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PUBLIC ABSTRACT 

 

MODELING THE RELATIONSHIP BETWEEN WORKLOAD AND NON-CONTACT 

INJURIES IN AMERICAN COLLEGE FOOTBALL PLAYERS  

 

BY 

 

William Pastors Burghardt 

 

Physical activity can promote positive physical changes which, when performed 

repeatedly, can result in improvements to sport performance. However, activity that is too 

intense or too frequent may result in potential injury.  Reducing injury occurrences and severity 

has shown to be critical for competitive success.  In college football, injury rates have been 

reported to be 7.14 per 1,000 athlete exposures (AEs), with 35% occurring from a non-contact or 

overuse cause.  A potential contributor to these injuries may be the length and intensity of sport 

activities that athletes experience following periods of time-off.  Another contributor could be 

the rate that athletes experience this increased activity.  In response, sport practitioners have 

begun measuring athlete activity during training and competition.  Research has shown 

relationships between the amount of activity (workload), the rate of activity exposure, and 

ensuing non-contact injury.  However, these studies have drawn criticism for how these 

relationships were assessed and the lack of an associated path between activity and injury.  In 

response, the purposes of this dissertation were to 1) utilize modern techniques to assess the 

relationships among injuries, activity, and rate of activity increase at a particular point of the 

season between two different teams, 2) determine the non-contact injury rates for each phase of 

the calendar year and assess the relationship of injury occurrence to activity and activity rates 

within one team, and 3) to evaluate if inflammation may be a key component on the path 

between activity and non-contact injuries.   



Our first study measured workload, workload ratio, and non-contact injuries from two 

football teams (120 athletes) across two seasons.  Both teams observed 44 total non-contact 

injuries, however the difference in reported injuries which resulted in time-loss from sport (Team 

1: 6; Team 2: 17) led us to question if teams used different criteria for removing an athlete from 

team activities.  Teams had different workload and workload ratios in each phase of the year.  

Our calculations demonstrated that workload and workload ratios were associated with injuries. 

However increased activity was associated with lower chance of injury, and workload ratios 

were only associated with a higher chance of injury to a point.  These relationships were 

consistent with our second study, which examined these measures across nearly three years of 

data from one team (n = 88). The pre-season practice phase was the largest in both workload and 

time-loss non-contact injury rate (4.70 AEs), however, winter conditioning (2.84 AEs), spring 

practice (2.64 AEs), and summer conditioning phases (1.42 AEs) had injury rates higher than in-

season (1.20 AEs).  This suggests the need to monitor these other phases of training. Finally, we 

assessed C-reactive protein in 19 football players during a pre-season and in-season period to 

determine if workload and workload ratios led to increased inflammation (CRP), which led to 

non-contact injury.  However, our study showed that CRP did not vary across time and was 

poorly related to any difference in activity from week to week. However, the observance of only 

one time-loss non-contact injury limited our findings.  

Overall, our studies highlight the strengths and weaknesses of the current workload and 

workload ratio research.  Further research should be conducted across multiple teams and years 

in order to observe enough non-contact injuries to permit the use of certain statistical tools that 

would be more useful to practitioners and coaches.  In addition, further research should continue 

to see if there is a path between  seek to find mediating pathways between activity and injury.   



ABSTRACT 

 

MODELING THE RELATIONSHIP BETWEEN WORKLOAD AND NON-CONTACT 

INJURIES IN AMERICAN COLLEGE FOOTBALL PLAYERS  

 

BY 

 

William Pastors Burghardt 

 

 Physical activity is widely used in sport to promote positive physiological adaptations 

which, when performed systematically over a sustained period, can elicit improvements in sport 

performance. However, activity sessions that are too intense or occur too frequently may result in 

injury.  Injury mitigation has shown to be critical for competitive success.  In college football, 

injury rates of 7.14 events per 1,000 athlete exposures (AEs) have been observed, with 35% 

occurring from a non-contact or overuse mechanism.  Contributing to these injuries may be the 

rate at which athletes are exposed to activity.  In response, sport practitioners have begun 

measuring athlete activity (workload) during training and competition.  Research has shown 

associations among the amount of workload, the rate of workload exposure, and subsequent non-

contact injury.  However, these studies have drawn criticism for both the statistical methods used 

and the absence of a supporting injury framework. In response, the purposes of this dissertation 

were to 1) utilize modern statistical practices to assess the relationships among injuries, 

workload, and workload ratios between two different teams, 2) determine the non-contact injury 

rates for each phase of the calendar year and assess the relationship to workload and workload 

ratios within the same team, and 3) to evaluate if systemic inflammation may be a mediator 

between workload and non-contact injury events. 

The first study measured workload, workload rate, and non-contact injuries from two 

football teams (120 athletes) across two seasons.  Both teams observed 44 non-contact injuries, 

however, the discrepancy between injuries resulting in time-loss from participation (Team 1: 6; 



Team 2: 17) led us to question if team medical personnel utilized different criteria for sport 

modification/removal.  Workload and workload ratios in each phase differed significantly by 

team.  Generalized estimating equation (GEE) models were significantly associated with injuries 

(EWMA: Wald χ2 = 42.40, p < .005; ACWR: Wald χ2 = 32.49, p < .005), however, increased weekly 

loads were associated with lower injury probability (Odds Ratio: 0.15, p < .005), and workload 

ratios demonstrated an inverted-U relationship to injury.  Our second study examined these 

measures for one team (n = 88) from 2017 thru 2019. The pre-season practice phase was the 

largest in both volume and time-loss non-contact injury rate (4.70 AEs), however, winter 

conditioning (2.84 AEs), spring practice (2.64 AEs), and summer conditioning phases (1.42 

AEs) had injury rates higher than in-season (1.20 AEs), thus suggesting the need to monitor 

other phases of training in addition to the pre-season and in-season phases. GEE models 

demonstrated similar results to Study 1.  Finally, a 12-week analysis of salivary C-reactive 

protein concentrations (CRP) was conducted to investigate the association of systemic 

inflammation to workload rates and non-contact injury. CRP concentrations in football players (n 

= 19) over a pre-season and in-season did not vary across time and was poorly correlated to 

weekly change in workload (r = 0.15) and workload ratios (EWMA: r = -0.11; ACWR: r = -

0.07).  However, the observance of only one time-loss non-contact injury limited our 

conclusions.  Overall, our studies highlight the strengths and weaknesses of the current workload 

and workload ratio research.  Further research should be conducted across multiple teams and 

years to observe enough non-contact injury events to permit the use of statistical methods that 

yield greater generalizability and utility to practitioners and coaches.  In addition, further 

research should seek to find mediating pathways between activity and injury.   
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CHAPTER 1 

 

INTRODUCTION 

 

Physical activity, injuries, and college football 
 

 

When planned correctly, physical training sessions can induce positive physiological 

adaptations (11, 23, 41, 191).  Athlete physiological responses are related to the mode, intensity, 

and duration of the training stimulus (211).  Though a single exercise session generates a 

transient acute adaptive response, repeated bouts of such stimuli are necessary to elicit desirable 

and lasting physiological adaptations(211).  However, should these stimuli be too intense or too 

frequent, then maladaptive processes, including injury, may occur(87-89).  It is the responsibility 

of the coaches, practitioners (i.e., strength & conditioning coaches, athletic trainers, physical 

therapists, etc.), and athletes to appropriately monitor the training environment to ensure optimal 

performance and injury mitigation (69, 87, 123). 

Approximately 29,000 football players compete at the NCAA Division 1 level each year 

(5).  As one would anticipate, injuries are common in elite-level American football (football) 

(133, 137).  The mitigation of injury occurrence is vital in team sports for both athlete health and 

overall team success(69, 87, 123).  Recent injury rates at the NCAA Division 1 level were 

observed to be 7.14 incidences per 1,000 athlete exposures (AE’s) (133).  Injury rates for 

competitions and practices are 34.06 and 4.63 respectively(133).  Because the ratio of practices 

to games is 4- or 5-to-1, a greater percentage of injuries are sustained during practice (40.5% vs 

59.5% respectively) (133).  Furthermore, pre-season practices had higher rates of injury (8.74) 

than practices during the regular season (2.82) and postseason (2.52) (133).  Approximately 35% 

of total injuries sustained during collegiate football practice occur via a non-contact (30.3%) or 
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overuse/chronic (4.8%) mechanism(133).  Recent research in football(188, 189) and other 

sports(68, 81, 102, 114-116, 150, 151, 156, 169, 186, 204, 219) has suggested that a contributing 

variable to these injuries may be the rate at which athletes increase their conditioning and 

practice exposure (workload). 

 

Measurements of physical activity 

 

Several methods have been used to quantify workout, such as Session Rating of 

Perceived Exertion (sRPE)(88) and heart rate-based training impulse (TRIMP) (10).  To reduce 

injury risk and optimize individual performance, teams started tracking athlete workloads using 

novel wearable devices comprised of global positioning systems (GPS) with built-in 

accelerometers and gyroscopes.  These devices have been used as tools to quantify movement 

demands in numerous studies including team sports such as rugby(59, 68, 115, 116), soccer(83, 

125, 149, 150), and Australian Rules football(68, 167-169, 204).  Research has shown 

associations with non-contact and overuse injury occurrence when athletes increase their recent 

(acute) activity at rates greater than 1.5 to 2.0 times their past (chronic) exposure; this is 

frequently termed the traditional acute:chronic workload ratio (ACWR) (65, 114, 156, 168, 169, 

188).  This ratio has been calculated using various mathematical approaches(102, 155).  The two 

most common are the original 7-day acute to 28-day chronic method which utilizes rolling 

averages, and the 7-day acute to 21-day chronic method with exponentially weighted moving 

averages (EWMA) (102, 155).  Researchers believe the EWMA approach is preferable, since it 

takes the ability of fitness and fatigue effects to decay over time into account by assigning a 

decreasing weight to compensate for the latency effects of load(228).  In college football, the 

7:21-day coupled ACWR calculated using the EWMA method with a 3-day injury lag period 
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demonstrated the highest correlation to injury (R2 = 0.54) during the pre-season and in-season 

periods(188).  However, it remains unclear if this model is further generalizable to the entire 

training calendar.  In addition, authors have recently been skeptical of conclusions drawn from 

the data when researchers discretize the ACWR instead of examining it as a continuous 

variable(36, 163, 216).  Thus, EWMA is a promising approach to quantifying workload but 

needs further investigation.  

Current NCAA policies indicate a strong probability that athletes experience at least a 

2.5-fold increase in workload when they begin pre-season practice(6).  The pre-season period for 

college football occurs in August and is approximately four weeks in length(6).  Prior to this 

period, college football players spend an additional eight weeks of weight training and 

conditioning for their sport.  The NCAA limits all weight training and conditioning activities to a 

combined eight hours per week during this period.  The pre-season period in August allows for 

20 hours per week of practice and weight training sessions.  The 20 hours per week of activity 

allowed in August is 2.5-times greater than the allotted summer training time.  Based on the 

research discussed prior, it may be suggested that this transition could be an area of potential 

increased injury risk for athletes. 

 

Physiological responses to physical activity 

 

During periods of increased workloads, athletes will experience transient muscle tissue 

damage(78).  This damage results in an acute inflammatory response including the release of 

cytokines(40, 43, 46, 66, 85, 180).  These cytokines aid in the removal of damaged cells(40).  C-

reactive protein (CRP) is a cytokine which has shown increased levels in circulating blood 

plasma after moderate and vigorous physical activity(67, 84).  Although inflammation is 
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essential for the repair and adaptation processes to occur(40), elevated levels of this biomarker 

for prolonged periods affect an athlete’s ability to repair this tissue(40, 85), thereby increasing 

their risk of sustaining an injury(45, 87).  Determining associations among workload, CRP 

levels, and subsequent injury provides practitioners with greater understanding of the underlying 

mechanisms predisposing athletes to injury under periods of increased training or reduced 

recovery.   

In response, the overall purposes of this dissertation were to 1) utilize modern statistical 

practices to assess the relationship between injuries, workload, and workload ratios between two 

different teams, 2) determine the non-contact injury rates for each phase of the calendar year and 

assess the relationship to workload and workload ratios, and 3) to evaluate if systemic 

inflammation may be a mediator between workload and non-contact injury events.  In line with 

the overall purpose of this dissertation, the proposed following specific aims and hypotheses are 

addressed in three separate studies.  
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SPECIFIC OBJECTIVES AND HYPOTHESES  

 

Objective 1: To compare the relationship between workloads, workload ratios, phases of 

training, and non-contact injury occurrence across two Division 1 college football teams.  

 

- Hypothesis 1a: Both teams will have similar workloads, workload ratios, and injury 

occurrences; but the values of these measures will be significantly difference across time. 

- Hypothesis 1b: The EWMA workload ratio calculation will be more associated with non-

contact injury risk than the ACWR calculation. 

 

Objective 2: To assess the relationship between workload ratios and non-contact injury risk in 

each phase of American football training and participation utilizing a multi-year approach, with 

calculations for exponentially weighted moving average (EWMA) and traditional acute:chronic 

(ACWR) workload models.  

 

- Hypothesis 2a: High EWMA and ACWR values will be significantly associated with 

increased non-contact injury risk for all time points during the training and competition 

cycle. 

- Hypothesis 2b: EWMA will possess greater association with injury-risk than traditional 

A:C model and thereby be a better model for future endeavors. 

 

Objective 3: To evaluate if systemic inflammation, measured via weekly C-reactive protein 

(CRP) samples, in American college football players during their training and sport participation 

are associated with increased non-contact injury risk. 
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- Hypothesis 3a: Athletes will experience significant increases in their CRP protein levels 

during the pre-season practice period.  

- Hypothesis 3b: There will be a positive association between CRP levels and non-contact 

injury risk throughout the preseason and in-season periods. 

 

The results from these studies will help inform practitioners and coaches of proper 

program development to minimize non-contact injury occurrence, thereby maximizing positive 

training adaptations and performance.  This dissertation is separated into chapters.  Chapter 2 

provides a review of the literature with regards to the wearable devices in sporting environments 

and the relationship to injury.  Chapter 3 addresses Objective 1 (Multi-team workload-injury 

association), Chapter 4 addresses Objective 2 (Multi-year workload-injury association), and 

Chapter 5 addresses Objective 3 (CRP association with injury).  To conclude, Chapter 6 

summarizes the findings within this dissertation and provides avenues for further study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Introduction 

 

Athletes and coaches are constantly striving to improve performance by promoting 

positive physiological adaptations, and reducing the incidence of injuries, to achieve success(69, 

87, 88, 123).  The proper planning of training sessions is vital to achieve these goals(11, 23, 41, 

87, 88, 191).  These physiological adaptations are relative to the mode, intensity, and duration of 

the training stimuli(211).  However, too intense, or frequent training stimuli may lead to 

maladaptive processes and the potential for injury(87-89).  It is the responsibility of the coaches, 

practitioners(i.e., strength & conditioning coaches, athletic trainers, physical therapists, etc.), and 

athletes to appropriately monitor the training environment to ensure optimal performance and 

injury mitigation(69, 87, 123). 

With the development of new technologies, coaches, athletes, and practitioners have been 

able to glean more data from training and competition sessions in order minimize these 

maladaptive responses.  Mathematical modeling of these data has suggested that rapid increases 

in activity are related to future injury(65, 156, 168, 169, 188).  However, the statistical analyses 

supporting these mathematical models have recently been called to question(36, 163, 216).  

Furthermore, there are few studies in American football and none utilizing the statistical methods 

suggested by the critics of past research.  Therefore, a need exists to determine the association of 

these mathematical models to subsequent injury risk in American football players, as well as the 

supporting framework through which to assess this relationship.  This review examines the 

strengths & limitations of previously implemented strategies to measure workload.  Responses to 
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training stimuli are also reviewed.  Further, injuries and injury frameworks are reviewed with 

respect to football and training.  Lastly, gaps in current research are highlighted, including the 

analysis of C-reactive protein (CRP) levels as precursor to injury, as well as the utilization of 

larger, multi-year data sets to produce generalizable findings for elite college football.   

   

Injury Framework 

 

Several frameworks for injuries in sports have recently been proposed(9, 21, 129, 162, 

230).  Bahr and Krosshaug(9) proposed a framework where internal risk factors predispose an 

athlete to injury.  These factors included age, sex, body composition, previous injury, physical 

fitness, anatomy, skill level, and psychological factors.  The predisposed athlete becomes a 

susceptible athlete after exposure to external risk factors such as sport coaching, rules, protective 

equipment, performance equipment, and environment.  Susceptible athletes then experience an 

inciting event such as playing situation or behavior from the player or an opponent behavior.  

This inciting event leads to injury.  This model provides a precise description of the inciting 

event component of the injury causal pathway to guide future research(9). 

Though having a better understanding of the inciting event is important, the internal and 

external risk factors preceding this event are not necessarily linear(162).  Meeuwisse and 

colleagues(162) contend that injury does not always occur when certain risk factors are 

experienced, nor does injury permanently remove an athlete from participation.  Therefore, a 

linear approach which contains a start and end point does not reflect the reality of sport(162).  

These authors proposed a recursive model where the susceptible athlete either experiences an 

inciting event and becomes injured or does not become injured.  Both pathways may lead to 

adaptations; however, the injured pathway has a recovery component prior to potential 
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adaptations.  The injured pathway may also lead to no recovery, where athletes are subsequently 

removed from participation and the recursive model.  This model emphasizes that adaptations 

occur in sport and that these adaptations may alter the risk of injury in a dynamic, recursive 

manner(162). 

  The model by Meeuwisse and colleagues allows for a continual flow from participation 

to adaptation or injury and then back to participation(162).  However, this model does not 

address tissue damage, mechanical failure, or the concepts of load tolerance and load 

application(129).  All these factors contribute to the stress-, strain-, and overuse-related injuries 

prevalent in football(78, 133).  Therefore, it is important to use an injury framework that 

accounts for these factors when investigating the association between load and fatigue-related 

injuries.  Perhaps the framework which has the greatest applicability to the studies presented 

herein is the novel framework proposed by Kalkhoven et al. (Figure 1) (129).  This framework 

adds causal pathway to the frameworks discussed previously to provide greater detail to the 

interplay of an individual’s physiology, mechanics, and tissue loading.  As a result, it is well-

suited for stress-, strain-, and overuse-related injuries that are being observed in this thesis.   
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Figure 1.1. A detailed framework for stress-related, strain-related, and overuse injury, 

Reprinted from “A conceptual model and detailed framework for stress-related, strain-

related, and overuse athletic injury”, by Kalkhoven JT et al., Journal of Science and 

Medicine in Sport, In Press,  Copyright(2020) by Elsevier B.V., 

https://doi.org/10.1016/j.jsams.2020.02.002. 
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Their framework has several subcomponents which inevitably result in either injury or 

adaptation.  The first component is the individual’s physiology.  This is comprised of 

physiological factors which are either modifiable, non-modifiable, or external factors affecting 

that physiology.  Some modifiable risk factors which fit into this category include, but are not 

limited to, body composition(172), bone mineral content(171), muscle structure(206), optimal 

muscle length(32), and tendon structure(23).  Non-modifiable factors include age(160), 

gender(160), height(215), previous injury(153, 185, 215), blood type(130), and skeletal 

structure(202).  The external factors related to this category include external training 

workload(160, 185, 215), training methods(44, 176), nutrition(171), warm-up(18), cool 

down(18), stretching(18), sleep(91, 92), and medications(171).  

Components two and three extend from component one.  Component two is tissue-

specific strength(129).  This includes both regulated and passive mechanical properties.  These 

mechanical properties are individualized to each athlete.  Alterations to the physiology of these 

tissues can directly affect the mechanical properties of the tissue, which ultimately modifies the 

tissue’s resiliency to injury(129).  The regulated properties include muscle hypertrophy, strength, 

and stiffness.  Tendons and bones do not normally alter their mechanical properties; however, 

they do undergo chronic physiological adaptations(129).  Physiological risk factors that can lead 

to injury include acute fatigue(75), acute glycogen depletion(97), and muscle acidification(75).  

Component three addresses the tissue-specific forces experienced during the activity.  

This component is comprised of the physical attributes impacting tissue load, the impact or force 

applied to the tissue, as well as the extrinsic risk factors affecting the tissue-specific 

loading(129).  Physical attributes which are captured in this component include speed, strength, 

neuromuscular control, balance, muscle agonist-antagonist relationship, etc.  Impact and force 
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components can stem from ground reaction forces, forces received from contact with another 

person and contact with equipment.  Extrinsic factors include playing surfaces, shoes, and other 

factors external to the athlete.  Together, components two and three contribute to the fourth 

component. 

The fourth component in the novel framework is tissue specific stress and strain(129).  

This framework addresses biological tissue through the lens of material science.  This implies 

that the failure of tissue results when excessive stress or strain exceeds the tissue’s ability to 

absorb such forces(78, 98, 179).  Tissue failures can be the result of a large singular event or 

repetitive, lower threshold events(78, 98, 179).   

It should be noted that these events do not necessarily have to lead to diagnosed injuries.  

If tissues are not compromised to structural failure, then positive physiological and mechanical 

adaptations such as muscle hypertrophy(19, 52, 191-194), increased muscle strength(19, 52, 191-

194), tendon adaptations(23), and bone mineral density improvements(41, 96, 128, 170) all may 

occur as the result of stressors being placed on the tissue.  However, in bringing this framework 

back to the fitness-fatigue model introduced earlier, without proper rest and recovery these 

tissues can be damaged to the point of an injury occurring(37, 94, 233).  The authors complete 

their framework with these resulting injuries or adaptations impacting the first component of an 

individual’s physiology.  

The framework by Kalkhoven and colleagues(129) will provide the lens through which 

the data collected will be viewed for the studies presented in this thesis.  It is expected that 

sudden increases in external workload will result in tissue damage(37, 78, 233).  This tissue 

damage will cause an increase in the inflammatory biomarker CRP.  The damaged tissue and 

inflammation will lead to greater risk of injury for athletes.  As noted previously, there are very 
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few studies which utilize college football athletes as the principal population group.  Therefore, 

this thesis also aims to develop models of external workload and injury with larger data sets, as 

well as to assess the relationship of these models utilizing optimal statistical instruments.        

 

Fitness-Fatigue Model 
 
 

Designing and implementing training sessions that promote positive physiological 

adaptations is a key objective for coaches and practitioners.  However, as noted previously, it is 

important that the training stimulus does not exceed the mechanical properties and adaptation 

processes of the systems involved(129).  Indeed, athletes will experience both fitness and fatigue 

effects as a result of these training sessions(11).  To model performance with both the fitness and 

fatigue effects from training, Banister et al. proposed the fitness-fatigue model(11).  The positive 

fitness effects include increases in muscle size, strength, recruitment patterns, oxygen 

consumption efficiency, mitochondrial density, blood supply, etc. (45).  These effects work to 

increase subsequent performance.  The fatigue effects, by contrast, are detriments to performance 

resulting from a depletion in energy substrate availability(56, 105, 205), or from increases in 

inflammation leading to soreness and edema(68, 191).  The severity and duration of these effects 

depends on the intensity of the training stimulus(11, 88).   

The model by Banister and colleagues also suggests that the intensity of one’s training 

yields varying physiological adaptations(11).  A training session with a high intensity and 

duration will cause greater levels of fatigue than a session of lighter intensity or shorter duration.  

However, according to this model, the benefit from these sessions, termed “supercompensation”, 

will be greater over time.  The term given to the decline in performance and subsequent increase 

in fatigue is termed “short-term overreaching” or “functional overreaching”(87, 89, 136).  In 
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order for short-term overreaching to turn into supercompensation, a period of recovery is 

required(87, 89).  If continued high intensity or prolonged training occurs while an athlete is still 

in a fatigued state, then the current session will simply compound the fatigue to a point where an 

athlete may not be able to adapt(11).  Repeated high intensity sessions will continue to drive 

performance down and fatigue up.  This can lead to overtraining syndrome(15, 89, 136).   

Overtraining syndrome has a multitude of symptoms both physical and mental(136).  

Physical symptoms include heavy, sore, and stiff muscles, fatigue, hypertension, tachycardia or 

bradycardia, and weight loss(136).  Mental symptoms include depression, irritability, insomnia, 

lack of concentration, and anxiety(136).  Overtraining syndrome generally requires a sustained 

period of training where an athlete is unable to recover physically or mentally(89, 136).  In 

previous research, athletes were generally able to experience short-term training intensities of 2-

to-3 times their normal volumes for periods of 1-3 weeks without the onset of overtraining 

syndrome(90, 205).  However, overuse and non-contact injuries may still occur without an 

athlete being diagnosed with overtraining syndrome (65, 125, 145, 156, 188).  

 

Injuries in Football 
 
 

Football is a sport involving a large number of contacts(220, 221).  Contacts can occur 

between a player and a surface, equipment, or other players(133).  Injuries which occur in the 

absence of these mechanisms are termed non-contact and overuse injuries(133).  Strains (51.8%) 

and sprains (21.7%) comprise most of the noncontact and overuse injuries experienced in college 

football(133).  Injuries from non-contact mechanisms in football make up 14.3% of competition 

injuries(133).  This mechanism, however, comprises 30.4% of all injuries during practice(133).  

Overuse injuries stem from recurring microtrauma(224).  This microtrauma causes degradation 
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in local tissue and generally occurs during sudden changes in mode or increases in intensity or 

duration of training(136, 140, 224).  Overuse injuries, although lower in occurrence relative to 

non-contact injuries, occur in practice at 5-times the frequency compared to competitions (5.2% 

vs 1.1% respectively).  While injuries have been classified as non-contact(49, 65, 81, 102, 156, 

157, 168, 169, 188) or overuse (125, 145, 207, 219) in previous research, including the NCAA 

Injury Surveillance Program(133), both can occur as a result of fatigue(129).  This is supported 

by Wilder and colleagues, who suggest that on the systemic level, sudden spikes in training load 

without proper recovery may lead to overtraining syndrome(224). 

Fatigue may also play a role in non-contact muscle strain occurrence.  As noted above, 

muscle strains comprise a large percentage of injuries sustained during football practice.  Muscle 

strains frequently occur as a result of the muscle fibers undergoing an eccentric contraction while 

being forcefully lengthened(147).  In rabbits, fatigued and non-fatigued muscles demonstrated 

equal failure points in terms of length; however, the fatigued muscles absorbed less energy than 

their non-fatigued controls(147).  The non-fatigued muscles, Mair and colleagues concluded, 

were able to resist lengthening better than the fatigued muscles(147).  Studies in the sporting 

population have observed a greater occurrence of muscle strains at the end of practices and 

competitions which give support to the laboratory results seen by Mair and colleagues(34, 80, 

232).  Given the mechanism by which many muscle strains occur, a fatigued state can increase 

an athlete’s susceptibility to sustaining these injuries.      

