
NONLINEAR EXTENSIONS TO NEW CAUSALITY AND A NARMAX MODEL SELECTION
ALGORITHM FOR CAUSALITY ANALYSIS

By

Pedro da Cunha Nariyoshi

A DISSERTATION

Submitted to
Michigan State University

in partial ful�llment of the requirements
for the degree of

Electrical Engineering – Doctor of Philosophy

2021



ABSTRACT

NONLINEAR EXTENSIONS TO NEW CAUSALITY AND A NARMAX MODEL SELECTION
ALGORITHM FOR CAUSALITY ANALYSIS

By

Pedro da Cunha Nariyoshi

Although the concept of causality is intuitive, an universally accepted objective measure to

quantify causal relationships does not exist. In complex systems where the internal mechanism

is not well understood, it is helpful to estimate how di�erent parts of the system are related. In

the context of time-series data, Granger Causality (GC) has long been used as a way to quantify

such relationships, having been successfully been applied in �elds as diverse as econometrics

and neurology. Multiple Granger-like and extensions to GC have also been proposed. A recent

measure developed to address limitations of GC, New Causality (NC), o�ers several advantages

over GC, such as normalization and better proportionality with respect to internal mechanisms.

However, NC is limited in scope by its seminal de�nition being based on parametric linear models.

In this work, a critical analysis of NC is presented, NC is extended to a wide range of nonlinear

models and �nally, enhancements to a method of estimating nonlinear models for use with NC

are reported.

A critical analysis is conducted to study the relationship between NC values and model

estimation errors. It is shown that NC is much more sensitive to over�tting in comparison to

GC. Although the variance of NC estimates is reduced by applying regularization techniques, NC

estimates are also prone to bias. In this work, diverse case-studies are presented showing the

behavior of NC estimation in the presence of regularization. A mathematical study of the sources

of bias in the estimates is given.

For systems that cannot be modeled well by linear models, the seminal de�nition of NC

performs poorly. This works gives examples in which nonlinear observation models cause NC

values obtained with the seminal de�nition to behave contrary to intuitive expectations. A

nonlinear extension of NC to all linear-in-parameters models is then developed and shown to



address these limitations. The extension reduces to the seminal de�nition of NC for linear models

and o�ers a �exible weighting mechanism to distribute contributions among nonlinear terms.

The nonlinear extension is applied to a range of synthetic data and real EEG data with promising

results.

The sensitivity of NC to parameter estimation errors demands that special care be taken when

using NC with nonlinear models. As a complement to nonlinear NC, enhancements to a algorithm

for nonlinear parametric model estimation are presented. The algorithm combines a genetic

search element for regressor selection with a set-theoretic optimal bounded ellipsoid algorithm

for parameter estimation. The enhancements to the genetic search make use of sparsity and

information theoretic measures to reduce the computational cost of the algorithm. Signi�cant

reductions are shown and direction for further improvements of the algorithm are given. The main

contributions of this work are providing a method for estimating causal relationships between

signals using nonlinear estimated models, and a framework for estimating the relationships using

an enhanced algorithm for model structure search and parameter estimation.
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CHAPTER 1

INTRODUCTION

1.1 General statement

The concept of causation and consequence is at the foundation of the scienti�c method. Although

causality is an intuitively simple concept, action A causes event B to occur, an universally accepted

de�nition of causality has long eluded scientists and philosophers. Understanding causal rela-

tionships is an essential step in the analysis of complex systems. Despite signi�cant theoretical

and heuristic advances in the topic, quantifying and tracking causality strength and assessing the

causal link between two dependent quantities or events is still an active �eld of research.

The scienti�c approach to establishing these relationships is by creating falsi�able hypotheses

(e.g., “A causes B” or “A does not cause B”) and subsequently testing which hypothesis provides

the most satisfactory answer. The analysis often starts by taking measurements or observations

of quantities that are relevant (or at least possibly relevant) to the question. In the context of

signal processing, these measurements are referred to as signals. Signals are frequently classi�ed

as inputs and outputs, which are somewhat analogous to causes and e�ects. The system is the

underlying entity that processes the quantities from which input signals are measured into the

quantities from which the output signals are measured. When signals are measured sequentially

in constant time intervals, the resulting sequence is called a time series. The mathematical

representation of how the inputs and outputs are related is called a model. The models are

constructed given the available data, the particular hypothesis being considered and any a priori

knowledge available about the system being studied. Many causality analysis methods involve the

creation of models and measuring intrinsic characteristics of one or more models and statistical

properties of the data.

At the heart of the scienti�c method, Occam’s razor has been used as an heuristic tool to

evaluate di�erent explanations of observed phenomena. Also known as lex parsimoniæ (law of
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parsimony), it states that “Entities are not to be multiplied without necessity,” or, in other words,

for di�erent explanations of a phenomenon, the simplest (satisfactorily accurate) explanation

is to be preferred. With regard to model construction, this has been re-expressed (somewhat

amusingly) by Box [31]:

Now it would be very remarkable if any system existing in the real world could be
exactly represented by any simple model. However, cunningly chosen parsimonious
models often do provide remarkably useful approximations. . . . [T]here is no need to
ask the question "Is the model true?". If "truth" is to be the "whole truth" the answer
must be "No". The only question of interest is "Is the model illuminating and useful?".

For causality analysis, it is often expedient to disregard many fundamental aspects of a system

in order to produce a model that provides better intuition of the relationships between potential

inputs and outputs (or causes and e�ects) [104]. For instance, one need not know the line frequency

or voltage to assert that a light switch controls a lamp, even though these are fundamental design

parameters for the internal function of the circuit. For more complex system, determining what

aspects to consider or ignore in constructing a model is not straightforward [138].

While the problem of model structure selection and validation cannot be universally solved, it

is possible to employ general principles to �nd useful models. Models with higher complexity may

potentially better represent the system being observed, but may also be prohibitively expensive or

require large amounts of data to be accurately computed. Ljung summarizes the problem with

[128, pg. 494]:

The compromise between parsimony and �exibility is at the heart of the identi�cation
problem. How shall we obtain a good �t to data with few parameters? The answer
usually is to use a priori knowledge about the system, intuition, and ingenuity. These
facts stress that identi�cation can hardly be brought into a fully automated procedure.
The answer usually is to use a priori knowledge about the system, intuition, and
ingenuity. . . .A general advice is to “try simple things �rst.”

Besides challenges of properly modeling systems, quantifying causal relationships represents

an additional non-trivial problem. Causality can only be inferred (but not determined) from

time-series records (and only under certain conditions [154]). The most widely used method for
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assessing causality in the context of signals and systems - the context of this work - is known as

Granger Causality (GC) [76, 77]. Borrowing from Hume’s study of causality [103], GC focuses on

evaluating how well past information about a signal or event A can predict the current state of

second signal or event B. The method has received several extensions, such as conditional GC

(CGC) [72] and spectral GC (SGC) [71], as well as similar spectral methods such as partial directed

coherence (PDC) [12, 169, 173], the relative power contribution (RPC, also referred to as Akaike

Causality) [3, 208] and the directed transfer function (DTF) [57, 108, 176].

In addition to transfer function and model based approaches, alternative methods abound

for inferring connectivity between time-series records [80, 156]. Phase analysis methods have

shown promise in inferring connectivity, such as the the phase-locking value (PLV) [91, 120], the

phase slope index (PSI) [86, 150] and phase-syncrony [9, 10, 119]. More recently, phase-amplitude

coupling methods have been applied with promising results [140]. Information theory based

methods, such as directionality index (DI) [126, 170], Mutual Information (MI) and Transfer

Entropy (TE) [196] also have been employed, but in general require more data for estimating

probability distributions [114] and cannot capture quickly time-varying characteristics, such as

functional connectivity microstates in the brain [61]. The present work focuses on model based

approaches rather than phase analysis and information theoretic approaches.

A more recent causality analysis method, New Causality (NC) [95], uses a di�erent approach,

relying on the internal structure and states of a multivariate autoregressive model (MVAR) to

estimate causality strength. The use of the internal structure presupposes that the models appro-

priately represent the mechanisms being studied. This assumption is not necessarily correct in

complex models; nonetheless, NC possesses several desirable characteristics, such as the produc-

tion of a normalized value for which the sum of all the NC values contributing to a particular

“e�ect” signal adds to unity. Relative to GC, NC allows easier comparisons among di�erent systems,

because the measured causality strength increases with increasing NC values, whereas GC might

produce “small values” even when signals have a strong causal link [94] or not depend on relevant

model parameters [100]. Moreover, in the tests with real and surrogate data in [94, 95, 98–100],
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NC is superior to GC in the indication of causality strength. However, as shown in [148], NC is

more sensitive to model parameter over�tting than GC, requiring more accurate model parameter

estimation to produce meaningful results. Further, the seminal formulation of NC is restricted

to linear MVAR models. One of the central contributions of the present work is the extension of

NC to the far more general nonlinear autoregressive moving average with exogenous input

(NARMAX) models [22] while retaining all the advantageous properties of NC.

One principle often used to obtain “useful” models is to �nd the simplest models that pro-

vides good explanatory power. Since model simplicity and high explanatory power are often

con�icting objectives, system identi�cation algorithms involve a solution that provides the “best”

balance/trade-o� between the two objectives.

Evaluating the complexity1 of a model is not simple, specially when distinct classes of models

must be compared, such as ones generated by arti�cial neural networks (ANN) or genetic pro-

gramming and linear models. Within the same class of models, however, there are often methods

of quantifying complexity. Particularly, for linear models, many approaches to compare model

complexity exist, such as the l0 norm of the parameter space [193] and the model orders for

autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models.

For parametric models, accuracy is usually optimized using a mean square error (MSE) criterion,

although in some cases other measures, such as total least squares [133] or the l∞ norm (also

known as max-norm) [56, 84, 185], might be preferable.

Parametric models frequently employ a form of regularization of the parameter space to

balance model complexity and prediction error. This is achieved by adding a regularization term

to the cost function, which assigns a penalty to solutions with higher order or larger norm of the

parameter space. Regularization may be regarded as a Bayesian approach to model estimation, in

which prior information (i.e., assumptions) is used in the formulation of the models [111]. If the

model is assumed to be sparse, the l0 norm of the parameters can be used [174]. Total variation

has been applied for image denoising, assuming the noise-free image is smooth [29, 171]. As long

1The term “complexity” is used here in a customary (non-technical) sense
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as the assumptions about the formulation of the models is close enough to reality, regularization

can greatly aid parameter estimation [166].

For linear and time-invariant (LTI) models, a vast variety of methods and literature are

available which are based on well-established theories, such as Fourier transforms [164]. Linear

and time-invariant models possess a number of properties that make them amenable to analysis

[152] and can be completely characterized (within the constraints of short-term processing) by

the impulse response of the model or, equivalently, the system function. The advantages of

LTI modeling are such that it is sometimes desirable to linearize nonlinear models so that LTI

techniques may be applied [151].

However, LTI models are increasingly deemed insu�cient for system analysis and design

in the 21st century [25, 39]. For linear time-varying systems, adaptive methods exist, such as

Least Mean Squares (LMS) [205], Recursive Least Squares (RLS) [158] and derivatives, such as the

Normalized Least Mean Squares (NLMS) [172] and Set-membership Weighted Recursive Least

Squares [52]. However, addressing nonlinearity in models is an ongoing problem, for which the

development of a concise universal methodology is unlikely.

While ad-hoc techniques, such as nonlinear state-space models, have been successful in

applications like neural connectivity analysis [68] and stock market volatility [190], they require

relatively intimate understanding of the systems being modeled and do not generalize well outside

their application domains.

Arti�cial neural network models are also very powerful and have fostered advances in predic-

tion [47], classi�cation [123] and even complex gameplay [183, 197]. The universal approximation

theorem states that ANNs can potentially represent any continuous function on compact subsets

[48, 49, 129], although the learnability of the parameters is not addressed by the theorem. In spite

of the performance, the black-box nature of ANNs remains one of the largest criticisms [58] and

a barrier to interpretability. Recent developments seek to address some of these criticisms by

providing methods of interpreting ANN models [130, 181].

Finally, linear and time-invariant in parameters (LTIiP) models, which are most concisely
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expressed using NARMAX models [22] (of which the Volterra series [198] and the Hammerstein

models are special cases [145]) have shown to be very powerful in many applications, from

epidemiology [165] and microbial growth [210] to human physiology [116] and aerospace engi-

neering [34]. A signi�cant advantage of LTIiP methods is that they allow the use of the wealth

of powerful and well understood LTI methods of system identi�cation in identifying nonlinear

models. Additionally, NARMAX models enable sparse, interpretable and transparent modeling

[202], all of which are characteristics desirable in causality analysis.

While NARMAX models provide a concise but �exible parsimonious model paradigm [117],

NARMAX models also introduce a new set of challenges. Unlike ARMAX models, which only allow

time-shift operators to be applied to the regressor signals, NARMAX models allow the application

of other operators - generally called regressor functions. Depending on the model order and class

of regressor functions, the number of such functions may be very large. Also, it is often the case

that regressors are highly correlated, leading to slow and inaccurate convergence [11]. Although

many methods exist, the selection of the subset of the regressor functions is an unresolved issue in

system identi�cation for over-parameterized models [2, 22, 25, 27, 81, 117, 118, 201, 203, 214, 219].

A recent method for NARMAX model identi�cation [214], henceforth called evolved OBE

(EvolOBE),2 has shown promise in developing accurate, sparse and interpretable results. This

method searches for a family of NARMAX model structures that maximize accuracy while mini-

mizing the number of regressors. The method involves a hybrid approach which uses a genetic

algorithm to select regressor functions, while employing a set-membership based optimum bound-

ing ellipsoid algorithm [52] to estimate the parameters values. A signi�cant advantage of such

a method is that does not require any assumptions about stationarity or distributional charac-

teristics of the model disturbances. The capability of identifying simple nonlinear models with

good accuracy with unbiased parameters under complex noise conditions makes this algorithm

compelling for use in complex nonlinear systems, avoiding over�tting and maintaining good

interpretability of model structure.

2In [209], this algorithm is called OBE with evolved regressor signals (OBE-ERS).
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1.2 Research objectives

Causality analysis is often employed to gain insight about systems whose internal properties are

unknown. Granger causality possesses a intuitive interpretation, if the inclusion of past values of

a signal x improve the prediction of the current value of a second signal y compared to predictingy using only past values of y itself, then this improvement can be used as evidence that x causes y .

While conceptually simple, it can be di�cult to map GC values to information about the systems

which relate x and y [95], as GC is designed to measure e�ect, not mechanism [19].3 On the other

hand, NC draws directly from the mechanism (of the model) and thus is complementary to GC,

providing new insight into the models. However, the literature on NC is limited in comparison

to the wealth of methods for estimating and applying GC. Additionally, most of the studies of

NC have assumed that the observational and the estimated models are equivalent, with little

discussion on the validity of that assumption and the consequences to the analysis results.

A deeper characterization of the robustness of NC to model order and parameter uncertainty is

required to increase understanding and con�dence in the use of NC [148]. Although GC was only

de�ned for MVAR models in its seminal form [76, 77], nonlinear extensions exist [7, 13, 66, 132].

The seminal de�nition of NC is also restricted to MVAR models, so the extension of NC to NARMAX

models developed in this work will allow NC to be useful in a much wider range of applications.

To improve upon NC and address some of its drawbacks, this work takes a two pronged

approach: �rst, an extension of NC to a more comprehensive set of linear and nonlinear models

is developed [146]; second, the framework for nonlinear system identi�cation found in [214]

is explored and improved in the search for “useful” models. The present work also includes

the implementation and discussion of state-of-the-art methods for improved search speed and

accuracy [149, 192, 217].

Thus, the research objectives of this study are to:

1. Characterize the behavior of NC under model order and parameter uncertainty.

3The authors of [95] dispute this claim in [99].
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2. Extend the formulation of NC to enable application to LTIiP nonlinear models.

3. Improve model structure search for LTIiP nonlinear models through use of enhanced genetic

algorithms.

4. Apply the model structure search algorithms to causality analysis using sets of simulated

and real data.

1.3 Critical analysis of the study

In the same vein as Box’s remark, it would not be expected that causality would be discriminable

from time-series records alone. While all techniques discussed in this work could potentially be

applied to any multivariate time-series data, a priori information should be used to �rst evaluate

if the hypothesis of causality is plausible and whether all relevant factors have been considered.4

A machine cannot correct operator mistakes because “it cannot think for itself” [137]. Thus,

causality measures must represent only a part of causality analysis, because such measures are

unable to di�erentiate between alleged causality and de�cient experimental design. New causality

is under the same restrictions and is prone to produce misleading results if incorrect or incomplete

data are used.

Holland and Durbin [92] have also argued that only one cause can be observed at a time,

what they referred to as the fundamental problem of causal inference. That is, supposing it

is desired to know if intervention A (e.g., medication) will cause B (e.g., reduction of a particular

symptom) on a particular patient C . If it is chosen to do A, one can measure the outcome of A
given C (e.g., giving the medicine to C), but not the outcome of not doing A on C (e.g., not giving

the medicine to C), and vice-versa. Therefore, one must either take a statistical approach of testing

di�erent interventions over a large population (e.g., giving the medicine to people similar to C
reduced the symptom on 80% of them, when given a placebo, the symptom was reduced in 40% of

4Cli� stated this fact as “these programs are not magic. They cannot tell the user about what is not there.” [46]
Cartwright argues that one cannot get knowledge of causes from equations and associations alone [36], but instead,
old causal knowledge must be used to extract new causal knowledge.
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them) or an approach they call scienti�c, which requires the assumptions of homogeneity (e.g.,

the outcome of an intervention in the past would be the same in the present) so that di�erent

outcomes can be compared (e.g., the sentence “symptoms are reduced every time C takes the

medicine” assumes that the e�ect of A on C is time-invariant even if C might change over time).

Additionally, they assert that causes can only be interventions that are imposed (not voluntary)

and are not attributes (e.g., one cannot state that a car is fast because it is a Ferrari, since it would be

impossible to measure the speed of the same car if it were made by Ford, because it would not be

same car after all. Instead, one could only say that cars made by Ferrari are usually faster than cars

made by Ford, without establishing a causal relationship). Their conclusions were summarized

in the motto: “no causation without manipulation.” However, Pearl argues in [154] that, while

manipulation is simply one way to test the workings of mechanisms, it is by no means necessary

for causal determination. Humans can con�dently say that the moon causes tides (even if we

cannot observe the e�ects of the lack of a moon) or that the genetic code of a raven causes it to be

black (even without manipulating its DNA).

As will be discussed in Sec. 2.5, Hume believes humans to be unable to assert causation. Thus

he devises a framework through which causation can be inferred. Granger causality builds upon

Hume’s work, creating a formal measure for causal inference. Granger causality is closely linked

with the concept of TE, which measures transferred information rather than how two signals

are interconnected. In fact, GC and TE are equivalent for normally distributed signals [14]. The

di�erences between transferred information (and therefore GC) and causal e�ects are sometimes

subtle but not negligible [127].

Similarly to the seminal de�nition of NC, the nonlinear extension of NC [146] fundamentally

relies on the quality5 of the estimated models being used. As shown in [148], even when the

data are generated by a parametric model of the same class as the estimated models, the NC

measure values depend heavily on the accuracy of the parameter estimates, whereas GC was

5Quality in this context refers to the ability of a model to su�ciently represent the internal dynamics of a system.
This is in contrast to many predictive models, whose design is based on the ability to predict the output of a system
given a set of inputs, often without regard to the actual internal dynamics of the system.
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shown to be much more robust to parameter estimation errors. The use of robust parametric model

estimation methods mitigates this uncertainty somewhat, but careful selection and examination

of the estimated models remains essential in evaluating causality using NC.

Causality analysis studies generally focus on systems with complex behaviors and/or unknown

internal mechanisms. The goal is often to gain some insight into the functioning of a system,

without necessarily fully comprehending internal interaction. This poses a problem for the

evaluation of novel causality analysis tools, as most real datasets do not possess a “ground truth”

for validation. Synthetic datasets o�er several advantages, the foremost for causality analysis

being the presence of ground truth. The knowledge of internal parameters also allows decoupling

the quality of the causality measure from the model estimation aspect of the measure. On the

other hand, while the ability to tune models to exhibit di�erent behaviors is often desirable, as one

can test the measure under di�erent scenarios, the use of synthetic datasets can also (accidentally

or intentionally) produce misleading results [147]. This work utilizes a set of real and synthetic

datasets to show performance on a variety of problems, showing interesting results in a number

of applications, but makes no claim of supremacy, rather presenting the nonlinear extension of

NC as an additional and useful tool in an signal processing practitioner. Just as any powerful

analysis tool, care must be taken in its application and the interpretation of the results. Again,

a machine cannot correct operator mistakes regardless of how powerful the machine and how

smart the operator may be.

1.4 Structure of the dissertation

This dissertation begins with the background methods chapter, in which an overview of modeling

and modeling philosophy are given. This is foundational for the discussion which follows. The

background material is followed by a short review of existing causality analysis tools. Finally,

the model identi�cation framework is laid out, with discussion of the particular techniques

implemented. The model development is followed by a series of studies. First, a critical analysis of

NC is given, which discusses models used in the literature, the robustness of NC under model
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uncertainty, and derivations of sources of bias in NC estimation. Second, nonlinear extensions to

NC are developed, with application examples using synthetic and real data. Third, enhancements

to the EvolOBE method, where the method is tested against simulated data and the results are

evaluated against observational models, also the GC and NC values obtained under the evolutionary

algorithm are compared to the values obtained using the observational models. The studies are

followed by the conclusion chapter, where a summary and a discussion of the results is given.

1.5 Summary and contributions

The concept of causality is integral to the scienti�c method. However, concisely de�ning and

quantifying causality relationships is an elusive task. Many methods of evaluating causality have

been created, with GC being the most prominent. However, since GC is designed to measure

e�ect, not mechanism, NC can be used in conjunction to obtain more insight into the systems

being studied. This work expands on NC by extending it to a wide range of nonlinear models

and, thus, its applicability to a wider set of problems, and by doing a deeper critical analysis of

NC, as portrayed in existing literature, and its behavior under model structure and parameter

uncertainty. Additionally, this work also includes improvements to the EvolOBE method, which

are applied to the nonlinear extension to NC. These results will drive the �eld forward to a more

comprehensive set of causality analysis tools that include nonlinear NC.
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CHAPTER 2

BACKGROUND METHODS

2.1 Overview

This chapter includes an overview of some of the methods used in this work. A large portion of

Sec. 2.2 is quoted directly from [147–149] with a few modi�cations for improved �ow and clarity.

2.2 Modeling

Before delving into the topic of causality analysis, it is important to make a distinction between

systems and models. The time-series literature tends to be somewhat cavalier in the formulation of

parametric time-series models. Widespread understanding of the fundamental modeling concepts

allows a certain lack of precision in model notation. In particular, it is not uncommon to use the

same modeling notation for the putative observation model and the estimation model. The obser-

vation model, ordinarily one of the standard time-series models [32] with a white-noise or more

strongly-independent disturbances is assumed to generate the observed sequence. Accordingly, its

parameters are unknown, but the model is posed for theoretical analysis. The estimation model

(or estimated, following model identi�cation) is the parametric model resulting from the model

identi�cation process. Although the observation model and the estimated model are naturally

similar in form, the two models which may have quite di�erent parameter values and accompany-

ing disturbances. Since this distinction is important in the causality analysis approaches studied

in this work, this section is dedicated to a clear explanation of the intricacies of models, including

the establishment of a clear convention for model nomenclature and notation.

To simplify this task, the discussion will be restricted to a class of models that are linear,

time-invariant and causal (over the interval of observation). This restriction simpli�es he task

of modeling signals – the model therefore representing a discrete time system of which only

the output is observable. Moreover, the intention to use conventional least-square-error (LSE)
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estimation of model parameters (in keeping with existing literature to which this work refers)

prescribes that the natural choice of signal observation model is – at least in the case of model

involving a single signal – the standard time-series model known as the autoregressive (AR)

model, often denoted AR() to indicate that the model has  parameters.

The AR() observation model for a signal sequence x is given by

x[n] = ∑m=1 am∗x[n − m] + �[n] ≐ (a∗)Tx[n] + �[n] , n ∈ Z , (2.1)

in which, by convention, � is a discrete-time white noise process, and in which we have de�ned

the Cartesian -vectors, a ≐ [ a1∗ a2∗ ⋯ a∗ ]T,x[n] ≐ [ x[n − 1] x[n − 2] ⋯ x[n −] ]T. (2.2)

The parameter values, am∗, include the superscript symbol “∗” to indicate the “true” parameters –

that is, the parameters associated with the observation model. The estimation of these parameters

is discussed in a more general context below.

Let us digress momentarily to comment on a terminology issue. Some authors might choose

to refer to the model of form (2.1) as a “generative model” (or “synthesis model” ) referring its

assumed role in “generating” or “synthesizing” the sequence x . For the reporting of future

research extending the present developments, the authors prefer to reserve the term generative

model to refer to an unconstrained (and generally unknowable) operator, say H, across normed

vector spaces that is “used by nature” to exactly (without error at any level of precision) produce

the signal x from the input �, say x = H�. We will therefore deliberately use the term “observation

model” when referring to Eq. (2.1) and related extensions.

It remains to specify the models used in estimation (following some further consideration of

the observation model). The issue we are addressing by taking extra care in de�ning what each

model refers to is necessitated by the following matter: it is not unusual for an author (across many

�elds) to, for example, implicitly use model (2.1) – with parameters ai , rather than am∗ – then to

refer to the estimated parameters with the same notation a1, … , a, thus creating ambiguity in the
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meaning of the parameter symbol notation. Less frequently, but all too commonly, the sequence

name � may also be used to indicate the error sequence in the estimated model (in the AR case,

the residual in the linear prediction of x[n] using x[n − 1], … , x[n −]), thereby creating further

ambiguity. Whereas such practices are generally accepted and lead to no adverse issues for the

experienced practitioner, it is critical to clearly distinguish the various models used in the present

discussion.

2.2.1 Generalized observation model

Before addressing the estimation models, we need to enhance the AR model of Eq. (2.1) for the

present purposes. One can approach the required modi�cation in several ways. Equation (2.1)

represents a model for a single signal generated by passing uncorrelated noise through a linear

�lter. Causality analysis is generally concerned with multiple signals, say x1, x2, … , xNs , whereNs ≥ 2 denotes the number of such signals, and the possibility that any of the signals
{xj}Nsj=1 may

contribute to (may “cause” ) the generation of xp for a given 1 ≤ p ≤ Ns . The inclusion of linear

combinations of samples from further signals on the right side of Eq. (2.1) makes it improper to

refer to the model as “autoregressive.” The augmented model (in the “careful” notation suggested

above), assuming, for convenience, that, for every p, xp has a linear dependency on  past values

of each of the signals including itself, takes the form

xp[n] = ∑m=1 am∗pp xp[n − m] + ( Ns∑q=1q≠p
∑m=1 am∗pq xq[n − m]) + �p[n]≐ (a∗p)Tx[n] + �p[n] , (2.3)

where �p continues to denote a scalar white-noise excitation for p and the vectors a∗p and x[n] are

extended in the natural way relative to Eq. (2.1):

a∗p = [ a1∗p1 a2∗p1 ⋯ a∗p1 a1∗p2 ⋯ a∗p2 ⋯ ⋯ a1∗pNs ⋯ a∗pNs ]T andx[n] = [ x1[n − 1] ⋯ x1[n −] ⋯ ⋯ xNs [n − 1] ⋯ xNs [n −] ]T (2.4)
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with a∗p and x[n] both vectors in RMa∗ where Ma∗ is the number of parameters used in modeling

signal xp , Ma∗ ≐ Ns = dim{a∗p}. (2.5)

Although this is not customary in the current literature on causality modeling, the most con-

ventional way to refer to such a model (for each p) would be as an autoregressive model with

exogenous inputs (ARX). One can also view this model as representing a multiple-input, single-

output (MISO), discrete-time system (if the disturbance �p is viewed as an excitation), but with the

caution that it is only recursive in the signal xp , with xj , ∀j ≠ p serving as exogenous inputs for

each p. Models accounting for multiple outputs are sometimes referred to as jointly regressive

models [100, 109] or multivariate autoregressive (MVAR) models [33, 108, 204].

An important special case of the observation model of Eq. (2.3) occurs for Ns = 2which appears

in problems in which the causality e�ects between two signals are analyzed. In this case, the

estimation model can be written as two explicit equations,

x1[n] = ∑m=1 am∗11 x1[n − m] + ∑m=1 am∗12 x2[n − m] + �1[n]≐ a∗T11x1[n] + a∗T12x2[n] + �1[n],x2[n] = ∑m=1 am∗22 x2[n − m] + ∑m=1 am∗21 x1[n − m] + �2[n]≐ a∗T22x2[n] + a∗T21x1[n] + �2[n].
(2.6)

These equations can be formulated as the more general model of Eq. (2.3). For example, for Ns = 2,a∗p = [ a∗Tp1 a∗Tp2 ]T andx[n] = [ xT1 [n] xT2 [n] ]T. (2.7)

2.2.2 Estimation model

Turning to the estimation model, it is customary in the linear modeling case – and consistent with

minimum-mean-squared-error (MMSE) estimation theory – to take the form of the noise-free
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observation model as the basis of the estimation model. For the general observation model of

Eq. (2.3), the estimation model for signal xp becomes

x̂p[n] = M∑m=1 amppxp[n − m] + ( Ns∑q=1q≠p
M∑m=1 ampqxq[n − m]) ≐ aTp x[n], (2.8)

where M is the model order. It is to be observed that the “∗” superscripts do not appear on the

notation for the parameter estimates. This is a deliberate e�ort to distinguish a “true” coe�cient in

the observation model, say am∗pq , from the symbolic representation of the corresponding parameter

to be determined in the estimation model. It will be our custom to refer to estimation model

of (2.8) as the estimated model when we wish to stress that the parameters have taken values

determined by an optimization procedure over observed data [161].

