EMPOWERINGINTERNETOFTHINGSWITHTHEEMERGINGWIRELESS INFRASTRUCTURESANDTECHNOLOGIES By DeliangYang ADISSERTATION Submittedto MichiganStateUniversity inpartialful˝llmentoftherequirements forthedegreeof ElectricalEngineeringDoctorofPhilosophy 2021 ABSTRACT EMPOWERINGINTERNETOFTHINGSWITHTHEEMERGINGWIRELESS INFRASTRUCTURESANDTECHNOLOGIES By DeliangYang Wirelesstechnologieshavebeenevolvedrapidly,whoseinfrastructuresarebuiltandde- liveredspeedily.Theemergingwirelesstechnologieso˙ernewsolutionsfordatacommu- nication,monitoring,sensing,andedgecomputing,etc.Thefastgrowthofwirelessnet- worksgeneratesnotonlyopportunitiesfornewapplications,butalsoissuesinhighenergy consumption,unexpectedlatency,andpotentialprivacybreach.Inthisdissertation,we proposetwonovelcyber-physicalsystemstodemonstratethepossibilityofempowering newIoTservicesandapplicationsbyleveragingtheemergingwirelesscharginginfras- tructuresandbenchmarkingtheenergyperformanceofendnodesinlow-powerwireless networks,respectively. First,wepresentQID,the˝rstsystemthatidenti˝esaQi-compliantdeviceduring wirelesscharginginreal-timeusingwirelesscharging˝ngerprints.QIDemploysa2- dimensionalmotionunittoemulateavarietyofmulti-coildesignsofQi,whichallowsfor ˝ne-graineddevice˝ngerprinting.Withthenovelmobilecoildesignandasetofnovel ˝ngerprintsfromoscillatorandcontrollerpatterns,QIDachieveshighdevicerecognition accuracybyusingensembledMachineLearningalgorithms.Withtheprevalenceofpublic wirelesschargingstations,ourresultsalsohaveimportantimplicationsformobileuser privacy. Second,wedevelopanovelbenchmarkingecosystem,called NB-Scope ,tostudythe energyperformanceoftheNarrowbandInternetofThings(NB-IoT)network.NB-Scope adoptsahierarchicaldesign,resolvingtheheterogeneityinnetworkoperators,nodemod- ulevendors,andlocationpro˝les,toallowforthefusionof˝ne-graineddiagnostictraces andcurrentmeasurement.Wethenconductalarge-scale˝eldmeasurementstudycon- sistingof30nodesdeployedatover1,200locationsin3regionsforthreemonths.Our in-depthanalysisofthecollected49GBtracesshowedthatNB-IoTnodesyieldsigni˝- cantlyimbalancedenergyconsumptioninthewild,uptoaratioof75:1,whichmaylead toshortbatterylifetimeandfrequentnetworkpartition.Byextensivedataanalysis,we identifyseveralkeyfactors,includingdiversenetworkcoveragelevels,long-tailpower pro˝le,andexcessivecontrolmessagerepetitions,thatleadtohighvarianceintheenergy performance. Copyrightby DELIANGYANG 2021 Thisdissertationisdedicatedtomyfamilyandfriends. v ACKNOWLEDGEMENTS Therewouldbenopossibilityformeto˝nishtheworkpresentedinthisthesiswithoutthe guidancefrommydissertationguidancecommittee,thehelpfrommycolleagues,aswell asthesupportfrommyfamilymembers.Iowemysinceregratitudetoallthesepeople whomakethisthesispossible. Firstandforemost,Iwouldliketoexpressmydeepestgratitudetomyadvisor,Dr. GuoliangXing,forhisguidanceandgeneroussupportthroughoutmyentiredoctoral study.Heguidedmetobuildupmyresearchvisionandcapability.Hehasalwaysbeen myrolemodelinconductinghigh-standardresearch.Iwouldnotbeanindependentand enthusiasticresearcherwithouthisguidance.Thisrewardingexperiencewillbene˝tmy entirelife. Besidesmyadvisor,Iwouldliketothanktherestofmyguidancecommitteemembers: Dr.RichardEnbody,Dr.JianRen,andDr.MiZhang,fortheirstrongencouragement, criticalcomments,andhelpfulsuggestions.Inparticular,Dr.Renprovidedmeimportant suggestionsonmyearly-stageprojects.Ialsodiscussedmanyimportantresearchtopics withDr.Enbodyinthemiddleofmyprogram.Dr.Zhanggavemeimportantfeedback onmyresearchprojectsandsuggestionsonmycareerpaths. SpecialthankstoDr.XiaoboTan,whoprovidedmemuchhelpandsuggestionsduring theshorttransitionperiodbetweenmyresearchprojects. Isincerelythankmyfellowlab-matesintheeLANSlab:Dr.RuoguZhou,Dr.Dennis Philips,Dr.MohammadMoazzami,Dr.JinzhuChen,Dr.YuWang,Dr.TianHao,Dr. ChenQiu,Dr.JunHuang,Dr.ChongguangBi,andLinlinTu.Particularly,Iwouldlike tothankDr.Zhouforhistremendoussupportatmyearlystageofresearch.Icannotex- presshowmuchIhavelearnedfromhim.Tome,heisasincerefriend,anenthusiastic collaborator,andaninspiringmentor.IalsothankDr.Huang,forhisprofessionalcom- mentsthatsteeredmeintherightpaperdirection.Healsoinspiredmewithawiderange vi ofpossibledirectionsduringtheexplorationstageofmyresearchprojects.Iwouldnot forgetthetimethatIspentwithRuoguandChongguangbothinsideandoutsidethelab, whichwasawonderfulmemoryduringmyPh.D.study. Toallmyfriends,thankyouallsomuchforalwaysstandingbymeanddelightingmy journey.IwishIcouldnameyouall.Iwishyouthebestofluckwhereveryouare. Particularly,Iwouldliketosincerelythankmyparents,whoseunconditionallove,sac- ri˝ce,andencouragementaccompanymesincethebeginningofmylife. Specialthankstomysoul-mate,MengyingSun.Westandtogether,exploretheworld together.Wecelebratethegoodtimes,encourageeachotherinthebadtimes,andblueprint thefuture.Ifoundanothermeaningoflifethroughthepast˝veyearswespenttogether. Finally,Ithankmytwolittlecats,HuitaandTaijifortheircompanionallalongwithmy study. vii TABLEOFCONTENTS LISTOFTABLES ....................................... xi LISTOFFIGURES ....................................... xii CHAPTER1INTRODUCTION .............................. 1 1.1DeviceRecognitionUsingNewWirelessInfrastructures............1 1.2PerformanceEvaluationofNewLPWANTechnology.............2 1.3Contribution.....................................4 1.4ThesisOrganization.................................5 CHAPTER2RELATEDWORK .............................. 6 2.1DeviceFingerprinting,Localization,andWirelessChargingInfrastructure.6 2.2WirelessInfrastructureBenchmarkandDiagnostics..............9 CHAPTER3IDENTIFYINGMOBILEDEVICESVIAWIRELESSCHARGING FINGERPRINTS ............................... 11 3.1Background.....................................11 3.2DesignChallengesandSystemOverview....................14 3.2.1DesignChallenges.............................14 3.2.2SystemOverview..............................15 3.3FeatureSelectionandAcquisition.........................19 3.3.1SelectingHardwareFingerprints.....................19 3.3.2TemporalFeatureAcquisition.......................22 3.4QIDMotionControl.................................23 3.4.1MotionPlatformDesign..........................23 3.4.2QIDSensorMotionControl........................24 3.4.2.1Contactareaboundarydetection................24 3.4.2.2PRxsymmetricaxisalignment.................25 3.4.2.3Fingerprintingtrajectoryplanning...............26 3.5FeatureExtractionandDeviceClassi˝cation...................27 3.5.1FeatureExtraction..............................27 3.5.1.1CEPintervalfeatures.......................28 3.5.1.2CEPvaluefeatures........................29 3.5.2Classi˝cation................................31 3.6Implementation...................................33 3.7Evaluation......................................35 3.7.1EvaluationSettings.............................35 3.7.2MeasurementDelay............................36 3.7.3Classi˝cationAccuracy...........................38 3.7.4ImpactofFeatureSelection........................40 3.7.5RecognitionAccuracyBreakdown....................42 viii 3.8ConclusionandDiscussion.............................43 CHAPTER4UNDERSTANDINGPOWERCONSUMPTIONOFNB-IOTINTHE WILD:TOOLANDLARGE-SCALEMEASUREMENT ........ 46 4.1ChapterIntroduction................................46 4.2NB-IoTPrimer....................................48 4.2.1FeaturesofNB-IoTTechnology......................48 4.2.2FramesandChannels............................49 4.2.3RandomAccessProcedure.........................50 4.2.4EnergyManagement............................53 4.3NB-ScopeDesign..................................54 4.3.1SystemOverview..............................54 4.3.2NB-ScopeHardwareDesign........................56 4.3.3NB-ScopeSoftwareDesign.........................58 4.4NB-IoTMeasurementStudy............................61 4.4.1FieldMeasurementMethodology.....................62 4.4.2MeasurementResultAnalysis.......................64 4.4.2.1Powerconsumptionw.r.tlocationpro˝les...........65 4.4.2.2Powerconsumptionw.r.tnetworkoperators.........66 4.4.2.3ComparisonofNB-IoTmodules................68 4.4.2.4Temporalvariationofpowerconsumption..........70 4.4.2.5Powerconsumptionv.s.distancetoeNodeB.........71 4.4.2.6Measurementsummary.....................72 4.4.3TheImpactofECL.............................72 4.4.4EnergyConsumptionBreakdown.....................76 4.4.5ImpactoftheInactivityPeriod......................80 4.4.6RepetitionofRandomAccessMSGs...................81 4.4.7UEBatteryLifeEstimation.........................83 4.5Conclusion......................................84 CHAPTER5NB-IOTNETWORKENERGYOPTIMIZATIONANDBEYOND ... 86 5.1Introduction.....................................86 5.2Methodology.....................................87 5.2.1InactivityTimerOptimizationEvaluation................89 5.2.2MSG3RepetitionCountOptimizationEvaluation...........90 5.3NewDirectionsinEnergyOptimization.....................91 5.3.1Per-UEInactivityTimer..........................92 5.3.2ECLAdaptationofUE...........................92 5.3.3Fine-grainedECLs.............................93 5.3.4CollaborativeEnergySaving........................93 5.4BeyondNB-Scope..................................93 5.4.1In-deviceSignalingDecoding.......................94 5.4.2TowardstheCoexistenceofNB-IoTandLoRa..............94 5.5Conclusion......................................95 ix CHAPTER6CONCLUSION ............................... 97 BIBLIOGRAPHY ....................................... 99 x LISTOFTABLES Table3.1:PRxtimingconstraintsduringtheQipowertransferphase.........12 Table3.2:Thelistoffeaturesextractedfromacompletescan..............31 Table3.3:ThemeasurementdelayintheQIDsystem..................37 Table4.1:ListofmodulesthatNB-Scopesupports....................56 Table4.2:eNodeBCon˝gurationsofdi˙erentNetworkOperators.MSG1repeti- tionandECLthresholdarenotavailableinthedebuglogsofNB-IoT modulesdeployedintheUS...........................67 Table4.3:Powerconsumptionbreakdown(meanandstandarddeviation)byra- dioaccessproceduresintheULcycleunderdi˙erentECLs.Unit:mJ...79 Table5.1:ListofeNodeBdefaultcon˝guration......................89 Table5.2:Meanenergyconsumptionofthe MSG3 periodfordi˙erentECL2 MSG3 repetitions.....................................91 xi LISTOFFIGURES Figure3.1:Operatingpointscollectedinanexperimentbymanuallychanging themobiledeviceplacement..........................12 Figure3.2:AnattachableQi-compatiblepowerreceiverforSamsungGalaxyS3...12 Figure3.3:Examplesofthemulti-coildesignsinQi...................13 Figure3.4:TheCEPtimeintervalvs.samplingtimein3independentfeature acquisitionexperiments:(1)stationaryPRx;(2)PRxpositionchanged duringcharging;(3)QIDisenabled......................15 Figure3.5:TheCEPvaluevs.samplingtimein3independentfeatureacquisi- tionexperiments:(1)stationaryPRx;(2)PRxpositionchangedduring charging;(3)QIDisenabled..........................16 Figure3.6:ThesystemarchitectureofQID.ItconsistsofQIDsensorandQID server.QIDsensorisresponsibleforcontrollingthemotionofthe chargercoil,capturingthesignalfromthewirelesscharger,aswellas sendingthetimestampedpacketstoQIDserver.QIDserverextracts thefeaturesfromthepacketsequenceandclassi˝esthedevice......17 Figure3.7:FingerprintingaPRxcoilwithamovementunit...............19 Figure3.8:Thescaledandzero-meanedCEPtimeintervaldistributionof42eval- uateddevices.The˝rstlettersofthedevicesrepresentthebrandsof thereceivers,whilethefollowingdigitrepresentsthespeci˝clabel initsbrand.TheerrorbarshowsthestandarddeviationoftheCEP timeinterval.Thecorrespondingactualtimeintervalspansarange of(238,270)ms.................................20 Figure3.9:Heterogeneouspowerreceivercoils.Thesizeandshapeofthecoils resultindi˙erentcontactrangemeanandstandarddeviation.......21 Figure3.10:TemporalFeatureAcquisition.Eachpacketisdecodedandtimes- tampedbythemicrocontroller(MCU).....................22 Figure3.11:Mechanicaldesign-thechargerpadiscontrolledbytwosteppermo- torlinearslides,movingina2-Dsurface...................23 Figure3.12:TrajectorydesignoftheQIDsensor......................24 xii Figure3.13:GaussiankerneldensityestimationofCEPtimeintervals.Theletters indicatethedevicebrands.Thenumberindicateseachuniquedevice ofitsbrand.The0inthehorizontalaxiscorrespondsto240msinreal timescale.....................................28 Figure3.14:ComparisonoftheCEPvaluefrequencyfor4di˙erencedivices.G0 toG7correspondtothesevenPRxcontrollerfeaturefrequencyrange inTable3.2....................................30 Figure3.15:Classi˝cationprocesswithabaggingclassi˝ersinQIDserver.......32 Figure3.16:AprototypeoftheQIDsensor.........................34 Figure3.17:Pointcloudillustration..............................36 Figure3.18:Thecross-validationscoreanddevicebranddetectionaccuracyofdif- ferentclassi˝ers..................................38 Figure3.19:Theimpactoffeatureselectionontheclassi˝cationaccuracy.G1:clas- si˝cationwithouttheCEPtimeintervalfeatures;G2:allfeaturesare included,buttheyaremeasuredwithoutthemotionplatform;G3: classi˝cationperformanceusingtheCEPtimeintervalfeaturesonly; G4:allfeaturesareincluded..........................38 Figure3.20:Confusionmatrixofthe52evaluateddevices................39 Figure3.21:Numberofpacketperscanfeaturedistributionof42devices(10sam- plesperdevice)..................................41 Figure3.22:ThefrequencyofCEPvalueequaling0distributionof42devices(10 samplesperdevice)...............................41 Figure3.23:Devicerecognitionaccuracychangeswiththenumberofdevices....43 Figure4.1:NB-IoTframestructure.............................50 Figure4.2:NB-IoTsubframestructureineitherStandaloneorGuardbanddeploy mode.Every10subframesmakearadioframe................51 Figure4.3:SignalingsbetweenUEandeNodeBbasestationduringaULpacket transmission...................................52 Figure4.4:SystemarchitectureofNB-Scope........................55 Figure4.5:NB-IoTUEmoduleshieldboards.......................57 xiii Figure4.6:STM32-basedmainboardforNB-IoT˝eldtest................58 Figure4.7:NB-Scopesoftwarearchitecture(˝eldtestmode).Thedebuglogcol- lectionpipelineissimilartothecurrentsensingpipeline,thusisnot showninthe˝gure................................59 Figure4.8:Messagedecodingexample.Therawdebuglogdatais˝rstsegmented intodi˙erent˝eldsbythebytelength,andthenistranslatedtohuman- readabletextsaccordingtothemessagede˝nitiondatabase........60 Figure4.9:Actualnodedeploymentofdi˙erentlocationpro˝les............63 Figure4.10:Meanactiveenergyperpacketdistributionbylocationpro˝lesand networkoperators.Theupperandlowererrorbarareatmost1.5xin- terquartilerangeawayfromthe75thand25thpercentilerespectively. OP:outdoorparking,SL:smartlock,WM:watermeter,SD:smoke detection,IP:indoorparking..........................66 Figure4.11:Averagepowerconsumptionperpackettransmissionforindoorap- plicationsinabuilding.Notethatsomeco-locatedpointsmaybeon di˙erent˛oors..................................67 Figure4.12:Performanceofdi˙erentmodelsinsmokesensinglocationpro˝le. M1-M3aredeployedintheUS,whileM4-M6inChina...........69 Figure4.13:Distributionofthepacketenergyina12.5-hourperiod...........70 Figure4.14:Packetenergyw.r.tthedistancebetweentheUEandtheeNodeB.....71 Figure4.15:ECLratiow.r.tlocationpro˝lesandnetworkoperators...........73 Figure4.16:ECLselectionv.s.RSRPandSNRmeasurement...............74 Figure4.17:RSRPandSNRdistributionw.r.t˝vetypesoflocationpro˝les.......74 Figure4.18:Thetypicalpowerconsumptionpro˝lesunderdi˙erentECLs.The leftcolumnshowstheULpacketTxcurrentpro˝leforeachECL.The rightcolumnshowsUE'spowerpro˝leinacompletepacketTxcycle..77 Figure4.19:Averagedenergyconsumptionbreakdownbyradioaccessprocedures andECLs.Thewedgesarearrangedclockwiseaccordingtotheleg- end.TheexplodedwedgesrequireULtransmission.............80 Figure4.20:Thedistributionof MSG3 repetitionsv.s.datatransferblockrepetitions..82 xiv Figure4.21:Batterylifeestimationunderdi˙erentconditions.refers toonlytheNB-IoTmoduleenergy;oincludestheenergycon- sumptionofboththemoduleandothercomponentsontheboard; means InactivityTimer .........................83 Figure5.1:TheSDReNodeBimplementation,withAmarisoftLTE100andUSRP N210........................................88 Figure5.2:RoundtriptimeCDFintheevaluationexperiment.............90 Figure5.3:Prob.ofpacketswith MSG3 re-transmissionw.r.tECL2 MSG3 repetition..90 Figure5.4:NB-ScopeV2hardwaredesign.........................95 xv CHAPTER1 INTRODUCTION Thewirelesstechnologieshavebeenevolvedspeedily,whoseinfrastructureisbuiltand deliveredrapidly.Thefastgrowthofwirelessnetworksgeneratesnotonlyopportunities fornewapplications,butalsoissuesinhighenergyconsumption,unexpectedlatency,and potentialprivacybreach.Ourresearchshedsthelightupontwooftheemergingwireless technologies,namelywirelesschargingandNarrowbandInternet-of-things,empowering IoTservicesandapplications. 1.1DeviceRecognitionUsingNewWirelessInfrastructures Recentyearshavewitnessedtheincreasingpenetrationofwirelesschargingbasestations inpublicareaslikeo˚cebuildings,restaurants,andairports,etc.[19].Thereisalsoa trendtoembedwirelesschargingbasestationsinfurniturelikedesksandtables[14,66]. Itisestimatedthatnearly500millionwirelesschargingdeviceswereshippedduringthe year2017,ful˝llingonly20%ofthepotentialworldmarket[58].Thisemergingwire- lesscharginginfrastructurehaspresentednewopportunitiesforpreciseuserlocalization, wherethebasestationlearnsthelocationandidenti˝cationofthemobiledevicebeing charged.ManyRF-orultrasonic-basedapproacheshavebeenproposedforindoorlo- calization[40,45,67,73,77,82,85,86].Designedforprovidingthecontinuouslocationof amovinguser,theyoftenincursigni˝cantoverhead,e.g.,duetotheneedforlarge-scale wardrivingforcollecting˝ne-grainedsignal˝ngerprints.Inthiswork,weexploitwireless chargingforaspeci˝capplicationscenario,wheretheuserstaysrightnexttothewireless chargerforacertainamountoftime,waitingforthephonetobecharged.Therefore,the wirelesschargerlocalizesamobilephonebysimplyreferringtothealready-knownlo- cationoftheregisteredcharger.Moreimportantly,thisprocessdoesnotchangenatural users'behavior,whichallowsforeasieradoptionoftheproposedsystem. 1 Leveragingpervasivewirelesschargingstationstoprovidehighlocalizationaccuracy, highreliabilityatlowdeploymentcostenablesawiderangeofapplications.Forinstance, aco˙eeshopmayrecognizeitscustomerswhentheychargetheirphonesontheco˙ee tableandprovidecustomizedservicesorlocation-basedadvertisements.Foranotherex- ample,whenuserschargetheirphonesonthetableinstrumentedwithwirelesscharging duringameetingorlecture,theprecisesittingpositionsoftheuserscanbedetermined, whichenablesinterestinginteractionssuchassharingdocumentsinanad-hocgroup, sendinginstantmessages,exploringnearbypeople[49],orestablishingad-hocvotingor commentinggroupsfortheattendeestoexpresstheiropinions.Inadditiontomobile devicelocalization,thepopularityofwirelesscharginginfrastructurealsoprovidesthe opportunityforuserauthentication.Forapaidwirelesschargingservice,thecharger canidentifythephoneandprocessthepaymentautomatically.Luetal.[56]proposeda wirelesschargingnetworksystem,wheremultiplewirelesschargerscommunicatewith theserveroradjacentwirelesschargerstoprovidepay-per-usechargingservice.Reliable chargingdeviceidenti˝cationisthebasicbuildingblockforsuchapplications. Toleveragethewirelesscharginginfrastructureforuserlocalizationandidenti˝cation services,akeychallengeistoreliablyidentifythewirelesschargingunitofmobiledevices. Unfortunately,unlikenetworkinterfacessuchasWi-FiandBluetooththathaveuniqueand ˝xedhardwareaddresses,thewirelesschargingunitofcommercialo˙-the-shelf(COTS) mobiledevicestypicallydoesnothavea˝xedhardwareID.Forinstance,accordingtothe Qistandard[83],theidentityofapowerreceiverisde˝nedbyaBasicDeviceID,whichcan beasoftware-generatedrandomsequencethatmaychangeeachtimethepowerreceiver isbooted. 