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ABSTRACT

EMPOWERING INTERNET OF THINGS WITH THE EMERGINGWIRELESS
INFRASTRUCTURES AND TECHNOLOGIES

By

Deliang Yang

Wireless technologies have been evolved rapidly, whose infrastructures are built and de-

livered speedily. The emergingwireless technologies offer new solutions for data commu-

nication, monitoring, sensing, and edge computing, etc. The fast growth of wireless net-

works generates not only opportunities for newapplications, but also issues in high energy

consumption, unexpected latency, and potential privacy breach. In this dissertation, we

propose two novel cyber-physical systems to demonstrate the possibility of empowering

new IoT services and applications by leveraging the emerging wireless charging infras-

tructures and benchmarking the energy performance of end nodes in low-power wireless

networks, respectively.

First, we present QID, the first system that identifies a Qi-compliant device during

wireless charging in real-time using wireless charging fingerprints. QID employs a 2-

dimensional motion unit to emulate a variety of multi-coil designs of Qi, which allows for

fine-grained device fingerprinting. With the novel mobile coil design and a set of novel

fingerprints from oscillator and controller patterns, QID achieves high device recognition

accuracy by using ensembledMachine Learning algorithms. With the prevalence of public

wireless charging stations, our results also have important implications for mobile user

privacy.

Second, we develop a novel benchmarking ecosystem, called NB-Scope, to study the

energy performance of the Narrowband Internet of Things (NB-IoT) network. NB-Scope

adopts a hierarchical design, resolving the heterogeneity in network operators, nodemod-

ule vendors, and location profiles, to allow for the fusion of fine-grained diagnostic traces

and current measurement. We then conduct a large-scale field measurement study con-



sisting of 30 nodes deployed at over 1,200 locations in 3 regions for three months. Our

in-depth analysis of the collected 49 GB traces showed that NB-IoT nodes yield signifi-

cantly imbalanced energy consumption in the wild, up to a ratio of 75:1, which may lead

to short battery lifetime and frequent network partition. By extensive data analysis, we

identify several key factors, including diverse network coverage levels, long-tail power

profile, and excessive control message repetitions, that lead to high variance in the energy

performance.
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CHAPTER 1

INTRODUCTION

The wireless technologies have been evolved speedily, whose infrastructure is built and

delivered rapidly. The fast growth of wireless networks generates not only opportunities

for new applications, but also issues in high energy consumption, unexpected latency, and

potential privacy breach. Our research sheds the light upon two of the emerging wireless

technologies, namely wireless charging and Narrowband Internet-of-things, empowering

IoT services and applications.

1.1 Device Recognition Using NewWireless Infrastructures

Recent years have witnessed the increasing penetration of wireless charging base stations

in public areas like office buildings, restaurants, and airports, etc. [19]. There is also a

trend to embed wireless charging base stations in furniture like desks and tables [14, 66].

It is estimated that nearly 500 million wireless charging devices were shipped during the

year 2017, fulfilling only 20% of the potential world market [58]. This emerging wire-

less charging infrastructure has presented new opportunities for precise user localization,

where the base station learns the location and identification of the mobile device being

charged. Many RF- or ultrasonic-based approaches have been proposed for indoor lo-

calization [40, 45, 67, 73, 77, 82, 85, 86]. Designed for providing the continuous location of

a moving user, they often incur significant overhead, e.g., due to the need for large-scale

wardriving for collecting fine-grained signal fingerprints. In thiswork, we exploit wireless

charging for a specific application scenario, where the user stays right next to the wireless

charger for a certain amount of time, waiting for the phone to be charged. Therefore, the

wireless charger localizes a mobile phone by simply referring to the already-known lo-

cation of the registered charger. More importantly, this process does not change natural

users’ behavior, which allows for easier adoption of the proposed system.

1



Leveraging pervasive wireless charging stations to provide high localization accuracy,

high reliability at low deployment cost enables a wide range of applications. For instance,

a coffee shop may recognize its customers when they charge their phones on the coffee

table and provide customized services or location-based advertisements. For another ex-

ample, when users charge their phones on the table instrumented with wireless charging

during a meeting or lecture, the precise sitting positions of the users can be determined,

which enables interesting interactions such as sharing documents in an ad-hoc group,

sending instant messages, exploring nearby people [49], or establishing ad-hoc voting or

commenting groups for the attendees to express their opinions. In addition to mobile

device localization, the popularity of wireless charging infrastructure also provides the

opportunity for user authentication. For a paid wireless charging service, the charger

can identify the phone and process the payment automatically. Lu et al. [56] proposed a

wireless charging network system, where multiple wireless chargers communicate with

the server or adjacent wireless chargers to provide pay-per-use charging service. Reliable

charging device identification is the basic building block for such applications.

To leverage the wireless charging infrastructure for user localization and identification

services, a key challenge is to reliably identify thewireless charging unit ofmobile devices.

Unfortunately, unlike network interfaces such asWi-Fi andBluetooth that have unique and

fixed hardware addresses, the wireless charging unit of commercial off-the-shelf (COTS)

mobile devices typically does not have a fixed hardware ID. For instance, according to the

Qi standard [83], the identity of a power receiver is defined by a Basic Device ID,which can

be a software-generated random sequence that may change each time the power receiver

is booted.

1.2 Performance Evaluation of New LPWAN Technology

In the last decade, we have witnessed the rapid development and wide adoption of a

variety of low power wide area networks (LPWAN) technologies, such as Sigfox [48],
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LoRa [54], and Narrowband Internet-of-Things (NB-IoT). While LoRa and Sigfox have at-

tractedmuch attention in the research community due to their utilization of the Industrial,

Scientific, and Medical (ISM) bands, NB-IoT technology received inadequate research fo-

cus.

NB-IoT was developed by the 3rd Generation Partnership Project (3GPP) in 2016. NB-

IoT envisions an anytime, anything connectivity paradigm [46] for a wide spectrum of low

data rate, large volume, and long lifetime IoT applications, including smart grid [53, 65],

smart streetlamp [15], parking management [72], air quality sensing [26, 80], and intelli-

gence agriculture [37]. Currently, NB-IoT has been launched globally with 93 commercial

networks [35], while there are 140 operators in 69 countries investing in NB-IoT network

deployment [34]. According to Ericsson [29], the number of global IoT shipments will

grow from one billion in 2018 to 4.1 billion by 2024.

Unfortunately, to date, the key aspects of NB-IoT networks, such as radio access perfor-

mance and power consumption, have not been well understood, especially to developers

and academic researchers. This is due to three key challenges. First, NB-IoT is a closed

cellular network deployed by operators on the licensed spectrum, where the base stations

can not be accessed for public measurements. The message-level interactions between the

node and base station are largely inaccessible to the developers and researchers. Second,

NB-IoT measurement is fundamentally different from 3/4G cellular network measure-

ment, where the latter could be conducted through mobile applications [50, 52] installed

onmassive mobile devices. In contrast, an IoT applicationmay consist of numerous nodes

embedded in the environment over a large geographic region, which presents a high bar-

rier for understanding the performance of NB-IoT in the wild. In particular, NB-IoT net-

works differ significantly due to variations of operator configurations, modules from dif-

ferent vendors, and location profiles. Finally, there lack effective tools that can expose the

low-level diagnostic traces from NB-IoT nodes, support large-scale measurement studies,

and capture the high level of heterogeneity of network operators, NB-IoT modules, and
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location profiles.

1.3 Contribution

In this thesis, we propose two novel cyber-physical systems to demonstrate the possibility

of enabling new applications by leveraging the emerging wireless charging infrastruc-

tures, and benchmark the network performance of end nodes in an emerging LPWAN,

respectively.

First, we present the design, implementation, and evaluation of QID – the first prac-

tical system that reliably identifies Qi-compliant mobile devices based on the hardware

fingerprints. Specifically, QID augments standard-compliant wireless charging base sta-

tion to extract features from the oscillator, coil, and controller of a Qi-compliant power

receiver, while requiring no retrofitting or modification to existing Qi-compatible mobile

devices. QID employs a 2-Dmotion controller to emulate the coil array in the Qi reference

design (described in Section 3.1) and regulate the inductive coupling between the power

transmitting and receiving coils, which allows for fine-grained fingerprinting of the power

receiver while optimizing the efficiency of power transfer. Experimental results based on

52 Qi-compatible devices show that QID achieves an overall identification accuracy of up

to 89.7%, with an average of 85.3%. Our results also have important implications for user

privacy. With the increasing prevalence of wireless charging stations in public areas, how

to prevent the leakage of the user’s location opens up new research questions.

Second, wedevelopNB-Scope – the first hardwareNB-IoTdiagnostic tool that supports

fine-grained fusion of power consumption and protocol message traces for both real-time

in-lab benchmarking and field testing. WithNB-Scope, we conduct a large-scale fieldmea-

surement study based on the deployment of 30 NB-Scope nodes at over 1,200 locations in

3 regions of 2 countries during three months. Our in-depth analysis of the collected 49

GB debug logs and current consumption traces reveals several important insights into the

power consumption of NB-IoT in the wild. We showed that nodes yield significantly im-
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balanced energy consumption across different locations, operators, and module vendors,

which can lead to unexpected short battery life and frequent network partitions. For in-

stance, the ratio of the highest and lowest energy consumption of nodes can be 75:1. By

decomposing the energy consummation by radio access phrases in a fine-grainedmanner,

we showed that such performance variance can be attributed to several key factors includ-

ing poor network coverage level, long-tail power profile due to conservative inactivity

timer settings, and excessive control message repetitions during random access control.

Third, we explore the optimization space of the NB-IoT base station on a software-

defined eNodeB testbed and propose several optimizations that may save up to 66.4% of

the packet energy in signal-limited coverage areas. Then, we discuss several important

design aspects that can be considered by future NB-IoT specifications and chipsets for op-

timizing energy consumption. Moreover, we present our upgrades to the NB-Scope sys-

tem, including in-device real-time message decoding and LoRa-NB-IoT dual-mode sup-

port, which provide new paradigms for the LPWAN research community.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the related works to

this dissertation, especially on device identification as well as network measurement and

optimization. Chapter 3 presents QID, the first system that identifies mobile devices via

wireless charging fingerprints. Chapter 4 presents NB-Scope, the first embedded network

measurement system for the NB-IoT network, addressing the heterogeneity in field mea-

surement, as well as the statistical analysis of a large amount of field measurement data.

Chapter 5 proposes and evaluates multiple energy optimizations to NB-IoT and presents

the important upgrades to theNB-Scope platform. Finally, Chapter 6 concludes this thesis.
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CHAPTER 2

RELATEDWORK

2.1 Device Fingerprinting, Localization, andWireless Charging Infras-
tructure

Device identification has been studied for a wide range of networked communication sys-

tems. The existing developed techniques can be broadly classified into three categories.

One category uses the fingerprints of the RF signal introduced by the hardware imperfec-

tion of the frequency generator on the devices. The next category uses temporal features,

i.e. the clock skew introduced by the minor difference in the oscillator among the de-

vices. The clock skew mainly affects the time interval of the transmitted packets. The last

category utilizes the sensor hardware fingerprints on mobile devices. Besides the device

identification, we briefly compare our proposed systemQIDwith other localizationmeth-

ods and motion-assisted cyber-physical systems. Finally, we discuss previous work that

enables applications using wireless charging infrastructure.

RF Signal Fingerprinting. PARADIS [13] identified the source network interface card

(NIC) of an IEEE 802.11 frame through passive radio-frequency analysis. Specifically, it

uses I/Q origin offset, frequency error, and SYNC correlation to distinguish the devices.

Caraoke [2] separated devices by their carrier frequency offset differences to avoidwireless

collisions in an e-toll transponder network. Similarly, Danev et al. [22] achieved wireless

sensor recognition using RF transient characteristics. Eletreby et al. proposed Choir [28],

a system that disentangles collisions in LoRa LP-WAN by distinguishing the sensor nodes

using their time, frequency, and phase offsets caused by hardware imperfection. Despite

the previous research effort to explore RF signal in the device fingerprinting, these tech-

niques cannot be applied towireless charging, because on one hand, diving into the details

of the RF signal for the fingerprints requires expensive equipment, for example, [13] used
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the Agilent 89641S vector signal analyzer; on the other hand, wireless charging adopts

resonant coupling to transfer energy, where both the carrier frequency and amplitude are

variable. Thus, one is almost not able to infer the device identity using the RF signal in

wireless charging.

Clock Skew Fingerprinting. Kohno et al. [44] used the TCP timestamp option to estimate

a device’s clock skew. Similarly, Cristea and Groza [21] studied how to fingerprint smart-

phones remotely via the Internet Control Message Protocol (ICMP) timestamp response.

While these two studies focused on traffic and driver-level signatures, other systems ex-

plored hardware-level features to distinguish devices. Huang et al. [38] used temporal fea-

tures of Bluetooth baseband embedded in the chipset firmware to fingerprint Bluetooth

devices. However, one key difference between these scenarios and wireless charging is

that the device placement affects the clock skew fingerprints of the mobile device. More-

over, the placement of the device on the charger pad is unpredictable, which casts much

difficulty in building a precise model for each device. We will further discuss the chal-

lenges in detail in Section 3.2.

Sensor Fingerprinting. Another device identification techniques use fingerprints in the

sensors, such as acoustic sensor [9,23], camera [31,78], and inertia sensor [24,88]. For exam-

ple, Das et al. [23] utilized manufacturing imperfection in the microphone and speaker to

distinguish different mobile devices using classical machine learning algorithms. Valsesia

et al. [78] proposed a compressed camera fingerprint algorithm to reduce the complexity

in feature computation and storage requirements, improving the device recognition per-

formance using photo-response nonuniformity. Zhang et al. [88] utilized per-device iner-

tial sensor factory calibration data, embedded inside a mobile device firmware, to extract

fingerprints. Das et al. [24] performed an in-depth study on device recognition using com-

bined features extracted from accelerometer and gyroscope sensor streams with machine

learning techniques. Although these methods may achieve acceptable accuracy, they re-

quire reading the data or sensor samples from the phone directly, which can be intrusive.
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Localization. Amajor application of our system is to identify and localize mobile devices.

Previous localization systems were based on GPS, angle of arrival (AoA) [32, 86], time of

flight (TOF) [55, 67, 79], received signal strength (RSS) [6, 87], ultra wideband (UWB) [47,

71], andmultipath signal aggregation [81]. Wireless charging-based localization is similar

to landmark-based approaches such as Wi-Fi AP or Cell-IDs [76], where the location of

the charger (access point) is already known or registered. In this manner, the location

of the mobile device can be acquired immediately after the users put the phone on the

charging station. Such a user-initiated localization approach is highly precise. While Cell-

ID based methods usually have an error of up to tens or hundreds of meters, wireless

charging infrastructure-based localization can achieve centimeter-level accuracy. Wireless

charging-based localization is also robust compared to AoA/TOF/RSS-based methods

because the location of the former is not affected by dynamics of wireless systems like

signal strength.

Motion-Assisted System Augmentation. Many sensing systems are augmented with the

assistance of motion control. Graefenstein et al. [33] used a rotating antenna on a mo-

bile robot to localize wireless sensor node basing on RSSI. They improved the robustness

of the measured RSSI and increased localization accuracy. Similarly, Malajner et al. [57]

employed a stepper motor to rotate the antenna array to estimate the AoA of the RF trans-

mitter, achieving low cost and high accurate AoA estimation. Chou et al. [17] added a ro-

tating four-bar linkage to a mobile platform to extend the 2D laser range finder to support

3D environmental sensing and mapping. Although motion platform has been applied to

various sensing systems, to the best of our knowledge, this idea has not been adopted by

wireless charging systems. We will show in Section 3.7.3 that, with the assistance of a 2-D

motion platform, we improve the device recognition accuracy substantially.

Application Based on Wireless Charging Infrastructure. In our previous work, we have

developed QiLoc [49], a system that extracts the software ID of the charging device and

localizes its location based on the known deployment location of the charging station.
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Comprehensive API is provided to implement location-based service, occupancy analysis,

and authentication. It also provides API for location-based services, occupancy analysis,

and authentication. However, according to the Qi standard [83], the identity of a power re-

ceiver can be a software-generated random sequence thatmay change each time the power

receiver is booted. Thus, the fingerprinting techniques presented in this dissertation can

be integrated with QiLoc to provide a reliable localization service. Lu et al. [56] pro-

posed a wireless charging network architecture, where multiple wireless chargers com-

municate with the server or adjacent wireless chargers to provide pay-per-use charging

service. However, device recognition during charging is not studied in [56]. Although

their work envisions potential wireless charging applications, they did not consider the

situation where the software ID is unreliable. Our project focuses on how to accurately

recognize the device under Qi wireless charging with reliable hardware features.

2.2 Wireless Infrastructure Benchmark and Diagnostics

Several prior works on cellular networks focus on the design and implementation of 4G

LTE measurement toolkits [51, 60]. Nikravesh et al. [60] proposed an open platform for

conducting mobile network measurement experiments in a principled manner. Li et al.

