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ABSTRACT
THREE RESEARCH TOPICS IN EDUCATION: (1) ASSOCIATIONS BETWEEN
APPROACHES TO LEARNING AND ACADEMIC ACHIEVEMENT; (2) A META-
ANALYTIC REVIEW ON APPROACHES TO LEARNING AND ACADEMIC

ACHIEVEMENT; (3) POWER ANALYSIS IN META-ANALYSIS: A THREE-LEVEL
MODEL

By
Bixi Zhang

This dissertation is a three-piece dissertation, including two empirical research (Chapter 1
and Chapter 2) and a methodological improvement of prior work (Chapter 3), to address issues
of the effects of approaches to learning on academic achievement in childhood and power
analysis for a three-level model in meta-analysis.

Approaches to learning as a key domain of school readiness has shown significant effects
on student academic achievement. The study in Chapter 1 was designed to examine the potential
moderation effects of problem behaviors on the association between approaches to learning and
academic achievement (mathematics, reading, and science) in early grades using a recent
nationwide longitudinal dataset (ECLS-K:2011). The correlated random effects estimation was
applied to deal with the omitted variable issue. At the same time, the estimation method was
allowed to compute the impacts of important time-constant variables (e.g., socioeconomic status)
on academic achievement. The results indicated non-significant moderation effects of problem
behaviors on the relations between approaches to learning and academic outcomes. However, the
main effects of approaches to learning were significant associated with academic achievement.
Complete data analysis and bootstrap with multiple imputation were conducted in the research to
address the missing data issue in large-scale assessments. Similar results were shown in the two

approaches, which demonstrated robust findings in the study.



To better understand the general relations of approaches to learning on academic
performance in childhood in recent years, the study in Chapter 2 conducted a systematic review
employing meta-analytic methodology to combine and summarize the results from empirical
quasi-experimental studies. The study filled the literature gap and extended the theory to
understand the relations between approaches to learning and achievement. The results indicated
medium effect sizes of the relations on approaches to learning and concurrent/future achievement
(reading and mathematics). The effects on reading achievement were slightly larger than the
effects on mathematics achievement. The single timepoint evidence showed stronger effects
compared with longitudinal designs. In conclusion, the meta-analysis emphasized the positive
and significant effects of approaches to learning on academic achievement in childhood.

The methodological improvement in Chapter 3 aimed to address the potential biased
power statistics when introducing group dependence in meta-analysis. The study extended the
prior work about power analysis for two-level random-effects models to three-level models in
the univariate case. The three-level model assumed research teams/labs at the third level. A
three-level random-effects model provides more accurate estimates of power under the
assumption that variability between research teams is not negligible. Each model in the study
was followed by an illustrated example to show how to calculate the power. A simulation study
provided evidence about how group-level heterogeneity affected statistical power in meta-
analysis in the three-level model. The present study introduced more complicated data structures

in meta-analysis and provided the power measures in advanced meta-analytic models.
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CHAPTER 1 APPROACHES TO LEARNING AND ACADEMIC ACHIEVEMENT IN
ELEMENTARY SCHOOL: TESTING MODERATING ROLES OF PROBLEM

BEHAVIOURS

Introduction

When children start their school years, a fundamental aspiration for schoolers is to
prepare school readiness and later success. Schools often focus on children’s cognitive
development (e.g., academic achievement), especially elementary schools, however, approaches
towards learning is another key component that can help students succeed in schools. In 2019,
the U.S. Department of Health and Human Services published a framework of school readiness,
Head Start Early Learning Outcomes (revised version), which was designed to represent the
continuum of learning in early childhood. Approaches to Learning (ATL) was designed as a core
domain in this framework, which refers to the skills and behaviors that children use to engage in
learning activities. ATL is essential for children in early grades which was emphasized by prior
theories and frameworks. Kagan et al. (1995) stated that “ATL frame the child’s entire being and
are at the core of social/emotional and cognitive interactions” (p.28). U.S. Department of Health
and Human Services (2019) claims that supporting skills and behaviors that children use to
engage in learning could help them develop well in all domains and contributes to school success
directly. The improvement and mastery of learning approaches is associated both with students’
school transition, school performance as well as social-emotional outcomes (McClelland &
Morrison, 2003; Atkins-Burnett, 2007). For instance, children who were at kindergarten with

inadequate learning-related skills were at a greater risk in elementary school and lower academic



performance (McClelland et al., 2006). ATL was highly related to kindergarten retention (Hong
& Raudenbush, 2005).

There is an increasing interest in investigating the importance of the effects of learning-
related behaviors on academic outcome in childhood (McClelland & Morrison, 2003).
Considering the potential influence of ATL on student academic achievement, the current study
examines the association between ATL and reading, mathematics and science achievement from
kindergarten to fifth grade, in order to understand generally how ATL have impacts on those
cognitive achievement. In addition, besides ATL, problem behaviors (PB), which is another type
of behaviors that could influence school success significantly, were tested by previous studies.
For example, Malecki et al. (2002) showed that problem behaviors were negatively associated
with academic achievement in elementary school years. Because ATL relates to the behaviors
during learning tasks, problem behaviors could possibly change the association of ATL and
student achievement. However, few longitudinal studies using the evidence from elementary
school test the effect of problem behaviors in the relations between ATL and achievement. The
present study aims to investigate the impact of problem behaviors on the relationship between

ATL and achievement by using a recent national longitudinal assessment.

Literature Review
History of Approaches to Learning
Back to 1970s, Anderson and Messick (1974) created twenty-nine statements which
represented a group of theory-guided components systematically in social competency among
young children. The statements showed some relevant components of learning

dispositions/approaches which were defined later. In 1980s, Katz (1985) emphasized the



importance of learning disposition as one of the three goals for early childhood education.
Leaning dispositions were defined by Katz as “relatively enduring ‘habits of mind’ or the
characteristic ways of responding to experience across types of situations” (p.1). Those
definitions helped later researchers to generate a group of components which represent
approaches toward learning. In 1990s, the Nation Education Goals Panel (NEGP) defined ATL
as “inclinations, dispositions, or styles that reflects the myriad ways that children become
involved in learning.” (Kagan et al., 1995, p.4). Because of the lack of ATL instruments
matching with definitions from NEGP and Katz (Meisels et al., 1996), Atkins-Burnett developed
a rating scale for ATL which covered the considerations from the definitions and met the needs
of the Early Childhood Longitudinal Study (ECLS) in the United States in the late 1990s.
Moving to 21% century, to get a comprehensive understanding about the approaches and
behaviors that students show in the learning process, the Habit of Mind framework was
developed. The framework indicated that learning dispositions, such as persisting and managing
impulsivity, could facilitate children’s thinking and learning, at the same time, building a
thoughtful classroom environment (Costa & Kallick, 2008). Recent framework showed that
academic enablers contributed to achievement (DiPerna et al., 2002; DiPerna & Elliott, 2002).
The academic enablers could help to improve the academic skill so that improve the academic
achievement (DiPerna, 2006). The learning-related behaviors from academic enablers are often
referred to ATL (Anthony et al., 2014). Specifically, ATL includes students’ behaviors,
strategies and attitudes in learning contexts or educational tasks with components such as self-

regulation, persistence and attentiveness (Li-Grining et al., 2010; McWayne et al., 2004).



Approaches to Learning and Academic Achievement

Previous empirical research has shown that ATL reliably predicts student achievement. In
particular, McWayne et al. (2004) found that ATL significantly impacted performance on the
kindergarten version of the Early Screening Inventory, which is a test that reflects children’s
early academic success. ATL significantly predicted gains in science and mathematics among a
group of preschoolers from low-income families (Bustamante et al., 2017). Other studies also
established that several important components from ATL definitions and frameworks were
closely related to academic outcomes in childhood. For instance, behavioral self-regulation and
executive function were strongly related to academic growth in mathematics, literacy and
vocabulary in prekindergarten and kindergarten (McClelland et al., 2014). Children’s emotional
regulation and behavioral self-regulation were also found to be positively related with academic
achievement in kindergarten and early grades (Howse et al., 2003; McClelland & Cameron,
2011). Furthermore, preschooler’s persistence can predict academic achievement in kindergarten
to a greater degree than demographic variables and cognitive-linguistic skills (Mokrova et al.,
2013).

Research has also indicated that higher levels of learning-related skills were linked to
higher reading and mathematics achievement, however, learning-related skills appeared to have a
stronger effect on children’s test scores in kindergarten and early primary school grades than in
later grades (McClelland et al., 2006). Along the same lines, ATL at kindergarten entry was a
reliable predictor of growth in reading and mathematics achievement from kindergarten through
fifth grade (Li-Grining et al., 2010). Moreover, students with higher teacher report ATL ratings
had higher achievement in reading and mathematics in early grades (Hong & Yu, 2007).

Bodovski and Farkas (2007) found that ATL measures had a strong association with



mathematics growth from kindergarten to third grade. Recent research showed that a significant
association between ATL and mathematics achievement from kindergarten to second grades
(Ribner, 2020).

Researchers have also examined the relationship between ATL and student academic
achievement in higher education (Duff et al., 2004). For example, self-regulated learning and
motivation have been linked to academic achievement among undergraduate students (Mega et
al., 2014). In addition, a recent study showed that improvements in self-regulation were related
with higher levels of achievement for college freshmen (Wibrowski et al., 2017).

Trainings and interventions for learning approaches have been utilized to help children
decrease the risk of various problems they may face and improve their learning (Zin, 2004).
Evaluation results indicated that the improvement of ATL would facilitate student academic
performance. Preschoolers who participated in an eight-week self-regulation intervention got
higher academic achievement gain compared with the control group (Schmitt et al., 2015). Perels
et al. (2009) showed that trainings on self-regulative strategies significantly improved student
mathematics achievement. Preventive curricula about enhancing attention skills could be helpful

to improve young children’s future academic success (Rhoades et al., 2011).

The Role of Problem Behaviors in the Relation

Besides ATL, children’s problem behaviors strongly influence students’ school success
in early grades as well. Problem behaviors are stable and could affect later social, emotional and
academic functioning (Campbell, 1995). Previous studies have shown consistently that problem
behaviors are negatively predictive of academic achievement in elementary school (Malecki et

al., 2002; Nelson et al., 2004; Algozzine et al., 2011). In addition, problem behaviors potentially



reflect learning disabilities and emotional disturbance in early grades (Algozzine et al., 2011).
Schaefer and colleagues (2004) found that learning-related behaviors were negatively associated
with problem behaviors in kindergarten. Early problem behaviors predicted lower academic
outcomes and lower rating of approaches to learning, such as attention and persistence
(Bulotsky-Shearer et al., 2011). Razza and colleagues (2015) found that early problem behaviors
in kindergarten could influence the relationship between ATL at age 5 and social competence in
later. However, rare study tested the relationship among ATL, problem behaviors and academic
achievement before. Therefore, the current study hypothesizes that problem behaviors possibly
have moderation effect on the relationship between ATL and academic achievement.

The hypothesized role of problem behaviors in the relationship is called a moderator. A
moderator is a qualitative or quantitative variable that affects the direction and/or strength of the
relation between an independent or predictor variable and a dependent or criterion variable
(Baron & Kenny, 1986). The moderation effect of problem behaviors could also be called the
interaction effect between ATL and problem behaviors in the statistical model. In the current

study, the term “interaction effect” and “moderation effect” would be used interchangeably.

Present Study
The present study moved forward to examine the interaction effect of ATL and problem
behaviors on academic achievement using a nationwide longitudinal dataset. In other words, the
study investigated a more complex mechanism among ATL, problem behaviors and academic
performance. The results of the study shed lighter about how problem behaviors moderated the
association between learning-related skills and academic outcomes in elementary school from a

longitudinal perspective. Additionally, most prior studies applied growth models or traditional



regression models to examine the association between ATL and academic achievement (Li-
Grining et al., 2010; McClelland et al., 2006). However, these methods may potentially suffer
from omitted variable bias. To address this caveat, this study introduced a linear unobserved
effects panel data model, which controlled well for unobserved student-level time-constant
effects. Specifically, the correlated random-effects (CRE) model (Wooldridge, 2005;
Wooldridge, 2010), was proposed first by Mundlak (1978). It can eliminate unobserved
individual time-constant variables effects to get unbiased estimates, meanwhile report estimates
of observed time-constant variables (Wooldridge, 2010). Thus, the CRE estimation is a good fit
to answer the research questions because the data at hand are panel (longitudinal), and in such
cases, this estimation reduces selection bias due to time-constant unobserved variables and could
provide the estimates of relevant time-constant covariates. Therefore, the purpose of this study

was to investigate three research questions:

(1) Is there any interaction effect of ATL and problem behaviors (moderation effect)

on achievement (reading, mathematics, science) in elementary school grades, K-5?

(2) If no moderation effect of problem behaviors exist, does ATL have an effect on

student achievement from kindergarten to fifth grade controlling for problem behaviors?

3) Are any time-constant covariates significant?

The study had following novelties. First, it extended previous works on the relationship

between ATL and achievement from early childhood to the whole childhood by conducting a

longitudinal analysis and introduced problem behaviors as potential moderators in the



association between ATL and achievement. Second, the study used appropriate statistical
methods that control for all unobserved individual-level time-constant effects, at the same time,
provided important observed time-constant effects on achievement. Third, by using the most
recent nationwide longitudinal assessment in education under current demographic environment,
the results were timing and convincing. Fourth, from a practical perspective, the finding could
help educators and teachers understand students’ behaviors better, thus taking quick instructions

and interventions could possibly facilitate students’ learning and school success.

Methods

Data Sources

The Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011)
is a large-scale longitudinal educational assessment survey supported by the National Center for
Education Statistics (NCES), under the U.S. Department of Education. The assessment traced
students for six years from kindergarten (2010) to fifth grade (2016). ECLS-K:2011 is a more
recent dataset that focuses on academic achievement in the 215 century and provides researchers
with an opportunity to analyze data that includes the information of the latest school
developments and effects. Compared with the previous round of ECLS-K (ECLS-K:1998),
policies in education and demographic environment have changed significantly after a decade.
For instance, the policy of No Child Left Behind has been passed and children have broader
choices of schools (NCES, n.d.). In addition, ECLS-K:1998 did not collect information from the
second-grade year and the fourth-grade year. ECLS-K:2011 shows high reliability and validity of
its measurement. The information could get from the User’s Manual for the ECLS-K:2011

Kindergarten-Fourth Grade Data File and Electronic Codebook, Public Version, which was



written and reported by Tourangeau and colleagues (2018). The study could provide more
convening evidence by using ECLS-K:2011 dataset. All measures used in the study were from
spring semester assessment (kindergarten to fifth grade). Table A.1 in Appendix A shows the

name and description of the variables used in the study from ECLS-K:2011.

Outcomes

Children’s reading, mathematics and science IRT scale scores were used as dependent
variables in the analysis. Reading test specifications include basic reading skills, vocabulary,
comprehension, mathematics test specifications include number properties and operations,
measurement, geometry, data analysis and probability, and algebra, and science test
specifications include scientific inquiry, life science, physical science and earth/space science.
The reliability estimates were over 0.90 for each round of reading, mathematics and science
assessments. The high validity of test scores has been verified by a review of standards from the
nation and states, and the frameworks of tests were developed by referring other national
assessment in education (i.e., National Assessment of Educational Progress) (Tourangeau et al.,

2018).

Instruments of Approaches to Learning and Problem Behaviors

The study used teacher-report ATL scores which were constructed by ECLS-K:2011. In
particular, ECLS-K:2011 created a composite score of ATL that consists of seven items about
students’ learning-related behaviors: keeps belongings organized; shows eagerness to learn new
things; works independently; easily adapts to changes in routine; persists in completing tasks;

pays attention well and follows classroom rules. A four-point Likert scale (from 1 to 4) was used



for each item to rate students’ learning behaviors from never to very often. Higher scale scores
indicate that the child exhibited positive learning behaviors more often according to the teacher
(Tourangeau et al., 2018). The Approaches to Learning Scale were developed specifically for
ECLS-K studies. It used the same frequency scale of social skill items, which were adapted from
the Social Skills Rating System (SSRS) by Pearson. The ATL scale has a high internal
consistency reliability (0.91) for each round of assessment in ECLS-K:2011, which was reported
in the psychometrics reports (Najarian et al., 2018a; Najarian et al., 2018b; Najarian et al., 2019).
ECLS-K:2011 statistical/psychometrics team computed a mean score when the respondent
provided a rating on at least four of the seven items. Therefore, the ATL composite score could
be treated as a continuous variable in the analysis.

The study used teacher-report problem behaviors scores constructed by ECLS-K:2011.
The items were adapted from the Social Skills Rating System (SSRS) by Pearson. The problem
behaviors scales include two scales, externalizing and internalizing problem behaviors. The six-
item externalizing behaviors scale measured the frequency with which a child argues, fights, gets
angry, acts impulsively, disturbs ongoing activities, child’s tendency to talk at times when the
child was not supposed to be talking. The four-item internalizing behaviors scale measured the
extent that the child exhibits anxiety, loneliness, low self-esteem, and sadness. A four-point
Likert scale (from 1 to 4) was used for each item to rate students’ problem behaviors from never
to very often (Tourangeau et al., 2018). Both problem behaviors scales have high internal
consistency reliability for each round of assessment in ECLS-K:2011 in spring semester. ECLS-
K:2011 statistical/psychometrics team computed two mean score when the respondent provided
a rating on at least four of the six items from externalizing problem behaviors scale and at least

three of the fourth items from internalizing problem behaviors scale. Thus, two composite scores

10



of externalizing and internalizing problem behaviors used in the study could be treated as a

continuous variable.

Time-Varying and Time-Constant Covariates

The study selected proper time-varying variables as control variables in the model. These
variables include teacher experience, school enrollment and school socioeconomic status (school
SES). Finally, whether students changed schools or not was also included as a covariate in the
statistical analysis. Because the study used teacher-report items as ATL and problem behaviors
measures in the model, controlling teacher’s experience might be beneficial to avoid potential
rating bias. The teacher’s experience was a continuous covariate in the model. School SES was
represented by the variable that showed the percent of students eligible for free or reduced-price
lunch in school. Due to the limitation of the dataset, school enrollment and school SES were
ordinal variables in the dataset. The study recoded them as continuous variables using midpoints
of the initial categories. Changing school or not was a binary variable in the model.

The study also selected proper observed time-constant variables to investigate whether
these variables were the correlates of student academic achievement. These variables included
age, socioeconomic status (SES), speaking non-English at home, gender, and race. Four race
dummies (Black students, Hispanic students, Asian student, and other) were created to examine
race differences in achievement (White students being the reference group). The interaction term

between ATL and SES was included in the model to control the potential influence.
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Missing Data Issue

Because the present study used a secondary large-scale longitudinal dataset, missing data
issue potentially existed in the analysis. The study conducted a complete data analysis first to get
a result from students who continuously provided data from kindergarten to fifth grade. The
study also conducted resampling methods to deal with potential missing values. Bootstrap and
multiple imputation strategy was applied in the study. Bootstrap is a computer-based simulation
method and could reduce the bias and prediction error to achieve high statistical accuracy (Efron
& Tibshirani, 1986). Multiple imputation is shown as a convenient and popular paradigm in the
analysis of missing data (Schafer, 1999). The combination of bootstrap and multiple imputation
is possible to deal with missing data issue and get robust results. Such strategy has been
discussed and used in the previous studies (Comulada, 2015; Schomaker & Heumann, 2018). In
detail, the study resampled the incomplete data with missing, then conducted multiple imputation
with five times to get imputed data points for the dataset. The next step was to estimate the
coefficients by using the same model in the complete data analysis. The analysis did bootstrap
1000 times to get more robust results. Every time the study resampled the data and imputed the
missing data would give standard errors that account for the imputation. Therefore, the study

would get the regression coefficients and the bootstrap standard errors.

Participants
The complete data analysis included 5735 students who had all data information in the
six time periods. The bootstrap with multiple imputation analysis included over 10000 students

(10702) who had part of information from the dataset.
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Statistical Analysis

The present study applied a linear unobserved effects panel data model, which is called
the correlated random effects (CRE) model, to find the potential relationships among ATL,
problem behaviors and academic achievement in early grades. CRE approach allows us to
include time-constant variables and simultaneously delivers the fixed effects estimates of the
time-varying variables. The CRE model produced the coefficients of interest (i.e., ATL, problem
behaviors, and the interaction between ATL and problem behaviors) where the potential impact
of the time-constant confounding variables was removed (under the assumption that the fixed
effects are linear). To conduct this analysis, the study used the panel data from six time periods

(kindergarten to fifth grade).