Note that M itself is a parameter of the model, which must also be predetermined. While

theoretically any model with M ≥  could perfectly represent the observation model, the

parameter estimators become less accurate as M increases. An example of the distributional

characteristics of the parameter estimates will be given in Sec. 2.2.3 for jointly normally distributed

signals. Many methods of comparing models with di�erent M values exist, such as Akaike

Information Criterion (AIC) [5], Final Prediction Error (FPE) [4], Minimum Description Length

(MDL) [168], Bayesian information criterion (BIC) [174], and other hybrid methods [62].

It is further noteworthy that, whereas the observation model is AR or ARX in the signal xp –

that is, it is recursive in the signal xp – the estimation model is purely “feedforward” in producing

an output as a linear combination of past values of xp , and of some subset of the remaining Ns − 1
signals, at time n. Such a model does not correspond to any conventional (Box-Jenkins-type)

time-series model, but, in the parlance of signal processing, corresponds to a MISO discrete-time

system [32]. Note also the absence of any noise in the estimated model process.

Associated with an estimated model for signal xp is an error sequence, say �p , with value at

time n given by �p[n] ≐ xp[n] − x̂p[n] . (2.9)

By subtracting Eq. (2.8) from Eq. (2.3), we see that this error contains components due to inaccura-
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cies in the estimated coe�cients, as well as the disturbance sequence �p ,
�p[n] = (a∗p − ap)Tx[n] + �p[n]. (2.10)

A slight abuse of notation is used here, where a∗p and ap are zero-padded to account for the missing

elements (when M ≠ ) and x[n] is similarly adjusted to account for any missing elements. For

example, suppose M > , then a∗p is padded with M − zeros in the locations that correspond

to xq[n − M − 1]⋯ xq[n −] for all q ∈ {1, ⋯ , Ns}.

When the parameters are correctly identi�ed in the estimation model, so that a = a∗, then the

estimation error is equivalent to the white-noise disturbance of the observation model at each n,�p[n] = �p[n]. This is known to be the case for the MMSE estimate of the parameters of such a

linear model [153], assuming that the model order of the estimated model is greater or equal to

that of the observation model. The LSE solution asymptotically approaches the MMSE solution as

the number of observations increase.

In practice, of course, the parameter estimates a must be determined from �nite data records

of the signals
{xj}Nsj=1. Without loss of generality, we may assume that each of the signals is

observed on the time indices, n = 1, 2, … , N − 1, observation xp[N ] is additionally available, and

the parameters are sought with which to model the signal xp on the interval n = 1, … , N . Let a[N ]
denote the vector of parameter estimates obtained on this interval, and let

{�p(n | N)}Nn=1 be the

corresponding error sequence associated with the estimated model with parameters a[N ]. The

assumption of “small errors” (i.e., � 2�p ≪ � 2̂xp ) is often used to justify the use of (LSE) estimation of

the parameters on the �nite interval. In fact, in the present context, the lack of correlation in the

sequence �p[n] leads to an unbiased LSE estimate, a[N ], for �nite N , and asymptotic convergence

in mean square to a∗.
The observations on the given time range comprise a set of N equations in Ma ≐ dim{a}
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unknown parameters (maximally Ma = MNs), which, written in vector-matrix form as,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂p[1]x̂p[2]⋮x̂p[N ]

⎤⎥⎥⎥⎥⎥⎥⎥⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟≐x̂p[N ]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1[0] x1[1] ⋯ x1[N − 1]⋮ ⋮ ⋱ ⋮x1[−M + 1] x1[−M + 2] ⋯ x1[N − M]⋮ ⋮ ⋱ ⋮⋮ ⋮ ⋱ ⋮xNs [0] xNs [1] ⋯ xNs [N − 1]⋮ ⋮ ⋱ ⋮xNs [−M + 1] xNs [−M + 2] ⋯ xNs [N − M]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟≐XT [N ]

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1p1[N ]⋮aMp1[N ]⋮⋮a1pNs [N ]⋮aMpNs [N ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟≐a[N ]

, (2.11)

where x̂p[N ] ∈ RN , X[N ] ∈ RN×Ma , and a[N ] ∈ RMa . In these terms, the LSE estimate is the

solution to X T [N ]X[N ]ap[N ] = X T [N ]x̂p[N ]. (2.13)

The error sequence may be added to the estimated model for signal xp to create a model that

exactly produces the original signal:

xp[n] = aTp x[n] + �p[n], (2.14)

or, if we wish to emphasize the short-term temporal nature of the estimated parameters in the

model, xp[n] = aTp [N ]x[n] + �p(n | N). (2.15)

Although this model theoretically produces the exact signal xp over the interval n = 1, … , N , it

is generally very di�erent from the observation model of Eq. (2.3). We refer to Eq. (2.15) as the

error-augmented estimated model. As noted near Eq. (2.10), the estimation error sequence �p is

dependent upon the misadjustment in the parameter values relative to the presumed true values

of the observation model, a∗p − ap[N ], as well as the disturbance sequence in the observation, �p .
Not discussed above is the fact that the error sequence is also dependent upon the short-term
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estimation of the parameters (i.e., the duration N ). The error sequence is therefore a key indicator

of the quality of the model and we will see this sequence play an important role in causality

analysis.

2.2.3 Least squares estimation

An error sequence accounts for both the disturbance sequence and errors in parameter estimation

[Eq. (2.10)]. Under the assumption of “small errors”, minimizing the error sequence therefore

approximately minimizes the parameter estimation error. The well-known solution to the normal

equations, Eq. (2.13), is given by [74]

ap = (X TX)−1X Txp , (2.16)

in which (X TX)−1X T is the pseudoinverse of X .

Assuming that the disturbance is i.i.d. zero mean Gaussian random process with variance� 2� , that the regressors are bounded and the covariance matrix of the regressors �X exists and is

non-singular and that the observation model is BIBO1 stable, the solution is distributed as

ap ∼Ma (a0, � 2��−1X /(N − Ma)) , (2.17)

where Ma (�, �) is a multivariate normal distribution of dimension Ma with mean vector � and

covariance matrix �, �−1X is the inverse of the covariance matrix of the regressors, and N is the

number of time samples.

For sets of regressors with ill-conditioned covariance matrices, the variance of ap can be very

large. As NC depends directly on the accuracy of the model parameters, it is prone to misleading

results for small N (compared to the largest element of the vector �−1X � 2� ).

If the i.i.d. Gaussian assumption is not satis�ed, ill-conditioned regressor matrices will still

cause the parameter estimates to be have potentially large variance, although the parameters may

1Bounded-input-bounded-output (BIBO) stability is a form of system stability linking the output of a system to its
inputs. A discrete time signal x[n] is called bounded if there exists a B > 0 ∈ R such that for every n ∈ Z |x[n]| < B. A
system is called BIBO stable if and only if, given any bounded input, the output is also guaranteed to be bounded
[151].
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not be normally distributed. Special attention must be taken in the case of NC, to assure that the

covariance matrix is well conditioned or regularization must be applied to reduce errors in the NC

measure estimation.

2.2.4 ARMAX models

The most comprehensive way to represent LTI models is using the ARMAX representation. This

representation encompasses AR, MA, models with exogenous inputs and any combination thereof.

Starting with the error augmented model of Eq. (2.14), expanded to highlight the AR, MA and

exogenous inputs,

xp[n] =
x̂p[n]⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞MAR∑m=1 amppxp[n − m]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

autoregressive

+( Ns∑q=1q≠p
MX∑m=1 aipqxq[n − m])⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
exogenous input

+ MMA∑m=1 amp��p[n − m]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
moving average

+ �p[n],⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
error

sequence

= aTp x[n] + �p[n] ,
(2.18)

where MAR is the model order for the AR term, MMA is the model order for the MA term and MX is

the model order for the exogenous input term. Note that the model orders and generally unknown

(unless predicated on a priori knowledge of the system being modeled) and must be estimated

prior to the parameter estimation, additionally �p must also be estimated. The Box-Jenkins method

[32] is the standard approach to iteratively identify ARMAX model structures.

2.2.5 ARX models with non-white error sequences

Digressing momentarily into ARMAX modeling, note that ARMAX models of Eq. (2.18) can be

expressed in terms of the sum of ARX model and a colored noise term

xp[n] = MAR∑m=1 amppxp[n − m] + ( Ns∑q=1q≠p
MX∑m=1 aipqxq[n − m])⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ARX model

+ �′p[n],⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
colored
error

sequence

(2.19)
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where �′[n] = MMA∑m=1 amp��p[n − m] + �p[n], (2.20)

such that maxn∈[1,N ] |||�′p[n]||| ≤ (1 + MMA∑m=1 |||amp� |||) maxn∈[1,N ] ||�p[n]|| , (2.21)

which shows that if �p is bounded, �′p will also be bounded. These characteristics will be exploited

in Sec. 2.4.

2.2.6 NARMAX and modi�ed NARX models

The LTIiP class of models extend traditional LTI models by allowing nonlinear transformations

of the model inputs and past outputs, while allowing the use of many of the classical modeling,

prediction and estimation techniques with well-understood and well-tested convergence charac-

teristics. LTIiP models have shown to be a viable alternative to highly nonlinear in parameter

models [41], with excellent results in many applications, from epidemiology [165] and microbial

growth [210] to human physiology [116]. The most comprehensive representation of LTIiP models

is the nonlinear ARMAX (NARMAX) [39, 122], which are expressed as

xp[n] = K∑k=1 apk'pk(x1||n−1n−M , x2||n−1n−M , … , xNs ||n−1n−M , �p ||n−1n−M) + �p[n]≐ aTp 'p[n] + �p[n] (2.22)

where K is the number of regressor functions, 'qp is the qth regressor function, xr ||n−1n−M represents

the set of all available samples of signal xr from time n−M until time n−1 and apk is the parameter

weight associated with 'pk . Here, the argument of the 'qp is included to reinforce the fact that

the regressor functions may depend on any combination of the regressor signals (including the

error). Common regressor function families include radial basis functions [40], wavelets [26], and

polynomials [6, 8, 24, 82].

In [202], Wei uses the linear in parameters nonlinear in variables (LIP-NIV) terminology

to describe NARMAX models. However, this implies that the models are inherently nonlinear
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in variables, which would exclude ARMAX models from the category. Instead, this work will

maintain the usage of the LTIiP terminology to highlight that traditional LTI models are a subset

of NARMAX models.

The modeling power of NARMAX models comes at the cost increased complexity in estimating

parameters. Due to the large number of highly correlated regressors, slow convergence, over�t-

ting and inaccurate parameter estimates are common challenges faced when estimating model

parameters [11].

The estimation of parameters that depend on past values of the error sequence in linear

ARMAX models (MA portion) is considerably more complex than for the parameters associated

autoregressive and exogenous inputs portions of the model. While there are methods for estimating

MA parameters [63, 204], and iterative approaches exist for NARMAX models, many approaches

focus on NARX models [26, 40]. Additionally, the interpretability of terms that depend on the

error sequence have lower interpretability and are often not included in �nal predictive model

[200], as these noise terms are not useful for model prediction but are only used to reduce bias

in model estimation [200, 202]. A small modi�cation to NARMAX models simplify parameter

estimation is

xp[n] = K∑k=1 apk'pk(x1||n−1n−M , x2||n−1n−M , … , xNs ||n−1n−M) + K�∑k=1 bpk�pk(�p ||n−1n−M) + �p[n]≐ aTp 'p[n] + �′p[n] (2.23)

where �′p[n] = K�∑k=1 bpk�pk(�p ||n−1n−M) + �p[n], (2.24)

so that regressor functions may depend on either the regressor signals or past values of the error

sequence. This restriction to NARMAX models is equivalent to NARX models with colored noise.

2.2.7 LASSO regression

The least absolute shrinkage and selection operator (LASSO) [193] is an extension to traditional

least squares estimation, in which an l1 norm regularization is employed to encourage sparsity in
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the parameters. LASSO regression is equivalent to �nding a parameter vector a that satis�es

argmina∈RMa
{‖x − x̂(a)‖22 + �‖a‖1} , (2.25)

in which x the signal being modeled and x̂(a) is the prediction of x based on the parameter vectora, and � a the regularization factor.

Unlike the l0 norm, the l1 norm allows the use of e�cient gradient-based optimization tech-

niques [70], while being more e�ective at encouraging sparsity in the parameter space than, for

example, Tikhonov (l2 norm) regularization.

2.3 Set-membership optimum bounded ellipsoid algorithms

All parameter estimation strategies share a similar goal: �nding the optimum parameter estimates

given a limited amount of data. The optimality criterion di�ers between algorithms, for example,

the smallest prediction error for LSE or a compromise between prediction error and sparsity of

parameters [Eq. (2.25)] for LASSO. Set-membership estimation approaches aim at providing the

set of parameters that are consistent with the observed data and the model.

Starting with a putative NARMAX observation model of the form

x[n] = K∑k=1 a∗pk'∗pk(x1||n−1n−M , x2||n−1n−M , … , xNs ||n−1n−M , �pn−1n−M) + �p[n](a∗p)T'∗p + �[n], (2.26)

where K is the number of regressor functions and M is the model order for which there exists a

sequence of positive numbers 
[n], such that

|�[n]|2 < 
[n]. (2.27)

For a estimation model of the form

x̂[n] = aTp 'p[n] + �[n], (2.28)

the sequence 
[n] imposes the constraint at each time n,|||x[n] − aTp 'p[n]||| < 
 [n], (2.29)
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or, equivalently, aTp 'p[n] < x[n] + 
[n]aTp 'p[n] > x[n] − 
[n] (2.30)

which de�ne a hyperstrip (region between the two parallel hyperplanes) in which the set of

valid parameters - known as feasibility set - must lie. The intersection of any set of K or more

hyperstrips de�ned by linearly independent observations forms a convex polytope of dimensionK . If at time n, the polytope de�ned by the intersection of all previous hyperstrips is not fully

contained within the hyperstrip de�ned by Eq. (2.29), the feasibility set is re�ned. This is akin to

faceting a gem, where each new re�nement potentially adds up to two �at facets to the polytope.2

Although the polytope de�ned by the feasibility set has �nite dimension, there is no limit to the

number of facets. The evaluation of the intersection of hyperstrips becomes increasingly complex

as the number of considered time samples increases. Optimum bounded ellipsoid algorithms

provide a computationally e�cient approximation to the polytope by evaluating a hyperellipsoid

that bounds the polytope [52]. Compared with the polytope, the unfaceted nature of the hyper-

ellipsoid is more akin to a cabochon (a polished unfaceted gem). A geometric illustration for a

bidimensional parameter space is shown in Fig. 2.1. In Fig. 2.1, the x-axis represents the value

of �1, the y-axis represents the value of �2. !2 is strip de�ned by 'p[2] and x[2], likewise, !3 is

strip de�ned by 'p[3] and x[3]. Ω3 is the intersection between !2 and !3 and Θ3 is an ellipsoid

that bounds Ω3. Note that Θ3 and Ω3 are both completely contained within the strip !4, so no

re�nement occurs at time n = 4.
The ability to reject samples that do not reduce the feasibility set is a signi�cant advantage of

OBE algorithms. While the recursion for OBE algorithms is very similar to a weighted recursive

least squares (WRLS), thus  (K 2) complexity per time sample processed, typically only a small

fraction of samples provides re�nement to the ellipsoid [54]. Despite the increased computational

e�ciency in comparison to WRLS, OBE algorithms produced guaranteed bounds for the feasibility

2Any facets completely located outside the hyperstrip are removed from the polytope, so the number of facets
does not necessarily monotonically increase, even though the volume of the polytope monotonically decreases with
every re�nement.
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Figure 2.1: Geometric illustration of OBE algorithms

set.

The ellipsoid can be succinctly de�ned by the centroid and a matrix containing the principal

axes of the ellipsoid. In the case of OBE algortithms, the feasibility set at time n is de�ned as

Θ ≐ {� ∈ RK : (� − �c)T C� (� − �c) < 1} , (2.31)

where �c is the centroid of the ellipsoid, C is the sample covariance matrix of 'p (thus a positive

semide�nite matrix), and � is a positive scalar, such that
C� de�ne the principal axes of the ellipsoid.

Another advantage of SM estimation is that it requires fewer assumptions about the distri-

butional characteristics of the noise term. The only requirement for the employment of SM

algorithms is that the noise be bounded over the observed sequence. Methods for estimating the

bounds have been developed with proven conditions under which convergence is guaranteed

[125].

The recursion steps for OBE algorithms can be found in Alg. B.1 of the appendix with a short

overview on the di�erence between variants and enhancements to the algorithm.
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2.4 NARMAX model estimation and the EvolOBE method

While NARMAX models are often able to represent many complex interactions with few terms,

the parameters associated with such terms must still be estimated. As the number of regressor

functions increases, parameter estimation is very likely to become an ill-conditioned problem.

Thus, traditional regression methods such as LSE do not generally produce good results when

coupled with nonlinear models with a large number of regressor functions. The number of

candidate regressor functions often is very large. For example, for polynomial regressor functions,

the number of such functions grows factorially with the polynomial order. An exhaustive search

of all possible subsets is computationally prohibitive for most practical applications. Thus, �nding

optimal subsets of the regressor functions becomes fundamental to properly estimate models.

This section contains an overview of a family of NARMAX model estimation algorithms that is

particularly suited for causality analysis.

The poor conditioning of a large set of regressor functions is in large part due to the fact

that many regressor functions will be highly correlated with one another (e.g., x and x3 have

a correlation coe�cient of 0.77 for x normally distributed with zero mean and unity variance).

Additionally, many commonly used sets of regressor functions form overcomplete systems, which

creates null spaces in the regressor space.

Many techniques have been developed speci�cally for nonlinear model selection and parameter

estimation [22, 25, 27, 81, 118, 201, 203, 214]. These tend to fall within three categories: stepwise

search algorithms, bridge regression and evolutionary search.

Stepwise search algorithms iteratively add or remove candidate regressor functions from

the model until a criterion is reached. Since the number of possible “paths” grows factorially

with the number of regressor functions, most employ greedy approaches, where the regressor

which most reduces the prediction error of the NARMAX model is chosen and/or the prune the

regressor functions which least increase the prediction error when removed. Matching pursuit

[131], Forward-Regression Orthogonal Least Squares (FROLS) [25] and Least Angle Regression

(LARS) [65] are prominent examples. Stepwise approaches su�er from shortcomings in practice.
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Particularly, autoregressive terms are typically included �rst in the search, especially for systems

with dynamics well below the sampling frequencies [23]. This is true regardless of how important

those terms are in the �nal model. Once the initial autoregressive terms are selected, the remaining

prediction error is often small enough that the choice of regressors is sensitive to noise in the data

[157].

Bridge regression methods [67] add a penalty to the cost function proportional to the ��-norm

of the parameters3. Bridge methods can be used independently or combined with stepwise methods.

Ridge regression [90] (also known as Tikhonov regularization [194]) uses �2-norm and possesses

closed-form solution and can improve conditioning in ill-posed problems, but do not generate

sparse solutions. LASSO regression [193] (also know as basis pursuit [42]) use the �1-norm and

are e�ective ways of �nding sparse solutions.

However, existing model structure and parameter estimation methods su�er (to di�ering

degrees) from slow or inaccurate convergence of the parameters [11], high computational cost

[138] and often produce inaccurate model structures [201].

Evolutionary search is well suited for regressor selection with many examples in the literature

[115, 121, 163, 187]. While more computationally expensive than bridge or step-wise methods, it is

able to �nd global optima within the search space at an acceptable computational cost (sometimes

even comparable to gradient-based approaches [139]). The EvolOBE method [210–217] di�ers

from these approaches by combining the evolutionary search with set-theoretic OBE algorithms.

The OBE class of parameter estimation algorithms possesses several desirable characteristics

that make it particularly suited for the problem of estimating parameters for models of the form

given by Eq. (2.23), for example, no necessity to make assumptions about the stationarity and

distributional characteristics of the noise, and e�cient computation of parameters.

Earlier variants of the algorithm used more traditional methods of evaluating model �tness,

such as AIC and FPE, but later variants use a bi-objective evolutionary search [149, 217] that

produces a set of models with the best compromise between predictive power and complexity.

3� is most often set such that 0 ≤ � ≤ 2 [70]
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This obviates the choice of hyperparameters or assumptions to regulate the trade-o� between the

two objectives and allows a wider search and greater population diversity [195] as solutions that

have high �tness for di�erent objectives can more easily coexist and coevolve.

2.4.1 Genetic encoding and algorithm overview

In the EvolOBE method, models are treated as chromosomes. The LTIiP model is the phenotype of a

chromosome, a binary sequence in which each bit indicates the presence or absence of a particular

gene. Each gene codes for a particular regressor function in the model. The algorithm starts

with a random population of chromosomes. The parameter sets result from the set-membership

processing of the data and the genetic makeup of each chromosome. Unlike other estimation

methods, the set-membership algorithms provide sets of feasible parameter vectors rather than

a single point estimate. Measurable set properties are then used to assign �tness values to each

chromosome, and the �tness value is used in the genetic algorithm selection process to evolve

the population toward better solutions (e.g. [167]). This framework simultaneously addresses

selection of the model structure and the parameter estimation.

To reduce the computational complexity of this process, the search space of regressor models

must be controlled, and the candidate and �nal models must use the fewest regressors that are

consistent with an objective of prediction-error minimization, Since these objectives are con�icting,

a multi-objective optimization approach is desired. For this work, the Non-dominated Sorting

Genetic Algorithm - II (NSGA-II) [51] approach is adopted, since it generates set solutions (ideally

the Pareto-front), providing the best solution for a given number of regressors and allowing the

model with the best trade-o� to be chosen.

NSGA-II is a standard algorithm for solving multiobjective optimization problems. It requires

a small number of parameters and is able to obtain solution sets with good spread. The basic

NSGA-II algorithm is shown in Fig. 2.2. An initial random population of size N is generated

and evaluated according to the two objectives: prediction accuracy and number of regressors.

The population is then sorted, the best half is selected as parents, which go through selection,
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Figure 2.2: NSGA-II algorithm summary

mutation and crossover to generate a new population of children. The parents and children of

this generation become the parents of the following generation. The cycle is repeated until the

termination criterion is reached.

In the seminal EvolOBE paper [214], Yan et al. used binary tournament, bit-wise mutation

and single-point crossover.Later variants of the EvolOBE algorithm use di�erent mutation and

cross-over algorithms tailored for discovery of sparse models which provide faster convergence

[149].

The sorting of the population occurs at two tiers. First, the population is sorted by fronts,

each front is formed by a set of solutions has higher optimality than all other members of the

set (this is called being non-dominated). The population is sorted such that the members of the

�rst front is placed higher in the set of solutions, followed by the subsequent fronts sequentially

until the entire population has been sorted. Within a front, the population is sorted by the sum of

the edge lengths of the cuboid formed by the two surrounding solutions within the front (in the

bi-objective case), this is known as the crowding distance. The elements with larger crowding

distance are placed higher within their respective fronts. As a consequence of how the crowding

distance is computed, the edge solutions are always ranked higher, as they do only have a single

solution surrounding them (in�nite crowding distance).
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2.5 Causality analysis

Philosophers and scientists have vigorously debated the meaning of causality and no universally

accepted de�nition exists. In [103], philosopher David Hume argued that the human mind is not

able to fully assert true causality, only to observe events occurring in succession. Nevertheless,

Hume proposes conditions for a relationship to be called causal. While, not universally accepted,

this work will use Hume’s de�nition of causality, because it is testable and quanti�able. Like

Box [31], our intent is not to �nd "true" models, but rather gain insight and understanding of the

systems being studied. Nevertheless, a “true” model may be posed in some cases for theoretical

analysis.

The most widely known method of assessing causality strength is GC. It was �rst postulated

by Norbert Wiener that if the inclusion of a regressor could improve the prediction of a regressand,

then the relationship between the regressor and regressand could be assumed "causal" [206].

Granger used this idea to give a formal de�nition of causality and feedback in the context of AR

models [76]. Granger Causality relies on Hume’s work [103], which focused on epistemological

causality (focusing on what can can be learned and known), rather than ontological (how things

are). Hume posed certain conditions under which causality can be ascertained. These conditions

are discussed in Sec. 2.5.2 and connected with the de�nition of GC. While Granger himself

distinguished GC from “true causality” [77], GC performs well in a number of applications, from

econometrics [60, 87] to neurology [175].

While causality analysis often involves the use of predictive models, there is no guarantee

that the predictive models internally represent the systems that they are modeling. This is closely

related to the distinction between correlation and causation (known as the cum hoc ergo propter

hoc fallacy). Although precedence (when coupled high correlation) may seem like a good indicator

of causality, it also cannot be equated with causation (known as the post hoc fallacy). For example,

many people brush their teeth before going to sleep; however, brushing teeth does not cause sleep.

Granger himself has highlighted the distinction between “true” causality and GC [77].

Of particular interest is NC, which was developed to address limitations of GC in measuring
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causal mechanisms and which has shown useful results in a number of applications [95, 96, 98–

100, 105, 112, 220]. It has been pointed out that GC measures causal e�ect rather than mechanism

[19] and NC measures a fundamentally di�erent (although related) quantity.4 New Causality is

better suited as a complement for GC (and other causality measure tools) rather than a replacement.

2.5.1 Humean concept of causality

Hume claims that the relationship between cause and e�ect cannot be established simply by

reasoning, but instead requires an assumption of “uniformity of nature,” i.e., that certain natural

laws and processes do not change overtime [102]. Although unprovable by means of observation

alone, “uniformity of nature” serves as a �rst principle through which causation can be judged.

While Hume believes that “nothing is more evident than that the human mind cannot form such

an idea of two objects as to conceive any connection between them” [103, Sec. XIV], he studies

causality within the context of what can be understood through experience.

In [103, Sec. XV], Hume postulates the following set of rules by which to judge causes and

e�ects (quoted verbatim here, other than use of modern spelling):

1. The cause and e�ect must be contiguous in space and time.

2. The cause must be prior to the e�ect.

3. There must be a constant union between the cause and e�ect. It is chie�y this

quality that constitutes the relation.

4. The same cause always produces the same e�ect, and the same e�ect never

arises but from the same cause. This principle we derive from experience, and

is the source of most of our philosophical reasonings. For when by any clear

experiment we have discovered the causes or e�ects of any phenomenon, we

immediately extend our observation to every phenomenon of the same kind,

4The claim is disputed by the authors of [99]. Nonetheless, the author tends to agree with [19].
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without waiting for that constant repetition, from which the �rst idea of this

relation is derived.

5. There is another principle, which hangs upon this, namely that where several

di�erent objects produce the same e�ect, it must be by means of some quality,

which we discover to be common among them. For as like e�ects imply like

causes, we must always ascribe the causation to the circumstance, wherein we

discover the resemblance.

6. The following principle is founded on the same reason. The di�erence in the

e�ects of two resembling objects must proceed from that particular, in which they

di�er. For as like causes always produce like e�ects, when in any instance we

�nd our expectation to be disappointed, we must conclude that this irregularity

proceeds from some di�erence in the causes.

7. When any object increases or diminishes with the increase or diminution of its

cause, it is to be regarded as a compounded e�ect, derived from the union of

the several di�erent e�ects, which arise from the several di�erent parts of the

cause. The absence or presence of one part of the cause is here supposed to be

always attended with the absence or presence of a proportionable part of the

e�ect. This constant conjunction su�ciently proves, that the one part is the

cause of the other. We must, however, beware not to draw such a conclusion

from a few experiments. A certain degree of heat gives pleasure; if you diminish

that heat, the pleasure diminishes; but it does not follow, that if you augment it

beyond a certain degree, the pleasure will likewise augment, for we �nd that it

degenerates into pain.

8. The eighth and last rule I shall take notice of is, that an object, which exists for

any time in its full perfection without any e�ect, is not the sole cause of that

e�ect, but requires to be assisted by some other principle, which may forward its

in�uence and operation. For as like e�ects necessarily follow from like causes,
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and in a contiguous time and place, their separation for a moment shows, that

these causes are not complete ones.

A discussion of the philosophical implications of “uniformity of nature” assumption lies outside

the scope of this work. Here, systems will be assumed to vary slowly enough that a time-invariant

model adequately represents the system dynamics over “short” periods of time in which analysis

takes place. Similarly, item 7 implies some proportionality in the causal relationship, where an

increase in the cause will proportionally a�ect the e�ect. Hume, however, does not exclude the

possibility of nonlinearity in the relationship. One must not indiscriminately assume an a�ne

relationship between cause and e�ect exists even if the observations (under a limited range) closely

follow an a�ne relationship. Therefore, as discussed in Sec. 2.2.2, it is important to remember the

distinction between models and the systems they represent.

