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INTRODUCTION

(1) NETWORK SYNTHESIS.

There are several aspects to the gen-
eral field of Network Synthesis.

One interesting facet 1s the Approxi-
mation prroblem. The desired characteristic is
usually given in a graphical form. The problem
requires the construction of a mathematical ex-
pression to describe a network that possesses
the desired characteristic, within a permissible
approximation. Elliptic functions, Tschebychef
polynomials, and Butterworth functions often
appear in this type problem.

Another aspect of synthesis 1s the Real-
ization Problem. What mathematical or graphical
functlions can lead to a physically realizable net-
work? What geometric forms can this network assume?
Much of the plioneer work in the Realization Problem
has been done by O. Brune. (1)

This thesis willl deal with both aspects

of Network Synthesis.
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1 Brune, O. Synthesis of a Finite Two Terminal
Network Whose Driving Polnt Impedance
is a pPrescribed function of Frequency.

Journal of Math and Phys., vol. 10, ppll9l-235



In this thesis, the response of an ideal
filter 1s approximated by a mathematical expres-
sion (Approximation problem). This expression is
used to reallze a symmetrical lattice, composed of
resistances and capacitances (Realization problem).

The restriction to these two elements 1s not
Just an academic choice. R - C (Resistance-
Capacitance) networks can be designed to give many
responses, and the additional loss that they intro-
duce, due to dissipation 1n the resistances, can be
compensated by subsequent amplification. In many
cases, where only a frequency discriminating cir-
cult 1s desired, the loss introduced by the resis-
tances 1s of no 1mportance and can be 1ignored. The
exclusion of inductances might introduce economic
and constructlion advantages. Certainly the problem
of magnetic pickup 1s reduced when there are no in-
ductances.

The terminology in Network Synthesls has
become confused, since Mathematiclans, rhysicists,
and Englineers are all contributing to the field. It

is advisable to clarify terms at this point.



(2) FOUR TERMINAL NETWORKS

A Four Terminal Network, or Quadripole, has
a pair of terminals designated as Input, and the
other pailir designated as Output.

Assoclated with the input terminals are the

Input Voltage Eland the Input Current I,.

The output terminals provide Output voltage

E5 and Output Current 12.
In the usual case a generator E with an in-
ternal Generator Impedance Z1 is connected to the
input. A Load Impedance 22 1s connected to the
output. This thesis restricts these impedances to
pure resistances R1 and R .
Figure 1 illustrates the notation that will

be employed. Since the direction of the currents

is arbitrary, the notation shown 1s chosen.

Z FOUR TERMINAL
E E NETWORK

Figure 1 Four Terminal Network with Load.



(3) NETWORK RELATIONS

The relations between the input current and
voltage, and the output current and voltage are
found in any reference on Network Theory - 2,3,4.

I) =311 Eq #910E; Ey=2311; + 21015
Eq.1l Eq.2

I2 =21 Ep +Y22Ep E2 =z2111 +22212
¥11:Y22 are the short circuit driving point admittances.
Y12,¥21 are the short clircuit transfer admittances.
Zy1sZ20po are the open circuit driving point impedances.
z12,201 are the open circuit transfer impedances.

In a passive network yjp =¥p231, 212 - 2p7-

Gewertz (5) has shown how the four admittances
or 1lmpedances uniquely characterize a network, and

has set up realization techniques when these para-

meters are known.

2 Guillemin, Ernst A. Communication Networks
Vol. II 1935 New York: John Wiley

3 Guilllemin, Ernst A. Communication Networks
Vol. II 1935 New York: John Wiley

4 Everitt, W. L. Communication Engineering
Second Edition 1937 New York McGraw--Hill

5 Gewertz Synthesis of a Finite Four Terminal

Network Jour. Math and Phys. Vol. 12
1932 - 1933 pp. 1-257

.



(4) TRANSFER IMPEDANCE

Consilder the generator impedance and the load

impedance absorbed in the quadripole, as in figure 2.

The ratio of the generator voltage to the load cur-

rent is E/I. This ratio is defined to be the Trans-

fer Impedance Zt of the quadripole.

— -1
2.
! New Four T T
; Terminal
E ﬁ? El ' Network Eo I
4 * 1
Figure 2 Quadripole for Transfer Impedance

The output voltage of E2 of this quadripole 1s zero,

for there is a short circuit across the new output

terminals. Also E = El'

When these values are inserted into equation

2, there is obtained I, = Ejypq 2Z¢=E/Io=1/y5;

Assuming a passive circult._ .

Zg = /Y12 Eq. 3



(5) LOSSES

The most efficlent way of coupling the gener-
ator to the load 1s through an ideal transformer.
The power delivered to the load in that case will
be called P, . A quadripole inserted between the
generator and load will transmit a power PL to the
load.

