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ABSTRACT

VARIATIONAL BAYES DEEP NEURAL NETWORK: THEORY, METHODS AND
APPLICATIONS

By

Zihuan Liu

Bayesian neural networks (BNNs) have achieved state-of-the-art results in a wide range of tasks,

especially in high dimensional data analysis, including image recognition, biomedical diagnosis

and others. My thesis mainly focuses on high-dimensional data, including simulated data and brain

images of Alzheimer’s Disease. We develop variational Bayesian deep neural network (VBDNN)

and Bayesian compressed neural network (BCNN) and discuss the related statistical theory and

algorithmic implementations for predicting MCI-to-dementia conversion in multi-modal data from

ADNI.

The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical

research on Alzheimer’s disease (AD) and related dementias. This phenomenon also serves as a

valuable data source for quantitative methodological researchers developing new approaches for

classification. The development of VBDNN is motivated by an important biomedical engineering

application, namely, building predictive tools for the transition from MCI to dementia. The

predictors are multi-modal and may involve complex interactive relations. In Chapter 2, we

numerically compare performance accuracy of logistic regression (LR) with support vector machine

(SVM) in classifying MCI-to-dementia conversion. The results show that although SVM and other

ML techniques are capable of relatively accurate classification, similar or higher accuracy can

often be achieved by LR, mitigating SVM’s necessity or value for many clinical researchers.

Further, when faced with many potential features that could be used for classifying the transition,

clinical researchers are often unaware of the relative value of di�erent approaches for variable

selection. Other than algorithmic feature selection techniques, manually trimming the list of

potential predictor variables can also protect against over-fitting and also o�ers possible insight

into why selected features are important to the model. We demonstrate how similar performance



can be achieved using user-guided, clinically informed pre-selection versus algorithmic feature

selection techniques.

Besides LR and SVM, Bayesian deep neural network (BDNN) has quickly become the most

popular machine learning classifier for prediction and classification with ADNI data. However,

their Markov Chain Monte Carlo (MCMC) based implementation su�ers from high computational

cost, limiting this powerful technique in large-scale studies. Variational Bayes (VB) has emerged as

a competitive alternative to overcome some of these computational issues. Although the VB is pop-

ular in machine learning, neither the computational nor the statistical properties are well understood

for complex modeling such as neural networks. First, we model the VBDNN estimation method-

ology and characterize the prior distributions and the variational family for consistent Bayesian

estimation (in Chapter 3). The thesis compares and contrasts the true posterior’s consistency and

contraction rates for a deep neural network-based classification and the corresponding variational

posterior. Based on the complexity of the deep neural network (DNN), this thesis assesses the

loss in classification accuracy due to VB’s use and guidelines on the characterization of the prior

distributions and the variational family. The di�culty of optimization associated with variational

Bayes solution has been quantified as a function of the complexity of the DNN.

Chapter 4 proposes using a BCNN that takes care of the large ? small = problem by projecting

the feature space onto a smaller dimensional space using a random projection matrix. In particular,

for dimension reduction, we propose randomly compressed feature space instead of other popular

dimension reduction techniques. We adopt a model averaging approach to pool information across

multiple projections. As the main contribution, we propose the variation Bayes approach to

simultaneously estimate both model weights and model-specific parameters. By avoiding using

standard Monte Carlo Markov Chain and parallelizing across multiple compression, we reduce

both computation and computer storage capacity dramatically with minimum loss in prediction

accuracy. We provide theoretical and empirical justifications of our proposed methodology.
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CHAPTER 1

INTRODUCTION

Introduction

In this thesis, we develop variational Bayesian deep neural network (VBDNN) and Bayesian

compressed neural network (BCNN) and discuss the related statistical theory and algorithmic

implementations in the context of classification, such as classifying MCI-to-dementia conversion.

Chapter 1 reviews the background, research questions and development of Bayesian neural network

(BNN). Chapter 2 introduces the prediction of the transition from mild cognitive impairment

(MCI) to dementia for brain images of Alzheimer’s Disease using traditional machine learning

models (logistic regression and support vector machine). Finally, chapter 3 introduces the VBDNN

estimation methodology and the choice of the prior distributions and the variational family. In

particular, we discuss the statistical framework for neural networks based classification problem

and provide posterior consistency and classification consistency. Chapter 4 introduces a variational

Bayes neural network predictive model for addressing the curse of dimensionality (small = large ?)

by compressing the feature space using random projection matrices. Finally, chapter 5 introduces

Conclusions, Discussion, and Suggestions for Future Research.

1.1 MCI-to-dementia conversion

The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical

research on Alzheimer’s disease (AD) and related dementias. Alzheimer’s disease (AD) is a

progressive, age-related, neurodegenerative disease and the most common cause of dementia [147,

148, 67]. Behaviorally, Alzheimer’s dementia is commonly preceded by mild cognitive impairment

(MCI), a syndrome characterized by declines in memory and other cognitive domains that exceed

cognitive decrements associated with normal aging [148, 103]. However, the prodromal symptoms

of MCI are not prognostically deterministic: individuals with MCI tend to progress to diagnoses

1



of probable AD at a rate of 8%-15% per year, and many conversions are detectable within 3 years

of initial presentation [24, 44, 2]. Research e�orts to provide new insights into the incidence

of MCI-to-AD conversion have focused largely on clinically or biologically relevant features (i.e.,

neuroimaging markers, clinical exam data, neuropsychological test scores) and on di�erent methods

for statistical classification [145].

1.2 Bayesian Deep Neural Networks

Due to the universal approximation theory of stochastic functions and larger access to computational

power, Bayesian Deep Neural Networks (BDNNs) are fashionable in machine learning and statistics

for classification and prediction from big data. The BDNNs based prediction has several advantages

over standard parametric statistical models. They implicitly consider the interactions or dependence

among predictor variables and model the unknown functional relationship between the predictors

and responses. For example, we consider classifying Alzheimer’s disease status from brain imaging

an important biomedical problem. The image features are segmented into voxels or regions of

interest (ROI’s). Due to their physical adjacency and biological proximities, a simple parametric

model or semi-parametric models, such as logistic regression or generalized additive models may

not be appropriate. Besides the dependence (spatial) among the predictors, some network structures

might be in the feature space while modeling the brain images. The BDNNs can take into account

these data features without any explicit assumptions about their dependence structure. Further,

these studies often have additional features but in di�erent modes such as genetic and demographic

information, brings additional complexity while modeling dependence among the features. Thus,

machine learning-based approaches, such as deep neural networks, become useful in this type

of application. Bayesian neural networks (BDNNs) have been comprehensively studied by [7],

[95], [71], and many others. More recent developments which establish the e�cacy of BDNNs

can be found in [120], [93], [61], [80], [64] and the references therein. The estimation of the

posterior distribution is a key part of Bayesian inference and represents the information about the

uncertainties for both data and parameters. However, the exact analytical solution for the posterior

2



distribution is intractable as the number of parameters is very large and the functional form of a

neural network does not lend itself to exact integration (see [11]). Several approaches have been

proposed for solving posterior distribution of weights of BDNNs, based on both optimization-based

techniques such as variational inference (VI), and sampling-based approach, such as Markov Chain

Monte Carlo (MCMC).

1.3 Variational inference

Markov Chain Monte Carlo (MCMC) techniques are typically used to obtain sampling-based

estimates of the posterior distribution. Indeed, BDNNs with MCMC have not seen widespread

adoption due to computational cost in terms of both time and storage on a large dataset, [66, 94,

132, 139]. In contrast to MCMC, VI tends to converge faster, and it has been applied to many

popular Bayesian models, such as factorial models and topic models [79, 9, 8]. We want to take a

variational approximation approach for posterior estimation in the context of deep neural network

classification models. The basic idea of VI is that it first defines a family of variational distributions

and then minimizes the Kullback-Leibler (KL) divergence with respect to the variational family.

Many recent works have discussed the application of variational inference to Bayesian deep neural

networks e.g., [50], [11], [121]. Although there is a plethora of literature on variational inference for

neural networks, the theoretical properties of the variational posterior in BDNNs remain relatively

unexplored and this limits the use of this powerful computational tool beyond the machine learning

community.

Some of the previous works that focused on theoretical properties of variational posterior

include the frequentist consistency of variational inference in parametric models in presence of

latent variables (see [135]). Optimal risk bounds for mean-field variational Bayes for Gaussian

mixture (GM) and Latent Dirichlet allocation (LDA) models have been discussed in [99]. The work

of [142] proposed U-variational inference Bayes risk for GM and LDA models. The [149] discusses

the variational posterior contraction rates in Gaussian sequence models, infinite exponential families

and piece-wise constant models. The works of [105] and [122] study the posterior contraction rates
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for Bayesian sparse deep neural network models under spike and slab priors. Three more closely

related works which study variational posterior are: (1) [3] discusses the contraction rates of VB in

sparse BDNN models with spike and Gaussian slab priors and mean-field spike and Gaussian slab

variational family (2) [22] discusses the contraction rates of a tempered VB solution with spike

and Gaussian slab priors and mean-field spike and Gaussian slab variational family and (3) [6]

discusses consistency of VB for single-layer neural network models with Gaussian priors and mean

field Gaussian variational family. All these three works focus on a regression setting unlike our

classification set up, which in turn allows for the generalization of VBDNNs to generalized linear

models. Further, none of these works discuss computational details and the theoretical guidelines

of BDNN to achieve the desired level of accuracy.

The work of [6] does not establish contraction rates or deal with deep networks. The works

of both [22] and [3] establish contraction rates, however, their notion of convergence do not

agree with the classical definition of posterior contraction as established in Theorem 2.1 in [47]

wherein one needs to find the rates at which variational posterior gives probability to shrinking

Hellinger neighborhoods of the true density. The notion of contraction as used in [22] considers

the contraction rate of the quantity \/| | 50 � 5\ | |1 instead of Hellinger neighborhoods of the true

density. The work of [3] on the other hand considers the posterior expectation of the square of the

Hellinger distance instead of the posterior probability of shrinking Hellinger neighborhoods. Note,

in terms of the notion of consistency, our work is similar to those of [105] (Theorem 5.1) and [122]

(Theorem 2.1) but in the context of variational posterior instead of the true posterior.

The derivation of the posterior contraction rates in the classical sense provided us the additional

advantage to quantify the loss incurred due to the use of VI approach over MCMC approach on

the classification accuracy of the BDNN’s, a result which to the best of our knowledge, does not

exist in the literature. Additionally, our current work does not assume a sparsity constant B⇤ which

can control the overall complexity of the model. We instead start with a dense network and break

down the complexity of a deep neural network into three components (1) the number of layers (2)

the number of nodes and (3) the strength of interactions between active nodes. Then, we study
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the impact of each of these components on the consistency, contraction rates and classification

accuracy of the variational posterior based on BDNN. Finally, this thesis adopts the control variates

and adaptive learning rate approach as proposed in [107] to BDNNs. This allowed us to analyze the

stability of the numerical optimization used for obtaining a variational Bayes solution as a function

of the complexity of the model. We like to emphasize that, unlike the high-dimensional regression

model, the sparsity constant B⇤ is not well defined in DNN as the layers can be thought of a sequence

and there should not be any gap between layers.

1.4 Posterior Consistency

To evaluate the validity of a posterior in non-parametric models, one must establish its consistency

and contraction rates. Unlike any of the previous works, we establish the posterior consistency and

contraction rates of the variational posterior in the classical sense, see theorems 3.4.1 and 3.4.2. For

a simple consistency result, one needs to show that the posterior concentrates around the Hellinger

neighborhood of the true density function with overwhelming probability. A deep neural network

model for which the input feature space and number of layers is fixed enjoys consistency properties

irrespective of the true function under study as long as the total number parameters of grow at a

rate smaller than the sample size =. In this direction, we establish that posterior probability of an

Y- Hellinger neighborhood grows at the rate 1 � 24�=Y
2/2 in contrast to the slower 1 � a, a ! 0

as = ! 1 rate for the variational posterior. For establishing the rates of contraction, one needs to

show that the posterior concentrates around shrinking Hellinger neighborhoods of the true density

with overwhelming probability. To determine the rates of contraction, one needs assumptions on

the neural network solution that approximates the true function and the number of total parameters

being less than =. Treating the input feature space as the number of nodes in the 0th layer, we

found that the approximating neural network solution must satisfy three main properties (1) the

number of layers grows at a rate smaller than log = (2) the number of nodes in each layer are well

controlled (3) the number of connections between active nodes is well controlled. In this direction,

we establish that the true posterior probability of a shrinking Yn=- Hellinger neighborhood grows
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at the rate 1 � 24�=Y
2
n

2
=/2 in contrast to the slower 1 � a rate for the variational posterior.

For BDNN, we next establish the connection between posterior contraction rate and classifi-

cation accuracy. In this direction, we first show that the classification accuracy of a consistent

posterior asymptotically approaches the Bayes classifier’s classification accuracy. With no assump-

tions on the true function, we show that a deep neural network model for which the number of input

features and number of layers is fixed, we show that the convergence rates of the classification ac-

curacy are the same for both variational approximation and true posterior. However, under suitable

assumptions on the approximating neural network solution as described in the above paragraph,

we establish that the classification accuracy of variational posterior approaches to the classification

accuracy of the Bayes classification at the rate n2/3
=

in contrast to the higher rate of n= for the true

posterior. This interesting theoretical discovery quantifies the loss to the use of variational posterior

instead of using the true posterior density.

We provide prior elicitation for Bayesian estimation. Our detailed mathematical treatment

provides theoretical guidelines for selecting the prior distributions that might a�ect prediction

accuracy. For example, even one works with fairly vague priors, there is a limit for choosing the

hyper-parameter values to achieve a desired level of consistency. We also discuss how the choice

of variational distribution along with the prior distribution a�ects the posterior consistency.

Besides the theoretical validation, the challenges of implementing a VI based approach is two

folds: (1) the choice of the variational family (2) the optimization of the KL-divergence. For

the first issue, we show that a simple mean-field Gaussian variational family su�ces for posterior

consistency along with good numerical performance. For the second issue, the current paper

discusses the associated computational challenges of using a VI approach and provides statistically

principled guidelines to overcome the same. We first adapted the black-box variational inference

(BBVI) algorithm in [107] to the classification based on BDNN’s and used Monte Carlo estimates

of the gradient of the evidence lower bound (ELBO) for stochastic optimization of the variational

parameters. We then adapted the control variates approach as in [107] to allow for faster convergence

to the solution. We found that control variates o�ers a great deal of improvement in terms of time
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management when using one or two layers. With increase in the number of layers, it was observed

that using adaptive learning rates like Adagrad as in [107] can o�er huge advantage to allow for

stable optimization. We, however, propose the use of the RMSprop due to its superior performance

over Adagrad. Finally we discuss in detail the learning rate selection, number of Monte-Carlo

samples and other tuning controls in the context of variational Bayes implementation.

1.5 Bayesian Compressed Neural Networks

Bayesian neural networks (BNNs) have achieved state-of-the-art results in a wide range of tasks,

especially in high dimensional data analysis, including image recognition, biomedical diagnosis

and others. One of the major disadvantages in using neural networks and deep networks is that they

require a huge number of training data due to a large number of inherent parameters [140, 45]. For

example, high-dimensional neural networks have been widely applied with regularization, dropout

techniques or early stopping to prevent overfitting [118, 143]. Furthermore, most commonly used

dimensional reduction techniques include Lasso [17], Ridge [58], Elastic net [152], Sparse group

lasso [116], Bayesian Lasso [98], Horseshoe prior [16], principal component analysis [115]. Even

though the ;1 and ;2 norm can force the weights to become zero or small, they do not have the

regularizing e�ect of making the computed function simpler [70]. Additionally, all these methods

rely on the use of whole data, which severely increases the cost of both computation and memory

storage.

In this thesis, we propose the use of a BNN on a compressed feature space to take care of

the large ? small = problem by projecting the feature space onto a smaller dimensional space

using a random projection matrix. Random-projection (RP) is a powerful dimension reduction

technique which uses RP matrices to map data into low-dimensional spaces. The use of RP in high

dimensional statistics is motivated from the Johnson–Lindenstrauss Lemma [27] which states for

x1, · · · ,x= 2 R?, n 2 (0, 1) and 3 > 8 log =/n2, there exists a linear map 5 : R? ! R3 such that

(1 � n) | |G8 � G 9 | |22  | | 5 (x8) � 5 (x 9 ) | |22  (1 + n) | |G8 � G 9 | |22 for 8, 9 = 1, · · · , =. The properties of

the RPs and their applications to statistical problems were furthered explored in [33, 13], etc..
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To reduce the sensitivity to the choice of random matrices, one must pool information obtained

from multiple projections. In this thesis, we adopt a Bayesian model averaging approach for

combining information across multiple instances RP based neural networks. There are two main

challenges of implementing Bayesian modeling averaging (1) due to the convoluted structure of

the neural network likelihood, closed form expressions do not exist for the posterior distribution

under each model (2) posterior distribution of model weights is completely intractable and no

closed form solutions exist. Thereby, the implementation of standard Markov Chain Monte Carlo

(MCMC) is next to impossible. Further, the computation and storage cost associated with MCMC

implementation is humongous since each posterior model weight depends on the remaining models’

posterior model weight.

To address the challenges of MCMC implementation, we use variational inference (VI) [63, 9]

approach to provide an approximate solution for Bayesian model averaging (BMA) to allow for

combining of BNNs with multiple instances of compression on the feature space. There has been

a plethora of literature implementing variational inference in the neural networks [10]. However,

their implementation makes use of the entire feature space, thereby putting a great burden on

computational stability and memory storage. We address two main challenges in this thesis

(1) developing a variational Bayes (VB) solution for BNNs with compressed feature space (2)

providing a VB solution for doing BMA across multiple instances of RP. Further, we establish the

posterior contraction rates for the variational posterior for classification (the theory is extendable

to regression set up with minor modifications). In this direction, we provide characterization of the

prior, variational posterior and the RP matrix which guarantees the convergence of the variational

Bayes neural network (VBNN) under the compressed feature space to the true density of the

observations.

The main advantage of implementing a BMA approach is that it gives the posterior model

weights under each compression of feature space. The so obtained posterior model weights in turn

induce a probability distribution on the projected dimension of the feature space. The mode of

this probability distribution concentrates around the intrinsic dimensionality of the feature space.
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The BMA approach is then applied to a pool of RP matrices whose projected dimension lies in a

neighborhood of the intrinsic dimensionality to improve the prediction performance. Finally, we

study the numerical behavior of the proposed procedure in the light of simulation and real data

sets. To the best of our knowledge, no literature provides theoretical guarantees and computation

algorithms of VBNNs with compressed feature space.
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CHAPTER 2

A ROLE FOR PRIOR KNOWLEDGE IN STATISTICAL CLASSIFICATION OF THE
TRANSITION FROM MCI TO ALZHEIMER’S DISEASE

2.1 Introduction

The transition from mild cognitive impairment (MCI) to dementia is of great interest to clinical

research on Alzheimer’s disease (AD) and related dementias. This phenomenon also serves as

a valuable data source for quantitative methodological researchers developing new approaches

for classification. However, the growth of machine learning (ML) approaches for classification

may falsely lead many clinical researchers to underestimate the value of logistic regression (LR),

which often demonstrates classification accuracy equivalent or superior to other ML methods.

Further, when faced with many potential features that could be used for classifying the transition,

clinical researchers are often unaware of the relative value of di�erent approaches for variable

selection. Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the present

study investigated automated and theoretically-guided feature selection techniques in the context

of LR and support vector machine (SVM) classification methods for predicting conversion from

MCI to dementia. The present findings demonstrate how similar performance can be achieved

using user-guided, clinically informed pre-selection versus algorithmic feature selection techniques.

These results show that although SVM and other ML techniques are capable of relatively accurate

classification, similar or higher accuracy can often be achieved by LR, mitigating SVM’s necessity

or value for many clinical researchers.

2.2 Transition from MCI to dementia

Alzheimer’s disease (AD) is a progressive, age-related, neurodegenerative disease and the most

common cause of dementia [147, 148, 67]. Behaviorally, Alzheimer’s dementia is commonly

preceded by mild cognitive impairment (MCI), a syndrome characterized by declines in memory and
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other cognitive domains that exceed cognitive decrements associated with normal aging [148, 103].

However, the prodromal symptoms of MCI are not prognostically deterministic: individuals with

MCI tend to progress to diagnoses of probable AD at a rate of 8%-15% per year, and many

conversions are detectable within 3 years of initial presentation [24, 44, 2]. Research e�orts to

provide new insights into the incidence of MCI-to-AD conversion have focused largely on clinically

or biologically relevant features (i.e., neuroimaging markers, clinical exam data, neuropsychological

test scores) and on di�erent methods for statistical classification [145].

For clinical researchers, however, there may be a tendency to conflate more sophisticated,

novel analytic approaches and the value of multimodal information from neuroimaging and clinical

assessment. Moreover, whereas statisticians may inherently understand the comparability of di�er-

ent quantitative approaches, the novelty of both big data and data-driven approaches for studying

MCI-to-AD conversion may lead clinical researchers to assume that such data-driven methods are

inherently superior to more theoretically-grounded approaches. Thus, the value of using extant

findings and domain expertise to help guide and constrain the application of newer data-driven ap-

proaches capable of capitalizing on emergent big data may be a particularly important consideration

for clinical researchers.

Statistical classification in clinical research has traditionally utilized binary logistic regres-

sion (LR). However, key attributes of modern clinical and neuroimaging data, including high

dimensionality and the presence of ground truth estimates of pathology and diagnosis provide

new opportunities for quantitative research. This has led to a substantial expansion in the use of

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu) for

quantitative research and methodological development, particularly by researchers utilizing and

developing prediction and classification methods in machine learning (ML). Besides LR, support

vector machine (SVM) has quickly become the most common type of ML classifier for diagnostic

prediction and classification with ADNI data. In general, LR works well when the data is linearly

separable and the number of data is greater than the number of features. Moreover, SVM and LR

have similar misclassification rates (MCRs) when used to diagnose malignant tumors from imaging
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data [19, 30].

Indeed, before the rapid expansion of ML research and applied work over the past decade, many

clinical researchers and those outside of engineering and mathematically intensive disciplines had

little exposure to classification approaches other than LR. Despite its growing popularity, the relative

benefits of SVM or other forms of ML [101, 87] over LR for such classification are not always

apparent. Although this may be of little surprise to statisticians and quantitative researchers, such

perspectives are often lost on clinical researchers, whose implicit beliefs in the superiority of ML

is driven by the volume of publications, rather than through training or empirical demonstration.

Most e�orts to develop new classification methods for prediction of MCI-to-AD conversion

are well suited to integrate measures from multiple sources such as demographics, clinical rating

scores, neuropsychological testing, neuroimaging, genetic markers, etc. However, identifying

which combination of features most accurately classifies conversion from MCI to AD is a key

challenge for ADNI, and may vary by method. The !1 norm regularization method (i.e., !1) is a

highly used feature selection technique for LR and SVM. !1 is popular for addressing circumstances

in which the number of features is quite large or even larger than the sample size. Despite some

risk of abusing the statistical terminology, the problem is often generically referred to as the

“small n, large p" or high dimensional problem. The !1 technique has dual impacts, namely

the algorithm can (i) optimize a higher number of parameters in comparison to sample size,

and (ii) reduce the e�ective number of parameters (i.e., performing variable selection). This

powerful technique has been implemented in ADNI data with LR [144]. Furthermore, !1 and

other algorithmic feature selection methods used in ML su�er from one key limitation: they are

agnostic to theoretical considerations, and as such, they cannot interpret why selected features

are meaningful and important to the model. When sampling from a large pool of features, the

algorithmic approaches fail to consider prior knowledge of features and their associations with the

relevant systems in variable selection. Therefore, domain expertise and prior knowledge may a�ord

additive or di�erential value for choosing features and interpreting model results over algorithmic

feature selection methods alone.
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However, most real-world problems occur in the context of additional information about each

potential feature and its conceptual relationship with the phenomenon being classified. Other than

using !1 feature selection, manually trimming the list of potential predictor variables can also

protect against over-fitting, and also o�ers potential insight into why selected features are important

to the model. When guided by prior knowledge, user-guided or ‘manual’ feature selection may be a

valuable additional step to help minimize potentially spurious e�ects. This perspective is frequently

lost on applied researchers, as most commonly used variable selection algorithms are context-free

– that is, they only look at relationships within the data set, and cannot factor in the wider meanings

of variables. Furthermore, this also means that automated algorithms may identify relationships

among a large number of predictor variables that are spurious and are unlikely to generalize outside

the data set. Although there are a vast number of potential neuroimaging features in ADNI data,

the present study focused only on regional brain volumes segmented from structural magnetic

resonance imaging (MRI) data, the most commonly used neuroimaging datatype for classifying

MCI-to-dementia conversion. In contrast to prior studies that used a limited set of volumetric brain

features, the present study utilized data generated by modern multi-atlas segmentation methods

and analyses included up to 259 features - anatomically specific gray and white matter volumes.

However, the large pool of extant findings from studies evaluating regional brain MRI volumetry

in prediction and classification of MCI-to-dementia conversion using both limited and expansive

feature sets also provides a valuable set of priors for relevant brain regions [18, 43, 123, 91, 42, 108].

Thus, applied researchers are often left with the conundrum of more confirmatory approaches that

use few regions in classification or more exploratory methods in which prior findings have little

value.

The present study addressed two questions regarding commonly-used classification approaches

for predicting MCI-to-dementia conversion in multi-modal data from ADNI. First, we compared

performance accuracy of binary LR with SVM in classifying MCI-to-dementia conversion. Second,

we asked if applying prior knowledge in feature selection outperforms algorithmic variable selection

alone. We hypothesized that 1) LR would perform comparably to SVM, and 2) user-guided
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variable selection would outperform algorithmic variable selection alone. This work is intended to

demonstrate to clinical researchers the benefit of using ML in an informed fashion, rather than as a

‘black box’ that obscures clear interpretation. Moreover, we wish to emphasize that this study is not

meant to highlight a novel innovation in quantitative methods, but rather to provide an important

example to applied researchers regarding the comparable value of ML methods and importance of

domain expertise in classification with ADNI data.

2.3 Materials and Data

The data used in the preparation of this study were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI). ADNI is an ongoing joint public-private e�ort to utilize neuroimaging,

other biological markers, and clinical and neuropsychological assessment to measure the incidence

and progression of MCI to early dementia. Determination of sensitive and specific markers of

preclinical AD and MCI is intended to aid researchers and clinicians to develop new treatments

and monitor their e�ectiveness, as well as reduce the time and cost of clinical trials. Data in the

present study came from all sites across the U.S and Canada. All ADNI study participants included

in the present analyses were between 55 and 90 years old, spoke English or Spanish as their native

language, and had a study partner who provided an independent assessment of functioning.

This study used a subset of the 819 participants from ADNI-1 diagnosed with MCI at baseline

and for whom the data from demographic, clinical cognitive assessments, APOE4 genotyping,

and MRI measurements were also available. To evaluate di�erences in classification performance

due to participant inclusion and drop out, we subdivided the sample into two overlapping groups.

After applying other criteria for inclusion, Group One included all patients whose follow-up period

was at least 36 months (n = 265); Group Two consisted of all patients with follow-up assessments

at 24 months (n = 308). Although the ADNI study protocol includes additional follow-up visits

at 6-month intervals, the present study only evaluated baseline data for features (i.e., clinical,

neuropsychological, brain volumetric) in classification analyses. In addition, identification of stable

vs. converting clinical outcomes only considered longer-term outcomes based on assessments at 2
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and 3 years after baseline. The final samples included 265 and 308 study participants in Groups

One and Two, respectively, who met criteria for inclusion. Both Groups included participants who

were stable in their diagnosis (MCI-S) and those who converted to a diagnosis of dementia over

the 2 or 3 years (MCI-C). Table 2.1 shows the participant characteristics. Diagnostic criteria for

MCI included an MMSE score at baseline between 24 and 30, a CDR score of 0.5, and a subjective

memory complaint, in addition to objective memory loss measured by education-adjusted scores

on the Logical Memory II subscale of the Wechsler Memory Scale, generally preserved activities

of daily living and no dementia. The diagnostic criteria for dementia were an MMSE score between

20 and 26, and a CDR score between 0.5 and 1.0. The clinical status of each participant diagnosed

with MCI was re-assessed at each follow-up visit and updated to reflect one of several outcomes

(e.g., MCI or dementia subtypes). The MCI-C and MCI-S group designations were based on this

follow-up clinical diagnosis and marked as either 1 for MCI-C or 0 for MCI-S in classification

study.

Table 2.1: Sample Sizes by Timing and Diagnosis: Group One and Two

Group Time # MCI-S (y=0) # MCI-C (y=1) # Total patients
One 36 months 101 164 265
Two 24 months 122 186 308

Table shows the number of MCI-C, MCI-S and total subjects in Group One and Two. The number of MCI-C
patients is higher than MCI-S patients in both groups.

2.3.1 Data Used in Classification

Evaluation of extant reports of common predictors of conversion from MCI to dementia focused on

dimensions of neuropsychological test performance, clinical assessment, genetic data, and regional

brain volumes. In the present study, we first divided these variables into two sets of features, with

all non-brain volumetric variables in one set and all variables representing regional brain volumes

in a second set. In addition, we created a third set of features from the volumetry feature set that

only included 26 of the 259 brain volumes. Henceforth, we refer to models that only include one

15



of these three feature sets as ’single-modality,’ whereas models that combine brain and non-brain

feature sets are referred to as ’multi-modal.’

(a) MMSE scores in MCI-C and MCI-S groups (b) Learning in MCI-C and MCI-S groups

Figure 2.1: Comparison of distributions for baseline predictor variables between MCI-S and MCI-
C groups. (a) The mean MMSE score in MCI-S is higher than in MCI-C. (b) Mean Learning scores
of MCI-C and MCI-S groups are 2.5 and 5.

