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ABSTRACT

REAL-TIME MODEL-BASED ESTIMATION OF TRANSFER CASE CLUTCH
PARAMETERS AND TRACTION TORQUE

By

Wenpeng Wei

This dissertation provides a clear path for model-based real-time estimation of transfer case clutch

parameters and wheel traction torque with improved accuracy for a 4-Wheel-Drive (4WD) vehicle.

Transfer case clutch, distributing the traction torque between front and rear tires, is a key

component for 4WD vehicle propulsion system. When the clutch is disengaged, driving torque from

transmission is distributed to rear tires only through the solid connection between rear differential

and transmission, resulting in 2-Wheel-Drive operating mode for improved fuel economy. When

the clutch is engaged, traction torque is distributed to both front and rear tires through transfer case

clutch, leading to 4WD operating mode for better traction performance. The amount of traction

torque for front or rear tires is determined by the clutch status, given the total traction torque from

transmission is known. However, the actual torque distribution ratio, determined by real-time clutch

operating status, is typically unknown due to the unavailability of multiple clutch parameters and/or

direct measurement of traction torque. Therefore, for accurate traction torque control, real-time

estimation of transfer case clutch parameters (such as touchpoint displacement, friction coefficient,

output torque, etc.) and wheel traction torque is imperative.

One significant step is to estimate the clutch touchpoint displacement based on the clutch

actuation system since it is proportional to the clutch normal force (or clutch output torque). The

touchpoint displacement is initially designed as a constant. However, there are also many factors

that may render it to change. Therefore, this dissertation lumps all the factors that causes variation

of touchpoint displacement to a variation displacement parameter and proposes to estimate this

variation displacement in real-time with adaptive parameter estimation algorithm.

Although the aforementioned approach achieves estimation quite well, the estimation is sepa-

rated from the desired clutch displacement control. Therefore, an integrated approach is proposed



to estimate the touchpoint displacement and track the desired clutch displacement simultaneously.

This is realized by using the deadbeat adaptive backstepping control technique based on the clutch

actuation system. This approach not only is more concise for implementation but also may reduce

production cost.

Another significant step to estimate clutch surface friction coefficient is to estimate the clutch

output torque. This can be achieved neck-by-neck with the estimation of traction torque on the

tires. In this dissertation, the tire traction forces are estimated under different clutch operation

conditions: open, slip and overtaken. A integrated model incorporating time-varying effective

tire radius, vehicle speed estimation and clutch-slip speed compensation is proposed, which shows

good accordance with the measured torque under different clutch conditions.

Although the aforementioned modeling approach for clutch output torque calculation shows

promising results. It is obvious that this modeling approach is sensitive to measurement noise,

especially the clutch output torque calculation is involved with the difference between vehicle speed

and tire linear speed. Therefore, an Extended Kalman Filter based estimation algorithm is proposed

to deal with measurement noise. This estimation algorithm is developed based on the integrated

clutch output torque model suitable for both clutch slip and overtaken condition.

Finally, the clutch surface friction coefficient is estimated based on the estimated clutch touch-

point displacement and clutch output torque, note that this estimation approach will be clutch-

parameter-dependent. In order to obtain an estimated clutch-parameter-independent friction coef-

ficient, this dissertation further proposes an adaptive lookup table scheme, table nodes of which

are updated by the well-known Recursive Least-Squares algorithm. The effectiveness of clutch-

parameter-independent friction coefficient is confirmed by comparison and can be used for future

clutch output torque control without knowing clutch parameters/operating statuses.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

1.1.1 4-Wheel-Drive Vehicle Overview

Traditional internal combustion engine-powered vehicles, especially 4-Wheel-Drive (4WD) vehi-

cles [1], [2], [3] still play an important role in automotive industry (see Figure 1.1) due to its

excellent ability to switch between 2-Wheel-Drive (2WD) for improved fuel economy [4], [5] and

4WD for optimal traction performance [6], [7]. This switch is usually accomplished by controlling

the vital component, transfer case clutch [8], [9], of the vehicle propulsion system.

However, it is necessary to have accurate transfer case clutch output torque through either

measurement or estimation for closed loop control. As a matter of fact, the clutch output torque

is related to several clutch parameters such as clutch friction coefficient, touchpoint displacement,

and so on. In practice, these parameters are time-varying and/or parameter dependent. Due to the

fact that direct measurements are impossible due to high sensor cost and low sensor reliability, it is

imperative to develop estimation algorithms to obtain these parameters for accurate clutch output

torque control.

50.840.1

9.1

Market Share

4WD/AWD FWD RWD

Cite from JATO Dynamics, May 2020

4WD: Four-Wheel-Drive

AWD: All-Wheel-Drive

FWD: Front-Wheel-Drive

RWD: Rear-Wheel-Drive

Figure 1.1: 4WD vehicle market share
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1.1.2 4-Wheel-Drive Vehicle System Overview

Engine

Torque Converter

Transmission

Transfer Case

Rear Differential

Front DifferentialFront Left Tire Front Right Tire

Rear Right TireRear Left Tire

Clutch

Figure 1.2: 4WD vehicle propulsion system

Figure 1.2 shows a typical 4WD vehicle propulsion system architecture, which includes the

main components such as engine, torque converter, transmission, transfer case, clutch, differentials,

front and rear tires, and vehicle body [10], [11]. The driving power of the entire vehicle originates
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from the internal combustion engine that generates mechanical energy by combustion of air-fuel

mixture [12], [13]. The torque converter [14], in replace of a mechanical clutch in a manual

transmission system, multiples output torque from engine and generates driving for the vehicle

propulsion system, and thus is the first bridge between power source and the propulsion system.

The transmission [15] then sends amplified (or reduced) torque from the torque converter to the

transfer case according to the selected gear determined by the vehicle electric control unit, and at

the same time adjusts the rotational speed to a desired and safe level.

And then comes to the transfer case, a vital component of the 4WD vehicle. On one hand,

it controls the switch between 2WD and 4WD modes by engaging and disengaging the transfer

case clutch. Particularly, if the transfer case clutch is disengaged, the torque will be transmitted to

rear wheels only and the vehicle will be in the two-wheel-drive (2WD) mode; while if the clutch

is engaged, the torque will be distributed to all wheels based on the desired torque distribution

ratio [16], thus in this case the vehicle is in the four-wheel-drive (4WD) mode. That is, the transfer

case clutch manages the torque distribution between front and rear tires when the vehicle is in the

4WD mode. Normally, the reference torque distribution ratio is generated by the vehicle control

module according to the driver’s command. Since the engine torque can be estimated at any given

instance, a corresponding reference clutch torque (or front torque) is generated. Due to the fact

that the clutch torque is proportional to the clutch displacement [15], [17], it is intuitively that the

actual clutch torque can be controlled by controlling the actual clutch displacement. As a results,

the torque distribution ratio between front and rear tires can be controlled.

The front and rear differentials, which connects the tires with transfer case, split the torque and

at the same time changes the torque direction perpendicularly to drive the vehicle.

Therefore, the energy and load flow of a 4WD vehicle can be summarized in Figure 1.3. As

discussed before, the powertrain torque comes from the engine combustion process, it transmits

through the propulsion components and eventually to the vehicle body, and the resulting torque

moves the vehicle. Meanwhile, once the vehicle moves, the vehicle load and vehicle speed flow

backward to the engine in terms of torque load.
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Figure 1.3: Energy and load flow of 4WD vehicle

1.2 Motivations

1.2.1 Necessity to Estimate Clutch Surface Friction Coefficient

In this research work, one of the goals is to estimate the clutch surface friction coefficient [18],

[19] so that accurate clutch torque control, or equivalently torque distribution ratio between front

and rear tires, can be achieved. In fact, a well-known approach to calculate the clutch torque [17]

at clutch level is to relate the clutch torque with the clutch geometry parameters when the clutch is

engaged and it can be described mathematically below.

𝑇𝑐 = 𝑛𝑐𝜇𝑐𝐹𝑁𝑟𝑐𝑒 𝑓 𝑓 (1.1)

where 𝑇𝑐 is the clutch torque; 𝜇𝑐 is the friction coefficient; 𝑛𝑐 is the number of clutch engaging

surfaces and 𝑟𝑐𝑒 𝑓 𝑓 is the effective clutch radius, both of which would be constant for a given clutch

assembly; and 𝐹𝑁 is the clutch normal force proportional to the effective clutch displacement to be

discussed later.

In general, the clutch surface friction coefficient is assumed to be a known constant for the given

clutch material and surface condition, in this case, the clutch torque can be controlled by controlling

the clutch normal force, or equivalently clutch displacement. However, the constant assumption of

clutch surface friction coefficient may not be practical, since the friction coefficient may be affected

by various factors. For example, it may be affected by clutch wear, since with the clutch operating

along its life span, each engagement of clutch driving and driven disks would introduce certain

wear, leading to change of effective clutch engagement displacement. This effect would possibly

result in an increase of the touchpoint displacement and change of friction coefficient (especially
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for a new, green clutch). Also, while the clutch is engaging, the speed difference between the clutch

driving and driven disks may also have an impact on the friction coefficient according to empirical

experience. Furthermore, engagement of clutch will inevitably increase the clutch temperature

when the clutch is slipping, and the thermal effect of clutch pack [20], [21], [22] is very likely

to change the clutch surface friction coefficient. In summary, a constant friction coefficient may

be reasonable for a fixed operational condition, while for practical applications, the actual friction

coefficient may deviate from its initial constant. This motivates to estimate the clutch surface

friction coefficient in real-time, considering various factors.

As a matter of fact, an approach to estimate the friction coefficient is to rearrange the well-known

equation (1.1) to the following:

𝜇𝑐 =
𝑇𝑐

𝑛𝑐𝐹𝑁𝑟𝑐𝑒 𝑓 𝑓
(1.2)

However, with the friction coefficient becomes unknown, the clutch torque will no longer be

available according to the well-known equation (1.1). Therefore, an estimation algorithm for clutch

torque beyond clutch level becomes imperative, the challenges of estimating the clutch torque will

be discussed in Section 1.2.3. Another yet important aspect to reach the estimation of the friction

coefficient is to obtain the clutch normal force, and this will be discussed next in Section 1.2.2.

1.2.2 Necessity to Estimate Clutch Touchpoint Displacement

As mentioned in the last Section, the clutch normal force is proportional to the effective clutch

displacement. Strictly, since the effective clutch displacement consists of actual clutch displacement

and clutch touchpoint displacement, the clutch normal force will be a piecewise continuous function

of the actual clutch displacement according to empirical data shown in Figure 1.4 according to

reference [15], which shows a typical relationship between the clutch normal force and clutch

displacement. The piecewise function can be expressed as

𝐹𝑁 =


0, 𝑥𝑎 ≤ 𝑥𝑐0
𝑘𝑐 (𝑥𝑎 − 𝑥𝑐0), 𝑥𝑎 > 𝑥𝑐0

(1.3)
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where 𝑘𝑐 is the clutch stiffness (or the multiplication factor); 𝑥𝑎 is the actual clutch displacement; and

𝑥𝑐0 is the designed nominal clutch touchpoint displacement. When the actual clutch displacement

𝑥𝑎 is less than nominal touchpoint displacement, there is no force generated; while when the actual

clutch displacement is greater than the nominal touchpoint displacement, the clutch normal force

is proportional to the effective clutch displacement (𝑥𝑎 − 𝑥𝑐0).

Figure 1.4: Typical relationship between clutch normal force and actual displacement

Currently, the actual clutch displacement is controlled using a PID (proportional-integral-

derivative) control scheme to track the desired clutch position, therefore, once the reference position

is given, the actual clutch displacement is usually available. However, the trick lies in the clutch

touchpoint displacement. For a given clutch, the touchpoint is first designed as a constant, 𝑥𝑐0,

introduced in equation (1.3). A more intuitive relationship can be observed from the upper portion

of Figure 1.5, which shows the ideal case or initial design of the touchpoint displacement.

However, in reality, this touchpoint displacement varies due to plenty of reasons. First of all, a

most obvious factor is the clutch wear. Due to the increased number of clutch engagement, clutch

wear will decrease the clutch pack thickness, which directly increases the touchpoint displacement.

Note that this process is slow since the clutch wear rate is relatively slow. Secondly, the clutch
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actuation system components part-to-part variation (or component parameter uncertainties) may

affect the final controlled actual clutch displacement, and this will indirectly affect the touchpoint

position. Furthermore, factors such as clutch temperature variation will also affect the touch-

point displacement due to thermal expansion. In summary, similar to the clutch surface friction

coefficient, a constant assumption of clutch touchpoint displacement is not realistic either.

Therefore, as shown in Figure 1.5, for practical applications, a varying touchpoint displacement

is considered to compensate for the factors discussed above. The total touchpoint displacement

𝑥𝑐𝑡 would now become the sum of nominal touchpoint displacement and the touchpoint variation

displacement (𝑥𝑐0 + 𝑥0).

Not Pressed

Clutch

𝑥𝑐0

Pressed 

Clutch

𝑥𝑐0 𝑥0

Nominal Touchpoint Displacement

Ideally: 𝑥𝑐𝑡 = 𝑥𝑐0

Reality: 𝑥𝑐𝑡 = 𝑥𝑐0 + 𝑥0

Touchpoint Variation

Figure 1.5: Clutch touchpoint variation diagram

Figure 1.6 shows the influence of touchpoint variation displacement on the clutch torque. For

the ideal design, the clutch torque is initiated when the clutch actuator displacement reaches 𝑥𝑐0,

and then it increases almost linearly as a function of effective clutch displacement (𝑥𝑐 − 𝑥𝑐0).

However, with the influence of the touchpoint variation 𝑥0 as discussed above, the initial point of

clutch torque generation will be delayed by the displacement of 𝑥0. Therefore, in this case, the

clutch torque is initiated when the clutch actuator displacement reaches to the level of 𝑥𝑐0 + 𝑥0, and

with further increase of the actuator displacement, the torque is linearly proportional to the effective
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actuator displacement (𝑥𝑐 − 𝑥𝑐0 − 𝑥0). In this way, it is obvious that without compensating the

touchpoint variation displacement 𝑥0, the actual clutch torque will deviate from the desired clutch

torque. Therefore, a real-time estimation and compensation of touchpoint variation displacement

𝑥0 (or total touchpoint displacement (𝑥𝑐𝑡 = 𝑥𝑐0+𝑥0)) is imperative for accurate clutch toque control.

Clutch Actuator Displacement(xc)

C
lu
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h 

T
or
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T c
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x0

xc0 xc0+x0

Figure 1.6: Clutch torque profile change vs. touchpoint displacement variation 𝑥0

The challenge lies in the fact that once the clutch is mounted to the transfer case, there is no

measurement available to measure the touchpoint variation. An existing scheme used to estimate

the touchpoint displacement is called direct detection method. Note that when the clutch actuation

displacement passes the touchpoint, there will be a sudden change in clutch output torque, which

is further transmitted to the vehicle axle, causing changes in wheel speed. The direct detection

method detects the output torque changes from wheel speed variations and uses it to detect clutch

touchpoint displacement. However, this change could be relatively small, making it challenge to

detect. Also, the wheel speed change could be caused by other factors such as potholes on the road,

leading to unreliable estimation. Therefore, a new touchpoint estimation algorithm in real-time is

necessary.

Once the touchpoint displacement is estimated, combining with the controlled actual clutch

displacement, the clutch normal force will be available, which forms a foundation for estimation of

clutch surface friction coefficient.
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1.2.3 Challenges to Estimate Clutch Torque

As described in Section 1.2.1, since the clutch surface friction coefficient is changing overtime

due to many factors, it becomes unknown in real-time, which renders the clutch torque to be also

unknown in the clutch level by equation (1.1). Therefore, it is necessary to estimate the clutch

torque from a different perspective.

Recall the propulsion system architecture shown in Figure 1.1.2, under the condition of clutch

engagement, the generated clutch torque will be transmitted through the front differential and finally

drive the front tires. Therefore, an obvious solution for obtaining the clutch torque is to establish

the tire dynamics [23] so that the driving torque can be solved. The well-known tire dynamics

formula is:

𝑇 𝑓 𝑖 𝑓 𝑑 = 𝐽 𝑓 ¤𝑤 𝑓 + 𝐹 𝑓 𝑟 𝑓 (1.4)

where 𝐽 𝑓 is the total front tire inertia; 𝑤 𝑓 is the front tire rotational speed; 𝑖 𝑓 𝑑 is the front differential

ratio; 𝐹 𝑓 is the front tires longitudinal force relating with the vehicle speed and effective tire radius;

and 𝑟 𝑓 is the effective tire radius.

However, there are several challenges while estimating the clutch torque from the tire dynamics.

The first challenge lies in the effective tire radius. In many references, the effective tire radius is

assumed to be constant [24]. This assumption may be valid in the case when vehicle is coasting

down or static. While when the vehicle is braking or accelerating, due to the pitch motion of the

vehicle, the fact is that the center of gravity of the vehicle may change, leading to the redistribution

of front and rear tire normal forces. Once the normal forces changes, the effective tire radius

changes. Of course the constant effective tire radius assumption does not consider this effect.

Furthermore, the tire pressure may also contribute to the change of effective tire radius. In fact, the

tire can always be viewed as a mass-spring-damper system, and the tire pressure is closely related

to the equivalent spring stiffness. Different tire pressures results in different stiffness, therefore,

leading to a varying effective tire radius.

The second challenge goes to the vehicle speed. Although vehicle longitudinal acceleration

can be measured using an accelerometer with reasonable accuracy, the vehicle longitudinal speed
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obtained from direct integration of longitudinal acceleration is usually inaccurate due to accelerom-

eter drift. On the other hand, the target vehicle used in this research does not equip with the vehicle

speed measurement devices such as GPS (global position system), making it difficult to estimate

the torque. In view of this, a new vehicle speed estimation method needs to be developed.

The third challenge lies in the clutch status. Unlike 2WD vehicles, whose driving mode is fixed,

and there is no switch between driving modes. This research uses a 4WD vehicle, and its transfer

case clutch is in charge of the mode switch between 2WD and 4WD mode. Note that the clutch

have different operation status: disengaged (open) and engaged (including slip and overtaken). For

a disengaged clutch, there is no torque transmitted. However, for an engaged clutch, the clutch may

be slipping or overtaken. When the clutch is overtaken, the propulsion system connection between

wheels and transmission is solid; while when the clutch is slipping, the connection between front

wheels and transmission through the transfer case clutch is not solid, and the clutch slip affects the

front tire speed, which changes the vehicle dynamics, and as result, different estimation model is

required.

1.3 Contributions

With the motivations broken down in Section 1.2, the contributions of this dissertation solves

the problems presented in Section 1.2, respectively. It can be discussed mainly in the following

three aspects: touchpoint estimation, clutch/traction torque estimation, and clutch surface friction

coefficient estimation.

1.3.1 Contributions of Touchpoint Estimation

The touchpoint displacement is related to the actual clutch displacement closely when calculating the

clutch normal force. As a matter of fact, the current method controls the actual clutch displacement

and estimates the touchpoint displacement separately. Figure 1.7 shows a diagram of current

method, where the actual clutch displacement is controlled by three PID control loops, while the

touchpoint estimation is fulfilled by the aforementioned direct detection method.
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Figure 1.7: Current scheme for actual displacement control

My contributions of touchpoint displacement estimation are two-fold:

1. Preserving the current separated approach with three PID control loops, an adaptive esti-

mation algorithm [13] of touchpoint displacement is proposed and validated experimentally

with improved accuracy and robustness comparing with the existing direct detection method.

2. An integrated method based on the deadbeat adaptive backstepping design [25] that achieves

simultaneously tracking the desired position and estimating the touchpoint displacement is

proposed. On one hand, this method controls the clutch displacement and estimates its

touchpoint displacement using only one control scheme; and on the other hand, this method

reveals potential cost reduction.

1.3.2 Contributions of Clutch Traction Torque Estimation

For the clutch torque estimation, this dissertation first proposes the clutch output torque modeling

in response to those challenges discussed before for model-based estimation.

1. Instead of using the constant effective tire radius assumption, this dissertation proposes to

relate the effective tire radius to the vehicle acceleration to compensate for the pitch motion

of vehicle and tire pressure to deal with the variation of tire stiffness. This method turns out

to have a relative accurate effective tire radius with simple mathematical model for real-time

applications.
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2. Instead of considering complex vehicle dynamics, this dissertation proposes to use a simple

bicycle vehicle body dynamics along with the longitudinal tire forces to estimate the vehicle

speed based on the time-varying effective tire radius.

3. Considering the first two modifications, the clutch torque under clutch overtaken condition

can be estimated accurately, however, this model does not apply to the situation when the

clutch slips. Therefore, a slip speed compensation is proposed to the front tires to deal with

the slip effect. And the modified model is able to estimate the clutch torque accurately under

slip condition.

Furthermore, since modeling approach may suffer to measurement and processing noises,

which will have adverse impact on clutch output torque estimation, this dissertation also proposes

an Extended Kalman Filter based estimation algorithm. Note that this estimation utilizes the model

developed from the clutch output torque modeling approach, which is further transformed to a

system with unknown input. The Extended Kalman Filter with unknown input is then applied for

the estimation with improved accuracy and reliability.

1.3.3 Contributions of Clutch Friction Coefficient Estimation

Lastly, with the clutch touchpoint and output torque estimated, equation (1.2) can be utilized to

obtain the clutch surface friction coefficient.

1. This resulted friction coefficient will be time-varying, which is more practical comparing with

the traditional constant assumption. Note that this friction coefficient is clutch-parameter-

dependent, meaning that it is necessary to be updated based on clutch touchpoint and output

torque.

2. To avoid this inconvenience, a clutch-parameter-independent approach based on adaptive

lookup table is proposed. This table parameterize the friction coefficient as a function of

clutch slip speed Δ𝑟 𝑝𝑚 (a function of tire rotational speeds). The table is adaptively updated

use a real-time implementable Recursive Least-Squares Algorithm.
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1.4 Dissertation Outline

Traction Torque 
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Friction Coefficient
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Figure 1.8: Dissertation overview

Figure 1.8 depicts an overview of this dissertation, an estimation model for clutch surface

friction coefficient is proposed, which includes mainly three parts: touchpoint distance estimation,

desired clutch displacement control and tires traction force estimation. The touchpoint distance

can be estimated using the adaptive estimation algorithm which is independent of the desired

clutch displacement control using the existing PID control scheme, or an integrated control scheme

achieving the touchpoint estimation and desired clutch displacement tracking simultaneously with

the deadbeat adaptive backstepping technique can be used. Lastly, the traction force estimation

is performed under different clutch operation conditions. More specifically, the dissertation is

organized as follows:

Chapter 2 retains the separated PID scheme and proposes the adaptive estimation algorithm

for touchpoint displacement estimation. Specifically, the clutch actuation system is first modeled

based on the physical clutch actuation system; and based on the model, the adaptive estimation

algorithm using the normalized gradient method is developed; However, the preliminary simulation

study does not conceive a promising estimation results, which motivates to the investigation of the
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friction between the clutch ball and ball ramp while the actuation system is active; The simple

Coulomb Friction model and the widely used General Kinetic Friction model are first investigated,

which turns out to be deficient to depict the friction force in the actual system. And then, the

modification was made to the General Kinetic Friction model to have the Modified General Kinetic

Friction model, which eventually proves to be accurate, and is therefore adopted in the following

simulations. Then comes to the validation of proposed algorithm with various experiment data

and the comparison of touchpoint estimation with the direct detection method, which shows the

improved accuracy and robustness over the existing method.

Chapter 3 discards the separated scheme and uses an integrated scheme to achieve the reference

position tracking and touchpoint displacement estimation simultaneously. To be more specific,

the two goals are accomplished by utilizing the deadbeat adaptive backstepping technique. The

system transformation is first performed to reach the discretized parametric semi-strict feedback

form in preparation for the design; Then, the design procedures are carried out so that the estimation

algorithm and the control law are designed. The stability of closed-loop system are guaranteed

by the dead-beat design, and the convergence analysis shows that this design provides the fastest

response possible. Finally, the estimation results under different vehicle operational modes show

the validity of the proposed algorithm.

In Chapter 4, the traction torque estimations under various clutch conditions are performed.

First, a nominal clutch torque estimation model is developed. In this model, the effective tire

radius is only related to the tire pressure, but not to the vehicle acceleration, and the vehicle speed

estimation is also presented. However, this model fails to accurately estimate the clutch torque.

Therefore, the vehicle acceleration compensation to the effective tire radius is proposed to deal with

the torque estimation under clutch overtaken condition, and this proves to be accurate. However,

when it comes to estimating the torque under clutch slip condition, the first two models are failed,

which motivates to the slip speed compensation to the front tires, leading to the promising clutch

torque estimation.

In Chapter 5, the Extended Kalman Filter with unknown input algorithm is proposed to estimate
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the traction torque dealing with measurement and processing noises. First, based on the clutch

torque model proposed in Chapter 4, an integrated clutch output torque estimation model is sum-

marized; Then, the model is transformed into a third order nonlinear system model with unknown

input; The Extended Kalman Filter with unknown input is applied for the torque estimation, which

results improved estimation accuracy in terms of Absolute Mean Square Error and Relative Mean

Square Error.