1.2PerformanceEvaluationofNewLPWANTechnology Inthelastdecade,wehavewitnessedtherapiddevelopmentandwideadoptionofa varietyoflowpowerwideareanetworks(LPWAN)technologies,suchasSigfox[48], 2 LoRa[54],andNarrowbandInternet-of-Things(NB-IoT).WhileLoRaandSigfoxhaveat- tractedmuchattentionintheresearchcommunityduetotheirutilizationoftheIndustrial, Scienti˝c,andMedical(ISM)bands,NB-IoTtechnologyreceivedinadequateresearchfo- cus. NB-IoTwasdevelopedbythe3rdGenerationPartnershipProject(3GPP)in2016.NB- IoTenvisionsananytime,anythingconnectivityparadigm[46]forawidespectrumoflow datarate,largevolume,andlonglifetimeIoTapplications,includingsmartgrid[53,65], smartstreetlamp[15],parkingmanagement[72],airqualitysensing[26,80],andintelli- genceagriculture[37].Currently,NB-IoThasbeenlaunchedgloballywith93commercial networks[35],whilethereare140operatorsin69countriesinvestinginNB-IoTnetwork deployment[34].AccordingtoEricsson[29],thenumberofglobalIoTshipmentswill growfromonebillionin2018to4.1billionby2024. Unfortunately,todate,thekeyaspectsofNB-IoTnetworks,suchasradioaccessperfor- manceandpowerconsumption,havenotbeenwellunderstood,especiallytodevelopers andacademicresearchers.Thisisduetothreekeychallenges.First,NB-IoTisaclosed cellularnetworkdeployedbyoperatorsonthelicensedspectrum,wherethebasestations cannotbeaccessedforpublicmeasurements.Themessage-levelinteractionsbetweenthe nodeandbasestationarelargelyinaccessibletothedevelopersandresearchers.Second, NB-IoTmeasurementisfundamentallydi˙erentfrom3/4Gcellularnetworkmeasure- ment,wherethelattercouldbeconductedthroughmobileapplications[50,52]installed onmassivemobiledevices.Incontrast,anIoTapplicationmayconsistofnumerousnodes embeddedintheenvironmentoveralargegeographicregion,whichpresentsahighbar- rierforunderstandingtheperformanceofNB-IoTinthewild.Inparticular,NB-IoTnet- worksdi˙ersigni˝cantlyduetovariationsofoperatorcon˝gurations,modulesfromdif- ferentvendors,andlocationpro˝les.Finally,therelacke˙ectivetoolsthatcanexposethe low-leveldiagnostictracesfromNB-IoTnodes,supportlarge-scalemeasurementstudies, andcapturethehighlevelofheterogeneityofnetworkoperators,NB-IoTmodules,and 3 locationpro˝les. 1.3Contribution Inthisthesis,weproposetwonovelcyber-physicalsystemstodemonstratethepossibility ofenablingnewapplicationsbyleveragingtheemergingwirelesscharginginfrastruc- tures,andbenchmarkthenetworkperformanceofendnodesinanemergingLPWAN, respectively. First,wepresentthedesign,implementation,andevaluationofQIDthe˝rstprac- ticalsystemthatreliablyidenti˝esQi-compliantmobiledevicesbasedonthehardware ˝ngerprints.Speci˝cally,QIDaugmentsstandard-compliantwirelesschargingbasesta- tiontoextractfeaturesfromtheoscillator,coil,andcontrollerofaQi-compliantpower receiver,whilerequiringnoretro˝ttingormodi˝cationtoexistingQi-compatiblemobile devices.QIDemploysa2-DmotioncontrollertoemulatethecoilarrayintheQireference design(describedinSection3.1)andregulatetheinductivecouplingbetweenthepower transmittingandreceivingcoils,whichallowsfor˝ne-grained˝ngerprintingofthepower receiverwhileoptimizingthee˚ciencyofpowertransfer.Experimentalresultsbasedon 52Qi-compatibledevicesshowthatQIDachievesanoverallidenti˝cationaccuracyofup to89.7%,withanaverageof85.3%.Ourresultsalsohaveimportantimplicationsforuser privacy.Withtheincreasingprevalenceofwirelesschargingstationsinpublicareas,how topreventtheleakageoftheuser'slocationopensupnewresearchquestions. Second,wedevelopNB-Scopethe˝rsthardwareNB-IoTdiagnostictoolthatsupports ˝ne-grainedfusionofpowerconsumptionandprotocolmessagetracesforbothreal-time in-labbenchmarkingand˝eldtesting.WithNB-Scope,weconductalarge-scale˝eldmea- surementstudybasedonthedeploymentof30NB-Scopenodesatover1,200locationsin 3regionsof2countriesduringthreemonths.Ourin-depthanalysisofthecollected49 GBdebuglogsandcurrentconsumptiontracesrevealsseveralimportantinsightsintothe powerconsumptionofNB-IoTinthewild.Weshowedthatnodesyieldsigni˝cantlyim- 4 balancedenergyconsumptionacrossdi˙erentlocations,operators,andmodulevendors, whichcanleadtounexpectedshortbatterylifeandfrequentnetworkpartitions.Forin- stance,theratioofthehighestandlowestenergyconsumptionofnodescanbe75:1.By decomposingtheenergyconsummationbyradioaccessphrasesina˝ne-grainedmanner, weshowedthatsuchperformancevariancecanbeattributedtoseveralkeyfactorsinclud- ingpoornetworkcoveragelevel,long-tailpowerpro˝leduetoconservativeinactivity timersettings,andexcessivecontrolmessagerepetitionsduringrandomaccesscontrol. Third,weexploretheoptimizationspaceoftheNB-IoTbasestationonasoftware- de˝nedeNodeBtestbedandproposeseveraloptimizationsthatmaysaveupto66.4%of thepacketenergyinsignal-limitedcoverageareas.Then,wediscussseveralimportant designaspectsthatcanbeconsideredbyfutureNB-IoTspeci˝cationsandchipsetsforop- timizingenergyconsumption.Moreover,wepresentourupgradestotheNB-Scopesys- tem,includingin-devicereal-timemessagedecodingandLoRa-NB-IoTdual-modesup- port,whichprovidenewparadigmsfortheLPWANresearchcommunity. 1.4ThesisOrganization Therestofthisthesisisorganizedasfollows.Chapter2reviewstherelatedworksto thisdissertation,especiallyondeviceidenti˝cationaswellasnetworkmeasurementand optimization.Chapter3presentsQID,the˝rstsystemthatidenti˝esmobiledevicesvia wirelesscharging˝ngerprints.Chapter4presentsNB-Scope,the˝rstembeddednetwork measurementsystemfortheNB-IoTnetwork,addressingtheheterogeneityin˝eldmea- surement,aswellasthestatisticalanalysisofalargeamountof˝eldmeasurementdata. Chapter5proposesandevaluatesmultipleenergyoptimizationstoNB-IoTandpresents theimportantupgradestotheNB-Scopeplatform.Finally,Chapter6concludesthisthesis. 5 CHAPTER2 RELATEDWORK 2.1DeviceFingerprinting,Localization,andWirelessChargingInfras- tructure Deviceidenti˝cationhasbeenstudiedforawiderangeofnetworkedcommunicationsys- tems.Theexistingdevelopedtechniquescanbebroadlyclassi˝edintothreecategories. Onecategoryusesthe˝ngerprintsoftheRFsignalintroducedbythehardwareimperfec- tionofthefrequencygeneratoronthedevices.Thenextcategoryusestemporalfeatures, i.e.theclockskewintroducedbytheminordi˙erenceintheoscillatoramongthede- vices.Theclockskewmainlya˙ectsthetimeintervalofthetransmittedpackets.Thelast categoryutilizesthesensorhardware˝ngerprintsonmobiledevices.Besidesthedevice identi˝cation,webrie˛ycompareourproposedsystemQIDwithotherlocalizationmeth- odsandmotion-assistedcyber-physicalsystems.Finally,wediscusspreviousworkthat enablesapplicationsusingwirelesscharginginfrastructure. RFSignalFingerprinting. PARADIS[13]identi˝edthesourcenetworkinterfacecard (NIC)ofanIEEE802.11framethroughpassiveradio-frequencyanalysis.Speci˝cally,it usesI/Qorigino˙set,frequencyerror,andSYNCcorrelationtodistinguishthedevices. Caraoke[2]separateddevicesbytheircarrierfrequencyo˙setdi˙erencestoavoidwireless collisionsinane-tolltranspondernetwork.Similarly,Danevetal.[22]achievedwireless sensorrecognitionusingRFtransientcharacteristics.Eletrebyetal.proposedChoir[28], asystemthatdisentanglescollisionsinLoRaLP-WANbydistinguishingthesensornodes usingtheirtime,frequency,andphaseo˙setscausedbyhardwareimperfection.Despite thepreviousresearche˙orttoexploreRFsignalinthedevice˝ngerprinting,thesetech- niquescannotbeappliedtowirelesscharging,becauseononehand,divingintothedetails oftheRFsignalforthe˝ngerprintsrequiresexpensiveequipment,forexample,[13]used 6 theAgilent89641Svectorsignalanalyzer;ontheotherhand,wirelesschargingadopts resonantcouplingtotransferenergy,whereboththecarrierfrequencyandamplitudeare variable.Thus,oneisalmostnotabletoinferthedeviceidentityusingtheRFsignalin wirelesscharging. ClockSkewFingerprinting. Kohnoetal.[44]usedtheTCPtimestampoptiontoestimate adevice'sclockskew.Similarly,CristeaandGroza[21]studiedhowto˝ngerprintsmart- phonesremotelyviatheInternetControlMessageProtocol(ICMP)timestampresponse. Whilethesetwostudiesfocusedontra˚canddriver-levelsignatures,othersystemsex- ploredhardware-levelfeaturestodistinguishdevices.Huangetal.[38]usedtemporalfea- turesofBluetoothbasebandembeddedinthechipset˝rmwareto˝ngerprintBluetooth devices.However,onekeydi˙erencebetweenthesescenariosandwirelesschargingis thatthedeviceplacementa˙ectstheclockskew˝ngerprintsofthemobiledevice.More- over,theplacementofthedeviceonthechargerpadisunpredictable,whichcastsmuch di˚cultyinbuildingaprecisemodelforeachdevice.Wewillfurtherdiscussthechal- lengesindetailinSection3.2. SensorFingerprinting. Anotherdeviceidenti˝cationtechniquesuse˝ngerprintsinthe sensors,suchasacousticsensor[9,23],camera[31,78],andinertiasensor[24,88].Forexam- ple,Dasetal.[23]utilizedmanufacturingimperfectioninthemicrophoneandspeakerto distinguishdi˙erentmobiledevicesusingclassicalmachinelearningalgorithms.Valsesia etal.[78]proposedacompressedcamera˝ngerprintalgorithmtoreducethecomplexity infeaturecomputationandstoragerequirements,improvingthedevicerecognitionper- formanceusingphoto-responsenonuniformity.Zhangetal.[88]utilizedper-deviceiner- tialsensorfactorycalibrationdata,embeddedinsideamobiledevice˝rmware,toextract ˝ngerprints.Dasetal.[24]performedanin-depthstudyondevicerecognitionusingcom- binedfeaturesextractedfromaccelerometerandgyroscopesensorstreamswithmachine learningtechniques.Althoughthesemethodsmayachieveacceptableaccuracy,theyre- quirereadingthedataorsensorsamplesfromthephonedirectly,whichcanbeintrusive. 7 Localization. Amajorapplicationofoursystemistoidentifyandlocalizemobiledevices. PreviouslocalizationsystemswerebasedonGPS,angleofarrival(AoA)[32,86],timeof ˛ight(TOF)[55,67,79],receivedsignalstrength(RSS)[6,87],ultrawideband(UWB)[47, 71],andmultipathsignalaggregation[81].Wirelesscharging-basedlocalizationissimilar tolandmark-basedapproachessuchasWi-FiAPorCell-IDs[76],wherethelocationof thecharger(accesspoint)isalreadyknownorregistered.Inthismanner,thelocation ofthemobiledevicecanbeacquiredimmediatelyaftertheusersputthephoneonthe chargingstation.Suchauser-initiatedlocalizationapproachishighlyprecise.WhileCell- IDbasedmethodsusuallyhaveanerrorofuptotensorhundredsofmeters,wireless charginginfrastructure-basedlocalizationcanachievecentimeter-levelaccuracy.Wireless charging-basedlocalizationisalsorobustcomparedtoAoA/TOF/RSS-basedmethods becausethelocationoftheformerisnota˙ectedbydynamicsofwirelesssystemslike signalstrength. Motion-AssistedSystemAugmentation. Manysensingsystemsareaugmentedwiththe assistanceofmotioncontrol.Graefensteinetal.[33]usedarotatingantennaonamo- bilerobottolocalizewirelesssensornodebasingonRSSI.Theyimprovedtherobustness ofthemeasuredRSSIandincreasedlocalizationaccuracy.Similarly,Malajneretal.[57] employedasteppermotortorotatetheantennaarraytoestimatetheAoAoftheRFtrans- mitter,achievinglowcostandhighaccurateAoAestimation.Chouetal.[17]addedaro- tatingfour-barlinkagetoamobileplatformtoextendthe2Dlaserrange˝ndertosupport 3Denvironmentalsensingandmapping.Althoughmotionplatformhasbeenappliedto varioussensingsystems,tothebestofourknowledge,thisideahasnotbeenadoptedby wirelesschargingsystems.WewillshowinSection3.7.3that,withtheassistanceofa2-D motionplatform,weimprovethedevicerecognitionaccuracysubstantially. ApplicationBasedonWirelessChargingInfrastructure. Inourpreviouswork,wehave developedQiLoc[49],asystemthatextractsthesoftwareIDofthechargingdeviceand localizesitslocationbasedontheknowndeploymentlocationofthechargingstation. 8 ComprehensiveAPIisprovidedtoimplementlocation-basedservice,occupancyanalysis, andauthentication.ItalsoprovidesAPIforlocation-basedservices,occupancyanalysis, andauthentication.However,accordingtotheQistandard[83],theidentityofapowerre- ceivercanbeasoftware-generatedrandomsequencethatmaychangeeachtimethepower receiverisbooted.Thus,the˝ngerprintingtechniquespresentedinthisdissertationcan beintegratedwithQiLoctoprovideareliablelocalizationservice.Luetal.[56]pro- posedawirelesschargingnetworkarchitecture,wheremultiplewirelesschargerscom- municatewiththeserveroradjacentwirelesschargerstoprovidepay-per-usecharging service.However,devicerecognitionduringchargingisnotstudiedin[56].Although theirworkenvisionspotentialwirelesschargingapplications,theydidnotconsiderthe situationwherethesoftwareIDisunreliable.Ourprojectfocusesonhowtoaccurately recognizethedeviceunderQiwirelesschargingwithreliablehardwarefeatures. 2.2WirelessInfrastructureBenchmarkandDiagnostics Severalpriorworksoncellularnetworksfocusonthedesignandimplementationof4G LTEmeasurementtoolkits[51,60].Nikraveshetal.[60]proposedanopenplatformfor conductingmobilenetworkmeasurementexperimentsinaprincipledmanner.Lietal. [51]proposedMobileInsight,adiagnostictoolthatcollectsandanalyzesinformationfrom theoperationalcellularnetworkata˝ne-grainedmessagelevel.However,themeasure- mentof4GLTEisusuallyconductedthroughmassivelydeployedsmartphoneapplica- tions,whichisnotviableforNB-IoTduetotheembeddednatureofNB-IoTapplications andthelimitedcomputecapabilityandbatterylife.Thetoolsthatcanprovidebothpower measurementandextractionofdebuglogsofNB-IoTarenotcurrentlyavailablewhich makeslarge-scalemeasurementofNB-IoTverychallenging. Powermeasurementandmodeling. Alotofearlystudieshaveinvestigatedtheenergy e˚ciencyofcellularnetworksoversmartphonesthroughpowermodeling[7,16,25,39]. Balasubramanianetal.[7]developedanenergyconsumptionmodelforthe3Gnetworkas 9 afunctionoftransfersizeandinter-transfertimes.Dingetal.[25]modeledpowerbased onwirelesssignalstrength.However,theyfocusonmodelingthedownloadlinkwithout consideringtheuplinkdataservice.Allthesepowermeasurementstudiesofthecellular networkarebasedonsmartphones.In[11]and[54],theauthorsdesignednewLoRaend nodesformeasuringtheenergyconsumptionofLoRa.Bougueraetal.[11]presenteda powermodelfordi˙erentLoRaWANmodesandscenarios.Liandoetal.[54]focusedon characterizingtheenergyconsumptionoftheLoRamodule.Di˙erentfromLoRa,NB-IoT isdeployedbyoperatorsonlicensedbandsandthebasestationscannotbeaccessedfor publicmeasurements. Powerconsumptionoptimization. Sehatietal.[70]proposedanonlinebundlingalgo- rithmtoreducetheimpactofsmallpacketsonthelongtailenergyconsumptioninIoT applications.Jangetal.[43]presentedanovelaccesscontrolmechanismforcellularIoT networkstomeetvariousperformancemetrics.Azarietal.[5]proposedamodeltoana- lyzetheimpactofchannelschedulingonlatencyandenergyconsumptionfornodesunder di˙erentcoveragelevels.Astudilloetal.[3]proposedaprobabilisticre-transmissionap- proachtoavoidcollisionsofrandomaccesscontrolmessagesandtoreducedelayand energyconsumption.However,theseoptimizationsarebasedonanalyticalresultsofnet- workprotocolswhichfallshortincapturingthepowerconsumptionpatternsanddirect factorsthatcauseenergywasteinarealdeployment.Inourwork,weidentifythemain factorscausinglowenergye˚ciencythrough˝eldtestsandproposee˙ectiveoptimiza- tionstrategiescorrespondingly. 10 CHAPTER3 IDENTIFYINGMOBILEDEVICESVIAWIRELESSCHARGINGFINGERPRINTS 3.1Background Qiisanopenstandardthatde˝neswirelesspowertransferovershortdistances.Atypical Qisystemconsistsofapowertransmitter(PTx)installedonaQibasestationandapower receiver(PRx)attachedtoorinstalledinaQi-compliantmobiledevice.ThePTxcom- prisesatransmittingcoil,calledPrimaryCoil,whichgeneratesanoscillatingmagnetic ˝eld,whichinducesanalternatingcurrentinthereceivingcoil,namelytheSecondary Coil,ofthePRx.ThePRxcommunicateswiththePTxviabackscattermodulationofthe currentdraw,andprimarilysendstwotypesofmessagestooptimizethepowertrans- fer.Thecontrolerrorpacket(CEP)carriesanintegerthatindicatesthedi˙erencebetween thedesiredpowerlevelandthereceivedpowerlevel.Thereceivedpowerpacket(RPP) reportstheaveragelevelofpowerreceivedinthepastperiod.Throughouttheprocess ofcharging,CEPsandRPPsaretransmittedperiodically.Table3.1showstheCEPand RPPintervalsspeci˝edbytheQistandard.BasedontheinformationinCEPsandRPPs, thePTxadjuststhecarrierfrequencyandamplitudeoftheprimarypowersignaltoopti- mizethecouplingbetweenthecoilsofPTxandPRx.Thecombinationofthecarrierwave frequencyandamplitudeisde˝nedastheoperatingpoint.Figure3.1exempli˝esaset ofoperatingpointscollectinginanexperiment.Whenthephonepositionchanges,the couplingbetweenthePTxandPRxcoilsvaries,suchthatthePRxinformsthePTxwith CEPstoregulatethewirelesspoweroutput.Then,thewirelesschargingadaptstoanew operatingpointeventually.Wenotethat,ifthephoneplacementremainsunchanged,the correspondingoperatingpointswillaggregatearoundaspeci˝csmallregioninFigure 3.1. Qispeci˝esmultiplereferencereceiverandcoildesigns[84].Figure3.2exempli˝esone 11 Figure3.1:Operatingpointscollectedinanexperimentbymanuallychangingthe mobiledeviceplacement. Table3.1:PRxtimingconstraintsduringtheQipowertransferphase. ParameterSymbolTarget(ms)Max(ms) CEPInterval t interval 250.0350.0 RPPInterval t received 1500.04000.0 Figure3.2:AnattachableQi-compatiblepowerreceiverforSamsungGalaxyS3. oftheavailabledesignsandSamsungGalaxyS3thatsupportsattachableQi-compatible PRxmodules.Ithasapairofterminals( +5V and GND )thatconnectstotheoutputofthe 12 PRx.Insuchadesign,thePRxisanindependentmoduleanddoesnotcommunicatewith thephone.TheattachablePRxmodulesprovidethewirelesschargingcapacitytothose devicesthatoriginallydon'tshipwiththewirelesspowerreceivers.Weconsidereach ofthemodulestorepresentauseridentitysinceitisanindependentcomponent(either attachedoutsideorpre-installedinside).Itoutputsastablecurrentat5Vforcharging withitsmaximumcapacitymostofthetime. InadditiontothePRxdesign,Qialsospeci˝esmorethan30TypeAand7TypeBPTx designs,wheretypeAdesignshaveoneormorePrimaryCoilsbut onlyone ofthemcanbe activatedatatime,whiletypeBdesignssupportanarrayofPrimaryCoilsand oneormore PrimaryCoilscanbeactivatedtoprovidewirelesspowertomultiplePRxssimultaneously. Figure3.3[18]showstwoexamplesofthemulti-coilchargers.Comparedtothesingle-coil designs,multi-coilPTxenlargesthepossiblecouplingareawiththePRx,thusproviding more˛exibilityinthedeviceplacement.Asaresult,thecoilarrayPTxdesignsbecome moreprevalentonthemarket. (a)Chargercoilmovementillustration (b)Themobilecoilarray Figure3.3:Examplesofthemulti-coildesignsinQi. Qialsosupportsaserialnumberofatleast20bits,alsoknownastheBasicDeviceID. However,aPRxcanalsousearandomnumbergeneratortodynamicallychangetheBasic DeviceID,sothateverytimetheuserputsthemobiledeviceontoaPTx,theBasicDevice IDupdates.SucharandomIDinvalidatesdeviceIDbasedapplications,whichinspires 13 ustodesignasystemtoidentifyadeviceusingitshardware˝ngerprints. 3.2DesignChallengesandSystemOverview 3.2.1DesignChallenges ItischallengingtorecognizeamobiledevicefromtheQichargerduetotheintrinsic characteristicsofthewirelesschargingenvironment.Speci˝cally,thefollowingchallenges needtobeaddressed: Noiseintemporalfeaturescausedbypowertransfer. Thewirelesspowertransferhap- pensintherapidly-changinghighpowerelectromagnetic˝eldbetweenthetwocoupling coils,castingmorenoisethantypicalRFwirelesssystems.Forinstance,asshowninFigure 3.4(1),themeasuredpacketintervalshavesigni˝cant˛uctuations.Thestandarddeviation oftheCEPtimeintervalismorethan4.4ms,correspondingto1.7%error,whichmakesit di˚culttodistinguishbetweendi˙erentchargingdevices. Undesirablestableoperatingpoint. Qiwirelesscharginghasawell-designedfeedback controlloop.Thewirelesspowertransferprocessisusuallystabilizedatanoperating pointwithinhundredsofmilliseconds(3to5CEPs).Althoughthisisadesiredfeature intermsofmaintaininghighcharginge˚ciency,itbringsamajorchallengeinrecogniz- ingthetargetdevice.Figure3.4(1)andFigure3.5(1)showtheexperimentalresultofsuch ascenario,wherethephoneremainsstationaryonthechargingpad.Asshown,these- lectedfeatures,boththeCEPtimeintervalandCEPvalues,remainunchangedduringthe chargingprocess,whicheventuallyraisestherecognitionerrorrate. Unconstraineddeviceplacement. Thethirdchallenge,themostdi˚cultoneinourcase, isthattheselectedfeaturesaredependentonthephoneplacement.Inotherwords,if theuseraltersthePRxposition,thefeaturevaluescanchangedramatically.Figure3.4(2) andFigure3.5(2)demonstratehowtheCEPtimeintervalandcontrolerrorvaluechange withrespecttothephoneplacement.Duringthemeasurement,afterwerotatethephone witharandomangle,theCEPtimeintervaldecreasesfromabout250msto160ms,and 14 Figure3.4:TheCEPtimeintervalvs.samplingtimein3independentfeatureacquisition experiments:(1)stationaryPRx;(2)PRxpositionchangedduringcharging;(3)QIDis enabled. theControlErrorvalueincreasesdramaticallyfrom0to30.Inareal-worldscenario,the placementofamobilephoneisoftenunpredictable.Asaresult,theerrorsareaccumu- latedovertime,whicheventuallyrenderstherecognitionunsuccessful. 