) =  √𝑣∙ =
1

√∑ 𝑤𝑖
𝑘
𝑖=1

.                                                (2.3) 

 

Random-Effects Model 

The observed effect size in study i equals to a sum of a true effect, a between study error 

and a within-study error in the random-effects model, which is shown as 

  𝑇𝑖 = 𝜇𝑖 + 𝜁𝑖 + 𝜀𝑖.                                                       (2.4) 

The model is an intercept only linear regression model. The differences between 

Equation (2.1) and Equation (2.4) are that each study has its own true effect (𝜇𝑖) and the 

between-study error (𝜁𝑖) is introduced into the model. Thus, the random effects model considers 

heterogeneity between studies. The weighted average effect size (𝑇̅∙
∗) from k studies is calculated 

by the new weights (𝑤𝑖
∗), which include two parts of variance: within-study variance (𝑣𝑖) and 

between-study variance (𝜏2). The equation is represented as: 

𝑇̅∙
∗ =

∑ 𝑤𝑖
∗𝑇𝑖

𝑘
𝑖=1

∑ 𝑤𝑖
∗𝑘

𝑖=1

,                                                       (2.5)       

where 𝑤𝑖
∗ =

1
𝑣𝑖
∗ =

1

𝑣𝑖+𝜏2. 

The new variance (𝑣𝑖
∗) is the sum of the within-study variance for study i and the 

between-study variance. The between-study variance is estimated by restricted maximum 

likelihood estimation method (REML) in the study. And the standard error can be calculated by 

𝑆𝐸(𝑇̅∙
∗) =  √𝑣∙

∗ =
1

√∑ 𝑤𝑖
∗𝑘

𝑖=1

.                                            (2.6) 
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Heterogeneity Tests 

To determine which meta-regression model fits the data better, a heterogeneity test 

should be conducted. The null hypothesis of the test is that all population effect sizes are same 

(the homogeneity of population effects sizes). The Q statistics could be calculated to test the 

hypothesis. The Cochran’s Q test follows the results of the fixed-effects model, which is shown 

as: 

𝑄 = ∑ 𝑤𝑖(𝑇𝑖 − 𝑇̅.)
2𝑘

𝑖=1 ,                                                   (2.7) 

where 𝑇̅. is the weighed effects size in Equation (2.2). The Q statistics follows a chi-square 

distribution with k – 1 degrees of freedom.  

The I2 statistics represents the proportion of total variation due to heterogeneity (Higgins 

& Thompson, 2002). The statistics could be calculated using Q statistics to quantify 

inconsistency across studies. The larger value of I2 indicates a larger amount of heterogeneity 

across the studies. The I2 index can be computed from 

𝐼2 =
(𝑄−𝑑𝑓)

𝑄
× 100%.                                                (2.8) 

 

Moderation Analysis 

In additional to computing the weighted effect sizes, the study examines differences in 

individual studies (i.e., study characteristics) as well. This is called a moderation analysis. The 

model could be called meta-regression model because predictors (moderators) are in the model. 

The moderation analysis indicates regressing effect sizes (outcomes) on the study characteristics 

(moderators) (Hedges & Olkin, 2014). Suppose that each effect parameters are determined by p 

moderator variables 𝑋1, 𝑋2 …𝑋𝑃 . 

The fixed effects model with moderation analysis is shown as: 
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𝑇𝑖 = ( 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝) + 𝜀𝑖.                                  (2.9) 

And the random effects model with moderation analysis is shown as: 

𝑇𝑖 = ( 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜁𝑖) + 𝜀𝑖.                            (2.10) 

The study is interested in estimating parameters (𝛽) from the fixed-effect model if the 

homogeneity assumption is met or the random-effects model if the homogeneity assumption is 

violated. Parameters (𝛽) reflect the effects of moderators chosen in the study.  

Potential moderators in the present study were the year of the study, grade, 

socioeconomic status (SES) of students, and publication type. Grade was a categorical variable 

with three categories (preschool: 0; kindergarten: 1; elementary school:2). Student SES/Minority 

was coded as a binary variable. The reference group was regular students, and the other group 

was disadvantaged students (i.e., low income, low SES or minority). The publication type was 

binary variable which indicated the study was from a peer-reviewed paper or a dissertation. The 

variable of year was centered to the mean and was treated as a continues variable. 

 

Sensitivity Analysis 

Because a few studies from the pool could extract more than one effect size (correlation), 

the present study needed to decide on how to deal with multiple effect sizes within one study. 

Thus, a sensitivity check was conducted first. The sensitivity check aimed to determine which 

analysis approach (univariate meta-analysis or multivariate meta-analysis) would be applied for 

the final study pool. A sensitivity analysis can acknowledge the dependence issue by applying 

analyses using all outcomes in each study and using one outcome in each study. If the results 

from two approaches are similar, it makes sense to drop or combine multiple effect sizes within 

the study (Becker, 2000). First, the sensitivity check did meta-analysis with the full sample and 
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assuming correlations of the same study are independent to each other. Second, for the studies 

with multiple correlations, the sensitivity checking randomly kept one correlation as the effect 

size of the study and did meta-analysis with the subsample. By comparing the results from the 

two procedures, we could have an understanding about how large the multiple effect sizes within 

one study influence the final results (weighted average effect sizes). The initial results are shown 

in Table 2.1 to indicates the meta-analysis results from sensitivity check. 

 

Table 2.1 The results from sensitivity check 

  Single timepoint designs Longitudinal designs 

  Reading Mathematics Reading Mathematics 

Fixed-

effects 

model 

Full sample 0.403* 

[0.396, 0.408] 

0.327* 

[0.320, 0.336] 

0.400* 

[0.395, 0.404] 

0.390* 

[0.384, 0.396] 

Subsample 0.420* 

[0.414, 0.426] 

0.333* 

[0.325, 0.341] 

0.385* 

[0.377, 0.392] 

0.377* 

[0.368, 0.385] 

Random-

effects 

model 

Full sample 0.338* 

[0.274, 0.399] 

0.309* 

[0.228, 0.386] 

0.374* 

[0.338, 0.409] 

0.357* 

[0.312, 0.401] 

Subsample 0.365* 

[0.292, 0.433] 

0.342* 

[0.259, 0.420] 

0.346* 

[0.275, 0.413] 

0.328* 

[0.244, 0.408] 

 Full sample N 23 15 20 12 

 Subsample N 16 12 8 6 

Note. The 95% of confidence intervals are shown in the brackets. p* < .05. 

 

All tests of heterogeneity were significant, which indicates that the random-effects model 

fitted the data better. The results showed the weighted average effect size changed slightly in 

each condition (different research designs and achievement outcomes). In random-effects 

models, the weighted effect sizes were in the range of 95% confidence intervals of the weighted 

effect sizes in full sample analysis. The magnitude of the weighted effect size did not change 
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(e.g., from medium to small effect size). The evidence provides an argument that univariate 

meta-analysis could be an appropriate design in the present study. Although multivariate 

approach has been developed fast in recent years, it still has limitations. For instance, compared 

to univariate meta-analysis, multivariate approach is more complex and harder to 

understand/interpret; additional assumptions (e.g., multivariate normality) are hard to verify; 

estimators’ statistical properties can only be improved slightly (Jackson et al., 2011). Also, the 

quasi-experimental designs possibly used a large-scale dataset. The number of participants in 

each study may be very different. The multivariate analysis possibly hides the true weighted 

effect size when including effects size from one study with large sample size, especially in the 

fixed-effects models. Therefore, the present study decided to compute a single effect size in each 

study and use the univariate meta-analysis approach to yield the final statistical results. 

The study firstly applied a fixed-effects model, then conducted a heterogeneity analysis 

to detect potential significant heterogeneity of effect sizes across studies and figured out if 

between-study variability should be included in the analysis. If so, the study conducted a random 

effects model which assumes an effect size is nested within a study. After estimations, the study 

compared the weights from these two models (fixed and random effects) across all studies in the 

final sample and determines the contribution of the between-study variance in the weights in the 

random effects model.  

 

Combining Multiple Correlations 

When conducting a univariate meta-analysis, only one effect size should be contained in 

each study. Multiple effect sizes within the same study needed to be combined into one effect 

size. The correlation coefficient was treated as the effect size in the present study. The study 
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presented two ways to combine correlation coefficients. A general way to average correlation 

coefficients from repeated measure was to use Fisher’s Z transformation (Silver & Dunlap, 

1987). The main procedures include transforming correlations to Fisher’s Z score, taking an 

average Z score, transforming back to a correlation coefficient. This approach demonstrated that 

the average coefficient was less biased than the untransformed average correlation (Silver & 

Dunlap, 1987; Strube, 1988). Fisher’s Z score transformation for ith correlation (𝑟𝑖) is shown as 

𝑧𝑖 =
1
2
 ln (

1+𝑟𝑖
1−𝑟𝑖

).                                                      (2.11) 

Then, we could compute the average z from k studies score using 

𝑧̅ =  
∑ (𝑛𝑖−3)𝑧𝑖
𝑘
𝑖=1

∑ 𝑛𝑖−3𝑘𝑘
𝑖=1

.                                                     (2.12) 

After getting the average z score, we use Fisher’s Z transformation to transfer back to the 

correlation coefficient. The transformation from z score to correlation is 

𝑟̅′ =
𝑒2𝑧̅−1

𝑒2𝑧̅+1
.                                                         (2.13) 

Another approach under meta-analysis research settings was to compute an 

approximately unbiased minimum-variance estimator (Olkin & Pratt, 1958). The estimator was 

less biased than the previous one (Viana, 1982; Alexander, 1990). The equation is shown as 

𝑟̅∗ = 
∑ (𝑛𝑖−1)𝑘
𝑖=1

∑ 𝑛𝑖−𝑘𝑘
𝑖=1

{𝑟𝑖 + [
𝑟𝑖(1−𝑟𝑖

2)

2(𝑛𝑖−3)
]}.                             (2.14) 

For the studies with multiple correlation coefficients in the present study, the results 

using the above approaches were very similar. All differences were about or smaller than 0.001. 

The study rounded the combined effect size to two decimals. Thus, the values of combined effect 

sizes were same from the two approaches. 

 



 49 

Results 

Weighted Average Effect Sizes 

Four conditions were considered in the study: single timepoint design for reading or 

mathematics achievement and longitudinal design for reading or mathematics achievement. The 

results from the fixed-effects and the random-effects model are presented in Table 2.2. All 

weighted effect sizes were significant than zero in both approaches. The results of heterogeneity 

tests indicated that there is a large amount of heterogeneity under each condition. Thus, the 

random-effects models fitted the data better. The results were consistent with the findings in the 

sensitivity analysis. The weighted effect size was 0.366 in the relationship between ATL and 

reading achievement from single timepoint designs, which indicated a medium effect size. The 

weighted effect size was 0.340 in the relationship between ATL and reading achievement from 

longitudinal designs, which was slightly smaller than the effect size from single timepoint 

designs. However, it still showed as a medium effect size.  

Compared with the results for reading achievement, the effect sizes of the relationship 

between ATL and mathematics achievement were smaller. Under the condition of single 

timepoint designs, the weighted effect size was 0.338. And under the condition of longitudinal 

designs, the weighted effect size was 0.328.  

Additionally, the number of studies using longitudinal designs was smaller than the 

studies for testing the concurrent relationships. And the number of studies for reading was larger 

than the number of studies for mathematics. Forest plots under four conditions are shown in 

Appendix B. 
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Table 2.2 Meta-analysis results 

  Single timepoint designs Longitudinal designs 

  Reading Mathematics Reading Mathematics 

Fixed-effects 

model 

ES 0.414* 0.334* 0.377* 0.373* 

95% CI [0.408, 0.420] [0.326, 0.342] [0.369, 0.385] [0.364, 0.382] 

Heterogeneity 

tests 

Q 502.54* 605.85* 329.17* 164.73* 

I2 97.0% 98.2% 97.9% 97.0% 

Random-effects 

model 

ES 0.366* 0.338* 0.340* 0.328* 

95% CI [0.297, 0.430] [0.253, 0.418] [0.272, 0.406] [0.243, 0.408] 

Study N  16 12 8 6 

Participant N  69904 45905 44018 32262 

Note. p* < .05. 

 

Subgroup Differences 

The study conducted two tests for testing subgroup differences separately to show how 

the weighed effect size influenced by students’ SES level or grade level. The subgroup 

differences tests were under the random-effects models because of the large heterogeneities. 

Table 2.3 shows that there was no significant difference of the relationship between ATL and 

academic achievement among the students with or without disadvantages (i.e., low SES, 

minority).  Second, the grade level significantly impacted the relationships in single timepoint 

designs (reading and mathematics) and longitudinal designs (mathematics). Lower weighted 

effect size was shown among preschoolers. The studies which focused on kindergarten and 

elementary school had similar weighed effect sizes. 

 



 51 

Table 2.3 Subgroup differences tests results 

  Single timepoint designs Longitudinal designs 

  Reading Mathematics Reading Mathematics 

SES Regular 0.383 

[0.329, 0.436] 

0.335 

[0.251, 0.414] 

0.352 

[0.233, 0.460] 

0.268 

[0.107, 0.415] 

 Low/Minority 0.338 

[0.141, 0.510] 

0.350 

[0.075, 0.576] 

0.321 

[0.242, 0.396] 

0.378 

[0.333, 0.422] 

Between group difference p = 0.643 p = 0.913 p = 0.663 p = 0.166 

Grade Preschool 0.194 

[0.114, 0.271] 

0.238 

[0.176, 0.299] 

0.289 

[0.142, 0.423] 

0.170 

[0.093, 0.245] 

 Kindergarten 0.430 

[0.345, 0.508] 

0.472 

[0.383, 0.553] 

0.352 

[0.258, 0.438] 

0.400 

[0.389, 0.411] 

 Elementary 0.420 

[0.367, 0.471] 

0.301 

[0.139, 0.447] 

0.372 

[0.270, 0.466] 

0.359 

[0.289, 0.424] 

Between group difference p * < .05 p * < .05 p = 0.625 p * < .05 

Note. 95% CI are shown in the brackets. 

 

Moderation Analysis 

The study also applied the meta-regression model for testing the moderation effects of 

student SES, grade level, centered year of publication, and publication type on the relationship 

between ATL and academic achievement. The moderation analysis was under the random-effects 

models because of the large number of heterogeneities. Table 2.4 shows the results. The results 

indicated that when combining multiple predictors into the meta-regression model, the 

significant positive effect of grade level only existed on the relation between ATL and reading 

among single timepoint designs. The publication year had a significant negative effect on the 

relation of ATL and mathematics achievement. 
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Table 2.4 Moderation analysis results 

 Single timepoint designs Longitudinal designs 

 Reading Mathematics Reading Mathematics 

SES 0.041 

(0.073) 

0.083 

(0.078) 

-0.076 

(0.094) 

-0.061 

(0.144) 

Grade 0.095* 

(0.047) 

-0.013 

(0.051) 

0.014 

(0.085) 

0.059 

(0.085) 

Publication type -0.051 

(0.073) 

-0.101 

(0.085) 

-0.109 

(0.123) 

0.092 

(0.166) 

Publication year -0.008 

(0.007) 

-0.028* 

(0.009) 

-0.007 

(0.017) 

-0.014 

(0.043) 

Note. Standard errors are shown in the parentheses. p* < .05. 

 

Discussion 

The study applied four univariate meta-analysis to show the relationship between ATL 

and academic (reading and mathematics) achievement in childhood (preschool to elementary 

school) in the recent years from quasi-experimental evidence. The study reviewed 29 full-text 

studies in the final sample and included 21 studies into the meta-analysis. The studies 

investigating the ATL effect on reading performance were more than the studies testing the 

effect on mathematics performance. The studies exploring the concurrent relationships were 

more than the studies focusing on the long-term relationships. The weighed effect sizes under 

four conditions (two achievement × two quasi-experimental designs) were significantly different 

than zero. The range of the weighed effect sizes was from 0.328 to 0.366. The weighted mean 

effect sizes could be interpreted as medium effect sizes. The findings demonstrated that the 

relationship between ATL or learning-relative behaviors is positive and considerable in 

childhood. Also, the short-term and long-term effect both existed. The effect on reading 

achievement was stronger than the effect on mathematics achievement. The subgroup difference 



 53 

tests indicated that the weighed effect sizes were different in preschool, kindergarten and 

elementary school. However, when multiple predictors were taken into the same meta-regression 

model, the effect of grade level disappeared except for the relationship between ATL and 

concurrent reading achievement. The non-significant moderators showed that the effect of ATL 

on achievement was important for all students in childhood. 

