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ABSTRACT

RESILIENT AERIAL AUTONOMY THROUGH EXTENDED HIGH-GAIN OBSERVERS

By

Connor James Boss

For a growing number of flight operations, human piloted aircraft are being replaced by au-

tonomous uncrewed aerial vehicles (UAVs) which can provide equivalent service with drastically

reduced operating costs. The UAVs that are deployed in mission critical applications, such as search

and rescue, medical deliveries to remote locations, infrastructure inspection, and reconnaissance

and surveillance, must be extremely resilient as the loss of a vehicle poses significant threats to

financial, security, or personnel interests. In order to rely on uncrewed systems in these mission

critical situations, we must have confidence in their ability to perform their duties as reliably as

possible. Recent advancements in hardware, software, and control design have increased the re-

liability of these small inexpensive aircraft. The focus of this dissertation is to further improve

multi-rotor reliability in the presence of a broad class of disturbances, while providing a unifying

framework that can be extended to multiple applications.

The methods we present in this work are based on a feedback linearizing control strategy

in which the controller is augmented with an extended high-gain observer. The addition of the

extended high-gain observer allows us to overcome the typical drawbacks associated with using

a feedback linearization control approach; primarily that we must have an excellent model of the

system, and we must know any disturbances that are affecting the system. The extended high-gain

observer not only provides estimates of any model uncertainties or external disturbances, but also

any unmeasured states for use in output feedback control. This estimation and control strategy

enables the multi-rotor to robustly track a trajectory in the presence of a broad class of unmodeled

disturbances and without needing an extremely accurate system model. This method forms the

base technology applied throughout this dissertation.

We extend our estimation and control strategy in a number of ways in the coming chapters.



We begin by extending the observer dynamics further to incorporate real-time trajectory estimation

for a reference system which may have partially known or completely unknown dynamics, and

for which we assume we only have access to the position of the reference system. The observer

is then able to provide estimates of all higher-order trajectory terms required for feedforward

control, improving transient tracking performance. We further extend this strategy to enable both

the detection and classification of a complete actuator failure of a multi-rotor during flight. The

identification subsequently enables a control reconfiguration and a recovery from the loss of an

actuator to resume flight operations. This extension provides the ability to not only detect and

correctly identify a failure, but to discern the failure from other external disturbances affecting

the system during flight. Finally, we extend our estimation and control strategy to enable robust

trajectory tracking for a novel form of multi-body multi-rotor systems. This type of system consists

of a large carrier UAV which suspends a small platform which is itself actuated by a pair of rotors.

The platform is equipped with a manipulator which enables long reach aerial manipulation. One

advantage of this configuration is the workspace will not be disturbed by downwash from the carrier

UAV. Each of these methods are rigorously analyzed to guarantee closed-loop stability and provide

insights into the trade-offs that arise during the design process for these control systems utilizing

extended high-gain observers.
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CHAPTER 1

INTRODUCTION

As uncrewed aerial vehicles (UAVs) continue to achieve higher performance, increased reli-

ability, and new capabilities, many applications which previously relied on manned aircraft are

making the shift to these smaller, cheaper, uncrewed vehicles. With increased dependence on

UAVs in a variety of mission critical applications, the demand for increasingly reliable vehicles is

growing. Medical deliveries are now being performed by these uncrewed systems in remote parts

of Rwanda [1] to overcome medical infrastructure deficits. Applications to search and rescue in

both natural disaster scenarios [63] and mountain search and rescue operations [38] are also being

investigated. The use of UAVs to perform infrastructure inspections [5] has also been investigated,

and implemented specifically for bridge inspections [82].

With the broadening of applications in which UAVs are being deployed, performance improve-

ments must be made through hardware, software, and control design to increase flight performance

and robustness to unpredictable flight conditions. Much work has been devoted to studying multi-

rotor UAV control design; see [49, 72] for a survey. Specifically, efforts have been focused on

control advancements to enable aggressive maneuvers [31, 60, 91], react to external disturbances

and potential modeling error [20, 32, 51, 65], and to design feasible flight trajectories [14, 56, 68].

Numerous linear and nonlinear control approaches have been applied to multi-rotors, including

PID [31, 80], feedback linearization [50, 65, 95], backstepping [16, 59], adaptive control [18, 20, 32],

and model predictive control (MPC) [13, 91] to name a few. Linear methods are effective near

the hover configuration, but can experience degraded performance during aggressive maneuvers.

Feedback linearization is sensitive to sensor noise as well as model uncertainty [50], but results in

a linear system which is simple to analyze and tune. Adaptive control and backstepping are often

combined to enable a nonlinear adaptive control design [32, 51]. These methods enable unknown

system parameters to be estimated during operation to reduce the effect of model uncertainty. MPC

enables excellent tracking performance and can achieve aggressive maneuvers [91], but at the cost
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of computational complexity.

Many linear and nonlinear approaches are also subject to reduced performance in the presence

of model uncertainty and external disturbances [88]. Thus motivating the development of robust

methods which can overcome certain classes of disturbances utilizing observers [46, 88] or adaptive

approaches to estimate model parameters online [18, 51]. The magnitude of disturbance that can

be canceled may also depend on the control gains, which can be tuned using an adaptive gain

scheduling approach [88]. While disturbance observers have been used in multi-rotor control [27,

37], extended high-gain observers are not typically implemented on highly dynamic systems of this

nature due to high sample rate requirements and possibility of measurement noise amplification.

The methods presented in this dissertation serve to show that even at a relatively low sample rate of

100Hz, extended high-gain observers can be implemented on highly dynamic systems in practice.

Furthermore, extended high-gain observers afford the ability to estimate and cancel a broader class

of disturbances than standard disturbance observers [77].

Several methods of trajectory generation have also been developed for multi-rotors. Methods

applyingmotion primitives to generate feasible trajectories [56, 68] have been explored and extended

specifically to utilize reinforcement learning [56]. Computationally efficient methods which can

be implemented and updated in real-time have been developed to design trajectories that also meet

dynamic feasibility constraints [14]. These methods of generating a trajectory for multi-rotor UAVs

still require a control method to ensure robust tracking of the desired trajectory.

Additionally, stochastic methods have been developed to implement path planning for mobile

robots which may have motion uncertainty and imperfect state information. Linear-quadratic

Gaussian motion planning [92] is one such method in which probabilistic distributions are used

to generate feasible paths for the robot a priori. This method utilizes a linear quadratic regulation

(LQR) control in parallel with a Kalman filter for state estimation. To control a partially observable

system with sensor noise, the system can be framed in belief space to apply conventional planning

and control techniques, such as LQG [76]. These stochastic methods, as well as many of the linear

and nonlinear strategies presented above that do not explicitly consider disturbance, are designed
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to be passively robust to disturbances. The work presented in the coming chapters, by contrast,

involves an estimation strategy to estimate and actively cancel disturbances through the feedback

control. Since the estimation and control strategy does not rely on aggressive control gains to cancel

disturbance, but rather utilizes the estimate to ensure the disturbance is aggressively canceled, the

desired transient performance of the system can be retained while remaining robust to a broad class

of disturbances.

In the coming sections, we will detail a number of specific areas of multi-rotor control develop-

ment. These include trajectory estimation and tracking, specifically the case of landing amulti-rotor

on a moving ground vehicle, in-flight actuator failure recovery, and the use of multi-rotors for long

reach aerial manipulation. These specific areas of interest are relevant to the work presented in the

coming chapters in which we design a robust output feedback linearizing control structure through

the use of extended high-gain observers.

The methods proposed herein address several of the design challenges presented above. Specif-

ically, since our method relies on a feedback linearizing control approach, with the addition of an

extended high-gain observer we can overcome the associated challenges by estimating model errors

and external disturbances to improve tracking performance in real-world flight conditions. Our

base estimation and control strategy is extended to enable the estimation of all higher-order terms

of a reference system, which may have partially known or completely unknown dynamics, for use

as a desired flight trajectory. We also present a novel method for designing an extended high-gain

observer for estimating higher-order states and disturbances for a system evolving on ($ (3).

The estimation and control strategy is then further extended to enable the detection, classifi-

cation, and recovery from an in-flight actuator failure through the implementation of a family of

extended high-gain observers. Once detected, the observer estimates are used to identify which

actuator has failed. Finally, a new controller is selected to re-stabilize the system. An actuator

failure is an extremely dynamic event, and the detection, classification, and control switch must

occur in a fraction of a second to recover stability.

Finally, we apply the estimation and control strategy to a novel multi-body multi-rotor airframe
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design to enable long-reach aerial manipulation. Our proposed configuration avoids the typical

downdraft issues associated with using a large carrier UAV with a smaller suspended body which

supports the manipulator.

1.1 Trajectory Tracking

One of the key focuses of this dissertation is to develop an extended high-gain observer based

control strategy that is capable of robustly tracking a trajectory in the presence of unknown and

unmodeled disturbances. While other multi-rotor trajectory tracking control strategies may be

susceptible to modeling error, external disturbances, or unknown reference system dynamics, we

provide a unified framework which can ensure flight performance in the presence of all of these

uncertainties. We design a robust feedback linearizing control strategy that can achieve excellent

transient tracking performance even in the presence of these disturbances. Our framework enables

real-time trajectory generation based on position information of a reference system which may have

partially known or completely unknown dynamics. Furthermore, the magnitude of disturbance this

method can overcome is not dependent on control gains, but rather on observer gains. This allows

total freedom in assigning control gains, which can be chosen to shape the transient response as we

recover the performance of a desired linear system.

To showcase the performance of our method, we will apply our technique to the problem of

landing a multi-rotor on a mobile platform [25, 47]. Multiple control methodologies have been

applied to this problem, including model predictive control [21, 58], PI control [29, 79, 83], and

feedback linearizing control [30]. Many approaches either do not consider modeling error and

external disturbances, or consider them to be constant or slowly time-varying [29, 83]. In contrast,

our approach only requires that any uncertainty be bounded and continuously differentiable.

State estimators such as a Kalman filter have been used to estimate the dynamic state of the

mobile platform [43, 79] under the assumptions that the dynamic model of the mobile platform

is known and it travels with unknown, but constant, velocity. Through our extended high-gain

observer design, these assumptions are relaxed, requiring no information about the dynamics or
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input of the mobile platform. An alternative approach to estimate the state of the mobile platform

uses optical flow data [29, 83], or visual cue data [39] in which a dynamic model of the mobile

platform is not required. In these cases the relative velocity is estimated through the optical flow

algorithms and is minimized in the control to ensure tracking. Our proposed approach relies on

relative position measurements and is complimentary to optical flow methods.

In Chapter 2, we design and rigorously analyze an extended high-gain observer based feedback

linearizing control method that incorporates estimation of a reference trajectory from an unknown,

or partially known, reference dynamic system. The extended high-gain observer enables estima-

tion of all states for output feedback control, as well as estimating modeling error and external

disturbances, enabling the design of a robust feedback linearizing control strategy. The proposed

method can recover performance of the desired linear system under a broad class of disturbances.

Existing multi-rotor control techniques require the rotational dynamics to be sufficiently faster than

the translational dynamics such that the tracked rotational trajectory can serve as virtual control for

the translational subsystem. The proposed extended high-gain observer design treats the transient

of the rotational subsystem as a disturbance, estimates it, and actively compensates for it in the ro-

tational controller. Thus, the proposed controller does not require the timescale separation between

rotational and translational subsystems. A key challenge in implementing an extended high-gain

observer based output feedback controller is that the dynamics of commercial electronic speed

controllers evolve at the same timescale as the extended high-gain observer and should be included

in extended high-gain observer design. We illustrate the influence of inclusion/non-inclusion of

these dynamics on output feedback performance.

1.2 In-flight Actuator Failure Recovery

Actuator failure is of particular interest when it comes to reliability, as conventional multi-rotor

UAVs will crash, or at least require an emergency landing, in the event of a failure. The main

challenges in recovering from an actuator failure during flight are the ability to quickly detect the

failure and to reconfigure the system while preserving stability. A complete actuator failure will
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cause a large rotational torque, which in turn causes the UAV to roll and pitch rapidly. If action is

not taken extremely quickly the UAV can arrive at a configuration where it simply cannot recover.

The area of fault detection and isolation has been investigated for generalized systems [6, 7, 15,

33], as well as for multi-rotor UAVs, including quadrotors [4, 19, 57, 67, 97], hexrotors [91, 93, 94,

96], and octorotors [2, 3]. A quadrotor with failure of one actuator or two opposing actuators can

be stabilized, but loses yaw controllability [67]. A failure on an octorotor can result in dramatically

reduced thrust capability [2, 3]. Interestingly, a standard hexrotor is fully vulnerable to any single

actuator failure because the total moment generated by opposed rotors are collinear [62], resulting

in an uncontrollable system. For details on the controllability analysis of a standard hexrotor, see

Appendix E.

In order to overcome this vulnerability, a variety of modifications have been proposed. One

option is to use a different pattern of rotor rotation directions [93, 94], thus making the moment

of certain pairs of opposed rotors non-collinear. This will maintain controllability under failure,

however, the asymmetry restricts this method to only recover if one of four specific rotors fail.

Another option [62, 96] involves a modified airframe design where the actuators are canted off

plane to enable force application in all six degrees of freedom. This method supports loss of

any one actuator, however, given the orientation of the rotors, the configuration is not efficient for

nominal flight. A third option is to enable the rotors to rotate in either direction [91]. This method

maintains controllability if any one of the actuators fail, while preserving efficiency during nominal

flight. Thus, we will utilize this hardware reconfiguration strategy as well.

The detection strategies used in the methods described above include a linear observer [94],

estimating actuator forces using a sliding-mode differentiator on IMU data [57], and an EKF based

rotor health estimator [91], while others have left the detection strategy to future work [2, 3, 67].

In contrast, we utilize a multiple-model multiple extended high-gain observer output feedback

linearizing control approach, in which estimates from the extended high-gain observers are used to

detect and classify a failure. The extended high-gain observers not only allow us to detect failures

and select the appropriate reconfiguration, but are fully integrated in our control strategy to provide
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estimates of unmeasured states and disturbances. These estimates are used before, during, and after

failure to improve tracking performance in the presence of a broad class of disturbances.

The failure recovery methods described thus far do not consider disturbances affecting the

system. Our method explicitly incorporates disturbances and can differentiate between disturbances

and an actuator failure, depending on disturbance levels. The analysis presented in Chapter 3 not

only guarantees stability, but provides insights into what levels of disturbances can be distinguished

from an actuator failure and howmuch time can elapse between failure and switching models before

risking losing control.

1.3 Long Reach Aerial Manipulation

In certain applications, such as remote crop sampling, novel multi-rotor systems are required

which can actively interact with the environment and perform challenging tasks in unstructured

environments. Augmenting a multi-rotor with another multi-body system, for example, a manipu-

lator, significantly increases its functionality. Several UAV-manipulator systems, often referred to

as aerial manipulators, have been designed for aerial pick and place [24], avian inspired grasping

and perching [89, 90], mobile manipulation [28, 45, 71], assembly [36], valve turning [48], and

aerial phytobiopsy [70]. Having a manipulator connected to a UAV through an actuated joint is

a typical design for such systems. However, this limits the range of operation of the end-effector

with respect to the UAV.

In recent years a variety of alternate designs, in which a UAV connected to another system

through a passive joint, have been considered. Using cables to suspend a load from a UAV is one

such example. Transporting a load using suspended cables has been considered both in single-

UAV [17, 75, 84] as well as multi-UAV scenarios [54, 61, 73, 78]. Research efforts have also been

devoted to considering using a passive spherical joint to attach a rigid link to the UAV. For example,

the work presented in [74] considers a rigid rod suspended at one end from a UAV through a

spherical joint and studies scenarios with both a torque-actuated and an actuation-free joint. In [69]

a spherically connected multiquadrotor (SmQ) platform is designed in which multiple quadrotors
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are used as rotating thrust generators for the platform.

Aerial manipulators specifically designed for long reach manipulation have recently gained

attention. In [85], a dual arm connected at the end of a flexible link attached to a UAV is designed.

In [44] and [87], a manipulator is connected at the end of a rod and a platform, respectively,

which in turn are attached to the UAV through a passive spherical joint and act as a pendulum.

In [64, 81], two methods of designing a suspended platform from a larger aerial carrier using

cables are presented. The platforms are actuated through winches and rotors and have manipulators

mounted on the platforms to be used for manipulation tasks. Another approach [86] shows a dual

arm manipulator suspended below a carrier UAV for long reach manipulation and inspection tasks.

In these approaches, the manipulator is suspended directly below the carrier UAV, whereas our

approach allows the manipulator platform to swing out from under the carrier UAV to reach areas

unaffected by downdraft.

Large UAVs may be required in situations where heavy lift capabilities are needed. However,

several applications require access to locations where a large UAV is not well suited to operate in

close proximity to the manipulated object. This can be due to factors such as heavy downdraft

generated by the UAV, confined work spaces, or higher required operational accuracy. One such

example is remote crop sampling, in which the downdraft from the UAV disturbs the crops and

makes sampling difficult. Cleaning high-rise windows or solar panels is another example where it

can be difficult to get close enough with a large UAV, but heavy lift capabilities are necessary to

carry the cleaning products.

In Chapter 4, we address these challenges by presenting a novel multi-body multi-rotor based

aerial manipulator system. The proposed system consists of a bi-rotor actuated platform connected

to a rigid rod which is suspended from a carrier UAV through a passive revolute joint. The

presence of the passive revolute joint and the actuation of the platform using rotor thrust form

the novel aspects of our design. The proposed aerial manipulator can be used for the long reach

manipulation tasks presented above in which a larger UAV is required, however may not be well

suited. Consider the case of remote crop sampling. Our design would allow the small suspended
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manipulator platform to swing out to the side below the large carrier UAV to escape the downdraft.

The horizontal bi-rotor actuation of the platform has the added benefit that it only produces air

currents perpendicular to the manipulator, leaving the work space free from induced disturbances.

We analyze and control the system assuming its operations are restricted to a plane. The system

dynamics are formulated using the Lagrangian approach and it is shown that the bi-rotor platform

pose, i.e., position and orientation, act as differentially flat outputs. An extended high-gain observer

is designed to estimate states and disturbances acting on the system. An output feedback linearizing

control law is designed for flat output trajectory tracking considering the coupled UAV-platform

dynamics. The result is a feedback linearizing control approach that is robust to modeling error

and disturbances. The system is rigorously analyzed to prove stability.

1.4 Organization and Contributions

In this section, we present the organization of the remainder of the dissertation as well as the

contributions of the work presented in the coming chapters.

In Chapter 2, we design the base estimation and control strategy that will be used throughout

this dissertation. The strategy utilizes a feedback linearizing controller that is augmented with an

extended high-gain observer to provide estimates of unmeasured states and unmodeled disturbances.

We further extend the observer dynamics to include the dynamics of a reference system, which

may only be partially known, or completely unknown. As a result, the observer is able to estimate

the the higher-order terms of the reference trajectory to enable feedforward control for improved

transient tracking performance. The only information about the reference system that is needed to

generate the trajectory information is the reference system position. The proposed estimation and

control strategy is then rigorously analyzed to guarantee stability of the overall output feedback

system. Finally, the method is then applied to the problem of tracking and landing on a moving

ground vehicle with a multi-rotor UAV, which is realized in both simulation and experimental

results to show the application of this method to a physical system. During the experiment, the

ground vehicle is tele-operated by a human to ensure the trajectory is not known apriori. Several
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different trajectories are traversed by the ground vehicle and the multi-rotor is able to track and land

on the ground vehicle for each. We additionally propose a novel method for designing an extended

high-gain observer for a system whose dynamics evolve on ($ (3).

The contributions of this work presented in Chapter 2 are as follows. We design and analyze

a robust feedback linearizing controller that mitigates modeling errors and external disturbances

using their estimates. We design and rigorously analyze an extended high-gain observer to estimate

modeling error and external disturbances, feedforward terms for trajectory tracking, and multi-

rotor states for output feedback control. We show that the dynamics of commercial electronic speed

controllers, which regulate the rotational rate of the rotors, evolve on the same timescale as the

extended high-gain observer and therefore must be included in the dynamic model of the extended

high-gain observer. We further illustrate the influence of inclusion/non-inclusion of these dynamics

on output feedback performance through simulation. We rigorously characterize the stability of

the overall output feedback system consisting of our feedback linearizing controller, extended high-

gain observer, and show the incorporation of the multi-rotor actuator dynamics in our observer

design. We illustrate the effectiveness of our output feedback controller through simulation and

experimental results using the example of a multi-rotor landing on a mobile platform. Finally,

we present a novel method for designing an extended high-gain observer for a system evolving on

($ (3) enabling output feedback control design for a multi-rotor which can avoid the singularities

which are present in designing a control system using Euler angles. The observer also enables

disturbance estimation to improve tracking performance.

In Chapter 3, we extend the estimation and control strategy presented in Chapter 2 to enable

detection, classification, and recovery from a complete failure of any one actuator for a hexrotor

UAV during flight. We employ a family of extended high-gain observers, one for the nominal flight

configuration, and one to model each failure mode. The observer estimates are still used in the

feedback control to estimate unmeasured states and unmodeled disturbances, and are also used to

estimate a Lypaunov function derivative of the system in real-time to detect an actuator failure.

Once a failure is detected, the specific actuator that has failed is identified by comparing the norm of
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the disturbance estimates from all of the observers, enabling the selection of a new control mapping

to stabilize the system after failure. We rigorously analyze this method to guarantee closed-loop

stability, selection of the appropriate model even in the presence of other disturbances, and we are

able to establish a theoretical bound on the amount of time which can elapse before the model

switch must occur to recover stability. The proposed method is validated through simulation results

as well as experimental implementation on a physical system.

The contributions of the work presented in Chapter 3 are as follows. We devise a failure

recovery strategy that enables recovery of any single actuator failure on a hexrotor UAV, even in

the presence of a broad class of disturbances. We rigorously analyze the proposed method to

guarantee stability, guarantee correct model selection, and provide bounds on the maximum model

switching time following an actuator failure. We further show that for an observer gain that is high

enough, a model switch need not occur. The observer can estimate the large disturbance caused

by the failure and correct for it, however this method is not practical to implement on a physical

system as it requires a very high sample rate and would drastically amplify any noise present in the

measurements. Finally, we illustrate the effectiveness of the proposed approach through simulation

and experimental results.

