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ABSTRACT

EFFICIENT ESTIMATION WITH MISSING VALUES IN CROSS SECTION AND PANEL
DATA

By

Bhavna Rai

Chapter 1: Efficient Estimation with Missing Data and Endogeneity

I study the problem of missing values in both the outcome and the covariates in linear models

with endogenous covariates. I propose an estimator that improves efficiency relative to a Two

Stage Least Squares (2SLS) based only on the complete cases. My framework also unifies the

literature on missing data and combining data sets, and includes the “Two-Sample 2SLS" as a

special case. The method is an extension of Abrevaya and Donald (2017), who provide methods of

improving efficiency over complete cases estimators in linear models with cross-section data and

missing covariates. I also provide guidance on dealing with missing values in the instruments and

in commonly used nonlinear functions of the endogenous covariates, likes squares and interactions,

without introducing inconsistency in the estimates.

Chapter 2: Imputing Missing Covariate Values in Nonlinear Models

I study the problem of missing covariate values in nonlinear models with continuous or discrete

covariates. In order to use the information in the incomplete cases, I propose an inverse probability

weighted one-step imputation estimator that provides gains in efficiency relative to the complete

cases estimator using a reduced form for the outcome in terms of the always-observed covariates.

Unlike the two-step imputation and dummy variable methods commonly used in empirical work,

my estimator is consistent for a wide class of nonlinear models. It relies only on the commonly used

“missing at random" assumption, and provides a specification test for the resulting restrictions. I

show how the results apply to nonlinear models for fractional and nonnegative responses.

Chapter 3: Efficient Estimation of Linear Panel Data Models with Missing Covariates



We study the problem of missing covariates in the context of linear, unobserved effects panel

data models. In order to use information on incomplete cases, we propose generalized method of

moments (GMM) estimation. By using information on the incomplete cases from all time periods,

the proposed estimators provide gains in efficiency relative to the fixed effects (and Mundlak)

estimator that use only the complete cases. The method is an extension of Abrevaya and Donald

(2017), who consider a linear model with cross-sectional data and incorporate the linear imputation

method in the set of moment conditions to obtain gains in efficiency. Our first proposed estimator

uses the assumption of strict exogeneity of the covariates as well as the selection, while allowing

the selection to be correlated with the observed covariates and unobserved heterogeneity in both the

outcome equation and the imputation equation. We also consider the case inwhich the covariates are

only sequentially exogenous and propose an estimator based on the method of forward orthogonal

deviations introduced by Arellano and Bover (1995). Our framework suggests a simple test for

whether selection is correlated with unobserved shocks, both contemporaneous and those in other

time periods.
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CHAPTER 1

EFFICIENT ESTIMATIONWITH MISSING DATA AND ENDOGENEITY

1.1 Introduction

The problem of missing data is highly prevalent in empirical research. While there is a vast

literature on methods to deal with missing data, the issue of endogeneity of the covariates with

missing values has not been explicitly addressed in the majority of it.1

In linear models with endogenous covariates and missing values in either the outcome or the

endogenous covariates, a frequently used method is a 2SLS that only uses the “complete cases"

- the observations for which all the variables are observed.2 While consistent under commonly

used assumptions, this method can lead to a substantial loss of efficiency due to discarding the

information in the incomplete cases. Recent literature has considered the case of missingness only

in the endogenous covariates and has suggested some methods that make use of these incomplete

cases. The first set of methods is based on “imputation". For instance, McDonough & Millimet

(2017) discuss an estimator which replaces the missing covariate values with fitted values from a

first stage regression of the endogenous covariate on the instruments. A more efficient estimator is

suggested by Abrevaya & Donald (2011), who use the incomplete cases via a reduced form for the

outcome in terms of the instruments.

The first contribution of this paper is to extend the framework of Abrevaya & Donald (2011) to

allow for missingness in both the outcome and the endogenous covariates. I show that it is possible

to obtain strict gains in efficiency for all coefficients relative to the complete cases 2SLS.

My framework also unifies the literature on missing data and that on combining data sets

with missing variables. Empirical researchers sometimes have two distinct data sets, one of

which contains only the outcome and the instruments, and the other contains only the endogenous

1For a comprehensive discussion of methods used to deal with missing data, see Schafer & Graham (2002).
2Wooldridge (2010), Section 17.2.1.
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covariates and the instruments. A commonly used estimator that combines the two is the “Two-

Sample 2SLS" (henceforth TS2SLS).3 I relax assumptions traditionally used by this estimator and

also provide a framework for combining more than two data sets with more general patterns of

missing variables.

A second method that makes use of the incomplete cases is the so-called “dummy variable

method", which replaces the missing covariate values with zeros and includes an indicator for

missingness as an additional covariate in the model. When the covariates are exogenous, Jones

(1996) shows that this method produces inconsistent estimates unless some zero restrictions are

imposed in the population. I show that this inconsistency carries over to the case of endogenous

covariates.

One can also encounter missing values in the instruments, in which case interest lies in con-

tinuing to use the observations with missing instruments instead of discarding them. Mogstad &

Wiswall (2012) discuss an estimator that imputes missing instrument values. This is a two-step

estimator that in the first step replaces the missing instrument values with predicted values from a

regression of the instrument on the always-observed exogenous covariates, and in the second step

estimates the main model using a 2SLS with both the actual and imputed instrument values. They

show that the resulting estimator for the coefficient on the endogenous covariate is numerically

equivalent to a complete cases 2SLS. A second contribution of this paper is to propose an imputa-

tion estimator for the instruments that can achieve strict gains in efficiency over the complete cases

2SLS for all coefficients.4 This estimator includes as a special case the estimator suggested by

Abrevaya & Donald (2017) in the case where the covariates are exogenous.

Finally, I show how to impute commonly used nonlinear functions of the endogenous covariates

like squares and interactions. I show that two-step procedures which in the first step replace the

missing values of the nonlinear functions of the covariates with the same nonlinear functions of

3TS2SLS was first introduced by Klevmarken (1982), and more recently used by Angrist & Krueger (1995). Inoue
& Solon (2010) show that the TS2SLS is more efficient than the related Two-Sample IV estimator. Inoue & Solon
(2005) consider GMM estimation with arbitrary heteroskedasticity and stratification. Pacini & Windmeĳer (2016)
obtain robust standard errors for the traditional TS2SLS with arbitrary heteroskedasticity.

4Abrevaya & Donald (2011) also propose an estimator for the case of missing instruments. My estimator is based on
different moment conditions and is no less efficient than theirs.
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the imputed values generally produce inconsistent estimates. A third contribution of this paper is

to propose a consistent imputation estimator in this context that improves upon the efficiency of

complete cases 2SLS.

The rest of the paper is organized as follows. Section 1.2 presents the population model

of interest and associated assumptions. Section 1.3 describes the missing data scheme and the

assumptions on the missingness mechanism for the case of missingness in outcome and endogenous

covariates. Section 1.4 describes the resulting moment conditions and the asymptotic distribution

of the proposed GMM estimator. Section 1.5 discusses four related estimators: the complete

cases 2SLS, the TS2SLS, the imputation estimator, and the dummy variable estimator. Section 1.6

discusses the case ofmissingness in the instruments. Section 1.7 discusses the case of nonlinearity in

the covariates. Section 1.8 presents results from Monte Carlo simulations comparing the proposed

estimator with related estimators. Section 1.9 presents an empirical application to the effect of

physician’s advice on individuals’ calorie consumption. Section 1.10 concludes. The Appendices

include the proofs and tables.

1.2 The population model and assumptions

Consider the standard linear regression model:

H = G1V1 + G2V2 + D ≡ GV + D, (1.2.1)

where G = (G1, G2) is the 1 × (? + :) vector of covariates. G1 is a 1 × ? vector of potentially

endogenous covariates, while G2 is a 1× : vector of exogenous covariates (including the constant).

That is,

E(G′2D) = 0, (1.2.2)

and we allow for E(G′1D) ≠ 0. We are interested in estimating V = (V′1, V
′
2)
′, where V1 and V2 are

?×1 and : ×1 respectively. As is well known, OLS is inconsistent for V under (1.2.2). Suppose we

have a set of instruments I = (I1, G2), where I1 is a 1 × @ (@ ≥ ?) vector of excluded instruments,

3



such that

E(I′D) = 0. (1.2.3)

The first stage is given by the linear projection

G = I1Π1 + G2Π2 + A ≡ IΠ + A, (1.2.4)

whereΠ is the (@+:)× (?+:) matrix of all the first stage coefficients, andΠ1 andΠ2 are @×(?+:)

and : × (? + :) matrices of coefficients on I1 and G2 respectively. By definition,

E(I′A) = 0, (1.2.5)

and by assumption Π ≠ 0.

Then given a random sample and a rank condition, we can use 2SLS to consistently estimate V.

Note that the errors D and A are assumed only to satisfy a zero correlation with the instruments in

(1.2.3) and (1.2.5), and no other assumptions such as homoskedasticity or zero conditional mean

have been imposed on them.

Now, using (1.2.1) and (1.2.4), we get a reduced form for H given by

H = IΠV + E, E ≡ AV + D (1.2.6)

and using (1.2.3) and (1.2.5), we have

E(I′E) = 0. (1.2.7)

Under the missing data scheme described in the next section, equation (1.2.6) allows us to use the

incomplete cases for estimating V. When there is no missing data, the information in this equation

is redundant given equations (1.2.1)-(1.2.5).

1.3 The missing data scheme

I characterize the potential missingness of the data using selection indicators. For any random

draw (G8, H8, I8) from the population, we also draw the selection indicators (B18, B28) defined as

follows:

4



B18 =


1 if H8 is observed

0 otherwise

B28 =


1 if G8 is observed

0 otherwise

Two things should be noted. First, I am assuming that I8 is always observed. Since I8 = (I18, G28),

I am allowing for missingness only in the endogenous covariates G18.5 Second, I am assum-

ing that either all or none of the elements in G18 are observed. Then our “data" consists of

{(H8, G8, I8, B18, B28) : 8 = 1, ..., =}.

Because identification is properly studied in the population, let B1 and B2 denote random

variables with distributions of B18 and B28 respectively for all 8. In other words, (H, G, I, B1, B2) now

denotes the population.

This framework allows for several kinds of missing data patterns that arise frequently in practice.

Figure 1 shows some of these cases. First, it allows for the case where we have a single sample

in which H is missing for certain observations, G is missing for certain other observations, and for

the rest of the observations all H, G and I observed (Figure 1.1). Another case is where only G

is missing for certain observations (Figure 1.2).6 In both of these cases, using only the complete

cases may lead to a substantial loss of information. A third case is where H and G are missing for

disjoint observations such that there are no complete cases (Figure 1.3). Such a sample is typically

obtained by combining two samples such that only H and I are observed in one sample and only

G and I in the other. The most commonly used estimator in this case is the TS2SLS, which is a

special case of the estimator I propose in the next section.

To determine the properties of any estimation procedure using selected samples, we need to

know how B1 and B2 are related to (H, G, I). I place the following assumptions on the missingness

indicators.

5I discuss the case of missingness in exogenous covariates in Section 1.6.
6This case has briefly been considered in Abrevaya & Donald (2011).
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Assumption 1.3.1: (8) E(B1B2I′D) = 0 (88) E(B1B2I′A) = 0 (888) E(B1I′D) = 0 (8E) E(B1I′A) =

0 (E) E(B2I′A) = 0

This assumption essentially implies that the orthogonality assumptions on the errors given in

(1.2.3), (1.2.5) and (1.2.7) hold in the selected sub-populations as well. For instance, the first part

of this assumption, which is the weakest possible assumption required for the consistency a 2SLS

based only on the complete cases, can be written as

E(B1B2I′D) = E[E(B1B2I′D) |B1B2] = %(B1B2 = 1) E(I′D |B1B2 = 1) = 0, (1.3.1)

where the first equality holds by the lawof iterated expectations (LIE). Ifwe assume that %(B1B2 = 1)

is strictly positive, then we need the population orthogonality condition E(I′D) = 0 to hold in the

sub-population where B1 = B2 = 1 for this assumption to be true. The other parts of this assumption

impose similar restrictions on the errors in (1.2.1) and (1.2.4) for different sub-populations.

Sufficient for Assumption 1.3.1 to hold is that (B1, B2) |= (I, D, A), for which a sufficient condition

is that (B1, B2) |= (G, H, I). That is, selection is independent of everything else in the model. This is

generally known as “missing completely at random" (MCAR) in the missing data literature.7 For

instance, consider the first part of Assumption 1.3.1.

E(B1B2I′D) = E(B1B2) E(I′D) = 0 (1.3.2)

and similarly for the other parts.

Assumption 1.3.1 also holds if we have correctly specified conditional means and selection is

independent of errors in both the model of interest and the first stage conditional on the instru-

ments. That is, strengthening the exogeneity conditions in (1.2.3) and (1.2.5) to E(D |I) = 0 and

E(A |I) = 0 respectively and assuming (B1, B2) |= (D, A) |I is sufficient. Again, consider the first part

of Assumption 1.3.1.

E(B1B2I′D) = E[E(B1B2I′D |I, B1B2)] = E[B1B2I′ E(D |I, B1B2)] = E[B1B2I′ E(D |I)] = 0 (1.3.3)

7We do not require B1 and B2 to be independent of each other for Assumption 1.3.1 to hold.

6



where the third equality holds because of the conditional independence and the last one holds

because of the zero conditional mean of the errors. An important special case is when selection is

a deterministic function of I. But it can also depend on other unobservable random variables under

certain conditions. For instance, we can let

B1B2 = 5 (I, F), (1.3.4)

where F is an unobserved random variable. Then E(B1B2I′D) holds if E(D |I) = 0 and F |= (I, D), as

E(B1B2I′D) = E[E(B1B2I′D |I, F)] = E[B1B2I′E(D |I, F)] = E[B1B2I′ E(D |I)] = 0. (1.3.5)

What Assumption 1.3.1 rules out is (B1, B2) depending on the errors D and A. That is, selection

cannot depend on the idiosyncratic errors in either H or G. Whether or not this holds in an empirical

application should be carefully considered by the researcher.

1.4 Moment conditions and GMM estimation

Using equations (1.2.1)-(1.2.7) along with Assumption 1.3.1, I define the vector of moment

functions as follows.

6(V,Π) =



B1B2I
′(H − GV)

B1B2I
′ ⊗ (G − IΠ)′

(1 − B1)B2I′ ⊗ (G − IΠ)′

B1(1 − B2)I′(H − IΠV)


≡



61(V,Π)

62(V,Π)

63(V,Π)

64(V,Π)


(1.4.1)

where I suppress (H, G, I, B1, B2) from 6(.) for notational convenience. In the vector 6(.), 61(.) and

62(.) use the information contained in the complete cases. 63(.) uses the observations for which

G is observed but H is not, while 64(.) uses the observations for which H is observed but G is not.8

Then, the following result holds for 6(.).

Lemma 1.4.1. Under Assumption 1.3.1, E[6(V,Π)] = 0.

8Note that equations (1.2.1)-(1.2.7) and our missing data scheme suggest 5 different moment functions: 61 (.)-64 (.)
along with 65 (.) = B1B2I′(H − IΠV). However, since 65 (.) is a linear combination of 61 (.) and 62 (.), it is redundant
given 61 (.)-64 (.) and hence I exclude it from the set of relevant moment functions.
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This gives us a vector of 2(@+:) (1+ ?+:) moment conditions satisfied by the population parameter

values (V,Π). We have (?+:) (1+@+:) parameters to estimate, giving us 2(@+:)+(?+:) (@+:−1)

overidentifying restrictions.

Let 6̄(V,Π) = =−1 ∑=
8=1 6(H8, G8, I8, B18, B28, V,Π), Ω be a square matrix of order 2(@ + :) (1 +

? + :) that is nonrandom, symmetric, and positive definite, and Ω̂ be a first step consistent estimate

of Ω. Then, the standard two-step GMM estimator minimizes the objective function

6̄(V,Π)′ Ω̂ 6̄(V,Π). (1.4.2)

The variance-covariance matrix of the moment functions is given by

� ≡ E[6(V,Π) 6(V,Π)′] =



�11 �12 0 0

�′12 �22 0 0

0 0 �33 0

0 0 0 �44


where

�11 = E(B1B2D2I′I) �12 = E(B1B2I′DI ⊗ A) �22 = E(B1B2I′ ⊗ A′I ⊗ A)

�33 = E[(1 − B1)B2I′ ⊗ A′I ⊗ A] �44 = E[B1(1 − B2)E2I′I] (1.4.3)

and 6(.) is evaluated at the true value of the parameters. The optimal weight matrix is given by

the inverse of �. Let �̂ be a consistent estimate of � which can be obtained by replacing the

expectation by sample average in the definition of � above and replacing D, A and E by consistent

estimates obtained using, for instance, GMM estimators that use 61(.) only, 62(.) and 63(.) only,

and 64(.) only respectively. Then, the optimal GMM estimator is defined as the following.

Definition 1.4.1. Call the estimators of V and Π that minimize (1.4.2) with the optimal weight

matrix Ω̂ = �̂−1, V̂ and Π̂ respectively.

Further, define the (: + @) (2 + : + ?) × (: + ?) (1 + : + @) matrix of expected derivatives of 6(.)

8



w.r.t. (V′, E42(Π)′)′

� ≡ E[∇6(V,Π)] =



�11 0

0 �22

0 �32

�41 �42


where

�11 = −E(B1B2I′G) �22 = −E[B1B2(I′I ⊗ 21, . . . , I
′I ⊗ 2(?+:))]

�32 = −E[(1 − B1)B2(I′I ⊗ 21, . . . , I
′I ⊗ 2(?+:))] �41 = −E[B1(1 − B2)I′IΠ]

�42 = −E[B1(1 − B2)V′ ⊗ I′I], (1.4.4)

where 2< is a (? + :) × 1 vector with one in the <Cℎ row and all other rows being zero, < =

1, . . . , (? + :). I impose the following rank condition on � for identification of V and Π.

Assumption 1.3.2: A0=: (�) = (? + :) (1 + @ + :)

If %(B1B2 = 1) > 0, then sufficient for this assumption to hold is that E(I′G |B1B2 = 1) and

E(I′I |B1B2 = 1) have full column ranks (? + :) and (? + :) (@ + :) respectively. In this case,

E[61(V)] = 0 identifies V and E[62(Π)] = 0 identifies Π. If %(B1B2 = 1) = 0, for instance in

the TS2SLS case, then sufficient is that E(I′I |B2 = 1) and E(I′G |B1 = 1) have full column ranks

(? + :) (@ + :) and (? + :) respectively. In this case, E[63(Π)] = 0 identifies Π and E[64(V)] = 0

identifies V since for the purpose of identification, we can treat Π as known.

Then, we have the following result using Hansen (1982).

Theorem 1.4.1 Under standard regularity conditions and Assumptions 1.3.1 and 1.3.2,

√
=[

(
( V̂′, E42(Π̂)′

)′ − (
V′, E42(Π)′

)′] 3−−−−→ # (0, (�′�−1�)−1)

and

= 6̄( V̂, Π̂)′ �̂−1 6̄( V̂, Π̂) 3−−−−→ j2
2(@+:)+(?+:) (@+:−1) .

9



This statistic can be used for the standard test of overidentifying restrictions. Note that this statistic

is just the GMM objective function in (1.4.2) evaluated at the efficient values of the parameters

and is distributed as chi-squared with degrees of freedom equal to the number of overidentifying

restrictions.

1.5 Comparison with related estimators

1.5.1 Complete cases estimator

The most common practice in the presence of missing data is to just use the complete cases for

estimation; that is, only use the observations for which both H and G are observed. In the current

framework, the first and the most commonly used estimator that uses only the complete cases is the

standard 2SLS. This estimator uses only 61(.) in estimation as it requires B1 = B2 = 1, and uses a

weight matrix that is optimal when D is homoskedastic.

Definition 1.5.1.1 Call the estimator of V that minimizes (1.4.2), where 6(.) contains only 61(.)

and Ω̂ = (=−1 ∑=
8=1 B18B28I

′
8
I8)−1, the complete cases 2SLS (or V̂��−2(!().

The weight matrix used by V̂��−2(!( is optimal if E(D2 |I, B1, B2) = f2. When this assumption is

violated, a more efficient complete cases estimator can be obtained by using optimal weighting.

Definition 1.5.1.2 Call the estimator of V that minimizes (1.4.2), where 6(.) contains only 61(.)

and Ω̂ = �̂−1
11 , the complete cases GMM (or V̂��−�"" ).

This is the optimal GMM estimator based only on the complete cases. Its asymptotic variance is

easily obtained using the standard GMM theory.

Lemma 1.5.1.1 Under Assumption 1.3.1, the complete cases GMM has an asymptotic variance

given by

�E0A
(√
=( V̂��−�"" − V)

)
= (�′11�

−1
11 �11)−1.

Comparing the asymptotic variances of V̂ and V̂��−�"" , the former is no less efficient than the

latter because it uses the information contained in the incomplete cases, while the latter simply

10



ignores this information. The gain in efficiency follows from the fact that adding valid moment

conditions decreases, or at least does not increase the asymptotic variance of a GMM estimator.9

Proposition 1.5.1.1 Under Assumption 1.3.1,

�E0A
(√
=( V̂��−�"" − V)

)
− �E0A

(√
=( V̂ − V)

)
is positive semi-definite.

Further, I break down the gains in efficiency by V1 and V2, the coefficients on the potentially

missing endogenous covariates G1 and the always observed exogenous covariates G2 respectively.

For algebraic convenience, I consider the case where both G1 and I1 are scalars.10

Proposition 1.5.1.2 Let ? = @ = 1. Under Assumption 1.3.1,

(i) �E0A
(√
=( V̂1−��−�"" − V1)

)
− �E0A

(√
=( V̂1 − V1)

)
=

[
�′1 �′1

]
�


�1

�1

 ≥ 0

(ii) �E0A
(√
=( V̂2−��−�"" − V2)

)
− �E0A

(√
=( V̂2 − V2)

)
=

[
�′2 �′2

]
�


�2

�2

 ≥ 0,

where � 9 = �32�
−1
22�21, 9 , � 9 = (�41�

−1
11�11 + �42�

−1
22�21), 9 , 9 = 1, 2 and ,1, ,2 and �

are matrices defined in the appendix, � being a positive definite matrix.

Starting with the first part of Proposition 1.5.1.2, since � is positive definite, the difference is 0 if

and only if �1 = �1 = 0. The corresponding difference for V2 is 0 if and only if �2 = �2 = 0.

Since neither � 9 nor � 9 are necessarily 0 under the assumptions made so far, it is possible to obtain

strict gains in efficiency for both V1 and V2.

Finally, when there is no missingness, the moment conditions in (1.4.1) just give us the standard

2SLS estimator. Because B1 and B2 are always 1, 63(.) and 64(.) are always zero and we are left

with 61(.) and 62(.). Since 62(.) adds equal number of additional parameters as the number of

additional moment functions to 61(.), the GMM estimator of V from 61(.) will be the same as that

from 61(.) and 62(.).11 Thus, estimation is based only on 61(.) = I′(H − GV), which is the usual

9Wooldridge (2010), Section 8.6.
10The proof for this proposition is an extension of the proof of Proposition 2 in Abrevaya & Donald (2017).
11Ahu & Schmidt (1995), Theorem 1.
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moment function used by 2SLS along with a weight matrix constructed under homoskedasticity of

D.

Proposition 1.5.1.3 If %(B1 = 1) = %(B2 = 1) = 1 and Ω̂11 = (=−1 ∑=
8=1 I

′
8
I8)−1, where Ω̂11 is the

upper left (@ + :) × (@ + :) block of Ω̂, V̂ equals the standard 2SLS estimator.

1.5.2 Estimators combining different data sets

A special case of missingness occurs when data is combined from more than one data sets, one

or more of which do not contain either H or some or all elements of G. For instance, the pattern of

missingness in Figure 1.1 can result from combining three data sets, one of which contains all H, G

and I, a second is missing H, and a third is missing G. In this case, one can just use the first data set

to estimate V, but the second and third can be used to achieve efficiency gains using the framework

in Section 1.4. One does have to be careful in making sure that Assumption 1.3.1 holds in order to

ensure consistency. For instance, a sufficient condition would be that the different data sets being

combined are just random samples of different variables from the same population.

There may also be cases where estimation using a single data set is not possible at all. A

prominent example is when one data set contains only H and I, while the second contains only G and

I. The most commonly used estimator in this case is the TS2SLS.12 The TS2SLS is a sequential

GMM estimator based only on 63(.) and 64(.) since B1B2 = 0 in this case.

Definition 1.5.2.1 Call the estimator of V obtained by the following sequential procedure the

two-sample two stage least squares (or V̂)(2(!().

Step 1: Obtain Π̆ by minimizing (1.4.2), where 6(.) contains only 63(.) and Ω̂ = �.

Step 2: Estimate V by minimizing (1.4.2), where 6(.) contains only 64(.), Ω̂ = (=−1 ∑=
8=1 B18I

′
8
I8)−1,

and Π = Π̆ is treated as given.

There are two differences between V̂ and V̂)(2(!(. First is in terms of the assumptions made

by the two estimators. The traditional analysis of V̂)(2(!( or the related two-sample IV (TSIV)

12This estimator is discussed in detail in a GMM context by Inoue & Solon (2010).

12



estimator either assumes MCAR (Angrist & Krueger, 1995), or imposes restrictions on I and G

that essentially follow from assuming MCAR. For instance, Angrist & Krueger (1992), in using

the TSIV estimator, assume that E(I′G |B1 = 1) = E(I′G |B2 = 1). Inoue & Solon (2010) make the

same assumption, along with E(I′I |B1 = 1) = E(I′I |B2 = 1) and that the fourth moments of I

conditional on B1 and B2 are equal. The framework presented in this paper allows for relaxation of

these restrictive assumptions. By allowing B1 and B2 to depend on I, I allow for the distribution of

I (and G) to be different conditional on B1 and B2. However, the coefficient in the linear projection

of G on I (that is, Π) remains the same conditional on B1 and B2 under Assumption 1.3.1.13

The second difference is in terms of the weight matrix used. Note that the weight matrix used

in Step 2 of Definition 1.5.2.1 is the sample counterpart of�−1
44 (divided by the variance of E, which

is just a constant), when E satisfies the following assumption.

E(E2 |I, B1) = f2
E . (1.5.1)

That is, the variance of E is constant conditional on both the instruments I and B1. If this assumption

is not true, then V̂)(2(!( uses a sub-optimal weight matrix in Step 2 and efficiency gains are possible

by using the optimal weight matrix.14 Let

�̂32 = −
1
=

∑
8

[B28 (I′8I8 ⊗ 21, . . . , I
′
8I8 ⊗ 2(?+:))] �̂42 = −

1
=

∑
8

(B18 V̂′ ⊗ I′8I8) (1.5.2)

be consistent estimates of �32 and �42 respectively, and �̂44 and �̂33 are as defined in Section 1.4,

where consistent estimates of V and Π can now be obtained using V̂)(2(!(.

Definition 1.5.2.2 Call the estimator of V obtained by replacing

Ω̂ = (�̂44 + �̂32(�̂′42�̂
−1
33 �̂42)−1�̂′32)

−1

13Note that for V̂)(2(!( to be consistent, we only need Π to be the same conditional on B1 and B2, and not the
individual moments involved in the calculation of Π.

14Two things should be noted here:

• Because B1B2 = 0, 63 (.) = B2I′ ⊗ (G − IΠ)′ and 64 (.) = B1I′(H − IΠV).
• Since E[62 (.)] = 0 is an exactly identified set of moment conditions, the weight matrix does not matter for
estimation in Step 1 of Definition 1.5.2.1.
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in step 2 of the procedure in Definition 1.5.2.1, the Optimal TS2SLS estimator (or V̂)(2(!(−$).

This is the optimal sequential GMM estimator under the assumptions made so far and its asymptotic

variance is given in the following result.

Proposition 1.5.2.1 Under Assumption 1.3.1, V̂)(2(!(−$ is the optimal sequential GMMestimator

of V, and has an asymptotic variance given by

�E0A
(√
=( V̂)(2(!(−$ − V)

)
= {�′41 [�44 + �42(�−1

32�33�
′−1
42 )�

′
32]
−1�41}−1.

Since V̂)(2(!( uses a sub-optimal weight matrix as opposed to V̂)(2(!(−$ , the latter will be no

less efficient than the former.

Proposition 1.5.2.2 Under Assumption 1.3.1,

�E0A
(√
=( V̂)(2(!(−$ − V)) − �E0A (

√
=( V̂)(2(!( − V)

)
is positive semi-definite.

The proposed estimator V̂ is then equally efficient as V̂)(2(!(−$ .

Proposition 1.5.2.3 Under Assumption 1.3.1,

�E0A
(√
=( V̂)(2(!(−$ − V)

)
= �E0A (

√
=( V̂ − V)).

From Propositions 1.5.2.2 and 1.5.2.3, we can conclude that V̂ is no less efficient than V̂)(2(!(.

Proposition 1.5.2.4 Under Assumption 1.3.1,

�E0A
(√
=( V̂)(2(!( − V)) − �E0A (

√
=( V̂ − V)

)
is positive semi-definite.

Inoue & Solon (2005) address the issues of optimal weighting using a joint GMM and allowing

for conditional heteroskedasticity. Their framework however is more restrictive than necessary.

First, they start with zero conditional means of the errors in (2.1) and (2.4), which rules out the

important case when (1.2.1) and (1.2.4) are just linear projections and the data is MCAR. Second,

they impose restrictions on the second and third moments of G and I, which this framework does

not.
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Finally, V̂ is numerically equivalent to V̂)(2(!( if V is exactly identified. This is because in case

of exact identification, the efficiency due to using the optimal weight matrix is lost as the weight

matrix does not matter for estimation.

Proposition 1.5.2.5 If ? = @ and Assumption 1.3.1 holds, V̂ = V̂)(2(!(. Therefore,

�E0A
(√
=( V̂)(2(!( − V)

)
= �E0A

(√
=( V̂ − V)

)
.