Additionally, Hume’s items 1 and 3 cannot be derived from samples of signals alone, but must

be evaluated separately. Note that Hume’s concepts of contiguity and union in time and space are

loosely de�ned. Even if internally to the systems, causes and e�ects might be contiguous, often

these states are unobtainable. Additionally, discrete time data collected from a �nite number of

sensors implies these requirements will never be fully satis�ed without additional assumptions

(e.g., limited bandwidth). For the purposes of this work, it will be assumed that signals satisfy

these requirements. Time-series data are unable to provide information regarding items 1 and 3,

which must be evaluated using a priori information.

Hume’s item 6 states that if two outcomes are di�erent, then the causes must also be di�erent.

When some causes cannot be measured or estimated, the outcomes will also not be estimable.

The error augmented and observation models [Eq. (2.1) and Eq. (2.14), respectively] account

for this by including an unknown disturbance sequence. That is, even if the parameters of the

observation model were to be known, discrepancies (however small) are still expected in the

prediction. Nevertheless, a disturbance sequence with small variance suggests (but does not

guarantee) that most of the “causes” are being accounted for.

What remains for analysis are Hume’s items 2, 4 and 5. Item 4 states that if A causes B, then A
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must co-occur with B. In the domain of continuous random variables, this is roughly equivalent

to the concept of dependence (or correlation for linear models). Item 5 states that if A causes

B, and C also causes B, there must be a common element between A and C. Uncovering such

mechanisms is helpful when analyzing systems, but the existence of a common factor between A

and C does not aid in the decision on whether A and/or C cause B. Finally item 2 requires event A

to precede B in order to establish causality of B by A. Although this requirement is intuitive, careful

examination is required to ascertain whether A truly precedes B. This is particularly evident

in systems that exhibit predictable, periodic, or quasiperiodic behavior. Apparent “noncausal”

behavior can be attributed to predictive learning. For instance, rooster crows do not cause the

sun to rise, instead, roosters possess the ability to predict sunrise times due to its quasiperiodicity

using an internal circadian clock [180] (and also using other cues such as light and even social

rank [179]). Nonetheless, few would object to the statement that “the rooster crows just before the

break of dawn.”

2.5.2 Granger causality

By combining item 4 (correlation) and item 2 (precedence), GC assesses the causality strength using

the relative increase in predictive power gained by including a second signal into an estimation

model. This is done by comparing an estimated ARX model (joint model) over an estimated AR

model (disjoint model) where the exogenous input is formed of past samples of the causing signal

being studied.5 The increase in predictive power is used as evidence of causality.6

Suppose that stochastic signals x1 and x2 are sampled. It is then possible to create predictive

models for x1 varying the presence or absence of x2. A model that only uses past values of x1 can

5When the current sample of this signal is used, the increase in predictive power is called instantaneous GC.
Instantaneous GC violates precedence and therefore weakens the case for calling it “causality.”

6To highlight the distinction between “true causality” and GC, some authors choose to use the Granger-cause (A
Granger-causes B) jargon, however, keeping with Hume’s notion of “obtainable causality” and for brevity’s sake, this
work will refrain from using the term, while acknowledging the distinction between epistemological and ontological
causality.
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be written as x1[n] = '1(x1||n−1n−M ) + �[n],= '1(x1[n − 1], x1[n − 2], x1[n − 3], ⋯ , x1[n − M]) + �[n], (2.32)

where '1(x1||n−1n−M ) is a function of past values of x1 from time n − M to time n − 1 inclusive and � is

the error sequence. If '1 is a linear function, this predictive model reduces to an AR observation

model. A second predictive model using past values of both x1 and x2 can be written as

x1[n] = '2(x1||n−1n−M , x2||n−1n−M ) + �′[n], (2.33)

where '2(x1||n−1n−M , x2||n−1n−M ) is a function of past values of x1 and x2 from time n − M to time inclusiven − 1, and �′ is the error sequence. If '2 is a linear function, this predictive model reduces to an

ARX observation model, where x2 is the exogenous input. Note that both predictive models must

have their topology and parameters estimated (in the case of parametric models).

Although in many applications the signals being analyzed are of the same nature (e.g., two EEG

channels, two stocks, etc) and minimally processed (e.g., �ltering applied for removing volume

conduction, line noise, EMG interference, etc), GC can analyzed distinct quantities like the e�ect

of phase from one channel into amplitude of a second channel [141].

The GC value in the contrast represented by [Eqs. (2.32) and (2.33)] is de�ned as

GC2→1 = ln(� 2� /� 2�′), (2.34)

where � 2� is the sample variance of the error sequence of the estimated model where x2 is absent

and � 2�′ is the sample variance of the error sequence of the model with x2 as exogenous input.

Since, in general, one of the rational objectives of model estimation is minimizing the residual

error, the inclusion of x2 in Eq. (2.33) assures that � 2�′ ≤ � 2� and thus GC≥ 0. In order to evaluate

the hypothesis of whether x2 causes x1, a statistical signi�cance test, such as an F-test [184], is

conducted on the GC statistic.

It is noteworthy that, in general, '1(x1||n−1n−M ) ≠ '2(x1||n−1n−M , 0) unless x2||n−1n−M ≐ 0; that is, the model

estimation method employed for obtaining '1 and '2 will attempt to �t the data, so '1 will adapt
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to the absence of x2. If x2||n−1n−M can be predicted well by x1||n−1n−M , then � 2� might not be signi�cantly

larger than � 2�′ , even if the contribution of x2 to '2 is large [23, 157].

The simplicity of GC allows it to be easily applied to a wide range of problems with good

results, e.g. [33, 69, 177]. However, since it is designed to measure causal e�ect, GC value does not

fully consider the internal states of the underlying observation model, only the outputs of the

model. Further, it has been claimed that GC values are di�cult to compare across observation

models, as GC values are not normalized and obtaining a threshold for statistical signi�cance is

not straightforward [95].

The use of two independently estimated models is vulnerable to resulting bias and larger

variance [16, 43]. More recent methods have been developed to derive GC values from a single full

regression using factorization of the spectral density matrix [16, 17, 59]. Nevertheless, conceptually,

these methods still stem from the comparison of the predictive power of two models.

Although authors have pointed out apparent limitations of GC, [79, 94, 95, 97, 100, 135, 188],

GC is a well established methodology for analyzing causal relationships [33]. Additionally, for

normally distributed signals, GC has been shown to be equivalent to TE (save by a scaling factor)

[14], but can be evaluated reliably with fewer samples. Barrett and Barnett acknowledge in

[19] that “GC is not a perfect measure for all stochastic time series: if the true process is not a

straightforward multivariate autoregressive process with white-noise residuals, then it becomes

only an approximate measure of causal in�uence. In each real-world scenario, discretion is required

in deciding if confounds such as non-linearity and correlations in the noise are mild enough for

the measure to remain applicable.” While TE is applicable to other models, other authors have

also pointed out that causal e�ects and transferred information [127].

2.5.3 Spectral Granger causality

Spectral GC is the frequency domain decomposition of GC introduced by Geweke [71]. Spectral

GC uses the power spectral density (PSD) function to assess GC at particular frequencies. Suppose
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there is a pair of signals x1 and x2 that can be modeled byx1[n] = aT12x2[n] + aT11x1[n] + �1[n]x2[n] = aT22x2[n] + aT21x1[n] + �2[n], (2.35)

where �1 and �2 are assumed to be sampled from white and mutually uncorrelated random processes.

Applying the discrete time Fourier transform (DTFT) yieldsX1(f ) = A12(f )X2(f ) + A11(f )X1(f ) + E1(f )X2(f ) = A22(f )X2(f ) + A21(f )X1(f ) + E2(f ), (2.36)

where A12(f ), A11(f ), A22(f ), and A21(f ) are the DTFTs of a12, a11, a22, and a21 respectively, X1(f )
and X2(f ) and the DTFTs of x1 and x2 respectively and E1(f ) and E2(f ) are the DTFT of samples of�1 and �2 respectively. Through manipulation, Eq. (2.36) can be rewritten as⎡⎢⎢⎢⎣

E1(f )E2(f )
⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
B11(f ) B12(f )B21(f ) B22(f )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
X1(f )X2(f )

⎤⎥⎥⎥⎦ . (2.37)

As long as B11(f )B22(f ) ≠ B12(f )B21(f ) for any f ∈ [−0.5, 0.5], Eq. (2.37) can be inverted yielding⎡⎢⎢⎢⎣
X1(f )X2(f )

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
C11(f ) C12(f )C21(f ) C22(f )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
E1(f )E2(f )

⎤⎥⎥⎥⎦ . (2.38)

Under these circumstances, the spectral density of x1 can be written as

|X1(f )|2 = |C11(f )E1(f )|2 + |C12(f )E2(f )|2. (2.39)

Using Eq. (2.39), SGC is de�ned as

SGCx2→x1 = ln( |X1(f )|2|C11(f )E1(f )|2), (2.40)

or, equivalently

SGCx2→x1 = ln(1 + |C12(f )E2(f )|2|C11(f )E1(f )|2). (2.41)

This means that the SGCx2→x1 is proportional to the ratio between the “contribution” of E2(f )
(originating from x2) and E1(f ) (originating from x1). As the contribution of E2(f ) to x1 increases,

so does the SGCx2→x1 .
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It is important to note that, due to the matrix inversion in Eq. (2.38), the relationship between

the parameters in vectors a11, a12, a21 and a22 [from Eq. (2.35)] and the functions C11(f ) and C12(f )
is not straightforward and is model order dependent. An example of the nontrivial relationship

between the parameters and GC is shown in Appendix A.

Spectral GC is particularly helpful when the frequency bands of interest are well known or

concentrated into relatively narrowband peaks [35]. Another noteworthy characteristic of SGC is

that it is (at least theoretically) �ltering invariant, that is, the SGC values do not change when the

signals are �ltered by an invertible �lter [15]. In fact, pre�ltering the data has been recommended

against unless the noise can be very well characterized (e.g., 50Hz/60Hz mains hum) [16].

2.5.4 Conditional Granger causality

Geweke also developed an extension to GC for MVAR models [72]. When analyzing more than

two signals, traditional GC is unable to di�erentiate chains of causal relationships. For example,

suppose x , y and z are signals that can be represented by a MVAR model. If both GCx→z and

GCy→z are large, GC cannot distinguish between the model A in Fig. 2.3a from the model B in

Fig. 2.3b. Conditional GC solves the ambiguity by evaluating the improvement in the prediction

conditioned to other signal or set of signals.

𝑥 𝑦 𝑧

(a) Model A: x causes z directly

𝑥 𝑦 𝑧

(b) Model B: x causes z indirectly though z
Figure 2.3: Di�erent explanations for large GCx→z

In other words, conditional GC compares the variance of the error sequence associated with

the model for z predicted using past values of y and z - � 2�z|y - to the the variance of the prediction

error of signal z given past values of x , y and z - � 2�z|x,y . Similarly to Eq. (2.34), conditional GC is

de�ned as

GCx→z|y = ln(� 2�z|y /� 2�z|x,y ), (2.42)
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In model A, GCx→z|y remains large, while in model B, GCx→z|y will be small (ideally 0). Thus,

a large GCx→z|y would indicate model A is more likely than model B.

2.5.5 New causality

Instead of focusing on predictive power as a measure of causality, the NC measure relies on the

internal structure of a parametric model and upon evaluating the proportion of the energy of

each contribution [which is formally de�ned in Eq. (2.44)] to infer causation. By making use of

the models, NC is able to more proportionately represent the strength of internal mechanisms of

the observation model. Also, unlike GC which requires the careful selection of conditioning sets

beforehand (otherwise potentially leading to false conclusions [184]), NC foregoes the use of two

models and derives its value from a single MVAR model.

Suppose an estimated model is generated for time-series data using an error augmented model

in Eq. (2.14), which can be expanded and grouped by regressor signal as

xp[n] = Ns∑ℎ=1 M∑m=1 ampℎxℎ[n − m] + �p[n]. (2.43)

Under this model, we de�ne the contribution from xq into xp as

cpq[n] = M∑m=1 ampqxq[n − m] (2.44)

such that the NC measure is de�ned as

NCxq→xp = N∑n=M (cpq[n])2Ns∑ℎ=1 N∑n=M (cpℎ[n])2 + N∑n=M �2p[n] , (2.45)

or, equivalently,

NCxq→xp = N∑n=M ( M∑m=1 ampqxq[n − m])2
Ns∑ℎ=1 N∑n=M ( M∑m=1 ampℎxℎ[n − m])2 + N∑n=M �2p[n] , (2.46)

where NCxq→xp is the NC value of xq into xp , N is the number of observed time samples of xp andxℎ, M is the model order and Ns is the number of signals compared. When comparing two signals,
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the equation reduces to

NCx2→x1 = N∑n=M ( M∑m=1 ai12x2[n − m])2
N∑n=M [( M∑m=1 ai12x2[n − m])2+ ( M∑m=1 ai11x1[n − m])2+ �21 [n]] . (2.47)

2.5.6 Spectral new causality

One characteristic shared by many causality analysis tools is the ability to spectrally decompose

the measure to analyze particular frequency bands. The spectral extension of new causality,

henceforth referred as Spectral New Causality (SNC),7 proceeds rather intuitively from the

seminal de�nition. First, the contributions are de�ned in the frequency domain

Cpq(f ) = {cpq[n]} = N∑n=m cpq[n]e−j2�f n (2.48)

where  is the DTFT operator, which is shown on the right hand side. The SNC is then de�ned as

SNCxq→xp = |Cpq(f )|2Ns∑ℎ=1 0.5∫−0.5 |Cpℎ(f )|2df + (N − m)� 2�p , (2.49)

where � 2�p is the sample variance of �p . Note also that the denominator has been modi�ed for

consistency, but it can be shown using Parseval’s theorem that the value of the denominator is

equivalent to the denominator in Eq. (2.46).

In [95], SNC is de�ned using the power spectrum of the regressors signals, but the de�nition

using contributions is equivalent and greatly simpli�es the derivations in Ch. 4. Also note that in

[95], the integrals in the denominator are erroneously omitted. One characteristic shared between

SGC and SNC is that the integral of SNCxq→xp (f ) over one period of the DTFT (e.g.. from -0.5 to

0.5) yield the GC and NC values respectively.

The expression for SNC is conceptually similar to RPC [3]. The di�erence lies in that RPC uses

the power contribution of the innovation sequence of a signal (�q) instead of the signals (xq). One

7The spectral extension is called “new spectral causality” in [95], which is confusing, as it is the spectral extension
to NC, rather than a new de�nition of spectral causality (which does not exist).
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advantage of RPC is that the denominator is model invariant, whereas in NC the squared sum of

the elements in the denominator depend on the model parameter estimates. This occurs because�p and �q are assumed to be mutually uncorrelated for all p ≠ q, whereas xp and xq are (in general)

correlated. This can lead to the presence of bias in the NC estimates (further explored in Sec. 3.4).
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CHAPTER 3

A CRITICAL ANALYSIS OF NEW CAUSALITY

3.1 Overview

In the causality analysis literature, the distinctions among systems, observation models, and

estimated models is often blurred. Models are often taken at face value without further discussion

on the validity of the model, order and parameter estimates. In this chapter, some of the observation

models used in NC literature [94, 95, 100] are discussed. Then, two case studies are done in order

to evaluate the robustness of NC and GC to model order and parameter estimation errors. Finally,

four scenarios for bias in NC estimation are explored.

From the perspective of the equivalence of GC to TE (measuring transferred information),

GC will not measure causal contributions from signals that follow predictable patterns (e.g., slow

changing signals, periodic or quasiperiodic signals). While it is true that the GC values estimated

using data from some of these observation models may defy intuition on causal strength, signals

with high temporal correlation will also require a large number of epochs to produce accurate

parameter estimates. Sec. 3.2 discusses the challenge some of the models in NC literature pose to

parameter estimation and also the plausibility of some of models.

Some of the observation models used in the literature to showcase the advantages of NC over

GC are severely ill-posed. Although it has been shown that NC can more proportionally represent

the causal mechanisms than GC [95, 100], the NC values can only improve upon the inference from

GC values if the the estimated models correctly mimic the internal dynamics of the observation

models. In Sec. 3.3, particular examples are shown of how NC estimates are susceptible to errors

in the parameter estimation. In summary, the NC value is as good (or useful) as the model used.

On the other hand, GC is generally more robust to parameter estimation errors.

During the investigation of the robustness of NC estimates to model estimation errors, bias

was observed in the estimates. This led to the study reported in Sec. 3.4, in which, a mathematical
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approach is used to predict likely the sources of bias in NC estimates.

A signi�cant portion of this chapter is quoted directly from the author’s work in [147, 148]

with a few modi�cations for improved �ow and clarity.

3.2 Problematic aspects of models in NC literature

With the assessment of causality strength in mind, several observation models previously used in

comparisons between GC and NC will be re-examined.

3.2.1 Model 1

A principal example observation model studied by Hu et al. [95, Eq. (14)] is re-examined. The

observation model is compared to a second observation model [95, Eq. (15)], to argue that GC

does not re�ect the “real strength of causality,” the observation models share the same GC value,

in spite of their di�erences. This model is ill-posed in a way that produces relatively small GC

estimates. However, the ill-posedness also presents a challenge for NC, as NC depends on the

parameter estimates (further discussion on the e�ect of parameter estimate errors on NC is given

in Sec. 3.3). The observation model from [95, Eq. (14)] is expressed as

x1[n] = 0.8x1[n − 1]− 0.8x2[n − 1] + �1[n],x2[n] = + 0.8x2[n − 1] + �2[n], (3.1)

in which �1 and �2 are white noise processes of variances 0.005 and unity, respectively. It is

noteworthy that � 2�2 = 200� 2�1 . In [95], it is claimed that the GC value does not re�ect the apparent

real causal interaction between x1 and x2. Although the low variance of �1 of [Eq. (3.1)] aids in the

estimation of the parameters associated with x1[n], it also can cause the covariance matrix of the

regressors to be ill-conditioned. Because of the small � 2�1 , for any � ∈ Z, one can write

x1[n − �] ≈ 0.8x1[n − � − 1] − 0.8x2[n − � − 1], (3.2)

so regressors x1[n − �], x1[n − � − 1] and x2[n − � − 1] are approximately linearly dependent. The

linear dependance can also be characterized as a null space in the regressor matrix, in which
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variations in the parameters have little e�ect on the residual error. When combined with the

relatively large variance found in x2, one can write

x2[n] ≈ 0.8x2[n − 1] + �2[n] + ⋯+M−1∑�=1 ��[x1[n − �] − 0.8x1[n − � − 1] + 0.8x2[n − � − 1]], (3.3)

in which the �� are scalars that represent errors in the estimated parameters in the direction given

by the parameters in the brackets. A large variance on the parameter estimates is expected in

light of Eq. (2.17), because the covariance matrix is ill-conditioned.

Because Eq. (3.2) contains both x1 and x2 terms and the way NC is computed, the estimates

of NC1→2 and NC2→2 will be biased towards 0.5, which is particularly problematic for NC1→2,
since ideally NC1→2 = 0. A full treatment for the presence of bias in ill-posed problems is given

Sec. 3.4.3.

3.2.2 Model 2

The observation model studied by Hu et al. in [95, Eq. (15)] is used in conjunction with the

observation model in Eq. (3.1) to compare GC and NC. This model is ill-posed as well and has an

unrealistic structure which also produces small GC values. The observation model is given by

x1[n] = − 0.8x2[n − 1] + �1[n],x2[n] = + 0.8x2[n − 1] + �2[n], (3.4)

where �1 and �2 are white noise processes of variances 0.01 and unity, respectively. Note thatx1[n] does not depend on previous samples of itself. Due to the small variance of �1 relative to �2,
this is also an ill-posed problem, as one can deduce from Eq. (3.4) that

x1[n − �] + 0.8x2[n − � − 1] ≈ 0, (3.5)

for any � ∈ Z. Following an argument similar to Eq. (3.3), as � 2�1 is much smaller than � 2�2 , the

estimated model is likely to contain contributions from x1 into x2, in the form of x1[n−�]+0.8x2[n−� − 1], which are absent in the observation model.
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3.2.3 Model 3

Hu et al. [95, Eq. 24] use the following observation model to argue that GC underrepresents

causality strength x1[n] = − 0.99x2[n − 1] + �1[n],x2[n] = 0.99x1[n − 1] + 0.1x2[n − 1] + �2[n], (3.6)

where �1 and �2 are white noise processes of variances unity and 0.1, respectively.

In this observation model, the asymptotic value for GC2→1 is 0.093 (the derivation of the

expression is given in Sec. A.2.2 of Appendix A), meaning that the power of the residual error of

the prediction of x1[n] is reduced by less than 10% by including previous samples of x2 relative

to using only past samples of x1. It is claimed in [95] that the GC cannot identify the causal

relationship between the two signals, as the theoretical value for NC2→1 is 0.96, which indicates

that current value of x1 can be almost fully explained by �rst delayed value of x2.
The small GC value is a result of the particular conditions in this observation model. The

relatively large � 2�1 means that a larger portion of the signal cannot be explained by previous values

of either x1 or x2. Therefore, the theoretical minimum variance of the residual of x1 is relatively

large. Additionally, since � 2�2 is relatively small, the previous values of x2 can be well predicted by

previous values of x1, so the reduction of residual error by considering x2 is small.

If � 2�1 is made equal to � 2�2 , GC1→2 = 0.67, and GC2→1 = 0.70, meaning that the contributions

from x1 to x2 is similar, but smaller, than the contribution of x2 to x1. The power of residual error

is reduced by about half in both cases. The NC values also indicate that the strengths of the

contributions are similar to each other with NC1→2 = 0.96 and NC2→1 = 0.98.
3.2.4 Model 4

In Hu et al. in [95, Eq. (25)], the following observation model is used to further argue that GC

does not represent causality strength. The observation model is given byx1[n] = − 0.99x2[n − 1] + �1[n],x2[n] = 0.1x2[n − 1] + �2[n], (3.7)
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where �1 and �2 are white noise processes of variances unity and 0.1, respectively. The GC value

from x2 into x1 is 0.092, which is claimed to be too small, given that x1[n] is clearly caused byx2[n − 1].
However, upon closer inspection, it becomes clear that the contribution of x2 into x1 is indeed

small. The variances of x1[n] and x2[n] are 1.099 and 0.101 respectively. So the contribution of�1 to x1 is about 10 times larger than that of x2. Even under perfect estimation conditions, the

residual can only be reduced by approximately 9%, so, although x2 represents the only measurable

contribution to x1, the contribution is signi�cantly smaller than that of �1, as GC correctly indicates.

3.2.5 Model 5

Model 5 is presented in the paper by Hu et. al. [100, Eq. (25)] to support a claim that GC possesses

a “fatal drawback” that makes it unsuitable in some scenarios. This, of course, is only true if a

similar observation model is plausible in any practical application, otherwise the analysis should

have limited bearing on judging GC. The model is given by

x1[n] = x2[n − 1] + �1[n],x2[n] = − 0.9x1[n − 1] + �2[n], (3.8)

where �1 and �2 are white noise processes of unity variance.

In this model, at every timestep, x1 and x2 exchange values with one another. The current

value of x1 depends solely on the delayed sample of x2 and a white noise process. Similarly, x2
depends solely on the �rst delayed sample of x1 and a white noise process. The variances of x1 andx2 are 10.53 and 9.53 respectively, which are signi�cantly larger than that of �1 and �2. Therefore,

the contribution of x1 into x2 and that of x2 into x1 are indeed relatively large. The asymptotic

values for GC are GC1→2 = 0.26 and GC2→1 = 0.30, whereas the theoretically-evaluated NC values

are NC1→2 = 0.90 and NC2→1 = 0.89. The NC values clearly indicate how strongly x1 and x2 are

coupled, whereas the GC values are relatively low, representing a potential of reduction of the

variance of the error of only 23% and 26% for GC1→2 and GC2→1 respectively.
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However, a bigger question is: “Under what conditions would a similar observation model

occur in nature?” The propagation delay between the two signals is exactly one time sample,

which can only be achieved if the sampling rate is designed this way or by faulty delay embedding.

This means the observation model would not be so cleanly representable if the sampling rate

were even slightly di�erent. Additionally, (according to the model equations) the signals do not

depend directly on previous samples of themselves, however, assuming that the continuous-time

counterparts of x1 is di�erentiable, we have

x1(t + Δt) ≈ x1(t) + Δt ⋅ dx1(t)dt , (3.9)

for small enough Δt , where x1(t) is the continuous time signal from which x1[n] is sampled (i.e.,x1(nTs) = x1[n], where Ts is the sampling period and the sampling rate fs = 1/Ts). Consequently, for

small enough Ts , x1[n + 1] ≈ x[n] + Ts ⋅ dX1(t)dt ||||t=nTs , (3.10)

where d/dt denotes the derivative in time. For any su�ciently high sampling rate, the signals should

be at least correlated to previous samples of themselves. A similar analysis is done in [79], but in

the context of GC. Another example of insu�cient sampling rate is given in Sec. 3.2.7.

The observation model in Eq. (3.8) can be written as

x1[n] = − 0.9x1[n − 2] + �3[n],x2[n] = − 0.9x2[n − 2] + �4[n], (3.11)

where the residual errors �3[n] = �1[n] + �2[n − 1], and �4[n] = 0.9�1[n − 1] + �2[n] are independent

white Gaussian processes of variances 2 and 1.81 respectively.

The small di�erence in variance of the residuals explains the low GC values. The model given

in Eq. (3.11) might have slightly larger power in the residual error, but it also does not require

inter-channel contributions. So the model given in Eq. (3.11) is arguably simpler than Eq. (3.8), with

a minimal increase of predictive error. Additionally, notice that x1[n] and x2[n] are uncorrelated,

further strengthening the case for the model given in Eq. (3.11).
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The claim that GC incorrectly represents the causal relationship requires knowledge that the

model of Eq. (3.8) correctly models signals x1 and x2. While this can be argued in a computational

simulation, such a strong claim cannot be made about a complex problem where the underlying

mechanism cannot be easily explained. Thus, while an interesting mental exercise concerning GC,

a case cannot be made that the occurrence of such cases is signi�cant enough to warrant the term

“fatal �aw.”

The choice of sampling frequency is also important for modeling and causality inference in

real applications. A discussion of the relationship of regression and sampling rates is given in [23]

in the context of nonlinear models. Existing literature of the e�ects of insu�cient sampling in GC

estimation in the context of econometrics is found in [136] and in the context of neurophysiological

processes in [18].

3.2.6 Model 6

In [94], Hu et al. provide two example observation models in which GC values are zero, even

though there are clearly causal relationships between the two signals. These example highlight

that GC measures transferred information, rather than “causal” in�uence. In this case, x2 is a

periodic signal, and therefore no new entropy (information) is added to x2 beyond the �rst period.

The �rst example model is found in [94, Eq. (10)],

x1[n] = −0.99x2[n − 1] + �1[n],x2[n] = −x2[n − 2], (3.12)

where �1 is a white noise process of unity variance. Note that this model does not contain a �2
term, e�ectively making ��2 = 0.

It can be shown that x2 can be expressed as a periodic signal with a period of exactly four

samples, repeating x2[0], x2[1], −x2[0], and −x2[1] inde�nitely. The values of these samples depend

on the initial conditions of x2. Similarly to Model 5, the observation model seems to be sampled in

a way that synchronizes with x2, such that the period of x2 is exactly four samples. Due to the
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lack of external driving forces, x2 is stable, however, it is noteworthy that the observation model

contains a pole on the unit circle.

Since x2 is not stochastic, it can be estimated using past values of x1 as

x̂2[n] ≈ − N�∑�=0 x1[n − 3 − 4�] − Nk∑k=0 x1[n − 1 − 4k]0.99(N� + Nk) , (3.13)

for any N� > 0 and Nk > 0. For large enough N� + Nk (e.g. N� + Nk ≫ √� 2x2/� 2�1), past values of x1
can predict the value x2, so that the �rst line of Eq. (3.12) can be rewritten as

x1[n] = limN�→∞Nk→∞
N�∑�=0 x1[n − 4 − 4�] − Nk∑k=0 x1[n − 2 − 4k]N� + Nk + �1[n]. (3.14)

In this case, the GC value tends to zero, as Eq. (3.14) does not contain any x2 terms and yet has

the same residual as Eq. (3.13). However, since AR models must have �nite order, the GC is never

zero. Often a maximum order is imposed in the regression algorithm to avoid over�tting, which

would bound GC away from zero.

However, because x2 is deterministic, it cannot be discerned whether x2[n − 1] truly causesx1[n]. Since Eq. (3.12) can be rewritten as

x1[n] = −0.99x2[n − 1 − 4�1] + �1[n],x2[n] = −x2[n − 2 − 4�2], (3.15)

for any �1, �2 ∈ Z+. Thus, it is impossible to discern x2[n − 1] from any x2[n − 1 − 4�] where1 � ∈ Z+.
In terms of parameter estimation, this ambiguity causes the regressor matrix to become singular.