In Chapter 6, based on the estimated clutch touchpoint and output torque, a clutch-parameter-

dependent time-varying friction coefficient is calculated. Furthermore, a clutch-parameter-independent

friction coefficient is proposed for obtaining clutch output torque for closed-loop control in the

future. This is done by adaptively updating the lookup table using the Recursive Least-Square al-

gorithm. The friction coefficient from the lookup table is close to the clutch-parameter-dependent

friction coefficient, and more importantly, the resulted clutch output torque also matches with the

estimated clutch output torque.

Chapter 7 draws the conclusion based on the work presented in Chapters 2, 3, 4, 5 and 6, and

proposes future work.
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CHAPTER 2

MODEL-BASED ADAPTIVE TOUCHPOINT ESTIMATION WITH MODIFIED
GENERAL KINETIC FRICTION MODEL

2.1 Overview

2.1.1 Chapter Organization

Figure 2.1 shows the overview of this chapter. Particularly, the work in this dissertation starts

with the physical clutch actuation system. A clutch actuation system model based on physical

system can be established, which is shown as the modeling process in the figure. In the clutch

actuation system, the touchpoint variation displacement is an unknown parameter, and since the

control voltage and the cam position of the physical system can be measured, an adaptive estimation

algorithm is proposed to estimate it, which is shown in the algorithm development process. While

estimating, the friction in the actual system is found to be an essential acting force, which leads

to the development of friction model. Among the discussed friction models, the modified friction

model turns out to be accurate and is finally adopted. The last part of this chapter shows the

validation of the algorithm and the comparison results between the proposed algorithm and current

direct detection method [26].

Physical Clutch 

Actuation System

Clutch Actuation 

System Model

Cam Position yInput Voltage u

Estimated x0

Modified Friction 

Model Direct Detection x0

Validation and 

Comparison
Ball’s velocity vb

Modeling

Adaptive Estimation 

Algorithm

Algorithm Development

Figure 2.1: Chapter organization overview
.
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2.1.2 Review of Friction Modeling

While modeling a physical system, one fundamental aspect is to take into consideration of the

friction effect [27, 28] and a lot of research has been conducted in this area. The simplest friction

model is the classical Coulomb friction [29] model, where the friction is modeled as a constant

force in the direction opposite to the motion speed. Another simple model, the Viscous friction, is

first proposed in fluid dynamics [30], stating that the friction force is positively proportional to the

motion speed. A widely used friction model is the combination of Coulomb and Viscous frictions

to reduce modeling error. Reference [31] designed sliding-mode controllers for self-balancing

yaw motion of a two-wheel inverted pendulum utilizing both Coulomb and Viscous frictions

compensations and validated it experimentally. Reference [32] performed experimental studies for

measuring Coulomb and Viscous frictions using high-precision velocity sensors. However, the

combined Coulomb and Viscous model fails to account for other friction behaviors. One such

effect is called Stiction friction [33] defined as the initial force (or torque) to overcome to move

an object from its stationary position, and this force is usually greater than the Coulomb friction.

Another effect is the Stribeck effect [34], where the friction force decreases as the velocity increases

from zero. A thorough combination of all the four friction effects has been referred as the General

Kinetic Friction (GKF) or Stribeck friction model, where the detailed mathematical model can be

found in Section IV. In [35], an observer was designed to estimate the effect of the Stribeck friction

and compensate it. Reference [36] modeled the friction using the Stribeck friction formulation

for a hydraulic valve actuator. However, the main problem of the aforementioned model is the

discontinuity when the motion velocity crosses zero. Although replacing the infinite slope line at

zero-velocity with a finite but steep slope line is often adopted to overcome the discontinuity, it does

not capture the static friction characteristics. Actually, due to the existence of measurement noise,

the measured velocity will not be exactly zero, which makes the aforementioned friction model can

hardly capture the static friction. Therefore, this dissertation proposes a Modified General Kinetic

Friction (MGKF) model, where when the absolute speed is smaller than or equal to a calibrated

value, the friction is assumed to be static and equal to the external force, and when the absolute
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speed is greater than the calibrated value, the friction is kinetic and follows the GKF model. It is

noted that there will be no discontinuity in this model.

2.2 Clutch Actuation System Modeling

The transfer case clutch actuation system model is established based on the physical clutch

actuation system. However, due to the confidential requirement of the project sponsor, the picture

of physical clutch actuation system is not provided here.

Figure 2.2 shows the main components of transfer case clutch actuation system. It consists of

the actuation and mechanical subsystems. The actuation subsystem contains only the DC actuator

motor; while the mechanical subsystem consists of the reduction gear pair, cam mechanism, lever

arm, plate and ball ramp. The mechanical subsystem receives and transmits the torque generated by

the DC motor to move the balls installed in the ball ramp within the plate, and meanwhile generates

the reaction load torque to the DC motor when the clutch is engaged.

Actuator MotorReduction GearCam Mechanism

Lever Clutch Pack

Load Torque

Shaft 1
Shaft 2

Shaft 3
xp

θ2

θ3

s

Mechanical Subsystem

Actuation Subsystem

Ball Ramp

θ1

Figure 2.2: Transfer case clutch actuation system

The clutch actuator is just a DC motor. Note that the proposed adaptive touchpoint estimation

scheme in the next section will be based on a linear clutch actuation model. Therefore, ignoring

the nonlinearity of the DC motor, the Kirchhoff’s and Newton’s Second Law are used to model the
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motor electric circuit and the rotational dynamics as following.

𝑢 = 𝑅𝑖 + 𝐿 𝑑𝑖
𝑑𝑡

+ 𝐾𝑒 ¤𝜃1 (2.1)

𝐽𝑚 ¥𝜃1 = 𝐾𝑚𝑖 − 𝑏1 ¤𝜃1 − 𝑇𝑙1 (2.2)

where 𝑢 is the motor input voltage; 𝑅 is the resistance; 𝑖 is the motor circuit current; 𝐿 is the

inductance; 𝑡 is time trace; 𝐾𝑒 is the electromotive force constant; ¤𝜃1 is the angular velocity of

shaft 1; 𝐽𝑚 is the electric motor shaft inertia; 𝐾𝑚 is the motor torque constant; 𝑏1 is the damping

coefficient of shaft 1; 𝑇𝑙1 is the load torque applied to shaft 1.

For the mechanical subsystem, a reduction gear is first used to increase the torque generated by

the motor to drive shaft 2. Assume there is no gear lash, the reduction gear can be modeled below.

𝜃2 = 𝜃1/𝑖𝑟 (2.3)

𝑇𝑙2 = 𝑇𝑙1𝑖𝑟𝜂𝑟 (2.4)

where 𝑖𝑟 is the reduction gear ratio; 𝜃2 is the angular position of shaft 2; 𝑇𝑙2 is the load torque on

shaft 2; and 𝜂𝑟 is the mechanical efficiency from shaft 1 to 2.

Shafts 2 and 3 are connected through the cam pair, i.e., Cam and Following-Cam mechanism

(see Figure 2.3). In fact, the cam can rotate with shaft 2 in both clockwise and counterclockwise

directions, corresponding to 4-L (Low) and 4-H (High) range of the transfer case, respectively.

Position F is the initial position of the following cam. Typically, 4-L range corresponding to higher

output torque, which would be used when the vehicle is climbing an uphill or some of the tires

are stuck, while the 4-H range is more used in normal driving. As a matter of fact, in most of the

time, the transfer case works within the 4-H range, whose positions are denoted in Figure 2.3 from

position F to L when the shaft 2 is rotating counterclockwise. The relationship between the stroke

(or displacement) of the following cam and the rotation angle of the cam shaft (shaft 2) is usually

a nonlinear function (see Figure 2.4) that can be modeled by

𝑠 = 𝑔(𝜃2) (2.5)
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where 𝑠 is the stroke of the following cam and 𝜃2 is the angular position of shaft 2 (cam rotation

angle).
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Figure 2.3: Cam and following-cam mechanism
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Figure 2.4: Cam profile

Empirically, to engage the clutch, the cam angle needs to satisfy 𝜃2 ≥ 𝜆ℎ for 4-H range and

𝜃2 ≤ 𝜆𝑙 for 4-L range, indicating that the Cam-Following-Cam stroke relationship is almost linear

(see Figure 2.4). And for the adaptive estimation algorithm to work, the system needs to be linear.

Therefore, when the clutch is engaged, equation (2.5) can be approximated by an affine function

𝑠 = 𝑘𝑐𝑎𝑚𝜃2 + 𝑏𝑐𝑎𝑚 (2.6)

where 𝑘𝑐𝑎𝑚 is the slope and 𝑏𝑐𝑎𝑚 is the intercept, and for different ranges(4-L or 4-H), these two

coefficients are different.
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The following cam rotates the plate on shaft 3 through the lever arm, which connects with

the plate mounted on shaft 3. With the rotation of the plate, the ball ramp mechanism moves the

balls in axial direction along shaft 3. Note that the relationship between the following cam stroke

and shaft 3 rotational angle, as well as the relationship between the rotation angle of shaft 3 and

ball displacement are typically an affine linear function. Therefore, the linear relationship can be

shortened from following cam stroke to ball displacement and can be modeled as follow.

𝑥𝑏 = 𝑘𝑏𝑟 𝑠 + 𝑏𝑏𝑟 (2.7)

where 𝑥𝑏 is the actuation motor-controlled ball displacement; 𝑘𝑏𝑟 and 𝑏𝑏𝑟 are combined coefficients

between following cam stroke and ball displacement.

The effective clutch displacement introducing clutch normal force consists of the ball displace-

ment by equation (2.7) and the total clutch touchpoint displacement. As a matter of fact, the total

clutch touchpoint displacement includes the nominal touchpoint displacement 𝑥𝑐0 and touchpoint

variation displacement 𝑥0. The nominal touchpoint displacement 𝑥𝑐0 is simply designed as a

constant. However, the tricky lies in the touchpoint variation displacement since the touchpoint

variation of clutch pack varies due to various factors such as clutch wear, clutch temperature varia-

tion, etc. For instance, considering the clutch wear, for a new clutch, there is no wear; while with the

clutch engagement and slipping, clutch wear occurs gradually, reducing the clutch pack thickness

and increasing clutch touchpoint displacement. Thus, it is important to consider a compensation

displacement 𝑥0 as the touchpoint variation distance. Therefore, the touchpoint is summed into a

total clutch touchpoint displacement and is expressed as

𝑥𝑐𝑡 = 𝑥𝑐0 + 𝑥0 (2.8)

where 𝑥𝑐𝑡 is the total clutch touchpoint displacement; 𝑥𝑐0 is nominal clutch touchpoint displacement;

and 𝑥0 is the touchpoint variation displacement. Note that the variation touchpoint displacement is

typically unknown and need to be estimated.

The actual effective clutch displacement that can generate clutch normal force is therefore

21



modified to

𝑥𝑒 = 𝑥𝑏 − 𝑥𝑐𝑡 (2.9)

where 𝑥𝑒 is the effective ball displacement.

In addition to the displacement relationship, the torque relationship between shafts 2 and 3 is

modeled below

𝑇𝑙3 = 𝑇𝑙2𝑖𝑠𝜂𝑠 (2.10)

where 𝑇𝑙3 is the load torque on shaft 3; 𝑖𝑠 is the equivalent ratio from shafts 2 to 3; and 𝜂𝑠 is the

mechanical efficiency between both shafts.

As a matter of fact, the load torque on shaft 3 comes from the contact force between the balls

and clutch pack. Figure 2.5 shows the rolling ball movement process. When the ball is disengaged

with the clutch pack (corresponds to the upper ball position in the left of Figure 2.5), there is no

load force generated in this case. As the ball moves and reaches to the touchpoint that begins

contacting the clutch pack, normal force starts being generated between the clutch contact surfaces

(corresponds to the middle position in the left plot of Figure 2.5). When the ball squeezes the clutch

pack with certain displacement (see the lower position in Figure 2.5), certain amount of normal

force will be generated. As a result, the clutch normal force can be modeled as a piece-wise linear

function of the clutch displacement below.

𝐹𝑁 =
{ 0 𝑥𝑏 ≤ 𝑥𝑐𝑡

𝑘𝑐 (𝑥𝑏 − 𝑥𝑐𝑡) 𝑥𝑏 > 𝑥𝑐𝑡

(2.11)

where 𝐹𝑁 is the clutch normal force; 𝑘𝑐 is the clutch stiffness.

According to Figure 2.5, for the balls, only the force tangential to the ball ramp orbit can

generate load torque on shaft 3, and the tangential force is depicted as 𝐹𝑏, and can be calculated as:

3𝐹𝑏 = 𝐹𝑁 tan 𝛽 (2.12)

where 𝐹𝑏 is the force tangential to the ball’s orbit radius; and 𝛽 is the angle between ball profile

and plate plane.

22



Clutch packsxp

Ball

FN

FpPlate

β  

Fb

Plate

rb 

Ball

Ball ramp

Fb

Shaft 3

Figure 2.5: Free body diagram of the ball

Typically, there are a few balls distributed evenly in the plate. In our case, three balls are

mounted, therefore, the load torque on shaft 3 is obtained by

𝑇𝑙3𝜂𝑝 = 3𝐹𝑏𝑟𝑏 (2.13)

where 𝑟𝑏 is the ball orbit radius; and 𝜂𝑝 is the mechanical efficiency from shaft 3 to the clutch.

Combining equations from (2.11) - (2.13), the load torque on shaft 3, when 𝑥𝑏 > 𝑥𝑐𝑡 , is

𝑇𝑙3𝜂𝑝 = 𝑘𝑐 (𝑥𝑏 − 𝑥𝑐𝑡) tan 𝛽𝑟𝑏 (2.14)

The load torque on shaft 1 is, therefore, can be obtained from the following

𝑇𝑙1 =
𝑇𝑙2
𝑖𝑟𝜂𝑟

=
𝑇𝑙3

𝑖𝑟𝜂𝑟 𝑖𝑠𝜂𝑠

=
𝐹𝑏𝑟𝑏

𝑖𝑟 𝑖𝑠𝜂𝑟𝜂𝑠𝜂𝑝

=
𝑘𝑐 (𝑥𝑝 − 𝑥𝑐0) tan 𝛽𝑟𝑏

𝑖𝑟 𝑖𝑠𝜂𝑟𝜂𝑠𝜂𝑝

=
𝑘𝑐 (𝑘𝑏𝑟 𝑘𝑐𝑎𝑚𝜃1/𝑖𝑟 + 𝑘𝑏𝑟𝑏𝑐𝑎𝑚 + 𝑏𝑏𝑟 − 𝑥𝑐𝑡) tan 𝛽𝑟𝑏

𝑖𝑟 𝑖𝑠𝜂𝑟𝜂𝑠𝜂𝑝

(2.15)

Therefore, the load torque on shaft 1 can be trimmed to a function of the motor rotation angle 𝜃1

of the following form:

𝑇𝑙1 = 𝐾𝜃1 + 𝑑 (2.16)
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where

𝐾 =
𝑘𝑐𝑟𝑏 tan 𝛽𝑘𝑐𝑎𝑚𝑘𝑏𝑟

𝑖𝑠𝑖
2
𝑟 𝜂𝑟𝜂𝑠𝜂𝑝

𝑑 =
𝑘𝑐𝑟𝑏 tan 𝛽
𝑖𝑠𝑖𝑟𝜂𝑟𝜂𝑠𝜂𝑝

(𝑘𝑏𝑟𝑏𝑐𝑎𝑚 + 𝑏𝑏𝑟 − 𝑥𝑐𝑡)

Note that since 𝑥0 in 𝑥𝑐𝑡 is unknown, resulting 𝑑 (or the load torque 𝑇𝑙1) is also unknown. In

addition, although clutch touchpoint 𝑥0 varies over time, the variation rate is very small. As a

result, for real-time estimation, 𝑥0 can be viewed as a constant, resulting in a constant 𝑑.

2.3 Adaptive Estimation Algorithm Development

2.3.1 State-Space System Representation

Equations from (2.1) to (2.16) describe the complete clutch actuation system dynamics and can be

summarized below.

𝑢 = 𝑅𝑖 + 𝐿 𝑑𝑖
𝑑𝑡

+ 𝐾𝑒 ¤𝜃1 (2.17)

𝐽𝑚 ¥𝜃1 = 𝐾𝑡𝑖 − 𝑏1 ¤𝜃1 − 𝐾𝜃1 − 𝑑 (2.18)

In general, the system contains the input as the control voltage, the unknown system pa-

rameter 𝑥0, and output motor position or cam position. However, choosing system states as

𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 = [𝜃1, ¤𝜃1,
𝐾𝑡
𝐽𝑚
𝑖]𝑇 , corresponding to motor position, motor rotational speed and

motor current, respectively, output as motor position 𝑦 = 𝑥1, known input as 𝑢, and exogenous

unknown input as 𝑑 yields the state-space system representation

¤𝑥 = 𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑑𝑑

𝑦 = 𝐶𝑥
(2.19)

where 𝐴 =



0 1 0

− 𝐾
𝐽𝑚

− 𝑏
𝐽𝑚

1

0 −𝐾𝑒𝐾𝑡𝐽𝑚𝐿
−𝑅𝐿


, 𝐵𝑢 =



0

0

𝐾𝑒
𝐽𝑚𝐿


, 𝐵𝑑 =



0

− 1
𝐽𝑚

0


, 𝐶 =

[
1 0 0

]
. This

transforms the system from one input to two inputs and gets ready for adaptive estimation algorithm

development.
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Based upon the applied known motor control voltage 𝑢 and the measured output cam position

𝑦, the goal is to adaptively estimate the unknown input 𝑑 so that the clutch touchpoint displacement

𝑥0 can be estimated. The estimation scheme is shown in Figure 2.6.

Clutch Actuation 

System
Adaptive Estimation 

Algorithm

yu
x0

Figure 2.6: Adaptive estimation diagram

2.3.2 Algorithm Development

The system transfer function representation, with the hybrid notation, in continuous-time domain

is

𝑦(𝑡) = 𝐺𝑢 (𝑠)𝑢(𝑡) + 𝐺𝑑 (𝑠)𝑑 (𝑡) (2.20)

where 𝐺𝑢 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵𝑢 is the transfer function from input 𝑢(𝑡) to output 𝑦(𝑡), and

𝐺𝑑 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵𝑑 is the transfer function from input 𝑑 (𝑡) to output 𝑦(𝑡).

Discretizing the transfer functions 𝐺𝑢 (𝑠) and 𝐺𝑑 (𝑠) and time signals in equation (2.20) yields

the following hybrid system in discrete-time domain:

𝑦(𝑘) = 𝐺𝑢 (𝑧)𝑢(𝑘) + 𝐺𝑑 (𝑧)𝑑 (𝑘) (2.21)

where 𝐺𝑢 (𝑧) = 𝐶𝑑 (𝑠𝐼 − 𝐴𝑑)−1𝐵𝑢𝑑 is the discretized transfer function 𝐺𝑢 (𝑠), and 𝐺𝑑 (𝑧) =

𝐶𝑑 (𝑠𝐼 − 𝐴𝑑)−1𝐵𝑑𝑑 is the discretized transfer function 𝐺𝑑 (𝑠), and the discretized system matrices

are obtained through the exact discretization formula [37]: 𝐴𝑑 = 𝑒𝐴𝑇 , 𝐵𝑑 = 𝐴−1(𝑒𝐴𝑇 − 𝐼)𝐵,

𝐶𝑑 = 𝐶, where 𝑇 is the sampling period for the discretization process.

Rearrange the hybrid system equation to the parametric form of

𝑦′(𝑘) = 𝜃∗𝜙(𝑘) (2.22)

where 𝑦′(𝑘) = 𝑦(𝑘) −𝐺𝑢 (𝑧)𝑢(𝑘) is the output and 𝜙(𝑘) = 𝐺𝑑 (𝑧) · 1 is the regression signal. Since

the system matrices are known, and the input voltage 𝑢 and output cam position 𝑦 can be measured,
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leading to the signals 𝑦′(𝑘) and 𝜙(𝑘) to be available; and 𝜃∗ = 𝑑 contains the touchpoint variation

displacement is the unknown term to be estimated.

Let 𝜃 be an estimate of 𝜃∗, the parametric estimation error can be expressed as

𝜖 (𝑘) = 𝜃 (𝑘)𝜙(𝑘) (2.23)

where 𝜃 = 𝜃 (𝑘) − 𝜃∗ is the unknown term estimation error. A discrete-time normalized gradient

adaptive estimation algorithm that guarantees the estimation convergence is designed as

𝜃 (𝑘 + 1) =

𝜃 (𝑘) − Γ𝜙(𝑘)𝜖 (𝑘)

𝑚2 (𝑘)
𝜃 < 𝜃 (𝑘) < 𝜃

𝜃 (𝑘) otherwise
(2.24)

where𝑚2(𝑘) = 𝜏+𝜙𝑇 (𝑘)𝜙(𝑘) is designed to guarantee the boundedness of the estimation algorithm,

and 𝜏 > 0 is a designing parameter that determines the estimation convergence rate. Γ is another

design parameter satisfying 0 < Γ < 2𝐼 to guarantee the convergence of the output error, where 𝐼

is an identity matrix with appropriate dimension; 𝜃 and 𝜃 are calibrated lower and upper bound for

𝜃, respectively.

2.3.3 Convergence Analysis

1. Output Estimation Error Convergence Analysis:

The output estimation error convergence is analyzed by introducing a discrete-time Lyapunov

function [25] for the update law 𝜃 (𝑘 + 1):

𝑉 (𝑘) = 𝜃𝑇 (𝑘)Γ−1𝜃 (𝑘) (2.25)

Define the difference Lyapunov function between two adjacent time steps as Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) −

𝑉 (𝑘), and the difference can be expanded as follows
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Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) −𝑉 (𝑘)

= 𝜃𝑇 (𝑘 + 1)Γ−1𝜃 (𝑘 + 1) − 𝜃𝑇 (𝑘)Γ−1𝜃 (𝑘)

= (𝜃 (𝑘) − Γ𝜙(𝑘)𝜖 (𝑘)
𝑚2(𝑘)

)𝑇Γ−1(𝜃 (𝑘) − Γ𝜙(𝑘)𝜖 (𝑘)
𝑚2(𝑘)

) − 𝜃𝑇 (𝑘)Γ−1𝜃 (𝑘)

= −2
𝜃 (𝑘)𝜙(𝑘)𝜖 (𝑘)

𝑚2(𝑘)
+ 𝜙

𝑇 (𝑘)Γ𝜙(𝑘)
𝑚2(𝑘)

𝜖2(𝑘)
𝑚2(𝑘)

= (−2 + 𝜙
𝑇 (𝑘)Γ𝜙(𝑘)
𝑚2(𝑘)

) 𝜖
2(𝑘)
𝑚2(𝑘)

(2.26)

By definition, 𝑚2(𝑘) > 0, and the choice of Γ satisfying 0 < 𝜆𝑚𝑎𝑥 (Γ) < 2𝐼 guarantees Δ𝑉 (𝑘)

is non-increasing and 𝑉 (𝑘) ≥ 0. These two conditions ensure that 𝑉 (𝑘) is bounded and Δ𝑉 (𝑘)

converges to 0 as 𝑘 goes to infinity. Therefore, the output error 𝜖 (𝑘) converges to 0.

2. Parameter Estimation Error Convergence Analysis:

The parameter convergence in the normalized gradient method is guaranteed by the PE (persistently

exciting) [38] condition of the regression signal 𝜙(𝑘).

Definition of Persistence Exciting: A bounded vector signal 𝑥(𝑡) ∈ 𝑅𝑞 , 𝑞 ≥ 1 is

• exciting over the time interval [𝜎, 𝜎 + 𝛿], 𝛿 ≥ 0, 𝜎 ≥ 𝑡0, if there is 𝛼 ≥ 0 such that∫ 𝜎+𝛿
𝜎 𝑥(𝑡)𝑥𝑇 (𝑡)𝑑𝑡 ≥ 𝛼𝐼

• persistence exciting if there is 𝛿 ≥ 0, 𝛼 ≥ 0 such that
∫ 𝜎+𝛿
𝜎 𝑥(𝑡)𝑥𝑇 (𝑡)𝑑𝑡 ≥ 𝛼𝐼, for any 𝜎 ≥ 𝑡0

To reach the PE condition of 𝜙(𝑘), the following Lemmas from [38] is needed.

Lemma 1: Consider a system 𝜙(𝑡) = 𝐺 (𝑠)𝑢(𝑡), where 𝑢(𝑡) ∈ 𝑅, 𝜙(𝑡) ∈ 𝑅𝑛 and the 𝑛 × 1 trans-

fer function 𝐺 (𝑠) is proper and stable. Assuming that 𝐻 ( 𝑗𝑤𝑖) are linearly independent for all

𝑤𝑖, (𝑖 = 1, ..., 𝑛), 𝜙(𝑡) is PE if and only if 𝑢(𝑡) is rich of order 𝑛. (Signal richness of order k: a

signal 𝑢(𝑡) is of rich of order 𝑘 if it has, at least, k frequency components)

Lemma 2: If the signal 𝜙(𝑘) ∈ 𝐿∞ and 𝜙(𝑘) is PE, then the signal 𝜓(𝑘) = 𝜙(𝑘)
𝑚(𝑘) is PE, and further-

more, the parameter estimation error converges to zero, i.e., lim𝑘→∞ ‖𝜃 (𝑘)‖2 = 0, exponentially.