1.5.3 Sequential estimators

Consider the case where H is always observed—that is, %(B1 = 1) = 1—and the only variables

that contain missing values are G. Thus, 63(.) = 0 and we are only left with 61(.), 62(.) and

64(.). For this case, McDonough & Millimet (2017) discuss a sequential estimator which is the

counterpart of linear imputation in the case where G is exogenous in equation (1.2.1).

Definition 1.5.3.1 Call the estimator of V obtained by the following procedure the imputation

estimator (or V̂�<?).

Step 1: Obtain Π̂ by minimizing (1.4.2), where 6(.) contains only 62(.) and Ω̂ = �.

Step 2: Estimate V by minimizing (1.4.2), where 6(.) = 65(.) = I′{H − [BG + (1 − B)IΠ̂]V},

Ω̂ = [=−1 ∑=
8=1 658 (.)658 (.)′]−1 and Π̂ is treated as given.

So in the first step, we estimate the first stage coefficients Π. We then replace the missing values of

G with IΠ̂ and estimate V in the second step using 2SLS on the full sample and treating the fitted

values of G as given. It is straightforward to show that this estimator is no more efficient than V̂.

Consider the sequential estimator of V that first estimates Π using 62(.) and then estimates V

using 61(.) and 64(.), where 64(.) uses the estimated Π from the first step.

Definition 1.5.3.2 Call the estimator of V obtained by the following procedure the sequential

estimator (or V̂(4@).

Step 1: Same as Step 1 in Definition 1.5.3.1.
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Step 2: Estimate V by minimizing (1.4.2), where

6(V, Π̂) =
(
61(V)′, 64(V, Π̂)′

)′
, Ω̂ = [=−1

=∑
8=1

68 (.)68 (.)′]−1

and Π̂ is treated as given.

By standard GMM theory, we know that V̂ is no less efficient than V̂(4@ , since it is a sequential

estimator (as opposed to a joint estimator) based on the same moment conditions as V̂.15 Moreover,

65(.), which is the moment condition used in Step 2 of Definition 1.5.3.1 can be obtained by adding

61(V) and 64(V, Π̂), which are the moment conditions used in step 2 of Definition 1.5.3.2. Since

V̂(4@ uses 65(.) and an additional moment condition, it is no less efficient than V̂�<? . Thus we can

conclude that V̂ is no less efficient than V̂�<? and there is no reason to choose the latter over the

former other than computational convenience.

1.5.4 Dummy variable method

A common method used to deal with missingness in G in the case where G is exogenous is the

dummy variable method, which entails replacing the missing values of G with zeros and including

an indicator for missingness as a covariate. As shown by Abrevaya & Donald (2017), this method

is inconsistent unless some zero restrictions are imposed in the population. This method continues

to be inconsistent in the current framework where G is endogenous.

Let %(B1 = 1) = 1, that is, H is always observed. Also note that (1.2.4) implies

G1 = I1Π11 + G2Π21 + A1, (1.5.3)

where Π11, Π21 and A1 constitute the first ? columns of Π1, Π2 and A respectively.16 Then (1.2.1)

and (1.5.2) imply

H = [B2G1 + (1 − B2) (I1Π11 + G2Π21 + A1)]V1 + G2V2 + D. (1.5.4)

15Prokhorov & Schmidt (2009), Theorem 2.2, part 5.
16One can similarly write G2 = I1Π12 + G2Π22 + A2. However, it is clear that both Π12 and A2 are identically 0 and
Π22 is a : × : identity matrix.
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Since G2 contains the constant, write G2 = (1, G22) where G22 constitutes the last (: − 1) columns

of G2. Correspondingly, write Π21 = (Π′211,Π
′
212)
′, where Π211 is the first row of Π21 and Π212

constitutes the last (: − 1) rows of Π21. Plugging this into (1.5.3) and re-arranging gives

H = B2G1V1 + (1 − B2)
(
I1Π11 + Π211 + G22Π212 + A1

)
V1 + G2V2 + D. (1.5.5)

The dummy variable method omits the covariates (1− B2)I1 and (1− B2)G22 from equation (1.5.4)

and estimates using 2SLS the equation

H = B2G1V1 + (1 − B2)Π211 + G2V2 + 4 (1.5.6)

using instruments (B2I1, 1− B2, G2), where 4 ≡ (1− B2) (I1Π11 + G22Π212)V1 + A1V1 + D. However,

since each of these instruments is now correlatedwith the new error 4, 2SLSwill not yield consistent

estimates in general unless we impose some zero restrictions in the population.

Proposition 1.5.4.1 The 2SLS estimators of V from equation (1.5.5) using instruments (B2I1, 1 −

B2, G2) are inconsistent unless (i) V1 = 0 or (ii) Π11 = Π212 = 0.

The first condition implies that G1 is irrelevant in the model of interest (1.2.1), so the best solution

is to drop it. The second implies that neither the excluded instruments I1 nor the always observed

covariates G22 help in explaining G1, in which case any estimation method based on I1 cannot be

used at all.

1.6 Missing instruments

In Sections 1.2-1.5, I discussed the case where H and the endogenous elements of G (that is, G1)

contain missing values, while the instruments I are always observed. In this section, I consider

the case where the excluded instruments I1 contain missing values. This includes as a special case

missingness in covariates when all the covariates are exogenous.

Startingwith the populationmodel in Section 1.2, I nowadditionally introduce a linear projection

of the excluded instruments I1 on the always observed exogenous covariates G2.

I1 = G2Γ + 4, (1.6.1)
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where by definition of a linear projection

E(G′24) = 0. (1.6.2)

As discussed in Section 1.5.4, (1.2.4) implies that

G1 = I1Π11 + G2Π21 + A1. (1.6.3)

Plugging (1.6.1) into (1.6.3) gives us a first stage in terms of G2 only.

G1 = G2(ΓΠ11 + Π21) + (4Π11 + A1). (1.6.4)

Plugging (1.6.4) into (1.2.1) gives us a reduced form for H in terms of G2 only.

H = G2(ΓΠ11V1 + Π21V1 + V2) + (4Π11V1 + A1V1 + D). (1.6.5)

Now, for observation 8, let

B38 =


1 if I18 is observed

0 otherwise

I impose the following assumptions on the missingness mechanism, which can be interpreted in a

similar way as Assumption 1.3.1.

Assumption 1.6.1: (8) E(B3I′D) = 0 (88) E(B3I′A) = 0 (888) E(B3G′24) = 0.

This gives us the following moment functions.

ℎ(V,Π, W) =



B3I
′(H − GV)

B3I
′ ⊗ (G1 − I1Π11 − G2Π21)′

B3G
′
2 ⊗ (I1 − G2Γ)′

(1 − B3)G′2 ⊗ [G1 − G2(ΓΠ11 + Π21)]′

(1 − B3)G′2 [H − G2(ΓΠ11V1 + Π21V1 + V2)]


=



ℎ1(V,Π, W)

ℎ2(V,Π, W)

ℎ3(V,Π, W)

ℎ4(V,Π, W)

ℎ5(V,Π, W)


(1.6.6)

This vector of moment functions is basically using the original model of interest and first stage

when I1 is observed
(
ℎ1(.) and ℎ2(.)

)
. When I1 is missing, it uses the reduced forms for G1 and H
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in terms of G2 in order to use the incomplete cases
(
ℎ4(.) and ℎ5(.)

)
. ℎ3(.) simply identifies the

parameters in the linear projection of I1 on G2. Then under Assumption 1.6.1, the following result

holds for ℎ(.).

Lemma 1.6.1. Under Assumption 1.6.1, E[ℎ(V,Π, W)] = 0.

This gives us a set of 2: (1 + ?) + @(1 + ? + :) moment conditions for (? + :) (1 + @ + :) + :@

parameters, giving us : (1 + ?) + @ − ? overidentifying restrictions.17 Then, let ℎ̄(V,Π, Γ) =

=−1 ∑=
8=1 ℎ(H8, G8, I8, B38, V,Π, Γ), Λ be a square matrix of order 2: (1 + ?) + @(1 + ? + :) that

is nonrandom, symmetric, and positive definite, and Λ̃ be a first step consistent estimate of Λ.

Then,
(
Ṽ′, E42(Π̃)′, E42(Γ̃)′

)
is the standard two-step GMM estimator that minimizes the objective

function

ℎ̄(V,Π, Γ)′ Λ̃ ℎ̄(V,Π, Γ). (1.6.7)

Let Ṽ22 be the complete cases GMM that minimizes (1.6.7) with ℎ(.) = ℎ1(.) and Λ̃ is a consistent

estimate of [E(ℎ1(.)ℎ1(.)′]−1. Then we know that Ṽ is no less efficient than Ṽ22 because the former

uses more moment conditions.

Proposition 1.6.1. Under Assumption 1.6.1,

�E0A
(√
=( Ṽ22 − V)

)
− �E0A

(√
=( Ṽ − V)

)
is positive semi-definite.

Similar to Section 1.5, we can break down the efficiency gains by V1 and V2, the coefficients

on the endogenous and exogenous elements of G respectively, and show that it is possible to obtain

strict gains in efficiency for both V1 and V2.18

This is in contrast with the sequential estimator discussed in Mogstad & Wiswall (2012). They

consider the case where ? = @ = 1 and the estimator proceeds in two steps. In the first step, it

estimates Γ using ℎ3(.). It then replaces the missing values of I1 by the imputed values G2Γ̂, where

Γ̂ is the first step estimate of Γ, and then in the second step estimates V by minimizing (1.6.7) where

ℎ(.) = I∗′(H − GV) and I∗ =
(
B3I1 + (1 − B3)G2Γ̂, G2

)
.19 They show that the estimate of V1 using

17Since Π21 = 0 and Π22 = �, the only elements of Π that are being estimated are Π11 and Π21.
18This proof is analogous to that of Proposition 5.1.2 and is available upon request.
19The weight matrix is irrelevant in this case due to exact identification.

19



this estimator is numerically equivalent to that using complete cases estimator Ṽ22. Thus, Ṽ does

better than this estimator as it is possible to obtain strict gains in efficiency for both V1 and V2.

Abrevaya & Donald (2011) also propose a GMM estimator to deal with missingness in I1.

Their estimator is based on the moment functions

ℎ� (V) = I′� (H − GV), (1.6.8)

where I� = (G2, (1 − B3)G2, B3I1). It is clear that the moment functions in (1.6.6) contain (1.6.8)

as a linear combination plus some additional moment conditions. Thus, Ṽ is no less efficient than

their estimator.

Now, when G1 is exogenous in equation (1.2.1) in the sense that

E(G′1D) = 0, (1.6.9)

then G1 = I1. In this case, ℎ2(.) = 0 and ℎ4(.) cannot be used anymore.20 So our vector of moment

conditions is

E


B3G
′(H − GV)

B3G
′
2 ⊗ (G1 − G2Γ)′

(1 − B3)G′2 [H − G2(ΓV1 + V2)]


=


0

0

0


(1.6.10)

These are the moment conditions used by Abrevaya & Donald (2017) who consider the case

of missingness in a single exogenous covariate. Thus, the framework presented here encompasses

theirs as a special case when when G1 is exogenous and ? = 1.

1.7 Nonlinearity in covariates and instruments

Nonlinear functions of the covariates, like squares and interactions, are frequently used in

empirical work. If these covariates are endogenous, one generally uses nonlinear functions of the

instruments as well. In general, any sequential procedures that plug in the fitted values of the

covariates or the instruments from a first step into nonlinear functions of these variables generally

produce inconsistent estimates. For instance, traditional imputation used when the covariates are

20ℎ2 (.) = 0 because Π11 is a ? × ? identity matrix since I1 = G1 and Π21 is a matrix of zeros.
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exogenous will result in inconsistency if one replaces the missing value of say, the square of a

covariate, with square of the imputed value of that covariate. In this section, I provide estimators

that are consistent as well as more efficient than these sequential procedures and the complete case

methods.

Suppose that the model of interest is now given by

H = �1(G1, G2)V + D, (1.7.1)

where G1 is a 1 × ? vector of potentially endogenous covariates, G2 is a 1 × : vector of exogenous

covariates, G = (G1, G2), and �1(G1, G2) is a 1× 91 vector of potentially nonlinear functions of G1 and

G2, 91 ≥ (? + :). For instance, suppose ? = : = 1. Then �1(G1, G2) could equal (G1, G
2
1, G1G2, G2).

We also have a 1 × @ vector of instruments I1 for G1, @ ≥ ?. I assume

E(D |I1, G2) = 0, (1.7.2)

and allow for E(G′1D) ≠ 0. So I now assume that D has a zero mean conditional on I1 and G2.21 The

first stage is given by the linear projection

�1(G1, G2) = �2(I1, G2)Π + A. (1.7.3)

�2(I1, G2) is a 1 × 92 vector of instruments where �2(.) is chosen by the researcher, and Π is a

92 × 91 vector of coefficients. Because �1(G1, G2) contains nonlinear functions of G1, �2(I1, G2)

will most likely also contain nonlinear functions of I1 and G2. For instance, as discussed in

Wooldridge (2010)22, if �1(G1, G2) = (G1, G
2
1, G1G2, G2), one might want to choose �2(I1, G2) =

(I1, I21, I1G2, G2, G
2
2). By definition

E[�2(I1, G2)′A] = 0. (1.7.4)

From equations (1.7.1) and (1.7.3), we get a reduced form for H in terms of only I1 and G2.

H = �2(I1, G2)ΠV + E, (1.7.5)

21This is a standard assumption made in the literature when the model includes nonlinear functions of covariates and
motivates the choice of instruments.

22Section 9.5.
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where E ≡ AV + D. Using (1.7.2) and (1.7.4), we have that

E[�2(I1, G2)′E] = 0. (1.7.6)

1.7.1 Missingness in outcome and covariates

Starting with the case of missingness in H and G1, let the scheme of missingness be the same as

described in Section 1.3. That is, both H and G1 contain missing values, while I1 and G2 are always

observed.

In this case, what seems like the natural extension of the sequential estimator discussed in

McDonough & Millimet (2017) will be inconsistent for V because it performs the “forbidden

regression" as discussed in Wooldridge (2010).23 For instance, let �1(G1, G2) = (G1, G
2
1, G1G2, G2).

The sequential estimator would regresses G1 on �2(I1, G2) and obtain the fitted values (say Ĝ1) in

the first step, replace the missing values of G1, G2
1 and G1G2 with Ĝ1, (Ĝ1)2 and Ĝ1G2 respectively, and

then estimate V using 2SLS in the second step treating the fitted values as data. The inconsistency

is a result of replacing nonlinear functions of G1 with the same nonlinear function of fitted values.

The correct way to go is to simultaneously estimate the first stage parameters Π and the parameters

of interest V.

I first impose the following assumption on the missingness mechanism.

Assumption 1.7.1.1. (8) E[B1B2�2(I1, G2)′D] = 0 (88) E[B1B2�2(I1, G2)′A] = 0

(888) E[B1�2(I1, G2)′D] = 0 (8E) E[B1�2(I1, G2)′A] = 0 (E) E[B2�2(I1, G2)′A] = 0.

This gives us the following moment conditions.

E[6#! (V,Π)] = E



B1B2�2(I1, G2)′[H − �1(G1, G2)V]

B1B2�2(I1, G2)′ ⊗ [�1(G1, G2) − �2(I1, G2)Π]′

(1 − B1)B2�2(I1, G2)′ ⊗ [�1(G1, G2) − �2(I1, G2)Π]′

B1(1 − B2)�2(I1, G2)′[H − �2(I1, G2)ΠV]


=



0

0

0

0


(1.7.7)

Compared to Section 1.4, we have simply replaced G with �1(G1, G2) and I with �2(I1, G2). Unlike

Section 1.4 though, the traditional imputation is not consistent.

23Section 9.5.2.
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1.7.2 Missingness in instruments

Next we move to the missing data scenario of Section 1.6. That is, the only variables that

contain missing values are the excluded instruments I1. We re-write equation (1.7.3) as follows by

breaking up �2(I1, G2) into elements that do and do not depend on I1.

�1(G1, G2) = �21(I1, G2)Π0 + �22(G2)Π1 + A, (1.7.8)

where �2(I1, G2)Π ≡ �21(I1, G2)Π0 + �22(G2)Π1, �21(I1, G2) is a 1 × 921 vector that includes all

elements of �2(I1, G2) that are functions of I1, �22(G2) is a 1× 922 vector that includes all elements

of �2(I1, G2) that are functions only of G2, and 92 = 921 + 922. From our example in Section 1.7.1,

if �2(I1, G2) = (I1, I21, I1G2, G2, G
2
2), then �21(I1, G2) = (I1, I21, I1G2) and �22(G2) = (G2, G

2
2). To

handle missingness in I1, we also need a linear projection of each of the instruments on �22(G2).24

�21(I1, G2) = �22(G2)Γ + 4, (1.7.9)

where by definition

E[�22(G2)′4] = 0. (1.7.10)

This gives us the reduced forms of �1(G1, G2) and H in terms of G2 only. Plugging (1.7.9) into

(1.7.8) we get

�1(G1, G2) = �22(G2) (ΓΠ0 + Π1) + 4Π0 + A. (1.7.11)

Similarly, plugging (1.7.11) into (1.7.1) we get

H = �22(G2) (ΓΠ0 + Π1)V + (4Π0 + A)V + D. (1.7.12)

Next, I impose the following assumption on the missingness mechanism.

Assumption 1.7.2.1. (i) E[B3�2(I1, G2)′D] = 0 (ii) E[B3�2(I1, G2)′A] = 0 (iii) E[B3�22(G2)′4] = 0.

24Based on the exact functional form of �1 (.), one might want to choose different functions of G2 in equation (1.7.9)
than those in �22 (.). This framework can be easily extended to allow for that by replacing �22 (G2) by a different
function �3 (G2) in (1.7.9) and deriving the reduced forms in (1.7.11) and (1.7.12) accordingly. For the ease of
exposition, I stick here with the same functions of G2 in both (1.7.8) and (1.7.9).
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This gives us the following moment conditions.

E[ℎ#! (V,Π, W)] = E



B3�2(I1, G2)′[H − �1(G1, G2)V]

B3�2(I1, G2)′ ⊗ [�1(G1, G2) − �2(I1, G2)]′

B3�22(G2)′ ⊗ [�21(G1, G2) − �22(G2)Γ]′

(1 − B3)�22(G2)′ ⊗ [�1(G1, G2) − �22(G2) (ΓΠ0 + Π1)]′

(1 − B3)�22(G2)′
(
H − �22(G2) (ΓΠ0 + Π1)V]


=



0

0

0

0

0


(1.7.13)

In the case where G1 is exogenous (and hence G1 = I1), this reduces to

E[ℎ#! (V,Π, W)] = E


B3�2(I1, G2)′[H − �1(G1, G2)V]

B3�22(G2)′ ⊗ [�21(G1, G2) − �22(G2)Γ]′

(1 − B3)�22(G2)′[H − �22(G2) (ΓΠ0 + Π1]V]


(1.7.14)

As discussed in Abrevaya &Donald (2017), when G1 is exogenous, the secondmost commonly used

method after the complete cases OLS is linear imputation. In the example we have been carrying

along where �1(G1, G2) = (G1, G
2
1, G1G2, G2), it proceeds as follows. In the first step, it regresses G1

on G2 and obtains the fitted values (say G̃1). In the second step, it replaces the missing values of

G1, G2
1 and G1G2 with G̃1, G̃2

1, and G̃1G2 respectively. Not only does this method not use the optimal

instruments for G1 (as it fails to include the nonlinear functions of G2 in the imputation equation), it

performs a forbidden regression in the second step, and hence results in inconsistent estimates for

V.

1.8 Monte Carlo simulations

1.8.1 Missingness in outcome and covariates

The data generating process is as follows.

H = 1 + G1V1 + G2V2 + D,

where G1 is a scalar and G2 = [1 G22 G23] is a 1 × 3 vector. Moreover,
G22

G23

 ∼ #
( 

1

1

 ,


2 0.1

0.1 3


)
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V2 = (V21, V22, V23)′ is fixed at (1, 1, 1)′ throughout all designs. The error is D = fDD∗, where D∗

is a standard normal, and fD will be used to vary the error variance. The vector of instruments

I1 = (I11, I12, I13, I14) is 1 × 4 vector where

I11

I12

I13

I14


∼ #

( 

0

0

0

0


,



1 0.5 0.4 0.3

1 0.2 0.1

1 0

1


)

The first stage is given by

G1 = I1Π11 + G2Π21 + A1,

where Π11 = (1, 1, 1, 1)′, Π21 = (0.5, 0.5, 0.5)′ and A1 = A
∗
1 + D

∗, where A∗1 is a standard normal.

Thus, D∗ is the part of G1 that is correlated with D and causes G1 to be endogenous.

The missingness is based on a uniform random variable, making the data MCAR.

B∗ ∼ U(0, 1), B1 = 1[B∗ < 0 or B∗ > 1], B2 = 1[B∗ < 1] .

I consider 4 designs.

Design 1: V = 1, fD = 3.5, 0 = 0.5, 1 = 0.75.

Design 2: V = 1, fD =
√
4G?(I211), 0 = 0.5, 1 = 0.75.

Design 3: V = 1, fD =
√
4G?(I211), 0 = 0.4, 1 = 0.75.

Design 4: V = 0.1, fD =
√
4G?(I211), 0 = 0.5, 1 = 0.75.

The first design is the basic case of homoskedasticity in the model of interest. Design 2 allows

for D to be heteroskedastic. Design 3 reduces the percentage of complete cases, and design 4

reduces the magnitude of the coefficient of interest. For all the designs, I do 1000 iterations with

= = 3000.

I look at five estimators, starting with the most commonly used, which is the complete cases

2SLS. When the data is heteroskedastic, a GMM based on the complete cases will be more efficient

than the 2SLS, and that is the second estimator I consider. The third is the imputation estimator
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discussed in Section 1.5.3, followed by the dummy variable method and finally the proposed

estimator.

The first thing to note is that the proposed estimator works best in terms of efficiency in all

cases, with substantial reductions in the standard deviation relative to other estimators. This is true

not only for V22 and V23, the coefficients on G2, but also for V1, the coefficient on the covariate

with missing values. The pattern on bias relative to other estimators is less clear, but the proposed

estimator still has the smallest root mean squared error out of all the estimators in all cases.

The gains in efficiency of the proposed estimator are more pronounced when we have het-

eroskedasticity. Relative to the complete cases GMM, the gains increase as the percentage of

complete cases decreases, which is to be expected as the proposed estimator now incorporates

more additional information into estimation. The gains remain substantial in the case where the

coefficient on the covariate with missing values is small.

The complete cases GMM is more efficient than the complete cases 2SLS when there is

heteroskedasticity because of the optimal weighting, as expected. Yet it is less efficient than the

proposed estimator in all cases, including when the error in the model of interest is homoskedastic.

The imputation estimator on the other hand is not guaranteed to bring any efficiency gains relative

to the complete cases GMM, and hence has no reason to be preferred over the former. The dummy

variable method shows severe bias in all but the last design where the coefficient on the variable

with missing value is close to 0, and does not even guarantee gains in efficiency over the complete

cases GMM. Thus, this estimator cannot be recommended either.

1.8.2 Missingness in instruments

The data generating process is as follows.

H = 1 + G1V1 + G2V2 + D.
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where G1 is a scalar and G2 = [1 G22 G23] is a 1 × 3 vector. Moreover,
G22

G23

 ∼ #
( 

1

1

 ,


2 0.2

0.2 1


)

V1 = 1, V2 = (V21, V22, V23)′ is fixed at (1, 1, 1)′ throughout all designs. The error is D = fDD∗,

where D∗ is a standard normal, and fD will be used to vary the error variance. We have a single

instrument I1 such that

I1 = G2Γ + 4,

where Γ = (1, 0.5, 0.5)′ and 4 is standard normal. The first stage is given by

G1 = I1Π11 + G2Π21 + A1,

where Π11 = 1, Π21 = (1, 0.5, 0.5)′ and A1 = A
∗
1 + D

∗, where A∗1 is a standard normal and D∗ is the

part of G1 that is correlated with D.

The missingness is based on a uniform random variable, making the data MCAR.

B∗ ∼ U(0, 1), B3 = 1[B∗ > 0] .

I consider 3 designs.

Design 5: fD = 4, 0 = 0.5.

Design 6: fD =
√
4G?(I211), 0 = 0.5.

Design 7: fD =
√
4G?(I211), 0 = 0.4.

Design 5 is the case of homoskedasticity in the model of interest, design 6 allows for D to be

heteroskedastic, and design 7 increases the percentage of complete cases. For all the designs, I do

1000 iterations with = = 2000.

The results are qualitatively similar to those in the previous sub-section. The proposed estimator

substantially improves efficiency and has a lower root mean squared error relative to the complete

cases 2SLS in all cases including that of homoskedasticity.25 The gains are more pronounced in

the case of heteroskedasticity and increase with a reduction in the percentage of complete cases.

25The only exception is V1 in the case of homoskedasticity, where the two estimators perform equally well.
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The imputation estimator for V1 is numerically equivalent to the complete cases 2SLS, as noted

in Mogstad & Wiswall (2012). For V22 and V23, this estimator always does no better than the

proposed estimator, and sometimes does worse than even the complete cases 2SLS. Since it does

not guarantee efficiency gains over the complete cases or the proposed estimator, there is no reason

to prefer it over either of the two.

1.9 Empirical application

I estimate the effect of physician’s advice to reduceweight on calorie consumption by individuals

using the estimator proposed in Section 1.4. As noted by Joshi and Wooldridge (2020), physician’s

advice is a low cost and precisely targeted intervention that can affect food consumption habits

of individuals. The effect of physician’s advice on outcomes like smoking, dietary and exercise

behavior has been considered by Loureiro & Nayga Jr (2006), Loureiro & Nayga Jr (2007), Secker-

Walker et al. (1998), and Ortega-Sanchez et al. (2004), among others.

The data comes from five most recent cycles of National Health and Nutritional Examination

Survey (NHANES): 2007-08, 2009-2010, 2011-12, 2013-14, and 2015-16.26 The NHANES is

designed to assess the health and nutritional status of adults and children in the US. It examines

a nationally representative sample of about 5000 persons each year and contains demographic,

socioeconomic, dietary, and health-related questions.

The dependent variable (H) is the log of calorie intake of individuals. The endogenous covariate

(G1) is a binary variable which equals one if the physician advised the individual to lose weight.

The excluded instruments (I1) are binary variables indicating whether the individual has health

insurance and a regular source of care. Other explanatory variables (G2) include demographic

variables like age, gender, race, education, and income of the individual as well as health-related

variables such as the individual’s body mass index (BMI), and indicators for whether they have

high blood pressure, high cholesterol, Arthritis, a heart condition and Diabetes. Also included are

year fixed effects and all variables have been demeaned.

26I would like to thank Rĳu Joshi for providing me with neatly compiled and cleaned data.
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I restrict the sample to overweight individuals, that is, those with BMI greater than or equal

to 25. I also exclude from the sample women who are pregnant, and individuals for whom the

covariates G2 or the excluded instruments I1 are missing. The final sample consists of 11,512

observations with H missing for 952 observations and G1 missing for 2173 observations.

Table B8 reports the results for two estimators: the complete cases GMM and the estimator

proposed in Section 1.4 which uses the incomplete cases. The former results in the coefficient of

interest being insignificant, which continues to hold true with the reduced standard error resulting

from the proposed estimator. The standard errors for all other coefficients are smaller as well using

the proposed estimator, while the coefficients for most variables remain similar to those obtained

using the complete cases GMM.

1.10 Conclusion

I have offered some simple GMM estimators that improve efficiency over the currently used

methods in the presence of missing data in linear regression models with endogenous covariates.

I consider the cases of missingness in the outcomes and the endogenous covariates as well as that

of missingness in the instruments. The latter includes the missingness in exogenous covariates as

a special case. I also consider models that are nonlinear in the covariates and need a more careful

treatment to ensure consistency. Thus, my framework can be used to deal with missingness in a

wide variety of models frequently used in empirical work. In ongoing work, I am extending these

methods to the case of panel data and models nonlinear in the parameters.
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CHAPTER 2

IMPUTING MISSING COVARIATE VALUES IN NONLINEAR MODELS

2.1 Introduction

Nonlinear models are widely considered better suited to explain limited dependent variables

than linear models. With missing covariate values - a ubiquitous problem in empirical research

- nonlinear models become even more important because unlike the case where all variables are

observed, estimates from linear models are now not necessarily consistent for parameters in the

best linear approximations to nonlinear models.1 Yet not much of the vast literature on missing data

has explicitly addressed the unique issues that arise when dealing with missingness in nonlinear

models.

Economists deal with missing covariate values predominantly in three ways. The most common

thing to do is to just use the “complete cases" - the observations for which all the covariates are

observed. While easy to use, this method can lead to substantial loss of efficiency because of

discarding the incomplete cases. This has inspired methods that make use of these incomplete

cases. The first commonly used method in this regard is the dummy variable method (DVM),

which replaces the missing values with 0 and includes an indicator for missingness as an additional

covariate. The second commonly used method is two-step regression imputation. In the first step,

it regresses the covariate with missing values (CMV) on the always-observed covariates using the

complete cases and uses the estimated coefficients to predict missing values of the CMV. In the

second step, it estimates the model of interest using all observations with this “composite" CMV,

which consists of both observed and predicted values (Dagenais, 1973). Table D1 summarizes

the usage of these methods in 5 highly ranked economics journals in the last 3 years. Out of 846

papers, about 26% reported having missing data. Out of these, about 62%, 19% and 14% used the

complete cases estimator, the DVM and the two-step regression imputation respectively.2
1I discuss this issue in detail in Section 2.6.4. Also see Wooldridge (2002).
2Of all the other methods used, no single category stood out. About 18% of the papers use other methods, most
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The choice of method comes down to consistency and relative efficiency. The complete cases

estimator generally requires the least number of assumptions in both linear and nonlinear models

to be consistent. For instance, when the econometric model is correctly specified, say a model

of a mean or a distribution conditional on the covariates, it only requires that the missingness

depends only on the covariates (Wooldridge, 2002). However, as mentioned above, it can be

inefficient relative to the other two estimators that use the incomplete cases. The DVM on the

other hand is generally inconsistent even in linear models (Jones, 1996) and as I show in this

paper, in nonlinear models as well, unless some very strong zero assumptions are imposed. Even

with these assumptions, it does not guarantee efficiency improvements over the complete cases

estimator (Abrevaya & Donald, 2017). Yet this method is still widely used as is evident from Table

D1, perhaps because of its ease of use.

