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ABSTRACT 

DECODING NEURAL MECHANISMS OF SURROUND SUPPRESSION IN FEATURE-
BASED ATTENTION 

 
By 

Wanghaoming Fang 

Feature-based attention (FBA) selectively enhances processing of an attended feature at 

the expense of unattended or task-irrelevant features. Recent studies showed that FBA modulates 

the perceptual space with both a monotonic profile (i.e., feature-similarity gain) and a non-

monotonic profile (i.e., surround suppression). A significant question arises regarding the neural 

mechanism of the non-monotonic surround suppression effect. Previous studies have suggested 

that two candidate neuronal mechanisms could underlie these attentional modulations: a shift of 

neuronal tuning preference toward the attended feature, or a multiplicative gain modulation that 

scales the overall responses without changing their tuning property. Yet the empirical evidence 

for these mechanisms is still lacking. In the current work, we explored how these neuronal 

mechanism manifest at the level of fMRI BOLD measurement using a simulation approach. 

Specifically, we employed an encoding/decoding approach by first simulating voxel responses 

from neuronal population assuming either mechanism and then applying a regression-based 

inverted encoding model (IEM) and a Bayesian method to decode population representations. 

We found that both methods captured the signature patterns associated with these different 

neuronal mechanisms. In our second aim, we systematically varied the correlation structure of 

voxel noise to further compare these different multivariate methods in a stimulus classification 

task. Our results showed a clear advantage of the Bayesian method over IEM, suggesting that the 

Bayesian method was superior for deciphering neural representation given the prevalent noise 

correlation and variable tuning width in the brain. In sum, our current simulation work may 
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provide a proof of concept for future empirical studies investigating cortical mechanism of FBA 

using non-invasive methods, as well as guidance for choosing suitable methods in these 

investigations.  
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CHAPTER 1 

INTRODUCTION 

 Our resource-limited visual system is constantly challenged by the information-rich 

visual environment. To overcome the limitation, visual selective attention filters out task-

irrelevant competing distractors and select only a small proportion of task-relevant information 

for prioritized processing. Such attentional selection can be based on location (i.e., ‘spatial 

attention’, Carrasco, 2011) and/or non-spatial features (i.e., ‘feature-based attention’, Carrasco, 

2011; Liu, 2019). The small subset of information that is selected by attention can enjoy benefit 

such as enhanced behavioral performances and neural responses for the attended location/feature. 

However, the fate of the unattended location/features remains less clear. If the attentional filter is 

perfect, one would predict a uniform exclusion of all task-irrelevant information except only the 

target information (e.g., a step function in a perceptual space). However, empirical studies have 

shown that it is seldomly the case, especially at the behavioral level (e.g., rarely chance-level 

performance for the unattended locations/features). Therefore, an important question is how 

selection of a location or a feature modulates the representation of other locations and features 

that falls outside of the attentional focus. 

Since the beginning of psychological research, how attention modulates our perception 

has attracted quite some interests of many pioneer psychologists, like Helmholtz, Fechner, and 

James. Recently studies have proposed different models to describe the profile of visual selective 

attention. In the spatial domain, early studies characterized the shape of the focus of attention 

with a popular metaphor – spotlight (Posner, 1980), which well captured the notion that attention 

selects the most relevant location for enhanced processing at the expense of unattended locations. 

Later, researchers proposed a gradient structure of the attentional “spotlight” (LaBerge, 1983). It 
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has been shown that performance monotonically fall off with the distance between the attended 

and unattended location – a spatial gradient of attentional modulation. Although spatial attention 

has dominated the studies for decades, location is the not the only stimulus property that we can 

attend to. The ability to allocate attention to the non-spatial feature(s) of a stimulus is called 

feature-based attention (FBA). Note, feature is specifically defined in the current work as values 

within a dimension (e.g., red, or green), although some researchers also use this term to describe 

a whole feature-dimension regardless of specific values (e.g., dimension-based attention, Found 

& Muller, 1996; Muller, Heller & Ziegler, 1995).  

Feature-based attention can facilitate target selection, even without knowing the exact 

location. For instance, knowing what color is worn can be helpful when searching for a friend in 

the Spartan Stadium. This example also illustrates one of the most fundamental properties of 

feature-based attention – selection of an attended feature spreads globally across the visual field. 

The global spread of FBA also forms the basis for the highly popular paradigm – visual search, 

in which participants typically search for a pre-defined target in an array of stimuli. However, in 

the antecedent case, FBA would not be always helpful especially if your friend wears the same 

green Spartan T-shirt with the crowd. Therefore, it seems likely that modulation of feature-based 

attention may also depends on target-distractor similarity. 

 Some researchers investigate the profile of FBA and suggested that it might also have a 

monotonic gradient. Based on the visual search paradigm, Duncan & Humphreys (1989) 

conducted one of the earliest studies on the profile of FBA, in which they found that search 

efficiency monotonically increased as a target became more different from the distractors, 

suggesting a monotonic profile. Converging evidence for a monotonic gradient of feature-based 

attention (FBA) also comes from neural recording studies. For example, early single-unit studies 
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on FBA have also proposed a monotonic profile in feature space (Fig. 1a), as epitomized by the 

feature-similarity gain model (Martinez-Trujillo & Treue, 2004; Treue and Martinez-Trujillo, 

1999). According to the feature-similarity gain model, the attentional modulation of neuronal 

activity is a monotonic function of feature similarity. Specifically, attentional enhancement 

gradually decreases and turns into suppression for features that are progressively more dissimilar 

to the attended feature. Although the feature-similarity gain model was originally proposed to 

account for attentional modulation at single-unit level (Martinez-Trujillo & Treue, 2004; Treue 

& Martinez-Trujillo, 1999), human behavioral and neural imaging studies have also obtained 

results that generally supports this monotonic profile (Saenz, Buracas & Boynton, 2002, 2003; 

Liu, Larsson & Carrasco, 2007; Ling, Liu & Carrasco, 2008; Zhang & Luck, 2009; Wang, Miller 

& Liu, 2015; Ho, et al., 2012; Paltoglou & Neri, 2012).  

However, there are several challenges for visual system that are difficult to resolve with 

only a monotonic selection profile. First, the gradient model predicts a reduction of interference 

only when the distractor is sufficiently far away (in physical or feature space) from the attended 

target. But the environment is highly variable that visual information rarely consists of only 

highly distinct features (e.g., red vs. green). Thus, it is unclear whether and how FBA facilitates 

selection of a target among similar but different distractors (e.g., finding a beige coffee mug 

among papers on the desk). Second, while previous studies seem to suggest a linking hypothesis 

between human behavior and the single-unit findings (i.e., the feature-similarity gain modulation 

in MT neurons), some methodological concerns, like coarse sampling in feature-space, suggest 

that the simple gradient model of attention may not be the full story. Third, and most critically, 

an increasing number of studies recently showed evidence that there exists a non-monotonic 

profile of attentional modulation in both spatial and feature domain, which cannot be readily 
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accommodated by the attentional gradient. For example, recent studies of spatial attention that 

sampled locations more finely have revealed a non-monotonic profile of attention comprised of 

“surround suppression”, such that nearby locations are more suppressed than further locations. 

This local suppression is thought to allow better distinction between closely located targets and 

distractors (Hopf et al., 2006; Boehler et al., 2009, 2011; Muller & Kleinschmidt, 2004; Mounts, 

2000a, 2000b; Tsotsos, 1995, 2011). In a similar vein, other researchers also reported a non-

monotonic attentional modulation when features near the attended feature were probed (Fang, 

Becker & Liu, 2019; Fang & Liu, 2019; Stormer & Alvarez, 2014; Tombu & Tsotsos, 2008). 

Consistent with its spatial equivalent, the “surround suppression” effect in FBA enhances signal-

to-noise ratio when the target and distractors have similar features (Fig. 1b). Moreover, the two 

recent studies have further shown that FBA consists of a hybrid profile of both FSG and 

surround suppression but operates at different similarity scale (Fig. 1c, Fang, Becker & Liu, 

2019; Fang & Liu, 2019). Taken together, converging evidence now suggests that there exists a 

non-monotonic attentional modulation in the vicinity of the attended location/feature. 

In the following sections, I first discuss previous evidence for the feature-similarity gain 

model and the need for a more systematic examination of FBA’s profile. Next, I discuss the 

evidence supporting surround suppression as a canonical mechanism underlying attentional 

modulation for a number of feature spaces (e.g., color, orientation, motion direction, and spatial 

frequency) and a more flexible hybrid profile consisting of both surround suppression and 

feature-similarity gain modulation to adaptively enhance signal-to-noise ratio in isolating a target 

feature. Lastly, I discuss candidate neural mechanisms of the surround suppression in FBA based 

on previous findings in both spatial and feature-based attention, arguing that these mechanisms 
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could be potentially distinguished with recent development of multivariate techniques through 

computational simulation and modeling.  

The Feature-similarity Gain Model 

Since the seminal study on attention by Treisman and colleagues (Treisman and Gelade, 

1980), human’s ability to search for a target based on its defining feature has attracted enormous 

attention from researchers. While one of the key research topics in early attention studies was the 

debate on pre-attentive and attentive processing, recent findings have argued against such a rigid 

dichotomy of this two-stage framework. Even the “pre-attentive” stage that was originally 

thought to be parallel and capacity-free is subject to FBA’s modulation, which was supported by 

neurophysiological studies that recorded directly from the neurons tuned to different features 

(Bichot et al., 2005). 

Initial Evidence for FSG 

Despite the prominence of the classic visual search paradigm, searching for a target also 

means finding its location which unavoidably involves a shift of spatial attention. This 

employment of both spatial and feature-based attention does not allow an isolation of a pure 

feature-based attentional modulation, which has led to claims that the role of FBA is only limited 

to guiding spatial attention to the target without directly modulating perception (Moore & Egeth, 

1998; Shih & Sperling, 1996). Thus, to isolate a pure effect of feature-based attention, a new 

paradigm was developed utilizing the global spread of FBA. For example, researchers typically 

focus participants’ spatial attention to one location and probe attentional modulation at a 

different (i.e., spatially ignored) site. Using this method, Martinez-Trujillo and Treue (2004) 

conducted experiments to directly measure FBA’s modulation at the neuronal level. They 

presented a dot motion stimulus to MT neurons that have receptive fields (RF) in one hemifield, 
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while the monkey subject attended to the identical stimulus in the opposite hemifield. Because of 

the global spread of feature-based attention, the neurons in the spatially unattended side were 

also modulated by attention to motion direction. The authors found that FBA sharpened the 

population response to an attended motion direction by suppressing neurons preferring the most 

dissimilar motion direction. But most importantly, the gain factor (i.e., the multiplicative ratio 

that was applied to change neuronal response by FBA) was found to be a linear function of the 

similarity between tuning preferences and the attended direction such that attending to a neuron’s 

preferred direction enhanced its response and attending to its non-preferred directions led to 

suppression of its response. Such findings eventually led to the proposal of the influential 

feature-similarity gain model (Martinez-Trujillo & Treue, 2004; Treue & Martinez-Trujillo, 

1999), predicting a monotonic profile of FBA’s modulation (Fig. 1a). Later studies further 

supported the feature-similarity gain model in multiple feature dimensions, based on 

psychophysical (Saenz, Buracas & Boynton, 2003; Ling, Liu & Carrasco, 2008; Wang, Miller & 

Liu, 2015; Ho, et al., 2012; Paltoglou & Neri, 2012), neuroimaging (Saenz, Buracas & Boynton, 

2002; Liu, Larsson & Carrasco, 2007), electrophysiological (Zhang & Luck, 2009), and single-

unit methods (reviewed by Maunsell & Treue, 2006). 

Despite the popularity of the feature-similarity gain model, there are a few concerns on 

the exact interpretation of Martinez-Trujillo and Treue’s original findings (Martinez-Trujillo & 

Treue, 2004). The main point is on their original design, in which the probe’s motion direction in 

the ignored visual hemifield was the same as the direction in hemifield that monkeys attended to. 

In other words, when the stimulus’s motion direction was systematically varied relative to a 

neuron’s tuning preference, the researchers simultaneously changed both the attended feature and 

the feature in the neuron’s RF. This raises two potential issues in using this design to support the 
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feature-similarity gain model. First, there is a concern regarding the interpretation of “gain”. This 

word originated from earlier spatial attention studies, which described the multiplicative 

modulation of spatial attention that does not change the feature tuning profile of single neurons 

(e.g., orientation tuning in McAdam & Maunsell, 1999). However, the covariation of the 

attended feature and the probe feature in Martinez-Trujillo & Treue’s experiments does not allow 

a full characterization of the neuronal tuning curve. Therefore, their original results may also be 

explained by other neuronal mechanisms that modifies feature selectivity of neurons (e.g., shift 

of tuning preference in David, et al., 2008). That being said, a better design would require 

measuring a full tuning curve each time when the monkey attends to a different motion direction, 

which is practically difficult to do. Second, Martinez-Trujillo and Treue’s original finding 

describes a sharpening in population response to the attended motion direction. Therefore, the 

original neuronal evidence for feature-similarity gain model should be limited to only inferring 

how FBA selects the attended feature, but not about how FBA modulates perceptual 

representation of the rest of the feature continuum.    

Other Evidence for the Feature-similarity Gain Model 

Human psychophysical and neural studies provided important complementary evidence 

for the feature-similarity gain model in the broader context, as these methods rely more on the 

responses of a population of neurons, or the entire visual system. For neural studies, researchers 

typically employed a split-display design that is similar to the previous one used by Martinez-

Trujillo and Treue – FBA’s modulation was measured in the opposite hemifield to where spatial 

attention was deployed. For example, Saenz and colleagues, measured visual areas’ activities 

when FBA was deployed to two feature dimensions – motion direction and color (Saenz, 

Buracas & Boynton, 2002). In the motion experiment, participants attended to one hemifield that 
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contains two overlapping fields of moving dots with opposite motion directions (e.g., upward vs. 

downward motion) and performed a speed discrimination task. Importantly, another single dot 

field (e.g., upward motion) was simultaneously presented in the ignored hemifield to provide 

neural measurement of attentional modulation. The results showed stronger responses across 

visual areas when the motion direction in the ignored dot field matched the attended direction 

than when it matched the unattended direction. Similar results were also obtained in color-based 

attention. Thus, such findings provided early support for the feature-similarity gain model in 

human visual attention.  

Further neural evidence supporting feature-similarity gain model employed a variety of 

paradigms and tests in other feature dimensions. For example, Liu, Larsson and Carrasco (2007) 

used adaptation to test orientation-selective modulation in visual cortex at an attended location, 

where both attended and unattended orientation were superimposed (Liu, Larsson & Carrasco, 

2007). The authors found that FBA selectively modulated the adaptation effect both psycho-

physically (i.e., measured as behavioral tilt aftereffect) and physiologically (i.e., measured as 

fMRI response adaptation) for the attended but not the unattended orientation even when both 

features were spatially superimposed. In a later study, Zhang & Luck obtained similar findings 

by recording event-related potentials (ERP) to color dots stimuli (Zhang & Luck 2009). 

Critically, color-based attention resolved competition between two superimposed color dot fields 

(e.g., red vs. green) by selectively enhancing feed-forward processing of an attended color (e.g. 

red) over an unattended color (e.g., green) as reflected in the P1 ERP wave. In another study, 

Serences and Boynton (2007) also tested the feature-selective modulation with superimposed 

orientation stimuli. They found that the decodability (using multivoxel pattern analysis, MVPA) 

for an attended orientation was higher than the unattended orientation in the same hemifield, 
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which is, surprisingly, also true at the mirrored location in the absence of direct sensory 

stimulation (i.e., blank location). Taken together, neurophysiological studies provided further 

evidence that the global feature-selective modulation is consistent with the feature-similarity 

gain model in the human brain (Saenz et al., 2002; Liu, Larsson & Carrasco, 2007; Serences & 

Boynton, 2007; Zhang & Luck, 2009). 