3.2.2SystemOverview WenowprovideanoverviewoftheQIDsystem.ThesystemarchitectureisshowninFig- ure3.6.Itconsistsof3components,namelyaCOTSQiwirelesscharger,theQIDsensor, andtheQIDserver.TheQIDsensorisresponsibleforcollectingaselectedsetoffeatures fromwirelesscharginganduploadingthedatatotheserver,whiletheQIDserverisre- sponsibleforthefeatureextractionanddeviceclassi˝cation.TheQIDservercanconnect 15 Figure3.5:TheCEPvaluevs.samplingtimein3independentfeatureacquisition experiments:(1)stationaryPRx;(2)PRxpositionchangedduringcharging;(3)QIDis enabled. totheQIDsensordirectly(e.g.,throughUART)orresidesonthecloudandcommuni- cateswithmultipleQIDsensorsthroughtheInternet,enablingtrackingthetargetdevice atdi˙erentcharginglocations. TheQIDsensorcanworkwithmostQi-compliantchargers.Itdoesnotmodifyany ofthechargerpadcircuits.WhatQIDsensorneedsfromaQi-compliantchargerisa test pin thatoutputsthe˝ltereddatabit˛ow.Wenotethatsuchadatapinisindispensable fortheQichargingsystembecausethePTxrequiresfeedbackfromthePRx.Reading data˛owfromthepindoesnota˙ecttheoperationoftheQichargingsystem.Therefore, thankstotheminimalmodi˝cationrequirement,QIDcanbeeasilyintegratedwitho˙- the-shelfQichargers.Afterconnectingthetestpinandmountingthechargercoiltothe QIDsensor,theplatformisreadyfordevice˝ngerprinting.TheQIDsensorconsistsofa 16 Figure3.6:ThesystemarchitectureofQID.ItconsistsofQIDsensorandQIDserver.QID sensorisresponsibleforcontrollingthemotionofthechargercoil,capturingthesignal fromthewirelesscharger,aswellassendingthetimestampedpacketstoQIDserver. QIDserverextractsthefeaturesfromthepacketsequenceandclassi˝esthedevice. motioncontrolhardwarecomponentandasoftwarecomponentforfeaturecollection.The designofthemotionunitisdiscussedinSection6.1.Themotionunithoststhecharging padandmovesitaccordingtoacertainpattern,withinarangeof10cm.Thisallowsto ˝ngerprintPRxdynamicallyatdi˙erentrelativepositionsbetweenthePTxandPRxcoils, resultinginhigheridenti˝cationaccuracy.Wenotethatthemotionunitisconnectedtoa separatecontrolmodule,anditdoesnotrequireawireconnectionwiththechargeritself. Asaresult,itcanbeintegratedwithanyo˙-the-shelfchargereasily. Themotivationforadoptingthemotionunitistwo-fold.First,itcanbeeasilyinte- gratedwithsingle-coilchargersandimprovetheperformanceofclassi˝cationaccuracy aswellaspowerdelivery.Second,manyemergingnewchargersarebasedonmulti-coil Qi-compliantpowertransmitterdesign[18,42,61].AsdescribedinSection3.1,eachcoil 17 onsuchtransmitteriscontrolledbyanindividualswitchoraseparatebridge.ThePTxcan selecttheoptimalcoiltodeliverthewirelesspowertothePRx.Thusitenlargesthecou- plingareabetweenthePTxandPRxandprovidesmore˛exibilityinthedeviceplacement. Comparedwiththesingle-coildesign,themulti-coildesigno˙ersseveralkeyadvantages forcharger˝ngerprinting.First,thenoisewithinthetemporalfeaturescanbecontrolled andeven˝lteredoutinpost-processing,becausethe˝ngerprintsarecollectedfrommulti- plecoillocations,amorecompletedevicepro˝lecanbebuilt.Second,thewirelesspower transferprocesstohopbetweendi˙erentoperatingpointswhenthechargingcoilsare switched.ThuswecaninferthePRxcontrolschemefromthetransientstatesbetweenthe operatingpoints,whichcanbeusedtodi˙erentiatedi˙erentQimodules.Finally,thefea- tureuncertaintycausedbythephoneplacementcanbeessentiallymitigatedbecausethe coilarraycoversarangeofdevicepositionsonthechargerpad.Despitetheseadvantages, itisdi˚culttoexploitthemultiplecoilsofQichargersfor˝ngerprintinginpractice,since thereexistsalargenumberofheterogeneousdesignsasspeci˝edbyQi[84].Usually,the existingmulti-coilchargerpadsuselargecoilswithsmalloverlappingareas.The˝nger- printsamplinggranularityisthuslowevenitprovidesthecoilswitchingcapability.To addressthischallenge,theQIDsensorextendsthedesignofthephysicalcoilarraytoa mobilecoil byequippingtheprimarytransmittercoilwithamotionunit.Figure3.7aillus- tratestherelativemovementbetweenthePTxandthePRx.Whentherelativealignment ofthePTxandPRxisadjustedina2-dimensionalplane,wecanconstructa˝ne-grained mobilecoilasshowninFigure3.7b.Suchadesigne˙ectivelyemulatesavarietyofdif- ferentmulti-coildesignsofQi.However,wenotethatthemotionunitisnotnecessarily requirediftheQisystemalreadyadoptsamulti-coildesign.Insuchacase,therestofour systemcanbeintegratedintoasmallmodulethatconnectstothechargerthroughtwo pins,namelythedata˛owtestpinand GND ,allowingforeasydeployment. Inadditiontothemotionunit,theQIDsensoralsoextractsandtimestampsevery packetinthedata˛ow.AchallengeinthedesignistoensurethePRxiscorrectlylocated 18 (a)Chargercoilmovementillustration (b)Themobilecoilarray Figure3.7:FingerprintingaPRxcoilwithamovementunit. andmeasured.ThedetailsoftheQIDsensorarediscussedinSection3.3.Thelastcom- ponent,namelytheQIDserver,readsallthedatasentbytheQIDsensor.Asthepacketis inbyterepresentation,theserverneedstoparseeach˝eldinthepacket.Then,theserver performsfeatureextractionandclassi˝cation,whicharediscussedinSection3.5. 3.3FeatureSelectionandAcquisition 3.3.1SelectingHardwareFingerprints ToreliablyidentifyQi-compliantdevices,QIDleverageshardware˝ngerprintsextracted fromthefollowingthreePRxcomponents.Theselected˝ngerprintsshouldbedevice- speci˝c,time-invariant,anddiscriminative. Onboardoscillator. ThePRxcontrollerchipofQiutilizesaninternaloscillatortogenerate theclocksignal.Itiswellknownthatoscillatorshavedistinctivedriftsduetofactorslike hardwaremanufacturingvariations[21,38,44].WethusexploitthedriftofthePRxoscilla- torasafeaturetoidentifythedeviceincharging.Forexample,PanasonicAN32258A[63], acommerciallyavailableQireceiverIC,utilizesaninternaloscillator.NXPMWPR1516 [62]alsousesaninternalLow-powerOscillator(LPO)astheclocksource.Wenotethatthe 19 Figure3.8:Thescaledandzero-meanedCEPtimeintervaldistributionof42evaluated devices.The˝rstlettersofthedevicesrepresentthebrandsofthereceivers,whilethe followingdigitrepresentsthespeci˝clabelinitsbrand.Theerrorbarshowsthe standarddeviationoftheCEPtimeinterval.Thecorrespondingactualtimeinterval spansarangeof(238,270)ms. QireceiverICstypicallyhavelowclockaccuracyastheyarenotdesignedfordatacom- munication.Forinstance,thereceiverICNXPMWPR1516hasaclockaccuracytolerance ofashighas 5% ;RohmBD57011AGWLdatasheet[69]alsoindicatesthatthedriving frequencyofthecommunicationsignalisbetween1.92and2.08kHz,whichcorresponds toa4 % frequencyerrortolerance.Incomparison,theclockfrequencytoleranceis 50 ppmforBluetooth[8]and 40 ppmforZigbee[1].Therefore,theclockdrifte˙ectofQiis highlydevice-dependentandmuchmoresigni˝cantthanotherwirelesscommunication systems.Althoughdriftvariationslikethiscanbeusedtodi˙erentiatedi˙erentdevices, itisdi˚cult,ifnotimpossible,todirectlymeasuretheclockdriftsinCOTSdevices.Our keyobservationisthattheControlErrorPacket(CEP)timeintervalyieldshighvariance amongthedevicesaroundthetargetvaluespeci˝edinQi(seeTable3.1).Figure3.8shows thattheCEPtimeintervaldistributionof42devicesspansarangeof(238,270)msinthe timedomain.Therefore,thePRxoscillatorcanbeinferredand˝ngerprintedbymeasur- ingtheperioddriftofthecontrolpackets.However,somedevices,forexample,and 20 orandyieldcloseCEPtimeintervalvalues. Figure3.9:Heterogeneouspowerreceivercoils.Thesizeandshapeofthecoilsresultin di˙erentcontactrangemeanandstandarddeviation. Receivingcoil. Di˙erentQi-compliantdevicesmayhavedi˙erentcoilshapes,diameters, andlayouts.Generally,alargerPRxcoilhasalargercontactareabetweenthePRxandthe PRxcoils,leadingtomore˛exibilityinplacingthedevice.Inourscenario,thereceiving coildiametercanbe˝ngerprintedbasedontheareathatthePTxinteractswiththePRx. Figure3.9exempli˝esdi˙erent˝ngerprintsextractedfromheterogeneousPRxcoils.Itcan beadeterminantfordevicebrand,butnotagoodindicatorofaspeci˝cdevicebecauseit isalmostidenticalamongthesametypeofdevice.Wediscusshowtomeasurethecontact rangeofthePRxcoilinSection3.4.2. PRxcontroller. TheQistandarddoesnotspecifytheexactperiodofcontrolpackettrans- mission.WeobservethattheperiodsoftheCEPsdodi˙eracrossdevicesofdi˙erent manufacturers.Suchvendor-dependentcontrollerimplementationscanbeexploitedas a˝ngerprinttodi˙erentiatedevicesfromdi˙erentmanufacturers.Forexample,Texas Instrumentsbq51013B[75]sendstheCEPswithanintervalof240ms,whilePanasonic AN32258AsendstheCEPsataperiodof160ms.Thisfeatureisnotrelatedtoclockerror butavaluechosenatdesigntimebythemanufacturer.Intuitively,determiningtheIC manufacturerimprovestherecognitionaccuracybynarrowingthecategoriesofthede- vices.Inadditiontothepacketperiod,thevaluecarriedintheCEPisalsospeci˝edby thereceiverICmanufacturers.Forexample,weobservethatthemaximumcontrolerror valuesentbybranddevicesis30,whilethebranddevicescansendthecontrol 21 errorvaluesashighas80.Therefore,itisanotherfeaturethatmaydistinguishthedevice brand. 3.3.2TemporalFeatureAcquisition Figure3.10:TemporalFeatureAcquisition.Eachpacketisdecodedandtimestampedby themicrocontroller(MCU). WenowdiscusshowtheQIDsensorcollectstemporalfeaturesofQipackets.Figure 3.10illustratessuchaprocedure.First,todecodethebits,theQIDsensorusesatimerto measurethewidthofeachpulse.AsthedatasentbythePRxisencodedwithadi˙erential bi-phasescheme,wecanconvertthepulsewidthstobitvalues.Then,thedecodedbits arethengroupedintobytes. AQipacketconsistsofpreamble,header,payload,andchecksum.TheQIDsensor timestampsthepacketafterthe11thbitinthepreamblephaseofeachpacket.Thecorre- spondingpackettimeintervalisthenthedi˙erencebetweentwoconsecutivetimestamps. AsdescribedinSection3.1,theQiprotocolde˝nestwotypesofpacketsthathave˝xed timeintervals.QIDsensormainlyobservesandanalyzestheCEPtimeintervaltoinferthe PRxoscillatorbecausetheCEPisthemostfrequenttypeofpacketsthataresentduring thewirelesschargingprocess.Evenifapacketiscorruptedduetodecodingerrors,its 22 timinginformationisstillvalidifonlythepacketintervalisinthedesiredrange.Finally, thetimestampedpacketsaretransmittedtotheQIDserverforfurtherprocessing. 3.4QIDMotionControl 3.4.1MotionPlatformDesign Figure3.11:Mechanicaldesign-thechargerpadiscontrolledbytwosteppermotor linearslides,movingina2-Dsurface. Inthissubsection,wepresentthemechanicaldesigntoenablethemovementofthe chargercoil,asillustratedinFigure3.11.Itrequirestwolinearslidespoweredbyastepper motorindividually.First,thebottomslideis˝xedonasurface.Next,theupperslideis placedwithitsaxisdirectionperpendiculartothatofthebottomone.Theupperoneis attachedtothebottomone'sslider.Finally,thechargercoilisattachedtothesliderof theupperlinearslide.Thetwosteppermotorsarecontrolledindependentlytodrivethe coilinanX-Yplanetoformamobilecoil.Itthusallowsformore˛exibilityinthePRx placement.Theusercanplacethedeviceatanylocationandanyangleinthedesignated area.Correspondingly,wede˝netheaxesofthebottomslideandtheupperslideasthe x axisand y axisrespectively.Asthelengthsofthetwoslidesarethesame,theworking 23 (a)Symmetricaxissearching.Theupperleftpoint isthestartingpoint. (b)Thedesignedtrajectoryofthechargercoilcenter withinonecomplete˝ngerprintingscan. Figure3.12:TrajectorydesignoftheQIDsensor. spaceofthePTxcoilisde˝nedasasquarearea.Ourmeasurementresultsindicatethat themotionplatformcanachieveacontrolaccuracyupto0.2mm,whichisadequateto emulateheterogeneousPTxcoildesigns.WeenvisionthattheQIDmotionplatformcan enableotherapplications,suchaslocatingthePRxandsearchingfortheoptimalcharging operatingpoints,whicharecriticalforoptimizingthecharginge˚ciency[83].Weleave theseapplicationsforopenresearchwork. 3.4.2QIDSensorMotionControl Inthissubsection,wediscussthecontrolschemesfortheproposedQIDsensormotion platform. 3.4.2.1Contactareaboundarydetection ThedetectionofthePRxboundaryallowsforbettercoilmovementcontrol.Forexample, thesteppermotorcanadapttoahigherspeedifthePRxisoutofthecontactrange,orthe trajectorycanbeoptimizedtoavoidunnecessarymoves,suchthatthetotaltimeneeded 24 forcollectingsu˚cientfeaturescanbereduced.TheQIDsensorutilizesatimertodetect thecontactboundary.EachtimetheQIDsensorreceivesanewpacket,itreadsthereal- timetimer(RTT)toupdateavalue t last .Inthemeantime,theQIDsensorreadstheRTT withaperiodof10mstofetchthecurrenttime t n andcomparesitwith t last .Thenthe conditionthatthePRxisoutofthecontactrangeisgivenby: t n > t last + T timeout ; where T timeout istheallowedtimethatthePRxdoesnotsendanyfeedback.Wechoose T timeout tobe350ms,whichisthemaximumCEPtimeintervalintheQistandard,aspre- sentedinTable3.1.Iftheconditionismet,theQIDsensordeterminesthatthePRxloses itscontactwiththePTx. 3.4.2.2PRxsymmetricaxisalignment Next,wediscusshowtheQIDsensor˝ndsthesymmetricaxisofthePRxcoilalongthe y axis.Findingthesymmetricaxisisimportantbecauseitisthereferenceforthe˝nger- printingtrajectory. Weassumethatthedeviceisinthecontactrangeoncetheuserputsitonthecharger pad.ThePRxsymmetricaxisalignmentisachievedasfollows.Inthebeginning,thePTx coilmovesalongthepositivedirectionofthe y axisuntilitisoutofthecontactrange. Nextitmovestothenegativedirectionofboth x and y axis,reachingthestartingpoint showninFigure3.12a(upperleftcorner).Fromthere,thecoilstartstomoveinan patternandsweepsacrossthePRxcoilfourtimes,generatingasequenceofthedetected boundary » x 0 ; x 1 ;:::; x 7 ¼ .Thenthe x valueofthesymmetryaxisis x center = 1 8 7 Õ i = 0 x i Finally,thePTxcoilisalignedtothe x center withits y coordinatevaluerightoutofthe contactrangeboundary.Thislocationisthestartingpointofthecoilinthe˝ngerprinting phase. 25 Wenotethat,foramulti-coilPTx,thisphasecanbeachievedbyswitchingbetweenthe coilsandidentifyingtheonewiththehighestcoupling. 3.4.2.3Fingerprintingtrajectoryplanning NowwepresentthePTxcoiltrajectorydesignwhentheQIDsensorcollects˝ngerprints fromthePRx.Wetaketwofactorsintoaccountwhendesigningit.Ontheonehand,it iscrucialtoensuretheQIDsensorcapturesadequatedatafromthemobilecoilinFigure 3.7b,suchthatQIDrecordsthecompletefeaturepro˝leofthePRx.Ontheotherhand, themoredatapointsaremeasured,themoretimeittakes.Typically4or5packetscan becollectedduringonesecond.Ifweplantorecord3,000CEPs,itmaytakemorethan 10minutesandexceedthetimeoneleavesthephoneonthechargerpad.Therefore,we needto˝ndatrade-o˙betweenspatialdatadiversityandmeasurementdelay.Inour design,weassumethatthePRxwillbeleftstationaryontheplatformforatimewindow ofatleast90seconds,suchthattheQIDsensorcapturesadequate˝ngerprintsfordevice identi˝cation. Thedesigned˝ngerprintingtrajectoryoftheQIDsensorisshowninFigure3.12b.It comprisestwosessions,namelytheforwardoneandthebackwardone.Duringboth sessions,theQIDsensorrecordsallthepacketssentbythePRxanduploadsthemtothe server.TheforwardsessionstartsfromtheendpointofthePRxsymmetricaxisalignment phase.ThePTxcoilisdriventomovealongthepositivedirectionofthe y axis.Once itentersthecontactrange,thecoordinatevalue y start isrecorded.Inthemeantime,the movingspeedofthecoilissettoaslowerspeed.Itstopsfor1secondeachtimeafter movingforwardforabout8mm(correspondingto40controlunitsinFigure3.12b)towait fortheoperatingpointhopping,whichalsomimicsthecoilswitchinginanarray.Once thePTxlosescontactwiththePRx,i.e.,thePRxisoutofthecontactrange,theboundary point y end isrecorded,whichalsomarkstheendoftheforwardsession.Thebackward traceissimilartothecenteralignmentone,whichisinshape.Themajordi˙erence 26 isthatthedistance x betweenthefarthermostpointandthesymmetricaxisisabout10 mmalongthe x axis,correspondingto50controlunits.Themovementalongthenegative y directionisdividedinto6sections.Eachofthemis y = y end y start 6 Ateachturningpoint,thePTxcoilstopsfor1secondtowaitfortheoperatingpointhop- ping.Afterthecoilreachestheforwardsessionstartingpoint ¹ x center ; y start º ,the˝nger- printingphase˝nishes.Wede˝neacompletescanasthecompletionofboththeforward andbackwardsessions,andthedatacollectedduringthisphasearede˝nedasa scan sample correspondingly.Itislaterpost-processedattheQIDserver. Thereareseveralreasonswhysuchatrajectoryisdesigned.First,itcoversthecentral areaofthecontactrange.EvenifthePRxchangesitsplacementanglenexttime,thecentral regionstilllargelyremainsoverlapping.Asaresult,thetwoindependentscansamples donotdeviatesigni˝cantly.Second,thedistance x iscarefullychosentoaccommodate di˙erentcoilshapesandsizes.NomatterhowthePRxisplaced,theplannedtrajectory fallswithinthecontactrangeformostofthetime.Thetrajectoryisalsoabletotolerate thesymmetricaxisalignmenterroruptoabout8mm(correspondingto40controlunits). Finally,thesamelocationis˝ngerprintedforatmostonce,astheforwardandbackward tracesdonotoverlapexcepttheregionwherethecoilcenterentersorexitsthecontact area. 3.5FeatureExtractionandDeviceClassi˝cation Inthissection,wepresenthowtheQIDserverextractsthefeaturesfromthemeasured dataandclassi˝esthefeaturesintodi˙erentdeviceclasses. 3.5.1FeatureExtraction Wenotethatthecontactrangediameterofthereceivingcoilphysicalfeaturecanbesimply calculatedas y end y start .TheoscillatorfeaturesandthePRxcontrolschemesrequire 27 Figure3.13:GaussiankerneldensityestimationofCEPtimeintervals.Theletters indicatethedevicebrands.Thenumberindicateseachuniquedeviceofitsbrand.The0 inthehorizontalaxiscorrespondsto240msinrealtimescale. additionalprocessingtoobtain.Wediscussthemasfollows. 3.5.1.1CEPintervalfeatures TheQIDserverusesalocalmaximumsearchingalgorithmtoextracttheCEPtimein- tervalsthatrepresentthefeatureofthePRxonboardoscillator.First,alltheCEPtime intervalsareprocessedwitha˝xedbandwidthGaussiankerneldensityestimator(KDE). Unlikethehistogram,theGaussianKDErepresentstheprobabilityofeachpointinthe featurespacewitha˝xed-varianceGaussiandistribution,i.e.,theGaussiankernel,and thentheestimationoutputistheaveragedsumofalltheindividualkernelprobability estimations.TheoutputoftheKDEisactuallytheprobabilitydensityfunction(PDF)of theCEPtimeinterval. d ¹ t º = pdf ¹ t º ; t 2» 40 ; 270 ¼ ms 28 Notethatthevariable t hereisintimedomainrepresentation,whilethefeaturevalues correspondtotheQIDsensorcontrollertimervalues. Next,theQIDserverextractstheCEPtimeintervalsthatachievelocalmaximumsinthe PDF.WeobservethattheCEPtimeintervalstypicallyfallinto3domains,corresponding to[40,60],[140,160],[235,270]msintimedomain(asshownasthethreelocalmaxima inFigure3.13).Therefore,itisfeasibleto˝ndthepeaksdirectlywithoutcalculatingthe derivativeoftheCEPtimeintervalPDF.Speci˝cally,the3domainsaredenotedas D 1 , D 2 ,and D 3 respectively.ThenthefeatureCEPtimeintervalsandtheircorresponding log-probabilitiesare t pi = argmax t 2 D i d ¹ t º ; i = 1 ; 2 ; 3 : p Li = log d ¹ t pi º ; i = 1 ; 2 ; 3 : Thedetectedpeaksof8independentcompletescansamplesaremarkedinFigure3.13. TheCEPtimeintervalthatcorrespondsto240msinthetimedomainisshiftedto0.Al- thoughsomeofthecurvesappearclosetoeachotherinthe˝gure,theirpeak-indexed CEPtimeintervalfeaturesactuallyspanaconsiderablewiderangeinthefeaturespace,as showninFigure3.8andthezoom-insub-˝gureinFigure3.13.Inthezoom-in˝gure,we seethattheindexedtimeintervalvalueshavelittleintra-classvariabilityandinter-class similarity.Forexample,althoughandarefromthesamebrand,theirpeakin- dexesdeviatefromeachotherwithadistanceupto20,whilethethreepeakindexesof deviceareconsistentduringthethreeindependentscansthatarecollectedinawide timespan. 3.5.1.2CEPvaluefeatures QIDalso˝ngerprintsthecontrollerofaPRxbasedonthestatisticoftherecordedCEP valuesduringacompletescan.WhattheCEPvaluedi˙ersfromtheCEPtimeintervalis thattheformercanonlytakeintegervalues.WeanalyzeCEPvaluesusingtheprobability 29 massfunction(PMF).Speci˝cally,wecomputethePMFoftheCEPvaluesas p ¹ V º = Í N i = 1 1 f v i == V g N where V istheabsoluteCEPvalue,rangingfrom0to127, 1 f a == b g isanindicatorfunc- tion,and N isthetotalnumberofCEPsinascansample.Inparticular, N ischosentobe oneoftheCEPvaluefeaturesbecauseitisanindirectmeasurementofthefrequencythat thePRxsendsCEPs.AswenoteinSection3.3.1,itisaPRxcontrollerimplementation- speci˝cfeatureratherthantheoscillatordrift.We˝ndthatthePMFoftheCEPvalues isnotagoodfeature,asthePMFsspanawiderangeof[0,127],whichintroduceshigh varianceintheoutputfeatures.Wealsoobservethateventhesamedevicemaygener- atedi˙erentPMFswithindi˙erentscansamples.Toreducethevarianceintheoutput CEPvaluefeatures,wefurthergrouptheCEPvaluesinto7ranges.Foreachrange,the probabilitiesoftheCEPvalueswithintherangearesummedup.Speci˝cally,the7ranges are:0,[1,5],[6,10],[11,20],[21,30),30,(30,127].Wechoosetheserangesempiricallyby correlatingthestatisticalpatternsoftherangeswiththedevicebrand. Figure3.14:ComparisonoftheCEPvaluefrequencyfor4di˙erencedivices.G0toG7 correspondtothesevenPRxcontrollerfeaturefrequencyrangeinTable3.2. Table3.2summarizesthefeaturesusedinclassi˝cation.Thesefeaturesarecollectedin bothsteadychargingstatesandoperatingpointswitchingtransientstates,throughwhich 30 Table3.2:Thelistoffeaturesextractedfromacompletescan. FeatureGroupFeatureValueRange Oscillator feature Domain1CEPinterval[40,60]ms Domain1CEPintervalpeaklog-probability Domain2CEPinterval[140,160]ms Domain2CEPintervalpeaklog-probability Domain3CEPinterval[235,270]ms Domain3CEPintervalpeaklog-probability SampletimeTimeneededinacompletescan>0 ContactrangeTherangethatPRxinteractswithPTx[220,260] controlunit PRxcontroller feature Numberofpackets>0 CEPvalue=0frequency[0,1] CEPvalue 2 [1,5]frequency[0,1] CEPvalue 2 [6,10]frequency[0,1] CEPvalue 2 [11,20]frequency[0,1] CEPvalue 2 [21,30)frequency[0,1] CEPvalue=30frequency[0,1] CEPvalue 2 (30,127]frequency[0,1] QIDextractsthe˝ngerprintsintheoscillator,coilandthecontrollerforclassi˝cation.We envisionthatthePRxcontrollerfeaturescanseparatethedevicebrandandtheoscillator featurescanthenfurtherseparatethedeviceswithinthesamebrand.Figure3.14shows thefrequencydistributiongroupedbytheCEPvaluerangefor4di˙erentdevices.Aswe cansee,di˙erentPRxbrandsexhibitsigni˝cantlydistinctCEPvaluepreferencesduring thewirelesschargingfeedbackcontrol.Therefore,thesePRxcontrollerfeaturescanbe usedtocategorizethedevicebrande˙ectively. 