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ABSTRACT

DECODING NEURAL MECHANISMS OF SURROUND SUPPRESSION IN FEATURE-
BASED ATTENTION

By
Wanghaoming Fang

Feature-based attention (FBA) selectively enhances processing of an attended feature at
the expense of unattended or task-irrelevant features. Recent studies showed that FBA modulates
the perceptual space with both a monotonic profile (i.e., feature-similarity gain) and a non-
monotonic profile (i.e., surround suppression). A significant question arises regarding the neural
mechanism of the non-monotonic surround suppression effect. Previous studies have suggested
that two candidate neuronal mechanisms could underlie these attentional modulations: a shift of
neuronal tuning preference toward the attended feature, or a multiplicative gain modulation that
scales the overall responses without changing their tuning property. Yet the empirical evidence
for these mechanisms is still lacking. In the current work, we explored how these neuronal
mechanism manifest at the level of fMRI BOLD measurement using a simulation approach.
Specifically, we employed an encoding/decoding approach by first simulating voxel responses
from neuronal population assuming either mechanism and then applying a regression-based
inverted encoding model (IEM) and a Bayesian method to decode population representations.
We found that both methods captured the signature patterns associated with these different
neuronal mechanisms. In our second aim, we systematically varied the correlation structure of
voxel noise to further compare these different multivariate methods in a stimulus classification
task. Our results showed a clear advantage of the Bayesian method over IEM, suggesting that the
Bayesian method was superior for deciphering neural representation given the prevalent noise

correlation and variable tuning width in the brain. In sum, our current simulation work may



provide a proof of concept for future empirical studies investigating cortical mechanism of FBA
using non-invasive methods, as well as guidance for choosing suitable methods in these

investigations.
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CHAPTER 1
INTRODUCTION

Our resource-limited visual system is constantly challenged by the information-rich
visual environment. To overcome the limitation, visual selective attention filters out task-
irrelevant competing distractors and select only a small proportion of task-relevant information
for prioritized processing. Such attentional selection can be based on location (i.e., ‘spatial
attention’, Carrasco, 2011) and/or non-spatial features (i.e., ‘feature-based attention’, Carrasco,
2011; Liu, 2019). The small subset of information that is selected by attention can enjoy benefit
such as enhanced behavioral performances and neural responses for the attended location/feature.
However, the fate of the unattended location/features remains less clear. If the attentional filter is
perfect, one would predict a uniform exclusion of all task-irrelevant information except only the
target information (e.g., a step function in a perceptual space). However, empirical studies have
shown that it is seldomly the case, especially at the behavioral level (e.g., rarely chance-level
performance for the unattended locations/features). Therefore, an important question is how
selection of a location or a feature modulates the representation of other locations and features
that falls outside of the attentional focus.

Since the beginning of psychological research, how attention modulates our perception
has attracted quite some interests of many pioneer psychologists, like Helmholtz, Fechner, and
James. Recently studies have proposed different models to describe the profile of visual selective
attention. In the spatial domain, early studies characterized the shape of the focus of attention
with a popular metaphor — spotlight (Posner, 1980), which well captured the notion that attention
selects the most relevant location for enhanced processing at the expense of unattended locations.

Later, researchers proposed a gradient structure of the attentional “spotlight” (LaBerge, 1983). It



has been shown that performance monotonically fall off with the distance between the attended
and unattended location — a spatial gradient of attentional modulation. Although spatial attention
has dominated the studies for decades, location is the not the only stimulus property that we can
attend to. The ability to allocate attention to the non-spatial feature(s) of a stimulus is called
feature-based attention (FBA). Note, feature is specifically defined in the current work as values
within a dimension (e.g., red, or green), although some researchers also use this term to describe
a whole feature-dimension regardless of specific values (e.g., dimension-based attention, Found
& Muller, 1996; Muller, Heller & Ziegler, 1995).

Feature-based attention can facilitate target selection, even without knowing the exact
location. For instance, knowing what color is worn can be helpful when searching for a friend in
the Spartan Stadium. This example also illustrates one of the most fundamental properties of
feature-based attention — selection of an attended feature spreads globally across the visual field.
The global spread of FBA also forms the basis for the highly popular paradigm — visual search,
in which participants typically search for a pre-defined target in an array of stimuli. However, in
the antecedent case, FBA would not be always helpful especially if your friend wears the same
green Spartan T-shirt with the crowd. Therefore, it seems likely that modulation of feature-based
attention may also depends on target-distractor similarity.

Some researchers investigate the profile of FBA and suggested that it might also have a
monotonic gradient. Based on the visual search paradigm, Duncan & Humphreys (1989)
conducted one of the earliest studies on the profile of FBA, in which they found that search
efficiency monotonically increased as a target became more different from the distractors,
suggesting a monotonic profile. Converging evidence for a monotonic gradient of feature-based

attention (FBA) also comes from neural recording studies. For example, early single-unit studies



on FBA have also proposed a monotonic profile in feature space (Fig. 1a), as epitomized by the
feature-similarity gain model (Martinez-Trujillo & Treue, 2004; Treue and Martinez-Trujillo,
1999). According to the feature-similarity gain model, the attentional modulation of neuronal
activity is a monotonic function of feature similarity. Specifically, attentional enhancement
gradually decreases and turns into suppression for features that are progressively more dissimilar
to the attended feature. Although the feature-similarity gain model was originally proposed to
account for attentional modulation at single-unit level (Martinez-Trujillo & Treue, 2004; Treue
& Martinez-Trujillo, 1999), human behavioral and neural imaging studies have also obtained
results that generally supports this monotonic profile (Saenz, Buracas & Boynton, 2002, 2003;
Liu, Larsson & Carrasco, 2007; Ling, Liu & Carrasco, 2008; Zhang & Luck, 2009; Wang, Miller
& Liu, 2015; Ho, et al., 2012; Paltoglou & Neri, 2012).

However, there are several challenges for visual system that are difficult to resolve with
only a monotonic selection profile. First, the gradient model predicts a reduction of interference
only when the distractor is sufficiently far away (in physical or feature space) from the attended
target. But the environment is highly variable that visual information rarely consists of only
highly distinct features (e.g., red vs. green). Thus, it is unclear whether and how FBA facilitates
selection of a target among similar but different distractors (e.g., finding a beige coffee mug
among papers on the desk). Second, while previous studies seem to suggest a linking hypothesis
between human behavior and the single-unit findings (i.e., the feature-similarity gain modulation
in MT neurons), some methodological concerns, like coarse sampling in feature-space, suggest
that the simple gradient model of attention may not be the full story. Third, and most critically,
an increasing number of studies recently showed evidence that there exists a non-monotonic

profile of attentional modulation in both spatial and feature domain, which cannot be readily



accommodated by the attentional gradient. For example, recent studies of spatial attention that
sampled locations more finely have revealed a non-monotonic profile of attention comprised of
“surround suppression”, such that nearby locations are more suppressed than further locations.
This local suppression is thought to allow better distinction between closely located targets and
distractors (Hopf et al., 2006; Boehler et al., 2009, 2011; Muller & Kleinschmidt, 2004; Mounts,
2000a, 2000b; Tsotsos, 1995, 2011). In a similar vein, other researchers also reported a non-
monotonic attentional modulation when features near the attended feature were probed (Fang,
Becker & Liu, 2019; Fang & Liu, 2019; Stormer & Alvarez, 2014; Tombu & Tsotsos, 2008).
Consistent with its spatial equivalent, the “surround suppression” effect in FBA enhances signal-
to-noise ratio when the target and distractors have similar features (Fig. 1b). Moreover, the two
recent studies have further shown that FBA consists of a hybrid profile of both FSG and
surround suppression but operates at different similarity scale (Fig. 1c, Fang, Becker & Liu,
2019; Fang & Liu, 2019). Taken together, converging evidence now suggests that there exists a
non-monotonic attentional modulation in the vicinity of the attended location/feature.

In the following sections, I first discuss previous evidence for the feature-similarity gain
model and the need for a more systematic examination of FBA’s profile. Next, I discuss the
evidence supporting surround suppression as a canonical mechanism underlying attentional
modulation for a number of feature spaces (e.g., color, orientation, motion direction, and spatial
frequency) and a more flexible hybrid profile consisting of both surround suppression and
feature-similarity gain modulation to adaptively enhance signal-to-noise ratio in isolating a target
feature. Lastly, I discuss candidate neural mechanisms of the surround suppression in FBA based

on previous findings in both spatial and feature-based attention, arguing that these mechanisms



could be potentially distinguished with recent development of multivariate techniques through
computational simulation and modeling.
The Feature-similarity Gain Model

Since the seminal study on attention by Treisman and colleagues (Treisman and Gelade,
1980), human’s ability to search for a target based on its defining feature has attracted enormous
attention from researchers. While one of the key research topics in early attention studies was the
debate on pre-attentive and attentive processing, recent findings have argued against such a rigid
dichotomy of this two-stage framework. Even the “pre-attentive” stage that was originally
thought to be parallel and capacity-free is subject to FBA’s modulation, which was supported by
neurophysiological studies that recorded directly from the neurons tuned to different features
(Bichot et al., 2005).

Initial Evidence for FSG

Despite the prominence of the classic visual search paradigm, searching for a target also
means finding its location which unavoidably involves a shift of spatial attention. This
employment of both spatial and feature-based attention does not allow an isolation of a pure
feature-based attentional modulation, which has led to claims that the role of FBA is only limited
to guiding spatial attention to the target without directly modulating perception (Moore & Egeth,
1998; Shih & Sperling, 1996). Thus, to isolate a pure effect of feature-based attention, a new
paradigm was developed utilizing the global spread of FBA. For example, researchers typically
focus participants’ spatial attention to one location and probe attentional modulation at a
different (i.e., spatially ignored) site. Using this method, Martinez-Trujillo and Treue (2004)
conducted experiments to directly measure FBA’s modulation at the neuronal level. They

presented a dot motion stimulus to MT neurons that have receptive fields (RF) in one hemifield,



while the monkey subject attended to the identical stimulus in the opposite hemifield. Because of
the global spread of feature-based attention, the neurons in the spatially unattended side were
also modulated by attention to motion direction. The authors found that FBA sharpened the
population response to an attended motion direction by suppressing neurons preferring the most
dissimilar motion direction. But most importantly, the gain factor (i.e., the multiplicative ratio
that was applied to change neuronal response by FBA) was found to be a linear function of the
similarity between tuning preferences and the attended direction such that attending to a neuron’s
preferred direction enhanced its response and attending to its non-preferred directions led to
suppression of its response. Such findings eventually led to the proposal of the influential
feature-similarity gain model (Martinez-Trujillo & Treue, 2004; Treue & Martinez-Trujillo,
1999), predicting a monotonic profile of FBA’s modulation (Fig. 1a). Later studies further
supported the feature-similarity gain model in multiple feature dimensions, based on
psychophysical (Saenz, Buracas & Boynton, 2003; Ling, Liu & Carrasco, 2008; Wang, Miller &
Liu, 2015; Ho, et al., 2012; Paltoglou & Neri, 2012), neuroimaging (Saenz, Buracas & Boynton,
2002; Liu, Larsson & Carrasco, 2007), electrophysiological (Zhang & Luck, 2009), and single-
unit methods (reviewed by Maunsell & Treue, 2006).

Despite the popularity of the feature-similarity gain model, there are a few concerns on
the exact interpretation of Martinez-Trujillo and Treue’s original findings (Martinez-Trujillo &
Treue, 2004). The main point is on their original design, in which the probe’s motion direction in
the ignored visual hemifield was the same as the direction in hemifield that monkeys attended to.
In other words, when the stimulus’s motion direction was systematically varied relative to a
neuron’s tuning preference, the researchers simultaneously changed both the attended feature and

the feature in the neuron’s RF. This raises two potential issues in using this design to support the



feature-similarity gain model. First, there is a concern regarding the interpretation of “gain”. This
word originated from earlier spatial attention studies, which described the multiplicative
modulation of spatial attention that does not change the feature tuning profile of single neurons
(e.g., orientation tuning in McAdam & Maunsell, 1999). However, the covariation of the
attended feature and the probe feature in Martinez-Trujillo & Treue’s experiments does not allow
a full characterization of the neuronal tuning curve. Therefore, their original results may also be
explained by other neuronal mechanisms that modifies feature selectivity of neurons (e.g., shift
of tuning preference in David, et al., 2008). That being said, a better design would require
measuring a full tuning curve each time when the monkey attends to a different motion direction,
which is practically difficult to do. Second, Martinez-Trujillo and Treue’s original finding
describes a sharpening in population response to the attended motion direction. Therefore, the
original neuronal evidence for feature-similarity gain model should be limited to only inferring
how FBA selects the attended feature, but not about how FBA modulates perceptual
representation of the rest of the feature continuum.
Other Evidence for the Feature-similarity Gain Model

Human psychophysical and neural studies provided important complementary evidence
for the feature-similarity gain model in the broader context, as these methods rely more on the
responses of a population of neurons, or the entire visual system. For neural studies, researchers
typically employed a split-display design that is similar to the previous one used by Martinez-
Trujillo and Treue — FBA’s modulation was measured in the opposite hemifield to where spatial
attention was deployed. For example, Saenz and colleagues, measured visual areas’ activities
when FBA was deployed to two feature dimensions — motion direction and color (Saenz,

Buracas & Boynton, 2002). In the motion experiment, participants attended to one hemifield that



contains two overlapping fields of moving dots with opposite motion directions (e.g., upward vs.
downward motion) and performed a speed discrimination task. Importantly, another single dot
field (e.g., upward motion) was simultaneously presented in the ignored hemifield to provide
neural measurement of attentional modulation. The results showed stronger responses across
visual areas when the motion direction in the ignored dot field matched the attended direction
than when it matched the unattended direction. Similar results were also obtained in color-based
attention. Thus, such findings provided early support for the feature-similarity gain model in
human visual attention.

Further neural evidence supporting feature-similarity gain model employed a variety of
paradigms and tests in other feature dimensions. For example, Liu, Larsson and Carrasco (2007)
used adaptation to test orientation-selective modulation in visual cortex at an attended location,
where both attended and unattended orientation were superimposed (Liu, Larsson & Carrasco,
2007). The authors found that FBA selectively modulated the adaptation effect both psycho-
physically (i.e., measured as behavioral tilt aftereffect) and physiologically (i.e., measured as
fMRI response adaptation) for the attended but not the unattended orientation even when both
features were spatially superimposed. In a later study, Zhang & Luck obtained similar findings
by recording event-related potentials (ERP) to color dots stimuli (Zhang & Luck 2009).
Critically, color-based attention resolved competition between two superimposed color dot fields
(e.g., red vs. green) by selectively enhancing feed-forward processing of an attended color (e.g.
red) over an unattended color (e.g., green) as reflected in the P1 ERP wave. In another study,
Serences and Boynton (2007) also tested the feature-selective modulation with superimposed
orientation stimuli. They found that the decodability (using multivoxel pattern analysis, MVPA)

for an attended orientation was higher than the unattended orientation in the same hemifield,



which is, surprisingly, also true at the mirrored location in the absence of direct sensory
stimulation (i.e., blank location). Taken together, neurophysiological studies provided further
evidence that the global feature-selective modulation is consistent with the feature-similarity
gain model in the human brain (Saenz et al., 2002; Liu, Larsson & Carrasco, 2007; Serences &
Boynton, 2007; Zhang & Luck, 2009).