The ratio P3/F, 1s less than or equal to
unity. The equality holds when the quadripole 1is
an ideal transformer.

It is shown (6) that in the ideal case,
2t = 2VZ1 2.

Consider the ratio of powers P,/F, .

It 1s effectively [I,( 2, _ (;L gy
L Po

( Tof* 2,

Divide the fraction by E/E and there results

%_“L‘ EF.::: =‘ 1/Z - 2\". { 22’5{5 r‘ 2%?;.4

The ratio R /P, can be defined -

)
Power Insertion Ratio =l2 Vzlzz'Yt' z %L Eq. &4
o
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6 Mason, W. P. Electromechanical Filters and Wwave
Transducers 1st Edition 1942
New York: D. Van Nostrand. p2i4
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In the study of four termlinal networks, the
Insertion Ratio 1s often considered. This ratio
compares the current that would flow in the load
due to ideal transformer coupling, to the current
that actually flows when the quadripole is 1inserted
between generator and load impedances. It can be

evaluated, as follows:

\%1 * \% ‘lrvg'é‘l-z?‘\ then}-ﬂ\ )2 NZ,Z; v¢| Ea. 5

This is the Insertion Loss Ratio® .

Bode (7) prefers to deal with the inverse ratio,

To yA . He defines © = log z - A + JB.
I, = dv%fée 2 21'22

A and B are respectively the transfer loss and the

transfer phase. Bode does not use the absolute values
in the ratio of currents but treats the currents, and
the ratio, as complex numbers. However, the logarithm
of a complex number Z |© 1s given by log (2i+ JO.

Thus, 1f one takes the reciprocal of the Insertion
L.oss Ratio, and then takes the natural logarithm of this

new ratio, the Transfer Loss is obtained.
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°Ibid 3 p. 73




Consilider Yt'

>
Yy = G¢ + JBt, {Ye\ _;(Gtz_., Btz. )z
ft - Gt - JBt,
Then Y. ¥y (G +~JBy ) (G¢-JBg)
G{ + Bg*
a —_—
so vyl . Y, ¥,
This result will be used later i1n this thesis

in a method suggested by Bode.
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7 Bode, H. E. Network Analysis and Feedback Amplifiler
Design 1945 New York: D. Van Nostrand

Ibid 7 p. 230




(6) R-C QUADRIPOLES

The essentlal features of R-C dipoles and
quadripoles have been established by Cauer (8),
and only the points of interest to this thesis
are presented here.

The driving-point immittances*of R-C Networks
are rational functions of the complex frequency var-
iable P= Jw. Poles and zeros are simple, real, and
interlaced.

The immittances can be expanded into partial

fractions:

n
¢ =) (qt)]
Zz(p) = a "4+ a Ei a v Eq. 7
p p"' pN
1l
n
Ced) (o) (v
Y(p) = b .p . b, p. § b Eq. 8

p‘+ q'\)

where all the a‘™ and b’ are positive.
These expansions lead to the two canonic forms

developed by Cauer for R-C networks, figure 3.
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8 cauer, E. Die Verwirklichung von Wechselstromwider-
standen vorgeschriebener Frequenzahabhangigkeit.
Archiv F,., Electrotechnik, vol. 17 p355 1927

* TIbid 7 p.1l5
-9-
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O— ¢ - :
(Impedance Form) (Adamittance Form)
Figure 3 Canonic Forms of R-C Networks.

-10-




Quadripole properties are found by insert-
ing the partial fraction expansions, Eq. 7 and
Eq. 8, into the general equation 1 and 2.

The terms are:

n
zn = a'l(l-) -+ _‘;l“" Z al/"w
| & P +« Pa
1
n
() (Q VP
Zn_ & a" * ‘a-li *> Z al.
1
n
(=) (g )
N bu P * bll + Pe. Z bl‘
1 P + Qw

n
() (o
V.= b, - D <« bpz + P . Z bp.‘m)
1 P 4+ Qn

The very important Reslidue Theorem© states:
g ‘n) > (S0 N o ) (n) __(a,:—u)i

! = O’ azl = ’ a " 'a;} é 0
) W, ( 2 >
b, Z2 0, b;, = 0, bu‘M -bazm) - (bla U) = 0

for all r.---
as the necessary and sufficlent conditions for the

physical realizability of a network.

® & 0 ¢ © & & & © & O O S OO @ O O OO OO0 SO S 0 N OO PO OO e OO e L e e

° Ibid 3 p. 216
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If the R-C quadripole which meets these con-
ditions is 1nserted between the generator and load,
as 1in figure 2, the transfer lmpedance 1s Z¢.

