
STATISTICALLY CONSISTENT SUPPORT TENSOR MACHINE FOR
MULTI-DIMENSIONAL DATA

By

Peide Li

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Statistics – Doctor of Philosophy

2021

ABSTRACT

STATISTICALLY CONSISTENT SUPPORT TENSOR MACHINE FOR
MULTI-DIMENSIONAL DATA

By

Peide Li

Tensors are generalizations of vectors and matrices for multi-dimensional data representation.

Fueled by novel computing technologies, tensors have expanded to various domains, including

statistics, data science, signal processing, and machine learning. Comparing to traditional data

representation formats, tensor data representation distinguishes itself with its capability of preserv-

ing complex structures and multi-way features for multi-dimensional data. In this dissertation, we

explore some tensor-based classification models and their statistical properties. In particular, we

propose few novel support tensor machine methods for huge-size tensor and multimodal tensor

classification problems, and study their classification consistency properties. These methods are

applied to different applications for validation.

The first piece of work considers classification problems for gigantic size multi-dimensional

data. Although current tensor-based classification approaches have demonstrated extraordinary

performance in empirical studies, they may face more challenges such as long processing time

and insufficient computer memory when dealing with big tensors. In chapter 3, we combine

tensor-based random projection and support tensor machine, and propose a Tensor Ensemble Clas-

sifier (TEC) for ultra-high dimensional tensors, which aggregates multiple support tensor machines

estimated from randomly projected CANDECOMP/PARAFAC (CP) tensors. This method uti-

lizes Gaussian and spares random projections to compress high-dimensional tensor CP factors,

and predicts their class labels with support tensor machine classifiers. With the well celebrated

Johnson-Lindenstrauss Lemma and ensemble techniques, TECmethods are shown to be statistically

consistent while having high computational efficiencies for big tensor data. Simulation studies and

real data applications including Alzheimer’s Disease MRI Image classification and Traffic Image

classification are provided as empirical evidence to validate the performance of TEC models.

The second piece of work considers classification problems for multimodal tensor data, which

are particularly common in neuroscience and brain imaging analysis. Utilizing multimodal data is

of great interest for machine learning and statistics research in these domains, since it is believed

that integration of features frommultiple sources can potentially increase model performance while

unveiling the interdependence between heterogeneous data. In chapter 4, we propose a Coupled

Support Tensor Machine (C-STM) which adopts Advanced Coupled Matrix Tensor Factorization

(ACMTF) and Multiple Kernel Learning (MKL) techniques for coupled matrix tensor data clas-

sification. The classification risk of C-STM is shown to be converging to the optimal Bayes risk,

making itself a statistically consistent rule. The framework can also be easily extended for multi-

modal tensors with data modalities greater than two. The C-STM is validated through a simulation

study as well as a simultaneous EEG-fMRI trial classification problem. The empirical evidence

shows that C-STM can utilize information from multiple sources and provide a better performance

comparing to the traditional methods.

Copyright by
PEIDE LI

2021

To my parents and my grandmother.

v

ACKNOWLEDGEMENTS

I have received support and assistance from many people throughout the writing of this dissertation

and my journey toward PhD. I want to take a moment and thank them.

First, I would like to express my deepest gratitude to my advisor Dr. Tapabrata Maiti, whose

expertise is invaluable in exploring research questions. He always provides me with constructive

insights and strong supports that sharpen my thinking and bring my work to a higher level. Without

his guidance, I would not have made such a progress in this field.

I would also like to thank my dissertation guidance committee members, Dr. Jiayu Zhou, Dr.

Ping-shou Zhong, Dr. David Zhu, and Dr. Shrĳita Bhattacharya. Their comments and suggestions

are extremely beneficial for my research.

I want to extend my appreciation to my collaborators, Dr. Selin Aviyente, Dr. Rejaul Karim,

and Mr. Emre Sofuoglu. It is a great pleasure to work with them. Their expertise as well as

dedication to scientific research help me to extend my work to a much boarder level.

I am also grateful to the help I obtained from all the professors and staff members in the

Department of Statistics and Probability. I really appreciate the wonderful courses as well as the

assistance they provided.

During my six years at Michigan State University, I made a lot of friends and met many kind

peers. Thanks to them, I did not feel lonely during my PhD journey. I am very grateful to their

sincerity and patience. I wish you all have a wonderful future.

Finally, I would like to thank my parents and Miss Jialin Qu. Thank you for your accompany

and concerns that support me to go through this journey and overcome difficulties especially under

the COVID-19 pandemic.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ALGORITHMS . xi

CHAPTER 1 INTRODUCTION . 1
1.1 Overview . 3
1.2 Tensor Algebra . 4

1.2.1 Notations . 4
1.2.2 Tensor Decomposition . 8
1.2.3 Tensor Product Space . 10

1.3 The Bayes Error and Classification Consistency 12
1.3.1 The Bayes Problem . 12
1.3.2 Consistent Classification Rules . 13
1.3.3 Surrogate Loss Consistency . 14

CHAPTER 2 TENSOR CLASSIFICATION MODELS 16
2.1 Introduction . 16
2.2 Tensor Classification Algorithms . 17

2.2.1 Support Tensor Machine . 18
2.2.2 Tensor Discriminant Analysis . 21
2.2.3 Tensor Regression . 27

2.3 Statistical Analysis . 29
2.3.1 Universal Tensor Kernels . 29
2.3.2 Consistency of CP-STM . 30

2.4 Real Data Analysis . 32
2.4.1 MRI Classification for Alzheimer’s Disease 32
2.4.2 KITTI Traffic Images . 35

2.5 Conclusion . 38

CHAPTER 3 TEC: TENSOR ENSEMBLE CLASSIFIER FOR BIG DATA 40
3.1 Introduction . 40
3.2 Related Works . 44

3.2.1 CP-STM for Tensor Classification . 44
3.2.2 Random Projection . 45

3.3 Methology . 47
3.3.1 Tensor-Shaped Random Projection . 47
3.3.2 Random-Projection-Based Support Tensor Machine (RPSTM) 48
3.3.3 TEC: Ensemble of RPSTM . 50

3.4 Model Estimation . 51
3.5 Statistical Properties . 56

vii

3.5.1 Excess Risk of TEC . 57
3.5.2 Excess Risk of RPSTM . 58
3.5.3 Price of Random Projection . 62
3.5.4 Convergence of Risk . 62

3.6 Simulation Study . 65
3.7 Real Data Analysis . 70

3.7.1 MRI Classification for Alzheimer’s Disease 71
3.7.2 KITTI Traffic Image Classification . 72

3.8 Conclusion . 74

CHAPTER 4 COUPLEDSUPPORTTENSORMACHINEFORMULTIMODALNEU-
ROIMAGING DATA . 76

4.1 Introduction . 76
4.2 Related Work . 80

4.2.1 CP Decomposition . 80
4.2.2 CP Support Tensor Machine (CP-STM) 82
4.2.3 Multiple Kernel Learning . 82

4.3 Methodology . 83
4.3.1 ACMTF . 84
4.3.2 Coupled Support Tensor Machine (C-STM) 85

4.4 Model Estimation . 86
4.5 Theory . 88
4.6 Simulation Study . 91
4.7 Trial Classification for Simultaneous EEG-fMRI Data 94
4.8 Conclusion . 96

APPENDICES . 98
APPENDIX A APPENDIX FOR CHAPTER 2 . 99
APPENDIX B APPENDIX FOR CHAPTER 3 . 103
APPENDIX C APPENDIX FOR CHAPTER 4 . 124

BIBLIOGRAPHY . 135

viii

LIST OF TABLES

Table 2.1: Biological Information for Subjects in ADNI Study; MMSE: baseline Mini-Mental
State Examination . 33

Table 2.2: Real Data: ADNI Classification Comparison I . 34

Table 2.3: Real Data: Traffic Image Classification I . 37

Table 3.1: TEC: Comparison of Computational Complexity 55

Table 3.2: TEC Simulation Results I: Desktop with 32GB RAM 69

Table 3.3: Real Data: ADNI Classification Comparison II . 71

Table 3.4: Real Data: Traffic Image Classification II . 73

Table 4.1: Distribution Specifications for Simulation;"+#"+#"+#: multivariate normal distri-
bution. ���: identity matrices. Bold numbers are vectors whose elements are all
the same. 92

Table 4.2: Real Data Result: Simultaneous EEG-fMRI Data Trial Classification (Mean
of Performance Metrics with Standard Deviations in Subscripts) 95

Table B.1: TEC Simulation Results II: Cluster with 128GB RAM 123

Table C.1: EEG-fMRI Data: Number of Trials per Subject 132

ix

LIST OF FIGURES

Figure 1.1: Vector, Matrix, Tensor . 5

Figure 1.2: Tensor CP Decomposition . 9

Figure 1.3: Tucker Decomposition . 10

Figure 2.1: Real Data: ADNI Classification Reults I . 35

Figure 2.2: Real Data: Examples of Traffic Objects in KITTI Data 36

Figure 2.3: Real Data: Traffic Classification Result I . 38

Figure 3.1: Real Data: ADNI Classification Result II . 72

Figure 3.2: Real Data: Traffic Image Classification Result II 74

Figure 4.1: C-STM Model Pipeline . 84

Figure 4.2: Simulation: Average accuracy(bar plot) with standard deviation (error bar) . . . 92

Figure C.1: Auditory fMRI Group Level Analysis . 129

Figure C.2: Visual fMRI Group Level Analysis . 130

Figure C.3: Region of Interest (ROI) . 131

Figure C.4: EEG Channel Position from [141] . 133

Figure C.5: Examples ofEEGLatent Factors (Different Trial andStimulusTypes): Topoplot
for Channel Factors (left); Plots for Temporal Factors (right) 134

x

LIST OF ALGORITHMS

Algorithm 1: Hinge STM . 20

Algorithm 2: Squared Hinge STM . 22

Algorithm 3: DGTDA Projection Learning . 25

Algorithm 4: CMDA Projection Learning . 26

Algorithm 5: Tensor Discriminant Analysis Classification 27

Algorithm 6: Tensor CP Generalized Linear Model . 28

Algorithm 7: Hinge TEC . 52

Algorithm 8: Squared Hinge TEC . 53

Algorithm 9: TEC Prediction . 54

Algorithm 10: ACMTF Decomposition . 89

Algorithm 11: Coupled Support Tensor Machine . 89

xi

CHAPTER 1

INTRODUCTION

With the development of computer technologies, more and more data with complex structures are

observed in various research domains. The high-dimensionality as well as the multi-dimensional

structure of the data have raised new challenges in data analysis to the communities of engineering,

statistics, and data science. Learning multi-dimensional data with traditional statistical learning

methods may not be appropriate, since these methods can suffer from the curses of dimensionality.

Moreover, traditional methods are not able to preserve the intrinsic structures for multi-dimensional

data, and are not able to utilize their multi-way features. Thus, developing novel statistical learning

frameworks and data modeling techniques for multi-dimensional data has become popular in

contemporary machine learning and statistics analysis.

As a generalization of vectors andmatrices for higher-order data, tensor is originally proposed by

[66], and becomes an efficient data representation format for multi-dimension data. Fueled by novel

computing technologies arises in the past decade, tensors have expanded to many research domains

such as statistics, data science, signal processing, and machine learning. Surveys from [78, 70, 18]

demonstrate great potentials of using tensor data representation in data mining, statistics, and

machine learning. It turns out that using tensor for multi-dimensional data learning can be efficient

and appropriate since tensor can help to preserve multi-way structures for the data. Further,

advanced operations in tensor algebra can also help to reduce computational cost, and, more

importantly, unveil the complex correlation structures for the data. All these benefits make tensor

data representation a perfect tool for learning multi-dimensional data.

Similar to the traditional machine learning research, current tensor-based machine learning and

data mining techniques can be categorized as supervised learning and unsupervised learning. In

the category of supervised learning, there are tensor regression and classification models, which

usually take tensors as inputs. Depending on the types of outputs, tensor regression models are

separated into tensor-to-scalar regression [58, 155, 148, 152, 130, 93, 62, 91], and tensor-to-tensor

1

regression models [99, 121, 98, 51]. Moreover, there are tensor Bayes regression [57], tensor

quantile regression [105], and tensor regression-based deep neural network model [80]. For tensor-

based classification models, there are models which based on discriminant [147, 142, 103, 92].

In addition, many variants of support tensor machine models [136, 61, 63, 127, 64, 28] are also

developed under the idea of maximummargin classifier. [114] provides a extension of probabilistic

tensor discriminant analysis which extends linear discriminant to tensor data.

Comparing to the supervised learning, research on unsupervised learning with tensors are more

dominant. The tensor decomposition techniques in [78] and [113] can be applied in many different

application fields for multi-way feature extraction, latent factor estimation, and tensor subspace

learning. These decomposition methods are later extended to different application fields. For

example, [68, 1, 102] use low-rank tensor decomposition and robust tensor principle component

analysis for missing data imputation. In spatio-temporal analysis such as traffic or internet data

analysis, tensor decomposition are alos adopted in [120, 30, 146] for spatial and temporal feature

extraction. Tensor approaches are also widely applied in anomaly detection problems. Survey

from [44] reviews multiple anomaly detection algorithms basing on tensor data representation,

which include predicting tensor anomalies from multiple tensors [31] and identifying abnormal

elements within a single tensor [87, 153, 156]. Since tensor decomposition can be considered as

generalizations of spectral decomposition on higher-order data, [67, 150, 131, 16, 132] use various

decomposition methods to perform clustering and community detection for mulit-dimensional and

heterogeneous data. In graphcial model and network analysis, [40, 138, 12, 111, 149] use tensor

to model the correlation structures among different heterogeneous structures. Additionally, tensor

decomposition can be applied in research about recommend system such as [17, 154, 104].

Apart from these two major categories, tensor data representation is often time used for the

development of efficient algorithms. For example, random projection is a popular dimension

reduction technique but is expensive to apply for high dimensional vector data. Saving the projection

matrices can also be memory inefficient. [133, 71, 119] show that tensorizing random projection

matrices can reduce the memory cost significantly while preserve the asymptotic isometry property

2

of random projection for high dimensional data.

Motivated by these existing work using tensor data representation, this dissertation further

investigates the performance of tensor-based machine learning models with a focus on classification

problems. Particularly, we explore the statistical property of current tensor classificationmethods as

well as their performance in multiple applications. In addition, we propose novel tensor classifiers

for big tensor and multimodal tensor data classification. These become two major contributions in

this dissertation.

1.1 Overview

The dissertation is organized as follow. In the rest part of this introduction chapter, we provide

a review about tensor algebra, operations, and decomposition methods. We also briefly introduce

some important statistical concepts in classification analysis in this chapter. The next three chapters

in the dissertation explore tensor classification problems from different aspects. In chapter 2, We

provide a survey about few most popular tensor classification methods in statistics and machine

learning literature. All the methods are applied to Alzheimer’s Disease MRI Image classification

and Traffic Image classification problems to benchmark their performances. We further investigate

the classification consistency for a certain type of non-parameteric tensor classifier, which is CP

Support Tensor Machine (CP-STM). We show that with certain tensor kernel functions, CP-STM

is statistically consistent.

Chapter 3 considers a specific tensor classification problem where the input tensors are in high

dimension. In contemporary data science research, multi-dimensional observations such as spatial-

temporal data, medical imaging data are usually comingwith high dimensionality, i.e, the dimension

of each mode is high even the data is in tensor shape. This raises extra challenges to the existing

tensor-based classificationmodels. To address the issue of high dimensionality, we propose a Tensor

Ensemble Classifier (TEC) for ultra-high dimensional tensors, which aggregates multiple support

tensor machines estimated from randomly projected CANDECOMP/PARAFAC (CP) tensors. This

method utilizes Gaussian and spares random projections to compress high-dimensional tensor

3

CP factors, and predicts their class labels with support tensor machine classifier. With the well

celebrated Johnson-Lindenstrauss Lemma and ensemble techniques, TEC methods are shown to be

statistically consistent while having memory efficiency for big tensor data. Simulation studies and

real data applications including Alzheimer’s Disease MRI Image classification and Traffic Image

classification are provided as empirical evidence to validate the performance of TEC models.

In the last chapter, we consider classification problems for multimodal tensor data, which are

particularly common in neuroscience and brain imaging analysis. Utilizing multimodal data is of

great interest for machine learning and statistics research in these domains, since it is believed

that integration of features from multiple sources can potentially increase model performance

while unveiling the interdependence between heterogeneous data. In chapter 4, we propose a

Coupled Support Tensor Machine (C-STM) which adopted Advanced Coupled Matrix Tensor

Factorization (ACMTF) andMultiple Kernel Learning (MKL) techniques for coupled matrix tensor

data classification. The excess risk of C-STM is shown to be converging to the optimal Bayes

risk, making itself a statistically consistent rule. The framework can also be easily extended

for multimodal tensors with data modalities greater than two. The C-STM is validated with in

a simulation study as well as in a simultaneous EEG-fMRI trial classification application. The

empirical evidence shows that C-STM can utilize information from multiple source and provide a

better performance comparing to the traditional methods.

1.2 Tensor Algebra

In this section, we introduce notations, and review some elementary concepts about tensors.

Detailed introduction for tensor algebra, tensor decomposition, and tensor product space can be

referred from [77] and [59].

1.2.1 Notations

The mathematical notations in the rest part of the thesis are defined as follow. Numbers and scalars

are denoted by lowercase and capital letters such as G, # . Vectors are denoted by boldface lowercase

4

︸ ︷︷ ︸Dim
en
sio

n
� 1

000 ∈ R�1

︸ ︷︷ ︸D
im

en
sio

n
� 1

︸ ︷︷ ︸
Dimension �2

��� ∈ R�1×�2

︸ ︷︷ ︸D
im

en
sio

n
� 1

︸ ︷︷ ︸
Dimension �2

︸ ︷︷ ︸
Di
me
nsi
on
� 3

XXX ∈ R�1×�2×�3

Figure 1.1: Vector, Matrix, Tensor

letters, e.g. 000. Matrices are denoted by boldface capital letters, e.g. ���, ���. Higher-dimensional

tensors are generalization of vector and matrix representations for higher order data, which are

denoted by boldface Euler script letters such as XXX,YYY. In general, functions and transformations

are also denoted by boldface lowercase letters 555 , 666, but with clear description to distinguish from

vectors. The only exception is kernel function, which will be denote by (·, ·). Vector spaces,

functional spaces, and tensor spaces are denoted by boldface Mathcal font in Latex such asHHH ,FFF .

Euclidean spaces with one or multiple dimensions are represented by R�1 and R�1×�2 , where �1

and �2 stand for the size of each dimension. In addition to these notations, we use E and P to denote

the expectation and probability in short. Other notations may also be used and be introduced as

needed in the following content.

Tensor generalizes vectors and matrices by including multiple indices in its structure, making

it possible to represent multi-dimensional data. Figure 1.1 provides a comparison between vector,

matrix, and tensor. Tensor XXX can denote three-dimensional data since it provides three indices.

The order of a tensor is the number of dimensions, also known as ways or modes. For example,

the vector 000 in figure 1.1 is a one-way tensor, matrix ��� is a two-way tensor, and XXX is a three-way

tensor. In general, a tensor can have 3 modes as long as 3 is an integer.

The way of indicating entries of tensors is same as we do for vectors and matrices. The 8-th

entry of a vector GGG is G8, the (8, 9)-th element of a matrix --- is G8, 9 , and the (81, ..., 83)-th element of

a d-way tensorXXX is G81,...,83 . The indices of a tensor 81, ..., 83 range from 1 to their capital version,

e.g. 8: = 1,, �: for every mode : = 1, ...3.

5

Sub-arrays of a tensor are formed when a subset of the indices are fixed. Similar to matrices that

have rows and columns, high-dimensional tensors have various types of sub-arrays. For example,

by fixing every index but one in a d-way tensor, we can get one of its fibers, which are analogue

of matrix rows and columns. Another type of frequently used tensor sub-arrays is slice, which is a

two dimensional section of a tensor. A slice of a tensor can be defined by fixing all but two indices.

We will use XXX:82...83 to denote one fiber of a d-way tensor, and use XXX::83...83 to denote one of its

slices.

Like the L2 norm for vectors in Euclidean spaces, the L2 norm, also called Frobenius norm, of

a d-way tensorXXX ∈ R�1×...×�3 is the square root of the sum of the squares of all its elements, i.e.

| |XXX| |Fro =< XXX,XXX >=

√√√√√ �1∑
81

...

�3∑
83

G2
81,...,83

(1.1)

where

< XXX1,XXX2 >=

�1∑
81

...

�3∑
83

G1,81,...,83 · G2,81,...,83 (1.2)

is the inner product of two tensorsXXX1 andXXX2. In the following content, we may use different types

of inner product induced by kernel functions, and we will specify those inner products as needed.

In many situations, one may need to transform a tensor into a vector or a matrix for computation.

Such transformations are called tensor vectroization and unfolding. In the thesis, I denote the

vectorization of a tensorXXX ∈ R�1×...×�3 as Vec(XXX), which is in the dimension of
∏3
9=1 � 9 . Tensor

unfolding reorders a tensor into a matrix, putting mode-k fibers, XXX81,82..,8:−1,:,8:+1...83 as the

columns of the matrix. As a result, the matrix is in the shape of �: ×
∏3
9=1, 9≠: � 9 , and is denoted

by XXX(:) . Although there are multiple ways of performing tensor vectorization and unfolding, the

resulting vectors and matrices are equal up to a permutation. As long as the transformations are

consistent, algorithms and theoretical analysis are remain intact. We follow the tensor vectorization

and unfolding rules from [79] in the thesis.

In addition to the basic concepts, we also need some operations for vectors and matrices in

order to construct tensors and present our work. The first one is the outer product of vectors. Let

6

000 ∈ R? and 111 ∈ R@ be two column vectors, the outer product of them is defined by

000 ◦ 111 = 000 · 111) (1.3)

which is a ? × @ matrix. If ��� ∈ R?×C is a ? by C matrix and 111 ∈ R@ is a column vector, then

��� ◦ 111 = [��� ∗ 11, ..., ��� ∗ 1@] (1.4)

which is a ? × C × @ array. "∗" stands for the element-wise product. The outer product with a vector

increase the multiplier by one more dimension.

Another operation is Kronecker Product, which is a version of outer product for matrices.

Let ��� ∈ R�×� , ��� ∈ R ×! be two arbitrary matrices. The Kronecker Product of ��� and ��� is

��� ⊗ ��� ∈ R(�)×(�!)

��� ⊗ ��� =

011� ... 01��

...

0�1� ... 0���

= [01 ◦ 11,, 0� ◦ 1!] (1.5)

Compared with the vector outer product, it restricts the resulting product to be matrices. The

Khatri-Rao product is the "matching column-wise" Kronecker product between two matrices with

same number of columns. Given matrices ��� ∈ R�× and ��� ∈ R�× , the product is defined as:

��� � ��� = [0001 ◦ 1111, ..., 000 ◦ 111] (1.6)

It requires the two multiplier matrices to have the same number of columns, and the resulting

products to be matrices as well. The vector outer product, matrix Kroncker product, and matrix

Khatri-Rao product can be regarded as tensor product in mathematical analysis. As a result, we

may use ⊗ to denote general tensor product in part of our theoretical development.

The mode-n product is a product operation defined between a tensor and a matrix. Assume

XXX ∈ R�1×...×�=×...×�3 is a d-way tensor, and*** ∈ R%=×�= is a matrix. The mode-n product between

tensorXXX and matrix*** is defined as

XXX ×=*** =*** ·XXX(=) (1.7)

whereXXX(=) is the n-th mode unfolding matrix of tensorXXX with shape �= by
∏
9≠= � 9 . The resulting

product is still a d-way tensor in shape of �1 × ... × %= × ... × �3 .

7

1.2.2 Tensor Decomposition

The notations and mathematical operations introduced above make it possible to represent tensors

with their decomposition forms. Tensor decomposition is a way to represent, or approximate, a

tensor with various pre-defined forms. With specially designed structure, new representation and

approximation makes it more flexible to develop novel machine learning models for tensor data, and

optimize the existing frameworks by simplifying computation steps. In this section, we review three

most popular tensor decomposition methods, Parafac, Tucker, and Tensor-Train decomposition.

Candecomp / Parafac Decomposition (CP) is an extension of matrix singular value decom-

position for higher-order tensors. It represents a tensor as a summation of vector outer products

shown in figure 1.2. Each product term in the summation is also known as rank-one tensor. For a

d-mode tensorXXX ∈ R�1×�2...×�3 , its CP decomposition is defined as

XXX =

A∑
:=1

U:GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:
(1.8)

where GGG (9)
:
∈ R� 9 are called tensor CP components for 9 = 1, ..., 3. U: are scalars and are often

merged into one of the CP components for simplicity. As a result, CP decomposition can also be

written as

XXX =

A∑
:=1

GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:
(1.9)

In our presentation, we will merge the scalar weights U: to CP components and use the equation

(1.9) for CP decomposition unless we specifically mention the weights. A is known as the CP rank

for the tensor, which is the number of different outer products that adds up to the tensor. For a

tensor which cannot be well represented by equation (1.9), i.e. the equation (1.9) does not hold, its

CP decomposition is defined as

X̂XX ≈
A∑
:=1

GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:

where

X̂XX =

A∑
:=1

GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:
and X̂XX = arg min

X̂XX
| |XXX − X̂XX| |�A>

8

≈ +... +

Figure 1.2: Tensor CP Decomposition

For the convenience of notation, we follow [78] and denote tensor CP decomposition (1.9) as

XXX = È--- (1) , --- (2) , ..., --- (3)É or UUUXXX = È--- (1) , --- (2) , ..., --- (3)É (1.10)

where --- (9) ∈ R� 9×A are called CP factor matrices. The :-th column in --- (9) is the vector shape

tensor CP factor G (9)
9

in equation (1.9). This notation is also called Kruskal tensor. In the paper, we

will use either tensor CP decomposition or CP tensor to refer any tensor that in expressed in (1.9)

or (1.10).

Tucker Decomposition is a form of Principle Component Analysis for higher-order tensors,

often denoted by Higher-order PCA (HOPCA). It factorizes a tensor into the form of a core tensor

multiplied by a factor matrix at each one of its modes. The Tucker decomposition of a a d-mode

tensorXXX ∈ R�1×�2...×�3 is defined as

XXX = GGG ×1***
(1) ×2***

(2) ×3 *** (3) (1.11)

whereGGG ∈ R%1×%2...×%3 is the core tensor in the shape of%1×%2...×%3 . *** (9) ∈ R
% 9×� 9 , 9 = 1, .., 3

are mode-wise factor matrices. In practice, one can restrict the factor matrices to be orthogonal,

and thus consider the columns of these matrices as principle components from each mode. The

core tensor GGG measures the interaction across different components. An example of 3-way tensor

Tucker decomposition is demonstrated in figure 1.3. Similar to the CP decomposition, we can

define the Tucker decomposition for an arbitrary tensorXXX even if the equation (1.11) does not hold.

It is defined as

XXX ≈ GGG ×1***
(1) ×2***

(2) ×3 *** (3)

9

≈XXX GGG

*** (1)

*** (2)
*** (3)

Figure 1.3: Tucker Decomposition

where

X̂XX = GGG ×1***
(1) ×2***

(2) ×3 *** (3) and X̂XX = arg min
X̂XX
| |XXX − X̂XX| |�A>

Notice that CP decomposition is actually a special case of Tucker decomposition, when the core

tensor GGG in the decomposition is super-diagonal and all %1, ..., %3 are equal. The estimation of

Tucker decomposition can be done with an iterative alternating least square algorithm introduced in

[35]. Although Tucker decomposition is not easy to be interpreted comparing to CP decomposition,

its mode-wise factor matrices can be regarded as basis for the row space of each tensor mode. Thus,

it has been widely applied in problems like image compression and higher-order data feature

extraction.

1.2.3 Tensor Product Space

Apart from the algebraic notations and operations for tensors, we also want to include a brief

introduction about tensor functional and tensor space. They are essential in the development of

universal tensor kernel functions and statistical consistency. We refer [59] for the definition of

tensor product spaces and tensor calculus. Since we consider general tensor product in this section,

we use ⊗ to denote it in our description.

For finite dimensional vector spaces, the space of their tensor product is call algebraic tensor

space.

10

Definition 1.2.1. LetVVV ⊂ R�1 andWWW ⊂ R�2 be two compact subspace of the Euclidean spaces

R�1 and R�2 . VVV = {EEE : EEE =
∑
8
U8EEE8},WWW = {FFF : FFF =

∑
9
V 9FFF 9 }, where {EEE8} and {FFF 9 } are the basis

ofVVV andWWW. The algebraic tensor space ofVVV andWWW, denoted by TTT , is a space spanned by the

tensor products of basis.

TTT =VVV ⊗WWW = {CCC : CCC =
∑
8, 9

W8, 9EEE8 ⊗ FFF 9 } (1.12)

The basis function of this algebraic tensor space are {EEE8 ⊗ FFF 9 }. The characteristic algebraic

properties of the tensor space is the bilinearity, meaning that for all CCC ∈ TTT and 0 ∈ R

0 · CCC =
∑
8, 9

W8, 9 (0 · EEE8) ⊗ FFF 9 =
∑
8, 9

W8, 9EEE8 ⊗ (0 · FFF 9)

We call this algebraic tensor space of a second-order algebraic tensor space since the basis are the

tensor products of two vectors. This second-order tensor space is still a vector space, as defined in

mathematics. However, if we consider a specific tensor product, outer product "◦", in the definition

1.2.1, it is indeed isometric to a second-order tensor (matrix) space. The bĳection connecting two

spaces is a specific folding and unfolding rule as we introduced earlier. Notice that the algebraic

tensor space measures distance by Euclidean norm, and the norms of multi-dimensional arrays

are measured by Frobenuis norm. The equivalence between the Euclidean norm and Frobenuis

preserves the distances between points unchanged before and after unfolding, and making two

spaces isometric.

Similarly, if the general tensor product is replaced by Kroncker or Khatri-Rao product, the

definition 1.2.1 can be extended for the product of matrices spaces. The isometry property also

connects this abstract mathematical definition to the more concrete definition of tensors, especially

those tensors decomposed into CP forms. As a result, data in forms of multi-dimensional arrays

can be considered as points in a tensor product space. In general, we can define 3th-order algebraic

tensor space as

XXX =VVV (1) ⊗VVV (2) ... ⊗VVV (3) = B?0={⊗3
9=1EEE

(9)
:
, EEE
(9)
:
∈ VVV (9) , 9 = 1, ...3} (1.13)

for d-way tensors. This would make it feasible for us to develop further statistical analysis on

tensors.

11

In the definition of algebraic tensor space, we only consider Euclidean subspaces and connects

it to the spaces of multi-dimensional arrays. Indeed, the definition 1.2.1 can be extended to

tensor products of any metric spaces such as the products of inner product spaces, the products of

functional spaces, and the products of Reproducing Kernel Hilbert spaces. We define

Definition 1.2.2. Let < ·, · > 9 be a general inner product defined onVVV (9) such thatVVV (9) is a inner

product space. XXX = ⊗3
9=1+++

(9) is going to be an inner product space with inner product < ·, · >XXX .

XXX = B?0={⊗3
9=1 555

(:)
9
, 555
(9)
:
∈ VVV (9) are basis functions, : = 1, ...3} (1.14)

For 555 =
∑
:

⊗3
9=1 555

(9)
:
∈ XXX and 666 =

∑
;

⊗3
9=1666

(9)
;
∈ XXX, where 555 (9)

:
, 666
(9)
;
∈ +++ (9) are basis functions,

the inner product is

< 555 , 666 >XXX =
∑
:,;

3∏
9=1

< 555
(9)
:
, 666
(9)
;

> 9 (1.15)

This definition generalizes the tensor product spaces to any arbitrary inner products spaces. For

example, if eachVVV (9) is a uni-variate functional space, then XXX is a multi-variate functional space

whose elements are functions mapping vectors into scalars. Moreover, this definition will help us

to construct tensor Reproducing Kernel Hilbert space in chapter 2.

1.3 The Bayes Error and Classification Consistency

Statistical analysis in classification problems often time tries to validate the performance of a

model by looking at whether its classification risk is close to the Bayes risk, and if it is statistically

consistent. These two components are essential in the evaluation of generalization ability for a

specific model. We briefly review the definition of Bayes error and classification consistency in

this section. More details can be referred from [36].

1.3.1 The Bayes Problem

Consider a binary classification problem where (-,.) is a pair of random variables taking their

respective values on R3 and {0, 1}. Let

[[[(GGG) = P(. = 1|GGG) = E(. |GGG) (1.16)

12

Naturally, any measureable function 555 : R3 → {0, 1} can be a potential classifier or decision

function. Now if we consider the very naive zero one loss function L(I, H) = 111{I ≠ H}, then the

expected loss of a classifier 555 , called risk of 555 , is R(555) = E[L(555 (-), .)] = P(555 (-) ≠ .). Let

555 ∗(GGG) =

1 [[[(GGG) > 1
2

0 Otherwise

It is easy to show that among all possible decision functions, 555 ∗ has the smallest risk, making itself

the best possible classifier. ABayes problem is to find the optimal classifier 555 ∗, and 555 ∗ itself is called

the Bayes classifier or Bayes rule. The classification risk of the Bayes rule, R∗ = R(555 ∗), is defined

as the Bayes risk, which is the smallest possible risk one can obtain. Under most circumstances, it

is infeasible to estimate the Bayes rule since the distribution of (-,.) is unknown.

1.3.2 Consistent Classification Rules

Instead of searching for Bayes rule, most of time we construct a classifier from a limited amount of

data. Suppose)= = {(GGG1, H1), ...(GGG=, H=)} is a collection of observations for the random variable

(-,.), the empirical estimate of the classification risk for a decision function 555 is

R= =
1
=

=∑
8=1

111{ 555 (GGG8) ≠ H8}

111{·} is an indicator function. A "good" classifier can be constructed from the data)= by searching

for the optimizer that minimizes the empirical risk. Such a procedure is call Empirical Risk

Minimization (ERM), and)= is called training set. If we denote the empirical optimal decision

function as 5=5=5=, it is a function conditional on the training set)=. However, if we use the same

strategy but with different training set, we can get a sequence of decision functions { 5=5=5=}. Such a

sequence of functions estimated with the same strategy / rule but different training data is called

a classification rule, a way of finding optimal decision functions from a training data. ERM

procedure produces a decision rule, and there are more variants of ERM such as regularized ERM

in the statistical learning literature.

13

To show a classification rule is good from mathematical aspect, one possible way is to prove it

is statistically consistent.

Definition 1.3.1. A classification rule is (weakly) consistent for a certain distribution of (-,.) if

R(5=5=5=) → R∗ in probability

and is strongly consistent if

R(5=5=5=) → R∗ a.s.

as =→∞.

A consistent rule, not the specific classifier learned from a training data, guarantees that taking

sufficiently large samples can reconstruct the unknown data distribution, and finally identify the

optimal classifier. This property is like telling a classification rule is learning data in a right way,

since it eventually will unveil the whole data distribution. The reconstruction here means the Bayes

risk of the classification problem will be eventually the same as the risk of estimated classifier

with sufficient training data, and thus will be known. For most classification models, developing

statistical consistency is of great interest as it validates that the model is learning the data in a "right"

way. In this thesis, our theoretical analysis is also mostly focus on the development of statistical

consistency for tensor-based classifiers.

1.3.3 Surrogate Loss Consistency

In binary classification problems, the most intuitive and basic loss function is the "zero-one" loss

L(I, H) = 111{I ≠ H}. However, its non-convexity brings lots of challenges in both computational

aspect and statistical properties. Moreover, the zero-one loss may have a worse performance than

other surrogate loss in various classification applications. Recent works [13, 122, 151] demonstrate

that there are many surrogate loss functions for binary classification which equip with convexity and

nice statistical properties, making the estimation procedure more tractable. Another motivation of

using well-behaved surrogate loss in classification applications is that there is a general quantitative

14

relationship between the approximation and estimation risks associated with surrogate losses, and

those associated with zero-one loss. Here we denote the risk of a decision function 555 associated

with a surrogate loss L as RL (555), and the corresponding risk associated with the zero-one loss as

R(555). Further, the Bayes risk under loss function L is denoted as R∗L , and the Bayes risk under

zero-one loss is denoted as R∗. The definition of these risks are

RL (555) = EXXX×YYY
[
L(555 (-), .)

]
, R∗L = EXXX×YYY

[
L(555 ∗(-), .)

]
whereXXX ×YYY is the domain of the random variables (-,.). The expectation is taken over the joint

distribution of (-,.). 555 ∗ is the Bayes classifier such that 555 ∗ = arg minRL (555). 555 ∗ is the optimal

among all measureable functions which map data inXXX to labelsYYY. Results from [151] shows that

for any measureable function 555

kkk(R(555) − R∗) 6 RL (555) − R∗L

for a nondecreasing function kkk : [0, 1] → [0,∞). This suggests that the statistical consistency

developed under surrogate loss function indicates the consistency under zero-one loss, as long as

the surrogate loss is well-behaved. Thanks to this general relationship, one can develop statistical

consistency for decision rules using surrogate loss and enjoy their nice mathematical properties

like Lipschitz continuity instead of using zero-one loss. This reduces the problem difficulties

significantly. Lastly, using surrogate losses may enable us to develop a uniform upper bound on

the risk of a function 5=5=5= that minimizes the empirical risks. This may help us to further obtain an

explicit, uniform bound on the excess risk, RL (5=5=5=) − R∗L , highlighting the convergence rate of a

specific decision rule.

