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ABSTRACT

A NEURAL NETWORKS BASED METHOD WITH GENETIC DATA ANALYSIS OF
COMPLEX DISEASES

By

Jinghang Lin

The genetic etiologies of common diseases are highly complex and heterogeneous. Classic

statistical methods, such as linear regression, have successfully identified numerous genetic

variants associated with complex diseases. Nonetheless, for most complex diseases, the

identified variants only account for a small proportion of heritability. Challenges remain

to discover additional variants contributing to complex diseases. In this dissertation, we

developed an expectile neural network (ENN) method and applied the method to genetic

data analysis. ENN provides a comprehensive view of relationships between genetic variants

and disease phenotypes and can be used to discover genetic variants predisposing to sub-

populations (e.g., high-risk groups). We integrate the idea of neural networks into ENN,

making it capable of capturing non-linear and non-additive genetic effects (e.g., gene-gene

interactions). Through simulations, we showed that the proposed method outperformed an

existing expectile regression when there exist complex relationships between genetic variants

and disease phenotypes. We also applied the proposed method to the genetic data from

the Study of Addiction: Genetics and Environment(SAGE), investigating the relationships

of candidate genes with smoking quantity. Neural networks have been widely used in ap-

plications. However, few studies have been focused on the statistical properties of neural

networks. We further investigate the Asymptotic properties of ENN (e.g., consistency).

Simulations have been conducted to test the validity of the theory.
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Chapter 1

Introduction

1.1 Overview

With the development of biotechnology, especially next-generation sequencing technologies

(NGS), it is easy to sequence an entire human genome. New technologies arising from the

Human Genome Project and HapMap Project have generated a surge of methodological

development for unsolved problems in human genetics. To find genetic variations associated

with a particular disease, a genome-wide association study (GWAS) that involves rapidly

scanning markers across the complete sets of DNA, or genomes, can be adopted[1]. GWAS

investigates the entire genome and identify SNPs and other variants in DNA associated with

a disease, but they cannot infer which genes are causal. Once new genetic associations are

identified, researchers can use the information to understand, treat and prevent the disease[2].

Successful GWAS has been conducted to identify genetic variations that contribute to the risk

of type 2 diabetes, Parkinson’s disease, heart disorders, obesity, Crohn’s disease and prostate

cancer, as well as genetic variations that influence response to anti-depressant medications[5;

6]. Such research lays the groundwork for personalized medicine.

Based on prior knowledge of a gene’s biological function on the trait or disease, candidate

genes are most often studied in risk prediction research[3]. In risk prediction research, we

are interested in developing a new genetic risk prediction model to identify the high-risk
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individuals for certain diseases. If we could predict high-risk individuals at the early stage,

targeted screening and appropriate intervention methods can be used to reduce mortality

and morbidity[4]. However, there are tremendous analytic and computational challenges

when we implement a risk prediction model. Genetic data is high-dimensional. For example,

there are millions of single nucleotide polymorphisms (SNP), and the signal-to-noise ratio

of genetic data is quite low, which makes us hard to capture underlying genetic effects.

Moreover, the study sample is massive (e.g., a million samples in the UK Biobank), which

brings the computational issue.

In this chapter, we will first review some basic knowledge of human genetics in section 1.2.

In section 1.3, we will briefly introduce the neural network and its application in healthcare.

We give the overall organization of this dissertation in section 1.4.

1.2 A review of basic human genetics

In the human genome, the genetic material is stored on chromosomes in the nucleus of the

cell. There are 23 pairs of chromosomes in the human genome: 22 pairs of them are autosomal

and the 23rd pair is the sex chromosomes. For the sex chromosomes, males have one X and

Y, while females have two non-identical copies of the X chromosome. Each chromosome is

composed of long strands of deoxyribonucleic acid (DNA), which determines how proteins

are manufactured in the human body.

Genes are segments of DNA that code for specific proteins that function in one or more

types of cells in the body. These proteins control how our body grows and works; they are

also responsible for many of our characteristics, such as our eye color, blood type or height.

Genes are the basic physical units of inheritance, which are passed from parents to offspring

2



and contain the information needed to specify traits. Most parts of DNA are the same in all

people, but a small proportion of DNA (less than 1 percent of the total DNA) are different

between people. These differences contribute to each person’s unique physical features. An

allele is one of two or more versions of a gene. An individual inherits two alleles, one from

each parent.

Figure 1.1: A graphical representation of Chromosome, DNA and gene. Credit to Genetic
Alliance UK

SNPs are the most common type of genetic variation among people, which are typically

coded as the number of minor frequent alleles (e.g., AA=2, Aa=1, aa=0). A trait is any gene-

determined characteristic and is often determined by more than one gene. The genotypes

for the traits are often not observable and should be inferred from linked markers. In

statistical genetics, we intend to construct a statistical model that connects genotypes and

phenotypes[7].
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1.3 Statistical learning

We give a brief introduction of the statistical learning framework. Suppose X stands for

the vector space of input and Y for the vector space of output. In statistical learning, we

assume that there is an underlying unknown probability distribution over the product space

Z = X × Y . The training set D = {(x1, y1), ..., (xn, yn)} comprise of n samples from the

probability distribution. The goal of statistical learning is to find the unknown function

f : X → Y from the data D.

We start with a set of candidate hypothesesH = {h1, h2..., }, which are likely to represent

f . The hypothesis space is the space of functions that the algorithm will search through.

We want to select a hypothesis f from H. The way we do this is called a learning algorithm.

Let L(f(x, y) be the loss function that is a metric of the difference between the predicted

value f(x) and the observed value y. The problem of statistical learning is to minimize the

expected risk:

R(f) =

∫
L(f(x, y)dF (x, y).

Since the probability distribution F (x, y) is unknown, a proxy measure for the expected risk

must be used. We try to minimize empirical risk:

Remp(f) =
1

n

n∑
i=1

L(f(xi, yi).

1.3.1 Neural network

The basis of the biological neural networks is the nerve cells, which is composed of a cell body,

a dendrite and an axon. At the high-level view, incoming stimuli are transmitted to the cell

body via dendrites. Outputs generated after operations in the cell body are transmitted to

4



other nerve cells via axons. In the neural network model, it imitates the functioning of the

human brain. The biological nervous system in the human body consists of a three-layered

structure that includes receiving data, interpreting them, and making decisions. A neuron

model is composed of three layers: input layer, hidden layer and output layer.

Here we give a graphical representation of similarity between biological and artificial

neural networks with one hidden layer in Figure 1.2[58]. x1, ..., xm are input units, which

mimic the dendrites of a neuron. Σ is a computation unit, which is involved in the same role

in the cell body. The computation unit is the most important part in neural networks, which

is the linear combination of inputs units and bias and then apply the activation function.

The number of computation units and the type of activation function are crucial in building

models.

Figure 1.2: Similarity between biological and artificial neural networks

Common activation functions of neural networks used in perceptrons and neural networks
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are

• Rectified Linear Unit (ReLU):

σ(x) = x+ = max{x, 0},

• Standard Sigmoid:

σ(x) = (1 + e−x)−1,

• Hyperbolic Tangent (Tanh):

σ(x) = tanh(x) =
ex − e−x

ex + e−x
.

The output layer consists of a single layer, where the generated data are transmitted to the

outside world. This is analogous to the axon of a neuron.

Neural networks with multiple hidden layers are called deep neural networks. Deep neural

networks contain multiple non-linear hidden layers and this enables them learn very compli-

cated relationships between inputs and outputs. For most data sets, neural networks with

one hidden layer are enough to build a decent model. While various theoretical perspectives

have been developed to explain why deep learning is successful, the general consensus of the

community is to attribute the success to the joint forces of straightforward neural model-

ing, simple learning techniques, the availability of big data and the hardware revolution in

high-performance computing[40]. Deep neural networks are a powerful tool in analyzing a

large dataset. However, overfitting is a serious issue in deep neural networks. Dropout is

a technique to address the overfitting problem. Dropout randomly drops units (along with
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their connections) from the neural network during training[39]. By reducing the number of

parameters, the model performance of a deep neural network can be improved.

Deep learning has been implemented in many software frameworks, such as Tensorflow

and Pytorch[62; 63]. Those frameworks offer building blocks for designing, training and

validating deep neural networks, through a high-level programming language, like Python.

They also provide a clear and concise way to simplify the implementation of complex and

large-scale deep learning models by using a collection of pre-built and optimized components.

It is worthwhile to mention a well-known result of neural networks: the universal approx-

imation theorem. A neural network with one hidden layer could approximate any continuous

function[61].

Theorem 1.3.1 (Universal Approximation Theorem). For every continuous function f :

[a, b]d → R and for every ε > 0, there exists a neural network with one hidden layer ψ(x)

such that

sup
x∈[a,b]d

|f(x)− ψ(x)| < ε.

1.3.2 Artificial intelligence in healthcare

Deep learning or AI has been applied to many applications, such as natural language pro-

cessing and computer vision. AI also holds great promise for healthcare. With the develop-

ment of biotechnology, healthcare data has a large size and complexity that traditional data

management tools cannot store or process it efficiently. Many successful AI applications in

healthcare have been conducted. For example, AI can be used to optimize the care trajectory

of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical

errors, and improve subject enrollment into clinical trials[8]. Fakoor et al. showed that how
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unsupervised feature learning can be used for cancer detection and cancer type analysis from

gene expression data[9]. Krittanawong et al. gave a glimpse of AI’s application in cardio-

vascular clinical care and discussed its potential role in facilitating precision cardiovascular

medicine[12]. Pham et al used a deep learning approach to read medical records, store previ-

ous illness history, infer current illness states and predict future medical outcomes[59]. Plis

et al. applied deep learning methods to learn physiologically important representations and

detect latent relations in neuroimaging data[60]. There is a great promise that the applica-

tions of AI can provide substantial improvement in all areas of healthcare from diagnostics

to treatments. Although there are many instances in which AI can perform healthcare tasks

better than humans, implementation will prevent large-scale automation of healthcare pro-

fessional jobs for a considerable period[76]. However, AI will not take over the jobs which

require unique human skills such as empathy and persuasion.

1.4 Organization

The dissertation is organized as follows. In chapter 2, we develop a neural-network-based

method called expectile neural networks. In chapter 3, The asymptotic properties of ENN

are discussed. In chapter 4, we summarize this dissertation and discuss some potential future

work.
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Chapter 2

Expectile Neural Networks for

Genetic Data Analysis of Complex

Diseases

2.1 Overview

The genetic etiologies of common diseases are highly complex and heterogeneous. Classic

statistical methods, such as linear regression, have successfully identified numerous genetic

variants associated with complex diseases. Nonetheless, for most complex diseases, the

identified variants only account for a small proportion of heritability. Challenges remain

to discover additional variants contributing to complex diseases. Expectile regression is a

generalization of linear regression and provides completed information on the conditional

distribution of a phenotype of interest. While expectile regression has many nice proper-

ties and holds great promise for genetic data analyses (e.g., investigating genetic variants

predisposing to a high-risk population), it has been rarely used in genetic research. In this

chapter, we develop an expectile neural network (ENN) method for genetic data analyses

of complex diseases. Similar to expectile regression, ENN provides a comprehensive view of

relationships between genetic variants and disease phenotypes and can be used to discover
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genetic variants predisposing to sub-populations (e.g., high-risk groups). We further inte-

grate the idea of neural networks into ENN, making it capable of capturing non-linear and

non-additive genetic effects (e.g., gene-gene interactions). Through simulations, we showed

that the proposed method outperformed an existing expectile regression when there exist

complex relationships between genetic variants and disease phenotypes. We also applied the

proposed method to the genetic data from the Study of Addiction: Genetics and Environ-

ment(SAGE), investigating the relationships of candidate genes with smoking quantity.

2.2 Introduction

Converging evidence suggests that the genetic etiologies of complex diseases are highly het-

erogeneous [13; 14] and various genetic factors and environmental determinants could play

different roles in subgroups of the population. Linear regression has been commonly used

in genetic studies to investigate the effects of genetic variants on the mean of a continuous

phenotype. However, if we are interested in a complete view of genetic effects across the

entire distribution of phenotypes or are interested in investigating genetic contribution to

a sub-population(e.g., a high-risk population), quantile regression and expectile regression

are great alternative choices [15; 16]. Quantile regression generalizes median regression and

has been widely used in fields such as economics [17], medicine [18; 19] and environmental

science [20] to study entire conditional distributions of responses given covariates. While

quantile regression has many good properties (e.g., being robust to distribution assumption

and outlies), as pointed out by Newey and Powell [16], quantile regression has several lim-

itations. First, quantile regression uses the check function with the absolute least error as

loss function, which is not continuously differentiable and is computationally difficult for pa-
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rameter estimation. Second, quantile regression is relatively inefficient for error distributions

that are close to Gaussian or have low densities at the corresponding percentile. Third, it is

challenging to estimate the density function values of quantile regression.

