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ABSTRACT

MODELS FOR EVALUATION AND OPTIMIZATION OF GRID-SCALE ENERGY STORAGE
IN PRESENCE OF RENEWABLE ENERGY

By

Atri Bera

Power grids across the world are undergoing remarkable changes in recent times fueled by the

extensive integration of renewable energy resources (RERs). While it has been well established that

RERs help to alleviate environmental concerns, the high penetration of these resources poses some

serious challenges to the reliability and stability of the power grid due to their intermittent nature

and low-inertia characteristics. Energy storage systems (ESSs) can provide effective solutions to

the aforementioned problems. These devices are well suited for providing multiple services to the

power grid due to their flexibility in operation, high ramp rates, and decreasing costs. This work

investigates the role of ESSs in alleviating the critical issues concerning the power grid in recent

times and the economic viability of such solutions. First, a novel analytical approach is developed

for sizing ESSs to maintain grid frequency stability by providing inertial support. This approach

provides a solution to the problem of reduced inertia in a system with high penetration of RERs,

which may lead to frequency stability issues or blackouts in more severe cases. A comprehensive

investment planning framework for ESS projects is also developed, which can estimate the lifetime

revenue of ESSs participating in market services while considering battery degradation. A new

planning strategy is then presented, which brings together the technical and economic aspects

of deploying ESSs for providing inertial support to the grid. This techno-economic framework

is capable of optimally sizing ESSs for providing inertial support to the grid while minimizing

the operational costs of the system by participating in electricity markets. Besides considering

the stability issues of the modern power grid, the depleting reliability of the system due to high

RER penetration is also considered in this work. A transmission planning approach is developed

for this purpose, which can reduce the variability of wind power and enhance the reliability of

wind-integrated systems by jointly utilizing ESSs and wind power aggregation.
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CHAPTER 1

INTRODUCTION

The share of energy consumption originating from fossil fuels like coal, natural gas, and petroleum

is falling steadily across the globe due to their environmental impact leading to climate change.

The limited nature of these resources also plays a part in the global drive to find alternative and

more sustainable energy sources. Renewable energy resources (RERs), like wind and solar, are

suitable candidates for this role due to their abundance, environmental benefits, and low costs of

generation. In addition, sustained policy support and economic incentives for RERs across the

world have led to their exponential growth in recent times. Electricity generation is not exempt

from this growing trend and consequently, RERs have become key elements of the modern electric

power grid. According to [1], wind and solar combined are projected to become the largest source

of electricity generation in the world by 2025. The total installed wind power capacity in the U.S

was 105 GW by the end of 2019 [2], with 65 GW more expected to be added by the end of 2020,

despite the ongoing pandemic, while the expected global solar PV additions for 2020 was nearly

107 GW, representing an 18% growth from 2019 [1].

While the environmental benefits of RERs are well established, high penetration of these

resources introduces uncertainties into the system and poses serious challenges to the reliability

and stability of the power grid. This happens due to their intermittent nature and low-inertia

characteristics. Energy storage systems (ESSs) can be used to provide effective solutions in the face

of such uncertainty. These devices are well-suited for providing multiple services to the power grid

due to their operational flexibility, high ramp rates, and decreasing costs. They can be deployed for

applications like energy arbitrage, frequency regulation, inertial support, and firming up of RERs,

among others. This thesis identifies the various problems associated with RER penetration into

the power grid, investigates the role of ESSs in alleviating these issues, and develops models and

frameworks for providing effective engineering solutions to these problems.
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1.1 Motivation and Challenges

Conventional synchronous generators are dispatchable in nature and the operator has a high

degree of control over its operation. In addition, these generators have high rotating masses,

which can store large amounts of kinetic energy and provide the power grid with inertial support

when an imbalance occurs in the system. However, in recent times, an increasing number of

conventional generators are being replaced by RERs due to the reasons discussed above. Inverter-

based resources are incapable of providing any mechanical inertial response and are thus unable to

support frequency stability of the grid [3, 4]. Several studies have shown that the replacement of

conventional generators with RERs causes reduction of system inertia, which leads to an increased

rate of change of frequency (RoCoF) and lower frequency nadirs [5, 6]. Independent system

operators like Electric Reliability Council of Texas (ERCOT) [7] and regulatory bodies like North

American Electric Reliability Corporation (NERC) [8] have also reported a reduction in frequency

response due to the increasing penetration of RERs. Among the various solutions available for

alleviating the aforementioned concerns, the concept of virtual inertia has been widely proposed

in the literature [9–11]. Virtual inertia can be defined as the controlled contribution of electrical

torque from a unit that is proportional to the RoCoF at the terminals of the unit [12] and can

be implemented using ESSs, RERs, power electronic devices, and control algorithms [13]. For

example, [14] proposes a control algorithm to minimize frequency disturbances in the system due

to reduced inertia using ESS, while [15] discusses the different ways by which power electronic

converters can be controlled to behave like virtual synchronous machines. Since many ESS are

fast-acting devices with high ramping capabilities, they are well-suited for providing virtual inertia

to the system. For this purpose, ESSs need to be sized accurately, depending on the system

requirements. The problem of ESS sizing for virtual inertia support has been explored in [16–19].

In [16], the authors have presented a method to estimate the size of ESS to enhance the inertial

response of a power system in the presence of high wind penetration level although the loss of

system inertia due to component failures were not considered. Probabilistic methods for sizing

ESS under high RER penetration considering the loss of inertia due to component failures have

2



been studied in [17, 18] and a techno-economic framework for sizing of ESS is proposed in [19].

However, all prior works have used simulation techniques that can be computationally expensive.

Besides having low inertia characteristics, RERs are also variable in nature. The negative effects

of wind variability on the reliability and stability of a power system have been widely reported in

the literature [5, 20–22]. These disadvantages of wind power arising due to its variability can be

mitigated by several methods, including deployment of ESS, aggregation of geographically diverse

wind energy, and the use of flexible loads. The benefits of utilizing ESS for mitigating variability

of wind generation have been observed by researchers in the past [23–29]. Of these, [23] was

possibly the first to explicitly address reliability benefits. Hu et al. in [25] explicitly showed how

the installation of ESS mitigates the variability of wind power and improves system reliability by

performing reliability evaluation of a wind integrated system. Mitra [27] developed a probabilistic

method for determining the size of an ESS to achieve a pre-specified reliability target and then

utilized this methodology for quantifying storage required for mitigating the variability of wind

power in [28]. Nguyen et al. [29] proposed a strategy for improving the reliability of a wind

integrated system using ESS under a frequency security constraint. However, although ESS

projects are easier and faster to build than new transmission infrastructure, they incur high annual

maintenance costs and the battery packs also need to be regularly changed when they reach their

end of life. Apart from deploying ESS, the variability of wind energy can also be reduced by

aggregating geographically diverse wind farms. Several reports [30–32] have presented evidence

that aggregating power outputs of wind farms spread across geographically diverse areas can

significantly reduce its variability. Aggregation reduces variability as it leads to an increased

tendency of wind power output to lie near its mean value and a decreased tendency for it to lie

near its extremes [33]. Another study [34] has concluded that aggregation can even make wind

power suitable for serving a percentage of the base load and help in reducing the long-distance

transmission capacity of the power grid. Researchers have shown the mathematical models and

methods required for evaluating the reliability benefits of wind aggregation using mean variance

optimization in [35, 36]. However, several factors can limit the advantages gained by aggregating
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wind power. In [33], the authors suggest that the degree of smoothing depends on the number of

plants and the size of the geographical area over which they are spread, and [37] shows that the

smoothing effect decreases with the decrease in the geographical area over which aggregation is

considered. Besides, long-term fluctuations in wind speed, e.g., several hours or longer, tend to

have higher correlation [38, 39], thus limiting the benefits of aggregation.

While ESSs can be used to alleviate the stability and reliability of the power grid, it is important

to note that ESS projects are significantly expensive. Therefore, investment planning frameworks

need to be devised for extracting maximum economic benefits from these projects which will aid in

attracting more investors and utilities. ESSs traditionally participate in different electricity markets

like energy and ancillary markets to generate revenue. In many countries, the power industry has

gradually shifted from a centralized operation system to deregulated competitive markets in recent

times [40]. In the United States, both regulated and deregulated systems exist today. For some

wholesale markets, investor-owned electric utilities own generation facilities as well as transmission

and distribution systems and are responsible for operating, managing, and providing power to retail

consumers. In other regions, wholesalemarkets are operated by regional transmission organizations

(RTOs) or Independent System Operators (ISOs). These ISOs and RTOs provide buyers and sellers

the opportunity to bid for or offer generation for energy and ancillary services in their markets [41].

Some of the biggest electricity markets in the U.S. are operated by the Pennsylvania New Jersey

Maryland (PJM) Interconnection, Midcontinent Independent System Operator (MISO), Electricity

Reliability Council of Texas (ERCOT), California Independent System Operator (CAISO), and

New York Independent System Operator (NYISO). ESSs can participate in several applications in

these markets for generating revenue. A variety of applications of ESS have received widespread

attention from researchers in the past. Byrne et al. [42] presents a summary of the leading

applications of grid-connected storage systems. Among the applications of ESS prevalent today,

energy arbitrage and frequency regulation have proved to be the most profitable ones according

to multiple studies [43–45]. Reference [43] discusses the economic case for ESS in NYISO for

the two previously mentioned applications. Authors of [44] present a method for determining
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the stacked benefits from ESS following the PJM market model while authors in [45] present an

approach for maximizing economic benefits from ESS in the MISO electricity market. Although

these studies focus on maximizing the economic benefits of ESS, none of these works provide a

detailed cost-benefit analysis or considers the degradation of batteries. Hence, a comprehensive

investment planning methodology that focuses on the maximum economic benefits of ESS and

provides a detailed cost-benefit analysis useful to the investors still needs to be developed.

1.2 Thesis Contributions

This thesis investigates the role of ESSs in alleviating the stability and reliability issues faced

by the power grid due to increased RER penetration and develops models and techno-economic

optimization frameworks for providing solutions to these problems. The contributions of this thesis

can be summarized as follows.

• Developing an analytical approach for sizing of ESSs for grid inertial support

• Developing a method for calculating the probability of synchronization of generating re-

sources in a power system

• Establishing a relationship between the probability of synchronization of a wind farm with

its capacity value

• Developing an investment planning framework for ESSs participating in electricity markets

• Modeling the degradation cost of lithium-ion batteries participating in electricity markets

• Developing a techno-economic planning framework for ESSs providing grid inertial support

• Developing a cost-effective transmission planning framework for improving the reliability of

wind-rich power systems
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents an analytical approach for sizing

ESSs to provide inertial support to the grid and maintain frequency stability in presence of RERs.

Chapter 3 presents a comprehensive investment planning framework for an ESS, which estimates

the maximum revenue that the ESS can generate over its lifetime, and provides the necessary tools

to investors for aiding the decision-making process regarding ESS projects. A degradation cost

model for lithium-ion ESSs is also developed here. In Chapter 4, a techno-economic planning

framework is presented which optimally sizes ESSs to alleviate frequency stability issues of wind

integrated systems, while minimizing the operational costs by participating in electricity markets.

A bi-level stochastic optimization framework is developed here that minimizes the daily operating

cost of the grid while satisfying a frequency stability constraint. Chapter 5 presents a cost-effective

transmission planning approach for reducing the variability of wind power and enhancing the

reliability of a wind-integrated system, by jointly deploying ESS and wind power aggregation.

Chapter 6 summarizes the contributions of this thesis and discusses possible future work.

6



CHAPTER 2

SIZING OF ENERGY STORAGE FOR GRID INERTIAL SUPPORT IN PRESENCE OF
RENEWABLE ENERGY

2.1 Introduction

Frequency response plays a vital role in overall power system dynamic performance. An imbal-

ance between the generated power and load power leads to frequency deviation from the nominal

values and might result in some undesired conditions including high RoCoF, underfrequency load

shedding, higher frequency nadirs, and cascaded outages in some severe cases. In the event of such

an imbalance, the rotational kinetic energy stored in the rotor of the conventional synchronous gen-

erators is used to provide inertial support to the grid, thus restoring frequency stability. However,

RERs like wind or solar are interfaced with the grid through power electronic devices like inverters,

thus limiting their capabilities of providing inertial support [3, 4]. On the other hand, since ESSs

are fast-acting devices with high ramping capabilities, they are well-suited for providing virtual

inertia to the system. For this purpose, ESSs need to be sized accurately, depending on the system

requirements. The problem of ESS sizing for virtual inertia support has been explored in [16–19].

In [16], the authors have presented a method to estimate the size of ESS to enhance the inertial re-

sponse of a power system in the presence of high wind penetration level although the loss of system

inertia due to component failures were not considered. Probabilistic methods for sizing ESS under

high RER penetration considering the loss of inertia due to component failures have been studied

in [17, 18] and a techno-economic framework for sizing of ESS is proposed in [19]. However, all

the aforementioned works have used simulation techniques that can be computationally expensive.

In this chapter, we present an analytical method that solves the problem of reduced system

inertia due to increased RER penetration. Compared to traditional approaches that are based on

simulation, analytical methods afford several benefits. Apart from being computationally less

demanding, analytical approaches offer a solid mathematical foundation, based on which more
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complex problems can be solved. Besides, analytical models allow a more intuitive understanding

of the problem and often provide the flexibility of performing back-of-the-envelope calculations as

the intricacies of the problem evolve. For example, the approach presented here can be used as a

foundation for solving more complicated problems such as optimal planning or economic dispatch

while maintaining the frequency stability of the grid with the aid of an ESS. Even if simulation

becomes necessary for these more complex problems, the utilization of the analytical model can

help reduce both the complexity and the computational burden. To demonstrate the efficacy of this

analytical approach, we have used simulation techniques to validate the results obtained from the

proposed analytical method.

The proposed analytical approach is based on estimating the expected inertia of the generating

resources of the system, including conventional generators and RERs. The amount of inertia present

in any system constantly varies due to generator outages and the replacement of conventional units

with RERs. As the system inertia fluctuates due to the aforementioned reasons, there might be

instances when the system will not possess adequate inertia to maintain frequency stability after

a disturbance occurs and before the primary frequency response is activated. In such situations,

ESSs can provide virtual inertia to the system at a fast rate and maintain frequency stability. For

this purpose, ESSs need to be sized accurately, so that they can compensate for the lost inertia.

Considering the loss of inertia due to the two most common issues, generator outages, and

RER penetration, we propose an analytical approach that is capable of estimating the size of ESS

required to provide inertial support to the grid. This proposed approach involves the construction of

a probability distribution of the system inertia, from which its expected value is calculated. While

calculating the probability distribution of system inertia, we have also developed a methodology

to calculate the probability of synchronization of the generating resources of the system, since

the availability of a unit for supporting load does not guarantee that it is synchronized with the

system, and this is another major contribution of this work. We have used wind farms as illustrative

examples of RERs in this work, but the proposed methodology can be extended to solar as well.

Wind farms are modeled as multi-state units and the variability in wind power output due to both
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variation in wind speed and forced outages of wind turbines are considered.

The contributions of this work can be summarized as follows.

1. For the first time, a analytical approach is developed for sizing of ESS to provide inertial

support. This analytical approach potentially paves the way for solving more complicated

problems related to the frequency stability of the grid with less computational burden and

complexity.

2. This proposed analytical approach brings together in its framework the two most common

causes of reduced inertia in the system: generator outages and replacement of conventional

synchronous generators with RERs.

3. A new method is also developed within the proposed framework to calculate the probability

of synchronization of the generating resources of the power system, which is necessary to

estimate the probability distribution of system inertia.

The rest of this chapter is organized as follows. The methodology proposed for determining

the probability distribution of the system inertia is described in Section 2.2. The modeling of

wind farms as multi-state units is discussed in Section 2.3. A maximum frequency deviation limit

derived from a generalized LFC model is presented in Section 2.4. Section 2.5 demonstrates some

case studies and results while section 2.6 provides some concluding remarks.

2.2 Probability Distribution of System Inertia

The expected inertia of the generating resources can be used as a reference point for estimating

the size of ESS required to maintain the frequency stability of the system. The total inertia of the

system varies with time due to the outage of generators and the replacement of conventional units

with RERs. Hence, to calculate the expected inertia, it is necessary to first construct the probability

distribution of the equivalent inertia present in the system. In this work, the conventional units are

modeled as two-state units by using their forced outage rates (FORs), while RERs illustrated by

wind farms are modeled as multi-state units for determining the probabilities of their outage states.
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It should, however, be noted that knowledge regarding the availability of generators is not sufficient

for determining the probability distribution of system inertia. This is because the availability of a

generator for supporting load does not guarantee that it is synchronized with the system. It simply

means that it is available for synchronization when called upon. However, a generator must already

be synchronized with the system in order to provide inertial support when there is an imbalance

between demand and generation.

2.2.1 Probability of Synchronization

The probability of synchronization of the units can be determined by first calculating the expected

energy produced by a unit for a given time horizon, and then taking the ratio of this expected energy

and the total energy capacity of the unit for the same time horizon. Therefore, the probability of

unit 8 being committed, ?28, can be expressed as follows.

?28 =
��
8

�8 × )
(2.1)

where �8 is the generation capacity of unit 8, and the expected energy produced by the unit for a

time period ) is ��
8
.

The expected energy produced by a unit can be calculated by using a production cost model as

proposed in [46]. First, the equivalent load of the system, which comprises both the actual load

and the capacity on outage, is expressed in terms of a random number !4 as follows.

!4 = ! + - (2.2)

where ! and - are random numbers representing the total system load and the total generation

capacity on outage, respectively. The probability distribution of the equivalent load, %(!4), can be

obtained by the convolution of the probability distributions of the components of !4.