Lemma 1 can be easily extended to the discrete-time system. From equation (2.22), it is obvious

that 𝜙(𝑘) is a scalar (𝑛 = 1), and the input for 𝜙 is stationary, which means that it is rich of order 1.
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Therefore, by Lemma 1, 𝜙(𝑘) can be concluded to be PE. Since 𝜙(𝑘) is also a finite energy signal,

which means that 𝜙(𝑘) ∈ 𝐿∞. Therefore, by the Lemma 2, the convergence of 𝜃 (𝑘) to 0 can be

easily concluded.

It can be seen that by the designed adaptive algorithm, both the output error and parameter error

will converge to 0 eventually, therefore, the estimate 𝜃 converge to 𝜃∗, which achieves the goal of

parameter estimation.

2.4 Preliminary Results and Discussion

To validate the accuracy of the clutch actuation system model and the effectiveness of the

proposed adaptive estimation algorithm, simulation studies are performed in this section.

There are typically four vehicle operational modes: stationary, acceleration, deceleration and

cruise. There is no doubt that no torque estimation is need when the vehicle is stationary; While

then the vehicle is decelerating, it is very possible that the vehicle brake is applied, and the applied

brake torque would be difficult to obtain; During vehicle cruise, it is also very possible that the

vehicle operates in the 2WD mode. Therefore, only acceleration data is used for updating the

touchpoint estimation since during acceleration period the transfer case clutch is engaged.

The measured input and output signals of the proposed model (2.19) are shown in Figure 2.7

(a) and Figure 2.7 (b), respectively. It is interesting to observe that the clutch actuation system is

’active’ only between 5 and 10 second. Note that the actuator voltage is ’active’ (or non-zero) only

in this time frame (see Figure 2.7 (a)); and the cam stays stationary both before 5s and after 10s

(see Figure 2.7 (b)). Thus, it is reasonable to only enable the estimation algorithm when the clutch

actuation system is active in real-time. The associated trigger conditions will be discussed detailly

in next Subsection. In this Subsection, for data completeness, the trigger conditions are not used.
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Figure 2.7: Touchpoint 𝑥0 estimation results without friction. (a) applied input voltage of the clutch
actuation system, (b) measured cam position, (c) estimated touchpoint 𝑥0

Figure 2.7 (c) shows the 𝑥0 estimation result, where the 𝑥0 is changing quite complicated during

the ’active’ time. However, this changing rate is too fast compared with a physical clutch operation

process, and contradicts with the assumption that 𝑥0 is a constant at the time of estimation. Further

examination of the actual cam position in Figure 2.7 (b) reveals that the chattering cam movement

is a clear indication that there exists friction between the moving balls and the ball ramp while the

clutch is ’active’ in the physical system. Without a good friction model, the estimation result is not

desirable. Therefore, it is crucial to take the friction effect between the balls and ball ramp into

account for better estimation results.

Revisit equation (2.16), term 𝑑 to be estimated is

𝑑 =
𝑘𝑐𝑟𝑏 tan 𝛽
𝑖𝑠𝑖𝑟𝜂𝑟𝜂𝑠𝜂𝑝

(𝑘𝑏𝑟𝑏𝑐𝑎𝑚 + 𝑏𝑏𝑟 − 𝑥𝑐𝑡) (2.27)

where no friction is considered. If consider the friction force between the moving balls and the ball
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ramp, term 𝑑 is modified to

𝑑 =
𝑘𝑐𝑟𝑏 tan 𝛽
𝑖𝑠𝑖𝑟𝜂𝑟𝜂𝑠𝜂𝑝

(𝑘𝑏𝑟𝑏𝑐𝑎𝑚 + 𝑏𝑏𝑟 − 𝑥𝑐𝑡 +
𝐹 𝑓

𝑘𝑐
) (2.28)

where 𝐹 𝑓 is the dry friction force to be determined. Denote 𝑥
′
𝑐𝑡 = 𝑥𝑐𝑡 −

𝐹𝑓
𝑘𝑐

, it is obvious that the

estimation result in Figure 2.7(d) is actually 𝑥
′
𝑐𝑡 . Therefore, the actual touchpoint is

𝑥𝑐𝑡 = 𝑥
′
𝑐𝑡 +

𝐹 𝑓

𝑘𝑐
(2.29)

For 𝑥𝑐𝑡 to be a constant (or almost a constant with friction effect), it would be reasonable to expect

that the friction force is negative and positively proportional when the clutch is actively engaged

between 5 and 10 second. In the following subsections, several friction models will be introduced

in detail.

2.5 Friction Model Development

2.5.1 Coulomb Friction Model

A simple enough friction model is the Coulomb friction [39]. It describes the friction force

between two contact surfaces as a constant and in the opposite direction of speed, and its magnitude

is independent of speed magnitude. Figure 2.8 shows the typical relationship between Coulomb

friction and motion speed graphically, where when the velocity is positive, the friction force is

also positive and when the motion velocity is negative, it becomes negative force. It is modeled

mathematically as

𝐹 𝑓 = 𝐹𝑐sgn(𝑣) (2.30)

sgn(𝑣) =


1 𝑣 > 0

0 𝑣 = 0

−1 𝑣 < 0

(2.31)

where 𝐹 𝑓 is the friction force; 𝐹𝑐 is the Coulomb friction; 𝑣 is the motion speed and sgn(·) is the

sign function.
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Figure 2.8: Graphical illustration of Coulomb friction model

Using the ball velocity in Figure 2.9 (a) to generate the Coulomb friction described by equation

(2.30), and the friction force is shown in Figure 2.9 (b). During the clutch active period (5-10s),

the Coulomb friction remains constant according to the Coulomb friction formula, which does

not match the previous discussion of positively proportional requirement. Therefore, this friction

model cannot represent the actual friction in the clutch actuation system. It is also noted that

the measured ball velocity is not exactly at zero even when there is no active input voltage to the

clutch actuation system(see Figure 2.7 (a) after 10s), which results in a non-zero friction when the

clutch is inactive. This non-zero velocity is possibly mainly introduced by the measurement noise.

Therefore, a good friction model also needs to take care of the measurement noise.

2.5.2 General Kinetic Friction Model

Another widely used friction model with more thorough friction description than the Coulomb

model is the General Kinetic Friction (or GKF) model [40], [41], [42], [43] that is a combination

of Coulomb friction, Stiction friction, Viscous friction and external force. Its relationship with

respect to motion speed is shown in Figure 2.10 graphically.
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Figure 2.9: Performance evaluation of Coulomb Friction. (a) measured ball velocity. (b) Coulomb
Friction

v

Ff

Fs

Fc

vs

-vs

-Fc

-Fs

Fv=tanψ 

ψ

Figure 2.10: Graphical illustration of GKF model

The GKF is modeled mathematically as

𝐹 𝑓 =


𝐹𝑔 |𝑣 | > 0

−𝐹𝑒 |𝑣 | = 0, |𝐹𝑒 | < 𝐹𝑠

𝐹𝑠sign(𝑣) |𝑣 | = 0, |𝐹𝑒 | ≥ 𝐹𝑠

(2.32)

𝐹𝑔 = (𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒 |
𝑣
𝑣𝑠 |

𝛿
)𝑠𝑖𝑔𝑛(𝑣) + 𝐹𝑣𝑣

where 𝐹 𝑓 is the total friction force; 𝐹𝑐 is the Coulomb friction; 𝐹𝑠 is the Stiction friction; 𝐹𝑣 is the

slope of Viscous friction; 𝐹𝑒 is the external force on the ball; 𝑣 is the ball movement speed; 𝑣𝑠 is
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the Stribeck velocity to be calibrated; 𝛿 is the Stribeck coefficient, and typically has the value of 1

or 2.

The input of the friction model is still the ball velocity of the moving balls as described in Figure

2.9 (a), and the resulting general friction using friction model (2.32) is shown in Figure 2.11. The

trend is similar to that of the Coulomb friction model that the friction is almost constant when the

clutch is active. Also note that an almost constant nonzero velocity (see Figure 2.9(a)) can only

result in an approximately constant nonzero friction by either Coulomb friction or GKF model.
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Figure 2.11: Friction force using GKF model

The fact is that the ball velocity (see Figure 2.9 (a)) is relatively small between 6 and 10 seconds

comparing with that at the start of ball movement at around 5s. It is possible that between 6s

and 10s, the velocity is so close to 0 that the friction could be static and should be described by

the second equation in (2.32) instead of the kinetic friction given by the first equation in (2.32).

However, due to the measurement noise, the measured velocity can never be exactly zero, which

results in the friction force cannot takes in the form of the second equation in (2.32). Therefore,

modification is needed for the GKF friction model for practical applications.
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2.5.3 Modified General Kinetic Friction Model

In this section, a threshold of low velocity 𝑣0 is proposed for the Modified General Kinetic Friction

(or MGKF) model. That is, the comparison with zero in equation (2.32) is replaced by 𝑣0. The

marked region in Figure 2.12 illustrates the effect of the threshold. Within the threshold region,

the friction is static. The advantages for this are two-fold: firstly, it overcomes the discontinuity

of friction force at zero-velocity encountered in either the Coulomb or GKF friction model; and

secondly, it avoids the need of detecting exact zero-velocity in the presence of measurement noise

in case the actual friction is static.

v
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Fv=tanψ 
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Figure 2.12: Graphical illustration of MGKF model

The MGKF model is described mathematically by the equation below.

𝐹 𝑓 =


𝐹𝑔 |𝑣 | > 𝑣0

−𝐹𝑒 |𝑣 | ≤ 𝑣0, |𝐹𝑒 | < 𝐹𝑠

𝐹𝑠sign(𝑣) |𝑣 | ≤ 𝑣0, |𝐹𝑒 | ≥ 𝐹𝑠

(2.33)

𝐹𝑔 = (𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒 |
𝑣
𝑣𝑠 |

𝛿
)𝑠𝑖𝑔𝑛(𝑣) + 𝐹𝑣𝑣

where 𝑣0 is the introduced velocity threshold to be calibrated and all the other parameters are

defined before. Note that the main purpose of introducing 𝑣0 is to deal with the difficulty of
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detecting exact zero-velocity in the presence of speed measurement noise. As a result, the choice of

𝑣0 is largely dependent on the noise level of the actual speed sensor. For this study, 𝑣0 was chosen

to be 5 × 10−4 m/s.

0 5 10 15
Time(s)

-4000

-2000

0

2000

4000
M

G
K

F(
N

)
 

Figure 2.13: Friction Force using MGKF model
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Figure 2.13 shows the friction force using MGKF model for the same ball velocity. It increases

slightly in a linear way and its magnitude is negative when the clutch is active, which matches well

with early discussion. Figure 2.14 (a) shows the clutch slip speed while the transfer case is operating.

It shows that when the clutch starts to engage (around 5s), there is no slip in the clutch, which can be

assumed to be overtaken. And then starting around 7s, the clutch Δrpm starts to increase, indicating

the clutch starts to slip. Starting from around 9s, the clutch is disengaged, and there exists almost

constant speed difference between clutch pack. Figure 2.14 (b) shows the measured ball velocity

under the control voltage 𝑢. The initial speed increase corresponds to the sudden increase of ball

position at around 5s as shown in Figure 2.15 (b). And the final speed increase in the opposite

direction also corresponds to the ball position drop at around 10s as shown in Figure (2.15) (b).

Figure 2.14 (c) shows the associated estimation of total touchpoint displacement 𝑥𝑐𝑡 using equation

(2.33), it is desirable that the 𝑥𝑐𝑡 is almost a constant when the clutch is active between 7s and 9s.

However, in the duration from 5s to 7s and from 9s to 10s, the 𝑥0 estimation is not accurate. For

the duration from 5s to 7s, since the clutch is in the overtaken condition, it is very possible that

the spring between clutch pack works in the nonlinear region due to the sharp increase of actuation

force, which is different from the linear spring assumption as described in equation (2.11). For the

duration from 9s to 10s, it can be concluded that the balls fall down to the point where there is

no contact between the ball and the clutch pack, which means that the clutch is disengaging, and

there is no load torque exerted on the clutch actuation system. In this sense„ the dynamics of the

system has changed, which leads to an inaccurate estimation. In summary, the clutch slip duration

is the desired period for 𝑥𝑐𝑡 estimation. As a result, the MGKF model is adopted and the clutch slip

duration is the targeting period in the next session for experimental validation.

2.6 Algorithm Evaluation and Validation

In this section, the proposed algorithm is validated through multiple data from testing vehicles.

And also they are compared with the results using the existing direct detection method, where the

direct detection results are obtained also from the vehicle tests. Estimation Results obtained using
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Figure 2.15: Touchpoint 𝑥0 estimation results without friction. (a) input voltage (b) output ball
position

the proposed method are based on the motor control voltage and measured cam position from the

same data set collected for the direct detection method.

2.6.1 Two Acceleration Data Set Validation

Figures 2.16 and 2.17 shows the results of touchpoint displacement 𝑥𝑐𝑡 estimation, along with the

associated signals. Figure 2.16 (a) is the corresponding vehicle speed profile, which shows clearly

that the vehicle goes through two complete acceleration operations. Figure 2.16 (b) presents the

input voltage of the clutch actuator motor and Figure 2.16 (c) shows the corresponding ball position.

Note that in this study, the algorithm enabling trigger is not used, and the interested duration would

only be the complete acceleration duration, i.e., from 19s to 30s and from 143s to 150s.

Figure 2.17 (a) shows the clutch slip speed while the transfer case clutch is engaged, and Figure

2.17 (b) presents the ball velocity. Figure 2.17 (c) shows the final estimation result of the touchpoint

displacement 𝑥𝑐𝑡 . Since the two acceleration performance are similar, the first acceleration data

can be used to analyze the estimation performance in detail.

Figure 2.18 (a) is the clutch slip speed Δrpm during the first acceleration. Similar to the results

37



reported in Figure 2.14, the clutch first operates in the overtaken condition (from 19s to 21s), and

then the clutch starts slipping as the Δrpm increases, and finally the clutch will be disengaged. The

resulted touchpoint 𝑥𝑐𝑡 estimation is also similar to the results in Figure 2.14, where the clutch slip

condition provides good estimation performance.
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Figure 2.16: Two acceleration data validation, the plots are corresponding to (a) vehicle speed (b)
clutch actuation input voltage (c) ball position
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Figure 2.17: Two acceleration data validation, the plots are corresponding to (a) clutch Δrpm (b)
ball velocity (c) estimated touchpoint displacement 𝑥𝑐𝑡

2.6.2 Two Acceleration Data Validation with Trigger Condition

In previous Subsection, the estimation is performed with the complete measured data. However, es-

timation results show that only the clutch slip condition provides reasonable estimation. Therefore,

in this section an estimation trigger is proposed to select desired duration for real-time estimation.

The detailed trigger conditions are listed in Table 2.1. When all the conditions are met, the esti-

mation will be enabled. Several cases will be discussed to validate the effectiveness of estimation

with trigger condition based on the MGKF model.
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Figure 2.18: Two acceleration data validation, results for the first acceleration, the plots are
corresponding to (a) clutch Δrpm (b) ball velocity (c) estimated touchpoint displacement 𝑥𝑐𝑡

Table 2.1: Estimation trigger conditions

Parameters Conditions Unit

Vehicle Speed (𝑣) 𝑣 > 𝑣0 m/s

Input Voltage(𝑢) 𝑢 ∈ [𝑢0 0] V

Ball Velocity (𝑣𝑏 ) 𝑣𝑏 ∈ [𝑣𝑏0 0] m/s

Ball displacement(𝑥𝑝) 𝑥𝑝 > 𝑥𝑐0 m

Motor Brake (𝐵𝑚) 𝐵𝑚 = 0 -

Vehicle Cornering(𝐶𝑣) 𝐶𝑣 < 𝑤0 degree

Vehicle Brake (𝐵𝑣) 𝐵𝑣 = 0 -

Clutch Slip Speed (Δrpm) Δ𝑙 < Δrpm < Δ𝑢 rpm
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Figure 2.19: Two acceleration data validation with trigger condition, the plots are corresponding
to (a) vehicle speed (b) trigger condition (c) estimated touchpoint displacement 𝑥𝑐𝑡

Figure 2.19 (b) shows the estimation results under the trigger condition, it is obvious that the

trigger is only enabled during the small period specified by the conditions in Table 2.1. And if

the trigger conditions are not satisfied, the previous estimation touchpoint 𝑥𝑐𝑡 will be used as the

estimation output. Figure 2.19 (c) is the estimated touchpoint with a specified initial value. It can

be seen that the estimated touchpoint is very close to the experiment measured one. The estimation

error is within 0.5% along the time series.

In order to show the effectiveness of proposed algorithm with trigger conditions, several more

comparisons with experiment measured results are presented in Figures 2.20 and 2.21. It can be

seen that in both cases, the estimation is only enabled for a small period when vehicle is accelerating,

filtering out the undesired data. On the other hand, the 𝑥𝑏 estimation results indicate the estimation

accuracy. In Figure 2.20 (c), the max error is around 1% while in the Figure 2.21 (c) the max error

is just only around 0.5%.
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Figure 2.20: Two acceleration data 1 validation with trigger condition, the plots are corresponding
to (a) vehicle speed (b) trigger condition (c) estimated touchpoint displacement 𝑥𝑐𝑡
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2.6.3 Multiple Acceleration Data Validation with Trigger Condition

Figure 2.22 shows the touchpoint estimation algorithm with multiple acceleration data, i.e., multiple

clutch engagement operations. It can be observed that the touchpoint obtained from adaptive

estimation algorithm is much more robust than that from current production method. And also the

mean value of the adaptive estimated touchpoint is close to that of the production method. Further

comparison of these two approaches can be seen from Table 2.2. The results can be interpreted

in two ways: first, the accuracy metric is evaluated by the mean value of multiple touchpoints

and the adaptive estimated touchpoint achieves 0.06% relative error, which confirms its estimation

accuracy; second, the touchpoint robustness can be characterized by the standard deviation that is

0.28% for the adaptive estimation and 1.07% for the current production one, indicating that the

model-based adaptive estimation is more robust than the current production method.

Figure 2.22: Multiple acceleration data validation with trigger condition
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Metrics Results Conclusions

Accuracy metric

(mean value)

production: 3.024V |𝑥𝑎𝑑−𝑥𝑝𝑟𝑜 |
𝑥𝑝𝑟𝑜

= 0.06%
adaptive: 3.022V

Robustness metric

(standard deviation)

production: 1.07%
The adaptive SD is smaller

adaptive:0.28%

Table 2.2: Touchpoint Estimation Results Comparison

2.6.4 Adaptiveness of the Adaptive Estimation Algorithm

Current touchpoint displacement estimation is performed on a medium-wear clutch. Note that

typically the clutch aging (wear) rate is very small. Therefore, it will be difficult to validate the

adaptation of adaptive estimation algorithm to different stage of wearing.
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Figure 2.23: Demonstration of Adaptiveness of Adaptive Estimation Algorithm

However, according to the experimental results that several factors may render the touchpoint

displacement to change, the adaptation can be check with these factors. One such factor is the

cam position sensor drift. It is noted from the experimental data that a 0.12V sensor drift in the

cam position measurement will introduce around 0.1mm offset in the touchpoint displacement.

To evaluate this sensor drift, an additional 0.12V is added to the measured cam position, and the
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resulting touchpoint displacement is show in Fig. 2.23, indicating that the touchpoint displacement

do offset around 0.1mm matching with what is expected. Therefore, the adaptation capability is

validated.

2.7 Conclusions

In conclusion, the following are achieved in this chapter:

1. A clutch actuation system model is developed for transfer case and its clutch actuation system;

2. The adaptive estimation algorithm using normalized gradient method, along with the modified

friction model, is proposed and developed;

3. The simulation results using experiment data show that the proposed algorithm is accurate,

and the comparison between the proposed and existing direct detection method exhibits

that the proposed method is more robust than the existing one. Furthermore, the adaptation

capability to system change is validated by matching the desired performance of the estimation

algorithm.
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CHAPTER 3

INTEGRATED TOUCHPOINT ESTIMATION AND POSITION TRACKING USING
DEADBEAT ADAPTIVE BACKSTEPPING

3.1 Overview

3.1.1 Chapter Organization

In this chapter, instead of using the separated scheme for the desired clutch displacement control

and touchpoint estimation, an integrated scheme is designed [44, 45], the structure of this chapter

is shown in Figure 3.1. More specifically, given the reference signal, the integrated control and

estimation are achieved by using the deadbeat adaptive backstepping technique. A Least-Squares

estimation algorithm is first proposed to estimate the unknown system parameter, and then, the

discrete-time backstepping control law is designed to guarantee the reference tracking, and at the

same time, to achieve the deadbeat form of closed-loop system for fast convergence.

Clutch actuation

system model

Deadbeat backstepping 

controller

r

Least Squares 

estimator

u y

መ𝜃

Figure 3.1: Chapter organization overview
.

3.1.2 Review of Backstepping Control

Model-based backstepping control technique is utilized due to its integrated architecture for estimat-

ing unknown system parameters and tracking reference simultaneously. In general, the backstepping

46



control technique designs a stabilizing controller at each stage of the control synthesis process for

a special class of nonlinear systems. The stability of the closed-loop system is guaranteed at

each design stage by the properly selected Lyapunov function [46]. The backstepping control

scheme was initially developed in [47, 48, 49] to stabilize a class of nonlinear dynamic systems

in a recursive way. References [50] and [51] present adaptive backstepping control approaches

for continuous-time systems, resulting a globally stable closed-loop system as well as asymptoti-

cally reference tracking. In [52] and [53] the backstepping-based adaptive control was utilized for

position tracking.

However, these controllers are designed in continuous-time domain [54]. In fact, for practical

applications, discrete-time adaptive backstepping control is more desirable since it can be imple-

mented exactly for real-time control. In [55], a second-order discrete-time backstepping controller

was developed for a pumping station system and validated experimentally. However, there is not

much earlier work for the discrete-time adaptive backstepping design. This is mainly due to the fact

that the difference Lyapunov function in discrete-time domain does not obey the product rule used

for the derivative of Lyapunov function in continuous-time domain. Thus, it is somehow difficult to

find such a discrete-time linear Lyapunov function with respect to incremental variables. Therefore,

the discrete-time adaptive backstepping scheme is more challenging in practical applications than

that of the continuous-time case. However, note that the continuous-time scheme could be sensitive

to signal noises due to the derivative operations in the backstepping control scheme, while the

discrete-time scheme only uses the difference operation between two time steps and is more robust

to the system noises. Also, it is worth to note that the discrete-time scheme is able to deal with rapid

change of reference signal, which is another advantage over continuous-time case. Furthermore,

the method, proposed in this paper, provides fast closed-loop system response by taking advantage

of the deadbeat form, which is available only for discrete-time control.

In [56], the regulation problem using the discrete-time backstepping controller was addressed

for both known and unknown chaos system parameters. Reference [57] adopted the backstepping

procedure and designed a robust adaptive controller to reach the canonical form closed-loop system
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so that global stability and global asymptotically tracking were achieved.

3.2 System Transformation for Backstepping Design

The backstepping design starts with the clutch actuation system. For convenience, the clutch

actuation system is show here again in Figure 3.2. Although it is different from what is shown in

Figure 2.2, they are essentially the same based on the physical clutch actuation system.

Shaft 1

Lever

Clutch packs

Chain

Rotor

Plate

θ2 

Reduction gear

xp

 input

  to front

  to rear

θ1 

Shaft 2

Cam

Ball

θ3 
Shaft 3

Figure 3.2: Transfer case clutch actuation system

Based on the modeling equations in Chapter 2, a system state-space model can be obtained

below by choosing states as 𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 = [𝜃1, ¤𝜃1,
𝐾𝑒
𝐽𝑚
𝑖]𝑇 , input as 𝑣, and output as 𝑦 = 𝑥1.

¤𝑥1 = 𝑥2

¤𝑥2 = 𝑥3 −
𝑏

𝐽𝑚
𝑥2 −

ℎ(𝑥1)
𝐽𝑚

− 𝑑

𝐽𝑚

¤𝑥3 = −𝐾𝑒𝐾𝑡
𝐽𝑚𝐿

𝑥2 −
𝑅

𝐿
𝑥3 +

𝐾𝑒
𝐽𝑚𝐿

𝑢

𝑦 = 𝑥1

(3.1)
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Note that term 𝑑 to be estimated is the same as that in equation (2.16). However, the main difference

between this system and the system (2.19) in Chapter 2 is that ℎ(𝑥1) in this system is kept as a

nonlinear function due to the ability of dealing nonlinearity by the backstepping design.