The repetitive bouts of high force output which induce fatigue in football players can also 

damage the other components of motor units besides the muscle fibers themselves.  Barbe and 

colleagues(12) examined exposure-dependent changes in musculoskeletal and neurological tissue 

in rats after repeated bouts of activity at varying intensities.  They found that high repetitions 
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performed at high forces induced the greatest tissue degenerative changes in not only muscle 

fibers, but tendons, bones, and nerves, even after six weeks of training.  The authors concluded 

that beneficial adaptation could occur with prolonged performance if the number of repetitions is 

limited, and sufficient time is provided for the tissues to adaptively remodel.  Otherwise, tissue 

inflammation and microdamage can be expected.  These laboratory findings support the 

recommendation from Kerr and colleagues(133) that a phase-in approach should be utilized in 

football to provide adequate recovery.  Transferring this laboratory information to the football 

sporting context, however, remains challenging.  Besides the intrinsic drive of elite athletes to 

push their training regardless of the presence of pain, injury, or other health issues(47), there is a 

void in the literature as to the definition of appropriate offseason activity values are in college 

football.  Also missing from the literature is what happens when the rate of activity increases as 

teams transition from off-season to pre-season practice.  As a result, more research is needed to 

determine what constitutes high repetition counts and adequate recovery.  

 

C-Reactive Protein 
 

The muscle protein synthesis and degradation systems, which are affected by the 

presence or absence of physical activity, are regulated by a coordinated network of signaling 

pathways which are upregulated or downregulated by hormones and cytokines(54).  Intense 

physical activity, including football participation, can have both anabolic and catabolic effects on 

muscle protein synthesis(79).  Post-exercise anabolic signals are stimulated by insulin, insulin-

like growth factor-1 (IGF-1), growth hormone (hGH), and other androgens(54).  These signals 

have several positive down-stream effects, including muscle hypertrophy, which allow for tissue 

growth, adaptation, and increased performance(1, 35).   
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Moderate to vigorous physical activity incites transient muscle damage(78).  Damaged 

muscle cells undergo catabolic processes as a result of the immune system’s acute-phase 

response (APR) (131).  The APR includes a multifaceted mediator cascade which seeks to 

minimize the extent of myofiber damage and subsequently promote recovery(131).  The APR 

also includes an upregulation and expression of proinflammatory cytokines.  These cytokines 

include interleukin-1 (IL-1) and interleukin-6 (IL-6).  IL-1 increases the production of IL-6, 

which in turn increases the production of another proinflammatory cytokine, C-reactive protein 

(CRP) (117).   

CRP is produced primarily in the liver and is able to bind to a wide variety of ligands 

including the phospholipids phosphatidylcholine and phosphorethanolamine.  These ligands 

comprise large portions of the cell membranes including myofibers(22).  CRP, however, can 

only bind to the phosphocholine head of these ligands when the cells are damaged(22).  The 

binding of CRP to these damaged cells aids in their clearance, thereby allowing healthy new cells 

to take their place and restore optimal tissue function(237).  Normal CRP concentration levels in 

healthy adults has been reported to range between 0.8 mg/L and 3.0 mg/L (197).  However, CRP 

concentration levels have been shown to increase 1,000-fold over 1-3 days after tissue damage or 

the onset of inflammation (93, 159).  Sustained levels of CRP greater than 3 mg/L have also been 

correlated with cardiovascular disease, frailty, morbidity, and mortality(2, 187).  As stated 

previously, moderate to vigorous physical activity has been shown to cause increases in CRP 

concentration post-activity (67, 84).  Given that the half-life of CRP is approximately 19 hours 

(210), and that circulating CRP concentrations from physical activity can be present from 1 to 4 

days post-activity, utilizing CRP as a marker for chronic inflammation is possible(40).  It should 

be noted that regular exercise is associated with systemic anti-inflammatory effects (86).  
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However, intense exercise, especially when it is combined with reduced recovery periods, can 

yield chronic inflammation (40).  This inflammation can occur locally in the muscle tissue as 

well as the entire body. Intense exercise can promote this chronic inflammation through elevated 

IL-6(40, 181).  Prolonged elevation of IL-6 promotes a negative feedback loop on the 

suppressors of cytokine signaling (SOCS) family.  This negative feedback loop decreases the 

signaling linked with human growth hormone (hGH) and insulin-like growth factor-1 (IGF-1).  

This reduced signaling inhibits the repair and positive adaptation mechanisms within the 

damaged tissue(40, 85, 103). Therefore, the imbalance of fitness and fatigue may predispose 

athletes to greater chances of injury(45, 87). 

 Although a key indicator of inflammation, CRP has not been studied extensively in elite 

athletics, and results from the studies that have been performed are mixed.  For instance, elite 

futsal players demonstrated a 1.6-fold increase in CRP levels after matches (40, 64).  In elite 

rugby union players, acute heavy impacts and high competitive workloads, similar to what can 

be expected in football, were significantly correlated with muscle damage (70).  However, not 

only was this damage demonstrated via creatine kinase levels and not CRP, but these levels were 

also uncorrelated with injuries(70).  It should be noted that this study only had 3 samples taken 

per athlete over the course of the entire season.  This may have affected the ability to detect 

smaller fluctuations from week to week.  To the author’s knowledge, there has not been a study 

performed in American football assessing CRP levels over the course of a season.  It is possible 

that the increased and condensed training that takes place during the pre-season practice period 

may result in an increase in circulating CRP levels.  The repetitive skeletal muscle damage 

associated with this time period as well as in-season sport participation, may promote the 

negative feedback loop on SOC.  This systemically inflamed state may promote a great risk of 
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non-contact injury.  As a result, weekly assessment of CRP concentrations in football players 

during these periods of training and sport participation is warranted.  Should associations be 

found between workload, CRP levels, and subsequent injury in elite football players, we could 

then begin to develop a temporal relationship between these variables and assess future research 

to intervene within this injury framework.   

 

Quantification of Workload 
 

Although it intuitively makes sense that prolonged, intense training sessions without 

adequate rest and recovery can incite maladaptive responses in athletes, and that these responses 

can predispose athletes to injury, there is a need to quantify these sessions to effectively manage 

training load.  Various methods of been developed to quantify these loads.  These methods can 

be categorized as internal or external(27).  Common measures of internal workload in the 

sporting context include heart rate(3, 26, 110, 161, 200, 214) and ratings of perceived exertion 

(15, 49, 58, 65, 108, 149, 151, 161, 200, 204, 214).  Ratings of perceived exertion are also a 

considered subjective measure because it is reported by the athlete, whereas heart rate is 

measured via monitors and is therefore considered an objective measure of workload(27).  

External measures are also objective and include both GPS-derived parameters (i.e. distance and 

velocity) and accelerometer-derived parameters (i.e. jumps, throws, contacts, and cumulative 

load)(27).  Each of these workload quantification techniques has its benefits and limitations and 

will be discussed further. 
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Heart Rate-Based Quantification of Workload 

 

Previous research has shown that heart rate (HR) increases linearly with increased 

oxygen consumption at working tissues (VO2) during steady-state, submaximal exercise(7).  This 

has led to the development of models to quantify exercise training demand based on heart 

rate(10, 76, 144).  Banister and colleagues(10) provided a method to determine the intensity of 

training sessions based on training session duration and the heart rate response of the athlete 

during that session.  Together these variables were called the training impulse (TRIMP).  They 

suggested that this method could be a potential measure of physical stress because it is based on 

the elevation of the heart rate in response to the demands of exercise.  The formula for TRIMP 

is: 

𝑤(𝑡) = 𝐷 𝑥 𝛥𝐻𝑅𝑟𝑎𝑡𝑖𝑜 𝑥 𝛶 
 

For this equation, D refers to the duration of exercise in minutes and 𝛶 is a weighting factor for 

depending on if the athlete is male or female.  𝛥𝐻𝑅𝑟𝑎𝑡𝑖𝑜  can be shown as: 

𝑤(𝑡) = 𝐷 𝑥 𝛥𝐻𝑅𝑟𝑎𝑡𝑖𝑜 =  
𝐻𝑅𝑒𝑥 −  𝐻𝑅𝑟𝑒𝑠𝑡

𝐻𝑅𝑚𝑎𝑥 −  𝐻𝑅𝑟𝑒𝑠𝑡
 

 
𝐻𝑅𝑒𝑥 is the average heart rate during exercise, 𝐻𝑅𝑟𝑒𝑠𝑡 is the resting heart rate, and 𝐻𝑅𝑚𝑎𝑥 is the 

maximal heart rate.  This equation provides a number which is given in arbitrary units and 

recorded for each training session.  Utilizing this method requires the use of heart rate monitors 

for each training session, as well as requiring fairly steady-state activity(26).  TRIMP may not be 

the best quantification method for football given the interval nature of the sport.  

 Another method which utilizes heart rate for calculating workload is the Summated Heart 

Rate Zone Score (SHRZS)(77).  Instead of taking the average heart rate for the entire training 

session, as is done in TRIMP, the SHRZS takes the total number of minutes spent in five distinct 
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heart rate zones (50-60%, 60-70%, 70-80%, 80-90%, and 90-100% of HR maximum).  Each of 

these zones was given a multiplying factor from 1 to 5, respectively.  The resulting values are 

then summated to provide an overall score for the training session.  This method provides more 

responsive values depending on the relative intensity of the training session.  However, it too 

requires heart rate monitors to be worn consistently, and therefore may not be practical in a sport 

setting.  

 

Session Rating of Perceived Exertion 

 

To combat the issue of heart rate data being lost if athletes forgot to wear the monitors, or 

if the monitors had a technical failure, Foster et al.(88) introduced the Session Rating of 

Perceived Exertion (sRPE) metric.  This calculation is an adaptation from Borg’s Rating of 

Perceived Exertion(24).  Borg introduced a scale which asks the participant to rate how difficult 

they feel an activity is, aka their perceived exertion.  The original scale had a range of 6-20 and 

was shown to correlate with a participant’s heart rate, usually by adding a 0 to the end of the 

reported RPE value to obtain current heart rate range, during both high intensity and steady-state 

exercise(25).  For example, a reported score of 17 would indicate a HR of 170 beats per minute.  

However, this tool could not be used to directly measure heart rate due to the decline of 

maximum heart rate values with age(124).  To simplify the scale, Borg introduced a 0-10 scale 

(CR-10) based on a category scale where values are based on verbal feedback(24).  The CR10 

scale has shown to be highly correlated with lactate levels in muscle and blood(175).   

Foster utilized the CR10 scale to derive calculation of training session load without the 

requirement of heart rate monitors(88).  To determine sRPE, athletes provide an intensity rating 

from 0-10 approximately 30 minutes after the cessation of training(88).  This intensity rating is 
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then multiplied by the duration of the training session in minutes.  While sRPE is found to be 

reliable and valid(58, 104, 111, 152, 199, 200, 213, 214), its correlation to TRIMP has varied in 

studies between r = 0.61 to r= 0.85(26, 121).  In addition, several factors can affect the accuracy 

of the RPE rating, and therefore the sRPE value.  These factors include athlete memory, 

cognition, and individual experiences(82).  In spite of these cautions, due to the absence of 

measuring equipment and the simplistic calculation method, sRPE continues to be widely 

utilized in numerous studies and across an array of sports(26, 33, 58, 65, 81, 95, 99, 112, 114, 

143, 149-151, 161, 184, 200, 204, 207, 214, 217-219).   

 Comparing the subjective sRPE model with the objective TRIMP and SHRZS models, 

Borresen and Lambert(26) found several differences in the calculated values, even though 

athletes were performing the same training.  For example, the authors found that for athletes who 

spent a greater amount of time doing high-intensity exercise, the objective models overestimated 

the training load.  Similarly, the subjective sRPE model underestimated training load for these 

athletes as well.  On the contrary, athletes performing low intensity exercise may have 

underestimated objective values, or the subjective model may overestimate those values.  The 

authors contend that the weighting system used in the SHRZS may provide physiologically 

inaccurate values for determining load.  Borresen and Lambert reviewed the literature and found 

that this model had also not been validated(26).  As a result of these findings, or because TRIMP 

and sRPE are simpler to calculate, SHRZS has not been as widely utilized.  Instead, researchers 

and practitioners have continued to use the sRPE method to measure internal workloads.      
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Player versus Coach Perceptions of Workload 

 

 In a perfect world, the perception of workout intensity and volume, aka the training load, 

should be similar between the coach and their athletes.  The studies assessing this agreement, 

however, are mixed.  Impellizzeri et al. found correlation between coach prescribed training 

volume (measured via heart rate monitors) and the athlete sRPE to range between r = 0.5 - 

0.85(121).  This study assessed heart rate load using three different TRIMP calculations 

(Banister’s, Edwards’, and Lucia’s).  Both Edwards and Lucia utilized summated heart rate zone 

scores(77, 144).  Edwards’, however, utilizes five pre-set heart rate zone percentages based on an 

athlete’s maximal heart rate(77).  Lucia’s calculation is based on an athlete’s lactate threshold 

zone(144).  Her calculation has three heart rate zones depending on if an athlete is pre-lactate 

threshold, within lactate threshold, or exceeding lactate threshold values.  Impellizzeri et al. 

found similar results between the TRIMP methods in their study and again found moderate 

correlation between sRPE and Edwards’ TRIMP (r = 0.5 - 0.85) depending on the athlete(121).  

Therefore, it would appear that the positive correlations between sRPE and planned training 

imply that sRPE is a useful measure for continuous monitoring of training programs.  

 Even though a few studies have found positive correlations between sRPE and planned 

training(50, 109, 121), several have found weak correlations when coaches and players both 

rated the perceived exertion of training sessions(15, 31, 213).  Brink and colleagues(31) had 

coaches rate their intended exertion index for each session.  They then had athletes provide their 

ratings after the completion of each session.  Player-coach correlations were significantly weak 

(p < 0.0001) for intensity (r = 0.24), duration (r=0.49), and load (r=0.41).  Players also reported 

higher intensity and training load for what were planned to be easy and intermediate practice 

days, while reporting lower intensity, duration, and training load for days that were intended to 
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be hard practices.  Finally, they found that younger soccer players (U-17) reported sessions as 

being more difficult than their older counterparts (U-19).  The authors concluded that these 

discrepancies could lead to maladaptation to training.  The discrepancies between internal 

training load by coaches and athletes could be due to multiple explanations.  Besides an athlete’s 

age and experience(15, 31), reported sRPE scores could be based on accumulated fatigue as a 

result of excessive training or sleep loss(106).  Another issue with these studies is that they span 

a season or less in length.  As a result, definitive conclusions have not been determined.  

 

External Quantification of Training Load 

 

Recent developments in technology have led to the introduction of wearable devices 

which utilize global positioning systems and accelerometers to track athlete load(208).  These 

devices are generally worn between the shoulder blades using compression garments.  The loads 

calculated from these wearables are referred to as external load(208).  Football is a game which 

contains numerous accelerations, decelerations, sprints, and collisions(220, 221).  The wearable 

unit devices have shown to be reliable and valid for monitoring athlete activity for running-based 

sports(72, 100, 127, 135, 146, 183, 209).  The accelerometer-based variables captured by these 

units (including jumps, changes of direction, and accelerations, and decelerations) have also been 

shown to be reliable(13, 14, 29, 132).  These units have also been shown to be useful in a 

multitude of sporting contexts(14, 30, 53, 63, 177, 182, 188, 234, 235).  

The most reported measure of external training load is Player Load (Catapult 

Innovations, Melbourne, AUS)(208).  This metric is calculated as the sum of all accelerometer 
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movements in the three-dimensional plane.  This is a unit-less quantification as is defined by the 

manufacturer as: 

Player/Body Load =  √
(𝛼𝑦1 −  𝛼𝑦−1) + (𝛼𝑥 −  𝛼𝑥−1) +  (𝛼𝑧 −  𝛼𝑧−1)

100
 

Where, y refers to the forward/backward acceleration, x refers to lateral acceleration, and z refers 

to vertical acceleration.  The prevailing theory behind this tool is that higher numbers of 

accelerations, in every plane, are associated with greater efforts by the athletes, and as a result 

incite greater stressors to their bodies(208).   

Studies have generally supported the use of these wearables by showing moderate to high 

correlations to distance covered(39, 182) and athlete sRPE(39, 95, 222).  However, due to the 

trivial correlation of Player Load to VO2(13, 212), and its moderate correlation with heart 

rate(13, 212), Player Load, having been derived from a trunk mounted device, may measure a 

separate construct than these previously utilized measures(39, 190, 195).  As Vanrenterghem and 

colleagues suggest, Player Load is measuring the activity, accelerations, and therefore 

biomechanical load of the body as a unit(208).  Even though the movement of the limbs is being 

measured through the sway of the trunk, the trunk has the largest amount of mass and therefore 

provides the best way to derive the work taken by the whole body without the hassle for 

accelerometers on every limb(208).  Although Player Load is small to moderately correlated with 

other measures of exercise intensity, it is correlated with other forms of workload quantification 

and is perhaps the most efficacious way to measure workload in an uncontrolled sporting 

environment(208). 
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Acute:Chronic Workload Ratio and Injury 

 

With the advancement of wearable devices into the sports of rugby, Australian rules 

football, soccer, and cricket, a new method for assessing external workload was developed(114).  

Based on a simplified version of Banister’s fitness-fatigue model, Hulin and colleagues began to 

investigate the relationship between recent training loads (~3-10 days) and chronic training 

history (~4-6 weeks).  The authors dubbed the ratio of acute and chronic workload the 

acute:chronic workload ratio (ACWR)(114).  Although myriad acute and chronic timeframes 

have been investigated(27), the most common timeframe for which the ACWR has been applied 

is a 1-week acute training load period and a 4-week chronic training load(48, 49, 59, 61, 65, 81, 

107, 108, 114, 115, 125, 126, 148, 150, 157, 168, 169, 186, 219, 227); however, other ratios have 

also been utilized(36, 149, 156, 188, 204).  Hulin and colleagues(114) retrospectively assessed 

five years of elite cricket bowlers and the relationship between the number of balls bowled per 

week and injuries.  They found that bowlers with an acute workload of more than 200% of their 

chronic workload history had a relative risk for injury of 3.3 (95% CI: 1.50 – 7.25) compared to 

bowlers with acute workload values for that week similar to their chronic values (p < 

0.0001)(114).  The authors concluded that large increases in acute workload were associated 

with increased risk in elite cricket fast bowlers(114).   

Several studies have compared total distance traveled in team sport training and its 

relation to injury(49, 115, 116, 204).  Hulin et al. (115) found that rugby players with ACWR 

values between 1.23 and 1.61 had an increased risk of injury of 2.88 when they had less than 7 

days of rest between matches than those with ACWR ranges between 1.02-1.22(115).  Even 

more striking, they found that athletes whose ACWR values exceeded 1.62 had a relative risk of 

5.80 compared to those with normal values between 1.02-1.22.  These results were supported by 
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other studies of Australian rules football players, which found total distance ACWR values 

greater than 2.00 led to higher relative risks of injury (4.87 – 8.41) compared to values less than 

1.50(168, 169). 

Total distance has not been the only metric through which ACWR was viewed.  Although 

definitions of speeds varied, numerous studies looked at the total distance traveled at high speeds 

and the relationship with injury(36, 48, 61, 81, 125, 149, 168, 169, 204).  Murray et al.(168) 

found that ACWR ratios greater than 2.00 for total distance covered while running 18.01 to 

24.00 kilometers per hour (11.18 to 14.9 miles per hour) were associated with a relative risk 

increase of 4.66.  High speed running (HSR) ACWR of greater than 2.00 have been found to be 

associated with increased risk in both the current week and the following week (RR = 4.36-9.63) 

(169).  Studies from other sporting contexts have also supported these findings(49, 125, 149).  

However, there have been studies which reported nonsignificant findings with respect to injury 

risk when speeds greater than 20 km/h (12.4 mph) were analyzed(61, 204).  Esmaeili et al. (81) 

also found that including recent leg injuries (<53 days) as a variable increased the hazards ratio 

of high ACWR from 1.57 to 4.60.  As a result, the applicability of the ACWR with respect to 

distance covered at high speeds, measured using the GPS component of the wearable device, and 

remains mixed.   

The Player Load metric (PL), as discussed earlier, is the value given from the cumulative 

accelerometer measurements instead of the GPS component of these wearable devices(13).  This 

value has also been studied with respect to the ACWR equation(61, 81, 168, 169, 188).  ACWR 

values greater than 2.00 increased current week injury risk (RR = 5.80 – 12.46) compared to 

normal ACWR values(168, 169).  The accelerometer components can also provide measures for 

the number of accelerations, decelerations, and pitches thrown in sport.  ACWR of acceleration 
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efforts between 0.86 and 1.22, and deceleration efforts between 0.86 and 1.12, were shown to 

decrease the chance of injury (Odds Ratio = 0.39) when the ACWR of these values was less than 

0.86(169).  Cummins et al. (61) also found that acceleration and deceleration measurements had 

a significant relationship with decreased injury (p = 0.001 and p = 0.037 respectively).  These 

findings would seem to support the injury framework of this thesis where prescribing workloads 

that over-stress an athlete’s tissues or systems would increase their risk of injury as a result of an 

inability to repair damaged tissues prior to the next training stimulus. 

 

Session RPE and Injury 

 

The ACWR, using the sRPE score as an indicator of internal load, has been widely 

studied due to its cost effectiveness and ease of implementation(48, 49, 65, 81, 125, 126, 148, 

150, 151, 156, 157, 186, 204, 219).  Malone et al. (150) utilized this method to assess injury 

relationships in pre-season and in-season Australian rules football players.  They found that 

ACWRs greater than 1.50 may increase injury risk higher during the pre-season period (OR = 

3.03) than the in-season period (OR = 2.33)(150).  Another study by Malone et al. (151) found 

that first-year elite Gaelic football players were at higher risk of injury than more experienced 

players (OR = 0.20 – 0.24).  The authors commented that there may be a bell curve with respect 

to the relationship between loading rates and injury rates(151).  Other sRPE-based ACWR 

studies found similar findings with ACWRs greater than 1.50 and increased injury rates(36, 156, 

157, 219).  Although it seems conclusive, results of some studies have contradicted the 

previously mentioned results.  Colby et al. (49) found that ACWR values greater than 1.30 were 

associated with decreased injury incidence rate ratio (IRR = 0.93).  Other studies found no 

association between the traditional ACWR and injury(65, 186).  
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Other studies using sRPE-based ACWR have sought to understand if the acute load was 

responsible for increased injury risk or if low chronic loads were.  Stares et al. (204) found that 

the presence of very low chronic workloads for distance, sprint distance, and sRPE increased the 

risk of injury at 7, 14, 21, and 28 days after the spike in ACWR (RR = 2.71 – 6.93).  Injury risk 

was also elevated when low chronic sRPE workloads were combined with low acute sRPE loads 

when compared to the normal ACWR range of 0.90 to 1.20 (RR = 2.15 – 2.38).  Low chronic 

sRPE load combined with low ACWR was also likely increased injury incidence rate ratio (IRR 

= 2.52) compared to normal loads in the study by Colby et al. (49).  However, it should be noted 

that this study listed “low” ACWR as 0.86 to 1.02, which is defined as normal in the Stares et al. 

study(204). 

Maupin and colleagues(155) combined seven studies(114, 116, 149-151, 168, 169) to 

produce pooled effect sizes for total distance, sRPE, high speed running, PL, and moderate speed 

running.  The combined effect sizes display a trend for lower risks of injury when ACWR ranges 

from 0.80 to 1.30(155).  They also that those athletes with ACWR greater than 2.00, showed 

higher risk of injury than those with lower ACWR values (OR = 4.00, 95% CI = 1.65-9.68) 

(155).  Relative risks also ranged from 3.91 to 8.90 when ACWR was greater than 2.00.  

Interestingly, they also noted that ACWRs less than 0.80 had increased injury risk (RR = 3.57, 

95% CI = 1.65-9.68).  Even though not all variables were equally represented across the seven 

studies analyzed(155), these results begin to suggest that the ACWR could be a useful way for 

coaches to periodize their training plans in order to provide the optimal balance between training 

stimulus and tissue recovery.  
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Comparing Internal and External Training Load 
 
 

There have been a multitude of studies examining the relationship between internal and 

external load measures in team sports(16, 38, 39, 57, 95, 143, 184, 189, 190, 195, 196, 198, 203, 

217, 218, 223).  These studies have found correlations ranging from trivial to very large.  A 

meta-analysis by McLaren and colleagues(161) synthesized these results and provided pooled 

estimates of the relationships.  They found that the measures of internal load derived from 

perceived exertion and from heart rate are positively associated with external loads derived from 

GPS and accelerometer modalities(161).  However, the magnitude and uncertainty of the 

relationships appear to be dependent on assessment tool and training mode(161).  Total distance, 

it turns out, had the strongest associations with internal load and intensity indicators.  The 

authors also noted that accelerometer-derived impacts (i.e., physical collisions, static exertions, 

jumping, etc.), which are pertinent to the sport of football, may have greater influence on sRPE 

and TRIMP scores than total distance. 

 

Exponentially Weighted Moving Average Acute:Chronic Workload Ratio 

 

Recently, the validity of ACWR has been questioned because, mathematically, the rolling 

average fails to account for the ability of fitness and fatigue effects to decay over time(68, 163, 

228).  Therefore, the ACWR value given may not accurately represent the variability in which 

loads are experienced over the past four weeks.  Williams et al.(228) offered an alternative 

calculation which uses exponentially weighted moving averages (EWMA) for both acute and 

chronic loads.  This calculation method known as EWMA ACWR, or EWMA for short, assigns a 

decreasing weight to compensate for the latency effects of load(228).  The EWMA is calculated 
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daily for both acute and chronic workloads.  The first activity is usually arbitrarily entered as the 

starting chronic value(161, 168, 188, 189).  The equation used to calculate the acute period is: 

Acute: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

7+1
)] + {[1 − (

2

7+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

The equation used to calculate the chronic period is: 

Chronic: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

21+1
)] + {[1 − (

2

21+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

The acute period is divided by the chronic to give a ratio value for each day.  