The probability distribution for the system load, !, can be derived by scanning the hourly load

data of the system over the period of interest, while the probability distribution for the capacity on

outage, - , can be derived as a capacity outage probability table (COPT) [47]. In general, when
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adding a new two-state unit (with states up and down) of capacity �, forced outage rate @, the

cumulative probability of an outage state - can be determined by the following expression.

%(-) = %̄(-)(1 − @) + %̄(- − �)@ (2.3)

where %̄(-) is the cumulative probability of outage state - before the addition of the new unit. In

case of multi-state units, like wind farms, (2.3) should be modified as follows.

%(-) =
=∑
8=1

?8 × %̄(- − �8) (2.4)

where ?8 is the probability of state 8 of a unit with = states.

Next, in order to determine the expected energy of the generator units, it is necessary to succes-

sively deconvolve the probability distribution of each unit from the distribution of the equivalent

load [48, 49]. This can be accomplished by rewriting (2.3) as a deconvolution formula as follows.

%̄(-) =
%(-) − @%̄(- − �)

(1 − @)
(2.5)

One advantage of this method is that the addition or removal of units from the distributions may be

obtained by operating directly on the convolved distribution of %(!4), which leads to a significant

reduction of computation times [46].

This deconvolution process is implemented in this study as follows. Let there be # generating

units in the system, the total installed capacity be �# and let the probability distribution of the

equivalent load be defined as %# (!4) when all units are considered. Now, let us consider that the

unit with the highest generating cost is removed from the system. The installed capacity is reduced

to �#−1 and the corresponding probability distribution of the equivalent load becomes %#−1(!4).

The expected value of the energy generated by the removed plant, ��
#
, can then be expressed as

follows [46].

��
#

= )
∫%#
%#−1

?#%#−1(!4)3(!4) (2.6)

where ?# denotes the availability of the removed generator and ) is the period of interest. Thus,

by successively removing generator units in decreasing order of their generating costs, the expected
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energy produced by all the units in the system can be determined. This information can then be

combined with (2.1) to determine the probability of each unit being committed.

2.2.2 Expectation of System Inertia

The probability distribution, and hence the expected value of the system inertia can now be

determined from the probability of commitment of each unit as derived in the previous section.

Let � be a random variable representing the system inertia. It should be noted that � is a discrete

random variable since it only assumes values that are equal to the sum of inertia constants of some

or all units. Let * be the set of generators synchronized with the system and � be the set of

generators not synchronized to the system. The probability mass function of the random variable

� can be then represented as follows.

%{� = ℎ} =
∏
8∈*
9∈�

?28@2 9 (2.7)

where ?28 is the probability of commitment of the 8Cℎ generator, @28 = 1 − ?28, and ℎ is expressed

as follows.

ℎ =
∑
8∈* �8(8
(eq

(2.8)

Then, the expectation of � can be calculated as:

�[�] =
∑
ℎ∈�

ℎ%{� = ℎ} (2.9)

This value of �[�] is used to determine the required size of the ESS.

2.2.3 Probability of Synchronization of Wind Farms

Although wind farms are unable to provide any mechanical inertial support due to their connection

with the grid via power electronic devices, some amount of virtual inertia might still be extracted

by using certain control techniques. However, since wind farms are not generally dispatched in the

order of their generating costs like conventional units, the deconvolutionmethod described in section
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2.2.1 cannot be employed to calculate the probability of synchronization of wind farms. Instead,

the capacity value of wind farms can be used for calculating their probability of synchronization.

In this context, consider the following postulate.

Postulate: The probability of synchronization of a wind farm (?2F) is equal to its capacity

value (�+F), or,

?2F = �+F (2.10)

Proof: Capacity value can be defined as the amount of additional load that can be served due

to the addition of a unit while maintaining the existing level of reliability [50]. Let %F be the

additional load that can be supported due to the addition of a wind farm of nameplate capacity �F .

If the new wind farm supports this load for ) units of time, then the energy absorbed by the load

from the wind farm is given as:

�F = %F × ) (2.11)

The CV of the wind farm can then be mathematically expressed as follows.

�+F =
�F

�F × )
(2.12)

Comparing (2.12) with (2.1), we see that just like CV, the probability of synchronization also

represents the amount of energy that the system absorbs from a unit for serving load. Thus, it can

be concluded that in the context of this work, the probability of synchronization of a wind farm is

essentially equal to its CV.

The validity of this equivalence is also supported using Monte Carlo simulation, which makes

no assumptions regarding the probability of synchronization and the CV of a wind farm, but still

produces results very close to those obtained using the analytical method.

2.3 Modeling of Wind Farms

Wind farms are modeled as multi-state units in this work. The variability in wind power output

due to both variation in wind speed and forced outages of turbines are considered.

13



2.3.1 Modeling of Wind Speed

Wind speed can be approximated by a discrete Markov chain with a finite number of states. The

probability, frequency, and transition rate of each wind state can be estimated from a large number

of samples of wind speed time-series data. The probability of each wind state is determined as

follows [51].

?2,8 =

∑#
9=1 =8 9∑#

:=1
∑#
9=1 =: 9

(2.13)

where ?2,8 is the probability of wind being in state 8, =8 9 is the number of transitions from state 8

to state 9 , and # is the total number of states. These wind speed states can be easily converted to

wind power output states by utilizing the power curve of a wind turbine [52].

2.3.2 Modeling of Wind Farm Capacity Outage

Wind farms generally comprise of a number of wind turbines, where the wind turbines can be

modeled as two-state units (up and down) with known failure and repair rates _ and ` respectively,

similar to conventional units. Hence, a COPT can be built for a wind farm, say COPTF , considering

the forced outage rate of the wind turbines, by using equation (2.3). COPTF is then combined with

the wind power states earlier obtained in section 2.3.1 to construct the multi-state unit of the wind

farm, as described in [6]. The multi-state wind farm unit thus developed can then be added to the

COPT of the system by using (2.4).

2.4 Frequency Stability of Power Grid

The control of frequency and power generation is commonly referred to as load frequency

control (LFC). It consists of the following stages: inertial response, primary frequency response

(PFR), secondary frequency response (also known as automatic generation control or AGC), and

tertiary frequency response [53]. This work focuses on the inertial response of the grid. The

following sections describe how the frequency dynamics are affected by the equivalent inertia of
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the system and the generalized LFC model used to calculate the minimum inertia required by the

system to maintain frequency stability.

2.4.1 Modeling of Grid Frequency Response

Frequency response plays a vital role in overall system dynamic performance. An imbalance in real

power leads to frequency deviation from the nominal values and might result in load shedding. One

of the most important components of frequency response is the inertia constant of a conventional

generator, �, which is defined as follows [54].

� =
1
2
�l2 (2.14)

where � is the moment of inertia and l represents the rotational speed of the rotor. In other words,

� is a measure of the amount of kinetic energy stored in the rotor of a synchronous generator.

Also, the equivalent inertia constant of a system composed of = generators can be determined as

follows [16].

�eq =
∑=
8=1 �8(8

(eq
(2.15)

where �8 and (8 are the inertia constant and nominal power of the 8Cℎ unit and (eq is the total

rated power of the system. The swing equation, which describes the motion of a machine, can be

expressed as follows [55].

2�eq
5B

35

3C
=
%< − %4
(eq

=
Δ%

(eq
(2.16)

where 5B is the nominal frequency of the system, 35
3C

is the RoCoF, %< and %4 are the mechanical

power input and the electrical power output, respectively.

2.4.2 Load Frequency Control Model

A generalized LFC model is utilized in this study [56], which is capable of representing the

contribution of each governor to the system frequency control. The model of LFC for a multi-
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machine system is illustrated in Fig 2.1 [56]. A summary of the notations used in Fig. 2.1 is given
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2) Generating capability and voltage magnitude limits:

PG,min
i ≤ PG

i ≤ PG,max
i ∀i ∈ S (4)

QG,min
i ≤ QG

i ≤ QG,max
i ∀i ∈ S (5)

V min
i ≤ Vi ≤ V max

i ∀i ∈ N (6)

where PG,min
i and PG,max

i are the minimum and max-
imum real power capabilities; QG,min

i and QG,max
i are

the minimum and maximum reactive power capabilities
of the generator i; V min

i and V max
i are the minimum and

maximum voltages at bus i.
3) Transmission line limits: Constraints for transmission

lines are represented as the limits of real power flow that
can be transmitted between two terminals of those lines:

Pij ≤ Pijmax ∀i ∈ M (7)

where

Pij = V 2
i |Yij | cos θij − ViVj |Yij | cos(δij − θij). (8)

θij is the angle of (i, j) element of bus admittance matrix
Y , while M is the set of all transmission lines in the
system.

4) Spinning reserve requirement: Due to the variation of the
demand, the system must maintain a minimum quantity of
spinning reserve to ensure system stability and reliability.
The spinning reserve constraint is constructed as follows:

∑

i∈N
(PG,max

i − PG
i ) ≥ ε1P

G
lup (9)

∑

i∈N
(PG

i − PG,min
i ) ≥ ε2P

G
ldown (10)

where ε1 and ε2 are the upper and lower rotating standby
rates of the system; PG

lup and PG
ldown are the demands when

the upward and downward spinning reserve is needed.
5) Frequency security constraint: Following an unexpected

disturbance within a power system, the frequency starts
deviating from the nominal value. Inertia, load damping,
and other damping mechanisms immediately inhibit the
frequency deviation. The governor adjusts the generator
output to prevent frequency from deviating further. The
output of the generator is changed by regulating the prime
mover input. The maximum frequency deviation, and
a part of the frequency recovery duration is attributed
to these actions. This mechanism is a part of the load
frequency control (LFC), which eventually restores the
frequency to the nominal value, if the system has suffi-
cient reserve. The maximum frequency deviation and the
recovery duration of frequency are inversely proportional
to the system inertia (H) and load damping (D), which has
been shown in Fig. 1. Therefore, in order to maintain the
frequency within a safe limit, a minimum amount of inertia
is vital to the system. For this reason, a frequency security
constraint should be considered in the OPF problem.

In [30] and [37], a generalized model of LFC capable of
representing each governor contribution to the system frequency
control was proposed. This LFC model was constructed based on

Fig. 1. Frequency deviation with different values of inertia.

Fig. 2. LFC model of a multimachine system [30].

the sensitivity of frequency deviation to the governor parameters
for the low-order LFC model in [38], of which the accuracy has
been evaluated. The model of LFC for the multimachine system
is shown in Fig. 2. In Fig. 2, the notations used are as follows:
H equivalent inertia constant;
D load damping constant;
Ki LFC controller of machine i;
Ri equivalent regulation constant of machine i
Fi fraction of turbine power generated by HP unit of

machine i;
Ti governor time constant of machine i;
Δf frequency deviation;
ΔPL disturbance.
In this model, inertia constant H is the sum of the ratios of the

kinetic energy and the rating of the rotor for each synchronous
machine. All governor time constants are assumed to be of iden-
tical value. This assumption is reasonable and it has very little
effect on the accuracy of the model due to the low sensitivity of
the maximum frequency deviation to the governor time constant
TR [30].

From the LFC model for the multimachine system, the equa-
tion of frequency deviation can be constructed as follows:

Δf(s) =
ΔPL

s

D + 2Hs+
∑m

i=1
Ki(1+FiTRs)
Ri(1+TRs)

. (11)

Figure 2.1: LFC model of a multi-machine system.

as follows.

� = equivalent inertia constant;

� = load damping constant;

 8 = LFC controller of machine 8;

'8 = equivalent regulation constant of machine 8

�8 = fraction of turbine power generated by

high pressure (HP) unit of machine 8;

)8 = governor time constant of machine 8;

Δ 5 = frequency deviation;

Δ%! = disturbance

The governor time constants of all machines are assumed to be of equal value since the maximum

frequency deviation has a low sensitivity to this quantity ()') [56].

2.4.3 Minimum Inertia Required

The minimum inertia required by the system to maintain frequency stability in the event of a

disturbance is discussed in this section. The equation for frequency deviation can be developed

from the LFC model of multi-machine system [57] and is shown in (2.17).
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Δ 5 (B) =
Δ%!
B

� + 2�B + ∑<
8=1

 8(1+�8)'B)
'8(1+)'B)

(2.17)

Assuming all values of )' to be identical and using inverse Laplace transformation, the expression

for frequency deviation in the time domain is obtained as follows.

(2.18)
Δ 5 (C) =

Δ%!

2�)'l2
=

(
1 − 1√

1 − Z2
4−Zl=C cos (l=

√
1 − Z2C

− q)
)

+
Δ%!

2�l=
√

1 − Z2
4−Zl=C sin (l=

√
1 − Z2C)

)
where

�' =
<∑
8=1

 8�8

'8
(2.19)

'' =
<∑
8=1

 8

'8
(2.20)

l= =

√
1

2�)'
(� + '') (2.21)

Z =
1
2

2� + )'(� + �')
√

2�)'(� + '')
(2.22)

q = tan−1
(

Z√
1 − Z2

)
(2.23)

The maximum frequency deviation is obtained by equating the derivative of Δ 5 (C) in (2.18) to zero

and is expressed as follows.

Δ 5max =
Δ%!

'' + �

(
1 + 4−Zl=Cmax

√
)'('' − �')

2�

)
(2.24)

where

Cmax =
1

l=
√

1 − Z2
tan−1

(
l=

√
1 − Z2

Zl= − 1/)'

)
(2.25)
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2.4.4 Minimum Inertia Required in a Wind-Integrated System

The total inertia of the system is reduced when conventional generators with high rotating masses

are replaced by wind generators with low inertia. This reduction of inertia is modeled into the

maximum frequency deviation limit as follows [58]. It is assumed that the reduction in the system

inertia due to the removal of a conventional unit is W2E and the contribution from the wind turbines is

WF . Then, the new values of system inertia and the equivalent regulation constant can be expressed

as follows.

�new = �old(1 − W2E + WF) = W�old (2.26)

'new =
'old

(1 − W2E + WF)
=
'old
W

(2.27)

The changes in the values for the system inertia and the regulation constant leads to the following

modification in the expression for the maximum frequency deviation.

Δ 5 newmax =
Δ%!

W'Rnew + �

(
1 + 4−Znewl=,newC

new
max

√
)'('Rnew − �Rnew)

2�new

)
(2.28)

where

�Rnew =
<∑
8=1

W
 8�8

'8
= W�' (2.29)

'Rnew =
<∑
8=1

W
 8

'8
= W'' (2.30)

l=,new =

√
1

2�new)'
(� + 'Rnew) (2.31)

Znew =
1
2

2�new + )'(� + �Rnew)√
2�new)'(� + 'Rnew)

(2.32)

The minimum inertia required to maintain frequency stability can now be determined from

(2.24) for a system with only conventional generation and (2.28) for a wind-integrated system by

using a pre-determined value for Δ 5max. For example, for a system operating with a nominal

frequency of 60 Hz, Δ 5max can be set at 0.1 Hz. The above model can be used to simulate system

response for load disturbances as well as generator or other equipment failures.
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2.4.5 Contribution of ESS towards Frequency Stability

Let the minimum inertia level that is required to maintain frequency stability be �min for a

particular disturbance event. Also, let the equivalent inertia of a system be �sys(C) at any time C.

If �sys(C) < �min, then an ESS may be deployed, which can inject active power into the system

at a sufficiently high rate to maintain frequency stability. Hence, the inertia that the ESS needs to

provide for a particular disturbance at any time C, if �sys(C) < �min, can be defined as follows.

�ESS(C) = �min − �sys(C) (2.33)

The ESS is sized based on the expected value of the system inertia, �[�ESS(C)] or �ESS, which is

calculated as follows.

�ESS = �min − �[�sys(C)] (2.34)

where �min is constant for a particular disturbance event and �[�sys(C)] is determined by the

method proposed in section 2.2.2.

Now, the relationship between �ESS, and the real power required to be injected by the ESS for

maintaining frequency stability, %ESS, can be derived from (2.16) as follows [16].

�ESS = %ESS
5B

2

(35
3C

)−1
(2.35)

In (2.35), the expression 35
3C

or the RoCoF can be defined as a measure of how quickly the frequency

changes following a sudden imbalance between generation and load [59] and is most commonly

expressed in Hz per second. The initial RoCoF is calculated as the change in frequency over a 0.5

second period immediately following a sudden generation loss [60]. The initial RoCoF depends

on several factors including the magnitude of the disturbance event, the amount of system inertia

online, and the speed and magnitude of the frequency response. If the initial RoCoF is significantly

high, then the system frequency may fall at a level where underfrequency load shedding (UFLS)

may be required, the UFLS requirements for the North American grid being provided in [61].

Therefore, the RoCoF should be restricted within a certain value to avoid UFLS. According to [16],

the value of RoCoF should not exceed 0.5 Hz/s. In this work, the value of RoCoF is assumed to be

a constant value of 0.5 Hz/s, thus considering the worst-case scenario.
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2.5 Case Studies and Results

Data from the New England IEEE 39-bus system [62] is used to test the efficacy of the proposed

method. The original test system comprises 39 buses, 10 generators, and 46 transmission lines. A

single line diagram of this test system and all relevant system data are shown in Appendix A. Part

of the conventional generation is replaced by wind farms in some of the case studies presented in

this work, to illustrate the effect of RER integration on system inertia. Wind speed data from [63]

is used to model wind farms as multi-state units, as described in section 2.3. The CV of the wind

farm is calculated in terms of the probability of synchronization to be 0.15 for the data-set used in

this work. The annual hourly load curve is obtained from [64] and adjusted according to the peak

load of the test system. Data for the governor parameters are obtained from [56] and reliability data

for the generating units are obtained from [65].