2.3.2 Clinical Cognitive Assessment and Genetic data

We considered a total of 19 clinical features as potential predictors of MCI-to-AD progression

in our classification analyses. These included the following assessment scores: the Mini Mental

State Examination (MMSE), Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer’s

Disease Assessment Scale-cognitive sub-scale (ADAS-cog), Functional Activities Questionnaire

(FAQ) measures of activities of daily living, Trail Making Test-B (TRABSCOR), the immediate

and delayed recall components of the Rey Auditory Verbal Learning Test (RAVLT), the Digit-

Symbol Coding test (DIGT) and the Digit Symbol Substitution Test from the Preclinical Alzheimer

Cognitive Composite (mPACCdigit). We also considered genotype for carriers of the epsilon-4

allele of the apolipoprotein E (APOE) gene [145] as a genetic predictor in this study. Table

2.2 summarizes all 19 clinical, demographic and genetic features used in this study. Preliminary

comparison of six clinical and genetic predictors by MCI-C and MCI-S subgroups showed five

of them (APOE4, ADAS4, CDR, MMSE and RAVLT.learning) significantly di�er between the
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(a) Sex distributions (b) APOE4 genotype distributions

(c) CDR distributions (d) ADAS distributions

Figure 2.2: Comparisons between MCI-S and MCI-C groups on baseline predictor variables. The
y-axis of panels (a) through (d) represents the number of participants developing AD. Blue and red
bars represent non-converters and converters, respectively. Panel (a) shows a greater number of
converters than non-converters for both men and women. Panel (b) shows more than half of MCI-C
subjects are APOE4 carriers and approximately 70% MCI-S subjects are non-APOE4 carriers.
Panel (c) shows MCI-S subjects have the relatively lower CDR score and MCI-C subjects have
higher CDR score. The number of people in MCI-C group has a downward trend as CDR score
increases. Panel (d) shows MCI-C subjects have the relatively higher ADASQ4 score. The average
of ASADQ4 score of MCI-S and MCI-C subjects are approximately 5 and 8, respectively.

groups, whereas one (SEX) does not. Fig 2.1 and 2.2 illustrate the distribution of these predictors

for both groups. Overall, in comparison to MCI-S participants, those in the MCI-C group were more

cognitively and functionally impaired at baseline, exhibited greater verbal memory impairments,

and included a greater proportion of APOE4 carriers.
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Table 2.2: Clinical Features and Cognitive Assessment Score of Group One

Characteristics MCI-S MCI-C Test statistic P-value
Age(years) 74.34 ± 7.78 74.84 ± 6.83 -0.528 > 0.50

Education(years) 15.57 ± 2.94 15.73 ± 2.91 -0.527 > 0.51

Sex, % female 33.67% 34.14% 0 11

APOE4 carriers % 34.65% 62.19% 17.900 < 0.0010

CDRSB 1.23 ± 0.61 1.72 ± 0.92 -5.237 < 0.0010

MMSE score 27.61 ± 1.74 26.82 ± 1.71 3.645 < 0.0010

ADAS11 8.89 ± 3.79 12.29 ± 4.16 -6.823 < 0.0010

ADAS13 14.48 ± 5.50 20.01 ± 5.79 -7.795 < 0.0010

ASASQ4 4.76 ± 2.19 6.77 ± 2.21 -7.339 < 0.0010

RAVLT.immediate 36.21 ± 10.10 29.10 ± 7.98 6.021 < 0.0010

RAVLT.learning 4.19 ± 2.47 2.91 ± 2.26 4.231 < 0.0010

RAVLT.forgetting 4.31 ± 2.59 4.47 ± 2.15 -1.501 0.1350

RAVLT.perc.forgeting 51.55 ± 31.04 72.85 ± 30.45 -5.464 < 0.0010

LEDLTOTAL 4.96 ± 2.36 3.41 ± 2.66 4.931 < 0.0010

DIGTSCOR 40.75 ± 11.09 36.72 ± 10.96 2.883 < 0.0050

TRABSCOR 109.43 ± 62.94 132.09 ± 71.36 -2.704 0.0070

FAQ 1.50 ± 2.99 4.96 ± 4.79 -7.243 < 0.0010

mPACCdigit �5.376 ± 2.96 �8.06 ± 2.96 7.174 < 0.0010

mPACCtrailsB �5.47 ± 3.06 �8.22 ± 2.98 7.174 < 0.0010

Table only for Group One where has 265 patients and 36 months follow-up time. Values are shown as
mean ± standard deviation or percentage. Test statistics and P-values for di�erences between MCI-S and
MCI-C are based on (a) t-test or (b) chi- square test. MCI-S = non-progressive MCI; MCI-P = progressive
MCI; APOE = apolipoprotein E; MMSE = Mini-Mental State Examination. RAVLT = The Rey Auditory
Verbal Learning Test (immediate: sum of 5 trails; learning: trial 5-trial 1; Forgetting: trial 5-delayed;
perc.forgetting: Precent forgetting); DIGT = The Digit- Symbol Coding test; TRAB = Trail Making tests;
CDRSB = Clinical Dementia Rating Scaled Response; FAQ = Activities of Daily living Score; ADAS =
Alzheimer’s Disease Assessment Scale–Cognitive sub- scale; mPACCdigit = the Digit Symbol Substitution
Test from the Preclinical Alzheimer Cognitive Composite;
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2.3.3 MRI data

Structural MRI data were collected according to the ADNI acquisition protocol using T1-weighted

scans (GradWarp, B1 Correction, N3, Scaled) [36]. These data included baseline structural MRI

scans of 840 ADNI participants, including 230 diagnosed as cognitively normal, 200 with diagnoses

of dementia, and 410 diagnosed with MCI. Processing for ROI-based volumetric data used in the

present study included brain extraction [34] and a multi-atlas, consensus-based label fusion scheme

for anatomical parcellation [35] to generate template-based ROIs deformed to individual subject

space. MRI scans were automatically segmented into 145 anatomic regions of interest (ROIs)

spanning the entire brain. An additional 114 derived ROIs were calculated by combining single

ROIs within a tree hierarchy, to obtain volumetric measurements from larger structures [36]. In

total, 259 ROIs were measured and used as potential predictors of MCI-to-dementia progression in

this study.

One of the goals of this study is to investigate if manually selecting predictors improves a model’s

performance. Based on the extant literature [68], we manually selected 26 out of 259 features as

theoretically significant predictors of MCI to dementia progression (Table 2.3) [18, 43, 123, 91,

42, 108]. While many brain regions have been reported as showing some relationship to MCI-

to-dementia progression, prior reports and reviews clearly implicate hippocampal and entorhinal

cortical volumes as markers of such conversion. In addition, we manually selected additional

regions based on their common occurrence across reports, including cingulate gyrus, precuneus,

amygdala, inferior frontal gyrus, superior parietal lobule, and lobar white matter volumes.

2.4 Method and Algorithm

In the following section, we utilize binary LR and SVM classification techniques to investigate

which approach yields superior discrimination accuracy in the context of ADNI data. Prior

comparisons of logistic regression and SVM have reported that SVM requires fewer variables than

logistic regression to achieve an equivalent level of misclassification rate (MCR) [131, 30]. These

also report SVM performs better than LR with microarray expression data [30]. Furthermore,
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Table 2.3: Pre-selected MRI Features of Group One

Characteristics MCI-S MCI-C Test statistic P-value
HippoR 3684 ± 438 3366 ± 437 5.735 < 0.001
HippoL 3414 ± 418 3105 ± 388 5.994 < 0.001
flWMR 96720 ± 6218 96976 ± 5585 -0.338 0.73
flWML 93671 ± 5836 94238 ± 5160 -0.802 0.42
plWMR 47197 ± 3415 47141 ± 3098 0.135 0.89
plWML 50149 ± 3714 50038 ± 3467 0.242 0.81
tlWMR 56076 ± 3252 55934 ± 2931 0.359 0.72
tlWML 55412 ± 3396 55468 ± 3023 -0.136 0.89
ACgCR 3167 ± 756 3128 ± 641 0.438 0.66
ACgCL 4104 ± 787 4075 ± 689 0.312 0.76
EntR 2189 ± 365 1983 ± 373 4.412 < 0.001
EntL 2050 ± 399 1844 ± 356 4.240 < 0.001

MCgCR 4176 ± 547 4200 ± 541 -0.341 0.73
MCgCL 3988 ± 493 4002 ± 559 -0.213 0.83
MFCR 1581 ± 342 1505 ± 524 1.805 0.07
MFCL 1566 ± 285 1548 ± 291 0.487 0.62

OpIFGR 2575 ± 608 2425 ± 546 2.021 0.04
OpIFGL 2465 ± 550 2361 ± 579 1.466 0.14
OrIFGR 1252 ± 315 1196 ± 362 1.322 0.18
OrIFGL 1514 ± 335 1398 ± 356 2.658 < 0.001
PCgCR 3679 ± 466 3528 ± 415 2.657 < 0.001
PCgCL 3991 ± 442 3789 ± 424 3.676 < 0.001
PCuR 10129 ± 1193 9862 ± 1313 1.701 0.09
PCuL 10005 ± 1263 9759 ± 1299 1.522 0.13
SPLR 8867 ± 1140 8693 ± 1219 1.180 0.02
SPLL 8880 ± 1192 8662 ± 1313 1.390 0.17

Values are shown as mean ± standard deviation or percentage. Test statistics and P-values for di�erences
between MCI-C and MCI-S are based on t-test. MCI-S = non-progressive MCI; MCI-C = progressive MCI.
HippoR = Right Hippocampus; HippoL = Left Hippocampus; flWMR = frontal lobe WM right; flWML
= frontal lobe WM left; plWMR = parietal lobe WM right; plWML = parietal lobe WM left; tlWMR =
temporal lobe WM right; tlWML = temporal lobe WM left; ACgCR=Right ACgG anterior cingulate gyrus;
ACgCL=Left ACgG anterior cingulate gyrus; EntR = Right Ent entorhinal area; EntL = Left Ent entorhinal
area; MCgCR = Right MCgG middle cingulate gyrus; MCgCL = Left MCgG middle cingulate gyrus; MFCR
= Right MFC medial frontal cortex; MFCL = Left MFC medial frontal cortex; OpIFGR = Right OpIFG
opercular part of the inferior frontal gyrus; OpIFGL = Left OpIFG opercular part of the inferior frontal
gyrus; OrIFGR = Right OrIFG orbital part of the inferior frontal gyrus; OrIFGL = Left OrIFG orbital part of
the inferior frontal gyrus; PCgCR = Right PCgG posterior cingulate gyrus; PCgCL = Left PCgG posterior
cingulate gyrus; PCuR = Right PCu precuneus; PCuL = Left PCu precuneus; SPLR = Right SPL superior
parietal lobule; SPLL = Left SPL superior parietal lobule.

SVMs have a nice dual form, giving sparse solutions when using the kernel trick. In addition, both

methods involve minimizing some cost associated with the misclassification based on likelihood

ratio for a probabilistic model. Therefore, LR and SVM share common roots in statistical pattern

20



recognition, which we utilize in the comparison of their performance on multi-modal ADNI data.

2.4.1 Logistic Regression

Logistic regression (LR) is the most commonly used machine learning approach for binary classifi-

cation. In the past decade this has been applied to task of MCI-to-dementia conversion [29, 144, 82].

In the present study, we consider a supervised learning task where we are given M training examples

{⇡ = (G8, H8), 8 = 1, ..."}. Here each G8 2 <# is # dimensional feature vectors, and H8 2 {0, 1}

is a class label. The goal of LR is to model the probability ? of a random variable y being 1 or 0

given the experimental data x. The logistic regression model is defined as follows:

;>68C ? = ;>6
?

1 � ? (2.1)

Logit, the natural logarithm of the odds, is the key concept that underlies logistic regression. The

equation for LR is:

;>6

%(H8 = 1|G8;�)
1 � %(H8 = 1|G8;�)

=
#’
9=1

� jxi j (2.2)

where � = (V1, ...V# )) are the parameters or weights of the logistic regression model, xi j =

(G81, ...G8# ), 8 = 1, ..." . Also, %(H8 = 1|G8,�) is the probability that 8C⌘ MCI patient will develop

dementia and %(H8 = 0|G8,�) is the probability that 8C⌘ MCI patient will not develop dementia.

Denote %(H8 = 1|G8;�) = ⌘(G8), then

⌘(G8) =
1

1 + 4G?(Õ#

9=1 ��jG8 9 )
(2.3)

LR is usually trained by minimizing an error function; an appropriate choice of such a function for

binary classification problems is the cross-entropy error:

48 (�) = �H8;>6(⌘(G8)) � (1 � H8);>6(1 � ⌘(G8))) (2.4)

The total cost over the data {⇡ = (G8, H8), 8 = 1, ..."} is:

� (�) = � 1
"

[
"’
8=1

H8;>6(⌘(G8)) � (1 � H8);>6(1 � ⌘(G8))] (2.5)
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Consider the problem of finding the maximum likelihood estimate (MLE) of the parameters � for

the unregularized logistic regression model. To find the optimized weights �, the total cost needs

to be minimized. The optimization function can be written:

�>?C8<0; = <8=� � 1
"

[
"’
8=1

H8;>6(⌘(G8)) � (1 � H8);>6(1 � ⌘(G8))] (2.6)

Solving Eq. (2.6) yields the optimal weights of �. However, the model-building challenge is

to abstract the underlying distribution from the particular instance D of samples because of the

relatively small sample size, as compared to the number of features. The problem of replicating the

data set instead of identifying the underlying distribution is known as overfitting [37]. To avoid

the overfitting problem, it is often necessary to apply a dimension reduction technique. !1 and !2

norm are widely used to avoid overfitting, especially when there is a only small number of training

examples, or when there is a larger number of features to be learned. !1 norm or ;0BB> is also often

used for feature selection, and has been shown to generalize well in the presence of many irrelevant

features [76, 109]. !1 regularization is implemented by adding !1 norm to the cost function; the

cost function and the optimization function were based on the following:

� (�) = � 1
"

[
"’
8=1

H8;>6(⌘(G8)) � (1 � H8);>6(1 � ⌘(G8))] + _ |� | (2.7)

and

�>?C8<0; = <8=�{�
1
"

[
"’
8=1

H8;>6(⌘(G8)) � (1 � H8);>6(1 � ⌘(G8))] + _ |� |} (2.8)

where _ is positive tuning parameter. This Eq. (2.8) is refereed to as !1 regularized logistic

regression.

2.4.2 Support Vector machine

Support Vector Machine (SVM) is another classification and regression method that can handle

high-dimensional feature vectors. Algorithmically, SVMs build optimal boundaries between data

sets by solving a constrained quadratic optimization problem [23, 112, 129, 128, 127]. The number

of studies applying SVM to evaluate classification of conversion from MCI to dementia has grown

over the past decade [147, 148, 24, 145, 56, 68, 31, 59, 28, 136].
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We briefly review basic support vector machines with linear kernal (SVM-linear) for classifi-

cation problems: Let �) ⌘(G) + V0 = 0 denote an equidistant hyperplane (decision surface) to the

closest point of each class on the new space. The goal of SVMs is to find � and V0 such that

|�) ⌘(G) + V0 | = 1 for all points closer to the hyperplane. In the following classifier construction,

one assumes that:

�) ⌘(G8) + V0 =

8>><
>>:

� 1 8 5 H8 = 1

 �1 8 5 H8 = 0
(2.9)

such that the distance from the closest point of each class to the hyperplane is 1/| |� | | and the

distance between the two groups is 2/| |� | |. To maximize the margin, the SVM requires the solution

of the following optimization primal problem [151]:

<8=�,�0

"’
8=1

{1 � H8 [V0 +
#’
9=1

V
)

9
⌘ 9 (G8 9 )]} (2.10)

where ⌘ 9 is the kernel function which is a linear function for SVM-linear. Specifically we choose,

⌘ 9 (G 9 ) = G 9 for 9-th covariate.

To make the algorithm work for highly correlated features and improve the fitted model’s

prediction accuracy, we reformulate our optimization by adding !1-norm of V, i.e. the ;0BB>

penalty as follows:

<8=�,�0

"’
8=1

{1 � H8 [V0 +
#’
9=1

V
)

9
⌘ 9 (G8 9 )]} + _ | |V | |1 (2.11)

where _ is the tuning parameter that controls the trade-o� between loss and penalty. The lasso

penalty shrinks the fitted coe�cients V towards zero, and hence benefits from the reduction in fitted

coe�cients’ variance.

2.4.3 Experimental Design

We built four di�erent classifiers, each designed to classify individual ADNI participants as be-

longing to either the MCI-C group or the MCI-S group: Classifier 1 is logistic regression (C-LR);
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Classifier 2 is logistic regression with !1 norm (C-LR-1); Classifier 3 is support vector machine (C-

SVM), and Classifier 4 is SVM with !1 norm (C-SVM-1). To test the classifiers’ performance, we

constructed five di�erent data sources (Table 2.4). The first three single-modality data sets included

clinical cognitive assessment scores and APOE4 status (CCA), all MRI volumes (ROI-NP), and

MRI volumes with pre-selection (ROI-P), respectively. Two additional multi-modal data sets were

constructed by combining the CCA data separately with ROI-NP and ROI-P data sets (i.e., brain

volumes with and without pre-selection). Furthermore, it is interesting to note that the number of

MCI-S subjects is 101 (38%) in the Group One and 122 (39%) in Group Two, which makes the

data rather imbalanced. Consequently, to precisely report the results obtained from the models,

the present study also assessed additional model performance parameters, including AUC score,

sensitivity and specificity (accuracy coe�cient is unreliable for imbalanced data). The prediction

procedure consisted of three processing stages for Group One (Time=36 months) and Group Two

(Time=24 months): 1) Split data as training, validation, testing set; 2) Train classifiers using train-

ing set, tune hyper-parameter using the validation set, and assess classifiers using testing set, then

train classifiers again using !1 norm on the same training set; 3) Report the testing accuracy, AUC

score, sensitivity and specificity of each classifier on single-modality data. Specifically, the first

stage used 80% of the sample as a training set while the remaining 20% of the data constituted the

testing set. In the second stage, the optimal subsets of features of each data source are determined

and chosen following application of !1 norm. We then list the top 10 features of each data set for

each of the models. In the last stage, we report AUC score, sensitivity (percent of MCI-C subjects

correctly classified), and specificity (percent of MCI-S subjects correctly classified) as measures of

classification accuracy. To protect against over-fitting and to avoid optimistically-biased estimates

of model performance, we report 20 measures of predictive performance for each classifier (1-4); for

these di�erent partitions of the data, we report the mean and standard deviation of testing accuracy,

AUC score, sensitivity, and specificity (Tables 6 & 7). We also investigate the relationship between

the number of features and model performance. Finally, we compare the performance of LR with

SVM based on their ability to handle the problem with a large number of covariates. Figure 2.3
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illustrates the diagram of the prediction framework.

Table 2.4: Modalities

Data sources # features

Single-modality

Clinical Cognitive Assessments score and APOE4 data (CCA) 19

ROI with no pre-selection data (ROI-NP) 259

ROI with pre-selection data (ROI-P) 26

Multi-modal

CCA and ROI with no pre-selection data (CCAR-NP) 278

CCA and ROI with pre-selection data (CCAR-P) 45

2.5 Results and Analysis

Cross-validation and choice of _

We adopted 10-fold cross-validation to tune the hyper-parameters for each model, which included

dividing the data into separate sets for training and validation. The ratio of case in training and

validation was 8:2. Here, the training set was used to train the model and the validation set was used

to select the hyper-parameters. The results of a 10-fold cross-validation run are summarized with

the mean and standard deviation of the model skill scores based on testing data. Cross-validation

was also applied to tune the hyper-parameters; _ is used to denote the hyper-parameters for both

LR-!1 and SVM-!1. To select the optimized _, we tried di�erent values of the _; results reported

here include values of _ = 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and applied them to the

Eq (2.8) and (2.11). Next, we selected the _ value based on the best cross-validation score and used

the selected _with Classifiers 2 and 4 to select optimal features. For brevity, the model performance

estimates are reported in Tables 2.6 and 2.7 for each di�erent modalities, and the top 10 selected

features are reported in Table 2.5. For example, the best _ for ROI-NP-!1 was 0.01 and the top

3 optimal features selected by LR were left amygdala, right accumbens area, and right middle
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Figure 2.3: Flowchart of the LR and SVM method A) ROI-P: ROI level data with Pre-selection; B)
ROI-NP: ROI level data with No Pre-selection; C) CCAR: Clinical, Cognitive assessments score,
APOE4 and ROI level data.
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temporal gyrus. After hyper-parameters were selected, we adopted a 10-fold cross-validation again

to avoid optimistically-biased estimates of model performance. In each iteration, 212 of the 265

participants are selected by simple random sampling as training cases and the remaining 53 were

used as test cases. The approximate 4:1 ratio of training to test cases is, of course, arbitrary.

Table 2.5: Top 10 features of Group One obtained by !1 regularization

Source LR-L1 (Classifier 2) SVM-L1 (Classifier 4)
Data CCA ROI-NP CCAR-NP CCA ROI-NP CCAR-NP

1 FAQ AmyL FAQ FAQ AmyL FAQ
2 mPACCtrailsB AccmR AmyL Yrs. Educ. AccmR AmyL
3 APOE4 MTGR ADASQ4 APOE4 AOrGL AccmR
4 ADASQ4 HippoL HippoL mPACCdigit PCgGL AOrGL
5 Learning AOrGL MTGR ADASQ4 HippoL PTR
6 Yrs. Educ. PrGR APOE4 Learning PrGR AnGR
7 Forgetting PCgGL AOrGL ADAS11 POrGR APOE4
8 mPACCdigit InfR Learning mPACCtrailsB PTR PCgGL
9 ADAS13 POR mPACCtrailsB DELTOTAL LOrGL Learning
10 ADAS11 MOGL mPACCdigit Forgetting MOrGL POrGR

AccmR = Right Accumbens Area; AmyL = Left Amygdala; HippoL = Left Hippocampus; InfR = Right Inf
Lat Vent; AOrGL = Left anterior orbital gyrus; AnGR = Left angular gyrus; LOrGL = Left lateral orbital
gyrus; MOGL = Left middle occipital gyrus; MOrGL = Left medial orbital gyrus; MTGR = Right middle
temporal gyrus; PCgGL = Left posterior cingulate gyrus; POR = Right parietal operculum; POrGR = Right
posterior orbital gyrus; PrGR = Right precentral gyrus; PTR = Right planum temporale

2.5.1 Comparison with di�erent modalities

We compared the performance of each classifier (1-4) on the five di�erent feature sets (Table 2.4)

based on estimates of AUC, sensitivity and specificity. As shown in Table 2.6, the results of using

LR with !1 regularization (Classifier 2) can achieve the high AUC of 81.2% and sensitivity of 81.4%

on single-modality data (CCA), which is considerably better than performance of LR on the other

four modalities. Similarly, the best AUC and sensitivity achieved by SVM are 81.4% and 81.6%

based on the combination of CCA and SVM-L1. Furthermore, we also found the highest accuracy

achieved by both classifiers without applying regularization is based on the single-modality data

(CCA); this indicated both classifiers perform best on single-modality data.

27



2.5.2 Comparison of Pre-selection and !1 norm

We found that using prior knowledge to inform feature selection improves model performance

and protects against over-fitting. As shown in Table 2.6, model performance (i.e., AUC) on ROI-P

(64.3%) and CCAR-P (76.3%) outperformed ROI-NP (60.6%) and CCAR-NP (60.1%). However,

the performance of Classifier 2 on the ROI-NP-!1 and CCAR-NP-!1 data sets had AUC score of

64.1% and 64.0%, while the ROI-P-!1 and CCAR-P-!1 had respective AUC scores of 64.3% and

77.9%; this suggests that user-guided pre-selection significantly improved model performance over

!1 norm. In addition, the SVM (Classifiers 3 & 4) had similar and comparable results with LR

classifiers. First, as with the LR models, the observed AUC estimates for CCAR-P and ROI-P

(69.2% and 64.1%, respectively), were superior to AUCs from the CCAR-NP (59.1%) and ROI-NP

analyses (61.4%). Classifier 4 exhibited similar performance on the CCAR-P-!1 as Classifier 2, with

an AUC value of 79.6% – higher than the model for CCAR-NP-!1 (74.0%). Therefore, manually

selecting features improves model’s performance whether !1 norm is applied, or not. Second,

these results show it is necessary and important to use pre-selection because both LR and SVM

models on CCAR-P-!1, with respective AUC estimates of 77.9% and 78.5%, exhibited superior

performance over the models without such pre-selection (i.e., LR and SVM on CCAR-NP-!1 had

AUC estimates of 64.0% and 74.0%, respectively).

2.5.3 Comparison of Groups One and Two

In addition to the results from models of Group One (i.e., MCI-to-AD conversion over 36 months),

we also evaluated the performance of Group Two (i.e., MCI-to-AD conversion over 24 months)

in an e�ort to gain further insight regarding possible benefits of shorter or longer assessment

periods on classification of the progression of MCI to dementia. Table 2.7 summarizes the

predictive performance of LR and SVM for Group Two. Similarly, we also evaluated classifier

performance for single- and multi-modality feature sets. The best result is obtained by using SVM-

!1 model (Classifier 4) on CCAR-P, and its corresponding AUC, Sn and Sp are 76.2%, 60.1%

and 79.2%, which verifies the assumption that manually selecting techniques improves the model’s
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performance again. However, it warrants mention that all classifiers’ performance on the Group

One data outperformed the same classifiers’ performance on the same data sets in Group Two. For

example, Classifier 2 of Group One on CCA achieved AUC and Sn values of 81.2% and 83.1%,

which is considerably better than the same classifier of Group Two on CCA (i.e., 76.3% and 79.8%).

Similarly, Classifier 3 for ROI-NP had an AUC of 61.4% for Group One and 56.6% for Group Two.

The experimental results indicated superior model performance on data obtained using longer than

using shorter follow-up periods. Given the uncertainty in conversion, a longer time window for

assessment of cognitive and functional change clearly yields more accurate classification.

2.5.4 Comparison of LR and SVM

In addition to comparing classification between di�erent time windows of assessment, we also

compared performance di�erences between LR and SVM. The results, including models’ ability to

address the over-fitting problem of LR and SVM methods with di�erent modalities are displayed

in Table 2.6, 2.7 and Fig.2.4, and 2.5. First, it is worth noting that both LR and SVM do not work

well if no !1 penalization used, since Classifiers 2 and 4 outperform Classifiers 1 and 3 on the

same data set. Second, it is worth noting that SVM has a better performance on MRI data when

the L1 feature selection method is employed. Third, it was possible to obtain good performance

accuracy using LR, which had equivalent model performance as SVM for “large p" data (ROI-P),

as evidenced by respective AUC estimates for Classifiers 1 and 3 of 64.3% and 64.1%. Finally, as

shown in Fig. 2.5 and 2.4, the SVM method is more stable and robust than LR to the large number

of features when n is small. To summarize, the best performance of Group One was achieved by

Classifier 4 (SVM with !1 norm) when using multi-modal – i.e., CCAR-L1, had an AUC of 81.4%.
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Table 2.6: LR and SVM performance of Group One (Time = 3 years) for models on single- and
multi-modal feature sets

Source LR (Classifier 1 and 2) SVM (Classifier 3 and 4) Features
Modality Test Acc % AUC % Sp % Sn % Test Acc % AUC % Sp % Sn % # Features

CAA 74.3 ± 6.0 80.8 ± 7.0 62.3 ± 12.1 81.5 ± 6.2 72.4 ± 6.9 80.0 ± 7.3 53.6 ± 13.2 79.4 ± 7.7
19(1)

19(2)

ROI-NP 58.1 ± 7.0 60.6 ± 8.1 45.5 ± 13.4 65.3 ± 7.9 59.5 ± 7.3 61.4 ± 8.5 46.5 ± 11.9 67.3 ± 8.5
259(1)

259(2)

ROI-P 64.4 ± 6.5 64.3 ± 6.6 46.1 ± 10.4 75.0 ± 9.6 62.1 ± 5.9 64.1 ± 6.2 43.6 ± 9.5 78.4 ± 10.4
26(1)

26(2)

CCAR-NP 57.6 ± 7.2 60.1 ± 8.1 44.8 ± 12.9 65.1 ± 9.0 57.8 ± 6.8 59.1 ± 7.0 45.9 ± 10.4 65.1 ± 7.5
278(1)

278(2)

CCAR-P 72.7 ± 6.4 76.3 ± 6.5 60.5 ± 10.4 80.4 ± 8.2 66.9 ± 6.0 69.2 ± 6.4 53.6 ± 13.2 74.4 ± 10.5
45(1)

45(2)

CCA-!1 74.9 ± 6.4 81.2 ± 6.7 61.3 ± 12.0 83.1 ± 6.6 74.2 ± 6.0 81.4 ± 6.9 61.6 ± 11.5 81.6 ± 5.9
4(1)

3(2)

ROI-NP-!1 62.2 ± 6.6 64.1 ± 7.9 53.1 ± 13.1 68.1 ± 7.2 62.7 ± 5.8 67.0 ± 6.7 53.7 ± 11.6 67.7 ± 7.4
29(1)

27(2)

ROI-P-!1 64.4 ± 6.5 64.3 ± 6.2 46.2 ± 11.0 74.9 ± 9.6 64.4 ± 5.7 64.7 ± 5.8 46.7 ± 11.1 75.4 ± 8.3
5(1)

17(2)

CCAR-NP-!1 62.6 ± 7.2 64.0 ± 8.2 51.8 ± 12.7 69.5 ± 7.3 67.4 ± 6.4 74.0 ± 7.4 55.7 ± 12.1 74.1 ± 7.1
18(1)

27(2)

CCAR-P-!1 73.1 ± 6.5 77.9 ± 5.9 61.6 ± 10.9 79.6 ± 7.7 73.5 ± 6.2 78.5 ± 6.4 61.6 ± 9.3 80.8 ± 7.5
14(1)

25(2)

Predictive performance of LR and SVM (mean ± standard deviation) for all models. Performance
estimates include testing accuracy (Test Acc %), area under the cureve (AUC), sensitivity (Sn), and
specificity (Sp). The number (#) of features was determined via (1): Classifier 2; (2): Classifier 4.
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Table 2.7: LR and SVM performance of Group Two (Time =2 years) for single-data and multi-
modal data

Source LR (Classifier 1 and 2) SVM (Classifier 3 and 4) Features
Modality Test Acc % AUC % Sp % Sn % Test Acc % AUC % Sp % Sn % # Features

CAA 69.9 ± 5.3 76.2 ± 5.5 56.7 ± 9.0 79.3 ± 7.3 69.4 ± 5.4 75.4 ± 5.5 56.7 ± 8.8 78.5 ± 7.1
19(1)

19(2)

ROI-NP 58.1 ± 4.2 58.8 ± 5.6 49.7 ± 7.1 64.4 ± 5.9 57.8 ± 5.0 56.6 ± 6.4 50.3 ± 7.1 62.9 ± 7.5
259(1)

259(2)

ROI-P 63.4 ± 4.7 65.8 ± 4.3 43.7 ± 10.2 77.8 ± 8.6 64.5 ± 4.7 66.2 ± 5.0 44.5 ± 8.5 79.1 ± 9.1
25(1)

25(2)

CCAR-NP 57.3 ± 4.0 58.8 ± 5.4 47.5 ± 8.3 64.3 ± 5.8 56.6 ± 5.5 56.4 ± 5.2 48.9 ± 7.9 62.3 ± 10.4
278(1)

278(2)

CCAR-P 70.2 ± 5.4 74.0 ± 5.0 56.7 ± 9.5 80.6 ± 7.0 69.5 ± 4.9 72.0 ± 5.3 58.1 ± 8.1 78.0 ± 8.2
45(1)

45(2)

CCA-!1 70.1 ± 4.8 76.3 ± 5.3 56.8 ± 9.9 79.8 ± 7.6 70.4 ± 4.9 76.4 ± 7.7 56.8 ± 9.8 79.4 ± 7.7
4(1)

4(2)

ROI-NP-!1 62.2 ± 6.0 64.7 ± 6.0 48.9 ± 9.2 72.0 ± 6.8 60.8 ± 4.5 65.9 ± 6.1 53.6 ± 7.5 64.3 ± 7.9
29(1)

31(2)

ROI-P-!1 64.1 ± 4.6 66.8 ± 3.8 42.8 ± 11.3 79.8 ± 8.4 65.4 ± 4.0 67.8 ± 3.9 46.3 ± 9.4 81.1 ± 7.2
6(1)

14(2)

CCAR-NP-!1 62.6 ± 6.3 64.8 ± 6.0 49.1 ± 9.1 72.1 ± 6.1 64.5 ± 5.1 71.7 ± 4.8 55.4 ± 7.8 71.4 ± 8.9
26(1)

32(2)

CCAR-P-!1 70.0 ± 5.5 74.3 ± 5.5 57.8 ± 8.0 78.3 ± 8.8 71.3 ± 4.9 76.2 ± 4.7 60.1 ± 7.1 79.2 ± 8.5
14(1)

27(2)

For each modality, the predictive performance of LR and SVM are shown (mean ± standard
deviation), including testing accuracy, AUC, sensitivity (Sn), specificity (Sp), # features is the
number of features; # features is the number of features; this parameter was determined via (1):
Classifier 2; (2): Classifier 4.
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2.6 Discussion and Conclusion

In this thesis, we applied two machine learning methods under multiple conditions, to test accuracy

in classifying patients with MCI who progress to clinically-defined dementia (MCI-C) from those

who remain stable (MCI-S). Using multi-modal data from ADNI, we compared LR and SVM

classification accuracy and pre-selection dimensional reduction techniques - i.e., feature selection

as informed by prior findings in clinical neuroscience and by !1 norm. Notably, the present

results demonstrate important boundaries for applying feature selection techniques in statistical

classification of MCI-to-dementia conversion. Specifically, we found that while using !1 for pre-

selection can improve accuracy, it also benefits from a more limited, theoretically based set of

feature inputs. In addition, we found that model performance benefited from a longer window

of assessment. These results have implications for studies utilizing multi-modal data for such

classification, including features from clinical neuropsychological assessment, demographic and

genetic markers, MRI-based volumetric brain measures, and other modalities.