Introduction to Correlated Random Effects Model

A linear unobserved effects panel data model is displayed in Equation (1.1). It presents a
general equation of a linear unobserved effects panel data model with time-varying measure of
the interested variables (x;,), time-varying covariates (w;;), time dummies (D,), and individual-
level unobserved time-constant effect (c;). The model could be treated as a fixed effects model in
panel data analysis. Traditional fixed effects model could get the coefficients of time-varying
variables. However, the estimations of observed time-constant variables are unavailable. The
main idea of CRE model is to use time-constant and time-average variables to model the
unobserved individual effect. An example of a CRE model is shown in equations as:

Yie = XiueB + WiV + D6 + ¢; + wye, (1.1)

Ci = l/}+Z,11+)_(,§+v_V,(+al (12)
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Equation (1.2) separates the individual-level unobserved time-constant effect into several parts,
including an intercept (), time average of measure the interested variable (x;), time-constant
covariates (z;), and time averages of time-varying covariates (w;). Therefore, Equation (1.2)
allows c; to be correlated with the time-varying variables through its average levels over time
(where v is the intercept and a; is the error term) (see Wooldridge, 2010). To note that variables
and parameters are in boldface indicate vectors in the equations.

Thus, replacing c; in Equation (1.1) by using the model in Equation (1.2) could get the
CRE estimating equation:

Yie = XigB + WiV + D8 +zin + ¢ + X, + Wil + vy, (1.3)
where v;; = a; + u;; are the composite error at time period t. The error term is a sum of two
parts error from Equation (1.1) and (1.2). From Equation (1.3), the CRE model allows us to get
the estimates of the interested independent variables (x;,) and time-constant variables (z;) from a
single estimation model.

Traditional models in panel data analysis are the fixed-effects and random-effects
estimation. The fixed-effects model is highly used in research because it allows the correlations
between the unobserved heterogeneity and time-varying predictors (Wooldridge, 2005).
However, these two approaches could not compute time-constant estimators. The CRE model
has its advantages in getting the estimations of time-constant effects. At the same time, the CRE
model can obtain the same estimators from the fixed-effects model. Thus, it increases flexibility
in a straightforward model with a decomposition of within and between effects and combines

advantages of fixed effects and random effects estimation (Schunck, 2013).
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Correlated Random Effects Model with Interactions

The present study aimed to investigate the relationship between ATL and academic
approaches to learning, and the potential moderation effects of problem behaviors in the relation.
Univariate analyses were conducted in the study, which means the study had three similar
models with different academic outcomes. The interaction terms (testing moderation effects) in
the model were the products of time-demeaned variables. Thus, the interaction terms represented
the within-unit association between interested variables (ATL) and outcome (academic
achievement) with the intra-unit variation of the moderators (problem behaviors). These terms
could control the effect of heterogeneity (Giesselmann & Schmidt-Catran, 2020). And it could
avoid the potential multicollinearity of the main variables. Therefore, the CRE model with

interaction terms could be written as:

Vie = XitB + (Xip = X;) X Wi — Wi )A+ wpy + 0@+ D6+ zim + P + X,

+ X=X )X (W —wW)p+w; {+0;¢+ v, (1.4)

where t = K spring, 1% spring, ..., 5™ spring (six time periods),

v, IS the reading/mathematics/science IRT score in time t for individual i,

X;¢ 1S the ATL measure in time t for individual i,

w;, are problem behaviors (externalizing and internalizing) measures in time t for individual i,
n;, are proper time-varying covariates in time t for individual i,

z; include proper observed time-constant covariates for individual i,

D, are time dummies (controlling for time/grade effects),

x; Is the time average of ATL measure for individual i,
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w; are the time average of problem behaviors for individual i,

n; are the time average of time-varying covariates for individual i,

Y is the intercept and a; is the error term from c; for individual i,

And v;; = u; + a; is the error term, where u;, is the error term from the unobserved effects
model.

Note. Variables and parameters are in boldface indicate vectors.

Clustered robust standard errors were obtained to correct for potential heteroskedasticity
and correlation in the residuals caused by clustered structure and making fully robust inference.
The analysis also included time dummies D, to account for aggregate changes over time (the
reference group was spring kindergarten). Failure to control for time effects can induce serial
correlation in the residual u;, (Wooldridge, 2010). The interaction between demeaned ATL and
SES was added into the model as time-varying covariate to control the potential influence.
Feasible generalized least squares (feasible GLS) estimation was conducted to estimate the
model. Specially, this study was interested in following parameters: the interaction effects of
ATL and problem behaviors (moderation effects of problem behaviors) (4), the main effects of
ATL and problem behaviors () and (y) if there were no interaction effects, and the effects of

observed time-constant variables on the achievement (n).
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Results

Complete Data Analysis

The descriptive statistics and correlation coefficients of the variables in the study are
summarized in Appendix A Table A.2 and Table A.3. The results from the CRE estimation using
complete data are presented in Table 1.1, Table 1.2 and Table 1.3. The regression coefficients of
interactions between ATL and problem behaviors were non-significant for all three subjects
(Table 1.1), which indicated that there were no moderation effects of problem behaviors in the
relation between ATL and academic performance. The main effect of ATL was statistically
significant for reading (8 = 1.394, p <.05), mathematics (8 = 0.848, p <.05), and science
achievement (8 = 0.431, p <.05), when controlling for problem behaviors and other covariates.
However, two types of problem behaviors - externalizing problem behaviors (EPB) and
internalizing problem behaviors (IPB) did not show significant effects on academic achievement

when controlling for learning-related behaviors and other covariates in the model.

Table 1.1 Interactions and main effects in complete data analysis

Reading Mathematics Science
ATL 1.394" 0.848" 0.431"
(0.116) (0.109) (0.082)
EPB -0.162 -0.075 -0.034
(0.131) (0.130) (0.099)
IPB 0.135 -0.012 -0.082
(0.118) (0.112) (0.087)
ATLXEPB -0.458 -0.199 0.382
(0.289) (0.259) (0.201)
ATLXIPB 0.093 0.173 -0.315
(0.281) (0.264) (0.202)

Note. p* <.05. Clustered robust standard errors are shown in parentheses. Sample size = 5735.
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The CRE model allows the estimations of time-constant variables while getting the same
estimations of time-varying variables from the fixed effects estimation. The longitudinal study
results indicated that student SES, gender, English learner status, and race significantly impacted

academic achievement (see Table 1.2).

Table 1.2 Coefficients of time-constant covariates in complete data analysis

Reading Mathematics Science
SES 3.574" 3.297" 2.511°
(0.210) (0.219) (0.158)
Female -0.177° -6.918" -3.017"
(0.274) (0.289) (0.208)
Non-English at home -3.446" -2.047" -3.153"
(0.463) (0.484) (0.358)
Age -0.040 0.045 0.055"
(0.030) (0.033) (0.024)

Race/Ethnicity: Reference group — White students

Black -2.077" -8.172" -5.206"
(0.510) (0.553) (0.393)
Hispanic -0.636 -3.244" -2.486"
(0.422) (0.439) (0.323)
Asian 2.133" 1.732" -0.434
(0.627) (0.650) (0.483)
Other 1.029 -0.671 -0.198
(0.550) (0.617) (0.439)

Note. p* <.05. Clustered robust standard errors are shown in parentheses. Sample size = 5735.

In detail, the students with higher SES got higher scores in reading, mathematics, and
science from kindergarten to fifth grade. Female students had lower average scores compared

with their male peers, especially in mathematics. English learners had lower academic
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achievement from kindergarten to fifth grade. The reference group of race and ethnicity in the
model is white students. Compared with white students, black and American African students
got lower scores in three subjects. Hispanic students had a similar average reading score but
lower math and science score. Asian and Asian American students got higher achievement scores
in reading and mathematics, but not in science. Students in other races had no significant
difference in reading, mathematics and science achievement. Age only shows a significant effect
on science performance.

Other covariates in the CRE model were time-varying variables which were controlled in
the model. Table 1.3 summarized the estimation results. The results found that time-varying
covariates from teacher and school’s characteristics (i.e., teacher experience, school enrolment
and school SES) did not influence achievement significantly (Table 1.3). Also, students who
changed school at each grade and the interaction between ATL and student SES did not
significantly impact academic achievement from kindergarten to fifth grade. Time dummies in
the model were significant, which indicated that grade effects exist in the model. Controlling the

grade effects (time effects) is necessary in the CRE model.
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Table 1.3 Coefficients of time-varying covariates in complete data analysis

Reading Mathematics Science
Teacher Experience -0.002 0.003 0.003
(0.005) (0.004) (0.004)
School Enrollment -0.001 -0.001 <0.001
(0.001) (<0.001) (<0.001)
School SES <-0.001 -0.005 -0.004
(0.005) (0.005) (0.003)
Change School -0.226 0.379 0.266
(0.217) (0.209) (0.162)
ATLXSES -0.081 0.011 -0.014
(0.137) (0.126) 0.095

Time Dummies: Reference group - Kindergarten Spring

1%t Spring 26.896" 23.118" 9.527*
(0.151) (0.117) (0.087)
27 Spring 44.223" 40.858" 19.199"
(0.166) (0.146) (0.105)
314 Spring 52.472* 54.454" 26.837"
(0.172) (0.156) (0.111)
4% Spring 60.593" 63.110* 33.443"
(0.165) (0.157) (0.114)
5t Spring 67.692* 70.149* 40.233"
(0.178) (0.157) (0.126)

Note. p* <.05. Clustered robust standard errors are shown in parentheses. Sample size = 5735.

Bootstrap and Multiple Imputation

Overall, 10702 students were included in the bootstrap and multiple imputation analysis.
Those students had their achievement outcomes in reading, mathematics and science in six time
periods, but some independent variables (time-varying and time-constant variables) were missing

at some time periods. The missing rate of the main predictors (ATL and problem behaviors) is
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about 10%. The regression coefficients shown in the following tables were the averages from
1000 times bootstrap with multiple imputation and the standard errors came from the bootstrap
inference. The CRE model in the section was same as the model in the complete case analysis.
The coefficients of the interested variables and time-constant variables from bootstrap with
multiple imputation are discussed in the section.

Table 1.4 presents the interaction effects and main effects from bootstrap with multiple
imputation. The results for reading and mathematics achievement (coefficient directions and

significant levels) were similar to the results from the complete data analysis.

Table 1.4 Interactions and main effects in bootstrap and multiple imputation

Reading Mathematics Science
ATL 1.093" 0.736" 0.283"
(0.083) (0.079) (0.059)
EPB -0.171 -0.155 -0.185"
(0.096) (0.090) (0.074)
IPB -0.057 -0.060 -0.057
(0.080) (0.081) (0.061)
ATLXEPB -0.062 -0.036 0.283
(0.202) (0.176) (0.154)
ATLxIPB -0.217 0.046 -0.283"
(0.200) (0.182) (0.141)

Note. p* <.05. Bootstrap standard errors are shown in parentheses. Sample size = 10702.

The coefficients of problem behaviors were larger than the model using complete data,
but there were no interaction effects between ATL and problem behaviors. The coefficients of
ATL in the bootstrap sample were smaller than the coefficients in the previous analysis.

However, the main effects of ATL were still positive and significant on reading (8 = 1.093, p
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<0.5) and mathematics (£ = 0.736, p <.05) when controlling for problem behaviors and other
covariates in the CRE model. The bootstrap standard errors were smaller than the clustered
robust standard errors in complete data analysis. The 95% confidence intervals (95% CI) of the
bootstrap coefficients (Table 1.5) showed the range of possible values of the regression
coefficients from bootstrap and multiple imputation. The results were consistent with the
previous findings.

The results for science achievement were slightly different from the previous results. The
interaction between ATL and internalizing problem behaviors was significant (8 = -0.283, p
<.05). It indicated that the effect of ATL on science achievement decreased among the students
with higher internalizing problem behaviors. The main effect of externalizing problem behaviors
was significant on science (8 = -0.185, p <.05), which demonstrated students with higher
externalizing problem behaviors would have lower science scores. However, when we look at
the 95% confidence intervals from Table 1.5, the upper bound of confidence interval of the
interaction term (ATLxIPB) and the main effect (EPB) were very close to zero. Thus, it might
suggest the effect of interaction between ATL and internalizing problem behaviors and the main
effect of externalizing problem behaviors might not be considerable. When we go back to look at
the results in the complete data analysis, these two coefficients were close to the range of 95%
confidence interval in the simulation analysis, it demonstrated that the differences are due to the

data processing methods. However, the differences were not influential.
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Table 1.5 The 95% CI of interactions and main effects in bootstrap and multiple imputation

Reading Mathematics Science
ATL [0.930, 1.256] [0.582, 0.898] [0.166, 0.399]
EPB [-0.360, 0.018] [-0.320, 0.022] [-0.330, -0.040]
IPB [-0.213, 0.099] [-0.219, 0.099] [-0.178, 0.063]
ATLXEPB [-0.459, 0.334] [-0.382, 0.310] [-0.020, 0.585]
ATLXIPB [-0.609, 0.176] [-0.310, 0.401] [-0.559, -0.007]

Note. Sample size = 10702.

Figure 1.1 to Figure 1.3 display the distributions of ATL coefficients from bootstrap with
multiple imputation on different academic achievement (reading, mathematics and science). The
distributions showed the range of bootstrap ATL coefficients. It also suggests that the data-based
simulation resampling method works on the problem and the coefficients are normally

distributed because of a large number of repeated times (1000 times).

Figure 1.1 The distribution of ATL coefficients from bootstrap for reading
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Figure 1.2 The distribution of ATL coefficients from bootstrap for mathematics
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Figure 1.3 The distribution of ATL coefficients from bootstrap for science
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The results from Table 1.6 indicates the coefficients and standard errors of time-constant
variables in bootstrap with multiple imputation analysis. The results (coefficient directions and
significant levels) were very similar to the results from the complete data analysis. The effect of
age was significant for all three subjects, which differed from the results in the complete case
analysis. However, compared with other time-constant covariates, the size of age effect was not

large.
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Table 1.6 Coefficients of time-constant covariates in bootstrap and multiple imputation

Reading Mathematics Science
SES 3.646" 3.920° 2.545"
(0.168) (0.178) (0.121)
Female -1.393" -6.535" -3.000"
(0.195) (0.217) (0.160)
Non-English at home -2.045" -1.131° -2.787"
(0.308) (0.321) (0.237)
Age 0.072" 0.162" 0.150"
(0.023) (0.025) (0.018)

Race/Ethnicity: Reference group — White students

Black -1.910" -7.200" -5.012"
(0.384) (0.407) (0.266)
Hispanic -1.122° -3.280" -2.502"
(0.305) (0.319) (0.154)
Asian 1.667" 2.520" -0.658"
(0.373) (0.409) (0.279)
Other 0.601 -0.860 -0.478
(0.464) (0.479) (0.337)

Note. p* <.05. Bootstrap standard errors are shown in parentheses. Sample size = 10702.

The bootstrap standard errors were smaller than the clustered robust standard errors in
complete data analysis. The 95% confidence intervals from Table 1.7 also indicated the similar
results. The findings confirmed that demographic variables are strongly influence the academic

trajectories of reading, mathematics and science in early grades in recent years.

25



Table 1.7 The 95% CI of time-constant covariates coefficients in bootstrap and multiple

imputation
Reading Mathematics Science
SES [3.318, 3.975] [3.043, 3.740] [2.308, 2.782]
Female [-1.775, -1.010] [-6.961, -6.110] [-4.391, -2.683]
Non-English at home [-2.649, -1.441] [-1.759, -5.027] [-3.252, -2.322]
Age [0.026, 0.118] [0.133, 0.211] [0.080, 0.150]
Race/Ethnicity: Reference group — White students
Black [-2.663, -1.157] [-8.000, -6.403] [-5.534, -4.490]
Hispanic [-1.719, -0.524] [-3.906, -2.655] [-2.934, -2.071]
Asian [0.935, 2.398] [1.717, 3.322] [-1.204, -0.112]
Other [-0.309, 1.511] [-1.800, 0.079] [-1.137, 0.182]

Note. Sample size = 10702.

Discussion

The empirical study in Chapter 1 investigated the moderation effect of problem behaviors
on the relationship between ATL and achievement using a recent longitudinal dataset in
education. The CRE model was applied in the study to control the omitted bias issue better. At
the same time, the model could provide the estimations of the effects of critical time-constant
variables (e.g., demographic variables) on the outcomes. The study conducted two parts of
analyses, complete data analysis and bootstrap with multiple imputation analysis. The second
analysis aimed to deal with the missing data issue and showed the possibility of the strategy in
panel (longitudinal) data analysis.

The results from complete data analysis and bootstrap with multiple imputation indicated
no significant interactions between problem behaviors (externalizing and internalizing) and ATL

on reading and mathematics achievement from kindergarten to fifth grade. In other words, the
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moderation effects of problem behaviors non-significantly impacted the relationship between
ATL and academic achievement. It indicated that students with different degrees of problem
behaviors had a similar relationship between their learning-related behaviors and cognitive
testing scores. However, the main effects of ATL were significant when controlling for problem
behaviors, which suggested that ATL was strongly associated with academic achievement in
early grades. The results were consistent with the previous findings that ATL was an important
indicator for academic trajectories in childhood (Li-Grining et al., 2010; McClelland et al.,
2006). The findings also showed that the effect of ATL on reading achievement was more
significant than the effect on mathematics. However, the main effects of problem behaviors on
achievement were non-significant when controlling for ATL. The finding was also consistent
with the result from McWayne’s study (2004), which showed that behavioral problems did not
influence the academic success significantly when controlling ATL among students in preschool.
The present study extended the results to elementary grades and provided a robust evidence from
longitudinal perspective. The results from two statistical analyses on science achievement
showed some differences. One possibility is that the internalizing problem behaviors affected the
relationship between ATL and science performance. However, the moderation effect was around
a significant level. It might be more sensitive to the data size in this case. Therefore, the effect
was detected only by the complete data analysis.

Based on the results from a nationwide large-scale educational data with a group measure
of ATL, the findings showed more convincing evidence that children should have some
instruction about “how to learn” during their school years to help them achieve higher cognitive

performance. Considering “ATL frame the child’s entire being and are at the core of
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social/emotional and cognitive interactions (Kagan et al., 1995)”, the empirical results suggest
that ATL is worthwhile to gain more attention from educators and policymakers.

From a practical perspective, the findings of this study imply that interventions and
training are important to help students build learning-related skills in early grade. Indeed,
teachers and parents could play a crucial role in improving ATL. Previous studies have found
that learning-related skills could be improved in daily learning activities in the classroom or at
home. For example, tutoring inattentive students helped them perform better in reading (Rabiner
et al., 2004). Moreover, students could be trained to develop self-regulation skills during
homework activities (Ramdass & Zimmerman, 2011). Students whose parents participated more
in a learning-related behavioral intervention got better outcomes to a greater extent (McCormick
et al., 2016). An eight-week class-based intervention on self-regulation was helpful for children
to enhance school readiness and improve academic achievement in preschool, especially for
English language learners (Schmitt et al., 2015). A famous intervention is called Tools of Mind,
which was designed to foster children’s regulation skills and attention (Bodrova & Leong, 1996;
Bodrova & Leong, 2019). Thus, it could improve children’s skills of social competency and
ATL. The Tools of Mind curriculum applies in class with regular teachers. Teacher guide 40
small activities, such as self-regulatory private speech, dramatic play, and provide dynamic
instructional and emotional support depending on children’s accomplishment (Diamond et al.,
2007). As a result, both teachers and parents are presented with great opportunities to facilitate
learning approaches during routine learning activities either in school or at home. Although
focusing on effective teaching and instruction are key enablers of learning, the results suggest

that helping students build great learning-related behaviors continuously in early grades is
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important as well. Hence, it may be beneficial to encourage educators and parents to provide
appropriate training to students in early grades to improve their learning-related skills.

The present study applied a CRE model, which could get the same estimations of time-
varying variables from a fixed effects estimation model. Meanwhile, the important time-constant
variables could be evaluated in the same model. Student SES, gender, English learner status and
race/ethnicity were included in the model to investigate the effects on academic achievement
from the recent longitudinal large-scale dataset. The results presented that most demographic
variables significantly influenced academic performance. Specifically, student SES showed a
substantial effect on reading, mathematics and science achievement. Female students showed a
lower score in mathematics than male students significantly. English learners had lower
academic performance in three subjects. Also, the students with different races/ethnicities
performed differently in three subjects in early grades. The results suggested that those
differences in demographic variables related to students’ academic and cognitive performance in
the current education systems. Educators and policymakers need to keep reforming education to
close the gaps.