The EWMA has been utilized in several sports(81, 126, 168, 227, 228) including 

American football(188).  Studies comparing EWMA and traditional ACWR equations have 

found that while both methods demonstrate increasing injury risk with higher values, the ACWR 

method underestimates the risk of injury at higher values compared to EWMA(81, 126, 168, 188, 

227).  For example, a prospective study of 55 elite Australian rules football players over two 

seasons compared ACWR and EWMA methods(81).  These authors found that the athletes with 

ratio values greater than 1.50 had higher hazard ratio with the EWMA calculation versus the 

ACWR method (6.8 vs 2.2 respectively).  They concluded that EWMA provided ratio values that 

better explained injury occurrence than the ACWR method because it accounted for the 

physiological decay of training over time(81). 

To date, there have only been 2 studies with American football players utilizing the 

ACWR and EWMA methods for calculating training load and injury risk(188, 189).  The first 

paper by Sampson et al.(188) retrospectively modeled the best fitting workload ratio equation for 

the activity, measured using PL, and non-contact injury data accumulated by 52 athletes from 

one team over one pre-season and in-season period.  Of the 52 players observed, 46 of them 

sustained injuries, which accounted for 105 total non-contact injuries.  Thirty-one of these 



32 

 

 

injuries resulted in subsequent time-lost from activity.  These authors utilized various acute and 

chronic timeframes and determined that the EWMA method, with a 7-day acute to 21-day 

chronic timeframe and a 3-day lag, resulted in the best fitting model (R2 = 0.54).  Football 

players were likely to be at a greater risk of injury when their EWMA value was greater than 

1.30 compared to values between 0.80 and 1.30 (RR = 3.33, 95% CI = 1.35 – 8.19) and values 

less than 0.80 (RR = 3.05, 95% CI = 1.38 – 6.76).  Their work also supported the concept that a 

low training base, measured with low chronic workload accumulation, combined with a high 

EWMA value, placed athletes at the highest risk of injury (RR = 30.67, 95% CI = 3.03 – 

310.51). 

The second paper by Sampson et al.(189) assessed the combined effect of workload ratios 

and self-reported wellness.  These authors retrospectively assessed data from 42 college football 

players over the course of a competitive season.  Data collected included injuries, wellness 

questionnaire scores, and PL using the 7:21 day EWMA method(189).  Findings from this study 

revealed that high EWMA ACWRs were trivially associated with worse feelings of wellness, 

soreness, and fatigue.  Although high EWMA ACWRs increased injury risk and negatively 

impacted wellness, athletes with the highest risk were the ones that reported high EWMA 

ACWR numbers combined with “better” wellness reports.  These authors concluded that athletes 

may be able to self-modulate during their training sessions if they are feeling fatigued.  Broad 

application of these results to the greater football community should be cautioned due to the 

retrospective nature of this study examining one team and only during the in-season period of 

sport participation.  Therefore, analyses using larger data sets, over multiple years, and with 

multiple teams are warranted.            
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Criticisms of Current Workload Research 
 
 

 Even though the past research done using the EWMA and ACWR methods to assess 

injury risk have been promising, including being drafted into an International Olympic 

Committee statement(201), serious criticisms of the methodologies and conclusions drawn from 

this line of research have emerged(36, 142, 173, 174, 216).  The most basic criticism has been 

how loads have been measured(216).  Internal and external workloads, as discussed previously, 

have been measured using an assortment of variables(102, 155, 161).  Due to this inconsistency 

in observed variables, results from one study are often heterogenous and non-applicable to 

others(118).  In addition, the definition of injury is not constant across every study(36, 48, 49, 

61, 65, 81, 107, 114-116, 125, 148-151, 155, 156, 167-169, 186, 188, 189, 204, 207, 216, 219, 

230).  Other criticisms attack the basis on which the ACWR is calculated. 

 The explanation that ACWR is a measure of change has also been a topic of debate(216).  

Wang et al.(216) contend that the conventional measure of ACWR is proportion because it 

measures the amount that the acute workload represents in relation to the whole and not a true 

measure of change.  Because the acute load is traditionally included in the chronic load, critics 

contend that this causes the values to be “mathematically coupled” and results in spurious 

correlations(142, 216, 231).  This coupling in effect places a theoretical maximum value for 

ACWR of 4.00.  This has implications if an athlete has not trained in the past three weeks and 

then begins activity.  Regardless of how much activity the athlete actually performs in the acute 

week, whether they run 1 mile or 100 miles, their ACWR value can be a maximum of 4.00.  

Using an uncoupled method would remove the correlation and increase the between-athlete 

variability(142).  The uncoupled ACWR also has its limitations(216).  Wang et al.(216) contend 

that the acute and chronic values should be separate variables in order to determine whether any 
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observed relationship with injury is due to the ratio, the chronic load, or both.  Others assert that 

the relationship between the acute and chronic loads may not be linear(8, 62).  Further research is 

needed before the efficacy of the ACWR model can be determined.  

 The EWMA method has also drawn its fair share of criticism(163, 216).  While the 

EWMA may better reflect changes in activity better than the ACWR(102, 188), the logistic 

regression used to draw this original conclusion did not account for repeated measures of the 

same individuals(216).  Furthermore, given the decay nature of this equation, modeling days 

closest to Day 0 has a large effect on the weights of subsequent days(216).  Therefore, it is 

important for observation periods to extend beyond a couple months before drawing 

relationships between workload and injury(216).  This will allow the convergence of the ratio 

regardless of the starting values being positive or zero(216).  However, this convergence would 

only take place for athletes who were un-injured during the first 50 days of training(216).  

 The concept of tapering is also negatively reflected in the EWMA model.  Several sports 

incorporate a taper towards the end of a season and into the post-season(166).  Tapering is the 

planned reduction of activity in order to reduce fatigue and increase recovery, with the objective 

to optimize performance and minimize injury risk(31, 73, 166, 208).  College football could also 

taper as they transition from the regular season and train for their bowl game.  However, the 

EWMA model will represent this taper as a higher ACWR during competition(216).  Wang and 

colleagues contend that a different model and set of recommendations, which have yet to be 

defined, be used for these instances(216). 

 Perhaps the greatest critique of the studies utilizing the ACWR and EWMA methods has 

been the discretizing of these continuous ratio values(36, 216).  Discretizing this variable can 

result in the loss of the true relationship between the ratio and injuries(20).  As was the case with 
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injury definitions, studies have binned this variable incongruently, as well as used various 

reference values for comparison, both of which make it difficult to generalize findings(49, 149, 

151, 169).  This discretization can also amplify data from limited samples(216).  When ACWR is 

separated into categories and assessed for a binary outcome variable, such as injuries, there is a 

requirement that at least 5 injury observations be present for each category(101).  This is 

amplified when covariates (i.e., pre-season, in-season, position, etc.) are included in the 

model(216).  Specific injury counts per category were also not reported, or have been 

underpowered for discretized analysis(216).  For example, Wang and colleagues demonstrated 

that the traditional ACWR model used in the IOC consensus statement(201) was based on only 

three studies, and only one of the studies reported any injury count at all(216).   

To better understand the predictive abilities of these models, Carey et al.(36) compared 

computer models of training load and injuries using both discretized and continuous methods, 

which used large sample sizes and simulated repeat studies.  They found that discretized models 

had a false discovery rate of 16-21%, whereas continuous models using either spline regression 

or fractional polynomials, had rates of only 3-7%(36).  Two of the three discretized models also 

had higher false rejection rates (57-59%) compared to the continuous models (12-19%).  These 

authors suggested that future research utilize longitudinal data which accounts for repeated 

observations, achieve adequate statistical power, and use continuous methods to assess the 

relationships of these workload ratios and injuries(36).  Nielson et al.(173) also recommend 

sports injury researchers collaborate with statisticians or methodological epidemiologists to best 

model causal relationships. 
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Summary of Current Evidence and Future Directions 
 
 

In conclusion, there is substantial evidence linking measures of both internal and external 

workload to increased injury risks in various sporting populations.  However, without 

improvements in statistical methodologies and the detail in outcome reporting, drawing 

definitive and generalizable conclusions from these measures is limited.  Furthermore, studies in 

American football have not assessed the association between these measures and non-contact 

injuries throughout the entire training cycle.    

The current studies aim to assess the relationship of these workload ratio models to non-

contact injuries in American football.  These studies will assess these relationships across years 

and teams.  They will also assess the concept, purposed by the injury model earlier, that spikes in 

workload will result in increased inflammation, measured from CRP, and that this inflammation 

will precede non-contact injury.    
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CHAPTER 3 

A MULTI-TEAM ASSESSMENT OF EXTERNAL WORKLOAD MODELS AND 

ASSOCIATIONS WITH INJURY RATES IN NCAA AMERICAN COLLEGE 

FOOTBALL 
 

 

ABSTRACT 

Recent research has shown associations between sudden changes in workload with 

subsequent injury in NCAA Division 1 American football players.  However, these findings 

were based on data from a single team during a single pre-season and in-season period.  

PURPOSE: To assess the relationships among workload, workload ratios, phases of sport 

participation, and non-contact injury occurrence across two football teams over a two-year 

period.  METHODS:  Movement and injury occurrence data derived from 120 football players 

from two NCAA Division 1 football teams during the 2018 and 2019 seasons were 

retrospectively analyzed.  Movement data, measured using wearable devices, were collected for 

the summer conditioning, pre-season practice, and in-season periods.  Workload ratios were 

calculated using both the 7-day:28-day rolling averaged acute:chronic workload ratio (ACWR) 

and the 7-day:21-day acute:chronic workload ratio utilizing exponentially weight moving 

averages (EWMA).  Workload data (arbitrary units; AU) from the spring practice phase of 

training were used to provide workload ratios at the beginning of summer conditioning period.  

All injuries were classified by the respective medical staffs.  Lower-body and trunk injuries with 

a non-contact or overuse mechanism, and that resulted in time away from training or 

competition, were included in the analysis.  Injury incidence rate ratios (IRR) per 1000 hours 

(HEs) and per 1000 activity sessions (AEs) were calculated.  Previous 7-day cumulative load 

(weekly load) was calculated daily.  Kruskal-Wallis H tests for workload and workload ratios 

were conducted by team and phase.  Both combined and team-specific generalized estimating 
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equation (GEE) models were developed.  Weekly load and workload ratio variables were 

standardized by phase of year then assessed for model inclusion.  Models were selected by 

quasilikelihood under the independence model criterion (QIC).  GEE results were presented as 

odds ratios (OR) and injury probabilities.  Models were evaluated by using area under the curve 

(AUC) values for both Receiver Operating Characteristic (ROC) and Precision-Recall (P-R) 

curves.  RESULTS: A total of 88 non-contact/overuse injuries were recorded, with 23 (0.79 

HEs; 1.22 AEs) resulting in time-loss.  The hip/thigh region had the largest injury count (54 

total; 9 time-loss) and HE (1.85).  Preseason practice had the largest AE (3.33).  The overall 

average and standard deviation for weekly load was 1215 + 477 AU.  The average ACWR and 

EWMA ratios were 1.21 + 0.73 and 0.86 + 0.37, respectively.  Workload and workload ratios in 

each phase differed significantly by team except for summer conditioning.  GEE models were all 

statistically significantly associated with non-contact time-loss injuries for each team, with Wald 

χ2 values ranging from 7.54 to 1624.20 depending on the model workload ratio, phase of year, and dataset 

used.  Though odds ratios varied by model, in general there was an inverted-U relationship 

between workload ratios and injury.  The weekly load covariate in these models was also 

associated with lower injury probability with ORs ranging from 0.07 to 0.18 (p < .005).  ROC 

AUC failed to reject the H0 that the 4 models were equivalent (Team 1: χ2 = 4.53,  p = 0.21; Team 

2: χ2 = 5.12, p = 0.16).  P-R AUC ranged from  .0070 to .0237 depending on the model, which 

suggests that these models have low precision and recall.  CONCLUSION:  EWMA and 

ACWR models were associated with non-contact time-loss injuries, however the inverted-U 

relationship to injury probability displayed in these models is counter to previous research.  This 

study highlights the need for standardized injury classification and participation criteria.  
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Practitioners should not rely solely on these workload ratio models to plan training for optimized 

performance or rehabilitation.  

 

INTRODUCTION  

 

According to the National Collegiate Athletic Association (NCAA), approximately 

29,000 football players compete at the NCAA Division 1 level each year(5).  NCAA Division 1 

American football (football) players are inherently exposed to the risk of injury(133, 137, 158, 

225, 229).  The rate of injury has been observed to range from 3.17 to 4.90 per 1,000 athlete 

practice and game sessions(225).  Injuries resulting in lost participation time are often cited as 

major contributors in overall team success(69, 87, 123).  Time-loss injury rates in collegiate 

football have been calculated to 2.4 per 1,000 snaps(158) and 7.14 per 1,000 athlete practice and 

game sessions (133).  Mitigating injury occurrence is important for both athlete health and 

overall team success(69, 87, 123).  To minimize injury risk and maximize team success, schools 

have begun to utilize wearable devices to capture information regarding player workload.  These 

devices combine global position systems and accelerometers to quantify and assess athlete 

movements (workload) during conditioning, practices, and games.   

Workload can be categorized into acute (most recent 7 days) and chronic (previous 3- to 

4-weeks) values.  These values can be referenced as a ratio, which can then be utilized to 

measure the rate of increase or decrease of an athlete’s current training relative to their training 

history.  The value for this ratio has been calculated using various mathematical approaches(102, 

155).  The two most common are the original 7-day acute to 28-day chronic method, which 

utilizes rolling averages (ACWR) (114), and the 7-day acute to 21-day chronic method with 

exponentially weighted moving averages (EWMA) (102, 155, 228).  These are the most common 
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calculation methods reported in the literature due to the relative ease of calculation, as well as the 

use of weeks as the principal time frame. To date, several studies have found associations 

between large deviations in acute workload from chronic values and subsequent injury 

occurrence(3, 16, 38, 39, 57, 68, 95, 110, 143, 184, 188-190, 195, 196, 198, 203, 207, 217, 218, 

223). 

Sampson and colleagues(188) found that in college football, the 7:21-day coupled 

acute:chronic workload ratio calculated using an exponentially weighted moving average 

(EWMA) with a 3-day injury lag period had the greatest association to injury occurrence.  

Although this model is beneficial to guide practitioners in program design and player monitoring, 

it is important to expand upon this research with a larger participant pool and utilize multiple 

teams.  Longer studies with multiple teams and more athletes will improve the validity of the 

results by minimizing the impact of individual, team, and time effects in the data(154).  

Furthermore, previous research on the workload-injury association has been criticized for 

suboptimal statistical analyses(36, 216).  Therefore, the purposes of this study are to 1) compare 

the relationships among workloads, workload ratios, injury rates, and phases of training across 

two teams; and 2) determine if a workload ratio model consisting of data from two teams would 

be associated with non-contact injury-risk.  We hypothesized that both teams will have similar 

workloads, workload ratios, and injury occurrences; but the values of these measures will be 

significantly difference across time.  We also hypothesized that the EWMA workload ratio 

calculation will be more associated with non-contact injury risk than the ACWR calculation. 
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METHODS 
 

 

Participants 
 
 

Data were collected from college football players (n = 120) from two NCAA Division 1 

varsity teams (mean + SD: age: 20.7 + 1.1 years, mass: 109.6 + 23.2 kg, and height: 186.7 + 8.3 

cm).  Each NCAA team volunteered to participate in the study and provide data which had 

already been collected.  Football position groups were classified into three distinct categories: 

Skill (wide receivers & defensive backs), Big Skill (running backs, tight ends, and linebackers), 

and Power (offensive and defensive linemen).  Quarterbacks and Specialists were not included in 

this study due to their unique practice and game environments.  Athlete composition data are 

presented in Table 3.1.  All players trained full-time with their team during the length of the 

observational period.  The observational period took place from March 2018 thru December 

2019.  All participant workload and injury data were de-identified at their respective team site.  

Furthermore, data for each team were de-identified by a mutual third-party vendor (Catapult 

Innovations, Melbourne, AUS).  All experimental procedures for this study were approved by the 

Michigan State University Human Research Protection Program.   
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Table 3. 1. Athlete composition data.   

 All Time Periods 2018 2019 

 Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Athletes 120 42 78 85 28 57 86 30 56 

Skill 50 22 28 37 17 20 33 14 19 

Big Skill 43 17 26 28 10 18 31 13 18 

Power 27 3 24 20 1 19 22 3 19 

 2018: Summer 2018: Fall Camp 2018: Season 

 Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Athletes 75 28 47 79 28 51 83 28 55 

Skill 34 17 17 36 17 19 36 17 19 

Big Skill 23 10 13 24 10 14 27 10 17 

Power 18 1 17 19 1 18 20 1 19 

 2019: Summer 2019: Fall Camp 2019: Season 

 Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Athletes 76 28 48 81 28 53 85 29 56 

Skill 28 13 15 31 13 18 32 13 19 

Big Skill 28 13 15 30 13 17 31 13 18 

Power 20 2 18 20 2 18 22 3 19 

 

 
 

Quantifying Workload 

 

Wearable devices (Optimeye S5, Catapult Innovations, Melbourne, AUS) which combine 

10Hz GPS with a 100 Hz tri-axial accelerometer, a gyroscope, and a magnetometer were worn 

throughout the study.  These devices derive an external workload metric known as Player Load 

(Catapult Innovations).  Previous research has established the reliability, construct validity, 

convergent validity of these devices, and the components that are used in their construction, with 

ground-based and standardized treadmill running (13, 57, 58, 100, 127, 132, 161, 183, 209, 214). 

The S5 devices were placed in a compression garment worn by the players during all 

conditioning and non-padded practice sessions.  These garments placed the devices between the 
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scapulae of the players.  Garment sizes vary from small to xxxx-large to ensure a compressed, 

comfortable fit.  During padded practices, players wore the devices in boxes mounted on their 

shoulder pads in a similar location to the vests.  Players wore the same device during every 

conditioning and practice session.  Following each session, the data were downloaded into the 

accompanying software (Openfield, Catapult Innovations, Melbourne, AUS).  This software 

calculated workload as the sum of accelerations across all axes of a tri-axial accelerometer.  This 

is a unit-less quantification and is defined by the manufacturer as: 

Player/Body Load =  √
(𝛼𝑦1 −  𝛼𝑦−1) + (𝛼𝑥 −  𝛼𝑥−1) +  (𝛼𝑧 −  𝛼𝑧−1)

100
 

Each letter refers to either the forward/backward acceleration, lateral acceleration, or vertical 

acceleration.  Workload rates were calculated using both the “traditional” 7-day:28-day rolling 

averaged  acute:chronic workload ratio(114) (ACWR) and the exponentially weighted moving 

average (EWMA) calculation utilized in previous research(168, 188).  For the EWMA model, 

the equation used to calculate the acute period was: 

Acute: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

7+1
)] + {[1 − (

2

7+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

The equation used to calculate the chronic period was: 

Chronic: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

21+1
)] + {[1 − (

2

21+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

Where ‘Load’ in this instance refers to the accelerometer-derived Player Load, t refers to the 

current observation, and t-1 refers to the previous observation.  The acute period was divided by 

the chronic to give a ratio value for each day.  In the event of missing data (248 of 18,909 

activity observations; 1.3%), the activity average for the position group (i.e., defensive backs) 
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was imputed into the dataset pursuant to previous research(28, 188).  Workloads calculated from 

spring were used for the acute:chronic workload calculations in the summer. 

 

Definition of Exposure 

 

 

Each conditioning, practice, and competition session was categorized as an activity.  

Athlete exposure was defined as one athlete participating in one of these activities.  The 

participation in, and duration of, each activity was recorded within the accompanying software 

for the wearable devices. Practitioners for each team confirmed participation and durations for 

each athlete.     

 

Definition of Injury 

 
 

All injuries that occurred during the study period were classified by the respective sports 

medicine staff of that team.  Injuries were categorized based on the NCAA Sports Injury 

Surveillance program(133).  Lower-body and trunk injuries classified as non-contact or overuse 

in mechanism were included in the analysis due to possibly occurring because of large increases 

in activity exposure(87, 94).  Time-loss was defined as any injury where an athlete was unable to 

participate in one or more conditioning sessions, practices, or competitions.  Injury and 

movement data for each athlete were combined in a database, anonymized, and then sent to the 

mutual third-party vendor.  The vendor then anonymized the school before sending the compiled 

data to the study coordinator.  This process served to provide athlete descriptive data while also 

serving to provide an added layer of protection for athlete identifiable information from the study 

coordinator. 
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Statistical Analyses 

 
 

All calculations and analyses utilized the Stata IC v16.1 software package (StataCorp 

LLC, College Station, TX).  Athlete exposures were recorded as both the number of sessions and 

overall duration of participation in sport conditioning, practice, or games.  Injury counts and 

participation were combined to calculate injury incidence rate ratios (IRRs).  These IRRs, with 

95% confidence intervals, are displayed as both per 1000 sessions (AEs) and per 1000 hours 

(HEs).  Daily calculations of previous 7-day cumulative load (weekly load), ACWR, and EWMA 

ratio values were made for each athlete.  Kolmogorov-Smirnov tests for normality were 

conducted and indicated non-normal distributions for each variable.  Kruskal-Wallis tests were 

conducted to compare workload and workload ratios across teams and phases of year.  

 General estimating equation models were used to account for non-normality, probable 

intercorrelation between repeated observations for each athlete, and sparseness of non-contact 

injury occurrence.  Athletes served as the repeated-measures unit and each day served as the 

observation unit.  The binary outcome variable was specified to be a new non-contact injury 

occurrence.  A logit-link function with a binomial error structure, and exchangeable correlation 

matrix was used to model the binary outcome variable.   

Two models, one for each workload ratio calculation method, were developed.  Each 

model considered the team, weekly load, and workload ratio values as covariates.  Team-specific 

models were also created, in which case included observations were restricted to each team and 

the team covariate was removed from the model.  Both the workload ratio and weekly load 

variables were standardized by subtracting the mean value of the variable and dividing by its 

standard deviation.  These variables were standardized by each phase of the year.  In accordance 

with suggestions by previous research, both linear-only and quadratic functions of each variable 
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were combined in the GEE models(36, 139).  Unlike prior research, where observations were 

made weekly, and as such required a lag on the dependent injury occurrence in order to ensure 

sequentialty (139, 188), observations in this study were made daily so a lagged dependent injury 

outcome was not used.  Because of the daily observations, only days where an activity (training 

session, practice, or competition) occurred were used in the analyses.  A previous week load of 

zero would indicate an athlete being injured for a sustained period, and therefore would not be 

possible for them to experience a new injury.  However, the daily workload ratios would still be 

calculated based on their in-activity.  As a result, these observations were removed from the 

analyses.  The quasilikelihood under the independence model criterion (QIC) was used to 

compare the linear and quadratic variations of each standardized variable in each model(60).  

QIC is an extension of Akaike information criterion (AIC), therefore the model with the lowest 

QIC value was deemed the best fit(60).  Statistical analyses were represented by odds ratios 

(OR), Huber-White standard errors (SE), 95% confidence intervals (CIs), and with statistical 

significance set at p < .05.  The generalized and team-specific EWMA and ACWR models were 

compared using Receiver Operating Characteristic (ROC) curves and Precision-Recall (P-R) 

curves.  ROC curves serve to assess the diagnostic ability of the models to detect true injury 

occurrences versus false injuries.  P-R curves are used to assess the diagnostic ability of the 

models to correctly identify injuries (positive outcomes) and are unconcerned with detecting true 

non-injury (negative outcomes).  P-R curves are useful for datasets with an imbalance in 

outcomes such as those present in this study. 
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Power Analysis 

 

 

We desired 80% power to detect a difference of at least moderate effect size (ES = 0.5) 

for workload and workload ratios between teams. Therefore, with the α level set at α = .05 and 1 

degree of freedom, a sample size of 32 players was required and was associated with a critical χ2 

value of 3.841.  However, due to the unbalanced data set, we chose to include all observed 

athletes (n = 120), thus ensuring at least 32 players were observed for each time period. 

  

RESULTS 

 
 

Activity Summary 

 
 

 There were 37,332 total observations recorded spanning 487 days (mean + SD: 380.6 + 

182.8 days per player).  Activities were categorized as either conditioning or football.  Football 

activities consisted of coach-led practices, scrimmages, and games, while conditioning consisted 

of strength coach-led running sessions.  Activities accounted for 18,909 of the 37,332 total 

observations.  Cumulative observations and activities by time of year and category are presented 

in Supplemental Table 3.1.   

 

Total Injury Frequency and Injury Incidence Rate Ratios 

 
 

 During the observation period, 88 total non-contact injuries were sustained by 55 of the 

120 athletes (45.8%).  Each team recorded 44 non-contact injuries.  Of these 88 injuries, 23 

resulted in lost time (Team 1: 6; Team 2: 17).  These 23 injuries were sustained by 22 athletes.  

A summary of the injuries by time-period and team are reported in Table 3.2.     
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Table 3. 2. Summary of injuries and injured athletes by time-period and team. 

 All Time Periods 2018 2019 

Injuries (IDs) Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Non-Contact 88 (55) 44 (23) 44 (32) 49 (33) 23 (14) 26 (19) 39 (27) 21 (13) 18 (14) 

Time-Loss 23 (22) 6 (5) 17 (17) 12 (10) 1 (1) 11 (9) 10 (9) 4 (3) 6 (6) 

 2018: Summer 2018: Fall Camp 2018: Season 

Injuries (IDs) Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Non-Contact 14 (13) 5 (4) 10 (9) 16 (14) 8 (7) 8 (7) 19 (14) 11 (7) 8 (7) 

Time-Loss 1 (1) 0 (0) 1 (1) 4 (4) 0 (0) 4 (4) 7 (6) 1 (1) 6 (5) 

 2019: Summer 2019: Fall Camp 2019: Season 

Injuries (IDs) Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Non-Contact 10 (9) 6 (5) 4 (4) 10 (10) 6 (6) 4 (4) 19 (14) 9 (8) 10 (6) 

Time-Loss 1 (1) 0 (0) 1 (1) 5 (5) 3 (3) 2 (2) 4 (4) 1 (1) 3 (3) 

 

 Injury incidence rate ratios (IRR) were determined by dividing the total number of non-

contact and overuse injuries by exposure time and reported as both rates per 1000 hours (HEs) 

and rates per 1000 Athlete Exposure sessions (AEs).  The total combined non-contact and 

overuse injury rate was 3.02 HEs (4.65 AEs).  The rate for injuries resulting in time-loss from 

activity was 0.79 HEs (1.22 AEs).  The site where the largest number of injuries occurred (54 

total; 9 time-loss), and as a result had the largest injury rate (1.85 HEs; 2.86 AEs), was the 

hip/thigh region.  A summary of injury counts and IRRs by site and diagnostic criteria are 

contained in Table 3.3. 

