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ABSTRACT

NONLINEAR EXTENSIONS TO NEW CAUSALITY AND A NARMAX MODEL SELECTION
ALGORITHM FOR CAUSALITY ANALYSIS

By
Pedro da Cunha Nariyoshi

Although the concept of causality is intuitive, an universally accepted objective measure to
quantify causal relationships does not exist. In complex systems where the internal mechanism
is not well understood, it is helpful to estimate how different parts of the system are related. In
the context of time-series data, Granger Causality (GC) has long been used as a way to quantify
such relationships, having been successfully been applied in fields as diverse as econometrics
and neurology. Multiple Granger-like and extensions to GC have also been proposed. A recent
measure developed to address limitations of GC, New Causality (NC), offers several advantages
over GC, such as normalization and better proportionality with respect to internal mechanisms.
However, NC is limited in scope by its seminal definition being based on parametric linear models.
In this work, a critical analysis of NC is presented, NC is extended to a wide range of nonlinear
models and finally, enhancements to a method of estimating nonlinear models for use with NC
are reported.

A critical analysis is conducted to study the relationship between NC values and model
estimation errors. It is shown that NC is much more sensitive to overfitting in comparison to
GC. Although the variance of NC estimates is reduced by applying regularization techniques, NC
estimates are also prone to bias. In this work, diverse case-studies are presented showing the
behavior of NC estimation in the presence of regularization. A mathematical study of the sources
of bias in the estimates is given.

For systems that cannot be modeled well by linear models, the seminal definition of NC
performs poorly. This works gives examples in which nonlinear observation models cause NC
values obtained with the seminal definition to behave contrary to intuitive expectations. A

nonlinear extension of NC to all linear-in-parameters models is then developed and shown to



address these limitations. The extension reduces to the seminal definition of NC for linear models
and offers a flexible weighting mechanism to distribute contributions among nonlinear terms.
The nonlinear extension is applied to a range of synthetic data and real EEG data with promising
results.

The sensitivity of NC to parameter estimation errors demands that special care be taken when
using NC with nonlinear models. As a complement to nonlinear NC, enhancements to a algorithm
for nonlinear parametric model estimation are presented. The algorithm combines a genetic
search element for regressor selection with a set-theoretic optimal bounded ellipsoid algorithm
for parameter estimation. The enhancements to the genetic search make use of sparsity and
information theoretic measures to reduce the computational cost of the algorithm. Significant
reductions are shown and direction for further improvements of the algorithm are given. The main
contributions of this work are providing a method for estimating causal relationships between
signals using nonlinear estimated models, and a framework for estimating the relationships using

an enhanced algorithm for model structure search and parameter estimation.
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CHAPTER 1

INTRODUCTION

1.1 General statement

The concept of causation and consequence is at the foundation of the scientific method. Although
causality is an intuitively simple concept, action A causes event B to occur, an universally accepted
definition of causality has long eluded scientists and philosophers. Understanding causal rela-
tionships is an essential step in the analysis of complex systems. Despite significant theoretical
and heuristic advances in the topic, quantifying and tracking causality strength and assessing the
causal link between two dependent quantities or events is still an active field of research.

The scientific approach to establishing these relationships is by creating falsifiable hypotheses
(e.g., “A causes B” or “A does not cause B”) and subsequently testing which hypothesis provides
the most satisfactory answer. The analysis often starts by taking measurements or observations
of quantities that are relevant (or at least possibly relevant) to the question. In the context of
signal processing, these measurements are referred to as signals. Signals are frequently classified
as inputs and outputs, which are somewhat analogous to causes and effects. The system is the
underlying entity that processes the quantities from which input signals are measured into the
quantities from which the output signals are measured. When signals are measured sequentially
in constant time intervals, the resulting sequence is called a time series. The mathematical
representation of how the inputs and outputs are related is called a model. The models are
constructed given the available data, the particular hypothesis being considered and any a priori
knowledge available about the system being studied. Many causality analysis methods involve the
creation of models and measuring intrinsic characteristics of one or more models and statistical
properties of the data.

At the heart of the scientific method, Occam’s razor has been used as an heuristic tool to

evaluate different explanations of observed phenomena. Also known as lex parsimonize (law of



parsimony), it states that “Entities are not to be multiplied without necessity,” or, in other words,
for different explanations of a phenomenon, the simplest (satisfactorily accurate) explanation
is to be preferred. With regard to model construction, this has been re-expressed (somewhat

amusingly) by Box [31]:

Now it would be very remarkable if any system existing in the real world could be
exactly represented by any simple model. However, cunningly chosen parsimonious
models often do provide remarkably useful approximations. ...[T]here is no need to
ask the question "Is the model true?". If "truth" is to be the "whole truth" the answer
must be "No". The only question of interest is "Is the model illuminating and useful?".

For causality analysis, it is often expedient to disregard many fundamental aspects of a system
in order to produce a model that provides better intuition of the relationships between potential
inputs and outputs (or causes and effects) [104]. For instance, one need not know the line frequency
or voltage to assert that a light switch controls a lamp, even though these are fundamental design
parameters for the internal function of the circuit. For more complex system, determining what
aspects to consider or ignore in constructing a model is not straightforward [138].

While the problem of model structure selection and validation cannot be universally solved, it
is possible to employ general principles to find useful models. Models with higher complexity may
potentially better represent the system being observed, but may also be prohibitively expensive or
require large amounts of data to be accurately computed. Ljung summarizes the problem with

[128, pg. 494]:

The compromise between parsimony and flexibility is at the heart of the identification
problem. How shall we obtain a good fit to data with few parameters? The answer
usually is to use a priori knowledge about the system, intuition, and ingenuity. These
facts stress that identification can hardly be brought into a fully automated procedure.
The answer usually is to use a priori knowledge about the system, intuition, and
ingenuity. ... A general advice is to “try simple things first.”

Besides challenges of properly modeling systems, quantifying causal relationships represents
an additional non-trivial problem. Causality can only be inferred (but not determined) from

time-series records (and only under certain conditions [154]). The most widely used method for



assessing causality in the context of signals and systems - the context of this work - is known as
Granger Causality (GC) [76, 77]. Borrowing from Hume’s study of causality [103], GC focuses on
evaluating how well past information about a signal or event A can predict the current state of
second signal or event B. The method has received several extensions, such as conditional GC
(CGC) [72] and spectral GC (SGC) [71], as well as similar spectral methods such as partial directed
coherence (PDC) [12, 169, 173], the relative power contribution (RPC, also referred to as Akaike
Causality) [3, 208] and the directed transfer function (DTF) [57, 108, 176].

In addition to transfer function and model based approaches, alternative methods abound
for inferring connectivity between time-series records [80, 156]. Phase analysis methods have
shown promise in inferring connectivity, such as the the phase-locking value (PLV) [91, 120], the
phase slope index (PSI) [86, 150] and phase-syncrony [9, 10, 119]. More recently, phase-amplitude
coupling methods have been applied with promising results [140]. Information theory based
methods, such as directionality index (DI) [126, 170], Mutual Information (MI) and Transfer
Entropy (TE) [196] also have been employed, but in general require more data for estimating
probability distributions [114] and cannot capture quickly time-varying characteristics, such as
functional connectivity microstates in the brain [61]. The present work focuses on model based
approaches rather than phase analysis and information theoretic approaches.

A more recent causality analysis method, New Causality (NC) [95], uses a different approach,
relying on the internal structure and states of a multivariate autoregressive model (MVAR) to
estimate causality strength. The use of the internal structure presupposes that the models appro-
priately represent the mechanisms being studied. This assumption is not necessarily correct in
complex models; nonetheless, NC possesses several desirable characteristics, such as the produc-
tion of a normalized value for which the sum of all the NC values contributing to a particular
“effect” signal adds to unity. Relative to GC, NC allows easier comparisons among different systems,
because the measured causality strength increases with increasing NC values, whereas GC might
produce “small values” even when signals have a strong causal link [94] or not depend on relevant

model parameters [100]. Moreover, in the tests with real and surrogate data in [94, 95, 98-100],



NC is superior to GC in the indication of causality strength. However, as shown in [148], NC is
more sensitive to model parameter overfitting than GC, requiring more accurate model parameter
estimation to produce meaningful results. Further, the seminal formulation of NC is restricted
to linear MVAR models. One of the central contributions of the present work is the extension of
NC to the far more general nonlinear autoregressive moving average with exogenous input
(NARMAX) models [22] while retaining all the advantageous properties of NC.

One principle often used to obtain “useful” models is to find the simplest models that pro-
vides good explanatory power. Since model simplicity and high explanatory power are often
conflicting objectives, system identification algorithms involve a solution that provides the “best”
balance/trade-off between the two objectives.

Evaluating the complexity’ of a model is not simple, specially when distinct classes of models
must be compared, such as ones generated by artificial neural networks (ANN) or genetic pro-
gramming and linear models. Within the same class of models, however, there are often methods
of quantifying complexity. Particularly, for linear models, many approaches to compare model
complexity exist, such as the [, norm of the parameter space [193] and the model orders for
autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models.

For parametric models, accuracy is usually optimized using a mean square error (MSE) criterion,
although in some cases other measures, such as total least squares [133] or the I, norm (also
known as max-norm) [56, 84, 185], might be preferable.

Parametric models frequently employ a form of regularization of the parameter space to
balance model complexity and prediction error. This is achieved by adding a regularization term
to the cost function, which assigns a penalty to solutions with higher order or larger norm of the
parameter space. Regularization may be regarded as a Bayesian approach to model estimation, in
which prior information (i.e., assumptions) is used in the formulation of the models [111]. If the
model is assumed to be sparse, the [, norm of the parameters can be used [174]. Total variation

has been applied for image denoising, assuming the noise-free image is smooth [29, 171]. As long

!The term “complexity” is used here in a customary (non-technical) sense



as the assumptions about the formulation of the models is close enough to reality, regularization
can greatly aid parameter estimation [166].

For linear and time-invariant (LTI) models, a vast variety of methods and literature are
available which are based on well-established theories, such as Fourier transforms [164]. Linear
and time-invariant models possess a number of properties that make them amenable to analysis
[152] and can be completely characterized (within the constraints of short-term processing) by
the impulse response of the model or, equivalently, the system function. The advantages of
LTI modeling are such that it is sometimes desirable to linearize nonlinear models so that LTI
techniques may be applied [151].

However, LTI models are increasingly deemed insufficient for system analysis and design
in the 21* century [25, 39]. For linear time-varying systems, adaptive methods exist, such as
Least Mean Squares (LMS) [205], Recursive Least Squares (RLS) [158] and derivatives, such as the
Normalized Least Mean Squares (NLMS) [172] and Set-membership Weighted Recursive Least
Squares [52]. However, addressing nonlinearity in models is an ongoing problem, for which the
development of a concise universal methodology is unlikely.

While ad-hoc techniques, such as nonlinear state-space models, have been successful in
applications like neural connectivity analysis [68] and stock market volatility [190], they require
relatively intimate understanding of the systems being modeled and do not generalize well outside
their application domains.

Artificial neural network models are also very powerful and have fostered advances in predic-
tion [47], classification [123] and even complex gameplay [183, 197]. The universal approximation
theorem states that ANNs can potentially represent any continuous function on compact subsets
(48, 49, 129], although the learnability of the parameters is not addressed by the theorem. In spite
of the performance, the black-box nature of ANNs remains one of the largest criticisms [58] and
a barrier to interpretability. Recent developments seek to address some of these criticisms by
providing methods of interpreting ANN models [130, 181].

Finally, linear and time-invariant in parameters (LTIiP) models, which are most concisely



expressed using NARMAX models [22] (of which the Volterra series [198] and the Hammerstein
models are special cases [145]) have shown to be very powerful in many applications, from
epidemiology [165] and microbial growth [210] to human physiology [116] and aerospace engi-
neering [34]. A significant advantage of LTIiP methods is that they allow the use of the wealth
of powerful and well understood LTI methods of system identification in identifying nonlinear
models. Additionally, NARMAX models enable sparse, interpretable and transparent modeling
[202], all of which are characteristics desirable in causality analysis.

While NARMAX models provide a concise but flexible parsimonious model paradigm [117],
NARMAX models also introduce a new set of challenges. Unlike ARMAX models, which only allow
time-shift operators to be applied to the regressor signals, NARMAX models allow the application
of other operators - generally called regressor functions. Depending on the model order and class
of regressor functions, the number of such functions may be very large. Also, it is often the case
that regressors are highly correlated, leading to slow and inaccurate convergence [11]. Although
many methods exist, the selection of the subset of the regressor functions is an unresolved issue in
system identification for over-parameterized models [2, 22, 25, 27, 81, 117, 118, 201, 203, 214, 219].

A recent method for NARMAX model identification [214], henceforth called evolved OBE
(EvolOBE),” has shown promise in developing accurate, sparse and interpretable results. This
method searches for a family of NARMAX model structures that maximize accuracy while mini-
mizing the number of regressors. The method involves a hybrid approach which uses a genetic
algorithm to select regressor functions, while employing a set-membership based optimum bound-
ing ellipsoid algorithm [52] to estimate the parameters values. A significant advantage of such
a method is that does not require any assumptions about stationarity or distributional charac-
teristics of the model disturbances. The capability of identifying simple nonlinear models with
good accuracy with unbiased parameters under complex noise conditions makes this algorithm
compelling for use in complex nonlinear systems, avoiding overfitting and maintaining good

interpretability of model structure.

2In [209], this algorithm is called OBE with evolved regressor signals (OBE-ERS).



1.2 Research objectives

Causality analysis is often employed to gain insight about systems whose internal properties are
unknown. Granger causality possesses a intuitive interpretation, if the inclusion of past values of
a signal x improve the prediction of the current value of a second signal y compared to predicting
y using only past values of y itself, then this improvement can be used as evidence that x causes y.
While conceptually simple, it can be difficult to map GC values to information about the systems
which relate x and y [95], as GC is designed to measure effect, not mechanism [19].> On the other
hand, NC draws directly from the mechanism (of the model) and thus is complementary to GC,
providing new insight into the models. However, the literature on NC is limited in comparison
to the wealth of methods for estimating and applying GC. Additionally, most of the studies of
NC have assumed that the observational and the estimated models are equivalent, with little
discussion on the validity of that assumption and the consequences to the analysis results.

A deeper characterization of the robustness of NC to model order and parameter uncertainty is
required to increase understanding and confidence in the use of NC [148]. Although GC was only
defined for MVAR models in its seminal form [76, 77], nonlinear extensions exist [7, 13, 66, 132].
The seminal definition of NC is also restricted to MVAR models, so the extension of NC to NARMAX
models developed in this work will allow NC to be useful in a much wider range of applications.

To improve upon NC and address some of its drawbacks, this work takes a two pronged
approach: first, an extension of NC to a more comprehensive set of linear and nonlinear models
is developed [146]; second, the framework for nonlinear system identification found in [214]
is explored and improved in the search for “useful” models. The present work also includes
the implementation and discussion of state-of-the-art methods for improved search speed and
accuracy [149, 192, 217].

Thus, the research objectives of this study are to:

1. Characterize the behavior of NC under model order and parameter uncertainty.

3The authors of [95] dispute this claim in [99].



2. Extend the formulation of NC to enable application to LTIiP nonlinear models.

3. Improve model structure search for LTIiP nonlinear models through use of enhanced genetic

algorithms.

4. Apply the model structure search algorithms to causality analysis using sets of simulated

and real data.

1.3 Critical analysis of the study

In the same vein as Box’s remark, it would not be expected that causality would be discriminable
from time-series records alone. While all techniques discussed in this work could potentially be
applied to any multivariate time-series data, a priori information should be used to first evaluate
if the hypothesis of causality is plausible and whether all relevant factors have been considered.*
A machine cannot correct operator mistakes because “it cannot think for itself” [137]. Thus,
causality measures must represent only a part of causality analysis, because such measures are
unable to differentiate between alleged causality and deficient experimental design. New causality
is under the same restrictions and is prone to produce misleading results if incorrect or incomplete
data are used.

Holland and Durbin [92] have also argued that only one cause can be observed at a time,
what they referred to as the fundamental problem of causal inference. That is, supposing it
is desired to know if intervention A (e.g., medication) will cause B (e.g., reduction of a particular
symptom) on a particular patient C. If it is chosen to do A, one can measure the outcome of A
given C (e.g., giving the medicine to C), but not the outcome of not doing A on C (e.g., not giving
the medicine to C), and vice-versa. Therefore, one must either take a statistical approach of testing
different interventions over a large population (e.g., giving the medicine to people similar to C

reduced the symptom on 80% of them, when given a placebo, the symptom was reduced in 40% of

4CIiff stated this fact as “these programs are not magic. They cannot tell the user about what is not there.” [46]
Cartwright argues that one cannot get knowledge of causes from equations and associations alone [36], but instead,
old causal knowledge must be used to extract new causal knowledge.



them) or an approach they call scientific, which requires the assumptions of homogeneity (e.g.,
the outcome of an intervention in the past would be the same in the present) so that different
outcomes can be compared (e.g., the sentence “symptoms are reduced every time C takes the
medicine” assumes that the effect of A on C is time-invariant even if C might change over time).
Additionally, they assert that causes can only be interventions that are imposed (not voluntary)
and are not attributes (e.g., one cannot state that a car is fast because it is a Ferrari, since it would be
impossible to measure the speed of the same car if it were made by Ford, because it would not be
same car after all. Instead, one could only say that cars made by Ferrari are usually faster than cars
made by Ford, without establishing a causal relationship). Their conclusions were summarized
in the motto: “no causation without manipulation.” However, Pearl argues in [154] that, while
manipulation is simply one way to test the workings of mechanisms, it is by no means necessary
for causal determination. Humans can confidently say that the moon causes tides (even if we
cannot observe the effects of the lack of a moon) or that the genetic code of a raven causes it to be
black (even without manipulating its DNA).

As will be discussed in Sec. 2.5, Hume believes humans to be unable to assert causation. Thus
he devises a framework through which causation can be inferred. Granger causality builds upon
Hume’s work, creating a formal measure for causal inference. Granger causality is closely linked
with the concept of TE, which measures transferred information rather than how two signals
are interconnected. In fact, GC and TE are equivalent for normally distributed signals [14]. The
differences between transferred information (and therefore GC) and causal effects are sometimes
subtle but not negligible [127].

Similarly to the seminal definition of NC, the nonlinear extension of NC [146] fundamentally
relies on the quality” of the estimated models being used. As shown in [148], even when the
data are generated by a parametric model of the same class as the estimated models, the NC

measure values depend heavily on the accuracy of the parameter estimates, whereas GC was

>Quality in this context refers to the ability of a model to sufficiently represent the internal dynamics of a system.
This is in contrast to many predictive models, whose design is based on the ability to predict the output of a system
given a set of inputs, often without regard to the actual internal dynamics of the system.



shown to be much more robust to parameter estimation errors. The use of robust parametric model
estimation methods mitigates this uncertainty somewhat, but careful selection and examination
of the estimated models remains essential in evaluating causality using NC.

Causality analysis studies generally focus on systems with complex behaviors and/or unknown
internal mechanisms. The goal is often to gain some insight into the functioning of a system,
without necessarily fully comprehending internal interaction. This poses a problem for the
evaluation of novel causality analysis tools, as most real datasets do not possess a “ground truth”
for validation. Synthetic datasets offer several advantages, the foremost for causality analysis
being the presence of ground truth. The knowledge of internal parameters also allows decoupling
the quality of the causality measure from the model estimation aspect of the measure. On the
other hand, while the ability to tune models to exhibit different behaviors is often desirable, as one
can test the measure under different scenarios, the use of synthetic datasets can also (accidentally
or intentionally) produce misleading results [147]. This work utilizes a set of real and synthetic
datasets to show performance on a variety of problems, showing interesting results in a number
of applications, but makes no claim of supremacy, rather presenting the nonlinear extension of
NC as an additional and useful tool in an signal processing practitioner. Just as any powerful
analysis tool, care must be taken in its application and the interpretation of the results. Again,
a machine cannot correct operator mistakes regardless of how powerful the machine and how

smart the operator may be.

1.4 Structure of the dissertation

This dissertation begins with the background methods chapter, in which an overview of modeling
and modeling philosophy are given. This is foundational for the discussion which follows. The
background material is followed by a short review of existing causality analysis tools. Finally,
the model identification framework is laid out, with discussion of the particular techniques
implemented. The model development is followed by a series of studies. First, a critical analysis of

NC is given, which discusses models used in the literature, the robustness of NC under model
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uncertainty, and derivations of sources of bias in NC estimation. Second, nonlinear extensions to
NC are developed, with application examples using synthetic and real data. Third, enhancements
to the EvolOBE method, where the method is tested against simulated data and the results are
evaluated against observational models, also the GC and NC values obtained under the evolutionary
algorithm are compared to the values obtained using the observational models. The studies are

followed by the conclusion chapter, where a summary and a discussion of the results is given.

1.5 Summary and contributions

The concept of causality is integral to the scientific method. However, concisely defining and
quantifying causality relationships is an elusive task. Many methods of evaluating causality have
been created, with GC being the most prominent. However, since GC is designed to measure
effect, not mechanism, NC can be used in conjunction to obtain more insight into the systems
being studied. This work expands on NC by extending it to a wide range of nonlinear models
and, thus, its applicability to a wider set of problems, and by doing a deeper critical analysis of
NC, as portrayed in existing literature, and its behavior under model structure and parameter
uncertainty. Additionally, this work also includes improvements to the EvolOBE method, which
are applied to the nonlinear extension to NC. These results will drive the field forward to a more

comprehensive set of causality analysis tools that include nonlinear NC.
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CHAPTER 2

BACKGROUND METHODS

2.1 Overview

This chapter includes an overview of some of the methods used in this work. A large portion of

Sec. 2.2 is quoted directly from [147-149] with a few modifications for improved flow and clarity.

2.2 Modeling

Before delving into the topic of causality analysis, it is important to make a distinction between
systems and models. The time-series literature tends to be somewhat cavalier in the formulation of
parametric time-series models. Widespread understanding of the fundamental modeling concepts
allows a certain lack of precision in model notation. In particular, it is not uncommon to use the
same modeling notation for the putative observation model and the estimation model. The obser-
vation model, ordinarily one of the standard time-series models [32] with a white-noise or more
strongly-independent disturbances is assumed to generate the observed sequence. Accordingly, its
parameters are unknown, but the model is posed for theoretical analysis. The estimation model
(or estimated, following model identification) is the parametric model resulting from the model
identification process. Although the observation model and the estimated model are naturally
similar in form, the two models which may have quite different parameter values and accompany-
ing disturbances. Since this distinction is important in the causality analysis approaches studied
in this work, this section is dedicated to a clear explanation of the intricacies of models, including
the establishment of a clear convention for model nomenclature and notation.

To simplify this task, the discussion will be restricted to a class of models that are linear,
time-invariant and causal (over the interval of observation). This restriction simplifies he task
of modeling signals — the model therefore representing a discrete time system of which only

the output is observable. Moreover, the intention to use conventional least-square-error (LSE)
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estimation of model parameters (in keeping with existing literature to which this work refers)
prescribes that the natural choice of signal observation model is — at least in the case of model
involving a single signal — the standard time-series model known as the autoregressive (AR)
model, often denoted AR(M) to indicate that the model has M parameters.

The AR(M) observation model for a signal sequence x is given by

M
x[n] = Z a™x[n-m]+n[n] = (a) x[n] + nln], nez, (2.1)

in which, by convention, 7 is a discrete-time white noise process, and in which we have defined

the Cartesian M-vectors,

T
ai[al* a o g™ |,
(2.2)

x[n] = [ x[n-1] x[n-2] - x[n-M]
The parameter values, a™, include the superscript symbol “«” to indicate the “true” parameters —
that is, the parameters associated with the observation model. The estimation of these parameters
is discussed in a more general context below.

Let us digress momentarily to comment on a terminology issue. Some authors might choose
to refer to the model of form (2.1) as a “generative model” (or “synthesis model”) referring its
assumed role in “generating” or “synthesizing” the sequence x. For the reporting of future
research extending the present developments, the authors prefer to reserve the term generative
model to refer to an unconstrained (and generally unknowable) operator, say H, across normed
vector spaces that is “used by nature” to exactly (without error at any level of precision) produce
the signal x from the input 5, say x = Hzn. We will therefore deliberately use the term “observation
model” when referring to Eq. (2.1) and related extensions.

It remains to specify the models used in estimation (following some further consideration of
the observation model). The issue we are addressing by taking extra care in defining what each
model refers to is necessitated by the following matter: it is not unusual for an author (across many
fields) to, for example, implicitly use model (2.1) — with parameters a;, rather than a™ - then to

refer to the estimated parameters with the same notation ay, ..., ay, thus creating ambiguity in the
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meaning of the parameter symbol notation. Less frequently, but all too commonly, the sequence
name 1 may also be used to indicate the error sequence in the estimated model (in the AR case,
the residual in the linear prediction of x[n] using x[n - 1],..., x[n - M]), thereby creating further
ambiguity. Whereas such practices are generally accepted and lead to no adverse issues for the
experienced practitioner, it is critical to clearly distinguish the various models used in the present

discussion.

2.2.1 Generalized observation model

Before addressing the estimation models, we need to enhance the AR model of Eq. (2.1) for the
present purposes. One can approach the required modification in several ways. Equation (2.1)
represents a model for a single signal generated by passing uncorrelated noise through a linear
filter. Causality analysis is generally concerned with multiple signals, say x;, x, ..., xn,, Where
N; = 2 denotes the number of such signals, and the possibility that any of the signals {xj }Jl\il may
contribute to (may “cause”) the generation of x, for a given 1 < p < N;,. The inclusion of linear
combinations of samples from further signals on the right side of Eq. (2.1) makes it improper to
refer to the model as “autoregressive” The augmented model (in the “careful” notation suggested
above), assuming, for convenience, that, for every p, x, has a linear dependency on M past values

of each of the signals including itself, takes the form

M N, M
xp[n] = Z apy Xp[n — m] + (Z Z Ay Xq[n - m]) + n,[n]
m=1 (;F;) m=1 (23)

> (a)"x[n] + n,[n],

where 77, continues to denote a scalar white-noise excitation for p and the vectors aj, and x[n] are

extended in the natural way relative to Eq. (2.1):

T
Golap @ - ar a e e e e e gt | and
) (2.4)
x[n] = [ xi[n-1] x[n - M] xn.[n - 1] xn,[n - M] ]
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M where M, is the number of parameters used in modeling

with @, and x[n] both vectors in R
signal x,,

M, = NoM = dim{a}}. (2.5)

Although this is not customary in the current literature on causality modeling, the most con-
ventional way to refer to such a model (for each p) would be as an autoregressive model with
exogenous inputs (ARX). One can also view this model as representing a multiple-input, single-
output (MISO), discrete-time system (if the disturbance 7, is viewed as an excitation), but with the
caution that it is only recursive in the signal x,, with x;, Vj # p serving as exogenous inputs for
each p. Models accounting for multiple outputs are sometimes referred to as jointly regressive
models [100, 109] or multivariate autoregressive (MVAR) models [33, 108, 204].

An important special case of the observation model of Eq. (2.3) occurs for N; = 2 which appears
in problems in which the causality effects between two signals are analyzed. In this case, the

estimation model can be written as two explicit equations,

M M
x1[n] Z aj;xi[n—-m]+ Z ajy Xp[n — m] + ny[n]
m=1

m=

—_

athl[”] + aigxz[n] +m[n],

(2.6)

M M
x[n] = Z ay, x;[n — m] + Z ay; x;[n — m] + ny[n]
m=1 m=1

a;§x2[n] + angxl[n] + 1o n].