3.5.2Classi˝cation TheQIDserverclassi˝esQi-compliantdevicesbyanensembleclassi˝er,alsoknownas comprisingofSupportVectorMachine(SVM)[10],AdaBoost[30] withdecisiontreeasweaklearner,decisiontreeclassi˝er[12], k -NearestNeighbor(kNN) [20],andLinearDiscriminantClassi˝er(LDC)[59].Thebaggingalgorithminourdesign utilizesavotingsystem,asshowninFigure3.15.When3ormoreclassi˝ersareoutputting 31 Figure3.15:Classi˝cationprocesswithabaggingclassi˝ersinQIDserver. thesamedevicelabel,thebaggingclassi˝erchoosesitasthe˝naldecision.Otherwise, theoutputoftheSVMischosenbecauseithasrelativelyhigheraccuracythantheother classi˝ers.Wedesignthisclassi˝erarchitecturebytuningtheclassi˝ersempirically. TheQIDserverstoresalltheextractedfeaturesandtheircorrespondingdevicelabels inafeaturetable.Thenitutilizestherepeatedrandomsub-samplingcross-validation,also knownasMonteCarlocross-validation[27],tosplitthedataintotrainingandtestingset randomly.Finally,theclassi˝ermodelsaretrainedwiththetrainingsetandvalidatedwith thetestingset.Themeanandthestandarddeviationofaccuracyfromtheresultsofthe sub-samplingexperimentsarerecorded.Itisshown[36]thatcross-validationevaluation introducesneighborhoodbiastothetime-continuousslidingwindowframedata,which resultsinoverlyoptimisticmodelevaluationestimations.However,inourexperiments, eachofthesamplesiscollectedinawidespaninthetimedomain.Inotherwords,allthe featuresextractedfromacompleteexperimentscanareindependentofeachother.Asa result,thecross-validationissuitableforourexperiments. TheobjectiveoftheQIDserverisfocusedonclassifyingthedeviceintooneofthe knownclasses.Thisdesignisapplicabletothescenarioswherethedevicesarealready ˝ngerprinted.Forinstance,acompanymayregisterand˝ngerprintalltheworkdevices ofemployees,andthenuseQIDtotrackthelocationofeachdevice.However,QIDcan beeasilyextendedtorecognizenewdevicesviaonlinelearning.Forinstance,bysettinga detectionthresholdintheclassi˝er,QIDcanidentifywhetherthenewlycollectedsample 32 correspondstoanydevicethatisalreadyrecorded.Ifthesample'sprobabilityofcorre- spondingtoanexistingdeviceislow,QIDcanrecognizethedeviceasanewone. TheQIDserverstoresalltheextractedfeaturesandtheircorrespondingdevicelabels inafeaturetable.Thenitutilizestherepeatedrandomsub-samplingcross-validation, alsoknownasMonteCarlocross-validation[27],tosplitthedataintotrainingandtesting setrandomly.Finally,theclassi˝ermodelsaretrainedwiththetrainingsetandvalidated withthetestingset.Themeanandthestandarddeviationofaccuracyfromtheresultsof thesub-samplingexperimentsarerecorded. TheobjectiveoftheQIDserverisfocusedonclassifyingthedeviceintooneofthe knownclasses.Thisdesignisapplicabletothescenarioswherethedevicesarealready ˝ngerprinted.Forinstance,acompanymayregisterand˝ngerprintalltheworkdevices ofemployees,andthenuseQIDtotrackthelocationofeachdevice.However,QIDcan beeasilyextendedtorecognizenewdevicesviaonlinelearning.Forinstance,bysettinga detectionthresholdintheclassi˝er,QIDcanidentifywhetherthenewlycollectedsample correspondstoanydevicethatisalreadyrecorded.Ifthesample'sprobabilityofcorre- spondingtoanexistingdeviceislow,QIDcanrecognizethedeviceasanewone. 3.6Implementation Inthissection,wepresenttheimplementationoftheQIDsystem.Figure3.16showsa QIDsensorprototype. QIDsensorbasestation. ThebasestationisthemechanicalcomponentoftheQIDsensor, whichisbuiltonaclearacrylicboard.Thetwosteppermotorlinearslidersenablethe motionalongthe x and y directionrespectively,withamovingdistanceof90mmeach. Aswitchisaddedtooneendofeachscrew,suchthattheMCUcanresettheposition eachtimethesystemispoweredon.Anotherclearacrylicboard(notshowninthe˝gure) supportedbyfournylonhexspacersisthesurfacethatthemobiledeviceisputon.The costofthemechanicalcomponentsislessthan$20.Thereforeitisfeasibletobemassively 33 Figure3.16:AprototypeoftheQIDsensor. deployedinthepublicarea. Embeddedcontrollerandmotordriver. AtthecenteroftheQIDsensor,theAtmelSAMG53N19 [4]MCUisemployed,whichisresponsiblefordecodingandtimestampingpackets,driv- ingthesteppermotors,andsendingcollecteddatatotheQIDserver.TheMCUsupports theUARTcommunicationwiththeserverviaaUSBvirtualCOMMport.Themotordriver ICisToshibaTB6612FNG,whichsharesthepowerwiththeQiPTx.Thepeakmotordriv- ingcurrentisaround150to200mA,whichisnegligibletotheQiwirelesschargingsystem becauseatypicalCOTSUSBchargercanprovide2000mAcurrentat5V. Qi-compatiblepowertransmitter. WechooseaCOTSGMYLEMiniQiChargingPad asthePTx,whichisconnectedtotheMCUviaadata˛owdebugpin.ThePTxcoilis extendedwithapairofwires,whichprovidesextra˛exibility,suchthatthecoilmoves withoutdraggingthechargercircuitboardaround. TheQIDserver. Attheserverside,thefeatureextractionandclassi˝cationmodulesare 34 implementedusingapproximately1,100linesofPythoncodes,includingthe pySerial UARTlibraryfortheQIDsensorcommunicationhandlerandthemachinelearninglibrary scikit-learn [64]forclassi˝cation. 3.7Evaluation Inthissection,wepresenttheperformanceevaluationofQIDbasedon52Qi-compliant devices.We˝rstpresenttheevaluationsettingsandthendiscussfeatureanalysis,mea- surementdelayanalysis,classi˝cationaccuracy,featurebackwardsearch,andaccuracy breakdowntest. 3.7.1EvaluationSettings Weevaluate52Qi-compliantdevicesintotal,including7GoogleNexus4(labeledas and45attachablePRxmodulesfrom6di˙erentmanufacturers,includingDigiYes, Hugchg,andRAVPower.WenotethattheICsinthesemodulesarewidelyusedinmain- streammobiledevices.Forexample,theTexasbq51013BintheDigiYesmodulesisalso adoptedbyGoogleNexus5.Foreachdevice,weconduct10completeindependentscans tocollect˝ngerprints.Intotal,thereare520scansamples.Tosimulatetheusers'device placementbehaviorintherealworld,wealterthephoneplacementmanually.Speci˝- cally,forthe˝rstscan,thephoneisalignedwiththe x axisofthemotionplane.Forthe nextsevenscans,thedeviceisrotatedcounter-clockwisefor45 eachtime.Forthelast twoscans,thephoneisplacedonthepadatarandomangle. WevisualizetheCEPpacketintervalswithrespecttothePTxcoillocationinFigure 3.17.AsshowninFigure3.17a,merelyusingthesamplecollectedinoneexperimentmay leadtobiasedresultsbecausethefeaturesareextractedfromalimitednumberofcou- plingsbetweenthetwocoils.Whilethedatapointsfrommultiplemeasurementrounds areaggregated,asshowninFigure3.17b,thepointcloudcoversthemajorityofthecontact rangebetweenthetwocoils,providingadequategroundtruthforclassi˝cation,whichcan 35 (a)Pointcloudin3Dspaceforonesamplingex- periment. (b)Pointcloudafteraggregationfrommultipleex- periments.Di˙erentyersofthepointscorre- spondtodi˙erentpeaksinFigure3.13. Figure3.17:Pointcloudillustration. accommodateunpredictabledeviceplacements. Toquantifythecontributionofthemotionplatform,werepeatthiswholeprocessfor once without movingthechargercoilwithrespecttothePRx.Weconsiderthisasour baseline andwilldiscussitinSection3.7.3. Inclassi˝cation,thetraining-testingsplitratiois7:3.Inotherwords,7outofthe10 samplesforeachdevicearerandomlychosentotraintheQIDclassi˝ermodel,andthe remainingscansamplesarefortesting.Suchaprocessisrepeated10times.Theaverage accuracyandthestandarddeviationofeachclassi˝erarereported.Inaddition,thehyper- parametersinalltheimplementedclassi˝ersaretunedbythegridsearch.Asdiscussed inSection3.5.2,weassumeallthedevicesarealready˝ngerprintedandrecordedinthe database. 3.7.2MeasurementDelay Themeasurementdelayisde˝nedasthetimedelayfromthemomentwhenthepower receiverisbootedtothemomentthattheserverproducesadevicelabel.Speci˝cally,the 36 Table3.3:ThemeasurementdelayintheQIDsystem SymbolDe˝nitionMean(s)Std(s) T 1 Coilsymmetricaxisalignmenttime8.0500.927 T 2 Fingerprintingtime55.4786.092 T 3 Featureextractiontime0.1470.006 T 4 Classi˝cationtime0.001N/A measurementdelay T M is T M = T 1 + T 2 + T 3 + T 4 where T 1 isthecoilsymmetricaxisalignmenttime, T 2 isthe˝ngerprintingtime, T 3 isthe featureextractiontime,and T 4 istheclassi˝cationtime.Themeansandstandarddevia- tionsofthesemeasurementdelaytermsarepresentedinTable3.3. Asonecansee,the˝ngerprintphasetime T 2 isaround55.5s,whichcontributesthe mosttothetotalmeasurementdelay.Thusreducingthetime T 2 iscrucialinfurtheropti- mizingthemeasurementdelay T M . Themeasurementdelayisactuallyacceptableduetothecharacteristicsofwireless charging.First,unlikeotherwirelesscommunicationsystemswheretheuserisusually inmobility,thechargingprocessusuallytakesmorethan10minutes,duringwhichthe userdeviceremainsstationary.Second,inthetargetedscenarios,suchasaco˙eeshop thato˙erslocationandpersonalizedservicestocustomers,theusersneedtoregistertheir devicesbeforeusingsuchuser-identi˝cationservice.Duringtheregistrationprocess,QID cancollect8-10di˙erentsamplesforfuturerecognition.Finally,previoussystemsthat exploitclockdriftsfordeviceidenti˝cationhavesimilardelayperformance.Forexample, BlueID[38]takes21secondsfordatatra˚cor65secondsforvoicetra˚ctoguarantee thelowmeasurementerror.In[44],ittakesthesystemhourstocollectenoughpackets inordertodistinguishdevices.Therefore,the60-secondmeasurementdelayinQIDis acceptable. 37 Figure3.18:Thecross-validationscoreanddevicebranddetectionaccuracyofdi˙erent classi˝ers. Figure3.19:Theimpactoffeatureselectionontheclassi˝cationaccuracy.G1: classi˝cationwithouttheCEPtimeintervalfeatures;G2:allfeaturesareincluded,but theyaremeasuredwithoutthemotionplatform;G3:classi˝cationperformanceusing theCEPtimeintervalfeaturesonly;G4:allfeaturesareincluded. 3.7.3Classi˝cationAccuracy We˝rstpresenttheoveralltestaccuracyofthecross-validationstudy.Theoverallaccu- racyistheratioofthenumberofcorrectlyclassi˝edscansamplestothesizeofthetest 38 Figure3.20:Confusionmatrixofthe52evaluateddevices. set.Figure3.18showsthemeansandstandarddeviationsoftheimplementedclassi˝ers from10repeatedrandomsub-samplingcross-validationfolds.Asshowninthe˝gure, alltheimplementedclassi˝erscanrecognizethedevicebrandwithameanvalidation accuracyupto96.1%.Particularly,thebaggingclassi˝eridenti˝esthebrandwithupto 97.9%meanaccuracy.Themobiledevicebrandclassi˝cationaccuracyisofinterestbe- causeofthefollowingtworeasons.First,itisthefoundationofdevicerecognition.As mentionedinSection3.3.1,althoughtheCEPintervalisagooddeviceseparator,itcon- 39 fusessomedevicesfromdi˙erentbrands.Ifthedevicebrandissuccessfullyidenti˝ed, theQIDservercanreducetherangeofdevicecandidatesandincreasetheoveralldevice classi˝cationaccuracy.Moreover,brandrecognitioncanenableapplicationslikedevice brand-speci˝cadvertisement.Fordeviceidenti˝cation,thebaggingclassi˝erachievesan averageaccuracyof85.2%.ThehighestaccuracyachievedbyQIDis89.7%.Toillustrate theclassi˝erperformance,aconfusionmatrixisplottedinFigure3.20.Generally,themis- classi˝edsamplesarefromthedevicesofthesamebrandthathavecloseclockdrifts.For instance,therearetwodevices,namelyandwhoseall3testsamplesaremis- classi˝ed.However,somedevicesareclassi˝edintodi˙erentbrandsduetotheirclose valuesinfeaturespace. Next,wequantifytheperformanceofthemotionplatform,namelythemulti-coilarray. TheG2inFigure3.19showsthebaselineresult,wherethemotionunitisnotenabled. Eachdeviceissampledwithoutthemotioncontrolfor55seconds,correspondingtothe delay T 2 inSection3.7.2.Weplottheclassi˝cationaccuracyofQIDinFigure3.19G4for comparison.Aswecansee,thedevicerecognitionrateincreasesby17%bybothSVMand baggingclassi˝erswhenthemotionplatformisenabled.Thebrandrecognitionaccuracy isalsoboostedby8%.Itisindicatedthatthemotionplatformplaysanimportantrole inachievingreliableandsu˚cientdevicefeaturesforclassi˝cationduetoitsabilityto extract˝ngerprintsfrommorespots,whichcapturesamorecompletepro˝leofadevice. 3.7.4ImpactofFeatureSelection Notallfeaturesareequallyimportant.Figure3.21andFigure3.22showsthedistribution oftwofeaturesrespectively,obtainedfrom42outofthe52devices,namelythetotalnum- berofpacketsperscanandthefrequencyoftheCEPvalue0.ThedistributionofotherCEP valuefrequenciesyieldssimilartrendsasshowninFigure3.22andisthusomitted.These twofeaturescontainmorenoisethantheCEPinterval(asshowninFigure3.8).Nonethe- less,intuitively,thesefeaturesareabletoseparatedeviceclassestosomeextent.Wenext 40 Figure3.21:Numberofpacketperscanfeaturedistributionof42devices(10samplesper device). Figure3.22:ThefrequencyofCEPvalueequaling0distributionof42devices(10 samplesperdevice). conductthebackwardsearchtoevaluatethee˙ectivenessofeachselectedfeature. Weperformtwocasestudies.Inthe˝rstcaseweevaluatethebaggingclassi- ˝erwithouttheCEPtimeintervalfeatures,i.e.,theonboardoscillator˝ngerprints.In otherwords,onlytheCEPvaluefeaturesareused.Inthesecondcaseweevaluate thebaggingclassi˝erwithonlytheCEPtimeintervalfeatures.Theresultsofthesetwo casestudiesareshowninFigure3.19.Weobservethatthedevicerecognitionaccuracies 41 ofboththebaggingandtheSVMclassi˝erdegradetoabout21%inG1,whichindicates thesigni˝cantcontributionoftheonboardoscillator˝ngerprinttodeviceidenti˝cation performance.Anotherobservationisthat,althoughtheCEPvaluefeaturesfailindevice recognition,theyarestillabletodistinguishthebrandswith75%accuracybythebagging classi˝er.Next,wecompareG3andG4.Wecanseethatboththedeviceandbrandrecog- nitionaccuraciesofthebaggingclassi˝erareimprovedbyabout2.5%byaddingtheCEP valuefeaturestotheCEPtimeintervalfeatures.ThisindicatesthatalthoughtheCEP valuefeaturesarenotasimportantastheonboardoscillator˝ngerprints,ithelpsQID toreduceuncertaintyandachievehigheraccuracy.However,asthenumberofdevices increases,thechanceofCEPinterval(PRxoscillator)featureoverlappingisexpectedto increase.Insuchacase,thePRxcontroller˝ngerprintswillprovidethenecessarydevice brandidenti˝es,thusreducingthecollisioninthefeaturespace. 3.7.5RecognitionAccuracyBreakdown AnothercharacteristicoftheQIDsystemisthathowrobusttheselected˝ngerprintsare. Inotherwords,howistheclassi˝erperformancein˛uencedwhenmoredevicesareadded tothefeaturedatabase?Herewepresenttheresultsoftherecognitionaccuracybreak- down.Inthiscasestudy,weevaluateboththedeviceandbrandrecognitionaccuracyof thebaggingclassi˝erconcerningasequenceofthedevicenumbersfrom5to50,withan incrementof5.Foreachdevicenumber N i inthelist,we˝rstrandomlychoose N i devices outofthe52devicesandthenperformtheMonteCarlocross-validationontheirscansam- ples10timestoobtainthemeantestaccuracy.Foreach N i ,suchaprocessisrepeatedfor 6rounds.Finally,themeanandstandarddeviationfromtheresultsofthese6roundsare recorded,asshowninFigure3.23.Thebrandrecognitionaccuracykeepsatahighlevel around97%regardlessoftheincreaseinthenumberofdevices.However,thedevice recognitionaccuracydecreasesbyabout1.3%eachtimethenumberofdevicesincreases atincrementsof5.Ifthistrendcontinues,whenthenumberofthedevicereachesabout 42 Figure3.23:Devicerecognitionaccuracychangeswiththenumberofdevices 180,thedeviceaccuracydecreasesto50%.However,wenotethatthepowerreceiversmay havemuchhigherdiversityregardingthedevicebrandinreal-lifescenariosthanthatin ourevaluationsetting.Therefore,theQIDcanpotentiallybene˝tfromthehighbrand accuracyandthusaccommodatemoredevicesthanthenumberofdevice180calculated above. 3.8ConclusionandDiscussion Inthisresearchwork,wepresentourdesignandimplementationofQID,the˝rstsystem thatrecognizesQipowerreceiversduringwirelesschargingusing˝ngerprintsfromthe onboardoscillator,coilcharacteristics,andcontrolschemeofthewirelesschargingsystem. QIDalsoemploysamovementunittoemulatemulti-coilpowertransmitters,whichallows for˝ne-grained˝ngerprinting.OurevaluationresultsshowthatQIDachievesanoverall identi˝cationaccuracyofupto89.7%,withanaverageof85.2%.Moreover,QIDcanrec- ognizethedevicebrandwithanaverageaccuracyof97.9%.Therefore,wedemonstrate 43 thefeasibilityofleveragingpublicwirelesscharginginfrastructurefortrackingmobile usersandprovidingID/location-basedservices.Ourresultsalsoopenupnewresearch questionsonhowtopreventtheleakageofuser'slocationwiththeincreasingwireless chargingstationdeploymentinpublic. QIDhasseverallimitations.First,unlikeotherwirelesscommunicationsystemswhere passiveremotesensingandrecognitionarepossible,QIDadoptsauser-initiateddevice recognitionapproach.Thisnarrowsitsapplicationsbecauseitrequiresphysicalcontact betweenthedeviceandthesensor.However,thiscouldalsobeanadvantagebecauseit preservestheuser'sawarenessandthusprotectstheuser'sprivacy.Second,atthisstage, QIDrequiresmotionpartstoachieve˝ne-grained˝ngerprinting.Weenvisionachieving devicerecognitioninwirelesschargingusingonlystationarymulti-coilchargers.How- ever,sincethecommerciallyavailablemulti-coilchargersarenotreadyfordevicerecog- nitionyet,ourQIDsensorimplementationmainlyfocusesonemulatingamulti-coilarray withmotioncontrol.Weexpectnomotionunitisneededinthereal-worldimplementation anddeployment.Nevertheless,themechanicalstructurecouldbepossiblyre-designedto achieveasmallerformfactor.Finally,wenotethatthechargingprocessmaycauseseveral short-timechargingdisruptions(about1to2secondseach)duetothedecouplingbetween thePTxandPRxcoils.Insuchacase,theuserexperiencemaybepotentiallyimpacted. However,asdiscussedabove,themeasurementdelayisabout55seconds.Afteradevice issuccessfullyidenti˝ed,thePTxcoilwillmovetoaposition(orswitchtoaparticular physicalcoil)thatachievesthemaximumcoilcouplingtocontinuethepowerdelivery process. Our˝ndingshaveimportantimplicationsforuserprivacy.Privacyisaprimarycon- cernindevicerecognitionsystemslikeQID.Infact,theQispeci˝cationitselfkeepsdevice informationsecurely.Forexample,QIDcanonlyidentifyadevicebasedonthephysical ˝ngerprintsoftheQiPRxmodule.Itwillnotandcannotrecordanyinformationaboutthe phoneitselfincludingoperatingsystem,phonenumber,aswellasbattery-relatedvalues, 44 suchasvoltagelevel,energypercentage,andhealthrecord. Fromanotherperspective,thepublicshouldbeawareoftheirprivacywhenusing wirelesschargingbecauseitwouldpossiblyleakthelocationinformationofaparticular device.Hackersmaypreciselylocalizeatargeteduserformaliciouspurposes.Thereare su˚cientreasonsfortheQiPRxmoduletoo˙erusersthechoicetogeneratetheirDevice IDrandomly.Themobilephonemanufacturerandthemobilephoneoperatingsystem shouldalsoo˙erthechoicetoshutdownthewirelesschargingfunctionalitywhenthe userintendsto.Tothebestofourknowledge,theyarenotimplementedinanyQi-based wirelesschargeabledeviceyet.Thelocationofamobiledevicemaybetrackedwhenthe userchargesmobiledevicesinpublicwirelesschargers.Mitigatingsuchpossibleuser privacybreachesisopentofutureproblems. Anotheropenproblemistodesignacompactcoilantennatoextractthedatadirectly fromthewirelesspowerinterface,suchthattheQIDsensorcanbenon-intrusivetothe PTx.ItisalsopossibletoexplorenewQIDsensor˝ngerprintingtrajectoriestofurther reducethemeasurementdelay.Althoughtheusersusuallyinitializetheirmobiledevice registrationbythemselvesinourtargetedscenarios,wecallforthedesignofe˚cienton- linemachinelearningalgorithmstoclassifyunknowndevices,suchthatQIDprovidesan easy-to-useinterfaceandenablesawiderrangeofapplications.Wecanachievethisby quantifyingthesimilaritybetweentheincomingsamplefeatureswiththeonesalreadyin ourdatabase.Ifthedi˙erenceexceedsathreshold,QIDdeterminesthesamplebelongs toadevicethathasnotbeenseenbefore. 45 CHAPTER4 UNDERSTANDINGPOWERCONSUMPTIONOFNB-IOTINTHEWILD:TOOL ANDLARGE-SCALEMEASUREMENT 4.1ChapterIntroduction NarrowbandInternet-of-Things(NB-IoT)isalow-powerwide-areanetwork(LPWAN) speci˝cationdevelopedbythe3rdGenerationPartnershipProject(3GPP)in2016.NB-IoT envisionsananytime,anythingconnectivityparadigmforawidespectrumoflowdata rate,largevolume,andlonglifetimeIoTapplications,includingsmartgrid,smartstreet- lamp,parkingmanagement,airqualitysensing,andintelligentagriculture.Currently, NB-IoThasbeenlaunchedgloballywith93commercialnetworks,whilethereare140op- eratorsin69countriesinvestinginNB-IoTnetworkdeployment.Oneofthekeyfeatures oftheNB-IoTnetworkisthepromiseoflongbatterylife,upto10years.Understanding howtheenergyisspentandidentifyingpossibleenergyloopholesintheNB-IoTnetwork arethusofgreatimportance. Unfortunately,todate,thekeyaspectsofNB-IoTperformanceandpowerconsump- tionhavenotbeenwellunderstood,especiallytodevelopersandacademicresearchers. Thisisduetothreekeychallenges.First,NB-IoTisaclosedcellularnetworkdeployed byoperatorsonlicensedspectrum,wherethebasestationscannotbeaccessedforpub- licmeasurements.Themessage-levelinteractionsbetweenthenodeandbasestationare largelyinaccessibletothedevelopersandresearchers.Second,NB-IoTmeasurementis fundamentallydi˙erentfrom3/4Gcellularnetworkmeasurement,wherethelattercould beconductedthroughmobileapplicationsinstalledonmassivemobiledevices.Incon- trast,anIoTapplicationmayconsistofnumerousnodesembeddedintheenvironment overalargegeographicregion,whichpresentsahighbarrierforunderstandingtheper- formanceofNB-IoTinthewild.Inparticular,NB-IoTnetworksdi˙ersigni˝cantlydueto 46 variationsofoperatorcon˝gurations,modulesfromdi˙erentvendors,andlocationpro- ˝les.Finally,therelacke˙ectivetoolsthatcanexposethelow-leveldiagnostictracesfrom NB-IoTnodes,supportlarge-scalemeasurementstudies,andcapturethehighlevelofhet- erogeneityofnetworkoperators,NB-IoTmodules,andlocationpro˝les. Inthischapter,weproposeourdesignofNB-Scope,the˝rsthardwareNB-IoTdiag- nostictoolthatsupports˝ne-grainedfusionofpowerconsumptionandprotocolmessage tracesforbothreal-timein-labbenchmarkingand˝eldtesting.NB-Scopeisapowerful toolthatcanadvancetheresearchofNB-IoTbyallowingtoinstrumentlarge-scaleopera- tionalNB-IoTnetworksandexperimentwithvariousprotocol-leveloptimizations.Next, weconductalarge-scale˝eldmeasurementstudybasedonthedeploymentof30NB- Scopenodesatover1,200locationsin3regionsof2countriesduringaperiodofthree months.Ourin-depthanalysisofthecollected49GBdebuglogsandcurrentconsumption tracesrevealsseveralimportantinsightsintothepowerconsumptionofNB-IoTinthewild. Weshowedthatnodesyieldsigni˝cantlyimbalancedenergyconsumptionacrossdi˙er- entlocations,operators,andmodulevendors.Forinstance,theratioofthehighestand lowestenergyconsumptionofnodescanbe75:1.Bydecomposingtheenergyconsumma- tionbyradioaccessphrasesina˝ne-grainedmanner,weshowedthatsuchperformance variancecanbeattributedtoseveralkeyfactorsincludingpoornetworkcoveragelevel, long-tailpowerpro˝leduetoconservativeinactivitytimersettings,andexcessivecontrol messagerepetitionsduringrandomaccesscontrol. Therestofthischapterisorganizedasfollows.First,Section4.2brie˛yintroducesthe NB-IoTtechnology,aswellastheradioaccessproceduresandtheenergymanagement. Nest,Section4.3presentsNB-Scopedesign,aplatformforlargescaleNB-IoTmeasure- mentstudy.Finally,Section4.4presentsourdiscoverythroughalarge-scalemeasurement study. 