 Overall, the preseason camp period had the greatest non-contact time-loss injury 

incidence rate ratio (HE: 1.67; AE: 3.33).  However, the summer conditioning period contained 

the largest occurrence of diagnosed non-contact injuries per hour of activity (HE: 6.95).  A 

complete summary of time-loss IRRs by year and phase of season is compiled in Table 3.4.  A 

full summary of all non-contact injuries is reported in Supplemental Table 3.2. 
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Table 3. 3. Non-contact (time-loss) injury characteristics and injury incidence rate ratios.   

Injury Site Counts Per 1000 Hours Per 1000 Sessions 

 (Time-Loss) Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

All Sites 88 (23) 44 (6) 44 (17) 3.02 (0.79) 4.78 (0.65) 2.21 (0.85) 4.65 (1.22) 6.41 (0.87) 3.65 (1.41) 

Trunk 3 (0) 2 (0) 1 (0) 0.10 (0.00) 0.22 (0.00) 0.05 (0.00) 0.16 (0.00) 0.29 (0.00) 0.08 (0.00) 

Hip/Thigh 54 (9) 33 (3) 21 (6) 1.85 (0.31) 3.58 (0.33) 1.05 (0.30) 2.86 (0.48) 4.81 (0.44) 1.74 (0.50) 

Knee 7 (2) 0 (0) 7 (2) 0.24 (0.07) 0.00 (0.00) 0.35 (0.10) 0.37 (0.11) 0.00 (0.00) 0.58 (0.17) 

Lower Leg 8 (4) 4 (1) 4 (3) 0.27 (0.14) 0.43 (0.11) 0.20 (0.15) 0.42 (0.21) 0.58 (0.15) 0.33 (0.25) 

Ankle 3 (0) 1 (0) 2 (0) 0.10 (0.00) 0.11 (0.00) 0.10 (0.00) 0.16 (0.00) 0.15 (0.00) 0.17 (0.00) 

Foot 8 (6) 1 (1) 7 (5) 0.27 (0.21) 0.11 (0.11) 0.35 (0.25) 0.42 (0.32) 0.15 (0.15) 0.58 (0.41) 

Other 5 (1) 3 (0) 2 (1) 0.17 (0.03) 0.33 (0.00) 0.10 (0.05) 0.26 (0.05) 0.44 (0.00) 0.17 (0.08) 

Diagnosis All Time Periods Per 1000 Hours Per 1000 Sessions 

(Time-Loss) Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Fracture 2 (2) 0 (0) 0 (0) 0.07 (0.07) 0.00 (0.00) 0.10 (0.10) 0.11 (0.11) 0.00 (0.00) 0.17 (0.17) 

Sprain 11 (4) 1 (0) 10 (4) 0.38 (0.14) 0.11 (0.00) 0.50 (0.20) 0.58 (0.21) 0.15 (0.00) 0.83 (0.33) 

Strain 66 (12) 42 (5) 24 (7) 2.27 (0.41) 4.56 (0.54) 1.20 (0.35) 3.49 (0.63) 6.12 (0.73) 1.99 (0.58) 

Other 9 (4) 1 (0) 8 (4) 0.31 (0.14) 0.11 (0.00) 0.40 (0.20) 0.48 (0.21) 0.15 (0.00) 0.66 (0.33) 
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Table 3. 4. Injury incidence rate ratios (IRR) by year and phase of season. 

 Phase Per 1000 Hours (95% CI) Per 1000 Sessions (95% CI) 

2
0

1
8
 

Combined 0.66 (0.00, 1.51) 1.06 (0.00, 2.51) 

Summer 0.52 (0.00, 1.54) 0.50 (0.00, 1.47) 

Camp 1.05 (0.00, 3.10) 2.32 (0.00, 6.88) 

Season 0.59 (0.12, 1.06) 1.03 (0.28, 1.79) 

2
0

1
9
 

Combined 0.72 (0.50, 0.94) 1.03 (0.98, 1.08) 

Summer 0.41 (0.00, 1.21) 0.49 (0.00, 1.44) 

Camp 2.43 (0.00, 4.92) 4.45 (0.82, 8.08) 

Season 0.37 (0.23, 0.50) 0.58 (0.31, 0.86) 

A
L

L
 

Combined 0.69 (0.33, 1.05) 1.14 (0.62, 1.67) 

Summer 0.46 (0.00, 1.35) 0.49 (0.00, 1.46) 

Camp 1.67 (1.63, 1.72) 3.33 (2.64, 4.02) 

Season 0.48 (0.17, 0.79) 0.80 (0.26, 1.34) 

 

Activity Loads and Workload Ratios 

 
 

The average + standard deviation for weekly load during the investigation period was 

1215 + 477 AU.  Average ACWR and EWMA ratio values were 1.21 + 0.73 and 0.86 + 0.37, 

respectively.  The pre-season camp period had the largest weekly workloads (1917 + 391) and 

EWMA values (1.12 + 0.21), while the summer conditioning period had the largest ACWR 

values (1.62 + 1.22).  Boxplots of weekly workload by team and season are displayed in Figure 

3.1 and demonstrate a large increase at week 32 which is the first full week of pre-season 

practice.  Weekly load then has minor fluctuations during the in-season phase which takes place 

from weeks 35 thru 52.  Figure 3.2 contains boxplots of weekly workload ratios by team and 

season and mirrors the same trends displayed in Figure 3.1.  Additionally, detailed average 

weekly load and workload ratios by year and phase of season are included in Table 3.5.  
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Table 3. 5. Average weekly load and workload ratios by year and phase of season 

Weekly Load  

(AU + Std. Dev.) 

Combined 2018 2019 

Summer Camp Season Summer Camp Season Summer Camp Season 

Combined 719 + 350 1917 + 391 1307 + 249 709 + 352 1881 + 434 1287 + 284 730 + 362 1951 + 426 1326 + 322 

Team 1 756 + 294 1478 + 340 1129 + 254 781 + 304 1565 + 288 1008 + 295 732 + 338 1392 + 460 1248 + 319 

Team 2 697 + 417 2165 + 456 1405 + 276 665 + 436 2066 + 533 1440 + 365 729 + 423 2260 + 514 1369 + 356 

Workload Ratio  

(AU + Std. Dev.) 

Combined 2018 2019 

Summer Camp Season Summer Camp Season Summer Camp Season 

Combined: ACWR 1.62 + 1.22 1.36 + 0.53 0.97 + 0.21 1.58 + 1.21 1.39 + 0.55 0.97 + 0.21 1.58 + 1.21 1.39 + 0.55 0.97 + 0.19 

Combined: EWMA 0.99 + 0.35 1.12 + 0.21 0.91 + 0.10 0.99 + 0.35 1.12 + 0.21 0.91 + 0.10 1.01 + 0.37 1.12 + 0.21 0.92 + 0.10 

Team 1: ACWR 1.57 + 1.11 1.23 + 0.53 0.96 + 0.21 1.59 + 1.13 1.23 + 0.49 0.96 + 0.22 1.55 + 1.09 1.22 + 0.56 0.97 + 0.26 

Team 2: ACWR 1.66 + 1.32 1.45 + 0.57 0.98 + 0.24 1.55 + 1.28 1.48 + 0.60 0.98 + 0.25 1.75 + 1.38 1.41 + 0.57 0.97 + 0.21 

Team 1: EWMA 1.09 + 0.37 1.08 + 0.21 0.93 + 0.12 1.11 + 0.38 1.09 + 0.21 0.93 + 0.14 1.08 + 0.36 1.07 + 0.22 0.94 + 0.13 

Team 2: EWMA 0.93 + 0.39 1.14 + 0.26 0.90 + 0.11 0.96 + 0.39 1.14 + 0.24 0.91 + 0.13 0.90 + 0.45 1.15 + 0.30 0.88 + 0.14 
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 Figure 3. 1. Weekly load by team and week of year. 
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Figure 3. 2. EWMA and ACWR values by team and phase of year. 
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Kruskal-Wallis tests for workload and workload ratios demonstrated that overall group 

medians were statistically significantly different (Table 3.6).  Therefore, we rejected the H0 that 

Team 1 and Team 2 possessed overall similar data.  These results held for the pre-season (χ2: 

749.470, p < .005) and in-season (χ2: 1453.146, p < .005) phases when assessed individually, 

however, we failed to reject H0 for the summer conditioning period (χ2: 3.132, p < .077).  The 

Kruskal-Wallis tests to determine differences by phase of year were statistically significant for 

both combined and team-specific data sets (Supplemental Table 3.3).  Post-hoc pairwise 

comparisons were performed using Dunn’s procedure(74) with a Bonferroni correction for 

multiple comparisons.  This analysis revealed statistically significant differences between 

summer conditioning, pre-season practice, and in-seasons phases for workload and workload 

ratios.  Effect sizes were assessed post-hoc by calculating partial eta-squared (η2)  from the 

Kruskal-Wallis H statistic(141) and are reported in Table 3.6.   

As a result, our hypothesis was correct that workload and workload ratios would differ 

across time.  However, our hypothesis that both teams would have similar workloads and 

workload ratios for each phase of the year to each other was incorrect, as the pre-season and in-

season periods were significantly different between the two teams.   
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Table 3. 6. Kruskal-Wallis H test results for team differences. 

Team Comparison 
Workload ACWR EWMA 

Χ2 Deg. p-value Χ2 Deg. p-value Χ2 Deg. p-value 

Summer 

Conditioning 
3.13 1 .077 17.15 1 < .005t 68.03 1 < .005t 

Pre-Season 

Practice 
749.47 1 < .005t 350.31 1 < .005t 51.93 1 < .005t 

In-Season 1453.15 1 < .005t 4.61 1 .032t 34.42 1 < .005t 

Abbreviation: Deg, degrees of freedom in chi-square test.  Note: t denotes statistically significant results at p < .05 level. 
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Generalized Estimating Equation Models 

 
 

 For ACWR and EWMA GEE models, the inclusion of the quadratic of the workload 

ratio and the linear weekly load yielded the lowest QIC score for both the combined and team-

specific datasets and were selected for further analysis.  A full comparison of each model, 

including the number of parameters, the trace value, and corresponding QIC score is reported in 

Table 3.7.   

 

Table 3. 7. QIC results for GEE models by dataset. 

Model Variables P Trace QIC 

Combined EWMA 

EWMA, Weekly Load, Team 4 3.433 442.969 

EWMA2, EWMA, Weekly Load, Team 5 5.201 358.360 

EWMA, Weekly Load2, Weekly Load, Team 5 4.400 446.991 

Combined ACWR 

ACWR & Weekly Load, Team 4 3.483 379.693 

ACWR2, ACWR, Weekly Load, Team 5 5.657 356.733 

ACWR, Weekly Load2, Weekly Load, Team 5 4.346 384.530 

Team 1 EWMA 

EWMA & Weekly Load 3 2.599 414.339 

EWMA2, EWMA, Weekly Load 4 4.277 349.946 

EWMA, Weekly Load2, Weekly Load 4 3.547 432.307 

Team 1 ACWR 

ACWR & Weekly Load 3 2.801 388.811 

ACWR2, ACWR, Weekly Load 4 4.708 374.607 

ACWR, Weekly Load2, Weekly Load 4 3.691 406.367 

Team 2 EWMA 

EWMA & Weekly Load 3 2.329 459.879 

EWMA2, EWMA, Weekly Load 4 4.107 384.005 

EWMA, Weekly Load2, Weekly Load 4 3.282 460.308 

Team 2 ACWR 

ACWR & Weekly Load 3 2.289 388.818 

ACWR2, ACWR, Weekly Load 4 3.990 369.831 

ACWR, Weekly Load2, Weekly Load 4 3.055 388.350 

Abbreviation: P, number of parameters including dependent variable; QIC: quasilikelihood information criterion 

statistic.  Note: All variables were standardized by phase of year before model initiation.  Models in bold were 

selected for further analysis.   
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 Both combined and team-specific GEE models were statistically significant at the p < 

0.05 level.  In the combined dataset, EWMA and ACWR models had Wald χ2 values of 42.40 (p 

< 0.005) and 32.49 (p < 0.005), respectively.  The Team 1-specific models did not converge for 

the summer period, which was likely due to only observing one injury in that phase of training.  

The only subset of data where the Wald χ2 statistic was computed but did not achieve 

significance at the p < .05 level was the Team 1-specific EWMA model of pre-season 

observations.  Here the Wald χ2 statistic was 7.54 and corresponded to a p-value of .057.  The 

Wald χ2 statistic and associated p-value for each model is reported in Supplemental Table 3.5.  

All other subsets of data were statistically significant. 

 The weekly load covariate in each model was statistically significant and associated 

with decreased odds of sustaining an injury.  The significance of the workload ratio and its 

quadratic varied by model.  In each instance, however, the linear component of the workload 

ratio was associated with larger odds of injury, while the quadratic was associated with lower 

odds of injury.  Variable- and model-specific results including odds ratios, 95% confidence 

intervals, Huber-White standard errors, z-scores, and p-values are presented in Table 3.8.    
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Table 3. 8. GEE results by model and variable. 

Combined EWMA Model Odds Ratio 95% CI SE z-score p-value 

EWMA2 0.23 0.09 – 0.61 0.11 -2.98 < 0.005 

EWMA 1.44 0.49 – 4.26 0.80 0.66 0.511 

Weekly Load 0.15 0.06 – 0.36 0.07 -4.22 < 0.005 

Team 1 0.41 0.15 – 1.09 0.20 -1.79 0.073 

Combined ACWR Model Odds Ratio 95% CI SE z-score p-value 

ACWR2 0.77 0.54 – 1.12 0.15 -1.37 0.172 

ACWR 2.12 0.98 – 4.62 0.84 1.90 0.058 

Weekly Load 0.13 0.06 – 0.30 0.06 -4.82 < 0.005 

Team 1 0.46 0.18 – 1.20 0.23 -1.58 0.115 

Team 1 EWMA Model Odds Ratio 95% CI SE z-score p-value 

EWMA2 0.28 0.03 – 3.07 0.35 -1.04 0.301 

EWMA 1.72 0.42 – 7.11 1.25 0.75 0.452 

Weekly Load 0.07 0.01 – 0.41 0.06 -2.96 < 0.005 

Team 1 ACWR Model Odds Ratio 95% CI SE z-score p-value 

ACWR2 0.84 0.39 – 1.85 0.34 -0.42 0.671 

ACWR 1.31 0.45 – 3.86 0.72 0.50 0.620 

Weekly Load 0.09 0.02 – 0.41 0.07 -3.13 < 0.005 

Team 2 EWMA Model Odds Ratio 95% CI SE z-score p-value 

EWMA2 0.22 0.08 – 0.61 0.11 -2.90 < 0.005 

EWMA 1.39 0.35 – 5.48 0.97 0.47 0.641 

Weekly Load 0.18 0.07 – 0.48 0.09 -3.44 < 0.005 

Team 2 ACWR Model Odds Ratio 95% CI SE z-score p-value 

ACWR2 0.71 0.51 – 0.99 0.12 -2.02 0.043 

ACWR 2.68 1.17 – 6.14 1.13 2.33 0.020 

Weekly Load 0.15 0.06 – 0.37 0.07 -4.09 < 0.005 

Abbreviations: 95% CI, 95% confidence interval number of parameters including dependent variable; SE: Huber-

White standard errors.  Note: All variables were standardized before model initiation.   
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 While the models were statistically significant with respect to sustaining a non-contact 

time-loss injury, the average absolute probability of sustaining these injuries was .0011 in the 

combined EWMA model and .0012 in the ACWR model.  These values correspond to 1.1 and 

1.2 non-contact time-loss injuries per 1000 AEs.  For the team-specific datasets, the EWMA and 

ACWR models for Team 1 both had an average probability of .0009.  The Team 2 specific 

dataset had an average of .0012 for EWMA and .0013 for ACWR.  Average injury probabilities 

by model and phase of year are compiled in Table 3.9.  Additionally, observations with 

calculated injury probabilities greater than .04 ranged from 1 to 9 depending on the model and 

dataset.  These frequencies represent .015% to .052% of the observations.  Detailed injury 

probability frequencies by model and dataset are provided in Table 3.10. 

 

 

Table 3. 9. Average injury probabilities by model, dataset, and phase of year. 

 

 

 

 

 

 

Injury Probability 

 Mean (+ Std. Dev) 

Summer 

Conditioning 

Pre-Season 

Practice  In-Season  Combined 

Combined EWMA .0003 (+ .0009) .0013 (+ .0021) .0014 (+ .0032) .0011 (+ .0027) 

Combined ACWR .0004 (+ .0008) .0013 (+ .0023) .0014 (+ .0030) .0012 (+ .0026) 

EWMA - Team 1 .0001 (+ .0004) .0017 (+ .0030) .0011 (+ .0027) .0009 (+ .0024) 

EWMA – Team 2 .0005 (+ .0012) .0011 (+ .0020) .0015 (+ .0032) .0012 (+ .0028) 

ACWR – Team 1 .0001 (+ .0003) .0017 (+ .0032) .0011 (+ .0024) .0009 (+ .0022) 

ACWR – Team 2 .0006 (+ .0012) .0014 (+ .0025) .0015 (+ .0033) .0013 (+ .0030) 
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Table 3. 10. Frequency of injury probabilities by model and dataset. 

Average Injury 

Probability 

Combined 

EWMA 

Combined 

ACWR 

Team 1 

EWMA 

Team 1 

ACWR 

Team 2 

EWMA 

Team 2 

ACWR 

< 0.0050 16,992 16,540 6,428 6,416 10,523 10,114 

0.0050 – 0.0099 557 503 152 85 428 385 

0.0100 – 0.0149 154 146 47 75 115 123 

0.0150 – 0.0199 70 71 29 24 51 44 

0.0200 – 0.0249 31 27 9 4 28 17 

0.0250 – 0.0299 16 11 4 2 12 6 

0.0300 – 0.0349 10 6 1 2 5 6 

0.0350 – 0.0399 3 6 2 1 5 5 

> 0.0400 9 7 1 1 2 8 

Average .0011 .0012 .0001 .0001 .0012 .0013 

Maximum  .0578 .0688 .0430 .0477 .0478 .0679 

 

 Figures 3.3 and 3.4 demonstrate the injury probability for each observation with an 

associated activity and a 7-day cumulative load greater than zero by previous 7-day workload 

(Figure 3.3) and workload ratio value (Figure 3.4).  Additionally, descriptive statistics by phase 

of year are provided in Supplemental Table 3.3. 
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Figure 3. 3. Injury probability by workload ratio and phase of year 
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Figure 3. 4. Injury probability by previous 7-day load and phase of year. 
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 Model comparison was performed for each team using ROC (Table 3.11) and Precision-

Recall (P-R) area under the curve analyses (Table 3.12).  For each team, the ROC area under the 

curve analysis failed to reject the null hypothesis that all four models were equivalent (Team 1: 

p-value = 0.2093; Team 2: p-value = 0.1632).  ROC areas, standard errors confidence intervals, 

χ2 statistics for each model and team are presented in Table 3.11.  ROC curves are also displayed 

in Figure 3.5.  Team 1 post-hoc power analysis with an effect size (w) of 0.5, α = .05, sample 

size of 42, and 3 degrees of freedom yielded a power of 0.78.  Team 2 post-hoc power with the 

same parameters and a sample size of 78 yielded a power of 0.97.  P-R area under the curve 

analysis suggests that the team-specific models perform slightly better than combined models.  

However, the area under the curve for each model is small (< .0237) and thus indicate poor 

precision and recall.  

 

 

Table 3. 11. ROC area analysis by team and model. 

 

 

 

 

 

 

 

 

 

 

 

Team Model ROC Area Standard Error 95% CI 

Team 1 

Combined EWMA 0.8773 .0687 .7426 – 1.000 

EWMA - Team 1 0.8715 .0740 .7266 – 1.000 

Combined ACWR 0.8444 .0817 .6843 – 1.000 

ACWR – Team 1 0.8513 .0843 .6861 – 1.000 

H0: All models are equivalent | χ2 = 4.53 | Prob >  χ2 = 0.2093 

Team 2 

Combined EWMA 0.8652 .0493 .7686 – .9618 

EWMA - Team 2 0.8667 .0481 .7723 – .9611 

Combined ACWR 0.8304 .0631 .7067 – .9541 

ACWR – Team 2 0.8273 .0649 .7002 – .9545 

H0: All models are equivalent | χ2 = 5.12 | Prob >  χ2 = 0.1632 

Abbreviations: ROC, receiver operating characteristic; 95% CI, 95% confidence interval of 

asymptotic normal.   



64 

 

 

 

Table 3. 12.  Precision-Recall area under the curve by team and model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Combined 

EWMA 
Team EWMA 

Combined 

ACWR 
Team ACWR 

Team 1 .0106 .0152 .0070 .0104 

Team 2 .0143 .0143 .0210 .0237 

Figure 3. 5. ROC curves by team and model. 
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DISCUSSION 

 
 

 This is the first study to assess workload, workload ratios, and non-contact injury across 

multiple teams and years in collegiate football.  The aims of this study were to compare the 

relationship between workload and workload ratios in collegiate football and to determine the 

association between workload ratio calculations and non-contact time-loss injury.  Over the two-

year investigation period assessing the summer conditioning, pre-season practice, and in-season 

competition phases, there were 44 (23 time-loss) non-contact injuries observed for each team.  

The results from this study indicate that weekly load and both ACWR and EWMA workload 

ratio calculations are significantly associated with non-contact time-loss injuries.  Each of the 4 

models calculated for each team, however, demonstrated an inverted-U relationship with injury 

probability when workload ratios were increased.  This implies that increasing workload ratios 

beyond certain values, depending on the model, results in a decreased injury probability.  In 

addition, increased weekly loads were associated with decreased probability of injuries.  

Together these findings suggest that these metrics may not be as associated with non-contact 

injury as previous reported.  ROC and P-R assessment suggested that the team-specific models 

performed no better than combined models, and that all the models were extremely limited in 

prediction ability.  The findings of this study provide evidence that monitoring workload ratios 

and weekly loads in isolation may not be integral to reducing injury risk in collegiate football.         

 While the two teams in this study each reported 44 non-contact injuries, the difference 

in the number of time-loss injuries between the two teams was substantial (Team 1: 6; Team 2: 

17).  The main time periods for which the difference in these results can be attributed are the 

2018 pre-season (Team 1: 0; Team 2: 4) and in-season phases (Team 1: 1; Team 2: 6).  It is 
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worth noting that Team 2 had more wearable devices (56) and more athletes (78) than Team 1 

(28 and 42, respectively), and that this may have also contributed to the difference in the 

observed injury counts.  However, the average activity exposure per athlete on Team 2 during 

the combined periods in question was 118.6, compared to only 103.3 for athletes on Team 1.  

This injury discrepancy is also reflected in the IRRs between the two teams for both the pre-

season (Team 1: 2.98 AEs; Team 2: 3.68 AEs) and in-season (Team 1: 0.53 AEs; Team 2: 1.07 

AEs) periods.  While this data may suggest a more injurious environment for athletes on Team 2, 

the discrepancy in time-loss injuries may instead be due to the respective medical staff for each 

team operating under different sport participation guidelines.  To the knowledge of the authors, 

consensus regarding the continued participation of injured athletes, modified or otherwise, in 

conditioning, practice, or competition sessions is limited to only a few of the many injuries these 

athletes may sustain.  Future research across multiple teams and medical providers should seek 

to standardize the criteria for removal from sport participation.  The combined non-contact time-

loss IRR for the pre-season of 3.41 per 1000 AEs, falls within the 95% confidence interval 

reported by a previous 4-year study involving one collegiate football team (2.473 AEs; 95% CI: 

1.663-3.548) (138).  In addition, the combined pre-season and in-season IRR of 1.22 AEs in this 

study is lower than the reported 1.748 AEs (95% CI: 1.370-2.199) previously reported(138).   

 In collegiate football, most athletes report for summer conditioning after having a month 

away from the team medical and strength & conditioning staffs.  Depending on the fitness status 

of these athletes when they return for summer conditioning, there exists the potential for 

exposure to larger increases in running volume and speed then what their current fitness status 

can handle.  Previous research has suggested that sudden spikes in training load, which may 

occur at the onset of the summer conditioning phase, may lead to overtraining syndrome and 
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subsequent injury(224).  The summer conditioning period had an overall non-contact injury rate 

of 6.95 AEs.  However, the IRR for time-loss injury was 0.58 AEs.  Team 1 reported no time-

loss injuries in the summer conditioning period, while Team 2 reported 2 time-loss injuries.  The 

discrepancy in IRRs may be attributed to the ability for practitioners to modify or alter summer 

conditioning sessions around particular injuries, and thus allow athletes to remain in the training 

session.  For example, an athlete with a hamstring strain may run at a lower intensity than their 

peers.  This modification would result in the athlete still being counted as having participated in 

the session.  While this modification would be possible for this phase of training, such a 

modification would not be possible in practice or competition.  

 Prior research has suggested the monitoring, and subsequent modification, of sport 

participation exposure as an integral tool to mitigate injuries(3, 16, 38, 39, 57, 68, 95, 110, 143, 

184, 189, 190, 195, 196, 198, 203, 207, 217, 218, 223).  The limited research in college football 

has also suggested that the best model associated with non-contact injuries is the 7-day acute 

load to 21-day uncorrelated chronic load method which utilizes exponentially weighted moving 

averages (188).  The results from this present study, however, dispute that this model is superior 

to the 7-day acute load to 28-day correlated chronic load model first proposed by Hulin, et 

al.(114).   

 The conflicting results from the present study may be due to several factors.  The first is 

that this study, unlike previous college football research(188), utilized data from two teams over 

a two-year period.  This diverse dataset may have improved the model estimations.  Previous 

research also combined time-loss and non-time non-contact injuries for their model estimation.  

Previous research also included non-contact injuries to the upper-body and neck regions.  A 

second factor may be the tool used to calculate workload, and therefore workload ratio.  Previous 
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research had found positive medium- to large-sized correlations between both ACWR and 

EWMA workload ratios and non-contact injuries(4).  However, this study utilized the internal 

load measure known as ‘Session Rating of Perceived Exertion’ (sRPE) as the measure to derive 

ACWR and EWMA ratio values, rather than the external load measure used in our study.  This 

study also observed soccer players rather than American football players.  While internal load 

ratios may be correlated with non-contact injury, our study demonstrated no relationship with the 

objectively measured external load metric.  The discrepancy of the included injuries and the tool 

used to calculate workload likely contributed to the conflicting results.   