[51] proposedMobileInsight, a diagnostic tool that collects and analyzes information from

the operational cellular network at a fine-grained message level. However, the measure-

ment of 4G LTE is usually conducted through massively deployed smartphone applica-

tions, which is not viable for NB-IoT due to the embedded nature of NB-IoT applications

and the limited compute capability and battery life. The tools that can provide both power

measurement and extraction of debug logs of NB-IoT are not currently available which

makes large-scale measurement of NB-IoT very challenging.

Power measurement and modeling. A lot of early studies have investigated the energy

efficiency of cellular networks over smartphones through power modeling [7, 16, 25, 39].

Balasubramanian et al. [7] developed an energy consumptionmodel for the 3G network as
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a function of transfer size and inter-transfer times. Ding et al. [25] modeled power based

on wireless signal strength. However, they focus on modeling the download link without

considering the uplink data service. All these power measurement studies of the cellular

network are based on smartphones. In [11] and [54], the authors designed new LoRa end

nodes for measuring the energy consumption of LoRa. Bouguera et al. [11] presented a

power model for different LoRaWAN modes and scenarios. Liando et al. [54] focused on

characterizing the energy consumption of the LoRa module. Different from LoRa, NB-IoT

is deployed by operators on licensed bands and the base stations cannot be accessed for

public measurements.

Power consumption optimization. Sehati et al. [70] proposed an online bundling algo-

rithm to reduce the impact of small packets on the long tail energy consumption in IoT

applications. Jang et al. [43] presented a novel access control mechanism for cellular IoT

networks to meet various performance metrics. Azari et al. [5] proposed a model to ana-

lyze the impact of channel scheduling on latency and energy consumption for nodes under

different coverage levels. Astudillo et al. [3] proposed a probabilistic re-transmission ap-

proach to avoid collisions of random access control messages and to reduce delay and

energy consumption. However, these optimizations are based on analytical results of net-

work protocols which fall short in capturing the power consumption patterns and direct

factors that cause energy waste in a real deployment. In our work, we identify the main

factors causing low energy efficiency through field tests and propose effective optimiza-

tion strategies correspondingly.
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CHAPTER 3

IDENTIFYINGMOBILE DEVICES VIA WIRELESS CHARGING FINGERPRINTS

3.1 Background

Qi is an open standard that defines wireless power transfer over short distances. A typical

Qi system consists of a power transmitter (PTx) installed on a Qi base station and a power

receiver (PRx) attached to or installed in a Qi-compliant mobile device. The PTx com-

prises a transmitting coil, called Primary Coil, which generates an oscillating magnetic

field, which induces an alternating current in the receiving coil, namely the Secondary

Coil, of the PRx. The PRx communicates with the PTx via backscatter modulation of the

current draw, and primarily sends two types of messages to optimize the power trans-

fer. The control error packet (CEP) carries an integer that indicates the difference between

the desired power level and the received power level. The received power packet (RPP)

reports the average level of power received in the past period. Throughout the process

of charging, CEPs and RPPs are transmitted periodically. Table 3.1 shows the CEP and

RPP intervals specified by the Qi standard. Based on the information in CEPs and RPPs,

the PTx adjusts the carrier frequency and amplitude of the primary power signal to opti-

mize the coupling between the coils of PTx and PRx. The combination of the carrier wave

frequency and amplitude is defined as the operating point. Figure 3.1 exemplifies a set

of operating points collecting in an experiment. When the phone position changes, the

coupling between the PTx and PRx coils varies, such that the PRx informs the PTx with

CEPs to regulate the wireless power output. Then, the wireless charging adapts to a new

operating point eventually. We note that, if the phone placement remains unchanged, the

corresponding operating points will aggregate around a specific small region in Figure

3.1.

Qi specifiesmultiple reference receiver and coil designs [84]. Figure 3.2 exemplifies one
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Figure 3.1: Operating points collected in an experiment by manually changing the
mobile device placement.

Table 3.1: PRx timing constraints during the Qi power transfer phase.

Parameter Symbol Target (ms) Max (ms)
CEP Interval tinterval 250.0 350.0
RPP Interval treceived 1500.0 4000.0

Qi receiver module

Samsung Galaxy S3

Figure 3.2: An attachable Qi-compatible power receiver for Samsung Galaxy S3.

of the available designs and Samsung Galaxy S3 that supports attachable Qi-compatible

PRx modules. It has a pair of terminals (+5V and GND) that connects to the output of the

12



PRx. In such a design, the PRx is an independent module and does not communicate with

the phone. The attachable PRx modules provide the wireless charging capacity to those

devices that originally don’t ship with the wireless power receivers. We consider each

of the modules to represent a user identity since it is an independent component (either

attached outside or pre-installed inside). It outputs a stable current at 5 V for charging

with its maximum capacity most of the time.

In addition to the PRx design, Qi also specifies more than 30 Type A and 7 Type B PTx

designs, where type A designs have one or more Primary Coils but only one of them can be

activated at a time, while type B designs support an array of Primary Coils and one or more

PrimaryCoils can be activated to providewireless power tomultiple PRxs simultaneously.

Figure 3.3 [18] shows two examples of themulti-coil chargers. Compared to the single-coil

designs, multi-coil PTx enlarges the possible coupling area with the PRx, thus providing

more flexibility in the device placement. As a result, the coil array PTx designs become

more prevalent on the market.

(a) Charger coil movement illustration (b) The mobile coil array

Figure 3.3: Examples of the multi-coil designs in Qi.

Qi also supports a serial number of at least 20 bits, also known as the Basic Device ID.

However, a PRx can also use a random number generator to dynamically change the Basic

Device ID, so that every time the user puts the mobile device onto a PTx, the Basic Device

ID updates. Such a random ID invalidates device ID based applications, which inspires

13



us to design a system to identify a device using its hardware fingerprints.

3.2 Design Challenges and System Overview

3.2.1 Design Challenges

It is challenging to recognize a mobile device from the Qi charger due to the intrinsic

characteristics of thewireless charging environment. Specifically, the following challenges

need to be addressed:

Noise in temporal features caused by power transfer. The wireless power transfer hap-

pens in the rapidly-changing high power electromagnetic field between the two coupling

coils, castingmore noise than typical RFwireless systems. For instance, as shown in Figure

3.4(1), themeasured packet intervals have significant fluctuations. The standard deviation

of the CEP time interval is more than 4.4 ms, corresponding to 1.7% error, which makes it

difficult to distinguish between different charging devices.

Undesirable stable operating point. Qi wireless charging has a well-designed feedback

control loop. The wireless power transfer process is usually stabilized at an operating

point within hundreds of milliseconds (3 to 5 CEPs). Although this is a desired feature

in terms of maintaining high charging efficiency, it brings a major challenge in recogniz-

ing the target device. Figure 3.4(1) and Figure 3.5(1) show the experimental result of such

a scenario, where the phone remains stationary on the charging pad. As shown, the se-

lected features, both the CEP time interval and CEP values, remain unchanged during the

charging process, which eventually raises the recognition error rate.

Unconstrained device placement. The third challenge, the most difficult one in our case,

is that the selected features are dependent on the phone placement. In other words, if

the user alters the PRx position, the feature values can change dramatically. Figure 3.4(2)

and Figure 3.5(2) demonstrate how the CEP time interval and control error value change

with respect to the phone placement. During the measurement, after we rotate the phone

with a random angle, the CEP time interval decreases from about 250 ms to 160 ms, and
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Figure 3.4: The CEP time interval vs. sampling time in 3 independent feature acquisition
experiments: (1) stationary PRx; (2) PRx position changed during charging; (3) QID is
enabled.

the Control Error value increases dramatically from 0 to 30. In a real-world scenario, the

placement of a mobile phone is often unpredictable. As a result, the errors are accumu-

lated over time, which eventually renders the recognition unsuccessful.

3.2.2 System Overview

We now provide an overview of the QID system. The system architecture is shown in Fig-

ure 3.6. It consists of 3 components, namely a COTS Qi wireless charger, the QID sensor,

and the QID server. The QID sensor is responsible for collecting a selected set of features

from wireless charging and uploading the data to the server, while the QID server is re-

sponsible for the feature extraction and device classification. The QID server can connect
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Figure 3.5: The CEP value vs. sampling time in 3 independent feature acquisition
experiments: (1) stationary PRx; (2) PRx position changed during charging; (3) QID is
enabled.

to the QID sensor directly (e.g., through UART) or resides on the cloud and communi-

cates with multiple QID sensors through the Internet, enabling tracking the target device

at different charging locations.

The QID sensor can work with most Qi-compliant chargers. It does not modify any

of the charger pad circuits. What QID sensor needs from a Qi-compliant charger is a test

pin that outputs the filtered data bit flow. We note that such a data pin is indispensable

for the Qi charging system because the PTx requires feedback from the PRx. Reading

data flow from the pin does not affect the operation of the Qi charging system. Therefore,

thanks to the minimal modification requirement, QID can be easily integrated with off-

the-shelf Qi chargers. After connecting the test pin and mounting the charger coil to the

QID sensor, the platform is ready for device fingerprinting. The QID sensor consists of a
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sensor is responsible for controlling the motion of the charger coil, capturing the signal
from the wireless charger, as well as sending the timestamped packets to QID server.
QID server extracts the features from the packet sequence and classifies the device.

motion control hardware component and a software component for feature collection. The

design of the motion unit is discussed in Section 6.1. The motion unit hosts the charging

pad and moves it according to a certain pattern, within a range of 10 cm. This allows to

fingerprint PRx dynamically at different relative positions between the PTx and PRx coils,

resulting in higher identification accuracy. We note that the motion unit is connected to a

separate control module, and it does not require a wire connection with the charger itself.

As a result, it can be integrated with any off-the-shelf charger easily.

The motivation for adopting the motion unit is two-fold. First, it can be easily inte-

grated with single-coil chargers and improve the performance of classification accuracy

as well as power delivery. Second, many emerging new chargers are based on multi-coil

Qi-compliant power transmitter design [18, 42, 61]. As described in Section 3.1, each coil
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on such transmitter is controlled by an individual switch or a separate bridge. The PTx can

select the optimal coil to deliver the wireless power to the PRx. Thus it enlarges the cou-

pling area between the PTx and PRx and providesmore flexibility in the device placement.

Compared with the single-coil design, the multi-coil design offers several key advantages

for charger fingerprinting. First, the noise within the temporal features can be controlled

and even filtered out in post-processing, because the fingerprints are collected frommulti-

ple coil locations, a more complete device profile can be built. Second, the wireless power

transfer process to hop between different operating points when the charging coils are

switched. Thus we can infer the PRx control scheme from the transient states between the

operating points, which can be used to differentiate different Qi modules. Finally, the fea-

ture uncertainty caused by the phone placement can be essentially mitigated because the

coil array covers a range of device positions on the charger pad. Despite these advantages,

it is difficult to exploit the multiple coils of Qi chargers for fingerprinting in practice, since

there exists a large number of heterogeneous designs as specified by Qi [84]. Usually, the

existing multi-coil charger pads use large coils with small overlapping areas. The finger-

print sampling granularity is thus low even it provides the coil switching capability. To

address this challenge, the QID sensor extends the design of the physical coil array to a

mobile coil by equipping the primary transmitter coil with a motion unit. Figure 3.7a illus-

trates the relative movement between the PTx and the PRx. When the relative alignment

of the PTx and PRx is adjusted in a 2-dimensional plane, we can construct a fine-grained

mobile coil as shown in Figure 3.7b. Such a design effectively emulates a variety of dif-

ferent multi-coil designs of Qi. However, we note that the motion unit is not necessarily

required if the Qi system already adopts a multi-coil design. In such a case, the rest of our

system can be integrated into a small module that connects to the charger through two

pins, namely the data flow test pin and GND, allowing for easy deployment.

In addition to the motion unit, the QID sensor also extracts and timestamps every

packet in the data flow. A challenge in the design is to ensure the PRx is correctly located
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Figure 3.7: Fingerprinting a PRx coil with a movement unit.

and measured. The details of the QID sensor are discussed in Section 3.3. The last com-

ponent, namely the QID server, reads all the data sent by the QID sensor. As the packet is

in byte representation, the server needs to parse each field in the packet. Then, the server

performs feature extraction and classification, which are discussed in Section 3.5.

3.3 Feature Selection and Acquisition

3.3.1 Selecting Hardware Fingerprints

To reliably identify Qi-compliant devices, QID leverages hardware fingerprints extracted

from the following three PRx components. The selected fingerprints should be device-

specific, time-invariant, and discriminative.

Onboard oscillator. The PRx controller chip of Qi utilizes an internal oscillator to generate

the clock signal. It is well known that oscillators have distinctive drifts due to factors like

hardwaremanufacturing variations [21,38,44]. We thus exploit the drift of the PRx oscilla-

tor as a feature to identify the device in charging. For example, Panasonic AN32258A [63],

a commercially available Qi receiver IC, utilizes an internal oscillator. NXP MWPR1516

[62] also uses an internal Low-power Oscillator (LPO) as the clock source. We note that the
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Figure 3.8: The scaled and zero-meaned CEP time interval distribution of 42 evaluated
devices. The first letters of the devices represent the brands of the receivers, while the
following digit represents the specific label in its brand. The error bar shows the
standard deviation of the CEP time interval. The corresponding actual time interval
spans a range of (238, 270) ms.

Qi receiver ICs typically have low clock accuracy as they are not designed for data com-

munication. For instance, the receiver IC NXP MWPR1516 has a clock accuracy tolerance

of as high as ±5%; Rohm BD57011AGWL data sheet [69] also indicates that the driving

frequency of the communication signal is between 1.92 and 2.08 kHz, which corresponds

to a 4% frequency error tolerance. In comparison, the clock frequency tolerance is ±50

ppm for Bluetooth [8] and ±40 ppm for Zigbee [1]. Therefore, the clock drift effect of Qi is

highly device-dependent and much more significant than other wireless communication

systems. Although drift variations like this can be used to differentiate different devices,

it is difficult, if not impossible, to directly measure the clock drifts in COTS devices. Our

key observation is that the Control Error Packet (CEP) time interval yields high variance

among the devices around the target value specified in Qi (see Table 3.1). Figure 3.8 shows

that the CEP time interval distribution of 42 devices spans a range of (238, 270) ms in the

time domain. Therefore, the PRx oscillator can be inferred and fingerprinted by measur-

ing the period drift of the control packets. However, some devices, for example, “A2” and

20



“C2”, or “F6” and “F7”, yield close CEP time interval values.

Contact range: 242±30 Contact range: 230±5 Contact range: 247±10

Figure 3.9: Heterogeneous power receiver coils. The size and shape of the coils result in
different contact range mean and standard deviation.

Receiving coil. Different Qi-compliant devices may have different coil shapes, diameters,

and layouts. Generally, a larger PRx coil has a larger contact area between the PRx and the

PRx coils, leading to more flexibility in placing the device. In our scenario, the receiving

coil diameter can be fingerprinted based on the area that the PTx interacts with the PRx.

Figure 3.9 exemplifies different fingerprints extracted fromheterogeneous PRx coils. It can

be a determinant for device brand, but not a good indicator of a specific device because it

is almost identical among the same type of device. We discuss how tomeasure the contact

range of the PRx coil in Section 3.4.2.

PRx controller. The Qi standard does not specify the exact period of control packet trans-

mission. We observe that the periods of the CEPs do differ across devices of different

manufacturers. Such vendor-dependent controller implementations can be exploited as

a fingerprint to differentiate devices from different manufacturers. For example, Texas

Instruments bq51013B [75] sends the CEPs with an interval of 240 ms, while Panasonic

AN32258A sends the CEPs at a period of 160 ms. This feature is not related to clock error

but a value chosen at design time by the manufacturer. Intuitively, determining the IC

manufacturer improves the recognition accuracy by narrowing the categories of the de-

vices. In addition to the packet period, the value carried in the CEP is also specified by

the receiver IC manufacturers. For example, we observe that the maximum control error

value sent by brand “C” devices is 30, while the brand “Z” devices can send the control
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error values as high as 80. Therefore, it is another feature that may distinguish the device

brand.

3.3.2 Temporal Feature Acquisition

Time

Preamble Header Message Checksum

MCU Timestamp MCU TimestampPacket Interval

Send to QID Server

Send to QID Server

Pulse width measurement by MCU

Figure 3.10: Temporal Feature Acquisition. Each packet is decoded and timestamped by
the microcontroller (MCU).

We now discuss how the QID sensor collects temporal features of Qi packets. Figure

3.10 illustrates such a procedure. First, to decode the bits, the QID sensor uses a timer to

measure thewidth of each pulse. As the data sent by the PRx is encodedwith a differential

bi-phase scheme, we can convert the pulse widths to bit values. Then, the decoded bits

are then grouped into bytes.

