
ROBUST ALGORITHMS ON LOW-RANK APPROXIMATION AND THEIR
APPLICATIONS

By

Ningyu Sha

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science and Engineering – Doctor of Philosophy
Statistics – Dual Major

2021

ABSTRACT

ROBUST ALGORITHMS ON LOW-RANK APPROXIMATION AND THEIR
APPLICATIONS

By

Ningyu Sha

Low-rank approximation models have been widely developed in computer vision, image anal-

ysis, signal processing, web data analysis, bioinformatics, etc. Generally, we assume that the

intrinsic data lies in a low-dimensional subspace, and we need to extract the low-rank repre-

sentation given observations. There are many well-known works such as Principal Compo-

nent Analysis (PCA), factor analysis, least squares, etc. However, their performance may be

affected when dealing with outliers. Robust PCA (RPCA) plays an important role in such

cases, but RPCA based methods suffer from expensive computation costs. In this thesis,

we discussed how to improve the performance of RPCA in terms of both speed and accu-

racy. The comparison between convex and non-convex models is also discussed. Notably,

we propose a theory about matrix decomposition with unknown rank. A nonlinear RPCA

approach is also proposed, given the assumption that data lie on a manifold. Then, we take

examples from seismic event detection and 2D image denoising. The numerical experiments

show the robustness of our techniques and present speedup and higher recovery accuracy

compared with existing approaches.

It is usually common in practice that observed data has missing values. So, we need to

make a low-rank approximation based on incomplete data. Also, it may take a long time

for offline matrix completion since we need to collect all data first. The online version can

offer up-to-date results based on a continuous data stream. Online matrix completion has

applications in computer vision and web data analysis, especially in video image transmission

and recommendation systems. To be better applied on color images with three channels, we

introduced online quaternion matrix completion. We can get an updated result for every

new observed entry using stochastic gradient descent on the quaternion matrix.

Copyright by
NINGYU SHA

2021

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor and committee chair, Dr. Ming Yan. He is very

patient and knowledgeable. He describes a big picture about optimization for me. Whenever

I have any difficulty or questions, he is more than willing to help. I also want to thank my co-

advisor, Dr. Yuying Xie. He is humorous and warm-hearted. He gives me precious opinions

from statistics direction.

I would also like to thank my other committee members, Dr. Matthew Hirn, Dr. Yuehua

Cui, and Dr. Haolei Weng, for their knowledgeable feedback and kind suggestions for my

research life.

I want to thank our research partners, Dr. Youzuo Lin, Dr. Lei Shi, Dr. Rongrong Wang,

He Lye, and Shuyang Qin. Thank you for the brilliant work on our projects.

Also, I would like to thank my friends Yuning Hao, Hongnan Wang, Yun Song, Yuejiao

Sun, Lijiang Xu, Jieqian He, Binbin Huang, Hao Wang, Jialin Qu, Peide Li, Mi Hu, Ken

Lee, Runze Su, Yao Xuan and Yao Li for giving me huge support and companion during my

Ph.D.

I also want to thank the CMSE community, Lisa Roy, Heather Williams, Dr. Andrew

Christlieb, etc. They are always there to offer help. I also want to thank Erica Schmittdiel,

who stands with me through the darkest time.

Most importantly, I would like to thank my parents, Chunhua Sha and Hui Peng. Their

selfless love is continued support to make me a better person, always.

I also need to thank a lot of people, even if I have forgotten their names.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ALGORITHMS . x

CHAPTER 1 BACKGROUND . 1
1.1 Applications of robust low-rank optimization 1
1.2 Existing work on RPCA . 5
1.3 Overview of this thesis . 9

CHAPTER 2 ROBUST PRINCIPAL COMPONENT ANALYSIS FOR LOWRANK
MATRIX APPROXIMATION . 11

2.1 Introduction . 11
2.1.1 Notation . 14
2.1.2 Organization . 15

2.2 Proposed algorithms . 15
2.2.1 Forward-backward . 20

2.2.1.1 Convergence analysis . 21
2.2.2 An accelerated algorithm . 27

2.3 Numerical experiments . 27
2.3.1 Synthetic data . 28

2.3.1.1 Low-rank matrix recovery 29
2.3.1.2 Robustness of the model . 30
2.3.1.3 Low-rank matrix recovery with missing entries 31

2.3.2 Real image experiment . 32
2.4 Concluding remarks . 35

2.4.1 Nonconvex penalties on the singular values 35
2.4.2 Other regularization on the sparse component 36
2.4.3 Constrained problems . 36

CHAPTER 3 ROBUST PRINCIPAL COMPONENT ANALYSIS FOR SEISMIC
EVENT DETECTION . 38

3.1 Introduction . 38
3.2 Theory . 39

3.2.1 New algorithms with infimal convolution 41
3.2.1.1 Comparison between PGM and IC-PGM 42

3.3 Results . 43
3.3.1 Synthetic seismic data . 43
3.3.2 Field seismic data . 45

3.4 Conclusion . 47

v

CHAPTER 4 MANIFOLD DENOISING BY NONLINEAR ROBUST PRINCI-
PAL COMPONENT ANALYSIS . 49

4.1 Introduction . 49
4.2 Methodology . 50
4.3 Geometric explanation . 52
4.4 Optimization algorithm . 53
4.5 Numerical experiments . 54
4.6 Conclusion . 56

CHAPTER 5 ONLINE MATRIX COMPLETION WITH QUATERNION MATRIX 58
5.1 Introduction . 58
5.2 Introduction on Quaternion Matrices . 60

5.2.1 Quaternion Numbers . 60
5.2.2 Basic Properties . 61
5.2.3 Singular Value Decomposition . 62
5.2.4 Incoherence Condition . 63
5.2.5 Sampling Scheme . 63

5.3 Online Matrix Completion Algorithms and its Theoretical Analysis 63
5.4 Algorithms . 82

5.4.1 The Hermitian Case . 82
5.4.2 The General Case . 82

5.5 Numerical Experiments . 83
5.6 Conclusion . 85

BIBLIOGRAPHY . 87

vi

LIST OF TABLES

Table 2.1: Comparison of three RPCA algorithms. We compare the relative error
of their solutions to the true low-rank matrix and the number of itera-
tions. Both Alg. 2.1 and Alg. 2.2 have better performance than (Shen
et al., 2019) in terms of the relative error and the number of iterations.
Alg. 2.2 has the fewest iterations but the relative error could be large.
It is because the true low-rank matrix is not the optimal solution to the
optimization problem, and the trajectory of the iterations moves close to
L? before it approaches the optimal solution. 30

Table 2.2: Performance of Alg. 2.2 on low-rank matrix recovery with missing entries.
We change the level of sparsity in the sparse noise, standard deviation
of the Gaussian noise, and the ratio of missing entries. 32

Table 3.1: Comparison of six algorithms. IC-ADMM is the fastest, which is the
same as synthetic data. The function value for MCP is smaller because
of a different model. 46

vii

LIST OF FIGURES

Figure 1.1: Image from https://link.medium.com/bAUJGpEl5hb. Height and weight
are correlated. If visualized, these two vectors have an acute angle (left
figure). After using PCA, height and weight are combined as a new
feature ‘size’ (right figure). There is also ‘other’ information left that is
orthogonal to ‘size’. The short length means that it is less important. . . 2

Figure 1.2: Image from https://link.medium.com/BbeEPVIl5hb. PCA works well
for clean linear data. However, it works poorly for data with outliers. . . 3

Figure 1.3: An application of RPCA. Image from (Zhou et al., 2014). Top row: four
frames from a video. Middle row: video background, which is viewed as
a low-rank approximation. Bottom row: main objects which correspond
to sparse components. 4

Figure 1.4: Image from https://link.medium.com/ERplrHLl5hb. Rating system for
Netflix films. Each row represents each user while each column repre-
sents each film. Values from 1 to 5 are scores. 5

Figure 2.1: The contour map of the relative error to L? for different parameters. In
this experiment, we set r = 25 and s = 20. The upper bound of the
rank is set to be p = 30. 30

Figure 2.2: The relative error to the true low-rank matrix vs the rank p for Shen
et al.’s and Alg. 2.2. Alg. 2.2 is robust to p, as long as p is not smaller
than the true rank 25. 31

Figure 2.3: The numerical experiment on the ‘cameraman’ image. (A-C) show that
the proposed model performs better than Shen et al.’s both visually and
in terms of RE and PSNR. (D) compares the objective values vs time
for general SVD, Alg. 2.1, and Alg. 2.2. Here f ? is the value obtained by
Alg. 2.2 with more iterations. It shows the fast speed with the Gauss-
Newton approach and acceleration. With the Gauss-Newton approach,
the computation time for Alg. 2.1 is reduced to about 1/7 of the one
with standard SVD (from 65.11s to 8.43s). The accelerated Alg. 2.2
requires 5.2s, though the number of iterations is reduced from 3194 to 360. 33

viii

https://link.medium.com/bAUJGpEl5hb
https://link.medium.com/BbeEPVIl5hb
https://link.medium.com/ERplrHLl5hb

Figure 2.4: The numerical experiment on the ‘Barbara’ image. (A-C) show that the
proposed model performs better than Shen et al.’s both visually and in
terms of RE and PSNR. (D) compares the objective values vs time for
general SVD, Alg. 2.1, and Alg. 2.2. Here f ? is the value obtained by
Alg. 2.2 with more iterations. It shows the fast speed with the Gauss-
Newton approach and acceleration. With the Gauss-Newton approach,
the computation time for Alg. 2.1 is reduced to less than 1/3 of the one
with standard SVD (from 148.6s to 43.7s). The accelerated Alg. 2.2
requires 23.3s, though the number of iterations is reduced from 3210 to 300. 34

Figure 3.1: Comparison of recovered results on synthetic seismic data with 500 re-
ceivers and 1000 measurements at each receiver. (a) simulated clean
data. (b) noisy data (-26.2 dB). (c) recovered data by L1 (13.4 dB).
(d) recovered data by MCP (13.9 dB). (e) recovered sparse noise by L1.
(f) recovered sparse noise by MCP. (g) the difference between the clean
data and the recovered one by L1. (h) the difference between the clean
data and the recovered one by L1. (e-h) zoom-in over receivers 150-350
and measurements 1-400. 44

Figure 3.2: Comparison of five algorithms (PGM, FISTA, IC-PGM, IC-FISTA, IC-
ADMM) for the convex RPCA on synthetic data. IC-ADMM has the
fastest convergence rate and smallest computational time. IC technique
improves the performance of PGM and FISTA significantly. 45

Figure 3.3: Noisy data generated in Oklahoma. 46

Figure 3.4: Recovered results of the real data with two models. 47

Figure 4.1: NRPCA applied to the noisy Swiss roll data set. X̃ − Ŝ is the result
after subtracting the estimated sparse noise via NRPCA with T = 1;
“X̃ − Ŝ with one neighbor update” is that with T = 2, i.e., patches
are reassigned once; X̂ is the denoised data obtained via NRPCA with
T = 2; “Patch-wise Robust PCA” refers to the ad-hoc application of the
vanilla RPCA to each local patch independently, whose performance is
clearly worse than the proposed joint-recovery formulation. 56

Figure 4.2: Laplacian eigenmaps and Isomap results for the original and the NR-
PCA denoised digits 4 and 9 from the MNIST dataset. 57

Figure 5.1: A movie rating system. For a given d1×d2 low-rank matrix with missing
entries, it can be factorized by a d1 × k user matrix and a k × d2 item
matrix where k is the rank of the original matrix. 59

ix

Figure 5.2: Loss function value versus number of iterations for the small Hermitian
case. The stepsize is 3e−5. Within 40000 iterations, the value decreases
from nearly 100 to 10−6. The loss function value tends to keep decreasing
after these 40000 iterations. 84

Figure 5.3: Loss function value versus number of iterations for the small general
quaternion matrix case. The stepsize is tuned to be 1e−4. Within 5000
iterations, the value decreases from around 100 to 10−4. The loss func-
tion value tends to keep decreasing after these 5000 iterations. 85

Figure 5.4: Online image recovery result after 10000 iterations. We randomly sam-
pled 1000o observations from (a). We can see that the result for recov-
ered image (b) is not good. We expect that the difference between (a)
and (b) can be as small as possible. 86

Figure 5.5: Loss function value versus number of iterations for the real color image.
The initial stepsize is tuned to be 1e−5. For every 300 iterations, we
multiply the stepsize by 0.95. The loss function value decreases from
around 170 to almost 45. At the beginning, the loss function value
decreases the most, and it tends to keep decreasing after these 10000
iterations. 86

x

LIST OF ALGORITHMS

2.1 RPCA for low rank matrix approximation . 21

2.2 Accelerated RPCA with nonmonotone APG 28

4.1 Nonlinear RPCA . 55

5.1 Online learning algorithm for the Hermitian matrix M 82

5.2 Online learning algorithm for general M (theoretical version) 83

5.3 Online learning algorithm for general M (practical version) 83

xi

CHAPTER 1

BACKGROUND

1.1 Applications of robust low-rank optimization

Many high-dimensional data points can be represented as points in a low-dimensional sub-

space of a high-dimensional space, and principal component analysis (PCA) is a popular tool

to find the low-dimensional subspace. Here, we use a simple example to explain the intuition

behind PCA. Height and weight are two measurements (features) for football players, and

we say that the original dimension of these measurements is two. That is, the data for each

player lies in a two-dimensional space. Obviously, there is a positive correlation between

these two measurements. If one person is taller than another one, he/she is usually heavier

too. More specifically, these two measurements are linearly correlated, as shown in Fig. 1.1.

In this example, we can use one new variable named size to approximately describe the

combination of height and weight at a high accuracy. In fact, it is also applied to the size of

clothes.

Generally, correlations within features happen when there are more than two features.

Mathematically, we say that these features are not linearly independent. PCA finds a lin-

ear transform such that the new features after the transformation are linearly independent.

In addition, PCA finds the most important features that represent the most information

(variance) in the dataset. For example, the first principal component explains the most

variance in the dataset, and the second principal component is the vector that is orthogo-

nal to the first principal component and explains the second most variance in the dataset.

PCA can be calculated from the singular value decomposition (SVD) of the data matrix,

and the singular values represent the variance in the data corresponding to the principal

components, which are corresponding right eigenvectors. Then, we keep the principal com-

ponents corresponding to the largest singular values to represent most information using a

1

Figure 1.1: Image from https://link.medium.com/bAUJGpEl5hb. Height and weight are
correlated. If visualized, these two vectors have an acute angle (left figure). After using
PCA, height and weight are combined as a new feature ‘size’ (right figure). There is also
‘other’ information left that is orthogonal to ‘size’. The short length means that it is less
important.

small number of features. PCA has been applied to many different areas, such as computer

vision, bioinformatics, finance, psychology, etc.

PCA removes the principal components corresponding to smallest singular values because

the data points with small random distortions are not exactly on the low-dimensional space.

The small random distortions are equivalent to adding small random values to all singular

values. Therefore, by setting small singular values as zero, PCA can reduce the effect of

these distortions. In the left figure of Figure 1.2, with the small distortions, PCA is able

to get the first principal component, shown in red, and it is very close to the true direction

shown in blue. However, in many real cases, there are outliers accompanied with the data

set. In statistics, an outlier is a data point that differs significantly from other observations.

It can be caused by equipment error or the population that has a heavy-tailed distribution.

Outliers usually have large distance from normal data points, but the total number of outliers

is much smaller than the total number of data points. In the case with outliers, PCA may

not perform well. For example, in the right figure of Figure 1.2, there are four outliers, and

PCA will give the red direction, which is very different from the true blue one.

2

https://link.medium.com/bAUJGpEl5hb

(a) Yellow dots are sampled from one
dimensional subspace (blue line) cor-
rupted by Gaussian noise. The red line
is the output of PCA. It can reserve
most variance.

(b) Yellow dots are sampled from one
dimensional subspace (blue line) cor-
rupted by large sparse outliers. PCA is
affected by outliers and can not capture
the data well.

Figure 1.2: Image from https://link.medium.com/BbeEPVIl5hb. PCA works well for clean
linear data. However, it works poorly for data with outliers.

Standard PCA can not deal with outliers because it is based on the assumption that

the additional noise follows a Gaussian distribution. However, outliers follow heavy-tail

distributions and a different model is required. Robust PCA (RPCA) is one approach to

remove the outliers while preserving the low-dimensional structure. This approach has been

successfully applied in a wide range of areas, including computer vision (De la Torre and

Black, 2001), image processing (Liu et al., 2012; Elhamifar and Vidal, 2013), dimensionality

reduction (Cunningham and Ghahramani, 2015), bioinformatics data analysis (Da Costa

et al., 2009), and web data and services (Koren, 2009). More specifically, RPCA has achieved

great success in video surveillance and face recognition (Candès et al., 2011; Bouwmans and

Zahzah, 2014). Also, it has been proved by Candès et al. (2011) that the low-rank part can be

a good approximation of the original complete matrix if the data satisfies some assumptions.

RPCA assumes that we observe all entries of the full noisy matrix. Compared with

standard PCA, RPCA utilizes the difference between the low-dimensional data structure

and outliers. Also, different from two-stage methods, which first detect the outliers and

remove them, RPCA describes the outliers as a sparse matrix and decompose the noisy

3

https://link.medium.com/BbeEPVIl5hb

matrix into the sum of two or three matrices, with or without the Gaussian noise. In some

applications, the outliers contain useful information. For example, in video surveillance, the

low-rank part preserves the stationary background, whereas the sparse part can capture a

moving object or person in the foreground. See Figure 1.3 for an example with four frames

in a video.

Figure 1.3: An application of RPCA. Image from (Zhou et al., 2014). Top row: four frames
from a video. Middle row: video background, which is viewed as a low-rank approximation.
Bottom row: main objects which correspond to sparse components.

RPCA separates a data matrix into the sum of a low-rank matrix, a sparse matrix

(outliers), and a small noise matrix (Gaussian noise). If there is no Gaussian distortions, the

small noise matrix is just a zero matrix. However, in practice, we are often confronted with

such a situation where the collected data is incomplete. The good thing is that a low-rank

matrix can be recovered from only a few entries of the matrix. For example, an m × n

rank-one matrix can be recovered by one row and one column. When the given noisy matrix

has missing entries, it is a low-rank matrix completion problem, that is, we will remove the

outliers and recover the whole low-rank matrix. For example, in a film rating system, as

shown in Figure 1.4, each user rates the films they watched. However, this data matrix tends

4

to be incomplete because people cannot watch all film showed in the rating website. Matrix

completion techniques can predict the rates of each user for unwatched films and promote

to the user the films they may like but did not watch.

Figure 1.4: Image from https://link.medium.com/ERplrHLl5hb. Rating system for Netflix
films. Each row represents each user while each column represents each film. Values from 1
to 5 are scores.

1.2 Existing work on RPCA

Assuming that the true data points lie on a low-dimensional subspace, we use a matrix

D ∈ Rn×p to represent the observed noisy data, where n is the number of samples and p is

the dimension of each sample. We also assume that the intrinsic dimension of the data is

k < p. Therefore, in the linear case, k is also the rank of the matrix L0 consisting of the

true samples. In this case, we have the following model,

D = L0 + N0, (1.1)

5

https://link.medium.com/ERplrHLl5hb

where L0 is a low-rank matrix with rank k and N0 is a small perturbation matrix (Gaussian

noise). Then the classical PCA solves the following problem

minimize
L

‖D− L‖2
F

subject to rank(L) = k.

The classical PCA assumes that the noise follows a Gaussian distribution. When only

some components of the matrix are affected by large noise and the distribution of the noise

is unknown, we consider RPCA, which assumes that

D = L0 + S0,

with S0 being a sparse matrix. Because we do not have any knowledge about the distribution

of the noise, the components can be considered as damaged and should be removed. If we

know the locations, then we can remove them and fill-in new values for those locations.

However, the locations are not given, and we have to find the sparse matrix S0 and the

low-rank matrix L0 together using RPCA algorithms.

RPCA is an inverse problem to recover L and S from the matrix D, which can be realized

via solving the idealized nonconvex problem

minimize
L,S

rank(L) + λ‖S‖0, subject to L + S = D, (1.2)

where λ is a parameter to balance the two objectives and ‖S‖0 counts the number of non-

zero entries in S. However, this problem is NP-hard in general (Amaldi and Kann, 1998).

Therefore, much attention is focused on the following convex relaxation:

minimize
L,S

‖L‖∗ + λ‖S‖1, subject to L + S = D. (1.3)

Here ‖ · ‖∗ and ‖ · ‖1 denote the nuclear norm and `1−norm of a matrix, respectively. This

is called principal component pursuit (PCP) (Zhou et al., 2010a).

When Gaussian noise is also involved, we consider

D = L + S + N, (1.4)

6

where N is the Gaussian noise. We can set the noise level to be ε and use the Frobenius

norm to measure the Gaussian noise. A relaxed version of PCP is defined as

minimize
L,S

‖L‖∗ + λ‖S‖1, subject to ‖L + S−D‖2
F ≤ ε. (1.5)

This constrained optimization problem is also equivalent to the following unconstrained one

minimize
L,S

1

2µ
‖L + S−D‖2

F + ‖L‖∗ + λ‖S‖1. (1.6)

Classical optimization algorithms such as proximal gradient method (PGM), accelerated

PGM, and alternating direction method of multipliers (ADMM) have been used to solve the

unconstraned problem (1.6). Let’s briefly go through these algorithms. For PGM, we can

view the loss function as two parts corresponding with L and S respectively. Then the PGM

takes two steps. The first step is the gradient descent, and the second step is to calculate

the proximal functions. One iteration is described as

L̂k = Lk − t

µ
(Lk + Sk −D),

Ŝk = Sk − t

µ
(Lk + Sk −D),

Lk+1 = arg min
L

t‖L‖∗ +
1

2
‖L− L̂k‖2

F ,

Sk+1 = arg min
S

tλ‖S‖1 +
1

2
‖S− Ŝk‖2

F .

(1.7)

To solve the second proximal function, we can directly use soft-thresholding on each entry

of the matrix. To solve the first proximal function, we need to use SVD to calculate the

singular values and do the soft-thresholding on the singular values. We can set the initial

condition L = 0 and S = 0.