47 4.2NB-IoTPrimer Inthissection,weprovidethebackgroundofNB-IoTtechnology,includingitsmainfea- tures,framestructure,physicalchannels,randomaccessprocedure,andenergymanage- ment. 4.2.1FeaturesofNB-IoTTechnology NB-IoThasseveraladvantagesovermanyotherwirelesscommunicationtechnologies, suchas4G-LTE,Wi-Fi,andZigBee. Widecoverage .ComparedtoGPRSandLTE,themaximumcouplinglossbudget ofNB-IoTincreasesby20dB,whichimprovesitscoverageabilityinsignal-limited environments,suchasundergroundparkinglot,basement,andgarage. Lowpowerconsumption .Bystreamliningthemessageexchangesandleveraging multiplepower-savingmethods,theendnodehasthechancetoreach5-yearsor even10-yearbatterylifeinspeci˝cscenarios. Lowcost .Thenarrowbandwidth,lowpowerconsumption,andlowdataratelead tothelowcomplexityintheNB-IoTmodemandchipsetdesign,whichlowersthe costatthenodeside.Inthemeantime,NB-IoTcanreusetheexisting4G-LTEin- frastructures,whichlargelydecreasesthedeploymentcostatthenetworkoperator side. Massiveconnection .OnesingleNB-IoTcellcansupportmorethan50,000nodes connectingtothenetworkcore,whichis50to100timeslargerthanthe2G,3G,and 4Gnetwork. Licensedbands .NB-IoTsupportsinbandmodedeployment,whichcoexistswith thecurrentLTEnetwork.Inthemeantime,itcanreusethelicensedbandof2Gand 48 3G.Allthesebandsarelicensed,meaningthatthereislessinterferencethanother ISM-basedtechnologies,andthenetworkcoverageinawideareacanbeguaranteed. Security .NB-IoTleveragesthesecurityapproachesfrom4GLTE,with2-wayau- thenticationanddataencryptionovertheair,providingamoresecurepipelinefor thepacketdatathanotherLPWANtechnologies. 4.2.2FramesandChannels InanNB-IoTnetwork,anendnode,commonlyknownasaUserEquipment(UE),iscon- nectedtotheEvolvedPacketCore(EPC)viaaneNodeBbasestation.Toachievethis, NB-IoTspeci˝esadedicatedframestructureandasetofchannelsbothphysicallyand logicallytoensurethesynchronizationande˙ectivecommunicationbetweentheUEsand theeNodeB.Webrie˛yintroducethemasfollows. Framesandtime-frequencydomainresources .Figure4.1showstheframestructure ofNB-IoTintimedomain.Itisahierarchicalstructure,fromhyperframestoradio frames,thentosubframesandslotsasthegranularityincreases.Eachslotconsistsof 7OrthogonalFrequencyDivisionMultiplexing(OFDM)symbols.Inthefrequency domain,NB-IoTutilizes12subcarriers,15kHzeach(inSingle-tonemode),180kHz bandwidthintotal(200kHzinrealityduetotheemploymentofguardband). ToallowtheUEtosynchronizebeforeattachingtothenetwork,theeNodeBbroad- caststwosynchronizationsignal NarrowbandPrimarySynchronizationSignal (NPSS) and NarrowbandSecondarySynchronizationSignal (NSSS)periodicallyintheradio frames,asshowninFigure4.2inredandyellowcolor,respectively.Aftersynchro- nizationinclocksignals,UEstartstolistentothesysteminformationfromthedown- linkchannels. Downlinkphysicalchannels .Therearethreephysicalchannelsinthedownlink (DL)direction,i.e.,fromeNodeBtotheUEs,namely NarrowbandPhysicalBroadcast 49 Channel (NPBCH), NarrowbandPhysicalDownlinkControlChannel (NPDCCH),and NarrowbandPhysicalDownlinkSharedChannel (NPDSCH).NPBCHcarriesthesys- temcon˝gurationinformationtoguidetheUEtoattachtothenetwork.NPDCCH andNPDSCHcarrytheschedulingorcontrollingmessagesandtheDLdatapackets fortheUE,respectively.NPDCCHandNPDSCHarethemostcommonlyallocated channelsintheNB-IoTdownlink,asshowninFigure4.2. Figure4.1:NB-IoTframestructure. Uplinkphysicalchannels .Therearetwophysicalchannelsspeci˝edforuplink(UL) transmissions,namely NarrowbandPhysicalRandomAccessChannel (NPRACH)and NarrowbandPhysicalUplinkSharedChannel (NPUSCH).NPRACHbearstherandom accesspreamblefromUE,whileNPUSCHcarriesalltheULpacketdatafromthe UE. 4.2.3RandomAccessProcedure TheNB-IoTUEfollowsaseriesofprocedurestoestablish RadioResourceControl (RRC) Connectionandsenddatapacketstoapplicationservers,asshowninFigure4.3.The procedureissummarizedasfollows. 50 (a)Framewithevennumber. (b)Framewithoddnumber. Figure4.2:NB-IoTsubframestructureineitherStandaloneorGuardbanddeploymode. Every10subframesmakearadioframe. 51 Figure4.3:SignalingsbetweenUEandeNodeBbasestationduringaULpacket transmission. 1.TheUEinitiatesacontention-based RandomAccess (RA)bysendinga RandomAccess Preamble ( MSG1 )totheeNodeBinNPRACH.TheeNodeBreplieswitha RandomAccess Response (RAR),alsoknownas MSG2 ,whichallocatesresourcesfortheUEtosendsub- sequentrequests. 2.Next,theUEtransmitsthe MSG3 totheeNodeB,carryingtherequestedresources,inthe NPUSCHusingtheresourceallocatedbytheeNodeB.Inthemeantime,itstartsatimer immediately.TheUEconsidersitselffailedifthetimerexpired. 3.Afterreceiving MSG3 ,theeNodeBresolvescontentionfromalltheUErequests,allocates resource,andthennoti˝estheUEbysendingaContentionResolution( MSG4 ).IftheUE receives MSG4 beforeCRTtimeout,theRAprocedurecompletessuccessfullyandtheUE setsupanRRCconnectiontotheeNodeB.Otherwise,theUEneedstogobacktostep-1 andsends MSG1 tore-initiateRA. 4.TheUEthensendsdatapacketstotheeNodeBusingthescheduledresourceinNPUSCH. 52 5.Afterdatatransmission,theUEenterspassivereception,called Inactivity stateuntil theRRCconnectionisreleased,initiatedbytheeNodeB. 6.Finally,theUEsendsthe RRCConnectionReleaseCon˝rm via MSG1 and MSG3 againtothe eNodeBtomarktheendofapackettransmissioncycle. Wenotethat MSG1 istransmittedintheNarrowbandRandomAccessChannel(NPRACH). Both MSG3 andthedatapackettransferblocksaretransmittedintheNPUSCH,whichis oneofthemajorcontributingfactorstototalenergyconsumption. 4.2.4EnergyManagement UEworkingmodes. Toreducepowerconsumption,theUEisoperatedinfourworking modes,namely Active , Idle ,extendedDiscontinuousReception( eDRX ),andPowerSav- ingMode( PSM ).TheUEisin Active modewhentheradioistransmittingorreceiving, consumingcurrentuptotensorhundredsmA.In Idle mode,theradioisinactivebut remainsawake.In eDRX mode,theUEturnso˙itsradioforaspeci˝cperiodnegotiated withtheeNodeB.The eDRX modeofNB-IoTinheritsthe DRX modeofLTE,butspeci˝es additionalhigherintervalcon˝gurations,targetingtheIoTapplicationscenarios.The PSM modeisthemostenergy-e˚cientmode,whereallUEcomponentsareturnedinactivede- spiteawake-uptimeruntilthetimerexpiresandissuesaninterruptiontoactivatetheUE. Inthismanner,thecurrentin PSM canbereduceddramaticallytoonlyseveral A. IntypicalNB-IoTapplications,thenodeshibernatewith PSM formostofthetimeand transmitasmallnumberofpacketsdaily. Enhancedcoveragelevel(ECL). NB-IoTadoptsanopenlooppowercontrol,wheretheUE decidesitsTxpowerbasedonasetofpre-de˝nedparametersbroadcastedbytheeNodeB andthelivelymeasuredreferencesignalstrength.NB-IoTde˝nesuptothree Coverage EnhancementLevels (ECLs):ECL0,ECL1,andECL2thatareadoptedingood,moderate, andbadchannelconditions,respectively.EachECLcorrespondstoaspeci˝cuplinkra- 53 diopro˝le,whichspeci˝esthenumberofrepetitionsof MSG1 and MSG3 ,thenumberof sub-carriers,etc.TheselectionofECLisdeterminedbyeNodeBandmayvaryacrossdif- ferentnetworkoperatorsandlocations.Beforeuplinkradioaccess,theUEcharacterizes itschannelconditionbymeasuring ReferenceSignalReceivedPower ( RSRP ).Itthencompares theRSRPwiththethresholdsspeci˝edbyeNodeBtodetermineitsECL. 4.3NB-ScopeDesign WehavedevelopedNB-Scope,whichisanopen-sourceexperimentalplatformdesigned toenable˝ne-grainedpowerconsumptionanalysisforNB-IoT.Inthissection,wedescribe thedesignofNB-Scopeindetail. 4.3.1SystemOverview ThedesignobjectiveofNB-Scopeistwo-fold.First,itshouldenablein-depthdiagnosesof theenergye˚ciencyofanNB-IoTnetwork.Second,itshouldsupportheterogeneousNB- IoTmoduleswithminimalsystemmodi˝cations,sinceUEmodulesofdi˙erentvendors maydi˙erinpinassignment,commandlanguage,andsignalingmessageformatofradio accesslogs.Toachievetheaboveobjectives,NB-Scopefeaturesthreekeydesigns. Layeredhardwarearchitecture. NB-Scopelayersthehardwaresystemintothreeparts, includingthemainboard,theshieldboard,andtheUEmodule.Theshieldboardis gearedtohosttheUEmoduleofaspeci˝cvendor.Itservesasanabstractionlayerthat hidesmoduleheterogeneityfromthemainboard.Themainboardintegratesgeneral components,suchaspowersupply,sensors,SDcardinterfaces,andexposesagroupof pinstosupporttheplug-and-playofshieldboards. Softwareabstraction. NB-Scopeo˙ersAPIsthatallowdeveloperstoaccessandcontrol heterogeneousUEmodules.ThemostimportantfunctionofNB-Scopeisthatithostsli- 54 brariestodecodetheradioaccesslogsofdi˙erentUEmodulesandreportsthedecoded eventsinauni˝edformat. Tracefusionofpowerconsumptionandradioaccess. Atrun-time,NB-Scopecollects andsynchronizespowerconsumptiontraceandradioaccesslogs.Thisiscriticalfor correlatingthecurrentvariationwiththenetworkstatetransitionandfurtherdiscover- ingthepossiblestrategiestominimizeenergywaste.Toourbestknowledge,NB-Scope isthe˝rst˝ne-graintracefusiontoolsetforNB-IoTnetworkdiagnostics. Figure4.4:SystemarchitectureofNB-Scope. AsshowninFigure4.4,NB-Scopesupportstwodi˙erentmeasurementmodes:real- timebenchmarkmodeand˝eldtestmode.Speci˝cally,inthe˝eldtestmode,thesystem canworkinastandalonemanner,loggingcurrentanddebugtracesinitsonboardstorage. Inreal-timebenchmarkmode,theNB-IoTshieldboardcanbeconnectedtoacomputer thatretrievesthelogsfromtheI/Oextensionadapterandanalyzesthemtogetherwith powermeasurementsfromapowermonitor. 55 4.3.2NB-ScopeHardwareDesign NB-IoTmoduleshieldboard .NB-Scopeconsistsofashieldboardthatabstractsthein- terfacesofheterogeneousUEmodules,providingauni˝edfootprintassignmenttothe hosts.WeselectalistofpopularcommercialNB-IoTmodulesfromQuectel,Gosuncn, anduBlox,andanalyzetheirconnectivity,asshowninTable4.1.Thenweidentifythe necessarypinstobeinteractedwith:anintersectionsetofpins,includingpowersup- ply,SIMcardinterface,mainUART,debugUART,andRESET,whichareessentialtolet amoduleworkproperly,andspecialpurposeconnectivityfordi˙erentmodules,such asPWR_ONkey,USBinterface,SPI,orI2C.Next,alltheselectedpinsareaggregated into2rowsofpinheaders,suchthatallthemodulesshareauni˝edtoexter- nalhosts,whichalsoenablesstraightforwardPCBdesignformoduleintegration.Inthis manner,weachievetheplug-and-playfeatureandinterchangeabilityforheterogeneous modules.Moreover,thankstothemodulardesign,theshieldboardenergyconsumption isseparatedfromothernodecomponents,providingafaircomparisonbetweendi˙erent NB-IoTmodules.Wehavedeveloped7typesofshields,supportingupto8di˙erentNB- IoTmodules,includingQuectelBC28/BC35/BC26/BC66/BG96,GosuncnME3616,and uBloxSARA-R410M-02B.Weshow5typesoftheshieldboardsinFigure4.5duetospace limit. Table4.1:ListofmodulesthatNB-Scopesupports. ModulemodelManufacturerChipRegion 1 SARA-R410M-02B uBloxQualcommMDM9206Global BC35QuectelHiSiliconHi2110Europe,Asia-Paci˝c BC28QuectelHiSiliconHi2115Europe,Asia-Paci˝c BC26QuectelMediaTekMT2625China BC66QuectelMediaTekMT2625Global BG36QuectelQualcommMDM9206China BG96QuectelQualcommMDM9206Global ME3616GosuncnMediaTekMT2625Global 1 BC26andBG36sharethesamechipsetwithBC66andBG96respectively.Thedi˙erenceisthatQuectel placesarestrictionontheiravailablenetworkoperatorssothattheycanbesoldindi˙erentregions. 56 (a)BC35/BC95shield (b)ME3616shield (c)SARA-R410M-02Bshield (d)BC28shield (e)BG96shield Figure4.5:NB-IoTUEmoduleshieldboards. Real-timebenchmarkmode .Inthebenchmarkmode,NB-Scopeallowsonetointeract withandanalyzetheenergyperformanceoftheNB-IoTmodulesinreal-time.Thisis achievedbyinstallingthemoduleshieldboardonanIOextensionboard.Itsupportsa widerangeofmeasurementcapabilitiesviaconnectingtoacomputer.Forexample,the developercanemittheATcommandandobservetheUEbehaviorimmediately.Inthis case,theUARTports,includingthemainATanddebuglogexportfunctionalities,are routedtotheUSB-Serialadapters.WeuseaMonsoonHVPM[41]tomeasurethecurrent consumedbytheNB-IoTnode.Inthismanner,theusercaneasilyknowwhenspeci˝c eventsoccurandhowtheyintroducethevariationinthecurrent. Fieldtestmode .WedesignamainboardtohosttheUEmoduleboard,asshowninFigure 4.6,toenablereal-worlddeployment.Itisessentiallyalightweightandlow-powerNB-IoT 57 Figure4.6:STM32-basedmainboardforNB-IoT˝eldtest. applicationnodethatlogsthecurrentandthedebuglogsintoamicroSDcardforo˜ine analysis.Themainboardcarriesan84MHzSTM32F103serieschipastheprocessingunit, atemperatureandhumiditysensor,acurrentsensor,anEEPROM,andamicroSDcard. Anotherimportantfeatureofthe˝eldmeasurementnodeisthecapabilityofcurrent sensingwithaTexasInstrumentsINA226chip,whichiscapableofupto7,60016-bitres- olutionsamplespersecond,withanerrorrateoflessthan2%atthetensorhundredsof mAmagnitude.Moreover,thenodeispoweredbyeitherasingleorapairof18650Li-ion batteries,supportingthenodemeasurementforupto1,000packets. 4.3.3NB-ScopeSoftwareDesign Figure4.7showsthearchitectureofNB-Scopesoftwarestack,whichconsistsofthree pipelinesfordatacollection,modulecontrol,anddataprocessing,respectively. Datacollectionandmodulecontrol .ThedatacollectioncomponentofNB-Scopereceives debuglogsandcurrentmeasurementsamplesfromtheshieldboard,andthenstorescol- lecteddatainanSDcard.Bothcurrentmeasurementsanddebuglogsaretimestampedso 58 Figure4.7:NB-Scopesoftwarearchitecture(˝eldtestmode).Thedebuglogcollection pipelineissimilartothecurrentsensingpipeline,thusisnotshowninthe˝gure. thattheycanbelateralignedinthetimedomaintoenableenergyperformancediagnosis ofradioaccess. ThemodulecontrollerofNB-ScopeallowsuserstocomposecontrollogicoftheNB- IoTmodulewithoutknowinglow-leveldetailsofchipcommands,whichmaydi˙eracross di˙erentNB-IoTmodules.Itachievesthisbyabstractingbasicfunctionalitiesofthecontrol logicasatomfunctions,whicharethenexposedasuni˝edAPIstohidemodule-speci˝c implementations.Forexample,di˙erentmodulesmayde˝nedi˙erentATcommandsto turnthemoduleintoairplanemode.Weimplementlow-levelAPIsforeachmodule.Asa result,theusercancontrolallthemodulesviathehigh-levelAPI at_enable_airplane_mode() , withoutbeingconcernedwiththeimplementationdetails.Newmodulescanbeeasily addedtothelibrarybyimplementingthecorrespondingatomfunctionsinthelibrary. UsingtheAPIs,wefurtherdevelopagroupofrepresentativeNB-IoTapplicationsand services,suchasenvironmentalsensing,uplinkpacketsending,downlinkpacketpars- ing,currentsensing,SDcardR/W,etc. Dataprocessingpipeline .Thedataprocessingpipeline˝rstdecodesdebuglogsusing abackendservice,asexempli˝edinFigure4.8,whichhandlesandhidessubtleseman- 59 Figure4.8:Messagedecodingexample.Therawdebuglogdatais˝rstsegmentedinto di˙erent˝eldsbythebytelength,andthenistranslatedtohuman-readabletexts accordingtothemessagede˝nitiondatabase. ticdi˙erenceamongthedebuglogsofdi˙erentNB-IoTmodules.Speci˝cally,thetaskof debuglogdecodingistwo-fold.First,thedecoderneedstodissectaradioaccesscycle anddeterminethetimingofeachphase(suchascontention,controlmessage,datatrans- mission,receiving,andidle).Second,thedecoderneedstoextractthecon˝gurationsand performanceoftheNB-IoTnetwork,suchastransmissionschedule,RSRP/SNRmeasure- ment,ECLselection,andblockerrorrate,whichallowfor˝ne-graineddiagnosisoftheir impactsontheenergyofUE. Tounderstandenergyconsumptionindi˙erentradioaccessphases,NB-Scope˝rst splitscontinuouscurrentmeasurementsusingathreshold-basedmethodandthenasso- ciateseachpartofthecurrentwitharadioaccessphasebasedonthetiminginformation decodedfromdebuglogs.AmajorchallengeinthisstepisthatsomeNB-IoTmodules maynotproducedebuglogsforradioaccessphases.Toaddressthisissue,we˝rstutilize thesynchronizedcurrentanddebugtracesfromtheUEwithdebuglogoutputtotrain 60 analgorithmtodeterminethestatetransition,triggeredbythecurrentpulsewidthand amplitudeintimesequence.Inthisalgorithm,wemainlyfocusontheTxstates,includ- ing MSG1 , MSG3 , ACK and Data .AsdiscussedinSection4.2,theoccurrencesofthestates duringthepacketuplinktransmissionfollowaspeci˝corder.Forexample,oncewe˝nd the MSG3-ACK ,wecanimmediatelydeclarethatthenextstateis Data .Oneintuitivesimple forwardlabelingalgorithm,from MSG1 to Idle ,istoleveragethestatetransitionrulesto- getherwiththestatefeatures,e.g.currentmagnitude,pulsewidth.However,somestates repeat(i.e.re-transmission)duetobadsignalqualityorfailureinreceivingtheACKfrom theeNodeB.Therefore,weutilizeotherpassivestates,suchas Idle and Inactvitity as auxiliaryanchorstodeterminetheTxstates.Moreover,weproposeabi-directionalstate- machine-basedlabelingalgorithm,whichdividestheuplinkprocessintotwopartsbythe starttimeof Data andleveragesthestatetransitionrulesandfeaturesofbothforwardand backwarddirectionstoincreasethelabelingaccuracy.Bysegmentingthecurrentaccord- ingtothestates,wecanobtainadetailedpictureofthepowerconsumptionforeachstate formoduleseitherwithorwithoutthedebugtracecapability.Theresultsofthecurrent labelingalgorithmarediscussedinSection4.4.4. 4.4NB-IoTMeasurementStudy Inthissection,weconductthemeasurementinthewildmassivelywithNB-Scopeand analyzetheenergyperformancein˝negranularity.Ataglimpse,ourmeasurementde- ploymentlasts3monthsandconsistsof30NB-ScopenodesonNB-IoTnetworksfrom majoroperatorsin3regions,includingtwomajorcitiesinChinaandamid-sizedcityin theUS. Theroadmapofthemeasurementstudy˝rststartsfromplanningtheexperimentsto addresstheheterogeneityinlocation,networkoperators,andmodulevendors.Then,we analyzetheUEenergyconsumptionw.r.ttothesefactorsandidentifyasubstantiallyhigh UEpowerconsumptionimbalance.Next,tounderstandthecausesofthehighenergy 61 variance,weanalyzetheECLratioindeploymentandrevealitsselectionmechanism. Next,a˝ne-grainedenergydecompositionisconducted,bywhichweidentifytwoheavy networkcontroloverheads:longtailduetolarge InactivityTimer andtheexcessive RAmessagerepetition.Byin-depthstudyonthesetwofactors,weshowtheopportunity ofoptimizingthemtosaveUEpower.Finally,theUEbatterylifeisestimatedwiththe measurementstudyresults. 4.4.1FieldMeasurementMethodology NB-IoTmeasurementisfundamentallydi˙erentfromLTEcellularnetworkmeasurement, wherethelattercouldbeconductedthroughmobileapplications[50,52]installedonmas- sivemobiledevices.Incontrast,anNB-IoTnodemustbephysicallydeployedtomeasure networkperformanceinplace.AsdiscussedinSection4.3.2,webuildaseriesofNB-IoT modulestoaddressthevendorheterogeneity.Inaddition,westillfacetwochallengesin conductingalarge-scale˝eldmeasurementofNB-IoTnetworks.First,NB-IoTenablesa widerangeofapplicationswithhighspatialdiversity,fromindoortooutdoor,fromthe ruralareatothemetropolisdowntownarea.Ourresultsmayincludesigni˝cantbiasif thedeploymentofmeasurementnodescouldnotcoverthewidespectrumoftheseap- plications.Second,thereusuallyexistmultiplenetworkoperatorsinthesamearea,of- feringdi˙erentrates,services,andIoTbackendplatforms.Eachnetworkoperatorhas itsnetworkcon˝gurations,whichmaya˙ectthemeasurementresultsintermsofpower consumption,networkcoverage,etc. Tomitigatetheimpactofbiasedlocationselectiononourmeasurementresults,we choosethemeasurementlocationbytypesofapplications.Speci˝cally,˝vecommonNB- IoTapplications 2 areselectedinthiswork:outdoorparking,indoorparking(ramp),smart doorlock,smokedetection,andsmartwater/electricitymeter.Theseapplicationsrepre- sentaclassoftypicallocations,rangingfromoutdooropenareastoresidential/o˚ce 2 Wemainlyfocusonstationaryapplicationsinthiswork.Mobileapplications,suchascoldchaintrack- ing[89]orsharedbikeservice[74],areleftforopenproblems. 