In Chapter 4, we design a novel multi-body multi-rotor UAV to be used for long reach manip-

ulation tasks. Our proposed design incorporates a large carrier UAV which has a small platform,

which itself is actuated by two rotors, suspended at the end of a long rigid rod. The platform can be

outfitted with different types of manipulators depending on the task at hand. The rod is connected

to the carrier UAV through a passive revolute joint. Since the platform is actuated at the end of the

lever arm, the forces required are relatively small. This design allows for an arbitrarily long rod

to attach the two bodies, thus allowing the manipulator to enter confined spaces that would not be

possible with only a large UAV. We restrict the motion of the overall system to a plane and design a

similar feedback linearizing output feedback control strategy that again utilizes extended high-gain

observers to estimate unmeasured states and disturbances. The overall output feedback system is

rigorously analyzed to prove stability. The proposed method is implemented in simulation in which
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disturbances are applied, estimated, and canceled, resulting in excellent tracking performance.

The contributions of the work presented Chapter 4 are as follows. We design a novel airframe

configuration consisting of two bodies, both actuated by multiple rotors, which are connected

through a rigid rod. We overcome the inherent underactuation present in the proposed airframe

design through control of the differentially flat outputs to form a cascade connection between

two systems. We adopt an extended high-gain observer to estimate a broad class of unmodeled

disturbances and modeling errors to be canceled in the feedback control design. We rigorously

analyze the system to guarantee stability of the closed-loop system under output feedback. Finally,

we illustrate the effectiveness of the proposed approach through simulation.

In Appendix A, we provide a detailed treatment of the steps necessary to implement these

control systems on physical hardware. This includes system parameter identification, gain tuning,

actuator dynamic response analysis, mapping rotor speed commands to rotor speeds and their

associated forces, software implementation, and mapping control inputs in the form of body-fixed

torques and collective thrust to required actuator forces.

Appendix B shows how to prove stability of a generalized cascade system. The peaking

phenomenon which is present in extended high-gain observers during the transient is discussed

in Appendix C. The projections necessary to project the estimates from the extended high-gain

observer back to ($ (3) are shown in Appendix D. Finally, a detailed controllability analysis of a

hexrotor under actuator failure is shown in Appendix E.

12



CHAPTER 2

TRACKING AN UNKNOWN TRAJECTORY

In this chapter, we lay the groundwork for the base estimation and control technology which

enables robust trajectory tracking for a multi-rotor UAV in the presence of modeling error and

external disturbances. We then immediately extend the estimation and control strategy to study the

problem of estimating and tracking an unknown trajectory. The reference trajectory is unknown

and generated from a reference system with unknown or partially known dynamics. We assume

the only measurements that are available are the position and orientation of the multi-rotor and the

position of the reference system. We adopt an extended high-gain observer (EHGO) estimation

framework to estimate the unmeasured multi-rotor states, modeling error, external disturbances,

and the reference trajectory. We design a robust output feedback controller for trajectory tracking

that comprises a feedback linearizing controller and the EHGO. The proposed control method is

rigorously analyzed to establish its stability properties. Finally, we illustrate our theoretical results

through numerical simulation and experimental validation in which a multi-rotor tracks a moving

ground vehicle with unknown trajectory and dynamics and successfully lands on the vehicle while

in motion. This chapter draws from [10, 12].

Furthermore, we present a novel method to design an extended high-gain observer for a multi-

rotor which has dynamics evolving on ($ (3). We begin by interpreting the rotation matrix, ',

and its derivative, ¤', as variables in R18 instead of interpreting them as variables in ($ (3) and

its tangent space. This enables the design of the extended high-gain observer which can provide

estimates of the higher-order states as well as any modeling error and external disturbances. The

estimates from the observer must be projected back onto ($ (3) to be used in the control law (see

Appendix D). Additionally, we design a second observer to estimate the desired rotational trajectory

from a desired orientation. This enables the design of a translational control to prescribe a desired

orientation, while preserving excellent tracking performance through the estimated feedforward

terms in the rotational control.
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The remainder of the chapter is organized as follows. The system dynamics are introduced

in Section 2.1 with the control and observer design in Section 2.2. The controller is analyzed in

Section 2.3 and is validated through simulation in Section 2.4 with experimental results presented

in Section 2.5. Extended high-gain observer design on ($ (3) is presented in Section 2.6, and

conclusions are presented in Section 2.7.

2.1 System Dynamics

In this section, we review the dynamics of the different subsystems of a multi-rotor UAV and

reference system.

2.1.1 Rotational Dynamics

The rotational dynamics of the multi-rotor are

3 = � ¤Ω +Ω × �Ω, (2.1)

where � ∈ R3×3
�0 is the inertia matrix, andR3×3

�0 denotes a 3×3 positive definite matrix. Additionally,

3 ∈ R3 is the torque applied to the multi-rotor body and Ω ∈ R3 is the angular velocity, each

expressed in the body-fixed frame [55].

Consider the orientation of the multi-rotor expressed in terms of Z-Y-X Euler angles :1 =

[q \ k]> ∈ (− c2 ,
c
2 )

2 × (−c, c]. The angular velocity Ω is related to the Euler angle rates

:2 = [ ¤q ¤\ ¤k]> ∈ R3 in the inertial frame as

:2 = ΨΩ, Ψ =


1 BqC\ 2qC\

0 2q −Bq

0 Bq/2\ 2q/2\


, Ω = Ψ−1:2,

where 2(·) , B(·) , C(·) denote cos(·), sin(·), tan(·), respectively. The rotational dynamics can be

equivalently written in terms of Euler angles as

¤:1 = :2,

¤:2 = ¤ΨΨ−1:2 −Ψ�−1(Ψ−1:2 × �Ψ−1:2) +Ψ�−13 + 2b ,

(2.2)
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where 2b ∈ R3 is an added term to represent the lumped rotational disturbance and satisfies the

following assumption.

Definition 2.1 (Prime Canonical Form). A control system in the “prime canonical form” [66], for

state x ∈ R=, control input D ∈ R, and disturbance f ∈ R, has the following representation

¤x = �prmx + �prm 5prm(C, x, D), H = �prmx, (2.3)

where

�prm =


0=−1×1 �=−1

0 01×=−1

 , �prm =


0=−1×1

1

 , 5prm : R≥0 × R= × R→ R, �prm = [1 01×=−1],

0?×@ is a matrix of zeros with dimension ? × @, �? is the identity matrix of dimension ?, and H ∈ R

is the measurement.

Assumption 2.1 (Disturbance Properties). The dynamics of the various subsystems in this chapter

take the prime canonical form perturbed by a disturbance term. We assume that the disturbance

enters the RHS of (2.3) as �3f where �3 = �prm, f is continuously differentiable, and its partial

derivatives with respect to states are bounded on compact sets of those states for all C ≥ 0.

Let :A = [qA \A kA]> ∈ (− c2 ,
c
2 )

2 × (−c, c] and ¤:A = [ ¤qA ¤\A ¤kA]> ∈ R3 be the rotational

reference signals. Define the rotational tracking error variables

/1 = :1 − :A , /2 =
¤/1 = :2 − ¤:A , / = [/>1 />2 ]

>.

The rotational dynamics (2.2) can now be written in terms of tracking error

¤/1 = /2,

¤/2 = 5 (/, :1, ¤:A) + � (:1)3 + 2b − ¥:A ,
(2.4)

where

5 (/, :1, ¤:A) = ¤ΨΨ−1(/2 + ¤:A) −Ψ�−1(Ψ−1(/2 + ¤:A) × �Ψ−1(/2 + ¤:A)),

� (:1) = Ψ�−1.
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Suppose that only ¤̄:A , an estimate of ¤:A , is known. Then (2.4) can be rewritten as

¤/1 = /2,

¤/2 = 5 (/, :1,
¤̄:A) + � (:1)3 + =b ,

(2.5)

where =b = 2b− ¥:A+[ 5 (/, :1, ¤:A)− 5 (/, :1,
¤̄:A)], which also satisfiesAssumption 2.1 based on the

properties of 5 and by assuming the reference trajectory is third-order continuously differentiable.

2.1.2 Translational Dynamics

Let p1 = [G H I]> ∈ R3 and p2 = [ ¤G ¤H ¤I]> ∈ R3, respectively, be the position and velocity of the

multi-rotor center of mass expressed in the inertial frame. Let the thrust generated by the 8-th rotor

be 5̄8 ∈ R, and the total thrust force, D 5 =
∑=
8=1 5̄8 ∈ R serves as the input to the translational system.

Let the mass of the aerial platform be < ∈ R�0, 6 be the gravitational constant, eI = [0 0 1]>, and

2d ∈ R3 be the lumped translational disturbance term which satisfies Assumption 2.1. Then, the

translational dynamics [55] are

¤p1 = p2,

¤p2 = −
D 5

<
'3(:1) + 6eI + 2d,

(2.6)

where

'3(:1) =


2qB\2k + BqBk

2qB\Bk − Bq2k

2q2\


.

Let pA = [GA HA IA]> ∈ R3 and ¤pA = [ ¤GA ¤HA ¤IA]> ∈ R3 be the translational reference signals.

Define the translational error variables

11 = p1 − pA , 12 = ¤11 = p2 − ¤pA , 1 = [1>1 1>2 ]
>.

The translational dynamics (2.6) can now be written in terms of tracking error as

¤11 = 12,

¤12 = −
D 5

<
'3(:1) + 6eI + 2d − ¥pA .

(2.7)
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2.1.3 Reference System Dynamics

We assume that the reference trajectory that the multi-rotor UAV will track is generated by the

system

¤x21 = x22 ,

¤x22 = 52 (x2, u2),
(2.8)

where x21 = [G2 H2 I2]> ∈ R3 and ¤x21 = [ ¤G2 ¤H2 ¤I2]> ∈ R3 are the position and velocity

of the reference system, x2 = [x>21 , x
>
22
]> is the system state, u2 is the unknown system input,

and 52 (x2, u2) is some unknown function. We take the system input u2 = 62 (C, x2) and let

5̄2 (C, x2) = 52 (x2, u2). We assume that m 5̄2 (C,x2)
mx2

¤x2 satisfies Assumption 2.1. In the case of tracking

a moving ground vehicle, the reference signals will be taken as the reference system state, x2, and

will be estimated using measurements of the ground vehicle position.

2.1.4 Actuator Dynamics and Mapping to Inputs

The system dynamics, (2.4) and (2.7), take body-fixed torques, 3, and total thrust force, D 5 ,

as inputs. The thrust and torques are generated by applying forces with each actuator. The force

generated by rotor 8 ∈ {1, . . . , =} is 5̄8 = 1l2
8
, where 1 ∈ R�0 is a constant relating angular rate to

force and l8 ∈ R�0 is the 8-th rotor angular rate. These individual actuator forces are then mapped

through a matrix, " ∈ R4×=, based on the geometry of the multi-rotor aerial platform, allowing the

squared rotor angular rates to be treated as the system input through
D 5

3

 = 1"8B, 8B =
[
l2

1, . . . , l
2
=

]>
. (2.9)

The actuators typically used on multi-rotor UAVs are Brushless DC (BLDC) motors, which

require electronic speed controllers (ESCs). Let the vector of desired rotor angular rates be

8des ∈ R= and 8 ∈ R= be the vector of rotor angular rates. Due to the internal use of PI control,

the ESCs introduce dynamic delays [22] of the following form

g< ¤8 = (8des − 8), (2.10)
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where g< ∈ R�0 is the time constant of the actuator system, see Appendix A for details. Typically

the actuator dynamics are ignored in multi-rotor control design as they are sufficiently fast as

compared with the rotational and translational dynamics and the control law. We also ignore the

actuator dynamics in our control design, however, they are crucial in the dynamics of the EHGO

used for output feedback control (see Remark 2.1 below). The actuator dynamics evolve on the

same time-scale as the EHGO dynamics, and therefore cannot be ignored in EHGO design.

Since feedback of the rotor angular rates is not available, they can be simulated by the following

system

g< ¤̂8 = (8des − 8̂), l̂(0) = 0=×1, (2.11)

where 8̂ ∈ R= is a vector of simulated rotor angular rates, and 0=×1 ∈ R=×1 is a vector of zeros. We

will show in Section 2.3 that the use of simulated rotor speeds in place of measured rotor speeds

still results in an exponentially stable closed-loop system.

2.2 Control and Observer Design

A multi-rotor UAV is an underactuated mechanical system. While there can be = ∈ {4, 6, 8, ...}

rotors, only four degrees of freedom can be controlled in the classic configuration with co-planar

rotors. To overcome the underactuation, as discussed below, the rotational dynamics are controlled

to create a virtual control input for the translational dynamics.

We begin by designing a trajectory tracking feedback linearizing controller for the rotational

subsystem. The rotational trajectory is subsequently used to design a trajectory tracking controller

for the translational subsystem in the presence of tracking errors in the rotational system. The

controllers are designed under state feedback which requires the assumption that we not only have

access to all states, but know the system disturbances exactly. This assumption is relaxed through

the design of an EHGO to estimate states, disturbances, and the reference trajectory for use in

output feedback control.
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2.2.1 Rotational Control

The rotational control feedback linearizes the rotational tracking error dynamics (2.4) by se-

lecting the desired torque 3 as

33 = �
−1(:1) [ f A − 5 (/, :1,

¤̄:A)], (2.12)

where f A = −V1/1 − V2/2 − =b , and V1, V2 ∈ R�0 are constant gains. Using (2.12) results in the

following closed-loop rotational tracking error system

¤/1 = /2,

¤/2 = −V1/1 − V2/2.

(2.13)

2.2.2 Translational Control

The translational control uses the total thrust, D 5 , as the direct control input and the desired roll

and pitch trajectories, qA and \A , as virtual control inputs. The translational control is designed in

view of potential roll and pitch trajectory tracking errors, leading to the following modification of

the translational error dynamics (2.7)

¤11 = 12,

¤12 = −
D 5

<
'3(:A + /1) + 6eI + 2d − ¥pA .

(2.14)

Define the perturbation due to rotational tracking error by

eo (C, /1) = −
D 5

<
('3(:A + /1) − '3(:A)). (2.15)

Then, (2.14) can be written as

¤11 = 12,

¤12 = −
D 5

<
'3(:A) + 6eI + 2d − ¥pA + eo (C, /1).

(2.16)
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Let f C = [ 5G 5H 5I]> be defined by f C = −W111 − W212 − 2d + ¥pA − 6eI, where W1, W2 ∈ R�0

are constant gains. Define the desired rotational references and desired total thrust by

qA = tan−1
©­­«
− 5H√
5 2
G + 5 2

I

ª®®¬ , kA = 0,

\A = tan−1

(
5G

5I

)
, D 5 3 = −

< 5I

2qA 2\A
.

(2.17)

Then, −D 5

<
'3(:A) = f C . Thus, using (2.17) leads to the following closed-loop translational

subsystem with the inclusion of tracking error (2.15) from the rotational subsystem

¤11 = 12,

¤12 = −W111 − W212 + eo (C, /1).
(2.18)

Note that the rotational controller (2.12) requires the estimate ¤̄:A , however, only :A is given by

the translational controller (2.17). The derivative of the reference trajectory ¤:A can be computed

analytically from the translational controller as

¤qA =
5H

( ¤5G 5G + ¤5I 5I) − ¤5H (
5 2
G + 5 2

I

)(
5 2
G + 5 2

I

)1/2 (
5 2
G + 5 2

H + 5 2
I

) ,

¤\A =
¤5G 5I − 5G ¤5I
5 2
G + 5 2

I

,

¤kA = 0,

(2.19)

where ¤f C =
[ ¤5G ¤5H ¤5I]> and

¤f C = −W112 − W2

[
−
D 5

<
'3(:1) + 6eI + 2d − ¥pA

]
− ¤2d + p (3)A . (2.20)

The estimate ¤̄:A is obtained by setting ¤2d = 0 in the expression for ¤:A . While the substitution

(2.20) requires the third order derivative of the translational reference, it is shown in the EHGO

design that the translational reference must be sixth order differentiable to be sufficiently smooth

for estimation.
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2.2.3 Extended High-Gain Observer Design

Amulti-input multi-output EHGO is designed similar to [52, 53] to estimate higher-order states

of the error dynamic systems (2.4) and (2.7), uncertainties arising frommodeling error and external

disturbances, as well as the reference trajectory based on the reference system dynamics (2.8). It

is shown in [9] that the actuator dynamics must be included in the dynamic model in the EHGO

design.

The dynamics (2.2), (2.6), and (2.8) can be combined into one set of equations for the observer

where the state space is extended to include unknown disturbance dynamics. Since the third

derivative of the reference trajectory is required by (2.20), the dynamics of the reference system are

extended to include the third derivative of its position for estimation

¤11 = 12,

¤12 = −
D 5

<
'3(:1) + 6eI + 2d − ¥pA ,

¤2d = id (C, 1),

¤/1 = /2,

¤/2 = 5 (/, :1,
¤̄:A) + � (:1)3 + =b ,

¤=b = ib (C, /),

¤x21 = x22 ,

¤x22 = x23 ,

¤x23 = 2G2,

¤2G2 = iG2 (C, x2),

(2.21)

where 2G2 =
m 5̄2 (C,x2)
mx2

¤x2. Since the reference system dynamics may not be known, they have been

absorbed by the disturbance term in their entirety. If the reference system dynamics are partially

known, then the nominal component can be included in the ¤x23 expression. The estimated reference

system states will be taken as the reference trajectory for the output feedback control.
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We now define the state vectors

q = [1>1 1>2 />1 />2 ]
>, 61 = [1>1 1>2 2>d ]>,

62 = [/>1 />2 =>b ]>, 63 = [x>21 x>22 x>23 2>G2]>,

6 = [6>1 6>2 6>3 ]
>.

Define i(C, q, x2) =
[
id (C, 1) ib (C, /) iG2 (C, x2)

]>, a vector of unknown functions describing the

disturbance dynamics.

Assumption 2.2 (Disturbance Dynamics). It is assumed i(C, q, x2) is continuous and bounded on

any compact set containing q and x2.

Note that the second order derivative of the reference trajectory, ¥:A , is lumped into the distur-

bance =b . To ensure =b satisfies Assumption 2.1, ¥:A must be differentiable, therefore by (2.19)

and (2.20) the translational reference signals must be sixth order differentiable to be sufficiently

smooth, however our design only requires estimates up to the third derivative.

The observer system with extended states and a vector of simulated squared rotor speeds,

8̂B = [l̂2
1, . . . , l̂

2
=]> from the system (2.11), as the control input through the mapping (2.9) is

¤̂6 = � 6̂ + �
[
5̄ (/̂, x̂23 , :1,

¤̄:A) + �̄ (:1)8̂B

]
+ � 6̂4,

6̂4 = � (6 − 6̂),
(2.22)

where

� = ⊕3
8=1�8, � = ⊕3

8=1�8, � = ⊕3
8=1�8, � = ⊕3

8=1�8,

�8 =


03 �3 03

03 03 �3

03 03 03


, �8 =


03

�3

03


, �8 =


U1/n �3

U2/n2�3

U3/n3�3


,

�8 =

[
�3 03 03

]
, for 8 ∈ {1, 2},
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�3 =



03 �3 03 03

03 03 �3 03

03 03 03 �3

03 03 03 03


, �3 =



03

03

03

03


, �3 =



U1/n �3

U2/n2�3

U3/n3�3

U4/n4�3


,

�3 =

[
�3 03 03 03

]
,

5̄ (/̂, x̂23 , :1,
¤̄:A) =


6eI − x̂23
5 (/̂, :1,

¤̄:A)

03×1


, �̄ (:1) = 1


−'3 (:1)

<
03

03×1 � (:1)

03×1 03


",

where ⊕ denotes the matrix direct sum, �= ∈ R=×= is the identity matrix of dimension =, 0= ∈ R=×=

is a square matrix of zeros, and � is designed by choosing U8
9
such that

Br8 + U81B
r8−1 + · · · + U8r8−1B + Ur8 , (2.23)

is Hurwitz, [r1 r2 r3]> = [3 3 4]>, and n ∈ R�0 is a positive constant that is chosen small enough.

2.2.4 Output Feedback Control

For use in output feedback control, the estimates, 6̂, must be saturated outside a compact set of

interest to overcome the peaking phenomenon (see Appendix C). The following saturation function

is used to saturate each estimate individually

ĵ8B = : j8 sat

(
ĵ8

: j8

)
, sat(H) =


H, if |H | ≤ 1,

sign(H), if |H | > 1,
(2.24)

for 1 ≤ 8 ≤ 30, where the saturation bounds : j8 are chosen such that the saturation functions will

not be invoked under state feedback.

The state feedback controllers (2.12) and (2.17) are rewritten as output feedback controllers

using the saturated estimates

3̂3 = �
−1(:1)

[
f̂ A − 5 (/̂, :1,

¤̄:A)
]
, (2.25)
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where f̂ A = −V1/̂1 − V2/̂2 − =̂b and

q̂A = tan−1
©­­«
− 5̂H√
5̂ 2
G + 5̂ 2

I

ª®®¬ , k̂A = 0,

\̂A = tan−1

(
5̂G

5̂I

)
, D̂ 5 3 = −

< 5̂I

2q̂A 2\̂A

,

(2.26)

where f̂ C = −W1 1̂1 − W2 1̂2 − 2̂d + x̂23 − 6eI.

Furthermore, these control inputs can be mapped to desired squared rotor speeds, 8B3 ∈ R=,

from the output feedback linearizing control signals D̂ 5 3 and 3̂3 . For = > 4, the inverse of (2.9) is

an over-determined system which admits infinitely many solutions. In this case, we focus on the

minimum energy solution

8B3 =
1

1
"†


D̂ 5 3

3̂3

 , where "† = ">("">)−1. (2.27)

The square root of each component of 8B3 acts as the reference signal, 8des, in (2.11) for the

associated rotor, which in turn can be applied directly to the physical system.

Remark 2.1 (Inclusion ofActuatorDynamics in EHGO). The actuator dynamics evolve on the same

time-scale as the EHGO. Now, consider the case of an EHGO without actuator dynamics. While

the actuators are changing their rotational rates according to (2.10) to apply the desired control

input, the EHGO, with no knowledge of these relatively slow dynamics, will observe this delayed

application of control as a large disturbance. In an effort to cancel this perceived disturbance, a

larger control action is commanded. This causes the system to overshoot the reference dramatically.