 Another factor contributing to the conflicting results may also be the statistical model 

used for the assessment of each variable to injury.  The present study included not only the 

previous 7-day load as a covariate, but also a quadratic workload ratio term.  Previous research 

had assessed the relationship of several variables including workload, workload ratios, to injury 

in isolation(102, 155, 188).  The QIC results from the present study, however, indicated in each 

dataset, the multi-variate model utilizing a combination of these variables and a quadratic 

workload ratio term was an improvement over the univariate models of previous research.  These 

findings are conceptually sound because relying purely on the univariate relationship can be 

misleading.  For example, workload ratios address the relative change of an acute period to a 

chronic period.  Therefore, an absolute increase of 500AU would yield a range of workload 

values depending on the chronic load.  Assuming a chronic load value of 500AU, an increase 

from 500AU to 1000AU would yield a ratio value 2.0.  Meanwhile, if the chronic load were 

2000AU, the same 500AU increase would yield a workload ratio of 1.25.  As was demonstrated 

in this study with lower QIC scores, absolute values should be included in injury models to 

provide better results. 
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 This study, similar to previous research(48, 49, 59, 61, 65, 81, 107, 108, 114, 115, 125, 

126, 148, 150, 157, 168, 169, 186, 219, 227), found a relationship between workload, workload 

ratios, and injury.  However, this study demonstrated an inverted-U association between 

increasing workload ratio values and the probability of sustaining a non-contact injury, whereas 

previous research had demonstrated a U-relationship.  Furthermore, the largest values of weekly 

load and workload ratios yielded no greater association to injury than lower values.  These 

findings may be the result using continuous GEE method to analyze these variables rather than 

discretizing each into a series of bins as in previous research(28, 116, 188, 189).  It has been 

noted in the literature(36) that discrete models were inferior to continuous models for assessing 

injury risk.  The fact that the results from this study differ from those of previous research 

demonstrates the need for future research to apply continuous model techniques.     

 While there were no significant differences between the models regardless of workload 

ratio calculation method or the dataset used, the resulting P-R analysis did yield important 

insights.  P-R area under the curve for these models indicated both low precision, calculated as 

the proportion of detecting true positives (non-contact time-loss injuries) to total detected 

positives (true positives + false positives), and recall, the proportion of detecting true positives to 

all positives (true positives + false negatives) in the data.  These findings indicate the inability of 

these models to predict injury or be used as a diagnostic tool.  Additionally, for practitioners 

interested in using workload ratios to help guide their decision making, the results of this study 

demonstrated that the absolute probability of injury rarely exceeded .04, otherwise stated as a 4% 

injury probability, in any of the four possible models.  Even though this value is larger than the 

presented average injury probability, which was between .0001 to .0013 (.01% to 1.3%) 

depending on the model, the potential positive adaptations may outweigh this relatively low risk 
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of injury.  Currently, practitioners should not rely solely on these models when designing 

training plans for optimal sport performance or rehabilitation.     

 

Potential Strength & Limitations 

 
 

 The present study in college football possesses several strengths to further expand the 

knowledge on the association between workload, workload ratios, and non-contact injuries.  

First, the combination of daily observations over several years and the inclusion of a second team 

yields more generalizable results than previous studies.  Second, the GEE model approach made 

it possible to assess these variables of interest despite having an unbalanced dataset, which is 

when athletes are unequally observed over time, non-normality, relatively few injury outcomes, 

and likely intercorrelated observations.  Finally, this study analyzed workload and workload 

ratios continuously, as recommended by previous research(36), in order to limit the potential for 

false model discovery or rejection.  Despite these advantages, this study does have its limitations.  

GEE statistical analysis addresses the overall population-level association between independent 

and dependent variables, and therefore is not ideally tuned to making predictions for the specific 

subjects observed within the dataset (60).  In addition, this utilized the injury cataloging methods 

from previous research conducted by the sport’s governing body (133).  Though beneficial for 

historical comparisons, this catalog did not subcategorize the hip/thigh region into its major 

muscle groups, and as a result limits the comparisons of past research to future research for 

certain injuries, such as hamstring strains.  Furthermore, this study only observed a subsection of 

each football team due to the limited number of wearable devices.  The lack of full-team injury 

and workload data could impact the outcomes calculated by the models.  Finally, this data was 

assessed retrospectively which did not permit a mutual injury classification and sport 
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participation criteria to be used by the two teams.  As demonstrated in the data, there was a 

difference in the number of time-loss injuries disclosed by the teams which may be the result of 

the underlying decision-making process of each team.  Future research should address these 

limitations in order to provide greater utility to practitioners.      

 

Conclusions 

 
 

 Our study confirmed that although EWMA and ACWR workload ratio models were 

significantly associated with non-contact time-loss injuries, there was no significant difference 

between any of the four models used for each team.  Additionally, all models demonstrated an 

inverted-U relationship between workload ratios and injury probability, suggesting that as 

workload and workload ratios increase beyond a point, injury probability decreases.  Finally, 

while this study has added to the understanding of the interaction between workload, workload 

ratios, and non-contact injury, future research should seek to observe, and potentially include, 

other variables related to injury.  For more generalizable findings to be uncovered, practitioners, 

teams, sporting bodies, and medical organizations should seek to not only create a multi-team 

database, but also outline a consensus regarding injury classification and sport participation 

status.  The results provided in this study have the potential for practical implications into the 

training and injury management of college football players, with the goal to improve athlete 

overall health and success.        
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Table 3. 13. Cumulative observations and activities by time of year and category. 

 All Time Periods 2018 2019 

 Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Observations 37,332 13,662 23,670 18,795 6,827 11,968 18,537 6,835 11,702 

Activities 18,909 6,859 12,050 9,178 3,080 6,098 9,731 3,779 5,952 

Football 14,354 4,699 23,670 6,958 2,072 4,886 7,396 2,627 4,769 

Conditioning 4,555 2,160 2,395 2,220 1,008 1,212 2,335 1,152 1,183 

 2018: Summer 2018: Fall Camp 2018: Season 

 Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Observations 4,908 2,632 4,290 1,648 644 1,004 10,225 3,551 6,674 

Activities 2,014 1,008 1,006 1,393 532 861 5,771 1,540 4,231 

Football 0 0 0 1,393 532 861 5,565 1540 4,025 

Conditioning 2,014 1,008 1,006 0 0 0 206 0 206 

 2019: Summer 2019: Fall Camp 2019: Season 

 Total Team 1 Team 2 Total Team 1 Team 2 Total Team 1 Team 2 

Observations 6,597 2,577 4,020 1,620 644 976 10,320 3,614 6,706 

Activities 2,063 1,036 1,027 1,245 476 769 6,423 2,267 4,156 

Football 0 0 0 1,245 476 769 6,103 2,151 3,952 

Conditioning 2,015 1,036 979 0 0 0 320 116 204 
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Table 3. 14. Non-contact (time-loss and non-time-loss) injury incidence rate ratios (IRR) by year and phase of season. 

IRR Per 1000 Hours Per 1000 Sessions 

(Time-Loss IRR) Total Team 1 Team 2 Total Team 1 Team 2 

2
0
1
8
 

Combined 3.39 (0.83) 5.24 (0.23) 2.58 (1.09) 5.34 (1.31) 7.47 (0.32) 4.26 (1.80) 

Summer 8.89 (0.64) 6.55 (0.00) 10.37 (1.04) 6.95 (0.50) 3.97 (0.00) 9.94 (0.99) 

Camp 5.58 (1.39) 8.37 (0.00) 4.18 (2.09) 11.49 (2.87) 15.04 (0.00) 9.29 (4.65) 

Season 1.90 (0.70) 3.90 (0.35) 1.11 (0.83) 3.29 (1.21) 7.14 (0.65) 1.89 (1.42) 

2
0
1
9

 

Combined 2.66 (0.68) 4.36 (0.83) 1.83 (0.61) 4.01 (1.03) 5.56 (1.06) 3.02 (1.01) 

Summer 5.32 (0.53) 9.10 (0.00) 3.28 (0.82) 4.85 (0.48) 5.79 (0.00) 3.89 (0.97) 

Camp 3.94 (1.97) 7.40 (3.70) 2.32 (1.16) 8.03 (4.02) 12.61 (6.30) 5.20 (2.60) 

Season 1.85 (0.39) 2.69 (0.30) 1.45 (0.43) 2.96 (0.62) 3.97 (0.44) 2.41 (0.72) 

A
L

L
 

Combined 3.02 (0.79) 4.78 (0.65) 2.21 (0.85) 4.65 (1.22) 6.41 (0.87) 3.65 (1.41) 

Summer 6.95 (0.58)  7.87 (0.00) 6.41 (0.92) 5.96 (0.50) 4.89 (0.00) 6.89 (0.98) 

Camp 4.81 (1.67) 7.93 (1.70) 3.30 (1.65) 9.86 (3.41) 13.89 (2.98) 7.36 (3.68) 

Season 1.87 (0.54) 3.24 (0.32) 1.28 (0.64) 3.12 (0.90) 5.25 (0.53) 2.15 (1.07) 
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Table 3. 15. Kruskal-Wallis H test and Dunn’s pairwise comparison for phase of year differences. 

Dataset 

Workload ACWR EWMA 

Χ2 Deg. p-value Χ2 Deg. p-value Χ2 Deg. p-value 

Overall 12736.460 2 < .005 3643.707 2 < .005 3321.212 2 < .005 

Team 1 – Specific 4674.514 2 < .005 1171.860 2 < .005 947.799 2 < .005 

Team 2 – Specific 8533.410 2 < .005 2654.935 2 < .005 2424.037 2 < .005 

Pairwise 

Comparison 

Summer : 

Pre-Season 

Summer : 

Season  

Pre-season : 

Season  

Summer : 

Pre-Season 

Summer : 

Season  

Pre-season : 

Season  

Summer : 

Pre-Season 

Summer : 

Season  

Pre-season : 

Season  

Combined < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 

Team 1 - Specific  < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 

Team 2 – Specific < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 

Abbreviation: Deg, degrees of freedom in chi-square test.  Note: Dunn’s pairwise comparison test used a Bonferroni correction for multiple 

comparisons.   
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Table 3. 16. QIC results for linear and quadratic GEE models. 

Model Variables P Trace QIC 

Combined 

EWMA 

EWMA, Weekly Load, Team 4 3.433 442.969 

EWMA2, EWMA, Weekly Load, Team 5 5.201 358.360 

EWMA, Weekly Load2, Weekly Load, Team 5 4.40 446.991 

Combined 

ACWR 

ACWR & Weekly Load, Team 4 3.483 379.693 

ACWR2, ACWR, Weekly Load, Team 5 5.657 356.733 

ACWR, Weekly Load2, Weekly Load, Team 5 4.346 384.530 

Team 1 

EWMA 

EWMA & Weekly Load 3 2.599 414.339 

EWMA2, EWMA, Weekly Load 4 4.277 349.946 

EWMA, Weekly Load2, Weekly Load 4 3.547 432.307 

Team 1 

ACWR 

ACWR & Weekly Load 3 2.801 388.811 

ACWR2, ACWR, Weekly Load 4 4.708 374.607 

ACWR, Weekly Load2, Weekly Load 4 3.691 406.367 

Team 2 

EWMA 

EWMA & Weekly Load 3 2.329 459.879 

EWMA2, EWMA, Weekly Load 4 4.107 384.005 

EWMA, Weekly Load2, Weekly Load 4 3.282 460.308 

Team 2 

ACWR 

ACWR & Weekly Load 3 2.289 388.818 

ACWR2, ACWR, Weekly Load 4 3.990 369.831 

ACWR, Weekly Load2, Weekly Load 4 3.055 388.350 

Abbreviation: P, number of parameters including dependent variable.  Note: All variables 

were standardized by phase of year before model initiation.   
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Table 3. 17. GEE Wald χ2 results and p-values by model and phase of year. 

 

 

 

 

 

 

 

 

 

 

Phase of 

Year 

Combined 

EWMA 

Combined 

ACWR 

Team 1 

EWMA 

Team 1 

ACWR 

Team 2 

EWMA 

Team 2 

ACWR 

Combined 
42.40  32.49 10.37 19.35 27.38 17.75 

< 0.005 < 0.005 0.016 < 0.005 < 0.005 < 0.005 

Summer 
832.47 528.65 Non-

Convergence 

Non-

Convergence 

97.82 1624.20 

< 0.005 < 0.005 < 0.005 < 0.005 

Pre-Season 
8.36 13.75 7.54 12.77 15.23 19.95 

0.039 < 0.005 0.057 0.005 < 0.005 < 0.005 

In-Season 
19.23 19.52 721.37 482.34 28.71 27.76 

< 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 
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CHAPTER 4 

A MULTI-YEAR ASSESSMENT OF EXTERNAL WORKLOAD AND INJURY RATES 

IN NCAA AMERICAN COLLEGE FOOTBALL 
 
 

ABSTRACT 
 

Quantifying NCAA Division 1 American football athlete demands using wearable 

devices has been utilized recently to assess workload and non-contact injury associations.  

Though studies have found associations between sudden increases and decreases in workload 

with subsequent injury, these studies have not investigated these associations beyond the pre-

season and in-season periods.  PURPOSE: To examine the association between workload ratios 

and non-contact injury-risk in American football for each component of the training cycle, and to 

compare the model fit between the exponentially weighted moving average (EWMA) and 

traditional acute:chronic workload ratio (ACWR) model.  METHODS: Movement, non-contact, 

and overuse injury data from one American football team (n = 88) over three years were 

collected.  Generalized estimating equation (GEE) models were developed for both the ACWR 

and EWMA workload ratio calculations.  Previous 7-day cumulative workload (arbitrary units; 

AU) and workload ratio variables were standardized by phase of year and then tested for model 

fit.  Best fitting models were determined by quasilikelihood under the independence model 

criterion (QIC), with the lowest scoring models chosen for statistical analysis.  GEE results were 

presented as odds ratios and injury probabilities.  These models were assessed by using area 

under the curve for both Receiver Operating Characteristic (ROC) and Precision-Recall curves.  

RESULTS: Sixty-seven injuries (36 time-loss) were observed with 26 (10 time-loss) occurring 

during winter conditioning, spring practice, and summer conditioning phases.  Sites most often 

injured were the hip (Total 29; Time-Loss: 10), foot (13;7), and the knee (32;12).  Strains were 

the most frequent diagnosis (32;12) followed by sprains (23;15).  The overall injury incidence 
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rate ratio (IRR) per 1000 activity sessions (AEs) was 3.39 for all non-contact injuries and 1.80 

AEs for time-loss injuries.  Pre-season practice (Total: 7.05 AEs; Time-Loss: 4.70 AEs), summer 

conditioning (6.62 AEs; 1.42 AEs), and winter conditioning (4.73 AEs; 2.84 AEs) had the 

highest IRRs.  Pre-season practice (2370 AU), in-season (1580 AU), and spring practice (1010 

AU) phases had the largest weekly workloads.  Summer conditioning (EWMA: 1.38; ACWR: 

1.80), pre-season (1.27; 1.70), and spring practice (1.26;1.28) phases had the largest average 

workload ratios.  The GEE model with the lowest QIC score included covariates for the previous 

7-day cumulative load and the quadratic of the workload ratio.  Models were significantly 

associated with non-contact time-loss injuries (p < 0.005).  However, increased weekly load and 

the quadratic term of each workload ratio variable were associated with lower odds of injury.  

The average probability of sustaining and injury was .0016 in both models.  Increased weekly 

load was associated with a lower probability of injury across each phase of the year.  Workload 

ratio values displayed an inverted-U relationship with injury probability.  The largest probability 

of injury value observed was 0.07 for the ACWR model, and 0.03 for the EWMA model.  ROC 

and Precision-Recall curves revealed that ACWR and EWMA workload ratio calculation 

methods were indistinguishable in performance.  CONCLUSION: While EWMA and ACWR 

workload ratio models were associated with non-contact time-loss injuries, the inverted-U 

relationship suggests that use of these variables in isolation may not be an adequate instrument to 

effectively reduce injury probability in college football.    
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INTRODUCTION 
 

 

The 29,000 athletes who participate each year in elite-level college football(5) are 

invariably exposed to the potential for injuries as part of their normal training(133, 137, 158, 

225, 229).  Injury incidence rates have reportedly ranged from 3.17 to 4.90 per 1,000 athlete 

exposures(225).  In addition, time-loss injury rates have been calculated to 24 per 10,000 football 

snaps(158).  These injuries have been cited as major contributors in overall athlete health and 

team success(69, 87, 123).  Therefore, assessing the environments in which these injuries occur 

is a prudent endeavor.  Quantifying workload has become an increasingly popular component of 

such assessments.  There are several methods to calculate workload, including subjective and 

device-based measures.  Many practitioners have turned to the use of wearable deices for 

workload assessment due to greater objectivity in the values provided.   

Wearable devices have been developed which utilize global position systems, 

accelerometers, a gyroscope, and a magnetometer to measure and quantify athlete movements 

(workload) during conditioning, practices, and games.  Measuring workload has become a 

tremendously popular endeavor with numerous variables used in its assessment including both 

distance- and accelerometer-derived measures (102, 155).  Practitioners have used these 

measures to compare current and past training demands(102, 155).  Commonly, workload has 

been categorized into acute (recent 3 to 7 days) and chronic (previous 3 to 4 weeks) values.  

These values are combined to form a ratio value, which is then used assess the rate of workload 

change during training.  Different mathematical approaches have been used to calculate this 

ratio(102, 155).  The two commonly used measures are the 7-day acute to 28-day chronic 

method which uses rolling weekly averages (ACWR) (114), and 7-day acute to 21-day chronic 

method with exponentially weighted moving averages (EWMA) (102, 155, 228).  Several studies 
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have found associations between both steep increases and decreases in workload, measured using 

workload ratios, with subsequent injury(3, 16, 38, 39, 57, 68, 95, 110, 143, 184, 189, 190, 195, 

196, 198, 203, 207, 217, 218, 223). These prior studies examined the pre-season and in-season 

phases for numerous sports such as rugby(70, 217, 218), Australian rules football(48, 108), 

futsal(17, 164, 165), basketball(3, 110), volleyball(207), American football(188) and found these 

associations between workload ratios and increased risk of injury as well.  

In college football, the 7:21-day coupled acute:chronic workload ratio calculated using an 

exponentially weighted moving average (EWMA) with a 3-day injury lag period demonstrated 

the greatest association to injury during the pre-season and in-season periods(188).  While 

useful, these studies do not address the totality of American football sport participation which 

includes off-season conditioning, pre-season camp, and in-season phases of sport.  Furthermore, 

previous research has been criticized for utilizing suboptimal statistical analyses(36, 216).  In 

addition, American football studies are limited in quantity, the length of the observational 

timeframe, and the number of athletes observed.  Longer studies with more athletes, thus larger 

data sets, will improve the generalizability of the results by minimizing the impact of individual 

and time effects in the data(154).  Therefore, the purposes of this study were 1) To examine the 

association between workload ratios and non-contact injury-risk in American football for each 

phase within the annual calendar; and 2) To compare the model fit between the exponentially 

weighted moving average (EWMA) and traditional acute:chronic workload ratio (ACWR) 

model.  We hypothesized that high workload ratios will be significantly associated with 

increased non-contact time-loss injury, with the EWMA model possessing greater association 

with injury than the traditional ACWR model. 
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METHODS 

 
 

Participants 

 
 

Data were collected from college football players (n=88) from a single NCAA Division 1 

varsity team (mean + SD: age: 20.8 + 1.3 years, mass: 106.2 + 19.7 kg, and height: 187.5 + 5.9 

cm).  This cohort consisted of 30 skill players (wide receivers & defensive backs), 30 big skill 

players (running backs, tight ends, and linebackers), and 28 power players (offensive and 

defensive linemen).  A yearly comparison of these positions is reported in Supplemental Table 

4.1.  Quarterbacks and specialists were not included in this study due to their unique practice 

environments.  Due to the roster size being greater than the number of available units, players 

most likely to play in games, as determined by the coaching staff, were assigned units to wear.  

All players trained full-time during their participation with the team.  The observational period 

began on July 13th, 2017 and ran continuously through December 29th, 2019.  This period 

captured the 2017, 2018, and 2019 football seasons.  These data were collected retrospectively, 

and all participant workload and injury data were de-identified.  All experimental procedures for 

this study were approved by the Michigan State University Human Research Protection Program.  

 

Quantifying Workload 

 
 

Workloads were collected from wearable global positioning system (GPS) devices 

(Optimeye S5, Catapult Innovations, Melbourne, AUS).  These devices combine a 10Hz GPS 

with a 100 Hz tri-axial accelerometer, a gyroscope, and a magnetometer to derive an external 

workload metric known as ‘player load’ (Catapult Innovations).  Previous research established 

the reliability, construct validity, convergent validity of the components and algorithms within 
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the wearable devices with both ground-based and standardized treadmill running (13, 57, 58, 

100, 127, 132, 161, 183, 209, 214).   

These devices were worn between the scapulae of the players in compression vests 

during all conditioning sessions and non-padded football practices, which was dictated by the 

coaching staff. These vests came in varying sizes from small to xxxx-large to ensure a secure, 

comfortable fit.  During padded practices, players wore the devices in boxes mounted on their 

shoulder pads in the same location as their garments.  Players wore the same device during every 

conditioning and practice session.  Following each session, the data were downloaded into the 

accompanying software (Openfield, Catapult Innovations, Melbourne, AUS).  This software 

calculated workload as the sum of all accelerometer movements in the three-dimensional plane.  

This is a unit-less quantification as is defined by the manufacturer as: 

Player/Body Load =  √
(𝛼𝑦1 −  𝛼𝑦−1) + (𝛼𝑥 −  𝛼𝑥−1) +  (𝛼𝑧 −  𝛼𝑧−1)

100
 

Where, y refers to the forward/backward acceleration, x refers to lateral acceleration, and z refers 

to vertical acceleration.  Workload ratios were calculated using both the traditional acute:chronic 

workload ratio (ACWR) and the exponentially weighted moving average (EWMA) version.  The 

ACWR was calculated by dividing the most recent 7-day accumulated workload by the average 

weekly workload between the most recent week and the three preceding weeks(114).  

The exponentially weighted moving average (EWMA) was calculated daily for both 

acute (past 7 days) and chronic (previous 21 days) workloads.  The first activity was arbitrarily 

entered as the starting chronic value consistent with the method proposed by previous 

research(188).  The equation used to calculate the acute period was: 
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Acute: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

7+1
)] + {[1 − (

2

7+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

The equation used to calculate the chronic period was: 

Chronic: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

21+1
)] + {[1 − (

2

21+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

The variable ‘Load’ in this instance refers to the accelerometer-derived Player Load, subscript t 

refers to the current observation, and subscript t-1 refers to the previous observation. 

The acute period as divided by the chronic to give a ratio value for each day.  In the event of 

missing data, the activity average for the position group was used for that individual. 

 

Definition of Exposure 

 

 

An athlete exposure was defined as one athlete participating in one activity.  Activities 

were comprised of conditioning, practice, and competition sessions.  Each athlete’s participation 

and duration was recorded by the accompanying software for the wearable devices.  All 

participations and durations were confirmed by the team’s practitioners.   

 

Definition of Injury 

 
 

All injuries that occurred during the study period were diagnosed and classified by the 

team’s sports medicine staff.  Injury data collected were categorized based on the NCAA Sports 

Injury Surveillance program(133).  Lower-body and trunk injuries classified as non-contact or 

overuse in mechanism were combined under the term non-contact and included in the analyses, 

as both could occur due to improper activity rate increases(87, 94).  Time-loss was defined as 
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any injury where an athlete was unable to participate in subsequent conditioning, practice, or 

competition sessions.  

 

Statistical Analyses  

 
 

All calculations and analyses utilized the Stata IC v16.1 software package (StataCorp 

LLC, College Station, TX).  Injury incidence rate ratios (IRRs) were determined by dividing the 

total number of non-contact and overuse injuries by the exposure time and reported, with 95% 

confidence intervals, as both rates per 1000 activity hours (HEs) and per 1000 activity sessions 

(AEs).  Daily calculations of 7-day cumulative load (weekly load), ACWR, and EWMA ratio 

values were made for each athlete.  Kolmogorov-Smirnov tests for normality were conducted for 

the 7-day cumulative load, ACWR, and EWMA ratio values.  These results indicate non-normal 

distributions for each variable.  Generalized estimating equation (GEE) models with Huber-

White standard errors were used to account for non-normality, a sparse number of injury 

occurrences, as well as probable intercorrelation between observations for each athlete.  Athletes 

served as the repeated-measures unit and each day served as the observation unit.  The binary 

outcome variable was specified to be a new non-contact injury occurrence.  Because the outcome 

variable (non-contact time-loss injury) is binary (injured or not), a logit-link function with a 

binomial error structure was used.  In addition, GEEs require a correlation matrix between 

observations be defined but not necessarily correct, so an exchangeable correlation matrix was 

used. 

To compare the association between workload ratio values (EWMA and ACWR) with 

non-contact injury, two models were developed.  Each model considered the weekly load in 

addition to the workload ratio to observe the effect of absolute acute load.  Both the workload 
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ratio and weekly load variables were standardized by subtracting the mean value of the variable 

and dividing by its standard deviation in order for the GEE to perform optimally.  These 

variables were standardized by each phase of the year.  For example, the variables observed 

during winter conditioning were standardized to all winter conditioning variables.  In accordance 

with suggestions by previous research, both linear-only and quadratic functions of each variable 

were combined in a GEE (36, 139).  Unlike prior research, where observations were made 

weekly and as such required a lag on the dependent injury occurrence (139, 188), observations in 

this study were made daily so a lagged dependent injury outcome was not used.  Because of the 

daily observations, only days with an activity occurring were used in the analyses.  These 

analyses were also restricted to observations where the weekly load was greater than zero.  A 

zero weekly load would indicate a currently injured athlete and would have corresponding 

workload ratio which would never be associated with a new injury.  The quasilikelihood under 

the independence model criterion (QIC) was then used to compare the linear and quadratic 

variations of each standardized variable in each model(60).  QIC is an extension of Akaike 

information criterion (AIC), and as such the model with the lowest corresponding QIC is 

generally deemed the best fit(60).  Statistical analyses were represented by odds ratios (OR), 

Huber-White standard errors (SE), 95% confidence intervals (CIs), and with a statistical 

significance value set at p < .05.  The EWMA and ACWR models were compared using 

Receiver Operating Characteristic (ROC) curves and Precision-Recall (P-R) curves.  While both 

ROC and P-R curves assess the diagnostic ability of these models to detect injury occurrences 

(positive outcomes), ROC curves assess each model’s ability to detect true injury occurrences in 

relation to true non-injury (negative outcomes), while P-R curves assess each model’s ability to 

correctly identify true injuries and are unconcerned with detecting true non-injury.  The 
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imbalance in outcomes contained in this study makes P-R curves are particularly useful.  By 

assessing the area under the curves (AUC) for each of these models we can determine how well 

these models separate injuries from non-injuries.  The model with the larger AUC is the model 

that is better at detecting true injury status   

   

Power Analysis 

 
 

We desired 80% power to detect a difference of at least moderate effect size (ES = 0.5) 

between GEE models. Therefore, with the α level set at α = .05 and 1 degree of freedom, a 

sample size of 32 players was required and was associated with a critical χ2 value of 3.841.  