The present study also has some limitations. First, because ATL is a new domain 

compared with social-emotional learning and other traditional domains, a clear definition is still 

needed to define the components of ATL. A clear definition would help to collect studies and 

conduct future meta-analysis. Second, the univariate cases were applied in the current study to 

display clear results of the relationships, however, the univariate cases have to exclude several 

valuable studies which could not meet the selection criteria (e.g., the studies using combined 

achievement scores). Moreover, compared to interventions, quasi-experimental studies might 

have very different sample sizes and more complex modeling/ estimation approaches. Thus, the 

results from meta-analysis might not be robust. Future studies could work together with experts 

to make a clearer definition of ATL, extend participants age (e.g., middle school and college), 

and use proper research methods (e.g., multivariate meta-analysis) to get a more general 

conclusion of the relationship between ATL and academic achievement. 
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CHAPTER 3 POWER ANALYSIS IN META-ANALYSIS: A THREE-LEVEL MODEL 

 

Introduction 

The present chapter is methodologically oriented. It addressed an issue that could happen 

when conducting a meta-analysis. Specifically, this study focused on improving power analysis 

in meta-regression with hierarchical structures methodologically. 

When conducting a meta-analysis, two weighted regression models are usually used in 

the statistical analysis. The two models are the fixed effects model and the random effects model. 

The fixed effects model assumes that there is one true population effect size, while the random 

effects model assumes that there is a variance from the systematic difference among studies. It 

captures a hierarchical structure that participants nested in the studies. Therefore, the random 

effects model is equivalent to the two-level model (Fernández-Castilla et al., 2020). However, in 

empirical research, a research group or a lab usually focuses on similar research topics. It is 

possible to collect several studies from the same research team in a meta-analysis. The 

protentional correlation of studies conducted by the same team or lab could influence the 

standard error of the weighted average effect size. Further, it could impact the calculation of the 

power statistics. Therefore, a meta-analysis with high power might be less credible due to a 

latent correlation between groups if between-group variance is ignored. The present study aims 

to introduce a three-level meta-regression model and explore the procedures to compute the 

power of weighted average effect size and moderators. Additionally, the study aims to show 

group-level variance potentially impacts the power statistics of the three-level meta-analysis 

regression model. 
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Literature Review 

Quantitative research aims to draw statistical inferences about the population from 

limited samples. Researchers use inferential statistics and hypothesis testing to represent a 

population from sample data. Null hypothesis (H0) and alternative hypothesis (HA) are stated to 

display a research question, and then appropriate test statistics are applied to get the inference. A 

decision about whether to reject the null hypothesis depends on probability theory. The 

probability-related task examines the likelihood of observing the test statistics when assuming 

the null hypothesis is true. Researchers aim to reject the null hypothesis when the null hypothesis 

is false or retain the null hypothesis when the null hypothesis is true. However, because the 

decision is based on probability theory, a wrong decision is possibly made during the inference. 

Thus, keeping a small error in the inference decision is an important goal for conducting 

hypothesis testing. 

There are two types of error in the hypothesis testing - Type I error and Type II error. 

Type I error, 𝛼, is the probability of rejecting the null hypothesis when it is true. In common, 

researchers set a significant level to limit Type I error. The critical significant level is usually 

0.05. It indicates that the maximum probability of rejecting a true null hypothesis is 0.05. Type II 

error, 𝛽, is the probability of retaining a null hypothesis when it is false. In other words, it is the 

probability of not rejecting a null hypothesis when the alternative hypothesis is true. In empirical 

research, keeping a low Type I error and a low Type II error helps researchers make a correct 

and robust decision. 

The power of a statistical test is referred to as the probability of finding a treatment effect 

when it exists (Cohen, 1977). The letter p is used to indicate power. Power represents the 

probability that a test correctly rejects the null hypothesis when it is false. Based on this 
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definition, power can be calculated by 1 – 𝛽 , where 𝛽 indicates the Type II error of the test. 

Power over 0.8 is usually considerable, indicating 80% chance of a real effect size stated in 

conclusion. Power could be influenced by significant level (refers to Type I error), sample size, 

variability in the measure of the response variable, and the effect size of the variable. Computing 

a prospective power is useful and important in experimental designs to determine how many 

subjects are needed to detect a treatment effect when it is true (Konstantopoulos, 2008). The 

studies with small power potentially surfer from low reproducibility of results and overestimated 

effects (Button et al., 2013). 

A meta-analysis selects a pool of individual studies to detect an average effect size. Thus, 

meta-regression could increase statistical power to detect effects over what is obtained from 

individual studies because it involves more samples compared with one individual study (Miller 

& Pollock, 1994; Borenstein et al., 2021). Both prospective and retrospective statistical power 

for meta-analysis can be done with assumptions about the parameters in the specific meta-

regression model (Valentine et al., 2010). Prospective statistical power could help researchers to 

determine how many studies need to be collected in a meta-analysis.  Retrospective statistical 

power provides a measure to understand the risk level for a meta-analysis commits to type II 

error. Additionally, power analysis is more important in the meta-analysis than the analysis of a 

single study because such studies summarize similar research and influence the theory and 

practice of the field strongly (Cafri et al., 2010). However, the number of studies could not 

always increase the statistical power. Several components influence power. Results from a meta-

analysis should be interpreted with great care. Therefore, finding an unbiased power of a meta-

analysis is critical to measure a good meta-analysis study. 
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The existing methodology regarding power analysis for meta-regression can be used for 

both fixed and random effects models (Hedges & Pigott, 2001). The researchers also developed 

power statistics for the heterogeneity (or variation) test of effect size parameters across studies. 

Also, previous studies have considered the power analysis for moderators in meta-regression 

models (Hedges & Pigott, 2004). Thus far, power analysis for random effects models in meta-

regression has focused on two-level models where studies are at the second level. However, 

more complicated data structures exist in empirical meta-analysis. A natural extension of that 

work is to extend the methods for random effects models where a third level (e.g., research 

teams/labs) is added into the model. 

In an empirical systematic review and meta-analysis, the final sample studies are possible 

from the same research groups or research labs. In this case, the studies included in the meta-

analysis have a dependency because they are nested within research groups or labs. If there is a 

dependent effect size problem in a meta-analysis, using two-level meta-regression likely 

underestimates the standard error. This additional dependency needs to be taken into account in 

calculating power because ignoring heterogeneity between groups possibly influences statistical 

power. 

There are three ways to account for the dependent effect size issue - ignoring 

dependence, avoiding dependence, and modeling dependence. Under the ignoring dependence 

strategy, researchers ignore the potential dependence among studies in the meta-analysis. 

However, this strategy is inappropriate because the existing dependency might lead to bias in the 

following estimations. Under the avoiding dependence strategy, one way is to choose one effect 

size for each study. Another way is choosing effect size based on the units of analysis, for 

instance, choosing one effect size from each sample, each research group, or each study. 
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However, it is hard for researchers to decide which one should be included in their meta-

regression model. Another common strategy of deciding effect size within a unit is to average 

effect size in each unit (Van den Noortgate et al., 2013). However, using average effect size will 

reduce the variance among studies. Therefore, compared with other strategies, modeling 

dependence is a better way to deal with potential heterogeneity between groups. 

One way to resolve this issue under modeling dependence strategy is to use three-level 

meta-regression models (Konstantopoulos, 2011; Van den Noortgate et al., 2013). A three-level 

meta-analytic model (including power analysis) assumes that the between-group variance is not 

zero, which indicates that studies are nested in research groups or labs. The three-level meta-

regression model shows several advantages to model between-group variance. First, it is a very 

flexible model because it could account for several sources of dependence at the same time. 

Second, it is a relatively intuitive and straightforward way to account for dependence. 

Additionally, it automatically accounts for the hierarchical structure in the data (Van den 

Noortgate et al., 2013). 

 

Present Study 

False accounting potential group dependence leads to biased power statistics in the meta-

regression model. To address this issue, the present study extended the work on power analysis 

for the two-level random effects model to the three-level model where studies were at the second 

level and research teams/labs are at the third level (Konstantopoulos, 2011). A three-level model 

would provide more accurate estimates of power under the assumption that variability between 

research teams is not negligible. The present study aimed to fill in that gap in the literature to 
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figure out the power of the three-level meta-regression model. In details, the research questions 

are: 

(1) How to calculate the power of the statistical test for weighted average effect size 

in a three-level meta-analytic model? 

 

(2) How to calculate the power of the statistical test for moderators in a three-level 

meta-regression model? 

 

(3) How could the third level (group-level) heterogeneity affect statistical power of 

weighted average effect size in meta-analysis from a simulation study? 

 

The significances of the study are listed here. First, the study was a methodological 

development of power analysis in the meta-analysis by developing the formulas for power 

statistics in three-level model. Second, it considered more complicated data structures in meta-

analysis and provides unbiased powers measure in the three-level model. Third, the study 

provided evidence about how group-level heterogeneity affects statistical power in meta-

analysis. 

 

Statistical Modeling 

Power in Two-Level Meta-Regression Models (Intercept Only) 

The two-level meta-regression model is equivalent to the random effects meta-regression 

model, which assumes effect sizes are nested in studies. It considers the amount of heterogeneity 

observed among effect sizes across studies (Hedges & Vevea, 1998; Hedges & Olkin, 2014). 
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Power calculation in a two-level meta-regression model has been shown in Hedges and Pigott’s 

work (2001). How statistical power relates to a weighted average effect size (𝑇̅∙
∗), the effect size 

assumed in the null hypothesis (𝑇0), Type I error (𝛼), and the standard error (𝑆𝐸(𝑇̅∙
∗)) of the 

weighted average effect size in a random effects meta-regression model is generally shown as 

𝑝 ∝
(𝑇̅∙

∗
−𝑇0)∙𝛼

𝑆𝐸(𝑇̅∙
∗
)

.                                                         (3.1) 

It indicates the statistical power could be increased by a larger weighted pooled effect size, a 

higher significance level (Type I error), or a smaller standard error of the weighted pooled effect 

size.  

The assumptions of a two-level model are 1) there is heterogeneity of the sampling error 

because the sample sizes of studies are usually different; 2) random effects are distributed 

identically at the between-study level; 3) Individuals are independent of each other, which 

indicates no correlation between error terms at the first level; 4) Studies are independent of each 

other, which means no correlation between error terms at the second level. Therefore, in a two-

level model, the variance-covariance matrix of error term could be written as  

𝑽∗ = 𝐷𝑖𝑎𝑔(𝜏2 + 𝑣1, 𝜏
2 + 𝑣2, … , 𝜏2 + 𝑣𝑘) = [

𝜏2 + 𝑣1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜏2 + 𝑣𝑘

],              (3.2) 

which is introduced briefly in Chapter 2. 

Power is calculated under the distribution when the alternative hypothesis of the study is 

true. Thus, it follows a non-central distribution. A non-centrality parameter (𝜆) needs to be 

detected for calculating the following probabilities (power statistics). The non-centrality 

parameter can be obtained by substituting the sample estimates with the population parameters in 

the formula with a Z test. In a random effects meta-regression model, the null hypothesis is the 

weighted average effect size is zero. The non-centrality parameter 𝜆∗ can be calculated using  
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𝜆∗ =
𝑇̅∙

∗
−0

√𝑣∙
∗

=

∑ 𝑤𝑖𝑇𝑖
𝑘
𝑖=1
∑ 𝑤𝑖
𝑘
𝑖=1

−0

√
1

∑ 𝑤𝑖
𝑘
𝑖=1

 
=

∑ 𝑤𝑖𝑇𝑖
𝑘
𝑖=1

√∑ 𝑤𝑖
𝑘
𝑖=1

,                                        (3.3) 

where 𝑤𝑖 =
1

𝑣𝑖+𝜏2.  

Thus, the non-centrality parameter is computed by the weighted average effect size (𝑇̅∙
∗) 

and sampling variance of the random effects estimate (𝑣∙
∗). Equation (3.3) shows how to compute 

the non-centrality parameter. The numerator is the sum of the product of weight and effect size 

in each study and the denominator is the square root of the sum of weights from each study. To 

note that the non-centrality parameter is resulted as a scalar. 

Typically, power of a two-tailed test is usually computed in empirical studies. Thus, after 

getting the non-centrality parameter, the statistical power in a two-tailed Z test can be expressed 

as Equation (3.4) 

𝑝 = 1 − 𝛽 = 𝑃[ |𝑍′(𝜆∗)| ≥ 𝑍0] = 1 − Φ(1.96 − 𝜆∗) + Φ(−1.96 − 𝜆∗),           (3.4)                  

which is to calculate the probability of rejecting the null hypothesis when the null hypothesis is 

false. 𝑍′(𝜆∗) indicates the 𝜆∗’s percent point of the distribution. Φ(𝑥) indicates a standard normal 

distribution cumulative distribution function (cdf). When setting type I error 𝛼 equals to 0.05, the 

critical value of the distribution, 𝑍0, is 1.96 for a two-tailed Z test. 

Additionally, the statistical power in a one-tailed Z test can be expressed as  

𝑝 = 1 − 𝛽 = 𝑃[ 𝑍′(𝜆∗) ≥ 𝑍0] = 1 − Φ(1.65 − 𝜆∗),                          (3.5) 

when setting type I error 𝛼 equals to 0.05, the critical value of the distribution, 𝑍0, is 1.65 for a 

one-tailed Z test. 
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To illustrate a case of computing power of mean effect size from a two-level meta-

regression model in practice, the present study shows a sample example here. We suppose a 

meta-analysis has ten studies with different effect sizes and within-study variances. Between-

study variances are same for all studies under the two-level model assumption. Therefore, we 

could compute a specific weight for each study in the sample. The parameters are shown in 

Table 3.1.  

 

Table 3.1 An illustrated two-level meta-analysis sample with intercept only 

Study ID 
Effect size  

(𝑇𝑖) 

Within-study variance 

(𝑣𝑖) 

Between-study variance 

(𝜏2) 

Weight 

(𝑤𝑖) 

1 0.42 0.13 0.05 5.56 

2 0.27 0.12 0.05 5.88 

3 0.28 0.08 0.05 7.69 

4 0.41 0.10 0.05 6.67 

5 0.46 0.11 0.05 6.25 

6 0.32 0.13 0.05 5.56 

7 0.30 0.16 0.05 4.76 

8 0.34 0.07 0.05 8.33 

9 0.54 0.12 0.05 5.88 

10 0.39 0.19 0.05 4.17 

 

We follow Equation (3.3) to get the non-centrality parameter  

𝜆∗ =
∑ 𝑤𝑖𝑇𝑖
10
𝑖=1

√∑ 𝑤𝑖
10
𝑖=1

= 2.89, 

where 10 studies are in the example. And the non-centrality parameter is 2.89.  

Then, we put this number into Equation (3.4) to compute the power in the case. The 

formula is shown as 

𝑝 = 1 − Φ(1.96 − 2.89) + Φ(−1.96 − 2.89) = 0.82. 
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The power of weighted average effect size in the example is 0.82 in a two-tailed Z test, which 

consider as a good power the weighted average effect size in meta-analysis. 