Psychophysical studies that measured the quality of attended feature also provided
converging evidence for feature-similarity model. In psychophysics, the perceptual quality of
unattended feature was typically evaluated by accuracy (i.e., proportion of correct responses)
using a partially valid pre-cue. While neurophysiological studies typically presented a probe
stimulus at a spatially ignored location to provide neural measurement of attentional modulation,
behavioral studies control spatial attention by presenting all stimuli at the same location (e.g.,
center of screen), which further reduced the potential role of spatial attention. In an early study,
Ling, Liu and Carrasco (2009) investigated how FBA modulates performance in a motion
discrimination task when the attended motion direction was embedded in different level of noise
(Ling, Liu & Carrasco, 2009). Critically, the author found enhancement from FBA even when
the noise of motion was high - a behavioral effect that was consistent with the feature-similarity
gain model’s prediction in sharpening of population response. However, Ling et al. (2009) only
manipulated the motion noise but did not probe performance for unattended directions of motion.
Hence their study did not provide direct measurement of the profile of feature-based attention,
e.g., how attentional modulation varies as a function of the feature-similarity between attended
and unattended features.

Recent studies characterized a more complete functional profile of feature-based attention

by systematically varying a target’s feature from the attended one. For example, Ho et al. (2012)



measured the perceptual consequences of feature-based attention to motion direction. They
employed a partially valid direction pre-cue to manipulate feature-based attention and, critically,
measured the FBA’s profile by systematically sampling the target’s motion direction away from
the attended direction in the invalid condition. Although the results showed a non-monotonic
profile with the worst performance at 90° instead of the maximum 180°, such a pattern may be
explained by axis-tuned motion mechanisms, which would respond equally well to opposite
moving directions (Albright, 1984; Conway & Livingstone, 2003; Livingstone & Conway,
2003). Thus, their results were still interpreted as consistent with feature-similarity gain model.
However, their finding may be due to a combined effect of spatial attention and feature-based
attention as the task was to search for the most coherent motion dot field in an array of four
motion stimuli. In another study, Wang, Miller and Liu (2015) also measured FBA’s profile in
motion direction, with a better control for spatial attention. In their study, participants performed
a two-interval-forced-choice (2-IFC) to detect a coherent motion stimulus (i.e., target) against a
random motion stimulus (i.e., noise). The stimuli in the 2IFC task were always presented at the
screen center such that spatial attention was fixed and remained constant across conditions. The
results were similar to Ho et al. (2012)’s findings and, therefore was also consistent with the
feature-similarity gain model. The authors also generalized their findings to other feature
dimensions, including orientation and color, based on a similar behavioral paradigm. In sum,
initial human psychophysical and neural studies provided converging evidence that FBA
modulates perception as a monotonic function of feature similarity.
Potential Issues with the Feature-Similarity Gain Model
Notwithstanding the support for the feature-similarity gain model discussed above, it

should be noted that both neural and behavioral findings in human only assessed feature
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processing on a coarse scale. A closer examination showed that the previous studies either tested
only two orthogonal features (e.g., red vs. green, or upward vs. downward motion direction) or
use a coarse sampling in feature space (Saenz, Buracas & Boynton, 2002, 2003; Liu, Larsson &
Carrasco, 2007; Serences & Boynton, 2007; Zhang & Luck, 2009; Ho, et al., 2012; Paltoglou &
Neri, 2012; Wang, Miller & Liu, 2015). Thus, how feature-based attention modulates the
perceptual representation of other similar but different features is unknown.

In addition to the lack of fine sampling in the feature space, another issue posed even
more theoretical challenge to the efficiency of the feature-similarity gain model. The key
signature of the FSG is the linear modulation dependent on the similarity to the attended feature,
which turns enhancement into suppression as the feature become progressively more different
from the attended one. While this model can predict a filtering of dissimilar distractor features, it
does not seem to be helpful when encountering similar distractor features, which would actually
benefit from attentional enhancement because they are similar to the attended feature. Therefore,
in recent studies, researchers have turned their attention to investigate the mechanism that
underlies attentional modulation in the vicinity of the attended feature.

One line of studies investigated FBA’s role in searching a target feature among similar
distractors (Navalpakkam and Itti, 2007; Scolari & Serences, 2009; Scolari & Serences, 2010;
Scolari et al., 2012). For example, assuming there is a task that requires participants to detect a
55° orientation target among 60° orientation distractors. According to the feature-similarity gain
model, one can attend to the 55° orientation such that FBA would enhance the responses of
neurons optimally tuned to the target orientation. However, this will also cause the same group
of neurons responding more to the distractors (60°) and, therefore, would not increase the overall

signal-to-noise ratio (SNR). To resolve this dilemma in FSG model, Navalpakkam and Itti
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(2007) proposed an off-channel tuning mechanism such that FBA may be voluntarily deployed
to neurons that are sub-optimally tuned to the target feature (e.g., neurons tuned to 50° in the
previous example). By shifting attention away to a distant feature, the distractor would be less
enhanced as it is more different from the attended “off” channel after shift.

To test this idea, Navalpakkam and Itti instructed participants to search an orientation
target (e.g., 55°) among similar and homogenous distractors (e.g., 60°). The authors found that
the highest attentional gain was constantly biased and deployed toward the orientation (e.g., 50°)
that was further away from the distractors than the target. Later studies also lend support that
FBA can be deployed in the off-channel manner to enhance performances in a fine
discrimination task (Scolari & Serences, 2009, 2010; Scolari et al., 2012). However, the off-
channel gain mechanism may only be facilitative when the target and distractors were linearly
separable (D’Zmura, 1991), that is when distractors were sampled from identical side of the
attended feature in a feature space. If there are distractors sampled from both sides of the
attended feature in a feature space, e.g., 55° orientation embedded in 50° and 60° distractors, the
off-channel mechanism may not be helpful, as shifting the attentional gain toward either side in
the feature space will result in an enhancement of some distractors. In addition, the off-channel
gain requires foreknowledge of both the target and distractors features (Scolari & Serences,
2009, 2010; Scolari et al., 2012). Hence, this mechanism may only facilitate target selection
under specific scenarios.

A New Metaphor — the Mexican-hat of FBA

Our visual environment rarely contains homogeneous distractors, or predictable distractor

features. In fact, task-irrelevant features may be randomly scattered in a feature space and may

also change from time to time (e.g., while driving, the views are constantly changing). Is there a
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mechanism of FBA that helps us better adapt to the dynamic and variable visual environment?
While feature-similarity gain predicts a suppression of dissimilar features at a coarse scale, some
researchers also wonder if there could be any suppressive mechanism in the vicinity of the
attended feature to inhibit processing of similar distractors. In the spatial domain, a number of
studies have shown that spatial attention elicits a suppressive zone around the attended location
to reduce interference from nearby locations (Hopf et al., 2006; Boehler et al., 2009, 2011;
Muller & Kleinschmidt, 2004; Mounts, 2000a, 2000b; Tsotsos, 1995, 2011). Importantly, once
outside the suppressive zone, behavioral performance or neural activity was not further
suppressed — a rebound effect at further locations, which is in line with a non-monotonic
“Mexican hat” profile that consists of an excitatory center and suppressive surround.

Recent studies have also extended the investigation of such surround suppression to
feature-based attention (Fig. 1b), including the color and orientation domain (Stormer & Alvarez,
2014; Tombu & Tsotsos, 2008). For example, Stormer and Alvarez (2014) addressed whether
color-based attention elicits surround suppression to the close neighbors of the attended color. In
their study, each hemifield hosted a random motion dot field, in which half the dots were drawn
in a target color with the other half drawn in a distractor color. Participants monitored the target
dot fields on both sides and reported a brief coherent motion in one of the target dot fields. As
one would expect, correct responses were highest when the two dot fields had the same attended
color. But what is unexpected was a performance drop when the two attended colors were similar
but different, which was then followed by a rebound effect when the two attended colors become
more dissimilar. The suppression of similar colors is clearly against what feature-similarity

model would predict. Hence, Stormer and Alvarez concluded that the non-monotonic changes of
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performances matched the signature pattern of a Mexican-hat profile, therefore suggesting that
FBA to colors can elicit a suppressive surround in the color space.

Tombu and Tsotsos (2008) investigated the profile of FBA in the orientation domain. In
their study, participants were asked to identify the jaggedness (e.g., straight or jagged) of a
grating stimulus that was briefly presented. In addition, researchers also informed participants
the most likely orientation of the grating stimulus at the start of a block. Notably, the surround
suppression was evident in the results such that the worst performance occurred when the
grating’s orientation was 45° offset from the attended orientation, which was followed by a
rebound at 90° offset from the attended orientation. Such non-monotonic pattern of performance
supported the surround suppression effect in attention to orientation.

While the two studies have found initial evidence for a surround suppression effect in
FBA, some methodological concerns potentially weakened their conclusions (Stormer &
Alvarez, 2014; Tombu & Tsotsos, 2008). First, and critically, there is a lack of baseline condition
in these previous studies. A neutral condition is critical to accurately characterize the shape of
the attentional profile and rule out alternative interpretations. For example, it is possible that the
non-monotonic changes in Stormer & Alvarez’s study is caused by perceptual interference when
monitoring two colors of different offsets, which could be measured in a neutral condition. To
rule out such a confound, the neutral performance should have been subtracted out from the
performance under attention condition. In addition, baseline performance is vital in assessing the
benefit and cost of attention. Without a proper baseline, it is unclear whether the performance
drop reflects a true suppression effect or less enhancement within the surround of the attended

feature (Stormer & Alvarez, 2014; Tombu & Tsotsos, 2008).
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Second, the task in the previous studies may be sub-optimal for measuring the profile of
FBA’s modulation. In Stormer and Alvarez’s study, participants were required to attend to two
colors simultaneously. Recent findings have suggested that there is a limited capability of
splitting attention to multiple colors (Liu & Jigo, 2017). Therefore, it is possible that the non-
monotonic pattern may be associated with the need to hold and attend to two colors
simultaneously. Alternatively, working memory is thought to maintain an attentional template
(Desimone & Duncan, 1985; Wolfe, 1994). Therefore, the non-monotonic profile may be due to
interference between the templates maintained in working memory instead of a perceptual
modulation of FBA to visual input. In addition, Tombu and Tsotsos (2008) employed a task of
judging the jaggedness of gratings, which in principle does not require attention to orientation. It
is also worth noting that the non-monotonic profile in their study only occurred when the target
was jagged but not when the target was straight—a puzzling result that did not have obvious
explanations.

Finally, color perception is strongly categorical, which is suggested to play a role in
attention. For example, linear non-separability between target and distractors usually lead to
inefficient search for a target (Bauer et al., 1998; D’Zmura, 1991). However, recent studies
showed that such search can also be much improved when targets and distractors are from
different categories than if they come from the same category even when the perceptual
similarity between targets and distractors are equated (Daoutis et al., 2006; Hodsoll &
Humphreys, 2005). However, the previous study by Stormer and Alvarez used a random
selection of colors in a color space. Thus, it is unclear based on their findings how color

categories might impact the attentional profile.
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Taken together, previous studies provided suggestive but inconclusive evidence that there
is a surround suppression effect in feature-based attention. A recent study further tested the
attentional profile for color-based attention using a color detection paradigm (Fang, Becker &
Liu, 2019). In their study, participants were instructed to detect a coherent color signal against a
random noise in a 2-IFC task, in which stimuli were presented at the screen center. Building on
the previous studies, the authors made several improvements to better characterize the profile of
FBA to colors. First and most importantly, the authors included a neutral condition which
provided a proper baseline to establish a genuine suppression effect and better quantify the
attentional modulation. Second, participants were instructed to attend a single color, which
excluded any potential interference from holding multiple attentional templates (Stormer and
Alvarez, 2014). Thirdly, to further reduce task complexity, the signal strength was directly
manipulated through color coherence as an analogy to the classic random dot motion
kinematogram (Newsome & Pare, 1988). Moreover, they also used a post-cue to reduce response
uncertainty, so that performance should reflect FBA’s modulation on perception (Pestilli &
Carrasco, 2005). As the results showed, the authors found a surround suppression effect that is
consistent with previous findings. Interestingly, the authors further revealed that the suppressive
surround in color domain also coincided with the color category boundary, which has not been
considered in the previous studies (Fig. 1c, left panel). Thus, the surround suppression effect in
color-based attention can also be interpreted as a categorical sharpening effect.

The above study naturally raised new questions of whether surround suppression is a
specific effect associated with categorical feature like color, or it could also be generalized to
other features. In another study, Fang and Liu (2019) conducted a more systematically

examination on surround suppression for a series of other important dimensions in early vision
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(e.g., orientation, motion direction, & spatial frequency), using a similar 2-IFC task in which
participants detect a coherent target feature. They employed a feature cue to direct FBA or an
uninformative cue to establish baseline performance. The author found that FBA elicited
surround suppression in all three feature dimensions, which suggests that non-monotonic
modulation could be a canonical operation of FBA (Fig. 1¢). Taken together, these
psychophysical studies demonstrate that when the visual attention system faces an unpredictable
and dynamic visual environment, it elicits a suppressive surround in feature spaces to enhance

the signal-to-noise ratio when the target and distractors have similar features.

An Integrated Model — Flexible Modulation on Different Scales

While such a non-monotonic profile of FBA is in a direct contradiction to the monotonic
prediction of the classic feature-similarity gain model, recent studies provided abundant evidence
for a surround suppression mechanism that can better isolate a target from similar but different
distractors (Fang, Becker & Liu, 2019; Fang & Liu, 2019; Stormer & Alvarez, 2014; Tombu &
Tsotsos, 2008). However, if attentional modulation only follows a pure Mexican-hat function,
the modulation would continue to rebound to a baseline level for very dissimilar features
(Fig.1b). That prediction is inconsistent with previous studies favoring the feature-similarity gain
model, which clearly showed a suppression for very dissimilar features. Therefore, the two
models appear to be contradictory, and one might wonder which one is correct.

In fact, both models may be correct, but operating on different similarity scale (Fig. 1d).
Feature-similarity gain model was mostly supported in studies testing large feature offsets (e.g.,
red vs. green, upward vs. downward motion), while surround suppression was found in studies
using a narrow range near the attended feature. Thus, the final result of FBA’s modulation can be

regarded as a combination of both feature-similarity gain and surround suppression (Fig. 1d).
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This view is further supported by the recent studies (Fig. 1c¢, Fang, Becker & Liu, 2019; Fang &
Liu, 2019). By systematically sampling through feature spaces from a small to large offset, these
researchers have consistently revealed a hybrid profile consisting of both surround suppression
and feature-similarity gain modulation in dimensions including color, orientation, and motion
direction (Fig. 1¢). Such a hybrid profile reconciles the findings that feature-similarity gain may
be optimal for filtering dissimilar features on a coarse scale, whereas surround suppression can
facilitate isolating target from other similar feature on a fine scale (Fig. 1d). Therefore, both
feature-similarity gain and surround suppression may be complimentary to each other to better

select the desired target information in a complex scene.