2.5.1 Probability of Synchronization

The probability distribution of the equivalent load of the system, !4, is illustrated in Fig. 2.2, which

also shows how the distribution of the equivalent load changes as units are gradually removed from

the systemusing deconvolution. When all units have been removed, the distribution of the equivalent

load coincides with the load duration curve. The probability of synchronization for each unit is

calculated using the method described in section 2.2, and the results are shown in Table 2.1. These

results can be utilized to determine the probability distribution of system inertia and its expected

value. The probability distribution of the system inertia is shown in Fig. 2.3. The random variable

representing the system inertia, �, ranges from 0 to 792.7 s, and the expected value of the system

inertia, �[�] is calculated to be 581.62 s for the original test system without any wind power

penetration.
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Figure 2.2: Probability distribution of equivalent load and the load duration curve for the IEEE 39
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Figure 2.3: Cumulative Distribution Function of �.
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Table 2.1: Expected energy output for one year.

Unit Expected Energy ?2
No. per year (MWh)
1 8,298,663 0.911
2 602,674 0.106
3 4,394,496 0.692
4 1,365,113 0.239
5 19,889 0.005
6 2,744,060 0.456
7 170,530 0.034
8 69,397 0.014
9 7,014,167 0.926
10 9,102,311 0.945

2.5.2 Case Studies

The ESS sizing approach proposed in this work is illustrated with the help of three cases, by

varying the degree of wind penetration in each case. Disturbance in the form of a load of 0.1 p.u.

is assumed to change the system frequency from its nominal value of 60 Hz. ESS sizes for three

values of maximum frequency deviation (Δ 5max) are determined for each case. In general, the

proposed approach can be used to size ESS devices for any value of maximum frequency deviation

and any load disturbance. This provides the system operator with ample flexibility in choosing the

parameters. Data for the inertia constant of wind farms are obtained from [58].

1. Case 1: The original system with only conventional generation is considered in this case.

2. Case 2: About 8% of the generation capacity of the system (the current share of installedwind

capacity in the U.S. today) is replaced by wind generation. To achieve this, a conventional

unit of 580 MW is removed from the system and replaced by a wind farm of capacity 640

MW. This wind farm is assumed to consist of 80 identical wind turbines, of 8 MW each.

3. Case 3: About 20% of the generation capacity of the system (target wind power share in the

U.S by 2030 [30]) is replaced by a wind farm of capacity 1520 MW. Two conventional units

with capacities of 646 MW and 865 MW are removed to achieve this.
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2.5.3 Frequency Deviation Limit

Theminimum inertia required tomaintain the frequency deviation of the systemwithin pre-specified

limits under a load disturbance is determined here from (2.24) for a system with only conventional

generation and (2.28) for wind-integrated systems. Fig. 2.4 illustrates how the maximum frequency

deviation of the system increases with decreasing system inertia for a load disturbance of 0.1 p.u.

In this work, the size of the ESS is determined based on the difference between the expected
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Figure 2.4: Maximum frequency deviation vs. inertia for the IEEE 39 bus system for a load
disturbance of 0.1 p.u.

value of the system equivalent inertia and the minimum inertia required to maintain frequency

stability. However, since the proposed approach involves the construction of the entire probability

distribution of system inertia, other statistics besides the mean value can be easily extracted from

the distribution. This provides the system planner with the flexibility to evaluate the risk of losing

frequency stability associated with installing different sizes of ESS.

2.5.4 ESS Size

Results for the three cases are shown in Table 2.2. The energy capacity of the ESS would depend

upon several factors, including how frequently it is called upon by the RTO to provide synthetic
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inertia, the system behavior, and also the charge-discharge characteristics of the ESS. If the ESS

facility is designed to provide other services in addition to synthetic inertia, these services will also

be considered in determining the energy capacity. Although the location of the ESS is not explicitly

determined in this work, given that it is the wind farm that displaces system inertia, the ESS should

be located near the wind farm for providing virtual inertia support. In case there are multiple RERs,

the total ESS capacity required can be distributed proportionately among all locations containing

the RERs.

Table 2.2: ESS sizes for a load disturbance of 0.1 p.u.

Case Freq. Dev. E[H] Hmin HESS PESS
Limit (Hz) (s) (s) (s) (MW)

1 0.085 734 152 253
0.09 582 619 39 62
0.095 531 N/A N/A

2 0.085 787 219 365
0.09 568 659 91 152
0.095 557 N/A N/A

3 0.085 875 315 525
0.09 560 728 168 280
0.095 608 48 80

Results show that for the first two cases, an ESS is only required when the maximum frequency

deviation of the system has to be restricted to 0.09 Hz. The system in both cases possesses adequate

inertia to limit the frequency deviation beyond 0.09 Hz. For Case 3, however, since the wind

penetration is significantly higher than Case 2, an ESS is required to limit the maximum frequency

deviation up to 0.095 Hz. This also implies that as the penetration of RERs keeps on increasing,

larger ESSs will be required in the future for restricting system frequency deviations. Results

obtained by employing the analytical approach are then validated using Monte Carlo simulation

(MCS). Using MCS, the mean inertia of the system for cases 1, 2, and 3 are calculated to be 595

s, 587 s, and 569 s, respectively. Comparing these results with those presented in Table 2.2, we

can see that the mean inertia obtained by both methodologies lies within approximately 3% of each

other for each case. This validation proves the efficacy of the proposed analytical approach and
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emphasizes its utility in sizing of ESS for grid frequency stability without having to bear the high

computational burden of simulation methodologies.

2.5.5 Effect of Incorporating Transmission Constraints
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Figure 2.5: A single line diagram of the IEEE 39 bus system illustrating the multi-area system and
congestion.

The results of the proposed analytical approach in estimating the system inertia are compared

with the results of a simulation technique that considers the transmission constraints of the system.

Case 2 is used for the purpose of this comparison. For this case, the mean inertia of the system

considering the transmission constraints is calculated to be 639 s, which is significantly higher than

568 s, the result obtained using the analytical method. The reason for this mismatch is investigated

and a congestion is identified in the transmission line between buses 2 and 3. The system is then split

into two equivalent areas, as shown in Fig. 2.5, to avoid this congestion. The expected inertia values

for areas 1 and 2 are then calculated using the analytical approach to be 528 s and 96 s, respectively.

The expected inertia values of the individual areas add up to 624 s, which is within 2% of the
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value obtained using MCS. This shows that the proposed analytical approach is valid for multi-area

systems even when the transmission constraints are considered. Also, system operators typically

have knowledge regarding the areas of congestion in the system. Therefore, they can use the

proposed analytical method to perform back-of-the-envelope calculations to allocate the necessary

amounts of storage required by each zone to provide inertial support. This further emphasizes the

efficacy of the proposed approach, since a practical power system generally comprises multiple

areas controlled by different balancing authorities.

2.6 Conclusion

This chapter presents a novel analytical method for sizing of ESS for providing grid inertial

support in presence of RERs. The proposed approach is based on estimating the expected inertia

of the system, consisting of conventional generators and RERs. It involves the construction

of the probability distribution of system inertia, taking into account generator outages and the

replacement of conventional units with RERs. The reduction of system inertia due to various

degrees of RER penetration and the sizes of ESS required are calculated and illustrated using a

few case studies. The results obtained using the proposed analytical approach are validated using

Monte Carlo simulation and the efficacy of this approach is demonstrated for multi-area systems

when transmission constraints are considered. This approach also offers system planners flexibility

regarding the choice of certain system parameters and the option of risk assessment for different

ESS sizes. Future work involves the integration of this approach into an optimal ESS planning

framework, that would also allow the economic assessment of ensuring frequency stability of the

grid using ESS.
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CHAPTER 3

TECHNO-ECONOMIC EVALUATION OF ENERGY STORAGE SYSTEMS

3.1 Introduction

Increasing uncertainty in the modern power grid due to the variability of RERs has led to the

widespread deployment of ESSs. ESSs are flexible devices with high ramp rates that can help

in maintaining a balance between generation and demand in the face of such uncertainty. ESSs

can be deployed for various applications including frequency regulation, peak shaving, voltage

support, energy arbitrage, and firming up of RERs. While a few of the applications are capable

of generating direct monetary benefits, most are not. However, ESS projects are significantly

expensive. Therefore, investment planning frameworks need to be devised for extracting maximum

economic benefits from these projects which will aid in attracting more investors and utilities.

ESSs can participate in a number of applications in these markets for generating revenue. A

variety of applications of ESS have received widespread attention from researchers in the past.

Byrne et al. [42] presents a summary of the leading applications of grid-connected storage systems.

Among the applications of ESSs prevalent today, energy arbitrage and frequency regulation have

proved to be the most profitable ones according to multiple studies [43–45]. Reference [43]

discusses the economic case for ESSs in NYISO for the two previously mentioned applications.

Authors of [44] present a method for determining the stacked benefits from ESSs following the

PJM market model while authors in [45] present an approach for maximizing economic benefits

from ESSs in the MISO electricity market. Although these studies focus on maximizing the

economic benefits of ESSs, none of them provides a detailed cost-benefit analysis or takes the

degradation of batteries into consideration. On the other hand, [66–68] present various strategies

The content of this chapter has been reproduced with permission from Atri Bera, Saleh
Almasabi, Yuting Tian, Raymond H. Byrne, Babu Chalamala, Tu A. Nguyen, and Joydeep Mitra.
“Maximising the investment returns of a grid-connected battery considering degradation cost,”
IET Generation, Transmission & Distribution, vol. 14, no. 21 (2020), pp. 4711 – 4718.
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for co-optimization of ESSs for participating in multiple services. However, a comprehensive

investment planning methodology that focuses on the maximum economic benefits of ESSs and

provides a detailed cost-benefit analysis useful to the investors still needs to be developed.

Several technologies exist today for grid-level ESSs. The most popular among these are

batteries, pumped-hydro storage (PHS), flywheels, and capacitors [69, 70]. The deployment of

batteries has increased significantly in the U.S in recent years, with installation capacities growing

almost two-folds annually since 2011 [71]. By the end of 2017, the installed battery capacity in

PJM was 287.5 MW, and the total installed battery capacity in the U.S. was 708 MW [72]. Among

different grid-level battery technologies, lithium-ion batteries are the most popular, constituting

more than 80% of large-scale battery storage in operation in the U.S. by the end of 2016 [71].

Several characteristics of Li-ion batteries contribute to their popularity: high efficiency, high

energy density, and fast response times.

While estimating the revenue generated from a battery energy storage system (BESS), degra-

dation of batteries should be taken into account as it can affect the accuracy of results. Studies

have shown that the degradation of batteries is application-specific. Peterson et al. [73] discuss

the degradation of batteries for vehicle-to-grid applications, references [74–76] discuss various

degradation cost models for economical operation of microgrids, while [77] proposes a piece-wise

linear cost function to model aging of batteries due to cycling from participation in electricity mar-

kets. References [74–76] consider both the cycle life and the energy throughput while modeling

the degradation cost of batteries for improved economic operation of microgrids. Although the

degradation cost function has been used to minimize the life loss of the battery in [74–76], the cost

of the battery packs was not considered. On the other hand, in [77], the authors consider the cost

of the battery but not the lifetime energy throughput. The model proposed in [77] penalizes the

battery for every cycle of its operation and this requires the counting of cycles online. However,

in practice, cycle counts are tracked using the Rainflow Counting Algorithm (RCA) [78] which re-

quires the entire time-series operation data of the battery and hence cannot be implemented online.

As a result, the model proposed in [77] relies on certain approximations that can lead to inaccurate
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results. Hence, a degradation cost model considering both cycle life and energy throughput, along

with the cost of batteries needs to be developed for ESSs participating in electricity markets. This

degradation cost model would enable the representation of the degradation cost in monetary units,

thus providing the investors with a more realistic estimate of the ROI and payback period.

In recent times, the prices of Li-ion batteries have decreased significantly. While the price of

these batteries in 2010 was more than $1000/kWh, in 2020 it has decreased to around $200/kWh

[79]. However, utilities are still struggling to make BESS projects profitable due to high capital and

daily operating costs. Also, there are only a handful of applications in the electricity markets that

reward the storage units monetarily, e.g., energy arbitrage, frequency regulation, spinning reserve,

and black start among others. In such a scenario, new methodologies need to be developed for

extracting the maximum economic benefits for BESS projects. This work presents a new approach

by developing a comprehensive planning framework that enables the BESS to maximize economic

benefits while also incorporating the degradation cost of batteries. The lifetime revenue of the

BESS is calculated considering battery degradation and a cost-benefit analysis is also performed

to provide investors with appropriate tools for making decisions. The applications of the BESS

selected for this study are energy arbitrage and frequency regulation. The proposed framework also

provides a methodology to determine the optimal location which maximizes the economic benefits.

The widespread popularity of Li-ion batteries due to the characteristics mentioned earlier makes it

the choice of the BESS for this study. The battery degradation cost is incorporated as a component

of the objective function. The degradation cost function in this work is developed specifically

for BESS participating in the electricity markets considering both the cycle life and the energy

throughput of the battery. Calculating the degradation cost with respect to the energy throughput

is advantageous to calculate the cost per cycle since the former can be easily determined for every

period while the latter can only be determined after the entire time-series data for the operation of

the BESS is available, which may lead to inaccurate results.

The economic benefits from theBESS aremaximized by developing an optimization framework.

The objective function of this optimization framework includes the revenue from the applications,
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and the degradation cost of the battery modeled as a penalty function. It also provides the option of

optimally locating the BESS when such an opportunity exists. The constraints include the capacity

and operational limitations of the BESS and the characteristics of the power system network it is

connected to. The proposed optimization framework is linear. Previously, in [80], the authors

had proposed a Mixed Integer Non-Linear Programming (MINLP) problem for maximizing the

economic benefits of ESSs. However, MINLP problems are computationally complex and the

scalability of such problems for big systems might be challenging. Hence, a linear framework

is proposed here, which can be scaled irrespective of the system size. The proposed framework

estimates the lifetime revenue of a BESS and provides a comprehensive cost-benefit analysis for the

BESS project. The revenue is estimated both with and without considering the degradation cost.

The results show a significant difference between the two values and underline the importance of

considering the degradation cost within the framework. The main contributions of this work can

be summarized as follows.

1. This work presents a new framework for a comprehensive investment planning study of

grid-connected storage systems with the objective of maximizing economic benefits. This

framework is capable of including multiple products (such as energy arbitrage and frequency

regulation) as well the battery degradation cost, along with a comprehensive set of operating

constraints.

2. This work also adds to the prior art by proposing an improved degradation cost model for

Li-ion batteries participating in the electricity markets and incorporating it within the opti-

mization framework as an operational expense. This new degradation cost model considers

both the lifetime energy throughput and the cycle count of the batteries. It also considers the

cost of the battery packs which reflects the cost of degradation in monetary units. All these

aspects have not been considered together in prior literature while modeling the degradation

cost of BESSs participating in electricity markets.

3. The framework developed in this work includes the methodology for an exhaustive cost-
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benefit analysis of BESS projects that can aid in the decision-making process of investors

and utilities in the planning phase based on the net present value, return on investment, and

the payback period.

3.2 Participation in the Electricity Market

Only a few applications in the U.S. electricity markets provide economic opportunities for

storage systems. These include energy arbitrage, frequency regulation, spinning reserve, and black

start among others. A general framework is first developed to quantify the revenue generated by a

BESS by participating in any of the market services. For this study, energy arbitrage and frequency

regulation are then chosen to demonstrate the efficacy of the proposed framework.

3.2.1 Revenue Model of BESS

A BESS can participate in multiple market services to generate revenue. A general framework is

developed in this section to quantify this revenue from any service that the BESS participates in.

Let the BESS participate in = market services. Then, the revenue from the 8Cℎ service, �8, can be

expressed as follows.

�8 = 58(C, @8(C), <8(C)) (3.1)

where 58 is a function of time C, @8(C) is the energy exchanged through the BESS and <8(C) is the

value of the market parameters at time C. Hence, the total revenue generated by the BESS from =

services, �, for a given time horizon ) can be expressed as follows.

� =
)∑
C=1

=∑
8=1

58(C, @8(C), <8(C)) (3.2)

Energy arbitrage and frequency regulation are the services selected for this study. However,

this framework can be easily extended to include other applications as well.
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3.2.2 Energy Arbitrage

Energy arbitrage is one of the oldest and most common applications of storage systems. The

revenue from this application depends on the temporal variability in the price of electricity. The

price of electricity at a bus in the network is indicated by the locational marginal price (LMP) and

depends on the geographic location, variation in load, and connectivity of the bus with the rest of the

network. The uncertainties in the load also give rise to uncertainties in the LMPs. For this reason,

the LMPs are modeled as random variables in this work. Historical LMP data is used to estimate

the distribution of LMPs, and the LMP for each hour is represented by a random variable. The

weekly LMP cycle is preserved while fitting the distribution. The random variable representing the

LMP for a particular hour is found to be following a normal distribution. The mean and variance

of the normal distribution are determined from historical data. The hourly LMPs for the system are

generated using the estimated normal distributions.

The BESS takes advantage of the temporal difference in the LMPs to generate profits. It should

be noted that the sizes of the BESS considered in this study are significantly smaller than the peak

load of the system. Hence, the BESS follows the price taker model, not the price maker model.

In other words, the size of the BESS is too small to influence the LMPs of the system [44, 77].

Therefore, �arb, the revenue generated from the energy market, is expressed as follows.

�arb =
)∑
C=1

_lmp(C)[@3(C) − @A (C)] (3.3)

where _lmp(C) is the LMP at time C, @3(C) and @A (C) are the quantities of energy sold to and purchased

from the market by the BESS at time C.