The transfer impedance Z; 1s then a rational
function of the complex frequency varlable, p, with
real coefficients. Its zeros are the same as any
driving polint impedance seen in any mesh of the net-
work, and since the network 1s R-C, the zeros are
real, negative and simple.

Since R, is 1in series with the input to the R-C
network, there can be no zero at p: o .

The poles of Zy are produced either by the zeros
of zjp or by the poles of z,,z, which are not in z,,.

There are no restrictions on the zeros of z4,,
for 1t 1s not a driving point impedance, so there are
no restrictions on the poles of Z,, other than that
they occur in conJugate pairs when complex. Filgure 4
shows the possible arrangements. Poles are denoted by

crosses, zeros by circles.

-12-~-




pP-plane P-plane

» x
¢ - >—o—o
x x
Figure 4 Typical Pole and Zero Patterns

The precedlng analysis of R-C networks closely

follows the form in a paper by Orchard (9).

® & & O O 6 © 0 6 6 0 O O O o S O e OO SO SeS OGSO O OO O PO e 008 v 08 000 s 600

9 Orchard, H. J. The Synthesis of R-C Networks
to have Prescribed Transfer Functions
Proc. I.R.E. April 1951 p.428
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(7) SYNTHESIS

When the generator and load impedance are
absorbed into the qgquadripole, as in fligure 2,
the expression for Z, 1is Z, = 1/&12.

Knowledge of Yio is not sufficient to uniquely
determine the quadripole% for yi1 and Yoo can be
any values that satisfy the residue conditions. To
complete the synthesis, many devices can be used.

Darlington (10) uses the Z and, as additional
conditlions,he requires that the quadripole consist
of pure reactances terminated in, at most, one
resistance. This, of course, 1s not acceptable for
R-C networks.

Bode °° requires that the quadripole be a con-
stant resistance lattice. This implies that the
arms of the lattice have an inverse relationship
to each other. This could introduce inductances
and 1s not acceptable 1n R-C networks.

Guillemin (11) has a system that results in a
ladder formation, but requires a generator of =zero

internal impedance.
& O & ¢ s 5D O O S sSSP OO O OO T H eSS TSSO 0 s GO e v e

© Ibiad 5

10 Darlington, S. Synthesis of Reactance Four Poles.
Jour. of Math. Phys. Vol 18 No. 4 Sept. 1939
pg. 257-353.

11 Guillemin, E. A. Synthesis of R-C Networks
Jour. of Math. Phys., Vol 28, p.22 April 1949

°° Ibid 7 p.229
14~



Gulllemin's method also restricts his choice
of functions to the minimum phase shift function.
(All zeros and poles are in the left half of the
P = Jw plane.) This last restriction is due to
his choice of a ladder formation, for © "Any pas-
silve ladder network is a minimum phase shift
structure."

Orchard®® has an lngenlous device to synthesize

the network. Assume a symmetrlical network. Then
Y11 = Yop- Choose yq4 - Yoo to satisfy the equality
sign in the residue condition (Eq. 10).

Then byt b5 | b . For all r.

From the expansion of ylzz.(ztf' » 1t is pos-
sible to form y.,, Yoo by making all the residues
of Y1o positive, With the specification of i1
Yoo yle’ y2l, it 1s then possible to synthesize
the network 1n any suitable form.

Gulllemin ° shows that the residue condition
1ls 1dentical to the realization condition of a
symmetrical lattice, so 1f the network 1s realizable

in any form, it is always realizable

® & o & 0 & 6 ¢ ® © & @ @ & 5 9 @ O ® & © &6 & © O ¢ © o & O 0 O B O O S "GO OO OGSO 000

o

Ibia 7, p. 243
e JTbid 9
o Ibpid 3, p. 381
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in the lattice form. This does not rule out
other forms, but assures the existance of at
least one form, the lattice structure.

The lattice will have arms:
Y

Y Egq. 11

A~ %11 + Y12 - 3= Y11 - Yz
Orchard then extracts equal resistances
from the lattice arms to act as generator and

load resistances. The result agppears as flgure

5.
&
4, ~ |ag J ag;")__ ‘Q_;?l
’ /A
£ pu
Figure 5 Extraction of Terminating Reslstors

The fact that the generator and lcad
regsistances are ecqual is a design limitation

cf the method.

-16~




(8) APPROXIMATION PROCEDURE

This thesis uses a modification of a device
of Guillemin © to approximate a frequency response.