Two-step regression imputation also imposes additional assumptions on the model relative to

the complete cases estimator, but these assumptions are much more plausible than those imposed

by DVM. Practically, the most important one is ruling out the dependence of missingness on the

CMV itself. Under this assumption, it is generally consistent in linear models.

However, in this paper I show that even under this assumption, this method is generally in-

consistent in nonlinear models. Most notable are models based on conditional means, including

commonly used models like probit, tobit, and Poisson regression. The reason for inconsistency is

that this method simply plugs the imputed values in the same objective function that one would

minimize if there were no missing values. However, in nonlinear models, this objective function

does not necessarily capture the correct relationship between the observed variables in observations

with missing values. The core issue is that conditional expectation does not pass through nonlinear

functions, unlike linear ones. For instance, in binary choice models, simply plugging imputed

values in the standard probit response probability and maximizing the resulting log likelihood will

generally result in inconsistency in estimators of both the structural parameters and other quantities

of which are ad-hoc. This includes methods like replacing missing values with observations from the previous or
following time period in case of panel data (5%), replacing missing values with 0 (4%), and dropping or combining
variables with missingness (2%). Some papers also used hot deck (3%) and context specific imputation methods
(2%). There were 2 instances each of multiple imputation and weighting.
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of interest, such as average partial effects. To my knowledge, this issue has not been addressed in

the literature and on the contrary, it has been claimed that this method is consistent in binary choice

models (DeCanio & Watkins, 1998).

The key contribution of this paper is to propose a one-step imputation estimator which relies

on the same assumptions as two-step imputation, but is consistent in nonlinear models. It simulta-

neously estimates the model of interest and the imputation model using the complete cases and a

“reduced form" using all observations. The reduced form is a version of the main model in which

we have “integrated out" the CMV using the imputation model, and hence it is able to make use of

the incomplete cases. The key is that it correctly captures the relationship between the observed

variables when the CMV is missing.

The estimator provides potentially strict efficiency gains over the complete cases estimator

for all coefficients, and using a generalized method of moments (GMM) framework provides the

overidentification test as a test for underlying restrictions. The method is an extension of Abrevaya

& Donald (2017), who proposed a one-step imputation estimator for linear models. I provide a

unified treatment of linear and nonlinear models using an M-estimation framework. Special cases

include linear and nonlinear least squares, conditional maximum likelihood, and quasi maximum

likelihood methods.

A second contribution is that I allow for nonlinearity in the imputation model itself. As

mentioned above, the presence of missing data heightens the concerns about using linear models

for limited dependent variables. Therefore, when imputing say a binary CMV, a probit may be more

appropriate than a linear probability model. To my knowledge, regression imputation literature

has solely focused on linear imputation models, though some of these nonlinear models have been

discussed in the context of multiple imputation which is a Bayesian method of imputing (Rubin,

1987, Van Buuren, 2007).

The rest of this paper is organized as follows. Section 2.2 lays out the population minimization

problems obtained from the underlying model of interest and imputation model. Section 2.3

describes the selection problem and estimation of selection probabilities. Section 2.4 derives the
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proposed estimator, its asymptotic distribution and a simple estimator of the asymptotic variance.

Section 2.5 discusses two practically important examples: nonlinear models for fractional responses

and nonnegative responses, including count responses. Within each model, I consider a continuous

and a binary CMV. Section 2.6 compares the proposed estimator to three other estimators: complete

cases, two-step imputation and DVM. Section 2.7 provides simulation results showing the relative

performance of these estimators. Section 2.8 provides an empirical application to the estimation of

association between grade variance and educational attainment as considered in Sandsor (2020).

Section 9 concludes. Proofs, tables and figures are given in appendices.

2.2 The population optimization problems

We start with the population optimization problem which defines the parameters of interest.

Let H be a 1 × � random vector taking values in Y ⊂ R� and G be a 1 × ( + 1) random vector

taking values in X ⊂ R +1. We are interested in explaining H in terms of G. Some aspect of the

joint distribution of (H, G) depends on a !1 × 1 parameter vector, U, contained in a parameter space

A ⊂ R!1 . Let 51(H, G1, G2, U) denote an objective function.

Assumption 2.2.1. U0 is the unique solution to the population minimization problem

min
U∈A
E[ 51(H, G1, G2, U)] . (2.2.1)

Often, U0 indexes some correctly specified feature of the distribution of H conditional on G, such

as a conditional mean or a conditional median. But we will derive consistency and asymptotic

normality results for a general class of problems in which the underlying population model can be

misspecified in some way.

Next, let G = (G1, G2), where G1 is a scalar,3 and G2 is a 1 ×  random vector taking values in

X1 ⊂ R and X2 ⊂ R respectively, and X = X1 × X2. As discussed in Section 2.3, we will allow

G1 to contain missing values and assume that (H, G2) are always observed. Thus, we are interested

in imputing G1 using G2. Let some aspect of the joint distribution of (G1, G2) depends on a !2 × 1

3The discussion for a random vector G1, all elements of which are missing and observed at the same time, is essentially
the same.
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parameter vector V, contained in a parameter space B ⊂ R!2 . Let 52(G1, G2, V) denote an objective

function, and consider the population optimization problem which characterizes the imputation

parameters.

Assumption 2.2.2. V0 is the unique solution to the population minimization problem

min
V∈B
E[ 52(G1, G2, V)] . (2.2.2)

Similar to the model of interest, the underlying population model here can be misspecified in some

way.

The case that has been well studied in the classical imputation literature is where the underlying

models for both 51(H, G, U) and 52(G1, G2, V) are linear. The framework presented here allows for

both the underlying models to be nonlinear as long as they are estimable using M-estimators, which

includes maximum likelihood, quasi-maximum likelihood, nonlinear least squares, and many other

procedures. For instance, if both H and G1 are binary, we can let both 51(H, G, U) and 52(G1, G2, V) be

negative of probit log-likelihoods, instead of basing them on linear models. Alternatively, H could

be a nonnegative count variable and G1 could be continuous, in which case we can let 51(H, G, U) be

the negative of Poisson log-likelihood and let 52(G1, G2, V) come from a linear model. We consider

these examples in detail in Section 2.5.

Next, we define a reduced form M-estimation problem which is based only on the always-

observed variables (H, G2). This reduced form is what allows us to use the incomplete cases, and

hence is the key to the efficiency gains of the proposed estimator.

Let W = @(U, V) be a (potentially nonlinear) !3 × 1 function of the parameters of interest

U and the imputation parameters V, where W is contained in a parameter space Γ ⊂ R!3 and

!3 ≤ !1 + !2. We assume that we can obtain a “reduced form" objective function 53(H, G2, W) in

terms of the always-observed variables H and G2 as well as W such that W0 = @(U0, V0) uniquely

minimizes this function.

Assumption 2.2.3. W0 is the unique solution to the population minimization problem

min
W∈Γ
E[ 53(H, G2, W)] . (2.2.3)
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The reduced form model underlying 53(H, G2, W) is derived by “integrating out" G1 from the model

of interest using the imputation model. When the model of interest is a linear projection or a

model of conditional mean linear in the parameters, the reduced form can be derived using iterated

projections or iterated expectations properties without having to do explicit integration. This is

the case considered in Abrevaya & Donald (2017). In commonly used models nonlinear in the

parameters like probit and Poisson regression, “substituting" for G1 using the imputation model

eliminates the need for explicit integration. We consider these examples in Section 2.5.

The dimension of W warrants some discussion. It is possible that !3 < !1 + !2, that is, the

reduced form only identifies certain functions of U0 and V0, and not each element of U0 and V0

separately. Some examples are the case of linear projections considered in Abrevaya & Donald

(2017) and the case of probit with continuous G1 considered in Section 5.1.1. It is however, also

possible that !3 = !1 + !2, in which case W0 = (U′0, V
′
0)
′, for instance in the case of probit with

binary G1 considered in Section 2.5.1.2.4

Assumptions (2.2.1)-(2.2.3) imply that (U0, V0) is the unique solution to the following equations,

provided that we can interchange the expectation and the derivative.

E[6∗(H, G1, G2, U, V)] = E


6∗1(H, G1, G2, U)

6∗2(G1, G2, V)

6∗3(H, G2, U, V)


=


0

0

0


, (2.2.4)

where 6∗1(H, G1, G2, U) ≡ ∇U 51(H, G1, G2, U)′ is the !1 × 1 score of 51(H, G1, G2, U) , 6∗2(G1, G2, V) ≡

∇V 52(G1, G2, V)′ is the !2 × 1 score of 52(G1, G2, V), and 6∗3(H, G2, U, V) ≡ ∇W 53(H, G2, W)′ is the

!3 × 1 score of 53(H, G2, W). (2.2.4) gives us a set of moment conditions, a transformation of which

will be the basis of the proposed estimator as discussed in Section 2.4.

4As a note on notation, I express functions as explicitly depending on W only when it is necessary to take into account
the nature of W. For instance, when !3 < !1 + !2, the score of 53 (H, G2, W) should only contain partial derivatives
with respect to W and not with respect to individual elements of U and V to prevent redundancy in the resulting
moment conditions. But for the most part, when looking at the derivatives of 51 (.), 52 (.), and 53 (.), we only need to
acknowledge the fact that they are functions of (U, V).
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2.3 Non random sampling and inverse probability weighting

I characterize nonrandom sampling through a selection indicator. For any random draw

(H8, G18, G28) from the population, we also draw B8, a binary indicator equal to unity if G18 is

observed, and zero otherwise. We assume that H8 and G28 are always observed. A generic element

from the population is now denoted (H, G1, G2, B). Then the following assumption characterizes the

nature of selection.

Assumption 2.3.1 (i) G1 is observed whenever B = 1, (H, G2) is always observed. (ii) There

is a random vector I such that %(B = 1|H, G, I) = %(B = 1|I) ≡ ?(I). (iii) For all I ∈ Z ⊂ R" ,

?(I) > 0. (iv) I is always observed.

Part (i) simply defines data observability. Parts (ii) and (ii) are the key assumptions. They

state that selection is based on observable variables. This is the same as the “missing at random"

assumption used in statistics literature (Rubin, 1976). Part (ii) states that B is independent of (H, G)

conditional on I. Because the only variable assumed to contain missing values is G1, we can, at a

minimum, allow I to contain (H, G2). Although apart from this, I can also contain some “outside"

variables that are good predictors of selection and are always observed. Then Assumption 2.3.1 is

more general than allowing B to depend only on the covariates G2, which is the case considered in

Abrevaya & Donald (2017) in the context of linear models.

Moreover, the framework presented here can also be used when H contains missing values. We

simply redefine B to equal 1 when both H and G1 are observed, and rule out I containing H in addition

to I containing G1. Then the proposed estimator discussed in the next section will impute using the

observations for which only G1 is missing, and discard the H-missing observations.

For selection as described in Assumption 2.3.1, note that the first and second moment functions

in (2.2.4) can only use the B = 1 observations since they depend on G1, and the third moment

function is able to use the B = 0 observations. We will weight each of the moment functions by the

inverse of appropriate probabilities in order to account for this selection. To this end, we specify

a model for the selection probability. We assume that a conditional density determining selection

is correctly specified, and that the standard regularity conditions required for maximum likelihood

36



estimation (MLE) of the selection model are satisfied. Let � (.|.) denote conditional distribution.

Assumption 2.3.2 (i) � (I, X) is a parametric model for ?(I), where X ∈ Δ ⊂ R% and � (I, X) >

0, all I ∈ Z ⊂ R" , X ∈ Δ. (ii) There exists X0 ∈ Δ such that ?(I) = � (I, X0). (iii) The estimator X̂

solves the binary response problem

max
X∈Δ

#∑
8=1
{B8;>6[� (I8, X)] + (1 − B8);>6[1 − � (I8, X)]}. (2.3.1)

Given X̂, we can form � (I8, X̂) for all 8. This leads us to the problem of estimation.

2.4 Moment conditions and GMM

The proposed estimator is a GMM estimator based on the following transformation of the

moment functions in (2.2.4).

68 (U, V; X) =


618 (U, V; X)

628 (U, V; X)

638 (U, V; X)


≡


[B8/� (I8, X)]6∗1(H8, G18, G28, U)

[B8/� (I8, X)]6∗2(G18, G28, V)

6∗3(H8, G28, U, V)


. (2.4.1)

Because both 6∗1(H8, G18, G28, U) and 6∗2(G18, G28, V) are functions of G18, they can only use the

complete cases - the observations for which B8 = 1. We thus multiply these by B8 and weight

by the inverse of selection probability in the usual inverse probability weighting (IPW) fashion

(Wooldridge, 2002, 2007). Since 6∗3(H8, G28, U, V) is a function only of the always-observed variables

H8 and G28, it can use all the observations including the incomplete cases and hence we do not need

to weight it.

For a generic element from the population (H, G1, G2, I, B), denote this vector of moment func-

tions by 6(U, V; X) and its individual elements by 6 9 (U, V; X), 9 = 1, 2, 3. This is a set of overi-

dentified moment functions. 61(.) exactly identifies the parameters of interest U0 and 62(.) exactly

identifies the imputation parameters V0. The overidentification (and hence the efficiency gains) in

the system come from 63(.). The number of overidentifying restrictions is !3, the dimension of

the reduced form parameters W0. Given the first step estimate X̂, we can write the sample analogue
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of moment conditions based on (2.4.1) as

6̄ 9 (U, V; X̂) = #−1
#∑
8=1

6 98 (U, V; X̂), 9 = 1, 2, 3, (2.4.2)

and 6̄(U, V; X̂) = [6̄1(U, V; X̂)′, 6̄2(U, V; X̂)′, 6̄3(U, V; X̂)′]′. A GMM estimator based on (2.4.1)

minimizes the following objective function with respect to (U, V).

&̂(U, V; X̂) = 6̄(U, V; X̂)′ ,̂ 6̄(U, V; X̂), (2.4.3)

where ,̂ is an estimated weight matrix such that ,̂
?
−→ , .

We first discuss identification of (U0, V0). The limit function for &̂(U, V; X̂) is &(U, V; X0) =

E[6(U, V; X0)]′ , E[6(U, V; X0)].

Lemma 2.4.1. (Identification) Assume that , is a symmetric positive definite matrix. Then

under Assumptions 2.2.1-2.2.3, 2.3.1, and 2.3.2, &(U, V; X0) has a unique minimum at (U0, V0).

For a nonsingular , , the GMM identification condition reduces to E[6(U, V; X0)] ≠ 0 if

(U, V) ≠ (U0, V0). Sufficient is to show that a corresponding condition holds for each element of

6(U, V; X0). For instance, E[61(U, V; X0)] ≠ 0 if U ≠ U0 follows from identification of U0 in the

population (Assumption 2.2.1) and the assumptions on selection (Assumptions 2.3.1 and 2.3.2). A

formal proof of Lemma 2.4.1, along with all other proofs in the rest of the paper are given in the

appendix.

The GMM estimator based on the general weight matrix ,̂ is defined as the following.

Definition 2.4.1: Call the estimator of (U, V) that minimizes (2.4.3), (Û, V̂).

Consistency of (Û, V̂) follows from Lemma 2.4.1 and standard regularity conditions given in

the following theorem.

Theorem 2.4.1 (Consistency) Assume that

1. {(H8, G8, I8, B8) : 8 = 1, . . . , #} are random draws from the population satisfying Assumptions

2.3.1 and 2.3.2.

2. The assumptions in Lemma 2.4.1 hold.
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3. A, B, Γ, Δ, A×Δ, B×Δ, and A×B× Γ are compact subsets of R!1 , R!2 , R!3 , R%, R!1+%,

R!2+%, and R!1+!2+!3 respectively.

4. 51(H, G, U), 52(G, V) and 53(H, G2, W) are twice differentiably continuous on A, B, Γ respec-

tively for each (H, G), G and (H, G2) in Y × X, X and Y × X2 respectively.

5. � (I, X) is continuous in Δ for each I ∈ Z, twice continuously differentiable on 8=C (Δ), and

X0 ∈ 8=C (Δ). For some 0 > 0, � (I, X) ≥ 0 for all I ∈ Z, X ∈ Δ.

6. For all (U, V, W) ∈ A × B × Γ, |6∗(H, G, U, V, W) | ≤ 1(H, G), where

1(H, G) ≡ [11(H, G)′, 12(G)′, 13(H, G2)′]′

and 1(.) is a function such that E[1(H, G)] < ∞.

Then (Û, V̂)
?
−→ (U0, V0) as # −→ ∞.

The consistency of (Û, V̂) follows from standard arguments involving consistency of two-step M-

estimators. First, analogous to the discussion in Wooldridge (2002), Lemma 2.4 of Newey &

McFadden (1994) applies to show that 61(U, V; X), 62(U, V; X) and 63(U, V; X) satisfy the uniform

weak law of large numbers over A × Δ, B × Δ, Γ respectively under Assumptions 1, 3, 4, 5 and 6

of Theorem 2.4.1. Then the averages in (2.4.2) can be shown to converge to

E[6 9 (U, V; X0)], 9 = 1, 2, 3, (2.4.4)

uniformly over A, B, and Γ respectively. Along with the identification from Lemma 2.4.1, this can

be shown to imply consistency of (Û, V̂) for (U0, V0).

Now, assuming that E[6(U, V; X0)] is differentiable at (U0, V0), its derivative is defined as the

following.

�0 ≡ E[∇(U′,V′)′6(U, V; X0) |(U,V)=(U0,V0)] = E[∇(U′,V′)′6
∗(U, V) |(U,V)=(U0,V0)] =


�0

11 0

0 �0
22

�0
31 �0

32


,

(2.4.5)
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where �0
91 = m6

∗
9
(U, V)/mU |(U,V)=(U0,V0) and �

0
92 = m6

∗
9
(U, V)/mV |(U,V)=(U0,V0) , 9 = 1, 2, 3 and

the first equality follows by the standard IPW argument given Assumptions 2.3.1 and 2.3.2. Then

the following result gives the asymptotic distribution of (Û, V̂).

Theorem 2.4.2 (Asymptotic normality) Assume that

1. The assumptions in Theorem 2.4.1 hold.

2. (U0, V0) ∈ 8=C (A × B).

3. 6(U, V; X) is twice continuously differentiable on 8=C (A × B × Δ).

4. �0 is of full rank !1 + !2.

5. E[sup(U,V;X)∈A×B×Δ |∇(U,V,X)6(U, V, X) |] < ∞.

Then,

√
# [(Û′, V̂′)′ − (U′0, V

′
0)
′] 3−−−−→ #>A<0; [0, (�′0,�0)−1�′0,�0,�0(�′0,�0)−1], (2.4.6)

where �0 = E(686′8) − {E(683
′
8
) [E(383′8 )]

−1 E(386′8)} ◦ ', 68 ≡ 68 (U0, V0; X0), 38 ≡ B8 (∇X�′8/�8) −

(1 − B8) [∇X�′8/(1 − �8)] is the % × 1 score of the binary response log-likelihood, ' is a square

matrix of order !1 + !2 + !3 with all elements being unity except the lower right !3 × !3 block

which is a 0 matrix,5 �8 ≡ � (I8, X0), �0 ≡ E[∇X6(U0, V0; X0)] and k(B8, I8) = −[E(383′8 )]
−138.

Standard GMM theory dictates that the optimal weight matrix to be used in (2.4.3) is ,̂ = �̂−1,

where �̂ is a consistent estimate of �0 which can be obtained as

�̂ =

(
#−1

#∑
8=1

6̂8 6̂
′
8

)
−

[(
#−1

#∑
8=1

6̂8 3̂
′
8

) (
#−1

#∑
8=1

3̂8 3̂
′
8

)−1 (
#−1

#∑
8=1

3̂8 6̂
′
8

)]
◦ ', (2.4.7)

where

6̂8 ≡ 68 (Û, V̂; X̂), 3̂8 ≡ B8
[
∇X� (I8, X̂)′

� (I8, X̂)

]
− (1 − B8)

[
∇X� (I8, X̂)′

1 − � (I8, X̂)

]
. (2.4.8)

Then, the proposed estimator is the optimal GMM estimator based on (2.4.1), as defined below.

5◦ denotes a Hadamard product.
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Definition 2.4.2: Call the estimator of (U, V) that minimizes (2.4.3) with ,̂ = �̂−1, the weighted

joint GMM estimator or (Û,� , V̂,�).

Because (Û,� , V̂,�) uses the optimal weight matrix, the asymptotic variance in (2.4.6) reduces

to (�′0�
−1
0 �0)−1. A consistent estimator can be obtained using �̂ and a consistent estimator of

�0 defined as

�̂ = #−1
#∑
8=1
[∇(U′,V′)′68 (Û, V̂; X̂)] . (2.4.9)

Then the following result follows from Theorem 2.4.2.

Theorem 2.4.3 (Asymptotic Normality of the optimal GMM) Let all assumptions of Theorem 2.4.2

hold. Then,
√
# [(Û′,� , V̂

′
,�)
′ − (U′0, V

′
0)
′] 3−−−−→ #>A<0; [0, (�′0�

−1
0 �0)−1], (2.4.10)

and a consistent estimator of �E0A{
√
# [(Û′

,�
, V̂′
,�
)′ − (U′0, V

′
0)
′]} is given by

(�̂′�̂−1�̂)−1, (2.4.11)

where �̂ is given in (2.4.7) and �̂ is given in (2.4.9).

Further, we can use the standard test of overidentifying restrictions based on the objective

function evaluated at the parameter estimates proposed by Hansen (1982). The original result was

obtained for a standard GMM. It is straightforward to extend the proof to the case where the moment

functions depend on an estimate of X from a first step.

Proposition 2.4.1: Let all assumptions of Theorem 2.4.2 hold. Then under the null hypothesis

that E[6(U0, V0; X0)] = 0,

# 6̄(Û,� , V̂,� ; X̂)′ �̂−1 6̄(Û,� , V̂,� ; X̂)
?
−−−−→ j2

!3
. (2.4.12)

2.5 Examples

The proposed estimator can be applied to many cases relevant for empirical research. I provide

two important examples: a binary or fractional H and a nonnegative H, both of which are estimated

using quasi-MLE.
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2.5.1 Models for binary and fractional responses

Binary response models are one of the most commonly used nonlinear models in empirical

research. Suppose that H is a variable taking values in the unit interval, [0, 1]. This includes the

case where H is binary but also allows H to be a continuous proportion. Further, H can have both

discrete and continuous characteristics (for instance, H can be a proportion that takes on zero or one

with positive probability). We start by assuming that the mean of H conditional on G has a probit

form.

E(H |G1, G2) = Φ(U10G1 + G2U20) ≡ Φ(GU0), (2.5.1)

where G1 is a scalar and G2 is a 1 × : vector. If G1 was always observed, we would simply estimate

U0 using quasi-MLE with a Bernoulli log likelihood, which identifies the parameters in a correctly

specified conditional mean by the virtue of being in the linear exponential family (Gourieroux et

al., 1984). But because G1 is sometimes missing, now we additionally specify a model to impute

G1 using G2 and use it to obtain the reduced form conditional mean of H given G2.

I consider two cases: where G1 is continuous, and where it is binary.

2.5.1.1 Continuous covariate with missing values

We assume that the imputation model is linear.

G1 = G2\0 + A, (2.5.2)

A |G2 ∼ #>A<0; [0, f2
0 4G?(2G21_0)], (2.5.3)

where G21 ⊂ G2. That is, G1 is assumed to be normally distributed conditional on G2. To make

the model more flexible, we allow the error to be heteroskedastic with variance dependent on

G21. Typically, G21 will include all elements of G2 except the constant, so that the case where A is

homoskedastic with variance f2
0 is obtained as a special case by setting _0 = 0. The conditional

pdf of G1 is given by

5 (G1 |G2, V0) =
1√

2cf2
0 4G?(2G21_0)

4G?

[
− (G1 − G2\0)2

2f2
0 4G?(2G21_0)

]
. (2.5.4)
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In order to find E(H |G2), we integrate out G1 from E(H |G1, G2) given in (2.5.1) using the density

given in (2.5.4).

E(H |G2) =
∫ ∞

−∞
Φ(GU0)f−1

0 4G?(−G21_0)q
(

G1 − G2\0
f04G?(G21_0)

)
3G1

= Φ

(
G2(U10\0 + U20)√

1 + U2
10f

2
0 4G?(2G21_0)

)
. (2.5.5)

We can deriveE(H |G2) without carrying out the explicit integration as well. Define a binary variable

as following.

F∗ = U10G1 + G2U20 + D ≡ GU0 + D, (2.5.6)

D |G1, G2 ∼ #>A<0; (0, 1), (2.5.7)

F = 1[F∗ > 0] . (2.5.8)

Next, note that

E(F |G1, G2) = E(H |G1, G2) = Φ(U10G1 + G2U20), (2.5.9)

and so, by iterated expectations,

E(F |G2) = E(H |G2). (2.5.10)

(2.5.10) is what allows us to obtain E(H |G2). Substituting (2.5.2) into (2.5.6) gives

F∗ = G2(U10\0 + U20) + E, (2.5.11)

where E ≡ D + U10A and E |G2 ∼ #>A<0; [0, 1 + U2
10f

2
0 4G?(2G21_0)] under the assumptions made

so far. Therefore,

F = 1[G2(U10\0 + U20) + E > 0], (2.5.12)

which implies

E(F |G2) = %(F = 1|G2) = %[E > −G2(U10\0 + U20) |G2], (2.5.13)

which gives the same expression as (2.5.5). Now we can use quasi-MLE with a Bernoulli log

likelihood for both the model of interest (2.5.1) and the reduced form (2.5.5), and full MLE for the
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imputation model using (2.5.4). The objective functions in (2.2.1)-(2.2.3) are given by

51(H, G, U) = −;>6{Φ(GU)H [1 −Φ(GU)] (1−H)}

52(G1, G2, V) = −;>6
{

1√
2cf24G?(2G21_)

4G?

[
− (G1 − G2\)2

2f24G?(2G21_)

]}
53(H, G2, W) = −;>6{Φ[ℎ1(G2, W)]H{1 −Φ[ℎ1(G2, W)]}(1−H)}, (2.5.14)

where ℎ1(G2, W) ≡ [G2(U1\ + U2)]/
√

1 + U2
1f

24G?(2G21_) and in the general notation of Section

2.2, V = (\, f2, _) and W = [(U1\ + U2), U2
1f

2, _].

The issue of defining W warrants some discussion. It can be shown that first, the partial

derivatives of 53(H, G2, W) with respect to (U1, \) are linear combinations of those with respect

to (U2, f
2, _). Since we use the the weighted versions of these partial derivatives as moment

functions, we should use only those taken with respect to (U2, f
2, _) to prevent redundancy in

the resulting moment conditions. Second, the partial derivatives with respect to (U2, f
2, _) are

just scaled versions of those with respect to W as defined above, which makes this definition of W

preferable both intuitively and for algebraic simplicity.
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The objective functions in (2.5.14) result in the following score functions.

6∗1(H, G, U) = G
′ [H −Φ(GU)]q(GU)
Φ(GU) [1 −Φ(GU)]

6∗2(G1, G2, V) =



G′2 (G1 − G2\)
f24G?(2G21_)

(G1 − G2\)2

4G?(2G21_)f4 −
1
f2

G′21

[
(G1 − G2\)2

f24G?(2G21_)
− 1

]



6∗3(H, G2, W) =



G′2√
1 + U2

1f
24G?(2G21_)

4G?(2G21_)G2(\U1 + U2)
[1 + U2

1f
24G?(2G21_)]3/2

4G?(2G21_)G2(\U1 + U2)G′21
[1 + U2

1f
24G?(2G21_)]3/2


q[ℎ1(G2, W)]

[
H −Φ[ℎ1(G2, W)]

Φ[ℎ1(G2, W)]{1 −Φ[ℎ1(G2, W)]}

]
.

(2.5.15)

In the case where _0 = 0 and hence A is homoskedastic, the third elements of 6∗2(.) and 6
∗
3(.), which

are the partial derivatives with respect to _ of 52(.) and 53(.) respectively go away. Moreover, the

second element of 6∗3(.) in that case is just a linear function of the first element of 6∗3(.) and hence

should be removed to prevent redundancy.

Given these score functions and X̂ obtained in Section 2.3, it is straightforward to form the

moment functions in (2.4.1) and estimate (U0, V0) by minimizing (2.4.3).

2.5.1.2 Binary covariate with missing values

We now consider the case where G1 is binary. Equations (2.5.2) and (2.5.3) are replaced by

G∗1 = G2\0 + A, (2.5.16)

A |G2 ∼ #>A<0; [0, 4G?(2G21_0)], (2.5.17)

G1 = 1[G∗1 > 0], (2.5.18)
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where G21 ⊂ G2. Just as in Section 2.5.1.1, G21 typically includes all elements of G2 except the

constant, so that we can get a standard probit with unit variance as a special case by setting _0 = 0.

Now, (2.5.16)-(2.5.18) imply that

%(G1 = 1|G2) = Φ[4G?(−G21_0)G2\0] ≡ Φ[ℎ2(G2, V0)], (2.5.19)

where in the general notation of Section 2.2, V = (\, _). Using (2.5.1) and iterated expectations,

E(H |G2) = E[E(H |G1, G2) |G2] = E(H |G1 = 1, G2)%(G1 = 1|G2) + E(H |G1 = 0, G2)%(G1 = 0|G2)

= Φ(U10 + G2U20)Φ[4G?(−G21_0)G2\0] +Φ(G2U20){1 −Φ[4G?(−G21_0)G2\0]}

≡ ℎ3(G2, W0), (2.5.20)

where in the general notation of Section 2.2, W = (U, V). Analogous to the previous section, we use

quasi-MLE with a Bernoulli log likelihood for the model of interest (2.5.1) and the reduced form

(2.5.20), and full MLE for the imputation model using (2.5.19). The objective functions are given

by

51(H, G, U) = −;>6{Φ(GU)H [1 −Φ(GU)] (1−H)}

52(G1, G2, V) = −;>6(Φ[ℎ2(G2, V)]G1{1 −Φ[ℎ2(G2, V)]}(1−G1))

53(H, G2, W) = −;>6{ℎ3(G2, W)H [1 − ℎ3(G2, W)] (1−H)}. (2.5.21)

This results in the following score functions.