The ℎ(𝑥1) function takes the form of

ℎ(𝑥1) =
𝑘𝑐𝑘𝑏𝑔(𝑥1/𝑖𝑟 )𝑟𝑏 tan 𝛽

𝑖𝑟 𝑖𝑠𝜂𝑟𝜂𝑠𝜂𝑝
(3.2)

and the function 𝑔(·) is the same as that in equation (2.5) and according to Figure 2.4, it can be

fitted using a third order polynomial for either 4-H or 4-L range. Consider the case of 4-L range,

in which the transfer case operates in most of the time, the function is fitted as:

𝑔(𝑝) = ℎ3𝑝
3 + ℎ2𝑝

2 + ℎ1𝑝 + ℎ0 (3.3)

where ℎ0, ℎ1, ℎ2 and ℎ3 are coefficients, and 𝑝 is the variable.

This completes the nonlinear form of the clutch actuation system.

3.2.1 Parametric Semi-Strict Feedback Formulation

System (3.1) can be represented in a more general parametric semi-strict feedback form [58] as

following.

¤𝑥1 = 𝑥2 + 𝑔1(𝑥1) + 𝜃∗ 𝑓1(𝑥1)

¤𝑥2 = 𝑥3 + 𝑔2(𝑥1, 𝑥2) + 𝜃∗ 𝑓2(𝑥1, 𝑥2)

¤𝑥3 = 𝛽(𝑥)𝑢 + 𝑔3(𝑥1, 𝑥2, 𝑥3) + 𝜃∗ 𝑓3(𝑥1, 𝑥2, 𝑥3)

𝑦 = 𝑥1

(3.4)

For the backstepping control to be utilized, the following assumption needs to be satisfied.

Assumption 2: 𝑓𝑖 and 𝑔𝑖 (𝑖 = 1, 2, 3) are known and continuously differentiable, and 𝛽(𝑥) is

lower-bounded by a positive constant 𝛽0, i.e. 𝛽(𝑥) ≥ 𝛽0 > 0.

From system (3.1), nonlinear functions in (3.4) are corresponding to the functions below.

𝑔1(𝑥1) = 𝑓1(𝑥1) = 0, 𝜃∗ = 𝑑
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𝑔2(𝑥1, 𝑥2) = − 𝑏
𝐽𝑚
𝑥2 −

ℎ(𝑥1)
𝐽𝑚

, 𝑓2(𝑥1, 𝑥2) = − 1
𝐽𝑚

,

𝛽(𝑥) = 𝐾𝑒
𝐽𝑚𝐿

, 𝑔3(𝑥1, 𝑥2, 𝑥3) = −𝐾𝑒𝐾𝑡𝐽𝑚𝐿
𝑥2 − 𝑅

𝐿 𝑥3, 𝑓3(𝑥1, 𝑥2, 𝑥3) = 0.

where 𝜃∗ is the unknown term to be estimated. And it is obvious that the Assumption 2 is satisfied.

3.2.2 Discretized Parametric Semi-Strict Feedback Formulation

This design will be in the discrete-time form so that we can take the advantage of the deadbeat

closed-loop system. For a nonlinear system, the exact Linear Time Invariant system discretizing

formula cannot be performed. Thus, Euler Approximation is used below.

¤𝑥 = 𝑥(𝑘 + 1) − 𝑥(𝑘)
𝑇

(3.5)

where 𝑇 is the sampling period.

For simplicity, 𝑔1(𝑥1) = 𝑓1(𝑥1) = 0 and 𝑓3(𝑥1, 𝑥2, 𝑥3) = 0 are ignored, and the resulting

discrete time system is

𝑥1(𝑘 + 1) = 𝑥1(𝑘) + 𝑇𝑥2(𝑘)

𝑥2(𝑘 + 1) = 𝑥2(𝑘) + 𝑇 (𝑥3 + 𝑔2(𝑥1, 𝑥2) + 𝜃∗ 𝑓2)

𝑥3(𝑘 + 1) = 𝑥3(𝑘) + 𝑇 (𝛽(𝑥)𝑢 + 𝑔3(𝑥1, 𝑥2, 𝑥3))

𝑦 = 𝑥1(𝑘)

(3.6)

Note that system (3.6) is still in the parametric semi-strict feedback form and will be used in the

control design in the following section.

3.3 Deadbeat Adaptive Backstepping Algorithm Development

3.3.1 Non-Lyapunov-Function-Based Deadbeat Adaptive backstepping control design

During the control design process, no Lyapunov function is needed to guarantee the convergence

as it is required in the traditional backstepping design. That is why it is called a Non-Lyapunov-

Function-Based design.
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The controller design is divided into two steps, where the first step is to design the adaptive

parameter estimation law to update the unknown parameter and the second step is to design the

actual control law 𝑢 to track the reference signal.

Step 1: designing estimation law

Design the first auxiliary state 𝑧1 and second auxiliary state 𝑧2, respectively, below.

𝑧1(𝑘) = 𝑥1(𝑘) (3.7)

𝑧2(𝑘) = 𝑥1(𝑘) + 𝑇𝑥2(𝑘) (3.8)

Propagating the auxiliary states one step ahead results

𝑧1(𝑘 + 1) = 𝑥1(𝑘 + 1) = 𝑧2(𝑘) (3.9)

𝑧2(𝑘 + 1) = 𝑇𝑥2(𝑘 + 1) + 𝑥1(𝑘 + 1)

= 𝑇 [𝑇𝑥3(𝑘) + 𝑥2(𝑘) + 𝑇𝑔2(𝑥1(𝑘), 𝑥2(𝑘)) + 𝜃∗𝑇 𝑓2] + 𝑧2(𝑘)

= 𝑧2(𝑘) + 𝑇2𝑥3(𝑘) + 𝑇𝑥2(𝑘) + 𝑇2𝑔2(𝑥1(𝑘), 𝑥2(𝑘)) + 𝜃𝑇2 𝑓2 − 𝜃𝑇2 𝑓2

= 𝑧3(𝑘) − 𝜃𝑇2 𝑓2

(3.10)

where 𝜃 (𝑘) = 𝜃 (𝑘) −𝜃∗ is the parameter estimation error, and the third auxiliary state 𝑧3 is designed

as

𝑧3(𝑘) =𝑧2(𝑘) + 𝑇2𝑥3(𝑘) + 𝑇𝑥2(𝑘)

+ 𝑇2𝑔2(𝑥1(𝑘), 𝑥2(𝑘)) + 𝜃𝑇2 𝑓2

(3.11)

Rearranging equation (3.10) yields the following discrete-time linear parametric error model as

follows.

𝜖 (𝑘) = −𝜃𝑇 (𝑘)𝜙(𝑘) (3.12)

where 𝜖 (𝑘) = 𝑧2(𝑘 + 1) − 𝑧3(𝑘) is the estimation output error and 𝜙(𝑘) = 𝑇2 𝑓2 can be viewed as

the regression vector.

The update law for the unknown parameter can be designed using the normalized Least-Squares

estimation algorithm [38] below.

𝜃 (𝑘 + 1) = 𝜃 (𝑘) + 𝑃(𝑘)𝜙(𝑘)𝜖 (𝑘)
𝜅 + (𝜙(𝑘))𝑇𝑃(𝑘)𝜙(𝑘)

(3.13)
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𝑃(𝑘 + 1) = 𝑃(𝑘) − 𝑃(𝑘)(𝜙(𝑘)) (𝜙(𝑘))𝑇𝑃(𝑘)
𝜅 + (𝜙(𝑘))𝑇𝑃(𝑘)𝜙(𝑘)

(3.14)

where 𝜅 is the designing parameter and 𝑃(0) > 0. To this point, the first step, namely, the parameter

estimation is completed.

Step 2: designing control law

For tracking purpose, propagating the third auxiliary state 𝑧3 at time step 𝑘 + 1 and considering the

system equation (3.6) yield

𝑧3(𝑘 + 1) = 𝑧2(𝑘 + 1) + 𝑇2𝑥3(𝑘 + 1) + 𝑇𝑥2(𝑘 + 1)

+𝑇2𝑔2(𝑥1(𝑘 + 1), 𝑥2(𝑘 + 1))

+𝜃 (𝑘 + 1)𝑇2 𝑓2

= 𝑧3(𝑘) − 𝜃 (𝑘)𝑇2 𝑓2 + 𝑇2(𝑇𝛽𝑢 + 𝑥3(𝑘)+

𝑇𝑔3(𝑥2(𝑘), 𝑥3(𝑘))) + 𝑇𝑥2(𝑘 + 1)+

𝑇2(− 𝑏
𝐽𝑚
𝑥2(𝑘 + 1) − ℎ(𝑥1 (𝑘+1))

𝐽𝑚
)

+𝜃 (𝑘 + 1)𝑇2 𝑓2

= 𝑇3𝛽𝑢 + 𝑇2𝑥3(𝑘) + 𝑇3𝑔3(𝑥2(𝑘), 𝑥3(𝑘)))

+𝑧3(𝑘) + (𝑇 − 𝑏
𝐽𝑚
𝑇2)𝑥2(𝑘 + 1)

−𝑇2 ℎ(𝑥1 (𝑘+1))
𝐽𝑚

+ 𝜃 (𝑘 + 1)𝑇2 𝑓2 − 𝜃 (𝑘)𝑇2 𝑓2

= 𝑇3𝛽𝑢 + 𝑇2𝑥3(𝑘) + 𝑇3𝑔3(𝑥2(𝑘), 𝑥3(𝑘)))

+𝑧3(𝑘) + (𝑇 − 𝑏
𝐽𝑚
𝑇2) (𝑇𝑥3(𝑘) + 𝑥2(𝑘)

+𝑇𝑔2(𝑥1(𝑘), 𝑥2(𝑘)) + 𝜃∗𝑇 𝑓2)

−𝑇2 ℎ(𝑥1 (𝑘+1))
𝐽𝑚

+ 𝜃 (𝑘 + 1)𝑇2 𝑓2 − 𝜃 (𝑘)𝑇2 𝑓2

(3.15)

= 𝑇3𝛽𝑢 + 𝑇2𝑥3(𝑘) + 𝑇3𝑔3(𝑥2(𝑘), 𝑥3(𝑘)))

+𝑧3(𝑘) + (𝑇 − 𝑏
𝐽𝑚
𝑇2) (𝑇𝑥3(𝑘)

+𝑥2(𝑘) + 𝑇𝑔2(𝑥1(𝑘), 𝑥2(𝑘)) + 𝜃𝑇 𝑓2)

−𝑇2 ℎ(𝑥1 (𝑘+1))
𝐽𝑚

+ 𝜃 (𝑘 + 1)𝑇2 𝑓2

−𝜃 (𝑘)𝑇2 𝑓2 − 𝜃 (𝑘) (𝑇 − 𝑏
𝐽𝑚
𝑇2)𝑇 𝑓2
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Design the control input 𝑢 as

𝑢 = − 1
𝑇3𝛽

(𝑇2𝑥3(𝑘) + 𝑇3𝑔3(𝑥2(𝑘), 𝑥3(𝑘))

+ 𝑧3(𝑘) + (𝑇 − 𝑏

𝐽𝑚
𝑇2) (𝑇𝑥3(𝑘) + 𝑥2(𝑘)

+ 𝑇𝑔2(𝑥1(𝑘), 𝑥2(𝑘)) + 𝜃 (𝑘)𝑇 𝑓2)

− 𝑇2 ℎ(𝑥1(𝑘 + 1))
𝐽𝑚

+ 𝜃 (𝑘 + 1)𝑇2 𝑓2 − 𝑟 (𝑘 + 3))

(3.16)

and convert equation (3.15) to

𝑧3(𝑘 + 1) = 𝑟 (𝑘 + 3) − 𝜃 (𝑘)(2 − 𝑏
𝐽𝑚
𝑇)𝑇2 𝑓2 (3.17)

where 𝑟 (𝑘) is the reference signal assumed to be known and bounded. By implementing the

designed control 𝑢 (3.16) into plant system (3.6), the closed-loop system eventually becomes

𝑧1(𝑘 + 1) = 𝑧2(𝑘)

𝑧2(𝑘 + 1) = 𝑧3(𝑘) − 𝜃 (𝑘)𝑇2 𝑓2

𝑧3(𝑘 + 1) = 𝑟 (𝑘 + 3) − 𝜃 (𝑘)(2 − 𝑏

𝐽𝑚
𝑇)𝑇2 𝑓2

(3.18)

The system can be expressed in a more compact form below:

𝑧(𝑘 + 1) = 𝐴𝑧𝑧(𝑘) + 𝐵𝑧𝑟 (𝑘 + 3) +Φ(𝑘)

𝑦(𝑘) = 𝐶𝑧𝑧(𝑘)
(3.19)

where matrix 𝐴𝑧 =


0 1 0

0 0 1

0 0 0


is deadbeat; 𝐵𝑧 =


0

0

1


;Φ(𝑘) = 𝐸𝜃 (𝑘), 𝐸 =


0

−1

−(2 − 𝑏
𝐽𝑚
𝑇)


𝑇2 𝑓2;

and 𝐶𝑧 =
[

1, 0, 0
]
.

3.3.2 Stability and Convergence Analysis

For the closed-loop system (3.19), reference 𝑟 (𝑘) serves as the system input, and the transfer

function from 𝑟 (𝑘) to 𝑦(𝑘) can be expressed as

𝐺 (𝑧) = 𝐶𝑧 (𝑧𝐼 − 𝐴𝑧)−1𝐵𝑧 (3.20)
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The stability of transfer function 𝐺 (𝑧) is guaranteed since all the eigenvalues of 𝐴𝑧 are at zero,

which is inside the unit circle. As a result, any bounded reference signal 𝑟 (𝑘) leads to a bounded

output 𝑦(𝑘). Therefore, to proceed with the stability analysis for system (3.19), the reference can

be set to 0, i.e., 𝑟 (𝑘) = 0, and the closed-loop system reduces to

𝑧(𝑘) =𝐴𝑧𝑧𝑘−1 +Φ(𝑘 − 1)

=𝐴𝑧 (𝐴𝑧𝑧𝑘−2 +Φ(𝑘 − 2)) +Φ(𝑘 − 1)

=𝐴2
𝑧 𝑧𝑘−2 + 𝐴𝑧Φ(𝑘 − 2) +Φ(𝑘 − 1)

...

=𝐴𝑘𝑧 𝑧(0) +
𝑘−1∑
𝑖=0

𝐴𝑖𝑧Φ(𝑘 − 1 − 𝑖)

(3.21)

Due to the special deadbeat structure of matrix 𝐴𝑧 in (3.19), for 𝑖 = 3, 4, ..., 𝑘 − 1,

𝐴𝑖𝑧 = 0 (3.22)

Therefore, for 𝑘 ≥ 3, equation (3.21) can be further reduced down to

𝑧(𝑘) =𝐴2
𝑧Φ(𝑘 − 3) + 𝐴𝑧Φ(𝑘 − 2) +Φ(𝑘 − 1)

=𝐴2
𝑧𝐸𝜃 (𝑘 − 3) + 𝐴𝑧𝐸𝜃 (𝑘 − 2) + 𝐸𝜃 (𝑘 − 1)

(3.23)

For 𝑧(𝑘) to be bounded, the sequence 𝜃 (𝑘) should be bounded, which is guaranteed by the Least-

Squares estimation algorithm and the proof is shown below.

A Lyapunov function for the Least-Squares estimation algorithm is defined as

𝑉 (𝑘) = 𝜃 (𝑘)𝑃(𝑘)−1𝜃 (𝑘) (3.24)

Note that the above Lyapunov function is used to prove the convergence of the Least-Squares

algorithm in equations (3.12) and (3.13), and not for the non-Lyapunov function-based backstepping

control design.

Subtracting 𝜃∗ from both sides of (3.13) leads to

𝜃 (𝑘 + 1) = 𝜃 (𝑘) − 𝑃(𝑘)𝜙(𝑘)𝜙(𝑘)𝑇 𝜃 (𝑘)
𝜅 + (𝜙(𝑘))𝑇𝑃(𝑘)𝜙(𝑘)

(3.25)
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and combining it with equation (3.14) yields

𝜃 (𝑘 + 1) = 𝑃(𝑘 + 1)𝑃(𝑘)−1𝜃 (𝑘) (3.26)

which leads to the following difference Lyapunov function

Δ𝑉 (𝑘) =𝑉 (𝑘 + 1) −𝑉 (𝑘)

=(𝜃 (𝑘 + 1) − 𝜃 (𝑘))𝑃(𝑘)−1𝜃 (𝑘)

= − 𝜖 (𝑘)2

𝜅 + (𝜙(𝑘))𝑇𝑃(𝑘)𝜙(𝑘)
≤ 0

(3.27)

Since Δ𝑉 (𝑘) is non-positive, it can be concluded that 𝑉 (𝑘) is bounded, and therefore 𝜃 (𝑘) is

bounded. This concludes that 𝑧(𝑘) is bounded. To show that 𝑧(𝑘) converges to 0 when 𝑘 goes to

infinity, or equivalently

lim
𝑘→∞

𝑧(𝑘) = 0 (3.28)

for any bounded initial condition 𝑧(0), the following lemma from [59] is needed.

Lemma 1: If the signal 𝜙(𝑘) is persistently exciting, the Least-Squares estimation algorithm

described in equations (3.13) and (3.14) guarantees that lim𝑘→∞ ‖𝜃 (𝑘)‖2 = 0.

Since 𝜙(𝑘) is a non-zero scalar defined in equation (3.12) once the sampling period 𝑇 is

determined for a discrete-time system, there always exist 𝛿 > 0 and 𝛼 > 0 such that over the time

interval [𝜎, 𝜎 + 𝛿] ∫ 𝜎+𝛿

𝜎
𝜙𝑇 (𝑡)𝜙(𝑡)𝑑𝑡 ≥ 𝛼𝐼 (3.29)

for any 𝜎 > 𝑡0. Hence, signal 𝜙(𝑘) is persistently exciting. Furthermore, the convergence of

estimation error 𝜃 (𝑘) leads to lim𝑘→∞ 𝑧(𝑘) = 0, which can be clearly observed from equation

(3.23).

Theorem 1: If Lemma 1 is satisfied, all closed-loop system states are bounded, and its output

tracks the reference signal.

Proof: Since 𝜃 converges to 0 in finite steps 𝑘 , beyond step 𝑘 , 𝜃 (𝑘) = 0, which implies that
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Φ(𝑘 + 1) = 0. Equation (3.19) becomes

𝑧1(𝑘 + 1) =𝑧2(𝑘)

𝑧2(𝑘 + 1) =𝑧3(𝑘)

𝑧3(𝑘 + 1) =𝑟 (𝑘 + 3)

(3.30)

It is obvious that 𝑧1(𝑘) tracks 𝑟 (𝑘) in this case. And for any bounded 𝑟 (𝑘), 𝑧1(𝑘), 𝑧2(𝑘) and

𝑧3(𝑘) are also bounded. Note that, different from the traditional backstepping design, in this design

architecture, 𝑧1(𝑘), 𝑧2(𝑘) and 𝑧3(𝑘) are not tracking error terms for different states, but the same

tracking signal at three consecutive steps. In addition, due to this property and deadbeat design of

system (3.19), the effect of any external disturbance will last for no more than three steps. As a

result, the algorithm is robust to the external disturbance.

In comparison with the algorithm described in reference [57], where the closed-loop system is

designed in the controller canonical form below.

𝑧(𝑘 + 1) = 𝑀𝑧(𝑘) + 𝑏𝑦𝑚 (𝑘 + 𝑛) +Ψ(𝑘 + 1) + 𝑒(𝑘 + 1) (3.31)

where system matrix 𝑀 is in the controller canonical form, and detailed Ψ(𝑘 + 1) and 𝑒(𝑘 + 1)

expressions are not listed here. Let matrix 𝑀 be

𝑀 =


0 1 0

0 0 1

−𝑚1 −𝑚2 −𝑚3


(3.32)

which has the same dimension as 𝐴𝑧 in our deadbeat design. For the convergence analysis of 𝑧(𝑡),

let the reference 𝑦𝑚 (𝑘 + 𝑛) = 0 and define Θ(𝑘 + 1) = Ψ(𝑘 + 1) + 𝑒(𝑘 + 1), equation (3.31) reduces

to

𝑧(𝑘 + 1) = 𝑀𝑧(𝑘) + Θ(𝑘 + 1) (3.33)

The solution of 𝑧(𝑘) is

𝑧(𝑘) = 𝑀𝑘 𝑧(0) +
𝑘−1∑
𝑗=0

𝑀 𝑗Θ(𝑘 − 1 − 𝑗) (3.34)
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For the control canonical form matrix 𝑀 , if the elements [𝑚1 𝑚2 𝑚3] ≠ 0, namely 𝑀 is different

from the deadbeat form of 𝐴𝑧, for any non-zero initial condition 𝑧(0), the response 𝑀𝑘 𝑧(0) with

given initial condition 𝑧(0) for 𝑡 ≥ 3 will not vanish. Considering also the estimation error in Θ,

𝑧(𝑘) cannot converge to 0 within 3 steps in general. Thus, based on the analysis of deadbeat design,

it is obvious that the deadbeat design converges faster than the algorithm in reference [57].

Note that the convergence analysis can easily be extended to 𝑛 dimensional 𝐴𝑧 or 𝑀 , in this

case 𝐴𝑧 can converge in at most 𝑛 steps while 𝑀 cannot.

Another restriction of the canonical form of matrix𝑀 in (3.32) is that the tracked signal depends

on not only the reference signal but also the choice of 𝑚𝑖 (𝑖 = 1, 2, 3). From reference [57] the

tracking error satisfies

𝑡−1∑
𝜏=𝑡0

|𝑦(𝜏) − 1
𝐾
𝑦𝑚 (𝜏) | ≤ 𝛽1 + 𝛽20(𝜖, 𝜖𝜃) (𝑡 − 𝑡0) (3.35)

where 𝐾 = 1 + ∑𝑛
𝑖=1 |𝑚𝑖 |, 𝛽1 and 𝛽2 are constants, and 0(𝜖, 𝜖𝜃) (𝑡 − 𝑡0) is a function such that

lim𝜖→0,𝜖𝜃→0 0(𝜖, 𝜖𝜃) (𝑡 − 𝑡0) = 0. Therefore, the tracking error depends on the locations of the

poles of matrix 𝑀 . While according to Theorem 1, the deadbeat design can track the reference

robustly.

A simple example is used to show the influence of choices for 𝑚𝑖. Consider equations (3.19)

and (3.31) without any estimation error, and choose the first set of 𝑚𝑖 at 𝑚1 = −0.216, 𝑚2 = 1.08

and 𝑚3 = −1.8 so that all the closed-loop system poles are at 0.6, which is inside the unit circle,

the second set of 𝑚𝑖 at 𝑚1 = −0.027, 𝑚2 = 0.27 and 𝑚3 = −0.9 so that all the closed-loop system

poles are at 0.3, and the third set of 𝑚𝑖 (𝑖 = 1, 2, 3) equal to 0. The reference is chosen as 𝑟 = 1. The

simulation response is shown in Figure 3.3. It can be seen that on one hand, when the closed-loop

system poles are at 0, the deadbeat design is identical to the canonical design, therefore their

convergence rate are the same; on the other hand, the convergence rate of the deadbeat design is

faster than the canonical designs when their poles are not all at 0; furthermore, the deadbeat design

tracks the reference exactly, while the canonical designs converge to a value different from the

reference. Note that the closer to 0 the closed-loop system poles are, the more accurate the tracking
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can be achieved.
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Figure 3.3: Comparison of canonical and deadbeat designs

3.4 Results Performance Evaluation

The motor parameters are provided in Table 3.1. The reference signal 𝑟 is from vehicle

experiment. The initial condition for the control algorithm is chosen as 𝑥 = [𝑟 (1), 0, 0]𝑇 . For the

canonical design, the designing parameters 𝑚𝑖 (𝑖 = 1, 2, 3) are selected so that the poles of matrix

𝑀 are at 0.5, 0.5, 0.5 to show the validity of the deadbeat design. For simulation purpose, the

unknown 𝑥0 is assumed to be 1e-4 m. Sampling time is selected to be 0.01s.