F(w) 1is given graphlically over the complete
range —-soqg Wwg e

A change of variable w= tan 6/2 changes
the range to -w=<=e =7 |, and the F(@) 1s trans-
formed into a periodic function of @. This F(e)
1s then approximated by Fourier Series. Another
transformation, x = cos © , changes the series

to a polynomlal in x , F(x). The last transform-

2

ation, x 1-W » returns the approximation to
Ty w=

the W plane,

The clcseness of thls approximation is deter-
mined by the nearness of the Fourier Series approx-
imation to the prescribed F(©). There are many
classes of functilions that can be approximated by
Fourier Seriles in an arbiltrarily close manner, and
if the F(®) falls into one of these classes, the
approximaticn will be as clcse as deslired.

The matnematlical expresst*on that results from

the above manijpulation 1s not in a form sultable for

R-C networks. The denomlinator would lead to nmultiple

poles.

® Ipid 11
-17-




In this thesls the approximate F(wW) will be
divided by a function of # that is very close
to unity over the range of w . The choice of
this dividing function will be made to clear
the denominator.

There is liberty in choosging this function,
as long as the choice does not change the final
result to a point that the approximation is not

as clcose as desired.

-18~-



(19) APPROXIMATION EXAMPLE....LOW PASS FILTER

The graphical representation of the desired
filter 1is given in figure 6.

The filter characteristic has been given in
terms of \¥.|'. |¥s]' has been shown to be propor-
tional to the power insertion ratio. (Eq. 4)

For the sake of simplicity the graph as
been normalized with respect to freguency and mag-
nitude.

The first change W= tan 6/2 results in the
F(©) as shown in figure 6b.

There 1s no difficulty in approximating figure
6b, by Fourier Series. Since F(6) is continuous
and of bounded variation, a Fourier Theorem (12)
states that the series converges uniformly to F(0).

By standard methods the first few terms of
the series are....

F@ = .500+ .635 cos©® - .204 cos30 +«.1215 cos 50
Eq. 11

Since only a few terms will be used, the above approx-
imation might become negative for some €. this 1is not
allowable for |Y.]?, so a different form 1s used.

F(©e)- B_+.635 cos6-.204 cos 368 +.1215 cos56 Eq. 12

B_1s chosen large enough to keep F(Q) positive.

& & & ¢ © © 0 ¢ & S O O O O OO 0SeO0O e P SOe OO OO OGO OO0 S OO o

12 Churchill, R. V. Fourier Series and Boundary Value
Problems. 1941 New York: McGraw=-Hill p.86

-19-




At 0 = V/2, which corresponds to «=1, the
value of F(8)~- or |¥y (8)/* - B

Make the transformation x = cos @. Then
cos 30 = bx - 3x, cos 56 16x - 20X + 5%
The approximation then beccomes:
le(x)* = .635x°-~ .816x + .612x ,1.04Lx -2.43%5.6075x+ B a

- 1.944x" -3.246% .1.8545% + Ba Eq. 12

For some value of x, and some « , the ([Y,(x)|"
reaches a minimum. If this minimum 1s fixed at zero,
the |Y, (»)!” will not be gero at wie , This 1s
the result of using too few terms in the Fourier
Series.

Figure 7 compares the approximatiocn to the
F(e). The inclusion of additional cosine terms
would improve the approximation, but increase the
work in the computation.

Theminimum 1s found by differentiating Eq. 12.

_g?lyl(x))‘ . 9.720x - 9.738x +1.8545 =~ O Eg. 13

x

This 1s a quadratic in x° , roots 9.738+ 4.972
440

The root of interest is x° = 245164, x - .495
At this value of x, B _must be .5823278 to have

(Y, (x)° -0
< )x-—1495

-20-



CALCULATIONS FOR GRAPHS

(Figures 6 & T)

© Cos © .635 .204 1215 -.083
cos @ Cos 30O Cos 58 Cos 79O
0 1.0 .635 -.204 .1215 -'088
10 0.9848 .625 -.177 073 -.0284
20 0.9397 .596 -.102 -.0215 .0645
0 0.866 .55 o] -.105 072
(0] 0.766 485 . 102 - 144 -.0144
50 0.6428 408 LAT7T -.0416 -.0816
60 0.500 317 .204 . 0607 - Oul
70 0.342 .217 CATT .1195 gh
80 0.1736 .110 .102 .093 .07
90 (o) (0] 0 e
100 -.1736 | -.11 ,gz& |
From 90 to 180 repeat opposite in sign.
e 3 term 4 term Corresponding
sum sum W
0 .5525 L4695 o]
10 .521 4926 .087
20 4725 5370 .176
O Labs 517 .268
0 JA473 484 .364
50 5434 h618 466
60 .5827 .5417 5TT
70 .5135 .5669 . 700
80 . 305 .383 .839
90 o o) 1.0
100 -.305 -.383 1.19
110 -.5135 -.5669 1.428
120 -.5827 -.541 1.732
130 -.5434 -.461 L1444
140 -.473 -. 484 2.7T47
150 -.445 -.517 3.732
160 -.4725 -.5370 5.6713
170 -.521 -.4926 11.430
180 -.5525 -.4695 S