However, due to the unbalanced data set, we chose to include all observed athletes for each year 

(2017: 44; 2018: 58; 2019: 56), thus ensuring at least 32 players were always observed.     
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RESULTS 
 
 

Total Observations, Injury Frequency, and Injury Rates 

 
 

 There were 40,367 total observation days recorded spanning 898 days (mean + SD: 

458.7 + 282.3 days per player).  Days with activities accounted for 18,861 of the total 

observation days.  Activities were categorized as either conditioning, practice, or competitive 

games.  Cumulative observations by category, time of year, and duration are presented in Table 

4.1.  Highlighted in Table 4.2 is also the unequal observation and activity counts from 2017 to 

2018.  This is due to the team acquiring more wearable devices between these years. 

 

Table 4. 1. Cumulative observations and activities by time of year. 

Activity Type Total 2017 2018 2019 

Observations 40367 6822 17179 16366 

All Activities 18953 4265 7582 7103 

Practice 13168 3414 5107 4696 

Games 1894 557 659 678 

Conditioning 3799 294 1776 1729 

Activity Duration  

(1000 Hours) 
Total 2017 2018 2019 

All Activities 33.09 8.73 12.20 12.16 

Practice 24.17 6.65 8.87 8.65 

Games 4.26 1.58 1.37 1.30 

Conditioning 4.66 0.50 1.96 2.20 

  

 During the observation period, 67 total non-contact/overuse injuries, impacting 776 

activity sessions, were recorded for the 88 athletes being tracked.  Of these 67 injuries, 36 

resulted in time loss from participation (587 activities).  The three sites most often injured, both 
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overall and time-loss, were the hip/thigh (Total: 29; Time-Loss: 10), foot (Total: 13; Time-Loss: 

9), and knee (Total: 12; Time-Loss: 7) regions.  While strains were the most frequent injury 

diagnosis (Total: 32; Time-Loss: 12), more time-loss injuries occurred from sprains (Total: 23; 

Time-Loss: 15).  Further categorization of injury site, mechanism, and frequency can be found in 

Table 4.2. 

 

Table 4. 2. Injury site, mechanism, and frequency by year. 

Injury Site 
Total 

[Time-Loss] 
2017 2018 2019 

Total 67 [36] 10 [8] 31 [15] 26 [13] 

Trunk 3 [3] 1 [1] 2 [2] 0 [0] 

Hip/Thigh 30 [10] 4 [4] 16 [4] 10 [2] 

Knee 12 [7] 2 [2] 3 [1] 7 [4] 

Lower Leg 4 [4] 0 [0] 2 [2] 2 [2] 

Ankle 4 [2] 0 [0] 1 [0] 3 [2] 

Foot 13 [9] 3 [1] 6 [5] 4 [3] 

Other 1 [1] 0 [0] 1 [1] 0 [0] 

Injury Diagnosis 
Total 

[Time-Loss] 
2017 2018 2019 

Total 67 [36] 10 [8] 31 [15] 26 [13] 

Fracture 3 [3] 0 [0] 2 [2] 1 [1] 

Sprain 23 [15] 5 [3] 7 [4] 11 [8] 

Strain 32 [12] 4 [4] 17 [5] 11 [3] 

Other 9 [6] 1 [1] 5 [4] 3 [1] 
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 The overall injury rate observed was 3.55 AEs (2.02 HEs), while the time-loss injury 

rate was 1.91 AEs (1.09 HEs).  The hip/thigh, foot, and knee regions had IRRs (time-loss) of 

1.59 (0.53), 0.69 (0.48), and 0.64 (0.37) respectively.  A complete summary of IRRs by site and 

diagnosis can be found in Table 4.3. 

 

Table 4. 3. Injury incidence rate ratios (IRRs) with 95% confidence intervals by site and 

mechanism. 

 Injury Rates per 1000 Athlete Exposures Injury Rates per 1000 Hours 

Injury Site 
All Injuries 

[95% CI] 

Time-Loss  

[95% CI] 

All Injuries  

[95% CI] 

Time-Loss  

[95% CI] 

Total 3.55 [2.50, 4.60] 1.91 [1.81, 2.01] 2.02 [1.21, 2.84] 1.09 [0.91, 1.26] 

Trunk 0.16 [0.00, 0.32] 0.16 [0.00, 0.32] 0.09 [0.00, 0.19] 0.09 [0.00, 0.19] 

Hip/Thigh 1.59 [0.91, 2.27] 0.53 [0.16, 0.90] 0.91 [0.42, 1.39] 0.30 [0.14, 0.47] 

Knee 0.64 [0.27, 1.00] 0.37 [0.12, 0.63] 0.36 [0.14, 0.58] 0.21 [0.07, 0.35] 

Lower Leg 0.21 [0.03, 0.39] 0.21 [0.03, 0.39] 0.12 [0.01, 0.23] 0.12 [0.01, 0.23] 

Ankle 0.21 [0.00, 0.46] 0.11 [0.00, 0.29] 0.12 [0.00, 0.26] 0.06 [0.00, 0.17] 

Foot 0.69 [0.55, 0.82] 0.48 [0.23, 0.72] 0.39 [0.29, 0.49] 0.27 [0.10, 0.44] 

Other 0.05 [0.00, 0.14] 0.05 [0.00, 0.14] 0.03 [0.00, 0.08] 0.03 [0.00, 0.08] 

 Injury Rates per 1000 Athlete Exposures Injury Rates per 1000 Hours 

Injury Diagnosis 
All Injuries 

[95% CI] 

Time-Loss  

[95% CI] 

All Injuries 

[95% CI] 

Time-Loss  

[95% CI] 

Total 3.55 [2.50, 4.60] 1.91 [1.81, 2.01] 2.02 [1.21, 2.84] 1.09 [0.91, 1.26] 

Fracture 0.16 [0.01, 0.31] 0.16 [0.01, 0.31] 0.09 [0.00, 0.18] 0.09 [0.00, 0.18] 

Sprain 1.22 [0.87, 1.57] 0.80 [0.45, 1.14] 0.70 [0.48, 0.91] 0.45 [0.24, 0.66] 

Strain 1.70 [0.94, 2.45] 0.64 [0.34, 0.93] 0.97 [0.44, 1.50] 0.36 [0.24, 0.49] 

Other 0.48 [0.23, 0.72] 0.32 [0.09, 0.55] 0.27 [0.10, 0.44] 0.18 [0.03, 0.33] 
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Observations, Injury Frequency, and Injury Rates by time of year 
 
 

 The time of year that had the greatest number of injuries occur was the in-season period 

(Total: 22; Time-Loss: 14).  However, the pre-season practice phase had the highest overall IRR 

(7.05 AEs; 3.24 HEs) and time-loss IRR (4.70 AEs; 2.16 HEs).  Though the summer 

conditioning period had the second highest IRR by session (6.62 AEs), it had the highest IRR by 

duration (6.11 HEs).  A full summary of injury occurrence and IRRs by time of year are in Table 

4.4 and Table 4.5, respectively.  

 

Table 4. 4. Injury site, frequency [time-loss], and mechanism by time of year. 

Injury Site 
Total 

[Time-Loss] 

Winter 

Conditioning 

Spring 

Practice 

Summer 

Conditioning 

Pre-Season 

Practice 
In-Season 

Combined 67 [36] 5 [3] 7 [4] 14 [3] 18 [12] 23 [14] 

Trunk 3 [3] 1 [1] 0 [0] 1 [1] 1 [1] 0 [0] 

Hip/Thigh 30 [10] 2 [0] 3 [0] 9 [1] 10 [6] 5 [3] 

Knee 12 [7] 0 [0] 2 [2] 1 [0] 3 [3] 6 [2] 

Lower Leg 4 [4] 0 [0] 1 [1] 1 [1] 0 [0] 2 [2] 

Ankle 4 [2] 2 [2] 0 [0] 1 [0] 0 [0] 1 [0] 

Foot 13 [9] 0 [0] 1 [1] 1 [0] 4 [2] 7 [6] 

Other 1 [1] 0 [0] 0 [0] 0 [0] 0 [0] 1 [1] 

Injury 

Diagnosis 

Total 

[Time-Loss] 

Winter 

Conditioning 

Spring 

Practice 

Summer 

Conditioning 

Pre-Season 

Practice 
In-Season 

Combined 67 [36] 5 [3] 7 [4] 14 [3] 18 [12] 23 [14] 

Fracture 3 [3] 0 [0] 1 [1] 0 [0] 1 [1] 1 [1] 

Sprain 23 [15] 2 [2] 3 [3] 2 [0] 4 [3] 12 [7] 

Strain 32 [12] 2 [0] 3 [0] 10 [2] 10 [6] 7 [4] 

Other 9 [6] 1 [1] 0 [0] 2 [1] 3 [2] 3 [2] 
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Table 4. 5. Non-contact injury rates by time of year. 

Injury Rates per 1000 Athlete Exposures Injury Rates per 1000 Hours 

Time of year 
All Injuries 

[95% CI] 

Time-Loss  

[95% CI] 

All Injuries  

[95% CI] 

Time-Loss  

[95% CI] 

Combined 3.55 [2.50, 4.60] 1.91 [1.81, 2.01] 2.02 [1.21, 2.84] 1.09 [0.91, 1.26] 

Winter 4.73 [2.57, 6.88] 2.84 [1.16, 4.51] 2.65 [1.02, 4.29] 1.59 [0.89, 2.29] 

Spring Practice 4.61 [1.23, 8.00] 2.64 [1.48, 3.80] 2.56 [1.41, 3.70] 1.46 [1.22, 1.70] 

Summer 6.62 [0.94, 12.30] 1.42 [0.30, 2.54] 6.11 [0.00, 12.80] 1.31 [0.15, 2.47] 

Pre-Season Camp 7.05 [6.36, 7.74] 4.70 [4.23, 5.16] 3.24 [2.81, 3.66] 2.16 [1.98, 2.34] 

Season 2.03 [1.49, 2.58] 1.20 [0.90, 1.50] 1.15 [0.72, 1.58] 0.68 [0.47, 0.89] 

 

Activity Loads and Workload Ratios 

 
 

 The pre-season practice phase was the time of year where athletes experienced the 

highest weekly workload (2370; 95% CI: 2340, 2400).  This period was followed by in-season 

(1580; 95% CI: 1570, 1590) and spring phases (1010; 95% CI: 990, 1030).  A full summary of 

average weekly loads by year and phase, with 95% confidence intervals, are in Table 4.6.  Box 

plots of weekly load by phase are shown in Figure 4.1.      

 

Table 4. 6. Average weekly load with 95% confidence intervals by year and phase of season. 

Phase All Years 2017 2018 2019 

Winter Conditioning 560 [550, 570] - 670 [650, 690]  470 [450, 490] 

Spring Practice 1010 [990, 1030] - 900 [870, 920] 1170 [1140, 1200] 

Summer Conditioning 590 [570, 600] 830 [750, 910] 540 [520, 550] 600 [580, 630]  

Pre-Season Camp 2370 [2340, 2400] 2370 [2310, 2430] 2290 [2230, 2340] 2460 [2410, 2500] 

In-Season 1580 [1570, 1590] 1580 [1560, 1600]  1570 [1560, 1590] 1590 [1580, 1600]  

Note: Workload values are rounded to the nearest ten’s unit and have arbitrary units. 

 

 



93 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 Average workload ratios also demonstrated variation throughout the calendar year.  The 

overall average workload ratio calculated using EWMA was 1.13, and 1.23 when calculated 

using ACWR.  The summer conditioning (EWMA: 1.38; ACWR: 1.80), pre-season (1.27; 1.70), 

and spring practice (1.26;1.28) phases had the largest average workload ratios.  Combined and 

phase-specific average workload ratios with 95% confidence intervals are provided in Table 4.7. 

 

 

 

 

 

Figure 4. 1. Weekly load box plots by phase of season. 
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      Table 4. 7. Average workload ratio with 95% confidence intervals by phase of season. 

EWMA EWMA ACWR 

Combined 1.13 [1.13, 1.14] 1.23 [1.22, 1.24] 

Winter Conditioning 1.10 [1.07, 1.13] 1.35 [1.31, 1.39] 

Spring Practice 1.26 [1.24, 1.27] 1.28 [1.24, 1.27] 

Summer Conditioning 1.38 [1.36, 1.40] 1.80 [1.74, 1.85] 

Pre-Season Camp 1.27 [1.26, 1.28] 1.70 [1.67, 1.72] 

In-Season 1.05 [1.04, 1.05] 1.03 [1.02, 1.04] 

Note: values are rounded to the nearest hundredth’s unit. 

  

 Weekly variations did occur for load, ACWR, and EWMA values within each phase of 

the season.  Box plots for weekly load (Figure 4.2), EWMA (Figure 4.3), and ACWR values 

(Figure 4.3), comprised of uninjured athletes, for each phase of the season can be found below.  

The winter conditioning, spring practice, and summer conditioning periods all contain weeks 

where the athletes were on break from team activities.  These were weeks where their activity 

was unobserved, and as a result are reflected as having no weekly load values and very low 

EWMA and ACWR values. 
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Figure 4. 2. Weekly load box plots by phase of season. 
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Figure 4. 3. Workload ratio box plots by phase of season. 
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Generalized Estimating Equation Models 

 
 

 In both EWMA and ACWR GEEs, including a quadratic workload ratio term was 

associated with a lower QIC value and was therefore chosen for further statistical analysis.  

Table 8 presents the total parameters, trace value, and QIC results for linear and polynomial 

versions of each model. 

 

Table 4. 8. QIC results for GEE models for linear and quadratic covariates. 

Model Variables P Trace QIC 

EWMA 

EWMA & Weekly Load 3 2.743 658.803 

EWMA2, EWMA, Weekly Load 4 4.570 565.151 

EWMA, Weekly Load2, Weekly Load 4 3.753 659.607 

ACWR 

ACWR & Weekly Load 3 2.655 566.061 

ACWR2, ACWR, Weekly Load 4 4.160 524.967 

ACWR, Weekly Load2, Weekly Load 4 3.442 565.276 

Abbreviation: P, number of parameters including dependent variable; QIC: quasilikelihood information criterion 

statistic.  Note: All variables were standardized by phase of year before model initiation.  Models in bold were 

selected for further analysis.   

 

 Overall, both EWMA (Wald χ2 = 51.14, p  < 0.005) and ACWR (Wald χ2 = 40.84, p < 0.005) 

models were statistically significant.  Aside from the linear EWMA covariate, all workload ratio 

and weekly load variables had individual statistically significant associations with non-contact 

time-loss injury risk.  Increased weekly load was associated with lower odds of injury in both the 

EWMA (OR: 0.20; CI: 0.10-0.40; p < 0.005) and the ACWR (OR: 0.14; CI: 0.07-0.27; p < 

0.005) models.  Each model maintained its statistical significance when each phase of the year 

was run in isolation (Supplemental Table 4.2).  GEE results by variable are provided in Table 

4.9. 
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 Table 4. 9. GEE model results by variable. 

EWMA Model Odds Ratio 95% CI SE z-score p-value 

EWMA2 0.52 0.28 – 0.97 0.16 -2.05 0.04 

EWMA 1.22 0.57 – 2.59 0.47 0.51 0.608 

Weekly Load 0.20 0.10 – 0.40 0.07 -4.54 < 0.005 

ACWR Model Odds Ratio 95% CI SE z-score p-value 

ACWR2 0.72 0.58 – 0.91 0.08 -2.82 0.005 

ACWR 2.65 1.38 – 5.11 0.89 2.92 0.004 

Weekly Load 0.14 0.07 – 0.27 0.05 -5.82 < 0.005 

Abbreviations: 95% CI, 95% confidence interval number of parameters including dependent variable; 

SE: Huber-White standard errors.  Note: All variables were standardized before model initiation.   

 

 While the models were statistically significant with respect to odds of injury, the mean 

absolute probability of sustaining an injury was .0016 in both the EWMA and ACWR models.  

This corresponds to 1.6 non-contact injuries every 1000 AEs.  Injury probability frequencies are 

displayed in Table 4.10.  

 In both models, the period with the highest mean probability of injury was pre-season 

practice (EWMA: .0019; ACWR: .0021).  Figures 4.4 and 4.5 demonstrate the injury probability 

for each observation with an associated activity and a 7-day cumulative load greater than zero by 

previous 7-day workload (Figure 4.4) and workload ratio value (Figure 4.5).  Additionally, 

descriptive statistics by phase of year are provided in Supplemental Table 4.3. 

 

 

 

 

 



99 

 

 

Table 4. 10. Frequency of Injury Probabilities by Model. 

Injury Probability Range EWMA ACWR 

< 0.0050 16,380 15,100 

0.0050 – 0.0099 813 814 

0.0100 – 0.0149 270 207 

0.0150 – 0.0199 98 89 

0.0200 – 0.0249 35 35 

0.0250 – 0.0299 9 14 

0.0300 – 0.0349 1 11 

0.0350 – 0.0399 0 6 

> 0.0400 0 13 

Maximum observed value 0.03287 0.07628 
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Figure 4. 4. Injury probability by previous 7-day load and phase of season. 
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Figure 4. 5. Injury probability by workload ratio and phase of season. 
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 Model comparison was performed using ROC (Figure 4.6) and Precision-Recall (PR) 

area under the curve analyses (Figure 4.7).  ROC area under the curve analysis failed to reject the 

null hypothesis that the EWMA (Area: 0.83; CI: 0.77 – 0.89) and ACWR (Area: 0.83; CI: 0.76 – 

0.90) models were equivalent (χ2 = 0.01, p = 0.94).  PR area under the curve analysis (EWMA: 0.0110; 

ACWR: 0.0185) also suggested that both models were equivalent.   

 

  Figure 4. 6. ROC area under the curve chart comparing EWMA and ACWR models. 
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Figure 4. 7. Precision-Recall chart comparing EWMA and ACWR models. 
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DISCUSSION 

 
 

 This is the first study to investigate injury incidence rate ratios, workload, and workload 

ratios in college football over a multi-year period.  It is also the first study to expand the 

evaluation these metrics to the winter conditioning, spring practice, and summer conditioning 

phases of sport participation.  The aim of this study was to utilize a multi-year database to assess 

the relationship of workloads and workload ratios to non-contact injuries in Division 1 college 

football participation across an entire calendar year.  Overall, the winter conditioning, spring 

practice, and summer conditioning phases combined for 26 of the 67 total observed non-contact 

injuries (38.8%).  In addition, the results of this study indicate that both EWMA and ACWR 

workload ratios are significantly associated with non-contact time-loss injury.  This study failed 

to demonstrate that one workload ratio calculation was superior to other in its association with 

non-contact injury.  Additionally, increased workload ratios demonstrated an inverted-U 

relationship with injury probability, while increased weekly load demonstrated a negative 

relationship with injury probability.  These relationships were maintained even when each phase 

of the year was observed in isolation.  Furthermore, absolute injury probability was observed to 

be on average .0016 for both models, with the greatest injury probability observed to be .0329 

for the EWMA model and .0763 for the ACWR mode.  The findings of this study provide 

evidence that all phases of sport competition should be surveilled for injury, and that monitoring 

workload ratios and weekly loads alone may not be the key to reducing injury risk in collegiate 

football.  

  Previous injury surveillance research in college football was restricted to the pre-season 

practice and in-season time periods.  As such, comparisons between this study and that research 

were also restricted to those time points.  The pre-season practice IRR reported in this study 
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(4.70 AEs; 95% CI: 4.23 – 5.16) was significantly greater than the IRR reported in a prior 4-year 

study (2.47 AEs; 95% CI: 1.663 – 3.55) (138).  However, the combined data from pre-season 

practice and in-season phases yielded an IRR of 1.87 per 1000 AEs, which was comparable to 

previous research (1.758 AEs; 95% CI: 1.37 – 2.20) (138).  Future research should seek to 

standardize the format of data reporting and provide access to compiled data sets to provide more 

general IRRs.  

 This study demonstrated that non-contact injury occurrence is not restricted to the pre-

season practice and in-season phases of sport participation.  In totality, 39% of all non-contact 

injuries (n = 26) and 28% of time-loss injuries (n = 10) occurred between winter conditioning, 

spring practice, and summer conditioning phases.  Furthermore, the IRRs of these phases were 

greater than the in-season phase.  Additionally, the summer conditioning period had the highest 

IRR when expressed as injuries per 1000 hours.  While these phases do not immediately precede, 

or include, competition, they are opportunities for practitioners to exert influence over training 

and recovery strategies in order to reduce a non-trivial number of non-contact injuries.  Future 

research should examine the impact of injury mitigation during these phases of participation as 

well as the pre-season and in-season phases. 

 Previous studies have suggested the monitoring and adjustment of sport participation 

exposure as a means to mitigate injury occurrence(3, 16, 38, 39, 57, 68, 95, 110, 143, 184, 189, 

190, 195, 196, 198, 203, 207, 217, 218, 223).  Research in college football has even suggested 

that the model with the best association to non-contact injuries was the 7-day acute load to 21-

day uncorrelated chronic load using exponentially weighted moving averages (188).  The results 

from this study, however, dispute the assertion that this model is superior to the original 7-day 

acute load to 28-day correlated chronic load model proposed by Hulin and colleagues(114).   
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 The contradictory results from this study may be the result of one or more factors in the 

study design.  The first factor is that this study utilized a larger dataset than previous research in 

college football(188).  Previous research in college football observed a single pre-season and in-

season period, whereas this study was able to combine three years of data.  Observing multiple 

years aids to mitigate the opportunity for outlier seasons to be viewed in isolation and then be 

reported as the sport norm.  In addition to different lengths of observation, the differing results 

may also be due to a utilization inclusion of different injuries in the analysis.  While previous 

research included all non-contact injuries, including upper body and neck injuries, this study 

restricted observations to those occurring in the trunk and lower limbs.  Given the ground-based 

environment of college football, the authors in this study felt the inclusion of upper-body non-

contact injuries was largely unrelated to running-based workload and workload ratio calculations 

and therefore ill-advised.  Furthermore, the contradictory findings may also be the result of this 

study utilizing the previous 7-day cumulative load as a covariate.  Research has previously 

observed workload, workload ratios, and several other variables in in isolation(102, 155, 188).  

The QIC results obtained in this study, however, suggested the inclusion of both a previous 7-

day load covariate and a quadratic workload ratio term in the model.  Relying solely on the 

workload ratio variable can be misleading without knowing the acute workload being observed.  

Workload ratio values are relative in that an arguably small load comparison of 200au acute to 

100au chronic would yield the same ratio value (2.0) as a 2000au acute to 1000au chronic.  The 

absolute values of these workload ratio components likely influence the association with injury 

occurrences, as was demonstrated in this study with lower QIC scores, and therefore should be 

included information in any practical setting. 
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 Numerous studies have demonstrated that both workload and workload ratios are 

associated with injury(48, 49, 59, 61, 65, 81, 107, 108, 114, 115, 125, 126, 148, 150, 157, 168, 

169, 186, 219, 227).  This study is no exception.  However, the results here demonstrated an 

inverted-U association between increasing workload ratio values and the probability of 

sustaining a non-contact injury.  Whether observed in totality or within each phase of the year, 

the highest weekly workloads and workload ratios had no greater associated probability to injury 

than lower values.  These findings may be the result of analyzing these variables in a continuous 

method rather than the discretization methods used in previous research(28, 116, 188, 189).  

While the results of this study did demonstrate an increase in injury probability as workload 

ratios increased to a certain point, the absolute probability of injury only exceeded .04 in the 

ACWR model 13 times, and never exceeded .04 in the EWMA model.  For some practitioners 

and coaches, this absolute injury risk increase may be small enough to still warrant the planned 

training or competition stimulus.  

 

Potential Strength & Limitations 

 

 

 The present study in college football utilized several advantages to expand the 

understanding of the relationship between workload, workload ratios, and non-contact injury 

occurrence.  First, the accumulation of daily observations made over several years yielded a 

dataset that captured all phases of sport training and participation.  Second, the GEE statistical 

approach carried out in this study made it possible to interpret the relationship of the variables of 

interest despite having an unbalanced dataset, which is when athletes are viewed unequally over 

time.  Finally, this study was able to analyze workload and workload ratios continuously, as 

suggested by previous research(36), in order to limit the potential for false model discovery or 
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rejection.  Despite these advantages, this study is not without its limitations.  For starters, GEE 

statistical analysis, while being very valuable for these data, seeks to address the overall 

population-level association between independent and dependent variables, and therefore is not 

tuned to making predictions for the specific subjects observed within the dataset (60).  This study 

utilized cataloging methods from previous research conducted by the sport’s governing body.  

While useful for comparisons between studies, a main drawback of this catalog was that it did 

not subcategorize the hip/thigh region into its major muscle groups.  This makes comparison of 

past research to future research for injuries of particular interest, such as hamstring strains, 

difficult.  Furthermore, this study only observed athletes who were assigned wearable devices as 

determined by the coaching staff, and therefore most likely to play in games.  There could be an 

unobserved underlying trait, skill, or strategy employed by these athletes or coaches which could 

contribute to them experiencing fewer non-contact injuries than what has been surveilled in 

previous research.  Future research should seek to address these potential shortcomings.      

 

Conclusions 

 

 

 This study was able to demonstrate that while EWMA and ACWR workload ratio 

models may be significantly associated with non-contact time-loss injuries, one model was not 

distinguishable from the other.  Additionally, the models with the best fit for this data 

demonstrated an inverted-U relationship with injury, suggesting that as workload and workload 

ratios increase, there may not be an associated increase in injury probability.  Finally, while this 

study has provided improved understanding of the relationships between the association between 

workload, workload ratios, and non-contact injury, future research should seek to observe 

additional covariates potentially related to injury such as strength, power, flexibility, fitness, etc.  
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This research into injury incidence rate ratios and workload has the potential for considerable 

implications for the training and management of college football players, with the objective to 

ultimately improve athlete health and success.        
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       Table 4. 11. Positional count comparison by year. 