The study also used a strategy to deal with missing data from the dataset. Multiple
imputation is widely used in the research with missing data. The bootstrap is a statistical
inference method based on resampling from the data. Each coefficient after bootstrap has a
distribution and the bootstrap standard error is computed to support a robust inference. The
combination of these two methods helps to get a robust result when dealing with the missing
data. The comparison between the coefficients from two analyses (complete data analysis and
bootstrap with multiple imputation) in the chapter showed the similar results for the main

variables, including the directions and significant levels of the regression coefficients. The
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bootstrap standard errors were smaller than the robust clustered standard errors. It is possible
because when applying multiple imputation to deal with missing data issues, the total sample
size increases. Overall, the results suggested that the complete data analysis could reflect the
existing effects on academic growth. Also, it demonstrated that the bootstrap with multiple
imputation works for the panel data analysis.

Although the coefficient directions and statistical inferences were very similar in the two
approaches, the values of coefficients from the two approaches possibly had some differences.
For instance, the coefficients of interactions and main predictors were smaller in the second
approach with more minor standard errors. Future work could include additional tests to test the
value differences between the same coefficients from complete case analysis and bootstrap with
multiple imputation. Advanced tests might be involved due to the dependence of the coefficients.
Additionally, the Hausman test (Hausman, 1978) could be added to compare the differences
statistically between regression coefficients in different methods (fixed-effects vs. random-
effects), thus determining the best approach for the data.

Future work could also consider more complex structures based on the CRE model. For
instance, it is possible to model fixed effects as having varying effects over time, such as testing
the time-varying effects of the time-constant covariates in the model. Potential mediators or
moderators (e.g., psychological functioning) might be taken into account in the relationship

between ATL and academic achievement in childhood.
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CHAPTER 2 A META-ANALYTIC REVIEW ON THE RELATIONS BETWEEN
APPROACHES TO LEARNING AND ACADEMIC ACHIEVEMENT IN CHILDHOOD

FROM QUASI-EXPERIMENTAL EVIDENCE

Introduction

The previous chapter focused on a longitudinal study of ATL and achievement
considering moderation effects of problem behaviors. Although previous evidence has
demonstrated that the components of ATL had strong associations with academic achievement,
DiPerna and Elliott (2002) suggested building a more comprehensive model to understand
contributions of the combinations of enablers (including learning approaches). The present
chapter extended the external validity of the studies. A systematic review with meta-analysis was
conducted to get a general understanding of the relationship between ATL and academic
achievement in childhood from quasi-experimental evidence. Meta-analysis is widely used in
psychology, social science, and medicine. It is a quantitative method to summarize the results of
several empirical research studies from similar topics (Hedges, 1992). It refers to statistical
modeling in systematic reviews. Meta-analysis offers a rigorous methodology for quantitative
research synthesis, follows specific guidelines/criteria, and has structured processes. Thus, it has
high external validity and greater statistical power from measurement perspectives, and it is
considered an evidence-based resource.

One prior meta-analysis was conducted to detect the effects of learning-related skills
interventions on student learning in the late 90s. Hattie and co-researchers (1996) found a mean
weighted effect size of learning-related skills on achievement was 0.45 with a standard error of

0.03. The effect size indicates a medium effect size. Moderation effects of age and academic
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ability were found in their study. In detail, the interventions conducted in primary schools
showed the strongest effect size, and students with medium ability showed the strongest effect
size. However, that study focused on intervention designs. Only a small proportion of studies in
the meta-analysis had a similar definition of ATL. Also, the meta-analysis was published nearly
25 years ago, new and recent evidence is not available. Additionally, some previous meta-
analyses mainly focused on one specific component of ATL and how to improve it, but they did
not test the effects on academic achievement. For instance, Dignath et al. (2008) examined the
effects of students learn self-regulated learning strategies in elementary school on several self-
regulation training programs. Therefore, to fill the gap, the present meta-analysis using recent
evidence would provide a general view of ATL components' associations and achievement in

early grades among quasi-experimental designs.

Literature Review
As mentioned in Chapter 1, ATL faded in educational researchers’ sight at the end of the
last century. ATL was considered as the least research domain for school readiness (NEGP,
1991). However, ATL as a general domain related to learning might be the most critical indicator
for school readiness because the components of ATL might serve as “causal protective resilience
factors during the transition to school” (George & Greenfield, 2005, p.70). The U.S. Department
of Health and Human Services also suggests ATL as a key domain contributing to school success
directly (U.S. Department of Health and Human Services, 2019). To emphasize that ATL is
separated from social-emotional learning as an independent school readiness domain by the

framework. The following paragraphs in the section review the common measurement scales of
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ATL components and the prior findings of the relationship of ATL and academic achievement in

early grades from different quasi-experimental research designs.

How to Measure

Prior studies mainly used two tools to measure children’s ATL or learning-related
behaviors. Atkins-Burnett developed a rating scale of ATL for ECLS in the 1990s. The rating
scale has been used in two rounds of ECLS assessment (ECLS-K:1998 and ECLS-K:2011) for
measuring students’ learning approaches in early grades. Studies used ECLS datasets (e.g., Li-
Grining et al., 2010; Tach & Farkas, 2006; Robinson & Mueller, 2014) usually choose the ATL
composite score as a measure of ATL. The composite score was computed by the ECLS research
team considering the missing rate of the items. The ATL instruments include seven components
related to behaviors, inclinations, and dispositions during learning activities. The ECLS datasets
provide both teacher rating and parent rating score of ATL. Some studies (e.g., Razza et al.,
2015) extracted and adjusted the ECLS scale of ATL and used it to measure ATL in their own
studies.

On the other hand, ATL was measured by learning behaviors scales in previous studies.
Preschool Learning Behaviors Scale (PLBS) was developed by McDermott et al. (2000) to assess
3 to 5-year-old preschooler’s learning-related behaviors. Three dimensions, including
Competence Motivation, Attention/Persistence, and Attitude Toward Learning, are measured by
29 items. Further, McDermott and co-researchers tested its validation and evidenced that the
scale provided a structured and robust measure of learning-related behaviors (McDermott et al.,
2002; McDermott et al., 2012). Learning Behaviors Scale (LBS) is similar to PLBS, but it was

developed for older children in kindergarten, elementary and secondary school (McDermott,
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1999). Compared with PLBS, it has one more dimension, which is called Strategy/Flexibility.
Both scales are teacher rating scales. Other researchers (e.g., McWayne et al., 2004; Durbrow et
al., 2001; Rikoon et al., 2012) applied these scales to their studies as a measurement tool to
analyze ATL.

Besides these two popular scales, some studies chose other scales or methods to measure
ATL. Stipek et al. (2010) extracted four items from the Teacher Rating Scale of School
Adjustment (TRSSA; Birch & Ladd, 1997) to measure students’ learning-related behaviors in
elementary school. McClelland et al. (2006) used a subscale from the Cooper-Farran Behavioral
Rating Scales (CFBRS; Cooper & Farran, 1991) as a measure of children’s learning-related
skills. Williams et al. (2016) extracted ATL-related items from the Social Skills Rating Scale
(SSRS; Gresham & Elliott, 1990) and defined the components under the attentional/cognitive
regulation dimension. George and Greenfield (2005) designed a structured problem-solving
flexibility task to reflect ATL levels. They have demonstrated that the task score was

significantly correlated to the teacher rating ATL score.

Single Timepoint Evidence

Previous findings indicated a significant association between ATL and academic
achievement from single timepoint analyses using diverse samples. Bustamante and Hindman
(2019) found ATL could directly influence preschooler’s academic readiness when testing the
relationship between classroom quality and academic readiness using Family and Child
Experiences Survey data. George and Greenfield’s study (2005) suggested the strong influence
of ATL on concurrent achievement in kindergarten. Children from the Fragile Families and

Child Wellbeing Study showed their ATL significantly impacted reading and mathematics
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achievement at age 5 (Razza et al., 2015). Several studies selected subsamples from the ECLS-K
dataset in different grades. One study showed that ATL and mathematic outcomes were
significantly correlated in kindergarten when controlling class-level covariates into the model
(Robinson & Mueller, 2014). Bumgarner et al. (2013) showed a positive relationship between
ATL and mathematics achievement among Hispanic immigrant children (known as English

language learners) in kindergarten, first grade, and third grade.

Longitudinal Evidence

The potential positive relationship between ATL and academic achievement in childhood
was found from longitudinal evidence. Li-Grining and co-researchers (2010) used the ECLS-
K:1998 dataset to investigate the impact of early ATL on academic performance. The results
from the large-scale assessment demonstrated that ATL at kindergarten entry was significantly
associated with reading and mathematics achievement trajectories through fifth grade.
McClelland and colleagues (2006) showed a similar result using a different sample that early
learning-related behaviors at kindergarten strongly impact reading and mathematics growth
through elementary school years. Williams et al. (2016) found that ATL at 6-7 years of age
predicted later mathematics achievement at 8-9 years of age. Other results indicated that prior
learning-related behaviors in early elementary school years could predict later literacy
performance among students from low-income families (Stipek et al., 2010). Also, research
showed similar results of the relationship of early ATL and later academic achievement when
considering different subgroups from the ECLS-K dataset (Tach & Farka, 2006; Mattew et al.,

2010).
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Potential Moderators in the Relation

Some moderators were introduced and tested in the relationship between ATL and
academic achievement in early grades. Robinson (2013) provided results that poor or low-
income students could moderate the effect of behavioral engagement on mathematics gains. The
finding suggested that it could be beneficial for poor students with high behavioral engagement
on achievement. Second, gender moderated the relation between ATL and academic
performance. Li-Grining et al. (2010) showed that ATL at kindergarten was more protective for
female students’ mathematics growth and male students’ reading growth in elementary school
years. Mattews et al. (2010) indicated a significant interaction effect among race, gender and
ATL on reading achievement. In addition, academic competence at early ages could be a
potential moderator from previous evidence. The studies found that ATL would benefit more on
later academic achievement for students with low academic skills in early grades (Razza et al.,
2015; Li-Grining et al., 2010). Other possible moderators were shown some evidence from
previous studies. For instance, the moderation effect of English proficiency existed in
kindergarten and third grade (Bumgarner et al., 2013). Additionally, class and school level
moderators possibly existed, such as the frequency of reading activities in class and school

enrollment (Musu-Gillette et al., 2015).

ATL as A Mediator or Moderator

When testing potential predictors for academic achievement in early grades, ATL was
used as a mediator or moderator in research. ATL was investigated as a mediator for the
relationship between psychological functioning and academic achievement in childhood. For

instance, Sanchez-Pérez and colleagues (2018) found the mediation effect of ATL on effortful
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control and reading/mathematics performance in elementary school. ATL was indicated as a
mediator in the relationship between cognitive flexibility and academic school readiness for
Headstart children in preschool (Vitiello et al., 2011). Moreover, ATL mediated the relation
between children’s executive function skills and concurrent and later academic achievement
(Nesbitt et al., 2015; Sasser et al., 2015).

Other prior research focused on testing the associations of parenting characteristics and
student academic performance. ATL was found as an important mediator of these associations.
Smith-Adcock et al. (2019) targeted students with low socioeconomic scores and showed that
ATL has a mediation effect between parenting stress and reading achievement in kindergarten.
ATL could be a significant mediator for divorce and academic achievement in elementary grades
(Anthony et al., 2014). Additionally, studies showed that school-level involvement was
indirectly associated with achievement through ATL (Anthony and Ogg, 2019; Smith-Adcock et
al., 2019). ATL moderated the relationship between classroom quality and writing/spelling skills

among Head Start children (Meng, 2015).

Present Study
The aim of this study was to fill in this gap in the literature, to conduct a systematic
review with meta-analyses to detect an average effect of ATL (learning-related behaviors) on
reading and mathematics achievement in childhood from different quasi-experimental study
designs (i.e., single timepoint analysis, longitudinal analysis). Specifically, the study addressed

the following research questions:
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1) Is there a significant relationship between ATL and achievement in childhood

from quasi-experimental designs?

(2 How large is the average effect of ATL on student achievement from quasi-

experimental designs?

3) What kind of variables could moderate the effect on achievement?

Therefore, the present study conducted a systematic review employing meta-analytic
methodology to combine and summarize the quasi-experimental results of empirical research
studies about the relation of ATL and achievement approximately from 2000 through 2020.
Detailly, four meta-analysis conditions were conducted in the study: single timepoint results for
reading achievement, single timepoint results for mathematics achievement; longitudinal results
for reading achievement, and longitudinal results for mathematics achievement. The study
extended the theory and understanding of the relations between ATL and achievement in recent
years by using the meta-analysis method. The study could get more clear results because of
including both one timepoint and longitudinal results. For practical significance, results from the
present study could help researchers, educators, and policymakers make decisions to use proper

ATL educational programs under a current education environment.
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Methods

Literature Search

This study aimed to conduct a meta-analysis about the relationship between ATL and
student achievement (reading and mathematics) in childhood in the recent 20 years (2000-2020)
from quasi-experimental designs. The meta-analysis used quasi-experimental evidence because
few interventions directly focused on combined ATL components and the results are hard to
classify from designs with other components (e.g., components from social-emotional learning,
problem behaviors, social competence, or class management). A computer search of potential
databases, including Web of Science, ERIC and PsycINFO, was conducted to identify the
relevant literature using keywords, “approaches to learning; learning behaviors; achievement” or
“learning-related behaviors; achievement”. The possible year range was from 2000 till 2020. The
age group focuses on childhood (preschool to elementary school). The initial literature search
yielded 819 studies with over ten dissertations. Additional four possible studies came from
references of relevant papers. After getting an initial study pool, 113 non-relevant and duplicated

studies were excluded from the pool.

Study Selection Criteria

A detailed protocol was created in the study to define explicitly the criteria for including
and excluding studies and to create a final sample of studies eventually. After getting the initial
study pool, a screening phase selected the studies by reviewing abstracts. The studies were
excluded in the screening phase because 1) they were not written in English; 2) the definitions of
ATL or learning-related behaviors did not fit in the current analysis; 3) there was no appropriate

reading and mathematics achievement score reported in the study; 4) participants were not in
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childhood; 5) no relationship of ATL and achievement was reported in the study. Fifty-eight full-
text articles were eligible after screening. The eligibility phase excluded several studies after full-
text reading. The first reason is that no ATL composite score was used to test the relationships
(using components separately into the analyses). Second, there was only one component
representing ATL in the study.

The present study decided to extract bivariate correlations as effect sizes in the final
phase because quasi-experimental designs did not report mean differences as intervention
studies. The Pearson correlation is one of the most common and important effect sizes used in
meta-analysis (Rosenthal, 1994; Rosenthal, 1995). The studies without the selected statistics
were excluded from the final sample. The studies which reported the standardized regression
coefficients or used a combined achievement test only were included in the study report table
(see Appendix B Table B.1). However, they were not included in the meta-analysis because
different and complex model designs make the coefficients incomparable. There were several
extra selection criteria at the final stage. If the study provided a range of correlation coefficients,
the midpoint was used to represent the correlation coefficient of the study (only one study in the
pool). If two studies had very similar sample (same survey and participants at the same grade),
the effect size with smaller sample size was excluded in the study. If a study had more than one
independent sample, the effect sizes were included in the study. Overall, 21 studies were
included in the final sample for meta-analysis. Figure 2.1 is a flow chart to show the detailed
procedures of choosing final meta-analysis samples in the study from searching, initial screening,

to eligibility and final selection.
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Figure 2.1 A flowchart of searching and screening results
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Statistical Analysis

Fixed-effects and random-effects model in meta-analysis (Hedges & Olkin, 2014;
Borenstein et al., 2007) were applied in the present study. The fixed-effects model could be
treated as “a linear weighted regression” and assumes all studies estimate the same true effect
size. The method generalizes studies in the sample. Compared with the fixed-effects model, the
random-effects model assumes each study is estimating a unique effect. The random sample is
from a larger population. It provides a more general statement and gets inference from the
sample. In other words, the random-effects model generalizes to a larger population of studies.
All analyses applied Fisher’s Z transformation to eliminate the potential bias from correlation
coefficients. The transformation provides a correction for a skewed sampling distribution of

correlations (Fisher, 1921).

Fixed-Effects Model
The observed effect size in study i equals to a sum of a true (population) effect size and
within-study error from the fixed-effects model, which is shown as
T, =p+e¢. (2.1)
The model is an intercept only linear regression model. The variances of error term are
assumed known. Thus, by using the weighted linear regression estimation method, the average

weight effect size T. from k studies could be calculated by

k
S Wil

T = :
Z{'{:1Wi

(2.2)

where w; is the inverse of the within-study variance (v;) for study i. The standard error of the

average weighted effect size in the fixed-effects model is shown as
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Random-Effects Model

The observed effect size in study i equals to a sum of a true effect, a between study error
and a within-study error in the random-effects model, which is shown as

Ti=w+§+e. (2.4)

The model is an intercept only linear regression model. The differences between
Equation (2.1) and Equation (2.4) are that each study has its own true effect (y;) and the
between-study error ({;) is introduced into the model. Thus, the random effects model considers
heterogeneity between studies. The weighted average effect size (T*) from k studies is calculated
by the new weights (w;"), which include two parts of variance: within-study variance (v;) and
between-study variance (72). The equation is represented as:

_ k  wW*T.
T+ — Zl=1—Wl*l (2.5)

R
Li=1 Wi

The new variance (v;) is the sum of the within-study variance for study i and the
between-study variance. The between-study variance is estimated by restricted maximum

likelihood estimation method (REML) in the study. And the standard error can be calculated by

N S (2.6)

SE(T*) = * = .
@)= ¥ g w
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Heterogeneity Tests

To determine which meta-regression model fits the data better, a heterogeneity test
should be conducted. The null hypothesis of the test is that all population effect sizes are same
(the homogeneity of population effects sizes). The Q statistics could be calculated to test the
hypothesis. The Cochran’s Q test follows the results of the fixed-effects model, which is shown
as:

Q=X w(T; —T)?, (2.7)
where T is the weighed effects size in Equation (2.2). The Q statistics follows a chi-square
distribution with k — 1 degrees of freedom.

The I? statistics represents the proportion of total variation due to heterogeneity (Higgins
& Thompson, 2002). The statistics could be calculated using Q statistics to quantify
inconsistency across studies. The larger value of 12 indicates a larger amount of heterogeneity

across the studies. The I? index can be computed from

12 = (Q_Qﬂ x 100%. 2.8)

Moderation Analysis

In additional to computing the weighted effect sizes, the study examines differences in
individual studies (i.e., study characteristics) as well. This is called a moderation analysis. The
model could be called meta-regression model because predictors (moderators) are in the model.
The moderation analysis indicates regressing effect sizes (outcomes) on the study characteristics
(moderators) (Hedges & Olkin, 2014). Suppose that each effect parameters are determined by p
moderator variables X,, X, ... Xp.

The fixed effects model with moderation analysis is shown as:

44



T; = (Bo + Bixiz + Paxiz + -+ BpXip) + & (2.9)
And the random effects model with moderation analysis is shown as:
T; = (Bo + Brxin + Boxip + -+ + Bpxip + (i) + &;. (2.10)

The study is interested in estimating parameters (f) from the fixed-effect model if the
homogeneity assumption is met or the random-effects model if the homogeneity assumption is
violated. Parameters () reflect the effects of moderators chosen in the study.

Potential moderators in the present study were the year of the study, grade,
socioeconomic status (SES) of students, and publication type. Grade was a categorical variable
with three categories (preschool: 0; kindergarten: 1; elementary school:2). Student SES/Minority
was coded as a binary variable. The reference group was regular students, and the other group
was disadvantaged students (i.e., low income, low SES or minority). The publication type was
binary variable which indicated the study was from a peer-reviewed paper or a dissertation. The

variable of year was centered to the mean and was treated as a continues variable.

Sensitivity Analysis

Because a few studies from the pool could extract more than one effect size (correlation),
the present study needed to decide on how to deal with multiple effect sizes within one study.
Thus, a sensitivity check was conducted first. The sensitivity check aimed to determine which
analysis approach (univariate meta-analysis or multivariate meta-analysis) would be applied for
the final study pool. A sensitivity analysis can acknowledge the dependence issue by applying
analyses using all outcomes in each study and using one outcome in each study. If the results
from two approaches are similar, it makes sense to drop or combine multiple effect sizes within

the study (Becker, 2000). First, the sensitivity check did meta-analysis with the full sample and
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assuming correlations of the same study are independent to each other. Second, for the studies
with multiple correlations, the sensitivity checking randomly kept one correlation as the effect
size of the study and did meta-analysis with the subsample. By comparing the results from the
two procedures, we could have an understanding about how large the multiple effect sizes within
one study influence the final results (weighted average effect sizes). The initial results are shown

in Table 2.1 to indicates the meta-analysis results from sensitivity check.