 

Power for Moderators in Two-Level Meta-Regression Models 

Hedges and Pigott (2004) developed a method to calculate statistical power in moderation 

analysis in two-level (random-effects) meta-regression models. Moderators are at study level 

because they represent the differences among studies. The observed effect with p moderators in a 

within-study model and in a between-study model could be written as  

𝑇𝑖 = 𝜃𝑖 + 𝜀𝑖 ,  𝑤ℎ𝑒𝑟𝑒 𝜀𝑖~𝑁(0, 𝑣𝑖),                                           (3.6) 

𝜃𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜁𝑖 ,  𝑤ℎ𝑒𝑟𝑒 𝜁𝑖~𝑁(0, 𝜏2).                  (3.7) 

Combining with the components from both levels, a general equation in a single level for 

p moderators in a two-level meta-regression model is shown as  

𝑇𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜂𝑖 ,  𝑤ℎ𝑒𝑟𝑒 𝜂𝑖~𝑁(0, 𝜏2 + 𝑣𝑖),                 (3.8) 

Where the error term 𝜂𝑖 follows a normal distribution with mean equals to 0 and variance equals 

a sum of within-study variance (𝑣𝑖) and between-study variance (𝜏2). 

Equation (3.8) could be written to a matrix notation as 𝑻 = 𝑿𝜷 + 𝜼, where 𝜼 has a k 

variate normal distribution with mean 0 and variance-covariance matrix 𝑽, if k studies are 

included in the meta-regression model. To note that variables and parameters are in boldface 

indicate vectors in the equations. By using generalized least square (GLS) estimation method, the 

estimated coefficients of the moderators (𝜷̂∗) and the variance of the estimated moderators 

(𝑉𝑎𝑟(𝜷̂∗)) are solved in  

𝜷̂∗ = [𝑿′(𝑽∗)−𝟏𝑿]−𝟏 𝑿′(𝑽∗)−𝟏𝑻 = (∑ 𝑿𝒊
′𝒌

𝒊=𝟏 𝑾𝑿𝒊)
−1 ∑ 𝑿𝒊

′𝑾𝑻𝒊
𝒌
𝒊=𝟏 ,                 (3.9) 

  𝑉𝑎𝑟(𝜷̂∗) =  𝜮∗ = [𝑿′(𝑽∗)−𝟏𝑿]−𝟏 = (∑ 𝑿𝒊
′𝒌

𝒊=𝟏 𝑾𝑿𝒊)
−1,                      (3.10) 
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where 𝑽∗ is the variance-covariance matrix from Equation (3.2) and 𝑾 = (𝑽∗)−𝟏 is the weight 

matrix. 

 Different methods could be used to estimate the between-study variance component (𝜏2). 

Hedges and Pigott (2004) used the same way for computing variance components in ANOVA. 

Other popular ways include methods such as the method of moments (MOM), maximum 

likelihood estimation (MLE), and restricted maximum likelihood estimation (RMLE) (Langan et 

al., 2019). MLE aims to solve the parameters to maximize the likelihood function of the data 

(Corbeil & Searle, 1976). It could provide simultaneous estimations of the fixed effects and the 

variance components in multilevel regression. It assumes fixed effects are known when 

estimating the variance components. Iterations might be required to get the estimations, such as 

an expectation-maximization (EM) algorithm or a fisher scoring algorithm (Raudenbush & Bryk, 

2002). RMLE is less biased than MLE when the cluster size is small. Differing from the 

estimation procedures in MLE, RMLE estimates the fixed effects when estimating the variances 

(Peugh, 2010; Boedeker, 2017). Veroniki and co-researchers (2015) identified over ten 

estimators of the between-study variance in meta-analysis models and suggested that RMLE was 

the better estimator for continuous outcomes. It tends to outperform the alternatives in the 

simulation studies (Langan et al., 2019). RMLE leads to the use in multilevel regression software 

packages, such as HLM8 (Raudenbush et al., 2019).  

The null hypothesis in the case is there is no relationship between moderator j and effect 

size ( 𝛽𝑗 = 0). Thus, the non-centrality parameter in the test can be computed by  

𝑍𝑗
∗ =

𝛽̂𝑗
∗
−0

√𝑣𝑎𝑟(𝛽̂𝑗
∗
)

,                                                       (3.11) 

where 𝑣𝑎𝑟(𝛽̂𝑗
∗) is the variance of 𝛽̂𝑗

∗ given by the jth diagonal element of the matrix 𝜮∗.  
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Then the power for test of individual regression coefficients (the coefficients of 

moderators) could be calculated by  

𝑝 = 1 − 𝛽 = 𝑃[ |𝑍′(𝜆∗)| ≥ 𝑍0] = 1 − Φ(1.96 − 𝑍𝑗
∗) + Φ(−1.96 − 𝑍𝑗

∗),        (3.12)   

𝑝 = 1 − 𝛽 = 𝑃[ 𝑍′(𝜆∗) ≥ 𝑍0] = 1 − Φ(1.65 − 𝑍𝑗
∗).                         (3.13) 

The power shown in Equation (3.12) is for a two-tailed Z test and Equation (3.13) is for a one-

tailed Z test where the type I error is set to 0.05. 

 

To illustrate a case of computing power of the moderators from a two-level meta-

regression model in practice, the present study shows a sample example here. We use the meta-

analysis sample from previous section and suppose the study has one moderator (𝑋1) at study 

level. For example, the moderator is a categorical variable with three categories and the 

categories are randomly assigned to the stud in the example. The parameters are shown in Table 

3.2.  

 

Table 3.2 An illustrated two-level meta-analysis sample with one moderator 

Study ID 
Effect size 

(𝑇𝑖) 

Within-study 

variance (𝑣𝑖) 

Between-study 

variance (𝜏2) 

Weight 

(𝑤𝑖) 

Moderator 

(𝑥1𝑖) 

1 0.42 0.13 0.05 5.56 1 

2 0.27 0.12 0.05 5.88 3 

3 0.28 0.08 0.05 7.69 1 

4 0.41 0.10 0.05 6.67 2 

5 0.46 0.11 0.05 6.25 2 

6 0.32 0.13 0.05 5.56 3 

7 0.30 0.16 0.05 4.76 1 

8 0.34 0.07 0.05 8.33 1 

9 0.54 0.12 0.05 5.88 3 

10 0.39 0.19 0.05 4.17 2 
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Therefore, we could compute the regression coefficient of the moderator and its variance 

using Equation (3.9) and (3.10). The equations are 

𝛽̂1
∗ = (∑ 𝑤𝑖

10
𝑖=1 𝑥1𝑖

2 )−1 ∑ 𝑤𝑖
10
𝑖=1 𝑥1𝑖𝑡𝑖 = 0.17, 

  𝑉𝑎𝑟(𝛽̂1
∗) = (∑ 𝑤𝑖

10
𝑖=1 𝑥1𝑖

2 )−1 = 0.004. 

The coefficient of the moderator is 0.17 and the variance is 0.004 in the example. 

Then, we follow Equation (3.11) to get the non-centrality parameter: 

𝑍1
∗ =

0.17
√0.004

= 2.71. 

The non-centrality parameter is 2.71 in the illustrated example. Then, we put this number into 

Equation (3.12) to compute the power in the case. The computation is shown as 

𝑝 = 1 − Φ(1.96 − 2.71) + Φ(−1.96 − 2.71) = 0.77. 

The power of the moderator in the example is 0.77 in a two-tailed Z test, which consider as a fair 

power for moderation analysis in a meta-analysis. 

 

Power in Three-Level Meta-Regression Models (Intercept Only) 

To compute statistical power in the three-level meta-regression model with intercept 

only, building a three-level model is necessary. The study first focused on an unconditional 

model, which means no predictors at any level. The power of the weighted average effects size is 

tested in the case. The intercept of the study level (level-2) is random at the group level (level-3). 

Working with a simple case would be helpful to illustrate the main ideas of the present studies. 

The study uses a univariate case, which means each study in the model only has one effect size. 

Figure 3.1 illustrates the hierarchical structure of the three-level model with g groups, k studies 

and k effect sizes. 
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Figure 3.1 An illustrated structure of a univariate case with three levels 

 

 

The model with three levels could be written as 

Level-1 effect size level: 𝑇𝑖𝑔 = 𝜗𝑖𝑔 + 𝜀𝑖𝑔,  𝜀𝑖𝑔~𝑁(0, 𝑣𝑖),                         (3.14) 

Level-2 study level: 𝜗𝑖𝑔 = 𝛽0𝑔 + 𝜂𝑖𝑔, 𝜂𝑖𝑔~𝑁(0, 𝜏(2)
2 ),                            (3.15) 

Level-3 group level: 𝛽0𝑔 = 𝛾00 + 𝜈0𝑔, 𝜈0𝑔~𝑁(0, 𝜏(3)
2 ).                          (3.16) 

At the first level, effect size level, an observed effect size (𝑇𝑖𝑔) of study i in group g is a sum of 

an effect size (𝜗𝑖𝑔) and a within-study error (𝜀𝑖𝑔). The within-study error follows a normal 

distribution with mean 0 and variance (𝑣𝑖). At the second level, study level, the effect size (𝜗𝑖𝑔) 

from participant level equals to an effect size (𝛽0𝑔) plus a between-study error (𝜂𝑖𝑔). The 

between-study error follows a normal distribution with mean 0 and variance 𝜏(2)
2 . At the third 

level, group level, the effect size (𝛽0𝑔) from study level equals to a true effect size (𝛾00) plus a 

between-group error (𝜈0𝑔). The between-group error follows a normal distribution with mean 0 

and variance 𝜏(3)
2 .  

All three levels are written in a single level notation as 

𝑇𝑖𝑔 = 𝛾00 + 𝜈0𝑔 + 𝜂𝑖𝑔+ 𝜀𝑖𝑔.                                              (3.17) 
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It shows the observed effect size of a study is a sum of a true effect size and three parts of error - 

within-study error, between-study error and between-group error.  

The next step is to construct the structure of the variance-covariance matrix of error term 

for the three-level meta-regression model. It is important for detecting the structure of the 

variance-covariance matrix because the inverse of the matrix would be used as a weight matrix 

in the following steps for computing the weighted average effect size and its variance. Also, the 

wight matrix further influences the power statistics. When introducing the third level (group 

level) into the model, the variance-covariance matrix of error 𝑉(3,𝑔) in group g becomes the sum 

of the diagonal matrix in the two-level model and a matrix with element 𝜏(3)
2  everywhere. The 

matrix structure is shown as  

 

𝑉(3,𝑔) = [

𝜏(2)
2 + 𝑣1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜏(2)

2 + 𝑣𝑘

] + [

𝜏(3)
2 ⋯ 𝜏(3)

2

⋮ ⋱ ⋮
𝜏(3)

2 ⋯ 𝜏(3)
2

] 

  = [

𝜏(3)
2 + 𝜏(2)

2 + 𝑣1 ⋯ 𝜏(3)
2

⋮ ⋱ ⋮
𝜏(3)

2 ⋯ 𝜏(3)
2 + 𝜏(2)

2 + 𝑣𝑘

].                                 (3.18) 

 

The underlying assumption is groups are independent of each other but studies in the 

same group have correlations. Thus, the variance of study i in group g is  𝜏(3)
2 + 𝜏(2)

2 + 𝑣𝑖, and 

the covariance for studies in same group is 𝜏(3)
2 . The variance 𝜏(3)

2  captures the dependency of 

outcomes with groups. The variance-covariance matrix of group g follows Konstantopoulos’s 

notation (2011) could be written as 

𝑉(3,𝑔) = 𝑉(2,𝑔) + 1(3,𝑔)𝑇31(3,𝑔)
𝑇 = 𝐼𝑛𝑔

⨂{𝜏(2)
2 + 𝑣𝑖} + 𝜏(3)

2 1𝑛𝑔
1𝑛𝑔

𝑇 ,              (3.19) 
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where 𝑉(2,𝑔) is the variance-covariance matrix of a two-level model, 1(3,𝑔) is a vector of ones, 𝑇3 

is a matrix of random effects at the group level, 𝑛𝑔 indicates the number of studies in group g, 

𝐼𝑛𝑔
 is an 𝑛𝑔 × 𝑛𝑔 identity matrix, and 1(𝑛𝑔) is a vector of 𝑛𝑔 ones.  

The methods to estimate the variance components are same to the two-level model, such 

as MLE and RMLE. For instance, the full log-likelihood function for group g of the three-level 

model is: 

𝐿𝑔(𝑣𝑔, 𝜏(2)
2 , 𝜏(3)

2 ) = −
𝑛𝑔

2
log(2𝜋) −

1

2
log|𝑉(3,𝑔)| −

1

2
𝑒𝑔

′𝑉(3,𝑔)
−1 𝑒𝑔.                  (3.20) 

where 𝑒𝑔 = 𝑇𝑔 − 𝛾00 is the sum of error terms in group g, |𝑉(3,𝑔)| indicates the determinant of 

𝑉(3,𝑔). The sampling variance (𝑣𝑖) within studies is usually assumed fixed and known in meta-

analysis. Because groups are independent of each other, the log-likelihood for entire model is the 

sum of unit log-likelihoods in Equation (3.20). The estimated variances could be gained when 

maximizing the log-likelihood function of the entire model. 

Overall, the whole variance-covariance matrix for a three-level meta regression with k 

studies nested in m groups is a block matrix with m matrices on the diagonal line. Suppose in the 

first group we have t studies and the last group we have s studies, the illustrated variance-

covariance matrix 𝑽𝟑 is shown as 

 

𝑽𝟑 =

[
 
 
 
 
 
 
 
[

𝜏(3)
2 + 𝜏(2)

2 + 𝑣1 ⋯ 𝜏(3)
2

⋮ ⋱ ⋮
𝜏(3)

2 ⋯ 𝜏(3)
2 + 𝜏(2)

2 + 𝑣𝑡

] ⋯ 0

⋮ ⋱ ⋮

0 ⋯ [

𝜏(3)
2 + 𝜏(2)

2 + 𝑣𝑘−𝑠+1 ⋯ 𝜏(3)
2

⋮ ⋱ ⋮
𝜏(3)

2 ⋯ 𝜏(3)
2 + 𝜏(2)

2 + 𝑣𝑘

]

]
 
 
 
 
 
 
 

. 

(3.21) 

Also, it could be written as  
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𝑽𝟑 = 𝐷𝑖𝑎𝑔(𝑉(3,1), 𝑉(3,2), … , 𝑉(3,𝑚)) = 𝐼𝑚⨂{𝑉(3,𝑔)} 

  = 𝐼𝑚⨂{𝑉(2,𝑔) + 1(3,𝑔)𝑇31(3,𝑔)
𝑇 },                                                    (3.22) 

where {} indicates the matrices in each group. 