Summary

While the feature-similarity gain model remains one of the most prominent models in the
attention literature, recent studies have revealed non-monotonic effect that it cannot account for.
At a coarse level, the feature-similarity gain predicts a suppression for dissimilar features, which
is consistent with behavioral, neuroimaging and single-unit studies. However, on a finer scale, it
fails to explain how FBA exclude similar but different distractors to an attended feature. To
achieve a more flexible selection of the most task-relevant feature, it is necessary for FBA to
efficiently reduce both similar and distinctive distractors in the dynamic environment. A new
pattern of attentional modulation, the surround suppression, was discovered such that there is a
suppressive zone that enhances the signal-to-noise ratio in the vicinity of the attended feature.
Moreover, the classic feature-similarity gain model can be integrated with the surround
suppression modulation to enhance the most relevant aspect of the sensory input at the expense

of unattended information on both a fine and a coarse similarity scale.
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Figure 1. Illustrations for different attentional profiles of FBA. (a) example for a monotonic feature-
similarity gain profile in orientation space. (b) example for a pure surround suppression profile in
orientation space. (c) empirical behavioral evidence for a hybrid profile in attention to color (Fang,
Becker, & Liu, 2019), orientation and motion direction (Fang & Liu, 2019). (d) example for a hybrid
profile of FBA (bottom panel) to orientation. Two candidate neural mechanisms underlying surround
suppression (top panel), a shift mechanism or a gain mechanism.
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CHAPTER 2
NEURAL MECHANISMS OF ATTENTIONAL SURROUND SUPPRESSION
As reviewed in Chapter 1, studies in recent years have shown that FBA can enhance an

attended feature at the expense of unattended ones. Yet the neural mechanisms of attentional
suppression in feature domain remains unclear, especially in the vicinity of the attended feature.
Therefore, the current work focuses on the candidate neural mechanisms underlying the surround
suppression that are informed by neurophysiological studies. Importantly, our first aim in the
current work is to investigate how recent multivariate methods in computational neuroimaging
(e.g., fMRI) may be utilized to distinguish between the candidate neural mechanisms through
simulation and computational modeling. In addition, neuronal noise is inherently correlated,
which also manifest at the neural population/voxel level. Therefore, the second goal of the
current work is to systematically compare the two leading multivariate methods in the presence

of correlated neural noise.

Candidate Neuronal Mechanisms of Surround Suppression

While the attentional surround suppression enhances the signal-to-noise at the vicinity of
the attended feature, an important question concerns the underlying neural mechanism of the
non-monotonic modulation within the suppressive surround. The psychophysical studies above
excluded post-perceptual account with a postcue paradigm, which indicated that the surround
suppression reduced perceptual sensitivity to the distractors (Fang & Liu, 2019; Fang, Becker, &
Liu, 2019). In agreement with the behavioral findings, two electrophysiological studies in
humans showed reduced neural responses to features within the surround of the attended feature
(Bartsch et al., 2017; Stormer & Alvarez, 2014). Using a frequency-tagging technique, Stormer

and Alvarez (2014) found a significantly reduced occipital SSVEP (i.e., steady-state visual
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evoked potentials) for colors within the suppressive surround of the attended color. In addition,
Bartsch et al., showed with magnetoencephalogram (MEG) that surround suppression emerged
in posterior retinotopic visual areas (e.g., VO-1/hV4) within 305 ~ 375 ms after attending to a
color. While these results are generally consistent with behavioral effects reviewed above,
EEG/MEG measures gross, aggregated signals across large neuronal populations, thus cannot
reveal the nature of neuronal level modulations. For example, does surround suppression reduce
the overall strength of the stimulus representation, or does it distort the feature space? To further
characterize the neural signature of the non-monotonic attentional modulation, we will consider
here two prominent neuronal mechanisms underlying FBA (Fig. 1d, top panel): a shift of the
tuning preference (i.e., “shift mechanism”) or a gain modulation of the tuning curve (i.e., “gain
mechanism’), both of which can explain the behavioral surround suppression effect in FBA
(Fang et al., 2019; Tsotsos, 2011).

In a crowded scene, both target and distractors are more likely to fall within the same
receptive field (RF) and compete for representation. In the spatial domain, one way that spatial
attention biases neuronal responses toward the attended stimulus may be through changing the
spatial profile of its RF — shifting toward and shrinking around the attended location (Moran &
Duncan, 1985). Previous studies have indeed found that spatial attention shifted RF toward an
attended location in multiple visual areas, including macaque medial temporal area (Anton-
Exrleben, Stephan & Treue, 2009; Womelsdorf et al. 2006, 2008), and V4 (Connor et al. 1997).
In human visual cortex, a recent fMRI study showed that spatial attention attracted population
receptive field (pRFs) toward an attended location (Klein, Harvey & Dumoulin, 2014). Similarly,
recent evidence also suggested that FBA can elicit neuronal tuning shift toward an attended

feature (e.g., Fig. 1d top panel, David et al., 2008; Ibos & Freedman, 2014).
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Would similar neuronal shift mechanism underlie surround suppression in feature-based
attention? Interestingly, recent studies have provided initial insights into such possibility using
computational modeling to explore the potential connection between neuronal tuning shift and
behavioral surround suppression in feature domain (Fang et al., 2019). Building on the single-
unit findings on neuronal tuning shift, Fang, Becker, & Liu (2019) have implemented a
computational model with population neural coding and Bayesian read-out rule (Pouget, Dayan
& Zemel, 2000, 2003; Ma, Beck, Latham, & Pouget, 2006). Under known physiological
constraints, the simple model in their study consisted of a bank of neurons spanning a feature
space (e.g., color). The authors simulated their behavioral experiment (i.e., 2IFC) under both
attention and neutral condition to measure the profile of feature-based attention’s modulation.
Interestingly, the neuronal tuning shift successfully led to surround suppression in behavior,
which suggested a hitherto unknown relationship between the previous physiological findings
and the Mexican-hat profile of behavior. At an intuitive level, the tuning shift that occurred
within the vicinity of an attended feature created a vacuum, which weakened representation of
features in the suppressive surround. Therefore, it is possible that FBA can elicit a suppressive
zone by shifting nearby neurons’ tuning preference toward the attended feature.

While changes in the neuronal tuning profile might underlie the attentional surround
suppression, it is not the only possible account. Visual attention can also cause a response gain
change, when attention is directed to a location (McAdam & Maunsell, 1999), or feature (Treue
& Martinez-Trujillo, 1999). At the neuronal level, the response gain modulation can be
implemented as a multiplicative factor applied to the tuning curve without changing its tuning
preference or width (Fig. 1d top panel). At the behavioral level, such gain modulation enhances

perceptual sensitivity of an attended feature, which is analogous to an upscaling of the local
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contrast of the attended feature (Herrmann et al., 2012). For example, Herrmann and colleagues
found that perceptual sensitivity of attended orientations was higher than the unattended
condition across all contrast levels (e.g. from 5% to 85%), which was consistent with a
multiplicative response gain modulation at the neuronal level. In the current work, we
hypothesized that a similar gain mechanism might also underlie the surround suppression such
that the multiplicative gain modulation is a non-monotonic function of the similarity between
tuning preference and attended feature on a fine similarity scale.

In the absence of direct physiological data, computational models can provide useful
insights on this non-monotonic gain mechanism. For example, the selective tuning model may
explain the surround suppression effect in space-based and, potentially, in FBA (Tsotsos, 1995,
2011). The selective tuning (ST) model is a multi-layered computational model that is initially
proposed to account for visual processing in the spatial domain (e.g., crowding, spatial
resolution). The model has a similar hierarchical structure (e.g., larger RF size in higher level) as
the human visual system. In ST model, attentional surround suppression can be elicited through a
top-down winner-take-all mechanism, which initiates feedback modulation to inhibit units less
tuned to the attended location in earlier layers. This top-down influence can produce spatial
surround suppression in early units and is able to account for findings in the spatial domain
(Hopf et al., 2006; Boehler et al., 2009, 2011; Muller & Kleinschmidt, 2004; Mounts, 2000a;
2000b). In feature domain, the selective tuning also assumed that the feedback modulation on
neuronal tuning curves could be a gain modulation that downscales neural response within the
suppressive surround in feature space (Tombu & Tsotsos, 2008; Tsotsos, 2011; Bartsch et al.,

2017).
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Neural Decoding at the Population Level

In short, surround suppression in FBA could arise from two candidate neuronal
mechanisms — a tuning shift mechanism or a gain mechanism (Fig. 1d), both of which can
explain the non-monotonic modulation of FBA (Fang et al., 2019; Tsotsos, 2011). A significant
question is how to distinguish between these candidate neuronal mechanisms using non-invasive
neural measures from the human brain. As a proof of concept, we believe that it is necessary to
establish a link between the neuronal mechanisms and their manifestation in aggregated neural
measures from human cortex (e.g., at voxel level using fMRI).

Although single-unit studies provide invaluable knowledge of attentional mechanism, it
is also unlikely that a few single neurons determine the behavioral response in any task.
Information conveyed by neuronal populations likely bear more intimate relationship to
representation of stimulus and ultimately behavior (Pouget, Dayan & Zemel, 2000, 2003; Ma,
Beck, Latham, & Pouget, 2006). This population-based view has gained increasing recognition
in recent years in system and cognitive neuroscience (Churchland et al., 2012; Mante et al.,
2013; Sprague, Saproo, & Serences, 2015; Fusi et al., 2016). A challenge is that currently, we do
not know how or whether the two neuronal mechanisms could be distinguished at the fMRI
voxel level. Therefore, our first goal is to fill this gap by decoding and differentiating
manifestations of the neuronal mechanisms at the voxel level through simulation and
computational modeling. Because of the limitation in spatial resolution, classic univariate
analysis in fMRI imaging only captures the overall responses across neuronal populations,
therefore obscuring the underlying multivariate pattern information. Early studies showed that a
linear pattern classifier (i.e., multi-voxel pattern analysis, MVPA) can identify the presence of

certain stimulus information by training and testing a linear classifier on the spatial pattern of
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voxel responses within a region of interest (Kamitani & Tong, 2005). One might wonder whether
it is possible to go beyond the voxel level and extract sub-voxel information to distinguish
between different neuronal mechanisms. A recent multivariate technique in computational
neuroimaging may circumvent such limitation and decode information beyond the resolution of
single voxel, which is therefore suitable for current study.

To establish a direct link between the neuronal mechanisms and their modulation on
population responses profile, we employed an encoding/decoding model approach in
computational neuroimaging (Naselaris et al., 2011; Brouwer & Heeger, 2009). Such an
approach has been used by a variety of studies from low-level perceptual phenomenon (e.g.,
cross-orientation suppression, Brouwer & Heeger, 2011) to higher-level cognition (e.g., working
memory, Ester et al., 2013, 2015). A voxel-based encoding model provides a functional
description between stimulus input and voxel responses (Naselaris et al., 2011). It starts by
encoding different stimulus (e.g., orientation) using hypothetical receptive fields or channels that
are informed by physiological evidence. At the voxel level, the response of a single voxel can be
modeled as an aggregation of different neuronal population or hypothetical channels. Therefore,
it is possible to build a direct mapping through linearly weighted combination to link the
encoder’s stimulus-evoked responses and voxel responses across neuronal populations. One can
fit the encoding model to empirically observed voxel responses (e.g., training data) and
analytically estimate the linear weights using linear regression method (i.e., least square
estimation). For example, Brouwer and Heeger initially employed a channel-encoding model to
examine the neural representation of a continuous color space in visual areas, in which the
hypothetical channels resembled the known selectivity of color tuning curves (Brouwer &

Heeger, 2009, 2013). While mean voxel responses in visual areas did not reliably differ for
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different stimulus colors, Brouwer and Heeger (2009) were able to accurately reconstruct the
representations for colors in different visual areas using the forward channel-encoding model,
with a similar accuracy as more conventional pattern classification decoding method (Kamitani
& Tong, 2005).

After estimating the best-fit encoding model, inversion of the encoding model (i.e.,
inverted encoding model, IEM) permits one to reconstruct individual channel’s responses from a
new set of voxel responses measured under different task conditions or cognitive states (e.g.,
attention). Importantly, the reconstructed channel responses through inversion produces tuned
response profiles like population response profile, which may provide important insight into the
mechanisms of a variety of cognitive task, including feature-based attention (Scolari et al., 2012;
Saproo & Serences, 2014; Ester et al., 2016). For instance, Ester and colleagues (2016) used the
inverted encoding model to investigate whether the frontoparietal regions contain continuous or
categorical representation of attentional control signal for FBA to orientation. When participants
attended to the orientation of gratings, the researchers found that reconstructed channel responses
using voxels from frontoparietal regions showed a similar profile to those reconstructed from
visual areas, suggesting a continuous representation of sensory information in attentional control
regions. Moreover, the peak location of the reconstructed channel response profile may also
reveal perceptual distortion in sensory regions caused by higher-level cognitive processes. In
another study, Ester et al. (2020) investigated the neural basis of categorical learning by training
participants to categorize orientations into two arbitrary groups. In visual areas, the profile of
reconstructed channel responses around category boundaries showed a shift toward the center of

the category after learning, suggesting a perceptual distortion in orientation space through
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learning. Taken together, the IEM method provide a promising way to explore mechanisms at the
neuronal population level beyond the limitation of single voxel.

However, caution is suggested when using the reconstructed channel response profiles to
infer the underlying neural mechanism. For instance, Liu et al. (2018) tested a well-known
property of contrast-invariant orientation tuning in primary visual cortex using the IEM method.
Surprisingly, they found an increase in the width of reconstructed channel responses when
stimuli’s contrast was reduced, inconsistent with findings from single-unit recording studies
(Sclar & Freeman, 1982). Their computational model further showed that such changes in the
reconstructed responses do not necessarily indicate corresponding changes in the tuning width of
neuron, but instead, can be explained by reduced signal-to-noise ratio as contrast is reduced. This
latter result raises a reverse-inference issue. At its core, this reflects a lack of examination on the
relationship between single-unit activities and the population level responses (e.g., BOLD
signal), which further necessitates our current work in bridging the gap across different levels of
measurements. By simulating and decoding different neural mechanisms at the population level,
the current work may serve as a reference point for investigating the neural mechanisms of
surround suppression in future empirical studies.

For decoding purpose, we also considered a Bayesian method, which further transforms
the reconstructed channel response function into a posterior probability distribution of the
stimulus, given an observed voxel pattern (van Bergen et al., 2015). It was further pointed out
that the reconstructed channel response function is contingent on the initial assumption about the
channel’s specific shape, which is not surprising given that the IEM is essentially a linear
regression model (Liu et al., 2018; Gardner & Liu, 2019). The Bayesian approach follows the

same structure as the IEM analysis but further models the structure (i.e., covariance matrix) of
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correlated voxel noise. Using Bayes’ rules and a flat prior, posterior probability can be computed
for a stimulus given the observed voxel responses under the assumption of a normal distribution
of errors. More importantly, it has been shown that the reconstructed probability distribution is
invariant to the model’s assumptions of the channels as the Bayesian method reconstructs
information about stimulus rather than parameters of the channel (Gardner & Liu, 2019). Thus, it
would be useful to assess whether the Bayesian method can also differentiate the candidate
neural mechanisms of attentional modulation (i.e., surround suppression) at the population level.
In addition, noise correlation is prevalent across neuronal population, which also manifests at the
voxel level. Yet how the voxel-wise correlated noise affects different multivariate methods
remain uncharted both in the current research domain, as well as in the general literature of fMRI
decoding. As a comparison to the standard IEM approach, our second aim is to extend the
Bayesian method to evaluate the possible neural mechanisms of surround suppression and to
compare both methods in the presence of correlated voxel noise.