These equations can be formulated as the more general model of Eq. (2.3). For example, for N = 2,

2.7)

2.2.2 Estimation model

Turning to the estimation model, it is customary in the linear modeling case — and consistent with

minimum-mean-squared-error (MMSE) estimation theory - to take the form of the noise-free
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observation model as the basis of the estimation model. For the general observation model of

Eq. (2.3), the estimation model for signal x, becomes

M N, M
flnl =Y @l [n - m] + (Z 3 @ x,ln - m]) = a7 x[n], (2.8)
m=1 q=1 m=1
q#p

where M is the model order. It is to be observed that the “+” superscripts do not appear on the
notation for the parameter estimates. This is a deliberate effort to distinguish a “true” coefficient in
the observation model, say a;7, from the symbolic representation of the corresponding parameter
to be determined in the estimation model. It will be our custom to refer to estimation model
of (2.8) as the estimated model when we wish to stress that the parameters have taken values
determined by an optimization procedure over observed data [161].

Note that M itself is a parameter of the model, which must also be predetermined. While
theoretically any model with M > M could perfectly represent the observation model, the
parameter estimators become less accurate as M increases. An example of the distributional
characteristics of the parameter estimates will be given in Sec. 2.2.3 for jointly normally distributed
signals. Many methods of comparing models with different M values exist, such as Akaike
Information Criterion (AIC) [5], Final Prediction Error (FPE) [4], Minimum Description Length
(MDL) [168], Bayesian information criterion (BIC) [174], and other hybrid methods [62].

It is further noteworthy that, whereas the observation model is AR or ARX in the signal x, -
that is, it is recursive in the signal x, - the estimation model is purely “feedforward” in producing
an output as a linear combination of past values of x,, and of some subset of the remaining N; - 1
signals, at time n. Such a model does not correspond to any conventional (Box-Jenkins-type)
time-series model, but, in the parlance of signal processing, corresponds to a MISO discrete-time
system [32]. Note also the absence of any noise in the estimated model process.

Associated with an estimated model for signal x, is an error sequence, say ¢,, with value at
time n given by

ep[n] = x,[n] - x,[n]. (2.9)

By subtracting Eq. (2.8) from Eq. (2.3), we see that this error contains components due to inaccura-
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cies in the estimated coefficients, as well as the disturbance sequence 7,,

eln] = (a, - ap)Tx[n] + 1,[n]. (2.10)

A slight abuse of notation is used here, where a;, and a, are zero-padded to account for the missing
elements (when M # M) and x[n] is similarly adjusted to account for any missing elements. For
example, suppose M > M, then a,, is padded with M - M zeros in the locations that correspond
to x,[n - M - 1] - x,[n - M] for all g € {1,--, N;}.

When the parameters are correctly identified in the estimation model, so that a = a’, then the
estimation error is equivalent to the white-noise disturbance of the observation model at each n,
€p[n] = np[n]. This is known to be the case for the MMSE estimate of the parameters of such a
linear model [153], assuming that the model order of the estimated model is greater or equal to
that of the observation model. The LSE solution asymptotically approaches the MMSE solution as
the number of observations increase.

In practice, of course, the parameter estimates @ must be determined from finite data records
of the signals {x]}j\fl Without loss of generality, we may assume that each of the signals is
observed on the time indices, n = 1,2,..., N - 1, observation x,[N] is additionally available, and
the parameters are sought with which to model the signal x, on the interval n = 1,..., N. Let a[N]
denote the vector of parameter estimates obtained on this interval, and let {ep( n| N ) }11 be the
corresponding error sequence associated with the estimated model with parameters a[N]. The
assumption of “small errors” (i.e., o;?p « crfp ) is often used to justify the use of (LSE) estimation of
the parameters on the finite interval. In fact, in the present context, the lack of correlation in the
sequence 7,[n] leads to an unbiased LSE estimate, a[N], for finite N, and asymptotic convergence

in mean square to a’.

The observations on the given time range comprise a set of N equations in M, = dim{a}
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unknown parameters (maximally M, = MN;), which, written in vector-matrix form as,

x1[0] xi[1] = [N -1] | 'a})l[N]
’ x,[1] ‘ x[-M+1] x[-M+2] - x[N-M)] affl[N]
sl e,
BN il wl] e sV || el
=x,[N]
oM 1] xy[ M2l - xgN-M] | | @I |

=XT[N] =a[N]
where %,[N] € RY, X[N] € RV and a[N] € RMe. In these terms, the LSE estimate is the

solution to

X"[N]X[N]a,[N] = X"[N]x,[N]. (2.13)

The error sequence may be added to the estimated model for signal x, to create a model that

exactly produces the original signal:

xXp[n] = agx[n] + €p[n], (2.14)

or, if we wish to emphasize the short-term temporal nature of the estimated parameters in the
model,

x,[n] = a][N]x[n] + ,(n| N). (2.15)

Although this model theoretically produces the exact signal x, over the interval n = 1,..., N, it
is generally very different from the observation model of Eq. (2.3). We refer to Eq. (2.15) as the
error-augmented estimated model. As noted near Eq. (2.10), the estimation error sequence €, is
dependent upon the misadjustment in the parameter values relative to the presumed true values
of the observation model, a, - a,[N], as well as the disturbance sequence in the observation, 7,.

Not discussed above is the fact that the error sequence is also dependent upon the short-term
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estimation of the parameters (i.e., the duration N). The error sequence is therefore a key indicator
of the quality of the model and we will see this sequence play an important role in causality

analysis.

2.2.3 Least squares estimation

An error sequence accounts for both the disturbance sequence and errors in parameter estimation
[Eq. (2.10)]. Under the assumption of “small errors”, minimizing the error sequence therefore
approximately minimizes the parameter estimation error. The well-known solution to the normal

equations, Eq. (2.13), is given by [74]
a, = (X"X)"'X"x,, (2.16)

in which (XTX) !XT is the pseudoinverse of X.
Assuming that the disturbance is i.i.d. zero mean Gaussian random process with variance
0‘,21, that the regressors are bounded and the covariance matrix of the regressors Xx exists and is

non-singular and that the observation model is BIBO! stable, the solution is distributed as
a, ~ N, (a0, 6253 /(N - My)) , (2.17)

where N, (g, X) is a multivariate normal distribution of dimension M, with mean vector u and
covariance matrix X, X3! is the inverse of the covariance matrix of the regressors, and N is the
number of time samples.

For sets of regressors with ill-conditioned covariance matrices, the variance of a, can be very
large. As NC depends directly on the accuracy of the model parameters, it is prone to misleading
results for small N' (compared to the largest element of the vector X' o7).

If the i.i.d. Gaussian assumption is not satisfied, ill-conditioned regressor matrices will still

cause the parameter estimates to be have potentially large variance, although the parameters may

1Bounded-input-bounded-output (BIBO) stability is a form of system stability linking the output of a system to its
inputs. A discrete time signal x[n] is called bounded if there exists a B > 0 € R such that for every n € Z |x[n]| < B. A
system is called BIBO stable if and only if, given any bounded input, the output is also guaranteed to be bounded
[151].
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not be normally distributed. Special attention must be taken in the case of NC, to assure that the
covariance matrix is well conditioned or regularization must be applied to reduce errors in the NC

measure estimation.

2.2.4 ARMAX models

The most comprehensive way to represent LTI models is using the ARMAX representation. This
representation encompasses AR, MA, models with exogenous inputs and any combination thereof.
Starting with the error augmented model of Eq. (2.14), expanded to highlight the AR, MA and

exogenous inputs,

xp[n]
MAR Ng Mx MMA
_ i
Wl = 2, el ml+ (3 gy —ml) + " & skelnm- gl
q=1 m=1 e
J q#p J error (2 : 18)
N , sequence
autoregressive moving average

exogenous input

= a;x[n] + €p[n],

where Mg is the model order for the AR term, My, is the model order for the MA term and My is
the model order for the exogenous input term. Note that the model orders and generally unknown
(unless predicated on a priori knowledge of the system being modeled) and must be estimated
prior to the parameter estimation, additionally €, must also be estimated. The Box-Jenkins method

[32] is the standard approach to iteratively identify ARMAX model structures.

2.2.5 ARX models with non-white error sequences

Digressing momentarily into ARMAX modeling, note that ARMAX models of Eq. (2.18) can be

expressed in terms of the sum of ARX model and a colored noise term

Mar N; - Mx
_ m ’
n] = Z ap,Xp[n - (Z Z gXqln—m )+ e,[n],
m=1 q=1 m=1 —— (219)
q#p colored
(. / error
ARX model sequence
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where

Mma
Z 1+ &ln], (2.20)
such that
Mya
m
nrer[lflj)\](]) 1+ mZzl Dpe| | ot &[] (2.21)

which shows that if €, is bounded, ¢/ will also be bounded. These characteristics will be exploited

in Sec. 2.4.

2.2.6 NARMAX and modified NARX models

The LTIiP class of models extend traditional LTI models by allowing nonlinear transformations
of the model inputs and past outputs, while allowing the use of many of the classical modeling,
prediction and estimation techniques with well-understood and well-tested convergence charac-
teristics. LTIiP models have shown to be a viable alternative to highly nonlinear in parameter
models [41], with excellent results in many applications, from epidemiology [165] and microbial
growth [210] to human physiology [116]. The most comprehensive representation of LTIiP models

is the nonlinear ARMAX (NARMAX) [39, 122], which are expressed as

n-1 n-1
sln-M> €P|n—M) + Gp[fl]

Z apk@pk(xl{n M x2)n M
= ag(pp[n] + €p[n] (2.22)

where K is the number of regressor functions, ¢,, is the ¢ regressor function, xr|Z:]1\4 represents
the set of all available samples of signal x, from time n— M until time n -1 and a, is the parameter
weight associated with ¢,;. Here, the argument of the ¢,, is included to reinforce the fact that
the regressor functions may depend on any combination of the regressor signals (including the
error). Common regressor function families include radial basis functions [40], wavelets [26], and
polynomials [6, 8, 24, 82].

In [202], Wei uses the linear in parameters nonlinear in variables (LIP-NIV) terminology

to describe NARMAX models. However, this implies that the models are inherently nonlinear
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in variables, which would exclude ARMAX models from the category. Instead, this work will
maintain the usage of the LTIiP terminology to highlight that traditional LTI models are a subset
of NARMAX models.

The modeling power of NARMAX models comes at the cost increased complexity in estimating
parameters. Due to the large number of highly correlated regressors, slow convergence, overfit-
ting and inaccurate parameter estimates are common challenges faced when estimating model
parameters [11].

The estimation of parameters that depend on past values of the error sequence in linear
ARMAX models (MA portion) is considerably more complex than for the parameters associated
autoregressive and exogenous inputs portions of the model. While there are methods for estimating
MA parameters [63, 204], and iterative approaches exist for NARMAX models, many approaches
focus on NARX models [26, 40]. Additionally, the interpretability of terms that depend on the
error sequence have lower interpretability and are often not included in final predictive model
[200], as these noise terms are not useful for model prediction but are only used to reduce bias
in model estimation [200, 202]. A small modification to NARMAX models simplify parameter

estimation is

Ke
) = 3 b () + 6ln]
k=1

apT(pp[n] +¢e,[n] (2.23)

g n-1 n-1
xp[n] = Zapk(ppk xlln_M9x2‘n_Ms-“3st
k=1

where
K. 1
=Y bpk¢pk(ep|n_M> +e,nl, (2.24)
k=1
so that regressor functions may depend on either the regressor signals or past values of the error

sequence. This restriction to NARMAX models is equivalent to NARX models with colored noise.

2.2.7 LASSO regression

The least absolute shrinkage and selection operator (LASSO) [193] is an extension to traditional

least squares estimation, in which an /; norm regularization is employed to encourage sparsity in
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the parameters. LASSO regression is equivalent to finding a parameter vector a that satisfies

argmin { |x - &(a)|% + Ala]; }, (2.25)

acRMa
in which x the signal being modeled and x(a) is the prediction of x based on the parameter vector
a, and A a the regularization factor.
Unlike the [, norm, the /; norm allows the use of efficient gradient-based optimization tech-
niques [70], while being more effective at encouraging sparsity in the parameter space than, for

example, Tikhonov (, norm) regularization.

2.3 Set-membership optimum bounded ellipsoid algorithms

All parameter estimation strategies share a similar goal: finding the optimum parameter estimates
given a limited amount of data. The optimality criterion differs between algorithms, for example,
the smallest prediction error for LSE or a compromise between prediction error and sparsity of
parameters [Eq. (2.25)] for LASSO. Set-membership estimation approaches aim at providing the
set of parameters that are consistent with the observed data and the model.

Starting with a putative NARMAX observation model of the form

K
* * n-1 n-1 n-1 —
x[n] = Z apk<ppk<x1}n_M,x2‘n_M, e XN ’7172711\4) + €,[n]
k=1

(2.26)
(a,)" @, + nlnl,
where K is the number of regressor functions and M is the model order for which there exists a

sequence of positive numbers y[n], such that

In[n]l” < y[nl. (2.27)

For a estimation model of the form

x[n] = ag(pp[n] + €[n], (2.28)

the sequence y[n] imposes the constraint at each time n,
x[n] - a, @,[n]| < y[n], (2.29)
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or, equivalently,
al ,[n] < x[n] + y[n] 20
ol g,[n] > x[n] - y[n]
which define a hyperstrip (region between the two parallel hyperplanes) in which the set of
valid parameters - known as feasibility set - must lie. The intersection of any set of K or more
hyperstrips defined by linearly independent observations forms a convex polytope of dimension
K. If at time n, the polytope defined by the intersection of all previous hyperstrips is not fully
contained within the hyperstrip defined by Eq. (2.29), the feasibility set is refined. This is akin to
faceting a gem, where each new refinement potentially adds up to two flat facets to the polytope.?

Although the polytope defined by the feasibility set has finite dimension, there is no limit to the
number of facets. The evaluation of the intersection of hyperstrips becomes increasingly complex
as the number of considered time samples increases. Optimum bounded ellipsoid algorithms
provide a computationally efficient approximation to the polytope by evaluating a hyperellipsoid
that bounds the polytope [52]. Compared with the polytope, the unfaceted nature of the hyper-
ellipsoid is more akin to a cabochon (a polished unfaceted gem). A geometric illustration for a
bidimensional parameter space is shown in Fig. 2.1. In Fig. 2.1, the x-axis represents the value
of 6;, the y-axis represents the value of 0,. w; is strip defined by ¢,[2] and x[2], likewise, ws is
strip defined by ¢,[3] and x[3]. Qs is the intersection between w, and w; and ©; is an ellipsoid
that bounds Q;. Note that ®; and Q3 are both completely contained within the strip «w;, so no
refinement occurs at time n = 4.

The ability to reject samples that do not reduce the feasibility set is a significant advantage of
OBE algorithms. While the recursion for OBE algorithms is very similar to a weighted recursive
least squares (WRLS), thus O (K 2) complexity per time sample processed, typically only a small
fraction of samples provides refinement to the ellipsoid [54]. Despite the increased computational

efficiency in comparison to WRLS, OBE algorithms produced guaranteed bounds for the feasibility

2 Any facets completely located outside the hyperstrip are removed from the polytope, so the number of facets
does not necessarily monotonically increase, even though the volume of the polytope monotonically decreases with
every refinement.
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Figure 2.1: Geometric illustration of OBE algorithms

set.
The ellipsoid can be succinctly defined by the centroid and a matrix containing the principal

axes of the ellipsoid. In the case of OBE algortithms, the feasibility set at time n is defined as
. K o rC
@z{OER (0-6,) —(0—00)<1}, (2.31)
K

where 0, is the centroid of the ellipsoid, C is the sample covariance matrix of ¢, (thus a positive
semidefinite matrix), and « is a positive scalar, such that % define the principal axes of the ellipsoid.

Another advantage of SM estimation is that it requires fewer assumptions about the distri-
butional characteristics of the noise term. The only requirement for the employment of SM
algorithms is that the noise be bounded over the observed sequence. Methods for estimating the
bounds have been developed with proven conditions under which convergence is guaranteed
[125].

The recursion steps for OBE algorithms can be found in Alg. B.1 of the appendix with a short

overview on the difference between variants and enhancements to the algorithm.
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2.4 NARMAX model estimation and the EvolOBE method

While NARMAX models are often able to represent many complex interactions with few terms,
the parameters associated with such terms must still be estimated. As the number of regressor
functions increases, parameter estimation is very likely to become an ill-conditioned problem.
Thus, traditional regression methods such as LSE do not generally produce good results when
coupled with nonlinear models with a large number of regressor functions. The number of
candidate regressor functions often is very large. For example, for polynomial regressor functions,
the number of such functions grows factorially with the polynomial order. An exhaustive search
of all possible subsets is computationally prohibitive for most practical applications. Thus, finding
optimal subsets of the regressor functions becomes fundamental to properly estimate models.
This section contains an overview of a family of NARMAX model estimation algorithms that is
particularly suited for causality analysis.

The poor conditioning of a large set of regressor functions is in large part due to the fact
that many regressor functions will be highly correlated with one another (e.g., x and x> have
a correlation coefficient of 0.77 for x normally distributed with zero mean and unity variance).
Additionally, many commonly used sets of regressor functions form overcomplete systems, which
creates null spaces in the regressor space.

Many techniques have been developed specifically for nonlinear model selection and parameter
estimation [22, 25, 27, 81, 118, 201, 203, 214]. These tend to fall within three categories: stepwise
search algorithms, bridge regression and evolutionary search.

Stepwise search algorithms iteratively add or remove candidate regressor functions from
the model until a criterion is reached. Since the number of possible “paths” grows factorially
with the number of regressor functions, most employ greedy approaches, where the regressor
which most reduces the prediction error of the NARMAX model is chosen and/or the prune the
regressor functions which least increase the prediction error when removed. Matching pursuit
[131], Forward-Regression Orthogonal Least Squares (FROLS) [25] and Least Angle Regression

(LARS) [65] are prominent examples. Stepwise approaches suffer from shortcomings in practice.
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Particularly, autoregressive terms are typically included first in the search, especially for systems
with dynamics well below the sampling frequencies [23]. This is true regardless of how important
those terms are in the final model. Once the initial autoregressive terms are selected, the remaining
prediction error is often small enough that the choice of regressors is sensitive to noise in the data
[157].

Bridge regression methods [67] add a penalty to the cost function proportional to the £,-norm
of the parameters®. Bridge methods can be used independently or combined with stepwise methods.
Ridge regression [90] (also known as Tikhonov regularization [194]) uses £,-norm and possesses
closed-form solution and can improve conditioning in ill-posed problems, but do not generate
sparse solutions. LASSO regression [193] (also know as basis pursuit [42]) use the ¢;-norm and
are effective ways of finding sparse solutions.

However, existing model structure and parameter estimation methods suffer (to differing
degrees) from slow or inaccurate convergence of the parameters [11], high computational cost
[138] and often produce inaccurate model structures [201].

Evolutionary search is well suited for regressor selection with many examples in the literature
[115, 121, 163, 187]. While more computationally expensive than bridge or step-wise methods, it is
able to find global optima within the search space at an acceptable computational cost (sometimes
even comparable to gradient-based approaches [139]). The EvolOBE method [210-217] differs
from these approaches by combining the evolutionary search with set-theoretic OBE algorithms.
The OBE class of parameter estimation algorithms possesses several desirable characteristics
that make it particularly suited for the problem of estimating parameters for models of the form
given by Eq. (2.23), for example, no necessity to make assumptions about the stationarity and
distributional characteristics of the noise, and efficient computation of parameters.

Earlier variants of the algorithm used more traditional methods of evaluating model fitness,
such as AIC and FPE, but later variants use a bi-objective evolutionary search [149, 217] that

produces a set of models with the best compromise between predictive power and complexity.

3p is most often set such that 0 < p < 2 [70]
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This obviates the choice of hyperparameters or assumptions to regulate the trade-off between the
two objectives and allows a wider search and greater population diversity [195] as solutions that

have high fitness for different objectives can more easily coexist and coevolve.

2.4.1 Genetic encoding and algorithm overview

In the EvolOBE method, models are treated as chromosomes. The LTIiP model is the phenotype of a
chromosome, a binary sequence in which each bit indicates the presence or absence of a particular
gene. Each gene codes for a particular regressor function in the model. The algorithm starts
with a random population of chromosomes. The parameter sets result from the set-membership
processing of the data and the genetic makeup of each chromosome. Unlike other estimation
methods, the set-membership algorithms provide sets of feasible parameter vectors rather than
a single point estimate. Measurable set properties are then used to assign fitness values to each
chromosome, and the fitness value is used in the genetic algorithm selection process to evolve
the population toward better solutions (e.g. [167]). This framework simultaneously addresses
selection of the model structure and the parameter estimation.

To reduce the computational complexity of this process, the search space of regressor models
must be controlled, and the candidate and final models must use the fewest regressors that are
consistent with an objective of prediction-error minimization, Since these objectives are conflicting,
a multi-objective optimization approach is desired. For this work, the Non-dominated Sorting
Genetic Algorithm - IT (NSGA-II) [51] approach is adopted, since it generates set solutions (ideally
the Pareto-front), providing the best solution for a given number of regressors and allowing the
model with the best trade-off to be chosen.

NSGA-II is a standard algorithm for solving multiobjective optimization problems. It requires
a small number of parameters and is able to obtain solution sets with good spread. The basic
NSGA-II algorithm is shown in Fig. 2.2. An initial random population of size N is generated
and evaluated according to the two objectives: prediction accuracy and number of regressors.

The population is then sorted, the best half is selected as parents, which go through selection,
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Figure 2.2: NSGA-II algorithm summary

mutation and crossover to generate a new population of children. The parents and children of
this generation become the parents of the following generation. The cycle is repeated until the
termination criterion is reached.

In the seminal EvolOBE paper [214], Yan et al. used binary tournament, bit-wise mutation
and single-point crossover.Later variants of the EvolOBE algorithm use different mutation and
cross-over algorithms tailored for discovery of sparse models which provide faster convergence
[149].

The sorting of the population occurs at two tiers. First, the population is sorted by fronts,
each front is formed by a set of solutions has higher optimality than all other members of the
set (this is called being non-dominated). The population is sorted such that the members of the
first front is placed higher in the set of solutions, followed by the subsequent fronts sequentially
until the entire population has been sorted. Within a front, the population is sorted by the sum of
the edge lengths of the cuboid formed by the two surrounding solutions within the front (in the
bi-objective case), this is known as the crowding distance. The elements with larger crowding
distance are placed higher within their respective fronts. As a consequence of how the crowding
distance is computed, the edge solutions are always ranked higher, as they do only have a single

solution surrounding them (infinite crowding distance).
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2.5 Causality analysis

Philosophers and scientists have vigorously debated the meaning of causality and no universally
accepted definition exists. In [103], philosopher David Hume argued that the human mind is not
able to fully assert true causality, only to observe events occurring in succession. Nevertheless,
Hume proposes conditions for a relationship to be called causal. While, not universally accepted,
this work will use Hume’s definition of causality, because it is testable and quantifiable. Like
Box [31], our intent is not to find "true" models, but rather gain insight and understanding of the
systems being studied. Nevertheless, a “true” model may be posed in some cases for theoretical
analysis.

The most widely known method of assessing causality strength is GC. It was first postulated
by Norbert Wiener that if the inclusion of a regressor could improve the prediction of a regressand,
then the relationship between the regressor and regressand could be assumed "causal" [206].
Granger used this idea to give a formal definition of causality and feedback in the context of AR
models [76]. Granger Causality relies on Hume’s work [103], which focused on epistemological
causality (focusing on what can can be learned and known), rather than ontological (how things
are). Hume posed certain conditions under which causality can be ascertained. These conditions
are discussed in Sec. 2.5.2 and connected with the definition of GC. While Granger himself
distinguished GC from “true causality” [77], GC performs well in a number of applications, from
econometrics [60, 87] to neurology [175].

While causality analysis often involves the use of predictive models, there is no guarantee
that the predictive models internally represent the systems that they are modeling. This is closely
related to the distinction between correlation and causation (known as the cum hoc ergo propter
hoc fallacy). Although precedence (when coupled high correlation) may seem like a good indicator
of causality, it also cannot be equated with causation (known as the post hoc fallacy). For example,
many people brush their teeth before going to sleep; however, brushing teeth does not cause sleep.
Granger himself has highlighted the distinction between “true” causality and GC [77].

Of particular interest is NC, which was developed to address limitations of GC in measuring
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causal mechanisms and which has shown useful results in a number of applications [95, 96, 98—
100, 105, 112, 220]. It has been pointed out that GC measures causal effect rather than mechanism
[19] and NC measures a fundamentally different (although related) quantity.* New Causality is

better suited as a complement for GC (and other causality measure tools) rather than a replacement.

2.5.1 Humean concept of causality

Hume claims that the relationship between cause and effect cannot be established simply by
reasoning, but instead requires an assumption of “uniformity of nature,” i.e., that certain natural
laws and processes do not change overtime [102]. Although unprovable by means of observation
alone, “uniformity of nature” serves as a first principle through which causation can be judged.
While Hume believes that “nothing is more evident than that the human mind cannot form such
an idea of two objects as to conceive any connection between them” [103, Sec. XIV], he studies
causality within the context of what can be understood through experience.

In [103, Sec. XV], Hume postulates the following set of rules by which to judge causes and

effects (quoted verbatim here, other than use of modern spelling):

1. The cause and effect must be contiguous in space and time.
2. The cause must be prior to the effect.

3. There must be a constant union between the cause and effect. It is chiefly this

quality that constitutes the relation.

4. The same cause always produces the same effect, and the same effect never
arises but from the same cause. This principle we derive from experience, and
is the source of most of our philosophical reasonings. For when by any clear
experiment we have discovered the causes or effects of any phenomenon, we

immediately extend our observation to every phenomenon of the same kind,

“The claim is disputed by the authors of [99]. Nonetheless, the author tends to agree with [19].
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without waiting for that constant repetition, from which the first idea of this

relation is derived.

. There is another principle, which hangs upon this, namely that where several
different objects produce the same effect, it must be by means of some quality,
which we discover to be common among them. For as like effects imply like
causes, we must always ascribe the causation to the circumstance, wherein we

discover the resemblance.

. The following principle is founded on the same reason. The difference in the
effects of two resembling objects must proceed from that particular, in which they
differ. For as like causes always produce like effects, when in any instance we
find our expectation to be disappointed, we must conclude that this irregularity

proceeds from some difference in the causes.

. When any object increases or diminishes with the increase or diminution of its
cause, it is to be regarded as a compounded effect, derived from the union of
the several different effects, which arise from the several different parts of the
cause. The absence or presence of one part of the cause is here supposed to be
always attended with the absence or presence of a proportionable part of the
effect. This constant conjunction sufficiently proves, that the one part is the
cause of the other. We must, however, beware not to draw such a conclusion
from a few experiments. A certain degree of heat gives pleasure; if you diminish
that heat, the pleasure diminishes; but it does not follow, that if you augment it
beyond a certain degree, the pleasure will likewise augment, for we find that it

degenerates into pain.

. The eighth and last rule I shall take notice of is, that an object, which exists for
any time in its full perfection without any effect, is not the sole cause of that
effect, but requires to be assisted by some other principle, which may forward its

influence and operation. For as like effects necessarily follow from like causes,
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and in a contiguous time and place, their separation for a moment shows, that

these causes are not complete ones.