The opposite action occurs in trying to correct for the overshoot, resulting in aggressive oscillations

that can destabilize the system.

An example of this behavior is shown in Fig. 2.1, where the rotational subsystem is simulated

with and without actuator dynamics in the observer. There is no nominal disturbance applied to the

system, however, the disturbance estimate from the observer without actuator dynamics oscillates

quickly between its saturation bounds. In this case the saturation bounds were chosen small
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Figure 2.1: Simulated rotational system response with and without actuator dynamics included in
the EHGO. The disturbance estimate, f̂2, when actuator dynamics are omitted oscillates between
the saturation bounds (top), inducing oscillations in the tracking performance of q2 (bottom). The
disturbance estimate, f̂1, and tracking, q1, show excellent performance when actuator dynamics
are included in the EHGO for this example.

enough to prevent the system from becoming unstable to illustrate the oscillatory behavior induced

by the omission of the actuator dynamics. When the EHGO has a model of how the actuators are

dynamically applying the desired control action, there is no longer a perceived disturbance due to

the actuator delay, and the system functions nominally.

2.3 Stability Analysis

In this section, we will derive the requirements of the initial conditions that ensure that the

proposed controller is well defined throughout operation. We then establish stability of the state

feedback control, observer estimates, and output feedback control.
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2.3.1 Restricting Domain of Operation

The domain of operation must be restricted in order to ensure that the rotational feedback

linearizing control law remains well defined. To ensure the expressions in (2.17) are well-defined,

we introduce the following assumption.

Assumption 2.3. The rotational reference signals remain in the set {|qA | < c
2−X, |\A | <

c
2−X, |kA | <

c
2 − X}, where 0 < X < c

2 .

To ensure the rotational tracking error is well defined, i.e., the magnitude of each entry of /1 is

smaller than c
2 , and to ensure singularities of the Z-Y-X Euler angle representation at \ = ± c2 , the

rotational states must remain in the set {|q | < c
2 , |\ | <

c
2 , |k | <

c
2 , | ¤q | < 0\ , | ¤\ | < 0\ , | ¤k | < 0\},

where 0\ is some positive constant. The magnitude of each entry of /1 should be smaller than c
2

to ensure that the rotational error is well-defined. We will now establish that for sufficiently small

initial tracking error, / (0), the tracking error ‖/1(C)‖ < X for all C > 0. A Lyapunov function in the

rotational error dynamics is

+b = />%b/, where %b�b + �>b %b = −�6, (2.28)

�b =


03 �3

−V1�3 −V2�3

 .
A Lyapunov function in the translational error dynamics is

+d = 1>%d1, where %d�d + �>d %d = −�6, (2.29)

�d =


03 �3

−W1�3 −W2�3

 .
Solving %b�b + �>b %b = −�6 for %b and %d�d + �>d %d = −�6 for %d yields

%b =


V21+V1+V

2
2

2V1V2
�3

1
2V1
�3

1
2V1
�3

V1+1
2V1V2

�3

 , %d =


W21+W1+W

2
2

2W1W2
�3

1
2W1
�3

1
2W1
�3

W1+1
2W1W2

�3

 .
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Let 2b ∈ R�0 be chosen such that 2b < (V1 + 1)X2/(2V2), and let Ωb = {+b < 2b}. Since eo (C, /1)

and its partial derivatives are continuous onΩb , and eo is uniformly bounded in time, it is locally Lip-

schitz inΩb and let !4 be the associated Lipschitz constant. Take 2d > _max(%d) (2!4X_max(%d))2,

where _max(·) is the maximum eigenvalue of the argument, and let Ωd = {+d < 2d}. Define the

domain of operation Ω@ = Ωb ×Ωd.

Lemma 2.1 (Restricting the Domain of Operation). For the feedback linearized rotational error

dynamics (2.13)with initial conditions / (0) ∈ Ωb the system state / (C) remains in the set ‖/1(C)‖ <

X for all C > 0. Similarly, the feedback linearized translational error dynamics (2.18) with initial

conditions 1(0) ∈ Ωd, the system state 1(C) remains in Ωd, for all C > 0.

Proof. Substituting %b in (2.28), the rotational tracking error Lyapunov function can be written as

+b =
(V1 + 1)/>1 /1

2V2
+
V1/

>
2 /2 + (V2/1 + /2)>(V2/1 + /2)

2V1V2
.

Taking the bound on the Lyapunov function

+b ≤ 2b ⇒
(V1 + 1)/>1 /1

2V2
≤ 2b ,

and choosing 2b in the following manner

2b <
(V1 + 1)X2

2V2
⇒ ‖/1(C)‖ < X,

over the set Ωb . The Lyapunov function (2.28) also satisfies the following inequalities

_min(%b) ‖/‖2 ≤ +b ≤ _max(%b) ‖/‖2 , ¤+b ≤ − ‖/‖2 ,

where _min(·) is the minimum eigenvalue of the argument, showing that Ωb is positively invariant.

In view of potential rotational tracking errors, the translational tracking error Lyapunov function

(2.29) satisfies the following inequalities

_min(%d) ‖1‖2 ≤ +d ≤ _max(%d) ‖1‖2 ,

¤+d ≤ − ‖1‖2 + 2[03×1 4o (C, /1)>]>%d1.
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Since 4o (C, /1) and its partial derivatives are continuous on Ωb , and 4o is uniformly bounded in

time, 4o is Lipschitz in /1 on Ωb . We can now define

‖4o (C, /1) − 4o (C, 0)‖ ≤ !4 ‖/1‖ ≤ !4X,

for the Lipschitz constant, !4. We can then bound the translational Lyapunov function derivative

by

¤+d ≤ − ‖1‖2 + 2!4X_max(%d) ‖1‖ .

For ‖1‖ > 2!4X_max(%d), ¤+d < 0. Since +d ≤ _max(%d) ‖1‖2 we can choose

2d > _max(%d) (2!4X_max(%d))2. (2.30)

By this choice, ¤+d < 0 for+d ≥ 2d, henceΩd is compact and positively invariant. Thus, the domain

of operation Ω@ = Ωb ×Ωd is positively invariant. �

Remark 2.2. By Lemma 2.1 and Assumption 2.3, the rotational states remain in the set {|q | <
c
2 , |\ | <

c
2 , | ¤q | < 0\ , | ¤\ | < 0\}, where 0\ is some positive constant. Thereby ensuring singularities

in the Euler angles are avoided and the feedback linearizing controllers (2.12) and (2.17) remain

well defined.

Furthermore, we will restrict the domain of operation of the reference system by defining the

set ΩG2 = {‖x21 ‖ < 01, ‖x22 ‖ < 02, ‖x23 ‖ < 03} for 01, 02, 03 ∈ R�0.

2.3.2 Stability Under State Feedback

Theorem 2.1 (Stability Under State Feedback). For the closed-loop state feedback rotational and

translational subsystems, (2.13) and (2.18), if the initial conditions (/ (0), 1(0)) ∈ Ω@, the system

states (/ (C), 1(C)) ∈ Ω@ for all C > 0. Additionally, the states will exponentially converge to the

origin.
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Proof. The translational and rotational closed-loop systems can be written as a cascaded system in

the following form

¤11 = 12,

¤12 = −W111 − W212 + eo (C, /1),

¤/1 = /2,

¤/2 = −V1/1 − V2/2,

⇒

¤11 = 12,

¤12 = 51(C, 1, /),

¤/1 = /2,

¤/2 = 52(/).

Taking the Lyapunov functions for the rotational and translational subsystems, (2.28) and (2.29), a

composite Lyapunov function can be written

+B 5 = 31+d ++b , 31 > 0. (2.31)

Since +d satisfies (B.3) on Ωd, +b satisfies (B.2) on Ωb , and 51(C, 1, /) is Lipshitz in / on Ωb , it

can be shown following the generalized proof in Appendix B that for 31 small enough, the entire

closed-loop state feedback system converges exponentially to the origin for any trajectory starting

within the domain of operation, Ω@. �

2.3.3 Convergence of Observer Estimates

The scaled error dynamics of the EHGO are written bymaking the following change of variables

[89 =
(j8

9
− ĵ8

9
)

n r8− 9
, 8̃B = 8B − 8̂B, (2.32)

where j8
9
is the 9-th element of 68 for 1 ≤ 8 ≤ 3 and 1 ≤ 9 ≤ r8, and ĵ89 is the estimate of

j8
9
obtained using the EGHO. In the new variables, the scaled EHGO estimation error dynamics

become

n ¤(8 = �8(8 + �81
[
Δ 5̄ 8 + �̄8 (:1)8̃B

]
+ n�82i

8 (C, q, x2), (2.33)
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where

�8 =



−U81�3 �3 · · · 03

...
. . .

...

−U8
r8−1�3 03 · · · �3

−U8r8 �3 03 · · · 03


, �81 =



03

...

�3

03


,

�82 = [03 · · · 03 �3]> , (8 =
[
(81
> · · · (8r8

>]>
,

and Δ 5̄ 8 = 5̄ 8 (/, x23 , :1,
¤̄:A) − 5̄ 8 (/̂, x̂23 , :1,

¤̄:A) and 5̄ 8, �̄8, and i8 correspond to rows 38 − 2 to 38

of 5̄ , �̄, and i, respectively. Note (2.33) is an $ (n) perturbation of

n ¤(8 = �8(8 + �81
[
Δ 5̄ 8 + �̄8 (:1)8̃B

]
. (2.34)

The actuator error dynamics in terms of the error in squared rotor angular rate, 8̃B, and rotor

angular rate error, 8̃ = 8 − 8̂ can be written as

g< ¤̃8B = −28̃B + 2,des8̃,

g< ¤̃8 = −8̃,
(2.35)

where ,des = diag[√lB38 ] ∈ R=×= for 8 ∈ {1, . . . , =} is time-varying. By exploiting the fact that

,des is bounded, i.e.,
√
lB38 ≤ lmax, for each i, where lmax ∈ R is the maximum achievable rotor

angular rate, the actuator error dynamics (2.35) can be analyzed as a cascaded system with the

Lyapunov functions

+l̃B
= 8̃>B 8̃B, +l̃ = 8̃>8̃, (2.36)

and the composite Lyapunov function

+l = 32+l̃B
++l̃, 32 > 0, (2.37)

where 32 is sufficiently small (see Appendix B for details). Define the set Ωl = {+l ≤ 2l} where

2l ∈ R�0 is an arbitrary constant.

Lemma 2.2 (Stability of Actuator Dynamics). For bounded input, √8B38 for 8 ∈ {1, . . . , =}, the

actuator error dynamics (2.35) will globally exponentially converge to the origin. Therefore, the

simulated rotor angular rates, 8̂, exponentially converge to the actual rotor angular rates, 8.
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Proof. The Lyapunov functions for the actuator dynamics (2.35) are +l̃B
and +l̃ from (2.36), with

the composite Lyapunov function (2.37). Since +l̃B
satisfies (B.3) globally, +l̃ satisfies (B.2)

globally, and ¤̃8B is globally Lipschitz in 8̃ since ,des is bounded, using the general result for

cascaded systems in Appendix B, it can be shown that the origin is globally exponentially stable

when 32 is chosen small enough. �

The systems (2.34) and (2.35) form the cascaded system

n ¤(8 = �8(8 + �81
[
Δ 5̄ 8 + �̄8 (:1)8̃B

]
,

g< ¤̃8B = −28̃B + 2,des8̃,

g< ¤̃8 = −8̃.

(2.38)

We now define the state vector of scaled observer error and actuator error as � = [(1 (2 (3 8̃B 8̃]>.

In comparison with a standard EHGO, (2.38) has additional vanishing perturbation terms with

associated dynamics. In the following theorem, we establish that these perturbation terms do not

affect the convergence of the EHGO. Furthermore, the perturbation term in (2.33) is continuous and

can be bounded by ni(C, q, x2) ≤ n^ for ^ ∈ R�0, and can be treated as a nonvanishing perturbation.

Using [40, Lemma 9.2], it can be shown that the perturbed observer error dynamics converge to an

$ (n^) neighborhood of the origin.

A Lyapunov function for the EHGO error system (2.34) with the input, 8̃B, set to zero is

n+[ =

3∑
8=1

((8)>%8[(8, %8[�8 + �>8 %8[ = −�3r8 . (2.39)

A composite Lyapunov function for (2.38) is

+Δ = 33+[ ++l, 33 > 0, (2.40)

where 33 is sufficiently small (see Appendix B for details).

Recall that (62
1, 6

2
2) = (/1, /2). Also, the estimates of (/1, /2) can be expressed as /̂1 =

/1 − n2(2
1 and /̂2 = /2 − n(2

2. Consider a strict subset of Ωb , defined by Ω
sub
b
⊂ Ωb . Define

Ω[ = {((1, (2, (3) ∈ R10 | (/̂1, /̂2) ∈ Ωb , ∀/ ∈ Ωsub
b }.

Let 2Δ ∈ R�0 be the largest constant such that ΩΔ = {+Δ ≤ 2Δ} is contained in Ω[ ×Ωl.
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Theorem 2.2 (Convergence of EHGO Estimates). There exists sufficiently small n∗ such that for

all n ∈ (0, n∗), ΩΔ is positively invariant, and for each �(0) ∈ ΩΔ, �(C) converges exponentially to

an $ (n^) neighborhood of the origin.

Proof. The Lyapunov function for the actuator error system is (2.37) and the Lyapunov function for

the EHGO error system with the input, 8̃B, set to zero is (2.39). A composite Lyapunov function

for the cascaded system (2.38) is (2.40). The function 5̄ 8 (/, x23 , :1,
¤̄:A) is Lipschitz in / and x23

on Ωb ×ΩG2 and (/̂1, /̂2) ∈ Ωb . Thus, Δ 5̄ 8 can be bounded by



Δ 5̄ 8

 ≤ ![ 

68 − 6̂8


⇒ 

Δ 5̄ 8

 ≤ n![ 

(8

 ,

leading to the following bound on the derivative of the Lyapunov function

n ¤+[ ≤
3∑
8=1

(
−



(8

2 + 2n![


(8

2 

%8[�81

) ,

n ¤+[ ≤ − ‖(‖2 + 2n![ ‖# ‖ ‖(‖2 ,

where the elements of the diagonal matrix # are #8 =


%8[�81

. Since U8

9
are tunable and n is a

design parameter, pick n such that 2n![ ‖# ‖ ≤ 1
2 resulting in the following inequality

n ¤+[ ≤ −
1

2
‖(‖2 . (2.41)

The composite Lyapunov function (2.40) consists of +[ and +l, where +[ satisfies (B.3) on Ω[, +l

satisfies (B.2) on Ωl, and n ¤( is Lipschitz in 8̃B on Ωl. Following Appendix B, the origin of (2.38)

is exponentially stable for any trajectory starting in ΩΔ. Furthermore, the cascade connection

of the complete scaled observer error system (2.33) and the actuator error dynamics (2.35) is

the same as (2.38) with perturbation. The perturbation is bounded by ni(C, q, x2) < n^ and is

continuous, therefore it can be treated as a nonvanishing perturbation. Following [40, Lemma 9.2],

the estimation error of the EHGO converges exponentially to an$ (n^) neighborhood of the origin.

Furthermore, ΩΔ will remain invariant under the nonvanishing perturbation. �
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Remark 2.3 (Identification of n∗). The Lyapunov analysis in the proof of Theorem 2.2 provides an

estimate of n∗, however this estimate is usually quite conservative. In practice, n is chosen through

empirical tuning on the system on which it will be implemented.

2.3.4 Stability Under Output Feedback

The system under output feedback is a singularly perturbed system which can be split into two

time-scales. The multi-rotor dynamics and control reside in the slow time-scale while the observer

and actuator dynamics reside in the fast time-scale. We now establish the stability of the overall

output feedback system.

Theorem 2.3 (Stability Under Output Feedback). For the output feedback system defined by (2.5),

(2.7), (2.11), (2.22), (2.25), (2.26), and (2.27), the following statements hold

i. given any compact subset Ω� ⊂ Ω@ × ΩΔ, there exists a sufficiently small n∗ such that for

any n ∈ (0, n∗), Ω� is a positively invariant set;

ii. for n ∈ (0, n∗) the trajectories of the output feedback system exponentially converge to an

$ (n^) neighborhood of the origin with Ω� as a subset of its region of attraction.

Proof. The existence of sufficiently small n∗ such thatΩ� is invariant can be established analogously

to [40, Theorem 14.6]. The entire output feedback closed-loop system can now be written in

singularly perturbed form

¤q = �2q + Δ((), (2.42a)

n ¤(8 = �8(8 + �81
[
Δ 5̄ 8 + �̄8 (:1)8̃B

]
+ n�82i

8 (C, q, x2), (2.42b)

g< ¤̃8B = −28̃B + 2,des8̃, (2.42c)

g< ¤̃8 = −8̃, (2.42d)

where

�2 =


�d 06

06 �b

 .
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The term Δ(() is due to estimation errors and is $ (n^) and can be defined by

Δ(() =



03×1

W1n
2(1

1 + W2n(
1
2 + (

1
3 − (

3
3

03×1

V1n
2(2

1 + V2n(
2
2 + (

2
3 + n![



(2
2






.

First, we ignore the last term, n�8i8 (C, q, x2), in the ( dynamics. In this case, the closed-loop

system has a two-time-scale structure because n and g< are small. Since the effect of Δ(() in

(2.42a) vanishes as n is pushed to zero, the boundary layer system can be taken as (2.42b)–(2.42d)

and the slow dynamics can be taken as (2.42a). From Theorem 2.2, the origin of the boundary layer

system is an exponentially stable equilibrium point as n → 0, and from Theorem 2.1, the origin of

the slow system is an exponentially stable equilibrium point.

With the inclusion of n�8i8 (C, q, x2) in the ( dynamics, the overall system is an $ (n :) pertur-

bation of an exponentially stable system. Therefore, similar to [40, Lemma 9.2], it can be shown

that the entire closed-loop system with output feedback control (2.42) will converge to an $ (n^)

neighborhood of the origin for any trajectory starting in Ω@ ×ΩΔ. �

2.4 Numerical Simulation

The proposed method is simulated with the reference system taken as a moving ground vehicle

on which the multi-rotor will land. However, since the multi-rotor may initially be far from the

ground vehicle, i.e., p1 − x21 may be large, we will bound the estimate of this error to prevent

overly aggressive maneuvers by saturating 1̂1 as

1̂1B = Xd tanh( 1̂1/X?), (2.43)

where Xd ∈ R is chosen to determine the rate of convergence of the multi-rotor position, p1, and

the ground vehicle position, x21 . The saturated estimate is then used in the output feedback control

(2.26). The controller (2.26) using 1̂1B loses exponential stability outside a certain region around the
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origin. This can be avoided by scheduling the proportional gain, W1, in (2.26). However, saturation

is a more natural choice and our simulations suggested that it yields superior performance.

Figure 2.2: The trajectory of the multi-rotor UAV (dashed) and the trajectory of the ground
vehicle (solid). The red points are the initial conditions and the green point signifies the
occurrence of the landing.

The initial position of the multi-rotor is p1(0) = [−10, 1, −5]> and the initial position

of the ground vehicle is x21 (0) = [2, 0, −0.5]>. The ground vehicle follows the trajectory

x21 (C) = [C, 2 cos(C), −0.5]>. While only having a position measurement of the ground vehicle,

with added noise, the multi-rotor is able to track and land on the vehicle, as shown in Fig. 2.2.

The multi-rotor is able to make this landing while canceling disturbances in both the rotational

and translational subsystems, 2b = [sin(C) cos(C) sin(C)]> and 2d = [cos(C) sin(C) cos(C)]>,

respectively. Gaussian white noise is added to all measurement signals.
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Figure 2.3: Experimental multi-rotor on ground vehicle landing platform.

Figure 2.4: Experimental landing on moving ground vehicle.

2.5 Experimental Validation

The proposed estimation and control method is implemented on an experimental platform to

validate performance and show the practical application of this control methodology to landing a

multi-rotor on a small moving ground vehicle.
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Figure 2.5: Estimates of the total rotational disturbance affecting the hexrotor during an
experimental flight.

2.5.1 Hardware

The experimental multi-rotor platform is built on a 550mm hexrotor frame with 920kV motors

and 10x4.5 carbon fiber rotors. Six 30A electronic speed controllers (ESCs) are used for motor

control and the system is powered by a 5000mAh 4s LiPo battery. The model parameters for the

experimental platform were found to be

� =


0.0228 0 0

0 0.0241 0

0 0 0.0446


, " =



1 1 1 1 1 1

− A2 −A − A2
A
2 A A

2

A
√

3
2 0 − A

√
3

2 − A
√

3
2 0 A

√
3

2

2 −2 2 −2 2 −2


,

< = 1.824:6, 2 = 0.1, 1 = 1.81824 − 05, A = 0.275<, g< = 0.059.

The moment of inertia matrix, �, was measured using the bifilar pendulum approach [35]. The

mapping matrix, " , is derived from the geometry of the airframe, in this case a hexrotor with x
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Figure 2.6: Estimates of the total translational disturbance affecting the hexrotor during an
experimental flight.

geometry with rotors numbered clockwise starting from the front right. The aerodynamic drag of

the rotors, 2, and the constant mapping squared actuator speed to force, 1, were obtained using a

photo-tachometer to measure rotor angular rate and a load cell to measure the forces generated at a

range of speeds. Similarly, the actuator time constant, g<, was measured by applying several step

inputs of varying magnitude to the rotor, measuring the response with the photo-tachometer, and

fitting a first-order system to the data, see Appendix A for details.

The control method is implemented on a Pixhawk 4 Flight Management Unit (FMU) in discrete

time at 100Hz using Mathworks Simulink® through the PX4 Autopilots Support from Embedded

Coder® package [34]. This enables the control method to be integrated with the PX4 firmware to

run on the Pixhawk 4 hardware. As a result, we can access fused estimates of the vehicle orientation

from the EKF running in the PX4 firmware. The position estimates of both the multi-rotor and

ground vehicle are pulled from a Vicon server at 100Hz. The estimates are sent over a UDP

connection to a Raspberry Pi Zero that is running onboard the multi-rotor. The Raspberry Pi Zero
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Figure 2.7: Multiple experimental landing trajectories showing the multi-rotor trajectory (dashed)
and the ground vehicle trajectory (solid). The red dots correspond to the initial conditions of the
system when a landing was commanded.

then relays the position information to the FMU over a serial connection, see Appendix A for

details.