In this case, additional assumptions (e.g. sparsity in parameters, bias towards smaller weights or

maximum allowable model order) are necessary to estimate the model parameters correctly. This

is especially true if it is desired to also concurrently estimate the propagation delay between x2
and its e�ect on x1.

1in fact any convex combination of x2[n − 1 − 4�] terms would be indistinguishable.
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3.2.7 Model 7

The second example given by Hu et al. in [94, Eq. (13)] shows another instance in which GC is

allegedly zero: x1[n] = −0.99x2[n − 1] + �1[n]x2[n] = �1[n], (3.16)

where �1 is a white noise process of unity variance. Note that the equations for both x1 and x2
have �1[n] instead of separate �1[n] and �2[n].

Although x2[n] is not linearly predictable by any strictly causal model, x2[n − 1] is predictable

given past samples of x1. Hu et al. state that for any realization of Eq. (3.16), it is possible to rewrite

the equation for x1[n] as x1[n] = limM→∞
M∑j=1 ajx1[n − j] + �1[n]. (3.17)

for some {aj}∞j=1.However, this is only true as M → ∞. For M = 1, the GC value from x2 into x1
is 0.4, decreasing monotonically as M increases. Although this value is arguably low given the

mechanism in Eq. (3.16), the NC value of x2 into x1 is = 0.5, which also underrepresents the causal

relationship.

The authors suggest in [94] that there is a instantaneous causality relationship from x2 into x1.
To illustrate this, the �rst line of Eq. (3.16) can be rewritten as

x1[n] = x2[n] − 0.99x2[n − 1]. (3.18)

In this case, the NC2→1 = 1, which implies that x1 can be fully explained by x2. In this case,

GC2→1 →∞, which also implies that x1 can be fully explained by x2.
While �1 and �2 are assumed white in AR models, x1 and x2 are not. The whiteness of the

residuals implies that each new samples of �1 and �2 provide innovation to the observation model

that is independent of any previous sample. If that were not true, previous samples of �1 and�2 could be used to predict the current values of �1 and �2, and, in turn, the current values ofx1 and x2. Since most regression techniques aim at minimizing the residual error, � is usually

to be assumed white. However, in this model, x2 is white. The implication is that x2 changes
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unpredictably and that no previous values of x2 can be used to predict its current value. This

seems to indicate that the system is being sampled insu�ciently and that we cannot determine

whether x2 is being aliased.

3.2.8 Discussion of models 1-7

The basis of AR modeling is that previous samples of a signal provide information about the

expected current sample. When the signal changes slowly, the previous sample often provides a

good estimate of the current sample. By considering two samples, one can estimate the derivative

of the signal and use it to improve the estimate. Assuming no over�tting occurs, the inclusion of

more regressors will further improve the estimate. The same argument can be expressed in the

spectral domain. The estimation �lter attempts to match the spectrum of the signal, where �lters

with larger orders can better match the desired spectrum.

In Models 2 through 7 (Sec. 3.2.1 through Sec. 3.2.7), at least one of the regressands does

not depend on previous samples of itself. In a physical system, that would imply that either the

quantity being estimated has no inertia (not continuous) or that the system is being sampled

too slowly. However, if the signals are assumed to be continuous in time and sampled above the

Nyquist frequency, it would be expected that, the di�erence between the current sample of signal

should be constrained by the previous samples. While such systems exist, one can argue that they

are degenerate cases of more practical observation models. In particular, neural systems have

been shown to be strongly dependent on internal states [68].

While some models shown in [94, 95, 100] highlight alleged drawbacks of GC, they represent

only a small restrictive class observation models, which are not representative of the performance

of GC in most problems, or may even pose di�culty for NC, as parameter estimation could be

adversely a�ected by ill-posed problems. In comparison, the models used as examples in the

MVGC toolbox [16] contain models designed to mimic particular realistic scenarios (e.g. 5-node

networks, 9-node networks, non-stationary linear models, etc). Although not a comprehensive

list, these models provide better means of analyzing and comparing causality tools.
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In many of the analyses of experimental data presented in [95, 98, 99], NC outperforms GC

in showing the causality mechanism strength, however, some simulations in [94, 95, 100] show

extreme cases in which GC will predictably underrepresent the causality mechanism and might be

considered degenerate observation models. Although it is important to highlight instances where

GC does not perform well, these are far from being “fatal drawbacks.”

In [19], Barrett and Barnett assert that the claim of GC not capturing “how strongly one

time-series in�uences another” could be considered “radical.” However, it was conceded that “GC

is not a perfect measure for all stochastic time series: if the true process is not a straightforward

multivariate AR process with white-noise residuals, then it becomes only an approximate measure

of causal in�uence.” For di�erent applications, other methods are available such as conditional

GC [14, 44], spectral GC [71] and other methods such as partial directed coherence (PDC) [12],

relative power contribution (RPC) [3], directed transfer function (DTF) [93], and phase slope index

(PSI) [150]. NC is a new addition to that list, which has shown promising results and its strengths

and weaknesses will likely be explored in the following years.

When comparing two techniques, it is important that the observation models chosen represent

the strengths as well as the limitations of both techniques. A possible remedy to this challenge

is to create a set of benchmark problems or datasets that represent a variety realistic scenarios.

For instance, the multivariate GC toolbox (MVGC) [16] provides a small set of example models

representing realistic scenarios. This set could be expanded to account more scenarios and serve

as a benchmark set, which would allow a fairer and comprehensive comparison between causality

analysis tools.

3.3 Analysis of NC robustness to parameter errors through case studies

To empirically evaluate the robustness of NC measures to model parameter estimation error and

over�tting under model uncertainty, one of the primary example observation model used in [95,
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Eq. 14] is re-examined. The observation model is expressed as

x1[n] = 0.8x1[n − 1] − 0.8x2[n − 1] + �1[n]x2[n] = + 0.8x2[n − 1] + �2[n] (3.19)

where �1 and �2 are white noise processes of variances 0.005 and unity, respectively.

Three scenarios are observed in the present study, each using a di�erent values for M of the

regressors. To study the statistical properties of the NC and GC estimates under the e�ects of

over�tting and regularization, 65536 simulations were run in each scenario. In each simulation, the

number of time samples N = 256, and model parameters were estimated using LASSO regression.

A wide range of regularization parameters was used (� ∈ [10−7, 101]). In the following �gures, the

value of � is shown in the x-axis and the NC and GC values are shown in the y-axis. For each

value of �, the probability distribution of NC and GC values were estimated from the histogram

taken at that � value and are shown in a color plot, where yellow represents higher probability

density and blue represents lower probability density.

Although � must also be estimated, several techniques exist to �nd appropriate values. The

most common method is using a resampling method, such as bootstrapping and cross-validation

[21, 110]. k-fold cross-validation splits the dataset into k subsets, then for each subset, evaluating

the prediction error of that subset using the estimated model obtained by using the union of the

other k − 1 subsets to estimate the parameters. The � value that produces the smallest average

of variance of prediction errors is chosen. Alternatively, thresholding can be used to evaluate

parameter signi�cance, with the number of signi�cant parameters used in conjunction with a

method such as AIC or BIC to compare models [124]. In this work, the wide range of � values was

chosen to showcase how NC and GC estimation react to di�ering levels of regularization.

For the observation model in Eq. (3.19), the theoretically evaluated NC values [see Eq. (A.22) in

Appendix A for the exact expression] are shown in Table 3.1. These NC measures indicate that x1
strongly dictates its own behavior, that x1 and x2 together can very accurately predict x1 (in other

words, NC�1→x1 is small), x1 does not contribute to x2 [as Eq. (3.19) indicates] and x2 contributes

to its own behavior strongly, but a signi�cant portion cannot be explained by either x1 or x2 (in
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other words, NC�2→x2 is relatively large). Although there are other factors at play, the relatively

smaller value of NC�1→x1 compared to NC�2→x2 is expected as the variance of �1 is much smaller

than the variance of �2. The theoretical values for the GC measures are also shown in Table 3.1,

where GC2→1 shows a range, due to GC being model order dependent. These values indicate that

the presence of x1 does not improve the prediction of x2 (x1 does not cause x2), but the presence ofx2 reduces the residual prediction error energy from 14 to 140 times (x2 does cause x1).
Table 3.1: Theoretically evaluated GC and NC measures for the observation model in Eq. (3.19)

NC1→1 0.89
NC2→1 0.11
NC1→2 0
NC2→2 0.64
GC2→1 [4.86,5.38]
GC1→2 0

Of particular interest in these tests is NC1→2, which should indicate that x2 is not caused

by x1. Similarly, GC1→2 is expected to be small, indicating that x1 does not cause x2. Ideally,

NC1→2 = 0 and GC1→2 = 0, but, in practice the values will be greater than zero as a consequence

of the statistical variance of the estimator in conjunction with the data properties.2 Nevertheless,

signi�cance thresholds TNC and TGC may be set such that if NC1→2 < TNC or NC1→2 < TGC, x1
is assumed not to cause x2. The signi�cance thresholds can be obtained through a number of

techniques, such as block resampling [159], stationary bootstrap [160] or trial shu�ing [37, 196].

In the studies with M = 1 (exact model order), NC and GC using LASSO regression produce

good results, despite a small value of N (N = 256). In Fig. 3.1, the distribution of estimated NC1→2
values is shown for di�erent regularization parameters. Even for � as low as 10−7, most simulations

yield NC measures close to the theoretical NC values. Fig. 3.2 shows the distribution of GC1→2
values under the same circumstances. Similarly to the NC1→2, little variation is seen over the

range of � values.

To evaluate the e�ects of order overestimation, simulations for the observation model of

2If the estimated ai21 = 0 for i = 1, 2, … ,M , then NC1→2 = 0 and GC1→2 = 0, but at least in terms of LSE, the
probability of exact equivalence is nil.
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Figure 3.1: Distribution of the NC1→2 estimates as a function of � for M = 1.
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Figure 3.2: Distribution of the GC1→2 estimates as a function of � for M = 1.
Eq. (3.19) were run under the same conditions except for a larger M . With M = 2, until enough

regularization is applied (� ≥ 10−3), the simulation does not yield satisfactory results for NC, as

shown in Fig. 3.4, where there is a large spread of values for NC1→2. The GC1→2 estimate forM = 2 (shown in Fig. 3.3) has higher variance than the estimate for M = 1, but is robust to the

over�tting and regularization, having a consistent value for lowest values of � tested and only

changing when excessive regularization is applied (� > 10−2), in other words, when the parameter
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estimates are substantially biased towards zero.
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Figure 3.3: Distribution of the GC1→2 estimates as a function of � for M = 2.

Figure 3.4: Distribution of the NC1→2 estimates as a function of � for M = 2.
Because of the large correlations between x1, x2 and their delayed samples, the covariance

matrix of the regressors is ill-conditioned. When M is increased to �ve, the estimate of NC1→2 not

only has large variance, but also tends to bifurcate and cluster around two values (approximately

0.35 and 0.55) when � < 10−3. Neither of these is the theoretically correct value, as shown in
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Fig. 3.5. This tendency is strengthened as the mismatch between model order and regressor order

increases, as shown in Fig. 3.6, where M = 6. Meanwhile, the GC estimates remain close to what

was observed for M = 2, as shown in Fig. 3.7 for M = 5 and Fig. 3.8 for M = 6. While the extra

regressors cause the GC estimates not to have any probability mass at GC = 0 for � < 10−3, the

estimates remain close to zero, even for small amounts of regularization. This suggests that, in this

test, GC is more robust to over�tting and model order overestimation, even when the parameters

cannot be estimated accurately.

Figure 3.5: Distribution of the NC1→2 estimates as a function of � for M = 5.
Although it is possible to mitigate the need for regularization with larger sample sizes, as shown

in Fig. 3.9, in which N = 1024 (instead of N = 256 in previous �gures), it is sometimes necessary

to infer the change in causality strength over short time intervals, so that the model parameters

must be estimated over data blocks spanning the same short time intervals. Blindly increasing

the sampling rate is often not advisable as it would adversely interfere with the models and

conditioning of the regressor matrix [23]. Therefore, special care must be taken when estimating

the model order and its parameters to avoid misleading NC values.

In order to study the NC performance in models with longer propagation delays between
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Figure 3.6: Distribution of the NC1→2 estimates as a function of � for M = 6.
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Figure 3.7: Distribution of the GC1→2 estimates as a function of � for M = 5.
channels, we propose a similar model here, with

x1[n] = 0.6x1[n − 1] − 0.3x2[n − 4] + �1[n]x2[n] = − 0.5x1[n − 1] + 0.6x2[n − 1] + �2[n] (3.20)

where �1 and �2 are both white Gaussian noise processes of zero mean and variances unity and

0.005, respectively. Note that the contribution of x2 into x1 has a delay of four samples. In this

case, the order of the joint ARX model is four, even though the contribution of x2 into x1 can be

58



10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0

0.02

0.04

0.06

0.08

0.1

G
C

Figure 3.8: Distribution of the GC1→2 estimates as a function of � for M = 6.

Figure 3.9: Distribution of the NC1→2 estimates as a function of � for M = 5 and N = 1024.
represented with a single regressor (x1[n − 4]). When assuming that the system can be modeled as

a joint AR model and varying only the order of the model, either a large number of regressors

is made available (when M ≥ 4) or an insu�cient number of terms is made available (M < 4).
Therefore problems with larger propagation delays present a challenge for parameter estimation.

The theoretical NC values for Eq. (3.20) are shown in Table 3.2, which can be obtained by

evaluating Eq. (A.23) with the expected values for the squared terms. This indicates that for x1 the
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contribution of previous values of x1 is roughly twice that of the contributions of x2. Also, the

past values of x1 and x2 can be used to almost fully predict the current value of x1. Additionally,

the power of the contribution of previous values of x2 is about three times that of the power of x1
to x2, but a portion of the current value of x2 cannot be well predicted by past values of x1 and x2
(since NC1→2+NC2→2 = 0.77).

Table 3.2: Theoretically evaluated NC measures for the observation model in Eq. (3.20)

NC1→1 0.57
NC2→1 0.20
NC1→2 0.33
NC2→2 0.67

When the exact model order (M = 4) is used, results show that regularization is necessary whenN = 256. Fig. 3.10 shows the NC1→1 values obtained using LASSO regression for di�erent values

of the regularization factor (�). The behavior observed in Fig. 3.5 is present, despite the use of the

exact model order. When enough regularization is applied, the NC values approach the theoretical

values. The results are biased towards zero, partially due to tendency of the regularization to bias

the value of the parameters towards zero, while also increasing the residual error. Additionally, a

small bias is observed due to the nonlinear dependence on parameters in the de�nition of NC.

Further analysis of biases in NC estimates is found in Sec. 3.4.

If the model order is overestimated at 6, the NC values will exhibit more variance, even when

enough regularization is applied. Fig. 3.11 shows the probability density function of the NC

values. This indicates that LASSO-assisted regression is not able to accurately estimate the model

parameters, regardless of the choice of regularization factor.

When underestimating the model order as unity, in other words, attempting to predict x1[n]
and x2[n]with only x1[n−1] and x2[n−1], the results were unexpectedly good, as shown in Fig. 3.12.

When compared to Fig. 3.11, the results do not bifurcate and have lower variance. Although the

average NC value estimate is lower than the theoretical value, they are comparable to the results

obtained with the exact model order, while accepting a wider range of regularization factors. Part

of the improvement comes from the fact that the autocorrelation of the signals is high and that
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Figure 3.10: Distribution of the NC1→1 estimates as a function of � for the model shown in Eq. (3.20)
and M = 4
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Figure 3.11: Distribution of the NC1→1 estimates as a function of � for M = 6
M = 1 improves the posedness of the problem.
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Figure 3.12: Distribution of the NC1→1 estimates as a function of � for M = 1 for the model shown
in Eq. (3.20)

3.3.1 Discussion

3.3.2 NC and GC �uctuation

For synthetic models, the NC and GC values can be calculated theoretically using the variances of�1 and �2 and the observation model parameters and the MMSE model parameter values for the

disjoint model [see Eq. (A.15) in Sec. A.2.2 for the derivation of the disjoin model parameters].

However, even when the model parameters are known, NC and GC values estimated using their

respective de�nitions also depend on the particular samples (practically, only sample variances can

be obtained, which are used as an estimate of the variances) that are used to estimate the model

parameters. To decouple the variation in the NC values due to parameter estimation errors and the

variation due to sample variance, in this subsection, the NC values are calculated twice, once with

the parameters obtained from LASSO regression and once with the true model parameters. The

NC values obtained with the true model parameters will henceforth be called NC0. The variation

found in NC0 values indicates how much variation is inherent in the short-term record, while

the correlation between the NC0 values and the NC values serve to assess the e�ect of parameter

estimation on the variation of NC values.
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The NC and NC0 values are expected to be strongly correlated, as this would indicate that the

NC value estimates are close to the theoretical values, and that the variation in the NC values

originates mostly from sample variation, rather than noise or inaccurate assessment of causality

strength. Fig. 3.13 shows the bidimensional histogram data for NC2→2 and NC0,2→2 for the model

in Eq. (3.20) and M = 4 for di�ering regularization factors. On the x-axis are the bins for the

NC0,2→2 values and in the y-axis are the bins for NC2→2 values. The dashed line region of the

histogram that corresponds to NC = NC0 and the circle is drawn centered at the theoretically

calculated NC value. The NC values in Fig. 3.13a were obtained with � = 10−2, which shows a

strong correlation between the NC and NC0, although not perfect alignment with the dashed line.

(a) � = 10−2 (b) � = 10−4 (c) � = 10−1
Figure 3.13: NC1→1 vs NC0,1→1 histogram plots as a function of �

If the regularization factor is not su�ciently large, however, NC estimates deviate from NC0.
For small regularization factors, the correlation is much lower between NC and NC0. Fig. 3.13b

shows the NC2→1 for � = 10−4, where some of the estimates are correctly located around the

dashed line and circle. However, many of the estimates do not correlate well with NC0, but rather

are even weakly negatively correlated with it (the bottom peak).
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For large regularization factors, the NC estimates tend to be biased towards zero, even if the

correlation is high. A more formal treatment of the bias is given in Sec. 3.4.4. Note that this

is expected as regularization introduces bias to the parameter estimator in exchange for lower

variance of the estimates. Fig. 3.13c shows the histogram data for � = 10−1, which is only one

order of magnitude larger than that of Fig. 3.13a, but the results are no longer centered on the

dashed line.

3.3.3 Regression conditioning and over-�tting

The model of Eq. (3.19) is introduced by Hu et al. in [95], where it is claimed that the GC value

does not re�ect the real causal in�uence between x1 and x2. In the present work, it is shown that

this system also poses problems for NC estimation. Although the low variance of �1 of Eq. (3.19)

aids in the estimation of the parameters associated with x1[n], it also can cause the regressors to

be highly colinear, as one can write

x1[n − l] ≈ 0.8x1[n − l − 1] − 0.8x2[n − l − 1] (3.21)

so regressors x1[n − l], x1[n − l − 1] and x2[n − l − 1] are nearly linearly dependent. This can also be

characterized as a null space in the regressor matrix [X[N ] in Eq. (2.11)], in which variations in the

parameters have very little e�ect on the residual error, creating large variances in the parameter

estimation [see Eq. (2.17) for the distribution of the parameters under LSE]. When combined with

the relatively large variance found in x2, one can write

x2[n] ≈ 0.8x2[n − 1]+P−1∑l=1 �l[x1[n − l] − 0.8x1[n − l − 1] + 0.8x2[n − l − 1]] (3.22)

in which the �l are scalars that govern the deviation of the predicted parameters in the direction

given by the parameters in the brackets.

The increased model order also adversely a�ects the predictive error estimation, thus, GC

analysis. Since the model order is also used to estimate the variance of the residual error, GC
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values will change as the model order increases. The parameter estimation algorithm attempts to

match the spectrum of the regressand, so an increase in model order yields improvements in the

prediction using the disjoint model, even when using the joint observation model. The reduction

in the residual error of the estimated disjoint model causes the GC value for large model orders to

be lower than desired. This was analyzed for a particular model by Zhuo et al. in [220], where a

series of backward recursive operations was used to expand the the AR model. A similar approach

was taken by Grassmann in [79]. A general expansion and discussion is given in Sec. A.2.2. One

important discussion presented in [95] is that for overestimated model orders, GC can be invariant

to the model parameters,therefore model order estimation is an important aspect when estimating

causality strength using GC as well.

While methods of estimating model orders exist, such as using the Akaike Information Criterion

(AIC) [5] or Bayesian Information Criterion (BIC) [174], these criteria can only compare the quality

of di�erent models, but a di�erent method must be used to generate the models, as exhaustive

search of all possible combination of regressors is ordinarily prohibitive. Additionally, there are

instances where AIC and BIC perform sub-optimally and misestimate the model order. The topic

is still an active area of research, with new criteria still being developed [62].

observation models that contain terms with large delays, such as the observation model

described in Eq. (3.20) (which has one element of order four), further complicate the proper

regression model order selection. As shown in Fig. 3.11, there are instances in which LASSO

regression is unable to accurately estimate the model parameters, regardless of the regularization

factor.

Fig. 3.14 shows the histogram plots for three di�erent values of model order (M), 1, 2 and 6.

As expected, for M = 6, the variance of NC increases relative to M = 4. However, M = 1 performs

comparably to M = 4, which is surprising, since M = 1 cannot fully model the observation model

given in Eq. (3.20). In this particular case, it is preferable to underestimate the model order rather

than overestimating it.
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(a) M = 1 (b) M = 4 (c) M = 6
Figure 3.14: NC1→1 vs NC0,1→1 histogram plots as a function of �

3.3.4 Comparing NC and GC

For the two models studied, depending on the estimated model order and regularization, the NC

measure does not produce the expected results. However, this is not an issue with the measure

itself, but rather with the estimation of the model parameters. To compare the sensitivity to model

parameter uncertainty of NC to GC, the GC values were measured for the models described in

Eqs. (3.19) and (3.20).

For the model in Eq. (3.19), the theoretical values for the GC measures are GC1→2 = 0 and

GC2→1 ∈ [4.86, 5.38] (depending on the model order). These values indicate that the presence ofx1 does not improve the prediction of x2, inferring that x1 does not cause x2, but the presence ofx2 reduces the residual prediction error energy from 14 (for large M) to 140 times (for M = 1),
inferring x2 does cause x1.

In contrast to NC, the GC measure is not as sensitive to errors in the model parameter estimates.

GC2→1 remained relatively �at and close to the theoretical value for a wide variety of regularization

factors. More importantly, GC1→2 is close to zero, even when very little regularization is applied,

showing that there is no causal relationship from x2 into x1.
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For the observation model of Eq. (3.20), the GC measures are also robust to model uncertainty.

Figs. 3.15 and 3.16 shows the GC measures evaluated for M = 6. If excessive regularization

(� ≫ 10−2) is applied, the GC measure tends to 0, but for a wide range of values, the GC measures

closely approximate the theoretical values. However, GC1→2 is very small, even though the

contribution of x1 to x2 is signi�cant. This is due to the large autocorrelation of x2 and large

variance of �2, which leads x1 not to reduce the variance of the residual signi�cantly.
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Figure 3.15: Distribution of the GC2→1 estimates as a function of � for the model shown in Eq. (3.20)
and M = 6
3.4 Bias in NC estimates

Although this work focuses on examining the variance of NC estimates observed two exam-

ple models, a small bias was observed in the tested models. This subsection contains further

investigation of the bias in the NC estimates.

The analysis will be constrained to the bivariate case, where a signal y can be expressed as the

weighted sum of two signals x and z and a white noise process �. In order to increase clarity in

the notation, this appendix will utilize di�erent notation from the rest of paper. Instead of the ∗
superscript, the observation model parameters will have subscript 0, to avoid confusion between

the superscripts and the transpose operator. Instead of x1 and x2, signals x and z are used, so that
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Figure 3.16: Distribution of the GC1→2 estimates as a function of � for the model shown in Eq. (3.20)
and M = 6
no subscripts are needed and to make clear that the 0 subscript refers to the observation model,

rather than being an index. The separation into x and z also serves to more clearly denote the

di�erence between the parameter vectors associated with x and z, which will be called a0 and b0
respectively. The observation model, therefore, is written as

y[n] = aT0 x[n] + bT0 z[n] + �[n] (3.23)

where y[n] is the signal being modeled at time n, x[n] is the Ma × 1 vector of regressors associated

with signal x at time n (i.e. x[n] = {x[n], x[n − 1]… x[n − Ma + 1]}T ) and parameterized by theMa × 1 vector a0, z[n] is the Mb × 1 vector of regressors associated with signal z at time n (i.e.z[n] = {z[n], z[n − 1]… z[n −Mb + 1]}T ) and parameterized by the Mb × 1 vector b0 and � is a white

noise process.

For further simpli�cation of the calculations, Eq. (3.23) can be further condensed into a matrix

form that contains all N time samples as

Y = aT0 X + bT0 Z + � (3.24)

where Y = [y[n]y[n − 1]⋯ y[n − N + 1]]T is a 1 × N time-series vector of the regressand signal,X is the Ma × N regressor matrix where column j is x[n − j], Z is the Mb × N regressor matrix
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where each column j is z[n − j] and � = [�[n]�[n − 1]⋯ �[n − N + 1]]T . Vectors a0 and b0 remain

unchanged. Having de�ned these variables, NC0,x→y can be calculated

NC0,x→y = ||aT0 X||2||aT0 X||2 + ||bT0 Z||2 + ||�||2 (3.25)

This value is the desired NC value calculated assuming perfect parameter estimates. In these

examples, � are assumed to be non-zero for at least one element, to avoid degenerate cases where

the denominator is zero. For greater clarity, the x → y subscript will be dropped from the

following expressions, but for all subsequent analyses, NC should be understood to be NCx→y .

Using an estimated model de�ned by

Yp = aTX + bTZ (3.26)

allows the calculation of the residual

� = Y − Yp = ΔaTX + ΔbTZ + � (3.27)

where Δa = a0 − a and Δb = b0 − b. a0 and a are assumed to be of the same size. Whenever the

estimated order is not Ma, vectors a0 or a must be zero-padded such that their sizes match. The

same applies to b0 and b. This is similar to the approach in taken in Eq. (2.10) and is taken without

loss of generality. After obtaining the estimated model parameters, the NC estimate is evaluated

NC = ||aTX||2||aTX||2 + ||bTZ||2 + ||ΔaTX + ΔbTZ + �||2= ||aT0 X||2 − 2aT0 XX TΔa + ||ΔaTX||2||aT0 X||2 − 2aT0 XX TΔa + 2||ΔaTX||2 + ||bT0 Z||2 − 2bT0 ZZTΔb+ 2||ΔbTZ||2 + 2ΔaTXZTΔb + 2(ΔaTX + ΔbTZ)�T + ||�||2. (3.28)

Without further assumptions, this is as far as the expression can be simpli�ed. In the interest

of gaining further insight, a few additional assumptions are made. As � is assumed white, the

term (ΔaTX + ΔbTZ)T� asymptotically approaches 0, so it will be assumed to be small enough

to be disregarded in further analyses unless otherwise speci�ed. In the next subsections, four

distinct special cases will be analyzed that emulate some typical model estimation conditions.
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3.4.1 Case 1: ΔbTZ ≈ 0
The �rst case being analyzed is where ΔbTZ ≈ 0. This encompasses both the case in which Δb ≈ 0
(where the estimate of b ≈ b0) and the case in which Δb ⟂ Z (e.g. when x represents a FIR �lter

with zeros that coincide with the spectrum of Z or, in more algebraic terms, the vector Δb is inside

the null-space of matrix Z , due to its containing highly colinear terms).

First, two auxiliary variables are de�ned

� = aT0 XX TΔa||aT0 X||2 � = ||ΔaTX||2||aT0 X||2 (3.29)

where � represents the level of colinearity of Δa and aT0 in the inner product de�ned by the matrixXX T , which converges asymptotically to (N − 1)�X , where �X is the covariance matrix of X .

Geometrically, in the subspace de�ned by X , �a0X is the projection of Δa into a0 and � is the

ratio between the square of the norm of Δa and the norm of a0. It has been assumed here that||aT0 X||2 > 0, whereas the case where ||aT0 X||2 will be evaluated separately later in this subsection.

It can be shown that � ≥ 0 and �2 < � .

For ΔbTZ = 0, substituting � and � into Eq. (3.28) allows it to be rewritten as

NC = (1 − 2� + �)||aT0 X||2(1 − 2� + 2�)||aT0 X||2 + ||bT0 Z||2 + ||�||2 (3.30)

which can be manipulated using Eq. (3.25) into

NC = (1 − 2� + �)NC01 + 2NC0(� − �) (3.31)

Under these conditions, further assumptions are needed for further analysis. Under least

squares estimation of parameters, the error in the estimated variables is expected to be uncorrelated

with the variables being estimated (as long as aT0 X is uncorrelated with �). Therefore, the case for� = 0 will be explored �rst. In this case,

NC = (1 + �)NC01 + 2NC0� (3.32)

Notice how the numerator contains a 1 + � factor, while the denominator contains a 1 + 2NC0� .