A discussion of the philosophical implications of “uniformity of nature” assumption lies outside
the scope of this work. Here, systems will be assumed to vary slowly enough that a time-invariant
model adequately represents the system dynamics over “short” periods of time in which analysis
takes place. Similarly, item 7 implies some proportionality in the causal relationship, where an
increase in the cause will proportionally affect the effect. Hume, however, does not exclude the
possibility of nonlinearity in the relationship. One must not indiscriminately assume an affine
relationship between cause and effect exists even if the observations (under a limited range) closely
follow an affine relationship. Therefore, as discussed in Sec. 2.2.2, it is important to remember the
distinction between models and the systems they represent.

Additionally, Hume’s items 1 and 3 cannot be derived from samples of signals alone, but must
be evaluated separately. Note that Hume’s concepts of contiguity and union in time and space are
loosely defined. Even if internally to the systems, causes and effects might be contiguous, often
these states are unobtainable. Additionally, discrete time data collected from a finite number of
sensors implies these requirements will never be fully satisfied without additional assumptions
(e.g., limited bandwidth). For the purposes of this work, it will be assumed that signals satisfy
these requirements. Time-series data are unable to provide information regarding items 1 and 3,
which must be evaluated using a priori information.

Hume’s item 6 states that if two outcomes are different, then the causes must also be different.
When some causes cannot be measured or estimated, the outcomes will also not be estimable.
The error augmented and observation models [Eq. (2.1) and Eq. (2.14), respectively] account
for this by including an unknown disturbance sequence. That is, even if the parameters of the
observation model were to be known, discrepancies (however small) are still expected in the
prediction. Nevertheless, a disturbance sequence with small variance suggests (but does not
guarantee) that most of the “causes” are being accounted for.

What remains for analysis are Hume’s items 2, 4 and 5. Item 4 states that if A causes B, then A
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must co-occur with B. In the domain of continuous random variables, this is roughly equivalent
to the concept of dependence (or correlation for linear models). Item 5 states that if A causes
B, and C also causes B, there must be a common element between A and C. Uncovering such
mechanisms is helpful when analyzing systems, but the existence of a common factor between A
and C does not aid in the decision on whether A and/or C cause B. Finally item 2 requires event A
to precede B in order to establish causality of B by A. Although this requirement is intuitive, careful
examination is required to ascertain whether A truly precedes B. This is particularly evident
in systems that exhibit predictable, periodic, or quasiperiodic behavior. Apparent “noncausal”
behavior can be attributed to predictive learning. For instance, rooster crows do not cause the
sun to rise, instead, roosters possess the ability to predict sunrise times due to its quasiperiodicity
using an internal circadian clock [180] (and also using other cues such as light and even social

rank [179]). Nonetheless, few would object to the statement that “the rooster crows just before the

break of dawn.”

2.5.2 Granger causality

By combining item 4 (correlation) and item 2 (precedence), GC assesses the causality strength using
the relative increase in predictive power gained by including a second signal into an estimation
model. This is done by comparing an estimated ARX model (joint model) over an estimated AR
model (disjoint model) where the exogenous input is formed of past samples of the causing signal
being studied.” The increase in predictive power is used as evidence of causality.®

Suppose that stochastic signals x; and x, are sampled. It is then possible to create predictive

models for x; varying the presence or absence of x,. A model that only uses past values of x; can

>When the current sample of this signal is used, the increase in predictive power is called instantaneous GC.
Instantaneous GC violates precedence and therefore weakens the case for calling it “causality.”

%To highlight the distinction between “true causality” and GC, some authors choose to use the Granger-cause (A
Granger-causes B) jargon, however, keeping with Hume’s notion of “obtainable causality” and for brevity’s sake, this
work will refrain from using the term, while acknowledging the distinction between epistemological and ontological
causality.
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be written as
xln] = @i ) + elnl,
(2.32)
= Qal(xl[n - 1]: xl[n' - 2]9 xl[n - 3]: ERRY xl[n - M]) + e[n]’
where q)l(x1|Z:]1w) is a function of past values of x; from time n — M to time n - 1 inclusive and € is

the error sequence. If ¢, is a linear function, this predictive model reduces to an AR observation

model. A second predictive model using past values of both x; and x, can be written as

xaln] = ga(a| %l ) + €10, (2.33)

where (pz(x1| X, ‘" ) is a function of past values of x; and x, from time n — M to time inclusive

n-M>
n -1, and €’ is the error sequence. If ¢, is a linear function, this predictive model reduces to an
ARX observation model, where x; is the exogenous input. Note that both predictive models must
have their topology and parameters estimated (in the case of parametric models).

Although in many applications the signals being analyzed are of the same nature (e.g., two EEG
channels, two stocks, etc) and minimally processed (e.g., filtering applied for removing volume
conduction, line noise, EMG interference, etc), GC can analyzed distinct quantities like the effect

of phase from one channel into amplitude of a second channel [141].

The GC value in the contrast represented by [Egs. (2.32) and (2.33)] is defined as
GC,_,; = In(c?/0?), (2.34)

where o7 is the sample variance of the error sequence of the estimated model where x; is absent
and o7 is the sample variance of the error sequence of the model with x, as exogenous input.
Since, in general, one of the rational objectives of model estimation is minimizing the residual
error, the inclusion of x; in Eq. (2.33) assures that 6> < ¢ and thus GC= 0. In order to evaluate
the hypothesis of whether x, causes x, a statistical significance test, such as an F-test [184], is
conducted on the GC statistic.

It is noteworthy that, in general, ¢, (x1|n M) # (pz(x1| 0) unless xz‘ = 0; that is, the model

nM’

estimation method employed for obtaining ¢; and ¢, will attempt to fit the data, so ¢, will adapt
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to the absence of x,. If xg}::]lw can be predicted well by x1|::]1\4, then ¢ might not be significantly
larger than o2, even if the contribution of x, to ¢, is large [23, 157].

The simplicity of GC allows it to be easily applied to a wide range of problems with good
results, e.g. [33, 69, 177]. However, since it is designed to measure causal effect, GC value does not
fully consider the internal states of the underlying observation model, only the outputs of the
model. Further, it has been claimed that GC values are difficult to compare across observation
models, as GC values are not normalized and obtaining a threshold for statistical significance is
not straightforward [95].

The use of two independently estimated models is vulnerable to resulting bias and larger
variance [16, 43]. More recent methods have been developed to derive GC values from a single full
regression using factorization of the spectral density matrix [16, 17, 59]. Nevertheless, conceptually,
these methods still stem from the comparison of the predictive power of two models.

Although authors have pointed out apparent limitations of GC, [79, 94, 95, 97, 100, 135, 188],
GC is a well established methodology for analyzing causal relationships [33]. Additionally, for
normally distributed signals, GC has been shown to be equivalent to TE (save by a scaling factor)
[14], but can be evaluated reliably with fewer samples. Barrett and Barnett acknowledge in
[19] that “GC is not a perfect measure for all stochastic time series: if the true process is not a
straightforward multivariate autoregressive process with white-noise residuals, then it becomes
only an approximate measure of causal influence. In each real-world scenario, discretion is required
in deciding if confounds such as non-linearity and correlations in the noise are mild enough for
the measure to remain applicable” While TE is applicable to other models, other authors have

also pointed out that causal effects and transferred information [127].

2.5.3 Spectral Granger causality

Spectral GC is the frequency domain decomposition of GC introduced by Geweke [71]. Spectral

GC uses the power spectral density (PSD) function to assess GC at particular frequencies. Suppose
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there is a pair of signals x; and x; that can be modeled by

xi[n] = aszxz[n] + alTlxl[n] + €[n]
(2.35)
x[n] = aszxz[n] + alexl[n] + &[n],

where €; and ¢, are assumed to be sampled from white and mutually uncorrelated random processes.

Applying the discrete time Fourier transform (DTFT) yields

Xi(f) = An(f)Xo(f) + Au(H)Xa(f) + Ei(f)

Xo(f) = Ana(H)X(f) + A (/) Xu(f) + Ex(f),
where A2(f), A11(f), An(f), and Ay (f) are the DTFTs of ay,, ay1, az,, and ay; respectively, X;(f)

(2.36)

and X,(f) and the DTFTs of x; and x, respectively and E;(f) and E,(f) are the DTFT of samples of

€; and ¢, respectively. Through manipulation, Eq. (2.36) can be rewritten as

Ei(f) _ Bii(f) Bu(f)||Xi(f) (2.37)

E(f)| |Ba(f) B=(f)||X()

As long as By;(f)Ba(f) # Bi2(f)Bai(f) for any f € [-0.5,0.5], Eq. (2.37) can be inverted yielding

XN [Cu(f) Cu(f)||E()

= . (2.38)
X(f)] [Ca(f) Cou()||E(f)
Under these circumstances, the spectral density of x; can be written as
XN = [Cu(HEF + Cra(H)E(f)- (2.39)
Using Eq. (2.39), SGC is defined as
X () )
SGCyysy, =In | —FF== ). 2.40
<|Cn(f>E1(f)|2 (240
or, equivalently
|C12(f)E2(f)|2)
SGCyy, = In [ 1+ =202 ) 2.41
( [RGEGE (241

This means that the SGC,,_,,, is proportional to the ratio between the “contribution” of E,(f)
(originating from x;) and E;(f) (originating from x;). As the contribution of E,(f) to x; increases,

so does the SGC,,_,,,.
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It is important to note that, due to the matrix inversion in Eq. (2.38), the relationship between
the parameters in vectors ay;, a;,, @;; and a,, [from Eq. (2.35)] and the functions Cy;(f) and Ci,(f)
is not straightforward and is model order dependent. An example of the nontrivial relationship
between the parameters and GC is shown in Appendix A.

Spectral GC is particularly helpful when the frequency bands of interest are well known or
concentrated into relatively narrowband peaks [35]. Another noteworthy characteristic of SGC is
that it is (at least theoretically) filtering invariant, that is, the SGC values do not change when the
signals are filtered by an invertible filter [15]. In fact, prefiltering the data has been recommended

against unless the noise can be very well characterized (e.g., 50Hz/60Hz mains hum) [16].

2.5.4 Conditional Granger causality

Geweke also developed an extension to GC for MVAR models [72]. When analyzing more than
two signals, traditional GC is unable to differentiate chains of causal relationships. For example,
suppose x, y and z are signals that can be represented by a MVAR model. If both GC,_,, and
GC,_,; are large, GC cannot distinguish between the model A in Fig. 2.3a from the model B in
Fig. 2.3b. Conditional GC solves the ambiguity by evaluating the improvement in the prediction

conditioned to other signal or set of signals.

o oo

a) Model A: x causes z directly (b) Model B: x causes z indirectly though z

Figure 2.3: Different explanations for large GC,_,,

In other words, conditional GC compares the variance of the error sequence associated with

the model for z predicted using past values of y and z - 67 _ - to the the variance of the prediction

Ezly

error of signal z given past values of x, y and z - o2

ey’ Similarly to Eq. (2.34), conditional GC is

defined as

GCyszy = In(a?, /o2 ), (2.42)

Ely EZ\X y
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In model A, GC,_,,|, remains large, while in model B, GC,_, |, will be small (ideally 0). Thus,

a large GC,_,,, would indicate model A is more likely than model B.

2.5.5 New causality

Instead of focusing on predictive power as a measure of causality, the NC measure relies on the
internal structure of a parametric model and upon evaluating the proportion of the energy of
each contribution [which is formally defined in Eq. (2.44)] to infer causation. By making use of
the models, NC is able to more proportionately represent the strength of internal mechanisms of
the observation model. Also, unlike GC which requires the careful selection of conditioning sets
beforehand (otherwise potentially leading to false conclusions [184]), NC foregoes the use of two
models and derives its value from a single MVAR model.

Suppose an estimated model is generated for time-series data using an error augmented model

in Eq. (2.14), which can be expanded and grouped by regressor signal as

xp[n] = Z Z agyxp[n — m] + €,[n]. (2.43)

Under this model, we define the contribution from x, into x, as

Cpgln Z ApgXq[n (2.44)

such that the NC measure is defined as

NCy—x, = w5 L — , (2.45)
D (cph[n]> + ) €[n]
h=1 n=M n=M
or, equivalently,
N /M 2
D (Z Ay, Xq[n - m])
NC,, x, = M Amel , (2.46)

where NC,, ., is the NC value of x, int

o

5, N is the number of observed time samples of x, and

xp, M is the model order and Nj is the number of signals compared. When comparing two signals,
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the equation reduces to

» (f aizxz[n—mJ)

n=M \ m=1

» [(f alyoln - m]) ; <§ aiysaln - m]) ; ef[n]]

(2.47)

2.5.6 Spectral new causality

One characteristic shared by many causality analysis tools is the ability to spectrally decompose
the measure to analyze particular frequency bands. The spectral extension of new causality,
henceforth referred as Spectral New Causality (SNC),” proceeds rather intuitively from the

seminal definition. First, the contributions are defined in the frequency domain

Cog(f) = Fcpglnl} = > cpglnle ™" (2.48)

where F is the DTFT operator, which is shown on the right hand side. The SNC is then defined as

|Cog (NI

N, 05 ’

|Con(HIPdf + (N - m)a?

SNC,x, = (2.49)

=

=1-0.

(8,1

where aezp is the sample variance of €,. Note also that the denominator has been modified for
consistency, but it can be shown using Parseval’s theorem that the value of the denominator is
equivalent to the denominator in Eq. (2.46).

In [95], SNC is defined using the power spectrum of the regressors signals, but the definition
using contributions is equivalent and greatly simplifies the derivations in Ch. 4. Also note that in
[95], the integrals in the denominator are erroneously omitted. One characteristic shared between
SGC and SNC is that the integral of SNC,, ., (f) over one period of the DTFT (e.g.. from -0.5 to
0.5) yield the GC and NC values respectively.

The expression for SNC is conceptually similar to RPC [3]. The difference lies in that RPC uses

the power contribution of the innovation sequence of a signal (¢;) instead of the signals (x,). One

"The spectral extension is called “new spectral causality” in [95], which is confusing, as it is the spectral extension
to NC, rather than a new definition of spectral causality (which does not exist).
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advantage of RPC is that the denominator is model invariant, whereas in NC the squared sum of
the elements in the denominator depend on the model parameter estimates. This occurs because
€, and ¢, are assumed to be mutually uncorrelated for all p # g, whereas x, and x, are (in general)

correlated. This can lead to the presence of bias in the NC estimates (further explored in Sec. 3.4).
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CHAPTER 3

A CRITICAL ANALYSIS OF NEW CAUSALITY

3.1 Overview

In the causality analysis literature, the distinctions among systems, observation models, and
estimated models is often blurred. Models are often taken at face value without further discussion
on the validity of the model, order and parameter estimates. In this chapter, some of the observation
models used in NC literature [94, 95, 100] are discussed. Then, two case studies are done in order
to evaluate the robustness of NC and GC to model order and parameter estimation errors. Finally,
four scenarios for bias in NC estimation are explored.

From the perspective of the equivalence of GC to TE (measuring transferred information),
GC will not measure causal contributions from signals that follow predictable patterns (e.g., slow
changing signals, periodic or quasiperiodic signals). While it is true that the GC values estimated
using data from some of these observation models may defy intuition on causal strength, signals
with high temporal correlation will also require a large number of epochs to produce accurate
parameter estimates. Sec. 3.2 discusses the challenge some of the models in NC literature pose to
parameter estimation and also the plausibility of some of models.

Some of the observation models used in the literature to showcase the advantages of NC over
GC are severely ill-posed. Although it has been shown that NC can more proportionally represent
the causal mechanisms than GC [95, 100], the NC values can only improve upon the inference from
GC values if the the estimated models correctly mimic the internal dynamics of the observation
models. In Sec. 3.3, particular examples are shown of how NC estimates are susceptible to errors
in the parameter estimation. In summary, the NC value is as good (or useful) as the model used.
On the other hand, GC is generally more robust to parameter estimation errors.

During the investigation of the robustness of NC estimates to model estimation errors, bias

was observed in the estimates. This led to the study reported in Sec. 3.4, in which, a mathematical
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approach is used to predict likely the sources of bias in NC estimates.
A significant portion of this chapter is quoted directly from the author’s work in [147, 148]

with a few modifications for improved flow and clarity.

3.2 Problematic aspects of models in NC literature

With the assessment of causality strength in mind, several observation models previously used in

comparisons between GC and NC will be re-examined.

3.2.1 Model 1

A principal example observation model studied by Hu et al. [95, Eq. (14)] is re-examined. The
observation model is compared to a second observation model [95, Eq. (15)], to argue that GC
does not reflect the “real strength of causality,” the observation models share the same GC value,
in spite of their differences. This model is ill-posed in a way that produces relatively small GC
estimates. However, the ill-posedness also presents a challenge for NC, as NC depends on the
parameter estimates (further discussion on the effect of parameter estimate errors on NC is given

in Sec. 3.3). The observation model from [95, Eq. (14)] is expressed as

x1[n] = 0.8x;[n - 1]- 0.8x,[n — 1] + ny[n],
(3.1)
x[n] = + 0.8x,[n — 1] + no[n],

in which n; and 7, are white noise processes of variances 0.005 and unity, respectively. It is
noteworthy that o7 = 2000, . In [95], it is claimed that the GC value does not reflect the apparent
real causal interaction between x; and x,. Although the low variance of 7, of [Eq. (3.1)] aids in the
estimation of the parameters associated with x;[n], it also can cause the covariance matrix of the

regressors to be ill-conditioned. Because of the small 021, for any ¢ € Z, one can write
xi[n-2€]~08x;[n—¢€-1]-0.8x[n-¢-1], (3.2)

so regressors x;[n — £], x;[n — £ — 1] and x;[n — £ — 1] are approximately linearly dependent. The

linear dependance can also be characterized as a null space in the regressor matrix, in which

43



variations in the parameters have little effect on the residual error. When combined with the
relatively large variance found in x,, one can write

X[n] = 0.8x[n— 1] + mp[n] + - +

Mo (3.3)
Belxi[n-¢]-08x;[n-¢-1]+0.8x[n-¢-1],

=1

in which the f, are scalars that represent errors in the estimated parameters in the direction given
by the parameters in the brackets. A large variance on the parameter estimates is expected in
light of Eq. (2.17), because the covariance matrix is ill-conditioned.

Because Eq. (3.2) contains both x; and x, terms and the way NC is computed, the estimates
of NC,_,; and NC,_,, will be biased towards 0.5, which is particularly problematic for NC;_,,,
since ideally NC,_,, = 0. A full treatment for the presence of bias in ill-posed problems is given

Sec. 3.4.3.

3.2.2 Model 2

The observation model studied by Hu et al. in [95, Eq. (15)] is used in conjunction with the
observation model in Eq. (3.1) to compare GC and NC. This model is ill-posed as well and has an

unrealistic structure which also produces small GC values. The observation model is given by

xi1[n] = - 0.8xy[n - 1] + ny[n],
(3.4)
x%2[n] =+ 0.8xy[n - 1] + ny[n],
where 7, and 7, are white noise processes of variances 0.01 and unity, respectively. Note that

x;[n] does not depend on previous samples of itself. Due to the small variance of n, relative to 7,

this is also an ill-posed problem, as one can deduce from Eq. (3.4) that
x[n-€]+08x[n-€-1]~0, (3.5)

. . . 2 . 2
for any ¢ € Z. Following an argument similar to Eq. (3.3), as o, is much smaller than g, the
estimated model is likely to contain contributions from x; into x,, in the form of x;[n—€]+0.8x,[n—

¢ — 1], which are absent in the observation model.
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3.2.3 Model 3

Hu et al. [95, Eq. 24] use the following observation model to argue that GC underrepresents

causality strength

xi[n] = -0.99x,[n - 1] + n[n],
(3.6)

x%[n] = 0.99x;[n - 1] + 0.1x;[n - 1] + ny[n],

where 71, and 7, are white noise processes of variances unity and 0.1, respectively.

In this observation model, the asymptotic value for GC,_,; is 0.093 (the derivation of the
expression is given in Sec. A.2.2 of Appendix A), meaning that the power of the residual error of
the prediction of x;[n] is reduced by less than 10% by including previous samples of x; relative
to using only past samples of x;. It is claimed in [95] that the GC cannot identify the causal
relationship between the two signals, as the theoretical value for NC,_,, is 0.96, which indicates
that current value of x; can be almost fully explained by first delayed value of x,.

The small GC value is a result of the particular conditions in this observation model. The
relatively large cr,?l means that a larger portion of the signal cannot be explained by previous values
of either x; or x,. Therefore, the theoretical minimum variance of the residual of x; is relatively
large. Additionally, since 0',?2 is relatively small, the previous values of x, can be well predicted by
previous values of x;, so the reduction of residual error by considering x, is small.

If o*,?l is made equal to 052, GC,_, = 0.67, and GC,_,; = 0.70, meaning that the contributions
from x; to x; is similar, but smaller, than the contribution of x;, to x;. The power of residual error
is reduced by about half in both cases. The NC values also indicate that the strengths of the

contributions are similar to each other with NC,_,, = 0.96 and NC,_,; = 0.98.

3.2.4 Model 4

In Hu et al. in [95, Eq. (25)], the following observation model is used to further argue that GC

does not represent causality strength. The observation model is given by

xi[n] = -0.99x[n- 1]+ n[n],
(3.7)

x[n] = 0.1x;[n = 1] + n[n],
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where 7, and 7, are white noise processes of variances unity and 0.1, respectively. The GC value
from x, into x; is 0.092, which is claimed to be too small, given that x;[n] is clearly caused by
x[n-1].

However, upon closer inspection, it becomes clear that the contribution of x; into x; is indeed
small. The variances of x;[n] and x,[n] are 1.099 and 0.101 respectively. So the contribution of
n: to x; is about 10 times larger than that of x,. Even under perfect estimation conditions, the
residual can only be reduced by approximately 9%, so, although x, represents the only measurable

contribution to x;, the contribution is significantly smaller than that of 7, as GC correctly indicates.

3.2.5 Model 5

Model 5 is presented in the paper by Hu et. al. [100, Eq. (25)] to support a claim that GC possesses
a “fatal drawback” that makes it unsuitable in some scenarios. This, of course, is only true if a
similar observation model is plausible in any practical application, otherwise the analysis should

have limited bearing on judging GC. The model is given by

x[n] = x[n-1]+nn],
(3.8)

%[n] =-09x[n - 1]+ ny[n],

where 7, and 7, are white noise processes of unity variance.

In this model, at every timestep, x; and x, exchange values with one another. The current
value of x; depends solely on the delayed sample of x; and a white noise process. Similarly, x,
depends solely on the first delayed sample of x; and a white noise process. The variances of x; and
x, are 10.53 and 9.53 respectively, which are significantly larger than that of #, and 1,. Therefore,
the contribution of x; into x; and that of x, into x; are indeed relatively large. The asymptotic
values for GC are GC,_,, = 0.26 and GC,_,; = 0.30, whereas the theoretically-evaluated NC values
are NC;_,, = 0.90 and NC,_,; = 0.89. The NC values clearly indicate how strongly x; and x; are
coupled, whereas the GC values are relatively low, representing a potential of reduction of the

variance of the error of only 23% and 26% for GC,_,, and GC,_,, respectively.
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However, a bigger question is: “Under what conditions would a similar observation model
occur in nature?” The propagation delay between the two signals is exactly one time sample,
which can only be achieved if the sampling rate is designed this way or by faulty delay embedding.
This means the observation model would not be so cleanly representable if the sampling rate
were even slightly different. Additionally, (according to the model equations) the signals do not
depend directly on previous samples of themselves, however, assuming that the continuous-time

counterparts of x; is differentiable, we have

dx(t)
dt ’

x1(t + At) = x;(t) + At - (3.9

for small enough At, where x(t) is the continuous time signal from which x;[n] is sampled (i.e.,
x1(nT;) = x;[n], where T is the sampling period and the sampling rate f; = 1/1,). Consequently, for

small enough T,
dX(t)
dt t=nT; '

xi[n+1] » x[n] + T, (3.10)

where d/a: denotes the derivative in time. For any sufficiently high sampling rate, the signals should
be at least correlated to previous samples of themselves. A similar analysis is done in [79], but in
the context of GC. Another example of insufficient sampling rate is given in Sec. 3.2.7.

The observation model in Eq. (3.8) can be written as

xi[n] = -0.9x[n - 2] + n3[n],
(3.11)

%[n] = -0.9x[n - 2] + nynl,

where the residual errors n;[n] = n[n] + n2[n - 1], and ny[n] = 0.99,[n - 1] + n,[n] are independent
white Gaussian processes of variances 2 and 1.81 respectively.

The small difference in variance of the residuals explains the low GC values. The model given
in Eq. (3.11) might have slightly larger power in the residual error, but it also does not require
inter-channel contributions. So the model given in Eq. (3.11) is arguably simpler than Eq. (3.8), with
a minimal increase of predictive error. Additionally, notice that x;[n] and x,[n] are uncorrelated,

further strengthening the case for the model given in Eq. (3.11).
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The claim that GC incorrectly represents the causal relationship requires knowledge that the
model of Eq. (3.8) correctly models signals x; and x,. While this can be argued in a computational
simulation, such a strong claim cannot be made about a complex problem where the underlying
mechanism cannot be easily explained. Thus, while an interesting mental exercise concerning GC,
a case cannot be made that the occurrence of such cases is significant enough to warrant the term
“fatal flaw.”

The choice of sampling frequency is also important for modeling and causality inference in
real applications. A discussion of the relationship of regression and sampling rates is given in [23]
in the context of nonlinear models. Existing literature of the effects of insufficient sampling in GC
estimation in the context of econometrics is found in [136] and in the context of neurophysiological

processes in [18].

3.2.6 Model 6

In [94], Hu et al. provide two example observation models in which GC values are zero, even
though there are clearly causal relationships between the two signals. These example highlight
that GC measures transferred information, rather than “causal” influence. In this case, x; is a
periodic signal, and therefore no new entropy (information) is added to x, beyond the first period.

The first example model is found in [94, Eq. (10)],

xi1[n] = -0.99x,[n - 1] + ny[n],
(3.12)

x[n] = =x,[n - 2],

where 7, is a white noise process of unity variance. Note that this model does not contain a 7,
term, effectively making o,, = 0.

It can be shown that x, can be expressed as a periodic signal with a period of exactly four
samples, repeating x,[0], x;[1], —x,[0], and —x,[1] indefinitely. The values of these samples depend
on the initial conditions of x,. Similarly to Model 5, the observation model seems to be sampled in

a way that synchronizes with x,, such that the period of x;, is exactly four samples. Due to the
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lack of external driving forces, x; is stable, however, it is noteworthy that the observation model
contains a pole on the unit circle.

Since x; is not stochastic, it can be estimated using past values of x; as

%xl[n—3—4{’]—%x1[n—l—4k]
%[n] ~ -2 k=0 , (3.13)

0.99(N; + Ny)

for any N; > 0 and Ny > 0. For large enough N, + N (e.g. Ny + Nt » |02 /0} ), past values of x,

can predict the value x;, so that the first line of Eq. (3.12) can be rewritten as

N, Ni
xi[n—4-4€]- x[n-2-4k]
xln] = lim = NN +mln] (3.14)
4
Nk—>oo

In this case, the GC value tends to zero, as Eq. (3.14) does not contain any x, terms and yet has
the same residual as Eq. (3.13). However, since AR models must have finite order, the GC is never
zero. Often a maximum order is imposed in the regression algorithm to avoid overfitting, which
would bound GC away from zero.

