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ABSTRACT

SIGN LANGUAGE RECOGNIZER FRAMEWORK BASED ON DEEP LEARNING
ALGORITHMS

By

Atra Akandeh

According to the World Health Organization (WHO, 2017), 5% of the world’s population have

hearing loss. Most people with hearing disabilities communicate via sign language, which hearing

people find extremely difficult to understand. To facilitate communication of deaf and hard of

hearing people, developing an efficient communication system is a necessity. There are many

challenges associated with the Sign Language Recognition (SLR) task, namely, lighting conditions,

complex background, signee body postures, camera position, occlusion, complexity and large

variations in hand posture, no word alignment, coarticulation, etc.

Sign Language Recognition has been an active domain of research since the early 90s. However,

due to computational resources and sensing technology constraints, limited advancement has been

achieved over the years. Existing sign language translation systems mostly can translate a single

sign at a time, which makes them less effective in daily-life interaction. This work develops a novel

sign language recognition framework using deep neural networks, which directly maps videos of

sign language sentences to sequences of gloss labels by emphasizing critical characteristics of the

signs and injecting domain-specific expert knowledge into the system. The proposed model also

allows for combining data from variant sources and hence combating limited data resources in the

SLR field.
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CHAPTER 1

INTRODUCTION

Deaf and hard of hearing people use sign language to communicate. Sing languages employ the

visual-manual modality to convey meaning, and they are challenging to be understood by hearing

people. Although making use of written communication or seeking help from a sign language

interpreter can ease the situation, each has its drawbacks in terms of availability or convenience. To

break the barrier between the hearing and the deaf, developing an efficient communication system

is a necessity. The development of sign language translation technology dates back to the early 90s

Fang et al. (2017). However, due to computational resources and sensing technology constraints,

limited advancement has been achieved over the years.

Early Sign Language Recognition (SLR) systems performed data acquisition using sensor-

based devices such as data gloves and accelerometers. These devices provide position, orientation,

velocity, and other specifics of the hands. However, due to the prohibitive costs of such approaches,

vision-based devices have been introduced. Microsoft Kinect, LeapMotion Controller, and Google

Tango provide RGB and depth-maps information, which can be used as an image-based input to a

framework.

Sign language is far more than just a collection of well-specified gestures, andmany factors need

to be taken into account when performing the Sign Language Recognition task. In character-level

SLR, dealingwith lighting conditions, complex background, signee body postures, camera position,

and subtle differences between different letters is challenging. In word-level SLR, occlusion,

complexity, large variations in hand posture, and variation in input length caused by signing speed

need to be considered. In sentence-level SLR, there is no word alignment, and temporal boundaries

of a specific word are not clear. Moreover, signs are context-dependent, and coarticulation in which

sign is affected by the preceding or following signs plays an important role.
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1.1 Objective

Language translation technology is still far from being practically useful. Developing successful

sign language recognition systems requires expertise in a wide range of fields, including computer

vision, natural language processing, linguistics, and deaf culture, which is often overlooked by

computer scientists Bragg et al. (2019). This work aims to provide a thorough study on SLR in

three character, word and sentence levels, their characteristics, challenges associated with each, and

how they have been approached previously.

Existing sign language recognition systems can only recognize a single sign at a time rather

than sentence-level recognition, making them less effective in daily-life interaction. This work also

develops a novel sign language recognition framework using deep neural networks, which directly

maps videos of sign language sentences to sequences of gloss labels.

1.2 Contribution

The contribution of this thesis is threefold: first, it thoroughly studies sign language recognition

in three levels of character, word, and sentence. In all three levels, two common input scenarios,

i.e., raw data and extracted features, have been explored and compared.

Second, it proposes a novel framework for sentence-level recognition consisting of a feature

extractor piped into a deep sequential network. The framework is capable of real-time translation

of American Sign Language into text.

Third, it combats limited data resources in the ASL field by combining different datasets from

variant sources. Since the proposed network is insensitive to dataset type, combining different

datasets boosts the network’s performance tremendously.

1.3 Thesis Overview

In chapter 2, we review two significant architectures, namely CNN and RNN. We also describe

transfer learning and connectionist temporal classification. We then present an overview of video

classification problems and provide a literature review on approaches taken by researchers in

2



this domain. In chapter 3, to investigate and model the temporal dynamics of sign languages,

we experiment with LSTM and implement slim variations of it proposed by Salem (2018). We

perform an excessive empirical evaluation on different datasets comparing these variants with

standard LSTM and obtain promising results. We then adapt what we learned in the SLR task. In

chapter 4, we introduce Mediapipe, an ML solution for live and streaming media that we leveraged

to extract discriminative information. In chapters 5, 6, and 7 character-level SLR, word-level SLR,

and sentence-level SLR are investigated, respectively. Starting with characteristics and challenges

associated with each one, we propose a novel architecture that successfully performs corresponding

tasks. Finally, In chapter 8, we conclude this dissertation by addressing essential gaps in the context

of sign languages and describe the possible directions for future work.
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CHAPTER 2

PRELIMINARIES

In this chapter, an overview of the key concepts that the following chapters rely on has been

provided. We first review deep learning in general and two major architectures, namely CNN and

RNN.We also describe transfer learning and connectionist temporal classification. We then present

an overview of video classification problems and provide a literature review on approaches taken

by researchers in this domain.

2.1 Deep Learning

The performance of discriminative models such as a classifier or regressor not only depends

on the classifier algorithm itself but also on the choice of data representation. Therefore, the first

step to fulfill the given task is to come up with a meaningful representation of data and then feed

them into a supervised predictor. Traditionally people tried to extract discriminative information

from the data by trial and error. They performed feature engineering and came up with hand design

features. This approach needs specific domain knowledge, and it is application-dependent. That

is why representation-learning algorithms play an essential role today. A representation learning

algorithm aims to perform a feature extraction algorithm that is task non-specific and does not

require human prior knowledge. There are many different approaches in representation learning,

such as probabilistic models, auto-encoders, manifold learning, and deep networks.

In many data science tasks, we are dealing with high-dimensional data. Raw data is usually

noisy and includes redundancy. As it was mentioned earlier, one way to capture critical aspects of

data and extract discriminative information is to explicitly pre-process the data and then pass the

extracted feature to the discriminative algorithm. However, new findings have shown that this is not

how the neocortex, which is in charge of cognitive abilities, deals with high dimensional data. The

human brain receives a myriad of sensory data every second. Rather than explicitly pre-processing

them, the brain sends out the data through a hierarchy to learn to represent observations and
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overcome the curse of dimensionality Lee & Mumford (2003). This key finding has inspired many

people and resulted in the emergence of deep learning networks. The focus of this field is to extract

relevant information through different levels of a network. Instead of human-engineered features,

the network itself comes up with a representation at each layer (level) to represent information.

However, deep networks were rarely used due to convergence problems until 2006. In 2006

GeoffHinton initiated representation learning using deep networksHinton et al. (2006). At the time,

researcherswere not able to train deep networks using common approaches like backpropagation. To

train a deep model, Hinton used unsupervised feature extraction and obtained a new transformation

of data. Specifically, he used the Restricted Boltzmann Machine (RBM) to initialize the network

parameters to avoid poor local minima. He intended to learn new representations of data one level

at a time. For example, for a given input, one can generate a new representation within the first

layer. Then this new representation can be used as an input to the second layer, and the procedure is

repeated. The parameter associated with each layer can then be used as an initial value. One may

perform fine-tuning the parameter later on using backpropagation or any other training algorithm.

This unsupervised pre-training learns a hierarchy of features one level at a time. Hinton’s method

has been then quickly followed up by Bengio et al. (2006), Ranzato et al. (2006), Lee et al. (2007),

Bengio (2009) and many more later. It has been shown that layer-wise stacking of extracted

features often yields better representations in terms of classification error Larochelle et al. (2009).

However, today there is no need to use the Restricted Boltzmann Machine as a building block of a

deep network.

There are many applications associated with representation learning. Namely, Speech Recog-

nition and Signal Processing, Object Recognition, Natural Language Processing, Multitasking and

Transfer Learning, Domain Adaptation, and so on Bengio et al. (2013). Although deep networks

are promising, training a deep architecture is not challenge-free. The first challenge is to establish

a clear objective function or target for training Bengio et al. (2013). The second important point

is proper initialization. Layer-wise pre-training has been suggested by many authors to avoid poor

local minima. The choice of nonlinearity is also another critical factor. It has been shown that
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using a rectifying linear unit as nonlinearity speeds up convergence dramatically. The number of

variables to be learned in deep networks is relatively large. Hence, deep networks may require

more epochs to learn the parameter thoroughly. Efficient GPU training allows one to train longer

Bengio et al. (2013). The choice of hyperparameter is also essential. For example, the learning

rate can be adaptive instead of being fixed. Applying the dropout trick has also been suggested by

Hinton et al. (2012) to end up with more robust results.

2.2 CNNs

CNN’s LeCun et al. (1999), which are inspired by the visual cortex of a cat, are building blocks

of deep networks. There are many advantages associated with CNNs over multilayer perceptron

networks introduced by Rosenblatt (1958). First, the number of trainable parameters is much fewer.

Secondly, it offers invariance to shifting, scaling, and other forms of distortion. Third, the formation

of the input data is preserved.

ConvNets consist of three different types of layers: convolution, pooling, and fully connected

layers. In the convolutional layers, a kernel (local receptive field) is passed over the input to create

a feature map for the next layer. By restricting the neural weights of one layer to a local receptive

field, relevant features can be extracted automatically. Then, a pooling layer is applied to the feature

map, followed by a fully connected layer. In deep networks, convolutions and max-pooling layers

are stacked on top of each other many times.

Figure 2.1: A typical CNN architecture

In 2012 Krizhevsky et al. (2012) introduced AlexNet, a new generation of convolutional net-

works which won ImageNet Large Scale Visual Recognition Challenge Deng et al. (2009). They
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showed that the depth of the network is essential for high performance. They also exploited graph-

ics processing units (GPUs) during training to circumvent computational cost. Later on similar

architecture such as Inception Szegedy et al. (2014), VGG-Net Simonyan & Zisserman (2015),

ResNet He et al. (2015), etc were introduced by others in the DL research community. The effec-

tiveness of these networks makes convolutional networks to be the architecture of choice for image

classification problems.

Figure 2.2: AlexNet architecture Krizhevsky et al. (2012)

2.3 RNNs

Recurrent Neural Networks (RNNs) have beenmaking an impact in sequence-to-sequence map-

pings, with particularly successful applications in speech recognition, music, language translation,

and natural language processing, to name a few Greff et al. (2017); Zaremba (2015); Chung et al.

(2014); Boulanger-Lewandowski et al. (2012); Johnson et al. (2016). By their structure, they pos-

sess a memory (or state) and include feedback or recurrence. The simpleRNN (sRNN) is succinctly

expressed, see e.g., Goodfellow et al. (2016):

ht = σ(Whx xt +Whhht−1 + bh)

yt = Whyht + by
(2.1)

where xt is the input sequence vector at (time) step t, ht is the hidden (activation) unit vector at

step t, while ht−1 is the hidden unit vector at the previous step t − 1, and yt is the output vector at

step t. The parameters are the three matrices, namely, Whx,Whh, and Why, and the vector bh. This
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constitutes a discrete-step dynamic recurrent system with ht acting as the state. The parameters are

to be determined adaptively via training mostly using various versions of backpropagation through

time (BPTT), e.g., see Greff et al. (2017).

The LSTM RNNs introduce a cell-memory and three gating signals to enable effective learning

via the BPTTGreff et al. (2017). The simple activation state has been replaced with a more involved

activation with gating mechanisms. The LSTM RNN uses an additional memory cell (vector) and

includes three gates: (i) an input gate, it (ii) an output gate ot , and (iii) a forget gate, ft . These

gates collectively control signaling. The standard LSTM is expressed mathematically as Greff et al.

(2017); Goodfellow et al. (2016):

it = σin(Wi xt +Uiht−1 + bi)

ft = σin(W f xt +U f ht−1 + b f )

ot = σin(Woxt +Uoht−1 + bo)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(2.2)

where the first four equations are a replica of the simple RNN (sRNN) above, with the first three

equations serving as gating signals, and thus their nonlinear activation is set as a sigmoid function

σin. The 4th equation’s nonlinearity is arbitrary, typically sigmoid, hyperbolic tangent (tanh), or

rectified linear unit (reLU). This 4th equation is sometimes referred to as the input block. The last

two equations entail the memory cell ct and now the activation hidden unit ht with the insertion of

the gating signals in a point-wise (Haramard) multiplications (using the symbol �). This represents

a discrete-step nonlinear dynamic system with recurrence. The distinct parameters are associated

with each replica as W∗,U∗, and b∗ in a straight fashion.

