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ABSTRACT 

 

IMPROVING THE PREDICTABILITY OF HYDROLOGIC INDICES IN 

ECOHYDROLOGICAL APPLICATIONS 

 

By 

 

Juan Sebastian Hernandez Suarez 

 

Monitoring freshwater ecosystems allow us to better understand their overall 

ecohydrological condition within large and diverse watersheds. Due to the significant costs 

associated with biological monitoring, hydrological modeling is widely used to calculate 

ecologically relevant hydrologic indices (ERHIs) for stream health characterization in locations 

with lacking data. However, the reliability and applicability of these models within 

ecohydrological frameworks are major concerns. Particularly, hydrologic modeling’s ability to 

predict ERHIs is limited, especially when calibrating models by optimizing a single objective 

function or selecting a single optimal solution. The goal of this research was to develop model 

calibration strategies based on multi-objective optimization and Bayesian parameter estimation 

to improve the predictability of ERHIs and the overall representation of the streamflow regime. 

The research objectives were to (1) evaluate the predictions of ERHIs using different calibration 

techniques based on widely used performance metrics, (2) develop performance and signature-

based calibration strategies explicitly constraining or targeting ERHIs, and (3) quantify the 

modeling uncertainty of ERHIs using the results from multi-objective model calibration and 

Bayesian inference. The developed strategies were tested in an agriculture-dominated watershed 

in Michigan, US, using the Unified Non-dominated Sorting Algorithm III (U-NSGA-III) for 

multi-objective calibration and the Soil and Water Assessment Tool (SWAT) for hydrological 

modeling. Performance-based calibration used objective functions based on metrics calculated 

on streamflow time series, whereas signature-based calibration used ERHIs values for objective 



 

functions’ formulation. For uncertainty quantification purposes, a lumped error model 

accounting for heteroscedasticity and autocorrelation was considered and the multiple-try 

Differential Evolution Adaptive Metropolis (ZS) (MT-DREAM(ZS)) algorithm was implemented 

for Markov Chain Monte Carlo (MCMC) sampling. In relation to the first objective, the results 

showed that using different sets of solutions instead of a single optimal introduces more 

flexibility in the predictability of various ERHIs. Regarding the second objective, both 

performance-based and signature-based model calibration strategies were successful in 

representing most of the selected ERHIs within a 30% relative error acceptability threshold 

while yielding consistent runoff predictions. The performance-based strategy was preferred since 

it showed a lower dispersion of near-optimal Pareto solutions when representing the selected 

indices and other hydrologic signatures based on water balance and Flow Duration Curve 

characteristics. Finally, regarding the third objective, using near-optimal Pareto parameter 

distributions as prior knowledge in Bayesian calibration generally reduced both the bias and 

variability ranges in ERHIs prediction. In addition, there was no significant loss in the reliability 

of streamflow predictions when targeting ERHIs, while improving precision and reducing the 

bias. Moreover, parametric uncertainty drastically shrank when linking multi-objective 

calibration and Bayesian parameter estimation. Still, the representation of low flow magnitude 

and timing, rate of change, and duration and frequency of extreme flows were limited. These 

limitations, expressed in terms of bias and interannual variability, were mainly attributed to the 

hydrological model’s structural inadequacies. Therefore, future research should involve revising 

hydrological models to better describe the ecohydrological characteristics of riverine systems. 
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1 INTRODUCTION 

 

One of the major concerns in the twenty-first century is the increasing pressure on water 

resources worldwide. Nearly 80% of the global population are exposed to high levels of threat to 

water security (Vörösmarty et al., 2010). In addition, freshwater ecosystems are deeply 

fragmented by built infrastructure, with only 23% of rivers longer than 1000 km arriving 

uninterrupted to the ocean (Grill et al., 2019). Unfortunately, this crisis is not only limited to 

water quantity but also is expanded to water quality. According to the United Nations World 

Water Assessment Programme (WWAP-UN), over 80% of global wastewater is discharged to 

waterbodies without any treatment (WWAP-UN, 2017). Moreover, most agriculture and urban 

runoff are delivered to freshwater and marine ecosystems without any water quantity and quality 

control (Eckart et al., 2017; Mateo-Sagasta et al., 2018). Summed to climate change, all these 

factors have increased the occurrence of waterborne disease. In addition, the resulting 

biodiversity and ecosystem losses imperil valuable ecosystem services necessary to sustain 

human societies (Hipsey et al., 2015; Pham et al., 2019). 

In the United States, the Clean Water Act was enacted in 1972 to restore and maintain US 

waters' chemical, physical, and biological integrity. In river systems, chemical integrity can be 

associated with instream water quality. Meanwhile, physical integrity can be described in terms 

of water quantity, physical habitat, and stream’s geomorphology. Likewise, biological integrity 

is expressed in terms of abundance, composition, and diversity of freshwater organisms. Since 

these three components support biotic systems necessary for human and environment well-being, 

the paradigm comprising these concepts is known as stream or river health (Karr, 1999; 

Maddock, 1999). Stream health is generally measured using bioassessments, which have gained 

popularity for supporting water quality management, complementing chemical and 
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microbiological criteria (US EPA, 2011). Particularly, fish and benthic macroinvertebrates are 

commonly used as biological indicators. Fish are suitable for monitoring broad habitat 

conditions, streams connectivity, and long-term effects, whereas benthic macroinvertebrates are 

preferred when assessing local conditions and short-term effects (Herman and Nejadhashemi, 

2015). 

Stream health monitoring is usually done sparsely in time and space (Einheuser et al., 

2012). Knowing the stream health condition of every single stream within a watershed is 

desirable for environmental management and policymaking. However, extensive biological 

monitoring is costly, time-consuming, and impractical for large areas. Therefore, modeling 

techniques have been developed to extend available information to locations with lacking 

biological data (Woznicki et al., 2016a). Stream health models generally use landscape attributes 

(e.g., land use/cover, slope, soils, geology) and instream physical and chemical characteristics 

(e.g., temperature, streamflow, nutrients, sediments, substrate) as explanatory variables to predict 

instream biological responses (Einheuser et al., 2012; Sowa et al., 2016). Streamflow is 

considered a master variable that dictates patterns and processes occurring in rivers and streams, 

including water quality, physical habitat formation, and life cycles of living organisms (Walker 

et al., 1995). Therefore, by studying the streamflow behavior over time (i.e., streamflow regime), 

it is possible to approximate the overall stream health condition (Poff et al., 1997; Richter et al., 

2003). 

The streamflow regime is generally described using metrics or indices related to five 

major facets: magnitude, duration, frequency, timing, and rate of change of flows (Sofi et al., 

2020). Magnitude refers to the volume of water passing through a fixed location per unit of time. 

Based on this facet, streamflow can be classified as high, average, or low flow. Streamflow plays 
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different roles depending on its magnitude (Sofi et al., 2020); for instance, low flows maintain 

instream water quality conditions, define the longitudinal stream connectivity, enable fish and 

nutrients to move, and allow natural selection by purging invasive species (Poff et al., 1997). 

Meanwhile, high flows give shape to streams, flush away pollutants, and maintain lateral 

connectivity, favoring floodplains, wetlands, and riparian vegetation (Poff et al., 1997). Duration 

is the length of time associated with a flow event being read horizontally in a hydrograph. This 

facet influences the persistence of aquatic and riparian species and controls fish growth potential 

and development under flooding events (Bunn and Arthington, 2002). Frequency refers to how 

often a streamflow magnitude occurs over a specific period of time, and it is generally described 

using Flow Duration Curves (FDC). This facet is important for controlling aquatic and riparian 

species’ life cycles and productivity (Bunn and Arthington, 2002). For example, frequency 

regulates how often fish can move upstream or to floodplains for migration or reproduction (Poff 

et al., 1997). Timing is the degree to which flow events are temporally autocorrelated, indicating 

that the system has memory. For instance, certain rivers always experience high flows in spring 

and low flows in summer. This facet works as a trigger the system needs to start a process (e.g., 

fish spawning). Additionally, timing helps to maintain species diversity (Bunn and Arthington, 

2002). Finally, the rate of change describes how fast the system goes up and down. This facet 

influences species persistence and coexistence and controls the establishment of nonnative 

species (Poff et al., 1997; Sofi et al., 2020). In summary, there are many indices describing the 

aforementioned streamflow regime facets (Olden and Poff, 2003), and they are known as 

ecologically relevant hydrologic indices (ERHIs). 

Calibrated hydrological models are used to predict streamflows beyond monitoring 

stations. Consequently, ERHIs can be estimated in ungauged locations using results obtained 
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from hydrological modeling. When developing models for predicting ERHIs, three fundamental 

questions emerge in the process: (1) how much the predictability of ERHIs is affected by the 

choice of model calibration techniques? (2) how to calibrate a hydrologic model to improve the 

prediction of multiple ERHIs simultaneously? and (3) how reliable are the hydrological 

modeling results when predicting EHRIs? 

To address these questions, the goals of this research were to (1) evaluate the predictions 

of ERHIs using a hydrological model when it is calibrated using single- and multi-objective 

techniques based on widely used performance metrics, (2) develop calibration strategies for 

improving the predictability of ERHIs and the overall streamflow regime using a hydrologic 

model, and (3) quantify the modeling uncertainty of ERHIs using the results obtained from the 

developed calibration strategies under the previous section. 

The outcome of this research is a framework for linking hydrologic model calibration and 

uncertainty quantification when predicting ERHIs. This framework includes the development of 

novel calibration strategies aimed to improve the accuracy of ERHIs predictions while 

maintaining a balanced representation of different streamflow regime facets. Ultimately, it is 

expected that the overall performance of ERHIs’ uncertainty quantification is improved. This can 

help policymakers with decision-making in the context of water and natural resources 

management. 
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2 LITERATURE REVIEW 

 

2.1 OVERVIEW 

During the last three decades, explaining cause-effect relationships between natural and 

anthropogenic disturbances with measures of stream health have motivated the growing 

application of statistical, machine learning, and soft computing methods. The aim of this review 

is to provide insight into the most widely used methods for predicting biological variables based 

on macroinvertebrate and fish species in riverine ecosystems. Therefore, we describe several 

methods including multiple linear regression, generalized linear models, generalized additive 

models, boosted regression trees, random forests, artificial neural networks, fuzzy logic-based, 

and Bayesian belief networks along with recent applications of these. Moreover, issues regarding 

variable selection, model interpretability, ensemble modeling, and model evaluation and 

overfitting are discussed. Recent advances have suggested the need for integrated modeling 

systems to enhance predictive ability and improve interpretability. However, trade-offs between 

model complexity and accuracy demand research efforts in uncertainty 

quantification/propagation in model ensembles. Additionally, models should be perceived as 

complementary tools that require further validation with field measurements. Therefore, a 

consensus regarding monitoring and modeling practices for stream health applications is 

recommended. 

2.2 INTRODUCTION 

Current and future threats to freshwater ecosystems due to changes in environmental 

conditions and impacts of anthropogenic activities require urgent and well-informed actions 

(Strayer and Dudgeon, 2010; Vörösmarty et al., 2010; Waldron et al., 2017). Therefore, health 
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assessments of these ecosystems are critical to promoting their protection and restoration 

(Beechie et al., 2010). During the last decades, many environmental legislations have been 

increasingly supporting the introduction of biological assessments in local, regional and national 

monitoring programs (Hering et al., 2010; Hill et al., 2017). Typically, biotic indices are derived 

from biological assessments to represent the stream health condition. The stream health concept 

comprises the physical, chemical and biological capacity to maintain the structure and 

functioning of freshwater ecosystems, required for supporting living systems (Karr, 1999; 

Maddock, 1999). These indices are based on one or multiple metrics describing abundance, 

richness, diversity or composition of biological assemblages (Herman and Nejadhashemi, 2015). 

Furthermore, biomass, probability of occurrence, and incidence (presence/absence) data provide 

information regarding the level of impairment, which is also useful for stream health evaluation 

(Hill et al., 2017; Smucker et al., 2013). Biological measurements in aquatic ecosystems can be 

obtained from several biological assemblages and their selection is usually subjected to the type 

of study to perform. Benthic macroinvertebrates are preferred when studying localized effects of 

habitat and water quality alterations, due to their limited movement within a water body (Kerans 

and Karr, 1994). Meanwhile, fish communities are preferred when evaluating changes in flow 

regime and spatial connectivity (Karr, 1981). Benefits of stream health evaluation include the 

possibility to explore the environmental mechanisms driving ecosystem alterations (Herman and 

Nejadhashemi, 2015). Likewise, indicators of stream health can help with the identification of 

degraded areas and the provision of necessary inputs to design protection and restoration projects 

(Walters et al., 2009). 

Stream health models have been introduced to relate observed biological data with 

environmental and landscape variables with the goal of establishing reference conditions (Feio 
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and Poquet, 2011; Hawkins et al., 2000), predicting biological variables and indicators in 

unsampled locations (Merriam et al., 2015; Waite et al., 2010), classifying streams by 

impairment condition (Brown et al., 2012; Maloney et al., 2009), and predicting biological 

variables and indicators given the implementation of conservation practices (Hall et al., 2017; 

Herman et al., 2015; Sowa et al., 2016) and changes in environmental and landscape stressors 

(Einheuser et al., 2013b, 2013a, 2012). These models have been enhanced by the advances in 

landscape methods for studying freshwater ecosystems (Johnson and Host, 2010; Steel et al., 

2010), species distribution models (SDMs) (Elith and Graham, 2009; Li and Wang, 2013; Van 

Echelpoel et al., 2015) and habitat suitability models (Ahmadi-Nedushan et al., 2006; Yi et al., 

2017). Still, due to the complexity and nature of the problem, stream health models are mainly 

empirically-based rather than mechanistic or process-based. However, hierarchical approaches 

incorporating climate, hydrologic, hydraulic, water quality and/or physical habitat models have 

been suggested to improve the current models’ predictability, interpretability and accuracy 

(Daneshvar et al., 2017a; Einheuser et al., 2013a, 2013b, 2012; Guse et al., 2015; Herman et al., 

2015; Holguin-Gonzalez et al., 2014, 2013a, 2013b; Jähnig et al., 2012; Kail et al., 2015; Kennen 

et al., 2008; Woznicki et al., 2016a, 2016b; Yi et al., 2017). Modeling approaches include 

traditional regression models (e.g. multiple linear regression, generalized linear models), 

ordination and classification methods (e.g. principal component analysis, redundancy analysis), 

clustering methods (e.g. self-organizing maps, k-nearest neighbors), structural equation modeling 

(SEM), machine learning and soft computing techniques (e.g. fuzzy logic, neural networks, 

evolutionary computation). In this paper, we review the most widely used methods able to model 

both continuous and categorical stream health data based on macroinvertebrate and fish 

assemblages. These methods comprise of traditional statistical approaches, machine learning, 
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and soft computing methods. The specific objectives of this study are to (1) summarize the main 

characteristics of the selected modeling methods and their applications, and (2) identify features 

requiring further research for improving stream health modeling practices.  

2.3 MODELING METHODS 

In this section, we describe the most widely-used methods for stream health modeling. In 

general, the approaches presented herein are data-driven since we are dealing with natural 

systems; however, soft computing methods are more suitable for incorporating expert elicitation. 

In addition, both soft computing and machine learning methods are more flexible regarding 

statistical assumptions than traditional statistical modeling approaches. 

2.3.1 Statistical Methods 

Statistical methods considered herein are mainly focused on modeling approaches based 

on linear regression. However, a general overview of multivariate methods for ordination is also 

presented. A statistical model is a specification of probability distributions reproducing observed 

data, establishing mathematical relationships between explanatory and response variables 

(Nelder and Baker, 2006). Multivariate methods can be used for either ordination or 

classification purposes. Ordination is the arrangement of biological data samples along one or 

more gradients (Austin, 1976), whereas classification is the assignment of biological data 

samples into groups based on a measure of similarity (or dissimilarity) (Mitteroecker and 

Bookstein, 2011).   

2.3.1.1 Linear statistical methods 

Linear statistical methods have been applied mainly to elucidate relationships between 

landscape, habitat, and water quality factors and biological variables. In this category, there are 

methods with different complexity level like Multiple Linear Regression (MLR), Generalized 

Linear Models (GLMs) and Generalized Additive Models (GAMs), which have been widely 
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implemented in ecological applications. MLR fits a linear equation using the observed data to 

model the relationship between a set of explanatory variables and a response variable, assuming 

independent and identically normal distributed errors. Meanwhile, GLMs introduce some 

flexibility allowing different error distributions, selected from the exponential family of sampling 

models (e.g. normal, binomial, Poisson, gamma), and relate the response variable 𝑌 with the 

explanatory variables 𝑋 using a pre-specified link function 𝑔 (McCullagh and Nelder, 1989). The 

link function provides the relationship between the linear predictor 𝜂 and the expected value (i.e. 

mean) of the response variable 𝐸(𝑌|𝑋): 

𝑔[𝐸(𝑌|𝑋)] = 𝜂 = 𝛼 + 𝑋𝛽        (1) 

where, 𝛼 and 𝛽 are the intercept and the vector of linear weights, respectively. When selecting 

different link functions, GLMs comprise linear, logistic, and Poisson regressions, among others. 

For instance, logistic regression is preferred when modeling species presence/absence, while 

Poisson regression is more suitable when modeling the count data (Li and Wang, 2013). In order 

to further account for nonlinearities, GAMs extend GLMs, expressing 𝜂 as the sum of 

unspecified nonparametric linear or nonlinear smoothing functions 𝑓𝑖, applied over the set of 𝑝 

explanatory variables (Hastie et al., 2009): 

𝑔[𝐸(𝑌|𝑋)] = 𝛼 + 𝑓1(𝑋1) + ⋯+ 𝑓𝑝(𝑋𝑝)      (2) 

To ensure that the smoothing functions are identifiable, they are restricted to have zero 

mean (Maloney et al., 2012). These functions are commonly estimated using a scatterplot 

smoother (e.g. cubic spline) as the basic building block (Hastie et al., 2009; Zuur et al., 2009). 

Linear statistical models were initially introduced to build empirical associations between 

landscape and stream health attributes. Early efforts were mostly concerned in identifying the 

main stressors and landscape components (i.e. riparian buffer, watershed) affecting water quality, 
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physical habitat, and/or freshwater biological communities (Van Sickle et al., 2004). Many of 

these works are reviewed by Ahmadi-Nedushan et al. (2006), Johnson and Host (2010) and Steel 

et al. (2010). Linear statistical models have also been continuously applied as benchmarks for 

comparison with other statistical methods and machine learning approaches. For 

macroinvertebrate communities, traditional regression models are still used to relate abiotic 

stressors with species occurrence in order to explore habitat and water quality preferences, 

especially in headwaters (Pond et al., 2017) and tropical regions (Damanik-Ambarita et al., 2016; 

Everaert et al., 2014; Jerves-Cobo et al., 2017). However, prediction of the biological condition 

under different spatial and temporal domains and scales have been also addressed in some 

studies for both macroinvertebrate and fish assemblages (Frimpong et al., 2005; Johnson and 

Host, 2010; Van Sickle and Burch Johnson, 2008). 

Representative studies employing MLR for stream health prediction include models 

developed by Waite et al. (2010) to predict several macroinvertebrate metrics using watershed- 

and riparian-scale variables. Results showed that the best models explained 41-74% of the 

variation requiring only two or three explanatory variables after stepwise selection using the 

Akaike Information Criterion (AIC) estimator. Likewise, Merriam et al. (2015, 2013) employed 

linear regression and deletion tests to predict two indices based on benthic macroinvertebrate 

abundance as a function of surface mining, underground mine permit density, residential 

development, and location attributes. The results suggested that the interactions between 

different land uses are more important than a single land use effect.  

On the other hand, GLMs have been very popular for predicting species occurrence and 

distribution in freshwater ecosystems (Ahmadi-Nedushan et al., 2006). Van Sickle et al. (2004) 

implemented a linear regression and a negative binomial GLM for projecting fish and 
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macroinvertebrate biological indices as a function of landscape and streamflow variables under 

different timeline scenarios, including reference conditions. Donohue et al. (2006) employed a 

stepwise binary logistic regression and logarithmic and quadratic regressions to obtain national-

wide relationships between catchment and water quality attributes and stream ecological status 

based on an index representing the structure of benthic macroinvertebrate communities. Other 

studies have implemented GLMs in an integrated ecological modeling framework involving 

hydrodynamic, water quality and stream habitat suitability models to predict macroinvertebrate-

based stream health at a reach scale (Holguin-Gonzalez et al., 2013b, 2013a; Kuemmerlen et al., 

2014). Sui et al. (2014) developed a predictive model employing a geomorphology-based 

hydrological model to determine ten flow indices. Then, a GLM was implemented in order to 

relate those indices to the occurrence probabilities of 50 fish species at a watershed scale. In a 

recent study, Gieswein et al. (2017) used GLM to quantify the pairwise stressor interactions 

(strength and significance). This was performed following implementation of a decision tree-

based model for identifying stressor hierarchy. A Boosted Regression Trees (BRT) model was 

used when analyzing the relationships between several factors (i.e. riparian land use, physical 

habitat quality, nutrients, natural variables) and fish, macroinvertebrates and macrophytes 

assemblages.  

With respect to GAMs, Maloney et al. (2012) compared the standard and boosted version 

of this method for macroinvertebrate and fish metrics prediction, using watershed, stream, and 

site attributes as explanatory variables. Results indicated that gradient boosting applied to GAMs 

avoids overfitting and provides interpretable relationships, which is an advantage in comparison 

with traditional machine learning techniques. Additionally, regular GAM has been also 

compared with a GAM based on principal component analysis (PCA) for fish richness and 



 12 

diversity prediction (Zhao et al., 2014). Results showed different selected explanatory variables 

for each approach, generating different outcomes for the response variables. However, PCA-

based GAM performed better during cross-validation tests and was found to be more suitable 

when predictors are highly correlated (Zhao et al., 2014). More recently, Almeida et al. (2017) 

evaluated the effect of sampling effort in terms of transect length on fish metrics. This was 

performed for a large Mediterranean watershed using a GAM with sampling area as a predictor. 

Results indicated that fish indices that are obtained using predictive models are more sensitive to 

sampling strategies than simpler biotic metrics that are model-independent, showing a decrease 

in their values with increasing sampling area, despite observed higher richness.  