Psychophysical studies that measured the quality of attended feature also provided 

converging evidence for feature-similarity model. In psychophysics, the perceptual quality of 

unattended feature was typically evaluated by accuracy (i.e., proportion of correct responses) 

using a partially valid pre-cue. While neurophysiological studies typically presented a probe 

stimulus at a spatially ignored location to provide neural measurement of attentional modulation, 

behavioral studies control spatial attention by presenting all stimuli at the same location (e.g., 

center of screen), which further reduced the potential role of spatial attention. In an early study, 

Ling, Liu and Carrasco (2009) investigated how FBA modulates performance in a motion 

discrimination task when the attended motion direction was embedded in different level of noise 

(Ling, Liu & Carrasco, 2009). Critically, the author found enhancement from FBA even when 

the noise of motion was high - a behavioral effect that was consistent with the feature-similarity 

gain model’s prediction in sharpening of population response. However, Ling et al. (2009) only 

manipulated the motion noise but did not probe performance for unattended directions of motion. 

Hence their study did not provide direct measurement of the profile of feature-based attention, 

e.g., how attentional modulation varies as a function of the feature-similarity between attended 

and unattended features.    

Recent studies characterized a more complete functional profile of feature-based attention 

by systematically varying a target’s feature from the attended one. For example, Ho et al. (2012) 
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measured the perceptual consequences of feature-based attention to motion direction. They 

employed a partially valid direction pre-cue to manipulate feature-based attention and, critically, 

measured the FBA’s profile by systematically sampling the target’s motion direction away from 

the attended direction in the invalid condition. Although the results showed a non-monotonic 

profile with the worst performance at 90° instead of the maximum 180°, such a pattern may be 

explained by axis-tuned motion mechanisms, which would respond equally well to opposite 

moving directions (Albright, 1984; Conway & Livingstone, 2003; Livingstone & Conway, 

2003). Thus, their results were still interpreted as consistent with feature-similarity gain model. 

However, their finding may be due to a combined effect of spatial attention and feature-based 

attention as the task was to search for the most coherent motion dot field in an array of four 

motion stimuli. In another study, Wang, Miller and Liu (2015) also measured FBA’s profile in 

motion direction, with a better control for spatial attention. In their study, participants performed 

a two-interval-forced-choice (2-IFC) to detect a coherent motion stimulus (i.e., target) against a 

random motion stimulus (i.e., noise). The stimuli in the 2IFC task were always presented at the 

screen center such that spatial attention was fixed and remained constant across conditions. The 

results were similar to Ho et al. (2012)’s findings and, therefore was also consistent with the 

feature-similarity gain model. The authors also generalized their findings to other feature 

dimensions, including orientation and color, based on a similar behavioral paradigm. In sum, 

initial human psychophysical and neural studies provided converging evidence that FBA 

modulates perception as a monotonic function of feature similarity.  

Potential Issues with the Feature-Similarity Gain Model 

 Notwithstanding the support for the feature-similarity gain model discussed above, it 

should be noted that both neural and behavioral findings in human only assessed feature 
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processing on a coarse scale. A closer examination showed that the previous studies either tested 

only two orthogonal features (e.g., red vs. green, or upward vs. downward motion direction) or 

use a coarse sampling in feature space (Saenz, Buracas & Boynton, 2002, 2003; Liu, Larsson & 

Carrasco, 2007; Serences & Boynton, 2007; Zhang & Luck, 2009; Ho, et al., 2012; Paltoglou & 

Neri, 2012; Wang, Miller & Liu, 2015). Thus, how feature-based attention modulates the 

perceptual representation of other similar but different features is unknown. 

In addition to the lack of fine sampling in the feature space, another issue posed even 

more theoretical challenge to the efficiency of the feature-similarity gain model. The key 

signature of the FSG is the linear modulation dependent on the similarity to the attended feature, 

which turns enhancement into suppression as the feature become progressively more different 

from the attended one. While this model can predict a filtering of dissimilar distractor features, it 

does not seem to be helpful when encountering similar distractor features, which would actually 

benefit from attentional enhancement because they are similar to the attended feature. Therefore, 

in recent studies, researchers have turned their attention to investigate the mechanism that 

underlies attentional modulation in the vicinity of the attended feature.  

One line of studies investigated FBA’s role in searching a target feature among similar 

distractors (Navalpakkam and Itti, 2007; Scolari & Serences, 2009; Scolari & Serences, 2010; 

Scolari et al., 2012). For example, assuming there is a task that requires participants to detect a 

55° orientation target among 60° orientation distractors. According to the feature-similarity gain 

model, one can attend to the 55° orientation such that FBA would enhance the responses of 

neurons optimally tuned to the target orientation. However, this will also cause the same group 

of neurons responding more to the distractors (60°) and, therefore, would not increase the overall 

signal-to-noise ratio (SNR). To resolve this dilemma in FSG model, Navalpakkam and Itti 
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(2007) proposed an off-channel tuning mechanism such that FBA may be voluntarily deployed 

to neurons that are sub-optimally tuned to the target feature (e.g., neurons tuned to 50° in the 

previous example). By shifting attention away to a distant feature, the distractor would be less 

enhanced as it is more different from the attended “off” channel after shift. 

To test this idea, Navalpakkam and Itti instructed participants to search an orientation 

target (e.g., 55°) among similar and homogenous distractors (e.g., 60°). The authors found that 

the highest attentional gain was constantly biased and deployed toward the orientation (e.g., 50°) 

that was further away from the distractors than the target. Later studies also lend support that 

FBA can be deployed in the off-channel manner to enhance performances in a fine 

discrimination task (Scolari & Serences, 2009, 2010; Scolari et al., 2012). However, the off-

channel gain mechanism may only be facilitative when the target and distractors were linearly 

separable (D’Zmura, 1991), that is when distractors were sampled from identical side of the 

attended feature in a feature space. If there are distractors sampled from both sides of the 

attended feature in a feature space, e.g., 55° orientation embedded in 50° and 60° distractors, the 

off-channel mechanism may not be helpful, as shifting the attentional gain toward either side in 

the feature space will result in an enhancement of some distractors. In addition, the off-channel 

gain requires foreknowledge of both the target and distractors features (Scolari & Serences, 

2009, 2010; Scolari et al., 2012). Hence, this mechanism may only facilitate target selection 

under specific scenarios.   

A New Metaphor – the Mexican-hat of FBA 

Our visual environment rarely contains homogeneous distractors, or predictable distractor 

features. In fact, task-irrelevant features may be randomly scattered in a feature space and may 

also change from time to time (e.g., while driving, the views are constantly changing). Is there a 
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mechanism of FBA that helps us better adapt to the dynamic and variable visual environment? 

While feature-similarity gain predicts a suppression of dissimilar features at a coarse scale, some 

researchers also wonder if there could be any suppressive mechanism in the vicinity of the 

attended feature to inhibit processing of similar distractors. In the spatial domain, a number of 

studies have shown that spatial attention elicits a suppressive zone around the attended location 

to reduce interference from nearby locations (Hopf et al., 2006; Boehler et al., 2009, 2011; 

Muller & Kleinschmidt, 2004; Mounts, 2000a, 2000b; Tsotsos, 1995, 2011). Importantly, once 

outside the suppressive zone, behavioral performance or neural activity was not further 

suppressed – a rebound effect at further locations, which is in line with a non-monotonic 

“Mexican hat” profile that consists of an excitatory center and suppressive surround.  

Recent studies have also extended the investigation of such surround suppression to 

feature-based attention (Fig. 1b), including the color and orientation domain (Stormer & Alvarez, 

2014; Tombu & Tsotsos, 2008). For example, Stormer and Alvarez (2014) addressed whether 

color-based attention elicits surround suppression to the close neighbors of the attended color. In 

their study, each hemifield hosted a random motion dot field, in which half the dots were drawn 

in a target color with the other half drawn in a distractor color. Participants monitored the target 

dot fields on both sides and reported a brief coherent motion in one of the target dot fields. As 

one would expect, correct responses were highest when the two dot fields had the same attended 

color. But what is unexpected was a performance drop when the two attended colors were similar 

but different, which was then followed by a rebound effect when the two attended colors become 

more dissimilar. The suppression of similar colors is clearly against what feature-similarity 

model would predict. Hence, Stormer and Alvarez concluded that the non-monotonic changes of 
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performances matched the signature pattern of a Mexican-hat profile, therefore suggesting that 

FBA to colors can elicit a suppressive surround in the color space. 

Tombu and Tsotsos (2008) investigated the profile of FBA in the orientation domain. In 

their study, participants were asked to identify the jaggedness (e.g., straight or jagged) of a 

grating stimulus that was briefly presented. In addition, researchers also informed participants 

the most likely orientation of the grating stimulus at the start of a block. Notably, the surround 

suppression was evident in the results such that the worst performance occurred when the 

grating’s orientation was 45° offset from the attended orientation, which was followed by a 

rebound at 90° offset from the attended orientation. Such non-monotonic pattern of performance 

supported the surround suppression effect in attention to orientation.  

While the two studies have found initial evidence for a surround suppression effect in 

FBA, some methodological concerns potentially weakened their conclusions (Stormer & 

Alvarez, 2014; Tombu & Tsotsos, 2008). First, and critically, there is a lack of baseline condition 

in these previous studies. A neutral condition is critical to accurately characterize the shape of 

the attentional profile and rule out alternative interpretations. For example, it is possible that the 

non-monotonic changes in Stormer & Alvarez’s study is caused by perceptual interference when 

monitoring two colors of different offsets, which could be measured in a neutral condition. To 

rule out such a confound, the neutral performance should have been subtracted out from the 

performance under attention condition. In addition, baseline performance is vital in assessing the 

benefit and cost of attention. Without a proper baseline, it is unclear whether the performance 

drop reflects a true suppression effect or less enhancement within the surround of the attended 

feature (Stormer & Alvarez, 2014; Tombu & Tsotsos, 2008).  
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Second, the task in the previous studies may be sub-optimal for measuring the profile of 

FBA’s modulation. In Stormer and Alvarez’s study, participants were required to attend to two 

colors simultaneously. Recent findings have suggested that there is a limited capability of 

splitting attention to multiple colors (Liu & Jigo, 2017). Therefore, it is possible that the non-

monotonic pattern may be associated with the need to hold and attend to two colors 

simultaneously. Alternatively, working memory is thought to maintain an attentional template 

(Desimone & Duncan, 1985; Wolfe, 1994). Therefore, the non-monotonic profile may be due to 

interference between the templates maintained in working memory instead of a perceptual 

modulation of FBA to visual input. In addition, Tombu and Tsotsos (2008) employed a task of 

judging the jaggedness of gratings, which in principle does not require attention to orientation. It 

is also worth noting that the non-monotonic profile in their study only occurred when the target 

was jagged but not when the target was straight—a puzzling result that did not have obvious 

explanations. 

Finally, color perception is strongly categorical, which is suggested to play a role in 

attention. For example, linear non-separability between target and distractors usually lead to 

inefficient search for a target (Bauer et al., 1998; D’Zmura, 1991). However, recent studies 

showed that such search can also be much improved when targets and distractors are from 

different categories than if they come from the same category even when the perceptual 

similarity between targets and distractors are equated (Daoutis et al., 2006; Hodsoll & 

Humphreys, 2005). However, the previous study by Stormer and Alvarez used a random 

selection of colors in a color space. Thus, it is unclear based on their findings how color 

categories might impact the attentional profile. 
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Taken together, previous studies provided suggestive but inconclusive evidence that there 

is a surround suppression effect in feature-based attention. A recent study further tested the 

attentional profile for color-based attention using a color detection paradigm (Fang, Becker & 

Liu, 2019). In their study, participants were instructed to detect a coherent color signal against a 

random noise in a 2-IFC task, in which stimuli were presented at the screen center. Building on 

the previous studies, the authors made several improvements to better characterize the profile of 

FBA to colors. First and most importantly, the authors included a neutral condition which 

provided a proper baseline to establish a genuine suppression effect and better quantify the 

attentional modulation. Second, participants were instructed to attend a single color, which 

excluded any potential interference from holding multiple attentional templates (Stormer and 

Alvarez, 2014). Thirdly, to further reduce task complexity, the signal strength was directly 

manipulated through color coherence as an analogy to the classic random dot motion 

kinematogram (Newsome & Pare, 1988). Moreover, they also used a post-cue to reduce response 

uncertainty, so that performance should reflect FBA’s modulation on perception (Pestilli & 

Carrasco, 2005). As the results showed, the authors found a surround suppression effect that is 

consistent with previous findings. Interestingly, the authors further revealed that the suppressive 

surround in color domain also coincided with the color category boundary, which has not been 

considered in the previous studies (Fig. 1c, left panel). Thus, the surround suppression effect in 

color-based attention can also be interpreted as a categorical sharpening effect.  

The above study naturally raised new questions of whether surround suppression is a 

specific effect associated with categorical feature like color, or it could also be generalized to 

other features. In another study, Fang and Liu (2019) conducted a more systematically 

examination on surround suppression for a series of other important dimensions in early vision 
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(e.g., orientation, motion direction, & spatial frequency), using a similar 2-IFC task in which 

participants detect a coherent target feature. They employed a feature cue to direct FBA or an 

uninformative cue to establish baseline performance. The author found that FBA elicited 

surround suppression in all three feature dimensions, which suggests that non-monotonic 

modulation could be a canonical operation of FBA (Fig. 1c). Taken together, these 

psychophysical studies demonstrate that when the visual attention system faces an unpredictable 

and dynamic visual environment, it elicits a suppressive surround in feature spaces to enhance 

the signal-to-noise ratio when the target and distractors have similar features.  

An Integrated Model – Flexible Modulation on Different Scales 

While such a non-monotonic profile of FBA is in a direct contradiction to the monotonic 

prediction of the classic feature-similarity gain model, recent studies provided abundant evidence 

for a surround suppression mechanism that can better isolate a target from similar but different 

distractors (Fang, Becker & Liu, 2019; Fang & Liu, 2019; Stormer & Alvarez, 2014; Tombu & 

Tsotsos, 2008). However, if attentional modulation only follows a pure Mexican-hat function, 

the modulation would continue to rebound to a baseline level for very dissimilar features 

(Fig.1b). That prediction is inconsistent with previous studies favoring the feature-similarity gain 

model, which clearly showed a suppression for very dissimilar features. Therefore, the two 

models appear to be contradictory, and one might wonder which one is correct.  

In fact, both models may be correct, but operating on different similarity scale (Fig. 1d). 

Feature-similarity gain model was mostly supported in studies testing large feature offsets (e.g., 

red vs. green, upward vs. downward motion), while surround suppression was found in studies 

using a narrow range near the attended feature. Thus, the final result of FBA’s modulation can be 

regarded as a combination of both feature-similarity gain and surround suppression (Fig. 1d). 
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This view is further supported by the recent studies (Fig. 1c, Fang, Becker & Liu, 2019; Fang & 

Liu, 2019). By systematically sampling through feature spaces from a small to large offset, these 

researchers have consistently revealed a hybrid profile consisting of both surround suppression 

and feature-similarity gain modulation in dimensions including color, orientation, and motion 

direction (Fig. 1c). Such a hybrid profile reconciles the findings that feature-similarity gain may 

be optimal for filtering dissimilar features on a coarse scale, whereas surround suppression can 

facilitate isolating target from other similar feature on a fine scale (Fig. 1d). Therefore, both 

feature-similarity gain and surround suppression may be complimentary to each other to better 

select the desired target information in a complex scene.  