The output layer of the LSTM model may be chosen to be as a linear (more accurately, affine)

map as
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yt = Whyht + by (2.3)

where yt is the output, Why is a matrix, and by is a bias vector. In other optional implementations,

this layer may be followed by a softmax layer to render the output analogous with probability ranges.

2.4 Transfer Learning

Transfer-Learning is a deep learning technique where models trained successfully on larger

datasets are reused on more specific data. This is done by freezing the weights at deeper layers

from the pre-trained model and fine-tune weights at shallower layers. The weights can also be used

as the starting point for the training process and adapted to the new problem. The main advantages

of such a technique are its less demanding time and data requirements. Many high-performing

models have been developed so far (e.g., VGG, GoogLeNet, Resnet). These models are pre-trained

on imageNet Deng et al. (2009) and are widely used for transfer learning.

2.5 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC), introduced by Graves et al. (2006), is a neural

network layer and an associated scoring mechanism to tackle sequence to sequence problems when

there is no alignment between input and output. In the CTC layer, a probability distribution over

all labels at each time step is predicted. To calculate the probability of an output sequence, CTC

works by summing over the probability of all possible alignments equivalent to a given label.

Equivalent alignments of a given label are those in which collapsing repeating characters results

in that label. For example, the label sequence ’ab’ is defined as equivalent to the label sequences

’aaab’, ’aabb’, ’abbb’. To take account of repetition in the label sequence, CTC introduced the

"blank" token. Blank tokens separate individual characters so that only repeated characters that

are not separated by the blank are collapsed. For example, the label sequence ’aab’ is defined as

equivalent to the label sequences ’aa-ab’, ’a-abb’, ’a-aab’, etc. CTC scores can then be used with

the back-propagation algorithm to update the neural network weights.
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The predicted probability distribution can also be used to infer a likely output. One intuitive

solution could be finding the most likely output. However, this solution does not account for the fact

that some alignments collapse to the same output. For example, the alignments ’aa-’ and ’aaa’ can

individually have a lower probability than ’bbb’, but the sum of their probabilities can be greater

than that of ’bbb’. To address this issue, there are more advanced approaches such as beam-search

decoding, prefix-search decoding, or token passing.

2.6 Video Classification

After demonstrating outstanding results on image recognition problems, the next phase is finding

an architecture to classify and analyze the semantic content of videos robustly. However, this is a

harder task at hand. Videos have an additional temporal dimension, they are much larger in size,

and they may contain different numbers of frames. An intuitive way to extend image-based CNN

structures to the video domain is to perform classification on each frame independently and then

conduct a later fusion, such as average scoring, to predict the action class of the video. In the next

chapter, we thoroughly examine techniques and methods that different authors have employed to

tackle these issues. UCF101 Soomro et al. (2012), Sports-1M Karpathy et al. (2014) and HMDB51

Kuehne et al. (2011) have been largely used by researchers to evaluate their models.

UCF101 is an action recognition dataset collected fromYouTube. It contains 13,320 videos from

101 action categories, with super categories of Human-Object Interaction, Body-Motion, Human-

Human Interaction, Playing Musical Instruments, and Sports. The Sports-1M is a large-scale

dataset containing 1,133,158 video URLs that have been annotated automatically with 487 Sports

labels. HMDB51 contains 6849 videos distributed in 51 action classes. It has been collected from

various sources such as movies, Prelinger Archive, YouTube, and Google videos. Action categories

include general facial actions, facial actions with object manipulation, general body movements,

body movements with object interaction, and body movements for human interaction.
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Figure 2.3: HMDB51 Kuehne et al. (2011)

2.6.1 Related Work

Karpathy et al. (2014) empirically studied various CNNArchitecture on the Sport-1M andUCF-101

datasets. They proposed three different architectures to model temporal connectivity, namely late

fusion, early fusion, and slow fusion networks (Figure 2.4). They first experimented with a single

frame model as a baseline to perceive the contribution of static information to final predictions.

Single frame architecture is similar to AlexNet model pre-trained with ImageNet. The late fusion

model combined the information from two single frame networks (up to the last convolution layer)

with shared parameters. Two pre-trained nets are placed 15 frames apart, and the merged output

is then fed into two successive fully connected layers. Therefore, the first fully connected layer

can compute global motion characteristics Karpathy et al. (2014). In the early fusion model, the

architecture is similar to the single frame network, except that the first layer filters are modified to

be of size 11 × 11 × 3 × T . Therefore, the information is combined across an entire time window

(clip) early on. They set T to be 10 (there are ten frames in each clip) and trained the network from

scratch. In the slow fusion model, first level filters of size 11 × 11 × 3 × 4 with stride 2 generate

four responses in time. The process is repeated in the second and third levels with filters of size

11 × 11 × 3 × 2 and stride 2. Thus, the third convolutional layer has access to information across

all ten input frames.

To speed up the training process, they adopted a multi-resolution architecture. A two-stream

network of input size of 89 × 89 × 3, namely, context stream for low-resolution frames and a fovea
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Figure 2.4: The video classifier architectures proposed by Karpathy et al. (2014)

stream for the center part of the image with the original resolution, is used (Figure 2.5). They

took out the last pooling layer, concatenated the two streams outputs, and fed it into the first fully

connected layer. They trained their model on the Sport-1M dataset and then performed transform

learning on UCF-101. They also experimented with fine-tuning the top, top 3, and all layers. They

fed input of size 170 × 170 × 3 into the network and randomly sampled 20 clips. Each clip is then

propagated through the network four times with different flips and crops. Softmax scores are then

averaged to produce a clip-level prediction. To produce video-level prediction, they averaged all 20

clips. Using the slow fusion model, they were able to achieve 65.4% accuracy on UCF-101.

Figure 2.5: Multiresolution CNN architecture Karpathy et al. (2014)

Simonyan & Zisserman (2014) introduced a new approach to deal with videos. To model

motion features, they proposed to leverage optical-flow-based input. They studied optical flow and

trajectory stacking and found out stacking horizontal and vertical optical flow displacement fields

between consecutive frames increases the network’s performance by a great deal. Their architecture
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consists of a two-stream network: one for spatial and the other for temporal content (figure 2.6).

Both networks are mostly CNN-M-2048 introduced by Jia et al. (2014). The input to the spatial

net is of size 224, 224, 3, and the input to the temporal net is of size 224, 224, 2L. In the temporal

network, the consecutive grayscale frames are considered as a channel dimension in the convolution

layer.

Figure 2.6: Two-stream architecture for video classification Simonyan & Zisserman (2014)

In the training phase, to deal with different time lengths of videos, a frame is randomly picked

from each video. The frame is then fed into the spatial net. The input to the temporal net is a

volume of size 224 × 224 × 2L. They found out that setting L equal to 10 and placing horizontal

and vertical components of flow alternatively in the stack delivers the best results. To combine

temporal and spatial prediction scores, they tried averaging and also training a multi-class SVN.

In the testing phase, they sampled 25 equal temporal spacing frames and propagated them through

the two-stream networks. The final answer is then averaged across all samples.

Due to the insufficient size of the dataset, to avoid overfitting, one can combine two datasets

to increase the amount of training data. However, intersections between two datasets may cause

problems. To circumvent this issue, they performed multi-task learning by placing two softmax

layers at the top. They were able to achieve an accuracy of 87% on UCF-101.

Similar to the previous paper, to obtain video-level prediction, they performed sampling and

averaging. However, in this method, some samples may include partial or even no part of the actual

action, and this may cause false labeling. Also, due to sampling, the task of long-range temporal

information modeling was still unaccomplished.
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Ng et al. (2015) explored the idea of extracting features using a CNN and then aggregating frame

information in a separate network. They proposed two aggregation methods. In the first method,

they experimented with various pooling operations and found out that max-pooling outperforms

other pooling methods in terms of speed and accuracy. In the second method, they passed extracted

features to a separate LSTM. They experimented with a various number of layers and memory cells

and decided to use five layers architecture with 512 cell units. They also studied multiple strategies

to combine LSTM frame-level predictions into a single video-level prediction.

They fine-tuned pre-trained GoogLeNet Szegedy et al. (2014) on optical flow and raw images

and aggregated the results using the late fusionmethod. Given the nature of the method presented in

their paper, prediction can be made with no need to sample. However, they found out sampling and

averaging improve the results. In the training phase, they sampled 300 frames per video. Frames

are repeated from the start for shorter videos. For data augmentation, multiple examples per video

are obtained by randomly selecting the position of the first frame. They evaluated their proposed

architectures on the UCF101 and Sport 1M datasets and were able to achieve 88.6% and 73.1%,

respectively.

Figure 2.7: The video classifier architecture proposed by Ng et al. (2015)

Donahue et al. (2017) explored three tasks in their paper: activity recognition, image captioning,

and video description. In the first task, they combined temporal and spatial content into a single
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network by taking advantage of an encoder-decoder idea. In the LRCN network, a CNN model

as a feature extractor is applied to each frame before feeding them into an LSTM (figure 2.8). To

combine temporal information, they took a late fusion approach; they averaged the output of each

LSTM, which corresponds to each frame and then chose the most probable label. As can be seen,

the convolution blocks serve as an encoder, and LSTM blocks serve as a decoder. The CNNModel

they adopted was a combination of CaffeNet, AlexNet, and the network used by Zeiler & Fergus

(2014). The network is pre-trained on ImageNet. The input to the network is RGB and optical flow

field images. Final video-level prediction is then obtained by calculating the weighted average in

favor of the flow network. They subsample each video to 16 frames, which prevents long-range

temporal information modeling, as each video is generally on the order of 100 frames.

Figure 2.8: Long-term Recurrent Convolutional Network Donahue et al. (2017)

They evaluated their model on the UCF-101 dataset and compared it to a single frame baseline

model. As mentioned before, in a single frame model, each frame is fed into a CNN and then

averaged across all frames. They were able to obtain 82.92% accuracy. They reported that hidden

unit size is the most effective factor in terms of accuracy, and that aggressive dropout is also

beneficial.

Tran et al. (2015) explored the idea of using 3D convolution networks as a feature extractor
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and spatiotemporal feature learner (figure2.9). Their architecture consists of 8 convolution, five

max-pooling, and two fully connected layers, followed by a softmax function (figure 2.10). They

performed an extensive search to find a good architecture by concentrating on the first layer kernel

size. They kept the spatial receptive field fixed at 3 ∗ 3 and experimented with the temporal depth

of the 3D convolution kernels. They found out that 3 ∗ 3 ∗ 3 is the best kernel choice. To learn

Figure 2.9: Comparing 2D & 3D convolution kernel Tran et al. (2015)

spatiotemporal features, they trained their model on the Sport-1M dataset. Each video is split into

16 non-overlapping clips in the training phase and used as an input to the network. Jittering and

random crops are used as data augmentation. In the testing phase, ten random clips from each

video are fed to the network, and the video-level prediction is then calculated by averaging across

all clips. They trained their network from scratch and also fine-tuned it from the 1380K model.

Figure 2.10: C3D proposed by Tran et al. (2015)

Next, they used C3D as a feature extractor on the UCF101 dataset and propagated the output to

a multi-class linear SVN. They observed that the C3D extractor outperforms iDT features. Also,

combining C3D features and iDT boosts the performance, as the high-level semantic information

extractor C3D and low-level gradient extractor iDT are highly complementary to each other. They

were able to obtain 90.4% and 85.2% accuracy with and without iDt features. They also used a

deconvolution layer to decode what C3D is learning internally. They found out that the network

initially concentrates on spatial information in the first few frames and the salient motion in the

subsequent frames.
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Wang et al. (2016), addressed the two-stream network, mentioned earlier, inability to capture

long-range temporal information. They introduced a temporal segmentation network that receives

evenly distributed snippets rather than random clips. They modified the two-stream network by

splitting videos into segmentations. Each snippet is then chosen from each segment. Then Segmen-

tal Consensus is derived for each modality (RGB images, optical flow field, etc). They empirically

evaluated Segmental Consensus functions (even averaging, maximum, weighted averaging) and

decided to use even averaging for their architecture. Probability scores from each modality are then

weight averaged to produce the video-level prediction (figure 2.11).