The well-behaved losses are sometimes called self-calibrated or classification-calibrated loss.

Examples of such loss functions include Hinge loss, Squared Hinges loss, and exponential loss. A

more detailed discussion about self-calibrated loss is available in [95] and the Section 2 of [128].

We estimate tensor classification models using Hinge and Squared Hinge loss in this thesis, and

develop our theoretical results with surrogate loss functions.

15

CHAPTER 2

TENSOR CLASSIFICATION MODELS

In this chapter, we provide an introduction to several tensor-based classification models, and

compare their performance empirically. Moreover, the statistical consistency of few classifiers are

established.

2.1 Introduction

In contemporary machine learning and statistics research, tensor has become a popular tool

to model multi-dimensional data such as spatio-temporal data, brain imaging, and multimodal

data. Comparing to the traditional vector presentation, tensor preserves the multi-way structures

of the data, providing more correlations among different modes for data mining and modeling.

In addition, the existing tensor decomposition methods from [78] can help to estimate the low-

dimensional structure for tensor data, which reduce the computational complexity significantly for

tensor-based models.

As an essential part of supervised tensor learning, tensor classification problems try to predict

data labels from tensors. Current literature about tensor classification can be categorized in several

groups. First, since distances between tensors can be easily estimated by Frobenious norm, K-

nearest neighbour classifiers can be easily established. However, the Frobenious norm of a tensor

is equivalent to the L2 norm of its vectorization. Such extensions are indeed equivalent to the

vector-based K-nearest neighbour classifiers, and thus have no computational gain from tensor

representation. An improvement [92] then has been made on the tensor K-nearest neighbour

classifiers by combining it with a Fisher discriminant analysis. Utilizing the multi-way features

preserved by tensors, [92] learns multi-linear transformations projecting tensors to lower multi-

dimensional spaces where they are easier to be classified. [114] also develops a probabilistic

discriminant analysis for tensors, using density instead of distance to discriminate data. Another

type of tensor-based classifiers borrow the separating hyperplane from support vector machine, and

16

build support tensor machine models. With different tensor decomposition and kernel functions,

there are models like rank-1 CP-STM [136], CP-STMs [63, 64], Tucker STM [127], and support

tensor train machine [28]. These models benefit from the distribution-free assumption for tensor

data, and are more flexible in real-data applications. Finally, logistic regression model can also be

generalized for tensor data. [155] and [93] develop generalized linear regression models with CP

and Tucker tensor coefficients, which can be adopted for classification problems.

Although the current approaches have demonstrated impressive performance, not all of them

provide theoretical guarantee on their generalization ability. According to [36], a classifier with

solid generalization ability should be statistically consistent, having their excess classification risks

converge to the optimalBayes risk. Bayes risk is theminimal risk one can obtain froma classification

problem with data confirming a certain type of probability distribution. The difference between the

risk of a learned classifier and the optimal Bayes risk quantifies the performance of the classifier

theoretically. Such results are well established for traditional statistical classification approaches,

however, are not completed for all tensor-based methods.

In this chapter, we introduce few popular tensor-based classifiers in current literature including

CP-STM [63], tensor discriminant analysis [92] and CP-GLM [155], and investigate their perfor-

mance through numerical studies. Further, we discuss their statistical consistency, and provide

a theoretical result which establishes the statistical consistency for CP-STM. For other methods,

the results are introduced as they are can be easily extended from the existing literature. The rest

parts in this chapter are organized as follow: Section 2.2 reviews three major types of tensor-based

classifiers and their consistency results. Section 2.3 develop the consistency result for the support

tensor machine model. In section 2.4, we compare the performance of all reviewed tensor-based

methods with two different real data applications. Section 2.5 concludes the chapter.

2.2 Tensor Classification Algorithms

In this section, we introduce five different tensor-based classifiers which are categorized into

three groups depending on their model mechanism.

17

2.2.1 Support Tensor Machine

Support tensor machine extends the idea of kernel support vector machine (see e.g. [128]), and

construct a separating hyperplane with support tensors for classification. In this part, we review

the Candecomp/Parafac - Support Tensor Machine (CP-STM) model from [63], and provide two

different model estimation algorithms.

Suppose there is a training data)= = {(XXX1, H1), (XXX2, H2), ..., (XXX=, H=)}, where XXX8 ∈ XXX ⊂

R�1×�2×...×�3 are d-way tensors. X is a compact tensor space, which is a subspace ofR�1×�2×...×�3 .

H8 ∈ {1,−1} are binary labels. CP-STM, like the traditional kernel support vector machine, tries to

estimate a decision function 555 : XXX → R such that it minimizes the objective function

min _ | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXX8), H8) (2.1)

L is a loss function for classification such asHinge loss, squaredHinge loss, and zero-one loss. _ is a

tuning parameter. | | 555 | |2 =< 555 , 555 >=
∫
555 (XXX)23XXX is the square of functional norm for 555 . The kernel

functions for tensor data are defined on the CP representation of tensors. Assume two d-way tensors

with CP rank A are represented asXXX1 =
A∑
:=1

GGG
(1)
1,: ◦ GGG

(2)
1,: ... ◦ GGG

(3)
1,: andXXX2 =

A∑
:=1

GGG
(1)
2,: ◦ GGG

(2)
2,: ... ◦ GGG

(3)
2,: ,

a tensor kernel function is defined as

 (XXX1,XXX2) =
A∑

;,:=1

3∏
9=1

 (9) (GGG (9)1,; , GGG
(9)
2,:) (2.2)

where (9) are vector-based kernel functionsmeasuring inner products for factors in different tensor

modes. The kernel function (2.2) measures the inner products between two tensors by aggregating

kernel values of their CP factors across ranks. With the kernel trick and representer’s theorem [9],

the optimal decision rule for the optimization problem (2.1) has the form of

555 (XXX) =
=∑
8=1

U8H8 (XXX8,XXX) = UUU)���H (XXX) (2.3)

where XXX is a new d-way rank-r tensor with shape �1 × �2 × ... × �3 . UUU = [U1, ..., U=]) are the

coefficients learned by plugging function (2.3) into objective function (2.1) and minimize (2.1).

���H is a diagonal matrix whose diagonal elements are H1, .., H=. (XXX) = [(XXX1,XXX), ..., (XXX=,XXX)])

18

is a column vector. If we denote the collections of functions which are in the form of equation (2.3)

byHHH such thatHHH = { 555 : 555 = UUU)���H (XXX), UUU ∈ R=}, then the optimal STM classifier is denoted as

5=5=5= = arg min
555 ∈HHH

_ | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXX8), H8) (2.4)

and the class labels are predicted by Sign[5=5=5=]. HHH is theReproducingKernelHilbert Space generated

by tensor kernel (2.2). Support tensors are the tensors whose corresponding coefficients, U8 in 5=5=5=,

are non-zero.

Estimating 5=5=5= from the training data)= can be accomplished in various ways. Also, the

estimated classifiers can be different, and have different excess error with different types of loss

function L. We adopt two different loss functions, Hinge loss and squared Hinge loss, and provide

different estimation algorithms. Hinge loss L(555 (XXX), H) = max(0, 1 − H · 555 (XXX)) is a convex and

non-differentiable loss designed for support vector / tensor types of classifiers. Comparing to the

regular zero-one loss in binary classification, Hinge loss has the same level of penalty for miss-

classified points that are close to the separating hyper-plan, while putting a more severe penalty

for those which are far away from the plan. [122] demonstrates the statistical robustness and the

fast convergence rate of Hinge loss in binary classification problems. Minimizing the objective

function (2.1) with Hinge loss can be shown to be equivalent to the optimization problem

min
UUU∈R=

1
2
UUU)���H ���HUUU − 111)UUU

S.T. UUU)HHH = 0

0 � UUU � 1
2=_

(2.5)

Equation (2.5) is the dual problem of the original STM problem with Hinge loss. The derivation is

provided in [25]. Notice that this problemhas quadratic objective function and inequality constrains,

which can be solved by Quadratic Programming (QP) in [20]. The steps are summarized in the

algorithm 1. We use python-style pseudo-code to denote columns of matrices. For example,

(<)
8
[:, :] stands for the :-th column of CP factor matrix --- (<)

8
. We will use such notations in the

rest part of the thesis.

19

Algorithm 1 Hinge STM
1: procedure STM Train
2: Input: Training set)= = {XXX8}, HHH, kernel function , tensor rank r, _
3: for i = 1, 2,...n do
4: XXX8 = [--- (1)8 , ..., ---

(3)
8
] ⊲ CP decomposition by ALS algorithm

5: Create initial matrix ∈ R=×=
6: for i = 1,...,n do
7: for j = 1,...,i do
8: 8, 9 =

A∑
:,;=1

∏3
<=1 (---

(<)
8
[:, :], --- (<)

9
[:, ;]) ⊲ Kernel values

9: 9 ,8 = 8, 9

10: Solve the quadratic programming problem (2.5) and find the optimal UUU∗.
11: Output: UUU∗

Another loss function which is commonly used for binary classification is the Squared Hinge

loss, which is a convex and differentiable surrogate of Hinge loss. Squared Hinge loss squares the

Hinge loss L(555 (XXX), H) = (max(0, 1 − H · 555 (XXX)))2, making it differentiable when H · 555 (XXX) = 1.

Plugging SquaredHinge lossmakes the objective function (2.1) differentiable, and can beminimized

by letting its derivative to be zero. The objective function (2.1) with Squared Hinge loss, written

in the matrix form, is

min
UUU∈R=

_UUU)���H ���HUUU +
1
=

=∑
8=1
(max(0, 1 − H8 · UUU)���H:::8))2 (2.6)

 is the n-by-n kernelmatrixwhose (8, 9)-th element is (XXX8,XXX 9). :::8 = [(XXX8,XXX1), ..., (XXX8,XXX=)])

is the i-th column of the kernel matrix . The derivative of (2.6) with respect to UUU is

555 =2_���H ���HUUU +
2
=

=∑
8=1
(−1)H8���H:::8 ·max(0, 1 − H8 · UUU)���H:::8))

= 2_���H ���HUUU +
2
=

∑
8∈BBB

[
���H:::8:::

)
8 ���HUUU −���H:::8H8

]
= 2_���H ���HUUU +

2
=
���H �B�B�B

[
)���HUUU − HHH

]
= 2���H

[[
_��� + 1

=
�B�B�B

)
]
���HUUU −

1
=
�B�B�BHHH

]
(2.7)

where HHH = [H1, ..., H=]) and BBB is the collection of indices for support tensors. Support tensors are

those tenors with labels (XXX8, H8) such that H8 ·UUU)���H:::8 < 1 when aUUU is given. �B�B�B is a identity matrix

20

with size = whose diagonal elements corresponding to non-support tensors are set to be zero. To

estimate the U such that the derivative (2.7) equals to zero, we can use the Gaussian-Newton method

(see e.g. [47]). If we denote the second derivative of the objective function (2.6) with respect to UUU

by ���

��� = 2���H (_��� +
1
=
�B�B�B

))���H (2.8)

If UUU∗ is the root of 555 = 0, then Gaussian-Newton algorithm uses the first order Taylor expansion

and assumes that 555|UUU∗ = 555|UUU +��� |UUU · (UUU∗ −UUU). Since we assume 555|UUU∗ = 0, the equation reduces to

UUU∗ = UUU −���−1 555 |UUU

= UUU −���H (_��� +
1
=
�B�B�B

))−1 ·
[
(_��� + 1

=
�B�B�B

))���HUUU −
1
=
�B�B�BHHH

]
=

1
=
���H (_��� +

1
=
�B�B�B

))−1�B�B�BHHH

=
1
=
���H (_��� +

1
=
�B�B�B)−1�B�B�BHHH

(2.9)

We drop the transpose for convenience in the last step since kernel matrix is symmetric. Notice

that the derivation uses the fact ���H is symmetric and orthogonal, ���H���)H = ���, since H2
8
= 1. The

algorithm starts with an initial value ofUUU, and keeps updatingUUU∗ with equation (2.9) iteratively until

convergence. During each iteration, the newly estimation UUU∗ will replace UUU for the next iteration.

Although the update rule does not include UUU in the final explicit form (2.9), the indices of support

tensors are updated at each iteration. Thus, �B�B�B will be updated, and making estimate for UUU∗ to be

different. The algorithmic steps for Squared Hinge loss STM is summarized in the algorithm 2.

After estimating UUU from either (2.5) with Hinge loss or (2.6) with Squared Hinge loss, the class

label can be predicted by Sign[555 (XXX)] = Sign[UUU���H (XXX)]. CP representation of tensors in the

training data are already available. To calculate (XXX), one has to find the CP representation for the

testing dataXXX and then calculate the kernel values with equation (2.2).

2.2.2 Tensor Discriminant Analysis

The second types of classification method is tensor-based discriminant analysis (TDA). Tensor

discriminant analysis combines tensor-based K-nearest neighbour classifier and multilinear feature

21

Algorithm 2 Squared Hinge STM
1: procedure STM Train
2: Input: Training set) = {XXX8}, HHH, kernel function , tensor rank r, _, [, maxiter
3: for i = 1, 2,...n do
4: XXX8 = [--- (1)8 , ..., ---

(3)
8
] ⊲ CP decomposition by ALS algorithm

5: Create initial matrix ∈ R=×=
6: for i = 1,...,n do
7: for j = 1,...,i do
8: 8, 9 =

A∑
:,;=1

∏3
<=1 (---

(<)
8
[:, :], --- (<)

9
[:, ;]) ⊲ Kernel values

9: 9 ,8 = 8, 9

10: Create UUU∗ = 111=×1, UUU = 000=×1 ⊲ Initial Value, can be different
11: Iteration = 0
12: while | |UUU∗ − UUU | |2 > [& Iteration 6 maxiter do
13: UUU = UUU∗

14: Find BBB ∈ R=×1. BBB8 ∈ {0, 1} such that BBB8 = 1 if H8:::)8 UUU < 1 ⊲ Indicating support tensors
15: ���B = diag(BBB) ⊲ Create diagonal matrix with (as diagonal
16: UUU∗ = 1

=���H (_��� +
1
= �B�B�B)

−1�B�B�BHHH ⊲ Update
17: Output: UUU∗

extraction to improve the classification performance and utilize the multi-way correlations. It seeks

a tensor-to-tensor projection transforming tensors into a new tensor subspace which maximizes

the data separation. To measure the level of data separation in the new tensor subspace, TDA

adopted two criteria from Fisher discriminant analysis [108]: the scatter ratio criterion and the

scatter difference criterion. The optimal tensor-to-tensor projection is selected to maximize either

one of the criterion. The discriminant analysis with tensor representation (DATER) [147] and

multilinear discriminant analysis MDA [103] search the optimal projection utilizing the maximum

ratio criteria. However, the algorithms are not stable, and do not converge over iterations. The

general tensor discriminant analysis (GTDA) from [135] and MDA from [142] use the maximum

scatter difference criterion, and provide two convergent algorithms in tensor subspace learning.

However, the model classification performance relies heavily on tuning parameters. [92] proposes

Direct General Tensor Discriminant Analysis (DGTDA) which maximizes the scatter difference

and estimates the global optimal tensor-to-tensor projection without parameter tuning. In addition,

they also propose a Constrained Multilinear Discriminant Analysis (CMDA) by maximizing the

22

scatter ratio and restricting the tensor-to-tensor projection matrices to be orthogonal. In this part,

we provide a review on DGTDA and CMDA methods.

In tensor discriminant analysis (TDA), a tensor-to-tensor projection is defined using tensor

mode-wise products introduced in section 1.2. SupposeXXX is a d-way tensor with size �1 × ... × �3 ,

then a tensor-to-tensor projection transformsXXX to ZZZ ∈ R%1×...×%3

ZZZ = XXX ×1***
(1) ×2***

(2) ... ×3 *** (3) (2.10)

where*** (9) are % 9 × � 9 projection matrices. The projection is defined uniquely by the collection

of projection matrices {*** (1) ,*** (2) ...*** (3)}. Now let’s assume the training data are tensors from

binary classes, and are denoted by XXX2,8. 2 = 1, 2 stands for the class of tensor data, and 8 stands

for the 8-th sample from class 2. Like traditional statistics, the mean projected tensor for class 2 is

defined as

ZZZ2 =
1
=2

=2∑
8=1

ZZZ2,8 =
1
=2

=2∑
8=1

XXX2,8 ×1***
(1) ×2***

(2) ... ×3 *** (3)

= XXX2 ×1***
(1) ×2***

(2) ... ×3 *** (3)
(2.11)

whereXXX2 = 1
=2

=2∑
8=1

XXX2,8 is the class mean of original tensors in class 2. =2 is the number of samples

in class 2. Similarly, the overall mean of tensors from both classes is

ZZZ =
1
=

2∑
2=1

=2 ·ZZZ2 =
1
=

2∑
2=1

=2∑
8=1

XXX2,8 ×1***
(1) ×2***

(2) ... ×3 *** (3)

= XXX ×1***
(1) ×2***

(2) ... ×3 *** (3)
(2.12)

where XXX = 1
=

2∑
2=1

=2 ·XXX2. = = =1 + =2 is the total number of samples. As an extension of Fisher

discriminant analysis, TDA looks at mode-wise between-class scatter matrices and within-class

scatter matrices in the projected subspace. For mode 9 , the between class scatter matrix is defined

23

as

��� 9 =

2∑
2=1

=2
[
ZZZ2 −ZZZ

]
(9) ·

[
ZZZ2 −ZZZ

]>
(9)

=

2∑
2=1

=2
[
(XXX2 −XXX)

∏
:

×:*** (:)
]
(9) ·

[
(XXX2 −XXX)

∏
:

×:*** (:)
]>
(9)

=*** (9)��� 9̄
9
*** (9)>

(2.13)

���
9̄

9
=

2∑
2=1

=2
[
(XXX2 −XXX)

∏
:≠ 9***

(:)]
(9) ·

[
(XXX2 −XXX)

∏
:≠ 9 ×:*** (:)

]>
(9) is the between-class scatter

matrix in the partially projected subspace (all modes excepts 9-th mode are projected). ��� 9 is in

dimension of % 9 × % 9 , and ��� 9̄9 is in dimension % 9 × % 9 since the 9-th mode is not projected.[
ZZZ2 − ZZZ

]
(9) are the 9-th mode unfolding matrices for tensor

[
ZZZ2 − ZZZ

]
which is in dimension

� 9 ×
∏
:≠ 9 �: . The derivation of equation (2.13) is available in [92]. With the same idea, the

mode-j within-class scatter matrices is deinfed as

,,, 9 =
1
=

2∑
2=1

=2∑
8=1

[
XXX2,8

∏
:

×:*** (:)
]
(9)

[
XXX2,8

∏
:

×:*** (:)
]>
(9)

=*** (9),,, 9̄

9
*** (9)>

(2.14)

,,,
9̄

9
= 1

=

2∑
2=1

=2∑
8=1

[
(XXX8,2 − XXX2)

∏
:≠ 9***

(:)]
(9) ·

[
(XXX8,2 − XXX2)

∏
:≠ 9 ×:*** (:)

]>
(9) is the within-class

scatter matrix in the partially projected subspace (all modes excepts 9-th mode are projected).

Notice that the within-class matrices (2.14) and between-class scatter matrices (2.13) are analogous

to within-class and between-class covariance matrices in traditional statistics. Thus, for each mode,

an optimal projection matrix can be estimated by maximizing the ratio of (2.13) and (2.14), or the

difference between (2.13) and (2.14).

GDTDA learns the projectionmatrices bymaximizing the scatter difference of (2.13) and (2.14).

Additionally, it assumes that all the projection matrices are orthogonal. The objective function for

24

DGTDA is

max
*** (9)

| |��� 9 | |2Fro − Z | |FFF 9 | |
2
Fro

= CA
{
*** (9)��� 9̄

9
*** (9)>

}
− ZCA

{
*** (9),,, 9̄

9
*** (9)>

}
S.T. *** (9) ·*** (9)> = ���

(2.15)

For each mode 9 , the projection matrix can be estimated with singular value decomposition. The

whole algorithm estimates *** (9) in a single run without multiple iterations and tuning parameter.

Z is selected through singular value decomposition instead of tuning. We summarize this in the

algorithm 3. We use (+� in the algorithm to denote ordinary singular value decomposition for

matrix. This algorithm is very common and is used directly without introduction.

Algorithm 3 DGTDA Projection Learning
1: procedure DGTDA
2: Input: Tensors {XXX2,8; 8 = 1, 2, ..., =2; 2 = 1, 2}, Target dimension %1, %2..., %3
3:
4: for j = 1 2, ..., d do

5: Calculate ��� 9 =
2∑
2=1

=2
[
(XXX2 −XXX)

]
(9) ·

[
(XXX2 −XXX)

]>
(9)

6: Calculate,,, 9 =
1
=

2∑
2=1

=2∑
8=1

[
XXX2,8

∏
: ×:*** (:)

]
(9)

[
XXX2,8

∏
: ×:*** (:)

]>
(9)

7: [],ΣΣΣ, [] = (+� (,,,−1
9 · ��� 9) ⊲ SVD Decomposition and take singular value only

8: Z = max(diag(ΣΣΣ)) ⊲ Take the maximum singular value
9: """ = ��� 9 − Z ·,,, 9

10: ***, [], [] = (+� (""") ⊲ SVD Decomposition and take left singular vectors
11: *̂**

(9)
=*** [:, 1 : % 9]> ⊲ Takes the first % 9 colums and transpose

12: Return
{
*̂**
(9)
, 9 = 1, ..., 3

}
Instead of maximizing the scatter difference, CMDA learns the projection matrices by maxi-

mizing the ratio of (2.13) and (2.14). Different from the existing work of TDA [147, 103] which

also use scatter ratio, CMDA include the orthogonal assumption for projection matrices hoping to

25

make the algorithm converges over iterations. The objective function for CMDA can be defined as

max
*** (9)

| |��� 9 | |2Fro
| |,,, 9 | |2Fro

=
CA

{
*** (9)��� 9̄

9
*** (9)>

}
CA

{
*** (9),,, 9̄

9
*** (9)>

}
S.T. *** (9) ·*** (9)> = ���

(2.16)

For each mode 9 , the projection matrix can be estimated with singular value decomposition as well.

The whole algorithm estimates*** (9) over iterations until all the estimated projection matrices are

approximately orthogonal. We summarize this in the algorithm 4.

Algorithm 4 CMDA Projection Learning
1: procedure CMDA
2: Input: Tensors {XXX2,8; 8 = 1, 2, ..., =2; 2 = 1, 2}, Target dimension %1, %2..., %3 , [, maxitor
3: Initialize*** (9)0 = 111; 9 = 1, .., 3 ⊲ Initialize value, matrix with values all equal to 1
4: while C 6 maxiter do ⊲ Repeat up to max iteration
5: for j = 1 2, 3, ...,d do

6: ���
9̄

9 ,C
=

2∑
2=1

=2
[
(XXX2 −XXX)

∏
:≠ 9***

(:)]
(9) ·

[
(XXX2 −XXX)

∏
:≠ 9 ×:*** (:)

]>
(9)

7: ,,,
9̄

9 ,C
= 1
=

2∑
2=1

=2∑
8=1

[
(XXX8,2 −XXX2)

∏
:≠ 9***

(:)]
(9) ·

[
(XXX8,2 −XXX2)

∏
:≠ 9 ×:*** (:)

]>
(9)

8: ***, [], [] = (+� (,,, 9̄−1
9 ,C
· ��� 9̄

9 ,C
) ⊲ SVD

9: *̂
(9)
C =*** [:, 1 : % 9]> ⊲ Takes the first % 9 colums and transpose

10: Check 4AA (C) =
3∑
9=1
| |*̂ (9)C · *̂ (9)>C − ��� | |Fro 6 [

11: if 4AA (C) 6 [then
12: Stop Iteration ⊲ Quit loop
13: C = C + 1
14: Return

{
*̂**
(9)
, 9 = 1, ..., 3

}
The last step in the TDA classification is assigning class labels to new test points. For both

DGTDA andCMDA, a tensor-basedK-nearest neighbourmethod is adopted for this purpose. Recall

the Frobenius norm for tensor in section 1.2, one can define distance between two tensors with

Frobenius norm. For any two tensorsXXX1 andXXX2 in the same dimension, the distance is defined as

38B(XXX1,XXX2) = | |XXX1 −XXX2 | |Fro. A K-Nearest Neighbour classifier can use distance and predict class

labels for test point. We combine the subspace learning from DGTDA and CMDA algorithm with

26

this KNN classifier, and summarize the whole classification procedure for DGTDA and CMDA in

algorithm 5 at the end of this part.

Algorithm 5 Tensor Discriminant Analysis Classification
1: procedure TDA
2: Input: Training set)= = {XXX2,8; 8 = 1, 2, ..., =2; 2 = 1, 2}, Labels {H1, .., H=} ∈ {0, 1}, Target

dimension %1, %2..., %3 , Test set {XXX∗1, ...XXX
∗
<},[, maxitor, k

3: if DGTDA then
4:

{
*** (3) , ...,*** (3)

}
= DGTDA({XXX2,8; 8 = 1, 2, ..., =2; 2 = 1, 2}, %1, %2..., %3)

5: else
6:

{
*** (3) , ...,*** (3)

}
= CMDA({XXX2,8; 8 = 1, 2, ..., =2; 2 = 1, 2}, %1, %2..., %3 , [, maxitor)

7: for i = 1,..n do
8: ZZZ2,8 = XXX2,8 ×1***

(1) ×2***
(2) ... ×3 *** (3)

9: for i = 1,.., m do
10: ZZZ∗

8
= XXX∗

8
×1***

(1) ×2***
(2) ... ×3 *** (3)

11: 333 = [38B(ZZZ1,ZZZ
∗
8
), ..., 38B(ZZZ=,ZZZ∗8)]

12: 333′ = arg B>AC (3) ⊲ Sort distance in increasing order, and return the index

13: H∗
8
= 1{ 1

:

:∑
;=1

H[333′[;]] > 0}

14: Return H∗1, ..., H
∗
<

2.2.3 Tensor Regression

The last type of tensor classification model we want to review in this part is tensor regression

model. Tensor regression is a collection of statistical models taking tensor-shape predictors. These

models can predict tensor or scalar response from the tensor covariates. [155, 93] propose tensor

generalized linear regression model by assuming CP and Tucker decomposition structures on

regression coefficients. [62] introduces sparse penalty on tensor CP regression models to provide

an efficient and scalable model for unit-rank tensor regression problems. More recently, tensor

response regression [88, 152, 99], Bayesian tensor regression [57], and tensor regression with

variation norm penalty [45] are also developed. In this part, we review the CP tensor generalized

linear regression model (CP-GLM) [155] for tensor classification problems.

CP-GLM assumes a regression model with tensor covariates. Let 666(·) be the link function,

XXX ∈ R�1×..×�3 be a d-way tensor, andBBB ∈ R�1×..×�3 be the tensor coefficient. The CP-GLM with

27

scalar response is defined as

666(`) = U + WWW>III+ < BBB,XXX > (2.17)

W is a scalar, and III ∈ R? is a ? dimensional vector predictor. WWW is a ? dimensional vector coefficient

as well. If BBB has a low-rank CP decomposition, then we can use Kruskal tensor to denote it as

UUUBBB = È���(1) , ..., ���(3)É. Each ���(9) , 9 = 1, .., 3 is a � 9 by A matrix whose columns are CP factors of

tensorBBB. The rank ofrBBB is assumed to be A . With Khatri-rao product, the inner product between

tensor coefficient and predictor can be written as

< UUUBBB,XXX > =< ���(9)
(
���(3) � ..���(9+1) � ���(9−1) ..., ����(1)

)>
,XXX >

=< ���(9) ,XXX
(
���(3) � ..���(9+1) � ���(9−1) ..., ����(1)

)
>

(2.18)

for 9-th mode CP components. If we write the inner product into a vector form, then ���(9) can be

estimated with regular maximum likelihood estimate (MLE) method by fixing U, WWW, and all other

���(:) , : ≠ 9 . A iterative MLE can be adopted to estimate all the CP compoent matrices as well as

the regular scalar and vector coefficients in model (2.17). If we denote the likelihood function as

ℓℓℓ(U, WWW,UUUBBB), which can be derived in the exactly same ways as ordinary GLM, the iterative MLE

algorithm can be summarized in the algorithm 6. In tensor binary classification problems, we can

Algorithm 6 Tensor CP Generalized Linear Model
1: procedure TDA
2: Input: {XXX1, ...XXX=}, {III1, ...III=}, HHH, [, maxitor
3: InitializeUUUBBB,0 = È000, ..000É ⊲ Initialize Kruskal tensor as 0 matrices
4: Initialize (U0, III0) = arg maxℓℓℓ(U, WWW,UUUBBB,0)
5: while t < maxitor do
6: for j = 1, ..., d do
7: ���

(9)
C+1 = arg maxℓℓℓ(UC , WWWC , È���(1)C+1....���

(9−1)
C+1 , ���(9) , ���(9+1)C ..., ���

(3)
C É)

8: (UC+1, IIIC+1) = arg maxℓℓℓ(U, WWW, È���(1)
C+1....���

(9−1)
C+1 , ���

(9)
C+1, ���

(9+1)
C ..., ���

(3)
C+1É)

9: if ℓC+1ℓC+1ℓC+1 − ℓCℓCℓC 6 [then
10: Stop
11: C = C + 1
12: Output: U, WWW, È���(1)���(9−1) , ���(9)

C+1���
(9+1)
C ..., ���(3)É

take the link function 666 as the logit function, and predict the probability that P(H = 1|XXX). The class

labels are predicted by doing a threshold on the predicted probability.

28

2.3 Statistical Analysis

As we mentioned in section 1.3, statistical consistency is one of the most important properties

for decision rules as it demonstrates generalization ability of rules from the aspect of prediction

risk. The consistency of tensor discriminant analysis can be easy established since DGTDA and

CMDA are both converging ([92]) algorithms providing unique tensor-to-tensor projections. In

addition, tensor K-nearest neighbour classifier is equivalent to vector K-nearest neighbour, which

is consistent ([36]). These two facts make the tensor discriminant analysis a consistent classifier.

Tensor CP-GLM models the conditional probabilities for data labels through regression model. Its

consistency is guaranteed by the (strong) consistency of regression coefficients ([155]). In this

section, we provide few theoretical helping to establish the statistical consistency for CP-STM. The

section contains two parts for theory development. One is the universal property establishment for

CP-STM kernel functions, the other is consistency proof for CP-STM.

2.3.1 Universal Tensor Kernels

Our first result is about the universal property of tensor kernel functions. Kernel Universal property

plays a very important role in kernel learning methods such as support vector machine and kernel

regression [107]. Since kernel-based learning methods always estimate optimal solution from

Reproducing Kernel Hlibert Space (RKHS), the error of approximating the complete functional

space { 555 : XXX → YYY, 555 measureable} with RKHS is critical in the generalization ability of the

learned rules. In other word, if the approximation error of RKHS is larger, then the prediction

from kernel-based methods will be more biased. Kernel with universal property guarantees that

the approximation error of RKHS can be as small as possible on any compact subspace of the input

space. To present our result about universal property for tensor kernels, we first provide a formal

definition about the universal property.

Definition 2.3.1. Let (·, ·) be a continuous kernel function defined on XXX × XXX → R. Given a

compact subspaceZZZ ⊂ XXX from the input space, the kernel section of (·, ·) overZZZ is KKK(ZZZ) :=

29

span{ G , G ∈ ZZZ}, which is a RKHS generated by kernel (·, ·) and subspace ZZZ. If for any

continuous function 555 : ZZZ → R, there is a positive number n > 0 and a function 666 ∈ KKK(ZZZ) such

that

| | 555 − 666 | |∞ = sup
G∈ZZZ
| 555 (G) − 666(G) | 6 n

then (·, ·) has universal approximating property and is called a universal kernel.

With universal kernels, we can immediately see that the optimal function estimated from RKHS is

also the optimal among all measureable functions. This is critical in the establishment of CP-STM

consistency. Thus, our first result shows that the kernel function in CP-STM can be universal.

Proposition 2.3.1. For a d-way CP tensor kernel function

 (XXX1,XXX2) =
A∑

;,:=1

3∏
9=1

 (9) (GGG (9)1,; , GGG
(9)
2,:)

with XXX1 =
A∑
:=1

GGG
(1)
1,: ◦ GGG

(2)
1,: ... ◦ GGG

(3)
1,: and XXX2 =

A∑
:=1

GGG
(1)
2,: ◦ GGG

(2)
2,: ... ◦ GGG

(3)
2,: . If all mode-wise kernel

functions (9) (·, ·) are satisfying the universal approximation property in definition 2.3.1, then

it also satisfy the universal approximating property in the sense that for all continuous function

defined on the compact tensor product space XXX = ⊗3
9=1VVV

(9) , there exits a function 666 ∈ KKK(XXX) in

the tensor kernel section such that

| | 555 − 666 | |∞ = sup
XXX∈XXX
| 555 (XXX) − 666(XXX) | 6 n

The proof of this proposition is provided in the appendix A.1. Notice that since distance-based

kernel functions such as Gaussian RBF and polynomial are universal ([107]), we can use one of it

or both for all (9) (·, ·) to create universal tensor kernel functions.

2.3.2 Consistency of CP-STM

With universal tensor kernels, the classification consistency of CP-STM is established with the

following theorem. The notations of classification risks are borrowed from section 1.3.

30

Theorem 2.3.1. Let { 5=5=5= : = ∈ N} be a sequence of CP-STM classifiers in equation (2.4), which

are estimated from different training sets)= with size =. R∗ is the Bayes risk of tensor binary

classification problem for data from the joint distribution XXX × YYY. XXX is a d-way tensor product

space with dimension �1 × �2 × ... × �3 defined in definition 1.2.1, andYYY = {−1, 1}. The CP-STM

decision rule { 5=5=5= : = ∈ N} is statistically consistent and the excess classification risk of 5=5=5=, R(5=5=5=),

converges to the optimal Bayes risk

R(5=5=5=) → R∗ (=→∞)

If the following conditions are satisfied:

Con.1 XXX is a compact subspace of R�1×�2×...×�3 such that there is a constant 0 < �G < ∞. For all

XXX ∈ XXX andXXX =
A∑
:=1

GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:
, | |GGG (9)

:
| |2 6 �G < ∞.

Con.2 The loss function L is self-calibrated (see [128]), and is � (,) local Lipschitz continuous in

the sense that for |0 | 6 , < ∞ and |1 | 6 , < ∞

|L(0, H) − L(1, H) | 6 � (,) |0 − 1 |

In addition, the loss function is bounded on the second variable, i.e.

sup
H∈{1,−1}

L(0, H) 6 !0 < ∞

.

Con.3 The kernel functions (9) (·, ·) used to composite the coupled tensor kernel (2.2) are reg-

ular vector-based kernels satisfying the universal approximating property in definition

2.3.1. Additionally, they are all bounded so that there is a constant 0 < <0G < ∞,

sup
√
 (9) (·, ·) 6 <0G for all 9 = 1, .., 3.

Con.4 The hyper-parameter in the objective function (2.1) _ = _= satisfies:

= → 0 == →∞ as =→∞

31

The proof of this theorem is provided in the appendixA.2. At the end of this section, we can conclude

that all the tensor-based classifiers reviewed in this chapter are statistically consistent, meaning that

they all have promising prediction accuracy if certain conditions are satisfied. However, their

performance in practice can be of various, since their excess risks may converge at different

rates depending on the data distribution in specific applications. In next section, we compare the

performance of these classification methods with two real data applications.

2.4 Real Data Analysis

In this section, we provide two examples in Neuroimaging and Computer Vision studies, and

apply all the reviewed tensor-based classifier in imaging classification problems.

2.4.1 MRI Classification for Alzheimer’s Disease

Alzheimer’s Disease (AD) is a progressive, irreversible loss of brain function which would impact

memory, thinking, language, judgment, and behavior. The disease could destroy patients’ memory

and thinking ability, and eventually make it difficult for patients to carry out even the simplest tasks

of daily living. In the research of AD, there are lots of novel technologies developed to collect

information from patients for diagnostic purposes, which include genetic analysis, biological and

neurological tests, Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET)

imaging. Utilizing these information to predict patients’ biological status is of great interests in

early detection and biomarker development for Alzheimer’s Disease. In this study, we consider

using patients’ voxel MRI data to predict if patients are early AD or Normal Coherent (NC).

Brain MRI technology collects 3D image to show anatomical structure of brains. The data

is measured in voxels, which are similar to pixels used in displaying regular images. Voxels are

however cuboids in 3D having specific dimensions. Each voxel contains one value standing for

the average signal measured at a fixed position. A standard MRI image, also called volume,

is arranged in a 3D array to reflect brain structure by placing all voxels in their corresponding

positions. Thus, voxel-level MRI images are multi-dimensional arrays loaded from Neuroimaging

32

AD NC

Num Subjects 183 219
Age (Mean ± sd) 75.28 ± 7.55 75.80 ± 4.98
Gender (Female / Male) 88 / 95 110 / 109
MMSE (Mean ± sd) 23.28 ± 2.04 29.11 ± 1.00

Table 2.1: Biological Information for Subjects in ADNI Study; MMSE: baseline Mini-Mental State Exam-
ination

Informatics Technology Initiative (Nifti) files (see [85]), and are tensors in nature. We can use our

proposed tensor-based classifier to handle voxel-level MRI data.