The inverse of the variance-covariance matrix is used as a weight matrix into the 

generalized least square estimation. The inverse of the block matrix equals to the inverse of each 

block in the matrix, which could be written as  

𝑽𝟑
−𝟏 = 𝐼𝑚⨂{𝑉(3,𝑔)

−1 } = 𝐼𝑚⨂[

(𝑉(2,1) +  1(3,1)𝑇31(3,1)
𝑇 )1

−1

⋮
(𝑉(2,𝑚) +  1(3,𝑚)𝑇31(3,𝑚)

𝑇 )𝑚
−1

].                    (3.23) 

To note that a block-diagonal matrix is invertible if and only if the blocks on the diagonal are 

invertible. By using the standard results (Longford, 1987; Konstantopoulos, 2011), the inverse of 

𝑉(3,𝑔)  could be separated as: 

𝑉(3,𝑔)
−1 = 𝑉(2,𝑔)

−1 − 𝑉(2,𝑔)
−1 1(3,𝑔)(𝑇3

−1 + 1(3,𝑔)
𝑇 𝑉(2,𝑔)

−1 1(3,𝑔))
−11(3,𝑔)

𝑇 𝑉(2,𝑔)
−1 .              (3.24) 

 

The non-centrality parameter 𝜆3
∗  in the three-level meta-regression model with no 

predictors could be calculated by using the weighted average effect size and the variance of the 

weighted average effect size, which is shown in  

𝜆3
∗ =

[𝟏′(𝑽𝟑)
−𝟏

𝟏]
−𝟏

 𝟏′𝑽𝟑
−𝟏𝑻−𝟎

√[𝟏′(𝑽𝟑)
−𝟏

𝟏]
−𝟏

=
𝟏′𝑾𝟑𝑻

√𝟏′𝑾𝟑𝟏
,                              (3.25) 

where 𝟏 is a vector of ones and 𝑾𝟑 = (𝑽𝟑)
−𝟏 is the weight matrix in the case, 𝑻 is the vector of 

observed effect sizes. To note that, the numerator is the sum of products of the weight and the 

effect size in each study from each group and the denominator is the square root of the sum of 
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the weight in each study from each group (all elements in the weight matrix), which could be 

written as  

𝜆3
∗ =

∑ ∑ (∑ 𝑊3(𝑠𝑡,𝑔))𝑇(𝑡,𝑔)
𝑘𝑔
𝑠=1

𝑘𝑔
𝑡=1

𝑚
𝑔=1

√∑ ∑ ∑ 𝑊3(𝑠𝑡,𝑔)
𝑘𝑔
𝑠=1

𝑘𝑔
𝑡=1

𝑚
𝑔=1

,                                       (3.26) 

where 𝑘𝑔 is the number of studies in the gth group, m is the number of groups, 𝑊3(𝑠𝑡,𝑔) indicates 

the element at the sth row and tth column in the gth group from the weight matrix, and 𝑇(𝑡,𝑔) 

indicates the tth effect size. And finally, the non-centrality parameter is resulted as a scalar 

because the numerator and the denominator are both scalar. Therefore, to get the power statistics 

in the three-level model with no predictors at the second and the third level, we can put 𝜆3
∗  into 

Equation (3.27) and (3.28) for a two-tailed Z test and a one-tailed Z test when the type I error is 

set to 0.05: 

𝑝 = 1 − 𝛽 = 𝑃[ |𝑍′(𝜆3
∗ )| ≥ 𝑍0] = 1 − Φ(1.96 − 𝜆3

∗ ) + Φ(−1.96 − 𝜆3
∗ ),       (3.27)                  

𝑝 = 1 − 𝛽 = 𝑃[ 𝑍′(𝜆3
∗ ) ≥ 𝑍0] = 1 − Φ(1.65 − 𝜆3

∗ ).                       (3.28) 

 

To illustrate a case of computing power of the mean effect size from a three-level meta-

regression model in practice, the present study shows a sample example here. We continue to use 

the meta-analysis sample from previous sections. The difference in the case is that between-

group variance is introduced into the analysis. Therefore, we need to compute a specific weight 

for each study to capture within-study variance, between-study variance and between-group 

variance. The weights are different from the weight from Table 3.1. In this case, we assume ten 

studies come from three research groups and between-group variance equals to 0.02. The 

parameters are shown in Table 3.3.  
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Table 3.3 An illustrated three-level meta-analysis sample with intercept only 

Study ID Group ID 
Effect size 

(𝑇𝑖𝑔) 
Within-study 

variance (𝑣𝑖) 

Between-study 

variance (𝜏(2)
2 ) 

Between-group 

variance (𝜏(3)
2 ) 

1 1 0.42 0.13 0.05 0.02 

2 2 0.27 0.12 0.05 0.02 

3 2 0.28 0.08 0.05 0.02 

4 3 0.41 0.10 0.05 0.02 

5 1 0.46 0.11 0.05 0.02 

6 3 0.32 0.13 0.05 0.02 

7 3 0.30 0.16 0.05 0.02 

8 3 0.34 0.07 0.05 0.02 

9 1 0.54 0.12 0.05 0.02 

10 2 0.39 0.19 0.05 0.02 

 

The weighted matrix could be constructed using within-study variance, between-study 

variance and between-group variance as 

𝑾𝟑 = (𝑽𝟑)
−𝟏 =

[
 
 
 
 
 
 
 
 
 [

0.20 0.02 0.02
0.02 0.18 0.02
0.02 0.02 0.19

] ⋯ 0

⋮ [
0.19 0.02 0.02
0.02
0.02

0.15
0.02

0.02
0.26

] ⋮

0 ⋯ [

0.17 0.02 0.02 0.02
0.02 0.20 0.02 0.02
0.02
0.02

0.02
0.02

0.23
0.02

0.02
0.14

]

]
 
 
 
 
 
 
 
 
 
−1

 

        =

[
 
 
 
 
 
 
 
 
 [

5.10 −0.51 −0.48
−0.51 5.67 −0.54
−0.48 −0.54 5.27

] ⋯ 0

⋮ [
5.37 −0.67 −0.36

−0.67
−0.36

6.82
−0.47

−0.47
3.91

] ⋮

0 ⋯ [

6.08 −0.49 −0.42 −0.74
−0.49 5.15 −0.35 −0.61
−0.42
−0.74

−0.35
−0.61

4.46
−0.52

−0.53
7.41

]

]
 
 
 
 
 
 
 
 
 

. 

Each block in the matrix indicates one group from the example. All numbers are round to two 

decimals. 
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Thus, we could use the weight matrix in Equation (3.26) to compute the non-centrality 

parameter. The computation results are shown as 

𝜆3
∗ =

∑ ∑ (∑ 𝑊3(𝑠𝑡,𝑔))𝑇(𝑡,𝑔)

𝑘𝑔
𝑠=1

𝑘𝑔
𝑡=1

𝑚
𝑔=1

√∑ ∑ ∑ 𝑊3(𝑠𝑡,𝑔)

𝑘𝑔
𝑠=1

𝑘𝑔
𝑡=1

𝑚
𝑔=1

=
15.979

√42.968
= 2.44. 

The non-centrality parameter is 2.44 in this example. Compared with the non-centrality 

parameter of the weighted average effect size in two-level meta-regression model, the current 

non-centrality parameter is smaller. The reason is the variation from the third level is considered 

into the model. 

Then, we put this number into Equation (3.27) to compute the power in the case. The 

equation is  

𝑝 = 1 − Φ(1.96 − 2.44) + Φ(−1.96 − 2.44) = 0.69. 

The power of weighted average effect size in the example is 0.69 in a two-tailed Z test. The 

power decreases when the third level (group level) is introduced into the model. The result from 

the illustrated example demonstrates that the group-level variance could impact the power of 

weighted average effect size in a meta-analysis. 

 

Power for Moderators in Three-Level Meta-Regression Models 

When the study aims to test the moderation effects in a meta-analysis, the calculations of 

power for moderators in a three-level meta-regression model have similar steps to the previous 

section. Frist, we need to find the estimated coefficients (moderators in level-2 and level-3). 

Second, the variances of those coefficients need to be detected. In details, the structure of the 

variance-covariance matrix in a three-level meta-analysis with moderators at level-2 and level-3 

should be figured out. For each moderator, the null hypothesis is there is no moderation effect on 
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effect size. Then we could calculate the non-centrality parameter in the alternative distribution 

and uses it to detect statistical power for the moderators in a three-level meta-regression model. 

 

Moderators with No Random Effects 

The present study follows the procedures of calculating statistical power for moderators 

in two-level mate-regression model to extend the calculation of power for moderators in three-

level meta-regression model. A three-level meta-regression with p moderators in level-2 and q 

moderators in level-3 is shown in  

Level-1 effect size level: 𝑇𝑖𝑔 = 𝜗𝑖𝑔 + 𝜀𝑖𝑔,  𝜀𝑖𝑔~𝑁(0, 𝑣𝑖),                         (3.29) 

Level-2 study level: 𝜗𝑖𝑔 = 𝛽0𝑔+𝛽1𝑔𝑥1𝑖𝑔 + ⋯+ 𝛽𝑝𝑔𝑥𝑝𝑖𝑔 + 𝜂𝑖𝑔,  𝜂𝑖𝑔~𝑁(0, 𝜏(2)
2 ),      (3.30) 

Level-3 group level: 𝛽0𝑔 = 𝛾00 + 𝛾01𝑧1𝑔 + ⋯+ 𝛾0𝑞𝑧𝑞𝑔 + 𝜈0𝑔, 𝜈0𝑔~𝑁(0, 𝜏(3)
2 ),    (3.31) 

where x and z are moderators at level-2 and level-3. In the current model, only the intercept in 

the second level is random at the third level. All other level-2 slopes are fixed at level-3, 

namely 𝛽𝑙𝑔 = 𝛾𝑙𝑔, where l indicates the lth slope and g indicates the gth group. 

The above equations could be written in a single-level equation as: 

𝑇𝑖𝑔 = 𝛾00 + 𝑿𝑝𝐁𝑝 + 𝒁𝑞𝚪𝑞 + 𝜈0𝑔 + 𝜂𝑖𝑔 + 𝜀𝑖𝑔                            (3.32) 

where X and 𝒁 indicate two vectors of moderators When the slopes (except the intercept) at 

level-2 are fixed at level-3, the variance-covariance matrix of error is same to the matrix in 

Equation (3.21) because no extra random effects need to be estimated in the model. Thus, we 

could use the inversed matrix as the weight matrix to estimate slopes (regression coefficients) in 

Equation (3.33) and their variances in Equation (3.34). The formulas are shown as 

[𝐁̂
†

𝚪̂†] = [(𝑿 + 𝒁)′(𝑽𝟑)
−𝟏(𝑿 + 𝒁)]−𝟏 (𝑿 + 𝒁)′(𝑽𝟑)

−𝟏𝑻,                        (3.33) 
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  𝑉𝑎𝑟(𝐁̂†, 𝚪̂†) =  𝜮† = [(𝑿 + 𝒁)′(𝑽𝟑)
−𝟏(𝑿 + 𝒁)]−𝟏.                          (3.34) 

To note that, (𝑽𝟑)
−𝟏 could be written as 𝑾𝟑, which is the weight matrix. 

 

Further, the non-centrality parameters could be computed by using the estimated 

coefficients and their correspondent variances. For instance, the non-centrality parameters 𝜆3,𝑙
†

 

for moderator l at the third level could be calculated in the model in  

𝜆3,𝑙
† =

γ̂𝑙
†−0

√𝑉𝑎𝑟(γ̂𝑙
†)

.                                                      (3.35) 

We can put 𝜆3,𝑙
†

 into Equation (3.36) and (3.37) for a two-tailed Z test and a one-tailed Z 

test when the type I error is set to 0.05. Thus, the power of the present moderator l in the three-

level meta-regression model could be obtained in: 

𝑝 = 1 − 𝛽 = 𝑃[ |𝑍′(𝜆3,𝑙
† )| ≥ 𝑍0] = 1 − Φ(1.96 − 𝜆3,𝑙

† ) + Φ(−1.96 − 𝜆3,𝑙
† ),       (3.36)                  

𝑝 = 1 − 𝛽 = 𝑃[ 𝑍′(𝜆3,𝑙
† ) ≥ 𝑍0] = 1 − Φ(1.65 − 𝜆3,𝑙

† ).                          (3.37) 

 

To illustrate a case of computing power of the moderators from a three-level meta-

regression model in practice, the present study shows a sample example here. We continue to use 

the meta-analysis sample from previous sections. The example uses the parameters from Table 

3.3. And the level-2 moderator is still the same moderator from Table 3.2. The present case also 

assumes a categorical moderator at the third level (Table 3.4). The weight matrix is the same 

weight matrix in the last example, because there is no random effect of the level-2 moderator. 
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Table 3.4 An illustrated three-level meta-analysis sample with moderators 

Study 

ID 

Group 

ID 

Effect 

size (𝑇𝑖𝑔) 

Within-

study 

variance 

(𝑣𝑖) 

Between-

study 

variance 

(𝜏(2)
2 ) 

Between-

group 

variance 

(𝜏(3)
2 ) 

Moderator 

level-2 

(𝑥1𝑖) 

Moderator 

level-3 

(𝑧1) 

1 1 0.42 0.13 0.05 0.02 1 1 

2 2 0.27 0.12 0.05 0.02 3 2 

3 2 0.28 0.08 0.05 0.02 1 2 

4 3 0.41 0.10 0.05 0.02 2 3 

5 1 0.46 0.11 0.05 0.02 2 1 

6 3 0.32 0.13 0.05 0.02 3 3 

7 3 0.30 0.16 0.05 0.02 1 3 

8 3 0.34 0.07 0.05 0.02 1 3 

9 1 0.54 0.12 0.05 0.02 3 1 

10 2 0.39 0.19 0.05 0.02 2 2 

 

Therefore, we could compute the regression coefficients of two moderators and their 

variances using Equation (3.33) and (3.34). Compared with the example with a moderator in 

two-level model, the weight matrix here is a block matrix instead of a diagonal matrix. The 

coefficient of level-2 moderator is 0.103 and variance is 0.014, and the coefficient of level-3 

moderator is 0.069 and variance is 0.013 in the example. The results could be written as 

[
𝛽̂1

†

𝛾̂1
†] = [

0.103
0.069

]  𝑎𝑛𝑑 [
𝑉𝑎𝑟(𝛽̂1

†)

𝑉𝑎𝑟(𝛾̂1
†)

] =  [
0.014
0.013

]. 

Then, we follow Equation (3.11) to get the non-centrality parameters (for level-2 

moderator is 𝜆2,1
†

 and for level-3 moderator is 𝜆3,1
†

) of z test. The non-centrality parameters are 

computed as 

𝜆2,1
† =

0.103
√0.014

= 0.87 𝑎𝑛𝑑 𝜆3,1
† =

0.069
√0.013

= 0.61. 

The non-centrality parameters 0.87 and 0.61 in the illustrated example.  
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Then, we put this number into Equation (3.36) to compute the power in the case:  

𝑝2,1 = 1 − Φ(1.96 − 0.87) + Φ(−1.96 − 0.87) = 0.14, 

𝑝3,1 = 1 − Φ(1.96 − 0.61) + Φ(−1.96 − 0.61) = 0.09. 

The power of the level-2 moderator in the example is 0.14 in a two-tailed Z test and the power of 

the level-3 moderator in the example is 0.09 in a two-tailed Z test. In the example, we see two 

non-significant moderators with low regression coefficients. The small non-centrality parameters 

indicate low power of the moderators in the three-level meta-regression model.  

 

Moderators with Random Effects 

An extension case shown in the section is when some slopes at study level are assumed 

random at group level. In other words, the random effects of study-level moderators exist in the 

model. The structure of the variance-covariance matrix is different from the previous one in 

Equation (3.21). To simplify the case, the present stud assumes only one moderator at the second 

level (study level), named 𝑋1, is random at the third level. And only one moderator, named 𝑍1, is 

at the third level (group level). Thus, we have one more equation which represents the random 

effect of the slope of 𝑋1 (which is 𝛽1𝑔). By following the three-level model structure in the 

chapter, the third level has two equations as 

𝛽0𝑔 = 𝛾00 + 𝛾01𝑧1𝑔 + 𝜈0𝑔,                                              (3.38) 

𝛽1𝑔 = 𝛾10 + 𝛾11𝑧1𝑔 + 𝜈1𝑔,                                              (3.39) 

where [
𝜈0𝑔

 𝜈1𝑔
]~𝑁 ([

0
0
] , [

𝜏(3,0)
2 𝜏(3,01)

𝜏(3,01) 𝜏(3,1)
2 ]), 
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Equation (3.38) shows the model for the intercept and Equation (3.39) shows the model for the 

level-2 slope. The two errors follow a joint distribution with means equal to 0 and variances 

shown in a two-by-two matrix. 

In a single notation, the effect size could be written as 

𝑇𝑖𝑔 = 𝛾00+𝛾01𝑊1 + (𝛾10 + 𝛾11𝑊1)𝑋𝑖1𝑔 + 𝜈0𝑔 + 𝜈1𝑔𝑋𝑖1𝑔 + 𝜂𝑖𝑔 + 𝜀𝑖𝑔.         (3.40) 

The error relates to the predictor (moderator) at study level. Equation (3.41) and (3.42) could be 

used to construct the variance-covariance matrix in each group. A block matrix is constructed 

finally to include all matrices for groups on the diagonal. 