Summary 

While the feature-similarity gain model remains one of the most prominent models in the 

attention literature, recent studies have revealed non-monotonic effect that it cannot account for. 

At a coarse level, the feature-similarity gain predicts a suppression for dissimilar features, which 

is consistent with behavioral, neuroimaging and single-unit studies. However, on a finer scale, it 

fails to explain how FBA exclude similar but different distractors to an attended feature. To 

achieve a more flexible selection of the most task-relevant feature, it is necessary for FBA to 

efficiently reduce both similar and distinctive distractors in the dynamic environment. A new 

pattern of attentional modulation, the surround suppression, was discovered such that there is a 

suppressive zone that enhances the signal-to-noise ratio in the vicinity of the attended feature. 

Moreover, the classic feature-similarity gain model can be integrated with the surround 

suppression modulation to enhance the most relevant aspect of the sensory input at the expense 

of unattended information on both a fine and a coarse similarity scale.    
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Figure 1. Illustrations for different attentional profiles of FBA. (a) example for a monotonic feature-
similarity gain profile in orientation space. (b) example for a pure surround suppression profile in 
orientation space. (c) empirical behavioral evidence for a hybrid profile in attention to color (Fang, 
Becker, & Liu, 2019), orientation and motion direction (Fang & Liu, 2019). (d) example for a hybrid 
profile of FBA (bottom panel) to orientation. Two candidate neural mechanisms underlying surround 
suppression (top panel), a shift mechanism or a gain mechanism.   
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CHAPTER 2 

NEURAL MECHANISMS OF ATTENTIONAL SURROUND SUPPRESSION 

As reviewed in Chapter 1, studies in recent years have shown that FBA can enhance an 

attended feature at the expense of unattended ones. Yet the neural mechanisms of attentional 

suppression in feature domain remains unclear, especially in the vicinity of the attended feature. 

Therefore, the current work focuses on the candidate neural mechanisms underlying the surround 

suppression that are informed by neurophysiological studies. Importantly, our first aim in the 

current work is to investigate how recent multivariate methods in computational neuroimaging 

(e.g., fMRI) may be utilized to distinguish between the candidate neural mechanisms through 

simulation and computational modeling. In addition, neuronal noise is inherently correlated, 

which also manifest at the neural population/voxel level. Therefore, the second goal of the 

current work is to systematically compare the two leading multivariate methods in the presence 

of correlated neural noise.  

Candidate Neuronal Mechanisms of Surround Suppression 

While the attentional surround suppression enhances the signal-to-noise at the vicinity of 

the attended feature, an important question concerns the underlying neural mechanism of the 

non-monotonic modulation within the suppressive surround. The psychophysical studies above 

excluded post-perceptual account with a postcue paradigm, which indicated that the surround 

suppression reduced perceptual sensitivity to the distractors (Fang & Liu, 2019; Fang, Becker, & 

Liu, 2019). In agreement with the behavioral findings, two electrophysiological studies in 

humans showed reduced neural responses to features within the surround of the attended feature 

(Bartsch et al., 2017; Stormer & Alvarez, 2014). Using a frequency-tagging technique, Stormer 

and Alvarez (2014) found a significantly reduced occipital SSVEP (i.e., steady-state visual 
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evoked potentials) for colors within the suppressive surround of the attended color. In addition, 

Bartsch et al., showed with magnetoencephalogram (MEG) that surround suppression emerged 

in posterior retinotopic visual areas (e.g., VO-1/hV4) within 305 ~ 375 ms after attending to a 

color. While these results are generally consistent with behavioral effects reviewed above, 

EEG/MEG measures gross, aggregated signals across large neuronal populations, thus cannot 

reveal the nature of neuronal level modulations. For example, does surround suppression reduce 

the overall strength of the stimulus representation, or does it distort the feature space? To further 

characterize the neural signature of the non-monotonic attentional modulation, we will consider 

here two prominent neuronal mechanisms underlying FBA (Fig. 1d, top panel): a shift of the 

tuning preference (i.e., “shift mechanism”) or a gain modulation of the tuning curve (i.e., “gain 

mechanism”), both of which can explain the behavioral surround suppression effect in FBA 

(Fang et al., 2019; Tsotsos, 2011).    

In a crowded scene, both target and distractors are more likely to fall within the same 

receptive field (RF) and compete for representation. In the spatial domain, one way that spatial 

attention biases neuronal responses toward the attended stimulus may be through changing the 

spatial profile of its RF – shifting toward and shrinking around the attended location (Moran & 

Duncan, 1985). Previous studies have indeed found that spatial attention shifted RF toward an 

attended location in multiple visual areas, including macaque medial temporal area (Anton-

Exrleben, Stephan & Treue, 2009; Womelsdorf et al. 2006, 2008), and V4 (Connor et al. 1997). 

In human visual cortex, a recent fMRI study showed that spatial attention attracted population 

receptive field (pRFs) toward an attended location (Klein, Harvey & Dumoulin, 2014). Similarly, 

recent evidence also suggested that FBA can elicit neuronal tuning shift toward an attended 

feature (e.g., Fig. 1d top panel, David et al., 2008; Ibos & Freedman, 2014).   
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Would similar neuronal shift mechanism underlie surround suppression in feature-based 

attention? Interestingly, recent studies have provided initial insights into such possibility using 

computational modeling to explore the potential connection between neuronal tuning shift and 

behavioral surround suppression in feature domain (Fang et al., 2019). Building on the single-

unit findings on neuronal tuning shift, Fang, Becker, & Liu (2019) have implemented a 

computational model with population neural coding and Bayesian read-out rule (Pouget, Dayan 

& Zemel, 2000, 2003; Ma, Beck, Latham, & Pouget, 2006). Under known physiological 

constraints, the simple model in their study consisted of a bank of neurons spanning a feature 

space (e.g., color). The authors simulated their behavioral experiment (i.e., 2IFC) under both 

attention and neutral condition to measure the profile of feature-based attention’s modulation. 

Interestingly, the neuronal tuning shift successfully led to surround suppression in behavior, 

which suggested a hitherto unknown relationship between the previous physiological findings 

and the Mexican-hat profile of behavior. At an intuitive level, the tuning shift that occurred 

within the vicinity of an attended feature created a vacuum, which weakened representation of 

features in the suppressive surround. Therefore, it is possible that FBA can elicit a suppressive 

zone by shifting nearby neurons’ tuning preference toward the attended feature. 

While changes in the neuronal tuning profile might underlie the attentional surround 

suppression, it is not the only possible account. Visual attention can also cause a response gain 

change, when attention is directed to a location (McAdam & Maunsell, 1999), or feature (Treue 

& Martinez-Trujillo, 1999). At the neuronal level, the response gain modulation can be 

implemented as a multiplicative factor applied to the tuning curve without changing its tuning 

preference or width (Fig. 1d top panel). At the behavioral level, such gain modulation enhances 

perceptual sensitivity of an attended feature, which is analogous to an upscaling of the local 
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contrast of the attended feature (Herrmann et al., 2012). For example, Herrmann and colleagues 

found that perceptual sensitivity of attended orientations was higher than the unattended 

condition across all contrast levels (e.g. from 5% to 85%), which was consistent with a 

multiplicative response gain modulation at the neuronal level. In the current work, we 

hypothesized that a similar gain mechanism might also underlie the surround suppression such 

that the multiplicative gain modulation is a non-monotonic function of the similarity between 

tuning preference and attended feature on a fine similarity scale.  

In the absence of direct physiological data, computational models can provide useful 

insights on this non-monotonic gain mechanism. For example, the selective tuning model may 

explain the surround suppression effect in space-based and, potentially, in FBA (Tsotsos, 1995, 

2011). The selective tuning (ST) model is a multi-layered computational model that is initially 

proposed to account for visual processing in the spatial domain (e.g., crowding, spatial 

resolution). The model has a similar hierarchical structure (e.g., larger RF size in higher level) as 

the human visual system. In ST model, attentional surround suppression can be elicited through a 

top-down winner-take-all mechanism, which initiates feedback modulation to inhibit units less 

tuned to the attended location in earlier layers. This top-down influence can produce spatial 

surround suppression in early units and is able to account for findings in the spatial domain 

(Hopf et al., 2006; Boehler et al., 2009, 2011; Muller & Kleinschmidt, 2004; Mounts, 2000a; 

2000b). In feature domain, the selective tuning also assumed that the feedback modulation on 

neuronal tuning curves could be a gain modulation that downscales neural response within the 

suppressive surround in feature space (Tombu & Tsotsos, 2008; Tsotsos, 2011; Bartsch et al., 

2017).   
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Neural Decoding at the Population Level 

In short, surround suppression in FBA could arise from two candidate neuronal 

mechanisms – a tuning shift mechanism or a gain mechanism (Fig. 1d), both of which can 

explain the non-monotonic modulation of FBA (Fang et al., 2019; Tsotsos, 2011). A significant 

question is how to distinguish between these candidate neuronal mechanisms using non-invasive 

neural measures from the human brain. As a proof of concept, we believe that it is necessary to 

establish a link between the neuronal mechanisms and their manifestation in aggregated neural 

measures from human cortex (e.g., at voxel level using fMRI).  

Although single-unit studies provide invaluable knowledge of attentional mechanism, it 

is also unlikely that a few single neurons determine the behavioral response in any task. 

Information conveyed by neuronal populations likely bear more intimate relationship to 

representation of stimulus and ultimately behavior (Pouget, Dayan & Zemel, 2000, 2003; Ma, 

Beck, Latham, & Pouget, 2006). This population-based view has gained increasing recognition 

in recent years in system and cognitive neuroscience (Churchland et al., 2012; Mante et al., 

2013; Sprague, Saproo, & Serences, 2015; Fusi et al., 2016). A challenge is that currently, we do 

not know how or whether the two neuronal mechanisms could be distinguished at the fMRI 

voxel level. Therefore, our first goal is to fill this gap by decoding and differentiating 

manifestations of the neuronal mechanisms at the voxel level through simulation and 

computational modeling. Because of the limitation in spatial resolution, classic univariate 

analysis in fMRI imaging only captures the overall responses across neuronal populations, 

therefore obscuring the underlying multivariate pattern information. Early studies showed that a 

linear pattern classifier (i.e., multi-voxel pattern analysis, MVPA) can identify the presence of 

certain stimulus information by training and testing a linear classifier on the spatial pattern of 
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voxel responses within a region of interest (Kamitani & Tong, 2005). One might wonder whether 

it is possible to go beyond the voxel level and extract sub-voxel information to distinguish 

between different neuronal mechanisms. A recent multivariate technique in computational 

neuroimaging may circumvent such limitation and decode information beyond the resolution of 

single voxel, which is therefore suitable for current study.  

To establish a direct link between the neuronal mechanisms and their modulation on 

population responses profile, we employed an encoding/decoding model approach in 

computational neuroimaging (Naselaris et al., 2011; Brouwer & Heeger, 2009). Such an 

approach has been used by a variety of studies from low-level perceptual phenomenon (e.g., 

cross-orientation suppression, Brouwer & Heeger, 2011) to higher-level cognition (e.g., working 

memory, Ester et al., 2013, 2015). A voxel-based encoding model provides a functional 

description between stimulus input and voxel responses (Naselaris et al., 2011). It starts by 

encoding different stimulus (e.g., orientation) using hypothetical receptive fields or channels that 

are informed by physiological evidence. At the voxel level, the response of a single voxel can be 

modeled as an aggregation of different neuronal population or hypothetical channels. Therefore, 

it is possible to build a direct mapping through linearly weighted combination to link the 

encoder’s stimulus-evoked responses and voxel responses across neuronal populations. One can 

fit the encoding model to empirically observed voxel responses (e.g., training data) and 

analytically estimate the linear weights using linear regression method (i.e., least square 

estimation). For example, Brouwer and Heeger initially employed a channel-encoding model to 

examine the neural representation of a continuous color space in visual areas, in which the 

hypothetical channels resembled the known selectivity of color tuning curves (Brouwer & 

Heeger, 2009, 2013). While mean voxel responses in visual areas did not reliably differ for 
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different stimulus colors, Brouwer and Heeger (2009) were able to accurately reconstruct the 

representations for colors in different visual areas using the forward channel-encoding model, 

with a similar accuracy as more conventional pattern classification decoding method (Kamitani 

& Tong, 2005).  

After estimating the best-fit encoding model, inversion of the encoding model (i.e., 

inverted encoding model, IEM) permits one to reconstruct individual channel’s responses from a 

new set of voxel responses measured under different task conditions or cognitive states (e.g., 

attention). Importantly, the reconstructed channel responses through inversion produces tuned 

response profiles like population response profile, which may provide important insight into the 

mechanisms of a variety of cognitive task, including feature-based attention (Scolari et al., 2012; 

Saproo & Serences, 2014; Ester et al., 2016). For instance, Ester and colleagues (2016) used the 

inverted encoding model to investigate whether the frontoparietal regions contain continuous or 

categorical representation of attentional control signal for FBA to orientation. When participants 

attended to the orientation of gratings, the researchers found that reconstructed channel responses 

using voxels from frontoparietal regions showed a similar profile to those reconstructed from 

visual areas, suggesting a continuous representation of sensory information in attentional control 

regions. Moreover, the peak location of the reconstructed channel response profile may also 

reveal perceptual distortion in sensory regions caused by higher-level cognitive processes. In 

another study, Ester et al. (2020) investigated the neural basis of categorical learning by training 

participants to categorize orientations into two arbitrary groups. In visual areas, the profile of 

reconstructed channel responses around category boundaries showed a shift toward the center of 

the category after learning, suggesting a perceptual distortion in orientation space through 
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learning. Taken together, the IEM method provide a promising way to explore mechanisms at the 

neuronal population level beyond the limitation of single voxel.  

However, caution is suggested when using the reconstructed channel response profiles to 

infer the underlying neural mechanism. For instance, Liu et al. (2018) tested a well-known 

property of contrast-invariant orientation tuning in primary visual cortex using the IEM method. 

Surprisingly, they found an increase in the width of reconstructed channel responses when 

stimuli’s contrast was reduced, inconsistent with findings from single-unit recording studies 

(Sclar & Freeman, 1982). Their computational model further showed that such changes in the 

reconstructed responses do not necessarily indicate corresponding changes in the tuning width of 

neuron, but instead, can be explained by reduced signal-to-noise ratio as contrast is reduced. This 

latter result raises a reverse-inference issue. At its core, this reflects a lack of examination on the 

relationship between single-unit activities and the population level responses (e.g., BOLD 

signal), which further necessitates our current work in bridging the gap across different levels of 

measurements. By simulating and decoding different neural mechanisms at the population level, 

the current work may serve as a reference point for investigating the neural mechanisms of 

surround suppression in future empirical studies. 

For decoding purpose, we also considered a Bayesian method, which further transforms 

the reconstructed channel response function into a posterior probability distribution of the 

stimulus, given an observed voxel pattern (van Bergen et al., 2015). It was further pointed out 

that the reconstructed channel response function is contingent on the initial assumption about the 

channel’s specific shape, which is not surprising given that the IEM is essentially a linear 

regression model (Liu et al., 2018; Gardner & Liu, 2019). The Bayesian approach follows the 

same structure as the IEM analysis but further models the structure (i.e., covariance matrix) of 
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correlated voxel noise. Using Bayes’ rules and a flat prior, posterior probability can be computed 

for a stimulus given the observed voxel responses under the assumption of a normal distribution 

of errors. More importantly, it has been shown that the reconstructed probability distribution is 

invariant to the model’s assumptions of the channels as the Bayesian method reconstructs 

information about stimulus rather than parameters of the channel (Gardner & Liu, 2019). Thus, it 

would be useful to assess whether the Bayesian method can also differentiate the candidate 

neural mechanisms of attentional modulation (i.e., surround suppression) at the population level. 