To address these issues, Newey and Powell [16] proposes expectile regression, which uses

the sum of asymmetric residual squares as the loss function. Since the loss function is

convex and differentiable, expectile regression has a computational advantage over quantile

regression. Similar to quantile regression, expectile regression makes no assumption on error

distribution (e.g., homoscedasticity) and can be used to study the entire distribution of

the responses. Expectile regression can be viewed as a generalization of linear regression.

A typical expectile regression assumes a linear relationship between the expectile and the

covariates, which may not be suitable for genetic data analysis as genetic variants likely

influence phenotypes in a complicated manner (e.g., through interactions) [21]. Simply

considering linear and additive genetic effects can’t fully take this complexity into account.

In this chapter, we integrate the idea of neural networks into expectile regression and de-

velop an expectile neural network (ENN) method to model the complex relationship between

genotypes and phenotypes. While several methods have been developed to integrate neural

networks into quantile regression[22; 23; 24], few studies have been focused on investigating

nonlinear expectile regressions, especially using neural networks. Compared to quantile re-

gression neural networks(QRNN), ENN has several advantages. The empirical loss function

in ENN is differentiable everywhere. Moreover, ENN can detect the heteroscedasticity in

the data since ENN is more sensitive to extreme values than QRNN[25; 26; 27; 28; 29].

The rest of the chapter is organized as follows: in Section 2, we review expectile regres-

sion and propose an ENN method. We then give an inequality that bounds the integrated

squared error of an expectile function estimator in terms of risk functions. The proof of
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inequality is detailed in the Appendix. Simulations were conducted in Section 3 to evalu-

ate the performance of the new method. In Section 4, we applied ENN to the SAGE data,

studying genetic contribution to smoking quantity. We provide the summary and concluding

remarks in Section 5.

2.3 Method

In this section, we briefly introduce expectile regression and then propose an expectile neural

network. Suppose we have n samples,{(xi, yi), i = 1, ..., n}, where xi = (1, xi,1, ..., xi,p)
T and

yi denote a p−dimensional covarites and the response for the ith sample, respectively. In

this chapter, the covariates are primarily genetic variants, such as single nucleotide poly-

morphisms (SNPs), which are typically coded as the number of minor frequent allele (e.g.,

AA=2, Aa=1, aa=0). The covariates xi can also include personal characteristics (e.g., gen-

der) and environmental determinants. The response yi is the set of observable characteristics

of an individual in genetics. For example, yi could be the type of diabetes, or the height of

an individual. By building models between xi and yi, we tend to explore the relationship of

candidate genes and certain disease.

2.3.1 Expectile regression

Given the data, linear regression is commonly used to model the relationship between the

covariates and the mean response. However, if we want to explore a complete relationship

between the covarites and the response (e.g., genetic contribution to a high-risk population),

an expectile regression can be used. To simplify the notation, we denote expectile regression

12



as ER. The expectile regression for the τ−expectile can be expressed as,

Expectile(τ) = xT β̂, (2.1)

where β̂ is the estimator of coefficients β = (β0, β1, ..., βp)
T . The expectile is also closely

related to two commonly used measures in mathematical finance, value at risk and expected

shortfall. The regression parameters, β̂, can be obtained by minimizing an asymmetric L2

loss function,

RLτ (β; τ) =
1

n

n∑
i=1

Lτ (yi,xi
Tβ), 0 < τ < 1, (2.2)

where Lτ (·) is asymmetric squared loss with convex form

L(yi,xi
Tβ) =


(1− τ)(yi − xi

Tβ)2, if yi < xi
Tβ

τ(yi − xi
Tβ)2, if yi ≥ xi

Tβ.

(2.3)

Minimizing asymmetically weighted sums of squared errors yields the the expectiles. If we

minimize sums of asymmetrically weighted absolute errors, the estimators are quantiles.

In contrast to the quantiles, expectiles have a more global dependence on the form of the

distribution. Shifting mass in the lower tail of a distribution has no impact on the quantiles of

the upper tail, but it will affect all expectiles. We cite the Figure 2.1 to show the relationship

between quantiles and expectiles[54].

For a model with a large p, a penalty term can be added to the risk function to reduce
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the model complexity,

RLτ (β; τ) =
1

n

n∑
i=1

Lτ (yi − xi
Tβ) + λ

p∑
i=1

β2
i . (2.4)

τ is a hyperparameter between 0 and 1. By tuning τ , we could get different conditional

distributions of responses which is similiar to quantile regression. However, quantile regres-

sion uses asymmetric absolute value function. When τ = 0.5, the corresponding expectile

regression degenerates to a standard linear regression. Therefore, expectile regression can

also be viewed as a generalization of linear regression. Quantile regression can be seen as a

generalization of median regression, expectiles as alternative are a generalized form of mean

regression.

Figure 2.1: Quantiles and expectiles.
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2.3.2 Expectile neural network

A typical expectile regression model focuses on linear relationships between covariates and

responses. In reality, the underlying relationship could be non-linear and involve complicated

interactions among covariates. In order to model complex relationships between covariates

and responses, we integrate the idea of neural networks into expectile regression and propose

an ENN method. Neural network is a powerful nonlinear approximator. For every continuous

function, neural network with one hidden layer could approximate it well[33]. We don’t

assume a particular functional form of covariates and use neural networks to approximate

the underlying expectile regression function. ENN can be considered as a nonparametric

expectile regression or neural networks with asymmetric L2 loss function, We illustrate ENN

with one hidden layer. The method can be easily extended to an expectile regression deep

neural network with multiple layers.

Figure 2.2: A graphical representation of expectile neural network

15



Given the covariates xt, we first build the hidden nodes hq,t,

hq,t = f (1)(
P∑
p=1

xp,tw
(1)
pq + b

(1)
q ), q = 1, ..., Q, t = 1, ..., n, (2.5)

where Q is the number of nodes in the first hidden layer, wpq denotes weights and bq denotes

the bias; f (1) is the activation function for the hidden layer that can be a sigmoid function,

a hyperbolic tangent function, or a rectified linear units(ReLU) function. Similar to hidden

nodes in neural networks, the hidden nodes in ENN can learn complex features from covari-

ates x, which makes ENN capable of modelling non-linear and non-additive effects. Based

on these hidden nodes, we can model the conditional τ -expectile, ŷτ (t),

ŷτ (t) = f (2)(

Q∑
q=1

hq,tw
(2)
q + b(2)), (2.6)

where f (2), w
(2)
q , and b(2) are the activation function, weights, and bias in the output layer,

respectively. f (2) can be an identity function, a sigmoid function, or a rectified linear

units(ReLU) function. To illustrate the structure of ENN, a graphical representation of

ENN is given in Figure 2.1.

From equations (2.5) and (2.6), we can have the ENN model:

ŷτ (t) = f (2)(

Q∑
q=1

f (1)(
P∑
p=1

xp,tw
(1)
pq + b

(1)
q )w

(2)
q + b(2)). (2.7)

If we choose τ = 0, f (1) and f (2) as identity function, ENN is reduced to linear regression.

To estimate w
(1)
pq , b

(1)
q , w

(2)
q , b(2), we minimize the empirical risk function
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R(τ) =
1

n

n∑
i=1

Lτ (yi, f(xi)), (2.8)

where

Lτ (yi, f(xi)) =


(1− τ)(yi − f(xi))

2, if yi < f(xi)

τ(yi − f(xi)))
2, if yi ≥ f(xi).

(2.9)

The model tends to be overfitted with the increasing number of covariates. To address the

overfitting issue, a L2 penalty is added to the risk function,

R(τ) =
1

n

n∑
i=1

Lτ (yi, f(xi)) + λ
P∑
p=1

Q∑
q=1

(w
(1)
pq )2 + (w

(2)
q )2. (2.10)

The loss function for ENN is differentiable everywhere which gives us computation ad-

vantage. Even though ENN is differentiable, it is not easy to get exact estimator like lin-

ear regression because of the existence of indicator function. We can obtain the estima-

tor of ENN by using gradient-based optimization algorithms (e.g., quasi-Newton Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm). In numerical optimization, the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving

unconstrained nonlinear optimization problems[34].

2.3.3 Theoretical result

Intuitively, if we fix τ , the upper and lower bound of τ−expectile is related to risk function.

To illustrate well, some notations are changed. We give one theoretical result which shows

that upper bound and lower bound of error of τ−expectile are bounded by risk function

RLτ ,P (f). In ENN, τ−expectiles f∗Lτ ,P can be estimated by minimizing the asymmetric
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least squares (ALS) loss,

R∗Lτ ,P = inf{RLτ ,P (f) =

∫
X×Y

Lτ (y, f(x))dP (x, y)|f : X → R measurable},

where P is the distribution on X × Y and f : X → R is some predictor. The following

theorem describe the upper bound and lower bound of error of f∗Lτ ,P .

Theorem 2.3.1. Let Lτ be the ALS loss function and P be the distribution on X × Y . We

further assume that f∗Lτ ,P <∞ is the τ−expectile for fixed τ ∈ (0, 1). Then, for an arbitrary

neural network function f , we have

C
−1/2
τ (RLτ ,P (f)−R∗Lτ ,P )1/2 ≤ ||f − f∗Lτ ,P ||L2(Px) ≤ c

−1/2
τ (RLτ ,P (f)−R∗Lτ ,P )1/2,

where cτ = min{τ, 1− τ}, Cτ = max{τ, 1− τ}.

Proof of this theorem can be found in the appendix of the chapter.

18



2.4 Simulation

Simulation studies were conducted to compare the performance of ENN and ER under dif-

ferent settings. The genetic data used in the simulation is the real sequencing data from

the 1000 Genomes Project, located on Chromosome 17 : 7344328 − 8344327 [30]. Totally

1000 replicates were simulated for each simulation setting. In each replicate, we randomly

selected a number of samples and SNPs from the 1000 Genomes Project based on the simu-

lation settings. Given the genotypes, we further simulated the phenotype by using different

linear/non-linear functions or by assuming different types of interactions among SNPs or

genes.

We divided the samples into training, validation, and testing sets with the ratio 3: 1: 1.

ENN and ER were applied to the training set to build models. While a variety of activation

functions can be used in ENN, we choose ReLU due to its performance and computational

advantage[10]. Since the loss function of ENN is differentiable, we use the quasi-Newton

BFGS optimization algorithm to estimate the parameters in ENN. We chose the starting

point carefully to avoid the local minimum. To select a proper starting point, we generated

a set of initial values from U [−1, 1], ran the algorithm for a few steps, and chose the initial

values achieving the smallest loss as the initial values. Based on the initial values, the quasi-

Newton BFGS optimization algorithm is implemented to iteratively estimate the parameters

until the convergence criterion is satisfied. The models built on the training set were then

applied to the validation set to choose the most parsimonious model with the optimal tuning

parameter (i.e., λ). To choose the best λ, we use the grid search with different values of

0,0.1,1,10,100. This final model was then evaluated on the testing set by using the mean

squared error (MSE). We chose the number of hidden nodes with smallest MSE value by
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doing simulation. We simplify those terms: expectile neural network, expectile regression,

training data and testing data as ENN, ER, TR, TS in three simulations.

2.4.1 Simulation I - nonlinear relationship

In simulation I, we varied the relationships between genotypes and phenotypes. Since the

existence of hyperparameter τ , we compared the performances of ENN with ER. If we

wanted to compare with other model, we need to fix τ . The existence of τ gived us a

complete view of genetic effects across the entire distribution of phenotypes, like quantile

regression. If τ is close to 0 or 1, we could investigate genetic contribution to high-risk

individuals. Specially, we considered the following four nonlinear functions as true functions

to simulate the relationship between genotypes and phenotypes. For comparison purpose,

we also include a linear function. We compare ENN with ENN under four different nonlinear

functions: hyperbolic function, mixed function, quadratic function, cubic function.