Regarding spatial-scale effects, Johnson and Host (2010) listed representative studies 

from 2000 to 2008 involving invertebrates and fish assemblages. For each study, the authors 

reported the scales (e.g. habitat, reach, local, ecosystem, watershed, regional, ecoregion) at which 

explanatory variables explained the instream biological response. Johnson and Host (2010) 

showed meaningful differences in the scale’s importance among the reviewed studies, due to the 

different region sizes and disturbance levels for each case. A study by Frimpong et al. (2005) 

used linear and piecewise regression to compare the performance of stream habitat indices 

obtained at the watershed-scale and observations at the reach-scale for fish metrics prediction. 

Results indicated that watershed-scale variables provided better predictions for stream health 

than reach-scale variables. Additionally, predictive ability decreased with the spatial extent, 

which might be attributed to the increase of the attributes’ heterogeneity. In another study, Van 

Sickle and Burch Johnson (2008) developed a distance weighting model based on linear 

regression for estimating specific land use areas within watersheds that best explain fish index of 

biotic integrity (IBI). With this approach, it is possible to compare different scales of landscape 
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influence on stream health. Furthermore, linear models have been also used for multimetric 

indices formulation. Pont et al. (2009) implemented a procedure involving stepwise, multilinear, 

logistic, and Poisson regressions to build a predictive IBI for aquatic vertebrates (fish and aquatic 

amphibians). Particularly, this procedure was developed to discriminate natural and 

anthropogenic effects over the biotic metrics computation. Implementing the same approach, 

Moya et al. (2011) developed a multimetric index for macroinvertebrate assemblages. This index 

based on predictive models successfully discriminated between the reference and disturbed sites. 

2.3.1.2 Ordination methods 

Ordination refers to multivariate statistical methods commonly classified into indirect 

(unconstrained ordination) and direct gradient analysis (constrained ordination) (De’ath, 1999; 

Guo et al., 2015b). Ordination methods are generally preferred when analyzing multiple species 

at multiple sites (Ahmadi-Nedushan et al., 2006). The main objective of ordination is to reduce 

dimensionality to identify patterns in the data while describing relationships with explanatory 

variables (e.g. environmental gradients). As a result, data samples are ordered in such a way that 

similar points are placed together (Ahmadi-Nedushan et al., 2006).  

Indirect gradient analysis only uses samples collected in one data matrix, extracting 

dominant or orthogonal axes of variation. Any additional information regarding explanatory 

variables is used afterwards to enhance results’ interpretation. These methods can be classified 

into distance-based techniques (e.g. polar ordination – PO, principal coordinates analysis – 

PCoA, nonmetric multidimensional scaling – NMDS) and Eigen analysis-based techniques, 

which can be derived from linear models (e.g. PCA) or from unimodal (nonlinear) models (e.g. 

correspondence analysis – CA, detrended correspondence analysis – DCA). Contrariwise, in 

direct gradient analysis, variables of interest are directly related to explanatory variables. 

Therefore, these techniques are preferred for habitat modeling (Ahmadi-Nedushan et al., 2006). 
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Direct gradient methods can also be based on linear models (e.g. redundancy analysis – RDA) or 

unimodal models (e.g. canonical correspondence analysis – CCA, detrended canonical 

correspondence analysis – DCCA). It is worth noting that linear models are preferred for short 

gradients, whereas unimodal models are, in general, more suitable for aquatic habitat modeling 

(Ahmadi-Nedushan et al., 2006). Further details regarding ordination techniques can be found 

elsewhere (Borcard et al., 2011; Kent, 2006; Zuur et al., 2007).  

Multivariate methods for biological assessments, like the River Invertebrate Prediction 

and Classification System (RIVPACS) and its variants (Abbasi and Abbasi, 2012; Feio and 

Poquet, 2011), are mainly based on ordination methods. These multivariate methods attempt to 

predict ratios of taxa observed vs. expected – O/E, carefully choosing reference sites while using 

categorical (e.g. presence/absence) rather than continuous biological data. Some recent 

applications of ordination methods within stream health modeling were reported by Gazendam et 

al. (2016), indicating that the integration with other techniques is needed for identifying 

relationships between environmental variables and stream health using PCA or CCA. For 

instance, D’Ambrosio et al. (2014), used CCA and variance partitioning to evaluate the 

relationships between instream habitat, spatial location, and geomorphic characteristics on fish 

and macroinvertebrate-based stream health indices. This study was conducted considering highly 

modified drainage channels as a consequence of agricultural activities. Results provided key 

ecological drivers for each biological community, under different stream geomorphic condition 

and location. Additionally, it is worth noting that ordination methods have been mainly 

implemented to assess the influence of explanatory variables on response variables before 

implementing more complex approaches for predicting stream health indicators (Lin et al., 

2016). 
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2.3.2 Machine Learning 

Machine learning is a form of artificial intelligence employing statistical, probabilistic 

and optimization algorithms to identify relationships and patterns from datasets. The resulting 

outcomes can be used for data analysis, visualization and prediction (Mitchell, 1999). 

2.3.2.1 Decision tree-based methods 

Decision tree family of models are hierarchical structures also known as Classification 

and Regression Trees (CART) (Breiman et al., 1984). These models divide the predictor space 

into regions with a homogenous response, then fitting a constant to each region. A decision tree 

grows using binary splits, resulting in a dendrogram with varying numbers of branches (De’ath, 

2007). Each split is defined by threshold values accompanying the explanatory variables. 

Regression trees fit the mean response to observations, while classification trees, which are used 

for categorical data, fit the most frequent class as the constant. Usually, CART are grown to a 

maximum and then pruned using cross-validation approaches to prevent overfitting (Hastie et al., 

2009). CART have been applied in several stream health applications, and nowadays are 

commonly used as a benchmark approach for comparison with other methods (Ambelu et al., 

2010; He et al., 2010; Holguin-Gonzalez et al., 2014, 2013a; Maloney et al., 2009; Ocampo-

Duque et al., 2007; Waite et al., 2012; Wang et al., 2007). Known drawbacks of CART are the 

difficulty in modeling smooth functions and producing very different results when making small 

changes to the training data (Elith et al., 2008). However, ensemble methods based on 

computational intensive procedures as boosting and bootstrap aggregation (a.k.a. bagging) have 

shown better and promissory results in ecological applications (De’ath, 2007). Thus, two 

ensemble methods, Boosted Regression Trees (BRT) and Random forests (RF), are further 

described in the next sections. 
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2.3.2.1.1 Boosted regression trees  

Boosted regression trees (BRT) method is an advanced form of regression that combines 

a large number of regression trees using the boosting technique to increase predictive 

performance (De’ath, 2007; Friedman, 2001; Hastie et al., 2009). Boosting is a forward 

sequential procedure that aims to find and merge results from multiple models (e.g. decision 

trees), emphasizing on observations poorly represented by an existing combination of models 

(Brown et al., 2012). For BRT, boosting works as an optimization technique, minimizing the 

difference between predicted and observed values, adding at each step a new tree that best 

reduces this difference (Elith et al., 2008). The technique updates the residuals in each iteration, 

preserving the existing trees unchanged while extending the overall model. Hence, the final BRT 

model is a linear combination of several decision trees. Like other regression methods, it is 

possible to define the error distribution in BRT models in order to consider different response 

types (e.g. Gaussian, Poisson, binomial). 

BRT models are controlled by two important parameters: the learning rate (lr), which 

determines the contribution of each tree, and the tree complexity (tc), which controls the number 

of terminal nodes and interactions. Both lr and tc define the required number of trees (nt) for an 

optimal prediction (Elith et al., 2008). In addition, the stochasticity of BRT models is controlled 

by the “bag fraction”, which refers to the observations that are randomly drawn to train each new 

tree, with optimal values between 0.5 and 0.75 (Elith et al., 2008). In ecological applications, 

small values for lr (<0.001), and therefore high nt (>1000), are preferred in order to avoid 

overfitting, reduce the contribution of each tree, and increase predictive reliability (Elith et al., 

2008). Values for tc are defined depending on the data availability and are restricted to the 

desired computing time. High values for tc implies a slower lr to keep a similar optimal nt (Elith 

et al., 2008).  
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Works conducted by Moisen et al. (2006), Elith et al. (2006) and Leathwick et al. 

(2006a), are among the first studies employing BRT models for ecological applications. 

Particularly, they showed that BRT models are more flexible and outperform regression models 

like GLM or GAM in variable selection, higher variance explanation, and lower prediction error. 

Moreover, BRT models are suitable for handling nonlinear relationships and can model smooth 

functions and interactions (Elith et al., 2008). Applications in stream health modeling include the 

determination of quantitative relationships between landscape variables and instream biological 

response (Chee and Elith, 2012; Gieswein et al., 2017; Golden et al., 2016; Pilière et al., 2014; 

Steel et al., 2017; Tonkin et al., 2014; Waite and Van Metre, 2017), prediction (Brown et al., 

2012; Clapcott et al., 2017; Elias et al., 2016; Leclere et al., 2011; May et al., 2015; Waite et al., 

2014, 2012), multimetric indices formulation (Clapcott et al., 2014; Esselman et al., 2013), and 

setting of instream water quality/ecological objectives and disturbance thresholds (Clapcott et al., 

2012, 2010; Wagenhoff et al., 2016). Moreover, the most of recent studies involving BRTs 

implementation have dealt with regional and national scales. 

Nonlinear relationships using BRTs have been explored using different explanatory and 

response variables, and distinct objectives. For instance, Chee and Elith (2012) analyzed the 

patterns of occurrence for 17 native and alien riverine fish species. In that study, the explanatory 

variables comprised of 20 environmental predictors including physiographic, bioclimatic, 

edaphic and land cover attributes. The survey method was also considered as a categorical 

explanatory variable. Results showed that several, but not all, of the developed models are 

transferable to adjacent regions. Meanwhile, Tonkin et al. (2014) explored the effects of distance 

and barriers on the occurrence of macroinvertebrate assemblages. Hence, four different BRT 

models (i.e. considering different factors driving invertebrate colonization) were evaluated. In 
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another study, Golden et al. (2016) addressed the relationship between landscape variables at the 

watershed and riparian buffer scales with instream nutrient concentration and fish IBI under low 

flow conditions. Landscape variables included temporal and geographic position attributes, and 

indicators of runoff and point and non-point nutrient sources. Similarly, Pilière et al. (2014) 

explored the relationships between environmental stressors and freshwater invertebrates 

represented by the Invertebrate Community Index (ICI). Predictors included geography, water 

quality, physical-habitat quality, and toxic pressure variables. The results suggested that it is 

necessary to fit explanatory variables interactions to increase predictive ability and model 

interpretability. In a most recent work, Waite and Van Metre (2017) used BRTs to identify the 

most important stressors explaining the macroinvertebrate condition in streams. The final model 

was determined sequentially eliminating variables according to cross-validation performance. 

Three macroinvertebrate metrics and a multimetric index were used as response variables. 

Results indicated that watershed-scale stressors acted as surrogate variables for instream 

stressors. However, given the performance metrics for model validation, the authors did not 

recommend using the fitted BRT models for prediction in unsampled sites. On the other hand, 

there are several studies that implemented BRTs for understanding instream processes that affect 

species distribution. For instance, a study by Steel et al. (2017) explored the relationship between 

streamflow regime and water temperature metrics with the Shannon-Wiener diversity index, total 

richness, and total density per square meter of benthic macroinvertebrate assemblages. Results 

indicated that macroinvertebrate diversity and total richness showed the best predictive 

performances, with metrics related to spring snowmelt recession and variability in summer water 

temperature having the greatest relative influence. Meanwhile, the total density per square meter 
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of benthic macroinvertebrates showed the poorest fitness, limiting the interpretability of the 

modeling results (Steel et al., 2017). 

In general, studies using BRTs concerned with predicting the stream health condition 

using fish and macroinvertebrate communities are recent. Leclere et al. (2011) attempted to 

select an appropriate statistical method for predicting nine fish species occurrence in large river 

systems at a reach-scale. Compared methods were CART, GLM and BRT, where the latter 

showed the best performance. Specified predictors comprised qualitative (occurrence of shallow 

waters and shelters), semi-quantitative (range of coverage/magnitude of bottom subtract, current 

velocity, shade, macrophytes, complexity structures), and quantitative (value for depth, stream 

width, subtract diversity, cover of bed sediment) variables. The results showed that the BRT 

method selected a greater number of variables, giving more importance to continuous variables. 

Furthermore, this method provided a better ecological interpretability and consistency in the 

obtained response curves. Other studies have used BRT models to predict benthic 

macroinvertebrate metrics at a regional scale. For instance, Waite et al. (2012) used land use and 

land cover explanatory variables to obtain richness and O/E ratios. In addition, the study 

compared MLR, CART, Random forests (RF) and BRT predictive performances. Results 

indicated that BRT outperformed the other methods and provided additional information 

regarding potential interaction among explanatory variables. Meanwhile, Brown et al. (2012) 

used benthic macroinvertebrate index of biotic integrity (I-IBI) as the response variable. 

Landscape variables at the watershed and riparian-buffer scales were selected as explanatory 

variables. In the study, population density and agricultural and urban land use were the predictors 

with the highest influence on the response. However, the final BRT model was not able to 

capture the minimum and maximum values of the observed data. Therefore, the results suggested 
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that the outcomes from BRT models should not be used to predict index values at specific sites. 

Instead, the model is recommended to be used to predict impairment condition due to watershed 

disturbance (Brown et al., 2012). 

In a more recent study, Elias et al. (2016) implemented a two-level nested model to 

predict macroinvertebrate occurrence. The first level attempted to predict four water quality 

variables (dissolved oxygen, phosphates, ammonium and nitrates) with a BRT model. Then, 

these variables were used to predict reference conditions of stream health employing a different 

modeling approach. However, results showed that the BRT model was only successful in 

predicting nitrates. Other studies have addressed related fields to stream health modeling like 

surface water and groundwater interactions and water quality modeling (Poor and Ullman, 2010; 

Smucker et al., 2013). For instance, Johnson et al. (2017) successfully estimated the effects of 

groundwater seepage on stream temperature in unsampled sites at headwaters. Hence, landform 

and precipitation covariates, representing spatial and temporal variables, respectively, were 

selected as explanatory variables. During the modeling process, these variables were sequentially 

eliminated using ranking, clustering and model simplification approaches. 

The impacts of the scale of study on model predictability have been also addressed with 

BRT models in which depending on the size and location of study, the importance of natural 

gradients and anthropogenic stressors are different (May et al., 2015; Waite et al., 2014). 

However, it was suggested that using BRT models for small spatial scales provide more accurate 

predictions compare to large-scale studies (Waite et al., 2014). A study by Clapcott et al. (2017) 

attempted to estimate site-specific contemporary and reference values for a macroinvertebrate 

index, evaluating spatial-scale effects on the predictions. Models at national and regional scales 

were tested for comparison. In general, the proportion of native vegetation in upstream 
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catchments was the primary predictor, while the remaining relevant predictors varied regionally. 

Main environmental predictor at large scales also included flow variability, habitat category, 

substrate composition, summer temperature and average upstream slope. Regional models 

showed that low flow remaining downstream after daily water allocation, and calcium 

concentration of rocks in the catchments were relevant. Other methods (i.e. ANCOVA and RF) 

were also evaluated. Results indicated that models at different scales were equally informative. 

However, the authors recommended using finer-scale predictors to improve the model accuracy. 

These variables include substrate size, nutrient concentrations, streamflow, and temperature. 

Additionally, it was shown that regression tree-based methods did not overestimate biological 

condition scores because the methods do not extrapolate beyond the range of observations. 

Meanwhile, these methods are able to predict stream classes that are unrepresented in the 

available observations (Clapcott et al., 2017). 

BRT model interpretability has been found to be suitable for defining disturbance 

thresholds and setting instream objectives. Particularly, functional indicators for ecosystem 

processes are often used as response variables for the task mentioned above (Clapcott et al., 

2012, 2010; Wagenhoff et al., 2016). Functional indicators include variables related to primary 

production, ecosystem respiration, organic matter breakdown, cellulose decomposition potential, 

among others (Clapcott et al., 2010). Furthermore, it has been suggested that statistical analysis 

based on single-stressor models have the tendency to provide spurious thresholds for 

management purposes (Wagenhoff et al., 2016). Meanwhile, the use of sediment-specific 

macroinvertebrate metrics has been encouraged for improving prediction and threshold definition 

(Wagenhoff et al., 2016). Other findings include the importance of spatial variation of the 

predictors for increasing predictive power (Clapcott et al., 2012). Finally, additional applications 
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of BRT models at national and continental scales comprise the definition of multimetric indices. 

Examples include the formulation of fish community indicators in large regions (Esselman et al., 

2013) and multimetric indices development based on water quality-based predictive modeling, 

measurements of macroinvertebrate and fish assemblages, and indicators for ecosystem 

processes (Clapcott et al., 2014). 

2.3.2.1.2 Random forests 

Similar to BRT, Random forests (RF) are collections of individual CART (Breiman, 

2001). This method fits several trees using bootstrap samples of the training data while 

employing a small number of randomly selected predictors from the explanatory variables 

(Snelder and J. Booker, 2013). The bootstrapping process attempts to reduce the variance of 

estimated outputs (Hastie et al., 2009), which is typically high for single large regression trees. 

For each bootstrapped sample, the largest tree is grown but not pruned, and aggregation is made 

by averaging or majority voting the trees (Carlisle et al., 2009b; Cutler et al., 2007). The size of 

randomly selected predictors is usually √𝑝 or log⁡(𝑝), being 𝑝 the number of explanatory 

variables (De’ath, 2007). This method requires a large number of trees to ensure convergence 

(Booker et al., 2015). Additionally, because of the bootstrap sampling, RF excludes over 37% of 

observed data for growing the regression or classification trees. This non-drawn portion is called 

out-of-bag samples (Prasad et al., 2006), and error estimates are computed using these samples. 

Then, these error estimates are used for regression trees aggregation (Carlisle et al., 2009b). 

When used for classification, RF determines the most frequent class across all trees for each 

observation within the out-of-bag portion. Estimating the error using the out-of-bag samples is 

almost equivalent to perform k-fold cross-validation in which once the error stabilizes, the 
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training is terminated (Hastie et al., 2009). Therefore, because a large number of trees provides 

limited generalization errors, RF method prevents overfitting (Prasad et al., 2006). 

RF applications include predicting the instream biological condition and simulating 

ecologically-relevant hydrologic indices in undisturbed sites and ungauged locations. Most of the 

studies have been developed at regional and national scales. Some RF models have attempted to 

evaluate the effects of human activities and relevant environmental factors on natural aquatic 

ecosystems (He et al., 2010), while others have addressed the prediction of instream biological 

condition in ungauged locations (Carlisle et al., 2009a; Hill et al., 2017). Many of these studies 

have been focused on predicting macroinvertebrate taxa richness and composition (Álvarez-

Cabria et al., 2017; Booker et al., 2015; Carlisle et al., 2009a; Chinnayakanahalli et al., 2011; 

Patrick and Yuan, 2017; Vander Laan et al., 2013; Waite et al., 2014). Other studies have 

addressed the RIVPACS-type approach for determining biological condition (Carlisle et al., 

2009a; Chinnayakanahalli et al., 2011). Moreover, fish assemblages composition and richness 

(He et al., 2010; Patrick and Yuan, 2017), and fish biomass (Álvarez-Cabria et al., 2017) have 

been also modeled. Other applications include determining reference conditions (Clapcott et al., 

2017). For biological condition prediction, common explanatory variables comprise of geospatial 

datasets including land cover, land use, topography, climate, soils, societal infrastructure, and 

hydrologic modification. Some of these studies have addressed natural flow regime and water 

quality and temperature roles on biological condition predictability (Booker et al., 2015; 

Chinnayakanahalli et al., 2011; Patrick and Yuan, 2017; Vander Laan et al., 2013). For instance, 

Patrick and Yuan (2017) used the 171 Hydrologic Index Tool (HIT) indices as predictors, which 

were obtained with statistical modeling. Other studies have identified variables describing 

natural and human activities as important predictors (Carlisle et al., 2009a; He et al., 2010), 
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especially land use changes and flow modification. Regarding ecologically-relevant hydrologic 

indices, common explanatory variables are related to geospatial data describing natural 

watershed characteristics. However, RF models usually include a reduced number of indices 

(between 1 and 36), and prediction errors range from 15% to 40% (Carlisle et al., 2009b). Other 

applications include river classification (Dhungel et al., 2016; Snelder and J. Booker, 2013), 

where classification success has ranged from 34% to 75%. Additionally, there are studies that 

have analyzed potential effects of climate change (Dhungel et al., 2016), and environmental 

flow, and flow-ecology relationships, for environmental impact assessment (Buchanan et al., 

2017). 

2.3.2.2 Artificial neural networks 

Artificial neural networks (ANNs) are nonlinear models with many parameters flexible 

enough to approximate any smooth function. ANN is a learning method based on the idea of 

building linear combinations of the specified explanatory variables and then modeling the 

response variables as nonlinear functions of these linear combinations (Hastie et al., 2009). 

ANNs are labeled as “black box” models and are known for being useful for prediction but not 

very useful for producing understandable models (i.e. provide limited insight into the relative 

influence of explanatory variables). However, multiple methods for understanding ANNs results 

are available, including sensitivity analysis and randomization tests (Gevrey et al., 2003; Olden 

and Jackson, 2002). 

A typical two-stage regression or classification network model is known as a feed-

forward neural network. Under this approach, linear combinations of explanatory variables 𝑋 are 

transformed into 𝑍 elements called “hidden units” using a nonlinear function⁡𝜎, known as the 

“activation function”. Usually, 𝜎 is the sigmoid function, which is a smooth version of the step 
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function. However, Gaussian radial basis functions are also commonly used (Hastie et al., 2009; 

Mathon et al., 2013). For ANN setting, more than one layer of hidden units can be used (Lek and 

Guégan, 1999). Afterwards, these Z elements are linearly combined. Then, the linear 

combinations are transformed using an output function to provide the response variables. The 

constants involved in the linear combinations are known as “weights”. The aforementioned 

ANNs are called multilayer perceptrons (MLPs) and are very popular among ecological 

applications. In order to fit ANNs with observed data, a two-pass procedure known as back-

propagation, which is a gradient descent algorithm, is typically employed in order to determine 

the weights (Hastie et al., 2009). Hence, key MLP parameters include the number of times that 

the training data is used to update the weights of the hidden units (i.e. epochs) and the number of 

hidden layers and units. Alternatives to MLP, such as the Generalized Regression Neural 

Network (GRNN), have been recently applied for stream health modeling (Mathon et al., 2013; 

Sutela et al., 2010).  