We collect data from Alzheimer’s Disease Neuroimaging Initiative ADNI. It is a huge longi-

tudinal study on Alzheimer’s Disease. In ADNI, the structural brain MRI is believed to be highly

correlated to the patients’ cognition, thus can be utilized to predict patients’ status, AD vs. NC.

The MRI data is collected from the screening session in ADNI-1. During the session, there are 818

patients selected to enter the study and received 1.5T MRI scan. These images are pre-processed

by ADNI with normalization and bias correction, and are provided in the ADNI-1.5T Screening

standardized data set. The data set includes both MRI scans and patients’ dementia status labeled

as Normal Coherent(NC), Mild Cognition Impaired (MCI), and Alzheimer’s Disease (AD). In this

study, we are especially interested about predicting if a patient has AD or NC. Thus, we only collect

image data from NC and AD patients. The biological information about AD group and NC group

is provided in the table 2.1. MMSE in the table stands for Mini-Mental State Examination, which

is a test of cognition functions for patients with dementia. The MMSE in the table 2.1 shows the

scores of MMSE test for subjects.

There are 402 MRI images in the data collection. We further use Matlab Imaging Processing

Toolbox to register and align all the images for classification and comparison. We also use image

resize function in the toolbox to unify the voxel dimensions in all MRI images to be 6mm by 6mm

by 9mm. After resizing, all images are in the shape of 40 by 40 by 21. This step is necessary

since ADNI MRI images are acquired from multiple sites. Resizing guarantees all the images can

be represented by tensors in the same size. The choice of such image size is referred from other

33

http://adni.loni.usc.edu/

Models Accuracy Precision Sensitivity Specificity AUC

CP-GLM 0.580.04 0.580.07 1.000.00 0.000.00 0.500.00
CMDA 0.700.03 0.690.05 0.670.09 0.730.10 0.650.17
DGTDA 0.700.02 0.710.02 0.590.06 0.800.01 0.640.18
CP-STM1 0.730.03 1.000.00 0.410.07 1.000.00 0.640.20
CP-STM2 0.740.740.740.04 1.000.00 0.430.08 1.000.00 0.650.20

Table 2.2: Real Data: ADNI Classification Comparison I

similar statistical analysis works such as [155, 114, 45].

We conduct our numerical experiment in the same protocol as the simulation study. We

randomly sample 80% of images from AD group and 80% from NC group to form the training set

with size 321. AD is labeled as positive class, and NC is labeled as negative class. The rest images

are used as test set to evaluate model performance. For each classification model, we evaluate its

performance by calculating its accuracy, precision, sensitivity, and specificity on the test set. Such

step is replicated for multiple times, and the average accuracy, precision, sensitivity, and specificity

are reported in the table in percentages. The standard deviation of these performance metrics

are also provided (in subscripts) in the parenthesis. In the table 2.2, we use CP-STM1 to denote

CP-STM with Hinge loss, and CP-STM2 to denote CP-STM with Square Hinge loss. Figure 2.1

summarizes the comparison in a more illustrative way. The area under the curves (AUC) of ROC

curves are reported in the table 2.2 as well.

The results in table 2.2 shows that all the tensor-based classifiers have close accuracy in

prediction, while CP-STM is slightly better than the others. Also, these methods all have pretty

low sensitivity, indicating that the chances of correctly detecting AD patients are pretty low.

The performance of CP-GLM is much worse than the others, which may due to the fact that its

parameteric form and data distribution assumption are not appropriate for the real data. Comparing

two CP-STMs, we notice that one with Squared Hinge loss is better, which may due to the fact that

Squared Hinge loss has a bigger penalty on points which strongly violates the margin during the

training procedure.

34

0.0

0.2

0.4

0.6

0.8

CMDA CP−GLM CPSTM1 CPSTM2 DGTDA

Method

A
c
c
u

ra
c
y

Method

CMDA

CP−GLM

CPSTM1

CPSTM2

DGTDA

Classification Accuracy

Figure 2.1: Real Data: ADNI Classification Reults I

2.4.2 KITTI Traffic Images

The second application we conduct is traffic image data recognition. Traffic image data recognition

is an important computer vision problem. We considered the image data from the KITTI Vision

Benchmark Suit. [53], [49], and [52] provided a detailed description and some preliminary studies

about the data set. In this application, a 2D object detection task asks us to recognize different

objects pointed out by bounding boxes in pictures captured by a camera on streets. There are

various types of objects in the pictures, most of which are pedestrians and cars. We selected images

containing only pedestrians or cars to test the performance of our classifier.

The first step we did before training our classifier is image pre-processing, which includes

cropping the images and dividing them into different categories. We picked patterns indicated by

bounding boxes from images and smoothed them into a uniform dimension 224 × 224 × 4. Then

we transform all these colored images into grey-scale to drop color information in order to avoid

potential problems caused by the extreme dimension imbalance among the three different modes.

35

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

50 100 150 200

50

100

150

200

Figure 2.2: Real Data: Examples of Traffic Objects in KITTI Data

The processed images are in size 224 by 224 which can be modeled by two-mode tensors. Figure

2.2 shows few examples of processed images for cars and pedestrians.

The total number of images are 33229, among which 4487 are car images and 28742 are

pedestrian images. Next, we divide these images into three groups basing on their qualities and

visibility. Images having more than 40 pixels in height and fully visible will go to the easy group.

Partly visible images having 25 pixels or more in height are in the moderate group. Those images

which are difficult to see with bare eyes are going to the hard group. These three groups of images

are utilized to define three different classification tasks with levels of difficulties as easy, moderate,

and hard. To overcome the class imbalance in all the three groups of images, We randomly select

200 car images and 200 pedestrian images to form a balanced data set in each group for our

numerical experiments. Pedestrian images are considered as the positive class data, and car images

are negative class data.

The following procedures are repeated for 50 times in all three tasks with the balanced data

sets. We randomly sample 80% of images as training and validation set. Classification models are

estimated and tuning parameters (if any) are selected using this part of the data. Then the models

36

with selected tuning parameters are applied on the rest 20% data for testing. The sampling is

conducted in a stratified way so that the proportion of pedestrian and car images are approximately

same in both training and testing set. For each repetition, we calculate the same performance

metrics, accuracy rates, precision (positive predictive rates), sensitivity (true positive rates), and

specificity (true negative rates), for each classification method using the testing set. The average

value of these rates and their standard deviations (in subscripts) are reported in the table 2.3.

The areas under the ROC curves (AUC) are also reported for all the methods. All the classifiers

reviewed in section 2.2 are included, and are denoted with the same notations from the previous

ADNI application. The comparison of model prediction accuracy rates is also illustrated by the

figure 2.3, in which accuracy rates are shown by bar charts and the standard deviations of accuracy

rates are shown by error bars.

Task Methods Accuracy Precision Sensitivity Specificity AUC

Easy

CP-STM1 0.850.850.850.03 0.840.05 0.850.05 0.840.06 0.850.850.850.03
CP-STM2 0.830.04 0.830.05 0.830.05 0.830.06 0.830.04
CMDA 0.630.07 0.580.06 0.950.08 0.300.16 0.630.07
DGTDA 0.840.04 0.770.04 0.960.03 0.720.07 0.840.04
CP-GLM 0.570.05 0.570.06 0.590.07 0.550.09 0.570.05

Moderate

CP-STM1 0.780.780.780.05 0.780.06 0.770.07 0.780.07 0.780.780.780.05
CP-STM2 0.730.06 0.750.07 0.720.08 0.750.09 0.730.06
CMDA 0.590.05 0.550.04 0.890.11 0.280.13 0.590.05
DGTDA 0.740.06 0.720.06 0.790.08 0.690.08 0.740.05
CP-GLM 0.530.05 0.530.05 0.540.07 0.520.08 0.530.05

Hard

CP-STM1 0.760.760.760.04 0.840.06 0.640.07 0.870.05 0.760.760.760.04
CP-STM2 0.740.04 0.800.06 0.630.07 0.840.06 0.740.04
CMDA 0.530.04 0.520.02 0.910.09 0.160.12 0.530.04
DGTDA 0.720.05 0.680.04 0.840.06 0.600.08 0.720.05
CP-GLM 0.510.06 0.510.06 0.540.07 0.490.07 0.510.06

Table 2.3: Real Data: Traffic Image Classification I

By comparing the prediction accuracy rates and AUC values, CP-STM models have significant

advantages in classification performance than other tensor-based classification models. Different

from previous study, CP-STMwith Hinge loss outperforms CP-STMwith Squared Hinge loss. The

37

0.00

0.25

0.50

0.75

Easy Hard Moderate

Task

A
c
c
u

ra
c
y

Method

CMDA

CP−GLM

CPSTM1

CPSTM2

DGTDA

Classification Accuracy

Figure 2.3: Real Data: Traffic Classification Result I

reason for this might be that there are more tensors sitting close to the margin and weakly violate

the margin, i.e. H8 5=5=5= (XXX8) < 1 and H8 5=5=5= (XXX8) ≈ 1. As a result, Hinge loss penalizes these points more

than Squared Hinge loss in the model estimation procedure, providing a better decision function.

Comparing to our previous results in ADNI study, we can conclude that the performance of CP-

STM with Hinge ans Squared Hinge loss often time depend on the data distribution. Two tensor

discriminant analysis have different performance in this application. DGTDA outperforms CMDA

with much higher accuracy rates in all three tasks. Particularly, the accuracy rate of DGTDA is

only 1% less than CP-STM1 in the easy task. As for CMDA, it turns out that it fails to identify a

discriminantive tensor-to-tensor projection in this application. The performance of CP-GLM is not

as good as others, which is similar to the results in our ADNI study.

2.5 Conclusion

In this chapter, we explore the possibility of using tensors to model multi-dimensional and

structured data, and reviewed few tensor-based classification models. These models utilize tensor

algebraic structures and extend traditional classification methods for tensor data. CP-STM and

CP-GLM are extension of Support Vector Machine and Generalized Linear Regression with uses

tensor CP decomposition. DGTDA and CMDA are generalization of Fisher Discriminant analysis

38

for tensor using tensor subspace learning. Such subspace learning is indeed a variant of tensor

Tucker decomposition. These models can be attractive when handling multidimensional data with

various structures.

As a part of our contribution, we develop the statistical consistency result for CP-STM. All

these tensor-based methods are then can be considered as consistent decision rules with nice

generalization ability. Our data experiments also provide some empirical evidence on the model

performance. Through our numerical study, CP-STM show the best prediction accuracy in both

applications regardless of data distribution. However, the performance comparison between CP-

STMwith Hinge and Squared Hinge loss often time depends on the data distribution. In comparison

to CP-STM, CP-GLM is a little bit restrictive due to its parametric form, and sometimes fail to

approximate the true data distribution. DGTDA and CMDA are both non-parametric and are

flexible enough to classify different types of tensors. However, CMDA sometimes will fail to

converge and its results then become bad.

Inspired by these existing works, one possible direction for future work can be combining

more advanced tensor representation and operations with traditional non-parametric classification

models for novel tensor classification models. For example, there are various coupled matrix-

tensor decomposition methods established in recent research for multimodal data integration and

heterogeneous data analysis. Those decomposition methods can be adopted and help to extend

CP-STM for multimodal data classification problems. Besides that, tensor compression via random

projection or sketch are also popular in multidimensional big data analysis which aims to provide

efficient and scalable ways to process tensors in huge sizes. Coin these tensor compression methods

with CP-STM be a great potential for big tensor data classification.

39

CHAPTER 3

TEC: TENSOR ENSEMBLE CLASSIFIER FOR BIG DATA

In this chapter, we consider classification problems for gigantic size multi-dimensional data. Al-

though tensor-based classification methods mentioned in the previous chapter can analyze multi-

dimensional data and preserve data structures, they may face more challenges such as long process-

ing time and insufficient computer memory when dealing with big tensor data. Previously we have

demonstrated the distribution-free and statistically consistent properties for the CP-STM model,

and highlighted its great potential in successfully handling wide varieties of data applications.

However, training a CP-STM can be computationally expensive with high-dimensional tensors. To

make it feasible for CP-STM to handle large size tensors, we introduce a tensor-shaped random

projection technique, and combine it with CP-STM to reduce the computational time and cost

for large tensors. The CP-STM estimated with randomly projected tensors is named as Random

Projection-based Support Tensor Machine (RPSTM). We further develop a Tensor Ensemble Clas-

sifier (TEC) by aggregating multiple RPSTMs to control the excess classification risk brought by

random projections. We demonstrate that TEC can balance between the computational costs and

excess classification risk, and provide descent performance in numerical studies.

3.1 Introduction

With the advancement of information and engineering technology, modern-day data science

problems often come with data in gigantic size and increased complexities. These complexities

are often reflected by huge dimensionality and multi-way features in the observed data such as

high-resolution brain imaging and spatio-temporal data. Classification problems with such high-

dimensional multi-way data raise more challenges to scientists on how to process the gigantic

size data while preserving their structures. Even though there are many established studies in

the literature that handle the multi-way data structures with tensor representation and tensor-based

models [136, 103, 63, 92, 127, 155, 114], the high dimensionality issue for tensors are rarely

40

explored especially for classification problems. High-dimensional tensors, though are already in

multi-dimensional structure, can still have huge dimensionalities in different modes. The existences

of high-dimensional tensors couldmake the current tensor-based classificationmodels fail to provide

reliable results due to extremely long processing time and huge computational cost.

Current tensor-based classification approaches for high-dimensional data are mostly adopting

regularization or feature extraction steps into the models. For example, [114] proposes a objective

function with Lasso penalty to learn the mode-wise precision matrices in the tensor probabilistic

discriminant analysis instead of estimating them directly by taking the inverse from empirical

covariance matrices, which mitigates the inconsistency in estimate due to high dimensionality.

Other methods such as [103, 92] utilize various higher-order principle component analysis to

extract features and reduce the data complexity before applying tensor-based K-nearest neighbour

classifiers for classification. However, these techniques have several deficiencies. First of all, the

regularization-based methods still face the challenge of huge computational cost. Even though they

can provide more consistent and robust model estimate by doing a trade-off between variance and

bias, the estimation procedures are still the same as that without regularization. For instance, The

estimates for ℓ1 or nuclear norm regularized models are often calculated by doing soft-thresholding

on the original estimates. Thus, the computational cost for the procedure remains the same, and

could be too huge to be carried out for high-dimensional tensors. Secondly, the feature extraction-

based methods integrate unsupervised learning procedures to extract the feature, making it difficult

to evaluate the classification consistency for the models. Finally, there is a lack of theoretical results

in the current approaches that quantifies the excess risks caused by adding regularization terms and

feature extracting procedures, making it difficult to depict the trade-off between the classification

accuracy and the computational cost. Novel techniques and statistical frameworks are thus desired

to not only optimize the computational procedures, but also integrate the statistical analysis for

high-dimensional tensor classification problems.

Randomprojection, comparing to the aforementioned techniques, turns out to be a perfect candi-

date for simplifying computational complexity in high-dimensional tensor classification problems,

41

since it is easy to apply and can provide straight forward steps for statistical analysis. It projects data

into lower dimensional space with randomly generated transformations to reduce data dimension,

and is motivated by the well celebrated Johnson Lindenstrauss Lemma (see e.g. [34]). The lemma

says that for arbitrary : > 8 log =
n2 , n ∈ (0, 1), there is a linear transformation 555 : R? → R: such

that for any two vectors GGG8, GGG 9 ∈ R? , ? > ::

(1 − n) | |GGG8 − GGG 9 | |2 6 | | 555 (GGG8) − 555 (GGG 9) | |2 6 (1 + n) | |GGG8 − GGG 9 | |2

with large probability for all 8, 9 = 1, ..., =. The linear transformation 555 preserves the pairwise

Euclidean distances between these points. The random projection has been proven to be a decent

dimension reduction technique in machine learning literature [19, 46]. A lot of theoretical results

on classification consistency are also established for random projection. [41] presents a Vapnik-

Chervonenkis type bounds on the generalization error of a linear classifier trained on a single

random projection. [29] provides a convergence rate for the classification error of the support

vector machine trained with a single random projection. [24] proves that random projection

ensemble classifier can reduce the generalization error further. Their results hold several types of

basic classifiers such as nearest neighboring and linear/quadratic discriminant analysis. In addition

to the computational efficiency and statistical consistency, [133, 71, 119] demonstrate that random

projections for tensors can cost low memory, suggesting that the techniques are memory efficient.

In this work, we propose a computationally efficient and statistically consistent Tensor Ensemble

Classifier (TEC) which aggregates multiple CP-Support Tensor Machines (CP-STM). The new

STM distinguishes from the existing works [63, 64] by combining the estimation procedure with

a newly proposed tensor-shaped random projection to reduce the size of tensors and simplify the

computation, making it extremely useful for high-dimensional tensors. The new STM is named as

Random Projection-base Support TensorMachine (RPSTM).Mutiple RPSTMs are then aggregated

to form an ensemble classifier, TEC, to mitigate the potential information loss and reduce the extra

classification risk brought by random projections. This idea is motivated by [24] and the well

known Random Forest model [19]. Similar to these methods, TEC aggregates base classifiers

which are estimated from randomly sampled or projected features, and makes predictions for new

42

test points by majority votes. Results from [60, 101] show that such an aggregation of decision can

be a very effective tool for improving unstable classifiers like RPSTM.

Our contribution: Our work alleviates the limitations of existing tensor approaches in handling

big data classification problems. Specifically, the contribution of this work is threefold.

1. We successfully adopt the well known random-projection technique into high dimensional

tensor classification applications and provide an ensemble classifier that can handle extremely

big-sized tensor data. The adoption of random projection is shown to be a low-memory cost

operation, and makes it feasible to directly classify big tensor data on regular machines

efficiently. We further aggregate multiple RPSTM to form our TEC classifier, which can be

statistically consistent while remaining computationally efficient. Since the aggregated base

classifiers are independent of each other, the model learning procedure can be accelerated in

a parallel computing platform.

2. Some theoretical results are established in order to validate the prediction consistency of

our classification model. Unlike [29] and [24], we adopt the Johnson-Lindenstrauss lemma

further for tensor data and show that the CP-STM can be estimated with randomly projected

tensors. The average classification risk of the estimated model converges to the optimal

Bayes risk under some specific conditions. Thus, the ensemble of multiple RPSTMs can have

robust parameter estimation and provide strongly consistent label predictions. The results

also highlight the trade-off between classification risk and dimension reduction created by

random projections. As a result, one can take a balance between the computational cost and

prediction accuracy in practice.

3. We provide an extensive numerical study with synthetic and real tensor data to reveal our

ensemble classifier’s decent performance. It performs better than the traditional methods

such as linear discriminant analysis and random forest, and other tensor-based methods in

applications like brain MRI classification and traffic image recognition. It can also handle

large tensors generated from tensor CANDECOMP/PARAFAC (CP) models, which are

43

widely applied in spatial-temporal data analysis. Besides, the computational cost is much

lower for the TEC comparing with the existing methods. All these results indicate a great

potential for the proposed TEC in big data and multi-modal data applications.

The contents in this chapter are organized as follow: Section 3.2 reviews the basic concepts

about CP-STM classification problem and tensor random projection. Section 3.3 describes our

TEC classifier for high-dimensional tensor data, which includes an introduction to our proposed

tensor-shaped random projection, the RPSTM, and the ensemble classifier TEC. We provide two

different estimationmethods for TECmodel in section 3.4. In section 3.5, we establish the statistical

consistency for the TEC classifier, and provide an explicit upper bound on the excess classification

brought by random projection. Simulation studies and real data experiments are in section 3.7.

Section 3.8 concludes the work in this chapter.

3.2 Related Works

We briefly review the CP-STM for tensor classification problems and some related works about

random projection.

3.2.1 CP-STM for Tensor Classification

Assume there is a collection of data)= = {(XXX1, H1), (XXX2, H2), ..., (XXX=, H=)}, where XXX8 ∈ XXX ⊂

R�1×�2×...×�3 are d-way tensors. XXX is a compact tensor space, which is a subspace ofR�1×�2×...×�3 .

H8 ∈ {1,−1} are binary labels. CP-STM assumes the tensor predictors are in CP representation,

and can be classified by the function which minimizes the objective function

min _ | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXX8), H8) (3.1)

L is a loss function for classification, and _ is a tuning parameter. | | 555 | |2 =< 555 , 555 >=
∫
555 (XXX)23XXX

is the square of functional norm for 555 . By using tensor kernel function

 (XXX1,XXX2) =
A∑

;,<=1

3∏
9=1

 (9) (GGG (9)1,; , GGG
(9)
2,<) (3.2)

44

where XXX1 =
A∑
;=1
GGG
(1)
1; ◦ .. ◦ GGG

(3)
1; and XXX2 =

A∑
;=1
GGG
(1)
2; ◦ .. ◦ GGG

(3)
2; are two different tensors. The STM

classifier can be written as

555 (XXX) =
=∑
8=1

U8H8 (XXX8,XXX) = UUU)���H (XXX) (3.3)

where XXX is a new d-way rank-r tensor with shape �1 × �2 × ... × �3 . UUU = [U1, ..., U=]) are

the coefficients. ���H is a diagonal matrix whose diagonal elements are H1, .., H=. (XXX) =

[(XXX1,XXX), ..., (XXX=,XXX)]) is a column vector, whose values are kernel values between train-

ing data and the new test data. We denote the collection of functions in the form of (3.3) withHHH ,

which is a functional space also known as Reproducing Kernel Hilbert Space (RKHS). The optimal

classifier CP-STM 555 ∈ HHH can be estimated by plugging function (3.3) into objective function (3.1)

and minimize it with Hinge loss and Squared Hinge loss. These steps are reviewed in section 2.2.1,

algorithm 1 and 2. The coefficient vector of the optimal CP-STM model is denoted by UUU∗. The

classification model is statistically consistent if the tensor kernel function satisfying the universal

approximating property, as we introduced in the section 2.3.

However, one potential issue of CP-STM for big tensor classification problems is the curse

of dimensionality. Even a high-dimensional tensor is decomposed into its CP representation,

XXX =
A∑
;=1
GGG
(1)
1; ◦ .. ◦ GGG

(3)
1; , GGG (9)

;
can still be in high-dimensional form, making it expensive to calculate

the value of kernel functions. For example, Gaussian RBF kernel computes the ℓ2 norm of the

difference between two input tensor CP factors. Such computation can be intensive if the inputs

are in high-dimensional. Thus, we propose the RPSTM to simplify the computation with random

projection, and avoid the potential issues.

3.2.2 Random Projection

As a dimension reduction technique, the traditional random projection transforms vector data into

a lower dimensional space via a linear transformation. The linear transformation is usually defined

by a randomly generated projection matrix, ���, whose element 08, 9 are either from independently

and identically Gaussian distributionN(0, 1) [34] or a multinomial distribution with three possible

45

outcomes [7]. The two types of random projection matrices are called Gaussian random matrix

and sparse random matrix shown below.

��� = [08, 9] ∼ N (0, 1) ��� = [08, 9] =

√

3 P = 1
6

0 P = 2
3

−
√

3 P = 1
6

Gaussian Random Matrix Sparse Random Matrix

P stands for probability. With either option of random projection matrices ��� ∈ R:×? , : > >(log =
n2),

n ∈ (0, 1), any two vectors GGG8, GGG 9 ∈ R? , ? > : , the random projection satisfies

(1 − n) | |GGG8 − GGG 9 | |2 6 | |���GGG8 − ���GGG 9 | |2 6 (1 + n) | |GGG8 − GGG 9 | |2

with large probability for all 8, 9 = 1, ..., =. This is called Johnson Lindenstrauss (JL) property for

the random projection transformation.

For higher-order tensor data, random projection is still defined as amapping 555 TRP : R�1...×�3 →

R% that transforming a high-dimensional tensor into a vector. In general, the function 555 TRP is

considered to be

555 TRP =< AAA,XXX > (3.4)

AAA is a projection tensor in the same size as XXX. To reduce the memory used for AAA and computa-

tional cost, [133] proposes a memory efficient random projection for with the assumption that the

projection tensorAAA is formed by Khatri-rao product product of random matrices. They shows the

transformation has the JL property for 2-way tensors (matrices). [71] proposes another random

projection satisfying the JL property for rank-one tensors with a projection tensor AAA defined by

Kroncker product of random matrices.

More related to our work, [119] develops a tensor random projection by assuming the projection

tensor AAA is in either CP or tensor-train decomposition. The transformations are called CP and

tensor-train random projection. Both projections are equipped with the JL property. The CP

random projection is a multi-linear map [555 TRP-CP(XXX)]? : R�1×�2...×�3 → R% that for the ?-th

46

element in the output vector

[555 TRP-CP(XXX)]? =
1
√
%
< AAA? ,XXX >=< È���(1)? , ���

(2)
? , ..., ���

(3)
? É,XXX > (3.5)

? = 1, 2, ..., %. È���(1)? , ���
(2)
? , ..., ���

(3)
? É is the CP factor of the projection tensor AAA? , and ���

(9)
? ∈

R�8×A0 , 9 = 1, .., 3 are Gaussian randommatrices. A0 is the CP rank of the random projection tensor

AAA8, which is independent to the tensor dataXXX. This CP random projection can be applied efficiently

when the input tensor XXX is also given in CP form. However, since the projection (3.5) transforms

tensors into vectors, it may destroy the multi-way features in tensors. It also requires element-wise

transformation, which is an extra burden when the dimension of mapping % is large. We propose an

alternation to the CP random projection and combine it with our CP-STM for efficient computation.

3.3 Methology

In this section, we present the methodology of our TEC classifier for high-dimensional tensors.

We first introduce an alternative tensor-shaped random projection, and combine it with CP-STM

to construct RPSTM classifier. The ensemble classifier TEC is then developed by aggregating

multiple RPSTMs.

3.3.1 Tensor-Shaped Random Projection

We propose an alternative CP tensor-to-tensor random projection using rank-1 projection tensors

AAA that can preserve the multi-way structure of tensors after the projection. The proposed tensor-to-

tensor random projection is shown to be equivalent to the CP random projection (3.5) with rank-1

projection tensorsAAA up to a folding-unfolding manner.

Definition 3.3.1. Suppose a d-mode CP tensorXXX = È--- (1) , --- (2) , ..., --- (3)É has size �1× �2× ...× �3

and CP rank A. --- (9) ∈ R� 9×A are the CP factors of tensor XXX in matrix form. A rank-1 CP

tensor-to-tensor random projection, 555 TPR-CP-TT : R�1×�2...×�3 → R%1×%2×...%3 is defined as

555 TPR-CP-TT(XXX) =
1
√
%
È���(1)--- (1) , ���(2)--- (2) , ..., ���(3)--- (3)É (3.6)

47

where ���(9) ∈ R% 9×� 9 are Gaussian random projection matrices or Sparse random projection

matrices. % = %1 × %2 × ...%3 . The projection is uniquely defined by the projection tensor

AAA = {���(1) , ���(2) , ..., ���(3)}, the collection of random matrices.

Comparing to the CP random projection (3.5), 555 TPR-CP-TT assumes the projection tensor AAA to be

rank-1 and perform projections directly on the CP tensor factors instead of element-wise. Please

notice that ���(9) are not CP component matrices for AAA, and AAA = {���(1) , ���(2) , ..., ���(3)} is not the

notation of Kruskal tensors. We use this notation for convenience since the random projection in

definition 3.3.1 with the collection of matrices {���(1) , ���(2) , ..., ���(3)} is equivalent to the CP random

projection using tensors in equation (3.5). We show this in the following proposition.

Proposition 3.3.1. Let ccc : %1×%2× ...%3 → % be a invertable unfolding rule such thatXXX?1,..,?3 =

Vec(XXX)ccc(?1,..,?3) . 1 6 ? 9 6 % 9 , and 1 6 ? = ccc(?1, .., ?3) 6 % are indices. For random

projection (3.5) with rank-1 projection tensor AAA, it is equivalent to the projection 3.6 up to the

unfolding rule ccc.

The proof is provided in the appendix B.1. The projection can reduce the computational cost

significantly for tensor-based models as it transforms tensor CP components into lower dimensional

spaces. Now, we introduce our RPSTM classifiers estimated from the output of tensor random

projection (3.6).

3.3.2 Random-Projection-Based Support Tensor Machine (RPSTM)

With tensor-shaped CP random projection, we reformulate the model for the tensor classification

problem. Let)AAA= = {(XXXAAA
1 , H1), (XXXAAA

2 , H2), ..., (XXXAAA
= , H=)} be the random projection of the original

training data)= such that

XXXAAA
8 = 555 TPR-CP-TT(XXX8) (3.7)

for all XXX8 from)=. The random projection 555 TPR-CP-TT is uniquely defined by the fixed CP

random projection tensor AAA = {���(1) , ���(2) , ..., ���(3)}, where each ���(9) ∈ R% 9×� 9 . The original

training tensors are transformed into a lower dimensional space with size %1 × %2... × %3 , i.e.

48

XXXAAA
8
∈ R%1×%2...×%3 . Similar to CP-STM, RPSTM tries to find an optimal function 555 such that it

optimizes the objective function

min _ | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXXAAA

8), H8) (3.8)

Instead of using the original data)=, the objective function measures the empirical classification

loss on the randomly projected training data)AAA= . A new kernel function for randomly pro-

jected tensors is defined as follow: For any pair of CP tensors XXX1 = È---
(1)
1 , ---

(2)
1 , ..., ---

(3)
1 É,XXX2 =

È--- (1)2 , ---
(2)
2 , ..., ---

(3)
2 É, the kernel function is

 (XXXAAA
1 ,XXX

AAA
2) =

(
555 TPR-CP-TT(XXX1), 555 TPR-CP-TT(XXX2)

)
=

(
1
√
%
[���(1)--- (1)1 , ���(2)--- (2)1 , ..., ���(3)--- (3)1],

1
√
%
[���(1)--- (1)2 , ���(2)--- (2)2 , ..., ���(3)--- (3)2]

)
=

'∑
;,:=1

3∏
9=1

 (9) (1
√
%
���(9)GGG (9)1,; ,

1
√
%
���(9)GGG (9)2,:)

(3.9)

where ���(1) , ..., ���(3) are the projection matrices ofAAA that defines the projection 555 TPR-CP-TT. GGG
(9)
1,;

are the columns of --- (9)1 , and GGG (9)2,: are the columns of --- (9)2 . (9) are still vector-based kernel

functions measuring inner products for factors in different tensor modes.

A Random Projection-based Support Tensor Machine (RPSTM), with the kernel function (3.9),

will be in the form of

666(XXX) =
=∑
8=1

V8H8

(
555 TPR-CP-TT(XXX8), 555 TPR-CP-TT(XXX)

)
= VVV)���H

(
555 TPR-CP-TT(XXX)

) (3.10)

for a new given tensorXXX due the representer theorem [9]. Notice that we use 666 to denote functions

spanned by tensor kernels to distinguish it from the random projection function 555)%'−�%−)) and

the original STM classifier 555 .
(
555)%'−�%−)) (XXX)

)
is again a column vector whose elements are

kernel values between projected training data 555 TPR-CP-TT(XXX8) and the projected new observation

555 TPR-CP-TT(XXX). ���H is the diagonal matrix whose diagonal is HHH = [H1, ..., H=]) . VVV is the coefficient

49

vector and is differentiated from the notation of CP-STM. We denote the collection of functions

in the form of (3.10) with HHHAAA, which is also a reproducing kernel Hilbert space (RKHS). The

optimal classifier can be estimated by plugging the function (3.10) into the objective function (3.8)

and minimize it. Let 6=6=6= denote the optimal function satisfying

6=6=6= = arg min
555 ∈HHHAAA

_ | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXXAAA

8), H8) (3.11)

then 6=6=6= is the RPSTM classifier associated with the fixed random projection 555)%'−�%−)) that

we estimated from the training data. The label for new observation tensor XXX will be predicted by

Sgn[6=6=6= (XXX)]. Thanks to the tensor random projection, the estimation of RPSTM can be compu-

tationally efficient and feasible for high-dimensional tensors. The computational benefit will be

discussed in details in the model estimation part of this paper.

3.3.3 TEC: Ensemble of RPSTM

While random projection provides extra efficiency by transforming tensor CP components into

lower dimension, there is no guarantee that the projected data will preserve the same margin for

every single random projection. As a result, the expected excess risk of RPSTMmay be larger than

the original CP-STM. In order to mitigate the impact of random projection and provide robust class

assignments, multiple RPSTMs are aggregated to form a Tensor Ensemble Classifier (TEC).

Let

g=,1g=,1g=,1 (XXX) =
1
1

1∑
<=1

Sgn[6<,16<,16<,1 (XXX)] (3.12)

1 is the number of RPSTMclassifiers estimatedwith different randomprojections. 6<,16<,16<,1 are RPSTM

classifiers learned independently from the training data)=. The TEC classifier is then defined as

4=,14=,14=,1 (XXX) =

1 if g=,1g=,1g=,1 (XXX) > W

−1 Otherwise
(3.13)

for a new test tensorXXX in CP form. W is the threshold parameter. For simple majority vote and class-

balanced binary classification, W = 0. However, it can be different values if any prior information

is provided.

50

3.4 Model Estimation

In this section, We present two estimation procedures for TEC model using two different loss

functions. More importantly, we emphasize significant computational efficiency of TEC model by

comparing its algorithmic steps and memory costs to the CP-STM, and even to the naive vectorized

support vector machine models.

Since TEC is an aggregation of multiple independent RPSTMs, we only have to show the

details for a single RPSTM estimation and aggregate them. Similar to the estimation of CP-STM,

we can use Hinge loss and Squared Hing loss in objective function (3.8) to measure the empirical

classification risk and estimate RPSTMclassifiers. With Hinge loss, the objective function becomes

min
555 ∈HHHAAA

_ | | 555 | |2 + 1
=

=∑
8=1

max
(
0, 1 − 555 (XXXAAA

8) · H8
)

(3.14)

Like CP-STM, the optimization problem (3.14) is equivalent to a quadratic programming problem,

which is shown in [25]. Once we calculate the kernel matrix AAA as

 AAA =

 (XXXAAA
1 ,XXX

AAA
1) (XXXAAA

1 ,XXX
AAA
2) ... (XXXAAA

1 ,XXX
AAA
=)

 (XXXAAA
2 ,XXX

AAA
1) (XXXAAA

2 ,XXX
AAA
2) ... (XXXAAA

2 ,XXX
AAA
=)

...

 (XXXAAA
= ,XXX

AAA
1) (XXXAAA

= ,XXX
AAA
2) ... (XXXAAA

= ,XXX
AAA
=)

(3.15)

with tensor kernel function (3.9). The quadratic programming problem is defined as

min
VVV∈R=

1
2
VVV)���H

AAA���HVVV − 111)VVV

S.T. VVV)HHH = 0

0 � VVV � 1
2=_

(3.16)

Same optimization techniques used in CP-STM can be adopted to solve this problem. A TEC

classifier can then be estimated by repeating the procedure for multiple times with different random

projections. The steps are summarized in the algorithm 7 below. --- (9)
ℎ
[:, ;] is the ;-th column of

the tensor CP factor matrix --- (9)
ℎ

. The output of the algorithm contains a list of RPSTM coefficients

51

Algorithm 7 Hinge TEC
1: procedure TEC Train
2: Input: Training set)= = {XXX8}, HHH, kernel function , tensor rank r, _, number of ensemble
1

3: for i = 1, 2,...n do
4: XXX8 = [--- (1)8 , ..., ---

(3)
8
] ⊲ CP decomposition

5: for m = 1, 2, ..., b do
6: Generate random projection tensorAAA< = {���(1)< , ���

(2)
< , ..., ���

(3)
< }

7: Create initial matrix AAA< ∈ R=×=
8: for i = 1,...,n do
9: for h = 1,...,i do
10: AAA< [8, ℎ] =

A∑
:,;=1

∏3
9=1 (���

(9)
< ---

(9)
8
[:, :], ���(9)< ---

(9)
ℎ
[:, ;]) ⊲ Kernel values

11: AAA< [ℎ, 8] = AAA< [8, ℎ]
12: Solve the quadratic programming problem (3.16) and find the optimal VVV<∗.
13: Output: VVV<∗,AAA<

Output:
[
VVV1∗, VVV2∗, ..., VVV1∗

]
, [AAA1, ...,AAA1]

[
VVV1∗, VVV2∗, ..., VVV1∗

]
and its corresponding random projection tensors [AAA1, ...,AAA1]. The projection

is still needed for new test point prediction.