1. linear function:

y = α + ε, α = xTβ,

2. Hyperbolic function:

y =
|α|

(1 + |α|)
+ ε, α = xTβ,

3. Mixed function:

y = sin(α) + 2 ∗ exp(−16α2) + ε, α = xTβ,

4. Quadratic function:

y = α2 + ε, α = xTβ,
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5. Cubic function:

y = α3 + ε, α = xTβ,

where x is the vector of SNPs (coded as 0, 1 or 2), β represents the genetic effects generated

from the uniform distribution of U(−1, 1), and ε ∼ N(0, 1). Totally 1000 replicates were

simulated by setting ε with different seed. For each replicate, We randomly choose 500

samples and 50 SNPs from the 1000 Genomes Project. For each nonlinear function, we

choose five different value τ of 0.1, 0.25, 0.5, 0.75, 0.9 in order to get different expectiles. To

have better readability, the columns of validation data are not shown.

21



Figure 2.3: Performance comparison between ENN and ER under various relationships be-
tween genotypes and phenotypes and different expectiles (i.e., 0.1, 0.25, 0.5, 0.75, and 0.9)
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The results from the simulation I are summarized in Figure 2.3. ENN outperforms ER in

terms of MSE under four different nonlinear relationships, and has comparable performance

with ER when the underlying relationship is linear. The pattern is consistent across different

expectiles (i.e., 0.1, 0.25, 0.5, 0.75, and 0.9). While ENN outperforms ER for all four

non-linear cases, ENN attains its best performance relative to ER when the underlying

relationship is a high-order polynomial function (i.e., a cubic function). From the simulation

result, ENN has advantages to explore the underlying nonliner relationship between genetic

variants and certain disease. By fixing τ as 0.1 or 0.9, we could apply ENN into real data

to identify high-risk individuals.

2.4.2 Simulation II - interactions among SNPs

Increasing empirical evidence from model organisms and human studies suggests that in-

teractions among loci contribute broadly to complex traits[36; 37; 38]. In simulation II,

we considered three different interactions scenarios that attempt to mimic simple biological

mechanisms. Those three types of interactions included a two-way multiplicative interaction,

a two-way threshold interaction, and a three-way interactions [14]. Similar to simulation I,

we simulated 1000 replicates for each type of interaction. We use the same structure of ENN

like simulatino II. For each replicate, 500 samples and 50 SNPs were chosen from the 1000

Genomes Project. Among the 50 SNPs, we randomly selected 20% of SNPs and simulated

different types of interactions among the selected SNPs. Based on the simulated data, we

compared MSEs of ENN and ER. For the comparison purpose, we also included a baseline

model without any interaction. Only training and testing data are shown.
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Figure 2.4: Performance comparison between ENN and ER for different types of interactions
and different expectiles (i.e., 0.1, 0.25, 0.5, 0.75, and 0.9)

The results of the simulation II are summarized in Figure 2.4. Overall, ENN outperforms

ER under all three interaction scenarios due to its ability of taking interactions into account.

Among all interaction models, ENN attains its best performance relative to ER when there

are three-way interactions. ENN also has more advantage over ER at the upper and lower

expectiles (e.g., 0.1 and 0.9). When there is no interaction, ENN has comparable performance

with ER.
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2.4.3 Simulation III - interactions between genes

Following the identification of several disease-associated polymorphisms by whole genome

association analysis, investigating interactions among two or more than two genes is often

interested in genetic studies[35]. Detecting gene-gene interaction will allow us to elucidate

the biological and biochemical pathways underpinning disease.

Figure 2.5: An alternative architecture for gene-gene interaction analyses

While a fully connected neural network can be built on all SNPs in the genes of interest,

a neural network with a simpler architecture reflecting the underlying genetic data structure

can be used to reduce the model’s complexity and improve the model’s performance. In this

simulation, We illustrate the idea by modeling interactions between two genes with a non-

fully connected architecture. In the non-fully connected architecture, the hidden units are

only locally connected to SNPs in one gene (Figure 2.5). By using this simple architecture,

we can reduce the number of parameters and build ”gene-specific” hidden units to capture

abstract features of a specific gene. To evaluate the performance of such an architecture, we
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simply simulated four SNPs for each gene, considered a two-way multiplicative interaction

between two genes, and compared ENN with the non-fully connected architecture to ENN

with a fully connected architecture.

Figure 2.6: Performance comparison between ENN with a fully connected architecture and
ENN with a non-fully connected architecture for gene-gene interaction analyses

Figure 2.6 summarizes the results from simulation III. The results show that ENN with

the non-fully connected architecture attains lower MSE than ENN with the fully-connected

architecture. As expected, the non-fully connected architecture requires fewer parameters

and more reflects the underlying genetic data structure (i.e., genes are separate functional

units), and therefore attains better performance than the fully-connected architecture. By

reducing the number of parameters, we have more computational advantage.

2.5 Real data applications

Tobacco use is the leading cause of preventable disease and death in the United States. In

2019, nearly 34 million adults currently smoked cigarettes. More than 16 million Americans
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are related to a disease caused by smoking. More than 300 billion a year are spent in direct

medical care for adults or in lost productivity due to premature death and exposure to

secondhand smoke in United States. More than 7 million deaths per year are caused by

tobacco use in the world(https://www.cdc.gov/tobacco/data_statistics/index.htm).

Predicting high-risk individuals at early stage so that appropriate prevention methods can

be used to reduce mortality and morbidity.

In this section, we applied ENN into analyzing two real data set. The first one is to explore

genetic effects on nicotine dependence. In the second real data analysis, we take gene-gene

interactions into consideration. Since the existence of hyperparameter τ , we choose ER

as baseline. Five different τ values 0.1, 0.25, 0.5, 0.75, 0.9 are chosen. We use mean square

error(MSE) as metrics to measure the performance of ENN and ER.
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Table 2.1: The accuracy performance of two models built by ENN and ER based on 149
candidate SNPs and 3 covariates

ENN ER
τ Train Test Train Test
0.1 409.612 678.331 504.215 694.809
0.25 346.118 579.164 394.836 588.759
0.5 358.783 502.752 342.144 535.925
0.75 344.399 604.969 421.955 613.676
0.9 570.994 809.733 699.654 882.781

2.5.1 The relationship between candidate SNPs with smoking quan-

tities

We applied both ENN and ER to the genetic data from the Study of Addiction: Genet-

ics and Environment(SAGE). The participants of the SAGE are selected from three large

and complementary studies: the Family Study of Cocaine Dependence(FSCD), the Collab-

orative Study on the Genetics of Alcoholism(COGA), and the Collaborative Genetic Study

of Nicotine Dependence(COGEND). In this application, we selected 155 SNPs, which were

previously shown to have a potential role in nicotine dependence. After quality control, 149

SNPs remained for the analysis. There are a total of 3897 samples in the SAGE data from

different ethnic groups. We only included 3888 Caucasian and African American samples

due to the small sample size of other ethnic groups. Our interest is to use ENN and ER to

build models on 149 SNPs, 3 covariates (i.e., sex, age, and race), and smoking quantities,

which is measured by the largest number of cigarettes smoked in 24 hours. We divided the

whole sample into the training, validation and test samples in the ratio of 3:1:1 to build the

models, select the turning parameter, and evaluate the models, respectively.

Table 2.1 summarizes MSE of the models built by ENN and ER for five expectile levels

(i.e., τ= 0.1, 0.25, 0.5, 0.75, and 0.9). For readability, MSE of validation data is omitted.
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Table 2.1 shows that ENN outperforms ER, indicating the possibility of non-linear or non-

additive effects among candidate SNPs and covariates.

Figure 2.7: A comprehesive view of the conditional distribution of smoking quantity for five
expectile levels (i.e., 0.1, 0.25, 0.5, 0.75, and 0.9)

To provide a comprehensive view of the conditional distribution of smoking quantity, we

ordered the expectiles estimated from ENN from lowest to highest and plotted their values

for all five expectile levels. Figure 2.7 shows that the distributions of estimated expectiles are

different across five expectile levels. Under different expectile levels, different expectiles are

predicted. When τ= 0.5, ENN models the mean response, in which the estimated expectiles

are similar for all individuals. Nonetheless, for high expectile levels (e.g., τ= 0.9), the

estimated expectiles vary among individuals and high-ranked individuals have much higher

expectiles than low-ranked individuals. ENN gives us more information compared to linear

regression which only shows predicted value with τ = 0.5.
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2.5.2 Gene-gene interactions between the CHRNA5-CHRNA3-

CHRNB4 gene cluster

Based on previous genome-wide association studies, variants in the CHRNA5-CHRNA3-

CHRNB4 gene cluster on chromosome 15 that encode the α5, α3 and β4 subunits of the

nicotinic acetylcholine receptor (nAChRs) are associated with nicotine dependence (ND) in

European Americans (EAs) or others of European origin[31]. In the second data analysis, we

focused on the CHRNA5-CHRNA3-CHRNB4 gene cluster, and evaluated potential interac-

tions by using ENN and ER. We consider three pairwise interactions between CHRNA5 and

CHRNA3, CHRNA5 and CHRNB4, CHRNA3 and CHRNB4. The phenotype of interest in

this analysis is the number of cigarettes smoked per day (CPD), which has been popularly

used in the genetic study of nicotine dependence.
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Table 2.2: Evaluating a pairwise interaction between CHRNA5 and CHRNA3 by using ENN
and ER

ENN ER
τ Train Test Train Test
0.1 1.106 2.022 1.183 2.036
0.25 0.994 1.699 1.027 1.737
0.5 0.896 1.266 0.908 1.304
0.75 1.148 1.045 1.136 1.066
0.9 2.015 1.335 2.069 1.357

Table 2.3: Evaluating a pairwise interaction between CHRNA5 and CHRNB4 by using ENN
and ER

ENN ER
τ Train Test Train Test
0.1 1.139 2.020 1.186 2.049
0.25 0.980 1.701 1.029 1.735
0.5 0.901 1.277 0.908 1.305
0.75 1.149 1.047 1.136 1.071
0.9 2.054 1.318 2.070 1.351

Tables 2.2-2.4 summarize MSE of the interaction models built by using ENN and ER

for five expectile levels. For all 3 scenarios, expectile neural network outperforms expectile

regression in terms of MSE slightly because the signal-to-noise ratio of genetic data is low.

To graphically view the conditional distribution of CPD, we ranked the expectiles esti-

mated from ENN and plotted the values against the estimated expectiles (Figures 2.8-2.10).

Table 2.4: Evaluating a pairwise interaction between CHRNA3 and CHRNB4 by using ENN
and ER

ENN ER
τ Train Test Train Test
0.1 1.133 2.019 1.183 2.035
0.25 0.979 1.683 1.020 1.696
0.5 0.892 1.278 0.896 1.279
0.75 1.150 1.048 1.128 1.081
0.9 2.020 1.342 2.040 1.386
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Overall, the estimated expectiles tends to be similar when τ= 0.5 (i.e., mean), while they

are quite different for high expectile levels (e.g., τ= 0.9). This suggest that the gene-gene

interactions may play a more important role in models with high expectiles than the mean

models.
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Figure 2.8: The conditional distribution of CPD considering the interaction between
CHRNA5 and CHRNA3

2.6 Summary and discussion

In this chapter, we develop an ENN method, which inherits advantages from both neural

networks and expectile regression. Using the hierarchical structure from neural networks,

ENN can learn complex and abstract features from genotypes, making it suitable for modeling

the complex relationship between genotypes and phenotype. Similar to ER, ENN can also

explore the conditional distribution and provide a comprehensive view of the genotype-

phenotype relationship.

Through simulations and a real data application, we demonstrate that ENN outperforms

ER when there are non-additive and non-linear effects. Evidence also suggests that ENN

has more advantages than ER when the model involves high-order interaction effects or

non-linear effects. This may suggest ENN has improved performance when the underlying

genotype-phenotype relationships become more complicated. The real data analysis shows
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Figure 2.9: The conditional distribution of CPD considering the interaction between
CHRNA5 and CHRNB4

Figure 2.10: The conditional distribution of CPD considering the interaction between
CHRNB4 and CHRNA3
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that genetic effects can vary among different expertiles. Compared to the classical linear

regression, ENN provides us more information about the genotype-phenotype relationship

via the conditional distributions for different expectile levels.