ANNs were first introduced in ecological applications during the 1990s (Lek et al., 1996; 

Lek and Guégan, 1999); however, since then the method has been widely used. Goethals et al. 

(Goethals et al., 2007) presented a review of 26 representative studies addressing 

macroinvertebrate prediction, covering a period from 1998 to 2006. In those studies, the response 

variables were usually presence/absence, abundance and derived indicators (e.g. richness, 

average score per taxon, exergy), using landscape, instream and water quality attributes as 

explanatory variables (i.e. inputs). Studies using fish biological data have been also implemented 

for evaluating restoration projects and understanding the effects of changes in physical habitat 

and water quality variables (Olaya-Marín et al., 2013, 2012; Olden et al., 2008).  
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Other studies have reported an increased use of self-organizing maps (SOMs) for 

predicting macroinvertebrate and fish distributions and exploring relationships with landscape 

and environmental variables (Chon, 2011; Tsai et al., 2016). SOMs, also known as the Kohonen 

networks, are unsupervised ANNs that are implemented for pattern classification, clustering, and 

ordering purposes (Kalteh et al., 2008), and are also known for approximating probability density 

functions of the input data (Chon, 2011). Recent works have addressed variable selection and 

uncertainty analysis to gain insight into the results interpretability, which is one of the main 

ANN’s drawbacks. For instance, Mouton et al. (2010) compared six different methods reviewed 

by Gevrey et al. (2003) for evaluating explanatory variables’ individual contribution in 

predicting macroinvertebrates abundance. The results indicated that some techniques are more 

sensitive and less stable than others are. However, it was shown that the different methods were 

able to provide consistent results regarding the order of importance for the explanatory variables. 

Likewise, Grenouillet et al. (2011) and Guo et al. (2015a) evaluated the variability and 

uncertainty of an ensemble of several models including GLM, GAM, CART, RF, ANNs, among 

others, in the prediction of fish distributions in streams and lakes at a national level, respectively. 

This evaluation included the comparison between the individual predictions provided by every 

single model and an average of ensemble models. Results indicated that ensemble modeling 

results improve accuracy when modeling different species and revealed uncertainty dependence 

upon geographical extent. In addition, Gazendam et al. (2016) developed an ANN model to 

predict two macroinvertebrate indices (Hilsenhoff’s Biotic Index and richness) while testing 

combinations of physically-based input variables (geomorphic, riparian, hydrology and 

watershed-level). Results showed that considering both watershed- and reach-scale (geomorphic 
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and riparian) inputs can improve model performance and are consistent with findings using 

ordination techniques (D’Ambrosio et al., 2014, 2009). 

2.3.2.3 Other methods 

Additional statistical and machine learning methods that have been implemented for 

SDM and habitat suitability include Multivariate adaptive regression splines (MARS), Support 

Vector Machines (SVMs), and Partial Least Squares Regression (PLSR). Other methods such as 

Maximum Entropy (Phillips et al., 2006) and Genetic algorithm for rule set production (GARP) 

(Stockwell and Peters, 1999) are not further described herein because they are intended for using 

presence-only data. It is worth noting that these two methods are especially suitable when 

working with small sample sizes and incomplete datasets (Li and Wang, 2013; Yi et al., 2017).  

MARS (Friedman, 1991) are multidimensional extensions of GAMs that build up from 

basis functions fitting separate splines for different intervals (with extremes known as knots) of 

the predictor variables. MARS algorithm finds the location and number knots using an 

exhaustive search procedure in a forward/backward stepwise fashion (Prasad et al., 2006). 

MARS models are better suited than CART for continuous variables, can handle large numbers 

of explanatory variables with low order interactions, and automatically quantify interaction 

effects (Li and Wang, 2013; Prasad et al., 2006). However its interpretability is limited when 

analyzing species-environmental relationships, its parameter identification is not straightforward, 

and it is highly sensitive to extrapolation (Prasad et al., 2006). MARS method is mainly 

implemented for multi-species modeling (Guo et al., 2015a) and is considered as an alternative to 

other regression methods such as GLM and GAM (Barry and Elith, 2006; Li and Wang, 2013; Yi 

et al., 2017). 

On the other hand, SVMs (Vapnik, 2000) is a machine learning algorithm that also uses 

basis functions known as kernels to map data into a new nonlinear feature hyperspace attempting 
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to simplify data patterns. Then, the data is classified while the margins between hyperplanes that 

are used to define classes are maximized. These hyperplanes are determined by a set of support 

vectors using quadratic programming. An advantage of SVMs is the reduced number of tuning 

parameters. Also, SVM models are not prone to overfitting. However, because this method does 

not provide a simple representation or a pictorial graph, the interpretation of modeling results is 

difficult (Cutler et al., 2007), the algorithm is computationally demanding, and the tuning 

parameters are poorly identifiable when data is not linearly separable (Guo et al., 2015b). SVM 

have been applied mainly for modeling species-habitat relationships for fish communities 

(Fukuda et al., 2013; Fukuda and De Baets, 2016; Muñoz-Mas et al., 2018, 2016) and for 

predicting the occurrence and macroinvertebrate-based stream health indices using landscape and 

water quality attributes (Ambelu et al., 2010; Fan et al., 2017; Hoang et al., 2010; Lin et al., 

2016; Sor et al., 2017). In general, the studies have indicated similar performances between ANN 

and SVM when predicting continuous variables, although SVM usually performs slightly better 

than ANN. Meanwhile, methods such as RF have shown better results than SVM for 

classification purposes. 

PLSR (Wold et al., 2001) is a method that projects explanatory and response variables 

into a new space where MLR is performed. PLSR is known for handling multicollinearity and 

strong correlation of predictors while allowing a high interpretability of the resulting regression 

coefficients (Villeneuve et al., 2015). Moreover, this method is suitable when the number of 

explanatory variables is greater than the number of observations (Abouali et al., 2016b). PLSR 

method has been used as an explicative method for quantifying relationships between several 

stressors and stream health indicators. This method is especially suitable for identifying the most 
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relevant input variables before any predictive model training (Abouali et al., 2016b; Einheuser et 

al., 2013a; Villeneuve et al., 2015).  

In an attempt to facilitate the integration with expert elicitation regarding causal 

relationships, different approaches are being integrated within the SEM framework for stream 

health modeling (Riseng et al., 2011; Surridge et al., 2014). For instance, a recent study by 

Villeneuve et al. (2018) shows an application of the aforementioned framework using PLSR for 

evaluating the direct and indirect effects of multiple stressors on macroinvertebrate indices in 

nested spatial scales (watershed, reach, and site). Results showed that the direct effects of 

instream water quality conditions decrease when indirect effects from land use and hydro-

morphological alterations are considered for macroinvertebrate assemblages. 

2.3.3 Soft Computing Methods  

Soft computing is a collection of paradigms that attempt to represent complex systems in 

an environment of imprecision, uncertainty and partial truth, resembling human mind and 

biological systems’ learning. Soft computing approaches include fuzzy logic, neurocomputing, 

evolutionary computation and probabilistic reasoning (Zadeh, 1994, 1998). 

2.3.3.1 Fuzzy logic-based methods 

Fuzzy logic-based methods are used to model nonlinear relationships employing 

linguistic terms instead of numeric values. These methods incorporate membership functions, 

fuzzy set operations, and if-then rules for mapping from a given input to an output. This process 

is also called “fuzzy inference” (Ocampo-Duque et al., 2006). The membership functions are 

curves with values between 0 and 1 that represent the degree of membership of an input 

variable’s value (element) to a certain fuzzy set, where 0 and 1 represent non- and full 

membership, respectively (Adriaenssens et al., 2006). Given that the same element may belong 

to several sets at the same time, expert knowledge is necessary to define the overlap between 
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different membership functions for the same variable. Then, the obtained membership values are 

combined for different variables using fuzzy if-then rules incorporating fuzzy set operations. 

Outcomes from different fuzzy rules are then aggregated into a final fuzzy score. Fuzzy set 

operations include union, intersection and additive complement. Following Adriaenssens et al. 

(2004a), fuzzy if-then rules consist of antecedent and consequent parts, which mainly rely on 

expert knowledge. The antecedent part states conditions for the explanatory variables (i.e. input), 

while the consequent describes the corresponding values of the response variables (i.e. output). 

When both parts are concerned with statements that define the value of the variables without 

considering any explicit function relating the explanatory and response variables, the model 

belongs to the Mamdani-Assilian type. On the other hand, when the consequent part establishes a 

linear or nonlinear relationship between the explanatory and response variables, the model 

belongs to the Takagi-Sugeno type. It would be necessary to implement a weighting operation 

using a specified decision-making method (e.g. Analytic Hierarchy Process) to define the 

influence of each input variable in the final fuzzy score (Ocampo-Duque et al., 2006). Once the 

fuzzy rules are implemented, the defuzzification operation is performed, if necessary, in order to 

obtain a numerical output under no-fuzzy contexts (Ocampo-Duque et al., 2006). Fuzzy logic 

models are generally trained employing optimization routines based on the Shannon-Waver 

entropy (tuning the fuzzy sets parameters looking for entropies values greater than 0.85) or 

Genetic Algorithms to generate uniformly distributed fuzzy sets (Yi et al., 2017). Then, the 

nearest ascent hill-climbing algorithm can be used for optimizing the consequent part of each 

fuzzy rule (Yi et al., 2017). 

Compared to ANNs, fuzzy logic-based methods provide a more transparent insight into 

the influence and interactions of input variables. Moreover, the analysis of the model is more 
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intuitive and can be performed in a semi-qualitative manner while uncertainty quantification can 

be easily integrated. However, setting the membership functions and fuzzy rules, which are 

jointly referred as the knowledge database, is not an easy task (Adriaenssens et al., 2004a). In 

order to address this issue, several techniques such as Adaptive neuro-fuzzy inference systems 

(ANFIS) (Jang, 1993) were introduced. ANFIS is a hybrid method that combines ANNs and 

fuzzy logic. An adaptive network is a multilayer feed-forward neural network where the hidden 

units may or may not have parameters. These parameters are determined during the training 

process using observed data by minimizing the predictive error. Therefore, the membership 

functions are introduced in the first hidden layer of parameterized units. Successive layers, which 

contain non-parameterized units, represent the if-then fuzzy rules while incorporating the fuzzy 

set operations. Each successive layer attempts to represent the different specified fuzzy rules. 

The last layer before computing the overall fuzzy score comprises parameterized units. In this 

layer, the linear and non-linear relationships for Takagi-Sugeno type models are introduced. 

These relationships are referred as “output membership functions” (Jang, 1993). The number of 

parameters in the ANFIS model depends on the number of explanatory variables, the number of 

membership functions per variable, the membership functions shape, and the output membership 

function type. Thus, the number of parameters should not be greater than the number of available 

observations for model training in order to avoid overfitting (Woznicki et al., 2016a). 

Early fuzzy logic applications for predictive modeling and ecosystem management were 

reviewed by Adriaenssens et al. (2004a). The integration of expert knowledge, the use of 

qualitative data, and the capacity to incorporate uncertainty assessments have motivated the 

growing use of fuzzy logic-based methods in ecological applications (Adriaenssens et al., 2004a; 

Ocampo-Duque et al., 2006). Recent studies include the prediction of macroinvertebrate 
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abundance (Adriaenssens et al., 2006; Mouton et al., 2009; Van Broekhoven et al., 2006), 

ecological status classification (Ocampo-Duque et al., 2007), the development of multimetric 

stream health indices (Marchini et al., 2009), and the prediction of fish species occurrence, 

distribution or derived indices (Boavida et al., 2014; Muñoz-Mas et al., 2012). When applied for 

prediction, fuzzy logic-based models typically use water quality, hydrologic and hydro-

morphological attributes and knowledge based on species preferences and tolerances. In an 

attempt to implement fuzzy logic in a more data-driven fashion, ANFIS has been recently 

implemented using process-based models to evaluate the impacts of conservation practices and 

environmental changes on stream health indices at a watershed scale (Einheuser et al., 2013a, 

2013b, 2012). For instance, the Soil and Water Assessment Tool (SWAT) has been employed to 

simulate streamflow series in order to obtain ecologically-relevant hydrologic indices. Those 

hydrologic indices are later used to predict stream health indices using ANFIS (Herman et al., 

2016, 2015). Others studies have also incorporated water quality simulations (sediment and 

nutrients) for predicting stream health indicators (Woznicki et al., 2016a, 2016b). Moreover, 

Abouali et al. (Abouali et al., 2016b), employed the same integrated framework to develop a 

two-phase approach coupling Partial Least Square Regression (PLSR) and ANFIS for predicting 

macroinvertebrate and fish-based indices. Results showed a significant improvement in the 

prediction power while omitting the need for variable selection. It is worth noting that ensemble 

modeling frameworks integrating process-based models are especially suitable for evaluating 

climate change effects on biological assemblages (Daneshvar et al., 2017a). Recently, Yi et al. 

(2017) presented a detailed revision of fuzzy logic integration with process-based models 

intended for habitat modeling. Remarkable applications include micro-habitat 
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selection/evaluation for fish and macroinvertebrate assemblages and dam operation/removal 

assessments (e.g. CASiMiR model). 

2.3.3.2 Bayesian belief networks 

Bayesian belief networks (BBN) are directed acyclic graphs having nodes linked by 

probabilities (Pearl, 1986). Each node represents constants, discrete or continuous variables, or 

continuous functions in the model, whereas the arrowed links indicate direct correlation or causal 

relationships between nodes (McCann et al., 2006). There are two types of nodes: parent or 

independent nodes (nodes that don’t have arrows incoming or outgoing), and child nodes (with 

one or both incoming and outgoing arrows). Each node has an associated probability distribution, 

which is unconditional for parent nodes and conditional for child nodes. The outcomes of each 

node are known as states (McDonald et al., 2015). Probability distributions are usually defined 

for each node in terms of the states (i.e. conditional probability tables, CPTs) (McCann et al., 

2006). Consequently, a BBN is comprised of a qualitative component referring to the network 

structure and a quantitative component given by the CPTs within each node (Phan et al., 2016). 

The structure of the network is iteratively determined using expert knowledge and/or 

prior data, where metrics such as correlation coefficients are often used to define causal links. It 

is important to note that causal links should be carefully defined in order to prevent high levels 

of uncertainty in the model’s outputs (McDonald et al., 2015). Conditional independence tests 

are often used for learning the BBN structure. However, when multiple BBN are tested, model 

selection using the Bayesian Information Criterion (BIC), or optimization routines are also 

employed (Aguilera et al., 2011). Determining relevant variables is usually addressed by 

knowing that the nodes within a network can be unconditionally separated, or conditionally 

separated/connected if prior knowledge is given in other nodes (Aguilera et al., 2011). On the 

other hand, determining the probability values populating CPTs is usually done using prior data 
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and the Bayes’ theorem for probabilities propagation from parent nodes. Training algorithms 

have been developed in accordance with the BBN description of the joint probability distribution 

of the nodes within the network (Pérez-Miñana, 2016). CPTs, which are marginal probability 

distributions, are often parameterized and calculated using approaches based on Monte Carlo 

simulation (Phan et al., 2016), Gibbs sampling or dynamic discretization (Nojavan A. et al., 

2017; Pérez-Miñana, 2016), maximum likelihood or the Laplace correction (Aguilera et al., 

2011), or the Expectation maximization algorithm for small and incomplete datasets, and the 

gradient learning algorithm for large incomplete datasets and continuous data (McDonald et al., 

2015). In general, populating CPTs requires either expert knowledge, the use of several data-

based methods, or both (Phan et al., 2016).  

There are recent reviews covering BBN applications in areas such as environmental 

modeling (Aguilera et al., 2011), ecosystem services modeling (Landuyt et al., 2013; Pérez-

Miñana, 2016), ecological risk assessment (McDonald et al., 2015), and water resources 

management (Phan et al., 2016), which also include some early studies related to stream health 

modeling (Adriaenssens et al., 2004b; Marcot et al., 2001). The aforementioned reviews 

addressed different aspects of BBN model development/application such as data pre-processing, 

complexity, training, optimization, validation methods, variations and extensions (e.g. dynamic 

Bayesian networks for time series modeling and Hidden Markov Models for higher order 

relationships, see Tucker and Duplisea (2012)), integration with other modeling techniques, and 

software comparison. Moreover, given the extensive application of BBN in ecology and 

environmental science, there are guidelines addressing good modeling practices (Chen and 

Pollino, 2012; Marcot et al., 2006), overfitting, uncertainty quantification, and salient issues 

(Marcot, 2017, 2012).  
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Representative BBN applications in stream health modeling include the evaluation of 

cumulative environmental impacts of multiple stressors on ecosystem health using traditional 

and scientific knowledge (Mantyka-Pringle et al., 2017). The study incorporated biotic factors 

describing wildlife health, food webs, wildlife populations, fish health, macroinvertebrate 

metrics (density, richness and diversity), among others. Other recent studies have also addressed 

the estimation of the interactive effect of land use and climate change (considering its influence 

on water quality, physical factors and habitat characteristics) on fish population success 

(Turschwell et al., 2017), EPT macroinvertebrates indices integrating SEM (Li et al., 2018), and 

both fish and macroinvertebrate richness (Mantyka-Pringle et al., 2014). Likewise, BBN models 

have been developed for predicting macroinvertebrate indices using land use, physicochemical, 

and hydro-morphological factors (Allan et al., 2012; Forio et al., 2015; McLaughlin and 

Reckhow, 2017). However, McLaughlin and Reckhow (2017) could not find strong causal 

relationships or a high predictive power when relating water quality parameters (e.g. nutrients, 

chlorophyll, dissolved oxygen) and habitat attributes to benthic macroinvertebrates in streams. 

The results may indicate that the BNN model is reflecting associations rather than strict causal 

relationships between variables. In addition, low predictive power might be a consequence of not 

considering all relevant factors affecting the response variable. However, other studies have been 

able to identify relevant stressors. For instance, Forio et al. (2015) indicated that flow velocity is 

a major variable determining stream health, which is highly sensitive to natural streamflow 

alterations by dams and water abstractions. In addition, Dyer et al. (2014) ended up with a 

similar conclusion when analyzing the effects of climate change and stream regulation on 

ecologically-relevant hydrologic indices and water quality attributes using BBN. Moreover, there 

are studies implementing BBN for environmental flows decision-making processes (Leigh et al., 
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2012; Shenton et al., 2014) and water management for fish species conservation (Peterson et al., 

2013; Vilizzi et al., 2013). On the other hand, Death et al. (2015) compared BNN with logistic 

regression, artificial neural networks, classification trees, and random forests while predicting a 

macroinvertebrate-based stream health index at a national scale. Results indicated that BNN 

moderately outperformed the other methods; however, the model preparation is more time-

consuming. BBN have been also implemented for evaluating the habitat suitability of invasive 

macroinvertebrate species using purely data-driven and expert knowledge-based approaches 

(Boets et al., 2015). 

2.4 KNOWLEDGE GAP ANALYSIS 

Explaining cause-effect relationships between environmental and anthropogenic factors 

with measures of ecological integrity or health in freshwater ecosystems is not a straightforward 

task because of the complex, nonlinear and uncertain nature of these systems (Niemi and 

McDonald, 2004). However, growing applications of statistical and soft computing methods 

have been employed to address the aforementioned challenges. When selecting a modeling 

approach, aspects regarding variable selection, interpretability of modeling results, modeling 

ensembles for increasing predictive ability, and model evaluation and overfitting should be 

considered. Particularly, we have identified the need for developing guidelines regarding three 

main aspects of stream health modeling practice: variable selection, model evaluation, and data 

acquisition and uncertainty analysis for modeling ensembles. In this section, we briefly describe 

the aspects mentioned above and indicate the corresponding research priorities. 

Strategies for variable selection include trial and error, expert knowledge, statistical 

analysis, heuristics, or combinations of these methods (Falcone et al., 2010; May et al., 2008). 

However, there is not an agreement about how to proceed with variable selection when 
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developing stream health models (Woznicki et al., 2015). Variable selection is a critical step in 

any empirical modeling exercise, compromising performance, efficiency and interpretability (Li 

et al., 2015). Moreover, the number of selected input variables defines the number of model 

parameters to be calibrated, the computational effort, and is critical for overfitting prevention 

(Galelli et al., 2014). According to the studies reviewed in this paper, ordination and 

classification methods, nonparametric rank correlations and Bayesian methods are usually 

implemented. For instance, Woznicki et al. (Woznicki et al., 2015) compared PCA, Spearman’s 

rank correlation and Bayesian variable selection when modeling macroinvertebrates and fish 

based indices with ANFIS. Results showed that Bayesian variable selection provided the best 

final models (Woznicki et al., 2015). Other variable selection approaches are based on stepwise 

procedures using relative quality (e.g. using AIC) (Clapcott et al., 2017), backward elimination 

(Fox et al., 2017), clustering employing SOMs (Bowden et al., 2005), partial mutual information 

(Fernando et al., 2009) and using interpretability tools based on sensitivity and perturbation 

analysis and the relative importance of the predictors (Elith et al., 2008; Gevrey et al., 2003). 

Nevertheless, there is a lack of studies comparing different variable selection methods with 

different stream health modeling approaches. Thus, further research in this area is encouraged to 

gain insight into the influence of different ensembles of variable selection approaches and 

modeling methods over predictive ability and model parsimony. 

Traditional statistical methods based on linear regression (e.g. MLR, GLM) are generally 

transparent and their coefficients can be well interpreted (Li and Wang, 2013). However, those 

methods usually show the lowest predictive power. For more complex models, there have been 

initiatives introducing expert elicitation into the model formulation and training. In those cases, 

fuzzy logic and Bayesian belief networks approaches have played an important role (Mantyka-
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Pringle et al., 2017; Mouton et al., 2009). On the other hand, when working with data-driven 

approaches, some alternatives have been formulated depending on the implemented modeling 

method. For instance, in decision tree-based methods (e.g. CART, BRT, RF), results are 

interpreted estimating the relative influence of predictor variables and are visualized and 

examined using partial dependence plots (Hastie et al., 2009). Relative influence in single trees 

can be measured based on the number of times a variable is selected for splitting. The number of 

times is weighted by a squared sum measure of model improvement as a result of adding each 

split to the individual tree. The final relative influence is obtained by averaging the 

corresponding results for the individual trees and then standardizing the final values (Elith et al., 

2008). A similar option for obtaining relative influence measures can be applied using the out-of-

bag samples, assuming that relative decrease in prediction accuracy is related to the variable 

influence (Carlisle et al., 2009a). The out-of-bag samples observations are used to obtain a 

decrease in prediction accuracy when the explanatory variables are randomly permuted in each 

tree. Then, the decrease is averaged and standardized across all trees (Carlisle et al., 2009a). 