The variance for study in group g can be expressed as: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑇𝑖𝑔) = (𝑣𝑖 + 𝜏(2)
2 + 𝜏(3,0)

2 ) + 2𝜏(3,01)𝑋𝑖1𝑔 + 𝜏(3,1)
2 𝑋𝑖1𝑔

2 .             (3.41) 

The covariance between studies in same group g can be expressed as: 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑇𝑖𝑔, 𝑇𝑗𝑔) = 𝜏(3,0)
2 + 𝜏(3,01)(𝑋𝑖1𝑔 + 𝑋𝑗1𝑔) + 𝜏(3,1)

2 𝑋𝑖1𝑔𝑋𝑗1𝑔.           (3.42) 

The following produces to compute the non-centrality parameters and the power are 

same to the previous section. First, we need to construct the variance-covariance matrix and 

invert it to get the weight matrix. Second, the weight matrix is used to compute regression 

coefficients of moderators. Third, the non-centrality parameters could be computed by 

regression coefficients and their variances. Finally, we can get the power statistics. It is 

important to know that adding more random effects of the moderators will lead to more 

complicated components in the variance-covariance matrix of error term. 

Because the present scenario is more complex than before, to illustrate a simple case, an 

example with a smaller sample size is shown here. The case only uses two groups from 

previous examples. Table 3.5 shows the parameters which are needed in the following 

computations. 
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Table 3.5 An illustrated three-level meta-analysis sample with moderators and random slope 

Study 

ID 

Group 

ID 
Effect size (𝑇𝑖𝑔) 

Within-study 

variance (𝑣𝑖) 

Between-study 

variance (𝜏(2)
2 ) 

Moderator 

level-2 (𝑥1𝑖) 

1 1 0.42 0.13 0.05 1 

2 2 0.27 0.12 0.05 3 

3 2 0.28 0.08 0.05 1 

4 1 0.46 0.11 0.05 2 

5 1 0.54 0.12 0.05 3 

6 2 0.39 0.19 0.05 2 

      

Study 

ID 

Group 

ID 

Intercept 

variance (𝜏(3,0)
2 ) 

Covariance  

(𝜏(3,01)
2 ) 

Slope  

variance (𝜏(3,1)
2 ) 

Moderator 

level-3 (𝑧1) 

1 1 0.02 0.01 0.02 1 

2 2 0.02 0.01 0.02 2 

3 2 0.02 0.01 0.02 2 

4 1 0.02 0.01 0.02 1 

5 1 0.02 0.01 0.02 1 

6 2 0.02 0.01 0.02 2 

 

The variance-covariance matrix (𝑽3
∗ ) could be constructed for each group by Equation 

(3.41) and Equation (3.42) using variance and covariances components in Table 3.5. And the 

inverse of the matrix is the weigh matrix (𝑾3
∗ ) in the case. All numbers are round to two 

decimals. The matrix is shown as 

𝑾3
∗ = (𝑽3

∗ )−1 =

[
 
 
 
 
 [

0.22
0.03
0.04

0.03
0.22
0.05

0.04
0.05
0.25

]
0
0
0
       

0
0
0
      

0
0
0

0
0
0
       

0
0
0
      

0
0
0

[
0.25
0.04
0.05

0.04
0.17
0.03

0.05
0.03
0.30

]
]
 
 
 
 
 
−1

 

                                    =

[
 
 
 
 
 [

4.74
−0.51
−0.67

−0.51
4.80

−0.92

−0.67
−0.92
4.24

]
0
0
0
       

0
0
0
      

0
0
0

0
0
0
       

0
0
0
      

0
0
0

[
4.23

−0.91
−0.65

−0.91
6.18

−0.48

−0.65
−0.48
3.48

]
]
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Furthermore, we could compute the regression coefficients of two moderators and their 

variances using Equation (3.33) and (3.34). The coefficient of level-2 moderator with a random 

effect is 0.102 and variance is 0.033, and the coefficient of level-3 moderator is 0.102 and 

variance is 0.060 in the example. The matrices of the estimated coefficients and their variance 

are 

[
𝛽̂1

†

𝛾̂1
†] = [

0.102
0.102

]  𝑎𝑛𝑑 [
𝑉𝑎𝑟(𝛽̂1

†)

𝑉𝑎𝑟(𝛾̂1
†)

] =  [
0.033
0.060

]. 

Then, we follow Equation (3.11) to get the non-centrality parameters (for level-2 moderator is 

𝜆2,1
†

 and for level-3 moderator is 𝜆3,1
†

). The non-centrality parameters are  

𝜆2,1
† =

0.102
√0.033

= 0.56 𝑎𝑛𝑑 𝜆3,1
† =

0.102
√0.060

= 0.42. 

 

Then, we put this number into Equation (3.36) to compute the power in the case. The 

power of the level-2 moderator in the example is 0.09 in a two-tailed Z test and the power of the 

level-3 moderator in the example is 0.07 in a two-tailed Z test. The negligible power statistics are 

explainable because the sample size is small and multiple parts of variances/covariance are 

assumed in the example. Thus, the regression coefficients of moderators are small, and their 

standard error are large. The non-significant moderators have low power values. To note that, the 

illustrated examples only show the ways to find non-centrality parameters and compute power 

statistics. All values are assumed in the examples. The computation equations are shown as 

𝑝2,1 = 1 − Φ(1.96 − 0.56) + Φ(−1.96 − 0.56) = 0.09, 

𝑝3,1 = 1 − Φ(1.96 − 0.42) + Φ(−1.96 − 0.42) = 0.07. 



 81 

Simulation Study 

The simulation examples in the last part aimed to show how different ratios of between-

group variation in total variation affect the non-centrality parameter of the z-test and ultimately 

power of the weighted average effect size. A three-level meta-regression model has three parts of 

error variance from different levels. Two intraclass correlations (ICC) represent the relationships 

among three variance components, which are defined as 

𝜌(2) =
𝜏

(2)
2

𝜏
(3)
2 +𝜏

(2)
2 +𝑣

 ,                                                     (3.43) 

𝜌(3) =
𝜏

(3)
2

𝜏
(3)
2 +𝜏

(2)
2 +𝑣

 ,                                                     (3.44) 

where 𝜌(2) represents the proportion of between-study variance in the total variance and 𝜌(3) 

represents the proportion of between-group variance in the total variance. The sum of two ICCs 

indicates the variances from higher levels (level-2 and level-3). To simplify the case and present 

the main idea of the simulation, the present study followed Hedges and Pigott’s (2001) 

procedure, taking all sampling variance 𝑣𝑖 to an equal value 𝑣 approximately. From Equation 

(3.45) and (3.46), we can get the value of variance component 𝜏(2)
2  and 𝜏(3)

2  if we know two ICC 

values and the sampling variance 𝑣. The variance components could be expressed as: 

𝜏(2)
2 =

𝜌
(2)

1−𝜌
(2)

−𝜌
(3)

𝑣,                                                   (3.45) 

𝜏(3)
2 =

𝜌
(3)

1−𝜌
(2)

−𝜌
(3)

𝑣.                                                   (3.46) 

 



 82 

Design 

The simulation study assumed two population effect sizes, a moderate effect size 0.4 and 

a small effect size 0.2. The values of effect sizes 0.2 and 0.4 could show the variations of power 

statistics with different combinations of the values of variance components. Too large effect 

sizes lead to minor variation of the power and too small effect sizes would cause very low power 

in the meta-analysis. The number of studies in each group was from 2 to 10. The number of 

groups was assumed to 6 and 10. Thus, the range of total number of studies in the meta-

regression model was from 12 to 100. The range of sample size covered usual sample sizes in 

empirical meta-analysis studies. The range of error variance was set to 0.05 to 0.3, which 

indicates a range from a small variance to a large variance. The range of ICC value was from 

0.05 to 0.30 at level-2 and level-3. The sum of two ICCs covered the values from a small amount 

of heterogeneity to a large amount of heterogeneity (0.01 to 0.6). Overall, the design numbers of 

parameters are summarized in Table 3.6. The simulation study used a balanced case to illustrate 

the results, which means each group has the same number of studies. A two-tailed Z test was 

used to calculate the power statistics. For each power analysis with different parameters, the 

study did 1000 times iteration and finally took an average of the power statistics to control bias 

from randomly sampling and get a robust result. An example code is appended in Appendix C. 

 

Table 3.6 Design numbers in simulation 

Population effect size 0.2 0.4     

Numbers of group (N.group) 6 10     

Numbers of study per group (N.study) 2 4 6 8 10  
Sampling variance (within-study) 0.05 0.1 0.2 0.3   

Level-2 ICC 0.05 0.1 0.15 0.2 0.25 0.3 

Level-3 ICC 0.05 0.1 0.15 0.2 0.25 0.3 
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Results 

The results firstly displayed the power statistics from models with a medium population 

effect size (0.4). Four tables (Table 3.7 to Table 3.10) show average power statistics (taking 

average after 1000 iterations) with different parameters when the models have a different within-

study variance. All numbers were round to two decimals in the tables. The results in Table 3.7 

showed that the values of power were almost one due to a small within-study variance (𝑣 =

0.05). The change of level-2 and level-3 ICC did not strongly influence the power statistics. 

Although the case with the smallest sample size from the simulation (six groups and two studies 

per group) presented smaller values of power than other cases, all values were larger than 0.8, 

indicating a good power of the weighted average effect size in meta-analysis. When the numbers 

of study per group increased, the power increased, and when the numbers of group increased, the 

power increased. 

Table 3.8 shows the results when the sampling variance (within-study) becomes 0.1 and 

the population effect size is still 0.4. The cases with ten groups had good power statistics even 

with considerable heterogeneity at higher levels. Larger sample sizes and smaller level-2/level-3 

ICC gave higher statistical powers (near to one). However, the cases with six groups and two 

studies in each group, locating at the first block in the table, showed some powers were lower 

than 0.8. For instance, when level-2 ICC and level-3 ICC were higher than 0.2, the power values 

were all smaller than 0.8. It indicated that when the proportion of variance at higher levels 

became larger, the power went lower. These changes were more visible than the changes in the 

models with a minor sampling variance (0.05). 

Table 3.9 shows the results when the within-study variance becomes 0.2 and the 

population effect size is still 0.4. The values of power went lower than those in Table 3.7 because 
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of the larger within-study sampling variance. When level-3 ICC was 0.3, which indicated 30% of 

the variance came from the group level, the power was smaller than the cases with smaller level-

3 ICC. Especially when the number of groups was small (e.g., six groups), almost all values of 

power were lower than 0.80. If the number of studies in each group is small, the power statistics 

went down to 0.5. However, the simulation results also showed that if a meta-analysis has a good 

sample size, for instance, 60 studies or more, the analysis using a three-level model (considering 

between-group variance) could still have a good power of weighted average effect size. 

Table 3.10 shows the results when the within-study variance increased to 0.3 and the 

population effect size was still 0.4. The simulation examples with high level-3 ICC (e.g., 0.25, 

0.3) displayed low power statistics even the meta-analysis had a considerable sample size. 

Compared with the results from the previous tables, the results exposed that large within-study 

variance could influence the power strongly. Also, large level-2 and level-3 ICC influenced the 

power statistics strongly. When the case had the same level-2 ICC, larger level-3 ICC impacted 

the power significantly, especially for a small sample size case. In conclusion, the results 

indicated that researchers need to pay more attention when the meta-analysis has a large within-

study variance (larger than 0.1).  
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Table 3.7 Power in the models with population effect size 0.4 and within-study variance 0.05 

Note. The powers are calculated based on two-tailed Z tests.  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 1.00 0.99 0.99 0.98 0.98 0.97  1.00 1.00 1.00 1.00 1.00 1.00 
  0.1 1.00 0.99 0.98 0.97 0.97 0.95  1.00 1.00 1.00 1.00 1.00 0.99 
 ICC2 0.15 0.99 0.99 0.98 0.97 0.95 0.93  1.00 1.00 1.00 1.00 1.00 0.99 
  0.2 0.99 0.98 0.97 0.96 0.94 0.92  1.00 1.00 1.00 1.00 0.99 0.99 
  0.25 0.99 0.97 0.96 0.94 0.91 0.88  1.00 1.00 1.00 0.99 0.98 0.97 
  0.3 0.99 0.97 0.95 0.93 0.90 0.87  1.00 1.00 0.99 0.99 0.98 0.96 

N.study = 4               
  0.005 1.00 1.00 1.00 1.00 1.00 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
  0.1 1.00 1.00 1.00 1.00 0.99 0.98  1.00 1.00 1.00 1.00 1.00 1.00 
 ICC2 0.15 1.00 1.00 1.00 1.00 0.99 0.98  1.00 1.00 1.00 1.00 1.00 1.00 
  0.2 1.00 1.00 1.00 0.99 0.98 0.96  1.00 1.00 1.00 1.00 1.00 1.00 
  0.25 1.00 1.00 1.00 0.99 0.97 0.95  1.00 1.00 1.00 1.00 1.00 0.99 
  0.3 1.00 1.00 0.99 0.98 0.96 0.93  1.00 1.00 1.00 1.00 1.00 0.99 

N.study = 6               

  0.005 1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
  0.1 1.00 1.00 1.00 1.00 1.00 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
 ICC2 0.15 1.00 1.00 1.00 1.00 0.99 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
  0.2 1.00 1.00 1.00 1.00 0.99 0.98  1.00 1.00 1.00 1.00 1.00 1.00 
  0.25 1.00 1.00 1.00 0.99 0.98 0.97  1.00 1.00 1.00 1.00 1.00 1.00 
  0.3 1.00 1.00 1.00 0.99 0.98 0.95  1.00 1.00 1.00 1.00 1.00 0.99 

N.study = 8               

  0.005 1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
  0.1 1.00 1.00 1.00 1.00 1.00 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
 ICC2 0.15 1.00 1.00 1.00 1.00 1.00 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
  0.2 1.00 1.00 1.00 1.00 0.99 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
  0.25 1.00 1.00 1.00 1.00 0.99 0.97  1.00 1.00 1.00 1.00 1.00 1.00 
  0.3 1.00 1.00 1.00 1.00 0.98 0.96  1.00 1.00 1.00 1.00 1.00 1.00 

N.study = 10               

  0.005 1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 
  0.1 1.00 1.00 1.00 1.00 1.00 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
 ICC2 0.15 1.00 1.00 1.00 1.00 1.00 0.99  1.00 1.00 1.00 1.00 1.00 1.00 

  0.2 1.00 1.00 1.00 1.00 0.99 0.99  1.00 1.00 1.00 1.00 1.00 1.00 
  0.25 1.00 1.00 1.00 1.00 0.99 0.98  1.00 1.00 1.00 1.00 1.00 1.00 
  0.3 1.00 1.00 1.00 1.00 0.99 0.97  1.00 1.00 1.00 1.00 1.00 1.00 
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Table 3.8 Power in the models with population effect size 0.4 and within-study variance 0.1 

Note. The powers are calculated based on two-tailed Z tests. 