Comparison of user-defined and !1 pre-selection for LR and SVM classifiers yielded multiple

noteworthy findings, consistent with previously published reports [147, 148, 24, 29, 145, 56,

144, 68]. First, the classification results showed that the model using multi-modal data with

cognitive, clinical, and volumetric data (CCAR) achieved better classification accuracy than the

methods based on single-modality (CCA, ROI). Moreover, the AUC of CCAR based on LR or

SVM was either statistically significantly or at least numerically greater than those based on the

single-modality model. Based in AUC, we reported the highest accuracy was observed for CCAR

data at 78.5% by !1 SVM and 77.9% by !1 LR. Second, SVM demonstrated several advantages

over LR in discriminating MCI-C from MCI-S (Fig. 2.4). For one, SVM performance tended to be

more stable than LR when the number of features was relatively large. In other words, the model

performance of SVM on ROI data remained more stable than LR when using larger numbers of

features without user-defined pre-selection. In particular, SVM performance on ROI data improved

as the number of features increased from 20 and 30. In contrast, the AUC values for ROI data sets

remained fairly static despite increasing the number of features. However, LR model performance
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decreased gradually after the number of ROI features reached 40. Third, the classification results

clearly demonstrate that manually selecting features on MRI data not only improved the model

performance and protected the classifier from overfitting, but also a�ords easier interpretation of

each selected feature’s contribution to the model. In addition, we show that pre-selection improves

performance: Tables 2.6 and 2.7 suggest it is the best strategy to obtain the maximum model

performance, compared to features selection based on !1 norm.

The present findings can also be interpreted in the context of other reports over the past decade

that also investigated the prognostic capacity of brain volumetry data to predict the conversion

of MCI to dementia, using either SVM or LR, and that also combined volumetry data with

other imaging and biomarker modalities such as MRI, functional MRI (fMRI), positron emission

tomography (PET) to cerebral spinal fluid (CSF) protein markers [147, 148, 24, 29, 145, 56, 144,

68, 78, 130, 69]. In addition, one can vary the degrees of non-linearity and flexibility in the model

by employing di�erent kernel functions. For example, Young et al (2013) report [145], results

from both SVM and Gaussian process (GP) classification on MCI progression in ADNI data using

MRI, PET, APOE4, and CSF biomarkers. In contrast the present study and with other published

work that used MCI-C and MCI-S groups as training and test data sets, they trained a classifier to

distinguish cognitively normal older adults from those diagnosed as probable AD. They reported

that the accuracy using GP – an AUC value of 79.5% – was substantially higher than using any

individual modality or using multi-kernel SVM. Other studies of MCI-to-dementia classification

reporting high accuracy have also implemented other approaches such as multiple kernel learning

(pMKL) classification techniques using clinical, MRI and plasma biomarkers data. One method

using this approach to identify the important features first grouped the data set into five di�erent data

sources and then applied a filter-wrapper approach of feature selection techniques in combination

with Joint Mutual Information (JMI) criterion to achieve an AUC of 82% [68].

We also found consistently superior classification performance in patients classified under a

longer window of assessment. MCI-to-dementia conversion is a process that can take several years

to reliably track an individual from onset of amnestic MCI to early-stage dementia [145, 92, 75].
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For the modeled features to be of use for classification necessitates well-defined, if not orthogonal

classes. However, MCI is not inherently prodromal to dementia: a large proportion of individuals

with MCI never progress, either reverting to cognitively normal status or remaining rather stable.

Furthermore, others may show early evidence of brain atrophy that precedes cognitive impairment

by years. In order to account for this variable timing, others have employed methods such as

supervised learning using time windows [102]; however, even those methods strongly benefit

from longer follow-up periods. Thus, MCI is an inherently heterogeneous and poorly-defined class,

particularly in terms of the relationships between brain characteristics and the likelihood and timing

of further cognitive decline. Most recent computational neuroimaging studies in the past few years

have utilized multi-modal features [24, 31, 82, 59, 28, 114, 89, 90, 133, 136]. For example, when

Ding et al applied SVM with PET and MRI data to classify the transition from MCI to AD, they

reported the sensitivity and specificity were 66.67% and 64.52% [31]. In addition to PET and

structural MRI data, CSF protein markers can be used to predict progression from MCI to AD,

in addition to proteomic, demographic and cognitive data [28, 113, 21]. By applying LR with

!1 norm to CSF markers for classifying individual patients as belonging to either the MCI-C and

MCI-S group, one study reported a sensitivity and specificity of 80% and 75% [82]. Furthermore,

Varatharajah and colleagues (2020) showed SVM-linear outperforms other advanced classification

methods, including linear classifiers—multiple kernel learning (MKL) with linear kernels, SVM

with a linear kernel, and generalized linear model (GLM), in predicting transition from MCI to

AD [130]. In general, LR works well when the data is linearly separable and the number of data

is greater than the number of features, whereas SVM with Gaussian Kernel is mostly used when

the data is not linearly separable. In addition to LR and SVM, deep neural network approaches

also o�er benefits [78, 119], but have not had the extent of application in ADNI data as SVM

and LR. Using a novel LR, artificial neural network (ANN) model and decision tree (DT) model

for classifying the progression of MCI to AD, Kuang (2021) reported that the ANN exhibited the

highest sensitivity at 82.1% [69].

In conclusion, models applying prior knowledge for classification and prediction of MCI-
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to-dementia conversion outperform those without pre-selection. This theoretically guided pre-

selection of features from MRI-based regional brain volumes appears to protect the model against

over-fitting. In addition, the present findings demonstrate that SVM classifier performance is

more stable than LR for dealing with the “large p" problem. Clinical researchers should note the

value of evaluating di�erent classification and pre-selection approaches in application to clinical or

research questions, and be mindful that not all machine learning techniques are equally beneficial

for modeling specific clinical outcomes.
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Figure 2.4: Model performance on ROI feature set by number of features for LR and SVM. Panel
(a) shows dramatic growth in AUC with LR as the number of features increases from 1 to 30, and
then becoming more static at approximately 74% - i.e., as the number of features increases from 30
to 40, but drops significantly when the number of features reaches to 41. Panel (b) shows the AUC
increased dramatically as the number of features grows from 1 to 28, but fluctuated after 29. The
optimal number of ROI features for both methods are 29 and 28, and their corresponding optimized
AUC were approximately 74.0% and 78.0%.
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Figure 2.5: Model performance on CCA feature set by number of features for LR and SVM. Figure
(a) shows there is a significant increase in the AUC with LR as the number of features increases
from 1 to 5, then there is a slight decrease in the testing accuracy when the number of features is
greater than 5. Figure (b) shows the AUC shot up dramatically as the number of features increases
from 1 to 4. The optimal number of CCA features obtained by LR and SVM are 5 and 4, and their
corresponding optimized AUC are approximately 84.0% and 83.0%.
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CHAPTER 3

CONSISTENT VARIATIONAL BAYES CLASSIFICATION WITH DEEP NEURAL
NETWORKS

3.1 Introdution

Bayesian deep neural network (BDNN) models are ubiquitous in classification problems; however,

their Markov Chain Monte Carlo (MCMC) based implementation su�ers from high computational

cost, limiting the use of this powerful technique in large-scale studies. Variational Bayes (VB)

has emerged as a competitive alternative to overcome some of these computational issues. This

thesis focuses on the variational Bayesian deep neural network (VBDNN) estimation methodology

and discusses the related statistical theory and algorithmic implementations in the context of

classification. For a deep neural network-based classification, the thesis compares and contrasts

the true posterior’s consistency and contraction rates and the corresponding variational posterior.

Based on the complexity of the deep neural network (DNN), this thesis provides an assessment

of the loss in classification accuracy due to VB’s use and guidelines on the characterization of

the prior distributions and the variational family. The di�culty of the numerical optimization for

obtaining the variational Bayes solution has also been quantified as a function of the complexity

of the DNN. The development is motivated by an important biomedical engineering application,

namely building predictive tools for the transition from mild cognitive impairment to Alzheimer’s

disease. The predictors are multi-modal and may involve complex interactive relations.

3.2 The Neural Networks Classifier and Likelihoods

Let . be a binary random variable taking values 0 or 1, representing the class levels and - 2 R? is

a feature vector drawn from a feature space with some marginal distribution %- . We consider the

following binary classification problem

%(. = 1|- = G) = f([0(x)), %(. = 0|- = G) = 1 � f([0(x)) (3.1)
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where [0(·) : R? ! R is some continuous function and f(.) = 4
(.)/(1 + 4(.)) is the sigmoid

function. Thus, %- ,. , the joint distribution of (- ,. ) is a product of the conditional distribution in

(4.1) and the marginal distribution %- . Borrowing some notations from [14] and [141], a classifier

⇠ is a Borel measurable function ⇠ : R? ! {0, 1}, with the interpretation that we assign a point

x 2 R? to class ⇠ (x). The test error of a classifier ⇠ is given by

'(⇠) =
π
R?⇥{0,1}

�{⇠ (-)<. }3%- ,. (3.2)

Based on (4.1), we define the Bayes classifier as

⇠
Bayes(x) =

8>>>><
>>>>:

1, f([0(x)) � 1/2

0, otherwise
(3.3)

The Bayes classifier is optimal ([46]) since it minimizes the mis-classification error risk in (4.2).

However, the Bayes classifier is not useful in practice, since the function [0(x) is unknown. Thus,

a classifier is obtained based on a set of training observations {(x1, H1), ..., (x=, H=)}, which are

drawn from %- ,. . A good classifier based on the sample should have the risk tending to the Bayes

risk as the number of observations tends to infinity, without any requirement for its probability

distribution. This is so called universal consistency. Multiple methods have been adopted to

estimate [0(x), including logistic regression (a linear approximation), generalized additive model

(GAM, a nonparametric nonlinear approximation), deep neural networks (a complicated structure

which is dense in continuous functions) etc. The first two methods usually work in practice with good

theoretical foundation, however, they may fail to catch the complicated dependency of the feature

vector x in a wide range of applications including the problem that we consider in this article. On

the other hand, the neural network structure which can exploit the dependency implicitly without

any specific parametric structure, has relatively few theoretical works establishing its statistical

e�cacy in Bayesian models. In this thesis, we thereby focus our attention on classification using

deep neural networks.

Consider a single layer neural network model with ? predictor variables. The layer has :=

nodes, where := may be a diverging sequence depending on =. The validity of neural network
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approximations is based on the universal approximation results [25], which states that the single layer

neural network is able to approximate any continuous function with a quite small approximation

error when := is large. Assume a Fourier representation of [0(x) of the form

5 (x) =
π
R?
4
8!)x

�̃ (3!)

and denote �⌫,⇠ = { 5 (·) :
Ø
⌫

k!k2 | 5̃ | (3!) < ⇠} for some bounded subset ⌫ of R? containing

zero for some constant ⇠ > 0. Then, for all functions [0 2 �⌫,⇠ , there exist a single layer neural

network output [(x) such that k[ � [0k2 = $ (1/
p
:=) [5]. This result ensures good approximation

property of single layer neural network, and the convergence rate depends only on the number of

nodes under mild conditions on [0(x). [77] proved that as long as the activation function is not

algebraic polynomials, the single layer neural network is dense in the continuous function space,

thus can be used to approximate any given continuous function.

We use ✓= to index the set of all the parameters. For ?= ⇥ 1 input vector x, consider a deep

neural network with != hidden layers and :1=, · · · , :!== being the number of nodes in the hidden

layers. Let :0= = ?= + 1 and : (!=+1)= = 1. It can be checked that the total number of parameters is

 = =
Œ

!=
E=0 : (E+1)= (:E= + 1) due to the formulation below.

[✓= (x) = b! +A!k(b!�1 +A!�1k(b!�2 +A!�2k(· · ·k(b1 +A1k(b0 +A0x)))

bE, E = 0, · · · , ! are vectors of dimension :E+1 ⇥ 1 and AE, E = 1, · · · , ! � 1 are matrices each of

dimension :E+1 ⇥ :E. We have suppressed the dependence on = for notation simplicity.

For the purposes of this thesis, we use the activation function to be the sigmoid function, k(G) =

4
G/(1 + 4G), although the theoretical results are valid to a wider class of activation functions such

as tan-hyperbolic, Gaussian etc.. Thus, using the neural network in (3.4) as an approximation to

the true function [0(x) in (4.1), the conditional probabilities of . given - = x is given by

%(. = 1|- = x) = f([✓= (x)), %(. = 0|- = x) = 1 � f([✓= (x)) (3.4)

Assuming Bernoulli distribution, the conditional density of . |- = x under the model is:

✓✓= (H,x) = exp
⇣
H[✓= (x) � log

⇣
1 + 4[✓= (x)

⌘⌘
(3.5)
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Thus, the likelihood function for the data (y=,X=) = (H8,x8)=
8=1 under the model is

! (✓=) =
=÷
8=1

✓✓= (H8,x8) = exp

 
=’
8=1

h
H8[✓= (x8) � log

⇣
1 + 4[✓= (x8)

⌘i !
(3.6)

In view of (4.1), the conditional density of . |- = x under the truth

✓0(H,x) = exp
⇣
H[0(x) � log

⇣
1 + 4[0 (x)

⌘⌘
(3.7)

Therefore, the likelihood function for the data under the truth is given by

!0 =
=÷
8=1

✓0(H8,x8) = exp

 
=’
8=1

h
H8[0(x8) � log

⇣
1 + 4[0 (x8)

⌘i !
(3.8)

3.3 Bayesian Inference with Variational Algorithm

3.3.1 Prior Choice

For Bayesian analysis, prior distributions have to be assigned for all parameters defining the model.

Although one may have a prior knowledge concerning the function represented by a neural network,

it is generally di�cult to translate this into a meaningful prior on neural network weights. We assume

an independent normal prior as follows:

?(✓=) =
 =÷
9=1

1q
2cf2

9=

4

� 1
2f2

9=
(\ 9=�` 9=)2

(3.9)

(A0) For �= = [f1=, · · · ,f ==], �⇤
=
= [1/f1=, · · · , 1/f ==], assume

log | |�= | |1 = $ (log =) | |�⇤
=
| |1 = $ (1),

where | |.| |1 is the supremum norm of a vector as in definition A.0.1 in appendix B. Note, the above

assumption ensures that the variance associated with each \ 9= do not grow at an arbitrarily large

rate in which case the consistency of both the Bayesian and variational Bayes approach would break

down. Restrictions on the mean parameter µ= = [`1=, · · · , ` ==] directly impact the consistency

rate and are more case specific (see section 3.4 for a thorough discussion).
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The reason for choosing the above form of prior is two folds: (1) first it guarantees that the

true posterior distribution is consistent (2) second it guarantees, under a suitable choice of the

variational family, the approximated variational posterior is also consistent. The choice of prior in

(3.9) is not unique. Indeed, one can work with a much more generic class of priors such that (1) and

(2) hold. Note, each prior comes with its own associated computation complexity, implementation

and theoretical justification. We choose one which does a fairly good job under all these three

criterion. In view of (3.6) and (3.9), posterior distribution of ✓= given y= = [H1, · · · , H=]> and

X= = [x1, · · · ,x=]> is

c(✓= |y=,X=) =
c(✓=, y=,X=)
c(y=,X=)

=
! (✓=)?(✓=)Ø
! (✓=)?(✓=)3✓=

(3.10)

where c(y=,X=) is free from the parameter and depends only on y= and X=.

3.3.2 Variational Inference

As a first step to variational inference (VI) procedure, one has to start with a variational family.

Given several options, we work with one which is simple, computationally and structurally tractable,

and more importantly they provide statistically consistent posterior estimation. We posit a mean

field Gaussian variational family of the form

Q= =
8>>><
>>>:
@(✓=) : @(✓=) =

 =÷
:=1

1q
2cB2

9=

4

� 1
2B2

9=
(\ 9=�< 9=)2

9>>>=
>>>;

(3.11)

Note that the variational family assumes that each \ 9= is independent with mean and standard

deviation equal to <9= and B 9= respectively.

The variational posterior aims to reduce the KL-distance between the variational family and the

true posterior [9, 41, 11]. For the true posterior, c(.|y=,X=) in (4.9), the variational posterior is

c
⇤ = argmin

@2Q=

3KL(@, c(.|y=,X=)). (3.12)

where 3KL, the Kullback-Leibler (KL) divergence between a variational family member @(✓n) and

the true posterior c(✓= |y=,X=) is given by
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3KL(@, c(.|y=,X=)) =
π

log(@(✓=)/c(✓= |y=,X=))@(✓=)3✓= (3.13)

Bases on (4.9), simplifying further, we get

3KL(@, c(.|y=,X=)) =
π

[log @(✓=) � log c(✓=, y=,X=)]@(✓=)3✓= + log c(y=,X=)

= �ELBO(@, c(., y=,X=)) + log c(y=,X=) (3.14)

Since the last term in (3.14) does not depend @, optimizing (3.14) w.r.t. to @ boils down to

optimizing the first term. Indeed the first term is nothing but the negative of the evidence lower

bound (ELBO). Thus in order to minimize the KL-distance, we shall instead maximize the ELBO

between @ and c(., y=,X=). Alternatively, we define c⇤ as

c
⇤ = argmax

@2Q=

ELBO(@, c(., y=,X=)) (3.15)

To maximize the ELBO in (3.14), let V@ = (<1=, · · · ,< ==, B
2
1=, · · · , B2 ==

) where <9= and B 9= is

the mean and standard deviation of \ 9= under the density @. Thus, each @ 2 Q= is indexed by its

parameters. Consequently,

ELBO(@(.|V@), c(., y=,X=)) =
π

[log c(✓=, y=,X=) � log @(✓= |V@)]@(✓= |V@)3✓=

=
π

log ! (✓=)@(✓= |V@)3✓= +
π

[log ?(✓=) � log @(✓= |V@)]@(✓= |V@)3✓=

=
π

log ! (✓=)@(✓= |V@)3✓= � 3KL(@(.|V@), ?(.)) = LV@ � 3KL(@(.|V@), ?(.))

(3.16)

The derivative of 3KL(@(.|V@), ?(.)) w.r.t. V@ has a closed form expression (see appendix A). The

key challenge is the derivative LV@ w.r.t. to V@ which we discuss next

rV@LV@ = rV@

π
log ! (✓=)@(✓= |V@)3✓= =

π
log ! (✓=)rV@@(✓= |V@)3✓=

=
π

rV@ log @(✓= |V@) log ! (✓=)@(✓= |V@)3✓= = ⇢@(.|V@) (log @(✓= |V@) log ! (✓=))

(3.17)
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where the last equality holds since rV@ log @(✓= |V@)@(✓= |V@) = rV@@(✓= |V@).

The black-box variational inference (BBVI) algorithm, [107], optimizes the ELBO using gra-

dient descent method by making use of a similar approach. The key challenge in evaluating the

gradient in (3.17) is the computation of the expectation. Exact computation of the expectation

leads to high computational complexity whereas using noisy estimates leads to high variability. In

section 3.3.3, we elucidate how to ensure fast and e�cient estimation of the gradient.

3.3.3 Black Box Variational Algorithm using score function estimator

The gradient in (3.17) is di�cult to evaluate for problems with complex likelihood structures arising

out of deep network models. Alternatively, the above expectation is evaluated by sampling from

the variational distribution and forming the corresponding Monte Carlo estimates of the gradient.

We next explain the computation of Monte Carlo estimate of the gradient in (3.17) by using ideas

similar to [107, 124]. Let V@ denote the current value of the variational parameters. We generate

, samples from the variational distribution @(.|V@) and define the noisy but unbiased estimate of

rV@LV@ as

õrV@LV@
=

1
,

,’
F=1

rV@ log @(✓= [F] |V@) log ! (✓= [F]) (3.18)

where ✓= [1], · · · , ✓= [,] are samples generated from @(.|V@). Similarly, a noisy but unbiased

estimate of the LV@ is given by

bLV@ =
1
,

,’
F=1

log ! (✓= [F]) (3.19)

Algorithm 1 provides the pseudocode summarizing the overall algorithm for BBVI.
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Algorithm 1 BBVI

1. Fix an initial value for variational family parameters V1
@ .

2. Fix a step size sequence dC , C = 1, · · · .

3. Set C = 1.

4. Simulate, samples ✓= [1], · · · , ✓= [,] from @(.|V C
@).

5. Compute õrVC
@
LVC

@
as in (3.18)

6. Update

V C+1
@ = V C

@ + dC
✓õrVC

@
LVC

@
� rVC

@
3KL(@(.|V@), ?(.))

◆
(3.20)

7. Set C = C + 1.

8. Repeat steps 4-7 until the convergence of ELBO using bLVC
@

as in (3.19) and

ELBO = bLVC
@
� 3KL(@(.|V@), ?(.))

In the implementation of the above algorithm, one needs to compute 3 ! (@(.|V@), ?(.)),

rV@ log @(✓= |V@) and rV@3 ! (@(.|V@), ?(.)) for the variational parameters V@. For the choice of

? and @ as in (3.9) and (3.11), the explicit expressions have been presented in appendix A.

For the variational parameters (B1=, · · · , B ==), the updating rule in (3.20) may lead to negative

estimates. However, one must guard against this since variance terms cannot be negative. Thus, to

perform the optimization, we reparametrize the variance terms as B 9= = log(1+4A 9=), 9 = 1, · · · , =
and update the quantities AA= in each step instead of B 9=. By chain rule, for any function 6(V@),

rA 9=6(V@) =
4
A 9=

(1 + 4A 9=)rV@6(V@) |B 9==log(1+4A 9= )

where second term is the derivative of 6(V@) w.r.t. B 9= evaluated at B 9= = log(1+4A 9=). The explicit

expressions of derivatives w.r.t. A 9= have also been provided in appendix A.

3.3.4 Control Variate: Stabilizing the stochastic gradient

We can use algorithm 1 to maximize the ELBO, however a major drawback is that the noisy

estimator of the gradient has high variance. There are two major techniques to reduce the variance
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of gradients. One of them is “Rao-Blackwellization", where the idea is to replace the noisy estimate

of gradient with its conditional expectation w.r.t. a subset of the variables, [107]. This method is

useful when the posterior distribution is separable across subsets of variables or while dealing with

latent variables. A convoluted likelihood as in (3.6) is not separable across the components of ✓= and

there are no latent variables in our model. We thereby refrain from using the Rao-Blackwellization

approach.

Algorithm 2 BBVI-CV

1. Fix an initial value for variational parameter V1
@ .

2. Fix a step size sequence dC , C = 1, · · · .

3. Set C = 1.

4. Simulate, samples ✓= [1], · · · , ✓= [,] from @(.|V C
@).

5. Compute 2¢C = cov(uC
1,u

C
2)/var(uC

2) where uC
1 and uC

2 are same as in (3.22).

6. Compute õrVC
@
LVC

@
as in (3.21).

7. Update

V C+1
@ = V C

@ + dC
✓õrVC

@
LVC

@
� rVC

@
3KL(@(.|V@), ?(.))

◆

8. Set C = C + 1.

9. Repeat steps 4-7 until the convergence of ELBO using bLVC
@

as in (3.19) and

ELBO = bLVC
@
� 3KL(@(.|V@), ?(.))

Another method which also gives an e�cient technique for stabilizing the gradient is called

control variate (CV) (see [110, 97, 107]). We use CV to reduce the variance of the MC approx-

imations of the gradients. The key idea behind the variance reduction as proposed in [110] is to

replace the target function, whose expectation is being approximated by Monte Carlo, with an aux-

iliary function that has the same expectation but a smaller variance. To reduce the variance of the

function b (q), one instead considers the function b̂ (q) = b (q) � 1
�
i(q) � ⇢@ (i(q))

�
where i(q)

is function with finite expectation and 2 is a scalar. Such a choice ensures ⇢@ (b̂ (q)) = ⇢@ (b (q))

and Var@ (b̂ (q)) = Var@ (b (q)) + 22Var@ (i(q)) � 22Cov@ (b (q), i(q)) which is minimized at
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2
¢ = Cov@ (b (q), i(q))/Var@ (i(q)). Thus, greater the correlation between b and i, greater

the variance reduction. Similar to [107], we use rV@ log @(✓ |V@) as a choice for i(q). The

stochastic approximation of the gradient in (3.17) is then modified as

õrV@LV@
=

1
,

,’
F=1

rV@ log @(✓= [F] |V@) [log ! (✓= [F]) � 2¢] (3.21)

It is impossible to obtain an exact expression for 2¢, one thus uses b
2
¢ = cov(u1,u2)/var(u2),

D1 [F] = rV@ log @(✓= [F] |V@) log ! (✓=) D2 [F] = rV@ log @(✓= [F] |V@) (3.22)

The extension of algorithm 1 with variance reduction of MC approximations due to CV is annotated

as BBVI-CV and summarized in algorithm 2.

Similar to the implementation of algorithm 1, for the implementation of algorithm 2, we use

the reparametrization of B 9= = log(1 + 4A 9=) as explained in section 3.3.3.

3.3.5 RMSprop Learning Rate: Stabilizing the learning rate.

Note that both BBVI and BBVI-CV algorithms as described in section 3.3.3 and 3.3.4 work fairly

well with a fixed learning rate for a single layer network. However, their performance deteriorates

significantly when the neural networks have two or more layers. This can be attributed to the fact

that the gradients for the di�erent parameters changes at significantly di�erent rates. In order to

overcome these issues, a wide class of adaptive learning rates have been explored in [117], [150],

etc. for the frequentist optimization of parameters in deep neural networks. One such popular

technique which performs well in practice, called the RMSprop, was introduced in [57] where the

gradient is divided by a running average of its recent magnitude.

As described in both [57] and [51], let ⌧C denote the value of the current gradient, then define

'C = 0.9'C�1 + 0.1⌧2
C
, C = 1, 2, · · ·

and the replace the learning dC by the e�ective learning rate dC/(
p
'C + n) for some small n > 0.

Numerical studies show for one layer network, RMSprop leads to faster convergence and for multiple
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layer networks, convergence is not possible without an adaptive learning rate similar to RMSprop.

One could also experiment with other adaptive learning rates like AdaGrad, AdaDelta, ADAM, etc.

to serve the same purpose as that of RMSprop (see [88] and [38] for more details on other adaptive

learning rates.)