As for accelerated proximal gradient method, we use FISTA (Beck and Teboulle, 2009b)

as one example. The main change compared with the original PGM is that the shrinkage

operator is not used on the previous point L̂k but on the linear combination of the previous

two points L̂k, L̂k−1 as follows:

L̄k = Lk +
θk−1 − 1

θk
(Lk − Lk−1) (1.8)

7

where θk+1 =
1+
√

1+4θ2k
2

. Generally, it updates variables starting with θ−1 = θ0 = 1. It has

been proved that FISTA has improved the convergence rate from O(1/k) to O(1/k2) for

general convex problems.

When it goes to ADMM, we need to convert the original problem to a constrained form

minimize
Z,L,S

1

2µ
‖Z‖2

F + λ‖S‖1 + ‖L‖∗, subject to Z + L + S = D. (1.9)

Unfortunately, its convergence for general three blocks has not been proved to converge. But

in practice, it usually works very well.

In order to solve (1.9), we need to establish the augmented Lagrangian function

Lβ(Z,S,L,Q) =
1

2µ
‖Z‖2

F +λ‖S‖1+‖L‖∗−β〈Q,Z+S+L−D〉+ β

2
‖Z+S+L−D‖2

F . (1.10)

Alternatively, we consider

L
′

β(Z,S,L,Q) =
1

2µ
‖Z‖2

F + λ‖S‖1 + ‖L‖∗ +
β

2
‖Z + S + L−D−Q‖2

F , (1.11)

with L′β(Z,S,L,Q) = Lβ(Z,S,L,Q) + β
2
‖Q‖2

F if we want to get the optimal variables Z, S

and L, respectively. Then we minimize L
′

β alternatingly.

Zk+1 := arg min
Z

L
′

β(Z,Sk,Lk,Qk);

Sk+1 := arg min
S

L
′

β(Zk+1,S,Lk,Qk);

Lk+1 := arg min
L

L
′

β(Zk+1,Sk+1,Lk,Qk);

Qk+1 := Qk − (Zk+1 + Sk+1 + Lk+1 −D).

(1.12)

More specifically,

Zk+1 := arg min
Z

1

2µ
‖Z‖2

F +
β

2
‖Z + Sk + Lk −D−Qk‖2

F ;

Sk+1 := arg min
S

λ‖S‖1 +
β

2
‖Zk+1 + S + Lk −D−Qk‖2

F ;

Lk+1 := arg min
S
‖L‖∗ +

β

2
‖Zk+1 + Sk+1 + L−D−Qk‖2

F ;

Qk+1 := Qk − (Zk+1 + Sk+1 + Lk+1 −D).

(1.13)

8

All these approaches need to find the proximal of the nuclear norm, which requires SVD.

When the matrix size is large, the SVD computation is very expensive and dominates other

computation (Trefethen and Bau III, 1997).

1.3 Overview of this thesis

We briefly introduce the following chapters in this thesis. In Chapter 2, we study the

theoretical parts of low-rank approximation. There are mainly two types of algorithms for

RPCA. The first type of algorithm applies regularization terms on the singular values of

a matrix to obtain the low-rank matrix. However, calculating singular values can be very

expensive for large matrices. The second type of algorithm replaces the low-rank matrix as

the multiplication of two smaller matrices. They are faster than the first type because no

SVD is required. However, the rank of the low-rank matrix is required, and an accurate rank

estimation is required to obtain a reasonable solution. In this chapter, we propose algorithms

that combine both types. Our proposed algorithms require an upper bound of the rank and

SVD on small matrices. First, they are faster than the first type because the cost of SVD on

small matrices is negligible. Second, they are more robust than the second type because an

upper bound of the rank instead of the rank is required. Numerical experiments show the

good performance of our proposed algorithms.

In Chapter 3, we take examples from seismic data. Seismic events are usually buried

in noise. Our goal is to discover the underlying signal from noise. RPCA based seismic

denoising approaches yield promising results in separating useful seismic events from noise.

However, current RPCA-based methods suffer from expensive computational costs, which

hinders their wide applications in seismic data denoising and preprocessing. In this work,

we develop a cost-effective denoising technique based on RPCA. Instead of solving for the

clean data and noise simultaneously, we alternatively update them. This approach admits a

large stepsize and increases the speed. In addition, we improve the model by incorporating

a nonconvex term. To verify the effectiveness of our technique, we applied our denoising

9

technique to both synthetic and field reflection seismic data. From the numerical results,

we observe that our denoising methods not only produce comparable or better denoising

results but also yield efficient computational cost. Through comparison to other RPCA-

based denoising methods, our method is at least 4-10x faster.

In Chapter 4, we extend RPCA to nonlinear manifolds. Suppose that the data matrix

contains a sparse component and a component drawn from some low-dimensional manifold.

Is it possible to separate both components by using the low dimensionality assumption of

the manifold? Is there a benefit to treat the manifold as a whole as opposed to treating

each local region individually? We answer these two questions affirmatively by proposing an

optimization framework that separates these two components from noisy data. The efficacy

of the proposed method is demonstrated on both synthetic and real dataset.

The three chapters consider offline algorithms, in which we have access to all data before

the algorithm is applied. In the last chapter, we applied low-rank approximation on online

matrix completion. Online optimization is more and more useful nowadays in data science

and machine learning areas. As we know, for offline setting, we need to get all observations

first and use all information to train the model. On the other side, online algorithms aim

to make decision sequentially based on sequentially sampled data. For example, in many

applications, like film recommendation systems, the user will give one rating for a film each

time after watching. In this case, we can only get one observation each time. There are

many work that aims to develop algorithms which can give updated result after every new

observed entry. In Chapter 5, we consider the completion of a quaternion matrix, whose

entries are quaternion numbers. Each quaternion number has one real number and three

imaginary number. Therefore, it can be applied to color image with or without depth. We

develop and analyze an online matrix completion algorithm for quaternion matrices. We

want to find a decomposition of the matrix such that the matrix is a product of two small

matrices, In this algorithm, after we receive an entry from the matrix, we update one row

and one one column of the two small matrices, respectively.

10

CHAPTER 2

ROBUST PRINCIPAL COMPONENT ANALYSIS FOR LOW RANK
MATRIX APPROXIMATION

2.1 Introduction

Robust principal component analysis (RPCA) decomposes a data matrix into a low-rank

part and a sparse part. It has applications in a wide range of areas, including computer

vision (De la Torre and Black, 2001), image processing (Liu et al., 2012; Elhamifar and Vidal,

2013), dimensionality reduction (Cunningham and Ghahramani, 2015), and bioinformatics

data analysis (Da Costa et al., 2009). More specifically, the RPCA model has achieved

great success in video surveillance and face recognition (Candès et al., 2011; Bouwmans

and Zahzah, 2014). For example, in video surveillance, the low-rank part preserves the

stationary background, whereas the sparse part can capture a moving object or person in

the foreground.

We first assume that the data matrix D is obtained by the sum of a low-rank matrix and

a spare matrix. That is

D = L + S,

where L is a low-rank matrix and S is a sparse matrix, which has only a few nonzero

components. RPCA is an inverse problem to recover L and S from the matrix D, which can

be realized via solving the idealized nonconvex problem

minimize
L,S

rank(L) + λ‖S‖0, subject to L + S = D, (2.1)

where λ is a parameter to balance the two objectives and ‖S‖0 counts the number of non-

zero entries in S. However, this problem is NP-hard in general (Amaldi and Kann, 1998).

Therefore, much attention is focused on the following convex relaxation

minimize
L,S

‖L‖∗ + λ‖S‖1, subject to L + S = D. (2.2)

11

Here ‖ · ‖∗ and ‖ · ‖1 denote the nuclear norm and `1−norm of a matrix, respectively. It is

shown that under mild conditions, the convex model (2.2) can exactly recover the low-rank

and sparse parts with high probabilities (Candès et al., 2011). When additional Gaussian

noise is considered, we can set the noise level to be ε and use the Frobenius norm ‖ · ‖F to

measure the reconstruction error. Then, the problem becomes

minimize
L,S

‖L‖∗ + λ‖S‖1, subject to ‖L + S−D‖2
F ≤ ε. (2.3)

Then, this constrained optimization problem is equivalent to the unconstrained problem

minimize
L,S

1

2µ
‖L + S−D‖2

F + ‖L‖∗ + λ‖S‖1 (2.4)

with a trade-off parameter µ. There is a correspondence between the two parameters ε and

µ in (2.3) and (2.4), but the explicit expression does not exist. In this chapter, we will focus

on the unconstrained problem (2.4), and the technique introduced in this chapter can be

applied to the convex models (2.2) and (2.3). Please see Section 2.4 for more details.

There are many existing approaches for solving (2.4) including the augmented Lagrange

method (Lin et al., 2010; Bouwmans and Zahzah, 2014; Wright et al., 2009). Some examples

are proximal gradient method for (L,S), alternating minimization for L and S (Shen et al.,

2019), proximal gradient method for L after S is eliminated (Sha et al., 2019), alternating

direction method of multipliers (ADMM) (Yuan and Yang, 2009; Tao and Yuan, 2011). All

these approaches need to find the proximal of the nuclear norm, which require the singular

value decomposition (SVD). When the matrix size is large, the SVD computation is very

expensive and dominates all the computation (Trefethen and Bau III, 1997).

Alternative approaches for RPCA use matrix decomposition (Wen et al., 2012) and do

not require SVD. Assuming that the rank of L is known as p, we can decompose it as

L = XY>,

with X ∈ Rm×p and Y ∈ Rn×p. Then the following nonconvex optimization problem

minimize
X,Y,S

1

2
‖XY> + S−D‖2

F + λ‖S‖1, (2.5)

12

is considered. There are infinite many optimal solutions for this problem, since for any

invertable matrix A ∈ Rp×p, (X,Y,S) and (XA−1,YA>,S) have the same function value.

In fact, for any matrix L with rank no greater than p, we can find L = XY> andY>Y = Ip×p.

Therefore, we can have an additional constraint Y>Y = Ip×p. The resulting problem still

has infinite many optimal solutions, since for any orthogonal matrix A ∈ Rp×p, (X,Y,S)

and (XA,YA,S) have the same function value. Though (X,Y) are not unique, the low-rank

matrix L that we need is unique at probability one. This resulting problem was discussed

in (Shen et al., 2019), and an efficient algorithm by alternatively minimizing XY> and S

is provided. In this algorithm, a Gauss-Newton algorithm is applied to update XY> and

increase the speed.

Though the matrix decomposition problem is fast to solve, it is nonconvex and requires

an accurate estimation of the rank of L. Fig. 2.2 in Section 2.3.1.2 demonstrates that a

good estimation of the rank is critical. However, in most scenarios, we do not have the exact

rank of L, but we can have an upper bound of the true rank. Therefore, we can combine

the matrix decomposition and the nuclear norm minimization to have the benefits of both

problems. The problem we consider in this chapter is

minimize
L,S

1

2
‖L + S−D‖2

F + µ‖L‖∗ + λ‖S‖1, subject to rank(L) ≤ p. (2.6)

When µ = 0, the problem (2.6) is equivalent to (2.5). In addition, we consider the following

more general problem

minimize
L,S

1

2
‖A(L) + S−D‖2

F + µ‖L‖∗ + λ‖S‖1, subject to rank(L) ≤ p. (2.7)

where D is the measurement of A(L) contaminated with both Gaussian noise and a sparse

component. Here A is a bounded linear operator that describes how the measurements are

calculated. For example, in robust matrix completion, we let A be the restriction operator

on the given components of the matrix L.

Note that the alternating minimization algorithm in (Shen et al., 2019) can not be applied

to this general problem because the subproblem for L can no longer be solved efficiently by

13

the Gauss-Newton method. We will show the equivalency of the alternating minimization

algorithm in (Shen et al., 2019) as a proximal gradient method applied to a problem with L

only. Then the subproblem of L in our general problem (2.7) can still be solved efficiently

with the Gauss-Newton method. Please see more details in Section 2.2.

For simplicity, we use the nuclear norm and `1−norm for the low-rank and sparse matrices,

respectively. The purpose of this chapter is to introduce a fast algorithm to solve a type

of RPCA algorithm, while the comparison of different penalties is out of the scopes of this

chapter. The contributions of this chapter are:

• We propose a new model for RPCA, which combines the nuclear norm minimization

and the matrix decomposition. The matrix decomposition brings efficient algorithms,

and the nuclear norm miminization on a smaller matrix removes the requirement of

the rank of the low-rank matrix. Note that the nuclear norm minimization can be

replaced by other nonconvex penalties, and the results in this chapter are still valid.

• We develop efficient algorithms to solve this problem and show its convergence.

2.1.1 Notation

Throughout this chapter, matrices are denoted by bold capital letters (e.g., A), and operators

are denoted by calligraphic letters (e.g., A). In particular, I denotes the identity matrix, 0

denotes the zero matrix (all entries equal to zero), and I denotes the identity operator. If

there is potential for confusion, we indicate the dimension of the matrix with subscripts. For

a matrix A, A> represents its transpose and A(:, j : k) denotes the matrix composed by the

columns of A indexing from j to k. Let Ai,j be the (i, j) entry of A. The `1−norm of A

is given by ‖A‖1 =
∑

i,j |Ai,j|. Denote the ith singular value of A by σi(A). The nuclear

norm of A is given by ‖A‖∗ =
∑

i σi(A). We will use ∂‖ · ‖1 and ∂‖ · ‖∗ to denote the

subgradients of the `1−norm and nuclear norm, respectively. The linear space of all m× n

real matrices is denoted by Rm×n. For A,B ∈ Rm×n, the inner product of A,B is defined by

14

〈A,B〉 = Tr(A>B), which induces the Frobenius norm ‖A‖F =
√

Tr(A>A) =
√∑

i σ
2
i (A).

Let A be a linear bounded operator on Rm×n. The operator norm of A is given by ‖A‖ =

sup{‖A(A)‖F : A ∈ Rm×n, ‖A‖F = 1}. The adjoint operator of A denoted by A∗ is also

linear and bounded on Rm×n such that 〈A(A),B〉 = 〈A,A∗(B)〉. The notation � is used to

denote the component-wise multiplication. Additionally, for a function f : R→ R, without

further reference, f acting on a matrix A ∈ Rm×n specifies that f is evaluated on each entry

of A, i.e., f(A) ∈ Rm×n with f(A)i,j = f(Ai,j). For example, if f(x) = |x| − λ, we can

denote f(A) ∈ Rm×n by |A| − λ with (|A| − λ)i,j = |Ai,j| − λ.

2.1.2 Organization

The rest of the chapter is organized as follows. We introduce our proposed algorithms and

show their convergence in Section 2.2. Then we conduct numerical experiments to compare

the performance of our proposed algorithms with existing approaches in Section 2.3. In

Section 2.4, we introduce some potential extension from this chapter. We end this chapter

with a short conclusion.

2.2 Proposed algorithms

The problem (2.6) is nonconvex because of the constraint rank(L) ≤ p. It has several

equivalent formulations. E.g., it is equivalent to the following nonconvex weighted nuclear

norm minimization problem:

minimize
L,S

1

2
‖L + S−D‖2

F + µ

p∑
i=1

σi(L) + C

min(m,n)∑
i=p+1

σi(L) + λ‖S‖1,

where C is a sufficiently large number such that the optimal L has at most p nonzero singular

values. However, this formulation also requires the singular value decomposition of an m×n

matrix in each iteration, which is expensive when m and n are large. We consider another

equivalent problem with matrix decomposition in the following theorem.

15

Theorem 2.2.1. Problem (2.6) is equivalent to

minimize
X,Y,S

1

2
‖XY> + S−D‖2

F + µ‖X‖∗ + λ‖S‖1, subject to Y>Y = Ip×p. (2.8)

More specifically, if (X,Y,S) is an optimal solution to (2.8), then (XY>,S) is an optimal

solution to (2.6). If (L,S) is an optimal solution to (2.6) and we have the decomposition

L = XY> with Y>Y = Ip×p, then (X,Y,S) is an optimal solution to (2.8).

Proof. For any matrix L ∈ Rm×n with rank no greater than p, we can have the decomposition

L = XY>,

with Y>Y = Ip×p. This decomposition is not unique, and one decomposition can be easily

obtained from the compact SVD of L. Let L = UpΣpV
>
p be the SVD of L with a square

p× p matrix Σp, we have V>p Vp = Ip×p. Thus, problem (2.6) is equivalent to

minimize
X,Y,S

1

2
‖XY> + S−D‖2

F + µ‖XY>‖∗ + λ‖S‖1, subject to Y>Y = Ip×p.

For any X ∈ Rm×p, let X = UΣV> be its SVD with U ∈ Rm×p and V ∈ Rp×p. We have

XY> = UΣV>Y> = UΣ(YV)>.

Since (YV)>(YV) = V>Y>YV = V>V = Ip×p. The SVD of XY> is UΣ(YV)>, and

‖XY>‖∗ =
∑p

i=1 Σii = ‖X‖∗. Thus, problem (2.6) is equivalent to (2.8).

Next, we consider problem (2.8) with S fixed. When S is fixed, it becomes a problem of

L = XY>, and solving this problem is to find the proximal operator of the corresponding

nonconvex weighted nuclear norm, which is denoted as

minimize
L

1

2
‖L−M‖2

F + µ‖L‖∗, subject to rank(L) ≤ p, (2.9)

or equivalently

minimize
X,Y

1

2
‖XY> −M‖2

F + µ‖X‖∗, subject to Y>Y = Ip×p, (2.10)

where M = D− S.

16

Theorem 2.2.2. Let q = min(m,n). Problem (2.9) can be solved in two steps:

1. Find the compact SVD of M = UΣV>, with Σ = diag(σ1(M), · · · , σq(M)) satisfying

σ1(M) ≥ σ2(M) ≥ · · · ≥ σq(M);

2. Construct a diagonal matrix Σ̂µ ∈ Rp×p with (Σ̂µ)ii = max(Σii−µ, 0), then one solution

of (2.9) is U(:, 1 : p)Σ̂µV(:, 1 : p)>.

In addition, for any orthogonal matrix A ∈ Rp×p, (U(:, 1 : p)Σ̂µA,V(:, 1 : p)A) is an optimal

solution of (2.10).

Proof. Given any L ∈ Rm×n with rank(L) ≤ p, let σ1, σ2, · · · , σq be its singular values in

the decreasing order such that σp+1 = · · · = σq = 0. Note that the main diagonal entries of

Σ are the singular values of M. According to the von-Neumann trace inequality (Horn and

Johnson, 2012, Theorem 7.4.1.1), one can bound the matrix inner product by the singular

values, i.e., 〈L,M〉 ≤
∑q

i=1 σiΣii. Then we have

1

2
‖L−M‖2

F + µ‖L‖∗ =
1

2
‖L‖2

F +
1

2
‖M‖2

F − 〈L,M〉+ µ‖L‖∗

≥1

2

q∑
i=1

σ2
i +

1

2

q∑
i=1

Σ2
ii −

q∑
i=1

σiΣii + µ

q∑
i=1

σi

=
1

2

p∑
i=1

σ2
i +

1

2

q∑
i=1

Σ2
ii −

p∑
i=1

σiΣii + µ

p∑
i=1

σi,

(2.11)

where the equality is satisfied when L has a simultaneous SVD with M through U and V.

Therefore, the optimal L minimizing 1
2
‖L−M‖2

F +µ‖L‖∗ can be selected from the matrices

that have a simultaneous SVD with M through U and V. Then we can assume that the

optimal L satisfies

L = Udiag(σ1, · · · , σp, σp+1, · · · , σq)V> = U(:, 1 : p)diag(σ1, · · · , σp)V(:, 1 : p)>,

where the last equality holds because of the fact that σp+1 = · · · = σq = 0. Next, one can

construct an optimal L of the above form by letting σi = max(Σii − µ, 0) for i = 1, 2, · · · , p,

which minimizes the last equation in (2.11). Thus U(:, 1 : p)Σ̂µV(:, 1 : p)> minimizes the

objective function of (2.9) over all L ∈ Rm×n with rank no greater than p.

17

By the same argument in the proof of Theorem 2.2.1, we see that problem (2.10) is

equivalent to problem (2.9). Since for any orthogonal matrix A ∈ Rp×p, there hold

L = (U(:, 1 : p)Σ̂µA)(V(:, 1 : p)A)>

and

(V(:, 1 : p)A)>(V(:, 1 : p)A) = A>A = Ip×p.

Therefore, (U(:, 1 : p)Σ̂µA,V(:, 1 : p)A) is an optimal solution of problem (2.10).

The first step to solve problem (2.10) in the previous theorem requires the truncated

SVD of an m × n matrix M. Since we only need the first p (p < q = min(m,n)) singular

values, we use the Gauss-Newton algorithm to find (X,Y) alternatively. In this approach,

we require the SVD of a m × p matrix, which is much faster than the truncated SVD of a

m× n matrix when p is small. In addition, we use the previous X as the initial guess in the

next iteration to reduce the number of inner iterations for the Gauss-Newton algorithm.

Lemma 2.2.3. If the rank of M ∈ Rm×n is larger than p, problem (2.10) can be solved in

the following three steps:

1. Find X̂ ∈ Rm×p (p < m) by solving the following optimization problem

minimize
X

1

2
‖XX> −MM>‖2

F ;

2. Y = M>X̂(X̂>X̂)−1;

3. Let X̂ = UpΣ̂A be its thin SVD with Σ̂ ∈ Rp×p and choose X as X = UpΣ̂µA with

(Σ̂µ)ii = max(0, Σ̂ii− µ) for i = 1, . . . , p. Then (X,Y) is a solution of problem (2.10).

