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INTRODUCTION

(1) NETWORK SYNTHESIS.

There are several aspects to the gen­
eral field of Network Synthesis.

One interesting facet is the Approxi­
mation problem. The desired characteristic is 
usually given in a graphical form. The problem 
requires the construction of a mathematical ex­
pression to describe a network that possesses 
the desired characteristic, within a permissible 
approximation. Elliptic functions, Tschebychef 
polynomials, and Butterworth functions often 
appear in this type problem.

Another aspect of synthesis is the Real­
ization Problem. What mathematical or graphical 
functions can lead to a physically realizable net­
work? What geometric forms can this network assume? 
Much of the pioneer work in the Realization Problem 
has been done by 0. Brune. (1)

This thesis will deal with both aspects 
of Network Synthesis.

1 Brune, 0. Synthesis of a Finite Two TerminalNetwork Whose Driving Point Impedance 
is a prescribed function of Frequency. 

Journal of Math and Phys., vol. 10, ppll91-235



In this thesis, the response or an ideal 
filter Is approximated by a mathematical expres­
sion (Approximation problem). This expression is 
used to realize a symmetrical lattice, composed of 
resistances and capacitances (Realization problem).

The restriction to these two elements is not 
Just an academic choice. R - C (Resistance- 
Capacltance) networks can be designed to give many 
responses, and the additional loss that they intro­
duce, due to dissipation in the resistances, can be 
compensated by subsequent amplification. In many 
cases, where only a frequency discriminating cir­
cuit Is desired, the loss introduced by the resis­
tances is of no importance and can be ignored. The 
exclusion of inductances might introduce economic 
and construction advantages. Certainly the problem 
of magnetic pickup is reduced when there are no In­
ductances .

The terminology in Network Synthesis has 
become confused, since Mathematicians, physicists, 
and Engineers are all contributing to the field. It 
Is advisable to clarify terms at this point.
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(2) POUR TERMINAL NETWORKS
A Pour Terminal Network, or Quadripole, has 

a pair or terminals designated as Input, and the 
other pair designated as Output.

Associated with the input terminals are the 
Input Voltage E^and the Input Current 1^.

The output terminals provide Output voltage 
and Output Current I .

In the usual case a generator E with an in­
ternal Generator Impedance Z^ is connected to the 
input. A Load Impedance Z2 is connected to the 
output. This thesis restricts these impedances to
pure resistances R and R .1 2

Figure 1 Illustrates the notation that will 
be employed. Since the direction of the currents 
is arbitrary, the notation shown is chosen.

I I
Z FOUR TERMINAL E Z
E E NETWORK

Figure 1 Four Terminal Network with Load.
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(3) NETWORK RELATIONS
The relations between the input current and 

voltage, and the output current and voltage are 
found In any reference on Network Theory - 2,3*4.

I1 - yll El * yl2E2 E1 - zllIi + Z12I2Eq.1 E q .2
X2 -= y21 E1 4-y22E2 E2 - z21Z1 + Z22I2
yll,y22 are the short circuit driving point admittances.
y12*y21 are the short circuit transfer admittances. 
zll,z22 are tlrie °Pen circuit driving point impedances. 
z12*z21 are °Pen circuit transfer impedances.

In a passive network y^2 - y21* z12 “ Z21 *
Gewertz (5) has shown how the four admittances 

or impedances uniquely characterize a network, and 
has set up realization techniques when these para­
meters are known.

2 Guillemln, Ernst A. Communication Networks
Vol. II 1935 New York: John Wiley

3 Guillemin, Ernst A. Communication Networks
Vol. II 1935 New York: John Wiley

4 Everitt, W. L. Communication Engineering
Second Edition 1937 New York McGraw-Hill

5 Gewertz Synthesis of a Finite Four TerminalNetwork Jour. Math and Phys. Vol. 12 
1932 - 1933 PP. 1-257

-4-



(4) TRANSFER IMPEDANCE
Consider the generator impedance and the load 

impedance absorbed in the quadripole, as in figure 2 
The ratio of the generator voltage to the load cur­
rent is E/l. This ratio is defined to be the Trans­
fer Impedance of the quadripole.

Figure 2

New Four Terminal Network TE, f
Quadripole for Transfer Impedance

The output voltage of E^ of this quadripole Is zero, 
for there Is a short circuit across the new output 
terminals. Also E * E1 .

When these values are inserted into equation
2, there Is obtained 
Assuming a passive circuit.

X2 = Ely21 Zt * e/ I2 “ 1/y21

1/y!2 Eq. 3
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(5) LOSSES
The most efficient way of coupling the gener­

ator to the load is through an ideal transformer.
The power delivered to the load in that case will 
be called P0 . A quadripole inserted between the 
generator and load will transmit a power to the 
load.