3.2.3 Frequency Regulation

The Real Power Balancing Control Performance (BAL001) and Disturbance Control Performance

(BAL002) Standards of the North American Electric Reliability Council [81] mandate that grid

frequency should be maintained within certain predefined limits to guarantee grid stability. Fre-
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quency regulation helps to serve this purpose. The fast ramping capability of BESSs makes

them ideal candidates for providing frequency regulation. Federal Energy Regulatory Committee

(FERC) order 755 [82] makes it mandatory for independent system operators (ISOs) and utilities

to consider speed and accuracy while buying frequency regulation provides the recommendations

for pay-for-performance. A variety of models are employed by different ISOs to comply with this

FERC order. The model developed and implemented by PJM Interconnection has been used in this

work.

PJM employs a two-part payment model for resources committed to providing frequency reg-

ulation. These are regulation market capability clearing price (RMCCP) and regulation market

performance clearing price (RMPCP). The former rewards the resource based on the capacity

committed to regulation while the latter depends on the actual performance of the resource. These

two payments make up the total revenue generated by the resource (which translates to the BESS

in this study) from the regulation market. The RMCCP credit for a given hour can be calculated as

follows [83].

RMCCP Credit = @reg(C) × [C × _2(C) (3.4)

where @reg(C) is the BESS dispatch based on hourly integrated regulation signal, [C is the actual

performance score, and _2(C) is the RMCCP, at time C. On the other hand, the RMPCP is determined

as follows.

RMPCP Credit = @reg(C) × [C × V"C × _?(C) (3.5)

where V"C is the mileage ratio at time C.

The calculation of the mileage ratio is explained as follows. Two distinct regulation signals are

offered by the PJM for different types of resources. The RegA signal is designed for traditional

resources and is a low-pass filtered area control error (ACE) signal. On the other hand, RegD is

designed for faster responding resources like BESSs and is a high-pass filtered ACE signal. Then,

the mileage ratio, V"C , is defined as:

V"C =
RegD Mileage
RegA Mileage

(3.6)
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where mileage can be defined as the movement requested by the regulation control signal.

Therefore, the total income of the BESS from the frequency regulation market, �reg, can be

expressed as follows.

�reg =
)∑
C=1

[[C@reg(C)(_2(C) + V"C _?(C))] (3.7)

3.2.4 Optimal Location

The proposed framework provides the flexibility of locating an optimal site that can maximize the

economic benefits of the BESS. The revenue from the energy arbitrage application depends on

the temporal price difference in electricity, which is indicated by the LMPs. The LMPs at each

node of a system are influenced by several factors including the geographic location, variability

of load, connectivity with the rest of the network, and the uncertainty associated with renewable

energy generation. Hence, it would be more profitable to locate the BESS at a node with high

variability in LMPs. It should be noted that most of the revenue is generated by the frequency

regulation application, for which the signals remain unchanged across all nodes in the network as

these are dictated by the Independent System Operators (ISOs) and do not vary locally. However,

performing regulation alone is not sustainable as the regulation signal in most control areas does

not display zero average power [84]. This implies that the storage device needs to participate in

other application(s) to preserve the charge-discharge dynamics of the battery subject to its total

capacity. In summary, the BESS can be located at nodes with high variability in LMPs if such

provision is allowed for and if the effort leads to tangible benefits. The focus of this study is not on

the siting aspect although it offers the flexibility of choosing an optimal location if the need arises.

3.3 Battery Degradation Cost

As batteries undergo charging and discharging repeatedly, they degrade by losing their active

material. The degradation process reduces the life of the battery and hence the degradation cost

should be considered as an operational cost while determining the revenue of a BESS for a more
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accurate estimate. Hence, a degradation cost model is developed in this study and incorporated

within the optimization framework and is described in this section.

3.3.1 DOD Stress Model

The lifetime of batteries depends on two components: its cycle life and its calendar life. Cycle life

quantifies the loss of battery life due to cycling, while calendar life quantifies the life loss due to

aging. The development of a degradation cost model is accomplished in this study with the help of

cycle life only. Calendar life is not considered as it has little effect on the day-to-day operation of

the battery.

The cycle life of a battery depends on its DOD among other things. The degradation of a battery

per cycle depends on the DOD stress factor and can be expressed as follows [85].

Δ2 = (:�1�$�
:�2 + :�3)−1 (3.8)

where Δ2 is the degradation per cycle, and :�1, :�2 and :�3 are constants whose values depend

on the battery technology. The use of a Lithium Nickel Manganese Cobalt Oxide (Li(NiMnCo)O2)

or LMO battery is assumed in this work. The stress model for DOD may be different for different

battery technologies. The relationship between DOD and the number of cycles until its end of life

(EOL) is illustrated in Fig. 3.1.

In this study, it is assumed that the battery reaches its EOL when its maximum capacity

reduces to 80% of its original capacity. It is widely accepted in the automotive industry for the

batteries to be discarded when they have depleted 20% of their original capacity. However, some

researchers have proposed the use of these second-life batteries to be used for stationary power

applications [86–89]. While second-life batteries can be suitable candidates for some applications

like transmission support and load following, they are not suited to provide services like spinning

reserve and frequency regulation [86]. This study considers the participation of the BESS in

providing frequency regulation service, and hence the assumption that the battery reaches its EOL

after depleting 20% of its original capacity is justified.
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Figure 3.1: No. of cycles to EOL vs. DOD.

3.3.2 Degradation Cost Function

The degradation cost function of a BESS can be derived from its lifetime energy throughput [90],

number of cycles, and the cost of the battery packs. First, a degradation cost coefficient, 2deg

($/MWh), is defined as follows.

2deg =
2bat
�ltp

(3.9)

where 2bat is the battery cost and �ltp is the lifetime energy throughput of the BESS. �ltp can be

defined as follows.

�ltp = #2 × (̄ × �$� (3.10)

where #2 is the number of cycles the battery undergoes until its EOL, (̄ the energy capacity, and

�$� the average DOD of the battery. #2 is calculated for a particular �$� and varies as shown

in Fig. 3.1. The relationship between the lifetime energy throughput and DOD is shown in Fig. 3.2.

In this work, �$� has been assumed to be 80% to accommodate for the worst-case scenario since

the SOC of the BESS is also restricted to 80% of the total capacity. In practice, not all cycles will

have DOD as high as 80%. Hence, the results obtained by using this model will be conservative

estimates of the actual values.
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Figure 3.2: Lifetime energy throughput vs. DOD.

The degradation cost function, �3(C), is then derived from 2deg and the energy throughput of

the battery for the time period C as follows.

�3(C) = 2deg × @(C) (3.11)

where @(C) is the total energy throughput from the BESS at time C. Since the BESS participates in

the energy arbitrage and frequency regulation markets, the energy exchanged from these markets

is the energy throughput from the BESS at any time C, and thus @(C) can be expressed as:

@(C) = [2@A (C) + @3(C) + ([2Wrd(C) + Wru(C))@reg(C) (3.12)

Here, [2 is the round trip efficiency of the battery, Wru is the fraction of the regulation up reserve

capacity actually employed at time C, and Wrd is the fraction of the regulation down reserve capacity

actually employed at time C.

3.4 Optimization Framework

This section describes the optimization framework for extracting the maximum economic

benefits of the BESS. This framework includes the objective function, the network constraints, and

the capacity and operational constraints for energy storage.
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3.4.1 Objective Function

The objective of this framework is to maximize the BESS revenue by performing energy arbitrage

and frequency regulation, and also to optimally locate the BESS. The revenue function, � can thus

be expressed with the help of equation (3.2) as follows:

� = �arb + �reg − �3 (3.13)

Therefore, the objective function can be expressed as:

max � =
#bus∑
==1

[ )∑
C=1

_lmp(C, =)[@3(C)−@A (C)]+
)∑
C=1

[[C(_2(C)+V"C _?(C))@reg(C)]−
)∑
C=1

�3(C)
]
(3.14)

where _lmp(C, =) is the LMP at bus = for the time period C. The optimization framework is designed

in a manner so as to calculate the revenue at each bus and automatically choose the bus with the

maximum economic benefits by comparing their individual revenues.

3.4.2 Energy Storage Constraints

The operation of the energy storage is constrained by its physical capabilities, charging and discharg-

ing power limits, and cycle and self-discharge efficiencies. As the BESS charges and discharges

every hour due to its participation in different applications, its remaining capacity changes every

hour. The remaining capacity of a BESS is indicated by a metric known as the state of charge

(SOC), which can be mathematically formulated as follows.

(3.15)B(C + 1) = [BB(C) + [2@A (C) − @3(C) + ([2Wrd(C) − Wru(C))@reg(C)

where B(C +1) is the SOC at time (C +1). [B is the self-discharge efficiency of the battery, Wru and Wrd

are calculated using historical data for PJM regulation signals [91, 92]. Wru and Wrd are illustrated

in Fig. 3.3 for a sample week.
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Figure 3.3: PJM regulation data for an example week.

The BESS operation is constrained by the following equations.

Wmin
reg @reg(C) + Wmin

B (̄ ≤ B(C + 1) (3.16)

B(C + 1) ≤ (1 − Wmax
B )(̄ − [2Wmax

reg @reg(C) (3.17)

@A (C) + @3(C) + @reg(C) ≤ &̄ (3.18)

B()) = B0 (3.19)

where, (̄ is the BESS energy capacity in MWh; &̄ is the energy charge/discharge rating in MW and

is derived from the power limit of the BESS; Wmin
B and Wmax

B are the fractions of energy capacity to

be reserved for discharging and charging respectively; Wmin
reg and Wmax

reg are the fractions of regulation

bid reserved for discharging and charging respectively. The Wreg parameters ensure that the BESS

meets all the regulation obligations and does not incur a penalty.

The minimum and maximum SOC limits are indicated by (3.16) and (3.17), respectively.

Constraint (3.18) restricts the throughput based on the power rating while allowing charging and

discharging during the same time step. The SOC level is maintained at the same level at the

beginning of each day with the help of (3.19).
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Figure 3.4: Flowchart summarizing the methodology used in the work.
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3.4.3 Generation and Transmission Constraints

The network power flow is governed by generator limits, power balance, and transmission line

constraints. A DC network model is applied in this research; as a result, the reactive power is

neglected. The power flow in the network is constrained by the following equations.

• Power balance: The real power entering each bus = must equal the real power exiting it, at

every instant of time C. The contribution of the BESS in the power exchange at each bus

= is represented by the variables @3(C) and @A (C). It should be noted that the regulation

variable @reg is ignored as the regulation signal does not have any significant local effect.

This constraint is modeled as follows.

%(C, =) = %�(C, =) − %!(C, =) + @3(C) − @A (C) (3.20)

where

%(=) =
#bus∑
:=1

�=:X:

%(C, =), %�(C, =), %!(C, =) and are the real power injection, generation and demand at bus = at

time C, respectively; � is the imaginary part of the admittance matrix, and X: is voltage angle

of bus : .

• Generator constraints: The operation of each conventional generator is limited by its capa-

bility limit.

%min(6) ≤ %(6) ≤ %max(6) (3.21)

where %(6), %min(6), and %max(6) denote the minimum and maximum generation of the 6Cℎ

generator. 6 is an index for the generators that ranges from 1 to #6, the total number of

generators in the system.
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• Transmission line constraints: The transmission lines of the network are constrained by the

amount of real power that can be transmitted.

|%:= | =
���� (X: − X=)

G:=

���� ≤ %max
:=

(3.22)

Here, %:= and G:= are the real power transfer and the reactance between buses : and =,

respectively, X: and X= are the voltage angles for buses : and =.

The decision variables in the proposed optimization framework are @3(C), @A (C), @reg(C), %(6),

X: and B(C).

The methodology used in this work has been summarized in the flowchart, shown in Fig. 3.4.

3.4.4 Calculation of Lifetime Revenue

The lifetime revenue offered by the BESS is calculated by using the optimization framework

described in the previous subsections. As the battery operates over time, it loses active material

due to repeated charging and discharging. Hence, the maximum capacity of the battery decreases

gradually.

In this work, the lifetime revenue is calculated using the method proposed in [93]. A semi-

empirical degradation model is used to track the degradation of the battery and the maximum

capacity of the battery is updated at regular intervals. The revenue is calculated and accumulated

until the battery reaches its EOL.

3.5 Cost-Benefit Analysis

A life cycle cost-benefit analysis of BESS projects is performed in this study after obtaining the

lifetime revenue as described in the previous sections. This analysis will enable investors in their

decision-making process by providing them with an estimate of the net present value (NPV), the

return on investment (ROI), and the payback period for the BESS projects.
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3.5.1 Capital Cost

The total capital cost, �0, includes the cost of the battery, power conversion system, the balance of

plant, and other investment costs. The annualized capital cost �ACC is calculated by multiplying

the capital cost with the capital recovery factor (CRF). These quantities are determined as follows

[94, 95].

�0 = �bat + �inv + �BOS + �oth (3.23)

�ACC = �0 × [ (3.24)

[ =
8(8 + 1))

(1 + 8)) − 1
(3.25)

where �bat, �inv, �BOS, and �oth represent costs of battery, battery central inverter, electrical and

structural balance of system, and other investments including labor and tax, etc, respectively. [

represents the CRF which is related to the interest rate 8 and the system lifetime ) .

3.5.2 Replacement Cost

To accommodate the replacement costs for replaceable systems, e.g. batteries, the future cost of

replacement and replacement period in years should be known. Annualized replacement costs

can be calculated, given the number of replacements during the application lifetime, [95]. The

annualized replacement cost, �ARC, is calculated as follows.

�ARC = �RC × [(1 + 8)−C + (1 + 8)−2C + . . . + (1 + 8)−=A C] × [ (3.26)

C = min
[
)cal, )cyc

]
(3.27)

where �RC is the replacement cost of battery, C is the replacement period, which is estimated with

the degradation model in this study. C should be the calendar or cycle life of the battery, whichever

comes first. =A is the number of replacements during a certain period ) .

3.5.3 Net Present Value

The net present value (NPV) for a BESS project is determined using the following equation.
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NPV = −�0 +
�1

1 + A1
+

�2
(1 + A2)2 + . . . +

�C

(1 + AC)C
(3.28)

Here, �C represents the net cash flow and AC the discount rate for year C. The net cash flow is

calculated as the revenue obtained from the market less the O&M costs.

3.5.4 Payback Period and ROI

The payback period represents the time required to recover the cost of an investment, while the ROI

indicates the profitability of an investment over the lifetime of the battery. Unlike the NPV, when

evaluating the ROI and payback period, the time value of money is not considered.

3.6 Results and Discussion

The approach proposed is validated using the IEEE Reliability Test System (RTS). The original

system consists of 24 buses, 38 transmission lines, 5 transformers, and 32 generating units [64].

A single line diagram of this test system and all relevant system data are shown in Appendix B.

Historical data from PJM Interconnection has been utilized for this study. PJM’s Data Miner [96]

has been utilized to obtain the RMCCP, RMPCP, mileage ratio, and the actual performance score

for each hour. Data for one year starting from January 1, 2018, has been used. The parameters

of the BESS utilized are shown in Table 3.1. The cost of a Li-ion battery has been assumed to be

$209,000 per MWh [97].

Table 3.1: BESS parameters.

Parameter Value
Power Capacity 10 MW
Energy Capacity 5–20 MWh

Wmin
B 15%
Wmax
B 5%
Wmin
reg 5%
Wmax
reg 5%
[2 95%
[B 95%

44



3.6.1 Revenue

The optimization framework presented in section 3.4 has been solved to obtain the annual revenue

from the BESS. The BESS is optimized for the day-ahead market. Hence, the time horizon for the

optimization problem is 24 hours ) = 24. The revenue has been evaluated for three different sizes

of BESS. The power capacity is maintained at 10 MW, while the energy capacity is varied from 5 to

20MWh. Results are presented in tables 3.2 and 3.3 . These particular BESS sizes were selected as

these are the most commonly used utility-size BESS in the U.S. and also represent short, medium,

and long duration BESS [97].

Table 3.2: Lifetime revenue from BESS considering degradation cost.

Battery Size Lifetime Revenue Mean cycles
(years) ($) per year

10 MW, 5 MWh 6 8,116,541 1829
10 MW, 10 MWh 8 11,062,330 1731
10 MW, 20 MWh 10 13,139,466 1526

Table 3.3: Lifetime revenue from BESS without considering degradation cost.

Battery Size Lifetime Revenue Mean cycles
(years) ($) per year

10 MW, 5 MWh 5 10,492,202 2028
10 MW, 10 MWh 6 13,865,585 2072
10 MW, 20 MWh 8 17,629,318 1752

Upon observing the results presented in tables 3.2 and 3.3, it can be seen that neglecting the

degradation cost of batteries leads to an overestimation of the lifetime revenue of the BESS. The

average number of cycles undergone by the BESS per year is reduced when the degradation cost is

considered, thus prolonging its lifetime. This observation holds true for all sizes of BESS used in

the case studies and underlines the importance of considering the degradation cost while estimating

the revenue of a BESS. Also, it can be observed that the lifetime revenue of longer duration BESS is

higher than the shorter duration BESS due to the higher energy capacity of longer duration BESS.
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The revenues generated by the individual applications were calculated to analyze the contri-

bution of each application to the total revenue. It is found that most of the revenue is generated

by the frequency regulation application. For example, for the 10 MW, 10 MWh BESS, frequency

regulation contributes $2,348,109 for the first year, while the cumulative revenue from arbitrage

was actually negative (-$2,942). However, it should be noted that performing regulation alone is not

sustainable as the regulation signal in most control areas does not generate zero average power [84].

This implies that the storage device needs to participate in other application(s) to preserve the

charge-discharge dynamics of the battery subject to its total capacity. Also, to participate in the

more rewarding regulation market, the battery might sometimes need to be charged during periods

of high LMPs which can lead to negative revenues from arbitrage. In summary, participating in the

regulation market is extremely valuable for the BESS, but is not sufficient for technical reasons as

explained.