62 indoorenvironmentsandbasement.Wereferthemtoaspro˝lesintherestof thischapter.Figure4.9exempli˝esthelocationpro˝lesofthemeasurementnodedeploy- ment. (a)Outdoorparking (b)Indoorparking (c)Smartlock (d)Watermeter Figure4.9:Actualnodedeploymentofdi˙erentlocationpro˝les. Second,weconductour˝eldmeasurementinthreeregions:twomajorcitiesinChina andamid-sizedcityintheUS.IneachofthethreecitiesinChina,wemeasurethenet- worksoftwodi˙erentmajoroperatorsreferredtoasandwhile thenetworkofonlyoneoperator,ismeasuredintheUS.Becausedi˙erent operatorsmaydi˙erinthecoverage,wechoosemultiple( 10 )locationstodeployour nodesforeachnetworkoperator,suchthatthevarianceoftheUEperformancedueto environmentalandoperator-speci˝cfactorscouldbecapturedintheresults.Toevaluate 63 theperformanceofUEsfromdi˙erentvendors,wedeployatleastthreetypesofUEsfor eachoperatorateachspot. Insummary,ourdeploymentcovers5locationpro˝les,eachconsistingofmorethan10 measurementspots.Atleast6nodesaredeployedateachmeasurementspotinChina,cor- respondingtotheCartesianproductofthe2networkoperatorsandthe3modules(BC26, BC28,andME3616).WechooseBC66,BG96,andSARA-R410M-02BNB-IoTmodulesin theUS,runningontheUS-OP1network. Finally,wediscussthesettingofULcommunicationinourdeployment.Sincethe powerdrainforthe PSM modeishighlypredictableandnegligible,wefocusonmeasuring thebehaviorofUEwhenitisawake.IneachroundofULtransmission,theUEwakesup fromPSM,searchesandattachestoanNB-IoTnetwork,carriesoutaULpackettransmis- sionfollowingtheradioaccessproceduredescribedinSection4.2,andthengoesbackto PSMfor10seconds.Ateachmeasurementlocation,theaboveprocedureisrepeatedfor25 to30ULpackets,usuallylastingabout30minutes.ForNB-Scopenodesdeployedaround thesamemeasurementspots,consideringtheshortULtransmissiontime(1-3seconds), theinterferenceduetothenodeconcurrentULtransmissionisnegligible.Eventhough twoormorenodesmayinitiaterandomaccesssimultaneously,thecontentioncanbere- solvedbyeNodeB(seeSection4.2)byschedulingdi˙erentresourceunitsforthosenodes, whichavoidspossiblemutualinterferenceforthesubsequent MSG3 anddatatransmission. DuetothesmallnumberofULpacketsandthelowdutycycleofNB-Scopenodes,the impactofourmeasurementcampaignontheNB-IoTnetworkisnegligible. 4.4.2MeasurementResultAnalysis FollowingthemethodologydescribedinSection4.4.1,webuilt30NB-Scopenodesof6 di˙erenttypesofmodules 3 ,andthenconductalarge-scale˝eldmeasurementbymoving themaroundover1,200locationsduringathree-monthmeasurementcampaign,collect- 3 Thereare30mainboardsand30shieldboardsthatareassembled.AnNB-IoTnodeconsistsofashield boardandamainboardpluggedtogether. 64 ingmorethan49.0GBdataincludingcurrenttracesanddebuglogsformorethan36,000 ULpackets,whereeachcurrenttraceanddebuglogisrecordedforacompleteradioac- cesscycle,fromissuingapackettransferATcommandtoentering PSM .Wenowpresent thestatisticalresultsfromthemeasurementstudy.Inparticular,ourresultsrevealthat theUEbatterylifecanbehighlyimbalancedinareal-worlddeployment.Thecausesof suchhighenergyimbalanceareanalyzedindetailthroughSection4.4.3toSection4.4.6. 4.4.2.1Powerconsumptionw.r.tlocationpro˝les We˝rstcomparetheUEpowerperformanceunderdi˙erentlocationpro˝lesfordi˙erent networkoperators.AsshowninFigure4.10a,asthedeploymentlocationchangesfrom openareastosemi-indoorthentothebasements,themeanactiveenergycostperUL packettransmissionincreasessigni˝cantly.Speci˝cally,withCN-OP2, theindoorpark- ingnodesconsumeabout2.7xmoreenergythanthewatermeteringnodestotransmit onepacket . Inadditiontoenergyvariance across di˙erentapplications,wealsonoticehighenergy imbalance within eachlocationpro˝le.Inparticular, formostindoorapplications,the 75thpercentileofnodeenergyconsumptioncanbeupto3timeshigherthanthe25th percentile .Inwatermeterandsmokedetectionpro˝les, theratioofthehighestand lowestenergyconsumptionofdi˙erentnodescanbeupto75:1 .Thismayresultin networkpartitions,becauseaportionofthenodesconsumessigni˝cantlymoreenergy thantheirpeers,leadingtohighlyimbalancedbatterylife.Moreover,weobservethatthe speci˝clocationofanindoorUE(e.g.,thedistancetothebuildingwalls)doesnotshow asigni˝cantimpactonenergyconsumption,asexempli˝edinFigure4.11.Forinstance, someUEsinthebasementsyieldlowenergyconsumption.Thisisbecause,asindicated byourmeasurement,theoperatorsusuallydeployindoormicro-cellsinthebuildings, providinglocalNB-IoTaccess. 65 (a)Allmodules (b)BC26andBC66 Figure4.10:Meanactiveenergyperpacketdistributionbylocationpro˝lesandnetwork operators.Theupperandlowererrorbarareatmost1.5xinterquartilerangeawayfrom the75thand25thpercentilerespectively.OP:outdoorparking,SL:smartlock,WM: watermeter,SD:smokedetection,IP:indoorparking. 4.4.2.2Powerconsumptionw.r.tnetworkoperators FromFigure4.10a,weobservethat,forthesamelocationpro˝le,thenetworkoperators haveanon-negligibleimpactonthepacketenergy.Forexample,nodesofUS-OP1yield thelowestenergyconsumptionandvarianceinmostlocationpro˝les.Forexample,the packetenergyinsmartlocklocationpro˝lesisonly1Jonaverage.Forafaircomparison betweennetworkoperatorsinthetwocountries,wefurtherstudytheenergyperformance ofapairofNB-IoTmodules,namelyQuectelBC26andBC66,whicharedeployedinChina andtheUS,respectively.WenotethatbothBC26andBC66adopttheMediaTekMT2625 chipset,thusallowingustoexcludeanymeasurementbiasintroducedbytheheterogene- ityofmodules.InFigure4.10b,weobservethat,inmostapplications,BC66deployedin theUShasrelativelowerenergyconsumptionandvariancethanBC26deployedinChina, whichisconsistentwiththeresultsshowninFigure4.10a.Wealsoobservelessdeviation 66 Figure4.11:Averagepowerconsumptionperpackettransmissionforindoorapplications inabuilding.Notethatsomeco-locatedpointsmaybeondi˙erent˛oors. Table4.2:eNodeBCon˝gurationsofdi˙erentNetworkOperators.MSG1repetitionand ECLthresholdarenotavailableinthedebuglogsofNB-IoTmodulesdeployedintheUS. OperatorUS-OP1CN-OP1CN-OP2 MSG1RepetitionsinECL0/1/2N/A2/8/322/8/32 MSG3RepetitionsinECL0/1/21/2/81/2/321/2/32 ECLThresholdN/A-107,-117-109,-119 InactivityTimer 3s20s20s Band1358 inthepacketenergydistributioninUS-OP1,whiletheBC66(inCN-OPs)spendssigni˝- cantlyhigherenergythanaverage. Tofurtherunderstandwhynodeenergyconsumptionvariessigni˝cantlyacrossdif- ferentoperators,welisttheeNodeBcon˝gurationsofdi˙erentoperatorsinTable4.2.We noticethatCN-OP1andCN-OP2employmoreconservativecon˝gurationsfeaturedby prolonged InactivityTimer andexcessive MSG3 repetitions,whichimprovetheULlink 67 reliabilitybutresultinrelativehighernodeenergyconsumption.WewillshowinSec- tion4.4.5and4.4.6that InactivityTimer and MSG3 repetitionhavecriticalimpactson UEenergyconsumption,leavingasigni˝cantspaceforoptimization.AlthoughUS-OP1 outperformsCN-OP1andCN-OP2intermsofenergyperformance,oure˙ortsiniden- tifyingtheenergyloopholesarestillimportant,becauseononehand,notallnetwork operatorsadoptthesamecon˝gurationasUS-OP1;ontheotherhand,anenergy-e˚cient con˝gurationmaycomeatthecostoflowerlinkconnectivityunderbadsignalquality.So eachnetworkoperatorshouldsetthecon˝gurationwithadesirabletrade-o˙betweenthe networkcoverageandthenodelifespan. 4.4.2.3ComparisonofNB-IoTmodules TheNB-IoTmodulesemployedinthe˝eldtestdemonstratenoticeabledi˙erences.We plottheperformanceoftheNB-IoTmoduleinthesmokesensinglocationpro˝lesinFigure 4.12.Wenumberthesemoduleswithoutshowingtheirmodelstoconcealtheidentitiesof vendors. First,fromFigure4.12a,wecanseethatthemaximumcurrentinaULpackettransmis- sioncyclevariessigni˝cantly.Forexample,moduleM1hasahighermaximumcurrent thanallothermodules,whileM5tendstoplaceasmallupperlimitonthemaximum current.WenotethatNB-ScopemeasuresthepowerconsumptionofthehostedNB-IoT modulesinsteadoftheentireboard.Thisallowsustoexcludetheimpactofboardde- signfeatures.Therefore,thevariationsofpowerconsumptionbetweendi˙erentmodules reportedinFigure4.12ashouldbelargelyattributedtothedi˙erentdesignsofNB-IoT modules.Wenotethat thedi˙erentmaximumcurrentsofmodulescancauseasigni˝- cantenergyvariance. InatypicalULpacketcycle,thetotaltransmissionperiodusually lasts2.8seconds.Supposethemaximumcurrentdi˙erencebetweentwomodulesis100 mA,theenergydi˙erenceduringthetransmissionperiodcanbe0.92J(assuming3.3V voltage),whichyieldssigni˝cantenergydi˙erenceinthelongterm.Wenotethatalower 68 (a)Maximumcurrentdistribution.(M2doesnotre- portECLs) (b)Packetdeliveryratedistribution. (c)Packetactiveenergydistribution.(M2doesnot reportECLs) (d)Timedurationtoupload20packets. Figure4.12:Performanceofdi˙erentmodelsinsmokesensinglocationpro˝le.M1-M3 aredeployedintheUS,whileM4-M6inChina. maximumcurrentcanleadtodegradationinthepacketdeliveryrate,asshowninFigure 4.12b.Insuchacase,theenergywastefromthelosspacketsshouldnotbeoverlooked. Second,wecon˝rmagaininFigure4.12cthatthenodesinECL2havesigni˝cantlyhigher energythaninECL0andECL1,forthemajorityoftheNB-IoTmodules,whichmeansthat theenergyimbalanceisprimarilyintroducedbytheECLinsteadofthemodule.Finally, wecanseefromFigure4.12dthatalmostallthemodulescan˝nishtransmitting20pack- ets(assumethesleeptimeris10secondsforallmodules)inabout20-30minutes,meaning 69 thatgenerally,theNB-IoThasasimilarleveloflatency. Moreover,wenoticethatsomemoduleshavedi˚cultyincellsearchingandnetwork attaching.Forexample,oneofthemodulesfailsinattachingthenetworkin20outofthe 125spots,whiletheothermodulesunderthesamenetworkcon˝gurationsucceeded. Themodulescanvaryinmanyotheraspects,suchasSNR,blockerrorrate,ECLse- lectionstrategy,cellselectionapproach,andsoon.Whilewecannotexhaustallthese variances,ourresultsabovesuggestedthatthediversityintheperformanceofdi˙erent moduleshasanimportantimpactonthedevelopmentanddeploymentoflarge-scaleNB- IoTsystems. 4.4.2.4Temporalvariationofpowerconsumption Westudythetemporalvariationofnodeenergyconsumptionbydeploying3di˙erent modulesin3locationpro˝lesandthenmeasuretheirenergyperULpackettransmission inaperiodof12.5hours. Figure4.13:Distributionofthepacketenergyina12.5-hourperiod. Figure4.13plotsthedistributionofenergyconsumptionperULpacket.Weobserve thatallnodesexperiencelargeenergyvarianceovertime,especiallyfornodesintheloca- 70 tionpro˝leofthewatermeter,wherethemaximumperpacketenergyconsumptioncan be45timeshigherthantheminimumvalue.Wefoundthatthemajorreasonisthatthe RSRPintheindoorlocationpro˝leshasasigni˝cantvariance.Eventhenodesarestation- aryduringmeasurement,thewirelessqualityishighlydynamic.Oncethenodechooses ECL2toperformradioaccess,theenergycanincreasesigni˝cantly.Wewillfurtherana- lyzethisinthelatersections. 4.4.2.5Powerconsumptionv.s.distancetoeNodeB TostudytheimpactofdistancetoeNodeBonUEenergyconsumption,weconductamea- surementinanoutdoorarea,whereaUEisdeployedattheline-of-sight(LoS)pathofthe eNodeB,andthenmovedawayfromtheeNodeBatastepof100metersuntiltheconnec- tionislost.Ineachstep,theUEiscon˝guredtotransmit15packets. Figure4.14:Packetenergyw.r.tthedistancebetweentheUEandtheeNodeB. Figure4.14plotstheenergyperpacket( Inactivity periodexcluded)andtheRSRP ofUEasafunctionofdistancetoeNodeB.Asshowninthe˝gure,theenergyperpacket demonstratesarapidsurgeaftertheUEismovedto0.8kmaway.Inparticular,theaverage 71 per-packetenergyat1.2kmisabout28xhigherthanthatat0.1km.Wealsoobservethat per-packetenergyhasastrongcorrelationwiththeECLofUE.Speci˝cally,duringthe measurement,weobservethattheECLoftheUEremainsinECL0intherangeof0.1-0.7 kmconsistently,andthendropstoECL1andECL2after0.8km,whichexplainsthedrastic surgeofper-packetenergybetween0.7-0.8km.WewillstudytheimpactofECLonUE energyconsumptioninmoredepthinSection4.4.3. 4.4.2.6Measurementsummary First,bydecomposingtheenergyconsumptionbylocationpro˝les,weseethatdi˙erent applicationsmayhavesigni˝cantlydi˙erentenergyconsumption.Insomeapplications, suchasindoorparking,thereexistsasigni˝cantenergyimbalanceamongthenodes.Sec- ond,wenoticethatthenetworkoperatorsplayanimportantroleinenergyconsumption becausenotonlythenetworkcon˝gurationsmaycausedi˙erentUEbehaviors,butalso thecelldeploymentcanbeoneofthedecisivefactorsfornodesignalstrength.Third,dif- ferentmodulesinthesamespotcanconsumeenergyatdi˙erentratesduetothehardware designandchipsetimplementation.Finally,thedistancetothebasestationcanalsoim- pactenergyconsumption.Particularly,wenoticeasharptransitionofenergyconsumption withrespecttothenode-celldistance,whichiscausedbytheECLmechanisminNB-IoT. WewillfurtherdiscusstheimpactofECLandpresentthedetailedenergybreakdown todiagnosethecausesfortheUEenergybehaviorsintherestofthissection. 4.4.3TheImpactofECL TheresultsinSection4.4.2showthatheterogeneityofmodules,locationpro˝les,andnet- workoperatorscana˙ectthenodeenergyconsumptiontodi˙erentextents.Asaresult, thenodeshaveasigni˝cantenergyimbalance,wherethenodesunderthesametypeof locationpro˝ledrainenergyatadistinctrate.Fromtheenergyv.s.distanceexperiment, weseethatECLcanbeoneofthemajorfactorsthatcausesuchanimbalance.Sincethe 72 Figure4.15:ECLratiow.r.tlocationpro˝lesandnetworkoperators. NB-IoTnetworkreliesontheECLtodeterminetheTxpower,theUEdrainsdi˙erentlevels ofenergyunderdi˙erentECLs.Therefore,we˝rstdiagnosethehighenergyconsumption andvarianceofUEsshowninSection4.4.2andtheroleofECL.Tothisend,wedecompose theECLdistributionandcorrelateitwiththeenergypro˝les.TheECLhistogramisplot- tedforeachlocationpro˝leinFigure4.15.WeobservethattheUEselectsECL0andECL1 inamajorityoftheoutdoorlocations.However,forindoorparking,buildingcorridors, andwatermeterdeploymentspots,ECL1andECL2begintodominate.Thisisexpected becausetheeNodeBbasestationsignalwillbeattenuatedbytheconcretewallsbefore beingreceivedbytheUE.Anotableoutlieristheindoorsmartlocklocationpro˝lewith US-OP1.Thereasonisthat,asindicatedbyourmeasurement,US-OP1installsmicro-cells inthebuildingcorridors,leadingtoabettersignalstrengtharoundthedoorway.Forex- ample,thebuildinginFigure4.11iscoveredbyupto11eNodeBs,whileonly3ofwhich aretheoutdoormacrobasestations.Therefore,thesmartlocknodesusuallyreceivea strongRSRP,leadingtothedominantECL0selection.Overall,wenotethatalthoughthe ratioanoderunsunderECL2isrelativelysmallerthanthatrunninginECL0andECL1in alllocationpro˝lesandoperators,theenergyconsumptioninECL2isstillsigni˝cantbe- 73 causeUEinECL2su˙ersupto4timeshighertransmissionpowerconsumptionthanthat inECL0(asshowninFigure4.12).Theproblemisparticularlyacuteinindoorscenarios, wheretheratioofECL2ismuchhigherthanthatofoutdoor. Figure4.16:ECLselectionv.s.RSRPandSNRmeasurement. (a)Threelocationpro˝les:(1)smokesensing;(2) smartlock;(3)watermeter. (b)Twolocationpro˝les:(1)indoorparking;(2)out- doorparking. Figure4.17:RSRPandSNRdistributionw.r.t˝vetypesoflocationpro˝les. 74 UnderstandingtheECLselectionmechanismisimportant.AsmentionedinSection 4.2,theUEdecidesitsTxpoweradaptivelybyitselfbasedonthechannelRSRP.Since UEconsumesmuchmorepowerinECL2thanECL0andECL1,weareinterestedinthe factorsthata˙ecttheselectionofECL.Accordingtothe3GPPspeci˝cation,theUEde- cidesitsECLbycomparingthelatestRSRPwiththetwothresholdsgivenbytheeNodeB. However,theactualECLdeterminationalgorithmisnotspeci˝edandtheimplementa- tionisuptotheNB-IoTmodemmanufacturers.Forexample,thedebugtracesindicate thattheUEalsoreliesontheSNRtodeterminetheECL,asshowninFigure4.16.Aswe cansee, itadoptsintuitivehardSNRandRSRPthresholdstodecidetheECLs ,forming onerectangleandtwoL-shaperegionsontheSNR-RSRP2-Dspace.SuchanaiveECL determinationalgorithmislikelytointroduceenergywasteduetoseveralreasons.First, theselectedthresholdsmaynotbeoptimal,suchthatahigherECLisutilizedtotransmit thepacketthatcouldbepotentiallyuploadedwithlessrandomaccessresources.Second, sucha˝xedmappingbetweenthe(RSRP,SNR)pairandECLscannotadapttocomplex dynamicwirelessenvironmentsduetotheheterogeneityofsignalpropagation.Ourmea- surementsshowthatthe(RSRP,SNR)pairsinoutdoorlocations,suchasoutdoorparking, concentratearoundthetoprightcornerofFigure4.16,whilethesemi-indoorlocations, suchassmartlock,smokedetection,andsmokedetection,havelargeRSRPandSNRvari- ance,spanningacrossthe˝gurefromtoprighttobottomleft,whichexplainstheirlarger ECL1andECL2percentagesinFigure4.15.Moreover,inotherindoorlocations,suchas indoorparking,(RSRP,SNR)pairsfocusonthebottomleftareawithlowervariancethan thesemi-indoorlocations,whichleadstoahigherchanceofselectingECL2.Wenotethat highervarianceofRSRPandSNRusuallycauseshigherenergyimbalance,butnotneces- sarilyhighermaximumenergyconsumption. Fortunately,theUEhasanotherstrategyinchoosingtheECLcalledbynext levwheretheUEadoptsahigherECL after therandomaccessfailureusingthelower one.Thisisadesirablefeatureatthe˝rstglimpsebecauseitoptsforaparametersetthat 75 hasahigherprobabilityofsucceedingtherandomaccess,suchasincreasingtheTxpower ormessagerepetitions.However,ifthehigherECLisproventobeabetterchoice,then thepowerconsumptionspentonthepreviousattemptsiswasted.Ourmeasurementre- sultsshowthatthereisabout 5%probabilityonaveragethattheUEchoosestheECL byRSRPmeasurementbutfailsinRA .Therefore,theexistingECLselectionstrategy inthecurrentUEcanbepotentiallyimprovedtoavoidenergywasteduetochoosingan inappropriateECL. TofurtherunderstandtheECLvarianceacrosslocationpro˝les,weplottheGaussian kerneldensityestimation(KDE)contoursoftheirSNRandRSRPinFigure4.17.Asshown inthe˝gure,thelocationsofsmokesensing,smartlock,andwatermeterhavelargevari- ationinRSRPandSNR,whiletheindoorandoutdoorparkinghavemoreconcentrated distributions.ThisisconsistentwiththeresultsshowninFigure4.15.Wenotethatalarge variationofsignalqualitymetricswouldresultinsevereenergyimbalanceamongthe nodes,resultinginpotentiallyhighermaintenancecosts. 4.4.4EnergyConsumptionBreakdown OneofthekeyfeaturesoftheNB-IoTnetworkisthepromiseoflongbatterylife,upto10 years.NB-IoTUEadoptsseveraltechniquestominimizetheenergyconsumption,includ- ingcoverage-level-basedpowercontrol, eDRX ,and PSM .OurresultsinSection4.4.2showed thattheUEssu˙erfromhighenergydraininsignal-limitedenvironments,suchasindoor andundergroundfacilities.Understandinghowtheenergyisspentandidentifyingpos- sibleenergyloopholesintheNB-IoTnetworkisthusofgreatimportance.Inthissection, wepresentourobservationinbreakingdowntheNB-IoTUEpowerconsumptionunder di˙erentsignalconditions. We˝rstpresenthowthetypicalcurrentvarieswiththetimeunderdi˙erentECLsin Figure4.18.TherightcolumnshowsacompletepacketULTxcycle.Aswecansee,there arefourdistinctcurrentpatternsinthecurrentpro˝le:(1)Theperiodwiththehighest 76 Figure4.18:Thetypicalpowerconsumptionpro˝lesunderdi˙erentECLs.Theleft columnshowstheULpacketTxcurrentpro˝leforeachECL.Therightcolumnshows UE'spowerpro˝leinacompletepacketTxcycle. magnitudeandpulsewidth,whenboththeTxandRxareturnedon.(2)around60mA, distributedacrossthemajorityofthetime,whenonlytheRxisturnedontoreceiveDL messages.(3)around20mA,whichisthebasemodulepowerwithouteitherTxorRx.(4) lessthan1mA,wherethemoduleentersPSMmodeoreDRXmodetopreserveenergy. TheUEcurrentswitchesbetweenthesecurrentpatternsfrequentlyduringthespanof packettransmission,duetothenumerousmessageexchangesandstatetransitions.How- ever,itishard,ifnotimpossible,todeterminewhatmessagesaredeliveredtotheUEand whatcausesthevariationofthecurrentbyrelyingonlyonthecurrentpro˝le.Therefore, wealignthecurrentandthedebuglogsintime,usingtheNB-Scopereal-timebenchmark- ingfunction,asdescribedinSection4.3. AswecanseeinFigure4.18,acompletepacketcycleconsistsofthesameprocedures amongthethreeECLs. MSG1 , MSG3 , ACK ,packetdata,and RRC ConnectionReleaseRequest aretransmittedonebyone,andtheUElistenstotheDLchannelsbetweenthesemessages. Theleftcolumnshowsthezoom-inpacketULTxcurrentpro˝le,whichisthedistinctpart betweendi˙erentECLs. 77 Tobeginwith,theUEturnsonitsreceivertoacquirethesysteminformationblocksand synchronizewiththenetwork,preparingfortherandomaccess.Thenitfollowsthepro- ceduresdiscussedinSection4.2toestablishtheRRCconnectionforuploadingthepacket data.Totransmitthepacketwiththesamesize,theUEinECL0consumesalowercurrent andlesstime,whileinECL1theUEtransmitsthedatawithaslightlylongertimeand highercurrent.However,theECL2requirestheUEtotransmitthedataatitsmaximum powercapacity,withanextendedtimeforrepetition,whichintroducessigni˝cantlyhigh powerdissipation.ItturnsoutthatthetransmissionofMSG3variessigni˝cantlyamong thesethreeECLs.Weacknowledgefromthedebugloganalysis,thatthe MSG3 pulsewidth t MSG 3 in ms iscalculatedby t MSG 3 = N REP ¹ N RU 8 º where N RU istheallocatednumberofresourceunits; N REP isthenumberofscheduled repetitionsoftheresourceunit.ThenetworkdiagnostictracesforCN-OP1andCN-OP2 showthat,forECL0,1,2,the N RU are1,3,4respectively,whilethe N REP are1,2,32re- spectively,meaningthat MSG3 currentinECL2hassigni˝canthigherpulsewidththanthe othertwocoveragelevels.Overall,thereisa4dBcoveragegain(1dBwhentherepeti- tiondoubles)byincreasingtherepetitionfrom2to32,whilethepowerconsumptionis 16xhigher.ThelackofatransitionzonerendersthepowerconsumptionbetweenECL1 andECL2deviatedramatically.Moreover,thenodeinECL2transmitsatitsmaximumTx capacitywithoutpowercontrol.Thewidepulseandthehighcurrentmagnitudearethe tworeasonsforthehighenergyconsumptionunderECL2randomaccess. Onecanalsonoticefromthe˝gurethatthereisalongtailinthecurrentpro˝le,in- troducedbythepassiveDLchannellistening.Werefertothisperiodasan statebecauseitslengthisspeci˝edbyatimercalled InactivityTimer ,con˝guredbythe eNodeB.TheRRCconnectionbetweentheUEandtheeNodeBisstillactiveduringthis period,buttheUEdoesnotperformanyuplinktransmission.Ouranalysisofthedebug tracesindicatesthattheUEturnsonthereceptionmoduleregularlytolistentothedown- 78 Table4.3:Powerconsumptionbreakdown(meanandstandarddeviation)byradioaccess proceduresintheULcycleunderdi˙erentECLs.Unit:mJ. ECLWake-upMSG1MSG3ACKDataInactivityReleaseIdleTotal ECL0109.43 (5.38) 5.61 (3.02) 7.05 (5.14) 2.57 (0.59) 55.68 (16.46) 3025.97 (180.46) 37.57 (5.68) 57.79 (20.67) 3301.68 (164.44) ECL1107.28 (11.32) 52.68 (65.30) 23.94 (9.70) 8.90 (3.33) 102.84 (31.60) 3364.03 (250.96) 22.10 (7.76) 73.19 (20.49) 3754.98 (238.16) ECL2108.05 (19.91) 184.16 (72.74) 407.05 (52.37) 56.33 (11.26) 228.55 (29.29) 3616.66 (370.27) 147.62 (192.78) 83.06 (20.60) 4831.47 (409.96) linkchannelsforthebroadcastednetworkcon˝guration,orwaitforpossibledownlink packets.Itmayalsoperformcellsearches.However,wecouldnot˝ndanyevidencein thedebuglogofhowtheUEutilizestheinformationcollectedduringthisperiod. Thisis surprisingbecausetheUEmaywastesigni˝cantenergyduringthelongtail. Wealso notethatthe Inactivity stateispresentinallECLs. Afterthelongtail Inactivity period,theUEstartsanotherrandomaccessprocedure, includingsending MSG1 and MSG3 ,toinformtheeNodeBthattheUEisreadytorelease theRRCconnectionandenter Idle mode.Thesearethe˝naltwoTxeventsbeforeaUE ˝nishesaULpacketcycle.Sinceitfollowsthesameprocessastheinitialrandomaccess, theUEmaychoosetheECL2resourcestoaccess,observedinmanycurrentlogs,leading toextrapowerconsumption. ToquantitativelycharacterizethepartialenergycontributionintheULpackettrans- missioncycle,wecalculatetheenergyaccordingtothetimesegmentationderivedfrom thedebuglogs,asshowninFigure4.19(detailedinTable4.3).Weseethatthe Inactivity periodcanoccupyupto90%ofthepacketenergyinECL0,whiletheenergyconsumption of MSG3 TxinECL2issigni˝cantlyhigh,comparedtothatofECL0andECL1.Thetotal energyofanECL2packetcanbeabout1.46xand1.29xmorethantheECL0andECL1re- spectively.However,ifweignorethelargestpart,namelythe Inactivity period, theUE inECL2consumes4.41xand3.11xmoreenergythanECL0andECL1respectively ,which wouldcausesevereimbalancebatterylifeamongtheNB-IoTnodesinthelongterm. 