 

 

 

 

 

Table 4. 12. QIC results for GEE models by phase of year. 

Model Variables Phase of Year Wald χ2 p-value 

EWMA2, EWMA, 

Weekly Load 

Combined 51.14 < 0.005 

Winter Conditioning 152.04 < 0.005 

Spring Practice 257.69 < 0.005 

Summer Conditioning 308.16 < 0.005 

Fall Camp 14.80 < 0.005 

In-Season 39.41 < 0.005 

ACWR2, ACWR, 

Weekly Load 

Combined 40.84 < 0.005 

Winter Conditioning 35.97 < 0.005 

Spring Practice 31.67 < 0.005 

Summer Conditioning 811.08 < 0.005 

Fall Camp 8.88 0.031 

In-Season 42.78 < 0.005 

  

 

 

 

 

 

 

Unique IDs Total 2017 2018 2019 

All Athletes 88 44 58 56 

Skill 30 14 20 19 

Big Skill 30 12 19 18 

Power 28 18 19 19 
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Table 4. 13. Injury probability by model and phase of year. 

EWMA Model Mean Median SD Min Max 

Combined .0016 .0006 .0027 3.48e-11 .0329 

Winter Conditioning .0009 .0004 .0013 1.14e-09 .0061 

Spring Practice .0011 .0003 .0015 6.02e-08 .0106 

Summer Conditioning .0005 .0002 .0009 2.15e-07 .0053 

Fall Camp .0019 .0009 .0027 1.07e-07 .0289 

In-season .0018 .0007 .0030 3.48e-11 .0329 

ACWR Model Mean Median SD Min Max 

Combined .0016 .0005 .0032 1.34e-08 .0763 

Winter Conditioning .0010 .0006 0.0011 4.72e-07 .0100 

Spring Practice .0010 .0005 .0014 1.36e-05 .0106 

Summer Conditioning .0007 .0003 .0012 1.34e-08 .0107 

Fall Camp .0021 .0008 .0036 7.80e-06 .0369 

In-season .0018 .0006 .0036 3.38e-07 .0763 

Abbreviations: SD: standard deviation; Min: minimum; Max: maximum.   
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CHAPTER 5 

C-REACTIVE PROTEIN, EXTERNAL WORKLOAD, AND NON-CONTACT INJURY 

RATES IN NCAA AMERICAN FOOTBALL PLAYERS 

 

 

ABSTRACT 
 

Current research indicates that rapid increases in workload predisposes athletes to greater 

injury risk.  This research has generally failed to provide a mechanism for these injuries and has 

ignored the value of assessing inflammatory markers as a secondary data source. PURPOSE: To 

assess the relationships among rate of external workload increase, C-reactive protein (CRP) 

levels, and non-contact injuries during American football training and participation. 

METHODS: Daily external workloads, injury information, and weekly salivary C-reactive 

protein (CRP) levels were collected for 19 American football players from the same NCAA 

Division 1 team for 12 weeks. Injury rates per 1000 athlete-exposures (AEs) and per 1000 hour-

exposures (HEs) were calculated. Both traditional 7-28 day acute:chronic workload ratios 

(ACWR) and 7:21 exponentially weighted moving average acute:chronic workload ratios 

(EWMA) were calculated daily. RESULTS: Eighteen injuries (15.04 AEs; 9.07 HEs) were 

observed, with 3 being a result of a non-contact mechanism (2.51 AEs; 1.51 HEs) and 1 resulting 

in time-loss from sport (0.84 AEs; 0.50 HEs). These 3 injuries were muscle strains to the 

hip/thigh region. One-way repeated measures ANOVA determined CRP did not vary across time 

(F11,176 = 1.41; p = 0.17).  Average weekly load was 1837 + 791 arbitrary units (AU).  Load was 

determined to vary across time (F11,192 = 3.97; p < 0.001).  Change in CRP was poorly correlated 

to change in load from week to week (r = 0.15).  Average EWMA and ACWR values were 0.99 

+ 0.33 and 1.17 + 0.61, respectively. CRP was poorly correlated with EWMA and ACWR ratio 

values (r = -0.11; -0.07).  Panel regressions determined that weekly load (p = 0.49), ACWR (p = 
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0.93), and EWMA (p = 0.21) values were individually not associated with CRP concentrations. 

CONCLUSION:  Results failed to demonstrate that increases in workload or workload ratios 

were associated with increases in CRP concentration and subsequent non-contact injury risk.  In 

addition, the observed muscle strains did not result in subsequent increases in CRP 

concentrations. 
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INTRODUCTION 
 
 

Current National Collegiate Athletic Association (NCAA) policies may expose American 

football players to increased injury risk.  These policies effect approximately 29,000 football 

players at the NCAA Division 1 level each year(5).  The pre-season period for college football 

occurs in August and is approximately four weeks in length(6). Prior to this period, college 

football players spend eight weeks weight training and conditioning for their sport. The NCAA 

limits all weight training and conditioning activities to a combined eight hours per week during 

this period. The pre-season period in August allows for 20 hours per week of practice and weight 

training sessions. These policies indicate a strong probability that athletes experience at least a 

2.5-fold increase in workload during this transition.  

Recently, studies in football(188, 189) and other sports(3, 16, 38, 39, 57, 68, 95, 110, 

143, 184, 190, 195, 196, 198, 203, 207, 217, 218, 223) have suggested that this increased rate of 

workload accumulation as athletes progress from conditioning to practice may be a contributor to 

non-contact injuries such as muscle strains, ligament sprains, and stress fractures.  Injuries 

resulting in lost participation time are often cited as major contributors in overall team 

success(69, 87, 123).  To reduce injury risk and optimize individual performance, teams have 

begun monitoring athlete workloads using external wearable devices that utilize global 

positioning systems (GPS) with built-in accelerometers and gyroscopes. These devices have been 

used in numerous studies involving team sports such as rugby(59, 68, 115, 116), soccer(83, 125, 

149, 150), and Australian rules football(68, 167-169, 204). The workload values obtained by 

these devices can be categorized into acute (most recent 7 days) and chronic (previous 3- to 4-

weeks) values, though the specific days associated with each value vary. These values can be 

referenced as a ratio, which are then used to measure the rate of increase or decrease in an 
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athlete’s current training relative to their training history.  The value for this ratio has been 

calculated using various mathematical approaches(102, 155).  The two most common methods 

for quantifying this ratio are the original 7-day acute to 28-day chronic method which utilizes 

rolling averages (Traditional ACWR) (114), and the 7-day acute to 21-day chronic method with 

exponentially weighted moving averages (EWMA) (102, 155, 228). This research has shown 

associations with non-contact and overuse injury occurrence when athletes increase their weekly 

(acute) activity at rates greater than 1.5 times their recent (chronic) exposure(48, 65, 108, 167-

169, 186, 189). In college football, the 7:21-day coupled ACWR calculated using an 

exponentially weighted moving average (EWMA) with a 3-day injury lag period demonstrated 

the greatest association with injury during the pre-season and in-season periods(188).    

To the authors’ knowledge, however, these research studies have not proposed an injury 

mechanism or provide a framework through which to explain the association between high 

acute:chronic workload ratios and increased injury risk.  Following a training, practice, or 

competition session, athletes will experience both fitness and fatigue effects(11).  Fitness effects 

may often include increased muscle size, strength, recruitment patterns, oxygen consumption 

efficiency, mitochondrial density, blood supply, etc.(45).  Fatigue effects, by contrast, are 

impairments to performance resulting from a depletion in energy substrate availability(56, 105, 

205, 236), such as muscle glycogen depletion, or from increased inflammation leading to 

soreness and edema(68, 191). The severity and duration of these effects largely depends on the 

intensity of the training stimulus(11, 88).      

Higher intensity and duration of the stimuli will cause greater levels of fatigue than that 

of lighter intensity or shorter duration(11, 87).  The trade-off, according to this fitness-fatigue 

paradigm, is that benefit from these more intense and longer sessions will result in greater 
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adaptation (supercompensation) over time(10, 11, 87).  Consequently, the term given to the 

declines in performance following these stimuli is “short-term overreaching” or “functional 

overreaching” (87, 89, 136).  For short-term overreaching to turn into supercompensation, a 

period of recovery is needed before the next session(87, 89, 200).  If continued high-intensity or 

prolonged training occurs while an athlete is in a fatigued state, an inability for the athlete to 

properly adapt may result.  This maladaptation can result in both acute injury(73, 147) and 

overtraining syndrome(89, 136).  While the mechanisms may differ between acute and overuse 

non-contact injuries, both may result from this fatigued state and in the absence of an athlete’s 

potential diagnosis of overtraining syndrome(65, 125, 145, 156, 188).  

Understanding how injuries result from this fitness-fatigue dichotomy requires a 

framework.  Kalkhoven et al.(129) provides a novel framework through which to observe the 

interplay between workload, inflammation, and non-contact or overuse injuries. This framework 

adds causal pathway to the work done by Bahr and Krosshaug(9) and Meeuwisse et al.(162) and 

provides a pathway for an athlete’s physiology, mechanics, and the tissue characteristics to affect 

the balance between injury and adaptation. Their framework has several subcomponents, 

beginning with the athlete’s physiology, then extending to tissue-specific strength and force 

properties, and finally including tissue-specific stress and strain.  According to the model, an 

athlete’s physiology is comprised of modifiable, nonmodifiable, and external factors.  This 

framework views biological tissue through the lens of material science and implies that the 

failure of muscle tissue results when excessive stress or strain exceeds the tissue’s ability to 

absorb such forces(78, 98, 179).  These failures can be the result of a large singular event or 

repetitive, lower threshold events(78, 98, 179).   
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The framework by Kalkhoven et al., also includes method for tissue not to be 

injured(129). These tissues can undergo positive physiological and mechanical adaptations such 

as muscle hypertrophy(19, 52, 191-194), increased muscle strength(19, 52, 191-194), tendon 

adaptations(23), and bone mineral density improvements(41, 96, 128, 170) when the stress 

experienced does not result in structural failure. However, without proper rest and recovery these 

tissues can be damaged to the point of an injury occurring(37, 94, 233).  The framework is 

recursive in that these injuries or adaptations will impact the athlete’s physiology.  As a result, 

this model is ideally suited for stress-, strain-, and overuse-related injuries.   

Although there are several inflammatory biomarkers associated with overtraining that 

could be included in this framework, increases of c-reactive protein (CRP) have been observed in 

moderate and vigorous exercise(67, 84). CRP is a hepatic acute phase protein, whose synthesis is 

induced by the plasma cytokine interleukin-6 (IL-6) (178).  CRP is a common biomarker of 

systemic inflammation, as well as tissue damage and necrosis(2).  Normal CRP concentration 

levels in healthy adults has been reported to range between 0.8 mg/L and 3.0 mg/L (197).   CRP 

concentration levels greater than 3 mg/L have been correlated with increased inflammation, 

cardiovascular disease, frailty, morbidity, and mortality(2, 187).  CRP concentration levels can 

also increase 1,000-fold over 1-3 days after tissue damage or the onset of inflammation (93, 

159).  Increased circulating CRP levels can be present from 1 to 4 days and can be easily 

observed through blood or saliva sampling(40).  Intense exercise, especially when it is paired 

with condensed recovery intervals, can yield chronic inflammation, through elevated IL-6, both 

locally (muscle tissue) and globally (whole body) (40, 181).  This chronic elevation of IL-6 

promotes a negative feedback loop on the suppressors of cytokine signaling (SOCS) family, 

thereby decreasing the signaling associated with human growth hormone (hGH) and insulin-like 
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growth factor-1 (IGF-1), which in turn inhibits the repair and adaptation mechanisms within the 

damaged tissue (40, 85, 103).  A disproportion of fatigue to fitness has been shown in the 

literature to predispose athletes to greater risk of non-contact and overuse injuries(45, 78, 87).  

While IL-6 is the central promoter of CRP synthesis, its half-life (1 hour) is far shorter than that 

of CRP (19-hours).  In addition, IL-6 may be systemically undetectable, yet be present locally, 

and still maintain elevated CPR levels(103). As a result, CRP may be a uniquely useful indicator 

for assessing chronic overtraining.   

It is likely that the intense training that takes place during the pre-season practice period 

may cause a rise in CRP as a result of the increased physical stress placed on the athletes. This 

intense physical training, paired with the prolonged physical stress of in-season sport 

participation, may promote an environment of repetitive, chronic skeletal muscle damage.  This 

repetitive skeletal muscle damage could in turn promote a negative feedback loop on SOCS, 

thereby promoting elevated levels of CRP.  The inflammatory status of the muscle would, in 

theory, increase the risk of non-contact injury. If CRP levels are temporally associated with 

increased risk of sustaining non-contact injuries, then monitoring CRP may be a useful tool to 

evaluate conditioning and practice plans or to restructure the rules governing these time periods 

entirely. 

Should CRP levels rise in response, and proportion, to increased workload rates, and if 

they are correlated with increased non-contact injury risk, then it would be reasonable to assume 

its rise from the workload rates alone.  Therefore, the purpose of this study was to assess the 

relationships among the rate of external workload increase, C-reactive protein levels, and non-

contact injuries during the preseason practice and in-season periods in college football.  We 

hypothesized that the athletes with the highest increases in workload rate would have the highest 
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levels of CRP and would be at the greatest risk of sustaining non-contact injuries during the 

study period. 

 

METHODS 

 
 

Participants 

 

 

Nineteen athletes from the same Division 1 American college football team were 

recruited for this study (mean + SD: age: 21.1 + 1.1 years, mass: 106.6 kg, and height: 188.2 + 

6.4 cm).  All athletes were cleared by the university’s sports medicine staff for sport 

participation.  To best capture the variability within a football roster, at least two athletes were 

recruited from each of the following position groups: offensive line, tight-ends, wide receivers, 

running-backs, defensive ends, defensive tackles, linebackers, defensive backs.  This study 

excluded quarterbacks and specialists. These positions were excluded due to the unique practice 

and game environments that these players encounter compared to their other teammates. Due to 

the limited number of devices, the football coaching staff assigned devices to players whom they 

deemed most likely to participate in competitions.  Only athletes who were currently assigned 

global positioning devices were approached for recruitment.  These athletes were categorized by 

their position and then assigned an identification number within that position group.  A random 

number generator then selected two athletes from each group.  These athletes were approached 

for inclusion in the study.  Athletes were then assessed for any chronic diseases. If any of the 

athletes declined, the plan was to continue the random selection process until the allotted number 

of participants per position group was achieved; however, no athletes declined.  All participants 

provided written informed consent, which permitted their deidentified data to be used for this 
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study. The Michigan State University Human Research Protection Program approved all 

experimental procedures for this study. 

 

Quantifying Workload  

 

 

Workloads were collected utilizing wearable global positioning system (GPS) devices 

sampling at 10 Hz (Optimeye S5, Catapult Innovations, Melbourne, AUS) during the 4-week 

preseason and 13-week in-season periods. These devices combine GPS with a tri-axial 

accelerometer sampling at 100 Hz, a gyroscope, and a magnetometer to derive an external 

workload metric known as Player Load (Catapult Innovations). The reliability, construct validity, 

and convergent validity of the components and algorithms to that are contained in these devices 

to ground-based and standardized treadmill running has been established by previous 

research(13, 57, 58, 100, 127, 132, 161, 183, 209, 214).   

These devices were worn between the scapulae of the players in compression vests for all 

conditioning sessions and non-padded football practices.  These vests came in varying sizes from 

small to xxxx-large which allowed for a compressed, comfortable fit for all players.  During 

padded practices, players wore the devices in specially designed boxes mounted on their 

shoulder pads in a similar location to the vests. Players wore the same device for all activity 

sessions. Data were downloaded from the devices into the provided software (Openfield, 

Catapult Innovations, Melbourne, AUS). This software calculates workload as the sum of all 

accelerometer movements in the three-dimensional plane. This is a unit-less quantification as is 

defined by the manufacturer as: 
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Player/Body Load =  √
(𝛼𝑦1 −  𝛼𝑦−1) + (𝛼𝑥 −  𝛼𝑥−1) +  (𝛼𝑧 −  𝛼𝑧−1)

100
 

Where, y refers to the forward/backward acceleration, x refers to lateral acceleration, and z refers 

to vertical acceleration. Both ACWR and EWMA workload ratios were calculated. The ACWR, 

which utilizes the past 7 days as the acute workload and 28 days as the chronic workload periods, 

was calculated daily. The EMWA was calculated daily for both acute (past 7 days) and chronic 

(previous 21 days) workloads. The equation used to calculate the acute period was: 

Acute: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

7+1
)] + {[1 − (

2

7+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

The equation used to calculate the chronic period was: 

Chronic: 𝐸𝑊𝑀𝐴𝑡 =  [𝐿𝑜𝑎𝑑𝑡 ∗ (
2

21+1
)] + {[1 − (

2

21+1
)] ∗ 𝐸𝑊𝑀𝐴𝑡−1} 

For this study, ‘Load’ refers to the accelerometer-derived Player Load metric, subscript t refers 

to the current observation, and subscript t-1 refers to the previous observation.  The acute period 

was divided by the chronic to give a ratio value for each day.  In the event of missing data (6 out 

of 1,704 observations, 0.35%), the position group average was supplemented into the data.   

 

C-Reactive Protein Sample Collection  

 

 

This study took place during the 2020 calendar year, which included the Covid-19 

pandemic. Covid-19 precautions were in place to ensure as safe a sport participation environment 

as possible, which included atypical conditions and a deviation from an ideal collection protocol.  

Athletes were informed not to eat or drink 30 minutes prior to saliva collection.  The first saliva 

sample collection took place on the Monday at the start of the first full week of pre-season 
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practice. To obtain the most consistent weekly CRP values, saliva samples were collected every 

Monday. Saliva samples were collected every Monday morning prior to the first activity session 

of the day.  For each athlete, samples were collected at the same time of day in-conjunction with 

athlete screening.  This collection time provided 36 to 44 hours of recovery from the last activity 

exposures. The saliva samples were collected using 2mL cryovials (SalivaBio LLC, Carlsbad, 

CA) and stored at -80℃ until assayed.   

CRP measurement was performed using Human C Reactive Protein ELISA assay kits 

(ab108826, Abcam, Cambridge, MA) in conjunction with a microplate absorbance reader(iMark 

19578, Bio-Rad, Hercules, CA). All assays were performed per the manufacturer protocols. 

Briefly, samples were thawed from -80°C storage at room temperature (21-23℃) and then 

centrifuged at 800 x g for 10 minutes.  All reagents were brought to room temperature before 

use.  Eight standards were developed from 16 ng/mL to 0 ng/mL through serial dilution for each 

plate, which detected a linear range of CRP from 0.25 ng/mL to 16 ng/mL.  Each well received 

50 µL of CRP standard or sample.  Plates were then covered with sealing tape and incubated for 

2 hours at room temperature on an orbital table.  Plates were washed manually and were inverted 

and decanted to remove all liquid.  Each well then received 50 µL of 1X Biotinylated C-Reactive 

Protein Antibody.  Wells were covered with sealing tape and incubated for 30 minutes at room 

temperature.  The previous wash procedure was repeated, and 50 µL of 1X SP Conjugate was 

added to each well and incubated, uncovered, for 30 minutes in the same manner as prior 

incubations.  The wash procedure was repeated and followed by the addition of 50 µL of 

Chromogen Substrate to each well. After the plates incubated for 15 minutes at room 

temperature, 50 µL of Stop Solution was added to each well.  Plates were then read immediately 

on the microplate absorbance reader, at a wavelength of 450 nm, with a pathlength correction of 
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100 µL.  Data were acquired, and reports exported with the accompanying software (Microplate 

Manager Software 6, Bio-Rad, Hercules, CA).   

 

Definition of Exposure 

 

 

Practice and competition sessions were cataloged as activities.  An athlete exposure was 

defined as one athlete participating in one activity.  All participations and durations were 

confirmed by the team’s practitioners for each athlete.   

 
 

Definition of Injury 

 

 

The team’s sports medicine staff diagnosed all injuries during the data collection period. 

Injuries were categorized using the distinctions set forth in the NCAA Sports Injury Surveillance 

program(133). Lower-body and trunk injuries with non-contact or overuse mechanisms were 

included in the analysis.  This decision was made because of the possibly that these injuries 

occur due to large increases in the rate of activity exposure(87, 94). Time-loss was defined as 

any injury where an athlete was unable to participate in subsequent conditioning sessions, 

practices, or competitions.  

 

Statistical Analysis  

 

 

All statistical calculations and analyses were completed using the Stata IC v16.1 software 

package (StataCorp LLC, College Station, TX).  A one-way repeated measures ANOVA was run 

to determine if there were differences in CRP concentrations across time. For further assessment 
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of CRP, previous 7-day loads, workload ratios, and injury information variables were collated 

into weekly values.  Ordinarily, the length of the days utilized in the chronic workload 

calculation (i.e., 28-day average) would delay the utilization of any workload ratio calculations 

until the chronic time period requirement had been met.  To utilize as large a data set as possible, 

previous research assigned an arbitrary starting workload ratio value of 1.00 to the beginning of 

their data sets (168, 188).  However, the athletes in this study had been undergoing conditioning 

for several weeks prior to the start of their football practice activities.  As a result, this study 

utilized those weeks of training data to provide more accurate workload ratios for the beginning 

of the CRP collection period.  Once weekly values were compiled, a series of panel regressions 

were performed.  Hausman’s test was used to determine if random effects or fixed effects should 

be included in each model. The first panel regression assessed the impact of previous 7-day load 

on the following Monday’s CRP concentration.  The second and third regressions assessed the 

impact of the ACWR and EWMA on CRP concentrations. Finally, logistic regressions were 

planned to assess the association between each workload ratio, CRP, and subsequent time-loss 

non-contact injury.  Statistical power and effect sizes were also assessed. 
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RESULTS 

 
 

There were 18 total injuries sustained by 12 players during the 12-week data collection 

period. The total injury rate for this period was 9.07 per 1000 hours of exposure (HE), or 15.04 

per 1000 activities of exposure (AE).  Of the 18 injuries, 3 were the result of a non-contact 

mechanism (HE: 1.51; AE: 2.51), and only 1 of these injuries resulted in time-loss (HE: 0.50; 

AE: 0.84).  These injuries are presented in Table 5.1 by week. For a list of all observed injuries 

see Supplemental Table 5.1.  Overall, no correlations were observed between the 7-day 

cumulative load and either all-cause injury occurrence (Pearson’s r = 0.04) or non-contact injury 

occurrence (r = 0.01) (42).  

 

Table 5. 1. Non-Contact Injury, ACWR, EWMA, and CRP descriptive data in the week 

preceding injury. 

 

A total of 211 CRP samples were collected during the investigation. In total, there were 

17 observations with missing CRP data (228 total observations, 7.45%). Nine of these missing 

observations were due to athletes being injured or quarantined, and thus permitted to avoid the 

training facility.  The overall average CRP value for the dataset was 1.34 mg/L (95% CI: 1.08 to 

1.59) and had a standard deviation of 0.13 mg/L. As such, samples with values beyond 3 

standard deviations from the mean (greater than 5.22 mg/L) and lacking corresponding injury or 

illness history were considered outliers due to errors in collection and removed from the analysis 

Injury 

Week 

Injury 

Location 

Injury 

Diagnosis 

Injury 

Mechanism 

Time-Loss 

Injury 

CRP 

(mg/L) 

Load 

(AU) 

ACWR 

Ratio  

EWMA 

Ratio  

1 Hip / Thigh Strain Noncontact No 0.462 1561 1.76 1.20 

6 Hip / Thigh Strain Noncontact Yes 0.098 2096 1.72 1.15 

7 Hip / Thigh Strain Noncontact No 0.044 2699 1.21 1.00 
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Figure 5. 1. Average CRP with 95% confidence intervals by week of season. 

(7 unique athletes, 8 of 211 collected observations, 3.79%) (113).  The outlier samples were 

collected from seven athletes.  The two samples collected from a single athlete occurred 3 weeks 

apart. Average weekly CRP concentrations and 95% confidence intervals are displayed in Figure 

5.1.  Individual weekly load, CRP, and injury occurrence are presented in Supplemental Figure 

5.1. Weekly CRP levels by individual are also presented in Supplemental Figure 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

 

A one-way repeated measures ANOVA was run to determine if there were differences in 

CRP concentrations across time. The result from this test (F11,176 = 1.41; p = 0.17) indicates there 

was no significant difference in CRP concentration across time. The partial eta-squared (η2) for 

19 athletes across 12 repeated measures, with a correlation among repeated measures of .1346  

was 0.08 (α = .05, 1 group).  This corresponded to a power of 0.91 and an effect size (f) of 0.29.  

The average weekly load (+ std. dev.) for the investigation period was 1837 + 791 AU.  

Load was determined to vary across time (F11,192 = 3.97; p < 0.001) with an effect size of 0.48 (η2 

= 0.19; Power = 0.999).  The average load from the previous week had a fair correlation with 

average CRP concentration at the beginning of the following week (r = 0.38). However, when 

calculated individually, correlation ranged from -0.68 to 0.66. Additionally, the change in CRP 

concentration was poorly correlated (r = 0.15) to the change in load from week to week. Previous 

7-day average load and current week CRP concentration values are included in Figure 5.2.  
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The average EWMA ratio value (+ std. dev.) was 0.99 + 0.33, and the average traditional 

ACWR value was 1.17 + 0.61.  EWMA and traditional ACWR values at time of sample 

collection were poorly correlated with CRP concentrations (r = -0.11; -0.07). Weekly averages 

for load, EWMA, and traditional ACWR values are included in Figure 5.3.  

 

Note: Week of season corresponds to the week CRP samples were taken. Samples 

were taken on Monday’s and therefore plotted with the previous 7-day load.     
 

Figure 5. 2. Average load and CRP concentrations by week of season. 
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The first panel regression model assessed the impact of the previous week’s load on the 

following week’s CRP concentration.  Hausman’s test results (Wald X2 = 1.01; p = 0.32) 

indicated that a panel regression model with random effects could be used. The results from this 

model suggested that increasing weekly load (Wald X2 = 0.48; p = 0.49) was not associated with 

the following week’s CRP concentration.  