3.6.2 Cost-Benefit Analysis

The results of the cost-benefit analysis are provided in this subsection. For the purpose of this

analysis, only the case considering the degradation cost is included since the case without the

degradation cost overestimates the revenue. Table 3.4 lists the annualized capital cost and annualized

replacement cost. The project life is assumed to be 10 years in these calculations based on the

calendar life of the battery [85]. The number of replacements is calculated based on the result of

degradation analysis. There is no annualized replacement cost for the 10 MW, 20 MWh battery

since its remaining capacity is larger than 80% at year 10, and thus no replacement is needed during

the BESS project life.

The payback period, NPV, and ROI for different battery sizes are compared in Table 3.5. The

fixed O&M cost is assumed to be 6 $/kW per year [98] while the discount rate A is assumed to be

5.5% [99]. The payback period represents the time required to recover the cost of an investment,

while the ROI indicates the profitability of an investment over the lifetime of the battery. It should

be noted that the time value of money is not considered while calculating the payback period and
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the ROI but is considered while calculating the NPV.

Table 3.4: Results of the annualized cost analysis.

Battery Capital Battery Annualized Annualized
Size Cost Cost Capital Cost Replacement

($/kWh) ($/kWh) ($) Cost ($)
10 MW, 5 MWh 895 209 593,688 100,546
10 MW, 10 MWh 601 209 797,333 180,672
10 MW, 20 MWh 454 209 1,204,623 0

Table 3.5: Results of the life cycle cost-benefit analysis.

Battery Payback NPV ROI
Size Period (y) ($) (%)

10 MW, 5 MWh 3.5 2,041,521 80.6
10 MW, 10 MWh 4.5 2,441,298 83.4
10 MW, 20 MWh 6.5 510,846 44.0

From the results of Table 3.5, it can be observed that for larger BESS sizes, the payback period

is longer and the NPV and the ROI are smaller. This can be attributed to the higher investment cost

for larger BESS. Also, most of the revenue is generated by the frequency regulation application and

BESSwith smaller energy capacity andmoderate power capacity are preferred for this purpose [84].

Hence, it can be concluded that the 10 MW, 5 MWh, and the 10 MW, 10 MWh BESS are better

choices for investors due to their shorter payback period and higher NPV and ROI.

3.6.3 Effect of Uncertainty in LMPs on Revenue and Siting

Five sample paths of annual LMPs are generated to demonstrate the variation in revenue and

optimal location. The results are presented in Table 3.6. The degradation cost is considered while

calculating the annual revenue.

From the results, it can be observed that the variation in revenue due to uncertainty is very low.

This is due to the fact that the revenue from energy arbitrage constitutes a very small portion of the

total revenue. Also, the location remains unchanged due to the variability introduced in the LMPs.

47



Table 3.6: Variation in annual revenue & location for all sample paths.

Sample Path Revenue Location.
($) (Bus No.)

1 1,448,518 1
2 1,448,507 1
3 1,448,514 1
4 1,448,428 1
5 1,448,509 1

3.6.4 Modeling Language & Solver

Pyomo [100], a Python-based, open-source optimizationmodeling language is employed for model-

ing the problem. The objective function and the constraints in the proposed optimization framework

are linear. Hence, the problem can be solved using any linear programming solver. GLPK has been

used in this work.

3.7 Conclusion

This work proposes a new framework to maximize the economic benefits of a grid-connected

battery energy storage system, by optimizing the annual dispatch strategy and location while also

considering the degradation of batteries within the proposed framework. A general model is

presented for the quantification of BESS revenue obtained from the electricity markets. Energy

arbitrage and frequency regulation are chosen to be the applications in which the BESS participates

due to their high profitability. A lithium-ion battery is the choice of the BESS for this study.

The degradation cost of the BESS is taken into consideration for a more realistic estimate of the

ROI. A new model for quantifying the degradation cost of batteries based on their lifetime energy

throughput and the number of cycles is developed for batteries participating in the electricity

markets and incorporated within the objective function. Results indicate that the inclusion of the

degradation cost contributes to making the revenue estimate more realistic and accurate. Ignoring

the degradation cost leads to the overestimation of the revenue. A comprehensive cost-benefit

analysis is presented to provide an estimate of the ROI and the payback period. Results indicate
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that shorter duration BESS are better suited for market-related applications due to better ROI

and shorter payback period when compared to longer duration BESS. The findings obtained by

employing the proposed methodology can be utilized by investors and utilities during the planning

phase of a BESS project and aid in the decision-making process based on the ROI and payback

period.
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CHAPTER 4

TECHNO-ECONOMIC PLANNING OF ENERGY STORAGE FOR INERTIAL
SUPPORT IN WIND INTEGRATED SYSTEMS

4.1 Introduction

This chapter proposes a novel techno-economic planning framework that utilizes energy storage

systems (ESSs) to maintain the frequency stability of the grid while minimizing the daily operating

costs. Although the current U.S. electricity market structure does not support any mechanism

to provide economic incentives or payback for synthetic inertia, it is possible that markets or

other payment schemes can emerge as displacement of inertial generation increases and regulatory

requirements evolve. For example, in 2011, Federal Energy Regulatory Commission (FERC) order

755 [82] mandated market operators to apply a pay-for-performance mechanism that reflects the

speed and accuracy of the device being used for regulation and this led to the establishment of

frequency regulation markets in several RTOs. Markets for ramping capability have also been

established in the recent past [101]. In addition, some utilities such as Hydro-Quebec already

mandate the use of synthetic inertia [102]. Therefore, it is not unlikely that synthetic inertia

may become a necessary product in competitive markets in the recent future. Li et al. has

proposed the design of a primary frequency control market for hosting frequency response reserve

in collaboration with the Electric Reliability Council of Texas (ERCOT) in [103]. Our work

anticipates these developments and proposes a techno-economic approach to size ESS for inertial

support. The detrimental effects of reduced and often time-varying rotational inertia in the system

can be reduced with the help of virtual or synthetic inertia [104]. Virtual inertia can be described

as an imitation of the kinetic energy of synchronous generators used to improve system dynamical

behavior [105].

Virtual inertia can be implemented by several means, one of the most widely discussed among

these being the use of (ESSs) [11, 14, 16–19, 58, 106–110]. References [11, 14, 106] represent
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some of the earliest efforts that went into investigating the role of ESS in providing virtual inertial.

These works mostly presented new modeling approaches for ESS providing inertial support and

did not focus on the sizing aspect. References [16–19, 109], on the other hand, have proposed

sizing approaches for ESS providing grid inertial support. Most of these works have focused on

finding the minimum ESS size required to satisfy the inertia requirement of the system. Some of

these works ( [16–18, 109]) have also considered renewable energy penetration in their proposed

solution methodology. However, in all of these works, the sole purpose of the ESS has been to

provide virtual inertia to the system. In a practical power system, the ESS will be called upon for

inertial support during certain disturbances, while it will be idle for the rest of the time. During

this time, the ESS can be utilized to participate in market services where it can generate revenues to

pay back some of its own investment cost or help in reducing the system operating costs. This work

proposes to bridge this research gap. A new methodology based on estimating the system inertia

is proposed, which not only offers the flexibility of sizing the ESS for the most extreme frequency

events in a wind-integrated system but also allows it to participate in market services to generate

revenues.

A bi-level stochastic optimization framework is developed to implement this strategy. The

overarching objective of this framework is to minimize the daily operating cost of a power system

while satisfying a frequency stability constraint. The lower-level problem seeks to minimize the

production cost of electricity (economic dispatch), while the upper-level problem maximizes the

revenue from the market. A bi-level formulation is necessary since the ESS needs to know how

much capacity has to be reserved for inertial support before it can participate in the market. This is

explained further in section 4.3. Energy arbitrage is used in this work to illustrate the participation

of the ESS in the market, although the proposed framework can be easily modified to include other

market applications like regulation or outage mitigation, as deemed suitable by the owner and/or

the operator of the ESS.

The proposed framework is based on estimating the inertia of the system contributed by the

participating generating resources. A frequency stability constraint is developed and incorporated
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into the optimization framework, which ensures that the ESS has enough reserves to supply the

virtual inertia requirements of the system at any period. The virtual inertia requirement of the system

depends on the equivalent inertia of the system and also the minimum inertia required to maintain

frequency stability of the system at that period. Amaximum frequency deviation limit derived from

a generalized load frequency control (LFC) model is utilized to determine the minimum inertia

required to maintain frequency stability under a certain disturbance. Wind power generation is

modeled using an autoregressive moving average (ARMA) model, and the uncertainty in wind

power generation is integrated into the optimization framework using a scenario tree structure.

Several case studies are performed by varying the values of the system parameters to demonstrate

the efficacy and flexibility of the proposed approach.

A summary of the contributions of this work is listed as follows.

1. A novel techno-economic planning framework based on estimating the system inertia is

proposed, which not only offers the flexibility of sizing the ESS for the most extreme

frequency events in a wind-integrated system but also allows it to participate in market

services to generate revenues.

2. A bi-level stochastic optimization framework is developed, which estimates the system inertia

and incorporates the uncertainties associated with wind power generation. This bi-level

formulation is critical for estimating the system inertia, as information regarding the economic

dispatch is necessary before committing the ESS for other grid services.

3. An estimate of the revenue from market participation of the ESS and the reduction in system

operating costs is also presented. This cost analysis can benefit both investors and operators

alike for making decisions related to the planning and operation of the ESS.

The remainder of this chapter is organized as follows. Section 4.2 describes themodeling ofwind

power output and integration of wind power uncertainty into the stochastic optimization framework.

Section 4.3 presents the proposed bi-level optimization framework with all its components. Several
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case studies and their results are presented in Section 4.4 to demonstrate the efficacy of the proposed

methodology, while some concluding remarks are provided in Section 4.5.

4.2 Stochastic Optimization and Wind Modeling

A stochastic optimization framework with a recourse model is used in this work. These models

are widely used in operations research and are suitable for cases where some of the decisions must

be fixed before information relevant to the uncertainties is available, while some of them can be

delayed [111]. The former can be represented in terms of first-stage variables, and the latter by

second-stage variables.

4.2.1 Recourse Model

In this work, the recourse model is utilized to incorporate the uncertainties of wind power gen-

eration. Dispatch decisions are made after observing the different possible outcomes of wind

power generation to exploit the advantageous outcomes without becoming overtly vulnerable to the

disadvantageous ones. A general form of the recourse model is presented as follows [111].

min 2G + �[ℎ(G, l̃)] (4.1)

s.t. �G ≥ 1 (4.2)

G ≥ 0 (4.3)

where ℎ(G, l) = min 6lH (4.4)

s.t.,lH ≥ Al − )lG (4.5)

H ≥ 0 (4.6)

Here, G is the first-stage decision and H is the second-stage decision. G does not respond to l and

is determined before any information regarding uncertain data has been obtained. H, on the other

hand, is determined after observations regarding l have been obtained.
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4.2.2 Modeling of Wind Power Output

The power output of a wind farm is a function of the wind speed at that location. This section

describes in detail the modeling of wind speed at a particular geographic location and hence the

power output of wind farms.

4.2.2.1 Modeling of Wind Speed

Wind speed at a certain geographic location varies randomly with time. Hence, accurate models

are needed to capture the various properties of wind speed. In this work, autoregressive moving

average (ARMA) models are used to represent and forecast wind speed data.

In statistical time series analysis, ARMA models can provide a description of a stationary

stochastic process using observations from previous time steps. ARMA techniques have been

widely used by researchers to model wind speed due to their accuracy [52, 112, 113]. An ARMA

model is a combination of an autoregressive (AR) model and a moving average (MA) model. The

AR model predicts the value of a variable using the observations of the previous time steps while

the MA model uses the residuals of the previous forecasts. The number of previous observations

used by the AR and MA models decides the parameters ? and @ of the ARMAmodel, respectively.

In general, the value of a variable H at time C can be forecasted using an ARMA(?, @) model as

follows.

(4.7)HC = q1HC−1 + q2HC−2 + ... + q?HC−? + nC + \1nC−1 + \2nC−2 + ... + \@nC−@

where q8 and \ 9 are the parameters of the AR and MA models respectively; n is an independently

and identically distributed (IID) white noise process and n ∼ #(0, f). The forecasted wind speed

at time C, �,C can then be obtained as a function of HC .

�,C = 5 (HC) (4.8)

54



4.2.2.2 Modeling of Wind Turbine Output

It is necessary to convert wind speed data into wind power output data for modeling wind farms.

This is accomplished using the following procedure. The power output of a wind turbine is a

function of the wind speed as the turbines convert the kinetic energy of wind into electrical energy.

The relationship between wind speed and wind power output is shown in (4.9) [52] and illustrated

for a wind turbine of the rated power of 8 MW in Fig. 4.1.

𝑉𝑐𝑖 𝑉𝑟

Rated Power

𝑉𝑐𝑜

Figure 4.1: Typical relationship between wind speed and wind power output.

%F =



0 0 ≤ + ≤ +28

(� + � ×+ + � ×+2)%A +28 < + ≤ +A

%A +A < + ≤ +2>

0 +2> < +

(4.9)

Here, +28, +2>, +A , %A are the cut-in, cut-out, rated speed, and rated power of the wind turbine,

respectively. �, �, and � are constants defined as follows [114]:
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� =
1

(+28 −+A )2

[
+28(+28 ++A ) − 4(+28+A )

(
+28 ++A

2+A

)3]
� =

1
(+28 −+A )2

[
4(+28 ++A )

(
+28 ++A

2+A

)3
− (3+28 ++A )

]
� =

1
(+28 −+A )2

[
2 − 4

(
+28 ++A

2+A

)3]

4.2.3 Scenario Tree Model

A recourse problem can be defined in terms of its scenario tree, which is used here to model the

uncertainty in the outcome of wind power generation. The scenario tree represents the wind power

outcomes in the order in which they may evolve over time and is used to make decisions on the

recourse actions of the conventional units and the ESS. A nine-realization scenario tree similar

to [115] is used in this work and is illustrated in Fig. 4.2. Each node of the tree represents a

wind power outcome and the probability associated with that outcome. The required values at each

node are determined using a quantile-based scenario tree technique [113]. Each branch of the tree

represents a quantile, the values of which can be chosen by the operator. It should be noted that

low quantile values represent negative forecast errors while high quantile values represent positive

forecast errors.
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Figure 4.2: Nine-realization scenario tree representing the outcome of wind power outputs.
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4.3 Bilevel Optimization Framework

A bi-level optimization framework is used in this work to determine the optimal ESS size

required for maintaining frequency stability by providing virtual inertia. Bilevel optimization

problems are hierarchical optimization problems which have two levels: upper and lower. The

upper-level (UL) authority takes decisions subject to an optimal response from the lower-level (LL)

authority. In other words, the feasible region of the UL problem is restricted by the graph of the

solution set mapping of the LL problem [116].

A bilevel formulation is necessary for this problem due to the following reason. The amount

of ESS capacity that can be committed to the electricity market at any particular hour is limited by

the amount of energy it needs to reserve for providing grid inertial support (say @intC ), which is its

primary function. The quantity @intC can be determined once an economic dispatch is solved and

the information regarding the committed generating resources is obtained. The inertia contribution

from a generator for a particular time period is considered only if it is committed for dispatch at

that particular hour. Hence, in the formulation presented in this work, the LL problem seeks to

minimize the production cost of electricity and thus provides information regarding the committed

generators, the total system inertia, and hence the value of @intC . The value of @intC is now fixed for

the UL problem, which is then solved to decide the ESS capacity to be committed to the market

and hence maximize its revenue.

The solution process of bi-level problems can be complex, computationally expensive, and

often intractable. Under these conditions, the bi-level problem in this work is solved by considering

the two levels independently. A linear solver is used for solving each level. This method ensures

that the computational burden is low, while maintaining accuracy of the solutions.
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4.3.1 General Mathematical Model

A general mathematical formulation of a bilevel optimization problem is shown here as follows

[117].

min 5 (G, H∗)

s.t. 61(G, H∗) ≤ 0

ℎ1(G, H∗) = 0

where

H∗ ∈ argmin 52(G, H)

s.t. 62(G, H) ≤ 0

ℎ2(G, H) = 0

Here, H∗ represents the solution of the LL problem, which is used to determine the solution of the

UL problem, denoted by 5 (G, H∗).

4.3.2 Upper-Level Problem

The UL problem is formulated to maximize the revenue from the electricity markets. Energy

arbitrage is used as an application for the ESS in this work, although the proposed framework can

be easily modified to include other applications as well. A brief background regarding energy

arbitrage is first provided.

Energy Arbitrage

Energy arbitrage is one of the oldest andmost common applications of ESS. AnESS takes advantage

of the temporal difference in the locational marginal prices (LMPs) to generate profits. It charges

when the LMPs are low and sells energy by discharging when the LMPs are high. For this work, the

inclusion of the energy arbitrage application is important for reasons both technical and economic.
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First, participating in the electricity market through energy arbitrage helps the ESS in earning

revenues which in turn offsets some of the investment and operating costs of the ESS. Second, only

underfrequency events are considered in this work as they are more common and hence the ESS

always discharges while providing inertial support. Participating in arbitrage allows the ESS to

recharge after it has discharged, and it does so when prices are low.

4.3.2.1 Objective Function

The UL objective function can be expressed as follows.

min
)∑
C=1

_
lmp
C

(
@AC − @3C

)
(4.10)

where _lmp
C denotes the LMP at time C, while @AC and @3C are respectively the amount of energy

charged and discharged from the ESS at time C.

4.3.2.2 Constraints

The UL objective function is constrained by the ESS capacity and operation constraints, and also

by the proposed frequency security constraint. These constraints are listed as follows.

• ESS SOC constraint: The state of charge (SOC) can be defined as the remaining capacity of

the ESS at any point of time. The SOC constraint ensures that the charge/discharge dynamics

of the ESS is considered while calculating the remaining capacity at every time step and is

expressed as follows.