79 (a)ECL0 (b)ECL1 (c)ECL2 Figure4.19:Averagedenergyconsumptionbreakdownbyradioaccessproceduresand ECLs.Thewedgesarearrangedclockwiseaccordingtothelegend.Theexploded wedgesrequireULtransmission. 4.4.5ImpactoftheInactivityPeriod Fromtheenergybreakdownabove,mitigatingthe Inactivity energywasteisimportant toprolongtheUEbatterylife. InactivityTimer iscon˝guredineNodeBtoindicatethat theUEdoesnothaveanydownlinkanduplinktra˚cwithinthisperiod.Theobjectiveis toreducetheUEenergyconsumptionbypreventingitfromstayingintheRRCconnected statusfortoolong.Fromthatperspective,wecanconcludethatthecurrentcon˝guration intheeNodeBissuboptimal.Forexample,thetwonetworkoperatorsinChinasetthe timervalueas20seconds,whiletheUS-OP1chooses3seconds,whichisoneofthekey factorsthatcontributetothesigni˝cantdi˙erencesinpacketenergyinthesetworegions. However,thenegativee˙ectofthelongtailcanbemitigatedbyafeaturecalledrelease 80 assistanceindication(RAI)introducedin3GPPRel.14[68].Itisashortmessagesentby theUE,informingtheeNodeBthatthereisnomoreULdataanditdoesnotanticipate receivingfurtherDLdata,suchthattheRRCconnectioncanbereleasedearlierbefore the InactivityTimer expires.Accordingly,theenergywasteduring Inactivity period canbeavoidedbecausetheNB-IoTapplicationdeveloperscaneitherskipthewholepe- riodimmediatelyifthereisnoDLpackettoreceiveorskipitrightaftertheanticipated DLpacketsaredelivered.However,optimizingthe InactivityTimer isstillofgreatsig- ni˝cancefortworeasons.First,someapplicationdevelopersmaynotbeawareofsucha feature.Second,theNB-IoTnetworkhasbeenwidelydeployedsince2018,whenthe3GPP Rel.14hasnotyetbeenimplementedinthecommercialNB-IoTmodules.One-thirdof themodulesusedinour˝eldtestsdonotincludeRAIcontrolintheirdocumentation.Itis believedthatthereexistnumerousNB-IoTnodesonthemarketthatdonotsupportRAI. Fortheselegacynodes,changingthe InactivityTimer oneNodeBwouldbeabetter solutionwithoutrequiringdeveloperstomanuallyupdatethe˝rmwareofUE. Wediscussourevaluationofchangingthe InactivityTimer valueinSection5.2. 4.4.6RepetitionofRandomAccessMSGs MSG1 and MSG3 arethetwomessagestransmittedbytheUEintherandomaccesstoin- formtheeNodeBaboutitsconnectionrequestsandtherequireduplinkresources.As showninSection4.4.4, MSG3 transmissiondominatesthetotalenergyconsumptionofup- linktransmissionunderECL2.Unlikedatapackettransferblocks,whereeverysuccessful blockdeliverywillbeacknowledgedbytheNB-IoTeNodeB,therandomaccess MSG1 and MSG3 transferblocksaretransmittedwiththe˝xednumberofrepetitionwithoutstopping. AlthoughtheNB-IoTnodeenjoysanincreasedcoveragegain(1dBwhentherepetition doubles)fromtherepetition,thedebugloganalysisshowsthatthehigh MSG3 repetition, whichisa˝xednumber32inECL2,isunnecessary,leadingtosigni˝cantenergywaste. Wecomparetherepetitionofthedatatransferblockwiththatofthe MSG3 formorethan 81 2,300packets,asshowninFigure4.20.Theresultsindicatethatmorethan66%ofthe packetshavemore MSG3 repetitionsthanthedatatransferblockrepetitions. (a)Categoricalstatisticsofrepetition (b)Thecountbyrepetitioncombination Figure4.20:Thedistributionof MSG3 repetitionsv.s.datatransferblockrepetitions. AsplottedinFigure4.20b,wenoticethatthedatablockrepetitioninmostofthepack- etsis 1 ,regardlessoftheECL.Moreover,asindicatedinourmeasurement,thepacketdata deliveryrate,whichis100%inthemajorityofthetests,doesnotsu˙ertoomuchfromthe lowdatablockrepetition.Ifweassumethatthewirelesschannelqualityremainsrelatively stableduringtheshortULtransmissionperiod,the MSG3 repetitionissigni˝cantlylarger thanneeded,providinganopportunitytoreduceenergywaste.FromtheeNodeB'spoint ofview,ithastowaituntil MSG3 completestherepetitiontoproceedtothenextstep,even ifthemessageisalreadyreceived.Sincethe MSG3 andthepacketdatasharethe NPUSCH , theunnecessaryrepetitionof MSG3 mayleadtonetworkcongestionorlowthroughput. Additionally,althoughtheexactnumberof MSG3 repetitionsremainsunknowndueto theabsenceofdebuglogs,thepulsewidthof MSG3 transmissionbynodesofUS-OP1is observedtobesmaller(about0.5x)thanthatofCN-OP1andCN-OP2,whichisanother factorthatcontributestolowerpacketenergyofnodesonUS-OP1thanontheothertwo operatorsasshowninFigure4.10a. 82 Figure4.21:Batterylifeestimationunderdi˙erentconditions.referstoonly theNB-IoTmoduleenergy;oincludestheenergyconsumptionofboththemodule andothercomponentsontheboard;means InactivityTimer . 4.4.7UEBatteryLifeEstimation Our˝ne-grainedpro˝lingofUEpowerconsumptionandthecommodityeNodeBcon˝g- urationsallowustoestimateUEbatterylifeinreal-worlddeployments.Thetotalpacket energycanbecalculatedbysumminguptheenergyoftheradioaccessphases,whileeach phaseenergycanbetunedaccordingtonetworkparameters.WeassumethattheUEstays in PSM whenitisnottransmitting.TheUEvoltageandbatterycapacityare3.3Vand5 Wh,respectively.WeassumethattheUEconsumes50mAextracurrent,atypicalenergy pro˝leforanembeddedsystem,toaccountforthepowerconsumptionofothersystem components,suchasMCUandonboardsensors,duringthepacketcycle.Wethencalcu- latetheenergyduringthepackettransmissioncycles.Thebatterylifeindaysisestimated bydividingthebatterycapacitybytheenergyspentperday,dependingonthedatatra˚c. Figure4.21showstheestimatedbatterylifeunderdi˙erentECLs, InactiveTimers . First,thebatterylifedecreasessharplywiththenumberofpacketstransmitted.Second, 83 consistentwithourobservationinSection4.4.3,thecoveragelevelplaysacriticalrolein thetotalenergyconsumption,andindoorUEssu˙ersigni˝cantlyshorterlifethantheir peersingoodsignalcoverage.Wenowuseanexampletoillustratetheimpactofbadcov- eragelevels.Inatypicalindoorparkingmonitoringsystem(whichisoneofthepopular NB-IoTapplications[72]),supposeeachnodemonitoringaparkingspottransmits5pack- etsduringaworkdayandworksunderECL2,thebatterylifeisonly270days.However, thisisanoptimisticestimation,becausethebatterycanbea˙ectedbyvariousenvironmen- talfactors.Thiswouldleadtofrequentnodereplacementandhighmaintenancecosts.As aresult,itisofgreatimportancetooptimizeUEpowerconsumption.Inparticular,a smallamountofsavedpacketenergycanleadtotensorhundredsofdaysofprolonged nodelife.Forexample,consideringtheabovescenario,ifthe InactivityTimer issetto 3seconds,thebatterylifeextendsto440days,whichimprovesbyabout63%. 4.5Conclusion Inthischapter,wepresentNB-Scopethe˝rstNB-IoTdiagnostichardwaretoolthatsup- ports˝ne-grainedfusionofpowerandprotocoltraces,andalarge-scale˝eldmeasure- mentstudyconsistingof30nodesdeployedatover1,200locationsin3regionsduring threemonths.OurstudiesshowthatNB-IoTnodesyieldsigni˝cantlyimbalancedenergy consumptioninthewild,duetopoornetworkcoveragelevel,long-tailpowerpro˝le,and excessivecontrolmessagerepetitions.Basedonourestimation,the10-yearbatterylife expectationisdi˚cultifnotimpossibletoachieveduetotheheterogeneousfactorsthat shortenthebatterylife.Moreover,thehardware/softwarearchitectureofNB-Scopeis largelyindependentoftheevolutionofNB-IoT.Therefore,itprovidesapowerfultoolto instrumentlarge-scaleNB-IoTnetworksandwillfacilitatetheunderstandingandopti- mizationofNB-IoTduringitsevolution. OurstudyinthischapterfocusesontheenergyconsumptionofNB-IoTUE.Bycom- biningthedebuglogwithpacket-levelmeasurements,ourtoolNB-Scopecanbeusedto 84 instrumentlarge-scaleNB-IoTnetworkstostudyvariousfactorsrelatedtonetworkper- formancesuchasreliability,latency,interference,etc.Weleavethesetoopenproblemsfor theresearchcommunity. 85 CHAPTER5 NB-IOTNETWORKENERGYOPTIMIZATIONANDBEYOND 5.1Introduction NarrowbandInternetofThings(NB-IoT)providesnewinfrastructureforthelow-power wideareanetwork,targetingmassiveconnection,deepcoverage,andlongbatterylife. Toachievethe10-yearbatterylifepromise,NB-IoTadoptsmultipleenergy-savingtech- niques,includingextendedDiscontinuousReception(eDRX),PowerSavingMode(PSM), andEnhancedCoverageLevels(ECL).However,thee˙ectivenessoftheenergypreserv- ingmethodsandthemessagesignalingbetweenthenodesandthebasestationwasnot well-understood. TounderstandtheNB-IoTpowerconsumptioninsightsinthewild,inpreviousChap- ter4,weproposethedesignofthetoolset,NB-Scope,forNB-IoTnetworkbenchmarkand diagnosis.Bylarge-scalemeasurementsinthe˝eld,wepresenttheenergyconsumption pro˝lesofthedeployedNB-IoTnetworksbyaddressingthein˛uenceofvarioushetero- geneousfactors,suchaslocationpro˝les,networkoperator,modulechipsetdesign,and distancebetweenthenodeandthebasestation.Werevealthattheenergydrainissig- ni˝cantlyimbalancedacrossthesefactors.Thisleadstoshortbatterylifeandfrequent networkpartition,wheresomenodesmaydieoutinashortertimethantheirsiblings. Asaconsequence,theIoTapplicationmaysu˙erfromhighmaintenancecostsinbattery replacement,ordatalossissues.Bydecomposingtheenergyconsumptionwithrespectto datapacketprocedures,weshowthattheECLmechanism,thelong-tailtimercon˝gura- tion,andtherandomaccessprocedurecanbeblamedforthelargeenergyconsumption. Fortunately,we˝ndthattheroomforoptimizingenergyconsumptionfromtheNB-IoT protocolishuge. Inthischapter,we˝rstproposeourexperimentalplatformforstudyingtheNB-IoT 86 energyoptimization,thenweproposethreeenergyoptimizationtechniques.Particularly, weoptimizethe InactivityTimer andthe MSG3 repetitioncount.Next,ourevaluationin- dicatesthat,bycombiningtheseenergyoptimizations,itispossibletosaveupto66.4%of theaveragepowerconsumption.Thenweproposethreeadditionaloptimizations,how- ever,evaluationviaexperimentisnotyetpossibleduetothelimitationinthehardware features.Finally,weproposeanupdatedversionofNB-Scopehardwaretosupportboth NB-IoTandLoRamodules,whichopensnewresearchopportunitiesforfurtherexploiting theemergingwirelessinfrastructures. 5.2Methodology Ourmeasurementsshowthatinappropriatecon˝gurationsofeNodeBbasestation,such asprolonged InactiveTimer andexcessive MSG3 repetitioncount,causeasigni˝cantpor- tionofenergydrainatUE.IncurrentNB-IoTspeci˝cation, InactiveTimer and MSG srep- etitioncountaredeterminedandenforcedbyeNodeBas˝xedvalues.Inthissection, weexplorethepossibilityofoptimizing InactiveTimer and MSG3 repetitionbyeNodeB. Ourresultsprovideimportantguidelinesfornetworkoperatorstooptimizethepower consumptionofUEdevices. Speci˝cally,anoptimal MSG3 repetitionshouldassurereliableuploadof MSG3 while avoidingunnecessaryretransmissions.Anoptimal InactiveTimer shouldminimizethe waitingtimeofUEaftercompletingpacketupload.Meanwhile,itshouldavoiddown- linkpacketloss,whichoccurswhentheUEentersPSMoreDRXbeforethearrivalof downlinkpackets.Ideally,the InactiveTimer shouldbecon˝guredbasedondownlink latency,whichisdeterminedbynetworkroundtriptime(RTT)andtheapplicationserver processingdelay. CommercialeNodeBsareclosedsystems,whichcannotbeaccessedforexperiments. Toaddressthisissue,webuildanNB-IoTeNodeBtestbedusingsoftwareradios.Weim- plementtheeNodeBbyusingAmarisoftLTE100asbasebandcore,andemployingaUSRP 87 Figure5.1:TheSDReNodeBimplementation,withAmarisoftLTE100andUSRPN210. N210withanSBX-40asRFfrontend,asshowninFigure5.1.ToemulateacommodityeN- odeB,wecon˝gureoureNodeBusingthesame MSG srepetitionand InactivityTimer as thecommodityone,runningatBand5(EARFCN=2530).Thedetailedcon˝gurationsare listedinTable5.1.OureNodeBachievescoverageof1kminopenareas,whichiscompa- rabletothecoverageofcommodityeNodeB.Then,wedeploy9BC35UEsinthenetwork, suchthattheiraverageRSRPsaremonotonicallydecreasing.Speci˝cally,2,3,and4nodes aresettoworkunderECL0/1/2respectively. Inourexperiment,theRTTisde˝nedasthedelayfromissuingthepacketuplinkAT commandtothedownlinkpacketdelivery.TheserverreplieswithaDLpacketimmedi- atelyonceitreceivesaULpacket.Intotal,thereare400packetstransmittedtoaserveron thelocalCloud. Toexploretheimpactof MSG3 repetition,we˝rsttrytodecreaseitinECL2from32to 16ineNodeB,thenfurtherdownto8.EachUEinthenetworkisprogrammedtotransmit 50ULpacketsperrecon˝guration.Ifthe MSG3 isdeliveredtotheeNodeB,theUEreceives MSG4 andproceedstodatatransmission.Otherwise,itretriesrandomaccessfrom MSG1 again.Thus,wecanquantifythee˙ectivenessoftherepetitioncon˝gurationbycalculat- ingtheprobabilityofexcessive MSG3 schedulesinthenodesintheECL2coveragearea. 88 Table5.1:ListofeNodeBdefaultcon˝guration Parameter Value ECL0ECL1ECL2 NB-IoTmodeStandalone Band5 Txpower(dBm)15 EARFCN2530 InactivityTimer(s)20 MSG1 Repetition2832 MSG3 Repetition1232 ECLRSRPthreshold(dB)N/A-97-107 5.2.1InactivityTimerOptimizationEvaluation Figure5.2showsthedistributionoftheRTTunderdi˙erentECLs.Aswecansee,the UEsinECL2typicallyhavelargerpacketRTTthanUEsofECL1andECL0.SincetheRTT betweentheeNodeBandtheapplicationserverissimilaracrosstheseECLs,thelarge RTTinECL2isprimarilyduetothedelayinthedownlinktransmission.Comparedto the20-secondtimervalueinCN-OP1andCN-OP2,atimervaluearound8secondscan saveupto 60% oftheenergyconsumptionduringthe Inactivity periodwhile98%of theECL0andECL1nodesand81%oftheECL2nodescanreceivetheDLpacketbefore the InactivityTimer expires.ConsideringtheportionofECL2nodesrelativelysmaller, amoreaggressivestrategyistofurtherreducethetimerto5seconds,whiletheECL2 nodescanreleasetheRRCconnectionearlierandenableeDRXtolistentotheDLpaging signal.ThedrawbackofsuchanapproachistheslightincreaseintheRRCconnection requestsinthenetwork.However,itisworthconsideringanextra10%ofthe Inactivity periodenergycanbesaved.Ourexperimentaimsto˝ndalowerboundforthetimer con˝guration,asaproofofconcept.WenotethatthetimervalueincommercialeNodeBs shouldalsoconsidervariousfactorsthatmayinduceextradelays,suchasnodedensity, 89 downlinktra˚c,andtheRRCconnectionrequesttra˚c. Figure5.2:RoundtriptimeCDFintheevaluationexperiment. Figure5.3:Prob.ofpacketswith MSG3 re-transmissionw.r.tECL2 MSG3 repetition. 5.2.2MSG3RepetitionCountOptimizationEvaluation Ourgoalistoinvestigatetheminimumnumberofrepetitionsthatcanstillensureahigh probabilityofone-time MSG3 delivery.The MSG3 retransmissionprobabilityisshownin Figure5.3.Allthenodesinthe˝gurearedesignatedtoworkinECL2,andtheiraverage 90 Table5.2:Meanenergyconsumptionofthe MSG3 periodfordi˙erentECL2 MSG3 repetitions. NodeRep.=8Rep.=16Rep.=32 #1170.93(1.04)350.68(1.46)807.68(11.63) #2170.60(1.10)346.44(1.33)680.63(2.59) #3173.40(0.91)347.98(3.21)838.31(26.04) #4169.70(7.32)354.13(5.09)697.69(3.41) signalstrengthisdecreasingfromlefttoright.Aswecansee,whenthenodesareina relativelygoodsignalconditioninECL2,suchasNode#1and#2,di˙erent MSG3 repetitions yieldasimilar MSG3 retransmissionrate,whichmeansthereducedrepetitioncountcan stillensuredeliveryof MSG3 atthe˝rstattempt.Wemeasuretheenergyconsumption ofthe MSG3 transmissiontobe171.1/349.8/756.1mJfor8/16/32 MSG3 repetitioncounts respectivelyonthetestnodes.Asaresult,about 77 %oftheMSG3Txenergycanbesaved ifaUEsucceedsinRAbyusing8repetitioncountsof MSG3 .Therefore,ourexperimental resultsdemonstratethefeasibilityofreducingtheenergybyusingalower MSG3 repetition withouthurtingtherandomaccesssuccessrate.However,whenthesignalcontinuesto attenuate,the MSG3 repetitionnumberof8yieldssubstantiallyhigherrandomaccessretry probability,asshownbyNode#3and#4,resultinginenergywastage. Bycombiningthetwooptimizationsabove,aUEinECL2canpotentiallysaveupto 66.4% ofthepacketenergyconsumption. 5.3NewDirectionsinEnergyOptimization Basedonourmeasurementresults,wenowdiscussseveralimportantdesignaspectsthat canbeconsideredbyfutureNB-IoTspeci˝cationsandchipsetsforoptimizingenergycon- sumption. 91 5.3.1Per-UEInactivityTimer Ourresultsindicatedthatacell-wise InactivityTimer canleadtosigni˝cantenergy wasteforsomeUEs.AbettersolutionwouldbetoalloweachUEtosetthetimerby negotiationwitheNodeB.AUEwithoutDLtra˚ccanreleasetheRRCconnectionimme- diatelyaftertheUL,savingasigni˝cantamountofenergy.Forexample,aUEinECL0 cansaveupto90%packetenergybyskippingtheentire Inactivity periodwhenitdoes notexpectanyincomingDLpackets.Moreover,aUEcanupdatethetimerbasedonits measurementofnetworkRTTorsignalstrength,whichcanachieveadesirablebalance betweentheenergyconsumptionandtheRRCconnectionre-establishmentrate. 5.3.2ECLAdaptationofUE Ourresultsshowedthatthesimplethreshold-basedECLselectionpolicyplaysacritical roleinthesigni˝cantenergywasteandimbalanceofUE.Wenowdiscussseveralwaysto improvetheECLdecisionalgorithm.First,othermetricscouldbeintegratedwithRSRP andSNRtodeterminetheECLselection,includingtheblockerrorratewhichdirectly measurestheblocktransmissionstatus.TheUEmayalsorefertoitsECLdecisionhistory toexplorebetterECLchoices.IftheUEfailsinusingalowerECLatcertainchannel qualityinthepast,itmayconsiderusingahigherECLinasimilarchannelcondition, avoidingtheenergywasteinthelowECLattempts.Finally,insteadofrespondingtothe ULpacketATcommandimmediately,theUEmaypostponetherandomaccessfordelay- tolerantapplications,waitingforatimewindowwithbetterchannelquality.Wenotethat theimplementationofthesepolicieswouldrequirethesupportofNB-IoTchipsets,e.g., allowingdeveloperstoaccessandoverrideECLdecisions. 92 5.3.3Fine-grainedECLs OurresultsshowedthatECL2yieldssigni˝cantlymoreenergyconsumptionthanother ECLs,duetoexcessivecontrolmessagerepetitionsandunnecessaryrandomaccessre- tries.Toachieveamoredesirabletrade-o˙betweenenergyconsumptionandrandom accesse˚ciency,wesuggestincludingextraECLsand˝ner-grainedRSRPthresholdsand RAresourceallocationbetweentheECLs.Forinstance,aUEinarelativelygoodsignal conditionmaychooseanewECLbetweenthelegacyECL1andECL2,whichentailsa lowerrepetitioncountof MSG3 tosavepower.WenotethataddingnewECLsmayintro- duceextrasignalingbetweentheeNodeBbasestationandUE. 5.3.4CollaborativeEnergySaving Theevolutionofedgecomputingprovidesnewopportunitiesforenergyoptimization. Speci˝cally,thenodesdeployedinawideareacanuploadtheirsignalstrengthandblock errorratetotheedgecomputingserver.Ifthenodesupportsmobility,thenthesignaling canbeassociatedwiththegeolocationinreal-time.Then,bybuildingthespatio-temporal qualityofservice(QoS)pro˝lefromcrowdsourcing,theedgecomputingserverisable torecommendthenodesfortheirnextrandomaccesstimestampaswellastheECLfor randomaccess.Inthismanner,thepower-savingtimercanbedynamicallycon˝gured, avoidingcrowdedchannels,signalblindspots,orperiodswithlowsignalstrength.We notethatthisisdi˚cult,ifnotimpossible,ifthereareonlyhundredsorfewernodesin thearea.Instead,whentensofthousandsofnodescoexistinthearea,themegatrends underlyingtheLPWANandtheglobalknowledgeofthemassiveconnectivitywillenable thenovelpatternsforenergyoptimization. 5.4BeyondNB-Scope Inthissection,wepresentourupgradedNB-Scopedesign,whichisreferredtoas NB- ScopeV2 .ItsupportsLongRange(LoRa)communicationandin-situdiagnosticmessage 93 decodingwhileinheritsallthemajorfunctionalitiesfromitspredecessor. 5.4.1In-deviceSignalingDecoding OneofthenotableupgradesinNB-ScopeV2softwaredesignisthein-devicedebugging messagedecoding.TheoriginalNB-Scopesupportsstreamingthedebuggingmessages fromtheNB-IoTmoduletotheSDcard.However,understandingthereal-timeUEbehav- iorinthe˝eld-testmodewasnotsupportedbythenode.Retrospectingandreconstructing theUE'sbehaviorarerequiredtofurtheranalyzethenetworkstatus. Fortunately,thein-devicemessagedecodingisimplementedinthelatestversionof NB-Scope.Toachievethis,˝rstofall,werecompileandcompressthedebuggingmessage de˝nitiondatabaseusinghexadecimalindicestoallowforastorage-constrainedembed- dedsystem.Next,weimplementthemessagedecoder˝nitestatemachine(FSM)inthe MCU.Finally,bycombiningthemessagedecoderandthemessagedatabase,weachieve real-timein-devicedebugmessagedecoding,suchthatthedeviceisawareofthecompre- hensivenetworkstatuswithouttheneedofqueryingtheNB-IoTmoduleusingthelow e˚cientATcommands.Enabledbythisfunctionality,thenodecannotonlyexplorereal- timedynamiccontrolstrategiestoimprovethecommunicatione˚ciencybutalsoableto feedbackthenetworkstatusinthepacketpayloadtotheapplicationserversforreal-time collaboration. 