Table 2.1 The results from sensitivity check

Single timepoint designs Longitudinal designs
Reading Mathematics Reading Mathematics
Fixed- Full sample 0.403" 0.327" 0.400" 0.390"
effects [0.396, 0.408] [0.320,0.336] [0.395,0.404] [0.384,0.396]
model o psample 0.420" 0.333" 0.385" 0.377"
[0.414,0.426] [0.325,0.341] [0.377,0.392] [0.368, 0.385]
Random-  Full sample 0.338" 0.309" 0.374" 0.357"
effects [0.274,0.399] [0.228,0.386] [0.338,0.409] [0.312,0.401]
model

Subsample 0.365" 0.342* 0.346" 0.328"
[0.292,0.433] [0.259, 0.420] [0.275,0.413] [0.244, 0.408]

Full sample N 23 15 20 12
Subsample N 16 12 8 6

Note. The 95% of confidence intervals are shown in the brackets. p* < .05.

All tests of heterogeneity were significant, which indicates that the random-effects model
fitted the data better. The results showed the weighted average effect size changed slightly in
each condition (different research designs and achievement outcomes). In random-effects
models, the weighted effect sizes were in the range of 95% confidence intervals of the weighted

effect sizes in full sample analysis. The magnitude of the weighted effect size did not change
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(e.g., from medium to small effect size). The evidence provides an argument that univariate
meta-analysis could be an appropriate design in the present study. Although multivariate
approach has been developed fast in recent years, it still has limitations. For instance, compared
to univariate meta-analysis, multivariate approach is more complex and harder to
understand/interpret; additional assumptions (e.g., multivariate normality) are hard to verify;
estimators’ statistical properties can only be improved slightly (Jackson et al., 2011). Also, the
quasi-experimental designs possibly used a large-scale dataset. The number of participants in
each study may be very different. The multivariate analysis possibly hides the true weighted
effect size when including effects size from one study with large sample size, especially in the
fixed-effects models. Therefore, the present study decided to compute a single effect size in each
study and use the univariate meta-analysis approach to yield the final statistical results.

The study firstly applied a fixed-effects model, then conducted a heterogeneity analysis
to detect potential significant heterogeneity of effect sizes across studies and figured out if
between-study variability should be included in the analysis. If so, the study conducted a random
effects model which assumes an effect size is nested within a study. After estimations, the study
compared the weights from these two models (fixed and random effects) across all studies in the
final sample and determines the contribution of the between-study variance in the weights in the

random effects model.

Combining Multiple Correlations
When conducting a univariate meta-analysis, only one effect size should be contained in
each study. Multiple effect sizes within the same study needed to be combined into one effect

size. The correlation coefficient was treated as the effect size in the present study. The study
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presented two ways to combine correlation coefficients. A general way to average correlation
coefficients from repeated measure was to use Fisher’s Z transformation (Silver & Dunlap,
1987). The main procedures include transforming correlations to Fisher’s Z score, taking an
average Z score, transforming back to a correlation coefficient. This approach demonstrated that
the average coefficient was less biased than the untransformed average correlation (Silver &

Dunlap, 1987; Strube, 1988). Fisher’s Z score transformation for ith correlation (r;) is shown as
Z=1n GJ_’ZD 2.11)

Then, we could compute the average z from k studies score using

Z§:1(ni_3)zi

Z= ) 2.12
After getting the average z score, we use Fisher’s Z transformation to transfer back to the
correlation coefficient. The transformation from z score to correlation is
27
_ e+?—1
"= . 2.13
e?Z4+1 (2.13)

Another approach under meta-analysis research settings was to compute an
approximately unbiased minimum-variance estimator (Olkin & Pratt, 1958). The estimator was

less biased than the previous one (Viana, 1982; Alexander, 1990). The equation is shown as

=% 1 (nl 1)
7 :—z{flln i [Z(n 3)1} (2.14)

For the studies with multiple correlation coefficients in the present study, the results
using the above approaches were very similar. All differences were about or smaller than 0.001.
The study rounded the combined effect size to two decimals. Thus, the values of combined effect

sizes were same from the two approaches.
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Results
Weighted Average Effect Sizes

Four conditions were considered in the study: single timepoint design for reading or
mathematics achievement and longitudinal design for reading or mathematics achievement. The
results from the fixed-effects and the random-effects model are presented in Table 2.2. All
weighted effect sizes were significant than zero in both approaches. The results of heterogeneity
tests indicated that there is a large amount of heterogeneity under each condition. Thus, the
random-effects models fitted the data better. The results were consistent with the findings in the
sensitivity analysis. The weighted effect size was 0.366 in the relationship between ATL and
reading achievement from single timepoint designs, which indicated a medium effect size. The
weighted effect size was 0.340 in the relationship between ATL and reading achievement from
longitudinal designs, which was slightly smaller than the effect size from single timepoint
designs. However, it still showed as a medium effect size.

Compared with the results for reading achievement, the effect sizes of the relationship
between ATL and mathematics achievement were smaller. Under the condition of single
timepoint designs, the weighted effect size was 0.338. And under the condition of longitudinal
designs, the weighted effect size was 0.328.

Additionally, the number of studies using longitudinal designs was smaller than the
studies for testing the concurrent relationships. And the number of studies for reading was larger
than the number of studies for mathematics. Forest plots under four conditions are shown in

Appendix B.
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Table 2.2 Meta-analysis results

Single timepoint designs Longitudinal designs
Reading Mathematics Reading Mathematics
Fixed-effects ES 0.414" 0.334" 0.377" 0.373"
model 95% CI  [0.408, 0.420] [0.326, 0.342] [0.369, 0.385] [0.364, 0.382]
Heterogeneity Q 502.54" 605.85" 329.17" 164.73"
tests 2 97.0% 98.2% 97.9% 97.0%
Random-effects ES 0.366" 0.338" 0.340" 0.328"
model 95% CI  [0.297,0.430] [0.253,0.418] [0.272,0.406] [0.243, 0.408]
Study N 16 12 8 6
Participant N 69904 45905 44018 32262

Note. p* < .05.

Subgroup Differences

The study conducted two tests for testing subgroup differences separately to show how
the weighed effect size influenced by students’ SES level or grade level. The subgroup
differences tests were under the random-effects models because of the large heterogeneities.
Table 2.3 shows that there was no significant difference of the relationship between ATL and
academic achievement among the students with or without disadvantages (i.e., low SES,
minority). Second, the grade level significantly impacted the relationships in single timepoint
designs (reading and mathematics) and longitudinal designs (mathematics). Lower weighted
effect size was shown among preschoolers. The studies which focused on kindergarten and

elementary school had similar weighed effect sizes.

50



Table 2.3 Subgroup differences tests results

Single timepoint designs

Longitudinal designs

Reading Mathematics Reading Mathematics
SES Regular 0.383 0.335 0.352 0.268
[0.329,0.436] [0.251,0.414] [0.233,0.460] [0.107,0.415]
Low/Minority 0.338 0.350 0.321 0.378
[0.141,0.510] [0.075,0.576] [0.242,0.396] [0.333,0.422]
Between group difference p=0.643 p=0.913 p =0.663 p=0.166
Grade Preschool 0.194 0.238 0.289 0.170
[0.114,0.271] [0.176,0.299] [0.142,0.423] [0.093, 0.245]
Kindergarten 0.430 0.472 0.352 0.400
[0.345,0.508] [0.383,0.553] [0.258,0.438] [0.389,0.411]
Elementary 0.420 0.301 0.372 0.359
[0.367,0.471] [0.139,0.447] [0.270,0.466] [0.289, 0.424]
Between group difference p"<.05 p"<.05 p =0.625 p”<.05

Note. 95% CI are shown in the brackets.

Moderation Analysis

The study also applied the meta-regression model for testing the moderation effects of

student SES, grade level, centered year of publication, and publication type on the relationship

between ATL and academic achievement. The moderation analysis was under the random-effects

models because of the large number of heterogeneities. Table 2.4 shows the results. The results

indicated that when combining multiple predictors into the meta-regression model, the

significant positive effect of grade level only existed on the relation between ATL and reading

among single timepoint designs. The publication year had a significant negative effect on the

relation of ATL and mathematics achievement.

51



Table 2.4 Moderation analysis results

Single timepoint designs Longitudinal designs
Reading Mathematics Reading Mathematics
SES 0.041 0.083 -0.076 -0.061
(0.073) (0.078) (0.094) (0.144)
Grade 0.095" -0.013 0.014 0.059
(0.047) (0.051) (0.085) (0.085)
Publication type -0.051 -0.101 -0.109 0.092
(0.073) (0.085) (0.123) (0.166)
Publication year -0.008 -0.028" -0.007 -0.014
(0.007) (0.009) (0.017) (0.043)

Note. Standard errors are shown in the parentheses. p* < .05.

Discussion

The study applied four univariate meta-analysis to show the relationship between ATL
and academic (reading and mathematics) achievement in childhood (preschool to elementary
school) in the recent years from quasi-experimental evidence. The study reviewed 29 full-text
studies in the final sample and included 21 studies into the meta-analysis. The studies
investigating the ATL effect on reading performance were more than the studies testing the
effect on mathematics performance. The studies exploring the concurrent relationships were
more than the studies focusing on the long-term relationships. The weighed effect sizes under
four conditions (two achievement X two quasi-experimental designs) were significantly different
than zero. The range of the weighed effect sizes was from 0.328 to 0.366. The weighted mean
effect sizes could be interpreted as medium effect sizes. The findings demonstrated that the
relationship between ATL or learning-relative behaviors is positive and considerable in
childhood. Also, the short-term and long-term effect both existed. The effect on reading

achievement was stronger than the effect on mathematics achievement. The subgroup difference
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tests indicated that the weighed effect sizes were different in preschool, kindergarten and
elementary school. However, when multiple predictors were taken into the same meta-regression
model, the effect of grade level disappeared except for the relationship between ATL and
concurrent reading achievement. The non-significant moderators showed that the effect of ATL
on achievement was important for all students in childhood.

The present study also has some limitations. First, because ATL is a new domain
compared with social-emotional learning and other traditional domains, a clear definition is still
needed to define the components of ATL. A clear definition would help to collect studies and
conduct future meta-analysis. Second, the univariate cases were applied in the current study to
display clear results of the relationships, however, the univariate cases have to exclude several
valuable studies which could not meet the selection criteria (e.g., the studies using combined
achievement scores). Moreover, compared to interventions, quasi-experimental studies might
have very different sample sizes and more complex modeling/ estimation approaches. Thus, the
results from meta-analysis might not be robust. Future studies could work together with experts
to make a clearer definition of ATL, extend participants age (e.g., middle school and college),
and use proper research methods (e.g., multivariate meta-analysis) to get a more general

conclusion of the relationship between ATL and academic achievement.
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CHAPTER 3 POWER ANALYSIS IN META-ANALYSIS: A THREE-LEVEL MODEL

Introduction

The present chapter is methodologically oriented. It addressed an issue that could happen
when conducting a meta-analysis. Specifically, this study focused on improving power analysis
in meta-regression with hierarchical structures methodologically.

When conducting a meta-analysis, two weighted regression models are usually used in
the statistical analysis. The two models are the fixed effects model and the random effects model.
The fixed effects model assumes that there is one true population effect size, while the random
effects model assumes that there is a variance from the systematic difference among studies. It
captures a hierarchical structure that participants nested in the studies. Therefore, the random
effects model is equivalent to the two-level model (Fernandez-Castilla et al., 2020). However, in
empirical research, a research group or a lab usually focuses on similar research topics. It is
possible to collect several studies from the same research team in a meta-analysis. The
protentional correlation of studies conducted by the same team or lab could influence the
standard error of the weighted average effect size. Further, it could impact the calculation of the
power statistics. Therefore, a meta-analysis with high power might be less credible due to a
latent correlation between groups if between-group variance is ignored. The present study aims
to introduce a three-level meta-regression model and explore the procedures to compute the
power of weighted average effect size and moderators. Additionally, the study aims to show
group-level variance potentially impacts the power statistics of the three-level meta-analysis

regression model.
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Literature Review

Quantitative research aims to draw statistical inferences about the population from
limited samples. Researchers use inferential statistics and hypothesis testing to represent a
population from sample data. Null hypothesis (Ho) and alternative hypothesis (Ha) are stated to
display a research question, and then appropriate test statistics are applied to get the inference. A
decision about whether to reject the null hypothesis depends on probability theory. The
probability-related task examines the likelihood of observing the test statistics when assuming
the null hypothesis is true. Researchers aim to reject the null hypothesis when the null hypothesis
is false or retain the null hypothesis when the null hypothesis is true. However, because the
decision is based on probability theory, a wrong decision is possibly made during the inference.
Thus, keeping a small error in the inference decision is an important goal for conducting
hypothesis testing.

There are two types of error in the hypothesis testing - Type | error and Type Il error.
Type | error, a, is the probability of rejecting the null hypothesis when it is true. In common,
researchers set a significant level to limit Type | error. The critical significant level is usually
0.05. It indicates that the maximum probability of rejecting a true null hypothesis is 0.05. Type 1l
error, 3, is the probability of retaining a null hypothesis when it is false. In other words, it is the
probability of not rejecting a null hypothesis when the alternative hypothesis is true. In empirical
research, keeping a low Type I error and a low Type Il error helps researchers make a correct
and robust decision.

The power of a statistical test is referred to as the probability of finding a treatment effect
when it exists (Cohen, 1977). The letter p is used to indicate power. Power represents the

probability that a test correctly rejects the null hypothesis when it is false. Based on this
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definition, power can be calculated by 1 — 8, where £ indicates the Type Il error of the test.
Power over 0.8 is usually considerable, indicating 80% chance of a real effect size stated in
conclusion. Power could be influenced by significant level (refers to Type I error), sample size,
variability in the measure of the response variable, and the effect size of the variable. Computing
a prospective power is useful and important in experimental designs to determine how many
subjects are needed to detect a treatment effect when it is true (Konstantopoulos, 2008). The
studies with small power potentially surfer from low reproducibility of results and overestimated
effects (Button et al., 2013).

A meta-analysis selects a pool of individual studies to detect an average effect size. Thus,
meta-regression could increase statistical power to detect effects over what is obtained from
individual studies because it involves more samples compared with one individual study (Miller
& Pollock, 1994; Borenstein et al., 2021). Both prospective and retrospective statistical power
for meta-analysis can be done with assumptions about the parameters in the specific meta-
regression model (Valentine et al., 2010). Prospective statistical power could help researchers to
determine how many studies need to be collected in a meta-analysis. Retrospective statistical
power provides a measure to understand the risk level for a meta-analysis commits to type Il
error. Additionally, power analysis is more important in the meta-analysis than the analysis of a
single study because such studies summarize similar research and influence the theory and
practice of the field strongly (Cafri et al., 2010). However, the number of studies could not
always increase the statistical power. Several components influence power. Results from a meta-
analysis should be interpreted with great care. Therefore, finding an unbiased power of a meta-

analysis is critical to measure a good meta-analysis study.
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The existing methodology regarding power analysis for meta-regression can be used for
both fixed and random effects models (Hedges & Pigott, 2001). The researchers also developed
power statistics for the heterogeneity (or variation) test of effect size parameters across studies.
Also, previous studies have considered the power analysis for moderators in meta-regression
models (Hedges & Pigott, 2004). Thus far, power analysis for random effects models in meta-
regression has focused on two-level models where studies are at the second level. However,
more complicated data structures exist in empirical meta-analysis. A natural extension of that
work is to extend the methods for random effects models where a third level (e.g., research
teams/labs) is added into the model.

In an empirical systematic review and meta-analysis, the final sample studies are possible
from the same research groups or research labs. In this case, the studies included in the meta-
analysis have a dependency because they are nested within research groups or labs. If there is a
dependent effect size problem in a meta-analysis, using two-level meta-regression likely
underestimates the standard error. This additional dependency needs to be taken into account in
calculating power because ignoring heterogeneity between groups possibly influences statistical
power.

There are three ways to account for the dependent effect size issue - ignoring
dependence, avoiding dependence, and modeling dependence. Under the ignoring dependence
strategy, researchers ignore the potential dependence among studies in the meta-analysis.
However, this strategy is inappropriate because the existing dependency might lead to bias in the
following estimations. Under the avoiding dependence strategy, one way is to choose one effect
size for each study. Another way is choosing effect size based on the units of analysis, for

instance, choosing one effect size from each sample, each research group, or each study.
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However, it is hard for researchers to decide which one should be included in their meta-
regression model. Another common strategy of deciding effect size within a unit is to average
effect size in each unit (Van den Noortgate et al., 2013). However, using average effect size will
reduce the variance among studies. Therefore, compared with other strategies, modeling
dependence is a better way to deal with potential heterogeneity between groups.

One way to resolve this issue under modeling dependence strategy is to use three-level
meta-regression models (Konstantopoulos, 2011; VVan den Noortgate et al., 2013). A three-level
meta-analytic model (including power analysis) assumes that the between-group variance is not
zero, which indicates that studies are nested in research groups or labs. The three-level meta-
regression model shows several advantages to model between-group variance. First, it is a very
flexible model because it could account for several sources of dependence at the same time.
Second, it is a relatively intuitive and straightforward way to account for dependence.
Additionally, it automatically accounts for the hierarchical structure in the data (\Van den

Noortgate et al., 2013).

Present Study
False accounting potential group dependence leads to biased power statistics in the meta-
regression model. To address this issue, the present study extended the work on power analysis
for the two-level random effects model to the three-level model where studies were at the second
level and research teams/labs are at the third level (Konstantopoulos, 2011). A three-level model
would provide more accurate estimates of power under the assumption that variability between

research teams is not negligible. The present study aimed to fill in that gap in the literature to

58



figure out the power of the three-level meta-regression model. In details, the research questions
are:
1) How to calculate the power of the statistical test for weighted average effect size

in a three-level meta-analytic model?

(2) How to calculate the power of the statistical test for moderators in a three-level

meta-regression model?

3) How could the third level (group-level) heterogeneity affect statistical power of

weighted average effect size in meta-analysis from a simulation study?

The significances of the study are listed here. First, the study was a methodological
development of power analysis in the meta-analysis by developing the formulas for power
statistics in three-level model. Second, it considered more complicated data structures in meta-
analysis and provides unbiased powers measure in the three-level model. Third, the study
provided evidence about how group-level heterogeneity affects statistical power in meta-

analysis.

Statistical Modeling
Power in Two-Level Meta-Regression Models (Intercept Only)
The two-level meta-regression model is equivalent to the random effects meta-regression
model, which assumes effect sizes are nested in studies. It considers the amount of heterogeneity

observed among effect sizes across studies (Hedges & Vevea, 1998; Hedges & Olkin, 2014).

59



Power calculation in a two-level meta-regression model has been shown in Hedges and Pigott’s
work (2001). How statistical power relates to a weighted average effect size (T *), the effect size
assumed in the null hypothesis (T,), Type | error (a), and the standard error (SE(T.*)) of the

weighted average effect size in a random effects meta-regression model is generally shown as

T'—Ty)-
oc( 0)@

SE(T)) (1)

p

It indicates the statistical power could be increased by a larger weighted pooled effect size, a
higher significance level (Type I error), or a smaller standard error of the weighted pooled effect
size.

The assumptions of a two-level model are 1) there is heterogeneity of the sampling error
because the sample sizes of studies are usually different; 2) random effects are distributed
identically at the between-study level; 3) Individuals are independent of each other, which
indicates no correlation between error terms at the first level; 4) Studies are independent of each
other, which means no correlation between error terms at the second level. Therefore, in a two-
level model, the variance-covariance matrix of error term could be written as

24y, 0
V* = Diag(t? + v, 1% + vy, ..., T2 + 1) = : : , (3.2)
0 e T2 4y
which is introduced briefly in Chapter 2.

Power is calculated under the distribution when the alternative hypothesis of the study is
true. Thus, it follows a non-central distribution. A non-centrality parameter (1) needs to be
detected for calculating the following probabilities (power statistics). The non-centrality
parameter can be obtained by substituting the sample estimates with the population parameters in

the formula with a Z test. In a random effects meta-regression model, the null hypothesis is the

weighted average effect size is zero. The non-centrality parameter A* can be calculated using
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Thus, the non-centrality parameter is computed by the weighted average effect size (T.*)
and sampling variance of the random effects estimate (v.*). Equation (3.3) shows how to compute
the non-centrality parameter. The numerator is the sum of the product of weight and effect size
in each study and the denominator is the square root of the sum of weights from each study. To
note that the non-centrality parameter is resulted as a scalar.