In summary, in the current study, we explored the candidate neural mechanisms of
surround suppression in FBA using model simulations. We first generated synthetic voxel
responses using a neural population model, which implemented different mechanisms of
surround suppression at the neuronal level. To differentiate different neural mechanisms at the
level of aggregate population measures (i.e., fMRI), we decoded the population codes using both
the inverted encoding model method and a Bayesian method. We expect that sub-voxel signature
patterns may be identified for different neural mechanism, which can provide a comprehensive
description of attentional mechanisms across different levels of measurement. We also
hypothesized that the Bayesian method could be more suitable for decoding purpose in the

presence of noise correlation. To test this hypothesis, we systematically manipulated the
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structure of noise correlation among voxels to compare the two multivariate methods (i.e.,
standard IEM and Bayesian method). We expect that the current work should provide theoretical
and practical guidelines for future empirical studies investigating cortical mechanisms of FBA

using non-invasive methods in the human brain.
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CHAPTER 3
NEURAL MECHANISMS OF SURROUND SUPPRESSION: SHIFT VS. GAIN

The goal of current simulation is to distinguish the candidate neural mechanisms of the
non-monotonic surround suppression at the fMRI voxel level. We modeled the attentional
modulation as a hybrid profile, which consisted of the surround suppression on a fine scale and
feature-similarity gain modulation on a coarse scale (Fang, Becker, & Liu, 2019; Fang & Liu,
2019). Neurons within the suppressive surround can either shift tuning preferences (i.e., shift
mechanism) or only changes the overall response amplitude (i.e., gain mechanism). To evaluate
the population codes of these neuronal mechanisms, we conducted model simulations that
consist of three steps. We first described a generative model that simulated the voxel responses
under different neuronal mechanisms of FBA (i.e., shift or gain mechanism), and then specified
how a channel-encoding model was fitted to the voxel response from a neutral training data set.
In the final step, we employed two parallel methods to decode the population codes of the
simulated voxels responses. Specifically, we inverted the best-fit channel model as a measure of
the population responses and estimated the posterior probability of stimulus at different offsets
from the attended one. To test the generalizability of our findings, we repeated the simulations
under different combinations of neuronal tuning width parameters and voxel noise parameters.

Method

Population Encoding Model

Neutral condition. Each run of the simulation consisted of three steps. In the first step, we
built a population model to generate synthetic neural responses (e.g., voxel responses in fMRI)

under the neutral conditions. As shown in Figure 2a, the model contains a bank of identical,
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uniformly distributed, orientation-tuned neurons spanning from 0° to 180° in the orientation
space. Each neuron’s tuning curve is assumed to be a von Mise function, which has the form of
fi(s) = ekcosmd . g+ p (1)

where f(s) 1s the t-th neuron’s response to an orientation stimulus s. x determines the bandwidth
of neuronal tuning curves, which is the same for all neurons but can be varied across different
simulations. g is the neuron’s preferred orientation, which is evenly distributed from 0° to 179°
in 1° increment. a determines the amplitude of the neuron’s response, and b represents the
baseline activity. We set the baseline activity for each neuron to be 0 and normalized the area
under the tuning curve to be 1 such that the average response across the whole neuronal
population remains equal across different tuning width k. All neurons (180 in total) are assumed
to be independent. For tuning width, we further transformed the x to full width at half-maximum
(in degrees) to facilitate the interpretation of results.
Candidate Neuronal Mechanism of Surround Suppression

Attentional modulation. For the attentional condition, the monotonic feature-similarity

gain modulation (FSG, Fig. 2e) is specified as:
FSGy = B —a-|of fset,| (2)
of fsety = Uy — Uar (3)

where FSG; is the feature-similarity gain modulation for #-th neuron. Both o, 3 are parameters
(slope and intercept respectively) controlling the overall shape of the linear feature-similarity
gain (Fig. 2e). 14 1s a neuron’s tuning preference, and g« 1s the attended orientation (i.e., 90°).
By definition, feature-similarity gain only depends on similarity between neuronal tuning

preferences and the attended orientation. Therefore, it is expected that the decoded population
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response profiles across different offsets will show a monotonic profile under a pure FSG
modulation (Fang, Becker, & Liu, 2019). In a preliminary simulation (Fig. 21), we also verified
this prediction as a basic check of our model implementation: a feature-similarity gain
modulation alone is unable to explain the non-monotonic surround suppression.

To model the non-monotonic FBA, we simulated a hybrid profile of modulation on the
neuronal population (Fig. 1a), which consisted of a surround suppression on a fine scale and a
feature-similarity gain modulation on a coarse scale (Fang, Becker, & Liu, 2019; Fang & Liu,
2019). Within the suppressive surround, FBA could either elicit a gain change of the neurons’
overall response (i.e., gain mechanism, Fig. 2d), or shift their tuning preferences (i.e., shift
mechanism, Fig. 2¢) toward the attended feature. In addition to simulating the non-monotonic
surround suppression on a fine scale (e.g., range of the suppressive surround: +45° offsets), we
also implemented a monotonic feature-similarity gain modulation on a coarse scale (e.g., £90°
offset). Therefore, the overall profile of attentional modulation shows a hybrid shape (Fang,
Becker, & Liu, 2019; Fang & Liu, 2019). In the next part, I will describe the implementation of
the different neuronal mechanisms underlying surround suppression.

In the first scenario, we implemented the gain mechanism as the neuronal mechanism
underlying surround suppression, which only affects the overall responsivity of neuronal tuning
curves without changing their preferred orientation (Fig. 2d). For a neuron, the gain modulation
1s simulated by a scaling parameter, which is multiplied with the neuronal tuning function
(similar to parameter @ in Eq. 1). Across the entire orientation space and for different neuronal
group, the multiplicative gain modulation of FBA is implemented as a piecewise function (Fig.

2d):
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_(ﬂt‘/v‘%tt)z _(.ut_#%tt)z
G, = Ay-e 2w —4A;-e 2w + L, if |ﬂt - .uattl < 1-255'5‘range
B—a-|u — taeels otherwise

4
where {A1, wi, A2, w2, L, a,, B} are the parameters controlling the overall shape of the
piecewise function. SS;unee represents the offset (i.e., 45°), where the maximum surround
suppression occurred (Fig. 2d). g and . are neuronal tuning preference and attended
orientation. For neurons that are within a range of 1.25SSange from the attended feature, the
piece-wise function simulates a non-monotonic surround suppression modulation using a
difference of Gaussian function. Once outside the suppressive surround (i.e., |offsets| >=
1.25SS ange), there is a further suppression up to £90° offset (i.e. feature-similarity gain
modulation, Eq. 2). As illustrated in Fig. 2d, the overall shape of the FBA therefore has a hybrid
profile on both sides of the attended feature, which is similar to empirical findings (Fang,
Becker, & Liu, 2019; Fang & Liu, 2019).

In the second scenario, we also assumed hybrid profile of FBA modulation across the
entire orientation space. The critical difference is a shift in neuronal tuning within the
suppressive surround (Fig. 2c) toward the attended orientation. Our previous simulation showed
that a tuning shift in the vicinity of attended feature can elicit a suppressive surround (Fang,
Becker, & Liu, 2019; Fang & Liu, 2019). In conjunction with the monotonic feature-similarity
gain modulation (e.g., a monotonic function), the stimulation can further explain the suppression
effects found at different scales. Following the previous works, the hybrid profile of FBA in the
second scenario was implemented as a combination of range-limited (i.e., up to the suppressive
surround then gradually stop) neuronal tuning shift and a feature-similarity gain modulation.

For feature-similarity gain modulation, we used the same linear function as in Eq. 2. We

then implemented an attention-induced shift in tuning preference toward the attended feature
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(i.e., matched filter). This shift is assumed to be proportional to the distance between tuning
preference and the attended feature in our previous model containing uniformly tuned units

(Fang et al., 2019), which was specified by a piece-wise linear function.

Shift,

0.5 of fset,, if loffset,| < SS,ange
= {2-sgn (offset,) - (1.25w — |of fset,|), If SSrange < loffset,| < 1.2585,4nge

5
0, if loffsety| > 1.255S,qnge )

where sgn is the sign function, and SSrange = 45°, in which maximum surround suppression
occurs. This results in a larger shift as neurons move further away from the attended feature
followed by a reduced shift outside the suppressive surround (i.e., rebound). Once Shift; declines
to 0, the tuning shift also stops. Under this scenario, neuronal responses were calculated in the
same fashion as in Eq. 1, except that neuron’s preferred orientation (), was replaced by (4 -
Shift), representing a shift in tuning preference.
Step 1: Simulating Voxel Responses Under Neutral and Attentional Condition

We then simulated response of each voxel (N = 100 in total), which contains neurons
tuned to all possible orientations. Each voxel was simulated as linear combination of neuronal

responses, which is defined as:

180
v(s) = ) WEAT S (S) (6)
t=1
where v;(s) is the i-th voxel’s tuning curve. ;""" is the linear weight of t-th neuron in this
voxel. The linear weight (W;/**"°") contains 180 numbers drawn from a uniform distribution
between [0, 1], which describe the relative contribution of different neuronal populations to a
voxel’s response. After the weighted sum, voxel response is scaled (average response across all

voxels: ~ 1) such that it is close to the common range as blood-oxygen-level-dependent (BOLD)
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responses (percent of signal change). To generate the final voxel response, we further added
correlated noise e to the voxel responses (Step.1 in Fig. 2e).

B=v(s)+e (7)
The noise term e is randomly sampled from a multivariate Normal distribution with a mean of 0
and voxel-by-voxel covariance matrix of 2

e~N(0,Z) (8)
The covariance matrix 2 has the form as:

% = T;T;R;j 9)
where the pairwise covariance, 2j;, between the i-th and j-th voxel was computed as the product
of voxel standard deviation 1;, 1j, and their pairwise correlation, R;;.

The standard deviations (1) of voxel responses are proportional to the average voxel

responses before adding the noise term:

m
1) =2 ni(s) 10)
i=1
where m is the total number of voxels (100 in total). A is the proportion between voxel standard
deviation (T) and average response of all voxels to a certain orientation stimulus. The voxel-by-
voxel correlation, R, is constructed by a combination of a voxel-tuning-dependent correlation
R™ning and arbitrary correlation R%? that is independent of voxel’s tuning property, which can be
caused by thermal and physiological variabilities in fMRI signal. It has been shown that such a
correlation structure can well explain the voxel-wise noise correlation in empirical fMRI data
(van Bergen et al., 2015; van Bergen & Jehee, 2018). Therefore, we employed a similar structure

to generate correlated noise in the current model. The tuning-dependent correlation coefficient

Rming jg given by (cf. van Bergen & Jehee, 2018):
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R =1 (1= 1) - corr(vi(s), v;(s) ) + I (11)
where the 7 is a scaling parameter that controls the strength of correlation between voxels. / is an
identity matrix. For the correlated voxel noise that is independent of voxel tuning property, we
refer to it as arbitrary noise, R“?. To create the arbitrary noise, we shuffled the R*""¢ such that
columns and rows of R™""¢ were reordered in the same randomized order. This is to ensure that
R4 is still a symmetric matrix after being shuffled. Critically, R“? has the same overall
correlation but now noise correlation does not depend on the tuning property. In other words, the

R installs noise that is randomly correlated. Having defined both R? and R™""2, the final

correlation matrix R is generated as a combination of R*""8 and R*"®, which is described as:

Ry =(1—1Ij)[p-R;™™ + (1 —p)-RY®] + I (12)
where p is a parameter from [0, 1] that specifies the relative contribution of R*""¢ and R?. We
analyzed the covariance matrix from empirical data (cf. Liu, et al., 2018) with Eq. 15 (see below)
to estimate the ratio of tuning-dependent and the tuning-independent noise, which yielded a ratio
of 2.5:1. Therefore, we fixed the p parameter to be 2.5/(2.5 +1) = 0.71 in the main simulation. In
the benchmark test section (see Chapter 4), we also explored the effect of varying the ratio
between R™""¢ and R*" on decoding of population codes using different multivariate methods.

Simulated Experiment. We simulated voxel responses under a neutral (Fig. 2a) and an
attentional condition (Fig. 2¢ — 2¢). Eight orientations were sampled evenly through the whole
orientation space (i.e., 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°). In the neutral condition,
each orientation was presented for 32 trials, yielding a total of 256 trials in total. No attentional
modulation (i.e., gain or shift) was applied to the neutral data. In the attentional condition, we

fixed the attended orientation at 90° (i.e., full space ranges from 0 ° to 179° at 1° increment),

resulting eight offset conditions (i.e., offset: -90°, -67.5°, -45°, 22.5°, 0°, 22.5°, 45°, 67.5° for the
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corresponding orientations above) that yielded 256 trials (32 trials/offset). As noted above, we
simulated a hybrid profile for FBA following recent empirical findings, which revealed a
surround suppression on a fine scale (e.g., £45° offset) and a feature-similarity gain modulation
on a coarse scale (Fang, Becker, & Liu, 2019; Fang & Liu, 2019). For both neutral and
attentional condition, we modeled voxels’ responses using the same linear weight (W"<"*" in Eq.
6) and covariance matrix (X in Eq. 8) described above. In other words, we assumed that FBA did
not alter the covariance structure of the noise between the neutral and attentional condition. We
simulated another set of data under neutral condition to use as a validation data set, which was
used to compare the accuracy in a benchmark test between the different decoding methods.
Step 2: Fitting a Channel-Encoding Model to Voxel Patterns

Fit channel-encoding model. In the second stage, we employed a channel encoding model
as proposed by Brouwer and Heeger (2009), to characterize the orientation tuning function.
These channels serve as model basis functions that span a model-based information space as an
analogy to the activity space spanned by neuronal population, where each axis is a neuronal
population. Similar to how the voxels can be treated as a linear combination of neurons, the
channel encoding model assumes a voxel’s response can be expressed as a linearly weighted
combination of a set of channels, which are hypothetical tuning curves evenly distributed in the
orientation space. Similarly, the linear weights specified the contribution of each hypothetical
channel to a voxel’s response. We fitted the channel encoding model to training data from the
previous step (e.g., neutral condition) to estimate the linear weights for each channel.