The ratio P^/l^ Is less than or equal to 
unity. The equality holds when the quadripole is 
an ideal transformer.

It is shown (6 ) that in the ideal case,
Zt ® ̂  VZiZ^*

Consider the ratio of powers P^/P0 .
It is effectively /I*/* Zt 9 /^|2- 'Lh/ T.f 2 0 I X*) P o
Divide the fraction by E^E^and there results

£ '-| * llT̂RprJ *
The ratio R. /P0 can be defined - 

Power Insertion Ratio *j2 V zlz2 Yt| a E q * ^

zt

6 Mason, w. P. Electromechanical Filters and Wave
Transducers 1st Edition 1942 
New York: D. Van Nostrand. p24
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In the study of four terminal networks, the 
Insertion Ratio is often considered. This ratio 
compares the current that would flow in the load 
due to ideal transformer coupling, to the current 
that actually flows when the quadripole is inserted 
between generator and load Impedances. It can be 
evaluated, as follows:

This is the Insertion Loss Ratio * .
Bode (7) prefers to deal with the inverse ratio,

A and B are respectively the transfer loss and the 
transfer phase. Bode does not use the absolute values 
in the ratio of currents but treats the currents, and 
the ratio, as complex numbers. However, the logarithm 
of a complex number Z ) Q is given by log |Zi-*■ JO.

Thus, if one takes the reciprocal of the Insertion 
Loss Ratio, and then takes the natural logarithm of this 
new ratio, the Transfer Loss is obtained.

He defines © - log

Ibid 3 P. 73
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Consider Yt .

Yt = 0t ^ 3Bt, 
Yt . Gt - JBt ,

|Yt\ - (0t* ♦ )

Then Y

This result will be used later in this thesis 
in a method suggested by Bode.

7 Bode, H. E. Network Analysis and Feedback Amplifier
Design 19^5 New York: D. Van Nostrand

Ibid 7 P. 230



(6 ) R-C QUADRIPOLES
The essential features of R-C dipoles and 

quadripoles have been established by Cauer (8 ), 
and only the points of interest to this thesis 
are presented here.

The driving-point immittances*of R-C Networks 
are rational functions of the complex frequency var­
iable P- Jw. Poles and zeros are simple, real, and 
interlaced.

The immittances can be expanded into partial 
fractions:

n
, * Caf) (<v>Z ( p ) ^ a  + K  a Eq. 7

P ^  P + P w 1
n

,  v  < (uJ ^Y(p) = b .p + b  ̂ p. J  b Eq. 8
p +1

where all the a a n d  b ^  are positive.
These expansions lead to the two canonic forms 

developed by Cauer for R-C networks, figure 3-

8 Cauer, E. Die Verwirklichung von Wechselstromwider- standen vorgeschriebener Frequenzahabhangigkeit. 
Archlv F. Electrotechnik, vol. 17 P355 1927

* Ibid 7 P.15
-9-



o
(•ai

l/aM  i

/WWXA— —J |

(Impedance Form) (Admittance Form)
Figure 3 Canonic Forms of R-C Networks.
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Quadripole properties are found by insert­
ing the partial fraction expansions, Eq. 7 and 
Eq. 8 , into the general equation 1 and 2.

The terms are:

z.. = a

n
2/i * + 7 îxp p ^ p^1

n
r—j xr-

* K  -P * *>„ + p. > b/7P + Qv
<:v

n
b/z ■ P -V b ,2 p . 2 btrv

P -►1
The very important Residue Theorem0 states:

it CM ̂  _ vV) i ja « - 0 , a2i i 0 , a M .aijt ~(a,^ ) i: 0 
0 , b j '1 i 0 , b„<v .bJt<v % O

for all r. "
as the necessary and sufficient conditions for the 
physical realizability of a network.

° Ibid 3 P. 216
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If* the R-C quadripole which meets these con­
ditions Is Inserted between the generator and load, 
as In figure 2, the transfer Impedance Is Zt .

The transfer Impedance Zt is then a rational 
function of the complex frequency variable, p f with 
real coefficients. Its zeros are the same as any 
driving point Impedance seen In any mesh of the net­
work, and since the network Is R-C, the zeros are 
real, negative and simple.

Since R, is In series with the Input to the R-C 
network, there can be no zero at p = ^  .

The poles of Zt are produced either by the zeros 
of z^2 or by the poles of z//#zJ4 which are not in

There are no restrictions on the zeros of z^2 , 
for It Is not a driving point impedance, so there are 
no restrictions on the poles of 2t , other than that 
they occur In conjugate pairs when complex. Figure 4 
shows the possible arrangements. Poles are denoted by 
crosses, zeros by circles.



p-plane p-plane

o— ©■

Figure 4 Typical Pole and Zero Patterns

The preceding analysis of R-C networks closely 
follows the form in a paper by Orchard (9).