A Qi packet consists of preamble, header, payload, and checksum. The QID sensor

timestamps the packet after the 11th bit in the preamble phase of each packet. The corre-

sponding packet time interval is then the difference between two consecutive timestamps.

As described in Section 3.1, the Qi protocol defines two types of packets that have fixed

time intervals. QID sensormainly observes and analyzes the CEP time interval to infer the

PRx oscillator because the CEP is the most frequent type of packets that are sent during

the wireless charging process. Even if a packet is corrupted due to decoding errors, its
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timing information is still valid if only the packet interval is in the desired range. Finally,

the timestamped packets are transmitted to the QID server for further processing.

3.4 QIDMotion Control

3.4.1 Motion Platform Design

Figure 3.11: Mechanical design - the charger pad is controlled by two stepper motor
linear slides, moving in a 2-D surface.

In this subsection, we present the mechanical design to enable the movement of the

charger coil, as illustrated in Figure 3.11. It requires two linear slides powered by a stepper

motor individually. First, the bottom slide is fixed on a surface. Next, the upper slide is

placed with its axis direction perpendicular to that of the bottom one. The upper one is

attached to the bottom one’s slider. Finally, the charger coil is attached to the slider of

the upper linear slide. The two stepper motors are controlled independently to drive the

coil in an X-Y plane to form a mobile coil. It thus allows for more flexibility in the PRx

placement. The user can place the device at any location and any angle in the designated

area. Correspondingly, we define the axes of the bottom slide and the upper slide as the

x axis and y axis respectively. As the lengths of the two slides are the same, the working
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(a) Symmetric axis searching. The upper left point
is the starting point.
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(b) The designed trajectory of the charger coil center
within one complete fingerprinting scan.

Figure 3.12: Trajectory design of the QID sensor.

space of the PTx coil is defined as a square area. Our measurement results indicate that

the motion platform can achieve a control accuracy up to 0.2 mm, which is adequate to

emulate heterogeneous PTx coil designs. We envision that the QID motion platform can

enable other applications, such as locating the PRx and searching for the optimal charging

operating points, which are critical for optimizing the charging efficiency [83]. We leave

these applications for open research work.

3.4.2 QID Sensor Motion Control

In this subsection, we discuss the control schemes for the proposed QID sensor motion

platform.

3.4.2.1 Contact area boundary detection

The detection of the PRx boundary allows for better coil movement control. For example,

the stepper motor can adapt to a higher speed if the PRx is out of the contact range, or the

trajectory can be optimized to avoid unnecessary moves, such that the total time needed
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for collecting sufficient features can be reduced. The QID sensor utilizes a timer to detect

the contact boundary. Each time the QID sensor receives a new packet, it reads the real-

time timer (RTT) to update a value tlast . In the meantime, the QID sensor reads the RTT

with a period of 10 ms to fetch the current time tn and compares it with tlast . Then the

condition that the PRx is out of the contact range is given by:

tn > tlast + Ttimeout,

where Ttimeout is the allowed time that the PRx does not send any feedback. We choose

Ttimeout to be 350 ms, which is the maximum CEP time interval in the Qi standard, as pre-

sented in Table 3.1. If the condition is met, the QID sensor determines that the PRx loses

its contact with the PTx.

3.4.2.2 PRx symmetric axis alignment

Next, we discuss how the QID sensor finds the symmetric axis of the PRx coil along the

y axis. Finding the symmetric axis is important because it is the reference for the finger-

printing trajectory.

We assume that the device is in the contact range once the user puts it on the charger

pad. The PRx symmetric axis alignment is achieved as follows. In the beginning, the PTx

coil moves along the positive direction of the y axis until it is out of the contact range.

Next it moves to the negative direction of both x and y axis, reaching the starting point

shown in Figure 3.12a (upper left corner). From there, the coil starts to move in an “S”

pattern and sweeps across the PRx coil four times, generating a sequence of the detected

boundary [x0, x1, ..., x7]. Then the x value of the symmetry axis is

xcenter =
1
8

7∑
i=0

xi

Finally, the PTx coil is aligned to the xcenter with its y coordinate value right out of the

contact range boundary. This location is the starting point of the coil in the fingerprinting

phase.
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We note that, for a multi-coil PTx, this phase can be achieved by switching between the

coils and identifying the one with the highest coupling.

3.4.2.3 Fingerprinting trajectory planning

Now we present the PTx coil trajectory design when the QID sensor collects fingerprints

from the PRx. We take two factors into account when designing it. On the one hand, it

is crucial to ensure the QID sensor captures adequate data from the mobile coil in Figure

3.7b, such that QID records the complete feature profile of the PRx. On the other hand,

the more data points are measured, the more time it takes. Typically 4 or 5 packets can

be collected during one second. If we plan to record 3,000 CEPs, it may take more than

10 minutes and exceed the time one leaves the phone on the charger pad. Therefore, we

need to find a trade-off between spatial data diversity and measurement delay. In our

design, we assume that the PRx will be left stationary on the platform for a time window

of at least 90 seconds, such that the QID sensor captures adequate fingerprints for device

identification.

The designed fingerprinting trajectory of the QID sensor is shown in Figure 3.12b. It

comprises two sessions, namely the forward one and the backward one. During both

sessions, the QID sensor records all the packets sent by the PRx and uploads them to the

server. The forward session starts from the endpoint of the PRx symmetric axis alignment

phase. The PTx coil is driven to move along the positive direction of the y axis. Once

it enters the contact range, the coordinate value ystart is recorded. In the meantime, the

moving speed of the coil is set to a slower speed. It stops for 1 second each time after

moving forward for about 8mm (corresponding to 40 control units in Figure 3.12b) to wait

for the operating point hopping, which also mimics the coil switching in an array. Once

the PTx loses contact with the PRx, i.e., the PRx is out of the contact range, the boundary

point yend is recorded, which also marks the end of the forward session. The backward

trace is similar to the center alignment one, which is in “S” shape. The major difference
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is that the distance ∆x between the farthermost point and the symmetric axis is about 10

mm along the x axis, corresponding to 50 control units. The movement along the negative

y direction is divided into 6 sections. Each of them is

∆y =
yend − ystart

6

At each turning point, the PTx coil stops for 1 second to wait for the operating point hop-

ping. After the coil reaches the forward session starting point (xcenter, ystart), the finger-

printing phase finishes. We define a complete scan as the completion of both the forward

and backward sessions, and the data collected during this phase are defined as a scan

sample correspondingly. It is later post-processed at the QID server.

There are several reasons why such a trajectory is designed. First, it covers the central

area of the contact range. Even if the PRx changes its placement angle next time, the central

region still largely remains overlapping. As a result, the two independent scan samples

do not deviate significantly. Second, the distance ∆x is carefully chosen to accommodate

different coil shapes and sizes. No matter how the PRx is placed, the planned trajectory

falls within the contact range for most of the time. The trajectory is also able to tolerate

the symmetric axis alignment error up to about 8 mm (corresponding to 40 control units).

Finally, the same location is fingerprinted for at most once, as the forward and backward

traces do not overlap except the region where the coil center enters or exits the contact

area.

3.5 Feature Extraction and Device Classification

In this section, we present how the QID server extracts the features from the measured

data and classifies the features into different device classes.

3.5.1 Feature Extraction

Wenote that the contact range diameter of the receiving coil physical feature can be simply

calculated as yend − ystart . The oscillator features and the PRx control schemes require
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Figure 3.13: Gaussian kernel density estimation of CEP time intervals. The letters
indicate the device brands. The number indicates each unique device of its brand. The 0
in the horizontal axis corresponds to 240 ms in real time scale.

additional processing to obtain. We discuss them as follows.

3.5.1.1 CEP interval features

The QID server uses a local maximum searching algorithm to extract the CEP time in-

tervals that represent the feature of the PRx onboard oscillator. First, all the CEP time

intervals are processed with a fixed bandwidth Gaussian kernel density estimator (KDE).

Unlike the histogram, the Gaussian KDE represents the probability of each point in the

feature space with a fixed-variance Gaussian distribution, i.e., the Gaussian kernel, and

then the estimation output is the averaged sum of all the individual kernel probability

estimations. The output of the KDE is actually the probability density function (PDF) of

the CEP time interval.

d(t) = pdf (t), t ∈ [40, 270]ms
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Note that the variable t here is in time domain representation, while the feature values

correspond to the QID sensor controller timer values.

Next, theQID server extracts theCEP time intervals that achieve localmaximums in the

PDF. We observe that the CEP time intervals typically fall into 3 domains, corresponding

to [40, 60], [140, 160], [235, 270] ms in time domain (as shown as the three local maxima

in Figure 3.13). Therefore, it is feasible to find the peaks directly without calculating the

derivative of the CEP time interval PDF. Specifically, the 3 domains are denoted as D1,

D2, and D3 respectively. Then the feature CEP time intervals and their corresponding

log-probabilities are

tpi = arg max
t∈Di

d(t), i = 1, 2, 3.

pLi = log d(tpi), i = 1, 2, 3.

The detected peaks of 8 independent complete scan samples are marked in Figure 3.13.

The CEP time interval that corresponds to 240 ms in the time domain is shifted to 0. Al-

though some of the curves appear close to each other in the figure, their peak-indexed

CEP time interval features actually span a considerable wide range in the feature space, as

shown in Figure 3.8 and the zoom-in sub-figure in Figure 3.13. In the zoom-in figure, we

see that the indexed time interval values have little intra-class variability and inter-class

similarity. For example, although “C3” and “C6” are from the same brand, their peak in-

dexes deviate from each other with a distance up to 20, while the three peak indexes of

device “C6” are consistent during the three independent scans that are collected in a wide

time span.

3.5.1.2 CEP value features

QID also fingerprints the controller of a PRx based on the statistic of the recorded CEP

values during a complete scan. What the CEP value differs from the CEP time interval is

that the former can only take integer values. We analyze CEP values using the probability
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mass function (PMF). Specifically, we compute the PMF of the CEP values as

p(V) =
∑N

i=1 1{vi == V}
N

where V is the absolute CEP value, ranging from 0 to 127, 1{a == b} is an indicator func-

tion, and N is the total number of CEPs in a scan sample. In particular, N is chosen to be

one of the CEP value features because it is an indirect measurement of the frequency that

the PRx sends CEPs. As we note in Section 3.3.1, it is a PRx controller implementation-

specific feature rather than the oscillator drift. We find that the PMF of the CEP values

is not a good feature, as the PMFs span a wide range of [0, 127], which introduces high

variance in the output features. We also observe that even the same device may gener-

ate different PMFs within different scan samples. To reduce the variance in the output

CEP value features, we further group the CEP values into 7 ranges. For each range, the

probabilities of the CEP values within the range are summed up. Specifically, the 7 ranges

are: 0, [1, 5], [6, 10], [11, 20], [21, 30), 30, (30, 127]. We choose these ranges empirically by

correlating the statistical patterns of the ranges with the device brand.
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Figure 3.14: Comparison of the CEP value frequency for 4 difference divices. G0 to G7
correspond to the seven PRx controller feature frequency range in Table 3.2.

Table 3.2 summarizes the features used in classification. These features are collected in

both steady charging states and operating point switching transient states, through which
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Table 3.2: The list of features extracted from a complete scan.

Feature Group Feature Value Range

Oscillator
feature

Domain 1 CEP interval [40, 60] ms
Domain 1 CEP interval peak log-probability
Domain 2 CEP interval [140, 160] ms
Domain 2 CEP interval peak log-probability
Domain 3 CEP interval [235, 270] ms
Domain 3 CEP interval peak log-probability

Sample time Time needed in a complete scan >0
Contact range The range that PRx interacts with PTx [220, 260]

control unit

PRx controller
feature

Number of packets >0
CEP value = 0 frequency [0, 1]
CEP value ∈ [1, 5] frequency [0, 1]
CEP value ∈ [6, 10] frequency [0, 1]
CEP value ∈ [11, 20] frequency [0, 1]
CEP value ∈ [21, 30) frequency [0, 1]
CEP value = 30 frequency [0, 1]
CEP value ∈ (30, 127] frequency [0, 1]

QID extracts the fingerprints in the oscillator, coil and the controller for classification. We

envision that the PRx controller features can separate the device brand and the oscillator

features can then further separate the devices within the same brand. Figure 3.14 shows

the frequency distribution grouped by the CEP value range for 4 different devices. As we

can see, different PRx brands exhibit significantly distinct CEP value preferences during

the wireless charging feedback control. Therefore, these PRx controller features can be

used to categorize the device brand effectively.

3.5.2 Classification

The QID server classifies Qi-compliant devices by an ensemble classifier, also known as

“bagging classifier”, comprising of Support Vector Machine (SVM) [10], AdaBoost [30]

with decision tree as weak learner, decision tree classifier [12], k-Nearest Neighbor (kNN)

[20], and Linear Discriminant Classifier (LDC) [59]. The bagging algorithm in our design

utilizes a voting system, as shown in Figure 3.15. When 3 ormore classifiers are outputting
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Figure 3.15: Classification process with a bagging classifiers in QID server.

the same device label, the bagging classifier chooses it as the final decision. Otherwise,

the output of the SVM is chosen because it has relatively higher accuracy than the other

classifiers. We design this classifier architecture by tuning the classifiers empirically.

The QID server stores all the extracted features and their corresponding device labels

in a feature table. Then it utilizes the repeated random sub-sampling cross-validation, also

known as Monte Carlo cross-validation [27], to split the data into training and testing set

randomly. Finally, the classifiermodels are trainedwith the training set and validatedwith

the testing set. The mean and the standard deviation of accuracy from the results of the

sub-sampling experiments are recorded. It is shown [36] that cross-validation evaluation

introduces neighborhood bias to the time-continuous sliding window frame data, which

results in overly optimistic model evaluation estimations. However, in our experiments,

each of the samples is collected in a wide span in the time domain. In other words, all the

features extracted from a complete experiment scan are independent of each other. As a

result, the cross-validation is suitable for our experiments.

The objective of the QID server is focused on classifying the device into one of the

known classes. This design is applicable to the scenarios where the devices are already

fingerprinted. For instance, a company may register and fingerprint all the work devices

of employees, and then use QID to track the location of each device. However, QID can

be easily extended to recognize new devices via online learning. For instance, by setting a

detection threshold in the classifier, QID can identify whether the newly collected sample
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corresponds to any device that is already recorded. If the sample’s probability of corre-

sponding to an existing device is low, QID can recognize the device as a new one.

The QID server stores all the extracted features and their corresponding device labels

in a feature table. Then it utilizes the repeated random sub-sampling cross-validation,

also known as Monte Carlo cross-validation [27], to split the data into training and testing

set randomly. Finally, the classifier models are trained with the training set and validated

with the testing set. The mean and the standard deviation of accuracy from the results of

the sub-sampling experiments are recorded.

The objective of the QID server is focused on classifying the device into one of the

known classes. This design is applicable to the scenarios where the devices are already

fingerprinted. For instance, a company may register and fingerprint all the work devices

of employees, and then use QID to track the location of each device. However, QID can

be easily extended to recognize new devices via online learning. For instance, by setting a

detection threshold in the classifier, QID can identify whether the newly collected sample

corresponds to any device that is already recorded. If the sample’s probability of corre-

sponding to an existing device is low, QID can recognize the device as a new one.

3.6 Implementation

In this section, we present the implementation of the QID system. Figure 3.16 shows a

QID sensor prototype.

QID sensor base station. The base station is themechanical component of the QID sensor,

which is built on a clear acrylic board. The two stepper motor linear sliders enable the

motion along the x and y direction respectively, with a moving distance of 90 mm each.

A switch is added to one end of each screw, such that the MCU can reset the position

each time the system is powered on. Another clear acrylic board (not shown in the figure)

supported by four nylon hex spacers is the surface that the mobile device is put on. The

cost of the mechanical components is less than $20. Therefore it is feasible to be massively
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Figure 3.16: A prototype of the QID sensor.

deployed in the public area.

Embedded controller andmotor driver. At the center of theQID sensor, theAtmel SAMG53N19

[4] MCU is employed, which is responsible for decoding and timestamping packets, driv-

ing the stepper motors, and sending collected data to the QID server. The MCU supports

theUART communicationwith the server via aUSB virtual COMMport. Themotor driver

IC is Toshiba TB6612FNG, which shares the power with the Qi PTx. The peak motor driv-

ing current is around 150 to 200mA,which is negligible to the Qiwireless charging system

because a typical COTS USB charger can provide 2000 mA current at 5 V.

Qi-compatible power transmitter. We choose a COTS GMYLE Mini Qi Charging Pad

as the PTx, which is connected to the MCU via a data flow debug pin. The PTx coil is

extended with a pair of wires, which provides extra flexibility, such that the coil moves

without dragging the charger circuit board around.

The QID server. At the server side, the feature extraction and classification modules are
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implemented using approximately 1,100 lines of Python codes, including the pySerial

UART library for theQID sensor communication handler and themachine learning library

scikit-learn [64] for classification.