The ground vehicle is a Quanser QBot2 with a landing platform attached as shown with the

multi-rotor on the landing platform in Fig. 2.3. The ground vehicle is manually tele-operated using

a joystick through Simulink®. This ensures that no prior information about the trajectory is known,

as the trajectory is generated in real-time by the operator.
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2.5.2 Experimental Procedure

The hexrotor initially ascends to a fixed altitude and holds position until commanded to track

and land on the ground vehicle. Once a landing command is sent, the hexrotor begins converging

on the position of the ground vehicle while the ground vehicle is being manually tele-operated

around the area until the hexrotor successfully lands.

To ensure the large initial position error does not result in overly aggressive control action,

the same bounding function (2.43) is used to bound the position error vector 11. Furthermore,

to ensure the multi-rotor approaches the ground vehicle from above, an offset is added to the I

component of the reference system. Once the multi-rotor is within some pre-defined radius of the

center of the ground vehicle, in this case 42<, the offset is removed so the hexrotor will commence

landing on the ground vehicle.

Multiple experimental test flights were conducted with different initial conditions for both

the hexrotor and ground vehicle. Each test was also performed with different ground vehicle

trajectories. These experiments show the ability of the algorithm to successfully land regardless of

differences in initial conditions or different reference trajectories.

The ground vehicle trajectories and the hexrotor trajectories are shown for four different exper-

imental flights in Fig. 2.7. The estimates of the disturbances affecting the system in the rotational

and translational dynamics for one such flight are shown in Fig. 2.5 and Fig. 2.6, respectively.

Notice that the translational disturbance estimate, specifically 2̂d (3) in Fig. 2.6, contains a constant

offset. This offset is a result of the charge state of the battery. As the battery voltage decreases,

the thrust applied by the rotors for a given commanded speed decreases. Also, large rotational

disturbances arise in Fig. 2.5, which can be caused by unmodeled aerodynamic effects, inaccuracies

in the inertia matrix, or differences between speed controllers. We do not model these discrep-

ancies, however, the observer is able to estimate and compensate for these uncertainties in the

control to result in excellent tracking performance. A video of the experiments can be found at

https://youtu.be/oWcl4ydNLDs

For a highly detailed treatment of the experimental multi-rotor system, including parameter
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identification, rotor dynamics and force characteristics, and software implementation of these

control methods, see Appendix A.

2.6 Extended High-Gain Observers on ($ (3)

We propose a further extension of this work to enable extended high-gain observers to be

designed for a system evolving on ($ (3). This would allow the use of existing almost-globally

stabilizing feedback linearizing control strategies [55] to be extended to incorporate model un-

certainties and external disturbances, and thus, increase their robustness. Furthermore, this also

enables output feedback by estimating unmeasured states. The ability to design an extended high-

gain observer for an almost-globally stabilizing control strategy on ($ (3) would alleviate the

singularities which are present in control strategies that utilize Euler angles, as was the case in the

work presented earlier in this chapter. Additionally, this extension would enable aggressive aero-

batic flight maneuvers that are not possible when utilizing Euler angles. For example, a multi-rotor

with this proposed control strategy would be capable of inverting and using the thrust generated

by the rotors to accelerate downward faster than the acceleration due to gravity alone. This section

details the mathematical framework of this proposed extension.

2.6.1 Rotational Dynamics on ($ (3)

We begin by writing the rotational dynamics, no longer in terms of Euler angles, but instead

in terms of a rotation matrix. Let '�
1
∈ ($ (3) be the rotation matrix from the body frame to the

inertial frame, which we shall denote as ' from here on to simplify notation. We further define

Ω� ∈ R3 as the angular velocity of the body in the inertial frame, and �� ∈ R3×3
�0 as the inertia

matrix of the body in the inertial frame. The body-fixed inertia matrix, �1 ∈ R3×3
�0 , can be mapped

to �� through �� = '�1'>. Taking 3 ∈ R3 as a vector of body-fixed torques, we can now write the

rotational dynamics on ($ (3) as

¤' = ((Ω�)',

¤Ω� = �−1
� (−Ω� × ��Ω� + '3) + 2� ,

(2.44)
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where ((·) is the skew symmetric mapping from R3 to so(3), and 2� ∈ R3 is a lumped rotational

disturbance term affecting the system in the inertial frame. Let r1 ∈ R3, r2 ∈ R3, and r3 ∈ R3 be

the columns of the rotation matrix, '. Then, ¤' = ((Ω�)' can be written as

¤r8 = Ω� × r8, (2.45)

for 8 ∈ {1, 2, 3}. Using Lagrange’s formula for vector triple product, it follows that

r8 × ¤r8 = r8 × (Ω� × r8),

= (r8 · r8)Ω� − (r8 · Ω�)r8,
(2.46)

Since we can write

Ω� = [(r1 · Ω�)r1 + (r2 · Ω�)r2 + (r3 · Ω�)r3], (2.47)

it follows that

r1 × ¤r1 + r2 × ¤r2 + r3 × ¤r3 = 3Ω� − [(r1 · Ω�)r1 + (r2 · Ω�)r2 + (r3 · Ω�)r3],

= 2Ω� .

(2.48)

Thus,

Ω� =
r1 × ¤r1 + r2 × ¤r2 + r3 × ¤r3

2
. (2.49)

Letting r8 = r1
8
and ¤r8 = r2

8
, we can now write the columns of the rotation matrix, ', and its

derivative, ¤', in the following prime canoncial form

¤r1
8 = Ω� × r1

8 ,

¤r2
8 =
¤Ω� × r1

8 +Ω� × r2
8 ,

= �−1
� (−Ω� × ��Ω� + '3) × r1

8 +Ω� × r2
8 + 2� × r1

8 .

(2.50)

Substituting for Ω� , and taking =8 = 2� × r1
8
as the total additive disturbance term yields the

following dynamic system

¤r1
8 = r2

8 ,

¤r2
8 = 5 (r1

8 , r
2
8 ) + 6(r1

8 )3 + =8,
(2.51)
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where

5 (r1
8 , r

2
8 ) =

1

2
�−1
�

(
−

[
3∑
9=1

r1
9 × r2

9

]
× ��

[
3∑
9=1

r1
9 × r2

9

])
× r1

8 +
1

2

[
3∑
9=1

r1
9 × r2

9

]
× r2

8 ,

6(r1
8 ) = −((r1

8 )�−1
� '.

(2.52)

2.6.2 Rotational State Feedback Control on ($ (3)

In [55], an almost globally stabilizing state feedback controller has been designed on ($ (3) to

track an arbitrary smooth reference orientation defined by '3 (C) ∈ ($ (3). In addition to '3 (C),

this controller requires the desired body-fixed angular velocity, Ω3
1
(C) ∈ R3, and desired body-fixed

angular acceleration, ¤Ω3
1
(C) ∈ R3. Recall that the body-fixed angular velocity is related to the

inertial angular velocity by Ω1 = '>Ω� .

We further add the disturbance compensation term to the control law design in [55], with the

appropriate mapping, to ensure disturbance rejection and robust performance. This leads to the

following rotational control law

3 = �1'
>(−:'e' − :ΩeΩ) +Ω1 × �1Ω1 − �1 (Ω1 × '>'3Ω31 − '

>'3 ¤Ω31) − �1'
>2� , (2.53)

where

e' =
1

2
(−1('>3 ' − '

>'3), and eΩ = Ω1 − '>'3Ω31 , (2.54)

are the attitude error and angular velocity error, respectively, and :' ∈ R�0 and :Ω ∈ R�0 are the

control gains.

2.6.3 Extended High-Gain Observer Design

To design an extended high-gain observer for a rotation matrix and its derivative, we interpret '

and ¤' as variables in R18 instead of interpreting them as variables in ($ (3) and its tangent space.

The observer provides an estimate of ' and ¤' in R18 each time, which we project back to ($ (3)

and its tangent space using the projections shown in Appendix D.
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To design the extended high-gain observer, we begin by extending the state space to include the

unknown dynamics of the disturbance

¤r1
8 = r2

8 ,

¤r2
8 = 5 (r1

8 , r
2
8 ) + 6(r1

8 )3 + =8,

¤=8 = i8 (C, r1
8 , r

2
8 ),

(2.55)

where i8 (C, r1
8
, r2
8
) ∈ R3 is a vector of unknown functions describing the disturbance dynamics.

In order to estimate the higher order terms of the r8 dynamics, and the disturbance term, =8, we

can design an extended high-gain observer using the extended dynamics (2.55) as follows

¤̂r1
8 = r̂2

8 +
U1

n
(r1
8 − r̂1

8 ),

¤̂r2
8 = 5 ( r̂1

8 , r̂
2
8 ) + 6( r̂1

8 )3 + =̂8 +
U2

n2
(r1
8 − r̂1

8 ),

¤̂=8 =
U3

n3
(r1
8 − r̂1

8 ),

(2.56)

where, as before, U8 for 8 ∈ {1, 2, 3} are the observer gains, chosen to ensure the polynomial

B3 + U1B
2 + U2B + U3,

is Hurwitz, and n ∈ R�0 is a positive constant that is chosen small enough. Recall, the disturbance

term being estimated is actually an estimate of =8 = 2� × r1
8
, however, we require an estimate of

2� for the control law. We can solve for 2̂� as follows

2̂� =
r1 × =̂1 + r2 × =̂2 + r3 × =̂3

2
. (2.57)

It is noteworthy that the mismatch between the space in which the system dynamics and observer

dynamics evolve appears in the disturbance estimates in the extended high-gain observer. However,

since within ) (n) time, where limn→0 ) (n) = 0, the observer will bring the error between the true

states and the estimated states to$ (n). As a result, the error associated with projected ' and ¤' will

be$ (n) as well. This ensures that the disturbance due to the above mismatch is small in magnitude,

as will be shown through simulation in Fig. 2.11.
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Additionally, we need an estimate of Ω1 for use in the feedback control. This can be computed

from the observer estimates as

Ω̂� =
r̂1

1 × r̂2
1 + r̂

1
2 × r̂2

2 + r̂
1
3 × r̂2

3

2
, and Ω̂1 = '̂

>Ω̂� . (2.58)

Recall that the state feedback attitude control presented in Section 2.6.2 requires not only a

desired orientation, '3 , but the desired body-fixed angular rates, Ω3
1
, and the desired body-fixed

angular acceleration, ¤Ω3
1
. As was shown in the case for the attitude control designed using Euler

angles, the reference trajectory for the attitude control may be designed through virtual inputs in

a translational controller. In this case, we do not have access to the higher-order terms of the new

reference trajectory. To overcome this deficit, we propose the use of a second extended high-gain

observer to estimate these higher-order reference trajectory terms.

Letting r38 = r1
38
, ¤r38 = r2

38
, and ¥r38 = r3

38
, the observer can be designed for the desired

orientation, '3 , as follows

¤̂r1
38
= r̂2

38
+ U1

n
(r1
38
− r̂1

38
),

¤̂r2
38
= r̂3

38
+ U2

n2
(r1
38
− r̂1

38
),

¤̂r3
38
=
U3

n3
(r1
38
− r̂1

38
),

(2.59)

for 8 ∈ {1, 2, 3}. The estimated desired rotation matrix and the higher-order derivatives can now be

written as

'̂3 =
[
r̂1
31

r̂1
32

r̂1
33

]
, '̂2

3 =
[
r̂2
31

r̂2
32

r̂2
33

]
, '̂3

3 =
[
r̂3
31

r̂3
32

r̂3
33

]
.

We can now map these reference estimates to desired body-fixed angular rate and angular acceler-

ation by

Ω̂31 = (
−1

(
('̂1

3)
>'̂2

3

)
, and ¤̂

Ω31 = (
−1

(
('̂2

3)
>'̂2

3 + ('̂
1
3)>'̂

3
3

)
. (2.60)

Putting everything together, we obtain the following output feedback rotational control law

3 = �1 '̂
>(−:' ê' − :Ω êΩ) + Ω̂1 × �1Ω̂1 − �1 (Ω̂1 × '̂>'̂3Ω̂31 − '̂

>'̂3
¤̂
Ω31) − �1 '̂

>2̂� , (2.61)

where

ê' =
1

2
(−1('̂>3 '̂ − '̂

>'̂3), and êΩ = Ω̂1 − '̂>'̂3Ω̂31 . (2.62)
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2.6.4 Translational Output Feedback Control

An almost-globally asymptotically stabilizing translational control that was originally developed

in [55], will now be presented. We can utilize the same translational error dynamics and extended

high-gain observer as presented in Section 2.2.3, with the exception of replacing '3(:1) in (2.7) by

the third column of the rotation matrix, 'eI, from this section. Utilizing the state and disturbance

estimates, 1̂1, 1̂2, 2̂d, and the reference signal, ¥pA , we can immediately write the translational

output feedback controller.

Similar to the rotational control, to facilitate robust performance, we augment the control law

in [55] with the estimated translational disturbances and obtain the third column of '3 as

r1∗

33
= −

−W1 1̂1 − W2 1̂2 − 2̂d + < ¥pA − <6eI
| | − W1 1̂1 − W2 1̂2 − 2̂d + < ¥pA − <6eI | |

. (2.63)

We now choose a point on the multi-rotor, in this case we chose p = [1 0 0]>, and project that

point to create the first column of '3 as

r1∗

31
= −

r1∗

33
× (r1∗

33
× p)

| |r1∗
33
× (r1∗

33
× p) | |

. (2.64)

This choice of ? will ensure the multi-rotor heading angle is aligned with the inertial frame during

flight. We can now compute the second column of '3 as

r8
∗

32
=

r1∗

33
× p

| |r1∗
33
× p | |

. (2.65)

Thus, we have a desired rotation matrix that ensures that the desired translation is achieved.

2.6.5 Numerical Simulation

The method described in this section is simulated to show trajectory tracking in the presence

of large disturbances. The system is simulated in discrete time at 100Hz using only position

and orientation measurements. The multi-rotor is commanded to track a circular trajectory and

maintain altitude where pA (C) = [sin(C) 1 − cos(C) 0]>. The rotational disturbances, 2� (C) =

5[sin(C) cos(3C) sin(C)]>, are applied to the system and are estimated by the extended high-gain
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Figure 2.8: Trajectory tracking utilizing the almost-globally stabilizing control and extended
high-gain observer presented in Section 2.6.3.

observer. No translational disturbances were applied for this simulation. The system is simulated

with the same parameters from the hexrotor used in the experiment and the following initial

conditions are used

'(0) = �3, Ω� = [0 0 0]>, p1(0) = [0 0 0]>, p2(0) = [0 0 0]>.

The tracking performance is shown in Fig. 2.8 and the disturbance estimates, 2̂� , are shown in

Fig. 2.9.

To further showcase the ability of this method to perform in a flight scenario which would

not be feasible utilizing the Euler angle based control approach due to singularities, the system

is simulated from an initial condition where it is upside down. In this case the multi-rotor flips

over and returns to a stable hover configuration. The desired trajectory is simply to hold the initial

position, pA (C) = [0 0 0]>, in the presence of the disturbances 2� (C) = [sin(C) cos(3C) sin(C)]>.
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Figure 2.9: Disturbance estimates from the extended high-gain observer presented in
Section 2.6.3.

The same initial conditions are used with the exception of the initial orientation, which is [55]

'(0) =


1 0 0

0 −0.9995 −0.0314

0 0.0314 −0.9995


. (2.66)

The multi-rotor successfully flips over and returns to the desired position, as shown in Fig. 2.10

with the disturbance estimates shown in Fig. 2.11. Furthermore, to show the rotational tracking

performance we can calculate the rotational tracking error

Ψ(', '3) =
1

2
tr

[
�3 − '>'3

]
, (2.67)

where tr[·] is the trace of the argument. The tracking error function starts off large and quickly

converges to show the convergence to the desired orientation, despite the large initial orientation

error, as shown in Fig. 2.12.
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Figure 2.10: Trajectory tracking utilizing the almost-globally stabilizing control and extended
high-gain observer presented in Section 2.6.3. The multi-rotor starts upside down and flips to
return to hover at the desired position.

2.7 Conclusions

In this chapter, we studied a real-time trajectory estimation and tracking problem for a multi-

rotor in the presence of modeling error and external disturbances. The unknown trajectory is

generated from a dynamical system with unknown or partially known dynamics. We designed and

rigorously analyzed an extended high-gain observer based output feedback controller to guarantee

stable operation of the overall system. This included the modeling of actuator dynamics and their

integration in the observer design, as well as estimating feed-forward terms for trajectory tracking

and multi-rotor states for use in the output feedback control design. Furthermore, we introduced a

novel method for designing an extended high-gain observer for a system whose dynamics evolve

on ($ (3). The proposed method involves interpreting the dynamics on ($ (3) in Euclidean space

to write the dynamics in an prime canonical form and design an extended high-gain observer to

estimate unmeasured states, disturbances, and the higher-order terms of the rotational reference
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Figure 2.11: Disturbance estimates from the extended high-gain observer presented in
Section 2.6.3, where system-observer space mismatch errors enter the disturbance estimate.

trajectory.

The capability of the control and estimation strategy is illustrated using the example of landing

a multi-rotor on a moving ground vehicle. The multi-rotor landing is shown in simulation with

noise and disturbances added, as well as implemented experimentally on a hexrotor platform.

Multiple initial conditions and unknown trajectories were tested experimentally and shown to result

in successful landings.
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Figure 2.12: Rotational tracking error.
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CHAPTER 3

IN-FLIGHT ACTUATOR FAILURE RECOVERY

In this chapter, we extend the extended high-gain observer based estimation and control strategy

presented in Chapter 2 to enable detection and recovery from a complete actuator failure for a

hexrotor UAV during flight. The hexrotor may experience external disturbances and modeling

error, which are accounted for in the control design and distinguished from an actuator failure. A

failure of any one actuator occurs during flight and must be identified quickly and accurately. This

is achieved through the use of a multiple-model, multiple extended high-gain observer based output

feedback control strategy. The family of extended high-gain observers are responsible for estimating

states, disturbances, and are used to select the appropriate model based on the system dynamics

after a failure has occurred. The proposed method is theoretically analyzed and validated through

simulations and experiments. This chapter draws from [11], which was originally published in

IEEE Robotics and Automation Letters ©2021 IEEE. Reprinted, with permission, from Connor J.

Boss, Vaibhav Srivastava, In-flight actuator failure recovery of a hexrotor via multiple models and

extended high-gain observers, June 2021.

The remainder of the chapter is organized as follows. The system dynamics are introduced

in Section 3.1, and the control law is designed in Section 3.2. The failure recovery strategy is

presented in Section 3.3, with stability analysis in Section 3.4. Simulation and experimental results

are presented in Section 3.5 and Section 3.6, respectively, with conclusions in Section 3.7.

3.1 System Dynamics

A hexrotor UAV is an underactuated mechanical system. To overcome the underactuation, the

dynamics are split into two subsystems: the rotational dynamics and the translational dynamics.
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3.1.1 Rotational Dynamics

Let :1 = [q \ k]> ∈ (− c2 ,
c
2 )

2× (−c, c] be the Euler angles describing the hexrotor orientation

in the inertial frame, and let :2 = [ ¤q ¤\ ¤k]> ∈ R3 be the associated angular rates. Let :A =

[qA \A kA]> ∈ (− c2 ,
c
2 )

2 × (−c, c] and ¤:A = [ ¤qA ¤oA ¤kA]> ∈ R3 be the rotational reference signals.

Define the rotational tracking error, /, by

/1 = :1 − :A , /2 =
¤/1 = :2 − ¤:A , / = [/>1 />2 ]

>.

Defining the inertia matrix, � ∈ R3×3
�0 , where R3×3

�0 denotes a 3 × 3 positive definite matrix, a

matrix Ψ ∈ R3×3 which transforms body-fixed angular velocity to Euler angular rates [12], and its

associated derivative, ¤Ψ ∈ R3×3, the rotational tracking error dynamics are

¤/1 = /2,

¤/2 = 5 (/, :1,
¤̄:A) + � (:1)3 + =b ,

(3.1)

where

5 (/, :1,
¤̄:A) = ¤ΨΨ−1(/2 + ¤̄:A) −Ψ�−1(Ψ−1(/2 + ¤̄:A) × �Ψ−1(/2 + ¤̄:A)),

� (:1) = Ψ�−1,

¤̄:A is some approximation of ¤:A , 3 ∈ R3 is a vector of body-fixed torques, =b = 2b − ¥:A +

[ 5 (/, :1, ¤:A) − 5 (/, :1,
¤̄:A)] ∈ R3 is an added term to represent the lumped rotational disturbance

which satisfies Assumption 3.1 (stated below), and 2b ∈ R3 is the nominal rotational disturbance

term [12] in the original rotational dynamics with a generic control input.

Definition 3.1 (Prime Canonical Form). A control system in the “prime canonical form” [66], for

state x ∈ R=, control input D ∈ R, and disturbance f ∈ R, has the following representation

¤x = �prmx + �prm 5prm(C, x, D), H = �prmx, (3.2)

where

�prm =


0=−1×1 �=−1

0 01×=−1

 , �prm =


0=−1×1

1

 , 5prm : R≥0 × R= × R→ R, �prm = [1 01×=−1],
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0?×@ is a matrix of zeros with dimension ? × @, �? is the identity matrix of dimension ?, and H ∈ R

is the measurement.

Assumption 3.1 (Disturbance Properties). The dynamics of the various subsystems in this chapter

take the prime canonical form perturbed by a disturbance term. We assume that the disturbance

enters the RHS of (3.2) as �3f where �3 = �prm, f is continuously differentiable, and its partial

derivatives with respect to states are bounded on compact sets of those states for all C ≥ 0.

3.1.2 Translational Dynamics

Let p1 = [G H I]> ∈ R3 and p2 = [ ¤G ¤H ¤I]> ∈ R3 be the position and velocity of the hexrotor

center of mass. Let pA = [GA HA IA]> ∈ R3 and ¤pA = [ ¤GA ¤HA ¤IA]> ∈ R3 be the translational reference

signals. Define the translational tracking error, 1, by

11 = p1 − pA , 12 = ¤11 = p2 − ¤pA , 1 = [1>1 1>2 ]
>.