Figure 2.11: TSN proposed by Wang et al. (2014)

They set k (number of segmentations) equal to 3 according to previous works on temporal

modeling by Gaidon et al. (2013) & Wang et al. (2014), and adopted the Inception model with

Batch Normalization (BN-Inception), by Ioffe & Szegedy (2015), pre-trained on ImageNet as

building blocks of two-stream networks. To benefit from the pre-trained network on optical flow,

they scaled up the input to range 0 − 255 and averaged the weights across the RGB channels, and

replicated it by the number of channels in the temporal network input. They studied the effect

of adding additional modalities such as RGB difference and warped optical flow to extract salient

motion and mitigate the effect of camera movement. They also benefited from data augmentation,

heavy dropout, and batch normalization. They evaluated their model on the HMDB51 and UCF101

datasets and achieved 69.4% and 94.2%, respectively.
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Zhu et al. (2017) introduced an end-to-end two-stream-based network. To speed up the process

and avoid extra storage, the network generates an optical flow field rather than being fed by pre-

computed optical flow images. Optical flow generation can be regarded as an image reconstruction

problem. For two adjacent frames f1 and f2, they generated flow V and then reconstructed f2

using f1 and V employing inverse warping by minimizing reconstruction error. They stacked this

network, calling it MotionNet, on top of a temporal stream, treating it as an off-the-shelf flow

estimator (figure 2.12). This modification resulted in more than 20x speedup compared to the

traditional two-stream approaches.

Figure 2.12: The video classifier architecture proposed by Zhu et al. (2017)

In the training phase, they evenly sampled 25 frames per video and performed 10x augmentation

by flipping and cropping and then averaging the prediction scores (before softmax operation) over

all crops of the samples. They evaluated their network on the UCF101 dataset and were able to

obtain 89.2% accuracy. They improved their performance even further to 92.5% by fusing spatial

and temporal streams using the TSN method.
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CHAPTER 3

SLIM LSTMS

In this chapter, we implement and evaluate nine slim variants of the standard Long Short-term

Memory (LSTM) recurrent neural networks proposed by Salem (2018). For simplicity, we refer

to these models as LSTM1, LSTM2, LSTM3, LSTM4, LSTM5, LSTM4a, LSTM5a, LSTM6,

LSTM10 & LSTM11. In the author’s most recent work, the first seven models have been referred to

as LSTM-1 RNN, LSTM-2 RNN, LSTM-3 RNN, LSTM-4 RNN, LSTM-5 RNN, LSTM-4i RNN,

LSTM-5i RNN, and LSTM-6 RNN. These variants have been generated by uniformly reducing

blocks of adaptive parameters in the gating mechanisms. Such parameter-reduced variants enable

speeding up data training computations and would be more suitable for implementations onto

constrained embedded platforms. We comparatively evaluate and verify these variant models on

the three classical datasets and demonstrate that these variant models are comparable to a standard

implementation of the LSTM model while using fewer parameters. The implementation of the

models is publicly accessible through Akandeh (2019).

3.1 Introduction

As mentioned earlier, the standard LSTM is expressed mathematically as

it = σin(Wi xt +Uiht−1 + bi)

ft = σin(W f xt +U f ht−1 + b f )

ot = σin(Woxt +Uoht−1 + bo)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.1)

where σin is called inner activation (logistic) function which is bounded between 0 and 1, and �

denotes point-wise multiplication. The output layer of the LSTM model may be chosen to be as a
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linear map, namely,

yt = Whyht + by (3.2)

LSTMs can be viewed as composed of the cell network and its three gating networks. LSTMs

are relatively slow due to the fact that they have four sets of "weights," of which three are involved

in the gating mechanism. In the following sections, we describe and demonstrate the comparative

performance of nine simplified LSTM variants by removing select blocks of adaptive parameters

from the gating mechanism and demonstrate that these variants are a competitive alternative to the

original LSTM model while requiring a less computational cost.

3.2 New Variants of the LSTM model

LSTM uses a gating mechanism to control the signal flow. It possesses three gating signals

driven by three main components, namely, the external input signal, the previous state, and a bias.

We have proposed nine variants of the LSTM model, aiming at reducing the number of (adaptive)

parameters in each gate and thus reduce computational cost Salem (7.11.2016). The first three

models have been demonstrated previously in initial experiments in Lu & Salem (2017).

LSTM1

In this first model variant, input signals and their corresponding weights, namely, the terms

Wi xt,W f xt,Woxt have been removed from the equations in the three corresponding gating sig-

nals. The resulting result model becomes

it = σin(Uiht−1 + bi)

ft = σin(U f ht−1 + b f )

ot = σin(Uoht−1 + bo)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.3)
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LSTM2

In this second model variant, the gates have no bias and no input signals Wi xt,W f xt,Woxt . Only

the state is used in the gating signals. This produces

it = σin(Uiht−1)

ft = σin(U f ht−1)

ot = σin(Uoht−1)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.4)

LSTM3

In the third model variant, the only term in the gating signal is the (adaptive) bias. This model uses

the least number of parameters among other variants.

it = σin(bi)

ft = σin(b f )

ot = σin(bo)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.5)

LSTM4

In the fourth model variant, the Ui,U f ,Uo matrices have been replaced with the corresponding

ui, u f , uo vectors in LSTM2. The intent is to render the state signal with a point-wise multiplication.
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Thus, one reduces parameters while retaining state feedback in the gatings.

it = σin(ui � ht−1)

ft = σin(u f � ht−1)

ot = σin(uo � ht−1)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.6)

LSTM5

In the fifth model variant, we revise LSTM1 so that the matrices Ui,U f ,Uo are replaced with

corresponding vectors denoted by small letters. Then, as in LSTM4, we acquire (Hadamard)

point-wise multiplication in the state variables.

it = σin(ui � ht−1 + bi)

ft = σin(u f � ht−1 + b f )

ot = σin(uo � ht−1 + bo)

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.7)

LSTM4a

In LSTM4a, a fixed real number with an absolute value less than one has been set for the forget gate

in order to preserve bounded-input-bounded-output (BIBO) stability, Salem (2016). Meanwhile,
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the output gate is set to 1 (which in practice eliminates this gate altogether).

it = σin(ui � ht−1)

ft = c

ot = 1.0

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.8)

LSTM5a

LSTM5a is similar to LSTM4a, but the bias term in the input gate equation is preserved.

it = σin(ui � ht−1 + bi)

ft = c

ot = 1.0

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.9)

LSTM6

Finally, this is the most aggressive parameter reduction. Here all gating equations are replaced by

an appropriate constant. For BIBO stability, we found that the forget gate must be set ft = 0.59 or

below. The other two gates are set to 1 each (which practically eliminates them for computational

efficiency purposes). In fact, this model variant now becomes equivalent to the so-called basic
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RNN model reported in Salem (2016).

it = 1.0

ft = α

ot = 1.0

c̃t = σ(Wcxt +Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.10)

LSTM10

In this model, pointwise multiplication is applied to the hidden state and corresponding weights in

the cell-body equations as well. We apply this modification not only to the gating equations but

also to the main equation, i.e. matrixUc is replaced with vector uc for the pointwise multiplication.

it = σin(ui � ht−1)

ft = σin(u f � ht−1)

ot = σin(uo � ht−1)

c̃t = σ(Wcxt + uc � ht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.11)

24



LSTM11

This variant is similar to the LSTM10. However, it reinstates the biases in the gating signals.

Mathematically, it is expressed as

it = σin(ui � ht−1 + bi)

ft = σin(u f � ht−1 + b f )

ot = σin(uo � ht−1 + bo)

c̃t = σ(Wcxt + uc � ht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.12)

3.3 Dataset

We train and evaluate our models on three benchmark datasets, namely MNIST, IMDB & 20

Newsgroups dataset. To avoid clutter in images, we plot performance in three sub-groups. First

group contains LSTM, LSTM1, LSTM2, LSTM3, LSTM4 & LSTM5. Second groups depicts

LSTM, LSTM4, LSTM5, LSTM4a & LSTM5a. Last group compares LSTM, LSTM6, LSTM10

& LSTM11.

3.3.1 MNIST

The MNIST dataset contains 28 × 28 handwritten digits images. Treating images as row-wise

sequences, each model reads one row at a time from top to bottom to produce its output after seeing

all 28 rows. Table 3.1 provides a specification of the network used.

Three different nonlinearities, i.e., tanh, sigmoid, and relu, have been employed in the first

(LSTM) layer. For each case, we perform parameter tuning over different values of the learning

parameter.
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Table 3.1: MNIST - Network specifications

Input dimension 28 × 28
Number of hidden units 100
Nonlinear function tanh, sigmoid, tanh
Output dimension 10
Non-linear function softmax
Number of epochs 100

Batch size 32
Optimizer RMSprop

Loss function categorical cross-entropy

3.3.1.1 The Tanh Activation

The tanh activation has been used as the nonlinearity of the first hidden layer. To improve the

performance of the model, we search for an optimal learning parameter η. There is a small amount

of fluctuation in the testing accuracy; however, all variants converge to above 98%. The general

trend among all three η values is that LSTM1 and LSTM2 have the closest prediction to the standard

LSTM. Then LSTM5 follows, and finally LSTM4 and LSTM3. As it is shown, setting η = 0.002

results in test accuracy score of 98.60% in LSTM3 (i.e., the fastest model with least number of

parameters) which is close to the best test score of the standard LSTM, i.e., 99.09%.

In training LSTM4a, LSTM5a&LSTM6, initially, there is a gap among differentmodel variants.

However, they all catch up with the base (standard) LSTM quickly within the 100 epochs. As one

increases η, more fluctuation is observed. However, the models still sustain their performance

levels. One advantage of the model variant LSTM6 is that it rises faster in comparison to other

variants. However, η = 0.002 causes it to decrease, indicating that this η value is relatively large.

In all cases, LSTM4a and LSTM5a performance curves overlap. With a little offset, LSTM10 and

LSTM11 also perform reasonably. The best results obtained among all the epochs are shown in

Table 3.2.
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Figure 3.1: MNIST - Training & Test accuracy, σ = tanh, η = 1e−4

3.3.1.2 The Sigmoid activation

Then, the sigmoid activation has been used as the nonlinearity of the first hidden layer. The same

trend is observed using the sigmoid nonlinearity. In this case, one can clearly observe the training

profile of each model. LSTM1, LSTM2, LSTM5, LSTM4, and LSTM3 have the closest prediction

to the base LSTM, respectively. Again larger η results in better test accuracy and more fluctuation.

It is observed that setting η = 0.002 results in a test score of 98.34% in LSTM3, which is close to

the test score of base LSTM 98.86%.

For the second group, the only difference is that the sigmoid activation with η = 1e−4 slowly

progresses towards its maximal performance. After performing parameter tuning, the typical test

accuracy of the base LSTM model is 99%, test accuracy of variants LSTM4 and LSTM5 is about

98%, and test accuracy of variants LSTM4a and LSTM5a are 97%. As it is shown in the table

and associated plots, η = 1e − 4 seems relatively small when using the sigmoid activation. As

evidence, LSTM6 attains only a training and test accuracy of about 74% after 100 epochs, while
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Figure 3.2: MNIST - Training & Test accuracy, σ = tanh, η = 1e−4

it attains an accuracy of about 97% when η is increased 10-fold. In our variants, models using

tanh saturate quickly; however, models using sigmoid rise steady from beginning to the last epoch.

In these cases, again, LSTM4a and LSTM5a performances overlap. The third group also shows

promising results. The best results obtained over the 100 epochs are summarized in Table 3.3.

3.3.1.3 The ReLU activation

Using relu activation as the nonlinearity of the first hidden layer, it is observed that the performance

of LSTM, LSTM1, and LSTM2 drops after a number of epochs; however, this is not the case for

LSTM3, LSTM4, and LSTM5. These latter models are sustained for all three choices of η. Also,

LSTM3, the fastest model with the least number of parameters, shows the best performance among

all five variants! With the relu as nonlinearity, the models fluctuate for larger η, which is not within

the tolerance range of the model. Setting η = 0.002 results in test score of 99.00% for LSTM3

which beat the best test score of the base LSTM, i.e., 98.43%. The best results obtained for all
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Figure 3.3: MNIST - Training & Test accuracy, σ = tanh, η = 1e−3

models are summarized in table 3.4.

In the second group, all models perform well with η = 1e − 4. In this case, LSTM4a and

LSTM5a do not overlap. For η = 1e − 3, the base LSTM does not sustain its performance and

drastically drops. One may need to leverage an early stopping strategy to avoid this problem. In this

case, the LSTM model begins to fall around epoch=50. LSTM6 also drops in performance. Model

LSTM4, LSTM5, LSTM4a and LSTM5a show sustained accuracy performance as for η = 1e − 4.

For η = 2e − 3 model, LSTM4 and LSTM5 are still sustaining their performances. In the third

group, LSTM6 and LSTM11 perform well, and LSTM10 does not rise.

We have explored a range of η for LSTM10 with relu activation to improve its performance.

However, the effort was not successful. Increasing η from 2e − 6 to 1e − 5 leads to an increase in

accuracy with value of 53.13%. For η less than 1e−5, the plots have an increasing trend. However,

after this point, the accuracy starts to drop after several epochs depending on the value of η.
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Table 3.2: MNIST - Best results obtained using tanh.