Proof. Given any X ∈ Rm×p, let λ1, λ2, · · · , λm be the non-negative eigenvalues of the matrix

XX>. Since rank(X) ≤ p < m, we have λp+1 = · · · = λm = 0. Recall that the compact

SVD of M given in Theorem 2.2.2 is UΣV> with Σ ∈ Rq×q (here q = min(m,n)). Then

18

Σ2
11 ≥ Σ2

11 ≥ · · · ≥ Σ2
qq are the largest q eigenvalues of the matrix MM>, and if q < m, the

remaining eigenvalues of MM> are all zeros. Then we have

‖XX> −MM>‖2
F ≥

p∑
i=1

λ2
i +

q∑
i=1

Σ4
ii − 2

p∑
i=1

λiΣ
2
ii

=

p∑
i=1

(λi − Σ2
ii)

2 +

q∑
i=p+1

Σ4
ii ≥

q∑
i=p+1

Σ4
ii,

where the equality is satisfied when we choose X = U(:, 1 : p)diag(Σ11, · · · ,Σpp). Let

Σ̂ = diag(Σ11, · · · ,Σpp). The matrix Σ̂ is invertible as the rank of M is larger than p. Then

for any orthogonal matrix A ∈ Rp×p, X̂ = U(:, 1 : p)Σ̂A minimizes the objective function

1
2
‖XX> −MM>‖2

F .

After we find X̂ = U(:, 1 : p)Σ̂A for a certain orthogonal matrix A, we have

Y = M>X̂(X̂>X̂)−1 =VΣU>U(:, 1 : p)Σ̂A((U(:, 1 : p)Σ̂A)>U(:, 1 : p)Σ̂A)−1

=VΣU>U(:, 1 : p)Σ̂−1A

=V(:, 1 : p)Σ̂Σ̂−1A = V(:, 1 : p)A,

where the third equality is due to the fact that

ΣU>U(:, 1 : p) =

 Σ̂p×p

0(q−p)×p

 .
According to Theorem 2.2.2, (X̂,Y) is an optimal solution of problem (2.10) if µ = 0.

Note that X̂ = U(:, 1 : p)Σ̂A is the thin SVD with Σ̂ ∈ Rp×p. Then, the third step

gives X = U(:, 1 : p)Σ̂µA. Theorem 2.2.2 shows that (X,Y) is an optimal solution of

problem (2.10).

Remark: To find X̂ in the first step, we apply the Gauss-Newton algorithm from (Liu

et al., 2015), which is previously used for RPCA in (Shen et al., 2019). The iteration

is X ← MM>X(X>X)−1 − X((X>X)−1X>MM>X(X>X)−1 − I)/2. When p is small,

computing the inverse of X>X is fast. Though an iterative algorithm is required to solve this

subproblem at each outer iteration, we can use the output from the previous outer iteration

19

as the initial and the number of inner iterations is reduced significantly. Therefore, the

computational time can be reduced significantly, as shown in Section 2.3. In the numerical

experiments, the first Gauss-Newton algorithm requires several hundred iterations, while the

number for following Gauss-Newton algorithms reduces to less than ten.

From Theorem 2.2.2, we say that we solve the proximal operator of the nonconvex func-

tion ‖L‖∗ + ιrank(L)≤p(L) exactly. Here the indicator function is defined as

ιrank(L)≤p(L) =

 0, if rank(L) ≤ p;

+∞, otherwise.

With these theorems, we are ready to develop optimization algorithms for the general prob-

lem (2.7).

2.2.1 Forward-backward

First, we eliminate S, and it becomes the following problem with L only:

minimize
L:rank(L)≤p

min
S

1

2
‖A(L) + S−D‖2

F + λ‖S‖1 + µ‖L‖∗

= minimize
L:rank(L)≤p

min
S

{
1

2
‖A(L) + S−D‖2

F + λ‖S‖1

}
+ µ‖L‖∗

= minimize
L:rank(L)≤p

fλ(D−A(L)) + µ‖L‖∗.

(2.12)

Here fλ is the Moreau envelope of λ| · | defined by fλ(x) = miny∈R{λ|y| + 1
2
(y − x)2}. So it

is differential and has a 1-Lipschitz continuous gradient. Then we can apply the proximal-

gradient method (or forward-backward operator splitting). We take the gradient of fλ, which

is given by

f ′λ(x) = x− sign(x) max(0, |x| − λ) = sign(x) min(λ, |x|). (2.13)

The forward-backward iteration for L with stepsize t is

Lk+1 = proxtµ
(
Lk − tA∗f ′λ(A(Lk)−D)

)
, (2.14)

where the proximal operator is defined by

proxµ(A) = arg min
L:rank(L)≤p

1

2
‖L−A‖2

F + µ‖L‖∗. (2.15)

20

The algorithm is summarized in Alg. 2.1.

Algorithm 2.1: RPCA for low rank matrix approximation
Input: D, µ, λ, p, A, stepsize t, stopping criteria ε, maximum number of iterations

Max_Iter, initialization L0 = 0
Output: L, S

1 for k = 0, 1, 2, 3, . . . , Max_Iter do
2 S = sign(D−A(Lk))�max(0, |D−A(Lk)| − λ) ;
3 Lk+1 = proxtµ(Lk − tA∗(A(Lk)−D + S) using Gauss-Newton;
4 if ‖Lk+1 − Lk‖F/‖Lk‖F < ε then
5 break
6 end
7 end

Connection to (Shen et al., 2019). Consider the special case with A = I and µ = 0.

We let t = 1 in (2.14) and obtain the following iteration

Lk+1 = prox0(Lk − f ′λ(Lk −D)) = arg min
L:rank(L)≤p

1

2
‖L + Sk+1 −D‖2,

where Sk+1 = sign(D− Lk)�max(0, |D− Lk| − λ). This is exactly the algorithm in (Shen

et al., 2019) for solving (2.5). It alternates between finding the best S with L fixed and the

best L (or (X,Y)) with S fixed.

Recently, the work (Cai et al., 2019) proposed a novel RPCA algorithm with linear con-

vergence. It projects matrices to special manifolds of low-rank matrices, and their truncated

SVD can be computed efficiently. Our matrix does not have this property in our algorithm,

and a good initial guess from the previous iteration is necessary to reduce the computation

in the Gauss-Newton method.

2.2.1.1 Convergence analysis

From the discussion above, problem (2.7) can be solved by an iteration process of forward-

backward splitting. In each iteration, we reduce the value of the objective function

E(L,S) =
1

2
‖A(L) + S−D‖2

F + λ‖S‖1 + µ‖L‖∗ (2.16)

21

by applying proximal operators to L and S alternatively. The resulting iteration sequence

{(Lk,Sk)}k≥1 with some initial (L0,S0) is explicitly given by

Sk = sign(D−A(Lk−1))�max(0, |D−A(Lk−1)| − λ),

Lk = proxtµ
(
Lk−1 − tA∗(A(Lk−1) + Sk −D)

)
,

(2.17)

where the proximal operator proxtµ(·) for updating L is defined by (2.15). Here we use

(2.13) to derive

f ′λ(A(Lk−1)−D)

= A(Lk−1)−D + sign(D−A(Lk−1))�max(0, |D−A(Lk−1)| − λ)

= A(Lk−1) + Sk −D.

In this subsection, we establish the convergence results for {(Lk,Sk)}k≥1. We will show

that every limit point of {(Lk,Sk)}k≥1, denoted by (L?,S?), is a fixed point of the proximal

operator, i.e.,

S? = sign(D−A(L?))�max(0, |D−A(L?)| − λ),

L? = proxtµ (L? − tA∗(A(L?) + S? −D)) .

(2.18)

In practical execution, one can efficiently solve the proximal operator for L by solving

(Xk,Yk) through

minimize
X,Y

1

2
‖XY> − Lk−1 + tA∗(A(Lk−1) + Sk −D)‖2

F + µ‖X‖∗,

subject to Y>Y = Ip×p,

(2.19)

and letting Lk = Xk(Yk)>. We will also prove that if (X?,Y?,S?) is a limit point of

{(Xk,Yk,Sk)}k≥1, then (X?(Y?)>,S?) is a limit point of {(Lk,Sk)}k≥1, and the limit point

(X?,Y?,S?) is a stationary point of

E(XY>,S) =
1

2
‖A(XY>) + S−D‖2

F + λ‖S‖1 + µ‖XY>‖∗,

22

i.e., (X?,Y?,S?) satisfies the first-order optimality condition

0 ∈ [A∗(A(X?(Y?)>) + S? −D) + µ∂‖X?(Y?)>‖∗]Y?,

0 ∈ (X?)>[A∗(A(X?(Y?)>) + S? −D) + µ∂‖X?(Y?)>‖∗],

0 ∈ A(X?(Y?)>) + S? −D + λ∂‖S?‖1.

(2.20)

We summarize these results in the following theorem.

Theorem 2.2.4. Define the objective function E(L,S) as (2.16). Let {(Lk,Sk)}k≥1 be a

sequence generated by (2.17) with initial (L0,S0) and stepsize t < 1
‖A‖2 , where L

k = Xk(Yk)>

with (Xk,Yk) being solved from (2.19). We have the following statements:

1. The objective values {E(Lk,Sk)}k≥1 are non-increasing along {(Lk,Sk)}k≥1.

2. The sequence {(Lk,Sk)}k≥1 is bounded and thus has limit points.

3. Every limit point (L?,S?) of {(Lk,Sk)}k≥1 satisfies (2.18).

4. The sequence {(Xk,Yk,Sk)}k≥1 is also bounded. In addition, for any limit point

(X?,Y?,S?) of {(Xk,Yk,Sk)}k≥1, (X?(Y?)>,S?) is a limit point of {(Lk,Sk)}k≥1.

5. Every limit point (X?,Y?,S?) of {(Xk,Yk,Sk)}k≥1 is a stationary point of E(XY>,S),

which satisfies the first-order optimality condition in (2.20).

In addition, if A = I, we can take the stepsize t = 1, and all the statements above still hold.

23

Proof. We start by verifying the first two statements. For k ≥ 0 and t < 1
‖A‖2 , we have

E(Lk+1,Sk+1)

=
1

2
‖A(Lk+1)−A(Lk)‖2

F + 〈A(Lk+1)−A(Lk),A(Lk) + Sk+1 −D〉

+
1

2
‖A(Lk) + Sk+1 −D‖2

F + λ‖Sk+1‖1 + µ‖Lk+1‖∗

≤ 1

2t
‖Lk+1 − Lk‖2

F + 〈Lk+1 − Lk,A∗f ′λ(A(Lk)−D)〉+ µ‖Lk+1‖∗

+
1

2
‖A(Lk) + Sk+1 −D‖2

F + λ‖Sk+1‖1 +

(
‖A‖2

2
− 1

2t

)
‖Lk+1 − Lk‖2

F

=
1

t

{
1

2
‖Lk+1 − Lk + tA∗f ′λ(A(Lk)−D)‖2

F + tµ‖Lk+1‖∗
}

− t

2
‖A∗f ′λ(A(Lk)−D)‖2

F +

(
‖A‖2

2
− 1

2t

)
‖Lk+1 − Lk‖2

F

+
1

2
‖A(Lk) + Sk+1 −D‖2

F + λ‖Sk+1‖1,

(2.21)

where the inequality is due to the facts that

‖A(Lk+1)−A(Lk)‖2
F ≤ ‖A‖2‖Lk+1 − Lk‖2

F

and

A(Lk) + Sk+1 −D = f ′λ(A(Lk)−D).

Note that Lk+1 = proxtµ
(
Lk − tA∗f ′λ(A(Lk)−D)

)
, which solves

minimize
L:rank(L)≤p

1

2
‖L− Lk + tA∗f ′λ(A(Lk)−D)‖2

F + tµ‖L‖∗.

Since rank(Lk) ≤ p, we have

1

2
‖Lk+1 − Lk + tA∗f ′λ(A(Lk)−D)‖2

F + tµ‖Lk+1‖∗

≤ 1

2
‖Lk − Lk + tA∗f ′λ(A(Lk)−D)‖2

F + tµ‖Lk‖∗

=
t2

2
‖A∗f ′λ(A(Lk)−D)‖2

F + tµ‖Lk‖∗.

Substituting the above estimate to (2.21) yields

E(Lk+1,Sk+1) ≤
(
‖A‖2

2
− 1

2t

)
‖Lk+1 − Lk‖2

F

+
1

2
‖A(Lk) + Sk+1 −D‖2

F + µ‖Lk‖∗ + λ‖Sk+1‖1.

(2.22)

24

Moreover, we see that

Sk+1 = arg min
S

1

2
‖S− (D−A(Lk))‖2

F + λ‖S‖1.

Then from (Lou and Yan, 2018, Lemma 2), there holds

1

2
‖Sk+1 − (D−A(Lk))‖2

F + λ‖Sk+1‖1

≤ 1

2
‖Sk − (D−A(Lk))‖2

F + λ‖Sk‖1 −
1

2
‖Sk+1 − Sk‖2

F .

(2.23)

Combining estimates (2.22) and (2.23), we find that

E(Lk+1,Sk+1) ≤ E(Lk,Sk) +

(
‖A‖2

2
− 1

2t

)
‖Lk+1 − Lk‖2

F −
1

2
‖Sk+1 − Sk‖2

F . (2.24)

Since ‖A‖
2

2
− 1

2t
< 0, the estimate above implies E(Lk+1,Sk+1) ≤ E(Lk,Sk) for any k ≥ 0,

which verifies the first statement.

Note that the target function E(L,S) is coercive, i.e., E(L,S) → +∞ when ‖L‖F +

‖S‖F → +∞. Since E(Lk,Sk) ≤ E(L0,S0) < +∞,∀k ≥ 1, this property guarantees that

both {Lk}k≥1 and {Sk}k≥1 are bounded sequences, and thus the second statement holds.

For any limit point (L?,S?) of {(Lk,Sk)}k≥1, there exists a convergent subsequence

{(Lki ,Ski)}i≥1 such that Lki → L? and Ski → S?. On the other hand, we see that

Ski+1 = sign(D−A(Lki))�max(0, |D−A(Lki)| − λ),

Lki+1 = proxtµ
(
Lki − tA∗(A(Lki) + Ski+1 −D)

)
.

(2.25)

Summing both sides of (2.24) from k = 0 to ∞, we obtain(
1

t
− ‖A‖2

) ∞∑
k=0

‖Lk+1 − Lk‖2
F +

∞∑
k=0

‖Sk+1 − Sk‖2
F ≤ 2E(L0,S0) <∞.

This inequality guarantees that {Ski+1}i≥1 has the same limit point S? as that of {Ski}i≥1,

and {Lki+1}i≥1 has the same limit point L? as that of {Lki}i≥1. Then by taking limits in

both sides of the two equations in (2.25), we obtain the third statement.

Next we will prove the last two statements. As ‖Xk‖2
F = ‖Lk‖2

F and ‖Yk‖2
F = p, we

know that the sequence {(Xk,Yk,Sk)}k≥1 is also bounded. Let (X?,Y?,S?) be a limit point

25

of {(Xk,Yk,Sk)}k≥1, which is the limitation of a subsequence {(Xki ,Yki ,Ski)}i≥1. Then we

have

Lki = Xki(Yki)> → X?(Y?)> and Ski → S?,

i.e., (X?(Y?)>,S?) is the limit point of the subsequence {(Lki ,Ski)}i≥1. Thus the fourth

statement is verified.

Now we are in the position to prove the fifth statement. Due to the third and fourth

statements, if (X?,Y?,S?) is a limit point of {(Xk,Yk,Sk)}k≥1, i.e., (X?(Y?)>,S?) should

satisfy (2.18)

S? = sign(D−A(X?(Y?)>))�max(0, |D−A(X?(Y?)>)| − λ),

X?(Y?)> = proxtµ
(
X?(Y?)> − tA∗(A(X?(Y?)>) + S? −D)

)
.

(2.26)

The first condition in (2.26) implies that the limit point S? minimizes

1

2
‖A(X?(Y?)>) + S−D‖2

F + λ‖S‖1 + µ‖X?(Y?)>‖∗

over all S ∈ Rm×n. Thus, S? should satisfy the third condition in (2.20).

Moreover, since rank(X?(Y?)>) ≤ p, the second condition in (2.26) actually implies that

(X?,Y?) is an optimal solution of the problem

minimize
X,Y

1

2
‖XY> −X?(Y?)> + tA∗(A(X?(Y?)>) + S? −D)‖2

F + tµ‖XY>‖∗.

Therefore, (X?,Y?) should satisfy the first-order optimality condition for X, which gives

[X?(Y?)> −X?(Y?)> + tA∗(A(X?(Y?)>) + S? −D)]Y?

+ tµ∂‖X?(X?(Y?)>)>‖∗Y?

=t[A∗(A(X?(Y?)>) + S? −D) + µ∂‖X?(Y?)>‖∗]Y? 3 0.

Similarly, from the first-order opitmality condition for Y, one can verify that

0 ∈ (X?)>[A∗(A(X?(Y?)>) + S? −D) + µ∂‖X?(Y?)>‖∗].

We thus derive the first two conditions in (2.20).

26

We will complete our proof by verifying the convergence results for the special case of

A = I and t = 1. In this case, by the same method, one can derive a similar inequality

as (2.24), which is

E(Lk+1,Sk+1) ≤ E(Lk,Sk)− 1

2
‖Sk+1 − Sk‖2

F .

Then {E(Lk,Sk)}k≥1 are non-increasing along {(Lk,Sk)}k≥1, and {(Lk,Sk)}k≥1 is bounded

due to the coerciveness of E(L,S). Let (L?,S?) be the limit point of {(Lk,Sk)}k≥1 achieved

by the subsequence {(Lki ,Ski)}i≥1. Recall the iterations for updating Ski+1 and Lki given by

Ski+1 = sign(D− Lki)�max(0, |D− Lki | − λ),

Lki = proxµ
(
D− Ski

)
.

(2.27)

Since
∑∞

k=0 ‖Sk+1 − Sk‖2
F ≤ 2E(L0,S0) < +∞, {Ski+1}i≥1 has the same limit point S? as

that of {Ski}i≥1. Taking limits in both sides of equations (2.27) yields the condition (2.18)

for A = I and t = 1. The last two statements can be verified by exactly the same arguments

for the general case. We thus complete the proof.

2.2.2 An accelerated algorithm

We show in the previous subsection that Alg. 2.1 is a forward-backward splitting or proximal

gradient algorithm for a nonconvex problem. Recently, accelerated proximal gradient (APG)

algorithms are proposed for nonconvex problems to reduce the computational time without

sacrificing convergence (Li and Pong, 2015; Li and Lin, 2015). In this chapter, we adopt

the nonmonotone APG (Li and Lin, 2015, Alg. 2) because of its better performance shown

in (Li and Lin, 2015). The algorithm is described in Alg. 2.2. We let δ = 1 and η = 0.6 in

the numerical experiments.

2.3 Numerical experiments

In this section, we use synthetic data and real images to demonstrate the performance of

our proposed model and algorithms. The code to reproduce the results in this section can

be found at https://github.com/mingyan08/RPCA_Rank_Bound.

27

https://github.com/mingyan08/RPCA_Rank_Bound

Algorithm 2.2: Accelerated RPCA with nonmonotone APG
Input: D, µ, λ, p, A, stepsize t, η ∈ [0, 1), δ > 0, stopping criteria ε, maximum

number of iterations Max_Iter, initialization: L0 = L1 = Z1 = 0, t0 = 0,
t1 = q1 = 1, c1 = F (L1)

Output: L, S
1 for k = 1, 2, 3, .., Max_Iter do
2 L = Lk + tk−1

tk
(Zk − Lk) + tk−1−1

tk
(Lk − Lk−1);

3 S = sign(D−A(L))�max(0, |D−A(L)| − λ);
4 Zk+1 = proxtµ(L− tA∗(A(L)−D + S));
5 if F (Zk+1) ≤ ck − δ‖Zk+1 − L‖2 then
6 Lk+1 = Zk+1;
7 else
8 Sk = sign(D−A(Lk))�max(0, |D−A(Lk)| − λ);
9 Vk+1 = proxtµ(Lk − tA∗(A(Lk)−D + Sk));

10 Lk+1 =

{
Zk+1 if F (Zk+1) ≤ F (Vk+1);

Vk+1 otherwise;

11 end
12 if ‖Lk − Lk−1‖F/‖Lk−1‖F < ε then
13 break
14 end

15 tk+1 =

√
4(tk)2+1+1

2
;

16 qk+1 = ηqk + 1;
17 ck+1 = ηqkck+F (Lk+1)

qk+1 ;
18 end

2.3.1 Synthetic data

We would like to recover the low-rank matrix from a noisy matrix that is contaminated by

a sparse matrix and Gaussian noise. We create a true low-rank 500 × 500 matrix L? by

multiplying a random 500× r matrix and a random r× 500 matrix, where their components

are generated from standard normal distribution independently. We calculate the mean of

the absolute values of all the components in L? and denote it as c. Then we randomly

select s% of the components and replace their values with uniformly distributed random

values from [−3c, 3c]. After that, we add small Gaussian noise N (0, σ2) to all components

of the matrix. We let t = 1.7 in the experiments because of fast convergence, though the

convergence results in Theorem 2.2.4 require t < 1.

28

2.3.1.1 Low-rank matrix recovery

We fix σ = 0.05 for the Gaussian noise and set the upper bound of the rank to be p = r+ 5.

We stop all algorithms when the relative error at the k-th iteration, which is defined as

RE(Lk+1,Lk) :=
‖Lk+1 − Lk‖F
‖Lk‖F

,

is less than 10−4. We use the relative error to L?, which is defined as

RE(L,L∗) :=
‖L− L?‖F
‖L?‖F

,

to evaluate the performance of our proposed model and that in (Shen et al., 2019). First,

we consider the case with r = 25 and s = 20. We plot a contour map of the relative error

to L? for different parameters µ and λ in Fig. 2.1. From this contour map, we can see that

the best parameter does not happen when µ = 0, which corresponds to the model in (Shen

et al., 2019). It verifies the better performance of our proposed model with appropriate

parameters. In this subsection, we set λ = 0.02 for Shen et al.’s and (µ = 0.6, λ = 0.04) for

our proposed algorithms.

In addition, we consider another two settings for (r, s), and the comparison with different

algorithms is shown in Table 2.1. In this table, we also compare the number of iterations

for three algorithms: Shen et al.’s, Alg. 2.1, and Alg. 2.2. From this table, we can see that

both Alg. 2.1 and Alg. 2.2 have better performance and fewer iterations than (Shen et al.,

2019). The accelerated Alg. 2.2 has the fewest iterations, but its performance in terms of

RE(L,L?) is not as good as Alg. 2.1 for the last case. It is because we stop both algorithms

when the stopping criteria is satisfied, and the algorithms are not converged yet. We checked

the objective function values for both algorithms, and the value for Alg. 2.2 is smaller than

that for Alg. 2.1 in this case. Therefore, if we want a solution close to the true low-rank

matrix L?, we may need to stop early before the convergence, which is the same as many

models for inverse problems.