5.4.2TowardstheCoexistenceofNB-IoTandLoRa TheNB-IoTnetworkadoptsastartopology,wherethenodesonlycommunicatewiththe basestationbutnotawareoftheirneighborNB-IoTnodes.Toaddressthis,weupgrade NB-Scopetoversion2,asshowninFigure5.4.OneofthemajorhardwareupdatesofNB- ScopeistosupportthecommercialinAIR9BLoRamodulewhilebackwardcompatible withallofourNB-IoTshieldboards. 94 (a)NB-ScopeV2mainboard. (b)NB-ScopeV2node,withtheinAIR9BmoduleandtheNB-IoT shieldboardpluggedtogether. Figure5.4:NB-ScopeV2hardwaredesign. BycommunicatingwiththeneighborNB-IoTnodes,theV2nodescanestablishamesh network,whichopensupnewresearchopportunities.Forexample,wecanachievecollab- orativesensing,wheremultiplenodes˝nishthetasksbydistributedconsensus.Itisalso possibletosavemuchenergyifthenodesintheECL2conditionusingthehelpoftheir neighbornodeswithgoodsignalconditionstoroutetheuplinkdatapackettotheserver. AsshowninSection4.4.4,thenodesinECL2consumeupto4.41xhigherenergythanthe nodesinECL0.Therefore,suchamulti-hoproutingstrategyisabletosaveenergysignif- icantly,andtheenergyimbalancecanbesubstantiallymitigatedbyusingoptimalrouting protocols. ThecoexistenceofNB-IoTandLoRapoweredbyNB-ScopeV2providesanewparadigm fortheLPWANresearchcommunity. 5.5Conclusion Inthischapter,weproposedtwoenergyoptimizationsregardingthe InactivityTimer andthe MSG3 Repetition,bothofwhichpreservetheenergysigni˝cantly.Speci˝cally,upto 66.4%ofenergycanbesavedfornodesundercriticalsignalconditions.Then,wepropose 4di˙erentenergyoptimizationsundertheNB-IoTframework,providingnewresearch directionstothecommunity.Next,wepresentourupgradetotheNB-Scopedesign,which nowsupportsin-devicereal-timediagnosticmessagesdecodingandNB-IoT-LoRadual- 95 modewirelesscommunication.Oure˙ortsopennewparadigmsforLPWANresearch andapplications. 96 CHAPTER6 CONCLUSION Thewirelesstechnologieshavebeenevolvedspeedily,whoseinfrastructureisbuiltand deliveredspeedily.Thefastgrowthofwirelessnetworksgeneratesnotonlyopportunities fornewapplications,butalsoissuesinhighenergyconsumption,unexpectedlatency,and potentialprivacybreach. Inthisdissertation,weproposetwonovelcyber-physicalsystemstodemonstratethe possibilityofenablingnewapplicationsbyleveragingtheemergingwirelesscharging infrastructures,andbenchmarktheenergyperformanceofendnodesintherecentlyde- butedNB-IoTnetworks,respectively. First,wepresentQID,the˝rstsystemthatcanidentifyaQi-compliantdevicedur- ingwirelesscharginginreal-timeusingwirelesscharging˝ngerprints.QIDemploysa 2-dimensionalmotionunittoemulateavarietyofmulti-coildesignsofQi,whichallows for˝ne-graineddevice˝ngerprinting.Withthenovelmobilecoildesignandasetofnovel features,suchascontrolerrorpacketintervaldistributionandcontrolerrorvaluedistribu- tion,QIDachievesabout90%devicerecognitionaccuracyandalmost100%devicebrand recognitionaccuracy.QIDdemonstratesthepossibilityofleveragingwirelesscharging stationstoidentifymobiledevicesandtracktheusers.Withtheprevalenceofpublic wirelesschargingstations,ourresultsalsohaveimportantimplicationsformobileuser privacy. Second,wedevelopanovelbenchmarkingecosystem,called NB-Scope ,tostudythe energyperformanceoftheNarrowbandInternet-of-things(NB-IoT)network.NB-Scope adoptsahierarchicaldesign,resolvingtheheterogeneityinnetworkoperators,nodemod- ulevendors,andlocationpro˝les,toallowforthefusionof˝ne-graineddiagnostictraces andcurrentmeasurement.ThesmallformfactorsoftheNB-Scope˝eldtestcon˝guration enabletheagileand˛exibledeployment,whichsupportsconcurrentmulti-spotmeasure- 97 ment,makingafaircomparisonbetweenthenodeswithdi˙erentsettings.Wethencon- ductalarge-scale˝eldmeasurementstudyconsistingof30nodesdeployedatover1,200 locationsin3regionsduringaperiodofthreemonths.Ourin-depthanalysisofthecol- lected49GBtracesshowedthatNB-IoTnodesyieldsigni˝cantlyimbalancedenergycon- sumptioninthewild,uptoaratioof75:1,whichmayleadtoshortbatterylifetimeand frequentnetworkpartition.Byextensivedataanalysis,weidentifyseveralkeyfactors includingdiversenetworkcoveragelevels,long-tailpowerpro˝le,andexcessivecontrol messagerepetitions,thatleadtohighvarianceintheenergyperformance.Basedonour data,weconcludethattheNB-IoTUEsarenotabletoachieve10-yearprojectedbattery life,eveninthemostoptimisticscenario,whichisnoteworthyfortheNB-IoTapplication developers. Third,weexploretheoptimizationofNB-IoTbasestationsettingsonasoftware-de˝ned eNodeBtestbedandsuggestseveralimportantdesignaspectsthatcanbeconsideredby futureNB-IoTspeci˝cationsandchipsets.Overall,ourworkforthe˝rsttimeaddressing theenergyperformanceoftheNB-IoTnetwork,providinginsightsfortheNB-IoTresearch anddevelopmentcommunities.Asoure˙ortstokeepNB-Scopeevolved,weproposeits successor,withboththehardwareandsoftwareupgraded.Bysupportingin-devicemes- sagedecodingandLoRa-NB-IoTcoexistence,NB-ScopeV2providesnewopportunities forLPWANresearchandapplications. 98 BIBLIOGRAPHY 99 BIBLIOGRAPHY [1]Ieeestandardforlow-ratewirelessnetworks. IEEEStd802.15.4-2015(RevisionofIEEE Std802.15.4-2011) ,pagesApril2016. [2]OmidAbari,DeepakVasisht,DinaKatabi,andAnanthaChandrakasan.Caraoke: Ane-tolltranspondernetworkforsmartcities.In ACMSIGCOMMComputerCom- municationReview ,volume45,pagesACM,2015. [3]CarlosAAstudillo,FernandoHSPereira,andNelsonLSdaFonseca.Probabilisticre- transmissionsfortherandomaccessprocedureincellulariotnetworks.In ICC2019- 2019IEEEInternationalConferenceonCommunications(ICC) ,pagesIEEE,2019. [4]AtmelCorporation. SAMG53NSMARTARM-basedFlashMCUDatasheet ,11240fedi- tion,July2015.32-bitARMCortex-M4RISCprocessor. [5]AminAzari,GuowangMiao,CedomirStefanovic,andPetarPopovski.Latency- energytradeo˙basedonchannelschedulingandrepetitionsinnb-iotsystems.In 2018IEEEGlobalCommunicationsConference(GLOBECOM) ,pagesIEEE,2018. [6]ParamvirBahlandVenkataNPadmanabhan.Radar:Anin-buildingrf-baseduser locationandtrackingsystem.In INFOCOM2000.NineteenthAnnualJointConference oftheIEEEComputerandCommunicationsSocieties.Proceedings.IEEE ,volume2,pages Ieee,2000. [7]NiranjanBalasubramanian,ArunaBalasubramanian,andArunVenkataramani.En- ergyconsumptioninmobilephones:ameasurementstudyandimplicationsfornet- workapplications.In Proceedingsofthe9thACMSIGCOMMConferenceonInternet Measurement ,pagesACM,2009. [8]SIGBluetooth.Bluetooth4.2corespeci˝cation. BluetoothSIG ,2009. [9]HristoBojinov,YanMichalevsky,GabiNakibly,andDanBoneh.Mobiledeviceiden- ti˝cationviasensor˝ngerprinting. arXivpreprintarXiv:1408.1416 ,2014. [10]BernhardEBoser,IsabelleMGuyon,andVladimirNVapnik.Atrainingalgorithm foroptimalmarginclassi˝ers.In Proceedingsofthe˝fthannualworkshoponComputa- tionallearningtheory ,pagesACM,1992. [11]Taou˝kBouguera,Jean-FrançoisDiouris,Jean-JacquesChaillout,RandaJaouadi,and GuillaumeAndrieux.Energyconsumptionmodelforsensornodesbasedonloraand lorawan. Sensors ,18(7):2104,2018. [12]LeoBreiman. Classi˝cationandregressiontrees .Routledge,2017. [13]VladimirBrik,SumanBanerjee,MarcoGruteser,andSanghoOh.Wirelessdevice identi˝cationwithradiometricsignatures.In Proceedingsofthe14thACMinternational conferenceonMobilecomputingandnetworking ,pagesACM,2008. 100 [14]AlistairCharlton.Wirelesslychargeanywherewiththeseqi-enabledta- bles,lamps,speakersandaccessories. https://www.gearbrain.com/ qi-wireless-charging-tables-lamps-2528825500.html .Accessed:2018-07- 25. [15]ShichaoChen,GangXiong,JiaXu,ShuangshuangHan,Fei-YueWang,andKun Wang.Thesmartstreetlightingsystembasedonnb-iot.In 2018ChineseAutoma- tionCongress(CAC) ,pagesIEEE,2018. [16]XiaomengChen,NingDing,AbhilashJindal,YCharlieHu,MarutiGupta,andRath Vannithamby.Smartphoneenergydraininthewild:Analysisandimplications. ACM SIGMETRICSPerformanceEvaluationReview ,2015. [17]Yu-ShinChouandJing-SinLiu.Aroboticindoor3dmappingsystemusinga2dlaser range˝ndermountedonarotatingfour-barlinkageofamobileplatform. Interna- tionalJournalofAdvancedRoboticSystems ,10(1):45,2013. [18]WirelessPowerConsortium.Magneticresonanceandmagneticinduction -whatisthebestchoiceformyapplication? https://tinyurl.com/ wireless-charging-choices ,2017.Accessed:2019-02-13. [19]WirelessPowerConsortium.Qiwirelesscharginggoesmainstream. http://www. air-charge.com/news/21/19/Qi-wireless-charging-goes-mainstream ,2017.Ac- cessed:2019-01-09. [20]ThomasCoverandPeterHart.Nearestneighborpatternclassi˝cation. IEEEtransac- tionsoninformationtheory ,1967. [21]MariusCristeaandBogdanGroza.Fingerprintingsmartphonesremotelyviaicmp timestamps. CommunicationsLetters,IEEE ,2013. [22]BorisDanevandSrdjanCapkun.Transient-basedidenti˝cationofwirelesssensor nodes.In Proceedingsofthe2009InternationalConferenceonInformationProcessingin SensorNetworks ,pagesIEEEComputerSociety,2009. [23]AnupamDas,NikitaBorisov,andMatthewCaesar.Doyouhearwhatihear?˝n- gerprintingsmartdevicesthroughembeddedacousticcomponents.In Proceedings ofthe2014ACMSIGSACConferenceonComputerandCommunicationsSecurity ,pages 2014. [24]AnupamDas,NikitaBorisov,andMatthewCaesar.Trackingmobilewebusers throughmotionsensors:Attacksanddefenses.In NDSS ,2016. [25]NingDing,DanielWagner,XiaomengChen,AbhinavPathak,YCharlieHu,and AndrewRice.Characterizingandmodelingtheimpactofwirelesssignalstrength onsmartphonebatterydrain.In ACMSIGMETRICSPerformanceEvaluationReview , pagesACM,2013. 101 [26]SarunDuangsuwan,AekarongTakarn,RachanNujankaew,andPunyawiJamjareeg- ulgarn.Astudyofairpollutionsmartsensorslpwanvianb-iotforthailandsmart cities4.0.In 201810thInternationalConferenceonKnowledgeandSmartTechnology(KST) , pagesIEEE,2018. [27]WernerDubitzky,MartinGranzow,andDanielPBerrar. Fundamentalsofdatamining ingenomicsandproteomics .SpringerScience&BusinessMedia,2007. [28]RashadEletreby,DianaZhang,SwarunKumar,andOsmanYa§an.Empoweringlow- powerwideareanetworksinurbansettings.In ProceedingsoftheConferenceoftheACM SpecialInterestGrouponDataCommunication ,pagesACM,2017. [29]Ericsson.Theericssonmobilityreport. https://www.ericsson.com/en/blog/2019/ 10/what-is-NB-IoT ,2019. [30]YoavFreundandRobertESchapire.Adesicion-theoreticgeneralizationofon-line learningandanapplicationtoboosting.In Europeanconferenceoncomputationallearn- ingtheory ,pagesSpringer,1995. [31]JessicaFridrich.Digitalimageforensics. IEEESignalProcessingMagazine , 2009. [32]JonGjengset,JieXiong,GraemeMcPhillips,andKyleJamieson.Phaser:Enabling phasedarraysignalprocessingoncommoditywi˝accesspoints.In Proceedingsofthe 20thannualinternationalconferenceonMobilecomputingandnetworking ,pages 2014. [33]JuergenGraefenstein,AmosAlbert,PeterBiber,andAndreasSchilling.Wirelessnode localizationbasedonrssiusingarotatingantennaonamobilerobot.In Position- ing,NavigationandCommunication,2009.WPNC2009.6thWorkshopon ,pages IEEE,2009. [34]GSACOM.Globalnarrowbandiotlte-mnetworksmarch2019. https:// gsacom.com/paper/global-narrowband-iot-lte-m-networks-march-2019/ ,2019. Accessed:2020-03-19. [35]GSMA.Mobileiotnetworklaunches. https://www.gsma.com/iot/ mobile-iot-commercial-launches/ ,2020.Accessed:2020-02-19. [36]NilsYHammerlaandThomasPlötz.Let's(not)sticktogether:pairwisesimilarity biasescross-validationinactivityrecognition.In Proceedingsofthe2015ACMinter- nationaljointconferenceonpervasiveandubiquitouscomputing ,pagesACM, 2015. [37]CanlongHe,MingxiaShen,LongShenLiu,COkinda,JiYang,HongShi,etal.Design andrealizationofagreenhousetemperatureintelligentcontrolsystembasedonnb- iot. JournalofSouthChinaAgriculturalUniversity ,2018. 102 [38]JunHuang,WahhabAlbazrqaoe,andGuoliangXing.Blueid:apracticalsystemfor bluetoothdeviceidenti˝cation.In INFOCOM,2014ProceedingsIEEE ,pages 2857.IEEE,2014. [39]JunxianHuang,FengQian,AlexandreGerber,ZMorleyMao,SubhabrataSen,and OliverSpatscheck.Acloseexaminationofperformanceandpowercharacteristics of4gltenetworks.In Proceedingsofthe10thinternationalconferenceonMobilesystems, applications,andservices ,pagesACM,2012. [40]FaheemIjaz,HeeKwonYang,ArbabWaheedAhmad,andChankilLee.Indoorposi- tioning:Areviewofindoorultrasonicpositioningsystems.In AdvancedCommunica- tionTechnology(ICACT),201315thInternationalConferenceon ,pagesIEEE, 2013. [41]MonsoonSolutionsInc.Highvoltagepowermonitor. https://www.msoon.com/ high-voltage-power-monitor ,2019.Accessed:2019-09-09. [42]In˝neonTechnologies. Applicationbrochure-Wirelesschargingforconsumer ,32018. Rev4.0. [43]HanSeungJang,HuJin,BangChulJung,andTonyQSQuek.Versatileaccesscon- trolformassiveiot:Throughput,latency,andenergye˚ciency. IEEETransactionson MobileComputing ,2019. [44]TadayoshiKohno,AndreBroido,andKimberlyCCla˙y.Remotephysicaldevice ˝ngerprinting. DependableandSecureComputing,IEEETransactionson , 2005. [45]ManikantaKotaru,KiranJoshi,DineshBharadia,andSachinKatti.Spot˝:Decimeter levellocalizationusingwi˝.In ACMSIGCOMMComputerCommunicationReview , volume45,pagesACM,2015. [46]SuraponKraijakandPanwitTuwanut.Asurveyoninternetofthingsarchitecture, protocols,possibleapplications,security,privacy,real-worldimplementationandfu- turetrends.In 2015IEEE16thInternationalConferenceonCommunicationTechnology (ICCT) ,pagesIEEE,2015. [47]SivanandKrishnan,PankajSharma,ZhangGuoping,andOngHweeWoon.Auwb basedlocalizationsystemforindoorrobotnavigation.In 2007IEEEInternationalCon- ferenceonUltra-Wideband ,pagesIEEE,2007. [48]MadsLauridsen,HuanNguyen,BennyVejlgaard,IstvánZKovács,PrebenMo- gensen,andMadsSorensen.Coveragecomparisonofgprs,nb-iot,lora,andsigfox ina7800km 2 area.In 2017IEEE85thVehicularTechnologyConference(VTCSpring) , pagesIEEE,2017. [49]YilongLi,YunCheng,XiuchengLi,YuWang,GuoliangXing,andXiaofanJiang. qi-wirelessbasedplatformforrobustuser-initiatedindoorlocationservices: 103 Demoabstract.In Proceedingsofthe1stACMConferenceonEmbeddedSystemsforEnergy- E˚cientBuildings ,BuildSys'14,pagesNewYork,NY,USA,2014.ACM. [50]YuanjieLi,HaotianDeng,ChunyiPeng,ZengwenYuan,Guan-HuaTu,JiayaoLi, andSongwuLu.icellular:Device-customizedcellularnetworkaccessoncommodity smartphones.In 13th f USENIX g SymposiumonNetworkedSystemsDesignandImple- mentation( f NSDI g 16) ,pages2016. [51]YuanjieLi,ChunyiPeng,ZengwenYuan,JiayaoLi,HaotianDeng,andTaoWang. Mobileinsight:Extractingandanalyzingcellularnetworkinformationonsmart- phones.In Proceedingsofthe22ndAnnualInternationalConferenceonMobileComputing andNetworking ,MobiCom'16,pagesNewYork,NY,USA,2016.ACM. [52]YuanjieLi,JiaqiXu,ChunyiPeng,andSongwuLu.A˝rstlookatunstablemobility managementincellularnetworks.In Proceedingsofthe17thInternationalWorkshopon MobileComputingSystemsandApplications ,pages2016. [53]YukeLi,XiangCheng,YangCao,DexinWang,andLiuqingYang.Smartchoicefor thesmartgrid:Narrowbandinternetofthings(nb-iot). IEEEInternetofThingsJournal , 2017. [54]JansenCLiando,AmalindaGamage,AgustinusWTengourtius,andMoLi.Known andunknownfactsoflora:Experiencesfromalarge-scalemeasurementstudy. ACM TransactionsonSensorNetworks(TOSN) ,15(2):16,2019. [55]KaikaiLiu,XinxinLiu,andXiaolinLi.Guoguo:Enabling˝ne-grainedindoorlo- calizationviasmartphone.In Proceedingofthe11thannualinternationalconferenceon Mobilesystems,applications,andservices ,pages2013. [56]XiaoLu,DusitNiyato,PingWang,DongInKim,andZhuHan.Wirelesscharger networkingformobiledevices:Fundamentals,standards,andapplications. IEEE WirelessCommunications ,2015. [57]MarkoMalajner,PeterPlaninsic,andDusanGleich.Angleofarrivalestimationusing rssiandomnidirectionalrotatableantennas. IEEESensorsJournal , 2012. [58]IHSMarkit.Halfabillionsmartphonesandotherdeviceswithwirelesspowertech- nologyshippedin2017,ihsmarkitsays. https://tinyurl.com/qi-half-billion , 2018.Accessed:2018-05-19. [59]TomMMitchell.Machinelearning.1997. BurrRidge,IL:McGrawHill ,45:995,1997. [60]AshkanNikravesh,HongyiYao,ShichangXu,DavidCho˙nes,andZ.MorleyMao. Mobilyzer:Anopenplatformforcontrollablemobilenetworkmeasurements.In Proceedingsofthe13thAnnualInternationalConferenceonMobileSystems,Applications, andServices ,MobiSys'15,pagesNewYork,NY,USA,2015.ACM. 104 [61]NXPSemiconductors. FreescaleWirelessChargingICs,MWCT1000CFM, MWCT1200CFM,MWCT1101CLH ,52014.REV1. [62]NXPSemiconductors. MWPR1516:HigherintegrationreceivercontrollerMCUforwire- lesspowertransferapplication ,12015.Rev.2.00. [63]PanasonicCorporation. AN32258A:IntergratedWirelessPowerSupplyReceiver,Qi (WirelessPowerConsortium)Compliant ,102014.Rev.2.00. [64]F.Pedregosa,G.Varoquaux,A.Gramfort,V.Michel,B.Thirion,O.Grisel,M.Blon- del,P.Prettenhofer,R.Weiss,V.Dubourg,J.Vanderplas,A.Passos,D.Cournapeau, M.Brucher,M.Perrot,andE.Duchesnay.Scikit-learn:MachinelearninginPython. JournalofMachineLearningResearch ,2011. [65]MarcoPennacchioni,Maria-GabriellaDiBenedette,TommasoPecorella,Camillo Carlini,andPietroObino.Nb-iotsystemdeploymentforsmartmetering:Evaluation ofcoverageandcapacityperformances.In 2017AEITInternationalAnnualConference , pagesIEEE,2017. [66]DrewPrindle.Impressyourguests(andtopo˙theirphones)withthis diywirelesschargingtable. https://www.digitaltrends.com/how-to/ diy-wireless-charging-table/ .Accessed:2018-07-25. [67]NissankaBPriyantha,AnitChakraborty,andHariBalakrishnan.Thecricket location-supportsystem.In Proceedingsofthe6thannualinternationalconferenceon Mobilecomputingandnetworking ,pagesACM,2000. [68]Rohde&Schwarz.Powersavingmethodsforlte-mandnb- iotdevices. https://www.rohde-schwarz.com/lt/solutions/ test-and-measurement/wireless-communication/iot-m2m/ whitepaper-power-saving-lte-m-nb-iot-register_251417.html ,2019.Accessed: 2020-02-16. [69]ROHMSemicondunctor. BD57011AGWL:Astand-aloneintegratedICforwirelesspower receiver ,12018.Rev.003. [70]AliSehatiandMajidGhaderi.Onlineenergymanagementiniotapplications.In IEEEINFOCOM2018-IEEEConferenceonComputerCommunications ,pages IEEE,2018. [71]JunyangShenandAndreasFMolisch.Passivelocationestimationusingtoamea- surements.In 2011IEEEInternationalConferenceonUltra-Wideband(ICUWB) ,pages IEEE,2011. [72]JiongShi,LipingJin,JunLi,andZhaoxiFang.Asmartparkingsystembasedon nb-iotandthird-partypaymentplatform.In 201717thInternationalSymposiumon CommunicationsandInformationTechnologies(ISCIT) ,pagesIEEE,2017. 105 [73]HyojeongShin,YohanChon,YungeunKim,andHojungCha.Mri:Model-based radiointerpolationforindoorwar-walking. IEEETransactionsonMobileComputing , 2015. [74]RashmiSharanSinha,YiqiaoWei,andSeung-HoonHwang.Asurveyonlpwatech- nology:Loraandnb-iot. IctExpress ,2017. [75]TexasInstruments. bq51013BHighlyIntegratedWirelessReceiverQi(WPCv1.2)Compli- antPowerSupply ,32018.REVISEDMARCH2018. [76]EmilianoTrevisaniandAndreaVitaletti.Cell-idlocationtechnique,limitsandben- e˝ts:anexperimentalstudy.In SixthIEEEworkshoponmobilecomputingsystemsand applications ,pagesIEEE,2004. [77]ArvinWenTsuiTsui,Wei-ChengLin,Wei-JuChen,PollyHuang,andHao-HuaChu. Accuracyperformanceanalysisbetweenwardrivingandwarwalkinginmetropoli- tanwi-˝localization. IEEETransactionsonMobileComputing ,2010. [78]DiegoValsesia,GiulioColuccia,TizianoBianchi,andEnricoMagli.Compressed˝n- gerprintmatchingandcameraidenti˝cationviarandomprojections. IEEETransac- tionsonInformationForensicsandSecurity ,2015. [79]DeepakVasisht,SwarunKumar,andDinaKatabi.Decimeter-levellocalizationwith asinglewi˝accesspoint.In 13th f USENIX g SymposiumonNetworkedSystemsDesign andImplementation( f NSDI g 16) ,pages2016. [80]JianxinWang,JunpanSu,andRuyuanHua.Designofasmartindependentsmoke sensesystembasedonnb-iottechnology.In 2019InternationalConferenceonIntelligent Transportation,BigData&SmartCity(ICITBS) ,pagesIEEE,2019. [81]JueWangandDinaKatabi.Dude,where'smycard?r˝dpositioningthatworkswith multipathandnon-lineofsight.In ProceedingsoftheACMSIGCOMM2013conference onSIGCOMM ,pages2013. [82]RoyWant,AndyHopper,VeronicaFalcao,andJonathanGibbons.Theactivebadge locationsystem. ACMTransactionsonInformationSystems(TOIS) ,1992. [83]WirelessPowerConsortium. TheQiWirelessPowerTransferSystemPowerClass0Spec- i˝cation ,1.2.3edition,February2017.Parts1and2:InterfaceDe˝nitions. [84]WirelessPowerConsortium. TheQiWirelessPowerTransferSystemPowerClass0Spec- i˝cation ,1.2.3edition,February2017.Part4:ReferenceDesigns. [85]DiWu,DmitriIArkhipov,YuanZhang,ChiHaroldLiu,andAmeliaCRegan.On- linewar-drivingbycompressivesensing. IEEETransactionsonMobileComputing , 2015. [86]JieXiongandKyleJamieson.Arraytrack:a˝ne-grainedindoorlocationsystem. Usenix,2013. 106 [87]FaheemZafariandIoannisPapapanagiotou.Enhancingibeaconbasedmicro- locationwithparticle˝ltering.In 2015IEEEGlobalCommunicationsConference (GLOBECOM) ,pagesIEEE,2015. [88]JiexinZhang,AlastairRBeresford,andIanSheret.Sensorid:Sensorcalibration˝n- gerprintingforsmartphones.In 2019IEEESymposiumonSecurityandPrivacy(SP) , pagesIEEE,2019. [89]NingZhangandYingjieLiu.Nb-iotdrivesintelligentcoldchainforbestapplica- tion.In 2019IEEE9thInternationalConferenceonElectronicsInformationandEmergency Communication(ICEIEC) ,pagesIEEE,2019. 107