Partial dependence plots attempt to represent the effect of a variable when assigning average 

values for all other variables in the model. The plots can reveal strong interactions when using 

multiple variables and are especially suitable for detecting disturbance thresholds or ranges. 

However, these plots are limited to low-dimensional views (Hastie et al., 2009). Other methods 

for analyzing the contribution of input variables are based on partial derivatives, perturbation of 

the input variables, and successive variation in a certain input variable while the remaining are 

kept constant, among others that are specifically designed for ANNs (e.g. neural interpretation 

diagram, Garson’s algorithm, randomization test, stepwise methods) (Gevrey et al., 2003; Olden 

and Jackson, 2002). However, to significantly improve the interpretability of modeling results, it 



 39 

is necessary to advance towards frameworks which incorporate process-based models to describe 

disturbance factors (Araújo and New, 2007).  

Ensemble modeling frameworks have been introduced to improve predictive ability while 

understanding cause-effect and multiscale dynamics driving instream changes due to alterations 

in landscape and environmental factors. The inclusion of process-based modeling approaches 

into integrated stream health modeling frameworks has been developed for different scales (i.e. 

macro-, meso- and micro-scale). For instance, at a macroscale (e.g. watershed, ecoregion), main 

advancements are related to the representation of bioclimatic and hydrologic factors using 

climatic, hydrologic, hydraulic, and water quality models. At meso- (e.g. river segments, 

hydromorphologic units: pool, riffle, run,…) and micro-scales (e.g. point locations, substrate), 

computational fluid dynamics, hydraulic, water quality and physical habitat models predicting 

local velocities, depths and physic-chemical constituents are often implemented (Daneshvar et 

al., 2017b; Yi et al., 2017). For instance, Jähnig et al. (2012) proposed a framework following 

the driver-pressure-state-impact concept. Drivers include main watershed and instream stressors 

(e.g. climate, land use, river alteration). Pressures on freshwater ecosystems comprise hydrologic 

and hydraulic stress, sediment intake, substrate stability, among others, which can be represented 

by process-based models developed in several areas such as ecohydrology and ecohydraulics. 

State refers to the outputs driven by the aforementioned pressures (e.g. extreme events, sediment, 

velocity, depth, substrate, nutrients). Finally, to evaluate the impact of the different state 

variables, species distribution, aquatic biodiversity and stream health measures can be obtained 

(Jähnig et al., 2012). A similar comprehensive framework was recently proposed by Kail et al. 

(2015), introducing a module for simulating stream channel geomorphological evolution. Other 

authors have put more attention on states describing the flow regime, using ecologically-relevant 
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hydrologic indices (Woznicki et al., 2016a) and linkages with climate change scenarios 

(Daneshvar et al., 2017a; Guse et al., 2015). It is also worth noting that there is a trade-off 

between model complexity and uncertainty. In ensemble stream health modeling, gaining model 

predictive power and interpretability implies multiple information sources, an elevated number 

of model parameters and the persistence of epistemic errors in model formulation. Hence, higher 

outcome uncertainties might be expected. Therefore, increased efforts studying uncertainty 

propagation and shrinking in ensemble modeling must be addressed to promote more transparent 

decision-making processes. On the other hand, with the advent of big data sources and 

applications, including image processing and long-term monitoring data (Kuemmerlen et al., 

2016), recent advances in deep learning are encouraged to be implemented and integrated within 

existing modeling frameworks (Babbar-Sebens et al., 2015; Lecun et al., 2015). Furthermore, it 

is necessary to evaluate how the current strategies for biological data acquisition are compatible 

with data derived from remote sensing products and traditional environmental information 

systems and networks, and how these strategies can help us to better understand the health of a 

stream. In summary, stream health modeling should be seen as complementary tools that require 

continuous validation with field measurements (Kuehne et al., 2017). Therefore, clear guidelines 

regarding monitoring stream health for modeling purposes should be considered in future 

studies.  

With respect to model evaluation and overfitting, the commonly used performance 

measures depend on the type of response variable. When categorical variables are predicted (e.g. 

presence/absence, impairment condition), the percentage of correctly classified observations, true 

statistical skills, sensitivity, specificity, Cohen’s kappa, and the area under receiver operating 

characteristic curve (AUC) are commonly calculated (Manel et al., 2001; Sor et al., 2017). 
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Meanwhile, using several performance measures when conducting modeling exercises is 

recommended (Maloney et al., 2009). When predicting continuous response variables (e.g. a 

stream health index, biomass) commonly used performance measures are the correlation 

coefficient (r), the coefficient of determination (R2), the Nash-Sutcliffe efficiency, the root mean 

squared error (RMSE) and the deviance between observed and predicted values (Goethals et al., 

2007). On the other hand, the application of the algorithm’s formulation and the k-fold cross 

validation techniques can be used to minimize model’s overfitting as they were widely used in 

studies reviewed here. However, to the best of our knowledge, there are no standard guidelines 

for evaluating the stream health model performance. Even though, for other aspects of 

environmental modeling, several guidelines have been developed including Bennett et al. (2013) 

and Moriasi et al.(2007, 2015). Therefore, for stream health modeling, a combination of the 

aforementioned criteria or new criteria should be further evaluated with respect to their 

applicability/usefulness.  

2.5 SUMMARY AND CONCLUSION 

In this study, we provided an overview of different statistical, machine learning, and soft 

computing methods widely used in ecological applications and stream health modeling based on 

data describing macroinvertebrates and fish assemblages. The main advantages and 

disadvantages for the reviewed methods are summarized in Table 1. It is worth noting that 

statistical methods are simpler and more interpretable than other methods, while their prediction 

power is generally low. On the other hand, models based on machine learning techniques provide 

a better accuracy in reproducing observed stream health indices, and are more suitable for 

representing complex, nonlinear systems. Nevertheless, these methods can be difficult to 

interpret and hardly provide insight into model parameters’ meaning and relative importance. 
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Thus, soft computing methods, which can be integrated with machine learning techniques, are 

favorable because they allow the insertion of expert elicitation and partial information, 

enhancing interpretability of ecological models. However, model formulation is usually time 

consuming; especially for very complex models. Meanwhile, soft computing models that are 

structured based on expert knowledge are susceptible to misrepresenting causal relationships, 

and consequently are likely to provide higher structural uncertainties.  

Therefore, frameworks supporting the integration of process-based models for driving 

multi-scale stressors and employing ensembles of different empirical modeling techniques, are 

being recommended. Meanwhile, these types of modeling techniques are vulnerable to 

uncertainty propagation resulted from the modeling process and components and data sources, 

which can affect the consistency and reliability of the modeling results. Meanwhile, there is a 

growing amount of literature providing better practices for data preparation, optimal model 

design, model interpretation, performance evaluation, variables relative importance, among 

others, for specific methods such as decision trees, ANN, fuzzy logic and BBN. Therefore, it is 

crucial to develop guidelines addressing the aforementioned aspects for stream health modeling 

practice.  
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Table 1 Summary of advantages, disadvantages and applications for the methods described in this study 

Method Advantages Disadvantages 
Applications 

Macroinvertebrates Fish 

Multiple 

Linear 

Regression  

 Straightforward 

implementation and 

interpretation 

 Computational effort is low 

 Low predictive power  

 Method assumptions (i.e. 

normality, homoscedasticity) 

are usually violated  

 Parameter estimation is 

unstable under 

multicollinearity and strong 

correlated variables  

(Merriam et al., 2015, 2013; 

Pond et al., 2017; Waite et al., 

2012, 2010) 

(Frimpong et al., 2005; Van 

Sickle and Burch Johnson, 2008) 

Generalized 

Linear 

Models 

 Straightforward 

implementation and 

interpretation 

 Flexible with the selection 

of error distributions 

 Computational effort is low 

 Low predictive power 

 Model structure (distributions 

selection) must be defined a 

priori 

(Damanik-Ambarita et al., 

2016; Death et al., 2015; 

Donohue et al., 2006; Everaert 

et al., 2014; Gieswein et al., 

2017; Holguin-Gonzalez et al., 

2013a, 2013b; Jerves-Cobo et 

al., 2017; Kuemmerlen et al., 

2014; Moya et al., 2011; Pont et 

al., 2009; Sauer et al., 2011; 

Van Sickle et al., 2004) 

(Fukuda et al., 2013; Gieswein et 

al., 2017; Grenouillet et al., 

2011; Guo et al., 2015a; 

Hermoso et al., 2011; Kwon et 

al., 2015; Leclere et al., 2011; 

Patrick and Yuan, 2017; Sui et 

al., 2014) 

Generalized 

Additive 

Models 

 Suitable for modeling 

nonlinear relationships 

 Uses non-parametric basis 

functions 

 Prone to overfitting 

 Reduced interpretability of 

modeling results 

(Maloney et al., 2012; Sauer et 

al., 2011) 

(Almeida et al., 2017; Fukuda et 

al., 2013; Grenouillet et al., 

2011; Guo et al., 2015a; 

Maloney et al., 2012; Zhao et al., 

2014) 
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Table 1 (cont’d). 

Ordination 

methods 
 Suitable when analyzing 

multiple species in multiple 

sites 

 Straightforward 

interpretation 

 Computational effort is low 

 Suitable for variable 

selection and exploratory 

analysis 

 Methods’ assumptions (e.g. 

linearity, unimodality) are 

likely to be violated  

 Interpretability is 

compromised when high 

correlations are present 

without clear causal 

relationships 

 Some methods are sensitive to 

the relative scaling and noise 

of the explanatory variables 

(D’Ambrosio et al., 2014; Lin 

et al., 2016; Pond et al., 2017) 

(D’Ambrosio et al., 2014, 2009; 

Kwon et al., 2015; Patrick and 

Yuan, 2017) 

Classification 

and 

Regression 

Trees 

 Do not require assumptions 

about data distribution 

 Interactions between 

predictors are modeled and 

can be easily visualized 

 Smooth functions are poorly 

modeled 

 Provide very different results 

when making small changes to 

the training data 

 Large trees are poorly 

interpretable 

 Not suitable for modeling 

continuous datasets (e.g. 

temporal dynamics) 

(Ambelu et al., 2010; Death et 

al., 2015; Holguin-Gonzalez et 

al., 2014, 2013a; Maloney et al., 

2009; Ocampo-Duque et al., 

2007; Sauer et al., 2011; Waite 

et al., 2012; Wang et al., 2007) 

(Grenouillet et al., 2011; Guo et 

al., 2015a; He et al., 2010; Kwon 

et al., 2015; Leclere et al., 2011; 

Wang et al., 2007) 

Boosted 

Regression 

Trees 

 Suitable for modeling 

smooth functions and 

interactions between 

predictors 

 Insensitive to outliers 

 Exclude irrelevant predictor 

variables 

 Do not extrapolate beyond 

the range of observations 

 Time consuming for large 

number of trees or low 

learning rates 

 Prone to overfitting 

 Maximum and minimum 

values for response variables 

are poorly reproduced 

 Interactions between multiple 

(more than three) explanatory 

variables are difficult to 

visualize and interpret 

 Model interpretability is 

limited 

(Brown et al., 2012; Clapcott et 

al., 2017, 2014, 2012; May et 

al., 2015; Pilière et al., 2014; 

Steel et al., 2017; Tonkin et al., 

2014; Wagenhoff et al., 2016; 

Waite et al., 2014, 2012; Waite 

and Van Metre, 2017) 

(Chee and Elith, 2012; Clapcott 

et al., 2014; Esselman et al., 

2013; Golden et al., 2016; 

Leclere et al., 2011) 
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Table 1 (cont’d). 

Random 

Forests 
 Resistant to overfitting 

 Cross-validation is not 

necessary because a similar 

approach is automatically 

performed during model 

training 

 Good for classification 

purposes 

 Time consuming for large 

number of trees 

 Less accurate than BRT 

 Interactions between multiple 

(more than three) explanatory 

variables are difficult to 

visualize and interpret 

 Model interpretability is 

limited 

 Cannot be extrapolated 

beyond the range of 

observations 

(Álvarez-Cabria et al., 2017; 

Booker et al., 2015; Carlisle et 

al., 2009a; Chinnayakanahalli et 

al., 2011; Clapcott et al., 2017; 

Death et al., 2015; Fox et al., 

2017; Hill et al., 2017; Patrick 

and Yuan, 2017; Vander Laan 

et al., 2013; Waite et al., 2012) 

(Álvarez-Cabria et al., 2017; 

Fukuda et al., 2013; Fukuda and 

De Baets, 2016; Grenouillet et 

al., 2011; Guo et al., 2015a; He 

et al., 2010; Kwon et al., 2015; 

Olaya-Marín et al., 2013; Patrick 

and Yuan, 2017; Tuulaikhuu et 

al., 2017; Vezza et al., 2015) 

Artificial 

Neural 

Networks 

 Suitable for modeling 

nonlinear relationships 

 Vast literature addressing 

aspects such as variable 

selection, sensitivity 

analysis, model ensembles, 

and optimal design 

 Good performance when 

modeling continuous data 

 Model interpretability is 

limited 

 Relative importance of 

predictor variables is more 

difficult to determine than 

other approaches 

(Chon, 2011; Gazendam et al., 

2016; Goethals et al., 2007; 

Mathon et al., 2013; Mouton et 

al., 2010; Sauer et al., 2011) 

(Chon, 2011; Fukuda et al., 

2013; Grenouillet et al., 2011; 

Guo et al., 2015a; Mathon et al., 

2013; Olaya-Marín et al., 2013, 

2012; Olden et al., 2008; Sutela 

et al., 2010; Tsai et al., 2016) 

Multivariate 

Adaptive 

Regression 

Splines  

 Suitable for modeling 

smooth functions 

 Can handle a large number 

of explanatory variables 

with low order interactions 

 Automatically quantify 

interaction effects 

 Model interpretability is 

limited 

 Highly sensitive to 

extrapolation (prone to under 

and overestimation) 

 Model parameters are difficult 

to identify 

(Sauer et al., 2011) (Hermoso et al., 2011; Kwon et 

al., 2015; Leathwick et al., 

2006b) 

Support 

Vector 

Machines 

 Suitable for modeling 

nonlinear relationships 

 Reduced number of 

algorithm parameters. 

 Overfitting is unlikely 

 Good performance when 

modeling continuous data 

 Model interpretability is 

limited 

 Algorithm is computationally 

expensive 

 Model parameters are difficult 

to identify when data is not 

linearly separable 

(Ambelu et al., 2010; Fan et al., 

2017; Hoang et al., 2010; Lin et 

al., 2016; Sor et al., 2017) 

(Fukuda et al., 2013; Fukuda and 

De Baets, 2016; Kwon et al., 

2015; Muñoz-Mas et al., 2018) 
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Table 1 (cont’d). 

Partial Least 

Squares 

Regression 

 Handles multicollinearity 

and strong correlation of 

predictors 

 Straightforward 

interpretation 

 Suitable when the number 

of explanatory variables is 

greater than the number of 

observations 

 Interpretability is 

compromised when high 

correlations are present 

without clear causal 

relationships 

 Sensitive to the relative 

scaling and noise of the 

predictor variables 

(Abouali et al., 2016b; Riseng 

et al., 2011; Surridge et al., 

2014; Villeneuve et al., 2018, 

2015) 

(Abouali et al., 2016b; Einheuser 

et al., 2013a; Villeneuve et al., 

2015) 

Fuzzy Logic-

based 
 Provides insight into the 

influence and interactions of 

explanatory variables. 

 Uncertainty quantification is 

easily integrated into the 

models 

 Suitable for including 

expert elicitation and partial 

information along data 

 Computational effort rapidly 

increases with the number of 

predictors 

 Introduction of expert 

elicitation into models can be 

time consuming 

(Adriaenssens et al., 2006; 

Herman et al., 2016; Herman 

and Nejadhashemi, 2015; 

Marchini et al., 2009; Mouton 

et al., 2009; Ocampo-Duque et 

al., 2007; Van Broekhoven et 

al., 2006; Woznicki et al., 

2016b, 2016a) 

(Abouali et al., 2016b; Boavida 

et al., 2014; Einheuser et al., 

2013a, 2013b, 2012; Fukuda et 

al., 2013; Fukuda and De Baets, 

2016; Herman et al., 2016, 2015; 

Muñoz-Mas et al., 2012; 

Woznicki et al., 2016b, 2016a; 

Yi et al., 2017) 

Bayesian 

Belief 

Networks 

 Uncertainty quantification is 

easily integrated into the 

models 

 Suitable for including 

expert elicitation and partial 

information with data 

 Able to handle missing 

values in input dataset 

 Can be extended to account 

for feedback loops and time 

series modeling 

 Computational effort and data 

demand rapidly increases with 

the number of variables 

 Loss of accuracy and 

information because of 

variable discretization 

 Model performance greatly 

depends on the qualitative 

network definition (i.e. 

network formulation itself is 

an important source of error) 

 Time series modeling is 

computationally demanding 

(Allan et al., 2012; Boets et al., 

2015; Death et al., 2015; Forio 

et al., 2015; Li et al., 2018; 

Mantyka-Pringle et al., 2014; 

McLaughlin and Reckhow, 

2017) 

(Mantyka-Pringle et al., 2017, 

2014; Peterson et al., 2013; 

Turschwell et al., 2017; Vilizzi 

et al., 2013) 
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3 INTRODUCTION TO METHODOLOGY AND RESULTS 

 

This dissertation is comprised of three studies developing a framework for linking multi-

objective calibration and uncertainty quantification for ecohydrological models. The first study 

evaluates the impacts of two multi-objective calibration strategies in the replication of a 

comprehensive list of ecologically relevant hydrologic indices. The second study builds upon the 

first study by introducing an optimization constraint for improving the representation of a subset 

of hydrologic indices. Furthermore, different categories of hydrologic indices targeting distinct 

streamflow regime facets are explicitly considered during the objective functions’ formulation. 

The third study links the advances from the previous two studies to quantify the uncertainty of 

ecologically relevant hydrologic indices using Bayesian parameter estimation. 

The first study, titled “Evaluation of the Impacts of Hydrologic Model Calibration 

Methods on Predictability of Ecologically-relevant Hydrologic Indices”, evaluated the 

performance of multi-objective model calibration in replicating 167 hydrologic indices of 

ecohydrological interest using the median values of near-optimal Pareto solutions. Two 

calibration strategies were compared. The first strategy consisted of three objective functions 

based on the Nash-Sutcliffe Efficiency (NSE), each one accentuating different flow conditions. 

The second strategy explicitly divided the streamflow time-series into three segments 

representing low, moderate, and high flows using the 25% and 75% flow quantiles as thresholds. 

Then, an objective function based on the root-mean-square error (RMSE) was formulated for 

each portion. The Non-dominated Sorting Genetic Algorithm III (NSGA-III) was implemented 

to obtain near-optimal Pareto solutions under each strategy. SWAT was used to simulate daily 

streamflows at the outlet of the Honeyoey Creek – Pine Creek Watershed, located in east-central 

Michigan, US. Then, the MATLAB Hydrologic Index Tool (MHIT) was used to compute the 
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167 hydrologic indices for each near-optimal Pareto solution. Pareto solutions were clustered 

into three groups using the k-means method. Generalized Least-Squares (GLS) was used to 

analyze the difference among the different clusters in their prediction of average streamflows. 

Meanwhile, the replication of hydrologic indices was evaluated using a 30% relative error 

range as reference. Finally, the performance of multi-objective calibration was compared against 

traditional single-objective model calibration using different NSE versions targeting different 

flow conditions. 

The second study, titled “A Novel Multi-Objective Model Calibration Method for 

Ecohydrological Applications”, developed calibration strategies for generating a balanced 

representation of the overall streamflow regime in terms of magnitude, frequency, duration, 

timing, and rate of change. The second study used the same hydrological model and study area as 

the first study. Two multi-objective calibration strategies were evaluated based on the findings of 

the first study. On one side, the first strategy selected six objective functions representing as 

many hydrologic indices as possible within a 30% relative error range. Moreover, an 

optimization constraint was devised targeting a subset of indices of ecohydrological interest to be 

within the error range. This subset was comprised of 32 Indices of Hydrologic Alteration (IHA) 

describing the central tendency of streamflow attributes and seven indices (a.k.a. Magnificent 

seven) representing fundamental stochastic properties of streamflow time series. On the other 

side, the second strategy consisted in the formulation of six objective functions, each one 

explicitly targeting groups of hydrologic indices representing a particular streamflow regime 

facet. These hydrologic indices were part of the same subset of 39 indices. The Unified Non-

dominated Sorting Genetic Algorithm III (U-NSGA-III) was applied to generate near-optimal 

Pareto solutions under each strategy. Additionally, preferred tradeoff solutions were identified 
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using various multicriteria decision-making methods. Results for both strategies were compared 

in terms of performance of the near-optimal Pareto solutions and preferred tradeoff solutions, 

accuracy in the replication of the subset of hydrologic indices, the representation of water 

balance and flow duration curve characteristics, and accuracy in the replication of hydrologic 

indices’ variability. 

The final study, titled “Probabilistic Predictions of Ecologically Relevant Hydrologic 

Indices Using a Hydrological Model”, evaluated the effects of prior knowledge obtained from 

multi-objective optimization on the uncertainty analysis of simulated hydrologic indices of 

ecohydrological interest. For this purpose, two experiments were formulated. In the first 

experiment, non-informative priors were considered when calibrating model and error 

parameters using Bayesian parameter estimation. In the second experiment, near-optimal Pareto 

solutions from multi-objective calibrations were used to build a multivariate prior distribution for 

calibrating model and error parameters using Bayesian inference under an independent time 

period from the one used for multi-objective calibration. In both experiments, the same 

likelihood function was employed, considering heteroscedasticity and autocorrelation effects. 