While regularization has been incorporated into ENN to avoid overfitting, ENN can

still be subject to overfitting when the number of SNPs becomes extremely large (e.g., one

million). To deal with such a large number of SNPs, we can model the overall genetic effect

as a random effect and extend ENN, which is an interesting topic for future work.
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Chapter 3

Asymptotic Theory of Expectile

Neural Networks

In the previous chapter, we focus on introducing the ENN model and providing an inequality

that bounds the integrated squared error of an expectile function estimator. Statistical prop-

erties of ENN (e.g., consistency) are also important topics that worth further investigation.

In this chapter, we study the asymptotic properties of expectile neural networks, including

consistency and normality. In ENN, we use the asymmetric square loss as the loss function.

When the size of parameters is too large, the standard maximum likelihood procedures may

not work. Therefore, we use the sieve method to constrain the parameter space of ENN, and

prove the consistency and normality under the nonparametric regression framework.

3.1 Introduction

Neural networks have been widely used in industry and academy. However, the theoreti-

cal properties of neural networks have not been thoroughly studied. For a typical artificial

neural network, we use the squared loss function to estimate parameters. A general result

for the asymptotic normality of squared loss function could be find[52]. By the universal

approximation theorem, a neural network with one hidden layer can approximate any con-

tinuous functions[43]. In this chapter, we use the asymmetric squared loss function, which
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gives us a comprehensive view of conditional distribution and computation advantage. In

statistics, fitting a neural network can be considered as a parametric nonlinear regression

problem,

yi = α0 +
r∑
j=1

αjσ(γTj xi + γ0,j),

where ε1, . . . , εn are i.i.d. random errors with E[ε] = 0 and E[ε2] = σ2 <∞ and σ(z) = 1/(1+

e−z). However, it is impractical to fix the number of hidden units r,. If we do not fix r, the

parameter in unidentifiable. Fukumizu (1996)[55] and Fukumizu et al. (2003) [56] provided

an example to illustrate the unidentifiable issue. If the true function is f0(x) = ασ(γx) with

one hidden unit, we fit the model using a neural network with two hidden units. Then, any

parameter Θ = [α0, α1, . . . , αr, γ0,1, . . . , γ0,r, γ
T
1 , . . . , γ

T
r ]T in the following set

{Θ : γ1 = γ, α1 = α, γ0,1 = γ0,2 = α2 = α0 = 0}∪

{Θ : γ1 = γ2 = γ, γ0,1 = γ0,2 = α0 = 0, α1 + α2 = α}

realizes the true function f0(x). Therefore, when the number of hidden units is unknown,

the parameters in this parametric nonlinear regression problem are unidentifiable.

To address this issue, we can consider the neural network in the nonparametric setting.

We assume that the true nonparametric regression model is as follows:

yi = f0(xi) + εi,

where ε1, ..., εn are i.i.d random variables defined on (Ω,A,P) with E(ε) = 0 and E(ε2) =

σ2 < ∞. f0 ∈ F is an unknown function, where F is the class of continuous function

with compact support. However, if the complexity of F is large, the estimator may be
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inconsistent[48]. The standard and penalized maximum likelihood procedures may be ineffi-

cient, whereas the method of sieves may be able to overcome this difficulty[52]. The method

of sieves provides one way to tackle such difficulties by optimizing an empirical criterion over

a sequence of approximating parameter spaces (i.e., sieves). The sieves are less complex but

are dense in the original space, and the resulting optimization problem becomes well-posed.

To address this issue, we constrain the class of F and use method of sieves to prove the

normality of ENN.

3.2 Method of sieves

Sieve is a sequence of increasing functions that can be used to reduce the number of param-

eters. Sieve plays an important role in infinite-dimensional unknown parameter, such as in

a nonparametric or semiparametric model. When the method of sieves is implemented, a

nonparametric or semiparametric estimation problem is often reduced to a parametric one.

However, to obtain the desired theoretical properties of the estimator, it is necessary that

the number of parameters increases slowly with the sample size[42]. We consider a sequence

of function classes,

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ Fn+1 ⊆ · · · ⊆ F ,

approximating F in the sense that
⋃∞
n=1Fn is dense in F , that is for each f ∈ F , there

exists πnf ∈ Fn such that d(f, πnf) → 0 as n → ∞, where d(·, ·) is some pseudo-metric

defined on F .

The method of sieves consists of two key ingredients: a loss function and sieve parameter

spaces (a sequence of approximating spaces). Both loss function and the sieve parameter

spaces are flexible. Almost all of the classical loss functions, so long as they allow for
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identification, can be used as loss functions in the method of sieve estimation. Therefore,

the main challenge is the choice of sieve parameter spaces. In this chapter, we focus on the

sieve of neural networks with one hidden layer and the sigmoid activation function.

Frn = {α0 +

rn∑
j=1

αjσ
(
γTj x + γ0,j

)
: γj ∈ Rd, αj , γ0,j ∈ R,

rn∑
j=0

|αj | ≤ Vn

for some Vn ≥ 4 and max
1≤j≤rn

d∑
i=0

|γi,j | ≤Mn for some Mn > 0},

(3.1)

where rn, Vn,Mn → ∞ as n → ∞. Frn has some important properties. For example, Frn

is dense in F and f ∈ Frn has upper bound. When we consider the asymptotic properties

of the sieve estimators, we use the pseudo-norm ‖f‖2n = n−1∑n
i=1 f

2(xi).

With some abuse of notation, an approximate sieve estimator f̂n is defined to be

Qn(f̂n) ≤ inf
f∈Fn

Qn(f) +Op(ηn), (3.2)

where ηn → 0 as n→∞.

We refer the reader to Chen for more details in the method of sieves [42]. Since we use

the asymmetric loss function, we establish the upper bounds for the empirical risk and the

sample complexity based on the covering number and the Vapnik-Chervonenkis dimension

[41]. The estimator of expectile neural networks can also be regarded as M-estimator[50].

3.3 Existence

Before we study the consistency and normality of ENN, it is crucial to ask if the sieve esti-

mator based on neural networks exists. In this chapter, we focus on Frn as sieve estimator.
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First, we show that any function in Frn has an upper bound.

Lemma 3.3.1. For each fixed n,

sup
f∈Frn

‖f‖∞ ≤ Vn.

Proof. For any f ∈ Frn with a fixed n and x ∈ X , we have

|f(x)| =

∣∣∣∣∣∣α0 +

rn∑
j=1

αjσ
(
γTj x+ γ0,j

)∣∣∣∣∣∣
≤ |α0|+

rn∑
j=1

|αj |σ
(
γTj x+ γ0,j

)
≤

rn∑
j=0

|αj | ≤ Vn.

Since the right-hand side does not depend on x and f , we have

sup
f∈Frn

‖f‖∞ = sup
f∈Frn

sup
x∈X
|f(x)| ≤ Vn.

Lemma 3.3.2. Let χ be a compact subset of Rd, then for each fixed n, Frn is a compact set.

The proof of this lemma is in the appendix. This lemma tells us that Frn is compact

in C(X ), which is the set of all continuous functions. We use the theorem 3.3.1 to show the

existence of estimator of ENN[47].

Theorem 3.3.1. Let (Ω,F , P ) be a complete probability space and (Θ, ρ) be a metric space.

Let {Θn} be a sequence of compact subsets of Θ and Qn : Ω × Θn → R be measurable

F ×B(Θn)/B. Assuming that for each ω in Ω, Qn(ω, ·) is lower semicontinuous on Θn, n =

1, 2, ...., then for each n = 1, 2, ..., there exists θ̂n : Ω→ Θn measurable F/B(Θn) such that
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for each ω in Ω, Qn(ω, θ̂n(ω)) = infθ∈Θn Qn(ω,Θ).

Proof.

Qn(f) =
1

n

n∑
i=1

(
|τ − 1{yi<f(xi)}|(yi − f(xi))

2
)

=
1

n

n∑
i=1

(
|τ − 1{f0(xi)+εi<f(xi)}|(f0(xi) + εi − f(xi))

2
)
.

Since Qn is measurable and lower semicontinuous and Frn is compact, we could get the

existence of sieve estimator for ENN.

3.4 Consistency

In this section, we are interested in proving the consistency of the neural network sieve

estimator under asymmetric squared loss function. If we choose τ = 0.5, the proof of

consistency of the neural network sieve estimator can be found in [51]. In ENN, we minimize

the following empirical risk,

f̂n = argminf∈FrnQn(f)

= argminf∈Frn
1

n

n∑
i=1

τ (Yi − f(Xi))
2
1{Yi−f(Xi)≥0} + (1− τ) (Yi − f(Xi))

2
1{Yi−f(Xi)<0}.
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One important step in proving consistency is to show that the empirical risk is uniformly

over Frn close to the expected risk. More specifically, we need to show that

1

n

n∑
i=1

{τ (Yi − f(Xi))
2
1{Yi−f(Xi)≥0} + (1− τ) (Yi − f(Xi))

2
1{Yi−f(Xi)<0}

− E
(
τ (Yi − f(Xi))

2
1{Yi−f(Xi)≥0} + (1− τ) (Yi − f(Xi))

2
1{Yi−f(Xi)<0}

)
}

= sup
f∈Frn

1

n

n∑
i=1

τ [g1(Zi)− E(g1(Zi))] + (1− τ)[g2(Zi)− E(g2(Zi))]→ 0 a.s., as n→∞,

where Zi = (Xi, Yi), i = 1, ..., n, g1(x, y) = |y − f(x)|21{y−f(x)≥0}, g2(x, y) = |y −

f(x)|21{y−f(x)<0} for f ∈ Fn , Gn,1 = {|y − f(x)|21{y−f(x)≥0} : f ∈ Frn} and Gn,2 =

{|y − f(x)|21{y−f(x)<0} : f ∈ Frn}.

In order to bound the distance between an average and its expectation uniformly over

Frn , we introduce the concept of covering number with respect to the supremum norm.

Definition 3.4.1. Let ε > 0 and G be a set of functions Rd → R. Each finite collection

of functions g1, ..., gN : Rd → R has the following property. For every g ∈ G, there is a

j = j(g) ∈ {1, ..., N} such that

||g − gj || = sup
x
|g(x)− gj(x)| < ε

is called an ε−cover of G with respect to || · ||∞.

Definition 3.4.2. let ε > 0, G be a set of functions Rd → R, and N (ε,G, || · ||∞) be the

size of the smallest ε− cover of G w.r.t. || · ||∞. By taking N (ε,G, || · ||∞) =∞ if no finite

ε− cover exists, N (ε,G, || · ||∞) is called an ε−covering number of G.

To prove the uniform law of large numbers, we need to introduce the lemma 3.4.1 [44].
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Lemma 3.4.1. For n ∈ N , Assuming Gn be a set of functions g : Rd → [0, B] and ε > 0,

we have

P

{
sup
g∈Gn

∣∣∣ 1
n

n∑
i=1

g(Zi)− Eg(Z)
∣∣∣ > ε

}
≤ 2N (ε/3,Gn)e

−2nε2

9B2 .

Theorem 3.4.1 (The uniform law of large numbers). Assuming Zi = (Xi, Yi), i = 1, ..., n.

If [rn(d+ 2) + 1] log [rn(d+ 2) + 1] = o(n). We can get

sup
f∈Fn

∣∣ 1
n

n∑
i=1

τ [g1(Zi)− E(g1(Zi))] + (1− τ)[g2(Zi)− E(g2(Zi))]
∣∣→ 0 a.s, n→∞. (3.3)

Proof. Since the loss function has two parts, the empirical risk can also be considered as two

parts.

sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

τ [g1(Zi)− E(g1(Zi))] + (1− τ)[g2(Zi)− E(g2(Zi))]
∣∣∣

≤ sup
g1∈Gn,1

τ
∣∣∣ 1
n

n∑
i=1

g1(Zi)− E(g1(Zi))
∣∣∣+ sup

g2∈Gn,2
(1− τ)

∣∣∣ 1
n

n∑
i=1

g2(Zi)− E(g2(Zi))
∣∣∣. (3.4)

We focus on the first part since the proof of second part can be derived in the same manner.

sup
g1∈Gn,1

τ
∣∣∣ 1
n

n∑
i=1

g1(Zi)− E(g1(Zi))
∣∣∣→ 0. (3.5)

For B > 0, let G(x) = supg1∈Gn,1 |g1(x)|,GB = {g11{G < B} : g1 ∈ Gn,1}.
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If g1 ∈ Gn,1,

∣∣∣ 1
n

n∑
i=1

g1(Zi)− E(g1(Zi))
∣∣∣

≤
∣∣∣ 1
n

n∑
i=1

g1(Zi)− g1(Zi)1{G(Zi)≤B}

∣∣∣+
∣∣∣ 1
n

n∑
i=1

g1(Zi)1{G(Zi)≤B} − E(g1(Zi))1{G(Z)≤B}

∣∣∣
+
∣∣∣ 1
n

n∑
i=1

E(g1(Zi))1{G(Z)≤B} − E(g1(Zi))
∣∣∣

≤ 1

n

n∑
i=1

G(Zi)1{G(Zi>B)} +
∣∣∣ 1
n

n∑
i=1

g1(Zi)1{G(Zi)≤B} − E(g1(Zi))1{G(Z)≤B}

∣∣∣
+ E(G(Z)1{G(Z)>B}).