The updated version of BBVI and BBVI-CV using RMSprop, renamed as BBVI-RMS and

BBVI-CV-RMS, are summarized as algorithms 4 and 5 and provided in appendix A.

3.3.6 Classification using variational posterior

Define, [̂(x), the variational estimator of [0(x) as

[̂(x) = f�1
✓π

f([✓= (x))c⇤(✓=)3✓=
◆

(3.23)

where c⇤ is the variational posterior. Analgous to (4.3), the classifier based on [̂(x) is

⇠̂ (x) =

8>>>><
>>>>:

1, f([̂(x)) � 1/2

0, otherwise
(3.24)

Note, the formulation in (3.23) guarantees that we directly approximate the main quantity of interest,

f([0(x)) as in (4.1) by its posterior mean,
Ø
f([✓= (x))c⇤(✓=)3✓=, which is empirically estimated

as

[̂
, (x) = 1

,

,’
F=1

f([✓= [8] (x)) (3.25)

where ✓= [1], · · · , ✓= [,] are multiple samples from the variational posterior c⇤. Since generation

of multiple samples from the variational posterior is much cheaper, the order of error between

(3.23) and (3.25) is negligible.

3.4 Posterior and Classification Consistency

In this section, we establish that the Bayesian inference procedure proposed in section 3.3 enjoys

theoretical guarantees in terms of consistency of the posterior estimation and classification. For a

simple Gaussian mean field family as in (3.11), we establish that the variational posterior (3.12)
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is consistent under suitable assumptions on the prior parameters. We also discuss how the true

function [0 impacts the rate of consistency of the variational posterior. Finally, we present how the

consistency rates of the variational posterior di�er from those of the true posterior.

Let 50 and 5✓= be the joint density of the observations (H8,x8)=
8=1 under the truth and the model

respectively. Without loss of generality, we assume -8 ⇠ * [0, 1] ?= , which implies 50(x) = 1 and

5✓= (x) = 1. This implies that the joint distribution of (H8,x8)=
8=1 depends only the conditional

distribution of . |- = x. From (4.1) and (3.4) with ✓✓= and ✓0 as in (B.5) and (3.7),

5✓= (H,x) = 5✓= (H |x) 5✓= (x) = exp
⇣
H[✓= (x) � log

⇣
1 + 4[✓= (x)

⌘⌘
= ✓✓= (H,x)

50(H,x) = 50(H |x) 50(x) = exp
⇣
H[0(x) � log

⇣
1 + 4[0 (x)

⌘⌘
= ✓0(H,x) (3.26)

We next define the Hellinger neighborhood of the true density function 50 = ✓0 as

UY = {✓= : 3H(✓0, ✓✓=) < Y} (3.27)

where the Hellinger distance, 3H(✓0, ✓✓=) is given by

3H(✓0, ✓✓=) =
©≠
´
1
2

π
x2[0,1] ?=

’
H2{0,1}

✓p
✓0(H,x) �

q
✓✓= (H,x)

◆2

3x
™Æ
¨

1/2

.

Also, the Kullback-Leibler (KL) neighborhood of the true density function 50 = ✓0 is

NY = {✓= : 3KL(✓0, ✓✓=) < Y} (3.28)

where the KL distance, 3KL(✓0, ✓✓=) is given by

3KL(✓0, ✓✓=) =
π
x2[0,1] ?=

’
H2{0,1}

✓
log

✓0(H,x)
✓✓= (H,x)

✓0(H,x)
◆
3x

Let %=0 denote the true distribution of (y=,X=) = (H8,x8)=
8=1 under the true density ✓0.

3.4.1 Posterior consistency and its implication in practice

In the following two theorems, we establish the posterior consistency of c⇤ defined in (3.12). In this

direction, we show that the variational posterior concentrates in Y�small Hellinger neighborhoods
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of the true density ✓0. In theorem 3.4.1, we establish this result for a fixed choice of the neighborhood

distance Y. In theorem 3.4.2, we establish the same result for shrinking neighborhood sizes of the

true function ✓0. For both these theorems, the total number of parameters  = allows to grow at a

rate of =0 for some 0 < 0 < 1. Note, theorem 1 is a simple consistency result and holds due to the

universal approximation properties of neural networks (see [60]) when the number of layers and

input variables are fixed. This is an important result since it shows, irrespective of the function

under study, BDNN’s enjoy consistency properties if the number of input variables and the number

of layers are fixed. Additionally, we also provide a characterization on the prior distribution such

as that the rate of growth of !2 norm of the prior mean parameter necessary to guarantee the

consistency result in theorem 3.4.1 (see A2) and contraction results in theorem 3.4.2 (see A4).

The theorem 3.4.2 studies the contraction rate of the variational posterior, it is more restrictive

in nature and requires additional assumptions on the approximating neural network solution to

the true function [0 (see assumption (A3) below). We next describe how our current theoretical

development contrast to the recent works of [105] and [3]. Firstly, theorem 2 establishes the

variational posterior contraction rates following the classical definition of contraction as in the

theorems of 2.1 of [47] and theorem 2.1 of [122]. It di�ers from the consistency results in [3]

which deal with posterior expectation of square of Hellinger distance and [105] which consider

the lower bound on \/| |[✓= � [0 | |1. Secondly, unlike the two aforementioned works, we assume a

restriction only on the total number of parameters  = in the system instead of developing the results

for the same number of nodes in each layer, an assumption which can severely restrict the space of

neural networks solution one works with. Third, both [105] and [3] assume that there exists a true

sparse solution all of whose coe�cients are bounded above by a constant ⌫ (see condition 4.3 in

[3]). We impose no such restriction to begin with on our true neural network solution but derive

the most relaxed condition on the joint growth of the number of nodes and strength of connections

between active nodes to allow for rates of contraction to hold (see condition 3. in (A3)). Indeed, if

we make the assumption that all coe�cients of the neural net are bounded above by ⌫, condition

3. in (A3) simplifies to a restriction only on the number of nodes as in [105] and [3]. Lastly, both
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these works establish their contraction results in context of regression problems which allows them

to use results from [111]. However, our systematic development here requires the derivation of the

tools for a classification set up and ideas may be extended to other generalized linear models.

Theorem 3.4.1 Let  = ⇠ =0, 0 < 0 < 1 and ?= = ?, != = ! be constants independent of =.

(A2) The prior parameters in (3.9) satisfy assumption (A1) and | |µ= | |22 = >(=). Then,

c
⇤(U2

Y
)

%
=
0�! 0

Here, | |.| |2 is the !2 norm of a vector as in definition A.0.1 in the appendix B. By the above theorem,

for any a > 0, c⇤(U2

Y
) < a with probability tending to 1 as = ! 1. Under the conditions of

theorem 3.4.1, it can be established that the true posterior satisfies c(U2

Y
|y=,X=) < 24�=Y

2/2 with

probability tending to 1 as = ! 1 (see theorem A.0.18 part 1. in the appendix D). This implies

that the probability of the Y�Hellinger neighborhoods of the true function ✓0 for the true posterior

increases at the rate of 1� 24�=Y
2/2 in contrast to the slow rate of 1� a for the variational posterior.

Theorem 3.4.2 Suppose  = ⇠ =0, 0 < 0 < 1, != ⇠ log =, n2
=
⇠ =�X, 0 < X < 1 � 0. Suppose,

(A3) There exists a sequence of neural network functions [✓⇤
=

satisfying

1. | |[0 � [✓⇤
=
| |1 = >(n2

=
)

2. | |✓⇤
=
| |22 = >(=n2

=
)

3. log
⇣Õ

!=
E=0 :E=

Œ
!=
E
0=E+1 0

⇤
E
0
=

⌘
= $ (log =)

where 0⇤
E
0
=
= sup

B=0,··· ,: (E 0+1)= | |A
⇤
E
0 [B]] | |1.

(A4) The prior parameters satisfy assumption (A1) and | |µ= | |22 = >(=n2
=
).

By the above theorem, for any a > 0, c⇤(U2

Yn=
) < a with probability tending to 1 as = !

1. Under the conditions of theorem 3.4.2, it can be established that the true posterior satisfies

c(U2

Yn=
|y=,X=) < 24�=Y

2
n

2
=/2 with probability tending to 1 as = ! 1 (see theorem A.0.19 part 1.

in the appendix D). This implies that the probability of the shrinking Yn=�Hellinger neighborhoods

51



of the true function ✓0 for the true posterior increases at the rate of 1 � 24�=Y
2
n

2
=/2 in contrast to the

slow rate of 1 � a for the variational posterior.

Remark: For a single layer, assumption (A3) condition 3. holds if the number of input features

increases at a rate polynomial in =. As the number of layers increases, one needs the row sums

in the true solution �⇤
E
, E = 0, · · · , != to be bounded. This shows that even with a control on the

number of nodes, the strength of the signal into every active node node must be well controlled

(this corresponds to edge selection following node selection).

3.4.2 Discussion of the proof

We next briefly outline the main steps in the the proof of theorems 3.4.1 and 3.4.2. The details

are deferred to appendix C. The first step of the proof is to establish that 3KL(c⇤, c(.|y=,X=)) is

bounded below by a quantity which is determined by the rate of consistency of the true posterior.

The second step is to show 3KL(c⇤, c(.|y=,X=)) is bounded above at a rate which is greater than

its lower bound if and only if the variation posterior is consistent. Note,

3KL(c⇤, c(.|y=,X=))

=
π
UY

c
⇤(✓=) log

c
⇤(✓=)

c(✓= |y=,X=)
3✓= +

π
U2

Y

c
⇤(✓=) log

c
⇤(✓=)

c(✓= |y=,X=)
3✓=

= �c⇤(UY)
π
UY

c
⇤(✓=)

c
⇤(UY)

log
c(✓= |y=,X=)

c
⇤(✓=)

3✓= � c⇤(U2

Y
)
π
U2

Y

c
⇤(✓=)

c
⇤(U2

Y
) log

c(✓= |y=,X=)
c
⇤(✓=)

3✓=

� c
⇤(UY) log

c
⇤(UY)

c(UY |y=,X=)
+ c⇤(U2

Y
) log

c
⇤(U2

Y
)

c(U2

Y
|y=,X=)

, by Jensen’s inequality

where UY as in (4.16) note that for any Y > 0, Since c(UY |y=,X=)  1, thus

� c
⇤(UY) log c⇤(UY) + c⇤(U2

Y
) log c⇤(U2

Y
) � c⇤(U2

Y
) log c(U2

Y
|y=,X=)

� �c⇤(U2

Y
) log c(U2

Y
|y=,X=) � log 2, since G log G + (1 � G) log(1 � G) � � log 2

= �c⇤(U2

Y
)
✓
log

π
U2

Y

! (✓=)
!0

?(✓=)3✓= � log
π

! (✓=)
!0

?(✓=)3✓=
◆
� log 2

Thus, with
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�= = log
π
U2

Y

! (✓=)
!0

?(✓=)3✓= ⌫= = � log
π

! (✓=)
!0

?(✓=)3✓= (3.29)

we get the following main step towards the proof of theorems 3.4.1 and 3.4.2.

�c⇤(U2

Y
)�=  3KL(c⇤, c(.|y=,X=)) + |⌫= | + log 2 (3.30)

In the above proof we have assumed c⇤(UY) > 0, c⇤(U2

Y
) > 0. If c⇤(U2

Y
) = 0, there is nothing

to prove. If c⇤(UY) = 0, then following the steps of the proof in appendix C, we get Y2 = >%=
0
(1)

which is a contradiction. The first term �= is decomposed as

4
�= =

π
U2

Y\F=

! (✓=)
!0

?(✓=)3✓= +
π
U2

Y\F 2
=

! (✓=)
!0

?(✓=)3✓=

where {F=}1==1 is a suitably chosen sequence of sieves. Indeed our choice of F= is given by

F= =
n
✓= : |\ 9= |  ⇠=, 9 = 1, · · · , (=)

o
(3.31)

where ⇠= = 4
=
1/ = in theorem 3.4.1 and ⇠= = 4

=
1
n

2
=/ (=) in theorem 3.4.2 respectively where 1

is chosen to ensure Hellinger bracketing entropy (see definition A.0.2 in the appendix B) of F= is

well controlled (proposition A.0.16 in the appendix C). Secondly, the prior needs to give negligible

probability outside F 2

=
so that term 4

�= is well controlled. The prior in (3.9) satisfies this for

theorem 3.4.1 and theorem 3.4.2 with assumptions (A1), (A2) and (A1), (A4) respectively.

The second quantity ⌫= is controlled by the rate at which the prior gives mass to shrinking KL

neighborhoods of the true density ✓0. In theorem 3.4.1, this rate is controlled as long as the prior

parameters in (3.9) satisfy (A1) and (A2). In theorem 3.4.2, the same rate is controlled as long as

the prior parameters satisfies (A1) and (A4) and the true function [0 has a neural network solution

which satisfies assumption (A3).

Finally, we bound 3KL(c⇤, c(.|y=,X=)) by 3KL(@, c(.|y=,X=)) for a suitable @ 2 Q= (see

propositions B.0.5 and A.0.17 in the appendix). From Relation (A.30) in the appendix,

3 ! (@, c(.|y=,X=))  3KL(@, ?) +
����
π

log
! (✓=)
!0

@(✓=)3✓=
���� +

����log
π

! (✓=)
!0

?(✓=)3✓=
���� (3.32)
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The last term above is nothing but |⌫= |. The second term is the most crucial quantity.

����
π

log
! (✓=)
!0

@(✓=)3✓=
���� ⇡ =

π
3KL(✓0, ✓✓=)@(✓=)3✓=.

For both the theorems 3.4.1 and 3.4.2, the right hand side can always be controlled by choosing

@ = "+# (<⇤
=
, B

⇤
=
) for a suitable choice of the sequence <⇤

=
and B⇤

=
. We discuss the choice of B⇤

=
in

the appendix C. For theorem 3.4.1, <⇤
=
= \⇤

=
where [✓⇤

=
is the finite neural network approximation

of [0 and for theorem 3.4.2, the <⇤
=
= \

⇤
=

corresponds to [✓⇤
=
, the rate controlled neural network

approximation of assumption (A3). Finally, the first term in (3.32) is determined by both prior and

@. In theorem 3.4.1, it is controlled as long as the prior parameters in (3.9) satisfy (A1), (A2). In

theorem 3.4.2, the same rate is controlled as long as the prior parameters satisfies (A1), (A4) and

the sequence ✓⇤
=

satisfies assumption (A3).

In light of the above discussion, there are three main properties which a prior must satisfy to

allow for the convergence of variational posterior. For any a > 0

1. For a sequence of sieves {F=}1==1 with well controlled Hellinger bracketing entropy,

π
F 2
=

?(✓=)3✓=  4�=n
2
=a
, =! 1

2. With NY as in (3.28), π
N

Yn 2
=

?(✓=)3✓= � 4
�=n2

=a
, =! 1

3. For a @ satisfying
Ø
3KL(✓0, ✓✓=)@(✓=)3✓= < Y, =! 1,

3 ! (@, ?)  =n2
=
a, =! 1

Whereas condition 1 and 2 are standard assumptions for consistency of true posterior (see assump-

tions 1 and 2 in [4] and theorem 2 in [74]), condition 3 is an additional requirement which makes

the variational posterior consistent. The proof presented in this section can be generalized to a

much wider class of priors satisfying (1)-(3).
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3.4.3 Classification consistency

In this section, we discuss the classification accuracy of the predictions made by the variational

posterior by comparing to the optimal mis-classification error. In view of (4.2), let '(⇠̂) and

'(⇠Bayes) denote the classification accuracy under the variational classifier in (3.24) and the Bayes

classifier in (4.3) respectively, then

|'(⇠̂) � '(⇠Bayes) | = |⇢-⇢. |- [�⇠̂ (-)<. � �
⇠

Bayes (-)<. ] |

= |⇢-⇢. |- [(�⇠̂ (-)=0 � �⇠Bayes (-)=0)f([0(-)) + (�
⇠̂ (-)=1 � �⇠Bayes (-)=1) (1 � f([0(-)))] |

 2⇢- [�⇠̂ (-)<⇠Bayes (-) |f([0(-)) � 1/2|]

= 2⇢- [�f([̂(-))�1/2,f([0 (-))<1/2 |f([0(-)) � 1/2| + �
f([̂(-))<1/2,f([0 (-))�1/2 |f([0(-)) � 1/2|]

 2⇢- |f([0(-)) � f([̂(-)) | (3.33)

The above result establishes how the di�erence in classification accuracy depends on the logit links

[̂(-) and [0(-) as defined in (3.23) and (4.1) respectively. Using the above result, in corollary

3.4.3, we establish the classification accuracy of the variational estimate [̂(x) under no assumptions

on the true function [0(x). In corollary 3.4.4, we establish the same result under assumption (A3)

on the true function [0(x). Note, although theorem 3.4.1 requires minimal assumptions, it gives a

much weaker convergence result on the classification accuracy.

Corollary 3.4.3 Under the conditions of theorem 3.4.1,

|'(⇠̂) � '(⇠Bayes) |
%
=
0�! 0

By the above corollary, for any a > 0, |'(⇠̂) � '(⇠Bayes) | < a with probability tending to 1 as

= ! 1. Under the conditions of theorem 3.4.1, it can be established that the true posterior also

gives classification consistency at the same rate and there is no loss in using a variational posterior

approximation (see theorem A.0.18 part 2. in the appendix D).

Corollary 3.4.4 Under conditions of theorem 3.4.2, for every 0  ^  2/3,

n
�^
=
|'(⇠̂) � '(⇠Bayes) |

%
=
0�! 0
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By the above corollary, for any a > 0, 0  ^  2/3, |'(⇠̂) � '(⇠Bayes) | < an :
=

with probability

tending to 1 as = ! 1. Under the conditions of theorem 3.4.2, it can be established that the true

posterior satisfies |'(⇠̂) � '(⇠Bayes) | < an
:

=
for every a > 0, 0  ^  1 with probability tending

to 1 as =! 1 (see theorem A.0.19 part 2. in the appendix D). Thus, the classification consistency

occurs at the rate n2/3
=

for the variational posterior in contrast to n= for the true posterior.

3.5 Simulation Studies.

In this section, we study the performance of the four algorithms viz BBVI, BBVI-CV, BBVI-RMS,

BBVI-CV-RMS in the context of two simulation scenarios. We used approximate 2:1 ratio for

training and test cases. All the covariates are normalized. We adopted a 10-fold cross-validation

to avoid optimistically-biased estimates of model performance.

3.5.1 Simulation Scenarios

Scenario 1: We simulate = = 3000 observations from a 2-2-2-1 network, i.e. a neural network

with 2 input features, 2 hidden layer with 2 nodes each and 1 output layer as

H8 =

8>>>><
>>>>:

0, b2 +A2k(b1 +A1(k(b0 +A0x8))) > 0

1, otherwise

where x8 2 R2, are i.i.d. from # (0, 1) and entries in b 9 ,A 9 , 9 = 0, 1, 2 are i.i.d. from* (0, 1).

Scenario 2: We simulate = = 3000 observations from the following non linear function as

H8 =

8>>>><
>>>>:

0, 24G8 [1] + 3 sin(G8 [2]G8 [3]) + 4G8 [4]3 � 3 > 0

1, otherwise

where x8 2 R4 are i.i.d. from # (0, 1).

3.5.2 Parameters choice for statistical and computational models.

In order to implement the BBVI, BBVI-CV, BBVI-RMS, and BBVI-CV-RMS, we need to make a

valid choice of the prior parameters ` 9=, f9= for 9 = 1, · · · , = as in (3.9). We use the choice of
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` 9= = 0 and f9= = 1 for our prior parameters. Indeed, this choice satisfies conditions (A1), (A2)

and (A4) as assumed in the consistency proofs of theorems 3.4.1 and 3.4.2. Next, we need to make

a choice on the number nodes in each hidden layer. We experiment with 1 and 2 hidden layers with

2 nodes in each layer. The choice of number of nodes satisfy the assumption of theorem 3.4.1 and

3.4.2.

3.5.3 Gradient stabilization paramaters.

The choice of the initial learning rate is dC = 14�4
, C � 1 for BBVI and BBVI-CV and dC =

14�1
, C � 1 for BBVI-RMS and BBVI-CV-RMS. These values were chosen to ensure the optimal

performance of the algorithms, however little sensitivity to the initial choice was observed. As

explained in section 3.3, to allow for stable optimization, we study the sensitivity to the di�erent

samples sizes (, use of control variates and the RMSprop based gradient descent method. The

choice of sample size ( is sensitive to the performance to model in terms of algorithmic stability

and convergence time. Whereas each update with small sample size takes less time, the variability

of the estimate is high. On the other hand a large sample size leads to less variable estimates but

each update takes a much longer time. We experimented with ( = 200, ( = 500 and ( = 1000.

For scenario 1, Figures 3.1 and 3.2 illustrates how the ELBO changes with ( for one and two layers

respectively. For scenario 2, Figures 3.3 and 3.4 provide the same illustration for one and two layers

respectively. It is evident that increase in ( from 200 to 1000 stabilizes the ELBO and helps with a

faster convergence.

As explained in section 3.3.4, the maximization of the ELBO requires stabilization of the

variance of the stochastic gradient in (3.18) which is done by the use of control variate. For

scenario 1, Figures 3.1 and 3.2 illustrates how the ELBO changes with use of control variates for

one and two layers respectively. For scenario 2, Figures 3.3 and 3.4 provide the same illustration

for one and two layers respectively. It is evident that the use of control variates stabilizes the ELBO

by a huge margin and allows for its faster convergence. Finally, as explained in section A, the use

of RMSprop stabilizes the optimization of ELBO by normalizing the gradients by their running
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Figure 3.1: ELBO convergence of algorithms 1, 2, 4, 5 for scenario 1 for 1 layer.

Figure 3.2: ELBO convergence of algorithms 1, 2, 4, 5 for scenario 1 for 2 layers.
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magnitude. For scenario 1, Figures 3.1 and 3.2 illustrates how the ELBO changes with use of

RMSprop versus a fixed learning rate for one and two layers respectively. For scenario 2, Figures

3.3 and 3.4 provide the same illustration for one and two layers respectively. It is evident that the

use of RMSprop leads to stable ELBO and faster convergence rates.

Figure 3.3: ELBO convergence of algorithms 1, 2, 4, 5 for scenario 2 for 1 layer.

Figure 3.4: ELBO convergence of algorithms 1, 2, 4, 5 for scenario 1 for 2 layers.
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Testing accuracy(%) Convergence time(s)
Layers Method Sample size (S) Fixed RMSprop Fixed RMSprop
1 BBVI 200 97.41 ± 0.50 96.89 ± 0.93 23 114

500 97.72 ± 0.38 97.52 ± 0.74 55 106
1000 98.01 ± 0.33 97.38 ± 0.39 108 80

BBVI-CV 200 97.82 ± 0.40 97.61 ± 0.60 21 6
500 97.84 ± 0.40 97.67 ± 0.34 52 7
1000 97.84 ± 0.42 97.94 ± 0.40 104 10

2 BBVI 200 97.79 ± 0.71 97.02 ± 1.10 200 98
500 94.34 ± 3.82 97.75 ± 0.95 452 39
1000 91.50 ± 5.17 98.11 ± 0.42 904 65

BBVI-CV 200 96.34 ± 0.75 97.61 ± 0.44 118 17
500 96.33 ± 0.73 97.30 ± 0.60 272 23
1000 96.36 ± 0.74 97.74 ± 0.54 552 40

Table 3.1: Performance of algorithms algorithms 1, 2, 4, 5 for scenario 1.

3.5.4 Testing accuracy and convergence.

We evaluate the model’s performance for all four algorithms BBVI, BBVI-CV, BBVI-RMS and

BBVI-CV-RMS under two criteria (1) testing accuracy (2) convergence time. The test accuracy,

) (⇠) of a classifier is given by 1�'(⇠) where '(⇠) is the mis-classification error rate as described

in (4.2). The convergence criterion is defined as the point where Monte Carlo estimate of the ELBO

as in (3.19) converges.
For scenario 1, table 3.1 gives the performance of four algorithms for 1 and 2 layers. The best

average accuracy of 98.11% is obtained for BBVI-RMS with ( = 1000 with 2 layers. The optimal

time is achieved with BBVI-CV-RMS for ( = 200 for one layer with average accuracy of 97.61%.

We can make two conclusions here, although the true data is generated from 2 layer network

structure, a one layer approximation is fairly competitive. BBVI-CV-RMS with ( = 200 provides

the best convergence time of nearly 6 sec for one layer and 17 sec for two layers with competitive

accuracy. For scenario 2, table 3.2 gives the performance of four algorithms for 1 and 2 layers. The

best average accuracy of 91.12% is obtained for BBVI-CV-RMS with ( = 1000 with 2 layers. The

optimal time is achieved with BBVI-CV-RMS for ( = 200 for one layer with average accuracy of

91.11%. The improvement obtained by moving from 1 to 2 layers is only marginal. BBVI-CV-RMS

with ( = 200 provides the best convergence time of nearly 19 sec for one layer and 11 sec for two
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Testing accuracy(%) Convergence time(s)
Layers Method Sample size (S) Fixed RMSprop Fixed RMSprop
1 BBVI 200 83.66 ± 14.51 88.71 ± 7.12 190 15

500 90.22 ± 0.54 90.32 ± 0.98 364 390
1000 90.28 ± 0.75 90.41 ± 0.71 732 710

BBVI-CV 200 90.51 ± 0.87 90.42 ± 0.64 17 19
500 90.51 ± 0.87 90.65 ± 0.61 36 33
1000 90.53 ± 0.91 90.78 ± 0.49 69 37

2 BBVI 200 88.40 ± 0.50 89.89 ± 0.88 256 421
500 90.52 ± 0.38 90.48 ± 0.74 518 544
1000 90.61 ± 0.33 90.32 ± 0.65 906 608

BBVI-CV 200 90.62 ± 0.40 91.11 ± 0.58 444 11
500 90.74 ± 0.40 90.98 ± 0.54 862 12
1000 90.72 ± 0.42 91.12 ± 0.53 1646 13

Table 3.2: Performance of algorithms 1, 2, 4, 5 for scenario 2

layers with competitive accuracy.

3.5.5 Large number of layers and challenges.

We finally discuss the performance for all four algorithms BBVI-RMS and BBVI-CV-RMS when

the number of layers are 3. For 3 layers, using a fixed learning rate does not allow for the

maximization of the ELBO. This may be attributed to the di�erent scales of the gradients for the

di�erent parameters. Similar behavior is also observed in parametric optimization of artificial deep

neural networks (see [57] for more details). From table 3.3, it is evident that the improvement from

using 3 layers over 2 layers provides only a marginal improvement for scenario 1. For scenario 2,

the performance at 3 layers is worse than that in the case of 2 layers.

As explained in the previous sections, the performance of both BBVI-RMS and BBVI-CV-

RMS improves with increase in sample size (. However, a great deal of sensitivity to choice of the

initial learning rate was observed. The observed sensitivity was even more profound in the case

of control variates especially under scenario 2. For scenario 1, the optimal learning rate dC was

found to be 0.1 and 0.3 (S=200) and 0.35(S=500 and 1000) for C � 1 for BBVI-RMS and BBVI-

CV-RMS respectively. For scenario 2 under BBVI-RMS, the optimal learning rates were found to

be dC = 0.055, dC = 0.04 and dC = 0.04, C � 1 for ( = 200, ( = 500 and ( = 1000 respectively. For
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scenario 2 under for BBVI-CV-RMS, the optimal learning rates dC = 0.4, dC = 0.55 and dC = 0.63,

C � 1 for ( = 200, ( = 500 and ( = 1000 respectively. With the optimal choice of dC at hand,

the BBVI-CV-RMS provided faster convergence results with a comparable test accuracy to that

of BBVI-RMS. This sensitivity to the choice of the initial learning rate especially in the case of

control variates for large number of layers needs to be explored as a part of future work.

Scenario 1 Scenario 2
Method S Testing accuracy(%) Time(s) Testing accuracy(%) Time(s)
BBVI-RMS 200 97.76 ± 0.87 218 84.68 ± 4.85 423

500 97.65 ± 0.83 169 88.00 ± 5.56 631
1000 98.21 ± 0.73 132 90.69 ± 0.67 714

BBVI-CV-RMS 200 96.23 ± 1.05 212 84.53 ± 8.90 33
500 97.83 ± 0.81 166 88.28 ± 2.03 37
1000 98.42 ± 0.72 124 89.33 ± 1.67 45

Table 3.3: Performance of algorithms 1, 2, 4, 5 for scenario 1 and scenario 2 for 3 layers.

3.6 Numerical Properties and Alzheimer’s Disease Study

The transition from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) is of great

interest for clinical researchers. Several studies over the past decade have shown and compared the

performance of di�erent machine learning methods on this classification task. For this classification

problem, we illustrate the performance of variational Bayesian neural networks as developed under

section 3.3 in terms of classification accuracy, numerical complexity and time of convergence. We

implemented both algorithms, algorithm 1 and 2 and shall hence forth refer to them as BBVI and

BBVI-CV respectively. For a comparative baseline, we also report the performance for several

machine learning techniques as applicable to this task. We like to emphasize that, our primary goal

here is to illustrate the computational methodology rather incremental improvement for a specific

application.

Alzheimer’s disease (AD) is a progressive, age-related, neurodegenerative disease and the most

common cause of dementia [147, 148, 68]. Behaviorally, AD is commonly preceded by mild

cognitive impairment (MCI), a syndrome characterized by decline in memory and other cognitive

domains that exceed cognitive decrements associated with normal aging [148, 103]. However,
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the prodromal symptoms of MCI are not prognostically deterministic: individuals with MCI tend

to progress to probable AD at a rate of 8%-15% per year, and most conversions occur within

3 years of presentation, [24, 44, 2]. We used T1-weighted MRI images from the collection of

standardized datasets. The description of the standardized MRI imaging from ADNI can be found

in http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data.