9 Orchard, H. J. The Synthesis of R-C Networksto have Prescribed Transfer Functions 
Proc. I.R.E. April 1951 p.428
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(7) SYNTHESIS
When the generator and load impedance are 

absorbed into the quadripole, as in figure 2 , 
the expression for Zt is Zfc = l/y12.

Knowledge of y12 is not sufficient to uniquely 
determine the quadripole0, for y ^  and y22 can be 
any values that satisfy the residue conditions. To 
complete the synthesis, many devices can be used.

Darlington (10) uses the Zt and; as additional 
conditions,he requires that the quadripole consist 
of pure reactances terminated in, at most, one 
resistance. This, of course, is not acceptable for 
R-C networks.

Bode requires that the quadripole be a con­
stant resistance lattice. This implies that the 
arms of the lattice have an Inverse relationship 
to each other. This could introduce Inductances 
and Is not acceptable In R-C networks.

Guillemin (11) has a system that results In a 
ladder formation, but requires a generator of zero 
internal impedance.

° Ibid 5
10 Darlington, S. Synthesis of Reactance Pour Poles.

Jour, of Math. Phys. Vol 18 No. 4 Sept. 1939 pp. 257-353.11 Guillemin, E. A. Synthesis of R-C NetworksJour, of Math. Phys., Vol 28, p.22 April 1949 
00 Ibid 7 p.229
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Guillemin*s method also restricts his choice 
of functions to the minimum phase shift function. 
(All zeros and poles are in the left half of the 
p « plane.) This last restriction is due to 
his choice of a ladder formation, for & "Any pas­
sive ladder network is a minimum phase shift 
structure.11

Orchard00 has an ingenious device to synthesize 
the network. Assume a symmetrical network. Then
^ 1 1 - ^ 2 2 ’ Choose y-ĵ  - y 22 to satisfy the equality 
sign in the residue condition (Eq. 10).

Then b ^ s  b22'°, I • For a11 r *
From the expansion of y12 (Zt )# , it is pos­

sible to form y12, y22 making all the residues 
of y12 positive. "With the specification of
y22> ^i2 > ^21 ’ 1S ^ en P°ssit)le synthesize 
the network in any suitable form.

Guillemin ° shows that the residue condition 
is Identical to the realization condition of a 
symmetrical lattice, so If the network is realizable 
in any form, it is always realizable

Ibid 7, p. 243 
Ibid 9 

o Ibid 3, P. 381
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in the lattice form. This does not rule out 
other forms, but assures the existance of at 
least one form, the lattice structure.

The lattice will have arms:

YA " yll 12 YB - yll ' y12 .E q * 11
Orchard then extracts equal resistances 

from the lattice arms to act as generator and 
load resistances. The result appears as figure 
5.

| Uri — f+z* \
4

Figure 5 Extraction of Terminating Resistors 
The fact that the generator and load 

resistances are equal is a design limitation 
of the method.
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(8 ) APPROXIMATION PROCEDURE
This thesis uses a modification of a device 

of Guillemin ° to approximate a frequency response.
F(w) is given graphically over the complete 

range --»> < uj s «o
A change of variable ux* tan ©/2 changes 

the range to -it i &  s tt t and the F (saO is trans­
formed into a periodic function of ©. This F(^) 
is then approximated by Fourier Series. Another 
transformation, x -= cos © , changes the series 
to a polynomial in x , F(x). The last transform­
ation, x 1 - o* , returns the approximation to 
the plane.

The closeness of this approximation is deter­
mined by the nearness of the Fourier Series approx­
imation to the prescribed F(0). There are many 
classes of functions that can be approximated by 
Fourier Series in an arbitrarily close manner, and 
if the F(®) falls into one of these classes, the 
approximation will be as close as desired.

The mathematical expression that results from 
the above manipulation Is not in a form suitable for 
R-C networks. The denominator would lead to multiple 
poles.
° Ibid 11



In this thesis the approximate P ^ )  will be 
divided by a function of that is very close 
to unity over the range of ̂  . The choice of 
this dividing function will be made to clear 
the denominator.

There is liberty in choosing this function, 
as long as the choice does not change the final 
result to a point that the approximation is not 
as close as desired.

-18-



(19) APPROXIMATION EXAMPLE....LOW PASS FILTER
The graphical representation or the desired 

filter is given in figure 6 .
The filter characteristic has been given In 

terms of lYTj* has been shown to be propor­
tional to the power insertion ratio. (Eq. 4)

For the sake of simplicity the graph as 
been normalized with respect to frequency and mag­
nitude.

The first change ^ = tan e/2 results In the
F(e) as shown In figure 6b.