Typically, power of a two-tailed test is usually computed in empirical studies. Thus, after
getting the non-centrality parameter, the statistical power in a two-tailed Z test can be expressed
as Equation (3.4)

p=1—B=P[|1Z7(1)| = Z,] =1—P(1.96 — 1*) + ®(—=1.96 — 1), (3.4)
which is to calculate the probability of rejecting the null hypothesis when the null hypothesis is
false. Z'(A*) indicates the A*’s percent point of the distribution. ®(x) indicates a standard normal
distribution cumulative distribution function (cdf). When setting type | error a equals to 0.05, the
critical value of the distribution, Z,, is 1.96 for a two-tailed Z test.

Additionally, the statistical power in a one-tailed Z test can be expressed as

p=1-B=P[Z'(A) =Zy] =1 — P(1.65— 1), (3.5)
when setting type | error a equals to 0.05, the critical value of the distribution, Z,, is 1.65 for a

one-tailed Z test.
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To illustrate a case of computing power of mean effect size from a two-level meta-
regression model in practice, the present study shows a sample example here. We suppose a
meta-analysis has ten studies with different effect sizes and within-study variances. Between-
study variances are same for all studies under the two-level model assumption. Therefore, we
could compute a specific weight for each study in the sample. The parameters are shown in

Table 3.1.

Table 3.1 An illustrated two-level meta-analysis sample with intercept only

Effectsize  Within-study variance Between-study variance Weight

Study 1D () (v) () (w))
1 0.42 0.13 0.05 5.56
2 0.27 0.12 0.05 5.88
3 0.28 0.08 0.05 7.69
4 0.41 0.10 0.05 6.67
5 0.46 0.11 0.05 6.25
6 0.32 0.13 0.05 5.56
7 0.30 0.16 0.05 4.76
8 0.34 0.07 0.05 8.33
9 0.54 0.12 0.05 5.88
10 0.39 0.19 0.05 4.17

We follow Equation (3.3) to get the non-centrality parameter

where 10 studies are in the example. And the non-centrality parameter is 2.89.
Then, we put this number into Equation (3.4) to compute the power in the case. The
formula is shown as

p=1—d(1.96 — 2.89) + d(—1.96 — 2.89) = 0.82.
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The power of weighted average effect size in the example is 0.82 in a two-tailed Z test, which

consider as a good power the weighted average effect size in meta-analysis.

Power for Moderators in Two-Level Meta-Regression Models

Hedges and Pigott (2004) developed a method to calculate statistical power in moderation
analysis in two-level (random-effects) meta-regression models. Moderators are at study level
because they represent the differences among studies. The observed effect with p moderators in a
within-study model and in a between-study model could be written as

T; = 0; + ¢€;, where g;~N(0,v;), (3.6)
0; = Bo + B1xi1 + Baxip + -+ + Bpxip + i, where §i~N(0,72). (3.7)

Combining with the components from both levels, a general equation in a single level for

p moderators in a two-level meta-regression model is shown as

T; = Bo + PiXis + BaXiz + - + Bpxyp + 1;, where n;~N(0,7% + v;), (3.8)
Where the error term n; follows a normal distribution with mean equals to 0 and variance equals
a sum of within-study variance (v;) and between-study variance (2).

Equation (3.8) could be written to a matrix notation as T = X + n, where np has ak
variate normal distribution with mean 0 and variance-covariance matrix V, if k studies are
included in the meta-regression model. To note that variables and parameters are in boldface
indicate vectors in the equations. By using generalized least square (GLS) estimation method, the
estimated coefficients of the moderators (B*) and the variance of the estimated moderators
(Var(B*)) are solved in

B =[X'V)'X]T X' (V)TIT = (B X; WX) 1 S XiWT,, (3.9)

Var(B") = £ = [X'(V)7'X]™' = (T, XiWX) ™, (3.10)
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where V* is the variance-covariance matrix from Equation (3.2) and W = (V)1 is the weight
matrix.

Different methods could be used to estimate the between-study variance component (z2).
Hedges and Pigott (2004) used the same way for computing variance components in ANOVA.
Other popular ways include methods such as the method of moments (MOM), maximum
likelihood estimation (MLE), and restricted maximum likelihood estimation (RMLE) (Langan et
al., 2019). MLE aims to solve the parameters to maximize the likelihood function of the data
(Corbeil & Searle, 1976). It could provide simultaneous estimations of the fixed effects and the
variance components in multilevel regression. It assumes fixed effects are known when
estimating the variance components. lterations might be required to get the estimations, such as
an expectation-maximization (EM) algorithm or a fisher scoring algorithm (Raudenbush & Bryk,
2002). RMLE is less biased than MLE when the cluster size is small. Differing from the
estimation procedures in MLE, RMLE estimates the fixed effects when estimating the variances
(Peugh, 2010; Boedeker, 2017). Veroniki and co-researchers (2015) identified over ten
estimators of the between-study variance in meta-analysis models and suggested that RMLE was
the better estimator for continuous outcomes. It tends to outperform the alternatives in the
simulation studies (Langan et al., 2019). RMLE leads to the use in multilevel regression software
packages, such as HLM8 (Raudenbush et al., 2019).

The null hypothesis in the case is there is no relationship between moderator j and effect

size ( B; = 0). Thus, the non-centrality parameter in the test can be computed by

7 — B0 (3.11)

] . !
jvar (B))

where var(Bj‘) is the variance of [?}‘ given by the jth diagonal element of the matrix Z*.
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Then the power for test of individual regression coefficients (the coefficients of
moderators) could be calculated by
p=1-B=PlIZQA)|=Z]=1-®(196—-Z)+ P(-1.96 - Z/), (3.12)
p=1-B=P[Z)=Z)]=1-d(165-Z). (3.13)
The power shown in Equation (3.12) is for a two-tailed Z test and Equation (3.13) is for a one-

tailed Z test where the type I error is set to 0.05.

To illustrate a case of computing power of the moderators from a two-level meta-
regression model in practice, the present study shows a sample example here. We use the meta-
analysis sample from previous section and suppose the study has one moderator (X;) at study
level. For example, the moderator is a categorical variable with three categories and the
categories are randomly assigned to the stud in the example. The parameters are shown in Table

3.2.

Table 3.2 An illustrated two-level meta-analysis sample with one moderator

Study ID Effect size Wit_hin-study Betv_veen-study Weight Moderator
(T;) variance (v;)  variance (72) (w;) (x1;)
1 0.42 0.13 0.05 5.56 1
2 0.27 0.12 0.05 5.88 3
3 0.28 0.08 0.05 7.69 1
4 0.41 0.10 0.05 6.67 2
5 0.46 0.11 0.05 6.25 2
6 0.32 0.13 0.05 5.56 3
7 0.30 0.16 0.05 4.76 1
8 0.34 0.07 0.05 8.33 1
9 0.54 0.12 0.05 5.88 3
10 0.39 0.19 0.05 4.17 2
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Therefore, we could compute the regression coefficient of the moderator and its variance
using Equation (3.9) and (3.10). The equations are
Br = Tl wixI) X wyxq ity = 0.17,
Var(B;) = (T, w; x%)™ = 0.004.
The coefficient of the moderator is 0.17 and the variance is 0.004 in the example.

Then, we follow Equation (3.11) to get the non-centrality parameter:

0.17
0.004

Zr = =2.71.

The non-centrality parameter is 2.71 in the illustrated example. Then, we put this number into

Equation (3.12) to compute the power in the case. The computation is shown as
p=1—-®(1.96 -2.71) + ®(—1.96 — 2.71) = 0.77.

The power of the moderator in the example is 0.77 in a two-tailed Z test, which consider as a fair

power for moderation analysis in a meta-analysis.

Power in Three-Level Meta-Regression Models (Intercept Only)

To compute statistical power in the three-level meta-regression model with intercept
only, building a three-level model is necessary. The study first focused on an unconditional
model, which means no predictors at any level. The power of the weighted average effects size is
tested in the case. The intercept of the study level (level-2) is random at the group level (level-3).
Working with a simple case would be helpful to illustrate the main ideas of the present studies.
The study uses a univariate case, which means each study in the model only has one effect size.
Figure 3.1 illustrates the hierarchical structure of the three-level model with g groups, k studies

and k effect sizes.

66



Figure 3.1 An illustrated structure of a univariate case with three levels

Group 1 Group g
Study 1 || Study 2 - | Study 5 Studys | -~ | Studyk
EF1 EF 2 EF 5 EF s EF k

The model with three levels could be written as

Level-1 effect size level: T;; = 9;; + &;4, €;g~N(0,v;), (3.14)
Level-2 study level: 9;5 = Bog + 1ig, 1ig~N(0, 7). (3.15)
Level-3 group level: Bog = Voo + Vog, Vog~N(0,7(s)). (3.16)

At the first level, effect size level, an observed effect size (T;,) of study i in group g is a sum of
an effect size (9;4) and a within-study error (&;4). The within-study error follows a normal
distribution with mean 0 and variance (v;). At the second level, study level, the effect size (9;)
from participant level equals to an effect size (5,,4) plus a between-study error (;4). The
between-study error follows a normal distribution with mean 0 and variance 7¢,. At the third
level, group level, the effect size (5,4) from study level equals to a true effect size (y,,) plus a
between-group error (vo4). The between-group error follows a normal distribution with mean 0
and variance (.

All three levels are written in a single level notation as

Tig =Yoo +Vog + Migt &ig- (3.17)
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It shows the observed effect size of a study is a sum of a true effect size and three parts of error -
within-study error, between-study error and between-group error.

The next step is to construct the structure of the variance-covariance matrix of error term
for the three-level meta-regression model. It is important for detecting the structure of the
variance-covariance matrix because the inverse of the matrix would be used as a weight matrix
in the following steps for computing the weighted average effect size and its variance. Also, the
wight matrix further influences the power statistics. When introducing the third level (group

level) into the model, the variance-covariance matrix of error V5 ,y in group g becomes the sum
of the diagonal matrix in the two-level model and a matrix with element 1(23) everywhere. The

matrix structure is shown as

T + v 0 ) TG
V(g’g) = , + 2 iR 2
0 T tud T v T
= : ; . (3.18)
T8 o Thy HThH Y
(3) (3) (2) k

The underlying assumption is groups are independent of each other but studies in the
same group have correlations. Thus, the variance of study i in group g is 1(23) + 1(22) + v;, and
the covariance for studies in same group is 1(23). The variance 1(23) captures the dependency of

outcomes with groups. The variance-covariance matrix of group g follows Konstantopoulos’s

notation (2011) could be written as

Vag) = Vag + 1agTlg = In,®l) +vi} + 1&)la, 17, (3.19)
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where V(, 4) is the variance-covariance matrix of a two-level model, 1 4y is a vector of ones, T;
is a matrix of random effects at the group level, n, indicates the number of studies in group g,
L, is an n,; X n, identity matrix, and 1(ng) is a vector of n, ones.

The methods to estimate the variance components are same to the two-level model, such

as MLE and RMLE. For instance, the full log-likelihood function for group g of the three-level

model is:
2 2 \__n 1 1 -1
Ly (vg, 16y 7)) = =7 log(2m) — 2 log|Vis )| — 35V 10080- (3.20)

where e; = T, — v, is the sum of error terms in group g, |V(3,g)| indicates the determinant of
V(s,4)- The sampling variance (v;) within studies is usually assumed fixed and known in meta-
analysis. Because groups are independent of each other, the log-likelihood for entire model is the
sum of unit log-likelihoods in Equation (3.20). The estimated variances could be gained when
maximizing the log-likelihood function of the entire model.

Overall, the whole variance-covariance matrix for a three-level meta regression with k
studies nested in m groups is a block matrix with m matrices on the diagonal line. Suppose in the

first group we have t studies and the last group we have s studies, the illustrated variance-

covariance matrix V3 is shown as

[ T(23) + T(ZZ) + V1 o T(23)
7(23) 77(23) + 17(22) + v

7(23) + T(Zz) T Vg—s+1 7(23)

() o Ty + 1l vk
(3.21)

Also, it could be written as
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V3 = Diag(Vis1), Viz 2y -+ Vism) = In®{Viz 00}
= 1n®Vagp + 1ag T34} (3.22)
where {} indicates the matrices in each group.
The inverse of the variance-covariance matrix is used as a weight matrix into the
generalized least square estimation. The inverse of the block matrix equals to the inverse of each

block in the matrix, which could be written as

Ve + 1anTs 1{3,1))11

V3! = 1,8{Vap} = In® (3.23)

(V(Z,m) + 1(3,m)T3 1{3,m))r_n1
To note that a block-diagonal matrix is invertible if and only if the blocks on the diagonal are
invertible. By using the standard results (Longford, 1987; Konstantopoulos, 2011), the inverse of

Viz,g) could be separated as:

-1 _ -1 -1 -1 T -1 —14T -1
Vao = Vao ~VeoleoTs +lagpVenlean) 1legV e (3.24)

The non-centrality parameter A% in the three-level meta-regression model with no
predictors could be calculated by using the weighted average effect size and the variance of the

weighted average effect size, which is shown in

1

s 1w ] 1vzlr-0  1w,T
= -

J oyt Wl

where 1 is a vector of ones and W5 = (V3)~ ! is the weight matrix in the case, T is the vector of

(3.25)

observed effect sizes. To note that, the numerator is the sum of products of the weight and the

effect size in each study from each group and the denominator is the square root of the sum of
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the weight in each study from each group (all elements in the weight matrix), which could be

written as

k k

g g
o 2= 21 G2 Wase ) T (g
-

, (3.26)

nglzlzfﬁl le,(gl W3(st,g)
where k is the number of studies in the gth group, m is the number of groups, W5y, 4 indicates
the element at the sth row and tth column in the gth group from the weight matrix, and T 4,
indicates the tth effect size. And finally, the non-centrality parameter is resulted as a scalar
because the numerator and the denominator are both scalar. Therefore, to get the power statistics
in the three-level model with no predictors at the second and the third level, we can put A5 into
Equation (3.27) and (3.28) for a two-tailed Z test and a one-tailed Z test when the type I error is
set to 0.05:

p=1=B=P[1Z7(A)| = Z,] =1 — P(1.96 — 15) + ®(—=1.96 — 13),  (3.27)

p=1-—B=P[Z'(A) = Z,] =1 — d(1.65— 13). (3.28)

To illustrate a case of computing power of the mean effect size from a three-level meta-
regression model in practice, the present study shows a sample example here. We continue to use
the meta-analysis sample from previous sections. The difference in the case is that between-
group variance is introduced into the analysis. Therefore, we need to compute a specific weight
for each study to capture within-study variance, between-study variance and between-group
variance. The weights are different from the weight from Table 3.1. In this case, we assume ten
studies come from three research groups and between-group variance equals to 0.02. The

parameters are shown in Table 3.3.
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Table 3.3 An illustrated three-level meta-analysis sample with intercept only

Effect size Within-stud Between-stud Between-grou
Study D Group ID (Tig) variance (vl-))/ variance (1(223/ variance ?1(23))[)
1 1 0.42 0.13 0.05 0.02
2 2 0.27 0.12 0.05 0.02
3 2 0.28 0.08 0.05 0.02
4 3 0.41 0.10 0.05 0.02
5 1 0.46 0.11 0.05 0.02
6 3 0.32 0.13 0.05 0.02
7 3 0.30 0.16 0.05 0.02
8 3 0.34 0.07 0.05 0.02
9 1 0.54 0.12 0.05 0.02
10 2 0.39 0.19 0.05 0.02

The weighted matrix could be constructed using within-study variance, between-study

variance and between-group variance as

0.02 0.18 0.02

'!0.20 0.02 0.02]
0.02 0.02 0.19

0.19 0.02 0.02
[0.02 0.15 0.02]

_ -1 _
Wi =V3)"" = 0.02 0.02 0.26
0.17
0.02
0 lo.oz
0.02
1510 —051 —0.48
051 567 —0.54
048 —054 527
537 —067 —036
~ [—0.67 6.82 —0.47]
= —036 —-047 391
6.08
—0.49
0 —0.42
—0.74

0.02

0.20
0.02

0.02

-0.49

5.15
—0.35
—0.61

0.02 0.02

0.02 0.02]

0.23 0.02

0.02 0.14-
—-042 -0.74
—-035 -0.61
446 —0.53
-0.52 7.41 H

Each block in the matrix indicates one group from the example. All numbers are round to two

decimals.
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Thus, we could use the weight matrix in Equation (3.26) to compute the non-centrality

parameter. The computation results are shown as

k k
251221 2 Waise )T (o) _ 15979
J42.968

A = = 2.44.

jZlel 50559 Wigseg)
The non-centrality parameter is 2.44 in this example. Compared with the non-centrality
parameter of the weighted average effect size in two-level meta-regression model, the current
non-centrality parameter is smaller. The reason is the variation from the third level is considered
into the model.

Then, we put this number into Equation (3.27) to compute the power in the case. The
equation is

p=1—®(1.96 —2.44) + ®(—1.96 — 2.44) = 0.69.

The power of weighted average effect size in the example is 0.69 in a two-tailed Z test. The
power decreases when the third level (group level) is introduced into the model. The result from
the illustrated example demonstrates that the group-level variance could impact the power of

weighted average effect size in a meta-analysis.

Power for Moderators in Three-Level Meta-Regression Models

When the study aims to test the moderation effects in a meta-analysis, the calculations of
power for moderators in a three-level meta-regression model have similar steps to the previous
section. Frist, we need to find the estimated coefficients (moderators in level-2 and level-3).
Second, the variances of those coefficients need to be detected. In details, the structure of the
variance-covariance matrix in a three-level meta-analysis with moderators at level-2 and level-3

should be figured out. For each moderator, the null hypothesis is there is no moderation effect on
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effect size. Then we could calculate the non-centrality parameter in the alternative distribution

and uses it to detect statistical power for the moderators in a three-level meta-regression model.

Moderators with No Random Effects
The present study follows the procedures of calculating statistical power for moderators
in two-level mate-regression model to extend the calculation of power for moderators in three-
level meta-regression model. A three-level meta-regression with p moderators in level-2 and g
moderators in level-3 is shown in
Level-1 effect size level: T;y = 9;; + &;4, €;g~N(0,v;), (3.29)
Level-2 study level: 9;; = Bog+BigXiig + = + BpgXpig + Mig» Nig~N (0,78,  (3.30)
Level-3 group level: By, = Yoo + Yo121g + = + YogZqg + Vog: Vog~N(0,7%),  (3.31)
where x and z are moderators at level-2 and level-3. In the current model, only the intercept in
the second level is random at the third level. All other level-2 slopes are fixed at level-3,
namely B,, = y,4, Where | indicates the Ith slope and g indicates the gth group.
The above equations could be written in a single-level equation as:

Tig =Yoo + XpBp + Z;Tq +voqy +mig + €4 (3.32)
where X and Z indicate two vectors of moderators When the slopes (except the intercept) at
level-2 are fixed at level-3, the variance-covariance matrix of error is same to the matrix in
Equation (3.21) because no extra random effects need to be estimated in the model. Thus, we
could use the inversed matrix as the weight matrix to estimate slopes (regression coefficients) in

Equation (3.33) and their variances in Equation (3.34). The formulas are shown as

8] =1+ 2yt + o1t (x4 2y @y, (3.33)
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Var(BY,TT) = 2T = [(X+ 2)'(V3)"'(X + 2)] 1. (3.34)

To note that, (V3)~! could be written as W5, which is the weight matrix.