(3.6)

This implies

sup
g1∈Gn,1

∣∣∣ 1
n

n∑
i=1

g1(Zi)− E(g1(Zi))
∣∣∣

≤ sup
g1∈GB

∣∣∣ 1
n

n∑
i=1

g1(Zi)− E(g1(Zi))
∣∣∣+

1

n

n∑
i=1

G(Zi)1{G(Zi>B)}

+ E(G(Z)1{G(Z)>B}).

(3.7)

Based on E(G(Z)) <∞ and the strong law of large numbers, we get

1

n

n∑
i=1

G(Zi)1{G(Zi>B)} → E(G(Z)1{G(Z)>B}) a.s. if n→∞

If B →∞,

E(G(Z)1{G(Z)>B})→ 0.
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Therefore, we only need to consider,

sup
g1∈GB

τ
∣∣∣ 1
n

n∑
i=1

g1(Zi)− E(g1(Zi))
∣∣∣→ 0.

Recall that if g is a function g : R → [0, B], then by Hoeffding’s inequality

P

∣∣∣ 1n
n∑
j=1

g(Zj)− E(g(Z))
∣∣∣ > ε

 ≤ 2e
−2nε2

B2 . (3.8)

By lemma 3.4.1, we have

P

 sup
g1∈Gn,1

∣∣∣ 1
n

n∑
j=1

g(Zj)− E(g(Z))
∣∣∣ > ε

 ≤ 2N (ε/3,Gn,1, ‖ · ‖∞)e
−2nε2

B2 . (3.9)

We use the the upper bound covering number result from the Theorem 14.5 in Anthony and

Gartlett,

N (ε/3,Frn , ‖ · ‖∞) ≤

(
12e [rn(d+ 2) + 1] (1

4V )2

ε(1
4V − 1)

)(rn(d+2)+1)

. (3.10)

Recall the definition of covering number, N (ε/3,Frn , ‖ · ‖∞) = N , is minimum number such

that there exist functions f1, ..., fN with the property that for every f ∈ Frn there is a

j = j(f) ∈ 1, ..., N such that

sup
x
|f(x)− fj(x)| < ε.

Since f(x) andfj(x) is close enough, y − f(x) and y − fj(x) are either negative or positive
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in the following situation,

sup
x
|(y − f(x))2

1{y−f(x)≥0} − (y − fj(x))2
1{y−fj(x)≥0}|

≤ sup
x
|(y − f(x))2 − (y − fj(x))2|

= sup
x
|2y(fj − f) + (f − fj)(f + fj)|

< 2(M1 +M2)ε.

(3.11)

Since y ∈ GB and any functions in Frn are bounded, there exist M1 and M2 such that

|y| < M1 and |f | < M2. So N (ε/3,Gn,1, ‖ · ‖∞) ≤ N (ε/3,Frn , ‖ · ‖∞).

If [rn(d+ 2) + 1] log [rn(d+ 2) + 1] = 0(n), then

∞∑
n=1

exp

{
[rn(d+ 2) + 1] log

(
12e [rn(d+ 2) + 1] (1

4V )2

ε(1
4V − 1)

)}
· e
−2nε2

B2 <∞. (3.12)

(3.5) follows by using the Borel-Cantelli lemma.

Since we have proven the uniform laws of large numbers, we use it to show the consistency

of the neural networks. We rewrite the population loss criterion function:

Qn(f) =
1

n

n∑
i=1

E
[(
|τ − 1{yi<f(xi)}|(yi − f(xi))

2
)]

(3.13)

In order to prove the consistency of ENN, we use the Theorem 3.4.2 that is the corollary 2.6

in White and Wooldridge[47], and check the condition of the corollary.

Theorem 3.4.2. Let the condition of Theorem 3.3.1 holds. Suppose there exists a function
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Q : Θ→ R such that Q is continuous at θ0 in Θ, Q(θ0) <∞. For any ε > 0,

P (ω : sup
θ∈Θn

|Qn(ω, θ)−Q(θ)| > ε)→ 0 as n→∞.

and

inf
θ∈ηc(θ0,ε)

Q(θ)−Q(θ0) > 0.

If {Θn} is an increasing sequence and ∪nΘn is dense in Θ, then

ρ(θ̂n, θ0)
P→ 0.

Lemma 3.4.2. Suppose
1
n
∑n
i=1(f0(xi)−f(xi))

2

σ2 > 2τ−1
1−τ for 1

2 < τ < 1,

then inff :‖f−f0‖n≥εQn(f)−Qn(f0) > 0.

Proof.

Qn(f) =
1

n

n∑
i=1

E
[(
|τ − 1{yi<f(xi)}

|(yi − f(xi))
2
)]

=
1

n

n∑
i=1

τE
[
(yi − f(xi))

2
]
− 1

n

n∑
i=1

τE
[
(yi − f(xi))

2
1{yi<f(xi)}

]
+ (1− τ)

1

n

n∑
i=1

E
[
(yi − f(xi))

2
1{yi<f(xi)}

]
=

1

n

n∑
i=1

τE
[
(yi − f(xi))

2
]

+ (1− 2τ)
1

n

n∑
i=1

E
[
(yi − f(xi))

2
1{yi<f(xi)}

]
(3.14)

Qn(f0) ==
1

n

n∑
i=1

τE
[
(yi − f0(xi))

2
]
+(1−2τ)

1

n

n∑
i=1

E
[
(yi − f0(xi))

2
1{yi<f0(xi)}

]
(3.15)
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Qn(f)−Qn(f0) =
1

n

n∑
i=1

τE
[
(yi − f(xi))

2
]

+ (1− 2τ)
1

n

n∑
i=1

E
[
(yi − f(xi))

2
1{yi<f(xi)}

]
− 1

n

n∑
i=1

τE
[
(yi − f0(xi))

2
]

+ (1− 2τ)
1

n

n∑
i=1

E
[
(yi − f0(xi))

2
1{yi<f0(xi)}

]
=

1

n

n∑
i=1

τ (f0(xi)− f(xi))
2 + σ2

= +(1− 2τ)
1

n

n∑
i=1

E
[
(yi − f(xi))

2
1{yi<f(xi)}

]
− τ

n

n∑
i=1

σ2 − (1− 2τ)
1

n

n∑
i=1

E
[
ε2i1{εi<0}

]
=

1

n

n∑
i=1

τE
[
(f0(xi)− f(xi))

2
]

+ (1− 2τ)
1

n

n∑
i=1

E
[
(εi)

2
1{εi<f(xi)−f0(xi)}

]
+ (1− 2τ)

1

n

n∑
i=1

2 (f0(xi)− f(xi))E
[
εi1{εi<f(xi)−f0(xi)}

]
+ (1− 2τ)

1

n

n∑
i=1

(f0(xi)− f(xi))
2 P (ε < f0(xi)− f((xi)))

− (1− 2τ)
1

n

n∑
i=1

E
[
ε2i1{εi<0}

]
=

1

n

n∑
i=1

τ (f0(xi)− f(xi))
2 + (1− 2τ)

1

n

n∑
i=1

E
[
(εi)

2
1{0≤εi<f(xi)−f0(xi)}

]
+ (1− 2τ)

1

n

n∑
i=1

2 (f0(xi)− f(xi))E
[
εi1{εi<f(xi)−f0(xi)}

]
+ (1− 2τ)

1

n

n∑
i=1

(f0(xi)− f(xi))
2 P (εi < f0(xi)− f((xi)))

(3.16)

If εi < f0(xi)− f((xi), then E
[
εi1{εi<f(xi)−f0(xi)}

]
= E [εi] = 0.

If εi ≥ f0(xi)− f((xi), then E
[
εi1{εi<f(xi)−f0(xi)}

]
= 0.
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We could simplify

Qn(f)−Qn(f0) =
1

n

n∑
i=1

τ (f0(xi)− f(xi))
2 + (1− 2τ)

1

n

n∑
i=1

E
[
(εi)

2
1{0≤εi<f(xi)−f0(xi)}

]
+ (1− 2τ)

1

n

n∑
i=1

(f0(xi)− f(xi))
2 P (εi < f0(xi)− f((xi)))

(3.17)

If τ ≤ 1
2 ,

Qn(f)−Qn(f0) ≥ 1

n

n∑
i=1

τ (f0(xi)− f(xi))
2 > 0 (3.18)

If τ > 1
2 ,

Qn(f)−Qn(f0) ≥ 1

n

n∑
i=1

τ (f0(xi)− f(xi))
2 + (1− 2τ)

1

n

n∑
i=1

E
[
(εi)

2
]

+ (1− 2τ)
1

n

n∑
i=1

(f0(xi)− f(xi))
2

= (1− τ)
1

n

n∑
i=1

(f0(xi)− f(xi))
2 + (1− 2τ)σ2

> 0, if
1
n

∑n
i=1 (f0(xi)− f(xi))

2

σ2
>

2τ − 1

1− τ

(3.19)

Therefore,

inf
f :‖f−f0‖n≥ε

Qn(f)−Qn(f0) > 0. (3.20)

Since the conditions of the corollary 2.6 satisfy, we have the consistency of ENN sieve
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estimator.

Theorem 3.4.3. Under the notation given above, if
1
n
∑n
i=1(f0(xi)−f(xi))

2

σ2 > 2τ−1
1−τ for

1
2 < τ < 1 and [rn(d+ 2) + 1] log [rn(d+ 2) + 1] = o(n), then

‖f̂n − f0‖n
P→ 0.

Proof. By using the Theorem 3.4.2, Theorem 3.4.1, lemma 3.4.2 and lemma 3.3.2, we have

‖f̂n − f0‖n
P→ 0.

3.5 Normality

We use the following theorem to prove the normality of the ENN sieve estimator[48].

Theorem 3.5.1. Suppose that F is a P−Donsker class of measurable function and f̂n is a

sequence of random functions that take their values in F such that

∫ (
f̂n(x)− f0(x)

)2
dP (x)

P→ 0.

For some f0 ∈ L2(P ), we have

1√
n

n∑
i=1

(
(f̂n − f0)(Xi)− P (f̂n − f0)

)
P→ 0,

50



and

1√
n

n∑
i=1

f̂n(Xi)− P f̂n ∼ N(0, Pf2
0 − (Pf0)2).

From theorem 3.5.1, We need to check two conditions: Frn is P−Donsker class and∫ (
f̂n(x)− f0(x)

)2
dP (x)

P→ 0.

Next, we give the definition of the Donsker class. In short, if the sequence of processes

√
n(Pf−Pf) converges in distribution to a tight limit process, then a class F of measurable

functions f is called Donsker. We review the formal definition of the Donsker class.

Let (X ,A,P) be a probability space and Gp be a Gaussian process with zero mean and

covariance E[Gp(f)Gp(g)] = P (fg) − Pf · Pg. We define a class F ⊂ L2(X ,A,P) as a

GpBUC class if and only if the process Gp(f, ω) can be chosen so that for all ω, the sample

functions f 7−→ Gp(f, ω), f ∈ F are bounded and continuous for ρp.

Definition 3.5.1 (Donsker Class). A class F ⊂ L2(X ,A,P) is called a Donsker class if

and only if it is a GpBUC class. There are processes Yj(f, ω), f ∈ F , ω ∈ Ω, where Yj are

independent copies of Gp with f 7−→ Yj(f, ω) bounded and ρP−uniformly continuous on F

for each j, such that for every ε > 0,

P∗
n−1/2 max

m≤n
sup
f∈F
‖
m∑
j=1

f(Xj)− Pf − Yj(f)‖ > ε

→ 0 as n→∞.

It is not convenient to check if one class of functions is the Donsker class by definition.