There Is no difficulty in approximating figure
6b, by Fourier Series. Since F(©) is continuous
and of bounded variation, a Fourier Theorem (12)
states that the series converges uniformly to F(0).

By standard methods the first few terms of
the series are....

F(0 - .500 - .635 cos© -.204 cos3© +.1215 cos 50Eq. 11
Since only a few terms will be used, the above approx­
imation might become negative for some 6 . this is not 
allowable for |YTix > so a different form is used.
F(©)- B_+.635 cos©-.204 cos 3© +.1215 cos50 Eq. 12 
B^ Is chosen large enough to keep F(©) positive.

12 Churchill, R. V. Fourier Series and Boundary Value 
Problems. 1941 New York: McGraw-Hill p .86
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At O = "ir/2, which corresponds to -̂=-1, the 
value of F(©)- or \Yr (©)I2- - B —

Make the transformation x ~ cos Q . Then
. 3 ^ *■cos 3© * 4x - 3x# cos 5© l6x - 20x ■* 5x

The approximation then becomes:
l^x)]1 r ,635x 3- .8l6x ♦ .6l2x «.1.944af -2.43x%.6o75x-* 

• 1.944x*’-3.246/ + 1.8545x ♦ B- Eq. 12
For some value of x, and some ^ , the |Yr(x)l* 

reaches a minimum. If this minimum is fixed at zero, 
the lYr (^)i* will not be qero at *•»* •« . This is 
the result of using too few terms in the Fourier 
Series.

Figure 7 compares the approximation to the
F(©). The Inclusion of additional cosine terms
would improve the approximation, but increase the
work In the computation.

Themlnlmum Is found by differentiating Eq. 12.
d i Yt(X)]* - 9.720x* - 9.738x^1.8545 * 0  Eq. 13x
This is a quadratic in x , roots 9.738* 4.972197440
The root of interest is x 2 a .245164, x s. .495 
At this value of x, B^jnust be .5823278 to have



CALCULATIONS FOR GRAPHS (Figures 6 & 7)

© Cos 0 .635Cos 0
.204 

Cos 3© .1215 Cos 5© - .033 Cos 70
0 1.0 .635 -.204 .1215 -.083

10 0.9848 .625 -.177 .073 -.0284
20 0 .9397 .596 -.102 -.0215 .06453° 0 • 866 .55 0 -.105 .07240 0.766 .485 . 102 -.144 -.0144
50 0.6428 .408 .177 -.04l6 -.081660 0.500 .317 .204 .0607 -.041
1° 0.342 .217 .177 .1195 .053480 0.1736 .110 .102 .093 .07890 0 0 0 0 0

100 -.1736 -.11
■ — --------- ------------------- --—

.078

From 90 to 180 repeat opposite in sign.

0 3 term 4 term Correspondingsiim sum U)
0 .5525 .4695 010 .521 .4926 .08720 .4725 .5370 .176

3° .445 .517 .26840 .473 .484 .364
50 .5434 .4618 .466

60 .5827 .5417 .57770 .5135 .5669 .700
80 .305 .383 .83990 0 0 1.0100 -.305 -.383 1.19H O -.5135 -.5669 1.428

120 -.5827 -.5417 1.7322.144130 -.5434 -.4618140 -.473 -.484 2.747150 -.445 -.517 3.732
160 -.4725 -.5370 5.6713170 -.521 -.4926 11.430
180 -.5525 -.4695

-21-



The graphs are even functions ofu> . Then 
P (w)s F(-to). The graphs could he shown to he 
symmetric In oo ahout the origin, hut only posi­
tive to is of interest.

This leads to:
|YT (x)Jx s 1.944x* -3.246x *1 .8545x 4 .5823278 Eq.l4 

The next change of variable x, 1 - to* gives 1YT («)(*»1 r la *
1 .944(1-to* )f-3.246 (1-co* )(lr co1^ !  .8545(1- &  ) (!**>* Wfrll + q?*)(1 + wl.- J,

Eq.15

s

Multiplication and 
coefficients in a

binomial expansion puts the 
form expressed in the tables below:

CO
*CO 1

CO Cjo
1.944 -1 5 -10 10 -5 13.246 1 -1 -2 2 1 -11.8545 -1 -3 -2 2 3 1
This gives: 

6o’° CO* CO coa CO*-1.944 9 .720 -19.44 19.44 -9.720 1.9443.246 -3 .246 -6.492 6.492 3.246 -3.246
-1.8545 -5 .5635 -3.709 3.709 5.5635 1.8545
The numerator is then formed:
(B„- .5525)<o°+ (5B«* ♦ .9105)* ♦ (10B„- 29.641 )u>* + • • • •
. . . (1 OB *►29.641) to* + ( 5B«» + . 9105 ) CO*"4 (B^t.5525)

When the assigned value for B„ is inserted (B^ *.5823278) 
in the above, there results: .029827740 + 3.8221394?*-
23.817722 u>*+ 35.464278co* 4 2.00113940*+ 1 .13482.