However, because x; is deterministic, it cannot be discerned whether x;[n - 1] truly causes

x1[n]. Since Eq. (3.12) can be rewritten as

xi[n] = -0.99x,[n - 1 - 4£4,] + ny[n],
(3.15)

X[n] = —x[n-2- 46,

for any ¢y, £, € Z*. Thus, it is impossible to discern x;[n - 1] from any x,[n - 1 - 4¢] where' ¢ € Z*.
In terms of parameter estimation, this ambiguity causes the regressor matrix to become singular.
In this case, additional assumptions (e.g. sparsity in parameters, bias towards smaller weights or
maximum allowable model order) are necessary to estimate the model parameters correctly. This
is especially true if it is desired to also concurrently estimate the propagation delay between x;,

and its effect on x;.

lin fact any convex combination of x;[n — 1 — 4¢] terms would be indistinguishable.
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3.2.7 Model 7

The second example given by Hu et al. in [94, Eq. (13)] shows another instance in which GC is

allegedly zero:

xi[n] = -0.99x,[n - 1] + ny[n]
(3.16)

xoln] = minl,
where 1, is a white noise process of unity variance. Note that the equations for both x; and x;
have n,[n] instead of separate n,[n] and n,[n].

Although x,[n] is not linearly predictable by any strictly causal model, x;[n - 1] is predictable
given past samples of x;. Hu et al. state that for any realization of Eq. (3.16), it is possible to rewrite
the equation for x;[n] as

M
x[n] = A}IILHDO Z ajixi[n - jl + m[n]. (3.17)

for some {aq; 2,-However, this is only true as M — oo. For M = 1, the GC value from x, into x;
is 0.4, decreasing monotonically as M increases. Although this value is arguably low given the
mechanism in Eq. (3.16), the NC value of x;, into x; is = 0.5, which also underrepresents the causal
relationship.

The authors suggest in [94] that there is a instantaneous causality relationship from x, into x;.

To illustrate this, the first line of Eq. (3.16) can be rewritten as
xi[n] = x[n] - 0.99x,[n - 1]. (3.18)

In this case, the NC,_,; = 1, which implies that x; can be fully explained by x,. In this case,
GC,_,; — oo, which also implies that x; can be fully explained by x,.

While 1, and 7, are assumed white in AR models, x; and x, are not. The whiteness of the
residuals implies that each new samples of 7, and 7, provide innovation to the observation model
that is independent of any previous sample. If that were not true, previous samples of 1, and
1, could be used to predict the current values of 7, and 7,, and, in turn, the current values of
x; and x;. Since most regression techniques aim at minimizing the residual error, 7 is usually

to be assumed white. However, in this model, x, is white. The implication is that x, changes
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unpredictably and that no previous values of x, can be used to predict its current value. This
seems to indicate that the system is being sampled insufficiently and that we cannot determine

whether x; is being aliased.

3.2.8 Discussion of models 1-7

The basis of AR modeling is that previous samples of a signal provide information about the
expected current sample. When the signal changes slowly, the previous sample often provides a
good estimate of the current sample. By considering two samples, one can estimate the derivative
of the signal and use it to improve the estimate. Assuming no overfitting occurs, the inclusion of
more regressors will further improve the estimate. The same argument can be expressed in the
spectral domain. The estimation filter attempts to match the spectrum of the signal, where filters
with larger orders can better match the desired spectrum.

In Models 2 through 7 (Sec. 3.2.1 through Sec. 3.2.7), at least one of the regressands does
not depend on previous samples of itself. In a physical system, that would imply that either the
quantity being estimated has no inertia (not continuous) or that the system is being sampled
too slowly. However, if the signals are assumed to be continuous in time and sampled above the
Nyquist frequency, it would be expected that, the difference between the current sample of signal
should be constrained by the previous samples. While such systems exist, one can argue that they
are degenerate cases of more practical observation models. In particular, neural systems have
been shown to be strongly dependent on internal states [68].

While some models shown in [94, 95, 100] highlight alleged drawbacks of GC, they represent
only a small restrictive class observation models, which are not representative of the performance
of GC in most problems, or may even pose difficulty for NC, as parameter estimation could be
adversely affected by ill-posed problems. In comparison, the models used as examples in the
MVGC toolbox [16] contain models designed to mimic particular realistic scenarios (e.g. 5-node
networks, 9-node networks, non-stationary linear models, etc). Although not a comprehensive

list, these models provide better means of analyzing and comparing causality tools.
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In many of the analyses of experimental data presented in [95, 98, 99], NC outperforms GC
in showing the causality mechanism strength, however, some simulations in [94, 95, 100] show
extreme cases in which GC will predictably underrepresent the causality mechanism and might be
considered degenerate observation models. Although it is important to highlight instances where
GC does not perform well, these are far from being “fatal drawbacks”

In [19], Barrett and Barnett assert that the claim of GC not capturing “how strongly one
time-series influences another” could be considered “radical” However, it was conceded that “GC
is not a perfect measure for all stochastic time series: if the true process is not a straightforward
multivariate AR process with white-noise residuals, then it becomes only an approximate measure
of causal influence.” For different applications, other methods are available such as conditional
GC [14, 44], spectral GC [71] and other methods such as partial directed coherence (PDC) [12],
relative power contribution (RPC) [3], directed transfer function (DTF) [93], and phase slope index
(PSI) [150]. NC is a new addition to that list, which has shown promising results and its strengths
and weaknesses will likely be explored in the following years.

When comparing two techniques, it is important that the observation models chosen represent
the strengths as well as the limitations of both techniques. A possible remedy to this challenge
is to create a set of benchmark problems or datasets that represent a variety realistic scenarios.
For instance, the multivariate GC toolbox (MVGC) [16] provides a small set of example models
representing realistic scenarios. This set could be expanded to account more scenarios and serve
as a benchmark set, which would allow a fairer and comprehensive comparison between causality

analysis tools.

3.3 Analysis of NC robustness to parameter errors through case studies

To empirically evaluate the robustness of NC measures to model parameter estimation error and

overfitting under model uncertainty, one of the primary example observation model used in [95,
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Eq. 14] is re-examined. The observation model is expressed as

xi[n] = 0.8x[n-1] - 0.8x[n-1]+ n[n]
(3.19)

x%[n] = + 0.8xy[n - 1] + n,[n]
where n; and 7, are white noise processes of variances 0.005 and unity, respectively.

Three scenarios are observed in the present study, each using a different values for M of the
regressors. To study the statistical properties of the NC and GC estimates under the effects of
overfitting and regularization, 65536 simulations were run in each scenario. In each simulation, the
number of time samples N = 256, and model parameters were estimated using LASSO regression.
A wide range of regularization parameters was used (A € [1077, 10']). In the following figures, the
value of A is shown in the x-axis and the NC and GC values are shown in the y-axis. For each
value of A, the probability distribution of NC and GC values were estimated from the histogram
taken at that A value and are shown in a color plot, where yellow represents higher probability
density and blue represents lower probability density.

Although A must also be estimated, several techniques exist to find appropriate values. The
most common method is using a resampling method, such as bootstrapping and cross-validation
[21, 110]. k-fold cross-validation splits the dataset into k subsets, then for each subset, evaluating
the prediction error of that subset using the estimated model obtained by using the union of the
other k - 1 subsets to estimate the parameters. The A value that produces the smallest average
of variance of prediction errors is chosen. Alternatively, thresholding can be used to evaluate
parameter significance, with the number of significant parameters used in conjunction with a
method such as AIC or BIC to compare models [124]. In this work, the wide range of A values was
chosen to showcase how NC and GC estimation react to differing levels of regularization.

For the observation model in Eq. (3.19), the theoretically evaluated NC values [see Eq. (A.22) in
Appendix A for the exact expression] are shown in Table 3.1. These NC measures indicate that x;
strongly dictates its own behavior, that x; and x, together can very accurately predict x; (in other
words, NC, _,,, is small), x; does not contribute to x; [as Eq. (3.19) indicates] and x, contributes

to its own behavior strongly, but a significant portion cannot be explained by either x; or x, (in
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other words, NC,,_,,, is relatively large). Although there are other factors at play, the relatively
smaller value of NC, _,,, compared to NC,,_,,, is expected as the variance of 1; is much smaller
than the variance of 1,. The theoretical values for the GC measures are also shown in Table 3.1,
where GC,_,; shows a range, due to GC being model order dependent. These values indicate that
the presence of x; does not improve the prediction of x, (x; does not cause x,), but the presence of
x, reduces the residual prediction error energy from 14 to 140 times (x, does cause x;).

Table 3.1: Theoretically evaluated GC and NC measures for the observation model in Eq. (3.19)

NC._,, 0.89
NC,_,, 0.11
NC._, 0
NC,_, 0.64
GC,_,; | [4.86,5.38]
GCi_» 0

Of particular interest in these tests is NC;_,,, which should indicate that x; is not caused
by x;. Similarly, GC,_,, is expected to be small, indicating that x; does not cause x,. Ideally,
NC,_,; = 0 and GC,_,; = 0, but, in practice the values will be greater than zero as a consequence
of the statistical variance of the estimator in conjunction with the data properties.” Nevertheless,
significance thresholds Tyc and Tic may be set such that if NC;_,, < Tyc or NC;_,; < Tge, X
is assumed not to cause x,. The significance thresholds can be obtained through a number of
techniques, such as block resampling [159], stationary bootstrap [160] or trial shuffling [37, 196].

In the studies with M = 1 (exact model order), NC and GC using LASSO regression produce
good results, despite a small value of N (N = 256). In Fig. 3.1, the distribution of estimated NC,_,,
values is shown for different regularization parameters. Even for A as low as 1077, most simulations
yield NC measures close to the theoretical NC values. Fig. 3.2 shows the distribution of GC,_,,
values under the same circumstances. Similarly to the NC,_,,, little variation is seen over the
range of A values.

To evaluate the effects of order overestimation, simulations for the observation model of

2If the estimated aél =0fori=1,2,..., M, then NC;_,5 = 0 and GC1_,2 = 0, but at least in terms of LSE, the
probability of exact equivalence is nil.
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Figure 3.1: Distribution of the NC,_,, estimates as a function of A for M = 1.
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Figure 3.2: Distribution of the GC,_,, estimates as a function of A for M = 1.

Eq. (3.19) were run under the same conditions except for a larger M. With M = 2, until enough
regularization is applied (A = 107), the simulation does not yield satisfactory results for NC, as
shown in Fig. 3.4, where there is a large spread of values for NC,_,,. The GC,_,, estimate for
M = 2 (shown in Fig. 3.3) has higher variance than the estimate for M = 1, but is robust to the
overfitting and regularization, having a consistent value for lowest values of A tested and only

changing when excessive regularization is applied (A > 1072), in other words, when the parameter
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estimates are substantially biased towards zero.
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Figure 3.3: Distribution of the GC,_,, estimates as a function of A for M = 2.
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Figure 3.4: Distribution of the NC,_,, estimates as a function of A for M = 2.

Because of the large correlations between x;, x, and their delayed samples, the covariance
matrix of the regressors is ill-conditioned. When M is increased to five, the estimate of NC;_,, not
only has large variance, but also tends to bifurcate and cluster around two values (approximately

0.35 and 0.55) when A < 1073, Neither of these is the theoretically correct value, as shown in
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Fig. 3.5. This tendency is strengthened as the mismatch between model order and regressor order
increases, as shown in Fig. 3.6, where M = 6. Meanwhile, the GC estimates remain close to what
was observed for M = 2, as shown in Fig. 3.7 for M = 5 and Fig. 3.8 for M = 6. While the extra
regressors cause the GC estimates not to have any probability mass at GC = 0 for A < 107, the
estimates remain close to zero, even for small amounts of regularization. This suggests that, in this
test, GC is more robust to overfitting and model order overestimation, even when the parameters

cannot be estimated accurately.
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Figure 3.5: Distribution of the NC,_,, estimates as a function of A for M = 5.

Although it is possible to mitigate the need for regularization with larger sample sizes, as shown
in Fig. 3.9, in which N = 1024 (instead of N = 256 in previous figures), it is sometimes necessary
to infer the change in causality strength over short time intervals, so that the model parameters
must be estimated over data blocks spanning the same short time intervals. Blindly increasing
the sampling rate is often not advisable as it would adversely interfere with the models and
conditioning of the regressor matrix [23]. Therefore, special care must be taken when estimating
the model order and its parameters to avoid misleading NC values.

In order to study the NC performance in models with longer propagation delays between
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Figure 3.6: Distribution of the NC,_,, estimates as a function of A for M = 6.
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Figure 3.7: Distribution of the GC,_,, estimates as a function of A for M = 5.

channels, we propose a similar model here, with

xi[n] =  0.6x;[n-1]-03x[n-4]+ n[n]
(3.20)
x%[n] =-0.5x[n— 1]+ 0.6x:[n - 1] + ny[n]
where 71, and 7, are both white Gaussian noise processes of zero mean and variances unity and

0.005, respectively. Note that the contribution of x, into x; has a delay of four samples. In this

case, the order of the joint ARX model is four, even though the contribution of x, into x; can be

58



0.1

0.08

0.06

GC

0.04

0.02

O L
107 10® 10° 10™* 10 102 107" 10° 10!
A
Figure 3.8: Distribution of the GC,_,, estimates as a function of A for M = 6.
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Figure 3.9: Distribution of the NC,_,, estimates as a function of A for M = 5 and N = 1024.

represented with a single regressor (x;[n — 4]). When assuming that the system can be modeled as
a joint AR model and varying only the order of the model, either a large number of regressors
is made available (when M > 4) or an insufficient number of terms is made available (M < 4).
Therefore problems with larger propagation delays present a challenge for parameter estimation.

The theoretical NC values for Eq. (3.20) are shown in Table 3.2, which can be obtained by

evaluating Eq. (A.23) with the expected values for the squared terms. This indicates that for x; the
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contribution of previous values of x; is roughly twice that of the contributions of x,. Also, the
past values of x; and x, can be used to almost fully predict the current value of x;. Additionally,
the power of the contribution of previous values of x, is about three times that of the power of x;
to x,, but a portion of the current value of x, cannot be well predicted by past values of x; and x;,

(since NC,_,,+NC,_,, = 0.77).

Table 3.2: Theoretically evaluated NC measures for the observation model in Eq. (3.20)

NC,; | 0.57
NC,_,; | 0.20
NC;-, | 0.33
NC,_,, | 0.67

When the exact model order (M = 4) is used, results show that regularization is necessary when
N = 256. Fig. 3.10 shows the NC,_,; values obtained using LASSO regression for different values
of the regularization factor (1). The behavior observed in Fig. 3.5 is present, despite the use of the
exact model order. When enough regularization is applied, the NC values approach the theoretical
values. The results are biased towards zero, partially due to tendency of the regularization to bias
the value of the parameters towards zero, while also increasing the residual error. Additionally, a
small bias is observed due to the nonlinear dependence on parameters in the definition of NC.
Further analysis of biases in NC estimates is found in Sec. 3.4.

If the model order is overestimated at 6, the NC values will exhibit more variance, even when
enough regularization is applied. Fig. 3.11 shows the probability density function of the NC
values. This indicates that LASSO-assisted regression is not able to accurately estimate the model
parameters, regardless of the choice of regularization factor.

When underestimating the model order as unity, in other words, attempting to predict x;[n]
and x,[n] with only x;[n-1] and x,[n—1], the results were unexpectedly good, as shown in Fig. 3.12.
When compared to Fig. 3.11, the results do not bifurcate and have lower variance. Although the
average NC value estimate is lower than the theoretical value, they are comparable to the results
obtained with the exact model order, while accepting a wider range of regularization factors. Part

of the improvement comes from the fact that the autocorrelation of the signals is high and that
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Figure 3.10: Distribution of the NC;_,; estimates as a function of A for the model shown in Eq. (3.20)
and M = 4

0 !
10710%10°10%103102107" 10° 10
A
Figure 3.11: Distribution of the NC,_,; estimates as a function of A for M = 6

M = 1 improves the posedness of the problem.
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Figure 3.12: Distribution of the NC;_,; estimates as a function of A for M = 1 for the model shown
in Eq. (3.20)

3.3.1 Discussion

3.3.2 NC and GC fluctuation

For synthetic models, the NC and GC values can be calculated theoretically using the variances of
n: and 1, and the observation model parameters and the MMSE model parameter values for the
disjoint model [see Eq. (A.15) in Sec. A.2.2 for the derivation of the disjoin model parameters].
However, even when the model parameters are known, NC and GC values estimated using their
respective definitions also depend on the particular samples (practically, only sample variances can
be obtained, which are used as an estimate of the variances) that are used to estimate the model
parameters. To decouple the variation in the NC values due to parameter estimation errors and the
variation due to sample variance, in this subsection, the NC values are calculated twice, once with
the parameters obtained from LASSO regression and once with the true model parameters. The
NC values obtained with the true model parameters will henceforth be called NC,. The variation
found in NC, values indicates how much variation is inherent in the short-term record, while
the correlation between the NC, values and the NC values serve to assess the effect of parameter

estimation on the variation of NC values.
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The NC and NC, values are expected to be strongly correlated, as this would indicate that the
NC value estimates are close to the theoretical values, and that the variation in the NC values
originates mostly from sample variation, rather than noise or inaccurate assessment of causality
strength. Fig. 3.13 shows the bidimensional histogram data for NC,_,, and NC,_,, for the model
in Eq. (3.20) and M = 4 for differing regularization factors. On the x-axis are the bins for the
NCy ., values and in the y-axis are the bins for NC,_,, values. The dashed line region of the
histogram that corresponds to NC = NG, and the circle is drawn centered at the theoretically
calculated NC value. The NC values in Fig. 3.13a were obtained with A = 1072, which shows a

strong correlation between the NC and NC,, although not perfect alignment with the dashed line.
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N(:0,2—>2 NCO,2—>2 NCO,2—>2
(@) A =102 (b)yA=10"" (c)A=10""

Figure 3.13: NC;_,; vs NCy;_,; histogram plots as a function of A

If the regularization factor is not sufficiently large, however, NC estimates deviate from NC,.
For small regularization factors, the correlation is much lower between NC and NC,. Fig. 3.13b
shows the NC,_,; for A = 107*, where some of the estimates are correctly located around the
dashed line and circle. However, many of the estimates do not correlate well with NC,, but rather

are even weakly negatively correlated with it (the bottom peak).
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For large regularization factors, the NC estimates tend to be biased towards zero, even if the
correlation is high. A more formal treatment of the bias is given in Sec. 3.4.4. Note that this
is expected as regularization introduces bias to the parameter estimator in exchange for lower
variance of the estimates. Fig. 3.13c shows the histogram data for A = 107!, which is only one

order of magnitude larger than that of Fig. 3.13a, but the results are no longer centered on the

dashed line.

3.3.3 Regression conditioning and over-fitting

The model of Eq. (3.19) is introduced by Hu et al. in [95], where it is claimed that the GC value
does not reflect the real causal influence between x; and x,. In the present work, it is shown that
this system also poses problems for NC estimation. Although the low variance of #; of Eq. (3.19)
aids in the estimation of the parameters associated with x;[n], it also can cause the regressors to

be highly colinear, as one can write
x[n-1~08x[n-1-1]-08xy[n-1-1] (3.21)

so regressors x;[n — 1], x;[n—[-1] and x,[n - [ - 1] are nearly linearly dependent. This can also be
characterized as a null space in the regressor matrix [X[N] in Eq. (2.11)], in which variations in the
parameters have very little effect on the residual error, creating large variances in the parameter
estimation [see Eq. (2.17) for the distribution of the parameters under LSE]. When combined with
the relatively large variance found in x;, one can write
x[n] = 0.8x;[n - 1]+

Pt (3.22)
Zﬂl x[n-11-08x[n-1-1]+0.8x[n-1-1]
I=1
in which the f; are scalars that govern the deviation of the predicted parameters in the direction
given by the parameters in the brackets.

The increased model order also adversely affects the predictive error estimation, thus, GC

analysis. Since the model order is also used to estimate the variance of the residual error, GC
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values will change as the model order increases. The parameter estimation algorithm attempts to
match the spectrum of the regressand, so an increase in model order yields improvements in the
prediction using the disjoint model, even when using the joint observation model. The reduction
in the residual error of the estimated disjoint model causes the GC value for large model orders to
be lower than desired. This was analyzed for a particular model by Zhuo et al. in [220], where a
series of backward recursive operations was used to expand the the AR model. A similar approach
was taken by Grassmann in [79]. A general expansion and discussion is given in Sec. A.2.2. One
important discussion presented in [95] is that for overestimated model orders, GC can be invariant
to the model parameters,therefore model order estimation is an important aspect when estimating
causality strength using GC as well.

While methods of estimating model orders exist, such as using the Akaike Information Criterion
(AIC) [5] or Bayesian Information Criterion (BIC) [174], these criteria can only compare the quality
of different models, but a different method must be used to generate the models, as exhaustive
search of all possible combination of regressors is ordinarily prohibitive. Additionally, there are
instances where AIC and BIC perform sub-optimally and misestimate the model order. The topic
is still an active area of research, with new criteria still being developed [62].

observation models that contain terms with large delays, such as the observation model
described in Eq. (3.20) (which has one element of order four), further complicate the proper
regression model order selection. As shown in Fig. 3.11, there are instances in which LASSO
regression is unable to accurately estimate the model parameters, regardless of the regularization
factor.

Fig. 3.14 shows the histogram plots for three different values of model order (M), 1, 2 and 6.
As expected, for M = 6, the variance of NC increases relative to M = 4. However, M = 1 performs
comparably to M = 4, which is surprising, since M = 1 cannot fully model the observation model
given in Eq. (3.20). In this particular case, it is preferable to underestimate the model order rather

than overestimating it.
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Figure 3.14: NC,_,; vs NCy;_,; histogram plots as a function of A

3.3.4 Comparing NC and GC

For the two models studied, depending on the estimated model order and regularization, the NC
measure does not produce the expected results. However, this is not an issue with the measure
itself, but rather with the estimation of the model parameters. To compare the sensitivity to model
parameter uncertainty of NC to GC, the GC values were measured for the models described in
Egs. (3.19) and (3.20).

For the model in Eq. (3.19), the theoretical values for the GC measures are GC,_,, = 0 and
GC,_,; € [4.86,5.38] (depending on the model order). These values indicate that the presence of
x; does not improve the prediction of x,, inferring that x; does not cause x,, but the presence of
x, reduces the residual prediction error energy from 14 (for large M) to 140 times (for M = 1),
inferring x, does cause x;.

In contrast to NC, the GC measure is not as sensitive to errors in the model parameter estimates.
GC,_,; remained relatively flat and close to the theoretical value for a wide variety of regularization
factors. More importantly, GC,_,, is close to zero, even when very little regularization is applied,

showing that there is no causal relationship from x, into x;.
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For the observation model of Eq. (3.20), the GC measures are also robust to model uncertainty.
Figs. 3.15 and 3.16 shows the GC measures evaluated for M = 6. If excessive regularization
(A » 107?) is applied, the GC measure tends to 0, but for a wide range of values, the GC measures
closely approximate the theoretical values. However, GC,_,, is very small, even though the
contribution of x; to x, is significant. This is due to the large autocorrelation of x; and large

variance of 1,, which leads x; not to reduce the variance of the residual significantly.
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Figure 3.15: Distribution of the GC,_,, estimates as a function of A for the model shown in Eq. (3.20)
and M = 6

3.4 Bias in NC estimates

Although this work focuses on examining the variance of NC estimates observed two exam-
ple models, a small bias was observed in the tested models. This subsection contains further
investigation of the bias in the NC estimates.

The analysis will be constrained to the bivariate case, where a signal y can be expressed as the
weighted sum of two signals x and z and a white noise process 7. In order to increase clarity in
the notation, this appendix will utilize different notation from the rest of paper. Instead of the =
superscript, the observation model parameters will have subscript 0, to avoid confusion between

the superscripts and the transpose operator. Instead of x; and x,, signals x and z are used, so that
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Figure 3.16: Distribution of the GC,_,, estimates as a function of A for the model shown in Eq. (3.20)

and M =6

no subscripts are needed and to make clear that the 0 subscript refers to the observation model,
rather than being an index. The separation into x and z also serves to more clearly denote the
difference between the parameter vectors associated with x and z, which will be called a, and b,

respectively. The observation model, therefore, is written as
y[n] = agx[n] + by z[n] + nln] (3.23)

where y[n] is the signal being modeled at time n, x[n] is the M, x 1 vector of regressors associated
with signal x at time n (i.e. x[n] = {x[n],x[n - 1]...x[n - M, + 1]}7) and parameterized by the
M, x 1 vector ay, z[n] is the M, x 1 vector of regressors associated with signal z at time n (i.e.
z[n] = {z[n], z[n-1] ... z[n - M}, + 1]} 7) and parameterized by the M, x 1 vector b, and 7 is a white
noise process.

For further simplification of the calculations, Eq. (3.23) can be further condensed into a matrix

form that contains all N time samples as
Y=a/X+blZ+n (3.24)

where Y = [y[n]y[n-1]-- y[n- N + 1]]" is a 1 x N time-series vector of the regressand signal,

X is the M, x N regressor matrix where column j is x[n - j], Z is the M, x N regressor matrix
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where each column j is z[n - j] and n = [g[n]y[n - 1] p[n - N + 1]]". Vectors a, and b, remain

unchanged. Having defined these variables, NC,,_,, can be calculated

llag X|I*
llag X|* +[1bg Z|[* + || nll*

NCO,x—»y = (325)

This value is the desired NC value calculated assuming perfect parameter estimates. In these
examples, 7 are assumed to be non-zero for at least one element, to avoid degenerate cases where
the denominator is zero. For greater clarity, the x — y subscript will be dropped from the
following expressions, but for all subsequent analyses, NC should be understood to be NC,_,,.

Using an estimated model defined by
Y,=a'X+b'Z (3.26)

allows the calculation of the residual
€e=Y-Y,=Aa"X+Ab"Z+q (3.27)

where Aa = a, — aand Ab = b, — b. a, and a are assumed to be of the same size. Whenever the
estimated order is not M,, vectors a, or @ must be zero-padded such that their sizes match. The
same applies to by and b. This is similar to the approach in taken in Eq. (2.10) and is taken without

loss of generality. After obtaining the estimated model parameters, the NC estimate is evaluated

_ la"X]?
~ |laTX|]? + [|BTZ|]2 + |AaTX + AbTZ + nj)?
) lal X|]> - 2a/ XXTAa + ||Aa” X||? (3.28)
[al X|F - 2a] XX Aa + 2|Ad" X|E + BT Z|F - 2b7 ZZTAb '
+2||ABTZ|? + 2A@" XZTAb + 2(Aa” X + ABT Z)n" + ||n||%.

NC

Without further assumptions, this is as far as the expression can be simplified. In the interest
of gaining further insight, a few additional assumptions are made. As n is assumed white, the
term (Aa’ X + Ab”Z)"  asymptotically approaches 0, so it will be assumed to be small enough
to be disregarded in further analyses unless otherwise specified. In the next subsections, four

distinct special cases will be analyzed that emulate some typical model estimation conditions.
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3.4.1 Case1: Ab'Z ~0

The first case being analyzed is where Ab”Z ~ 0. This encompasses both the case in which Ab ~ 0
(where the estimate of b = by) and the case in which Ab L Z (e.g. when x represents a FIR filter
with zeros that coincide with the spectrum of Z or, in more algebraic terms, the vector Ab is inside
the null-space of matrix Z, due to its containing highly colinear terms).