3.7 Evaluation

In this section, we present the performance evaluation of QID based on 52 Qi-compliant

devices. We first present the evaluation settings and then discuss feature analysis, mea-

surement delay analysis, classification accuracy, feature backward search, and accuracy

breakdown test.

3.7.1 Evaluation Settings

We evaluate 52 Qi-compliant devices in total, including 7 Google Nexus 4 (labeled as

“N”) and 45 attachable PRx modules from 6 different manufacturers, including DigiYes,

Hugchg, and RAVPower. We note that the ICs in these modules are widely used in main-

stream mobile devices. For example, the Texas bq51013B in the DigiYes modules is also

adopted by Google Nexus 5. For each device, we conduct 10 complete independent scans

to collect fingerprints. In total, there are 520 scan samples. To simulate the users’ device

placement behavior in the real world, we alter the phone placement manually. Specifi-

cally, for the first scan, the phone is aligned with the x axis of the motion plane. For the

next seven scans, the device is rotated counter-clockwise for 45◦ each time. For the last

two scans, the phone is placed on the pad at a random angle.

We visualize the CEP packet intervals with respect to the PTx coil location in Figure

3.17. As shown in Figure 3.17a, merely using the sample collected in one experiment may

lead to biased results because the features are extracted from a limited number of cou-

plings between the two coils. While the data points from multiple measurement rounds

are aggregated, as shown in Figure 3.17b, the point cloud covers themajority of the contact

range between the two coils, providing adequate ground truth for classification, which can
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(a) Point cloud in 3D space for one sampling ex-
periment.
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Figure 3.17: Point cloud illustration.

accommodate unpredictable device placements.

To quantify the contribution of the motion platform, we repeat this whole process for

once without moving the charger coil with respect to the PRx. We consider this as our

baseline and will discuss it in Section 3.7.3.

In classification, the training-testing split ratio is 7: 3. In other words, 7 out of the 10

samples for each device are randomly chosen to train the QID classifier model, and the

remaining scan samples are for testing. Such a process is repeated 10 times. The average

accuracy and the standard deviation of each classifier are reported. In addition, the hyper-

parameters in all the implemented classifiers are tuned by the grid search. As discussed

in Section 3.5.2, we assume all the devices are already fingerprinted and recorded in the

database.

3.7.2 Measurement Delay

The measurement delay is defined as the time delay from the moment when the power

receiver is booted to the moment that the server produces a device label. Specifically, the

36



Table 3.3: The measurement delay in the QID system

Symbol Definition Mean (s) Std (s)
T1 Coil symmetric axis alignment time 8.050 0.927
T2 Fingerprinting time 55.478 6.092
T3 Feature extraction time 0.147 0.006
T4 Classification time 0.001 N/A

measurement delay TM is

TM = T1 + T2 + T3 + T4

where T1 is the coil symmetric axis alignment time, T2 is the fingerprinting time, T3 is the

feature extraction time, and T4 is the classification time. The means and standard devia-

tions of these measurement delay terms are presented in Table 3.3.

As one can see, the fingerprint phase time T2 is around 55.5 s, which contributes the

most to the total measurement delay. Thus reducing the time T2 is crucial in further opti-

mizing the measurement delay TM .

The measurement delay is actually acceptable due to the characteristics of wireless

charging. First, unlike other wireless communication systems where the user is usually

in mobility, the charging process usually takes more than 10 minutes, during which the

user device remains stationary. Second, in the targeted scenarios, such as a coffee shop

that offers location and personalized services to customers, the users need to register their

devices before using such user-identification service. During the registration process, QID

can collect 8-10 different samples for future recognition. Finally, previous systems that

exploit clock drifts for device identification have similar delay performance. For example,

BlueID [38] takes 21 seconds for data traffic or 65 seconds for voice traffic to guarantee

the low measurement error. In [44], it takes the system hours to collect enough packets

in order to distinguish devices. Therefore, the 60-second measurement delay in QID is

acceptable.
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Figure 3.18: The cross-validation score and device brand detection accuracy of different
classifiers.
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Figure 3.19: The impact of feature selection on the classification accuracy. G1:
classification without the CEP time interval features; G2: all features are included, but
they are measured without the motion platform; G3: classification performance using
the CEP time interval features only; G4: all features are included.

3.7.3 Classification Accuracy

We first present the overall test accuracy of the cross-validation study. The overall accu-

racy is the ratio of the number of correctly classified scan samples to the size of the test
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Figure 3.20: Confusion matrix of the 52 evaluated devices.

set. Figure 3.18 shows the means and standard deviations of the implemented classifiers

from 10 repeated random sub-sampling cross-validation folds. As shown in the figure,

all the implemented classifiers can recognize the device brand with a mean validation

accuracy up to 96.1%. Particularly, the bagging classifier identifies the brand with up to

97.9% mean accuracy. The mobile device brand classification accuracy is of interest be-

cause of the following two reasons. First, it is the foundation of device recognition. As

mentioned in Section 3.3.1, although the CEP interval is a good device separator, it con-
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fuses some devices from different brands. If the device brand is successfully identified,

the QID server can reduce the range of device candidates and increase the overall device

classification accuracy. Moreover, brand recognition can enable applications like device

brand-specific advertisement. For device identification, the bagging classifier achieves an

average accuracy of 85.2%. The highest accuracy achieved by QID is 89.7%. To illustrate

the classifier performance, a confusion matrix is plotted in Figure 3.20. Generally, the mis-

classified samples are from the devices of the same brand that have close clock drifts. For

instance, there are two devices, namely “C8” and “Z3”, whose all 3 test samples are mis-

classified. However, some devices are classified into different brands due to their close

values in feature space.

Next, we quantify the performance of themotion platform, namely themulti-coil array.

The G2 in Figure 3.19 shows the baseline result, where the motion unit is not enabled.

Each device is sampled without the motion control for 55 seconds, corresponding to the

delay T2 in Section 3.7.2. We plot the classification accuracy of QID in Figure 3.19 G4 for

comparison. As we can see, the device recognition rate increases by 17% by both SVM and

bagging classifiers when the motion platform is enabled. The brand recognition accuracy

is also boosted by 8%. It is indicated that the motion platform plays an important role

in achieving reliable and sufficient device features for classification due to its ability to

extract fingerprints from more spots, which captures a more complete profile of a device.

3.7.4 Impact of Feature Selection

Not all features are equally important. Figure 3.21 and Figure 3.22 shows the distribution

of two features respectively, obtained from 42 out of the 52 devices, namely the total num-

ber of packets per scan and the frequency of the CEP value 0. The distribution of other CEP

value frequencies yields similar trends as shown in Figure 3.22 and is thus omitted. These

two features contain more noise than the CEP interval (as shown in Figure 3.8). Nonethe-

less, intuitively, these features are able to separate device classes to some extent. We next
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Figure 3.21: Number of packet per scan feature distribution of 42 devices (10 samples per
device).
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Figure 3.22: The frequency of CEP value equaling 0 distribution of 42 devices (10
samples per device).

conduct the backward search to evaluate the effectiveness of each selected feature.

We perform two case studies. In the first case “G1”, we evaluate the bagging classi-

fier without the CEP time interval features, i.e., the onboard oscillator fingerprints. In

other words, only the CEP value features are used. In the second case “G3”, we evaluate

the bagging classifier with only the CEP time interval features. The results of these two

case studies are shown in Figure 3.19. We observe that the device recognition accuracies
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of both the bagging and the SVM classifier degrade to about 21% in G1, which indicates

the significant contribution of the onboard oscillator fingerprint to device identification

performance. Another observation is that, although the CEP value features fail in device

recognition, they are still able to distinguish the brands with 75% accuracy by the bagging

classifier. Next, we compare G3 and G4. We can see that both the device and brand recog-

nition accuracies of the bagging classifier are improved by about 2.5% by adding the CEP

value features to the CEP time interval features. This indicates that although the CEP

value features are not as important as the onboard oscillator fingerprints, it helps QID

to reduce uncertainty and achieve higher accuracy. However, as the number of devices

increases, the chance of CEP interval (PRx oscillator) feature overlapping is expected to

increase. In such a case, the PRx controller fingerprints will provide the necessary device

brand identifies, thus reducing the collision in the feature space.

3.7.5 Recognition Accuracy Breakdown

Another characteristic of the QID system is that how robust the selected fingerprints are.

In otherwords, how is the classifier performance influencedwhenmore devices are added

to the feature database? Here we present the results of the recognition accuracy break-

down. In this case study, we evaluate both the device and brand recognition accuracy of

the bagging classifier concerning a sequence of the device numbers from 5 to 50, with an

increment of 5. For each device number Ni in the list, we first randomly choose Ni devices

out of the 52 devices and then perform theMonte Carlo cross-validation on their scan sam-

ples 10 times to obtain the mean test accuracy. For each Ni, such a process is repeated for

6 rounds. Finally, the mean and standard deviation from the results of these 6 rounds are

recorded, as shown in Figure 3.23. The brand recognition accuracy keeps at a high level

around 97% regardless of the increase in the number of devices. However, the device

recognition accuracy decreases by about 1.3% each time the number of devices increases

at increments of 5. If this trend continues, when the number of the device reaches about
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Figure 3.23: Device recognition accuracy changes with the number of devices

180, the device accuracy decreases to 50%. However, we note that the power receivers may

have much higher diversity regarding the device brand in real-life scenarios than that in

our evaluation setting. Therefore, the QID can potentially benefit from the high brand

accuracy and thus accommodate more devices than the number of device 180 calculated

above.

3.8 Conclusion and Discussion

In this research work, we present our design and implementation of QID, the first system

that recognizes Qi power receivers during wireless charging using fingerprints from the

onboard oscillator, coil characteristics, and control scheme of thewireless charging system.

QID also employs amovement unit to emulatemulti-coil power transmitters, which allows

for fine-grained fingerprinting. Our evaluation results show that QID achieves an overall

identification accuracy of up to 89.7%, with an average of 85.2%. Moreover, QID can rec-

ognize the device brand with an average accuracy of 97.9%. Therefore, we demonstrate
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the feasibility of leveraging public wireless charging infrastructure for tracking mobile

users and providing ID/location-based services. Our results also open up new research

questions on how to prevent the leakage of user’s location with the increasing wireless

charging station deployment in public.

QID has several limitations. First, unlike other wireless communication systemswhere

passive remote sensing and recognition are possible, QID adopts a user-initiated device

recognition approach. This narrows its applications because it requires physical contact

between the device and the sensor. However, this could also be an advantage because it

preserves the user’s awareness and thus protects the user’s privacy. Second, at this stage,

QID requires motion parts to achieve fine-grained fingerprinting. We envision achieving

device recognition in wireless charging using only stationary multi-coil chargers. How-

ever, since the commercially available multi-coil chargers are not ready for device recog-

nition yet, our QID sensor implementation mainly focuses on emulating a multi-coil array

withmotion control. We expect nomotion unit is needed in the real-world implementation

and deployment. Nevertheless, the mechanical structure could be possibly re-designed to

achieve a smaller form factor. Finally, we note that the charging process may cause several

short-time charging disruptions (about 1 to 2 seconds each) due to the decoupling between

the PTx and PRx coils. In such a case, the user experience may be potentially impacted.

However, as discussed above, the measurement delay is about 55 seconds. After a device

is successfully identified, the PTx coil will move to a position (or switch to a particular

physical coil) that achieves the maximum coil coupling to continue the power delivery

process.

Our findings have important implications for user privacy. Privacy is a primary con-

cern in device recognition systems like QID. In fact, the Qi specification itself keeps device

information securely. For example, QID can only identify a device based on the physical

fingerprints of theQi PRxmodule. It will not and can not record any information about the

phone itself including operating system, phone number, as well as battery-related values,
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such as voltage level, energy percentage, and health record.

From another perspective, the public should be aware of their privacy when using

wireless charging because it would possibly leak the location information of a particular

device. Hackers may precisely localize a targeted user for malicious purposes. There are

sufficient reasons for the Qi PRx module to offer users the choice to generate their Device

ID randomly. The mobile phone manufacturer and the mobile phone operating system

should also offer the choice to shut down the wireless charging functionality when the

user intends to. To the best of our knowledge, they are not implemented in any Qi-based

wireless chargeable device yet. The location of a mobile device may be tracked when the

user charges mobile devices in public wireless chargers. Mitigating such possible user

privacy breaches is open to future problems.

Another open problem is to design a compact coil antenna to extract the data directly

from the wireless power interface, such that the QID sensor can be non-intrusive to the

PTx. It is also possible to explore new QID sensor fingerprinting trajectories to further

reduce the measurement delay. Although the users usually initialize their mobile device

registration by themselves in our targeted scenarios, we call for the design of efficient on-

line machine learning algorithms to classify unknown devices, such that QID provides an

easy-to-use interface and enables a wider range of applications. We can achieve this by

quantifying the similarity between the incoming sample features with the ones already in

our database. If the difference exceeds a threshold, QID determines the sample belongs

to a device that has not been seen before.
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CHAPTER 4

UNDERSTANDING POWER CONSUMPTION OF NB-IOT IN THEWILD: TOOL
AND LARGE-SCALE MEASUREMENT

4.1 Chapter Introduction

Narrowband Internet-of-Things (NB-IoT) is a low-power wide-area network (LPWAN)

specification developed by the 3rd Generation Partnership Project (3GPP) in 2016. NB-IoT

envisions an anytime, anything connectivity paradigm for a wide spectrum of low data

rate, large volume, and long lifetime IoT applications, including smart grid, smart street-

lamp, parking management, air quality sensing, and intelligent agriculture. Currently,

NB-IoT has been launched globally with 93 commercial networks, while there are 140 op-

erators in 69 countries investing in NB-IoT network deployment. One of the key features

of the NB-IoT network is the promise of long battery life, up to 10 years. Understanding

how the energy is spent and identifying possible energy loopholes in the NB-IoT network

are thus of great importance.

Unfortunately, to date, the key aspects of NB-IoT performance and power consump-

tion have not been well understood, especially to developers and academic researchers.

This is due to three key challenges. First, NB-IoT is a closed cellular network deployed

by operators on licensed spectrum, where the base stations can not be accessed for pub-

lic measurements. The message-level interactions between the node and base station are

largely inaccessible to the developers and researchers. Second, NB-IoT measurement is

fundamentally different from 3/4G cellular network measurement, where the latter could

be conducted through mobile applications installed on massive mobile devices. In con-

trast, an IoT application may consist of numerous nodes embedded in the environment

over a large geographic region, which presents a high barrier for understanding the per-

formance of NB-IoT in the wild. In particular, NB-IoT networks differ significantly due to
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variations of operator configurations, modules from different vendors, and location pro-

files. Finally, there lack effective tools that can expose the low-level diagnostic traces from

NB-IoT nodes, support large-scale measurement studies, and capture the high level of het-

erogeneity of network operators, NB-IoT modules, and location profiles.

In this chapter, we propose our design of NB-Scope, the first hardware NB-IoT diag-

nostic tool that supports fine-grained fusion of power consumption and protocol message

traces for both real-time in-lab benchmarking and field testing. NB-Scope is a powerful

tool that can advance the research of NB-IoT by allowing to instrument large-scale opera-

tional NB-IoT networks and experiment with various protocol-level optimizations. Next,

we conduct a large-scale field measurement study based on the deployment of 30 NB-

Scope nodes at over 1,200 locations in 3 regions of 2 countries during a period of three

months. Our in-depth analysis of the collected 49GBdebug logs and current consumption

traces reveals several important insights into the power consumption ofNB-IoT in thewild.

We showed that nodes yield significantly imbalanced energy consumption across differ-

ent locations, operators, and module vendors. For instance, the ratio of the highest and

lowest energy consumption of nodes can be 75:1. By decomposing the energy consumma-

tion by radio access phrases in a fine-grained manner, we showed that such performance

variance can be attributed to several key factors including poor network coverage level,

long-tail power profile due to conservative inactivity timer settings, and excessive control

message repetitions during random access control.

The rest of this chapter is organized as follows. First, Section 4.2 briefly introduces the

NB-IoT technology, as well as the radio access procedures and the energy management.

Nest, Section 4.3 presents NB-Scope design, a platform for large scale NB-IoT measure-

ment study. Finally, Section 4.4 presents our discovery through a large-scalemeasurement

study.
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4.2 NB-IoT Primer

In this section, we provide the background of NB-IoT technology, including its main fea-

tures, frame structure, physical channels, random access procedure, and energy manage-

ment.

4.2.1 Features of NB-IoT Technology

NB-IoT has several advantages over many other wireless communication technologies,

such as 4G-LTE, Wi-Fi, and ZigBee.

• Wide coverage. Compared to GPRS and LTE, the maximum coupling loss budget

of NB-IoT increases by 20 dB, which improves its coverage ability in signal-limited

environments, such as underground parking lot, basement, and garage.