6∗1(H, G, U) = G
′ [H −Φ(GU)]q(GU)
Φ(GU) [1 −Φ(GU)] (2.5.22)

6∗2(G1, G2, V) =

4G?(−G21_)G′2
ℎ2(G2, V)G′21

 q[ℎ2(G2, V)]
{G1 −Φ[ℎ2(G2, V)]}q[ℎ2(G2, V)]
Φ[ℎ2(G2, V)]{1 −Φ[ℎ2(G2, V)]}

(2.5.23)

6∗3(H, G2, W) =



q(U1 + G2U2)Φ[ℎ2(G2, V)]

G′2
{
q(U1 + G2U2)Φ[ℎ2(G2, V)] + q(G2U2){1 −Φ[ℎ2(G2, V)]}

}
G′24G?(−G21_)q[ℎ2(G2, V)] [Φ(U1 + G2U2) −Φ(G2U2)]

G′21ℎ2(G2, V)q[ℎ2(G2, V)] [Φ(G2U2) −Φ(U1 + G2U2)]


ℎ4(H, G2, W),

(2.5.24)
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where ℎ4(H, G2, W) ≡
H − ℎ3(G2, W)

ℎ3(G2, W) [1 − ℎ3(G2, W)]
.

2.5.1.3 Average partial effects

In a probit, usually the average partial effects (APEs) are the quantities of interest rather than

the coefficients themselves. It is important to note that the APEs of interest are still derived from

the model of interest in (2.5.1), just as in the case where there is no missing data. The partial effect

(PE) of the 9 Cℎ element of G, G( 9) on E(H |G) is given by6

%� 9 (G) =
m E(H |G)
mG( 9)

= U( 9)0q(GU0) = U( 9)0q(U10G1 + G2U20). (2.5.25)

The average partial effect of G( 9) , �%� 9 , is the expected value of %� 9 (G) with respect to G.

�%� 9 (G) = EG
[
m E(H |G)
mG( 9)

]
= U( 9)0 E[q(GU0)] . (2.5.26)

In the absence of missing data, this can be consistently estimated using

Ũ( 9)

[
#−1

#∑
8=1

q(G8Ũ)
]
, (2.5.27)

where Ũ is any consistent estimate of U0. That is, one simply computes the partial effect for each

unit in the sample and then averages over the entire sample.

However, when we have missing data on G1, this quantity is not estimable as we cannot calculate

the partial effect for individuals withmissing G1. A quantity that is feasible to compute is the average

of partial effects over the complete cases only. This is given by

�̂%�
2

9 (G) = Û,� ( 9)
[
#−1
2

#∑
8=1

B8q(G8Û,�)
]
,

where #2 =
∑#
8=1 B8 is the number of complete cases in the sample. That is, we average the

individual partial effects over the complete cases only. This estimator however, is not consistent for

�%� 9 (G) unless B |= G. If B depends on say G2, then �̂%�
2

9 (G) will be inconsistent for �%� 9 (G).

6If G( 9) is discrete, the derivative is replaced with a difference.
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The current framework, however, makes it possible to recover �%� 9 (G) using IPW.

E{[B/?(I)]q(GU)} = E{E( [B/?(I)]q(GU) |H, G, I)} = E{[E(B |H, G, I)/?(I)]q(GU)} = E[q(GU)],

(2.5.28)

where the last equality follows from Assumption 2.3.1. Therefore, a consistent estimator of

�%� 9 (G) is

�̂%� 9 (G) = Û,� ( 9)#−1
#∑
8=1

B8

� (I8, X̂)
q(G8Û,�). (2.5.29)

2.5.2 Exponential models

Next we consider exponential models for nonnegative responses H, including but not restricted

to count variables. We focus on a continuous G1.7 The model of interest is characterized by the

conditional mean

E(H |G) = 4G?(U10G1 + G2U20) ≡ 4G?(GU0), (2.5.30)

where in the absence of missing data, U0 can be estimated using a Poisson quasi log likelihood. We

consider the same linear imputation model as in Section 2.5.1.1.

G1 = G2\0 + A, (2.5.31)

A |G2 ∼ #>A<0; [0, f2
0 4G?(2G21_0)] . (2.5.32)

The reduced form conditional mean can be obtained using (2.5.30)-(2.5.32) and an iterated expec-

tations argument.

E(H |G2) = E[4G?(U10G1 + G2U20) |G2] = 4G?(G2U20) E[4G?(U10G1) |G2]

= 4G? [G2(\0U10 + U20)] E[4G?(AU10) |G2], (2.5.33)

where the third equality follows from substituting for G1 using (2.5.31). Moreover, (2.5.32) implies

that 4G?(AU10) conditional on G2 follows a lognormal distribution with

E[4G?(AU10) |G2] = 4G? [U2
10f

2
0 4G?(2G21_0)/2] . (2.5.34)

7The discussion for a binary G1 follows easily given the discussion in Section 2.5.1.2.
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Plugging into (2.5.33), we get

E(H |G2) = 4G? [G2(\0U10 + U20) + U2
10f

2
0 4G?(2G21_0)/2] . (2.5.35)

Thus, we have V = (\, f2, _), W = (\U1+U2, f
2, _), ℎ5(G2, W) ≡ G2(\U1+U2)+U2

1f
24G?(2G21_)/2

and the objective functions are given by

51(H, G, U) = 4G?(GU) − HGU

52(G1, G2, V) = −;>6
{

1√
2cf24G?(2G21_)

4G?

[
− (G1 − G2\)2

2f24G?(2G21_)

]}
53(H, G2, W) = 4G?[ℎ5(G2, W)] − H[ℎ5(G2, W)] . (2.5.36)

This results in the following score functions.

6∗1(H, G, U) = G
′[H − 4G?(GU)]

6∗2(G1, G2, V) =



G′2 (G1 − G2\)
f24G?(2G21_)

(G1 − G2\)2

4G?(2G21_)f4 −
1
f2

G′21

[
(G1 − G2\)2

f24G?(2G21_)
− 1

]


6∗3(H, G2, W) =


G′2

4G?(2G21_)

4G?(2G21_)G′21


{H − 4G? [ℎ5(G2, W)]}. (2.5.37)

Similar to Section 2.5.1.1, when _0 = 0, the third element of 6∗2(.) and the second and third

elements of 6∗3(.) become redundant.

2.6 Comparison with related estimators

2.6.1 Complete cases

Themost commonpracticewhen dealingwithmissing covariate values is to just use the complete

cases for estimation; that is, use only the observations for which G1 is observed. The inverse
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probability weighted complete cases estimator has been discussed in detail by Wooldridge (2002).

In this section, I show that the weighted joint GMM does no worse than the weighted complete

cases estimator in terms of asymptotic variance, and can potentially provide strict efficiency gains.

Definition 2.6.1.1. Call the estimator of U0 that minimizes (2.4.3), where 6(.) contains only

61(.) and ,̂ = �, the weighted complete cases estimator (or Û,22).

Define the upper-left %1 × %1 block of �0 as

�0
11 ≡ E(6186

′
18) − E(6183

′
8 ) [E(383

′
8 )]
−1 E(386′18), (2.6.1)

where 68 = [6′18, 6
′
28, 6
′
38]
′. Then the asymptotic variance of the weighted complete cases estimator

as derived in Wooldridge (2002) is given in the following lemma, where we have used the fact that

�0
11 is symmetric.

Lemma 2.6.1.1 Under the assumptions of Theorems 4.1 and 4.2,

�E0A [
√
# (Û,22 − U0)] = [�0

11(�
0
11)
−1�0

11]
−1.

Then we know that Û,� is no less efficient than Û,22, since standard GMM theory dictates that a

GMM estimator that uses more valid moment conditions is no less efficient.

Proposition 2.6.1.1. Under the assumptions of Theorem 2.4.1 and 2.4.2,

�E0A [
√
# (Û,22 − U0)] − �E0A [

√
# (Û,� − U0)] is positive semidefinite.

We can further disaggregate the efficiency gains by U10 and U20. In linear models, the “plug-in"

imputation estimators, as discussed in the next section, are generally equivalent to the complete

cases estimators for U10 and may provide some efficiency gains for U20.8 Abrevaya & Donald

(2017) were the first to propose an estimator that provides potential gains for U10 as well in the

linear case. I extend their result to the case discussed in Section 2.5.1.1 with the simplifying

assumption that _0 = 0, and show that efficiency gains are possible for both U10 and U20.

8For instance, Abrevaya&Donald (2011) show that in the case where both themainmodel and the imputationmodel are
linear, the plug-in estimator that estimates the main model using ordinary least squares (OLS) or feasible generalized
least squares with missing values being replaced by predicted values using a first step OLS is numerically equivalent
to the complete cases estimator for U10.
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Proposition 2.6.1.2. Consider the case in Section 2.5.1.1 with _0 = 0. Under the assumptions

of Theorems 2.4.1 and 2.4.2,

1. �E0A [
√
# (Û1,22 − U10)] − �E0A [

√
# (Û1,� − U10)] = !′1 !1 ≥ 0

2. �E0A [
√
# (Û2,22 − U20)] − �E0A [

√
# (Û2,� − U20)] = !′2 !2 ≥ 0,

where !1, !2 and  are matrices defined in the appendix. I show that  is a positive definite

matrix and neither !1 nor !2 are necessarily zero under the assumptions made so far, and hence it

is possible to obtain strict efficiency gains for both U10 and U20.

2.6.2 Sequential procedures

Traditionally, imputation is done in two steps using a “plug-in" method (Dagenais, 1973). In

the first step, the missing values of G1 are replaced with predicted values from a regression of G1

on G2 and in the second step, the main model is estimated using the observed values as well as the

predicted values. Methods like mean imputation,9 where the missing values are replaced by the

sample mean of G1, can be considered a special case of this method where the first step regression

only includes the constant as a covariate.

Definition 2.6.2.1: Call the estimator of U0 obtained using the following procedure the plug-in

estimator (or Û%).

Step 1: Obtain V̂,22 by minimizing (2.4.3) where 6(.) contains only 62(V) and ,̂ = �.

Step 2: Estimate U0 by minimizing (2.4.3) where 6(.) contains only 61(G̃1, G2, U) and G̃18 =

B8G18 + (1 − B8)ℎ(G28, V̂,22) and ℎ(.) is the function defining predicted values.

In the first step, V0 is consistently estimated using only the complete cases and the missing

values of G1 are replaced with predicted values based on the imputation model. The function ℎ(.)

depends on what the imputation model is. For instance, in the linear case, ℎ(G28, V̂,22) = G28 V̂,22.

We denote this new variable by G̃1. In the second step, U0 is estimated by solving the sample

counterpart of (2.2.1) with G1 being replaced by G̃1.

9(Little & Rubin, 2002)

51



While this procedure can be consistent when the model of interest is linear, contrary to prior

claims in the literature (DeCanio & Watkins, 1998), it is generally inconsistent when the model of

interest is nonlinear in the parameters.10 This is because under the assumptions made so far, U0 is

generally not a solution to

min
U∈A
E[ 51(H, G∗1, G2, U)], (2.6.2)

where G∗1 = BG1 + (1 − B)ℎ(G2, V0).

To see why this procedure is inconsistent, consider the model in Section 2.5.1.1. Suppose H is

binary, that is, H = F (and H∗ ≡ F∗). For simplicity, assume that _0 = 0 and I = G2, that is, the

imputation error is homoskedastic and selection is independent of (H, G1) conditional on G2. Since

E(G1 |G2) = G2\0 and \0 is consistently estimated by Ordinary Least Squares (OLS) of G1 on G2

using the complete cases only (call this estimator \̂22), it is tempting to replace the missing values

of G1 by G2\̂22 and estimate U0 from the probit of H on G̃1 ≡ BG1 + (1 − B)G2\̂22 and G2. Standard

two-step M-estimation theory11 states that for this procedure to be consistent, we require that U0

uniquely solves

min
U∈A

−E{H ;>6 Φ(U1G
∗
1 + G2U2) + (1 − H);>6[1 −Φ(U1G

∗
1 + G2U2)]}, (2.6.3)

where G∗1 ≡ BG1 + (1 − B)G2\0. However, U0 does not minimize (2.6.3) in general since for that to

be true, we would need

%(H = 1|BG1, G2, B) = Φ(U10G
∗
1 + G2U20). (2.6.4)

However, (2.5.2) and (2.5.6) imply

H∗ = U10 [BG1 + (1 − B)G2\0] + G2U20 + D + (1 − B)AU10

≡ U10G
∗
1 + G2U20 + D + (1 − B)AU10, (2.6.5)

and

E{1[U10G
∗
1 + G2U20 + D + (1 − B)AU10] |BG1, G2, B} ≠ Φ(U10G

∗
1 + G2U20). (2.6.6)

10This procedure also requires extra caution when the model of interest is nonlinear in the variables, as discussed in
Rai (2020).

11Wooldridge (2010) Section 17.4.
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The core issue is that expectation does not pass through nonlinear operators, in this case the indicator

function 1[.]. In fact, in this example,

E(H = 1|BG1, G2, B) = %(H = 1|BG1, G2, B)

= %{[D + (1 − B)AU10] > −(U10G
∗
1 + G2U20) |BG1, G2, B}

= Φ

[
U10G

∗
1 + G2U20√

1 + (1 − B)U2
10f

2
0

]
, (2.6.7)

since D + (1 − B)AU10 |BG1, G2, B ∼ #>A<0; [0, 1 + (1 − B)U2
10f

2
0 ] under Assumption 2.3.1, which

makes the main estimation problem a heteroskedastic probit. The correct log likelihood function

is therefore based on (2.6.7), and U0 is not a solution to (2.6.3).

Proposition 2.6.2.1: Consider the case in Section 2.5.1.1. Let Assumptions 2.2.1-2.2.3, 2.3.1,

2.3.2 and the assumptions in Theorems 2.4.1 and 2.4.2 hold. Additionally assume that I = G2 and

_0 = 0. Then Û% is inconsistent for U10 unless U10 = 0.

However, U10 = 0 implies that G1 is irrelevant in the model of interest, in which case the best

solution is to just drop it from the model.

As a second example, consider the exponentialmodel fromSection 2.5.2 and again for simplicity,

assume that _0 = 0 and I = G2. The plug-in method would entail estimating U0 using Poisson quasi-

MLE with the conditional mean function 4G?(U1G̃1 + G2U2). For this estimator to be consistent,

we would require that U0 uniquely solves

min
U∈A

−E[H(U1G
∗
1 + G2U2) − 4G?(U1G

∗
1 + G2U2)], (2.6.8)

which would be true if

E(H |BG1, G2, B) = 4G?(U10G
∗
1 + G2U20). (2.6.9)

However, under Assumption 2.3.1, equations (2.5.30) and (2.5.35) imply that

E(H |BG1, G2, B) = 4G?{U10 [BG1 + (1 − B)G2\0] + G2U20 + (1 − B)U2
10f

2
0 /2}

≡ 4G? [U10G
∗
1 + G2U20 + (1 − B)U2

10f
2
0 /2] . (2.6.10)
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Since the log likelihood in (2.6.8) is based on an incorrect specification of the conditional mean of

H, U0 will generally not solve (2.6.8).

Proposition 2.6.2.2: Consider the case in Section 2.5.2. Let Assumptions 2.2.1-2.2.3, 2.3.1,

2.3.2 and the assumptions in Theorems 2.4.1 and 2.4.2 hold. Additionally assume that I = G2 and

_0 = 0. Then Û% is inconsistent unless U10 = 0.

A sequential procedure that would be consistent is plugging V̂,22 in 63(.), and estimating U0

using 61(U) and 63(U, V̂,22) in a joint GMM procedure.

Definition 2.6.2.2: Call the estimator of U0 obtained using the following procedure the sequen-

tial estimator (or Û(4@).

Step 1: Obtain V̂,22 by minimizing (2.4.3) where 6(.) contains only 62(V) and ,̂ = �.

Step 2: EstimateU0 byminimizing (2.4.3)where 6(.) contains only 61(U) and 63(U, V̂,22), and ,̂ =

�̂−1, where �̂−1 can be obtained using equation (2.4.7) and imposing 6̂8 = [618 (Ũ)′ 628 (Ũ, V̂,22)′]′,

Ũ being a first step consistent estimate of U0.

Even though Û(4@ is consistent, it is going to be less efficient than Û,� because the former

does not utilize the correlation between the moment functions 61(.) and 62(.). From a GMM

perspective, it is well known that a sequential procedure using the same moment conditions is no

more efficient than its joint counterpart.

Proposition 2.6.2.3. Under Assumptions 2.2.1-2.2.3, 2.3.1, 2.3.2, and the assumptions made

in Theorems 2.4.1 and 2.4.2,

�E0A [
√
# (Û(4@ − U0)] − �E0A [

√
# (Û,� − U0)] is positive semi-definite.

Thus, there is no reason to prefer Û(4@ over Û,� other than computational convenience.

2.6.3 Dummy variable method

The dummy variable estimator (Û�) replaces the missing values of G1 with zeros and uses an

indicator for missingness as an additional covariate. Jones (1996) and Rai (2020) show that the
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resulting estimator is generally inconsistent for U0 in linear models with exogenous and endogenous

G1 respectively. This inconsistency continues to hold in nonlinear models.

Consider again the example in Section 2.5.1.1 with _0 = 0 and I = G2. The DVM would entail

doing a probit of H on (BG1, 1 − B, G2). Analogous to the discussion in Section 2.6.2, this estimator

would be consistent if

%(H = 1|BG1, G2, B) = Φ[U10BG1 + (1 − B)\10U10 + G2U20], (2.6.11)

which is not true in general. Too see this, let G2 = (1, G22) and \0 = (\10, \
′
20)
′ and note that we

can rewrite equation (2.6.7) as

%(H = 1|BG1, G2, B) = Φ
{
U10BG1 + (1 − B)\10U10 + (1 − B)G22\20U10 + G2U20√

1 + (1 − B)U2
10f

2
0

}
. (2.6.12)

As can be seen from this equation, Û� is inconsistent for two reasons. The first issue, which is

unique to this method, is that it omits the covariates (1 − B)G22, leading to endogeneity unless

U10 = 0 and/or \20 = 0. The second issue, which is common with the plug-in method, is that it

ignores the scale factor in the denominator which remains unless U10 = 0.

Proposition 2.6.3.1: Consider the case in Section 2.5.1.1. Let Assumptions 2.2.1-2.2.3, 2.3.1,

2.3.2 and the assumptions in Theorems 2.4.1 and 2.4.2 hold. Additionally assume that I = G2 and

_0 = 0. Then Û� is inconsistent unless (i) U10 = 0 or (ii) \20 = f
2
0 = 0.

Similar to Section 2.6.2, if U10 = 0, the best solution is to drop G1. The second condition

requires that both the imputation coefficients and the imputation error variance are zero at the same

time, which is not possible.

A second example is the exponential model discussed in Section 2.5.2. Consider again the case

where I = G2 and _0 = 0. The DVM would entail using (BG1, 1 − B, G2) as covariates for a Poisson

quasi-MLE, which would be consistent if

E(H |BG1, G2, B) = 4G? [U10BG1 + (1 − B) (\10U10 + U2
10f

2
0 /2) + G2U20] . (2.6.13)

However, we can re-write (2.6.10) as

E(H |BG1, G2, B) = 4G?[U10BG1+ (1− B) (\10U10+U2
10f

2
0 /2) + (1− B)G22\20U10+G2U20] . (2.6.14)
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Similar to the probit case, the DVM omits the covariates (1 − B)G22 from the above conditional

mean function.

Proposition 2.6.3.2: Consider the case in Section 2.5.2. Let Assumptions 2.2.1-2.2.3, 2.3.1,

2.3.2 and the assumptions in Theorems 2.4.1 and 2.4.2 hold. Additionally assume that I = G2 and

_0 = 0. Then Û� is inconsistent unless (i) U10 = 0 or (ii) \20 = 0.

That is, Û� is inconsistent unless G1 is irrelevant in the model of interest or G22 does not help

in predicting G1.

2.6.4 Unweighted estimators

The key to efficiency gains of Û,� over Û,22 is that the former uses the information in the

incomplete cases. Weighting the moment functions in (2.4.1) allows for more flexibility in terms

of what variables selection can depend on and estimation of interesting parameters in the presence

of misspecification, but that core reason for efficiency gains is independent of weighting. In other

words, the joint GMM based on the unweighted version of the moment functions in (2.4.1) will still

be more efficient than the unweighted complete cases estimator. These two unweighted estimators

are defined below.

Definition 6.4.1: Call the estimator of U0 that minimizes (2.4.3) where 6(.) = B · 6∗1(H, G, U)

and ,̂ = �, the unweighted complete cases estimator, or Û*22.

The unweighted joint estimator is based on the following vector of moment conditions.

68 (U, V) =


618 (U, V)

628 (U, V)

638 (U, V)


≡


B86
∗
18 (H8, G8, U)

B86
∗
28 (G18, G28, V)

6∗38 (H8, G28, U, V)


. (2.6.15)

For a generic element from the population (H, G1, G2, B), denote this vector of moment functions

by 6(U, V). Then the variance-covariance matrix of 6(U, V) evaluated at the true parameter values

is given by

�0 = E[6(U0, V0) 6(U0, V0)′], (2.6.16)

and the optimal GMM estimator based on (2.6.15) is defined as follows.

56



Definition 2.6.4.2. Call the estimator of (U0, V0) that solves

min
(U,V)∈A×B

6̄(U, V)′ �̂−1 6̄(U, V),

the unweighted joint estimator, or (Û*� , V̂*�), where 6̄(U, V) = #−1 ∑#
8=1 68 (U, V) and �̂

?
−→ �0.

I provide the asymptotic distribution of this estimator in Appendix E. The key point to note is

that just like Û,� is no less efficient than Û,22, Û*� is no less efficient than Û*22.

Proposition 2.6.4.1. Under the assumptions of Theorems E.1 and E.2,

�E0A [
√
# (Û*22 − U0)] − �E0A [

√
# (Û*� − U0)] is positive semidefinite.

The proof of this proposition is very similar to that of Proposition 2.6.1.1, and hence is omitted.

The natural question that arises then iswhether one shouldweightwhen using the joint estimator,

and whether Û,� is preferred over Û*22, which is the most commonly used estimator out of all

four.12 The issue of whether to weight has previously been considered in Wooldridge (2002), but

the use of an imputation model here brings in some new issues. In looking at these two alternatives

to Û,� , there are two issues to address: consistency and asymptotic efficiency.

Start with Û*� . From the point of view of consistency, Û,� is always preferred over Û*� as

the former is always consistent when the latter is, but the converse is not true. This is because

while both estimators rule out I containing G1 to be consistent,13 Û,� allows I to contain H as

well as some outside predictors of selection, while Û*� does not. A related issue is that of correct

specification of the models underlying 51(H, G, U), 52(G1, G2, V), and 53(H, G2, W) in (2.2.1)-(2.2.3),

by which I mean that (U0, V0, W0) characterize a correctly specified feature of � (H |G), � (G1 |G2)

and � (H |G2) respectively.14 For instance, this can be a model of a conditional mean, conditional

median, conditional distribution, and so on. When I = G2, Û,� is always consistent for U0 and V0

12That is, out of Û*22 , Û,22 , Û*� and Û,� .
13Û*� rules out I containing G1 because it uses the imputation equation in estimation in addition to the main equation.
Since unweighted estimators can only allow selection to depend on covariates in order to maintain consistency, G1
being the outcome variable in the imputation model means that we cannot allow B to depend on G1, conditional on
G2. This is the cost of getting more efficiency using the imputation model. Û,� rules out this dependence because
the weights cannot be estimated using a variable that contains missing values. Therefore, irrespective of whether one
uses the imputation model, weighted estimation cannot allow I to contain G1.

14I make this notion precise in Assumption B.1.
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that solve (2.2.1) and (2.2.2) irrespective of whether the underlying models are correctly specified,

but Û*� is consistent for U0 and V0 only if they characterize some correctly specified feature of the

respective distributions.

For instance, consider the linear case discussed in Abrevaya & Donald (2017) where the 3

M-estimation problems are given by

min
U∈A
E[B · (H − U1G1 − G2U2)2] (2.6.17)

min
V∈B
E[B · (G1 − G2V)2] (2.6.18)

min
W∈Γ
E[(H − G2W)2] (2.6.19)

where W ≡ U1V+U2. Consider first the problem in (2.6.17). Suppose that H is binarywith a nonlinear

conditional mean E(H |G) = Φ(G^0), and the linear projection of H on G is GU0. When G1 is always

observed, the usual motivation for using a linear model here is that it gives consistent estimates of

the linear projection parameters U0, and linear projection is the best linear approximation to the

true conditional mean Φ(G^0). That is, the solution to

min
U∈A
E[(H − U1G1 − G2U2)2] (2.6.20)

is U0.

However, this result does not always carry over to the case with missing data. Suppose B

depends on G2. Then the solution to (2.6.17) will generally neither be ^0 and more importantly nor

be U0 (Wooldridge, 2002). So by estimating a linear model using only the complete cases, we are

not getting consistent estimates of anything interesting in the population.15

In general, if we want the solution to

min
U∈A
E[B · 51(H, G1, G2, U)] (2.6.21)

to be the conditional mean parameters, we want to make sure that the we have correctly specified the

conditional mean. In the above example, one way to do that here is to use a better model of E(H |G),

15An exception is the case where B is independent of both H and G, also known as “missing completely at random". In
this case the solution to (6.17) is still U0. However, this case rarely holds in practice.
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that is, a probit instead of a linear probability model. This highlights the importance of nonlinear

models with missing data, even if one is generally satisfied with using a linear approximation when

G1 was always observed.

The weighted estimator on the other hand recovers the linear projection parameters even when

using only the complete cases. In other words, the solution to

min
U∈A
E{[B/?(I)] (H − U1G1 − G2U2)2] (2.6.22)

is U0.

A similar discussion holds for the imputation problem in (2.6.18). If G1 is binary, then we

should either weight the imputation model in order to consistently estimate the linear projection

parameters or impute using a probit if not using weights.

The second consideration is that of asymptotic efficiency. When I = G2 and the models underly-

ing 51(H, G, U), 52(G1, G2, V), and 53(H, G2, W) are correctly specified, both estimators are consistent.

A theoretical comparison of the asymptotic variances of the two estimators in this case will likely

depend on whether a generalized conditional information matrix equality (GCIME), discussed in

Wooldridge (2002), holds for each of the three models underlying (2.2.1)-(2.2.3). For instance, the

GCIME always holds for conditional MLE under correct specification of the conditional density

and for quasi-MLE in the linear exponential family under the so-called generalized linear models

assumption. Wooldridge (2002) shows that in this case, Û*22 is more efficient than Û,22 when

GCIME holds. So it is reasonable to expect that Û*� will be more efficient than Û,� as well. I

do not undertake a theoretical comparison here but provide some simulation evidence in the next

section in support of this speculated efficiency ranking.

The other unweighted alternative to Û,� is Û*22, and it is not clear from the perspective

of consistency whether it is preferred to Û,� (or the weighted complete cases estimator Û,22).

Suppose that U0 characterizes a correctly specified feature of � (H |G) in (2.2.1). Then if selection is

exogenous and depends on G1 after conditioning on G2, that is, I = (G1, G2), then Û*22 is consistent

for U0. However, both the weighted estimators Û,� and Û,22 are inconsistent. This is because

the estimation of weights cannot depend on G1 which is missing for some observations. Therefore,
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the weights will generally not be consistently estimated. However, if selection depends on H after

conditioning on G, that is, I contains H, then Û*22 is inconsistent while both Û,� and Û,22 are

consistent.

The other consideration is that of correct specification of the model underlying 51(H, G, U) in

(2.2.1). Suppose that I = G2. Then Û,� will be consistent for U0, the solution to (2.2.1), whether

or not there is any model misspecification. But under misspecification, Û*22 will generally not be

consistent for U0.

For instance, let us go back to the linearmodel given by (2.6.17)-(2.6.19). SupposeE(D |G1, G2) =

0. That is, U0 in (6.17) are actually the coefficients in the conditional mean of H given (G1, G2). If

I = (G1, G2), then Û*22 is consistent for U0, but Û,� and Û,22 are inconsistent since the weights

can only be based on G2. If I = (H, G2), then Û,� and Û,22 with weights based on (H, G2) are

consistent but Û*22 is inconsistent.

On the other hand, suppose I = G2. Then Û,� will be consistent for U0, the linear projection

parameters, whether or not they are the conditional mean parameters as well. However, Û*22 will

be inconsistent for U0 if they are only the linear projection parameters, and not the conditional mean

parameters.

As far as asymptotic efficiency goes, when I = G2 and the model underlying 51(H, G, U) is

correctly specified, both Û*22 and Û,� are consistent, and we can again expect the efficiency

comparison to depend on the GCIME. Again, I do not provide a theoretical comparison but the next

section gives some simulation evidence that when the GCIME holds, Û,� is still more efficient

than Û*22 despite of the former being a weighted estimator.

In conclusion, one can choose whether or not to weight when using the joint GMM based on

the nature of selection and model specification, but in either case, the joint estimator is no less (and

generally more) efficient than its complete cases counterpart.
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2.7 Empirical application

I apply the proposed estimation method to the setting of Sandsor (2020), who studies the

association between individuals’ grade variance and educational attainment. One measure of

individuals’ cognitive skills is their grades received in school, which are generally summarized

using the grade point average (GPA), the mean of the grades. The author looks at the importance of

grade variance on educational attainment for a given level of GPA. That is, is it better to specialize

in some subjects or to be a “jack-of-all-subjects". She finds that grade variance is negatively

associated with educational attainment, that is, students who are jack-of-all-subjects have higher

educational attainment.