This means that NC will be equal to NC0 if and only if � = 0; otherwise, it will be slightly biased

towards 0.5. Fig. 3.17 shows contour curves for di�erent values of NC0 and � .
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Figure 3.17: NC estimates for di�erent values of NC0 and �
For ||aT0 X||2 = 0, the expression needs a small modi�cation, but yields a similar expression

NC = ||ΔaTX||22||ΔaTX||2 + ||bT0 Z||2 + ||�||2 (3.33)

which also biases NC towards 0.5. Therefore, for any Δa such that ||ΔaTX||2 > 0, NC is expected

to be biased towards 0.5. Evidently, as long as the error in parameters is small (i.e. ||ΔaTX||2 ≪||aT0 X||2 + ||bT0 Z||2 + ||�||2), this bias is also small.

3.4.2 Case 2: ΔaTX ≈ 0
Similarly to Case 1, this analysis focuses varying only a single parameter vector (Δb), while

all terms related to the other parameter vectors (Δa) are disregarded. Also similarly to Case 1,

assuming ||aT0 X||2 > 0, two new auxiliary variables are de�ned.


 = bT0 ZZTΔb||aT0 X||2 � = ||ΔbTZ||2||aT0 X||2 (3.34)

Here, similarly to Eq. (3.29), � > 0 and 
 2 < � . By substituting Eq. (3.34) into Eq. (3.28), NC can be

expressed as

NC = NC01 + 2NC0(� − 
) (3.35)
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As in Case 1, under least square assumptions (and assuming bT0 Z is uncorrelated with �), 

can be assumed small. In this case, NC is biased towards 0. For ||aT0 X||2 = 0, NC0=0 regardless of �
and b. Therefore, there is no bias in NC if ||aT0 X||2 = 0.
3.4.3 Case 3: ΔaTX + ΔbTZ ≈ 0
The third case extends both previous cases. In the previous cases, it was assumed that the parame-

ters associated with one of the regressors were equal to the observation model parameters, or that

the error in the parameters was located in the null space of the regressor matrix (representing

ill-posed problems). However, the parameter error due to the regressor matrix conditioning was

constrained to a single signal. Case 3 deals with the case in which the parameter errors are spread

across multiple signals. This is represented by

ΔaTX + ΔbTZ ≈ 0 (3.36)

Substituting Eq. (3.36) and variables � , � and 
 into Eq. (3.28) yields

NC = (1 − 2� + �)NC01 + 2NC0(� − � − 
) (3.37)

Note that under the assumption of small |
 |, this reduces to Eq. (3.32), being equivalent to Case 1

and, therefore, subject to the same biasing towards 0.5. Likewise, the expression for ||aT0 X||2 = 0 is

NC = ||ΔaTX||22||ΔaTX||2 + ||bT0 Z||2 − 2bT0 ZZTΔb + ||�||2 (3.38)

3.4.4 Case 4: Regularization

In previous cases, � and 
 were assumed to be small. If parameter estimates are obtained using

LSE, this assumption is appropriate. However, if regularization methods are applied, the parameter

estimates are expected to be biased towards zero. The bias towards zero can be modeled as

ΔaTX = �a0TX ΔbTZ = �bT0 Z (3.39)
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for 0 ≤ � < 1. E�ectively, this introduces a bias such that ||aTX||2 < ||aT0 X||2 and ||bTZ||2 < ||bT0 Z||2,
and, therefore, ||�||2 > ||�||2. Under these conditions, for any 0 < � < 1 and NC0 > 0, the estimated

NC value is expected to be lower than NC0. By combining Eq. (3.39) and Eq. (3.28), the NC estimate

becomes

NC = NC01 + NC0 ( �2(1−�)2 ||y||2||a0TX||2 + 2 �(1−�) yT�||a0TX||2). (3.40)

As � is assumed to be white, it is uncorrelated with X and Y , so it can be further assumed thatyT� = ||�||2. Thus, Eq. (3.40) can be further manipulated into

NC = NC01 + NC0 ( �2(1−�)2 ||y||2||a0TX||2 + 2 �(1−�) ||�||2||a0TX||2). (3.41)

Note that both terms in � in the denominator are strictly positive for all 0 < � < 1, therefore

con�rming that any regularization is bound to reduce the estimate of NC, particularly for data

with low signal-to-noise ratio (i.e. ||aT0X||2 + ||b0TZ||2 ̸≫ ||�||2). Low signal-to-noise ratios already

imply low NC0 values, but Eq. (3.41) demonstrates that estimates of NC using regularization are

expected to be even lower than NC0.
3.4.4.1 Extending case 3

The behavior observed in the simulations for the observation model described by Eq. (3.19) forM ≥ 2, particularly the bifurcation observed for M = 5 and M = 6, requires further analysis. The

bifurcation behavior cannot be explained fully by Eq. (3.37) alone, and particularly, some of the

bifurcation points are for NC>0.5, which violates the assumption that |� | ≪ 1 and |
 | ≪ 1 . In

order to model this behavior, the simplifying assumptions must be reconsidered.

In order to observe the bifurcation behavior in the solutions, it is necessary to assume some

distributional characteristics of ΔaTX and ΔbTZ . In this analysis, ΔaTX and a0TX will be assumed

to be samples from a bivariate normal distribution. Note that these terms appear only as inner

products in Eq. (3.28), so the distributional characteristics need only apply to the sum of all the time
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Figure 3.18: Estimated probability density function of NC using exact and approximate expressions

samples of each term; therefore, for su�ciently large N , the Gaussian assumption can be made

under the central limit theorem, regardless of the distribution of the regressors and parameters.3

Obtaining the covariance matrix for ΔaTX and a0TX is not straightforward, as the distribu-

tional characteristics of X and Z depend on the observation model parameters (i.e. a0, b0 and the

distributional characteristics of �), which have interactions that are strongly coupled through a

feedback loop (a solution to a bivariate second-order regressive model can be found in Appendix A

and [147]). In a simulation study, however, these can be obtained empirically.

For the observation model of Eq. (3.19), a simulation was run using LSE to estimate the model

parameters, under the same conditions as in Sec. 3.3. NC was estimated via Eq. (2.46), using the

approximate form of Case 3 [Eq. (3.38)] and by calculating the mean and variances of the terms

in the equation and estimating the probability density function using Monte Carlo simulation.

The probability density functions were estimated using histograms and the results can be seen in

Fig. 3.18. Note the excellent agreement between the exact and approximate expressions.

The peak seen around 0.6 occurs due to the large values of aT0 XX TΔa + bT0 ZZTΔb. Fig. 3.19

was obtained by computing cases where ||aT0 X||2 + ||bT0 Z||2 + ||�||2 is greater or smaller than

3While the classical central limit theorem requires i.i.d. samples, later developments prove convergence to
Gaussian distributions under non-i.i.d. conditions [28, Theorem 27.5].
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Figure 3.19: Estimated probability density function of NC split into two cases

2aT0 XX TΔa + 2bT0 ZZTΔb separately, and estimating their probability function. The blue line

(unimodal function with mode close to 0.6) represent when the �rst term is greater than the second

term, with the orange line representing the opposite case.

This behavior is exacerbated for larger values of M as the variances of Δa and Δb tend to

increase with the increase of model order. Obviously, in most cases, the errors in the model

parameters are expected to be small such that the case shown with the orange line never occurs

and the NC estimate is close to NC0.
3.4.4.2 Discussion of bias

These 4 cases demonstrate that due to the nonlinear nature of the NC calculation, NC estimates

will often be biased towards a particular value. Although the studied cases represent particular

conditions, combinations of one or more of these cases should represent a wide range of problems.

This is not to say that NC is inherently �awed, but instead that special care must be taken when

estimating NC. Particularly when the parameter estimates are close enough to the parameters of

the observation model, the bias observed is small. Additionally, even a biased NC estimate can

still provide helpful information for causality analysis.
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3.5 Conclusion

The NC measure is an important development in causality analysis, addressing some limitations

of GC. Particularly, it is designed to measure the causality mechanism, unlike GC, which measures

the causal e�ect [19]. This ties to the relationship between GC and TE [14], since transferred

information is indicator of causality, but whose di�erences must not be neglected [127]. As with

many powerful analysis tools, proper care must be taken in order to avoid incorrect results. In this

chapter, two examples are given where NC is shown to be more susceptible to model parameter

estimation errors and over�tting than GC, particularly for ill-conditioned problems.

Although GC seems to be more robust to model parameter estimation, it still possesses

many of the limitations described in [95, 99, 220]. Another advantage of NC is that is allows

(pairwise) causality analysis for the entire model, while GC requires causality analysis to be done

by considering one additional regressor signal at a time.

When estimating NC, a proper regression method must be applied to prevent over�tting. In

this work, LASSO regression was used as an ad-hoc method of imposing sparsity in the model.

For more complex systems, more sophisticated methods of obtaining model structure might be

necessary. One recent method to obtain model structure is [149, 211, 217], which produces a

family of models with di�ering levels of complexity and residual error, allowing easy trade-o�

selection. Future work will explore the performance of such methods for better model structure

selection and causality measure estimation.

Although NC requires accurate parameter and model estimation, when these conditions are

met, NC provides reliable results that in some cases have more powerful explanatory power than

GC, more closely representing causality strength.
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CHAPTER 4

A NONLINEAR EXTENSION TO NEW CAUSALITY

4.1 Overview

The seminal version of NC is de�ned for (linear) AR models [95]. While suitable in many ap-

plications, modern applications increasingly �nd linear and time-invariant (LTI) models to be

insu�cient [25, 39]. At the same time, as most generalizations, it is important to extend the

applicability of a technique without losing its identifying characteristics. In this chapter, the

de�nition of NC is extended to NARMAX models. The new de�nition, henceforth called nonlinear

NC (NNC), not only maintains the same intuitive meaning, but identically reduces to the seminal

de�nition when applied to ARMAX models.

The chapter starts with a motivating problem and the reasoning for the choice of NARMAX

models. These are followed by the de�nition of the extension and examples of possible implemen-

tations. These are followed by application of this nonlinear extension into a series of progressively

more complex synthetic models and discussions of the results. The technique is then applied to a

EEG dataset and the results compared to GC and the seminal de�nition of NC. Finally, the results

are summarized and discussed.

A signi�cant portion of this chapter is quoted directly from [147] and [146] with a few

modi�cations for improved �ow and clarity.

4.2 Motivation

The ARMAX models used in the seminal formulation of NC of Eq. (2.46), contain only linear

combinations of the regressors x1, x2, … , xNs (and their time-delayed counterparts). observation

models containing signi�cant nonlinear terms, when modeled using ARMAX models, will less

accurately predict the outputs of the model, and, more importantly, inadequately represent the

underlying nature of the model. The following example illustrates one simple case where linear
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NC is unable to represent causal strength.

Example A: Simple quadratic model

Consider the nonlinear model in Eq. (4.1) which contains a quadratic term, where �1 and �2 are

samples from i.i.d. normally distributed processes with zero means and unity variances:x1[n] = 0.53x1[n − 1] + 0.5x2[n − 1] + �x22 [n − 1] + �1[n],x2[n] = 0.5x2[n − 1] + �2[n]. (4.1)

� is a coupling parameter that regulates the strength of the contribution of the quadratic term tox1. Although the model is relatively simple, the seminal de�nition of NC has no mechanism to

account for the quadratic term. A linear estimation model like that of Eq. (4.2) can be �t to predict

the x1, although at a reduced level of accuracy. As the e�ect of the quadratic term increases, an

estimated ARX model of cannot represent the internal mechanism of the observation model and

will produce an increasing prediction error variance. Consider the estimation model

x1[n] = M∑i=1 ai11x1[n − i] + M∑i=1 ai12x2[n − i] + �1[n]. (4.2)

For � = 0.5, the variance of x1 is � 2x1 = 3.80, the variance of x2 is � 2x2 = 1.33 and the variance of x22 is� 2x22 = 3.55. Using the model of Eq. (4.2), the optimum variance of the prediction error is � 2�1 = 1.95
(opposed to the variance of �1 which is � 2�1 = 1). The evaluated NC value estimates are found in

table 4.1.

Table 4.1: Linear NCxj→xk values for the model of Eq. (4.1)xjx1 x2xk x1 0.49 0.058x2 0 0.25

Considering the variances of x1 and x2 (and x22 ), notice that NCx2→x1 is small in comparison to

NCx1→x1 . Also note that the NC values for x1 and x2 add only to about 0.54, while the value which

represents the contribution of the prediction error of the model is relatively large (NC�1→x1 = 0.46).

For NC values over a range of � values, another undesirable result is observed. In Fig. 4.1,

the NC values for this model are plotted for � ∈ [0, 1]. Observe how, as � increases, NCx2→x1
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decreases and NCx1→x1 increases. This is contrary to the intuition that the in�uence of x2 over x1
is increasing as � increases. This behavior stems from the fact that the model is using past values
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Figure 4.1: NC values for the model of Eq. (4.1)

of x1 to estimate the value of x22 [n − 1], since (for � > 0), x1[n − 1] is correlated with x22 [n − 1],
whereas x2[n − 1] is not correlated to x22 [n − 1]. As � increases, the correlation between x1[n] andx22 [n − 1] increases, and so does NCx1→x1 .

Thus, it follows that the in�uence of x2 on x1 is not only underestimated when using the

seminal de�nition of NC, but can also be negatively correlated. Moreover, it shows that, for

observation models with signi�cant nonlinear components, the seminal de�nition of NC is unable

to properly assess the causal relationships between signals. △ End of Example A

4.3 Choice of NARMAX models

ARMAX models are the most general representation of scalar linear systems. As shown in the

previous section, the original de�nition of NC in terms of the parameters of a ARMAX model limits

its use to systems that can be well-modeled by linear models. Since no canonical representation

for all nonlinear models exists, a general nonlinear extension for NC is not possible. Particularly,
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for many nonlinear models, it is not possible to decompose the model into a sum of “contributions”

for each regressor [the concept of contribution will be later de�ned in Eq. (4.4)]. The seminal

de�nition of NC requires the model to be decomposable into a sum of contributions, so a general

extension of NC to all nonlinear models is infeasible.

Note that common LTI models comprise a subset of LTIiP models, so the extension of NC to

NARMAX models subsumes the original NC development inherently. As long as certain conditions

are met [discussed near Eq. (4.6)], the extension of NC developed in this work reduces to Eq. (2.46)

for linear models.

The modeling power of NARMAX models comes at the cost of increased di�culty in estimating

parameters. Due to the potentially large number of highly correlated regressors, over�tting and

slow or inaccurate convergence are common challenges faced when estimating model parameters

[11]. As a consequence, the quality of the models must be carefully evaluated, as NC values are

dependent on accurate model structure and parameter estimation [148]. Nevertheless, many tech-

niques have been developed speci�cally for nonlinear model selection and parameter estimation

[22, 25, 27, 81, 118, 201, 203, 214].

4.4 A nonlinear extension to NC for a restricted set of models

A straightforward extension of NC to treat the LTIiP model occurs by grouping 'p functions

according to the regressor signal upon which they depend (e.g., xq ||n−1n−M ). A tentative expression for

the nonlinear extension is as follows

NCxq→xp =
‖‖‖‖‖ Kq∑kq=1 apkq'qkq(xq ||n−1n−M)‖‖‖‖‖22Ns∑ℎ=1 ‖‖‖‖‖ Kℎ∑kℎ=1 apkℎ'ℎpkℎ(xℎ||n−1n−M)‖‖‖‖‖22 + ‖‖‖‖‖�p[n] + K�p∑k�p=1 apkq'kq(�p ||n−1n−M)‖‖‖‖‖22

, (4.3)

where Kℎ is the number of regressor functions that depend exclusively on xℎ||n−1n−M , 'ℎkℎ(xℎ||n−1n−M ) is

the kthℎ regressor function found in 'p that depends exclusively on xℎ||n−1n−M and apkℎ is the respective

parameter associated with 'ℎkℎ(xℎ||n−1n−M ). Note that this de�nition reduces identically to the seminal

de�nition of NC for linear models.
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This expression allows us to revisit the observation model of Eq. (4.1) and recompute the NC

values with this de�nition.

Example B: Simple quadratic model revisited

The NC values shown in table 4.2 are computed using Eq. (4.3) for the model described by Eq. (4.1)

for � = 0.5. When using a quadratic NARMAX model, the NC values are more intuitive than the

values found in Example A. NCx2→x1 is comparable to NCx1→x1 , just as the contribution of x2 to

the current value of x1 is comparable to the contributions of past values of x1 to the current value

of x1.
Table 4.2: Nonlinear NCxj→xk values for the model of Eq. (4.1)xjx1 x2xk x1 0.32 0.37x2 0 0.25

The NC and NNC values for the model of Eq. (4.1) are shown in Fig. 4.2 for varying values

of � . At � = 0, the NC and NNC values are equivalent, but as � increases, the values diverge

signi�cantly. As previously mentioned, the NC values follow a counterintuitive trend, with

NCx2→x1 decreasing as � increases, whereas the NNC values follow a more intuitive trend. Notice

that NNCx1→x1 remains almost constant over the range of � , where the small increase originates

from the increased SNR, as the variance of x1 increases with � whereas the variance of �1 does not.△ End of Example B

4.5 A comprehensive NNC de�nition

Although the de�nition of Eq. (4.3) is intuitive, it cannot be used with general NARMAX models

due to regressor functions that depend on multiple regressors (e.g., 'k[n] = x1[n − 1]x2[n − 2]).
The presence of regressor functions that depend on more than one signal poses an additional

challenge: how to best split the contribution across di�erent signals? This question also appears in

other causality related work [189]. Before answering this question, it is helpful to modify Eq. (4.3)

to account for these terms. By including a weighting function, �, to the contribution of each
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Figure 4.2: NC and NNC values for the model of Eq. (4.1)

regressor function, the NNC expression becomes

NCxq→xp = ‖‖‖‖ K∑k=1 apk'k�pq('k)‖‖‖‖22Ns∑ℎ=1 ‖‖‖‖ K∑k=1 apk'k�pℎ('k)‖‖‖‖22 + ‖‖‖‖�p[n] + K∑k=1 apk'k�p�('k)‖‖‖‖22 (4.4)

where 'k = 'k(x1||n−1n−M , x2||n−1n−M , … , xNs ||n−1n−M , �pn−1n−M)1 and �pq('k) is a function of 'k associated withxq → xp with the following properties

0 ≤ �pq('k) ≤ 1 (4.5a)

�p�('k) + N�∑q=1 �pq('k) = 1 (4.5b)

Further, the following constraints are required so that the de�nition of NC for linear models

remains as a special case:

�pq('k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 'k is a function of only xq ||n−1n−M ,0 if 'k does not depend on xq ||n−1n−M .

(4.6)

1The arguments have been omitted for clarity, but the de�nition of the regressor functions remains the same as
in Eq. (2.22), i.e., can potentially depend on any set of the previous inputs and outputs.
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Similarly to general nonlinear models, where no single concise representation is able to account

for all cases, a single de�nition for the weighting function �pq('k) is impossible. Even when

considering only LTIiP models, which can be concisely speci�ed by the NARMAX representation,

there is no canonical choice for set of regressor functions 'k . Instead, the NARMAX representation

requires the choice of the proper function set for the particular problem. A similar challenge is

present in this work. It is not possible to identify a unique de�nition of � that would be appropriate

for all applications of the method.

4.5.1 Form 1: �1 - create a new category for nonlinear cross-terms

The �rst form for � discriminates terms that only depend on a single regressor signal from signals

that depend on multiple regressors and assign them to separate categories. This way, the regressor

functions 'j[n] and 'k[n] are joined if there is a q ∈ 1, … , Ns such that 'j[n] and 'k[n] can be

expressed solely as functions of xq ||n−1n−M . This principle is used in the original de�nition of NC

for the linear regressors, where past values of a signal as weighted and summed (i.e., �ltered)

before the variance is estimated. The main distinction is that, in the linear NC de�nition, only

time-shifting is used (as it is a linear transformation) and scaling the regressors would be absorbed

in the parameter estimation. In other words, �1 can be de�ned as

�1pq('k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 'k is a function of only xq ||n−1n−M0 if 'k does not depend on xq ||n−1n−M or depends on more than one regressor

(4.7)

In order to satisfy Eq. (4.5b), a slight modi�cation of the set of regressor signals must be

made. Instead of x1, x2, … , xNs , the set of regressor signals must be augmented by the set of all

combinations of two or more signals (e.g., x1 ∪ x2, x1 ∪ x3, x1 ∪ x2 ∪ x3, etc.) For example, for a

bivariate observation model of the formx1[n] = a1x1[n − 1] + a2x1[n − 2] + a3x2[n − 1] + a4x2[n − 2]+a5x1[n − 1]x2[n − 1] + a6x1[n − 2]x2[n − 2] + �1[n] (4.8)
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the set of regressors is x1, x2 and x1 ∪ x2, as all the regressor functions can be expressed as a

function of x1, x2 or x1 ∪ x2. Note that, regardless of time and polynomial order, this set covers

all possibilities for bivariate nonlinear autoregressive with exogenous input (NARX) models,2

therefore the inclusion of terms such as x1[n − 1]x2[n − 2] or x1[n − 2]x2[n − 1] does not alter the

set.

To simplify notation, let us create a virtual regressor x3[n] = x1[n]x2[n], so the regressor set isx1, x2 and x3. Assuming the values for ak , for k ∈ 1, 2, … , 6, have been accurately estimated, the

expression for NCx3→x1 is therefore

NCx3→x1 = ‖a5x3[n − 1] + a6x3[n − 2]‖22‖a5x3[n − 1] + a6x3[n − 2]‖22 + ‖a1x1[n − 1] + a2x1[n − 2]‖22 +‖a3x2[n − 1] + a4x2[n − 2]‖22 + ‖‖�p[n]‖‖22 . (4.9)

It is not di�cult to verify that, with the exception of de�ning the new set of regressors (i.e.,x3[n] = x1[n]x2[n]), this de�nition of NC is equivalent to the seminal de�nition of NC. Moreover,

for linear estimated models, this de�nition of NC reduces to the seminal de�nition.

The �1 formulation is advantageous as it does not require de�ning weights for individual

regressor functions. This allows it to be used with any set of candidate regressor functions.

However, it creates additional regressors, which reduces the interpretability of the NC values.

4.5.2 Form 2: �2 - weight regressor functions equally across regressor signals

In order to avoid the creation of virtual regressors, the nonlinear contributions must be divided

across the di�erent regressor signals. Harnessing the knowledge of the arguments of each regressor

functions, �2 splits the contributions equally between the regressors. Thus, �2 is de�ned as

�2pq('k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1R if 'k is a function of R regressor signals, including xq ||n−1n−M ,0 if 'k does not depend on xq ||n−1n−M . (4.10)

Since this approach does not require the creation of new virtual regressors, the �nal NC values

can be easily mapped into the original signal set. For the observation model in Eq. (4.8), the NC

2To cover all NARMAX possibilities, permutations including �1[n] must also be included in the set
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value can be calculated (assuming perfect model structure and parameter estimation) as

NCx3→x1 = ‖‖‖a0x1[n − 1] + a1x1[n − 2] + a4x3[n−1]+a5x3[n−2]2 ‖‖‖22‖‖‖a0x1[n − 1] + a1x1[n − 2] + a4x3[n−1]+a5x3[n−2]2 ‖‖‖22 +‖‖‖a2x2[n − 1] + a3x2[n − 2] + a4x3[n−1]+a5x3[n−2]2 ‖‖‖22 + ‖‖�p[n]‖‖22
. (4.11)

As long as the predictive model can mimic the dynamics of the observation model using a

combination of regressor functions, both �1 and �2 will produce results similar to the observation

model. That is, suppose an observation model can be decomposed asx1[n] = F ∗1(x1||n−1n−M ) + F ∗12(x1||n−1n−M , x2||n−1n−M ) + F ∗2(x2||n−1n−M ) + �∗1[n], (4.12)

and the predictive model takes the formx1p[n] = K1−1∑k1=0 �1,k1'1,k1(x1||n−1n−M )
+ K12−1∑k12=0 �12,k12'12,k12(x1||n−1n−M , x2||n−1n−M )
+ K2−1∑k2=0 �2,k2'2,k2(x2||n−1n−M ),

(4.13)

then, as long as F ∗1(x1||n−1n−M ) ≈ K1−1∑k1=0 �1,k1'1,k1(x1||n−1n−M )
F ∗12(x1||n−1n−M , x2||n−1n−M ) ≈ K12−1∑k12=0 �12,k12'12,k12(x1||n−1n−M , x2||n−1n−M )

F ∗2(x2||n−1n−M ) ≈ K2−1∑k2=0 �2,k2'2,k2(x2||n−1n−M )
�∗1[n] ≈ x1[n] − x1p[n],

(4.14)

the NC value for the estimated model will approximate the NC value for the observation model

for both �1 and �2 forms.

The “equal splits” used in �2 simplify the analysis by avoiding the creation of new regressor

signals. However, �2 does not take the characteristics of the regressor functions and distributional

characteristics of the regressors into account. Particularly, for regressor functions that depend

much more strongly on one regressor rather than another, it might be bene�cial to implement a

di�erent weighting function.

85



4.5.3 Form 3: �3 - weight regressor functions across regressor signals according to an
application (model) dependent criterion

Since no canonical form of distributing the contributions in nonlinear regressor functions exists,�1 and �2 are practical heuristic methods of approximately estimating causality strength (just as

"true causality" is di�culty to de�ne and measure [103]). Therefore, there is no need to limit NNC

to pre-de�ned �s. The only requirement is that the function � �t the de�nition of a probability

mass function over the set of regressors and that it satisfy Eq. (4.6).

Certain regressor functions that depend on multiple regressors may not be equally a�ected by

each of the regressors. The inhomogeneity of the in�uence may be due to the regressor function

or the distributional characteristics of the regressors. For example, suppose that x1 and x2 are

independent discrete random variables taken from Bernoulli distributions with parameters p1 andp2 respectively. Suppose also that 'k(x1, x2) = AND(x1, x2), where AND() is the binary “and” operator.

Note that this regressor function is perfectly symmetrical, as AND(x1, x2) = AND(x2, x1), however,

for p1 ≫ p2, the value of x2 contains more information on the output of 'k than x1. As another

example, suppose that x1 and x2 are independent uniformly distributed random variables with

support x1, x2 ∈ [0, 1]. Suppose also that 'k(x1, x2) = x1 sin(2�x2). In this case, the variables are

similarly distributed, but their e�ects upon the regressor function are not.

In such cases, it is desirable to split the contribution of the regressor function unequally across

the regressors. One possible approach would be to weight the contributions by the predictive

power of x1n−1n−M and x1n−1n−M to 'k . One such method would be to use GC or TE to weight the

contributions

�GCpq ('k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 'kdepends only on xq

GCxq→'kNs∑ℎ=1GCxℎ→'k , otherwise, (4.15)

where the �rst case is necessary as GC tends to in�nity for deterministic expressions. Note that the

second case tends to unity when GCxq→'k approaches in�nity.3 Note also that Eq. (4.15) satis�es

3Although it is possible for the second case not to converge to unity, this is only true if for some ℎ ≠ q there is
at least one GCxℎ→'k that also tends to in�nity. This would only happen if 'k is deterministic for more than one
regressor signal, a degenerate case.
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Eq. (4.6). However, there is an increased onus of estimating the GC values.

This example shows one way that contributions from regressor functions could be weighted

across di�erent regressors. Besides this example, there is an in�nite set other possible variations

that satisfy Eq. (4.6), but that might produce vastly di�erent NC values. The choice and design of

new � weighting functions requires careful consideration and problem speci�c knowledge.

4.5.4 Spectral nonlinear new causality

A spectral expansion to NNC follows the same logic shown in Sec. 2.5.6, where the DTFT of the

numerator is taken before the norm calculation, which yields

SNCxq→xp (f ) =
‖‖‖‖‖

{ K∑k=1 apk'k�pq('k)} (f )‖‖‖‖‖22N�∑ℎ=1 ‖‖‖‖ K∑k=1 apk'k�pℎ('k)‖‖‖‖22 + ‖‖‖‖�p[n] + K∑k=1 apk'k�p�('k)‖‖‖‖22 . (4.16)

Similarly to Eq. (2.49), this equation decomposes the contributions into their spectral com-

ponents. However, an important distinction between Eq. (2.49) and Eq. (4.16) is that nonlinear

models allow for cross-frequency couplings to be shown. These cross-frequency e�ects have been

observed between planetary waves and tides [107] and EEG signals under various conditions

[75, 83, 144, 178].

4.6 Discussion and analysis through example models

Although the choice of weighting function � adds a additional complexity and uncertainty to the

estimation of NC values, it is important to point out that the choice of function � belongs more

closely to the process of model selection and data pre-processing than causality estimation per se.

That is, causality analysis tools are used to estimate characteristics or gain insight about systems

whose internal properties are unknown.