29

0.008

0.01

0.01

0.
01

0.02

0.02

0.02

0.02

0.020.04

0.04

0.04

0.04

0.04

0.
08

0.
08

0.08

0.08

0 0.5 1 1.5 2

0.05

0.1

0.15

0.2

Figure 2.1: The contour map of the relative error to L? for different parameters. In this
experiment, we set r = 25 and s = 20. The upper bound of the rank is set to be p = 30.

r s Shen et al.’s (Shen et al., 2019) Alg. 1 Alg.2
RE(L,L?) # iter RE(L,L?) # iter RE(L,L?) # iter

25 20 0.0745 1318 0.0075 296 0.0075 68
50 20 0.0496 1434 0.0101 473 0.0088 77
25 40 0.0990 2443 0.0635 796 0.0915 187

Table 2.1: Comparison of three RPCA algorithms. We compare the relative error of their
solutions to the true low-rank matrix and the number of iterations. Both Alg. 2.1 and
Alg. 2.2 have better performance than (Shen et al., 2019) in terms of the relative error and
the number of iterations. Alg. 2.2 has the fewest iterations but the relative error could be
large. It is because the true low-rank matrix is not the optimal solution to the optimization
problem, and the trajectory of the iterations moves close to L? before it approaches the
optimal solution.

2.3.1.2 Robustness of the model

In this experiment, we compare the robustness of our proposed model with that of (Shen

et al., 2019). We let r = 25 and s = 20. Then we run both models for p from 15 to 35.

The comparison of the relative error to L? is shown in Fig. 2.2. We let λ = 0.02 for Shen et

al.’s and (µ = 0.6, λ = 0.04) for Alg. 2.2. It shows that our proposed model is robust to the

30

parameter p, as long as it is not smaller than the true rank r.

15 20 25 30 35

rank (p)

0

0.1

0.2

0.3

0.4

0.5

0.6

re
la

tiv
e

er
ro

r
of

 L

Shen et al.
Alg. 2

Figure 2.2: The relative error to the true low-rank matrix vs the rank p for Shen et al.’s and
Alg. 2.2. Alg. 2.2 is robust to p, as long as p is not smaller than the true rank 25.

2.3.1.3 Low-rank matrix recovery with missing entries

In this experiment, we try to recover the low-rank matrix when there are missing entries in

the matrix. Therefore, the operator A is not the identity I. We randomly select the missing

entries from all the entries. We let r = 25 and add both the sparse noise with parameter s

and the Gaussian noise with parameter σ to the true matrix L?. Then we apply Alg. 2.2 to

recover the low-rank matrix, and the relative error to L? is used to evaluate the performance.

The results for different settings are in Table 2.2. For the first three cases with s = 20, we

choose (µ = 0.5, λ = 0.04), while we let (µ = 0.1, λ = 0.01) for the last case with s = 5.

Note that, even with missing entries, Alg. 2.2 can reconstruct the low-rank matrix accurately.

31

s σ ratio of missing entries RE(L,L?) by Alg. 2.2
20 0.05 10% 0.0079
20 0.05 20% 0.0088
20 0.05 50% 0.0201
5 0.01 50% 0.0015

Table 2.2: Performance of Alg. 2.2 on low-rank matrix recovery with missing entries. We
change the level of sparsity in the sparse noise, standard deviation of the Gaussian noise,
and the ratio of missing entries.

2.3.2 Real image experiment

In this section, we consider the three algorithms applied to image processing problems. Since

natural images are not low-rank essentially, we consider two cases on two different images

(‘cameraman’ and ‘Barbara’). For the 256 × 256 cameraman image (the pixel values are

from 0 to 255), we create an image with rank 37 from a low-rank approximation of the

original image. Then we add 20% salt and pepper impulse noise and Gaussian noise with

standard variance 4. We set 42 as the upper bound of the rank of the low-rank image for

all algorithms. We let λ = 0.03 for Shen et al. and (µ = 0.5, λ = 0.06) for our model.

To compare the performance of both models, we use the relative error defined in the last

subsection and peak signal to noise ratio (PSNR) defined as

PSNR := 10 log10

Peak_Val2

MSE
.

Here Peak_Val is the largest value allowed at a pixel (255 in our case), and MSE is the mean

squared error between the recovered image and the true image. The numerical results are

shown in Fig. 2.3. From Fig. 2.3(A-C), we can see that our proposed model performs better

than Shen et al. (Shen et al., 2019). For the proposed model, we also compare the speed

of three algorithms: Alg. 2.1, Alg. 2.1 with standard SVD, and Alg. 2.2 in Fig. 2.3(D). For

both plots, we can see that the Gauss-Newton approach increases the speed comparing to

the standard SVD approach. From the decrease of the objective function value, we can see

that the accelerated algorithm Alg. 2.2 is faster than the nonaccelerated Alg. 2.1.

32

(a) Corrupted image
RE: 0.4760, PSNR: 12.76

(b) Recovered by Shen et al.
RE: 0.1736, PSNR: 21.52

(c) Recovered by Alg. 2.2
RE: 0.0457, PSNR:33.11

0 10 20 30 40 50 60

time (s)

103

104

105

general SVD
Alg. 1
Alg. 2

(d) Comparison of the objective function
value vs time for three algorithms

Figure 2.3: The numerical experiment on the ‘cameraman’ image. (A-C) show that the
proposed model performs better than Shen et al.’s both visually and in terms of RE and
PSNR. (D) compares the objective values vs time for general SVD, Alg. 2.1, and Alg. 2.2.
Here f ? is the value obtained by Alg. 2.2 with more iterations. It shows the fast speed
with the Gauss-Newton approach and acceleration. With the Gauss-Newton approach, the
computation time for Alg. 2.1 is reduced to about 1/7 of the one with standard SVD (from
65.11s to 8.43s). The accelerated Alg. 2.2 requires 5.2s, though the number of iterations is
reduced from 3194 to 360.

Next, we use the original 512 × 512 barbara image (the pixel values are from 0 to 255)

without modification and add the same two types of noise as in the cameraman image.

Because the original image is not low-rank, we choose the upper bound of rank p = 50.

We let λ = 0.03 for Shen et al. and (µ = 0.5, λ = 0.06) for our model. The comparison

33

result is shown in Fig. 2.4, and it is similar to the cameraman image. We also applied the

acceleration to Shen et al.’s algorithm and obtained a better image with RE = 0.1447 and

PSNR = 22.37.

(a) Corrupted image
RE: 0.4821, PSNR: 11.91

(b) Recovered by Shen et al
RE: 0.3368, PSNR: 15.03

(c) Recovered by Alg. 2.2
RE: 0.1317, PSNR: 23.18

0 50 100 150

time (s)

104

105

106 general SVD
Alg. 1
Alg. 2

(d) Comparison of the objective function
value vs time for three algorithms

Figure 2.4: The numerical experiment on the ‘Barbara’ image. (A-C) show that the proposed
model performs better than Shen et al.’s both visually and in terms of RE and PSNR. (D)
compares the objective values vs time for general SVD, Alg. 2.1, and Alg. 2.2. Here f ? is
the value obtained by Alg. 2.2 with more iterations. It shows the fast speed with the Gauss-
Newton approach and acceleration. With the Gauss-Newton approach, the computation
time for Alg. 2.1 is reduced to less than 1/3 of the one with standard SVD (from 148.6s to
43.7s). The accelerated Alg. 2.2 requires 23.3s, though the number of iterations is reduced
from 3210 to 300.

34

2.4 Concluding remarks

In this chapter, we introduced a new model for RPCA when an upper bound of the rank

is provided. For the unconstrained RPCA problem, we formulate it as the sum of one

smooth function and one nonsmooth nonconvex function. Then we derive an algorithm

based on proximal-gradient. This proposed algorithm has the alternating minimization algo-

rithm (Shen et al., 2019) as a special case. Because of the connection between this algorithm

and proximal gradient, we adopted an acceleration approach and proposed an accelerated

algorithm. Both proposed algorithms have two advantages comparing to existing algorithms.

First, different from algorithms that require accurate rank estimations, the proposed algo-

rithms are robust to the upper bound of the rank. Second, we apply the Gauss-Newton

algorithm to avoid the computation of singular values for large matrices, so our algorithm is

faster than those algorithms that require SVD. Except for problem (2.7), this algorithm can

be generalized to solve many other variants.

2.4.1 Nonconvex penalties on the singular values

In the problem (2.7), we choose the convex nuclear norm for the low-rank component in

the objective function, which is the `1 norm on the singular values. The `1 norm pushes

all singular values toward zero for the same amount, bringing bias in the solution. To

promote the low-rankness of the low-rank component (or sparsity of its singular values), we

can choose nonconvex regularization terms for the singular values. The idea for nonconvex

regularization is to reduce the bias by pushing less on larger singular values. Some examples

of nonconvex regularization are `p (0 ≤ p < 1) (Chartrand, 2007), smoothly clipped absolute

deviation (SCAD) (Fan and Li, 2001), minimax concave penalty (MCP) (Zhang et al., 2010),

nonconvex weighted `1 (Huang et al., 2015), etc. When these regularization terms are applied,

the only difference is in the third step for finding X in Lemma 2.2.3. Currently, we have

to apply the soft thresholding on the singular values. When nonconvex regularization is

35

used, we apply the corresponding thresholding on the singular values. In this case, all the

convergence results stay valid.

2.4.2 Other regularization on the sparse component

We can also replace the `1 norm of the sparse component with other regularization terms.

Similarly to the penalty on the singular values, the `1 norm on the sparse component brings

bias, and we can use nonconvex regularization terms. Wen et al. (2019) uses both nonconvex

regularization terms for the low-rank and sparse components. When different regularization

terms are used on the sparse component, the new function fλ (see (2.12) for the definition)

may not be differentiable any more. In this case, the convergence results do not hold.

2.4.3 Constrained problems

When there is no noise in the measurements, the problem becomes constrained, and the pre-

vious algorithm can not be applied directly. Shen et al. (2019) uses the penalty method and

gradually increases the weight for the penalization to approximate the constrained problem.

Here, we introduce a new method based on ADMM. We consider the following constrained

problem

minimize
L,S

µ‖L‖∗ + ‖S‖1, subject to rank(L) ≤ p, D = L + S. (2.28)

When we apply ADMM, the steps are

Lk+1 = arg min
L:rank(L)≤p

µ‖L‖∗ +
α

2
‖D− L− Sk +

Zk

α
‖2
F ; (2.29a)

Sk+1 = arg min
S
‖S‖1 +

α

2
‖D− Lk+1 − S +

Zk

α
‖2
F ; (2.29b)

Zk+1 = Zk − α(Lk+1 + Sk+1 −D). (2.29c)

The first step is exactly the proximal operator that can be solved from Lemma 2.2.3. The

other two steps are easy to compute. This algorithm has only one parameter α, while penalty

36

methods, such as that in (Shen et al., 2019), require additional parameters to increase the

weight for the penalization.

37

CHAPTER 3

ROBUST PRINCIPAL COMPONENT ANALYSIS FOR SEISMIC EVENT
DETECTION

3.1 Introduction

Reflected seismic data is contaminated by both random and coherence noise. Random noise

is usually caused by environmental inferences, and coherent noise is mostly generated by the

source. Denoising is an important preprocessing step because noisy seismic data may lead to

unrealistic artifacts in the inversion or imaging results. But, it is challenging to effectively

and efficiently eliminate noise from noisy seismic data.

Various seismic denoising methods have been developed to remove random noise (Yu

et al., 2015; Fomel and Liu, 2013; Kreimer and Sacchi, 2012) and coherent noise (Weglein,

2016; Liu and Fomel, 2013; Herman and Perkins, 2006). Our technique belongs to the

sparse-transform-based methods. In this type of methods, it was shown that the signal

could be sparsely represented by a basis/dictionary or it is sparse after some transform such

as wavelet transform. In particular, different methods based on sparsity are proposed (Chen

et al., 2016; Rubinstein et al., 2010). Since the signal received at different receivers are

correlated, the measurements lie in a low dimensional space. Dimension reduction techniques

are also applied to model the signal. They include empirical mode decomposition based

methods (Kopsinis and McLaughlin, 2009; Chen et al., 2017), singular spectral analysis (Qiao

et al., 2017), RPCA (Candès et al., 2011; Cheng et al., 2015), and Cadzow filtering.

Though RPCA-based denoising methods achieve promising results in many applica-

tions (Cheng et al., 2015; Sun et al., 2014; Duarte et al., 2012), existing algorithms are

slow and yield a large amount of computational time, especially for large-scale data set.

Therefore, we develop new algorithms for RPCA and its nonconvex variants. To verify the

performance of these algorithms, we apply them to both synthetic and field data. Through

38

the numerical experiments, our proposed algorithms significantly improve computational

efficiency and yield comparable or better denoising results.

3.2 Theory

In this section, we focus on RPCA, though the technique can be applied to other methods.

Given the noisy data denoted as an n1 × n2 matrix D, where n1 and n2 are the number of

receivers and measurements at each receiver, respectively. The goal of RPCA is to get a

low-rank matrix L and a sparse matrix S from this noisy matrix such that L + S = D. Ma

and Aybat (2018) reviewed several forms of RPCA and efficient algorithms. One formula is

minimize
L,S

rank(L) + λ‖S‖0, subject to L + S = D, (3.1)

where rank(L) is the rank of the matrix L, ‖S‖0 is the number of nonzero elements in the

matrix S, and λ is a parameter to balance these two terms. This model assumes that the

data is corrupted by sparse noise, which is modeled as a sparse matrix S. However, in

practice, especially in the collected seismic data, D often includes other types of noise such

as Gaussian noise, denoted as N. We set the random noise level to be σ, namely, ‖N‖2
F ≤ σ,

where ‖ · ‖F is the Frobenious norm. Hence, the corresponding formula becomes

minimize
L,S

rank(L) + λ‖S‖0, subject to ‖D− L− S‖2
F ≤ σ. (3.2)

This problem is NP-hard (Ma and Aybat, 2018), and direct numerical calculation is impos-

sible. One direction is convexification. It has been proved in (Zhou et al., 2010b) that a

relaxed version –principal component pursuit– can be defined as

minimize
L,S

‖L‖∗ + λ‖S‖1 subject to ‖D− L− S‖2
F ≤ σ. (3.3)

The above minimization problem yields a stable estimate of the low-rank matrix and the

sparse matrix under some conditions for D. Here, ‖ · ‖∗ is the nuclear norm defined as the

sum of all singular values, and ‖ · ‖1 is the sum of the absolute values of all elements.

39

The constrained problem (3.3) is equivalent to the following unconstrained one

minimize
L,S

‖L‖∗ + λ‖S‖1 + 1
2µ
‖D− L− S‖2

F . (3.4)

That is, given σ in (3.3), we can find µ such that the optimal solutions for both (3.3)

and (3.4) are equivalent, and vice versa. Therefore, we focus on solving Eq. (3.4) instead

of Eq. (3.3). This problem is convex, and many existing convex optimization algorithms

are applied. Some examples are proximal gradient method (PGM), accelerated PGM, and

alternating direction methods of multipliers (ADMM). We provide some brief introduction

over those methods.

We consider the two matrices L and S together. The last function in (3.4) is differentiable

with respect to L and S, while the first two functions are separable. One iteration of PGM

can be expressed as 

L̄k = Lk − t
µ
(Lk + Sk −D),

S̄k = Sk − t
µ
(Lk + Sk −D),

Lk+1 = arg min
L

t‖L‖∗ + 1
2
‖L− L̄k‖2

F ,

Sk+1 = arg min
L

tλ‖S‖1 + 1
2
‖S− S̄k‖2

F ,

(3.5)

where t ∈ (0, µ) is the stepsize.

PGM has the convergence rate of O(1/k) for general convex functions. Acceleration tech-

niques improve the convergence rate to O(1/k2). Some examples are provided in (Nesterov,

2013, 2005; Kim and Fessler, 2016; Beck and Teboulle, 2009a,b). Beck and Teboulle (2009a)

develop fast iterative shrinkage-thresholding algorithm (FISTA) by applying the proximal

operator on an extrapolated point. By denoting one iteration of PGM as (Lk+1,Sk+1) =

PGM(Lk,Sk), the iteration of FISTA is equivalent to

(L̂k, Ŝk) = (Lk,Sk) + θk−1−1

θk
(Lk − Lk−1,Sk − Sk−1),

(Lk+1,Sk+1) = PGM(L̂k, Ŝk),

where θk = (1 +
√

1 + 4θ2
k−1)/2 and θ0 = 1. FISTA requires fewer iterations than PGM with

similar per-iteration cost, which is demonstrated in our numerical experiments.

40

ADMM (Boyd et al., 2011; Yuan and Yang, 2013) solves a constrained problem. By

introducing a new matrix Z, an equivalent formulation can be obtained

minimize
Z,L,S

‖L‖∗ + λ‖S‖1 + 1
2µ
‖Z‖2

F s.t. Z + S + L = D. (3.6)

Though the convergence of three-block ADMM is not guaranteed for general problems, this

ADMM for RPCA converges with an appropriately chosen parameter (Wang et al., 2019).

These algorithms are computationally efficient for small matrices, but they suffer slow

convergent rates when handling medium to large-scale data sets, such as seismic data. The

efficiency of the algorithms are directly related to the number of the unknown variables.

PGM and FISTA have two matrices as unknown variables, while ADMM has three. In

this abstract, we use infimal convolution to reduce unknown variables to be one matrix and

obtain faster algorithms than existing ones.

Besides solving the convex formula (3.4), people also solve nonconvex ones (Zhou and

Tao, 2011, 2013) because of their better performance. In this abstract, we also consider a

nonconvex model by replacing the L1 term with a nonconvex term to show the robustness

of our algorithms.

Methodology and Algorithms

3.2.1 New algorithms with infimal convolution

The problem (3.4) has two unknown matrices L and S, and only the last two terms have S.

So we can eliminate S by finding the optimal S with a given L

h(D− L) := min
S

λ‖S‖1 + 1
2µ
‖D− L− S‖2

F . (3.7)

By defining f(S) = λ‖S‖1 and g(X) = 1
2µ
‖X‖2

F , we will have h as the infimal convolution of

f and g, which is defined as f�g : x → min
y
f(y) + g(x − y). Hence, the problem (3.4) can

be reduced to

minimize
L

‖L‖∗ + f�g(D− L), (3.8)

41

which contains only one unknown matrix L. The infimal convolution f�g(D− L) is differ-

entiable with respect to L, and its gradient is 1
µ
-Lipschitz continuous. So we apply PGM

and FISTA to solve the problem (3.8) with L only. We name the corresponding algorithms

as IC-PGM and IC-FISTA. We also apply ADMM with two blocks and name the new algo-

rithm as IC-ADMM. Its convergence is well studied, and there is no restriction in choosing

its parameters. For simplicity, we only provide the iteration of IC-PGM as below

S̄k = Sk − (Lk + Sk −D),

Sk+1 = arg min
L

µλ‖S‖1 + 1
2
‖S− S̄k‖2

F ,

L̄k = Lk − t
µ
(Lk + Sk+1 −D),

Lk+1 = arg min
L

t‖L‖∗ + 1
2
‖L− L̄k‖2

F .

(3.9)

Here, the stepsize of t ∈ (0, 2µ), which is larger than PGM. The derivation of IC-FISTA is

similar to IC-PGM.

3.2.1.1 Comparison between PGM and IC-PGM

Comparing the steps in (3.5) and (3.9), we notice that PGM updates L and S simultane-

ously, while IC-PGM updates S first and use the updated S to update L. The improved

performance of IC-PGM over conventional PGM comes from two folds. Firstly, alternative

update is faster than simultaneous update, which is similar to the improvement of Gauss-

Seidel over Jacobian methods for solving linear equations. Secondly, IC-PGM essentially

solves the problem with L only, which allows a larger stepsize than the conventional PGM.

A new nonconvex model

Though IC-FISTA solves RPCA efficiently, RPCA is still a convex relaxed model. In order

to obtain better performance, we consider nonconvex models that we can apply the infimal

convolution technique to get fast algorithms. There are many nonconvex penalties, please

see (Huang and Yan, 2018; Wen et al., 2018). In this abstract, we choose Minimax Concave

42

Penalty (MCP) (Zhang et al., 2010) to replace the L1 term λ‖S‖1 in RPCA. When we apply

IC-PGM or IC-FISTA to solve this nonconvex problem, we just need to replace the step for

updating S:

Sk+1 = arg min
L

µr(S) + 1
2
‖S− S̄k‖2

F ,

where r(S) =
∑n1

i=1

∑n2

j=1 gλ,b(Si,j) is the MCP function with

gλ,b(Si,j) =


λ|Si,j| −

S2
i,j

2b
, |Si,j| ≤ bλ,

bλ2

2
, |Si,j| > bλ.

(3.10)

Here b is a parameter. When b goes to infinity, r(S) becomes the L1 term.

3.3 Results

3.3.1 Synthetic seismic data

We first test our denoising algorithms on synthetic seismic data. The seismic measurements

are collections of synthetic seismograms obtained by implementing forward modeling on a

velocity model with a few layers. One common-shot gather of synthetic seismic data with

500 receivers is posed at the top surface of the model. The interval between two receivers is

5 m. We use a Ricker wavelet with a center frequency of 25 Hz as the source time function

and a staggered-grid finite-difference scheme with a perfectly matched layered absorbing

boundary condition to generate 2D synthetic seismic reflection data (Tan and Huang, 2014).

The synthetic trace at each receiver is a collection of time-series data of length 1, 000. We

add two types of noise onto the seismic data. First, we add 25.2 dB Gaussian noise. Then,

we choose 2% of the data and reset their values with random numbers uniformly distributed

in [−u, u] with u being three multiply the largest value in the clean data. The overall signal

to noise ratio (SNR) is -26.2 dB.