The data comes from the National Longitudinal Survey of Youth, 1979 (NLSY79). The

NLSY79 is a nationally representative sample of 12,686 young men and women between the ages

of 14 and 22. Following the author, I only use the sub-sample of 6111 respondents representing the

non-institutionalized civilian segment of the population. The data includes high school transcripts,

educational attainment, socio-economic characteristics and other measures of cognitive and non-

cognitive skills. GPA is measured as the mean of all grades received in upper secondary education

(grades 9 to 12). The measure of grade variance is the standard deviation of an individual’s grades

(GSD). The outcome of interest I consider is whether the individual has a four year college degree

at age 30. Again, following the author, I restrict the sample to individuals with at least 10 valid

grades and with non-missing data on all variables other than family income in 1979, which is the

covariate with missing values I focus on. This leaves me with a sample of 3942 individuals out of

which family income is missing for 723 (about 18%) individuals.

I model the relationship between GSD and attainment of a four year college degree as a probit.

Since family income is a continuous variable, we are in the general framework of Section 2.5.1.1.

The model of interest is given by:

H8 = 1[U10;8=28 + U210�(�8 + G228U220 + D8 > 0], (2.7.1)

D8 |G8 ∼ #>A<0; (0, 1), (2.7.2)
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where H8 is a binary variable equal to 1 if individual 8 has a college degree by the age of 30 and

0 otherwise. ;8=28 is the log of family income of individual 8 in 1979, and �(�8 is the grade

standard deviation of individual 8, the covariate of interest. G228 is the vector of other covariates

which includes individual’s GPA, gender, race, ethnicity, area of residence, and parental education.

It also includes measures of cognitive and noncognitive abilities which are based on the Armed

Services Vocational Aptitude Battery (ASVAB) test and a combination of Rotter Locus of Control

Scale and Rosenberg Self-Esteem Scale respectively. In our general notation from Section 2.5.1.1,

G18 = ;8=28, G28 = (�(�8, G228), and G8 = (G18, G28).

Note that Assumption 2.3.1 in this context states that conditional on G28, the missingness of ;8=28

is independent of ;8=28 itself. This assumption is the basis of many standard procedures used to

impute income. For instance, the method of hot decking used by the Current Population Survey is

based on this assumption, so is multiple imputation used by the National Health Interview Survey.

The standard two-step regression imputation is also based on this assumption.

The imputation model is given by

;8=28 = G28\0 + A8, A8 |G28 ∼ #>A<0; (0, f2). (2.7.3)

Table D2 presents the results. Columns 1 and 2 give the coefficient estimates and standard errors

from the complete cases probit and the joint GMM respectively. Columns 3 gives the percentage

reduction in standard errors of the joint GMM. The standard errors fall for all coefficients, and

quite substantially so for many coefficients. While there is not much gain for the coefficient on log

of family income, there is about a 10% reduction in the standard error for �(�8, the variable of

interest. The reduction for coefficients on other variables range from about 7% − 12%. The last

row of the table gives the Hansen’s J-statistic discussed in Proposition 2.4.1. The null hypothesis of

correct specification is not rejected at any reasonable significance level, giving us some confidence

in the assumptions underlying the joint GMM.

Columns 4 and 5 give the estimates and standard errors for the plug-in method and DVM

respectively. In this particular case, both estimators give quite similar results as the joint GMM

estimator, which is not surprising given that the coefficient of log(income) is fairly small in
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magnitude. As the simulations suggest, the plug-in estimator performs similarly to CC and the joint

GMM in terms of both bias and efficiency when U10 is small in magnitude. The DVM also has

small biases and a smaller standard deviation than the joint GMM for such values, although that

efficiency gain does not seem to be present in this application. Moreover, the joint GMM here still

has the additional advantage of providing an overidentification test for the assumptions underlying

the imputation procedure.

2.8 Conclusion

I have provided a new method of consistently imputing missing covariate values in nonlinear

models. The estimator uses the standard assumptions used in the imputation literature, but unlike

other imputation estimators based on classical principles, it is consistent in nonlinear models for

both the structural parameters and other quantities of interest like average partial effects. I have

provided two practically important examples: fractional and nonnegative responses with binary or

continuous CMV. The proposed estimator provides substantial efficiency gains over the complete

cases estimator, and as a byproduct of using GMM, the overidentification test provides a way to test

the extra restrictions imposed by the imputation estimator compared to the complete cases estimator.

I have also provided a comprehensive framework for imputing using a variety of nonlinear models

for cases where a linear model might be unrealistic.

I have provided the weighted and unweighted versions of the estimator, both of which provide

efficiency gains over their complete cases counterparts. This allows the empirical researcher to

choose the version best suited for their particular model and the nature of missingness in their

specific data.
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CHAPTER 3

EFFICIENT ESTIMATION OF LINEAR PANEL DATA MODELS WITH MISSING
COVARIATES*

3.1 Introduction

The problem of missingness is ubiquitous in empirical research. In this paper, we provide

some methods to deal with missing covariate values in linear panel data models with unobserved

heterogeneity.

Economists use a variety of methods to deal with missing covariate values in panel data. One

common method is to just use the “complete cases" - the observations for which all covariates are

observed [for instance Cabral et al. (2018), David & Venkateswaran (2019)]. While easy to use,

methods based only on complete cases can lead to substantial loss of efficiency when missingness

is large because of discarding the potentially useful information in the incomplete cases. This has

inspired methods that make use of these incomplete cases. One method used in this regard is the

“last observation carried forward" (LOCF), which replaces the missing observations in a given time

period with observations from the previous time period [for instance, Doraszelski et al. (2018),

Giroud & Rauh (2019)].1 Another method is the dummy variable method (DVM), which replaces

the missing values with zeros and includes an indicator for missingness as an additional covariate

in the model [for instance, Antecol et al. (2018)]. A third method we consider is regression

imputation. This is a two-step method which in the first step, regresses the covariate with missing

values (CMV) on the always-observed covariates using complete cases and uses the estimated

coefficients to predict missing values of the CMV. In the second step, it estimates the model of

interest using all observations with this “composite" CMV, which consists of both observed and

predicted values.2

*This chapter is co-authored with Professor Jeffrey Wooldridge.
1Sometimes the missing observations are also replaced with observations from the following time period.
2Moffitt et al. (2020) use this method for imputing a variable which is used to define a covariate in the model of interest.
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In this paper, we consider the issue of proper imputation specifically when using the fixed

effects estimator, which is perhaps the most frequently used method to estimate linear panel data

models with unobserved heterogeneity. We propose a new method of imputing when using fixed

effects that improves upon the performance of the estimators mentioned above. The choice of

method comes down to consistency and relative efficiency. The complete cases fixed effects

estimator [as described in Wooldridge (2019)] generally requires the least number of assumptions

to be consistent. However, as mentioned above, it can be inefficient relative to the estimators that

make use of the incomplete cases. LOCF has been shown to be generally biased and inconsistent

even under the strongest assumptions on missingness (Lane, 2008). We show that DVM is also

generally inconsistent unless some very strong zero restrictions are imposed in the model, including

the assumption that the CMV does not contain individual specific unobserved heterogeneity - an

assumption generally unlikely to hold in practice. Regression imputation is consistent under less

restrictive assumptions than the DVM, but still requires that the CMV does not contain unobserved

heterogeneity.

The key contribution of this paper therefore is to propose a new imputation estimator which is

consistent under assumptions that are much less restrictive than those required by the estimators

above. We do not impose the zero restrictions required by the DVM, allow for unobserved

heterogeneity in the CMV, and allow for missingness to depend on the always-observed covariates.

We propose imputation methods for the cases of both strict as well as sequential exogeneity of the

covariates, the latter allowing for things like lagged dependent variables and feedback effects.

A second contribution we make is proposing a novel variable addition test (VAT) for exogeneity

of missingness. The VATs proposed so far in this context have only been able to test for missingness

in other time periods being uncorrelated with unobservables in a given time period (Wooldridge,

2010). We propose a test for missingness in the same time period being uncorrelated with the

unobservables in a given time period, which is the kind of exogeneity one is most likely to be

concerned about in practice.

The rest of the paper proceeds as follows. Section 2 presents the population model of interest
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and the associated assumptions of strict exogeneity of the covariates. Section 3 describes the

missing data scheme and the assumptions on the missingness mechanism. Section 4 presents the

proposed estimator and its asymptotic distribution. Section 5 compares the proposed estimator to

some commonly used alternatives. Section 6 proposes an imputation estimator under sequential

exogeneity of the covariates and the novel VAT for the exogeneity of missingness. Section 7

concludes. Proofs and extensions to the cases of missing vectors and time-varying unobserved

heterogeneity are given in the appendix.

3.2 Population model

We consider a standard linear model with additive heterogeneity. Assume that an underlying

population consists of a large number of units for whom data on ) time periods are potentially

available. We assume random sampling from this population, and let 8 denote a random draw.

Along with the outcome H8C and covariates G8C = [G18C G28C], we also draw scalars 28 and 38, which

are the unobserved heterogeneities in H8C and G18C respectively.

The linear model with additive heterogeneity is

H8C = V1G18C + G28CV2 + 28 + D8C ≡ G8CV + 28 + D8C , C = 1, . . . , ), (3.2.1)

where G18C is a scalar, G28C is a 1 × : vector which includes the constant term3, and V = [V1 V′2]
′.

We are interested in estimators of V that allow for correlation between 28 and the history of the

covariates, {G8C : C = 1, . . . , )}.

We first define the histories of all variables. Let y8 = (H81, . . . , H8) ), x8 = (G81, . . . , G8) ),

x18 = (G181, . . . , G18) ), x28 = (G281, . . . , G28) ), and u8 = (D81, . . . , D8) ). We place the following

assumption on the idiosyncratic error D8C in equation (3.2.1).

Assumption 3.2.1. E(x′
8
D8C) = 0, C = 1, . . . , ) .

This is a kind of strict exogeneity assumption of the covariates with respect to the idiosyncratic

error. It implies that G8B is uncorrelated with D8C , B = 1, . . . , ) . In other words, the idiosyncratic

error at time C is uncorrelated with the covariates in all time periods. Note that this assumption

3where G28C can include a full set of time dummies, or other aggregate time variables.
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does not restrict the relationship between x8 and the unobserved heterogeneity 28, which can be

arbitrarily correlated.

The model which underlies the gains in efficiency in this paper is the following linear imputation

model with unobserved heterogeneity, which explains G18C in terms of G28C .

G18C = G28Cc + 38 + A8C . (3.2.2)

We impose an assumption analogous to Assumption 3.2.1 on the idiosyncratic error A8C .

Assumption 3.2.2: E(x′28A8C) = 0, C = 1, . . . , ) .

Again, this assumption implies that G28B is orthogonal to the idiosyncratic error A8C in every time

period B = 1, . . . , ) . Moreover, it does not restrict the relation between x28 and the unobserved

heterogeneity 38.

Using the imputationmodel which explains G18C in terms of G28C , we are able to obtain a “reduced

form" for H8C in terms of only G28C . Plugging (3.2.2) in (3.2.1) gives

H8C = V1(G28Cc + 38 + A8C) + G28CV2 + 28 + D8C ≡ G28CW + ℎ8 + E8C , (3.2.3)

where W ≡ V1c + V2, ℎ8 ≡ V138 + 28, and E8C ≡ V1A8C + D8C . As we will discuss in Section 3, we

allow G18C to contain missing values while assuming that G28C is always observed. Equation (3.2.3)

allows us to utilize the observations for which G18C is not observed but H8C and G28C are.

Note that Assumptions 3.2.1 and 3.2.2 imply that

E(x′28E8C) = E[x
′
28 (V1A8C + D8C)] = 0. (3.2.4)

That is, G28B is orthogonal to the idiosyncratic error E8C in equation (3.2.3) for all B = 1, . . . , ) .

3.3 The missing data mechanism

To allow for unbalanced panels, we introduce a series of selection indicators for each 8, s8 =

{B81, . . . , B8) }, where B8C = 1 if G18C is observed; otherwise B8C = 0. In this paper, we only allow

G18C to contain missing values. Hence, B8C indicates whether we have a “complete case" for unit 8 in

period C.
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Our main estimation method is based on the well-known fixed effects estimator. Define )8 =∑)
@=1 B8@ as the total number of time periods for which G18C is observed for individual 8. Unlike ) ,

)8 is random, since B8C is random for every C = 1, . . . , ) . We impose the following assumption on

)8.

Assumption 3.3.1. %()8 = 0) = 0.

This assumption simply says that for every individual 8 in the population, the probability that

their G18C is not observed in any time period C = 1. . . . , ) is zero.

Further, define the time-demeaned covariates as ¥G8C = G8C − )−1
8

∑)
@=1 B8@G8@ , where the time

demeaning here has been done using the complete cases only. We can write ¥G8C = [ ¥G18C ¥G28C],

where ¥G18C = G18C − )−1
8

∑)
@=1 B8@G18@ , and ¥G28C = G28C − )−1

8

∑)
@=1 B8@G28@ . Moreover, ¤G28C =

G28C − () −)8)−1 ∑)
@=1(1− B8@)G8@ are the time demeaned covariates where the time demeaning has

been done using the incomplete cases only. Under Assumption 3.3.1, ¥G8C and ¤G28C are well defined.4

For consistent estimation in the selected samples using fixed effects, we impose the following

assumptions on the population distribution.

Assumption 3.3.2. For every C = 1, . . . , ) , (i) E(B8C ¥G′8CD8C) = 0 (ii) E(B8C ¥G′28CA8C) = 0 (iii)

E[(1 − B8C) ¤G′28CE8C] = 0.

One case where this assumption would hold is when s8 |= (x8, u8, r8, 28, 38). That is, selection is

independent of everything else in the model, a case we will call “missing completely at random"

(MCAR). For instance, data will be MCAR when we have a randomly rotating panel. Then, part

(i) of Assumption 3.3.2 becomes

E(B8C ¥G′8CD8C) = E(B8CG
′
8CD8C) − E(B8C)

−1
8

)∑
@=1

B8@G
′
8@D8C)

= E(B8C) E(G′8CD8C) −
)∑
@=1
E(B8C)−1

8 B8@) E(G′8@D8C)

= 0. (3.3.1)

The third equality follows from Assumption 3.2.1 under which E(x′
8
D8C) = 0. Similarly, part (ii) of

4So are all other time demeaned variables defined in Section 3.
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Assumption 3.3.2 becomes

E(B8C ¥G′28CA8C) = E(B8CG
′
28CA8C) − E(B8C)

−1
8

)∑
@=1

B8@G
′
28@A8C)

= E(B8C) E(G′28CA8C) −
)∑
@=1
E(B8C)−1

8 B8@) E(G′28@A8C)

= 0. (3.3.2)

The third equality follows from Assumption 3.2.2 under which E(x′28A8C) = 0. As we will see in

Section 4, time demeaning using complete cases gets rid of the unobserved heterogeneities 28 and

38 in equations (3.2.1) and (3.2.2) respectively. Therefore, Assumption 3.3.2 does not put any

restrictions on the unobserved heterogeneities, and we do not need selection to be independent

of the unobserved heterogeneities for this assumption to hold. So along with Assumptions 3.2.1

and 3.2.2, MCAR is sufficient for Assumption 3.3.2 to hold, but we can get by with the weaker

assumption s8 |= (x8, u8, r8).5

Wecan also allow selection to be a function of the always-observed covariates G28C or unobserved

random variables outside the model, but we have to strengthen the exogeneity Assumptions 3.2.1

and 3.2.2 to the following zero conditional mean assumptions.

Assumption 3.2.1’ E(D8C |x18, x28, 28, s8) = 0, C = 1, . . . , ) .

Assumption 3.2.1’ is a version of strict exogeneity of selection (along with strict exogeneity

of the covariates) conditional on 28. It implies that observing G18C in any time period C cannot be

systematically related to the idiosyncratic errors u8. As a practical matter, Assumption 3.2.1 allows

selection B8C at time period C to be arbitrarily correlated with (x18, x28, 28), that is, with the covariates

in any time period and the unobserved heterogeneity in H8C .

We also need to strengthenAssumption 3.2.2 to the following zero conditionalmean assumption.

Assumption 3.2.2’: E(A8C |x28, 38, s8) = 0, C = 1, . . . , ) .

Assumption 3.2.2’ implies that observing G18C in any time period C cannot be systematically

related to r8, where r8 = (A81, . . . , A8) ). But it can be arbitrarily correlated with (x28, 38), that is,
5It is however hard to think of situations where selection is independent of the covariates and the idiosyncratic errors
but not the unobserved heterogeneities.
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with the always-observed covariates and the unobserved heterogeneity in G18C .

Together, Assumptions 3.2.1’ and 3.2.2’ allow B8C to be arbitrarily correlated with the always-

observed covariates x28, as well as with the unobserved heterogeneity in both H8C and G18C , that is,

28 and 38. But it rules out B8C being a function of the idiosyncratic errors u8 and r8.

To see that Assumption 3.3.2 holds under Assumptions 3.2.1’ and 3.2.2’, consider part (i) of

Assumption 3.3.2.

E(B8C ¥G′8CD8C) = E[E(B8C ¥G
′
8CD8C |x8, s8)] = E[B8C ¥G

′
8C E(D8C |x8, s8)] = 0. (3.3.3)

The first equality follows from the Law of Iterated Expectations (LIE), and the third follows from the

fact that under Assumption 3.2.1’, E(D8C |x8, s8) = 0 using the LIE. Similarly, part (ii) of Assumption

3.3.2 becomes

E(B8C ¥G′28CA8C) = E[E(B8C ¥G
′
28CA8C |x28, s8)] = E[B8C ¥G′28C E(A8C |x28, s8)] = 0, (3.3.4)

where the third equality follows from the fact that under Assumption 3.2.2’, E(A8C |x28, s8) = 0 using

the LIE.

3.4 Moment conditions and GMM

It is well known that the fixed effects (within) estimator that uses only the complete cases is

generally consistent under Assumption 3.2.1’. One way to characterize this estimator is to multiply

equation (3.2.1) through by the selection indicator to get

B8CH8C = V1B8CG18C + B8CG28CV2 + B8C28 + B8CD8C , C = 1, . . . , ) . (3.4.1)

Averaging this equation across C for each 8 gives

H̄8 = V1Ḡ18 + Ḡ28V2 + 28 + D̄8, C = 1, . . . , ), (3.4.2)

where H̄8 = )−1
8

∑)
@=1 B8@H8@ is the average of the selected observations. The other averages in

(3.4.2) are defined similarly. If we now multiply (3.4.2) by B8C and subtract from (3.4.1), we remove

28.

B8C (H8C − H̄8) = V1B8C (G18C − Ḡ18) + B8C (G28C − Ḡ28)V2 + B8C (D8C − D̄8), C = 1, . . . , ) . (3.4.3)
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Equivalently,

B8C ¥H8C = V1B8C ¥G18C + B8C ¥G28CV2 + B8C ¥D8C , C = 1, . . . , ), (3.4.4)

where ¥H8C ≡ H8C − H̄8, ¥D8C ≡ D8C − D̄8, and ¥G18C and ¥G28C are as defined in Section 3. These are the time-

demeaned variables, where the demeaning has been done using the complete cases. Then pooled

OLS on (3.4.4) gives consistent estimates of V under part (i) of Assumption 3.3.2. Estimating V

using pooled OLS is equivalent to GMM estimation using the following moment conditions.

E[ 518 (V, c)] ≡ E
[ )∑
C=1

B8C ¥G′8C ( ¥H8C − ¥G18CV1 − ¥G28CV2)
]
= 0. (3.4.5)

These moment conditions give the fixed effects estimator based only on complete cases. Even

though this estimator is consistent, it leaves room for gains in efficiency as it ignores the information

contained in those observations for which G18C is missing but H8C and G28C are observed. In order to

utilize those observations, we augment the abovemoment conditions with those from the imputation

model and the reduced form for H8C .

We can time demean the imputation model (3.2.2) in a similar fashion as (3.2.1), that is, using

the complete cases. This gives

B8C ¥G18C = B8C ¥G28Cc + B8C ¥A8C , C = 1, . . . , ), (3.4.6)

where ¥A8C ≡ A8C − Ā8 and Ā8 = )−1
8

∑)
@=1 B8@A8@. Again, the unobserved heterogeneity 38 is eliminated

by the time demeaning. Estimating c using pooled OLS in this equation is equivalent to GMM

estimation using the moment functions

528 (V, c) =
)∑
C=1

B8C ¥G′28C ( ¥G18C − ¥G28Cc). (3.4.7)

For the reduced form, we use the incomplete cases to time demean the data. Define

¤H8C ≡ H8C − () − )8)−1
)∑
@=1
(1 − B8@)H8@

¤G28C ≡ G28C − () − )8)−1
)∑
@=1
(1 − B8@)G28@ .
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Then estimating W using pooled OLS on the equation

(1 − B8C) ¤H8C = (1 − B8C) ¤G28CW + (1 − B8C) ¤E8C , C = 1, . . . , ) (3.4.8)

is equivalent to GMM estimation using the following moment functions for the reduced form.

538 (V, c) =
)∑
C=1
(1 − B8C) ¤G′28C [ ¤H8C − ¤G28C (V1c + V2)] . (3.4.9)

The full vector of moment functions is given by:

58 (V, c) =


∑)
C=1 B8C ¥G

′
8C
( ¥H8C − ¥G18CV1 − ¥G28CV2)∑)

C=1 B8C ¥G
′
28C ( ¥G18C − ¥G28Cc)∑)

C=1(1 − B8C) ¤G
′
28C

(
¤H8C − ¤G28C (V1c + V2)

)

≡


518 (V, c)

528 (V, c)

538 (V, c)


. (3.4.10)

Lemma 3.4.1: Under Assumptions 3.2.1’, 3.2.2’, 3.3.1 and 3.3.2, E[ 58 (V, c)] = 0.

This is a set of 3: + 1 moment conditions with 2: + 1 parameters, giving us : over-identifying

restrictions. It is the availability of these over-identifying restrictions that leads to gains in efficiency

in this model. As the following result shows, using either 518 (.) and 528 (.) or 518 (.) and 538 (.) leads

to an estimator of V that is identical to the estimator that uses only 518 (.) and hence utilizes only

the complete cases.

Lemma 3.4.2: Under Assumptions 3.2.1’, 3.2.2’, 3.3.1 and 3.3.2, GMM estimators of V based

on moment functions [ 518 (.)′ 528 (.)′]′ or moment functions [ 518 (.)′ 538 (.)′]′ are identical to that

based only on 518 (.).

Lemma 3.4.2 follows directly from the result in Ahu & Schmidt (1995)6 that adding equal

number of additional parameters and extra moment conditions does not change the GMM estimate

of the original parameter. Both 528 (.) and 538 (.) are a set of : moment functions which add : extra

parameters c.

To define the GMM estimator based on the entire vector 58 (.), let 5̄ (V, c) = #−1 ∑#
8=1 58 (V, c),

Ω be a square matrix of order 3: + 1 that is nonrandom, symmetric, and positive definite, and Ω̂

be a first step consistent estimate of Ω. Then the standard two-step GMMminimization problem is

6p3. Thoerem 1
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given by:

min
V,c

5̄ (V, c)′ Ω̂ 5̄ (V, c). (3.4.11)

The variance-covariance matrix of the moment functions is given by:

� ≡ E[ 58 (V, c) 58 (V, c)′] =


�11 �12 �13

�21 �22 �23

�31 �32 �33


,

where

�11 = E
( )∑
C=1

B8C ¥G′8CD8C
)∑
A=1

B8A ¥G8AD8A
)

�12 =
( )∑
C=1

B8C ¥G′8CD8C
)∑
A=1

B8A ¥G28AA8A
)

�13 =
( )∑
C=1

B8C ¥G′8CA8C
)∑
A=1
(1 − B8A ) ¤G28AE8A

)
�22 = E

( )∑
C=1

B8C ¥G′28CA8C
)∑
A=1

B8A ¥G28AA8A
)

�23 = E
( )∑
C=1

B8C ¥G′28CA8C
)∑
A=1
(1 − B8A ) ¤G28AE8A

)
�33 = E

( )∑
C=1
(1 − B8C) ¤G′28CE8C

)∑
A=1
(1 − B8A ) ¤G28AE8A

)
,

and 58 (.) is evaluated at the true value of the parameters. The optimal weight matrix is given by

the inverse of �8. Let �̂ be a consistent estimate of �.7 Then the joint GMM is defined as follows.

Definition 3.4.1. Call the estimator of [V′ c′]′ that solves (3.4.11), where Ω̂ = �̂−1 the joint

GMM estimator (or [ V̂′
�>8=C��

ĉ′
�>8=C��

]′).

Further, define the gradient as follows:

� ≡ E[∇ 58 (V,Π)] =


�11 0

0 �22

�31 �32


,

where

�11 = −E
( )∑
C=1

B8C ¥G′8C ¥G8C
)

�22 = −E
( )∑
C=1

B8C ¥G′28C ¥G28C
)

�31 = −E
( )∑
C=1
(1 − B8C) ¤G′28C ¤G28Cc

∑
C

(1 − B8C) ¤G′28C ¤G8C
)

�32 = −E
( )∑
C=1
(1 − B8C) ¤G′28C ¤G28CV1

)
.

We impose the following rank condition on � for identification of V and c.

7which can be obtained by replacing the expectations with sample averages and substituting the estimated errors.
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Assumption 3.4.1: A0=: (�11) = : + 1 and A0=: (�22) = : .

Under this assumption, 518 (V) identifies V and 528 (c) identifies c. Then we have the following

result using Hansen (1982).

Theorem 3.4.1 Under standard regularity conditions and Assumptions 3.2.1’, 3.2.2’, 3.3.1, 3.3.2,

and 3.4.1, the estimators [ V̂′
�>8=C��

ĉ′
�>8=C��

]′ are consistent and asymptotically normal, with

asymptotic variance given by (�′�−1�)−1, and

# 5̄ ( V̂, Π̂)′ �̂−1 5̄ ( V̂, Π̂) 3−−−−→ j2
:
.

This statistic can be used for the standard test of over-identifying restrictions. Note that this

statistic is just the GMM objective function in (3.4.11) evaluated at the efficient values of the

parameters, and is distributed as chi-squared with degrees of freedom equal to the number of

over-identifying restrictions.

3.5 Comparison to related estimators

3.5.1 Complete cases estimator

The most common practice in the presence of missing data is to just use the complete cases for

estimation; that is, only use the observations for which G1 is observed. One estimator that uses only

complete cases is a GMM estimator based only on ℎ18 (.) which is defined as follows.

Definition 3.5.1.1 Call the estimator of V that solves (3.4.11), where 58 (.) contains only 518 (.) and

Ω̂ = �, the complete cases estimator (or V̂��).

Since 518 (.) is an exactly identified set of moment functions, the weight matrix is irrelevant for this

estimation procedure. The asymptotic variance of this estimator is given in the following result.

Lemma 3.5.1.1 Under Assumptions 3.2.1’, 3.3.1, 3.3.2 and 3.4.1, the complete cases estimator

V̂�� has an asymptotic variance given by

�E0A [
√
# ( V̂�� − V)] = (�′11�

−1
11 �11)−1.
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This estimator simply ignores the information in the observations with missing G1. V̂�>8=C�� allows

for utilization of this information, leading to potential efficiency gains. The gain in efficiency just

follows from the fact that adding valid moment conditions [in this case, 528 (.) and 538 (.)] decreases,

or at least does not increase, the asymptotic variance of a GMM estimator.

Proposition 3.5.1.1 Under Assumptions 3.2.1’, 3.2.2’, 3.3.1, 3.3.2, and 3.4.1,

�E0A [
√
# ( V̂�� − V)] − �E0A [

√
# ( V̂�>8=C�� − V)] is positive semi-definite.

3.5.2 Dummy variable method

For cross section data, the dummy variable method refers to setting the missing values of

the covariate to zero and using an indicator for whether the covariate is missing as an additional

covariate. Jones (1996) showed that this generally leads to biased and inconsistent estimates for

the case of cross section data.

For panel data, one way the dummy variable method could proceed is the following. Note that

using (3.2.1) and (3.2.2), we can write

H8C = V1 [B8CG18C + (1 − B8C) (G28Cc + 38 + A8C)] + G28CV2 + 28 + D8C . (3.5.1)

Now, separating the intercept in the imputation model (3.2.2), we get

G18C = c1 + G228Cc2 + 38 + A8C , (3.5.2)

where G28C = [1 G228C]. Substituting (3.5.2) in (3.5.1) and rearranging gives

H8C = V1B8CG18C + V1c1(1 − B8C) + G28CV2 + 48C , (3.5.3)

where 48C ≡ V1(1 − B8C) (G228Cc2 + 38 + A8C) + 28 + D8C .

The dummy variable method omits the term (1− B8C)G228Cc2V1 from the model and includes it in

the error term. This omitted variable bias is the source of inconsistency of this method, and hence

even when the data is missing completely at random, neither POLS nor fixed effects consistently

estimates the parameters in the model under the assumptions made so far.
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As is expected, POLS on (3.5.3) is additionally inconsistent because 48C contains 28 and 38 which

are correlated with G8C . But even fixed effects estimation of (3.5.3) is additionally inconsistent as it

does not get rid of the term (1 − B8C)38 in the error, which is correlated with G8C . The fixed effects

estimator where we time demean using all observations proceeds as follows.

Averaging (3.5.3) across C for each 8 and then subtracting the averaged equation from (3.5.3)

gives

H̀8C = V1 B̀8C G̀18C + V1c1(1 − B̀8C) + G̀28CV2 + 4̀8C , (3.5.4)

where H̀8C = H8C − )−1 ∑)
@=1 H8@ , B̀8C G̀18C = B8CG18C − )−1 ∑)

@=1 B8@G18@ and so on. Estimating this

equation using POLS gives the dummy variable estimator V̂� . This estimator is inconsistent unless

we impose the restrictions that certain objects are zero in the model.

Proposition 3.5.2.1. Under Assumptions 3.2.1’, 3.2.2’, and 3.4.1, V̂� is inconsistent unless (i)

V1 = 0 or (ii) c2 = 0 and 38 = 0 ∀ 8.