For example, evoked potentials (EPs) are measured electrical potentials from the scalp im-

mediately following a particular stimulus (e.g., visual, auditory, tactile, etc.). EPs can be used in

noninvasive tests of sensory pathway abstandardizties, language and speech disorders, among
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other uses. However, due to anatomy and tissue impedance, electric potential measurements

contain a signi�cant amount of interchannel crosstalk, which may obscure the anatomical and tem-

poral properties of the recorded EPs [191]. Since their characteristics are of the utmost importance

to causality analysis, EP signals are commonly preprocessed using Current Source Density (CSD)

or other spatio-temporal sharpening methods. However, the spatial component of these methods

alters the recorded EPs, which in turn alter the NC values (arguably in a way that enhances the

analysis).

Just as the seminal de�nition of NC is not transformation invariant (with the notable exception

of uniform scaling and time-shifts), the nonlinear extension is not invariant to changes in the set

of regressor functions. Similarly, the choice of � weighting functions or regressor standardization

falls within which assumptions better �t the current analysis. Thus, it is important to employ a

priori knowledge about the systems being studied to obtain the most useful NC values possible.

The following example shows how under typical conditions, linear transformations done as data

preprocessing may a�ect NC values.

Example C: E�ects of transformations on NC values

In many engineering applications, the desired signals cannot be directly obtained (e.g., mixture

ratios inside rocket engines due to the extremely high temperatures [142], or brain electric activity

due to health risks and costs associated with intrusive implants [1, 207]), but instead, the signals

are measured indirectly and estimated using di�erent modeling techniques, such as Kalman �lters

[20, 142]. For EEG signals, the choice of reference to the unipolar measurements has also shown

to a�ect the outcomes of the analysis [38]. Indirect measurement not only reduces the signal

to noise ratio, but also limits the spatio-temporal resolution available. This example aims at

demonstrating that modeling and a priori knowledge is critical to NC estimation. Here, a simple

spatial transformation is applied to a simple three-signal model and the e�ect of the transformation

to NC measurements will be shown.

The second-order jointly regressive model in Eq. (4.17) possesses simple relationships among

its signals, i.e., x1 and x2 “cause” x1, but x3 does not “cause” x1. Similarly, x2 and x3 “cause” x2,
88



whereas x1 does not. Finally x3 and x1 “cause” x3, but x2 does not:x1[n] = 0.8x1[n − 1] + 0.15x2[n − 2] + �1[n],x2[n] = 0.8x2[n − 1] + 0.1x3[n − 2] + �2[n],x3[n] = 0.5x3[n − 1] + 0.40x1[n − 2] + �3[n]. (4.17)

Assuming that �k , k ∈ 1, 2, 3 are samples taken from independent i.i.d. normally distributed

processes with zero means and unity variances, the NCxj→xk values (rounded to two signi�cant

�gures) are computed and displayed in table 4.3. Although extremely important to NC value

estimation, we are not concerned with model topology or model parameter estimation in this

example; instead, the observation model topology and parameters will be assumed to be known

(or "perfectly" estimated). In general, model estimation adds an additional challenge to NC value

estimation and models with highly correlated signals lead to higher variance in the parameter

estimates and, in turn, higher variances in the NC value estimates [148].

Table 4.3: NCxj→xk values for the model in Eq. (4.17)xjx1 x2 x3xk x1 0.70 0.021 0x2 0 0.68 0.011x3 0.26 0 0.35

The NC values in table 4.3 provide intuition about the model (e.g., the current value of x1
depends on past values of x1 and x2, with x1 having a greater in�uence and x3 having no direct

in�uence on x1).
Now suppose that the same signals cannot be measured directly, but must be estimated using

surface sensors, such that the signals contain interference from surrounding sources. In this model

involving three signals, the interference is assumed to be uniform and controlled by the parameter� , as in Eq. (4.18). ⎡⎢⎢⎢⎢⎢⎣
y1[n]y2[n]y3[n]

⎤⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎢⎢⎢⎣

x1[n] + � (x2[n] + x3[n])x2[n] + � (x1[n] + x3[n])x3[n] + � (x1[n] + x2[n])
⎤⎥⎥⎥⎥⎥⎦
= ⎡⎢⎢⎢⎢⎢⎣
1 � �� 1 �� � 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
x1[n]x2[n]x3[n]

⎤⎥⎥⎥⎥⎥⎦
. (4.18)
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For � = 0.15, the NCyj→yk values are shown in table 4.4. Note how the NCyj→y3 row di�ers from

NCxj→x3 of table 4.3. In particular, this analysis implies that past values of y1 have greater in�uence

on the current value of y3 than past values of y3, a property which is not shared with x1 and x3.
Table 4.4: NCyj→yk values for the model of Eq. (4.18)yjy1 y2 y3yk y1 0.72 0.020 0.05y2 0.0033 0.68 0.0044y3 0.32 0.00068 0.29

This example shows that, even for simple linear models, careful consideration is necessary not

only for model topology and model parameter estimation, but also for assumptions used when

preprocessing data. The preprocessing of data using a priori knowledge about the studied system

is necessary for more "useful" NC estimates. This observation will be helpful when discussing the

increased complexity that the class of nonlinear models adds to this work. △ End of Example C

In the same way as data preprocessing can be used to enhance linear NC values, proper

preprocessing is essential to nonlinear NC value estimation. One occasion where this is particularly

apparent when regressors do not possess zero mean. For example, let 'k[n − 1] = x1[n − 1]x2[n − 1].
Intuitively, this regressor function depends equally on x1[n − 1] and x2[n − 1]. However, suppose

that x1[n − 1] and x2[n − 1] are distributed as multivariate normal random variables with means� = [ �10 ] and covariance matrix � = [ �21 ��1�2��1�2 �22 ]. If

‖�1‖ ≫ �1�2 ≫ �1 (4.19)

then the value of x1[n−1] is likely to be close to �1. Therefore most of the variation seen in 'k comes

from variations in x2[n−1], not x1[n−1]. In other words, regressor functions 'k1 = x1[n−1]x2[n−1]
and 'k2 = x2[n − 1] would produce very di�erent results than 'k3 = (x1[n − 1] − �1)x2[n − 1] and'k4 = x2[n − 1]. For 'k1 and 'k2 , the NC value for x1 would be larger than the NC values computed
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using 'k3 and 'k4 and, likewise, the NC value for x2 would be smaller than the NC values computed

using 'k3 and 'k4 .
Standardization is a common technique for data preprocessing. Standardization involves

removing the means and dividing by standard deviation. While scaling of the regressors does

not a�ect NC values, many regression methods bene�t from standardization in the form of faster

convergence or improved numerical stability.

For nonlinear models, standardization can have a drastic e�ect on NC values. The choice

of removing the means of regressor signals prior to computing the regressor functions or not

standardizing depends mainly on assumptions on the models and the causality information desired.

Is the information contained within the signals an absolute or relative measure? Many phenomena

depend linearly on absolute quantities (e.g., the average sound speed on a �uid depends on the

mean absolute pressure, �nal volume in an isobaric process depends on the absolute temperature,

etc.) On the other hand, sound is a measure of relative pressure �uctuations measured at a

microphone (or hydrophone for underwater measurements). The sound pressure �uctuations are

several orders of magnitude smaller than the mean absolute pressure, therefore standardization

is desirable. Nonetheless, in some cases, even choosing a reference value can be challenging

for processes that are not wide-sense stationary and for measurements that do not have a clear

reference point [218] (such as ERP and EEG signals).

When 'k is not an odd function, even a linear regressor signal symmetrically distributed

with zero mean might produce an output with nonzero mean. For example, suppose that two

independent signals, x1 and x2 were uniformly distributed with support [−1, 1]. Then |x1[n]| has

mean 0.5, but the regressor function 'k[n] = ||x1[n]|| ⋅ x2[n] has zero mean. While, 'k has zero mean,

it is important to consider whether a combination of 'pl[n] = x2[n] and 'pm[n] = (|x1[n]|−0.5)x2[n]
(both also having zero mean) better represent the dynamics of interest in the system being studied.

Ultimately, the di�erences observed between NC computed with regressors with means

removed or not is a modeling issue more than a limitation of the method. Time series data must

be analyzed prior to model speci�cation [78] in order to remove undesired artifacts. Any type
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of preprocessing will modify the outcomes of the analysis, but whether it will be bene�cial to a

particular analysis depends on the particular characteristics of the system. One must evaluate the

assumptions when choosing preprocessing data as to produce “useful” models. As shown in [147],

the reliability of NC value estimation is closely related to the models used, so a careful selection

o� preprocessing and model estimation is doubly important for NC analysis.

To demonstrate the nonlinear extension of NC, two models used in [81] are tested to demon-

strate the performance of the nonlinear extension of NC. The �rst example model given in [81] is

noise-free as shown in Eq. (4.20):

Example D: First model from [81]

x1[n] = 0.5x1[n − 1] + 0.8x2[n − 2] + x22 [n − 1] − 0.05x21 [n − 2] + 0.5, (4.20)

where x2 is assumed to be sampled from an i.i.d. uniform distribution process bounded by [−1, 1].x1 has 1.42 mean and 0.4 variance, whereas x2 has zero mean and variance 1/3. Since the equation

for x1 is noise-free, the sum of all NCxj→x1 values is expected to be unity, which is con�rmed by

table 4.5, whereas the sum of all NCxj→x2 , with x2 being i.i.d., is zero. Note that, in this instance,

standardizing the regressors and regressand yield no di�erence, as there are no nonlinear cross-

terms. The absence of nonlinear cross-terms also means that any weighting function � following

Eq. (4.6) produces identical results. An example where nonlinear cross-terms are present and the

standardization a�ects the NC estimates and further elaboration on this e�ect are given in the

next example.

Table 4.5: NCxj→xk values for the model of Eq. (4.20)xjx1 x2xk x1 0.25 0.75x2 0 0

△ End of Example D
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Example E: Second model from [81]

The second model example used in [81] is shown in Eq. (4.21) below. In [81], the model is used

to evaluate how the robust model structure selection (RMSS) method proposed in [81] behaves

when the nonlinear regressor function in the observation model is not included the candidate

nonlinear regressor functions, but instead a Volterra expansion with two time lags and up to order

3 is applied to x1 and x2,
x1[n] = −x2[n − 1]√|x1[n − 1]| + 0.4x22 [n − 1] + 0.8x2[n − 1]x2[n − 2] + �1[n], (4.21)

where x2 is assumed to be uniformly distributed on [−1, 1] and �1[n] is white noise with zero

mean and �nite variation. The variance of �1 is adjusted to produce di�erent SNR values (i.e., 0dB,

10dB, 15dB, 50dB and noise-free in the paper). Eq. (4.21) poses a particular problem for NC value

estimation using Volterra expansions as the term x2[n − 1]√|x1[n − 1]| cannot be easily expanded

using polynomials since
√|x| is not di�erentiable at x = 0. Further complicating NC estimation is

that a polynomial expansion of x2[n − 1]√|x1[n − 1]|, takes the form

x2[n − 1]√|x1[n − 1]| ≈ x2[n − 1] (�0 + �1x1[n − 1] + �2x21 [n − 1] + ⋯) . (4.22)

Note how most the terms in the right-hand side would have the same �1 and �2 value (i.e., 0.5 for

both x1 and x2 in the case of �1 and a separate category that depends on x1 and x2 for �1), but the

term x2[n − 1]�0 only depends on x2 and therefore would be counted entirely towards NCx2→x1 ,
rather than sharing the contributions.

To observe the e�ect of standardization, tests were conducted at 10dB and 50dB SNR using

the original and standardized regressors. The tests included NC values for
√|x1[n − 1]| as one of

the candidate functions and Volterra expansions of third and �fth order. The results for 10dB and

50dB SNR are shown in tables 4.6 and 4.7, respectively.

Although the value for NC using the non-standardized
√|x| candidate regressor function

di�ers signi�cantly from the others values, the NC values computed with the standardized
√|x|

are very similar to those computed with �fth-order polynomials. The discrepancy between NC

values computed with the non-standardized
√|x| and the standardized

√|x| is a consequence of the
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Table 4.6: NCxj→x1 values for the model of Eq. (4.21) with 10dB SNR

Poly.
Order

Volterra With
√|x|

Not standardized Standardized Not standardized Standardizedx1 x2 x1 x2 x1 x2 x1 x2
3 0.028 0.83 0.023 0.84

0.17 0.70 0.028 0.87
5 0.044 0.83 0.035 0.84

Table 4.7: NCxj→x1 values for the model of Eq. (4.21) with 50dB SNR

Poly.
Order

Volterra With
√|x|

Not standardized Standardized Not standardized Standardizedx1 x2 x1 x2 x1 x2 x1 x2
3 0.038 0.92 0.029 0.93

0.18 0.82 0.040 0.96
5 0.058 0.92 0.040 0.94

�0x2[n − 1] term from Eq. (4.22), which is assigned to solely to NCx2→x1 , whereas, being a function

of both x1 and x2, the contributions of x2[n − 1]√|x1[n − 1]| depends on both x1 and x2. If � were

set to split the contribution of x2[n − 1] equally across x1 and x2, all the NC values would be in

close agreement.

Because
√|x| cannot be well modeled with polynomials, modeling Eq. (4.21) with Volterra

�lters limits the accuracy of the predictive model. To observe how a similarly complex, but

di�erentiable model behaves, the
√|x| is be replaced with a tanh(x) term, a sigmoid function.

Functions that exhibit saturation, like sigmoids, are poorly approximated with polynomials at

the extremes, but can produce reasonable approximations if the polynomial order is high enough

and/or the input has small variance. The resulting di�erence equation of replacing
√|x| withtanh(x1[n − 1]) in Eq. (4.21) is shown in Eq. (4.23),

x1[n] = −2x2[n − 1] tanh(x1[n − 1]) + 0.5x22 [n − 1] + 0.5x2[n − 1]x2[n − 2] + �1[n]. (4.23)

For this modi�ed observation model, the same tests were conducted for 10dB and 50dB SNR.

Again, the Volterra expansion was applied with two time lags and polynomial orders of three and

�ve, and a prediction model was created with tanh(x) as one of the candidate regressor functions.

The results are found in tables tables 4.8 and 4.9. Note how in this case, the results between the

standardized and non-standardized cases are in closer agreement as the mean of x1 is closer to
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zero [since the x2[n − 1] tanh(x1[n − 1]) term does not introduce bias, only the x2[n − 1]2 term does].

The Volterra results are limited by the term containing tanh(x) function being approximated only

by �nite order polynomials. Nevertheless, in both cases, the Volterra and tanh(x) results show

good agreement.

Table 4.8: NCxj→x1 values for the model of Eq. (4.23) with 10dB SNR

Poly.
Order

Volterra With tanh(x)
Not standardized Standardized Not standardized Standardizedx1 x2 x1 x2 x1 x2 x1 x2

3 0.26 0.55 0.24 0.58
0.29 0.55 0.26 0.58

5 0.28 0.55 0.26 0.59

Table 4.9: NCxj→x1 values for the model of Eq. (4.23) with 50dB SNR

Poly.
Order

Volterra With tanh(x)
Not standardized Standardized Not standardized Standardizedx1 x2 x1 x2 x1 x2 x1 x2

3 0.28 0.69 0.25 0.72
0.31 0.69 0.26 0.73

5 0.31 0.69 0.26 0.74

Due to the di�culty in properly estimating parameter and topology for nonlinear models, it

is not advisable to blindly increase the order of the polynomial expansions [11]. In addition to

over�tting, NC value quality requires the estimated model structure and parameters to represent

the observation model. Nonlinearity can often create complex relationships among regressors,

such that high order regressor models might have good �tness and even generalize well, but might

misrepresent the underlying model structure.

Due to the complex interaction among regressors and noise, instead of representing tanh(x) as

a Taylor series, the regression algorithm will likely �nd a more compact set of regressor functions

which produce lower prediction error. This compact set does not necessarily preserve the same

relationship between x1 and x2, so indiscriminately increasing the model order leads to results

tending towards 1/Ns. This is similar to the behavior shown in Sec. 3.4, where the several scenarios

are discussed where NC estimates exhibit bias under least squares estimation.△ End of Example E
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4.7 Application: EEG data

The EEG dataset used in [150] is used to compare NNC to the performance of GC and NC. Although

most of the power of EEG signals can be predicted well using simple MVAR models, EEG signals

contain nonlinear components that contain important information [140, 162, 182, 186]. Since

linear predictive estimation models are able to reasonably represent the gross features of EEG

signals, the improvement in NNC application is expected to be modest. Experiments using digital

�lters are used to highlight the nonlinear components which will be compared to the un�ltered

results.

The data were made publicly available by Nolte et al. [150], but obtained from Tom Brismar of

the Karolinska Institute in Stockholm. The dataset contains EEG measurements for 10 subjects,

sampled at 256Hz using the International 10–20 system, with 19 channels available using linked

mastoid reference for the unipolar measurements. The measurements were made while subjects

kept their eyes closed. The subjects were asked to open their eyes for 5 seconds every minute.

The records contain about 200 segments of 4 seconds, which were recorded while subjects had

their eyes closed. The location of the electrodes are shown in Fig. 4.3a, with the channel indices

used in the dataset shown in Fig. 4.3b.

Fp1 Fp2

F3 F4

C3 C4

P3 P4

O1 O2

F7 F8

T3 T4

T5 T6

Fz

Cz

Pz

(a) Electrode labels

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17

18

19

(b) Electrode index in dataset

Figure 4.3: 10-20 International System Electrode Location Diagram
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Figure 4.4: Spectrum of the Fp1 channel of the EEG recording

The signals contain a � rhythm component (8-13 Hz band) at approximately 10Hz. All apparent

artifacts have been removed from the data by Nolte et al. prior to the publication of the data. The

10 recordings were selected out of a pool of 88 recordings based on estimated signal to noise ratio.

The database contains no subject identi�able information.

While no ground truth is possible for these data, it is well established in literature that

information �ow for � and � waves follow a posterior-to-anterior (front to back) pattern [89, 150]

during resting states. For these experiment, the �ow between the left pre-frontal cortex (Fp1)

channel and the right occipital (O2) and right parietal (P4) channels were considered. The � waves

�ow in an anterior-to-posterior pattern [89] under similar conditions.

The time-series were further processed using a notch �lter to remove 50Hz line noise and a

high-pass Butterworth �lter of order 10 with cuto� frequency at 7.5Hz to remove low frequency

signal drifts and � waves. The recordings were split into 202 segments of 4 seconds each. The

spectrum of the entire signal and for the �rst segment for the Fp1 channel are shown in Fig. 4.4.

The models used to evaluate GC and NC were 3rd order AR/ARX and ARX models respectively.

The models used to evaluate NNC and SNNC were 3rd order polynomial expansions of the regres-

sors used to evaluate NC. The model parameters were evaluated using LASSO using four-fold
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Figure 4.5: Average of SNNCFp1→O2 values of subject 1

cross-validation. The average of the SNNC values for the xFp1 into xO2 test is shown in Fig. 4.5.

The signi�cance numbers were obtained using trial-shu�ing [37, 196]. For each jth segment

output time-series, the GC, NC and NNC values were calculated using the input time-series of allkth segments, the GC, NC and NNC values evaluated for j ≠ k were used to estimate the distribution

of GC, NC and NNC under the non-causal assumption. The distributions were evaluated using

kernel estimation technique [88]. Since the pre-frontal cortex is reasonably distant from parietal

and occipital regions, no spatial sharpening procedure is applied. Additionally, since no activity is

being executed by subjects and (particularly) the 4 second segments are not related to the (non)

activity of the subjects, no data alignment procedure is done and trials are assumed independent.

The GC, NC and NNC evaluated for j = k were evaluated against that distribution to evaluate thep-value of that trial. The trials were considered signi�cant using a Neyman-Pearson test with

maximum of 1% false positives.

To highlight the nonlinear relationships in the EEG signal, the tests were repeated three times:

�rst as described above, second by �ltering the � rhythm frequencies and lower and third by

�ltering the � rhythm (13-35Hz) frequencies and lower. The signals were �ltered using Chebyshev

type II high-pass �lters of order 10 at cut o� frequencies 13.5Hz and 35Hz respectively. In the
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models used to evaluate NNC, the �lters are applied after the polynomial expansions, to preserve

the contribution of the � waves into � and higher bands due to the harmonic distortion. For the

tests using the 13.5Hz high-pass �lters, the SNNC was also evaluated between 18Hz and 28Hz,

which roughly correspond to twice the frequency of the � waves.

During the �rst test, all of the measures identi�ed a strong relationship between the Fp1 and

O2, but were unable to di�erentiate direction of �ow between Fp1 and O2, having both high levels

of signi�cance in both directions, with only SNNC having signi�cantly higher rejection in the O2

to Fp1 direction. Applying the �lter with a cuto� frequency of 13.5Hz reveals the directivity and

also more di�erences between the measures. When �ltering both � and � bands, the measures

fail to indicate the strong connectivity between Fp1 and O2, partially due to lower SNR and

electromyographic interference [143]. The results are shown in table 4.10 and table 4.11, where

the best two results4 are in bold.

Table 4.10: GC, NC, NNC, and SNNC results on whether to accept xFp1 causes xO2

Un�ltered Filtered at 13.5Hz Filtered at 35Hz
GC 0.851 0.535 0.228
NC 0.851 0.614 0.267

NNC 0.772 0.525 0.168
SNNC 0.812 0.674 0.891

Table 4.11: GC, NC, NNC, and SNNC results on whether to reject xO2 causes xFp1

Un�ltered Filtered at 13.5Hz Filtered at 35Hz
GC 0.139 0.604 0.861
NC 0.139 0.545 0.861

NNC 0.158 0.723 0.861
SNNC 0.386 0.743 0.99

In the tests with the high-pass �lter with cut-o� frequency at 13.5Hz, SNNC performed the

best at both accepting xFp1 causing xO2 and rejecting xO2 causing xFp1. The NNC result was also

able to reject xO2 causing xFp1 at a comparable rate to NNC and were about 20% higher relative

to GC. The NC results seem to indicate that bias towards signi�cance as it consistently assigned

4When multiple measures perform equally, more than two entries may boldened.
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highest signi�cance to tests out of all measures. The GC results show no similar bias, but show

lower selectivity than SNNC.

The receiver operating characteristic curves for the un�ltered tests and the tests �ltered at

13.5Hz regarding Fp1 and O2 are shown in Figs. 4.6 and 4.7, where Fp1 causing O2 is assumed

true positives and O2 causing Fp1 is assumed as a false positive. In Fig. 4.6, the improvement of

SNNC over the other measures can be seen more clearly, where only the higher rejection of O2

causing Fp1 is seen in table 4.11. In Fig. 4.7, both NNC and SNNC perform better than the other

measures, but quite similarly to each other.
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Figure 4.6: Receiver operating characteristic curves for the un�ltered tests

The tests were repeated computing the causality measures between the Fp1 and P4 channels.

The results are shown in table 4.12 and table 4.13. For the un�ltered signals, all tested methods

were better able to show the directionality of information �ow than the tests with Fp1 and O2.

Nevertheless, the rate of signi�cant results for xFp1 causing xP4 are also smaller. The rate of

signi�cant results for the signals �ltered at 13.5Hz are higher than the un�ltered ones for xFp1

causing xP4 and are comparable to the un�ltered results found in table 4.10. The rejection rates forxO2 causing xP4 for signals �ltered at 13.5Hz are similar to table 4.11, where NNC and SNNC are

both signi�cantly superior to GC and NC (here by 27% and 42% respectively).
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Figure 4.7: Receiver operating characteristic curves for 13.5Hz

Table 4.12: GC, NC, NNC, and SNNC results on whether to accept xFp1 causes xP4

Un�ltered Filtered at 13.5Hz Filtered at 35Hz
GC 0.653 0.891 0.851
NC 0.634 0.891 0.851

NNC 0.593 0.842 0.743
SNNC 0.624 0.772 0.168

Table 4.13: GC, NC, NNC, and SNNC results on whether to reject xP4 causes xFp1

Un�ltered Filtered at 13.5Hz Filtered at 35Hz
GC 0.545 0.535 0.465
NC 0.634 0.416 0.347

NNC 0.564 0.683 0.594
SNNC 0.574 0.762 0.881

The receiver operating characteristic curves for the un�ltered tests and the tests �ltered at

13.5Hz regarding Fp1 and P4 are shown in Figs. 4.6 and 4.7, where Fp1 causing P4 is assumed true

positives and P4 causing Fp1 is assumed as a false positive. In Fig. 4.6, the NNC and SNNC results

are worse than NC, although NNC achieves similar results in the small false positive rate region

and SNNC achieves similar results to NC for large false positive rates. In Fig. 4.7, the advantage

of NNC and SNNC over NC is visible in the small false positive rate region, with the advantage

diminishing as the false positive rate increases.
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Figure 4.8: Receiver operating characteristic curves for the un�ltered tests

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te GC

NC

SNC

NNC

SNNC

1-to-1

Figure 4.9: Receiver operating characteristic curves for 13.5Hz

4.8 Discussion of � functions and preprocessing

The properties of the weighting function � quali�es it as a probability mass function. In fact,

the weighting function � operates similarly to a probability mass function in Eq. (4.4). Since�pq('k) de�nes how much of the contribution of apk'k should be attributed to xp , this would be

102



equivalent of evaluating the expected value of the contribution attributed to assuming it has

probability �pq('k) of being apk'k and (1−�pq('k)) probability of being 0. Under the same rationale,�2 de�nes the indicator function of greatest entropy, which makes no a priori assumptions about

the regressor functions.

One of the remaining challenges for the development of a uni�ed nonlinear extension of NC

is the choice of the “correct” function �. This begs the question of what “true causality” and the

purpose of causality analysis are. As both GC and NC are based on causality as de�ned by Hume

[103], it is helpful to point out that Hume was concerned mostly with the epistemological aspect

of causality, rather than an ontological one. Similarly, it would be naive to assert that signal xq
“causes” xp as a matter of fact, without careful consideration of a priori knowledge. Similarly,

the appropriate choice of � relies on understanding what is the most useful manner to assign

contributions given a particular set of regressor functions and the system being observed.

The simulations concerning the model from Eq. (4.21) show how standardizing the regressors

changes the NC estimates. Additionally, due to the characteristics of the nonlinear model from

Eq. (4.21), the Volterra �lter had limited success at estimating the contribution of past values of x1
to the current value of x1, as x1 did not have zero mean and, therefore, some of the contribution ofx1 was misattributed to x2. Analogously to the choice of candidate regressor functions, the choice

of � function relies on careful consideration of the system being modeled.

Additionally, since the NC value is derived from models, it is important to distinguish the

systems from which the data are gathered from the models used to represent them. For exam-

ple, one could develop very accurate models to predict sunrise and sunset times without ever

considering whether the sun still exists. For such models, GC and NC would suggest that the

existence of the sun has no impact on sunrise and sunset times, an absurd conclusion. Instead,

an epistemological interpretation of causality analysis yields more useful interpretations, the

knowledge of the e�ects of the sun’s inexistence does not increase the knowledge of sunset and

sunrise times. This argument is similar to Box’s commentary on the wrongness of all models

[31]. Ultimately, the goal of causality analysis is to gain knowledge on systems given limited
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information available about them. Therefore, the concern should not lie on which the choice of

function � is “right” or “wrong,” but rather which ones lead to most “useful” conclusions about

causal relationships.

4.9 Conclusions

New Causality is a promising method for assessing causality links between two or more signals. In

the seminal de�nition [95] NC is de�ned only for LTI models. This limits the use of NC to systems

that can be modeled well with LTI models. In this work, a novel extension of NC to NARMAX

models is presented. Three methods for choosing the � weighting function are shown, where the

�rst two are formally de�ned and a suggestion is made for the implementation of a third, while

allowing for alternate implementations. All three methods produce identical results to seminal

de�nition of NC for ARMAX models.

Results show that this extension is suitable for systems that can be modeled well by NARMAX

models, producing good results in the tested models. Particularly �2 has shown to produce adequate

results even the nonlinear functions of the observation model are not part of the set of candidate

regressor functions. In tests with EEG signals, SNNC was shown to outperform NC and GC in

showing the linkage between � waves in Fp1 to � waves in O2.

Just as the seminal de�nition of NC, the nonlinear extension depends heavily on the estimated

model. Thus, it is important to highlight that careful selection of model topology and model

parameter estimation is essential to obtain useful NNC estimates.

The function � has been shown to be a probability mass function. For each suggested �, the

weights are governed by di�erent assumptions about the distribution of “causal strength.” Although�2 has shown promise in this work, models with non-antisymmetrical properties or regressors

with non-zero means can induce shifts in the NC values. However, the seminal de�nition of NC is

also sensitive to data preprocessing, as it pertains to modeling more than causality analysis.

This extension of NC to NARMAX models adds �exibility to NC to assess causality strength to

any signals that can be well modeled with LTIiP models. The extension inherits the strengths of
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NC, while also having the same requirement of accurate model topology and parameter estimation

in order to produce “useful” NC values. The choice of � function requires careful consideration,

but is not unlike the choice of candidate regressor functions, in which a priori information about

the system being modeled is used to guide the choice.
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CHAPTER 5

IMPROVEMENTS TO THE EvolOBE METHOD FOR NONLINEAR CAUSALITY
ANALYSIS

5.1 Overview

With the need for accurate modeling for NC analysis made clear,the focus of this chapter now

shifts to a method of estimating nonlinear model structures and parameters. The current work

is centered on a biologically-motivated method for both the selection of the e�ective regressors

and the estimation of the parameters of modi�ed NARMAX models. The approach integrates

set-based parameter estimation and genetic algorithms for optimization over �tness measures

derived from a set of solutions [213]. A brief sketch of the overall approach appears in Sec. 2.4.