First, two auxiliary variables are defined

TXXTA AaTX||?
g o XX Aa g IAa X|F

[ XT" L 2
where a represents the level of colinearity of Aa and a/ in the inner product defined by the matrix
XXT, which converges asymptotically to (N - 1)Xx, where Xy is the covariance matrix of X.
Geometrically, in the subspace defined by X, aa,X is the projection of Aa into a, and f is the
ratio between the square of the norm of Aa and the norm of a,. It has been assumed here that
lal X||* > 0, whereas the case where ||al X||* will be evaluated separately later in this subsection.
It can be shown that f = 0 and a? < f.

For Ab”Z = 0, substituting a and f into Eq. (3.28) allows it to be rewritten as

1-2 IX|?
NC = ( O(T+ﬁ2)||ao T” - - (3_30)
(1 - 2a + 2f)|lay X|* + [|by Z||* + [|n]]

which can be manipulated using Eq. (3.25) into

_ (1-2a+ B)NC,
~ 1+ 2NGCo(f - a)

(3.31)

Under these conditions, further assumptions are needed for further analysis. Under least
squares estimation of parameters, the error in the estimated variables is expected to be uncorrelated
with the variables being estimated (as long as a! X is uncorrelated with ). Therefore, the case for

a = 0 will be explored first. In this case,

_ (1+PNGC,
c= 1+ 2NC,f (3.52)

Notice how the numerator contains a 1 + f factor, while the denominator contains a 1 + 2NC,p.
This means that NC will be equal to NC, if and only if § = 0; otherwise, it will be slightly biased

towards 0.5. Fig. 3.17 shows contour curves for different values of NC, and f.
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Figure 3.17: NC estimates for different values of NC, and 8

For ||a! X||* = 0, the expression needs a small modification, but yields a similar expression

[Aa”X]|*

NC =
2l[Aa” X[ + [[bg Z|1* + Il

(3.33)

which also biases NC towards 0.5. Therefore, for any Aa such that [|[Aa’ X|* > 0, NC is expected
to be biased towards 0.5. Evidently, as long as the error in parameters is small (i.e. [|[Aa” X|]? «

llal X|* + ||b{ Z||* + ||n||*), this bias is also small.

3.4.2 Case2:Aa’X =0

Similarly to Case 1, this analysis focuses varying only a single parameter vector (Ab), while
all terms related to the other parameter vectors (Aa) are disregarded. Also similarly to Case 1,

assuming ||a; X|* > 0, two new auxiliary variables are defined.

= (3.34)
lag X|I* lag X|I*

Here, similarly to Eq. (3.29), § > 0 and y* < §. By substituting Eq. (3.34) into Eq. (3.28), NC can be

expressed as
NG,
C =
1+ 2NCy(6 - y)

(3.35)
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As in Case 1, under least square assumptions (and assuming b} Z is uncorrelated with n), y
can be assumed small. In this case, NC is biased towards 0. For ||a] X||* = 0, NC,=0 regardless of n

and b. Therefore, there is no bias in NC if ||a] X|* = 0.

3.4.3 Case3: Aa’X+AbTZ ~0

The third case extends both previous cases. In the previous cases, it was assumed that the parame-
ters associated with one of the regressors were equal to the observation model parameters, or that
the error in the parameters was located in the null space of the regressor matrix (representing
ill-posed problems). However, the parameter error due to the regressor matrix conditioning was
constrained to a single signal. Case 3 deals with the case in which the parameter errors are spread

across multiple signals. This is represented by
Aa"™X + AbTZ ~ 0 (3.36)

Substituting Eq. (3.36) and variables «, f and y into Eq. (3.28) yields

_ (1-2a+BNC,
NC= 1+2NCy(B-a-y)

(3.37)

Note that under the assumption of small |y/|, this reduces to Eq. (3.32), being equivalent to Case 1

and, therefore, subject to the same biasing towards 0.5. Likewise, the expression for ||a/ X|* = 0 is

.. |Aa” X!
" 2AiAaTXIF + [Ib] ZIF - 2b]ZZ7Ab + [l

(3.38)

3.4.4 Case 4: Regularization

In previous cases, « and y were assumed to be small. If parameter estimates are obtained using
LSE, this assumption is appropriate. However, if regularization methods are applied, the parameter

estimates are expected to be biased towards zero. The bias towards zero can be modeled as

Aa"X = pa,"X Ab'Z = ublZ (3.39)
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for 0 < p < 1. Effectively, this introduces a bias such that ||a” X||* < ||al X]|* and ||b” Z||* < ||b! Z|?,
and, therefore, ||€]|* > ||n||*. Under these conditions, for any 0 < < 1 and NC, > 0, the estimated

NC value is expected to be lower than NC,. By combining Eq. (3.39) and Eq. (3.28), the NC estimate

becomes
NC
NC = — HZO —. (3.40)
I y I yn
1+ NG, ((1—/1)2 Tl X * 200 HaoT'XHZ)

As 1 is assumed to be white, it is uncorrelated with X and Y, so it can be further assumed that

y'n = ||5||>. Thus, Eq. (3.40) can be further manipulated into

NC
NC = 0 . (3.41)

1+NC0( TS PRI | )

(1-p)? [lao " X (1-p) [lao " X
Note that both terms in y in the denominator are strictly positive for all 0 < u < 1, therefore
confirming that any regularization is bound to reduce the estimate of NC, particularly for data
with low signal-to-noise ratio (i.e. |al X||> + ||by" Z|* » ||n||?). Low signal-to-noise ratios already
imply low NC, values, but Eq. (3.41) demonstrates that estimates of NC using regularization are

expected to be even lower than NC,.

3.4.4.1 Extending case 3

The behavior observed in the simulations for the observation model described by Eq. (3.19) for
M = 2, particularly the bifurcation observed for M = 5 and M = 6, requires further analysis. The
bifurcation behavior cannot be explained fully by Eq. (3.37) alone, and particularly, some of the
bifurcation points are for NC>0.5, which violates the assumption that || « 1 and |y| « 1. In
order to model this behavior, the simplifying assumptions must be reconsidered.

In order to observe the bifurcation behavior in the solutions, it is necessary to assume some
distributional characteristics of Aa” X and Ab” Z. In this analysis, Aa’ X and a,’ X will be assumed
to be samples from a bivariate normal distribution. Note that these terms appear only as inner

products in Eq. (3.28), so the distributional characteristics need only apply to the sum of all the time
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Figure 3.18: Estimated probability density function of NC using exact and approximate expressions

samples of each term; therefore, for sufficiently large N, the Gaussian assumption can be made
under the central limit theorem, regardless of the distribution of the regressors and parameters.’®

Obtaining the covariance matrix for Aa’ X and a,” X is not straightforward, as the distribu-
tional characteristics of X and Z depend on the observation model parameters (i.e. ay, by and the
distributional characteristics of 1), which have interactions that are strongly coupled through a
feedback loop (a solution to a bivariate second-order regressive model can be found in Appendix A
and [147]). In a simulation study, however, these can be obtained empirically.

For the observation model of Eq. (3.19), a simulation was run using LSE to estimate the model
parameters, under the same conditions as in Sec. 3.3. NC was estimated via Eq. (2.46), using the
approximate form of Case 3 [Eq. (3.38)] and by calculating the mean and variances of the terms
in the equation and estimating the probability density function using Monte Carlo simulation.
The probability density functions were estimated using histograms and the results can be seen in
Fig. 3.18. Note the excellent agreement between the exact and approximate expressions.

The peak seen around 0.6 occurs due to the large values of al XX Aa + bl ZZ Ab. Fig. 3.19

was obtained by computing cases where ||al X]||* + ||blZ|]* + ||n||* is greater or smaller than

3While the classical central limit theorem requires i.i.d. samples, later developments prove convergence to
Gaussian distributions under non-i.i.d. conditions [28, Theorem 27.5].
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Figure 3.19: Estimated probability density function of NC split into two cases

2a/ XX"Aa + 2b/ ZZ" Ab separately, and estimating their probability function. The blue line
(unimodal function with mode close to 0.6) represent when the first term is greater than the second
term, with the orange line representing the opposite case.

This behavior is exacerbated for larger values of M as the variances of Aa and Ab tend to
increase with the increase of model order. Obviously, in most cases, the errors in the model
parameters are expected to be small such that the case shown with the orange line never occurs

and the NC estimate is close to NC,.

3.4.4.2 Discussion of bias

These 4 cases demonstrate that due to the nonlinear nature of the NC calculation, NC estimates
will often be biased towards a particular value. Although the studied cases represent particular
conditions, combinations of one or more of these cases should represent a wide range of problems.
This is not to say that NC is inherently flawed, but instead that special care must be taken when
estimating NC. Particularly when the parameter estimates are close enough to the parameters of
the observation model, the bias observed is small. Additionally, even a biased NC estimate can

still provide helpful information for causality analysis.
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3.5 Conclusion

The NC measure is an important development in causality analysis, addressing some limitations
of GC. Particularly, it is designed to measure the causality mechanism, unlike GC, which measures
the causal effect [19]. This ties to the relationship between GC and TE [14], since transferred
information is indicator of causality, but whose differences must not be neglected [127]. As with
many powerful analysis tools, proper care must be taken in order to avoid incorrect results. In this
chapter, two examples are given where NC is shown to be more susceptible to model parameter
estimation errors and overfitting than GC, particularly for ill-conditioned problems.

Although GC seems to be more robust to model parameter estimation, it still possesses
many of the limitations described in [95, 99, 220]. Another advantage of NC is that is allows
(pairwise) causality analysis for the entire model, while GC requires causality analysis to be done
by considering one additional regressor signal at a time.

When estimating NC, a proper regression method must be applied to prevent overfitting. In
this work, LASSO regression was used as an ad-hoc method of imposing sparsity in the model.
For more complex systems, more sophisticated methods of obtaining model structure might be
necessary. One recent method to obtain model structure is [149, 211, 217], which produces a
family of models with differing levels of complexity and residual error, allowing easy trade-off
selection. Future work will explore the performance of such methods for better model structure
selection and causality measure estimation.

Although NC requires accurate parameter and model estimation, when these conditions are
met, NC provides reliable results that in some cases have more powerful explanatory power than

GC, more closely representing causality strength.
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CHAPTER 4

A NONLINEAR EXTENSION TO NEW CAUSALITY

4.1 Overview

The seminal version of NC is defined for (linear) AR models [95]. While suitable in many ap-
plications, modern applications increasingly find linear and time-invariant (LTI) models to be
insufficient [25, 39]. At the same time, as most generalizations, it is important to extend the
applicability of a technique without losing its identifying characteristics. In this chapter, the
definition of NC is extended to NARMAX models. The new definition, henceforth called nonlinear
NC (NNC), not only maintains the same intuitive meaning, but identically reduces to the seminal
definition when applied to ARMAX models.

The chapter starts with a motivating problem and the reasoning for the choice of NARMAX
models. These are followed by the definition of the extension and examples of possible implemen-
tations. These are followed by application of this nonlinear extension into a series of progressively
more complex synthetic models and discussions of the results. The technique is then applied to a
EEG dataset and the results compared to GC and the seminal definition of NC. Finally, the results
are summarized and discussed.

A significant portion of this chapter is quoted directly from [147] and [146] with a few

modifications for improved flow and clarity.

4.2 Motivation

The ARMAX models used in the seminal formulation of NC of Eq. (2.46), contain only linear
combinations of the regressors xi, X, ..., xy, (and their time-delayed counterparts). observation
models containing significant nonlinear terms, when modeled using ARMAX models, will less
accurately predict the outputs of the model, and, more importantly, inadequately represent the

underlying nature of the model. The following example illustrates one simple case where linear
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NC is unable to represent causal strength.

Example A: Simple quadratic model
Consider the nonlinear model in Eq. (4.1) which contains a quadratic term, where 7, and 7, are

samples from i.i.d. normally distributed processes with zero means and unity variances:

x1[n] = 0.53x;[n - 1] + 0.5x,[n - 1] + ax;[n - 1] + p[n],
(4.1)
x%[n] = 0.5x[n - 1] + n,[n].
a is a coupling parameter that regulates the strength of the contribution of the quadratic term to
x;. Although the model is relatively simple, the seminal definition of NC has no mechanism to
account for the quadratic term. A linear estimation model like that of Eq. (4.2) can be fit to predict
the x;, although at a reduced level of accuracy. As the effect of the quadratic term increases, an

estimated ARX model of cannot represent the internal mechanism of the observation model and

will produce an increasing prediction error variance. Consider the estimation model

xaln] = axln-id+ ) axln-il+eln]. (4.2)

For a = 0.5, the variance of x; is ¢, = 3.80, the variance of x; is ¢, = 1.33 and the variance of x; is

0?, = 3.55. Using the model of Eq. (4.2), the optimum variance of the prediction error is 07 = 1.95
2 1

(opposed to the variance of 1, which is o7 = 1). The evaluated NC value estimates are found in

table 4.1.
Table 4.1: Linear NC,, ., values for the model of Eq. (4.1)

Xj
X1 X
x; | 0.49 | 0.058

x| 0 | 025

Xk

Considering the variances of x; and x, (and xZ), notice that NC,, . is small in comparison to
NC,, - Also note that the NC values for x; and x, add only to about 0.54, while the value which
represents the contribution of the prediction error of the model is relatively large (NC,, _,,, = 0.46).

For NC values over a range of « values, another undesirable result is observed. In Fig. 4.1,

the NC values for this model are plotted for a € [0,1]. Observe how, as « increases, NC,,_,,,
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decreases and NC,, _,,, increases. This is contrary to the intuition that the influence of x; over x;

is increasing as « increases. This behavior stems from the fact that the model is using past values

0.6 T T T T
0.4
O
pd
2
0.2 i .
O 1 1 1 _._ — — —
0 0.2 0.4 0.6 0.8 1

Figure 4.1: NC values for the model of Eq. (4.1)

of x; to estimate the value of x?[n - 1], since (for a > 0), x;[n - 1] is correlated with x?[n - 1],
whereas x;[n - 1] is not correlated to x:[n - 1]. As « increases, the correlation between x;[n] and
xZ[n - 1] increases, and so does NC,, _, ..

Thus, it follows that the influence of x, on x; is not only underestimated when using the
seminal definition of NC, but can also be negatively correlated. Moreover, it shows that, for
observation models with significant nonlinear components, the seminal definition of NC is unable
to properly assess the causal relationships between signals.

A End of Example A

4.3 Choice of NARMAX models

ARMAX models are the most general representation of scalar linear systems. As shown in the
previous section, the original definition of NC in terms of the parameters of a ARMAX model limits
its use to systems that can be well-modeled by linear models. Since no canonical representation

for all nonlinear models exists, a general nonlinear extension for NC is not possible. Particularly,
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for many nonlinear models, it is not possible to decompose the model into a sum of “contributions”
for each regressor [the concept of contribution will be later defined in Eq. (4.4)]. The seminal
definition of NC requires the model to be decomposable into a sum of contributions, so a general
extension of NC to all nonlinear models is infeasible.

Note that common LTI models comprise a subset of LTIiP models, so the extension of NC to
NARMAX models subsumes the original NC development inherently. As long as certain conditions
are met [discussed near Eq. (4.6)], the extension of NC developed in this work reduces to Eq. (2.46)
for linear models.

The modeling power of NARMAX models comes at the cost of increased difficulty in estimating
parameters. Due to the potentially large number of highly correlated regressors, overfitting and
slow or inaccurate convergence are common challenges faced when estimating model parameters
[11]. As a consequence, the quality of the models must be carefully evaluated, as NC values are
dependent on accurate model structure and parameter estimation [148]. Nevertheless, many tech-
niques have been developed specifically for nonlinear model selection and parameter estimation

[22, 25, 27, 81, 118, 201, 203, 214].

4.4 A nonlinear extension to NC for a restricted set of models

A straightforward extension of NC to treat the LTIiP model occurs by grouping ¢, functions
according to the regressor signal upon which they depend (e.g., xq‘Z:]lw). A tentative expression for

the nonlinear extension is as follows

2

Kq n-1
Y ape,¢f ( %l

pkq kq qin-M
kg=1

2

NCy, s, = 3 - 7 (4.3)

i n-1
mpln] + X apkqﬁ"kq(Up}n-M)
kpp=1

+

K h n-1
z Apky, qopkh <xh‘n—M>

kp=1

Ns
where Kj, is the number of regressor functions that depend exclusively on xh‘zizlw q),’jh (xh}::jlw) is
the ki regressor function found in ¢, that depends exclusively on xh‘z:]lw and a,y, is the respective

parameter associated with qo,i’h (xh‘ZjM). Note that this definition reduces identically to the seminal

definition of NC for linear models.
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This expression allows us to revisit the observation model of Eq. (4.1) and recompute the NC

values with this definition.

Example B: Simple quadratic model revisited

The NC values shown in table 4.2 are computed using Eq. (4.3) for the model described by Eq. (4.1)
for a = 0.5. When using a quadratic NARMAX model, the NC values are more intuitive than the
values found in Example A. NC,,_,,, is comparable to NC,, _,,,, just as the contribution of x, to
the current value of x; is comparable to the contributions of past values of x; to the current value
of x;.

Table 4.2: Nonlinear NC,,_,,, values for the model of Eq. (4.1)

Xj
X1 X
e x; | 0.32 | 0.37
X 0 0.25

The NC and NNC values for the model of Eq. (4.1) are shown in Fig. 4.2 for varying values
of a. At a = 0, the NC and NNC values are equivalent, but as « increases, the values diverge
significantly. As previously mentioned, the NC values follow a counterintuitive trend, with
NC,,—.x, decreasing as « increases, whereas the NNC values follow a more intuitive trend. Notice
that NNC,, _,,, remains almost constant over the range of «, where the small increase originates
from the increased SNR, as the variance of x; increases with a whereas the variance of #; does not.

» End of Example B
4.5 A comprehensive NNC definition

Although the definition of Eq. (4.3) is intuitive, it cannot be used with general NARMAX models
due to regressor functions that depend on multiple regressors (e.g., gr[n] = x1[n - 1]x[n - 2]).
The presence of regressor functions that depend on more than one signal poses an additional
challenge: how to best split the contribution across different signals? This question also appears in
other causality related work [189]. Before answering this question, it is helpful to modify Eq. (4.3)

to account for these terms. By including a weighting function, A, to the contribution of each
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NC/NNC

Figure 4.2: NC and NNC values for the model of Eq. (4.1)

regressor function, the NNC expression becomes

2

K
kz apk(/)k/lpq((/)k)
=1
Cxq—’xp - N, | K 2 j( 2 (4.4)
2|2 apkcdon(o)] + |mplnl + 3 apk@rApn(ox)
h=1 k=1 2 k=1 2
where ¢ = (pk<x1|2:11\4, xZ‘Z:jvp ey XN, Z:jw ryp;’jw)l and A,q(¢x) is a function of ¢ associated with

x4 — x, with the following properties

0= Aygler) = 1 (4.5a)
N

Apn( i) + Z Apg(@r) = 1 (4.5b)
gq=1

Further, the following constraints are required so that the definition of NC for linear models

remains as a special case:

1 if ¢ is a function of only xq‘:jw

Apq(r) = (4.6)
0 if ¢ does not depend on xq|Z:11\4'

IThe arguments have been omitted for clarity, but the definition of the regressor functions remains the same as
in Eq. (2.22), i.e., can potentially depend on any set of the previous inputs and outputs.
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Similarly to general nonlinear models, where no single concise representation is able to account
for all cases, a single definition for the weighting function A,,(¢) is impossible. Even when
considering only LTIiP models, which can be concisely specified by the NARMAX representation,
there is no canonical choice for set of regressor functions ¢y. Instead, the NARMAX representation
requires the choice of the proper function set for the particular problem. A similar challenge is
present in this work. It is not possible to identify a unique definition of A that would be appropriate

for all applications of the method.

4.5.1 Form 1: A' - create a new category for nonlinear cross-terms

The first form for A discriminates terms that only depend on a single regressor signal from signals
that depend on multiple regressors and assign them to separate categories. This way, the regressor
functions ¢;[n] and ¢i[n] are joined if there is a g € 1,..., N, such that ¢;[n] and ¢[n] can be
expressed solely as functions of xq‘Z:jlw. This principle is used in the original definition of NC
for the linear regressors, where past values of a signal as weighted and summed (i.e., filtered)
before the variance is estimated. The main distinction is that, in the linear NC definition, only
time-shifting is used (as it is a linear transformation) and scaling the regressors would be absorbed

in the parameter estimation. In other words, A! can be defined as

X 1 if ¢y is a function of only xq‘Z:JlM
2 (00) = (4.7)
0 if ¢ does not depend on xq{z:jlw or depends on more than one regressor
In order to satisfy Eq. (4.5b), a slight modification of the set of regressor signals must be
made. Instead of xj, x, ..., xy,, the set of regressor signals must be augmented by the set of all

combinations of two or more signals (e.g., X; U X, X; U X3, X; U X, U x3, etc.) For example, for a

bivariate observation model of the form

xi[n] = aixi[n-1]+ axi[n-2]+ asxy[n - 1] + agxp[n - 2]+ “s)
4.8
asx;[n - 1]x[n - 1] + agxi[n - 2]x[n - 2] + ny[n]
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the set of regressors is x;, x; and x; U X, as all the regressor functions can be expressed as a
function of x;, x, or x; U x,. Note that, regardless of time and polynomial order, this set covers
all possibilities for bivariate nonlinear autoregressive with exogenous input (NARX) models,?
therefore the inclusion of terms such as x;[n - 1]x;[n - 2] or x;[n - 2]x;[n — 1] does not alter the
set.

To simplify notation, let us create a virtual regressor x;[n] = x;[n]x;[n], so the regressor set is
x1, X, and x3. Assuming the values for gy, for k € 1,2,..., 6, have been accurately estimated, the

expression for NC,,_,,, is therefore

lasxs[n - 1] + agxs[n - 2]”;

NCx3—>x1 = (49)

lasxs[n — 1] + agxs[n - 2]|} + |ayxi[n - 1] + apxi[n - 2]|5 +
lasx:[n — 1] + agxz[n - 2]||§ + ”’71)[’1]“3
It is not difficult to verify that, with the exception of defining the new set of regressors (i.e.,
x3[n] = x;[n]x;[n]), this definition of NC is equivalent to the seminal definition of NC. Moreover,
for linear estimated models, this definition of NC reduces to the seminal definition.
The A! formulation is advantageous as it does not require defining weights for individual

regressor functions. This allows it to be used with any set of candidate regressor functions.

However, it creates additional regressors, which reduces the interpretability of the NC values.

4.5.2 Form 2: A* - weight regressor functions equally across regressor signals

In order to avoid the creation of virtual regressors, the nonlinear contributions must be divided
across the different regressor signals. Harnessing the knowledge of the arguments of each regressor
functions, A? splits the contributions equally between the regressors. Thus, A* is defined as
1 . . . . . . n-1
, R if ¢ is a function of R regressor signals, including er‘n- A
qu(q)k) = 1 (4.10)
0 if ¢y does not depend on xq‘Z:M.
Since this approach does not require the creation of new virtual regressors, the final NC values

can be easily mapped into the original signal set. For the observation model in Eq. (4.8), the NC

2To cover all NARMAX possibilities, permutations including 1;[n] must also be included in the set
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value can be calculated (assuming perfect model structure and parameter estimation) as

agxs[n-1]+asx3[n-2] 2

Haoxl[n 1]+ aix[n-2] +
2 . (4.11)

NCX3—>X1 = 2
agx3[n-1]+asx3[n-2]
2 2

agxs[n-1]+asx3[n-2]
2

”aoxl[n 1]+ aix[n-2] + +

4l

As long as the predictive model can mimic the dynamics of the observatlon model using a

”azxz[n - 1]+ asxy[n - 2] +

combination of regressor functions, both A' and A* will produce results similar to the observation

model. That is, suppose an observation model can be decomposed as
x[n] = F(x1|n M)+F12 xl‘n m X { )+F (x2)n M + 1, [n], (4.12)
and the predictive model takes the form

xlp Z A1,k P,k (x1|n M)

Kip-1

Z 12k, Prz s ( xl‘n w X {n 11\4) (4.13)
k12=0

Kp-1
n-1
+ Z 02k, (Pz,kz(xz|n,M),
k2=0
then, as long as

F( 1| M) ~ Z 051k1§01k1(x1{n M)

Kip-1
n-1
F12 xl‘n M’x n- M) = Z A12,k1, P12, klZ x1|n M’ ‘n M)
ki2=0 (4.14)

Kp-1
F( 2|,, M) ~ Z (Xz,kz(/’&kz(xz{z:;lw)

ni[n] = xi[n] - x;,[n],

the NC value for the estimated model will approximate the NC value for the observation model
for both A' and A* forms.

The “equal splits” used in A? simplify the analysis by avoiding the creation of new regressor
signals. However, A* does not take the characteristics of the regressor functions and distributional
characteristics of the regressors into account. Particularly, for regressor functions that depend
much more strongly on one regressor rather than another, it might be beneficial to implement a

different weighting function.
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4.5.3 Form 3: 1’ - weight regressor functions across regressor signals according to an
application (model) dependent criterion

Since no canonical form of distributing the contributions in nonlinear regressor functions exists,
Al and A% are practical heuristic methods of approximately estimating causality strength (just as
"true causality" is difficulty to define and measure [103]). Therefore, there is no need to limit NNC
to pre-defined As. The only requirement is that the function A fit the definition of a probability
mass function over the set of regressors and that it satisfy Eq. (4.6).

Certain regressor functions that depend on multiple regressors may not be equally affected by
each of the regressors. The inhomogeneity of the influence may be due to the regressor function
or the distributional characteristics of the regressors. For example, suppose that x; and x; are
independent discrete random variables taken from Bernoulli distributions with parameters p; and
D, respectively. Suppose also that ¢g(xy, x,) = AND(x1, X;), where AND() is the binary “and” operator.
Note that this regressor function is perfectly symmetrical, as AND(x;, x,) = AND(x,, x;), however,
for p; » p,, the value of x, contains more information on the output of ¢, than x;. As another
example, suppose that x; and x, are independent uniformly distributed random variables with
support x;, x; € [0,1]. Suppose also that ¢(x;, x2) = x; sin(27x;). In this case, the variables are
similarly distributed, but their effects upon the regressor function are not.

In such cases, it is desirable to split the contribution of the regressor function unequally across
the regressors. One possible approach would be to weight the contributions by the predictive
power of x;7°}, and x;""}, to @;. One such method would be to use GC or TE to weight the

contributions

1, if ¢rdepends only on x,

GC
Apq (Px) = . | (4.15)
= , otherwise,
Y. GCuy gy
h=1
where the first case is necessary as GC tends to infinity for deterministic expressions. Note that the

second case tends to unity when GC,, _,,, approaches infinity.> Note also that Eq. (4.15) satisfies

3 Although it is possible for the second case not to converge to unity, this is only true if for some h # g there is
at least one GCy, 4, that also tends to infinity. This would only happen if ¢ is deterministic for more than one
regressor signal, a degenerate case.
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Eq. (4.6). However, there is an increased onus of estimating the GC values.

This example shows one way that contributions from regressor functions could be weighted
across different regressors. Besides this example, there is an infinite set other possible variations
that satisty Eq. (4.6), but that might produce vastly different NC values. The choice and design of

new A weighting functions requires careful consideration and problem specific knowledge.