The first condition is setting V1 = 0, which clearly gets rid of both sources of inconsistency in

this model. If V1 = 0, 4̀8C = D̀8C , which is clearly uncorrelated with the regressors in (3.5.3) under

Assumption 3.2.1. Intuitively, this condition implies that G18C is irrelevant in model of interest

(3.2.1). In this case, the best solution is to drop it and use all observations to estimate V2 in (3.2.1)

using a standard fixed effects estimator that is used when there is no missingness. The second

condition implies that first, there is no unobserved heterogeneity in the variable with missing values

G18C . As mentioned above, this condition is required because the fixed effects transformation does

not get rid of 38 in (3.5.3) because it is now multiplied by (1 − B8C). But even if 38 = 0 ∀ 8, this

estimator is inconsistent because of omitting the term (1 − B8C)G228Cc2V1. Therefore, we need an

additional condition that c2 = 0, which intuitively means that G28C does not help in predicting G18C .

3.5.3 Regression imputation

Regression imputation is a two-step method which proceeds as following. In the first step,

estimate c in (3.2.2) using POLS and complete cases only (call it c̃). In the second step, plug c̃ in
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the equation

H8C = l1G
∗
18C + G28Cl2 + 4AA>A8C , (3.5.5)

where G∗18C ≡ B8CG18C + (1 − B8C)G28Cc. This is the “composite" G1 which contains the true values of

G1 when it is observed (i.e. when B8C = 1) and the predicted values from the imputation equation

(3.2.2) when it is missing (i.e. when B8C = 0). Then estimate l1 and l2) using fixed effects.

To establish the performance of this estimator, recall that we can write using (3.2.1) and (3.2.2)

H8C = V1 [B8CG18C + (1 − B8C) (G28Cc + 38 + A8C)] + G28CV2 + 28 + D8C . (3.5.6)

This boils down to the model of interest (3.2.1) when B8C = 1 and to the reduced form (3.2.3) when

B8C = 0. Re-arrange this and write as

H8C = V1 [B8CG18C + (1 − B8C)G28Cc] + G28CV2 + [(1 − B8C)38V1 + 28] + [(1 − B8C)A8CV1 + D8C]

≡ V1G
∗
18C + G28CV2 + [(1 − B8C)38V1 + 28] + [(1 − B8C)A8CV1 + D8C] . (3.5.7)

Comparing (3.5.7) with (3.5.5), we note that the error in (3.5.5) contains both of the last two terms

in (3.5.7), that is, the term that occurs due to the idiosyncratic errors in the model of interest and

the imputation model as well as the term that occurs due to the unobserved heterogeneities in the

two models. The issue with plugging c̃ in (3.5.7) and then estimating using fixed effects is twofold.

First, estimating (3.2.2) using POLS and not fixed effects will lead to an inconsistent estimator of

c due to the presence of 38 in (3.2.2). Second, and more importantly, even if one gets a consistent

estimate of c using fixed effects on (3.2.2) and plugs it in (3.5.7), a standard fixed effects on this

equation does not produce consistent estimates of V1 and V2 because the unobserved heterogeneity

term [(1 − B8C)38V1 + 28] is not time constant anymore and hence cannot be eliminated by the

standard fixed effects transformation. This method is therefore generally going to be inconsistent

due to the presence of 38 in the imputation model.

A sequential estimator that is consistent is the following. First estimate c using 528 (.), plug the

estimated c into 538 (.), and then estimate V using 518 (.) and 538 (.) together.

Definition 3.5.3.1. Call the following two-step estimator the sequentialGMM(or [ V̂′
(4@

ĉ′
(4@
]′).
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Step 1: Obtain ĉ(4@ by solving (3.4.11), where 58 (.) contains only 528 (.) and Ω̂ = �.

Step 2: Obtain V̂(4@ by solving (3.4.11), where

58 (V, ĉ(4@) =


∑)
C=1 B8C ¥G

′
8C
( ¥H8C − ¥G18CV1 − ¥G28CV2)∑)

C=1(1 − B8C) ¤G
′
28C

(
¤H8C − ¤G28C (V1ĉ(4@ + V2)

) ≡

518 (V, c)

538 (V, ĉ(4@)


and

Ω̂ =

[
#−1

#∑
8=1

58 (V, ĉ(4@) 58 (V, ĉ(4@)′
]−1

.

As is well known, sequential GMM estimators are generally less, or at least no more, efficient

than joint GMM estimators that use the same moment conditions. Therefore, V̂(4@ is generally

less efficient than V̂�>8=C�� 8 and there would be no reason to choose it other than computational

convenience.

3.5.4 Mundlak device

In the case of balanced panels, it is well known that the Mundlak device which adds time

averages of the covariates as additional explanatory variables in equation (3.2.1) and estimates

the model using POLS is numerically equivalent to the fixed effects estimator (Mundlak, 1978).

Wooldridge (2019) shows that this numerical equivalence carries over to the case of unbalanced

panels as well. In equation (3.2.1), if we include time averages of G8C computed using only the

complete cases as additional covariates and estimate the model using POLS on complete cases only,

then this estimator is numerically equivalent to the complete cases fixed effects estimator V̂�� .

This suggests an alternative to the joint fixed effects GMM estimator introduced in Section 4.

Instead of time demeaning each of the equations (3.2.1)-(3.2.3), we can use the Mundlak device for

each of them. Consider first equation (3.2.1) and write

28 = k1 + b11Ḡ18 + Ḡ28b12 + 018 ≡ k1 + Ḡ8b1 + 018 . (3.5.8)

8Prokhorov and Schmidt (2009), Theorem 2.2, part 5.
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This is a model that explains the unobserved heterogeneity 28 in terms of the time averages of

covariates in equation (3.2.1), where the averaging has been done using the complete cases only.

We impose the following zero conditional mean assumption on the error 018.

Assumption 3.5.4.1. E(018 |x8, s8) = 0.

This implies first that E(28 |Ḡ8) = k1 + Ḡ8b1. Second, it implies that selection in all time periods

is uncorrelated with the error 018. Plugging (3.5.8) into (3.2.1), we get

H8C = G8CV + k1 + Ḡ8b1 + 018 + D8C . (3.5.9)

Let Ǵ8C = [1 G8C Ḡ8]. Estimating this model using POLS with the B8C = 1 observations is equivalent

to doing GMM with the following moment functions

618 (V, k1, b1) = B8C Ǵ′8C (H8C − G8CV − k1 − Ḡ8b1). (3.5.10)

Similarly, for the unobserved heterogeneity in the imputation model in equation (3.2.2), we can

write

38 = k2 + Ḡ28b2 + 028 . (3.5.11)

Analogous to Assumption 3.5.4.1, we place the following assumption on the error term 028, which

implies that E(38 |Ḡ28) = k2 + Ḡ28b2 and that selection in all time periods is uncorrelated with 028.

Assumption 3.5.4.2. E(028 |x28, s8) = 0.

Plugging (3.5.11) into equation (3.2.2), we get

G18C = G28Cc + k2 + Ḡ28b2 + 028 + A8C . (3.5.12)

Let Ǵ28C = [1 G28C Ḡ28]. Estimating this model using POLS with the B8C = 1 observations is

equivalent to doing GMM with the following moment functions.

628 (c, k2, b2) = B8C Ǵ′28C (G18C − G28Cc − k2 − Ḡ28b2). (3.5.13)

For the reduced form in equation (3.2.3), we first plug in for the unobserved heterogeneity ℎ8 using

(3.5.8) and (3.5.11). Recall that ℎ8 ≡ V138 + 28. We first obtain 28 as a function of Ḡ28. To do this,
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we substitute for Ḡ18 in (3.5.8) using equation (3.2.2). Averaging (3.2.2) over all time periods for

which B8C = 1, we get

Ḡ18 = Ḡ28c + 38 + Ā8 . (3.5.14)

Plugging in for 38 from (3.5.11) in this equation, we have

Ḡ18 = Ḡ28 (c + b2) + k2 + 028 + Ā8 . (3.5.15)

Plugging this into equation (3.5.8),

28 = k1 + b11 [Ḡ28 (c + b2) + k2 + 028 + Ā8] + Ḡ28b12 + 018 . (3.5.16)

Thus, using equations (3.5.11) and (3.5.16), we can write ℎ8 as

ℎ8 ≡ V138 + 28 = V1(k2+ Ḡ28b2+028) +k1+ b11 [Ḡ28 (c+ b2) +k2+028 + Ā8] + Ḡ28b12+018 . (3.5.17)

Plugging this into equation (3.2.3) and re-arranging, we get

H8C = G28CW + k + Ḡ28X + 4AA>A8C . (3.5.18)

where k ≡ k1 + b11k2 + V1k2, X ≡ b11(c + b2) + b12 + V1b2, and 4AA>A8C ≡ b11(028 + Ā8) + 018 +

V1028 + E8C . Estimating this model using POLS with the B8C = 0 observations is equivalent to doing

GMM with the following moment functions.

638 (V, c, k1, k2, b1, b2) = (1 − B8C)Ǵ′28C (H8C − G28CW − k − Ḡ28X). (3.5.19)

So the final set of moment functions is given by

68 (V, c, k1, k2, b1, b2) =


∑)
C=1 B8C Ǵ

′
8C
(H8C − G8CV − k1 − Ḡ8b1)∑)

C=1 B8C Ǵ
′
28C (G18C − G28Cc − k2 − Ḡ28b2)∑)

C=1(1 − B8C)Ǵ
′
28C (H8C − G28CW − k − Ḡ28X)


≡


618 (V, k1, b1)

628 (c, k2, b2)

638 (V, c, k1, k2, b1, b2)


.

(3.5.20)

Lemma 3.5.4.1. Under Assumptions 3.5.4.1 and 3.5.4.2, E[68 (V, c, k1, k2, b1, b2)] = 0.

The rest of the GMM estimation proceeds as usual using the moment conditions in (3.5.21).

Define the variance-covariance matrix of the moment functions in (3.5.20) as

Λ ≡ E[68 (V, c, k1, k2, b1, b2)68 (V, c, k1, k2, b1, b2)′] . (3.5.21)
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and let Λ̂ be a consistent estimate of Λ. Then we define the optimal GMM estimator based on

moment conditions (3.5.20) as follows.

Definition 3.5.4.1. Call the estimator of [V′ c′ k′1 k′2 b′1 b′2]
′ that solves

min
V,c

6̄(V, c, k1, k2, b1, b2)′ Ω̂ 6̄(V, c, k1, k2, b1, b2), (3.5.22)

where 6̄(V, c, k1, k2, b1, b2) =
∑#
8=1 68 (V, c, k1, k2, b1, b2) and Ω̂ = Λ̂−1, the joint Mundlak

estimator. Denote the estimator of V from this vector as V̂�>8=C"D=3;0: .

3.6 Estimation under sequential exogeneity

As is well known, the strict exogeneity Assumption 3.2.1 rules out lagged dependent variables

and feedback from past shocks to current covariates in the model of interest (3.2.1).9 For instance,

if G8C contains a policy variable, then Assumption 3.2.1 imposes that there is no feedback where

policy is more likely to occur based on past shocks. Or if (3.2.1) is a wage equation and one of the

covariates is union status, then it rules out a negative wage shock today leading to someone deciding

to join the union next year. Assumption 3.2.2’ imposes these restrictions on the imputation model

(3.2.2).

In order to allow for such effects, we relax Assumption 3.2.1 and 3.2.2 to sequential exogeneity

Assumptions 3.6.1 and 3.6.2.

Assumption 3.6.1. E(xC′
8
D8C) = 0, C = 1, . . . , ) ,

where xC
8
= (G8C , G8,C−1, . . . , G81). This assumes correct distributed lag dynamics but is silent on

feedback as it allows for D8C to be arbitrarily correlated with G8,C+B for B ∈ {1, . . . , ) − C}. For the

imputation model (3.2.2), we relax Assumption 3.2.2 to the following.

Assumption 3.6.2: E(xC′28A8C) = 0,

where xC28 = (G28C , G28,C−1, . . . , G281).

Under these assumptions, we can use an alternative transformation called “forward orthogonal-

ization" suggested by Arellano & Bover (1995). It demeans data using average over future time

9Wooldridge (2010), Chapter 10
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periods instead of average over all time periods. It thus preserves sequential exogeneity while still

using as much data as possible.

We begin with the model of interest (3.2.1). At time C ≤ ) − 1, consider the equations for

C + 1, . . . , ) .

H8,C+1 = V1G18,C+1 + G28,C+1V2 + 28 + D8,C+1
...

H8) = V1G18) + G28) V2 + 28 + D8) .

In order to time demean (3.2.1), we can naturally use only those future time periods for which

G1 is observed. Define

)8 (C) =
)∑

@=C+1
B8@ (3.6.1)

as the number of time periods for which G1 is observed after time C for unit 8. Multiply each

equation for C + 1 ≤ @ ≤ ) by B8@ and sum

)∑
@=C+1

B8@H8@ = V1

( )∑
@=C+1

B8@G18@

)
+

( )∑
@=C+1

B8@G28@

)
V2 + )8 (C)28 +

( )∑
@=C+1

B8@D8@

)
. (3.6.2)

Multiplying through by )8 (C)−1 gives

H̄8 (C) = V1Ḡ18 (C) + Ḡ28 (C)V2 + 28 + D̄8 (C), (3.6.3)

where H̄8 (C) = )8 (C)−1 ∑)
@=C+1 B8@H8@ is the average of the observed H8@ after time C and Ḡ18 (C), Ḡ28 (C)

and D̄8 (C) are defined similarly.

Subtracting this equation from (3.2.1), which is the equation at time C gives

H8C − H̄8 (C) = V1 [G18C − Ḡ18 (C)] + [G28C − Ḡ28 (C)]V2 + [D8C − D̄8 (C)] (3.6.4)

or

H̃8 (C) = V1G̃18 (C) + G̃28 (C)V2 + D̃8 (C). (3.6.5)

Subtracting the forward averages thus eliminates 28 just as with the usual within transformation.

Now we use G18? and G28?, ? ≤ C as instrumental variables in this equation, and use only those time
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periods for which B8C = 1, i.e. the complete cases. This gives the following moment functions.

<18 (V) =

B8?G18?B8C [ H̃8 (C) − V1G̃18 (C) − G̃28 (C)V2]

G′28?B8C [ H̃8 (C) − V1G̃18 (C) − G̃28 (C)V2]

 ? ≤ C, C = 1, . . . , ) − 1. (3.6.6)

We require an additional selection indicator for the first set of moment conditions here as in addition

to G18C , these moment conditions also require G18? to be observed for it to be used as an instrumental

variable.

Since the moment conditions in (3.6.6) utilize only the complete cases, they leave room for gains

in efficiency by utilizing the incomplete cases. We can again implement forward orthogonalization

with time demeaning using complete cases to estimate c in (3.2.2). Similar to (3.6.4), we can write

G18C − Ḡ18 (C) = [G28C − Ḡ28 (C)]c + [A8C − Ā8 (C)], (3.6.7)

where Ā8 (C) = )8 (C)−1 ∑)
@=C+1 B8@A8@ . Multiplying through by )8 (C)−1, we get

G̃18 (C) = G̃28 (C)c + Ã8 (C). (3.6.8)

Using G28? , ? ≤ C as instrumental variables and using only the complete cases, we get the moment

functions

<28 (c) = G′28?B8C [G̃18 (C) − G̃28 (C)c] ? ≤ C, C = 1, . . . , ) − 1. (3.6.9)

Similar to Section 4, the moment conditions that allow gains in efficiency come from the reduced

form (3.2.3). Here we do the forward orthogonalization using incomplete cases. Let

H̆8 (C) = H8C −
(
) − C − )8 (C)

)−1
)∑

@=C+1
(1 − B8@)H8@

Ğ28 (C) = G28C −
(
) − C − )8 (C)

)−1
)∑

@=C+1
(1 − B8@)G28@ .

We can then write

H̆8 (C) = Ğ28 (C)W + Ĕ8C . (3.6.10)

We estimate W ≡ (V1c + V2) using incomplete cases as well. This gives moment functions

<38 (V, c) = G′28? (1 − B8C) [ H̆8 (C) − Ğ28 (C) (V1c + V2)] ? ≤ C, C = 1, . . . , ) − 1. (3.6.11)
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The full set of moment functions is given by

<8 (V, c) =


<18 (V)

<28 (c)

<38 (V, c)


=



B8?G18?B8C [ H̃8 (C) − V1G̃18 (C) − G̃28 (C)V2]

G′28?B8C [ H̃8 (C) − V1G̃18 (C) − G̃28 (C)V2]

G′28?B8C [G̃18 (C) − G̃28 (C)c]

G′28? (1 − B8C) [ H̆8 (C) − Ğ28 (C) (V1c + V2)]


? ≤ C, C = 1, . . . , ) − 1.

(3.6.12)

The moment functions <8 (V, c) have a zero mean if Assumptions 3.6.1 and 3.6.2 hold and

s8 |= (x8, u8, r8).10 However, if we want to allow the selection to be more general (for instance,

depend on x28 or other unobserved variables), we need to strengthen Assumptions 3.6.1 and 3.6.2

to the following zero conditional mean assumptions.

Assumption 3.6.1’: E(D8C |xC8 , s8, 28) = 0, C = 1, . . . , ) .

Assumption 3.6.2’: E(A8C |xC28, s8, 38) = 0, C = 1, . . . .) .

Note that although Assumptions 3.6.1’ and 3.6.2’ allow the covariates to be sequentially exoge-

nous in both the model of interest (3.2.1) and the imputation model (3.2.2), selection is assumed

to be strictly exogenous in both models. This is because in the moment functions <18 (V) and

<28 (c), H̄8 (C), Ḡ18 (C) and Ḡ28 (C) depend non-linearly on all selection indicators from C + 1 to ) and

we use instruments with ? ≤ C. Therefore, we need selection to be strictly, and not just sequentially,

exogenous for these moment functions to have a zero mean. Moreover, Assumption 3.6.1’ allows

selection to be arbitrarily correlated with x8 and 28. Assumption 3.6.2’ allows selection to be

arbitrarily correlated with x28 and 38, but it rules out selection depending on G1 once we condition

on G2. Thus together, Assumptions 3.6.1’ and 3.6.2’ allow selection to depend on x28, 28 and 38,

but not r8 or u8.

We summarize the conditions under which the moment functions in (3.6.12) have an expected

value of zero in the following lemma.

Lemma 3.6.1: E[<8 (V, c)] = 0 if either of the following conditions hold.

(i) s8 |= (x8, u8, r8) and Assumptions 3.6.1 and 3.6.2 hold.

10Recall that this is weaker than MCAR as it allows s8 to depend on 28 and 38 .
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(ii) B8C is a function of x28 or some other random variable F8C and Assumptions 3.6.1’ and 3.6.2’

hold..

Then, E[<8 (V, c)] = 0 gives us a set of (3: + 1)) () − 1)/2 moment conditions with 2: + 1

parameters and hence number of over-identifying restrictions depends on ) . We can use the regular

two-step GMM estimator using these moment conditions.

One way to test for exogeneity of s8 with respect to {D8C : C = 1, . . . , )} is to include selection

indicators from other time periods as covariates in equation (3.2.1) and check for their significance

at time C. For instance, one might be concerned that a shock today causes people to drop out from

the sample in the next time period. Then one can add B8,C+1 as a covariate at time C (so that the last

time period is lost), estimate the model using the moment conditions in (3.6.6), and compute the

robust C-statistic on B8,C+1. Another option is to use B8,C−1 as a covariate, but that does not work in

the case of attrition when it is an absorbing state because if B8C = 1 for 8, then so is B8,C−1.

Note that this test can be used even if one is only using the complete cases11, as it does not

even require us to write down the imputation equation (3.2.2). But when using the GMM based on

full set of moment conditions in (3.6.12), one can also test for the exogeneity of s8 with respect to

{A8C : C = 1, . . . , )} by including B8,C+1 as a covariate in the imputation equation (3.2.2) at time C,

estimating the model using moment conditions in (3.6.9), and computing the robust C-statistic on

B8,C+1.

However, whatwe aremost likely to be concerned about in an application is the contemporaneous

selection problem, that is, B8C being correlated with D8C . But one cannot test for B8C by including it

as a covariate in either (3.2.1) or (3.2.2). This is because both of these models are estimated using

complete cases and hence B8C will always equal 1 for the observations used in moment conditions

in (3.6.6) and (3.6.9). The reduced form in (3.2.3), however, provides a way to test for B8C as it can

be used for all observations 8 irrespective of whether B8C = 0 or B8C = 1.

Since H8C and G28C are observed for all observations, instead of (3.6.10), we can use the following

11that is, only the moment conditions in (3.6.6)
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moment conditions.

E[G′28?
(
H̆8C − Ğ28C (V1c + V2)

)
] = 0 ? ≤ C, C = 1, . . . , ) − 1. (3.6.13)

We have simply removed the (1 − B8C) from (3.6.10), which means that instead of restricting these

moment conditions to the incomplete cases, we are using all observations. Then we can test for

the exogeneity of B8C with respect to {E8C : C = 1, . . . , )} by including B8C as a covariate in the

reduced form (3.2.3) at time C, estimating the model using the moment conditions in (3.6.12), and

computing the robust C-statistic on B8C . The null hypothesis here is that B8C is uncorrelated with E8C .

Since E8C = D8C + V1A8C , if we reject the null, then we can conclude that B8C is correlated with either

D8C or A8C or both. Since we require both of these correlations to be zero in order for the moment

conditions in (3.6.12) to be valid, a rejection would bring the validity of this method into question

irrespective of which idiosyncratic error B8C is correlated with.

Finally, we can also use this test for B8C in the framework of Section 4 where we are assuming

strict exogeneity of the covariates with respect to the idiosyncratic errors. In that case, we simply

include B8C as a covariate in the reduced form (3.2.3) at time C and estimate the model using the

following moment conditions

E[
)∑
C=1
¤G′28C

(
¤H8C − ¤G28C (V1c + V2)

)
] = 0. (3.6.14)

instead of those in (3.6.13), and computing the robust C-statistic on B8C . The moment conditions in

(3.6.14) are essentially the same as in (3.4.9) except that we have removed the selection indicator

(1 − B8C) just like in the case of sequential exogeneity. Note that all the tests discussed here require

that ) ≥ 3.

3.7 Conclusion

We have provided new methods of consistently imputing missing covariate values in linear

panel data models with unobserved heterogeneity when using fixed effects. We provide imputation

estimators under both strict and sequential exogeneity of the covariates. We relax some substantial

assumptions made by currently used imputation estimators, most notably allowing the covariate
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with missing values to contain individual specific unobserved heterogeneity. We provide two tests

for the assumptions underlying our imputation procedure. The first is a GMM overidentification

test which tests the validity of the moment conditions, the second is a novel variable addition test

for the missingness in a given time period being uncorrelated with the unobservables, both in the

same time period as well as in other time periods.
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APPENDIX A

PROOFS FOR CHAPTER 1

Proof of Proposition 1.5.1.2

We know that

�E0A (
√
=[( V̂′ E42(Π̂)′)′ − (V′ E42(Π)′)′]) = (�′�−1�)−1

Now,

�′�−1� =


�′11 0

0 �′22



�11 �12

�′12 �22


−1 

�11 0

0 �22

 +


0 �′41

�′32 �′42



�33 0

0 �44


−1 

0 �32

�41 �42


≡ � + ���′

where

� =


�′11 0

0 �′22



�11 �12

�′12 �22


−1 

�11 0

0 �22

 , � =


0 �32

�41 �42

 , � =


�33 0

0 �44


−1

Using the matrix inversion lemma,

(�′�−1�)−1 = (� + ���′)−1 = �−1 − �−1� (� + �′�−1�)−1�′�−1

and thus

�−1 − (�′�−1�)−1 = �−1� (�−1 + �′�−1�)−1�′�−1 (A.1)

Let � ≡ (� + �′�−1�)−1. Now,

�−1 =


�−1

11�11�
−1′
11 �−1

11�12�
−1′
22

�−1
22�21�

−1′
11 �−1

22�22�
−1′
22


and the asymptotic variance of the complete cases GMM is given by the upper left (: + 1) × (: + 1)

block of �−1. Therefore, the difference between the asymptotic variances of the complete cases

estimator and the proposed estimator is given by the upper left (: + 1) × (: + 1) block of the
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expression on the right hand side of (A.1). For this we need the first (: + 1) columns of �′�−1,

which are given by 
�32�

−1
22�21�

−1′
11

�41�
−1
11�11�

−1′
11 + �42�

−1
22�21�

−1′
11

 (A.2)

For the difference corresponding to V1, we need the first column of this matrix. To find that,

consider

�−1
11 = [E(B1B2G

′I)]−1

=


�−1 −�−1 1 

−1
2

− −1
2  4�

−1 ( 2 −  4 
−1
3  1)−1


where � ≡

(
E(B1B2G′1I1) − E(B1B2G1G2) [E(B1B2G′2G2)]−1 E(B1B2G′2I1)

)
,  1 ≡ E(B1B2G1G2),  2 ≡

E(B1B2G′2G2),  3 ≡ E(B1B2G1I1), and  4 ≡ E(B1B2G′2I1). The first column and the last : columns

of this matrix are given by,1 and,2 respectively, where

,1 =


1

− −1
2  4

 �
−1 (A.0.1)

,2 =


−�−1 1 

−1
2

( 2 −  4 
−1
3  1)−1

 (A.0.2)

Now, the first column of the matrix in (A.2) is given by
�32�

−1
22�21,1

(�41�
−1
11�11 + �42�

−1
22�21),1

 ≡

�1

�1


Similarly, the last : columns of the matrix in (A.2) are given by

�32�
−1
22�21,2

(�41�
−1
11�11 + �42�

−1
22�21),2

 ≡

�2

�2


Thus, the difference corresponding to V 9 , 9 = 1, 2 is

[
�′
9
�′
9

]
�


� 9

� 9


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as stated in the proposition. �

Proof of proposition 1.5.2.1

When we have two distinct samples containing (H, I) and (G, I), and hence the estimation is based

only on 63(.) and 64(.). Thus

ℎ(V,Π) =
[
63(Π)64(V,Π)

]
� =


�33 0

0 �44

 � =


0 �32

�41 �42

 .
The first step solves

1
=

=∑
8=1

63(G8, I8, B28, Π̆) = 0.

By standard GMM theory,

√
=(Π̆ − Π) 3−−−−→ # (0, +2) where +2 = �

−1
32�33�

′−1
32 .

The second step solves

min
V

ℎ̄4(V, Π̆)′ Ω̆1 ℎ̄4(V, Π̆),

where ℎ̄4(V,Π) =
1
=

∑=
8=1 64(H8, I8, B18, V,Π). The first order condition is given by

�̂41Ω̆1 ℎ̄4( V̆, Π̆) = 0 (A.3)

where �̂41 =
mℎ̄4( V̆, Π̆)

mV
, Ω̆1

?
−−−−→ Ω1, and Ω1 is a general weight matrix. A Taylor expansion of

ℎ̄4( V̆, Π̆) around V gives

ℎ̄4( V̆, Π̆) = ℎ̄4(V, Π̆) + �̄41( V̆ − V),

where �̄41 =
mℎ̄4( V̄, Π̆)

mV
and V̄ ∈ [V, V̆]. Substituting in (A.3)

�̂41Ω̆1 ℎ̄4(V, Π̆) + �̂41Ω̆1�̄41( V̆ − V) = 0.

Thus,
√
=( V̆ − V) = −(�̂41Ω̆1�̄41)−1�̂41Ω̆1

√
= ℎ̄4(V, Π̆).
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Now, a Taylor expansion of ℎ̄4(V, Π̆) around Π gives

ℎ̄4(V, Π̆) = ℎ̄4(V,Π) + �̄42(Π̆ − Π),

where �̄42 =
mℎ̄4(V, Π̄)
m E42Π

and Π̄ ∈ [Π, Π̆]. Thus,

√
=( V̆ − V) = −(�̂41Ω̆1�̄41)−1�̂41Ω̆1 [

√
= ℎ̄4(V,Π) + �̄42

√
= (Π̆ − Π)] .

Now, let / ≡ [
√
= ℎ̄4(V,Π) + �̄42

√
= (Π̆ − Π)]. Since

√
= ℎ̄4(V,Π)

3−−−−→ # (0, �44) and
√
= (Π̆ − Π) 3−−−−→ # (0, +2),

therefore

/
3−−−−→ # (0,Σ) where Σ = �44 + �42+2�

′
42.

Moreover,

�̂41
?
−−−−→ �41 �̄41

?
−−−−→ �41 �̄32

?
−−−−→ �42 Ω̆1

?
−−−−→ Ω1.

Let V̆ ≡ V̂)(2(!(−$ . Then,

√
=( V̆ − V) = −[(�̂41Ω̆1�̄41)−1�̂41Ω̆1 − (�41Ω1�41)−1�41Ω1]/ − (�41Ω1�41)−1�41Ω1/

= >? (1) − (�41Ω1�41)−1�41Ω1/

where [(�̂41Ω̆1�̄41)−1�̂41Ω̆1 − (�41Ω1�41)−1�41Ω1] is >? (1) because of the Slutsky’s theo-

rem, / is $? (1), and >? (1).$? (1) = >? (1). Then, by the asymptotic equivalence lemma,

√
=( V̆ − V) 3−−−−→ # (0, +1)

where

+1 = (�′41Ω1�41)−1�′41Ω1 Σ Ω1�41(�′41Ω1�41)−1.