To estimate RPSTMwith Squared Hinge loss, we can use Gaussian-Newton method to optimize

the objective function

min
555 ∈HHHAAA

_ | | 555 | |2 + 1
=

=∑
8=1

max
(
0, 1 − 555 (XXXAAA

8) · H8
)2 (3.17)

by letting its derivative to be zero. Since the procedure is identical to the derivation (2.9) in section

2.2, we provide the updating rule for the parameter VVV directly

VVV∗ =
1
=
���H (_��� +

1
=
�B�B�B

AAA)−1�B�B�BHHH (3.18)

where �B�B�B is the diagonal matrix whose diagonal elements are indicating if the corresponding tensors

are support tensors. With a initial value of VVV, we can update the parameter iteratively with (3.18)

until its value converges. The steps are summarized in the algorithm 8. In the algorithm, :::AAA<
8

is

the 8-th column vector of kernel matrix AAA< .

With estimated TECmodel, we canmake prediction for new test points. The steps for prediction

is identical no matter whether the model are estimated with Hinge loss or Squared Hinge loss. The

52

Algorithm 8 Squared Hinge TEC
1: procedure TEC Train
2: Input: Training set)= = {XXX8}, HHH, kernel function , tensor rank r, _, [, maxiter, number

of ensemble 1
3: for i = 1, 2,...n do
4: XXX8 = [--- (1)8 , ..., ---

(3)
8
] ⊲ CP decomposition

5: for m = 1, ..., b do
6: Create initial matrix ∈ R=×=
7: Generate random projection tensorAAA< = {���(1)< , ���

(2)
< , ..., ���

(3)
< }

8: for i = 1,...,n do
9: for h = 1,...,i do
10: AAA< [8, ℎ] =

A∑
:,;=1

∏3
9=1 (���

(9)
< ---

(9)
8
[:, :], ���(9)< ---

(9)
ℎ
[:, ;]) ⊲ Kernel values

11: AAA< [ℎ, 8] = AAA< [8, ℎ]
12: Create VVV<∗ = 111=×1, VVV

< = 000=×1 ⊲ Initial Value
13: Iteration = 0
14: while | |VVV<∗ − VVV< | |2 > [& Iteration 6 maxiter do
15: VVV< = VVV<∗

16: Find BBB ∈ R=×1. BBB8 ∈ {0, 1} such that BBB8 = 1 if H8:::A
AA<)
8

VVV< < 1 ⊲ Support tensors
17: ���B = diag(BBB) ⊲ Create diagonal matrix with (as diagonal
18: VVV<∗ = 1

=���H (_��� +
1
= �B�B�B

AAA<)−1�B�B�BHHH ⊲ Update
19: Output: VVV<∗

20: Output:
[
VVV1∗, VVV2∗, ..., VVV1∗

]
, [AAA1, ...,AAA1]

steps for prediction are stated in the algorithm 9. For convenience, we keep using the notation

for decomposed training tensors XXX8 = [--- (1)8 , ..., ---
(3)
8
] from the estimation steps. :::AAA< is a new

column vector in length n, whose 8-th element is kernel value between training tensors XXX8 and the

new test pointXXX.

Suppose the projected training tensors are in the shape of %1×%2× ...×%3 , the time complexity

for kernel matrix computation is $ (=2A23
3∑
9=1

% 9). Notice that the choices of % 9 are free from

the original tensor dimensions � 9 , and are only related to the training data size = following the JL

lemma. We can choose relatively small % 9 s so that the total time complexity of algorithm 7 and 8 are

$ (=2A23
3∑
9=1

% 9 + ;1) and $ (=2A23
3∑
9=1

% 9 + ;2), when the training data are given in their projected

CP decomposition forms. ;1 and ;2 are the necessary steps to perform quadratic programming in

algorithm 7 and the iterations in algorithm 8. They are bounded by the order of $ (=2) empirically,

53

Algorithm 9 TEC Prediction
1: procedure TEC Predict
2: Input: TECcoefficients

[
VVV1∗, VVV2∗, ..., VVV1∗

]
, randomprojection tensors [AAA1, ...,AAA1], kernel

function , tensor rank r, new test pointXXX, threshold parameter W
3: XXX = [--- (1) , ..., --- (3)] ⊲ CP decomposition for New observation
4: g=,1g=,1g=,1 = 0 ⊲ Initial value in equation (3.12)
5: for m = 1,...,b do
6: for i = 1,...,n do
7: :::AAA< [8] =

A∑
:,;=1

∏3
9=1 (���

(9)
< ---

(9)
8
[:, :], ���(9)< --- (9) [:, ;]) ⊲ Kernel vector

8: g=,1g=,1g=,1 = g=,1g=,1g=,1 + Sign[:::AAA<)���HVVV<∗] ⊲ Update equation (3.12)
9: If g=,1g=,1g=,1 > W, the prediction is class 1. Otherwise it is -1. ⊲ Equation (3.13)
10: Output: Prediction

which is shown by [25]. Since � 9 >> % 9 and � 9 >> = for 9 = 1, ..., 3 in high-dimensional tensor

problems, the time complexities of RPSTM in algorithms 7 and 8 are significantly smaller than

CP-STM, which are $ (=2A23
3∑
9=1

� 9 + ;1) and $ (=2A23
3∑
9=1

� 9 + ;2). Due to the fact that each

RPSTM is estimated independently, TEC model can be fitted in a parallel computing manner. As a

result, the time complexity of TEC can be roughly the same as RPSTM, which is also much smaller

than CP-STM. As for the memory complexity, CP-STM requires $ (=A
3∑
9=1

� 9 + =), which is more

prohibitive and infeasible than $ (1=A
3∑
9=1

% 9 + 1=) required by TEC with 1 aggregated RPSTMs.

As the memory complexity are dominated by the dimension of projected CP factors, TEC turns out

to be more efficient. If we further consider the naive vectorized SVM model, its time and memory

complexities are $ (=2 ∏3
9=1 � 9 + ;1) and $ (=

∏3
9=1 � 9). Through the comparison, it is obvious

that TEC model is much more computationally efficient than both CP-STM and the traditional

vectorized SVM. This comparison is summarized in the table 3.1.

One may notice that our discussion above does not include the complexity from tensor CP

decomposition and random projection. Since both the RPSTM and CP-STM requires CP decom-

position, subtracting this part of complexity does not affect the comparison. Moreover, novel CP

decomposition methods from [116, 137] reach a time complexity of$ (=A
3∑
9=1

� 9). Neither CP-STM

nor RPSTM will have a larger time complexity than the vectorized SVM by adding this part. As

54

Models Time Complexity Memory Complexity

TEC (Parallel) $ (=2A23
3∑
9=1

% 9 + ;1) / $ (=2A23
3∑
9=1

% 9 + ;2) $ (1=A
3∑
9=1

% 9 + 1=)

RPSTM $ (=2A23
3∑
9=1

% 9 + ;1) / $ (=2A23
3∑
9=1

% 9 + ;2) $ (=A
3∑
9=1

% 9 + =)

CP-STM $ (=2A23
3∑
9=1

� 9 + ;1) / $ (=2A23
3∑
9=1

� 9 + ;2) $ (=A
3∑
9=1

� 9 + =)

Vectorized SVM $ (=2 ∏3
9=1 � 9 + ;1) $ (=∏3

9=1 � 9)

Table 3.1: TEC: Comparison of Computational Complexity

for the random projection, we define that the projection tensor can be composed by sparse projec-

tion matrices in definition 3.3.1. As a result, we can utilize techniques such as low-rank matrix

decomposition to reduce the costs of computation and memory. In addition, [90] showed that the

projection matrices can be very sparse, making the complexity of random projection to be trivial

comparing to other estimation steps.

We want to briefly discuss the tuning parameter selection at the end of this section. The number

of ensemble classifiers, 1, and the threshold parameter, W, are chosen by cross-validation. We first

let W = 0, which is the middle of two labels, -1 and 1. Then we search 1 in a reasonable range,

between 2 to 20. The optimal 1 is the one that provides the best classification model. In the next

step, we fix 1 and search W between 1 and -1 with step size to be 0.1, and find optimal value which

has the best classification accuracy. For simple majority vote, W can be set to be zero directly.

The choice of random projection matrices is more complicated. Although we can generate random

projection matrices, the dimension of matrices is remain unclear. Our guideline, JL-lemma, only

provides a lower bound for dimension, and is only for vector situation. As a result, we can only

choose the dimension based on our intuition and cross-validation results in practice. Empirically,

we suggest to choose the projection dimension % 9 ≈ int(0.7 × � 9) for each mode.

55

3.5 Statistical Properties

In this section, we develop the statistical consistency for both TEC and RPSTM models. In

addition, we establish an explicit upper bound on the excessive risk brought by random projection,

highlighting the trade-off between computational efficiency and potential risks.

For the convenience, we introduce a few more notations. RL (555) is the classification risk of a

specific decision function 555 , which is defined as

RL (555) = E(X×Y)L(H, 555 (XXX)) =
∫
L(H, 555 (XXX))3P

where L is a loss function. The empirical risk of the decision function 555 over the training data)=

is

RL,)= (555) =
1
=

=∑
8=1
L

(
H8, 555 (XXX8)

)
RL,)= (555) is the estimate of RL (555) on finite training data. The subscript L in the notation of

risks emphasizes that the risks are calculated using specific loss functions. We also use risk

notations without the subscript L, like R(555), to denote the risk of 555 calculated with zero-one

loss L(H, I) = 111{H ≠ I}. 111 is indicator function. The definition of classification consistency is

defined on the zero-one loss initially. We use R∗ to denote the Bayes risk of the tensor classification

problem over the joint distributionXXX×YYY. It is the optimal risk in the sense that for any measureable

function 555 : XXX → R, R∗ = min
555
R(555). A decision rule is said to be consistent if R(5=5=5=) → R∗ as

=→∞, see [36]. We have to show this for TEC and RPSTM in order to establish their consistency

properties. However, existing results [13, 128] show that the convergence in surrogate loss-based

risks indicates the convergence in zero-one loss-based risks, i.e.

RL (5=5=5=) → R∗L ⇒ R(5=5=5=) → R∗

R∗L = min
555
RL (555) for any decision rule { 5=5=5=}. This conclusion holds as long as the loss function is

self-calibrated. Both Hinge loss and Squared Hinge loss used in our models are self-calibrated. As

a result, we only have to show RL (5=5=5=) → R∗L for TEC and RPSTM.

56

Recall that in section 3.2 and section 3.3, we useHHH andHHHAAA to denote the reproducing kernel

Hilbert space spanned by tensor kernels (3.2) and projected tensor kernels (3.9). Let 5 _=5 _=5 _= , 5 _5 _5 _ ∈ HHH

such that

5 _=5
_
=5
_
= = arg min

555 ∈HHH
_ | | 555 | |2 + RL,)= (555) 5 _5

_
5 _ = arg min

555 ∈HHH
_ | | 555 | |2 + RL (555)

5 _=5
_
=5
_
= is the CP-STM classifier estimated from the training data)= that minimizes the objective

function on)=. 5 _5 _5 _ is the optimal CP-STM learned from infinite size training data. The superscript

___ in both functions denote that they are optimal with the given value of _ in the objective functions.

Notice that both 5 _=5 _=5 _= and 5 _5 _5 _ do not minimize the empirical risk and expected risk, but the objective

functions which have regularization terms. We further denote R∗L,HHH = min
555 ∈HHH
RL (555), the optimal

risk functions inHHH can be achieved. Similarly, we define 6_=6_=6_= , 6_6_6_ ∈ HHHAAA as

6_=6
_
=6
_
= = arg min

666∈HHHAAA
_ | |666 | |2 + RL,)AAA=

(666) 6_6
_
6_ = arg min

666∈HHHAAA
_ | |666 | |2 + RL (666)

where RL,)AAA=
(666) = 1

=

=∑
8=1
L

(
H8, 666(XXXAAA

8
)
)
and RL (666) = E(X×Y)L(H, 666(XXXAAA)) for a given tensor

random projection defined by AAA. 6_=6_=6_= is the optimal RPSTM model estimated from the projected

training data)AAA= , and 6_6_6_ is the infinite-sample estimate.

We derive the proof of consistency for TEC 4_
=,1
4_
=,1
4_
=,1

and RPSTM 6_=6
_
=6
_
= models with the regularization

parameter _. Notice that RL (4_=,14_
=,1
4_
=,1
) and RL (6_=6_=6_=) are calculated with a specific random projection

tensor AAA. Thus, we develop the consistency results on the expected risk EAAA
[
RL (4_=,14_

=,1
4_
=,1
)
]
and

EAAA
[
RL (6_=6_=6_=)

]
instead to demonstrate the average performance and integrate the impacts of different

possible random projections. The expectation is taken over the distribution of random projection

tensors.

3.5.1 Excess Risk of TEC

We first boud the expected risk of our TEC classifier 4_
=,1
4_
=,1
4_
=,1

by using the result from [24], theorem 2.

Theorem 3.5.1. For each 1 ∈ N, 4_
=,1
4_
=,1
4_
=,1

is the TEC classifier aggregating 1 independent RPSTMs

57

6_=6
_
=6
_
= . _ is the parameter for the functional norm in the objective function (3.8). Then

EAAA
[
R(4_

=,1
4_
=,14_
=,1
)
]
− R∗ 6 1

min(W, 1 − W)
[
EAAA

[
R(6_=6_=6_=)

]
− R∗

]

This result says that the ensemble model TEC is statistically consistent as long as the base classifier

is consistent. With the surrogate loss property, we only need to develop the consistency for RPSTM

model by showing excessive risk of surrogate loss EAAA
[
RL (6_=6_=6_=)

]
− R∗L converges to zero.

3.5.2 Excess Risk of RPSTM

To show the consistency of RPSTM, we first use the following proposition to decompose the excess

risk of RPSTM, EAAA
[
RL (6_=6_=6_=)

]
− R∗L , into several parts and bound them separately.

Proposition 3.5.1. The excess risk is bounded above:

EAAA
[
RL (6_=6_=6_=)

]
− R∗L 6

[
EAAA

[
RL (6_=6_=6_=) − RL,)AAA=

(6_=6_=6_=)
]]
+

[
EAAA

[
RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
)
]]

+
[
RL (5 _=5 _=5 _=) − RL,)= (5

_
=5
_
=5
_
=)

]
+

[
RL,)= (5

_5 _5 _) − RL (5 _5 _5 _)
]

+
[
EAAA

[
RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2

]
− RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2

]
+ � (_) + R∗L,HHH − R

∗
L

(3.19)

Where � (_) = RL (5 _5 _5 _) + _ | | 5 _5 _5 _ | | − R∗L,HHH . 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=

= UUU∗)���H
(
555 TPR-CP-TT(XXX)

)
, which is a function

inHHHAAA with the coefficient vector being the optimal coefficient estimate from CP-STM.

Notice that 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=

is different from 6_=6
_
=6
_
= since its coefficients are estimated from the CP-STM model

and original tensor data)=. Recall that we use UUU∗ and UUU in section 3.2 to denote optimal CP-STM

and CP-STM coefficients. In other words, the coefficients of 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=

are the same as the 5 _=5 _=5 _= . However,

their kernel basis functions will have different values, making them as two different functions. The

proof of proposition 3.5.1 is provided in the appendix B.2. The proposition unveils the fact that the

excess risk can be bounded by four types of risks:

58

1. Gaps between empirical risk and expected risk:[
EAAA

[
RL (6_=6_=6_=) − RL,)AAA=

(6_=6_=6_=)
]] [

RL (5 _=5 _=5 _=) − RL,)= (5
_
=5
_
=5
_
=)

][
EAAA

[
RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
)
]] [

RL,)= (5
_5 _5 _) − RL (5 _5 _5 _)

]
2. Extra risk brought by random projection:[

E���
[
RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2

]
− RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2

]
3. � (_), approximation error between the minimal regularized objective function and the risk

of class optimal. This term depicts how regularized objective function approaches to the

class optimal risk R∗L,HHH as the parameter _ vanishes.

4. R∗L,HHH − R
∗
L measures the approximation error of the reproducing kernel Hilbert space

HHH . Later we show that with "nice" kernel functions, the functions in the RKHS HHH can

approximate any measureable function as close as possible (in terms of infinite norm).

Next, we develop explicit bounds all these components.

In the following part, we suppose that all the conditions listed below hold.

AS.1 The loss function L is � (,) local Lipschitz continuous in the sense that for |0 | 6 , < ∞

and |1 | 6 , < ∞

|L(0, H) − L(1, H) | 6 � (,) |0 − 1 |

In addition, we need sup
H∈{1,−1}

L(0, H) 6 !0 < ∞.

AS.2 The kernel functions (9) (·, ·) used to composite the coupled tensor kernel (3.2) are regular

vector-based kernels satisfying the universal approximating property, see [107]. A kernel

has this property if it satisfies the following condition. SupposeXXX is a compact subset of the

Euclidean space R? , and � (XXX) = { 555 : XXX → R} is the collection of all continuous functions

defined on XXX. The kernel function is also defined on XXX × XXX, and its reproduction kernel

Hilbert space (RKHS) is HHH . Then ∀666 ∈ � (XXX), ∃ 555 ∈ HHH such that ∀n > 0, | |666 − 555 | |∞ =

sup
GGG∈XXX
|666(GGG) − 555 (GGG) | 6 n .

59

AS.3 Assume the tensor kernel function (3.2) is bounded, i.e.
√

sup (·, ·) = <0G < ∞. As a

result, the projected kernel function (3.9) is also bounded by <0G for any arbitrary random

projection.

AS.4 For each component (9) (·, ·) in the kernel function (3.2), we assume (9) (0, 1) = ℎℎℎ(9) (| |0−

1 | |2) or ℎℎℎ(9) (〈0, 1〉). ℎℎℎ : R→ R are functions. We assume that all of them are ! (9)

-Lipschitz

continuous

|ℎℎℎ(9) (C1) − ℎℎℎ(9) (C2) | 6 !
(9)

|C1 − C2 |

where C1, C2 ∈ R
� 9 are different CP components. Further, let ! = max

9=1,..,3
!
(9)

.

AS.5 For random projection tensorsAAA = {���(1) , ..., ���(3)}, suppose all the ���(9) have their elements

identically independently distributed as N(0, 1). The dimension of ���(9) is % 9 × � 9 . For a

X1 ∈ (0, 1) and n > 0, we assume

% 9 = $ (
[log =

X1
]

1
3

n2), 9 = 1, 2, ..., 3

n is considered as the error or distortion caused by random projection.

AS.6 The hyper-parameter in the regularization term _ = _= satisfies:

= → 0 == →∞ =_2
= →∞ as =→∞

AS.7 For all the tensor dataXXX =
A∑
:=1

GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:
, assume | |GGG (9)

:
| |2 6 �G < ∞.

AS.8 Suppose that there is a CP random projection defined by AAA such that the Bayes risk in the

projected data, R∗L,AAA, remains unaltered

R∗L,AAA = R
∗
L

R∗L,AAA = min
555
RL,AAA(5) where 555 is any measurable function mapping projected data into class

assignments.

60

AS.9 For � (_), we assume there is a relation between � (_) and _

� (_) = 2[_[0 < [6 1

2[is a constant depending on [.

AS.10 Suppose the projection error ratio for each mode vanishes at rates depending on loss function.

n=

_
@
=

→ 0 =→∞

Where n= is the n in the assumption AS.5. For hinge loss @ = 1 and square hinge loss @ = 3
2 .

AS.11 The probability of projection error is diminishing with increase of sample size,

X1 = $
(
= exp(−=

1
3)

)
The assumption AS.1, AS.3, AS.6, and AS.7 are commonly used in supervised learning problems

with kernel tricks.(see, e.g. [139, 82, 128]) Assumption AS.4 and AS.5 are needed to help to

establish the explicit bound on extra errors brought by random projections. Assumption AS.10

further gives out the condition that the extra errors brought by random projections can converge to

zero as = goes to infinity. Condition AS.8 assumes that it is possible to learn the optimal decision

rule from randomly projected tensors. The optimal risk is still achievable after random projection.

This helps to align our results to the definition of consistency in [36], and guarantees that RPSTM

are consistent if EAAA
[
RL (6_=6_=6_=)

]
→ R∗L . A more detailed discussion about this condition is provided

in the appendix B.3. Condition AS.2 is the sufficient condition that the tensor kernel function (3.2)

is universal (see proof in [89]), making R∗L,HHH −R
∗
L to be zero. Finally, condition AS.9 guarantees

that R∗L,HHH has a minimizer, and 5 _5 _5 _ converges to the minimizer as _ goes to zero. (See definition

5.14 and corollary 5.18 in the section 5.4 of [128])

With the assumptionAS.7, the gaps between empirical risk and expected risk are easily bounded

by the Hoeffding Inequality (see e.g. [36]). Also, result from [89] says R∗L,HHH = R∗L due to

condition AS.2. There are only two terms in the proposition 3.5.1 left to be bounded. The extra

risk from random projection and the approximation error � (_). For these two parts, our strategy is

61

proving the convergence or risk under a single random projection first, and then use the dominant

convergence theorem to show the convergence of expected risks. Condition AS.11 entails that

probability of projection as well as expected risk difference vanishes with increase in sample size

(ℓ1 convergence).

3.5.3 Price of Random Projection

Applying random projection in the training procedure is indeed doing a trade-off between prediction

accuracy and computational cost. We give out an explicit upper bound on the extra risk brought by

random projections.

Without taking expectation, the following proposition gives out an upper bound on the extra

risk when a random projectionAAA is given.

Proposition 3.5.2. Assume a tensor CP random projection is defined by AAA, whose components

are generated independently and identically from a standard Gaussian distribution. With the

assumptions AS.1, AS.4, AS.5, AS.6, and AS.7, for the n3 described in AS.5. With probability

(1 − 2X1) and @ = 1 for hinge loss, and @ = 3
2 for square hinge loss function respectively.

|RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | = $ (

n3

_@
)

where = is the size of training set, 3 is the number of modes of tensor.

The proof of this proposition is provided in the appendix B.4. The value of @ depends on loss

function as well as kernel and geometric configuration of data, which is discussed in the appendix.

This proposition highlights the trade-off between dimension reduction and prediction risk. As the

reduced dimension % 9 is related to n negatively, small % 9 can make the term converges at a very

slow rate.

3.5.4 Convergence of Risk

Now we summarize the previous results and establish the convergence of risk for RPSTM classifier

under a single random projection. The following theorem unveils the explicit convergence rate of

62

RPSTM classifier model.

Theorem 3.5.2 (RPSTMConvergence Rate). Suppose all the assumptions AS.1 - AS.8 hold. For

n > 0, let the projected dimension % 9 = d3A
4
3 n−2 [;>6(=/X1)]2e + 1 for each 9 = 1, 2, ..3. The

excess risk of a RPSTM with a specific random projection is bounded with probability at least

(1 − 2X1) (1 − X2), i.e.,

RL (6_=6_=6_=) − R∗L 6 + (1) ++ (2) ++ (3)

• + (1) = 12� (<0G
√
!0
_
) · <0G

√
!0√
=_
+ 9Z̃_

√
log(2/X2)

2= + 2Z_
√

2 log(2/X2)
=

• + (2) = � (_)

• + (3) = �3,AΨ · [� (<0G
√
!0
_
) + _Ψ]n3

where

• � (<0G
√
!0
_
) is a constant depending on <0G

√
!0
_
.

• X1 ∈ (0, 1
2) and X2 ∈ (0, 1)

• Z_ = sup{L(5 _5 _5 _ (XXX), H) : (XXX, H) ∈ XXX ×YYY, }

• Z̃_ = sup{L(555 (XXX), H) : all 555 : XXX → R, | | 555 | |∞ 6 <0G
√
!0
_
, and all (XXX, H) ∈ XXX ×YYY}

• �3,A = (2! �2
G)3A2

• Ψ = sup{| |UUU | |1 =
=∑
8=1
|U8 | : 555 (XXX) = UUU)���H (XXX) ∈ HHH}

We prove the theorem, and explain the terms listed above in appendix B.5. The symbol d·e means

rounding a value to the nearest integer above its current value. The theorem provides an upper

bound controlling the convergence of excessive risk for RPSTM, which holds with probability

at least (1 − 2X1) (1 − X2). This probability is defined on the join distribution of three random

variables, tensor data XXX, labels y, and the random projection AAA. The component (1 − X2) is from

the randomness in sampling the training data)=, and (1 − 2X1) is caused by random projection.

It is clear that the projection error n , random projection probability parameter X1, and projection

63

dimension % 9 are connected by equation % 9 = d3A
4
3 n−2 [;>6(=/X1)]2e + 1. As a result, one can

express the projection error as n3 = A2;>6(=
X1
)/∏3

9=1 % 9 , which is a function of X1 when fixing the

size of training data = and projected dimension % 9 . To obtain a higher probability of getting upper

bounds, one can consider decreasing X1 and allowing the projection error to increase. Alternative,

one can choose a higher projected dimension % 9 to have the same level of projection error, but a

higher chance of bounding the excessive risk. It worth noting that % 9 grows as sample size = goes

to infinity. However, huge % 9 will make our proposed model infeasible and prohibitive. Thus, the

projection error n should be replaced by n= in assumption AS.10 to guarantee % 9 << � 9 .

Theorem 3.5.2 provides an upper bound in general to control the excess risk of RPSTM. In

the theorem, there are few quantities related to the loss function L. These terms can be further

expressed with specific loss functions such as Hinge and Squared Hinge loss. The next two

propositions extend the theorem 3.5.2 with Hinge and Squared Hinge loss, and provide explicit

upper bound on RPSTM.

Proposition 3.5.3. For square hinge loss, let n = (1=)
`

23 for 0 < ` < 1, and _ = (1=)
`

2[+3 for some

0 < [6 1. Assume % 9 = d3A
4
3 =

`
3 [;>6(=/X1)]2e + 1 for each mode 9 = 1, 2, ..., 3. For some

X1 ∈ (0, 1
2) and X2 ∈ (0, 1), with probability (1 − X2) (1 − 2X1)

RL (6_=6_=6_=) − R∗L 6 �

√
;>6(2

X2
) (1
=
)
`[

2[+3 (3.20)

Where � is a constant.

The rate of convergence is faster with increase in sample size, when high value of ` is chosen. For

`→ 1 the risk difference rate becomes (1=)
3
5 . The proof of this result is in appendix B.6.

Proposition 3.5.4. For hinge loss,Let n = (1=)
`

23 for 0 < ` < 1 and _ = (1=)
`

2[+2 for some

0 < [6 1, % 9 = d3A
4
3 =

`
3 [;>6(=/X1)]2e +1 , For some X1 ∈ (0, 1

2) and X2 ∈ (0, 1) with probability

(1 − 2X1) (1 − X2)

RL (6_=6_=6_=) − R∗L 6 �

√
;>6(2

X2
) (1
=
)
`[

2[+2 (3.21)

Where � is a constant.

64

The rate of convergence is faster with increase in sample size, when high value of ` is chosen. For

`→ 1 the risk difference rate becomes (1=)
3
4 . The proof of this result is in appendix B.6.

Finally, we show the convergence of expected risk

Theorem 3.5.3 (Convergence of Expected Risk). Suppose assumptions AS.1 - AS.11 hold. The

excess risk goes to zero in expectation as sample size increases, the EAAA denote expectation with

respect to tensor random projectionAAA, E= denote expectation with respect to uniform measure on

samples

E= |EAAA [RL (6_=)] − R∗L | → 0

This is the expected risk convergence building on top of our previous results. The proof is provided

in the appendix B.7. This theorem concludes that the expected risk of RPSTM converges to the

optimal Bayes risk under surrogate lossL. With the aforementioned property aboutL and theorem

3.5.1, the RPSTM and our ensemble model TEC are statistically consistent.

3.6 Simulation Study

We provide a simulation study in this section to compare the empirical performance of our

TEC model and some other classification methods. Both vector-based and tensor-based methods

in the current literature are considered in this comparison. For vector-based methods, we include

Gaussian-RBF SVM from [128], BudgetSVM from [38], Linear Discriminant Analysis from [48],

and Random Forest from [21]. For tensor-based methods, we select few highly cited models

including Direct General Tensor Discriminant Analysis (DGTDA) and Constrained Multilinear

Discriminant Analysis (CMDA) from [92].

The synthetic tensor data are generated using the idea from [43], which creates CP tensors by

generating random tensor factors and computing the sum of mulit-way outer products. To have

a more comprehensive comparison, we also generate Tucker tensors (see [78]) to show how TEC

performs when the tensors are not well approximated by CP decomposition. We listed out the data

generating models below:

65

1. F1 Model: Low dimensional rank 1 tensor factor model with each components confirming

the same distribution. Shape of tensors is 50 × 50 × 50.

XXX1 = GGG
(1) ◦ GGG (2) ◦ GGG (3) GGG (9) ∼ N(000, �50), 9 = 1, 2, 3

XXX2 = GGG
(1) ◦ GGG (2) ◦ GGG (3) GGG (9) ∼ N(0.50.50.5, �50), 9 = 1, 2, 3

2. F2 Model: High dimensional rank 1 tensor with normal distribution in each component.

Shape of tensors is 50 × 50 × 50 × 50.

XXX1 = GGG
(1) ◦ GGG (2) ◦ GGG (3) ◦ GGG (4) GGG (9) ∼ N(000,ΣΣΣ(9)), 9 = 1, 2, 3, 4

XXX2 = GGG
(1) ◦ GGG (2) ◦ GGG (3) ◦ GGG (4) GGG (9) ∼ N(111,ΣΣΣ(9)), 9 = 1, 2, 3, 4

ΣΣΣ(1) = ���, ΣΣΣ(2) = �'(0.7), ΣΣΣ(3) = �'(0.3), ΣΣΣ
(4)
8, 9

= min(8, 9)

3. F3 Model: High dimensional rank 3 tensor factor model. Components confirm different

Gaussian distribution. Shape of tensors is 50 × 50 × 50 × 50.

XXX1 =
3∑
:=1

GGG
(1)
:
◦ GGG (2)

:
◦ GGG (3)

:
◦ GGG (4)

:
GGG
(9)
:
∼ N(000,ΣΣΣ), 9 = 1, 2, 3, 4

XXX2 =
3∑
:=1

GGG
(1)
:
◦ GGG (2)

:
◦ GGG (3)

:
◦ GGG (4)

:
GGG
(9)
:
∼ N(111,ΣΣΣ), 9 = 1, 2, 3, 4

ΣΣΣ(1) = ���, ΣΣΣ(2) = �'(0.7), ΣΣΣ(3) = �'(0.3), ΣΣΣ
(4)
8, 9

= min(8, 9)

4. F4Model: Lowdimensional rank 1 tensor factormodelwith components confirming different

distributions. Shape of tensor is 50 × 50 × 50.

XXX1 = GGG
(1) ◦ GGG (2) ◦ GGG (3) each element of GGG (1) ∼ Γ(4, 2),

GGG (2) ∼ N(111, ���), each element of GGG (3) ∼*** (1, 2)

XXX2 = GGG
(1) ◦ GGG (2) ◦ GGG (3) each element of GGG (1) ∼ Γ(6, 2),

GGG (2) ∼ N(111, ���), each element of GGG (3) ∼*** (1, 2)

66

5. F5 Model: A higher dimensional version of F4 model. Tensors are having four modes with

dimension 50 × 50 × 50 × 50

XXX1 =GGG
(1) ◦ GGG (2) ◦ GGG (3) ◦ GGG (4) each element of GGG (1) ∼ Γ(4, 2),

GGG (2) ∼ N(111, ���), each element of GGG (3) ∼ Γ(2, 1),

each element of GGG (4) ∼*** (3.5, 4.5)

XXX2 =GGG
(1) ◦ GGG (2) ◦ GGG (3) ◦ GGG (4) each element of GGG (1) ∼ Γ(5, 2),

GGG (2) ∼ N(111, ���), each element of GGG (3) ∼ Γ(2, 1),

each element of GGG (4) ∼*** (4.5, 5.5)

6. T1 Model: A Tucker model. /// (1) , /// (2) ∈ R50×50×50 with elements independently and

identically distributed. The size of factor matrices are all 50 by 50.

XXX1 = ///
(1) ×1 ΣΣΣ

(1) ×2 ΣΣΣ
(2) ×3 ΣΣΣ

(3) each element of /// (1) ∼ N(0, 1)

XXX2 = ///
(2) ×1 ΣΣΣ

(1) ×2 ΣΣΣ
(2) ×3 ΣΣΣ

(3) each element of /// (2) ∼ N(0.5, 1)

ΣΣΣ(1) = ���, ΣΣΣ(2)Random Orthogonal Matrix ΣΣΣ(3) = �'(0.7)

The models F1 - F5 generates CP tensors, whose components confirm various probability distribu-

tions. F3 is a rank-3 CP tensor model. T1 is a Tucker tensor models constructed using mode-wise

product (see [78]). The mode-1 factor is an identity matrix, mode-2 factor is a randomly generated

orthogonal matrix, and mode-3 factor is an auto-regression matrix. We call each classification

problem using tensors generated from these models as classification tasks. Thus, there are six tasks

in this simulation study.

For each synthetic data, we generate 100 samples from class 1 and another 100 samples from

class 2. Each time, we first subsample the data to form a training set of size 160, then use the

remaining 40 observations to form the test set. We conduct stratified sampling to form training and

test sets so that the percentages of each class are the same in both training and test sets. The training

set is used to train and validate classifiers. Then the classifiers with the optimal tuning parameters

are evaluated on the test set. We record the percentage of true predictions, True Predictions
Total Predictions × 100%,

67

as the accuracy of a classifier on the test set. The experiments are repeated for multiple times, and

the mean and the standard deviation of accuracy over all repetitions are reported in the table 3.2

below. For fair comparison, all the computations are done on a desktop with a 12-core CPU and

32GB RAM. We record the average time cost for model estimation over all repetitions, and notate

"NA" (Not Available) in the table if a classifier cannot be estimated with the limited resources. We

believe this could give an overview about the capabilities of different classifiers when handling big

tensor data. More technical details about this simulation study is provided in the appendix B.6.

Notice that in the table 3.2, we use TEC1 and TEC2 to denote TEC models estimated with

Hinge and Square Hinge Loss. AAM, LLSM, and BSGD are three variants of SVM for scalable

and high-dimensional data analysis from BudgetedSVM package. The first thing we observe from

the simulation study is that all the vector-based methods fail to deliver result in F2, F3, and F5

due to memory insufficiency. We later test these models using the same simulation data but on a

high performance cluster which has 128GB memory. Their performance and the comparison are

included in the appendix B.9. Among the tensor-based methods, such space insufficiency would

not be an issue since data storing in tensors can better utilize computer memories. However, CMDA

method fail to provide results in F2, F3, and F5 as its optimization procedure takes extremely long

time. This failure is not due to memory limitation but high time complexity. On the other hand,

our TEC models utilize tensors to handle big data with limited memory, and provide results in all

tasks with high efficiency. The CP decomposition and random projection techniques in our TEC

model further reduces the number of elements to be stored in memory. Notice that although our

original tensors have the same number of elements as the vectorized data, the tensor decomposition

can be done independently on each data. As a result, when the data is in huge dimension, such as

the data from F2, F3, and F5, we can process the tensor decomposition and random projection one

by one, storing only the randomly projected CP factors in memory and recycling memory space

by deleting the original tensor. This processing pipeline distinguishes itself from other dimension

reduction techniques such as principle component analysis as it can process all observations in

the data set independently. It does not require to load all the data at one time and then perform

68

Model Methods TEC1 TEC2 RBF-SVM AAM LLSVM

F1 Accuracy (%) 83.96 85.70 82.00 73.75 62.81
STD (%) 3.85 3.29 3.12 6.36 12.94
Time (s) 1.05 1.26 2.56 1.15 5.06

F2 Accuracy (%) 98.08 86.70 NA NA NA
STD (%) 1.06 1.87 NA NA NA
Time (s) 1.44 1.56 NA NA NA

F3 Accuracy (%) 96.78 98.63 NA NA NA
STD (%) 2.71 1.72 NA NA NA
Time (s) 12 12.6 NA NA NA

F4 Accuracy (%) 93.80 94.10 94.13 46.33 53.13
STD (%) 2.20 2.08 3.65 8.12 14.96
Time (s) 1.75 2.10 1.31 1.94 6.21

F5 Accuracy (%) 89.38 89.78 NA NA NA
STD (%) 2.55 2.25 NA NA NA
Time (s) 1.49 1.63 NA NA NA

T1 Accuracy (%) 100 100 100 84.13 100
STD (%) 0.00 0.00 0.00 5.40 0.00
Time (s) 1.05 1.26 2.55 1.59 6.17

Model Methods BSGD LDA RF CMDA DGTDA

F1 Accuracy (%) 79.84 83.75 68.45 55.25 64.25
STD (%) 20.16 4.25 6.15 1.25 11.68
Time (s) 7.62 5.12 1.10 21.50 0.57

F2 Accuracy (%) NA NA NA NA 81.50
STD (%) NA NA NA NA 4.89
Time (s) NA NA NA NA 195

F3 Accuracy (%) NA NA NA NA 93.75
STD (%) NA NA NA NA 3.23
Time (s) NA NA NA NA 198

F4 Accuracy (%) 57.75 82.88 84.50 80.75 77.50
STD (%) 7.40 5.20 4.72 5.01 4.61
Time (s) 18.68 5.21 0.89 22.35 0.56

F5 Accuracy (%) NA NA NA NA 77.25
STD (%) NA NA NA NA 6.56
Time (s) NA NA NA NA 1.93

T1 Accuracy (%) 100 100 100 85.71 85.00
STD (%) 0.00 0.00 0.00 22.59 22.91
Time (s) 1.42 5.12 0.45 22.85 0.58

Table 3.2: TEC Simulation Results I: Desktop with 32GB RAM

69

feature extraction and dimension reduction, making it appealing for extremely high-dimensional

data analysis. Using only the projected tensor factors also makes the proposed TECmodel finishing

all the computation in a very short time. Empirical evidence in table 3.2 shows that the processing

time is tremendously less than DGTDA and CMDA (no results due to high time complexity) in

tasks F2, F3 and F5 where the tensor dimensions are huge.