 

 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.96 0.92 0.90 0.86 0.84 0.82  1.00 0.99 0.98 0.97 0.95 0.94 
  0.1 0.93 0.89 0.86 0.84 0.81 0.78  0.99 0.98 0.97 0.95 0.94 0.91 
 ICC2 0.15 0.92 0.88 0.85 0.81 0.77 0.74  0.99 0.97 0.96 0.94 0.92 0.90 
  0.2 0.90 0.86 0.82 0.80 0.75 0.72  0.99 0.97 0.95 0.93 0.90 0.87 
  0.25 0.90 0.83 0.80 0.75 0.71 0.66  0.98 0.96 0.93 0.90 0.86 0.83 
  0.3 0.88 0.81 0.77 0.74 0.68 0.65  0.97 0.95 0.91 0.88 0.85 0.80 

N.study = 4               
  0.005 1.00 0.99 0.98 0.95 0.92 0.90  1.00 1.00 1.00 0.99 0.99 0.98 
  0.1 1.00 0.98 0.96 0.93 0.90 0.86  1.00 1.00 0.99 0.99 0.98 0.97 
 ICC2 0.15 0.99 0.97 0.96 0.92 0.89 0.85  1.00 1.00 0.99 0.99 0.97 0.95 
  0.2 0.99 0.97 0.94 0.90 0.85 0.80  1.00 1.00 0.99 0.98 0.96 0.94 
  0.25 0.99 0.95 0.93 0.88 0.83 0.78  1.00 1.00 0.99 0.97 0.95 0.91 
  0.3 0.99 0.95 0.90 0.85 0.79 0.73  1.00 0.99 0.98 0.96 0.93 0.89 

N.study = 6               
  0.005 1.00 1.00 0.99 0.98 0.96 0.92  1.00 1.00 1.00 1.00 1.00 0.99 
  0.1 1.00 0.99 0.98 0.96 0.93 0.89  1.00 1.00 1.00 1.00 0.99 0.98 
 ICC2 0.15 1.00 0.99 0.97 0.95 0.92 0.88  1.00 1.00 1.00 1.00 0.99 0.97 
  0.2 1.00 0.99 0.97 0.94 0.91 0.86  1.00 1.00 1.00 0.99 0.98 0.96 
  0.25 1.00 0.99 0.97 0.92 0.86 0.82  1.00 1.00 1.00 0.99 0.97 0.94 
  0.3 1.00 0.98 0.94 0.90 0.85 0.78  1.00 1.00 0.99 0.98 0.95 0.91 

N.study = 8               

  0.005 1.00 1.00 0.99 0.99 0.96 0.94  1.00 1.00 1.00 1.00 1.00 0.99 
  0.1 1.00 1.00 0.99 0.98 0.95 0.91  1.00 1.00 1.00 1.00 0.99 0.98 
 ICC2 0.15 1.00 1.00 0.99 0.97 0.94 0.89  1.00 1.00 1.00 1.00 0.99 0.98 
  0.2 1.00 0.99 0.98 0.96 0.91 0.87  1.00 1.00 1.00 1.00 0.99 0.97 
  0.25 1.00 0.99 0.97 0.95 0.90 0.83  1.00 1.00 1.00 0.99 0.98 0.95 
  0.3 1.00 0.99 0.97 0.92 0.87 0.80  1.00 1.00 1.00 0.99 0.97 0.93 

N.study = 10               

  0.005 1.00 1.00 1.00 0.99 0.97 0.95  1.00 1.00 1.00 1.00 1.00 0.99 
  0.1 1.00 1.00 0.99 0.98 0.96 0.91  1.00 1.00 1.00 1.00 1.00 0.99 
 ICC2 0.15 1.00 1.00 0.99 0.97 0.94 0.90  1.00 1.00 1.00 1.00 0.99 0.98 

  0.2 1.00 1.00 0.99 0.97 0.92 0.88  1.00 1.00 1.00 1.00 0.99 0.97 
  0.25 1.00 1.00 0.98 0.95 0.91 0.84  1.00 1.00 1.00 0.99 0.98 0.96 
  0.3 1.00 0.99 0.97 0.94 0.88 0.81  1.00 1.00 1.00 0.99 0.97 0.94 
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Table 3.9 Power in the models with population effect size 0.4 and within-study variance 0.2 

Note. The powers are calculated based on two-tailed Z tests. 

 

 

 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.79 0.72 0.69 0.65 0.62 0.60  0.93 0.88 0.85 0.82 0.77 0.76 
  0.1 0.75 0.68 0.65 0.62 0.59 0.56  0.90 0.85 0.81 0.77 0.74 0.71 
 ICC2 0.15 0.73 0.66 0.62 0.58 0.54 0.52  0.88 0.83 0.79 0.75 0.72 0.69 
  0.2 0.70 0.64 0.59 0.58 0.53 0.50  0.87 0.82 0.78 0.74 0.69 0.65 
  0.25 0.69 0.60 0.57 0.53 0.49 0.46  0.86 0.79 0.73 0.69 0.64 0.61 
  0.3 0.66 0.58 0.55 0.52 0.47 0.46  0.84 0.77 0.71 0.67 0.62 0.57 

N.study = 4               

  0.005 0.95 0.89 0.84 0.79 0.73 0.70  1.00 0.97 0.95 0.92 0.89 0.85 
  0.1 0.94 0.85 0.80 0.74 0.70 0.65  0.99 0.96 0.93 0.89 0.86 0.82 
 ICC2 0.15 0.92 0.83 0.78 0.72 0.68 0.63  0.99 0.95 0.91 0.88 0.83 0.77 
  0.2 0.91 0.81 0.76 0.70 0.63 0.57  0.99 0.94 0.90 0.85 0.80 0.76 
  0.25 0.90 0.78 0.73 0.66 0.60 0.55  0.98 0.93 0.88 0.83 0.78 0.71 
  0.3 0.87 0.77 0.70 0.63 0.56 0.51  0.97 0.91 0.86 0.81 0.74 0.67 

N.study = 6               
  0.005 0.99 0.94 0.90 0.84 0.79 0.73  1.00 0.99 0.98 0.95 0.93 0.87 
  0.1 0.99 0.91 0.87 0.81 0.74 0.68  1.00 0.98 0.96 0.93 0.90 0.85 
 ICC2 0.15 0.98 0.90 0.84 0.78 0.72 0.67  1.00 0.98 0.95 0.92 0.88 0.82 
  0.2 0.98 0.88 0.82 0.75 0.71 0.64  1.00 0.98 0.94 0.91 0.86 0.79 
  0.25 0.96 0.87 0.81 0.73 0.64 0.59  1.00 0.97 0.94 0.88 0.82 0.75 
  0.3 0.96 0.85 0.77 0.70 0.63 0.56  1.00 0.96 0.92 0.86 0.78 0.72 

N.study = 8               
  0.005 1.00 0.97 0.92 0.88 0.80 0.76  1.00 1.00 0.99 0.97 0.94 0.90 
  0.1 1.00 0.94 0.90 0.85 0.78 0.70  1.00 0.99 0.98 0.95 0.92 0.87 
 ICC2 0.15 0.99 0.94 0.88 0.81 0.75 0.69  1.00 0.99 0.97 0.94 0.89 0.85 
  0.2 0.99 0.92 0.86 0.80 0.70 0.66  1.00 0.99 0.97 0.93 0.87 0.81 
  0.25 0.99 0.91 0.84 0.77 0.70 0.60  1.00 0.98 0.95 0.90 0.85 0.78 
  0.3 0.99 0.88 0.81 0.72 0.65 0.57  1.00 0.98 0.94 0.89 0.82 0.73 

N.study = 10               

  0.005 1.00 0.98 0.94 0.89 0.82 0.77  1.00 1.00 0.99 0.98 0.95 0.91 
  0.1 1.00 0.96 0.91 0.86 0.79 0.71  1.00 1.00 0.98 0.96 0.92 0.88 
 ICC2 0.15 1.00 0.95 0.90 0.84 0.76 0.70  1.00 1.00 0.98 0.95 0.91 0.85 

  0.2 1.00 0.95 0.89 0.81 0.73 0.66  1.00 0.99 0.97 0.94 0.89 0.83 
  0.25 1.00 0.93 0.86 0.78 0.71 0.62  1.00 0.99 0.97 0.91 0.86 0.80 
  0.3 1.00 0.92 0.84 0.76 0.68 0.59  1.00 0.98 0.96 0.90 0.83 0.74 
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Table 3.10 Power in the models with population effect size 0.4 and within-study variance 0.3 

Note. The powers are calculated based on two-tailed Z tests. 

 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.65 0.59 0.57 0.52 0.50 0.48  0.83 0.76 0.72 0.69 0.64 0.63 
  0.1 0.62 0.55 0.53 0.50 0.48 0.45  0.78 0.73 0.68 0.64 0.61 0.58 
 ICC2 0.15 0.60 0.54 0.50 0.47 0.43 0.42  0.76 0.70 0.66 0.62 0.58 0.56 
  0.2 0.57 0.52 0.47 0.47 0.43 0.40  0.75 0.69 0.64 0.61 0.57 0.52 
  0.25 0.56 0.48 0.46 0.43 0.40 0.37  0.73 0.65 0.60 0.56 0.51 0.49 
  0.3 0.53 0.47 0.44 0.42 0.38 0.37  0.71 0.64 0.58 0.54 0.50 0.46 

N.study = 4               
  0.005 0.86 0.77 0.71 0.66 0.60 0.57  0.97 0.91 0.87 0.82 0.78 0.73 
  0.1 0.84 0.72 0.66 0.61 0.58 0.53  0.95 0.88 0.82 0.78 0.74 0.68 
 ICC2 0.15 0.82 0.70 0.65 0.58 0.55 0.51  0.94 0.86 0.81 0.76 0.70 0.63 
  0.2 0.80 0.68 0.62 0.57 0.51 0.46  0.94 0.85 0.79 0.72 0.67 0.63 
  0.25 0.79 0.65 0.59 0.54 0.48 0.44  0.93 0.82 0.76 0.70 0.64 0.58 
  0.3 0.75 0.63 0.57 0.50 0.45 0.41  0.91 0.80 0.74 0.67 0.60 0.54 

N.study = 6               
  0.005 0.95 0.84 0.78 0.72 0.66 0.60  1.00 0.95 0.91 0.87 0.82 0.75 
  0.1 0.94 0.80 0.75 0.68 0.61 0.55  0.99 0.93 0.89 0.83 0.78 0.73 
 ICC2 0.15 0.92 0.79 0.71 0.65 0.58 0.55  0.98 0.93 0.87 0.82 0.76 0.69 
  0.2 0.92 0.77 0.69 0.61 0.58 0.51  0.98 0.92 0.85 0.80 0.74 0.65 
  0.25 0.89 0.74 0.68 0.60 0.52 0.47  0.98 0.90 0.84 0.76 0.69 0.61 
  0.3 0.89 0.72 0.63 0.57 0.51 0.45  0.97 0.87 0.82 0.73 0.65 0.59 

N.study = 8               

  0.005 0.98 0.89 0.81 0.76 0.67 0.63  1.00 0.97 0.94 0.91 0.84 0.78 
  0.1 0.98 0.85 0.79 0.72 0.64 0.57  1.00 0.96 0.92 0.86 0.80 0.75 
 ICC2 0.15 0.97 0.84 0.75 0.67 0.62 0.56  1.00 0.95 0.91 0.85 0.78 0.72 
  0.2 0.96 0.81 0.73 0.66 0.57 0.53  1.00 0.94 0.89 0.83 0.75 0.68 
  0.25 0.95 0.79 0.71 0.64 0.58 0.48  0.99 0.92 0.87 0.79 0.72 0.65 
  0.3 0.94 0.76 0.67 0.59 0.52 0.46  0.99 0.91 0.85 0.77 0.69 0.60 

N.study = 10               

  0.005 1.00 0.91 0.84 0.78 0.69 0.64  1.00 0.98 0.96 0.91 0.87 0.80 
  0.1 0.99 0.89 0.79 0.74 0.66 0.58  1.00 0.98 0.94 0.88 0.82 0.76 
 ICC2 0.15 0.99 0.87 0.78 0.71 0.62 0.57  1.00 0.97 0.93 0.86 0.81 0.73 

  0.2 0.98 0.86 0.77 0.68 0.59 0.53  1.00 0.96 0.91 0.85 0.77 0.70 
  0.25 0.98 0.82 0.74 0.65 0.58 0.50  1.00 0.95 0.90 0.80 0.74 0.67 
  0.3 0.97 0.82 0.71 0.63 0.55 0.48  1.00 0.93 0.87 0.79 0.70 0.61 
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Table 3.11 to Table 3.14 show the results when the population effect size is small (0.2). 

Table 3.11 Power in the models with population effect size 0.2 and within-study variance 0.05 

Note. The powers are calculated based on two-tailed Z tests. 

 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.79 0.72 0.69 0.65 0.62 0.60  0.93 0.88 0.85 0.82 0.77 0.76 
  0.1 0.75 0.68 0.65 0.62 0.59 0.56  0.90 0.85 0.81 0.77 0.74 0.71 
 ICC2 0.15 0.73 0.66 0.62 0.58 0.54 0.52  0.88 0.83 0.79 0.75 0.72 0.69 
  0.2 0.70 0.64 0.59 0.58 0.53 0.50  0.87 0.82 0.78 0.74 0.69 0.65 
  0.25 0.69 0.60 0.57 0.53 0.49 0.46  0.86 0.79 0.73 0.69 0.64 0.61 
  0.3 0.66 0.58 0.55 0.52 0.47 0.46  0.84 0.77 0.71 0.67 0.62 0.57 

N.study = 4               

  0.005 0.95 0.89 0.84 0.79 0.73 0.70  1.00 0.97 0.95 0.92 0.89 0.85 
  0.1 0.94 0.85 0.80 0.74 0.70 0.65  0.99 0.96 0.93 0.89 0.86 0.82 
 ICC2 0.15 0.92 0.83 0.78 0.72 0.68 0.63  0.99 0.95 0.91 0.88 0.83 0.77 
  0.2 0.91 0.81 0.76 0.70 0.63 0.57  0.99 0.94 0.90 0.85 0.80 0.76 
  0.25 0.90 0.78 0.73 0.66 0.60 0.55  0.98 0.93 0.88 0.83 0.78 0.71 
  0.3 0.87 0.77 0.70 0.63 0.56 0.51  0.97 0.91 0.86 0.81 0.74 0.67 

N.study = 6               

  0.005 0.99 0.94 0.90 0.84 0.79 0.73  1.00 0.99 0.98 0.95 0.93 0.87 
  0.1 0.99 0.91 0.87 0.81 0.74 0.68  1.00 0.98 0.96 0.93 0.90 0.85 
 ICC2 0.15 0.98 0.90 0.84 0.78 0.72 0.67  1.00 0.98 0.95 0.92 0.88 0.82 
  0.2 0.98 0.88 0.82 0.75 0.71 0.64  1.00 0.98 0.94 0.91 0.86 0.79 
  0.25 0.96 0.87 0.81 0.73 0.64 0.59  1.00 0.97 0.94 0.88 0.82 0.75 
  0.3 0.96 0.85 0.77 0.70 0.63 0.56  1.00 0.96 0.92 0.86 0.78 0.72 

N.study = 8               

  0.005 1.00 0.97 0.92 0.88 0.80 0.76  1.00 1.00 0.99 0.97 0.94 0.90 
  0.1 1.00 0.94 0.90 0.85 0.78 0.70  1.00 0.99 0.98 0.95 0.92 0.87 
 ICC2 0.15 0.99 0.94 0.88 0.81 0.75 0.69  1.00 0.99 0.97 0.94 0.89 0.85 
  0.2 0.99 0.92 0.86 0.80 0.70 0.66  1.00 0.99 0.97 0.93 0.87 0.81 
  0.25 0.99 0.91 0.84 0.77 0.70 0.60  1.00 0.98 0.95 0.90 0.85 0.78 
  0.3 0.99 0.88 0.81 0.72 0.65 0.57  1.00 0.98 0.94 0.89 0.82 0.73 

N.study = 10               
  0.005 1.00 0.98 0.94 0.89 0.82 0.77  1.00 1.00 0.99 0.98 0.95 0.91 
  0.1 1.00 0.96 0.91 0.86 0.79 0.71  1.00 1.00 0.98 0.96 0.92 0.88 
 ICC2 0.15 1.00 0.95 0.90 0.84 0.76 0.70  1.00 1.00 0.98 0.95 0.91 0.85 

  0.2 1.00 0.95 0.89 0.81 0.73 0.66  1.00 0.99 0.97 0.94 0.89 0.83 
  0.25 1.00 0.93 0.86 0.78 0.71 0.62  1.00 0.99 0.97 0.91 0.86 0.80 
  0.3 1.00 0.92 0.84 0.76 0.68 0.59  1.00 0.98 0.96 0.90 0.83 0.74 
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Table 3.12 Power in the models with population effect size 0.2 and within-study variance 0.1 

Note. The powers are calculated based on two-tailed Z tests. 