Further, the non-centrality parameters could be computed by using the estimated
coefficients and their correspondent variances. For instance, the non-centrality parameters /1;,

for moderator | at the third level could be calculated in the model in

(3.35)

We can put /1;[11 into Equation (3.36) and (3.37) for a two-tailed Z test and a one-tailed Z

test when the type | error is set to 0.05. Thus, the power of the present moderator | in the three-
level meta-regression model could be obtained in:
p=1-p=P[|Z7(A})| =2 =1-®(196—2%,) + 2(-1.96 - 2% ,),  (3.36)

p=1-p=P[Z' (1) =2, =1-d(1.65-1%)). (3.37)

To illustrate a case of computing power of the moderators from a three-level meta-
regression model in practice, the present study shows a sample example here. We continue to use
the meta-analysis sample from previous sections. The example uses the parameters from Table
3.3. And the level-2 moderator is still the same moderator from Table 3.2. The present case also
assumes a categorical moderator at the third level (Table 3.4). The weight matrix is the same

weight matrix in the last example, because there is no random effect of the level-2 moderator.
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Table 3.4 An illustrated three-level meta-analysis sample with moderators

Within- Between- Between-

Study Group Effect study study group Moderator  Moderator

ID ID size (Ty)  variance variance variance level-2 level-3
v) () (%) Cewd) ()
1 1 0.42 0.13 0.05 0.02 1 1
2 2 0.27 0.12 0.05 0.02 3 2
3 2 0.28 0.08 0.05 0.02 1 2
4 3 0.41 0.10 0.05 0.02 2 3
5 1 0.46 0.11 0.05 0.02 2 1
6 3 0.32 0.13 0.05 0.02 3 3
7 3 0.30 0.16 0.05 0.02 1 3
8 3 0.34 0.07 0.05 0.02 1 3
9 1 0.54 0.12 0.05 0.02 3 1
10 2 0.39 0.19 0.05 0.02 2 2

Therefore, we could compute the regression coefficients of two moderators and their
variances using Equation (3.33) and (3.34). Compared with the example with a moderator in
two-level model, the weight matrix here is a block matrix instead of a diagonal matrix. The
coefficient of level-2 moderator is 0.103 and variance is 0.014, and the coefficient of level-3

moderator is 0.069 and variance is 0.013 in the example. The results could be written as

_ 0103 4 [var@h] _ o014
00691 " |yarpty] = lo.otal

Then, we follow Equation (3.11) to get the non-centrality parameters (for level-2
moderator is /1;1 and for level-3 moderator is /12,1) of z test. The non-centrality parameters are

computed as

0.103 0.069
M === =087and Al = = 0.61.
21~ [0.014 and 431 = 15.013

The non-centrality parameters 0.87 and 0.61 in the illustrated example.
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Then, we put this number into Equation (3.36) to compute the power in the case:
pyp =1— ®(1.96 — 0.87) + ®(—1.96 — 0.87) = 0.14,
p3p =1—®(1.96 — 0.61) + ®(—1.96 — 0.61) = 0.09.
The power of the level-2 moderator in the example is 0.14 in a two-tailed Z test and the power of
the level-3 moderator in the example is 0.09 in a two-tailed Z test. In the example, we see two
non-significant moderators with low regression coefficients. The small non-centrality parameters

indicate low power of the moderators in the three-level meta-regression model.

Moderators with Random Effects

An extension case shown in the section is when some slopes at study level are assumed
random at group level. In other words, the random effects of study-level moderators exist in the
model. The structure of the variance-covariance matrix is different from the previous one in
Equation (3.21). To simplify the case, the present stud assumes only one moderator at the second
level (study level), named X, is random at the third level. And only one moderator, named Z,, is
at the third level (group level). Thus, we have one more equation which represents the random
effect of the slope of X, (which is 8, ). By following the three-level model structure in the

chapter, the third level has two equations as
Bog = Yoo + Y01Z1g T+ Vog: (3.38)

ﬂlg = Y10 t V11219 + V1g, (3.39)

where [1;(12] N ([8], Ir(zs,o) T(3,01)D’

2
T3,01) T30
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Equation (3.38) shows the model for the intercept and Equation (3.39) shows the model for the
level-2 slope. The two errors follow a joint distribution with means equal to 0 and variances
shown in a two-by-two matrix.
In a single notation, the effect size could be written as
Tig = Yoo+Yor W1 + (Y10 + V11 W) Xing + Vog + VigXing + Nig + €ig- (3.40)
The error relates to the predictor (moderator) at study level. Equation (3.41) and (3.42) could be
used to construct the variance-covariance matrix in each group. A block matrix is constructed
finally to include all matrices for groups on the diagonal.
The variance for study in group g can be expressed as:
Variance(Tig) = (vi + 1y + la0)) + 2T@onXing + 10 Xfg: (3.41)
The covariance between studies in same group g can be expressed as:
Covariance(Tyy, Tjg) = Ta0) + 1301 Xirg + Xj1g) + 11y Xi19%j14- (3.42)
The following produces to compute the non-centrality parameters and the power are
same to the previous section. First, we need to construct the variance-covariance matrix and
invert it to get the weight matrix. Second, the weight matrix is used to compute regression
coefficients of moderators. Third, the non-centrality parameters could be computed by
regression coefficients and their variances. Finally, we can get the power statistics. It is
important to know that adding more random effects of the moderators will lead to more
complicated components in the variance-covariance matrix of error term.
Because the present scenario is more complex than before, to illustrate a simple case, an
example with a smaller sample size is shown here. The case only uses two groups from
previous examples. Table 3.5 shows the parameters which are needed in the following

computations.
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Table 3.5 An illustrated three-level meta-analysis sample with moderators and random slope

Stud Grou . Within-stud Between-stud Moderator
IDy ID P Effectsize (Tig) variance (vi))/ variance (1(22);/ level-2 (x4;)
1 1 0.42 0.13 0.05 1
2 0.27 0.12 0.05 3
3 2 0.28 0.08 0.05 1
4 1 0.46 0.11 0.05 2
5 1 0.54 0.12 0.05 3
6 2 0.39 0.19 0.05 2
Study  Group Intercept Covariance Slope Moderator
ID ID variance (tf; o)) (tés.01)) variance (tf 1))  level-3 (z)
1 1 0.02 0.01 0.02 1
2 0.02 0.01 0.02 2
3 2 0.02 0.01 0.02 2
4 1 0.02 0.01 0.02 1
5 1 0.02 0.01 0.02 1
6 2 0.02 0.01 0.02 2

The variance-covariance matrix (V3) could be constructed for each group by Equation
(3.41) and Equation (3.42) using variance and covariances components in Table 3.5. And the
inverse of the matrix is the weigh matrix (W3) in the case. All numbers are round to two
decimals. The matrix is shown as

0.03 0.04
0.22 0.05

0 0 0
0 0 0 l

w1 |loo4 005 0251 0 o0 o
W=7 =1"0" "0 0 [025 004 005
0o 0 0 [0.04 0.17 0.03]
o o o loos 003 030
[[ 474 —051 —0.67] 0o 0 0
—051 480 —0.92 0o 0 0
:| —0.67 —092 424 o 0 0 ‘
0 0 0 423 —091 —0.65
[ 0O 0 0 !—0.91 6.18 —0.48“
0O 0 0 —0.65 —048 348
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Furthermore, we could compute the regression coefficients of two moderators and their
variances using Equation (3.33) and (3.34). The coefficient of level-2 moderator with a random
effect is 0.102 and variance is 0.033, and the coefficient of level-3 moderator is 0.102 and
variance is 0.060 in the example. The matrices of the estimated coefficients and their variance
are

BI] _ o102
]71'

Var(f))] _ 0.033]
0.102 :

and l =
Var(]’)l-l-) 0.060

Then, we follow Equation (3.11) to get the non-centrality parameters (for level-2 moderator is

/’l;r,l and for level-3 moderator is A}fll). The non-centrality parameters are

+ 0.102 + 0.102
A4 5033 0.56 and 43, 5020 0

Then, we put this number into Equation (3.36) to compute the power in the case. The
power of the level-2 moderator in the example is 0.09 in a two-tailed Z test and the power of the
level-3 moderator in the example is 0.07 in a two-tailed Z test. The negligible power statistics are
explainable because the sample size is small and multiple parts of variances/covariance are
assumed in the example. Thus, the regression coefficients of moderators are small, and their
standard error are large. The non-significant moderators have low power values. To note that, the
illustrated examples only show the ways to find non-centrality parameters and compute power
statistics. All values are assumed in the examples. The computation equations are shown as

Py =1— ®(1.96 — 0.56) + ®(—1.96 — 0.56) = 0.09,

p31=1—®(1.96 —0.42) + ¢(—1.96 — 0.42) = 0.07.
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Simulation Study
The simulation examples in the last part aimed to show how different ratios of between-
group variation in total variation affect the non-centrality parameter of the z-test and ultimately
power of the weighted average effect size. A three-level meta-regression model has three parts of
error variance from different levels. Two intraclass correlations (ICC) represent the relationships

among three variance components, which are defined as

Py = 72 (3.43)
1(3)+r(2)+v
2
T
3
P = 5—F—, (3.44)
T(23)+T(22)+17

where p,y represents the proportion of between-study variance in the total variance and p s,
represents the proportion of between-group variance in the total variance. The sum of two ICCs
indicates the variances from higher levels (level-2 and level-3). To simplify the case and present
the main idea of the simulation, the present study followed Hedges and Pigott’s (2001)
procedure, taking all sampling variance v; to an equal value v approximately. From Equation

(3.45) and (3.46), we can get the value of variance component 1(22) and 1(23) if we know two ICC

values and the sampling variance v. The variance components could be expressed as:

P2
7 S C) E——) 3.45
@ 1-p2)=P@) (349
P3)
2, =—0 4 3.46
) 1=pe)=rg (349
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Design

The simulation study assumed two population effect sizes, a moderate effect size 0.4 and
a small effect size 0.2. The values of effect sizes 0.2 and 0.4 could show the variations of power
statistics with different combinations of the values of variance components. Too large effect
sizes lead to minor variation of the power and too small effect sizes would cause very low power
in the meta-analysis. The number of studies in each group was from 2 to 10. The number of
groups was assumed to 6 and 10. Thus, the range of total number of studies in the meta-
regression model was from 12 to 100. The range of sample size covered usual sample sizes in
empirical meta-analysis studies. The range of error variance was set to 0.05 to 0.3, which
indicates a range from a small variance to a large variance. The range of ICC value was from
0.05 to 0.30 at level-2 and level-3. The sum of two ICCs covered the values from a small amount
of heterogeneity to a large amount of heterogeneity (0.01 to 0.6). Overall, the design numbers of
parameters are summarized in Table 3.6. The simulation study used a balanced case to illustrate
the results, which means each group has the same number of studies. A two-tailed Z test was
used to calculate the power statistics. For each power analysis with different parameters, the
study did 1000 times iteration and finally took an average of the power statistics to control bias

from randomly sampling and get a robust result. An example code is appended in Appendix C.

Table 3.6 Design numbers in simulation

Population effect size 0.2 0.4

Numbers of group (N.group) 6 10

Numbers of study per group (N.study) 2 4 6 8 10
Sampling variance (within-study) 0.05 0.1 0.2 0.3

Level-2 ICC 0.05 0.1 0.15 0.2 0.25 0.3
Level-3 ICC 0.05 0.1 0.15 0.2 0.25 0.3
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Results

The results firstly displayed the power statistics from models with a medium population
effect size (0.4). Four tables (Table 3.7 to Table 3.10) show average power statistics (taking
average after 1000 iterations) with different parameters when the models have a different within-
study variance. All numbers were round to two decimals in the tables. The results in Table 3.7
showed that the values of power were almost one due to a small within-study variance (v =
0.05). The change of level-2 and level-3 ICC did not strongly influence the power statistics.
Although the case with the smallest sample size from the simulation (six groups and two studies
per group) presented smaller values of power than other cases, all values were larger than 0.8,
indicating a good power of the weighted average effect size in meta-analysis. When the numbers
of study per group increased, the power increased, and when the numbers of group increased, the
power increased.

Table 3.8 shows the results when the sampling variance (within-study) becomes 0.1 and
the population effect size is still 0.4. The cases with ten groups had good power statistics even
with considerable heterogeneity at higher levels. Larger sample sizes and smaller level-2/level-3
ICC gave higher statistical powers (near to one). However, the cases with six groups and two
studies in each group, locating at the first block in the table, showed some powers were lower
than 0.8. For instance, when level-2 ICC and level-3 ICC were higher than 0.2, the power values
were all smaller than 0.8. It indicated that when the proportion of variance at higher levels
became larger, the power went lower. These changes were more visible than the changes in the
models with a minor sampling variance (0.05).

Table 3.9 shows the results when the within-study variance becomes 0.2 and the

population effect size is still 0.4. The values of power went lower than those in Table 3.7 because
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of the larger within-study sampling variance. When level-3 ICC was 0.3, which indicated 30% of
the variance came from the group level, the power was smaller than the cases with smaller level-
3 ICC. Especially when the number of groups was small (e.g., six groups), almost all values of
power were lower than 0.80. If the number of studies in each group is small, the power statistics
went down to 0.5. However, the simulation results also showed that if a meta-analysis has a good
sample size, for instance, 60 studies or more, the analysis using a three-level model (considering
between-group variance) could still have a good power of weighted average effect size.

Table 3.10 shows the results when the within-study variance increased to 0.3 and the
population effect size was still 0.4. The simulation examples with high level-3 ICC (e.g., 0.25,
0.3) displayed low power statistics even the meta-analysis had a considerable sample size.
Compared with the results from the previous tables, the results exposed that large within-study
variance could influence the power strongly. Also, large level-2 and level-3 ICC influenced the
power statistics strongly. When the case had the same level-2 ICC, larger level-3 ICC impacted
the power significantly, especially for a small sample size case. In conclusion, the results
indicated that researchers need to pay more attention when the meta-analysis has a large within-

study variance (larger than 0.1).
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Table 3.7 Power in the models with population effect size 0.4 and within-study variance 0.05

N.group =6 N.group = 10
ICC3 ICC3

N.study =2 0.005 01 015 02 025 0.3 0005 01 015 02 025 03
0.005 1.00 0.99 099 0.98 0.98 0.97 1.00 1.00 100 1.00 1.00 1.00
01 100 0.99 098 0.97 097 0.95 1.00 100 100 1.00 1.00 0.99
ICC2 015 099 099 098 097 0.95 0.93 1.00 1.00 100 1.00 1.00 0.99
02 099 098 097 096 094 0.92 1.00 1.00 100 1.00 0.99 0.99
025 099 097 096 094 091 0.88 1.00 1.00 100 099 0.98 0.97
03 099 0.97 095 0.93 090 0.87 1.00 1.00 099 099 0.98 0.96

N.study = 4
0.005 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 100 1.00 1.00 1.00
01 100 1.00 100 1.00 0.99 0.98 1.00 1.00 100 1.00 1.00 1.00
ICC2 015 100 100 1.00 1.00 0.99 0.98 1.00 1.00 100 1.00 1.00 1.00
02 100 1.00 1.00 0.99 0.98 0.96 1.00 1.00 100 1.00 1.00 1.00
025 100 100 1.00 099 0.97 0.95 1.00 1.00 100 1.00 1.00 0.99
03 100 1.00 099 0.98 096 0.93 1.00 1.00 100 1.00 1.00 0.99

N.study = 6
0.005 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00
01 100 1.00 100 1.00 1.00 0.99 1.00 1.00 100 1.00 1.00 1.00
ICC2 015 100 100 1.00 1.00 0.99 0.99 1.00 1.00 100 1.00 1.00 1.00
02 100 1.00 100 1.00 0.99 0.98 1.00 1.00 100 1.00 1.00 1.00
025 100 100 1.00 099 0.98 0.97 1.00 1.00 100 1.00 1.00 1.00
03 100 1.00 100 0.99 0.98 0.95 1.00 1.00 100 1.00 1.00 0.99

N.study = 8
0.005 1.00 1.00 100 1.00 100 1.00 1.00 1.00 100 1.00 1.00 1.00
01 100 1.00 100 1.00 1.00 0.99 1.00 1.00 100 1.00 1.00 1.00
ICC2 015 100 100 1.00 1.00 1.00 0.99 1.00 1.00 100 1.00 1.00 1.00
02 100 1.00 100 1.00 0.99 0.99 1.00 1.00 100 1.00 1.00 1.00
025 100 100 1.00 1.00 0.99 0.97 1.00 1.00 100 1.00 1.00 1.00
03 100 1.00 100 1.00 0.98 0.96 1.00 1.00 100 1.00 1.00 1.00

N.study = 10

0.005 1.00 1.00 100 1.00 100 1.00 1.00 1.00 100 1.00 1.00 1.00
01 100 1.00 100 1.00 1.00 0.99 1.00 1.00 100 1.00 1.00 1.00
ICC2 015 100 100 1.00 100 1.00 0.99 1.00 1.00 100 1.00 1.00 1.00
02 100 1.00 100 1.00 0.99 0.99 1.00 1.00 100 1.00 1.00 1.00
025 100 100 1.00 100 0.99 0.98 1.00 1.00 100 1.00 1.00 1.00
03 100 1.00 100 1.00 0.99 0.97 1.00 1.00 100 1.00 1.00 1.00

Note. The powers are calculated based on two-tailed Z tests.
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Table 3.8 Power in the models with population effect size 0.4 and within-study variance 0.1

N.group =6 N.group =10
ICC3 ICC3
N.study =2 0005 01 015 0.2 025 0.3 0005 01 015 02 025 03

0.005 0.96 092 090 086 0.84 0.82 1.00 099 098 097 0.95 0.94
01 093 089 086 0.84 0.81 0.78 099 0.98 097 095 094 091
ICC2 015 092 088 085 0.81 0.77 0.74 099 0.97 096 094 092 0.90
02 090 086 082 0.80 0.75 0.72 099 0.97 095 093 090 0.87
025 090 0.83 080 075 071 0.66 098 0.96 093 090 0.86 0.83
03 088 081 077 0.74 0.68 0.65 097 0.95 091 0.88 0.85 0.80
N.study = 4

0.005 1.00 099 098 095 0.92 0.9 1.00 1.00 100 099 0.99 0.98
01 100 098 096 0.93 0.90 0.86 1.00 1.00 099 099 098 0.97
ICC2 015 099 097 096 0.92 0.89 0.85 1.00 1.00 099 099 0.97 0.95
02 099 097 094 0.90 0.85 0.80 1.00 100 0.99 098 0.96 0.94
025 099 095 093 088 0.83 0.78 1.00 1.00 099 097 095 0.91
03 099 095 090 0.8 0.79 0.73 1.00 099 098 096 093 0.89
N.study = 6

0.005 1.00 100 099 098 0.96 0.92 1.00 1.00 1.00 1.00 1.00 0.99
01 100 099 098 0.96 0.93 0.89 1.00 1.00 1.00 1.00 0.99 0.98
ICC2 015 100 099 0.97 0.95 0.92 0.88 1.00 1.00 1.00 1.00 0.99 0.97
02 100 099 097 094 091 0.86 1.00 100 100 099 0.98 0.96
025 1.00 099 097 092 086 0.82 1.00 1.00 1.00 0.99 0.97 0.94
03 100 098 094 0.90 0.85 0.78 1.00 1.00 099 098 095 0.91
N.study = 8

0.005 1.00 100 099 0.99 0.96 0.94 1.00 1.00 100 1.00 1.00 0.99
01 100 100 099 098 0.95 0091 1.00 1.00 1.00 1.00 0.99 0.98
ICC2 015 100 100 0.99 0.97 094 0.89 1.00 1.00 1.00 1.00 0.99 0.98
02 100 099 098 0.96 0.91 0.87 1.00 100 100 1.00 0.99 0.97
025 100 099 097 095 090 0.83 1.00 1.00 1.00 099 0.98 0.95
03 100 099 097 0.92 0.87 0.80 1.00 1.00 100 099 097 0.93
N.study = 10

0.005 1.00 1.00 100 0.99 0.97 0.95 1.00 1.00 100 1.00 1.00 0.99

01 100 100 099 098 0.9 0091 1.00 1.00 1.00 1.00 1.00 0.99

ICC2 015 100 1.00 0.99 0.97 0.94 0.90 1.00 1.00 1.00 1.00 0.99 0.98
02 100 100 099 097 0.92 0.88 1.00 100 1.00 1.00 0.99 0.97

025 100 1.00 0.98 095 091 0.84 1.00 1.00 1.00 0.99 0.98 0.96

03 100 0.99 097 094 088 081 1.00 1.00 100 099 0.97 094

Note. The powers are calculated based on two-tailed Z tests.
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Table 3.9 Power in the models with population effect size 0.4 and within-study variance 0.2

N.group =6 N.group =10
ICC3 ICC3
N.study =2 0005 01 015 02 025 0.3 0005 01 015 02 025 03

0.005 0.79 072 069 0.65 0.62 0.60 093 0.88 085 0.82 077 0.76
01 075 068 065 0.62 0.59 056 090 085 081 077 074 0.71
ICC2 015 073 066 0.62 058 054 052 0.88 0.83 0.79 0.75 0.72 0.69
02 070 064 059 058 0.53 050 087 0.82 0.78 0.74 069 0.65
025 069 060 057 053 049 0.46 086 0.79 0.73 069 064 0.61
03 066 058 055 052 047 046 0.84 0.77 071 0.67 0.62 0.57
N.study = 4

0.005 0.95 089 084 079 0.73 0.70 1.00 097 095 092 0.89 0.85
01 094 085 080 0.74 0.70 0.65 099 0.96 093 0.89 086 0.82
ICC2 015 092 083 0.78 0.72 0.68 0.63 099 0.95 091 088 083 0.77
02 091 081 076 0.70 0.63 0.57 099 0.94 090 085 080 0.76
025 090 078 0.73 066 060 0.55 098 0.93 0.88 083 078 0.71
03 087 0.77 070 0.63 0.56 0.1 097 091 086 081 074 0.67
N.study = 6