By standard GMM theory, the optimal weight matrix for this step is Σ−1. Using this matrix gives

+∗1 = (�
′
41Σ
−1�41)−1.
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�

Proof of proposition 1.5.2.3

The asymptotic variance of
√
=( V̂ − V) is given by the upper left (? + :) × (? + :) block of

(�′�−1�)−1. Now,

(�′�−1�)−1 =




0 �′41

�′32 �′42



�−1

33 0

0 �−1
44




0 �32

�41 �42



−1

=


�′41�

−1
44 �41 �′41�

−1
44 �42

�′42�
−1
44 �41 �′32�

−1
33 �32 + �′42�

−1
44 �42


−1

Using the formula for the inversion of a block matrix, the upper left (? + :) × (? + :) block of this

inverse is

(�′41�
−1
44 �41 − �′41�

−1
44 �42(�′32�

−1
33 �32 + �′42�

−1
44 �42)−1�′42�

−1
44 �41)−1 (A.4)

On the other hand, we know �E0A (
√
=( V̂)(2(!(−$ − V))

= (�′41Σ
−1�41)−1 (A.5)

= (�′41(�44 + �42(�′32�
−1
33 �32)−1�′42)

−1�41)−1

= (�′41(�
−1
44 − �

−1
44 �42(�′32�

−1
33 �32 + �′42�

−1
44 �42)−1�′42�

−1
44 )�41)−1

= (�′41�
−1
44 �41 − �′41�

−1
44 �42(�′32�

−1
33 �32 + �′42�

−1
44 �42)−1�′42�

−1
44 �41)−1 (A.0.3)

where the third equality uses the matrix inversion lemma. The result follows from the fact that

(A.4) = (A.5). �

Proof of proposition 1.5.2.5

With exact identification, V̂ simply solves

1
=

=∑
8=1

ℎ(H8, G8, I8, B18, B28, Π̂, V̂) = 0 where ℎ(.) =

63(.)

64(.)

 .
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This is the same as first solving

1
=

=∑
8=1

63(G8, I8, B28, Π̆) = 0

for Π̆, and then solving

1
=

=∑
8=1

64(H8, I8, B18, Π̆, V̂)(2(!() = 0

for V̂)(2(!(. �
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APPENDIX B

TABLES FOR CHAPTER 1

Table B.1: Monte Carlo simulations, Design 1

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS 0.008 0.035 0.036 -0.000 0.066 0.066 -0.023 0.055 0.059
Complete cases GMM 0.008 0.035 0.036 -0.001 0.066 0.066 -0.023 0.055 0.060

Imputation 0.009 0.029 0.031 -0.013 0.056 0.057 -0.011 0.047 0.048
Dummy variable method 0.008 0.035 0.036 0.154 0.065 0.167 0.153 0.054 0.162

Proposed GMM 0.008 0.027 0.028 -0.004 0.051 0.051 -0.011 0.043 0.044

Table B.2: Monte Carlo simulations, Design 2

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS 0.013 0.069 0.070 -0.008 0.074 0.074 -0.024 0.065 0.069
Complete cases GMM 0.004 0.052 0.052 -0.005 0.067 0.068 -0.018 0.059 0.062

Imputation 0.008 0.060 0.061 -0.019 0.066 0.069 -0.010 0.058 0.059
Dummy variable method 0.013 0.069 0.070 0.146 0.069 0.161 0.151 0.060 0.163

Proposed GMM 0.010 0.041 0.042 -0.012 0.055 0.056 -0.011 0.049 0.050

Table B.3: Monte Carlo simulations, Design 3

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS 0.009 0.076 0.077 0.003 0.083 0.083 -0.018 0.074 0.076
Complete cases GMM 0.002 0.056 0.056 0.004 0.074 0.074 -0.014 0.067 0.068

Imputation 0.006 0.065 0.065 -0.015 0.074 0.075 -0.005 0.064 0.064
Dummy variable method 0.009 0.076 0.077 0.176 0.078 0.193 0.181 0.066 0.193

Proposed GMM 0.010 0.044 0.045 -0.009 0.059 0.060 -0.009 0.053 0.054

95



Table B.4: Monte Carlo simulations, Design 4

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS 0.013 0.069 0.070 -0.008 0.074 0.074 -0.024 0.065 0.069
Complete cases GMM 0.004 0.052 0.052 -0.005 0.067 0.068 -0.018 0.059 0.062

Imputation 0.008 0.060 0.060 -0.015 0.064 0.066 -0.013 0.057 0.058
Dummy variable method 0.013 0.070 0.070 0.001 0.060 0.060 0.003 0.052 0.052

Proposed GMM 0.010 0.040 0.041 -0.011 0.053 0.054 -0.011 0.047 0.049

Table B.5: Monte Carlo simulations, Design 5

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS -0.001 0.118 0.118 -0.006 0.145 0.146 0.023 0.166 0.168
Imputation -0.001 0.118 0.118 -0.004 0.136 0.136 0.019 0.148 0.149

Proposed GMM 0.000 0.119 0.119 -0.006 0.136 0.136 0.018 0.149 0.150

Table B.6: Monte Carlo simulations, Design 6

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS 0.013 0.180 0.180 -0.018 0.171 0.172 0.035 0.192 0.195
Imputation 0.013 0.180 0.180 -0.023 0.174 0.175 0.020 0.185 0.186

Proposed GMM 0.005 0.155 0.155 -0.012 0.150 0.150 0.030 0.165 0.167

Table B.7: Monte Carlo simulations, Design 7

V1 V22 V23

Estimator Bias SD RMSE Bias SD RMSE Bias SD RMSE

Complete cases 2SLS 0.003 0.198 0.198 -0.014 0.186 0.187 0.039 0.206 0.210
Imputation 0.003 0.198 0.198 -0.014 0.192 0.192 0.030 0.199 0.201

Proposed GMM 0.005 0.162 0.162 -0.012 0.155 0.156 0.031 0.172 0.175
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Table B.8: Effect of physician’s advice on calorie consumption: complete cases versus the proposed
estimator

Estimator Complete cases GMM Proposed GMM

Physician advised to lose weight 0.126 0.119
(0.099) (0.091)

Age -0.004 -0.004
(0.00040) (0.00036)

Female -0.294 -0.300
(0.011) (0.010)

Black -0.054 -0.056
(0.013) (0.011)

Other race -0.040 -0.142
(0.013) (0.011)

9 to 12 years of schooling 0.083 0.085
(0.024) (0.021)

High school grad or equivalent 0.074 0.074
(0.022) (0.020)

Some college or AA 0.049 0.063
(0.021) (0.019)

College or above 0.053 0.060
(0.023) (0.021)

Married -0.015 -0.019
(0.010) (0.009)

Has high BP -0.002 -0.007
(0.015) (0.014)

Has high cholesterol 0.005 -0.002
(0.019) (0.016)

Has Arthritis -0.0005 0.006
(0.013) (0.012)

Has heart condition -0.074 -0.073
(0.025) (0.023)

Has Diabetes -0.079 -0.085
(0.020) (0.019)

BMI 0.0007 0.0003
(0.003) (0.002)

Monthly income < $2100 -0.019 -0.033
(0.016) (0.014)

Monthly income between $2100 and $5400 -0.003 -0.013
(0.014) (0.012)

Monthly income between $5400 and $8400 -0.017 -0.027
(0.015) (0.013)

Is employed 0.086 0.081
(0.011) (0.010)
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APPENDIX C

FIGURES FOR CHAPTER 1

Figure C.1: Some admissible patterns of missingness (shaded areas represent complete cases)

H G I H G I H G I

1.1: Partial overlap 1.2: Univariate missing data 1.3: The TS2SLS case
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APPENDIX D

PROOFS FOR CHAPTER 2

Proof of Lemma 2.4.1

Since, is nonsingular by assumption, it suffices to show that E[6(U, V; X0)] ≠ 0 for (U, V) ≠

(U0, V0).1 We show this element-by-element of 6(U, V; X0).

Starting with the weighted moment functions from the model of interest, given Assumptions

2.3.1 and 2.3.2 and the standard IPW argument, we know that

E{[B/� (I, X0)]6∗1(H, G, U0)} = E{[B/?(I)]6∗1(H, G, U0)} = E{E( [B/?(I)]6∗1(H, G, U0) |H, G, I)}

= E{[E(B |H, G, I)/?(I)]6∗1(H, G, U0)}

= E[6∗1(H, G, U0)] .

Now, Assumption 2.2.1 implies that E[6∗1(H, G, U)] ≠ 0 for any U ≠ U0. It follows that for any

U ≠ U0,

E{[B/� (I, X0)]6∗1(H, G, U)} ≠ 0.

Moving on to the imputation model, first note that by iterated expectations,

E(B |G1, G2, I) = E[E(B |H, G1, G2, I) |G1, G2, I] = E[E(B |I) |G1, G2, I] = E(B |I) ≡ ?(I),

where the second equality follows from Assumption 2.3.1. Now consider the weighted moment

functions from the imputation model.

E{[B/� (I, X0)]6∗2(G1, G2, V0)} = E{[B/?(I)]6∗2(G1, G2, V0)}

= E{E( [B/?(I)]6∗2(G1, G2, V0) |G1, G2, I)}

= E{[E(B |G1, G2, I)/?(I)]6∗2(G1, G2, V0)}

= E[6∗2(G1, G2, V0)] = 0

1Note that even though 63 (U, V; X) sometimes only identifies functions of (U0, V0) and not each element of (U0, V0)
separately, the entire vector 6(U, V; X) still identifies (U0, V0) separately because 61 (U; X) identifies U0 and 62 (V; X)
identifies V0.
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and the same argument as above applies for identification of V0 using Assumption 2.2.2.

For the reduced form moment functions, identification of W0 simply follows from Assumption

2.2.3.

Proof of Theorem 2.4.1

Identification of (U0, V0) follows from Lemma 2.4.1 and X̂
?
−→ X0 follows from Assumption

2.3.2 and standard MLE theory. To complete the proof, we simply show that the objective function

satisfies the weak uniform law of large numbers. By 5 and 6,

|61(H, G, I, B, U; X0) | ≤ 0−111(H, G), all (I, B),

|62(G, I, B, V; X0) | ≤ 0−112(G), all (I, B),

|63(H, G2, W) | ≤ 13(H, G2).

and by 6, E[1(H, G)] < ∞, where 61(H, G, I, B, U; X0), 62(G, I, B, V; X0), and 63(H, G2, W) are as

defined in (2.4.1). It follows from Lemma 2.4 in Newey and McFadden (1994) that

sup
(U,V,W)∈A×B×Γ

����#−1
#∑
8=1

6(H8, G8, I8, B8, U, V, W; X̂) − E[6(H, G, I, B, U, V, W; X0)]
���� ?
−→ 0.

The rest of the proof is standard, see Wooldridge (2010, Section 12.4.1).

Proof of Theorem 2.4.2

For notational convenience, let g ≡ (U′, V′)′. First we will show that

√
#∇g&̂(g0; X̂) 3−→ #>A<0; (0, �′0,�0,�0).

Since &̂(g; X̂) = 6̄(g; X̂)′ ,̂ 6̄(g; X̂),

=⇒ ∇g&̂(g; X̂) = [∇g 6̄(g; X̂)]′ ,̂ 6̄(g; X̂)

=⇒
√
#∇g&̂(g0; X̂) = [∇g 6̄(g0; X̂)]′ ,̂

√
#6̄(g0; X̂).
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Carrying out an element-by-element mean value expansion of
√
#∇g&̂(g0; X̂) around X0 gives,

√
#∇g&̂(g0; X̂) = [�0 + >? (1)]′ ,̂ [

√
#6̄(g0; X0) + ∇X6̄(g0; X̄)

√
# (X̂ − X0)] (D.1)

= [�0 + >? (1)]′ ,̂ {
√
#6̄(g0; X0) + [�0 + >? (1)]

√
# (X̂ − X0)}

= [�0 + >? (1)]′ ,̂ {
√
#6̄(g0; X0) + [�0 + >? (1)] [#

−1
2
#∑
8=1

k(B8, I8) + >? (1)]}

= �′0 , {#
−1

2
#∑
8=1
[68 + �0k(B8, I8)]} + >? (1), (D.0.1)

where X̄ lies between X̂ and X0 (thus X̄
?
−→ X0),�0 ≡ E[∇X6(g0, X0)] andk(B8, I8) = −[E(383′8 )]

−138

is the influence function for
√
# (X̂ − X0). Moreover, by central limit theorem,

#
−1

2
#∑
8=1
[68 + �0k(B8, I8)]}

3−→ # (0, �0),

where

�0 ≡ E[686′8 + �0k(B8, I8)6′8 + 68k(B8, I8)
′�′0 + �0k(B8, I8)k(B8, I8)′�′0] .

Now, note that by definition,

�0 = E


−(B8/�8)6∗18 (∇X�8/�8)

−(B8/�8)6∗28 (∇X�8/�8)

0


= −E(6̃83′8 ),

where 6̃8 ≡ (6′18, 6
′
28, 0)

′ and the third element is a 1 × !3 zero vector. This is because

E(6̃83′8 ) = E


(B8/�8)6∗18{B8 (∇X�8/�8) − (1 − B8) [∇X�8/(1 − �8)]}

(B8/�8)6∗28{B8 (∇X�8/�8) − (1 − B8) [∇X�8/(1 − �8)]}

0


= E


(B8/�8)6∗18 (∇X�8/�8)

(B8/�8)6∗28 (∇X�8/�8)

0


,

since B2
8
= B8 and (1 − B8)2 = (1 − B8). This implies

E[�0k(B8, I8)6′8] = −E(6̃83
′
8 ) [E(383

′
8 )]
−1 E(386′8),
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and

E[�0k(B8, I8)k(B8, I8)′�′0] = E(6̃83
′
8 ) [E(383

′
8 )]
−1 E(38 6̃′8).

Therefore,

�0 = E(686′8) − {E(683
′
8 ) [E(383

′
8 )]
−1 E(386′8) ◦ '},

where ' is a square matrix of order !1 + !2 + !3 with all elements being unity except the lower

right !3 × !3 block which is a 0 matrix, and ◦ denotes Hadamard product. Then using (D.1) and

the asymptotic equivalence lemma,

√
#∇g&̂(g0; X̂) 3−→ #>A<0; (0, �′0,�0,�0). (D.2)

Next, an element-by-element mean value expansion of ∇g&̂(ĝ; X̂) around g0 gives,

∇g&̂(ĝ; X̂) = ∇g&̂(g0; X̂) + [�′0,�0 + >? (1)] (ĝ − g0)

=⇒
√
# (ĝ − g0) = −(�′0,�0)−1√#∇g&̂(g0; X̂) + >? (1). (D.3)

Combining (D.2) and (D.3) and using the asymptotic equivalence lemma gives

√
# (ĝ − g0)

3−−−−→ #>A<0; [0, (�′0,�0)−1�′0,�0,�0(�′0,�0)−1], (D.0.2)

which is the desired result.

Proof of Proposition 2.4.1

For notational convenience, let ĝ,� ≡ (Û′,� , V̂
′
,�
)′. We want to show that under the null

hypothesis , # &̂(ĝ,� ; X̂) 3−→ j2
!3

, where ,̂ = �̂−1.

First note that a mean value expansion around X0 yields

√
#6̄(g0; X̂) =

√
#6̄(g0; X0) + ∇X6̄(g0; X̄)

√
# (X̂ − X0)

3−→ # (0, �0).

by equation (A.9). This implies

− �
−1

2
0
√
#6̄(g0; X̂) = *#

3−→ * ∼ #>A<0; (0, �). (D.4)
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Moreover, the first order conditions for the objective function in (4.3) imply that

√
#∇g&̂(ĝ; X̂) = [∇g 6̄(ĝ; X̂)]′ �̂−1 √#6̄(ĝ; X̂) = 0 (D.5)

=⇒ �′0�
−1
0
√
#6̄(ĝ; X̂) + >? (1) = 0

=⇒ �′0�
−1
0 [−�

1
2

0 *# + �0
√
# (ĝ − g0)] + >? (1) = 0

=⇒
√
# (ĝ − g0) = (�′0�

−1
0 �0)−1�′0�

−1
2

0 *# + >? (1). (D.0.3)

Now, a mean value expansion of the sample moments around g0 gives

√
#6̄(ĝ; X̂) =

√
#6̄(g0; X̂) + ∇g 6̄(ḡ; X̂)

√
# (ĝ − g0), (D.6)

where ḡ lies between ĝ and g0. Substituting (D.4) and (D.5) into (D.6), we get

√
#6̄(ĝ; X̂) = −�

−1
2

0 *# + �0(�′0�
−1
0 �0)−1�′0�

−1
2

0 *# + >? (1)

= −�
−1

2
0 '0*# + >? (1),

where '0 = � − �
−1

2
0 �0(�′0�

−1
0 �0)−1�′0�

−1
2

0 is idempotent of rank !3. Then,

# &̂(ĝ; X̂) = *′#'0*# + >? (1)
3−→ j2

!3
.

Proof of Proposition 2.6.1.1

I drop the 0 subscripts/superscripts for notational convenience, but all expressions in this proof

are evaluated at the true values of the parameters, that is, at (U0, V0, W0).

First note that the GMM estimator of U0 that minimizes (2.4.3) with

6(U, V; X̂) = [61(U; X̂)′, 62(V; X̂)′]′

and ,̂ = � is numerically equivalent to Û,22, which is based only on 61(U; X̂). This is because

62(V; X̂) simply adds equal number of parameters to be estimated and moment conditions to the

system.2 To characterize the asymptotic variance of this estimator, first define the following

2Ahu & Schmidt (1995)
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quantities.

�1 ≡

�11 0

0 �22

 �2 ≡
[
�31 �32

]
�1 ≡


�11 �12

�′12 �22

 �2 ≡

�13

�23

 �3 ≡ �33,

(D.0.4)

with �9= = E(6 96′=) −E(6 93′) [E(33′)]−1 E(36′=), 9 , = = 1, 2, 3 except �33 which equals E(636
′
3).

Then the asymptotic variance of this estimator is given by (�′1�
−1
1 �1)−1, and the required differ-

ence in the proposition is given by the upper-left !1 × !1 block of (�′1�
−1
1 �1)−1 − (�′�−1�)−1.

We will now characterize this difference.

First note that

�−1 =


�1 �2

�′2 �3


−1

=


�−1

1 (� + �2��
′
2�
−1
1 ) −�

−1
1 �2�

−��′2�
−1
1 �

 , � =


�1

�2

 , (D.0.5)

where � ≡ (�3 − �′2�
−1�2)−1. Therefore,

�′�−1� =

[
�′1 �′2

] 
�−1

1 (� + �2��
′
2�
−1
1 ) −�

−1
1 �2�

−��′2�
−1
1 �



�1

�2

 = �1�
−1
1 �1 + �′��,

(D.0.6)

where � ≡ �′2�
−1
1 �1 − �2. Therefore, using the Sherman Morrison formula,

(�′�−1�)−1 = (�′1�
−1
1 �1 + �′��)−1

= (�′1�
−1
1 �1)−1 − (�′1�

−1
1 �1)−1�′[�−1 + � (�′1�

−1
1 �1)−1�′]−1� (�′1�

−1
1 �1)−1,

(D.0.7)

which implies that

(�′1�
−1
1 �1)−1 − (�′�−1�)−1 = (�′1�

−1
1 �1)−1�′[�−1 + � (�′1�

−1
1 �1)−1�′]−1� (�′1�

−1
1 �1)−1

≡ (�′1�
−1
1 �1)−1�′ � (�′1�

−1
1 �1)−1, (D.0.8)

where  ≡ [�−1 + � (�′1�
−1
1 �1)−1�′]−1 is a positive definite matrix. The matrix in (A.32) is

clearly positive semidefinite, which proves the proposition.

104



For use in the next proof, we want to characterize the difference corresponding specifically to

U0, which is given by the upper-left !1 × !1 block of the matrix in (A.32). For this difference, we

focus on the first !1 columns of � (�′1�
−1
1 �1)−1. Note that

� (�′1�
−1
1 �1)−1 = (�′2�

−1
1 �1 − �2) (�′1�

−1
1 �1)−1 = (�′2�

−1
1 �1 − �2)�−1

1 �1�
−1
1

= (�′2 − �2�
−1
1 �1)�−1

1 , (D.0.9)

where we have used the fact that �1 is symmetric. Substituting the definitions of �1, �2, �1, and

�2, we get � (�′1�
−1
1 �1)−1 equals[

(�′13 − �31�
−1
11 �11 − �32�

−1
22 �
′
12)�

−1
11 (�′23 − �31�

−1
11 �12 − �32�

−1
22 �22)�−1

22

]
. (D.0.10)

The first !1 columns of this matrix are given by the left block, which is

! ≡ �′13�
−1
11 − �31�

−1
11 �11�

−1
11 − �32�

−1
22 �
′
12�
−1
11 . (D.0.11)

Let ! = [!1 !2], where !1 is the first column of ! and !2 is the matrix of last !1 − 1 columns of

!. Then the difference in asymptotic variances corresponding to U1 and U2 is !′1 !1 and !′2 !2

respectively.

Proof of Proposition 6.1.2

We want to show that neither !1 nor !2 derived in the proof of Proposition 6.1.1 is zero in

general. For notational simplicity, I drop the 0 sub/superscripts in this proof, but all expressions

are evaluated at the true parameter values.

By standard second order conditions for a probit and a normal MLE,

�11 = −E(G′G41) �22 = E


f−2G′2G2 0

0 f−4/2


�31 = −E(G′2G242)ℎU �32 = −E(G′2G242)ℎV (D.0.12)
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where

ℎU = [ℎU1 ℎU2]

≡

\ − (\U1 + U2) (1 + U2

1f
2)−1U1f

2√
1 + U2

1f
2

1√
1 + U2

1f
2
�:


ℎV = [ℎ\ ℎ

f2]

≡


U1√
1 + U2

1f
2
�: −

(\U1 + U2)U2
1

2(1 + U2
1f

2)3/2
 , (D.0.13)

41 ≡ [q(GU)]2/{Φ(GU) [1 −Φ(GU)]}, 42 ≡ [q(G2W)]2/{Φ(G2W) [1 −Φ(G2W)]}. Then we can

write

�11 = −E

G′1G141 G′1G241

G′2G141 G′2G241

 (D.0.14)

Let E(G′2G241) ≡ Γ1, E(G′2A41) ≡ Γ2, and E(A241) = f2
A241

. Then using G1 = G2\ + A , we can write

�11 = −

\′Γ1\ + 2Γ′2\ + f

2
A241

\′Γ1 + Γ′2

Γ1\ + Γ2 Γ1

 (D.0.15)

Let Γ3 ≡ (f2
A241
− Γ′2Γ

−1
1 Γ2). Using the partitioned inverse formula, we can write

�−1
11 =


Γ−1

3 −Γ−1
3 (\

′ + Γ′2Γ
−1
1 )

−Γ−1
3 (\ + Γ

−1
1 Γ2) Γ−1

1 + (\ + Γ
−1
1 Γ2)Γ−1

3 (\
′ + Γ′2Γ

−1
1 )

 (D.0.16)

To calculate the first term in (A.35), we begin by deriving �13.

�13 = E(616
′
3) − E(613

′) [E(33′)]−1 E(36′3). (D.0.17)

Let D1 ≡ [H−Φ(GU)]q(GU)/Φ(GU) [1−Φ(GU)] be the generalized residual for themodel of interest,

E1 ≡ [H −Φ(G2W)]q(G2W)/Φ(G2W) [1 −Φ(G2W)] be the generalized residual for the reduced form,

ΩD1E1 ≡ E{[B/?(I)]G
′
2G2D1E1}, ΩAD1E1 ≡ E{[B/?(I)]G2AD1E1}, ΩE13 ≡ E(G

′
2E13

′), ΩD13 ≡

E{[B/?(I)]G′2D13
′}, and ΩAD13 ≡ E{[B/?(I)

2]AD13
′}. Then

�13 =


\′ΩD1E1 +ΩAD1E1 − (\

′ΩD13 +ΩAD13) [E(33
′)]−1Ω′

E13

ΩD1E1 −ΩD13 [E(33
′)]−1Ω′

E13

 (D.0.18)
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Using the definitions of �13 and �−1
11 , we get that the first column of �′13�

−1
11 is

&11 ≡ {Ω′AD1E1 −ΩE13 [E(33
′)]−1Ω′

AD13
}Γ−1

3 − {Ω
′
D1E1 −ΩE13 [E(33

′)]−1Ω′
D13
}Γ−1

3 Γ−1
1 Γ2

(D.0.19)

and the last : columns of �′13�
−1
11 are

&12 ≡ −{Ω′AD1E1 −ΩE13 [E(33
′)]−1Ω′

AD13
}Γ−1

3 (\
′ + Γ′2Γ

−1
1 )

+ {Ω′D1E1 −ΩE13 [E(33
′)]−1Ω′

D13
}Γ−1

1 [�: + Γ2Γ
−1
3 (\

′ + Γ′2Γ
−1
1 )] (D.0.20)

Next we derive the second term in (A.35).

ℎU�
−1
11 = [ℎU1 ℎU2]�

−1
11

= [ Γ−1
3 [ℎU1−ℎU2 (\+Γ

−1
1 Γ2)] −ℎU1Γ

−1
3 (\

′+Γ′2Γ
−1
1 )+ℎU2 [Γ

−1
1 +(\+Γ

−1
1 Γ2)Γ−1

3 (\
′+Γ′2Γ

−1
1 )] ]

(D.0.21)

Let ℎ ≡ ℎU1 − ℎU2\ and Γ4 ≡ Γ−1
3 (ℎ − ℎU2Γ

−1
1 Γ2). Then

ℎU�
−1
11 =

[
Γ4 −Γ4(\′ + Γ′2Γ

−1
1 ) + ℎU2Γ

−1
1

]
(D.0.22)

Now consider �11. Let Ω
D2

1
≡ E{[B/?(I)2]G′2G2D

2
1}, ΩAD2

1
≡ E{[B/?(I)2]G′2AD

2
1}, and ΩA2D2

1
≡

E{[B/?(I)2]A2D2
1}. Then,

�11 = [�111 �112] (D.0.23)

where

�111 ≡


\′Ω

D2
1
\ + 2\′Ω

AD2
1
+Ω

A2D2
1
− (\′ΩD13 +ΩAD13 ) [E(33

′)]−1 (Ω′
D13

\ +Ω′
AD13

)

Ω′
D2

1
\ +Ω

AD2
1
−ΩD13 [E(33

′)]−1 (Ω′
D13

\ +Ω′
AD13

)


(D.0.24)

�112 ≡


\′Ω

D2
1
+Ω′

AD2
1
− (\′ΩD13 +ΩAD13) [E(33

′)]−1Ω′
D13

Ω
D2

1
−ΩD13 [E(33

′)]−1Ω′
D13

 (D.0.25)
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Using the definitions of ℎU�−1
11 , and �11, we find that the first column of ℎU�−1

11 �11�
−1
11 is given

by

&∗21 ≡ Γ4Γ
−1
3 ({ΩA2D2

1
−ΩAD13 [E(33

′)]−1Ω′
AD13
}

− {Ω′
AD2

1
−ΩAD13 [E(33

′)]−1Ω′
D13
}Γ−1

1 Γ2 −Ω′
AD2

1
\)

− (Γ4Γ
′
2 + ℎU2)Γ

−1
1 Γ−1

3 [{ΩAD2
1
−ΩD13 [E(33

′)]−1Ω′
AD13
}

− {Ω
D2

1
−ΩD13 [E(33

′)]−1Ω′
D13
}Γ−1

1 Γ2 − (\ + Γ−1
1 Γ2)] (D.0.26)

and the last : columns of ℎU�−1
11 �11�

−1
11 are given by

&∗22 ≡ −Γ4Γ
−1
3 [{ΩA2D2

1
−ΩAD13 [E(33

′)]−1Ω′
AD13
} −Ω′

AD2
1
(\ + Γ−1

1 Γ2)] (\′ + Γ′2Γ
−1
1 )

+ (Γ4Γ
′
2 + ℎU2)Γ

−1
1 {ΩAD2

1
−ΩD13 [E(33

′)]−1Ω′
AD13
}Γ−1

3 (\
′ + Γ′2Γ

−1
1 ) + Γ4Ω

′
AD2

1
Γ−1

1

− [Γ4ΩAD13 [E(33
′)]−1Ω′

D13
+ (Γ4Γ

′
2 + ℎU2)Γ

−1
1 {ΩD2

1
−ΩD13 [E(33

′)]−1Ω′
D13
}]

Γ−1
1 [�: + Γ2Γ

−1
3 (\

′ + Γ′2Γ
−1
1 )] (D.0.27)

Let &21 ≡ −E(G′2G242)&∗21 and &22 ≡ −E(G′2G242)&∗22. Then,

�31�
−1
11 �11�

−1
11 = [&21 &22] (D.0.28)

Clearly, neither &21 nor &22 is zero.

Next we want to find �32�
−1
22 �
′
12�
−1
11 . First note that

�−1
22 =


f2 E(G′2G2)−1 0

0 2f4

 . (D.0.29)

Further, let ΩA3 ≡ E{[B/?(I)]G′2A3
′}, Ω

A23 ≡ E{[B/?(I)] (A
2f−2 − 1)3′}, ΩD1A ≡ E{[B/?(I)

2]

G′2G2D1A}, ΩD1A2
≡ E{[B/?(I)2]G′2D1A

2}, and Ω
D1A3

≡ E{[B/?(I)2]D1A
3}. Then

�′12 =

[ (Ω′D1A \+Ω
′
D1A2

)−[ΩA3 [E(33′)]−1 (Ω′
D13

\+Ω′
AD13

)] Ω′D1A−ΩA3 [E(33
′)]−1Ω′

D13

(Ω
D1A2

\+Ω′
D1A3

)f−2−Ω
A23 [E(33

′)]−1 (Ω′
D13

\+Ω′
AD13

) f−2Ω′D1A−ΩA23 [E(33
′)]−1Ω′

D13

]
.