 The second and third models assessed the traditional ACWR and EWMA values, 

respectively. Panel regression models with random effects were also used for these results, as the 

Hausman’s test results for ACWR (Wald X2 = 0.01; p = 0.93) and EWMA (Wald X2 = 2.14; p = 

0.14) were both nonsignificant.  Both the ACWR (Wald X2 = 1.47; p = 0.23) and the EWMA 

(Wald X2 = 1.54; p = 0.21) were not associated with CRP concentrations.   

 Figure 5. 3. Average load, traditional ACWR, and EWMA ratio values by week. 
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 We were unable to run the planned logistic regression to assess the association between 

workload ratios, CRP, and subsequent time-loss non-contact injury due to only having one event 

occur during the observational period. The athlete who sustained the injury had a starting CRP 

value of 0.098 mg/L for the week. This athlete had been returning to play following a lower body 

contact injury two weeks prior. The athlete had respective ACWR and EWMA ratio values of 

1.72 and 1.16 prior to injury. The week following injury, this athlete had a doubling of their CRP 

concentration to 0.175 mg/L.  Both pre- and post-injury CRP concentration values were within 

the normative range reported in athletes from other sports(71).  Though it is clinically positive to 

have only one case of non-contact injury, no scientific conclusions can be drawn from this 

isolated event. 
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DISCUSSION 

 

 

The purpose of this study was to assess the relationships among external workload, CRP, 

and non-contact time-loss injuries.  Results from this study found that while weekly load was 

determined to have varied across time, CRP concentrations did not. Furthermore, weekly change 

in workload was poorly correlated with change in CRP.  Ultimately, regression analysis failed to 

yield statistically significant relationships between workload, CRP, and non-contact time-loss 

injuries.   

Our hypothesis that athletes would experience increases in their salivary CRP 

concentrations during the beginning of the pre-season practice period, due to increasing 

workloads, was not supported.  Additionally, this study demonstrated no association between 

CRP and either the traditional ACWR or EWMA ratio values.  There were several planned 

regression models sought to assess CRP concentrations, weekly load, and the workload ratios on 

non-contact injury outcomes. However, given the rarity of these injuries in the observed athletes 

(3 non-contact injuries with 1 time-loss injury), these models would yield biased results, and thus 

could not be utilized in the current study(51).   

The non-contact time-loss injury rate (0.84 AEs) reported in this study is significantly 

lower (z-score = -14.75, p < 0.001) than the injury rate which has been reported in previous 

research (1.43 + 0.04 AEs) (133).  However, it should also be noted that the rate of all-cause 

time-loss injuries in this study was 12.53 AEs. This rate is significantly higher (z-score = 43.12, 

p < 0.001) than what has been reported in previous research (7.14 + 0.12 AEs).  These results 

may be due in part to the style of practices coordinated by this team, such that contact is more 

prevalent than what has been observed in previous research, but this is pure speculation.  
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There are potentially several reasons for the absence of association between CRP and 

increased workload reflected in this study.  The first reason, as discussed earlier, may be due to 

the period selected for study.  Simply put, the high contact nature of practices and competitions 

during the pre-season and in-season periods may have provided a limited opportunity for non-

contact injuries to occur.  Alternatively, measuring CRP levels during the limited contact periods 

of summer or winter conditioning periods may better discover the true nature or inflammation 

and non-contact injury risk. Secondly, due to the uncertainty of scheduling because of the 

COVID-19 pandemic, establishing true baseline CRP concentration values was unobtainable.  

Though CRP concentrations were recorded at week 1, when preseason practices began, athletes 

had already been exposed to 5 weeks of conditioning.  Previous research has shown that this 

regular training exposure can provide anti-inflammatory response , including the inhibition of 

Tumor Necrosis Factor α (TNF-α) through the production of anti-inflammatory proteins IL-1ra 

and IL-10. The increased IL-1ra and IL-10 are the result of circulating IL-6 post exercise(40, 

181). By inhibiting TNF-α, these proteins inhibit cell necrosis and apoptosis, thus promoting 

positive adaptations such as muscle hypertrophy.  Due to the COVID-19 pandemic, and the 

uncertainty surrounding the football schedule, notice of when the start of preseason training 

would begin was given last-minute, and therefore earlier samples were not obtained. Finally, 

there may not be an association between chronic systemic inflammation and non-contact injury 

risk.  Average CRP concentrations hovered around the 1 mg/L value that is associated with 

healthy individuals for the entirety of the observational period.  The 95% confidence interval 

ranged widely from near 0 mg/L to 2 mg/L but remained below the 3 mg/L associated with 

inflammation and cardiovascular risk (187).  Inflammation may still contribute to injury risk, but 
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the effect may be local to an individual muscle group and thus not able to be adequately assessed 

via systemic methods. 

While this study failed to provide a link between increased workload, measured using 

ACWR or EWMA methods, and non-contact injury by way of an inflammatory mediator, it also 

failed to yield statistically significant association between increased workload and non-contact 

injury, period.  Numerous papers have pointed to a potential relationship between increased 

workload and subsequent increased non-contact injury risk(48, 65, 108, 167-169, 186, 189).  

This study contained 260 activity observations where athletes had ACWR values of at least 1.50 

and 116 days with EWMA values greater than 1.50.  Number of observations with ACWR or 

EWMA values greater than 2.00 were 106 and 65, respectively.  Research by Hulin et. al (116) 

found that ACWR values greater than 2.11 were associated with the highest risk of injury in the 

current week (16.7% injury risk).  Of the 15 time-loss injuries (contact and non-contact 

combined) sustained during this study, 5 were within 7 days of an athlete experiencing an 

ACWR value greater than 2.11.  Dividing these injuries by the total number of activity 

observations (1,070), as done by Hulin et. al, yields an injury risk of only 0.46%.  Additionally, 9 

injuries occurred when ACWR values between 0.8 and 1.3 were experienced. Using these 

numbers, one would conclude that injury risk was higher (0.84%) when athletes were within the 

supposed ‘ideal’ range than when they experienced higher ACWR values.   

According to prior research in collegiate football, when low chronic EWMA load values 

(< 85 AU) were combined with either low (< 0.8) or high (> 1.30) ratio values there was an 

injury probability of at least 97.8%(188).  The present study had 52 observations which fit these 

criteria, and which could be used to support these injury probability claims.  However, there was 

not a single occurrence of non-contact injury, time-loss or otherwise, when either low or high 
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chronic loads were combined with low or high workload ratio values. Rather, all 3 non-contact 

injuries occurred within the 0.8 – 1.3 range. These results should serve to temper the association 

previously made between workload ratios and injury risk in college football. 

 

Potential Strength & Limitations 

 

 

 This study had limitations. The main limitation is the absence of non-contact time-loss 

injuries.  Though clinically positive, a larger number of injuries is required to properly utilize the 

statistical analyses necessary to assess the association of inflammation and injury.  Therefore, 

this study would have benefited from a larger number of subjects over a longer period. 

Additionally, the unique schedule of the 2020 football calendar, because of the COVID-19 

pandemic, stresses the ability to relate these results to either previous research or the normal 

football environment.  There were variations in cumulative week load that were likely the result 

of cancelled games.  These game cancellations may have promoted positive adaptations through 

rest and limited contact which otherwise would not typically occur in a traditional football year.  

Furthermore, our study did not consider smoking or drug habits, which may increase CRP 

concentration levels (55).  This study, however, does possess several strengths.  First, this study 

was able to prospectively assess the relationships among workload, inflammation, and injury in 

collegiate football players using an injury framework. This study also assessed the relationship 

between two common workload ratios and injury utilizing continuous methodologies proposed 

by recent literature(36).  Finally, our study was able to compare, and find significant difference 

between, the observed injury rates with rates reported several years ago.       
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Conclusions 

 

 

 In this study, we were unable to demonstrate that acute increases in workload, as 

displayed by either absolute 7-day cumulative load or acute:chronic workload ratios, leads to 

increased systemic inflammation, measured via salivary C-Reactive Protein concentrations, 

which results in increased risk of non-contact injury.  Additionally, this study tempers the 

assertions made by prior research that specific workload ratio values predispose athletes to a 

greater risk of injury.  These findings should serve to 1) caution practitioners from using these 

calculations in isolation, and 2) bolster their efforts to compile larger datasets and investigate the 

inflammation – injury relationship further.   
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Table 5. 2. Injury, ACWR, and CRP descriptive data in the week preceding injury. 

Injury 

Week 

Injury Location Injury 

Diagnosis 

Injury 

Mechanism 

Time-Loss 

Injury 

CRP 

(mg/L) 

Load 

(AU) 

ACWR 

Ratio 

EWMA 

Ratio  

1 Knee Sprain Contact Yes 0.139 239 2.03 2.49 

1 Trunk Strain Contact Yes 0.168 1681 2.23 0.82 

1 Hip / Thigh Strain Noncontact No 0.462 1561 1.76 1.20 

2 Hand / Wrist Fracture Contact Yes 0.052 2601 1.85 1.31 

2 Hip / Thigh Strain Contact Yes 2.856 2982 1.85 1.13 

2 Shoulder / Clavicle Sprain Contact Yes 3.441 1735 2.55 1.39 

3 Neck Contusion Contact Yes 2.551 2936 1.81 1.10 

3 Ankle Sprain Contact Yes 1.223 2225 1.41 0.80 

3 Hip / Thigh Strain Contact Yes 6.014 2303 1.21 0.96 

4 Head / Face Concussion Contact Yes 0.346 2598 1.00 0.69 

4 Shoulder / Clavicle Sprain Contact Yes - 2694 1.28 1.02 

4 Ankle Sprain Contact Yes 2.756 2574 1.14 1.07 

6 Hip / Thigh Strain Noncontact Yes 0.098 2096 1.72 1.16 

7 Hip / Thigh Strain Noncontact No 0.044 2699 1.21 1.00 

7 Ankle Sprain Contact Yes 4.446 2457 1.08 0.98 

11 Knee Sprain Contact Yes 0.810 2081 1.17 0.73 

12 Head / Face Concussion Contact Yes 0.933 2560 0.92 0.94 

12 Hip / Thigh Strain Contact No 0.825 1280 1.02 0.89 
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Figure 5. 4. Average CRP with 95% confidence intervals by week of season. 
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Figure 5. 5. Average and individual CRP levels by week of season. 
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CHAPTER 6 

DISSERTATION SUMMARY AND RECOMMENDATIONS 

 

Summary of results 

 
 

Minimizing the occurrence of injuries is critical for athlete health, development, and 

overall team success(69, 87, 123).  In collegiate football, a greater percentage of injuries occur 

during practice than competitions (59.5% vs 40.5%)(133).  Non-contact and overuse injuries 

account for approximately 35% of these injuries(133).  A potential contributor to these injuries 

may be the rate at which they increase their sport training and participation(68, 81, 102, 114-116, 

150, 151, 156, 169, 186, 188, 189, 204, 219).  Novel wearable devices have been used to 

quantify this activity across a variety of sports(59, 68, 83, 115, 116, 125, 149, 150, 167-169, 

204).  Several sport-specific calculation methods have been developed to quantify an athlete’s 

recent activity to their past activity history(102, 155).  However, several authors have questioned 

the injury-framework and mathematical underpinnings of these calculations(36, 119, 120, 122, 

163, 216).  Additionally, collegiate football training and participation is a year-round process.  

Current research has addressed the pre-season and in-season periods but has failed to address the 

injury rates for winter conditioning, spring practice, or summer training.  Therefore, the overall 

purposes of this dissertation were to 1) utilize modern statistical practices to assess the 

relationship between injuries, workload, and workload ratios between two different teams, 2) 

determine the non-contact injury rates for each phase of the calendar year and assess the 

relationship to workload and workload ratios, and 3) to evaluate if systemic inflammation may 

be a mediator between workload and non-contact injury events.   
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Chapter 3: Multi-team analysis 
 

 The first major objective of our investigation focused on the association between 

acute:chronic workload ratio calculations and non-contact injury risk across multiple teams.  We 

hypothesized that both teams would have similar workloads, workload ratios, and non-contact 

injury occurrences, however the values for each team would be significantly difference across 

phases of sport training and competition.  Both teams reported 44 non-contact injuries apiece, 

however, reported time-loss injuries were different (Team 1: 6; Team 2: 17).  This both confirms 

and refutes the hypothesis of similar injury occurrences.  Our results also confirmed our 

hypothesis that workloads and workload ratios were significantly different between phases of the 

year; however, these variables were also significantly different between teams for the pre-season 

and in-season phases.  This finding does not support our hypothesis of team similarity.  

We also hypothesized that the EWMA workload ratio calculation would have greater 

association to non-contact injury than the ACWR calculation, and that the team-specific models 

would yield greater association than the combined models.  Though both calculation methods 

were significantly associated with injury, our results, obtained by measuring the area under the 

curve for both ROC and P-R curves, failed to demonstrate any model superiority over the others.  

In addition, the results of low precision and low recall, lends support to the critics of the 

workload ratio metrics(36, 142, 173, 174, 216). 

One significant issue in assessing the relationships between workload and injury is 

choosing which specific variables to include for workload.  Previous research has a myriad of 

different variables as the workload metric including distance, distance at certain velocities, 

sRPE, jumps, pitch counts, heart rate-based measures, and accelerometer-derived “load”.  Each 

measure has its value depending on the sport and environment; however, significant drawbacks 
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are also associated with each.  Distance provides a useful “volume” measure but does not 

account for intensity of movement.  Distance at certain velocities accounts for intensity but may 

not capture the entire volume of activity. Jumps and pitch counts are sport-specific and require 

the use of accelerometers with adequate algorithms, or manual reporting by an observer.  Heart-

rate-based measures and sRPE provided data into the perceived intensity of an activity but do not 

provide context.  Additionally, sRPE measures require an observer to collect responses from 

each athlete at specific time intervals, making it more labor intensive.  We chose accelerometer-

derived “load” because it provides a measure that accounts for the volume of activity as well as 

intense movements.  Additionally, these devices require less manual labor in data collection than 

sRPE and other sport-specific measures.  Finally, the use of accelerometer-derived load 

permitted use data collected indoors where distances and speeds were not measurable due to the 

ceiling blocking the use of GPS satellites, which improved the scope of our research.  Given both 

teams were already using the same devices, it also provided us with an objective data collection 

tool. 

The wearable devices used by these teams provides numerous variables that could be of 

particular interest, such as acceleration counts at different intensities, change of direction 

measures, and contacts.  However, the objective of our study was to determine the relationship 

between previously reported measures.  Given our models determined low clinical utility of 

workload and workload ratios, it may be that the inclusion of these other variables in future 

research may improve these models.   

In conclusion, neither workload ratio calculation method nor dataset resulted in a model 

that was better fitting than another for the assessment of the association between workload, 

workload ratios, and non-contact injuries.  While these variables were associated with injury, the 
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models indicated relatively low probability of injury. Additionally, the negative association 

demonstrated by workload, and inverted-U association by workload ratios, refute the findings of 

previous research in college football(188, 189).   

 

Chapter 4: Multi-year analysis 
 

 The second major objective of this dissertation was to evaluate the association between 

workloads, workload ratios, and non-contact injury occurrence across the full calendar year of 

sport participation.  We were able to use nearly 3 years of data from the same Division 1 football 

team to compare these associations across the winter conditioning, spring practice, summer 

conditioning, pre-season practice, and in-season phases of sport participation.  We hypothesized 

that both workload ratio calculations would be significantly associated with increased non-

contact injury risk during each phase of the year, but that EWMA would possess greater 

association and model fit than ACWR.   

Our results did confirm the significant association with workload ratios and injury for 

each phase of the year, however, our hypothesis on the direction of the association was refuted.  

For each phase, increased workload was associated with decreased injury probability, and 

increased workload ratio demonstrated an inverted-U relationship.  Our results also did not 

support the EWMA calculation to be a superior method to ACWR.  Both EWMA and ACWR 

calculation methods yielded area under the curves for ROC of 0.83 and had non-significantly 

different areas for Precision-Recall (0.0110 vs 0.0185).  The Precision-Recall results 

demonstrated similar low precision and low recall to our results from Chapter 3.  Our findings 

contrast previous work demonstrating that workload and workload ratios were positively 

associated with non-contact injury, and give pause to the manipulation of these metrics as a 
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method to reduce injury occurrence(3, 16, 38, 39, 57, 68, 95, 110, 143, 184, 188-190, 195, 196, 

198, 203, 207, 217, 218, 223).  

 A major hurdle of our research was the sparseness of non-contact time-loss injuries.  The 

relatively low number of injuries compared to observations means that normally useful statistical 

tools such has frailty models and panel regressions would instead provide biased results for 

determining association to injury(134).  We attempted to overcome this hurdle by observing a 

multi-year dataset. However, this observation resulted in an unbalanced panel which, in turn, 

yields its own distinct issues and estimation restrictions.  In order to capture a sufficient number 

of injuries(226), future research should seek to build a database comprised of multiple teams.      

In addition to these hypotheses, the results from our study also highlight the need to 

monitor the full calendar year of sport participation. The winter conditioning, spring practice, 

and summer conditioning phases accounted for 39% of all non-contact injuries observed.  The 

IRRs of these phases were also greater than the in-season period.  As future research looks to 

reduce injury occurrences, these phases should not be left out of observation. 

 In conclusion, our study supports workload and workload ratio collection.  However, our 

contradictory findings demonstrate the need for further analysis and caution in using these 

metrics in isolation alone.  Further research should seek to expand upon the models developed in 

this study to include other measures that may be associated with injury such as strength, power, 

conditioning, age, etc.  These models should also consider a mechanistic framework that may 

connect the variables monitored to injury occurrence.  Without such frameworks, these models 

demonstrate only associations, like ice cream sales and shark attacks. 
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Chapter 5: CRP analysis 
 

The final objective of this dissertation was to use an injury framework to propose that 

systemic inflammation may be a mediator between higher workload ratios and non-contact injury 

occurrence.  Our first aim of this study was to measure salivary CRP levels weekly in college 

football players during the pre-season and in-season periods, and to compare the fluctuations in 

these levels with their prior activity.  We expected that there would be significant increases in 

CRP levels, because of increased activity, during the pre-season practice period.  However, our 

results did not support this hypothesis.  The one-way repeated measures ANOVA yielded no 

significant difference in CRP concentrations across time.  

The second aim of this study was to assess the relationship between weekly load, 

workload ratios, CRP levels, and non-contact injury.  Again, we expected that increased CRP 

levels would be found after high weekly loads and workload ratios; and that the increased CRP 

levels would be associated with greater non-contact injury risk.  Though weekly load 

demonstrated a fair correlation with CRP concentration, the panel regression indicated a non-

significant association.  Furthermore, neither ACWR nor EWMA calculations were correlated 

with CRP.  Ultimately our planned analyses were derailed by the occurrence of only 1 non-

contact time-loss injury in our sample.  The lack of injury occurrence was not due to a lack of 

high workload ratio values.  As a result, this study supports the findings from our previous 

discussions, as well as the recent literature(163, 216), which highlight the need to not rely 

exclusively on “high” workload ratios as the sole indicator of increased injury risk.      

Though these present findings do not currently support the causal link between increased 

activity, the resulting systemic inflammation, and subsequent non-contact injury, it is worth 

investigating further.  C-reactive protein is one of several acute-phase inflammatory proteins that 
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are upregulated when muscle damage occurs(40).  Other proinflammatory proteins include but 

are not limited to interleukin-1, interleukin-6, and tumor necrosis factor alpha.  While CRP has a 

long half-life (19 hours), which makes it a strong candidate for measuring over several days, it 

may be that other inflammatory proteins are better associated with non-contact injury risk.  

Another possibility is that systemic inflammation is an acute response which demonstrates 

chronic effects only under extreme scenarios beyond the scope of normal sport training and 

participation.  Therefore, more frequent measurements may be needed to elucidate the true 

relationship of these inflammatory proteins and injury. 

In conclusion, the findings of the relationship between workload, workload ratios, 

chronic inflammation, and non-contact injury mirrored our findings from Chapters 3 and 4.  

Further work is needed to find if systemic inflammation is a mediator between increased activity 

and injury, as well what the appropriate markers and time intervals between measurements 

should be.                       

 

Conclusions 
 

 This dissertation provides a more thorough report of the non-contact injury rates 

associated with collegiate football participation by observing participation across entire calendar 

years.  Our observations suggest that the previously unobserved winter conditioning, spring 

practice, and summer conditioning periods have at least as a high a non-contact time-loss injury 

rate as the in-season period of football participation and perhaps even greater.  Sprains and 

strains of the hip/thigh region were the most frequently observed injuries.  Given these findings, 

along with those of previous work, it seems that practitioners should invest time and resources 

into exploring ways to mitigate these injuries during the training cycle.  
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We also sought to provide a greater assessment of the current practice surrounding 

measuring workloads and calculating workload ratios, and the relationship of these metrics to 

non-contact injury occurrences by utilizing larger data sets, multiple teams, a potential mediating 

pathway, and modern statistical techniques.  Our work illuminates the activity differences 

between the pre-season practice period and every other phase of sport participation.  The high 

non-contact injury rates demonstrated during this period solidifies the need for further 

discussions around the rules and regulations governing sport participation during each phase of 

the year.   

Our work, however, also yielded contradictory findings for the association of workload 

and workload ratio models to non-contact time-loss injuries.  For starters, our assessment 

determined that the inclusion of  linear weekly load and  quadratic workload ratio covariates 

yielded best fitting models.  The choice for workload ratio calculation method, as well as the use 

of general or team-specific datasets, did not significantly improve the models.  Furthermore, 

these models demonstrated that workload was negatively associated with non-contact injury for 

each phase of training.  Workload ratios, in these models, also demonstrated an inverted-U 

relationship, contradicting previous research.  Previous research assessed the relationships 

between workloads and workload ratios with non-contact injury in isolation.  This can provide 

misleading conclusions because workload is an absolute measure and does not address the rate of 

change, and workload ratios are a relative measure which do not provide context to the amount 

of work being performed.  Our results suggest that the combination of these variables into a 

model accounts for a greater amount of unobserved variance and thus provides better 

interpretability.  While specific to each dataset and workload ratio calculation method used in the 

GEE models, in general, injury probability increased with respect to workload ratio until that 
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ratio value reach 1.0.  These findings contradict previous research which had previously deemed 

the workload ratio area between 0.8 and 1.3 the ideal for injury mitigation(116).  Future research 

should use large and balanced panels in order to utilize frailty models to further assess the 

associations between workload, workload ratios, and injuries.              

Lastly, in an effort to utilize an injury framework as the basis of quantifying workload, 

and to establish a mediating pathway between increased workloads and non-contact injury, we 

measured salivary C-reactive protein concentrations in a portion of a football team during the 

pre-season and in-season phases.  The correlation of weekly workload and C-reactive protein 

levels in our study ranged wildly based on the individual (r = -0.66 to +0.66).  In addition, 

observing only 1 time-loss non-contact injury limited the conclusions we were able to determine.  

It would be ideal to observe multiple markers of inflammation and muscle breakdown in many 

athletes across several football teams weekly, or multiple times per week, to thoroughly track the 

time-course changes of inflammatory responses in the body.  That information, coupled with a 

standardized injury cataloging system, would permit greater confidence in the conclusions 

drawn.  For now, it appears C-reactive protein levels are uncorrelated with weekly workloads.    

The results of this dissertation offer several important developments to the field of sport 

science.  First, we have provided the first report of non-contact injury rates for the winter 

conditioning, spring practice, and summer conditioning periods.  Combined, this period 

incapsulates 60-75% of the total football calendar year.  With this information, coaches and 

practitioners can begin to reflect on their current training and practice protocols and determine if 

changes need to be made for the health of their athletes.      
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Recommendations for future research 
 

 

From the findings of this dissertation, we have several recommendations for further research 

which are discussed below.  

 

1. Further research should seek to compile large datasets, comprised of multiple teams 

and spanning several full calendar years, in order to observe enough non-contact 

injuries to allow for complete statistical analysis to be performed.  The datasets we 

were able to utilize were far larger than previous research in American football.  

However, datasets with more occurrences of non-contact injuries would permit the 

use of certain statistical techniques, for example logistic regressions, which in turn 

could provide more meaningful and predictive modeling of injury risk.  

2. The sports medicine departments within collegiate football should seek to have 

agreed upon criteria for what is classified as sport participation, modified 

participation, and time-loss injury.  Though this dissertation provided initial injury 

risk ratios for the winter conditioning, spring practice, and summer conditioning 

phases not previously reported, and is a major strength of our dissertation, consensus 

on how injuries are diagnosed and what constitutes removal from participation has 

not been established.  These determinants of sport participation may also change 

based on the phase of training (winter conditioning vs in-season, etc.).  This limits the 

usefulness of larger, multi-team datasets to produce true relationships between 

potential variables and the occurrence of injury.    

3. Further work should be done to monitor the local and systemic inflammatory 

processes that occur as a result of sport training and participation, particularly after 
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periods of sustained inactivity and injury.  Our dissertation was able to measure C-

reactive protein in a small subgroup of athletes during a pre-season and in-season 

period.  Though we found no associations between activity and subsequent C-reactive 

protein levels, our observation period occurred after the athletes had been training for 

several weeks.  It may be that different markers and/or other time periods have a 

greater ability to demonstrate if inflammation occurs and if that inflammation is a 

mediator in non-contact injury occurrence. 

4. Though it makes sense conceptually that increasing activity too quickly predisposes 

both regular people and elite athletes to higher risks of injury, condensing data to a 

single acute:chronic ratio value may be the simplest model but not necessarily the 

best fitting model, regardless of calculation method.  Alternative models should be 

explored by future research to assess the relationship of a multitude of variables on 

subsequent injury.  These variables could include measures of strength, speed, 

recovery, diet, sleep, neuromuscular firing patterns, anthropometrics, and many 

others.   

5.   One important finding of this dissertation is the observation of large and sudden 

increases in weekly workload between the summer conditioning and pre-season 

practice phases.  Our data indicated an average 4-fold increase in activity when 

players begin pre-season practice.  This increase is due to the current rules governing 

activity in summer and activity in pre-season practice.  Summer conditioning is 

limited to 8 mandatory hours total per week and includes both weight training and 

conditioning.  The pre-season practice permits 4 hours per day to be divided between 

practice and weight training.  In addition, the summer period requires athletes be 
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given two days off per week, while the pre-season practice requires only one.  Given 

the pre-season period as routinely shown to have the largest IRRs, through our 

research and others(133, 138), further research warrants looking into the rules 

governing this transition and explore if activity levels contribute to a significant 

increased risk of injury across multiple teams and years.       
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