0.005 0.99 094 090 084 0.79 0.73 1.00 099 098 095 093 0.87
01 099 091 087 081 0.74 0.68 1.00 098 096 093 090 0.85
ICC2 015 098 090 0.84 0.78 0.72 0.67 1.00 098 095 092 0.88 0.82
02 098 088 082 075 0.71 0.64 1.00 098 094 091 086 0.79
025 096 087 081 073 064 0.59 1.00 097 094 088 0.82 0.75
03 096 085 0.77 0.70 0.63 0.56 1.00 096 092 086 0.78 0.72
N.study = 8

0.005 1.00 097 092 088 0.80 0.76 1.00 1.00 099 097 094 0.9
01 100 094 090 0.85 0.78 0.70 1.00 099 098 095 092 0.87
ICC2 015 099 094 088 0.81 0.75 0.69 1.00 099 097 094 0.89 0.85
02 099 092 086 0.80 0.70 0.66 1.00 099 097 093 087 081
025 099 091 0.84 077 070 0.60 1.00 098 095 090 0.85 0.78
03 099 088 081 0.72 0.65 057 1.00 098 094 089 082 0.73
N.study = 10

0.005 1.00 098 094 0.89 0.82 0.77 1.00 1.00 099 098 095 091

01 100 09 091 086 0.79 071 1.00 100 098 096 092 0.88

ICC2 015 100 095 090 0.84 0.76 0.70 1.00 1.00 098 095 091 0.85
02 100 095 089 081 0.73 0.66 1.00 099 097 094 089 0.83

025 100 093 086 078 0.71 0.62 1.00 099 097 091 0.86 0.80

03 100 092 084 076 0.68 0.9 1.00 098 09 090 083 0.74

Note. The powers are calculated based on two-tailed Z tests.
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Table 3.10 Power in the models with population effect size 0.4 and within-study variance 0.3

N.group =6 N.group = 10
ICC3 ICC3

N.study = 2 0005 01 015 02 025 0.3 0005 01 015 02 025 03
0005 065 059 057 052 050 0.48 0.83 076 0.72 0.69 0.64 0.63
01 0.62 055 053 050 048 0.45 0.78 0.73 0.68 0.64 0.61 0.58
ICC2 015 060 054 050 047 043 042 0.76 0.70 0.66 0.62 0.58 0.56
02 057 052 047 047 043 040 0.75 0.69 064 061 0.57 0.52
025 056 048 046 043 040 0.37 0.73 065 060 056 051 0.49
0.3 053 047 044 042 038 0.37 071 064 058 054 050 0.46

N.study = 4
0005 o086 0.77 071 066 0.60 0.57 097 091 087 0.82 078 0.73
0.1 084 0.72 066 061 0.58 0.53 0.95 0.88 0.82 0.78 0.74 0.68
ICC2 015 082 070 065 058 055 051 0.94 086 081 0.76 0.70 0.63
0.2 0.80 068 062 057 051 0.46 094 085 0.79 0.72 0.67 0.63
025 079 065 059 054 048 0.44 0.93 082 076 0.70 0.64 0.58
0.3 0.75 063 057 050 045 041 091 080 0.74 067 0.60 054

N.study = 6
0005 095 0.84 078 072 0.66 0.60 1.00 095 091 0.87 082 0.75
0.1 094 080 0.75 0.68 0.61 0.55 099 093 089 0.83 0.78 0.73
ICC2 015 092 079 071 065 0.58 0.55 0.98 093 087 0.82 0.76 0.69
0.2 092 0.77 069 061 058 051 098 092 085 0.80 0.74 0.65
025 0.89 074 0.68 060 052 047 0.98 090 0.84 0.76 0.69 0.61
0.3 089 0.72 0.63 057 051 045 0.97 087 082 0.73 0.65 0.59

N.study = 8
0.005 098 089 081 0.76 0.67 0.63 1.00 097 094 091 084 0.78
0.1 098 085 0.79 0.72 0.64 057 1.00 096 092 086 0.80 0.75
ICC2 015 097 084 075 067 0.62 0.56 1.00 0.95 091 085 078 0.72
0.2 09 081 0.73 0.66 0.57 0.53 1.00 094 089 083 0.75 0.68
025 095 079 071 064 058 0.48 099 092 087 0.79 0.72 0.65
0.3 094 0.76 0.67 059 052 0.46 099 091 085 0.77 0.69 0.60

N.study = 10

0005 1.00 091 084 078 069 0.64 1.00 098 096 091 0.87 0.80
0.1 099 089 079 0.74 0.66 0.58 1.00 098 094 088 0.82 0.76
ICC2 015 099 087 078 071 0.62 057 1.00 0.97 093 086 081 0.73
0.2 098 086 0.77 0.68 0.59 0.53 1.00 096 091 085 0.77 0.70
025 098 082 074 065 058 050 1.00 0.95 090 080 0.74 0.67
0.3 097 0.82 071 0.63 055 0.48 1.00 093 087 0.79 0.70 0.61

Note. The powers are calculated based on two-tailed Z tests.

88



Table 3.11 to Table 3.14 show the results when the population effect size is small (0.2).

Table 3.11 Power in the models with population effect size 0.2 and within-study variance 0.05

N.group =6 N.group =10
ICC3 ICC3

N.study =2 0005 01 015 02 025 03 0005 01 015 02 025 03
0.005 079 072 069 065 0.62 0.60 093 088 085 082 0.77 0.76
01 075 068 065 0.62 059 056 090 085 081 077 074 071
ICC2 015 073 066 062 058 054 052 0.88 083 0.79 0.75 0.72 0.69
02 070 064 059 058 053 050 087 082 0.78 0.74 0.69 0.65
025 069 060 057 053 049 046 086 0.79 073 0.69 0.64 0.61
03 066 058 055 052 047 046 084 0.77 071 0.67 0.62 057

N.study = 4
0.005 095 089 084 079 0.73 0.70 1.00 097 095 092 089 0.85
01 094 085 080 0.74 0.70 0.65 099 09 093 089 0.86 0.82
ICC2 015 092 083 0.78 0.72 0.68 0.63 099 095 091 088 0.83 0.77
02 091 081 076 0.70 0.63 057 099 094 090 085 0.80 0.76
025 090 0.78 0.73 066 0.60 0.55 098 093 088 083 0.78 0.71
03 087 077 070 063 056 051 097 091 086 081 0.74 0.67

N.study = 6
0.005 099 094 090 084 079 0.73 1.00 099 098 095 093 0.87
01 099 091 087 081 0.74 0.68 1.00 098 096 093 090 0.85
ICC2 015 098 090 0.84 0.78 0.72 0.67 1.00 098 095 092 0.88 0.82
02 098 088 082 075 071 0.64 1.00 098 094 091 086 0.79
025 096 087 081 073 0.64 0.59 1.00 097 094 0.88 082 0.75
03 09 085 077 0.70 0.63 0.6 100 096 092 086 0.78 0.72

N.study = 8
0.005 1.00 097 092 088 0.80 0.76 1.00 1.00 099 097 094 0.90
0.1 1.00 094 090 085 0.78 0.70 1.00 099 098 095 092 0.87
ICC2 015 099 094 088 081 0.75 0.69 1.00 099 097 094 089 0.85
02 099 092 086 0.80 0.70 0.66 1.00 099 097 093 087 081
025 099 091 084 077 0.70 0.60 1.00 098 095 090 085 0.78
03 099 088 081 072 065 057 1.00 098 094 089 082 0.73

N.study =10

0.005 1.00 098 094 089 082 0.77 1.00 1.00 099 098 095 091
0.1 100 096 091 086 0.79 0.71 1.00 1.00 098 096 092 0.88
ICC2 015 100 095 090 084 0.76 0.70 1.00 1.00 098 095 091 0.85
0.2 100 095 089 081 0.73 0.66 1.00 099 097 094 089 0.83
025 100 093 086 078 0.71 0.62 1.00 099 097 091 0.86 0.80
0.3 100 092 084 0.76 0.68 0.59 1.00 098 096 090 083 0.74

Note. The powers are calculated based on two-tailed Z tests.
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Table 3.12 Power in the models with population effect size 0.2 and within-study variance 0.1

N.group =6 N.group =10
ICC3 ICC3

N.study =2 0.005 01 015 02 025 03 0005 01 015 02 025 03
0.005 056 051 049 045 043 042 0.73 066 0.65 0.58 058 0.2
0.1 053 047 045 043 041 0.39 0.70 062 059 057 053 049
ICC2 015 052 046 043 040 037 0.36 0.68 0.60 057 054 051 047
02 048 044 041 041 037 035 0.66 0.58 058 0.50 0.48 0.46
025 048 041 039 037 034 0.32 0.63 055 052 050 044 042
03 046 040 038 0.36 0.33 0.33 060 055 050 046 043 0.39

N.study = 4
0.005 0.77 068 062 057 051 049 092 0.83 0.78 0.72 0.67 0.60
01 075 062 057 052 050 045 0.89 080 0.75 0.68 0.64 0.58
ICC2 015 073 061 056 050 048 0.44 0.88 0.78 0.71 0.67 0.61 0.56
02 071 058 053 049 043 040 0.88 0.75 0.70 0.64 0.58 0.53
025 070 056 051 046 042 0.38 0.86 0.73 0.66 0.60 0.58 0.1
03 066 055 049 043 039 0.35 0.84 0.70 0.63 0.58 053 047

N.study = 6
0.005 089 0.76 069 0.62 057 051 098 090 085 0.79 0.72 0.68
01 088 071 065 058 052 047 097 0.88 081 0.75 0.69 0.64
ICC2 015 085 069 062 056 050 047 096 086 0.79 0.74 0.66 0.58
02 085 067 059 053 050 0.44 095 084 0.77 0.69 0.64 0.55
025 081 064 059 052 044 0.40 095 0.82 0.74 0.67 0.60 0.3
03 081 063 055 049 044 0.39 093 0.79 071 0.64 056 051

N.study = 8
0.005 095 081 072 0.66 058 0.54 099 094 088 0.82 0.75 0.68
01 094 077 069 0.63 056 049 099 091 084 077 072 0.66
ICC2 015 092 075 066 058 053 048 099 090 083 0.76 0.69 0.61
02 091 072 064 057 049 046 098 0.88 0.81 0.73 0.64 0.60
025 089 069 062 055 050 041 098 086 0.77 0.70 0.63 0.54
03 088 067 058 050 045 040 097 084 0.76 0.66 0.61 0.52

N.study = 10

0.005 098 084 075 0.68 059 0.5 1.00 095 091 085 0.77 0.71
01 097 081 070 0.64 057 0.50 1.00 094 087 080 0.74 0.67
ICC2 015 095 0.78 0.69 0.62 054 0.49 1.00 092 086 0.77 0.70 0.63
02 09 078 068 059 051 045 099 090 084 0.75 0.66 0.60
025 094 073 0.64 057 050 0.42 099 089 0.79 0.73 0.65 0.56
03 092 073 062 054 048 041 099 0.89 0.78 0.70 061 0.54

Note. The powers are calculated based on two-tailed Z tests.
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Table 3.13 Power in the models with population effect size 0.2 and within-study variance 0.2

N.group =6 N.group =10
ICC3 ICC3

N.study =2 0005 01 015 02 025 0.3 0005 01 015 02 025 03
0.005 038 036 034 032 031 0.30 052 046 043 042 038 0.38
01 037 033 033 031 030 0.29 048 045 041 0.38 0.36 0.35
ICC2 015 037 033 031 029 0.27 0.27 047 041 040 036 034 034
02 034 031 029 030 0.28 0.26 045 041 038 0.37 035 0.32
025 034 029 028 027 025 0.25 044 039 036 0.34 031 0.30
03 032 029 028 0.27 0.24 025 043 0.38 035 0.33 030 0.28

N.study = 4
0.005 055 047 043 039 036 0.35 0.72 061 057 052 048 045
01 053 043 039 036 036 0.32 068 057 052 048 045 041
ICC2 015 051 042 039 034 034 032 066 055 050 046 042 0.38
02 049 040 037 035 031 0.29 0.66 0.53 048 044 040 0.37
025 049 039 035 033 030 0.27 064 051 046 041 037 034
03 046 038 034 030 0.28 0.26 061 050 046 040 035 0.32

N.study = 6
0.005 0.68 054 048 043 0.39 0.36 0.86 0.68 0.62 057 051 0.46
01 067 049 046 041 036 0.33 0.82 064 058 052 048 0.44
ICC2 015 063 048 043 039 035 0.33 079 064 056 052 047 041
0.2 063 047 041 037 035 031 0.78 0.63 054 049 045 0.39
025 058 044 041 036 031 0.29 0.75 060 053 046 041 0.36
03 058 044 038 034 031 0.28 0.74 056 052 044 038 0.35

N.study = 8
0.005 0.77 059 050 046 040 0.38 092 0.74 067 062 053 048
01 075 055 048 045 039 034 089 0.71 063 055 049 0.46
ICC2 015 072 053 046 040 0.37 034 0.87 069 061 054 048 043
02 070 050 044 040 034 0.33 0.86 0.68 060 052 045 041
025 068 048 043 038 0.35 0.30 0.84 064 056 048 043 0.39
03 066 046 040 035 031 0.29 0.83 0.62 054 048 042 0.35

N.study = 10

0.005 085 061 053 048 041 0.38 095 0.78 0.69 0.62 0.56 0.50
01 082 0.60 048 045 040 0.35 094 0.75 066 058 051 0.46
ICC2 015 079 055 048 043 0.37 035 093 0.74 064 055 050 0.44
02 077 056 048 040 0.35 0.32 092 070 0.61 055 047 042
025 076 050 045 040 0.35 0.30 0.89 0.67 061 049 044 0.40
03 072 051 043 038 034 0.30 0.89 065 057 049 042 0.36

Note. The powers are calculated based on two-tailed Z tests.
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Table 3.14 Power in the models with population effect size 0.2 and within-study variance 0.3

N.group =6 N.group = 10
ICC3 ICC3

N.study =2 0.005 01 015 02 025 0.3 0005 01 015 02 025 03
0.005 0.31 030 028 0.27 0.26 0.26 042 037 035 0.34 031 0.32
01 031 028 028 0.26 026 0.25 039 037 034 031 030 0.29
ICC2 015 031 028 026 025 0.23 024 038 0.34 033 030 029 0.28
02 028 026 025 026 024 0.23 037 034 031 031 029 0.27
025 028 025 024 024 022 022 036 0.32 030 0.28 0.26 0.25
03 027 025 025 0.24 022 0.22 035 0.32 030 028 025 024

N.study = 4
0.005 044 038 036 0.33 030 0.30 059 050 047 042 040 0.37
01 043 035 031 030 030 0.27 055 046 042 0.39 037 0.33
ICC2 015 041 034 032 029 0.29 0.27 053 044 040 037 034 031
02 040 033 030 0.29 0.26 0.25 053 043 039 036 033 031
025 039 032 029 028 0.26 024 051 041 037 034 030 0.29
03 038 031 029 0.26 024 0.23 049 040 038 0.32 029 0.27

N.study = 6
0.005 055 043 039 035 032 0.30 0.73 055 050 046 041 0.37
01 055 040 037 0.33 030 0.28 069 052 046 042 039 0.36
ICC2 015 051 039 035 033 0.29 0.28 0.67 051 045 042 038 0.33
02 051 038 033 031 029 0.26 064 051 044 040 037 0.32
025 047 036 033 030 0.26 0.25 062 049 043 037 034 0.30
03 047 035 032 0.28 027 0.25 061 045 042 036 031 0.30

N.study = 8
0.005 0.64 048 040 0.37 033 031 0.82 061 055 050 042 0.38
01 062 044 039 037 032 0.8 0.77 058 051 044 039 0.38
ICC2 015 060 043 037 032 0.30 0.28 0.75 056 049 044 039 0.35
02 058 041 036 0.33 028 0.28 0.74 055 048 042 037 0.33
025 055 038 035 032 030 0.25 071 052 044 039 035 0.32
03 053 037 032 029 027 0.25 0.70 050 044 039 035 0.29

N.study = 10

0.005 0.72 049 042 039 033 031 0.87 065 056 050 045 041
01 069 049 038 0.36 033 0.29 0.85 061 054 047 041 0.38
ICC2 015 066 044 039 035 0.31 0.30 0.82 061 051 044 040 0.36
02 064 045 039 0.33 029 0.27 082 057 049 044 038 034
025 063 040 036 033 0.30 0.26 0.77 055 049 040 0.36 0.33
03 059 042 035 031 029 0.26 0.78 052 046 0.39 034 0.29

Note. The powers are calculated based on two-tailed Z tests.
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The simulation results from Table 3.11 to Table 3.14 indicated that the population effect
size strongly influenced the power in the three-level meta-regression model. The population
effect size decreased to 0.2, which indicated a small effect size. Under this scenario, the power
was high only in the model with a small sampling variance (within-study) and small ICC values
from higher levels. The power went lower when the within-study variance went higher from
Table 3.11 to Table 3.14. Especially in Table 3.14, most power values were smaller than 0.8 due
to a big sampling variance (0.3) and a small population effect size (0.2). Moreover, the third
level ICC strongly impacted the power. For instance, the cases with a sample size of 100 at the
last block in Table 3.13 showed good power (>=0.78) with low level-3 ICC (0.05). However, the
power values (<=0.41) dropped dramatically when level-3 ICC increases to 0.3. Other findings
were similar to the cases with medium sample size. The third level ICC strongly influenced the
power when the sample size was small, or the within-study variance was big. The results
suggested that we should consider the power level when the population effect size is small in the
three-level meta-regression model.

To visualize the results from the present simulation study, a heat map is displayed as
Figure 3.2. There are 20 blocks in the heat map. The y axis indicates the number of studies in
each group and the x axis indicates the number of groups under two population effect size. In
each block, the y axis indicates the range of within-study variance from 0.05 to 0.3 (i.e., 0.05,
0.1, 0.2, 0.3), and under each within-study variance level-2 ICC shows from 0.05 to 0.3 (i.e.,
0.05, 01, 0.15, 0.2, 0.25, 0.3). The x axis shows the range of level-3 ICC from 0.05 to 0.3 (i.e.,
0.05, 01, 0.15, 0.2, 0.25, 0.3). The red color represents the power over 0.8, the white color

represents the power around 0.8, and the blue color represents the power below 0.2.
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Figure 3.2 A heat map of power values from simulation

Population effect size 0.2 Population effect size 0.4

6 groups 10 groups

The number of studies per group

The heat map illustrated the same results that when the sample size and population effect

size went larger, more power values with different variance parameters could be considered as



good power size for the weighted average effect size in the three-level meta-analysis. Higher

level-3 ICC (larger between-group variance) caused lower power in the study.

Discussion

The present study in Chapter 3 extended the prior work by Hedges and Pigott (2001,
2004) for the power in meta-analysis regression model. The study followed the procedures of
calculating power in two-level (random effects) mate-regression model to extend the calculation
for power in three-level meta-regression model. The between-group variance was introduced to
the model which indicated that possible correlations existed among studies conducted by same
research group and lab. The study provided general procedures to find the variance-covariance
structure for a three-level meta-regression, showed the equations to calculate non-centrality
parameter in the alternative distribution, and how to use the parameter to detect statistical power
in three-level meta-regression model.

The study first explored the power of the weighted average effect size in three-level
meta-regression model and constructed the variance-covariance matrix used to conduct weights
in the estimations. A two-level meta-regression model assumed an effect size nested within a
study. The variance-covariance matrix was diagonal. The diagonal elements were a sum of two
variance components - the effect size variance (which was known and varies across effect sizes)
and the between-study variance, which was constant across studies and was estimated. In a three-
level meta-regression model (e.g., where studies were nested within research groups), the
variance-covariance matrix would be a block diagonal. The diagonal elements in each block
matrix were a sum of three variance components - the effect size variance (which was known and

varies across effect sizes), the between-study within-group variance which was constant across
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studies and was estimated, and the between-group variance with was constant across groups and
was estimated. The off-diagonal elements of each block matrix were covariances between the
studies linked to a specific research group. There would be as many block matrices as there are
groups. The dimensions of these matrices were determined by the number of studies in each
group. The study then calculated the non-centrality parameter in the alternative distribution to
detect statistical power for the weighted average effect size in a three-level meta-regression
model. Each model was followed by a simple illustrated example to show how to compute power
statistics.

The groups were assumed as random in the third level in the present study. Potential
structures could be further discussed. For instance, one condition is to test the groups at the third
level are not random but fixed, which means the three-level model would flat to a two-level
model. The variance-covariance matrix would change back to a diagonal matrix instead of a
block matrix in the three-level model. Similar structures were discussed by Hedge and Pigott
(2004) in the second level model with moderators. The weighted average effect (weighted grand
mean) could be computed by calculating a weighted average of the weighted mean effect sizes
from groups. Generally, compared with a three-level model, the present condition would lead to
smaller variance. As a result, the non-centrality parameter would be larger, and the power of tests
would be larger.