B>2C = [BB>2C−1 + [2@AC − @3C − @intC (4.11)

where [B and [2 are the self-discharge and round-trip efficiencies of the ESS respectively.

@intC is the amount energy that should be reserved for providing inertial support to the system

at time C.
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• ESS operation constraints: ESS operation is constrained by the following.

Wmin
B (̄ ≤ B>2C ≤ (1 − Wmax

B )(̄ (4.12)

@AC + @3C + @intC ≤ &̄ (4.13)

B>2) = B0 (4.14)

where (̄ and &̄ are the energy capacity and power rating of the ESS, and Wmin
B and Wmax

B are

the fractions of energy capacity to be reserved for discharging and charging respectively.

• Frequency stability constraint: The modeling of grid frequency response, its relationship

with system inertia and the contribution that an ESS can make toward frequency stability

are described in detail in Section 2.4. Using the models present in that section, a frequency

stability constraint is developed and presented here. This constraint ensures that the system

inertia level remains above the minimum required to maintain frequency stability under a

disturbance, and can be expressed as follows.

�
sys
C + �ESS

C ≥ �min
C (4.15)

where �sys
C is the system equivalent inertia at time C and its value depends on the number of

conventional units online. This information is obtained from the solution of the LL problem.

If the power generation from a conventional unit is more than zero, then it is considered to

be supplying full inertia to the system. �ESS
C is the contribution of the ESS towards inertial

support and �min
C is the minimum inertia required to maintain frequency stability under a

disturbance at time C.

4.3.3 Lower Level Problem

The LL problem is formulated to minimize the production cost of electricity. The LL problem

follows a stochastic optimization formulation due to the introduction of wind energy. As explained

in section 4.2, nine wind scenarios are considered in this work.
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4.3.3.1 Objective Function

The cost function consists of the fuel cost of the conventional generators. The objective function

of the LL problem can be mathematically expressed as follows.

min
(∑
B=1

?B

)∑
C=1

�∑
8=1

�
6

8CB
%
6

8CB
(4.16)

where �6
8CB

is the fuel cost and %6
8CB

is the active power generation of conventional unit 8 at time C

in scenario B. ?B is the probability associated with scenario B, � is the number of conventional

generators in the system, ( is the number of scenarios considered, and ) is the time horizon of

optimization, which is one day or 24 hours in this work.

4.3.3.2 Constraints

The LL objective function is constrained by the network constraints of the system and the generator

capacity limits. A linearized power flow model is used in this work. The constraints are briefly

described as follows.

• Power Balance: The real power entering each bus = must equal the real power exiting it at

time C for scenario B. This constraint is modeled as follows.

%=CB = %6=CB − %
;
=CB − %F=CB (4.17)

where

%= =
=1∑
:=1

�=:X:

%=CB, %
6
=CB, %

F
=CB and %

;
=CB are the real power injection, conventional generation, wind power

generation, and demand at bus = at time C for scenario B, respectively; � is the imaginary

part of the admittance matrix, and X: is voltage angle of bus : , and =1 is the total number of

buses.
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• Transmission line limits: The transmission lines of the network are constrained by the amount

of real power that can be transmitted.

|%:= | =
���� (X: − X=)

G:=

���� ≤ %fmax
:=

(4.18)

Here, %:= and G:= are the real power transfer and the reactance between buses : and =,

respectively, X: and X= are the voltage angles for buses : and =.

• Generator limits: The operation of each conventional generator is limited by its capacity

limits.

%min
8 ≤ %6

8
≤ %max

8 (4.19)

where %min
8

, and %max
8

denote the minimum and maximum capacities of generator 8.

4.4 Case Studies and Results

Data from the New England IEEE 39-bus system [62] is used to test the efficacy of the proposed

method. The original test system comprises 39 buses, 10 generators, and 46 transmission lines. A

single line diagram of this test system and all relevant system data are shown in Appendix A. Part

of the conventional generation is replaced by wind farms in some of the case studies presented in

this work (elaborated in Section 4.4.1), to illustrate the effect of wind penetration on system inertia.

Since load and wind patterns do not vary significantly over one particular season, one week from

each season (28 days) is used for the daily operation model, and the yearly revenue is estimated

from that. Time-of-use electricity prices are used for the LMPs [118] and fuel prices are obtained

from [119]. The annual hourly load curve is obtained from [64] and adjusted according to the peak

load of the test system. Data for the governor parameters are obtained from [56].

Uncertainty in wind power generation is modeled using the scenario tree illustrated by Fig.

4.2. The three branches of the tree represent the 0.05, 0.5, and 0.95 quantile of the distribution of

forecast errors, respectively. It is assumed that the wind power generation forecast error follows a

second-order auto-regressive or AR(2) model. Parameters of this model are obtained from [113].
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4.4.1 Case Studies

The optimal planning approach proposed in this work is illustrated by three cases, by using varying

degrees of wind penetration in each case. Disturbance in the form of a load of 0.1 p.u. is assumed

to change the system frequency from its nominal value of 60 Hz. Minimum ESS sizes required

to satisfy the frequency stability constraint are determined for three values of maximum frequency

deviation (Δ 5max), for each case. In general, the proposed approach can be used to size ESS devices

for any value of maximum frequency deviation and any load disturbance. This provides the system

operator with ample flexibility in choosing the parameters. Data for the inertia constant of wind

farms are obtained from [58].

1. Case 1: The original system with only conventional generation is considered in this case.

2. Case 2: About 8% of the generation capacity of the system (the current share of installedwind

capacity in the U.S. today) is replaced by wind generation. To achieve this, a conventional

unit of 580 MW is removed from the system and replaced by a wind farm of capacity 640

MW. This wind farm is assumed to consist of 80 identical wind turbines, of 8 MW each.

3. Case 3: About 20% of the generation capacity of the system (target wind power share in the

U.S by 2030 [30]) is replaced by a wind farm of capacity 1520 MW. Two conventional units

with capacities of 646 MW and 865 MW are removed to achieve this.

4.4.2 Minimum Storage Required

The minimum amount of storage reserve required in MW (%ESSmin ) to satisfy the frequency stability

constraint is shown in this section. Table 4.1 shows the different values of %ESSmin for the three

cases. It should be noted that %ESSmin is determined in a way such that if an ESS of size %ESSmin

is chosen, it should be able to deal with the even the most extreme cases of inertia shortage in

the system for the pre-specified values of the disturbance and Δ 5max. Results show that the ESS

size required to satisfy the frequency stability constraint increases as wind generation increasingly

63



Table 4.1: Minimum storage required.

Case �fmax Hmin PESS
min

(Hz) (s) (MW)
1 0.085 734 205

0.09 619 13
0.095 531 N/A*

2 0.085 787 349
0.09 659 136
0.095 557 N/A*

3 0.085 875 509
0.09 728 264
0.095 608 64

*N/A indicates that ESS is not required for inertial support for this case

replaces conventional generators. This can be attributed to the low inertia contribution of the

inverter-based wind resources. Also, it can be observed that for Cases 1 and 2 where there is low

or no wind penetration, an ESS might not be required if Δ 5max is set to a high value. However,

from Case 3, it is evident that as wind penetration in the grid continues to increase, ESSs become

necessary for inertial support.
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Figure 4.3: ESS operation for an example day (Case I).
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Figure 4.3 illustrates the operation of the ESS for an example day for Case I. It shows howmuch

energy the ESS charges or discharges for energy arbitrage or reserves for inertial support. One

interesting observation from this figure is that the ESS reserves more energy for inertial support

during the off-peak hours compared to the peak hours. This can be explained as follows. During

peak hours, more generators are synchronized with the grid due to higher demand, thus maintaining

a high level of system inertia. On the other hand, the system inertia is considerably lower during

the off-peak hours since fewer generators are committed to serving the low demand. Hence, a

higher amount of energy needs to be reserved for inertial support in the event of a disturbance for

the low-demand periods.

Although the location of the ESS is not explicitly determined in this work, given that it is

the wind farm that displaces system inertia, the ESS should be located near the wind farm for

providing virtual inertia support. In case there are multiple renewable resources, the total ESS

capacity required can be distributed proportionately among all locations containing the renewable

resources.

4.4.3 Operating Cost and Revenue from Market

The ESS is considered to be performing energy arbitrage in this work, besides providing inertial

support. Participation in the market service allows the ESS to recover some of the investment cost

it incurs and thus reduce the daily operating cost of the grid. Although supplying inertia support

does not generate any income at this point, it is possible that markets or other payment schemes

can emerge as displacement of inertial generation increases and regulatory requirements evolve. A

lithium-ion battery is used to illustrate the application of ESS in this work. The different parameters

of the ESS used here are provided in Table 4.2.

The results of the economic analysis are shown in Table 4.3, which illustrates the revenue

generated by the ESS from the market, the ESS investment cost, and the estimated value that can be

recovered by the ESS from the market, as a percentage of the investment cost. For each case, it is

assumed that Δ 5max is 0.09, and 100 MW of storage in addition to %ESSmin is added to the system to
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Table 4.2: ESS parameters.

Parameter Value
Duration 1 hour
Wmin
B 15%
Wmax
B 5%
[2 94.6%
[B 98.5%

Investment Cost $ 601/kWh
Project Life 10 years

Table 4.3: Operating cost w. 100 MW additional storage.

Case Production Cost Revenue ESS Inv. Est. Value
(mil. $)/day (mil. $)/yr Cost (mil. $) Recovered (mil. $)

1 1.95 1.94 67.9 19.4 (29%)
2 1.78 3.80 141.8 38.0 (27%)
3 1.65 4.45 218.8 44.5 (20%)

participate in energy arbitrage. For example, for Case 2, it is assumed that a 236 MW ESS is used.

This number is used to illustrate the costs and the market revenue; ESS of a different size can also be

used, according to the needs of the investors and the operators. Results show that using the ESS for

energy arbitrage can recover a significant amount of the investment cost over the lifetime of the ESS

project. This further justifies the utilization of the ESS for market services when it is not providing

inertial support to the grid. The revenue from energy arbitrage will increase linearly as the size

of the ESS used is increased. Results also show that the replacement of expensive conventional

generation with cheap wind energy decreases the production cost. Investors and utilities may use

the results presented here to decide on the size of the ESS they choose to acquire based on their

requirements.

4.5 Conclusion

This chapter presents a novel optimal planning strategy for an ESS providing virtual inertia in a

wind integrated system, emphasizing the techno-economic aspects of the problem. This planning

strategy is implemented by developing a bi-level stochastic optimization framework with a recourse
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model, which minimizes the operational cost of the grid by participating in market services while

satisfying a frequency stability constraint. The efficacy of the proposedmethodology is successfully

demonstrated using a lithium-ion battery as an example ESS, which is integrated into the IEEE

39-bus test system. The minimum amount of storage required to maintain frequency stability in

the event of a disturbance is determined. Several case studies are performed which demonstrate

the flexibility of the proposed approach in accommodating a wide range of system parameters

while determining the optimal ESS size. The revenue generated from electricity markets is also

determined, which can aid investors and utilities in deciding the size of the ESS according to their

requirements. The proposed approach can also accommodate changes in future electricity markets

providing economic incentives for virtual inertia, a situation becoming increasingly likely with

more renewable energy resources replacing conventional generation.
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CHAPTER 5

PLANNING FOR RELIABILITY IN WIND-RICH SYSTEMS USING STORAGE AND
AGGREGATION

5.1 Introduction

Wind energy is one of the fastest-growing renewable energy resources used today for electric

power generation. Sustained policy support and economic incentives for wind power generation

across the world have led to its exponential growth in recent times [1]. However, this increasing

penetration of wind energy is leading to reduced reliability and stability of the power grid due to

its variable nature and non-dispatchable characteristics.

Transmission expansion offers several services to the grid, including aggregation of geograph-

ically diverse wind power. At the same time, there is increasing investment in ESS facilities due to

their many applications, including firming up of wind power generation. In this chapter, we present

a new transmission planning approach that jointly utilizes energy storage systems (ESSs) and wind

aggregation to reduce wind variability and improve the reliability of the grid. This planning ap-

proach helps in overcoming the limitations of each individual method and provides a cost-effective

solution to the wind variability problem. A probabilistic method is employed to determine the

quantity of storage required to achieve a desired level of grid reliability. Extensive simulations are

then performed to demonstrate how the storage required is reduced as a result of aggregating the

outputs of geographically diverse wind farms. Congestion in the transmission system resulting from

wind aggregation is also considered and is relieved by building new lines. The cost of building new

transmission lines is compared to the cost of savings obtained due to the storage size reduction and

it is observed that the proposed approach offers solutions that are less expensive than using storage

alone. A replacement chain method is used to compare the net present values of the investments to

offer a more accurate comparison of these investments which have different lifetimes.

The contributions of this work can be summarized as follows.
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1. A transmission planning framework is developed for improving the reliability of wind-

integrated systems by jointly utilizing energy storage and aggregation of geographically

diverse wind power. This proposed approach helps to overcome the disadvantages of the

individual methods and provides a cost-effective solution to the problem of wind variability.

2. Extensive simulation is performed to demonstrate the efficacy of the proposed approach in

reducing the size of the ESS required to firm up wind generation. A detailed comparison

between the cost of ESS and the cost of building new transmission is presented to demonstrate

the cost-effectiveness of the proposed planning approach.

3. Composite system reliability assessment is performed to test the efficacy of the proposed

planning strategy, considering the constraints of the transmission infrastructure, which are

critical for aggregating wind power from different geographical locations.

The remainder of the chapter is organized as follows. Section 5.2 describes the approach

used for the sizing of ESS to achieve a predetermined reliability target in a wind integrated system.

Section 4.2.2 presents the modeling approach used for wind farms. Section 5.4 discusses the Monte

Carlo techniques used and the reliability indices. Section 5.5 presents a mathematical model for

the aggregation of wind power. Section 5.6 considers a few case studies and presents their results,

while section 5.7 provides some concluding remarks.

5.2 Energy Storage Sizing

One of the main objectives of this work is to demonstrate how the aggregation of wind power

leads to a reduction in the size of an ESS required to improve the reliability of the grid. Hence,

it is only reasonable to set a reliability target and investigate how the combination of storage and

aggregation can help the system to achieve that target. For this purpose, a probabilistic approach is

used in this work to size the ESS [27]. It is important to note here that the ESS sizing technique

presented in this chapter is different from the one presented in Chapter 2. In Chapter 2, the ESS is

sized to provide inertial support to the grid for maintaining frequency stability, while the principal
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goal of the work presented in this chapter is to determine the size of an ESS required to achieve a

pre-specified reliability target.

Let us assume that the availability of a wind-integrated system is �0, and we need to increase

its availability to �1 using storage. Let us define a metric which we call unavailability reduction

ratio, U, as follows.

U =
1 − �1
1 − �0

(5.1)

where �1 > �0. Let us also assume that a part of the load curtailment, %! , is due to the variability

of wind power generation. %! can be calculated as follows.

%! = %, − %CV (5.2)

where %, is the nameplate capacity of the wind farm and %CV is its capacity value, where capacity

value can be defined as the amount of additional load that can be served from the addition of a unit,

while maintaining the existing level of reliability [50].

From the above discussion, it is clear that the ESS needs to support a load of size %! to increase

system availability from �0 to �1 for a certain amount of time, which we assume to be C�. Now,

power supply is interrupted when both the grid supply is down and the storage has been depleted.

The probability of this event can be expressed as follows [27].

%{!B} =
( ∫∞

C�

5'(A)3A
)
%{!B} (5.3)

where !B is the event that load is curtailed in absence of the ESS, !B is the event that load is

curtailed in presence of the ESS, ' is a random variable representing the down time of the supply,

and 5'(A) is the probability distribution function of '. It can also be inferred from (5.3) that %{!B}

equals 1 − �1, and %{!B} equals 1 − �0. Hence, the following relationship can be derived from

(5.1) and (5.3). ∫∞
C�

5'(A)3A = U (5.4)
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Where the down time does not follow a canonical distribution, MCS can be used, and the following

relationship is more suitable, as shown in [120].∫ C�
0
A 5'(A) = (1 − U)A (5.5)

If the interruption durations without the ESS are arranged in order of increasing magnitude and

if A is the mean interruption duration, then the time for which the mean of all equal and shorter

interruptions is closest to (1 − U)A gives the estimate of C�.

Equation (5.5) presents the basic expression that quantifies the ESS energy capacity required to

improve the system availability from �0 to �1. However, in a practical world, ESS are not perfectly

reliable, and that should be considered in the model. Let us assume that the ESS has an availability

�B. Then, the ESS must possess an energy capacity that allows it to supply a load %! for time CB,

where CB is expressed as follows.

CB =
C�

�B
(5.6)

Hence, the power capacity of the ESS should be at least %! and its energy capacity should be at

least %!CB for improving the system availability from �0 to �1.

5.3 Wind Speed Modeling and Data

In this work, wind speed is modeled using ARMA models. Details involving the models used

for wind speed and wind power output are described in Section 4.2.2.

Wind speed data for a number of locations in the Eastern Interconnect of the U.S. are collected

from the National Renewable Energy Laboratory’s (NREL’s) Wind Prospector [63]. Three years of

wind speed data, ranging from January 1, 2010, to December 31, 2012, is used for each location to

generate the ARMA model for that particular location. An AR model, a special case of an ARMA

model, is used to model wind speed data at different locations. AR models are preferred for their

simplicity and ease of interpretation and an AR model of appropriate order can be used to replace

ARMA models without loss of accuracy [112]. The AR(8) model used to forecast wind speed

data for Lansing, MI, is shown in (5.7). The accuracy of the AR model is further demonstrated
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by figures 5.1 and 5.2, which respectively show the plots of the observed and the predicted wind

speeds of Lansing and their respective autocorrelations.