A sufficient condition for a class to be Donsker is that they do not grow too fast. The speed

can be measured by bracketing integral

J[](δ,F , L2(P )) =

∫ δ

0

√
logN[](ε,F , L2(P ))dδ,
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where N[](ε,F , L2(P ) is the bracketing number. If this integral is finite, then the class F is

a Donsker class.

Theorem 3.5.2. Frn is a Donsker class.

Proof. By using the result of the uniform covering number for deep neural neural networks,

we have

N(ε,Frn , || · ||sup) ≤

(
4e[rn(d+ 2) + 1](1

4Vn)2

ε(1
4Vn − 1)

)
.

By using the relationship between packing number and covering number, for a small enough

ε, we have

logN[ ](2ε,Frn , || · ||∞) ≤ log
(

2N(
ε

2
,Frn , || · ||sup)

)
≤ 2log

(
N(

ε

2
,Frn , || · ||sup)

)
≤ 2[rn(d+ 2) + 1]

(
logÃrn,Vn,d + log

1

ε

)
,

where Ãrn,Vn,d =
2eV 2

n [rn(d+2)+1]
Vn−4 . By letting

Arn,Vn,d = [rn(d+ 2) + 1]logÃrn,Vn,d − [rn(d+ 2) + 1]

= [rn(d+ 2) + 1]

(
log

2eV 2
n [rn(d+ 2) + 1]

Vn − 4
− 1

)
= [rn(d+ 2) + 1]

(
log

2V 2
n [rn(d+ 2) + 1]

Vn − 4

)
,

and V 2
n − eVn + 4e ≥ 0 for all Vn, we have

log
2V 2
n [rn(d+ 2) + 1]

Vn − 4
≥ log

V 2
n

Vn − 4
≥ log

e(Vn − 4)

Vn − 4
= 1.
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Then

logN[ ](2ε,Frn , || · ||∞) ≤ 2[rn(d+ 2) + 1]

(
logÃrn,Vn,d + log

1

ε

)
≤ 2

(
Ãrn,Vn,d + 2[rn(d+ 2) + 1](

1

ε
+ 1)

)
≤ 2Ãrn,Vn,d + [rn(d+ 2) + 1]

1

ε
(since logx ≤ x− 1 for all x > 0)

≤ 2Ãrn,Vn,d

(
1 +

1

ε

)
.

Since Frn is uniformly bounded by Vn, it is clear that N[ ](2ε,Frn , || · ||∞) = 1 for all ε ≥ Vn.

Therefore, for each fixed n, we have

∫ ∞
0

(
logN[ ](2ε,Frn , || · ||∞)

)1/2
.
∫ Vn

0

(
1 +

2

ε

)1/2

dε

<∞.

Then Frn is a Donsker class.

More details about the Donsker class can be found in Van der Vaart and A.W., Wellner

[49]. It is easy to check that the sigmoid activation function is squashing function since

σ(x) = 1
1+e−x is nondecreasing (limx→∞ σ(x) = 1 and limx→−∞ σ(−x) = 0). We use the

theorem 3.5.3 to check
∫ (

f̂n(x)− f0(x)
)2
dP (x)

P→ 0.

Theorem 3.5.3. Let σ be a squashing function. For each probability measure µ on Rd, each

measurable f : Rd → R with
∫
|f(x)|2µ(dx) < ∞, and each ε > 0, there exists a neural

network h(x) in

h(x) = {
k∑
i=1

ciσ(aTi x+ bi) + c0 : k ∈ N, ai ∈ Rd, bi, ci ∈ R},
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such that ∫
|f(x)− h(x)|2µ(dx) < ε.

Next, we establish the asymptotic normality of ENN. We assume that f0 ∈ F , where F

is the class of continuous functions with compact supports. f0 is a function needed to be

estimated.

Theorem 3.5.4. Suppose f̂n(x) ∈ F is a sequence of random functions and∫
|f0(x)|2dP (x) <∞. If conditions in consistency exist, we can get

∫ (
f̂n(x)− f0(x)

)2
dP (x)

P→ 0.

For some f0 ∈ L2(P ), we have

1√
n

n∑
i=1

(
(f̂n − f0)(Xi)− P (f̂n − f0)

)
P→ 0,

and

1√
n

n∑
i=1

f̂n(Xi)− P f̂n ∼ N(0, Pf2
0 − (Pf0)2).

Proof. Assuming πrnf0 ∈ Frn , we have

‖f̂n(x)− f0(x)‖2 ≤ ‖f̂n − πnf0‖2 + ‖πnf0 − f0‖2. (3.21)

Using the result of consistency of ENN, we have

‖f̂n − πnf0‖2
p→ 0.
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From the theorem 3.5.3,

‖πnf0 − f0‖2 < ε.

Therefore, we can get ∫ (
f̂n(x)− f0(x)

)2
dP (x)

P→ 0.

Based on the theorem 3.5.1, we can obtain the result for the normality,

1√
n

n∑
i=1

(
(f̂n − f0)(Xi)− P (f̂n − f0)

)
P→ 0,

and

1√
n

n∑
i=1

f̂n(Xi)− P f̂n ∼ N(0, Pf2
0 − (Pf0)2).

3.6 Simulation

To validate the theoretical properties of ENN, we ran simulations on the consistency and

normality of ENN. We obtained the estimator of ENN by using the gradient-based optimiza-

tion algorithms (e.g., quasi-Newton Broyde-Fletcher-Goldfarb-Shanno (BFGS) optimization

algorithm). The response was simulated through the following equation:

yi = f0(xi) + εi, i = 1, .., n, (3.22)

where x1, .., xn ∼ N (0, 1), ε1, ..., εn
i.i.d∼ N (0, 0.12). For the true function f0, we consider

three different nonlinear functions:
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1. a neural network with one single hidden layer and two hidden units,

2. a polynomial function:

f0 = x3 + 1,

3. a complex nonlinear function:

f0 = sin(x) + 2exp((−16)x2).

3.6.1 Consistency

In this section, we used simulations to check the validity of consistency result in Section 4.

Since τ was between 0 and 1. For ENN with 0.5 < τ < 1, ENN had one more condition than

ENN with 0 < τ < 0.5. we mainly considered ENN with τ = 0.5, 0.75. For ENN with τ =

0.75, we made σ2 smaller(e.g., σ2 = 0.01) to satify the condition:
1
n
∑n
i=1(f0(xi)−f(xi))

2

σ2 >

2τ−1
1−τ for 1

2 < τ < 1.

3.6.1.1 Simulation results of consistency with τ = 0.5

We chose five different sample sizes: 50, 100, 200, 500 and 1000. From Figure 3.1 to Figure

3.3, the fitted curve is closer to the true function as the sample increases.
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Figure 3.1: Comparison between the true function f0 and fitted functions under different
sample sizes, where f0 is a neural network with one single hidden layer and two hidden units
τ = 0.5.

Figure 3.2: Comparison between the true function f0 = x3 + 1 and fitted functions under
different sample sizes with τ = 0.5.
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Figure 3.3: Comparison between the true function f0 = sin(x) + 2exp((−16)x2) and fitted
functions under different sample sizes with τ = 0.5.

3.6.1.2 Simulation results of consistency with τ = 0.75

We also chose five different sample sizes: 50, 100, 200, 500 and 1000. From Figure 3.4 to

Figure 3.6, the fitted curve is closer to the true function as the sample increases. Overall,

the simulation results are consistent with the theoretical finding.
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Figure 3.4: Comparison between the true function f0 and fitted functions under different
sample sizes, where f0 is a neural network with one single hidden layer and two hidden units
with τ = 0.75.

Figure 3.5: Comparison between the true function f0 = x3 + 1 and fitted functions under
different sample sizes with τ = 0.75.
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Figure 3.6: Comparison between the true function f0 = sin(x) + 2exp((−16)x2) and fitted
functions under different sample sizes with τ = 0.75.

3.6.2 Normality

In this section, we demonstrated our asymptotic normality derived in theorem 3.5.4. The

same true function were used but the random errors were sampled from standard normal

distribution. We used

1√
n

n∑
i=1

(
f̂n(xi)− f0(xi)

)
(3.23)

as test statistic to draw the Q-Q plots. We varied sample sizes (i.e., 50, 100, 200, 300, 400,

and 500) when evaluating three nonlinear functions.
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Figure 3.7: Q-Q plot with different sample sizes, where the true function f0 is a neural
network with one single hidden layer and two hidden units with τ = 0.5

3.6.2.1 Simulation result of normality with τ = 0.5

From Figure 3.7 to Figure 3.9, data points appear as roughly a straight line. The test statistic

1√
n

n∑
i=1

(
f̂n(xi)− f0(xi)

)
(3.24)

fits the normal distribution pretty well.
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Figure 3.8: Q-Q plot with different sample sizes, where the true function is f0 = x3 + 1 with
τ = 0.5.

Figure 3.9: Q-Q plot with different sample sizes, where the true function is f0 = sin(x) +
2exp((−16)x2) with τ = 0.5.
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Figure 3.10: Q-Q plot with different sample sizes, where the true function f0 is a neural
network with one single hidden layer and two hidden units with τ = 0.75.

3.6.2.2 Simulation result of normality with τ = 0.75

From Figure 3.10 to Figure 3.12,we used the same test statistic and data points appeared

as roughly a straight line. Based on the simulation results, we demonstrated the validity of

normality of ENN.

3.7 Summary and discussion

In this section, we study the consistency and normality of ENN sieve estimators with one

hidden layer. To overcome the issue of unidentifiability, we use the method of sieve to narrow

down the choice of parametric space. The covering numbers is used to find an approximation

to a rich class Frn . By establishing an upper bound for the covering number of Frn , we prove

the consistency and normality of ENN. To check the validity of theoretical results, we also ran

simulations based on the theorem conditions. If we choose τ as 0.5, then ENN becomes the

traditional neural network. The ENN method inherits advantages from both neural networks
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Figure 3.11: Q-Q plot with different sample sizes, where the true function is f0 = x3 + 1
with τ = 0.75.

Figure 3.12: Q-Q plot with different sample sizes, where the true function is f0 = sin(x) +
2exp((−16)x2) with τ = 0.75.
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and expectile regression. Using the hierarchical structure from neural networks, ENN can

learn complex and abstract features from covariates, making it suitable for modeling the

complex relationship between covariates and response by tuning hyperparameter τ .

Although we focus on one hidden layer neural network sieve estimators with sigmoid ac-

tivation function in this chapter, the results of this chapter can be extended to other neural

networks and activation functions. For instance, it can be potentially extended to other

popular activation functions (e.g., the rectified linear unit). Deep neural network struc-

tures are commonly used in convolutional neural networks and recurrent neural networks.

Therefore, it is worthwhile to investigate the asymptotic theory of different neural network

architectures.

It may be also worthwhile to consider the regularization of neural networks into consid-

eration. Since the number of parameters in deep neural networks is large, the overfitting

issue is common in practice. Dropout is an approach of regularization in neural networks,

which reduces the number of hidden units [53]. In statistics, we also add a penalty term as

a regularization approach. To avoid overfitting, it is common to add a penalty term. Es-

tablishing the asymptotic theory of neural networks with regularization is crucial when we

apply neural networks into real data analysis. We will consider this problem in the future.
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Chapter 4

Summary and Discussion

This dissertation focuses mainly on developing a neural-network-based method, ENN, with

application in risk prediction of genetic data. We also study the statistical properties of

ENN, including consistency and normality.

In chapter 2, we develop a neural-network-based method called ENN. To demonstrate

the performance of ENN, we run three different simulation settings: nonlinear, interactions

among SNPs and interactions between genes. If there are nonlinear or high-order interaction

effects in genetic data, ENN outperforms ER. To model the more complex relationship be-

tween genotypes and phenotypes, we change the architecture of ENN to non-fully connected

architecture. By tuning the hyperparameter τ , ENN can provide a comprehensive view of

the genotype-phenotype relationship for different expectile levels. Different expectile levels

could also help us to identify high-risk individuals for certain disease, especially at the low

expectile level(τ = 0.1) and the high expectile level(τ = 0.9).

Through two real data applications, we also demonstrate that ENN outperforms ER

when the underlying genotype-phenotype relationships become complicated. For different

expectiles, genetic effects vary, which provides us more information about the genotype-

phenotype relationship via the conditional distributions. By studying different expectile

levels, it may help us to predict high-risk individuals since genetic variations can have large

effects on a particular disease.
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In chapter 3, we study the consistency and normality of ENN sieve estimators with one

hidden layer. We consider neural networks as a nonparametric regression problem to avoid

the issue of unidentifiability. The method of sieve is used to narrow down the choice of

parametric space. To measure the complexity of neural networks, we use covering number

as measurement. By establishing an upper bound for the covering number of Frn , we first

prove the uniform law of large numbers of ENN. With some regularity conditions, we also

prove the consistency and normality of ENN. Simulations have also been conducted to test

the validity of theoretical results.