This study used a subset of the MCI subjects from ADNI-1, who had data from demographic,

clinical cognitive assessments, APOE4 genotyping, and MRI measurements. In total, there are

819 individuals with a baseline diagnosis of MCI, but we only consider patients whose follow-up

period was at least 36 months and no missing values. The final samples included 265 subjects

which included participants who were stable in their diagnosis (MCI-S) and those who converted

to a diagnosis of AD over 3 years (MCI-C). We considered a total of 18 clinical predictors as

potential of MCI-to-AD progression in our classification analyses. Structural MRI data were

collected according to the ADNI acquisition protocol using T1-weighted scans (GradWarp, B1

Correction, N3, Scaled). Based on the extant literature, [68, 81], we used 24 ROI features as

clinically significant of MCI to dementia progression.

The dependence and interactions among di�erent modes of features (clinical, MRI) and within

the modes may be di�erent and hard to model explicitly. Thus, a neural network-based modeling

is intuitive from predictive modeling and machine learning perspective. Of the 265 patients, 186

are selected by simple random sample as training cases and the remaining 79 as test cases. The

approximate 2:1 ratio for training and test cases is, of course, arbitrary. All the covariates (except

categorical variables) were z-normalized. The outcome H8 for the 8th patient is either 1 for MCI-C or

0 for MCI-S in classification study. 10-fold cross-validation is used to avoid optimistically-biased

estimates of model performance.

3.6.1 Parameters choice for statistical and computational models.

In order to implement the BBVI, BBVI-CV, BBVI-RMS, and BBVI-CV-RMS, we use the choice

of ` 9= = 0 and f9= = 1 similar to section 3.6. For the number of layers, we found that one
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layer provides a good enough performance and inclusion of addition layers do not o�er additional

improvement in the accuracy. We tried with :1= = 2, 10, 20 and obtained the best results at :1= = 10,

the results of which are reported in this thesis.

3.6.2 Gradient stabilization paramaters.

The choice of the initial learning rate is dC = 14�4
, C � 1 for BBVI and BBVI-CV and dC =

14�1
, C � 1 for BBVI-RMS and BBVI-CV-RMS. As explained in section 3.3, to allow for stable

optimization, we study the sensitivity to the di�erent samples sizes (, use of control variates and

the RMSprop based gradient descent method. For ADNI, figure 3.5 illustrates how the ELBO

changes with (. It is evident that increase in ( from 200 to 1000 stabilizes the ELBO and helps

with a faster convergence. For ADNI, figure 3.5 illustrates how the ELBO changes with use of

control variates. It is evident that the use of control variates stabilizes the ELBO by a huge margin

and allows for its faster convergence. Similary, figure 3.5 also illustrates how the ELBO changes

with use of RMSprop versus a fixed learning rate. It is evident that the use of RMSprop leads to

stable ELBO and faster convergence rates.

Figure 3.5: ELBO convergence of algorithms 1, 2, 4, 5 for ADNI.
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3.6.3 Testing accuracy and convergence.

For ADNI, table 3.4 gives the performance of BBVI, BBVI-CV, BBVI-RMS, BBVI-CV-RMS for

one layer. The best average accuracy of 76.88% was obtained for BBVI with ( = 200 for BBVI.

The optimal convergence time is achieved with BBVI-CV-RMS for ( = 200 for one layer with

average accuracy of 76.25% and convergence time is 36 seconds. Thus, the conclusions for real

data corroborate the use of BBVI-CV-RMS for a single layer NN.

Testing accuracy(%) Convergence time(s)
Method Sample size (S) Fixed RMSprop Fixed RMSprop
BBVI 200 76.88 ± 3.32 75.75 ± 3.27 68 49

500 76.75 ± 3.63 76.50 ± 3.90 105 62
1000 76.75 ± 3.12 76.63 ± 3.21 231 65

BBVI-CV 200 76.75 ± 3.41 76.25 ± 3.83 146 36
500 76.75 ± 3.58 76.63 ± 3.95 210 38
1000 76.75 ± 3.71 76.75 ± 4.07 264 39

Table 3.4: Performance of algorithms 1, 2, 4, 5 for ADNI.

3.6.4 Numerical comparison with popular models

In this section, we numerically compare the testing accuracy of BBVI, BBVI-CV, BBVI-RMS

and BBVI-CV-RMS and BBVI-CV to a few benchmark models which include logistic regression

(LR) and support vector machine (SVM) as developed by [101, 87] and frequentist artificial neural

network (ANN) [20, 54]. We also compared with a Bayesian neural network models which uses

Stochastic Gradient MCMC [137] . For all neural network models, viz, artificial neural network

(ANN) and Stochastic Gradient MCMC Bayesian neural network (SG-MCMC), the number of

nodes are fixed at := = 10 with a single hidden layer.

Table 3.5 provides the training and testing accuracy and empirical standard errors for all methods

under consideration. For the 4 models viz BBVI, BBVI-CV, BBVI-RMS and BBVI-CV-RMS, the

results reported correspond to the optimal parameter combination which provides the best average

test accuracy. Little to no di�erence was observed across di�erent choices of the algorithm

parameters (see table 3.4). LR, SVM, ANN and SG-MCMC have considerably larger standard
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errors for testing accuracy. One might observe an improvement in performance of SG-MCMC

Bayesian neural network by optimally choosing their tuning parameters. However studying that

is beyond the scope of this thesis as they are di�erent methodology and the underlying statistical

theories are not well established.

Classifier Training accuracy (%) Testing accuracy (%)
LR 82.1 ± 2.5 70.9 ± 5.5
SVM 80.3 ± 2.2 70.6 ± 5.5
ANN 82.0 ± 5.6 74.1 ± 6.8
SG-MCMC 80.8 ± 4.6 73.5 ± 5.9
BBVI 80.7 ± 2.1 76.9 ± 3.3
BBVI-CV 80.3 ± 2.3 76.8 ± 3.4
BBVI-RMS 81.2 ± 2.4 76.8 ± 3.3
BBVI-CV-RMS 82.8 ± 1.6 76.8 ± 4.1

Table 3.5: Performance for di�erent classifiers. LR: Logistic regression. SVM: Support vector
machine. ANN: Frequentist artificial neural network. SG-MCMC: Stochastic gradient MCMC
Bayesian neural network

3.7 Conclusion and Discussion

The theoretical rigour and computational detail for variational Bayes neural network classifier

presented in this article is novel and unique contribution to statistical literature. Although the

variational Bayes is popular in machine learning, neither the computational method nor the statistical

properties are well understood for complex modeling such as neural networks. We characterize the

prior distributions and the variational family for consistent Bayesian estimation. The theory also

quantifies the loss due to VB numerical approximation compared to the true posterior distribution.

For practical implementation, we reveal that the algorithm may not be as simple and straightforward

as it sounds in computer science literature, rather it requires careful crafting on several parameters

associated in various steps. Nevertheless, the computation could be quite faster compared to popular

Monte Carlo Markov Chain procedure of approximating the posterior distributions.

Although we build the framework on a multi-layer neural networks model with simplistic

prior structure, the detail statistical theory and computational methodology are quite involved.

This investigation opens up possibility of exploring much wider class of models and priors. For
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example, shrinkage priors, such as double exponential and horseshoe priors can be explored for

building sparse neural networks or one can experiment with various other variational families.

However, their computational details and associated statistical properties are not immediate. We

hope this research will accelerate further development of statistical and computational foundation

for variational inference in general machine learning research.
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CHAPTER 4

LEARNING INTRINSIC DIMENSIONALITY OF FEATURE SPACE WITH
VARIATIONAL BAYES NEURAL NETWORKS

4.1 Introduction

Bayesian neural networks (BNNs) have achieved state-of-the-art results in a wide range of tasks,

especially in high dimensional data analysis including image recognition, biomedical diagnosis and

others. One of the major disadvantage in using neural networks and deep networks is that they

require a huge number of training data due to the large number of inherent parameters [140, 45]. For

example, high-dimensional neural networks have been widely applied with regularization, dropout

techniques or early stopping to prevent overfitting [118, 143]. Furthermore, most commonly used

dimensional reduction techniques include Lasso [17], Ridge [58], Elastic net [152], Sparse group

lasso [116], Bayesian Lasso [98], Horseshoe prior [16], principal component analysis [115]. Even

though the ;1 and ;2 norm can force the weights to become zero or small, they do not have the

regularizing e�ect of making the computed function simpler [70]. Additionally, all these methods

rely on the use of whole data which severely increases the cost of both computation and memory

storage.

In this chapter, we propose the use of a BNN on a compressed feature space to take care of

the large ? small = problem by projecting the feature space onto a smaller dimensional space

using a random projection matrix. Random-projection (RP) is a powerful dimension reduction

technique which uses RP matrices to map data into low-dimensional spaces. The use of RP in high

dimensional statistics is motivated from the Johnson–Lindenstrauss Lemma [27] which states for

x1, · · · ,x= 2 R?, n 2 (0, 1) and 3 > 8 log =/n2, there exists a linear map 5 : R? ! R3 such that

(1 � n) | |G8 � G 9 | |22  | | 5 (x8) � 5 (x 9 ) | |22  (1 + n) | |G8 � G 9 | |22 for 8, 9 = 1, · · · , =. The properties of

the RPs and their applications to statistical problems were furthered explored in [33, 13], etc..

In order to reduce the sensitivity to the choice of random matrices, one must pool information
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obtained from multiple projections. In this chapter, we adopt a Bayesian model averaging approach

for combining information across multiple instances RP based neural networks. There are two

main challenges of implementing Bayesian modeling averaging (1) due to the convoluted structure

of the neural network likelihood, closed form expressions do not exist for the posterior distribution

under each model (2) posterior distribution of model weights is completely intractable and no

closed form solutions exist. Thereby, the implementation of standard Markov Chain Monte Carlo

(MCMC) is next to impossible. Further, the computation and storage cost associated with MCMC

implementation is humongous since each posterior model weight is dependent on the posterior

model weight of the remaining models.

To address the challenges of MCMC implementation, we use variational inference (VI) [63, 9]

approach to provide an approximate solution for Bayesian model averaging (BMA) to allow for

combining of BNNs with multiple instances of compression on the feature space. There has been

a plethora of literature implementing variational inference in the neural networks [10]. However,

their implementation makes use of the entire feature space, thereby putting a great burden on

computational stability and memory storage. We address two main challenges in this thesis (1)

developing a variational Bayes (VB) solution for BNNs with compressed feature space (2) providing

a VB solution for doing BMA across multiple instances of RP. Further, for a given instance of

random compression, we establish the posterior contraction rates for the variational posterior for

classification (the theory is extendable to regression set up with minor modifications). In this

direction, we provide characterization of the prior, variational posterior and the RP matrix which

guarantees the convergence of the variational Bayes neural network (VBNN) under the compressed

feature space to the true density of the observations.

The main advantage of implementing a BMA approach is that it gives the posterior model

weights under each compression of feature space. The so obtained posterior model weights in turn

induce a probability distribution on the projected dimension of the feature space. The mode of this

probability distribution concentrates around the intrinsic dimensionality of the feature space. To

improve the prediction performance, the BMA approach is then applied to a pool of RP matrices
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whose projected dimension lie in a neighborhood of the intrinsic dimensionality. Finally, we study

the numerical behavior of the proposed procedure in the light of simulation and real data sets.

To the best of our knowledge there exist no literature which provides theoretical guarantees and

computation algorithm of VBNNs with compressed feature space.

For a long time, people have studied feature reduction using projection matrix in both supervised

and unsupervised learning. [146] proposed semisupvervised classification with graph construction

and the idea of projection matrix which is used to preserve the local and global structure of

data. In addition to semisupervised learning, projection method have been used in convolutional

neural network, [125] introduced an e�cient convolutional neural network which can control how

much context information can be incorporated into each specific position using word-embedding

projection matrix. In terms of unsupervised learning, [134] proposed an unsupervised adaptive

embedding method which combined the calculation of projection matrix and construction of a�nity

graph together.

Early works on Bayesian neural networks (BNNs) have been comprehensively discussed by

[85, 96, 71]. With the computational and information science advancement, recent developments

with higher e�cient BNNs can be found in [120, 93, 61, 64] and the references therein. However,

with increase in the dimension of the feature space, the prediction accuracy of BNN’s is severely

compromised. To circumvent this issue, penalization and sparse network based approach has been

studied by [80, 45, 140, 48, 3], etc.. The major drawback of these sparsity based methods is one

needs to work on the entire data which increases the time of implementation by a manifold. With the

work of [27], the idea of using RPs to overcome the curse of dimensionality became very popular.

Further, RPs have been used in a wide range of statistical problems [1, 86, 84, 39, 55, 40, 49],

etc.. To ensemble information across projections, [14] uses a bagging approach for classification

problems as in [12]. On the other hand, the works of [52] and [53] propose the use of BMA in the

context of linear regression and Gaussian processes.

There exists a plethora of literature implementing variational inference [9] to overcome the

drawback of a full MCMC implementation. The majority of Black-box variational methods for
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Bayesian learning of neural networks are based on Pathwise gradient estimator [41, 83, 15, 11, 121],

which is computed using reparameterization trick [106]. Another line of Black-box variational

extensions is based on the score-function estimator using Monte Carlo estimator to find the full

gradient, including control variate [107] and stochastic search [97]. Theoretical properties of the

variational posterior in context of individual models have been studied in the works of [6, 135,

100, 149, 3]. The works of [65] and [72] explore variational inference for BMA in the context of

generalized linear models and graph on functions respectively. To the best of our knowledge, BMA

in context of Bayesian neural networks with compressed feature space remains unexplored.

Firstly, we introduce the RP idea in a neural network predictive model where the feature space

grow exponentially with training sample size which in turn significantly reduces the computational

complexity and storage capacity associated with BNNs. Second, we apply the BMA idea in

conjunction with VB to allow for parallelization across RPs without compromising the uncertainty

quantification of a Bayesian approach. Third, we develop the associated statistical foundation,

namely the posterior contraction of the variational posterior for BNNs under a compressed feature

space. The theory not only provide trustworthiness to our model, the results also provide theoretical

guidelines for prior selection and the choice of variational family of distributions. Fourth, we

innovatively apply the learned posterior model weights to obtain the intrinsic dimensionality of

the feature space. Fifth, to improve predictive accuracy, we employ VB with BMA on a subspace

of RPs with projected dimension centred around the intrinsic dimensionality. Fifthly, we provide

numerical results to enunciate that our proposed approach learns well the intrinsic dimension of

feature space and beats the predictive performance of all competing methods for the large ? small =

problems. Lastly, the performance of the proposed methodology has been enunciated in the context

real data sets like ADNI and MNIST.
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4.2 Bayesian neural network for random projection based compressed fea-
ture space

4.2.1 Bayesian neural network model

For a binary random variable . , representing the class levels 0 or 1, and a feature vector - 2 R?

with some marginal distribution %- , consider the classification problem

%(. = 1|- = x) = f([0(x)) = 1 � %(. = 0|- = x) (4.1)

where [0(·) : R? ! R is some continuous function and f(.) = 4
(.)/(1 + 4(.)) is the sigmoid

function. Following [14] and [141], the test error of a classifier ⇠ is given by

'(⇠) =
π
R?⇥{0,1}

�{⇠ (-)<. }3%- ,. (4.2)

where the joint density %- ,. is a product of (4.1) and %- . The Bayes classifier is then

⇠
Bayes(x) =

8>>>><
>>>>:

1, f([0(x)) � 1/2

0, otherwise
(4.3)

Since [0(x) is unknown, we thereby use single-layer neural network model approximation with :

nodes:

[✓ (x) = V0 +
:=’
9=1

V9k(W90 + �)
9
x) = V0 + �>

k(�0 + �x) (4.4)

where � = [V0, · · · , V: ], �0 = [W10, · · · , W:0] and � = [�1, · · · , �: ] and ✓ = (V0,�, �0, vec(�))

is the set of all the parameters. Note, ✓ is a  ⇥ 1 vector where  = 1 + : + : (? + 1). Both : and

(? >> =) grow as a function of =. We then use the following model for the problem in (4.1).

%(. = 1|- = x) = f([✓ (x)) = 1 � %(. = 0|- = x) (4.5)

4.2.2 Compression in the feature space with random projections

There exists several choices for compressing the feature space X using RP matrices such as those

proposed in [33, 13, 14, 27, 26], etc.. For a given choice of the compression matrix �, we consider
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single-layer neural network with : nodes for the input vector �x as

[✓ (�x) = V0 + �>
k(�0 + �(�x)) (4.6)

where � is a 3� ⇥ ? projection matrix, � and �0 are : ⇥ 1 vector and �> = [�1, · · · , �: ] is now a

3� ⇥ : matrix. Thus, in the projected space the number of parameters reduce from  = : ? + 2: + 1

to  � = :3� + 2: + 1. This leads to the following model under the projected space

%(. = 1|- = x) = f([✓ (�x)) = 1 � %(. = 0|- = x) (4.7)

Experiments with di�erent projection matrices suggested the use of the one in [52]. In this method,

we draw the elements �8 9 independently, setting �8 9 = �1/p0⇤, with probability 0
2
⇤, 0 with

probability 20⇤(1 � 0⇤) and 1/p0⇤ with probability (1 � 0⇤)2, with the rows of � then normalized

using Gram-Schmidt orthogonalization. The parameter 0⇤ 2 (0.1, 1) provides a handle on the

sparsity of the projection matrix. We do not rely on the data to generate �. Also, the algorithmic

implementation discussed can be generalized to any arbitrary class of projection matrices.

4.2.3 Prior choice

For the neural network [✓� (�x) based on the projected input �x, we assume an independent

Gaussian prior on each of the entries of ✓�, i.e. ?(✓� |"�) = MVN(µ�, diag(��)), where

diag(��) is a diagonal matrix. With this choice of the prior and likelihood as in (4.7), the posterior

distribution based on the compressed data set (H8, �x8)=
8=1 is given by

c(✓� |"�) =
! (✓� |"�)?(✓� |"�)Ø
! (✓� |"�)?(✓� |"�)3✓�

(4.8)

where "� is the model induced by random matrix � with corresponding likelihood ! (✓� |"�) =Œ
=

8=1 exp(H8[✓ (�x8) � log(1 + exp([✓ (�x8)))). The denominator in (4.8) is free of ✓�.
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4.3 Variational Bayes model averaging for pooling multiple instances of ran-
dom projection.

4.3.1 Bayesian model averaging

Ensemble learning methods are most widely used in machine learning literature to pool across

varying classifiers to solve given problem a [32]. In this section, we address the same problem from

a Bayesian perspective. Let A denote a subspace of the space of all random matrices. We assume

that each RP matrix induces a separate model "�, � 2 A on the data D = (H8,x8)=
8=1. Thus, the

predictive distribution of a new observation H=+1 given x=+1 is

?(H=+1 |x=+1,D) =
π

?(H=+1 |x=+1,"�, ✓�,D)c("�, ✓� |D)3`("�, ✓�) (4.9)

where ` is the product measure of counting and Lebesgue measure. Note, that in the implementation

of (4.9), the most di�cult quantity to compute is c("�, ✓� |D). In [52], explicit forms could be

obtained for linear regression model, something which is next to impossible for convoluted neural

network structure. In the next section, we circumvent this issue using variational inference.

4.3.2 ELBO derivation

Let c("�, ✓� |D) denote the joint density of the parameter and the model conditional on the data.

We posit a variational distribution @("�, ✓�) of the form @(✓� |"�) ⇠MVN(m�, diag(s�)) where

s� is a diagonal matrix and @("�) are weights for the individual model. Thus, our variational

family may be expressed as

Q= =
(
@("�, ✓�) = @("�)@(✓� |"�) =

@("�) (2c)� �/2

|diag(s�) |1/2
4
� 1

2 (✓�m�)> (diag(s�))�1 (✓�m�)
)

The optimal variational distribution minimizes the Kullback-Leibler distance between c(.|D) and

the variational family Q=. Thus, @⇤ = argmin
@2Q=

3KL(@, c(.|D)), where

3KL(@, c(.|D)) = ⇢& (log c(✓�,"� |D) � log @(✓�,"�))

= � log c(D) + ELBO
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where ELBO = ⇢& (log c(✓�,"�,D) � log @(\�,"�)). Since � log c(D) is independent of ✓�

and "�, therefore @⇤("�, ✓�) = argmin
@2Q=

ELBO(@, c(.|D)). We next simplify the ELBO as

⇢& (log c(✓�,"�,D) � log @(✓�,"�))

=
’
�2A

@("�)⇢&(✓� |"�) (log c(D|"�, ✓�) + log c(✓� |"�)

+ log c("�) � log @(✓� |"�) � log @("�))

=
’
�

@("�)⇢&(✓� |"�) (log ! (✓� |"�) + log ?(✓� |"�)

+ log c("�) � log @(✓� |"�) � log @("�))

=
’
�

@("�) (L(.|"�) + log c("�) � log @("�))

where L(.|"�) = ⇢
&(✓� |"�) (log ! (✓� |"�) + log ?(✓� |"�) � log @(✓� |"�)) is nothing but the

ELBO under the model "�. Note, that the derivative of the ELBO with respect to variational

parameters m�, s� is given by

rm�,s�ELBO = @("�)rm�,s�L(.|"�)

Since @("�) is just constant, thus the gradient update for model specific variational parameters

is nothing but the gradient update from each individual model. Also, equating the derivative of

ELBO with respect to @("�) to zero, we get

r
@("�)ELBO = 0

=) log c("�) � log @("�) + L(.|"�) � 1 = 0

=) @("�) / exp(log c("�) + L(.|"�))

Thus, the optimal model weights are @⇤("�) = exp(log c("�) +L⇤(.|"�))/
Õ
�

exp(log c("�) +

L⇤(.|"�)) where L⇤(.|"�) are is the optimal ELBO under models �.

Note, that the main advantage of the above derivation is that the models can be individually

trained in a parallel fashion and the final model weights depend only on the final ELBO values from

each model.
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4.4 Intrinsic dimensionality and prediction

4.4.1 Optimal dimension neighborhood selection

Let 3� ⇥ ? denote the dimension of a RP matrix � 2 A. Using section 4.3, one can obtain the

posterior model weights @⇤("�). The values of 3� with largest values of the posterior model

weights @("�) tend to concentrate around the optimal dimension of the feature space.

Let 31  32  · · · be an enumeration of the unique values of 3�, � 2 M�. Define the average

posterior probability of each dimension value 38 as

@
⇤
8
=

1
|A8 |

’
�2A8

@("�)

where A8 = {� 2 A : 3� = 38}. The plot of (8, @⇤
8
) attains its peak around optimal dimension of

feature space for prediction of the response. Let 3⇤ = argmax
8

@
⇤
8
, then for some a1, a2 > 0,

I3⇤ = [b3⇤(1 � a1)c, d3⇤(1 + a2)e] (4.10)

is the optimal dimension neighborhood which is used for the final classification task. Finally let

A3
⇤ be a subspace of RP matrices with dimension 3� ⇥ ? where 3� 2 I3⇤ .

4.4.2 Classification based on optimal neigborhood choice

Using section 4.3, obtain the variational distribution @⇤("�, ✓�) for every � 2 A3
⇤ . Let b[� =Ø

[✓� (�x=+1)@⇤(✓� |"�)3\� be the variational Bayes estimator of under model "�. Define

b[(x=+1) =
’
�2A3⇤

@
⇤("�)b[� (x=+1) (4.11)

Based on b[(x=+1) define the classification rule as

bH=+1 = I [b[(x=+1) � 0] (4.12)

Remark: Note, the proposed estimator [̂(x=+1) is not the exact variational Bayes estimator of

[(x=+1) = log(%(H=+1 = 1|x=+1)/%(H=+1 = 0|x=+1)). However, it is a good enough approximator

for su�ciently large training size and computationally way faster, especially when the number of

models and test samples are large.
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4.5 Algorithm and its implementation.

Algorithm 3 RPVBNN

1. Initialization: (m0
�
, s0

�
, d

{C}
�
)�2A where d{C}

�
, C � 0 is step size sequence for model �.

2. Parallelization :

a) Set C = 1,

b) For � 2 A, calculate the gradient of bL(.|"�) in (4.14) with respect to m� and s�.

c) Update the parameters mC

�
and sC

�
as

mC+1
�

= mC

�
+ dC

�
rm�

bL(.|"�) |m�=mC
�

sC+1
�

= sC
�
+ dC

�
rs�

bL(.|"�) |s�=sC�

d) Set C = C + 1.

e) Repeat steps (b)-(d) till convergence.

3. Model averaging:

a) For the optimized values (m⇤
�
, s⇤

�
)�2A , compute ( bL⇤(.|"�))�2A using (4.14).

b) Compute the model weights

@
⇤("�) =

exp(log c("�) + bL⇤(.|"�))Õ
�2A exp(log c("�) + bL⇤(.|"�))

4. Optimal neighborhood selection: Using the values (@⇤("�))�2A compute

a) The optimal neighborhood I3⇤ as in (4.10).

b) The subspace A3
⇤ using based on I3⇤ (see section 4.4.1).

5. Classification:

a) Repeat steps (1)-(3) for � 2 A3
⇤ .

b) Compute b[(x=+1) and bH=+1 using relations (4.11) and (4.12) respectively.

77



Gradient update equations. For @(✓� |"�) =
Œ
 �
9=1(1/(2cB2� 9 )1/2)4�(\�9�<�9 )2/(2B2�9 ) and ?(✓� |"�) =Œ

:

9=1(1/(2cf2
� 9
)1/2)4�(\�9�`�9 )2/(2f2

�9 ) , the ELBO is

L(.|"�) = ⇢&(✓� |"�) (log ! (✓� |"�))

� 3KL(@(.|"�), ?(.|"�)))

where 3KL(@(.|"�), ?(.|"�))) is given by

 �’
9=1

 
log

f�9

B� 9

+
B

2
� 9

2f2
� 9

+
(<�9 � `� 9 )2

2f2
� 9

� 1
2

!
(4.13)

Since ⇢& (log ! (✓� |"�)) cannot be computed explicitly, generate , samples ✓� [1], · · · , ✓� [,]

from &(✓� |"�) and compute b! (.|"�) = (1/,)Õ,

F=1 log ! (✓� [F] |"�). Thus, the final gradient

function which is optimized w.r.t. to the parameters m� and s� is given by

bL(.|"�) = b! (.|"�) � 3KL(@(.|"�), ?(.|"�))) (4.14)

Remark: Since, we need the variance parameter B� 9 to be always positive, thus, we consider the

reparametrization, B� 9 = log(1+4B̃�9 ) and update the parameters B̃� 9 instead whererB̃�9
bL(.|"�) =

4
B̃�9/(1 + 4B̃�9 )rB�9L(.|"�) |log(1+4B̃�9 ) where rB�9

bL(.|"�) |log(1+4B̃�9 ) is the derivative of bL(.|"�)

with respect to B� 9 evaluated at B� 9 = log(1 + 4B̃�9 ).

4.6 Theoretical results.

In this section, we study the convergence properties of the variational posterior for a given projection

matrix (without model averaging). The results presented here are similar in spirit to the notion of

posterior consistency in [52].

Let 50(H,x) and 5✓ (H,x) be the joint density of the data D = (H8,x8)=
8=1 under the truth and

the model respectively. Without loss of generality, we assume x8 ⇠ * [0, 1] ?, which implies

50(x) = 5✓ (x) = 1. This implies that the joint distribution of (H8,x8)=
8=1 depends only the

conditional distribution of . |- = x. Thus, under the model indexed by the projection matrix �,

5✓ (H,x) = 5✓ (H |x) 5 (x) 5✓ (x) = ✓✓ (H, �x)

50(H,x) = 50(H |x) 50(�x) = ✓0(H,x) (4.15)
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where ✓\ (H1, �x) = exp(H[✓ (�x) � log(1 + exp([✓ (�x)))) and ✓0(H,x) = exp(H[0(x) � log(1 +

exp([0(x)))) are defined respectively. We next define the Hellinger neighborhood of the true

function density function 50 = ✓0 as

UY = {✓ : 3H(✓0, ✓✓) > Y}

232
H(✓0, ✓✓) =

π
x

’
H

⇣p
✓0(H,x) �

p
✓✓ (H, �x)

⌘2
3x. (4.16)

We next give the set of conditions which ensure that the variational posterior for a given

projection matrix �, is consistent to the true density function 50. Recall ? is the total number of

covariates, : is the number of nodes. If the dimension of � is 3� ⇥ ?, then the total number of

parameters in the model indexed by � is  � = 1 + : + : (3� + 1), i.e. ✓ is  � ⇥ 1 vector.

Let [✓⇤ (x) = V
⇤
0 + Õ

:

9=1 V
⇤
9
k(�⇤

9

>x) be the neural network which can approximate the true

function [0(x) in !1 norm. The existence of such a neural network is guaraneteed by [60].

Suppose � is an orthonormal projection matrix, prior ?(✓�) = MVN(µ�, diag(��)), =n2
=
! 1

and the following conditions hold:

1. (C1): :� log = = >(=n2
=
), ? = >(4=n2

=).

2. (C2): | |µV | |21 = >(=n2
=
), log | |�V | |1 = $ (log =), | |��1

V
| |1 = $ (1), Õ:

9=1 | |�>µ 9W | |1 = $ (1),

sup
9=1,··· ,: log | |� 9W | |1 = $ (log =), sup

9=1,··· ,: | |��1
9W
| |1 = $ (1).

3. (C3): | |[0 � [✓⇤ | |1 = >(n2
=
), | |�⇤ | |21 = >(=n2

=
), sup

9=1,··· ,: | | (� � �
>
�)W⇤

9
| |1 = >(=�1),

Õ
:

9=1 | |�⇤
9
| |21 = $ (1).

4. (C4): log | |�x| | = $ (log =), 1/| |�x| | = >(=n2
=
)

Condition (C1) gives restrictions on the number of e�ective parameters (⇠ :3�) and the true

number of covariates (⇠ ?). Condition (C2) puts restrictions on the growth of the prior parameters.