• Low power consumption. By streamlining the message exchanges and leveraging

multiple power-saving methods, the end node has the chance to reach 5-years or

even 10-year battery life in specific scenarios.

• Low cost. The narrow bandwidth, low power consumption, and low data rate lead

to the low complexity in the NB-IoT modem and chipset design, which lowers the

cost at the node side. In the meantime, NB-IoT can reuse the existing 4G-LTE in-

frastructures, which largely decreases the deployment cost at the network operator

side.

• Massive connection. One single NB-IoT cell can support more than 50,000 nodes

connecting to the network core, which is 50 to 100 times larger than the 2G, 3G, and

4G network.

• Licensed bands. NB-IoT supports inband mode deployment, which coexists with

the current LTE network. In the meantime, it can reuse the licensed band of 2G and
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3G. All these bands are licensed, meaning that there is less interference than other

ISM-based technologies, and the network coverage in awide area can be guaranteed.

• Security. NB-IoT leverages the security approaches from 4G LTE, with 2-way au-

thentication and data encryption over the air, providing a more secure pipeline for

the packet data than other LPWAN technologies.

4.2.2 Frames and Channels

In an NB-IoT network, an end node, commonly known as a User Equipment (UE), is con-

nected to the Evolved Packet Core (EPC) via an eNodeB base station. To achieve this,

NB-IoT specifies a dedicated frame structure and a set of channels both physically and

logically to ensure the synchronization and effective communication between the UEs and

the eNodeB. We briefly introduce them as follows.

• Frames and time-frequency domain resources. Figure 4.1 shows the frame structure

of NB-IoT in time domain. It is a hierarchical structure, from hyperframes to radio

frames, then to subframes and slots as the granularity increases. Each slot consists of

7 Orthogonal Frequency Division Multiplexing (OFDM) symbols. In the frequency

domain, NB-IoT utilizes 12 subcarriers, 15 kHz each (in Single-tone mode), 180 kHz

bandwidth in total (200 kHz in reality due to the employment of guardband).

To allow the UE to synchronize before attaching to the network, the eNodeB broad-

casts two synchronization signal Narrowband Primary Synchronization Signal (NPSS)

and Narrowband Secondary Synchronization Signal (NSSS) periodically in the radio

frames, as shown in Figure 4.2 in red and yellow color, respectively. After synchro-

nization in clock signals, UE starts to listen to the system information from the down-

link channels.

• Downlink physical channels. There are three physical channels in the downlink

(DL) direction, i.e., from eNodeB to the UEs, namely Narrowband Physical Broadcast
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Channel (NPBCH), Narrowband Physical Downlink Control Channel (NPDCCH), and

Narrowband Physical Downlink Shared Channel (NPDSCH). NPBCH carries the sys-

tem configuration information to guide the UE to attach to the network. NPDCCH

andNPDSCH carry the scheduling or controllingmessages and the DL data packets

for the UE, respectively. NPDCCH and NPDSCH are the most commonly allocated

channels in the NB-IoT downlink, as shown in Figure 4.2.
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Figure 4.1: NB-IoT frame structure.

• Uplinkphysical channels. There are twophysical channels specified for uplink (UL)

transmissions, namely Narrowband Physical Random Access Channel (NPRACH) and

Narrowband Physical Uplink Shared Channel (NPUSCH). NPRACH bears the random

access preamble from UE, while NPUSCH carries all the UL packet data from the

UE.

4.2.3 Random Access Procedure

The NB-IoT UE follows a series of procedures to establish Radio Resource Control (RRC)

Connection and send data packets to application servers, as shown in Figure 4.3. The

procedure is summarized as follows.
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Figure 4.2: NB-IoT subframe structure in either Standalone or Guardband deploy mode.
Every 10 subframes make a radio frame.
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Figure 4.3: Signalings between UE and eNodeB base station during a UL packet
transmission.

1. The UE initiates a contention-based Random Access (RA) by sending a Random Access

Preamble (MSG1) to the eNodeB in NPRACH. The eNodeB replies with a Random Access

Response (RAR), also known as MSG2, which allocates resources for the UE to send sub-

sequent requests.

2. Next, the UE transmits the MSG3 to the eNodeB, carrying the requested resources, in the

NPUSCH using the resource allocated by the eNodeB. In the meantime, it starts a timer

immediately. The UE considers itself failed if the timer expired.

3. After receiving MSG3, the eNodeB resolves contention from all theUE requests, allocates

resource, and then notifies the UE by sending a Contention Resolution (MSG4). If the UE

receives MSG4 before CRT timeout, the RAprocedure completes successfully and theUE

sets up an RRC connection to the eNodeB. Otherwise, the UE needs to go back to step-1

and sends MSG1 to re-initiate RA.

4. TheUE then sends data packets to the eNodeBusing the scheduled resource inNPUSCH.
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5. After data transmission, the UE enters passive reception, called Inactivity state until

the RRC connection is released, initiated by the eNodeB.

6. Finally, the UE sends the RRC Connection Release Confirm via MSG1 and MSG3 again to the

eNodeB to mark the end of a packet transmission cycle.

Wenote that MSG1 is transmitted in theNarrowbandRandomAccessChannel (NPRACH).

Both MSG3 and the data packet transfer blocks are transmitted in the NPUSCH, which is

one of the major contributing factors to total energy consumption.

4.2.4 Energy Management

UE working modes. To reduce power consumption, the UE is operated in four working

modes, namely Active, Idle, extended Discontinuous Reception (eDRX), and Power Sav-

ing Mode (PSM). The UE is in Active mode when the radio is transmitting or receiving,

consuming current up to tens or hundreds mA. In Idle mode, the radio is inactive but

remains awake. In eDRX mode, the UE turns off its radio for a specific period negotiated

with the eNodeB. The eDRX mode of NB-IoT inherits the DRX mode of LTE, but specifies

additional higher interval configurations, targeting the IoT application scenarios. The PSM

mode is the most energy-efficient mode, where all UE components are turned inactive de-

spite a wake-up timer until the timer expires and issues an interruption to activate the UE.

In this manner, the current in PSM can be reduced dramatically to only several µA.

In typical NB-IoT applications, the nodes hibernate with PSM for most of the time and

transmit a small number of packets daily.

Enhanced coverage level (ECL).NB-IoT adopts an open loop power control, where theUE

decides its Tx power based on a set of pre-defined parameters broadcasted by the eNodeB

and the lively measured reference signal strength. NB-IoT defines up to three Coverage

Enhancement Levels (ECLs): ECL0, ECL1, and ECL2 that are adopted in good, moderate,

and bad channel conditions, respectively. Each ECL corresponds to a specific uplink ra-
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dio profile, which specifies the number of repetitions of MSG1 and MSG3, the number of

sub-carriers, etc. The selection of ECL is determined by eNodeB and may vary across dif-

ferent network operators and locations. Before uplink radio access, the UE characterizes

its channel condition bymeasuringReference Signal Received Power (RSRP). It then compares

the RSRP with the thresholds specified by eNodeB to determine its ECL.

4.3 NB-Scope Design

We have developed NB-Scope, which is an open-source experimental platform designed

to enable fine-grained power consumption analysis for NB-IoT. In this section, we describe

the design of NB-Scope in detail.

4.3.1 System Overview

The design objective of NB-Scope is two-fold. First, it should enable in-depth diagnoses of

the energy efficiency of an NB-IoT network. Second, it should support heterogeneous NB-

IoT modules with minimal system modifications, since UE modules of different vendors

may differ in pin assignment, command language, and signaling message format of radio

access logs. To achieve the above objectives, NB-Scope features three key designs.

• Layered hardware architecture. NB-Scope layers the hardware system into three parts,

including the mainboard, the shield board, and the UE module. The shield board is

geared to host the UE module of a specific vendor. It serves as an abstraction layer that

hides module heterogeneity from the mainboard. The mainboard integrates general

components, such as power supply, sensors, SD card interfaces, and exposes a group of

pins to support the plug-and-play of shield boards.

• Software abstraction. NB-Scope offers APIs that allow developers to access and control

heterogeneous UEmodules. Themost important function of NB-Scope is that it hosts li-
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braries to decode the radio access logs of different UEmodules and reports the decoded

events in a unified format.

• Trace fusion of power consumption and radio access. At run-time, NB-Scope collects

and synchronizes power consumption trace and radio access logs. This is critical for

correlating the current variation with the network state transition and further discover-

ing the possible strategies to minimize energy waste. To our best knowledge, NB-Scope

is the first fine-grain trace fusion toolset for NB-IoT network diagnostics.
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Figure 4.4: System architecture of NB-Scope.

As shown in Figure 4.4, NB-Scope supports two different measurement modes: real-

time benchmark mode and field test mode. Specifically, in the field test mode, the system

canwork in a standalonemanner, logging current and debug traces in its onboard storage.

In real-time benchmark mode, the NB-IoT shield board can be connected to a computer

that retrieves the logs from the I/O extension adapter and analyzes them together with

power measurements from a power monitor.
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4.3.2 NB-Scope Hardware Design

NB-IoT module shield board. NB-Scope consists of a shield board that abstracts the in-

terfaces of heterogeneous UE modules, providing a unified footprint assignment to the

hosts. We select a list of popular commercial NB-IoT modules from Quectel, Gosuncn,

and uBlox, and analyze their connectivity, as shown in Table 4.1. Then we identify the

necessary pins to be interacted with: an intersection set of pins, including power sup-

ply, SIM card interface, main UART, debug UART, and RESET, which are essential to let

a module work properly, and special purpose connectivity for different modules, such

as PWR_ON key, USB interface, SPI, or I2C. Next, all the selected pins are aggregated

into 2 rows of pin headers, such that all the modules share a unified “interface” to exter-

nal hosts, which also enables straightforward PCB design for module integration. In this

manner, we achieve the plug-and-play feature and interchangeability for heterogeneous

modules. Moreover, thanks to the modular design, the shield board energy consumption

is separated from other node components, providing a fair comparison between different

NB-IoT modules. We have developed 7 types of shields, supporting up to 8 different NB-

IoT modules, including Quectel BC28/BC35/BC26/BC66/BG96, Gosuncn ME3616, and

uBlox SARA-R410M-02B. We show 5 types of the shield boards in Figure 4.5 due to space

limit.

Table 4.1: List of modules that NB-Scope supports.

Module model Manufacturer Chip Region 1

SARA-R410M-02B uBlox QualcommMDM9206 Global
BC35 Quectel HiSilicon Hi2110 Europe, Asia-Pacific
BC28 Quectel HiSilicon Hi2115 Europe, Asia-Pacific
BC26 Quectel MediaTek MT2625 China
BC66 Quectel MediaTek MT2625 Global
BG36 Quectel QualcommMDM9206 China
BG96 Quectel QualcommMDM9206 Global
ME3616 Gosuncn MediaTek MT2625 Global

1BC26 and BG36 share the same chipset with BC66 and BG96 respectively. The difference is that Quectel
places a restriction on their available network operators so that they can be sold in different regions.
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(a) BC35/BC95 shield (b) ME3616 shield (c) SARA-R410M-02B shield

(d) BC28 shield (e) BG96 shield

Figure 4.5: NB-IoT UE module shield boards.

Real-time benchmark mode. In the benchmark mode, NB-Scope allows one to interact

with and analyze the energy performance of the NB-IoT modules in real-time. This is

achieved by installing the module shield board on an IO extension board. It supports a

wide range of measurement capabilities via connecting to a computer. For example, the

developer can emit the AT command and observe the UE behavior immediately. In this

case, the UART ports, including the main AT and debug log export functionalities, are

routed to the USB-Serial adapters. We use a Monsoon HVPM [41] to measure the current

consumed by the NB-IoT node. In this manner, the user can easily know when specific

events occur and how they introduce the variation in the current.

Field test mode. We design amainboard to host the UEmodule board, as shown in Figure

4.6, to enable real-world deployment. It is essentially a lightweight and low-power NB-IoT
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Figure 4.6: STM32-based mainboard for NB-IoT field test.

application node that logs the current and the debug logs into a micro SD card for offline

analysis. The mainboard carries an 84MHz STM32F103 series chip as the processing unit,

a temperature and humidity sensor, a current sensor, an EEPROM, and a micro SD card.

Another important feature of the field measurement node is the capability of current

sensing with a Texas Instruments INA226 chip, which is capable of up to 7,600 16-bit res-

olution samples per second, with an error rate of less than 2% at the tens or hundreds of

mAmagnitude. Moreover, the node is powered by either a single or a pair of 18650 Li-ion

batteries, supporting the node measurement for up to 1,000 packets.

4.3.3 NB-Scope Software Design

Figure 4.7 shows the architecture of NB-Scope software stack, which consists of three

pipelines for data collection, module control, and data processing, respectively.

Data collection andmodule control. The data collection component of NB-Scope receives

debug logs and current measurement samples from the shield board, and then stores col-

lected data in an SD card. Both current measurements and debug logs are timestamped so
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Figure 4.7: NB-Scope software architecture (field test mode). The debug log collection
pipeline is similar to the current sensing pipeline, thus is not shown in the figure.

that they can be later aligned in the time domain to enable energy performance diagnosis

of radio access.

The module controller of NB-Scope allows users to compose control logic of the NB-

IoTmodulewithout knowing low-level details of chip commands, whichmay differ across

differentNB-IoTmodules. It achieves this by abstracting basic functionalities of the control

logic as atom functions, which are then exposed as unified APIs to hide module-specific

implementations. For example, different modules may define different AT commands to

turn the module into airplane mode. We implement low-level APIs for each module. As a

result, the user can control all themodules via the high-levelAPI at_enable_airplane_mode(),

without being concerned with the implementation details. New modules can be easily

added to the library by implementing the corresponding atom functions in the library.

Using the APIs, we further develop a group of representative NB-IoT applications and

services, such as environmental sensing, uplink packet sending, downlink packet pars-

ing, current sensing, SD card R/W, etc.

Data processing pipeline. The data processing pipeline first decodes debug logs using

a backend service, as exemplified in Figure 4.8, which handles and hides subtle seman-
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{
“Sequence Number”: “17888”,
“Timestamp”: “1781098683”,
“Message ID”: “LL1_RAR_UL_GRANT”,
“Source Layer”: “LL1”,
“Destination Layer”: “LL1”,
“Length”: 24,
“RAR PDU”: {
“subcarrier_ind_nsc”: 1,
“pusch_start_subframe”: 12,
“modulation_coding_scheme_tbs”: 88,
“repetition_number”: 1,
“subcarrier_space”:

“SUBCARRIER_SPACE_15_KHZ”,
“modulation_coding_scheme_imcs”: 2,
“modulation_coding_scheme_itbs”: 0,
“modulation_coding_scheme_qm”: 2,
“subcarrier_ind_isc”: 0,
“subcarrier_ind_len”: 1,
“resource_unit_number”: 1,

},
“result”: “LL1_STORE_RAR_SUCCESS”,
“expected_rapid”: 33

}

Header (Preamble) (5B)
Sequence
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Timestamp (4B)

Message ID(4B) Src
Layer
(1B)

Dest
Layer
(1B)

Length
(2B)

Payloads

Segmentation

Index

.... 2544 4247 3ae0 4500 00bb 6829 
6a61 023d 0420 003d 0060 0202 0218 
0001 0000 000c 0000 0058 0001 0001 
0200 0200 0101 0000 2100 00.. ....

Message
Definition
Database

Raw message (Hex)

Structured message (Hex)
Decoded debug message

Figure 4.8: Message decoding example. The raw debug log data is first segmented into
different fields by the byte length, and then is translated to human-readable texts
according to the message definition database.

tic difference among the debug logs of different NB-IoT modules. Specifically, the task of

debug log decoding is two-fold. First, the decoder needs to dissect a radio access cycle

and determine the timing of each phase (such as contention, control message, data trans-

mission, receiving, and idle). Second, the decoder needs to extract the configurations and

performance of the NB-IoT network, such as transmission schedule, RSRP/SNRmeasure-

ment, ECL selection, and block error rate, which allow for fine-grained diagnosis of their

impacts on the energy of UE.

To understand energy consumption in different radio access phases, NB-Scope first

splits continuous current measurements using a threshold-based method and then asso-

ciates each part of the current with a radio access phase based on the timing information

decoded from debug logs. A major challenge in this step is that some NB-IoT modules

may not produce debug logs for radio access phases. To address this issue, we first utilize

the synchronized current and debug traces from the UE with debug log output to train
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an algorithm to determine the state transition, triggered by the current pulse width and

amplitude in time sequence. In this algorithm, we mainly focus on the Tx states, includ-

ing MSG1, MSG3, ACK and Data. As discussed in Section 4.2, the occurrences of the states

during the packet uplink transmission follow a specific order. For example, once we find

the MSG3-ACK, we can immediately declare that the next state is Data. One intuitive simple

forward labeling algorithm, from MSG1 to Idle, is to leverage the state transition rules to-

gether with the state features, e.g. current magnitude, pulse width. However, some states

repeat (i.e. re-transmission) due to bad signal quality or failure in receiving the ACK from

the eNodeB. Therefore, we utilize other passive states, such as Idle and Inactvitity as

auxiliary anchors to determine the Tx states. Moreover, we propose a bi-directional state-

machine-based labeling algorithm, which divides the uplink process into two parts by the

start time of Data and leverages the state transition rules and features of both forward and

backward directions to increase the labeling accuracy. By segmenting the current accord-

ing to the states, we can obtain a detailed picture of the power consumption for each state

for modules either with or without the debug trace capability. The results of the current

labeling algorithm are discussed in Section 4.4.4.