Apart from the efficiency, the results in table 3.2 highlight the promising performance of our

TEC models. In tasks F1, F4 and T1 where the data dimensions are low, our TEC models have the

similar performance as the RBF-SVM and its variants in BudgetedSVM. In particular, our TEC

with Square Hinge loss outperforms RBF-SVM and all other competitors with significantly higher

accuracy rates in task F1. Their performances in F4 are still decent, providingmuch higher accuracy

rates than other classifiers except RBF-SVM. Their accuracy rates in F4 are only 0.5% less than

that of RBF-SVM in this task. In Tucker tensor classification task T1, our TEC models continuing

providing as solid performance as all other classifiers. Although the classification task is relatively

easy, it still can demonstrate the capability of our TEC models in handling tensors which are not

well approximated by tensor CP decomposition. The performance advantage of TEC models are

even more impressive in higher-dimensional tensor classification tasks F2, F3, and F5. Due to the

fact that all vector-based classifiers fail to deliver results on the testing platform, we only compare

TEC1 and TEC2 with tensor discriminant analysis DGTDA. In F2 and F5, TEC models have about

10% more average rates than DGTDA. This advantage reduces to 3% in task F3, however, is still

significant.

In conclusion, the simulation study demonstrates computational efficiency as well as solid

performance for our proposed tensor ensemble classifier TEC.

3.7 Real Data Analysis

In this section, we compare the performance of our proposed TEC models with other existing

tensor-based classifiers reviewed in chapter 2. We continue using the two real data sets in chapter

2 for experiments. CP-STM with Hinge and Squared Hinge loss from [63], CMDA and DGTDA

70

Models Accuracy Precision Sensitivity Specificity AUC

TEC1 0.710.04 0.800.09 0.500.07 0.890.05 0.640.19
TEC2 0.730.03 0.840.04 0.520.09 0.910.03 0.660.660.660.19
CP-GLM 0.580.04 0.580.07 1.000.00 0.000.00 0.500.00
CMDA 0.700.03 0.690.05 0.670.09 0.730.10 0.650.17
DGTDA 0.700.02 0.710.02 0.590.06 0.800.01 0.640.18
CP-STM1 0.730.03 1.000.00 0.410.07 1.000.00 0.640.20
CP-STM2 0.740.740.740.04 1.000.00 0.430.08 1.000.00 0.650.20

Table 3.3: Real Data: ADNI Classification Comparison II

from [92], and CP-GLM from [155] are included for comparison.

3.7.1 MRI Classification for Alzheimer’s Disease

The first data set is ADNI MRI data from ADNI-1 screening session. The introduction of the data

is provided earlier in section 2.4, and thus is omitted here. We randomly sample 80% of images

from AD group and 80% from NC group to form the training set with size 321. AD is labeled as

positive class, and NC is labeled as negative class. The rest images are used as test set to evaluate

model performance. For each classification model, we evaluate its performance by calculating its

accuracy, precision, sensitivity, and specificity on the test set. Such step is replicated for multiple

times, and the average accuracy, precision, sensitivity, and specificity are reported in the table 3.3.

The standard deviation of these performance metrics are also provided in the subscripts. Since

the image data are already in tensors, we do not destroy their spatial structure and just compare

tensor-base classifiers in this study.

The results in table 3.3 shows that all the tensor-based classifiers have close accuracy in

prediction, while CP-STM2 and TEC2 are slightly better than the others. Although CP-STM with

Squared Hinge loss has 0.01 more in accuracy rate than TEC models, the AUC of TEC2 is slightly

greater. This comparison unveils that tensor compression through random projections may not

affect the model classification accuracy negatively, while it can provide a much better computation

efficiency.

71

0.0

0.2

0.4

0.6

0.8

CMDA CP−GLM CPSTM1 CPSTM2 DGTDA TEC1 TEC2

Method

A
c
c
u
ra

c
y

Method

CMDA

CP−GLM

CPSTM1

CPSTM2

DGTDA

TEC1

TEC2

Classification Accuracy

Figure 3.1: Real Data: ADNI Classification Result II

3.7.2 KITTI Traffic Image Classification

Our second real data application use the same traffic image data set from section 2.4. The

introduction and data pre-processing is omitted and can be found in section 2.4. After imaging

processing, the data set are divided into three groups which defines three classification tasks with

levels of difficulties as easy, moderate, and hard. Tomaintain the balance between car and pedestrian

images in the data sets, we randomly select 200 car images and 200 pedestrian images in each group

for our numerical experiments. Pedestrian images are considered as the positive class data, and car

images are negative class data.

The following procedures are repeated for 50 times in all three tasks with the balanced data

sets. We randomly sample 80% of images as training set, and use the rest 20% data as the testing

set. The sampling is conducted in a stratified way so that the proportion of pedestrian and car

images are approximately same in both training and test set. Classification models are estimated

and validated in training set. Then the models with selected tuning parameters are applied on

the testing set. For each repetition, we calculate the same performance metrics, accuracy rates,

72

precision (positive predictive rates), sensitivity (true positive rates), and specificity (true negative

rates), for each classification method using the testing set. The average value of these rates and

their standard deviations (in subscripts) are reported in the table 3.4. The areas under the ROC

curves (AUC) are also reported for all the methods. Figure 3.2 shows the comparison of prediction

accuracy rates, in which average accuracy rates of each method is shown by the bar charts and their

standard deviations are shown by the error bars.

Task Methods Accuracy Precision Sensitivity Specificity AUC

Easy

CP-STM1 0.850.03 0.840.05 0.850.05 0.840.06 0.850.03
CP-STM2 0.830.04 0.830.05 0.830.05 0.830.06 0.830.04
TEC1 0.880.880.880.04 0.880.06 0.890.05 0.870.07 0.880.880.880.04
TEC2 0.740.05 0.750.06 0.730.07 0.760.08 0.740.05
CMDA 0.630.07 0.580.06 0.950.08 0.300.16 0.630.07
DGTDA 0.840.04 0.770.04 0.960.03 0.720.07 0.840.04
CP-GLM 0.570.05 0.570.06 0.590.07 0.550.09 0.570.05

Moderate

CP-STM1 0.780.05 0.780.06 0.770.07 0.780.07 0.780.05
CP-STM2 0.730.06 0.750.07 0.720.08 0.750.09 0.730.06
TEC1 0.850.850.850.04 0.850.05 0.840.06 0.850.06 0.850.850.850.04
TEC2 0.740.04 0.730.04 0.770.08 0.710.06 0.740.04
CMDA 0.590.05 0.550.04 0.890.11 0.280.13 0.590.05
DGTDA 0.740.06 0.720.06 0.790.08 0.690.08 0.740.05
CP-GLM 0.530.05 0.530.05 0.540.07 0.520.08 0.530.05

Hard

CP-STM1 0.760.04 0.840.06 0.640.07 0.870.05 0.760.04
CP-STM2 0.740.04 0.800.06 0.630.07 0.840.06 0.740.04
TEC1 0.770.770.770.05 0.780.05 0.750.07 0.780.06 0.770.770.770.05
TEC2 0.670.05 0.700.05 0.670.07 0.660.07 0.670.04
CMDA 0.530.04 0.520.02 0.910.09 0.160.12 0.530.04
DGTDA 0.720.05 0.680.04 0.840.06 0.600.08 0.720.05
CP-GLM 0.510.06 0.510.06 0.540.07 0.490.07 0.510.06

Table 3.4: Real Data: Traffic Image Classification II

Besides the conclusion we already obtained from section 2.4, the results in table 3.4 show that

TEC1 model outperforms CP-STM1, the winner in our previous study, with a significant advantage

in all three classification tasks. In particular, TEC model with Hinge loss has 7% more prediction

accuracy rates than CP-STM1 in the moderate level classification task. This key observation can be

a strong empirical evidence for our proposed TEC models supporting that the models can provide

73

0.00

0.25

0.50

0.75

Easy Hard Moderate

Task

A
c
c
u

ra
c
y

Method

CMDA

CP−GLM

CPSTM1

CPSTM2

DGTDA

TEC1

TEC2

Classification Accuracy

Figure 3.2: Real Data: Traffic Image Classification Result II

significantly better prediction accuracy rates when the data are noisy and the projected data are

sufficient for classification.

3.8 Conclusion

We have proposed a tensor ensemble classifier with the CP support tensor machine and random

projection in this work. The proposed method can handle high-dimensional tensor classification

problems much faster comparing with the existing regularization based methods. Thanks to

the Johnson-Lindenstrauss lemma and its variants, we have shown that the proposed ensemble

classifier has a converging classification risk and can provide consistent predictions under some

specific conditions. Tests with various synthetic tensor models and real data applications show that

the proposed TEC can provide optimistic predictions in most classification problems.

Our primary focus in this work is on the classification applications on high-dimensional multi-

way data such as images. Support tensor ensemble turns out to be an efficient way of analyzing

such data. However, model interpretation has not been considered here. The features in the

projected space are not able to provide any information about variable importance. Alternative

approaches are possible for constructing explainable tensor classification models, but they are out

74

of this article’s scope. Besides that, selection for the dimension (size) of projected tensor % 9 s

cannot be addressed well at this moment. Although our theoretical result points out the connection

between the classification risk and min % 9 , discussion about how to set % 9 for each mode of tensor

may have to be developed in the future.

In conclusion, TEC offers a new option in tensor data analysis. The key features highlighted

in work are that TEC can efficiently analyze high-dimensional tensor data without compromising

the estimation robustness and classification risk. We anticipate that this method will play a role in

future application areas such as neural imaging and multi-modal data analysis.

75

CHAPTER 4

COUPLED SUPPORT TENSOR MACHINE FOR MULTIMODAL NEUROIMAGING
DATA

In this chapter, we consider a classification problemwith multimodal tensor predictors. Multimodal

neuroimaging data arise in various applications where information about the same phenomenon is

acquired frommultiple sensors and across different imaging modalities. Learning frommultimodal

data is of great interest in machine learning and statistics research as it offers the possibility of

capturing complementary information among modalities. Multimodal learning increases model

performance, explains the interdependence between heterogeneous data sources, discovers new

insights that may not be available from a single modality, and improves decision-making. Recently,

coupled matrix-tensor factorization has been introduced for multimodal data fusion to jointly

estimate latent factors and identify complex interdependence among the latent factors. However,

prior work on coupled matrix-tensor factorization mostly focuses on unsupervised learning, and

very few of them utilize the jointly estimated latent factors for supervised learning. This paper

considers themultimodal tensor data classification problem and proposes a Coupled Support Tensor

Machine (C-STM), which is built upon the latent factors jointly estimated from Advanced Coupled

Matrix Tensor Factorization (ACMTF). C-STM combines individual and shared latent factors with

multiple kernels and estimates a maximal-margin classifier for coupled matrix tensor data. The

classification risk of C-STM is shown to converge to the optimal Bayes risk, making it a statistically

consistent rule. C-STM is validated through simulation studies as well as simultaneous EEG-fMRI

analysis. The empirical evidence shows that C-STM can utilize information from multiple sources

and provide a better classification performance than traditional unimodal classifiers.

4.1 Introduction

Advances in clinical neuroimaging and computational bioinformatics have dramatically in-

creased our understanding of various brain functions using multiple modalities such as Magnetic

76

Resonance Imaging (MRI), functional Magnetic Resonance Imaging (fMRI), electroencephalo-

gram (EEG), and Positron Emission Tomography (PET). The strong connection of these modalities

to the patients’ biological status and disease pathology suggests the great potential of their predictive

power in disease diagnostics. Numerous studies using vector- and tensor-based statistical models

illustrate how to utilize these imaging data at both the voxel- and Region-of-Interest (ROI) levels to

develop efficient biomarkers that predict disease status. For example, [8] propose a classification

model using functional connectivity MRI for autism disease with 89% diagnostic accuracy. [123]

utilize network models and brain imaging data to develop novel biomarkers for Parkinson’s disease.

Many works in Alzheimer’s disease research such as [109, 74, 100, 37, 94] use EEG, MRI and PET

imaging data to predict patient’s cognition and detect early-stage Alzheimer’s diseases. Although

these studies have provided impressive results, utilizing imaging data from single modality such

as individual MRI sequences are known to have limited predictive capacity, especially in the early

phases of the disease. For instance, [94] use brain MRI volumes from regions of interest to identify

patients in early-stage Alzheimer’s disease with 77% prediction accuracy. In recent years, it has

been common to acquire multiple neuroimaging modalities in clinical studies such as simultaneous

EEG-fMRI, MRI and fMRI. Even though each modality measures different physiological phenom-

ena, they are interdependent and mutually informative. Learning from multimodal neuroimaging

data may help integrate information from multiple sources and facilitate biomarker development

in clinical studies. It also raises the need for novel supervised learning techniques for multimodal

data in statistical learning literature.

The existing statistical approaches to multimodal data science are dominated by unsupervised

learning methods. These methods analyze multimodal neuroimaging data jointly by performing

decomposition, and try to discover how the common information is overlaid across different modali-

ties. During optimization, the decomposed factors bridging two or more modalities are estimated to

interpret connections between multimodal data. Examples of these methods include matrix-based

joint Independent Component Analysis (ICA) [23, 56, 86, 97, 129, 6] which assume bilinear cor-

relations between factors in different modalities. When tensors are utilized for multi-dimensional

77

imaging modeling, various coupled matrix-tensor decomposition methods are established such as

[5, 4, 6, 26, 27, 73, 110] which impose different types of soft or hard multilinear constrains between

factors from different modalities. These methods further extend possible correlations between

multimodal data, providing more flexibility in data modeling.

Current supervised learning approaches for multimodal data simply concatenate data modalities

as extra features without exploring their interdependence. For example, [155, 93] build generalized

regression models by appending tensor and vector predictors linearly for image prediction and

classification. [114] develop a discriminant analysis by including tensor and vector predictors in

a linear fashion. [91] propose an integrative factor regression for multimodal neuroimaging data

assuming that data from differentmodalities can be decomposed into common factors. Another type

of integration utilizes kernel tricks and combines information from multimodal data with multiple

kernels. [55] provide a survey on various multiple kernel learning techniques for multimodal

data fusion and classification with support vector machines. Combining kernels linearly or non-

linearly in different modalities, instead of original data, provides more flexibility in information

integration. [11] proposed a multiple kernel regression model with group lasso penalty, which

integrates information by multiple kernels and selects the most predictive data modalities.

Despite these accomplishments, the current approaches have several shortcomings. First, they

mainly focus on exploring the interdependence between multimodal neuroimaging data, ignoring

the representative and discriminative power of the learned components. Thus, the methods cannot

further bridge the imaging data to the patients’ biological status, which is not helpful in biomarker

development. Second, the supervised techniques integrate information primarily by data or feature

concatenation without explicitly considering the possible correlations between different modali-

ties. This lack of consideration for interdependence may cause issues like overfitting and parameter

identifiability. Third, current multimodal approaches are mostly vector-based. Since many neu-

roimaging data are multi-dimensional, these approaches may fail to utilize the multi-way features

as well as the multi-way interdependence between different modalities. Finally, although many

empirical studies demonstrate the success of using multimodal data, there is a lack of mathematical

78

and statistical clarity to the extent of generalizability and associated uncertainties. The absence

of a sound statistical framework for multimodal data analysis makes it impossible to interpret the

generalization ability of a certain statistical model.

In this paper, we propose a two-stage Coupled Support TensorMachine (C-STM) formultimodal

tensor-based neuroimaging classification. The model accommodates current multimodal data

science issues and provides a sound statistical framework to interpret the interdependence between

modalities and quantify the model consistency and generalization ability. Themajor contributions

of this work are:

1. To extract individual and common components from multimodal tensor data in the first stage

using Advanced Coupled Matrix Tensor Factorization (ACMTF), and identify interdepen-

dence between multimodal data through latent factors.

2. To build a novel CP Support Tensor Machine with both the individual and common factors

for classification. This new model is named Coupled Support Tensor Machine (C-STM).

3. To show the proposed model is a consistent classification rule.

A Matlab package is also provided in the supplemental material, including all functions for C-STM

classification and detailed data processing pipeline. The rest part of this chapter is organized

as follow. Section 4.2 reviews current approaches about coupled matrix tensor factorization and

multiple kernel learning, which are the basis of this work. Section 4.3 introduce our classification

model. The model estimation is presented in section 4.4 using nonlinear conjugate gradient

descent optimization. A simulation study is presented in section 4.6 to compare the performance

of multimodal classification with single modal classification, highlighting the benefits of using

information frommultiple sources. Then we adopt the C-STMmodel in a simultaneous EEG-fMRI

data trial classification problem in section 4.7. The conclusion of this chapter is in section 4.8.

79

4.2 Related Work

In this section, we review some backgorund and prior work on tensor decomposition and support

tensor machine. In this work, we denote numbers and scalars by letters such as G, H, # . Vectors are

denoted by boldface lowercase letters, e.g. 000, 111. Matrices are denoted by boldface capital letters

like ���, ���. Multi-dimensional tensors are denoted by boldface Euler script letters such asXXX,YYY. The

order of a tensor is the number of dimensions of the data hypercube, also known as ways or modes.

For example, a scalar can be regarded as a zeroth-order tensor, a vector is a first-order tensor, and

a matrix is a second-order tensor.

Let XXX ∈ R�1×�2×···×�# be a tensor of order # , where G81,82,...,8# denotes the (81, 82, . . . , 8#)th

element of the tensor. Vectors obtained by fixing all indices of the tensor except the one that

corresponds to =th mode are called mode-= fibers and denoted as GGG81,...8=−1,8=+1,...8# ∈ R
�= . The

mode-= unfolding of XXX is defined as XXX(=) ∈ R
�=×

∏#
=′=1,=′≠= �=′ where the mode-= fibers of the

tensor XXX are the columns of XXX(=) and the remaining modes are organized accordingly along the

rows.

4.2.1 CP Decomposition

Let XXX ∈ R�1×�2×...×�3 be a tensor with 3 modes. Rank-A Canonical/Polyadic (CP) decomposition

ofXXX is defined as:

XXX ≈
A∑
:=1

Z: · GGG
(1)
:
◦ GGG (2)

:
... ◦ GGG (3)

:
= ÈZZZ ;--- (1) , ..., --- (3)É, (4.1)

where --- (9) ∈ R� 9×A , 9 ∈ {1, .., 3} are defined as factor matrices whose columns are GGG (9)
:

and

"◦" represents the vector outer product. The right side of (4.1) is called Kruskal tensor, which

is a convenient representation for CP tensors, see [81]. We denote a Kruskal tensor by UUUG =

ÈZZZ ;--- (1) , ..., --- (3)É where ZZZ ∈ RA is a vector holding the weights of rank one components. In the

special case of matrices, ZZZ corresponds to singular values of a matrix. If all the elements in ZZZ are

1, then ZZZ can be dropped from the notation. In general, it is assumed that the rank A is small so that

80

equation (4.1) is also called low-rank approximation for a tensorXXX. Such an approximation can be

estimated by an Alternating Least Square (ALS) approach, see [78].

Motivated by the fact that joint analysis of data from multiple sources can potentially un-

veil complex data structures and provide more information, Coupled Matrix Tensor Factorization

(CMTF) ([2]) was proposed for multimodal data fusion. CMTF estimates the underlying latent

factors for both tensor and matrix data simultaneously by taking the coupling between tensor and

matrix data into account. This feature makes CMTF a promising model in analyzing heterogeneous

data, which generally have different structures and modalities.

Let XXX1 ∈ R�1×�2×...×�3 and ---2 ∈ R�1×�2 . Assuming the factors from the first mode of the

tensorXXX1 span the column space of thematrix ---2, CMTF tries to estimate all factors byminimizing:

&&&(UUU1,UUU2) =
1
2
‖XXX1 − È---

(1)
1 , ---

(2)
1 , ...---

(3)
1 É‖

2
Fro +

1
2
‖---2 − ---

(1)
2 ---

(2)>
2 ‖2Fro, s.t. --- (1)1 = ---

(1)
2 ,

(4.2)

where --- (<)? are the factor matrices for modality ? andmode<. The factor matrices --- (1)1 = ---
(1)
2 are

the coupled factors between tensor and matrix data. These factor matrices can also be represented

in Kruskal form,UUU1 = È---
(1)
1 , ---

(2)
1 , ...---

(3)
1 É andUUU2 = È---

(1)
2 , ---

(2)
2 É. By minimizing the objective

function &&&(UUU1,UUU2), CMTF estimates latent factors for both the tensor and matrix data jointly

which allows it to utilize information from both modalities. [2] uses a gradient descent algorithm

to optimize the objective function (4.2).

Although CMTF provides a successful framework for joint data analysis, it often fails to obtain

a unique estimation when both shared and individual components exist. As a result, any further

statistical analysis and learning from CMTF estimation will suffer from the large uncertainty in

latent factors. To address this issue, [3] proposed Advanced Coupled Matrix Tensor Factorization

(ACMTF) by introducing a sparsity penalty to the weights of latent factors in the objective function

(4.2), and restricting the norm of the columns of the factors to be unity to allow unique results up to

a permutation. This modification provides a more precise estimation of latent factors compared to

CMTF, and makes it possible to develop further stable statistical models upon the estimated factors.

81

4.2.2 CP Support Tensor Machine (CP-STM)

CP-STM has been previously studied by [136, 63, 64] and use CP model to construct STMs. Given

a collection of data)= = {(XXX1, H1), (XXX2, H2), ..., (XXX=, H=)}, where XXX8 ∈ XXX ⊂ R�1×�2×...×�3 are

d-way tensors,XXX is a compact tensor space which is a subspace of R�1×�2×...×�3 , and H8 ∈ {1,−1}

are binary labels. CP-STM assumes the tensor predictors have a CP structure, and can be classified

by the function which minimizes the objective function _ | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXX8), H8). By using

tensor kernel function

 (XXX1,XXX2) =
A∑

;,<=1

3∏
9=1

 (9) (GGG (9)1,; , GGG
(9)
2,<), (4.3)

whereXXX1 =
A∑
;=1
GGG
(1)
1,; ◦ .. ◦ GGG

(3)
1,; andXXX2 =

A∑
;=1
GGG
(1)
2,; ◦ .. ◦ GGG

(3)
2,; , the STM classifier can be written as

555 (XXX) =
=∑
8=1

U8H8 (XXX8,XXX) = UUU)���H (XXX), (4.4)

where XXX is a new 3-way rank-A tensor of size �1 × �2 × ... × �3 . In (4.4), UUU = [U1, ..., U=])

are the coefficients, ���H is a diagonal matrix whose diagonal elements are H1, .., H=, and (XXX) =

[(XXX1,XXX), ..., (XXX=,XXX)]) is a column vector, whose entries are kernel values computed between

training data and the new test data. We denote the collection of functions in the form of (4.4) with

HHH , which is a functional space also known as Reproducing Kernel Hilbert Space (RKHS). The

optimal CP-STM classifier, 555 ∈ HHH , can be estimated by plugging function (4.4) into the objective

function, and minimize it with Hinge or Squared Hinge loss. The coefficients of the optimal

CP-STM model is denoted by UUU∗. The classification model is statistically consistent if the tensor

kernel function satisfies the universal approximating property as shown in [89].

4.2.3 Multiple Kernel Learning

Multiple kernel learning (MKL) creates new kernels using a linear or non-linear combination of

single kernels to measure inner products between data. Statistical learning algorithms such as

support vector machine and kernel regression can then utilize the new combined kernels instead of

single kernels to obtain better learning results and avoid the potential bias from kernel selection.

82

([55]) A more important and more related reason for using MKL is that different kernels can

take inputs from various data representations possibly from different sources or modalities. Thus,

combining kernels and using MKL is one possible way of integrating multiple information sources.

Given a collection of kernel functions { 1(·, ·), ... < (·, ·)}, a new kernel function can be

constructed by

 (·, ·) = 5[5[5[({ 1(·, ·), ... < (·, ·)}|[[[) (4.5)

where 5[5[5[is a linear or non-linear function. [[[is a vector whose elements are weight coefficients

for the kernel combination. Linear combination methods are the most popular multiple kernel

learning, where the kernel function is parameterized as

 (·, ·) = 5[5[5[({ 1(·, ·), ... < (·, ·)}|[[[)

=

<∑
;=1

[; ; (·, ·)
(4.6)

The weight parameters [; can be simply assumed to be the same (unweighted) ([115, 14]), or

be determined by looking at some performance measures from each kernel or data representation

([134, 118]). There are few more advanced approaches such as optimization-based, Bayesian

approaches, and boosting approaches that can also be adopted ([84, 50, 140, 75, 76, 54, 32, 15]).

Motivated by the elegant framework and consistency property of CP-STM, we decide to extend

it for multimodal tensor classification problems by combining it with ACMTF decomposition. We

further consider linear combination (4.6) of kernels to integrate latent factors from multimodal

data, and select the kernel weight parameters in a heuristic data driven way to construct our C-STM

model. The preciseness of ACMTF may offer chance to capture the true latent structures from

multimodal tensors resulting in better classification performance.

4.3 Methodology

Let)= = {(XXX1,1, ---1,2, H1), ..., (XXX=,1, ---=,2, H=)} be training data, where each sample C ∈

{1, . . . , =} has two data modalitiesXXXC,1, --- C,2, and a corresponding binary label HC ∈ {1,−1}. In this

work, following [2], we assume that the first data modality is a third-order tensor,XXXC,1 ∈ R�1×�2×�3 ,

83

XXX1

�1
� 2

�3

�4

---2

� 2 � 2

�1 �1

�3 �3

�4 �4

+..+

Individual Factors (Tensor Modality)

+..+

Shared Factors

+..+

Individual Factors (Matrix Modality)

 1(·, ·)

 2(·, ·)

 3(·, ·)

C-STM H

Figure 4.1: C-STM Model Pipeline

and the other is a matrix, --- C,2 ∈ R�4×�3 . The third mode of XXXC,1 and the second mode of --- C,2

are assumed to be coupled for each C, i.e., the factor matrix is assumed to be fully or partially

shared across these modes. Utilizing this coupling, one can extract factors that better represent the

underlying structure of the data, and preserve and utilize the discriminative power of the factors

from both modalities. Our approach, C-STM (see Figure 4.1), consists of two stages: Multimodal

tensor factorization, ACMTF, and coupled support tensor machine. We present both stages in this

section.

4.3.1 ACMTF

In this stage, we aim to perform a joint factorization across two modalities for each training sample,

C. Let UUUC,1 = ÈZZZ ;--- (1)
C,1 , ---

(2)
C,1 , ---

(3)
C,1 É denote the Kruskal tensor of XXXC,1, and UUUC,2 = Èfff;--- (1)

C,2 , ---
(2)
C,2 É

denote the singular value decomposition of --- C,2. The weights of the columns of each factor matrix

(<)
C,? , where ? is the modality index and < is the mode index, are denoted by ZZZ and fff. The norms

of these columns are constrained to be 1 to avoid redundancy. The objective function of ACMTF

84

decomposition is then given by:

&&&(UUUC,1,UUUC,2) = W1‖XXXC,1 − ÈZZZ ;--- (1)
C,1 , ---

(2)
C,1 , ---

(3)
C,1 É‖

2
Fro + W2‖--- C,2 − ---

(1)
C,2ΣΣΣ---

(2)>
C,2 ‖

2
Fro

+ V1‖ZZZ ‖1 + V2‖fff‖1

s.t. ---
(3)
C,1 = ---

(2)
C,2 , ‖GGG (1)

C,1,: ‖2 = ‖GGG
(2)
C,1,: ‖2 = ‖GGG

(3)
C,1,: ‖2 = ‖GGG

(1)
C,2,: ‖2 = ‖GGG

(2)
C,2,: ‖2 = 1

(4.7)

∀: ∈ {1, . . . , A}. ΣΣΣ is a diagonal matrix whose elements are the singular values of the matrix --- C,2

and GGG (9)
C,<,:

∈ R� 9 denotes the columns of the factor matrices of XXXC,< . The objective function in

(4.7) includes ℓ1 penalties for weights in both tensor and matrix decomposition. Thus, the model

identifies the shared and individual components. In our experiments, we set W1 = W2 = 1 , and

V1 = V2 = 0.01. These parameters can also be learned through optimization. These factors are

then considered as extracted data representations for multimodal data, and used to predict the labels

HC in C-STM classifier.

4.3.2 Coupled Support Tensor Machine (C-STM)

C-STM uses the idea of multiple kernel learning and considers the coupled and uncoupled factors

from ACMTF decomposition as various data representations. As a result, we use three different

kernel functions to measure their inner products. One can think of these three kernels inducing

three different feature maps transforming multimodal factors into different feature spaces. In each

feature space, the corresponding kernel measures the similarity between factors in this specific

data modality. The similarities of multimodal factors are then integrated by combining the kernel

functions through a linear combination. This procedure is illustrated in Figure 4.1. In particular,

the kernel 1 is a tensor kernel (equation (4.3)) since the first individual factors are tensor CP

factors. For two pairs of decomposed factors (UUUC,1,UUUC,2) and (UUU8,1,UUU8,2), the kernel function for

C-STM is defined as

(
(XXXC,1, --- C,2), (XXX8,1, ---8,2)

)
=

(
(UUUC,1,UUUC,2), (UUU8,1,UUU8,2)

)
=

A∑
:,;=1

F1
(1)
1 (GGG

(1)
C,1,: , GGG

(1)
8,1,;)

(2)
1 (GGG

(2)
C,1,: , GGG

(2)
8,1,;) + F2 2(GGG

(3)∗
C,1,: , GGG

(3)∗
8,1,;) + F3 3(GGG

(1)
C,2,: , GGG

(1)
8,2,;). (4.8)

85

GGG
(3)∗
C,1,: is the average of the estimated shared factors 1

2 [GGG
(3)
C,1,: +GGG

(2)
C,2,:] since ACMTF algorithm cannot

guarantee GGG (3)
C,1,: = GGG

(2)
C,2,: numerically. F1, F2, and F3 are three weight parameters combining the

three kernel functions and can be tuned by cross-validation.

With kernel function (4.8), C-STMmodel tries to estimate a bivariate decision function 555 from

a collection of functionsHHH such that

555 = arg min
555 ∈HHH

_ · | | 555 | |2 + 1
=

=∑
8=1
L(555 (XXX8), H8) (4.9)

where L(XXX8, H8) = max
(
0, 1 − 555 (XXX8) · H8

)
is Hinge loss. HHH is defined as the collection of all

functions in the form of

555 (XXX1, ---2) =
=∑
C=1

U8H8 ((XXXC,1, --- C,2), (XXX1, ---2)) = UUU)���H (XXX1, ---2) (4.10)

due to the well-known representer theorem ([9]) for any pair of test data (XXX1, ---2) and for UUU ∈ R=.

For all possible values of UUU, equation (4.10) defines the data collectionHHH . ���H is a diagonal matrix

whose diagonal elements are labels from the training data)=. (XXX1, ---2) is a = by 1 column vector

whose C-th element is
(
(XXXC,1, --- C,2), (XXX1, ---2)

)
. The optimal C-STM decision function, denoted

by 5=5=5= = UUU∗)���H (XXX1, ---2), can be estimated by solving the quadratic programming problem

min
UUU∈R=

1
2
UUU)���H ���HUUU − 111)UUU,

S.T. UUU)HHH = 0, 0 � UUU � 1
2=_

,

(4.11)

where is the kernel matrix constructed by function (4.8). Problem (4.11) is the dual problem

of (4.9), and its optimal solution UUU∗ also minimizes the objective function (4.9) when plugging

functions in the form of (4.10). For a new pair of test points (XXX1, ---2), the class label is predicted

as Sgn
[
5=5=5= (XXX1, ---2)

]
.

4.4 Model Estimation

In this section, we first present the estimation procedure for tensor matrix decomposition (4.7),

and then combine it with the classification procedure to summarize the algorithm for C-STM.

86

To satisfy the constraints in the objective function (4.7), we convert the function&&&(UUUC,1,UUUC,2)

into a differentiable and unconstrained form

&&&(UUUC,1,UUUC,2) =W1 | |XXXC,1 − ÈZZZ ;--- (1)
C,1 , ---

(2)
C,1 , ---

(3)
C,1 É||

2
Fro + W2 | |XXXC,2 − ---

(1)
C,2ΣΣΣ---

(2)>
C,2 | |

2
Fro

+ g‖--- (3)
C,1 − ---

(2)
C,2 ‖

2
�A>

+
A∑
:=1

[
V

√
Z2
:
+ n + V

√
f2
:
+ n + \

[
(‖XXX(1)

C,1,: ‖2 − 1)2 + (‖XXX(2)
C,1,: ‖2 − 1)2

+ (‖XXX(3)
C,1,: ‖2 − 1)2 + (‖XXX(1)

C,2,: ‖2 − 1)2 + (‖XXX(2)
C,2,: ‖2 − 1)2

]]
(4.12)

ℓ1 norm penalties in (4.7) are replaces with differentiable approximations. g and \ are Lagrange

multipliers. n > 0. This unconstrained optimization problem can be solved by nonlinear conjugate

gradient descent ([2, 5, 110]). Let TTTC be the full tensor of UUUC,1 (converting Kruskal tensor into

multidimensional array form), and """ C = ---
(1)
C,2ΣΣΣ---

(2)>
C,2 , the partial derivative of each latent factors

can be derived as follow:

X&&&(UUUC,1,UUUC,2)

X---
(1)
C,1

= W1(TTTC −XXXC,1)(1) (ZZZ> � ---
(3)
C,1 � ---

(2)
C,1) + \ (---

(1)
C,1 − -̄--

(1)
C,1) (4.13)

X&&&(UUUC,1,UUUC,2)

X---
(2)
C,1

= W1(TTTC −XXXC,1)(2) (ZZZ> � -
(3)
C,1 � ---

(1)
C,1) + \ (---

(2)
C,1 − -̄--

(2)
C,1) (4.14)

X&&&(UUUC,1,UUUC,2)

X---
(3)
C,1

= W1(TTTC −XXXC,1)(3) (ZZZ> � -
(2)
C,1 � ---

(1)
C,1) + g(---

(3)
C,1 − ---

(2)
C,2) + \ (---

(3)
C,1 − -̄--

(3)
C,1) (4.15)

X&&&(UUUC,1,UUUC,2)

X---
(1)
C,2

= W2(""" C − --- C,2)---
(2)
C,2ΣΣΣ + \ (---

(1)
C,2 − -̄--

(1)
C,2) (4.16)

X&&&(UUUC,1,UUUC,2)

X---
(2)
C,2

= W2(""" C − --- C,2)>---
(1)
C,2ΣΣΣ + g(---

(2)
C,2 − ---

(3)
C,1) + \ (---

(2)
C,2 − -̄--

(2)
C,2) (4.17)

X&&&(UUUC,1,UUUC,2)
XZ:

= W1(TTTC −XXXC,1) ×1 GGG
(1)
C,1,: ×2 GGG

(2)
C,1,: ×3 GGG

(3)
C,1,: +

V

2
Z:√
Z2
:
+ n

; : = 1, ..., A (4.18)

87

X&&&(UUUC,1,UUUC,2)
Xf:

= W2GGG
(1)>
C,2,: (""" C − --- C,2)GGG

(2)
C,2,: +

V

2
f:√
f2
:
+ n

; : = 1, ..., A (4.19)

Here TTT(9) denotes the mode-j unfolding of a tensor TTT. × 9 denotes mode-wise product, and �

denotes Khatri-Rao product. (see Section 1.2). The matrix notation with a overline "̄"" denotes a

normalized matrix """ whose columns are divided by their respective ℓ2 norms. If we combine all

the derived parts above, the partial derivative of the objective function is

O&O&O&(UUUC,1,UUUC,2) =
[
X&&&(UUUC,1,UUUC,2)

X---
(1)
C,1

,
X&&&(UUUC,1,UUUC,2)

X---
(2)
C,1

,
X&&&(UUUC,1,UUUC,2)

X---
(3)
C,1

,

X&&&(UUUC,1,UUUC,2)

X---
(2)
C,2

,
X&&&(UUUC,1,UUUC,2)

XZ1
, ...

X&&&(UUUC,1,UUUC,2)
Xf1

, ...

]> (4.20)

which is a 5 + 2A dimensional vector. If we use

(UUUC,1,UUUC,2) = [---
(1)
C,1 , ---

(2)
C,1 , ---

(3)
C,1 , ---

(1)
C,2 , ---

(2)
C,2 , Z1, ...f1, ...]>

to denote the latent factors and the weights we have to estimate, the algorithm uses the negative

gradient of &&&(UUUC,1,UUUC,2) as the direction to update all the components in (UUUC,1,UUUC,2) simulta-

neously. We first describe this estimation procedure in the algorithm 10. The algorithm keeps

updating (UUUC,1,UUUC,2) until convergence. Note that this is a non-convex optimization problem and

its convergence properties has been discussed in [112, 117, 143, 144].