-22-



Remove a factor of .0298277 and there is formed:

l̂ r (u )|* . .0298277(m'% 128.1 Kg -798.5a)*. 11.89.71 u -1 .

. ■ .67.089908 u>L* 38.046 Eq. 16

To get In a form for R-C synthesis, divide the above 
fraction by C(co*).

C ( Coz) = ( » .81 )(o3fct .902)(a>1^ 1 ) ( coS 1.02 ) (0)1* 1 .2 1)
i V t  1 )*■

There is a little latitude in the choice of C(u>t), 
and the above form is chosen for the ease in subse­
quent calculations. A table of values for C(Co*) 
shows that the choice of this expression is close 
to unity for all oj .

CO1 0 1 1.5 2 31
c ( 00l) .9742 .99952 1.0016 1.0024 1.00288

cox 5 .
C (A)1) 1.00261 1.0
The divisions of Eq. 16 by C(co4) leaves as a final result:
lY, (c*)j . ( .0298277X u A  128.14/-798.506^1189.710J.V 

n —  .H I T T — . £627( "1 . Oc!) ( 1T2I) ---
 6 7 .089686<J" t 3 8.04595 Eq. 17

This is represented by figure 8 and essentially com­
pletes the approximation problem, except for the ques­
tion of the physical realizability of the trapezoidal 
filter. -23-
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(10) SYNTHESIS PROCEDURE
The next step is to synthesize a network that 

is characterized by equation 17.
The numerator of the expression is a polynomial 

of fifth order in to*. The roots of the polynomial 
must be found. One root is already known for the 
|yt (fc*))4, was chosen to have a minimum of zero. This 
minimum occurred at x » .495 which is u>*=3.045878.

An examination of the polynomial shows that 
there are two changes of sign. One of Descartes 
rules is applied (13)- This rule states that there 
will be either two or no positive roots for the poly­
nomial. There Is assuredly one root, and the expres­
sion does not cross the axis in more than one place 
on the graph. Thus there is a double root at 
cor -- 3.045878.

To find the rest of the roots, the method of 
Lin (14) is employed. The result is:
l*T (-)i'*
. 0298277 ( - 3 .  OA59 ) (<**. 134.158 ) (to* *. 07375 J- * ■ 03056783 ) ( { cjt<■.902 ) ecu'*♦ ljlto1* 1 .02)C^*f IT21) _Eq. 18

13 Pipes, Louis A. Applied Mathematics for Engin­eers and Physicists. p.98, 1946 New York: McGraw
14 Lin, S. N. Method of Successive Approximations ofEvaluating the Real and Complex Roots of Cubic and Higher Order Equations. 

Jour. Math and Phys. Vol. 20. No. 3 Aug. 1941
-24-



The synthesis problem requires the Yr (p) so 
since p - J<o, and cov* -p* , this substitution is then 
made. This leads to: |YT (p)/z=

Eq. 19.
Equation 6 is applied after the above expression 

is broken down into its simpler factors.

I Y t i f ) j ' s  ki-giiXr**  y . a v f f j  (p - u .saz) Cp *  +.tso7>OB*.nvt></4/) J

L c p *.9s)C? + /)cp + /-arJCp+i-O J

\U 7J7J) ( f  L t 3. Ot/S-yfp I*// &8Z')(f,x-.tSV7/C> JO - . i 7 V 8 W )  1

L c p - . « ? ; r p - (P+ /J cp CP-/-'J J
Eq. 20

For R-C synthesis only the poles in the left 
half plane can be used. This restricts the denomin­
ator to Just the positive factors.

There are no restrictions on the zeros of Y^-(p) 
so there is much liberty in choosing the numerator 
of the expression.

At this stage, Guillemin’s method would require 
the selection of a numerator that would make Yf a 
minimum phase shift function.

-25-



Lattice synthesis does not required a minimum 
phase shift function, but for simplicity in this 
example, and the material following this example, 
a minimum phase shift structure is chosen.

The graph of |YT (“Ol^ vs , in figure 6,
has been normalized with respect to magnitude.
Multiply the expressions for |YT(di»J* by the fac­
tor Al to represent the unnormalized expression.
The significance of this factor becomes apparent 
when the full equation for Y T (p) is considered.

Y-r(p) - 1 Pl  t2 PoYRjRg
The above is an extension of equation 4.