Note, although the condition
Õ
:

9=1 | |�>µ 9W | |1 = $ (1) seems to depend on the matrix �, it can be

easily ensured by setting µ 9W = 0. Condition (C3) quantifies how fast the neural network solution

converges to the true function while keeping their coe�cients magnitude under control. Although,
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the condition sup
9=1,··· ,: | | (� � �>�)W⇤9 | |1 = >(=�1) is restrictive, it holds for any W⇤

9
in the column

space of the projection matrix �. Condition (C4) for projection matrices relates to condition (iii)

in Theorem 3.1 of [52].

For the posterior in (4.8), let the variational posterior be

@
⇤
�
= argmin

@2Q�
=

ELBO (@, c(.|D,"�))

where Q�

=
= {@(✓�) = MVN(m�, diag(s�))}. For a fixed �, one can obtain @⇤

�
by following the

step 2. in algorithm 3.

Theorem: Suppose =n2
=
! 1 and conditions (C1)-(C4) hold, then for any Y > 0,

@
⇤
�
(U2

Yn=
)
%
=
0! 0

where %(=)
0 is the joint distribution of (H8,x8)=

8=1 under (4.1).

The proof has been presented in the supplement section.

The above proof shows that the variational posterior @⇤
�

concentrates around shrinking Hellinger

neighborhoods of the true function 50 with overwhelming probability.

4.7 Numerical Study

4.7.1 Problem setup

We mimic the RP generation mechanism as in section 4.2.2. We fix the value of 0⇤ at 0.3 for

this whole section. We also experimented with the RP mechanism in [14] where the � is taken

to the matrix of left singular vectors in the eigenvalue decomposition of �̃ where �̃ has all entries

drawn from # (0, 1) distribution. However we omit the results since no significant improvement

was observed. Further, the Algorithm 3 is also sensitive to the choice of the learning rate d, the

number of projections and the batch size. In this thesis, we do not explore the sensitivity with

respect to these parameters due to their small impact. For the number of projection matrices, we

followed the 2-power rule as: let the range of the project dimension 3 is [?1, ?2], the number of

projections is chosen as # = D(min{28 : 28 � (?2 � ?1) > 0}). This ensures that approximately

80



D number of 3 values are chosen from any unit sub-interval of [?1, ?2]. We employ parallel

programming technique across di�erent projection to reduce computational time. We first learn

the optimal dimension of the data and then use it to improve the predictive accuracy. We analyze

the performance of the algorithm in light of four data sets, two simulated datasets generated using

a non linear function in the input feature space and two real data set obtained from neuroimaging

and computer vision studies.

4.7.2 Datasets

We consider four cases of the data sets. The details of each data are summarized in Table 4.1. In

the first two cases, we use the non-linear system [80] to generate observations with varying number

of features. For these two data sets, the intrinsic dimensionality of the feature space is defined by

number of active variables used in the data generation. We employ our algorithm to validate if

it can recover the intrinsic dimensionality of the feature space and provide desirable classification

accuracy. For the remaining two data sets, the intrinsic dimensionality is unknown. In the third

case, we use the ADNI dataset from neuroimaging studies. In the last case, we use the MNIST

dataset from computer vision studies. The proposed algorithm allows us to learn the intrinsic

dimensionality of the feature space in both neuroimaging and computer vision applications.

For implementation, all input variables are I� normalized. We first employ RPVBNN to learn

the intrinsic dimensionality of the dataset. With a knowledge on the optimal dimensionality, we

compare RPVBNN with several other traditional algorithms (logistic regression, random forest

and gradient boosting) and VBNN which is the standard variational Bayes neural network based

on the whole feature space. For the simulated datasets and ADNI, to prevent over-fitting and

optimistically-biased estimates of model performance, we consider 10 di�erent splits of the data

into train and test datasets. We report the mean and standard deviation of train and test accuracy

and AUC score over the 10 splits. For the MNIST data, since author-defined splits exist [73], we

only report the train and test accuracy and algorithm run time.
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4.7.3 Simulated data

We generate two simulated data from

H =

8>><
>>:

1 , if 4G
2
1 + G2

2 + 5 sin(G3G4) � 3 > 0

0 , otherwise
(4.17)

Since the number of active variables is 4, the intrinsic dimensionality of feature space is 4. To test

if RPVBNN can capture the intrinsic dimensionality, we consider two simulated data examples 1)

small simulated data 2) large simulated data. For small simulated data, we work with a smaller

number of covariates (? = 20) and for the large simulated data, larger number of covariates are

used (? = 200). Note, for both datasets = = 3000 observations are generated from (4.17). However,

x ⇠ MVN(0,⌃) with f88 = 0.5 and f8 9 = 0.25 and has dimension ? = 20 and ? = 200 under

the small and large datasets respectively. The large simulated data exemplifies the small = large ?

problem. For the 10 splits of cross validation, the ratio of observations in the training and test is

7:3, thus the train and test data sets have 2100 and 900 subjects respectively.

4.7.4 ADNI Data

We utilized the data provided by Alzheimer’s disease Neuroimaging Initiative (ADNI) database

http://www.loni.ucla.edu/ADNI. ADNI is an ongoing joint public-private e�ort to utilize

neuroimaging, other biological markers, and clinical and neuropsychological assessment to measure

the incidence and progression of MCI to early AD. The data used consisted of 819 subjects with

baseline characteristics, genetics and diagnosis of MCI. For consistency, we only consider patients

whose follow-up period was at least 36 months and no missing values. The final samples included

= = 265 subjects which included participants who were stable in their diagnosis (MCI-S) and

those who converted to a diagnosis of AD over 3 years (MCI-C). We used ? = 277 variables which

included diagnosis, neuropsychological tests score, epsilon-4 allele of the apolipoprotein E (APOE)

gene and ROIs levels features derived from T1 magnetic resonance imaging (MRI). Analogous to

the simulated examples, the ratio of subjects in the training and testing was 7:3 for the 10 splits.
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Table 4.1: Summary of data,where n, p and c denote the numbers of samples, features and classes.

Data Source n p c
Small Simulated data [80] 3000 20 2
Large Simulated data [80] 3000 200 2
ADNI [62] 264 278 2
MNIST [73] 70000 784 10

4.7.5 MNIST Data

In addition to the ADNI, we evaluate the model performance on computer vision data - MNIST.

The MNIST dataset is a large collection of handwritten digits and from the National Institute of

Standards and Technology (NIST). MNIST dataset contains = = 70000 images with 60000 and

10000 in train and test sets respectively and a feature space of dimension ? = 784 [73].

4.8 Results

4.8.1 Optimal dimensional region

Figure 4.1: Small simulated data: # = 32

Using section 4.4.1, we obtain the average posterior probabilities of the projected dimensions.

For all the four data sets, for learning the intrinsic dimension we employ RPVBNN with : = 32

nodes. Since obtaining the optimal dimension is a preprocessing step, we avoided experimentation

with number of nodes in this step. Figures 4.1, 4.2, 4.3 and 4.4 give the average probability density
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Figure 4.2: Large simulated data: # = 128

Figure 4.3: ADNI data: # = 128

curve as a function of the projected dimensions for small and large simulated data sets and ADNI

and MNIST respectively. The intrinsic dimensionality estimate corresponds to the mode of this

density curve while the optimal dimension neighborhood is a small interval around this posterior

mode. For small simulated data, Figure 4.1 shows a dramatic growth in the average posterior

probability as the number of projected dimensions increase from 3 to 5 with a significant drop

when the number of projected features reach 7, followed by stabilization after 8. Thus, with a

peak around 5, the optimal dimension neighborhood for small data is taken (3,7). For large data,
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Figure 4.4: MNIST data: # = 128

Figure 4.2 shows that the average posterior probability peaks between 3 and 8 and stabilizes after

10. Thus, the optimal neighborhood for large data was taken to be (3,10). Note, for both small and

large simulated datasets, the true intrinsic dimensionality was 4. The fact that the average posterior

probability concentrates around 4 further corroborates that our algorithm learns well the intrinsic

dimensionality of the feature space in regards to the prediction of response. Next, for ADNI data,

Figure 4.3 shows that average posterior probability peaks between projected dimensions of 10

to 20 followed by stabilization after 30. Thus, the optimal dimensional neighborhood for ADNI

data was chosen as (1,30). Finally, for MNIST data, Figure 4.4 shows that the optimal dimension

neighborhood can be chosen as (580,600).

4.8.2 Comparative Baselines

For the two simulated examples and ADNI data, we consider 10 splits of the data as in section

4.7. With the optimal dimension neighborhood we use steps (4)-(5) of algorithm 3 to obtain the

mean and standard deviation of train and test accuracy and AUC score of RPVBNN (see tables

4.3, 4.5 and 4.4 respectively). In addition to the performance of RPVBNN, we also provide

results from logistic regression with !1 penalty (LR-!1), random forest (RF), gradient boosting

(GB) as comparative baseline. In particular, we report the LR performance for varying values of
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Table 4.2: RPVBNN setting for evaluation

Data N Learning rate Batch size Optimal Region
Small data 16 0.01 256 (3,7)
Large data 64 0.01 256 (3,10)
ADNI 64 0.01 185 (1,30)
MNIST 128 0.01 512 (580,600)

_ = 0.01, 0.1, 0.5, 1, 5, 10, 100 together with the performance at _0, the optimum _ obtained from

10-fold cross validation. To build both RF and GB models, we start with 50 trees and increase

the number of trees by 100 trees each time until we see either no improvement of test accuracy or

increase in the standard deviation of test accuracy [101]. Finally, for the same 10 splits, we report

the results obtained using VBNN algorithm which works on the whole feature space without any

compression (it is indeed a version of RPVBNN with # = 1, 3� = ? and � = �). The number of

nodes for both RPVBNN and VBNN are varied as : = 32, 64, 128.

For the MNIST dataset, since user defined train and test splits already exist, we only report the

train and test accuracy and algorithm run time for RPVBNN (see table 4.6). As a comparative

baseline, we also provide the results of VBNN. For all the datasets, the details of RPVBNN settings

including optimal dimension neighborhoods, the number of projections, learning rate and batch

size are summarized in Table 4.2.

4.8.3 Experimental Results

For small simulated data, as shown in Table 4.3, the results of using RPVBNN with 128 hidden nodes

can achieve a test accuracy and AUC of 94.88% and 95.88% respectively which is considerably

better than performance of other learning algorithms. Also, the impact of the number of nodes is

minimal which further justifies our attainment of optimal dimensionality neighborhood using only

: = 32 nodes. Whereas for the small simulated dataset the second best performer was VBNN, its

performance significantly deteriorates for the large simulated dataset. This is because the with a

large feature space of ? = 200, the training size of 2100 is way smaller. Since RPVBNN works with

compressed feature space of 3� 2 [3, 10], it still has the best testing accuracy and AUC of 94.96%

86



and 96.63% respectively (see table 4.4). This clearly indicates that RPVBNN is an e�ective solution

to the small = large ? problem. Also, since at each instance one works with the compressed feature

space, one gains a huge advantage in both memory storage and computational e�ciency as long

as the intrinsic dimensionality of feature space lies in a smaller dimensional subspace (although

multiple compressions are needed, one can leverage parallelization across compressions).

The ADNI with ? = 277 and training sample 180 is another example of a small = and large ?

problem. RPVBNN still continues (see table 4.5) to outperform all its competitors where VBNN

su�ers from the curse of dimensionality. Interestingly, overall gradient boosting seems to the second

best performer after RPVBNN. For the MNIST data (see Table 4.2), note that VBNN with the best

testing accuracy of 97.8% slightly outperforms the RPVBNN with the best test accuracy of 97.32.

For MNIST, the training size = = 60000 is way larger than ? = 784, is best performer. However, the

average run time for one run based on 500 epochs using 128 nodes of VBNN is 2640 seconds while

the same value with 3� in the optimal dimension neighborhood is 2350 seconds. To conclude,

when ? >> =, RPVBNN o�ers the biggest advantage in terms of memory storage, computational

Table 4.3: Table: Small simulated data performance

Model Setting Train Acc(%) Test Acc(%) AUC(%)
LR-;1 _ = 10 67.63 ± 0.64 67.46 ± 1.04 68.04 ± 1.54

_ = 1 67.59 ± 0.67 67.47 ± 0.97 68.07 ± 1.58
_ = 0.1 67.32 ± 0.77 67.44 ± 0.97 68.47 ± 1.51
_ = 0.01 65.49 ± 0.91 66.04 ± 1.36 68.77 ± 1.56
_0 = 0.1 67.32 ± 0.77 67.44 ± 0.97 68.47 ± 1.51

RF 10 trees 66.83 ± 1.76 66.02 ± 1.84 73.76 ± 3.63
25 trees 68.75 ± 1.91 67.92 ± 1.84 78.30 ± 3.67
50 trees 68.90 ± 1.09 67.84 ± 1.65 80.07 ± 2.05

GB 10 trees 72.78 ± 0.78 72.05 ± 1.45 74.18 ± 1.58
50 trees 79.78 ± 1.78 77.34 ± 1.73 88.74 ± 1.72
100 trees 87.30 ± 1.52 83.22 ± 2.08 92.51 ± 0.88
150 trees 90.81 ± 0.90 85.56 ± 2.01 93.78 ± 0.84
250 trees 94.17 ± 0.81 86.91 ± 1.63 94.41 ± 0.66
350 trees 94.07 ± 1.07 87.44 ± 1.98 94.62 ± 0.75
450 trees 97.62 ± 0.62 87.80 ± 1.95 94.84 ± 0.86

VBNN 32 nodes 94.88 ± 0.52 89.84 ± 0.64 90.36 ± 0.71
64 nodes 95.36 ± 0.38 90.27 ± 0.59 90.89 ± 0.53
128 nodes 95.28 ± 0.45 90.28 ± 0.65 90.88 ± 0.56

RPVBNN 32 nodes 95.70 ± 0.40 94.77 ± 0.68 95.68 ± 0.56
64 nodes 95.80 ± 0.42 94.80 ± 0.60 95.45 ± 0.64
128 nodes 95.83 ± 0.31 94.88 ± 0.76 95.88 ± 0.43
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Table 4.4: Table: Large simulated data performance

Model Setting Train Acc(%) Test Acc(%) AUC(%)
LR-;1 _ = 10 71.34 ± 0.61 64.12 ± 1.58 65.88 ± 0.90

_ = 1 71.39 ± 0.63 64.21 ± 1.34 66.13 ± 0.91
_ = 0.1 70.90 ± 0.59 66.31 ± 1.35 68.13 ± 0.95
_ = 0.01 65.75 ± 0.86 66.07 ± 1.09 70.62 ± 1.41
_0 = 0.01 65.75 ± 0.86 66.07 ± 1.09 70.62 ± 1.41

RF 10 trees 62.78 ± 3.31 61.12 ± 3.70 66.21 ± 6.43
25 trees 62.93 ± 3.93 61.69 ± 3.07 70.24 ± 3.43
50 trees 60.04 ± 1.48 59.59 ± 1.58 71.82 ± 2.67
100 trees 60.14 ± 1.61 59.54 ± 1.39 74.81 ± 2.36

GB 10 trees 73.51 ± 0.82 72.14 ± 1.78 74.43 ± 1.62
50 trees 80.53 ± 1.30 77.45 ± 2.69 87.68 ± 3.15
100 trees 87.79 ± 1.37 80.75 ± 2.36 90.69 ± 1.59
150 trees 91.98 ± 1.06 82.25 ± 2.68 91.56 ± 1.57
250 trees 96.31 ± 0.08 84.04 ± 2.99 92.41 ± 1.82
350 trees 98.46 ± 0.05 84.64 ± 2.71 92.70 ± 1.71
450 trees 99.40 ± 0.04 85.06 ± 2.55 92.98 ± 1.72
550 trees 99.78 ± 0.01 84.97 ± 2.20 92.95 ± 1.70

VBNN 32 nodes 62.76 ± 1.21 60.88 ± 1.59 65.23 ± 1.78
64 nodes 62.52 ± 1.71 60.90 ± 1.50 65.62 ± 1.39
128 nodes 63.61 ± 1.13 61.42 ± 1.11 66.21 ± 1.06

RPVBNN 32 nodes 96.54 ± 0.22 94.70 ± 0.81 96.21 ± 0.45
64 nodes 96.57 ± 0.41 94.89 ± 0.68 96.45 ± 0.63
128 nodes 96.66 ± 0.28 94.96 ± 0.90 96.63 ± 0.41

Table 4.5: Table: ADNI data performance

Model Setting Train Acc(%) Test Acc(%) AUC(%)
LR-;1 _ = 10 100.00 ± 0.00 65.75 ± 4.07 68.71 ± 3.75

_ = 1 100.00 ± 0.00 63.25 ± 3.12 65.21 ± 4.44
_ = 0.1 100.00 ± 0.00 61.00 ± 4.70 61.62 ± 4.00
_ = 0.01 100.00 ± 0.00 60.12 ± 4.55 61.08 ± 4.15
_0 = 10 100.00 ± 0.00 65.75 ± 4.07 68.71 ± 3.75

RF 10 trees 81.78 ± 2.23 68.87 ± 5.37 75.08 ± 5.18
25 trees 82.38 ± 2.35 70.88 ± 4.43 79.29 ± 5.00
50 trees 83.67 ± 1.79 72.00 ± 3.88 78.89 ± 4.90
100 trees 83.08 ± 2.62 71.25 ± 4.50 79.95 ± 4.85

GB 10 trees 87.24 ± 1.51 73.25 ± 4.40 80.44 ± 4.23
25 trees 95.41 ± 1.16 74.37 ± 5.34 81.32 ± 4.01
50 trees 99.78 ± 0.35 74.87 ± 4.95 81.16 ± 4.17
100 trees 100.00 ± 0.00 73.75 ± 3.95 80.79 ± 3.89

VBNN 32 nodes 62.51 ± 2.02 62.75 ± 4.67 62.54 ± 3.43
64 nodes 62.51 ± 2.02 62.75 ± 4.67 62.54 ± 3.43
128 nodes 62.51 ± 2.02 62.75 ± 4.67 62.54 ± 3.43

RPVBNN 32 nodes 78.57 ± 1.76 75.66 ± 3.80 81.88 ± 1.76
64 nodes 78.62 ± 1.92 75.70 ± 4.85 82.12 ± 1.83
128 nodes 78.84 ± 1.62 75.94 ± 3.84 82.33 ± 1.91
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Table 4.6: MNIST data performance in term of testing accuracy and time (based on 500 epochs)

Model Setting Train Acc(%) Test Acc(%) Time(s)
VBNN 32 nodes 97.63 96.88 354

128 nodes 98.08 97.33 758
256 nodes 98.13 97.40 1385
512 nodes 99.11 97.80 2640

RPVBNN 32 nodes 97.82 97.18 280
128 nodes 97.84 97.29 720
256 nodes 98.00 97.30 1143
512 nodes 98.06 97.32 2350

e�ciency and prediction accuracy in addition to the inference on the intrinstic dimensionality of the

feature space. For = >> ?, RPVBNN is equally competitive while still providing computational

and memory gain as long as the input resides in a smaller dimensional subspace with respect to

prediction.

4.9 Conclusion

In this chapter, we consider a variational Bayes neural network predictive model for addressing

the curse of dimensionality (small = large ?) by compressing the feature space using RP matrices.

To remove the sensitivity to the choice of the RP matrix, we propose a model averaging approach

to base our projection on the most relevant models. To improve computational complexity, we

provide a variational inference technique which can estimate model specific parameters and model

weights both at the same time. As a by-product, we use the posterior model weights of the projected

dimensions to learn the intrinsic dimensionality of the feature space in context of prediction. The

advantage of variational inference approach proposed in the context of Bayesian model averaging

has two advantages (1) it has the computation gain of frequentist ensemble approaches since one

can parallelize across di�erent models (2) it provides the uncertainty quantification of associated

with each random projection via posterior probabilities. The approach presented in this thesis can

generalized to a wide class of problems arising out of Bayesian neural networks which require

learning of the model importance or averaging across models.
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CHAPTER 5

CONCLUSIONS, DISCUSSION, AND DIRECTIONS FOR FUTURE RESEARCH

5.1 Conclusions and discussion

In this thesis, we first applied two machine learning methods (LR and SVM) under multiple

conditions, to test accuracy in classifying patients with MCI who progress to clinically-defined

dementia (MCI-C) from those who remain stable (MCI-S). Using multi-modal data from ADNI, we

compared LR and SVM classification accuracy and pre-selection dimensional reduction techniques -

i.e., feature selection as informed by prior findings in clinical neuroscience and by !1 norm. Notably,

the present results demonstrate important boundaries for applying feature selection techniques in

statistical classification of MCI-to-dementia conversion. Specifically, we found that while using !1

for pre-selection can improve accuracy, it also benefits from a more limited, theoretically based set

of feature inputs. In addition, we found that model performance benefited from a longer window

of assessment. These results have implications for studies utilizing multi-modal data for such

classification, including features from clinical neuropsychological assessment, demographic and

genetic markers, MRI-based volumetric brain measures, and other modalities. This thesis also

demonstrates that SVM classifier performance is more stable than LR for dealing with the “large

p" problem. Clinical researchers should note the value of evaluating di�erent classification and

pre-selection approaches in application to clinical or research questions, and be mindful that not all

machine learning techniques are equally beneficial for modeling specific clinical outcomes.

To further tackle the high dimensional data and variability and complexity of big data, we

introduce the variational Bayes neural network and provide the theoretical rigour and computational

detail for BDNNs. Although the variational Bayes is popular in machine learning, neither the

computational method nor the statistical properties are well understood for complex modeling such

as neural networks. We characterize the prior distributions and the variational family for consistent

Bayesian estimation. The theory also quantifies the loss due to VB numerical approximation
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compared to the true posterior distribution. For practical implementation, we reveal that the

algorithm may not be as simple and straightforward as it sounds in computer science literature,

rather it requires careful crafting on several parameters associated in various steps. Nevertheless,

the computation could be quite faster compared to popular Monte Carlo Markov Chain procedure

of approximating the posterior distributions.

Even though BDNN has achieved higher model performnce in classifying the transtion from

MCI to dementia, it fails to address the curse of dimensionality and learn the true dimensionlity

of data. We then consider a variational Bayes neural network predictive model for addressing the

curse of dimensionality (small = large ?) by compressing the feature space using RP matrices. To

remove the sensitivity to the choice of the RP matrix, we propose a model averaging approach

to base our projection on the most relevant models. To improve computational complexity, we

provide a variational inference technique which can estimate model specific parameters and model

weights both at the same time. The derivation shows that use of variational inference provides a

huge advantage by allowing parallelization across di�erent models at hand. Unlike Markov Chain

Monte Carlo, the variational technique proposed in this thesis allows to obtain optimal model

weights after individual models have been trained, by just making model Evidence Lower Bound

(ELBO) and prior model weights. The approach is generalizable to a wide class of problems where

Bayesian model averaging is next to impossible due to the large dimension of the data or intractable

likelihood.

5.2 Directions for future research

The future research is mainly focused on two aspects: choice of prior structure, Bayesian compressed

deep neural network. Although this thesis builds the framework on a multi-layer neural networks

model with simplistic prior structure, the detail statistical theory and computational methodology

are quite involved. This investigation opens up possibility of exploring much wider class of

models and priors. For example, shrinkage priors, such as double exponential and horseshoe priors

can be explored for building sparse neural networks or one can experiment with various other
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variational families. However, their computational details and associated statistical properties

are not immediate. We hope this research will accelerate further development of statistical and

computational foundation for variational inference in general machine learning research.

Moreover, we explored the sensitiveness to the number of projections and dimension of the

projection empirically. However, further investigation is needed in order to obtain a statistically

optimal solution. Another interesting direction to pursue will be studying the impact of di�erent

projections and qualifying prediction accuracy as a function of the projection. This current work

presents a proof of concept for shallow networks. However the methodology developed in this

thesis can be extended to deep neural networks. Another interesting line of work will be extension

to more complex feature spaces to learn the intrinsic dimensionality of these spaces.
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APPENDIX A

SUPPLEMENT FOR CONSISTENT VARIATIONAL BAYES CLASSIFICATION WITH
DEEP NEURAL NETWORKS

Algorithms of variational implementation

Algorithm 4 BBVI-RMS

1. Fix an initial value for variational family parameters V1
@ .

2. Fix a step size sequence dC , C = 1, · · · .

3. Set C = 1 and n > 0.

4. Simulate, samples ✓= [1], · · · , ✓= [,] from @(.|V C
@).

5. Compute õrVC
@
LVC

@
as in (3.18)

6. Compute

⌧C = õrVC
@
LVC

@
� rVC

@
3KL(@(.|V@), ?(.))

'C = 0.9'C�1 + 0.1⌧2
C

7. Update

V C+1
@ = V C

@ + dC
⌧Cp
'C + n

(A.1)

8. Set C = C + 1.

9. Repeat steps 4-7 until the convergence of ELBO using bLVC
@

as in (3.19) and

ELBO = bLVC
@
� 3KL(@(.|V@), ?(.))
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Algorithm 5 BBVI-CV-RMS

1. Fix an initial value for variational parameter V1
@ .

2. Fix a step size sequence dC , C = 1, · · · .

3. Set C = 1.

4. Simulate, samples ✓= [1], · · · , ✓= [,] from @(.|V C
@).

5. Compute 2¢C = cov(uC
1,u

C
2)/var(uC

2) where uC
1 and uC

2 are same as in (3.22).

6. Compute õrVC
@
LVC

@
as in (3.21).

7. Compute

⌧C = õrVC
@
LVC

@
� rVC

@
3KL(@(.|V@), ?(.))

'C = 0.9'C�1 + 0.1⌧2
C

8. Update

V C+1
@ = V C

@ + dC
⌧Cp
'C + n

9. Set C = C + 1.

10. Repeat steps 4-7 until the convergence of ELBO using bLVC
@

as in (3.19) and

ELBO = bLVC
@
� 3KL(@(.|V@), ?(.))

With @ and ? as in (3.11) and (3.9) respectively,

3KL(@, ?) =
 =’
9=1

 
log

f9=

B 9=

+
B

2
9=

2f2
9=

+
(<9= � ` 9=)2

2f2
9=

� 1
2

!

r< 9=3KL(@, ?) =
(<9= � ` 9=)

2f2
9=

rB 9=3KL(@, ?) = � 1
B 9=

+
B 9=

f
2
9=

r< 9=LV@ = ⇢
@(.|V@)

  
\ 9= � <9=

B
2
9=

!
log ! (✓=)

!

rB 9=LV@ = ⇢
@(.|V@)

  
(\ 9= � <9=)2

B
3
9=

� 1
B 9=

!
log ! (✓=)

!
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Preliminaries

A.0.1 Definitions

Definition A.0.1 For a vector ↵ and a function 6,

1. | |↵| |1 =
Õ
8
|U8 |, | |↵| |2 =

qÕ
8
U

2
8
, | |↵| |1 = max8 |U8 |.

2. | |6 | |1 =
Ø
x2j |6(x) |3x, | |6 | |2 =

qØ
x2j 6(x)2

3x, | |6 | |1 = supx2j |6(x) |

Definition A.0.2 (Bracketing number and entropy) For any two functions ; and D, define the

bracket [;, D] as the set of all functions 5 such that ;  5  D. Let | |.| | be a metric. Define

an Y�bracket as a bracket with | |D � ; | |  Y. Define the bracketing number of a set of functions

F ⇤ as the minimum number of Y�brackets needed to cover F ⇤, and denote it by #[] (Y, F ⇤
, | |.| |).

Finally, the Hellinger bracketing entropy, denoted by �[] (Y, F ⇤
, | |.| |), is the natural logarithm of

the bracketing number ([104]).

Definition A.0.3 (Covering number and entropy) Let (+ , | |.| |) be a normed space, and F ⇢ + .

{+1, · · · , D=} is an Y�covering of F if F ⇢ [#
8=1⌫(+8, Y), or equivalently, 8 \ 2 F , 9 8 such

that | |\ � +8 | | < Y. The covering number of F denoted by # (Y, F , | |.| |) = min{= : 9 Y �

covering over F of size =}. Finally, the Hellinger covering entropy, denoted by � (Y, F , | |.| |), is

the natural logarithm of the covering number ([104]).

A.0.2 Lemmas

Lemma A.0.4 With �[] (D, eF=, | |.| |2) as in Definition A.0.2, for �[] (D, eF=, | |.| |2)   = log("=/D),π
Y

0
�[] (D, eF=, | |.| |2)3D . Yp = (log"= � log Y)

Proof. See proof of lemma 7.14 in [6].

Lemma A.0.5 Suppose @ satisfies
Ø
3KL(✓0, ✓✓=)@(✓=)3✓=  Y, then for any a > 0,

%
=

0

✓����
π

@(✓=) log
! (✓=)
!0

3✓=

���� � =a
◆
 Y

a
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Proof. See proof of lemma 7.13 in [6].

Lemma A.0.6 Suppose NY = {✓= : 3KL(✓0, ✓✓=) < Y} and
Ø
NY
?(✓=)3✓= � 4

�=Y
, = ! 1 then for

any a > 0,

%
=

0

✓����log
π

! (✓=)
!0

?(✓=)3✓=
���� � =a

◆
 2Y
a

Proof. See proof of lemma 7.12 in [6].

Lemma A.0.7 Suppose,
Ø
F 2
=
?(✓=)3✓=  4�=Y, =! 1 for any Y > 0. Then, for every Ỹ < Y.

%
=

0

✓π
✓=2F 2

=

! (✓=)
!0

?(✓=)3✓= � 4
�=Ỹ

◆
 4�=(Y�Ỹ)

Proof. See proof of lemma 7.16 in [6].

Lemma A.0.8 Let [✓⇤
=
(x) = b⇤

!
+ A⇤

!
k(b⇤

!�1 + A⇤
!�1k(· · ·k(b⇤1 + A⇤

1k(b⇤0 + A⇤
0x))) be a fixed

neural network. Let [✓= (x) = b! +A!k(b!�1 +A!�1k(· · ·k(b1 +A1k(b0 +A0x))) be a neural

network such that

|\ 9= � \⇤9= | 
YÕ

!