η = 1e−4 η = 1e−3 η = 2e−3

LSTM train 0.9995 1.0000 0.9994
test 0.9853 0.9909 0.9903

LSTM1 train 0.9993 0.9999 0.9996
test 0.9828 0.9906 0.9907

LSTM2 train 0.999 0.9997 0.9995
test 0.9849 0.9897 0.9897

LSTM3 train 0.9889 0.9977 0.9983
test 0.9781 0.9827 0.9860

LSTM4 train 0.9785 0.9975 0.9958
test 0.9734 0.9853 0.9834

LSTM5 train 0.9898 0.9985 0.9983
test 0.9774 0.9835 0.9859

LSTM4a train 0.9835 0.9957 0.9944
test 0.9698 0.9803 0.9792

LSTM5a train 0.9836 0.9977 0.998
test 0.9700 0.9820 0.9821

LSTM6 train 0.9948 0.9879 0.9657
test 0.9771 0.9792 0.9656

LSTM10 train - 0.9273 -
test - 0.9225 -

LSTM11 train - 0.9573 -
test - 0.9514 -

3.3.2 IMDB

The IMDB Datasets is a binary sentiment classification dataset. In our model, a dictionary size

of 5000 has been used. Each review is truncated or padded to 500 words. The first layer is an

embedding layer which is a simple multiplication that transforms words into their corresponding

word embedding. The output is then passed to an LSTM layer following a dense layer. We used

the Adam optimizer, a batch size of 32, and the binary cross-entropy loss function. The network

specification, adopted from Keras 1.2 examples, is given in table 3.5.

3.3.2.1 The Sigmoid activation

In this case, also LSTM1, LSTM2, LSTM3, LSTM5, and LSTM4 have the closest prediction to

the base LSTM, respectively. Setting η = 0.0001 results in an almost fluctuation-free profile. It is
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Figure 3.4: MNIST - Training & Test accuracy, σ = sigmoid, η = 1e−4

observed that setting η = 0.002 results in a test score of 86.86% in LSTM3, which is close to the

test score of base LSTM 88.68%.

LSTM5a, LSTM4a, LSTM5, LSTM4, and LSTM6 have the closest prediction to the base

LSTM, respectively. In these cases, LSTM4a and LSTM5a performance curves overlap. It is

observed that setting η = 0.002 results in a test score of 89.12% in LSTM5a, which beat the test

score of base LSTM, 88.68%.

LSTM11 and LSTM6 have the closest prediction to the base LSTM. Here, as we expected,

LSTM11 shows better performance than LSTM10. Setting η = 0.0001 results in a very smooth

profile and less fluctuation. The best results obtained over the 100 epochs are summarized in

Table 3.6.

To compensate for a decreased number of parameters, the dimension of hidden units has been

increased along with having different, smaller values of η (figure 3.16). As it is shown, higher

dimensions need fewer epochs to reach leveling off profiles. Setting η = 1.25e − 5, creates an
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Figure 3.5: MNIST - Training & Test accuracy, σ = sigmoid, η = 2e−3

almost fluctuation free profile. In this figure, ’lstm62’ stands for LSTM6 using 200 hidden units.

The forget-gate constant value must be less than one in absolute value for bounded-input-

bounded-output (BIBO) stability Salem (2016). f > 0.59 did not work for the MNIST dataset and

made the model unstable during training. We initially start with the same forget hyper-parameter

f value on the IMDB dataset and then gradually increase it. We observe that the network retains

BIBO stable performance up to ft = 0.96. In figure 3.17, lstm629 denotes LSTM6 using h = 200

and f = 0.99. Note that the accuracy plot profiles (figure 3.17 ) show an increasing trend and do

not appear to level off after 100 epochs. We run the network training for 200 epochs; it is observed

that LSTM6 surpasses standard LSTM at around epoch 150.

3.3.3 20 Newsgroups

The 20Newsgroups dataset is a collection of 20,000 documents containing 20 different newsgroups.

GloVe embedding is used to pre-train themodel. The network architecture is adapted fromKeras1.2
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Figure 3.6: MNIST - Training & Test accuracy, σ = sigmoid, η = 1e−4

examples. We used the RMSprop optimizer, a batch size of 128, and the categorical cross-entropy

loss function. Table 3.7 provides the network specification. We have applied our variants in the

bidirectional layer.

For this dataset, we evaluate our new model LSTM6a as well. In LSTM6a, the matrix Uc

in the cell equation is replaced with a corresponding vector uc, in order to render a point-wise

multiplication instead. Thus, the variant equations become

it = 1.0

ft = f , − 1 < f < 1.0

ot = 1.0

c̃t = σ(Wcxt + uc � ht−1 + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � σ(ct )

(3.13)
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Figure 3.7: MNIST - Training & Test accuracy, σ = sigmoid, η = 2e−3

3.3.3.1 The Tanh activation

Due to a considerable amount of fluctuation when using sigmoid, we decide to only depict results

for tanh nonlinearity. As it is shown, LSTM1, LSTM2, LSTM3, and LSTM5 & LSTM6a show

better performance than standard LSTM. Also, LSTM4a, LSTM5a & LSTM 10 have a very close

prediction to it. As it is shown, setting η = 0.001 results in a test accuracy score of 81.33% in

LSTM3, which outperforms the best test score of the standard LSTM, i.e., 77.75%.
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Figure 3.8: MNIST - Training & Test accuracy, σ = sigmoid, η = 1e−3

Figure 3.9: MNIST - Training & Test accuracy, σ = relu, η = 1e−4
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Table 3.3: MNIST - Best results obtained using sigmoid.

η = 1e−4 η = 1e−3 η = 2e−3

LSTM train 0.9751 0.9972 0.9978
test 0.9739 0.9880 0.9886

LSTM1 train 0.9584 0.9901 0.9905
test 0.9635 0.9863 0.9858

LSTM2 train 0.9636 0.9901 0.9907
test 0.9660 0.9856 0.9858

LSTM3 train 0.8721 0.9787 0.9828
test 0.8757 0.9796 0.9834

LSTM4 train 0.8439 0.9793 0.9839
test 0.8466 0.9781 0.9822

LSTM5 train 0.9438 0.9849 0.9879
test 0.9431 0.9829 0.9844

LSTM4a train 0.8728 0.9726 0.9778
test 0.8770 0.9720 0.9768

LSTM5a train 0.8742 0.9725 0.9789
test 0.8788 0.9707 0.9783

LSTM6 train 0.7373 0.9495 0.9636
test 0.7423 0.9513 0.9700

LSTM10 train - 0.9168 -
test - 0.9184 -

LSTM11 train - 0.9407 -
test - 0.9403 -
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Figure 3.10: MNIST - Training & Test accuracy, σ = relu, η = 2e−3

Figure 3.11: MNIST - Training & Test accuracy, σ = relu, η = 1e−4
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Figure 3.12: MNIST - Training & Test accuracy, σ = relu, η = 1e−3

Figure 3.13: MNIST - Training & Test accuracy of different η, lstm10, relu
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Table 3.4: MNIST - Best results obtained using relu.

η = 1e−4 η = 1e−3 η = 2e−3

LSTM train 0.9932 0.9829 0.9787
test 0.9824 0.9843 0.9833

LSTM1 train 0.9926 0.9824 0.9758
test 0.9803 0.9832 0.9806

LSTM2 train 0.9896 0.9795 0.98
test 0.9802 0.9805 0.9836

LSTM3 train 0.9865 0.9967 0.9968
test 0.9808 0.9882 0.9900

LSTM4 train 0.9808 0.9916 0.9918
test 0.9796 0.9857 0.9847

LSTM5 train 0.987 0.9962 0.9964
test 0.9807 0.9885 0.9892

LSTM4a train 0.9906 0.9949 0.1124
test 0.9775 0.9878 0.1135

LSTM5a train 0.9904 0.996 0.1124
test 0.9769 0.9856 0.1135

LSTM6 train 0.9935 0.9719 0.09737
test 0.9761 0.9720 0.0982

LSTM10 train - 0.4018 -
test - 0.5226 -

LSTM11 train - 0.9597 -
test - 0.9582 -

Table 3.5: IMDB - Network specifications.

Input dimension 32 × 500
Number of hidden units 100
Non-linear function tanh, sigmoid, tanh
Output dimension 2
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Figure 3.14: IMDB - Training & Test accuracy, σ = sigmoid, η = 1e−4

Figure 3.15: IMDB - Training & Test accuracy, σ = sigmoid, η = 1e−4

40



Table 3.6: IMDB - Best results obtained sigmoid.

η = 1e−4 η = 1e−3 η = 2e−3

LSTM train 0.9906 1.0000 1.0000
test 0.8856 0.8868 0.8824

LSTM1 train 0.9744 0.9923 0.9968
test 0.8835 0.8840 0.8766

LSTM2 train 0.9746 0.9929 0.9954
test 0.8853 0.8804 0.8800

LSTM3 train 0.9542 0.9863 0.9955
test 0.8537 0.8426 0.8686

LSTM4 train 0.9346 0.9616 0.9920
test 0.8165 0.8204 0.8624

LSTM5 train 0.9637 0.9934 0.9982
test 0.8482 0.8702 0.8746

LSTM4a train 0.9781 0.9897 0.9955
test 0.8914 0.8790 0.8766

LSTM5a train 0.9782 0.9901 0.9955
test 0.8912 0.8790 0.8762

LSTM10 train 0.7993 0.9989 0.9909
test 0.7112 0.8512 0.8470

LSTM11 train 0.9104 0.9996 0.9969
test 0.8374 0.8564 0.8596

Figure 3.16: IMDB - Training & Test accuracy, σ = sigmoid, η = 1.25e−5
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Figure 3.17: IMDB - Training & Test accuracy, σ = sigmoid, η = 1e−5

Table 3.7: News20 - Network specifications.

Input dimension 1000
Embedding layer 1000 × 100

Conv1D(128, 5,’relu’) 996 × 128
Maxpooling1D(5) 199 × 128

Conv1D(128, 5,’relu’) 195 × 128
Maxpooling1D(5) 39 × 128

Conv1D(128, 5,’relu’) 35 × 128
Maxpooling1D(2) 17 × 128
Number of epochs 100
Bidirectional(lstmi) 256

Dense 128
Dense 6
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Figure 3.18: News20 - Training & Test accuracy, σ = tanh, η = 1e−3

Figure 3.19: News20 - Training & Test accuracy, σ = tanh, η = 1e−3
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Figure 3.20: News20 - Training & Test accuracy, σ = tanh, η = 1e−3

Table 3.8: News20 - Best results obtained using tanh.

η = 5e−4 η = 1e−3 η = 2e−3

LSTM train 0.9519 0.9581 0.9600
test 0.7592 0.7750 0.7775

LSTM1 train 0.9508 0.9554 0.9563
test 0.7608 0.8033 0.8058

LSTM2 train 0.9415 0.9560 0.9552
test 0.7517 0.7883 0.7942

LSTM3 train 0.9513 0.9563 0.9567
test 0.7917 0.8133 0.7925

LSTM5 train 0.9519 0.9552 0.9575
test 0.7783 0.7800 0.7967

LSTM4a train 0.9181 0.9313 0.9163
test 0.7558 0.7775 0.7708

LSTM5a train 0.9271 0.9313 0.9254
test 0.7558 0.7600 0.7700

LSTM6 train 0.8169 0.8448 0.7850
test 0.7158 0.7200 0.7100

LSTM6a train 0.9552 0.9583 0.9556
test 0.7792 0.7942 0.7842

LSTM10 train 0.9506 0.9571 0.9573
test 0.7250 0.7650 0.7758
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3.4 Conclusion

Nine variants of the base LSTM model have been presented and evaluated. These models have

been examined and evaluated using different nonlinearity and different learning rates on the three

classical datasets. It has been found that new model variants are comparable to the standard LSTM

model. Thus, these variant models may be suitably chosen in applications in order to benefit from

the speed and/or computational cost.
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CHAPTER 4

FEATURE EXTRACTOIN MODEL

Early SLR systems performed data acquisition using sensor-based devices such as data gloves

and accelerometers. These devices provide position, orientation, velocity, and other specifics of

the hands. However, due to the prohibitive costs of such approaches, vision-based devices have

been introduced. Microsoft Kinect, Leap Motion Controller, and Google Tango provide RGB and

depth-maps information, which can be used as an image-based input to a network. In one of our

solutions to the SLR task in the next chapters, we go one step further and propose to acquire data

using a regular camera and then extract the key characteristics of each sign using MediaPipe Hands

and Pose modules.