In addition, noise correlation is prevalent across neuronal population, which also manifests at the 

voxel level. Yet how the voxel-wise correlated noise affects different multivariate methods 

remain uncharted both in the current research domain, as well as in the general literature of fMRI 

decoding. As a comparison to the standard IEM approach, our second aim is to extend the 

Bayesian method to evaluate the possible neural mechanisms of surround suppression and to 

compare both methods in the presence of correlated voxel noise. 

In summary, in the current study, we explored the candidate neural mechanisms of 

surround suppression in FBA using model simulations. We first generated synthetic voxel 

responses using a neural population model, which implemented different mechanisms of 

surround suppression at the neuronal level. To differentiate different neural mechanisms at the 

level of aggregate population measures (i.e., fMRI), we decoded the population codes using both 

the inverted encoding model method and a Bayesian method. We expect that sub-voxel signature 

patterns may be identified for different neural mechanism, which can provide a comprehensive 

description of attentional mechanisms across different levels of measurement. We also 

hypothesized that the Bayesian method could be more suitable for decoding purpose in the 

presence of noise correlation. To test this hypothesis, we systematically manipulated the 
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structure of noise correlation among voxels to compare the two multivariate methods (i.e., 

standard IEM and Bayesian method). We expect that the current work should provide theoretical 

and practical guidelines for future empirical studies investigating cortical mechanisms of FBA 

using non-invasive methods in the human brain. 
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CHAPTER 3  

NEURAL MECHANISMS OF SURROUND SUPPRESSION: SHIFT VS. GAIN 

The goal of current simulation is to distinguish the candidate neural mechanisms of the 

non-monotonic surround suppression at the fMRI voxel level. We modeled the attentional 

modulation as a hybrid profile, which consisted of the surround suppression on a fine scale and 

feature-similarity gain modulation on a coarse scale (Fang, Becker, & Liu, 2019; Fang & Liu, 

2019). Neurons within the suppressive surround can either shift tuning preferences (i.e., shift 

mechanism) or only changes the overall response amplitude (i.e., gain mechanism). To evaluate 

the population codes of these neuronal mechanisms, we conducted model simulations that 

consist of three steps. We first described a generative model that simulated the voxel responses 

under different neuronal mechanisms of FBA (i.e., shift or gain mechanism), and then specified 

how a channel-encoding model was fitted to the voxel response from a neutral training data set. 

In the final step, we employed two parallel methods to decode the population codes of the 

simulated voxels responses. Specifically, we inverted the best-fit channel model as a measure of 

the population responses and estimated the posterior probability of stimulus at different offsets 

from the attended one. To test the generalizability of our findings, we repeated the simulations 

under different combinations of neuronal tuning width parameters and voxel noise parameters. 

Method 

Population Encoding Model  

Neutral condition. Each run of the simulation consisted of three steps. In the first step, we 

built a population model to generate synthetic neural responses (e.g., voxel responses in fMRI) 

under the neutral conditions. As shown in Figure 2a, the model contains a bank of identical, 
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uniformly distributed, orientation-tuned neurons spanning from 0° to 180° in the orientation 

space. Each neuron’s tuning curve is assumed to be a von Mise function, which has the form of  

𝑓"(𝑠) = e( )*+(,-./) · 𝑎		 + 𝑏						 (1) 

where ft(s) is the t-th neuron’s response to an orientation stimulus s. k determines the bandwidth 

of neuronal tuning curves, which is the same for all neurons but can be varied across different 

simulations. µt is the neuron’s preferred orientation, which is evenly distributed from 0° to 179° 

in 1° increment. a determines the amplitude of the neuron’s response, and b represents the 

baseline activity. We set the baseline activity for each neuron to be 0 and normalized the area 

under the tuning curve to be 1 such that the average response across the whole neuronal 

population remains equal across different tuning width k. All neurons (180 in total) are assumed 

to be independent. For tuning width, we further transformed the k to full width at half-maximum 

(in degrees) to facilitate the interpretation of results. 

Candidate Neuronal Mechanism of Surround Suppression 

Attentional modulation. For the attentional condition, the monotonic feature-similarity 

gain modulation (FSG, Fig. 2e) is specified as: 

𝐹𝑆𝐺" = 𝛽 − 𝛼 · |𝑜𝑓𝑓𝑠𝑒𝑡"|																			 (2) 

𝑜𝑓𝑓𝑠𝑒𝑡" 	= 𝜇" − 𝜇B"" (3) 

where FSGt is the feature-similarity gain modulation for t-th neuron. Both a, b are parameters 

(slope and intercept respectively) controlling the overall shape of the linear feature-similarity 

gain (Fig. 2e). µt is a neuron’s tuning preference, and µatt is the attended orientation (i.e., 90°). 

By definition, feature-similarity gain only depends on similarity between neuronal tuning 

preferences and the attended orientation. Therefore, it is expected that the decoded population 
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response profiles across different offsets will show a monotonic profile under a pure FSG 

modulation (Fang, Becker, & Liu, 2019). In a preliminary simulation (Fig. 21), we also verified 

this prediction as a basic check of our model implementation: a feature-similarity gain 

modulation alone is unable to explain the non-monotonic surround suppression.  

To model the non-monotonic FBA, we simulated a hybrid profile of modulation on the 

neuronal population (Fig. 1a), which consisted of a surround suppression on a fine scale and a 

feature-similarity gain modulation on a coarse scale (Fang, Becker, & Liu, 2019; Fang & Liu, 

2019). Within the suppressive surround, FBA could either elicit a gain change of the neurons’ 

overall response (i.e., gain mechanism, Fig. 2d), or shift their tuning preferences (i.e., shift 

mechanism, Fig. 2c) toward the attended feature. In addition to simulating the non-monotonic 

surround suppression on a fine scale (e.g., range of the suppressive surround: ±45° offsets), we 

also implemented a monotonic feature-similarity gain modulation on a coarse scale (e.g., ±90° 

offset). Therefore, the overall profile of attentional modulation shows a hybrid shape (Fang, 

Becker, & Liu, 2019; Fang & Liu, 2019). In the next part, I will describe the implementation of 

the different neuronal mechanisms underlying surround suppression.  

In the first scenario, we implemented the gain mechanism as the neuronal mechanism 

underlying surround suppression, which only affects the overall responsivity of neuronal tuning 

curves without changing their preferred orientation (Fig. 2d). For a neuron, the gain modulation 

is simulated by a scaling parameter, which is multiplied with the neuronal tuning function 

(similar to parameter a in Eq. 1). Across the entire orientation space and for different neuronal 

group, the multiplicative gain modulation of FBA is implemented as a piecewise function (Fig. 

2d): 
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𝐺" = 	 D 𝐴F · 𝑒
-(G/-GH//)

I

JKLI − 𝐴J · 𝑒
-(G/-GH//)

I

JKII

𝛽 − 𝛼 · |𝜇" − 𝜇B""|,												otherwise
+ 𝐿, if	|𝜇" − 𝜇B""| < 1.25𝑆𝑆ZB[\] 

where {A1, w1, A2, w2, L, a, b} are the parameters controlling the overall shape of the 

piecewise function. SSrange represents the offset (i.e., 45°), where the maximum surround 

suppression occurred (Fig. 2d). µt and µatt are neuronal tuning preference and attended 

orientation. For neurons that are within a range of 1.25SSrange from the attended feature, the 

piece-wise function simulates a non-monotonic surround suppression modulation using a 

difference of Gaussian function. Once outside the suppressive surround (i.e., |offsets| >= 

1.25SSrange), there is a further suppression up to ±90° offset (i.e. feature-similarity gain 

modulation, Eq. 2). As illustrated in Fig. 2d, the overall shape of the FBA therefore has a hybrid 

profile on both sides of the attended feature, which is similar to empirical findings (Fang, 

Becker, & Liu, 2019; Fang & Liu, 2019). 

In the second scenario, we also assumed hybrid profile of FBA modulation across the 

entire orientation space. The critical difference is a shift in neuronal tuning within the 

suppressive surround (Fig. 2c) toward the attended orientation. Our previous simulation showed 

that a tuning shift in the vicinity of attended feature can elicit a suppressive surround (Fang, 

Becker, & Liu, 2019; Fang & Liu, 2019). In conjunction with the monotonic feature-similarity 

gain modulation (e.g., a monotonic function), the stimulation can further explain the suppression 

effects found at different scales. Following the previous works, the hybrid profile of FBA in the 

second scenario was implemented as a combination of range-limited (i.e., up to the suppressive 

surround then gradually stop) neuronal tuning shift and a feature-similarity gain modulation.  

For feature-similarity gain modulation, we used the same linear function as in Eq. 2. We 

then implemented an attention-induced shift in tuning preference toward the attended feature 

(4) 
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(i.e., matched filter). This shift is assumed to be proportional to the distance between tuning 

preference and the attended feature in our previous model containing uniformly tuned units 

(Fang et al., 2019), which was specified by a piece-wise linear function. 

𝑆ℎ𝑖𝑓𝑡"

= 	`
0.5 · 	𝑜𝑓𝑓𝑠𝑒𝑡", 	𝑖𝑓	|𝑜𝑓𝑓𝑠𝑒𝑡"| ≤ 𝑆𝑆ZB[\]

2 · 𝑠𝑔𝑛	(𝑜𝑓𝑓𝑠𝑒𝑡") · (1.25𝑤 − |𝑜𝑓𝑓𝑠𝑒𝑡"|), 	𝑖𝑓	𝑆𝑆ZB[\] < |𝑜𝑓𝑓𝑠𝑒𝑡"| ≤ 1.25𝑆𝑆ZB[\]
0, 	𝑖𝑓	|𝑜𝑓𝑓𝑠𝑒𝑡"| > 1.25𝑆𝑆ZB[\]

 

where sgn is the sign function, and SSrange = 45°, in which maximum surround suppression 

occurs. This results in a larger shift as neurons move further away from the attended feature 

followed by a reduced shift outside the suppressive surround (i.e., rebound). Once Shiftt declines 

to 0, the tuning shift also stops. Under this scenario, neuronal responses were calculated in the 

same fashion as in Eq. 1, except that neuron’s preferred orientation (µt ), was replaced by (µt  - 

Shiftk), representing a shift in tuning preference. 

Step 1: Simulating Voxel Responses Under Neutral and Attentional Condition 

We then simulated response of each voxel (N = 100 in total), which contains neurons 

tuned to all possible orientations. Each voxel was simulated as linear combination of neuronal 

responses, which is defined as: 

𝑣h(𝑠) =i𝑊h"
[]kZl[𝑓"(s)

Fmn

"oF

(6) 

where vi(s) is the i-th voxel’s tuning curve. Witneuron is the linear weight of t-th neuron in this 

voxel.  The linear weight (Witneuron) contains 180 numbers drawn from a uniform distribution 

between [0, 1], which describe the relative contribution of different neuronal populations to a 

voxel’s response. After the weighted sum, voxel response is scaled (average response across all 

voxels: ~ 1) such that it is close to the common range as blood-oxygen-level-dependent (BOLD) 

(5) 
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responses (percent of signal change). To generate the final voxel response, we further added 

correlated noise e to the voxel responses (Step.1 in Fig. 2e).  

𝐁 = 𝐯(s) + 𝒆 (7) 

The noise term e is randomly sampled from a multivariate Normal distribution with a mean of 0 

and voxel-by-voxel covariance matrix of Σ: 

𝒆	~	𝑁(0, 𝚺	) (8) 

The covariance matrix Σ has the form as:  	

Σhz = 𝜏h𝜏z𝑅hz (9) 

where the pairwise covariance, Σij, between the i-th and j-th voxel was computed as the product 

of voxel standard deviation τi, τj, and their pairwise correlation, Rij. 

The standard deviations (τ) of voxel responses are proportional to the average voxel 

responses before adding the noise term: 

τ�(s) =
𝜆
𝑚i𝑣h(𝑠)

�

hoF

(10) 

where m is the total number of voxels (100 in total). 𝜆 is the proportion between voxel standard 

deviation (τ) and average response of all voxels to a certain orientation stimulus. The voxel-by-

voxel correlation, R, is constructed by a combination of a voxel-tuning-dependent correlation 

Rtuning and arbitrary correlation Rarb that is independent of voxel’s tuning property, which can be 

caused by thermal and physiological variabilities in fMRI signal. It has been shown that such a 

correlation structure can well explain the voxel-wise noise correlation in empirical fMRI data 

(van Bergen et al., 2015; van Bergen & Jehee, 2018). Therefore, we employed a similar structure 

to generate correlated noise in the current model. The tuning-dependent correlation coefficient 

Rtuning is given by (cf. van Bergen & Jehee, 2018): 
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𝑅hz
"k[h[\ 	= 𝑟 · �1 − 𝐼hz� · 𝑐𝑜𝑟𝑟�𝑣h(𝑠), 𝑣z(𝑠)	� +	𝐼hz (11) 

where the r is a scaling parameter that controls the strength of correlation between voxels. I is an 

identity matrix. For the correlated voxel noise that is independent of voxel tuning property, we 

refer to it as arbitrary noise, Rarb. To create the arbitrary noise, we shuffled the Rtuning such that 

columns and rows of Rtuning were reordered in the same randomized order. This is to ensure that 

Rarb is still a symmetric matrix after being shuffled. Critically, Rarb has the same overall 

correlation but now noise correlation does not depend on the tuning property. In other words, the 

Rarb installs noise that is randomly correlated. Having defined both Rarb and Rtuning, the final 

correlation matrix R is generated as a combination of Rtuning and Rarb, which is described as: 

𝑅hz 		= �1 − 𝐼hz��𝑝 · 𝑅hz
"k[h[\ + (1 − 𝑝) · 𝑅hzBZ�� +	𝐼hz (12) 

where p is a parameter from [0, 1] that specifies the relative contribution of Rtuning and Rarb. We 

analyzed the covariance matrix from empirical data (cf. Liu, et al., 2018) with Eq. 15 (see below) 

to estimate the ratio of tuning-dependent and the tuning-independent noise, which yielded a ratio 

of 2.5:1. Therefore, we fixed the p parameter to be 2.5/(2.5 +1) = 0.71 in the main simulation. In 

the benchmark test section (see Chapter 4), we also explored the effect of varying the ratio 

between Rtuning and Rarb on decoding of population codes using different multivariate methods. 

Simulated Experiment. We simulated voxel responses under a neutral (Fig. 2a) and an 

attentional condition (Fig. 2c – 2e). Eight orientations were sampled evenly through the whole 

orientation space (i.e., 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°). In the neutral condition, 

each orientation was presented for 32 trials, yielding a total of 256 trials in total. No attentional 

modulation (i.e., gain or shift) was applied to the neutral data. In the attentional condition, we 

fixed the attended orientation at 90° (i.e., full space ranges from 0 ° to 179° at 1° increment), 

resulting eight offset conditions (i.e., offset: -90°, -67.5°, -45°, 22.5°, 0°, 22.5°, 45°, 67.5° for the 
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corresponding orientations above) that yielded 256 trials (32 trials/offset). As noted above, we 

simulated a hybrid profile for FBA following recent empirical findings, which revealed a 

surround suppression on a fine scale (e.g., ±45° offset) and a feature-similarity gain modulation 

on a coarse scale (Fang, Becker, & Liu, 2019; Fang & Liu, 2019). For both neutral and 

attentional condition, we modeled voxels’ responses using the same linear weight (Wneuron in Eq. 

6) and covariance matrix (Σ in Eq. 8) described above. In other words, we assumed that FBA did 

not alter the covariance structure of the noise between the neutral and attentional condition. We 

simulated another set of data under neutral condition to use as a validation data set, which was 

used to compare the accuracy in a benchmark test between the different decoding methods.  