The channel-encoding model consisted of 8 evenly distributed channels (i.e., model basis
functions) covering the full orientation space (0° to 179°). Each channel is a half-wave rectified

sinusoidal raised to power of 7 (Fig. 2b), which yields an equivalent bandwidth of 25° at half
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maximum. As neuronal tuning widths can be variable in visual cortex, we also varied the channel
basis function with two additional sets of bandwidths (45° or 65°). Therefore, we employed three
subtypes (e.g., channel bandwidth: 25°, 45°, 65°) of channel-encoding models in our simulation.
The hypothetical channels’ responses across trials can be expressed as a matrix of n by 4
matrix, Ceain, Where n =256 is the number of trials in a training data set, and /# = 8 is the number
of channels (i.e., a total of 8 channels). The training data is a set of voxel responses simulated
under the neutral condition, which is a n by m (i.e., m = 100, number of voxels) matrix Brain. W
is the linear weight matrix of 4 by m, where each column describes the channel’s contribution to
a voxel’s response. Therefore, the relation between voxel responses and the channel basis
function is given by:
Birain = Cirain W (13)
Given both Birain and Cirain, the least-square estimation of W is defined as:
W= (CtTrainCtrain)_l Clrain Birain (14)
To further estimate the structure of variability within the voxel responses, we fitted a
noise model to the residual term after removing the best fitting voxel response, CirainW. The
noise model assumes that the covariance of the voxel noise consists of both a voxel tuning

independent component and a voxel tuning dependent component, which is defined as follows
(see van Bergen et al., 2015 for a detailed derivation):

Q=pttT+(1-p)I o tiT +’W'W (15)
where Q represents the covariance matrix of voxel noise, p scales voxel noise irrespectively of
their tuning similarity (i.e., equivalent to tuning-independent noise R*? in Eq. 12), T is the

standard deviation of voxel response, G is the standard deviation of model’s channel (i.e., model
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basis function), and W is the estimated linear weight matrix from Eq. 14 (see above), I is the
identity matrix.

Assuming Gaussian distribution of the voxels’ residual term, we used the maximum
likelihood estimation to fit the noise model by finding the parameters g that maximize the joint

probability of the given voxel responses.

g = argmax (Z In(p(B]s, 0))) (16)

where q = {p, T, 6, W}, n is number of trials, and p(B,|s, ) is the conditional probability of
voxel response given a stimulus s in a single trial.

The conditional probability p(B|s, ) is defined as:

N — T 17
p(Bls, 0) & exp ((Btrain - Ctrainw)ﬂ 1(Btrain - Ctrainw) ) ( )

Step 3: Decoding Population Codes

Decoding neural responses. After estimating the best fit encoding model using training
data set, inversion of the encoding model can be used to decode information of stimuli given a
test data set of voxel responses. Test data sets (n by m matrix) were generated under both the
neutral (i.e., validation data set) and attentional condition (i.e., for decoding the modulation of
surround suppression at the population level). Decoding was performed using 3 different sets of
channel-base function (i.e., width: 25°, 45°, 65°).

Inversion of Eq. 13 on testing data Bt can reconstruct channels’ responses, Cyegy, t0 a
test stimulus. The reconstructed channel response is denoted as channel response function (CRF),
which is considered as an approximation of neural population response of a certain stimulus
(Scolari et al., 2012; Garcia et al., 2013; Ester et al., 2016; Sprague, Boynton & Serences, 2019,

also see Gardner & Liu, 2019).
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Etest = BtestWT (W WT)_I (18)
We also used the estimated covariance matrix, £, to generate posterior probability of a
stimulus given the test data, using the same method derived by van Bergen and colleagues (van
Bergen et al., 2015). After applying Bayes’ rule with a flat prior, the posterior probability of a
stimulus given a voxel response is defined as (see van Bergen et al., 2015 for a detailed
derivation):

_ pGBlsd
J p(Bls,@)p(s)ds

p(s|B,q) (19)

where the conditional probability p(B|s, q) is computed using covariance matrix €, the
normalization term | p(B|s, §)p(s)ds is computed numerically by summing all possible values
of p(B|s, q) spanning the whole orientation space (0° to 179°, at 1° increment).
Identifying Signature Patterns at Neural Population Level

To further evaluate the difference between the surround suppression’s underlying
mechanism at the population level, we also manipulated two independent variables: neuronal
tuning width (x in Eq. 1, transformed into degrees of full width at half maximum) and voxel
standard deviation (1). We set nine different neuronal tuning width (i.e., x, equivalent full
bandwidth at half maximum: 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°) and eight voxel standard
deviation (A: 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, & 35% of average voxel response before
the noise term was added). We performed ten independent simulations for each combination of a
neuronal tuning width (x) and voxel standard deviation (7).

For each run of the simulation, we performed decoding using channel-encoding model
with three different sets of channel basis function (i.e., channel width: 25°, 45°, or 65°). We

fitted the circular Gaussian template (Eq. 1, four free parameters) to the reconstructed channel
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response function and estimated posterior probability distribution for each individual cue-target
offset (i.e., -90°, -67.5°, -45°, 22.5°, 0°, 22.5°, 45°, 67.5°). We then compared how different
attentional mechanisms affected the fitted parameters (i.e., mean, width, amplitude, and

baseline). We analyzed each of the ten runs separately and then averaged results across all runs.
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Figure 2. Model architecture and simulation schematic. (a) neuronal tuning curves under a neutral
condition. (b) Idealized orientation-tuned channels (i.e., 8 in total) in the channel-encoding model. (¢)
neuronal tuning curves under a hybrid modulation of both feature-similarity gain and tuning shift. (d)
neuronal tuning curves under a hybrid gain modulation of both feature-similarity gain and surround
suppression gain. (¢) neuronal tuning curve under a pure feature-similarity gain (FSG) modulation. (f)
simulation consisted of 3 critical steps. Step 1: simulating voxel responses with voxel-wise correlated
noise under both neutral (i.e., training data set) and attentional condition (i.e., testing data set). Step 2:
fitting channel-encoding model to estimated channel weights. Step 3: Decoding population codes by
inverting the best-fit channel-encoding model. The reconstructed population profiles establish a direct
link to neuronal mechanisms (e.g., red arrow).
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Results

In the current simulation work, we employed an encoding/decoding model approach to
assess the candidate neuronal mechanisms of surround suppression at the population level using
two multivariate methods. Under a neutral condition, our model assumed a bank of neurons that
were evenly distributed across the entire orientation space. The neuronal responses to an
orientation stimulus (e.g., 0° orientation) were linearly combined using random weights to
generate voxel response. We also implemented correlated voxel noise that was sampled from a
multivariate normal distribution with a covariance matrix that described a mixture of both
tuning-dependent and tuning-independent correlation. We trained a channel-encoding model
under the neutral condition using three sets of channel basis function. We then inverted the best-
fit model to reconstruct the channel response function and posterior stimulus probability
distributions under different attentional conditions. To evaluate the candidate neuronal
mechanisms for surround suppression, we contrasted their manifestation at the population level
under different parameter combinations of neuronal tuning width and voxel variability. To better
explain the findings, results shown below were obtained from a specific combination of neuronal
tuning width (xin Eq. 1, equivalent to 40° in orientation space), and voxel variance (4 = 0.15,
Eq. 6). Full simulation results are shown in Figures 9 to 21.
Signature Patterns at Neural Population level

For orientations at different offset (e.g., 0°, £22.5°, £45°, £67.5°, 90°) relative to the
attended orientation, we first reconstructed their individual channel response functions (CRF) to
evaluate the attentional modulations on population responses (Fig. 3a — 3¢ & Fig. 4a —4c). We
also employed a Bayesian method to decode the probabilistic stimulus representation at each

offset (Fig. 3d — 3f & Fig. 4d — 4f) after analyzing the correlated noise structure (i.e., the
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covariance matrix) among voxels (van Bergen et al., 2015). The estimated probability
distribution showed a continuous distribution in the orientation space, with peak location
representing the most likely stimulus, and the width representing the stimulus uncertainty. As
shown in Fig. 3 & Fig. 4, orientation stimuli at different offsets were decoded using both
methods under the attentional (i.e., solid line) and the neutral condition (i.e., dashed line). The
decoding analysis was repeated using three different set of channel basis function (i.e., 25° - Fig.
3a, 3¢, 4a, & 4c, 45° - Fig. 3b, 3e, 4b, & 4e, 65° - Fig. 3d, 3f, 4d, & 4f)

Tuning shift mechanism. In the first scenario, we assumed that the attentional surround
suppression was caused by a shift of neuronal tuning preference toward the attended feature (i.e.,
shifting mechanism). Interestingly, we first observed that such attentional attraction elicited an
inflation of width at the attended orientation (i.e., Fig. 3 all panels, 0° offset pink solid curve) in
both the reconstructed CRF (Fig. 3a-3c) and the posterior probability distribution (Fig. 3d-31),
when comparing with the neutral condition (i.e., pink dashed line). For the neurons that were
originally tuned to the nearby features from the attended feature, FBA shifted their tuning
preference to become more responsive to the attended feature than in the neutral condition. This
shift essentially led to an over-abundance of neurons tuned to the attended feature. Therefore, we
observed such an inflation in the neuronal population profile for the attended feature. As the
tuning shift was imperfect and did not completely overlap with the attended feature (David et al.,
2008), a gradient shape was seen in the inflated neuronal population profile for 0° offset.

As the presented orientation deviated from the attended orientation (e.g., Fig. 3 all panels,
cyan curves at £22.5°, blue curves at +45°), we found a repulsion effect (i.e., shift away from the
attended feature) in both the reconstructed CRF (Fig. 3a-3¢) and posterior probabilities (Fig. 3b-

3f) as compared to the neutral condition. This is because the “labeled-line” architecture of the
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model, i.e., the orientation labels of all the neurons remained the same in the attention and
neutral condition. Thus, a nearby feature could activate neurons tuned to further-away features
(e.g., a 25° stimulus activating neurons tuned to 35°), causing the decoder to classify the stimulus
as repulsed from the attended feature. The repulsion effect only appeared in the intermediate
offsets (e.g., £22.5° and #45°), and as the stimulus deviated further away from the attended
orientation, such repulsion effect disappeared. This was caused by a gradual stop in the tuning
shift for neurons at larger offsets, as implemented in the model.

Therefore, neuronal tuning shift mechanism is manifested as a repulsion effect in the
population response around the suppressive surround, which creates an attentional distortion for
similar but different features from the attended one. Such findings are further consistent with our
previous simulation work, which suggested that the surround suppression might enhance feature

resolution through repulsion (Fang et al., 2019).
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Figure 3. Shifting mechanism - population level profile for individual cue-target offset. (a)
Reconstructed channel response function (CRF) under attentional (solid curves), and neutral condition
(dashed curves). Channel Basis function: 25°. Top panel: reconstructed CRF for each individual cue-
target offset plotted in colors (e.g., magenta: 0°, cyan: £22.5°, blue: £45°, green: £67.5°, red: 90°).
Bottom panels: reconstructed CRF plotted separately for each offset. (b) & (¢), same as (a) except that
channel basis function’s width was 45° in (b) and 65° in (¢). (d) Estimated posterior probability
distribution (attentional: solid curves, neutral: dashed curves). Channel basis function: 25°. (e) & (),
same as (d) except that channel basis function’s width was 45° in (e) and 65° in (f).
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Gain mechanism. In the second scenario, we assumed that attentional surround
suppression only affected the amplitude of neuronal tuning curve without changing the tuning
preference of neurons within the surround. For the gain mechanism, we observed a qualitative
different pattern with no significant repulsion effect as found with the shifting paradigm. Instead,
the most obvious pattern is located at +45° offset manifested as a reduction of the reconstructed
CREF (Fig. 4a — 4c, blue solid at +45° offset) and a downscale of posterior probability
distributions at the intermediate offsets (Fig. 4d — 4f, blue solid at £45° offset), which was a
consequence of the suppression on neuronal gain that we implemented when generating the data.

Importantly, the changes in the overall responsivity of CRF showed a non-monotonic
pattern, such that there was a significant reduction of the recovered CRF at intermediate offsets
(e.g., Fig. 4a — 4c, blue solid curves) followed by a rebound at larger offsets. As shown in Fig. 4d
— 4f, the posterior probability distributions paralleled the CRFs’ patterns and showed a similar
non-monotonic change. The lowered probability distribution within the suppressive surround
suggested an increase in the uncertainty of the stimulus. This is consistent with observations
from neurophysiological studies that gain modulation is equivalent to changing the local contrast
of stimuli (Treue & Martinez-Trujillo, 1999; Reynolds et al., 2000; McAdam & Maunsell, 2000;
Martinez-Trujillo & Treue, 2002).

In short, the gain mechanism can elicit a surround suppression modulation, but without a
distortion of feature space. This is a qualitative different population pattern as compared to those

under the tuning shift mechanism.

47



Gain — CRF, basis function 25°

a ;‘v
rt
g
e
]
H
H
g
oot
) a5 ] 3
Cue-target offset (deg)
-90° -67.5° -45° -22.5° 0° 22.5° 45° 67.5°
1 ) ) 1 1 ) ) "
7\ i\
\ /
0 \ v 0| o/ \ o~ 0 0 \ 0 of ~went 0
B0 EH W00 B W WH O B W 00 B W 0450 BN WWE 0 BW 00 N 0B B®
- . . o
~ | Gain — CRF, basis function 45
3
&1} N
S \ “
g
]
£
§
2
ol
-90 -45 o 45
Cue-target offset (deg)
1 , T ) 1 ) ) 1|
f \\ /r
/ \, /'
0 — ’ 0 [ — oL T o 0 L] —— oL
9045 0 45 % 04 0 45 W 045 0 4 %0 045 0 45 % 9045 0 45 % 045 0 B W 0450 &% S04 0 &%
. . . o
_ | Gain - CRF, basis function 65
8, . .
I3
e
]
£
§
2
Oo}
90 5 0
Cue-target offset (deg)
| 1 ) ) 1 1| ) )
/o [ /
0 ~— 0 0 N o 0 0 0} S 0}
WA 0 B W 050 w0 G045 0 B 0450 6 W 9045 0 B P 0450 B W 0460 @0 040 B ®
. . - . . o
Gain — posterior probability, basis function 25
A
@004 | \
2
be
g
3
g
é
90 45 0 45 20
Cue-target offset (deg)
004 004 ™ 00s 004 004 008 ood|

0 45 0 @ %0 C045 0 4 90 ‘045 0 $50 045 0 45 %0 ‘9045 0 5 0 9045 0 45 %0 ‘o450 40 ‘045 0 5%
Gain — posterior probability, basis function 45°

04

°

0.04} 0.04 0.04 0.04
\ [ i

ol Neeee o ol= — 0 - 0l 0 e
90 45 0 45 90 90 45 0 45 9 90 45 O 45 9 90 45 O 45 9 90 45 0 45 9 90 45 O 45 9 90 45 O 45 90 90 45 0 45 90

Gain — posterior probability, basis function 65°

004} \
@
g & SN\
o 0 N
5 Y V
3 \
8
<
0
0.04 0.04 0.04 0.04 0.04 0.04

\ [\
I\ /\
/

'] N SR S| SN 0 —— 0 '] PR N S | PSS S W' SN
90 45 0 45 90 90 45 0 45 90 90 45 0 45 90 90 45 0 45 9 90 45 O 45 90 90 45 O 45 90 90 45 0 45 90 90 45 0 45 90

Figure 4. Gain mechanism — population level profile for individual cue-target offset. Figure
convention is same as in Figure 3. (a), (b), & (c¢), reconstructed channel response function using standard
IEM method. Channel basis function: 25° for (a), 45° for (b), and 65° for (¢). (d), (¢) & (f), posterior
probability distributions using channel basis function of 25°, 45° & 65° respectively.
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Further Comparison Between the Shift and the Gain Mechanisms

To further visualize and quantify how different mechanisms of surround suppression
modulate the information contained within voxel responses, we fitted the circular Gaussian
template (Eq. 1) separately to the CRF and posterior probability distribution that were averaged
across trials for each individual offset condition. This allowed us to examine how attention
impacted the four parameters of the fitted Gaussian: baseline, amplitude, mean, and width. This
analysis was based on averaging the fitted parameters across the 10 simulation runs for each
combination of neuronal tuning width and voxel variance, for each of the channel-basis function
(e.g., channel width: 25°, 45°, 65°). We found that three parameters (amplitude, mean and width)
were significantly modulated as a function of offsets except the baseline parameter which did not
show any systematic profile in accordance with the non-monotonic attentional modulation. We
will not further consider the baseline parameter, and next we discuss the other three parameters.