4.4 NB-IoT Measurement Study

In this section, we conduct the measurement in the wild massively with NB-Scope and

analyze the energy performance in fine granularity. At a glimpse, our measurement de-

ployment lasts 3 months and consists of 30 NB-Scope nodes on NB-IoT networks from

major operators in 3 regions, including two major cities in China and a mid-sized city in

the US.

The road map of the measurement study first starts from planning the experiments to

address the heterogeneity in location, network operators, and module vendors. Then, we

analyze the UE energy consumption w.r.t to these factors and identify a substantially high

UE power consumption imbalance. Next, to understand the causes of the high energy
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variance, we analyze the ECL ratio in deployment and reveal its selection mechanism.

Next, a fine-grained energy decomposition is conducted, by which we identify two heavy

network control overheads: long tail due to large Inactivity Timer and the excessive

RA message repetition. By in-depth study on these two factors, we show the opportunity

of optimizing them to save UE power. Finally, the UE battery life is estimated with the

measurement study results.

4.4.1 Field Measurement Methodology

NB-IoTmeasurement is fundamentally different from LTE cellular networkmeasurement,

where the latter could be conducted throughmobile applications [50,52] installed onmas-

sive mobile devices. In contrast, an NB-IoT node must be physically deployed to measure

network performance in place. As discussed in Section 4.3.2, we build a series of NB-IoT

modules to address the vendor heterogeneity. In addition, we still face two challenges in

conducting a large-scale field measurement of NB-IoT networks. First, NB-IoT enables a

wide range of applications with high spatial diversity, from indoor to outdoor, from the

rural area to the metropolis downtown area. Our results may include significant bias if

the deployment of measurement nodes could not cover the wide spectrum of these ap-

plications. Second, there usually exist multiple network operators in the same area, of-

fering different rates, services, and IoT backend platforms. Each network operator has

its network configurations, which may affect the measurement results in terms of power

consumption, network coverage, etc.

To mitigate the impact of biased location selection on our measurement results, we

choose the measurement location by types of applications. Specifically, five common NB-

IoT applications2 are selected in this work: outdoor parking, indoor parking (ramp), smart

door lock, smoke detection, and smart water/electricity meter. These applications repre-

sent a class of typical locations, ranging from outdoor open areas to residential/office
2Wemainly focus on stationary applications in this work. Mobile applications, such as cold chain track-

ing [89] or shared bike service [74], are left for open problems.
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indoor environments and basement. We refer them to as “location profiles” in the rest of

this chapter. Figure 4.9 exemplifies the location profiles of the measurement node deploy-

ment.

(a) Outdoor parking (b) Indoor parking

(c) Smart lock (d) Water meter

Figure 4.9: Actual node deployment of different location profiles.

Second, we conduct our field measurement in three regions: two major cities in China

and a mid-sized city in the US. In each of the three cities in China, we measure the net-

works of two different major operators referred to as “CN-OP1” and “CN-OP2”, while

the network of only one operator, “US-OP1”, is measured in the US. Because different

operators may differ in the coverage, we choose multiple (≥ 10) locations to deploy our

nodes for each network operator, such that the variance of the UE performance due to

environmental and operator-specific factors could be captured in the results. To evaluate
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the performance of UEs from different vendors, we deploy at least three types of UEs for

each operator at each spot.

In summary, our deployment covers 5 location profiles, each consisting ofmore than 10

measurement spots. At least 6 nodes are deployed at eachmeasurement spot in China, cor-

responding to the Cartesian product of the 2 network operators and the 3 modules (BC26,

BC28, and ME3616). We choose BC66, BG96, and SARA-R410M-02B NB-IoT modules in

the US, running on the US-OP1 network.

Finally, we discuss the setting of UL communication in our deployment. Since the

power drain for the PSMmode is highly predictable and negligible, we focus onmeasuring

the behavior of UE when it is awake. In each round of UL transmission, the UE wakes up

from PSM, searches and attaches to an NB-IoT network, carries out a UL packet transmis-

sion following the radio access procedure described in Section 4.2, and then goes back to

PSM for 10 seconds. At eachmeasurement location, the above procedure is repeated for 25

to 30 UL packets, usually lasting about 30 minutes. For NB-Scope nodes deployed around

the same measurement spots, considering the short UL transmission time (1-3 seconds),

the interference due to the node concurrent UL transmission is negligible. Even though

two or more nodes may initiate random access simultaneously, the contention can be re-

solved by eNodeB (see Section 4.2) by scheduling different resource units for those nodes,

which avoids possible mutual interference for the subsequent MSG3 and data transmission.

Due to the small number of UL packets and the low duty cycle of NB-Scope nodes, the

impact of our measurement campaign on the NB-IoT network is negligible.

4.4.2 Measurement Result Analysis

Following the methodology described in Section 4.4.1, we built 30 NB-Scope nodes of 6

different types of modules3, and then conduct a large-scale field measurement by moving

them around over 1,200 locations during a three-month measurement campaign, collect-
3There are 30 mainboards and 30 shield boards that are assembled. An NB-IoT node consists of a shield

board and a mainboard plugged together.
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ing more than 49.0 GB data including current traces and debug logs for more than 36,000

UL packets, where each current trace and debug log is recorded for a complete radio ac-

cess cycle, from issuing a packet transfer AT command to entering PSM. We now present

the statistical results from the measurement study. In particular, our results reveal that

the UE battery life can be highly imbalanced in a real-world deployment. The causes of

such high energy imbalance are analyzed in detail through Section 4.4.3 to Section 4.4.6.

4.4.2.1 Power consumption w.r.t location profiles

We first compare the UE power performance under different location profiles for different

network operators. As shown in Figure 4.10a, as the deployment location changes from

open areas to semi-indoor then to the basements, the mean active energy cost per UL

packet transmission increases significantly. Specifically, with CN-OP2, the indoor park-

ing nodes consume about 2.7x more energy than the water metering nodes to transmit

one packet.

In addition to energy variance across different applications, we also notice high energy

imbalance within each location profile. In particular, for most indoor applications, the

75th percentile of node energy consumption can be up to 3 times higher than the 25th

percentile. In water meter and smoke detection profiles, the ratio of the highest and

lowest energy consumption of different nodes can be up to 75:1. This may result in

network partitions, because a portion of the nodes consumes significantly more energy

than their peers, leading to highly imbalanced battery life. Moreover, we observe that the

specific location of an indoor UE (e.g., the distance to the building walls) does not show

a significant impact on energy consumption, as exemplified in Figure 4.11. For instance,

some UEs in the basements yield low energy consumption. This is because, as indicated

by our measurement, the operators usually deploy indoor micro-cells in the buildings,

providing local NB-IoT access.
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Figure 4.10: Mean active energy per packet distribution by location profiles and network
operators. The upper and lower error bar are at most 1.5x interquartile range away from
the 75th and 25th percentile respectively. OP: outdoor parking, SL: smart lock, WM:
water meter, SD: smoke detection, IP: indoor parking.

4.4.2.2 Power consumption w.r.t network operators

From Figure 4.10a, we observe that, for the same location profile, the network operators

have a non-negligible impact on the packet energy. For example, nodes of US-OP1 yield

the lowest energy consumption and variance in most location profiles. For example, the

packet energy in smart lock location profiles is only 1 J on average. For a fair comparison

between network operators in the two countries, we further study the energy performance

of a pair of NB-IoTmodules, namelyQuectel BC26 and BC66, which are deployed in China

and the US, respectively. We note that both BC26 and BC66 adopt the MediaTek MT2625

chipset, thus allowing us to exclude any measurement bias introduced by the heterogene-

ity of modules. In Figure 4.10b, we observe that, in most applications, BC66 deployed in

the US has relative lower energy consumption and variance than BC26 deployed in China,

which is consistent with the results shown in Figure 4.10a. We also observe less deviation
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Figure 4.11: Average power consumption per packet transmission for indoor applications
in a building. Note that some co-located points may be on different floors.

Table 4.2: eNodeB Configurations of different Network Operators. MSG1 repetition and
ECL threshold are not available in the debug logs of NB-IoT modules deployed in the US.

Operator US-OP1 CN-OP1 CN-OP2
MSG1 Repetitions in ECL0/1/2 N/A 2/8/32 2/8/32
MSG3 Repetitions in ECL0/1/2 1/2/8 1/2/32 1/2/32
ECL Threshold N/A -107, -117 -109, -119
Inactivity Timer 3s 20s 20s
Band 13 5 8

in the packet energy distribution in US-OP1, while the BC66 (in CN-OPs) spends signifi-

cantly higher energy than average.

To further understand why node energy consumption varies significantly across dif-

ferent operators, we list the eNodeB configurations of different operators in Table 4.2. We

notice that CN-OP1 and CN-OP2 employ more conservative configurations featured by

prolonged Inactivity Timer and excessive MSG3 repetitions, which improve the UL link
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reliability but result in relative higher node energy consumption. We will show in Sec-

tion 4.4.5 and 4.4.6 that Inactivity Timer and MSG3 repetition have critical impacts on

UE energy consumption, leaving a significant space for optimization. Although US-OP1

outperforms CN-OP1 and CN-OP2 in terms of energy performance, our efforts in iden-

tifying the energy loopholes are still important, because on one hand, not all network

operators adopt the same configuration as US-OP1; on the other hand, an energy-efficient

configuration may come at the cost of lower link connectivity under bad signal quality. So

each network operator should set the configuration with a desirable trade-off between the

network coverage and the node lifespan.

4.4.2.3 Comparison of NB-IoT modules

The NB-IoT modules employed in the field test demonstrate noticeable differences. We

plot the performance of theNB-IoTmodule in the smoke sensing location profiles in Figure

4.12. We number these modules without showing their models to conceal the identities of

vendors.

First, from Figure 4.12a, we can see that themaximum current in a UL packet transmis-

sion cycle varies significantly. For example, module M1 has a higher maximum current

than all other modules, while M5 tends to place a small upper limit on the maximum

current. We note that NB-Scope measures the power consumption of the hosted NB-IoT

modules instead of the entire board. This allows us to exclude the impact of board de-

sign features. Therefore, the variations of power consumption between different modules

reported in Figure 4.12a should be largely attributed to the different designs of NB-IoT

modules. We note that the different maximum currents of modules can cause a signifi-

cant energy variance. In a typical UL packet cycle, the total transmission period usually

lasts 2.8 seconds. Suppose the maximum current difference between two modules is 100

mA, the energy difference during the transmission period can be 0.92 J (assuming 3.3 V

voltage), which yields significant energy difference in the long term. We note that a lower
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Figure 4.12: Performance of different models in smoke sensing location profile. M1-M3
are deployed in the US, while M4-M6 in China.

maximum current can lead to degradation in the packet delivery rate, as shown in Figure

4.12b. In such a case, the energy waste from the loss packets should not be overlooked.

Second, we confirm again in Figure 4.12c that the nodes in ECL2 have significantly higher

energy than in ECL0 and ECL1, for the majority of the NB-IoTmodules, which means that

the energy imbalance is primarily introduced by the ECL instead of the module. Finally,

we can see from Figure 4.12d that almost all the modules can finish transmitting 20 pack-

ets (assume the sleep timer is 10 seconds for all modules) in about 20-30minutes, meaning
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that generally, the NB-IoT has a similar level of latency.

Moreover, we notice that some modules have difficulty in cell searching and network

attaching. For example, one of the modules fails in attaching the network in 20 out of the

125 spots, while the other modules under the same network configuration succeeded.

The modules can vary in many other aspects, such as SNR, block error rate, ECL se-

lection strategy, cell selection approach, and so on. While we cannot exhaust all these

variances, our results above suggested that the diversity in the performance of different

modules has an important impact on the development and deployment of large-scale NB-

IoT systems.

4.4.2.4 Temporal variation of power consumption

We study the temporal variation of node energy consumption by deploying 3 different

modules in 3 location profiles and then measure their energy per UL packet transmission

in a period of 12.5 hours.
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Figure 4.13: Distribution of the packet energy in a 12.5-hour period.

Figure 4.13 plots the distribution of energy consumption per UL packet. We observe

that all nodes experience large energy variance over time, especially for nodes in the loca-
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tion profile of the water meter, where the maximum per packet energy consumption can

be 45 times higher than the minimum value. We found that the major reason is that the

RSRP in the indoor location profiles has a significant variance. Even the nodes are station-

ary during measurement, the wireless quality is highly dynamic. Once the node chooses

ECL2 to perform radio access, the energy can increase significantly. We will further ana-

lyze this in the later sections.

4.4.2.5 Power consumption v.s. distance to eNodeB

To study the impact of distance to eNodeB on UE energy consumption, we conduct a mea-

surement in an outdoor area, where a UE is deployed at the line-of-sight (LoS) path of the

eNodeB, and then moved away from the eNodeB at a step of 100 meters until the connec-

tion is lost. In each step, the UE is configured to transmit 15 packets.
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Figure 4.14: Packet energy w.r.t the distance between the UE and the eNodeB.

Figure 4.14 plots the energy per packet (Inactivity period excluded) and the RSRP

of UE as a function of distance to eNodeB. As shown in the figure, the energy per packet

demonstrates a rapid surge after theUE ismoved to 0.8 km away. In particular, the average
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per-packet energy at 1.2 km is about 28x higher than that at 0.1 km. We also observe that

per-packet energy has a strong correlation with the ECL of UE. Specifically, during the

measurement, we observe that the ECL of the UE remains in ECL0 in the range of 0.1-0.7

km consistently, and then drops to ECL1 and ECL2 after 0.8 km, which explains the drastic

surge of per-packet energy between 0.7-0.8 km. We will study the impact of ECL on UE

energy consumption in more depth in Section 4.4.3.

4.4.2.6 Measurement summary

First, by decomposing the energy consumption by location profiles, we see that different

applications may have significantly different energy consumption. In some applications,

such as indoor parking, there exists a significant energy imbalance among the nodes. Sec-

ond, we notice that the network operators play an important role in energy consumption

because not only the network configurations may cause different UE behaviors, but also

the cell deployment can be one of the decisive factors for node signal strength. Third, dif-

ferentmodules in the same spot can consume energy at different rates due to the hardware

design and chipset implementation. Finally, the distance to the base station can also im-

pact energy consumption. Particularly, we notice a sharp transition of energy consumption

with respect to the node-cell distance, which is caused by the ECL mechanism in NB-IoT.

We will further discuss the impact of ECL and present the detailed energy breakdown

to diagnose the causes for the UE energy behaviors in the rest of this section.

4.4.3 The Impact of ECL

The results in Section 4.4.2 show that heterogeneity of modules, location profiles, and net-

work operators can affect the node energy consumption to different extents. As a result,

the nodes have a significant energy imbalance, where the nodes under the same type of

location profile drain energy at a distinct rate. From the energy v.s. distance experiment,

we see that ECL can be one of the major factors that cause such an imbalance. Since the
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Figure 4.15: ECL ratio w.r.t location profiles and network operators.

NB-IoT network relies on the ECL to determine the Tx power, theUEdrains different levels

of energy under different ECLs. Therefore, we first diagnose the high energy consumption

and variance of UEs shown in Section 4.4.2 and the role of ECL. To this end, we decompose

the ECL distribution and correlate it with the energy profiles. The ECL histogram is plot-

ted for each location profile in Figure 4.15. We observe that the UE selects ECL0 and ECL1

in a majority of the outdoor locations. However, for indoor parking, building corridors,

and water meter deployment spots, ECL1 and ECL2 begin to dominate. This is expected

because the eNodeB base station signal will be attenuated by the concrete walls before

being received by the UE. A notable outlier is the indoor smart lock location profile with

US-OP1. The reason is that, as indicated by our measurement, US-OP1 installs micro-cells

in the building corridors, leading to a better signal strength around the doorway. For ex-

ample, the building in Figure 4.11 is covered by up to 11 eNodeBs, while only 3 of which

are the outdoor macro base stations. Therefore, the smart lock nodes usually receive a

strong RSRP, leading to the dominant ECL0 selection. Overall, we note that although the

ratio a node runs under ECL2 is relatively smaller than that running in ECL0 and ECL1 in

all location profiles and operators, the energy consumption in ECL2 is still significant be-
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cause UE in ECL2 suffers up to 4 times higher transmission power consumption than that

in ECL0 (as shown in Figure 4.12). The problem is particularly acute in indoor scenarios,

where the ratio of ECL2 is much higher than that of outdoor.
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Figure 4.16: ECL selection v.s. RSRP and SNR measurement.
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Understanding the ECL selection mechanism is important. As mentioned in Section

4.2, the UE decides its Tx power adaptively by itself based on the channel RSRP. Since

UE consumes much more power in ECL2 than ECL0 and ECL1, we are interested in the

factors that affect the selection of ECL. According to the 3GPP specification, the UE de-

cides its ECL by comparing the latest RSRP with the two thresholds given by the eNodeB.