Step 2: Fitting a Channel-Encoding Model to Voxel Patterns 

Fit channel-encoding model. In the second stage, we employed a channel encoding model 

as proposed by Brouwer and Heeger (2009), to characterize the orientation tuning function. 

These channels serve as model basis functions that span a model-based information space as an 

analogy to the activity space spanned by neuronal population, where each axis is a neuronal 

population. Similar to how the voxels can be treated as a linear combination of neurons, the 

channel encoding model assumes a voxel’s response can be expressed as a linearly weighted 

combination of a set of channels, which are hypothetical tuning curves evenly distributed in the 

orientation space. Similarly, the linear weights specified the contribution of each hypothetical 

channel to a voxel’s response. We fitted the channel encoding model to training data from the 

previous step (e.g., neutral condition) to estimate the linear weights for each channel.  

The channel-encoding model consisted of 8 evenly distributed channels (i.e., model basis 

functions) covering the full orientation space (0° to 179°). Each channel is a half-wave rectified 

sinusoidal raised to power of 7 (Fig. 2b), which yields an equivalent bandwidth of 25° at half 
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maximum. As neuronal tuning widths can be variable in visual cortex, we also varied the channel 

basis function with two additional sets of bandwidths (45° or 65°). Therefore, we employed three 

subtypes (e.g., channel bandwidth: 25°, 45°, 65°) of channel-encoding models in our simulation.  

The hypothetical channels’ responses across trials can be expressed as a matrix of n by h 

matrix, Ctrain, where n = 256 is the number of trials in a training data set, and h = 8 is the number 

of channels (i.e., a total of 8 channels). The training data is a set of voxel responses simulated 

under the neutral condition, which is a n by m (i.e., m = 100, number of voxels) matrix Btrain. W 

is the linear weight matrix of h by m, where each column describes the channel’s contribution to 

a voxel’s response. Therefore, the relation between voxel responses and the channel basis 

function is given by: 

𝑩𝒕𝒓𝒂𝒊𝒏 = 𝑪𝒕𝒓𝒂𝒊𝒏	𝑾									 (13) 

Given both Btrain and Ctrain, the least-square estimation of W is defined as: 

𝑾� =	�𝑪𝒕𝒓𝒂𝒊𝒏𝑻 𝑪𝒕𝒓𝒂𝒊𝒏�
-𝟏	𝑪𝒕𝒓𝒂𝒊𝒏𝑻 	𝑩𝒕𝒓𝒂𝒊𝒏									 (14) 

To further estimate the structure of variability within the voxel responses, we fitted a 

noise model to the residual term after removing the best fitting voxel response, CtrainW�. The 

noise model assumes that the covariance of the voxel noise consists of both a voxel tuning 

independent component and a voxel tuning dependent component, which is defined as follows 

(see van Bergen et al., 2015 for a detailed derivation): 

𝛀 = 	ρ𝛕𝛕� + (1 − ρ)	𝐈	 ∘ 	𝛕𝛕� + 𝜎J𝑾��𝑾�					 (15) 

where 𝛀 represents the covariance matrix of voxel noise, ρ scales voxel noise irrespectively of 

their tuning similarity (i.e., equivalent to tuning-independent noise Rarb in Eq. 12), t is the 

standard deviation of voxel response, s is the standard deviation of model’s channel (i.e., model 
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basis function), and 𝐖¡  is the estimated linear weight matrix from Eq. 14 (see above), 𝐈 is the 

identity matrix.  

Assuming Gaussian distribution of the voxels’ residual term, we used the maximum 

likelihood estimation to fit the noise model by finding the parameters 𝐪£ that maximize the joint 

probability of the given voxel responses.  

𝐪£ = argmax¨iln(𝑝(𝑩|𝑠, 𝜽))
[

F

¬				 (16) 

where 𝐪£ = {ρ, τ, 𝜎,𝑊¡ }, n is number of trials, and 𝑝(𝑩𝒏|𝑠, 𝜽) is the conditional probability of 

voxel response given a stimulus s in a single trial.  

The conditional probability 𝑝(𝑩|𝑠, 𝜽) is defined as: 

𝑝(𝑩|𝑠, 𝜽) ∝ exp °�𝑩𝒕𝒓𝒂𝒊𝒏 − 𝑪𝒕𝒓𝒂𝒊𝒏𝑾��𝛀-𝟏�𝑩𝒕𝒓𝒂𝒊𝒏 − 𝑪𝒕𝒓𝒂𝒊𝒏𝑾��
�±	 

Step 3: Decoding Population Codes 

Decoding neural responses. After estimating the best fit encoding model using training 

data set, inversion of the encoding model can be used to decode information of stimuli given a 

test data set of voxel responses. Test data sets (n by m matrix) were generated under both the 

neutral (i.e., validation data set) and attentional condition (i.e., for decoding the modulation of 

surround suppression at the population level). Decoding was performed using 3 different sets of 

channel-base function (i.e., width: 25°, 45°, 65°).  

Inversion of Eq. 13 on testing data Btest can reconstruct channels’ responses, 𝐂³𝐭𝐞𝐬𝐭, to a 

test stimulus. The reconstructed channel response is denoted as channel response function (CRF), 

which is considered as an approximation of neural population response of a certain stimulus 

(Scolari et al., 2012; Garcia et al., 2013; Ester et al., 2016; Sprague, Boynton & Serences, 2019, 

also see Gardner & Liu, 2019).	

(17) 



 40 

𝑪¡𝒕𝒆𝒔𝒕 = 		𝑩𝒕𝒆𝒔𝒕𝑾�𝑻	�𝑾�	𝑾�𝑻�-𝟏					 (18) 

We also used the estimated covariance matrix,	𝛀, to generate posterior probability of a 

stimulus given the test data, using the same method derived by van Bergen and colleagues (van 

Bergen et al., 2015). After applying Bayes’ rule with a flat prior, the posterior probability of a 

stimulus given a voxel response is defined as (see van Bergen et al., 2015 for a detailed 

derivation): 

𝑝(𝑠|𝑩, 𝐪£) =
𝑝(𝑩|𝑠, 𝐪£)

∫ 𝑝(𝑩|𝑠, 𝐪£)𝑝(𝑠)𝑑𝑠
								 (19) 

where the conditional probability 𝑝(𝑩|𝑠, 𝐪£) is computed using covariance matrix 𝛀, the 

normalization term ∫ 𝑝(𝑩|𝑠, 𝐪£)𝑝(𝑠)𝑑𝑠 is computed numerically by summing all possible values 

of 𝑝(𝑩|𝑠, 𝐪£) spanning the whole orientation space (0° to 179°, at 1° increment).  

Identifying Signature Patterns at Neural Population Level  

To further evaluate the difference between the surround suppression’s underlying 

mechanism at the population level, we also manipulated two independent variables: neuronal 

tuning width (k in Eq. 1, transformed into degrees of full width at half maximum) and voxel 

standard deviation (τ). We set nine different neuronal tuning width (i.e., k, equivalent full 

bandwidth at half maximum: 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°) and eight voxel standard 

deviation (𝜆: 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, & 35% of average voxel response before 

the noise term was added). We performed ten independent simulations for each combination of a 

neuronal tuning width (k) and voxel standard deviation (τ).  

For each run of the simulation, we performed decoding using channel-encoding model 

with three different sets of channel basis function (i.e., channel width: 25°, 45°, or 65°). We 

fitted the circular Gaussian template (Eq. 1, four free parameters) to the reconstructed channel 
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response function and estimated posterior probability distribution for each individual cue-target 

offset (i.e., -90°, -67.5°, -45°, 22.5°, 0°, 22.5°, 45°, 67.5°). We then compared how different 

attentional mechanisms affected the fitted parameters (i.e., mean, width, amplitude, and 

baseline). We analyzed each of the ten runs separately and then averaged results across all runs.    
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Figure 2. Model architecture and simulation schematic. (a) neuronal tuning curves under a neutral 
condition. (b) Idealized orientation-tuned channels (i.e., 8 in total) in the channel-encoding model. (c) 
neuronal tuning curves under a hybrid modulation of both feature-similarity gain and tuning shift. (d) 
neuronal tuning curves under a hybrid gain modulation of both feature-similarity gain and surround 
suppression gain. (e) neuronal tuning curve under a pure feature-similarity gain (FSG) modulation. (f) 
simulation consisted of 3 critical steps. Step 1: simulating voxel responses with voxel-wise correlated 
noise under both neutral (i.e., training data set) and attentional condition (i.e., testing data set). Step 2: 
fitting channel-encoding model to estimated channel weights. Step 3: Decoding population codes by 
inverting the best-fit channel-encoding model. The reconstructed population profiles establish a direct 
link to neuronal mechanisms (e.g., red arrow). 
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Results 

In the current simulation work, we employed an encoding/decoding model approach to 

assess the candidate neuronal mechanisms of surround suppression at the population level using 

two multivariate methods. Under a neutral condition, our model assumed a bank of neurons that 

were evenly distributed across the entire orientation space. The neuronal responses to an 

orientation stimulus (e.g., 0° orientation) were linearly combined using random weights to 

generate voxel response. We also implemented correlated voxel noise that was sampled from a 

multivariate normal distribution with a covariance matrix that described a mixture of both 

tuning-dependent and tuning-independent correlation. We trained a channel-encoding model 

under the neutral condition using three sets of channel basis function. We then inverted the best-

fit model to reconstruct the channel response function and posterior stimulus probability 

distributions under different attentional conditions. To evaluate the candidate neuronal 

mechanisms for surround suppression, we contrasted their manifestation at the population level 

under different parameter combinations of neuronal tuning width and voxel variability. To better 

explain the findings, results shown below were obtained from a specific combination of neuronal 

tuning width (k in Eq. 1, equivalent to 40° in orientation space), and voxel variance (𝜆 = 0.15, 

Eq. 6). Full simulation results are shown in Figures 9 to 21.   

Signature Patterns at Neural Population level 

For orientations at different offset (e.g., 0°, ±22.5°, ±45°, ±67.5°, 90°) relative to the 

attended orientation, we first reconstructed their individual channel response functions (CRF) to 

evaluate the attentional modulations on population responses (Fig. 3a – 3c & Fig. 4a – 4c). We 

also employed a Bayesian method to decode the probabilistic stimulus representation at each 

offset (Fig. 3d – 3f & Fig. 4d – 4f) after analyzing the correlated noise structure (i.e., the 
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covariance matrix) among voxels (van Bergen et al., 2015). The estimated probability 

distribution showed a continuous distribution in the orientation space, with peak location 

representing the most likely stimulus, and the width representing the stimulus uncertainty. As 

shown in Fig. 3 & Fig. 4, orientation stimuli at different offsets were decoded using both 

methods under the attentional (i.e., solid line) and the neutral condition (i.e., dashed line). The 

decoding analysis was repeated using three different set of channel basis function (i.e., 25° - Fig. 

3a, 3c, 4a, & 4c, 45° - Fig. 3b, 3e, 4b, & 4e, 65° - Fig. 3d, 3f, 4d, & 4f) 

Tuning shift mechanism. In the first scenario, we assumed that the attentional surround 

suppression was caused by a shift of neuronal tuning preference toward the attended feature (i.e., 

shifting mechanism). Interestingly, we first observed that such attentional attraction elicited an 

inflation of width at the attended orientation (i.e., Fig. 3 all panels, 0° offset pink solid curve) in 

both the reconstructed CRF (Fig. 3a-3c) and the posterior probability distribution (Fig. 3d-3f), 

when comparing with the neutral condition (i.e., pink dashed line). For the neurons that were 

originally tuned to the nearby features from the attended feature, FBA shifted their tuning 

preference to become more responsive to the attended feature than in the neutral condition. This 

shift essentially led to an over-abundance of neurons tuned to the attended feature. Therefore, we 

observed such an inflation in the neuronal population profile for the attended feature. As the 

tuning shift was imperfect and did not completely overlap with the attended feature (David et al., 

2008), a gradient shape was seen in the inflated neuronal population profile for 0° offset. 

As the presented orientation deviated from the attended orientation (e.g., Fig. 3 all panels, 

cyan curves at ±22.5°, blue curves at ±45°), we found a repulsion effect (i.e., shift away from the 

attended feature) in both the reconstructed CRF (Fig. 3a-3c) and posterior probabilities (Fig. 3b-

3f) as compared to the neutral condition. This is because the “labeled-line” architecture of the 
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model, i.e., the orientation labels of all the neurons remained the same in the attention and 

neutral condition. Thus, a nearby feature could activate neurons tuned to further-away features 

(e.g., a 25° stimulus activating neurons tuned to 35°), causing the decoder to classify the stimulus 

as repulsed from the attended feature.  The repulsion effect only appeared in the intermediate 

offsets (e.g., ±22.5° and ±45°), and as the stimulus deviated further away from the attended 

orientation, such repulsion effect disappeared. This was caused by a gradual stop in the tuning 

shift for neurons at larger offsets, as implemented in the model. 

Therefore, neuronal tuning shift mechanism is manifested as a repulsion effect in the 

population response around the suppressive surround, which creates an attentional distortion for 

similar but different features from the attended one. Such findings are further consistent with our 

previous simulation work, which suggested that the surround suppression might enhance feature 

resolution through repulsion (Fang et al., 2019). 
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Figure 3. Shifting mechanism - population level profile for individual cue-target offset. (a) 
Reconstructed channel response function (CRF) under attentional (solid curves), and neutral condition 
(dashed curves). Channel Basis function: 25°. Top panel: reconstructed CRF for each individual cue-
target offset plotted in colors (e.g., magenta: 0°, cyan: ±22.5°, blue: ±45°, green: ±67.5°, red: 90°). 
Bottom panels: reconstructed CRF plotted separately for each offset. (b) & (c), same as (a) except that 
channel basis function’s width was 45° in (b) and 65° in (c). (d) Estimated posterior probability 
distribution (attentional: solid curves, neutral: dashed curves). Channel basis function: 25°. (e) & (f), 
same as (d) except that channel basis function’s width was 45° in (e) and 65° in (f). 
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Gain mechanism. In the second scenario, we assumed that attentional surround 

suppression only affected the amplitude of neuronal tuning curve without changing the tuning 

preference of neurons within the surround. For the gain mechanism, we observed a qualitative 

different pattern with no significant repulsion effect as found with the shifting paradigm. Instead, 

the most obvious pattern is located at ±45° offset manifested as a reduction of the reconstructed 

CRF (Fig. 4a – 4c, blue solid at ±45° offset) and a downscale of posterior probability 

distributions at the intermediate offsets (Fig. 4d – 4f, blue solid at ±45° offset), which was a 

consequence of the suppression on neuronal gain that we implemented when generating the data.

 Importantly, the changes in the overall responsivity of CRF showed a non-monotonic 

pattern, such that there was a significant reduction of the recovered CRF at intermediate offsets 

(e.g., Fig. 4a – 4c, blue solid curves) followed by a rebound at larger offsets. As shown in Fig. 4d 

– 4f, the posterior probability distributions paralleled the CRFs’ patterns and showed a similar 

non-monotonic change. The lowered probability distribution within the suppressive surround 

suggested an increase in the uncertainty of the stimulus. This is consistent with observations 

from neurophysiological studies that gain modulation is equivalent to changing the local contrast 

of stimuli (Treue & Martinez-Trujillo, 1999; Reynolds et al., 2000; McAdam & Maunsell, 2000; 

Martinez-Trujillo & Treue, 2002).  