Amplitude. The estimated amplitude parameter for both CRF (Fig. 5e & 5f, black) and
posterior probability distribution (Fig. Se & 5f, red) followed a non-monotonic Mexican-hat
pattern across most conditions. Interestingly, these patterns were similar under both the shift
(Fig. 5e) and the gain mechanism (Fig. 5f). This result serves as a validation for the claim that
both shift and gain mechanism can underlie the surround suppression modulation, as both
mechanisms reduced the strength (i.e., amplitude) of neural representations for distractors within
the suppressive surround. This also means that the amplitude parameter cannot serve as a robust
indicator to differentiate between the two neural mechanisms due to their similar monotonic
pattern. We now turn to the results for the other two parameters: mean and width, which

provided qualitatively different patterns between shift and gain mechanisms.
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Figure 5. Further comparison between the shift and gain mechanism. (a) Shift mechanism — Shift in
estimated means for each offset. Shift in estimated mean was plotted as a function of offset. The amount
of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von Mises function)
from the actual stimulus orientation after fitting the CRF (black) and posterior probability distribution
(red). Different panels represent results obtained using different channel basis function (i.e., width: 25°,
45° and 65° from left to right). (b) Shift in estimated mean for gain mechanism. Note, the Gain
mechanism elicited a qualitatively different pattern from the shift mechanism as shown in (a). (c) Shift
mechanism - Estimated width was normalized relative to the maximum value after fitting von Mises
function at each offset to CRF (black) and posterior probability distribution (red). (d) Normalized widths
for gain mechanism after fitting von Mises function to CRF (black) and posterior probability distribution
(red). Left: channel basis function’s width is 25°, middle: 45°, right: 65°. (e) Shift mechanism - Estimated
amplitude was normalized relative to the maximum value after fitting von Mises function at each offset to
CRF (black) and posterior probability distribution (red). (f) Normalized amplitude for gain mechanism.
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Mean. For each offset condition, we computed the amount of shift by subtracting the
estimated orientation (i.e., mean of the fitted circular Gaussian function) from the actual stimulus
orientation for both CRF (Fig. 5a & 5b, black) and posterior probability distribution (Fig. 5a &
5b, red). Results were obtained using different channel basis functions (i.e., plotted in columns,
channel width increased from left to right). Negative values indicate shifting toward smaller
orientation value than original orientation and positive values indicate shifting toward larger
orientation value than the original orientation. As shown in Fig. 5a, shifting mechanism resulted
in a significant amount of repulsion in the estimated stimulus value such that smaller orientation
than the attended one was shifted to even smaller value, and larger orientation shifted to larger
value (cf. Fig. 3, +45°). The results that were obtained using different channel basis functions
showed similar patterns (different columns). The amount of repulsive distortion was also similar
between CRF (Fig. 5a, black) and posterior probability distribution (Fig. 5a, red). Interestingly,
the magnitude of shift was reduced as the basis function’s width increased from 25° (Fig. 5a, left
panel) to 65° (Fig. 5a, right panel).

For the gain mechanism (Fig. 4b), we observed a qualitatively different pattern in the
estimated orientation. Compare to the significant deviation caused by the shifting mechanism,
the majority of the estimated orientations under the gain modulation still overlapped with the
actual, except those at £22.5° offset (Fig. 5b), which showed a weak trend of attraction of the
attended feature (cf., cyan curves in Fig. 4). The changes in mean also were less pronounced as
the channel basis function became wider (Fig. 5b left to right panels). In short, we observed a
qualitative different pattern in how different neuronal mechanism can modulate the orientation

decoded from the population activities.
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Width. We also found a difference in the width for reconstructed CRF and posterior
probability distribution at different offsets. To better visualize and compare the patterns of width
change, results shown in Fig. 5S¢ & Fig. 5d were normalized relative to the maximum value
(original unit in degrees). For the CRF (plotted in black), the shift mechanism led to an increase
in estimated width of the reconstructed channel responses functions at the attended orientation
(0° offset in Fig. Sc, also shown in Fig. 3), which was caused by attracting neurons in the
neighboring zone toward the attended orientation. However, the gain mechanism showed the
opposite pattern (Fig. 5d, black line), in which width was smaller at the attended orientation (i.e.,
0° offset). Another observation is that the data pattern in CRF width was sensitive to the changes
in the basis function, such that the difference between shift (Fig. 5c black) and gain mechanism
(Fig. 5d, black) became less obvious as channel basis function became wider (from left panel to
right panel in Fig. 5¢c & Fig. 5d).

The posterior probability function also showed qualitatively different patterns between
shift mechanism (Fig. 5c, red) and gain mechanism (Fig. 5d, red). For tuning shift mechanism
(Fig. 5c, red), the widths of reconstructed posterior probabilities were larger for the attended
orientation (0° offset) and decreases as the offset became larger. However, for the gain
mechanism (Fig. 5d, red), we found the opposite pattern. The width of the posterior probability
displayed an inversed Mexican hat shape with smallest width at the attended orientation (0°
offset). However, it’s worth noting that the qualitative different pattern in width was only
robustly observed under low noise (i.e., voxel variance), and can quickly become
indistinguishable as noise increased (e.g., Fig. 12). Lastly, the distinction between shift and gain

mechanism remained robust when the basis function changed (red in Fig. 5S¢ & 5d, from left to
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right panels), while the difference was much reduced with the CRF (black in Fig. 5¢ & 5d, left to
right).
Summary

To summarize, we simulated two candidate neural mechanisms of surround suppression
of FBA in a forward encoding model: a shift mechanism, or a gain mechanism. We then decoded
their manifestations at population level using two multivariate methods: the standard IEM, and a
Bayesian method. We found both multivariate methods showed that different neuronal
mechanisms were associated with unique patterns at the population level in the vicinity of the
suppressive surround. Importantly, the tuning shift mechanism elicited a distortion in the feature
space, which manifested as a repulsion effect that shifted the nearby feature away from the
attended one. The observed pattern was different for the gain mechanism, which manifested as
reduced channel responses in the suppressive surround without a significant repulsion. This
important distinction was robust across most combinations of neural tuning width and voxel
noise. Within the suppressive surround, orientations (i.e., mean of the circular Gaussian template,
Eq. 1) estimated from reconstructed CRF and posterior probability distribution both supported
the repulsion effect that was elicited only by the shift mechanism, but not by the gain
mechanism. We also found the estimated width parameter may also differentiate the two
neuronal mechanisms when the voxel noise was low. Therefore, the simulation results suggested
that it is possible to distinguish the neuronal mechanisms at the population level using both the

standard IEM method and the Bayesian method.
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CHAPTER 4
COMPARISON BETWEEN THE MULTIVARIATE METHODS

In the previous simulation, we showed that both methods decoded the signature patterns
associated with different neural mechanisms for surround suppression in FBA. However, the
linear regression nature of the standard IEM suggests that it is constrained by the initial
assumption of the channel basis functions. In fact, the results described in the previous section
also hinted that the IEM method may be more dependent on the channel basis function. In
addition, a second advantage of considering the Bayesian method is that it was initially proposed
to model the correlated noise structure among voxels. However, there is no systematic
investigation on how noise correlation affects the multivariate methods, especially the standard
inverted encoding model. Therefore, the second aim of the current work is to conduct a
systematic comparison between the two multivariate methods in the presence of correlated voxel
noises. In particular, we tested the impact of two key facets of these models: assumptions of the
basis function and the amount and nature of the correlated noise on performance of the Bayesian
method and IEM. For this purpose, we analyzed the simulated data using three sets of channel
basis function (width: 25°, 45°, and 65°) as in previous chapter, and systematically varied the
basis function and the structure of noise correlation to evaluate the two multivariate methods.

Method

Comparison Based on Stimulus Classification

Benchmark test of decoding. Stimulus classification is one of the most common tasks in
in neuroimaging data analysis, which reveals stimulus information that is hidden underneath the
seemingly “random” patterns of voxel responses. To further compare the standard inverted

encoding method and the Bayesian method, we employed a classification task to compare them

54



under a neutral condition. The schematic of simulation was the same as in the previous chapter
but for simplicity and without losing generality, here we only consider a neutral condition
without attentional modulation. After fitting the encoding model to the training data set, we
reconstructed the channel response function and posterior probability distribution from a
validation data set, which had the same stimulus condition (i.e., 8 orientations, 32 trials each) as
the training data set. We classified the stimulus label on each trial into one of eight possible
stimulus categories (i.e., 8 possible stimuli: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°). We
then computed classification accuracy across all trials. The final accuracy level is averaged
across ten runs of simulation under each combination of parameters.

Classification with reconstructed channel response function (CRF). For the CRF method,
we first generated predicted CRFs for eight possible orientations (i.e., 8 possible stimuli: 0°,
22.5°,45°,67.5°,90°, 112.5°, 135°). The eight predicted CRFs was then correlated individually
with the reconstructed CRF on each trial. We computed the eight correlation coefficients on each
trial and chose the maximum as the classified stimulus label for that trial (Brouwer & Heeger,
2009). Classification is correct if the classified stimulus label is the same as the true label.

Classification with posterior probability distribution. Classification using posterior
probability distribution is more straightforward than the CRF, as it is a smooth distribution of
probabilities for all stimuli (i.e., 0° to 179° at 1° increment) across the orientation space.
Therefore, we computed the probabilities (within a +5° range) at the eight possible orientation
(0°,22.5°,45°,67.5°,90°, 112.5°, 135°, 157.5°) and chose the largest one. Note, we also tried
range smaller than +£5° and yielded highly similar results. Therefore, the exact range would not
affect our interpretation. We repeated this for each trial and computed the averaged classification

accuracy across 10 runs of simulation.
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Manipulation on Correlated Voxel Noise

Importantly, the Bayesian method further modeled the difference source of the
covariance among voxel response, while the standard inverted encoding method is based on the
least-square fitting without assuming any correlated noise structure. We reasoned that the major
difference between the two methods may reside in detecting the changes in the correlation
structure and how they may be affected by the shape of channel basis function. Therefore, it is
worthwhile to further examine how the correlation structure (cf. Eq. 11 & 12) and different
channel basis function affects the decoding performance for both the standard inverted encoding
method and the Bayesian method. Therefore, we manipulated the magnitude of voxel correlation
(controlled by parameter r in Eq. 11) and different sources of the voxel correlation (i.e., p in Eq.
12, proportion of R"in¢), under different neuronal tuning width (i.e., 9 values from 25° to 65°).

Correlation magnitude. In the first scenario, we systematically varied the maximum
correlation strength from 0.1 to 1 at a step-size of 0.1 (i.e., 10 levels in total), while fixing the
ratio between tuning-dependent correlation R™""¢ and tuning-independent correlation R#™®
(2.5:1). Meanwhile, we also varied the neural tuning widths (i.e., from 25° to 65° at a step-size of
5°) as in the previous chapter.

Correlation ratio (R"""¢). In the second scenario, we fixed the maximum correlation
magnitude (at 0.4) but varied the proportion of tuning-dependent correlation (R**"¢ in Eq. 11 &
12) from O to 1 using a step-size of 0.1. The neural tuning widths were also sampled from 25° to
65° with a step-size of 5°. When either the correlation magnitude (i.e., r, Eq. 11) or the
proportion of R"""¢ (i.e., p, Eq. 12) was manipulated, we fixed the voxel standard deviation (i.e.,
A=0.15, Eq. 10). In other words, the diagonal term of the covariance matrix is constant, while

we systematically manipulated the off-diagonal covariance among voxels.
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Varying both correlation magnitude and correlation ratio together. In the last scenario,
we varied both the magnitude and proportion of R""e together, which could also have created a
much larger parameter space than other scenarios. As the purpose was to explore the interaction
between correlation magnitude and ratio, we further constrained both the neuronal tuning width
(bandwidth: 40°), and voxel standard deviation (i.e., A = 0.15, Eq. 10).

Note, we only varied these noise parameters for the benchmark test but kept them fixed
when we simulated and compared between different neuronal mechanisms in the previous
chapter for simplicity.

Channel basis function. In each of the three scenarios above, we performed the
Benchmark decoding test with three sets of channel basis function (width: 25°, 45°, and 65°) to
explore how different basis functions affects decoding performance of different methods.

Results
Benchmark Test — Stimulus Classification

As both the Bayesian method and IEM can distinguish the neuronal mechanisms of FBA
to a similar extend (see previous chapter), we further explored their difference in decoding
ability with a benchmark test in stimulus classification. We systematically varied the covariance
(i.e., off-diagonal terms) of the covariance matrix of voxel responses, while fixing the diagonal
terms (i.e., T, voxel variance) and varied the width of channel basis function. We first measured
the classification accuracy in the benchmark test as a function of the changes in the correlation
structure. We then computed the difference in classification accuracy between the Bayesian
method and the standard inverted encoding method (i.e., Bayesian minus IEM). The benchmark

tests were repeated with three sets of channel basis function (width: 25°, 45°, & 65°).
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Correlation magnitude. We first varied the maximum correlation strength from 0.1 to 1
while fixing the ratio between R"""¢ and R*® (2.5:1). Fig. 6b shows the classification accuracy as
a function of overall correlation strength between voxels (controlled by parameter r in Eq. 11)
under different combination of neuronal tuning width (i.e., 25° to 65°) and voxel variance (1 =
0.15, Eq. 10). Both the Bayesian method (Fig. 6b, solid line) and standard inverted encoding
method (Fig. 6b, right panel) showed a drop in the decoding accuracy as the overall correlation
magnitude increased across different values of neuronal tuning width. The classification
accuracy of the Bayesian method remained higher than the standard IEM method (Fig. 6a),
which was mainly attributed to conditions with wide neural tuning curve (e.g., 45° to 65°, light
green to yellow). However, when the neural tuning widths were close to the channel width, the
difference in decoding accuracies became close to 0 (Fig. 6a, dark green). This indicated that
IEM’s decoding accuracy only reached similar level to the Bayesian method when neural tuning
width and channel width were similar.