MediaPipe is a graph-based framework for building multimodal (video, audio, and sensor)

applied machine learning pipelines MediaPipe (2019) introduced by Google. Mediapipe’s use of

graphs and calculators means that the work of one project can easily translate to the work of another.

One advantage of MediaPipe is that it does not rely on powerful desktop environments for inference

and achieves real-time performance on mobile phones, laptops, and even on the web. In addition,

by employing GPU acceleration and multi-threading, MediaPipe is one of the fastest ML solutions

available.

4.1 MediaPipe Hands

Detecting hands is a complex task. The model has to recognize a variety of hand sizes and

also address occluded hands issues. In addition, as there are not many distinguishing features in

hands themself, additional context like arm and body are required to locate the hands accurately.

MediaPipe hands module addresses these challenges by first training a palm detector and then

training a hand landmark model on the generated cropped hand images. The cropped images can

also be generated based on the hand landmarks identified in the previous frame. The palm detection

model is invoked only when the landmark model can no longer identify hand presence.
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The palm detection model operates over the whole image and returns cropped hand images.

Mediapipe proposes to employ a palm detection model instead of a hand detection one since

estimating bounding boxes of rigid objects like palms is significantly simpler than detecting hands

with fingers. Also, non-maximum suppression algorithms work well on small objects like palms.

Moreover, since palms can be modeled using square bounding boxes, other aspect ratios can be

ignored. An average precision of 95.7% in the palm detection model has been reported.

The hand landmark model performs keypoint localization of 21 3D coordinates on the cropped

hand images generated by the palm detection model using regression (see figure 4.1). To perform

supervised training, they have manually annotated 30K real-world images with 21 3D coordinates.

They have also generated a synthetic hand model over various backgrounds and map it to the

corresponding 3D coordinates to provide additional supervision.

Figure 4.1: MediaPipe hands tracking module output example

4.2 MediaPipe Pose

MediaPipe pose module infers 25 2D upper-body landmarks by first locating the pose region-

of-interest (ROI) and then training a pose landmark model on the generated region. The ROI can

also be generated based on the pose landmarks identified in the previous frame. The pose detection

model is invoked only when the landmark model can no longer identify body pose presence (see

figure 4.2).

Inspired by Leonardo’s Vitruvian man VitruvianMan (1490), the pose detection model predicts
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Figure 4.2: MediaPipe pose module output example MediaPipe (2019)

two virtual key-points, namely shoulder, and hip midpoints, that describe the circle circumscribing

the person (see figure 4.3). The incline angle of the line connecting the shoulder and hip midpoints

is also inferred. Similar to the hand landmark model, the pose landmark model performs keypoint

localization of 25 upper-body coordinates on pose region-of-interest generated by the pose detection

model.

Figure 4.3: The proportions of the human body according to Vitruvius MediaPipe (2019)
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CHAPTER 5

CHARACTER-LEVEL SLR

To investigate character-level Sign Language Recognition, we study two different datasets with

uniform and complex backgrounds. To examine grayscale Sign Language MNIST, we propose

an 8-layers Convolutional neural network. To study ASL Fingerspelling A datasets, we propose

two different approaches. In the first approach, we use VGG19 pre-trained with ImageNet and

fine-tune it. In the second approach, we use MediaPipe to extract 2D landmarks of the hand, and

then create new black and white images with uniform background and then feed them to the same

8-layer architecture proposed for Sign Language MNIST. The experiment results demonstrate the

effectiveness of our approach on both datasets. We achieve 99.9% accuracy for the first dataset

and 96% & 98% accuracy for the second dataset. The implementation of the models is publicly

accessible through Akandeh (2021).

5.1 Introduction

To perform a thorough study of Sign Language Recognition, we start by experimenting with

the character-level SLR. A practical application for Character-level SLR is fingerspelling. Finger-

spelling is used for the letter by letter signing of names, place names, age, numbers, date, year, and

words that do not have pre-defined signs in the vocabulary Adithya & Rajesh (2020).

In this chapter, we study image-based input to the SLR system. We can then apply our findings

in world-level and sentence-level SLR, where we have to deal with video-based input. First,

we experiment with Sign Language MNIST, a grayscale-based dataset with uniform background.

Then we investigate ASL Fingerspelling A datasets, in which hands are presented in complex

background conditions. To deal with complex background dataset, we use domain knowledge to

transform the raw images into the most discriminative representation by which the model can detect

and differentiate the patterns accurately. We also try a second approach in which we minimize prior

knowledge and feed raw images to the network.
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5.1.1 Characteristics

Sign Languages use the hand gesture, facial expression and body pose to convey information.

There are two types of static and dynamic hand gestures. Static hand gestures are formed by

various shapes and orientations of hands without any motion involved. Dynamic hand gestures

are formed by a sequence of hand postures with associated motion information Adithya & Rajesh

(2020). In American sign language, all letters except ”j” and ”z” are represented by static hand

gestures. Figure 5.1 illustrates ASL fingerspelling alphabet.

Figure 5.1: American Sign Language Alphabet Sign Language Club (2012)

5.1.2 Challenges

Among character-level, word-level, and sentence-level SLR, character-level is the easiest to deal

with since it does not involve any motion, and inputs are in the form of images rather than videos.

Also, American fingerspelling is single-handed, which removes the difficulties of hands occluding
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one another. Still, character-level SLR is a challenging problem. Lighting conditions, complex

background, signee body postures, and camera position can pose significant challenges on the task.

Also, there are only subtle differences between different letters. For example, letters a, e, m, n, s,

and t are all represented by a closed fist and differ only by the thumb position Pugeault & Bowden

(2011). The thumb itself is also barely visible in m and n (figure 5.1). Moreover, signees can have

their singing styles which leads to variability in the dataset.

5.1.3 Related Work

Rioux-Maldague & Giguere (2014) applied Deep Belief Network on the American Sign Language

fingerspelling dataset. They leveraged depth and intensity images obtained from the Microsoft

Kinect sensor. The network consists of 3 Restricted Boltzmann Machines with the size of 1500,

700, and 400 units and one translation layer. Their architecture was capable of real-time sign

classification, and it was also adaptive to any environment or lighting intensity. They were able

to obtain 99% accuracy on multi-user with all known users and 77% accuracy on multi-user with

unseen users.

Li et al. (2015) performed feature learning using a sparse autoencoder (SAE) and principal

component analysis on ASL fingerspelling by Pugeault & Bowden (2011). An auto-encoder is a

type of feed-forward neural network, under the unsupervised setting, whose output is required to be

equal to the input. First, they performed dimension reduction on RGB and depth images using PCA

and fed the results into SAE with CNNs. Then, the learned features from both channels have been

dimensionality reduced further via PCA and then are concatenated and fed into a softmax classifier.

The proposed feature-learning model obtained a recognition rate of 99.05%, outperforming state-

of-the-art models at the time.

Huang et al. (2015) also adopted a three-layer Deep Belief Network, consisting of 500, 500,

and 2000 hidden units. They collected two datasets containing 26 alphabet signs using Real-Sense

and Kinect. Real-Sense is a camera device that can detect and track the location of hands. They

recorded video clips from 3 different signers. Then, they extracted frames from recorded video
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Figure 5.2: The character-level sign recognizer architecture proposed by Li et al. (2015)

clips and collected 65,000 frame images in total. Each image is then converted to a 66-dimensional

feature vector, including the 3D coordinates of 22 finger points. For the Kinect dataset, they

produced the same amount of data. However, Kinect does not support a hands or fingers model.

Instead, they made use of color and depth information and then segmented hand-shape from the

background. The resolution of hand-shape images was 32× 32. Real-Sense and Kinect DNN were

able to achieve 97.8% and 98.9% accuracy, respectively.

Aly et al. (2016) used an architecture called PCANet to extract local features from depth and

intensity images using an unsupervised deep learning method on Arabic SL fingerspelling. The

learned features are then fed into a linear support vector machine classifier. They were able to

obtain an average accuracy of 99.5%.

Oyedotun & Khashman (2017) also adopted three different sized convolutional neural networks

and three stacked denoising autoencoders (SDAEs) on 24 hand gestures of the Thomas Moeslunds

gesture database. They studied CNNs with different depth sizes of 2, 3, and 4 and SDAEs with 1

to 4 hidden layers.

5.2 Proposed Models

To investigate character-level Sign Language Recognition, we study two different datasets with

uniform and complex backgrounds. The Sign Language MNIST, which is patterned to match

with the classic MNIST, includes images with uniform background, and the ASL Fingerspelling A
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Figure 5.3: Feature extraction using PCANet Aly et al. (2016)

Figure 5.4: The character-level sign recognizer architecture proposed by Aly et al. (2016)

dataset has images with complex background. To examine grayscale Sign Language MNIST, we

propose an 8-layers Convolutional neural network. To study ASL Fingerspelling A datasets, we

propose two different approaches, one with using prior knowledge and one without.
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Figure 5.5: Successive binary depth images character ’G’ Rioux-Maldague & Giguere (2014)

Figure 5.6: The character-level sign recognizer architecture proposed by Rioux-Maldague &
Giguere (2014)

Figure 5.7: Unsegmented hand gesture samples Oyedotun & Khashman (2017)

5.2.1 Model Overview

To analyze and infer on Sign Language MNIST, we proposed an eight-layer convolutional network.

The first six are alternating convolutional and max-pooling layers, and the last two are fully-
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Figure 5.8: Finger joints capture by Real-Sense Huang et al. (2015)

connected layers. The first convolutional layer filters the 28 × 28 input image with 128 kernels of

size 5× 5 with a stride of 1. The second convolutional layer takes as input the response-normalized

and pooled output of the first convolutional layer and filters it with 64 kernels of size 2 × 2. The

third convolutional layer has 32 kernels of size 2 × 2, and finally, the fully-connected layers have

512 and 24 neurons, respectively.

To examine the ASL Fingerspelling A dataset, we propose two different approaches. In the first

approach, raw data is fed to VGG-19 pre-trained with ImageNet dataset Deng et al. (2009) and the

model is fine-tuned. VGG-19 is a convolutional neural network that is 19 layers deep Simonyan &

Zisserman (2015). In the second approach, we create new black and white skeleton images (see

figure 5.9) from extracted 2D landmarks of the hands using MediaPipe and feed them to the same

network proposed for the Sign Language MNIST.

5.2.2 Model Details

Adetailed description of the proposedmodel to train Sign LanguageMNIST andASLFingerspelling

A Skeleton has been listed in table 5.1. To train ASL Fingerspelling A raw data we perform transfer

learning. To fine-tune VGG-19 (figure 5.10) we discard the fully-connected layer heads and add

our classifier layers of size 512, 512 & 24. We call the first proposed model ’SConv’ and the second

model ’SVGG’ for the sake of easy referring.

55



Figure 5.9: ASL alphabet skeleton created from 2D coordinates of the hands using MediaPipe

Figure 5.10: VGG-19 architecture Jaworek-Korjakowska et al. (2019)

5.3 Dataset

The Sign Language MNIST multi-signer Sign Language MNIST (2018), is a dataset for

character-level sign language recognition created from the American Sign Language letter database

Sign Language and Static gesture (2018) and patterned to match closely with the classic MNIST.

This dataset contains 27455 images for training and 7172 images for testing. Each image is 28× 28

with grayscale value and includes hands-only. Sign Language MNIST represents a multi-class

problem with 24 classes of letters (excluding J and Z, which require motion)

The second dataset is the American fingerspelling A dataset which contains 24 letters of the

ASL alphabet excluding the letters “j” and “z” Rastgoo et al. (2018). The images of this set are
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Table 5.1: Network used to train Sign Language MNIST and ASL Fingerspelling A Skeleton

Input dimension 28 × 28
Conv2D(128, 5,’relu’) 28 × 28 × 128
Maxpooling2D(2) 14 × 14 × 128

Conv2D(64, 2,’relu’) 14 × 14 × 64
Maxpooling2D(2) 7 × 7 × 64

Conv2D(32, 2,’relu’) 7 × 7 × 32
Maxpooling2D(2) 3 × 3 × 32

Flatten 288
Dense (’relu’) 512

Dense (’softmax’) 24

captured in five different sessions, with five different users in similar lighting conditions in the

presence of complex background objects.

5.4 Experimental Setup

MediaPipe requires packets (any data structure with a timestamp) to be fed into the graph in

order to work. To make use of MediaPipe, we used FFmpeg to create videos from images in each

class. FFmpeg is an open-source project consisting of a vast software suite of libraries and programs

for handling video, audio, and other multimedia files and streams. We then used generated 2D

landmarks of the hands to create new black and white skeleton images. The skeleton images are

constructed such that the center of the hand (point 9 in figure 4.1) is centered in the middle of the

image, that is, both vertically and horizontally centered.