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=

where :̃E= = :E= + 1. Then, π
x2[0,1] ?=

|[✓= (x) � [✓⇤
=
(x) |3G  Y

Proof. In the proof, we suppress the dependence on =. Define the projection %E as %+[✓ (x) =

b+�1 +A+�1k(· · ·k(b1 +A1k(b0 +A0x))). We claim that

|%+[✓ (x) [B] � %+[✓⇤ (x) [B] | 
Y

Õ
+

E=0 :̃E
Œ

!

E
0=E+1 0

⇤
E
0Õ

!

E=0 :̃E
Œ

!

E
0=E+1 0

⇤
E
0

(A.2)

We prove this by induction. Let E = 1 as follows. Let Ỹ = Y/Õ!

E=0 :̃E
Œ

!

E
0=E+1 0

⇤
E
0, then

|%1[✓ (x) [B] � %1[✓⇤ (x) [B] |

 |b1 � b⇤1 [B] | + |A1 [B]>k(b0 +A0x) �A⇤
1 [B]

>
k(b⇤0 +A⇤

0x) |

 Ỹ + ||A1 [B] �A⇤
1 [B] | |1 +

:1’
B
0=0

|A⇤
1 [B] [B0] (k(b0 [B] +A0 [B]>x) � k(b⇤0 [B] +A⇤

0 [B]
>x)) |

= Ỹ + :1Ỹ + Ỹ
:1’
B
0=0

|A⇤
1 [B] [B0] | (:0 + 1) = Ỹ(1 + :1 + 0⇤1(?= + 1))  Ỹ( :̃1 + 0⇤1 :̃0)
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where the second line holds since k(D)  1 and the third step is shown next. Let D = �b0 [B] �

A0 [B]>x and DX = b0 [B] +A0 [B]>x � b⇤0 [B] +A⇤
0 [B]

>x, then for |DX | < 1

|k(D) � k(D + DX) | =
���� 4

D+DX � 4D
(1 + 4D+DX ) (1 + 4D)

���� 
���� 4

D (4DX � 1)
(1 + 4D) (1 + 4D+DX )

���� (A.3)

 4
D |4DX � 1|

(1 + 4D) (1 + 4D�1)  |DX | (A.4)

since 4D/((1 + 4D) (1 + 4D�1))  1/2 and |4DX � 1|  2|DX | for |DX | < 1. Now, |DX | = |b0 [B] �

b⇤0 [B] | +
Õ
?=

B
0=0 |A0 [B] [B0] �A⇤

0 [B] [B0] |  (?= + 1)Ỹ < 1.

Suppose the result hold for + � 1, we show the result for + as follows:

|%+[✓ (x) [B] � %+[✓⇤ (x) [B] |

 |b+ [B] � b⇤
+
[B] | + |A+ [B]>k(%+�1[✓ (x)) �A⇤

+
[B]>k(%+�1[✓⇤ (x)) |

 Ỹ + ||A+ [B] �A⇤
+
[B]> | |1 +

:+’
B
0=0

|A⇤
+
[B] [B0] (k(%+�1[✓ (x) [B]) � k(%+�1[✓⇤ (x) [B])) |

 Ỹ + ||A+ [B] �A⇤
+
[B]> | |1 +

:+’
B
0=0

|A⇤
+
[B] [B0] (%+�1[✓ (x) [B]) � k(%+�1[✓⇤ (x) [B]) |

where the second step follows since k(D)  1 and the third step follows by relation (A.3) provided

|%+�1[✓ (x) [B] � %+�1[✓⇤ (x) [B] |  1. But this holds using relation (A.2) with E = + � 1.

Thus proceeding further we get

|%+[✓ (x) [B] � %+[✓⇤ (x) [B] |  Ỹ(1 + :+ ) + 2Ỹ
:+’
B
0=0

|,⇤
+
[B] [B0] |

+�1’
E=0

:̃E

+�1÷
E
0=E+1

0
⇤
E
0

 Ỹ :̃E + Ỹ
+�1’
E=0

:̃E

+÷
E
0=E+1

e\0
E
= Ỹ

+’
E=0

:̃E

+÷
E
0=E+1

0
⇤
E
0

This completes the proof.

Lemma A.0.9 If |[0(x) � [✓= (x) |  Y, then |⌘✓= (x) |  2Y where

⌘✓= (x) = f([0(x)) ([0(x) � [✓= (x)) + log(1 � f([0(x))) � log(1 � f([✓= (x)))
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Proof. Note that,

|⌘✓= (x) |  |f([0(x)) | |[0(x) � [✓= (x) | + | log(1 � f([0(x)) � log(1 � f([✓= (x)) |

 |[0(x) � [✓= (x) | +
���log

⇣
1 + f([0(x)) (4[✓= (x)�[0 (x) � 1)

⌘���
 2|[0(x) � [✓= (x) |

where the second step follows by using f(G) = 4G/(1 + 4G)  1 and the proof of the third step is

shown below.

Let ? = f([0(x)), then 0  ?  1 and A = [✓= (x) � [0(x), then

���log
⇣
1 + f([0(x)) (4[✓= (x)�[0 (x) � 1)

⌘��� = |log (1 + ?(4A � 1)) |

A > 0 : | log(1 + ?(4A � 1)) | = log(1 + ?(4A � 1))  log(1 + (4A � 1)) = A = |A |

A < 0 : | log(1 + ?(4A � 1)) | = � log(1 + ?(4A � 1))  � log(1 + (4A � 1)) = �A = |A |

Lemma A.0.10 For [✓= (x) = b! +A!k(b!�1 +A!�1k(· · ·k(b1 +A1k(b0 +A0x))),

sup
9=1,··· , =

r\ 9[✓= (x) 
!=÷
E
0=1

0E0=

where 0E0= = sup
E=0,··· ,: (E 0+1)= | |AE

0 [E]] | |1.

Proof. We suppress the dependence on =. Let %+ = b+ +A+k(b+�1 +A+�1k(· · · b1 +A1k(b0 +

A0x))). Define ⌧+ ,+ = 1:+ +1 and for + = 0, · · · , !, + 0 = 0, · · · ,+ � 1, let

⌧+ 0
,+ = A+ (k0(%+�1) � A+�1(k0(%+�2) � · · ·A++1(k0(%+ 0))))

where � denotes component wise multiplication. With k(%�1) = x, we define

8>>>><
>>>>:
rbE[✓ (x) = ⌧E,!1:E+1

rAE[✓ (x) = ⌧E,!1:E+1k(%E�1)>

By the above form and the fact that k(D),k0(D), |G8 |  1, it can be easily checked by induction

|⌧E,! | 
Œ

!

E
0=E+1 0E0 which completes the proof.
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Lemma A.0.11 Let, eF= = {
p
✓ : ✓✓= (H,x), ✓= 2 F=} where ✓✓= (H,x) is given by

✓✓= (H,x) = exp
⇣
H[✓= (x) � log

⇣
1 + 4[✓= (x)

⌘⌘
(A.5)

and F= is given by

F= =
n
✓= : |\ 9= |  ⇠=, 9 = 1, · · · , =

o
(A.6)

Then with �[] (D, eF=, | |.| |2) is as in definition A.0.2,

π p
2Y

Y
2/8

q
�[] (D, eF=, | |.| |2)3D . Yp = ((!= + 1) log = + (!= + 2) log⇠= � log Y)

Proof. In this proof, we suppress the dependence on =. Note, by lemma 4.1 in [104],

# (Y, F=, | |.| |1) 
✓
3⇠
Y

◆
 

.

For ✓1, ✓2 2 F , let e✓(D) = p
✓
D✓1+(1�D)✓2 (x, H).

Following equation (52) in [6], we get

q
✓✓1 (x, H) �

q
✓✓2 (x, H)   sup

9

��� me✓
m\ 9

���| |✓1 � ✓2 | |1  � (x, H) | |✓1 � ✓2 | |1 (A.7)

where the upper bound � (x, H) = (⇠ )! . This is because |me✓/m\ 9 |, the derivative of
p
✓ w.r.t. is

bounded above by |m[✓ (x)/m\ 9 | as shown below.
�����
m
e
✓

m\ 9

����� =
����12
m[✓ (x)
m\ 9

✓
H � 4

[✓ (x)

1 + 4[✓ (x)

◆ p
4
(H[✓ (x)�log(1+4[✓ (x) ))

����


����12
m[✓ (x)
m\ 9

����
✓
4
[✓ (x)

1 + 4[✓ (x)

◆1/2 ✓
1

1 + 4[✓ (x)

◆1/2
 1

4

����m[✓ (x)
m\ 9

����
Thus, using 4[✓ (x)/(1 + 4[✓ (x)) and Lemma A.0.10, we get

sup
9=0,··· , =

����m[✓ (x)
m\ 9

���� 
!÷
E=1

0
⇤
E
=

!÷
E=1

:E⇠  ( ⇠)!

In view of (B.6) and theorem 2.7.11 in [126], we have

#[] (Y, eF=, | |.| |2) 
✓
3 !+1

⇠
!+2

2Y

◆ 
=) �[] (Y, eF=, | |.| |2) .  log

 
!+1
⇠
!+2

Y

where #[] and �[] denote the bracketing number and bracketing entropy as in definition A.0.2.
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Using, lemma A.0.4 with " =  !+1
⇠
!+2, we get

π
Y

0

q
�[] (D, eF=, | |.| |2)3D . Yp ((! + 1) log + 2(! + 2) log⇠ � log Y)

Therefore,
π p

2Y

Y
2/8

�[] (D, eF=, | |.| |2)3D 
π p

2Y

0
�[] (D, eF=, | |.| |2)3D

.
p

2Y
q
 ((! + 1) log + (! + 2) log⇠ � log

p
2Y)

The proof follows by noting log
p

2Y � log Y.

A.0.2.1 Propositions

Proposition A.0.12 Let @(✓=) = "+# (✓⇤
=
, � =/=2+23) and ?(✓=) = "+# (µ=, diag(�2

=
)) where

log | |�= | |1 = $ (log =) and | |�⇤
=
| |1 = $ (1). Let =n2

=
! 1,  = log = = >(=n2

=
), | |✓⇤

=
| |22 = >(=n2

=
),

| |µ= | |22 = >(=n2
=
), then for any a > 0,

3KL(@, ?)  =n2
=
a

Proof.

3KL(@, ?) =
 =’
9=1
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p
=
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f9= +

1

=
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f

2
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+
(\⇤
9=
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� 1
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!
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2
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1
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f
2
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\
⇤
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f
2
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 =’
9=1

`
2
9=

f
2
9=
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2
((3 + 1) log = � 2) +  = log | |�= | |1 + 2

✓
 =

=

+ ||✓⇤
=
| |22 + ||µ= | |22

◆
| |�⇤

=
| |1 = >(=n2

=
)

where the second last inequality uses �⇤
=
= 1/�=. The last equality follows since log | |�= | |1 =

$ (log =), | |�⇤
=
| |1 = $ (1),  = log = = >(=n2

=
), | |µ= | |22 = >(=n2

=
) and | |✓⇤

=
| |22 = >(=n2

=
).

Proposition A.0.13 Let ?(✓=) = "+# (µ=, diag(�2
=
) with log | |�= | |1 = $ (log =), | |�⇤

=
| |1 =

$ (1). Let | |[0 � [✓⇤
=
| |1  Yn2

=
/4, =n2

=
! 1. Define,

3KL(✓0, ✓✓=) =
π
x2[0,1] ?=

✓
f([0(x)) ([0(x) � [✓= (x)) + log

1 � f([0(x))
1 � f([✓= (x))

◆
3x

NY =
�
✓= : 3KL(✓0, ✓✓=) < Y

 
(A.8)
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If  = log = = >(=n2
=
), | |✓⇤

=
| |22 = >(=n2

=
), log(Õ!=

E=0 :E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
) = $ (log =), | |µ= | |22 = >(=n2

=
),

π
✓=2#Yn 2

=

?(✓=)3✓= � 4�=n
2
=a 8 a > 0

Proof. Let [✓⇤
=
(x) = b⇤

!
+A⇤

!
k(b⇤

!�1 +A⇤
!�1k(· · ·k(b⇤1 +A⇤

1k(b⇤0 +A⇤
0x))) be the neural network

such that

| |[✓⇤
=
� [0 | |1  Yn

2
=

4
(A.9)

Such a neural network exists since | |[0 � [✓⇤
=
| |1  Yn2

=
/4.

Next define neighborhood M
Yn

2
=

as follows

M
Yn

2
=
=

(
✓= : |\ 9= � \⇤9= | <

Yn
2
=

2
Õ
!=
E=0 :̃E=

Œ
!=
E
0=E+1 0

⇤
E
0
=

, 9 = 1, · · · , =
)

where :̃E= = :E= + 1. For every ✓= 2 M
Yn

2
=
, by lemma B.0.1, we have

| |[✓= � [✓⇤
=
| |1  Yn

2
=

2
(A.10)

Combining (A.9) and (B.1), we get for ✓= 2 M
Yn

2
=
, | |[✓= � [0 | |1  Yn2

=
/2.

This, in view of lemma B.0.2, 3KL(✓0, ✓✓=)  Yn2
=
.

Let ✓= 2 N
Yn

2
=

for every ✓= 2 M
Yn

2
=
. Therefore,
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=
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Œ
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E
0=E+1 0

⇤
E
0
=
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π
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=
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π
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⇤
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\
⇤
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� X=, \⇤9= + X=]

=
 =÷
9=1

4

�
 
� 1

2 log 2
c�log X=+logf9=+

(b\ 9=�` 9=)2
2f2

9=

!
(A.11)

where the second last equality holds by mean value theorem.
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Note that b\ 9= 2 [\⇤
9=
� 1, \⇤

9=
+ 1] since X= ! 0, therefore

(b\ 9= � ` 9=)2

2f2
9=


max((\⇤
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� ` 9= � 1)2
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9=
� ` 9= + 1)2)

2f2
9=


(\⇤
9=
� ` 9=)2

f
2
9=

+ 1

f
2
9=

where the last inequality follows since (0 + 1)2  2(02 + 12). Again using (0 + 1)2  2(02 + 12),

 =’
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⇤
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f
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`
2
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f
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+
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1

f
2
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 2( | |✓⇤
=
| |22 + ||µ= | |22 + 1) | |�⇤

=
| |1  =an2

=
(A.12)

since | |✓⇤
=
| |22 = >(=n2

=
), | |µ= | |22 = >(=n2

=
) and | |�⇤

=
| |1 = $ (1) and =n2

=
! 1. Also,

� log X= + logf9= = log 2 + log(
!=’
E=0

:̃E=

!=÷
E
0=E+1

0
⇤
E
0
=
) � log Yn2

=

 log 2 + log(
!=’
E=0

:̃E=

!=÷
E
0=E+1

0
⇤
E
0
=
) + logf9= � log Y � 2 log n=

 log 2 +$ (log =) +$ (log =) � log Y +$ (log =)

where the last follows since log | |�= | |1 = $ (log =), log(Õ!=
E=0 :E=

Œ
!=
E
0=E+1 0

⇤
E
0
=
) = $ (log =) and

1/=n2
=
= >(1) which implies �2 log n= = >(log =).

 =’
9=1

�1
2

log
2
c

� log X= + logf9= = $ ( = log =) = >(=n2
=
) (A.13)

where the last inequality follows since  = log = = >(=n2
=
),

Combining (B.3) and (B.4) and replacing (B.2), the proof follows.

Proposition A.0.14 Let @(✓=) ⇠ "+# (✓⇤
=
, � =/=2+23), 3 > 3

⇤ where
Õ
!=
E=0 :E=

Œ
!=
E
0=E+1 0

⇤
E
0
=
=

$ (=3⇤), 3⇤ > 0. Define

⌘(✓=) =
π
x2[0,1] ?=

✓
f([0(x)) ([0(x) � [✓= (x)) + log

1 � f([0(x))
1 � f([✓= (x))

◆
3x

Let | |[0 � [✓⇤
=
| |1  Yn2

=
/4 where =n2

=
! 1. If  = log = = >(=n2

=
), | |✓⇤

=
| |22 = >(=n2

=
), then

π
⌘(✓=)@(✓=)3✓=  Yn2

=
.
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Proof. Since ⌘(✓=) is a KL-distance, ⌘(✓=) > 0. We shall thus establish an upper bound.

π
⌘(✓=)@(✓=)3✓= 

π
x2[0,1] ?=

|[✓= (x) � [0(x) |3x


π π
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=
� [0 | |1


π

| |[✓= � [✓⇤
=
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=
(A.14)

where the first inequality is a consequence of lemma B.0.2 and the last inequality follows since

| |[✓⇤
=
� [0 | |1 = >(n2

=
).

Let ( = {✓= : \ =
9=1 |\ 9= � \⇤9= |  Yn2

=
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Œ

!=
E
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⇤
E
0
=
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π
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=
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2
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=
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2
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Let (2 = [ =
9=1(

2

9
where ( 9 = {|\ 9= � \⇤

9=
|  D=} where D= = Yn2

=
/(Õ!

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
). We first

compute &((2) as follows:
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2

9
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⇣
=
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⌘⌘
(A.16)

Using (A.16) in the last term of (A.15), we get
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1
=
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D
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104



where the second step follows by Mill’s ratio,  = = >(=n2
=
) and

Õ
!=
E=0 :E=

Œ
!=
E
0=E+1 0

⇤
E
0
=
= $ (=3)

which implies =1+3
D= ! 1 . The third step holds because

=
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=
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4
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D
2
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= = 4

�
 

=2(1+3) Y2 n 4
=

log =(Õ!
E=0 :̃E=

Œ!=
E 0=E+1

0⇤
E 0=)

2
�(3+1)

!
= >(1) (A.18)

since (Õ!

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
)2 log = = $ (=23⇤ log =) = >(=23) for 3 > 3

⇤ and =2
n

4
=
! 1.
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For the second term in (A.15), let (0 = {|b! [B] � b⇤
!
[B] | > D=}

π
(
2

�
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(̃
2 is the union of all (2

9
, 9 = 1, · · · , = except the one corresponding to b! [B].
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Also, ⇢
@(b! [B]) |b! [B] � b⇤

!
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p
2/c(1/=1+3). Thus
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where the first equality in the above step follows by observing that &((̃2) behaves analogous to

&((2) which was computed in (A.16) and the second equality in the above step follows due to

Mill’s ratio and
Õ
!

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
= $ (=E) which implies =1+3

D= ! 1. The third inequality

in the above step is a consequence of the fact that  =  =1+3 .

Combining (A.17), (A.20) and (A.21), we get
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Note the third term in (A.15) can be handled similar to third term and it can be shown
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where the last equality in the second step follows by  = = >(=n2
=
) and the argument in (A.18) by

which 4�(=
1+3

D=�2 log =) = >(1).

Combining (A.17) and (A.23) with (A.15) the proof follows.

Proposition A.0.15 Let =n2
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where the last convergence holds since  = log = = >(=1n2
=
) implies '= = (=1n2

=
)/( = log =) � (3 +

1) ! 1.
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where the last asymptotic inequality holds because
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By theorem 1 in [138], for some constant ⇠ > 0, we have
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Using proposition B.0.7 with Y = 2Y, we have
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Therefore, using lemma A.0.7 with Y = 2Y2
n

2
=

and Ỹ = Y2
n

2
=
, we have

%
=

0

✓π
F 2
=

! (✓=)
!0

?(✓=)3✓= > 4�Y
2
=n

2
=

◆
 4

�Y2
=n

2
= ! 0. (A.27)

Combining (A.26) and (A.27), (A.25) follows.

Proposition A.0.17 Let ?(✓=) = "+# (µ=, diag(�2
=
), | |�= | |1 = $ (=) and | |�⇤

=
| |1 = $ (1).

1. Let != = !, ?= = ? independent of =. If  = log = = >(=) and | |µ= | |22 = >(=), then

3KL(c⇤, c(.|y=,X=)) = >%=
0
(=) (A.28)

2. Let  = log = = >(=n2
=
), != ⇠ log = and | |µ= | |22 = >(=n2

=
). There exists a neural network such

| |[0 � [✓⇤
=
| |1 = >(=n2

=
), | |✓⇤

=
| |22 = >(=n2

=
) and log(Õ!=

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
) = $ (log =), then

3KL(c⇤, c(.|y=,X=)) = >%=
0
(=n2

=
) (A.29)

Proof. For any @ 2 Q=.

3KL(@, c(.|y=,X=)) =
π

@(✓=) log @(✓=)3✓= �
π

@(✓=) log c(✓= |y=,X=)3✓=

=
π

@(✓=) log @(✓=)3✓= �
π

@(✓=) log
! (✓=)?(✓=)Ø
! (✓=)?(✓=)3✓=

3✓=

= 3KL(@, ?) �
π

log
! (✓=)
!0

@(✓=)3✓= + log
π

! (✓=)
!0

?(✓=)3✓=

 3KL(@, ?) +
����
π

log
! (✓=)
!0

@(✓=)3✓=
���� +

����log
π

! (✓=)
!0

?(✓=)3✓=
���� (A.30)
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Since c⇤ satisfies minimizes the KL-distance to c(.|y=,X=) in the family Q=, therefore for any

^ > 0

%
=

0 (3KL(c⇤, c(.|y=,X=)) > ^)  %
=

0 (3KL(@, c(.|y=,X=)) > ^) (A.31)

Proof of part 1. Note,  = log = = >(=), | |`= | |22 = >(=), | |�= | |1 = $ (=) and | |�⇤
=
| |1 = $ (1). We

take @(✓=) = "+# (✓⇤
=
, I =/

p
=) where ✓⇤

=
is defined next.

For # � 1, let [✓⇤
#

be a finite neural network approximation satisfying | |[✓⇤
=
� [0 | |1  Y/4. The

existence of such a neural network is always guaranteed by [60]. Define ✓⇤
=

same as ✓⇤
#

for all the

non zero coe�cients and zeros for all non existent coe�cients.

Step 1 (a): Using proposition A.0.12, with n= = 1, we get for any a > 0,

%
=

0 (3KL(@, ?) > =a) = 0 (A.32)

where the above step follows | |✓⇤
=
| |22 = | |✓⇤

#
| |22 = | |✓⇤

=
| |22 = >(=).

Step 1 (b): Next, note that

3KL(✓0, ✓✓=) =
π
x2[0,1] ?=

✓
f([0(x)) log

f([0(x))
f([✓= (x))

+ (1 � f([0(x))) log
1 � f([0(x))
1 � f([✓= (x))

◆
3x

=
π
x2[0,1] ?=

✓
f([0(x)) (f([✓= (x)) � f([0(x))) + log

1 � f([0(x))
1 � f([✓= (x))

◆
3x (A.33)

Since | |[0 � [✓⇤
=
| |1  Y/4, using proposition B.0.5 with n= = 1 and Y = Y

π
3KL(✓0, ✓✓=)@(✓=)3✓=  Y

which follows by | |✓⇤
=
| |22 = | |✓⇤

#
| |22 = >(=) and log(Õ!

E=0 :̃E#
Œ

!

E
0=E+1 0

⇤
E
0
#
) = $ (log =).

Therefore, by lemma A.0.5,

%
=

0

✓����
π

log
! (✓=)
!0

@(✓=)3✓=
���� > =a

◆
 Y

a

. (A.34)

Step 1 (c): Since | |[0 � [✓⇤
=
| |1  Y/4, using proposition B.0.3 with n= = 1 and a = Y,

π
✓=2NY

?(✓=)3✓= � exp(�=Y)
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which follows by | |✓⇤
=
| |22 = | |✓⇤

#
| |22 = >(=) and log(Õ!

E=0 :̃E=
Œ

!

E
0=E+1 0

⇤
E
0
=
) = $ (log =). Therefore,

using lemma A.0.6, we get

%
=

0

✓����log
π

! (✓=)
!0

?(✓=)3✓=
���� > =a

◆
 2Y
a

(A.35)

Step 1 (d): From (A.31) and (A.30) we get

%
=

0 (3KL(c⇤, c(.|y=,X=)) > 3=a)  %
=

0 (3KL(@, ?) > =a)

+ %=0
✓����
π

log
! (✓=)
!0

@(✓=)3✓=
���� > =a

◆
+ %=0

✓����log
π

! (✓=)
!0

?(✓=)3✓=
���� > =a

◆
 3Y
a

(A.36)

where the last inequality is a consequence of (A.32), (A.34) and (A.35).

Since Y is arbitrary, taking Y ! 0 completes the proof.

Proof of part 2. Note,  = log = = >(=n2
=
), | |`= | |22 = >(=n2

=
), log | |�= | |1 = $ (log =) and | |�⇤

=
| |1 =

$ (1). Let @(✓=) = "+# (✓⇤
=
, I =/=2+23), 3 > 3

⇤ where
Õ
!=
E=0 :̃E=

Œ
!=
E
0=E+1 0

⇤
E
0
=
= $ (=3⇤), 3⇤ > 0.

We next define ✓⇤
=

as follows:

Let [✓⇤
=

be the neural satisfying

| |[✓⇤
=
� [0 | |1  Yn2

=
/4 | |✓⇤

=
| |22 = >(=n2

=
)

The existence of such a neural network is guaranteed since | |[✓⇤
=
� [0 | |1 = >(n2

=
).

Step 2 (a): Since | |✓⇤
=
| |22 = >(=n2

=
), by proposition A.0.12,

%
=

0 (3KL(@, ?) > a=n2
=
) = 0 (A.37)

Step 2 (b): Since | |[✓⇤
=
� [0 | |1  Yn

2
=
/4, | |✓⇤

=
| |22 = >(=n2

=
) and (Õ!=

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
) log = =

>(=n2
=
), by proposition B.0.5,

π
3KL(✓0, ✓✓=)@(✓=)3✓=  Yn2

=

Therefore, by lemma A.0.5,

%
=

0

✓����
π

log
! (✓=)
!0

@(✓=)3✓=
���� > a=n2

=

◆
 Y

a

. (A.38)
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Step 2 (c): Since | |[✓⇤
=
�[0 | |1  Yn2

=
/4, | |✓⇤

=
| |22 = >(=n2

=
) and log(Õ!=

E=0 :̃E=
Œ

!=
E
0=E+1 0

⇤
E
0
=
) = $ (log =),

by proposition B.0.3,

π
✓=2NYn2

=

?(✓=)3✓= � exp(�Y=n2
=
)

Therefore, using lemma A.0.6, we get

%
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✓����log
π

! (✓=)
!0

@(✓=)3✓=
���� > a=n2

=

◆
 2Y
a

(A.39)

Step 2 (d): From (A.31) and (A.30) we get

%
=

0 (3KL(c⇤, c(.|y=,X=)) > 3a=n2
=
)  %

=

0

⇣
3KL(@, ?) > a=n2

=

⌘

+ %=0
✓����
π

log
! (✓=)
!0

@(✓=)3✓=
���� > a=n2

=

◆
+ %=0

✓����log
π

! (✓=)
!0

?(✓=)3✓=
���� > a=n2

=

◆
 3Y
a

(A.40)

where the last inequality is a consequence of (A.37), (A.38) and (A.39).

Since Y is arbitrary, taking Y ! 0 completes the proof.

Consistency of the variational posterior.

Proof of Theorem 1.

We assume Relation (B.13) holds with �= and ⌫= are same as in (3.29).

By assumptions (A1) and (A2), the prior parameters satisfy

| |µ= | |22 = >(=), log | |�= | |1 = $ (log =), | |�⇤
=
| |1 = $ (1), �⇤

=
= 1/�=.

Note  = ⇠ =0, 0 < 0 < 1 which implies  = log = = >(=). By proposition A.0.17 part 1.,

3KL(c⇤, c(.|y=,X=)) = >%=
0
(=). (A.41)

By step 1 (c) in the proof of proposition A.0.17

⌫= = >%=
0
(=) (A.42)

Since,  = ⇠ =0,  = log = = >(=1), 0 < 1 < 1. Using proposition A.0.16 with n= = 1,

� c⇤(U2

Y
)�= � =Y2

c
⇤(U2

Y
) � log 2 + >%=

0
(1) = =Y2

c
⇤(U2

Y
) +$%

=
0
(1) (A.43)
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Thus, using (A.41), (A.42) and (A.43) in (B.13), we get

=Y
2
c
⇤(U2

Y
) +$%

=
0
(1)  >%=

0
(=) + >%=

0
(=) =) c

⇤(U2

Y
) = >%=

0
(1)

Proof of Theorem 2.

We assume Relation (B.13) holds with �= and ⌫= are same as in (3.29).

Let  = ⇠ =0 and n2
=
⇠ =�X, 0 < X < 1 � 0. This implies  = log = = >(=n2

=
).

By assumptions (A1) and (A4), the prior parameters satisfy

| |µ= | |22 = >(=n2
=
), log | |�= | |1 = $ (log =), | |�⇤

=
| |1 = $ (1), �⇤

=
= 1/�=.

Also by assumption (A3),

| |[0 � [✓⇤
=
| |1 = >(n2

=
), | |✓⇤

=
| |22 = >(=n2

=
), log(

!=’
E=0

:̃E=

!=÷
E
0=E+1

0
⇤
E
0
=
) = $ (log =)

By proposition A.0.17 part 2.,

3KL(c⇤, c(.|y=,X=)) = >%=
0
(=n2

=
). (A.44)

By step 2 (c) in the proof of proposition A.0.17

⌫= = >%=
0
(=n2

=
) (A.45)

Since  = ⇠ =0,  = log = = >(=1n2
=
), 0 + X < 1 < 1. Using proposition A.0.16, it follows that

� c⇤(U2

Yn=
)�= � Y2

=n
2
=
c
⇤(U2

Yn=
) � log 2 + >%=

0
(1) = Y2

=n
2
=
c
⇤(U2

Yn=
) +$%

=
0
(1) (A.46)

Thus, using (A.44), (A.45) and (A.46) in (B.13), we get

=Y
2
n

2
=
c
⇤(U2

Yn=
) +$%

=
0
(1)  >%=

0
(=n2

=
) + >%=

0
(=n2

=
) =) c

⇤(U2

Yn=
) = >%=

0
(1)

Proof of Corollary 1.

Let ✓̂= (H,x) =
Ø
✓✓= (H,x)c⇤(✓=)3✓=.