Table 3.1: DC Motor Parameters

Parameters Value Unit

Inertia 𝐽𝑚 7 × 10−5 Kg𝑚2

Damping 𝑏1 1.17 × 10−3 Nms

Resistance 𝑅 0.25 Ω

Inductance 𝐿 0.495 × 10−3 H

Torque Constant 𝐾𝑒 0.036 Nm/A

Back-EMF Constant 𝐾𝑚 0.036 Vs/rad
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3.4.1 Reference Signal: 2WD Case

The reference position signal is shown as the blue line in Fig 3.4. The reference starts at some

point where the ball is in contact with the clutch, transmitting torque to the front shaft, and then

falls back to the steady-state where no torque is transmitted to the front shaft, which is equivalent

to the 2WD (2-Wheel-Drive) situation.
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Figure 3.4: Tracking for deadbeat design
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Figure 3.5: Tracking for canonical design

Figure 3.4 shows the output tracking for the deadbeat design and Figure 3.5 for the canonical
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design. It is clear that the deadbeat design tracks the reference signal exactly while the canonical

design cannot due to the three non-zero design parameters 𝑚1, 𝑚2, and 𝑚3. Figure 3.6 shows the

closed-loop state responses for the deadbeat design and Figure 3.7 for the canonical design. Note

that different from the traditional backstepping design, the states in the closed-loop system are not

tracking errors but actual tracking signal at three consecutive steps. The simulation results show that

the states in both designs are convergent. But after careful examination, it reveals that the deadbeat

design converges at step 6 while the canonical design converges at around step 20, indicating that

the deadbeat design converges faster. For the unknown term estimation, both designs use the same

update law, the result shown in Figure 3.8 exhibits fast convergence with no oscillations. The

control effort for the deadbeat design is shown in Figure 3.9. Note that the recorded reference

(see Figure 3.4) was sampled at 10 Hz and then the signal is resampled at 100 Hz (the controller

sample frequency), the signal has a small step change every 100 ms, which could cause chattering

in control signal. To eliminate the chattering caused by low sample frequency of the reference

signal, a low-pass filter is applied to the resampled reference signal to smooth the sampled reference

signal.
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Figure 3.6: States for deadbeat design
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Figure 3.9: Control effort

3.4.2 Reference Signal: 4WD Case

In this case, the steady-state of reference position is kept at the point where there is certain amount

of torque transmitted to the front shaft, which corresponds to the 4WD (4-Wheel-Drive) mode. The

reference signal is shown as the blue line in Figure 3.10.
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Figure 3.10: Reference tracking

The convergence trends are similar to that of the previous case. Figure 3.10 shows the tracking
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performance and it is obvious that the output also tracks the reference. Figure 3.11 shows the

closed-loop states responses and again the three states are the same signal at three different time

steps. Figure 3.12 is the control effort to achieve the aforementioned performance.
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Figure 3.11: Closed-loop States estimation
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Figure 3.12: Control effort for 4WD case

3.5 Conclusions

In conclusion, the following are achieved in this chapter:
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1. The clutch actuation system model is first transformed to a parametric semi-strictly form in

preparation for backstepping control design;

2. The integrated scheme is achieved by two steps: first step designs the estimation law to

estimate the unknown parameter and the second step designs the control law so that the

output of close-loop system tracks the desired reference clutch displacement; The stability

of closed-loop system is guaranteed by the post-design Lyapunov function analysis, and the

fastest convergence rate is realized due to the deadbeat design.

3. The integrated design scheme is validated using different reference signals corresponding to

different vehicle mode (2WD or 4WD) and also compared with that of the canonical design.
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CHAPTER 4

CLUTCH TORQUE MODELING AND VALIDATION UNDER VARIOUS CLUTCH
OPERATION CONDITIONS

4.1 Overview

4.1.1 Chapter Organization

In this chapter, the vehicle traction force (or clutch torque) is estimated. Several models are

proposed to deal with the challenges stated in the chapter of Introduction. First, the effective

tire radius model with vehicle acceleration compensation is proposed; Second, the vehicle speed

estimation model is proposed by considering the vehicle and tire tracking force dynamics; Lastly, a

torque estimation model under different clutch operational conditions is proposed, where the clutch

operational condition is determined by the clutch slip speed. The comparison of estimated and

measured torques shows the validity of proposed estimation model.
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Figure 4.1: Chapter organization overview
.
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4.1.2 Review of Clutch Torque Estimation

A well-known solution for transmission clutch torque estimation is via the vehicle propulsion

system dynamics between the IC engine to vehicle tires for 2WD systems, where the clutch is

located right after the IC engine[60], [61], [62], [63], [64]. While for 4WD systems with a transfer

case (see Figure 4.2), since the transmission output torque is split into solid-connected rear tires

and soft-connected front tires through transfer case clutch and the actual torque distribution ratio

between front and rear tires is typically unknown, it is challenging to estimate the transfer case

clutch torque.

This chapter proposes to estimate the transfer case clutch torque based on both vehicle longitu-

dinal and tire dynamics. That is, estimating the clutch torque based upon the estimated front tire

traction force. Although tire magic formula (TMF) proposed in [23] is widely used to model the

longitudinal force characteristics, the nonlinearity nature of this formula could make the estimation

problem over-complicated since under normal vehicle operations tire characteristics is close to

linear. Therefore, the tire longitudinal force is assumed to be linear, that is, the longitudinal force is

a linear function of tire slip ratio, which depends heavily on vehicle longitudinal speed and effective

tire radius [65].

Many methods, including direct and indirect ones, are available to obtain vehicle speed in real-

time. One of the direct methods is the well-known GPS measurement [66], [67]. However, limited

by technology and cost, highly accurate GPS devices may not be equipped in all production vehicles.

The indirect estimation method is usually based on the vehicle dynamic models whose complexity

varies case-by-case for different applications. Reference [68] presented a complete vehicle model,

including longitudinal, lateral and yaw dynamics, to estimate the vehicle speed along with many

other vehicle parameters using a dual-extended Kalman filter. While reference [69] employs a

bicycle model to estimate vehicle states and tire stiffness simultaneously. In this paper, the bicycle

model is adopted due to its simplicity since this work is aiming at real-rime applications in future.

However, different from these references, this dissertation estimates the vehicle speed from the

measured acceleration and the associated longitudinal tire forces. Detailed estimator architecture
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can be found in Section 4.3.1.2. Note that all these estimation models depend on the accuracy of

effective tire radius used in the tire longitudinal or lateral forces as part of the vehicle dynamics

model.

As a matter of fact, many literature assume effective tire radius to be constant [24]. However,

on one hand, the tire effective radius may change with tire inflation pressure [70] over time since

tire pressure is closely related to the tire vertical stiffness; on the other hand, when a vehicle

is accelerating or braking, the pitch motion along the lateral axis of vehicle may change the

normal force distribution to front and rear tires, leading to variation of effective tire radius. As

a result, it is proposed to estimate the effective tire radius in real-time. Reference [71] estimates

the effective tire radii and rolling resistance forces in real-time based on a quarter-car model by

designing nonlinear high-gain and sliding-mode observers and the proposed method is validated

through simulation and experimental studies. In reference [72], the tire radius along with the vehicle

trajectory was estimated based on GPS measurements using a marginalized particle filter. However,

these approaches not only require complex system models but also expensive measurement devices

that may not be available for production vehicles. Therefore, this paper utilizes a simple tire

model as a function of tire pressure and vehicle acceleration, that are easily available through

measurements, to estimate the effective tire radius. Detailed effective tire radius model can be

found in Sections 4.3.1.3.

Another, yet important aspect to address is the effect of clutch operation conditions to the

vehicle speed estimation due to the unique architecture of IC engine-powered 4WD propulsion

system (see Figure 4.2). Note that in this architecture rear tires are always in solid connection with

the transmission output shaft through transfer case, while the front tires connects to the transmission

output shaft through transfer case clutch. When the clutch is overtaken, the connection is solid; and

when the clutch slips, the connection is soft and there is certain slip speed transmits to the front

tires from the transfer case clutch, making the front tire speed different from the rear tire speed.

Therefore, this paper proposes to compensate this slip effect in the front tires when the clutch slips,

and the tire slip model makes the overtaken case as a special case when slip speed equal to zero;
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see Section 4.3.3 for details.
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Figure 4.2: 4WD vehicle system overview

4.2 Clutch Torque Model Flow Chart

In this chapter, three clutch torque models are concerned, where the clutch torque model 1

(CTM-1) is a baseline model, the clutch torque model 2 (CTM-2) provides vehicle acceleration

compensation to the developed effective tire radius model under clutch overtaken condition, and

the clutch torque model 3 (CTM-3) deals with clutch slip condition based on CTM-2 model by

taking clutch slip effect into account. Note that CTM-2 model is a special case of CTM-3 with zero
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slip speed. The detailed modeling work is presented in Sections 4.3 and 4.4 .

Before diving into these estimation models, the process of estimating the clutch torque is

summarized in Figure 4.3 as follows.

Clutch Status

Zero Torque

Yes

No

Model CTM-2(or CTM-3)

Yes
Model CTM-3Open

No

Clutch Slips?

Figure 4.3: Clutch torque estimation flow chart

Step 1: Determine the clutch status. If it is open, the clutch output torque is zero;

Step 2: If the clutch is overtaking (see detailed condition in equation (4.21) of Section 4.3), proceed

to the clutch torque model using CTM-2 (or CTM-3 with slip speed equals to zero);

Step 3: If the clutch is slipping, proceed to the clutch torque model using CTM-3.

4.3 Clutch Torque Modeling

From Figure 4.2, it is obvious that modeling the clutch torque is equivalent to model the tires

traction torque, since front tires traction torque is directly connected to the clutch torque, and

once the clutch torque becomes available, the rear tire traction torque would be easily obtained,

assuming that the total torque from transmission is known. In the following section of this chapter,

the notation of clutch torque model is used instead of traction torque.

When the clutch is disengaged, clutch output torque is zero, and therefore, no torque estimation

is needed in this case. As a result, this paper focuses on the torque model development when the

clutch is engaging. For an engaged clutch, there are two operational modes: slip and overtaken.

Different clutch torque models will be developed to accommodate the condition changes.
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4.3.1 Baseline Clutch Torque Model (CTM-1)

4.3.1.1 Tire dynamics

Note that transfer case clutch of target 4WD vehicle shown in Figure 4.2 acts as a torque distributor

between the front and rear tires, and this dissertation estimates the clutch torque from tires backward

to the clutch. As a result, clutch torsional damping effect is not considered.

When the clutch is engaged, the torque generated by the clutch is transmitted to the front wheels

through the front propeller shaft. Assuming that there is no mechanical loss for the clutch driven

components and the front propeller shaft is solid, the torque transmitted by the clutch should equal

to the front propeller shaft torque, namely,

𝑇𝑐 = 𝑇 𝑓 (4.1)

where 𝑇𝑐 is clutch output torque and 𝑇 𝑓 is the torque transmitted by front propeller shaft.

The front propeller shaft torque drives the front tires through the front differential. The tire

dynamics below links the front propeller shaft torque to the front tires.

𝑇 𝑓 𝑖 𝑓 𝑑 = 𝐽 𝑓 ¤𝑤 𝑓 + 𝐹 𝑓 𝑟𝑒 𝑓 (4.2)

where 𝐽 𝑓 is the front-tire inertia; 𝑤 𝑓 is the front-tire rotational speed; 𝑖 𝑓 𝑑 is the front differential

ratio; 𝐹 𝑓 is the front-tire longitudinal force; and 𝑟𝑒 𝑓 is the effective front-tire radius.

The relationship between tire longitudinal force and slip ratio is typically nonlinear and sym-

metric to the origin as shown in Figure 4.4. The longitudinal force increases to a peak as the slip

ratio changes from zero to the threshold |𝜆0 |, and then decreases as the tire slip ratio continues

increasing. The tire slip ratio is defined below with respect to different vehicle conditions.

𝜆𝑖 =


𝑟𝑒𝑖𝑤𝑖 − 𝑣
𝑟𝑒𝑖𝑤𝑖

, acceleration

𝑟𝑒𝑖𝑤𝑖 − 𝑣
𝑣

, brake
(4.3)

where 𝜆𝑖 is tire slip ratio; 𝑖 is either ′ 𝑓 ′ for front tire or ′𝑟′ for rear tire; and 𝑣 is the vehicle

longitudinal speed. This dissertation mainly concerns with the acceleration condition.
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Figure 4.4: Longitudinal force vs slip ratio

Note that within range |𝜆 | ≤ 𝜆0 as shown in Figure 4.4, longitudinal force increases linearly

with tire slip ratio. Therefore, for small tire slip ratio, longitudinal force can be approximated by

𝐹𝑖 = 𝐶𝑖𝜆𝑖, |𝜆𝑖 | ≤ 𝜆0 (4.4)

where 𝐶𝑖 is the corresponding front or rear tire longitudinal stiffness and can be calibrated as

constant.

Note that in equation (4.2), the longitudinal force term is a dominating factor for the traction

torque 𝑇 𝑓 . Therefore, it is desired to have an accurate tire longitudinal force 𝐹 𝑓 , which depends

largely on accurate vehicle longitudinal speed and effective tire radius according to equations (4.3)

and (4.4).

4.3.1.2 Vehicle Speed Model

Although vehicle longitudinal acceleration can be measured with reasonable accuracy using the

vehicle accelerometer sensor, the vehicle longitudinal speed obtained by direct integration of

longitudinal acceleration is usually not accurate due to sensor signal drift. Alternatively, for certain

production vehicles, the vehicle speed could be calculated using GPS (global position system)

measurements with certain accuracy even though the estimated vehicle speed could be polluted by

the measurement noise. While for those vehicles without the GPS, it is indispensable to estimate

vehicle speed.
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A possible solution of estimating vehicle speed is via vehicle body dynamics. Since the

developed algorithm needs to be implementable in real-time, a simple vehicle model, neglecting

the lateral and yaw vehicle dynamics, is desired. Consider the free body diagram of vehicle in

Figure 4.5, according to the Newton’s second law, the longitudinal vehicle dynamics can be obtained

as following

𝑚 ¤𝑣 = 𝐹 − 𝐹𝑎 − 𝐹𝑟𝑜 − 𝑚𝑔 sin 𝜃 (4.5)

where 𝑚 is the vehicle mass; 𝐹 is total longitudinal force; 𝐹𝑎 is the air drag force; 𝐹𝑟𝑜 is tire rolling

resistance force; 𝑔 is gravity acceleration constant; and 𝜃 is road grade angle.

θ 

Figure 4.5: Vehicle Free Body Diagram

The air drag force can be approximated using

𝐹𝑎 =
1
2
𝐶𝑎𝜌𝑎𝐴𝑎𝑣

2 (4.6)

where 𝐶𝑎 is the air drag coefficient; 𝜌𝑎 is air density; and 𝐴𝑎 is the vehicle front section area.

The tire rolling resistance force is approximated by one of the empirical formulae [73] as a

function of vehicle speed below.

𝐹𝑟𝑜 = (𝑎𝑟 + 𝑏𝑟𝑣2)𝑚𝑔 (4.7)

where 𝑎𝑟 and 𝑏𝑟 are empirical coefficients to be calibrated.

72



Note that the measured vehicle longitudinal acceleration usually contains road grade informa-

tion, and can be represented by

𝑎𝑥 = ¤𝑣 + 𝑔 sin 𝜃 (4.8)

where 𝑎𝑥 is the measured vehicle longitudinal acceleration.

Therefore, combining equations (4.5) to (4.8), the total longitudinal force is

𝐹 = 𝑚𝑎𝑥 + 𝐹𝑎 + 𝐹𝑟𝑜 (4.9)

On the other hand, when the slip ratio condition |𝜆𝑖 | ≤ 𝜆0 is satisfied, equations (4.3) and (4.4)

provide another approach to obtain the total longitudinal force below.

𝐹 𝑓 + 𝐹𝑟 = 𝐶 𝑓
𝑟𝑒 𝑓 𝑤 𝑓 − 𝑣
𝑟𝑒 𝑓 𝑤 𝑓

+ 𝐶𝑟
𝑟𝑒𝑟𝑤𝑟 − 𝑣
𝑟𝑒𝑟𝑤𝑟

(4.10)

where 𝐹 𝑓 and 𝐹𝑟 are front and rear tire longitudinal forces, respectively; and 𝑤𝑖 (𝑖 = 𝑓 , 𝑟) are the

average speed of the corresponding wheels. Note that a bicycle model is used in this model.

By letting equation (4.9) equal to equation (4.10), the vehicle speed can be calculated as

𝑣 =
(𝐶 𝑓 + 𝐶𝑟 − 𝐹)𝑟𝑒 𝑓 𝑟𝑒𝑟𝑤 𝑓 𝑤𝑟
𝐶 𝑓 𝑟𝑒𝑟𝑤𝑟 + 𝐶𝑟𝑟𝑒 𝑓 𝑤 𝑓

(4.11)

The advantage of this vehicle speed model is that the estimated vehicle speed is confined to the four

tires, thus it reflects the actual vehicle speed.

4.3.1.3 Effective Tire Radius Model

In fact, there are several ways of calculating the tire effective radius. One possible way is to

calculate the ratio between vehicle longitudinal speed and wheel rotational speed when the vehicle

is coasting down, since in this case tires are in free rolling. However, when the vehicle speed is not

available, this approach may not be practical.

An alternative solution is to make use of tire pressure information, which now is available for

most of production vehicles. According to reference [70], the effective tire radius is derived as

𝑟𝑒𝑖 = 𝑟𝑤𝑖 −
𝑧𝑖
3

(4.12)
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where 𝑖 stands for 𝑓 or 𝑟 (meaning front or rear tire), respectively; 𝑟𝑒𝑖 is the effective tire radius;

𝑟𝑤𝑖 is the undeformed tire radius; and 𝑧𝑖 is the deformation displacement of tires. Figure 4.6 shows

the corresponding tire radius parameters.

z

rw

re

ground

Figure 4.6: Tire radius diagram

The tire deformation 𝑧𝑖 can be obtained by the tire normal force

𝑧𝑖 =
𝐹𝑧𝑖
𝑘𝑖𝑡

(4.13)

where 𝐹𝑧𝑖 represents front or rear tire normal force; and 𝑘𝑖𝑡 represents front or rear tire vertical

stiffness.

Although tire normal forces may change due to pitch motion during vehicle acceleration or

braking, for this model, the pitch motion of the vehicle is neglected. Therefore, according to

Figure 4.5, the tire normal force is the same as that when the vehicle is static, and can be obtained

by Newton’s second law below.

𝐹𝑧 𝑓 =
𝐿𝑟

𝐿 𝑓 + 𝐿𝑟
𝑚𝑔 (4.14)

𝐹𝑧𝑟 =
𝐿 𝑓

𝐿 𝑓 + 𝐿𝑟
𝑚𝑔 (4.15)

where 𝐿 𝑓 and 𝐿𝑟 are the distance between front axle to center of gravity and rear axle to center of

gravity, respectively.
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An empirical formula was proposed to relate tire vertical stiffness with tire inflation pressure

and tire parameters [74] as follows.

𝑘𝑖𝑡 = 𝑡𝑝𝑎𝑖𝑝𝑖𝑡 + 𝑏𝑖

𝑡𝑝 =

√
(−0.004𝐴𝑅 + 1.03)( 𝑆𝑁 𝐴𝑅

50
+ 𝐷𝑅)𝑆𝑁

(4.16)

where 𝑎𝑖 and 𝑏𝑖 are coefficients for a specific tire to be calibrated; 𝑝𝑖𝑡 represents front or rear tire

inflation pressure; 𝑡𝑝 is the lumped tire parameters; 𝐴𝑅 is the aspect ratio of tires; 𝑆𝑁 is the section

width of tires; and 𝐷𝑅 is the tire rim diameter.

Equations (4.12) to (4.16) provide formula to obtain the effective tire radius from tire pressure

that can be summarized below.

𝑟𝑒𝑖 = 𝑓 (𝑝𝑖𝑡), 𝑖 = 𝑟, 𝑓 (4.17)

where 𝑓 (·) represents the conversion function.

In summary, equations (4.2), (4.3), (4.4), (4.11) and (4.17) complete the clutch torque (𝑇𝑐)

calculation. For simplicity in remaining sections, this baseline model is denoted as Clutch Torque

Model 1 (CTM-1).

4.3.2 Overtaken-Clutch Torque Model (CTM-2)

However, CTM-1 was proved to be inaccurate for calculating the clutch output torque. Therefore,

modifications are needed to improve the torque calculation accuracy using CTM-1.

As a matter of fact, during acceleration, the pitch motion introduced by acceleration may

redistribute the normal forces on the tires, which would change the tire deformation, and further

leading to the change of tire effective radius and making it different from that when vehicle is

coasting down or static. In this sense, the tire normal forces in equations (4.14) and (4.15),

neglecting the pitch motion seems unreasonable. Although re-deriving the normal forces including

the pitch motion may be a possible solution, it makes the modeling process more complicated. An

alternative approach is to compensate the effective tire radius directly using vehicle acceleration.
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The compensated effective tire radius takes the following form:

𝑟𝑒𝑖𝑐 =


𝑟𝑒𝑖 − Δ𝑟 accelerating

𝑟𝑒𝑖 coasting down
𝑖 = 𝑟, 𝑓 (4.18)

where 𝑟𝑒𝑖𝑐 is the compensated front or rear effective tire radius; and the compensation term Δ𝑟

takes a general quadratic form below:

Δ𝑟 = 𝑛𝑖1𝑎
2
𝑥 + 𝑛𝑖2𝑎𝑥 + 𝑛𝑖3 (4.19)

where 𝑛𝑖1, 𝑛𝑖2 and 𝑛𝑖3 are coefficients to be calibrated and may vary for different types of tires.

The quadratic form of compensation term is inspired by three facts. The first is that deviation of

calculated clutch torque using CTM-1 from the measured clutch torque during vehicle accelerating

is nonlinear; see Figure (4.7) (d) for signals between 10 and 17s. The second fact is that the tire

deformation due to vehicle acceleration can be understood as energy transformation, and energy

term usually takes a quadratic form. Lastly, a cubic compensation form is also studied, however, its

performance is worse than that of quadratic form (see Section 4.4.2 for detailed discussions). As a

result, cubic and higher order compensation forms are not considered.

Therefore, with acceleration compensation to the effective tire radius, equations (4.2), (4.3),

(4.4), (4.11) and (4.18) complete clutch torque (𝑇𝑐) model under clutch overtaken condition. For

simplicity, this model is denoted as Clutch Torque Model 2 (CTM-2).

4.3.3 Slip-Clutch Torque Model (CTM-3)

Even though CTM-2 works well under the clutch overtaken condition, it does not provide satisfactory

clutch torque results when it comes under clutch slip condition. As a result, this subsection

establishes a modified model based on CTM-2 to deal with the clutch slip.

Under clutch overtaken condition, the front propeller shaft connects firmly to the transmission

through transfer case clutch, while in the clutch slip stage, there are speed difference between the

driving and driven clutch disks. The speed difference is defined as Δ𝑟 𝑝𝑚, and can be calculated by
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Δ𝑟 𝑝𝑚 = 𝑤𝑟 𝑖𝑟𝑑 − 𝑤 𝑓 𝑖 𝑓 𝑑 (4.20)

where 𝑖 𝑓 𝑑 and 𝑖𝑟𝑑 are front and rear differential ratio, respectively. In the investigated vehicle, they

are equal.

Note that due to the measurement noises of 𝑤𝑖 (𝑖 = 𝑓 , 𝑟), even though the clutch is overtaken,

Δ𝑟 𝑝𝑚 may not be exactly 0. Therefore, it is reasonable to introduce a threshold to determine the

clutch overtaken condition. That is, if the following condition

|Δ𝑟 𝑝𝑚 | ≤ Δ0 (4.21)

is satisfied, the clutch is assumed to be overtaken and otherwise slip, where the threshold is

calibrated to be Δ0 = 5 𝑟 𝑝𝑚.

If equation (4.21) does not hold, meaning the clutch is slipping, based on equation (4.20), the

linear slip speed in the front tires due to the clutch slip can be calculated by

Δ𝑣 𝑓 =
1
2
𝑟𝑒 𝑓 𝑐𝑖 𝑓 𝑑Δ𝑟 𝑝𝑚 (4.22)

where Δ𝑣 𝑓 is the linear slip speed of front tires, and other variables are defined previously.

The actual front tires linear speed with slip speed compensation under clutch slip condition is

then changed to

𝑣 𝑓 𝑐 = 𝑟𝑒 𝑓 𝑐𝑤 𝑓 + Δ𝑣 𝑓 (4.23)

where 𝑣 𝑓 𝑐 is the compensated front tire speed.

The speed estimation formula (4.11) is then corrected to the following form under clutch slip

condition.

𝑣𝑐 =
(𝐶 𝑓 + 𝐶𝑟 − 𝐹)𝑣 𝑓 𝑐𝑟𝑒𝑟𝑐𝑤𝑟
𝐶 𝑓 𝑟𝑒𝑟𝑐𝑤𝑟 + 𝐶𝑟𝑣 𝑓 𝑐

(4.24)

where 𝑣𝑐 is the compensated vehicle speed.

The front tire force in equation (4.10) is then replaced by

𝐹 𝑓 𝑐 = 𝐶 𝑓
𝑣 𝑓 𝑐 − 𝑣𝑐
𝑣 𝑓 𝑐

(4.25)
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where 𝐹 𝑓 𝑐 is the compensated front tire force.

Eventually, the front torque is derived to be

𝑇 𝑓 𝑐𝑖 𝑓 𝑑 = 𝐽 𝑓 ¤𝑤 𝑓 + 𝐹 𝑓 𝑐𝑟𝑒 𝑓 𝑐 (4.26)

where 𝑇 𝑓 𝑐 is the slip compensated front torque.

Therefore, with clutch slip speed correction to front tires under the clutch slip condition,

equations (4.18), (4.20), (4.24), (4.25) and (4.26) complete the model for clutch torque (𝑇𝑐) under

slip condition. For simplicity, this model is denoted as Clutch Torque Model 3 (CTM-3).