5.5 Experimental Results

The proposed models are evaluated by accuracy and confusion matrix. The confusion matrix

is a specific table layout that allows visualization of the performance of the classification model by

class. SConv achieved 99.9% accuracy on Sign Language MNIST for seen signers (figures 5.11).

There is almost no confusion between similar-looking hand-shapes. The overall performance

of SConv and SVGG models trained on ASL Fingerspelling A Skeleton for seen users across 7

participants are recorded in figures 5.12.
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Figure 5.11: Training & Validation Accuracy for the SConv model on Sign Language MNIST
dataset.

Figure 5.12: Training & Validation Accuracy of theSVGG (left) & SConv (right) models on Sign
Language MNIST dataset.

Confusion between similar-looking hand-shapes, such as ’m’ and ’n’, and also ’s’, ’t’ and ’e’

are noticeable in the confusion matrices (figures5.13). This is expected as these letters are signed

as a fist that only differs by the thumb position, which is barely visible in some cases.
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Figure 5.13: Confusion Matrix of SConv model on ASL Fingerspelling A datasets.

5.6 Discussion

With our presented novel model, we are able to classify 24 characters with 98% accuracy. By

creating black and white skeleton images using Mediapipe from raw data, we overcome lighting

conditions, complex background, and camera position challenges. Experimental results indicate

that our model achieves substantial improvements over mainstream methods in terms of training

speed. The SConv model starts to converge at 100 epochs, and SVGG model starts to converge at

150 epochs (figure 5.12). Given its promising performance, as there are approximately 40 common

handshapes used in ASL, including the 24 static letters, we can use this model along with its weights

as a base for the word-level classification task.

5.7 Summary

In this chapter, we experimented with different datasets with uniform and complex backgrounds.

To examine grayscale Sign Language MNIST, we proposed an 8-layers Convolutional neural net-

work. To study ASL Fingerspelling A datasets, we investigated two different approaches. In the
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first approach, we use VGG19 pre-trained with ImageNet and fine-tune it. In the second approach,

we use MediaPipe to extract 2D landmarks of the hand, and then create the skeleton of the hands

with uniform background and then feed them to the same 8-layer architecture proposed for Sign

Language MNIST. The experiment results demonstrated the effectiveness of our approach on both

datasets. We achieve 99.9% accuracy for the first dataset and 96% & 98% accuracy for the second

dataset.
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CHAPTER 6

WORD-LEVEL SLR

To investigateword-level SLR,we present two deep dynamic sign language recognition frameworks.

In the first framework, to minimize prior knowledge, we feed raw frames into an 18-layers LRCN.

LRCN is a model in which a CNN as a feature extractor is applied to each frame before feeding

them into an LSTM. In the second framework, we leverage domain knowledge of sign languages to

extract the key characteristics of each frame. We first extract 2D landmarks of the hands and then

encode them in terms of handshape, hand movement, and hand location. These information are

then fed to a Multi-Cue network. We evaluate our proposed models on 52 vocabularies ASLLVD.

Each word is played by six signers, and each signer plays each word once. We perform an excessive

search on model hyper-parameters such as the number of feature maps, input size, batch size,

sequence length, LSTM memory cell, regularization, and dropout. The implementation of the

models is publicly accessible through Akandeh (2021).

6.1 Introduction

Words in sign languages are mostly expressed by movements of the hands. Some words do not

incorporate motion; however, here, we merely refer to dynamic word-level SLR. In the previous

chapter, character-level SLR has been studied. In character-level SLR, inputs are in the form of

images. In this chapter, we study Dynamic Sign Language Recognition (DSLR), in which inputs

are in the form of videos. Videos have an additional temporal dimension, they are much larger in

size, and they may contain different numbers of frames. Although SLR can be viewed as a video

classification task, it is much more challenging. SLR includes a large number of classes. Also, in

classifying signs, more attention is required in hand regions than the general video classification

task. Moreover, one word can be signed differently in different dialects. For example, in ASL,

there are over 100 different ways to sign “Birthday” and “Picnic”. There exist many text-to-sign

features that translate English text into ASL signs. However, we lack a technology that allows us
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to look up corresponding written forms of a given sign.

6.1.1 Characteristics

ASL is a complete and complex language that mainly employs signs made by moving the hands

Hoza (2007). Each sign is characterized bymanual elements such as shape, movement, and location

of the hands. Many ASL signs involve very subtle differences in their three characteristics. For

example, the main difference between two signs “small” and “big” is hand movement. Sign “small”

involves hands moving toward each other, and sign “big” involves hands moving away from each

other. Changing the location of a sign can also completely change themeaning of a sign even though

the other parameters are the same. For example, the only parameter change between “summer”,

“ugly”, and “dry” is the hand location. A competent SLR framework should be able to take into

account those subtle differences and accurately learn the distinguishable information.

6.1.2 Challenges

Word-level SLR shares challenges associated with character-level SLR. Environmental factors such

as lighting sensitivity, complex background, occlusion, signee body postures, and camera position

are issues that need to be considered at word-level as well. Moreover, in word-level SLR, there is

input length variation caused by signing speed. Also, there are a large number of vocabularies that

need to be learned. Furthermore, in word-level SLR, publicly available datasets are limited both in

quantity and quality despite character-level SLR.

6.1.3 Related Work

To investigate word-level ASL, Huang et al. (2015) proposed an eight layers 3D convolutional

neural network. The first four layers were convolution layers followed by sub-sampling and then

followed by two fully-connected layers. Color information, depth clue, and body joint positions

were fed into the network. They generated their own dataset of 25 vocabularies using Kinect.

Each word is played by nine signers, and each signer played each word three times. They stacked
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image frames to form a cube for the five types of features (R, G, B, depth, and skeleton) to feed the

network. Fifty kernels of the size of 7 × 7 × 5 were adopted in the convolution layers. They were

able to achieve 94% classification result.

Figure 6.1: Color, depth and skeleton images Huang et al. (2015)

Figure 6.2: The word-level sign recognizer architecture proposed by Huang et al. (2015)

Liu et al. (2016) proposed a seven layers LSTM-based sign language recognition system. They

discarded color image and depth information and fed 3D coordinates of hands and elbows into

the network. The Kinect sensor camera provides joints skeleton trajectories. The input is a 12-

dimensional feature vector comprised of four 3D coordinates of two hands and two elbows. The

next layer is an LSTM layer with 512 dimensions. Two fully connected layers with dimensions

512 and 100 come afterward. They evaluated their model on 100 isolated Chinese sign and 500

sign words. The first dataset was performed by five signers who each gestured five times, resulting
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in 25,000 images. The second dataset was performed by 50 singers who each gestured five times,

resulting in 125,000 images. They were able to achieve 64% and 86%, respectively.

Figure 6.3: The word-level sign recognizer architecture proposed by Liu et al. (2016)

Kumar et al. (2017) proposed a hybrid Hidden Markov Model and Bidirectional Long Short

TermMemory on 7500 Indian Sign Language (ISL) gestures comprised of 50 different sign-words.

The input was obtained using Leap Motion and the Kinect sensor. They fed horizontal and vertical

movement of fingers and palm alongside depth images and were able to achieve 96.2% accuracy.

6.2 Proposed Models

In this section, we discuss approaches we took to recognize dynamic isolated signs and propose

two deep word-level sign language recognition frameworks. In the first framework, it is aimed

to find a robust deep learning algorithm that requires minimum prior knowledge. In the second

framework, domain knowledge of sign languages is leveraged to extract the key characteristics

of each frame. The first model employs LRCN as its building block and the second model is a

multi-cue-based network. We call the first proposed model RSign (R corresponds to raw input) and

the second model Multi-Cue Sign (MCSign).
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Figure 6.4: The word-level sign recognizer architecture proposed by Kumar et al. (2017)

6.2.1 Model Overview

RSign is the sign language application of the LRCN network proposed by Donahue et al. (2017).

LRCN is an end-to-end trainable network in which convolutional layers and long-range temporal

recursion are combined (figure 2.8).

MCSign, on the other hand, aims to capture and model the three main characteristics associated

with each sign. In the first layer, a temporal sequence of 2D landmarks of hands and 2D landmarks

of upper-body are captured during the signing. In the second layer, the critical characteristics of the

signs, including shape, movement, and location of hands, are modeled. A new 2D black and white

image (see figure 6.7) is created out of 2D coordinates of the skeleton joints of hands to model the

hands’ shape. Hands movement is encoded by spatial displacement of the palm center between

two consecutive frames. A one-hot vector corresponding to the relative location of hands to the

head is also created to encode the hands’ location. In the third level, newly created spatio-temporal

trajectories are fed into a CONV-LSTM model. The one-hot vector corresponding to the hand
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locations is also fed into an LSTM model. Finally, at the top layer, MCSign adopts a softmax

classifier layer. Figure 6.5 provides an overview of the proposed architecture.

Figure 6.5: MCSign Model Overview

6.2.2 Model Details

In this section, a detailed description of two proposed models, namely, RSign and MCSign is

provided.

6.2.2.1 RSign

The high level architecture of LRCN proposed by Donahue et al. (2017) (figure 2.8) has been used

as the building block of RSign model. The more detailed architecture used in this study is given in

figure 6.6. Our architecture consists of a default block (blue box) and four repetitions of non-default

blocks (red box). We used the Time-Distributed layer in Keras to apply feature extraction (default

and non-default blocks) to every temporal slice of the input. Also, we benefited from the LSTM3

model to speed up the training process.

We used the RMSprop optimizer, a batch size of 32, and the categorical cross-entropy loss

function. The network specification and also a list of parameters that have been used are given in

66



Figure 6.6: RSign model overview

table 6.1. It is observed that even a small sequence length is sufficient to perform well due to the

continuous nature of sign language. It is also observed that smaller batch sizes perform better.

Table 6.1: RSign Network specifications.

Input dimension 200 × 200 × 3
1st layer of default block Conv2D(32, 7×7)-Relu
2nd layer of default block Conv2D(32, 3×3)-Relu

Number of feature maps in non-default blocks 128-64-128-64
LSTM memroy cell 256
Sequence length None

Dropout 0.6
Regularization 0.001

6.2.2.2 MCSign

To emphasize on crucial characteristics of the signs and inject domain-specific expert knowledge

into the system, we propose to extract and model each characteristic as three input modalities (cues)

to the network. Multi-hands tracking and Pose module in Mediapipe has been used to extract this

representative information (see figure 4.1 for the 2D landmarks of hands tracked by Mediapipe).

Having access to 21 2D landmarks of the hands, we create new black and white images

representing handshape in each frame. Figure 6.7 illustrates how the ASL signs of the word

“Christmas” is precisely captured by the temporal sequence of skeleton joints of the fingers. We

also extract hand movement information of both hands as the spatial displacement of the palm

center between two consecutive frames. Hand location is also encoded in a one-hot vector based on

hand closeness to eyes, mouth, or chest. The extracted characteristics result in six trajectories that
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capture handshape, movement, and location. Figure 6.8 illustrates the architecture of the proposed

model. The “None” in this figure refers to the number of frames, which can be variable and depends

on the signee speed or length of the word.

Figure 6.7: The skeleton joints of ASL sign “Christmas”

Figure 6.8: MCSign Model Architecture

As shown in figure 6.8, our proposed model consists of seven main layers. Within the first layer,
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a block of CONV-LSTM is embedded. This CONV-LSTM model is also LRCN-based in which a

CNN model as a feature extractor is applied to each frame before feeding them into an LSTM. For

the CNN part, we employ the SConv model that has been proposed in the character-level chapter.

In the first layer, the new skeleton images of each hand are fed to the CONV-LSTM block. Hand

movement and hand location are also fed into two separate LSTMs. The new representation of

each characteristic is then concatenated in the first fusion layer and fed into BLSTM to obtain an

integrated representation of each hand. Two high-level hand results are then fused and fed into

another BLSTM. Finally, The results of this process are fed into a fully connected layer with a

so f tmax nonlinearity that drives the final classification decision. See figure 6.9, for a detailed

model summary.

Figure 6.9: MCSign model summary
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6.2.3 Design Choice

To decide on the building block of both proposed frameworks, we started by employing architecture

that has been used by other video classification tasks, namely LRCN, Features+LSTM, C3D, and

CONVLSTM. Based on our experiments, LRCN submitted the best performance among all.

Also, to decide on the input form of the first proposed framework, we fed raw frames, optical

flow field images (figure 6.10), and also frames with emphasis on hands (6.11) using skin detection

techniques. We believe that optical flow field images are too vague for the network. Since signees

have worn clothes with different skin exposure levels, the network with input in the form of frames

with emphasis on hands failed in giving proper results.