Second, the study explored the power of the moderators (individual regression
coefficients) in the moderation analysis. Two variance-covariance matrix structures were shown.
One assumed no random effects of the moderators in the model, and the other assumed the
random effects of second-level moderators existed at the third level. The latter had the more

complex variance-covariance structure. The study then calculated the non-centrality parameter in
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the alternative distribution to detect statistical power for the moderators in a three-level meta-
regression model. Each model was followed by a simple illustrated example to show how to
compute power statistics. The power statistics of the moderators for meta-regression models in
the study were low because of the small regression coefficients and large standard errors. The
low power of moderators in the meta-regression models were similar to the results from Hedges
and Pigott's work (2004). The insufficient power can cause futile conclusion, thus the moderators
with low power should be interpreted carefully. Therefore, computing power for moderators in
meta-analysis seems more important than detecting power for weighted average effect size
(Hedges & Pigott, 2004). In fact, the moderators or interactions in multiple regression (or called
moderated multiple regression) usually suffer from a lack of power (Aguinis, 1995; Shieh, 2009).
The main problem of low power is related to the product variable does potentially not distributed
normally (McClelland & Judd, 1993). Therefore, to solve the problem, a transformation of the
interested variables might be necessary if the variables are heavily skewed (Shieh, 2009).
Structural equation modeling (SEM) was suggested as another possible solution to enhance
power because the measurement error could be involved in the model (Aguinis, 1995). Based on
the previous evidence, the present study suggests selecting the potential moderators from prior
theories and understanding the properties of moderators before the analysis. A good practice is
also to consider proper sample size and design method before conducting moderated multiple
regression or moderation analysis in meta-analysis.

The simulation study showed how different values of parameters could influence the
power of the weighted average effect size in a three-level meta regression model. Balanced and
univariate case was considered in the current development. The values of parameters in the

simulation covered a wide range of total sample sizes, the values of error terms, the levels of

97



heterogeneity from higher levels, and the population sample sizes. Overall, the simulation study
demonstrated that high level-3 ICC could cause a small value of power, which indicated the
meta-analysis might lead to an invalid conclusion of the average sample size, especially in the
cases with a small sample size or a large (within-study) sampling variance. The small population
effect size caused small power statistics in the three-level meta-regression model. The findings
also suggests that a three-level model needs a considerable sample size to ensure a good power
of the meta-analysis.

The present study has some limitations. First, the current development focused on the
univariate cases of three-level meta-regression models. And the simulation study used balanced
cases to illustrate the final results. Future studies could extend the development to multivariate
and imbalanced cases in three-level meta-regression models to capture the changes of power.
Second, all parameters were assumed in the study, and they were not from empirical studies.
Thus, future studies could use real examples to show how third-level heterogeneity impacts the

power in the three-level meta-regression model.
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Appendix A Variable Summary

Table A.1 Variables extracted from ECLS-K:2011

Variables Description Variable name Kindergarten Grade 1 Grade2 Grade3 Grade4 Grade5

Reading achievement  IRT-based scale scores RSCALK5 X2 X4 X6 X7 X8 X9

Math achievement IRT-based scale scores MSCALKS5 X2 X4 X6 X7 X8 X9

Science achievement IRT-based scale scores SSCALKS5 X2 X4 X6 X7 X8 X9

ATL Composite continuous variable  TCHAPP X2 X4 X6 X7 X8 X9
with seven elements

EPB Composite continuous variable  TCHEXT X2 X4 X6 X7 X8 X9
with five elements

IPB Composite continuous variable ~ TCHINT X2 X4 X6 X7 X8 X9
with four elements

Teacher experience Continuous variable (unit: YRSTCH Al A4 A6 A7 A8 A9
years)

School enrollment Ordinal variable was recoded to KENRLS X2 X4 X6 X7 X8 X9
continuous variable.

School SES Ordinal variable was recodedto FRMEAL X2FLCH2 | X4FMEAL_ I X6 X7 X8 X9
continuous variable. X4FLCH2_ | X4RMEAL |

Change school Binary indicator (reference DEST X2 X4 X6 X7 X8 X9
group: non-change)

Age Age at spring kindergarten X2KAGE_R

SES Composite continuous variable  X12SESL

Speak non-English at Binary indicator (reference X12LANGST

home group: speak English at home)

Gender Binary indicator (reference X_CHSEX_R
group: male)

Race Categorical variable X_RACHTH_R  Generate four binary variables (Black students, Hispanic students, Asian

students, and Other students) in the study (reference group: White students)

Note. ATL = Approaches to Learning; EPB = Externalizing problem behaviors; IPB = Internalizing problem behaviors.
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Table A.2 Descriptive statistics in complete data analysis

Year Reading Math Science ATL EPB IPB Enrollment g(I:EhSOOI -er;sg:]iz;ce
11 70.80 52.06 34.87 3.20 1.57 1.47 510.21 4521 14.45
14.29 13.04 7.26 0.65 0.59 0.46 216.64 28.61 9.57
12 97.59 75.13 44.38 3.14 1.69 1.52 517.95 46.11 15.01
16.51 14.78 9.95 0.68 0.59 0.49 211.62 27.92 9.74
13 114.92 92.85 54.03 3.14 1.67 1.56 520.34 46.90 15.41
15.67 16.96 11.19 0.68 0.59 0.50 214.41 28.10 9.71
14 123.17 106.47 61.68 3.14 1.64 1.57 513.57 46.96 14.44
14.43 16.74 11.40 0.69 0.59 0.52 217.66 27.88 9.37
15 131.32 115.14 68.29 3.16 1.60 157 515.67 46.65 14.40
13.65 16.30 11.30 0.68 0.57 0.53 223.94 28.03 9.28
16 138.44 122.20 75.10 3.18 1.59 1.55 527.32 47.10 14.29
14.14 16.19 11.94 0.69 0.57 0.50 227.83 28.07 8.98
Total 112.71 93.98 56.39 3.16 1.63 1.54 517.51 46.49 14.67
27.15 28.86 17.37 0.68 0.58 0.50 218.81 28.11 9.45
Year ;r;]%r;g:e Age SES Non-English ~ Gender Black Hispanic Asian Other
11 0.00 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06
0.00 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23
12 0.04 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06
0.20 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23
13 0.01 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06
0.10 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23
14 0.05 73.81 0.05 0.14 0.49 0.08 0.22 0.05 0.06
0.23 4.35 0.80 0.35 0.50 0.27 0.41 0.22 0.23
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Table A.2 Continued.

15 0.05
0.22
16 0.09
0.29
Total 0.04
0.20

73.81
4.35
73.81
4.35
73.81
4.34

0.05
0.80
0.05
0.80
0.05
0.80

0.14
0.35
0.14
0.35
0.14
0.35

0.49
0.50
0.49
0.50
0.49
0.50

0.08
0.27
0.08
0.27
0.08
0.27

0.22
0.41
0.22
0.41
0.22
0.41

0.05
0.22
0.05
0.22
0.05
0.22

0.06
0.23
0.06
0.23
0.06
0.23

Note. In each year, the first row indicates means of the variables and the second row indicates standard deviations of the variables. ATL = Approaches to
Learning; EPB = Externalizing problem behaviors; IPB = Internalizing problem behaviors.

Table A.3 Correlation table of continuous variables (time average) in complete data analysis

Reading Math Science ATL EPB IPB Enrollment SgEOSOI eIp?:r?Zﬁ(r:e Age SES
Reading 1.00
Math 0.69 1.00
Science 0.65 0.68 1.00
ATL 0.40 0.37 0.28 1.00
EPB -0.17 -0.14 -0.10 -0.61 1.00
IPB -0.17 -0.19 -0.12 -0.38 0.29 1.00
Enrollment 0.00 -0.01 -0.03 0.02 -0.04 -0.02 1.00
School SES -0.28 -0.29 -0.31 -0.09 0.08 0.04 0.10 1.00
Teacher experience 0.05 0.05 0.06 0.05 -0.05 -0.01 -0.07 -0.11 1.00
Age 0.02 0.06 0.08 0.02 0.02 0.02 -0.04 -0.01 0.01 1.00
SES 0.40 0.40 0.41 0.19 -0.11 -0.09 -0.04 -0.53 0.08 -0.01 1.00

Note. ATL = Approaches to Learning; EPB = Externalizing problem behaviors; IPB = Internalizing problem behaviors.
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Table B.1 Study summary

Appendix B Study Summary and Forest Plots

Publication

School

Single

Longitu

Performance

Included in meta-

Study Year type level timepoint  dinal Student type outcome Country Term analysis
Beisly et al. 2020 Journal Pre-k Yes No Regular Reading, . USA LRB  Yes
Mathematics
Bodovski 2007 Dissertation 1 Yes No Regular Reading USA ATL  Yes
Brock et al. 2009 Journal K Yes No Regular Reading, . USA LRB  Yes
Mathematics
Bumgarner et al. 2013 Journal K,1,3 No Yes Hispanic Mathematics USA ATL No .
(no correlation)
BL_Jstamante & 2019 Journal Pre-k Yes Yes Head start Reading, . USA ATL  Yes
Hindman Mathematics
Coté 2018 Dissertation 3 No Yes Regular Reading USA LRB  Yes
. . the West No .
Durbrow et al. 2001 Journal Elem Yes No Remote village Combined Indies LRB  (combined
achievement)
. . the West No .
Durbrow et al. 2000 Journal Elem Yes No Remote village Combined Indies LRB  (combined
achievement)
. Reading,
Elliott 2019 Journal K,3 Yes No Regular . USA ATL  Yes
Mathematics
No
George & 2005 Journal K, 1 Yes Yes Most former Combined USA ATL  (combined
Greefield Head start .
achievement)
. . Reading,
Jackson 2019 Dissertation 1 No Yes Regular . USA ATL  Yes
Mathematics
Le etal. 2019 Journal K Yes No Regular Advanced_ USA ATL No .
Mathematics (no correlation)
Li-Grining etal. 2010 Journal Kto6 No Yes Regular Reading, USA ATL No .
Mathematics (no correlation)
Mattews et al. 2010 Journal ;,( 1.3 Yes Yes Regular Reading USA LRB  Yes
Reading es
McClelland etal. 2006 Journal Kto6 Yes No Regular ! USA LRB  (no correlation for

Mathematics

long-term)
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Table B.1 Continued

McGinnis

McWayne et al.

Musu-Gillette et
al.
Neuenschwander
etal.

Ortiz

Razza et al.

Ready et al.

Robinson &
Mueller
Sanchez-Pérez et
al.

Sasser et al.

Smith-Adcock et
al.

Stipek et al.

Sung and
Wickrama

Tach & Farkas

Williams et al.

2009

2004

2015

2012

2014

2015
2005
2014

2018

2015

2019

2010

2018

2006
2016

Dissertation

Journal

Journal

Journal

Dissertation

Journal
Journal

Journal

Journal

Journal

Journal

Journal

Journal

Journal

Journal

3

Pre-k

k
K
Pre-k

K, 4
K
K

Elem

Pre-k,
3

K

K, 1,3,
5

K 1,2

K, 1

Elem

Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes

Yes

Yes

No

No
No

No

No

No

No

No

Yes
No
No

No

Yes

No

Yes

Yes

Yes
Yes

Regular

Head start

Regular
Regular

Regular

Low income,
Minority
Regular

Regular
Regular
Head start
Low SES
Low income
Regular

Regular

Regular

Reading,
Mathematics

Combined

Reading

Reading,
Mathematics
Reading,
Mathematics
Reading,
Mathematics

Reading

Mathematics

Reading,
Mathematics
Reading,
Mathematics

Reading

Reading

Reading,
Mathematics

Reading

Mathematics

USA

USA

USA
Switzerland
USA

USA
USA
USA

Spain
USA
USA
USA
USA

USA

Australia

ATL

ATL

ATL

LRB

ATL

ATL
ATL
ATL

LRB

LRB

ATL

LRB

ATL

ATL
ARC

Yes

No
(combined
outcome; no
correlation)

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes

No
(no correlation)

Yes

Note. Elem = elementary school; LRB = Learning-related behaviors; ATL = Approaches to learning; ACR = attentional-cognitive regulation
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Figure B.1 A forest plot for the relationship between ATL and reading achievement from single

timepoint designs

Weight Weight

Study Total Correlation COR 95%-Cl (fixed) (random)
McClelland et al., 2006 538 —— 044 [0.37;0.51] 0.8% 6.2%
Bustamante & Hindman., 2019 2145 - 0.20 [0.15;0.24] 3.1% 6.6%
Stipek et al., 2010 301 ——i! 0.26 [0.15;0.36] 0.4% 5.9%
Razza et al., 2015 669 § ' = 062 [0.57;0.66] 1.0% 6.3%
Smith-Adcock et al., 2019 3444 * 042 [0.39;044] 4.9% 6.6%
Sanchez-Perez et al., 2018 142 — 0.26 [0.10; 041] 0.2% 5.1%
Musu-Gillette et al., 2015 3044 2 4 042 [0.39;045] 4.4% 6.6%
Brock et al., 2009 173 —= 0.36 [0.22; 048] 0.2% 5.4%
MNeuenschwander et al., 2012 459 —'-— 043 [0.35;0.50] 0.7% 6.1%
Ready et al., 2005 16883 : 044 [0.42;045] 24.2% 6.7%
Elliott, 2019 11730 - 041 [0.39;042] 16.8% 6.7%
Beisly et al., 2020 179 — 0 0.12 [-0.03; 0.26] 0.3% 5.4%
Ortiz, 2014 (1) 4900 & ;! 0.28 [0.26;0.31] 7.0% 6.7%
Ortiz, 2014 (2) 500 — i 0.13 [0.04;0.21] 0.7% 6.2%
McGinnis, 2009 12558 040 [0.39;041] 18.0% 6.7%
Bodovski, 2007 12239 : E 049 [0.48;0.50] 17.5% 6.7%
Fixed effect model 69904 H 0.41 [ 0.41; 0.42] 100.0% ==
Random effects model < 0.37 [0.30; 0.43] - 100.0%

Heterogeneity: 12 = 97%, 1 =0.0229, p <0.61 T rr
-06-04-02 0 02 04 06

Figure B.2 A forest plot for the relationship between ATL and reading achievement from

longitudinal designs

Weight Weight

Study Total Correlation COR 95%-Cl (fixed) (random)
Cote, 2018 4035 = 0.17 [0.14;0.20] 9.2% 13.6%
Bustamante & Hindman., 2019 2145 - 0.23 [0.19;0.27] 4.9% 13.3%
Stipek et al., 2010 301 —— 037 [0.27;047] 0.7% 10.6%
Razza et al., 2015 669 — 0.35 [0.28;041] 1.5% 12.2%
Matthews et al., 2010 12385 ° 0.43 [0.42;044] 28.1% 13.8%
Sasser et al., 2015 164 ——+—— 0.38 [0.24;0.50] 0.4% 8.8%
Jackson, 2019 14188 - 0.39 [0.38;0.40] 32.2% 13.8%
Sung & Wickrama, 2018 10131 § | 0.40 [0.39;042] 23.0% 13.8%
Fixed effect model 44018 0 0.38 [0.37; 0.39] 100.0% -
Random effects model : : -f:‘..:i 0.34 [0.27; 0.41] = 100.0%

Heterogeneity: 1# = 98%, ©* = 0.0107, p< 0.01
-04 02 0 02 04
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Figure B.3 A forest plot for the relationship between ATL and mathematics achievement from

single timepoint designs

Weight Weight

Study Total Correlation COR 95%-Cl (fixed) (random)
McClelland et al., 2006 538 P—— 0.45 [0.38;0.51] 1.2% 8.4%
Bustamante & Hindman., 2019 2145 - : 0.20 [0.16;0.24] 4.7% 8.9%
Robinson & Mueller, 2014 12462 i 0.41 [0.39; 0.42] 27.2% 9.0%
Razza et al., 2015 669 ! —— 058 [0.53;0.63] 1.5% 8.5%
Sanchez-Perez et al., 2018 142 T 0.11 [-0.06; 0.27] 0.3% 7.0%
Brock et al., 2009 173 ——— 041 [0.28;0.53] 0.4% 7.3%
MNeuenschwander et al., 2012 459 : —— 047 [0.40; 0.54] 1.0% 8.3%
Elliott, 2019 11730 i 0.19 [0.17; 0.21] 25.6% 9.0%
Beisly et al., 2020 179 — 0.17 [0.03; 0.31] 0.4% 7.4%
Ortiz, 2014 (1) 4350 = 0.30 [0.28;0.33] 9.5% 8.9%
Ortiz, 2014 (2) 500 ——i 0.23 [0.14;0.31] 1.1% 8.4%
McGinnis, 2009 12558 : 0.40 [0.39; 0.41] 27.4% 9.0%
]
Fixed effect model 45905 b 0.33 [0.33; 0.34] 100.0% -
Random effects model = 0.34 [ 0.25; 0.42] = 100.0%

Heterogeneity: 1% = 98%, t° = 0.0251, p < 0'01 ! ' ' '
-06 -04 02 0 02 04 068

Figure B.4 A forest plot for the relationship between ATL and mathematics achievement from

longitudinal designs

Weight Weight

Study Total Correlation COR 95%-Cl (fixed) (random)
Bustamante & Hindman., 2019 2145 —#— x 0.15 [0.11;0.19] 6.6% 17.6%
Williams et al., 2016 5107 %, 0.33 [0.31;0.35] 15.8% 17.9%
Razza et al., 2015 669 —— 040 [0.33;046] 21% 16.2%
Sasser et al., 2015 164 ——— 0.25 [0.10; 0.38] 0.5% 12.1%
Jackson, 2019 14159 : 0.40 [0.39;041] 43.9% 18.1%
Sung & Wickrama, 2018 10018 : 0.40 [0.38;042] 31.1% 18.1%
Fixed effect model 32262 ¢ 0.37 [0.36; 0.38] 100.0% -
Random effects model === 0.33 [0.24; 0.41] -~ 100.0%
| 1

Heterogeneity: 12 = 97%, ©* = 0.0123, p < 0.01 '
04 -0.2 0 0.2 04
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Appendix C Example Code
The example code in R is for the simulation study in Chapter 3. The example illustrates the
results of one block with population effect size equals to 0.2, within-study variance equals to 0.3,

and 6 groups in the model.

start.time <- Sys.time() #record start time
set.seed(12345) #set random seed

population <- 0.2 #for example population effect size is 0.2
vee <- 0.3 #for example within-study variance is 0.3
n.group <- 6 #for example 6 groups

n.study <- c¢(2,4,6,8,10) #number of studies per group

icc2 <- ¢(0.005, 0.1, 0.15, 0.2, 0.25, 0.3) #level-2 ICC

icc3 <- ¢(0.005, 0.1, 0.15, 0.2, 0.25, 0.3) #level-3 ICC

out <- vector("list")
for (p in 1:1000){ #1000 times iteration
y <- vector()
for (k in n.study){
for (i inicc2) {
for (jinicc3) {

tua2 <- i/(1-i-j)*vee #between-study variance
tua3 <- j/(1-i-j)*vee #between-group variance
Ai = Diagonal(n=k, x=vee+tua2) + tua3 #var-cov matrix per group
a <- list(Ai)
group <- n.group - 1
for(m in 1:group) {a <- c(a, Ai)}
V3 = bdiag(a) #var-cov matrix for a three-level model
sd12 = sqrt(tua2+vee)
sd3 = sqgrt(tua3)
tmp2 <- rnorm(k*n.group, mean = 0, sd = sd12)
errl2 <- tmp2
tmp3 <- rnorm(n.group, mean = 0, sd = sd3)
err3 <- rep(tmp3, each = k)
T <- population + err12 +err3 #observed effect sizes
Z <-rep(1, k*n.group)
W <- solve(V3) #weight matrix
A <- 1(Z)%*%W%*%Z
B <- t(2)%*%W%*%T
lambda <-(1/A)*B/sqrt(1/A) #non-centriality parameter of z test
lambda <- as.numeric(lambda)
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#power of the weighted average effect size, two-tailed test, type | error = 0.05
power <- 1-pnorm(1.96-lambda)+pnorm(-1.96-lambda)
y<-c(y, power)
}
}

out[[p]] <- as.matrix(y)

df <- data.frame(matrix(unlist(out), ncol = max(lengths(out)), byrow = TRUE))
average <- colMeans(df) #take average

ID <- rep(1:6, 30) #reframe simulated results

dataframe<- data.frame(ID,average)

dataframe<-unstack(dataframe, average~ID)

end.time <- Sys.time() #record ending time

time.taken <- end.time - start.time
time.taken #compute running time
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