4.4 Overtaken-Clutch Torque Model Validation

This subsection focuses on clutch torque model validation under overtaken condition, while in

the next subsection validation under clutch slip condition is investigated. The necessary parameters

of the targeted vehicle are shown in Table 4.1. Due to project sponsors confidential requirements,

only necessary data (error comparison data) is shown in the rest of section.

Practically, the transfer case clutch engages when vehicle is accelerating, and intuitively, the

clutch torque can be calculated only when the clutch is engaged. Therefore, the clutch torque model

validation is confined to the condition when vehicle is accelerating.

Note that the measured 𝑇 𝑓 for validation purpose in the following sections refers to the front

propeller shaft torque obtained from torque sensor measurement. The tire rotational speed 𝑤𝑖

is measured by production wheel speed sensors and vehicle acceleration 𝑎𝑥 is measured by a

production accelerometer.

4.4.1 Overtaken-Clutch Torque Results with CTM-1

Figure 4.7 shows the clutch torque results of first data set with vehicle acceleration from 0 to 25

𝑚/𝑠 using CTM-1. Figure 4.7 (a) shows the vehicle speed from the proposed speed estimator

described in equation (4.11). It can be seen that the estimated vehicle speed is very close to the

measured vehicle speed. Figure 4.7 (b) shows the clutch slip speed Δ𝑟 𝑝𝑚. Criteria in equation
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Table 4.1: Parameters of targeted vehicle

Parameters Value Parameters Value
𝑖 𝑓 𝑑 & 𝑖𝑟𝑑 3.09 𝐽 𝑓 (𝑘𝑔 · 𝑚2) 1.6
𝑚(𝑘𝑔) 2949 𝐶𝑎𝜌𝑎𝐴𝑎 0.7965
𝑎𝑣 0.0136 𝑏𝑣 5.18𝑒−7

𝐶 𝑓 & 𝐶𝑟 2.5𝑒5 𝑡𝑝 507.94
𝑎𝑖 4.5𝑒−4 𝑏𝑖 3.45

(4.21) confirms the overtaken operation condition. Figure 4.7 (c) shows the vehicle brake pedal

signal and Figure 4.7 (d) shows the clutch torque result. One thing to note is that there is almost

no torque oscillation in the measured 𝑇 𝑓 , which confirms that the torsion vibration effect can be

ignored. Between 7 and 10s, although the measured torque is increasing, the torque calculation

is not started yet since vehicle brake is applied and the vehicle is static. When the vehicle is

accelerating (10-17s), there exists considerable error between the estimated and measured clutch

torque, while the clutch torque matches perfectly with the measured torque when the vehicle is

coasting down (after 17s). This phenomenon motivates to calculating the torque using CTM-2 with

modification in the effective tire radius during acceleration period since vehicle speed estimation

(4.11) also depends on the effective tire radius.

4.4.2 Overtaken-Clutch Torque Results with CTM-2

Particularly, in this paper, the coefficients of the compensation term for the front effective tire radius

is calibrated to be 𝑛 𝑓 1 = 3 × 10−4, 𝑛 𝑓 2 = 0 and 𝑛 𝑓 3 = 0 since energy term usually only contains

the quadratic part. While for the rear effective tire radius the compensation coefficients are set to

𝑛𝑟 𝑗 = 0 ( 𝑗 = 1, 2, 3), since whichever the vehicle mode is (4WD or 2WD), the rear tires always

receive driving torque, indicating that acceleration may not have that much effect for rear tires. The

effect of compensating rear effective tire radius will be discussed in the next subsection.
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Figure 4.7: Clutch torque results with CTM-1 under clutch overtaken condition: (a) Vehicle speed
estimation; (b) Clutch slip Δ𝑟 𝑝𝑚; (c) Brake pedal status; (d) Clutch torque result.

As a result, the compensated effective tire radius in this paper takes the following form.

𝑟𝑒 𝑓 𝑐 =
{ 𝑟𝑒 𝑓 − 3𝑒−4𝑎2

𝑥 accelerating

𝑟𝑒 𝑓 coasting down

𝑟𝑒𝑟𝑐 = 𝑟𝑒𝑟

(4.27)

Figure 4.8 shows the clutch torque results using CTM-2. Figure 4.8 (a) is the vehicle longi-

tudinal acceleration, which shows clearly that the vehicle experiences three phase: static (0-10s),

acceleration (10-17s) and coast down (after 17s). Figure 4.8 (b) shows the compensated front effec-

tive tire radius with its comparison to the original effective tire radius. Due to the transformation

of mechanical energy to deformation energy, the acceleration compensated effective radius is less

than the radius of non-accelerating one. Figure 4.8 (c) presents the vehicle speed estimation, which

is still very close to the measured one. Figure 4.8 (d) shows the clutch torque comparison using

different approaches. It is obvious that CTM-2 improves the clutch torque accuracy significantly
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Figure 4.8: Clutch torque results with CTM-2 under clutch overtaken condition: (a) Vehicle
longitudinal acceleration; (b) Front effective tire radius comparison; (c) Vehicle speed estimation;
(d) Clutch torque result.

comparing to CTM-1. Some numerical evaluation are presented below.

Define the absolute error(AbsErr) by the equation below.

𝐴𝑏𝑠𝐸𝑟𝑟 = |𝑇 𝑓 𝑗 − 𝑇𝑚𝑒𝑎 | (4.28)

where 𝑇𝑚𝑒𝑎 is the measured clutch torque and 𝑗 in 𝑇 𝑓 𝑗 equals to 1, 2 or 3 that corresponds to the

estimated clutch torque using CTM-1, CTM-2 or CTM-3.

The relative error percentage(RelErr%) is calculated by the equation below.

𝑅𝑒𝑙𝐸𝑟𝑟% =
|𝑇 𝑓 𝑗 − 𝑇𝑚𝑒𝑎 |

𝑇𝑚𝑒𝑎
× 100 (4.29)

Furthermore, the root mean square error percentage (RMSE%), defined below, is also an estimation
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performance index.

𝑅𝑀𝑆𝐸% =

√√√
1
𝑛

𝑛∑
𝑞=1

(𝑅𝑒𝑙𝐸𝑟𝑟2) (4.30)

where 𝑛 is the total number of active data points. In the investigated case, only the duration of

vehicle accelerating accounts for the total number of active data points.

Figure 4.9 summarizes the clutch torque error with respect to the measured clutch torque under

clutch overtaken condition using CTM-1 and CTM-2, respectively.
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Figure 4.9: Error analysis under clutch overtaken condition: (a) Absolute error; (b) Relative
percentage error.

Figure 4.9 (a) compares the absolute errors of CTM-1 and CTM-2. It can be seen that the

absolute error using CTM-1 is fairly large, especially with high vehicle acceleration (see Figure. 4.8

(a) near 10s). The maximum absolute error using CTM-1 reaches to around 650 N·m. However,

with the acceleration compensation to the front effective tire radius using CTM-2, the absolute

error during the entire acceleration period decreases to within 80 N·m with an 88% reduction over

CTM-1. Figure. 4.9 (b) compares the relative percentage error. Due to the large absolute error of

CTM-1, the maximum relative error of CTM-1 is around 60%, while the maximum relative error

of CTM-2 is less than 10% for fixed gear operation and around 20% under gear-shifting. The gear

shift periods can also be found in Figure 4.8 (a).
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The calculated RMSE% of CTM-1 is 23.3%, while the RMSE% of CTM-2 is 5.46% (a 27%

reduction). From this perspective, the CTM-2 performs much better than CTM-1 for the clutch

torque calculation.

As a matter of fact, cubic compensation form (𝑟𝑒 𝑓 𝑐 = 𝑟𝑒 𝑓 − 𝑏 𝑓 𝑎3
𝑥) has also been studied with

three 𝑏 𝑓 values (0.5𝑒−4, 0.6𝑒−4, 0.7𝑒−4), the resulting torque RMSE% values are 10.16%, 9.19%,

9.4%, respectively, and they are much larger than the quadratic form result of 5.46%. Increasing

(decreasing) 𝑏 𝑓 from 0.7𝑒−4 (0.5𝑒−4) leads to over-compensated (under-compensated) tire radius,

causing even larger torque estimation error. As a result, the cubic form compensation was not

adopted.

Furthermore, two additional data sets are used to validate the developed model shown in

Figure 4.10, where the RMSE% for data set 2 is 4.69% during vehicle acceleration (12.5-23.5s)

and the RMSE% for data set 3 is 6.43% (7-13s).
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Figure 4.10: Other data sets torque validation: (a) Data 2 validation; (b) Data 3 Validation.
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4.4.3 Rear Effective Tire Radius Analysis

In this subsection, the influence of acceleration compensation coefficients for rear effective tire

radius is analyzed.

Equation (4.27) indicates not to compensate the rear effective tire radius with vehicle accel-

eration in this paper. As a matter of fact, although the clutch torque in equation (4.2) does not

depend on the rear effective tire radius directly, the rear effective tire radius may affect the vehicle

speed accuracy according to equation (4.11). As a result, an accurate rear effective tire radius may

improve the accuracy of clutch torque.

Consider replacing the rear effective tire radius as

𝑟𝑒𝑟𝑐 = 𝑟𝑒𝑟 − 𝑛𝑟1𝑎2
𝑥 (4.31)

where 𝑛𝑟1 is the acceleration compensation coefficient for rear effective tire radius. Selecting 𝑛𝑟1 =

−2×10−4, 0 and 2×10−4, respectively, the associated influence of the compensation coefficient on

clutch torque is shown in Figure 4.11, where Figure 4.11 (a) shows the variation of rear effective tire

radius with different compensation coefficients and Figure 4.11(b) compares the measured clutch

torque and the calculated clutch torque with different compensation coefficients. Using equation

(4.30), RMSE% values resulted from estimated torque with compensation coefficients (𝑛𝑟11, 𝑛𝑟12

and 𝑛𝑟13) with respect to the measured torque within the interested region (vehicle acceleration

between 10 and 16.8s) are calculated to be 14.01%, 2.15% and 18.44%, respectively. Therefore, it

can be concluded that with 𝑛𝑟12 = 0, the calculated clutch torque matches best with the measured

clutch torque. As a result, it is reasonable to adopt the rear effective tire radius as proposed in

equation (4.27).

4.5 Slip-Clutch Torque Model Validation

In Section 4.4, the CTM-2 is proved to be feasible under clutch overtaken condition. This

section investigates the clutch torque model when the clutch is slipping.
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Figure 4.11: Influence of rear effective tire radius compensation with CTM-2 under clutch overtaken
condition on clutch torque estimation: (a) Rear effective tire radius with different compensation
coefficients; (b) Clutch torque with different compensation coefficients.

4.5.1 Slip-Clutch Torque Results with CTM-2

Figure 4.12 presents the clutch torque results with CTM-2 under clutch slip condition. Figure 4.12

(a) is the vehicle speed estimation using equation (4.11) with clutch slip-speed compensation, which

shows the same matching trend as that under clutch overtaken condition. Figure 4.12 (b) shows the

clutch slip speed. According to criteria (4.21), the clutch is overtaken between 20 and 30s except

the spike at around 23s, which could be caused by potholes on the road, and it is slipping between

30 and 38s. Figure 4.12 (c) indicates that the calculated torque matches quite well under clutch

overtaken condition but there exists considerable error when the clutch is slipping. Note that the

duration of spike leads to an abnormal operational period (around 0.3s), and the estimated torque

shows that it is able to re-track the measured torque once the operating condition becomes normal.

Therefore, the torque estimation model CTM-2 may not be suitable when the clutch is slipping.

A possible reason for this is that when the clutch is overtaken, both front and rear propeller shafts

are in solid connection with the transmission, while when the clutch is slipping, the front propeller

shaft does not connect firmly with the transmission through the transfer case clutch. As a result,

the clutch slip effect is transmitted from the clutch to front tires. This leads to the evaluation of
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Figure 4.12: Clutch torque results with CTM-2 under clutch slip condition: (a) Vehicle speed
estimation; (b) Clutch slip speed Δ𝑟 𝑝𝑚; (c) Torque result.

CTM-3 model in the next subsection.

4.5.2 Slip-Clutch Torque Results with CTM-3

Figure 4.13 presents the clutch torque with slip speed compensation to the front tires under clutch

slip condition. Figure 4.13 (a) is the vehicle speed estimation with estimator (4.24) and Figure 4.13

(b) presents the resulting torque comparison. It is obvious that CTM-3 improves the clutch torque

accuracy significantly comparing with CTM-2.

Figure 4.14 summarizes the error analysis of the clutch torque performance with respect to the

measured clutch torque under slip condition, where AbsErr, RelErr and RMSE% are defined in

equations (4.28), (4.29) and (4.30) with 𝑗 in 𝑇 𝑓 𝑗 equals 2 or 3, meaning the estimated clutch torque

using CTM-2 or CTM-3.
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Figure 4.13: Clutch torque results with CTM-3 under clutch slip condition: (a) Vehicle speed
estimation; (b) Torque result.

-150

-100

-50

0

50

A
bs
Er
r (

N
m

)

AbsErr CTM-2
AbsErr CTM-3

20 25 30 35 40
Time (s) 

-80

-40

0

40

R
el

E
rr

(%
)

RelErr CTM-2
RelErr CTM-3

     (a) 

(b)

Figure 4.14: Error analysis under clutch slip condition: (a) Absolute error; (b) Relative percentage
error.

Estimation results are obtained using an estimation trigger to rule out those data points under

unmodeled transmission gear shifting and/or large tire slip operational condition(s). In Figure 4.14
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(a), it is noted that under overtaken condition (between 23.5 and 30s), the absolute errors using

both slip and overtaken models are the same (within 30 Nm), which is consistent with the claim

that the overtaken condition is a special case of slip condition with clutch slip speed less than Δ0

(see inequality (4.21)). However, when the clutch slips, the maximum AbsErr using CTM-2 surges

to 100 Nm, while the AbsErr using CTM-3 remains within 30 Nm. Figure 4.14 (b) compares the

corresponding relative errors. The maximum RelErr% using CTM-3 over the entire overtaken and

slip conditions falls within 20%, while it is around 40% for CTM-2 when the clutch slips.

Further calculation of the RMSE% reveals that the RMSE% is 26.4% for CTM-2 and 6.8% for

CTM-3. Therefore, the slip speed compensation to the front tires in CTM-3 improves the clutch

torque estimation performance over CTM-2 significantly.

Table 4.2: Estimation error summary

Clutch condition Model RMSE%

Overtaken only
CTM-1 23.3%
CTM-2 5.46%

Overtaken + slip
CTM-2 26.4%
CTM-3 6.8%

The RMSE% for the clutch torque performance under both clutch overtaken and slip condition

using different models are summarized in Table 4.2. The results indicate that CTM-3 provides

torque accuracy with RMSE% error of 6.8%. In summary, when the clutch works under overtaken

only condition, either CTM-2 or CTM-3 (by setting slip speed equal to 0) can be used to estimate

clutch torque. While when the clutch operates under slip stage, CTM-3 needs to be utilized for

accurate clutch torque estimation.

4.6 Conclusions

In conclusion, the following are achieved in this chapter:

1. The nominal clutch torque estimation model, i.e. the TEM-1 is first established and evaluated
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with experimental data, which shows that the the estimated torque does not track the measured

ones;

2. The compensation of vehicle acceleration to the effective tire radius is proposed to obtain the

TEM-2 torque estimation model, which turns out to be more accurate than the TEM-1 under

the clutch overtaken condition;

3. However, the TEM-2 model does not perform well when it comes under clutch slip condition,

therefore, another slip speed compensation is proposed to the front tires under this situation,

it turns out that the torque can be well tracked with the modified model.
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CHAPTER 5

CLUTCH TORQUE ESTIMATION USING AN EXTENDED KALMAN FILTER WITH
UNKNOWN INPUT

5.1 Overview

5.1.1 Chapter Organization

In this chapter, in order to deal with the issue of measurement and process noises presented in the

system for clutch output torque estimation, the Kalman filter based estimation algorithm is applied.

First of all, based on the clutch output torque model proposed in Chapter 4 dealing with different

modeling challenges, the integrated clutch output torque estimation model is summarized suitable

for both clutch overtaken and slip condition; Second, the system transformation is performed so that

the estimation of clutch output torque is equivalent to develop an unknown input observer; This is

solved by using the Extended-Kalman filter, where the unknown system states and unknown input

are formed into an extended unknown vector and solved by minimizing the estimation error. The

comparison of the clutch output torque under different operational conditions shows the advantage

of this EKF-UIO algorithm.

Actual Vehicle System

Estimated Vspd 

Tire rpm

Transmission Torque

Unknown Clutch Torque

EKF-UIO Algorithm
Estimated Clutch Torque

Front/rear tire dynamics

Longitudinal vehicle dynamics

Figure 5.1: Chapter organization overview
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5.1.2 Review of Unknown input Observer

Based on the propulsion architecture shown in Figure 5.2, this paper utilizes a backward vehicle

propulsion system model to capture the clutch output torque; and the estimation of clutch output

torque is formulated as an unknown system input estimation problem. Section 5.3 presents the

details of system transformation and problem formulation.

For systems with unknown inputs, the unknown estimation is usually proceeded jointly with

system state estimation. As a matter of fact, several solutions have been proposed. One common

practice is to decouple the system states and unknown inputs so that system states can be estimated

first by minimizing the variance of states estimation error and subsequently the unknown input can

be estimated [75, 76, 77, 78, 79, 80]. The major restriction of this approach is that it only works for

linear systems and the rank of system output matrix should be greater than that of unknown input

matrix. Another solution is to treat the unknown inputs as disturbances and utilizes traditional

Kalman Filter to minimize estimation error variance with certain state constraints [81, 82, 83] to

obtain the state and unknown input estimations. However, this approach could be complicated when

the number of state constraints increases. Therefore, a third solution is proposed to form an extended

state vector containing both system states and unknown inputs so that an unconstrained optimization

problem minimizing the extended state estimation error can be solved using the Extended Kalman

Filter [84, 85, 86, 87, 88] to achieve simultaneous estimation of system states and unknown inputs.

The main limitation of this approach is that the number of measurements needs to be greater than

the number of unknown inputs. Furthermore, there are several innovative solutions to estimate the

unknown inputs. Reference [89] designs a novel yet simple unknown input observer based on an

ideal invariant manifold to estimate effective engine torque. Reference [90] proposes a Differential

Neural Network (DNN) algorithm to achieve robust estimation of the exogenous unknown inputs.

This paper, given the facts that the 4WD vehicle propulsion system model is nonlinear and the

number of measurements is greater than the number of unknown inputs, adopts the unknown input

algorithm based on the Extended Kalman Filter (EKF-UIO) proposed in [84] to estimate the clutch

output torque. Detailed EKF-UIO algorithm description is summarized in Section 5.4.
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5.2 4WD Vehicle Propulsion System Model

Figure 5.2 shows a typical propulsion system architecture of an Internal Combustion (IC)

engine-powered 4WD vehicle. This dissertation uses a backward model from vehicle body and tire

dynamics to transfer case for clutch output torque estimation. Note that the front propeller shaft is in

either soft (when clutch slips) or solid (when clutch is overtaken) connection with the transmission

output shaft through a chain. Therefore, torque model is different for slip and overtaken cases.

However, this paper utilizes a unified clutch torque model developed in [91], and a brief model

summary is provided below.

5.2.1 Tire dynamics

The transmission output torque, which is assumed to be known since the engine torque is measured

and the torque ratio from engine to transmission is provided, is split into front and rear traction

torque. And the front (rear) propeller shaft torque drives the front (rear) tires through the front

(rear) differential (see Figure 5.2). The torque relationship can be summarized as

𝑇𝑡𝑜 = 𝑇 𝑓 + 𝑇𝑟 (5.1)

𝐽 𝑓 ¤𝑤 𝑓 = 𝑇 𝑓 𝑖 𝑓 𝑑 − 𝐹 𝑓 𝑐𝑟 𝑓 𝑒 𝑓 (5.2)

𝐽𝑟 ¤𝑤𝑟 = 𝑇𝑟 𝑖𝑟𝑑 − 𝐹𝑟𝑟𝑟𝑒 𝑓 (5.3)

𝐹 𝑓 𝑐 = 𝐶 𝑓 𝜆 𝑓 = 𝐶 𝑓
𝑣 𝑓 𝑐 − 𝑣𝑐
𝑣 𝑓 𝑐

(5.4)

𝐹𝑟 = 𝐶𝑟𝜆𝑟 = 𝐶𝑟
𝑟𝑟𝑒 𝑓 𝑤𝑟 − 𝑣𝑐
𝑟𝑟𝑒 𝑓 𝑤𝑟

(5.5)

where 𝑖 = 𝑓 or 𝑟, meaning front or rear tire; 𝑇𝑡𝑜 is the known transmission output torque; 𝐽𝑖 is the

tire inertia; 𝑤𝑖 is the tire rotational speed; 𝑇𝑖 is propeller shaft torque; 𝑖𝑖𝑑 is the differential ratio;

𝐹 𝑓 𝑐 and 𝐹𝑟 are the front and rear tire longitudinal force, respectively; 𝐶𝑖 is tire longitudinal stiffness

and can be calibrated as constants for |𝜆𝑖 | ≤ 𝜆0 as shown in Figure 5.3, typical threshold of 𝜆0 is

around 0.05 ∼ 0.1 [92]; 𝑣 𝑓 𝑐 is the compensated front tire linear speed defined in equation (5.9);

𝑟𝑖𝑒 𝑓 is the effective tire radius; and 𝑣𝑐 is the vehicle longitudinal speed defined next.
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Figure 5.2: 4WD vehicle propulsion system architecture

5.2.2 Vehicle Speed Model

According to the Newton’s second law, the longitudinal vehicle dynamics can be obtained as

following

𝑚 ¤𝑣𝑐 = 𝐹 − 𝐹𝑎 − 𝐹𝑟𝑜 − 𝑚𝑔 sin 𝜃

𝐹𝑎 =
1
2
𝐶𝑎𝜌𝑎𝐴𝑎𝑣

2
𝑐

𝐹𝑟𝑜 = (𝑎𝑟 + 𝑏𝑟𝑣2
𝑐)𝑚𝑔

(5.6)
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where 𝑚 is the vehicle mass; 𝐶𝑎 is the air drag coefficient; 𝜌𝑎 is air density; 𝐴𝑎 is the vehicle front

section area; 𝑎𝑟 and 𝑏𝑟 are empirical coefficients to be calibrated [73]; 𝑔 is gravity acceleration

constant; and 𝜃 is road grade.

On the other hand, the total longitudinal force can be obtained as below.

𝐹 = 𝐹 𝑓 𝑐 + 𝐹𝑟 (5.7)

Consolidating equations (5.4) to (5.7), the vehicle speed can be calculated by

𝑣𝑐 =
(𝐶 𝑓 + 𝐶𝑟 − 𝐹)𝑣 𝑓 𝑐𝑟𝑟𝑒 𝑓 𝑤𝑟
𝐶 𝑓 𝑟𝑟𝑒 𝑓 𝑤𝑟 + 𝐶𝑟𝑣 𝑓 𝑐

(5.8)

where the front tire linear speed 𝑣 𝑓 𝑐 is given by

𝑣 𝑓 𝑐 = 𝑟 𝑓 𝑒 𝑓 𝑤 𝑓 + Δ𝑣 𝑓 (5.9)

Δ𝑣 𝑓 =
1

2𝑖 𝑓 𝑑
𝑟 𝑓 𝑒 𝑓Δ𝑟 𝑝𝑚 (5.10)

Δ𝑟 𝑝𝑚 = 𝑤𝑟 𝑖𝑟𝑑 − 𝑤 𝑓 𝑖 𝑓 𝑑 (5.11)

Note that Δ𝑟 𝑝𝑚 is speed difference between two clutch disks. And if the following condition is

satisfied,

|Δ𝑟 𝑝𝑚 | ≤ Δ0 (5.12)

the clutch is assumed to be overtaken and otherwise slip, where the threshold Δ0 is calibrated to be

5 𝑟 𝑝𝑚 due to the existence of measurement noise,
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Equation (4.23) introduces front tire linear speed compensation Δ𝑣 𝑓 to deal with slip clutch

situation, making overtaken-clutch a special case with Δ𝑟 𝑝𝑚 = 0. As a result, it is a unified model

for different clutch operation conditions. More details are presented in reference [91].

5.2.3 Effective Tire Radius Model

The effective tire radius is modeled as

𝑟𝑒𝑖 = 𝑟𝑤𝑖 −
𝑧𝑖
3

𝑟𝑖𝑒 𝑓 = 𝑟𝑒𝑖 − 𝑛1𝑎
2
𝑥

(5.13)

where 𝑟𝑒𝑖 is the nominal effective tire radius; 𝑟𝑤𝑖 is the undeformed tire radius; 𝑧𝑖 is the defor-

mation displacement of tires relating to the corresponding tire pressure 𝑝𝑖𝑡 ; 𝑛𝑖1 is the calibrated

compensation coefficient; and 𝑎𝑥 is the vehicle longitudinal acceleration.