43

50 100 150 200 250 300 350 400 450 500
Receivers

100

200

300

400

500

600

700

800

900

1000
Ti

m
e

St
ep

(a) clean data

50 100 150 200 250 300 350 400 450 500
Receivers

100

200

300

400

500

600

700

800

900

1000

Ti
m

e
St

ep

(b) noisy data

50 100 150 200 250 300 350 400 450 500
Receivers

100

200

300

400

500

600

700

800

900

1000

Ti
m

e
St

ep

(c) recovered signal by L1

50 100 150 200 250 300 350 400 450 500
Receivers

100

200

300

400

500

600

700

800

900

1000

Ti
m

e
St

ep
(d) recovered signal by MCP

150 200 250 300 350
Receivers

50

100

150

200

250

300

350

400

Ti
m

e
St

ep

(e) recovered sparse noise by L1

150 200 250 300 350
Receivers

50

100

150

200

250

300

350

400

Ti
m

e
St

ep

(f) recovered sparse noise by MCP

150 200 250 300 350
Receivers

50

100

150

200

250

300

350

400

Ti
m

e
St

ep

(g) difference between (c) and (a)

150 200 250 300 350
Receivers

50

100

150

200

250

300

350

400

Ti
m

e
St

ep

(h) difference between (d) and (a)

Figure 3.1: Comparison of recovered results on synthetic seismic data with 500 receivers and
1000 measurements at each receiver. (a) simulated clean data. (b) noisy data (-26.2 dB). (c)
recovered data by L1 (13.4 dB). (d) recovered data by MCP (13.9 dB). (e) recovered sparse
noise by L1. (f) recovered sparse noise by MCP. (g) the difference between the clean data
and the recovered one by L1. (h) the difference between the clean data and the recovered
one by L1. (e-h) zoom-in over receivers 150-350 and measurements 1-400.

We first compare the recovery results for convex and nonconvex models in Fig. 3.1. We

44

manually tune the parameters to obtain the best denoising results for both models. For the

L1 penalty, we choose µ = 3× 10−5 and λ = 0.12, while for MCP, we choose µ = 1× 10−5,

λ = 0.135, and b = 10. Both models can remove noise from the noisy data. The SNR values

of recovered data for both L1 and MCP are 13.4 dB and 13.9 dB, respectively. The figure

confirms that the nonconvex model performs slightly better than the convex one.

Next, we compare the efficiency of all algorithms on the convex RPCA model. We first

run IC-ADMM for 1,000 iterations to obtain an estimation for the minimal objective value.

Then we compare their performance in function values with respect to the iteration number

and time in Fig 3.2. IC-ADMM has the fastest convergent rate and smallest computational

time among all five algorithms. By applying our IC technique, traditional algorithms (PGM

and FISTA) yield better convergent rates. Comparing Fig. 3.2(a) and Fig. 3.2(b), we note

that the time for each iteration is similar for all algorithms.

0 100 200 300 400 500 600 700 800 900 1000
Iters

10-15

10-10

10-5

100

105

Fu
nc

tio
n

Va
lu

e(
f -

 f*
)

PGM
FISTA
IC-PGM
IC-FISTA
IC-ADMM

(a) performance-iteration

0 10 20 30 40 50 60 70 80 90
Time(s)

10-15

10-10

10-5

100

105

Fu
nc

tio
n

Va
lu

e
(f

- f
*)

PGM
FISTA
IC-PGM
IC-FISTA
IC-ADMM

(b) performance-time

Figure 3.2: Comparison of five algorithms (PGM, FISTA, IC-PGM, IC-FISTA, IC-ADMM)
for the convex RPCA on synthetic data. IC-ADMM has the fastest convergence rate and
smallest computational time. IC technique improves the performance of PGM and FISTA
significantly.

3.3.2 Field seismic data

In this section, we apply our denoising algorithms to the field data collected from the IRIS

Community Wavefield Experiment in Oklahoma (Kent et al., 2016). Fig. 3.3 shows the data

collected by 220 major seismic sensors to detect earthquakes. Before applying RPCA to

45

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time(s)

20

40

60

80

100

120

140

160

180

200

220

S
ta

tio
n

N
um

be
r

Figure 3.3: Noisy data generated in Oklahoma.

recover the data, we applied discrete cosine transform on the time domain. The comparison

between L1 and MCP is in Fig. 3.4. We set µ = 3 × 104, λ = 3 × 10−3, and b = 3 × 106.

The stopping criteria is max(‖Sk+1−Sk‖2
F/‖Sk‖2

F , ‖Lk+1−Lk‖2
F/‖Lk‖2

F) < 10−3. As shown

in Fig. 3.4, both models successfully separate the horizontal signal (we do not want) and

vertical signal (we want).

In addition, we compare the computation time and total numbers of iterations in Ta-

ble 2.1. IC technique improves the performance of conventional algorithms. They are 4-10x

Algorithm # Iters Time (s) Function vlaue
PGM 940 9.23× 103 4.92× 107

FISTA 166 1.63× 103 4.92× 107

IC-PGM 81 1.07× 103 4.92× 107

IC-FISTA 43 6.41× 102 4.92× 107

IC-ADMM 25 2.69× 102 4.92× 107

MCP 49 5.74× 102 3.78× 107

Table 3.1: Comparison of six algorithms. IC-ADMM is the fastest, which is the same as
synthetic data. The function value for MCP is smaller because of a different model.

faster than non-IC algorithms. It also shows that the non-convex MCP model has compa-

rable performance as the convex one, while the algorithm for this nonconvex model is also

fast.

46

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time(s)

20

40

60

80

100

120

140

160

180

200

220

St
at

io
n

N
um

be
r

(a) recovered horizontal signal by L1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time(s)

20

40

60

80

100

120

140

160

180

200

220

St
at

io
n

N
um

be
r

(b) recovered horizontal signal by MCP

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time(s)

20

40

60

80

100

120

140

160

180

200

220

St
at

io
n

N
um

be
r

(c) recovered vertical signal by L1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time(s)

20

40

60

80

100

120

140

160

180

200

220

St
at

io
n

N
um

be
r

(d) recovered vertical signal by MCP

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time(s)

20

40

60

80

100

120

140

160

180

200

220

St
at

io
n

N
um

be
r

(e) recovered random noise by L1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time(s)

20

40

60

80

100

120

140

160

180

200

220

St
at

io
n

N
um

be
r

(f) recovered random noise by MCP

Figure 3.4: Recovered results of the real data with two models.

3.4 Conclusion

In this section, we developed new seismic denoising algorithms based on RPCA. In particular,

we applied infimal convolution to solve the convex and nonconvex optimization problems.

Our technique not only allows a large stepsize, but also reduces the number of unknown

variables to solve. All these characteristics of our new algorithms result in a significantly im-

proved computational efficiency by comparing to other conventional algorithms such as PGM

47

and FISTA. We verified the performance of our algorithms using both synthetic reflection

seismic data and field data. We observe at least a speed-up ratio of 4-10x over conventional

algorithms with a comparable or better denoised results.

48

CHAPTER 4

MANIFOLD DENOISING BY NONLINEAR ROBUST PRINCIPAL
COMPONENT ANALYSIS

4.1 Introduction

Manifold and graph learning are nowadays widely used in computer vision, image processing,

and biological data analysis on tasks such as classification, anomaly detection, data inter-

polation, and denoising. In most applications, graphs are learned from high dimensional

data, and successfully learned graphs allow traditional data analysis methods (PCA, Fourier

analysis, clustering algorithm, neural networks) to be performed in conjunction with prior

knowledge of the graph connectivity (Hammond et al., 2011; Jianbo Shi and Malik, 2000;

Jiang et al., 2013; Meila and Shi, 2001). However, the quality of the learned manifold or

graph may be greatly jeopardized by outliers, in ways that affect the stability of various

manifold learning methods.

In recent years, several methods have been proposed to handle outliers in nonlinear

data (Li et al., 2009; Zhigang Tang et al., 2010; Du et al., 2013). Despite the success of those

methods, they only aim at finding the outliers instead of correcting them. In addition, few

theoretical results characterize their statistical performances. In this paper, we propose a

novel non task-driven algorithm for the mixed noise model in (4.1) and provide theoretical

guarantees to control its estimation error. Specifically, we consider the mixed noise model

as

X̃i = Xi + Si + εi, i = 1, . . . , n, (4.1)

where Xi ∈ Rp is the noiseless data independently drawn from some manifold M with an

intrinsic dimension d < p, εi is the i.i.d. Gaussian noise with small magnitudes, and Si is the

sparse noise with possible large magnitudes. If Si has a large entry, then the corresponding

X̃i is usually considered as an outlier. The goal of this chapter is to simultaneously recover

49

Xi and Si from X̃i, i = 1, .., n.

There are several benefits in recovering the noise term Si along with the signal Xi.

First, the support of Si indicates the locations of the anomaly, which is informative in

many applications. For example, if Xi is the gene expression data from the ith patient, the

nonzero elements in Si indicate the differentially expressed genes that are the candidates

for personalized medicine. Similarly, if Si is a result of malfunctioned hardware, its nonzero

elements indicate the locations of the malfunction parts. Secondly, the recovery of Si allows

the “outliers” to be pulled back to the data manifold instead of simply being discarded. This

prevents waste of information and is especially beneficial in cases where data is insufficient.

Thirdly, in some applications, the sparse Si is part of the actual data rather than a noise

term, then the algorithm provides a natural decomposition of the data into a sparse and a

non-sparse component that may carry different pieces of information.

Along a similar line of research, robust principle component analysis (RPCA) (Candes

et al., 2011) has received considerable attention and has demonstrated its success in separat-

ing data from sparse noise in many applications. However, its assumption that the data lies

in a low dimensional subspace is somewhat strict. In this chapter, we generalize the Robust

PCA idea to the non-linear manifold setting. The major new components in our algorithm

are: 1) an incorporation of the curvature information of the manifold into the optimization

framework, and 2) a unified way to apply RPCA to a collection of tangent spaces of the

manifold.

4.2 Methodology

Let X̃ = [X̃1, . . . , X̃n] ∈ Rp×n be the noisy data matrix containing n samples. Each sample

is a vector in Rp independently drawn based on (4.1). The overall data matrix X̃ has the

representation

X̃ = X + S +N

50

where X is the clean data matrix, S is the matrix of the sparse noise, and N is the Gaussian

noise. We further assume that the clean data Xi lies on some manifold M embedded in

Rp with a small intrinsic dimension d � p and the sample size is sufficient (n ≥ p). The

small intrinsic dimension assumption ensures that data is locally low dimensional so that

the corresponding local data matrix is of low rank. This property allows the data to be

separated from the sparse noise.

The key idea behind our method is to handle the data locally. We use the k Nearest

Neighbors (kNN) to construct local data matrices, where k is larger than the intrinsic di-

mension d. For a data point Xi ∈ Rp, we define the local patch centered at it to be the

set consisted of its kNN and itself, and a local data matrix X(i) associated with this patch

is X(i) = [Xi1 , Xi2 , . . . , Xik , Xi], where Xij is the jth-nearest neighbor of Xi. Let Pi be the

restriction operator to the ith patch, i.e., Pi(X) = XPi where Pi is the n × (k + 1) matrix

that selects the columns of X in the ith patch. Then X(i) = Pi(X). Similarly, we define

S(i) = Pi(S), N (i) = Pi(N) and X̃(i) = Pi(X̃).

Since each local data matrix X(i) is of low rank and S is sparse, we can decompose

the noisy data matrix into low-rank parts and sparse parts through solving the following

optimization problem

(Ŝ, {L̂(i)}ni=1) = arg min
S,L(i)

F (S, {L(i)}ni=1)

≡ arg min
S,S(i),L(i)

n∑
i=1

(
λi‖X̃(i) − L(i) − S(i)‖2

F + ‖C(L(i))‖∗ + β‖S(i)‖1

)
(4.2)

subject to S(i) = Pi(S),

here we take β = max{k, p}−1/2 as in RPCA, X̃(i) = Pi(X̃) is the local data matrix on the ith

patch and C is the centering operator that subtract the column mean: C(Z) = Z(I − 1
k
11T),

where 1 is the (k + 1)-dimensional column vector of all ones. Here we are decomposing the

data on each patch into a low-rank part L(i) and a sparse part S(i) by imposing the nuclear

norm and entry-wise `1 norm on L(i) and S(i), respectively. There are two key components

in this formulation: First, the patches have overlapping components (for example, X1 may

51

belong to several patches). Thus, the constraint S(i) = Pi(S) is particularly important

because it ensures the same point (and the sparse noise on that point) belonging to different

patches eventually has all its copies coincide with each other. Secondly, we do not have such

a requirement on L(i) because the L(i)s correspond to local tangent spaces, which will be

explained in the next section. Although some of the tangent spaces may be close, there is

no reason for a point on the manifold to have the same projection onto two different tangent

spaces. This seemingly subtle difference has a large impact on the final result.

If the data has no Gaussian noise, i.e., N = 0, then X̂ ≡ X̃ − Ŝ is the final estimation

for X. If N 6= 0, we can no longer only remove the sparse noise from X̃ and use X̃ − Ŝ to

approximate the clean data. Instead, we use the supposedly cleaner (See §3) tangent spaces

L̂(i) to construct a final estimate X̂ of X via fitting it to L̂(i)

X̂ = arg min
Z∈Rp×n

n∑
i=1

λi‖Pi(Z)− L̂(i)‖2
F . (4.3)

The following discussion revolves around (4.2) and (4.3), and the structure of the chapter

is as follows. In §4.3, we explain the geometric meaning of each term in (4.2). The choice

of λ requires the information of the curvature of the manifold. Optimization algorithm is

presented is §4.4 and numerical experiments are in §4.5.

4.3 Geometric explanation

We provide a geometric intuition for the formulation (4.2). Let us write the local clean data

matrix X(i) into its Taylor expansion along the manifold,

X(i) = Xi1
T + T (i) +R(i), (4.4)

where the Taylor series is expanded at Xi (the point around which the ith patch is con-

structed), T (i) stores the first order term whose columns lie in the tangent space of the

manifold at Xi, and R(i) contains all the higher order terms. The sum of the first two

terms Xi1
T + T (i) is the linear approximation to X(i) that is unknown if the tangent space

is not given. This linear approximation precisely corresponds to the L(i)s in (4.2), i.e.,

52

L(i) = Xi1
T + T (i). Since the tangent space has the same dimensionality d as the manifold,

with randomly chosen points, we have with probability one, that rank(T (i)) = d. As a result,

rank(L(i)) = rank(Xi1
T + T (i)) ≤ d + 1. By the assumption that d < min{p, k}, we know

that L(i) is indeed low rank.

Combing (4.4) with X̃(i) = X(i) + S(i) + N (i), we find the misfit term X̃(i) − L(i) − S(i)

in (4.2) equals N (i) +R(i). This implies that the misfit contains the high order residue (i.e.,

the linear approximation error) and the Gaussian noise.

4.4 Optimization algorithm

To solve the convex optimization problem (4.2) in a memory-economic way, we first write

L(i) as a function of S and eliminate them from the problem. We can do so by fixing S and

minimizing the objective function with respect to L(i)

L̂(i) = arg min
L(i)

λi‖X̃(i) − L(i) − S(i)‖2
F + ‖C(L(i))‖∗

= arg min
L(i)

λi‖C(L(i))− C(X̃(i) − S(i))‖2
F + ‖C(L(i))‖∗

+ λi‖(I − C)(L(i) − (X̃(i) − S(i)))‖2
F .

(4.5)

Notice that L(i) can be decomposed as L(i) = C(L(i)) + (I − C)(L(i)), set A = C(L(i)), B =

(I − C)(L(i)), then (4.5) is equivalent to

(Â, B̂) = arg min
A,B

λi‖A− C(X̃(i) − S(i))‖2
F + ‖A‖∗ + λi‖B − (I − C)(X̃∗(i) − S(i)))‖2

F ,

which decouples into

Â = arg min
A

λi‖A− C(X̃(i) − S(i))‖2
F + ‖A‖∗,

B̂ = arg min
B

λi‖B − (I − C)(X̃(i) − S(i))‖2
F .

The problems above have closed form solutions

Â = T1/2λi(C(X̃(i) − Pi(S))), B̂ = (I − C)(X̃(i) − Pi(S)), (4.6)

53

where Tµ is the soft-thresholding operator on the singular values

Tµ(Z) = U max{Σ− µI, 0}V ∗, where UΣV ∗ is the SVD of Z.

Combing Â and B̂, we have derived the closed form solution for L̂(i)

L̂(i)(S) = T1/2λi(C(X̃(i) − Pi(S))) + (I − C)(X̃(i) − Pi(S)). (4.7)

Plugging (4.7) into F in (4.2), the resulting optimization problem solely depends on S.

Then we apply FISTA (Beck and Teboulle, 2009c; Sha et al., 2019) to find the optimal

solution Ŝ with

Ŝ = arg min
S

F (L̂(i)(S), S). (4.8)

Once Ŝ is found, if the data has no Gaussian noise, then the final estimation for X is

X̂ ≡ X̃ − Ŝ; if there is Gaussian noise, we use the following denoised local patches L̂(i)
τ∗

L̂
(i)
τ∗ = Hτ∗(C(X̃(i) − Pi(Ŝ))) + (I − C)(X̃(i) − Pi(Ŝ)), (4.9)

where Hτ∗ is the singular value hard thresholding Operator with the optimal threshold as

defined in (Gavish and Donoho, 2014). This optimal thresholding removes the Gaussian

noise from L̂
(i)
τ∗ . With the denoised L̂(i)

τ∗ , we solve (4.3) to obtain the denoised data

X̂ =

(
n∑
i=1

λiL̂
(i)
τ∗P

T
i

)
(
n∑
i=1

λiPiP
T
i)−1. (4.10)

The proposed nonlinear robust principle component analysis (NRPCA) algorithm is sum-

marized in Algorithm 4.1.

There is one caveat in solving (4.2): the strong sparse noise may result in a wrong

neighborhood assignment when constructing the local patches. Therefore, once Ŝ is obtained

and removed from the data, we update the neighborhood assignment and re-compute Ŝ. This

procedure is repeated T times.

4.5 Numerical experiments

We evaluate the performance of the proposed algorithm on simulated and real-world data

sets.

54

Algorithm 4.1: Nonlinear RPCA
Input: Noisy data matrix X̃, k (number of neighbors in each local patch), T

(number of neighborhood updates iterations)
Output: the denoised data X̂, the estimated sparse noise Ŝ

1 Estimate the curvature;
2 Estimate λi, i = 1, . . . , n as in §5, set β as in (4.2);
3 Ŝ ← 0;
4 for iter = 1: T do
5 Find the kNN for each point using X̃ − Ŝ and construct the restriction operators

{Pi}ni=1;
6 Construct the local data matrices X̃(i) = Pi(X̃) using Pi and the noisy data X̃;
7 Ŝ ← minimizer of (4.8) iteratively using FISTA;
8 end
9 Compute each L̂(i)

τ∗ from (4.9) and assign X̂ from (4.10).

Simulated Swiss roll: We demonstrate the superior performance of NRPCA on a

synthetically generated dataset following the mixed noise model (4.1). We sampled 2000

noiseless data Xi uniformly from a 3D Swiss roll and generated the Gaussian noise matrix

with i.i.d. entries obey N (0, 0.25). The sparse noise matrix S is generated by randomly

replacing 100 entries of a zero p × n matrix with i.i.d. samples generated from (−1)y · z

where y ∼ Bernoulli(0.5) and z ∼ N (2, 0.09). We applied NRPCA to the simulated data

with patch size k = 16. Figure 4.1 reports the denoising effect in the original space (3D)

looking down from above. We observed a visible reduction of the noise. A similar experiment

on the high dimensional Swiss roll is in the appendix, where the differences between X̃ − Ŝ

and X̂ are much more apparent.

MNIST:We observe some interesting dimension reduction results of the MNIST dataset

with the help of NRPCA. It is well-known that the handwritten digits 4 and 9 have so high a

similarity that the popular dimension reduction methods Isomap and Laplacian Eigenmaps

are not able to separate them into two clusters (first column of Figure 4.2). We conjecture

that the overlapping parts are caused by personalized writing styles with different beginning

or finishing strokes. This type of differences can be better modelled by sparse noise than

Gaussian or Poisson noises. The right column of Figure 4.2 confirms this conjecture: after

55

Figure 4.1: NRPCA applied to the noisy Swiss roll data set. X̃ − Ŝ is the result after
subtracting the estimated sparse noise via NRPCA with T = 1; “X̃ − Ŝ with one neighbor
update” is that with T = 2, i.e., patches are reassigned once; X̂ is the denoised data obtained
via NRPCA with T = 2; “Patch-wise Robust PCA” refers to the ad-hoc application of the
vanilla RPCA to each local patch independently, whose performance is clearly worse than
the proposed joint-recovery formulation.

the NRPCA denoising (with k = 16), we see a much better separability of the two digits

using the first two coordinates of Isomap and Laplacian Eigenmaps. In addition, these new

embedding results seem to suggest that some trajectory patterns may exist in the data. We

provide additional plots in the appendix to support this observation.

4.6 Conclusion

In this chapter, we proposed the first outlier correction method for nonlinear data analysis

that can correct outliers caused by the addition of large sparse noise. The method is a

generalization of the Robust PCA method to the nonlinear setting. We provided procedures

to treat the non-linearity by working with overlapping local patches of the data manifold

and incorporating the curvature information into the denoising algorithm. We demonstrated

that the method works equally well when Gaussian noises are present in the data in addition

56

to the sparse noise. We established a theoretical error bound on the denoised data that holds

under conditions only depending on the intrinsic properties of the manifold. We tested our

method on both synthetic and real dataset that were known to have nonlinear structures

and reported promising results.

Figure 4.2: Laplacian eigenmaps and Isomap results for the original and the NRPCA de-
noised digits 4 and 9 from the MNIST dataset.

57

CHAPTER 5

ONLINE MATRIX COMPLETION WITH QUATERNION MATRIX

5.1 Introduction

Matrix completion problems aim to recover an unknown matrix given that the matrix has

a low rank. It has been widely studied and has many applications especially in computer

vision (Cabral et al., 2011, 2014), video processing (Ji et al., 2010; Kim et al., 2015), bioin-

formatics (Li et al., 2017; Lu et al., 2018), etc. There are both convex and non-convex

algorithms for solving it. Convex algorithms tend to simplify the problem and use convex

penalties (Recht et al., 2010). While it is easier to find an optimal solution, it may cost a lot

of computational time. Nonconvex algorithms tend to use matrix factorization. Even if they

need less computational time, they may not easily converge to the global optimal solution

because of the saddle points and local optimal solution. In this case, a good initialization is

very important.