-21-




The graphs are even functions of w . Then
F (w) = F(-w). The graphs could be shown to be
symmetric in w about the origin, but only posi-
tive w 1is of interest.
This leads to:
\Y., (x)': 1.o84x -3.246; .1.8545x.+ .5823278 Eq.1l4
The next change of variable x, 1 -w? givele,(m)‘=

rwt

1 .guuLl-w‘)b.elng-co‘ )ng‘r o )P.1.8545(1- @ 1(1m‘)fg,@+w‘f
+ w‘l. 4
Eq.15

Multiplication and binomlial expansion puts the

coefficients in a form expressed in the tables below:

w' w® w w” "y w°
1.944 -1 5 -10 10 -5 1
3.246 1 -1 -2 2 1 -1
1.8545 -1 -3 -2 2 3 1

This gives:

w'® ! e w® ot o
-1.944 9.720 -19.44 19.44 -9.720 1.944
3.246 -3.246 -6.492 6.492 3.246 -3.246

-1.8545 -5.5635 -3.709 3.709 5.5635 1.8545
The numerator 1s then formed:
(Be- .5525)% #(5Ba + .9105)@ + (10Ba- 29.641)w'. ....

.+ +(10Bu +29.641)w" + (5Ba 4 .9105) + (Bw+.5525)
When the assigned value for B, 1s inserted (B *.5823278)
in the above, there results: .0298277a;ﬂr3.82213908-
23.817722 w6+ 35.464278‘*".# 2.001139w'+ 1.13482.

-22-




Remove a factor orf .0298277 and there is formed:

¥, )I* = .02982]7@'(".&128.1#4:0' -798.5u% 11.89.71 w 4.

...67.089908 w‘+ 38.046 Eq. 16

To get 1n a form for R-C synthesis, divide the above
fraction by C(&f).

C(w?) = (w*+.81)(cw?+ .902)(wW2+ 1)(w%1.02)(w'+1.21)
Twts I )F

There is a little latitude in the choilce of C(w),
and the above form is chosen for the ease in subse-
quent calculations. A table of values for C(w?)

shows that the cholce of thilis expression 1is close

to unity for all W |,

ot 0 ‘ 1 1.5 2 31

c(w?) L9742 .99952 1.0016 1.0024  1.00288
w? 5 , _ %,

c(at) 1.00261 1.0

The divisions of Eq. 16 by c(w') leaves as a final result:
ij(w)lg

.....67.089686 + 38.04595 Eq. 17

This 1is represented by figure 8 and essentially com-
pletes the approximation proklem, except for the ques-

tion of the physical realizability of the trapezoldal

filter.
-23-
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(10) SYNTHESIS PROCEDURLC

The next step 18 to syntheslize a network that
is characterized by equation 17.

The numerator of the expression is a polynomial
of fifth order 1ntuﬂ The roots of the polynomial
must be found. One root is already known for the
lY*(w)P was chosen to have a minimum of zero. This
minimum occurred at x = .495 which 1s w*®:=3.045878.

An examlination of the polynomial shows that
there are two changes of sign. One of Descartes
rules 1s applied (13). This rule states that there
will be elither two or no positive roots for the poly-
nomial. There 1s assuredly one root, and the expres-
sion does not cross the axlis 1n more than one place
on the graph. Thus there is a double root at
w* - 3.045878.

To find the rest of the roots, the method of

Lin (14) is employed. The result is:

of + .03056783)
) Eq. 18

...............‘.l‘......‘...ﬂ...................'......

13 Pipes, Louls A. Applied Mathematics for Englin-
eers and Physicists. p.98, 1946 New York: McGraw

14 Lin, S. N. Method of Successive Approximations of
Evaluating the Real and Complex Roots
of Cubic and Higher Order Equations.

Jour. Math and Phys. Vol. 20. No. 3 Aug. 1941
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The synthesls problem requires the Y-(p) so

since p= Jw, and a*:-pe, this substitution is then

.og%%ég‘ ¢ .03056783)

Eq 19.
Equation 6 is applied after the above expression

made. This leads to: |Y,(p)’=

1s broken down into its simpler factors.

| vr Ln}l,-. [Qm:/) P2+ 3.0459) (P -17.582) ( p* #.¢450210p +. (2¥Qu ) ]
(P+.R)Cpt.95)Cp+r)Cp+ 105X PPrlJ) J

_ {Qzﬂ/) Cpr230YS)(p #1/.58R )P~ 45020 p -1 2YBY ¥ ]

(p--9) (P~.95) (pPat/)Cp=-r08)CP =t/

Eg. 20

For R-C synthesis only the poles 1in the left
half plane can be used. This restricts the denomlin-
ator to Just the positive factors.