5.3 System Transformation

Choose the system state vector as 𝑥 = [𝑤 𝑓 , 𝑤𝑟 , 𝑣𝑐]𝑇 , system unknown input as 𝑢1 = 𝑇 𝑓 , known

input as 𝑢2 = 𝑇𝑡𝑜 and 𝑢 = [𝑢1, 𝑢2]𝑇 , system output as 𝑦 = [𝑤 𝑓 , 𝑣𝑐]𝑇 . With the help of forward

Euler approximation formula of sampling period 𝑇𝑠, the propulsion system under clutch overtaken

condition (Δ𝑟 𝑝𝑚 = 0) can be transformed into a more general nonlinear discrete form as below.

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) + 𝑤𝑘

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘
(5.14)

where indices 𝑘 + 1 and 𝑘 are the corresponding time step; 𝑓 (𝑥𝑘 , 𝑢𝑘 ) is the discretized nonlinear

system governing function, whose detailed description can be found in equation (AA.3) in Appendix

A; 𝑥 is an 𝑛-dimension state vector; 𝑢 contains 𝑞-unknown and 𝑝-known system inputs; 𝑦 is 𝑟-

dimension measurement vector with 𝐶𝑘 =


1 0 0

0 0 1

 .
Note that the system process noise 𝑤𝑘 and output measurement noise 𝑣𝑘 are considered in the

discretized system, and they are assumed to be zero mean. Since process noise usually models

parameter uncertainties or unmodeled dynamics, while measurement noises are more related to
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Figure 5.4: Estimation Algorithm Diagram

measurement sensor accuracy, they are assumed to be mutually independent. Therefore, the

following equations are satisfied.

𝐸 (𝑤𝑘 ) = 0; 𝐸 (𝑤𝑘𝑤𝑇𝑘 ) = 𝑊𝑘 𝐸 (𝑤𝑘1𝑤
𝑇
𝑘2
) = 0

𝐸 (𝑣𝑘 ) = 0; 𝐸 (𝑣𝑘𝑣𝑇𝑘 ) = 𝑉𝑘 𝐸 (𝑣𝑘1𝑣
𝑇
𝑘2
) = 0

𝐸 (𝑤𝑘1𝑣𝑘2) = 0 𝑘1 ≠ 𝑘2

(5.15)

where 𝐸 (·) denotes the expectation operation of the corresponding term; 𝑊𝑘 and 𝑉𝑘 are the

covariance matrix of 𝑤𝑘 and 𝑣𝑘 , respectively, 𝑘1 and 𝑘2 are different step indices.

Problem Formulation: Estimating the unknown input 𝑢1 with 𝑝-known inputs 𝑢2 and 𝑟-

measured outputs 𝑦 at each time step. The estimation diagram is summarized in Figure 5.4.

5.4 Extended Kalman Filter based Unknown Input Observer

Based on the system preparation and problem formulation described in Section 5.3, the unknown

input observer based on Extended Kalman Filter is adopted to realize the goal.

Since the system governing equation is nonlinear, it is first linearized along the estimated states

(𝑥) and unknown input (𝑢̂1) trajectories using Taylor Expansion as below.

𝑓 (𝑥𝑘 , 𝑢𝑘 ) ≈ 𝑓 + 𝐴𝑘 (𝑥𝑘 − 𝑥𝑘 ) + 𝐵𝑘 (𝑢1,𝑘 − 𝑢̂1,𝑘 ) (5.16)

𝑓 = 𝑓 (𝑥𝑘 , 𝑢̂1,𝑘 ) (5.17)

𝐴𝑘 =

[
𝜕 𝑓 (𝑥𝑘 , 𝑢𝑘 )

𝜕𝑥𝑘

] ����
𝑥𝑘=𝑥𝑘 ,𝑢1,𝑘=𝑢̂1,𝑘

(5.18)

96



𝐵𝑘 =

[
𝜕 𝑓 (𝑥𝑘 , 𝑢𝑘 )
𝜕𝑢1,𝑘

] ����
𝑥𝑘=𝑥𝑘 ,𝑢1,𝑘=𝑢̂1,𝑘

(5.19)

where 𝑥𝑘 is the estimate of true states 𝑥𝑘 and 𝑢̂1,𝑘 is the estimate of unknown input 𝑢1,𝑘 at time

step 𝑘; 𝑓 (𝑥𝑘 , 𝑢𝑘 ) is the true governing function; 𝑓 is an estimate of 𝑓 (𝑥𝑘 , 𝑢𝑘 ) at the estimated

states (𝑥𝑘 ) and unknown input (𝑢̂1,𝑘 ); 𝐴𝑘 and 𝐵𝑘 are the linearized system and input matrices. The

resulting linearized system is presented below.

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢1,𝑘 + 𝑢̄𝑘 + 𝑤𝑘

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘
(5.20)

𝑢̄𝑘 = 𝑓 − 𝐴𝑘𝑥𝑘 − 𝐵𝑘 𝑢̂1,𝑘 (5.21)

Detailed 𝐴𝑘 and 𝐵𝑘 representations for the target vehicle are derived in Appendix B.

The optimal estimate of states (𝑥𝑘 ) and unknown input (𝑢̂1,𝑘 ) is achieved by minimizing the cost

function 𝐽𝑘 , which is the summation of square errors between measured output 𝑦𝑚 and estimated

output 𝐶𝑥𝑚 (𝑚 = 1, 2..., 𝑘) over the cumulative time steps as below.

𝐽𝑘 = Δ̄𝑇𝑘 𝑍𝑘 Δ̄𝑘 (5.22)

where 𝑍𝑘 is a (𝑟𝑘 × 𝑟𝑘) weighting matrix; Δ̄𝑘 = [Δ𝑇1 , ...,Δ
𝑇
𝑘
]𝑇 is the stacked up 𝑟𝑘-error vector;

and Δ𝑚 = 𝑦𝑚 − 𝐶𝑥𝑚 is the 𝑟-dimension output error vector at each time step 𝑚 (𝑚 = 1, 2..., 𝑘).

Define the extended unknown state vector as

𝑋𝑢𝑛,𝑘 = [𝑥𝑇𝑘 , 𝑢
𝑇
1,1, 𝑢

𝑇
1,2, ..., 𝑢

𝑇
1,𝑘 ]

𝑇 (5.23)

Note that the stacked up error vector Δ̄𝑘 can be represented as a function of extended unknown

vector 𝑋𝑢𝑛,𝑘 as below after some manipulations.

Δ̄𝑘 = 𝑌𝑘 − 𝐴𝑒,𝑘𝑋𝑢𝑛,𝑘 (5.24)

where 𝑌𝑘 = [(𝑦1 − 𝑢̂1,1)𝑇 , ..., (𝑦𝑘 − 𝑢̂1,𝑘 )𝑇 ]𝑇 and 𝐴𝑒,𝑘 =


𝐿̂𝑘 𝑁𝑘

𝐻̂𝑘 0𝑟×𝑞

 . More detailed derivation

of Δ̄𝑘 as a function of 𝑋𝑢𝑛,𝑘 and descriptions of matrix 𝐴𝑒,𝑘 as well as its entries can be found

in [84].
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The problem is therefore transformed to obtain the optimal extended state estimation 𝑋̂𝑢𝑛,𝑘 of

𝑋𝑢𝑛,𝑘 , given the cumulative cost function in equation (5.22). This can be solved by setting the

partial derivative of the cost function 𝐽𝑘 with respect to 𝑋𝑢𝑛,𝑘 to 0, i.e. [𝜕𝐽𝑘/𝜕𝑋𝑢𝑛,𝑘 ] = 0. And

the solution, 𝑋̂𝑢𝑛,𝑘 , is the optimal estimate of 𝑋𝑢𝑛,𝑘 expressed below.

𝑋̂𝑢𝑛,𝑘 = 𝑄 [𝐴𝑇𝑒,𝑘𝑍𝑘𝑌𝑘 ], 𝑄 = [𝐴𝑇𝑒,𝑘𝑍𝑘 𝐴𝑒,𝑘 ]
−1 (5.25)

According to [84] and [86], the existence condition for matrix 𝑄 requires number of measured

output (𝑟) should be greater than number of unknown input (𝑞), namely, 𝑟 > 𝑞.

For the EKF-UIO estimation algorithm to be implementable in real-time, a recursive solution

of estimated 𝑋̂𝑢𝑛,𝑘 , namely estimated states (𝑥𝑘 ) and unknown input(𝑢̂1,𝑘 ), is desired. Detailed

recursive derivation can be referred to reference [84] and the recursive solution is summarized as

follows.

Step 0: Initialization

Initialization of the algorithm at time step 𝑘 = 0

𝑥0 = 𝐸 (𝑥0), 𝑢̂1,0 = 𝐸 (𝑢1), 𝐾𝑥,0 = 𝐾𝑥0

𝑃𝑥𝑝,0 = 𝐸 [(𝑥0 − 𝑥0) (𝑥0 − 𝑥0)𝑇 ]

𝑈𝑢1,0 = 𝐸 [(𝑢1 − 𝑢̂1,0)(𝑢1 − 𝑢̂1,0)𝑇 ]

(5.26)

where 𝑃𝑥𝑝 is the state prediction gain matrix;𝑈𝑢1 is the gain matrix for the unknown input 𝑢1; and

𝐾𝑥 is the state correction gain matrix.

Step 1: Prediction

The predicted states and outputs are given by

𝑥𝑝,𝑘 = 𝑓 (𝑥𝑘 , 𝑢̂1,𝑘 ) (5.27)

where 𝑥𝑝,𝑘 is the predicted state vector.

Step 2: Gain computation

Note that there are three gain matrices, namely state correction gain matrix 𝐾𝑥,𝑘 , state prediction

gain matrix 𝑃𝑥𝑝,𝑘 , and unknown input gain matrix𝑈𝑢,𝑘 to be calculated at time step 𝑘 for the next
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time step 𝑘 + 1. The recursive solutions for each gain matrix are displayed below.

𝑃𝑥𝑝,𝑘+1 = 𝐴𝑘𝑃𝑥,𝑘 𝐴
𝑇
𝑘 +𝑊𝑘

𝐾𝑥,𝑘+1 = 𝑃𝑥𝑝,𝑘+1𝐶
𝑇
𝑘 [𝑉𝑘+1 + 𝐶𝑘𝑃𝑥,𝑘+1𝐶

𝑇
𝑘 ]

−1

𝑈𝑢1,𝑘+1 = [𝐵𝑇𝑘𝐶
𝑇
𝑘𝑉

−1
𝑘+1(𝐼𝑟 − 𝐶𝑘𝐾𝑥,𝑘+1)𝐶𝑘𝐵𝑘 ]−1

(5.28)

Note that there is difference between 𝑃𝑥𝑝,𝑘 and 𝑃𝑥,𝑘 , where 𝑃𝑥𝑝,𝑘 is the state prediction gain matrix

at time step 𝑘 and 𝑃𝑥,𝑘 is the state update gain matrix at time step 𝑘 . The recursive solution for

state update gain matrix 𝑃𝑥,𝑘 is presented in equation (5.31).

Step 3: Estimation correction

The estimated states (𝑥) and unknown input (𝑢̂1) are updated for time step 𝑘 + 1 based on the

predicted states 𝑥𝑝,𝑘 , updated gains at time step 𝑘 , predicted output 𝑦̂𝑘 and current measured

outputs 𝑦 by the following equations.

𝑥𝑘+1 = 𝑥𝑝,𝑘 + 𝐾𝑥,𝑘+1(𝑦𝑘 − 𝑦̂𝑘 ), 𝑦̂𝑘 = 𝐶𝑘𝑥𝑘 (5.29)

𝑢1,𝑘+1 =𝑈𝑢1,𝑘+1𝐵
𝑇
𝑘𝐶

𝑇
𝑘𝑉

−1
𝑘+1(𝐼𝑟 − 𝐶𝑘𝐾𝑥,𝑘+1)

× [𝑦𝑘 − 𝑦̂𝑘 + 𝐶𝑘𝐵𝑘𝑢1,𝑘 ]
(5.30)

And the recursive solution of the state update gain matrix 𝑃𝑥,𝑘 is described as follows.

𝑃𝑥,𝑘 =(𝐼𝑛 − 𝐾𝑥,𝑘𝐶𝑘 ) [𝑃𝑥𝑝,𝑘

+ 𝐵𝑘−1𝑈𝑢1,𝑘𝐵
𝑇
𝑘−1(𝐼𝑛 − 𝐾𝑥,𝑘𝐶𝑘 )

𝑇 ]
(5.31)

Note that for the target 4WD vehicle propulsion system, both 𝐵𝑘 and 𝐶𝑘 are constant matrices

and the estimation road map is summarized in Figure 5.5.

5.5 Experiment Validation

In this section, the experiment validation of the proposed EKF-UIO estimation algorithm under

both clutch slip and overtaken conditions are performed, where the proposed EKF-UIO algorithm

was developed and implemented in MATLAB/Simulink.

Note that due to confidential requirements of the project sponsor, only numerical improvement

analysis are presented, and the actual values of each signal cannot be shown.
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Figure 5.5: EKF-UIO Estimation Flow Diagram

Experiments are conducted in a proving ground. The tire rotational speed (𝑤𝑖) is measured

using a production wheel speed sensors and vehicle acceleration is measured by a production

accelerometer. For validation purpose, the measured clutch torque (𝑇 𝑓 ) in the following sections is

obtained from a torque sensor. The sampling time for the system discretization is select as 0.01s,

which is the same as that of measured signals.

5.5.1 Model Initialization

Vector 𝑥(0) = [0.01, 0.01, 0.01]𝑇 represents the initial condition of the three states. Although the

vehicle starts from static condition, the initial states cannot be set to 0 due to the fact that states

appear in the denominator position in the system equations (see equation (AA.1) in Appendix A).

Therefore, small values are used to avoid numerical issue. Scalar 𝑢1(0) = 0 represents the initial

value of unknown input. Matrix 𝑊 = 𝑑𝑖𝑎𝑔[1, 1, 10] represents the processing noise, where 𝑤1

and 𝑤2 are assumed to be equal, meaning that the processing noise for front and rear tires are the

same, and 𝑤3 is larger since the road grade 𝜃 is not considered in the system equation (AA.1).

𝑉 = 𝑑𝑖𝑎𝑔[1𝑒−6, 1𝑒−6] is the measurement noise matrix. Note that the processing noise is usually

10 times larger than the measurement noise. Matrix 𝑃𝑥𝑝,0 = 𝑑𝑖𝑎𝑔[1, 1, 1] denotes the initial values

of states prediction gain matrix 𝑃𝑥𝑝,𝑘 . 𝑈𝑢1,0 = 0 is the initial value of unknown input gain matrix
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Figure 5.6: Known input 𝑢2 for data set 1

and 𝐾𝑥,0 = 𝑜𝑛𝑒𝑠(𝑛, 𝑟) is the initial states correction gain matrix.

5.5.2 Overtaken-clutch Torque Estimation Validation

Particularly, under clutch overtaken condition, the indices for system variables described in equation

(5.14) are fixed as the following: 𝑛 = 3, 𝑝 = 1, 𝑞 = 1, 𝑟 = 2. Since 𝑟 > 𝑞, the existence of matrix

𝑄 is guaranteed.

Several experiment data sets are utilized to validate the proposed EKF-UIO algorithm under

clutch overtaken conditions. Under the clutch overtaken condition, the known input is the transmis-

sion output torque 𝑇𝑡𝑜, which is shown in Figure 5.6 (a). This is obtained by multiplying the known

engine torque to the measured total torque ratio between torque converter and transmission. Note

that between 4 and 10s, although the transmission output torque starts building up, the brake pedal

is fully applied so that the vehicle is static; see Figure 5.6 (b). The algorithm becomes active only

when the vehicle is accelerating (or clutch is engaged), which can be identified from the positive

vehicle acceleration shown in Figure 5.6 (c).

Figure 5.7 shows the resulting state estimation. It can be observed that both estimated front tire
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Figure 5.7: Estimated system states 𝑥 for data set 1

and the vehicle speeds track the measured ones well, while there exists some error in the rear tire

speed.

Note that a simple longitudinal bicycle model, neglecting yaw and roll motion, is utilized to

model the vehicle dynamics. From this point of view, the model is not accurate compared with

actual vehicle system. Therefore, it would be reasonable to expect certain error in the estimated

states using a simplified model. However, to deal with the modeling error, instead of re-deriving a

more complex and accurate model, the key idea is to lump all the estimation error to a state that is

not important in the estimation algorithm.

Remember that the goal of EKF-UIO algorithm is to estimate the unknown input (clutch torque),

which is related more closely to the front tires than to the rear tires according to the configuration of

propulsion system in Figure 5.2. Therefore, the output is chosen to be front tire speed and vehicle

speed. The vehicle speed is obtained from the vehicle speed estimator in equation (5.8) since both

front and rear tire speed signals are available. Figure 5.7 confirms that all the estimation errors are

pushed to the rear tire speed in order to have an accurate estimation of unknown input. Therefore,

even though there are some vibrations in rear tire speed, it does not affect the torque estimation as
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Figure 5.8: Front tire slip ratio and estimated system unknown input 𝑢̂1 for data set 1

shown in Figure 5.8. On the other hand, the accurate rear tire speed is also easily available through

measurements, therefore, even though the estimated rear tire speed from EKF-UIO is inaccurate,

the accurately measured rear tire speed can always be utilized for other applications in case it is

needed.

Figure 5.8 (a) presents the front tire slip ratio result for the interested acceleration duration. It

is obvious that the tire slip ratio is way below the threshold 𝜆0 = 0.1 as discussed before. Note that

the rear tire slip ratio is similar to the front case and not shown here. Therefore, the assumption

of constant tire stiffness holds in this case, and the linear tire force approximation is reasonable

and accurate. Figure 5.8 (b) presents the unknown input validation results, where three clutch

torque signals: measured torque using a torque sensor, EKF-UIO algorithm estimated torque, and

CTM-2 torque which obtained from direct reverse calculation [91], are shown. Again, only vehicle

acceleration period is considered, since typically the transfer case clutch only engage when vehicle

is accelerating for improving traction torque performance. Between 9.5 and 10s, the vehicle just

started moving and the tire slip is large, causing inaccurate tire longitudinal force. This further
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Figure 5.10: Estimated system unknown input 𝑢̂1 for data set 3

results in inaccurate clutch torque estimation as shown in the figure. However, when the vehicle

runs at higher speed, the tire slip ratio becomes small so that the longitudinal force is accurate,

leading to accurate clutch torque estimation between 10 and 16.8s. Both estimated torque values

are close to the measured clutch torque, and the estimation error analysis is presented at the end of

this section.

Figures 5.9 and 5.10 show two other experimental validation results. Since the state estimation

results are similar to that of the first data set in Figure 5.7, they are not shown here. It can be

observed that the unknown input estimation trend for the latter two data sets are also similar to the

first data set.

For the estimation error analysis, two error evaluation indices are defined. The first one is
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Table 5.1: Overtaken-estimation error summary

Data sets Approach AMSE (𝑁𝑚) RMSE (%)

Data 1
EKF-
UIO 3.75 1.10

CTM-2 21.91 5.80

Data 2
EKF-
UIO 8.00 1.02

CTM-2 12.75 3.60

Data 3
EKF-
UIO 12.75 3.60

CTM-2 27.17 10.79

𝐴𝑀𝑆𝐸 (absolute mean square error), which is defined below,

𝐴𝑀𝑆𝐸 =

√√√√ 1
𝑛𝑑

𝑛𝑑∑
𝑛𝑞=1

(( |𝑇 𝑓 𝑒 − 𝑇𝑚𝑒𝑎 |)2), (5.32)

and the second index is 𝑅𝑀𝑆𝐸 (relative mean square error) as defined below:

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛𝑑

𝑛𝑑∑
𝑛𝑞=1

((
|𝑇 𝑓 𝑒 − 𝑇𝑚𝑒𝑎 |

𝑇𝑚𝑒𝑎
)2) (5.33)

where 𝑇 𝑓 𝑒 means the estimated clutch torque; 𝑇𝑚𝑒𝑎 means the measured clutch torque; and 𝑛𝑑 is

the total number of active data points and only acceleration duration accounts for the active data.

The estimation error are summarized in TABLE 5.1. It is obvious that comparing to the direct

reverse calculation from CTM-2 model, both 𝐴𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸 with respect to the measured

clutch torque are significantly reduced for all data sets using the proposed EKF-UIO estimation

algorithm. Even in the worst case (Data set 3), the 𝐴𝑀𝑆𝐸 is reduced by 15𝑁𝑚 and the 𝑅𝑀𝑆𝐸

by 3.6% with a 7% improvement, comparing to CTM-2. Another important aspect is that there is

no noise rejection feature in CTM-2 calculation, while EKF-UIO algorithm is relatively robust to

measurement noises, and therefore leads to more accurate torque estimation results.
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5.5.3 Slip-clutch Torque Estimation Validation

This section performs the estimation validation under clutch slip condition. Since clutch slip speed

Δ𝑟 𝑝𝑚 is vital for estimation under this condition, accurate Δ𝑟 𝑝𝑚 or equivalently front and rear tire

speed measurements are desired. However, it is determined that the estimation error is lumped to

rear tire speed in Section 5.5.2, as a result, the slip speed Δ𝑟 𝑝𝑚 obtained from the estimated rear

tire speed is inaccurate, which may further lead to inaccurate clutch torque estimation.

However, as also discussed in Section 5.5.2 that both front and rear tire speeds are measured

accurately, meaning that the accurate clutch slip speed Δ𝑟 𝑝𝑚 is available in real-time. The

solution is to consider the Δ𝑟 𝑝𝑚 as another known input to the system, instead of relating it to the

estimated system states. Therefore, under clutch slip condition, the system input vector becomes

𝑢 = [𝑇 𝑓 , 𝑇𝑡𝑜,Δ𝑟 𝑝𝑚]𝑇 . Therefore, the system for slip condition is slightly different from that of

overtaken condition. For further implementation of the EKF-UIO algorithm for slip condition,

similar procedures can be performed to that for the overtaken case. Due to page limitation, it is

omitted in this paper.

Figure 5.11 presents the known input (transmission output torque) and the Δ𝑟 𝑝𝑚 under clutch

slip condition. According to criteria in equation (4.21), the clutch is overtaken approximately
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between 20 and 29s and is slipping between 29 and 38s. Figure 5.12 shows the state estimation

results under this condition. Similar to the overtaken case, the front tire speed and vehicle speed

match well with the measured ones, and all the estimation errors are lumped to the rear tire speed.

The resulting unknown input (clutch torque) estimation is presented in Figure 5.13, where the EFK-

UIO 𝑇 𝑓 is obtained from the modified system with two known inputs and CTM-3 𝑇 𝑓 is the direct

reverse calculation of clutch torque under slip condition [91]. Similarly, estimation results from

both approaches match with the measured 𝑇 𝑓 . Further error calculation reveals that the EKF-UIO

algorithm performs better than the direct CTM-3 model, where the 𝐴𝑀𝑆𝐸 is reduced from 21.6𝑁𝑚

to 14.32𝑁𝑚 and 𝑅𝑀𝑆𝐸 from 10.5% to 6.88%.
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Figure 5.12: Estimated states under clutch slip condition

107



20 25 30 35 40
Time (s) 

0T
or

qu
e 

(N
m

)

EKF-UIO T
f

Measured T
f

CTM-3 T
f

Figure 5.13: Estimated unknown input under slip condition

5.6 Conclusion

In conclusion, the following are achieved in this chapter:

1. Based on the clutch torque model in the Chapter 4, the clutch torque estimation problem

is formulated into an unknown input estimation problem, which is solved with the help of

extended Kalman filter, and the solution is a recursive one that is real-time implementable;

2. The effectiveness of the proposed algorithm is validated using experimental data under both

clutch overtaken and slip condition. Note that the overtaken case is formulated as a two inputs

(one unknown and one know) system while the slip case is formulated as a three inputs (one

unknown and two known) system. The comparison shows that EKF estimated clutch torque

is able to track the measured clutch torque well, and more importantly, the error performance

(both AMSE and RMSE) is better than that obtained through the modeling approach as

shown in Chapter 4, demonstrating EKF-UIO approach’s advantage and effectiveness.
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CHAPTER 6

CLUTCH FRICTION COEFFICIENT ESTIMATION VIA ADAPTIVE RECURSIVE
LEAST-SQUARE LOOKUP TABLE

6.1 Chapter Overview

6.1.1 Chapter Organization

This chapter aims to estimate clutch surface friction coefficient based on the estimation results of

clutch touchpoint from Chapter 2 and clutch output torque from Chapter 4. The idea is to first obtain

the clutch surface friction coefficient from some sets of data, and use these results to establish a

parameterized clutch surface friction coefficient model, which depends on the clutch slip speed.

And further use other data sets to test the resulted lookup table (clutch surface friction coefficient

vs. clutch slip speed) by comparing the resulting torque to a direct measured one.

The adaptive lookup table is established using a recursive Least-Squares (RLS) algorithm,

based on the calculated clutch friction coefficient and clutch slip. Note that this will also depends

on a predefined table nodes (x axis). The output of adaptive lookup table is the online updated

table nodes (y axis) representing clutch surface friction coefficient corresponding to the predefined

nodes.