In short, the gain mechanism can elicit a surround suppression modulation, but without a 

distortion of feature space. This is a qualitative different population pattern as compared to those 

under the tuning shift mechanism.  
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Figure 4. Gain mechanism – population level profile for individual cue-target offset. Figure 
convention is same as in Figure 3. (a), (b), & (c), reconstructed channel response function using standard 
IEM method. Channel basis function: 25° for (a), 45° for (b), and 65° for (c). (d), (e) & (f), posterior 
probability distributions using channel basis function of 25°, 45° & 65° respectively.  
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Further Comparison Between the Shift and the Gain Mechanisms  

To further visualize and quantify how different mechanisms of surround suppression 

modulate the information contained within voxel responses, we fitted the circular Gaussian 

template (Eq. 1) separately to the CRF and posterior probability distribution that were averaged 

across trials for each individual offset condition. This allowed us to examine how attention 

impacted the four parameters of the fitted Gaussian: baseline, amplitude, mean, and width. This 

analysis was based on averaging the fitted parameters across the 10 simulation runs for each 

combination of neuronal tuning width and voxel variance, for each of the channel-basis function 

(e.g., channel width: 25°, 45°, 65°). We found that three parameters (amplitude, mean and width) 

were significantly modulated as a function of offsets except the baseline parameter which did not 

show any systematic profile in accordance with the non-monotonic attentional modulation. We 

will not further consider the baseline parameter, and next we discuss the other three parameters. 

Amplitude. The estimated amplitude parameter for both CRF (Fig. 5e & 5f, black) and 

posterior probability distribution (Fig. 5e & 5f, red) followed a non-monotonic Mexican-hat 

pattern across most conditions. Interestingly, these patterns were similar under both the shift 

(Fig. 5e) and the gain mechanism (Fig. 5f). This result serves as a validation for the claim that 

both shift and gain mechanism can underlie the surround suppression modulation, as both 

mechanisms reduced the strength (i.e., amplitude) of neural representations for distractors within 

the suppressive surround. This also means that the amplitude parameter cannot serve as a robust 

indicator to differentiate between the two neural mechanisms due to their similar monotonic 

pattern. We now turn to the results for the other two parameters: mean and width, which 

provided qualitatively different patterns between shift and gain mechanisms.  
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Figure 5. Further comparison between the shift and gain mechanism. (a) Shift mechanism – Shift in 
estimated means for each offset. Shift in estimated mean was plotted as a function of offset. The amount 
of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von Mises function) 
from the actual stimulus orientation after fitting the CRF (black) and posterior probability distribution 
(red). Different panels represent results obtained using different channel basis function (i.e., width: 25°, 
45° and 65° from left to right). (b) Shift in estimated mean for gain mechanism. Note, the Gain 
mechanism elicited a qualitatively different pattern from the shift mechanism as shown in (a). (c) Shift 
mechanism - Estimated width was normalized relative to the maximum value after fitting von Mises 
function at each offset to CRF (black) and posterior probability distribution (red). (d) Normalized widths 
for gain mechanism after fitting von Mises function to CRF (black) and posterior probability distribution 
(red). Left: channel basis function’s width is 25°, middle: 45°, right: 65°. (e) Shift mechanism - Estimated 
amplitude was normalized relative to the maximum value after fitting von Mises function at each offset to 
CRF (black) and posterior probability distribution (red). (f) Normalized amplitude for gain mechanism. 
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Mean. For each offset condition, we computed the amount of shift by subtracting the 

estimated orientation (i.e., mean of the fitted circular Gaussian function) from the actual stimulus 

orientation for both CRF (Fig. 5a & 5b, black) and posterior probability distribution (Fig. 5a & 

5b, red). Results were obtained using different channel basis functions (i.e., plotted in columns, 

channel width increased from left to right). Negative values indicate shifting toward smaller 

orientation value than original orientation and positive values indicate shifting toward larger 

orientation value than the original orientation. As shown in Fig. 5a, shifting mechanism resulted 

in a significant amount of repulsion in the estimated stimulus value such that smaller orientation 

than the attended one was shifted to even smaller value, and larger orientation shifted to larger 

value (cf. Fig. 3, ±45°). The results that were obtained using different channel basis functions 

showed similar patterns (different columns). The amount of repulsive distortion was also similar 

between CRF (Fig. 5a, black) and posterior probability distribution (Fig. 5a, red). Interestingly, 

the magnitude of shift was reduced as the basis function’s width increased from 25° (Fig. 5a, left 

panel) to 65° (Fig. 5a, right panel).  

For the gain mechanism (Fig. 4b), we observed a qualitatively different pattern in the 

estimated orientation. Compare to the significant deviation caused by the shifting mechanism, 

the majority of the estimated orientations under the gain modulation still overlapped with the 

actual, except those at ±22.5° offset (Fig. 5b), which showed a weak trend of attraction of the 

attended feature (cf., cyan curves in Fig. 4). The changes in mean also were less pronounced as 

the channel basis function became wider (Fig. 5b left to right panels). In short, we observed a 

qualitative different pattern in how different neuronal mechanism can modulate the orientation 

decoded from the population activities.  
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Width. We also found a difference in the width for reconstructed CRF and posterior 

probability distribution at different offsets. To better visualize and compare the patterns of width 

change, results shown in Fig. 5c & Fig. 5d were normalized relative to the maximum value 

(original unit in degrees). For the CRF (plotted in black), the shift mechanism led to an increase 

in estimated width of the reconstructed channel responses functions at the attended orientation 

(0° offset in Fig. 5c, also shown in Fig. 3), which was caused by attracting neurons in the 

neighboring zone toward the attended orientation. However, the gain mechanism showed the 

opposite pattern (Fig. 5d, black line), in which width was smaller at the attended orientation (i.e., 

0° offset). Another observation is that the data pattern in CRF width was sensitive to the changes 

in the basis function, such that the difference between shift (Fig. 5c black) and gain mechanism 

(Fig. 5d, black) became less obvious as channel basis function became wider (from left panel to 

right panel in Fig. 5c & Fig. 5d).  

The posterior probability function also showed qualitatively different patterns between 

shift mechanism (Fig. 5c, red) and gain mechanism (Fig. 5d, red). For tuning shift mechanism 

(Fig. 5c, red), the widths of reconstructed posterior probabilities were larger for the attended 

orientation (0° offset) and decreases as the offset became larger. However, for the gain 

mechanism (Fig. 5d, red), we found the opposite pattern. The width of the posterior probability 

displayed an inversed Mexican hat shape with smallest width at the attended orientation (0° 

offset). However, it’s worth noting that the qualitative different pattern in width was only 

robustly observed under low noise (i.e., voxel variance), and can quickly become 

indistinguishable as noise increased (e.g., Fig. 12). Lastly, the distinction between shift and gain 

mechanism remained robust when the basis function changed (red in Fig. 5c & 5d, from left to 
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right panels), while the difference was much reduced with the CRF (black in Fig. 5c & 5d, left to 

right). 

Summary 

To summarize, we simulated two candidate neural mechanisms of surround suppression 

of FBA in a forward encoding model: a shift mechanism, or a gain mechanism. We then decoded 

their manifestations at population level using two multivariate methods: the standard IEM, and a 

Bayesian method. We found both multivariate methods showed that different neuronal 

mechanisms were associated with unique patterns at the population level in the vicinity of the 

suppressive surround. Importantly, the tuning shift mechanism elicited a distortion in the feature 

space, which manifested as a repulsion effect that shifted the nearby feature away from the 

attended one. The observed pattern was different for the gain mechanism, which manifested as 

reduced channel responses in the suppressive surround without a significant repulsion. This 

important distinction was robust across most combinations of neural tuning width and voxel 

noise. Within the suppressive surround, orientations (i.e., mean of the circular Gaussian template, 

Eq. 1) estimated from reconstructed CRF and posterior probability distribution both supported 

the repulsion effect that was elicited only by the shift mechanism, but not by the gain 

mechanism. We also found the estimated width parameter may also differentiate the two 

neuronal mechanisms when the voxel noise was low. Therefore, the simulation results suggested 

that it is possible to distinguish the neuronal mechanisms at the population level using both the 

standard IEM method and the Bayesian method.  
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CHAPTER 4  

COMPARISON BETWEEN THE MULTIVARIATE METHODS 

In the previous simulation, we showed that both methods decoded the signature patterns 

associated with different neural mechanisms for surround suppression in FBA. However, the 

linear regression nature of the standard IEM suggests that it is constrained by the initial 

assumption of the channel basis functions. In fact, the results described in the previous section 

also hinted that the IEM method may be more dependent on the channel basis function. In 

addition, a second advantage of considering the Bayesian method is that it was initially proposed 

to model the correlated noise structure among voxels. However, there is no systematic 

investigation on how noise correlation affects the multivariate methods, especially the standard 

inverted encoding model. Therefore, the second aim of the current work is to conduct a 

systematic comparison between the two multivariate methods in the presence of correlated voxel 

noises. In particular, we tested the impact of two key facets of these models: assumptions of the 

basis function and the amount and nature of the correlated noise on performance of the Bayesian 

method and IEM. For this purpose, we analyzed the simulated data using three sets of channel 

basis function (width: 25°, 45°, and 65°) as in previous chapter, and systematically varied the 

basis function and the structure of noise correlation to evaluate the two multivariate methods.  

Method 

Comparison Based on Stimulus Classification 

Benchmark test of decoding.  Stimulus classification is one of the most common tasks in 

in neuroimaging data analysis, which reveals stimulus information that is hidden underneath the 

seemingly “random” patterns of voxel responses. To further compare the standard inverted 

encoding method and the Bayesian method, we employed a classification task to compare them 
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under a neutral condition. The schematic of simulation was the same as in the previous chapter 

but for simplicity and without losing generality, here we only consider a neutral condition 

without attentional modulation. After fitting the encoding model to the training data set, we 

reconstructed the channel response function and posterior probability distribution from a 

validation data set, which had the same stimulus condition (i.e., 8 orientations, 32 trials each) as 

the training data set. We classified the stimulus label on each trial into one of eight possible 

stimulus categories (i.e., 8 possible stimuli: 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°). We 

then computed classification accuracy across all trials. The final accuracy level is averaged 

across ten runs of simulation under each combination of parameters. 

Classification with reconstructed channel response function (CRF). For the CRF method, 

we first generated predicted CRFs for eight possible orientations (i.e., 8 possible stimuli: 0°, 

22.5°, 45°, 67.5°, 90°, 112.5°, 135°). The eight predicted CRFs was then correlated individually 

with the reconstructed CRF on each trial. We computed the eight correlation coefficients on each 

trial and chose the maximum as the classified stimulus label for that trial (Brouwer & Heeger, 

2009). Classification is correct if the classified stimulus label is the same as the true label.  

Classification with posterior probability distribution. Classification using posterior 

probability distribution is more straightforward than the CRF, as it is a smooth distribution of 

probabilities for all stimuli (i.e., 0° to 179° at 1° increment) across the orientation space. 

Therefore, we computed the probabilities (within a ±5° range) at the eight possible orientation 

(0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°) and chose the largest one. Note, we also tried 

range smaller than ±5° and yielded highly similar results. Therefore, the exact range would not 

affect our interpretation. We repeated this for each trial and computed the averaged classification 

accuracy across 10 runs of simulation.  
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Manipulation on Correlated Voxel Noise 

Importantly, the Bayesian method further modeled the difference source of the 

covariance among voxel response, while the standard inverted encoding method is based on the 

least-square fitting without assuming any correlated noise structure. We reasoned that the major 

difference between the two methods may reside in detecting the changes in the correlation 

structure and how they may be affected by the shape of channel basis function. Therefore, it is 

worthwhile to further examine how the correlation structure (cf. Eq. 11 & 12) and different 

channel basis function affects the decoding performance for both the standard inverted encoding 

method and the Bayesian method. Therefore, we manipulated the magnitude of voxel correlation 

(controlled by parameter r in Eq. 11) and different sources of the voxel correlation (i.e., p in Eq. 

12, proportion of Rtuning), under different neuronal tuning width (i.e., 9 values from 25° to 65°). 

Correlation magnitude. In the first scenario, we systematically varied the maximum 

correlation strength from 0.1 to 1 at a step-size of 0.1 (i.e., 10 levels in total), while fixing the 

ratio between tuning-dependent correlation Rtuning and tuning-independent correlation Rarb 

(2.5:1). Meanwhile, we also varied the neural tuning widths (i.e., from 25° to 65° at a step-size of 

5°) as in the previous chapter. 

Correlation ratio (Rtuning). In the second scenario, we fixed the maximum correlation 

magnitude (at 0.4) but varied the proportion of tuning-dependent correlation (Rtuning  in Eq. 11 & 

12) from 0 to 1 using a step-size of 0.1. The neural tuning widths were also sampled from 25° to 

65° with a step-size of 5°. When either the correlation magnitude (i.e., r, Eq. 11) or the 

proportion of Rtuning (i.e., p, Eq. 12) was manipulated, we fixed the voxel standard deviation (i.e., 

𝜆 = 0.15, Eq. 10). In other words, the diagonal term of the covariance matrix is constant, while 

we systematically manipulated the off-diagonal covariance among voxels.  
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Varying both correlation magnitude and correlation ratio together. In the last scenario, 

we varied both the magnitude and proportion of Rtuning together, which could also have created a 

much larger parameter space than other scenarios. As the purpose was to explore the interaction 

between correlation magnitude and ratio, we further constrained both the neuronal tuning width 

(bandwidth: 40°), and voxel standard deviation (i.e., 𝜆 = 0.15, Eq. 10). 

Note, we only varied these noise parameters for the benchmark test but kept them fixed 

when we simulated and compared between different neuronal mechanisms in the previous 

chapter for simplicity.  

Channel basis function. In each of the three scenarios above, we performed the 

Benchmark decoding test with three sets of channel basis function (width: 25°, 45°, and 65°) to 

explore how different basis functions affects decoding performance of different methods.    

Results 

Benchmark Test – Stimulus Classification 

As both the Bayesian method and IEM can distinguish the neuronal mechanisms of FBA 

to a similar extend (see previous chapter), we further explored their difference in decoding 

ability with a benchmark test in stimulus classification. We systematically varied the covariance 

(i.e., off-diagonal terms) of the covariance matrix of voxel responses, while fixing the diagonal 

terms (i.e., τ, voxel variance) and varied the width of channel basis function. We first measured 

the classification accuracy in the benchmark test as a function of the changes in the correlation 

structure. We then computed the difference in classification accuracy between the Bayesian 

method and the standard inverted encoding method (i.e., Bayesian minus IEM). The benchmark 

tests were repeated with three sets of channel basis function (width: 25°, 45°, & 65°). 
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Correlation magnitude. We first varied the maximum correlation strength from 0.1 to 1 

while fixing the ratio between Rtuning and Rarb (2.5:1). Fig. 6b shows the classification accuracy as 

a function of overall correlation strength between voxels (controlled by parameter r in Eq. 11) 

under different combination of neuronal tuning width (i.e., 25° to 65°) and voxel variance (𝜆 = 

0.15, Eq. 10). Both the Bayesian method (Fig. 6b, solid line) and standard inverted encoding 

method (Fig. 6b, right panel) showed a drop in the decoding accuracy as the overall correlation 

magnitude increased across different values of neuronal tuning width. The classification 

accuracy of the Bayesian method remained higher than the standard IEM method (Fig. 6a), 

which was mainly attributed to conditions with wide neural tuning curve (e.g., 45° to 65°, light 

green to yellow). However, when the neural tuning widths were close to the channel width, the 

difference in decoding accuracies became close to 0 (Fig. 6a, dark green). This indicated that 

IEM’s decoding accuracy only reached similar level to the Bayesian method when neural tuning 

width and channel width were similar.  