However, the actual ECL determination algorithm is not specified and the implementa-

tion is up to the NB-IoT modem manufacturers. For example, the debug traces indicate

that the UE also relies on the SNR to determine the ECL, as shown in Figure 4.16. As we

can see, it adopts intuitive hard SNR and RSRP thresholds to decide the ECLs, forming

one rectangle and two L-shape regions on the SNR-RSRP 2-D space. Such a naive ECL

determination algorithm is likely to introduce energy waste due to several reasons. First,

the selected thresholds may not be optimal, such that a higher ECL is utilized to transmit

the packet that could be potentially uploaded with less random access resources. Second,

such a fixed mapping between the (RSRP, SNR) pair and ECLs cannot adapt to complex

dynamic wireless environments due to the heterogeneity of signal propagation. Ourmea-

surements show that the (RSRP, SNR) pairs in outdoor locations, such as outdoor parking,

concentrate around the top right corner of Figure 4.16, while the semi-indoor locations,

such as smart lock, smoke detection, and smoke detection, have large RSRP and SNR vari-

ance, spanning across the figure from top right to bottom left, which explains their larger

ECL1 and ECL2 percentages in Figure 4.15. Moreover, in other indoor locations, such as

indoor parking, (RSRP, SNR) pairs focus on the bottom left area with lower variance than

the semi-indoor locations, which leads to a higher chance of selecting ECL2. We note that

higher variance of RSRP and SNR usually causes higher energy imbalance, but not neces-

sarily higher maximum energy consumption.

Fortunately, the UE has another strategy in choosing the ECL called “ECL by next

level”, where the UE adopts a higher ECL after the random access failure using the lower

one. This is a desirable feature at the first glimpse because it opts for a parameter set that
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has a higher probability of succeeding the random access, such as increasing the Tx power

or message repetitions. However, if the higher ECL is proven to be a better choice, then

the power consumption spent on the previous attempts is wasted. Our measurement re-

sults show that there is about 5% probability on average that the UE chooses the ECL

by RSRP measurement but fails in RA. Therefore, the existing ECL selection strategy

in the current UE can be potentially improved to avoid energy waste due to choosing an

inappropriate ECL.

To further understand the ECL variance across location profiles, we plot the Gaussian

kernel density estimation (KDE) contours of their SNR and RSRP in Figure 4.17. As shown

in the figure, the locations of smoke sensing, smart lock, and water meter have large vari-

ation in RSRP and SNR, while the indoor and outdoor parking have more concentrated

distributions. This is consistent with the results shown in Figure 4.15. We note that a large

variation of signal quality metrics would result in severe energy imbalance among the

nodes, resulting in potentially higher maintenance costs.

4.4.4 Energy Consumption Breakdown

One of the key features of the NB-IoT network is the promise of long battery life, up to 10

years. NB-IoT UE adopts several techniques to minimize the energy consumption, includ-

ing coverage-level-based power control, eDRX, and PSM. Our results in Section 4.4.2 showed

that the UEs suffer from high energy drain in signal-limited environments, such as indoor

and underground facilities. Understanding how the energy is spent and identifying pos-

sible energy loopholes in the NB-IoT network is thus of great importance. In this section,

we present our observation in breaking down the NB-IoT UE power consumption under

different signal conditions.

We first present how the typical current varies with the time under different ECLs in

Figure 4.18. The right column shows a complete packet UL Tx cycle. As we can see, there

are four distinct current patterns in the current profile: (1) The period with the highest
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Figure 4.18: The typical power consumption profiles under different ECLs. The left
column shows the UL packet Tx current profile for each ECL. The right column shows
UE’s power profile in a complete packet Tx cycle.

magnitude and pulse width, when both the Tx and Rx are turned on. (2) around 60 mA,

distributed across the majority of the time, when only the Rx is turned on to receive DL

messages. (3) around 20 mA, which is the base module power without either Tx or Rx. (4)

less than 1 mA, where the module enters PSM mode or eDRX mode to preserve energy.

The UE current switches between these current patterns frequently during the span of

packet transmission, due to the numerous message exchanges and state transitions. How-

ever, it is hard, if not impossible, to determine what messages are delivered to the UE and

what causes the variation of the current by relying only on the current profile. Therefore,

we align the current and the debug logs in time, using the NB-Scope real-time benchmark-

ing function, as described in Section 4.3.

As we can see in Figure 4.18, a complete packet cycle consists of the same procedures

among the three ECLs. MSG1, MSG3, ACK, packet data, and RRC Connection Release Request

are transmitted one by one, and theUE listens to the DL channels between thesemessages.

The left column shows the zoom-in packet UL Tx current profile, which is the distinct part

between different ECLs.
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To beginwith, theUE turns on its receiver to acquire the system information blocks and

synchronize with the network, preparing for the random access. Then it follows the pro-

cedures discussed in Section 4.2 to establish the RRC connection for uploading the packet

data. To transmit the packet with the same size, the UE in ECL0 consumes a lower current

and less time, while in ECL1 the UE transmits the data with a slightly longer time and

higher current. However, the ECL2 requires the UE to transmit the data at its maximum

power capacity, with an extended time for repetition, which introduces significantly high

power dissipation. It turns out that the transmission of MSG3 varies significantly among

these three ECLs. We acknowledge from the debug log analysis, that the MSG3 pulse width

tMSG3 in ms is calculated by

tMSG3 = NREP × (NRU × 8)

where NRU is the allocated number of resource units; NREP is the number of scheduled

repetitions of the resource unit. The network diagnostic traces for CN-OP1 and CN-OP2

show that, for ECL0, 1, 2, the NRU are 1, 3, 4 respectively, while the NREP are 1, 2, 32 re-

spectively, meaning that MSG3 current in ECL2 has significant higher pulse width than the

other two coverage levels. Overall, there is a 4 dB coverage gain (1 dB when the repeti-

tion doubles) by increasing the repetition from 2 to 32, while the power consumption is

16x higher. The lack of a transition zone renders the power consumption between ECL1

and ECL2 deviate dramatically. Moreover, the node in ECL2 transmits at its maximum Tx

capacity without power control. The wide pulse and the high current magnitude are the

two reasons for the high energy consumption under ECL2 random access.

One can also notice from the figure that there is a long tail in the current profile, in-

troduced by the passive DL channel listening. We refer to this period as an “Inactivity”

state because its length is specified by a timer called Inactivity Timer, configured by the

eNodeB. The RRC connection between the UE and the eNodeB is still active during this

period, but the UE does not perform any uplink transmission. Our analysis of the debug

traces indicates that the UE turns on the reception module regularly to listen to the down-
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Table 4.3: Power consumption breakdown (mean and standard deviation) by radio access
procedures in the UL cycle under different ECLs. Unit: mJ.

ECL Wake-up MSG1 MSG3 ACK Data Inactivity Release Idle Total
ECL0 109.43

(5.38)
5.61
(3.02)

7.05
(5.14)

2.57
(0.59)

55.68
(16.46)

3025.97
(180.46)

37.57
(5.68)

57.79
(20.67)

3301.68
(164.44)

ECL1 107.28
(11.32)

52.68
(65.30)

23.94
(9.70)

8.90
(3.33)

102.84
(31.60)

3364.03
(250.96)

22.10
(7.76)

73.19
(20.49)

3754.98
(238.16)

ECL2 108.05
(19.91)

184.16
(72.74)

407.05
(52.37)

56.33
(11.26)

228.55
(29.29)

3616.66
(370.27)

147.62
(192.78)

83.06
(20.60)

4831.47
(409.96)

link channels for the broadcasted network configuration, or wait for possible downlink

packets. It may also perform cell searches. However, we could not find any evidence in

the debug log of how the UE utilizes the information collected during this period. This is

surprising because the UE may waste significant energy during the long tail. We also

note that the Inactivity state is present in all ECLs.

After the long tail Inactivity period, the UE starts another random access procedure,

including sending MSG1 and MSG3, to inform the eNodeB that the UE is ready to release

the RRC connection and enter Idle mode. These are the final two Tx events before a UE

finishes a UL packet cycle. Since it follows the same process as the initial random access,

the UE may choose the ECL2 resources to access, observed in many current logs, leading

to extra power consumption.

To quantitatively characterize the partial energy contribution in the UL packet trans-

mission cycle, we calculate the energy according to the time segmentation derived from

the debug logs, as shown in Figure 4.19 (detailed in Table 4.3). We see that the Inactivity

period can occupy up to 90% of the packet energy in ECL0, while the energy consumption

of MSG3 Tx in ECL2 is significantly high, compared to that of ECL0 and ECL1. The total

energy of an ECL2 packet can be about 1.46x and 1.29x more than the ECL0 and ECL1 re-

spectively. However, if we ignore the largest part, namely the Inactivity period, the UE

in ECL2 consumes 4.41x and 3.11xmore energy than ECL0 and ECL1 respectively, which

would cause severe imbalance battery life among the NB-IoT nodes in the long term.
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Figure 4.19: Averaged energy consumption breakdown by radio access procedures and
ECLs. The wedges are arranged clockwise according to the legend. The exploded
wedges require UL transmission.

4.4.5 Impact of the Inactivity Period

From the energy breakdown above, mitigating the Inactivity energy waste is important

to prolong the UE battery life. Inactivity Timer is configured in eNodeB to indicate that

the UE does not have any downlink and uplink traffic within this period. The objective is

to reduce the UE energy consumption by preventing it from staying in the RRC connected

status for too long. From that perspective, we can conclude that the current configuration

in the eNodeB is suboptimal. For example, the two network operators in China set the

timer value as 20 seconds, while the US-OP1 chooses 3 seconds, which is one of the key

factors that contribute to the significant differences in packet energy in these two regions.

However, the negative effect of the long tail can be mitigated by a feature called release
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assistance indication (RAI) introduced in 3GPP Rel. 14 [68]. It is a short message sent by

the UE, informing the eNodeB that there is no more UL data and it does not anticipate

receiving further DL data, such that the RRC connection can be released earlier before

the Inactivity Timer expires. Accordingly, the energy waste during Inactivity period

can be avoided because the NB-IoT application developers can either skip the whole pe-

riod immediately if there is no DL packet to receive or skip it right after the anticipated

DL packets are delivered. However, optimizing the Inactivity Timer is still of great sig-

nificance for two reasons. First, some application developers may not be aware of such a

feature. Second, theNB-IoT network has beenwidely deployed since 2018, when the 3GPP

Rel. 14 has not yet been implemented in the commercial NB-IoT modules. One-third of

themodules used in our field tests do not include RAI control in their documentation. It is

believed that there exist numerous NB-IoT nodes on the market that do not support RAI.

For these legacy nodes, changing the Inactivity Timer on eNodeB would be a better

solution without requiring developers to manually update the firmware of UE.

We discuss our evaluation of changing the Inactivity Timer value in Section 5.2.

4.4.6 Repetition of Random Access MSGs

MSG1 and MSG3 are the two messages transmitted by the UE in the random access to in-

form the eNodeB about its connection requests and the required uplink resources. As

shown in Section 4.4.4, MSG3 transmission dominates the total energy consumption of up-

link transmission under ECL2. Unlike data packet transfer blocks, where every successful

block delivery will be acknowledged by the NB-IoT eNodeB, the random access MSG1 and

MSG3 transfer blocks are transmittedwith the fixed number of repetitionwithout stopping.

Although the NB-IoT node enjoys an increased coverage gain (1 dB when the repetition

doubles) from the repetition, the debug log analysis shows that the high MSG3 repetition,

which is a fixed number 32 in ECL2, is unnecessary, leading to significant energy waste.

We compare the repetition of the data transfer block with that of the MSG3 for more than
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2,300 packets, as shown in Figure 4.20. The results indicate that more than 66% of the

packets have more MSG3 repetitions than the data transfer block repetitions.
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Figure 4.20: The distribution of MSG3 repetitions v.s. data transfer block repetitions.

As plotted in Figure 4.20b, we notice that the data block repetition in most of the pack-

ets is 1, regardless of the ECL.Moreover, as indicated in ourmeasurement, the packet data

delivery rate, which is 100% in the majority of the tests, does not suffer too much from the

lowdata block repetition. Ifwe assume that thewireless channel quality remains relatively

stable during the short UL transmission period, the MSG3 repetition is significantly larger

than needed, providing an opportunity to reduce energy waste. From the eNodeB’s point

of view, it has to wait until MSG3 completes the repetition to proceed to the next step, even

if the message is already received. Since the MSG3 and the packet data share the NPUSCH,

the unnecessary repetition of MSG3may lead to network congestion or low throughput.

Additionally, although the exact number of MSG3 repetitions remains unknown due to

the absence of debug logs, the pulse width of MSG3 transmission by nodes of US-OP1 is

observed to be smaller (about 0.5x) than that of CN-OP1 and CN-OP2, which is another

factor that contributes to lower packet energy of nodes on US-OP1 than on the other two

operators as shown in Figure 4.10a.
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Figure 4.21: Battery life estimation under different conditions. “module” refers to only
the NB-IoT module energy; “total” includes the energy consumption of both the module
and other components on the board; “T” means Inactivity Timer.

4.4.7 UE Battery Life Estimation

Our fine-grained profiling of UE power consumption and the commodity eNodeB config-

urations allow us to estimate UE battery life in real-world deployments. The total packet

energy can be calculated by summing up the energy of the radio access phases, while each

phase energy can be tuned according to network parameters. We assume that the UE stays

in PSM when it is not transmitting. The UE voltage and battery capacity are 3.3 V and 5

Wh, respectively. We assume that the UE consumes 50 mA extra current, a typical energy

profile for an embedded system, to account for the power consumption of other system

components, such as MCU and onboard sensors, during the packet cycle. We then calcu-

late the energy during the packet transmission cycles. The battery life in days is estimated

by dividing the battery capacity by the energy spent per day, depending on the data traffic.

Figure 4.21 shows the estimated battery life under different ECLs, Inactive Timers.

First, the battery life decreases sharply with the number of packets transmitted. Second,
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consistent with our observation in Section 4.4.3, the coverage level plays a critical role in

the total energy consumption, and indoor UEs suffer significantly shorter life than their

peers in good signal coverage. We now use an example to illustrate the impact of bad cov-

erage levels. In a typical indoor parking monitoring system (which is one of the popular

NB-IoT applications [72]), suppose each node monitoring a parking spot transmits 5 pack-

ets during a workday and works under ECL2, the battery life is only 270 days. However,

this is an optimistic estimation, because the battery can be affected by various environmen-

tal factors. This would lead to frequent node replacement and highmaintenance costs. As

a result, it is of great importance to optimize UE power consumption. In particular, a

small amount of saved packet energy can lead to tens or hundreds of days of prolonged

node life. For example, considering the above scenario, if the Inactivity Timer is set to

3 seconds, the battery life extends to 440 days, which improves by about 63%.

4.5 Conclusion

In this chapter, we present NB-Scope – the first NB-IoT diagnostic hardware tool that sup-

ports fine-grained fusion of power and protocol traces, and a large-scale field measure-

ment study consisting of 30 nodes deployed at over 1,200 locations in 3 regions during

three months. Our studies show that NB-IoT nodes yield significantly imbalanced energy

consumption in the wild, due to poor network coverage level, long-tail power profile, and

excessive control message repetitions. Based on our estimation, the 10-year battery life

expectation is difficult if not impossible to achieve due to the heterogeneous factors that

shorten the battery life. Moreover, the hardware/software architecture of NB-Scope is

largely independent of the evolution of NB-IoT. Therefore, it provides a powerful tool to

instrument large-scale NB-IoT networks and will facilitate the understanding and opti-

mization of NB-IoT during its evolution.

Our study in this chapter focuses on the energy consumption of NB-IoT UE. By com-

bining the debug log with packet-level measurements, our tool NB-Scope can be used to
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instrument large-scale NB-IoT networks to study various factors related to network per-

formance such as reliability, latency, interference, etc. We leave these to open problems for

the research community.
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CHAPTER 5

NB-IOT NETWORK ENERGY OPTIMIZATION AND BEYOND

5.1 Introduction

Narrowband Internet of Things (NB-IoT) provides new infrastructure for the low-power

wide area network, targeting massive connection, deep coverage, and long battery life.

To achieve the 10-year battery life promise, NB-IoT adopts multiple energy-saving tech-

niques, including extended Discontinuous Reception (eDRX), Power Saving Mode (PSM),

and Enhanced Coverage Levels (ECL). However, the effectiveness of the energy preserv-

ing methods and the message signaling between the nodes and the base station was not

well-understood.