The minimum phase shift structure is then:
Yt(p). .17271 A(P S ,2^ 5 88J0>tl 1 52 H p \ .6507P * 1748441

( p J ; § U p t . 9 5 M P  + l ) C p + i . o 5 M P  t l.ljEq. 21
A cutoff frequency (represented by CO* ) could 

be introduced here. This requires the replacement 
of co in equation 18 by Coy/(jt)o.

When that is done the expression for Yr (p)
.1727:71 A

is found to be :
pr *. 12.2327P6J.1- 10.757Ptf^39.2206pV+ 23 .4 8 7 p ^ % 6 .16803& r_ 

5 p V 9 - W 5 p ^  987525X?
Eq. 22

-26-



One form of a complete problem would specify 
the generator and the load resistances. The required 
cutoff frequency would also be given.

For the purpose of demonstration, let:
- R^ - 100 ohms .......then

2 -r 2 » 200 ohms.
Let » 1,000,000 rads / sec.

The value of A cannot be arbitrarily stated 
when the impedances and the cutoff frequency are 
fixed. This will become evident as the problem is 
solved.

The first step is to expand equation 22 by 
partial fractions.

At p - 0, the residue of the right side of 
equation 22 is equal to 6 .2459569. This residue 
is subtracted from the expression and partial frac­
tion expansion is continued. The details of this 
expansion are not repeated at this point.

The expanded (p) - y12 ls: 
y-, p s .17271 A ^6.24596 - 121,418 p ,560,039 P ...1 L (p + joJqKv + •$5u/o )

-895,069 p 657,443 p -180,427 p
u/o {9 + U/a T * O/0 (p + 1 -0^,) ^p + 1

Eq. 23

-27-



When all the terms in the previous expressions 
are made positive, the equations for y ^  « y22 are 
obtained. They are: 
y ll * y22‘* •17271 A] 6.24596 +121,4l8 p ^ 560,039 P

^ I p  t»9 cag / cSt (p +•
+ 8 9 ^ 0 6 9  p _ ^ 651>44^p „ _l8oA427 P60* ̂P ■+ 00* ) <300 tp + I.O50O0) 60*(p «- l.lOJo)

Eq. 24
The lattice arms can now be formed.

yH  * y!2 11  “  y 12  *

ya *.17271 A [l2.4919+ 1,120,078 p 1,314,886 pL- u>0 (p ♦. 9$ c00) 600\P + I.05<50«)
Eq. 25

_

242,836 p + 1 ,790,136 p 360,854 p jW,lP+-9«»; .Mo I P « 4 )  CO, IP . 1-lcJ,)
L. J

Eq. 26
The reciprocals are taken in order to write 

the arm impedances. The result is:

Yb * .17271 A

A p r 64112.4^19 + 2,5l6>6bo^) «*■ . .
P ( 44.'5532*,/ 2,455,224^.') 12.454 )

Z_ 3 £J.-t- 2.99V»P + -99 »o3 )__ 5 .79005^  A" %,S^3,B28p£ . 4,775,856^ p . 2,364,1.22^ p
Eq. 27
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These ape driving point impedance expressions 
Tor the arms of the lattice. At this point these 
expressions could undergo partial fraction expan­
sion and be synthesized. This would defeat the 
purpose of the problem for the generator and load 
resistors would be absorbed in the network.

4A standard theorem of lattice networks states 
that if an impedance is common to both arms of a 
lattice, it can be removed from the lattice and 
placed in series before and after the new lattice.

This theorem is utilized by finding the mini­
mum value of both arms impedance. Obviously since 
these are R-C arms the minimum impedance occurs 
when f » •• then

Z „ __5.720Q5a__£0* . .p-* —  A (12.4919 2,515,656)
lim Zn 5.79005 coo
P - . T  “ A (2,393VBBS)------ Eq. 28

The smaller of these two limits is the first. Then 
a resistance equal in magnitude to the first part 
of equation 28 is common to both lattice arms. This 
minimum resistance can be removed from the lattice.

Ibid 7, p. 269
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Tills minimum resistance, designated as Z* ,
Is obviously the generator and load resistance.
If the Z' turns out to be larger than the desired
resistances, only the needed amount need be pulled
from the lattice arms.

In the assigned problem, Z* should equal 100.
Z 1 •> 5.79005 GOo _ 100 ohms

AU2.'*919ofc+2,5l5,bfc>t>;
For the a s s i g n e d o f  1,000,000, the derived value 
of A is A m 0.003858078

When this value of A is know, it is inform­
ative to solve for the Power Insertion Ratio.
At p = 0, the equation 18 leads to
\*T (p)lp.e A1 ( . 0 2 ^ ^ ) ^ . 0 ^ ^ 4 . ^ a i (_ 2325§Z§al. 