This chapter is focused on innovations in the evolutionary process by which the model regressor

set is selected.

As in any nonlinear identi�cation solution, the evolutionary–set-theoretic framework described

above is computationally-intensive, as the number of regressors increases factorially with the

order of the nonlinear expansion. In a general sense, this chapter addresses the need to �nd more

e�cient data-processing algorithms for brain modeling. A more e�cient solution is based in the

expected sparsity of the connectivity models in terms of the relatively low number of regressors

that would be necessary to e�ectively characterize nonlinear relationships in time-series records.

This assumption has signi�cant implications for the evolutionary search over the space of regressor

combinations.

In particular, modi�ed crossover and mutation operators are incorporated in the NSGA-II [51]

framework to expedite feature (regressor) selection. By adjusting the mutation and crossover

operators to account for sparsity and pairwise relationships in the population, the number of

generations needed to arrive at the solution is greatly reduced.

Further technical details of the operation of the model are found in previous papers [213, 214,
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216]. Some portions of this chapter are quoted directly from [149] with a few modi�cations for

improved �ow and clarity.

5.2 Model form

The goal of the identi�cation strategy in this work is to obtain a model whose internal mechanism

mimics the system being studied. Note that unless a priori information is available, the similarity

between the internal mechanism and the system cannot be measured, but instead, predictive

power is often used as a surrogate measure of similarity.

The internal processing of the system is based on a subset of a candidate set of nonlinear

regressor functions, Ξ' = {'q}, of size || Ξ' ||. Each regressor is a mapping 'q : RNs → R. The

identi�cation strategy starts by positing that, given the appropriate candidate set, there exists a

LTIiP observation model, Oa∗,'∗ , of the form in Eq. (2.23) for n ∈ Z, given by

Oa∗,'∗ : xp[n] = K ∗∑k=1 a∗pk'∗pk(x1||n−1n−, x2||n−1n−, … , xNs ||n−1n−) + K�∑k=1 b∗pk�∗pk(�∗p ||n−1n−) + �∗p[n]≐ a∗Tp '∗p[n] + �∗∗p [n] (5.1)

where �∗∗p [n] = K�∑k=1 b∗pk�∗pk(�∗p ||n−1n−) + �∗p[n] (5.2)

with a∗ ∈ RK ∗
, and �∗∗ an error sequence representing uncertainties in the model. The “∗”

subscript indicates a “true,” but unknown, quantity associated with the observation model.

1 The arguments, xn−∞ and yn−1−∞ , of the regressor signals 'q (or vector ') indicate that a �-

nite number of elements is selected from the subsequences {x1[n − 1], x1[n − 2], … , x1[n −],x2[n − 1], … , x2[n −], … , xNs [n −]} by each 'q for processing at time n. For conservation

of space, we de�ne the vectors of Ns signal samples used at time n by uq∗[n], and the matrixU∗[n] = [ u1∗[n] u2∗[n] ⋯ uK ∗[n] ]. Given observations of x and y su�cient to compute out-

puts on time interval n = 1, 2, … , N , we pose an estimation model as a function of the parameters

1To avoid cumbersome notation, it is to be understood that 'q∗ is the qth element selected from Ξ' , rather than
element q of Ξ' .
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and regressor signals,

Map ,' : x̂p (n, ap , ') = K∑k=1 apk'pk(uq[n]) ≐ aTp 'p(U[n]), (5.3)

in which each 'q is drawn from the set Ξ' (see footnote 1), a ∈ RK , and the uq[n] and U[n] are

de�ned similarly to uq∗[n] and U∗[n]. The circum�ex in x̂ connotes “prediction” , as this estimation

model corresponds to the classical prediction-error method (e.g., [128]). This is true even though

the regressor functions can be highly-nonlinear functions of the observations, because (when

assumed �xed in the model) they appear in a model that is linear-time-invariant-in-parameters

(LTIiP). Thus, the identi�cation of the parameters using least square errors or (theoretically)

mean-squared-error techniques is a well-known problem. Our approach, however, involves a

distinctly di�erent identi�cation method which produces parameter solution sets rather than

point estimates (e.g., [54, 55]). It is the properties of these sets that couple the model creation and

parameter identi�cation problems.

5.3 Identi�cation strategy

The EvolOBE method combines the strengths of evolutionary computing and more traditional

set-theoretic parameter estimation methods to robustly obtain a family of models with di�erent

tradeo�s between accuracy and model complexity. The evolutionary algorithm is responsible

for �nding the subsets of regressor functions 'p out of Ξ' , whereas the set-theoretic parameter

estimation method uses of the selected 'p to obtain ap . This framework simultaneously addresses

selection of the model structure and the parameter estimation. Moreover, a very signi�cant

advantage of the algorithm is the lack of need for assumptions about stationarity or distributional

characteristics of the noise. The speci�cs are outlined in the following paragraphs.

Candidate models are encoded as binary chromosomes, where each possible phenotype repre-

sents a model with di�erent regressor functions. The chromosome is a binary sequence in which

the qth gene represents the presence or absence of the qth regressor function. The information

encoded in the chromosomes is used to generate the regressor functions which are fed to the OBE

algorithm, which obtains a feasibility set according to data. The set properties are then used to
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assign �tness values to each chromosome, and the �tness value is used in the genetic algorithm

selection process to evolve the population toward better solutions (e.g. [167]). This �tness measure

can be in the form of a single objective function that provides a summary of the quality of the

model, such as FPE and AIC, or in the form of multiple objective functions, covering predictive

accuracy, model complexity, and other information about the candidate model (such as the volume

or sum of the semi-axes of the ellipsoid). The assigned �tness measure regulates the chance of

survival of each particular model in a generation.

The algorithm starts with a random population of chromosomes. At each step, the population

is evaluated, then a subset of the population is selected to generate children through mutation

and crossover operations. Mutation operators work by randomly selecting genes and altering

them, whereas crossover operators combine portions of the chromosomes of two or more parents

to produce a new o�spring, which are added into the population. The population is sorted and

individuals with lower �tness are discarded. The speci�c mechanisms for mutation and crossover

operations, as well as the selection of parents, sorting of the population, and survival criterion are

often tailored for a particular application.

To reduce the computational complexity of this process, the search space of regressor models

must be controlled, and the candidate and �nal models must use the fewest regressors that are con-

sistent with an objective of prediction-error minimization. Since minimizing the prediction error

and minimizing the number of regressors are con�icting objectives, a multi-objective optimization

approach is desired. For this work, the NSGA-II [51] approach is adopted, since it generates a set

of solutions (ideally the Pareto-front), providing the best solution for a given number of regressors

and allowing the model with the best trade-o� to be chosen.

5.3.1 NSGA-II

NSGA-II is a standard algorithm for solving multiobjective optimization problems. It requires a

small number of parameters and is able to obtain solution sets spread along the pareto-front. It

is especially appropriate for problems with only two objectives. The basic NSGA-II algorithm is
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Figure 5.1: NSGA-II algorithm summary

shown in Fig. 5.1. In the original NSGA-II paper [51], Deb et al. use binary tournament selection,

bit-wise mutation and single-point crossover with probability of pc = 0.9, and mutation probability� = 1/� (where � is the length of the chromosome). In this work, these operators and parameters

are used as a baseline for comparison, with the exception of the single-point crossover operator,

which is replaced by a two-point crossover operator.

5.3.2 Asymmetric mutation operator

For sparse solutions, the mutation operator can be tuned to guide the population toward sparsity.

Although judicious selection alone can e�ect sparse solutions, a properly tuned mutation operator

can increase the convergence rate signi�cantly. Here, an asymmetric mutation (AM) operator is

developed. Classic mutation operators use a �xed probability to �ip each chromosome regardless

of its previous value. This is e�ective for blind exploration, but imposes pressure toward solutions

with 50% active genes.

For a given � probability of mutation, the expected number of active (N1) and inactive genes
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(N0) at step n + 1 is given by ⎡⎢⎢⎢⎣
N n+11N n+10

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
(1 − �) �� (1 − �)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
N n1N n0

⎤⎥⎥⎥⎦ (5.4)

This matrix has eigenvalues 1 and (1-2�). The eigenvector for 1 is [ 1 1 ]T , which means that,

in the absence of selection operators, the number of active and inactive genes tends to equality at

a rate depending on � .

An asymmetric mutation operator can be used to achieve any desired rate of activation.

Two distinct mutation operators are introduced to implement this e�ect: �10 the probability of

deactivating an active gene, and �01 the probability of activating an inactive gene. The matrix

system (5.4) becomes

⎡⎢⎢⎢⎣
N n+11N n+10

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
(1 − �10) �01�10 (1 − �01)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
N n1N n0

⎤⎥⎥⎥⎦ (5.5)

The eigenvalues of this system are 1 and 1−�10 −�01 with corresponding eigenvectors [ �01 �10 ]T
and [ 1 −1 ]T . The desired ratio of active to inactive genes is given by

rd = �01�10 + �01 (5.6)

For this scheme, the mutation rate is de�ned as

� = rc �10 + (1 − rc)�01 (5.7)

where rc is the ratio of active to total genes (i.e. N1/(N1 + N0)). By combining Eqs. (5.6) and (5.7),

the following expressions for the mutation probabilities are obtained�01 = � rdrc + rd − 2rcrd�10 = �(1 − rd )rc + rd − 2rcrd (5.8)

This extended solution reduces to that for the traditional mutation operator when rd = 0.5.
Decoupling the mutation probabilities yields a more �exible mutation operator with which pressure

can be applied toward a desired sparsity level.
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5.3.3 Reduced surrogate crossover

Evolution is improved by a crossover operator that generates novel individuals. A method to

achieve novelty is to use reduced surrogate crossover (RSX) [30]. With RSX, only non-matching

alleles are crossed between individuals. This is especially important as the genetic diversity

decreases with evolution. Thus the likelihood of generating a novel individual from two similar

parents becomes smaller in traditional two-point crossover operations.

A varying-minimum Hamming distance between chromosomes is suggested in [134]. In the

present work, a �xed unity Hamming distance yielded small improvements in convergence speed.

The �xed distance avoids the shortcomings of the minimum Hamming approach, but results in

less e�cient sampling of the search space.

5.3.4 Linkage tree crossover

One of the tenets for the convergence of genetic algorithms is that the population will shift from

the initial randomly generated solutions into a population that increasingly has characteristics

found in the pareto-optimal solution set. Under this assumption, the statistical characteristics of

the population at a generation can be used to estimate what operations are more likely to produce

helpful results.2 Linkage tree crossover (LTX), introduced by Thierens in [192], crosses solutions

over at positions that are more likely to generate �t o�spring.

First, LTX collects information of the statistical characteristics of the population and clusters

the genes into a binary tree that summarizes how clusters are linked together. Each cluster is

initialized with a single gene, and clusters are then progressively linked together until all genes

are included in a single cluster. The clustering uses a distance metric based on mutual information

and entropy [114]. For clusters C1 and C2, the mutual information is computed as

I (C1; C2) ≐ ∑c1∈C1 ∑c2∈C2 pC1,C2(c1, c2) log( pC1,C2(c1, c2)pC1(c1)pC2(c2)) , (5.9)

2However, care must be taken not to heavy-handedly in�uence the evolution, as a stronger emphasis on exploita-
tion is likely to diminish the ability of the GA for exploration.
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where C1 and C2 are the sets of all possible values for C1 and C2, pC1,C2(c1, c2) is the joint probability

of c1 and c2, pC1(c1) is the probability of c1 and pC2(c2) is the probability of c2. Alternatively, the

mutual information may be computed using the entropies. The entropy for a cluster C ∈ C is

de�ned as H(C) ≐ −∑c∈C pC(c) log (pC(c)) , (5.10)

and using the following identity

I (C1; C2) ≐ H(C1) + H(C2) − H(C1; C2). (5.11)

The distance metric is then de�ned as

D(C1, C2) ≐ 2 − H(C1) + H(C2)H (C1, C2) = H(C1, C2) − I (C1, C2)H (C1, C2) . (5.12)

The general procedure for generating the linkage tree is found in Alg. B.4 in Appendix B. An

example of a linkage tree is shown in Fig. 5.2. In the example, the order of the crossover operations

would be combining '1, '2, and '4 from one parent and '3 and '4 from the other parent, then '1
and '4 with '2, then '3, and '5, and �nally combining '1 with '4.'1'2'3'4'5'1'2'4

'1'4'1 '4 '2
'3'5

'3 '5
Figure 5.2: Linkage tree example

Once the linkage tree is generated, the algorithm traverses the tree executing crossovers

exchanging the clustered genes. In the seminal algorithm, if at least one o�spring is superior to
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both parents, the parents are replaced by the children. When the tree is fully traversed, the best

individuals are copied into the next generation. The detailed LTX procedure is shown in Alg. B.5

in Appendix B.

In this work, a special consideration is necessary, as LTX was not envisioned for multi-objective

problems. For single-objective problems, a solution may either be superior, inferior or equivalent

to a second solution, whereas for multi-objective problems, solutions may also be neither superior

(dominate) nor inferior (dominated), but simply o�er a di�erent trade-o� (i.e. superior in at least

one objective function, but inferior in at least one solution). When the o�spring and parents

neither dominate nor are dominated by each other, there is the choice to keep or replace the

parents or a stochastic combination of both. Preliminary tests showed no clear advantage of either

choice, but further investigation on this topic is planned as future work. The detailed procedure

for the use of LTX in multi-objective problems is shown in Alg. B.6 in Appendix B.

One possible downside of the use of LTX is the substantial computational cost of evaluating

the large number of entropy calculations needed to construct the linkage tree [155]. For problems

with �tness functions that are computationally costly, LTX is more advantageous. The overhead

of computing the linkage tree is becomes more signi�cant as population sizes increase, but small

population sizes can produce poor estimates of entropy [199].

5.4 Results of AM and RSX

A randomly generated NARMAX model with �ve regressors was used to evaluate the modi�ed

operators. Three delayed outputs and two delayed inputs to the system were extracted as linear

regressors and expanded to a 3rd order Volterra series, obtaining a total of 55 nonlinear regressors.

The estimated Pareto front is shown in Fig. 5.3. The ordinate shows the RMSE of the prediction

error (dB scale) and the abscissa shows the number of regressors in each model. As expected, there

is a knee located at �ve regressors, corresponding to the number in the generative model. There

is some improvement in the RMSE for models with more regressors, but only due to over�tting.

To assess the improvement relative to the unmodi�ed NSGA-II method, simulations were used
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Figure 5.3: Estimated pareto front

to estimate the number of generations required for each genetic algorithm (GA) to converge to the

generative model. The number of generations follows a probability distribution with parameters

depending on the GA and its internal parametrization.

Clearwater et al. [45] have shown that the number of generations required by a GA to �nd

a solution asymptotically approaches a log-normal distribution. Due to the long-tailed nature,

the mean and variance of this distribution are both signi�cant. A lower-variance estimator can

provide a more meaningful measure of number of generations to convergence, even at the expense

of mild estimator bias.

To examine the how well the number of generations required to �nd the solution �ts a log-

normal distribution, 16384 runs of our algorithm were evaluated using NSGA-II with the same

parameters for each run. The number of generations required by each run was recorded and a

log-normal distribution �tted to the data. Fig. 5.4 shows the histogram with “×” markers and the

�tted distribution with the solid line. The �tted distribution tracks the histogram remarkably well,

especially in the long tail of the distribution. For clarity, the histogram is omitted from further

�gures.

The NSGA-II algorithm was implemented using the symmetric bit-wise mutation operator
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Figure 5.4: Histogram vs. Fitted distribution

(equivalent to rd = 0.5) and two-point crossover. The asymmetric binary mutation with r = 0.1
and was applied to all remaining simulations. The modi�ed domination criterion (unique sorting)

was added to the third simulation onwards. The fourth simulation incorporated the RSX operator

and the �fth added a minimum Hamming distance (HD) of 1 to the mutation operator. The results

can be seen in Fig. 5.5. The parameters for the �tted models are compiled in Table 5.1. Since in the
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Figure 5.5: Generations to arrive at the desired model

log-normal distribution, � and � do not correspond to the mean and standard deviations, these

116



values are also calculated and shown in separate columns.

Table 5.1: Fitted parameters for di�erent methods

Method � � Mean Std. Dev.
Original operators 4.13 0.28 64.3 18.1
Assymetrical Mutation 3.34 0.421 30.9 13.6
AM + Unique Sort 3.25 0.341 27.5 9.64
AM + US + RSX 3.23 0.335 26.7 9.19
AM + US + RSX + HD 3.22 0.329 26.4 8.95

The asymmetric mutation operator causes a drastic change in the simulation results, reducing

both the mean and standard deviation signi�cantly. It reduces the number of generations to

reach 99% con�dence from 118 to 76 generations (reduction of 35%) and 99.9% from 145 to 104

generations (a reduction of 28%).

While the modi�ed domination criterion caused a smaller reduction in �, the � is reduced

more signi�cantly. As seen in the graph, the modes are largely unchanged (ranging from 22 to

23 generations), but the reduction in � greatly reduces the number of generations to reach high

con�dence. The old sorting algorithm passes 99% con�dence at 76 generations and the 99.9%

con�dence region at 104 generations, while the new sorting algorithm passes 99% con�dence in

58 (a further reduction of 23%) and 99.9% in 75 generations (a further reduction of 27%).

The remaining improvements improve convergence, albeit in a smaller scale, with the reduced

surrogate without minimum Hamming distance and the reduced surrogate with minimum distance

of 1 needing 55 and 54 generations to reach 99% con�dence respectively and needing 71 and 70

generations to reach 99.9% con�dence.

5.5 Results of LTX

To test the improvement given by LTX, a test with the nonlinear observation model of Eq. (4.23)

was run under various conditions. The advantage of the tested model over the previous model is

that the tanh(⋅) term in the di�erence equation means polynomial estimation models will provide

better prediction with increasing model orders, but no �nite set of polynomial regressor functions

will manage to perfectly represent the tanh(⋅) term. The comparison tests were done against the
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results in the previous section under similar conditions as the previous test.

One challenge shown in the literature is that regression algorithms will adapt to the absence

of certain regressors functions by using other correlated regressor functions, regardless of their

presence in the observation models [23, 157]. This choice is further complicated by the presence of

noise in the measurements. When the variance of the contribution is comparable with the variance

of the noise, then discerning the optimum parameter values or even the optimum regressor sets

for large numbers of regressors is not always possible.

Fig. 5.6 shows the estimated set of best regressors for models with seven or fewer regressor

functions, where dark squares indicate the presence of a particular regressor function in the model.

The RMSE of the prediction error is shown in Fig. 5.7. The regressor sets were obtained using the

EvolOBE method and a realization of Eq. (4.23) of 1024 consecutive epochs with 15dB SNR, with

two delay taps (exact value) and the linear regressors were expanded to a polynomial order of ten,

which results in a total of 1000 candidate regressor functions. Note how u6[n − 6] is present for the

model with two regressors, even though it is not present in the observation model. In fact, in this

realization, replacing u6[n − 6] with either u2[n − 1] or u[n − 1]u[n − 2] yields slightly worse RMSE

than u6[n−6], where the model containing u6[n−6] has -11.89dB and the ones containing u2[n−1]
or u[n − 1]u[n − 2] have -11.88dB and -11.38dB, respectively. This can be interpreted as u6[n − 6]
being able to better �t the missing terms than either u2[n −1] or u[n−1]u[n−2] individually, given

the distributional characteristics of u[n − 1]2 and u[n − 1]u[n − 2] and the particular realization

being used. However, u2[n − 1] and u[n − 1]u[n − 2] are synergistic in the sense that together they

provide better �t to the data than the combination of u6[n − 1] and any other regressor function,

as shown by the presence of both regressor functions in all subsequent models.

Also in Fig. 5.6, note that other terms of the McLaurin series of tanh(y[n−1])u[n−1] are present,

such as y3[n − 1]u[n − 1] and y5[n − 1]u[n − 1], but other terms provide so little improvement in

the prediction that even though they might be present (e.g., y7[n − 1]u[n −1]) in a later model, they

appear in conjunction with spurious regressor functions (e.g., y[n − 1]y8[n − 2]u[n − 2]). The same

is true for y9[n − 1]u[n − 1], which appears in the estimated best model with eight regressors (not
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Figure 5.6: Estimated regressor functions present in best models
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Figure 5.7: Estimated pareto-front for 15dB SNR

shown in Fig. 5.6 for clarity), which also includes the spurious term y2[n−1]y2[n−2]u3[n−1]u[n−2].
While the challenge of appropriate choice of regressor functions for nonlinear estimation

models is unique to modeling nonlinear observation models, a similar challenge exists when there

are missing input signals in any (linear or not) regression problem. An intuitive example is given

in Sec. 4.2, where the increase of a temporally correlated quadratic term of the past value of x2
resulted in the decrease of the linear NC measure of x2 into x1, since this increase caused x1 to be
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more temporally correlated with itself, whereas the quadratic term in x2 is uncorrelated with x2.
The �rst test used a noise free realization of Eq. (4.23) of 1024 consecutive epochs, with two

delay taps (exact value) and the linear regressors were expanded to a polynomial order of eight,

which results in a total of 494 candidate regressor functions. The histogram of the number of

evaluations needed to �nd the best models with eight or fewer regressor functions is shown in

Fig. 5.8 and the �tted log-normal probability density distribution is shown in Fig. 5.9. The number

of evaluations needed was reduced by 73% for 99% con�dence and 79% for 99.9% con�dence.
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Figure 5.8: Histogram of required evaluations for RSX and LTX

It is important to note, that there are times where LTX performs worse than RSX in terms

of required number of evaluations. Figs. 5.10 and 5.11 show the estimated CDF of the number

of required evaluations. Fig. 5.10 demonstrates that LTX clearly outperforms RSX under most

circumstances. However, looking closely in the region of fewer than 15,000 evaluations (shown in

Fig. 5.11), RSX outperforms LTX in about 3% of cases. This behavior can be traced back to the

assumptions of LTX, that the current population contains characteristics of the desired solutions.

In the �rst few evaluations, this assumption is less valid and leads to some runs requiring more

evaluations to �nd the desired solutions. There are mitigation measures to avoid this increase in

evaluations and to hasten the search overall, like waiting for a few generations prior to switching
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Figure 5.9: Fitted PDF for the required evaluations

to LTX or using a greedy or suboptimal algorithm to �nd the initial candidate solution set that

is fed into the LTX operator, such as the bitwise hillclimber algorithm employed in the seminal

LTGA paper [192]. A review of LTGA variants is given by Goldman and Tauritz in [73].
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Figure 5.10: CDF for the required number of evaluations to �nd the desired solution

For simulations with lower SNR, the improvements are less pronounced. Fig. 5.12 shows the

estimated CDF for the required number of evaluations for RSX and LTX. The CDFs intersect at
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Figure 5.11: Close-up for fewer than 15000 evaluations

94.7%, before which RSX requires fewer evaluations. At 99% and 99.9% con�dence levels, LTX still

outperforms RSX, with 7.5% and 15% respective reductions in the required numbers of evaluations.

Nevertheless, this small reduction in number of required evaluations is negated by the additional

computational cost of computing the linkage tree. The overhead added by LTX is not negligible

and increases with population size and number of regressor functions. This drawback is less

evident when the cost of evaluating the �tness function is large in comparison to the computation

of the linkage tree.

With lower SNR, nonlinear terms with smaller contributions are obfuscated by the noise and

thus the �nal set of candidate solutions cannot include these terms with certainty. Finding this

smaller set of solutions requires less exploration and gives LTX less chance to improve the search.

Fig. 5.13 shows the comparison between the estimated Pareto fronts for the dataset expanded

to polynomial order 10. Note how the noise free case continues to improve signi�cantly until

seven regressors are added, while at 15dB SNR, the improvements are greatly diminished beyond

four regressors. The prediction error is not reduced beyond seven regressors, as the search space

was limited to tenth-order polynomials, with the following term (y11[n − 1]u[n − 1]) requiring an

expansion to order 12, increasing the chromosome sizes to 1819 genes and the search space to

over 10547 possible solutions.
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Figure 5.12: CDF for the required number of evaluations for 15dB SNR
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Figure 5.13: Comparison between estimated pareto fronts for di�erent SNR values

5.6 Application to NNC analysis

Once the �nal set of models is obtained, these models can be used for NNC analysis. One of the

advantages of the biobjective optimization approach is that at the end of the optimization process,

the algorithm provides the set of best models for di�erent levels of tradeo� between complexity
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and predictive power.

In Fig. 5.14, the NNC values are given for the observation model of Eq. (4.23) for 10dB SNR.

The NNC values using the observation model (found in Table 4.8) are 0.29 and 0.55. Note that the

values converge quickly, with the model with four regressors being very close to the expected

values and negligible changes with �ve or more regressors.
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Figure 5.14: NNC values for the �nal candidate model set for 10dB SNR

In Fig. 5.15, the NNC values are given for the same model and 50dB SNR. The NNC values

using the observation model (found in Table 4.9) are 0.31 and 0.69. Again, the values converge

quickly and do not diverge in the observed range, as the contributions from the higher order terms

are small compared to the �rst four chosen regressors.

Note that in situations where the observational model possesses large SNR, the GC value

would increase with the increase of the polynomial order expansion, even when the contribution

of the new terms is small, �nally converging when the variance of residual is comparable to that

of the noise. On the other hand, a small residual causes the sum of NNC values to approach unity,

but Figs. 5.14 and 5.15 shows that the NNC values do not vary much when the residuals become

smaller.
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Figure 5.15: NNC values for the �nal candidate model set for 50dB SNR

In the studied cases, NNC performs well with simpler estimation models, provided the estimated

parameters well represent the internal mechanism of the observation models. This echoes Ljung’s

advice to “try simple things �rst” [128], even though those models are “wrong3.”

5.7 Discussion and conclusions

In this chapter, modi�ed crossover and mutation operators were presented for use in NARMAX

model estimation as part of ongoing improvements to EvolOBE. These modi�cations yield sig-

ni�cant performance improvements over the pure NSGA-II algorithm for this application. The

operators take advantage of posited characteristics of the population and �nal solution sets, such

as sparsity and pairwise relationships between genes.

When a modeling problem provides little guidance on the selection of an e�ective model form,

a GA must search a wide space of candidate features but determine a reliable and consistent

solution in a limited number of generations. The 99% and 99.9% con�dence metrics resulting in the

modi�ed search methods provide a stronger measure of performance than the estimated mean and

variance, even though the con�dence information is theoretically inherent in the two statistics.

3but “useful” [31].
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The asymmetric mutation operator guides the mutation towards arbitrarily sparse solutions

for any desired mutation rate. Tests have shown the asymmetric mutation operator to be an

e�ective way to reduce the number of required evaluations. The change in the mutation operator

also does not prevent exploration, as it simply increases the probability of the mutation to produce

an o�spring with the set sparsity, but does not prevent the mutation from generating o�spring

with other sparsity in the genes.

The modi�ed crossover operators increase the search speed by �nding valid crossover locations

(RSX) or �nding more crossover masks that are more likely to produce �t o�spring (LTX). The LTX

operator estimates pairwise proximity between genes in the current population to de�ne crossover

masks. In the simulations presented here, LTX required fewer evalutions to �nd the desired set

of solutions for high con�dence levels, but a small percentage of simulations completed faster

when using RSX exclusively. Since LTX requires that the population to provide useful information

on linkage between genes, LTX requires a minimum number of evaluations until the population

can provide such information. More complex crossover operators that make use of information

beyond just pairwise linkage, such as covariance matrix adaptation [85], are very powerful, but

require even more evaluations until the crossover operator can perform appropriately.

At lower SNR values, the improvements given by LTX are less pronounced. Additionally, a

larger set of regressor functions and the noise also adversely a�ect the parameter estimation,

which further indicate the need for parsimony in the �nal candidate model set.

The resulting models were used to compute the NNC values of the models and compare them to

NNC values obtained with the observation model parameters. Since NC and NNC are susceptible

to error in the model estimation, it is important to carefully consider the estimation models used

to compute these measures. In the tests, the EvolOBE method produced NNC estimates with very

good agreement with the theoretical values. As the EvolOBE method produces the set of most

accurate models for any number of regressors, NNC can be estimated for the entire set of �ttest

models for comparison and analysis of the models.

At this point, some characteristics of the algorithm have not yet been explored. For example,
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the sparsity parameter for the asymmetric mutation operator is currently �xed at the beginning

of the operation, but could potentially be set dynamically by observing the population and/or

evolution. The algorithm also does not regard the relationships among regressors (e.g. y[n − 1]
and y3[n − 1]), which could potentially provide useful information that will likely result in further

improvement, especially when modeling non-polynomial regressor functions with polynomial

expansions.
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CHAPTER 6

CONCLUSION

6.1 Overview

Causality analysis is a very important area of study, ranging from philosophy and econometrics

to physics, neurology and engineering. The topic is highly debated and somewhat controversial.