Traditional methods for matrix completion have already achieved good performance when

dealing with greyscale images. For each image, we can easily view it as a matrix. As for a

video, we can convert each frame as a vector in a matrix. However, the problem arises when

applied to color images. Color images have three channels (Red, Green, and Blue) that have

a mutual connection. Intuitively, traditional matrix-based methods that treat each channel

separately do not work well.

Some tensor-based methods have been developed to solve this multidimensional data

problem. In this case, it is converted as a low-rank tensor approximation problem where

three channels are considered as a third-order tensor. There are many well-known models

like ANDECOMP/PARAFAC (CP) and Tucker (Zhou et al., 2019; Rauhut et al., 2017).

Similar to matrix SVD, they describe the tensor as the sum of the outer products of vectors.

In a recent paper (Kilmer and Martin, 2011), it proposed t-SVD, which expresses the tensor

58

as the sum of outer products of matrices.

In this chapter, we consider an alternating way and apply quaternion matrices to this

problem. A quaternion matrix has four parts: one real part and three imaginary parts

representing the three channels. Quaternion matrices have been applied to other models

such as Deep Neural Network (Liu et al., 2019; Zhu et al., 2018; Gaudet and Maida, 2018).

They also have been applied on many areas like Natural Language Processing (Parcollet

et al., 2018; Tay et al., 2019) and image processing (Wang et al., 2018; Ye et al., 2020).

Also, there is an increasing trend today that we need to deal with large-scale data.

The traditional offline matrix completion tends to give good performance. Offline matrix

completion model needs to collect all observation data and gets recovery result at once.

However, it is not practical on some applications, such as web data analysis. For example,

in Figure 5.1, a movie ranking system can be seen as a matrix. Each column is a movie

that needs to be rated, and each column corresponds to a user. We need to offer up-to-date

recommendations to users. Moreover, the estimate should be better if we continuously get

observations.

Figure 5.1: A movie rating system. For a given d1×d2 low-rank matrix with missing entries,
it can be factorized by a d1× k user matrix and a k× d2 item matrix where k is the rank of
the original matrix.

This chapter combines quaternion matrices and online matrix completion. We will de-

velop an online low-rank quaternion matrix completion model that can be widely used in

many cases.

59

5.2 Introduction on Quaternion Matrices

We introduce quaternion numbers/matrices and their properties in this section.

5.2.1 Quaternion Numbers

A quaternion number q ∈ Qn is defined as

q = qr + qii + qjj + qkk, (5.1)

where qr, qi, qj, qk ∈ R and i, j,k are three imaginary units satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,ki = −ik = j. (5.2)

The conjugate and modulus of q are respectively defined by

q∗ = qr − qii− qjj− qkk and |q| =
√
q2
r + q2

i + q2
j + q2

k. (5.3)

Let x = [xi] ∈ Qn be a quaternion vector. We define the following three norms for the

quaternion vector x: 1-norm ‖x‖1 :=
∑n

i=1 |xi|, 2-norm ‖x‖2 :=
√∑n

i=1 |xi|2, and ∞-norm

‖x‖∞ := max1≤i≤n |xi|.

Let A = [aij] ∈ Qn1×n2 be a quaternion matrix. We define the following norms: 1-

norm ‖A‖1 =
∑n1

i=1

∑n2

j=1 |aij|, Forbinoes norm ‖A‖F =
√∑n1

i=1

∑n2

j=1 |aij|2 =
√

Tr(A∗A),

where A∗ is the conjugate transpose (or Hermitian transpose) of A, and ∞-norm ‖A‖∞ =

max1≤i≤n1,1≤j≤n2 |aij|. The rank of matrix A is the number of independent rows/columns in

A. A square quaternion matrix is unitary if A∗A = AA∗ = I. An Hermitian quaternion

matrix satisfies A∗ = A, which is an extension of symmetric matrices.

A color image with R (red), G (green), B (blue) channels can be represented by a quater-

nion matrix without the real part. That is,

Aij = Riji +Gijj +Bijk, (5.4)

where Rij, Gij, and Bij are the corresponding R, G, and B channels.

60

5.2.2 Basic Properties

Some properties of quaternion matrices are the same as real matrices. For example,

• The definition of the inner product 〈A,B〉 = Tr〈A∗B〉;

• Spectral norm and the Frobenius norm ‖A∗‖ = ‖A‖, ‖A∗‖F = ‖A‖F ;

• ‖AB‖F ≤ ‖A‖‖B‖F ;

• ‖AB‖ ≤ ‖A‖‖B‖;

• ‖A‖ ≤ ‖A‖F .

• Cauchy-Schwarz inequality Re(tr(A∗B)) ≤ ‖A‖F‖B‖F .

However, we need to be careful about one thing. For real matrices, the matrices in a

trace of a product can be switched without changing the result. However for quarternion

matrices A and B, we can only have

Re(tr(AB)) = Re(tr(BA)). (5.5)

For example, given two quaternion matrices

A =

1, 1

1, 0

+

1, 2

2, 1

 i +

1, 2

2, 1

 j +

1, 1

1, 0

k,

and

B =

1, 2

2, 1

+

1, 1

1, 0

 i +

1, 1

1, 0

 j +

1, 2

2, 1

k,

we have

tr(AB) = −10 + 20i + 6j + 10k,

and

tr(BA) = −10 + 6i + 20j + 10k.

61

In this case, tr(AB) 6= tr(BA). The reason is that the product of two quaternion numbers

may not be the same if the order is changed. For example, let a = 1 + 1i + 2j + 3k and

b = 3 + 2i + 2j + 1k, then we have

a ∗ b = −6 + 1i + 13j + 8k, b ∗ a = −6 + 9i + 3j + 12k.

This difference may cause some difficulties for the theoretical proof, which will be explained

in the following sections.

5.2.3 Singular Value Decomposition

According to the work by Zhang (1997), we can define singular value decomposition for

quaternion matrices. For any quaternion matrix L ∈ Qd1×d2 with rank k, there exists an

unitary quaternion matrixU = [u1, . . . ,ud1] ∈ Qd1×d1 and another unitary quaternion matrix

V = [v1, . . . ,vd2] ∈ Qd2×d2 such that

L = UΣkV
∗ (5.6)

where Σk ∈ Rd1×d2 consists of all singular values of L, σ1 ≥ σ2 ≥ · · · ≥ σk > 0, on its

diagonal entries. Then the spectral norm ‖L‖ := max{σ1, . . . , σk}. The condition number κ

is defined as κ = max{σ1,...,σk}
min{σ1,...,σk}

.

What’s more, for any Hermitian quaternion matrix L ∈ Qd×d with rank k, there exists

an unitary quaternion matrix U = [u1, . . . ,ud], with ui being its i-th column, such that

L = UΣkU
∗ (5.7)

where Σk = diag(σ1, . . . , σk, 0, . . . , 0) ∈ Rd×d consists of all singular values of L, and σ1 ≥

σ2 ≥ · · · ≥ σk > 0.

62

5.2.4 Incoherence Condition

Let W ∈ Qd×k be an orthonormal basis of a subspace of Rd of dimension k, then the

projection to the subspace is PW = WW∗. We define the coherence of W as

µ(W) =
d

k
max
1≤i≤d

‖PWei‖2 =
d

k
max
1≤i≤d

‖e∗iW‖2, (5.8)

where ei is the vector with the i-th component being 1 and others being 0.

Definition 5.2.1. We assume M is µ-incoherent, i.e.,

max
i
‖X∗ei‖2 ≤ µk

d1

, max
i
‖Y∗ei‖2 ≤ µk

d2

(5.9)

and

‖XY∗‖∞ ≤
√

µk

d1d2

, (5.10)

where X ∈ Qd1×k, Y ∈ Qd2×k are the left and right singular vectors of M.

5.2.5 Sampling Scheme

We consider the Bernoulli model for uniform sampling. Let Ω ⊂ [d1]× [d2]. Given a matrix

M, we define the matrix PΩ as

[PΩ(M)]ij =


Mij if (i, j) ∈ Ω,

0 if (i, j) /∈ Ω.

Every time (i, j) is uniformly sampled from Ω. Our goal is to recover M given PΩ(M).

5.3 Online Matrix Completion Algorithms and its Theoretical Anal-
ysis

We first consider a Hermitian quaternion matrix M ∈ Qd×d, i.e., there exists a quaternion

matrix U such that M = UU∗. Also, we write U with its columns as

U = [u1,u2, . . . ,ud].

63

Moreover, we define f(U) as

f(U) = ‖M−UU∗‖2
F

= 〈M,−UU∗〉+ 〈M,M〉+ 〈−UU∗,M〉+ 〈UU∗,UU∗〉.

The stochastic gradient of f(U) given the (i, j) component is

SG(U) = 2d2[(UU∗ −M)ijeie
∗
j + (UU∗ −M)jieje

∗
i]U. (5.11)

Note that (UU∗ −M)∗ij = (UU∗ −M)ji because both M and UU∗ are Hermitian. The

expectation of SG(U) is

ESG(U) =

d,d∑
i=1,j=1

1

d2
2d2((UU∗ −M)ijeie

∗
j + (UU∗ −M)jieje

∗
i)U

= 4(UU∗ −M)U.

Let ∇f(U) := 4(UU∗ −M)U, which is one descent direction of f(U).

We assume ‖M‖ = 1. Then κ = 1
σmin(M)

, namely, σmin(M) = 1
κ
. We also denote

SVD(M) = XSX∗, SVD(UU∗) = WDW∗.

Here X ∈ Qd×k with k orthogonal columns and S ∈ Rk×k is a diagonal square matrix.

First, we prepare with a few lemmas about properties of f(U) in a local Frobenious ball

around optimal.

Lemma 5.3.1. Within the region D = {U|‖U‖ ≤ Γ}, we have the function f(U) satisfying

for any U1,U2 ∈ D:

‖∇f(U1)−∇f(U2)‖F ≤ β‖U1 −U2‖F , (5.12)

with β = 16 max{‖U1‖2, ‖U2‖2, 1}.

64

Proof. From the definition of ∇f(U), we have

‖∇f(U1)−∇f(U2)‖F

=‖4(U1U
∗
1 −M)U1 − 4(U2U

∗
2 −M)U2‖F

≤4‖U1U
∗
1U1 −U2U

∗
2U2‖F + 4‖M(U1 −U2)‖F

=4‖U1U
∗
1(U1 −U2) + U1(U1 −U2)∗U2 + (U1 −U2)U∗2U2‖F + 4‖M(U1 −U2)‖F

≤4‖U1‖2‖U1 −U2‖F + 4‖U1‖‖U2‖‖U1 −U2‖F

+ 4‖U2‖2‖U1 −U2‖F + 4‖M‖‖U1 −U2‖F

≤12 max{‖U1‖2, ‖U2‖2}‖U1 −U2‖F + 4‖M‖‖U1 −U2‖F

≤16 max{‖U1‖2, ‖U2‖2, 1}‖U1 −U2‖F .

We have completed the proof.

Lemma 5.3.2. Within the region D = {U|σmin(X∗U) ≥ γ}, the function f(U) = ‖M −

UU∗‖2
F satisfies

‖∇f(U)‖2
F ≥ 4γ2f(U). (5.13)

Proof. Inside the region D, we let SVD(UU∗) = WDW∗, thus we have

‖∇f(U)‖2
F

=16‖(UU∗ −M)U‖2
F

=16(‖PW(UU∗ −M)U‖2
F + ‖PW⊥(UU∗ −M)U‖2

F)

=16
(
tr(PW(UU∗ −M)UU∗(UU∗ −M)PW) + ‖PW⊥MU‖2

F

)
=16

(
tr(PW(UU∗ −M)WDW∗(UU∗ −M)PW) + ‖PW⊥MU‖2

F

)
≥16(σmin(D)‖PW(UU∗ −M)PW‖2

F + ‖PW⊥MU‖2
F)

=16(σmin(D)‖UU∗ − PWMPW‖2
F + ‖PW⊥MU‖2

F).

65

The inequality holds because

tr(PW(UU∗ −M)WDW∗(UU∗ −M)PW)

≥σmin(D)tr(PW(UU∗ −M)WW∗(UU∗ −M)PW)

=σmin(D)tr(PW(UU∗ −M)WW∗WW∗(UU∗ −M)PW)

The last equality is true because PWUU∗PW = WW∗WDW∗WW∗ = WDW∗ = UU∗.

On the other hand, we have

‖PW⊥MU‖2
F = ‖PW⊥XSX∗U‖2

F ≥ σ2
min(X∗U)‖PW⊥XS‖2

F

=σ2
min(X∗U)tr(PW⊥M

2PW⊥) = σ2
min(X∗U)‖PW⊥M‖2

F ,

and

σmin(D) = λmin(UU∗) = λmin(U∗U)

≥λmin(U∗PXU) = σ2
min(X∗U).

Finally, we can get

‖∇f(U)‖2
F

≥16(σmin(D)‖UU∗ − PWMPW‖2
F + σmin(X∗U)‖PW⊥M‖2

F)

≥16σ2
min(X∗U)(‖UU∗ − PWMPW‖2

F + ‖PW⊥M‖2
F))

=16σ2
min(X∗U)(‖UU∗ − PWMPW‖2

F + ‖PW⊥M(PW + PW⊥)‖2
F))

=16σ2
min(X∗U)(‖UU∗ − PWMPW‖2

F + ‖PW⊥MPW‖2
F + ‖PW⊥MPW⊥‖2

F)

≥4σ2
min(X∗U)(‖UU∗ − PWMPW‖2

F + ‖PW⊥MPW‖2
F + ‖PWMPW⊥‖2

F

+ ‖PW⊥MPW⊥‖2
F)

=4σ2
min(X∗U)‖UU∗ −M‖2

F

≥4γ2‖UU∗ −M‖2
F .

The third inequality holds because we have

‖PW⊥MPW‖F = ‖PWMPW⊥‖F . (5.14)

66

The third equality holds because the inner product between each pair of UU∗ −PWMPW,

PWMPW⊥ , PW⊥MPW and PW⊥MPW⊥ is 0.

Lemma 5.3.3. Within the region D = {U|‖M−UU∗‖F ≤ 1
10
σk(M)}, we have

‖U‖ ≤
√

2‖M‖, σmin(X∗U) ≥
√
σk(M)/2. (5.15)

Proof. From the definition of the spectral norm, we have

‖U‖2 =‖UU∗‖ ≤ ‖M‖+ ‖M−UU∗‖

≤‖M‖+ ‖M−UU∗‖F ≤ 2‖M‖.

We have the following lower bound for the smallest nonzero singular value of U∗U,

σmin(U∗U) =σk(UU∗) = σk(M− (M−UU∗))

≥σk(M)− ‖M−UU∗‖ ≥ 9

10
σk(M).

The first inequality holds because ∀i, j ∈ N, we have

σi(A) ≥ σi+j−1(A + B)− σj(B).

On the other hand, we denote the orthogonal complementary space of X as X⊥. Then we

have

9

10
σk(M)‖X∗⊥W‖2 ≤ 9

10
σmin(U∗U)‖X∗⊥W‖2 ≤ σmin(D)‖X∗⊥W‖2

≤‖X∗⊥WDW∗X⊥‖ ≤ ‖X∗⊥UU∗X⊥‖F

=‖PX⊥(M−UU∗)PX⊥‖F

≤‖M−UU∗‖F ≤
1

10
σk(M).

The last equality is true because

tr(X∗⊥UU∗X⊥X
∗
⊥UU∗X⊥) = tr(X⊥X∗⊥UU∗X⊥X

∗
⊥X⊥X

∗
⊥UU∗X⊥X

∗
⊥)

67

and

tr(X⊥X∗⊥MX⊥X
∗
⊥X⊥X

∗
⊥MX⊥X

∗
⊥) = tr(X⊥X∗⊥XSX∗X⊥X

∗
⊥XSX∗X⊥X

∗
⊥) = 0

Let the principal angle between X and W be θ. According to the inequality above, sin2 θ =

‖X∗⊥W‖2 ≤ 1
9
. So cos2 θ = σ2

min(X∗W) ≥ 8
9
. We have

σ2
min(X∗U) =σmin(X∗UU∗X) = σmin(X∗WDW∗X)

≥σmin(D)σ2
min(X∗W) ≥ 9

10
σk(M)× 8

9
≥ σk(M)/2.

The lemma is proved.

Now we are well prepared for the main theorem.

Theorem 5.3.4. Let f(U) = ‖UU∗ −M‖2
F and gi(U) = ‖e∗iU‖2. Suppose after initializa-

tion, we have

f(U0) ≤
(

1

20κ

)2

, max
i
gi(U0) ≤ 10µkκ2

d
.

Then, there exists some absolute constant c such that for any learning rate η < c
µdkκ3 log d

,

with at least 1− T
d10

probability, we will have for all t ≤ T that

f(Ut) ≤
(

1− η

2κ

)t(1

10κ

)2

, max
i
gi(Ut) ≤

20µkκ2

d
.

Proof. Let the filtration be Ft = σ{SG(U0), SG(U1), · · · , SG(Ut−1)}, i.e., an increasing

sequence of σ−field.

We define event εt =
{
∀τ ≤ t, f(Uτ) ≤ (1− η

2κ
)t(1

10κ
)2,maxi gi(Uτ) ≤ 20µkκ2

d

}
. We aim

to prove that this event happens with high probability. Conditioned on εt, we have ‖Ut‖ ≤
√

2, σmin(X∗Ut) ≥ 1√
2κ

and σmin(U∗tUt) ≥ 1
2κ

based on Lemma 5.3.3.

Construction of supermartingale G: Let gi(U) = e∗iUU∗ei, for any change ∆U, we

have

gi(U + ∆U) =e∗i (U + ∆U)(U + ∆U)∗ei

=gi(U) + e∗i (∆UU∗ + U∆U∗)ei + ‖e∗i∆U‖2.

68

For any l ∈ [d]:

E‖e∗l SG(U)‖21εt

=4d4E‖
(
e∗l (u

∗
iuj −Mij)eie

∗
j + e∗l (u

∗
jui −Mji)eje

∗
i

)
U‖21εt

≤16d4E‖e∗l (u∗iuj −Mij)eie
∗
jU‖21εt

≤16d4Eδil|u∗iuj −Mij|2 max
i
‖e∗iU‖21εt

=16d4 1

d2

∑
i,j

δil|u∗iuj −Mij|2 max
i
‖e∗iU‖21εt

=16d2‖e∗l (UU∗ −M)‖2 max
i
‖e∗iU‖21εt

≤O(µ2k2κ4).

The last inequality holds because we have

‖e∗l (UU∗ −M)‖ ≤‖e∗lUU∗‖+ ‖e∗lM‖

≤‖U‖‖U∗el‖+ ‖e∗lX‖

≤
√

2

√
20µkκ2

d
+

√
µk

d

≤O(

√
µkκ2

d
).

On the other hand, we know

E[gi(Ut+1)1εt |Ft]

=E[gi(Ut − ηSG(Ut))1εt |Ft]

=[gi(Ut)− ηe∗iESG(Ut)U
∗
tei − ηe∗iUtESG(Ut)

∗ei + η2Ee∗iSG(Ut)SG(Ut)
∗ei]1εt

=[gi(Ut)− 2ηRe(e∗iESG(Ut)U
∗
tei) + η2E‖e∗iSG(Ut)‖2]1εt

=[e∗iUtU
∗
tei − 8ηRe(e∗i (UtU

∗
t −M)UtU

∗
tei) + η2E‖e∗iSG(Ut)‖2]1εt

=[tr(U∗teie
∗
iUt)− 8ηRe(tr(U∗teie

∗
i (UtU

∗
t −M)Ut)) + η2E‖e∗iSG(Ut)‖2]1εt

=[Re(tr(U∗teie
∗
i (I− 8η(UtU

∗
t −M))Ut)) + η2E‖e∗iSG(Ut)‖2]1εt

=[Re(tr(U∗teie
∗
iUt(I− 8ηU∗tUt))) + 8ηRe(tr(U∗teie

∗
iMUt)) + η2E‖e∗iSG(Ut)‖2]1εt

≤[(1− 8ησmin(U∗tUt))gi(Ut) + 8ηRe(tr(U∗teie
∗
iMUt)) + η2E‖e∗iSG(Ut)‖2]1εt

69

For the middle term, we have

8ηRe(tr(U∗teie
∗
iMUt)) =4η(tr(U∗teie

∗
iMUt) + tr(U∗tMeie

∗
iUt))

≤8η‖U∗tei‖2‖e∗iMUt‖2

≤8η‖U∗tei‖2‖Ut‖‖e∗iM‖2

≤8η

√
20µkκ2

d

√
2‖e∗iXSX∗‖2

≤16η

√
10µkκ2

d
‖e∗iXS‖2

≤16η

√
10µkκ2

d
‖e∗iX‖2

≤16η

√
10µkκ2

d

√
µk

d
=

16
√

10ηµkκ

d
.

The first inequality holds because

tr(U∗teie
∗
iMUt) + tr(U∗tMeie

∗
iUt) = 2Re(tr(e∗iMUtU

∗
tei))

≤2‖U∗i ei‖2‖e∗iMUt‖2.

The fourth inequality holds because ‖X‖ = 1. The fifth inequality holds because ‖S‖ =

‖M‖ = 1. The last inequality comes from the incoherence definition of M:

‖e∗iX‖2 ≤
√
µk

d
.

In this case,

E[gi(Ut+1)1εt|Ft]

≤[(1− 4η

κ
)gi(Ut) +

16
√

10ηµkκ

d
+ η2O(µ2k2κ4)]1εt

≤
[
(1− 4η

κ
)gi(Ut) + 60

ηµkκ

d

]
1εt .

We can get the last inequality if the stepsize η is small enough.

70

We let Git =
(
1− 4η

κ

)−t (
gi(Ut)1εt−1 − 15µkκ

2

d

)
and have

E[Gi(t+1)|Ft] =

(
1− 4η

κ

)−t−1 [
E[gi(Ut+1)1εt|Ft]− 15

µkκ2

d

]
≤
(

1− 4η

κ

)−t [
gi(Ut)1εt +

60ηµkκ2

(κ− 4η)d
1εt −

15µkκ3

(κ− 4η)d

]
≤Git.