Taking the third column of the rotation matrix describing the hexrotor orientation in the inertial

frame as '3(:1) ∈ R3, as in [12], 6 as the gravitational constant, D 5 ∈ R as the total thrust input,

< ∈ R�0 as the mass, and defining eI = [0 0 1]) , the translational tracking error dynamics are

¤11 = 12,

¤12 = −
D 5

<
'3(:1) + 6eI + 2d − ¥pA ,

(3.3)

where 2d ∈ R3 is an added term to represent the lumped translational disturbance which also

satisfies Assumption 3.1.

3.1.3 Failure Modes and Mapping Actuator Speeds to Inputs

We will now consider how the system inputs in the form of body-torques, 3, and thrust force,

D 5 , are applied by the actuators, and how this changes during a failure.

Remark 3.1 (Bidirectional Rotor Rotation). Bidirectional rotors are a requirement for a model

switching failure recovery based on the controllability of the system, see Appendix E.
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Since we require bidirectional rotor rotation, and the rotors are designed for efficient operation

in only one direction, we define a pair of thrust coefficients, 1+ ∈ R�0 for normal operation and

1− ∈ R�0 for reverse operation. These coefficients relate rotor speed, l ∈ R, to force, 5̄ ∈ R, as

5̄ 9 =


1+l2

9
, for l 9 ≥ 0,

−1−l2
9
, for l 9 < 0,

for 9 ∈ {1, . . . , 6}. (3.4)

Let 8 ∈ {0, . . . , 6} denote failure modes such that 8 = 0 corresponds to no failure and 8 ≠ 0

corresponds to the failure of the 8-th rotor. Let F (8) ∈ R6×6 be the failure matrix associated with

failure mode 8, defined by F (0) = �6 and

F (8) =


31

. . .

36


, with 3 9 =


0, for 9 = 8,

1, otherwise,
(3.5)

for 9 ∈ {1, . . . , 6}. Let " ∈ R4×6 be the mapping between actuator forces and system inputs and

be defined by

" =



1 1 1 1 1 1

− A2 −A − A2
A
2 A A

2

A
√

3
2 0 − A

√
3

2 − A
√

3
2 0 A

√
3

2

2 −2 2 −2 2 −2


, (3.6)

where A ∈ R�0 is the distance from the hexrotor center of mass to the center of an actuator, and

2 ∈ R�0 is the aerodynamic drag coefficient of a rotor. Let 8∗C be the true failure mode at time C, 8C

be the failure mode that is selected at time C, and C 5 be the time of failure.

The system inputs for the nominal model and all failure models are mapped to a vector of

squared rotor speeds, 8B = [l2
1, . . . , l

2
6]
> ∈ R6

≥0, through
D 5

3

 = "BF
(8C )8B, B =

[
a11

a1

. . .
a61

a6

]
, (3.7)

where a 9 ∈ {−, +} is the sign of l 9 .
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Assumption 3.2 (Single Failure Occurrence). We assume the configuration 8∗C = 8C = 0 for C < C 5 .

At the time of failure 8∗C 5 = 0→ 8∗C ∈ {1, . . . , 6} for C > C 5 . Since our platform is a hexrotor, we focus

on a single actuator failure to ensure the system retains full controllability, see Appendix E. Failure

of more than one actuator, in specific cases, can result in a system that retains controllability.

However, in these configurations, only two of the actuators would be responsible for generating the

total lifting thrust, with the others providing small correctional forces and torques. Consequently,

due to limited actuator power, the hexrotor would not be able to maintain altitude.

3.2 Output Feedback Control Design

In this section, an output feedback estimation and control strategy is designed as in [12]. We

utilize the same control and observer design, while extending our previous work to incorporate a

family of EHGOs to estimate not only modeling error and external disturbances, but errors due to

the failure of any one actuator, as well as enabling the detection of a failure through the use of the

observer estimates. As such, each observer will correspond to a possible plant configuration, i.e.,

a nominal model and six failure models.

3.2.1 Extended High-Gain Observer Design

A family of multi-input multi-output EHGOs is designed to estimate higher-order states of

the error dynamic systems (3.1) and (3.3), and uncertainties arising from modeling error, external

disturbances, and actuator failure [42]. It is shown in [9, 12] that it is necessary to include actuator

dynamics in the multi-rotor model for EHGO design. For a desired rotor speed, ldes, the actuators

can be modeled as a first-order system with time constant, g< ∈ R�0, given by g< ¤l 9 = (ldes
9
−l 9 ),

for 9 ∈ {1, . . . , 6}. The actuator dynamics must be included in the EHGO because in practice g<

and n are of similar magnitude, so both reside in the same time-scale. These dynamics then form

the input to the EHGO as in [12].

The rotational and translational tracking error dynamics are combined and the state-space is

extended to estimate disturbance vectors for both subsystems. For the purposes of writing the
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observer under the 8-th failure mode, we write the extended system dynamics in the following form

¤11 = 12,

¤12 = −
D 5

<
'3(:1) + 6eI + 2d − ¥pA ,

¤2d = id (C, 1),

¤/1 = /2,

¤/2 = 5 (/, :1,
¤̄:(8C )A ) + �̃"BF (8)8

(8C )
B + =̄ (8)b ,

¤̄= (8)
b
= i

(8)
b
(C, =̄ (8)

b
),

(3.8)

where =̄ (8)
b
= 2 (8)< + =b , and 2

(8)
< = �̃"B(F (8∗C ) − F (8))8(8C )B is the error resulting from an incorrect

model, 8C ≠ 8∗C . Finally, �̃ = [03×1 � (:1)] and 2
(8∗C )
< = 0. Here, id (C, 1) and i(8)b (C, =̄

(8)
b
) are

unknown functions describing the translational and rotational disturbance dynamics.

Assumption 3.3 (Disturbance Dynamics). It is assumed that id (C, 1) and i(8)b (C, =̄
(8)
b
) are contin-

uous and bounded on any compact set in the domain of 1 and =̄ (8)
b
, respectively.

The observer system is written with extended states and squared rotor speeds as the input, 8(8C )B .

Defining the following state vectors

61 = [1>1 1>2 2>d ]>, 62 = [/>1 />2 =̄>b ]>, 6 = [6>1 6>2 ]
>,

we can write the EHGOs in a compact form as

¤̂6(8) = � 6̂(8) + �
[
5̄ ( 6̂(8) , :1,

¤̄:(8C )A ) + �̄ (8) (:1)8(8C )B
]
+ � 6̂(8)4 ,

6̂(8)4 = � (6 − 6̂(8)),
(3.9)

where 6̂(8) =
[
1̂(8)>1 1̂(8)>2 2̂ (8)>d /̂

(8)>
1 /̂

(8)>
2

ˆ̄= (8)>
b

]>
is the estimate of 6 under the model with failure

8, and

� = ⊕2
9=1� 9 , � = ⊕2

9=1� 9 , � = ⊕2
9=1� 9 , � = ⊕2

9=1� 9 ,
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� 9 =


03 �3 03

03 03 �3

03 03 03


, � 9 =


03

�3

03


, � 9 =


U1/n �3

U2/n2�3

U3/n3�3


,

� 9 =

[
�3 03 03

]
, for 9 ∈ {1, 2},

5̄ ( 6̂(8) , :1,
¤̄:(8C )A ) =


6eI − ¥pA

5 (/̂ (8) , :1,
¤̄:(8C )A )

 , �̄ (8) (:1) =

−'3 (:1)

<
03

03×1 � (:1)

 "BF
(8) ,

where ⊕ denotes the matrix direct sum, � is designed by choosing U1, U2, U3 ∈ R�0 such that the

polynomial

B3 + U1B
2 + U2B + U3, (3.10)

is Hurwitz [42] and n ∈ R�0 is a tuning parameter that must be chosen small enough. In practice,

n is tuned empirically to achieve a balance between convergence rate of the observer and noise

amplification. All EHGO estimates must also be saturated outside a compact set of interest to avoid

peaking, see Appendix C.

3.2.2 Output Feedback Control

The output feedback controllers are written using the estimates from the corresponding EHGO,

6̂(8) . The family of translational output feedback controllers, induced by rotational reference signals

and total thrust, become

q̂
(8)
A = tan−1

©­­«
− 5̂ (8)H√

( 5̂ (8)G )2 + ( 5̂ (8)I − 6)2

ª®®¬ , k̂
(8)
A = 0,

\̂
(8)
A = tan−1

(
5̂
(8)
G

5̂
(8)
I − 6

)
, D̂

(8)
5 3
= − <( 5̂ (8)I − 6)

cos q̂(8)A cos \̂ (8)A
,

where f̂
(8)
C = [ 5̂ (8)G 5̂

(8)
H 5̂

(8)
I ]> = −W1 1̂

(8)
1 − W2 1̂

(8)
2 − 2̂

(8)
d + ¥pA . Here, desired heading, k̂

(8)
A , is set to

zero to simplify the control equations; see [9] for control equations with arbitrary k̂ (8)A . The family

of rotational output feedback controllers become

3̂(8)
3
= �−1(:1)

[
f̂
(8)
A − 5 (/̂

(8)
, :1,

¤̄:(8C )A )
]
,
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where f̂
(8)
A = −V1/̂

(8)
1 − V2/̂

(8)
2 − ˆ̄= (8)

b
. Note that the rotational reference signal estimates

(q̂(8C )A , \̂
(8C )
A , k̂

(8C )
A ) are used to estimate ¤̄:(8C )A in 3̂(8)

3
(see [12] for details). We then arrive at the family

of commanded squared rotor speeds

8(8)B = ("BF (8))†û(8) , û(8) =


D̂
(8)
5 3

3̂(8)
3

 , (3.11)

where (·)† = (·)>((·) (·)>)−1 is the minimum energy pseudo-inverse of the argument.

The rotational closed-loop system under input 8(8C )B for any 8C , regardless of 8∗C , reduces to the

following perturbed linear system, since the mismatch is captured by =̄ (8)
b

¤/ = �b/ + n�1%
(8) , �b =


03 �3

−V1�3 −V2�3

 , �1 =


03

�3

 , (3.12)

where

n%(8) = =b + 2
(8)
< − ˆ̄= (8)

b
+ V1(/1 − /̂

(8)
1 ) + V2(/2 − /̂

(8)
2 ) + Δ 5 (8) ,

Δ 5 (8) = 5 (/, :1,
¤̄:(8C )A ) − 5 (/̂

(8)
, :1,

¤̄:(8C )A ).
(3.13)

The ability to write the mismatched closed-loop system as (3.12) means that if n is chosen small

enough, the system under output feedback will recover performance of the desired linear system,

even in the presence of an actuator failure without requiring a model switch.

Remark 3.2 (Multiple Possible Recovery Strategies). For the small constants, n1, n2 ∈ R�0, where

n1 � n2, if we choose n ∈ (0, n1) a recovery can be achieved without requiring a model switch. If

we choose n ∈ (n1, n2), nominal disturbances can be compensated, however, the large disturbance,

2 (8)< , can result in large estimation error. Due to practical constraints on n when it comes to

implementation, such as sample rate and noise, we must choose n ∈ (n1, n2). This motivates our use

of multiple models and multiple observers for recovery (see Theorem 1 for details). Furthermore,

we can arrive at approximate values of n1 ≈ 0.002 and n2 ≈ 0.06 through simulation.

Remark 3.3 (Domain of Operation). We define the domain of operation as the region in which

singularities are avoided in the feedback linearizing control design [12]. Since 2 (8)< = 0 for 8 = 8∗C ,
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for any single actuator failure, with n ∈ (0, n2) and 8C = 8∗C , the closed-loop rotational subsystem

becomes the linearized system (3.12) with a small perturbation n%(8) . Therefore, the domain of

operation is the same for all 8C = 8∗C .

3.3 Failure Recovery Strategy

The most common external disturbances experienced by a multi-rotor during flight are aerody-

namic (wind gusts, drag, etc.), and therefore primarily affect the translational dynamics. During an

actuator failure, a large rotational torque is generated. This large torque appears as a highmagnitude

disturbance, 2 (8)< , in the rotational dynamics, thus we monitor the rotational subsystem for actuator

failure detection.

For n ∈ (n1, n2), when 8C ≠ 8∗C immediately after failure, the perturbation, n%(8C ) , is no longer

small, and may make (3.12) leave the domain of operation. This behavior can be identified by

monitoring an estimate of the derivative of a Lyapunov function for the rotational subsystem, using

the method presented in [23]. Therefore we can detect the failure, and then switch models to

recover stability. Defining CB as the time of control switching, we can define a maximum switching

time, CBmax , such that CB < CBmax ensures recovery from the failure before (3.12) leaves the domain of

operation (see the proof of Theorem 1 for an estimate of CBmax).

3.3.1 Estimating the Lyapunov Derivative

Since the derivative of the Lyapunov function is not available, it will be estimated using

estimates from the EHGOs, similar to [23]. Following Assumption 3.2, the system begins in the

nominal operating regime, 8∗C = 0, therefore only the nominal Lyapunov function derivative must

be estimated
¤̂
+b = /̂

(0)>
%b
¤̂/ (0) + ¤̂/ (0)>%b /̂

(0)
, (3.14)

where %b�b + �>b %b = −�6. We use this estimate to test the following inequality to detect an

actuator failure
¤̂
+b ≤ 00 −



/̂ (0)

2
, (3.15)
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where 00 ∈ R�0 is a small constant introduced to overcome the$ (n) estimation errors and is tuned

empirically through simulation and experiments. For example, choosing 00 too small would result

in detecting false positives, and too large would increase time until failure detection, potentially

past CBmax . Once (3.15) is violated, a new model must be selected. Since the hexrotor is a symmetric

system, if any actuator fails the dynamic response is the same, simply in a different direction. As a

result, only one threshold, 00, need be computed which will successfully detect the occurrence of

any one actuator failure.

3.3.2 Estimating Disturbance and Failures Simultaneously

Since all disturbance estimates contain any discrepancies between the modeled response and

the response of the physical system, the total rotational disturbance estimated by the 8-th observer,

ˆ̄= (8)
b
, is an estimate of 2 (8)< + =b . In order to select the appropriate model after a failure has been

detected using (3.15), we utilize the magnitude of the disturbance estimates from each observer to

appropriately select 8C = 8∗C as

8C = arg min
8∈{1,...,6}

{

ˆ̄= (8)
b



} . (3.16)

Following Assumption 3.2, (3.16) is a minimization across failure modes, excluding the nominal

model.

3.4 Stability Analysis

Following the stability arguments in [12] and the Theorems therein, the proposed output feed-

back control design presented here meets the same stability guarantees. We can show that these

stability guarantees are also met under actuator failure without switching models when n ∈ (0, n1),

and also hold for n ∈ (n1, n2) so long as 8C = 8∗C .

We must now investigate the stability of the system during an actuator failure. Define the scaled

observer error for the rotational system, ((8) = [((8)1 ((8)2 ((8)3 ]
> ∈ R9, by

((8)1 =
/1 − /̂

(8)
1

n2
, ((8)2 =

/2 − /̂
(8)
2

n
, ((8)3 = =b + 2

(8)
< − ˆ̄= (8)

b
.

61



The entire rotational output feedback closed-loop system can now be written as the singularly

perturbed system

¤/ = �b/ + n�1%
(8) , (3.17a)

n ¤((8) = Λ((8) + n
(
�2

Δ 5 (8)

n
+ �3(i(8)b (C, =̄

(8)
b
) + ¤2 (8)< )

)
, (3.17b)

where the system dynamics (3.17a) are the slow variables, the observer error (3.17b) are the fast

variables, and

Λ =


−U1�3 �3 03

−U2�3 03 �3

−U3�3 03 03


, �2 =


03

�3

03


, �3 =


03

03

�3


.

By Assumption 3.3, i(8)
b
(C, =̄ (8)

b
) is continuous and bounded, and it can be shown that ¤2 (8)< is also

continuous and bounded, so we can bound the sum as, i(8)
b
(C, =̄ (8)

b
) + ¤2 (8)< ≤ Δ(8)max.

From [12], Δ 5 (8) is Lipschitz in / over the domain of operation and Δ 5 (8) can be bounded by

Δ 5 (8)

 ≤ n![ 

((8)

, for the Lipschitz constant, ![. We can write a Lyapunov function for the

scaled observer error system (3.17b) as

+
(8)
[ = (((8))>%[((8) , where %[Λ + Λ>%[ = −�9. (3.18)

Lemma 3.1 (Bounds on Observer Error). Let the observer error at the time of failure, C 5 , be

((8) (C 5 ). Then, the observer error for C > C 5 can be bounded by

((8) (C)

 ≤ ((√
+
(8)
[ (C 5 ) − n

^

2

)
4−

2 (C−C 5 )
n + n ^

2

)
/
√
_min(%[),

2 =

(
1

_max (%[) −
_max (%[)n![

_min (%[)

)
, ^ =

_max (%[)Δ(8)max√
_min (%[)

,

where _min(·) and _max(·) are the minimum andmaximum eigenvalues of the argument, respectively.

Proof. Taking the Lyapunov function (3.18) and computing the derivative with the scaled observer

error system (3.17b) yields

n ¤+ (8)[ = −(((8))>((8) + 2n (((8))>%[
(
�2

Δ 5 (8)

n
+ �3(i(8)b (C, =̄

(8)
b
) + ¤2 (8)< )

)
,
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which can be bounded by

n ¤+ (8)[ ≤ − 22+
(8)
[ + 2n^

√
+
(8)
[ ,

2 =

(
1

_max (%[) −
_max (%[)n![

_min (%[)

)
, ^ =

_max (%[)Δ(8)max√
_min (%[)

.

Taking, (8)[ =

√
+
(8)
[ , the bound becomes

¤, (8)[ ≤ −2, (8)[ + n^.

By the Comparison Lemma [40, Lemma 3.4],, (8)[ (C) is upper bounded by

,
(8)
[ (C) ≤

(
,
(8)
[ (C 5 ) − n

^

2

)
4−

2
n
(C−C 5 ) + n ^

2
,

leading to the bound on scaled observer error

((8) (C)

 ≤ , (8)[ (C)/√_min(%[).

�

We can now write (3.13) as

n%(8) = n2V1(((8)1 ) + n V2(((8)2 ) + (
(8)
3 + Δ 5

(8) , (3.19)

which can be bounded in terms of observer error as

n%(8) ≤ %(8)max(C) = (n2V1 + n (V2 + ![) + 1)


((8) (C)

. (3.20)

Lemma 3.1 shows that estimation error, ((8) , converges to an $ (nΔ(8)max) neighborhood of the

origin within $ (n) time. Actuator failure is significantly more dynamic than external disturbance,

i.e., ¤=b is relatively small as compared with ¤2 (8)< . Thus, Δ(8
∗
C )

max � Δ
(8)
max for 8 ≠ 8∗C , since ¤2

(8∗C )
< = 0.

Therefore, as stated in Remark 3.2, n can be chosen larger for the correct model than for any

incorrect model, motivating the use of multiple models to reduce the total system disturbance.

In order to select the appropriate model after failure, as long as 2 (8)< , =b , and


((8)3 (CB)



 satisfy,

2 (8)< 

 ≥ 2


=b

 + 

((8)3 (CB)



 + 

((8∗C )3 (CB)


, (3.21)

for each 8 ∈ {1, . . . , 6} \ {8∗C }, the observer estimate, ˆ̄=
(8∗C )
b

, will be the smallest in magnitude at CB,

therefore, (3.16) will select the appropriate model.
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Proposition 3.1 (Correct Model Selection). Under the control input, 8(8C )B , the family of observers

(3.9) will produce disturbance estimates, ˆ̄= (8)
b
, for 8 ∈ {0, . . . , 6}. If 2 (8)< , =b , and



((8)3 (CB)


 satisfy

(3.21), the estimate ˆ̄=
(8∗C )
b

will be the smallest in magnitude and (3.16) will select the correct model.

Proof. Suppose themodeling and external disturbances, =b , the disturbance resulting from incorrect

model selection, 2 (8)< , and the scaled observer error,


((8)3 (CB)



 satisfy (3.21), then
ˆ̄= (8)
b
= =b + 2

(8)
< − ((8)3

≥ ‖2 (8)< ‖ −
(
‖=b ‖ + ‖(

(8)
3 ‖

)
≥

using (3.21)

(
‖=b ‖ + ‖(

(8∗C )
3 ‖

)
≥ =b − (

(8∗C )
3 = ˆ̄=

(8∗C )
b
,

where the last equality holds since 2
(8∗C )
< = 0. Thus, the estimated disturbance, ˆ̄=

(8∗C )
b

, will be the

smallest in magnitude at CB, and the solution to (3.16) will be the correct model. �

Remark 3.4 (Minimum Switching Time). At C 5 ,


((8)3 (C 5 )



 may be large, but will decay to an

$ (nΔ(8)max) neighborhood of the origin in $ (n) time. Therefore, there is some $ (n) time we must

wait to switch for the observer estimates to converge. Furthermore,


((8∗C )3 (C)



 will decay to an

$ (nΔ(8
∗
C )

max) neighborhood of the origin, further reducing


ˆ̄=
(8∗C )
b



 as compared with the other model

estimates, since Δ(8
∗
C )

max � Δ
(8)
max.

Theorem 3.1 (Stability During Actuator Failure). Let the state of the system (3.12) at the time of

failure, C 5 , be such that +b (C 5 ) < 0 for some sufficiently small 0 > 0. Then, there exist n1, n2 > 0,

and maximum switching time, CBmax > C 5 , such that the state, /, will remain within the domain of

operation during the failure transient, and will recover tracking performance

i. after the transient, when n ∈ (0, n1);

ii. if the correct model, 8C = 8∗C , is selected before CBmax , when n ∈ (n1, n2).

Proof. A common Lyapunov function,+b , for the feedback linearized rotational subsystem for each

8 ∈ {0, . . . , 6} and n → 0 is given by

+b = />%b/, where %b�b + �>b %b = −�6. (3.22)
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Let Ωb = {+b < 2b} be an estimate of the domain of operation of the controller designed in

Section 3.2.2 for 2b ∈ R�0 (see [12] for more details). For simplicity, we use the estimate of the

domain of operation for n → 0, wherein the states and disturbances are estimated perfectly. For

small n > 0, the obtained domain of operation can be shrunk to Ω′
b
= {+b < 2′b}, with 2′b < 2b , to

incorporate the effect of estimation error [10].

Using singular perturbation [40, Theorem 11.4] and non-vanishing perturbation [40, Lemma

9.2], it can be shown that (3.17) converges to an$ (nΔ(8)max) neighborhood of the origin for n ∈ (0, n2).