There are no restrictions on the zeros of YT(p)
so there 1is much liberty in choosing the numerator
of the expression.

At this stage, Guillemin's method would reaquilre
the selection of a numerator that would make ¥y a

minimum phase shilift function.

-25-




Lattlice synthesls does not required a minimum
phase shift function, but for simplicity in this
example, and the material following this example,

a minimum phase shift structure 1is chosen.

The graph of |Y . (w)}® vs @, 1in figure 6,
has been normalized with respect to magnitude.
Multiply the expressions for {Yf(w»' by the fac-
tor A* to represent the unnormalized expression.
The significance of thlis factor becomes apparent

when the full equation for Y.(p) is considered.

12

The above 1s an extension of equation 4.
The minimum phase shift structure is then:

Y. (p)a 17271 A .6507p %174844
(p %

Eq. 21
A cutoff frequency (represented by W, ) could
be introduced here. This requires the replacement

of w 1in equation 18 by W/(,,.

When that is done the expression for YE%E;
17271 A

is found to be :
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One form of a complete problem would specify
the generator and the load resistances. The required

cutoff frequency would also be given.

For the purpose of demonstration, let:

R1 = R2-=100 ohms csese. then
2V§l R2' = 2 Rl « 200 ohms.

Let «o = 1,000,000 rads / sec.

The value of A cannot be arbitrarily stated
when the lmpedances and the cutoff frequency are
fixed. This wlll become evident as the problem is
solved.

The first step 18 to expand equation 22 by
partial fractions.

At p = 0, the residue of the right side of
equation 22 is equal to 6.2459569. This residue
is subtracted from the expression and partial frac-
tion expansion is continued. The detalls of this
expansion are not repeated at thls polnt.

The expanded Y, (p) = ¥y, 1s:

Yip = -17271 A {6.2&596 - 121,418 p 60,0
(P +.9u) Tuwpe(p + .95u4sp)
"825:069 P 657:“’43 P -180,427%
volPrah J *a, P+ I.056,) w,(p+1.1c,)
Eq. 23
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When all the terms in the previous expressions
are made positive, the equations for Y11 = Yoo are

obtained. They are:

Vi o Vone= 17271 A[6.24596 121,418 p 560,0
11 22 0,(P =9 we ) +w.(P-r- e )

+8%§,o69§ - 6%1,4435 ~ 180,42
WelP + wo We(p +1.05w0) oD + 1.1Qe)

Eq. 24

The lattlce arms can now be formed.

Y12 B
Y, =.17271 A L12.4919+ 1,120,078 , 1,314,886
Wy (D +-95 &3,) wjp + Lﬁgwa)

Eq. 25
Y= -17271 A 242,886 % 1,790,136 p . 60,854 p
Wl P +. 9 o ol P+ w, We\P + lolwg)
Eq. 26

The reciprocals are taken 1n order to write

the arm impedances. The result 1is:

Z = . 00 l'.' 2 & o 7‘4’{) ® o 0 00 0 0
A A PEwl(l2.80919 5 2,515,000m) + ......
P 24, wr 2825, we 2.
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These are driving point impedance expressions
for the arms of the lattice. At this point these
expressions could undergo partial fraction expan-
slon and be synthesized. This would defeat the
purpose of the problem for the generator and load
resistors would be absorbed inthe network.

A standard theorem"of lattice networks states
that i1f an lmpedance is common to both arms of a
lattice, 1t can be removed from the lattice and
placed in serles before and after the new lattice.

This theorem 1s utilized by finding themini-
mum value of both arms impedance. Obviously since
these are R-C arms the minimum impedance occurs
when ¢ = e then

1lim ZA - . 1900 (9%
P —® oo A 2.49 WMo ’ s

1im 5.79005 &
p_‘,f? - K‘TET%gi,aag)

The smaller of these two limits is the first. Then

Eq. 28

a resistance equal in magnitude to the flrst part
of equation 28 is common to both lattice arms. This

minimum resistance can be removed from the lattice.

® © e ® ¢ © © & & 6 o & o & & O 6 6 6 o 9 " o - ® ®© ®© ® @ ®» © & S 9 ¢ S S @ & © O & S & & & & o > oo

Ibid 7, p. 269
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This minimum resistance, designated as 2°,
1s obviously the generator and load resistance.
If the Z!' turns out to be larger than the desired
resistances, only the needed amount need be pulled

from the lattlice ams.

In the assigned problem, Z*' should equal 100.