(5.7)HC = 0.9553HC−1 + 0.0028HC−2 − 0.0203HC−3 + 0.0202HC−4
− 0.0149HC−5 − 0.0082HC−6 + 0.0002HC−7 − 0.0029HC−8 + nC

where nC ∼ #(0, 1.113). The means and standard deviations of the observed and predicted wind
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Figure 5.1: Observed vs. predicted wind speed for Lansing (one day).

speed data for a few other locations used in this work are shown in Table 5.1.

Table 5.1: Comparison between observed and predicted wind speed for different locations.

Location Obs. Mean Pred. Mean Obs. Std. Pred. Std.
(m/s) (m/s) Dev.(m/s) Dev. (m/s)

Lansing, MI 6.84 6.77 3.21 3.08
Wash. DC 5.49 5.26 3.12 2.71
Omaha, NE 7.08 7.19 3.47 3.27
Flint, MI 6.75 6.72 3.17 3.04

Buffalo, NY 6.72 6.64 3.74 3.64
Richmond, VA 6.14 6.04 3.16 2.82
Atlanta, GA 5.87 5.73 2.95 2.66

Discussion on wind models used in this thesis: Readers might have noticed that two different wind

models have been used in this thesis. In Chapter 2, a multi-state model is used, while in Chapters

72



0 5 10 15 20 25 30
Lag (Hours)

0.2

0.4

0.6

0.8

1.0

Au
to

co
rr

el
at

io
n

Observed Data
Simulated Data

Figure 5.2: Autocorrelation of observed and predicted wind speed for Lansing.

3 and 4, an ARMA technique is used to model wind speed and wind power output. The reason for

using multiple models is explained as follows.

In Chapter 2, an analytical model is used, which represents the wind farm as a multi-state

generating unit with probability distributions of discrete capacity states, expressed in the form of

a COPT. This enables the inclusion of the wind farm as a single, equivalent generating unit in

traditional probabilistic planning methods. Chapter 2 presents an analytical approach for sizing

ESSs for inertial support, and consequently, a multi-state analytical wind model is more suitable

for such applications. On the other hand, an ARMA technique has been used to model wind speed

and wind power output in Chapters 3 and 4. This approach allows to preserve the time-series nature

of the wind speed and is more suitable for integration into simulation and optimization frameworks

demanding sequential time-series data. Hence, this modeling approach has been used in Chapters

3 and 4, where simulation techniques have been employed for the optimization and evaluation of

ESSs. In addition, ARMA models are also capable of accurately representing the autocorrelations

between the different data points in a time-series dataset. This is particularly important for wind

aggregation (used in this chapter), where the autocorrelations between the wind data from different

geographical locations must be preserved to accurately reflect the benefits of aggregation.
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5.4 System Reliability Model

Aggregation implies a heavier burden on the transmission lines and the effects of aggregation

on the transmission system must be considered. Hence, composite system reliability analysis is

performed in this work, taking into consideration the network constraints and the forced outages of

the transmission lines. Sequential Monte Carlo simulation (MCS) is used to evaluate the reliability

indices of the system. Sequential simulation is necessary to preserve the autocorrelation of the

hourly wind speed model, which a non-sequential simulation might not be able to capture. The

power system is represented by its components, which consist of conventional generators, wind

turbine generators, transmission lines, and loads. Markov chains are used to model the components

as two-state units, with the states being up and down. A brief description of the MCS algorithm is

presented in the following section.

5.4.1 Mixed Timing Sequential MCS

Mixed timing sequential simulation combines both synchronous and asynchronous timing controls

[47]. In its general form, mixed timing involves traversing an hourly load curve over a certain time

period, and advancing the states of the system components asynchronously. This method can be

implemented using the following steps.

1. Input failure rate and duration data for all components of the system.

2. Initialize all components in their up state.

3. Draw a random number for each component and calculate the time to the next event. The time

to the next event for component 8, )8, is evaluated as follow.

)8 = − 1
_8

ln(*8) (5.8)

where *8 is a uniformly distributed random number and _8 is the failure rate at the up state and

the repair rate at the down state of the 8Cℎ component. Of these times, select the minimum time,
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)min(:). )min(:) denotes the time to the most imminent event, i.e., after )min, component :

changes its state.

4. At each hour, check the component capacities and if they are adequate to satisfy the load then

no curtailment occurs. However, load curtailment may be required in case of a contingency.

In such a scenario, load curtailment is minimized by using an optimization framework, and

dispatch is rescheduled as explained in section 5.4.2.

5. Reliability indices are accumulated until a pre-specified convergence criterion is met. The

system is said to have converged when an index attains a certain stable value. The stabilization

of the value of an index 8 is measured by its standard error [121]:

[ =
f8√
=2

(5.9)

where f8 is the standard deviation of the index 8 and =2 is the number of simulated cycles.

Convergence is said to have occurred when the standard error drops below a pre-specified

fraction, n , of the index 8, i.e., when

[ ≤ n8 (5.10)

The simulation is said to have converged if the above criterion is satisfied.

5.4.2 Minimize Load Curtailment

Load curtailment might occur when one or more components of a system are forced into an outage

due to some unforeseen circumstances. If such an event occurs, the system operators try tominimize

the load curtailment and generate a viable dispatch. The minimization of load curtailment can be

achieved through an optimization framework where the objective function is expressed as follows.

min �) =
( #1∑
8=1

�8

)
(5.11)

where�) is the total system load curtailment, �8 is the load curtailed at bus 8, and #1 is the number

of buses. This model ensures that power is rerouted within the network and the load curtailment is
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minimized in the event of a contingency. A positive value of �) implies load curtailment, and an

alternative dispatch is sought.

The objective function presented in (5.11) is constrained by generator capacity limits, power

balance conditions, and transmission line limits. A linearized power flowmodel is used to construct

the constraints in this work. The constraints are expressed as follows.

• Power balance: The real power entering each bus = must equal the real power exiting that bus.

Thus, the power balance constraint can be expressed as follow.

%= = %�= − %!= (5.12)

where

%= =
#1∑
:=1

�=:X:

%=, %�= , %!= and are the real power injection, generation and demand at bus =; � is the imaginary

part of the bus admittance matrix, and X: is voltage angle at bus : .

• Generator capacity limits: The operation of each generator unit is limited by its capacity.

%*<8= ≤ %
*
6 ≤ %*<0G (5.13)

where %*
<8=

and %*<0G denote the minimum and maximum capacity of the 6Cℎ unit, and 6 ranges

from 1 to #6, the total number of units in the system.

• Transmission line limits: The transmission lines of the system are constrained by the amount of

real power that can be transmitted over each line.���� (X: − X=)
G:=

���� ≤ %):= (5.14)

where %)
:=

and G:= are the maximum capacity and the reactance between buses : and =, respec-

tively; X: and X= are the voltage angles for buses : and =.
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• Constraint on curtailment: The total curtailment must be less than or equal to the total system

load, hence:

�) ≤
#1∑
==1

%!= (5.15)

5.4.3 Reliability Indices

In this work, we have employed some commonly used indices for assessing the reliability of the

system. These indices are briefly described below [47].

• Loss of Load Probability (LOLP) represents the probability of encountering one or more loss of

load (LOL) events within a given time horizon.

• Loss of Load Frequency (LOLF) represents the expected frequency of encountering one or more

LOL events within a given time horizon.

• Mean Down Time (MDT) represents the average interruption duration of the system. It has

previously been denoted by Ā in section 5.2. It can be estimated as follows.

MDT =
LOLP
LOLF

(5.16)

• Expected Demand Not Served (EDNS) denotes the sum of the products of the probabilities of the

LOL states and the corresponding load curtailments and can be estimated as follows.∑
G8∈-!

%{G8} × �{G8} (5.17)

where %{G8} and �{G8} are the probability of occurrence of state G8, and the system load

curtailment in state G8 respectively, and -! is the set of loss of load states.

5.5 Wind Power Aggregation

This section discusses the merits of aggregating wind power from a number of wind farms

which are located in different geographical areas. The mathematical models related to aggregation

are also discussed.
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5.5.1 Mathematical Modeling

The main idea behind aggregating the power outputs of different wind farms is that aggregation

would reduce the variability ofwind power and improve the reliability of the system. This hypothesis

can be proved mathematically if we can show that aggregation can reduce the variance of the total

power output from different wind farms spread across geographical areas, under certain conditions.

Let us assume that there are G wind farms, each wind farm subjected to different wind speeds and

patterns. Let each wind farm have H identical wind turbines with the output of the 8Cℎ wind farm

being % 5
8
. The total output power from all G wind farms, or the global output power, can then be

expressed as follows.

%Global =
G∑
8=1

%
5

8
(5.18)

The variance of this global power output is then given as follows [35].

Var[%Global] =
G∑
8=1

Var[% 5
8

] + 2
[∑
8< 9

Cov[% 5
8
, %

5

9
]
]

(5.19)

where Var[·] and Cov[·] represent the variance and covariance operators, respectively. The first

term represents the sum of variances of individual wind farms, and the second term the covariances

between the power outputs of pairs of wind farms. Now, if we consider Pearson’s correlation

coefficient for the power outputs of a pair of wind farms, we see that it depends on their covariance.

Corr[% 5
8
, %

5

9
] =

Cov[% 5
8
, %

5

9
]√

Var[% 5
8

]Var[% 5
9
]

(5.20)

From (5.19) and (5.20), we get:

(5.21)Var[%Global] =
G∑
8=1

Var[% 5
8

] + 2
[∑
8< 9

Corr[% 5
8
, %

5

9
]
√

Var[% 5
8

]Var[% 5
9
]
]

which implies that if the correlation coefficient between the outputs of two wind farms decreases,

the variance of the global power output also decreases.
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5.5.2 Role of Aggregation in Reducing the Size of the Storage

As shown in the previous section, aggregating the outputs of geographically diverse wind farms

leads to a reduction in the output variability. It is reasonable to assume here that this will lead

to an improvement in system reliability. Hence, the ESS size required to achieve a pre-specified

reliability target would also reduce, when compared to the scenario where all the wind power is

located at a single location. Let us assume that an ESS of size %1 MW and %1C1 MWh can firm

up a single wind farm, and an ESS of size %2 MW and %2C2 MWh is required when wind power

is aggregated from multiple wind farms. Then, %2C2 should be smaller than %1C1. It should be

noted that the total nameplate capacity of the wind farms should be equal for the two cases, for the

purpose of comparison.

5.6 Case Studies & Results

The efficacy of the proposed planning strategy is validated using a modified version of the IEEE

Reliability Test System (RTS) [64]. This section describes the test system, some case studies and

their results, followed by detailed analysis and discussion of the results.

5.6.1 Test System

The original system consists of 24 buses, 38 transmission lines, 5 transformers, and 32 generating

units [64]. A single line diagram of this test system and all relevant system data are shown in

Appendix B. The transmission network in the original system was found to be highly reliable

and hence not suitable for demonstrating the effects of wind aggregation on the loading of the

transmission lines that might lead to congestion. Hence the original system was modified by

multiplying the total generating capacity of the system by a factor of 2, and the demand by a factor

of 1.8 [122]. The total installed capacity of this modified system is 6810 MW, with a peak load

of 5700 MW. A single line diagram of the test system is presented in Fig. 5.3. The lengths of all

transmission lines are multiplied by a factor of 10 so that the locations simulated at the different

buses are sufficiently separated to experience diverse wind patterns.
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The system is further modified by adding wind farm(s) of capacity 1700 MW (which is about

20% of the total installed capacity, the target share of installed wind capacity in the U.S. by

2030 [30]) to simulate the effects of wind aggregation, the details of the case studies being provided

in Section 5.6.3. Each wind farm is assumed to comprise of multiple Vestas V-150 wind turbine

generators [123] rated at 4MW each, the number of wind turbines depending on the total nameplate

capacity of the wind farm. This particular turbine is chosen since it is designed for the International

Electrotechnical Commission (IEC) III-B (low wind) wind class, which is consistent with the data

used in this work, as shown in section 5.3. The forced outage rate (FOR) of wind turbine generators

(WTGs) are assumed to be 0.08 [124].

5.6.2 Reliability Target

As mentioned in section 5.2, the ESS is sized in this work with the goal of achieving a pre-specified

reliability target. This reliability target is determined in terms of the unavailability reduction ratio,

U, which is calculated using the following steps.

1. A wind farm of capacity 1700 MW is added to the original test system and the LOLP is

calculated.

2. The wind farm is replaced by a conventional generator of the same capacity and the LOLP is

recalculated. This is the target LOLP of the system.

3. The unavailability reduction ratio U can be determined from the ratio of the target LOLP and

the LOLP of the wind-integrated system, as explained in [28].

5.6.3 Case Studies

The following case studies are performed to show the reliability improvement of the system and the

reduction of ESS size due to aggregation.

• Case I: Wind farms of total nameplate capacity 1700 MW (could be a single or multiple wind

farms but are subjected to the same wind profile) are considered at a single bus in the system; the
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reliability of the system is evaluated, and the ESS size required for achieving the reliability target

is calculated.

• Case II: Wind farms of nameplate capacities 850 MW each are considered at two different buses

in this case. The wind farms at the two different buses have different wind profiles and help in

simulating the geographical diversity between two locations. The wind power outputs at these

two buses are then aggregated to study the effect on system reliability and ESS size. The effect

of correlation between the two wind profiles on aggregation is also studied. The Lansing wind

profile is considered for one bus (Location 1), while the wind profiles from Omaha, Buffalo, and

Flint are considered for the other bus (Location 2).

Note on Siting of Wind Farms: In general, a suitable site for building a wind farm is selected based

on several factors, including the wind profile, load demand, distance from load centers, cost of

building the project, distance from nearby airports, and land availability. Siting of wind farms is

not the primary focus of this work, and hence it is assumed that wind power is aggregated from

existing wind farms, instead of building new ones at favorable locations. It is assumed that the

wind farms are located at buses 3 and 19 since these buses are connected to significant amounts of

load and are in close proximity to other load buses.

5.6.4 Results

The results obtained by employing the proposed strategy are provided here. Table 5.2 presents

the reliability indices obtained for the original system, and by adding a 1700 MW conventional

generator. The latter is necessary for calculating the reliability target, as explained in section 5.6.2.

Table 5.3 shows the reliability indices obtained by adding wind power of nameplate capacity

1700 MW to a single bus (bus 19) using the Lansing and Washington DC wind data, respectively.

The sizes of ESS required to achieve the reliability target are also shown in this table.
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Table 5.2: Reliability indices for the Base Case.

Case LOLP LOLF MDT EDNS
(f/yr) (h/yr) (MW/yr)

Base 0.006400 6.19 9.06 0.8552
Conv.* 0.004283 2.66 14.11 0.4988

*Conventional unit of capacity 1700 MW added to test system

Table 5.3: Results for Case I.

Wind LOLP LOLF EDNS %! CB
Profile (f/yr) (MW/yr) (MW) (h)
Lansing 0.006064 5.56 0.7993 1459 3.35
Wash. DC 0.006156 5.93 0.8035 1586 3.33

Table 5.4 shows the results of aggregating wind power from two different locations having two

different wind profiles. The Lansing wind profile is chosen for bus 19 (Location 1), and wind power

of nameplate capacity 850 MW is added to this bus. Wind power of nameplate capacity 850 MW is

added to bus 3 (Location 2) and the wind profiles of Omaha, DC, Buffalo, and Flint, are used at this

bus. The wind profiles for Location 2 are chosen based on their correlation with the wind profile

at Location 1 (low, medium, and high correlation). Comparing the results presented in Tables 5.3

and 5.4, it can be observed that the reliability of the system has improved due to aggregation.

In general, as observed from the results presented in Table 5.4, the reliability improvement is

higher when the correlations between the wind profiles of the two candidate locations are lower.

This is because wind farms with higher correlation in their power outputs are most likely subjected

to similar wind patterns and hence the benefits of aggregation are less. However, lower correlations

between thewind profiles of the two locations do not always result in higher reliability improvement.

For example, when the DC wind profile is used at Location 2, the reliability improvement of the

system is lower as compared to when the wind profiles of Buffalo and Flint are used, although

the correlation between the Lansing and DC wind profiles is lower than the other two. This is

because the degree of reliability improvement also depends on the mean wind speed of the different

locations. From Table 5.1, it can be observed that the mean wind speed of DC is significantly lower

than that of Buffalo or Flint, thus resulting in a reduced reliability improvement.
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Table 5.4: Results for Case II.

Location 2* Correlation LOLP LOLF EDNS %! CB
(f/yr) (MW/yr) (MW) (h)

Omaha 0.1207 0.005416 4.81 0.7008 1433 2.33
DC 0.1626 0.005777 5.64 0.7514 1522 2.72

Buffalo 0.4969 0.005666 5.22 0.7348 1450 2.69
Flint 0.8649 0.005713 5.32 0.7439 1463 2.74

*Lansing Wind Profile at Location 1

Results show that the ESS sizes required to achieve the reliability target decrease when wind

power is aggregated. For instance, 1459 MW, 4888 MWh of storage is required when all wind

power is located at a single bus. On the other hand, when wind power between the two locations

is aggregated, a storage size of 1450 MW, 3901 MWh is enough to achieve the reliability target

(Buffalo wind profile at Location 2). Similar results are obtained for all simulated cases for both

cases II-A and II-B.

5.6.5 Cost Analysis of Proposed Approach

One disadvantage of aggregating wind power over different geographical locations can be the

congestion of transmission lines. This aspect is investigated in this section and a detailed analysis

is provided to show how the proposed strategy is cost-effective despite line congestion.

Let us consider the case where we assume the Lansing wind profile at Location 1 and the

Buffalo wind profile at Location 2 (third row of Table 5.4). Aggregating the wind power from

these two locations leads to congestion in four lines, indicated by A, B, C, and D in Fig. 5.3. The

lengths of these congested lines are provided in Table 5.5. New transmission lines are then added

Table 5.5: Congested line lengths.