For n ∈ (0, n1) the neighborhood $ (nΔ(8)max) is small enough for reasonable tracking performance.

For n ∈ (n1, n2), the large estimation error can make the trajectory leave the domain of operation

and the system may diverge, thus requiring a model switch.

Taking the Lyapunov function (3.22), and computing its derivative with the rotational closed-

loop system (3.12) yields

¤+b = −/>/ + 2/>%bn�1%
(8) . (3.23)

By the change of variables ,b =
√
+b , and the arguments in the proof of Lemma 1, we can

immediately upper bound,b (C) by

,b (C 5 )4
−(C−C 5 )

2_max (%b ) +
∫ C

C 5

4
−(C−g)

2_max (%b )
_max(%b)√
_min(%b)

%(8)max(g)3g.

Let C = CBmax be the unique solution to the equation

√
04

−(C−C 5 )
2_max (%b ) +

∫ C

C 5

4
−(C−g)

2_max (%b )
_max(%b)√
_min(%b)

%(8)max(g)3g = 2b .

The theorem follows immediately from the definition of CBmax . �

Remark 3.5 (Identification of n1 and n2). In principle, the Lyapunov arguments in the singular

perturbation analysis [40] can be used to estimate n1 and n2, however, these estimates are usually

quite conservative. In practice, these values are chosen through empirical tuning on the system

on which it will be implemented. For this system, we arrive at two empirically tuned estimates of

n1 ≈ 0.002 and n2 ≈ 0.06 through simulation.
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n 1+ A 2 W1 V1 U1 U3

0.025 1.8182e-5 0.275m 0.1 2 40 3 0.6
g< 1− < 00 W2 V2 U2 T

0.059 3.6364e-6 1.824kg 2 1.5 20 3 0.01s

Table 3.1: System parameters used in simulation and experiment.

3.5 Numerical Simulation

The proposed method is simulated for a hexrotor system tracking a trajectory generated by a

9-th order polynomial to ensure sufficient smoothness, shown in Fig. 3.2. The system is simulated

in discrete-time with sample time, ) = 0.01B, while using position and orientation measurements

with added white Gaussian noise to replicate the experimental system. The hexrotor is able to

track the reference trajectory, suffer an actuator failure at 14 seconds into flight, and recover to

resume tracking the trajectory after switching controllers. The system is simulated with large

external rotational disturbances, 2b = 12[sin(C) cos(C) sin(C)]>, and translational disturbances,

2d = [sin(C) cos(C) sin(C)]>.

To facilitate tuning the parameters, for example n , 00, and control gains, we use the same

parameters in simulation as in the experiment. The parameters are given in Table 3.1, and the

inertia matrix is

� =


0.0228 0 0

0 0.0241 0

0 0 0.0446


kg m2.

The estimated Lyapunov function derivative, ¤̂+b , is monitored to determine when the failure

occurs. The magnitudes of the estimated disturbances for all six failure modes, as well as the

Lyapunov derivative estimate, are shown in Fig. 3.1. At the time of detection, ˆ̄= (4)
b

has the smallest

magnitude, indicating a failure of actuator four. The dashed vertical line in Fig. 3.1 shows the time

when a failure is induced, C 5 , and the solid vertical line shows when the switch occurs, CB.

Fig. 3.2 shows the hexrotor briefly breaking from tracking the reference trajectory as the failure

occurs at C 5 , and after the controller is switched, the hexrotor successfully resumes tracking the
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Figure 3.1: Norm of disturbance estimates for all failure case models and Lyapunov derivative
estimate during a simulated in-flight actuator failure.

trajectory. The tracking performance is slightly degraded due to the large external disturbances

present in this simulation, however, a successful recovery is still achieved.

A potential problem with not considering disturbance is the false identification of failures. We

illustrate this with the rotor health estimation approach [91]. This method utilizes an Extended

Kalman Filter which estimates the health of each rotor, ℎ 9 , for 9 ∈ {1, ...6}. Utilizing the same

dynamics and a detection cutoff on the health of each rotor of 0.5, as was shown to work well

experimentally in [91], we simulate this method. The same flight parameters and large disturbances

are again applied to the system with the EHGO based failure detection method replaced by the

EKF method. The EKF method does not consider disturbances, and Fig. 3.3 shows that a failure

of actuator two is falsely detected just under two seconds into flight. In principle, the EKF

could be augmented with a disturbance model to improve this performance, however, that would

require a model of the expected disturbances [77]. The EHGO can accommodate a wide range

of disturbances with unknown dynamics. We also investigated lowering the cutoff threshold for
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Figure 3.2: Hexrotor position tracking recovery after simulated in-flight actuator failure using
multiple models to recover performance.

failure detection, however, this results in longer detection times. In summary, depending on flight

conditions, considering disturbance in the failure recovery strategy becomes important.

3.6 Experimental Validation

The proposedmultiple-model estimation and controlmethod is implemented on an experimental

platform to validate performance and show recovery from an actuator failure during flight. The

experimental platform is built on a 550mm hexrotor frame with 920kV motors and 10x4.5 carbon

fiber rotors. Six 35A ESCs with bidirectional capability are used, and the system is powered by a

5000mAh 4s LiPo battery.

The control method is implemented on a Pixhawk 4 FMU in discrete time at 100Hz using

Mathworks Simulink through the PX4 Autopilots Support from Embedded Coder package. All

sensing and computation is done on-board the vehicle, with the exception of utilizing translational

position data from a Vicon motion capture system in lieu of GPS.
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Figure 3.3: Health estimate of each rotor as estimated using the Extended Kalman Filter method.

Once the failure is detected and the controller is switched, the rotor opposite the failed rotor

will be commanded to reverse directions to apply a large downward force to counteract the roll and

pitch errors. Once the system returns to level flight, using the pseudo-inverse to compute desired

rotor speeds results in the opposite rotor being commanded to apply small forces in either direction,

thus requiring the rotor to change directions rapidly. During experimental testing it became clear

that the opposite rotor could not change directions quickly enough to stabilize the system. To

restrict the opposite rotor to only generate downward force for a detected failure, 8, we impose force

constraints, 5 (8, 9)min , 5
(8, 9)
max < 0 for the opposite rotor, 9 , defined by

9 =


8 + 3, 1 ≤ 8 ≤ 3,

8 − 3, 4 ≤ 8 ≤ 6,

and 5 (8, 9)min , 5
(8, 9)
max ≥ 0 for all remaining 9 . These constraints ensure only a single directional change

will be commandedwhen themodel is switched. Let f̄ ∗ be the solution to the following optimization
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Figure 3.4: Norm of disturbance estimates for all failure case models and Lyapunov derivative
estimate during an experimental in-flight actuator failure.

problem with above discussed constraints under the selected model 8C

minimize
f̄

(

 f̄ 

2 + _



,E ("F (8C ) f̄ − û(8C ))




2
)

subject to 5
(8, 9)
min ≤ 5̄ ∗8, 9 ≤ 5

(8, 9)
max ,

where _ ∈ R�0 is chosen to be large to ensure we achieve applied forces and torques as close as

possible to the desired û(8C ) . We also take advantage of the diagonal weighting matrix,,E ∈ R4×4,

to prioritize the total thrust and the roll and pitch torques, allowing for lower performance in yaw

tracking since the former are integral for achieving a successful recovery. The additional


 f̄ 

2 term

is used to simultaneously select a solution with lower energy. The solution, f̄
∗, is then mapped

to squared rotor speeds through the inverse of (3.4). The optimization problem is solved by the

active-set algorithm proposed in [26].

The experimental system is flown along the same trajectory as in simulation and a failure of

actuator four is induced algorithmically. The norm of the experimental disturbance estimates for
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Figure 3.5: Hexrotor position tracking recovery after experimental in-flight actuator failure.

each failure model, and the Lyapunov derivative estimate, are shown in Fig. 3.4. The dashed vertical

line in Fig. 3.4 corresponds to the time when a failure is induced, C 5 , and the solid vertical line

shows when the detection and switch occurs, CB. The correct model for a failure of actuator four is

selected and the resulting tracking performance before and after recovery are shown in Fig. 3.5. The

tracking performance after failure is slightly degraded due to the use of non-ideal control inputs,

f̄
∗. A video of the experiments can be found at https://youtu.be/8fQMrca49os

For a highly detailed treatment of the experimental multi-rotor system, including parameter identifica-

tion, rotor dynamics and force characteristics, and software implementation of these control methods, see

Appendix A.

3.7 Conclusions

In this chapter, we studied a trajectory tracking problem for a hexrotor in the presence of modeling error

and external disturbances, while simultaneously enabling in-flight recovery of a complete actuator failure.

A multiple-model, multiple extended high-gain observer based output feedback control framework is used
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to enable this extended functionality. The framework is rigorously analyzed to provide stability guarantees

and bounds on the maximum switching time for recovery. Simulation and experimental flight data show the

successful application of the method on a physical system.
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CHAPTER 4

TOWARDS MULTI-BODY MULTI-ROTORS FOR LONG REACHMANIPULATION

In this chapter, we design a novel multi-body multi-rotor UAV to be used for long reach manipulation

tasks and extend the base control technology presented in Chapter 2 to enable robust trajectory tracking

performance on this novel airframe design. We consider the modeling and control of a multi-body multi-

rotor system in which a horizontally actuated bi-rotor platform is suspended from a larger multi-rotor through

a passive revolute joint. We provide dynamic modeling, feedback linearizing control through the use of flat

outputs, and an extended high-gain observer based output feedback control design assuming that the system

operates in a plane. Simulation results are provided to show the long reach manipulator platform tracking a

trajectory. Themethods are rigorously analyzed and stability of the closed-loop system under output feedback

is proven. The work presented in this chapter was a collaborative effort with fellow graduate student Vishal

Abhishek. This work originally appeared in the proceedings of the 2021 American Control Conference [8].

The remainder of the chapter is organized in the followingmanner. Section 4.1 gives the system dynamics

and modeling of the aerial manipulator whereas Section 4.2 details the control design using the extended

high-gain observer. Section 4.3 proves stability of the system, and Section 4.4 provides simulation results.

Finally, Section 4.5 concludes the chapter.

4.1 System Dynamics

We study a rigid platform with bi-rotor actuation, rigidly attached to a rigid rod connected at the other

end to a carrier UAV through a passive revolute joint. The suspended platform is actuated with two rotors

so as to provide a net thrust perpendicular to the rod with no net moment. The two rotors attached at both

ends of the platform are operated with angular velocity in opposite directions to generate viscous torque in

opposite directions while generating thrust in the same direction. Thus, when operated at the same speed,

the rotors generate a net thrust along the axis of the platform with no net moment. The resulting multi-body

system is shown in Fig. 4.1. For the analysis going forward, we restrict our case to planar motion in the

vertical plane.
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Figure 4.1: Carrier UAV with suspended bi-rotor actuated platform.

4.1.1 Dynamic Model

We begin by introducing the following notation. Unless otherwise stated, all coordinates are expressed

in the inertial frame. The mass of the carrier UAV is <& ∈ R�0, the mass of the platform is <% ∈ R�0, and

6 is the acceleration due to gravity. The length of the connecting rod is ! ∈ R�0, with the G and H positions

of the carrier UAV center of mass, G& ∈ R and H& ∈ R, and the position of the platform center of mass,

G% ∈ R and H% ∈ R. The angular position of the platform is U ∈ R and the angular position of the carrier

UAV is V ∈ (−c/2, c/2). The moment of inertia of the carrier UAV in the body-frame is �& ∈ R�0 and the

moment of inertia of the platform in the body-frame is �% ∈ R�0. The control inputs are the total thrust of

the carrier UAV, D1 ∈ R�0, the torque on the carrier UAV about its center of mass, D2 ∈ R, and the total

platform thrust, D3 ∈ R�0.

We assume the revolute joint and the connecting rod are rigidly attached to the platform and are massless.

The centers of mass of the carrier UAV and the platform are assumed to be at their geometric centers and are

the same as the two end-points of the connecting rod. The actuator forces are the total carrier UAV thrust,

D1, the carrier UAV moment, D2, and the suspended platform thrust, D3. These forces are shown in Fig. 4.1.

The equations of motion are written using G%, H%, U, and V as generalized coordinates. The kinetic
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energy, ) , and the potential energy,*, are given by

) =
1

2
(<% + <&) ( ¤G2% + ¤H2%) − <&! ( ¤G% ¤U2U + ¤H% ¤UBU) +

1

2
�& ¤V2 +

1

2
(�% + <&!

2) ¤U2,

* = <&6(H% + !2U) + <%6H% .

The corresponding generalized forces are

FG% = D32U − D1BV ,

FH% = D3BU + D12V ,

FU = D1!B (V−U) ,

FV = D2.

Here, 2U and BU represent cosU and sinU respectively. The equations of motion can be written compactly

as

3 = " (q1) ¥q1 + � (q1, ¤q1) ¤q1 + � (q1), (4.1a)

D2 = �& ¥V, (4.1b)

where, q1 := [G%, H%, U]>, 3 := [FG% , FH% , FU]>, and

" =


(<% + <&) 0 −<&!2U

0 (<% + <&) −<&!BU

−<&!2U −<&!BU (�% + <&!
2)


,

� =


0 0 <&! ¤UBU

0 0 −<&! ¤U2U

0 0 0


,

� =

[
0 (<% + <&)6 −<&6!BU

]>
.

(4.2)

4.1.2 Differential flatness

The system has four generalized coordinates at the position level: G%, H%, U, and V, but only three

independent control inputs: D1, D2, and D3, thus resulting in one degree of underactuation. It can be seen

from (4.1a) and the expression for 3 that designing a trajectory in q1 uniquely determines the trajectories

of D1, D3, and V. Furthermore, a trajectory in V uniquely determines D2. Thus, a trajectory in q1 uniquely

determines all state trajectories and control inputs. As a result, q1 are the differentially flat outputs.
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4.1.3 State-Space Model

The dynamics can now bewritten as two subsystems in state-space form. Taking q2 = ¤q1, q = [q>1 , q>2 ]>,

the platform dynamics become

¤q1 = q2,

¤q2 = " (q1)−1 [−� (q)q2 − � (q1)] + " (q1)−13 + 2@,

(4.3)

where 2@ ∈ R3 is an added term to represent the lumped disturbance in the platform subsystem, which

satisfies the following assumption.

Definition 4.1 (Prime Canonical Form). A control system in the “prime canonical form” [66], for state

x ∈ R=, control input D ∈ R, and disturbance f ∈ R, has the following representation

¤x = �prmx + �prm 5prm(C, x, D), H = �prmx, (4.4)

where

�prm =


0=−1×1 �=−1

0 01×=−1

 , �prm =


0=−1×1

1

 , 5prm : R≥0 × R= × R→ R, �prm = [1 01×=−1],

0?×@ is a matrix of zeros with dimension ? × @, �? is the identity matrix of dimension ?, and H ∈ R is the

measurement.

Assumption 4.1 (Disturbance Properties). The dynamics of the various subsystems in this chapter take the

prime canonical form perturbed by a disturbance term. We assume that the disturbance enters the RHS of

(4.4) as �3f where �3 = �prm, f is continuously differentiable, and its partial derivatives with respect to

states are bounded on compact sets of those states for all C ≥ 0.

Taking V1 = V, V2 = ¤V, and # = [V1, V2]> the carrier UAV orientation dynamics become

¤V1 = V2,

¤V2 =
D2

�&
+ fV ,

(4.5)

where fV ∈ R is an added term to represent the lumped disturbance in the carrier UAV subsystem, which

also satisfies Assumption 4.1.
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Let q3 = [G3
%
, H3

%
, U3]> be the desired output trajectory and let V2 be the desired orientation of the

carrier UAV. By making the following change of variables

e1 = q1 − q3 , e2 = ¤e1 = q2 − ¤q3 , e = [e>1 , e>2 ]>,

Ṽ1 = V1 − V2 , Ṽ2 =
¤̃
V1 = V2 − ¤V2 , #̃ = [ Ṽ1, Ṽ2]>,

the system can be written in terms of tracking error as

¤e1 = e2,

¤e2 = 5 (q1, e, ¤q3) + " (q1)−13 + 2@ − ¥q3 ,

¤̃
V1 = Ṽ2,

¤̃
V2 =

D2

�&
+ eV ,

(4.6)

where 5 (q1, e, ¤q3) = " (q1)−1 [−� (q1, e2 + ¤q3) (e2 + ¤q3) − � (q1)] and ¥V2 is lumped into the disturbance

term eV = fV − ¥V2 . The advantage of this modification is we no longer require higher-order derivatives of

V2 , however V2 must be third order differentiable to ensure eV satisfies Assumption 4.1.

4.2 Control Design

We begin by designing a state feedback control law for each subsystem using feedback linearization, thus

requiring the assumption that all states and disturbances are known. This assumption will then be relaxed

by introducing an extended high-gain observer to estimate all states and disturbances to arrive at an output

feedback control law.

4.2.1 State Feedback Control

Using the differentially flat outputs, q1, we design a trajectory tracking controller by taking the control

input 32 = " (q1) [−:1e1 − :2e2 −2@ + ¥q3 − 5 (q1, e, ¤q3)]. Take V2 as the desired orientation of the carrier

UAV, and use the expression for 3 at V = V2 to compute D23 , D
2
1 , and V

2 from the equation 3 (V=V2) = 32 =

[g21 , g22 , g23 ]>. This leads to the following feedback linearizing control equations

D23 = g
2
1 2U + g22 BU + g23 /!,

D21 =

√
(D232U − g21 )2 + (g22 − D23BU)2,

V2 = atan2((D232U − g21 ), (g22 − D23BU)).

(4.7)
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Note that for V2 to be third order differentiable, we require the desired trajectory, q3 , to be fifth order

differentiable. If we set the control actions D1 = D21 , D3 = D23 , and D2 = �& (−:3 Ṽ1 − :4 Ṽ2 − eV) the

closed-loop system dynamics become

¤e = �ee +


03×1

eV (C, q1, Ṽ1)

 , (4.8a)

¤̃# = �#̃ #̃, (4.8b)

where

�e =


03 �3

−:1�3 −:2�3

 , �#̃ =


0 1

−:3 −:4

 ,

eV (C, q1, Ṽ1) = "−1(q1)


D21 (BV − BV2 )

D21 (2V2 − 2V)

D21! (B (V2−U) − B (V−U) )


,

and �3 ∈ R3×3 is the identity matrix, 03 ∈ R3×3 is a matrix of zeros, and 03×1 ∈ R3 is a vector of

zeros. As a result, the two closed-loop subsystems form a cascade connection through eV and the fact that

eV (C, q1, 0) = 0 is important when analyzing stability of the cascaded system. Note that Ṽ2 and eV contain

¤V2 and ¥V2 respectively. We do not compute these derivatives directly, however the terms containing them

are estimated completely by the extneded high-gain observer in the output feedback control design.

4.2.2 Extended High-Gain Observer Design

We now present the design of an extended high-gain observer to estimate unmeasured states as well as

uncertainties in the form of modeling error and external disturbances. These estimates will be used to cancel

out the uncertainties in the control design, resulting in improved performance of the feedback linearizing

controllers. For the extended high-gain observer design we assume only the position level states can be
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measured. We begin by extending the tracking error dynamics (4.6) to include disturbance dynamics

¤e1 = e2,

¤e2 = 5 (q1, e, ¤q3) + " (q1)−13 + 2@ − ¥q3 ,

¤2@ = i@ (C, e),

¤̃
V1 = Ṽ2,

¤̃
V2 =

D2

�&
+ eV ,

¤fV = iV (C, #̃),

(4.9)

where i@ (C, e) and iV (C, #̃) are unknown functions describing the disturbance dynamics and are assumed

to be continuous and bounded on any compact set in e and #̃ to ensure Assumption 4.1 is satisfied.

To facilitate writing the observer dynamics in a compact form, we define the state vector 6 =

[e>1 , e>2 ,2>@ , Ṽ1, Ṽ2, fV]>, and the disturbance function vector i(C, e, #̃) = [i@ (C, e)>, iV (C, #̃)]>, leading

to the observer dynamics

¤̂6 = � 6̂ + �
[
5̄ (q1, ê, ¤q3) + �̄ (q1)u

]
+ � 6̂4,

6̂4 = � (6 − 6̂),
(4.10)

where

� = ⊕28=1�8 , � = ⊕28=1�8 , � = ⊕28=1�8 , � = ⊕28=1�8 ,

�1 =


03 �3 03

03 03 �3

03 03 03


, �1 =


03

�3

03


, �1 =


d1/n �3

d2/n2�3

d3/n3�3


, �1 =

[
�3 03 03

]
,

�2 =


0 1 0

0 0 1

0 0 0


, �2 =


0

1

0


, �2 =


d1/n

d2/n2

d3/n3


, �2 =

[
1 0 0

]
,

5̄ (q1, ê, ¤q3) =

5 (q1, ê, ¤q3)

0

 , �̄ (q1) =

" (q1)−1 03×1

01×3 1/�&

 , u =


32

D2

 ,
where ⊕ denotes the matrix direct sum, � is designed by choosing d such that the polynomial

B3 + d1B2 + d2B + d3,

is Hurwitz and n ∈ R�0 is a sufficiently small tuning parameter.
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4.2.3 Output Feedback Control

We now define an output feedback controller to ensure tracking of the desired trajectory, q3 . The output

feedback controller is designed by replacing the states and disturbances in the state feedback controller by

their estimates from the extended high-gain observer

3̂2 = " (q1) [−:1 ê1 − :2 ê2 − 2̂@ + ¥q3 − 5 (q1, ê, ¤q3)] .

This leads to the following output feedback control equations

D̂23 = ĝ
2
1 2U + ĝ22 BU + ĝ23 /!, (4.11a)

D̂21 =

√
(D̂232U − ĝ21 )2 + (D̂23BU − ĝ22 )2, (4.11b)

V̂2 = atan2((D̂232U − ĝ21 ), (ĝ22 − D̂23BU)), (4.11c)

D̂2 = �& (−:3 ˆ̃
V1 − :4 ˆ̃

V2 − êV). (4.11d)

The state and disturbance estimates must be saturated outside a compact set of interest to overcome the

peaking phenomenon present in extended high-gain observers, see Appendix C.