Z' » §.7200%gg¢ = 100 ohms
A(l2. 9w+, s

For the assigned®e of 1,000,000, the derived value
of A 18 A « 0.003858078

When thils value of A is know, 1t 1s inform-
ative to solve for the Power Insertion Ratilo,

At p = 0, the equation 18 leads to
2

\Y, (p)}eo = AZ(.02982 . O4 134.158)( 0305678
“‘L“Jiﬂfg%Eg%?ﬂ%%%éﬂ%ITEITLL';iJi;L;iL’

= A®* (.41318617)

But |Y bee = P) 3 P . A*(.41318617)
| ¥r (e T B R R, o Ho.660)

Thus at zero frequency the Power Insertion Ratio 1s

found to be P;, . .24600596
Po
From the graph the ratio of Maximu% [y (@){*
E S
T¥; (O

is about 1.08/1 so the maximum Power Insertion Ratilo

ie about .265.
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This 18 a result that i1s not evident from
a cursory examlnation of the problem. It is now
seen that for a given load and generator resis-
tance, and a specified cutoff frequency, the max-
imum allowable Power Insertion Ratio 1s automat-
ically determined. If 1t had been required to find a
filter with the same load and frequency requirements
as the previous problem, but with a higher Power
Insertion Ratio, some other form of synthesis would
be required. Such a filter as the latter is not
realizable by the method Just utilized.

It 1is quite possible that there is no R-C
structure that wlll satisfy a requirement of a
higher Power Insertlion Ratlio. This subjJect requires
further investigation.

The filter problem can now be completed.

100 ohms, or 2', 1s to be subtracted from Z, and 2.
The modified lattice arms q& and Zp' are now com-
puted.

with numerical values the arms are:
2, a .1500.£6§ p* + 2x10% + .997x10'" g
15.00 pP? « 24.9853x10¢p + 12.
Zg = _1500.76 (E’ v 3x10°p*. 2.99x10% p » .99x10'% )
2.39302ps. 4. ,O05010°*p*+2 304,122x10" p )

Eqg. 30
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When 100 1s subtracted from equations 30,

the modified arms are obtained.

z," =,1gog.2axlo‘p . 1.4362%1;x10”
15. P + 24. X1lO0¢p + 12.

Eq. 31

The usual methods of partial fraction expan-
silon are then used to realize these driving point
impedances.

For the first case the impedance 1s simpli-
fied by dividing numerator and denominator by
15.007566.

Z ' . 99.7117x10°%p 1 .0997x10 "’
A o 1, » P .029
99.7117x10 * p + .0997x10 ¢
(p 1,664, 747)(p + .01)

Eqg. 32
Equation 32 1is expanded by partial fractions.
The result is:
Z . .98889)x10" 3.28222x10‘
A =
P + .Oly P . x10
Eq. 33

This driving point impedance 1s represented by

the figure 8.

-32-




R.A = 5.989x10'%  ohms

1 K 7y
REA = 2.3921 ohms —_ NV —_—
C1A = 16.6975 uufd — L
CoA = 0.251113 urd CiA cza

Figure 8 Lattice Arm 2Z¢

A very similar manipulation is done for
the other lattice arm. The numerical calcula-
tions are a bit more complex, because the denom-
inator os the expression 1s a cubic polynomial.

Luckily, one of the roots of this denom-
inator i1is at p = 0. This simplifles the cubic
solution to the solution of a quadratic.

The expression for Zp' 1s found in equation
31. Divide both numerator and denomlinator by
2.39382 and there i1s obtained as the driving point

impedance of the lattice arm:
8

z' L 526.931p° 4 1682.2x10° 1%5.%7;:10"‘ p+620.66x10"
P Pz e+ L1, ) P + 9. s X )
Eq. 34
There i1s no great difficulty in obtaining
the roots of the denominator by the quadratic for-

mula. The roots are:

- 1,084,063; - 911,010.8; O.
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The partial fraction expansion, when applied
to ZB' gives the following result:

Z2g' = 628.457 . 61,253,150 583,636
P 5128812063 * 72 3112810

Eq. 35
The realization of equation 35, which repre-

sents the lattice arm ZB' is shown in figure 9.

A s 7Y ]
WA M

Cim —f — Ly
Cos Csim

Figure 9 Lattice Arm ZB'

The numerical values for the components are:

ClB = 0.00159 farads
Cop = 0,0163 farads Rjg = 56.50 ohms
C3B = 1.7134 farads Rog = 0.6406 onhms

The complete lattice formation is shown in

figure 10.