Once the factors for all data pairs in the training set)= are estimated, we can create the kernel

matrix using the kernel function in 4.8. By solving the quadratic programming problem (4.11), we

can obtain the optimal decision function 5=5=5=. This two-stage procedure for C-STM estimation is

summarized in the algorithm 11 below.

4.5 Theory

We discuss the statistical property of C-STM in this section. Let’s assume the risk of a decision

function, 555 , is R(555) = EXXX×YYY
[
111{ 555 (XXX) ≠ H}

]
, where XXX ⊂ R�1×..×�3 is a subspace of R�1×..×�3 .

YYY = {1,−1}. The function 111{·} is an indicator function measuring the loss of classification

88

Algorithm 10 ACMTF Decomposition
1: procedure ACMTF
2: Input: Multimodal data (XXX1, ---2) tensor rank r, [, maxiter
3: UUUC,1,UUUC,2 = UUU

0
C,1,UUU

0
C,2 ⊲ Initial value

4: ΔΔΔ0 = −O&O&O&(UUU0
C,1,UUU

0
C,2)

5: i0 = arg mini&&&
[
(UUU0
C,1,UUU

0
C,2) + iΔΔΔ0

]
6: UUU1

C,1,UUU
1
C,2 = (UUU

0
C,1,UUU

0
C,2) + i0ΔΔΔ0

7: 6660 = ΔΔΔ0
8: while s < maxiter and |&&&(UUUB

C,1,UUU
B
C,2) −&&&(UUU

B−1
C,1 ,UUU

B−1
C,2) | > [do

9: ΔΔΔB+1 = −O&O&O&(UUUBC,1,UUU
B
C,2)

10: 666B+1 = ΔΔΔB+1 +
ΔΔΔ>
B+1 (ΔΔΔB+1−ΔΔΔB)
−666>B (ΔΔΔB+1−ΔΔΔB)

666B

11: iB+1 = arg mini&&&
[
(UUUB
C,1,UUU

B
C,2) + i666B+1

]
12: UUUB+1

C,1 ,UUU
B+1
C,2 = (UUUB

C,1,UUU
B
C,2) + iB+1666B+1

13: Output: UUU∗
C,1,UUU

∗
C,2

Algorithm 11 Coupled Support Tensor Machine
1: procedure C-STM
2: Input: Training set)= = {(XXX1,1, ---1,2, H1), ..., (XXX=,1, ---=,2, H=)}, HHH, kernel function ,

tensor rank r, _, [, maxiter
3: for t = 1, 2,...n do
4: UUU∗

C,1,UUU
∗
C,2 = ACMDF((XXXC,1, --- C,2), tensor rank r, [, maxiter)

5: Create initial matrix ∈ R=×=
6: for t = 1,...,n do
7: for i = 1,...,i do
8: [8, C] =

(
(UUUC,1,UUUC,2), (UUU8,1,UUU8,2)

)
⊲ Kernel values

9: [8, C] = [C, 8]
10: Solve the quadratic programming problem (4.11) and find the optimal UUU∗.
11: Output: UUU∗

function 555 . If there is a 555 ∗ : XXX → YYY from the collection of all measurable functions such that

555 ∗ = arg minR(555), its risk is called the Bayes risk for the classification problem with data from

XXX ×YYY. We denote the Bayes risk as R∗ = R(555 ∗). With different training sets)=, we can estimate

a sequence of decision functions 5=5=5= under the same training procedure. This sequence of decision

functions { 5=5=5=} is called a decision rule. A decision rule is statistically consistent if R(5=5=5=) converges

to the Bayes risk R∗ as the size of training data = increases, see, e.g., [36]. Our next result shows

89

that C-STM is a statistically consistent decision rule.

Proposition 4.5.1. Given the tensor and matrix factors for all data in the domain, the classification

risk of C-STM, R(5=5=5=), converges to the optimal Bayes risk almost surely, i.e.

R(5=5=5=) → R∗ 0.B. =→∞

if the following conditions are satisfied:

AS.1 The loss function L is self-calibrated, see [128], and is � (,) local Lipschitz continuous in

the sense that for |0 | 6 , < ∞ and |1 | 6 , < ∞, |L(0, H) − L(1, H) | 6 � (,) |0 − 1 |. In

addition, we need sup
H∈{1,−1}

L(0, H) 6 !0 < ∞.

AS.2 The kernel functions (1)1 (·, ·),
(2)
1 (·, ·), 2(·, ·), and 3(·, ·) used to compose the coupled

tensor kernel (4.8) are regular vector-based kernels satisfying the universal approximating

property. A kernel has this property if it satisfies the following condition. Suppose XXX is a

compact subset of the Euclidean space R? , and � (XXX) = { 555 : XXX → R} is the collection of

all continuous functions defined on XXX. The kernel function is also defined on XXX × XXX, and

its reproduction kernel Hilbert space (RKHS) is HHH . Then ∀666 ∈ � (XXX), ∃ 555 ∈ HHH such that

∀n > 0, | |666 − 555 | |∞ = sup
GGG∈XXX
|666(GGG) − 555 (GGG) | 6 n .

AS.3 The kernel functions (1)1 (·, ·),
(2)
1 (·, ·), 2(·, ·), and 3(·, ·) used to compose the coupled

tensor kernel (4.8) are all bounded, satisfying
√

sup (·, ·) 6 <0G < ∞.

AS.4 The hyper-parameter in the regularization term _ = _= satisfies _= → 0 as = → ∞ and

=_= →∞ as =→∞.

This proposition is an extension of our previous result for the statistical consistency of CP-STM.

The proof of this proposition is provided in Appendix C.1.

90

4.6 Simulation Study

We present a simulation study to demonstrate the benefit of utilizing C-STM with multimodal

data in classification problems. To show the advantage of using multiple modalities, we compare

with CP-STM from [63], Constrained Multilinear Discriminant Analysis (CMDA), and Direct

General Tensor Discriminant Analysis (DGTDA) from [92]. These existing approaches can only

take a single tensor / matrix as the input for classification. Thus, we apply these approaches on

each modality separately and compare their classification performance with C-STM.

We generate synthetic data with two modalities using the idea from [43] as follows:

XXXC,1 =
3∑
:=1

GGG
(1)
:,C,1 ◦ GGG

(2)
:,C,1 ◦ GGG

(3)
:,C,1, --- C,2 =

3∑
:=1

GGG
(1)
:,C,2 ◦ GGG

(2)
:,C,2, (4.21)

where XXXC,1 ∈ R30×20×10 and --- C,2 ∈ R50×10 with ranks equal to 3. To generate data for the

simulation study, we first generate the latent factors (vectors) from various multivariate normal

distributions (with the parameters given in Table 4.1), and then use equation (4.21) to construct

the tensors XXXC,1 and matrices --- C,2. In Table 4.1, we use 2 = 1, 2 to denote data from two

different classes. Eight different cases are considered in our simulation study. In cases 1 - 3,

the discriminative information about the two classes is capture by one of the tensor factors and

one of the matrix factors. This means that tensor and matrix data both contain class information

(discriminative power) which may be different in the two modalities. Notice that the discriminative

power in the tensor factor remains the same across cases 1 - 3, while the discriminative power in

the matrix factor increases. Cases 4 and 5 assume the class information exists only in a single

modality. In case 4, the distribution of one of the tensor factors is varied across classes and the

discrimination power between the two classes is captured by the tensor factor. The discriminative

factor becomes the matrix factor in case 5. In case 6, the difference between the two classes is

captured by the shared factors, meaning that both tensor and matrix data modalities contain class

information.

For each simulation case, we generate 50 pairs of tensor and matrix data from both classes,

collecting 100 pairs of observations in total. We then randomly choose 20 samples as the testing

91

Tensor Factors Shared Factors Matrix Factors

Simulation 2 GGG
(1)
:,C,1 GGG

(2)
:,C,1 GGG

(3)
:,C,1 = GGG

(2)
:,C,2 GGG

(1)
:,C,2

Case 1 1 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)
2 "+#"+#"+# (1.51.51.5, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (1.51.51.5, ���)

Case 2 1 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)
2 "+#"+#"+# (1.51.51.5, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (1.751.751.75, ���)

Case 3 1 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)
2 "+#"+#"+# (1.51.51.5, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (222, ���)

Case 4 1 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)
2 "+#"+#"+# (222, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)

Case 5 1 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)
2 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (222, ���)

Case 6 1 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (111, ���)
2 "+#"+#"+# (111, ���) "+#"+#"+# (111, ���) "+#"+#"+# (222, ���) "+#"+#"+# (111, ���)

Table 4.1: Distribution Specifications for Simulation; "+#"+#"+#: multivariate normal distribution. ���:
identity matrices. Bold numbers are vectors whose elements are all the same.

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1CPSTM2DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 1

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1CPSTM2DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 2

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1CPSTM2DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 3

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1CPSTM2DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 4

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1CPSTM2DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 5

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1CPSTM2DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 6

Figure 4.2: Simulation: Average accuracy(bar plot) with standard deviation (error bar)

92

set, and use the remaining data as the training set. The random selection of testing set is conducted

in a stratified sampling manner such that the proportion of samples from each class remains the

same in both training and testing sets. For all models, we report the model prediction accuracy, the

proportion of correct predictions over total predictions, on the testing set as the performance metric.

The random selection of training and testing data is repeated 50 times. The average prediction

accuracy and standard deviation of these 50 repetitions for all cases are reported in Figure 4.2.

The results of CP-STM, CMDA, and DGTDA with tensor data are denoted by CPSTM1, CMDA1,

and DGTDA1, respectively. The results using matrix data are denoted by CPSTM2, CMDA2, and

DGTDA2.

From Figure 4.2, we can conclude that our C-STM has a more favorable performance in this

multimodal classification problem compared with single modality methods. Its accuracy rates are

significantly larger than other methods in most cases. In particular, we can see that the accuracy

rates of C-STM (pink) increase from case 1 to case 3, while the accuracy rates of CP-STM using

only the tensor data remains the same. This is because the difference between the class mean

vectors for the first tensor factor does not change from case 1 to 3. However, the difference

between class mean vectors for the matrix factor increases. Due to this fact, both C-STM and

CP-STM (yellow) which utilize matrix data have better performance for case 3. More importantly,

C-STM always outperforms CP-STM with matrix data as it enjoys the extra class information

from multiple modalities. In cases 4 and 5, where class information is in a single modality, the

advantage of C-STM is not as significant as the previous cases, though its performance is still better

than CP-STM. This indicates that C-STM can provide robust classification results even when the

additional modalities do not provide any class information. In case 6, where the class information

is from the shared factors, C-STM recovers the shared factors and provides significantly better

classification accuracy. Through this simulation, we showed that C-STM has a clear advantage

when using multimodal data in classification problems, and is robust to redundant data modalities.

The performance of tensor discriminant analysis is not as good as C-STM and CP-STM because

they are not designed for CP tensors.

93

4.7 Trial Classification for Simultaneous EEG-fMRI Data

In this section, we present the application of the proposed method on simultaneous EEG-fMRI

data. The data is obtained from [141]. In this study, there is data from seventeen individuals

(six females, average age 27.7) participating in three runs each of visual and auditory oddball

paradigms. 375 (125 per run) total stimuli per task were presented for 200 ms each with a 2-3

s uniformly distributed variable inter-trial interval. A trial is defined as a time window in which

subjects receive the stimuli and give responses. In the visual task, a large red circle on isoluminant

gray backgrounds was considered as the target stimuli while a small green circle was the standard

stimulus. For the auditory task, the standard and oddball stimuli were, respectively, 390 Hz

pure tones and broadband sounds which sound like "laser guns". During the experiment, the

stimuli were presented to all subjects, and their EEG and fMRI data are collected simultaneously

and continuously. We obtain the data from OpenNeuro website (https://openneuro.org/

datasets/ds000116/versions/00003). We utilize both EEG and fMRI in this data set with

our C-STM model to classify stimulus types across trials.

We pre-process both the EEG and fMRI data with Statistical Parametric Mapping (SPM 12)

([10]) and Matlab. Details of data pre-processing are provided in Appendix C.2. For each trial,

we construct a three-mode tensor corresponding to the EEG data for all subjects where the modes

represent channel × time × subject denoted as XXXC,1 ∈ R34×121×16. For fMRI data, there is only

one 3D scan of fMRI collected from a single subject during each trial. Time mode does not exist

in fMRI data because the trial duration is less than the repetition time of fMRI (time for obtaining

a single 3D volume fMRI). We further extract fMRI volumes from voxels in the regions of interest

(ROI) only for our study. ROI selection and data extraction are provided in Appendix C.2. We

extract fMRI volumes from 178 voxels for auditory oddball tasks, and 112 voxels for auditory tasks.

As a result, fMRI data for each trial are modeled by matrices whose rows and columns stand for

voxels and subjects: --- C,2 ∈ R16×178 for auditory task data, and --- C,2 ∈ R16×112 for visual task data.

To classify trials with oddball and standard stimulus, we collect 140 multimodal data samples

(XXXC,1, --- C,2) from auditory tasks, and 100 samples from visual tasks. For both types of tasks, the

94

https://openneuro.org/datasets/ds000116/versions/00003
https://openneuro.org/datasets/ds000116/versions/00003

Task Method Accuracy Precision Sensitivity Specificity AUC

Auditory

C-STM 0.890.890.890.05 0.830.07 1.000.00 0.770.11 0.890.890.890.06
CP-STM1 0.800.08 0.710.11 1.000.00 0.600.12 0.780.06
CP-STM2 0.830.06 0.760.07 0.990.05 0.650.11 0.820.05
CDMA1 0.550.10 0.510.09 0.960.09 0.200.21 0.550.06
CDMA2 0.670.09 0.610.11 0.920.07 0.460.14 0.700.08
DGTDA1 0.550.09 0.510.09 0.940.07 0.230.12 0.590.06
DGTDA2 0.670.09 0.600.10 0.900.09 0.460.13 0.680.08

Visual

C-STM 0.860.860.860.06 0.820.09 0.930.07 0.770.12 0.860.860.860.06
CP-STM1 0.760.08 0.660.11 1.000.00 0.540.12 0.780.05
CP-STM2 0.770.08 0.700.11 0.980.08 0.580.17 0.770.07
CDMA1 0.530.12 0.520.11 0.940.11 0.110.18 0.540.08
CDMA2 0.650.13 0.610.14 0.910.09 0.430.19 0.660.09
DGTDA1 0.560.11 0.540.11 0.940.06 0.170.12 0.560.07
DGTDA2 0.640.10 0.600.13 0.860.10 0.440.18 0.640.07

Table 4.2: Real Data Result: Simultaneous EEG-fMRI Data Trial Classification (Mean of Perfor-
mance Metrics with Standard Deviations in Subscripts)

numbers of oddball and standard trials are equal. We consider the trials with oddball stimulus as the

positive class, and the trials with standard stimulus as the negative class. Similar to the simulation

study, we select 20% of data as testing set, and use the remaining 80% for model estimation

and validation. The classification accuracy, precision (positive predictive rate), sensitivity (true

positive rate), specificity (true negative rate), and the area under the curve (AUC) of classifiers are

calculated using the test set for each experiment. The experiment is repeated for multiple times, and

the average accuracy, precision, sensitivity, and specificity, along with their standard deviations (in

subscripts) are reported in Table 4.2. The single mode classifiers CPSTM, CMDA, and DGTDA

are also applied on either EEG or fMRI data for comparison. The single mode classifiers applied

on EEG data are denoted by appending the method name with the number “1" , and those applied

on fMRI data are denoted by appending the method name with the number “2".

It can be seen that the classification accuracy for C-STM using multimodal data is higher than

any classifier based on single modality with a significant improvement in terms of average accuracy

95

rates and average AUC values. This improvement is observed for both auditory and visual tasks.

Particularly, the accuracy rate of C-STM in visual task is 9% higher than CP-STM using fMRI

data, the model with the second best performance. This significant performance improvement

demonstrates the clear advantage of our C-STM with multimodal data, which is consistent with the

previous conclusions from the simulation study. Similarly, the tensor discriminant analysis does

not work as well as CP-STM and C-STM, which also agrees with our observations in the simulation

study.

4.8 Conclusion

In this work, we have proposed a novel coupled support tensor machine classifier for multimodal

data by combining advanced coupled matrix tensor factorization and support tensor machine.

The most distinctive feature of this classifier is its ability to integrate features across different

modalities and structures. The approach can simultaneously process matrix and tensor data for

classification and can be extended to more than two modalities. Moreover, the coupled matrix

tensor decomposition helps unveil the intrinsic correlation structure in different modalities, making

it possible to integrate information from multiple sources efficiently. The newly designed kernel

functions in C-STMserve as a feature-level information fusion, combining discriminant information

from different modalities. In addition, the kernel formulation makes it possible to utilize the most

discriminative features from each modality by tuning the weight parameters in the function. Our

theoretical results demonstrate that the C-STM decision rule is statistically consistent.

An important theoretical extension of our approach would be the development of excess risk for

C-STM. In particular, we look for an explicit expression for the excess risk in terms of data factors

frommultiplemodalities to quantify the contribution of eachmodality tominimizing the excess risk.

By doing so, we are able to interpret the importance of each data modality in classification tasks. In

addition, quantifying the uncertainty of tensor and matrix factor estimation and their impact on the

excess risk will build the foundation to the next level statistical inference. Another possible future

work can be learning the weight parameters in kernel function via optimization problems in the

96

algorithmic aspect. As [55] introduced, the weights in the kernel function can be further estimated

by including a group lasso penalty in the objective function. Such a weight estimation procedure

can identify the significant data components and reduce the burden of parameter selection.

In conclusion, we believe C-STM offers many encouraging possibilities for multimodal data

integration and analysis. Its ability to handle multimodal tensor inputs will make it appropriate in

many advanced data applications in neuroscience research.

97

APPENDICES

98

APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Proof of Proposition 2.3.1

Proof. The proof of this theorem is quite straightforward. We need to use the tensor product space

defined in section 1.2. In addition, since we are discussing general tensor product, we will use ⊗

to denote it. ⊗ can be replaced with outer product ◦ or Kharti-Rao product � when facing specific

vector or matrix data. The proof will still holds.

Let VVV (9) , 9 = 1, , , .3 be compact subsets of R� 9 , 9 = 1, ..., 3. The tensor product of these

subsetsXXX = ⊗3
9=1VVV

(9) will be again a compact subspace of the tensor space R�1×...×�3 . LetKKK(XXX)

be the kernel sections of tensor kernels we defined in equation (2.2), and C(XXX) = { 555 : XXX → R}

be the collection of all continuous real-valued functions mapping CP tensors to scalars. We have

to prove for any 555 ∈ C(XXX), there exist an approximation in KKK(XXX). We will show such kinds of

approximation exists.

If 555 ∈ C(XXX), it has sup
XXX
| 555 | < ∞ due to continuity. Further, since 555 is defined on XXX and

continuous, then 555 ∈ C(XXX) and can be written as

555 =

A∑
:=1

_: 555
(1)
:
⊗ 555 (2)

:
... ⊗ 555 (3)

:
+ n (A.1)

where 555 (9)
:

are continuous function defined onVVV (9) , 9 = 1, , , .3. This decomposition exists due

to the fact that 555 is defined on XXX. As a result, 555 belongs to the functional tensor product space{
555 : XXX → R} in definition 1.2.2. It can also be exlpained by the fact that 555 is continuous on a

compact space, thus it is multilinear and has such a decomposition (Lemma 4.30 from [59]). n is

a reminder here, and can be as small as possible since 555 is uniformly bounded. For simplicity, we

shall ignore the n in the later proof for a while and mention it at the end. _: are bounded since 555 is

bounded.

If in every mode of the kernel functions are universal, the kernel functions are universal. For

99

each 555 (9)
:
, : = 1, ..., A; 9 = 1, ...3, there is a function 666(9)

:
∈ B?0={ G : GGG ∈ VVV (9)}, which is from

the kernel sections of the corresponding mode, such that

sup
VVV(9)
| 555 (9)
:
− 666(9)

:
| < n : = 1, ..., A; 9 = 1, ...3 (A.2)

for any arbitrary n > 0. Then for

666 =

A∑
:=1

_:666
(1)
:
⊗ 666(2)

:
... ⊗ 666(3)

:
(A.3)

We can have

sup
XXX∈XXX
| 555 − 666 | = sup

XXX∈XXX
|
A∑
:=1

_: 555
(1)
:
⊗ 555 (2)

:
... ⊗ 555 (3)

:
−

A∑
:=1

_:666
(1)
:
⊗ 666(2)

:
... ⊗ 666(3)

:
|

= sup
XXX∈XXX

A∑
:=1
|_: | |

3∏
9=1

555
(9)
:
(GGG (9)) −

3∏
9=1

666
(9)
:
(GGG (9)) |

6 A3n ·max(|_: |)

(A.4)

The last step is because of a simple inequality |0102 − 1112 | 6 |01 | |02 − 12 | + |12 | |01 − 11 |, and

universal property in definition 2.3.1. Since r, d, and _: are all bounded, let the n becomes as small

as possible, we have

sup
XXX∈XXX
| 555 − 666 | 6 n ∀ 555 ∈ C(XXX) (A.5)

for any arbitrary n > 0. The proof is completed. �

A.2 Proof of Theorem 2.3.1

Proof. The convergence in the theorem can be showed in two steps. Given the parameter _, we

denote

5 _=5
_
=5
_
= = arg min

555 ∈HHH
_ | | 555 | |2 + RL,)= (555) 5 _5

_
5 _ = arg min

555 ∈HHH
_ | | 555 | |2 + RL (555)

where

RL (555) = E(X×Y)L(H, 555 (XXX)) =
∫
L(H, 555 (XXX))3P

100

and

RL,)= (555) =
1
=

=∑
8=1
L

(
H8, 555 (XXX8)

)
L is a loss function. 5 _=5 _=5 _= is the optimal classifier learned from training data, and 5 _5 _5 _ is the optimal

from the RKHS HHH generated by tensor kernel function (2.2). Since the Bayes risk under loss

function L is defined as R∗ = min
555 :XXX→YYY

R(555) over all functions defined on XXX, we can immediate

show that

|R(5 _5 _5 _) − R∗ | 6 E(X×Y) |L(H, 5 _5 _5 _ (XXX)) − L(H, 5 ∗5 ∗5 ∗(XXX)) | 6 � (<0G) sup | 5 _5 _5 _ − 5 ∗5 ∗5 ∗ |

6 � (<0G) · n
(A.6)

This is the result of using condition Con.1 and Con.2 in the theorem. 5 _5 _5 _ is in the RKHS and

thus bounded by some constant depending on <0G . 5 ∗5 ∗5 ∗ is also continuous on compact subspace

XXX (because all the tensor components considered are bounded in condition Con.1) and thus is

bounded. The universal approximating property in conditionCon.3makes equation (A.6) vanishes

as n goes to zero. Thus, the consistency result can be established if we show |R(5 _=5 _=5 _=) − R(5 _5 _5 _) |

converges to zero. This can be done with Hoeffding equality ([36]) and Rademacher complexity

(see Theorem B.5.1).

From the objective function (2.4), we have

RL,)= (5=5=5=) + _= | | 5=5=5= | |
2 6 !0 (A.7)

under condition Con.2 when we simply let 555 = 0 as a naive classifier. Thus, | | 5=5=5= | | 6
√
!0
_=

. Let

"= =

√
!0
_=

. 5n5n5n ∈ HHH such that RL (5n5n5n) 6 RL (5 _5 _5 _) + n2 . | | 5n5n5n | | 6 "= when = is sufficiently large.

Due to condition Con.4, _= → 0, making "= → ∞. Further notice that we introduce 5n5n5n since

it is independent of =. As a result, its norm, even though is bounded by "=, is a constant and is

not changing with respect to =. By Rademacher complexity, the following inequality holds with

101

probability at least 1 − X, where 0 < X < 1

RL (5 _=5 _=5 _=) 6 RL,)= (5
_
=5
_
=5
_
=) +

2� (<0G)"=√
=

+ (!0 + � (<0G)"=)
√

log 2/X
2=

5n5n5n is not the optimal in training data 6 RL,)= (5n5n5n) + _= | | 5n5n5n | |
2 − _= | | 5 _=5 _=5 _= | |2 +

2� (<0G)"=√
=

+ (!0 + � (<0G)"=)
√

log 2/X
2=

Drop (_= | | 5 _=5 _=5 _= | |2 > 0) 6 RL,)= (5n5n5n) + _= | | 5n5n5n | |
2 + 2� (<0G)"=√

=

+ (!0 + � (<0G)"=)
√

log 2/X
2=

Rademacher Complexity again 6 RL (5n5n5n) + _= | | 5n5n5n | |2 +
4� (<0G)"=√

=

+ 2(!0 + � (<0G)"=)
√

log 2/X
2=

Let X = 1
=2 , and # large such that for all = > # ,

_= | | 5n5n5n | |2 +
4� (<0G)"=√

=
+ 2(!0 + � (<0G)"=)

√
log 2/X

2=
6
n

2

The inequality exists because | | 5n5n5n | | is a constant with respect to =, and all other terms are converging

to zero. Thus

RL (5 _=5 _=5 _=) 6 RL (5n5n5n) +
n

2
6 RL (5 _5 _5 _) + n

with probability 1 − 1
=2 . We conclude that

P(|RL (5 _=5 _=5 _=) − RL (5 _5 _5 _) | > n) → 0 (A.8)

for any arbitrary n . This establishes the weak consistency of CP-STM. For strong consistency, we

consider for each =

∞∑
==1
P(|RL (5 _=5 _=5 _=) − RL (5 _5 _5 _) | > n) 6 # − 1 +

∞∑
==1

1
=2 6 ∞

By Borel-Cantelli Lemma ([42]), RL (5 _=5 _=5 _=) → RL (5 _5 _5 _) almost surely. The proof is finished. �

102

APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proof for Proposition 3.3.1

Suppose a CP rank-A tensor X = È---1, .., ---3É is given with size �1 × �2.. × �3 . With a rank-1

projection tensor A? , the CP tensor random projection (3.5) can be written as

[555 TPR-CP(X)]? =< È���
(1)
? , ..., ���

(3)
? É, È--- (1) , .., --- (3)É >

=< 000
(1)
? ◦ 000

(2)
? ◦ ... ◦ 000

(3)
? ,

A∑
:=1

GGG
(1)
:
◦ GGG (2)

:
◦ ... ◦ GGG (3)

:
>

=

A∑
:=1

< 000
(1))
? , GGG

(1)
:

> ◦ < 000(2))? , GGG
(2)
:

> ...◦ < 000(3))? , GGG
(3)
:

>

(B.1)

000
(9)
? , GGG

(9)
:
∈ R� 9 , 9 = 1, ..., 3 are CP factors for the projection tensor A? and CP tensor X. 000(9)? ∼

"+#"+#"+# (000, f2���) is a multivariate random variable whose elements are identically and independently

distributed. Also, 000(9)? are identically and independently distributed with different value of ? =

1, .., % and 9 = 1, ..., 3. Now we consider the tensor-to-tensor random projection (3.6), and let

���(9) = (000(9))1 , ..., 000
(9))
% 9
)) ∈ R% 9×� 9 be the random projection matrices in (3.6). Notice that

the rows of matrices ���(9) are identically and independently distributed as the 000(9)? , since the

elements in the matrices ���(9) are also identically and independently distributed as N(0, f2). The

tensor-to-tensor CP random projection (3.6) is

555 TPR-CP-TT(X) = È���(1)--- (1) , ���(2)--- (2) , ..., ���(3)--- (3)É

=

A∑
:=1

< ���(1) , GGG (1)
:

> ◦ < ���(2) , GGG (2)
:

> ...◦ < ���(3) , GGG (3)
:

>

=

A∑
:=1

EEE
(1)
:
◦ EEE (2)

:
◦ ... ◦ EEE (3)

:

(B.2)

EEE
(9)
:

=< ���(9) , GGG (9)
:

>∈ R% 9 , 9 = 1, ..., 3 since it is just matrix vector multiplication. To show

the equivalence between (3.5) and (3.6), we have to show that [555 TPR-CP-TT(X)]?1,?2,...,?3 =

[555 TPR-CP(X)]? when a index mapping ccc is given, ccc(?1, ?2, ..., ?3) = ?, and
∏3
9=1 ? 9 = ?.

103

For an arbitrary ? =
∏3
9=1 ? 9 and ccc(?1, ?2, ..., ?3) = ?, we can find the element in projected

tensor with index ?1, ?2, ..., ?3 is

[555 TPR-CP-TT(X)]?1,?2,...,?3 =
A∑
:=1

EEE
(1)
?1 EEE
(2)
?2 ...EEE

(3)
?3

=

A∑
:=1

< 000
(1))
?1 , GGG

(1)
:

> ◦ < 000(2))?2 , GGG
(2)
:

> ...◦ < 000(3))?3
, GGG
(3)
:

>

(B.3)

where000(9)? 9 ∈ R
� 9 are rows ofmatrices ���(9) . Since000(9)? 9 are identically and independently distributed

for all ? 9 , 000
(9)
? 9

are equivalent to the 000(9)? in equation (B.1). Thus, the equation (B.3) is equivalent

to the equation (B.1). The proof is finished. Indeed, the equivalence can be identified as follow:

For each projection tensorAAA? in (3.5),AAA? = 000
(1)
?1 ◦ ... ◦ 000

(3)
?3

, where 000(9)? 9 ∈ R
� 9 are ? 9 -th rows of

matrices ���(9) . The order is decided by the index mapping ccc(?1, ?2, ..., ?3) = ?.

B.2 Proof of Proposition 3.5.1

We use the adding and subtraction trick to prove the proposition.

EAAA
[
RL (6_=6_=6_=)

]
− R∗L = [EAAA [RL (6

_
=6
_
=6
_
=) − RL,)AAA=

(6_=6_=6_=)]

+ EAAA
[
RL,)AAA=

(6_=6_=6_=) − RL,)AAA=
(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2

]
+ EAAA [RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
)]

+ [EAAA [RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2] − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2]

+ [RL (5 _=5 _=5 _=) − RL,)= (5
_
=5
_
=5
_
=)] + [R)= (5

_
=5
_
=5
_
=) + _ | | 5 _=5 _=5 _= | |2 − RL,)= (5

_5 _5 _) − _ | | 5 _5 _5 _ | |2]

+ [RL,)= (5
_5 _5 _) − RL (5 _5 _5 _)] + [RL (5 _5 _5 _) − R∗L,HHH + R

∗
L,HHH − R

∗
L + _ | | 5

_5 _5 _ | |2]

6

[
EAAA

[
RL (6_=6_=6_=) − RL,)AAA=

(6_=6_=6_=)
]]
+

[
EAAA

[
RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
)
]]

+
[
RL (5 _=5 _=5 _=) − RL,)= (5

_
=5
_
=5
_
=)

]
+

[
RL,)= (5

_5 _5 _) − RL (5 _5 _5 _)
]

+
[
EAAA

[
RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2

]
− RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2

]
+ � (_) + R∗L,HHH − R

∗
L

Since � (_) = RL (5 _5 _5 _) + _ | | 5 _5 _5 _ | | − R∗L,HHH , there are only two terms are dropped in the derivation.

104

• The first term dropped is EAAA [RL,)AAA=
(6_=6_=6_=) − RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2]. As we explained in

the paper, 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=

is the decision function but with coefficients estimated from CP-STM model.

As a result, it is not the optimal of the objective function (3.8). Since 6_=6_=6_= minimizes the

objective function (3.8) and _ | |6_=6_=6_= | |2 > 0, we get

RL,)AAA=
(6_=6_=6_=) − RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 6 RL,)AAA=

(6_=6_=6_=) + _ | |6_=6_=6_= | |2 − RL,)AAA=
(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
)

− _ | | 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
| |2

(Since 6_=6
_
=6
_
= minimizes (3.8)) 6 0

The inequality holds for all random projection defined by random tensorAAA, so

EAAA [RL,)AAA=
(6_=6_=6_=) − RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2] 6 0

• The second term dropped is [RL,)= (5 _=5
_
=5
_
=) + _ | | 5 _=5 _=5 _= | |2 − RL,)= (5 _5

_5 _) − _ | | 5 _5 _5 _ | |2]. Similar to the

previous dropped term, this term is also less or equal to zero. As we defined, 5 _=5 _=5 _= minimizes

the objective function (3.1) that evaluates loss over the training data)=. Even though 5 _5 _5 _ is

the class optimal with infinite-size training data, its objective function still has a greater value

than that of 5 _=5 _=5 _= . By comparing the values of objective function (3.1) on 5 _=5 _=5 _= and 5 _=5 _=5 _= , we can

see that [RL,)= (5 _=5
_
=5
_
=) + _ | | 5 _=5 _=5 _= | |2 − RL,)= (5 _5

_5 _) − _ | | 5 _5 _5 _ | |2] 6 0

By dropping these two non-positive terms, we prove the proposition.

B.3 Discussion on Assumptions AS.8

Assumption AS.8 ensures that the Bayes risk remains unchanged after random projection. This

assumption has also been made in [24]. This is a necessary condition to align our results with the

definition of classification consistency.

For any arbitrary random projection AAA, it is obvious that R∗L,AAA > R
∗
L . This is because the

optimal Bayes risk is achieved by choosing any measureable function. A function compose random

projection AAA and a decision rule should be measureable, and thus should be considered when

searching for Bayes rules. If R∗L,AAA > R∗L , then smallest achievable risk in projected data will no

105

longer be R∗L . By definition, a decision rule learned from the projected data just have to reach

to the R∗L,AAA to be consistent. This deviates from the result EAAA
[
RL (6_=6_=6_=)

]
→ R∗L we show in the

paper. Thus, we need the condition to guarantees that EAAA
[
RL (6_=6_=6_=)

]
→ R∗L indicating RPSTM’s

consistency aligns with the definition.

In [33, 24], many examples satisfying this condition are provided. Typically, if there is an

random projection AAA such that E[H | 555 TPR-CP-TT(XXX)] and XXX are independent, then the condition is

satisfied.

B.4 Proof of Proposition 3.5.2

Johnson-Lindenstrauss lemma gives concentration bound on the error introduced by random

projection in a single mode. (e.g. see [72] and [34]) We first show how this property is applied at

each mode of the tensor CP components in the following lemma.

Lemma B.4.1. For each fixed mode 9 = 1, 2, .., 3 and any two tensor CP factors GGG (9)1 , GGG
(9)
2 ∈ R� 9×1

among = training vectors, with probability at least (1 − X1) and the random projection matrices

described in AS.5, we have����| |���(9)GGG (9)1 − ���(9)GGG (9)2 | |
2
2 − ||GGG

(9)
1 − GGG (9)2 | |

2
2

���� 6 n | |GGG (9)1 − GGG (9)2 | |
2
2

Proof. The matrix ��� 9 ∈ R% 9×�
9
, where % 9 = $ (

log =
X1

n2). Under condition AS.5, the inequality

holds due to the JL-property ([72, 34]). �

Next, we apply this lemma to multiple modes of tensor CP factors, and derive a bound for the

difference between projected tensor kernel function (3.9) and tensor kernel function (3.2). We need

the following lemma and corollary to derive the bound.

LemmaB.4.2. Consider a 23 degree polynomial of independentCenteredGaussian or Rademacher

random variables as &23 (.) = &23 (H8, .., H3). Then for some n > 0 and b > 0 constant.

P(|&23 (.) − E(&23 (.)) | > n3) 6 42 exp
(
−

(n23

bVar[&23 (.)]
) 1

23
)

106

Proof. The proof can be found using hypercontractivity, [69] Thm 6.12 and Thm 6.7. This result

is also mentioned in [124]. �

From this lemma, we can show a corollary about the difference between projected tensor CP

components and original CP components.

Corollary B.4.2.1. For any two d-mode tensors in rank-r CP form, XXX1 =
A∑
:=1

GGG
(1)
1,: ◦ ... ◦ GGG

(3)
1,: and

XXX2 =
A∑
:=1

GGG
(1)
2,: ◦ ... ◦GGG

(3)
2,: , concentration bounds of polynomials can be derived below. Given n > 0,

b > 0 constant, we have following JL type result.

P(
A∑

:,;=1

3∏
9=1
|���(9)GGG (9)1,: − ���

(9)GGG (9)2,; | |
2
2 −

A∑
:,;=1

3∏
9=1
| |GGG (9)1,: − GGG

(9)
2,; | |

2
2 > n

3
A∑

:,;=1

3∏
9=1
| |GGG (9)1,: − GGG

(9)
2,; | |

2
2)

6 42 exp(−
(n23 ∏3

9=1 %
(9)

33A4

) 1
23
)

Proof. It is known that variable for any vector GGG (9) ∈ R� 9 and any matrix ���(9) made out of entries

of following independent normal with mean 0 and variance 1
% 9

, linear combination ���(9)GGG(9)
‖GGG(9) ‖2

∼

"+#"+#"+# (000, 1
% 9
���). So, % 9 ‖���

(9)GGG(9) ‖2

‖GGG(9) ‖22
follows Chi-square of degree of freedom % 9 . Using the fact that

expression,
A∑

:,;=1

3∏
9=1

| |���(9)GGG (9)1,: − ���
(9)GGG (9)2,; | |

2
2

| |GGG (9)1,: − GGG
(9)
2,; | |

2
2

is the sum of A2 identically distributed random variables with correlation 1. Therefore, the variance

of the sum is (A2)2 times variance of an individual term. Here each element in the summation is

a product of 3 independent scaled Chi-Square variables. Thus, each element in the summation is

polynomial of degree equals to 2d of Gaussian random variables. This result follows from lemma

B.4.2. In view of similar result can be found in [119], the constant b can be assumed to be 1. It is

worth noting that for polynomial of degree 2 or 3 = 1, sharper bound can be obtained as illustrated

in [72, 34].