The multi-objective strategy used here was the same as the one used for the second study's first 

strategy. The U-NSGA-III algorithm was used for multi-objective calibration, the  multiple-try 

Differential Evolution Adaptive Metropolis(ZS) (MT-DREAM(ZS)) algorithm was implemented as 

the Markov Chain Monte Carlo method for sampling the posterior distributions, and the 

hydrological model, study area, and subset of hydrologic indices were the same as the second 

study. The reliability, precision, and bias in streamflow and hydrologic indices predictions were 

evaluated and compared for each experiment.  
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4 EVALUATION OF THE IMPACTS OF HYDROLOGIC MODEL CALIBRATION 

METHODS ON PREDICTABILITY OF ECOLOGICALLY-RELEVANT 

HYDROLOGIC INDICES 

 

4.1 INTRODUCTION 

Alterations driven by human interventions and changing environmental conditions are 

threatening water security and freshwater biodiversity around the world (Bunn and Arthington, 

2002; Carpenter et al., 2011; Dudgeon et al., 2006; Hipsey et al., 2015; Vörösmarty et al., 2010). 

Traditionally, stream condition evaluation has used chemical and microbiological constituents as 

criteria (Karr and Yoder, 2004). However, the lack of holistic approaches resulted in further 

degradation of aquatic ecosystems (Hering et al., 2010; Jelks et al., 2008). To overcome this 

issue, biological assessments were introduced to provide additional insight into the overall 

ecological integrity of streams (US EPA, 2011; Woznicki et al., 2016a), and therefore, can be 

used for environmental management and decision-making. 

Biological assessments measure the biota (e.g. fish, benthic macroinvertebrates, 

periphyton, amphibians) within a stream to obtain information regarding its biological integrity 

(US EPA, 2011). In this context, biological integrity is the capacity to support and maintain a 

“balanced, integrated, and adaptive” biological system within the expected structure and function 

of the natural habitat of a particular region (Karr, 1996; Karr and Dudley, 1981). Stream health 

integrates the physical, chemical and biological integrity of a stream, which supports living 

systems that are necessary for human well-being (Karr, 1999; Maddock, 1999). 

Stream health indices are generally classified into biotic indices, multi-metric indices, 

and multivariate methods (Herman and Nejadhashemi, 2015). Biotic indices use only one metric, 

and multi-metric indices use multiple metrics to evaluate stream health (Herman and 
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Nejadhashemi, 2015). Biotic metrics are individual characteristics comprised of species 

abundance and condition, species richness and composition, or trophic composition (Herman and 

Nejadhashemi, 2015). Multivariate methods use the reference condition approach to predict 

ratios of taxa observed vs. expected – O/E, and implement statistical and modeling tools that 

relate environmental features with observed organisms. These tools include cluster analysis, 

ordination techniques, discriminant analysis, Artificial Neural Networks, self-organizing maps, 

evolutionary algorithms, Bayesian Belief Networks, and others (Abbasi and Abbasi, 2012; Feio 

and Poquet, 2011). However, due to limited economic resources, it is not possible to obtain 

biotic metrics or O/E ratios for all streams within a watershed. Therefore, stream health 

evaluation based on field data is very limited. To address this difficulty, several modeling 

approaches have been introduced to extend the available information to ungauged locations 

(Woznicki et al., 2015).  

Streamflow regime has been recognized as a key determinant for sustaining biodiversity 

and ecological integrity. Thus, ecologically-relevant hydrologic indices are often used as 

predictors for stream health models besides landscape factors and water quality indicators (Poff 

and Zimmerman, 2010; Woznicki et al., 2016a). Prediction of ecologically-relevant hydrologic 

indices include the use of regional statistic approaches (Carlisle et al., 2009b; Dhungel et al., 

2016; Knight et al., 2012; Patrick and Yuan, 2017; Sanborn and Bledsoe, 2006; Yang et al., 

2016), and hydrological modeling (Caldwell et al., 2015; Kennen et al., 2008; Kiesel et al., 2017; 

Olsen et al., 2013; Vis et al., 2015; Wenger et al., 2010; You et al., 2014). The use of 

hydrological models is especially preferred when it is necessary to evaluate the change of stream 

health driven by modifications in land use, environmental conditions or management practices 

(Poff et al., 2010; Shrestha et al., 2016; Woznicki et al., 2016b). However, hydrologic models’ 
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ability to replicate ecologically-relevant indices is limited. Some studies have shown that the use 

of typical calibration approaches (i.e. single-objective based on widely used performance 

metrics) produces poor representations of some streamflow regime characteristics (Murphy et al., 

2013; Vis et al., 2015). For instance, while average conditions are generally well-predicted, low- 

and high-flow indices are frequently over or under predicted (Wenger et al., 2010). Moreover, no 

model has been found to provide all selected ecologically-relevant hydrologic indices within ± 

30% of the observed values (Caldwell et al., 2015; Vis et al., 2015). Therefore, several studies 

have proposed to explicitly include ecologically-relevant hydrologic indices into the objective 

functions for model calibration to improve the overall performance of streamflow regime 

simulations (Murphy et al., 2013; Shrestha et al., 2014; Vis et al., 2015). For instance, Kiesel et 

al. (2017) and Zhang et al. (2016) used multi-metric (i.e. aggregated) objective functions based 

on a reduced number of ecologically-relevant hydrological indices (12 and 16 indices, 

respectively). They found that it is possible to obtain better overall representations of streamflow 

regime compared to objective functions based only on conventional performance metrics (e.g. 

coefficient of efficiency, mean squared errors, correlation coefficient). However, optimal 

solutions were still unable to effectively represent all hydrological indices individually, 

especially when they are not explicitly included in the objective function formulation (Kiesel et 

al., 2017). In addition, optimal solutions are sensitive to the weights assigned to each ecological-

relevant hydrological index in the multi-metric objective function (Zhang et al., 2016). On the 

other hand, different authors have suggested the use of typical performance metrics with proper 

transformations (Garcia et al., 2017; Oudin et al., 2006; Pushpalatha et al., 2012) or explicit 

hydrograph partitioning (Pfannerstill et al., 2014) for model calibration. However, these 

approaches have mainly shown improvements in the representation of target flow conditions 
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rather than the overall streamflow regime, or have been evaluated using traditional performance 

metrics instead of ecologically-relevant hydrological indices. 

Furthermore, the aforementioned studies have mainly implemented single-objective 

algorithms for model calibration. Therefore, these previous studies present no integrated 

perspectives on relationships between different performance metrics or hydrological indices 

involved in the model calibration process. On the other hand, multi-objective optimization 

algorithms are very useful for evaluating the tradeoffs between different metrics and objective 

functions involved in hydrologic model calibration (Price et al., 2012), and can provide sets of 

solutions able to represent different flow conditions (Efstratiadis and Koutsoyiannis, 2010; Reed 

et al., 2013). However, Pareto-optimal solutions are not usually evaluated employing 

ecologically-relevant hydrological indices, but instead pure hydrological signatures based on, for 

example, Flow Duration Curve (FDC) segments or runoff ratios (Shafii and Tolson, 2015; van 

Werkhoven et al., 2009). Moreover, many studies have been more concerned about selecting a 

best single solution than analyzing the whole set of Pareto-optimal solutions, which could 

provide better results for overall streamflow regime representation. For instance, Vis et al. (2015) 

attributed high model efficiencies when using the median of several optimum solutions as a 

“more robust prediction” for ecologically-relevant hydrologic indicators. Therefore, the objective 

of this study is to identify an objective function best suited for stream health model applications 

using a multi-objective optimization algorithm for model calibration. Typical performance 

metrics that represent different flow conditions and explicit hydrograph partitioning are 

considered in this study. For this purpose, the Soil and Water Assessment Tool (SWAT) 

watershed model and the NSGA-III multi-objective optimization algorithm are jointly 

implemented. Then, a set of 167 ecologically-relevant hydrologic indices is used for evaluating 



 54 

the ability of the resulting Pareto-optimal solutions in representing the overall streamflow 

regime. 

4.2 MATERIALS AND METHODS 

Two strategies based on a many-objective optimization technique for model calibration 

were compared to evaluate their abilities to predict ecologically-relevant hydrologic indices 

(Figure 1). The first multi-objective strategy calibrates the model based on three different forms 

of Nash-Sutcliffe Efficiency (NSE) described by Krause et al. (2005) and Pushpalatha et al. 

(2012) that are suitable for evaluating high, medium, and low flows. In the second strategy, 

observed daily flow time series were divided into three categories (high, medium, and low flows) 

using explicit thresholds for low and high flow (flows exceeded 75% and 25% of the time, 

respectively). For each category, an objective function based on the root-mean-square error 

(RMSE) was computed. Pareto-optimal solutions for calibration model parameters were obtained 

for each multi-objective strategy employing the NSGA-III algorithm (Deb and Jain, 2014; Jain 

and Deb, 2014). 

For both strategies, the Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012; 

Neitsch et al., 2011) was used to simulate daily streamflow discharge time series for every 

stream segment, and the MATLAB Hydrological Index Tool (Abouali et al., 2016a) was 

employed to calculate 171 hydrologic indices intended to characterize streamflow regime (Olden 

and Poff, 2003). Hydrologic indices were computed for each Pareto-optimal point obtained from 

both multi-objective strategies and for the observed flow dataset. Then, model outputs and 

indices were evaluated with respect to the observed values using statistical analysis. For this 

purpose, Pareto-optimal points for each multi-objective strategy were clustered into three groups 

using the k-means method. Generalized Least-Square (GLS) estimation, considering 
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autocorrelation for the residue, was implemented for streamflow time-series. Meanwhile, the 

median errors between the hydrologic indices based on Pareto-optimal solutions and observed 

time series were evaluated with respect to the ±30% uncertainty bound for the observed values, 

as reported by previous studies (Caldwell et al., 2015; Kennard et al., 2010a; Vis et al., 2015). 

Finally, results were compared with the optimal solution obtained using a single-objective 

approach with an objective function based on the standard NSE. 

 

Figure 1 A schematic diagram presenting the overall multi-objective model calibration and 

evaluation process. Q25 and Q75 are the flows exceeded 25% and 75% of the time, respectively, 

NSE is the standard Nash-Sutcliffe Efficiency, NSEsqrt is the root-squared-transformed NSE, 

NSErel is the relative NSE, RMSE is the Root-Mean-Square Error, and MHIT is the MATLAB 

Hydrological Index Tool 

4.2.1 Study area 

In order to perform environmental flow analysis, it is desirable to identify areas where 

urbanization is limited, streamflow is not regulated or its alteration is negligible, and observed 

discharge records are available for almost all the studied period (Olden and Poff, 2003). The 
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Honeyoey Creek–Pine Creek Watershed, with a drainage area of 1,010 km2, meets all the 

criteria, because urbanization is less than 4%, streamflow regulation is limited, and observed 

streamflow data for the period is complete. The study area is located in the Saginaw Bay 

Watershed in east-central Michigan (Figure 2), which is the largest watershed in the state and is 

identified as an area of concern by the US Environmental Protection Agency (USEPA, 2015). 

The watershed has an average slope of 1.9% ranging from 12-39% in the headwaters to 0-1.4% 

in the lowlands (USGS, 2018). The region has a temperate climate with distinct seasons 

(Andresen and Winkler, 2009). The average annual rainfall is about 840 mm for the period 1981-

2010 (NOAA-NCEI, 2020). However, the precipitation regime is bimodal, with maxima in May 

and September, and minima in February and July. Mean annual air temperature in the watershed 

is 9 °C, with a minimum monthly temperature of -9 °C in January and a maximum monthly 

temperature of 28 °C in July. The dominant land use is agriculture, covering about 50% of the 

watershed, followed by forests (24%), wetlands (16%) and pasturelands (7%) (USDA-NASS, 

2012). Over 60% of the river network’s riparian vegetation has not been altered by human 

activities. The dominant soil textures are loamy sand, sandy loam, loam/clay loam, and sand, 

which cover about 30, 26, 20 and 11% of the study area, respectively (USDA-NRCS, 2020). The 

average flow is about 103 m3/s at the outlet of the watershed. High flows occur between March 

and May as a result of snow melting and high precipitation, while low flows occur between July 

and October, during summer and fall seasons (USGS, 2020). High flows, considered in this study 

as those that are exceeded at most 25% of the time (Q25), have magnitudes above 11.3 m3/s 

while low flows are defined as those with values below 3.9 m3/s, which is the discharge 

exceeded 75% of the time (Q75). 
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Figure 2 Location and topography of the study area 

4.2.2 Data Collection 

Datasets required for the hydrologic modeling comprise topography, land use, soil 

properties, climate, and observed streamflow discharge. The National Elevation Dataset from the 

US Geological Survey (USGS) with 30 m spatial resolution was used to represent the topography 

of the watershed (USGS, 2018). The land use characteristics were obtained from the Cropland 

Data Layer developed by the National Agricultural Statistics Service of the US Department of 

Agriculture (USDA-NASS) with 30 m spatial resolution (USDA-NASS, 2012). The soil 

properties were compiled from the Natural Resources Conservation Service’s (NRCS) Soil 

Survey Geographic (SSURGO) Database, at a scale of 1: 250,000 (USDA-NRCS, 2020). Daily 

time series for precipitation and temperature from 2001 through 2014 were obtained from two 

weather stations that belong to the National Climatic Data Center (NOAA-NCEI, 2020). Relative 
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humidity, solar radiation and wind speed time series for the same time span were provided by the 

stochastic weather generator WXGEN (Neitsch et al., 2011) included in SWAT. Daily 

streamflow discharges between 2003 and 2014 were obtained from the Pine River Near Midland 

gauging station (ID 04155500) (USGS, 2020). 

4.2.3 SWAT Model description 

The Soil and Water Assessment Tool (SWAT version 2012, rev. 614) is a semi-

distributed, continuous-time, process-based hydrological model, which simulates water flow, 

sediment transport, and water quality processes in watersheds (Arnold et al., 1998). SWAT 

divides a watershed into subwatersheds that are further discretized into multiple units with 

homogeneous land use, slope, and soil characteristics known as hydrologic response units 

(HRU). The main processes in SWAT include snow accumulation and melting, 

evapotranspiration, infiltration, percolation losses, surface runoff, channel routing, and 

groundwater flows (Neitsch et al., 2011). 

SWAT is used in this study for daily flow simulation between 2003 to 2014 for all 749 

defined stream segments in the Honeyoey Creek–Pine Creek watershed. Fifteen parameters were 

selected for model calibration whose description and ranges of variation are presented in Table 2. 

The calibration period was defined between 2003 and 2008, while the validation period spans 

between 2009 to 2014. Meanwhile, two years of warm-up period (2001-2002) were considered 

to stabilize initial conditions of soil water (Cibin et al., 2010). 

4.2.4 Hydrologic indices 

The 171 hydrologic indices reported by Olden and Poff (2003) are evaluated for all 

Pareto-optimal solutions after completing each multi-objective model calibration. Then, these 

indices are compared with the respective indices for the observed dataset, including the 

calibration and validation periods. The evaluated hydrologic indices characterize the streamflow 
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regime in terms of magnitude, frequency, duration, timing and rate of change of flows (Poff et 

al., 1997; Richter et al., 1996) for a given daily time-series. These indices are classified into 

eleven groups: magnitude for low (ML), average (MA), and high (MH) flow conditions; 

frequency for low (FL), and high (FH) flow conditions; duration for low (DL), and high (DH) 

flow conditions; timing for low (TL), average (TA), and high (TH) flow conditions; and rate of 

change for average (RA) flow conditions. The hydrologic indices are computed using the 

MATLAB Hydrological Index Tool (MHIT), which has shown better computing performances 

in comparison to other available packages when handling high number of datasets (Abouali et 

al., 2016a). 

4.2.5 Objective functions 

In this study, we contrast the ability of two commonly used procedures in representing a 

wide number of the streamflow metrics related to environmental flows indicated in section 4.2.4. 

Each procedure refers to a specific three-dimensional objective space (Figure 3). In summary, 

the first strategy utilizes three different NSE-based efficiency criteria to evaluate the efficiency 

of high, medium (overall), or low flow conditions. In the second strategy, efficiency computation 

is done after flow time series are explicitly partitioned into high, medium, and low flows using 

statistical thresholds for flow separation. Further details are presented next.  
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Figure 3 Objective spaces for the SWAT model calibration: a) using different forms of Nash-

Sutcliffe efficiency; b) after hydrograph partitioning using Q25 and Q75 thresholds 

4.2.5.1 Nash-Sutcliffe efficiency-based objective functions 

In this strategy, NSE-based objective functions are formulated to represent different parts 

of the observed hydrograph. Krause et al. (2005) and Pushpalatha et al. (2012) indicated that 

standard NSE, Eq. 1 (Nash and Sutcliffe, 1970) is very sensitive to high flows on continuous 

simulations, given that the differences between simulated and observed values are squared. On 

the other hand, NSE calculated on root squared transformed flows (Eq. 2, NSEsqrt) has been 

found to provide a more balanced performance because the errors are more equally distributed on 

high and low flow portions of the hydrograph (Oudin et al., 2006; Pushpalatha et al., 2012). 

Additionally, relative NSE (Eq. 3, NSErel), described by Krause et al. (2005), suppresses the 

influence of peak flows on the efficiency computation, making it more sensitive to low flows. 

Pushpalatha et al. (2012) showed that NSE computed on the reciprocal of flow values (inverse 

transformed flows) is better suited for low flow conditions, focusing on the 20% lowest flows on 

average. However, in this study we decided to use the NSErel given that some of the ecologically-

relevant hydrologic indices (e.g., low flow index, base flow indices, indices based on moving 

averages) computed by MHIT for low flows are based also on overall flow values. Therefore, 

NSE, NSEsqrt, and NSErel were used to represent high, medium, and low flows, respectively. 
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        (1) 

       (2) 

        (3) 

where, O and P are the observed and predicted values, respectively. For all NSE-based criteria, 

the objective functions (OF) were minimized by computing 1 – NSE, which have a range 

between zero and infinite. Values for any form of NSE range from minus infinite to one, while 

the corresponding OFs range from zero to infinite. A perfect fit between simulated and observed 

values is achieved when all NSE are equal to one and corresponding OFs are equal to zero. 

4.2.5.2 Root-Mean-Square Error-based objective functions 

In this strategy, RMSE-based objective functions are formulated for streamflow 

calibration. The time series for the entire study period (2003-2014) was divided into three 

categories representing high, medium, and low flows using the Q25 and Q75 thresholds obtained 

from the observed data. To have the same amount of observed and simulated points in each 

category, the simulated time series are divided following the observed time series partitioning. 

Then, the RMSE is computed for each flow category: 
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where, j refers to the flow category and nj is the number of observations for each category. Each 

minimization OF is equal to the computed RMSE for each category. A perfect fit between 

observed and simulated values yields an RMSE equal to zero. 

4.2.6 Many-objective optimization algorithm 

Multi-objective evolutionary algorithms (MOEAs) are population-based heuristic search 

methods that use randomly generated points that move towards a Pareto-optimal front using 

evolutionary operators (Coello Coello et al., 2007). MOEAs have been widely implemented 

during the last two decades for water resources applications (Efstratiadis and Koutsoyiannis, 

2010; Maier et al., 2014; Reed et al., 2013). For instance, the Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) (Deb et al., 2002a) has been widely-used for hydrologic model 

calibration (e.g. Bekele and Nicklow, 2007; Confesor and Whittaker, 2007; Lu et al., 2014; 

Shafii and De Smedt, 2009). The popularity of NSGA-II is mainly given by its simplicity, 

modularity, parameter-less property, and good performance for difficult two-objective problems 

(Deb and Gupta, 2006). However, without any extensions or combinations with other 

approaches, the NSGA-II by itself has shown shortcomings for solving problems with three or 

more objectives (Deb and Jain, 2014; Reed et al., 2013; Sindhya et al., 2013). 

NSGA-III, which is based on the NSGA-II framework, is the evolutionary many-

objective optimization algorithm used to implement the two multi-objective calibration 

strategies. NSGA-III is an elitist reference-point-based procedure that uses non-domination 

sorting to solve problems with four or more objectives. This procedure has also shown good 

performance solving cases with three objectives (Seada and Deb, 2016). The main difference 

between NSGA-II and NSGA-III is the niching method which is a procedure to maintain 

diversity among solutions (Deb, 2001). NSGA-II uses crowding distances, while NSGA-III is 

reference-directions-based (Deb and Jain, 2014; Jain and Deb, 2014). A reference direction is a 
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line that crosses both the origin and a supplied reference point in the objective space. Selection 

operation is not explicit in NSGA-III given that for each reference direction, only one population 

individual is expected (Seada and Deb, 2016). The general outline of the algorithm is as follows: 

1. The algorithm begins by generating a population of size N and a number of H reference 

points distributed in the objective space with M dimensions (i.e., number of objectives is M). 

The number of reference points is H = (
𝑀 + 𝑝 − 1

𝑝
), where p is the number of divisions, along 

each objective, used to distribute reference directions on the front. The parameter p is chosen 

suitably so as to create a population size adequate to hold a number of trade-off solutions. 

2. Next, NSGA-III proceeds in a similar fashion as NSGA-II. Using recombination and 

mutation, the current parent population 𝑃𝑡 is used to generate an offspring population 𝑄𝑡. The 

parent and offspring populations are combined into 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡 (of size 2N), and then the 

𝑅𝑡 members are sorted using non-domination ranking. A new intermediate set St is generated 

selecting the first Pareto front until the size of St is equal or greater than N. The rank of the 

last selected individual in St is obtained, corresponding to the last front Fl. The population 

members included in St but not included in Fl (expressed as St \ Fl) are directly selected for 

the next generation Pt+1.  

3. The new population Pt+1 is completed by selecting population members from Fl based on the 

NSGA-III niching method. For this purpose, objective values and supplied reference points 

are normalized to have a commensurate range. After the normalization, the ideal point 

coincides with the origin of the objective space. Next, reference directions are constructed by 

joining the ideal point with each reference point. Then, each member of St \ Fl is associated 

with a reference point according to its proximity (i.e. perpendicular distance) to the 

corresponding reference direction. Reference points that have the least number of related 
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population members in St \ Fl are considered to be associated with a member of Fl. Each 

member of Fl set is therefore selected one-at-a-time making the latter association to fill the 

remaining slots for Pt+1. 

4. The whole evolutionary process is repeated until a predefined termination criterion is reached 

(e.g., number of generations/function evaluations, negligible improvement of Pareto-optimal 

solutions, small change in performance metrics). 