(D.0.30)
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Next note that ℎV�−1
22 = [ℎ\f

2 E(G′2G2)−1 2ℎ
f2f

4]. Using the definitions of �12 and �−1
22 , we

get that the first column of ℎV�−1
22 �
′
12�
−1
11 is

&∗31 ≡ ℎ\f
2 E(G′2G2)−1Γ−1

3

(Ω′
D1A2
−ΩA3 [E(33′)]−1Ω′

AD13
− {Ω′D1A −ΩA3 [E(33

′)]−1Ω′
D13
}Γ−1

1 Γ2)

+ 2ℎ
f2f

4Γ−1
3

(f−2Ω
D1A3
−Ω

A23 [E(33
′)]−1Ω′

AD13
− {f−2Ω′

D1A2
−Ω

A23 [E(33
′)]−1Ω′

D13
}Γ−1

1 Γ2)

(D.0.31)

and the last : columns of ℎV�−1
22 �
′
12�
−1
11 are

&∗32 ≡ f
2 E(G′2G2)−1( [−ℎ\{Ω′

D1A2
−ΩA3 [E(33′)]−1Ω′

AD13
}

− 2ℎ
f2f

2{Ω′
D1A3

f−2 −Ω
A23 [E(33

′)]−1Ω′
AD13
}Γ−1

3 (\
′ + Γ′2Γ

−1
1 )]

+ {(ℎ\{Ω′D1A −ΩA3 [E(33
′)]−1Ω′

D13
}

− 2ℎ
f2f

2{Ω′D1A −ΩA23 [E(33
′)]−1Ω′

D13
})Γ−1

1 [�: + Γ2Γ
−1
3 (\

′ + Γ′2Γ
−1
1 )]}) (D.0.32)

Let &31 ≡ −E(G′2G242)&∗31 and &32 ≡ −E(G′2G242)&∗32. Then,

�32�
−1
22 �
′
12�
−1
11 = [&31 &32] (D.0.33)

Clearly, neither &31 nor &32 is zero.

Thus,

!1 = &11 +&21 +&31 ≠ 0 (D.0.34)

!2 = &12 +&22 +&32 ≠ 0 (D.0.35)

which implies that it is possible to obtain strict efficiency gains for both U1 and U2.

Proof of Proposition E.1.

We first show that U0 is a solution to <8=U∈A E[B · 51(H, G, U)]. First note that for any U ∈ A,

E[B · 51(H, G, U)] = E{E[B · 51(H, G, U) |G]} = E{?(G2) E[ 51(H, G, U) |G]},
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where the second equality follows by iterated expectations.

E[B · 51(H, G, U) |G] = E{E[B · 51(H, G, U) |H, G] |G} = E[E(B |H, G) 51(H, G, U) |G]

= E[?(G2) 51(H, G, U) |G] = ?(G2) E[ 51(H, G, U) |G],

where the third equality follows from part 2 of Assumption E.2. Because ?(G2) ≥ 0 ∀G2 ∈ X2, and

U0 minimizes E[ 51(H, G, U) |G] for all G ∈ X,

?(G2) E[ 51(H, G, U0) |G] ≤ ?(G2) E[ 51(H, G, U) |G], G ∈ X, U ∈ A.

The result follows from taking an expectation with respect to G.

A similar argument can be used to verify that V0 solves minV∈B E[B · 52(G1, G2, V)] and noting

that E(B |G) = ?(G2) under part 2 of Assumption E.2. For the reduced form, part 1 of Assumption

E.1 implies using iterated expectations that W0 minimizes E[ 53(H, G2, W)].

110



APPENDIX E

ASYMPTOTIC THEORY FOR UNWEIGHTED ESTIMATION

The notion of econometric models underlying the objective functions in (2.2.1)-(2.2.3) being

correctly specified, and sample selection being based on G2 is formalized in the following two

assumptions.

Assumption E.1. Assume that

1. For each G ∈ X, U0 solves minU∈A E[ 51(H, G, U) |G]. For each G2 ∈ X2, V0 and W0 solve

minV∈B E[ 52(G1, G2, V) |G2] and minW∈Γ E[ 53(H, G2, W) |G2] respectively.

2. U0, V0, and W0 are the unique solutions to minU∈A E[B · 51(H, G, U)] and minV∈B E[B ·

52(G1, G2, V)] respectively.

Part 1 of this assumption practically means that the underlying model is correctly specified. Part

2 is needed to ensure that the selected subpopulation is sufficiently rich to identify the respective

parameters. The notion that B depends on G2 is formalized in part 2 of the following assumption.

Assumption E.2. Assume that

1. G1 is observed whenever B = 1, (H, G2) are always observed.

2. %(B = 1|H, G1, G2) = %(B = 1|G2) ≡ ?(G2).

It is simple to show that Assumptions E.1 and E.2 along with regularity conditions, imply

consistency of (Û*� , V̂*�). I show that the following proposition holds.

Proposition E.1. Under Assumptions E.1 and E.2, U0, V0, and W0 solve minU∈A E[B ·

51(H, G, U)], minV∈B E[B · 52(G1, G2, V)] and minW∈Γ E[ 53(H, G2, W)] respectively.

The proof (given in Appendix C) simply follows from an iterated expectations argument and is

an extension of that in Wooldridge (2002).

Theorem E.1. Assume that
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1. {(H8, G8, B8) : 8 = 1, . . . , #} are random draws from the population satisfying Assumption

E.2.

2. Assumption E.1 holds.

3. Parts 3 (except the assumptions on Δ), 4, and 6 of Theorem 2.4.1 hold.

Then (Û*� , V̂*�)
?
−→ (U0, V0) as # −→ ∞.

Once we verify that (U0, V0) are identified in the subpopulations defined by B = 1, the proof of

Theorem E.1 is very similar to that of Theorem 2.4.1, and hence is omitted.

To derive the asymptotic distribution of (Û*� , V̂*�), we assume that E[6(U, V)] is differentiable

at (U0, V0) with the derivative defined as the following.

�*0 ≡ E[∇(U′,V′)′6(U, V) |(U,V)=(U0,V0)] =


�0
*11 0

0 �0
*22

�0
*31 �0

*32


, (E.0.1)

where �0
* 91 = m6 9 (U, V)/mU |(U,V)=(U0,V0) and �

0
* 92 = m6 9 (U, V)/mV |(U,V)=(U0,V0) , 9 = 1, 2, 3.

Then the following theorem gives the
√
#−asymptotic normality result.

Theorem E.2.(Asymptotic Normality): Assume that

1. The assumptions in Theorem E.1 hold

2. (U0, V0) ∈ 8=C (A × B).

3. 6(U, V) is twice continuously differentiable on 8=C (A × B).

4. �*0 is of full rank !1 + !2.

Then,
√
# [(Û′*� , V̂

′
*�)
′ − (U′0, V

′
0)
′] 3−−−−→ #>A<0; [0, (�′

*0�
−1
0 �*0)−1] .

The proof follows in a straightforward manner from Theorem 3.4 of Newey and McFadden (1994)

and hence is omitted.
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APPENDIX F

TABLES FOR CHAPTER 2

Table F.1: Summary of missing data methods used in 5 highly ranked economics journals from
2018 to August 2020.

Total % Missingness % CC % DVM % RI % Other

American Economic Review 319 20.69 71.21 16.67 15.15 15.15
Quarterly Journal of Economics 109 28.44 74.19 9.68 9.68 29.68
Journal of Labor Economics 109 35.78 58.97 15.38 10.26 17.95
Journal of Human Resources 98 43.88 46.51 32.56 11.63 16.28
Journal of Political Economy 211 19.91 59.52 16.67 21.43 14.29

Total 846 26.12 62.44 18.55 14.03 17.65
1 Column 1 shows the total number of papers published. Column 2 shows the percentage of papers that reported missing
values. Columns 3-6 show the percentage of papers that used the complete cases estimator, the dummy variable
method, the two-step regression imputation, and other methods respectively.

2 The row percentages add to more than 100 because some papers use multiple methods.
3 The articles that do not explicitly mention the method of imputation are included in the two-step regression imputation
category since this is the most frequently used method within the imputation category.
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Table F.2: Effect of grade variance on probability of having a 4 year college degree.

Complete cases Joint GMM % ↓ in s.e. Plug-in DVM

Log(income) 0.148 0.148 0.149 0.150
(0.042) (0.041) 2.38 (0.042) (0.042)

GSD -0.146 -0.140 -0.138 -0.139
(0.039) (0.035) 10.26 (0.037) (0.035)

GPA 0.329 0.331 0.338 0.339
(0.049) (0.043) 12.24 (0.043) (0.043)

Black 0.413 0.407 0.386 0.395
(0.128) (0.116) 9.38 (0.114) (0.114)

Hispanic 0.539 0.445 0.404 0.419
(0.147) (0.135) 8.16 (0.138) (0.135)

Live in south 0.140 0.149 0.144 0.137
(0.065) (0.058) 10.77 (0.057) (0.057)

Lived in urban area 0.093 0.080 0.082 0.083
(0.068) (0.061) 10.29 (0.062) (0.060)

Mother’s education 0.060 0.057 0.055 0.056
(0.015) (0.014) 6.67 (0.014) (0.014)

Father’s education 0.063 0.063 0.062 0.062
(0.011) (0.010) 9.09 (0.010) (0.010)

Female -0.128 -0.132 -0.138 -0.146
(0.059) (0.053) 10.17 (0.052) (0.052)

Cognitive skills 0.436 0.420 0.400 0.404
(0.050) (0.044) 12 (0.044) (0.044)

Non-Cognitive skills 0.012 0.015 0.018 0.016
(0.030) (0.027) 10 (0.028) (0.027)

N 3219 3942 3942 3942
p-value for J stat 0.590
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APPENDIX G

PROOFS FOR CHAPTER 3

Proof of Lemma 3.4.1

Starting with 518 (.), we want to show that E
( ∑)

C=1 B8C ¥G
′
8C
¥D8C

)
= 0. Since

∑)
C=1 B8C ¥G

′
8C
¥D8C =∑)

C=1 B8C ¥G
′
8C
D8C , we want to show that E

( ∑)
C=1 B8C ¥G

′
8C
D8C

)
= 0.

First, Assumption 3.2.1 implies by the law of iterated expectations (LIE) that E
(
D8C |G8, B8

)
= 0.

Now, ∀ C = 1, . . . , )

� (B8C ¥G′8CD8C) = E[E
(
B8C ¥G′8CD8C |G8, B8

)
] = E[B8C ¥G′8C E

(
D8C |G8, B8

)
] = 0.

Therefore, E
( ∑)

C=1 B8C ¥G
′
8C
D8C

)
= 0.

Using a similar argument for 528 (.), we want to show that E
( ∑)

C=1 B8C ¥G
′
28CA8C

)
= 0. Now, ∀

C = 1, . . . , )

E(B8C ¥G′28CA8C) = E[E
(
B8C ¥G′28CA8C |G28, B8

)
] = E[B8C ¥G′28C E

(
A8C |G28, B8

)
] = 0.

The last equality follows from E
(
A8C |G28, B8

)
= 0 which follows from Assumption 3.2.2 and LIE.

Therefore, E
( ∑)

C=1 B8C ¥G
′
28CA8C

)
= 0.

For 538 (.), we want to show that E[∑)
C=1(1 − B8C) ¤G

′
28CE8C] = 0. First, note that using the LIE,

Assumption 3.2.1 implies that E
(
D8C |G28, B8

)
= 0. This combined with E

(
A8C |G28, B8

)
= 0 implies

that E
(
E8C |G28, B8

)
= E

(
V1A8C + D8C |G28, B8

)
= 0. Now, ∀ C = 1, . . . , )

E[(1 − B8C) ¤G′28CE8C] = E{E[(1 − B8C) ¤G
′
28CE8C |G28, B8]} = E[(1 − B8C) ¤G′28C E(E8C |G28, B8)] = 0.

and hence E[∑)
C=1(1 − B8C) ¤G

′
28CE8C] = 0.

Proof of Proposition 3.4.2.1

V̂� is obtained by estimating the parameters in equation (3.4.3) using POLS. POLS will be

consistent if

E


618 (.)

628 (.)

638 (.)


≡ E


∑)
C=1 B̀8C G̀

′
18C 4̀8C∑)

C=1(1 − B̀8C) 4̀8C∑)
C=1 G̀

′
28C 4̀8C


=


0

0

0


. (F.1)
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We are going to show that each of these holds true iff either V1 = 0 or c2 = 38 = 0 ∀ 8.

First, note that

4̀8C = 48C − 4̄8 =[(1 − B8C)G228C − (1 − B8)G228]c2V1 + [(1 − B8C)38 − (1 − B8)38]V1

+ [(1 − B8C)A8C − (1 − B8)A8]V1 + [D8C − D̄8],

where

(1 − B8)G228 = )
−1
8

)∑
@=1
(1 − B8@)G228@

(1 − B8)38 = )−1
8

)∑
@=1
(1 − B8@)38 = (1 − )−1)8)38

(1 − B8)A8 = )−1
8

)∑
@=1
(1 − B8@)A8@ .

Starting with 618, the first term is

E{
)∑
C=1

B̀8C G̀
′
18C [(1−B8C)G228C−(1 − B8)G228]c2V1} =

)∑
C=1
E{B̀8C G̀′18C [(1−B8C)G228C−(1 − B8)G228]c2V1}.

Consider this expectation for each C separately. It is 0 iff either c2 = 0 or V1 = 0 or both are 0. If

neither of these conditions holds, then this term will be a non-zero number, except by fluke. For

the second term,

E{B̀8C G̀′18C [(1 − B8C) − (1 − B8)38]38V1}

is zero ∀ C iff V1 = 0 or 38 = 0 ∀ 8 or both. For the third term,

E{B̀8C G̀′18C [(1 − B8C)A8C − (1 − B8)A8]V1}

is zero ∀ C iff V1 = 0. For the fourth term,

E[B̀8C G̀′18C (D8C − D̄8)]

is zero ∀ C under Assumption 3.2.1.

Moving on to 628, for the first term

E{[(1 − B8C) − (1 − )−1)8)] [(1 − B8C)G228C − (1 − B8)G228]c2V1}
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is zero ∀ C iff c2 = 0 or V1 = 0 or both. For the second term,

E{[(1 − B8C) − (1 − )−1)8)]238V1}

is zero ∀ C iff V1 = 0 or 38 = 0 ∀ 8 or both. For the third term,

E{[(1 − B8C) − (1 − )−1)8)] [(1 − B8C)A8C − (1 − B8)A8]V1}

is zero under Assumption 3.2.2. For the fourth term,

E[[(1 − B8C) − (1 − )−1)8)] (D8C − D̄8)]

is zero ∀ C under Assumption 3.2.1.

Moving on to 638, for the first term

E{G̀′28C [(1 − B8C)G228C − (1 − B8)G228]c2V1}

is zero ∀ C iff c2 = 0 or V1 = 0 or both. For the second term,

E{G̀′28C [(1 − B8C) − (1 − )
−1)8)]38V1}

is zero ∀ C iff V1 = 0 or 38 = 0 ∀ 8 or both. For the third term,

E{G̀′28C [(1 − B8C)A8C − (1 − B8)A8]V1}

is zero under Assumption 3.2.2. For the fourth term,

E[G̀′28C (D8C − D̄8)]

is zero ∀ C under Assumption 3.2.1.

Thus, for each of the moment conditions in (F.1) to be zero, we need either V1 = 0 or c2 = 38 = 0

∀ 8.

Proof of Proposition 3.4.3.1

Let the error V1(1 − B8C) [ ¥G28C (c − ĉ�<?) + ¥A8C] + ¥D8C ≡ ¥48C and let the set of regressors [B8C ¥G18C +

(1 − B8C) ¥G28C ĉ�<? ¥G28C] ≡ ¥I8C
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The POLS estimator is

V̂�<? =
(∑
8

∑
C

¥I′8C ¥I8C
)−1 ∑

8

∑
C

¥I′8C ¥H8C (F.2)

= V +
(
#−1

∑
8

∑
C

¥I′8C ¥I8C
)−1

#−1
∑
8

∑
C

¥I′8C ¥48C (G.0.1)

Consider the probability limit of the term #−1 ∑
8

∑
C ¥I′8C ¥48C . Plugging in the definitions of ¥I8C

and ¥48C , the first term is

?;8<
∑
C

#−1
∑
8

B8C ¥G18C ¥D8C =
∑
C

E(B8C ¥G18C ¥D8C) = 0

This last equality is due to Assumption 3.2.1. The second term is

?;8<
∑
C

#−1
∑
8

(1 − B8C)ĉ′�<? ¥G
′
28C ¥D8C =

∑
C

E[(1 − B8C)c′ ¥G′28C ¥D8C] = 0

where the last equality again holds because of Assumption 3.2.1. The third term is

?;8<
∑
C

#−1
∑
8

(1 − B8C)ĉ′�<? ¥G
′
28C [ ¥A8C + ¥G28C (c − ĉ)]V1

=
∑
C

E[(1 − B8C)c′ ¥G′28C ¥A8C]V1 = 0

The second equality here holds because ĉ�<? is a consistent estimator of c, and the third holds due

to Assumption 3.2.2. The fourth term is

?;8<
∑
C

#−1
∑
8

¥G′28C ¥D8C =
∑
C

E( ¥G′28C ¥D8C) = 0

where the last equality holds due to Assumption 3.2.1. Finally,

?;8<
∑
C

#−1
∑
8

¥G′28C (1 − B8C) [ ¥A8C + ¥G28C (c − ĉ)]V1

=
∑
C

E[(1 − B8C) ¥G′28C ¥A8C]V1 = 0

as proved above.

Since ?;8< #−1 ∑
8

∑
C ¥I′8C ¥48C = 0, from (F.2), ?;8< V̂�<? = V.

Proof of Lemma 3.6.1
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(i) Start with E[<18 (V, c)] = 0. This will hold true if

E


B8?G18?B8C D̃8 (C)

G′28?B8C D̃8 (C)

 =

0

0


Now, we can write

E[B8?G18?B8C D̃8 (C)] = E(B8?G18?B8CD8C) − E
[
B8?G18?B8C)8 (C)−1

)∑
@=C+1

B8@D8@

]
= E(B8?G18?B8CD8C) −

)∑
@=C+1

E[B8?G18?B8C)8 (C)−1B8@D8@]

= E(B8?B8C) E(G18?D8C) −
)∑

@=C+1
E[B8?B8C)8 (C)−1B8@] E(G18?D8@)

= 0

The first equality follows from just the definition of D8 (C), the third follows from s8 |= (x8, u8, r8) and

the last one follows from Assumption 3.6.1. Similarly, E[G′28?B8C D̃8 (C)] = 0.

Moving on to E[<28 (V, c)] = 0, we need E[G′28?B8C Ã8C] = 0. We can write

E[G′28?B8C Ã8 (C)] = E(G
′
28?B8CA8C) − E

[
G′28?B8C)8 (C)

−1
)∑

@=C+1
B8@A8@

]
= E(G′28?B8CA8C) −

)∑
@=C+1

E

[
G′28?B8C)8 (C)

−1B8@A8@

]
= E(B8C) E(G′28?A8C) −

)∑
@=C+1

E[B8C)8 (C)−1B8@] E(G′28?A8@)

= 0

The third equality follows from s8 |= (x8, u8, r8) and the last one follows from Assumption 3.6.2.

Finally we consider the third set of moment conditions E[<28 (V, c)] = 0, for which we need
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E[G′28? (1 − B8C)Ĕ8C] = 0. We can write E[G′28? (1 − B8C)Ĕ8 (C)] equals

E[G′28? (1 − B8C)E8C] − E[G
′
28? (1 − B8C) () − C − )8 (C))

−1
)∑

@=C+1
(1 − B8@)E8@]

=E[G′28? (1 − B8C)E8C] −
)∑

@=C+1
E[G′28? (1 − B8C) () − C − )8 (C))

−1(1 − B8@)E8@]

=E(1 − B8C) E(G′28?E8C) −
)∑

@=C+1
E[(1 − B8C) () − C − )8 (C))−1(1 − B8@)] E(G′28?E8@)

=0

where the last equality follows from E(G′28?E8@) = 0 which follows from Assumptions 3.6.1 and

3.6.2.

(ii) Starting with E[<18 (V, c)] = 0, we can first write

E[B8?G18?B8C D̃8 (C)] = E(B8?G18?B8CD8C) −
)∑

@=C+1
E[B8?G18?B8C)8 (C)−1B8@D8@]

= E[E(B8?G18?B8CD8C |xC8 , s8)] −
)∑

@=C+1
E{E[B8?G18?B8C)8 (C)−1B8@D8@ |xC8 , s8]}

= E[B8?G18?B8C E(D8C |xC8 , s8)] −
)∑

@=C+1
E{B8?G18?B8C)8 (C)−1B8@ E[D8@ |xC8 , s8]}

= 0

The second equality follows from the LIE and the fourth follows from Assumption 3.6.1’. This

is because using the LIE, Assumption 3.6.1’ implies that E(D8C |xC8 , s8) = 0 for every C = 1, . . . , ) .

Moreover, since E(D8@ |x@8 , s8) = 0 for @ = C + 1, . . . , ) , using the LIE implies that E(D8@ |xC8 , s8) = 0

for any C < @. Similarly, E[G′28?B8C D̃8 (C)] = 0.

We can write a similar proof for E[<28 (V, c)] = 0 using the LIE and Assumption 3.6.2’. For
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E[<38 (V, c)] = 0, write

E[G′28? (1 − B8C)Ĕ8 (C)] = E[G
′
28? (1 − B8C)E8C] −

)∑
@=C+1

E[G′28? (1 − B8C) () − C − )8 (C))
−1(1 − B8@)E8@]

= E{E[G′28? (1 − B8C)E8C |G
C
28, s8]}

−
)∑

@=C+1
E{E[G′28? (1 − B8C) () − C − )8 (C))

−1(1 − B8@)E8@ |GC28, s8]}

= E{G′28? (1 − B8C) E[E8C |G
C
28, s8]}

−
)∑

@=C+1
E{G′28? (1 − B8C) () − C − )8 (C))

−1(1 − B8@) E[E8@ |GC28, s8]}

= 0

where the second equality follows from the LIE and the fourth from Assumptions 3.6.1’ and 3.6.2’.

This is because using the LIE and the fact that E8C = V1A8C +D8C , Assumptions 3.6.1’ and 3.6.2’ imply

that E(E8C |xC28, s8) = 0 for every C = 1, . . . , ) . Moreover, since E(E8@ |x@28, s8) = 0 for @ = C +1, . . . , ) ,

using the LIE implies that E(E8@ |xC28, s8) = 0 for any C < @.
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APPENDIX H

EXTENSIONS TO CHAPTER 3

H.1 Missing vectors

In the model of interest (3.2.1), we assumed that G18C is a scalar. We can extend this framework

to the case where G18C is a <×1 vector, all elements of which are missing at the same time. In other

words, if one element of G18C is missing for observation 8 at time C, then so are all the other elements

of G18C . This does not fundamentally change the analysis and the single missing data indicator B8C

is still sufficient to characterize missingness.

The population model is given by

H8C = G18CV1 + G28CV2 + 28 + D8C ≡ G8CV + 28 + D8C , C = 1, . . . , ), (H.1.1)

which is the same as equation (3.2.1) except G18C is a 1 × < vector now. The imputation equations

are a set of < equations (one for each element in G18C).

G18C = G28CΠ + 38 + A8C (H.1.2)

where Π is a : × < matrix and 38 is a 1 × < vector. The reduced form is

H8C = (G28CΠ + 38 + A8C)V1 + G28CV2 + 28 + D8C ≡ G28CW + ℎ8 + E8C , (H.1.3)

where W ≡ ΠV1 + V2, ℎ8 ≡ 38V1 + 28, and E8C ≡ A8CV1 + D8C .

Since all elements of G18C are missing at the same time, the definition of the missing data

indicator given in section 3 is still sufficient to characterize missingness. That is, B8C = 1 if G18C is

observed and 0 otherwise. Then the joint GMM is based on the following set of moment functions.

58 (V,Π) =


∑)
C=1 B8C ¥G

′
8C
( ¥H8C − ¥G18CV1 − ¥G28CV2)∑)

C=1 B8C ¥G
′
28C ⊗ ( ¥G18C − ¥G28CΠ)′∑)

C=1(1 − B8C) ¤G
′
28C

(
¤H8C − ¤G28C (V1Π + V2)

)

≡


518 (V,Π)

528 (V,Π)

538 (V,Π)


(H.1.4)
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This is a set of : (2 + <) + < moment conditions with : (1 + <) + < parameters to estimate. Thus

the number of over-identifying restrictions still equals : . Note that 528 (.) is still a set of exactly

identified moment functions, and hence Lemma 3.4.2 is still valid. The rest of the GMM estimation

proceeds the same way as in Section 4, except the matrices � and � are now based on the moment

conditions in (G.4).

This framework can further be extended to the case where the elements of G18C are not missing

at the same time. Although it leads to loss of some information in this case, it is still more efficient

than using the complete case analysis. For instance, consider the case where in equation (3.2.1),

G18C = [F8C F8,C−1], where F8C is a policy variable. If F8C contains missing values, then so does

F8,C−1. In this case, the missingness cannot be entirely characterized with a single missing data

indicator as F8C and F8,C−1 are missing in different time periods for observation 8. We define the

selection indicators as the following.

B18C =


1 if both F8C and F8,C−1 are observed C = 1, ..., )

0 otherwise

B28C =


1 if neither F8C nor F8,C−1 is observed C = 1, ..., )

0 otherwise

Thus, the complete cases are those time periods for individual 8 for which F8 is observed in

both the current and the previous period, and are characterized by B18C = 1. One option in this case

is to estimate V using the complete cases fixed effects, as discussed in Section 4.

However, we can also use the joint GMM by utilizing the observations for which B28C = 1. Note

that B28C does not characterize all the incomplete cases. It is equal to 1 only for the observations for

which neitherF8C norF8,C−1 is observed, and 0 for both the complete cases aswell as the observations

for which either F8C or F8,C−1 is observed. It thus does not make use of the observations for which

both B18C and B28C are 0.

We impose the following assumption on the population distribution.
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Assumption G.1 For every C = 1, . . . , ) , (i) E(B18C ¥G′8CD8C) = 0 (ii) E(B18C ¥G′28CA8C) = 0 (iii)

E(B28C ¤G′28CE8C) = 0

The joint GMM is then based on the following moment functions.

58 (V, c) =


∑)
C=1 B18C ¥G

′
8C
( ¥H8C − ¥G18CV1 − ¥G28CV2)∑)

C=1 B18C ¥G
′
28C ( ¥G18C − ¥G28Cc)∑)

C=1 B28C ¤G
′
28C

(
¤H8C − ¤G28C (V1c + V2)

)

≡


518 (V,Π)

528 (V,Π)

538 (V,Π)


(H.1.5)

where

¥G8C = G8C − (
)∑
@=1

B18C)−1
)∑
@=1

B18@G8@

¥H8C = H8C − (
)∑
@=1

B18C)−1
)∑
@=1

B18@H8@

¤G8C = G8C − (
)∑
@=1

B28C)−1
)∑
@=1

B28@G8@

¤H8C = H8C − (
)∑
@=1

B28C)−1
)∑
@=1

B28@H8@

That is, for 518 (.) and 528 (.), the variables are still time demeaned using the complete cases, but

for 538 (.), they are time demeaned using only the observations for which neither F8C nor F8,C−1 is

observed. Note that the moment functions 528 (.) imply that both F8C and F8,C−1 will be imputed

using the same covariates G28C

The rest of the GMM estimation proceeds in the usual fashion using the moment functions in

(G.5).

In order to utilize all the incomplete cases, we can further extend this framework by introducing

a separate selection indicator for F8C and F8,C−1 and writing a separate imputation equation (with

different sets of covariates) for each of these.
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H.2 Time varying unobserved heterogeneity

We can extend the basic model in Section 2 to allow for the unobserved heterogeneity to vary

over time. So instead of equation (3.2.1), our model of interest is now

H8C = G8CV + [C28 + D8C , C = 1, . . . , ) . (H.2.1)

The coefficients of 28 are now [C which are time-varying parameters to be estimated. We also allow

for time-varying heterogeneity in the imputation model. The new model is

G18C = G28Cc + ZC38 + A8C , C = 1, . . . , ) . (H.2.2)

The reduced form then becomes

H8C = G28CW + ℎ8C + E8C , C = 1, . . . , ) (H.2.3)

where W ≡ V1c + V2, ℎ8C ≡ V1ZC38 + [C28, and E8C ≡ V1A8C + D8C .1

The question we consider here is that under what assumptions will the joint GMM defined in

Section 3 consistently estimates V and c. Starting with equation (G.6), if we time demean using

the complete cases, we get

¥H8C = ¥G8CV + ¥[C28 + ¥D8C , C = 1, . . . , ), (H.2.4)

where ¥H8C , ¥G8C , and ¥D8C are defined in the same way as in Section 3. But now, this transformation

does not eliminate 28. Therefore, for the moment conditions E[ 518 (V)] = 0 in (3.4.10) to be valid,

we need for every C = 1, . . . , )

E[B8C ¥G′8C ( ¥[C28 + ¥D8C)] = 0. (H.2.5)

We know that for every C = 1, . . . , )

E(B8C ¥G′8C ¥D8C) = 0 (H.2.6)

under Assumption 3.3.2. We additionally need that for every C = 1, . . . , )

E(B8C ¥G′8C ¥[C28) = 0. (H.2.7)

1Note that the definitions of W and E8C are the same as those in Section 2. Only the unobserved heterogeneity has
changed.
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A sufficient condition for this to hold is that for every C = 1, . . . , )

E(28 | ¥G8C , B8) = 0. (H.2.8)

This says that at time C, the unobserved heterogeneity 28 is mean independent of the time deviated

G8C and selection in all time periods. This is clearly stronger than Assumption 3.3.2 which did not

put any restriction on the relationship between B8 and 28. However, it is weaker than assuming 28 is

mean independent of G8C . We are only assuming that it is mean independent of the time deviated

G8C , that is ¥G8C .

Similarly, when we time demean the new imputation model (G.7), we get

¥G18C = ¥G28Cc + ¥ZC38 + ¥A8C , C = 1, . . . , ) . (H.2.9)

For the moment conditions E[ 528 (c)] = 0 in (3.4.10) to be valid, we need that for every C = 1, . . . , )

E[B8C ¥G′28C ( ¥ZC38 + ¥A8C)] = 0 (H.2.10)

for which we need to assume that for every C = 1, . . . , )

E(38 | ¥G28C , B8) = 0 (H.2.11)

in addition to Assumption 3.3.2. Similarly, the time deviated reduced form is

¥H8C = ¥G28CW + ¥ℎ8C + ¥E8C , C = 1, . . . , ) . (H.2.12)

It is easy to see that given equation (G.17), Assumptions (G.13) and (G.16) along with Assumption

3.3.2 are sufficient for the moment conditions E[ 538 (V, c)] = 0 in (3.4.10) to be valid.
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