The last inequality is true because we have

1εt ≤ 1εt−1 .

That’s to say, Git is a supermartingale.

Probability 1 bound for G: We know that

Gi(t+1) − E[Gi(t+1)|Ft] =

(
1− 4η

κ

)−t−1

(gi(Ut+1)1εt − E[gi(Ut+1)1εt |Ft])

=

(
1− 4η

κ

)−t−1

[−ηe∗i [UtSG(Ut)
∗ + SG(Ut)U

∗
t

− (UtESG(Ut)
∗ + ESG(Ut)U

∗
t)]ei

+ η2[‖e∗iSG(Ut)‖2 − E‖e∗iSG(Ut)‖2]
]
1εt .

Let l ∈ [d], we need to approximate the upper bounds for e∗l [[SG(Ut)]U
∗
t +UtSG(Ut)

∗]el

and ‖e∗l SG(Ut)‖21εt . For the first term, we have

e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el

=e∗l [(UtU
∗
t −M)ijeie

∗
j + (UtU

∗
t −M)jieje

∗
i]UtU

∗
tel+

e∗lUtU
∗
t [(UtU

∗
t −M)ijeie

∗
j + (UtU

∗
t −M)jieje

∗
i]el.

We consider the upper bounds for different conditions.

• If l 6= i and l 6= j, we have e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el = 0.

71

• if l = j 6= i, we have

e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el

=2d2(UtU
∗
t −M)jie

∗
iUtU

∗
tej + e∗jUtU

∗
t (UtU

∗
t −M)ijei

=2d2Re[(UtU
∗
t −M)ije

∗
iUtU

∗
tej]

≤2d2‖UtU
∗
t −M‖∞max

i
‖e∗iUt‖2 ≤ O(µ2k2κ4).

The last second inequality is true because we have

‖UU∗ −M‖∞ ≤ ‖UU∗‖∞ + ‖M‖∞

≤max
i
‖e∗iU‖2 + max

i
|eiXSX∗ei|

≤20µkκ2

d
+ ‖M‖µk

d
≤ 21µkκ2

d
.

• if l = j = i, we have

e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el

=2d2(UtU
∗
t −M)iie

∗
iUtU

∗
tei + 2d2e∗iUtU

∗
t (UtU

∗
t −M)iiei

=4d2(UtU
∗
t −M)ii‖e∗iUt‖2

≤4d2‖UtU
∗
t −M‖∞max

i
‖e∗iUt‖2 ≤ O(µ2k2κ4).

Therefore, we can always have e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el1εt ≤ O(µ2k2κ4)1εt . For

the second term, we have

‖e∗l SG(Ut)‖21εt

≤4d4|UtU
∗
t −M|2ij(‖e∗l eie∗jU∗t‖+ ‖e∗l eje∗iU∗t‖)21εt

≤16d4‖UtU
∗
t −M‖2

∞max
i
‖e∗iUt‖21εt ≤ O(µ3dk3κ6)1εt

For any l ∈ [d], we have e∗l [[SG(Ut)]U
∗
t+UtSG(Ut)

∗]el ≤ O(µ2k2κ4) and ‖e∗l SG(Ut)‖2 ≤

O(µ3dk3κ6). Since the (i, j) component is randomly sampled from M. In this case, we also

have

E(e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el) ≤ O(µ2k2κ4),

72

and

E(‖e∗l SG(Ut)‖21εt) ≤ O(µ3dk3κ6)1εt .

In fact, we have that E[Gi(t+1)|Ft] ≥ 0. By letting η small enough, we have with probability

1,

Gi(t+1) − E[Gi(t+1)|Ft] ≤
(

1− 4η

κ

)−t−1

ηO(µ2k2κ4)1εt . (5.16)

Variance bound for G: We need to approximate an upper bound for two variances:

Var(e∗l [[SG(Ut)]U
∗
t + UtSG(Ut)

∗]el1εt) and Var(‖e∗l SG(Ut)‖2el1εt). For the first term, we

have:

Var(Re(e∗l [SG(Ut)]U
∗
tel) · 1εt|Ft)

≤E[(Re(e∗l [SG(Ut)]U
∗
tel))

2 · 1εt |Ft]

=E[(Re(tr(U∗tele
∗
l [SG(Ut)])))

2 · 1εt |Ft]

≤4d4E[(Re(tr(U∗tele
∗
l (UtU

∗
t −M)ijeie

∗
jUt))

+ Re(tr(U∗tele
∗
l (UtU

∗
t −M)jieje

∗
iUt)))

2 · 1εt|Ft]

≤8d4E[(Re(tr(U∗tele
∗
l (UtU

∗
t −M)ijeie

∗
jUt)))

2 · 1εt |Ft]

+ 8d4E[(Re(tr(U∗tele
∗
l (UtU

∗
t −M)jieje

∗
iUt)))

2 · 1εt|Ft]

=16d2
∑
i,j

[(Re(tr(U∗tele
∗
l (UtU

∗
t −M)ijeie

∗
jUt)))

2 · 1εt |Ft]

≤16d2
∑
j

|(UtU
∗
t −M)lj|2 max

i
‖U∗tei‖41εt

=16d2‖el(UtU
∗
t −M)‖2 max

j
‖e∗jUt‖41εt ≤ O

(
µ3k3κ6

d

)
1εt .

The second equality is based on the definition of expectation. For the fourth inequality, we

need to consider different conditions.

• if l 6= i, (Re(tr(U∗tele∗l (UtU
∗
t −M)ijeie

∗
jUt)))

2 = 0.

73

• if l = i, we have

(Re(tr(U∗tele
∗
l (UtU

∗
t −M)ijeie

∗
jUt)))

2 = (Re(tr(U∗tel(UtU
∗
t −M)lje

∗
jUt)))

2

≤‖U∗tel‖2
2‖(UtU

∗
t −M)lje

∗
jUt‖2

2 ≤ |UtU
∗
t −M)lj|2 max

i
‖U∗tei‖4.

For the second term, we have:

Var(‖e∗l SG(Ut)‖21εt |Ft)

≤E(‖e∗l SG(Ut)‖41εt |Ft)2

=16
1

d2

∑
i,j

d8‖e∗l ((UtU
∗
t −M)ijeie

∗
j + (UtU

∗
t −M)jieje

∗
i)Ut‖41εt

≤128d6
∑
i,j

‖e∗l (UtU
∗
t −M)ijeie

∗
jUt‖41εt + 128d6

∑
i,j

‖e∗l (UtU
∗
t −M)jieje

∗
iUt‖41εt

=256d6
∑
j

|(UU∗ −M)lj|4‖e∗jUt‖41εt

≤O(1)d6‖UU∗ −M‖2
∞‖e∗l (UU∗ −M)‖2 max

i
‖e∗iU‖41εt

≤O(µ5dk5κ10)1εt .

The second inequality follows from (a + b)4 ≤ 8a4 + 8b4, and the second equality holds

by considering the two cases l 6= i and l = i.

Therefore, we can choose a small η and obtain

Var(Gi(t+1)|Ft) ≤
(

1− 4η

κ

)−2t−2

η2O

(
µ3k3κ6

d

)
1εt . (5.17)

Berstein’s inequality for G: Let σ2 =
∑t

τ=1 Var(Giτ |Fτ−1), and there exists R such

that, |Giτ − E[Giτ |Fτ−1]| ≤ R, τ = 1, . . . t. with probability 1. Then by standard Berstein

concentration inequality,

P (Git ≥ Gi0 + s) ≤ exp
(
− s2/2

σ2 +Rs/3

)
. (5.18)

Since Gi0 = gi(U0)− 15µkκ
2

d
, let s̃ = O(1)

(
1− 4η

κ

)t
[
√
σ2 log d+R log d], we know

P

(
gi(Ut)1εt−1 ≥ 15

µkκ2

d
+

(
1− 4η

κ

)t
(gi(U0)− 15

µkκ2

d
) + s̃

)
≤ 1

2d11
. (5.19)

74

Based on (5.16), we know R = (1 − 4η
κ

)−tηO(µ2k2κ4) satisfies Giτ − E[Giτ |Fτ−1] ≤ R

where τ = 1, . . . , t. Also, by the variance bound for G in (5.17), we can have

(
1− 4η

κ

)t√
σ2 log d ≤ηO

(√
µ3k3κ6 log d

d

)√√√√ t∑
τ=1

(
1− 4η

κ

)2t−2τ

≤ηO

(√
µ3k3κ6 log d

d

)√
κ

η
≤ √ηO

(√
µ3k3κ7 log d

d

)
.

By choosing η < c
µdkκ3 log d

and choosing c to be small enough, we have

s̃ ≤ √ηO

(√
µ3k3κ7 log d

d

)
+ ηO(µ2k2κ4 log d) ≤ O

(
µkκ2

d

)
+O

(
µkκ

d

)
≤ µkκ2

d
.

Since we have initialization max
i
gi(U0) ≤ 10µkκ2

d
, by the Bernstein’s inequality, we have

P

(
gi(Ut)1εt−1 ≥ 20

µkκ2

d

)
≤ 1

2d11
.

Namely,

P

(
εt−1 ∩

{
gi(Ut)1εt−1 ≥ 20

µkκ2

d

})
≤ 1

2d11
.

We also need to construct another supermartingale F .

Construction of supermatingale F : From the definition of SG(Ut), we have

E‖SG(Ut)‖2
F1εt

≤16d4E(UU∗ −M)2
ij max

i
‖e∗iUt‖21εt

≤16d2‖UtU
∗
t −M‖2

F max
i
‖e∗iUt‖21εt ≤ O(µdkκ2)f(Ut)1εt .

(5.20)

By the update equation

Ut+1 = Ut − ηSG(Ut), (5.21)

75

we can have

E[f(Ut+1)1εt |Ft]

≤[f(Ut)− E〈∇f(Ut), ηSG(Ut)〉+ η2E‖SG(Ut)‖2
F]1εt

=[f(Ut)− η‖∇f(Ut)‖2
F + η2E‖SG(Ut)‖2

F]1εt

≤
[(

1− 2η

κ

)
f(Ut) + η2O(µkdκ2)f(Ut)

]
1εt

≤
(

1− η

κ

)
f(Ut)1εt .

The first inequality comes from second order Taylor expansion, and we choose a small η and

increase the coefficient on the second order term from η2/2 to η2. The second inequality uses

Lemma 5.3.2. The last inequality holds when we choose a small η.

Let Ft = (1− η
κ
)−tf(Ut)1εt−1 , then

E[Ft+1|Ft] =
(

1− η

κ

)−t−1

E[f(Ut+1)1εt |Ft] ≤
(

1− η

κ

)−t
f(Ut)1εt ≤ Ft.

Therefore, Ft is a supermartingale.

Probability 1 bound for F : From the definition of F , we have

Ft+1 =
(

1− η

κ

)−t−1

f(Ut+1)1εt

=
(

1− η

κ

)−t−1

‖Ut+1U
∗
t+1 −M‖2

F1εt

=
(

1− η

κ

)−t−1

‖UtU
∗
t −M− η(UtSG(Ut)

∗ + SG(Ut)U
∗
t)

+ η2SG(Ut)SG(Ut)
∗‖2
F1εt .

Define f̂(η) := f(Ut − ηSG(Ut)). By the second order Taylor expansion with respect to η,

76

we can have

f(Ut+1) =f̂(0) + η∇f̂(0) +
η2

2
∇2f̂(ξ)

=‖UtU
∗
t −M‖2

F + η(−2Re〈UtU
∗
t −M,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉)

+
η2

2
(2〈UtSG(Ut)

∗ + SG(Ut)U
∗
t ,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉

+ 4Re〈UtU
∗
t −M, SG(Ut)SG(Ut)

∗〉

− 12ξRe〈UtSG(Ut)
∗ + SG(Ut)U

∗
t , SG(Ut)SG(Ut)

∗〉

+ 12ξ2〈SG(Ut)SG(Ut)
∗, SG(Ut)SG(Ut)

∗〉).

where

∇f̂(0) = −2Re〈UtU
∗
t −M,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉,

and

∇2f̂(ξ) =2〈UtSG(Ut)
∗ + SG(Ut)U

∗
t ,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉

+ 4Re〈UtU
∗
t −M, SG(Ut)SG(Ut)

∗〉

− 12ξRe〈UtSG(Ut)
∗ + SG(Ut)U

∗
t , SG(Ut)SG(Ut)

∗〉

+ 12ξ2〈SG(Ut)SG(Ut)
∗, SG(Ut)SG(Ut)

∗〉

=4Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉

+ 2‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F .

Then we need to bound

Ft+1 − E[Ft+1|Ft] =
(

1− η

κ

)−t−1

[f(Ut+1)− E(f(Ut+1)|Ft)]1εt .

77

Firstly,

‖UtU
∗
t −M‖∞1εt

= max
ij
|ei(UtUt −M)ej|1εt

= max
ij
|ei(PX + PX⊥)(UtUt −M)ej|1εt

≤max
ij
|eiPX(UtUt −M)ej|1εt + max

ij
|eiPX⊥UtUtej|1εt

≤max
ij
‖e∗iX‖‖X∗(UtU

∗
t −M)ej‖1εt + ‖e∗jW‖‖W∗WDW∗PX⊥ei‖

≤max
ij
‖e∗iX‖‖(UtU

∗
t −M)ej‖+ ‖e∗jW‖‖WDW∗PX⊥ei‖

≤max
i
‖e∗iX‖‖UtU

∗
t −M‖F + ‖e∗jW‖‖(UtU

∗
t −M)PX⊥ei‖

≤O

(√
µk

d

)√
f(Ut) +O

(√
µkκ3

d

)√
f(Ut)

≤O

(√
µkκ3

d

)√
f(Ut).

The fifth inequality comes from

‖e∗iW‖ ≤ ‖eiWD
1
2‖ 1

λ
1
2
min(D)

=
‖eiUt‖

λ
1
2
min(D)

≤
√

2κ

√
20µkκ2

d
.

As we know, for the first-order derivative,

Re〈UtU
∗
t −M,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉

=Re〈UtU
∗
t −M,UtSG(Ut)

∗〉+ Re〈UtU
∗
t −M, SG(Ut)U

∗
t 〉

≤2
√

2‖UtU
∗
t −M‖F‖SG(Ut)‖F

=4
√

2d2
√
f(Ut)‖(UtU

∗
t −M)ijeie

∗
jUt + (UtU

∗
t −M)jieje

∗
iUt‖F

≤4
√

2d2
√
f(Ut)(‖(UtU

∗
t −M)ijeie

∗
jUt‖F + ‖(UtU

∗
t −M)jieje

∗
iUt‖F)

≤4
√

2d2
√
f(Ut)‖UtU

∗
t −M‖∞(‖eie∗jUt‖F + ‖eje∗iUt‖F)

≤8
√

2d2
√
f(Ut)‖UtU

∗
t −M∗‖∞max

i
‖e∗iUt‖

≤O(µdkκ2.5)f(Ut).

78

Here, the first inequality comes from ‖U‖ ≤
√

2.

For the second-order derivative, with a small enough η, we have

4Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉

+ 2‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F

≤O(1)‖SG(Ut)‖2
F

≤O(1)d4‖UtU
∗
t −M‖2

∞max
i
‖e∗iUt‖2

≤O(µ2d2k2κ5)f(Ut).

The first inequality holds because when η is small enough, we have an uniform upper bound

for ‖U− ξSG(Ut)‖ and ‖(Ut− ξSG(Ut))(Ut− ξSG(Ut))
∗−M‖. In this case, if we choose

η to be small enought, we can have with probability 1,

|Ft+1 − E[Ft+1|Ft]| ≤
(

1− η

κ

)−t−1

ηO(µdkκ2.5)f(Ut+1)1εt

≤
(

1− η

κ

)−t−1 (
1− η

2κ

)t+1

ηO(µdkκ0.5).

(5.22)

Variance bound for F : For the first order derivative,

Var(Re〈UtU
∗
t −M,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉)

≤E(Re〈UtU
∗
t −M,UtSG(Ut)

∗ + SG(Ut)U
∗
t 〉)2

≤2E(Re〈UtU
∗
t −M,UtSG(Ut)

∗)2 + 2E(Re〈UtU
∗
t −M, SG(Ut)U

∗
t 〉)2

≤2‖(UtU
∗
t −M)Ut‖2

FE‖SG(Ut)‖2
F + 2‖U∗t (UtU

∗
t −M)‖2

FE‖SG(Ut)‖2
F

≤8E‖(UtU
∗
t −M)‖2

FE‖SG(Ut)‖2
F

≤O(µdkκ2)f 2(Ut),

where the last inequality comes from (5.20).

79

For the second order derivative, when η is small enough, we have

Var(4Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉

+ 2‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F)

≤E(4Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉

+ 2‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F)2

=E(4Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉)2

+ E(2‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F)2)2

+ E(8Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉

· ‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F)

≤E2(4Re〈(Ut − ξSG(Ut))(Ut − ξSG(Ut))
∗ −M, SG(Ut)SG(Ut)

∗〉)2

+ E2(2‖SG(Ut)(Ut − ξSG(Ut))
∗ + (Ut − ξSG(Ut))SG(Ut)

∗‖2
F)2)2

≤O(1)E‖SG(Ut)‖4
F

=O(d8)E‖(UtU
∗
t −M)ijeie

∗
jU + (UtU

∗
t −M)jieje

∗
iUt‖4

F

≤O(d8)‖UtU
∗
t −M‖2

∞E|(UtU
∗
t −M)ij|2 max

i
‖eiUt‖4

≤O(d6)‖UtU
∗
t −M‖∞2‖UtU

∗
t −M‖2

F max
i
‖eiUt‖4

≤O(µ3d3k3κ7)f 2(Ut).

Therefore, we can have with probability 1,

Var(Ft+1|Ft) ≤
(

1− η

κ

)−2t−2

η2O(µdkκ2)f 2(Ut)1εt

≤
(

1− η

κ

)−2t−2 (
1− η

2κ

)2t+2

η2O

(
µdk

κ2

)
1εt .

(5.23)

Berstein’s inequality for F : Let σ2 =
∑t

τ=1 Var(Fτ |Fτ−1) and R satisfies |Fτ −

E[Fτ |Fτ−1]| ≤ R according to (5.22), τ = 1, · · · , t. Then by the standard Bernstein concen-

tration inequality, we know:

P (Ft ≥ F0 + s) ≤ exp

(
− s2/2

σ2 +Rs/3

)
.

80

Let s̃ = O(1)
(
1− η

κ

)t
[
√
σ2 log d+R log d]. So when d ≥ 2, we have

P

(
f(Ut)1εt−1 ≥

(
1− η

κ

)t
f(U0) + s̃

)
≤ 1

2d10
.

We can know that R =
(
1− η

κ

)−t (
1− η

2κ

)t
ηO(µdkκ0.5). By the variance bound of F in

(5.23), we have

(
1− η

κ

)t√
σ2 log d ≤ ηO

(√
µdk log d

κ2

)√√√√ t∑
τ=1

(
1− η

κ

)2t−2τ (
1− η

2κ

)2τ

≤
(

1− η

2κ

)t
ηO

(√
µdk log d

κ2

)√√√√ t∑
τ=1

(
1− η

κ

)2t−2τ (
1− η

2κ

)2τ−2t

≤
(

1− η

2κ

)√
ηO

(√
µdk log d

κ

)
.

The last inequality holds because we have
t∑

τ=1

(
1− η

κ

)2t−2τ (
1− η

2κ

)2τ−2t

<
4(κ

η
)2 − 4κ

η
+ 1

4κ
η
− 3

≤ κ

η
.

By η < c
µdkκ3 log d

and choosing c to be small enough, we have:

s̃ =
(

1− η

2κ

)t [√
ηO

(√
µdk log d

κ

)
+ ηO(µdkκ0.5)

]
≤
(

1− η

2κ

)t(1

20κ

)2

.

Since F0 = f(U0) ≤ 1
(20κ)2

, we can have

P

(
f(Ut)1εt−1 ≥

(
1− η

2κ

)t(1

10κ

)2
)
≤ 1

2d10
.

That’s to say,

P

(
εt−1 ∩

{
f(Ut) ≥

(
1− η

2κ

)t(1

10κ

)2
})
≤ 1

2d10
.

Probability for event εT : We need to combine the concentration result for martingales

G and F . Then we get

P (εt−1 ∩ ε̄t) = P

(
εt−1 ∩

(
∪i
{
gi(Ut) ≥ 20

µkκ2

d

}
∪

{
f(Ut) ≥

(
1− η

2κ

)t(1

10κ

)2
}))

≤
d∑
i=1

P

(
εt−1 ∩

{
gi(Ut) ≥ 20

µkκ2

d

})
+ P

(
εt−1 ∩

{
f(Ut) ≥ (1− η

2κ
)t(

1

10κ
)2

})
≤ 1

d10
.

The theorem is proved in the Hermitian case.

81

5.4 Algorithms

In this section, we give algorithms for both Hermitian and general cases.

5.4.1 The Hermitian Case

For the Hermitian case, we need to find one matrix U so that UU∗ ≈ M. Given an new

observation (i, j), one or two rows of U is updated for every iteration. The SGD computation

is given by (5.11), and η is the stepsize. For the convergence in this chapter, η has to satisfy

η < c
µdkκ3 log d

in our theoretical proof with a small c. However, in practices, we may choose

a larger stepsize. T is the total number of required observations. The algorithm is described

in Algorithm 5.1.

Algorithm 5.1: Online learning algorithm for the Hermitian matrix M

Input: Initial Ω0 ∈ Qd×d, learning rate η, iterations T, U0U
∗
0 ← top k SVD of

d2

Ω0
PΩ0(M)

Output: U, s.t.UU∗ ≈M
1 for t = 0, 1, 2, 3, . . . , T-1 do
2 Observe Mij where (i, j) ⊂ {1, · · · , d} × {1, · · · , d} is uniform distributed ;
3 Ut+1 = Ut − 2ηd2((UtU

∗
t −M)ijeie

∗
j + (UtU

∗
t −M)jieje

∗
i))Ut

4 end

5.4.2 The General Case

In the general case with the quaternion matrix M ∈ Qd1×d2 . We need to find two matrices

U ∈ Qd1×k andV ∈ Qd2×k so thatUV∗ ≈M. Ω0 is the initial coordinates set of observation,

from which we construct a good initialization U0. For each iteration given one observation

Mi,j, we update the i-th row of Ut and the j-th row Vt. Both rows are updated by SGD

in a similar way as the Hermitian case. The parameter η is the stepsize, and T is the total

number of observations. The algorithm is described in Algorithm 5.2.