4.3 Stability Analysis

The stability of the state feedback control, observer estimates, and output feedback controller will now

be proven. We begin by restricting the domain of operation by establishing a compact positively invariant

set in which the system will operate. We then prove stability of the closed-loop system under state feedback,

convergence of the observer estimates, and finally prove stability of the closed-loop system under output

feedback.

4.3.1 Restricting Domain of Operation

To ensure the angular position of the carrier UAV, V1, satisfies −c/2 < V1 < c/2, we restrict the domain

of operation and make the following assumption.

Assumption 4.2. The rotational reference signal V2 remains in the set {|V2 | < c/2−X}, where 0 < X < c/2.

It can now be shown that for sufficiently small initial tracking error, #̃(0), the tracking error | Ṽ1(C) | < X

for all C > 0. Together with Assumption 4.2, this ensures that |V1 | < c/2.
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A Lyapunov function in the rotational error dynamics is taken as

+Ṽ = #̃
>
%Ṽ #̃, where %Ṽ�Ṽ + �

>
Ṽ
%Ṽ = −�2. (4.12)

Since �Ṽ is Hurwitz, a symmetric positive definite %Ṽ as defined above exists, and

_min(%Ṽ)


#̃

2 ≤ +Ṽ ≤ _max(%Ṽ)



#̃

2 , ¤+Ṽ ≤ −


#̃

2 .

Define the positively invariant set ΩṼ = {+Ṽ ≤ 2 Ṽ}. Choosing the positive constant 2 Ṽ = _min(%Ṽ)X2

implies that



#̃(C)


 ≤ X and hence | Ṽ1(C) | < X as required.

A Lyapunov function for the platform tracking error can be taken as

+e = e>%ee, where %e�e + �>e %e = −�6. (4.13)

Taking the derivative of (4.13) and considering the potential for tracking error in # yields

¤+e = − ‖e‖2 + 2[0>3×1, e>V ]%ee,

≤ − ‖e‖2 + 2_max(%e)


eV

 ‖e‖ . (4.14)

Since eV (C, q1, Ṽ1) and its partial derivatives are continuous onΩṼ , and eV is uniformly bounded in time, eV

is locally Lipschitz in Ṽ1 on ΩṼ . Hence, in ΩṼ

eV (C, q1, Ṽ1) − eV (C, q1, 0)


 ≤ !

Ṽ1

 ≤ !X. (4.15)

This enables us to bound the Lyapunov derivative (4.14) by

¤+e ≤ − ‖e‖2 + 2_max(%e)!X ‖e‖ . (4.16)

Therefore, for ‖e‖ > 2_max(%e)!X, ¤+e < 0. Using the bounds _min(%e) ‖e‖2 ≤ +e ≤ _max(%e) ‖e‖2, we

can ensure Ωe = {+e ≤ 2e} is a positively invariant set with the following choice of 2e

2e > _max(%e) (2_max(%e)!X)2. (4.17)

This leads to the domain of operation Ω = ΩṼ × Ωe which is compact and positively invariant under state

feedback.
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4.3.2 Stability under State Feedback

Lemma 4.1 (Stability under State Feedback). For the closed-loop system under state feedback (4.8), with

initial tracking error (e(0), #̃(0)) ∈ Ω, the system states (e(C), #̃(C)) remain in Ω for all C > 0 and

exponentially converge to the origin.

Proof. The closed-loop system (4.8) is a cascade system of the form

¤e1 = e2,

¤e2 = −:1e1 − :2e2 + eV (C, q1, Ṽ1),

¤̃
V1 = Ṽ2,

¤̃
V2 = −:3 Ṽ1 − :4 Ṽ2.

The Lyapunov functions for the platform tracking error (4.13) and the carrier UAV rotational tracking error

(4.12) can be combined to form a composite Lyapunov function

+ = 3+4 ++Ṽ , 3 > 0. (4.18)

Following the generalized proof for cascaded system stability in Appendix B, the closed-loop state feedback

system converges exponentially to the origin and Ω is compact and positively invariant for 3 chosen small

enough. �

4.3.3 Stability under Output Feedback

The system under output feedback is a singularly perturbed system which can be separated into two

time-scales. The system dynamics and control reside in the slow time-scale while the observer resides in the

fast time-scale.

Lemma 4.2 (Convergence of EHGO Estimates). The observer estimates, 6̂, converge to an $ (n) neighbor-

hood of the true state, 6, for any n ∈ (0, n∗) for sufficiently small n∗ > 0.

Proof. The lemma follows from standard high-gain observer analysis [42]. �

Remark 4.1 (Identification of n∗). The Lyapunov analysis in the proof of Lemma 4.2 provides an estimate

of n∗, however this estimate is usually quite conservative. In practice, n is chosen through empirical tuning

on the system on which it will be implemented.
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Remark 4.2. It follows from standard EHGO analysis that the estimation error enters an invariant set

contained inside a ball of radius n2 after some short time ) (n), where limn→0 ) (n) = 0 and 2 ∈ R�0. Since

the initial state resides on the interior ofΩ, choosing n sufficiently small ensures that the states will not leave

Ω during the interval [0, ) (n)], thus the system state will remain inside the domain of operation under output

feedback while the observer converges.

Theorem 4.1 (Stability under Output Feedback). The closed-loop tracking error system under output feed-

back, with initial conditions on the interior of Ω, exponentially converges to an $ (n) neighborhood of the

origin when n is chosen small enough.

Proof. The output feedback closed-loop system can be written in singularly perturbed form. The system

dynamics form the reduced system and the observer dynamics form the boundary layer system. This system

has a two time-scale structure as n becomes small. The boundary layer system has an exponentially stable

equilibrium point at the origin from Lemma 4.2. The reduced system also has an exponentially stable

equilibrium point at the origin as shown in Lemma 4.1. Following [40, Theorem 11.4], it can be shown that

the entire closed-loop output feedback system is exponentially stable when n is chosen sufficiently small. �

4.4 Numerical Simulation

The estimation and control strategy presented above is simulated to perform trajectory tracking in the flat

outputs, q1, i.e, platform pose. A simple task is chosen where the platform is taken from an initial position

and orientation, q1 = [0, 0, 0]>, to a final position and orientation, q1 = [1, 1, 1]>. The system then returns

back to the initial configuration. As the controller requires continuous derivatives of the desired trajectory,

q3 , up to fifth order, the desired trajectory q3 is taken as a 9-th order polynomial with given initial and

final values: q3 (0) = [0, 0, 0]>, and q3 (5) = [1, 1, 1]>. The derivatives up to 5-th order are set to zero at

C = 0 and C = 5. The return trajectory is generated in the same manner, but in the opposite direction. The

simulation is conducted with the disturbances 2@ = [sin(2C), sin(3C), sin(C)]> and fV = sin(4C) applied

to the system dynamics. The desired and actual trajectories under output feedback control are shown in

Fig. 4.2. To showcase an application and aid in interpretation, we simulated the system tracking the same

trajectory in the presence of the same disturbances and included a two-link manipulator attached to the

birotor platform. We animated the simulation to show the birotor platform swinging up and grasping an
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(a) Desired and actual trajectories: G (b) Desired and actual trajectories: H

(c) Desired and actual trajectories: U (d) Desired and actual trajectories: V

Figure 4.2: Trajectory tracking for G, H, U (platform pose) and V (UAV orientation) under output
feedback control in the presence of disturbances.

object with the two-link manipulator, then returning to the initial configuration. Frames from the animation

are shown in Fig. 4.3.

4.5 Conclusions

In this chapter, we designed a novel long reach aerial manipulation system in which a small horizontally

actuated platform is suspended from a larger carrier UAV. The system dynamics are modeled and a feedback

linearizing control is initially designed under state feedback. An extended high-gain observer is designed to

estimate unmeasured states as well as any modeling error and external disturbances, which are then canceled

in the output feedback control design. The method is rigorously analyzed to guarantee stability of the overall
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(f) Arrive at final configuration

Figure 4.3: Simulation tracking the same trajectory, showing a potential application using an
attached two-link manipulator to grasp an object.
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closed-loop system under output feedback. The system is simulated with added disturbances which are

estimated and canceled through the control design to show excellent tracking performance.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

We presented a robust output feedback linearizing control strategy that utilizes extended high-gain

observers for use in developing methods enabling resilient autonomy for multi-rotor systems. The base

control technology is further extended to enable trajectory estimation, in-flight actuator failure detection,

and implementation on a novel multi-body multi-rotor airframe design. The estimation and control methods

are rigorously analyzed to provide stability guarantees and the provide insights into system tuning and the

maximum control switching time to recover from an actuator failure. Furthermore, the methods presented

are shown to not only work in theory and simulation, but they can be applied to experimental systems at

reasonable sample rates with inexpensive sensors and computation.

Chapter 2 demonstrated the base estimation and control strategy that is utilized throughout this work.

A feedback linearizing controller, which alone would result in poor closed-loop performance, is augmented

with an extended high-gain observer. The combination yields a system that is robust to external disturbances

as well as modeling error, while still providing intuitive gain tuning to allow shaping of the transient response.

The observer also provides estimates of any unmeasured system states for use in the output feedback control

strategy. The overall system is rigorously analyzed and proven stable. The estimation and control strategy

is also validated through simulation and experimental results where we focus on the problem of landing a

multi-rotor on a moving ground vehicle. Furthermore, we present a novel method for designing an extended

high-gain observer for a system evolving on ($ (3). The observer enables estimation of higher-order states,

disturbances, and higher-order derivatives of the reference trajectory.

In Chapter 3, we demonstrated that a family of extended high-gain observers can be utilized in an output

feedback control strategy to incorporate the detection and identification of a complete actuator failure during

flight on a hexrotor UAV. Our analysis provides insight into the magnitude of disturbances that can be

affecting the system while still being able to detect and recover from an actuator failure. We are also able

to provide a theoretical bound on the amount of time that can elapse before switching models to guarantee

stability is recovered. The system is again validated through simulation and experimental results.

Chapter 4 presented a novel multi-body multi-rotor airframe design to enable long reach aerial manip-
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ulation. The feedback linearizing control strategy, augmented with an extended high-gain observer, is also

applied on this novel airframe design. The proposed strategy is rigorously analyzed to provide a domain of

operation in which the control law is valid, as well as guaranteeing stability of the overall closed-loop system

under output feedback. The system is simulated and shown to result in excellent tracking performance even

in the presence of disturbances.

The work presented in this dissertation can be extended in a number of ways. In principle, the methods

presented above result in a robust trajectory tracking control design. These controllers could be paired with a

high-level control strategy which would be responsible for generating the reference trajectory. For example,

the use of a reinforcement learning control strategy could be used to generate the reference trajectory.

Furthermore, the disturbance estimates could be fed into the reinforcement learning strategy to influence the

design of a more efficient reference trajectory in the presence of the expected disturbances.

Our estimation and control strategy can also be extended to consider control optimality. The feedback

linearizing control could be replaced with an optimal control strategy, such as model predictive control.

Furthermore, the estimates of disturbance from the extended high-gain observer could be used to parameterize

a disturbance model online for use in control design.

When considering actuator failure, our method could be extended tomultiple failures for general =-rotors.

Assuming that system controllability is retained despite multiple failures, the proposed approach could be

applied in an hierarchical way, wherein a new set of models are considered after each failure detection.

Analysis of such an approach under mutual interactions of multiple failures is an interesting direction of

future investigation.

Furthermore, the multi-body multi-rotor control design presented in Chapter 4 could be extended to three

dimensional motion. One way to achieve this would be to connect the passive revolute joint to an actuated

joint below the carrier UAV as opposed to connecting it directly to the carrier UAV. The actuated joint could

be controlled to remain parallel to the inertial G, H plane enabling the carrier UAV to rotate as necessary for

translation, while keeping the plane in which the suspended bi-rotor platform operates perpendicular to the

inertial G, H plane.
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APPENDIX A

EXPERIMENTAL SYSTEM DESIGN

In this appendix, we will detail the methods necessary to take the control and estimation strategies

proposed throughout this dissertation and implement them on a physical system. In Section A.1, we begin by

showing the identification of the necessary physical parameters, and associated mappings, for the multi-rotor

model. We also describe the gain tuning for the control, observer, and the failure identification threshold.

In Section A.2, we identify the parameters and mappings associated with generating a desired force with a

motor and rotor pair, including the dynamic response of the rotor speeds to a commanded input, which as we

have shown must be included in the extended high-gain observer design. Finally, in Section A.3, we show the

methods used to generate integrated flight software to run on the Pixhawk 4 flight management unit (FMU).

The flight software is implemented in Simulink® and codegened through the PX4 Autopilots Support from

Embedded Coder package [34].

A.1 Multi-rotor Parameter Identification and Tuning

In this section, the necessary physical parameters that will be identified consist of the mass moment of

inertia of the multi-rotor, the mass of the multi-rotor, and the mapping of the desired body-fixed torques, 3,

and the total thrust, D 5 , to rotor forces. We further detail tuning the control and estimation parameters to

arrive at a system which exhibits excellent tracking performance even in the presence of large disturbances

during flight. The tuning will be focused on control performance, as well as showcasing the trade-offs

between measurement noise amplification and convergence rate of the observer in choosing the estimation

gains. Tuning the threshold for actuator failure detection will also be detailed in this section. Through this

tuning process, we will arrive at a set of real-world parameters which can be directly implemented on an

experimental system.

A.1.1 Moment of Inertia Measurement

To measure the inertia matrix of our experimental platform we used the bifilar pendulum method [35].

This method involves suspending the multi-rotor by two cables that are attached at points equidistant from
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(a) G-axis (b) H-axis (c) I-axis

Figure A.1: Suspending the multi-rotor to measure the moment of inertia about each principle
axis using the bifilar pendulum method.

the center of mass and rotating the multi-rotor about the vertical axis as shown in Fig. A.1. Here gravity, 6,

provides the restoring force and we will measure the period of oscillation, g. Taking < ∈ R�0 as the mass of

the multi-rotor, A ∈ R�0 as the distance between the center of mass and the connection point of the cables,

and ! ∈ R�0 as the length of the cables suspending the multi-rotor, we use

� =
<6A2g2

4c2!
, (A.1)

to compute the moment of inertia about the vertical axis. The multi-rotor must then be suspended in the

other two principle orientations to determine the moment of inertia about each of the three body-fixed axes.

For simplicity, we assume that the off-diagonal elements of the inertia matrix are negligible. The inertia

matrix that was measured for our experimental hexrotor system is

� =


0.0228 0 0

0 0.0241 0

0 0 0.0446


kg m2.
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Figure A.2: Standard quadrotor, hexrotor, and octorotor configurations with rotation direction of
each rotor. These multi-rotors are in the ‘X’ configuration, meaning that there are two rotors
symmetric about the body-fixed G-axis at the front and rear of the airframe.

A.1.2 Mapping Actuator Forces to Body Torques and Collective Thrust

The control inputs that are designed through our output feedback linearizing control law are a vector of

body-fixed torques, 3, and the collective thrust, D 5 . In this section we will describe the mapping from these

control signals to forces required of each actuator for the most common quadrotor, hexrotor, and octorotor

configurations. This will enable the body-torques and collective thrust to be applied, as designed by the

control law, to the physical system which can only produce forces with the actuators.

We will begin by considering the quadrotor configuration shown in Fig. A.2. Let A ∈ R�0 be the radius

of the airframe, or the distance from the center of mass to the center of each actuator. Let 2 ∈ R�0 be the

rotational aerodynamic drag on the rotor, and finally, let f̄ quad = [ 5̄ quad1 , . . . , 5̄
quad
4 ]> be a vector of the forces

applied by each actuator and define the following mapping matrix

"quad =



1 1 1 1

−A√
2

−A√
2

A√
2

A√
2

A√
2

−A√
2

−A√
2

A√
2

2 −2 2 −2


. (A.2)

The vector of control inputs can now be written in terms of the forces generated by each rotor through
D 5

3

 = "
quad f̄

quad
. (A.3)
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When it comes to the physical implementation of the control law, we need an inverse mapping so we can

map the desired body-fixed torques and collective thrust from the control law to actuator forces. This can be

solved for the quadrotor case by simply taking the inverse of the mapping matrix

f̄
quad

= ("quad)−1

D 5

3

 . (A.4)

The mapping matrix for the hexrotor configuration shown in Fig. A.2 is very similar. Let f̄
hex

=

[ 5̄ hex1 , . . . , 5̄ hex6 ]> be a vector of the forces applied by each actuator and define the following mapping matrix

"hex =



1 1 1 1 1 1

−A
2 −A −A

2
A
2 A A

2

A
√
3

2 0 −A
√
3

2
−A
√
3

2 0 A
√
3

2

2 −2 2 −2 2 −2


. (A.5)

The vector of control inputs can now be written in terms of the forces generated by each rotor through
D 5

3

 = "
hex f̄

hex
. (A.6)

When it comes to the inverse mapping, since the mapping matrix, "hex, is not square, we will instead use

the minimum energy pseudo-inverse, leading to the following mapping

f̄
hex
= ("hex)>(("hex) ("hex)>)−1


D 5

3

 . (A.7)

The mapping matrix for the hexrotor configuration shown in Fig. A.2 is again very similar. Let f̄
oct
=

[ 5̄ oct1 , . . . , 5̄ oct8 ]> be a vector of the forces applied by each actuator and define the following mapping matrix

"oct =



1 1 1 1 1 1 1 1

−A
√
2−
√
2

2
−A
√
2+
√
2

2
−A
√
2+
√
2

2
−A
√
2−
√
2

2
A
√
2−
√
2

2
A
√
2+
√
2

2
A
√
2+
√
2

2
A
√
2−
√
2

2

A
√
2+
√
2

2
A
√
2−
√
2

2
−A
√
2−
√
2

2
−A
√
2+
√
2

2
−A
√
2+
√
2

2
−A
√
2−
√
2

2
A
√
2−
√
2

2
A
√
2+
√
2

2

−2 2 −2 2 −2 2 −2 2


. (A.8)

Again, since the mapping matrix, "oct, is not square, we will use the minimum energy pseudo-inverse,

leading to the following mapping

f̄
oct
= ("oct)>(("oct) ("oct)>)−1


D 5

3

 . (A.9)
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Now that all of these mappings have been defined, the control actions can be mapped to actuator forces

and back to ensure the control action can be applied to the experimental platform. In Section A.2, a detailed

analysis of the rotor dynamics and thrust characteristics are presented. This will enable the final piece

of the control application chain by detailing a mapping from desired actuator forces to the digital PWM

signals that will be sent to the electronic speed controllers driving the actuators. Therefore, by applying

the mappings presented in this section, and the mappings presented in Section A.2, we are able to map our

desired body-fixed torques and collective thrust directly to actuator signals.

A.1.3 Tuning Control Gains

The control method that is employed throughout this work is a feedback linearizing control strategy.

Typically, feedback linearization is not utilized in real-world control applications because this method relies

on having exact model knowledge, knowledge of any disturbances effecting the system, and can be adversely

affected by measurement noise. When we augment a feedback linearizing control strategy with an extended

high-gain observer, we can relax these requirements as the observer can provide an estimate of any errors

between the physical system and our mathematical model, including an estimate of any disturbances affecting

the system.

The rotational dynamics will behave as a linear system under the output feedback control presented in

Chapter 2. Similarly, the translational dynamics will also behave as a linear system under the output feedback

control, however with a slight perturbation resulting from any tracking error present in the rotational control.

The rotational and translational control will also experience slight perturbations due to estimation error when

utilizing the observer estimates in the output feedback control. In principle, since the closed-loop systems

behave as linear systems, we can employ any linear system gain tuning approach to shape the transient

response and ensure certain performance criteria.

The rotational and translational closed-loop systems form a cascade connection as the translational control

uses the reference signals of the rotational control as virtual control inputs. As a result, the translational

control can only approach the behavior of the desired linear system since the closed-loop behavior is

dependent on the tracking error of the rotational system. If the rotational system is tracking perfectly, then

the translational system reduces to the desired linear system, however, in practice, perfect rotational tracking

will not be achieved.
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In order to achieve excellent closed-loop tracking performance, we want to reduce the magnitude of the

rotational tracking error as much as possible. Since we are able to write the closed-loop system as a cascade

connection between the rotational and translational subsystems, the control gains for the two systems can be

tuned independently and in theory do not require the time-scale separation arguments that are typically made

in this type of control structure. However, if the gains for both systems are chosen close to each other, the

system will experience degraded tracking performance as the perturbations in the translational closed-loop

system, resulting from the tracking error in the rotational closed-loop system, become large. For practical

performance we choose the rotational gains decently higher than the translational gains which improves the

overall closed-loop tracking performance of the system. The gains that were found to work well on our

system consist of the rotational gains, V1 = 40, V2 = 20, and the translational gains, W1 = 2, and W2 = 1.5.

A.1.4 Tuning the Extended High-Gain Observer and Actuator Failure Detection Threshold

When tuning the gains for an extended high-gain observer for use in nonlinear feedback control, there are

a few trade-offs that must be considered. The primary argument against using extended high-gain observers

in practical applications, specifically on highly dynamic systems such as multi-rotor UAVs, is the effect of

measurement noise and the high sample-rates required. Measurement noise can have a drastic effect on

extended high-gain observer performance as we are relying on position measurements to estimate velocity

and acceleration for use in output feedback control. This means that any measurement noise will be amplified

dramatically which can result in severely degraded performance. An illustration on the effect of measurement

noise on the ultimate bound on observer error and the appropriate choice of the observer gain n is shown

in [42, Figure 1.11]. On our system, the value n = 0.025 was found to work well.

When considering using the estimates from the extended high-gain observer to detect an actuator failure,

as detailed in Chapter 3, there are some trade-offs that must be considered. The estimate of the Lyapunov

derivative will be corrupted by measurement noise and will only be in an $ (n) neighborhood of the actual

Lyapunov derivative. This is important when selecting 00 for our detection threshold through

¤̂
+b ≤ 00 − ||/̂

(0) | |2,

as choosing 00 too small will result in falsely detecting an actuator failure. Similarly, choosing 00 too large

will result in longer delays before detecting the failure, which can impact stability. In practice, we found the
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value 00 = 2 to work well.

A.2 Rotor Speed and Force Calibration

The way in which we impart the control forces and torques prescribed by the output feedback linearizing

control law is through varying the speed of the rotors on the multi-rotor vehicle. Without taking other small

aerodynamic effects into consideration, the force generated by a rotor is directly proportional to the square of

the rotational rate of the rotor. For a generic =-rotor, the force generated by rotor 8 ∈ {1, . . . , =} is 5̄8 = 1l2
8
,

where 1 ∈ R�0 is a constant relating angular rate to force and l8 ∈ R�0 is the 8-th rotor angular rate.