NSGA-III’s parameters are the population size (equal to the number of reference points), 

stopping-criteria (in this case, the number of generations), crossover and mutation probabilities, 

and distribution indices for each genetic operation (i.e., Simulated Binary Crossover – SBX, and 

polynomial mutation). The NSGA-III implementation used in this study was programmed in 

Java and was provided by the Computational Optimization and Innovation (COIN) Laboratory at 

Michigan State University. The Java code was adapted for this study to have a connection with 

SWAT to perform the automatic calibration process. 

4.2.7 Model evaluation 

In order to perform the statistical analysis for model evaluation, the Pareto-optimal points 

are clustered into three groups representing high, medium, and low flow conditions. Hence, the 

k-mean clustering method (Arthur and Vassilvitskii, 2007) is employed for each calibration 

strategy in order to identify separate sets of solutions that show better performances for each 

flow condition. The three clusters are identified for each calibration method, using the 

corresponding objective functions presented in section 4.2.5. Thus, Pareto-optimal solutions with 

the highest NSE and NSErel values are going to be collected in the high and low flow clusters, 

respectively. Solutions with balanced NSE and NSErel values will comprise the medium flow 

cluster. Then, the simulated streamflow time series from each group are compared with the 
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observed dataset, to evaluate whether the estimated mean differences between the simulations 

and observations are significant. Therefore, the difference of each simulation with respect to the 

observed dataset is used as response to fit a simple regression with intercept using GLS 

estimation with Autoregressive model with lag 1, or AR (1), to account for the serial correlation 

for the time series. The differences are considered significant when the reported p-value is less 

than 0.05 (i.e. 95% confidence interval for the estimated mean of the distribution does not span 

zero), with positive (or negative) values for the difference indicating over/ under-estimation of 

the actual observation. The process was repeated comparing high, medium, and low streamflow 

categories using the Q25 and Q75 thresholds defined for the RMSE-based calibration strategy. 

However, because the extracted time series for each flow category are irregularly spaced 

temporally, we modeled the difference from the corresponding samples between the observed 

series and each simulated series. Three different methods were used: Normal distribution, 

Student’s t-distribution, and GLS with a Continuous Autoregressive model with lag 1, or CAR 

(1). Then, we determine the most appropriated test based on the smallest Akaike Information 

Criterion (AIC) value. 

On the other hand, the hydrologic indices obtained for each Pareto-optimal solution are 

also grouped following the same three clusters determined above (high, medium, and low flow 

conditions). For each cluster and hydrologic index, the difference between the simulated and 

observed values are computed and divided between the respective observed values to obtain the 

relative error. Then, it is determined whether the median relative errors for each group are within 

or outside the ±30% uncertainty bound. The comparison described above is also performed with 

no clustering of the Pareto-optimal solutions, in order to evaluate the effect of accounting for all 

solutions in the median values of the predicted hydrologic indices. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Convergence and spread of Pareto-optimal fronts obtained with multi-objective 

calibration strategies 

The NSGA-III algorithm was implemented for both NSE- and RMSE-based strategies 

using a population size of 100 points, a maximum number of 500 generations, a crossover 

probability of 0.9, a mutation probability of 1/15 (i.e., the reciprocal of the number of calibration 

parameters), and distribution indices of 10 and 20 for SBX and polynomial mutation, 

respectively. The convergence to the Pareto-optimal front was evaluated using the hypervolume 

indicator, which is a measure of the volume enclosed by a Pareto front with respect to a specified 

reference point (Auger et al., 2009). The Pareto-optimal front was selected when a steady 

behavior of the hypervolume indicator was observed across the preceding generations. In this 

study, the reference points for each strategy were selected with NSE = NSEsqrt = NSErel = 0, and 

RMSEH = RMSEM = 30 m3/s and RMSEL = 10 m3/s, which approximately correspond to the 

extreme objective function values visited by the optimization algorithm. The hypervolume 

indicator was computed for the non-dominated front obtained at the end of each generation using 

the Walking Fish Group (WFG) algorithm (While et al., 2012, 2016), and the resulting values for 

each strategy were normalized to range between 0 and 1 (Figure 4). Figure 5 shows the final non-

dominated fronts obtained after 349 and 484 generations using the NSE- and RMSE-based 

calibration strategies, respectively. In the same figure, clusters corresponding to high, medium 

and low flow conditions, obtained with the k-means method, are also shown. 

The solutions along the NSE-based Pareto-optimal front range from 0.22 to 0.76 for NSE, 

from 0.37 to 0.73 for NSEsqrt, and from 0.57 to 0.81 for NSErel. The Pareto-optimal front is 

characterized by two distinct regions with significant tradeoffs. One of those regions, the low 

flow cluster, shows NSErel above 0.77 (Figure 5a) with lower values for NSE and NSEsqrt 
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spanning from 0.22 to 0.35, and from 0.37 to 0.45, respectively. The other region, the high and 

medium flow clusters, shows acceptable NSE and NSEsqrt values (i.e. from 0.73 to 0.76 and from 

0.58 to 0.71, respectively) while NSErel ranges from 0.57 to 0.71. These results indicate that 

solutions with a very good representation of low discharges provide a poor representation of 

peak and medium flows (Guo et al., 2014; Shafii and De Smedt, 2009). However, the results also 

suggest that low discharges still exhibit acceptable efficiencies for the best representations of 

high and medium flows. Additionally, a strong linear correlation (R2 = 0.91) between the NSE 

and NSEsqrt objective functions is observed, though it is weaker (R2 = 0.002) for smaller values 

for the NSErel objective function (i.e., low flow cluster). Hence, it is likely that NSE and NSEsqrt 

are providing similar information for model calibration and therefore similar results can be 

achieved discarding one of these two objective functions. With respect to the RMSE-based 

Pareto-optimal front, the performance measures range from 8.3 to 20.4 m3/s for RMSEH, from 

2.1 to 4.9 m3/s for RMSEM, and from 0.81 to 3.6 m3/s for RMSEL (Figure 5b). These values 

indicate that, in general, the RMSE-based values range from 30% to 130% of the observed 

average discharges for each flow category (high, medium, and low) defined using the observed 

Q25 and Q75 thresholds. Moreover, the RMSE-based Pareto-optimal clusters are layered along 

the RMSEH direction. This behavior suggests that the high flow cluster can represent some 

medium and low discharges that are well represented by medium and low flow clusters. 
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Figure 4 Normalized hypervolume indicator behavior over the NSGA-III search process for each 

calibration strategy 
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Figure 5 Clustered Pareto-optimal solutions obtained for each multi-objective calibration 

strategy employing NSGA-III algorithm and k-means clustering method a) NSE-based and b) 

RMSE-based 

4.3.2 Reduction of initial parameter ranges by multi-objective calibration strategies 

The Pareto-optimal calibrated SWAT parameter ranges varied according to the multi-

objective calibration strategy (see Table 2). In general, results suggest that NSE-based calibration 

strategy was able to provide narrower calibrated ranges for model parameters than RMSE-based 

strategy. Moreover, for some parameters, the implementation of the k-means method to the 

Pareto-optimal fronts allowed the identification of different ranges depending on the role of the 

objective functions in each cluster (e.g., importance of NSE and RMSEH for high flow, and 

importance of NSErel and RMSEL for low flow). In order to compare the results for calibration 

parameters, we considered whether or not they showed a significant reduction in their ranges 

after the calibration process (i.e., narrower calibration range with respect to initial calibration 

range), and whether or not they showed similar final ranges in each multi-objective calibration 

strategy. Regarding the significant reduction in calibration ranges, we found that a group of 
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parameters describing mainly HRU and groundwater components showed very similar initial and 

final ranges for both calibration strategies. These parameters were BIOMIX (biological mixing), 

CANMX (max. canopy storage), EPCO (plant uptake), GW_REVAP (groundwater “revap” 

coefficient) and REVAPMN (groundwater threshold depth for “revap”). On the other hand, the 

groundwater parameter GWQMN (threshold depth for flow return) reduced in range for both 

multi-objective strategies. However, the ranges varied depending on the calibration strategy. 

Likewise, some parameters mainly related to groundwater and routing components also reduced 

in calibration range. On the other hand, the following ranges were very similar for both 

calibration strategies: ESCO (soil evaporation), GW_DELAY (groundwater delay time), 

ALPHA_BF (baseflow factor), RCHRG_DP (percolation factor), CH_N (2) (Manning 

coefficient), and CH_K (2) (alluvium hydraulic conductivity). It is worth noting that 

GW_DELAY, ALPHA_BF and CH_N (2) were within different ranges depending on contrasting 

flow conditions (i.e., high and low flow clusters). For example, GW_DELAY resulted in a range 

of 0 to 0.1 days for high flow conditions, and a range of 237 to 309 days for low flow conditions 

using the NSE-based strategy. Meanwhile, CN2 (curve number for moisture condition II) and 

SOL_AWC (soil water capacity) showed contrasting ranges in high and low flows for NSE-

based strategy. For instance, low flow conditions favored positive multiplicative factors for CN2, 

increasing runoff potential, while providing negative multiplicative factors for SOL_AWC, 

reducing the available water capacity of soils. For high flow conditions, CN2 and SOL_AWC 

results were the opposite. However, RMSE-based strategy did not provide reduced calibrated 

ranges for these two parameters. Finally, SURLAG (surface runoff lag) showed very similar 

reduced ranges for all flow conditions in the NSE-based strategy, while providing a reduced 

range only for high flow condition in the RMSE-based strategy. 
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Table 2 Calibrated ranges obtained with Pareto-optimal solutions. Values without brackets 

correspond to NSE-based strategy results while values within brackets correspond to RMSE-

based strategy results  

Parameter** Initial range 
Calibrated ranges per cluster 

All solutions High Flow Medium Flow Low flow 

BIOMIX 0-1 0-0.97  

[0.02-0.99] 

0-0.97  

[0.02-0.96] 

0-0.63  

[0.03-0.99] 

0.04-0.87  

[0.07-0.99] 

CN2* (-0.25)-0.25 (-0.25)-0.25  

[(-0.25)-0.25] 

(-0.25) -(-0.22)  

[(-0.25)-0.23] 

(-0.25) -(-0.21)  

[(-0.25)-0.25] 

0.246-0.249  

[(-0.24)-0.25] 

CANMX 0-100 10-100  

[1.4-91] 

10-68  

[4.7-78] 

11-95  

[20-91] 

36-100  

[1.4-70] 

ESCO 0.01-1 0.74-1  

[0.6-1] 

0.85-0.96  

[0.6-1] 

0.74-0.91  

[0.9-1] 

0.91-1  

[0.9-1] 

EPCO 0.01-1 0.01-0.9  

[0.01-0.9] 

0.01-0.79  

[0.01-0.8] 

0.01-0.9  

[0.01-0.9] 

0.09-0.47  

[0.1-0.9] 

GW_DELAY 0-500 0-309  

[0-499] 

0-0.1  

[0.01-0.34] 

0-0  

[0-415] 

237-309  

[141-499] 

ALPHA_BF 0-1 0.05-0.29  

[0.05-0.33] 

0.23-0.29  

[0.13-0.32] 

0.19-0.28  

[0.1-0.33] 

0.05-0.11  

[0.05-0.24] 

GWQMN 0-5000 0-4861  

[38-2018] 

2-154  

[38-636] 

0-614  

[479-2018] 

1221-4861  

[331-649] 

GW_REVAP 0.02-0.2 0.02-0.2  

[0.03-0.2] 

0.02-0.2  

[0.03-0.2] 

0.03-0.19  

[0.1-0.16] 

0.11-0.2  

[0.12-0.17] 

REVAPMN 0-1000 48-959  

[0.15-840] 

50-953  

[0.15-840] 

48-959  

[0.88-550] 

60-378  

[16.41-450] 

RCHRG_DP 0-1 0.28-0.63  

[0.28-0.75] 

0.52-0.63  

[0.28-0.64] 

0.43-0.55  

[0.3-0.45] 

0.28-0.41  

[0.3-0.75] 

CH_N (2) 0.001-0.3 0.03-0.23  

[0.02-0.3] 

0.03-0.04  

[0.02-0.04] 

0.03-0.04  

[0.02-0.08] 

0.13-0.23  

[0.05-0.3] 

CH_K (2) 0-500 10-34  

[12-57] 

23-31  

[21-51] 

22-34  

[28-57] 

10-21  

[12-52] 

SOL_AWC* (-0.25)-0.25 (-0.25)-0.25  

[(-0.25)-0.23] 

0.02-0.25  

[(-0.19)-0.23] 

0.11-0.25  

[(-0.25)-0.16] 

(-0.25) -(-0.13)  

[(-0.22)-0.23] 

SURLAG 1-24 1-1.4  

[1-19.2] 

1-1.1  

[1-1.2] 

1-1.2  

[1-13.4] 

1.1-1.4  

[1-19.2] 
* These parameters are treated as global multiplying factors that modify the assigned values for each HRU 

depending on soil type and land use 
** ALPHA_BF, Baseflow alpha factor (days-1); BIOMIX, Biological mixing efficiency; CANMX, Maximum canopy 

storage (mm H2O); CH_K (2), Effective hydraulic conductivity in main channel alluvium (mm hr-1); CH_N (2), 

Manning's "n" value for the main channel; CN2, Initial SCS runoff number for moisture condition II; EPCO, Plant 

uptake compensation factor; ESCO, Soil evaporation compensation factor; GW_DELAY, Groundwater delay time 

(days); GWQMN, Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O); 

GW_REVAP, Groundwater "revap" coefficient; REVAPMN, Threshold depth of water in the shallow aquifer for 

"revap" or percolation to the deep aquifer to occur (mm H2O); RCHRG_DP, Deep aquifer percolation fraction; 

SOL_AWC, Available water capacity of the soil layer (mm H2O mm-1 soil); SURLAG, Surface runoff lag 

coefficient. 
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4.3.3 Flow duration curves and streamflow time series representation 

Figure 6 presents FDC and hydrographs for the simulation period. Visual inspection of 

the simulated and observed curves reveals that NSE-based strategy provides less variability than 

RMSE-based strategy, represented by the width of light gray bound of solutions. For instance, 

Q25 and Q75 for NSE-based strategy ranged from 7.4 to 11.8 m3/s and from 2.6 to 4.3 m3/s, 

respectively. Meanwhile, Q25 and Q75 for RMSE-based strategy ranged from 4.6 to 12.2 m3/s 

and from 2.6 to 5.9 m3/s, respectively. This means that the higher uncertainty level for 

streamflow simulations given by the RMSE-based calibration strategy is consistent with the wide 

CN2 and SOL_AWC calibrated ranges (Table 2). Note that some extreme discharges, especially 

low flow events, lie outside all the simulation bounds provided by Pareto-optimal solutions 

considered here. Also, some descending limbs and subsequent low flow pulses are poorly 

simulated in both calibration and validation periods. Therefore, limitations in the representation 

of extreme low and high flow related indices are expected. However, different sources of error 

may play a role here including input data uncertainties and structural inadequacies (Price et al., 

2012). In both calibration strategies, high flow cluster bounds include most of the observed FDC, 

while shrinking the dispersion of simulated FDCs. It is worth noting that the group of simulated 

FDCs obtained from the NSE-based calibration strategy splits into two branches at the portion 

representing discharges exceeded 25% of the time. For the aforementioned calibration strategy, 

only the low flow cluster does not have any simulated FDC representing the corresponding 

branch for high discharges. Additionally, medium flow cluster shows the largest variability in the 

NSE-based calibration strategy, while lower flow cluster does in the RMSE-based strategy. 
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Figure 6 Flow duration curves and time series obtained from Pareto-optimal solutions (light 

gray) and clustered (high, medium, and low flow) solutions (dark gray) for NSE-based (a, b, and 

c), and RMSE-based (d, e, and f) multi-objective calibration strategies. Red lines correspond to 

observed streamflow values 
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4.3.4 Statistical analysis for predicted streamflow time-series 

We performed the statistical analysis of the mean difference between observed and 

simulated streamflow time series for the simulation period comprised from 2003 to 2014. Most 

of results showed that GLS with CAR (1) correlation is substantially better than the other 

methods that ignore the serial correlation for the time series, as indicated by much smaller AIC 

(results not showed here). In a few rare cases, t-student model is better than GLS-CAR (1), 

meaning it is even more important to model the heavy-tail distribution rather than model the 

serial correlation. The percentage of Pareto-optimal solutions in each cluster without enough 

evidence of significant difference with a confidence level of 95% (Table 3), only account for the 

results obtained with GLS with AR (1) or CAR (1) correlations. Results for the statistical 

analysis indicated that, in general, the NSE-based strategy provides many more Pareto-optimal 

solutions without significant differences, compared to RMSE-based strategy. Table 3 also shows 

that most solutions that belong to the high flow cluster of the Pareto front yield good mean 

representations of overall, high, and medium streamflow time series values in both multi-

objective calibration strategies. However, the percentages for high flow category do not surpass 

47%, because of the recurrent under-estimation of the mean of time series comprising high 

discharges. Surprisingly, medium flow cluster resulted in more solutions with good mean 

representation of discharges below Q25 threshold (i.e., low flow values) in both calibration 

strategies. Therefore, it is possible to infer that solutions with simultaneous good performances 

based on both NSE and NSErel (Pareto front region conformed by high and medium flow 

clusters, see Figure 5) lead to sound representation of overall streamflow time series and specific 

flow conditions, which is consistent with the graphical results obtained for FDCs and 

hydrographs presented in Figure 6. 
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Table 3 Percentage of Pareto-optimal solutions without evidence of significant mean difference 

(𝜶=0.05) between simulated and observed time-series, considering different time series 

categories and clusters for both calibration strategies. Cluster with highest percentage for each 

flow category are in bold 

Category Cluster 
Percentage 

NSE-based RMSE-based 

Complete time series 

High flow 88% 50% 

Low flow 0% 0% 

Medium flow 27% 0% 

High flow extracted time series 

High flow 47% 28% 

Low flow 0% 0% 

Medium flow 13% 0% 

Medium flow extracted time series 

High flow 94% 56% 

Low flow 0% 5% 

Medium flow 22% 11% 

Low flow extracted time series 

High flow 0% 17% 

Low flow 62% 11% 

Medium flow 75% 26% 

 

4.3.5 The level of predictability of ecologically-relevant hydrologic indices using multi and 

single-objective strategies 

4.3.5.1 Multi-objective calibration strategies 

For the period from 2003 to 2014, we computed the relative errors between 171 

ecologically-relevant hydrologic indices obtained from the Pareto-optimal solutions and those 

obtained from the observed hydrograph. Results were organized according to the eleven 

hydrologic index groups defined by Olden and Poff (2003), which are described in section 4.2.4. 

For each group and multi-objective calibration strategy, we determined the indices with median 

relative errors within ±30%, using different sets of Pareto-optimal solutions: complete Pareto 

front (i.e. all points) and high, medium, and low flow clusters obtained with the k-means method. 

Indices whose median relative errors were outside the ±30% bound for all different collections of 

Pareto-optimal solutions, are reported in Table 4 and described in Table A1. Hence, we 

considered that these indices were not well represented by the calibration strategies and the 
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model structure employed in this study. Note that we discarded four hydrologic indices related to 

the frequency and duration of zero-flow days (DL18-DL20) and low flow spells (FL3), all equal 

to zero for this case of study. Therefore, the NSE-based calibration strategy was able to provide 

acceptable representation of 128 indices (77%), while the RMSE-based calibration strategy did 

the same for 123 indices (74%) out of 167 indices. In general, the RMSE-based strategy 

provided more dispersion for indices values than the NSE-based strategy (see Table 5).  

Regarding the magnitude of flow events, both multi-objective calibration strategies 

provided acceptable results for 76 out of 94 indices (81%). These strategies were not able to fully 

represent the variability of flows across months and years, and the magnitude (mean and median) 

of annual extreme flows. For instance, under average flow conditions, results showed poor 

representation of the variability of some summer and fall monthly flows (i.e., MA29-MA33, 

which are expressed in terms of the coefficient of variation) and the skewness in annual flows 

(i.e., MA45, represented in terms of the difference between the mean and median annual flows,). 

Additionally, the NSE-based calibration strategy generated high relative errors for the variability 

across annual flows, expressed in terms of the range or 90th – 10th percentiles (i.e., MA42 and 

MA44, which include extreme flow values). For low flow conditions, the mean and median of 

annual minimum flows were not well replicated (i.e., ML14 and ML16, respectively), also 

affecting the results for some indices depending on these values (e.g., low flow index, ML15; 

baseflow index, ML19; and variability across annual minimum flows, ML21). For high flow 

conditions, both calibration strategies had limitations in representing high flow volumes (e.g., 

MH21) and the mean maximum monthly flows for some summer and fall months (e.g., MH6, 

June; MH7, July; MH10, October). Both multi-objective calibration strategies generated 

acceptable median values for 10 out of 13 indices (77%) describing the frequency of flow events. 
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The indices that were not well represented include the low flow pulse count (i.e., FL1) and some 

flood frequency indices that use the median and 75th percentile of flows as upper thresholds (i.e., 

FH5 and FH9). Moreover, the NSE-based strategy yielded poor representations of a high flood 

pulse count index based on a very high upper threshold (i.e., FH4, which uses 7 times median 

flow). Meanwhile, the RMSE-based strategy produced limited results for high flood pulse count 

(i.e. FH1) and flood frequency using percentile 25th as threshold (i.e. FH8). For the duration of 

flow events, both calibration strategies resulted in acceptable values for 32 out of 41 indices 

(78%). The results for this group of hydrologic indices were consistent with the poor 

representation of some indices describing the magnitude and frequency of flow events. For 

instance, duration indices related to magnitude and variability of daily and annual minima (i.e., 

DL1 and DL11, and DL6-DL8, respectively) yielded elevated relative errors for both strategies. 

Similarly, high flow indices with the median and 75th percentile of flows used as thresholds (i.e., 

DH17 and DH15, respectively), produced high relative errors too. Likewise, the NSE-based 

strategy presented difficulties representing high flow duration using seven times the median as 

an upper threshold (i.e., DH19). Moreover, the RMSE-based strategy yielded large deviations for 

the annual minima of 3-day means of daily discharge (i.e., DL2), the mean annual 3-day 

minimum of daily discharge (i.e. DL12), and indices related to flood duration (i.e. DH20, DH23) 

because of poor results for pulse count. With respect to the timing of flow events, all the four 

indices were well reproduced using both multi-objective calibration strategies. However, the 

NSE-based strategy was not able to produce median relative errors within 30% for the seasonal 

predictability of non-low flow (i.e. TL4). Finally, regarding the rate of change in flow events, 

both multi-objective calibration strategies reproduced 6 out of 9 indices (67%) with median 
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relative errors outside 30% for the fall rate (i.e., RA3) and change of flow for increasing and 

decreasing discharges (i.e., RA6 and RA7, respectively).  