Figure 6.10: Optical flow field sample

Despite character-level SLR, in word-level SLR, publicly available datasets are limited both in

quantity and quality. Deep networks require large amounts of labeled training data to demonstrate

satisfactory performance. A model with limited parameters cannot learn the problem, and a model

with too many parameters can learn it too well. Both scenarios lead to a model that does not

generalize well. The complexity of the architecture is a controlling factor in how well a model

generalizes. If a model is under-fitted, in which training accuracy is not high enough, one could

increase the complexity of the model by enlarging the architecture. If it is overfitted, in which

training accuracy is high enough, but testing accuracy is not, one may decrease the complexity.

Recently, to reduce generalization error, researchers use a large model along with regularization to
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Figure 6.11: Frames with emphasis on hands

put a constraint on weights and avoid overfitting. It has been shown that this approach not only

reduces overfitting but also leads to faster optimization.

6.3 Dataset

The American Sign Language Lexicon Video Dataset (ASLLVD) Neidle et al. (2012) has been

collected at Boston University. It is captured by four synchronized cameras, providing a side view,

a close-up, a half-speed front view, and a full-resolution front view (figure 6.12). It consists of

more than 3300 ASL signs. Six native signees perform each sign once for a total of almost 9,800

tokens. Gloss labels and sign start and end times are also included in linguistic annotations. In this

study, we perform classification on 52 dynamic signs.

Figure 6.12: ASLLVD Neidle et al. (2012)
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6.4 Experimental Setup

After downloading and placing videos, FFmpeg was used to extract frames from videos.

FFmpeg is an open-source project consisting of a vast software suite of libraries and programs for

handling video, audio, and other multimedia files and streams. We also used OpenCV to obtain

optical flow images. OpenCV is a library of programming functions mainly aimed at computer

vision tasks. The skin detection algorithm is also implemented in OpenCV. Also, since the number

of samples per class was limited, we enlarged the dataset size by means of augmentation to a total

of 5 per sample.

To implement the CNN block of the CONV-LSTM network, we employed the SConv model

that has been proposed in the character-level chapter with TimeDistributed layer in Keras. The

only difference was to perform batch-normalization and then apply relu nonlinearity after each

convolutional layer.

As mentioned before, the MediaPipe palm detection model is invoked only when the landmark

model can no longer identify hand presence. To increase the performance, we had to turn this

feature off.

There are approximately 40 common handshapes used in ASL, including the 24 static letters

of the alphabet 6.13. Before training the proposed model on ASLLVD, we first created a dataset

of those handshapes, enlarged the quantity through data augmentation, and then trained the shape-

network part of the proposed model on these static hand shapes. Also, to train the shape part of the

network on 40 common hand shapes, we initialized it with character-level model (introduced in the

previous chapter) weights.

6.5 Experimental Results

We used leave-one-subject-out cross-validation to examine the generalization capability of the

models across different subjects by selecting five signees for training and left one for evaluation.

Later we decided to change the protocol and test it across participants on unseen samples. Overall,

MCSing and RSign achieved an average accuracy of 91% and 84% on translating 52 signs across 6
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Figure 6.13: 40 common hand shapes used in ASL

participants. This indicates that our proposedmodels are capable of capturing the key characteristics

of the signs. Figures 6.14 and 6.15 show the training and validation accuracy across 6 participants

for both proposed models.

Figure 6.14: Training & Validation Accuracy for the MCSign model on ASLLV dataset.
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Figure 6.15: Training & Validation Accuracy for the RSign model on ASLLV dataset.

6.6 Discussion

With our presented end-to-end model, we are able to classify 52 sign words with 91% accuracy.

By creating black and white skeleton images usingMediapipe from raw data, we not only overcome

lighting conditions, complex background, and camera position challenges but also create a way to

easily combine data from variant sources and hence combat limited data resources in the SLR field.

Since the proposed network is insensitive to dataset type, combining different datasets boosts the

performance of the network tremendously.

6.7 Summary

In this chapter, we proposed two solutions to word-level SLR. In the first approach, no prior

knowledge has been leveraged. Raw frames are fed into an 18-layer LRCN. LRCN is a model in

which a CNN as a feature extractor is applied to each frame before feeding them into an LSTM.

In the second approach, three main characteristics (hand shape, hand position, and hand movement

information) associated with each sign have been extracted using Mediapipe. 2D landmarks of
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handshape have been used to create the skeleton of the hands and then are fed to a CONV-LSTM

block. Hand locations and hand positions as relative distance to head are fed to separate LSTMs.

All three sources of information have been then integrated into a Multi-Cue Network. We evaluated

the performance of proposed models on 52 vocabularies ASLLVD. Performing an excessive search

on model hyper-parameters such as the number of feature maps, input size, batch size, sequence

length, LSTM memory cell, regularization, and dropout, we were able to obtain promising results

in this domain.
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CHAPTER 7

SENTENCE-LEVEL SLR

This chapter presents two deep continuous sign language recognition frameworks that map videos

of sign language sentences to sequences of gloss labels. Connectionist Temporal Classification

(CTC) has been used as the classifier level of both models. CTC is used to avoid pre-segmenting the

sentences into individual words. The first model is an LRCN-based model, and the second model

is a Multi-Cue network. LRCN is a model in which a CNN as a feature extractor is applied to each

frame before feeding them into an LSTM. In the first framework, to minimize prior knowledge, we

feed raw frames into an 18-layer LRCN with a CTC on top. In the second framework, we leverage

domain knowledge of sign languages to extract the key characteristics of each frame. The features

are then fed into a Multi-Cue model with a CTC classification layer. We evaluate proposed models

on RWTH-PHOENIX-Weather multi-signer. This dataset contains 5672 sentences in German sign

language for training with 65,227 signs and 799,006 frames in total. We perform an excessive

search on model hyper-parameters such as the number of feature maps, input size, batch size,

sequence length, LSTM memory cell, regularization, and dropout. The implementation of the

models is publicly accessible through Akandeh (2021).

7.1 Introduction

In previous chapters, character-level andword-level sign language recognition have been studied.

In character-level SLR, inputs are in the form of images, and in word-level SLR, inputs are in the

form of videos. In this chapter, we study continuous sign language recognition (CSLR) in which

temporal boundaries of the words in the sentences are not defined. Most existing sign language

recognition systems can only recognize a single sign at a time and thus requires users to pause

between signs, which is not very practical in daily-life interaction. To address this problem, the

correspondence between video sequence and sign gloss sequence needs to be learned. Glossing

corresponds to mapping signs word-for-word to another written language. Glosses differ from
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translation as they only denote the meaning of each part in a sign language sentence and do not

necessarily construct a grammatically correct sentence in the written language. In this chapter, we

do not address linguistic structures and grammar unique to sign language.

7.1.1 Characteristics

As mentioned in the previous chapter, each sign is characterized by manual elements such as shape,

movement, and location of the hands. To structure sentences, non-manual elements like eye gaze,

mouth shape, facial expression, and body pose are also involved.

Facial expressions are used to prevent confusion or misunderstandings. The visible mouth

shapes can add information to the meaning of a sign andmake it distinguishable from a semantically

related sign. Some ASL signs have a permanent mouth morpheme as part of their production. For

example, the ASL word NOT-YET requires a mouth morpheme (TH), whereas LATE has no mouth

morpheme. These two are the same signs but with a different non-manual signal.

In American Sign Language, eye gazing serves a variety of functions. It can regulate turn-taking

and mark constituent boundaries. Eye gazing is also frequently used to repair or monitor utterances

and to direct the addressee’s attention. It is also engaged in indexing and in expressing object and

subject agreement and definiteness versus indefiniteness (Thompson (2006)).

In this chapter, non-manual elements, despite their importance, have not been addressed. In the

next chapter, we have made some suggestions and introduced some references on how to involve

those essential factors in recognition systems.

7.1.2 Challenges

As mentioned in previous chapters, there are many challenges associated with the SLR task.

Publicly available datasets are limited both in quantity and quality. Environmental factors such

as lighting sensitivity, complex background, occlusion, signee body postures, and camera position

are also challenging issues. In terms of sign linguistics, there are subtle differences between

different signs, and there are a large number of vocabularies that need to be learned. Specifically,
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in sentence-level SLR, there is no word alignment, and temporal boundaries of a specific word

are not clear. Also, there is sentence length variation caused by the number of the word or by

signing speed. Moreover, signs are context-dependent and, coarticulation in which sign is affected

by the preceding or following signs also plays an important role. All these factors together make

sentence-level SLR a very challenging task.

7.1.3 Related Work

Koller et al. (2016a) employed a pre-trained 22-layer CNN model within an iterative EM algorithm

on a sequence of data. The algorithm iteratively refined the frame-level annotation and subsequent

training of the CNN. Three thousand manually labeled hand shape images of 60 different classes

were employed to train the model.

Figure 7.1: The sentence-level sign recognizer architecture proposed by Koller et al. (2016a)

Koller et al. (2016b) embedded a CNN into an HMM. The outputs of the CNN were treated

as Bayesian posteriors, and they trained the system in an end-to-end fashion. Their model was

very similar to the LRCN mentioned earlier, which combined CNN and LSTM. They were able to

improve the state-of-the-art accuracy on three challenging continuous sign language benchmarks

(SIGNUM , RWTH-PHOENIX-Weather2012 , RWTH-PHOENIX-Weather Multi-signer ) by 15%,

38% and 13.3% respectively.

Cui et al. (2017) used a CNN-LSTMmodel to learn the mapping of sign sequences to sequences

of the gestures on RWTH-PHOENIX-Weather Multi-signer and achieved 61.3% accuracy. Their
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Figure 7.2: The sentence-level sign recognizer architecture proposed by Koller et al. (2016b)

architecture consists of a CNN with temporal convolution and spatial pooling, a bidirectional

LSTM for global sequence learning, and a detection network. The detection network combines the

temporal convolution operations on the spatio-temporal features. According to the authors, this

combination acts like a sliding window along with the sign sequences.

To perform Sign2Gloss task (SLR), Camgoz et al. (2020) utilized a pre-trained Inception model

as spatial embeddings in a CNN+LSTM+HMM setup. They extracted frame level representations

from sign videos and trained two-layered sign language transformers to learn CSLR (continuous

sign language recognition) and SLT(sign language translation) jointly in an end-to-end manner.

Niu & Mak (2020) also proposed to use the transformer encoder as the contextual model for CSLR

to fine-tune the lower-level visual feature extractor during model training. To improve model

robustness, they proposed dropping video frames stochastically (SFD) and randomly stopping the

gradients of some frames during training (SGS).

7.2 Proposed Models

We present the development and implementation of two deep sentence-level sign language

recognition frameworks. In the first framework, to minimize prior knowledge, raw frames are fed
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to a deep network. In the second framework, sign language linguistics is leveraged to extract the

key characteristics of each frame. In both models, we adopt a probabilistic framework based on

Connectionist Temporal Classification to overcome pre-segmentation requirements posed by the

sequence learning problem associated with sentence-level SLR. We call the first proposed model

RSign-C (R corresponds to raw input and C corresponds to CTC), and the second model Multi-Cue

Sign-C (MCSign-C).

7.2.1 Model Overview

In this section, we provide an overview of two proposed models, namely, RSign-C and MCSign-C.

These models are based on models that have been proposed in the previous chapter for word-level

SLR, except we modify the so f tmax layer, which calculates the probability of a single sign and

adds a CTC layer that calculates the probabilities of a sequence of signs. To have a standalone

chapter, we re-present the architecture of both models.

RSign-C is an 18-layers LRCN with CTC layer on top. In the LRCN network, a CNN model as

a feature extractor is applied to each frame before feeding them into an LSTM (2.8).

MCSign-C, on the other hand, aims to capture and model the three main characteristics associ-

ated with each sign. In the first layer, a temporal sequence of 2D landmarks of hands, as well as

2D landmarks of the upper-body, are captured during the signing. In the second layer, the critical

characteristics of the signs, including shape, movement, and location of hands, are modeled. A new

2D black and white image (see figure 7.3) is created out of 2D coordinates of the skeleton joints of

hands to model the handshapes. Hands movement is encoded by spatial displacement of the palm

center between two consecutive frames. A one-hot vector corresponding to the relative location of

hands to the head is also created to encode the hands’ location. In the third level, newly created

spatio-temporal trajectories are fed into a CONV-LSTM model. The one-hot vector corresponding

to the hand locations is also fed into an LSTM model. Finally, at the top layer, MCSign-C adopts

a CTC-based approach to output sequences of gloss labels. Figure 7.4 provides an overview of the

proposed architecture.
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Figure 7.3: A 2D black and white image sequence created from PHOENIX dataset

Figure 7.4: MCSign-C model overview

7.2.2 Model Details

This section provides a detailed description of two proposedmodels, namely, RSign-C andMCSign-

C.