�

Now we present the bound for tensor kernels.

107

Proposition B.4.1. For any two d-mode tensors in rank-r CP form, X1 =
A∑
:=1

GGG
(1)
1,: ◦ ... ◦ GGG

(3)
1,: and

X2 =
A∑
:=1

GGG
(1)
2,: ◦ ... ◦ GGG

(3)
2,: , concentration bounds of polynomials can be derived below. Suppose the

random projection 555 TPR-CP-TT is defined by projection tensor AAA, which satisfies the assumption

AS.5. Given n > 0, X1 depending on n as given in corollary B.4.2.1, �3,A constant depending on

3, we have following JL-type result. For a given tensor kernel function (·, ·),

P

(�� (
555 TPR-CP-TT(XXX1), 555 TPR-CP-TT(XXX2)

)
− (XXX1,XXX2)

�� > �3,An3) 6 X1

Proof.

|
(
555 TPR-CP-TT(XXX1), 555 TPR-CP-TT(XXX2)

)
− (XXX1,XXX2) |

= |
A∑

:,;=1

3∏
9=1

 (9) (���(9)GGG (9)1: , ���
(9)GGG (9)2;) −

(9) (GGG (9)1: , GGG
(9)
2;) |

6
A∑

:,;=1

3∏
9=1
| (9) (���(9)GGG (9)1: , ���

(9)GGG (9)2;) −
(9) (GGG (9)1: , GGG

(9)
2;) |

(Lipschitz continuity in AS.4) 6
A∑

:,;=1

3∏
9=1

!
(9)

| | |���(9)GGG (9)1: − ���

(9)GGG (9)2; | |
2
2 − ||GGG

(9)
1: − GGG

(9)
2; | |

2
2 |

(Max ! (9)
:

in AS.4) 6 !3

A∑
:,;=1

3∏
9=1
| | |���(9)GGG (9)1: − ���

(9)GGG (9)2; | |
2
2 − ||GGG

(9)
1: − GGG

(9)
2; | |

2
2 |

(Corollary B.4.2.1) 6 n3!3

A∑
:,;=1

3∏
9=1
| |GGG (9)1: − GGG

(9)
2: | |

2
2

(Assumption AS.7) 6
A∑

:,;=1
23n3!3 �

23
G

6 23A2!3 �
23
G n

3

(Denote �3,A = 23A2!3 �
23
G) = �3,An

3

Such part vanishes as n3 becomes as small as possible. �

The proposition shows that the difference between the projected kernel and original kernel function

can be bounded with probability at least 1 − X1, when condition AS.4, AS.5, and AS.7 hold.

108

Now we include conditions AS.1, AS.6 together with the previous results to show proposition

3.5.2. With a single random projection defined byAAA, the extra risk from random projection

|RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 |

contains two parts. They are bounded in separate ways.

• Difference between risks can be bounded by the following inequality. With probability at

least 1 − X1 (with respect to random projection), 0 < X1 < 1,��RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) − RL (5 _=5 _=5 _=)

�� = ��E(XXX×YYY) [L(5 _AAA,=5 _
AAA,=
5 _
AAA,=
(XXX), H) − L(5 _=5 _=5 _= (XXX), H)]

��
(AS.1 and Jensen’s Inequality) 6 � (<0G

√
!0
_
) · E(XXX×YYY)

[
| 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
(XXX) − 5 _=5 _=5 _= (XXX) |

]
6 � (<0G

√
!0
_
) ·

[=∑
8=1
|U8 |E(XXX×YYY){|H8 |·

|
(
555 TPR-CP-TT(XXX1), 555 TPR-CP-TT(XXX2)

)
− (XXX1,XXX2) |}

]
(Proposition B.4.1 and |H8 | = 1) 6 � (<0G

√
!0
_
) ·

[=∑
8=1
|U8 | · E(XXX×YYY) [�3,An3]

]
(Expectation over constant) 6 � (<0G

√
!0
_
) · Ψ�3,An3

where Ψ = sup{| |UUU | |1 =
=∑
8=1
|U8 | : 555 (XXX) = UUU)���H (XXX) ∈ HHH}.

• Difference between functional norms can be bounded in a similar way. With probability at

least 1 − X1 (with respect to random projection), 0 < X1 < 1,

|_ | | 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − _ | | 5 _=5 _=5 _= | |2 | 6 _

=∑
8=1

=∑
;=1

U8U; |H8 | |H; |·

(Absolute value) |
(
555 TPR-CP-TT(XXX1), 555 TPR-CP-TT(XXX2)

)
− (XXX1,XXX2) |

(Proposition B.4.1 and |H8 | = 1) 6 _(
=∑
8=1
|U8 |) · (

=∑
;=1
|U; |) · �3,An3

6 _Ψ2�3,An
3

Each of these two inequalities hold with probability at least 1 − X1, then two inequalities hold

simultaneously with probability at least 1−2X1. This can be showed with simple probability theory,

109

since the probability of at least one inequality does not hold is no more than 2X1. (Probability of

union is no more then the sum of probabilities.)

As a result, we conclude that with probability at least 1 − X1 with respect to random projection

|RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | 6 �3 Ψ [� (<0G

√
!0
_
) + _Ψ] n3 = $ (n

3

_@
)

The proposition 3.5.2 is proved.

B.5 Proof of Theorem 3.5.2

Theorem 3.5.2 establishes an upper bound on the excess risk of RPSTM model under a single

random projection. Although it does not give out the statistical consistency of RPSTM we are

pursuing, it summarizes the conclusions from proposition 3.5.2 and bound the excess risk in

proposition 3.5.1 under a single random projection.

The theorem assumes that if all the conditions AS.1 - AS.9 hold, then the excess risk under a

single random projection can be bounded with probability at least (1 − 2X1) (1 − X2)

RL (6_=6_=6_=) − R∗L 6 + (1) ++ (2) ++ (3)

• + (1) = 12� (<0G
√
!0
_
) · <0G

√
!0√
=_
+ 9Z̃_

√
log(2/X2)

2= + 2Z_
√

2 log(2/X2)
=

• + (2) = � (_)

• + (3) = �3,AΨ · [� (<0G
√
!0
_
) + _Ψ]n3

(1 − 2X1) is the probability with respect to random projections, and (1 − X2) is with respect to the

randomness of choosing training data)=. As noted in the theorem, Z̃_ can be regarded as the supreme

of the infinity norm of a function in the collection L ◦ FFF =
{
ℎℎℎ : (XXX, H) → L(555 (XXX), H) : 555 ∈ FFF

}
,

i.e.

Z̃_ = sup
ℎℎℎ∈L◦FFF

| |ℎℎℎ | |∞ = sup
ℎℎℎ∈L◦FFF

sup
(XXX,H)∈(XXX×YYY)

|ℎℎℎ(XXX, H) |

FFF =
{
555 : | | 555 | |∞ 6 <0G

√
!0
_

}
. All functions in the collection L ◦ FFF are compositing a loss

function together with a decision function, and are bi-variate. Z_ is a special case of Z̃_ by letting

110

the decision function to be the optimal CP-STM 5 _5 _5 _, i.e.

Z_ = sup
(XXX,H)∈(XXX×YYY)

|L(5 _5 _5 _ (XXX), H) |

As for Ψ, it is the supreme of the L-1 norm for CP-STM coefficient vector. In order to show this

theorem, we can use the result from proposition 3.5.1, but without taking expectation over random

projections.

With a single random projection, the proof of Proposition 3.5.2 in appendix B.4 already shows

how the term + (3) is developed. The probability component with respect to random projection

depicts the chance of + (3) term being true, and is explained in the proof. + (2) is directly taken

from the risk decomposition in Proposition 3.5.1. Thus, we only have to show+ (1) to establish the

theorem.

Indeed, our discussion in Proposition 3.5.1 unveils that, except the terms already bounded by

+ (2), + (3), and the term vanishes due to universal tensor kernels, + (1) only bounds the gaps

between empirical risk and expected risk, which are listed below.

RL (6_=6_=6_=) − RL,)AAA=
(6_=6_=6_=), RL (5 _=5 _=5 _=) − RL,)= (5

_
=5
_
=5
_
=)

RL,)AAA=
(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
), RL,)= (5

_5 _5 _) − RL (5 _5 _5 _)

Notice that consider the problem under a single random projection. Thus, the risks are not

expectations over all random projections. As we mentioned earlier, one of them can be bounded by

Hoeffding equality immediately, and the other three can be bounded by Rademacher Complexity.

We list the bound for each term, and explain how the bound is developed below. First, we consider

the term RL,)= (5 _5
_5 _) − RL (5 _5 _5 _) and get the following result.

Proposition B.5.1. With probability at least (1 − X2) for X2 ∈ (0, 1)

|RL,)= (5
_5 _5 _) − RL (5 _5 _5 _) | < 2Z_

√
2;>6 1

X2
=

Proof. We consider RL,)= (5 _5
_5 _) =

=∑
8=1
L(5 _5 _5 _ (XXX8), H8) as a sum of independent and identically

distributed (i.i.d) random variables since each pair (XXX8, H8) ∈)= are i.i.d distributed. RL (5 _5 _5 _) is the

111

expectation ofRL,)= (5 _5
_5 _). Since loss function is bounded by Z_ for every term inRL,)= (5 _5

_5 _), using

Hoeffding’s inequality ([36]), we obtain P[RL,)= (5 _5
_5 _) − RL (5 _5 _5 _)] > \) ≤ 4G?(− =\

8Z2
_

). Choosing

X2 = 4G?(− =\

8Z2
_

) leads to the above bound. �

However, the other three terms cannot be bounded in the same way. This is because the decision

function in the other three terms 5 _
AAA,=
5 _
AAA,=
5 _
AAA,=

, 6_=6_=6_= , and 5 _=5
_
=5
_
= are calculated from the training data and

hence conditional on)=. As a result, the risk of RPSTM model RL,)AAA=
(6_=6_=6_=) is not a sum of

independent random variables. This violates the assumption of Hoeffding inequality. We need

to use Rademacher Complexity, a stronger tool to bound the three terms left. We use this tool to

develop a bound between RL (6_=6_=6_=) and RL,)AAA=
(6_=6_=6_=).

We use R= (FFF) to denote the Rademacher complexity of a function class FFF , and R̂�= (FFF) to

denote the corresponding sample estimate with respect to samples �= = {/1, .., /=}. To make our

description more consistent, one may regard each /8 = (XXX8, H8), so that �= is another representation

of the training data)=. The reason for doing this is because we need to use composite function in

forms of L ◦ FFF . We shall present few well established results about the Rademacher complexity

without proof. One can find details about the proof from [106].

Theorem B.5.1. Consider a collection of classifiers FFF = { 555 : | | 555 | |∞ 6 Z̃_}. ∀X2 > 0, with

probability at least 1 − X2, we obtain:

sup
555 ∈FFF
|E[555 (/)] − 1

=

=∑
8=1

555 (/8) | 6 2R= (FFF) + Z̃_

√
log 2

X2
2=

The probability is with respect to the draw of �=.

This is the general inequality for Rademacher Complexity, and can be applied for all types of data

and functions 555 . There is a corollary from the Rademacher Complexity developed especially for

controlling classification risks. The necessity of this corollary is due to the fact that 555 is a uni-

variate function in the theorem, but loss functions in classification risk measurement are bi-variate.

As a result, it is not appropriate to replace 555 with loss functionL, and substitute �= with our tensor

training data)= directly in Theorem B.5.1.

112

Corollary B.5.1.1. Let FFF = { 555 : | | 555 | |∞ 6 <0G
√
!0
_
}, and its sample Rademacher Complexity

is R̂)= (FFF). Suppose L : R × YYY → R is a loss function satisfying condition AS.1. Then for all

possible training set)=,

R̂)= (L ◦ FFF) 6 2� (<0G
√
!0
_
) · R̂)= (FFF)

where L ◦ FFF = {(XXX, H) → L(555 (XXX), H) : 555 ∈ FFF }. � (<0G
√
!0
_
) is the Lipschitz continuous

constant of loss function L introduced in assumption AS.1.

The corollary bridges the Rademacher Complexity for general functions to the classification prob-

lems. This corollary is also know as a useful extension of Ledoux-Talagrand Contraction Theorem.

Lastly, since Corollary B.5.1.1 uses sample Rademacher Complexity, one more result from [106]

about kernel classes and RKHS is needed. Here, we continue using the notations about CP-STM

and RPSTM from our main content.

Corollary B.5.1.2. SupposeHHH is the RKHS generated by projected tensor kernel functions (3.2).

With assumption AS.3 and training data)=, for collection of function any function FFF (") ⊂ HHH

R̂)=
(
FFF (")

)
6
" <0G√

=

FFF (") =
{
555 ∈ HHH , | | 5 | | 6 ", " > 0

}
.

To use the inequality in Corollary B.5.1.1, we have to bound the infinite norm of the function

6_=6
_
=6
_
= due to the fact that we have to composite loss function L and decision function 6_=6_=6_= to measure

the risk. Thus, we provide the following proposition.

Proposition B.5.2. Let 6_=6_=6_= be the optimal RPSTM model. Under assumption AS.1, we have

| |6_=6_=6_= | |∞ 6 <0G
√
!0
_

113

Proof. Since 6_=6_=6_= = arg min
6∈HHHAAA

{RL,)AAA=
(666) + _ | |666 | |2}, we get

| |6_=6_=6_= | |2 6
1
_

[
RL,)AAA=

(0) + | |0| |2 − RL,)AAA=
(6_=6_=6_=)

]
(RL,)AAA

=
(6_=6_=6_=) negative and | |0 | |2 = 0) 6

1
_
RL,)AAA=

(0)

(Assumption AS.1) 6
!0
_

Since 6_=6_=6_= ∈ HHHAAA, andHHHAAA is a RKHS generated by projected tensor kernels. By RKHS property ,

for any function 666 ∈ HHHAAA

666(XXXAAA) = 〈666, (,XXXAAA)〉 6 | |666 | |
√

sup (·, ·) 6 <0G
√
!0
_

The step use Cauchy–Schwarz inequality. The inequality holds for all XXXAAA when the function 666 is

replaced with 6_=6_=6_= . �

Inspired by the proof of Proposition B.5.2, we consider a collection of function G_ = {666 : 666 ∈

HHHAAA, | |666 | | 6
√
!0
_
}, which obviously includes 6_=6_=6_= . Due to Corollary B.5.1.2 and Proposition B.5.2,

we have

R̂= (G_) 6 <0G
√
!0
=_

and | |666 | |∞ 6 <0G
√
!0
_

for all 666 ∈ G_. Thus, we can now utilize Theorem B.5.1 to show the bound

between RL (6_=6_=6_=) and RL,)AAA=
(6_=6_=6_=).

Proposition B.5.3. Let G_ = {666 : | |666 | | 6
√
!0
_
}. Assume conditions AS.1, AS.3, AS.4, and AS.7.

Let X2 > 0, with probability at least 1 − X2 and a given random projection defined byAAA

|RL (6_=6_=6_=) − RL,)AAA=
(6_=6_=6_=) | 6 4� (<0G

√
!0
_
) · <0G

√
!0
=_
+ 3Z̃_

√
log(2/X2)

2=
(B.4)

The probability is with respect to the join distribution ofXXX ×YYY.

Proof. Since 6_=6_=6_= ∈ G_ and | |666 | |∞ 6 <0G
√
!0
_

for all 666 ∈ G_. Let H_ = L ◦ G_ =
{
ℎℎℎ : ℎℎℎ =

L(666(XXX), H), 666 ∈ G_}. Then | |ℎℎℎ | |∞ 6 Z̃_ as we noted in the description of Theorem 3.5.2. Theorem

114

B.5.1 then suggests given a training data)= and its projected counterpart,

|RL (6_=6_=6_=) − RL,)AAA=
(6_=6_=6_=) | 6 sup

ℎℎℎ∈H_

��EXXX×YYYℎℎℎ(/) − 1
=

=∑
8=1

ℎℎℎ(/8)
��

(Theorem B.5.1 and | |ℎℎℎ | |∞ 6 Z̃_ by definition) 6 2R= (H_) + Z̃_

√
log(2/X2)

2=

(McDiarmid’s inequality) 6 2
(
R̂= (H_) + Z̃_

√
log(2/X2)

2=

)
+ Z̃_

√
log(2/X2)

2=

(Corollary B.5.1.1) 6 2
(
2� (<0G

√
!0
_
) · R̂= (G_) + Z̃_

√
log(2/X2)

2=
)
+

Z̃_

√
log(2/X2)

2=

(Corollary B.5.1.2) 6 4� (<0G
√
!0
_
) · <0G

√
!0
=_
+ 3Z̃_

√
log(2/X2)

2=

The proposition is proved. �

Finally, we can use the exact same way to control RL (5 _=5 _=5 _=) − RL,)= (5 _=5
_
=5
_
=) and RL,)AAA=

(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) −

RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
). Since the probability 1 − X2 is with respect to sampling of training data)=. Given a

random projection, if we get)=, we get)AAA= . Hence, the randomness of all the four terms bounded

by + (1) holds simultaneously. We can conclude that with probability at least 1 − X2,

+ (1) = 12� (<0G
√
!0
_
)
 <0G

√
!0√

=_
+ 9Z̃_

√
log(2/X2)

2=
+ 2Z_

√
2 log(2/X2)

=
(B.5)

Theorem 3.5.2 is proved. As one can see, the term + (1) and + (3) converge to zero as we assumed.

The � (_) term in + (2) actually motivates us to make assumption AS.9 to make the excess risk

converging.

B.6 Convergence Rate of Squared Hinge and Hinge Loss

We establish the explicit convergence rate for Squared Hinge and Hinge loss in this section. To

do that, we have to utilize some properties and facts that hold for these two loss functions. These

properties are listed below without proof since they can be easily verified. One can refer [128] for

the proof. For similarity, we use L1 and L2 to denote Hinge and Squared Hinge loss.

1. For both loss function, _ | | 5 _5 _5 _ | |2

< � (_) with a given _ > 0.

115

2. For both loss function, | | 5 _5 _5 _ | |∞ = sup
XXX∈HHH
| 5 _5 _5 _ (XXX) | 6 <0G | | 5 _5 _5 _ | | 6 <0G

√
!0
_
.

3. For hinge loss, !0 = 1, Z_ ≤ 1 + <0G
√

1
_
, and Z̃_ ≤ 1 + <0G

√
� (_)
_
, � (<0G

√
!0
_
) = 1

4. For square hinge loss,!0 = 1, Z_ ≤ (1+ <0G
√

1
_
)2, Z̃_ ≤ 2(1+ � (_)

_
), and� (<0G

√
!0
_
) =

2 <0G
√

1
_
.

5. For hinge loss, ΨL1 6
1
_
since the dual problem of CP-STM restrict U8 6 1

2=_ . (See section

2.2)

6. For square hinge loss, using lemma ΨL2 = $ (
1
_
)

For the property 6 about Squared Hinge loss, we provide some discussion here.

Lemma B.6.1. Let =+ and =− be training samples with label +1 and −1 respectively. Define

Ψ = BD?
XXX8∈X

{∑ |V8 | : 5 =
∑
V8 (XXX8, .)} Supremum of absolute sum of all coefficients over every

possible function in RKHS is given by

ΨL2 6
1

� + =_
4=+=−

where �::: = min
VVV:VVV)111=1

VVV) VVV depends on kernel matrix

The proof of this lemma is available at [39]. Using this lemma, we can obtain a corollary and

establish the last property about Squared Hinge loss.

Corollary B.6.1.1. For Squared Hinge loss, supremum of sum of absolute coefficients is finite as

sample size grows.

ΨL2 = $ (
1
_
)

Proof. Sum of eigenvalues of is of order $ (=), since trace of is of order $ (=). The trace of

 is indicated by the facts that (XXX8,XXX8) = $ (1) guaranteed by assumption AS.7. Considering
4=+=−
= 6 1 from arithmetic mean and geometric mean inequality. Assuming that is positive

definite, then ΨL2 = $ (1). This bound agrees with the bound of Theorem 3.3 in [29], which is

116

of order $ (1
_
) at constant level. In this case � is 0 under the situation where is not positive

definite. Combining these two conditions for the kernel matrix , the corollary is proved. �

Note that depending on kernel and geometric configuration of data points. This quantity influences

error of projected classifier.The above bounds are consistent with [39]. Assuming the data are from

bounded domain, i.e | |XXX| |2 6 �3,A The gram matrix can have minimum eigenvalue as positive

so � > 0 . The key idea is to divide the bounded domain into minimal increasing sequence of

discs �= formed between rings of radius '=−1 and '= such that X ⊆ ∪#
==1�=. So the diameter

of XXX ≤ 2'# assuming
∑
'2
= < ∞ and then count the number of points in each �=. So some

regularity conditions on distribution of data for each disc �= is necessary to evaluate bounds on

eigenvalues of Gram matrix. For unknown case, we can estimate the Gram matrix. [126] discusses

the regularization error in such estimation

B.6.1 Proof of Proposition 3.5.3

For Squared Hinge loss, consider the projected dimension to be % 9 = d3A
4
3
(;>6 =

X1
)2

n2 e + 1 for each

mode 9 = 1, 2, ..3. Adopt theorem 3.5.2 and the properties 1 2, 4 and 6, we have with probability

at least (1 − 2X1)) (1 − X2) and some [∈ (0, 1]

RL (6_=6_=6_=) − R∗L 6
24 2

<0G√
=_2

+ 18(1 + <0G
� (_)
_
)
√
;>6(2/X2)

2=
+ 2(1 +

√
_
)2

√
2;>6(2/X2)

=

+ � (_) + �� [2 <0G
1
_

√
1
_
+ _
_
] n

3

_

6 $ (1
√
=_2
)

√
;>6

2
X2
+$ (1

√
=_
) +$ (1√

=_2(1−[)
)

√
;>6

2
X2
+$ (_[) +$ (n

3

_
3
2
)

X1 ∈ (0, 1
2) and X2 ∈ (0, 1). Plugging in the assumption AS.10 and replace the last term in the

equation above with a number in term of =, we obtain

RL (6_=6_=6_=) − R∗L 6 �

√
;>6(2

X2
) · (1

=
)
`[

2[+3

Now n = (1=)
`

23 for 0 < ` < 1, and _ = (1=)
`

2[+3 for some 0 < [6 1. The projected dimension

becomes % 9 = d3A
4
3
(;>6 =

X1
)2

n2 e + 1.

117

B.6.2 Proof of Proposition 3.5.4

The convergence rate for Hinge loss are established using the same way as that of Squared Hinge

loss. Adopting theorem 3.5.2 together with the properties 1, 2, 3, and 5, we conclude that

RL (6_=6_=6_=) − R∗L 6
12
√
=_
+ 9
(1 + <0G)√

_

√
;>6(2/X2)

=
+ 2(1 + <0G

� (_)
√
_
)
√

2;>6(2/X2)
=

+ � (_) + �� [2 +
_

_
] n
3

_

6 $ (1
√
=_
)

√
;>6(2

X2
) +$ (1√

=_2(1−[)
)

√
;>6(2

X2
) +$ (_[) +$ (n

3

_
)

with % 9 = $ (
[;>6 =

X1
]2

n2) for each mode 9 = 1, 2, ..3. The inequality holds for probability at least

(1 − 2X1) (1 − X2), for some X1 ∈ (0, 1
2) and X2 ∈ (0, 1). Use the assumption AS.10 again, we get

RL (6_=6_=6_=) − R∗L 6 �

√
;>6(2

X2
) (1
=
)
`[

2[+2

The n = (1=)
`

23 for 0 < ` < 1, and _ = (1=)
`

2[+2 for some 0 < [6 1. The projected dimension

becomes % 9 = d3A
4
3 =

`
3 [;>6(=/X1)]2e + 1.

B.7 Proof of theorem 3.5.3

Theorem 3.5.3 establishes the rate of convergence for expected risk difference, showing ℓ1

consistency of error vanishing as sample size increases. Thus theorem 3.5.3 establishes stronger

optimality of our algorithm. In this subsection, we show theorem 3.5.3 holds, which is a much

stronger result than the risk difference vanishing in probability.

First, we show a corollary about the expected difference between projected tensor CP compo-

nents and original CP components.

Corollary B.7.0.1. For any two d-mode tensors in rank-r CP form, XXX1 =
A∑
:=1

GGG
(1)
1,: ◦ ... ◦ GGG

(3)
1,: and

XXX2 =
A∑
:=1

GGG
(1)
2,: ◦ ... ◦ GGG

(3)
2,: , expectation of difference of tensor norm and its projection have a upper

118

bound as shown below.

E|
A∑

:,;=1

3∏
9=1
|���(9)GGG (9)1,: − ���

(9)GGG (9)2,; | |
2
2 −

A∑
:,;=1

3∏
9=1
| |GGG (9)1,: − GGG

(9)
2,; | |

2
2 |

6 A2

√√√ 33∏3
9=1 % 9

A∑
:,;=1

3∏
9=1
| |GGG (9)1,: − GGG

(9)
2,; | |

2
2

Proof. It is known that for any real random variable, , E(|, |) 6
√
E(,2). Using the aforemen-

tioned result along with variance of difference of projection stated in the proof of corollary B.4.2.1,

we prove the following result. �

Next we derive the expected difference in tensor kernel due to projection

Proposition B.7.1. For any two d-mode tensors in rank-r CP form, XXX1 =
A∑
:=1

GGG
(1)
1,: ◦ ... ◦ GGG

(3)
1,: and

XXX2 =
A∑
:=1

GGG
(1)
2,: ◦ ... ◦ GGG

(3)
2,: . Suppose the random projection 555 TPR-CP-TT is defined by projection

tensorAAA, which satisfies the assumption AS.5. For a given tensor kernel function (·, ·). We have

following bound on expected difference of tensor kernel due to projection, here constant �3,A is

taken from proposition B.4.1

E

(�� (
555 TPR-CP-TT(XXX1), 555 TPR-CP-TT(XXX2)

)
− (XXX1,XXX2)

��) 6 �3,AA2

√√√ 33∏3
9=1 % 9

Proof. We proceed similarly as in proof of proposition B.4.1. Using result on from proposition

B.7.0.1, we derive our result. �

Using the results from above proposition B.7.1 and derivations mentioned in proof of proposition

3.5.2. As a result, we conclude that expectation with respect to random projection

EAAA |RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | 6 �3,A Ψ [� (<0G

√
!0
_
) + _Ψ]

√√√ 33∏3
9=1 % 9

= $ (1

_@
√∏3

9=1 % 9
)

(B.6)

119

However,it should be noted that for fixed sample size = and thus fixed n , the projected dimension

% 9 changes as a function of probability X1 only. Now we prove the following result on expected

risk of projected error, which is shown to be vanishing with increasing sample size.

Proposition B.7.2. Based on conditions AS.1 to AS.8 and conditions AS.10 to AS.11, the expected

risk of projection error goes to 0 as = increases.

E=EAAA |RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | = $ (

n3

_@
)

Proof. From equation B.6 and condition AS.5, we obtain following statement

With probability at least 1 − X1,

EAAA |RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | 6

1

_@
√∏3

9=1 % 9

(AS.5) 6
n3

_@
$ (1
[;>6(=

X1
)]3
)

(X1 as function of = AS.11) 6
n3

_@
$ (1
=
)

Using above equation and substituting value of X1 as a function of = from conditionAS.11, we have

established that for sufficient large value of =

P=

(
EAAA |RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | > $ (

n3

_@
) 1
=

)
6 = exp(−=

1
3) (B.7)

.

We utilize the following lemmawhich states about the expectation of a sequence of randomvariables

with distribution function specific to equation B.7

LemmaB.7.1. For some 3 > 1, let,= be a sequence of positive random variables with distribution,

for sufficiently large =

P= (,= >
1
=
) 6 = exp(−=

1
3)

Then, the sequence,= is uniformly bounded almost surely and in expectation !1 norm.

120

Proof. We can show that
∑∞
= P= (,= > 1) < ∞. By Borel-Cantelli lemma, the sequence ,=

is uniformly bounded above by 1 almost surely. By Dominated convergence theorem, for any

sequence of positive random variables that is uniformly bounded almost surely; then the expectation

is bounded by the uniform bound or E= (,=) > 1 for all sufficiently large =. �

Let us denote, EAAA |RL (5 _AAA,=5 _
AAA,=
5 _
AAA,=
) + _ | | 5 _

AAA,=
5 _
AAA,=
5 _
AAA,=
| |2 − RL (5 _=5 _=5 _=) − _ | | 5 _=5 _=5 _= | |2 | = ,=$ (n

3

_@
). Assuming 3 to be

the order of feature tensors, we claim using lemma B.7.1 that

E=
(
,=$ (

n3

_@
)
)
6 $ (n

3

_@
)

Thus, we conclude the proof for risk difference due to projection as stated in proposition B.7.2. �

In the following statements, we bound the expectation of sampling error of training data.

Proposition B.7.3. Based on condition AS.1 to AS.4 and AS.7, the expectation of sampling risk

vanishes as sampling size increases.

E=

(
|RL (6_=6_=6_=) − RL,)AAA=

(6_=6_=6_=) + RL (5 _=5 _=5 _=) + RL,)= (5
_
=5
_
=5
_
=)

+ RL,)AAA=
(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
) + RL,)= (5

_5 _5 _) − RL (5 _5 _5 _) |
)

= $ (1
√
=_2
) +$ (Z̃_

√
1

2=
) +$ (Z_

√
1
=
)

Proof. Lets denote the random variable |RL (6_=6_=6_=) − RL,)AAA=
(6_=6_=6_=) + RL (5 _=5 _=5 _=) + RL,)= (5 _=5

_
=5
_
=)

+ RL,)AAA=
(5 _
AAA,=
5 _
AAA,=
5 _
AAA,=
) − RL (5 _AAA,=5 _

AAA,=
5 _
AAA,=
) + RL,)= (5 _5

_5 _) − RL (5 _5 _5 _) | as �=. Also, �= is independent of random

projection; thus taking over EAAA does not change it.

Ignoring the constants, we derive the following result from equation B.5,

P=

(
�= > $ (

1
√
=_2
) +$ (Z̃_√

=

√
log(2/X2)) +$ (

Z_√
=

√
log(2/X2)

)
6 X2

We need the following proposition on sub Gaussian random variable to prove above proposition

B.7.3

121

Proposition B.7.4. For any real random variable , with sub Gaussian tail, meaning P
(
, >√

log(2/X2)
)
6 X2; then E(,) = $ (1)

Proof. Using change of variable, X2 = 24−D2; we obtain P(, > D) 6 24−D2 . Now using identity

that for any positive random variable, , E(,) =
∫ ∞
0 P(, > F) 3F, we proof our proposition. �

We further split�= = $ (1√
=_2
)+$ (Z̃_√

=
),1+$ (

Z_√
=
),2 where,1 and,2 are random variables

with Sub Gaussian tails. We can apply the above proposition B.7.4 about sub Gaussian random

variables to prove proposition B.7.3. �

Gathering results from theorem 3.5.2, proposition B.7.2 and proposition B.7.3, we can now

show the following conclusion.

E= |EAAA [RL (6_=)] − R∗L | 6 $ (
1
√
=_2
) +$ (Z̃_

√
1

2=
) +$ (Z_

√
1
=
) +$ (� (_)) +$ (n

3

_@
) (B.8)

Referring to value Z̃_ and Z_ as mentioned in proof of proposition 3.5.4 and proposition 3.5.3.

Under conditions AS.6 and conditions AS.9 to AS.11, we show validity of our claim as a corollary

of equation B.8. Therefore, we complete our proof of theorem 3.5.3

B.8 Technical Details about Numerical Studies

All the code for our numerical studies are available at our Github repository https://github.

com/PeterLiPeide/TEC_Tensor_Ensemble_Classifier. In the Simulation folder, one can

find all the values of tuning parameter, optimal rank of CP decomposition, and the dimension of

random projection. We also provide a code to regenerate our synthetic data, so that the whole

simulation study is reproducible with our CP-STM module.

122

https://github.com/PeterLiPeide/TEC_Tensor_Ensemble_Classifier
https://github.com/PeterLiPeide/TEC_Tensor_Ensemble_Classifier

B.9 Simulation Study Discussion

Model Methods RBF-SVM AAM LLSVM BSGD LDA RF

F2 Accuracy (%) 94.50 75.31 95.94 96.67 89.13 98.50
STD (%) 2.15 6.18 1.86 3.95 3.64 1.50
Time (s) 92 120 360 790 205 9.5

F3 Accuracy (%) 100 83.33 98.50 77.5 97.63 100
STD (%) 0.00 3.54 1.37 14.39 1.90 0.00
Time (s) 80 120 385 935 175 7.5

F5 Accuracy (%) 89.63 52.92 50 50 83.75 76.50
STD (%) 2.80 8.28 0.00 0.00 4.50 7.65
Time (s) 117 140 350 1820 231 8.65

Table B.1: TEC Simulation Results II: Cluster with 128GB RAM

For the completeness of our numerical study, we further apply the vector-based methods in

simulation study 3.6 to those high dimensional classification tasks on a high performance cluster.

The cluster is equipped with a 16-core CPU and 128GB of memory. The classification accuracy

of all the vector-based classifier in F2, F3, and F5 tasks are provided in table B.1. If we further

consider these results obtained from a more power machine, the advantages of our TEC models are

more impressive. With much more memory, the BSGD model provides the best accuracy rate as

96.67% in F2. However, our TEC with Hinge loss has 98% average accuracy rate. Similar situation

also happens in F5 where the best vector-based method RBF-SVM provides 89.63% accuracy rate.

Our TEC with Square Hinge loss outperforms slightly than RBF-SVM. Only in F3, RBF-SVM and

RF have the best performance, and are better than TECmodels with 2% accuracy rates. Since these

performance requires more computer memory, we believe TEC models are in general have greater

potential than all these traditional methods.

123

APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Proof of Theorem 4.5.1

Proof. To prove the proposition 4.5.1, we introduce few more notations here. Let L be the loss

function satisfying the condition AS.2. We denote the classification risk for an arbitrary decision

function, 555 , as

RL (555) = EX×YL(H, 555 (XXX)) =
∫
L(H, 555 (XXX))3P

The expectation is taken over the joint distribution ofXXX×YYY. Notice that this risk notation, RL (555),

is different from our notation R(555) in section 4.5 since we use the Lipschitz continuous loss L

instead of the "zero-one" loss to measure the classification error. L is also called surrogate loss for

classification problems. Examples of such surrogate loss functions include Hinge loss and Squared

Hinge loss. Comparison of these loss functions and their statistical properties can be found in

[151]. If we denote the Bayes risk under the surrogate loss L as R∗L , i.e. R
∗
L = minRL (555) for

all measurable function 5 , then the result from [151] says RL (5=5=5=) → R∗L indicates R(5=5=5=) → R∗

for any decision rule { 5=5=5=}. This conclusion holds as long as the surrogate loss is "self-calibrated",

see [128]. Since we use Hinge loss in our problem, and Hinge loss is known to be Lipschitz

and self-calibrated, our assumption AS.2 holds in our discussion. Thus, we only need to show

RL (5=5=5=) → R∗L for the proof of our proposition 4.5.1.

Given the tuning parameter _ satisfying condition AS.4, we denote

5 _=5
_
=5
_
= = arg min

555 ∈HHH
_ · | | 555 | |2 + 1

=

=∑
8=1
L(555 (XXX8), H8)

whereHHH is the reproducing kernel Hilbert space (RKHS) generated by the kernel function (4.8).

As we mentioned in the section 4.3,HHH is also know as the collection of functions which are in the

form of equation (4.10). Now we further assume

5 _5
_
5 _ = arg min

555 ∈HHH
_ · | | 555 | |2 + RL (555)

124

Then 5 _5 _5 _ is the optimal decision function fromHHH such that it minimizes the expected risk. Com-

paring 5 _=5 _=5 _= with 5 _5 _5 _, we can understand that 5 _5 _5 _ is the version of 5 _=5 _=5 _= when the size of training data

is as large as possible. If we denote RL,)= (555) =
1
=

=∑
8=1
L(555 (XXX8), H8), then RL,)= (555) is a sample

estimate of RL (555). With 5 _5 _5 _, we can show that

|RL (5 _=5 _=5 _=) − R∗L | 6 |RL (5
_
=5
_
=5
_
=) − RL (5 _5 _5 _) | + |RL (5 _5 _5 _) − R∗L |

through triangular inequality. Since the Bayes risk under loss function L is defined as R∗ =

min
555 :XXX→YYY

R(555) over all functions defined onXXX, we can immediate show that

|R(5 _5 _5 _) − R∗ | 6 E(X×Y) |L(H, 5 _5 _5 _ (XXX)) − L(H, 5 ∗5 ∗5 ∗(XXX)) | 6 � (<0G) sup | 5 _5 _5 _ − 5 ∗5 ∗5 ∗ |

6 � (<0G) · n
(C.1)

This is the result of using condition AS.1 and AS.2 in the proposition 4.5.1. 5 _5 _5 _ is in the RKHS and

thus bounded by some constant depending on <0G . 5 ∗5 ∗5 ∗ is also continuous on compact subspaceXXX

(because all the tensor components considered are bounded in conditionAS.1) and thus is bounded.