4.5.4 Spectral nonlinear new causality

A spectral expansion to NNC follows the same logic shown in Sec. 2.5.6, where the DTFT of the

numerator is taken before the norm calculation, which yields

2

F {kf apkqokapq«pk)} )

SNCy, ., (f) = ; : ;. (4.16)

K
Up[n] + I; apk‘Pk/lpry((Pk)

N;

E]

Z_‘,l apk‘Pk/lph(fpk)

2

Similarly to Eq. (2.49), this equation decomposes the contributions into their spectral com-
ponents. However, an important distinction between Eq. (2.49) and Eq. (4.16) is that nonlinear
models allow for cross-frequency couplings to be shown. These cross-frequency effects have been
observed between planetary waves and tides [107] and EEG signals under various conditions

[75, 83, 144, 178].

4.6 Discussion and analysis through example models

Although the choice of weighting function A adds a additional complexity and uncertainty to the
estimation of NC values, it is important to point out that the choice of function A belongs more
closely to the process of model selection and data pre-processing than causality estimation per se.
That is, causality analysis tools are used to estimate characteristics or gain insight about systems
whose internal properties are unknown.

For example, evoked potentials (EPs) are measured electrical potentials from the scalp im-
mediately following a particular stimulus (e.g., visual, auditory, tactile, etc.). EPs can be used in

noninvasive tests of sensory pathway abstandardizties, language and speech disorders, among
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other uses. However, due to anatomy and tissue impedance, electric potential measurements
contain a significant amount of interchannel crosstalk, which may obscure the anatomical and tem-
poral properties of the recorded EPs [191]. Since their characteristics are of the utmost importance
to causality analysis, EP signals are commonly preprocessed using Current Source Density (CSD)
or other spatio-temporal sharpening methods. However, the spatial component of these methods
alters the recorded EPs, which in turn alter the NC values (arguably in a way that enhances the
analysis).

Just as the seminal definition of NC is not transformation invariant (with the notable exception
of uniform scaling and time-shifts), the nonlinear extension is not invariant to changes in the set
of regressor functions. Similarly, the choice of A weighting functions or regressor standardization
falls within which assumptions better fit the current analysis. Thus, it is important to employ a
priori knowledge about the systems being studied to obtain the most useful NC values possible.
The following example shows how under typical conditions, linear transformations done as data

preprocessing may affect NC values.

Example C: Effects of transformations on NC values
In many engineering applications, the desired signals cannot be directly obtained (e.g., mixture
ratios inside rocket engines due to the extremely high temperatures [142], or brain electric activity
due to health risks and costs associated with intrusive implants [1, 207]), but instead, the signals
are measured indirectly and estimated using different modeling techniques, such as Kalman filters
[20, 142]. For EEG signals, the choice of reference to the unipolar measurements has also shown
to affect the outcomes of the analysis [38]. Indirect measurement not only reduces the signal
to noise ratio, but also limits the spatio-temporal resolution available. This example aims at
demonstrating that modeling and a priori knowledge is critical to NC estimation. Here, a simple
spatial transformation is applied to a simple three-signal model and the effect of the transformation
to NC measurements will be shown.

The second-order jointly regressive model in Eq. (4.17) possesses simple relationships among

its signals, ie., x; and x, “cause” x;, but x; does not “cause” x;. Similarly, x, and x; “cause” x,
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whereas x; does not. Finally x; and x; “cause” x3, but x; does not:

xi1[n] = 0.8x;[n - 1] + 0.15x;[n - 2] + ny[n],

x[n] = 0.8x,[n - 1]+ 0.1x3[n - 2] + n,[n], (4.17)

x3[n] = 0.5x3[n — 1] + 0.40x;[n — 2] + n3[n].
Assuming that n;, k € 1,2,3 are samples taken from independent i.i.d. normally distributed
processes with zero means and unity variances, the NC,, _,,, values (rounded to two significant
figures) are computed and displayed in table 4.3. Although extremely important to NC value
estimation, we are not concerned with model topology or model parameter estimation in this
example; instead, the observation model topology and parameters will be assumed to be known
(or "perfectly" estimated). In general, model estimation adds an additional challenge to NC value
estimation and models with highly correlated signals lead to higher variance in the parameter
estimates and, in turn, higher variances in the NC value estimates [148].

Table 4.3: NC,, _,,, values for the model in Eq. (4.17)

Xj
X1 X2 X3
x; | 0.70 | 0.021 0
Xk | X 0 0.68 | 0.011
x; | 0.26 0 0.35

The NC values in table 4.3 provide intuition about the model (e.g., the current value of x;
depends on past values of x; and x,, with x; having a greater influence and x; having no direct
influence on x;).

Now suppose that the same signals cannot be measured directly, but must be estimated using
surface sensors, such that the signals contain interference from surrounding sources. In this model
involving three signals, the interference is assumed to be uniform and controlled by the parameter

d, as in Eq. (4.18).
Vyl[n] xl[n]+5(x2[n]+x3[n])‘ 71 5 4 Vxl[n]‘
ya[n]| = |xe[n] + 6 (a[n] + xs[n])| = |6 1 &||x[n]|- (4.18)
ylnl|  |xln] + 6 (xln] + x[n])| |6 & 1||x[n]
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values are shown in table 4.4. Note how the NC,, row differs from

For 6 = 0.15, the NC Y—7s

Yi—> Yk

NC, ., of table 4.3. In particular, this analysis implies that past values of y, have greater influence

on the current value of y; than past values of ys, a property which is not shared with x; and x;.

Table 4.4: NC,, _,,, values for the model of Eq. (4.18)
Y
B! Vo V3
b1 0.72 0.020 0.05
Vi Vs 0.0033 0.68 0.0044
Vs 0.32 0.00068 0.29

This example shows that, even for simple linear models, careful consideration is necessary not
only for model topology and model parameter estimation, but also for assumptions used when
preprocessing data. The preprocessing of data using a priori knowledge about the studied system
is necessary for more "useful" NC estimates. This observation will be helpful when discussing the
increased complexity that the class of nonlinear models adds to this work.

» End of Example C

In the same way as data preprocessing can be used to enhance linear NC values, proper
preprocessing is essential to nonlinear NC value estimation. One occasion where this is particularly
apparent when regressors do not possess zero mean. For example, let pr[n - 1] = x;[n - 1]x[n-1].
Intuitively, this regressor function depends equally on x;[n - 1] and x,[n - 1]. However, suppose

that x;[n — 1] and x,[n — 1] are distributed as multivariate normal random variables with means

p = [/} ] and covariance matrix ¥ = |:p::11202 ’ ‘:22"2 ] If
lpa] > o1
(4.19)
Oy > 01

then the value of x;[n—1] is likely to be close to ;. Therefore most of the variation seen in ¢, comes
from variations in x;[n—1], not x;[n—1]. In other words, regressor functions ¢, = x;[n-1]x;[n-1]
and ¢k, = x2[n - 1] would produce very different results than ¢, = (x;[n - 1] - y)x[n - 1] and

@k, = x%2[n — 1]. For ¢, and ¢,, the NC value for x; would be larger than the NC values computed
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using ¢y, and ¢y, and, likewise, the NC value for x, would be smaller than the NC values computed
using ¢, and ¢y,.

Standardization is a common technique for data preprocessing. Standardization involves
removing the means and dividing by standard deviation. While scaling of the regressors does
not affect NC values, many regression methods benefit from standardization in the form of faster
convergence or improved numerical stability.

For nonlinear models, standardization can have a drastic effect on NC values. The choice
of removing the means of regressor signals prior to computing the regressor functions or not
standardizing depends mainly on assumptions on the models and the causality information desired.
Is the information contained within the signals an absolute or relative measure? Many phenomena
depend linearly on absolute quantities (e.g., the average sound speed on a fluid depends on the
mean absolute pressure, final volume in an isobaric process depends on the absolute temperature,
etc.) On the other hand, sound is a measure of relative pressure fluctuations measured at a
microphone (or hydrophone for underwater measurements). The sound pressure fluctuations are
several orders of magnitude smaller than the mean absolute pressure, therefore standardization
is desirable. Nonetheless, in some cases, even choosing a reference value can be challenging
for processes that are not wide-sense stationary and for measurements that do not have a clear
reference point [218] (such as ERP and EEG signals).

When ¢y is not an odd function, even a linear regressor signal symmetrically distributed
with zero mean might produce an output with nonzero mean. For example, suppose that two
independent signals, x; and x, were uniformly distributed with support [-1, 1]. Then |x;[n]| has
mean 0.5, but the regressor function ¢x[n] = ‘xl [n]{ - X;[n] has zero mean. While, ¢, has zero mean,
it is important to consider whether a combination of ¢,/[n] = x,[n] and @,,[n] = (|x;[n]|-0.5)x,[n]
(both also having zero mean) better represent the dynamics of interest in the system being studied.

Ultimately, the differences observed between NC computed with regressors with means
removed or not is a modeling issue more than a limitation of the method. Time series data must

be analyzed prior to model specification [78] in order to remove undesired artifacts. Any type
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of preprocessing will modify the outcomes of the analysis, but whether it will be beneficial to a
particular analysis depends on the particular characteristics of the system. One must evaluate the
assumptions when choosing preprocessing data as to produce “useful” models. As shown in [147],
the reliability of NC value estimation is closely related to the models used, so a careful selection
off preprocessing and model estimation is doubly important for NC analysis.

To demonstrate the nonlinear extension of NC, two models used in [81] are tested to demon-
strate the performance of the nonlinear extension of NC. The first example model given in [81] is

noise-free as shown in Eq. (4.20):

Example D: First model from [81]

x[n] = 0.5x[n - 1]+ 0.8x,[n - 2] + x’[n - 1] - 0.05x’[n - 2] + 0.5, (4.20)

where x; is assumed to be sampled from an i.i.d. uniform distribution process bounded by [-1, 1].
x; has 1.42 mean and 0.4 variance, whereas x, has zero mean and variance 14. Since the equation
for x; is noise-free, the sum of all NC,, _,,, values is expected to be unity, which is confirmed by
table 4.5, whereas the sum of all NG, with x; being i.i.d., is zero. Note that, in this instance,
standardizing the regressors and regressand yield no difference, as there are no nonlinear cross-
terms. The absence of nonlinear cross-terms also means that any weighting function A following
Eq. (4.6) produces identical results. An example where nonlinear cross-terms are present and the
standardization affects the NC estimates and further elaboration on this effect are given in the

next example.

Table 4.5: NC,, ., values for the model of Eq. (4.20)

Xj
X1 X2
Xt X1 0.25 0.75
X 0 0

» End of Example D
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Example E: Second model from [81]

The second model example used in [81] is shown in Eq. (4.21) below. In [81], the model is used
to evaluate how the robust model structure selection (RMSS) method proposed in [81] behaves
when the nonlinear regressor function in the observation model is not included the candidate
nonlinear regressor functions, but instead a Volterra expansion with two time lags and up to order

3 is applied to x; and x;,

x[n] = —x[n - 1]|x[n - 1] + 0.4x2[n - 1] + 0.8x,[n - 1]x,[n - 2] + ny[n], (4.21)

where x, is assumed to be uniformly distributed on [-1, 1] and 5;[n] is white noise with zero
mean and finite variation. The variance of 7, is adjusted to produce different SNR values (i.e., 0dB,
10dB, 15dB, 50dB and noise-free in the paper). Eq. (4.21) poses a particular problem for NC value
estimation using Volterra expansions as the term x,[n - 1] m cannot be easily expanded
using polynomials since \/m is not differentiable at x = 0. Further complicating NC estimation is

that a polynomial expansion of x,[n — 1]4/|x;[n - 1], takes the form
X[n - 1]/|x[n - 1]| = x[n - 1] (ao +ayxi[n- 1]+ axt[n-1]+ ) . (4.22)

Note how most the terms in the right-hand side would have the same A' and A* value (i.e., 0.5 for
both x; and x;, in the case of A' and a separate category that depends on x; and x;, for A'), but the
term x;[n - 1] only depends on x; and therefore would be counted entirely towards NC,,_,,,,
rather than sharing the contributions.

To observe the effect of standardization, tests were conducted at 10dB and 50dB SNR using
the original and standardized regressors. The tests included NC values for /|x;[n - 1]| as one of
the candidate functions and Volterra expansions of third and fifth order. The results for 10dB and
50dB SNR are shown in tables 4.6 and 4.7, respectively.

Although the value for NC using the non-standardized \/m candidate regressor function
differs significantly from the others values, the NC values computed with the standardized \/m
are very similar to those computed with fifth-order polynomials. The discrepancy between NC

values computed with the non-standardized /|x| and the standardized ./|x| is a consequence of the
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Table 4.6: NC,,_,,, values for the model of Eq. (4.21) with 10dB SNR

Pol Volterra With /|x|
Or(i,e;r Not standardized Standardized Not standardized Standardized
X1 Xy X1 X X1 X X1 Xy
3 0.028 0.83 0.023 0.84
0.1 0.70 0.028 0.8
5 0.044 0.83 0.035 0.84 7 7 7
Table 4.7: NC,,_,,, values for the model of Eq. (4.21) with 50dB SNR
Pol Volterra With /|x|
Ord};r Not standardized Standardized Not standardized Standardized
X1 Xo X1 X2 X1 X7 X1 X2
3 0.038 0.92 0.029 0.93
5 0.058 0.92 0.040 0.94 0.18 0.82 0.040 0.96

ayxz[n — 1] term from Eq. (4.22), which is assigned to solely to NC,,_,,,, whereas, being a function
of both x; and x,, the contributions of x;[n - 1] m depends on both x; and x,. If A were
set to split the contribution of x;[n - 1] equally across x; and x;, all the NC values would be in
close agreement.

Because \/m cannot be well modeled with polynomials, modeling Eq. (4.21) with Volterra
filters limits the accuracy of the predictive model. To observe how a similarly complex, but
differentiable model behaves, the \/m is be replaced with a tanh(x) term, a sigmoid function.
Functions that exhibit saturation, like sigmoids, are poorly approximated with polynomials at
the extremes, but can produce reasonable approximations if the polynomial order is high enough
and/or the input has small variance. The resulting difference equation of replacing \/m with

tanh(x;[n - 1]) in Eq. (4.21) is shown in Eq. (4.23),
x1[n] = =2x,[n - 1] tanh(x;[n - 1]) + 0.5x;[n - 1] + 0.5x,[n - 1]x,[n - 2] + m[n]. (4.23)

For this modified observation model, the same tests were conducted for 10dB and 50dB SNR.
Again, the Volterra expansion was applied with two time lags and polynomial orders of three and
five, and a prediction model was created with tanh(x) as one of the candidate regressor functions.
The results are found in tables tables 4.8 and 4.9. Note how in this case, the results between the

standardized and non-standardized cases are in closer agreement as the mean of x; is closer to

94



zero [since the x,[n - 1] tanh(x;[n - 1]) term does not introduce bias, only the x,[n - 1]? term does].
The Volterra results are limited by the term containing tanh(x) function being approximated only
by finite order polynomials. Nevertheless, in both cases, the Volterra and tanh(x) results show

good agreement.

Table 4.8: NC,, ., values for the model of Eq. (4.23) with 10dB SNR

Pol Volterra With tanh(x)
Ordyér Not standardized Standardized Not standardized Standardized
X1 Xy X1 Xy X1 X X1 Xy
3 0.26 0.55 0.24 0.58
5 0.28 0.55 0.26 0.59 0.29 0.55 0.26 0.58
Table 4.9: NC,, ., values for the model of Eq. (4.23) with 50dB SNR
Pol Volterra With tanh(x)
Ordyér Not standardized Standardized Not standardized Standardized
X1 Xy X1 Xy X1 X X1 Xy
3 0.28 0.69 0.25 0.72
31 . 2 .
5 0.31 0.69 0.26 0.74 0.3 0.69 0.26 0.73

Due to the difficulty in properly estimating parameter and topology for nonlinear models, it
is not advisable to blindly increase the order of the polynomial expansions [11]. In addition to
overfitting, NC value quality requires the estimated model structure and parameters to represent
the observation model. Nonlinearity can often create complex relationships among regressors,
such that high order regressor models might have good fitness and even generalize well, but might
misrepresent the underlying model structure.

Due to the complex interaction among regressors and noise, instead of representing tanh(x) as
a Taylor series, the regression algorithm will likely find a more compact set of regressor functions
which produce lower prediction error. This compact set does not necessarily preserve the same
relationship between x; and x,, so indiscriminately increasing the model order leads to results
tending towards /v,. This is similar to the behavior shown in Sec. 3.4, where the several scenarios
are discussed where NC estimates exhibit bias under least squares estimation.

» End of Example E
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4.7 Application: EEG data

The EEG dataset used in [150] is used to compare NNC to the performance of GC and NC. Although
most of the power of EEG signals can be predicted well using simple MVAR models, EEG signals
contain nonlinear components that contain important information [140, 162, 182, 186]. Since
linear predictive estimation models are able to reasonably represent the gross features of EEG
signals, the improvement in NNC application is expected to be modest. Experiments using digital
filters are used to highlight the nonlinear components which will be compared to the unfiltered
results.

The data were made publicly available by Nolte et al. [150], but obtained from Tom Brismar of
the Karolinska Institute in Stockholm. The dataset contains EEG measurements for 10 subjects,
sampled at 256Hz using the International 10-20 system, with 19 channels available using linked
mastoid reference for the unipolar measurements. The measurements were made while subjects
kept their eyes closed. The subjects were asked to open their eyes for 5 seconds every minute.
The records contain about 200 segments of 4 seconds, which were recorded while subjects had
their eyes closed. The location of the electrodes are shown in Fig. 4.3a, with the channel indices

used in the dataset shown in Fig. 4.3b.

(a) Electrode labels (b) Electrode index in dataset

Figure 4.3: 10-20 International System Electrode Location Diagram
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Figure 4.4: Spectrum of the Fp1 channel of the EEG recording

The signals contain a @ rhythm component (8-13 Hz band) at approximately 10Hz. All apparent
artifacts have been removed from the data by Nolte et al. prior to the publication of the data. The
10 recordings were selected out of a pool of 88 recordings based on estimated signal to noise ratio.
The database contains no subject identifiable information.

While no ground truth is possible for these data, it is well established in literature that
information flow for @ and f waves follow a posterior-to-anterior (front to back) pattern [89, 150]
during resting states. For these experiment, the flow between the left pre-frontal cortex (Fp1)
channel and the right occipital (O2) and right parietal (P4) channels were considered. The 6 waves
flow in an anterior-to-posterior pattern [89] under similar conditions.

The time-series were further processed using a notch filter to remove 50Hz line noise and a
high-pass Butterworth filter of order 10 with cutoff frequency at 7.5Hz to remove low frequency
signal drifts and 6 waves. The recordings were split into 202 segments of 4 seconds each. The
spectrum of the entire signal and for the first segment for the Fp1 channel are shown in Fig. 4.4.

The models used to evaluate GC and NC were 3 order AR/ARX and ARX models respectively.
The models used to evaluate NNC and SNNC were 3™ order polynomial expansions of the regres-

sors used to evaluate NC. The model parameters were evaluated using LASSO using four-fold
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Figure 4.5: Average of SNNCp,;_.0, values of subject 1

cross-validation. The average of the SNNC values for the xg,; into xo, test is shown in Fig. 4.5.

The significance numbers were obtained using trial-shuffling [37, 196]. For each j* segment
output time-series, the GC, NC and NNC values were calculated using the input time-series of all
k™ segments, the GC, NC and NNC values evaluated for j # k were used to estimate the distribution
of GC, NC and NNC under the non-causal assumption. The distributions were evaluated using
kernel estimation technique [88]. Since the pre-frontal cortex is reasonably distant from parietal
and occipital regions, no spatial sharpening procedure is applied. Additionally, since no activity is
being executed by subjects and (particularly) the 4 second segments are not related to the (non)
activity of the subjects, no data alignment procedure is done and trials are assumed independent.
The GC, NC and NNC evaluated for j = k were evaluated against that distribution to evaluate the
p-value of that trial. The trials were considered significant using a Neyman-Pearson test with
maximum of 1% false positives.

To highlight the nonlinear relationships in the EEG signal, the tests were repeated three times:
first as described above, second by filtering the o rhythm frequencies and lower and third by
filtering the f rhythm (13-35Hz) frequencies and lower. The signals were filtered using Chebyshev

type II high-pass filters of order 10 at cut off frequencies 13.5Hz and 35Hz respectively. In the
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models used to evaluate NNC, the filters are applied after the polynomial expansions, to preserve
the contribution of the & waves into f and higher bands due to the harmonic distortion. For the
tests using the 13.5Hz high-pass filters, the SNNC was also evaluated between 18Hz and 28Hz,
which roughly correspond to twice the frequency of the « waves.

During the first test, all of the measures identified a strong relationship between the Fp1 and
02, but were unable to differentiate direction of flow between Fp1 and O2, having both high levels
of significance in both directions, with only SNNC having significantly higher rejection in the O2
to Fp1 direction. Applying the filter with a cutoff frequency of 13.5Hz reveals the directivity and
also more differences between the measures. When filtering both « and f bands, the measures
fail to indicate the strong connectivity between Fpl and O2, partially due to lower SNR and
electromyographic interference [143]. The results are shown in table 4.10 and table 4.11, where
the best two results* are in bold.

Table 4.10: GC, NC, NNC, and SNNC results on whether to accept xg; causes xo,

Unfiltered | Filtered at 13.5Hz | Filtered at 35Hz
GC 0.851 0.535 0.228
NC 0.851 0.614 0.267
NNC 0.772 0.525 0.168
SNNC 0.812 0.674 0.891

Table 4.11: GC, NC, NNC, and SNNC results on whether to reject xo, causes xgp,

Unfiltered | Filtered at 13.5Hz | Filtered at 35Hz
GC 0.139 0.604 0.861
NC 0.139 0.545 0.861
NNC 0.158 0.723 0.861
SNNC 0.386 0.743 0.99

In the tests with the high-pass filter with cut-off frequency at 13.5Hz, SNNC performed the
best at both accepting xpp; causing xo, and rejecting xo, causing xg,;. The NNC result was also
able to reject xo, causing xp,; at a comparable rate to NNC and were about 20% higher relative

to GC. The NC results seem to indicate that bias towards significance as it consistently assigned

4When multiple measures perform equally, more than two entries may boldened.
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highest significance to tests out of all measures. The GC results show no similar bias, but show
lower selectivity than SNNC.

The receiver operating characteristic curves for the unfiltered tests and the tests filtered at
13.5Hz regarding Fp1 and O2 are shown in Figs. 4.6 and 4.7, where Fp1 causing O2 is assumed
true positives and O2 causing Fp1 is assumed as a false positive. In Fig. 4.6, the improvement of
SNNC over the other measures can be seen more clearly, where only the higher rejection of O2
causing Fp1 is seen in table 4.11. In Fig. 4.7, both NNC and SNNC perform better than the other

measures, but quite similarly to each other.
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Figure 4.6: Receiver operating characteristic curves for the unfiltered tests

The tests were repeated computing the causality measures between the Fp1 and P4 channels.
The results are shown in table 4.12 and table 4.13. For the unfiltered signals, all tested methods
were better able to show the directionality of information flow than the tests with Fp1 and O2.
Nevertheless, the rate of significant results for xp,; causing xp, are also smaller. The rate of
significant results for the signals filtered at 13.5Hz are higher than the unfiltered ones for xg,;
causing xp, and are comparable to the unfiltered results found in table 4.10. The rejection rates for
Xo2 causing xp, for signals filtered at 13.5Hz are similar to table 4.11, where NNC and SNNC are

both significantly superior to GC and NC (here by 27% and 42% respectively).
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Figure 4.7: Receiver operating characteristic curves for 13.5Hz

Table 4.12: GC, NC, NNC, and SNNC results on whether to accept xp,; causes xpy

Unfiltered | Filtered at 13.5Hz | Filtered at 35Hz
GC 0.653 0.891 0.851
NC 0.634 0.891 0.851
NNC 0.593 0.842 0.743
SNNC 0.624 0.772 0.168

Table 4.13: GC, NC, NNC, and SNNC results on whether to reject xps causes xgp,
Unfiltered | Filtered at 13.5Hz | Filtered at 35Hz

GC 0.545 0.535 0.465
NC 0.634 0.416 0.347
NNC 0.564 0.683 0.594
SNNC 0.574 0.762 0.881

The receiver operating characteristic curves for the unfiltered tests and the tests filtered at
13.5Hz regarding Fp1 and P4 are shown in Figs. 4.6 and 4.7, where Fp1 causing P4 is assumed true
positives and P4 causing Fp1 is assumed as a false positive. In Fig. 4.6, the NNC and SNNC results
are worse than NC, although NNC achieves similar results in the small false positive rate region
and SNNC achieves similar results to NC for large false positive rates. In Fig. 4.7, the advantage
of NNC and SNNC over NC is visible in the small false positive rate region, with the advantage

diminishing as the false positive rate increases.
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Figure 4.8: Receiver operating characteristic curves for the unfiltered tests
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Figure 4.9: Receiver operating characteristic curves for 13.5Hz
4.8 Discussion of A functions and preprocessing

The properties of the weighting function A qualifies it as a probability mass function. In fact,
the weighting function A operates similarly to a probability mass function in Eq. (4.4). Since

Apq(@r) defines how much of the contribution of a, ¢, should be attributed to x,, this would be
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equivalent of evaluating the expected value of the contribution attributed to assuming it has
probability A,,(¢x) of being a,r ¢ and (1 - Ay4(¢x)) probability of being 0. Under the same rationale,
A* defines the indicator function of greatest entropy, which makes no a priori assumptions about
the regressor functions.

One of the remaining challenges for the development of a unified nonlinear extension of NC
is the choice of the “correct” function A. This begs the question of what “true causality” and the
purpose of causality analysis are. As both GC and NC are based on causality as defined by Hume
[103], it is helpful to point out that Hume was concerned mostly with the epistemological aspect
of causality, rather than an ontological one. Similarly, it would be naive to assert that signal x,
“causes” x, as a matter of fact, without careful consideration of a priori knowledge. Similarly,
the appropriate choice of A relies on understanding what is the most useful manner to assign
contributions given a particular set of regressor functions and the system being observed.

The simulations concerning the model from Eq. (4.21) show how standardizing the regressors
changes the NC estimates. Additionally, due to the characteristics of the nonlinear model from
Eq. (4.21), the Volterra filter had limited success at estimating the contribution of past values of x;
to the current value of xy, as x; did not have zero mean and, therefore, some of the contribution of
x; was misattributed to x;. Analogously to the choice of candidate regressor functions, the choice
of A function relies on careful consideration of the system being modeled.

Additionally, since the NC value is derived from models, it is important to distinguish the
systems from which the data are gathered from the models used to represent them. For exam-
ple, one could develop very accurate models to predict sunrise and sunset times without ever
considering whether the sun still exists. For such models, GC and NC would suggest that the
existence of the sun has no impact on sunrise and sunset times, an absurd conclusion. Instead,
an epistemological interpretation of causality analysis yields more useful interpretations, the
knowledge of the effects of the sun’s inexistence does not increase the knowledge of sunset and
sunrise times. This argument is similar to Box’s commentary on the wrongness of all models

[31]. Ultimately, the goal of causality analysis is to gain knowledge on systems given limited
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information available about them. Therefore, the concern should not lie on which the choice of
function A is “right” or “wrong,” but rather which ones lead to most “useful” conclusions about

causal relationships.

4.9 Conclusions

New Causality is a promising method for assessing causality links between two or more signals. In
the seminal definition [95] NC is defined only for LTI models. This limits the use of NC to systems
that can be modeled well with LTI models. In this work, a novel extension of NC to NARMAX
models is presented. Three methods for choosing the A weighting function are shown, where the
first two are formally defined and a suggestion is made for the implementation of a third, while
allowing for alternate implementations. All three methods produce identical results to seminal
definition of NC for ARMAX models.