This pattern was also observed when the channel width was varied (e.g., 45° and 65°). As 

shown in Fig. 6c (channel basis function: 45°) and Fig. 6e (channel basis function: 65°), 

Bayesian method outperformed the IEM method in most conditions. Yet the most advantageous 

conditions occurred when neural tuning is narrowest (i.e., 25°), which is opposite to what was 

seen in Fig. 6a. This further suggested that IEM method’s decoding performance was sensitive to 

the match between neural tuning width and channel width.  
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Figure 6. Benchmark test - correlation magnitude. (a), (c), & (e) Difference in classification accuracy 
(Bayesian method – CRF method) was plotted as a function of maximum correlation strength (R 
magnitude). Colors represent different neuronal tuning widths. Width of channel basis function: (a) – 25°, 
(c) – 45°, (e) – 65°.  (b), (d), (f) raw classification accuracy using Bayesian method (solid lines) and CRF 
method (dashed lines). Channel basis function: (b) – 25°, (d) – 45°, (f) – 65°. The dashed lines in (b), (d), 
& (f) represent chance level (0.125) performance in the 8-way classification task. 
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Correlation ratio (Rtuning). The proportion of Rtuning within the overall correlation was 

manipulated while fixing the maximum correlation strength constant (i.e., maximum correlation: 

0.4). As shown in the right column of Fig. 7, both classification methods became less accurate as 

the voxel noise changes from arbitrary to tuning-dependent correlation. However, the Bayesian 

method had an overall higher classification accuracy than the IEM method for the majority of 

data points. The advantage was also seen all three sets of channel basis function (Fig. 7a – 25°, 

Fig. 7c – 45°, Fig. 7e – 65°). Furthermore, we observed a similar pattern between neural width 

and channel width for IEM as described in the previous section. When the channel width was 

narrow (Fig. 7a – 25°), IEM performed worse than Bayesian method under broad neural tuning 

width (Fig. 7a, light green to yellow). As the channel width increased (Fig. 7c – 45°, and Fig. 7e 

– 65°), IEM performed worse than Bayesian method mostly for narrow neural tuning width (Fig. 

7c & 7e, dark greens). In other words, the IEM method was comparable to the Bayesian method 

only when the neural tuning width and channel width matched.  
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Figure 7. Benchmark test - correlation ratio. (a), (c), & (e) Difference in classification accuracy 
(Bayesian method – CRF method) was plotted as a function of ratio between tuning dependent and 
tuning-independent noise (1 meaning completely tuning-dependent noise). Colors represent different 
neuronal tuning widths. Width of channel basis function: (a) – 25°, (c) – 45°, (e) – 65°.  (b), (d), (f) raw 
classification accuracy using Bayesian method (solid lines) and CRF method (dashed lines). Channel 
basis function: (b) – 25°, (d) – 45°, (f) – 65°. The dashed lines in (b), (d), & (f) represent chance level 
(0.125) performance in the 8-way classification task. 
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Varying both correlation magnitude and correlation ratio together. In the last scenario, 

we further explored the parameter space by varying both the magnitude and ratio of correlation 

component together, when neuronal tuning width (i.e., 40°) and voxel variance (𝜆 = 0.15 in Eq. 

10) were fixed. Consistent with findings above, we found that a larger correlation magnitude 

tends to cause a reduction in the overall classification accuracy for both methods (i.e., different 

colors in the right column of Fig. 8, solid – Bayesian method, dashed – standard IEM). 

Meanwhile, as the correlation became more tuning-dependent, we found a reduction in 

classification accuracy (i.e., along the x axis of Fig. 8b, 8d, & 8f). Similar to the findings above, 

the Bayesian method again outperformed the standard inverted encoding method for the majority 

of the data points in the parameter space when the neural tuning width was different from the 

channel width (Fig. 8a: neural – 40°, channel – 25°, Fig. 8e: neural – 40°, channel – 65°). IEM 

performed to a similar level as the Bayesian method when the neural tuning width was similar 

the channel width (Fig. 8c: neural – 40°, channel – 45°). 
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Figure 8. Benchmark test - correlation magnitude and ratio. (a), (c), & (e) Difference in classification 
accuracy (Bayesian method – CRF method) was plotted as a function of ratio between tuning dependent 
and tuning-independent noise (1 meaning completely tuning-dependent noise). Colors represent different 
maximum correlation strength (R max). Neural tuning width was fixed at 40°. Width of channel basis 
function: (a) – 25°, (c) – 45°, (e) – 65°.  (b), (d), (f) raw classification accuracy using Bayesian method 
(solid lines) and CRF method (dashed lines). Channel basis function: (b) – 25°, (d) – 45°, (f) – 65°. The 
dashed lines in (b), (d), & (f) represent chance level (0.125) performance in the 8-way classification task. 
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Summary 

In this simulation, we systematically compared the performances of both multivariate 

methods (the Bayesian method and IEM) in a classification benchmark test by varying the 

structure of noise correlation (correlation magnitude, ratio between tuning-dependent and tuning-

independent correlation, or both) and the basis function (25°, 45°, 65°). While both methods’ 

performance dropped as the noise become more correlated, or more tuning-dependent, the results 

evidently showed that the Bayesian method performed better than IEM across vast majority of all 

data points when the parameter space of noise correlation was examined. Through varying the 

basis function (e.g., 25°, 45°, 65°), the results further showed that IEM’s performance became 

much worse when there was a mismatch between the channel basis function and neural tuning 

width. Such findings further demonstrate that regression-based IEM is constrained by initial 

assumption on its channel basis function.  
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CHAPTER 5  

GENERAL DISCUSSION 

We employed an encoding/decoding model to explore the neuronal mechanism of the 

attentional surround suppression in the feature domain. We fist constructed a generative model to 

simulate neural responses with two alternative neuronal mechanisms (tuning shift or gain) 

underlying the attention surround suppression. We then decoded such attentional modulation on 

simulated fMRI voxel responses using the standard inverted encoding method and a Bayesian 

method. Our results revealed that each neuronal mechanism produced its own signature pattern at 

the population level. This result can serve as a prior prediction for further empirical studies to 

adjudicate between different neural mechanisms of feature-based attention. Furthermore, while 

both methods can differentiate the neural mechanisms, we found that the Bayesian method is 

more robust than the standard inverted encoding method in the presence of correlated noise. 

Distinguishing Neural Mechanisms of Surround Suppression in FBA 

Both single-unit electrophysiological method and neuroimaging method are critical in 

investigating the neural mechanisms of FBA. Therefore, it is important to bridge attentional 

mechanisms measured across different levels. At single-unit level, FBA can elicit either a 

neuronal tuning shift or a multiplicative change of neuronal responsivity, which may equally 

explain the non-monotonic surround suppression effect in behavior (Fang et al., 2019; Tsotsos, 

2011). However, such neuronal-level mechanism is likely hidden at the fMRI voxel level using 

traditional univariate analysis or a pure decoding approach (e.g., multivariate pattern analysis, 

MPVA), which are powerful in detecting differences in activation patterns across condition 

while being agnostic to how the differences are created. The strength of the current approach is 

that we explicitly coded the underlying neuronal mechanism of surround suppression into voxel 
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responses using a generative model (Fig. 2c & 2d). From the voxels with known neuronal 

modulation, we then decoded the population response profile to establish a direct link between 

the neuronal mechanisms and their population measures (Fig. 2f). Importantly, each neuronal 

mechanism was shown to have its own signature pattern in population response (Fig. 3 - 4). By 

examining the population response profile within the suppressive surround, our simulation may 

shed further light on how different neuronal mechanisms can explain the non-monotonic effect 

of FBA.  

Tuning Shift Mechanism 

One way that FBA can elicit surround suppression is by shifting neurons within the 

suppressive surround toward the attended feature. Our simulation showed that this inward shift 

of neuronal tuning was transformed into an outward shift at the population level (Fig. 3), which 

can repulse similar but task-irrelevant features further away from the attended feature. In the 

spatial domain, the RF shift was suggested to increase the perceived distance between the 

attentional focus and nearby location – termed the attentional repulsion effect (Suzuki, & 

Cavanaugh, 1997). Other researcher further suggested a linking hypothesis between such 

distortion in physical space and enhanced spatial resolution by attention (Anton-Erxleben and 

Carrasco, 2013).  

The surround suppression effect of FBA may also employ a similar repulsion effect to 

enhance feature resolution. For example, nearby tuning curves (e.g., ±45° offset) that are 

centered in the neighborhood of the attentional focus can be attracted such that they can also be 

activated by orientations near the attended one. However, the labels of the affected tuning curves 

still represent the original orientation, which creates a repulsion in the perceived orientation 

away from the attentional focus. This could be equivalent as physically moving the nearby 
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distractors away from an attended orientation, which reduces interference. In addition, as 

attention attracts tuning curves toward attended orientation, such shift would also cause some 

part of the nearby orientation space to be under-represented. This is because the attentional shift 

also modified the neighboring neuron’s preferred orientation toward the feature in focus, 

resulting in a suboptimal response to the original orientations that they code for. Such weakened 

neural responses can be used to suppress distractors in the vicinity of the attended orientation.  

Gain Mechanism 

Gain modulation is another way that FBA may elicit the surround suppression effect. 

Both feature-based attention and spatial attention can modulate perceptual sensitivity (e.g., 

measured as d’) to luminance contrast through either a response gain or a contrast gain (spatial 

attention: Herrmann et al., 2010; FBA: Herrmann, Heeger & Carrasco, 2012), which has been 

well captured in the highly influential normalization model of attention (Reynolds & Heegers, 

2009). At the neuronal level, the gain modulation can be implemented as a multiplicative factor 

applied to neuronal tuning curve, which modulates the overall amplitude without changing their 

tuning preference (spatial attention: Reynolds et al., 2000; McAdam & Maunsell, 1999; feature-

based attention: Treue & Martinez-Trujillo, 1999; McAdam & Maunsell, 2000). We simulated a 

non-monotonic gain modulation across the neuronal population with a difference of Gaussian 

profile, which consisted of an excitatory component and a suppressive component. A recent 

single-unit study indicated that the suppressive Gaussian component may be explained by a 

tuned normalization pool that is modulated by FBA (Yoo, Martinez-Trujillo, et al., 2021). 

Consistent with the multiplicative modulation on neurons, our simulation also showed a 

reduction of the overall response at population level within the suppressive surround (Fig. 4).  



 68 

Interestingly, the multiplicative gain modulation that attention exerts at the neuronal level 

produces a similar effect as changing the effective contrast of an attended stimulus (Reynolds et 

al., 2000; Martinez-Trujillo & Treue, 2002). Recently, researchers evaluated how attention 

changes the perceived intensity due to attention (Carrasco, Ling & Read, 2004; Liu, Fuller, & 

Carrasco, 2006; Liu, Abrams & Carrasco, 2007). The findings were consistent with an altered 

appearance of the attended stimulus, as if it had a higher contrast (Carrasco, Ling & Read, 2004, 

Liu, Abrams & Carrasco, 2009) or more coherent motion (Liu, Fuller, & Carrasco, 2006), which 

was also accompanied by an enhanced processing in early visual areas (e.g., neural correlates for 

altered contrast, Liu, Pestilli, & Carrasco, 2005, Dugué et al., 2020). It is possible that surround 

suppression may also prevent distractors’ interference by reducing their effective contrast and 

perceptual salience. Therefore, an interesting direction for future studies could be to investigate 

how FBA modulates the appearance of stimulus feature within the suppressive surround of an 

attended feature.  

Despite the absence of direct neural evidence for a non-monotonic gain mechanism, 

computational models suggested that FBA may directly exert gain modulation in sensory visual 

areas to suppress similar but different features in the surround of an attended feature. For 

example, this possibility is supported by the selective tuning model (see Candidate Neuronal 

Mechanisms of Surround Suppression Section in Chapter 2), which assumes a top-down 

feedback modulation that progresses backward along the visual hierarchy and directly inhibits 

units less tuned to the attended one in earlier layers (Tsotsos, 1995, 2011). Alternative to the 

direct suppressive gain modulation predicted by the selective tuning model, it is also possible 

that the top-down feedback modulation may first modulate excitatory cells, which indirectly 

implement surround suppression through lateral inhibition.  
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Furthermore, the tuning shift mechanism and the gain mechanism may not be mutually 

exclusive in feature-based attention. A recent study using a two-layer feedforward model showed 

that a multiplicative gain modulation in low-level regions can lead to tuning shift in higher 

regions through linear integration (Ibos & Freedman, 2014). Therefore, it is possible that the 

tuning shift mechanism may build up progressively in downstream regions of the gain 

modulation. In principle, our modeling framework could be extended to simulate a multi-layer 

network, which will allow us to further explore in future studies whether the two mechanisms 

modulate different stages of the visual processing hierarchy. 

Source of Surround Suppression in FBA   

While the shift or gain mechanism could underlie the surround suppression’s modulation 

in sensory regions, they likely rely on top-down feedback modulation originated from attentional 

control areas. Bartsch and colleagues recently explored this hypothesis by measuring the 

temporal dynamic of surround suppression in feature-based attention using MEG (Bartsch et al., 

2017). To manipulate feature-based attention, they used a 2-alternative-forced-choice task, in 

which participants reported the location of a red target against a green distractor on one side of 

screen. To measure the profile of FBA, a probe stimulus was presented in the opposite hemifield 

of the target stimuli, whose color was systematically sampled away from the attended red color. 

The authors found that the FBA first exhibited a coarse selection profile of the attended red color 

(205 ~ 275 ms) in anterior ventral extrastriate areas (areas anterior to VO and lateral to PHC). 

Following this initial coarse selection (after ~100 ms), there was a suppression of colors near the 

attended red color, which suggest the emergence of surround suppression. In addition, source 

localization analysis revealed that this refinement of attentional profile occurred in more 
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posterior retinotopic visual areas (VO-1/hV4). Taken together, these findings support a role of 

top-down modulation in FBA’s surround suppression.   

At a larger scale, recent work further suggests that the frontoparietal network (FPN) is 

ultimately responsible for the top-down control during feature-based attention (for reviews, see 

Scolari, Seidl-Rathkopf, & Kastner, 2015, Liu et al., 2019). For example, a recent study showed 

that FPN population activity is correlated with behavioral performance in a feature-based 

attention task and disrupting this network (e.g., with transcranial magnetic stimulation, TMS) 

impaired behavioral performance, hence suggesting the causal role of FPN in determining 

feature-based attentional modulation (Jigo, Gong, & Liu, 2018). In sum, current evidence 

suggests that top-down feedback is necessary in eliciting the suppressive surround in both space-

based (Boehler et al., 2009, 2011) and feature-based attention (Bartsch et al., 2017). Given the 

critical role of frontoparietal network in attentional control, it is possible that the FPN also 

operates as the source region that generates surround suppression. For example, it may either 

change the gain of visual cortical neurons or shift their tuning. Therefore, future studies may 

further investigate the relationship between FPN and the non-monotonic surround suppression 

modulation of FBA. 

A Priori Modeling Framework for Future Empirical Studies 

So far, we have discussed that the current approach can be suitable for unifying neural 

mechanisms of surround suppression across different levels of measurements. To further 

examine whether our simulated results represent a robust effect between different neuronal 

mechanisms, we simulated under a wide range of parameter combinations including tuning width 

and noise level. Importantly, to provide an equal footing for comparing the different neuronal 

mechanisms, we used the same neutral dataset to train different models but test the model on 
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attentional data generated by different neuronal mechanisms. Therefore, the only difference 

between attentional conditions is the underlying neuronal mechanisms. Such an analytic scheme 

provides an unbiased way to distinguish different mechanisms without introducing spurious 

results due to overlap between training and testing data (Sprague, Boynton, & Serences, 2019).  

Under the current modeling framework, we established a linking hypothesis between candidate 

attentional modulations at the neuronal level and their manifestation at the fMRI voxel level.  