This pattern was also observed when the channel width was varied (e.g., 45° and 65°). As
shown in Fig. 6¢ (channel basis function: 45°) and Fig. 6e (channel basis function: 65°),
Bayesian method outperformed the IEM method in most conditions. Yet the most advantageous
conditions occurred when neural tuning is narrowest (i.e., 25°), which is opposite to what was
seen in Fig. 6a. This further suggested that IEM method’s decoding performance was sensitive to

the match between neural tuning width and channel width.
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Figure 6. Benchmark test - correlation magnitude. (a), (c), & (e) Difference in classification accuracy
(Bayesian method — CRF method) was plotted as a function of maximum correlation strength (R
magnitude). Colors represent different neuronal tuning widths. Width of channel basis function: (a) — 25°,
(c) —45°, (e) — 65°. (b), (d), (f) raw classification accuracy using Bayesian method (solid lines) and CRF
method (dashed lines). Channel basis function: (b) — 25°, (d) —45°, (f) — 65°. The dashed lines in (b), (d),
& (f) represent chance level (0.125) performance in the 8-way classification task.
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Correlation ratio (R™""¢). The proportion of R“"" within the overall correlation was
manipulated while fixing the maximum correlation strength constant (i.e., maximum correlation:
0.4). As shown in the right column of Fig. 7, both classification methods became less accurate as
the voxel noise changes from arbitrary to tuning-dependent correlation. However, the Bayesian
method had an overall higher classification accuracy than the IEM method for the majority of
data points. The advantage was also seen all three sets of channel basis function (Fig. 7a — 25°,
Fig. 7c —45°, Fig. 7e — 65°). Furthermore, we observed a similar pattern between neural width
and channel width for [EM as described in the previous section. When the channel width was
narrow (Fig. 7a — 25°), IEM performed worse than Bayesian method under broad neural tuning
width (Fig. 7a, light green to yellow). As the channel width increased (Fig. 7c — 45°, and Fig. 7e
—65°), IEM performed worse than Bayesian method mostly for narrow neural tuning width (Fig.
7c & 7e, dark greens). In other words, the IEM method was comparable to the Bayesian method

only when the neural tuning width and channel width matched.
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Figure 7. Benchmark test - correlation ratio. (a), (c), & (e) Difference in classification accuracy
(Bayesian method — CRF method) was plotted as a function of ratio between tuning dependent and
tuning-independent noise (1 meaning completely tuning-dependent noise). Colors represent different
neuronal tuning widths. Width of channel basis function: (a) — 25°, (c) — 45°, (e) — 65°. (b), (d), (f) raw
classification accuracy using Bayesian method (solid lines) and CRF method (dashed lines). Channel
basis function: (b) —25°, (d) —45°, (f) — 65°. The dashed lines in (b), (d), & (f) represent chance level
(0.125) performance in the 8-way classification task.
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Varying both correlation magnitude and correlation ratio together. In the last scenario,
we further explored the parameter space by varying both the magnitude and ratio of correlation
component together, when neuronal tuning width (i.e., 40°) and voxel variance (4 =0.15 in Eq.
10) were fixed. Consistent with findings above, we found that a larger correlation magnitude
tends to cause a reduction in the overall classification accuracy for both methods (i.e., different
colors in the right column of Fig. 8, solid — Bayesian method, dashed — standard IEM).
Meanwhile, as the correlation became more tuning-dependent, we found a reduction in
classification accuracy (i.e., along the x axis of Fig. 8b, 8d, & 8f). Similar to the findings above,
the Bayesian method again outperformed the standard inverted encoding method for the majority
of the data points in the parameter space when the neural tuning width was different from the
channel width (Fig. 8a: neural — 40°, channel — 25°, Fig. 8e: neural — 40°, channel — 65°). IEM
performed to a similar level as the Bayesian method when the neural tuning width was similar

the channel width (Fig. 8c: neural — 40°, channel — 45°).
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Figure 8. Benchmark test - correlation magnitude and ratio. (a), (c), & (e¢) Difference in classification

accuracy (Bayesian method — CRF method) was plotted as a function of ratio between tuning dependent
and tuning-independent noise (1 meaning completely tuning-dependent noise). Colors represent different

maximum correlation strength (R max). Neural tuning width was fixed at 40°. Width of channel basis

function: (a) — 25°, (¢) —45°, (e) — 65°. (b), (d), (f) raw classification accuracy using Bayesian method
(solid lines) and CRF method (dashed lines). Channel basis function: (b) — 25°, (d) — 45°, (f) — 65°. The
dashed lines in (b), (d), & (f) represent chance level (0.125) performance in the 8-way classification task.
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Summary

In this simulation, we systematically compared the performances of both multivariate
methods (the Bayesian method and IEM) in a classification benchmark test by varying the
structure of noise correlation (correlation magnitude, ratio between tuning-dependent and tuning-
independent correlation, or both) and the basis function (25°, 45°, 65°). While both methods’
performance dropped as the noise become more correlated, or more tuning-dependent, the results
evidently showed that the Bayesian method performed better than IEM across vast majority of all
data points when the parameter space of noise correlation was examined. Through varying the
basis function (e.g., 25°, 45°, 65°), the results further showed that IEM’s performance became
much worse when there was a mismatch between the channel basis function and neural tuning
width. Such findings further demonstrate that regression-based IEM is constrained by initial

assumption on its channel basis function.
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CHAPTER 5
GENERAL DISCUSSION
We employed an encoding/decoding model to explore the neuronal mechanism of the
attentional surround suppression in the feature domain. We fist constructed a generative model to
simulate neural responses with two alternative neuronal mechanisms (tuning shift or gain)
underlying the attention surround suppression. We then decoded such attentional modulation on
simulated fMRI voxel responses using the standard inverted encoding method and a Bayesian
method. Our results revealed that each neuronal mechanism produced its own signature pattern at
the population level. This result can serve as a prior prediction for further empirical studies to
adjudicate between different neural mechanisms of feature-based attention. Furthermore, while
both methods can differentiate the neural mechanisms, we found that the Bayesian method is

more robust than the standard inverted encoding method in the presence of correlated noise.

Distinguishing Neural Mechanisms of Surround Suppression in FBA

Both single-unit electrophysiological method and neuroimaging method are critical in
investigating the neural mechanisms of FBA. Therefore, it is important to bridge attentional
mechanisms measured across different levels. At single-unit level, FBA can elicit either a
neuronal tuning shift or a multiplicative change of neuronal responsivity, which may equally
explain the non-monotonic surround suppression effect in behavior (Fang et al., 2019; Tsotsos,
2011). However, such neuronal-level mechanism is likely hidden at the fMRI voxel level using
traditional univariate analysis or a pure decoding approach (e.g., multivariate pattern analysis,
MPVA), which are powerful in detecting differences in activation patterns across condition
while being agnostic to how the differences are created. The strength of the current approach is

that we explicitly coded the underlying neuronal mechanism of surround suppression into voxel
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responses using a generative model (Fig. 2¢c & 2d). From the voxels with known neuronal
modulation, we then decoded the population response profile to establish a direct link between
the neuronal mechanisms and their population measures (Fig. 2f). Importantly, each neuronal
mechanism was shown to have its own signature pattern in population response (Fig. 3 - 4). By
examining the population response profile within the suppressive surround, our simulation may
shed further light on how different neuronal mechanisms can explain the non-monotonic effect
of FBA.

Tuning Shift Mechanism

One way that FBA can elicit surround suppression is by shifting neurons within the
suppressive surround toward the attended feature. Our simulation showed that this inward shift
of neuronal tuning was transformed into an outward shift at the population level (Fig. 3), which
can repulse similar but task-irrelevant features further away from the attended feature. In the
spatial domain, the RF shift was suggested to increase the perceived distance between the
attentional focus and nearby location — termed the attentional repulsion effect (Suzuki, &
Cavanaugh, 1997). Other researcher further suggested a linking hypothesis between such
distortion in physical space and enhanced spatial resolution by attention (Anton-Erxleben and
Carrasco, 2013).

The surround suppression effect of FBA may also employ a similar repulsion effect to
enhance feature resolution. For example, nearby tuning curves (e.g., +45° offset) that are
centered in the neighborhood of the attentional focus can be attracted such that they can also be
activated by orientations near the attended one. However, the labels of the affected tuning curves
still represent the original orientation, which creates a repulsion in the perceived orientation

away from the attentional focus. This could be equivalent as physically moving the nearby
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distractors away from an attended orientation, which reduces interference. In addition, as
attention attracts tuning curves toward attended orientation, such shift would also cause some
part of the nearby orientation space to be under-represented. This is because the attentional shift
also modified the neighboring neuron’s preferred orientation toward the feature in focus,
resulting in a suboptimal response to the original orientations that they code for. Such weakened
neural responses can be used to suppress distractors in the vicinity of the attended orientation.
Gain Mechanism

Gain modulation is another way that FBA may elicit the surround suppression effect.
Both feature-based attention and spatial attention can modulate perceptual sensitivity (e.g.,
measured as d’) to luminance contrast through either a response gain or a contrast gain (spatial
attention: Herrmann et al., 2010; FBA: Herrmann, Heeger & Carrasco, 2012), which has been
well captured in the highly influential normalization model of attention (Reynolds & Heegers,
2009). At the neuronal level, the gain modulation can be implemented as a multiplicative factor
applied to neuronal tuning curve, which modulates the overall amplitude without changing their
tuning preference (spatial attention: Reynolds et al., 2000; McAdam & Maunsell, 1999; feature-
based attention: Treue & Martinez-Trujillo, 1999; McAdam & Maunsell, 2000). We simulated a
non-monotonic gain modulation across the neuronal population with a difference of Gaussian
profile, which consisted of an excitatory component and a suppressive component. A recent
single-unit study indicated that the suppressive Gaussian component may be explained by a
tuned normalization pool that is modulated by FBA (Yoo, Martinez-Trujillo, et al., 2021).
Consistent with the multiplicative modulation on neurons, our simulation also showed a

reduction of the overall response at population level within the suppressive surround (Fig. 4).
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Interestingly, the multiplicative gain modulation that attention exerts at the neuronal level
produces a similar effect as changing the effective contrast of an attended stimulus (Reynolds et
al., 2000; Martinez-Trujillo & Treue, 2002). Recently, researchers evaluated how attention
changes the perceived intensity due to attention (Carrasco, Ling & Read, 2004; Liu, Fuller, &
Carrasco, 2006; Liu, Abrams & Carrasco, 2007). The findings were consistent with an altered
appearance of the attended stimulus, as if it had a higher contrast (Carrasco, Ling & Read, 2004,
Liu, Abrams & Carrasco, 2009) or more coherent motion (Liu, Fuller, & Carrasco, 2006), which
was also accompanied by an enhanced processing in early visual areas (e.g., neural correlates for
altered contrast, Liu, Pestilli, & Carrasco, 2005, Dugué¢ et al., 2020). It is possible that surround
suppression may also prevent distractors’ interference by reducing their effective contrast and
perceptual salience. Therefore, an interesting direction for future studies could be to investigate
how FBA modulates the appearance of stimulus feature within the suppressive surround of an
attended feature.

Despite the absence of direct neural evidence for a non-monotonic gain mechanism,
computational models suggested that FBA may directly exert gain modulation in sensory visual
areas to suppress similar but different features in the surround of an attended feature. For
example, this possibility is supported by the selective tuning model (see Candidate Neuronal
Mechanisms of Surround Suppression Section in Chapter 2), which assumes a top-down
feedback modulation that progresses backward along the visual hierarchy and directly inhibits
units less tuned to the attended one in earlier layers (Tsotsos, 1995, 2011). Alternative to the
direct suppressive gain modulation predicted by the selective tuning model, it is also possible
that the top-down feedback modulation may first modulate excitatory cells, which indirectly

implement surround suppression through lateral inhibition.
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Furthermore, the tuning shift mechanism and the gain mechanism may not be mutually
exclusive in feature-based attention. A recent study using a two-layer feedforward model showed
that a multiplicative gain modulation in low-level regions can lead to tuning shift in higher
regions through linear integration (Ibos & Freedman, 2014). Therefore, it is possible that the
tuning shift mechanism may build up progressively in downstream regions of the gain
modulation. In principle, our modeling framework could be extended to simulate a multi-layer
network, which will allow us to further explore in future studies whether the two mechanisms
modulate different stages of the visual processing hierarchy.

Source of Surround Suppression in FBA

While the shift or gain mechanism could underlie the surround suppression’s modulation
in sensory regions, they likely rely on top-down feedback modulation originated from attentional
control areas. Bartsch and colleagues recently explored this hypothesis by measuring the
temporal dynamic of surround suppression in feature-based attention using MEG (Bartsch et al.,
2017). To manipulate feature-based attention, they used a 2-alternative-forced-choice task, in
which participants reported the location of a red target against a green distractor on one side of
screen. To measure the profile of FBA, a probe stimulus was presented in the opposite hemifield
of the target stimuli, whose color was systematically sampled away from the attended red color.
The authors found that the FBA first exhibited a coarse selection profile of the attended red color
(205 ~ 275 ms) in anterior ventral extrastriate areas (areas anterior to VO and lateral to PHC).
Following this initial coarse selection (after ~100 ms), there was a suppression of colors near the
attended red color, which suggest the emergence of surround suppression. In addition, source

localization analysis revealed that this refinement of attentional profile occurred in more
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posterior retinotopic visual areas (VO-1/hV4). Taken together, these findings support a role of
top-down modulation in FBA’s surround suppression.

At a larger scale, recent work further suggests that the frontoparietal network (FPN) is
ultimately responsible for the top-down control during feature-based attention (for reviews, see
Scolari, Seidl-Rathkopf, & Kastner, 2015, Liu et al., 2019). For example, a recent study showed
that FPN population activity is correlated with behavioral performance in a feature-based
attention task and disrupting this network (e.g., with transcranial magnetic stimulation, TMS)
impaired behavioral performance, hence suggesting the causal role of FPN in determining
feature-based attentional modulation (Jigo, Gong, & Liu, 2018). In sum, current evidence
suggests that top-down feedback is necessary in eliciting the suppressive surround in both space-
based (Boehler et al., 2009, 2011) and feature-based attention (Bartsch et al., 2017). Given the
critical role of frontoparietal network in attentional control, it is possible that the FPN also
operates as the source region that generates surround suppression. For example, it may either
change the gain of visual cortical neurons or shift their tuning. Therefore, future studies may
further investigate the relationship between FPN and the non-monotonic surround suppression

modulation of FBA.

A Priori Modeling Framework for Future Empirical Studies
So far, we have discussed that the current approach can be suitable for unifying neural
mechanisms of surround suppression across different levels of measurements. To further
examine whether our simulated results represent a robust effect between different neuronal
mechanisms, we simulated under a wide range of parameter combinations including tuning width
and noise level. Importantly, to provide an equal footing for comparing the different neuronal

mechanisms, we used the same neutral dataset to train different models but test the model on
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attentional data generated by different neuronal mechanisms. Therefore, the only difference
between attentional conditions is the underlying neuronal mechanisms. Such an analytic scheme
provides an unbiased way to distinguish different mechanisms without introducing spurious
results due to overlap between training and testing data (Sprague, Boynton, & Serences, 2019).
Under the current modeling framework, we established a linking hypothesis between candidate
attentional modulations at the neuronal level and their manifestation at the fMRI voxel level.

Bridging neural mechanisms measured at different levels is a nontrivial endeavor. For
example, it is worth noting that the repulsion effect at the population level is in the opposite
direction of the neuronal shift, which was toward the attended feature. This observation suggests
a disconnect between single neurons’ behavior and their collective behavior at the population
level, which is not unique to the repulsion effect. For instance, spatial attention has been found to
modulate the neuronal responses to contrast. While single-unit studies typically found a contrast
gain or a response gain modulation depending on the relative size of attentional field and
stimulus (Reynolds & Heeger, 2009), neuroimaging studies more often report an additive
improvement (e.g., vertical shift) in the contrast response function (Buracas and Boynton, 2007;
Li et al., 2008; Murray, 2008; Pestilli et al., 2011). Simulation further showed that such finding
can be well explained by the normalization model assuming different balance between the
attentional field and stimulus size encountered by a neuronal population, which resembles a
combination of contrast gain and response gain modulation across the entire population (Hara et
al., 2014). Therefore, a forward simulation combined with appropriate decoding method is
necessary to relate neuronal level and population level phenomena.