Results show that this extension is suitable for systems that can be modeled well by NARMAX
models, producing good results in the tested models. Particularly A? has shown to produce adequate
results even the nonlinear functions of the observation model are not part of the set of candidate
regressor functions. In tests with EEG signals, SNNC was shown to outperform NC and GC in
showing the linkage between « waves in Fp1 to  waves in O2.

Just as the seminal definition of NC, the nonlinear extension depends heavily on the estimated
model. Thus, it is important to highlight that careful selection of model topology and model
parameter estimation is essential to obtain useful NNC estimates.

The function A has been shown to be a probability mass function. For each suggested A, the
weights are governed by different assumptions about the distribution of “causal strength” Although
A* has shown promise in this work, models with non-antisymmetrical properties or regressors
with non-zero means can induce shifts in the NC values. However, the seminal definition of NC is
also sensitive to data preprocessing, as it pertains to modeling more than causality analysis.

This extension of NC to NARMAX models adds flexibility to NC to assess causality strength to

any signals that can be well modeled with LTIiP models. The extension inherits the strengths of
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NC, while also having the same requirement of accurate model topology and parameter estimation
in order to produce “useful” NC values. The choice of A function requires careful consideration,
but is not unlike the choice of candidate regressor functions, in which a priori information about

the system being modeled is used to guide the choice.
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CHAPTER 5

IMPROVEMENTS TO THE EvolOBE METHOD FOR NONLINEAR CAUSALITY
ANALYSIS

5.1 Overview

With the need for accurate modeling for NC analysis made clear,the focus of this chapter now
shifts to a method of estimating nonlinear model structures and parameters. The current work
is centered on a biologically-motivated method for both the selection of the effective regressors
and the estimation of the parameters of modified NARMAX models. The approach integrates
set-based parameter estimation and genetic algorithms for optimization over fitness measures
derived from a set of solutions [213]. A brief sketch of the overall approach appears in Sec. 2.4.
This chapter is focused on innovations in the evolutionary process by which the model regressor
set is selected.

Asin any nonlinear identification solution, the evolutionary-set-theoretic framework described
above is computationally-intensive, as the number of regressors increases factorially with the
order of the nonlinear expansion. In a general sense, this chapter addresses the need to find more
efficient data-processing algorithms for brain modeling. A more efficient solution is based in the
expected sparsity of the connectivity models in terms of the relatively low number of regressors
that would be necessary to effectively characterize nonlinear relationships in time-series records.
This assumption has significant implications for the evolutionary search over the space of regressor
combinations.

In particular, modified crossover and mutation operators are incorporated in the NSGA-II [51]
framework to expedite feature (regressor) selection. By adjusting the mutation and crossover
operators to account for sparsity and pairwise relationships in the population, the number of
generations needed to arrive at the solution is greatly reduced.

Further technical details of the operation of the model are found in previous papers [213, 214,
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216]. Some portions of this chapter are quoted directly from [149] with a few modifications for

improved flow and clarity.

5.2 Model form

The goal of the identification strategy in this work is to obtain a model whose internal mechanism
mimics the system being studied. Note that unless a priori information is available, the similarity
between the internal mechanism and the system cannot be measured, but instead, predictive
power is often used as a surrogate measure of similarity.

The internal processing of the system is based on a subset of a candidate set of nonlinear
regressor functions, =, = {qoq}, of size |E(p } Each regressor is a mapping ¢, + R* — R. The
identification strategy starts by positing that, given the appropriate candidate set, there exists a

LTIiP observation model, O ,, of the form in Eq. (2.23) for n € Z, given by

1 = 1

MEDI AN G
k=1

= a;T(p;[n] + €, [n] (5.1)

Oc.qr 2 5pl1] = Z AN C VR P )+ ln]

where

) +en] (5.2)

Z dhe( &l

with @ € RX, and €¢” an error sequence representing uncertainties in the model. The

«© 9
*

subscript indicates a “true,” but unknown, quantity associated with the observation model.
' The arguments, x", and y"), of the regressor signals ¢, (or vector ¢) indicate that a fi-
nite number of elements is selected from the subsequences {x;[n - 1], x;[n - 2],..., x;[n - M],
x[n-1],...,%[n-M], ..., xy[n - M]} by each ¢, for processing at time n. For conservation
of space, we define the vectors of MN; signal samples used at time n by u,[n], and the matrix

Uln] = | u.[n] wu.[n] - wux[n] |- Given observations of x and y sufficient to compute out-

puts on time interval n = 1,2, ..., N, we pose an estimation model as a function of the parameters

1T6 avoid cumbersome notation, it is to be understood that Pg- is the qth element selected from Eo, rather than
element g of Z,,.
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and regressor signals,

Ma,.p * Xp (n, a,, (p) = Z apk(ppk<uq[n]> = ag(pp<U[n]), (5.3)
k=1

in which each ¢, is drawn from the set Z, (see footnote 1), a € R¥, and the u,[n] and U[n] are
defined similarly to u,.[n] and U.[n]. The circumflex in X connotes “prediction”, as this estimation
model corresponds to the classical prediction-error method (e.g., [128]). This is true even though
the regressor functions can be highly-nonlinear functions of the observations, because (when
assumed fixed in the model) they appear in a model that is linear-time-invariant-in-parameters
(LTIiP). Thus, the identification of the parameters using least square errors or (theoretically)
mean-squared-error techniques is a well-known problem. Our approach, however, involves a
distinctly different identification method which produces parameter solution sets rather than
point estimates (e.g., [54, 55]). It is the properties of these sets that couple the model creation and

parameter identification problems.

5.3 Identification strategy

The EvolOBE method combines the strengths of evolutionary computing and more traditional
set-theoretic parameter estimation methods to robustly obtain a family of models with different
tradeoffs between accuracy and model complexity. The evolutionary algorithm is responsible
for finding the subsets of regressor functions ¢, out of Z,, whereas the set-theoretic parameter
estimation method uses of the selected ¢, to obtain a,. This framework simultaneously addresses
selection of the model structure and the parameter estimation. Moreover, a very significant
advantage of the algorithm is the lack of need for assumptions about stationarity or distributional
characteristics of the noise. The specifics are outlined in the following paragraphs.

Candidate models are encoded as binary chromosomes, where each possible phenotype repre-
sents a model with different regressor functions. The chromosome is a binary sequence in which
the g™ gene represents the presence or absence of the g™ regressor function. The information
encoded in the chromosomes is used to generate the regressor functions which are fed to the OBE

algorithm, which obtains a feasibility set according to data. The set properties are then used to
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assign fitness values to each chromosome, and the fitness value is used in the genetic algorithm
selection process to evolve the population toward better solutions (e.g. [167]). This fitness measure
can be in the form of a single objective function that provides a summary of the quality of the
model, such as FPE and AIC, or in the form of multiple objective functions, covering predictive
accuracy, model complexity, and other information about the candidate model (such as the volume
or sum of the semi-axes of the ellipsoid). The assigned fitness measure regulates the chance of
survival of each particular model in a generation.

The algorithm starts with a random population of chromosomes. At each step, the population
is evaluated, then a subset of the population is selected to generate children through mutation
and crossover operations. Mutation operators work by randomly selecting genes and altering
them, whereas crossover operators combine portions of the chromosomes of two or more parents
to produce a new offspring, which are added into the population. The population is sorted and
individuals with lower fitness are discarded. The specific mechanisms for mutation and crossover
operations, as well as the selection of parents, sorting of the population, and survival criterion are
often tailored for a particular application.

To reduce the computational complexity of this process, the search space of regressor models
must be controlled, and the candidate and final models must use the fewest regressors that are con-
sistent with an objective of prediction-error minimization. Since minimizing the prediction error
and minimizing the number of regressors are conflicting objectives, a multi-objective optimization
approach is desired. For this work, the NSGA-II [51] approach is adopted, since it generates a set
of solutions (ideally the Pareto-front), providing the best solution for a given number of regressors

and allowing the model with the best trade-off to be chosen.

5.3.1 NSGA-II

NSGA-II is a standard algorithm for solving multiobjective optimization problems. It requires a
small number of parameters and is able to obtain solution sets spread along the pareto-front. It

is especially appropriate for problems with only two objectives. The basic NSGA-II algorithm is
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Figure 5.1: NSGA-II algorithm summary

shown in Fig. 5.1. In the original NSGA-II paper [51], Deb et al. use binary tournament selection,
bit-wise mutation and single-point crossover with probability of p. = 0.9, and mutation probability
u = 1/¢ (where ¢ is the length of the chromosome). In this work, these operators and parameters
are used as a baseline for comparison, with the exception of the single-point crossover operator,

which is replaced by a two-point crossover operator.

5.3.2 Asymmetric mutation operator

For sparse solutions, the mutation operator can be tuned to guide the population toward sparsity.
Although judicious selection alone can effect sparse solutions, a properly tuned mutation operator
can increase the convergence rate significantly. Here, an asymmetric mutation (AM) operator is
developed. Classic mutation operators use a fixed probability to flip each chromosome regardless
of its previous value. This is effective for blind exploration, but imposes pressure toward solutions
with 50% active genes.

For a given p probability of mutation, the expected number of active (INV;) and inactive genes
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(Np) at step n + 1 is given by

n+1 n
N _ (1-p) H N (5.4)

Ny H (1= | Ny
This matrix has eigenvalues 1 and (1-2y). The eigenvector for 1is[ 1 1 ]7, which means that,
in the absence of selection operators, the number of active and inactive genes tends to equality at

a rate depending on .

An asymmetric mutation operator can be used to achieve any desired rate of activation.
Two distinct mutation operators are introduced to implement this effect: y, the probability of

deactivating an active gene, and i, the probability of activating an inactive gene. The matrix

system (5.4) becomes

Nln+1 (1 - #10) Ho1 Nln

= (5.5)
Ny Hio (1 - po) | | Ng'

The eigenvalues of this system are 1 and 1 -y, - yio; With corresponding eigenvectors [y, 11, 17

and[ 1 -1 ]7. The desired ratio of active to inactive genes is given by
rg= —r (5.6)

Hio + Hot
For this scheme, the mutation rate is defined as

Bo=Te pno + (1 = re)pion (5.7)

where r. is the ratio of active to total genes (i.e. N;/(N; + Np)). By combining Egs. (5.6) and (5.7),

the following expressions for the mutation probabilities are obtained

Loy = HTra

{0}
Te+¥g—2r.1y (5.8)
(1 -ry)

Hio =

Te+ ¥y —2r.1y

This extended solution reduces to that for the traditional mutation operator when r; = 0.5.
Decoupling the mutation probabilities yields a more flexible mutation operator with which pressure

can be applied toward a desired sparsity level.
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5.3.3 Reduced surrogate crossover

Evolution is improved by a crossover operator that generates novel individuals. A method to
achieve novelty is to use reduced surrogate crossover (RSX) [30]. With RSX, only non-matching
alleles are crossed between individuals. This is especially important as the genetic diversity
decreases with evolution. Thus the likelihood of generating a novel individual from two similar
parents becomes smaller in traditional two-point crossover operations.

A varying-minimum Hamming distance between chromosomes is suggested in [134]. In the
present work, a fixed unity Hamming distance yielded small improvements in convergence speed.
The fixed distance avoids the shortcomings of the minimum Hamming approach, but results in

less efficient sampling of the search space.

5.3.4 Linkage tree crossover

One of the tenets for the convergence of genetic algorithms is that the population will shift from
the initial randomly generated solutions into a population that increasingly has characteristics
found in the pareto-optimal solution set. Under this assumption, the statistical characteristics of
the population at a generation can be used to estimate what operations are more likely to produce
helpful results.” Linkage tree crossover (LTX), introduced by Thierens in [192], crosses solutions
over at positions that are more likely to generate fit offspring.

First, LTX collects information of the statistical characteristics of the population and clusters
the genes into a binary tree that summarizes how clusters are linked together. Each cluster is
initialized with a single gene, and clusters are then progressively linked together until all genes
are included in a single cluster. The clustering uses a distance metric based on mutual information
and entropy [114]. For clusters C; and C,, the mutual information is computed as

I(C;G) = Z Z Pec, (e, c)log <M> > (5.9)

01€¢1 CZEQ:Z pcl(cl)pCZ(cz)

2However, care must be taken not to heavy-handedly influence the evolution, as a stronger emphasis on exploita-
tion is likely to diminish the ability of the GA for exploration.
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where €, and €, are the sets of all possible values for C; and G,, pc, ¢, (¢, ¢2) is the joint probability
of ¢; and c,, pc,(c;) is the probability of ¢; and pc,(c,) is the probability of c,. Alternatively, the
mutual information may be computed using the entropies. The entropy for a cluster C € € is

defined as

H(C) = = Y pe()log (pe()), (5.10)
ce€

and using the following identity
I(Cy; &) = H(Gy) + H(G) - H(Cy; Gy). (5.11)

The distance metric is then defined as

H(Cy) + H(G,) _ H(C, ) - (G, Gy)

D(C,,Cy) = 2 -
(G, &) H(Cy, G,) H(Cy, G,)

(5.12)

The general procedure for generating the linkage tree is found in Alg. B.4 in Appendix B. An
example of a linkage tree is shown in Fig. 5.2. In the example, the order of the crossover operations
would be combining ¢, ¢,, and ¢, from one parent and ¢; and ¢, from the other parent, then ¢,

and ¢4 with ¢,, then ¢, and ¢s, and finally combining ¢, with ¢,.

(0102030405 )

P1P2P4
P3Qs
P1P4

(4] (#2) (93]

Figure 5.2: Linkage tree example

Once the linkage tree is generated, the algorithm traverses the tree executing crossovers

exchanging the clustered genes. In the seminal algorithm, if at least one offspring is superior to
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both parents, the parents are replaced by the children. When the tree is fully traversed, the best
individuals are copied into the next generation. The detailed LTX procedure is shown in Alg. B.5
in Appendix B.

In this work, a special consideration is necessary, as LTX was not envisioned for multi-objective
problems. For single-objective problems, a solution may either be superior, inferior or equivalent
to a second solution, whereas for multi-objective problems, solutions may also be neither superior
(dominate) nor inferior (dominated), but simply offer a different trade-off (i.e. superior in at least
one objective function, but inferior in at least one solution). When the offspring and parents
neither dominate nor are dominated by each other, there is the choice to keep or replace the
parents or a stochastic combination of both. Preliminary tests showed no clear advantage of either
choice, but further investigation on this topic is planned as future work. The detailed procedure
for the use of LTX in multi-objective problems is shown in Alg. B.6 in Appendix B.

One possible downside of the use of LTX is the substantial computational cost of evaluating
the large number of entropy calculations needed to construct the linkage tree [155]. For problems
with fitness functions that are computationally costly, LTX is more advantageous. The overhead
of computing the linkage tree is becomes more significant as population sizes increase, but small

population sizes can produce poor estimates of entropy [199].

5.4 Results of AM and RSX

A randomly generated NARMAX model with five regressors was used to evaluate the modified
operators. Three delayed outputs and two delayed inputs to the system were extracted as linear
regressors and expanded to a 3™ order Volterra series, obtaining a total of 55 nonlinear regressors.
The estimated Pareto front is shown in Fig. 5.3. The ordinate shows the RMSE of the prediction
error (dB scale) and the abscissa shows the number of regressors in each model. As expected, there
is a knee located at five regressors, corresponding to the number in the generative model. There
is some improvement in the RMSE for models with more regressors, but only due to overfitting.

To assess the improvement relative to the unmodified NSGA-II method, simulations were used
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Figure 5.3: Estimated pareto front

to estimate the number of generations required for each genetic algorithm (GA) to converge to the
generative model. The number of generations follows a probability distribution with parameters
depending on the GA and its internal parametrization.

Clearwater et al. [45] have shown that the number of generations required by a GA to find
a solution asymptotically approaches a log-normal distribution. Due to the long-tailed nature,
the mean and variance of this distribution are both significant. A lower-variance estimator can
provide a more meaningful measure of number of generations to convergence, even at the expense
of mild estimator bias.

To examine the how well the number of generations required to find the solution fits a log-
normal distribution, 16384 runs of our algorithm were evaluated using NSGA-II with the same
parameters for each run. The number of generations required by each run was recorded and a
log-normal distribution fitted to the data. Fig. 5.4 shows the histogram with “x” markers and the
fitted distribution with the solid line. The fitted distribution tracks the histogram remarkably well,
especially in the long tail of the distribution. For clarity, the histogram is omitted from further
figures.

The NSGA-II algorithm was implemented using the symmetric bit-wise mutation operator
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(equivalent to r; = 0.5) and two-point crossover. The asymmetric binary mutation with r = 0.1
and was applied to all remaining simulations. The modified domination criterion (unique sorting)
was added to the third simulation onwards. The fourth simulation incorporated the RSX operator
and the fifth added a minimum Hamming distance (HD) of 1 to the mutation operator. The results

can be seen in Fig. 5.5. The parameters for the fitted models are compiled in Table 5.1. Since in the
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©
2>0.03
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Figure 5.5: Generations to arrive at the desired model

log-normal distribution, ; and o do not correspond to the mean and standard deviations, these
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values are also calculated and shown in separate columns.

Table 5.1: Fitted parameters for different methods

Method u o | Mean | Std. Dev.
Original operators 413 | 0.28 | 643 18.1
Assymetrical Mutation | 3.34 | 0.421 | 30.9 13.6
AM + Unique Sort 3.25 | 0341 | 275 9.64
AM + US + RSX 3.23 1 0335 | 26.7 9.19
AM +US +RSX +HD | 3.22 | 0.329 | 26.4 8.95

The asymmetric mutation operator causes a drastic change in the simulation results, reducing
both the mean and standard deviation significantly. It reduces the number of generations to
reach 99% confidence from 118 to 76 generations (reduction of 35%) and 99.9% from 145 to 104
generations (a reduction of 28%).

While the modified domination criterion caused a smaller reduction in y, the o is reduced
more significantly. As seen in the graph, the modes are largely unchanged (ranging from 22 to
23 generations), but the reduction in o greatly reduces the number of generations to reach high
confidence. The old sorting algorithm passes 99% confidence at 76 generations and the 99.9%
confidence region at 104 generations, while the new sorting algorithm passes 99% confidence in
58 (a further reduction of 23%) and 99.9% in 75 generations (a further reduction of 27%).

The remaining improvements improve convergence, albeit in a smaller scale, with the reduced
surrogate without minimum Hamming distance and the reduced surrogate with minimum distance
of 1 needing 55 and 54 generations to reach 99% confidence respectively and needing 71 and 70

generations to reach 99.9% confidence.

5.5 Results of LTX

To test the improvement given by LTX, a test with the nonlinear observation model of Eq. (4.23)
was run under various conditions. The advantage of the tested model over the previous model is
that the tanh(-) term in the difference equation means polynomial estimation models will provide
better prediction with increasing model orders, but no finite set of polynomial regressor functions

will manage to perfectly represent the tanh(:) term. The comparison tests were done against the
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results in the previous section under similar conditions as the previous test.

One challenge shown in the literature is that regression algorithms will adapt to the absence
of certain regressors functions by using other correlated regressor functions, regardless of their
presence in the observation models [23, 157]. This choice is further complicated by the presence of
noise in the measurements. When the variance of the contribution is comparable with the variance
of the noise, then discerning the optimum parameter values or even the optimum regressor sets
for large numbers of regressors is not always possible.

Fig. 5.6 shows the estimated set of best regressors for models with seven or fewer regressor
functions, where dark squares indicate the presence of a particular regressor function in the model.
The RMSE of the prediction error is shown in Fig. 5.7. The regressor sets were obtained using the
EvolOBE method and a realization of Eq. (4.23) of 1024 consecutive epochs with 15dB SNR, with
two delay taps (exact value) and the linear regressors were expanded to a polynomial order of ten,
which results in a total of 1000 candidate regressor functions. Note how u®[n - 6] is present for the
model with two regressors, even though it is not present in the observation model. In fact, in this
realization, replacing u[n - 6] with either u*[n - 1] or u[n - 1]u[n - 2] yields slightly worse RMSE
than u[n- 6], where the model containing u°[n - 6] has -11.89dB and the ones containing u*[n-1]
or u[n - 1]u[n - 2] have -11.88dB and -11.38dB, respectively. This can be interpreted as u®[n - 6]
being able to better fit the missing terms than either u*[n- 1] or u[n - 1]u[n - 2] individually, given
the distributional characteristics of u[n - 1]* and u[n - 1]Ju[n - 2] and the particular realization
being used. However, u?[n - 1] and u[n - 1]u[n - 2] are synergistic in the sense that together they
provide better fit to the data than the combination of u°[n - 1] and any other regressor function,
as shown by the presence of both regressor functions in all subsequent models.

Also in Fig. 5.6, note that other terms of the McLaurin series of tanh(y[n—-1])u[n—1] are present,
such as y*[n - 1]Ju[n - 1] and y°[n - 1]u[n - 1], but other terms provide so little improvement in
the prediction that even though they might be present (e.g., y’[n - 1]u[n - 1]) in a later model, they
appear in conjunction with spurious regressor functions (e.g., y[n - 1]y*[n - 2]u[n - 2]). The same

is true for y°[n - 1]u[n - 1], which appears in the estimated best model with eight regressors (not
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Figure 5.6: Estimated regressor functions present in best models
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Figure 5.7: Estimated pareto-front for 15dB SNR

shown in Fig. 5.6 for clarity), which also includes the spurious term y*[n-1]y*[n-2]u*[n-1]u[n-2].

While the challenge of appropriate choice of regressor functions for nonlinear estimation
models is unique to modeling nonlinear observation models, a similar challenge exists when there
are missing input signals in any (linear or not) regression problem. An intuitive example is given
in Sec. 4.2, where the increase of a temporally correlated quadratic term of the past value of x;

resulted in the decrease of the linear NC measure of x, into x;, since this increase caused x; to be
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more temporally correlated with itself, whereas the quadratic term in x; is uncorrelated with x,.

The first test used a noise free realization of Eq. (4.23) of 1024 consecutive epochs, with two
delay taps (exact value) and the linear regressors were expanded to a polynomial order of eight,
which results in a total of 494 candidate regressor functions. The histogram of the number of
evaluations needed to find the best models with eight or fewer regressor functions is shown in
Fig. 5.8 and the fitted log-normal probability density distribution is shown in Fig. 5.9. The number

of evaluations needed was reduced by 73% for 99% confidence and 79% for 99.9% confidence.

60 = T T T T T
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Counts
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Figure 5.8: Histogram of required evaluations for RSX and LTX

It is important to note, that there are times where LTX performs worse than RSX in terms
of required number of evaluations. Figs. 5.10 and 5.11 show the estimated CDF of the number
of required evaluations. Fig. 5.10 demonstrates that LTX clearly outperforms RSX under most
circumstances. However, looking closely in the region of fewer than 15,000 evaluations (shown in
Fig. 5.11), RSX outperforms LTX in about 3% of cases. This behavior can be traced back to the
assumptions of LTX, that the current population contains characteristics of the desired solutions.
In the first few evaluations, this assumption is less valid and leads to some runs requiring more
evaluations to find the desired solutions. There are mitigation measures to avoid this increase in

evaluations and to hasten the search overall, like waiting for a few generations prior to switching
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Figure 5.9: Fitted PDF for the required evaluations

to LTX or using a greedy or suboptimal algorithm to find the initial candidate solution set that
is fed into the LTX operator, such as the bitwise hillclimber algorithm employed in the seminal

LTGA paper [192]. A review of LTGA variants is given by Goldman and Tauritz in [73].
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Figure 5.10: CDF for the required number of evaluations to find the desired solution

For simulations with lower SNR, the improvements are less pronounced. Fig. 5.12 shows the

estimated CDF for the required number of evaluations for RSX and LTX. The CDFs intersect at
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Figure 5.11: Close-up for fewer than 15000 evaluations

94.7%, before which RSX requires fewer evaluations. At 99% and 99.9% confidence levels, LTX still
outperforms RSX, with 7.5% and 15% respective reductions in the required numbers of evaluations.
Nevertheless, this small reduction in number of required evaluations is negated by the additional
computational cost of computing the linkage tree. The overhead added by LTX is not negligible
and increases with population size and number of regressor functions. This drawback is less
evident when the cost of evaluating the fitness function is large in comparison to the computation
of the linkage tree.

With lower SNR, nonlinear terms with smaller contributions are obfuscated by the noise and
thus the final set of candidate solutions cannot include these terms with certainty. Finding this
smaller set of solutions requires less exploration and gives LTX less chance to improve the search.
Fig. 5.13 shows the comparison between the estimated Pareto fronts for the dataset expanded
to polynomial order 10. Note how the noise free case continues to improve significantly until
seven regressors are added, while at 15dB SNR, the improvements are greatly diminished beyond
four regressors. The prediction error is not reduced beyond seven regressors, as the search space
was limited to tenth-order polynomials, with the following term (y*'[n - 1]u[n - 1]) requiring an
expansion to order 12, increasing the chromosome sizes to 1819 genes and the search space to

over 10°* possible solutions.
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Figure 5.12: CDF for the required number of evaluations for 15dB SNR
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Figure 5.13: Comparison between estimated pareto fronts for different SNR values

5.6 Application to NNC analysis

Once the final set of models is obtained, these models can be used for NNC analysis. One of the
advantages of the biobjective optimization approach is that at the end of the optimization process,

the algorithm provides the set of best models for different levels of tradeoff between complexity
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and predictive power.

In Fig. 5.14, the NNC values are given for the observation model of Eq. (4.23) for 10dB SNR.
The NNC values using the observation model (found in Table 4.8) are 0.29 and 0.55. Note that the
values converge quickly, with the model with four regressors being very close to the expected

values and negligible changes with five or more regressors.
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Figure 5.14: NNC values for the final candidate model set for 10dB SNR

In Fig. 5.15, the NNC values are given for the same model and 50dB SNR. The NNC values
using the observation model (found in Table 4.9) are 0.31 and 0.69. Again, the values converge
quickly and do not diverge in the observed range, as the contributions from the higher order terms
are small compared to the first four chosen regressors.

Note that in situations where the observational model possesses large SNR, the GC value
would increase with the increase of the polynomial order expansion, even when the contribution
of the new terms is small, finally converging when the variance of residual is comparable to that
of the noise. On the other hand, a small residual causes the sum of NNC values to approach unity,
but Figs. 5.14 and 5.15 shows that the NNC values do not vary much when the residuals become

smaller.
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Figure 5.15: NNC values for the final candidate model set for 50dB SNR

In the studied cases, NNC performs well with simpler estimation models, provided the estimated
parameters well represent the internal mechanism of the observation models. This echoes Ljung’s

advice to “try simple things first” [128], even though those models are “wrong>”

5.7 Discussion and conclusions

In this chapter, modified crossover and mutation operators were presented for use in NARMAX
model estimation as part of ongoing improvements to EvolOBE. These modifications yield sig-
nificant performance improvements over the pure NSGA-II algorithm for this application. The
operators take advantage of posited characteristics of the population and final solution sets, such
as sparsity and pairwise relationships between genes.

When a modeling problem provides little guidance on the selection of an effective model form,
a GA must search a wide space of candidate features but determine a reliable and consistent
solution in a limited number of generations. The 99% and 99.9% confidence metrics resulting in the
modified search methods provide a stronger measure of performance than the estimated mean and

variance, even though the confidence information is theoretically inherent in the two statistics.