7.2.2.1 RSign-C

Wemodify the RSign model that has been proposed in the previous chapter such that it is capable of

computing the probabilities of a sequence of signs. LRCNproposed byDonahue et al. (2017) (figure

2.8) has been used as the building block of RSign model. To produce a probability distribution

over all labels at each time step, we modify the final LSTM to return all sequence corresponds
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to each hidden state, then apply a so f tmax function and finally add a CTC layer. The more

detailed architecture used in this study is given in figure 7.5. As mentioned earlier, we used the

Time-Distributed layer in Keras to apply feature extraction to every temporal slice of the input.

Figure 7.5: RSign-C model overview

7.2.2.2 MCSign-C

To emphasize on crucial characteristics of the signs and inject domain-specific expert knowledge

into the system, we propose to extract and model each characteristic as three input modalities (cues)

to the network. Multi-hands tracking and pose modules in Mediapipe have been used to extract this

representative information. (see figure 4.1 for the 2D landmarks of hands tracked by Mediapipe).

Having access to 21 2D landmarks of the hands, we create new black and white images

representing handshape in each frame. We also extract hand movement information of both

hands as the spatial displacement of the palm center between two consecutive frames. Hand

location is also encoded in a one-hot vector based on hand closeness to eyes, mouth, or chest. The

extracted characteristics result in six trajectories that capture information related to each handshape,

movement, and location. Figure 7.6 illustrates the architecture of the proposed model.

As shown in figure 7.6, our proposed model consists of seven main layers. Within the first

layer, a block of CONV-LSTM is embedded. This CONV-LSTM model is also LRCN-based in

which a CNN model as a feature extractor is applied to each frame before feeding them into an

LSTM. For the CNN part, we employ the SConvmodel that has been proposed in the character-level

chapter. In the first layer, the new skeleton images of each hand are fed to the CONV-LSTM block.

Hand movement and hand location are also fed into two separate LSTM. The new representation
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Figure 7.6: MCSign-C architecture

of each characteristic is then concatenated in the first fusion layer and fed into BLSTM to obtain

an integrated representation of each hand. Two high-level hand results are then fused and fed into

another BLSTM. Finally, The results of this process are fed into a fully connected layer with CTC

loss that drives the final classification decision. See figure 7.7, for a detailed model summary. The

“None” in this figure refers to the number of frames, which can be variable and depends on the

signee speed or length of the sentence.

In the CTC approach, the probabilities of all the possible sentences formed by the word included

in the output domain are computed. This approach not only eliminates the need for word pre-

segmentation and post-processing but also addresses variable-length sequences Fang et al. (2017).

To obtain the final gloss label, as it was discussed in chapter 2, section 4, adjacent duplicates and

all the blank symbols in the inferred label sequence are removed.
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Figure 7.7: MCSign-C model summary

7.2.3 Design Choice

There have been many different architectures proposed by many researchers to address the SLR

task. Here, we present the main reasons behind selecting some specific design choices.

In the MCSign-C model, we leverage sign language linguistics to extract trajectories of rep-

resentative information from the frame sequences during the signing and develop models based

on the extracted information. Handshape information of both left and right hands is encoded by

zero-centering the palm center of the hands and then scaling the given normalized 2D coordinates

of the skeleton joints. Since there was no ultimate solution to layout the coordinates, we decided to

leave it to the network to decide and proposed to regenerate each frame using 2D landmarks. This

method also handles different hand size issues imposed by distance to the camera.

As many signs share similar characteristics at the beginning of their trajectories, to avoid any
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confusion by traditional unidirectional LSTM, a bidirectional LSTMmodel has been adopted (also

suggested by Fang et al. (2017)). A bidirectional LSTM model performs inference based on both

past and future information and computes the hidden state sequence by combining the output

sequences of LSTM by iterating forwards and backward.

To perform sentence-level SLR, current technologies employ a framework that requires pre-

segmenting individual words within the sentence. This restriction requires users to pause between

adjacent signs when signing sentences. To address this problem, some researchers have proposed

sign boundary detection to detect when a sign ends, and the next one begins. Attention mechanisms

(Encoder-Decoder Networks) and Connectionist Temporal Classification (CTC) have been also

proposed by other researchers to compute the probability of the whole sentence directly. Since

CTC is the key technique that drives the modern automatic speech recognition systems such as

Amazon Alexa and Apple Siri Fang et al. (2017), we propose to adopt a framework based on CTC

which removes the requirement of pre-segmentation and can be easily built on top of the MCSign.

7.3 Dataset

The RWTH-PHOENIX-Weather multi-signer Forster et al. (2012), is a dataset for continuous

sign language recognition. This dataset contains 5672 sentences in German sign language for

training with 65,227 signs and 799,006 frames in total. Nine signers perform these videos. Table

7.1 summarizes setup statistics RWTH-PHOENIX-Weather (2012).

Table 7.1: RWTH-PHOENIX Setup Statistics

Glosses German
Train number of sentences 2612 2612

number of running words 20713 26585
vocabulary size 768 1389

singeltons/vocabulary size 32.4% 36.4%
Development number of sentences 250 250

number of running words 2573 3293
out-of-vocabulary-words 1.4% 1.9%

Test number of sentences 228 228
number of running words 2163 2980
out-of-vocabulary-words 1.0% 1.5%
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7.4 Experimental Setup

To implement the CNN block of the CONV-LSTM network, we employed the SConv model

that has been proposed in the character-level chapter with TimeDistributed layer in Keras. The

only difference was to perform batch-normalization and then apply relu nonlinearity after each

convolutional layer.

As mentioned before, in the CTC layer, a probability distribution over all labels at each time

step is predicted. This can be implemented by feeding a 2D input (e.g., the output of an LSTM

layer where return-sequence is true) to a Softmax function and then employ the CTC loss function.

To infer a likely output, the Beam Search algorithm has been used. Only a predetermined

number of best partial solutions (beam size) are kept as candidates in the beam search algorithm.

To get the optimum beam size performing error analysis are required. If the probability of a true

label y∗ for a given input is lower than the probability of generated output ỹ, then the network is at

fault, and more training is required. If p(y∗) > p( ỹ), then the beam search is at fault, and the beam

size needs to be increased.

7.5 Experimental Results

To evaluate the performance of the two proposed models, we use word error rate (WER) as the

evaluation metric. WER is a standard metric of the performance of a sentence-level translation

or a speech recognition system and is computed as the minimum number of word insertions,

substitutions, and deletions required to get from the reference to the hypothesis, divided by the

number of words in the reference. To further investigate Slim LSTMmodels proposed in chapter 3,

we then run multiple experiments with MCSign-C-Slim models and compare them against baseline

MCSign-C.

7.5.1 MCSign-C & RSign-C

MCSign-C achieves an average 35.2% word error rate on mapping Dev sentences and an average

of 35.3% word error rate on Test sentences. Table 7.2 lists other approaches, and WER reported
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on RWTH-PHOENIX-Weather dataset.

Table 7.2: Comparison between various approaches on the RWTH-PHOENIX dataset

Method Dev(WER) Test(WER)
CMLLR Koller et al. (2015) 55.0 53.0

1-Mio-Hands Koller et al. (2016b) 45.1 47.1
CNN-Hybrid Koller et al. (2016b) 38.3 38.8
SubUNets Camgoz et al. (2017) 40.8 40.7
Staged-Opt Cui et al. (2017) 39.4 38.7
Re-sign Koller et al. (2017) 27.1 26.8
LS-HAN Huang et al. (2018) − 38.3

Dilated Pu et al. (2018) 38.0 37.3
Hybrid CNN-HMM Koller et al. (2018) 31.6 32.5

IAN Pu et al. (2019) 37.1 36.7
DenseTCN Guo et al. (2019) 35.9 36.5

DNF Cui et al. (2019) 23.8 24.4
DNF Cui et al. (2019) 23.1 22.9

CNN-LSTM-HMM Koller et al. (2020) 26.0 26.0
RSign 45.1 45.1
MCSign 35.2 35.3

7.5.2 MCSign-C-Slim

Ten Slim LSTMmodels have been introduced and investigated in chapter 3. Due to their promising

results, we decide to evaluate and verify them further on RWTH-PHOENIX-Weather dataset. We

train the MCSign-C-Slim model with three configurations: LSTM1, LSTM3, and LSTM6. We

then compare baseline performance to the proposed models. To train each model, we perform

parameter selection for learning rate, number of epochs, and beam width.

For all three models, we only replaced LSTM units with corresponding Slim models. The

networks were trained by RMSprop optimizer with a batch size of 32. We first investigate the effect

of the beam width. The beam width varied from 1 to 6, then set to the optimum value of 4 when

only the 4 most probable hypotheses are stored. Similarly, the number of epochs for the training

was changed from 100 to 1000.

We then investigate how LSTM1, LSTM3 and LSTM6 affect WER score. Figure 7.8 shows

that Slim models and the baseline model have nearly the same word error rates. This indicates that
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the proposed models, although being lightweight, do not harm the model performance.
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Figure 7.8: MCSign-C-Slim models comparison

In Table 7.3, we list the time per epochs for each model. As the table indicates, slim models

provide significant improvements over the baseline model in terms of training cost. The model is

implemented with the Tensorflow.keras deep-learning platform and trained on a Nvidia K80 with

4.1 TFLOPS as the GPU resource (Google Colab Setting).

Table 7.3: Time per epoch for each MCSign-C-Slim model.

Model Time per Epoch (s)
MCSign-C-Slim1 36
MCSign-C-Slim3 30
MCSign-C-Slim6 29

MCSign-C 40

7.6 Discussion

With our presented end-to-end model, we are able to achieve 35 WER on WTH-PHOENIX-

Weather dataset. The slightly lower performance of the model is compensated by greater robustness

to environmental circumstances, like lighting. By creating black and white skeleton images using

Mediapipe from raw data, we not only overcome lighting conditions, complex background, and

camera position challenges but also create a way to easily combine data from variant sources and
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hence combat limited data resources in the SLR field. Since the proposed network is insensitive

to dataset type, combining different datasets boosts the network’s performance tremendously.

Experimental results indicate that our model achieves substantial improvements over mainstream

methods in terms of training speed.

7.7 Summary

In this chapter, we proposed two solutions to sentence-level SLR. Sentence-level SLR required

mapping videos of sign language sentences to sequences of gloss labels. Connectionist Temporal

Classification (CTC) has been used as the classifier level of both models. CTC is used to avoid pre-

segmenting the sentences into individual words. The first model is an LRCN-based model, and the

second model is a Multi-Cue Network. LRCN is a model in which a CNN as a feature extractor is

applied to each frame before feeding them into an LSTM. In the first approach, no prior knowledge

has been leveraged. Raw frames are fed into an 18-layer LRCN with a CTC on top. In the second

approach, three main characteristics (hand shape, hand position, and hand movement information)

associated with each sign have been extracted using Mediapipe. 2D landmarks of handshape have

been used to create the skeleton of the hands and then are fed to a CONV-LSTM model. Hand

locations and hand positions as relative distance to head are fed to separate LSTMs. All three sources

of information have been then integrated into a Multi-Cue network with a CTC classification layer.

We evaluated the performance of proposed models on RWTH-PHOENIX-Weather and were able

to achieve 35 WER on RWTH-PHOENIX-Weather dataset.
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CHAPTER 8

FUTURE ROADMAP

Although this study aimed to addressmany aspects of SLR that computer scientists have overlooked,

there are still significant gaps to be addressed. Specifically, non-manual elements, including the eye

gaze, mouth shape, facial expression, require much attention in SLR. Face Mesh and Iris tracking

modules in MediaPipe can be beneficial to pursue this track.

To extend the SLR task, one may also look into SLT. SLT differs from SLR as the latter merely

detects a sequence of signs without taking into account the linguistic structures and grammar

unique to sign language Yin (2020). There have been limited studies on mapping glosses to

spoken language. To map the detected glosses into a proper sentence in the target language Neural

Machine Translation (NMT) has been introduced. An encoder-decoder architecture, also known

as a sequence to sequence model, is primarily employed in recent NMT approaches. However,

sequence to sequence networks are unable tomodel long-termdependencies in large input sentences.

To address this issue, attention mechanisms are introduced Bahdanau et al. (2015). Transformer

Vaswani et al. (2017) is an encoder-decoder network in which self-attention layers are used in place

of recurrent networks. The next phase in translating sign language to written or spoken language

can be piping the output of an SLR system into a sequence to sequence model. RWTH-PHOENIX-

Weather is currently the only publicly available dataset with both gloss labels and spoken language

translations.
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