Indeed, a concise universal de�nition of causality or causality measures has not been reached. This

work focuses on statistical methods of evaluating evidence of causality, rather than the philosophy

of causality. This work possesses two synergistic goals: the characterization and development of

a causality measure for nonlinear parametric models, and the investigation of an evolutionary

search algorithm for sets of the best nonlinear parametric models for di�erent levels of tradeo�

between complexity and predictive power. NC is shown to be sensitive to parameter estimation

error and prone to bias, which is compounded when extending NC to nonlinear models, so a

method of �nding and comparing models complements NNC by using the optimum set of models

for NNC estimation.

NC is a recent method to assess causality between signals in parametric models. In this work,

a thorough critical study and nonlinear extension to NC are shown. In Summary, NC does have

advantages over GC and similar causality measures in that it is more proportional to internal

model parameters, it is normalized and does not require a choice on the order of the conditioning

signals unlike CGC [95]. In Ch. 4, the seminal de�nition of NC is extended to cover all LTIiP

models with a �exible weighting method that reduces to the seminal de�nition for LTI models.

This work also explores aspects of NC that have been overlooked in the the seminal papers.

In much of the literature surrounding causality, the distinctions among systems, observation

models and estimation models are often not clearly stated. Although very powerful methods for

parameter estimation exist, estimated models are not the systems they represent and should not

be taken as anything greater (or lesser) than that - a representation. Under the risk of repeating
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a truism, “all models are wrong, but some are useful.” As shown in Ch. 3, the usefulness of the

NC estimates is strongly tied to the quality of the estimated models. This is arguably even more

substantive for nonlinear model estimation, as nonlinear models entail increased di�culty in

accurately estimating the parameters and selecting regressor sets.

Another aspect that is often overlooked is the validity of some models found in the literature.

Models that are not representative of practical applications should not be used to compare causality

analysis tools unless their use is justi�ed. Sec. 3.2 contains a list of example models and a discussion

on the validity of such models.

These two overlooked aspects in NC literature are very unfortunate, especially as it undercuts

the argument for the unique characteristics of NC. The models shown in Sec. 3.2 could mislead

a reader into thinking that NC is only superior in these impractical scenarios, which, without

overlooking the merits of alternative methods, is not true in general. NC is unique in comparison

to other methods in that NC values depend much more on internal model parameters and that,

granted that the models represent the internal dynamics of the system well, it can better measure

causal relationships for systems with quasi-periodic and slow dynamics.

In its seminal form, NC was only fully de�ned for ARX models. In Ch. 4, a nonlinear extension

of NC was presented. For models with strong nonlinearities, the seminal form can behave

counterintuitively as shown in Fig. 4.1. The extension presented in this work, NNC, produces

results that are in line with intuition (shown in Fig. 4.2) and shares all the strengths of NC while

allowing application to a much wider set of models. As is the case with NC (and GC), NNC can

also be spectrally expanded into a frequency dependent measure. The de�nition of NNC also

o�ers a �exible approach to partitioning the contribution of nonlinear regressor functions that

depend on more than a single regressor signal. Tests were conducted on synthetic and real data

with promising results.

With the need for a robust nonlinear model estimation framework having been demonstrated,

improvements to the EvolOBE method are reported in Ch. 5. The EvolOBE method combines

a genetic search algorithm for regressor selection with a set-theoretic approach for parameter
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estimation. In this work, enhanced mutation and crossover are described and introduced to the

EvolOBE method. The introduction of these new operators is shown to increase convergence

speed, decrease the number of evaluations needed for convergence and reduce the variance of the

number of evaluations needed for high con�dence rates.

6.2 Contributions

The major contributions of this work are the following:

1. Shown that NC is susceptible to two sources of variation, natural variations in the speci�c

realization (e.g., di�erence between the sample variances and the observational model

variances) and parameter estimation errors. In the sames tests, GC was shown to be

signi�cantly more robust to errors in the parameter estimation;

2. Shown that NC is prone to bias in the estimates that increase with parameter estimation

errors;

3. Analytically explored four cases of the source of bias in NC estimates including regulariza-

tion;

4. Provided an extension to NC to the set of all LTIiP models, which are considered interpretable

and transparent [200]. This enables the use of NC to a much wider range of applications.

The extension is equivalent to the seminal de�nition for linear models and can be spectrally

expanded in the same way as the seminal de�nition. The extension is applied to real data

(EEG signals) with encouraging results;

5. Introduced new operators into the EvolOBE method that signi�cantly reduce the computa-

tion time and required number of evaluations to reach convergence;

6.3 Future Work

The large improvements seen in the EvolOBE method are encouraging and also indicate that

further improvements are possible. Particularly, further enhancements in mutation and crossover
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operators are likely to yield signi�cant bene�ts to the genetic search.

In the most current variant of the EvolOBE method is currently blind to the particular rela-

tionship between regressor functions. When using Volterra expansions of the regressor signals

on signals whose observational model has non-polynomial nonlinear terms, the set of optimal

regressor functions are often related by the regressor signals used. Implementing a method to

account for these relationships is likely to further improve convergence.

In its current form, the multi-objective adaptation to LTX treats all situations where the

o�spring neither dominate or are dominated by the parents by randomly selecting whether to

keep the o�spring or parents. Using a di�erent heuristic to guide the choice of whether to choose

o�spring or parents might help speed up the genetic search.

Also, candidate models with larger number of active genes require longer computations than

models with fewer active genes. Currently, the algorithm waits until all candidate models are

evaluated to proceed, reducing the computational e�ciency in parallel computing environments.

Enhancements in the computational e�ciency are possible and have not been explored.

Additionally, the set-membership parameter estimation provides other indicators of set quality,

such as bounds for each parameter, or size and shape of the �nal ellipsoid. These indicators have

not been studied yet as a complement or substitute for the currently used �tness functions.

Nonlinear NC is a new technique and its application has not yet been fully explored. The

ability to describe the e�ect of a single regressor into the regressand in a complex function could

have application areas outside of causality analysis, such as multi-criterion decision making. The

normalized nature of NNC and sensitivity to changes in the model parameters make it particularly

suitable as the results are more easily interpretable.

While the susceptibility of NC to bias in the estimates, a detailed statistical characterization of

NC have not yet been explored. This could lead to enhanced signi�cance tests for NC and better

understanding of how it relates to other causality analysis tools.
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APPENDIX A

DERIVATION OF CLOSED-FORM EXPRESSIONS FOR GC AND NC FOR FIRST-ORDER
BIJOINTLY REGRESSIVE OBSERVATION MODELS

A.1 Overview

Closed-form solutions for the GC and NC measures are useful in evaluating relative performance

of the techniques. In [95], closed form expressions for GC and NC are derived for certain �rst-order

ARX observation models. However, no general formula is given for NC or GC, and GC is only

asymptotically evaluated for large M . Closed form expressions for GC depend on M and the

process of obtaining closed form expressions laborious, but understanding the intricacies of GC

and NC provide insight into what each technique measures.

In [95], it is argued that, GC does not depend on the feedback loop formed from the product

of a21 and a12, re�ecting a coupling between x1 and x2. The argument is supported by a closed

form expression given for GC in [95, Eq. 13] for a particular form of �rst order ARX model which

does not include any term that depends on the product. However, this expression is only true if

GC is allowed to compare models with unlimited order. When the model orders are �nite, the

expression for GC does depend on a21a12.
A large portion of this appendix is quoted directly from [147] with a few modi�cations for

improved �ow and clarity. Long equations are placed at the end of the appendix.

A.2 Derivations

In order to increase clarity, the time-delay index i superscript will be omitted. For all �rst-order

models, aipq = 0 for i > 1, so apq is used to mean a1pq . Instead, in this section, the superscript will be

used to denote the exponent. The GC and NC measures can be evaluated in both directions (i.e.,x1 → x2 and x2 → x1). For simplicity, only the x2 → x1 direction will be used. The derivation forx1 → x2 follows the same basic steps.
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First, the observation model is de�nedx1[n] = a∗11x1[n − 1]+ a∗21x2[n − 1] + �∗1[n],x2[n] = a∗12x1[n − 1]+ a∗22x2[n − 1] + �∗2[n], (A.1)

where �∗1 and �∗2 are discrete-time white noise processes with zero mean. The two estimated

models that are compared for GC estimation follow an ARX model [Eq. (2.35)] under the joint

case assumption, and follow an AR model under the disjoint case assumption. The ARX estimated

model for the joint case is of the formx1[n] = a11x1[n − 1]+ a21x2[n − 1] + �1[n],x2[n] = a12x1[n − 1]+ a22x2[n − 1] + �2[n], (A.2)

where the model parameters �1 and �2 are discrete-time white noise processes with zero mean

and apq are the estimated model parameters. The AR estimated model for the disjoint case is of

the form x1[n] = M∑m=1 �mx1[n − m] + �1[n], (A.3)

where �1 is a discrete-time white noise process with zero mean and �m are the autoregressive

model parameters. These estimated models will be used in the following derivations. The �rst

derivation will be a generalization of the closed form expression given in [95, Eq. (12)], where thea11 and a22 are equal to zero and the estimated model order is unconstrained.

For simplicity, the analysis assumes that enough epochs are available such that the sample

variances and variances are assumed equal, and that the estimated models are the MMSE estimators,

such that apq ≈ a∗pq (p, q ∈ {1, 2}) for the joint model. These assumptions are not reasonable in

many circumstances, but still provide insight on the “ideal” GC and NC estimates. Nevertheless, it

is important to reinforce the point made in Sec. 2.2, that the observation models and estimation

models must not be confused, even when the parameter estimation is assumed to be “perfect.”

A.2.1 Derivation for the GC value for M = 1 and M = 2
Obtaining the GC value for di�erent M values is tedious, but not complicated. First the expected

values for the variances of x1, x2 and the covariance between x1 and x2 are calculated. Since �1
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and �2 are white and zero mean,

{x1[n] ⋅ x1[n]} = � 21 = 2a11a12� 212 + � 2�11 − a211 ,
{x2[n] ⋅ x2[n]} = � 22 = 2a22a21� 212 + � 2�21 − a222 ,
{x1[n] ⋅ x2[n]} = � 212 = a11a21� 21 + a12a22� 221 − a11a22 − a12a21 ,

(A.4)

where  represents the expectation operator. Solving the system yields Eq. (A.5). The covariance

between x1[n − 1] and x1[n] can be succinctly expressed in terms of � 21 and � 212 as

{x1[n − 1] ⋅ x1[n]} = a11� 21 + a12� 212, (A.6)

so that, by evaluating the conditional distribution of x1[n] given only x1[n − 1] [64], the variance

of �1 becomes � 2�1 = (1 − a211)� 21 − 2a11a12� 212 − a212� 412� 21 . (A.7)

In this case, the GC value for evaluated when �tting �rst-order disjoint and bijointly regressive

systems becomes

GC2→1 = ln [(1 − a211)� 21 − 2a11a12� 212 − a212 �412�21� 2�1 ] , (A.8)

which can be expanded into Eq. (A.9). The expression demonstrates clearly that GC does take

the a12a21 feedback loop into consideration. Although the analysis of the contribution of these

terms using Eq. (A.9) is not straightforward, the terms in Eq. (A.8) that depend a12� 212 can be

shown to contain a12a21 by using Eq. (A.8). A similar approach can be taken to evaluate GC using

higher-order models. This is done by evaluating {x1[n − Δn] ⋅ x1[n]} for Δn ∈ [1, ⋯ ,M] and

using the conditional distributions to obtain the expected � 2�1 . One helpful identity to evaluate

these covariances is



⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
x1[n]x2[n]

⎤⎥⎥⎥⎦ x1[n − Δn]
⎫⎪⎪⎪⎬⎪⎪⎪⎭ = ⎡⎢⎢⎢⎣

a11 a12a21 a22
⎤⎥⎥⎥⎦
Δn ⎡⎢⎢⎢⎣

� 21� 212
⎤⎥⎥⎥⎦ , (A.10)

where [A]Δn = Δn times⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞A ⋅ A⋯A. For the sake of brevity, a detailed derivation for higher orders is omitted,

but the expression for M = 2 is found in Eq. (A.11).
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Increasing M causes GC monotonically decrease, which can be intuitively explained by re-

membering that GC compares two models, an AR and an ARX model. For the ARX model, there

should be no improvement for higher order estimated ARX models over the �rst-order estimated

ARX model, since the observation model is a �rst-order ARX model.1 Meanwhile, AR models

cannot perfectly mimic the dynamics of ARX models. While a second-order AR model is also not

able to perfectly represent an ARX model, it is better able to predict x1[n] than a �rst order AR

model. Similarly, the variance of the residual of a third-order AR model is smaller (or equal) to

that of the second-order model. The variance of the residual of the ARX models should be equal to� 2�1 for any M ≥ 1, but the variance of the residual of the AR model should decrease monotonically

with M . Thus, the GC values for M = 2 will be lower than with M = 1.
A.2.2 Derivation for a lower bound of the GC measure for large M
The fact that the GC value decreases monotonically with the model order is well known [95]

and can be argued qualitatively, as is done in Sec. A.2.1. However, it is helpful to de�ne a lower

bound for the GC value, so that the range of possible GC values for any M may be known, that is,

GCM→∞ ≤ GCM∈Z+ ≤ GC2→1|M=1.
Since GC compares the sample variance of the error sequence of a joint and a disjoint model,

the two variances must be obtained. For the joint model, the expected variance of the error

sequence is simply the variance of �1 (following the assumption that apq ≈ a∗pq for p, q ∈ {1, 2}).
To �nd the disjoint model of the form Eq. (A.3), one can start by expanding Eq. (A.1) into

x1[n] = a11x1[n − 1] + a12 x2[n−1]⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(a21x1[n − 2] + a22x2[n − 2] + �2[n − 1]) +�1[n], (A.12)

which, for a22 ≠ 0, can be further expanded by recursively replacing the x2 terms, yielding

x1[n] =a11x1[n − 1] + a12 M∑m=2 (a21)m−1x1[n − m]+a12 (a22)M−1x2[n − M] + a12 M∑m=1 (a22)m−1�2[n − m]) + �1[n].
(A.13)

1Nevertheless, a larger number of model parameters lead to larger variance in the parameter estimation.
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For a22 = 0, the expansion reduces to

x1[n] = a11x1[n − 1] + a12 M∑m=2 (a21)m−1x1[n − m] + a12�2[n − 1]) + �1[n], (A.14)

and the asymptotic MMSE parameter values for the disjoint model are

�m ≈
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a11 for m = 1,a12(a21)m−1 for m > 1,0 for m < 0,

, (A.15)

so that the prediction error for the MMSE of the disjoint model is

�1[n] = a12�2[n − 1] + �1[n]. (A.16)

Using the fact that �1 and �2 are white and uncorrelated, the variance of �1 is

� 2�1 = (a12)2� 2�2 + � 2�1 , (A.17)

and the GC value can be expressed as

GC2→1 = ln(1 + (a12)2� 2�2� 2�1 ) , (A.18)

which does not depend on a21 or a11. This expression was used to argue that GC overlooks

important parameters of the model by Hu et al. in [95]. However, it is important to remember

that this expression is only valid for a22 = 0 and large M , nevertheless, as is shown below, the

expression is still useful for the purpose of establishing a lower bound. Returning brie�y to

Eq. (A.12), note that for any M > 1, the x1[n − 1] and x1[n − 2] terms are available in the AR

model and therefore will add no additional residual error. Note also that the �1[n] and �2[n − 1]
terms cannot be predicted in any way by the AR model. This is a consequence of �1[n] being

uncorrelated with any past values of �1 and that �2[n − 1] is only correlated with x1[n], but not

with x1[n − 1] or any other past values of x1. Thus, the only remaining question is how well can

the x2[n − 2] term be predicted by past values of x1.
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Supposing that x2[n − 2] could be perfectly predicted by past values of x1 produces a prediction

error equivalent to Eq. (A.16). Although this is only exactly true for a22 = 0, it becomes clear that

for any M ≥ 1, � 2�1 ≥ (a12)2� 2�2 + � 2�1 , (A.19)

which shows that Eq. (A.18) is indeed a lower bound for all GC values for M ≥ 1 and is the

asymptotic value for large M and a22 = 0.
A.2.3 Derivation of the NC value

In [95, Eq. (21)], a partial expansion of NC was expressed for models for which a11 = a22 = 0. The

motivation to eliminate these parameters is to simplify the expressions, but this simpli�cation

arguably reduces the representativeness of the model [147]. Here, the general expression is shown.

By expanding the di�erence equations as done in Eq. (A.12),

NC2→1 = N∑n=3 (a12a21x1[n − 2] + a22x2[n − 2] + a21�2[n − 1])2N∑n=3 (a12a21x1[n − 2] + a21�2[n − 1])2 + N∑n=3 �21[n] , (A.20)

which shows the clear dependence of NC on the a12a21 term. The expression is only valid for

observation models with a11 = 0. A general expression for �rst order bijointly variate models is

NC2→1 = N∑n=2 (a12x2[n − 1])2N∑n=2 (a12x2[n − 1])2 + N∑n=2 (a11x1[n − 1])2 + N∑n=2 �21[n] , (A.21)

which, as N → ∞, converges to

NC2→1 = a212� 22a212� 22 + a211� 21 + ��12 . (A.22)

This expression shows the dependence of NC on the product a12a21. It is important to note

that the variances � 21 and � 21 themselves depend on the model parameters as Eq. (A.5) shows. This

means that a change on any of the model parameters will also cause a change in � 21 and � 22 , thus

the interactions between the model parameters and the NC values is also not straightforward.

Combining Eqs. (A.5) and (A.22) yields Eq. (A.23).
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A.3 Discussion

In this appendix closed form expressions for NC and GC are derived. The GC expressions are

shown for M = 1, M = 2, and an asymptotic expression for large M . The technique can be

expanded to any order, although the complexity for the closed form expressions grows with M .

Although the process of obtaining these estimates is laborious, they can quickly and accurately be

numerically evaluated.

These expressions show that, for �nite M , the expression for GC does indeed depend the

product of a12 and a21. In fact, the relationship between the model parameters shows many

intricate relationships between model parameters and GC values. The interaction between the

model parameters and the GC values is not straightforward, so expressions in terms of �1 and �2
and in terms of x1 and x2 are provided.

When doing theoretical analysis on GC and NC estimation, it is helpful to be able to evaluate

the analytical values for comparison. These closed form expressions are used in Ch. 3 to compare

the e�ects of estimation errors and sample variances on GC and NC estimates.
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� 21 = (1 + a11a322 − a11a22 − a222 − a12a21 − a12a21a222) � 2�1 + (a212 − a312a21 + a11a212a22) � 2�2(1 + a12a21 − a11a22) (1 − a11 − a12a21 − a22 + a11a22) (1 + a11 + a22 + a11a22 − a12a21) ,� 22 = (a221 − a321a12 + a22a221a11) � 2�1 + (1 + a22a311 − a22a11 − a211 − a12a21 − a12a21a211) � 2�2(1 + a12a21 − a11a22) (1 − a11 − a12a21 − a22 + a11a22) (1 + a11 + a22 + a11a22 − a12a21) ,� 212 = (a12a22a221 + a11a21 − a11a21a222) � 2�1 + (a21a11a212 + a22a12 − a22a12a211) � 2�2(1 + a12a21 − a11a22) (1 − a11 − a12a21 − a22 + a11a22) (1 + a11 + a22 + a11a22 − a12a21) .
(A.5)

GC2→1=
ln[ {[a22 (a11 − a12a21 + a11a22 − 1) − 1] � 2�1 − a212� 2�2}{[1 − (1 + a11 + a12a21) a22 + a11a222] � 2�1 + a212� 2�2}� 2�1 (1 + a12a21 − a11a22) {[(1 + a222) a12a21 + a22 (a11 + a22) − a11a322 − 1] � 2�1 + a212 (a12a21 − a11a22 − 1) � 2�2}]. (A.9)

GC2→1=
ln[[(a11a22 − 1) � 2�1 − a212� 2�2]{[1 − (1 + 2a12a21) a222 + a11a22 (a222 − 1)] � 4�1 + a212 (2 − a11a22 + a222) � 2�1� 2�2 + a412� 4�2}� 2�1 {[a22 (a11 − a12a21 + a11a22 − 1) − 1] � 2�1 − a212� 2�2}{[1 − a22 (1 + a11 + a12a21) + a11a222] � 2�1 + a212� 2�2} ]. (A.11)

NC2→1 = a212a221 (a12a21 − a11a22 − 1) � 2�1 + a212 [a12a21 + a11 (a11 + a11a12a21 + a22 − a211a22) − 1] � 2�2{2a11a212a221a22 + a22 (a11 + a22 − a11a222) + a12a21 [1 + a222 − 2a211 (a222 − 1)] − 1}� 2�1+ a212 [a12 (a21 + 2a211a21) + a11a22 − 2a311a22 − 1] � 2�2 . (A.23)
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APPENDIX B

LISTINGS FOR ALGORITHMS

B.1 Overview

This appendix contains the listings for key algorithms used in this work. Deeper discussion and

more thorough description of the algorithms are found in the references.

B.2 OBE-related algorithms

The uni�ed OBE framework is more thoroughly described and discussed in [54], whereas a

summary is given here as a reference. The general algorithm follows a recursion similar to

weighted recursive least squares (WRLS) [53, 54, 101], but with dynamically evaluated optimal

forgetting factor calculations. The algorithm shown here assumes a MISO model, since this is the

focus of this work, but UOBE de�ned for general MIMO models in [54].

Given a sequence of error bounds 
[n] [as in Eq. (2.27)], output signal xp[n] and vector of

regressors (or regressor functions) 'p[n], the UOBE framework is given in Alg. B.1 and the

recursion in Alg. B.2.

The optimum weights are selected according to di�erent optimization criteria. With the

exception of the Dasgupta-Huang OBE [50] which optimizes �[n], other algorithms under the

UOBE umbrella choose the weights that minimize either the determinant of �[n]P[n] (proportional

to the square of the volume of the ellipsoid) or the trace of �[n]P[n] (proportional to the sum of

the squares of the semi-axes of the ellipsoid).

De�ning q[n] = �[n]/�[n], the weights that minimize the volume, if they exist, are obtained

by �nding the unique positive root of the following equation

Fv(s) = a2s2 + a1s + a0, (B.1)
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where

a2 = (K − 1)
[n]G2[n], (B.2)a1 = [(2K − 1)
[n] + ||�[n]||2 − �[n − 1]G[n]] G[n], (B.3)a0 = K[
[n] − ||�[n]||2] − �[n − 1]G[n], (B.4)

Algorithm B.1: Uni�ed Optimum Bounded Ellipsoid Algorithm

1: procedure UOBE
2: �[1] = 0 ⊳ Set initial ellipsoid as a very large hyper-sphere centered at origin
3: �[1] = 1
4: P[1] = 1� I
5: for n = 2 to N do
6: �[n] = xp[n] − �T [n − 1]'p[n] ⊳ Calculate prediction error
7: G[n] = 'Tp [n]P[n − 1]'p[n] ⊳ Obs.: G[n] is a scalar
8: Evaluate if optimum �[n] and �[n] exist ⊳ �[n] and �[n] are described later
9: if optimum �[n] and �[n] exist then

10: do UOBE-Recursion (Alg. B.2)
11: count = 0
12: else ⊳ Ellipsoid does not change
13: P[n] = P[n − 1]
14: �[n] = �[n − 1]
15: �[n] = �[n − 1]
16: count = count + 1
17: if count > Nabe then
18: do EstimateBounds (Alg. B.2) ⊳ If using ABE
19: count = 0
20: end if
21: end if
22: end for
23: end procedure

Algorithm B.2: UOBE Recursion

1: procedure UOBE-Recursion

2: P[n] = 1�[n] [P[n − 1] − �[n]P[n − 1]'p[n]'Tp [n]P[n − 1]�[n] + �[n]G[n] ] ⊳ Update direction &
shape of ellipsoid

3: �[n] = �[n − 1] + �[n]P[n]'p[n]�[n] ⊳ Update centroid

4: �[n] = �[n]�[n] + �[n]
 2[n] − �[n]�[n]�2[n]�[n] + �[n]G[n] ⊳ Update size of ellipsoid

5: end procedure
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such that Fv(q[n]) = 0. When no such root exists, none of the ellipsoids that contain the intersection

between the hyperstrip and the previous ellipsoid have smaller volume than the current ellipsoid.

Equivalently, the positive root indicates that the value of q[n] that de�nes the ellipsoid with

smallest volume out of the set of all ellipsoids that fully contains the intersection between the

previous ellipsoid and the hyperstrip. Note here that setting �[n] to unity and �[n] to zero is

equivalent to ignoring or discarding the current xp[n] and 'p[n] and making no changes to the

ellipsoid.

To minimize the square sum of the semi-axes, the optimum weights, if they exist, are obtained

by �nding the unique positive root of

Ft(s) = b3s3 + b2s2 + b1s + b0, (B.5)

where

b3 = 
[n]G2[n] [G[n] − I [n − 1]H[n]] , (B.6)b2 = 3
[n]G[n] [G[n] − I [n − 1]H[n]] , (B.7)b1 = H[n]G[n]I [n − 1]�[n − 1] − 2H[n]I [n − 1] [
[n] − ||�[n]||2] (B.8)− G[n]||�[n]||2 + 3
[n]G[n], (B.9)b0 = 
[n] − ||�[n]||2 − H[n]I [n − 1]�[n − 1], (B.10)

where H[n] ≐ 'Tp [n]P 2[n]'p[n] and I [n] ≐ tr
{P−1[n]}, where tr {⋅} is the trace operator.

A stochastic method to estimate error bounds is developed by Joachim et al. in [106]. The

algorithm starts with an overestimated bound. If no update to the ellipsoid is made for NABE

samples, it �nds the largest error in the last NABE samples and reduces the bounds accordingly.

This is repeated until the error bound estimate is close enough to the true bounds. The general

algorithm is shown in Alg. B.3.

B.3 Linkage tree crossover

In [192], Thierens introduces the Linkage Tree Genetic Algorithm (LTGA). The algorithm initializes

the population randomly, but applies a steepest ascent hill climber to each member of the population
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Algorithm B.3: Automatic Bounds Estimation

1: procedure EstimateBounds
2: Nmax = argmaxm∈[n−NABE+1,n] �2[m] ⊳ Find largest prediction error in last NABE samples

3: Δ
 = �[NABE − 1]G[NABE]/K − "(2√
[NABE − 1] − ") ⊳ Find appropriate reduction in
bound for n =NABE

4: if Δ
 > 0 then
5: 
[n] = 
[n − 1] − Δ
 ⊳ If a bound reduction is possible, reduce it
6: else
7: 
[n] = 
[n − 1] ⊳ If 
 cannot be reduced, keep old bounds
8: end if
9: end procedure

to increase its �tness. The resulting population undergoes crossover until the termination criterion

is reached (without further mutation).

The initial hill climbing is desirable so that the population can provide useful statistical

pairwise linkage information to LTX. While it is possible to achieve convergence without this

step, convergence is slower, and the linkage points will less likely be at helpful locations.

The �rst step for LTX is generating the linkage tree. The general steps are given in Alg. B.4.

The distance metric used by LTX is introduced by Kraskov et al. in [113], and is a normalized

mutual information distance metric. Following the generation of the linkage tree, the crossover

occurs. The general steps for LTX are given in Alg. B.5.

Algorithm B.4: Generate Linkage Tree

1: procedure GenerateLinkageTree
2: Initialize each gene as one cluster
3: repeat
4: Compute the distance between clusters
5: Merge closest clusters together
6: until Only one cluster remains
7: Organize clustering information into tree
8: end procedure

In its seminal form, LTX is de�ned for single-objective optimization problems, where two

solutions can be superior, inferior, or equivalent to one another. In multi-objective problems,

comparing two solutions is less straighforward. Although the categories of superior (dominating),
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Algorithm B.5: Linkage Tree Crossover

1: procedure LinkageTreeCrossover
2: Select parents
3: Start at the largest cluster
4: while Tree is not fully traversed do
5: Crossover parents using the current cluster
6: if one or more o�spring are superior to both parents then
7: Replace parents with o�spring
8: end if
9: Move down the linkage tree and repeat

10: end while
11: end procedure

inferior (dominated) and equivalent are still present, a solution might be superior to a second

solution in one objective function, but inferior in a second objective function (non-dominated).

To accommodate for non-domination between parents and o�spring, this work introduces a new

variant of LTX that includes an additional conditional statement which can be tuned to choose

keep o�spring, parents or randomly select one of them. The general algorithm for LTX adapted to

multi-objective problems is shown in Alg. B.6.

Algorithm B.6: Linkage Tree Crossover for multi-objective problems

1: procedure LinkageTreeCrossover2
2: Select parents
3: Start at the largest cluster
4: while Tree is not fully traversed do
5: Crossover parents using the current cluster
6: if one or more o�spring dominate both parents then
7: Replace parents with o�spring
8: else if neither o�spring dominate both parents or dominated by both then
9: Randomly decide which to keep1

10: else if one or more o�spring are dominated by both parents then
11: Do not replace parents
12: end if
13: Move down the linkage tree
14: end while
15: end procedure

1By setting the probability of each option to 1 or 0, a deterministic behavior can be set
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