In addition, it is recently suggested that directly inferring the underlying neural

mechanisms using the inverted encoding model may be inappropriate as the signal-to-noise ratio
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of the fitted model can also change the property of the reconstructed channels (Liu et al., 2018).
When there is a limited number of candidate mechanisms, a forward simulation approach like
ours may provide a grounded solution to this problem by building a direct link between the
neuronal mechanism and its population pattern. When the simulated population response showed
qualitative difference as the current results demonstrate, one may use the simulation as a priori
prediction for guiding empirical work and interpreting the findings. Admittedly, there may not be
a simple solution to unequivocally assay the neural mechanism across different level of
measurements. However, for early visual processing that are well studied and can be reasonably
constrained with physiological knowledge, the encoding/decoding approach may help
researchers to better understand the model behavior after inverting the encoding model and to
avoid misinterpreting the changes in reconstructed channels by conducting simulation under
different parameter combinations. Taken together, the current computational modeling and
simulation may also serve as a general framework and reference point for interpreting empirical
findings in future studies on the neural mechanism of FBA.
Comparison Between the Multivariate Methods

The encoding model approach has been widely employed to generate a functional
description of a brain area and make quantitative prediction of voxel response. However,
inverting the encoding model only leads to reconstruction of initial model assumption,
stimulating debates in whether reconstructed channel response can represent the population
response (Gardner & Liu, 2019, also see Sprague et al., 2019). The problem at its core is that the
inverting approach only reconstructed the intermediate step (Gardner & Liu, 2019), which is
different from previous applications that further perform stimulus identification (Kay et al.,

2008) or reconstruction (Brouwer & Heeger, 2009). It is suggested that the Bayesian technique
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developed by van Bergen and colleagues (van Bergen et al., 2015) could be more suitable to
explore underlying neural mechanisms as it aims to recover information on stimulus instead of
initial assumption of the encoding model (Liu et la., 2019; Gardner & Liu, 2019).

Therefore, we compared the standard inverted encoding model with the Bayesian
decoding technique that further transforms the reconstructed channel response function into the
probability distribution of the stimulus given the voxel response patterns. As reviewed in Chapter
2, IEM method has been fruitfully used to characterize neural mechanisms of higher order
cognitive function at sub-voxel level, including perceptual distortion effect (e.g., shift of
reconstructed population response profile) caused by categorical learning (Ester et al., 2016).
The Bayesian method produces a full probability distribution of all the possible stimuli given a
particular neural response, which in principle contains stimulus information rather than merely
producing a point estimation of the most likely stimulus. Indeed, our simulation demonstrated
that the Bayesian technique was also suitable for exploring the underlying mechanisms of
complex cognitive functions, such as differentiating the shift vs. gain mechanisms in FBA.
Moreover, for a benchmark stimulus classification task, the Bayesian method provides more
reliable results when the channel basis function was varied (Fig. 6 - 8). In fact, the standard IEM
method only performed to a similar level as the Bayesian method when there was a match
between the channel basis function and neural tuning curve (i.e., similar width). Given that the
neural tuning width is variable in the human brain, it may impose a greater challenge for the
standard IEM than the Bayesian method.

Another important property of the Bayesian method is the explicit modeling of the noise
structure among voxels, which are inherently correlated. Voxel-wise correlation, likely a result

of neuronal correlations (Averbeck, Latham, & Pouget, 2006; Cohen & Kohn, 2011; Kohn,
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Coen-Cagli, Kanitscheider, & Pouget, 2016), may have a detrimental effect on the accuracy of
neural representation of stimulus, while only a handful of studies have recently begun to
characterize its impact on the population activity at the fMRI BOLD level (van Bergen et al.,
2015; van Bergen & Jehee, 2018). In the benchmark classification task, we systematically varied
the covariance among voxels and found that the Bayesian method outperforms the standard
inverted encoding method. Such advantage of the Bayesian method is likely due to the fact that it
attempts to capture the correlation structure of the noise, while the standard inverted encoding
method does not explicitly model the structure of the noise. Indeed, it assumes all the voxels are
independent. Our results thus imply that when noise correlation is not extremely high or the
correlation structure changes among experimental conditions, the Bayesian method produces
superior results than the inverted encoding method.
Conclusions

While the feature-similarity gain model remains one of the most influential models of
attention, recent studies have revealed non-monotonic effect in behavior that it cannot account
for. At a coarse level, the feature-similarity gain predicts a suppression for dissimilar features,
which is consistent with behavioral, neural imaging and single-unit studies. However, on a finer
scale, it fails to explain how FBA exclude similar but different distractors to an attended feature.
In recent years, an increasing number of studies showed that FBA can elicit a non-monotonic
surround suppression, which enhances the signal-to-noise ratio in the vicinity of an attended
feature. In fact, both the surround suppression and the feature-similarity gain modulation may be
at work but on different similarity scale to enhance the most relevant aspect of the sensory input

at the expense of unattended information.
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The first aim of the current work was to investigate candidate neural mechanisms
underlying the non-monotonic profile of FBA through simulation and computational modeling.
The attentional template stored in working memory may exert a top-down modulation in eliciting
the suppressive zone. One possibility is that the top-down feedback signal can shift the tuning
preference of sensory neurons toward the attended feature to further enhance target
representation (i.e., matched filter). Alternatively, top-down feedback may operate via a
multiplicative gain mechanism without changing other properties of neuronal tuning.
Interestingly, previous studies suggested different linking hypotheses between the candidate
neural mechanisms and perceptual differences at the appearance level. Therefore, one interesting
direction for future studies is to further test how the surround suppression may affect the
perceptual appearance of stimulus in behavioral studies (e.g., contrast change or distortion in
feature space).

Our simulation demonstrated that the candidate neural mechanisms can be distinguished
at the fMRI voxel level using non-invasive neuroimaging method. This is made possible with the
most recent developments in neural decoding technique in computational neuroimaging — a
inverted encoding model technique that reconstructs population-level response profile and a
Bayesian technique that further transform the population-level response into probability
distribution in the feature space. Both methods decoded signature patterns associated with
different candidate neural mechanisms. Therefore, it is possible to use the findings in the current
simulation as a priori predictions for future studies and further examine the candidate
mechanisms of surround suppression in the human brain.

Furthermore, our simulation work may provide a modeling framework for empirical

studies using non-invasive methods like fMRI. The encoding/decoding approach in the current
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simulation work can help bridge the gap in neural mechanisms across different levels of
measurements, which provides a solution to the reverse-inference issue often found in model-
based analysis. Specifically, one can implement the neural mechanism in a forward simulation,
and then decode it at a different level (e.g., voxel level). In this way, our current work should
contribute to the general effort in better understanding the underlying neural mechanisms of
cognitive functions.

Lastly, the current work further revealed advantages of the Bayesian technique over the
IEM method in the presence of correlated voxel noise. First, the Bayesian method captures the
correlated noise structure, while the IEM does not. This is important given that neural noises are
intrinsically correlated, which can greatly impact neural representations. Second, the Bayesian
method aims to reconstruct stimulus information (i.e., probability distribution), while the IEM
aims to recover model assumption. As our results suggested, the Bayesian method provides more
accurate estimation of stimulus and is less influenced by initial model assumptions (e.g., channel
basis function). Therefore, these new findings may provide further guidance for future empirical

studies when considering different decoding methods.

Table 1. List of variables in the model simulation

Parameter ’ Description

von Mises function (neuronal tuning curve)

S Stimulus orientation in degrees

f:(s) Orientation tuning curve of t-th neuronal population

L Tuning preference of t-th neuronal population

K Concentration parameter controlling neuronal tuning width

ab Amplitude and baseline for circular Gaussian (von Mises) function

Attentional modulation at the neuronal level

Hatt Attended orientation stimulus (90°)

G, Gain modulation for t-th neuronal population

A1, wi, A2, wa, L Parameters controlling the overall shape of Difference of Gaussian
function, which simulates the non-monotonic gain modulation
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Table 1 (Cont’d)

a, f Parameters controlling the linear feature-similarity gain modulation
SSrange Surround suppression range (+45°)

fMRI Voxel response

Vi(s) i-th voxel’s tuning curve

pymevron Linear weights combining neuronal response into voxel response

e Simulated voxel noise draw from a multivariate distribution

Voxel-wise noise correlation

P Covariance matrix of simulated voxel noise
T Standard deviation of voxel response
A Proportion of voxel standard deviation relative to mean voxel response

tuni b
Runmg, R

Tuning-dependent and tuning-independent noise correlation among
voxels

p

Proportion of R™""¢ in the overall correlation among voxels

7

Parameter scaling the maximum correlation strength

Decoding (IEM & Bayesian method)

Btrain, Brest Training data set of voxel responses and testing data set of voxel
responses

w Estimated channel weights using training data set using standard IEM

Cirain Predicted channel response for training data set

Q Estimated covariance matrix from training data set using Bayesian
method

Crest Reconstructed channel response function using test data set using

standard [EM
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Figure 9. Full results for reconstructed CRF (Channel basis function: 25°). Color convention is the
same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. Within each panel,
CRF was plotted at each individual offset (attentional condition: solid, neutral condition: dashed). Panels
are shown on a 9 by 8 grid. Rows represents different neuronal tuning width parameters (25°, 30°, 35°,
40°, 45°, 50°, 55°, 60°, 65°), and columns represents different voxel variances (4: 2.5%, 5%, 10%, 15%,
20%, 25%, 30%, & 35%). See Method section for details.
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Figure 10. Full results for posterior probability distribution (Channel basis function: 25°). Color
convention is the same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism.
Within each panel, posterior probability was plotted at each individual offset (attentional condition: solid,
neutral condition: dashed). Panels are organized on a 9 by 8 grid. Rows represents different neuronal
tuning width parameters and columns represents different voxel variances.
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Figure 11. Full results for orientation shift (Channel basis function: 25°). (a) full results for shift
mechanism. (b) full results for gain mechanism. Panels are plotted on a 6 by 8 grid. Rows represents
different neuronal tuning width parameters and columns represents different voxel variances. Within each
panel, orientation shift was plotted for each offset condition. Figure convention is same as in Fig. 5a &
5b. The amount of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von
Mises function) from the actual stimulus orientation after fitting the CRF (black) and posterior probability

distribution (red).
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Figure 12. Full results for normalized width (Channel basis function: 25°). (a) full results for shift

mechanism. (b) full results for gain mechanism. Figure convention is same as Fig. 5¢c & 5d. Rows

represents different neuronal tuning width parameters and columns represents different voxel variances.
Within each panel, estimated width was plotted for each offset condition after fitting CRF (black) and
posterior probability (red). For each combination of parameters, estimated width was normalized relative
to maximum value of the 8 offset values.
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Figure 13. Full results for reconstructed CRF (Channel basis function: 45°). Color convention is the
same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. Within each panel,
CRF was plotted at each individual offset (attentional condition: solid, neutral condition: dashed). Rows
represents different neuronal tuning width parameters (25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°), and
columns represents different voxel variances (4: 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, & 35%). See
Method section for details.
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Figure 15. Full results for orientation shift (Channel basis function: 45°). (a) full results for shift
mechanism. (b) full results for gain mechanism. Panels are plotted on a 6 by 8 grid. Rows represents
different neuronal tuning width parameters and columns represents different voxel variances. Within each
panel, orientation shift was plotted for each offset condition. Figure convention is same as in Fig. 5a &
5b. The amount of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von
Mises function) from the actual stimulus orientation after fitting the CRF (black) and posterior probability

distribution (red).
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Figure 16. Full results for normalized width (Channel basis function: 45°). (a) full results for shift
mechanism. (b) full results for gain mechanism. Figure convention is same as Fig. 5¢ & 5d. Rows
represents different neuronal tuning width parameters and columns represents different voxel variances.
Within each panel, estimated width was plotted for each offset condition after fitting CRF (black) and
posterior probability (red). For each combination of parameters, estimated width was normalized relative
to maximum value of the 8 offset values.

86



o

a

B 1

| R[N N PPN e o

B e,
£% o | ALK ol
5 90 45 90 -45 0 45 20 90 45 [ 45 90 4

0 45 9%
Cue-target offset (deg)

0

90 45 0 45 90 45 0 45 90 90 -45 0 45 90 90 45 0 45 90 90 45

BT L K z
90 45 o 45 90 90 45 [ 4; 20 90 45 [ 45 20 90 45 0 45 90 90 45

1seoavag

05|"

[

90 45 0 45 90
1

05

SSRGS

90 45 0 45 9%

N - 1 -~
L N T NN N N (O 23 X e
ovs‘?('?‘\ ik? 05" 05 0.5 A 0.5/
oAl L 0 0 0
90 -45 0 45 90 90 45 0 45 90 9 45 0 45 9% 90 45 0 45 90 90 45 0 45 90
1 SXA IS 1 o LAY
05 / 0s
0 0
0 R
1 L % - 1 P N 1 P N
3 A e o A 3 AN
05 05 \ 05|* / 05|
) \ ol AVA - L A - )
90 45 0 45 90 9 45 0 45 9 90 45 O 45 9 90 45 O 45 9 90 45 O 45 9 90 45 O 45 9 90 45 0 45 90 90 45

Figure 17. Full results for reconstructed CRF (Channel basis function: 65°). Color convention is the
same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. Within each panel,
CRF was plotted at each individual offset (attentional condition: solid, neutral condition: dashed). Rows
represents different neuronal tuning width parameters (25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°), and
columns represents different voxel variances (4: 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, & 35%). See
Method section for details.
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Figure 18. Full results for posterior probability distribution (Channel basis function: 65°). Color
convention is the same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism.
Within each panel, posterior probability was plotted at each individual offset (attentional condition: solid,
neutral condition: dashed). Rows represents different neuronal tuning width parameters and columns
represents different voxel variances.
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Figure 19. Full results for orientation shift (Channel basis function: 65°). (a) full results for shift
mechanism. (b) full results for gain mechanism. Panels are plotted on a 6 by 8 grid. Rows represents
different neuronal tuning width parameters and columns represents different voxel variances. Within each
panel, orientation shift was plotted for each offset condition. Figure convention is same as in Fig. 5a &
5b. The amount of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von
Mises function) from the actual stimulus orientation after fitting the CRF (black) and posterior probability
distribution (red).
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Figure 20. Full results for normalized width (Channel basis functlon 65°). (a) full results for shift
mechanism. (b) full results for gain mechanism. Figure convention is same as Fig. 5S¢ & 5d. Rows
represents different neuronal tuning width parameters and columns represents different voxel variances.
Within each panel, estimated width was plotted for each offset condition after fitting CRF (black) and
posterior probability (red). For each combination of parameters, estimated width was normalized relative
to maximum value of the 8 offset values.
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Figure 21. Full results for a pure feature-similarity gain modulation. (a) reconstructed CRF. (b)
Estimated posterior probability distributions. Within each panel, CRF/posterior probability was plotted at
each individual offset (attentional condition: solid, neutral condition: dashed). Rows represents different
neuronal tuning width parameters, and columns represents different voxel variances.
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