The actuators used on the majority of multi-rotors are brushless DC (BLDC) motors. These motors

require an electronic speed controller (ESC) to generate a rotating magnetic field. The ESC has an internal

PI controller to regulate the speed of the rotating magnetic field, and in turn the speed of the actuator and

rotor. The control signal that a standard ESC expects is a standard servo signal. This signal consists of a

PWM signal which has a frequency of 50Hz with a pulse width between 1000`B and 2000`B, corresponding

to no rotation and maximum rotational rate, respectively.

In practice, most modern ESCs allow the signal frequency to be increased to increase responsiveness

of the actuators so long as the total pulse width can be maintained with a small low signal in between.

This places the operating range of the PWM signals for these ESCs between 50Hz and 400Hz, as shown in

Fig. A.3. Other even faster ESC communication protocols exist, such as DSHOT 600 and DSHOT 1200,

which can further improve the responsiveness of the actuators, however we did not consider these protocols

because we run all of our experiments with a sample rate of 100Hz.

Ultimately, we will need a mapping between the servo signal command and the rotational speed of the

rotor. This mapping will be discussed in detail in Section A.2.3.

A.2.1 Photo-tachometer Actuator Test Stand

In order to measure the rotational rate of the rotors for a given commanded input, we constructed a test

stand that uses an infrared photo diode and an infrared LED. The photo diode is placed in the top arm of

the test stand shown in Fig. A.4 aiming down so as to limit interference from external sources. The infrared

LED resides in the bottom arm pointing up forming a beam of infrared light, which when interrupted by the

rotor passing between the arms, can be detected using a microcontroller. The rotor is run at a range of speeds
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Figure A.3: Examples of the two extremes for the PWM signals that can be sent to an ESC. Both
signals are applying the maximum pulse width of 2000`B, corresponding to maximum throttle for
the ESC.

and as it interrupts the infrared light, the time at which that occurs is recorded, which is used to resolve a

rotational speed of the rotor. Taking these speed measurements enables both the calibration of the relation

between rotor angular rate and the PWM speed command sent to the ESC, as well as dynamic information

used to model the response of the actuators, which is shown in the next section.

To characterize the rotor thrust for a given speed we place the rotor speed test stand on a load cell, flip

the rotor over to generate downward force, and run the rotor at a range of speeds. The force measurement

data and the rotor speed data can then be used to generate a functional mapping between rotor speed and

force. These mappings will be shown in detail in Section A.2.3.

A.2.2 Actuator Dynamic Response

The actuators typically used in multi-rotor construction are brushless DC (BLDC) motors which require

electronic speed controllers (ESCs). The ESCs have internal PI controllers which introduce dynamic delays,

resulting in a first-order response of the rotor speed to a commanded input. The first order model is written
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Figure A.4: Photo tachometer rotor speed test stand.

as

¤8 =
1

g<
(8des − 8), (A.10)

where 8 ∈ R= is a vector of rotor angular rates, 8des ∈ R= is a vector of desired rotor angular rates, and

the associated time constant of the system is g< ∈ R�0. Through experimental testing and fitting a model as

shown in Fig. A.5, the time constant is found to be g< = 0.059. The experimental system which was tested

consisted of a 4S Lithium polymer battery, Nidici 35A ESCs running BLHeli_32 firmware, 2212 920Kv

brushless motors, and 10x4.5 carbon fiber rotors. The rotor speed is measured using a custom built photo

tachometer rotor test stand, shown in Fig. A.4.

Even though this is an open loop model, any errors in rotor speed can be pulled out of the dynamics

as an additive disturbance and then compensated for with the output feedback control. Recall the rotational

tracking error dynamics with squared rotor speed input

¤/1 = /2,

¤/2 = 5 (/, :1, ¤:A ) + 1� (:1)"8B + = b .

(A.11)
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Figure A.5: Actuator dynamic response.

We can modify the actuator dynamic model, where the actual speed of each rotor has some error, % =

[X1, . . . , X=]>, where X8 is the error between the commanded and actual angular rate of rotor 8, as compared

with the commanded rotor speed as

¤̄8 =
1

g<
(8des − (8 + %)). (A.12)

Taking 8̄B = [l̄2
1, . . . , l̄

2
=]> as the input to the multi-rotor dynamics results in the following dynamics

¤/1 = /2,

¤/2 = 5 (/, :1, ¤:A ) + 1� (:1)"8̄B + = b .

(A.13)

The error, %, can be pulled out of the dynamics as an additive term and lumped in with the rotational

disturbance as

¤/1 = /2,

¤/2 = 5 (/, :1, ¤:A ) + 1� (:1)"8B + =̄ b ,

(A.14)

where

=̄ b = 1� (:1)" (28% + %B) + = b , and %B = [X21, . . . , X2=]>.
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The additional disturbance can then be estimated by the extended high-gain observer, and canceled through

the output feedback control.

A.2.3 Reversible Rotors and Their Effect on Performance

As established in Chapter 3, in order to recover stability after an actuator failure on a standard hexrotor

UAV, the rotors need to be able to rotate in both the forward and reverse directions. However, the airfoil

design of the rotors that are used on multi-rotors are asymmetric to improve their efficiency in the direction

of rotation of normal operation. As a result, when a rotor is commanded to run in reverse during a failure,

the performance is drastically reduced, requiring much larger rotor speeds to achieve the same force as would

be applied in the nominal direction. For the 10x4.5 carbon fiber rotors used on our experimental vehicle,

this deficit was found to require five times the rotor rotational rate to generate the same force in the reverse

direction. To enable bi-directional operation, the firmware on the ESCs is updated. As a result, the input

range is still a pulse between 1000`B and 2000`B, however this now corresponds to full speed in reverse and

full speed in the forward direction, respectively. Therefore, 1500`B becomes the new zero throttle point.
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Figure A.6: Mapping commanded ESC Pulse Width Modulation (PWM) to measured rotor speed
in forward and reverse directions.
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Figure A.7: Mapping measured rotor speed to force in forward and reverse directions for carbon
fiber 10x4.5 rotors, which are designed for single direction use and generate reduced thrust in
reverse by a factor of five.

The rotor test stand (Fig. A.4) is used to measure the angular rate at a number of speed settings to arrive at

a mapping from desired rotor speed in radians per second to a necessary PWM signal value in microseconds.

The following mappings were found for forward and reverse speeds respectively

PWM 9 =


(3.305e-4)l2

9
+ 0.218l 9 + 1528 for l 9 ≥ 0,

(−2.457e-4)l2
9
+ 0.267l 9 + 1474 for l 9 < 0,

(A.15)

for 9 ∈ {1, . . . , 6}, with the measured and fitted data shown in Fig. A.6.

We can extend the previous relation between rotor thrust force and rotor angular rate to incorporate the

difference in efficiency in the forward and reverse directions. We define a pair of thrust coefficients, 1+ ∈ R�0

for normal operation and 1− ∈ R�0 for reverse operation. These coefficients relate rotor speed, l ∈ R, to

force, 5̄ ∈ R, as

5̄ 9 =


1+l2

9
, for l 9 ≥ 0,

−1−l2
9
, for l 9 < 0,

(A.16)
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Figure A.8: Time required to stop and reverse rotor direction with the magnitude of rotor speed
shown to aid in estimating time. A complete reversal takes approximately 450ms.

for 9 ∈ {1, . . . , 6}. In order to calibrate this mapping for our experimental system, we need to utilize the

data from our rotor test stand where we measure the steady-state force generated at a range of rotor speeds.

The coefficients were found to be 1+ = 1.8182e-5, and 1− = 3.6364e-6, and the measured and fitted data are

shown in Fig. A.7.

Additionally, in order to reverse directions, a longer dynamic delay is present, as shown in Fig. A.8. As

discussed in Chapter 3, the delay to change directions on the rotors is too long to change directions multiple

times during flight. The ESC has to slow the actuator down, and cause a smooth transition between forward

and reverse directions so as to keep the actuator magnetically locked to the rotating magnetic field. If the

motor de-synchronizes from the magnetic field, the motor will stop and have to be restarted, resulting in

extremely long delays.

A.3 Flight Software Implementation

There are several layers to our software implementation to ensure timely communication between all
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Figure A.9: PX4 Serial Read Simulink® block, used to read from serial ports on the Pixhawk 4
FMU hardware. Specifically in this case, devttyS1 corresponds to the port labeled TELEM1 on
the FMU.

systems including: the Vicon motion capture server, a local instance of Matlab® running to parse the Vicon

position estimates, wireless transmission of that data to a Raspberry Pi runnning on the hexrotor, and finally

serial communication to transmit the position information to the flight controller.

A.3.1 Position Estimation and Transmission

As stated above, the hexrotor receives position estimates from a Vicon motion capture system. This is

not necessary in general to apply our control methods as we have shown [9], however, since we are operating

in a GPS denied environment, we must rely on the motion capture system for position measurements.

To route the position information to the hexrotor, there are a few steps we go through. First, the Vicon

server is accessed from a desktop compute through the supplied ViconSDK in Matlab®, and the position

values are read in to the running Matlab® script. Next, the three position values are sent through a UDP

connection on a local WiFi network to a Raspberry Pi Zero W on the hexrotor. Then the Raspberry Pi

reads the position data from the network, computes a checksum for the data, and sends it out over a serial

connection to the Pixhawk which is operating at a baud rate of 115200bits/s. Finally, the serial data is read

by the Pixhawk within our Simulink® code through the dedicated PX4 Serial Read block shown in Fig. A.9.

The Data output of this block is a vector of all bytes received in the serial buffer since the last loop iteration.

A.3.2 Hexrotor On-board Data Processing and Control Implementation

The estimation and control strategy is implemented in discrete time and simulated in Matlab® for all of

the simulation results presented in this dissertation. In order to run the control strategy on the Pixhawk 4

flight management unit (FMU), the standard PX4 firmware will be modified to replace the standard flight

controller with the one we have designed. This is done through use of the use of the Simulink® package
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Figure A.10: Pixhawk 4 FMU, Raspberry Pi, GPS receiver, RC receiver, and Vicon markers for
motion tracking shown mounted on the hexrotor airframe.
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Embedded Coder® Support Package for PX4® Autopilots. The FMU hardware, along with the Raspberry

Pi, GPS receiver, and RC receiver are shown mounted on the hexrotor airframe in Fig. A.10.

The Embedded Coder® Support Package for PX4® Autopilots makes implementing custom control

software on the FMU relatively simple. Since the Simulink® code is codegened and integrated with the

existing PX4 firmware, we still have access to all of the on-board measurements and state estimates, as well

as dedicated Simulink® blocks to interact with the FMU hardware directly.

Wewill begin by discussing pulling data from the PX4 firmware into our Simulink® code. The Simulink®

block that is used to interact with all state busses on the Pixhawk is the PX4 uORB Read block. In the PX4

firmware, uORB is a messaging API which allows us to access all messages running on the FMU. We utilize

this block to access the estimate of the vehicle attitude as well as read the signals coming in on from the

RC receiver, as shown in Fig. A.11. The Msg output of these blocks contains a bus signal which can be

broken out into its principle channels using a Bus Selector block. To change which uORB message is being

accessed, the block can be opened and the user is provided with a list of messages that are accessible.

In order to quickly implement our estimation and control strategy, we utilize the Matlab® function block

in Simulink®. For example, Fig. A.12 shows a function block in which we compute the estimates from our

translational extended high-gain observer, as well as our rotor speeds, omegaOut, through the first order

actuator dynamics. The inputs to the function are vectors that are being pulled from busses which are written

to by other blocks in our system. Bus signals can be used to lump data together into a single signal wire to

simplify the code layout. As in Fig. A.12, we grouped our signals into busses with logical names to facility

code organization. Furthermore, we use memory blocks to feed the outputs of our function block, omegaOut

and rhoHatOut, back into the function for use in the next loop iteration. Finally, the outputs are written back

into their specified busses as shown with the small bus write blocks shown on the right hand side of the

figure.

We will now discuss how data is written to different portions of the FMU hardware, primarily writing

back to a uORB message, writing telemetry data to the on-board SD card, and sending PWM signals out

to the ESCs. An example of writing data to a uORB message is shown in Fig. A.13. In this example, we

access the tune_control message to play an audible tune over the piezo speaker on the FMU. This is useful

for providing user feedback. In our implementation, we had this tune play whenever a new set of parameters

were loaded and verified prior to takeoff to ensure all data was received correctly.
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Figure A.11: Simulink® uORB Read blocks. Used to access the vehicle_attitude bus and
rc_channels bus on the uORB message system in PX4 firmware.

Figure A.12: Example implementation of a Matlab® function running within Simulink®. Data is
routed in and out through bus signals.
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Figure A.13: Writing desired information to the uORB Bus in the PX4 firmware. This example
will play a tune over the piezo speaker on the FMU, which is useful to the operator for audible
feedback.

In order to record the telemetry data from each flight we use the PX4 SD Card Logger block, shown in

Fig. A.14. This block accepts a vector of datatype single in the input port labeled data. The file name and

path can be updated by double clicking on the block. One important aspect of using this block is the en (or

enable) input. This input must be set to 1 to begin logging data, and must be returned to zero to close the file

and save the data at the end of the flight, before shutting down the FMU. Through our implementation, we

were able to log 67 channels of telemetry during flight at 100Hz.

Finally, we come to enacting our control action in the form of commanded rotor PWM signals to be sent

to the ESCs, calculated using the mappings shown in (A.15) and (A.16). This is done through the PX4 PWM

block, shown in Fig. A.15. The channel numbers correspond to the hardware pin number on the FMU, and

each signal should be of datatype uint16, with values in microseconds from 1000 to 2000.

The information presented in this appendix will provide the base knowledge and building blocks to

implement advanced control systems on an experimental multi-rotor. We presented the tools necessary to

measure all necessary physical parameters as well as defining all mappings necessary to apply the control

torques and collective thrust through a set of rotors. We further detail the characterization of the actuator

dynamics and their thrust and speed relations. The topography of the system is laid out and the necessary
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Figure A.14: Block for logging telemetry data to the on-board SD card on the FMU. User defined
file name and path and the enable input must be 1 to log data, and transition to 0 to close the file
and save at the end of flight.

Figure A.15: Block for writing PWM signals to the ESCs. User specified number of channels and
the datatype must be uint16.

software tools for implementing these control methods on a Pixhawk 4 FMU using Simulink® were shown.
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APPENDIX B

STABILITY OF A GENERALIZED CASCADE SYSTEM

A generalized stability proof for cascade systems is adapted from [41, Appendix C.1]. Consider the

cascade connection of two systems

¤[ = 51(C, [, b), ¤b = 52(b), (B.1)

where 51 and 52 are locally Lipschitz and 51(C, 0, 0) = 0, 52(0) = 0. Assuming the origin of ¤b = 52(b)

is exponentially stable, there is a continuously differentiable Lyapunov function, +2(b), that satisfies the

following inequalities

21 ‖b‖2 ≤ +2(b) ≤ 22 ‖b‖2 , (B.2a)

m+2(b)
mb

52(b) ≤ −23 ‖b‖2 , (B.2b)



m+2(b)mb





 ≤ 24 ‖b‖ , (B.2c)

over the set Ω2 = {+2(b) < 25} for some 25 ∈ R�0.

Now, suppose there is a continuously differentiable Lyapunov function, +1([), that satisfies the inequal-

ities
m+1([)
m[

51(C, [, 0) ≤ −2 ‖[‖2 ,




m+1([)m[





 ≤ : ‖[‖ , (B.3)

over the set Ω1 = {+1([) < 26} for some 26 ∈ R�0.

Take a composite Lyapunov function for the cascaded system as

+ ([, b) = 1+1([) ++2(b), 1 > 0, (B.4)

in which 1 can be arbitrarily chosen. The derivative, ¤+ , satisfies

¤+ ([, b) = 1 m+1([)
m[

51(C, [, 0) + 1
m+1([)
m[

[ 51(C, [, b) − 51(C, [, 0)] +
m+2(b)
mb

52(b),

¤+ ([, b) ≤ −12 ‖[‖2 + 1:! ‖[‖ ‖b‖ − 23 ‖b‖2 ,

where 51 is Lipschitz in b on Ω2, and ! is the associated Lipschitz constant.
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The inequality can be written in quadratic form as

¤+ ([, b) ≤ −

‖[‖

‖b‖


> 

12 −1:!
2

−1:!
2 23



‖[‖

‖b‖

 ,
= −


‖[‖

‖b‖


>

&


‖[‖

‖b‖

 ≤ −_min(&)










‖[‖

‖b‖










2

,

where 1 is chosen such that 1 < 4223/(:!)2 to ensure & is positive definite. The foregoing analysis shows

that the origin of (B.1) is exponentially stable on the set Ω = Ω1 ×Ω2.
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APPENDIX C

PEAKING PHENOMENON

For a system of order r the EHGO estimation error j̃8 = j8 − ĵ8 , with the observer gain, n , and initial

estimation error 6̃(0), can be bounded by

| j̃8 | ≤
1

n r−1
‖ 6̃(0)‖ 4−0C/n , (C.1)

for some positive constants 0 and 1, by [42, Theorem 2.1]. Initially, the estimation error can be very large,

i.e., $ (1/n r−1), but will decay rapidly. To prevent the peaking of the estimates from entering the plant

during the initial transient, the output feedback controller needs to be saturated. This is done by saturating

the individual estimates outside a compact set of interest using the following saturation function

ĵ8B = :j8 sat

(
ĵ8

:j8

)
, sat(H) =


H, if |H | ≤ 1,

sign(H), if |H | > 1,
(C.2)

where :j8 is chosen to ensure the saturation is not active during normal state feedback operation.

Taking a Lypaunov function for the observer error, +j̃, there is some set {+j̃ ≤ n22} for some 2 ∈ R�0

that the estimation error will enter after some short time, ) (n), where limn→0 ) (n) = 0. Suppose for some

system state, q ∈ R=, the initial state, q(0), resides on the interior of a compact set of interest, Ω. Choosing

the observer gain, n , small enough will ensure that the system state, q(C), will not leave Ω during the interval

[0, ) (n)]. This establishes the boundedness of all states.
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APPENDIX D

ROTATION MATRIX PROJECTIONS BACK TO ($ (3)

Due to numerical precision errors during computation, we must ensure the rotation matrix remains on

($ (3) by ensuring the following conditions are satisfied

(i) r11 · r12 = r12 · r13 = r11 · r13 = 0,

(ii) r11 · (r12 × r13) = 1,

(iii) r28 ⊥ r18 ,

(D.1)

for 8 ∈ {1, 2, 3}. We utilize the following projection to ensure conditions (i) and (ii) are met

'̄ = exp(skew(log('))), (D.2)

where '̄ is the rotation matrix projected back onto ($ (3). Further computing

r̄21 = r21 − (r21 · r11) · r11,

r̄22 = r22 − (r22 · r12) · r12,

r̄23 = r23 − (r23 · r13) · r13,

(D.3)

and taking ¤' = [ r̄21 r̄22 r̄23] ensures that (iii) is met.
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APPENDIX E

CONTROLLABILITY OF HEXROTOR CONFIGURATION AFTER ACTUATOR FAILURE

For the purposes of this work, we will examine the controllability of the standard hexrotor configuration

shown in Fig. E.1. The body torques, 3, and total thrust, D 5 , are generated by applying forces with each

rotor. These forces are mapped through a matrix to convert individual motor forces to torques and total thrust

based on the hexrotor geometry

" =



1 1 1 1 1 1

−A
2 −A −A

2
A
2 A A

2

A
√
3

2 0 −A
√
3

2
−A
√
3

2 0 A
√
3

2

2 −2 2 −2 2 −2


, (E.1)

where A ∈ R�0 is the distance from the center of mass to each rotor and 2 ∈ R�0 is the rotational aerodynamic

drag coefficient of each rotor. If we look at the case of a failure of actuator four, and consider simply turning

off actuator one and continuing operation as a quadrotor, as shown in Fig. E.2, the system will not be

controllable. This is because of the specific rotor rotational directions. Notice that the rotor rotational

Figure E.1: Standard body configuration of a hexrotor.
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directions for the hexrotor with actuators four and one disabled are not the same as the rotor rotational

directions of the standard quadrotor (see Fig. A.2). The loss of controllability can be seen if the system is

linearized about the hover equilibrium as

¤: = �: + �3, (E.2)

where

� =


03 �3

03 03

 , � =


03

�−1

 , (E.3)

and : = [q \ k ¤q ¤\ ¤k]> is a vector of the Euler angles and Euler angular rates. Further mapping the squared

rotor speeds to the body torque, 3, through
D 5

3

 = 1"8B, 8B =
[
l2
1, . . . , l

2
=

]>
, (E.4)

allows us to investigate controllability under the loss of any actuator by modifying " . To investigate the

case shown in Fig. E.2, where actuator four has failed and we simply shut down actuator one, we zero out

the corresponding columns of " as

" =



0 1 1 0 1 1

0 −A −A
2 0 A A

2

0 0 −A
√
3

2 0 0 A
√
3

2

0 −2 2 0 2 −2


. (E.5)

The controllability matrix is computed for this case and is not full rank, showing that this configuration will

not result in a controllable system, and is therefore infeasible for recovery.

Now, if we instead consider no longer using actuator one to generate lifting thrust and do not shut it

down completely, but instead run it at lower speeds (in either direction) to apply some reaction torque to the

system, it can be shown that the controllability matrix for this configuration will be full rank, where

" =



0 1 1 0 1 1

−A
2 −A −A

2 0 A A
2

A
√
3

2 0 −A
√
3

2 0 0 A
√
3

2

2 −2 2 0 2 −2


. (E.6)

This configuration is shown in Fig. E.3, and is used to generate a feasible reconfiguration strategy and

controller for the standard hexrotor under actuator failure.
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Figure E.2: Candidate reconfiguration strategy for a hexrotor UAV. Disabling the actuator across
the center of mass from the failed actuator results in a non-standard quadrotor configuration. This
configuration is not controllable.

Figure E.3: Candidate reconfiguration strategy for a hexrotor UAV. Enabling the actuator across
the center of mass from the failed actuator to rotate in either direction so as to apply both upward
and downward forces results in a fully controllable system.
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