- A2" (.41318617)
But t Yt (p)j* .  p2_____ s Pt, z A* ( .41318617)' 4 R-jRg (40,000)
Thus at zero frequency the Power Insertion Ratio is
found to be PL _ .24600598

P*
From the graph the ratio of Maximum IYt (^)i*|Yt (O j*.
is about 1.08/1 so the maximum Power Insertion Ratio 
is about .265.
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This is a result that is not evident from 
a cursory examination of the problem. It is now 
seen that for a given load and generator resis­
tance, and a specified cutoff frequency, the max­
imum allowable Power Insertion Ratio is automat­
ically determined. If it had been required to find a 
filter with the same load and frequency requirements 
as the previous problem, but with a higher Power 
Insertion Ratio, some other form of synthesis would 
be required. Such a filter as the latter is not 
realizable by the method just utilized.

It Is quite possible that there Is no R-C 
structure that will satisfy a requirement of a 
higher Power Insertion Ratio. This subject requires 
further investigation.

The filter problem can now be completed.
100 ohms, or Z*, is to be subtracted from ZA and Zg. 
The modified lattice arms Z^ and ZB* are now com­
puted .

With numerical values the arms are:
Z . .1500.76( p* + 2x10 S? ♦ .997x1Q12, )15 . 0075bbp* * 24.983x1 0*p «- 12.454
Zo » 1500.76 (p* » 3x10%***. 2.99xlOa p » .99x10>g) 
*  2.39382p 4 . 775^5*10i P1- + 2 364 ,122x10* p )

Eq. 30
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When lOO is subtracted from equations 30, 
the modified arms are obtained.
Z » _ 1503.22xl0*p + 1.4962577x10'*______

15.0075bbpr + 24!963x10Jp + 12.4^4
Z_» _ 1 2 6 1.38ps - 4027.xl0*p*■ + 4250.86x10/2' p .*.l485.75x
B 2.5S38£p> +-*7775,U50pi + 2,^4,1-2 2 x 1 6 ^ ---

Eq. 31
The usual methods of partial fraction expan­

sion are then used to realize these driving point 
impedances.

For the first case the impedance is simpli­
fied by dividing numerator and denominator by 
15.007566.
V  ■ 99.7H7*1Q*P,,t • °997glOA £> 1 ,664,747 p .829twa

99-7117x10 * p * .0997x10 ,s
— I p 7176647747 )( p T T G r )

Eq. 32
Equation 32 is expanded by partial fractions.

The result is:
Z.« (5.98889 )xlO/0 3.98227x106
A  a  ( p  V  0 1 ) --------  P  / I  . 5 6 4 7 5 0 0  r -

Eq. 33
This driving point impedance is represented by 
the figure 8 .
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R^A » 5.989x10^  ohms
>̂ 2/1« 2a " ohms \aaa  j w w l __

C-jA * 16.6975 uufd I— (f--1 1— I
CgA =* 0.251113 ufd Cl A C 2.A

Figure 8 Lattice Arm Z*

A very similar manipulation is done Tor 
the other lattice arm. The numerical calcula­
tions are a bit more complex, because the denom­
inator os the expression is a cubic polynomial.

Luckily, one of the roots of this denom­
inator is at p s 0. This simplifies the cubic 
solution to the solution of a quadratic.

The expression for Zg» is found in equation 
31. Divide both numerator and denominator by 
2.39382 and there is obtained as the driving point 
impedance of the lattice arm:
2=*. 526 .931pJ 1682. 2xlOfc p\. 1775.77x10'* p+620.66xl0*8
^  p C p * ■;l,995,674p 875,933x10 * T -------------

Eq. 34
There is no great difficulty in obtaining 

the roots of the denominator by the quadratic for­
mula. The roots are:
- 1,084,063; - 911,010.8; 0.
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The partial fraction expansion, when applied 
to Zq * gives the following results
z B * « 6 2 8 . 4 5 7  ^ 6 1 , 2 5 3 . 1 5 0  „ 5 8 3 , 6 3 6

p p + 1,084,063 P + 91T 70T0
Eq. 35

The realization of equation 35, which repre­
sents the lattice arm is shown in figure 9 .

H V  ' *
C IB

—  ... M/V. — ^

-----1 1 ------ ---- H | ---- 1

LB 5

Figure 9 Lattice Arm Zg*

The numerical values for the components are: 
Cn R ■ 0.00159 farads
C9p * O.OI63 farads R1B s 56.50 ohms

s 1.713^ farads R p r _. 0.6406 ohms

The complete lattice formation is shown in 
figure 10.

The quadripole realized in this problem for­
tunately requires the use of components that are 
available in a laboratory. A less fortunate choice
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of cutoff frequency, or of terminal Impedances 
could have led to capacitors in the order of 
farads, not ^farads; the result might also 
have required microhm resistors. If that were 
to be the case, another method of R-C synthesis 
not in the form of a lattice, would be in order 

For that reason, a high cutoff frequency 
was chosen for the demonstration problem.