Table Adaptation 

Algorithm

(Recursive LS)

Measured Δrpm

Calculated 𝜇𝑐

Adapted Table 

Predefined Table Grid

Clutch Output Torque

Clutch Touchpoint

𝑥2 𝑥4𝑥3

𝑧1

𝑧4

𝑥1

𝑧2

𝑧3

Clutch-parameter-dependent Clutch-parameter-independent

Adapted 𝜇𝑐

Predefined Table Grid (Δrpm)

Figure 6.1: Real-time 𝜇𝑐 estimation flow
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6.1.2 Review of Adaptive Lookup Table

As a matter of fact, the identification of the adaptive table nodes is a class of parameter identification

problem, and multiple approaches exist for real-time estimation of parameters. However, due to the

computational power limitation or model complexity for model-based design in current automotive

industry, one of the most efficient ways is to use a lookup table [93], which requires that the desired

parameter be parameterized with respect to certain easily available signals. In this chapter, it is

proposed to relate the desired clutch surface friction coefficient to clutch slip speed only with a

1-D lookup table, since on one hand, factors such as clutch temperate, clutch wear have already

been accounted for in the estimation of clutch touchpoint in our previous work [26]; on the other

hand, clutch slip speed can be easily obtained from tire rotational speed; and further 1-D dimension

lookup table is more computationally efficient than higher dimension ones.

In some applications, a static lookup table is used to cover the entire working range, such as

transmission shifting lookup table. The established look-up table makes it possible to obtain the

real-time values of system parameters, then gain-scheduling controllers can be designed [94],[95],

[96]. However, more applications adopt adaptive lookup tables [97] [98] to deal with factors such

as components aging, working condition variations. There are different lookup table adaptation

methods. A common method with lowest computational requirement is the normalized least mean

approach since it only stores the table grid values [99]. An alternative method is the recursive

Least-Squares based algorithm, where the table nodes values are adaptively estimated to minimize

the squared output estimation error based on available measurements. Reference [100] proposed a

modified recursive Least-Squares algorithm with re-initializing of parameter covariance when the

active table area changes for a 2-D lookup table. While in [101], an efficient recursive Least-Squares

algorithm solved by Thomas algorithm for the identification of linear lookup table is proposed and

validated with application to engine volumetric efficiency map. There are also Kalman filter based

adaptation approaches. For instance, reference [102] proposed a constant Kalman filter gain for

the table adaptation to reduce online computational burden with performance validation on a real

engine. In [103], an EKF-based adaptive lookup table is proposed to generate an adaptive air
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mass-flow map for a truck engine.

In this section, a 1-D lookup table of clutch surface friction coefficient (vertical axis) versus

clutch slip speed (horizontal axis) is established, where the horizontal axis node is predefined

and the vertical axis nodes are adaptively updated based on the efficient recursive Least-Squares

algorithm in [101, 104].

6.2 Clutch Surface Friction Coefficient Model

From clutch perspective, clutch torque is usually related to the clutch surface friction coefficient,

normal force of the engaged clutch disks, and clutch geometry parameters [17], which can be written

specifically as

𝑇𝑐 = 𝑛𝑐𝜇𝑐𝐹𝑁𝑅𝑐𝑒 𝑓 𝑓 (6.1)

where 𝑇𝑐 is actual transmitted clutch torque; 𝑛𝑐 is total number of engaged clutch contact surfaces

and typically is fixed given a certain transfer case; 𝜇𝑐 is clutch surface friction coefficient; 𝐹𝑁 is

clutch normal force; and 𝑅𝑐𝑒 𝑓 𝑓 is clutch disk mean effective radius.

Figure 6.2 shows the clutch disk geometry, and the clutch mean effective radius can be approx-

imated by the simple equation below.

𝑅𝑐𝑒 𝑓 𝑓 =
𝑅𝑐𝑖 + 𝑅𝑐𝑜

2
(6.2)

where 𝑅𝑐𝑖 is the inner radius of clutch disk and 𝑅𝑐𝑜 is the outer radius of the clutch disk.
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Figure 6.2: Clutch disk section view
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Note that clutch surface friction coefficient is typically time-varying due to different operating

condition and needs to be estimated in real-time. Rewrite equation (6.1), the clutch friction

coefficient can be obtained by

𝜇𝑐 =
𝑇𝑐

𝑛𝑐𝐹𝑁𝑅𝑐𝑒 𝑓 𝑓
(6.3)

Note that the clutch normal force 𝐹𝑁 is obtained from Chapter 2 via the estimation of clutch

touchpoint, and the clutch output torque is obtained from Chapter 4 through the tire and vehicle

dynamics model.

6.3 Real-time Recursive Least-Squares Adaptive Lookup Table

6.3.1 Recursive Least-Squares based Adaptive 1-D Lookup Table Algorithm

Figure 6.3 shows the concept of recursive Least-Squares algorithm based 1-D adaptive lookup

table[101]. In the horizontal axis, the predefined nodes are denoted as vector x = [𝑥1, 𝑥2, · · · , 𝑥𝑛]𝑇 ,

and the corresponding table value in the vertical axis is denoted as vectorΘ = [Θ1, Θ2, · · · , Θ𝑛]𝑇 .

The aim of the adaptive table is to estimate the table value Θ given the sets of known input-

output(𝑥 − 𝑧) so that a real-time updated lookup table Θ − 𝑥 is obtained.

𝑥𝑖 𝑥𝑖+1𝑥

𝑧

Θ𝑖

Θ𝑛

𝑥1

Θ1

node

value

𝑥𝑛

Θ𝑖+1

Figure 6.3: Illustrative diagram of 1-D lookup table
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6.3.2 General 1-D Adaptive Table Structure

The first step is to determine the active node segment by comparing current 𝑥 to the vector x. If

𝑥𝑖 < 𝑥 < 𝑥𝑖+1 is satisfied, the active segment is [𝑥𝑖, 𝑥𝑖+1], and the normalized ratio is defined as

𝑟 (𝑡) = 𝑥(𝑡) − 𝑥𝑖
𝑥𝑖+1 − 𝑥(𝑡)

(6.4)

The interpolated table value can then be expressed as

𝑧(𝑡) = [1 − 𝑟 (𝑡) 𝑟 (𝑡)]

Θ𝑖

Θ𝑖+1

 (6.5)

Note that the above equation is true only for active segment with only two table values Θ𝑖 and Θ𝑖+1.

And it can be rewrote as

𝑧(𝑡) = 𝜙(𝑡)Θ (6.6)

where

𝜙(𝑡) =


1 − 𝑟 (𝑡) 𝑖𝑡ℎelement

𝑟 (𝑡) (𝑖 + 1)𝑡ℎelement

0 elsewhere

(6.7)

Therefore, for the cumulative 𝑘-step data, the generalized table adaptation model becomes

𝑧 = ΦΘ (6.8)

where the regression vector is extended to have the following regression matrix

Φ =



0, · · · , 𝜙(1), · · · , 0

0, · · · , 𝜙(2), · · · , 0
...

0, · · · , 𝜙(𝑘), · · · , 0


(6.9)

and vector Θ is to be estimated.
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6.3.3 RLS Adaptive Table Algorithm

Model in equation (6.8) can be solved by the well-known recursive Least-Squares algorithm as

follows.

Θ̂(𝑡) = Θ̂(𝑡 − 1) + 𝑅−1(𝑡)𝜙𝑇 (𝑡) [𝑦(𝑡) − 𝜙𝑇 (𝑡)Θ̂(𝑡 − 1)]

𝑅(𝑡) = 𝛽𝑅(𝑡 − 1) + 𝜙(𝑡)𝜙𝑇 (𝑡)
(6.10)

Note that in the above equation, it is required to solve the inverse of matrix 𝑅(𝑡) at each time

step, which is undesired. Therefore, generally speaking, to avoid the computation of inverse matrix

of 𝑅(𝑡), define a matrix 𝑃(𝑡) = 𝑅−1(𝑡), by matrix inversion lemma, the following recursive solution

can be obtained.

𝑃(𝑡) = 1
𝛽
(𝐼 − 𝐿 (𝑡)𝜙𝑇 (𝑡))𝑃(𝑡 − 1)

𝐿 (𝑡) = 𝑃(𝑡 − 1)𝜙(𝑡)
𝛽 + 𝜙𝑇𝑃(𝑡 − 1)𝜙(𝑡)

Θ̂(𝑡) = Θ̂(𝑡 − 1) + 𝐿 (𝑡) [𝑦(𝑡) − 𝜙𝑇 (𝑡)Θ̂(𝑡 − 1)]

(6.11)

However, one of the main drawback of this formulation is the ’curse of dimension’ for storing

such 𝑃(𝑡) matrix, especially when the lookup table dimension increases. The way to solve this

problem is to make use of the special structure of 𝜙(𝑡). Note that due to the particular structure of

𝜙(𝑡) as shown in equation (6.7), the active elements of 𝜙(𝑡)𝜙𝑇 (𝑡) (0 in any other positions) is

𝜙(𝑡)𝜙𝑇 (𝑡) =

(1 − 𝑟 (𝑡))2 𝑟 (𝑡)(1 − 𝑟 (𝑡))

𝑟 (𝑡) (1 − 𝑟 (𝑡)) 𝑟2(𝑡)

 (6.12)

which will further lead to a particular structure of 𝑅(𝑡) as shown in Figure 6.4.
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R(t) =
(i, i)

𝑏1

𝑏2𝑎2

𝑐1

𝑐2

𝑏𝑛−1

𝑏𝑛𝑎𝑛

𝑐𝑛−1𝑎𝑛−1

Figure 6.4: Structure of 𝑅(𝑡)

By certain proper manipulation, equation (6.10) can be reformulated to

𝑅(𝑡)ΔΘ̂(𝑡) = 𝑓 (𝑡) (6.13)

with

ΔΘ̂(𝑡) = Θ̂(𝑡) − Θ̂(𝑡 − 1)

𝑓 (𝑡) = 𝜙(𝑡) [𝑧(𝑡) − 𝜙(𝑡)Θ̂(𝑡 − 1)]

Linear equation (6.13) with the special structure of coefficient 𝑅(𝑡) can be solved by the Thomas

Algorithm [105], which is suitable for real-time implementation. A pseudo code for Thomas

Algorithm is summarized in Table. 6.1. Once ΔΘ̂ is solved, Θ̂ can be obtained subsequently.

Table 6.1: Pseudo code of Thomas Algorithm

Initialization(𝑖 = 1):
𝑐
′
1 = 𝑐1/𝑏1; 𝑓

′
1 = 𝑓 (1)/𝑏1;

Forward substitution:
for 𝑖 from 2 to 𝑡
𝑐
′
𝑖 = 𝑐1/(𝑏𝑖 − 𝑎𝑖𝑐

′
𝑖−1);

𝑓
′
𝑖 = ( 𝑓 (𝑖) − 𝑎𝑖 𝑓

′
𝑖−1)/(𝑏𝑖 − 𝑎𝑖𝑐

′
𝑖−1);

Backward substitution:
ΔΘ̂(𝑡) = 𝑓

′
𝑡 ;

for 𝑖 from 𝑡 − 1 to 1
ΔΘ̂(𝑖) = 𝑓

′
𝑖 − 𝑐

′
𝑖ΔΘ̂(𝑖 + 1)

115



6.3.4 Complete Road Map of Friction Coefficient Estimation

Further with the updated adaptive lookup table, other sets of measured clutch slip data are used to

generating the clutch surface friction first, and then calculating the clutch torque, which is finally

compared to a measured clutch torque to evaluate the table performance. The complete road map

are summarized in Figure 6.5.

𝑇𝑐 Estimation

𝑥𝑐𝑡 Estimation

RLS Adaptive 

Table Algorithm

Clutch Δrpm

Real-time 𝜇𝑐- Δrpm 

Lookup Table

Pre-defined Nodes

𝜇𝑐 Θ

Real-time 𝜇𝑐

Table Adaptation Process

Real-time Calculation Process

Figure 6.5: Real-time 𝜇𝑐 estimation road map

6.4 Result Evaluation

For this study, 𝑇𝑐 estimation is from Chapter 4 and 𝑥𝑐𝑡 from Chapter 2. The clutch Δrpm is

calculated from the measured tire speed. Figure 6.6 shows the torque estimation result and its

associated signals obtained from the torque estimation model in Section 4. Note that the clutch

is typically engaged for 4WD mode during vehicle acceleration, which can be confirmed by the

vehicle speed signal. The clutchΔrpm shows that before 80s, it is overtaken (which is not the subject

of this study), while between 80-82s, the clutch is slipping with significant speed difference. The

last plot shows the torque under this vehicle acceleration.

Based on these estimation results, a clutch surface friction coefficient can be calculated, which

is shown in the red line of Figure 6.10. Note that the focus is on clutch slip duration (80-82s). With

the clutch touchpoint 𝑥𝑐𝑡 , clutch torque, and calculated friction coefficient 𝜇𝑐 ready, the algorithm

in 6.3.3 can be used to obtain the adaptive lookup table. The table horizontal axis is selected as

x = [0, 5, 10, 15]𝑇 rpm according to the clutch slip speed range. Figure 6.7 shows the adapted
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Figure 6.6: Clutch Torque and Associated Signals

table vertical node results. It can be observed that after several clutch engagements, the four-node

values are converging. For multiple engagement data as show in Figure 6.7, the average of table

nodes can be calculated as the updated node value, which is show in Figure 6.8, it is obvious that

in the future, with the help of clutch slip speed obtained from the tire rotational speed, the friction

coefficient table can be updated in real-time. Furthermore, the convergence of the table notes can

be observed from the 3-D view presented in Figure 6.9.

Therefore, with these converged nodes, a lookup table (vertical-horizontal node, namely, 𝜇𝑐 -

Δrpm) can be established so that in the future, real-time friction coefficient 𝜇𝑐 can be obtained with

known Δrpm, which depends only on the measured vehicle tire speed. The friction coefficient 𝜇𝑐

obtained from the model calculation in Chapter 4 and adaptive table is compared in Figure 6.10. It

can be observed that under clutch slip operation, they are close.

A further clutch torque validation is presented in Fig. 6.11, where red-line represents the same

clutch torque from modeling approach as show in Fig. 6.6, and blue-line is obtained from the lookup

table estimation. Note that there is no production-ready torque sensor available on the vehicle to
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Figure 6.8: Adaptive table nodes convergence vs. Δ𝑟 𝑝𝑚

measure clutch output torque directly, therefore, another clutch torque estimation result via EKF-UI

algorithm using engine torque as input (see [106] for details) is presented in black-line and used as

ground truth due to its high estimation accuracy. It can be seen that during clutch slip between 80

and 81s, the table resulted and estimated torques are all pretty close. Furthermore, error analysis

reveals that the Absolute Mean Squared Error (AMSE) between 𝑇 𝑓 modeling and 𝑇 𝑓 EKF-UI is 35

Nm, and the Relative Mean Squared Error (RMSE) is 5.9% while the AMSE between 𝑇 𝑓 modeling

and 𝑇 𝑓 is 14.8 Nm, and RMSE is 2.66%. It can be concluded that the clutch torque estimation
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Figure 6.10: 𝜇𝑐 obtained from adaptive lookup table

results based on the real-time adaptive lookup table is effective and accurate. Other clutch torque

estimation results are similar and therefore omitted.

119



77 78 79 80 81 82 83
Time(s)

0

T
or

qu
e 

(N
m

)
T

f
 EKF-UI

T
f
  Modeling

T
f
 Table

Figure 6.11: Torque estimation obtained from adaptive lookup table

6.5 Conclusion

In conclusion, the following are achieved in this chapter:

1. The clutch-parameter-dependent surface friction coefficient is calculated based on the clutch

touchpoint estimation in Chapter 2 and clutch output torque estimation in Chapter 4, both of

which are used as inputs to the recursive Least-Squares adaptive lookup table;

2. The recursive Least-Squares adaptive lookup table is established based on the input and

output data; the input data are the measured clutch slip speed, while the output data are the

estimated clutch surface friction coefficient in the previous step. The recursive solution uses

the real-time implementable Thomas Algorithm.

3. With the established adaptive lookup table, several measured inputs are employed to obtain

the real-time clutch-parameter-independent friction coefficient to be used to come up with

a real-time clutch torque, which is compared to the estimated clutch torque. Comparison

shows that under the clutch slip condition, the real-time estimated clutch torque is close to

the one from adaptive table.

120



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In summary, to estimate the clutch surface friction coefficient, the clutch touchpoint displace-

ment and the clutch torque are estimated first, they can be concluded in the following two aspects.

Touchpoint Estimation

1. With the current PID control scheme employed, the model-based adaptive estimation algo-

rithm along with modified friction model is proposed to estimate the touchpoint separately

and validated using experimental data showing improved accuracy and robustness over the

existing method;

2. An integrated estimation scheme, based on the deadbeat adaptive backstepping control

technique, is proposed to estimate touchpoint and tracks the reference position simultaneously

and shows its potential of performance improvement.

Clutch Torque Estimation

1. The proposed vehicle acceleration compensation to the effective tire radius and vehicle speed

estimator based on the four-tire traction force provide accurate vehicle speed and clutch

torque estimations under clutch overtaken condition;

2. While when the clutch is slipping, the proposed linear speed compensation to front tire speed

also promotes to a more accurate torque estimation.

Clutch Surface Friction Coefficient Estimation

1. The recursive Least-Squares adaptive Lookup table is established for obtaining real-time

clutch surface friction coefficient. The adaptive lookup table is updated in two steps. The first
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step is to obtain the clutch-parameter-dependent friction coefficient through direct calculation;

and the second step is to parameterize the friction coefficient to make it dependent on the

clutch slip speed. This is done by updating the nodes of adaptive lookup table, which is

realized by the Recursive Least-Squares (RLS) algorithm. The output of the RLS algorithm

is the updated table nodes. The adaptive lookup table could be used to obtain the clutch-

parameter-independent friction coefficient.

2. The real-time clutch surface friction coefficient further leads to the real-time clutch torque

estimation based on the direct clutch geometry relationship. The calculated clutch torque is

then compared to the actual measured torque that confirms the effectiveness of the proposed

Recursive Least-Squares Adaptive Lookup table.

7.2 Recommendation for Future Work

Future work following the research work presented in this dissertation includes implementation

of the developed algorithm into the physical system.

It is recommended to implement the adaptive clutch touchpoint estimation algorithm for transfer

case bench tests, including the following:

1. Calibrating the friction model using experimental data to provide a more accurate ball friction

torque in the clutch actuation system for improving clutch touchpoint estimation;

2. Implementing the adaptive estimation algorithm vehicle environment and comparing the

vehicle tested clutch touchpoint with that from the existing algorithm to demonstrate the

advantage of proposed estimation algorithm.

For the deadbeat adaptive backstepping control, the advantage is that it is an integrated esti-

mation and control algorithm. The successful implementation of this algorithm will, on one hand,

reduces the tuning effort of the controller for the clutch displacement and touchpoint, and on the

other hand, eliminates redundant algorithm to reduce both control module throughput and memory.
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The implementation of clutch torque estimation algorithm would be more of practical impor-

tance since currently, there is no production ready torque sensor installed on the vehicle. Therefore,

the implementation of this algorithm will provide the estimated clutch torque in the absence of

torque sensor. This can be greatly beneficial for vehicle torque distribution control for improved

traction performance.

The implementation of friction coefficient algorithm will also be beneficial since it can provide

clutch-parameter-independent friction coefficient, which can make accurately control the clutch

output torque during slip phase easier, and therefore, slowing down the clutch wearing rate.
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APPENDIX

APPENDIX A

A.1 Derivation of System Transformation

This section shows clutch overtaken condition (Δ𝑟 𝑝𝑚 = 0) system formulation. According to

equations listed in Section 5.2, by choosing the system states, inputs and outputs stated in (5.14),

the state-space representation of the system becomes

¤𝑥 =


−
𝐶 𝑓
𝐽 𝑓
𝑟 𝑓 𝑒 𝑓 +

𝐶 𝑓
𝐽 𝑓

𝑥3
𝑥1

+
𝑖 𝑓 𝑑
𝐽 𝑓
𝑢1

−𝐶𝑟𝐽𝑟 𝑟𝑟𝑒 𝑓 +
𝐶𝑟
𝐽𝑟

𝑥3
𝑥2

− 𝑖𝑟𝑑
𝐽𝑟
𝑢1 +

𝑖𝑟𝑑
𝐽𝑟
𝑢2

𝐶 𝑓
𝑚 −

𝐶 𝑓
𝑚
𝑥3
𝑥1

+ 𝐶𝑟
𝑚 − 𝐶𝑟

𝑚
𝑥3
𝑥2

− 𝐹𝑎+𝐹𝑟𝑜
𝑚


(A.1)

A.2 Derivation of system linearization

Proceeding the discretization with sampling period 𝑇𝑠 using forward Euler Approximation

formula as below,

¤𝑥 ≈ 𝑥(𝑘 + 1) − 𝑥(𝑘)
𝑇𝑠

(A.2)

the system governing function in (5.14) becomes

¤𝑥 =
[
𝑓1 𝑓2 𝑓3

]𝑇
𝑓 (𝑥𝑘 , 𝑢𝑘 ) =


𝑥1,𝑘 + 𝑇𝑠 𝑓1
𝑥2,𝑘 + 𝑇𝑠 𝑓2
𝑥3,𝑘 + 𝑇𝑠 𝑓3


=


𝐹1

𝐹2

𝐹3


(A.3)

Therefore, the linearization can be proceeded according to equations (5.18) and (5.19). The

linearization with respect to state vector 𝑥𝑘 can be proceeded as follows.

𝜕 𝑓 (𝑥𝑘 , 𝑢𝑘 )
𝜕𝑥𝑘

=

[
𝜕𝐹1
𝜕𝑥𝑘

,
𝜕𝐹2
𝜕𝑥𝑘

,
𝜕𝐹3
𝜕𝑥𝑘

]𝑇
(A.4)
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𝜕𝐹1
𝜕𝑥𝑘

=

[
𝜕𝐹1
𝜕𝑥1,𝑘

𝜕𝐹1
𝜕𝑥2,𝑘

𝜕𝐹1
𝜕𝑥3,𝑘

]
=

[
1 − 𝑇𝑠

𝐶 𝑓
𝐽 𝑓

𝑥3,𝑘
𝑥21,𝑘

0 𝑇𝑠
𝐶 𝑓
𝐽 𝑓

1
𝑥1,𝑘

] (A.5)

𝜕𝐹2
𝜕𝑥𝑘

=

[
𝜕𝐹2
𝜕𝑥1,𝑘

𝜕𝐹2
𝜕𝑥2,𝑘

𝜕𝐹2
𝜕𝑥3,𝑘

]
=

[
0 1 − 𝑇𝑠 𝐶𝑟𝐽𝑟

𝑥3,𝑘
𝑥22,𝑘

𝑇𝑠
𝐶𝑟
𝐽𝑟

1
𝑥2,𝑘

] (A.6)

𝜕𝐹3
𝜕𝑥𝑘

=

[
𝜕𝐹3
𝜕𝑥1,𝑘

𝜕𝐹3
𝜕𝑥2,𝑘

𝜕𝐹3
𝜕𝑥3,𝑘

]
=

[
𝑇𝑠𝐶 𝑓
𝑚𝑟 𝑓 𝑒 𝑓

𝑥3,𝑘
𝑥21,𝑘

𝑇𝑠𝐶𝑟
𝑚𝑟𝑟𝑒 𝑓

𝑥3,𝑘
𝑥22,𝑘

𝐹3,𝑝

] (A.7)

𝐹3,𝑝 = 1 − 𝑇𝑠
[ 𝐶 𝑓
𝑚𝑟 𝑓 𝑒 𝑓 𝑥1,𝑘

+ 𝐶𝑟
𝑚𝑟𝑟𝑒 𝑓 𝑥2,𝑘

+ (𝐶𝑎𝜌𝑎𝐴𝑎𝑚 + 2𝑏𝑟𝑜𝑔)𝑥3,𝑘
]

By stacking up equations (A.5) to (A.7) as shown in equation (A.4) and evaluating each element

at the estimated states (𝑥𝑘 ) and unknown input(𝑢̂1,𝑘 ), namely, 𝑥𝑘 = 𝑥𝑘 and 𝑢1,𝑘 = 𝑢̂1,𝑘 , the system

matrix 𝐴𝑘 in equation (5.18) can be obtained.

Similarly, the linearization with respect to the unknown input 𝑢1,𝑘 can be proceed as

𝜕 𝑓 (𝑥𝑘 , 𝑢𝑘 )
𝜕𝑢1,𝑘

=

[
𝑖 𝑓 𝑑
𝐽 𝑓
𝑇𝑠, − 𝑖𝑟𝑑𝐽𝑟 𝑇𝑠, 0

]𝑇
(A.8)

and evaluating each element at the estimated states (𝑥𝑘 ) and unknown input(𝑢̂1,𝑘 ), namely, 𝑥𝑘 = 𝑥𝑘

and 𝑢1,𝑘 = 𝑢̂1,𝑘 using equation (A.8), the input matrix 𝐵𝑘 in equation (5.19) can be obtained. Note

that 𝐵𝑘 in the target system is a constant matrix once the sampling period is selected.
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