 

 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.56 0.51 0.49 0.45 0.43 0.42  0.73 0.66 0.65 0.58 0.58 0.52 
  0.1 0.53 0.47 0.45 0.43 0.41 0.39  0.70 0.62 0.59 0.57 0.53 0.49 
 ICC2 0.15 0.52 0.46 0.43 0.40 0.37 0.36  0.68 0.60 0.57 0.54 0.51 0.47 
  0.2 0.48 0.44 0.41 0.41 0.37 0.35  0.66 0.58 0.58 0.50 0.48 0.46 
  0.25 0.48 0.41 0.39 0.37 0.34 0.32  0.63 0.55 0.52 0.50 0.44 0.42 
  0.3 0.46 0.40 0.38 0.36 0.33 0.33  0.60 0.55 0.50 0.46 0.43 0.39 

N.study = 4               
  0.005 0.77 0.68 0.62 0.57 0.51 0.49  0.92 0.83 0.78 0.72 0.67 0.60 
  0.1 0.75 0.62 0.57 0.52 0.50 0.45  0.89 0.80 0.75 0.68 0.64 0.58 
 ICC2 0.15 0.73 0.61 0.56 0.50 0.48 0.44  0.88 0.78 0.71 0.67 0.61 0.56 
  0.2 0.71 0.58 0.53 0.49 0.43 0.40  0.88 0.75 0.70 0.64 0.58 0.53 
  0.25 0.70 0.56 0.51 0.46 0.42 0.38  0.86 0.73 0.66 0.60 0.58 0.51 
  0.3 0.66 0.55 0.49 0.43 0.39 0.35  0.84 0.70 0.63 0.58 0.53 0.47 

N.study = 6               
  0.005 0.89 0.76 0.69 0.62 0.57 0.51  0.98 0.90 0.85 0.79 0.72 0.68 
  0.1 0.88 0.71 0.65 0.58 0.52 0.47  0.97 0.88 0.81 0.75 0.69 0.64 
 ICC2 0.15 0.85 0.69 0.62 0.56 0.50 0.47  0.96 0.86 0.79 0.74 0.66 0.58 
  0.2 0.85 0.67 0.59 0.53 0.50 0.44  0.95 0.84 0.77 0.69 0.64 0.55 
  0.25 0.81 0.64 0.59 0.52 0.44 0.40  0.95 0.82 0.74 0.67 0.60 0.53 
  0.3 0.81 0.63 0.55 0.49 0.44 0.39  0.93 0.79 0.71 0.64 0.56 0.51 

N.study = 8               

  0.005 0.95 0.81 0.72 0.66 0.58 0.54  0.99 0.94 0.88 0.82 0.75 0.68 
  0.1 0.94 0.77 0.69 0.63 0.56 0.49  0.99 0.91 0.84 0.77 0.72 0.66 
 ICC2 0.15 0.92 0.75 0.66 0.58 0.53 0.48  0.99 0.90 0.83 0.76 0.69 0.61 
  0.2 0.91 0.72 0.64 0.57 0.49 0.46  0.98 0.88 0.81 0.73 0.64 0.60 
  0.25 0.89 0.69 0.62 0.55 0.50 0.41  0.98 0.86 0.77 0.70 0.63 0.54 
  0.3 0.88 0.67 0.58 0.50 0.45 0.40  0.97 0.84 0.76 0.66 0.61 0.52 

N.study = 10               

  0.005 0.98 0.84 0.75 0.68 0.59 0.55  1.00 0.95 0.91 0.85 0.77 0.71 
  0.1 0.97 0.81 0.70 0.64 0.57 0.50  1.00 0.94 0.87 0.80 0.74 0.67 
 ICC2 0.15 0.95 0.78 0.69 0.62 0.54 0.49  1.00 0.92 0.86 0.77 0.70 0.63 

  0.2 0.95 0.78 0.68 0.59 0.51 0.45  0.99 0.90 0.84 0.75 0.66 0.60 
  0.25 0.94 0.73 0.64 0.57 0.50 0.42  0.99 0.89 0.79 0.73 0.65 0.56 
  0.3 0.92 0.73 0.62 0.54 0.48 0.41  0.99 0.89 0.78 0.70 0.61 0.54 
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Table 3.13 Power in the models with population effect size 0.2 and within-study variance 0.2 

Note. The powers are calculated based on two-tailed Z tests. 

 

 

 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.38 0.36 0.34 0.32 0.31 0.30  0.52 0.46 0.43 0.42 0.38 0.38 
  0.1 0.37 0.33 0.33 0.31 0.30 0.29  0.48 0.45 0.41 0.38 0.36 0.35 
 ICC2 0.15 0.37 0.33 0.31 0.29 0.27 0.27  0.47 0.41 0.40 0.36 0.34 0.34 
  0.2 0.34 0.31 0.29 0.30 0.28 0.26  0.45 0.41 0.38 0.37 0.35 0.32 
  0.25 0.34 0.29 0.28 0.27 0.25 0.25  0.44 0.39 0.36 0.34 0.31 0.30 
  0.3 0.32 0.29 0.28 0.27 0.24 0.25  0.43 0.38 0.35 0.33 0.30 0.28 

N.study = 4               

  0.005 0.55 0.47 0.43 0.39 0.36 0.35  0.72 0.61 0.57 0.52 0.48 0.45 
  0.1 0.53 0.43 0.39 0.36 0.36 0.32  0.68 0.57 0.52 0.48 0.45 0.41 
 ICC2 0.15 0.51 0.42 0.39 0.34 0.34 0.32  0.66 0.55 0.50 0.46 0.42 0.38 
  0.2 0.49 0.40 0.37 0.35 0.31 0.29  0.66 0.53 0.48 0.44 0.40 0.37 
  0.25 0.49 0.39 0.35 0.33 0.30 0.27  0.64 0.51 0.46 0.41 0.37 0.34 
  0.3 0.46 0.38 0.34 0.30 0.28 0.26  0.61 0.50 0.46 0.40 0.35 0.32 

N.study = 6               
  0.005 0.68 0.54 0.48 0.43 0.39 0.36  0.86 0.68 0.62 0.57 0.51 0.46 
  0.1 0.67 0.49 0.46 0.41 0.36 0.33  0.82 0.64 0.58 0.52 0.48 0.44 
 ICC2 0.15 0.63 0.48 0.43 0.39 0.35 0.33  0.79 0.64 0.56 0.52 0.47 0.41 
  0.2 0.63 0.47 0.41 0.37 0.35 0.31  0.78 0.63 0.54 0.49 0.45 0.39 
  0.25 0.58 0.44 0.41 0.36 0.31 0.29  0.75 0.60 0.53 0.46 0.41 0.36 
  0.3 0.58 0.44 0.38 0.34 0.31 0.28  0.74 0.56 0.52 0.44 0.38 0.35 

N.study = 8               
  0.005 0.77 0.59 0.50 0.46 0.40 0.38  0.92 0.74 0.67 0.62 0.53 0.48 
  0.1 0.75 0.55 0.48 0.45 0.39 0.34  0.89 0.71 0.63 0.55 0.49 0.46 
 ICC2 0.15 0.72 0.53 0.46 0.40 0.37 0.34  0.87 0.69 0.61 0.54 0.48 0.43 
  0.2 0.70 0.50 0.44 0.40 0.34 0.33  0.86 0.68 0.60 0.52 0.45 0.41 
  0.25 0.68 0.48 0.43 0.38 0.35 0.30  0.84 0.64 0.56 0.48 0.43 0.39 
  0.3 0.66 0.46 0.40 0.35 0.31 0.29  0.83 0.62 0.54 0.48 0.42 0.35 

N.study = 10               

  0.005 0.85 0.61 0.53 0.48 0.41 0.38  0.95 0.78 0.69 0.62 0.56 0.50 
  0.1 0.82 0.60 0.48 0.45 0.40 0.35  0.94 0.75 0.66 0.58 0.51 0.46 
 ICC2 0.15 0.79 0.55 0.48 0.43 0.37 0.35  0.93 0.74 0.64 0.55 0.50 0.44 

  0.2 0.77 0.56 0.48 0.40 0.35 0.32  0.92 0.70 0.61 0.55 0.47 0.42 
  0.25 0.76 0.50 0.45 0.40 0.35 0.30  0.89 0.67 0.61 0.49 0.44 0.40 
  0.3 0.72 0.51 0.43 0.38 0.34 0.30  0.89 0.65 0.57 0.49 0.42 0.36 
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Table 3.14 Power in the models with population effect size 0.2 and within-study variance 0.3 

Note. The powers are calculated based on two-tailed Z tests. 

 

  

  N.group = 6  N.group = 10 

  ICC3  ICC3 

N.study = 2  0.005 0.1 0.15 0.2 0.25 0.3  0.005 0.1 0.15 0.2 0.25 0.3 

  0.005 0.31 0.30 0.28 0.27 0.26 0.26  0.42 0.37 0.35 0.34 0.31 0.32 
  0.1 0.31 0.28 0.28 0.26 0.26 0.25  0.39 0.37 0.34 0.31 0.30 0.29 
 ICC2 0.15 0.31 0.28 0.26 0.25 0.23 0.24  0.38 0.34 0.33 0.30 0.29 0.28 
  0.2 0.28 0.26 0.25 0.26 0.24 0.23  0.37 0.34 0.31 0.31 0.29 0.27 
  0.25 0.28 0.25 0.24 0.24 0.22 0.22  0.36 0.32 0.30 0.28 0.26 0.25 
  0.3 0.27 0.25 0.25 0.24 0.22 0.22  0.35 0.32 0.30 0.28 0.25 0.24 

N.study = 4               
  0.005 0.44 0.38 0.36 0.33 0.30 0.30  0.59 0.50 0.47 0.42 0.40 0.37 
  0.1 0.43 0.35 0.31 0.30 0.30 0.27  0.55 0.46 0.42 0.39 0.37 0.33 
 ICC2 0.15 0.41 0.34 0.32 0.29 0.29 0.27  0.53 0.44 0.40 0.37 0.34 0.31 
  0.2 0.40 0.33 0.30 0.29 0.26 0.25  0.53 0.43 0.39 0.36 0.33 0.31 
  0.25 0.39 0.32 0.29 0.28 0.26 0.24  0.51 0.41 0.37 0.34 0.30 0.29 
  0.3 0.38 0.31 0.29 0.26 0.24 0.23  0.49 0.40 0.38 0.32 0.29 0.27 

N.study = 6               

  0.005 0.55 0.43 0.39 0.35 0.32 0.30  0.73 0.55 0.50 0.46 0.41 0.37 
  0.1 0.55 0.40 0.37 0.33 0.30 0.28  0.69 0.52 0.46 0.42 0.39 0.36 
 ICC2 0.15 0.51 0.39 0.35 0.33 0.29 0.28  0.67 0.51 0.45 0.42 0.38 0.33 
  0.2 0.51 0.38 0.33 0.31 0.29 0.26  0.64 0.51 0.44 0.40 0.37 0.32 
  0.25 0.47 0.36 0.33 0.30 0.26 0.25  0.62 0.49 0.43 0.37 0.34 0.30 
  0.3 0.47 0.35 0.32 0.28 0.27 0.25  0.61 0.45 0.42 0.36 0.31 0.30 

N.study = 8               

  0.005 0.64 0.48 0.40 0.37 0.33 0.31  0.82 0.61 0.55 0.50 0.42 0.38 
  0.1 0.62 0.44 0.39 0.37 0.32 0.28  0.77 0.58 0.51 0.44 0.39 0.38 
 ICC2 0.15 0.60 0.43 0.37 0.32 0.30 0.28  0.75 0.56 0.49 0.44 0.39 0.35 
  0.2 0.58 0.41 0.36 0.33 0.28 0.28  0.74 0.55 0.48 0.42 0.37 0.33 
  0.25 0.55 0.38 0.35 0.32 0.30 0.25  0.71 0.52 0.44 0.39 0.35 0.32 
  0.3 0.53 0.37 0.32 0.29 0.27 0.25  0.70 0.50 0.44 0.39 0.35 0.29 

N.study = 10               

  0.005 0.72 0.49 0.42 0.39 0.33 0.31  0.87 0.65 0.56 0.50 0.45 0.41 
  0.1 0.69 0.49 0.38 0.36 0.33 0.29  0.85 0.61 0.54 0.47 0.41 0.38 
 ICC2 0.15 0.66 0.44 0.39 0.35 0.31 0.30  0.82 0.61 0.51 0.44 0.40 0.36 

  0.2 0.64 0.45 0.39 0.33 0.29 0.27  0.82 0.57 0.49 0.44 0.38 0.34 
  0.25 0.63 0.40 0.36 0.33 0.30 0.26  0.77 0.55 0.49 0.40 0.36 0.33 
  0.3 0.59 0.42 0.35 0.31 0.29 0.26  0.78 0.52 0.46 0.39 0.34 0.29 
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The simulation results from Table 3.11 to Table 3.14 indicated that the population effect 

size strongly influenced the power in the three-level meta-regression model. The population 

effect size decreased to 0.2, which indicated a small effect size. Under this scenario, the power 

was high only in the model with a small sampling variance (within-study) and small ICC values 

from higher levels. The power went lower when the within-study variance went higher from 

Table 3.11 to Table 3.14. Especially in Table 3.14, most power values were smaller than 0.8 due 

to a big sampling variance (0.3) and a small population effect size (0.2). Moreover, the third 

level ICC strongly impacted the power. For instance, the cases with a sample size of 100 at the 

last block in Table 3.13 showed good power (>=0.78) with low level-3 ICC (0.05). However, the 

power values (<=0.41) dropped dramatically when level-3 ICC increases to 0.3. Other findings 

were similar to the cases with medium sample size. The third level ICC strongly influenced the 

power when the sample size was small, or the within-study variance was big. The results 

suggested that we should consider the power level when the population effect size is small in the 

three-level meta-regression model. 

To visualize the results from the present simulation study, a heat map is displayed as 

Figure 3.2. There are 20 blocks in the heat map. The y axis indicates the number of studies in 

each group and the x axis indicates the number of groups under two population effect size. In 

each block, the y axis indicates the range of within-study variance from 0.05 to 0.3 (i.e., 0.05, 

0.1, 0.2, 0.3), and under each within-study variance level-2 ICC shows from 0.05 to 0.3 (i.e., 

0.05, 01, 0.15, 0.2, 0.25, 0.3). The x axis shows the range of level-3 ICC from 0.05 to 0.3 (i.e., 

0.05, 01, 0.15, 0.2, 0.25, 0.3). The red color represents the power over 0.8, the white color 

represents the power around 0.8, and the blue color represents the power below 0.2. 
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Figure 3.2 A heat map of power values from simulation 

 

 

The heat map illustrated the same results that when the sample size and population effect 

size went larger, more power values with different variance parameters could be considered as 
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good power size for the weighted average effect size in the three-level meta-analysis. Higher 

level-3 ICC (larger between-group variance) caused lower power in the study. 

 

Discussion 

The present study in Chapter 3 extended the prior work by Hedges and Pigott (2001, 

2004) for the power in meta-analysis regression model. The study followed the procedures of 

calculating power in two-level (random effects) mate-regression model to extend the calculation 

for power in three-level meta-regression model. The between-group variance was introduced to 

the model which indicated that possible correlations existed among studies conducted by same 

research group and lab. The study provided general procedures to find the variance-covariance 

structure for a three-level meta-regression, showed the equations to calculate non-centrality 

parameter in the alternative distribution, and how to use the parameter to detect statistical power 

in three-level meta-regression model.  

The study first explored the power of the weighted average effect size in three-level 

meta-regression model and constructed the variance-covariance matrix used to conduct weights 

in the estimations. A two-level meta-regression model assumed an effect size nested within a 

study. The variance-covariance matrix was diagonal. The diagonal elements were a sum of two 

variance components - the effect size variance (which was known and varies across effect sizes) 

and the between-study variance, which was constant across studies and was estimated. In a three-

level meta-regression model (e.g., where studies were nested within research groups), the 

variance-covariance matrix would be a block diagonal. The diagonal elements in each block 

matrix were a sum of three variance components - the effect size variance (which was known and 

varies across effect sizes), the between-study within-group variance which was constant across 
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studies and was estimated, and the between-group variance with was constant across groups and 

was estimated. The off-diagonal elements of each block matrix were covariances between the 

studies linked to a specific research group. There would be as many block matrices as there are 

groups. The dimensions of these matrices were determined by the number of studies in each 

group. The study then calculated the non-centrality parameter in the alternative distribution to 

detect statistical power for the weighted average effect size in a three-level meta-regression 

model. Each model was followed by a simple illustrated example to show how to compute power 

statistics. 