C»* CzA

C,B IB

'33

Lattice Arm A 
Ri« ■ 5 . 9 ^ 9 x 1 Ohms 
R*.* s 2 .3921 Ohms
Cj*)* 16.698 farads
Cj a s  0.2511 4t farads

Terminal Resistors 
R f % 100 Ohms
R£ = 100 Ohms

Figure 10

Lattice Arm B 
R IB - 56.50 Ohms
Rt,® * 0 .6406 Ohms
Cjs - 0.00159 ^farads
Cjg = O.OI63 44 farads 
Gse- 1.713^ 4f farads

Final Lattice Structure
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(11) REALIZABILITY OF A QUADRIPOLE
A glance at figure 7 shows that the synthe­

sized lattice has a frequency response that merely 
approximates the desired trapezoidal pattern.

This is due to the fact that only a few 
term of the Fourier Series were used. The inclusion 
of additional terms would bring the response of the 
filter more like the desired characteristic, but 
the inclusion of more terms would require more com­
plex calculation and require the addition of addi­
tional circuit components to the lattice.

Since the desire F (9) is a continuous func­
tion, it was stated before, that the desired res­
ponse could be approximated arbitrarily close. A 
Fourier Theorem® states that if F (9) satisfies 
these conditions: F(0) * F(©+2tt) for all 9, and
F(9) is sectionally continuous in interval (—/r, tt), 
then the Fourier Series converges to the value 
£^F ( d* ) t P ( O' )] at every point where F(0) 
has a left and right hand derivative.

The trapedoidal pattern fulfills these re­
quirements^ so an infinite number of terms could 
result in a theoretics expression that exactly 
realizes the desired response.
Ibid (f2) p. 70
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(12) EXTENSION TO THEORY OF EQUALIZERS.
Consider the system shown In block diagram 

form in figure 11. In this system, a signal passes 
through a Low Pass Filter. Some of this signal 
is utilized in the filtered form, and the rest of 
the signal is isolated by a vacuum tube and sent 
on to an Equalizer. Since the filtered signal 
passed through a Low Pass Filter, the Equalizer 
must be a High Pass Filter.

A system such as this can be handled by 
the methods of this thesis, for the problem of the 
interaction between the High Pass and the Low Pass 
Filter is solved by the use of the Isolation Ampli­
fier.

The system requirement might be that the 
product of the Power Insertion Ratios of the High 
and Low Pass Filters be a constant; or the require­
ment might be that the sum of the ratios be a con­
stant, for all to .

The characteristic required for the High Pass 
Filter can then be transformed Into a Fourier 
Polynomial and the synthesis performed.
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SIGNAL

LOW PASS FILTER 

FILTERED SIGNAL

ISOLATION AMPLIFIER

EQUALIZING HIGH PASS FILTER

|  4     —  EQUALIZED SIGNAL

Figure 11 Block System using Equalization
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(13) HIGH PASS FILTER SYNTHESIS
It Is desired to synthesize a High Pass 

Filter such that the sum of the Power Insertion 
Ratio of this filter and the filter previously 
designed in this thesis be a constant for all.

The Power Insertion Ratio characteristic 
desired for this filter is shown in figure 12.

The Fourier representation for this filter 
is readily obtainable from the Fourier represen­
tation of the Low Pass Filter, equation 36.

The expression for the High Pass Filter is 
obtained when the Low Pass characteristic is sub­
tracted from its maximum value.

Thus, if equation 18 were subtracted from 
unity, the result would be:

.0298277(<ol -3 .0459)l (to1* 134.158) (Co+07375 .030567831- 9 0 2) <£,»; i ' y c < o v )---------------
E q . 36

This equation would be a starting point for 
the synthesis procedure. The remainder of the 
problem would be solved in the same manner as the 
solution for the Low Pass Filter.
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4

Figure I P Fourier Representation of High Pass
Filter
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(14) CONCLUSION

If* It Is desired to synthesize an R-C 
quadripole, to have a Power Insertion Ratio, 
that approximates a given characteristic, there 
are sufficiency theorems that will permit the 
synthesis.

If there exists a series of transforma­
tions that can put the desired characteristic in 
a periodic form, and if this periodic form is, at 
least, sectionally continuous with left and right 
hand derivatives, it is possible to approximate 
the desired form by a Fourier Series technique.

As long as the derived expression for the 
y,a is realizable, it is realizable as a lattice.
If the expression is also of “minimum phase shift" 
it is also realizable as a ladder network.

There are certain restrictions on the rela­
tions between terminating impedances, cutoff fre­
quency, and maximum Power Insertion Ratio, that 
should be further investigated.
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