Bridging neural mechanisms measured at different levels is a nontrivial endeavor. For 

example, it is worth noting that the repulsion effect at the population level is in the opposite 

direction of the neuronal shift, which was toward the attended feature. This observation suggests 

a disconnect between single neurons’ behavior and their collective behavior at the population 

level, which is not unique to the repulsion effect. For instance, spatial attention has been found to 

modulate the neuronal responses to contrast. While single-unit studies typically found a contrast 

gain or a response gain modulation depending on the relative size of attentional field and 

stimulus (Reynolds & Heeger, 2009), neuroimaging studies more often report an additive 

improvement (e.g., vertical shift) in the contrast response function (Buracas and Boynton, 2007; 

Li et al., 2008; Murray, 2008; Pestilli et al., 2011). Simulation further showed that such finding 

can be well explained by the normalization model assuming different balance between the 

attentional field and stimulus size encountered by a neuronal population, which resembles a 

combination of contrast gain and response gain modulation across the entire population (Hara et 

al., 2014). Therefore, a forward simulation combined with appropriate decoding method is 

necessary to relate neuronal level and population level phenomena.  

In addition, it is recently suggested that directly inferring the underlying neural 

mechanisms using the inverted encoding model may be inappropriate as the signal-to-noise ratio 
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of the fitted model can also change the property of the reconstructed channels (Liu et al., 2018). 

When there is a limited number of candidate mechanisms, a forward simulation approach like 

ours may provide a grounded solution to this problem by building a direct link between the 

neuronal mechanism and its population pattern. When the simulated population response showed 

qualitative difference as the current results demonstrate, one may use the simulation as a priori 

prediction for guiding empirical work and interpreting the findings. Admittedly, there may not be 

a simple solution to unequivocally assay the neural mechanism across different level of 

measurements. However, for early visual processing that are well studied and can be reasonably 

constrained with physiological knowledge, the encoding/decoding approach may help 

researchers to better understand the model behavior after inverting the encoding model and to 

avoid misinterpreting the changes in reconstructed channels by conducting simulation under 

different parameter combinations. Taken together, the current computational modeling and 

simulation may also serve as a general framework and reference point for interpreting empirical 

findings in future studies on the neural mechanism of FBA.  

Comparison Between the Multivariate Methods 

The encoding model approach has been widely employed to generate a functional 

description of a brain area and make quantitative prediction of voxel response. However, 

inverting the encoding model only leads to reconstruction of initial model assumption, 

stimulating debates in whether reconstructed channel response can represent the population 

response (Gardner & Liu, 2019, also see Sprague et al., 2019). The problem at its core is that the 

inverting approach only reconstructed the intermediate step (Gardner & Liu, 2019), which is 

different from previous applications that further perform stimulus identification (Kay et al., 

2008) or reconstruction (Brouwer & Heeger, 2009). It is suggested that the Bayesian technique 
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developed by van Bergen and colleagues (van Bergen et al., 2015) could be more suitable to 

explore underlying neural mechanisms as it aims to recover information on stimulus instead of 

initial assumption of the encoding model (Liu et la., 2019; Gardner & Liu, 2019). 

Therefore, we compared the standard inverted encoding model with the Bayesian 

decoding technique that further transforms the reconstructed channel response function into the 

probability distribution of the stimulus given the voxel response patterns. As reviewed in Chapter 

2, IEM method has been fruitfully used to characterize neural mechanisms of higher order 

cognitive function at sub-voxel level, including perceptual distortion effect (e.g., shift of 

reconstructed population response profile) caused by categorical learning (Ester et al., 2016). 

The Bayesian method produces a full probability distribution of all the possible stimuli given a 

particular neural response, which in principle contains stimulus information rather than merely 

producing a point estimation of the most likely stimulus. Indeed, our simulation demonstrated 

that the Bayesian technique was also suitable for exploring the underlying mechanisms of 

complex cognitive functions, such as differentiating the shift vs. gain mechanisms in FBA. 

Moreover, for a benchmark stimulus classification task, the Bayesian method provides more 

reliable results when the channel basis function was varied (Fig. 6 - 8). In fact, the standard IEM 

method only performed to a similar level as the Bayesian method when there was a match 

between the channel basis function and neural tuning curve (i.e., similar width). Given that the 

neural tuning width is variable in the human brain, it may impose a greater challenge for the 

standard IEM than the Bayesian method.  

Another important property of the Bayesian method is the explicit modeling of the noise 

structure among voxels, which are inherently correlated. Voxel-wise correlation, likely a result 

of neuronal correlations (Averbeck, Latham, & Pouget, 2006; Cohen & Kohn, 2011; Kohn, 
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Coen-Cagli, Kanitscheider, & Pouget, 2016), may have a detrimental effect on the accuracy of 

neural representation of stimulus, while only a handful of studies have recently begun to 

characterize its impact on the population activity at the fMRI BOLD level (van Bergen et al., 

2015; van Bergen & Jehee, 2018). In the benchmark classification task, we systematically varied 

the covariance among voxels and found that the Bayesian method outperforms the standard 

inverted encoding method. Such advantage of the Bayesian method is likely due to the fact that it 

attempts to capture the correlation structure of the noise, while the standard inverted encoding 

method does not explicitly model the structure of the noise. Indeed, it assumes all the voxels are 

independent. Our results thus imply that when noise correlation is not extremely high or the 

correlation structure changes among experimental conditions, the Bayesian method produces 

superior results than the inverted encoding method.  

Conclusions 

While the feature-similarity gain model remains one of the most influential models of 

attention, recent studies have revealed non-monotonic effect in behavior that it cannot account 

for. At a coarse level, the feature-similarity gain predicts a suppression for dissimilar features, 

which is consistent with behavioral, neural imaging and single-unit studies. However, on a finer 

scale, it fails to explain how FBA exclude similar but different distractors to an attended feature. 

In recent years, an increasing number of studies showed that FBA can elicit a non-monotonic 

surround suppression, which enhances the signal-to-noise ratio in the vicinity of an attended 

feature. In fact, both the surround suppression and the feature-similarity gain modulation may be 

at work but on different similarity scale to enhance the most relevant aspect of the sensory input 

at the expense of unattended information.  
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The first aim of the current work was to investigate candidate neural mechanisms 

underlying the non-monotonic profile of FBA through simulation and computational modeling. 

The attentional template stored in working memory may exert a top-down modulation in eliciting 

the suppressive zone. One possibility is that the top-down feedback signal can shift the tuning 

preference of sensory neurons toward the attended feature to further enhance target 

representation (i.e., matched filter). Alternatively, top-down feedback may operate via a 

multiplicative gain mechanism without changing other properties of neuronal tuning. 

Interestingly, previous studies suggested different linking hypotheses between the candidate 

neural mechanisms and perceptual differences at the appearance level. Therefore, one interesting 

direction for future studies is to further test how the surround suppression may affect the 

perceptual appearance of stimulus in behavioral studies (e.g., contrast change or distortion in 

feature space). 

Our simulation demonstrated that the candidate neural mechanisms can be distinguished 

at the fMRI voxel level using non-invasive neuroimaging method. This is made possible with the 

most recent developments in neural decoding technique in computational neuroimaging – a 

inverted encoding model technique that reconstructs population-level response profile and a 

Bayesian technique that further transform the population-level response into probability 

distribution in the feature space. Both methods decoded signature patterns associated with 

different candidate neural mechanisms. Therefore, it is possible to use the findings in the current 

simulation as a priori predictions for future studies and further examine the candidate 

mechanisms of surround suppression in the human brain. 

Furthermore, our simulation work may provide a modeling framework for empirical 

studies using non-invasive methods like fMRI. The encoding/decoding approach in the current 
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simulation work can help bridge the gap in neural mechanisms across different levels of 

measurements, which provides a solution to the reverse-inference issue often found in model-

based analysis. Specifically, one can implement the neural mechanism in a forward simulation, 

and then decode it at a different level (e.g., voxel level). In this way, our current work should 

contribute to the general effort in better understanding the underlying neural mechanisms of 

cognitive functions. 

Lastly, the current work further revealed advantages of the Bayesian technique over the 

IEM method in the presence of correlated voxel noise. First, the Bayesian method captures the 

correlated noise structure, while the IEM does not. This is important given that neural noises are 

intrinsically correlated, which can greatly impact neural representations. Second, the Bayesian 

method aims to reconstruct stimulus information (i.e., probability distribution), while the IEM 

aims to recover model assumption. As our results suggested, the Bayesian method provides more 

accurate estimation of stimulus and is less influenced by initial model assumptions (e.g., channel 

basis function). Therefore, these new findings may provide further guidance for future empirical 

studies when considering different decoding methods.  

 

 

Table 1. List of variables in the model simulation 
Parameter Description 
von Mises function (neuronal tuning curve)  
s Stimulus orientation in degrees 
𝑓"(𝑠) Orientation tuning curve of t-th neuronal population 
µt Tuning preference of t-th neuronal population 
k Concentration parameter controlling neuronal tuning width  
𝑎, 𝑏 Amplitude and baseline for circular Gaussian (von Mises) function 
Attentional modulation at the neuronal level 
µatt Attended orientation stimulus (90°) 
𝐺" Gain modulation for t-th neuronal population 
A1, w1, A2, w2, L Parameters controlling the overall shape of Difference of Gaussian 

function, which simulates the non-monotonic gain modulation 
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Table 1 (Cont’d)  
a, b Parameters controlling the linear feature-similarity gain modulation 
SSrange Surround suppression range (±45°) 
fMRI Voxel response 
vi(s) i-th voxel’s tuning curve 
Wneuron Linear weights combining neuronal response into voxel response  
e Simulated voxel noise draw from a multivariate distribution 
Voxel-wise noise correlation 
Σ Covariance matrix of simulated voxel noise 
τ Standard deviation of voxel response 
𝜆 Proportion of voxel standard deviation relative to mean voxel response 
Rtuning, Rarb Tuning-dependent and tuning-independent noise correlation among 

voxels 
p Proportion of Rtuning in the overall correlation among voxels 
r Parameter scaling the maximum correlation strength 
Decoding (IEM & Bayesian method) 
Btrain, Btest Training data set of voxel responses and testing data set of voxel 

responses 
𝑊¡  Estimated channel weights using training data set using standard IEM 
𝐶"ZBh[ Predicted channel response for training data set 
Ω Estimated covariance matrix from training data set using Bayesian 

method 
𝐶¼"]," Reconstructed channel response function using test data set using 

standard IEM 
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Figure 9. Full results for reconstructed CRF (Channel basis function: 25°). Color convention is the 
same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. Within each panel, 
CRF was plotted at each individual offset (attentional condition: solid, neutral condition: dashed). Panels 
are shown on a 9 by 8 grid. Rows represents different neuronal tuning width parameters (25°, 30°, 35°, 
40°, 45°, 50°, 55°, 60°, 65°), and columns represents different voxel variances (𝜆: 2.5%, 5%, 10%, 15%, 
20%, 25%, 30%, & 35%). See Method section for details.  
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Figure 10. Full results for posterior probability distribution (Channel basis function: 25°). Color 
convention is the same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. 
Within each panel, posterior probability was plotted at each individual offset (attentional condition: solid, 
neutral condition: dashed). Panels are organized on a 9 by 8 grid. Rows represents different neuronal 
tuning width parameters and columns represents different voxel variances. 
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Figure 11. Full results for orientation shift (Channel basis function: 25°). (a) full results for shift 
mechanism. (b) full results for gain mechanism. Panels are plotted on a 6 by 8 grid. Rows represents 
different neuronal tuning width parameters and columns represents different voxel variances. Within each 
panel, orientation shift was plotted for each offset condition. Figure convention is same as in Fig. 5a & 
5b. The amount of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von 
Mises function) from the actual stimulus orientation after fitting the CRF (black) and posterior probability 
distribution (red).  
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Figure 12. Full results for normalized width (Channel basis function: 25°). (a) full results for shift 
mechanism. (b) full results for gain mechanism. Figure convention is same as Fig. 5c & 5d. Rows 
represents different neuronal tuning width parameters and columns represents different voxel variances. 
Within each panel, estimated width was plotted for each offset condition after fitting CRF (black) and 
posterior probability (red). For each combination of parameters, estimated width was normalized relative 
to maximum value of the 8 offset values. 
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Figure 13. Full results for reconstructed CRF (Channel basis function: 45°). Color convention is the 
same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. Within each panel, 
CRF was plotted at each individual offset (attentional condition: solid, neutral condition: dashed). Rows 
represents different neuronal tuning width parameters (25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°), and 
columns represents different voxel variances (𝜆: 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, & 35%). See 
Method section for details.  
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Figure 14. Full results for posterior probability distribution (Channel basis function: 45°). Color 
convention is the same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. 
Within each panel, posterior probability was plotted at each individual offset (attentional condition: solid, 
neutral condition: dashed). Rows represents different neuronal tuning width parameters and columns 
represents different voxel variances. 
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Figure 15. Full results for orientation shift (Channel basis function: 45°). (a) full results for shift 
mechanism. (b) full results for gain mechanism. Panels are plotted on a 6 by 8 grid. Rows represents 
different neuronal tuning width parameters and columns represents different voxel variances. Within each 
panel, orientation shift was plotted for each offset condition. Figure convention is same as in Fig. 5a & 
5b. The amount of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von 
Mises function) from the actual stimulus orientation after fitting the CRF (black) and posterior probability 
distribution (red).  
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Figure 16. Full results for normalized width (Channel basis function: 45°). (a) full results for shift 
mechanism. (b) full results for gain mechanism. Figure convention is same as Fig. 5c & 5d. Rows 
represents different neuronal tuning width parameters and columns represents different voxel variances. 
Within each panel, estimated width was plotted for each offset condition after fitting CRF (black) and 
posterior probability (red). For each combination of parameters, estimated width was normalized relative 
to maximum value of the 8 offset values. 
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Figure 17. Full results for reconstructed CRF (Channel basis function: 65°). Color convention is the 
same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. Within each panel, 
CRF was plotted at each individual offset (attentional condition: solid, neutral condition: dashed). Rows 
represents different neuronal tuning width parameters (25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°), and 
columns represents different voxel variances (𝜆: 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, & 35%). See 
Method section for details.  
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Figure 18. Full results for posterior probability distribution (Channel basis function: 65°). Color 
convention is the same as in Fig. 3. (a) Results for shift mechanism. (b) Results for gain mechanism. 
Within each panel, posterior probability was plotted at each individual offset (attentional condition: solid, 
neutral condition: dashed). Rows represents different neuronal tuning width parameters and columns 
represents different voxel variances.  
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Figure 19. Full results for orientation shift (Channel basis function: 65°). (a) full results for shift 
mechanism. (b) full results for gain mechanism. Panels are plotted on a 6 by 8 grid. Rows represents 
different neuronal tuning width parameters and columns represents different voxel variances. Within each 
panel, orientation shift was plotted for each offset condition. Figure convention is same as in Fig. 5a & 
5b. The amount of shift was computed by subtracting the estimated orientation (i.e., mean of fitted von 
Mises function) from the actual stimulus orientation after fitting the CRF (black) and posterior probability 
distribution (red).  
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Figure 20. Full results for normalized width (Channel basis function: 65°). (a) full results for shift 
mechanism. (b) full results for gain mechanism. Figure convention is same as Fig. 5c & 5d. Rows 
represents different neuronal tuning width parameters and columns represents different voxel variances. 
Within each panel, estimated width was plotted for each offset condition after fitting CRF (black) and 
posterior probability (red). For each combination of parameters, estimated width was normalized relative 
to maximum value of the 8 offset values. 
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Figure 21. Full results for a pure feature-similarity gain modulation. (a) reconstructed CRF. (b) 
Estimated posterior probability distributions. Within each panel, CRF/posterior probability was plotted at 
each individual offset (attentional condition: solid, neutral condition: dashed). Rows represents different 
neuronal tuning width parameters, and columns represents different voxel variances.  
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