The groups were assumed as random in the third level in the present study. Potential 

structures could be further discussed. For instance, one condition is to test the groups at the third 

level are not random but fixed, which means the three-level model would flat to a two-level 

model. The variance-covariance matrix would change back to a diagonal matrix instead of a 

block matrix in the three-level model. Similar structures were discussed by Hedge and Pigott 

(2004) in the second level model with moderators. The weighted average effect (weighted grand 

mean) could be computed by calculating a weighted average of the weighted mean effect sizes 

from groups. Generally, compared with a three-level model, the present condition would lead to 

smaller variance. As a result, the non-centrality parameter would be larger, and the power of tests 

would be larger. 

Second, the study explored the power of the moderators (individual regression 

coefficients) in the moderation analysis. Two variance-covariance matrix structures were shown. 

One assumed no random effects of the moderators in the model, and the other assumed the 

random effects of second-level moderators existed at the third level. The latter had the more 

complex variance-covariance structure. The study then calculated the non-centrality parameter in 
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the alternative distribution to detect statistical power for the moderators in a three-level meta-

regression model. Each model was followed by a simple illustrated example to show how to 

compute power statistics. The power statistics of the moderators for meta-regression models in 

the study were low because of the small regression coefficients and large standard errors. The 

low power of moderators in the meta-regression models were similar to the results from Hedges 

and Pigott's work (2004). The insufficient power can cause futile conclusion, thus the moderators 

with low power should be interpreted carefully. Therefore, computing power for moderators in 

meta-analysis seems more important than detecting power for weighted average effect size 

(Hedges & Pigott, 2004). In fact, the moderators or interactions in multiple regression (or called 

moderated multiple regression) usually suffer from a lack of power (Aguinis, 1995; Shieh, 2009). 

The main problem of low power is related to the product variable does potentially not distributed 

normally (McClelland & Judd, 1993). Therefore, to solve the problem, a transformation of the 

interested variables might be necessary if the variables are heavily skewed (Shieh, 2009). 

Structural equation modeling (SEM) was suggested as another possible solution to enhance 

power because the measurement error could be involved in the model (Aguinis, 1995). Based on 

the previous evidence, the present study suggests selecting the potential moderators from prior 

theories and understanding the properties of moderators before the analysis. A good practice is 

also to consider proper sample size and design method before conducting moderated multiple 

regression or moderation analysis in meta-analysis. 

The simulation study showed how different values of parameters could influence the 

power of the weighted average effect size in a three-level meta regression model. Balanced and 

univariate case was considered in the current development.  The values of parameters in the 

simulation covered a wide range of total sample sizes, the values of error terms, the levels of 
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heterogeneity from higher levels, and the population sample sizes. Overall, the simulation study 

demonstrated that high level-3 ICC could cause a small value of power, which indicated the 

meta-analysis might lead to an invalid conclusion of the average sample size, especially in the 

cases with a small sample size or a large (within-study) sampling variance. The small population 

effect size caused small power statistics in the three-level meta-regression model. The findings 

also suggests that a three-level model needs a considerable sample size to ensure a good power 

of the meta-analysis. 

The present study has some limitations. First, the current development focused on the 

univariate cases of three-level meta-regression models. And the simulation study used balanced 

cases to illustrate the final results. Future studies could extend the development to multivariate 

and imbalanced cases in three-level meta-regression models to capture the changes of power. 

Second, all parameters were assumed in the study, and they were not from empirical studies. 

Thus, future studies could use real examples to show how third-level heterogeneity impacts the 

power in the three-level meta-regression model. 
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Appendix A Variable Summary 

 

Table A.1 Variables extracted from ECLS-K:2011 

Variables Description Variable name  Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Reading achievement IRT-based scale scores RSCALK5 X2 X4 X6 X7 X8 X9 

Math achievement IRT-based scale scores MSCALK5 X2 X4 X6 X7 X8 X9 

Science achievement IRT-based scale scores SSCALK5 X2 X4 X6 X7 X8 X9 

ATL Composite continuous variable 

with seven elements 

TCHAPP X2 X4 X6 X7 X8 X9 

EPB Composite continuous variable 

with five elements 

TCHEXT X2 X4 X6 X7 X8 X9 

IPB Composite continuous variable 

with four elements 

TCHINT X2 X4 X6 X7 X8 X9 

Teacher experience Continuous variable (unit: 

years) 

YRSTCH A1 A4 A6 A7 A8 A9 

School enrollment Ordinal variable was recoded to 

continuous variable. 

KENRLS X2 X4 X6 X7 X8 X9 

School SES Ordinal variable was recoded to 

continuous variable. 

FRMEAL X2FLCH2_I 

X4FLCH2_I 

X4FMEAL_I 

X4RMEAL_I 

X6 X7 X8 X9 

Change school Binary indicator (reference 

group: non-change) 

DEST X2 X4 X6 X7 X8 X9 

Age Age at spring kindergarten  X2KAGE_R       

SES Composite continuous variable X12SESL       

Speak non-English at 

home 

Binary indicator (reference 

group: speak English at home) 

X12LANGST       

Gender Binary indicator (reference 

group: male) 

X_CHSEX_R       

Race Categorical variable X_RACHTH_R Generate four binary variables (Black students, Hispanic students, Asian 

students, and Other students) in the study (reference group: White students) 

Note. ATL = Approaches to Learning; EPB = Externalizing problem behaviors; IPB = Internalizing problem behaviors. 



 101 

Table A.2 Descriptive statistics in complete data analysis 

Year    Reading Math Science ATL EPB IPB Enrollment 
School 

SES 

Teacher 

experience 

11 70.80 52.06 34.87 3.20 1.57 1.47 510.21 45.21 14.45 

 14.29 13.04 7.26 0.65 0.59 0.46 216.64 28.61 9.57 

12 97.59 75.13 44.38 3.14 1.69 1.52 517.95 46.11 15.01 

 16.51 14.78 9.95 0.68 0.59 0.49 211.62 27.92 9.74 

13 114.92 92.85 54.03 3.14 1.67 1.56 520.34 46.90 15.41 

 15.67 16.96 11.19 0.68 0.59 0.50 214.41 28.10 9.71 

14 123.17 106.47 61.68 3.14 1.64 1.57 513.57 46.96 14.44 

 14.43 16.74 11.40 0.69 0.59 0.52 217.66 27.88 9.37 

15 131.32 115.14 68.29 3.16 1.60 1.57 515.67 46.65 14.40 

 13.65 16.30 11.30 0.68 0.57 0.53 223.94 28.03 9.28 

16 138.44 122.20 75.10 3.18 1.59 1.55 527.32 47.10 14.29 

 14.14 16.19 11.94 0.69 0.57 0.50 227.83 28.07 8.98 

Total 112.71 93.98 56.39 3.16 1.63 1.54 517.51 46.49 14.67 

 27.15 28.86 17.37 0.68 0.58 0.50 218.81 28.11 9.45 

          

Year 
Change  

school 
Age SES Non-English Gender Black Hispanic Asian Other 

11 0.00 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.00 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23 

12 0.04 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.20 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23 

13 0.01 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.10 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23 

14 0.05 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.23 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23 
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Table A.2 Continued. 

15 0.05 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.22 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23 

16 0.09 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.29 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23 

Total 0.04 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06 

 0.20 4.34 0.80 0.35 0.50 0.27 0.41 0.22 0.23 

Note. In each year, the first row indicates means of the variables and the second row indicates standard deviations of the variables. ATL = Approaches to 

Learning; EPB = Externalizing problem behaviors; IPB = Internalizing problem behaviors. 

 

 

Table A.3 Correlation table of continuous variables (time average) in complete data analysis 

 Reading Math Science ATL EPB IPB Enrollment 
School 

SES 

Teacher 

experience 
Age SES 

Reading 1.00           

Math 0.69 1.00          

Science 0.65 0.68 1.00         

ATL 0.40 0.37 0.28 1.00        

EPB -0.17 -0.14 -0.10 -0.61 1.00       

IPB -0.17 -0.19 -0.12 -0.38 0.29 1.00      

Enrollment 0.00 -0.01 -0.03 0.02 -0.04 -0.02 1.00     

School SES -0.28 -0.29 -0.31 -0.09 0.08 0.04 0.10 1.00    

Teacher experience 0.05 0.05 0.06 0.05 -0.05 -0.01 -0.07 -0.11 1.00   

Age 0.02 0.06 0.08 0.02 0.02 0.02 -0.04 -0.01 0.01 1.00  

SES 0.40 0.40 0.41 0.19 -0.11 -0.09 -0.04 -0.53 0.08 -0.01 1.00 

Note. ATL = Approaches to Learning; EPB = Externalizing problem behaviors; IPB = Internalizing problem behaviors. 
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Appendix B Study Summary and Forest Plots 

Table B.1 Study summary 

Study Year 
Publication 

type 

School 

level 

Single 

timepoint 

Longitu

dinal 
Student type 

Performance 

outcome 
Country Term 

Included in meta-

analysis 

Beisly et al. 2020 Journal Pre-k Yes No Regular 
Reading, 

Mathematics 
USA LRB Yes 

Bodovski 2007 Dissertation 1 Yes No Regular Reading USA ATL Yes 

Brock et al. 2009 Journal K Yes No Regular 
Reading, 

Mathematics 
USA LRB Yes 

Bumgarner et al. 2013 Journal K, 1, 3 No Yes Hispanic Mathematics USA ATL 
No 

(no correlation) 

Bustamante & 

Hindman 
2019 Journal Pre-k Yes Yes Head start 

Reading, 

Mathematics 
USA ATL Yes 

Coté 2018 Dissertation 3 No Yes Regular Reading USA LRB Yes 

Durbrow et al. 2001 Journal Elem Yes No Remote village Combined 
the West 

Indies 
LRB 

No 

(combined 

achievement) 

Durbrow et al. 2000 Journal Elem Yes No Remote village Combined 
the West 

Indies 
LRB 

No 

(combined 

achievement) 

Elliott 2019 Journal K, 3 Yes No Regular 
Reading, 

Mathematics 
USA ATL Yes 

George & 

Greefield 
2005 Journal K, 1 Yes Yes 

Most former 

Head start 
Combined USA ATL 

No 

(combined 

achievement) 

Jackson 2019 Dissertation 1 No Yes Regular 
Reading, 

Mathematics 
USA ATL Yes 

Le et al. 2019 Journal K Yes No Regular 
Advanced 

Mathematics 
USA ATL 

No 

(no correlation) 

Li-Grining et al. 2010 Journal K to 6 No Yes Regular 
Reading, 

Mathematics 
USA ATL 

No 

(no correlation) 

Mattews et al. 2010 Journal 
K, 1, 3, 

5 
Yes Yes Regular Reading USA LRB Yes 

McClelland et al. 2006 Journal K to 6 Yes No Regular 
Reading, 

Mathematics 
USA LRB 

Yes 

(no correlation for 

long-term) 
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Table B.1 Continued 

McGinnis 2009 Dissertation 3 Yes No Regular 
Reading, 

Mathematics 
USA ATL Yes 

McWayne et al. 2004 Journal Pre-k Yes No Head start Combined USA ATL 

No 

(combined 

outcome; no 

correlation) 

Musu-Gillette et 

al. 
2015 Journal k Yes No Regular Reading USA ATL Yes 

Neuenschwander 

et al. 
2012 Journal K Yes No Regular 

Reading, 

Mathematics 
Switzerland LRB Yes 

Ortiz 2014 Dissertation Pre-k Yes No Regular 
Reading, 

Mathematics 
USA ATL Yes 

Razza et al. 2015 Journal K, 4 Yes Yes 
Low income, 

Minority 

Reading, 

Mathematics 
USA ATL Yes 

Ready et al. 2005 Journal K Yes No Regular Reading USA ATL Yes 

Robinson & 

Mueller 
2014 Journal K Yes No Regular Mathematics USA ATL Yes 

Sánchez-Pérez et 

al. 
2018 Journal Elem Yes No Regular 

Reading, 

Mathematics 
Spain LRB Yes 

Sasser et al. 2015 Journal 
Pre-k, 

3 
No Yes Head start 

Reading, 

Mathematics 
USA LRB Yes 

Smith-Adcock et 

al. 
2019 Journal K Yes No Low SES Reading USA ATL Yes 

Stipek et al. 2010 Journal 
K, 1, 3, 

5 
Yes Yes Low income Reading USA LRB Yes 

Sung and 
Wickrama 

2018 Journal K, 1, 2 No Yes Regular 
Reading, 
Mathematics 

USA ATL Yes 

Tach & Farkas 2006 Journal K, 1 No Yes Regular Reading USA ATL 
No 

(no correlation) 

Williams et al. 2016 Journal Elem No Yes Regular Mathematics Australia ARC Yes 

  Note. Elem = elementary school; LRB = Learning-related behaviors; ATL = Approaches to learning; ACR = attentional-cognitive regulation 
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Figure B.1 A forest plot for the relationship between ATL and reading achievement from single 

timepoint designs  

 
 

 

Figure B.2 A forest plot for the relationship between ATL and reading achievement from 

longitudinal designs 
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Figure B.3 A forest plot for the relationship between ATL and mathematics achievement from 

single timepoint designs 

 
 

 

 

 

Figure B.4 A forest plot for the relationship between ATL and mathematics achievement from 

longitudinal designs 
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Appendix C Example Code 

The example code in R is for the simulation study in Chapter 3. The example illustrates the 

results of one block with population effect size equals to 0.2, within-study variance equals to 0.3, 

and 6 groups in the model. 

 

start.time <- Sys.time() #record start time 

set.seed(12345) #set random seed 

 

population <- 0.2 #for example population effect size is 0.2 

vee <- 0.3 #for example within-study variance is 0.3 

n.group <- 6 #for example 6 groups 

n.study <- c(2,4,6,8,10) #number of studies per group 

icc2 <- c(0.005, 0.1, 0.15, 0.2, 0.25, 0.3) #level-2 ICC 

icc3 <- c(0.005, 0.1, 0.15, 0.2, 0.25, 0.3) #level-3 ICC 

 

out <- vector("list") 

for (p in 1:1000){ #1000 times iteration 

  y <- vector() 

  for (k in n.study){ 

    for (i in icc2) { 

      for (j in icc3) { 

        tua2 <- i/(1-i-j)*vee #between-study variance 

        tua3 <- j/(1-i-j)*vee #between-group variance 

        Ai = Diagonal(n=k, x=vee+tua2) + tua3 #var-cov matrix per group 

        a <- list(Ai) 

        group <- n.group - 1 

        for(m in 1:group) {a <- c(a, Ai)} 

        V3 = bdiag(a) #var-cov matrix for a three-level model 

        sd12 = sqrt(tua2+vee) 

        sd3 = sqrt(tua3) 

        tmp2 <- rnorm(k*n.group, mean = 0, sd = sd12) 

        err12 <- tmp2 

        tmp3 <- rnorm(n.group, mean = 0, sd = sd3) 

        err3 <- rep(tmp3, each = k) 

        T <- population + err12 +err3 #observed effect sizes 

        Z <- rep(1, k*n.group) 

        W <- solve(V3) #weight matrix 

        A <- t(Z)%*%W%*%Z 

        B <- t(Z)%*%W%*%T 

        lambda <-(1/A)*B/sqrt(1/A) #non-centriality parameter of z test 

        lambda <- as.numeric(lambda) 
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        #power of the weighted average effect size, two-tailed test, type I error = 0.05 

        power <- 1-pnorm(1.96-lambda)+pnorm(-1.96-lambda)  

        y<-c(y, power) 

      } 

    } 

  } 

  out[[p]] <- as.matrix(y) 

} 

df <- data.frame(matrix(unlist(out), ncol = max(lengths(out)), byrow = TRUE)) 

average <- colMeans(df) #take average 

ID <- rep(1:6, 30) #reframe simulated results 

dataframe<- data.frame(ID,average) 

dataframe<-unstack(dataframe, average~ID) 

 

end.time <- Sys.time() #record ending time 

time.taken <- end.time - start.time 

time.taken #compute running time 
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