Line A B C D
Length (miles) 220 310 160 150

to the system to relieve this congestion. Different cases are simulated by adding a single line or a

combination of lines to investigate the reliability improvement and the change in ESS costs required

to meet the reliability target. Lithium-ion batteries are selected for the ESS due to their high energy
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Figure 5.3: Congestions in the IEEE RTS due to aggregation of wind power.

density, high ramp rates and decreasing costs. Results are shown in Table 5.6. Cost considerations

are shown in Table 5.7 [97, 125, 126] and the results are also illustrated in Fig. 5.4 to demonstrate

the cost-effectiveness of the proposed planning approach.

Table 5.6: Results of adding new transmission lines.

Addl. New ESS NPV Trans. Line Total
Lines LOLP (mil. $) NPV (mil. $) (mil. $)
B 0.005620 2383.98 274.48 2659
B,C 0.005551 2271.06 513.98 2785

A, C, D 0.005213 1576.16 660.65 2237
A, B, C 0.005172 1506.67 710.60 2217

Results show that adding new overhead transmission lines decreases the size and hence cost of

storage required to meet the reliability target. New transmission lines incur additional costs and the
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Table 5.7: Cost considerations for ESS and transmission lines.

Item 138 kV 230 kV Line ESS ESS ESS
Line Line O&M Invest. Repl. O&M

Cost $ 0.823 mil. $1.536 mil. $22,000 $454 $209 $10
/mile /mile /mile/yr /kWh /kWh /kW-yr

Before Aggregation

After Aggregation

Cost-effective Solutions

Figure 5.4: Cost of using ESS alone vs. the cost of employing the proposed strategy.

total cost of ESS and transmission lines initially increases. However, as more new lines are added,

the total cost decreases and it eventually becomes lower than the cost of using ESS alone to achieve

the reliability target.

All costs shown in Table 5.6 are the Net Present Values (NPVs) of investments using a re-

placement chain method. The replacement chain method offers a more accurate way of comparing

projects with different lives. The lifetime of a transmission line is considered to be 30 years and

that of an ESS project to be 10 years [125]. NPV adjusts for inflation, depreciation, and taxes.

While calculating NPVs, a tax rate of 20%, a Weighted Average Cost of Capital (WACC) of 10%,

and inflation of 2% are assumed.
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5.6.6 Discussion

The results presented in Section 2.5 illustrate the efficacy of the proposed planning approach.

Using extensive simulations it is demonstrated that aggregation of geographically diverse wind

power indeed reduces the storage quantity needed to achieve a desired reliability target (Tables 5.3

and 5.4). As expected, the transfer of significant amounts of wind power led to congestions in some

lines; this is indicated in Fig. B.1. The mitigation of such congestion requires the construction of

new transmission, which is also expensive. Table 5.6 shows the costs of transmission additions for

the cases considered. We have shown that an integrated planning approach to storage deployment

and transmission expansion can lead to significant savings (see Fig. 5.4).

Yet another application of the proposed planning approach is the following. An analysis

performed in 2008 by theU.S. Department of Energy [30] showed that much additional transmission

was required in the U.S. to accommodate 20%wind by 2030. Regional Transmission Organizations

(RTOs) and NERC (North American Electric Reliability Corporation) Regions routinely conduct

transmission expansion studies, and some of these plans have already been implemented in recent

years. Coordination with these expansion plans by utilities planning on constructing energy storage

installations can lead to savings in the cost of these installations, and this constitutes another

potential use case of the proposed method.

5.7 Conclusion

RTOs and other entities invest in transmission expansion for several reasons, including that of

enabling aggregation ofwind power. Concomitantly, utilities have been investing in storage facilities

for many reasons, including mitigation of wind variability. This work presented an integrated

planning strategy to optimize the costs of transmission and storage, using a probabilistic framework,

and a uniform project valuation approach (i.e., the NPV) to account for the disparate time frames of

transmission and storage projects. Results showed that aggregation of geographically diverse wind

reduces the quantity and hence the cost of storage required to achieve a desired reliability target.

Although the proposed strategy might lead to an additional cost of constructing new transmission
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lines for congestion relief, this cost is offset by the savings obtained due to the reduced storage

size, eventually resulting in a lower overall cost. Consequently, this proposed integrated strategy

can be employed by utilities planning on energy storage installations and transmission expansions

in wind-rich systems to generate significant cost savings in their investments.
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CHAPTER 6

CONTRIBUTIONS AND FUTUREWORK

6.1 Research Contributions

This thesis investigated the role of energy storage systems (ESSs) in alleviating some of the most

critical issues faced by the modern power grid due to the integration of renewable energy resources

(RERs). Models were developed for the evaluation and optimization of ESSs as cost-effective

means of improving the stability and reliability of RER-integrated systems. The contributions of

this thesis are summarized here as follows.

1. An analytical approach is developed for sizing of ESS to provide inertial support. This

analytical approach potentially paves the way for solving more complicated problems related

to the frequency stability of the grid with less computational burden and complexity. It

also brings together in its framework the two most common causes of reduced inertia in

the system: generator outages and replacement of conventional synchronous generators with

RERs.

2. A newmethod is developed for calculating the probability of synchronization of the generating

resources of the power system, which is necessary to estimate the probability distribution of

system inertia.

3. An equivalence is proved between the probability of synchronization and the capacity value

of wind farms, which is necessary to calculate the participation of wind farms in providing

inertial support to the grid.

4. A new framework is developed for a comprehensive investment planning study of grid-

connected storage systems with the objective of maximizing economic benefits. This frame-

work is capable of including multiple products (such as energy arbitrage and frequency
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regulation) as well the battery degradation cost, along with a comprehensive set of operating

constraints.

5. An improved degradation cost model for lithium-ion batteries participating in the electricity

markets is developed and incorporated within the optimization framework. This new degra-

dation cost model considers both the lifetime energy throughput and the cycle count of the

batteries. It also considers the cost of the battery packs which reflects the cost of degradation

in monetary units.

6. A new techno-economic planning strategy is developed for optimally sizing ESSs to alleviate

frequency stability issues of a wind integrated system while minimizing the operational

costs of the system by participating in electricity markets. This strategy is implemented

with the help of a bi-level stochastic optimization framework, which estimates the system

inertia and incorporates the uncertainties associated with wind power generation. This bi-

level formulation is critical for estimating the system inertia, as information regarding the

economic dispatch is necessary before committing the ESS for other grid services.

7. A transmission planning framework is developed for improving the reliability of wind-

integrated systems by jointly utilizing ESSs and aggregation of geographically diverse wind

power. This approach helps to overcome the disadvantages of the individual approaches and

provides a cost-effective solution to the problem of wind variability. Extensive simulation is

performed to demonstrate the efficacy of the proposed approach in reducing the size of the

ESS required to firm up wind generation. A detailed comparison between the cost of ESS

and the cost of building new transmission is presented to demonstrate the cost-effectiveness

of the proposed planning approach.

6.2 Future Work

This thesis focused on some of the key issues of the modern power grid that can be alleviated

using ESSs. The work presented in this thesis can be extended to further enhance the performance
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of the RER-integrated grid. A guideline on how future research can be conducted based on this

thesis is provided here:

1. An analytical framework and a planning strategy for sizing of ESSs for grid inertial support

are presented in this work. However, the siting of ESSs for this purpose has not been

investigated in detail. The placement of storage in the grid can affect their contribution

toward frequency stability. Hence, comprehensive planning frameworks and metrics need to

be developed to maximize the contribution of ESSs by optimally siting them.

2. The reliability benefits of jointly deploying ESSs andwind power aggregation are investigated

in this work. However, the transmission network also plays a crucial role in maintaining the

stability of the grid. Hence, it would be interesting to see how the joint strategy can benefit

the stability of the grid as well, in presence of increasing RER penetration.

3. The current US electricity market structure does not support any mechanism to provide eco-

nomic incentives or payback for synthetic inertia. However, it is possible that markets or other

payment schemes can emerge as displacement of inertial generation increases and regulatory

requirements evolve. Hence, new frameworks should be developed for incorporating virtual

inertia as a compensation-based service in the electricity markets, and new strategies should

be devised for ESSs to optimally participate in these markets.

4. A new degradation cost model is proposed for lithium-ion batteries in this thesis, which

considers both the lifetime energy throughput and the cycle count of the batteries. However,

lithium-ion battery models are evolving at a fast rate as increasing quantities of these batteries

are deployed in the grid. The more recent models of Li-ion batteries are being designed to

represent the intricacies and complexities of battery dynamics to present a more accurate

picture of their functioning. In this regard, battery degradationmodels should also be updated

to incorporate these intricacies and to get more accurate estimates of the costs associated

with such projects.
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APPENDIX A

IEEE 39-BUS TEST SYSTEM

This section provides the data used for the IEEE 39-bus test system, along with a single line

diagram, as shown in Fig. A.1. This test system has been used in Chapters 2 and 4 of this thesis.

BUS 30 BUS 37

BUS 25 BUS 26

BUS 28
BUS 29

BUS 38

BUS 2

BUS 1
BUS 18

BUS 39

BUS 9

BUS 3

BUS 4

BUS 27

BUS 17

BUS 16

BUS 21

BUS 5

BUS 8

BUS 15

BUS 14

BUS 24

BUS 12

BUS 11

BUS 7

BUS 6

BUS 13

BUS 10

BUS 31 BUS 32

BUS 22

BUS 35

BUS 23

BUS 19

BUS 20

BUS 34 BUS 33 BUS 36

Figure A.1: A single line diagram of the IEEE 39-bus test system.

The bus data and the line data for this test system are obtained from [62] and are shown in

Tables A.1 and A.2. Data for the governor parameters �8,  8 and '8 are generated using Gaussian

distributions [56] with parameters as shown in Table A.3. The values for the governor time constant

)' and the load damping constant � are assumed to be 8 and 2 respectively. In addition, reliability

data for the generators are also used for this system in Chapter 2 and are shown in Table A.4.
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Table A.1: Bus data for IEEE 39-bus test system.

Bus Type Demand
No. (MW)
1 PQ 97.6
2 PQ 0
3 PQ 322
4 PQ 500
5 PQ 0
6 PQ 0
7 PQ 233.8
8 PQ 522
9 PQ 6.5
10 PQ 0
11 PQ 0
12 PQ 8.53
13 PQ 0
14 PQ 0
15 PQ 320
16 PQ 329
17 PQ 0
18 PQ 158
19 PQ 0
20 PQ 680
21 PQ 274
22 PQ 0
23 PQ 247.5
24 PQ 308.6
25 PQ 224
26 PQ 139
27 PQ 281
28 PQ 206
29 PQ 283.5
30 PV 0
31 slack 9.2
32 PV 0
33 PV 0
34 PV 0
35 PV 0
36 PV 0
37 PV 0
38 PV 0
39 PV 1104
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Table A.2: Line data for IEEE 39 bus test system.

From To R X B Transformer Tap Line Limits
Bus Bus (p.u.) (p.u.) (p.u.) Ratio (MVA)
1 2 0.0035 0.0411 0.6987 1 600

1 39 0.001 0.025 0.75 1 1000

2 3 0.0013 0.0151 0.2572 1 500

2 25 0.007 0.0086 0.146 1 500

2 30 0 0.0181 0 1.025 2500

3 4 0.0013 0.0213 0.2214 1 500

3 18 0.0011 0.0133 0.2138 1 500

4 5 0.0008 0.0128 0.1342 1 600

4 14 0.0008 0.0129 0.1382 1 500

5 6 0.0002 0.0026 0.0434 1 1200

5 8 0.0008 0.0112 0.1476 1 900

6 7 0.0006 0.0092 0.113 1 900

6 11 0.0007 0.0082 0.1389 1 480

6 31 0 0.025 0 1.07 1800

7 8 0.0004 0.0046 0.078 1 900

8 9 0.0023 0.0363 0.3804 1 900

9 39 0.001 0.025 1.2 1 900

10 11 0.0004 0.0043 0.0729 1 600

10 13 0.0004 0.0043 0.0729 1 600

10 32 0 0.02 0 1.07 2500

12 11 0.0016 0.0435 0 1.006 500

12 13 0.0016 0.0435 0 1.006 500

13 14 0.0009 0.0101 0.1723 1 600

14 15 0.0018 0.0217 0.366 1 600

15 16 0.0009 0.0094 0.171 1 600

16 17 0.0007 0.0089 0.1342 1 600

16 19 0.0016 0.0195 0.304 1 600

16 21 0.0008 0.0135 0.2548 1 600

16 24 0.0003 0.0059 0.068 1 600

17 18 0.0007 0.0082 0.1319 1 600

17 27 0.0013 0.0173 0.3216 1 600

19 20 0.0007 0.0138 0 1.06 900

19 33 0.0007 0.0142 0 1.07 900

20 34 0.0009 0.018 0 1.009 900

21 22 0.0008 0.014 0.2565 1 900

22 23 0.0006 0.0096 0.1846 1 600

22 35 0 0.0143 0 1.025 2500

23 24 0.0022 0.035 0.361 1 600

23 36 0.0005 0.0272 0 1 900

25 26 0.0032 0.0323 0.531 1 600

25 37 0.0006 0.0232 0 1.025 900

26 27 0.0014 0.0147 0.2396 1 600

26 28 0.0043 0.0474 0.7802 1 600

26 29 0.0057 0.0625 1.029 1 600

28 29 0.0014 0.0151 0.249 1 600

29 38 0.0008 0.0156 0 1.025 1200
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Table A.3: Data for governor parameters.

Parameter �8  8 '8
` 0.25 1 0.04
f 0.05 0.025 0.01

Table A.4: Generator data for IEEE 39-bus test system.

Unit Unit Capacity Inertia Forced Outage
No. Type (MW) (s) Rate
1 Interconnection 1040 500 0.0891
2 Nuclear 646 30.3 0.0159
3 Nuclear 725 35.8 0.0159
4 Fossil 652 38.6 0.0773
5 Fossil 508 26 0.0882
6 Nuclear 687 34.8 0.0159
7 Fossil 580 26.4 0.0882
8 Nuclear 564 24.3 0.0159
9 Nuclear 865 34.5 0.0166
10 Hydro 1100 42 0.0465
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APPENDIX B

IEEE RELIABILITY TEST SYSTEM

This section provides the data used for the IEEE Reliability Test System (RTS), along with a single

line diagram, as shown in Fig. B.1. This test system has been used in Chapters 3 and 5 of this

thesis. All data for this system are obtained from [64]. The bus data and line data are shown in

Tables B.1 and B.2.

BUS 17

BUS 18 BUS 21 BUS 22

BUS 16

BUS 23

BUS 19

BUS 20

BUS 15

BUS 24

BUS 14

BUS 13

BUS 3

BUS 1 BUS 2 BUS 7

BUS 11 BUS 12

BUS 9 BUS 10

cable

BUS 6

BUS 8
BUS 4

BUS 5

230 kV

138 kV

Figure B.1: A single line diagram of the IEEE Reliability Test System.
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Table B.1: Bus data for the IEEE RTS.

Bus Type Demand
No. (MW)
1 PV 108
2 PV 97
3 PQ 180
4 PQ 74
5 PQ 71
6 PQ 136
7 PV 125
8 PQ 171
9 PQ 175
10 PQ 195
11 PQ 0
12 PQ 0
13 slack 265
14 PV 194
15 PV 317
16 PV 100
17 PQ 0
18 PV 333
19 PQ 181
20 PQ 128
21 PV 0
22 PV 0
23 PV 0
24 PV 0
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Table B.2: Line data for the IEEE RTS.

From To R X B Transformer Tap Line Limits
Bus Bus (p.u.) (p.u.) (p.u.) Ratio (MVA)
1 2 0.0026 0.0139 0.4611 1 175
1 3 0.0546 0.2112 0.0572 1 175
1 5 0.0218 0.0845 0.0229 1 175
2 4 0.0328 0.1267 0.0343 1 175
2 6 0.0497 0.192 0.052 1 175
3 9 0.0308 0.119 0.0322 1 175
3 24 0.0023 0.0839 0 1.03 400
4 9 0.0268 0.1037 0.0281 1 175
5 10 0.0228 0.0883 0.0239 1 175
6 10 0.0139 0.0605 2.459 1 175
7 8 0.0159 0.0614 0.0166 1 175
8 9 0.0427 0.1651 0.0447 1 175
8 10 0.0427 0.1651 0.0447 1 175
9 11 0.0023 0.0839 0 1.03 400
9 12 0.0023 0.0839 0 1.03 400
10 11 0.0023 0.0839 0 1.02 400
10 12 0.0023 0.0839 0 1.02 400
11 13 0.0061 0.0476 0.0999 1 500
11 14 0.0054 0.0418 0.0879 1 500
12 13 0.0061 0.0476 0.0999 1 500
12 23 0.0124 0.0966 0.203 1 500
13 23 0.0111 0.0865 0.1818 1 500
14 16 0.005 0.0389 0.0818 1 500
15 16 0.0022 0.0173 0.0364 1 500
15 21 0.0063 0.049 0.103 1 500
15 21 0.0063 0.049 0.103 1 500
15 24 0.0067 0.0519 0.1091 1 500
16 17 0.0033 0.0259 0.0545 1 500
16 19 0.003 0.0231 0.0485 1 500
17 18 0.0018 0.0144 0.0303 1 500
17 22 0.0135 0.1053 0.2212 1 500
18 21 0.0033 0.0259 0.0545 1 500
18 21 0.0033 0.0259 0.0545 1 500
19 20 0.0051 0.0396 0.0833 1 500
19 20 0.0051 0.0396 0.0833 1 500
20 23 0.0028 0.0216 0.0455 1 500
20 23 0.0028 0.0216 0.0455 1 500
21 22 0.0087 0.0678 0.1424 1 500
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