Most complex diseases are not only explained by genetic effects but also can be influ-

enced by environmental determinants, which can be physical, chemical, biological, behavior

patterns or life events. A small difference in one person’s genes can cause them to respond

differently to the same environmental exposure to another person. As a result, some peo-

ple may develop the disease after being exposed to the environment while others may not.

Therefore, it is worthwhile to take environmental determinants into consideration. In the

future, we could apply ENN to study a disease with a potential gene-environment interaction

component. By doing this, we could gain a better understanding of the disease and increase

prediction accuracy.

Many researchers focus on improving the prediction accuracy of neural network estima-

tors, while the statistical inference based on neural network estimator is not fully studied. By

establishing the asymptotic properties of ENN, it is worthwhile to investigate the statistical

inference of ENN. We could also incorporate other machine learning techniques into ENN.

For many genetic datasets, Caucasian samples are larger than African samples. Due to the

limitation of African samples, we could first train ENN on Caucasian samples and get the

estimator, which can be used to improve prediction accuracy in African samples. We also
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apply ENN into real data with transfer learning, which is described in the appendix. By

using this technique, we could improve the performance of ENN.
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Appendix A

Technical Details of Chapter 2

Proof of theorem 2.3.1

Theorem A.0.1. Let Lτ : Y ×R→ [0,∞) be the asymmetric least square loss function and

Q be a distribution on Y = [−M,M ]. Then, the inner Lτ − risks of Q could be defined as

Cτ,Q(t) =

∫
Y
Lτ (y, t)dQ(y), t = f(xi) ∈ R,

and the minimal inner Lτ − risk is

C∗Lτ ,Q = inft∈RCLτ ,Q(t).

Lemma A.0.1. Let Lτ be the asymmetric least square loss function and Q be a distribution

on R with C∗Lτ ,Q <∞. For a fixed τ ∈ (0, 1) and for all t ∈ R, we have

cτ (t− t∗)2 ≤ CLτ ,Q(t)− C∗Lτ ,Q ≤ Cτ (t− t∗)2,

where cτ = min{τ, 1− τ} and Cτ = max{τ, 1− τ}, t∗ is τ−expectile .

Proof. Let us fix τ ∈ (0, 1). We use the result obtained in Newey and Powell [16]. For a
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distribution Q on R satisfies C∗Lτ ,Q <∞, the τ−expectile t∗ is the only solution of

τ

∫
y≥t∗

(y − t∗)dQ(y) = (1− τ)

∫
y<t∗

(t∗ − y)dQ(y). (A.1)

First, We consider the lower bound.

To obtain the inner Lτ−risks of Q, we consider two cases: t ≥ t∗ and t < t∗.

When t ≥ t∗, we have

∫
y<t

(y − t)2dQ(y) =

∫
y<t

(y − t∗ + t∗ − t)2dQ(y)

=

∫
y<t

(y − t∗)2dQ(y) + 2(t∗ − t)
∫
y<t

(y − t∗)dQ(y)

+ (t∗ − t)2Q((−∞, t))

=

∫
y<t∗

(y − t∗)2dQ(y) +

∫
t∗≤y<t

(y − t∗)2dQ(y) + (t∗ − t)2Q((−∞, t))

+ 2(t∗ − t)
∫
y<t∗

(y − t∗)dQ(y) + 2(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y),

and

∫
y≥t

(y − t)2dQ(y) =

∫
y≥t∗

(y − t∗)2dQ−
∫
t∗≤y<t

(y − t∗)2dQ(y) + (t∗ − t)2Q([t,∞))

+ 2(t∗ − t)
∫
y≥t∗

(y − t∗)dQ(y)− 2(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y).
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By definition and (13), we have

CLτ ,Q(t) = (1− τ)

∫
y<t

(y − t)2dQ(y) + τ

∫
y≥t

(y − t)2dQ(y)

= (1− τ)

∫
y<t∗

(y − t∗)2dQ(y) + τ

∫
y≥t∗

(y − t∗)dQ(y)

+ 2(t∗ − t)((1− τ)

∫
y<t∗

(y − t∗)dQ(y) + τ

∫
y≥t∗

(y − t∗)dQ(y))

+ (t∗ − t)2(1− τ)Q((−∞, t)) + (t∗ − t)2τQ([t,∞))

+ (1− 2τ)

∫
t∗≤y<t

(y − t∗)2dQ(y) + 2(1− 2τ)(t∗ − t)
∫
t∗≤y<t

(y − t∗)dQ(y)

= CLτ ,Q(t∗) + (t∗ − t)2(1− τ)Q((−∞, t)) + (t∗ − t)2τQ([t,∞))

+ (1− 2τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)
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Therefore,

CLτ ,Q(t)− CLτ ,Q(t∗)

= (t∗ − t)2(1− τ)Q((−∞, t∗)) + (t∗ − t)2(1− τ)Q([t∗, t)) + (t∗ − t)2τQ([t,∞))

+ (1− 2τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

= (t∗ − t)2((1− τ)Q((−∞, t∗)) + τQ([t,∞)))

− τ
∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

+ (t∗ − t)2(1− τ)Q([t∗, t)) + (1− τ)

∫
t∗≤t<t

(y − t∗)2 + 2(t∗ − t)(y − t∗)dQ(y)

= (t∗ − t)2((1− τ)Q((−∞, t∗)) + τQ([t,∞)))− τ
∫
t∗≤y<t

(y − t∗)(y + t∗ − 2t)dQ(y)

+ (1− τ)

∫
t∗≤y<t

(y − t∗)2 + 2(t∗ − t)(y − t∗) + (t∗ − t)2dQ(y)

= (t∗ − t)2((1− τ)Q(−∞, t∗)) + τQ([t,∞))) + τ

∫
t∗≤y<t

(y − t∗)(2t− t∗ − y)dQ(y)

(1− τ)

∫
t∗≤y<t

(y − t)2dQ(y). (A.2)

This leads to the lower bound of inner Lτ−risk when t ≥ t∗,

CLτ ,Q(t)− CLτ ,Q(t∗)

≥ cτ (t∗ − t)2(Q((−∞, t∗)) +Q([t,∞))) + cτ

∫
t∗≤y≤t

(y − t∗)(2t− t∗ − y) + (y − t)2dQ(y)

= cτ (t∗ − t)2(Q((−∞, t∗)) +Q([t,∞))) + cτ

∫
t∗≤y≤t

(t∗)2 − 2tt∗ + t2dQ(y)

= cτ (t∗ − t)2(Q((−∞, t∗)) +Q([t,∞))) + cτ (t∗ − t)2Q([t∗, t))

= cτ (t∗ − t)2.
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When t < t∗, using similar arguments, we have

CLτ ,Q(t)− CLτ ,Q(t∗) = (t∗ − t)2((1− τ)Q((−∞, t)) + τ

∫
t≤y<t∗

(y − t)2dQ(y)

+ (1− τ)

∫
t≤y<t∗

(t∗ − y)(y + t∗ − 2t)dQ(y) + +τQ([t∗,∞)))

≥ cτ (t∗ − t)2.

Therefore, we summarize them into one inequality

CLτ ,Q(t)− CLτ ,Q(t∗) ≥ cτ (t∗ − t)2.

Next, we consider the upper bound. Similarly, when t ≥ t∗,

CLτ ,Q(t)− CLτ ,Q(t∗)

≤ Cτ (t∗ − t)2(Q((−∞, t∗)) +Q([t,∞)))

+ Cτ

∫
t∗≥y<t

((y − t∗)(2t− t∗ − y) + (y − t)2)dQ(y)

= Cτ (t∗ − t)2. (A.3)

For the case of t < t∗, the inequality still holds. Combining these two inequality, we have

cτ (t− t∗)2 ≤ CLτ ,Q(t)− C∗Lτ ,Q ≤ Cτ (t− t∗)2.

Based on the Lemma A.1.1, we can prove Theorem 2.3.1[32].
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Proof. If x ∈ X, we define t = f(x) and t∗ = f∗Lτ ,P (x). By Lemma 1, for Q = P (·|x), we

can get the following result

C−1
τ

(
CLτ ,P (·|x)(f(x)))− C∗Lτ ,P (·|x)

)
≤ |f(x)− f∗Lτ ,P (x)|2

and

|f(x)− f∗Lτ ,P (x)|2 ≤ c−1
τ

(
CLτ ,P (·|x)(f(x))− C∗Lτ ,P (·|x)

)
.

If we integrate it with respect to PX and take the square root, we can get the final result.
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Appendix B

Technical Details of Chapter 3

Proof of lemma 3.3.2

Proof. For each fixed n, let θn = [α0, . . . , αrn ,γ0,1, . . . , γ0,rn ,γ
T
1 , . . . ,γ

T
rn ]T belong to

[−Vn, Vn]rn+1× [−Mn,Mn]rn(d+1) := Θn. For n fixed, Θn is a bounded closed set and hence

it is a compact set in Rrn(d+2)+1. Consider a map

H : (Θn, ‖ · ‖2)→ (Frn , ‖ · ‖n)

θn 7→ H(θn) = α0 +

rn∑
j=1

αjσ
(
γTj x+ γ0,j

)
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Note that Frn = H(Θn). Therefore, to show that Frn is a compact set, it suffices to show

that H is a continuous map due to the compactness of Θn. Let θ1,n,θ2,n ∈ Θn, then

‖H(θ1,n)−H(θ2,n)‖2n

=
1

n

n∑
i=1

α(1)
0 +

rn∑
j=1

α
(1)
j σ

(
γ

(1)T

j xi + γ
(1)
0,j

)
− α(2)

0 −
rn∑
j=1

α
(2)
j σ

(
γ

(2)T

j xi + γ
(2)
0,j

)2

≤ 1

n

n∑
i=1

∣∣∣α(1)
0 − α(2)

0

∣∣∣+

rn∑
j=1

∣∣∣∣α(1)
j σ

(
γ

(1)T

j xi + γ
(1)
0,j

)
− α(2)

j σ

(
γ

(2)T

j xi + γ
(2)
0,j

)∣∣∣∣
2

=
1

n

n∑
i=1

∣∣∣α(1)
0 − α(2)

0

∣∣∣+

rn∑
j=1

|α(1)
j |
∣∣∣∣σ(γ(1)T

j xi + γ
(1)
0,j

)
− σ

(
γ

(2)T

j xi + γ
(2)
0,j

)∣∣∣∣+
|α(1)
j − α

(2)
j |σ

(
γ

(2)T

j xi + γ
(2)
0,j

)]2

≤ 1

n

n∑
i=1

 rn∑
j=0

|α(1)
j − α

(2)
j |+

Vn
4

rn∑
j=1

∣∣∣∣(γ(1)
j − γ

(2)
j

)T
xi

∣∣∣∣+
∣∣∣γ(1)

0,j − γ
(2)
0,j

∣∣∣
2

≤

 rn∑
j=0

|α(1)
j − α

(2)
j |+

Vn
4

(1 ∨ ‖x‖∞)

rn∑
j=1

∥∥∥γ(1)
j − γ

(2)
j

∥∥∥
1

+
∣∣∣γ(1)

0,j − γ
(2)
0,j

∣∣∣
2

≤
(
Vn
4

(1 ∨ ‖x‖∞)

)2

[rn(d+ 1)]‖θ1,n − θ2,n‖22.

Hence, for any ε > 0, by choosing δ = ε/
(
Vn
4 (1 ∨ ‖x‖∞)

√
rn(d+ 1)

)
, we observe that when

‖θ1,n − θ2,n‖2 < δ, we have

‖H(θ1,n)−H(θ2,n)‖n < ε,

which implies that H is a continuous map and hence Frn is a compact set for each fixed

n.
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Appendix C

Supplementary Materials

Expectile neural networks with transfer learning

Normally, machine learning models focus on one single and specific task. If we have two

related tasks, one task could inherit some information from the other task. We call this

technique transfer learning. Transfer learning focuses on storing knowledge gained by solving

one problem and applying the knowledge to a different but related problem. It is easier to

transfer knowledge if tasks are more related. Transfer learning has been implemented in a

wide area, like natural language processing (NLP)[69], medical image[66].