In general, hydrologic indices presented in Table 4 are mainly influenced by extreme low 

and high flows and attained a poor performance due to the model’s limited depiction of 

descending limbs and low flow pulses that take place in the transition from summer to fall 

seasons. Additionally, between June (summer) and October (fall) is when the lowest annual 

flows are expected to occur in the study area. For instance, ML14, ML16, ML21, MH10, FL1, 

DL11, DL16, DH15, RA6 and RA7 indices (see Table A1 for description) are all directly related 

to discharges occurring in the period indicated above. Moreover, the aforementioned indices are 

key indicators for the description of the flow regime of perennial streams, as indicated by Olden 

and Poff (2003). Additionally, it is important to mention that extreme high flows are also being 

under-predicted, as indicated by the statistical analysis performed in section 4.3.4. Therefore, it is 

reasonable to assume that high flow indices with large upper thresholds values produced more 

deviated results. 

Table 4 List of ecologically-relevant hydrologic indices with all, high, medium, and low flow 

Pareto-optimal solutions having median relative errors outside the ±30% bound, for each multi-

objective calibration strategy 

Hydrologic index 

group 

No. of 

indicators 

Median values outside ±30% relative error** 

Both NSE- and RMSE-based Only NSE-based Only RMSE-based 

Magnitude of flow events 

Average flow 

conditions 
45 

MA29, MA30, MA31, MA32, 

MA33, MA45 
MA42, MA44 MA34 

Low flow 

conditions 
22 

ML7, ML8, ML14, ML15, 

ML16, ML19, ML21, ML22 
 ML9, ML17 

High flow 

conditions 
27 MH6, MH7, MH10, MH21 MH22 MH11, MH23 

Frequency of flow events 

Low flow 

conditions 
3 FL1   

High flow 

conditions 
11 FH5, FH9 FH4 FH1, FH8 
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Table 4 (cont’d). 

Duration of flow events 

Low flow 

conditions 
20 

DL1, DL6, DL7, DL8, DL11, 

DL16 
 DL2, DL12 

High flow 

conditions 
24 DH15, DH17, DH21 DH19 DH20, DH23 

Timing of flow events 

Average flow 

conditions 
3    

Low flow 

conditions 
4  TL4  

High flow 

conditions 
3    

Rate of change in flow events 

Average flow 

conditions 
9 RA3, RA6, RA7     

 

In comparison to previous studies where hydrological modeling was employed to predict 

ecological-relevant hydrologic indices (Caldwell et al., 2015; Kiesel et al., 2017; Murphy et al., 

2013; Shrestha et al., 2014; Vis et al., 2015), the use of the median of different optimal-Pareto 

sets improved the representation of some indicators (e.g. Julian day of annual minimum, TL1; 

high flood pulse count, FH1; rise rate, RA1; reversals, RA8). However, key indices related to the 

frequency and duration of high and low flow pulses (e.g., FL1, DL16, and DH15, see below) 

were consistently poorly simulated. For instance, Table 5 presents the lowest relative error 

obtained for a suite of 32 indices included in the software Indicators of Hydrologic Alteration 

(IHA) (The Nature Conservancy, 2009) that were evaluated by Shrestha et al. (2014). For this 

group of indices, while calibrated solutions can properly reproduce the magnitude, duration and 

timing of different flow conditions (with difficulties for DL1, the annual minima of daily flows), 

the frequency and duration of low flood pulses (i.e., FL1 and DL16, respectively), the duration of 

high flow pulses (i.e. DH15), and the fall rate (i.e. RA3) still showed high deviances. These 

outcomes might be related to the limited model reproduction of some descending limbs and low 



 80 

flood pulses that occur at the beginning of the fall season as observed in Figure 6. The latter is 

also confirmed with the high relative errors obtained for the average maximum monthly flows 

for June, July and October (i.e. MH6, MH7 and MH10) and the variability of mean flows among 

the same months (i.e. MA29 to MA33). It is important to note that most of the indices in Table 5 

were well represented by high flow clusters, which are dominated by good performances for 

NSE or RMSEH. However, the misrepresented low flow indices FL1 and DL16 obtained the 

lowest relative errors using optimal-Pareto solutions from low flow clusters. These clusters have 

a better description of low flow discharges, particularly in the seasonal transition from summer 

to fall. 

Table 5 The lowest median relative error and corresponding interquartile range (IQR) and flow 

cluster for each multi-objective calibration strategy for the Indicators of Hydrologic Alteration 

(IHA). Values that exceed ±30% bound of relative error are highlighted 

IHA group 
Hydrologic 

index** 

NSE-based RMSE-based 

Relative 

error 
IQR Cluster 

Relative 

error 
IQR Cluster 

Magnitude of 

monthly water 

conditions 

MA12 -3.4% 10.5% High -6.9% 11.4% High 

MA13 0.2% 6.1% Low -7.9% 9.8% High 

MA14 12.9% 7.3% High 9.3% 10.4% High 

MA15 -7.8% 2.5% High -5.9% 6.2% High 

MA16 1.2% 3.9% High -3.0% 8.5% High 

MA17 -0.5% 7.4% High -4.5% 14.9% High 

MA18 -1.0% 24.2% All -1.8% 32.6% All 

MA19 7.5% 10.2% Medium -1.0% 30.6% Medium 

MA20 1.8% 7.8% High 0.7% 22.9% High 

MA21 -21.9% 6.5% High -23.7% 38.6% Low 

MA22 -17.9% 13.7% High -25.0% 20.7% High 

MA23 -7.1% 8.1% High -13.9% 13.7% High 
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Table 5 (cont’d) 

Magnitude and 

duration of annual 

extreme water 

conditions (mean 

daily flow) 

DL1 36.8% 10.5% Medium 71.8% 48.2% High 

DL2 10.3% 8.5% Medium 38.5% 38.7% High 

DL3 2.1% 16.8% All 19.8% 33.4% High 

DL4 -8.7% 6.8% High 2.2% 30.6% All 

DL5 -17.6% 6.1% High -14.8% 39.2% Low 

DH1 -17.1% 3.7% High -14.6% 11.9% High 

DH2 -8.9% 3.9% Medium -6.5% 10.3% High 

DH3 -2.2% 3.8% High 0.5% 9.8% High 

DH4 -0.3% 4.2% All 1.5% 10.1% High 

DH5 -0.4% 5.1% All 0.2% 6.3% High 

ML17 13.1% 4.1% Medium 32.4% 25.1% High 

Timing of annual 

extreme water 

conditions 

TL1 6.7% 4.0% Low 12.2% 12.8% Low 

TH1 -0.4% 10.2% Medium 0.4% 32.8% All 

Frequency and 

duration of high 

and low pulses 

FL1 -65.5% 25.7% Low -75.7% 16.2% Low 

DL16 213.5% 167.2% Low 144.9% 181.2% Low 

FH1 -28.4% 3.4% High -44.9% 16.1% High 

DH15 60.0% 34.4% Low 100.0% 53.4% High 

Rate and 

frequency of 

water condition 

changes 

RA1 18.9% 11.6% Medium -16.9% 27.3% Medium 

RA3 -50.0% 2.8% High -53.0% 13.2% High 

RA8 5.5% 7.3% Low 0.9% 25.2% Low 

 

4.3.5.2 Single-objective calibration  

We obtained the individual model simulations that minimized each NSE-based objective 

function from the optimized Pareto front obtained after the NSGA-III algorithm implementation, 

with their corresponding results for the ecologically-relevant hydrologic indices. Maximum 

attained values for NSE, NSEsqrt and NSErel were 0.76, 0.73 and 0.81, respectively. Optimal NSE 

and NSEsqrt models were able to simulate 119 out of 167 indices (71%) within 30% of relative 

error each, while optimal NSErel model did the same for 78 indices (47%). Compared to NSE-

based multi-objective calibration strategy, some of the indices reported in Table 4 were 

represented within the acceptability threshold of 30% using any of the single-objective 

calibrated models. As expected, the optimal NSE model provided acceptable results for high 
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flow related indices: mean maximum monthly flows for June and July (MH6 and MH7, 

respectively), high flow volume using as threshold three times the median annual flow (MH22), 

high flow duration with seven times the media flow as the upper threshold (DH19) and the 

seasonal predictability of non-low flows (TL4). However, key indices as MA19 (mean monthly 

flow for August), DL2 (annual minimum of 3-day average flow), TL1 (Julian date of annual 

minimum) and RA8 (reversals), included in Table 5, felt out the acceptability range defined in 

this study. On the other hand, the optimal NSEsqrt model provided acceptable results for the mean 

maximum October flow (MH10) which is a key index for perennial streams (related to low flows 

during the fall season). Similarly, NSEsqrt produced acceptable outcomes for high flood pulse 

count with seven times the median daily flow as the upper threshold (FH4), in addition to MH22 

(high flow volume), DH19 (high flow duration) and TL4 (seasonal predictability), also given by 

the optimal NSE model. However, optimal NSEsqrt model provided poor representation for 

MA19 (August mean flow), DL2 (3-day annual minimum), RA1 (rise rate) and R8 (reversals). 

Finally, the optimal NSErel model, which is insensitive to peak flows and biased towards low 

flows, surprisingly improved the representation of the high flow pulse duration (DH15), a key 

indicator for perennial streams. This occurs because NSErel significantly reduces the influence of 

absolute differences during high flow events (Krause et al., 2005). Therefore, the NSErel 

objective function has the property of benefiting simulations that better describe the overall 

shape of the hydrograph, which can be graphically evinced in Figure 6 for the NSE-based low 

flow cluster simulations. Key indices that cannot be represented by the NSErel optimal model 

within 30% relative error include MA14-MA17 and MA21-MA22 (mean monthly flows for 

March-June and October-November, respectively), ML17 (seven-day minimum flow divided by 

mean annual daily flows averaged across all years), DL5 (seasonal magnitude of minimum 
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annual flow), and DH2-DH5 (magnitude of maximum annual flow from 3-day duration to 

seasonal). As expected, aforementioned indices are mainly related with high flow events. 

4.4 CONCLUSIONS 

This study evaluated the predictability of 167 ecologically-relevant hydrologic indices 

using different approaches for model calibration. We compared the performance of two multi-

objective and three single-objective formulations employing the NSGA-III multi-objective 

optimization algorithm and the SWAT model structure. In general, the two multi-objective 

formulations performed better than the single-objective formulations in calculating the 

hydrologic indices, within a range of acceptability given by 30% relative error. However, no 

specific approach was able to outperform the others for all the same set of hydrologic indicators. 

In this sense, all the evaluated formulations can be used to represent different targeted 

ecologically-relevant hydrologic indices. An advantage of a multi-objective calibration approach 

over a single objective alternative is the direct provision of a non-subjective range of variation 

for the quantity of interest after the optimization process, given by the diversity of the set of 

Pareto-optimal solutions.  

Among the multi-objective formulations tested herein, the NSE-based strategy provided 

the highest number of well-predicted indices and the smallest dispersion (i.e., uncertainty) over 

the different sets (all points, low, medium, and high flow clusters) of Pareto-optimal simulations. 

The results indicated that low flows show acceptable efficiencies for the best representations of 

high and medium flows. Consequently, the Pareto front region comprised of high and medium 

flow clusters contained the highest percentages of Pareto-optimal solutions with no evidence of 

significant mean difference between simulated and observed time-series. Likewise, this Pareto-

optimal region provided the highest number of hydrologic indicators with the lowest median 
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relative error and dispersion measure (i.e., interquartile range). Furthermore, this method 

provided groups of solutions able to simultaneously describe different streamflow regime 

components for distinct flow conditions, which has been proven to be a very difficult task for a 

single optimal solution found by the current single-objective calibration strategies (including 

multi-metric approximations) and available model structures. 

The multi-objective strategies were able to explain up to 77% of the ecologically-relevant 

hydrologic indices. Important indices related to the frequency and duration of high and low flow 

pulses were consistently poorly simulated. Limited model depiction of descending limbs and low 

flow pulses that take place in the transition from summer to fall seasons resulted in weak 

predictability of low flow indices. This issue has been clearly identified in previous studies and is 

subject of current hydrology research (Garcia et al., 2017; Murphy et al., 2013; Pfannerstill et al., 

2014; Shrestha et al., 2014).  

In this study, we proposed the use of NSErel performance measure in a multi-objective 

framework in order to improve the representation of low and extreme low flow events while 

maintaining a good overall representation of other flow conditions. However, we showed that an 

NSErel objective function improves low flows while highly sacrificing the representation of other 

flow conditions, as opposed to the standard NSE for high flows which improves high flows, 

maintaining acceptable representation of other flow conditions. Therefore, during the calibration 

process we observed that NSErel affects the overall central tendency values (e.g. median and 

mean flows) for different temporal scales (e.g. monthly, annual) negatively impacting the 

representation of low flow indicators (e.g. baseflow index).  

We also demonstrated that the use of different set of solutions, instead of a single optimal 

solution, introduces more flexibility in the predictability of different hydrologic indices of 
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ecological interest. Moreover, we were able to identify a reduced group of poorly represented 

indices that are closely related (Table 4). This systematic identification would facilitate the 

formulation of additional objective functions intended to improve model performance or to 

detect model inadequacies that can be addressed to reduce structural uncertainties in future 

research efforts. 
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5 A NOVEL MULTI-OBJECTIVE MODEL CALIBRATION METHOD FOR 

ECOHYDROLOGICAL APPLICATIONS 

 

5.1 INTRODUCTION 

The streamflow regime is widely acknowledged as a key determinant of the ecological 

integrity of riverine ecosystems (Poff et al., 1997; Sofi et al., 2020). Both climate and human-

driven alterations to natural streamflow fluctuations affect the structure and functioning of these 

ecosystems, threatening biodiversity and restricting the provision of ecosystem services (Palmer 

and Ruhi, 2019; Vörösmarty et al., 2010). Therefore, understanding and evaluating the impacts 

of climate change and human interventions on the streamflow regime is critical to inform and 

prioritize environmental management alternatives (Hassanzadeh et al., 2017; Mittal et al., 2016). 

A broadly accepted approach to characterizing streamflow regimes is to compute flow 

statistics from streamflow hydrographs. These statistics, also known as hydrologic signature 

metrics, streamflow characteristics (SFCs), or ecologically relevant hydrologic indices (ERHIs), 

generally represent five fundamental facets: magnitude, frequency, duration, timing, and rate of 

change of flows (Poff and Zimmerman, 2010). Currently, there are over 200 flow statistics 

relevant to stream ecology (Archfield et al., 2014; Olden and Poff, 2003; Vogel et al., 2007). 

These indices are usually employed in ecohydrological applications such as stream classification 

(Kennard et al., 2010b; Mcmanamay et al., 2014), prediction of stream health or distribution of 

riverine species (Hernandez-Suarez and Nejadhashemi, 2018; Kakouei et al., 2017), and 

environmental flow determination (Mathews and Richter, 2007; Poff et al., 2010). Since these 

applications generally cover large spatial scales, statistical and hydrological models have been 

increasingly used, especially to predict regional changes in ERHIs due to climate and 

anthropogenic factors (Caldwell et al., 2015; Mittal et al., 2016; Yang et al., 2016). 
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Hydrological models are usually preferred over regional statistical approaches because 

they can explicitly consider modifications in land use, environmental conditions, and 

management practices (Hall et al., 2017; Shrestha et al., 2016). Moreover, some environmental 

flow frameworks recommend using hydrological models for predicting streamflow in poorly 

gauged or ungauged locations (Peters et al., 2012; Poff et al., 2010). However, there is a growing 

number of studies revealing important limitations of hydrological models in representing ERHIs, 

especially when these models are calibrated based on traditional performance metrics such as the 

Nash-Sutcliffe efficiency (NSE) (Murphy et al., 2013; Shrestha et al., 2014; Vigiak et al., 2018; 

Vis et al., 2015). These limitations include over or underprediction of low- and high-flow indices 

(Wenger et al., 2010), high errors/uncertainties when predicting ERHIs related to timing, 

duration, frequency, and/or rate of change of flows (Murphy et al., 2013; Shrestha et al., 2014; 

Vigiak et al., 2018), and different sets of equally well-performing model parameters (in terms of 

traditional metrics) yielding very different performances in terms of ERHIs (Vis et al., 2015).  

Current model calibration approaches for addressing limitations in ERHIs’ representation 

can be classified into two major categories. In the first category (hereafter referred to as 

performance-based), objective functions are formulated based on traditional performance metrics 

with different streamflow transformations (e.g., square root, logarithm, inverse) to stress or 

balance the importance of different flow conditions. On the other hand, calibration approaches in 

the second category (hereafter referred to as signature-based) explicitly incorporate SFCs of 

interest into the objective functions (Hallouin et al., 2020; Kiesel et al., 2020, 2017; Pool et al., 

2017; Vis et al., 2015; Zhang et al., 2016). In ecohydrological applications, the choice of SFCs of 

interest has been mainly based on riverine species preferences (Hallouin et al., 2020; Kiesel et 

al., 2020, 2017; Pool et al., 2017), whereas hydrological applications usually target Flow 
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Duration Curve (FDC) features, runoff ratios, and basic discharge statistics (Chilkoti et al., 2018; 

Euser et al., 2013; Fernandez-Palomino et al., 2020; Pfannerstill et al., 2017, 2014; Sahraei et al., 

2020; Shafii and Tolson, 2015; Yilmaz et al., 2008). Some applications using performance-based 

approaches target specific flow conditions (Garcia et al., 2017; Mizukami et al., 2019), whereas 

others use one or multiple objective functions to attain an acceptable overall representation of the 

streamflow regime (Hallouin et al., 2020). When combining multiple objective functions, studies 

either use aggregated single-objective functions (Vis et al., 2015) or pure multi-objective 

approaches (Chilkoti et al., 2018; Hernandez-Suarez et al., 2018; Sahraei et al., 2020). In general, 

signature-based approaches provide better predictions of pre-selected SFCs compared to 

performance-based approaches (Hallouin et al., 2020). However, those SFCs that are not 

included in the original objective function formulation are not necessarily well-represented or 

better-performing than traditional approaches using streamflow transformations (Hallouin et al., 

2020).  

During the last decade, researchers have obtained a better understanding of the 

implications of model calibration into EHRIs replication. For instance, several studies have 

demonstrated that the objective function choice or formulation influences the prediction of flow 

statistics (Kiesel et al., 2020; Pool et al., 2017; Shafii and Tolson, 2015; Vis et al., 2015). Also, 

these studies showed that optimality in terms of traditional performance metrics does not 

necessarily result in optimal solutions for ecohydrological purposes (Hallouin et al., 2020; Kiesel 

et al., 2020). In ecohydrological applications, regardless of the optimization scheme for model 

calibration, it is uncommon to find solutions yielding acceptable results for all ERHIs of interest. 

Also, finding an individual simulation with acceptable results for both low- and high-flow 

conditions is unusual. Therefore, simulation ensembles such as median or averages of optimal 
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results, or their clusters, are recommended (Hernandez-Suarez et al., 2018; Vis et al., 2015). It is 

worth noting that most of the calibration approaches used in previous ecohydrological studies 

have run on single-objective mode (i.e., multi-metric, aggregated functions). Hence, those results 

depend on the weight assigned to each ERHI or performance metric considered within the 

objective function (Zhang et al., 2016), and tradeoffs among different indices, performance 

metrics, or regime facets are not fully explored.  

The goal of this study was to develop calibration strategies providing a balanced 

streamflow regime representation among the different regime facets (i.e., magnitude, frequency, 

duration, timing, and rate of change). Two strategies were developed to compare both 

performance- and signature-based calibration approaches. The strategy using a performance-

based approach was improved by incorporating a novel constraint formulation to obtain 

simulations with targeted ERHIs within pre-defined acceptability thresholds. For the signature-

based strategy, tradeoffs between different streamflow regime facets were explicitly considered. 

These calibration strategies were implemented in an agriculture-dominated watershed in 

Michigan, US, using the recently developed evolutionary multi-objective optimization algorithm 

called Unified Non-dominated Sorting Genetic Algorithm III (U-NSGA-III) and the Soil and 

Water Assessment Tool (SWAT). To the best of our knowledge, previous multi-objective 

calibration approaches for ecohydrological applications have not explicitly considered 

optimization routines constraining the performance of ERHIs of interest. Likewise, this is the 

first time that a multi-objective calibration approach is applied to targeted ERHIs, pursuing a 

balanced representation of the overall streamflow regime while explicitly considering different 

regime facets. 
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5.2 MATERIALS AND METHODS 

5.2.1 Overview 

Two different strategies for multi-objective calibration were evaluated to improve the 

representation of the overall streamflow regime in a watershed model. Strategy 1 employed a 

constrained performance-based approach, whereas Strategy 2 used a constraint-free signature-

based approach (Figure 7). Strategy 1 consisted of three major steps. In the first step, the goal 

was to identify a reduced set of performance metrics that jointly represented a wide list of ERHI. 

Then, in the second step, a tailored constraint was formulated to generate individual simulations 

with an acceptable replication of a reduced set of ERHIs of interest. This formulation was based 

on pre-defined acceptability criteria for ERHI replication. Moreover, the selection of ERHI of 

interest was performed by targeting a balanced representation of different flow regime facets. In 

the third step, the outputs of the previous steps were used as inputs to formulate a multi-objective 

optimization problem for model calibration. Meanwhile, Strategy 2 consisted of two major steps. 

In the first step, a reduced set of ERHI was defined to provide a balanced representation of 

different regime facets. Then, several objective functions representing different regime facets 

were formulated. These objective functions were considered as inputs of the problem 

formulation in step 2. This formulation was intended to explore tradeoffs in the simulation of 

different regime facets. For each strategy, near-optimal Pareto solutions were obtained using an 

evolutionary multi-objective optimization algorithm. Finally, preferred tradeoff solutions were 

identified and compared using multicriteria decision-making (MCDM) methods. 
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Figure 7 Overview of the two multi-objective strategies for model calibration evaluated in this 

study 

5.2.2 Study Area 

The proposed strategies were evaluated in the Honeyoey Creek-Pine Creek 

Watershed (Hydrologic Unit Code 0408020203), located in east-central Michigan, US (Figure 

8). This watershed has a drainage area of 1010 km2 and is situated within the Saginaw River 

Watershed, which drains into Lake Huron. The Saginaw River Watershed is identified as an area 

of concern by the US Environmental Protection Agency (USEPA) due to water pollution, 

wildlife habitat degradation, loss of recreational values, among others (USEPA, 2015). 