In practice, we use Algorithm 5.3 to increase the speed just like (Jin et al., 2016). Instead

of directly doing SVD on a d1×d2 quaternion matrix UV∗, we do SVD on two smaller k×k

82

quaternion matrix U∗tUt and V∗tVt.

Algorithm 5.2: Online learning algorithm for general M (theoretical version)
Input: Initial Ω0 ∈ Qd1×d2 , learning rate η, iterations T, U0V

∗
0 ← top k SVD of

d1×d2
Ω0

PΩ0(M)
Output: U, V, s.t.UV∗ ≈M

1 for t = 0, 1, 2, 3, . . . , T-1 do
2 WUDW∗

V ← SVD(UtV
∗) ;

3 Ũt ←WUD
1
2 , Ṽt ←WVD

1
2 ;

4 Observe Mijwhere(i, j) ⊂ {1, · · · , d} × {1, · · · , d} is uniform distributed ;
5 Ut+1 ← Ũt − 2ηd1d2(ŨtṼ

∗
t −M)ijeie

∗
jṼt ;

6 Vt+1 ← Ṽt − 2ηd1d2(ŨtṼ
∗
t −M)jieie

∗
jṼt

7 end

Algorithm 5.3: Online learning algorithm for general M (practical version)
Input: Initial Ω0 ∈ Qd1×d2 , learning rate η, iterations T, U0V

∗
0 ← top k SVD of

d1×d2
Ω0

PΩ0(M)
Output: U, V, s.t.UV∗ ≈M

1 for t = 0, 1, 2, 3, . . . , T-1 do
2 Observe Mijwhere(i, j) ∼ Unif([d1]× [d2]) ;
3 RUDUR

∗
U ← SVD(U∗tU) ;

4 RVDVR
∗
V ← SVD(V∗tV) ;

5 QUDQ∗V ← SVD(D
1
2
UR

∗
URV (D

1
2
V)∗) ;

6 Ut+1 = Ut − 2ηd1d2((UtV
∗
t −M)ijeie

∗
jVtRVD

− 1
2

V QVQ
∗
UD

1
2
UR

∗
U ;

7 Vt+1 = Vt − 2ηd1d2((UtV
∗
t −M)jieje

∗
iUtRUD

− 1
2

U QUQ
∗
VD

1
2
VR

∗
V

8 end

5.5 Numerical Experiments

In this section, we conduct some numerical experiments for both Hermitian and general

cases.

Small Hermitian case: We randomly generate a 10× 10 Hermitian quaternion matrix

with rank 5. The initialization is obtained with 99% of the matrix. The stepsize η is chosen

as 3e−5, and the total iteration number is 40000. The total number of iteration is large

comparing to the size of the matrix, and we use this example to demonstrate the linear

83

convergence of the proposed algorithm. For this example, each component is chosen for 400

times on average, and the algorithm converges linearly in Figure 5.2, which confirms the

theoretical results.

0 0.5 1 1.5 2 2.5 3 3.5 4

iteration 104

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

102
lo

ss
 fu

nc
tio

n
va

lu
e

Figure 5.2: Loss function value versus number of iterations for the small Hermitian case.
The stepsize is 3e−5. Within 40000 iterations, the value decreases from nearly 100 to 10−6.
The loss function value tends to keep decreasing after these 40000 iterations.

Small general case: We randomly generate a 10 × 10 general quaternion matrix with

rank 5. The initialization is obtained with 99% of the matrix. The stepsize η is chosen as

1e−4, and the total iteration number is 5000. We also observe the convergence of the proposed

algorithm in Figure 5.3. From both example, we can see that the algorithm converges slowly,

though it converges linearly.

Color image: For a color image with depth with dimension 259 × 320 × 4, we resize

the image to be 156× 192× 4. There are four channels including the depth, so we can use

a quaternion matrix to describe it with the depth being the real part. We normalize it and

force its rank to be 30. The initial stepsize is 1e−5, and the total iteration number is 10000.

In this case, the total number of iterations is smaller than the number of components in

the matrix. For every 300 iterations, we reduce the stepsize by 0.95 to help it converge.

84

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration

10 -5

10 -4

10 -3

10 -2

10 -1

100

101

102

lo
ss

 fu
nc

tio
n

va
lu

e

Figure 5.3: Loss function value versus number of iterations for the small general quaternion
matrix case. The stepsize is tuned to be 1e−4. Within 5000 iterations, the value decreases
from around 100 to 10−4. The loss function value tends to keep decreasing after these 5000
iterations.

The result is shown in Figure 5.4 and Figure 5.5. We can see that the image can not be

recovered well with only 10000 pixels. We are thinking about one possible reason for it. A

quaternion matrix typically have three more components than the real matrix. It tends to

need more observations to converge. Because only around 1/3 of the pixels are used once,

which is far below the computation requires for offline algorithms. In each iteration of an

offline algorithm, it goes through all observed pixels, which is about 10000 pixels, and there

are many iteration required to get a good observation.

5.6 Conclusion

In this chapter, we introduce quaternion matrix and its properties. Based on previous

work for online matrix completion, we set up a provable and efficient framework for online

quaternion matrix completion, which can be easily applied on color images. This framework

applies nonconvex SGD on quaternion matrix and we can show the performance improvement

85

(a) True Image. (b) Recovered Image.

Figure 5.4: Online image recovery result after 10000 iterations. We randomly sampled 1000o
observations from (a). We can see that the result for recovered image (b) is not good. We
expect that the difference between (a) and (b) can be as small as possible.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

iteration

60

80

100

120

140

160

180

lo
ss

 fu
nc

tio
n

va
lu

e

Figure 5.5: Loss function value versus number of iterations for the real color image. The
initial stepsize is tuned to be 1e−5. For every 300 iterations, we multiply the stepsize by
0.95. The loss function value decreases from around 170 to almost 45. At the beginning,
the loss function value decreases the most, and it tends to keep decreasing after these 10000
iterations.

based on each updated input. By using martingale theory, we prove that SGD can stay away

from saddle points and converges linearly if we have a good initialization.

86

BIBLIOGRAPHY

87

BIBLIOGRAPHY

Amaldi, E. and Kann, V. (1998). On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science, 209(1-2):237–260.

Beck, A. and Teboulle, M. (2009a). Fast gradient-based algorithms for constrained total vari-
ation image denoising and deblurring problems. IEEE Transactions on Image Processing,
18(11):2419–2434.

Beck, A. and Teboulle, M. (2009b). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202.

Beck, A. and Teboulle, M. (2009c). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

Bouwmans, T. and Zahzah, E. H. (2014). Robust pca via principal component pursuit: A
review for a comparative evaluation in video surveillance. Computer Vision and Image
Understanding, 122:22–34.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed op-
timization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine learning, 3(1):1–122.

Cabral, R., De la Torre, F., Costeira, J. P., and Bernardino, A. (2014). Matrix completion for
weakly-supervised multi-label image classification. IEEE transactions on pattern analysis
and machine intelligence, 37(1):121–135.

Cabral, R. S., Torre, F., Costeira, J. P., and Bernardino, A. (2011). Matrix completion for
multi-label image classification. In Advances in neural information processing systems,
pages 190–198.

Cai, H., Cai, J.-F., and Wei, K. (2019). Accelerated alternating projections for robust
principal component analysis. The Journal of Machine Learning Research, 20(1):685–717.

Candès, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis?
Journal of the ACM (JACM), 58(3):11.

Candes, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust Principal Component Analysis?
J. ACM, 58(3):11.

Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization.
IEEE Signal Processing Letters, 14(10):707–710.

Chen, Y., Ma, J., and Fomel, S. (2016). Double-sparsity dictionary for seismic noise atten-
uation. Geophysics, 81(2):V103–V116.

88

Chen, Y., Zhou, Y., Chen, W., Zu, S., Huang, W., and Zhang, D. (2017). Empirical low-
rank approximation for seismic noise attenuation. IEEE Transactions on Geoscience and
Remote Sensing, 55(8):4696–4711.

Cheng, J., Chen, K., and Sacchi, M. D. (2015). Robust principle component analysis (RPCA)
for seismic data denoising. In GeoConvention 2015.

Cunningham, J. P. and Ghahramani, Z. (2015). Linear dimensionality reduction: Survey,
insights, and generalizations. The Journal of Machine Learning Research, 16(1):2859–2900.

Da Costa, J. F. P., Alonso, H., and Roque, L. (2009). A weighted principal component
analysis and its application to gene expression data. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 8(1):246–252.

De la Torre, F. and Black, M. J. (2001). Robust principal component analysis for computer
vision. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV
2001, volume 1, pages 362–369. IEEE.

Du, C., Sun, J., Zhou, S., and Zhao, J. (2013). An Outlier Detection Method for Robust
Manifold Learning. In Yin, Z., Pan, L., and Fang, X., editors, Proceedings of The Eighth
International Conference on Bio-Inspired Computing: Theories and Applications (BIC-
TA), 2013, Advances in Intelligent Systems and Computing, pages 353–360. Springer
Berlin Heidelberg.

Duarte, L. T., Nadalin, E. Z., Nose Filho, K., Zanetti, R., Romano, J. M., and Tygel, M.
(2012). Seismic wave separation by means of robust principal component analysis. In
2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pages
1494–1498. IEEE.

Elhamifar, E. and Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and ap-
plications. IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–
2781.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360.

Fomel, S. and Liu, Y. (2013). Seislet transform and seislet frame. Geophysics, 75:V25–V38.

Gaudet, C. J. and Maida, A. S. (2018). Deep quaternion networks. In 2018 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Gavish, M. and Donoho, D. L. (2014). The optimal hard threshold for singular values is
4/
√

3. IEEE Transactions on Information Theory, 60(8):5040–5053.

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150.

Herman, G. and Perkins, C. (2006). Predictive removal of scattered noise. Geophysics,
71:V41–V49.

89

Horn, R. A. and Johnson, C. R. (2012). Matrix analysis. Cambridge university press.

Huang, X. and Yan, M. (2018). Nonconvex penalties with analytical solutions for one-bit
compressive sensing. Signal Processing, 144:341–351.

Huang, X.-L., Shi, L., and Yan, M. (2015). Nonconvex sorted `1 minimization for sparse
approximation. Journal of the Operations Research Society of China, 3(2):207–229.

Ji, H., Liu, C., Shen, Z., and Xu, Y. (2010). Robust video denoising using low rank matrix
completion. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 1791–1798. IEEE.

Jianbo Shi and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888–905.

Jiang, B., Ding, C., Luo, B., and Tang, J. (2013). Graph-Laplacian PCA: Closed-Form
Solution and Robustness. In 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3492–3498.

Jin, C., Kakade, S. M., and Netrapalli, P. (2016). Provable efficient online matrix completion
via non-convex stochastic gradient descent. Advances in Neural Information Processing
Systems, 29:4520–4528.

Kent, A., Sweet, J., and Woodward, B. (2016). Iris community wavefield experiment in
Oklahoma. Incorporated Research Institutions for Seismology. Dataset/Seismic Network.

Kilmer, M. E. and Martin, C. D. (2011). Factorization strategies for third-order tensors.
Linear Algebra and its Applications, 435(3):641–658.

Kim, D. and Fessler, J. A. (2016). Optimized first-order methods for smooth convex mini-
mization. Mathematical programming, 159(1-2):81–107.

Kim, J.-H., Sim, J.-Y., and Kim, C.-S. (2015). Video deraining and desnowing using temporal
correlation and low-rank matrix completion. IEEE Transactions on Image Processing,
24(9):2658–2670.

Kopsinis, Y. and McLaughlin, S. (2009). Development of EMD-based denoising methods
inspired by wavelet thresholding. IEEE Transactions on Signal Processing, 57(4):1351–
1362.

Koren, Y. (2009). The bellkor solution to the netflix grand prize. Netflix prize documentation,
81(2009):1–10.

Kreimer, N. and Sacchi, M. D. (2012). A tensor higher-order singular value decomposition
for prestack seismic data noise reduction and interpolation. Geophysics, 77:V113–V122.

Li, G. and Pong, T. K. (2015). Global convergence of splitting methods for nonconvex
composite optimization. SIAM Journal on Optimization, 25(4):2434–2460.

90

Li, H. and Lin, Z. (2015). Accelerated proximal gradient methods for nonconvex program-
ming. Advances in neural information processing systems, 28:379–387.

Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y., and You, Z.-H. (2017). Mcmda: Matrix
completion for mirna-disease association prediction. Oncotarget, 8(13):21187.

Li, X.-R., Li, X.-M., Li, H.-L., and Cao, M.-Y. (2009). Rejecting Outliers Based on Corre-
spondence Manifold. Acta Automatica Sinica, 35(1):17–22.

Lin, Z., Chen, M., and Ma, Y. (2010). The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., and Ma, Y. (2012). Robust recovery of subspace
structures by low-rank representation. IEEE transactions on pattern analysis and machine
intelligence, 35(1):171–184.

Liu, X., Wen, Z., and Zhang, Y. (2015). An efficient gauss–newton algorithm for symmetric
low-rank product matrix approximations. SIAM Journal on Optimization, 25(3):1571–
1608.

Liu, Y. and Fomel, S. (2013). Seismic data analysis using local time-frequency decomposition.
Geophysical Prospecting, 61(3):516–525.

Liu, Y., Zheng, Y., Lu, J., Cao, J., and Rutkowski, L. (2019). Constrained quaternion-
variable convex optimization: a quaternion-valued recurrent neural network approach.
IEEE transactions on neural networks and learning systems, 31(3):1022–1035.

Lou, Y. and Yan, M. (2018). Fast l1–l2 minimization via a proximal operator. Journal of
Scientific Computing, 74(2):767–785.

Lu, C., Yang, M., Luo, F., Wu, F.-X., Li, M., Pan, Y., Li, Y., and Wang, J. (2018). Predic-
tion of lncrna–disease associations based on inductive matrix completion. Bioinformatics,
34(19):3357–3364.

Ma, S. and Aybat, N. S. (2018). Efficient optimization algorithms for robust principal
component analysis and its variants. Proceedings of the IEEE, 106(8):1411–1426.

Meila, M. and Shi, J. (2001). Learning Segmentation by Random Walks. In Leen, T. K.,
Dietterich, T. G., and Tresp, V., editors, Advances in Neural Information Processing
Systems 13, pages 873–879. MIT Press.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical Program-
ming, 103(1):127–152.

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161.

Parcollet, T., Zhang, Y., Morchid, M., Trabelsi, C., Linarès, G., De Mori, R., and Bengio,
Y. (2018). Quaternion convolutional neural networks for end-to-end automatic speech
recognition. arXiv preprint arXiv:1806.07789.

91

Qiao, T., Ren, J., Wang, Z., Zabalza, J., Sun, M., Zhao, H., Li, S., Benediktsson, J. A.,
Dai, Q., and Marshall, S. (2017). Effective denoising and classification of hyperspectral
images using curvelet transform and singular spectrum analysis. IEEE Transactions on
Geoscience and Remote Sensing, 55(1):119–133.

Rauhut, H., Schneider, R., and Stojanac, Ž. (2017). Low rank tensor recovery via iterative
hard thresholding. Linear Algebra and its Applications, 523:220–262.

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501.

Rubinstein, R., Zibulevsky, M., and Elad, M. (2010). Double sparsity: Learning sparse
dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing,
58(3):1553–1564.

Sha, N., Yan, M., and Lin, Y. (2019). Efficient seismic denoising techniques using robust
principal component analysis. In SEG Technical Program Expanded Abstracts 2019, pages
2543–2547. Society of Exploration Geophysicists.

Shen, Y., Xu, H., and Liu, X. (2019). An alternating minimization method for robust
principal component analysis. Optimization Methods and Software, 34(6):1251–1276.

Sun, C., Zhang, Q., Wang, J., and Xie, J. (2014). Noise reduction based on robust principal
component analysis. Journal of Computational Information Systems, 10(10):4403–4410.

Tan, S. and Huang, L. (2014). An efficient finite-difference method with high-order accu-
racy in both time and space domains for modelling scalar-wave propagation. Geophysical
Journal International, 197(2):1250–1267.

Tao, M. and Yuan, X. (2011). Recovering low-rank and sparse components of matrices from
incomplete and noisy observations. SIAM Journal on Optimization, 21(1):57–81.

Tay, Y., Zhang, A., Tuan, L. A., Rao, J., Zhang, S., Wang, S., Fu, J., and Hui, S. C. (2019).
Lightweight and efficient neural natural language processing with quaternion networks.
arXiv preprint arXiv:1906.04393.

Trefethen, L. N. and Bau III, D. (1997). Numerical linear algebra, volume 50. Siam.

Wang, C., Wang, X., Li, Y., Xia, Z., and Zhang, C. (2018). Quaternion polar harmonic
fourier moments for color images. Information Sciences, 450:141–156.

Wang, Y., Yin, W., and Zeng, J. (2019). Global convergence of admm in nonconvex nons-
mooth optimization. Journal of Scientific Computing, 78(1):29–63.

Weglein, A. B. (2016). Multiples: Signal or noise? Geophysics, 81:V283–V302.

Wen, F., Chu, L., Liu, P., and Qiu, R. C. (2018). A survey on nonconvex regularization-
based sparse and low-rank recovery in signal processing, statistics, and machine learning.
IEEE Access, 6:69883–69906.

92

Wen, F., Ying, R., Liu, P., and Truong, T.-K. (2019). Nonconvex regularized robust pca
using the proximal block coordinate descent algorithm. IEEE Transactions on Signal
Processing, 67(20):5402–5416.

Wen, Z., Yin, W., and Zhang, Y. (2012). Solving a low-rank factorization model for matrix
completion by a nonlinear successive over-relaxation algorithm. Mathematical Program-
ming Computation, 4(4):333–361.

Wright, J., Ganesh, A., Rao, S., and Ma, Y. (2009). Robust principal component analy-
sis: Exact recovery of corrupted low-rank matrices via convex optimization. Coordinated
Science Laboratory Report no. UILU-ENG-09-2210, DC-243.

Ye, H.-S., Zhou, N.-R., and Gong, L.-H. (2020). Multi-image compression-encryption scheme
based on quaternion discrete fractional hartley transform and improved pixel adaptive
diffusion. Signal Processing, 175:107652.

Yu, S., Ma, J., Zhang, X., and Sacchi, M. D. (2015). Interpolation and denoising of highdi-
mensional seismic data by learning a tight frame. Geophysics, 80:V119–V132.

Yuan, X. and Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating
direction methods. preprint, 12(2).

Yuan, X. and Yang, J. (2013). Sparse and low-rank matrix decomposition via alternating
direction methods. Pacific Journal of Optimization, 9:167–180.

Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under minimax concave
penalty. The Annals of statistics, 38(2):894–942.

Zhang, F. (1997). Quaternions and matrices of quaternions. Linear algebra and its applica-
tions, 251:21–57.

Zhigang Tang, Jun Yang, and Bingru Yang (2010). A new Outlier detection algorithm based
on Manifold Learning. In 2010 Chinese Control and Decision Conference, pages 452–457.

Zhou, M., Liu, Y., Long, Z., Chen, L., and Zhu, C. (2019). Tensor rank learning in cp de-
composition via convolutional neural network. Signal Processing: Image Communication,
73:12–21.

Zhou, T. and Tao, D. (2011). GoDec: Randomized low-rank & sparse matrix decomposition
in noisy case. In International Conference on Machine Learning, pages 30–40.

Zhou, T. and Tao, D. (2013). Greedy bilateral sketch, completion & smoothing. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 650– 658. JMLR.
org.

Zhou, X., Yang, C., Zhao, H., and Yu, W. (2014). Low-rank modeling and its applications
in image analysis. ACM Computing Surveys (CSUR), 47(2):1–33.

93

Zhou, Z., Li, X., Wright, J., Candes, E., and Ma, Y. (2010a). Stable principal component
pursuit. In 2010 IEEE international symposium on information theory, pages 1518–1522.
IEEE.

Zhou, Z., Li, X., Wright, J., Candes, E., and Ma, Y. (2010b). Stable principal component
pursuit. In IEEE International Symposium on Information Theory, pages 1518–1522.
IEEE.

Zhu, X., Xu, Y., Xu, H., and Chen, C. (2018). Quaternion convolutional neural networks.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 631–647.

94

	List of Tables
	List of Figures
	List of Algorithms
	Background
	Applications of robust low-rank optimization
	Existing work on RPCA
	Overview of this thesis

	Robust Principal Component Analysis for Low Rank Matrix Approximation
	Introduction
	Notation
	Organization

	Proposed algorithms
	Forward-backward
	Convergence analysis

	An accelerated algorithm

	Numerical experiments
	Synthetic data
	Low-rank matrix recovery
	Robustness of the model
	Low-rank matrix recovery with missing entries

	Real image experiment

	Concluding remarks
	Nonconvex penalties on the singular values
	Other regularization on the sparse component
	Constrained problems

	Robust Principal Component Analysis for Seismic Event Detection
	Introduction
	Theory
	New algorithms with infimal convolution
	Comparison between PGM and IC-PGM

	Results
	Synthetic seismic data
	Field seismic data

	Conclusion

	Manifold Denoising by Nonlinear Robust Principal Component Analysis
	Introduction
	Methodology
	Geometric explanation
	Optimization algorithm
	Numerical experiments
	Conclusion

	Online Matrix Completion with Quaternion Matrix
	Introduction
	Introduction on Quaternion Matrices
	Quaternion Numbers
	Basic Properties
	Singular Value Decomposition
	Incoherence Condition
	Sampling Scheme

	Online Matrix Completion Algorithms and its Theoretical Analysis
	Algorithms
	The Hermitian Case
	The General Case

	Numerical Experiments
	Conclusion

	Bibliography