Transfer learning could be applied in both classification and regression scenarios. For

example, Syed proposes seeded transfer learning in a regression context to improve predic-

tion performance in target domain[71]. Many approaches could be implemented in transfer

learning. Yosinski et al. show how lower layers in neural networks act as conventional

computer-vision feature extractors, such as edge detectors, while the final layer works to-

ward task-specific features[65]. Rosenstein uses naive Bayes classification algorithm to detect,

perhaps implicitly, that the inductive bias learned from the auxiliary tasks will actually hurt

performance on the target task [68]. In this chapter, we focused on applying the transfer

learning technique into expectile neural networks. We focus on parameter transfer or in-

stance reweighting. This approach works on the assumption that the models for related
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tasks share some parameters. There are some advantages of doing these. First, if the initial

task and target task are relevant, we could improve our result. Second, since we inherit

information from the initial task, the number of parameters in target task is reduced, which

gives us some computational advantages, especially in large datasets.

Real data application

In this section, we integrate expectile regression and transfer learning to improve prediction

performance. To verify if transfer learning works, we run two real data sets to compare the

performance of ENN with transfer learning and ENN without transfer learning.

First real data application

Intuitively, participants in this study tend to be addicted to drinking who have the nicotine

addiction. We applied ENN to the genetic data from the Study of Addiction: Genetics and

Environment(SAGE). The participants of the SAGE are selected from three large, comple-

mentary studies: the Family Study of Cocaine Dependence(FSCD), the Collaborative study

on the Genetics of Alcoholism(COGA), and the Collaborative Genetic Study of Nicotine

Dependence(COGEND).

We choose max cigs as smoking quantity, which is measured by the largest number of

cigarettes smoked in 24 hours, ranged from 0-240. We choose max drinks as drinking quan-

tity, which is measured by the largest number of alcoholic drinks consumed in 24 hours,

range from 0-258. To have better performance, we transfer smoking-related information to

drinking-related information. We use the following algorithm.

First, we choose max cigs as phenotype, and get the estimator of the expectile neural

network. Second, we get the estimator obtained from the first step as the initial value(transfer
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Table C.1: Real data application result of CHRNA5

ENN.tsf ENN
τ Train Test Train Test
0.1 551.83 605.79 546.90 672.44
0.25 325.84 439.18 321.94 473.10
0.5 282.57 433.058 275.83 444.16
0.75 304.81 484.60 297.81 487.44
0.9 347.17 544.24 339.79 549.08

Table C.2: Real data application result of CHRNA3

ENN.tsf ENN
τ Train Test Train Test
0.1 554.11 605.10 533.04 753.96
0.25 325.71 441.47 311.85 517.05
0.5 281.20 439.40 260.45 491.62
0.75 304.60 486.80 292.63 502.86
0.9 350.01 558.95 335.89 573.92

learning part). Third, we choose max drinks as a new phenotype and keep the parameter

from the input layer to the hidden layer and then train the expectile neural network again.

Finally, we compare two models: ENN with transfer learning and ENN without transfer

learning.

We divide the data into three parts: training(60%), validation(20%), testing(20%). We

get the following results.

Table C.3: Real data application result of CHRNB4

ENN.tsf ENN
τ Train Test Train Test
0.1 558.39 622.18 564.57 673.97
0.25 327.63 448.63 325.48 473.34
0.5 283.28 435.11 270.50 453.76
0.75 306.05 488.15 303.02 489.71
0.9 349.24 544.85 343.52 553.41
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Table C.1-C.3 summarize the MSE of ENN with transfer learning and ENN without

transfer learning for five different expertiles (i.e., 0.1, 0.25, 0.5, 0.75, and 0.9). From those

three tables, we show the expectile neural networks with transfer learning outperform expecilt

neural networks without transfer learning.

Second real data application

In this real data application, we apply our method to the Alzheimer’s Disease Neuroimaging

Initiative(ADNI), which is a multisite study that aims to improve clinical trials for the

prevention and treatment of Alzheimer’s disease. APOE allele is the most important genetic

risk factor for Alzheimer’s disease[67]. We focus our ENN model on APOE gene. After

quality control, 168 SNPs remained for the analysis. We only included 699 Caucasian and

African American individuals due to the small sample size of other ethnic groups. To improve

the performance of ENN, we also included 3 covariates: sex(male=1, female=2), age, and

education in the analysis.

Hippocampus is the part of the brain area associated with memories. Alzheimer’s disease

usually first damages hippocampus, leading to memory loss and disorientation. Study shows

that hippocampal volume and ratio was reduced by 25% in Alzheimer’s disease[72]. The

Mini-Mental State Examination (MMSE) is a 30-point questionnaire that is used extensively

in clinical and research settings to measure cognitive impairment. For more information, re-

fer to https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?id=phd001525.1. We

transfer Hippocampus bl to MMSE.

To have stable performance, we randomly split the dataset 50 times and average the

result.

From table C.4, expectile neural network with transfer learning outperforms expectile
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Table C.4: Real data application result of ADNI

ENN.tsf ENN
τ Train Test Train Test
0.1 8.21 8.40 8.65 9.50
0.25 5.00 5.17 5.30 6.78
0.5 4.11 4.31 4.30 4.82
0.75 4.67 4.88 4.85 6.86
0.9 5.87 6.10 5.99 6.69

regression without transfer learning under different τ .

Summary and discussion

From these two real data application, transfer learning improves performance of expectile

neural networks. However, transfer learning relies on data heavily based on our experience. If

the data does not fit the model, the negative transfer happens where the transfer of knowledge

from the source to the target does not lead to any improvement, but rather causes a drop in

the overall performance of the target task.

82



BIBLIOGRAPHY

83



BIBLIOGRAPHY

[1] Genome-Wide Association Studies. National Human Genome Research Institute.
https://www.genome.gov/about-genomics/fact-sheets/Genome-Wide-Association-
Studies-Fact-Sheet.

[2] Manolio TA. Genome wide association studies and assessment of the risk of disease. The
New England Journal of Medicine, 363 (2): 166–76, 2010.

[3] Kwon JM, Goate AM. The candidate gene approach. Alcohol Research & Health, 24
(3): 164–8, 2000.

[4] Xuexia Wang, Michael J Oldani, Xingwang Zhao, Xiaohui Huang, Dajun Qian. A Re-
view of Cancer Risk Prediction Models with Genetic Variants. Cancer Inform, 13(2):
19–28, 2014.

[5] The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678, 2007.

[6] Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, String-
ham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu
N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M,
White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F,
Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh
EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M. A genome-wide
association study of type 2 diabetes in Finns detects multiple susceptibility variants.
Science, 316(5829):1341-5, 2007.

[7] Nan M. Laird, Christoph Lange. The Fundamentals of Modern Statistical Genetics.
Springer-Verlag, 2011.

[8] Miller DD, Brown EW. Artificial Intelligence in Medical Practice: The Question to the
Answer? Am J Med, 131(2):129-133, 2018.

[9] Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diag-
nosis and classification. Proceedings of the 30th International Conference on Machine
Learning, 2013.

[10] Goodfellow I, Bengio Y, Courville A. Deep Learning. The MIT Press, 96-161, 2016.

[11] Le Cun Y, Bengio Y, Hinton G. Deep learning. Nature, 521:436- 444, 2015.

84



[12] Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision
Cardiovascular Medicine. J Am Coll Cardiol, 69(21):2657-2664, 2017.

[13] McClellan J, King MC. Genetic heterogeneity in human disease. Cell, 141(2):210-7,
2010.

[14] Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci
that influence complex diseases. Nat Genet, 37(4):413-7, 2005.

[15] R. Koenker, G.W. Bassett Jr. Regression quantiles. Econometrica, 46(1):33-50, 1978.

[16] W. Newey, J. Powell. Asymmetric least squares estimation and testing. Econometrica,
55(4):819-847, 1987.

[17] Moshe Buchinsky. Quantile regression, Box-Cox transformation model, and the U.S.
wage structure, 1963–1987. Journal of Econometrics, 65(1):109-154, 1995.

[18] John Crowley, Marie Hu. Covariance Analysis of Heart Transplant Survival Data. Jour-
nal of the American Statistical Association, 72-357, 1977.

[19] Stuart R. Lipsitz Garrett M. Fitzmaurice Geert Molenberghs Lue Ping Zhao. Quantile
Regression Methods for Longitudinal Data with Drop-outs: Application to CD4 Cell
Counts of Patients Infected with the Human Immunodeficiency Virus. Jornal of the
Royal Statistical Society: Applied Statistics Series C, 46(4):463-476, 1997.

[20] G.R.PandeyaV, T.V.Nguyenb. A comparative study of regression based methods in
regional flood frequency analysis. Journal of Hydrology, 225:92-101, 1999.

[21] H. J. Cordell. Detecting gene-gene interactions that underlie human diseases, Nat. Rev.
Genet. 10:392–404, 2009.

[22] A. Cannon. Non-crossing nonlinear regression quantiles by monotone composite quantile
regression neural network, with application to rainfall extremes. A.J. Stoch Environ Res
Risk Assess, 32:3207, 2018.

[23] A. Cannon. Quantile regression neural networks: Implementation in R and application
to precipitation downscaling. Computers & Geosciences, 37:1277-1284, 2011.

[24] J. Taylor. A quantile regression neural network approach to estimating the conditional
density of multiperiod returns. Journal of Forecasting, 19:299-311, 2000.

[25] C. Jiang, M. Jiang, Q. Xu, X. Huang. Expectile regression neural network model with
applications. Neurocomputing, 247:73-86, 2017.

[26] L. Liao, C. Park, H. Choi. Penalized expectile regression: an alternative to penalized
quantile regression. Ann Inst Stat, 71:409–438, 2018.

85



[27] L. Waltrup, F. Sobotka, T. Kneib, G. Kauermann. Expectile and quantile regression-
David and Goliath? Statistical Modelling, 15(5): 433–456, 2015.

[28] M. Kim, S. Lee. Nonlinear expectile regression with application to Value-at-Risk and
expected shortfall estimation. Computational Statistics and Data Analysis, 94:1-19,
2016.

[29] Q. Yao, H. Tong. Asymmetric least squares regression estimation: a nonparametric
approach. Journal of Nonparametric Statistics, 6:2-3, 1996.

[30] Durbin, R., Altshuler, D., Durbin, R. et al. A map of human genome variation from
population-scale sequencing. Nature, 467:1061–1073, 2010.

[31] Li MD, Xu Q, Lou XY, Payne TJ, Niu T, Ma JZ. Association and interaction anal-
ysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine depen-
dence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet,
153B(3):745–756, 2010.

[32] M. Farooq, I. Steinwart. Learning rate for kernel-based expectile regression. Mach Learn-
ing, 108: 203–227, 2019.

[33] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 251-257, 1991.

[34] Fletcher, Roger, Practical methods of optimization(2nd ed.), New York: John Wiley &
Sons, 1987.

[35] Heather J. Cordell, Detecting gene-gene interactions that underlie human diseases. Nat
Rev Genet, 10(6):392–404, 2009.

[36] Mackay, T.F. Quantitative trait loci in Drosophila. Nat. Rev. Genet, 2:11–20, 2001.

[37] Routman EJ, Cheverud JM. Gene effects on a quantitative trait: Two-locus epistatic
effects measured at microsatellite markers and at estimated QTL. Evolution, 51:
1654–1662, 1997.

[38] Zerba, K.E., Ferrell, R.E. & Sing, C.F. Complex adaptive systems and human health:
the influence of common genotypes of the apolipoprotein E (ApoE) gene polymorphism
and age on the relational order within a field of lipid metabolism traits. Hum. Genet,
107: 466–475, 2000.

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhut-
dinovDropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 15: 1929-1958, 2014.

86



[40] Chengxi Ye, Yezhou Yang, Cornelia Fermuller, Yiannis Aloimonos. On the Importance
of Consistency in Training Deep Neural Networks, arXiv:1708.00631, 2017.

[41] Anthony, M. and Bartlett, P.L., Neural network learning: Theoretical foundations,
Cambridge university press, 2009.

[42] X Chen. Large sample sieve estimation of semi-nonparametric models. Handbook of
econometrics, 2007.

[43] Kurt Hornik, Maxwell Stinchcombe, Halbert White. Multilayer feedforward networks
are universal approximators. Neural newtorks, 2(5):359-366, 1989.
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