The quadripole realized in this problem for-

tunately requires the use of components that are

available in a laboratory. A less fortunate cholce
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of cutoff frequency, or of terminal impedances
could have led to capacitors in the order of
farads, not « farads; the result might also
have required microhm resistors. If that were
to be the case, another method of R-C synthesls,
not in the form of a lattice, would be 1in order.
For that reason, a high cutoff frequency

was chosen for the demonstration problem.
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v
—_—v
R,
7
7/
”
7
7
] b e o o e o - o —— o ot
Lattice Arm A Lattice Arm B
Rim = 5.989x10% oOnms R,@ =56.50 Ohms
qu = 2.3921 Ohms RZB = 0.6406 Ohms
Cias 16.698 4« farads C,s = 0.00159 . farads
Camas 0.2511 4 farads Cog = 0.0163 .4 farads
Csé= 1.7134 «4 farads
Terminal Resistors
R, = 100 Ohms
Rg = 100 Ohms
Figure 10 Final Lattice Structure
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(11) REALIZABILITY OF A QUADRIPOLE

A glance at figure 7 shows that the synthe-
slized lattice has a frequency response that merely
approxlmates the desired trapezoidal pattern.

This i3 due to the fact that only a few
term of the Fourler Series were used. The inclusion
of addltional terms would bring the response of the
filter more like the desired characteristic, but
the inclusilion of more terms would require more com-
plex calculation and require the addition of addi-
tional circuit components to the lattice.

Since the desire F (©) 1s a continuous func-
tion, 1t was stated before, that the desired res-
ponse could be approximated arbitrarily clcse. A
Fourier Theorem® states that if F (8) satisfies
these conditions: F(8) = F(6+2n) for all €, and
F(®) 1s sectionally continuous in interval (-m,m),
then the Fourier Series converges to the value
%[F ( ) +F ( O )} at every point where F(©)
has a left and right hand derivative,.

The trapedoidal pattern fulfills these re-
quirements,so an infinite number of terms could
result in a theoretica expression that exactly
realizes the desired response,.

..........'.......................0....00.........

Ibvid ¢2) p. 70
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(12) EXTENSION TO THEORY OF EQUALIZERS.

Consider the system shown 1in block dilagram
form in figure 11. In this system, a signal passes
through a Low Pass Fllter. Some of this signal
1s utilized in the filtered form, and the rest of
the signal 1s i1solated by a vacuum tube and sent
on to an Equalizer. Since the filtered signal
passed through a Low Pass Filter, the Equalilzer
must be a High Pass Fllter.

A system such as this can be handled by
the methods of this thesls, for the problem of the
interaction between the High Pass and the Low Pass
Filter 1s solved by the use of the Isoclation Ampli-
fler.

The system requirement might be that the
product of the Power Insertion Ratios of the High
and Low Pass Fllters be a constant; or the requlre-
ment might be that the sum of the ratlios be a con-
stant, for all w .

The characteristic required for the High Pass
Flilter can then be transformed into a Fouriler

Polynomial and the synthesis performed.




ISOLATION AMPLIFIER

EQUALIZING HIGH PASS
FILTER

SIGNAL
LOW PASS FILTER
< FILTERED SIGNAL
lt- < EQUALIZED SIGNAL

Figure 11 Block System using Equalization

_39_



(13) HIGH PASS FILTER SYNTHESIS

It is desired to synthesize a High Pass
Filter such that the sum of the Power Insertion
Ratlo of this filter and the filter previously
designed in thlis thesis be a constant for all.

The Power Insertion Ratio characteristic
desired for this filter 1s shown in figure 12.

The Fourier representation for this filter
is readily obtalinable from the Fourler represen-
tation of the Low Pass Filter, equation 36.

The expression for the High Pass Filter is
obtained when the Low Pass characteristic 1s sub-
tracted from 1ts maximum value.

Thus, 1f equation 18 were subtracted from
unity, the result would be:

L. .0298277Ew‘ -3.0459 ) (m‘+134.1582gw‘+o7375 wt +.03056783
W+ W - W+ wrs 1= wrel.21)

Egq. 36
This equation would be a starting point for

the synthesis procedure. The remainder of the
problem would be solved in the same manner as the

solution for the Low Pass Filter.
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l’*i—,'“ e

Figure 12 Fourier Representation of High Pass

Filter
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(14) CONCLUSION

If i1t is desired to synthesize an R-C
quadripole, to have a Power Insertion Ratilo,
that approximates a given characteristic, there
are sufficiency theorems that will permit the
synthesls.

If there exists a series of transforma-
tions that can put the desired characteristic in
a periodic form, and if this periodic form is, at
least, sectionally continuous with left and right
hand derivatives, it 1s possible to approximate
the desired form by a Fourier Series technilique.

As long as the derived expression for the
¥,2 18 realizable, 1t 1s reallzable as a lattice.
If the expression is also of "minimum phase shift"
it 1s also realizable as a ladder network.

There are certain restrictions on the rela-
tions between terminating impedances, cutoff fre-
quency, and maximum Power Insertion Ratlio, that

should be further investiligated.
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