3H(✓̂=, ✓0) = 3H

✓π
✓✓=c

⇤(✓=)3✓=, ✓0
◆


π

3H(✓✓= , ✓0)c⇤(✓=)3✓= Jensen’s inequality

=
π
UY

3H(✓✓= , ✓0)c⇤(✓=)3✓= +
π
U2

Y

3H(✓✓= , ✓0)c⇤(✓=)3✓=

 Y + >%=
0
(1)
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Taking Y ! 0, we get 3H(✓̂=, ✓0) = >%=
0
(1). Let

[̂(x) = f�1
✓π

f([✓= (x))c⇤(✓=)3✓=
◆

(A.47)

then, note that [̂(x) = log ✓̂= (1,x)
✓̂= (0,x)

.

232
H(✓̂=, ✓0) = 2 � 2

π
x2[0,1] ?

’
H2{0,1}

q
✓̂= (H,x)✓0(H,x)3x

= 2 � 2
π
x2[0,1] ?

’
H2{0,1}

4
{ 1

2 (H[̂(x)�log(1+4 [̂ (x) )+H[0 (x)�log(1+4[0 (x) )}
3x

= 2 � 2
π
x2[0,1] ?

⇣p
f([0(x))f([̂(x)) +

p
(1 � f([0(x))) (1 � f([̂(x)))

⌘
3x

� 2 � 2
π
x2[0,1] ?

q
1 � (

p
f([0(x)) �

p
f([̂(x)))2

3x

�
π
x2[0,1] ?

(
p
f([0(x)) �

p
f([̂(x)))2

3x � 1
4

π
x2[0,1] ?

(f([0(x)) � f([̂(x)))2
3x

(A.48)

In the above equation, the sixth and the seventh step hold because
p

1 � G  1�G/2 and |?1� ?2 | 

|p?1 +
p
?2 | |

p
?1 �

p
?2 |  2|p?1 �

p
?2 | respectively. The fifth step holds because

⇣p
?1?2 +

p
(1 � ?1) (1 � ?2)

⌘2
= ?1?2 + 1 � ?1 � ?2 +

p
?1?2(1 � ?1) (1 � ?2)

 p
?1?2 + 1 � ?1 � ?2 +

p
?1?2 = 1 � (

p
?1 � p

?2)2

By (A.48) and Cauchy Schwartz inequality,π
x2* [0,1] ?

|f([0(x)) � f([̂(x)) |3x 
✓π

x2[0,1] ?
(f([0(x)) � f([̂(x)))2

3x

◆1/2

 2
p

23H(✓̂=, ✓0) = >%=
0
(1) (A.49)

The proof follows in lieu (3.33).

Proof of Corollary 2.

We assume Relation (B.13) holds with �= and ⌫= are same as in (3.29).

Let  = ⇠ =0 and n2
=
⇠ =�X, 0 < X < 1 � 0. This implies  = log = = >(=n2

=
).
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Also,  = log = = >(=1n2
=
), 0 + X < 1 < 1. This implies  = log = = >(=1 (n2

=
)^), 0  ^  1. Thus,

using proposition A.0.16 with n= = n := , we get

� c⇤(U2

Yn
^
=
)�= � Y2

=n
2^
=
c
⇤(U2

Yn
^
=
) � log 2 + >%=

0
(1) = Y2

=n
2^
=
c
⇤(U2

Yn
:
=
) +$%

=
0
(1) (A.50)

This together with (A.44), (A.45) and (B.13) implies

c
⇤(U2

Yn
^
=
) = >%=

0
(n2�2^
=

)

Let ✓̂= (H,x) =
Ø
✓✓= (H,x)c⇤(✓=)3✓=.

3H(✓̂=, ✓0) 
π
UYn ^=

3H(✓✓= , ✓0)c⇤(✓=)3✓= +
π
U2

Yn ^=

3H(✓✓= , ✓0)c⇤(✓=)3✓=

 Yn^
=
+ >%=

0
(n2�2^
=

)

Dividing by n ^
=

on both sides we get

1
n
^

=

3H(✓̂=, ✓0) = >%=
0
(n2�3^
=

) + >%=
0
(1) = >%=

0
(1), 0  ^  2/3.

By (A.49), for every 0  ^  2/3,

1
n
^

=

π
x2[0,1] ?=

|f([0(x)) � f([̂(x)) |3x  1
n
^

=

2
p

23H(✓̂=, ✓0) = >%=
0
(1).

The proof follows in lieu of (3.33).

Consistency of the true posterior.

From (4.9), note that

c(U2

Y
|y=,X=) =

Ø
U2

Y
! (✓=)?(✓=)3✓=Ø
! (✓=)?(✓=)3✓=

=

Ø
U2

Y
(! (✓=)/!0)?(✓=)3✓=Ø
(! (✓=)/!0)?(✓=)3✓=

(A.51)

Theorem A.0.18 Suppose conditions of theorem 3.4.1 hold. Then,

1.

%
=

0

⇣
c(U2

Y
|y=,X=)  24�=Y

2/2
⌘
! 1, =! 1

2.

%
=

0 ( |'(⇠̂) � '(⇠Bayes) |  8
p

2Y) ! 1, =! 1

115



Proof. By assumptions (A1) and (A2), the prior parameters satisfy

| |µ= | |22 = >(=), log | |�= | |1 = $ (log =), | |�⇤
=
| |1 = $ (1), �⇤

=
= 1/�=.

Note  = ⇠ =0, 0 < 0 < 1 which implies  = log = = >(=). Thus, the conditions of proposition B.0.3

hold with n= = 1.

%
=

0

✓π
! (✓=)
!0

?(✓=)3✓=  4�=a
◆
 %

=

0

✓����log
π

! (✓=)
!0

?(✓=)3✓=
���� > =a

◆
! 0, =! 1 (A.52)

where the above convergence follows from (A.35) in step 1 (c) in the proof of proposition A.0.17.

Since  = log = = >(=1), 0 < 1 < 1, the conditions of proposition A.0.16 hold with n= = 1.

%
=

0

✓π
U2

Y

! (✓=)
!0

?(✓=)3✓= � 24�=Y
2
◆
! 0, =! 1 (A.53)

where the last equality follows from (A.25) with n= = 1 in the proof of proposition A.0.16.

Using (A.52) and (A.53) with (A.51), we get

%
=

0

⇣
c(U2

Y
|y=,X=) � 24�=(Y

2�a)
⌘
! 0, =! 1

Take a = Y2/2 to complete the proof. Mimicking the steps in the proof of corollary 1,

3H(✓̂=, ✓0) 
π

3H(✓✓= , ✓0)c(✓= |y=,X=)3✓= Jensen’s inequality

=
π
UY

3H(✓✓= , ✓0)c(✓= |y=,X=)3✓= +
π
U2

Y

3H(✓✓= , ✓0)c(✓= |y=,X=)3✓=

 Y + 24�=Y
2/2  2Y, with probability tending to 1 as =! 1

where the second last inequality is a consequence of part 1. in theorem A.0.18. The remaining part

of the proof follows by (A.49) and (3.33).

Theorem A.0.19 Suppose conditions of theorem 3.4.2 hold. Then,

1.

%
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⇣
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2
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2/2
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p

2Yn=) ! 1, =! 1
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Proof. By assumptions (A1) and (A4), the prior parameters satisfy

| |µ= | |22 = >(=n2
=
), log | |�= | |1 = $ (log =), | |�⇤

=
| |1 = $ (1), �⇤

=
= 1/�=.

Also by assumption (A3),

| |[0 � [✓⇤
=
| |1 = >(n2

=
), | |✓⇤

=
| |22 = >(=n2

=
), log(

!=’
E=0

:̃E=

!=÷
E
0=E+1

0
⇤
E
0
=
) = $ (log =)

Note  = ⇠ =0, 0 < 0 < 1 and n= ⇠ =�X, 0 < X < 1�0, thus  = log = = >(=n2
=
). Thus, the conditions

of proposition B.0.3 hold.
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(A.54)

where the above convergence follows from (A.39) in step 2 (c) in the proof of proposition A.0.17.

Also, since  = log = = >(=1n2
=
), 0 + X < 1 < 1. Thus conditions of proposition A.0.16 hold.
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! (✓=)
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! 0, =! 1 (A.55)

where the last equality follows from (A.25) in the proof of proposition A.0.16.

Using (A.54) and (A.55) with (A.51), we get %=0

⇣
c(U2

Yn=
|y=,X=) � 24�=n

2
= (Y2�a)

⌘
! 0, = ! 1.

Take a = Y2/2 to complete the proof. Mimicking the steps in the proof of corollary 2,
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=
π
UYn=

3H(✓✓= , ✓0)c(✓= |y=,X=)3✓= +
π
U2

Yn=

3H(✓✓= , ✓0)c(✓= |y=,X=)3✓=

 Yn= + 24�2=n2
=Y

2  2Yn=, with probability tending to 1 as =! 1

where the second last inequality is a consequence of part 1. in theorem A.0.19 and the last inequality

last equality follows since n= ⇠ =�X. Dividing by n= on both sides we get

n
�1
=
3H(✓̂=, ✓0)  2Y, with probability tending to 1 as =! 1

The remaining part of the proof follows by (A.49) and (3.33).
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APPENDIX B

SUPPLEMENT FOR LEARNING INTRINSIC DIMENSIONALITY OF FEATURE
SPACE WITH VARIATIONAL BAYES NEURAL NETWORKS

Proof of Lemmas

Lemma B.0.1 Consider, [✓= (�x) = V0 +
Õ
:=
9=1 V9k(W9>�x) and [✓⇤

=
(x) = V⇤0 +

Õ
:=
9=1 V

⇤
9
k(W⇤

9

>x).

If

|V9 � V⇤9 |  n , 9 = 1, · · · , := |W9>�x � W⇤
9

>x|  n , 9 = 1, · · · , :=,π
x2[0,1] ?=

|[✓= (�x) � [✓⇤
=
(x) |3x  2n (:= + ||�⇤ | |1)

Proof. This proof uses somes ideas in the proof of theorem 1 in [74].

Note that |[✓= (�x) � [✓⇤
=
(x) |  |V0 � V⇤0 | +

Õ
:=
9=1 |V9k(W>9 �x) � V⇤9k(W⇤9

>x) |. Let D 9 = W
>
9
�x,

A 9 = W⇤
9

>x � W>
9
�x, then |[✓= (�x) � [✓⇤

=
(x) | is bounded above by

 |V0 � V⇤0 | +
:=’
9=1

��� V9

1 + 4D 9
�

V
⇤
9

1 + 4D 9+A 9

��� = |V0 � V⇤0 | +
:=’
9=1

��� V9 (1 + 4D 9+A 9 ) � V⇤
9
(1 + 4D 9 )

(1 + 4D 9+A 9 ) (1 + 4D 9 )
���

= |V0 � V⇤0 | +
:=’
9=1

|V9 � V⇤
9
| + |V9 4D 9+A 9 � V⇤

9
4
D 9 |

(1 + 4D 9+A 9 ) (1 + 4D 9 ) = 2
:=’
9=0

|V9 � V⇤9 | +
:=’
9=1

|V⇤
9
| |4A 9 � 1|

Since, |A 9 | < n < 1, thus |1 � 4A 9 | < 2|A 9 |  2n , the proof follows.

Lemma B.0.2 For any two functions, [0 and [1,

⌘(x) = f([1(x)) ([0(x) � [1(x)) + log(1 � f([0(x))) � log(1 � f([1(x)))  2|[0(x) � [1(x) |

Proof. Using f(G) = 4G/(1 + 4G)  1

|⌘(x) |  |f([0(x)) | |[0(x) � [1(x) | + | log(1 � f([0(x))) � log(1 � f([1(x))) |

 |[0(x) � [1(x) | +
���log

⇣
1 + f([0(x)) (4[1 (x)�[0 (x) � 1)

⌘���  2|[0(x) � [1(x) |
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where the proof of the above line is as follows. Let ? = f([0(x)), then 0  ?  1 and

A = [1(x) � [0(x),���log
⇣
1 + f([0(x)) (4[1 (x)�[0 (x) � 1)

⌘��� = |log (1 + ?(4A � 1)) |

A > 0 : | log(1 + ?(4A � 1)) | = log(1 + ?(4A � 1))  log(1 + (4A � 1)) = A = |A |

A < 0 : | log(1 + ?(4A � 1)) | = � log(1 + ?(4A � 1))  � log(1 + (4A � 1)) = �A = |A |

Lemma B.0.3 Let ?(✓= |�) = "+# (µ=,⌃=), where⌃= is diagonal. LetNa =
�
✓= : 3KL(✓0, ✓✓=) < a

 
,

3KL(✓0, ✓✓=) =
π
x2[0,1] ?=

f([0(x)) ([0(x) � [✓= (�x)) + log
1 � f([0(x))

1 � f([✓= (�x))
3x.

Assume conditions (C1),(C2),(C3) and (C4) hold, thenπ
✓=2Nan 2

=

?(✓= |�)3✓= � 4
�a=n2

=

Proof. This proof uses somes ideas in the proof of theorem 1 in [74].

By condition (C3), let [✓⇤
=
(x) be the neural network such that | |[✓⇤

=
� [0 | |1  | |[✓⇤

=
� [0 | |1 

an
2
=
/4. Define

N0
an

2
=
=

⇢
✓= : |V9 � V⇤9 |, |�>

9
�x � �⇤

9

>x| < an
2
=

8(:= + ||�⇤ | |1)
, 9 = 1, · · · , :=

�

For every ✓= 2 N0
an

2
=
, by lemma B.0.1, we have

π
x2[0,1] ?=

|[✓= (�x) � [✓⇤
=
(x) |3x  an

2
=

4
(B.1)

For ✓= 2 N0
an

2
=
,
Ø
x2[0,1] ?= |[✓= (�x) � [0(x) |3x  an

2
=
/2 which with lemma B.0.2 implies

3KL(✓0, ✓✓=)  an
2
=
. Thus, for every ✓= 2 N0

an
2
=
, ✓= 2 N

an
2
=

which impliesπ
✓=2Nan 2

=

?(✓= |�)3✓= �
π
✓=2N0

an 2
=

?(✓= |�)3✓=

Let U9 = x>
�
>
W9 and U⇤

9
= x>

W
⇤
9
, then ` 9U = x>

�
>µ 9W and f2

9U
= x>

�
>⌃ 9W �x. Also, using

|GB |  1,

U
⇤
9

2  x>
W
⇤
9
W
⇤
9

>x  | |�⇤
9
| |21 `

2
9U

= x>
�
>µ 9Wµ

>
9W
�x  | |�>µ 9W | |21

f
2
9U

= x>
�
>⌃ 9W �x � 1

| |�⇤
9W
| |21

| |�x| |22 f
2
9U

 | |� 9W | |21 | |�x| |22

119



Let X = an2
=
/(8(:= + ||�⇤ | |1)), then

π
✓=2N0

an 2
=

?(✓= |�)3✓= =
:=÷
9=1

π
V
⇤
9+X

V
⇤
9�X

1q
2cf2

9 V

4

� (V 9�` 9V )2

2f2
9V

3V9

π
U
⇤
9+X

U
⇤
9�X

1q
2cf2

9U

4

� (U9�` 9U)2

2f2
9 U

3U9

=
:=÷
9=1

2Xq
2cf2

9 V

4

� ( Ṽ�` 9V )2

2f2
9V

2Xq
2cf2

9U

4

� ( Ũ�` 9U)2

2f2
9 U

, Ṽ 9 2 V⇤9 ± X, Ũ 9 2 U⇤9 ± X

= 4

 
�Õ:=

9=1

 
� log 2

c�2 log X+logf9V+logf9 U+
( Ṽ 9�` 9V )2

2f2
9V

+ ( Ũ 9�` 9U)2

2f2
9 U

!!
(B.2)

where the second last equality holds by mean value theorem. Note that Ṽ 9 2 V⇤
9
±1 and Ũ 9 2 U⇤

9
±1

since X ! 0, therefore

( Ṽ 9 � ` 9V)2

2f2
9 V


max((V⇤

9
� ` 9V � 1)2

, (V⇤
9
� ` 9V + 1)2)

2f2
9 V


(V⇤

9
� ` 9V)2

f
2
9 V

+ 1

f
2
9 V

,

(Ũ 9 � ` 9U)2

2f2
9U


(U⇤

9
� ` 9U)2

f
2
9U

+ 1

f
2
9U

which further implies
Õ
:=
9=1

⇣
( Ṽ � ` 9V)2/(2f2

9 V
) + (Ũ � ` 9U)2/(2f2

9U
)
⌘

is bounded above by

 2
:=’
9=1

V
⇤
9

2

f
2
9 V

+ 2
:=’
9=1

`
2
9 V

f
2
9 V

+
:=’
9=1

1

f
2
9U

+ 2
:=’
9=1

U
⇤
9

2

f
2
9U

+ 2
:=’
9=1

`
2
9U

f
2
9U

+
:=’
9=1

1

f
2
9U

. ( | |�⇤ | |21 + ||µV | |21) | |��1
V
| |21 + 1

| |�x| |22

:=’
9=1

( | |�⇤
9
| |21 + ||�>µW 9 | |21) | |f�1

9W
| |21 = >(=n2

=
) (B.3)

where the last equality follows since | |�⇤ | |21, | |µV | |21, 1/| |�x| |22 = >(=n2
=
),

Õ
:=
9=1 | |W⇤9 | |21,

Õ
:=
9=1 | |�>µW 9 | |21 = $ (1) and | |��1

V
| |1, sup

9=1,··· ,:= | |��1
9W
| |1 = $ (1).

:=’
9=1

(� log
2
c

� 2 log X + logf9V + logf9U) 
:=’
9=1

(2 log 8 + log(:= + ||�⇤ | |1)+

logf9V + logf9U � 2 log n=

. := (log := + log | |�⇤ | |1 + log | |�V | |1 � 2 log n=)

+
:=’
9=1

log | |� 9U | |1 = >(=n2
=
) (B.4)
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where the last equality follows since := log = = >(=n2
=
), log | |V⇤ | |1 = $ (log =), log | |�V | |1 =

$ (log =), � log n= = >(log =) and
Õ
:=
9=1 log | |� 9U | |1  := log | |�x| | + :=

Õ
:=
9=1 log | |� 9W | |1 =

$ (:= log =) = >(=n2
=
).

Using (B.3) and (B.4) in (B.2), the proof follows.

Lemma B.0.4 Let, eF= = {
p
✓ : ✓✓= (H, �x), ✓= 2 F=} where ✓✓= (H, �x) is given by

✓✓= (H, �x) = exp
⇣
H[✓= (�x) � log

⇣
1 + 4[✓= (�x)

⌘⌘
(B.5)

and F= =
n
✓= : |\ 9 |  ⇠=, 9 = 1, · · · , :̃=

o
where :̃= = :=3= + 2:= + 1 = $ (:=3=). Then,

π p
2Y

Y
2/8

q
�[] (D, eF=, | |.| |2)3D . Yp:=3= (log := + (1/2) log ?= + 2 log⇠= � log Y)

where �[] (D, eF=, | |.| |2) is the hellinger bracketing entropy of F̃= (see definition in 3 in [74]).

Proof. This proof uses somes ideas in the proof of lemma 2 of [74].

In this proof, let ✓ = ✓=. Note, by lemma 4.1 in [104], # (Y, F=, | |.| |1)  (3⇠=/Y):= .

For ✓1, ✓2 2 F=, let e✓(D) = p
✓
D✓1+(1�D)✓2 (�x, H).

q
✓✓1 (�x, H) �

q
✓✓2 (�x, H)  :̃= sup

9=1,··· ,:̃=

���me✓/m\ 9
���| |✓1 � ✓2 | |1  � (�x, H) | |✓1 � ✓2 | |1 (B.6)

where the upper bound � (�x, H) = :̃=
p
?
=
⇠=. This is because |me✓/m\ 9 |, the derivative of

p
✓ w.r.t.

is bounded above by |m[✓ (�x)/m\ 9 | as shown below.
�����
m
e
✓

m\ 9

����� 
1
2
m[✓ (�x)
m\ 9

✓
4
[✓ (�x)

1 + 4[✓ (�x)

◆1/2 ✓
1

1 + 4[✓ (�x)

◆1/2

Thus, using 4D/(1 + 4D), 1/(1 + 4[✓ (x))  1, we get

2

�����
m
e
✓

m\ 9

����� 
����m[✓ (x)
m\ 9

���� 
8>>>><
>>>>:

1, \ 9 = VA for some A = 0, · · · , :=

|VAk0(W>
A
�G) [�x]

A
0 |, \ 9 = WAA 0 for some A = 0, · · · , :=, A0 = 0, · · · , 3=

Note, |VA |  ⇠=, |k0(D) |  1 and | [�G]
A
0 | = |Õ?=

B=1 0A
0
BG 9 |  (Õ?=

B=1 0
2
A
0
B
)1/2(Õ?=

B=1 G
2
B
)1/2  p

?=

since � is orthonormal and |GB |  1. Hence the bound on � (�x, H) follows.
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In view of (B.6) and theorem 2.7.11 in [126] (also see theorem 3 in [74] for more details), we have

#[] (Y, eF=, | |.| |2) 
 
3:̃=

p
?
=
⇠

2
=

2Y

!
:̃=

=) �[] (Y, eF=, | |.| |2) . :̃= log
:̃=

p
?
=
⇠

2
=

Y

where #[] and �[] denote the bracketing number and bracketing entropy as in definition 3 of [74].

Using, the proof of lemma 1 in [74] (equation (34)) with 3= = :̃= and ⇠= =
p
?=⇠

2
=
, we get

π
Y

0

q
�[] (D, eF=, | |.| |2)3D . Yp:=3= (log := + (1/2) log ?= + 2 log⇠= � log Y)

=)
π p

2Y

Y
2/8

�[] (D, eF=, | |.| |2)3D 
π p

2Y

0
�[] (D, eF=, | |.| |2)3D

. Y
q
:̃= (log :̃= + (log ?=)/2 + 2 log⇠= � log Y)

Lemma B.0.5 Let @(✓= |�) ⇠ "+# (m=,S=) with ` 9V = V
⇤
9
, f9V = 1/p=, m 9W = �W

⇤
9

and

S 9W = �3=/(=| |�x| |2)2. Define

3KL(✓0, ✓✓=) =
π
x2[0,1] ?=

f([0(x)) ([0(x) � [✓= (�x)) + log
1 � f([0(x))

1 � f([✓= (�x))
3x.

Suppose conditions (C1) and (C3) hold, then

π
3KL(✓0, ✓✓=)@(✓= |�)3✓=  an

2
=
, 8a > 0

Proof. Since
Ø
3KL(✓0, ✓✓=) is a KL-distance, 3KL(✓0, ✓✓=) > 0. We shall thus establish an upper

bound. By lemma B.0.2,
Ø
3KL(✓0, ✓✓=)@(✓= |�)3✓= is upper bounded by

 2
π

|[0(x) � [\= (�x) |3x


π π

x2[0,1] ?=
|[0(x) � [\⇤= (x) |3x@(✓= |�)3✓=+π π

x2[0,1] ?=
|[✓⇤

=
(x) � [\= (�x) |3x@(✓= |�)3✓=

 an
2
=

2
+
π π

x2[0,1] ?=
|[✓⇤

=
(x) � [\= (�x) |3x

|                                     {z                                     }
⌘(✓=)

@(✓= |�)3✓=
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π
x2[0,1] ?=

|[✓= (�x) � [✓⇤
=
(x) |3x 

π
x2[0,1] ?=

|V0 � V⇤0 |3x

+
:=’
9=1

π
x2[0,1] ?=

|V9k(�>
9
�x) � V⇤

9
k(�⇤

9

>
G) |3x

 |V � V⇤0 | +
:=’
9=1

π
x2[0,1] ?=

|V9k(�>
9
�x) � V⇤

9
k(�>

9
�x) |3x

+
:=’
9=1

π
x2[0,1] ?=

|V⇤
9
k(�>

9
�x) � V⇤

9
k(�⇤

9

>
G) |3x


:=’
9=0

|V9 � V⇤9 |

+ | |�⇤ | |1
π
x2[0,1] ?=

|k(�>
9
�x) � k(�⇤

9
>x) |3x

Therefore,

π
⌘(✓=)@(✓= |�)3✓= 

:=’
9=0

|V9 � V⇤9 |@(V9 )3V9+

||�⇤ | |1
π π

x2[0,1] ?=
|k(�>

9
�x) � k(�⇤

9
>x) |3x@(� 9 )3� 9

=
:=

=

r
2
c

+ ||�⇤ | |1
π π

x2[0,1] ?=
|k(�>

9
�x) � k(�⇤

9

>x) |3x@(� 9 )3� 9

(B.7)
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Now, let "9 = {� : |�>
9
�x � �⇤

9

>x|  an
2
=
/(16| |�⇤ | |1)}, thenπ π

x2[0,1] ?=
|k(�>

9
�x) � k(�⇤

9

>x) |3x@(� 9 )3� 9

=
π
" 9

π
x2[0,1] ?=

|k(�>
9
�x) � k(�⇤

9

>x) |3x@(� 9 )3� 9+
π
"

2
9

π
x2[0,1] ?=

|k(�>
9
�x) � k(�⇤

9

>x) |3x@(� 9 )3� 9

 an
2
=

8| |�⇤ | |1
+ 2&� 9 ("2

9
) (B.8)

Thus, combining (B.7) and (B.8) and using := = >(=n2
=
), we getπ

⌘(✓=)@(✓= |�)3✓= 
an

2
=

4
+ an

2
=

8
+ 2| |�⇤ | |1&� 9 ("2

9
) (B.9)

In the next steps, we deal with &� 9 ("2

9
). Let X = an2

=
/(16| |� | |⇤1)

%( |�>
9
�x � �⇤

9

>x| > X) = %( |U9 � U⇤9 | � X) (B.10)

where U9 = x>
�
>� 9 and U⇤

9
= x>

W
⇤
9
. Note that U9 � U⇤

9
⇠ # (` 9U,f2

9U
) with ` 9U = x>

�
>
�W

⇤
9
�

G
>
W
⇤
9
= G>(�>�� �)W⇤

9
and f2

9U
= (1/(=2 | |�x| |22)) | |�x| |22 = 1/=2. Further note that since |GB |  1,

|` 9U | =
?=’
B=1

|GB | | [(� � �>�)�⇤
9
]
B

| 
?=’
B=1

| [(� � �>�)�⇤
9
]
B

| = | | (� � �>�)�⇤ | |1 = >(=�1) = >(X)

where the last equality holds since X ⇠ n
2
=
/| |�⇤ | |1 � =

�1 because | |�⇤ | |21 = >(=n2
=
). This also

implies, (X ± ` 9U)/f9U ⇠ (=n2
=
)/| |�⇤ | |1 � p

=n= ! 1 which implies

%( |�>
9
�x � �⇤

9

>x| > X) = 1 ��((X � ` 9U)/f9U)) + 1 ��((X + ` 9U)/f9U)

⇠ (f9U/(X � ` 9U))q((X � ` 9U)/f9U)+ (B.11)

(f9U/(X + ` 9U))q((X + ` 9U)/f9U) . 4�=n
2
=

where the asymptotic equivalence in the second step is a consequence of Mill’ratio. Thus, using

the above relation in (B.9),π
⌘(✓=)@(✓= |�)3✓=  a

✓
n

2
=

4
+ n

2
=

8
+ 2| |�⇤ | |14�=n

2
=

◆
 an

2
=

2

where the last equality holds | |�⇤ | |1 = >(
p
=n

2
=
).
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Lemma B.0.6 Let @(✓= |�) ⇠ "+# (m=,S=) with <9V = V
⇤
9
, B 9 V = 1/p=, m 9W = �W

⇤
9

and

S 9W = �3=/(=| |�x| |2)2. Let, ?(✓= |�) = "+# (µ=,⌃=), where ⌃= is diagonal. Suppose conditions

(C1), (C2), (C3) and (C4) hold, then

3KL(@, ?) = >(=n2
=
)

Proof: With :̃= ⇠ := + 1 + := (3= + 1), here 3KL(@, ?) can be simplified as

=
:=’
9=1

(log
p
=f9V +

1

=f
2
9 V

+
(V⇤

9
� ` 9V)2

f
2
9 V

+
3=’
9
0=1

(2 log =| |�x| |2f9 9 0W +
1

=
2 | |�x| |22

+

(W⇤
9
� ` 9 9 0W)2

f
2
9W

)) � :̃=

2

. :̃= (log = + log | |�x| |2 + log | |fV | |1 + 1/(=| |�x| |2)2)+

:=

:=’
9=1

log | |f9W | |1 + ||f⇤
V
| |1( | |�⇤ | |22 + ||µV | |22)

+
:=’
9=1

| |f⇤
9W
| |1( | |�⇤

9
| |22 + ||µ 9W | |22) �

:̃=

2
= >(=n2

=
) (B.12)

where the last equality holds since :̃= log = = >(=n2
=
), log | |�x| |2 = log | |fV | |1 = log | |f9W | |1 =

$ (log =) and 1/| |�x| |22 = >(=n2
=
). Since | |.| |2  | |.| |1, | |�⇤ | |22 = | |µV | |22 = >(=n2

=
), Õ:=

9=1 | |�⇤
9
| |22 =

$ (1), Õ:=
9=1 | |µ 9W | |22 =

Õ
:=
9=1 | |�>µ 9W | |22 = $ (1), as consequence of which the proof follows.

Lemma B.0.7 Let ?(✓= |�) = "+# (µ=,⌃=), where ⌃= is diagonal. Suppose conditions (C1) and

(C2) hold, then π
✓=2F 2

=

?(✓= |�)3✓=  4
�=an2

=
, 8a > 0

where F= = {✓= : |\ 9 |  ⇠=, 9 = 1, · · · , :̃=} with ⇠= = 4Y=n
2
=/:̃= .

Proof: This proof uses somes ideas in the proof of theorem 1 in [74]. Let F9= = {\ 9 : |\ 9 |  ⇠=}
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Proof of Theorem 1

This proof uses some ideas in the proof of lemmas 3 and lemma 5 in [74].
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where the above inequality holds due to lemma B.0.6.
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