Sbut “useful” [31].
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The asymmetric mutation operator guides the mutation towards arbitrarily sparse solutions
for any desired mutation rate. Tests have shown the asymmetric mutation operator to be an
effective way to reduce the number of required evaluations. The change in the mutation operator
also does not prevent exploration, as it simply increases the probability of the mutation to produce
an offspring with the set sparsity, but does not prevent the mutation from generating offspring
with other sparsity in the genes.

The modified crossover operators increase the search speed by finding valid crossover locations
(RSX) or finding more crossover masks that are more likely to produce fit offspring (LTX). The LTX
operator estimates pairwise proximity between genes in the current population to define crossover
masks. In the simulations presented here, LTX required fewer evalutions to find the desired set
of solutions for high confidence levels, but a small percentage of simulations completed faster
when using RSX exclusively. Since LTX requires that the population to provide useful information
on linkage between genes, LTX requires a minimum number of evaluations until the population
can provide such information. More complex crossover operators that make use of information
beyond just pairwise linkage, such as covariance matrix adaptation [85], are very powerful, but
require even more evaluations until the crossover operator can perform appropriately.

At lower SNR values, the improvements given by LTX are less pronounced. Additionally, a
larger set of regressor functions and the noise also adversely affect the parameter estimation,
which further indicate the need for parsimony in the final candidate model set.

The resulting models were used to compute the NNC values of the models and compare them to
NNC values obtained with the observation model parameters. Since NC and NNC are susceptible
to error in the model estimation, it is important to carefully consider the estimation models used
to compute these measures. In the tests, the EvolOBE method produced NNC estimates with very
good agreement with the theoretical values. As the EvolOBE method produces the set of most
accurate models for any number of regressors, NNC can be estimated for the entire set of fittest
models for comparison and analysis of the models.

At this point, some characteristics of the algorithm have not yet been explored. For example,
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the sparsity parameter for the asymmetric mutation operator is currently fixed at the beginning
of the operation, but could potentially be set dynamically by observing the population and/or
evolution. The algorithm also does not regard the relationships among regressors (e.g. y[n - 1]
and y*[n - 1]), which could potentially provide useful information that will likely result in further
improvement, especially when modeling non-polynomial regressor functions with polynomial

expansions.
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CHAPTER 6

CONCLUSION

6.1 Overview

Causality analysis is a very important area of study, ranging from philosophy and econometrics
to physics, neurology and engineering. The topic is highly debated and somewhat controversial.
Indeed, a concise universal definition of causality or causality measures has not been reached. This
work focuses on statistical methods of evaluating evidence of causality, rather than the philosophy
of causality. This work possesses two synergistic goals: the characterization and development of
a causality measure for nonlinear parametric models, and the investigation of an evolutionary
search algorithm for sets of the best nonlinear parametric models for different levels of tradeoff
between complexity and predictive power. NC is shown to be sensitive to parameter estimation
error and prone to bias, which is compounded when extending NC to nonlinear models, so a
method of finding and comparing models complements NNC by using the optimum set of models
for NNC estimation.

NC is a recent method to assess causality between signals in parametric models. In this work,
a thorough critical study and nonlinear extension to NC are shown. In Summary, NC does have
advantages over GC and similar causality measures in that it is more proportional to internal
model parameters, it is normalized and does not require a choice on the order of the conditioning
signals unlike CGC [95]. In Ch. 4, the seminal definition of NC is extended to cover all LTIiP
models with a flexible weighting method that reduces to the seminal definition for LTI models.

This work also explores aspects of NC that have been overlooked in the the seminal papers.
In much of the literature surrounding causality, the distinctions among systems, observation
models and estimation models are often not clearly stated. Although very powerful methods for
parameter estimation exist, estimated models are not the systems they represent and should not

be taken as anything greater (or lesser) than that - a representation. Under the risk of repeating
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a truism, “all models are wrong, but some are useful” As shown in Ch. 3, the usefulness of the
NC estimates is strongly tied to the quality of the estimated models. This is arguably even more
substantive for nonlinear model estimation, as nonlinear models entail increased difficulty in
accurately estimating the parameters and selecting regressor sets.

Another aspect that is often overlooked is the validity of some models found in the literature.
Models that are not representative of practical applications should not be used to compare causality
analysis tools unless their use is justified. Sec. 3.2 contains a list of example models and a discussion
on the validity of such models.

These two overlooked aspects in NC literature are very unfortunate, especially as it undercuts
the argument for the unique characteristics of NC. The models shown in Sec. 3.2 could mislead
a reader into thinking that NC is only superior in these impractical scenarios, which, without
overlooking the merits of alternative methods, is not true in general. NC is unique in comparison
to other methods in that NC values depend much more on internal model parameters and that,
granted that the models represent the internal dynamics of the system well, it can better measure
causal relationships for systems with quasi-periodic and slow dynamics.

In its seminal form, NC was only fully defined for ARX models. In Ch. 4, a nonlinear extension
of NC was presented. For models with strong nonlinearities, the seminal form can behave
counterintuitively as shown in Fig. 4.1. The extension presented in this work, NNC, produces
results that are in line with intuition (shown in Fig. 4.2) and shares all the strengths of NC while
allowing application to a much wider set of models. As is the case with NC (and GC), NNC can
also be spectrally expanded into a frequency dependent measure. The definition of NNC also
offers a flexible approach to partitioning the contribution of nonlinear regressor functions that
depend on more than a single regressor signal. Tests were conducted on synthetic and real data
with promising results.

With the need for a robust nonlinear model estimation framework having been demonstrated,
improvements to the EvolOBE method are reported in Ch. 5. The EvolOBE method combines

a genetic search algorithm for regressor selection with a set-theoretic approach for parameter
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estimation. In this work, enhanced mutation and crossover are described and introduced to the
EvolOBE method. The introduction of these new operators is shown to increase convergence
speed, decrease the number of evaluations needed for convergence and reduce the variance of the

number of evaluations needed for high confidence rates.

6.2 Contributions

The major contributions of this work are the following:

1. Shown that NC is susceptible to two sources of variation, natural variations in the specific
realization (e.g., difference between the sample variances and the observational model
variances) and parameter estimation errors. In the sames tests, GC was shown to be

significantly more robust to errors in the parameter estimation;

2. Shown that NC is prone to bias in the estimates that increase with parameter estimation

errors;
3. Analytically explored four cases of the source of bias in NC estimates including regulariza-
tion;

4. Provided an extension to NC to the set of all LTIiP models, which are considered interpretable
and transparent [200]. This enables the use of NC to a much wider range of applications.
The extension is equivalent to the seminal definition for linear models and can be spectrally
expanded in the same way as the seminal definition. The extension is applied to real data

(EEG signals) with encouraging results;

5. Introduced new operators into the EvolOBE method that significantly reduce the computa-

tion time and required number of evaluations to reach convergence;

6.3 Future Work

The large improvements seen in the EvolOBE method are encouraging and also indicate that

further improvements are possible. Particularly, further enhancements in mutation and crossover

130



operators are likely to yield significant benefits to the genetic search.

In the most current variant of the EvolOBE method is currently blind to the particular rela-
tionship between regressor functions. When using Volterra expansions of the regressor signals
on signals whose observational model has non-polynomial nonlinear terms, the set of optimal
regressor functions are often related by the regressor signals used. Implementing a method to
account for these relationships is likely to further improve convergence.

In its current form, the multi-objective adaptation to LTX treats all situations where the
offspring neither dominate or are dominated by the parents by randomly selecting whether to
keep the offspring or parents. Using a different heuristic to guide the choice of whether to choose
offspring or parents might help speed up the genetic search.

Also, candidate models with larger number of active genes require longer computations than
models with fewer active genes. Currently, the algorithm waits until all candidate models are
evaluated to proceed, reducing the computational efficiency in parallel computing environments.
Enhancements in the computational efficiency are possible and have not been explored.

Additionally, the set-membership parameter estimation provides other indicators of set quality,
such as bounds for each parameter, or size and shape of the final ellipsoid. These indicators have
not been studied yet as a complement or substitute for the currently used fitness functions.

Nonlinear NC is a new technique and its application has not yet been fully explored. The
ability to describe the effect of a single regressor into the regressand in a complex function could
have application areas outside of causality analysis, such as multi-criterion decision making. The
normalized nature of NNC and sensitivity to changes in the model parameters make it particularly
suitable as the results are more easily interpretable.

While the susceptibility of NC to bias in the estimates, a detailed statistical characterization of
NC have not yet been explored. This could lead to enhanced significance tests for NC and better

understanding of how it relates to other causality analysis tools.
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APPENDIX A

DERIVATION OF CLOSED-FORM EXPRESSIONS FOR GC AND NC FOR FIRST-ORDER
BIJOINTLY REGRESSIVE OBSERVATION MODELS

A.1 Overview

Closed-form solutions for the GC and NC measures are useful in evaluating relative performance
of the techniques. In [95], closed form expressions for GC and NC are derived for certain first-order
ARX observation models. However, no general formula is given for NC or GC, and GC is only
asymptotically evaluated for large M. Closed form expressions for GC depend on M and the
process of obtaining closed form expressions laborious, but understanding the intricacies of GC
and NC provide insight into what each technique measures.

In [95], it is argued that, GC does not depend on the feedback loop formed from the product
of a,, and a,,, reflecting a coupling between x; and x,. The argument is supported by a closed
form expression given for GC in [95, Eq. 13] for a particular form of first order ARX model which
does not include any term that depends on the product. However, this expression is only true if
GC is allowed to compare models with unlimited order. When the model orders are finite, the
expression for GC does depend on ay;a;;.

A large portion of this appendix is quoted directly from [147] with a few modifications for

improved flow and clarity. Long equations are placed at the end of the appendix.

A.2 Derivations

In order to increase clarity, the time-delay index i superscript will be omitted. For all first-order
models, a;, = 0 for i > 1, so a,, is used to mean a,,. Instead, in this section, the superscript will be
used to denote the exponent. The GC and NC measures can be evaluated in both directions (i.e.,
x; — X; and x, — x;). For simplicity, only the x, — x; direction will be used. The derivation for

x; — x; follows the same basic steps.
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First, the observation model is defined

xi[n] = aj,x[n - 1]+ ay,x0[n - 1] + n[n],
(A.1)

x[n] = axi[n - 1]+ ay,x[n - 1] + my[n],
where 7; and 7, are discrete-time white noise processes with zero mean. The two estimated
models that are compared for GC estimation follow an ARX model [Eq. (2.35)] under the joint
case assumption, and follow an AR model under the disjoint case assumption. The ARX estimated

model for the joint case is of the form

x[n] = apxi[n - 1]+ ayx[n - 1]+ ny[n],
(A.2)

x[n] = apxi[n - 1]+ agx[n - 1] + ny[n],

where the model parameters 7; and 7, are discrete-time white noise processes with zero mean
and a,, are the estimated model parameters. The AR estimated model for the disjoint case is of

the form
M

xl[n] = Z O{mxl[n - m] + el[n]s (A3)

m=1

where ¢ is a discrete-time white noise process with zero mean and «,, are the autoregressive
model parameters. These estimated models will be used in the following derivations. The first
derivation will be a generalization of the closed form expression given in [95, Eq. (12)], where the
a;; and a,, are equal to zero and the estimated model order is unconstrained.

For simplicity, the analysis assumes that enough epochs are available such that the sample
variances and variances are assumed equal, and that the estimated models are the MMSE estimators,
such that ay, ~ a;,, (p, q € {1,2}) for the joint model. These assumptions are not reasonable in
many circumstances, but still provide insight on the “ideal” GC and NC estimates. Nevertheless, it
is important to reinforce the point made in Sec. 2.2, that the observation models and estimation

models must not be confused, even when the parameter estimation is assumed to be “perfect””

A.2.1 Derivation for the GC valuefor M =1and M =2

Obtaining the GC value for different M values is tedious, but not complicated. First the expected

values for the variances of x;, x, and the covariance between x; and x, are calculated. Since 7,
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and 1, are white and zero mean,

2 2
2a,,a,,07, + ops

Efaln] - xlnl} = of = —— =",
11
2a,,a,,0% + o2
Ellnl - wnl} = of = ——— 77—, (A4)
22

2 2
a,,a,, 0, + a,,a,, 0.
E{x[n] - x;[n]} = 0-122 - 17217 12929

1-ay,ay — a0y

where £ represents the expectation operator. Solving the system yields Eq. (A.5). The covariance

between x;[n - 1] and x;[n] can be succinctly expressed in terms of ¢7 and o2, as
E{xi[n-1]- x[n]} = a, 07 + a,,05, (A.6)

so that, by evaluating the conditional distribution of x;[n] given only x;[n — 1] [64], the variance

of €, becomes

4
1o
2 2\ 2 2 2 O12
O, = (1-aj))oy - 2ay,a,,07, — aj, o2 (A.7)
1

In this case, the GC value for evaluated when fitting first-order disjoint and bijointly regressive

systems becomes
4

2 \a2 2 _ 2 0
(1-aj))oy - 2ay,a,,07, - ay, s
GC2—>1 =1In

. , (A.8)
O',71

which can be expanded into Eq. (A.9). The expression demonstrates clearly that GC does take
the a,,a,, feedback loop into consideration. Although the analysis of the contribution of these
terms using Eq. (A.9) is not straightforward, the terms in Eq. (A.8) that depend a,,0? can be
shown to contain a,,a,, by using Eq. (A.8). A similar approach can be taken to evaluate GC using
higher-order models. This is done by evaluating £{x;[n - An] - x;[n]} for An € [1,---, M] and
using the conditional distributions to obtain the expected o7 . One helpful identity to evaluate
these covariances is

An

x:[n] a, a o’
Rl P RN | S e B R (A.10)

x,[n] a4z 0'122

An times
—

where [A]*" = A - A - A. For the sake of brevity, a detailed derivation for higher orders is omitted,

but the expression for M = 2 is found in Eq. (A.11).
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Increasing M causes GC monotonically decrease, which can be intuitively explained by re-
membering that GC compares two models, an AR and an ARX model. For the ARX model, there
should be no improvement for higher order estimated ARX models over the first-order estimated
ARX model, since the observation model is a first-order ARX model.! Meanwhile, AR models
cannot perfectly mimic the dynamics of ARX models. While a second-order AR model is also not
able to perfectly represent an ARX model, it is better able to predict x;[n] than a first order AR
model. Similarly, the variance of the residual of a third-order AR model is smaller (or equal) to
that of the second-order model. The variance of the residual of the ARX models should be equal to
0'31 for any M = 1, but the variance of the residual of the AR model should decrease monotonically

with M. Thus, the GC values for M = 2 will be lower than with M = 1.

A.2.2 Derivation for a lower bound of the GC measure for large M

The fact that the GC value decreases monotonically with the model order is well known [95]
and can be argued qualitatively, as is done in Sec. A.2.1. However, it is helpful to define a lower
bound for the GC value, so that the range of possible GC values for any M may be known, that is,
GChr—o = GCprez+ = GComujp=1-

Since GC compares the sample variance of the error sequence of a joint and a disjoint model,
the two variances must be obtained. For the joint model, the expected variance of the error
sequence is simply the variance of 1, (following the assumption that a,, ~ a,, for p, q € {1,2}).

To find the disjoint model of the form Eq. (A.3), one can start by expanding Eq. (A.1) into
xz[n-1]

r

xi[n] = a;,xi[n - 1] + ay, (ayx1[n - 2] + ay,30[n — 2] + no[n - 1]) +n[n], (A.12)
which, for a,, # 0, can be further expanded by recursively replacing the x;, terms, yielding

xi[n] =a;;x[n - 1] + a;, Z (ay)™ x1[n - m]+
(A.13)

M
a1z ()" wo[n - M] + ay, Z ayy)" o[ = m]) + 1y [n].
m=1

INevertheless, a larger number of model parameters lead to larger variance in the parameter estimation.
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For a,, = 0, the expansion reduces to

M
xi[n] = ayx[n-1]+a, Z ay)" " xi[n - m] + apymo[n - 1]) + mi[n], (A.14)
m=2

and the asymptotic MMSE parameter values for the disjoint model are

a, for m =1,
Um % 1 a(ay)"" form>1,> (A.15)
0 for m < 0,

so that the prediction error for the MMSE of the disjoint model is

e[n] = ay,me[n - 1] + npy[n]. (A.16)

Using the fact that 7; and 7, are white and uncorrelated, the variance of ¢ is

a2 = (a,)’al, + as, (A.17)
and the GC value can be expressed as
( ay, 2
GC2_>1 =In p , (A18)
0-’71

which does not depend on a,; or a;;. This expression was used to argue that GC overlooks
important parameters of the model by Hu et al. in [95]. However, it is important to remember
that this expression is only valid for a,, = 0 and large M, nevertheless, as is shown below, the
expression is still useful for the purpose of establishing a lower bound. Returning briefly to
Eq. (A.12), note that for any M > 1, the x;[n — 1] and x;[n - 2] terms are available in the AR
model and therefore will add no additional residual error. Note also that the n;[n] and n,[n - 1]
terms cannot be predicted in any way by the AR model. This is a consequence of 7,[n] being
uncorrelated with any past values of ; and that n,[n - 1] is only correlated with x;[n], but not
with x;[n — 1] or any other past values of x;. Thus, the only remaining question is how well can

the x,[n - 2] term be predicted by past values of x;.
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Supposing that x,[n - 2] could be perfectly predicted by past values of x; produces a prediction
error equivalent to Eq. (A.16). Although this is only exactly true for a,, = 0, it becomes clear that
forany M = 1,

0'621 > (alz)za,?2 + 0',?1, (A.19)

which shows that Eq. (A.18) is indeed a lower bound for all GC values for M > 1 and is the

asymptotic value for large M and a,, = 0.

A.2.3 Derivation of the NC value

In [95, Eq. (21)], a partial expansion of NC was expressed for models for which a;; = a,, = 0. The
motivation to eliminate these parameters is to simplify the expressions, but this simplification
arguably reduces the representativeness of the model [147]. Here, the general expression is shown.

By expanding the difference equations as done in Eq. (A.12),

N

Y (ayyay, x1[1n = 2] + agx[n - 2] + ay ma[n - 1])°
NGy = "5 = , (A.20)
Y (aa,x[n - 2]+ aymo[n - 11)° + 3 né[n]
n=3 n=3

which shows the clear dependence of NC on the a,,a,, term. The expression is only valid for

observation models with a;;, = 0. A general expression for first order bijointly variate models is

N 2
Z (@ x;[n - 1])

NC,_,; = N N , (A.21)
Z apxe[n - 1]) Z a;; % [n ])2 + 3, mi[n]
n=2 n=2 n=2
which, as N — oo, converges to
2 2
NC2—>1 = alzo_z (AZZ)

a,0f + aj,of + am?

This expression shows the dependence of NC on the product a,,a,,. It is important to note
that the variances o and o7 themselves depend on the model parameters as Eq. (A.5) shows. This
means that a change on any of the model parameters will also cause a change in ¢7 and o7, thus
the interactions between the model parameters and the NC values is also not straightforward.

Combining Eqgs. (A.5) and (A.22) yields Eq. (A.23).
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A.3 Discussion

In this appendix closed form expressions for NC and GC are derived. The GC expressions are
shown for M = 1, M = 2, and an asymptotic expression for large M. The technique can be
expanded to any order, although the complexity for the closed form expressions grows with M.
Although the process of obtaining these estimates is laborious, they can quickly and accurately be
numerically evaluated.

These expressions show that, for finite M, the expression for GC does indeed depend the
product of a,, and a,,. In fact, the relationship between the model parameters shows many
intricate relationships between model parameters and GC values. The interaction between the
model parameters and the GC values is not straightforward, so expressions in terms of 1; and 7,
and in terms of x; and x, are provided.

When doing theoretical analysis on GC and NC estimation, it is helpful to be able to evaluate
the analytical values for comparison. These closed form expressions are used in Ch. 3 to compare

the effects of estimation errors and sample variances on GC and NC estimates.
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APPENDIX B

LISTINGS FOR ALGORITHMS

B.1 Overview

This appendix contains the listings for key algorithms used in this work. Deeper discussion and

more thorough description of the algorithms are found in the references.

B.2 OBE-related algorithms

The unified OBE framework is more thoroughly described and discussed in [54], whereas a
summary is given here as a reference. The general algorithm follows a recursion similar to
weighted recursive least squares (WRLS) [53, 54, 101], but with dynamically evaluated optimal
forgetting factor calculations. The algorithm shown here assumes a MISO model, since this is the
focus of this work, but UOBE defined for general MIMO models in [54].

Given a sequence of error bounds y[n] [as in Eq. (2.27)], output signal x,[n] and vector of
regressors (or regressor functions) ¢,[n], the UOBE framework is given in Alg. B.1 and the
recursion in Alg. B.2.

The optimum weights are selected according to different optimization criteria. With the
exception of the Dasgupta-Huang OBE [50] which optimizes x[n], other algorithms under the
UOBE umbrella choose the weights that minimize either the determinant of k[n]P[n] (proportional
to the square of the volume of the ellipsoid) or the trace of x[n]P[n] (proportional to the sum of
the squares of the semi-axes of the ellipsoid).

Defining g[n] = f[n]/a[n], the weights that minimize the volume, if they exist, are obtained

by finding the unique positive root of the following equation

F,(s) = ays® + a;s + ag, (B.1)
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a; = (K - 1)y[n]G*[n], (B.2)
a, = [(2K ~ 1)y[n] +|[|e[n]|* - k[n - 1]G[n]] G[n], (B.3)
ay = K[y[n] - [le[n]|["] - x[n - 11G[n], (B.4)
Algorithm B.1: Unified Optimum Bounded Ellipsoid Algorithm
: procedure UOBE

0[1]=0 > Set initial ellipsoid as a very large hyper-sphere centered at origin

k[1] =1

P[1] = lI

for n =/12 to N do
e[n] = x,[n] - 0" [n - 1]¢,[n]
Gln] = @] [n]P[n - 1]¢,[n]

if optimum «[n] and f[n] exist then
do UOBE-Recursion (Alg. B.2)

count =0

else
P[n] = P[n-1]
0[n] = 0[n-1]
k[n] = k[n - 1]

count = count + 1

if count > N,;. then
do EstimateBounds (Alg. B.2)
count =0

end if

end if
end for
end procedure

Algorithm B.2: UOBE Recursion

: procedure UOBE-RECURSION

1 [, BlnIPln-1]g,nlgl[n]Pn - 1]
Pln] = a[n] [P[n ! a[n] + f[n]G[n]
O[n]=0[n-1]+ ﬁ[n]P[n]‘Pp[”]e%qﬁ[ 1]

) aln nlje“(n
Kln] = alnlx(n] + Alnly*lnl = o e G

: end procedure
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> Ellipsoid does not change

> If using ABE

Update direction &
shape of ellipsoid
> Update centroid

> Update size of ellipsoid



such that F,,(¢q[n]) = 0. When no such root exists, none of the ellipsoids that contain the intersection
between the hyperstrip and the previous ellipsoid have smaller volume than the current ellipsoid.
Equivalently, the positive root indicates that the value of g[n] that defines the ellipsoid with
smallest volume out of the set of all ellipsoids that fully contains the intersection between the
previous ellipsoid and the hyperstrip. Note here that setting a[n] to unity and f[n] to zero is
equivalent to ignoring or discarding the current x,[n] and ¢,[n] and making no changes to the
ellipsoid.

To minimize the square sum of the semi-axes, the optimum weights, if they exist, are obtained

by finding the unique positive root of

Fi(s) = b3s® + bys® + bys + by, (B.5)
where
bs = y[n]G*[n] [Gln] - I[n - 1]H[n]], (B.6)
by = 3y[n]G[n] [G[n] - I[n - 1]H[n]], (B.7)
b, = H[n]G[n]I[n - 1]x[n - 1] - 2H[n)I[n - 1] [y[n] - ||e[n]|I*] (B.3)
- G[n]|le[n]ll* + 3y[n]G[n], (B.9)
by = y[n] - lle[n]|l* - H[n)I[n - 1]x[n - 1], (B.10)

where H[n] = (pg[n]Pz[n] @p[n] and I[n] = tr {P'l[n] }, where tr {-} is the trace operator.

A stochastic method to estimate error bounds is developed by Joachim et al. in [106]. The
algorithm starts with an overestimated bound. If no update to the ellipsoid is made for Nagg
samples, it finds the largest error in the last Ngg samples and reduces the bounds accordingly.
This is repeated until the error bound estimate is close enough to the true bounds. The general

algorithm is shown in Alg. B.3.

B.3 Linkage tree crossover

In [192], Thierens introduces the Linkage Tree Genetic Algorithm (LTGA). The algorithm initializes

the population randomly, but applies a steepest ascent hill climber to each member of the population
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Algorithm B.3: Automatic Bounds Estimation

1: procedure ESTIMATEBOUNDS

2: Npax = argmax €2[m] > Find largest prediction error in last Nagg samples
mée[n-Napg+1,n]

3: Ay = K[NABE - I]G[NABE]/K - g(Z\IY[NABE - 1] - E)

_ Find appropriate reduction in
bound for n =Ngg

4 if A, > 0 then

5: yln]l = y[n-1]-A, > If a bound reduction is possible, reduce it
6: else

7 yln] = y[n-1] > If y cannot be reduced, keep old bounds
8 end if

9: end procedure

to increase its fitness. The resulting population undergoes crossover until the termination criterion
is reached (without further mutation).

The initial hill climbing is desirable so that the population can provide useful statistical
pairwise linkage information to LTX. While it is possible to achieve convergence without this
step, convergence is slower, and the linkage points will less likely be at helpful locations.

The first step for LTX is generating the linkage tree. The general steps are given in Alg. B.4.
The distance metric used by LTX is introduced by Kraskov et al. in [113], and is a normalized
mutual information distance metric. Following the generation of the linkage tree, the crossover
occurs. The general steps for LTX are given in Alg. B.5.

Algorithm B.4: Generate Linkage Tree

1: procedure GENERATELINKAGETREE

2 Initialize each gene as one cluster

3 repeat

4 Compute the distance between clusters
5: Merge closest clusters together

6 until Only one cluster remains

7 Organize clustering information into tree
8: end procedure

In its seminal form, LTX is defined for single-objective optimization problems, where two
solutions can be superior, inferior, or equivalent to one another. In multi-objective problems,

comparing two solutions is less straighforward. Although the categories of superior (dominating),
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Algorithm B.5: Linkage Tree Crossover

1: procedure LINKAGETREECROSSOVER

2 Select parents

3 Start at the largest cluster

4 while Tree is not fully traversed do

5: Crossover parents using the current cluster
6 if one or more offspring are superior to both parents then
7 Replace parents with offspring

8 end if

9: Move down the linkage tree and repeat

10: end while

11: end procedure

inferior (dominated) and equivalent are still present, a solution might be superior to a second
solution in one objective function, but inferior in a second objective function (non-dominated).
To accommodate for non-domination between parents and offspring, this work introduces a new
variant of LTX that includes an additional conditional statement which can be tuned to choose
keep offspring, parents or randomly select one of them. The general algorithm for LTX adapted to

multi-objective problems is shown in Alg. B.6.

Algorithm B.6: Linkage Tree Crossover for multi-objective problems

1: procedure LINKAGETREECROSSOVER2

2 Select parents

3 Start at the largest cluster

4 while Tree is not fully traversed do

5: Crossover parents using the current cluster

6 if one or more offspring dominate both parents then

7 Replace parents with offspring

8 else if neither offspring dominate both parents or dominated by both then
9 Randomly decide which to keep'

10: else if one or more offspring are dominated by both parents then
11: Do not replace parents

12: end if

13 Move down the linkage tree

14: end while

15: end procedure

!By setting the probability of each option to 1 or 0, a deterministic behavior can be set
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