To understand the NB-IoT power consumption insights in the wild, in previous Chap-

ter 4, we propose the design of the toolset, NB-Scope, for NB-IoT network benchmark and

diagnosis. By large-scale measurements in the field, we present the energy consumption

profiles of the deployed NB-IoT networks by addressing the influence of various hetero-

geneous factors, such as location profiles, network operator, module chipset design, and

distance between the node and the base station. We reveal that the energy drain is sig-

nificantly imbalanced across these factors. This leads to short battery life and frequent

network partition, where some nodes may die out in a shorter time than their siblings.

As a consequence, the IoT application may suffer from high maintenance costs in battery

replacement, or data loss issues. By decomposing the energy consumption with respect to

data packet procedures, we show that the ECL mechanism, the long-tail timer configura-

tion, and the random access procedure can be blamed for the large energy consumption.

Fortunately, we find that the room for optimizing energy consumption from the NB-IoT

protocol is huge.

In this chapter, we first propose our experimental platform for studying the NB-IoT
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energy optimization, then we propose three energy optimization techniques. Particularly,

we optimize the Inactivity Timer and the MSG3 repetition count.Next, our evaluation in-

dicates that, by combining these energy optimizations, it is possible to save up to 66.4% of

the average power consumption. Then we propose three additional optimizations, how-

ever, evaluation via experiment is not yet possible due to the limitation in the hardware

features. Finally, we propose an updated version of NB-Scope hardware to support both

NB-IoT and LoRamodules, which opens new research opportunities for further exploiting

the emerging wireless infrastructures.

5.2 Methodology

Our measurements show that inappropriate configurations of eNodeB base station, such

as prolonged Inactive Timer and excessive MSG3 repetition count, cause a significant por-

tion of energy drain at UE. In current NB-IoT specification, Inactive Timer and MSGs rep-

etition count are determined and enforced by eNodeB as fixed values. In this section,

we explore the possibility of optimizing Inactive Timer and MSG3 repetition by eNodeB.

Our results provide important guidelines for network operators to optimize the power

consumption of UE devices.

Specifically, an optimal MSG3 repetition should assure reliable upload of MSG3 while

avoiding unnecessary retransmissions. An optimal Inactive Timer should minimize the

waiting time of UE after completing packet upload. Meanwhile, it should avoid down-

link packet loss, which occurs when the UE enters PSM or eDRX before the arrival of

downlink packets. Ideally, the Inactive Timer should be configured based on downlink

latency, which is determined by network round trip time (RTT) and the application server

processing delay.

Commercial eNodeBs are closed systems, which cannot be accessed for experiments.

To address this issue, we build an NB-IoT eNodeB testbed using software radios. We im-

plement the eNodeB by using Amarisoft LTE100 as baseband core, and employing a USRP
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Figure 5.1: The SDR eNodeB implementation, with Amarisoft LTE100 and USRP N210.

N210 with an SBX-40 as RF frontend, as shown in Figure 5.1. To emulate a commodity eN-

odeB, we configure our eNodeB using the same MSGs repetition and Inactivity Timer as

the commodity one, running at Band 5 (EARFCN=2530). The detailed configurations are

listed in Table 5.1. Our eNodeB achieves coverage of 1 km in open areas, which is compa-

rable to the coverage of commodity eNodeB. Then, we deploy 9 BC35 UEs in the network,

such that their average RSRPs are monotonically decreasing. Specifically, 2, 3, and 4 nodes

are set to work under ECL0/1/2 respectively.

In our experiment, the RTT is defined as the delay from issuing the packet uplink AT

command to the downlink packet delivery. The server replies with a DL packet immedi-

ately once it receives a UL packet. In total, there are 400 packets transmitted to a server on

the local Cloud.

To explore the impact of MSG3 repetition, we first try to decrease it in ECL2 from 32 to

16 in eNodeB, then further down to 8. Each UE in the network is programmed to transmit

50 UL packets per reconfiguration. If the MSG3 is delivered to the eNodeB, the UE receives

MSG4 and proceeds to data transmission. Otherwise, it retries random access from MSG1

again. Thus, we can quantify the effectiveness of the repetition configuration by calculat-

ing the probability of excessive MSG3 schedules in the nodes in the ECL2 coverage area.
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Table 5.1: List of eNodeB default configuration

Parameter Value
ECL0 ECL1 ECL2

NB-IoT mode Standalone
Band 5

Tx power (dBm) 15
EARFCN 2530

Inactivity Timer (s) 20
MSG1 Repetition 2 8 32
MSG3 Repetition 1 2 32

ECL RSRP threshold (dB) N/A -97 -107

5.2.1 Inactivity Timer Optimization Evaluation

Figure 5.2 shows the distribution of the RTT under different ECLs. As we can see, the

UEs in ECL2 typically have larger packet RTT than UEs of ECL1 and ECL0. Since the RTT

between the eNodeB and the application server is similar across these ECLs, the large

RTT in ECL2 is primarily due to the delay in the downlink transmission. Compared to

the 20-second timer value in CN-OP1 and CN-OP2, a timer value around 8 seconds can

save up to 60% of the energy consumption during the Inactivity period while 98% of

the ECL0 and ECL1 nodes and 81% of the ECL2 nodes can receive the DL packet before

the Inactivity Timer expires. Considering the portion of ECL2 nodes relatively smaller,

a more aggressive strategy is to further reduce the timer to 5 seconds, while the ECL2

nodes can release the RRC connection earlier and enable eDRX to listen to the DL paging

signal. The drawback of such an approach is the slight increase in the RRC connection

requests in the network. However, it is worth considering an extra 10% of the Inactivity

period energy can be saved. Our experiment aims to find a lower bound for the timer

configuration, as a proof of concept. We note that the timer value in commercial eNodeBs

should also consider various factors that may induce extra delays, such as node density,
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downlink traffic, and the RRC connection request traffic.
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Figure 5.2: Round trip time CDF in the evaluation experiment.
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Figure 5.3: Prob. of packets with MSG3 re-transmission w.r.t ECL2 MSG3 repetition.

5.2.2 MSG3 Repetition Count Optimization Evaluation

Our goal is to investigate the minimum number of repetitions that can still ensure a high

probability of one-time MSG3 delivery. The MSG3 retransmission probability is shown in

Figure 5.3. All the nodes in the figure are designated to work in ECL2, and their average
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Table 5.2: Mean energy consumption of the MSG3 period for different ECL2 MSG3
repetitions.

Node Rep. = 8 Rep. = 16 Rep. = 32
#1 170.93 (1.04) 350.68 (1.46) 807.68 (11.63)
#2 170.60 (1.10) 346.44 (1.33) 680.63 (2.59)
#3 173.40 (0.91) 347.98 (3.21) 838.31 (26.04)
#4 169.70 (7.32) 354.13 (5.09) 697.69 (3.41)

signal strength is decreasing from left to right. As we can see, when the nodes are in a

relatively good signal condition in ECL2, such asNode #1 and #2, different MSG3 repetitions

yield a similar MSG3 retransmission rate, which means the reduced repetition count can

still ensure delivery of MSG3 at the first attempt. We measure the energy consumption

of the MSG3 transmission to be 171.1/349.8/756.1 mJ for 8/16/32 MSG3 repetition counts

respectively on the test nodes. As a result, about 77% of the MSG3 Tx energy can be saved

if a UE succeeds in RA by using 8 repetition counts of MSG3. Therefore, our experimental

results demonstrate the feasibility of reducing the energy by using a lower MSG3 repetition

without hurting the random access success rate. However, when the signal continues to

attenuate, the MSG3 repetition number of 8 yields substantially higher random access retry

probability, as shown by Node #3 and #4, resulting in energy wastage.

By combining the two optimizations above, a UE in ECL2 can potentially save up to

66.4% of the packet energy consumption.

5.3 New Directions in Energy Optimization

Based on our measurement results, we now discuss several important design aspects that

can be considered by future NB-IoT specifications and chipsets for optimizing energy con-

sumption.
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5.3.1 Per-UE Inactivity Timer

Our results indicated that a cell-wise Inactivity Timer can lead to significant energy

waste for some UEs. A better solution would be to allow each UE to set the timer by

negotiation with eNodeB. A UE without DL traffic can release the RRC connection imme-

diately after the UL, saving a significant amount of energy. For example, a UE in ECL0

can save up to 90% packet energy by skipping the entire Inactivity period when it does

not expect any incoming DL packets. Moreover, a UE can update the timer based on its

measurement of network RTT or signal strength, which can achieve a desirable balance

between the energy consumption and the RRC connection re-establishment rate.

5.3.2 ECL Adaptation of UE

Our results showed that the simple threshold-based ECL selection policy plays a critical

role in the significant energy waste and imbalance of UE. We now discuss several ways to

improve the ECL decision algorithm. First, other metrics could be integrated with RSRP

and SNR to determine the ECL selection, including the block error rate which directly

measures the block transmission status. The UE may also refer to its ECL decision history

to explore better ECL choices. If the UE fails in using a lower ECL at certain channel

quality in the past, it may consider using a higher ECL in a similar channel condition,

avoiding the energy waste in the low ECL attempts. Finally, instead of responding to the

UL packet AT command immediately, the UE may postpone the random access for delay-

tolerant applications, waiting for a time windowwith better channel quality. We note that

the implementation of these policies would require the support of NB-IoT chipsets, e.g.,

allowing developers to access and override ECL decisions.
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5.3.3 Fine-grained ECLs

Our results showed that ECL2 yields significantly more energy consumption than other

ECLs, due to excessive control message repetitions and unnecessary random access re-

tries. To achieve a more desirable trade-off between energy consumption and random

access efficiency, we suggest including extra ECLs and finer-grained RSRP thresholds and

RA resource allocation between the ECLs. For instance, a UE in a relatively good signal

condition may choose a new ECL between the legacy ECL1 and ECL2, which entails a

lower repetition count of MSG3 to save power. We note that adding new ECLs may intro-

duce extra signaling between the eNodeB base station and UE.

5.3.4 Collaborative Energy Saving

The evolution of edge computing provides new opportunities for energy optimization.

Specifically, the nodes deployed in a wide area can upload their signal strength and block

error rate to the edge computing server. If the node supports mobility, then the signaling

can be associated with the geolocation in real-time. Then, by building the spatio-temporal

quality of service (QoS) profile from crowdsourcing, the edge computing server is able

to recommend the nodes for their next random access timestamp as well as the ECL for

random access. In this manner, the power-saving timer can be dynamically configured,

avoiding crowded channels, signal blind spots, or periods with low signal strength. We

note that this is difficult, if not impossible, if there are only hundreds or fewer nodes in

the area. Instead, when tens of thousands of nodes coexist in the area, the megatrends

underlying the LPWAN and the global knowledge of the massive connectivity will enable

the novel patterns for energy optimization.

5.4 Beyond NB-Scope

In this section, we present our upgraded NB-Scope design, which is referred to as NB-

Scope V2. It supports Long Range (LoRa) communication and in-situ diagnostic message
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decoding while inherits all the major functionalities from its predecessor.

5.4.1 In-device Signaling Decoding

One of the notable upgrades in NB-Scope V2 software design is the in-device debugging

message decoding. The original NB-Scope supports streaming the debugging messages

from the NB-IoTmodule to the SD card. However, understanding the real-time UE behav-

ior in the field-testmodewas not supported by the node. Retrospecting and reconstructing

the UE’s behavior are required to further analyze the network status.

Fortunately, the in-device message decoding is implemented in the latest version of

NB-Scope. To achieve this, first of all, we recompile and compress the debugging message

definition database using hexadecimal indices to allow for a storage-constrained embed-

ded system. Next, we implement the message decoder finite state machine (FSM) in the

MCU. Finally, by combining the message decoder and the message database, we achieve

real-time in-device debug message decoding, such that the device is aware of the compre-

hensive network status without the need of querying the NB-IoT module using the low

efficient AT commands. Enabled by this functionality, the node can not only explore real-

time dynamic control strategies to improve the communication efficiency but also able to

feed back the network status in the packet payload to the application servers for real-time

collaboration.

5.4.2 Towards the Coexistence of NB-IoT and LoRa

The NB-IoT network adopts a star topology, where the nodes only communicate with the

base station but not aware of their neighbor NB-IoT nodes. To address this, we upgrade

NB-Scope to version 2, as shown in Figure 5.4. One of the major hardware updates of NB-

Scope is to support the commercial inAIR9B LoRa module while backward compatible

with all of our NB-IoT shield boards.
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(a) NB-Scope V2 mainboard. (b) NB-Scope V2 node, with the inAIR9B module and the NB-IoT
shield board plugged together.

Figure 5.4: NB-Scope V2 hardware design.

By communicatingwith the neighbor NB-IoT nodes, the V2 nodes can establish amesh

network, which opens up new research opportunities. For example, we can achieve collab-

orative sensing, where multiple nodes finish the tasks by distributed consensus. It is also

possible to save much energy if the nodes in the ECL2 condition using the help of their

neighbor nodes with good signal conditions to route the uplink data packet to the server.

As shown in Section 4.4.4, the nodes in ECL2 consume up to 4.41x higher energy than the

nodes in ECL0. Therefore, such a multi-hop routing strategy is able to save energy signif-

icantly, and the energy imbalance can be substantially mitigated by using optimal routing

protocols.

The coexistence ofNB-IoT andLoRapowered byNB-ScopeV2provides a newparadigm

for the LPWAN research community.

5.5 Conclusion

In this chapter, we proposed two energy optimizations regarding the Inactivity Timer

and the MSG3Repetition, both ofwhich preserve the energy significantly. Specifically, up to

66.4% of energy can be saved for nodes under critical signal conditions. Then, we propose

4 different energy optimizations under the NB-IoT framework, providing new research

directions to the community. Next, we present our upgrade to theNB-Scope design, which

now supports in-device real-time diagnostic messages decoding and NB-IoT-LoRa dual-
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mode wireless communication. Our efforts open new paradigms for LPWAN research

and applications.
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CHAPTER 6

CONCLUSION

The wireless technologies have been evolved speedily, whose infrastructure is built and

delivered speedily. The fast growth of wireless networks generates not only opportunities

for new applications, but also issues in high energy consumption, unexpected latency, and

potential privacy breach.

In this dissertation, we propose two novel cyber-physical systems to demonstrate the

possibility of enabling new applications by leveraging the emerging wireless charging

infrastructures, and benchmark the energy performance of end nodes in the recently de-

buted NB-IoT networks, respectively.

First, we present QID, the first system that can identify a Qi-compliant device dur-

ing wireless charging in real-time using wireless charging fingerprints. QID employs a

2-dimensional motion unit to emulate a variety of multi-coil designs of Qi, which allows

for fine-grained device fingerprinting. With the novel mobile coil design and a set of novel

features, such as control error packet interval distribution and control error value distribu-

tion, QID achieves about 90% device recognition accuracy and almost 100% device brand

recognition accuracy. QID demonstrates the possibility of leveraging wireless charging

stations to identify mobile devices and track the users. With the prevalence of public

wireless charging stations, our results also have important implications for mobile user

privacy.

Second, we develop a novel benchmarking ecosystem, called NB-Scope, to study the

energy performance of the Narrowband Internet-of-things (NB-IoT) network. NB-Scope

adopts a hierarchical design, resolving the heterogeneity in network operators, nodemod-

ule vendors, and location profiles, to allow for the fusion of fine-grained diagnostic traces

and current measurement. The small form factors of the NB-Scope field test configuration

enable the agile and flexible deployment, which supports concurrent multi-spot measure-
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ment, making a fair comparison between the nodes with different settings. We then con-

duct a large-scale field measurement study consisting of 30 nodes deployed at over 1,200

locations in 3 regions during a period of three months. Our in-depth analysis of the col-

lected 49 GB traces showed that NB-IoT nodes yield significantly imbalanced energy con-

sumption in the wild, up to a ratio of 75:1, which may lead to short battery lifetime and

frequent network partition. By extensive data analysis, we identify several key factors

including diverse network coverage levels, long-tail power profile, and excessive control

message repetitions, that lead to high variance in the energy performance. Based on our

data, we conclude that the NB-IoT UEs are not able to achieve 10-year projected battery

life, even in the most optimistic scenario, which is noteworthy for the NB-IoT application

developers.

Third, we explore the optimization ofNB-IoT base station settings on a software-defined

eNodeB testbed and suggest several important design aspects that can be considered by

future NB-IoT specifications and chipsets. Overall, our work for the first time addressing

the energy performance of theNB-IoT network, providing insights for theNB-IoT research

and development communities. As our efforts to keep NB-Scope evolved, we propose its

successor, with both the hardware and software upgraded. By supporting in-device mes-

sage decoding and LoRa-NB-IoT coexistence, NB-Scope V2 provides new opportunities

for LPWAN research and applications.
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