The universal approximating property in condition AS.3 makes equation (C.1) vanishes as n goes

to zero. Thus, the consistency result can be established if we show |R(5 _=5 _=5 _=) − R(5 _5 _5 _) | converges to

zero. This can be done with Rademacher complexity, see Chapter 26 in [125].

From the objective function (4.9), we have

RL,)= (5=5=5=) + _= | | 5=5=5= | |
2 6 !0 (C.2)

under condition AS.2 when we simply let 555 = 0 as a naive classifier. Thus, | | 5=5=5= | | 6
√
!0
_=

. Let

"= =

√
!0
_=

. 5n5n5n ∈ HHH such that RL (5n5n5n) 6 RL (5 _5 _5 _) + n2 . | | 5n5n5n | | 6 "= when = is sufficiently large.

Due to condition AS.4, _= → 0, making "= → ∞. Further notice that we introduce 5n5n5n since it

is independent of =. As a result, its norm, even though is bounded by "=, is a constant and is

not changing with respect to =. By Rademacher complexity, the following inequality holds with

125

probability at least 1 − X, where 0 < X < 1

RL (5 _=5 _=5 _=) 6 RL,)= (5
_
=5
_
=5
_
=) +

2� (<0G)"=√
=

+ (!0 + � (<0G)"=)
√

log 2/X
2=

5n5n5n is not the optimal in training data 6 RL,)= (5n5n5n) + _= | | 5n5n5n | |
2 − _= | | 5 _=5 _=5 _= | |2 +

2� (<0G)"=√
=

+ (!0 + � (<0G)"=)
√

log 2/X
2=

Drop (_= | | 5 _=5 _=5 _= | |2 > 0) 6 RL,)= (5n5n5n) + _= | | 5n5n5n | |
2 + 2� (<0G)"=√

=

+ (!0 + � (<0G)"=)
√

log 2/X
2=

Rademacher Complexity again 6 RL (5n5n5n) + _= | | 5n5n5n | |2 +
4� (<0G)"=√

=

+ 2(!0 + � (<0G)"=)
√

log 2/X
2=

Let X = 1
=2 , and # large such that for all = > # ,

_= | | 5n5n5n | |2 +
4� (<0G)"=√

=
+ 2(!0 + � (<0G)"=)

√
log 2/X

2=
6
n

2

The inequality exists because | | 5n5n5n | | is a constant with respect to =, and all other terms are converging

to zero. Thus

RL (5 _=5 _=5 _=) 6 RL (5n5n5n) +
n

2
6 RL (5 _5 _5 _) + n

with probability 1 − 1
=2 . We conclude that

P(|RL (5 _=5 _=5 _=) − RL (5 _5 _5 _) | > n) → 0 (C.3)

for any arbitrary n . This establishes the weak consistency of CP-STM. For strong consistency, we

consider for each =

∞∑
==1
P(|RL (5 _=5 _=5 _=) − RL (5 _5 _5 _) | > n) 6 # − 1 +

∞∑
==1

1
=2 6 ∞

By Borel-Cantelli Lemma, RL (5 _=5 _=5 _=) → RL (5 _5 _5 _) almost surely, see [42]. The proof is finished. �

126

C.2 Data Pre-processing for Section 4.7

We provide further details about our EEG-fMRI data pre-processing and fMRI data extraction

in this section. Most of the processing steps are referred from [65].

C.2.1 fMRI Data

The fMRI data processing includes three major steps, which are pre-processing, regions of interests

(ROI) identification, and data extraction. We describe all these steps here. All the steps are

performed by SPM 12 in Matlab. There are five steps in the image pre-processing part including

realignment, co-registration, segment, normalization, and smoothing.

• Realignment: It is a procedure to align all the 3D BOLD volumes recorded along the time to

remove artifacts caused by head motions, and also to estimate head position. For each task,

there are three sessions of fMRI scans, providing 510 scans in total for each subject. These

scans are realigned within subject to the average of these 510 scans. (average across time)

In SPM, we create three independent sessions to load all the fMRI runs, and choose not to

reslice all the images at this step. The reslicing will be done in normalization step. Avoiding

extra reslicing can avoid introducing new artifacts. The mean scan is created in this step for

co-registration.

• Co-registration: Since all the fMRI scans are aligned to the mean scan, we have to transform

the T1 weighted anatomical scan to match their orientation. Reason for doing this is that all

the data will finally be transformed to a standardized space. Estimating such a transformation

with T1 weighted scan can provide a high accuracy, since anatomical scans have higher

resolutions. Matching the orientation of T1 weighted scan with all the fMRI scans makes it

possible to apply the transformation estimated from T1 scan directly on fMRI data. In this

step, we let the mean fMRI scan to be stationary, and move T1 anatomical scan to match it.

A resliced T1 weighted scan is created in this step.

127

• Segment: This step estimate a deformation transformation mapping data into MNI 152

template space [83, 22]. A forward deformation field is created in this step.

• Normalization: In this step, the forward deformation is applied to all realigend fMRI scans,

transforming all the data into MNI template space. The voxel size is set to be 3 × 3 × 4 mm,

which is the same as the original images.

• Smoothing: All normalized fMRI volumes are then smoothed by 3D Gaussian kernels with

full width at half maximum (FWHM) parameter being 8 × 8 × 8.

This pre-processing procedure is applied to auditory and visual fMRI scans separately and inde-

pendently.

For each task, the processed fMRI are used to for statistcal analysis introduced in [96, 145].

These models are basic linear mixed effect model with auto-regression covariance structure. Since

these models are standard and are out of the scope of this dissertation, we do not introduce them in

this part. For the first level (subject level) analysis, we use themodel to estimate two contrast images:

standard stimulus over baseline and oddball stimulus over baseline. These two are difference of

average BOLD signals during stimulus time and that during no stimulus (baseline) time. They can

be understand as the estimate V̂ in a regression model H = GV + n . These contrasts are then pooled

together in the group-level analysis. For each voxel, the group-level analysis performs a T-test

to compare the BOLD signals in standard contrasts and oddball contrasts. For voxels whose test

results is significant, SPM highlighted them as the regions of interest (ROI). The ROI of auditory

and visual tasks are presented in the figure C.1 and figure C.2 with P-values. Figure C.3 shows the

exact ROIs in the standard brain template in SPM 12.

The coordinates of these activate voxels are also provided in the statistical analysis results. To

extract ROI data, we can use "spm_get_data" function in SPM 12. Since we are classifying trials,

we only take one fMRI scan for each trial. This is because the trial duration (0.6 sec) is less than

the repetition time (2 sec) of fMRI data. For each trial, we take the :-th fMRI scan where "k =

round(onset / TR) + 1". This option is also inspired by SPM codes.

128

Figure C.1: Auditory fMRI Group Level Analysis

129

Figure C.2: Visual fMRI Group Level Analysis

130

(a) Auditory Task

(b) Visual Task

Figure C.3: Region of Interest (ROI)

131

Tasks Auditory Oddball Auditory Standard Visual Oddball Visual Standard

Subject 1 75 299 75 299
Subject 2 70 287 70 287
Subject 3 74 296 74 296
Subject 5 74 299 74 299
Subject 6 75 290 75 290
Subject 7 73 295 73 295
Subject 8 72 297 72 297
Subject 9 75 297 75 298
Subject 10 72 298 72 298
Subject 11 70 293 70 293
Subject 12 74 299 74 299
Subject 13 71 297 71 297
Subject 14 75 296 75 296
Subject 15 72 295 72 295
Subject 16 74 293 74 293
Subject 17 73 295 73 295

Table C.1: EEG-fMRI Data: Number of Trials per Subject

C.2.2 EEG Data

The EEG data is collected by a custom built MR-compatible EEG system with 49 channels. [141]

provides a version of re-referenced EEG data with 34 channels which are used in our experiment.

The original and re-referenced channel positions are provided in the figure C.4. This version of EEG

data are sampled at 1,000 Hz, and are downsampled to 200 Hz at the beginning of pre-processing.

We use the “resample" function in Matlab Signal Processing toolbox to downsampled EEG data

to 200 Hz. Then, we use function "ft_preproc_lowpassfilter" and "ft_preproc_highpassfilter" from

SPM 12 toolbox to filter the data. This step intends to remove both low-frequency and high-

frequency noise in the data. Finally, we split EEG into epochs for trials which starts 100 ms before

the onset and ends 500 ms after the onset. According to [65], such a duration is long enough to

capture the event-related potential during each trial for EEG data. We show few examples of latent

factors from EEG data estimated by our ACMTF decomposition in figure C.5. For each trial, the

topoplot shows the components from channel mode, and the other plot shows the factors from time

mode.

132

Figure C.4: EEG Channel Position from [141]

133

Figure C.5: Examples of EEG Latent Factors (Different Trial and Stimulus Types): Topoplot for
Channel Factors (left); Plots for Temporal Factors (right)

134

BIBLIOGRAPHY

135

BIBLIOGRAPHY

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable optimization approach for fitting
canonical tensor decompositions. Journal of Chemometrics, 25(2):67–86, 2011.

[2] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. All-at-once optimization for coupled
matrix and tensor factorizations. arXiv preprint arXiv:1105.3422, 2011.

[3] Evrim Acar, Yuri Levin-Schwartz, Vince D Calhoun, and Tülay Adali. Acmtf for fusion of
multi-modal neuroimaging data and identification of biomarkers. In 2017 25th European
Signal Processing Conference (EUSIPCO), pages 643–647. IEEE, 2017.

[4] Evrim Acar, Yuri Levin-Schwartz, Vince D Calhoun, and Tülay Adali. Tensor-based fu-
sion of eeg and fmri to understand neurological changes in schizophrenia. In 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE, 2017.

[5] Evrim Acar, Evangelos E Papalexakis, Gözde Gürdeniz, Morten A Rasmussen, Anders J
Lawaetz, Mathias Nilsson, and Rasmus Bro. Structure-revealing data fusion. BMC bioin-
formatics, 15(1):1–17, 2014.

[6] Evrim Acar, Carla Schenker, Yuri Levin-Schwartz, Vince D Calhoun, and Tülay Adali.
Unraveling diagnostic biomarkers of schizophrenia through structure-revealing fusion of
multi-modal neuroimaging data. Frontiers in neuroscience, 13:416, 2019.

[7] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

[8] Jeffrey S Anderson, Jared ANielsen, Alyson L Froehlich, Molly B DuBray, T Jason Druzgal,
Annahir N Cariello, Jason R Cooperrider, Brandon A Zielinski, Caitlin Ravichandran,
P Thomas Fletcher, et al. Functional connectivity magnetic resonance imaging classification
of autism. Brain, 134(12):3742–3754, 2011.

[9] AndreasArgyriou, CharlesAMicchelli, andMassimiliano Pontil. When is there a representer
theorem? vector versus matrix regularizers. The Journal of Machine Learning Research,
10:2507–2529, 2009.

[10] John Ashburner, Gareth Barnes, Chun-Chuan Chen, Jean Daunizeau, Guillaume Flandin,
Karl Friston, Stefan Kiebel, James Kilner, Vladimir Litvak, Rosalyn Moran, et al. Spm12
manual. Wellcome Trust Centre for Neuroimaging, London, UK, 2464, 2014.

[11] Francis R Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9(6), 2008.

[12] Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for
knowledge graph completion. arXiv preprint arXiv:1901.09590, 2019.

136

[13] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

[14] Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting protein–protein
interactions. Bioinformatics, 21(suppl_1):i38–i46, 2005.

[15] Kristin P Bennett, Michinari Momma, and Mark J Embrechts. Mark: A boosting algorithm
for heterogeneous kernel models. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 24–31, 2002.

[16] Austin R Benson, David F Gleich, and Jure Leskovec. Tensor spectral clustering for par-
titioning higher-order network structures. In Proceedings of the 2015 SIAM International
Conference on Data Mining, pages 118–126. SIAM, 2015.

[17] Xuan Bi, Annie Qu, Xiaotong Shen, et al. Multilayer tensor factorization with applications
to recommender systems. Annals of Statistics, 46(6B):3308–3333, 2018.

[18] Xuan Bi, Xiwei Tang, Yubai Yuan, Yanqing Zhang, and Annie Qu. Tensors in statistics.
Annual Review of Statistics and Its Application, 8, 2020.

[19] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: appli-
cations to image and text data. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 245–250, 2001.

[20] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[21] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[22] Matthew Brett, Kalina Christoff, Rhodri Cusack, Jack Lancaster, et al. Using the talairach
atlas with the mni template. Neuroimage, 13(6):85–85, 2001.

[23] Vince D Calhoun, Tulay Adali, NR Giuliani, JJ Pekar, KA Kiehl, and GD Pearlson. Method
for multimodal analysis of independent source differences in schizophrenia: combining gray
matter structural and auditory oddball functional data. Human brain mapping, 27(1):47–62,
2006.

[24] Timothy I Cannings and Richard J Samworth. Random-projection ensemble classification.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4):959–1035,
2017.

[25] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[26] Christos Chatzichristos, Mike Davies, Javier Escudero, Eleftherios Kofidis, and Sergios
Theodoridis. Fusion of eeg and fmri via soft coupled tensor decompositions. In 2018 26th
European Signal Processing Conference (EUSIPCO), pages 56–60. IEEE, 2018.

137

[27] Christos Chatzichristos, Eleftherios Kofidis, Lieven De Lathauwer, Sergios Theodoridis, and
Sabine Van Huffel. Early soft and flexible fusion of eeg and fmri via tensor decompositions.
arXiv preprint arXiv:2005.07134, 2020.

[28] Cong Chen, Kim Batselier, Ching-Yun Ko, and Ngai Wong. A support tensor train machine.
In 2019 International Joint Conference on Neural Networks (ĲCNN), pages 1–8. IEEE, 2019.

[29] Di-Rong Chen and Han Li. Convergence rates of learning algorithms by random projection.
Applied and Computational Harmonic Analysis, 37(1):36–51, 2014.

[30] XinyuChen, ZhaochengHe, and JiaweiWang. Spatial-temporal traffic speed patterns discov-
ery and incomplete data recovery via svd-combined tensor decomposition. Transportation
research part C: emerging technologies, 86:59–77, 2018.

[31] YanyanChen, KuainiWang, and Ping Zhong. One-class support tensormachine. Knowledge-
Based Systems, 96:14–28, 2016.

[32] Mario Christoudias, Raquel Urtasun, Trevor Darrell, et al. Bayesian localizedmultiple kernel
learning. Univ. California Berkeley, Berkeley, CA, 2009.

[33] R Dennis Cook. Regression graphics: Ideas for studying regressions through graphics,
volume 482. John Wiley & Sons, 2009.

[34] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

[35] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-(r
1, r 2,..., rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis and
Applications, 21(4):1324–1342, 2000.

[36] LucDevroye, LászlóGyörfi, andGábor Lugosi. Aprobabilistic theory of pattern recognition,
volume 31. Springer Science & Business Media, 2013.

[37] Yiming Ding, Jae Ho Sohn, Michael GKawczynski, Hari Trivedi, Roy Harnish, NathanielW
Jenkins, Dmytro Lituiev, Timothy P Copeland, Mariam SAboian, CarinaMari Aparici, et al.
A deep learning model to predict a diagnosis of alzheimer disease by using 18f-fdg pet of
the brain. Radiology, 290(2):456–464, 2019.

[38] Nemanja Djuric, Liang Lan, Slobodan Vucetic, and ZhuangWang. Budgetedsvm: A toolbox
for scalable svm approximations. The Journal of Machine Learning Research, 14(1):3813–
3817, 2013.

[39] Leo Doktorski. L2-svm: Dependence on the regularization parameter. Pattern Recognition
and Image Analysis, 21(2):254–257, 2011.

[40] Olivier Duchenne, Francis Bach, In-SoKweon, and Jean Ponce. A tensor-based algorithm for
high-order graph matching. IEEE transactions on pattern analysis and machine intelligence,
33(12):2383–2395, 2011.

138

[41] Robert Durrant and Ata Kabán. Sharp generalization error bounds for randomly-projected
classifiers. In International Conference on Machine Learning, pages 693–701, 2013.

[42] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press,
2019.

[43] Hadi Fanaee-T and Joao Gama. Simtensor: A synthetic tensor data generator. arXiv preprint
arXiv:1612.03772, 2016.

[44] Hadi Fanaee-T and Joao Gama. Tensor-based anomaly detection: An interdisciplinary
survey. Knowledge-Based Systems, 98:130–147, 2016.

[45] Long Feng, Xuan Bi, and Heping Zhang. Brain regions identified as being associated with
verbal reasoning through the use of imaging regression via internal variation. Journal of the
American Statistical Association, pages 1–15, 2020.

[46] Xiaoli Z Fern and Carla E Brodley. Random projection for high dimensional data clustering:
A cluster ensemble approach. InProceedings of the 20th international conference onmachine
learning (ICML-03), pages 186–193, 2003.

[47] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[48] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, 2001.

[49] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new performance measure and eval-
uation benchmark for road detection algorithms. In International Conference on Intelligent
Transportation Systems (ITSC), 2013.

[50] Glenn Fung, Murat Dundar, Jinbo Bi, and Bharat Rao. A fast iterative algorithm for fisher
discriminant using heterogeneous kernels. In Proceedings of the twenty-first international
conference on Machine learning, page 40, 2004.

[51] Mostafa Reisi Gahrooei, Hao Yan, Kamran Paynabar, and Jianjun Shi. Multiple tensor-on-
tensor regression: An approach for modeling processes with heterogeneous sources of data.
Technometrics, pages 1–23, 2020.

[52] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The kitti dataset. International Journal of Robotics Research (ĲRR), 2013.

[53] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[54] Mark Girolami and Mingjun Zhong. Data integration for classification problems employ-
ing gaussian process priors. In Advances in Neural Information Processing Systems 19:
Proceedings of the 2006 Conference, volume 19, page 465. MIT Press, 2007.

[55] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. The Journal of
Machine Learning Research, 12:2211–2268, 2011.

139

[56] Adrian R Groves, Christian F Beckmann, Steve M Smith, and Mark W Woolrich. Linked
independent component analysis for multimodal data fusion. Neuroimage, 54(3):2198–2217,
2011.

[57] Rajarshi Guhaniyogi, Shaan Qamar, and David B Dunson. Bayesian tensor regression. The
Journal of Machine Learning Research, 18(1):2733–2763, 2017.

[58] Weiwei Guo, Irene Kotsia, and Ioannis Patras. Tensor learning for regression. IEEE
Transactions on Image Processing, 21(2):816–827, 2011.

[59] Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus, volume 42. Springer,
2012.

[60] Peter Hall and Richard J Samworth. Properties of bagged nearest neighbour classifiers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3):363–379,
2005.

[61] Zhifeng Hao, Lifang He, Bingqian Chen, and Xiaowei Yang. A linear support higher-order
tensormachine for classification. IEEETransactions on ImageProcessing, 22(7):2911–2920,
2013.

[62] Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, and Fei Wang. Boosted sparse and low-rank
tensor regression. arXiv preprint arXiv:1811.01158, 2018.

[63] Lifang He, Xiangnan Kong, Philip S Yu, Xiaowei Yang, Ann B Ragin, and Zhifeng Hao.
Dusk: A dual structure-preserving kernel for supervised tensor learning with applications to
neuroimages. In Proceedings of the 2014 SIAM International Conference on Data Mining,
pages 127–135. SIAM, 2014.

[64] Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, Linlin Shen, Philip S Yu, and Ann B
Ragin. Kernelized support tensor machines. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1442–1451. JMLR. org, 2017.

[65] Richard N Henson, Hunar Abdulrahman, Guillaume Flandin, and Vladimir Litvak. Mul-
timodal integration of m/eeg and f/mri data in spm12. Frontiers in neuroscience, 13:300,
2019.

[66] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics, 6(1-4):164–189, 1927.

[67] Heng Huang, Chris Ding, Dĳun Luo, and Tao Li. Simultaneous tensor subspace selection
and clustering: the equivalence of high order svd and k-means clustering. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge Discovery and Data mining,
pages 327–335, 2008.

[68] Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data. arXiv
preprint arXiv:1406.2784, 2014.

[69] Svante Janson et al. Gaussian hilbert spaces, volume 129. Cambridge university press,
1997.

140

[70] Yuwang Ji, QiangWang, XuanLi, and Jie Liu. A survey on tensor techniques and applications
in machine learning. IEEE Access, 7:162950–162990, 2019.

[71] Ruhui Jin, Tamara G Kolda, and Rachel Ward. Faster johnson-lindenstrauss transforms via
kronecker products. arXiv preprint arXiv:1909.04801, 2019.

[72] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

[73] Esin Karahan, PedroARojas-Lopez, Maria LBringas-Vega, PedroAValdés-Hernández, and
Pedro A Valdes-Sosa. Tensor analysis and fusion of multimodal brain images. Proceedings
of the IEEE, 103(9):1531–1559, 2015.

[74] Ali Khazaee, Ata Ebrahimzadeh, and Abbas Babajani-Feremi. Application of advanced
machine learning methods on resting-state fmri network for identification of mild cognitive
impairment and alzheimer’s disease. Brain imaging and behavior, 10(3):799–817, 2016.

[75] Fei Yan Krystian Mikolajczyk Josef Kittler and Muhammad Tahir. A comparison of l1 norm
and l2 norm multiple kernel svms in image and video classification.

[76] Marius Kloft, Ulf Brefeld, Soeren Sonnenburg, Pavel Laskov, Klaus-Robert Müller, and
Alexander Zien. Efficient and accurate lp-normmultiple kernel learning. InNIPS, volume 22,
pages 997–1005, 2009.

[77] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[78] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[79] Tamara Gibson Kolda. Multilinear operators for higher-order decompositions. Technical
report, Sandia National Laboratories, 2006.

[80] Jean Kossaifi, Zachary C Lipton, Arinbjörn Kolbeinsson, Aran Khanna, Tommaso
Furlanello, and Anima Anandkumar. Tensor regression networks. Journal of Machine
Learning Research, 21:1–21, 2020.

[81] J. B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear Algebra and its Applications,
18(2):95 – 138, 1977.

[82] Stephen LaConte, Stephen Strother, Vladimir Cherkassky, Jon Anderson, and Xiaoping Hu.
Support vector machines for temporal classification of block design fmri data. NeuroImage,
26(2):317–329, 2005.

[83] Jack L Lancaster, Diana Tordesillas-Gutiérrez, Michael Martinez, Felipe Salinas, Alan
Evans, Karl Zilles, John CMazziotta, and Peter T Fox. Bias between mni and talairach coor-
dinates analyzed using the icbm-152 brain template. Human brain mapping, 28(11):1194–
1205, 2007.

141

[84] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine
learning research, 5(Jan):27–72, 2004.

[85] Michele Larobina and Loredana Murino. Medical image file formats. Journal of digital
imaging, 27(2):200–206, 2014.

[86] Xu Lei, Pedro A Valdes-Sosa, and Dezhong Yao. Eeg/fmri fusion based on independent
component analysis: integration of data-driven and model-driven methods. Journal of
integrative neuroscience, 11(03):313–337, 2012.

[87] Jie Li, Guan Han, Jing Wen, and Xinbo Gao. Robust tensor subspace learning for anomaly
detection. International Journal of Machine Learning and Cybernetics, 2(2):89–98, 2011.

[88] Lexin Li and Xin Zhang. Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519):1131–1146, 2017.

[89] Peide Li and Taps Maiti. Universal consistency of support tensor machine. In 2019 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pages 608–609.
IEEE, 2019.

[90] Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 287–296. ACM, 2006.

[91] Quefeng Li and Lexin Li. Integrative factor regression and its inference for multimodal data
analysis. arXiv preprint arXiv:1911.04056, 2019.

[92] Qun Li and Dan Schonfeld. Multilinear discriminant analysis for higher-order tensor data
classification. IEEE transactions on pattern analysis andmachine intelligence, 36(12):2524–
2537, 2014.

[93] Xiaoshan Li, Da Xu, Hua Zhou, and Lexin Li. Tucker tensor regression and neuroimaging
analysis. Statistics in Biosciences, 10(3):520–545, 2018.

[94] Yingjie Li, Liangliang Zhang, Andrea Bozoki, David C Zhu, Jongeun Choi, and Taps Maiti.
Early prediction of alzheimer’s disease using longitudinal volumetric mri data from adni.
Health Services and Outcomes Research Methodology, 20(1):13–39, 2020.

[95] Yi Lin. A note on margin-based loss functions in classification. Statistics & probability
letters, 68(1):73–82, 2004.

[96] Martin A Lindquist et al. The statistical analysis of fmri data. Statistical science, 23(4):439–
464, 2008.

[97] Jingyu Liu, Godfrey Pearlson, Andreas Windemuth, Gualberto Ruano, Nora I Perrone-
Bizzozero, and Vince Calhoun. Combining fmri and snp data to investigate connections
between brain function and genetics using parallel ica. Human brain mapping, 30(1):241–
255, 2009.

142

[98] Yipeng Liu, Jiani Liu, and Ce Zhu. Low-rank tensor train coefficient array estimation for
tensor-on-tensor regression. IEEE transactions on neural networks and learning systems,
31(12):5402–5411, 2020.

[99] Eric F Lock. Tensor-on-tensor regression. Journal of Computational and Graphical Statis-
tics, 27(3):638–647, 2018.

[100] Xiaojing Long, Lifang Chen, Chunxiang Jiang, Lĳuan Zhang, and Alzheimer’s Disease Neu-
roimaging Initiative. Prediction and classification of alzheimer disease based on quantifica-
tion of mri deformation. PloS one, 12(3):e0173372, 2017.

[101] Miles E Lopes. A sharp bound on the computation-accuracy tradeoff for majority voting
ensembles. eScholarship, University of California, 2013.

[102] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan. Tensor
robust principal component analysis: Exact recovery of corrupted low-rank tensors via
convex optimization. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5249–5257, 2016.

[103] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. Mpca: Multi-
linear principal component analysis of tensor objects. IEEE transactions onNeural Networks,
19(1):18–39, 2008.

[104] Wei Lu, Fu-Lai Chung, Wenhao Jiang, Martin Ester, and Wei Liu. A deep bayesian tensor-
based system for video recommendation. ACM Transactions on Information Systems (TOIS),
37(1):1–22, 2018.

[105] Wenqi Lu, Zhongyi Zhu, and Heng Lian. High-dimensional quantile tensor regression.
Journal of Machine Learning Research, 21(250):1–31, 2020.

[106] Ron Meir and Tong Zhang. Generalization error bounds for bayesian mixture algorithms.
Journal of Machine Learning Research, 4(Oct):839–860, 2003.

[107] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of
Machine Learning Research, 7(Dec):2651–2667, 2006.

[108] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf, and Klaus-Robert
Mullers. Fisher discriminant analysis with kernels. In Neural networks for signal processing
IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468),
pages 41–48. Ieee, 1999.

[109] John C Morris, Catherine M Roe, Elizabeth A Grant, Denise Head, Martha Storandt,
Alison M Goate, Anne M Fagan, David M Holtzman, and Mark A Mintun. Pittsburgh
compound b imaging and prediction of progression from cognitive normality to symptomatic
alzheimer disease. Archives of neurology, 66(12):1469–1475, 2009.

[110] Raziyeh Mosayebi and Gholam-Ali Hossein-Zadeh. Correlated coupled matrix tensor fac-
torization method for simultaneous eeg-fmri data fusion. Biomedical Signal Processing and
Control, 62:102071, 2020.

143

[111] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In Icml, 2011.

[112] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[113] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[114] Yuqing Pan, Qing Mai, and Xin Zhang. Covariate-adjusted tensor classification in high
dimensions. Journal of the American Statistical Association, pages 1–15, 2018.

[115] Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy. Gene functional
classification from heterogeneous data. In Proceedings of the fifth annual international
conference on Computational biology, pages 249–255, 2001.

[116] A. H. Phan, P. Tichavsky, and A. Cichocki. Low complexity damped gauss–newton al-
gorithms for candecomp/parafac. SIAM Journal on Matrix Analysis and Applications,
34(1):126–147, 2013.

[117] Michael JD Powell. Nonconvex minimization calculations and the conjugate gradient
method. In Numerical analysis, pages 122–141. Springer, 1984.

[118] Shibin Qiu and Terran Lane. A framework for multiple kernel support vector regression
and its applications to sirna efficacy prediction. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 6(2):190–199, 2008.

[119] Beheshteh T Rakhshan and Guillaume Rabusseau. Tensorized random projections. arXiv
preprint arXiv:2003.05101, 2020.

[120] Bin Ran, Huachun Tan, Yuankai Wu, and Peter J Jin. Tensor based missing traffic data
completion with spatial–temporal correlation. Physica A: Statistical Mechanics and its
Applications, 446:54–63, 2016.

[121] Garvesh Raskutti, Ming Yuan, Han Chen, et al. Convex regularization for high-dimensional
multiresponse tensor regression. The Annals of Statistics, 47(3):1554–1584, 2019.

[122] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro
Verri. Are loss functions all the same? Neural computation, 16(5):1063–1076, 2004.

[123] Katharina A Schindlbeck and David Eidelberg. Network imaging biomarkers: insights and
clinical applications in parkinson’s disease. The Lancet Neurology, 17(7):629–640, 2018.

[124] Warren Schudy and Maxim Sviridenko. Concentration and moment inequalities for poly-
nomials of independent random variables. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 437–446. SIAM, 2012.

[125] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

144

[126] John Shawe-Taylor, Christopher KI Williams, Nello Cristianini, and Jaz Kandola. On
the eigenspectrum of the gram matrix and the generalization error of kernel-pca. IEEE
Transactions on Information Theory, 51(7):2510–2522, 2005.

[127] Marco Signoretto, Quoc Tran Dinh, Lieven De Lathauwer, and Johan AK Suykens. Learning
with tensors: a framework based on convex optimization and spectral regularization.Machine
Learning, 94(3):303–351, 2014.

[128] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science &
Business Media, 2008.

[129] Jing Sui, Godfrey Pearlson, Arvind Caprihan, Tülay Adali, Kent AKiehl, Jingyu Liu, Jeremy
Yamamoto, and Vince D Calhoun. Discriminating schizophrenia and bipolar disorder by
fusing fmri and dti in a multimodal cca+ joint ica model. Neuroimage, 57(3):839–855, 2011.

[130] Will Wei Sun and Lexin Li. Store: sparse tensor response regression and neuroimaging
analysis. The Journal of Machine Learning Research, 18(1):4908–4944, 2017.

[131] Will Wei Sun and Lexin Li. Dynamic tensor clustering. Journal of the American Statistical
Association, 114(528):1894–1907, 2019.

[132] Yanfeng Sun, Junbin Gao, Xia Hong, Bamdev Mishra, and Baocai Yin. Heterogeneous
tensor decomposition for clustering via manifold optimization. IEEE transactions on pattern
analysis and machine intelligence, 38(3):476–489, 2015.

[133] Yiming Sun, Yang Guo, Joel A Tropp, and Madeleine Udell. Tensor random projection
for low memory dimension reduction. In NeurIPS Workshop on Relational Representation
Learning, 2018.

[134] Hiroaki Tanabe, Tu Bao Ho, Canh Hao Nguyen, and Saori Kawasaki. Simple but effective
methods for combining kernels in computational biology. In 2008 IEEE International Con-
ference on Research, Innovation and Vision for the Future in Computing and Communication
Technologies, pages 71–78. IEEE, 2008.

[135] D. Tao, X. Li, X.Wu, and S. J. Maybank. General tensor discriminant analysis and gabor fea-
tures for gait recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(10), 2007.

[136] Dacheng Tao, Xuelong Li, Weiming Hu, Stephen Maybank, and Xindong Wu. Supervised
tensor learning. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages
8–pp. IEEE, 2005.

[137] Petr Tichavsky, Anh Huy Phan, and Zbyněk Koldovsky. Cramér-rao-induced bounds
for candecomp/parafac tensor decomposition. IEEE Transactions on Signal Processing,
61(8):1986–1997, 2013.

[138] Théo Trouillon, Christopher R Dance, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. Knowledge graph completion via complex tensor factorization. arXiv
preprint arXiv:1702.06879, 2017.

145

[139] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[140] Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance trade-off.
In 2007 IEEE 11th International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[141] Jennifer MWalz, Robin I Goldman, Jordan Muraskin, Bryan Conroy, Truman R Brown, and
Paul Sajda. "auditory and visual oddball eeg-fmri", 2018.

[142] Huan Wang, Shuicheng Yan, Thomas S Huang, and Xiaoou Tang. A convengent solution to
tensor subspace learning. In ĲCAI, pages 629–634, 2007.

[143] Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235,
1969.

[144] Philip Wolfe. Convergence conditions for ascent methods. ii: Some corrections. SIAM
review, 13(2):185–188, 1971.

[145] Keith J Worsley, Chien Heng Liao, John Aston, V Petre, GH Duncan, F Morales, and
AC Evans. A general statistical analysis for fmri data. Neuroimage, 15(1):1–15, 2002.

[146] KunXie, LeleWang, XinWang, GaogangXie, JigangWen, and Guangxing Zhang. Accurate
recovery of internet traffic data: A tensor completion approach. In IEEE INFOCOM 2016-
The 35th Annual IEEE International Conference on Computer Communications, pages 1–9.
IEEE, 2016.

[147] Shuicheng Yan, Dong Xu, Qiang Yang, Lei Zhang, Xiaoou Tang, and Hong-Jiang Zhang.
Discriminant analysis with tensor representation. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 526–532.
IEEE, 2005.

[148] Rose Yu and Yan Liu. Learning from multiway data: Simple and efficient tensor regression.
In International Conference on Machine Learning, pages 373–381. PMLR, 2016.

[149] Anru Zhang et al. Cross: Efficient low-rank tensor completion. Annals of Statistics,
47(2):936–964, 2019.

[150] Changqing Zhang, Huazhu Fu, Si Liu, Guangcan Liu, and Xiaochun Cao. Low-rank ten-
sor constrained multiview subspace clustering. In Proceedings of the IEEE international
conference on computer vision, pages 1582–1590, 2015.

[151] Tong Zhang et al. Statistical behavior and consistency of classification methods based on
convex risk minimization. The Annals of Statistics, 32(1):56–85, 2004.

[152] Xin Zhang and Lexin Li. Tensor envelope partial least-squares regression. Technometrics,
59(4):426–436, 2017.

[153] Xing Zhang, Gongjian Wen, andWei Dai. A tensor decomposition-based anomaly detection
algorithm for hyperspectral image. IEEE Transactions on Geoscience and Remote Sensing,
54(10):5801–5820, 2016.

146

[154] Yanqing Zhang, Xuan Bi, Niansheng Tang, and Annie Qu. Dynamic tensor recommender
systems. Journal of Machine Learning Research, 22(65):1–35, 2021.

[155] Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor regression with applications in neuroimaging
data analysis. Journal of the American Statistical Association, 108(502):540–552, 2013.

[156] P. Zhou and J. Feng. Outlier-robust tensor pca. In Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., pages 1–9, 2017.

147

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Overview
	Tensor Algebra
	Notations
	Tensor Decomposition
	Tensor Product Space

	The Bayes Error and Classification Consistency
	The Bayes Problem
	Consistent Classification Rules
	Surrogate Loss Consistency

	Tensor Classification Models
	Introduction
	Tensor Classification Algorithms
	Support Tensor Machine
	Tensor Discriminant Analysis
	Tensor Regression

	Statistical Analysis
	Universal Tensor Kernels
	Consistency of CP-STM

	Real Data Analysis
	MRI Classification for Alzheimer's Disease
	KITTI Traffic Images

	Conclusion

	TEC: Tensor Ensemble Classifier for Big Data
	Introduction
	Related Works
	CP-STM for Tensor Classification
	Random Projection

	Methology
	Tensor-Shaped Random Projection
	Random-Projection-Based Support Tensor Machine (RPSTM)
	TEC: Ensemble of RPSTM

	Model Estimation
	Statistical Properties
	Excess Risk of TEC
	Excess Risk of RPSTM
	Price of Random Projection
	Convergence of Risk

	Simulation Study
	Real Data Analysis
	MRI Classification for Alzheimer's Disease
	KITTI Traffic Image Classification

	Conclusion

	Coupled Support Tensor Machine for Multimodal Neuroimaging Data
	Introduction
	Related Work
	CP Decomposition
	CP Support Tensor Machine (CP-STM)
	Multiple Kernel Learning

	Methodology
	ACMTF
	Coupled Support Tensor Machine (C-STM)

	Model Estimation
	Theory
	Simulation Study
	Trial Classification for Simultaneous EEG-fMRI Data
	Conclusion

	Appendices
	Appendix for Chapter 2
	Appendix For Chapter 3
	Appendix for Chapter 4
	Bibliography