According to data from the National Agricultural Statistics Service (NASS) of the US 

Department of Agriculture (USDA), agriculture is the dominant land use (~50% of the area), 
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followed by forests (~24%), wetlands (~16%), pasturelands (~7%), and urban development 

(~3%) (USDA-NASS, 2012). 

 

Figure 8 Location of the Honeyoey Creek - Pine Creek Watershed 

5.2.3 Watershed Model 

The Soil and Water Assessment Tool (SWAT 2012, Rev. 622) was used to simulate the 

streamflow regime in the study area. SWAT is a semi-distributed, process-based, continuous-

time watershed model that can operate on a daily or sub-daily time step. SWAT is mainly used to 

evaluate the impact of land use and management practices on water, sediments, nutrients, 

pesticides, and bacteria yields at the watershed scale (Arnold et al., 2012). When using SWAT, a 

watershed is divided into subwatersheds, which are further discretized into Hydrologic Response 

Units (HRUs). HRUs are geographical units with homogeneous land use, soil, and topographical 

characteristics. SWAT inputs controlling the water balance include daily or sub-daily 

precipitation, maximum and minimum air temperatures, solar radiation, wind speed, and relative 



 93 

humidity. SWAT simulates the watershed hydrology in two phases: land (loading) and water 

network (routing). Simulated hydrological processes include snow accumulation and melting, 

canopy storage, plant growth, evapotranspiration, infiltration, surface runoff, soil water 

redistribution, lateral flow, groundwater flows, and channel routing (Neitsch et al., 2011). 

In this study, SWAT was used to obtain daily streamflow from 2003 to 2014 (calibration 

period) and from 1983 to 1994 (validation period) at the outlet of the Honeyoey Creek-Pine 

Creek Watershed (Figure 2). A warm-up period of two years was used to minimize the effect of 

initial conditions on the simulations. Simulated streamflow values were compared against daily 

observations obtained from the Pine River Near Midland US Geological Survey (USGS) gauging 

station (ID 04155500) (USGS, 2020). Input daily precipitation and max/min temperature data 

from 1981 to 2014 were collected from two weather stations provided by the National Centers 

for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration 

(NOAA) (NOAA-NCEI, 2020). The missing weather input data were estimated using SWAT’s 

stochastic weather generator WXGEN (Neitsch et al., 2011). The watershed was divided into 250 

subwatersheds, each consisting of a unique HRU obtained from dominant land use, soil, and 

slope characteristics. These subwatersheds were delineated using stream network data from the 

National Hydrography Dataset (NHD) and pre-defined units obtained from the Michigan 

Institute for Fisheries Research (Einheuser et al., 2012). Elevation data with a 30-m resolution 

was obtained from the National Elevation Dataset provided by the USGS National Map (USGS, 

2018). Land use was extracted from the 30-m resolution Cropland Data Layer (CDL), which was 

obtained from USDA-NASS (2012). Soil characteristics were extracted from the Soil Survey 

Geographic Database (SSURGO) provided by the USDA Natural Resources Conservation 

Service (NRCS) (USDA-NRCS, 2020). Potential evapotranspiration was calculated using the 
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Penman-Monteith equation (Monteith, 1965), whereas surface runoff was computed using the 

Soil Conservation Service (SCS) curve number method (USDA-SCS, 1972). Streamflow was 

routed through the channel network using the variable storage coefficient method (Williams, 

1969). The model was calibrated by adjusting 15 parameters whose description and calibration 

ranges are reported in Table 6. 

Table 6 Calibration parameters and ranges 

Parameter Description Calibration range 

BIOMIXa Biological mixing efficiency [0, 1] 

CANMXa Maximum canopy storage (mm H2O) [-0.25, 0.25] 

CN2b Initial Soil Conservation Service (SCS) runoff number for moisture 

condition II 

[0, 100] 

ESCOa Plant uptake compensation factor [0, 1] 

EPCOa Soil evaporation compensation factor [0, 1] 

ALPHA_BFa Baseflow alpha factor (days−1) [0, 1] 

GW_DELAYa Groundwater delay time (days) [0, 500] 

GWQMNa Threshold depth of water in the shallow aquifer required for return 

flow to occur (mm H2O) 

[0, 5000] 

GW_REVAPa Groundwater “revap” coefficient [0.02, 0.2] 

REVAPMNa Threshold depth of water in the shallow aquifer for “revap” or 

percolation to the deep aquifer to occur (mm H2O) 

[0, 1000] 

RCHRG_DPa Deep aquifer percolation fraction [0, 1] 

CH_N2a Manning’s n value for the main channel [0, 0.3] 

CH_K2a Effective hydraulic conductivity in main channel alluvium (mm h−1) [0, 500] 

SOL_AWCb Available water capacity of the soil layer (mm H2O mm−1 soil) [-0.25, 0.25] 

SURLAGa Surface runoff lag coefficient [1, 24] 

Notes: 

a Values are replaced in the SWAT input files by a drawn value from the calibration range. 

b Values are replaced in the SWAT input files by the existing parameter value (defined during the model set up) 

multiplied by 1 plus a drawn value from the calibration range. 

 

5.2.4 Strategy 1: Constrained Performance-Based Model Calibration 

5.2.4.1 Performance Metrics Selection 

A reduced set of performance metrics were used for objective functions’ formulation 

from a list of widely used measures (see Table 7). These measures included NSE (Nash and 

Sutcliffe, 1970), original and modified versions of the Kling-Gupta Efficiency (KGE, Gupta et 

al., 2009; Kling et al., 2012), the index of agreement (IoA, Willmott, 1981), and the coefficient 
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of determination (R2). The Fourth Root Mean Quadrupled Error (R4MS4E) was also considered 

in order to emphasize the largest residuals expected under high flow conditions.  

Since both NSE and the Root Mean Square Error (RMSE) vary only with the sum of 

squared model residuals, just the former was contemplated in this study. Following Gupta et al. 

(2009), NSE and KGE can be expressed in terms of three components representing correlation, 

bias, and variability. Correlation relates to timing and hydrograph shape. Meanwhile, bias and 

variability are aimed to reproduce the first and second moments of the distribution of 

observations, which mainly affect magnitude-related SFCs. These three components interact 

differently under each performance measure. For instance, bias is scaled by the standard 

deviation of observations in NSE. Thus, in presence of high variability, the bias component 

might be less important when obtaining optimal values. In addition, correlation and variability 

components interact with each other in NSE, which generally results in underestimation of the 

latter (Gupta et al., 2009). As an alternative, KGE provides a more balanced representation of 

correlation, bias, and variability, while avoiding interactions among these components (Gupta et 

al., 2009). By considering R2 as an additional measure, we aimed to evaluate the role of the 

correlation component in ERHIs replication. Meanwhile, IoA was included to consider a 

different way of normalizing the sum of square errors and its effects on ERHIs replication. 

To accentuate different flow conditions (i.e., low, moderate, and high), relative errors and 

error transformations were considered. Except for R4MS4E, all measures included their standard 

versions along with logarithmic, inverse, and square root transformations. Relative error versions 

were only used for NSE and IoA. It is worth mentioning that, in general, the standard versions 

favor high flows representation, square root transform is used for highlighting moderate or 
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average flow conditions, whereas logarithmic, inverse, and relative error versions accentuate low 

flows (Bennett et al., 2013; Krause et al., 2005).  

Table 7 Performance metrics and transformations considered for the selection process 

Metric Range Formula 

Nash-Sutcliffe  

Efficiency (NSE) 

(-∞, 1] 
1 −

∑ (𝑆𝑖 − 𝑂𝑖)
2𝑛

𝑖=1

∑ (𝑂𝑖 − 𝜇𝑜)
2𝑛

𝑖=1

 

Kling-Gupta  

Efficiency (KGE) 

(-∞, 1] Original (Gupta et al., 2009): 

1 − √(1 − 𝑟)2 + (1 − 𝛼)2 + (1 − 𝛽)2 

 

Modified (Kling et al., 2012): 

1 − √(1 − 𝑟)2 + (1 − 𝛾)2 + (1 − 𝛽)2 

 

𝑟 =
𝐶𝑜𝑣𝑠𝑜

𝜎𝑠𝜎𝑜
; 𝛼 =

𝜎𝑠

𝜎𝑜
; 𝛽 =

𝜇𝑠

𝜇𝑜
; 𝛾 =

𝜎𝑠
𝜇𝑠
𝜎𝑜
𝜇𝑜

 

Index of  

Agreement (IoA) 

[0, 1] 
1 −

∑ (𝑆𝑖 − 𝑂𝑖)
2𝑛

𝑖=1

∑ (|𝑆𝑖 − 𝜇𝑠| + |𝑂𝑖 − 𝜇𝑜|)
2𝑛

𝑖=1

 

Coefficient  

of Determination (R2) 

[0, 1] 
𝑟2 = (

𝐶𝑜𝑣𝑠𝑜
𝜎𝑠𝜎𝑜

)
2

 

Fourth Root Mean  

Quadrupled Error (R4MS4E) 

[0, ∞) 

√
1

𝑛
∑(𝑆𝑖 − 𝑂𝑖)

4

𝑛

𝑖=1

4

 

Transformations 

Standard 𝑆𝑖 = 𝑦𝑖; 𝑂𝑖 = 𝑦̂𝑖 

Square root 𝑆𝑖 = √𝑦𝑖; 𝑂𝑖 = √𝑦̂𝑖 

Logarithmic 𝑆𝑖 = ln 𝑦𝑖; 𝑂𝑖 = ln 𝑦̂𝑖 

Inverse 𝑆𝑖 = 𝑦𝑖
−1; 𝑂𝑖 = 𝑦̂𝑖

−1
 

Relative For NSE: 

𝑆𝑖 − 𝑂𝑖 =
𝑦𝑖−𝑦̂𝑖

𝜇𝑜
; 𝑂𝑖 − 𝜇𝑜 =

𝑦̂𝑖−𝜇𝑜

𝜇𝑜
  

For IoA: 

|𝑆𝑖 − 𝜇𝑠| + |𝑂𝑖 − 𝜇𝑜| =
|𝑦𝑖 − 𝜇𝑠| + |𝑦̂𝑖 − 𝜇𝑜|

𝜇𝑜
 

Notes: 

𝜇 =
1

𝑛
∑ 𝑋𝑖
𝑛
𝑖=1 ; 𝜎 = √

1

𝑛
∑ (𝑋𝑖 − 𝜇)2𝑛
𝑖=1 ; 𝐶𝑜𝑣𝑠𝑜 =

1

𝑛
∑ (𝑂𝑖 − 𝜇𝑜)(𝑆𝑖 − 𝜇𝑠)
𝑛
𝑖=1  

If 𝜇 = 𝜇𝑜⁡𝑜𝑟⁡𝜎 = 𝜎𝑜 → 𝑋𝑖 = 𝑂𝑖; if 𝜇 = 𝜇𝑠⁡𝑜𝑟⁡𝜎 = 𝜎𝑠 → 𝑋𝑖 = 𝑆𝑖  
If transformation is ‘Relative’: if 𝜇 = 𝜇𝑜 → 𝑋𝑖 = 𝑦̂𝑖; if 𝜇 = 𝜇𝑠 → 𝑋𝑖 = 𝑦𝑖𝑦̂ = observed values; y= simulated 
values; 𝑛 = number of observations 
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Single-objective model calibration was executed for each performance metric and 

transformation indicated above, resulting in 23 individual optimization problems. Each 

minimization objective function f was defined as 1 − 𝑃𝑚, where 𝑃𝑚 is the transformed 

performance metric to be maximized; for R4MS4E, 𝑓 = 𝑃𝑚 (as this metric has to be minimized). 

As a next step, 171 ERHIs reported by Henriksen et al. (2006), and seven ERHIs proposed by 

Archfield et al. (2014) were computed for each of the 23 optimal solutions. Simulated ERHIs 

were compared against those obtained from streamflow observations by calculating relative 

errors for each index 𝑒𝑟𝑒𝑙 for a vector of model parameters 𝜃, as follows: 

𝑒𝑟𝑒𝑙𝑖(𝜃) = (
𝐼𝑖(𝑦(𝜃))−𝐼𝑖(𝑦̂)

𝐼𝑖(𝑦̂)
) ∙ 100        (1) 

where 𝐼𝑖 is the i-th hydrologic index evaluated for simulations 𝑦(𝜃) and observations 𝑦̂. 

Then, ERHIs within a pre-defined relative error threshold were identified for each optimal 

solution. It was expected that optimal results from different performance metrics and 

transformations yield different well-replicated ERHIs. Therefore, the final choice of performance 

metrics was determined by selecting up to six transformed measures that jointly represented the 

maximum number of ERHIs within the pre-defined relative error threshold. For the selection 

procedure, the transformed measure with the highest number of ERHIs within the acceptability 

threshold was selected. Then, another transformed measure was identified based on the 

remaining ERHIs and added to the list of selected measures. The previous step was repeated until 

either attaining the maximum number of well-replicated ERHIs or the pre-defined maximum 

number of objective functions. It is worth noting that the fraction of non-dominated solutions 

with respect to the total population increases with the number of objective functions, slowing 

down the search process (Deb and Jain, 2014). Likewise, a higher population size is required to 

maintain a good exploration of large dimensional spaces, which increases the number of function 
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evaluations and the overall computational time. For these reasons, we decided to limit the 

number of objective functions to six. 

In this study, a real-parameter Genetic Algorithm (GA) (Goldberg, 1991) was used for 

single-objective optimization. Particularly, tournament selection, simulated binary crossover 

(SBX, Deb & Agrawal, 1994), and polynomial mutation (Deb, 2001) were designated as GA 

operators. The optimization algorithm ran for 250 generations with a population size of 100, 

resulting in a total of 25,000 model evaluations for each problem. The crossover probability and 

distribution index for the SBX operator were defined as 0.9 and 10, respectively. Likewise, the 

mutation probability and distribution index for the polynomial mutation operator were defined as 

1/15 (i.e., the reciprocal of the number of calibration parameters) and 20, respectively. On the 

other hand, the relative error threshold for EHRI replication was defined as ±30%, following 

uncertainty in the estimation of hydrologic indices reported by Kennard et al. (2010a) when 

using 15-year time series. This threshold has also been used in previous ecohydrological studies 

to evaluate the performance of ERHIs predictions (Caldwell et al., 2015; Hernandez-Suarez et 

al., 2018; Vis et al., 2015). 

5.2.4.2 Constraint Definition 

Traditionally, hydrologic signatures have been used in model calibration either as 

objective functions or post-calibration evaluation criteria (Shafii and Tolson, 2015). Here, we 

used a set of relevant signatures as constraints given a pre-defined acceptability threshold. This 

set can be identified by the modeler depending on the ecohydrological application needs. In this 

study, we used 32 Indicators of Hydrologic Alteration (IHA) (The Nature Conservancy, 2009), 

divided into five categories (Table 8), each representing specific streamflow regime facets. In 

addition, seven indices presented by Archfield et al. (2014), which describe fundamental 

stochastic properties of streamflow time series, were included in the constraint definition. The 
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aforementioned 39 indices are described in Table 8. For consistency, an acceptability threshold 

of ±30% relative error was used for constraining ERHIs prediction. 

Table 8 List of 39 Ecologically Relevant Hydrologic Indices of interest used for multi-objective 

model calibration 

Category Index* Description Associated 

variability index* 

IHA Group 1: magnitude 

of monthly water 

conditions (IHA1) 

MA12 – MA23 Mean monthly flows from January to 

December (m3 s-1) 

MA24 – MA35 

IHA Group 2: magnitude 

and duration of annual 

extreme water conditions 

(IHA2) 

DL1 – DL5 Annual minimum with 1-, 3-, 7-, 30-, and 

90-day moving average flow (m3 s-1) 

DL6 – DL10 

DH1 – DH5 Annual maximum with 1-, 3-, 7-, 30-, and 

90-day moving average flow (m3 s-1) 

DH6 – DH10 

ML17 Baseflow index based on the 7-day 

minimum flow 

ML18 

IHA Group 3: timing of 

annual extreme water 

conditions (IHA3) 

TL1 Julian day of annual minimum TL2 

TH1 Julian day of annual maximum TH2 

IHA Group 4: frequency 

and duration of high and 

low pulses (IHA4) 

FL1 Mean low flow pulse count per water year 

(year−1) 

FL2 

DL16 Mean low flow pulse duration (days) DL17 

FH1 Mean high flow pulse count per water year 

with a threshold equal to the 75th percentile 

of the entire flow record (year−1) 

FH2 

DH15 Mean high flow pulse duration with a 

threshold equal to the 75th percentile of the 

entire flow record (days) 

DH16 

IHA Group 5: rate and 

frequency of water 

condition changes 

(IHA5) 

RA1 Rise rate (m3 s−1 d−1) RA2 

RA3 Fall rate (m3 s−1 d−1) RA4 

RA8 Reversals (year−1) RA9 

Magnificent seven 

(MAG) (Archfield et al., 

2014) 

MAG1 – MAG4 First four L–moments (mean, coefficient of 

variation, skewness, and kurtosis) 

 

MAG5 Autoregressive lag-one AR(1) correlation 

coefficient 

 

MAG6 – MAG7 Amplitude and phase of the seasonal signal  

* Index abbreviations for Indicators of Hydrologic Alteration (IHA) as presented by Olden 

and Poff (2003). 

 

 

The constraint, which was formulated as the sum of two components, aggregates the 

performance of all EHRIs of interest into a single measure. The first component is the number of 

indices with relative errors outside the pre-defined acceptability threshold for EHRIs replication. 

The second component is a weighted sum of relative violations by each index with respect to the 

pre-defined acceptability threshold. The constraint can be expressed as follows: 
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𝐶𝑉(𝜃) = ∑ 𝑘𝑖(𝜃)
𝑚
𝑖=1 [1 + 𝑤𝑖 (

1

𝜏

|𝐼𝑖(𝑦(𝜃))−𝐼𝑖(𝑦̂)|

𝐼𝑖(𝑦̂)
− 1)]    (2) 

𝑘𝑖(𝜃) = {
0, if⁡⁡⁡⁡

1

𝜏

|𝐼𝑖(𝑦(𝜃)) − 𝐼𝑖(𝑦̂)|

𝐼𝑖(𝑦̂)
− 1 ≤ 0

1, Otherwise

 

𝑤𝑖 =
1

𝑔 ∙ ℎ𝑖
 

where CV(𝜃) is the constraint violation for simulations y(𝜃), m is the total number of 

indices (i.e., 39 in this study), 𝜏 is the acceptability threshold expressed as the absolute value of a 

fraction between 0 and 1 (0.30 is used for this study), 𝑤𝑖 is the weighting factor for the i-th 

index, g is the number of index categories (i.e., 6 in this study), and ℎ𝑖 is the total number of 

indices in the category that contains the i-th index. The weighing factor was explicitly 

incorporated to provide a balanced contribution from different streamflow regime facets. A 

solution is considered feasible when CV(𝜃) attains a value of zero, but for ease of handling the 

constraint with an optimization algorithm, we convert it to an inequality constraint as 𝐶𝑉(𝜃) ≤

0. By introducing the constraint formulation presented above, the optimization algorithm is 

forced to find streamflow simulations in which all ERHIs of interest are estimated within the 

acceptable range (i.e., the relative error is within 30%). It is worth noting that the constraint 

definition is flexible enough to designate different acceptability thresholds 𝜏𝑖 for each index. 

This might be necessary when it is needed to iteratively relax certain acceptability conditions to 

find feasible solutions. 

5.2.5 Strategy 2: Unconstrained Signature-Based Model Calibration 

Under this strategy, an objective function was formulated for each index category 

presented in Table 8, as follows: 

𝑓𝑗(𝜃) = ∑
|𝐼𝑖(𝑦(𝜃))−𝐼𝑖(𝑦̂)|

𝐼𝑖(𝑦̂)
𝑖∈𝐺𝑗

        (3) 
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where 𝑓𝑗(𝜃) is the objective function for the j-th category, and 𝐺𝑗 is the set of indices 

belonging to the j-th category. Each objective function represents the total error obtained under 

each index category. Relative errors were used to normalize the contribution from different 

indices. No constraints were formulated for this calibration strategy. Therefore, opposite to 

Strategy 1, no pre-defined acceptability thresholds for ERHIs replication and no weighting 

factors were required in Strategy 2.  

5.2.6 Evolutionary Multi-Objective Optimization Algorithm 

In both calibration strategies, the goal was to determine the values for the vector of model 

parameters 𝜃 (i.e., decision variables) that minimize the objective functions formulated for each 

strategy. Each decision variable 𝜃𝑝, p = 1, 2, …, 15, could take a value within the ranges defined 

in Table 6. In Strategy 1, those model simulations with 𝐶𝑉(𝜃) ≤ 0 were considered as feasible 

(see Eq. 2), the remaining were infeasible. An evolutionary multi-objective optimization 

algorithm, U-NSGA-III (Seada and Deb, 2016), was implemented to address the optimization 

problems resulting from each strategy. U-NSGA-III is a population-based algorithm that 

employs crossover and mutation operators along with non-dominated sorting and reference 

directions to move towards near-optimum Pareto solutions. Reference directions are vectors 

evenly filling the objective space. This algorithm can be used for single-, multi- (i.e., 2 or 3 

objective functions), and many-objective (i.e., >3 objective functions) optimization problems, 

and stems from the NSGA-III algorithm (Deb and Jain, 2014). It is worth mentioning that U-

NSGA-III can handle both unconstrained and constrained problems. For unconstrained problems, 

during the non-domination sorting, any two solutions are compared using just the objective 

function values. A solution x1 dominates a solution x2 when 1) x1 is no worse than x2 in all 

objective functions, and 2) x1 is better than x2 in at least one objective function (Deb, 2001). In 
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constrained problems, the concept of constraint-domination is used instead. A solution x1 

constraint-dominates a solution x2 when 1) x1 is feasible and x2 is infeasible, 2) both x1 and x2 

are infeasible but x1 has a lower constraint violation CV, or 3) both x1 and x2 are feasible and x1 

dominates x2 using the traditional domination principle (Jain and Deb, 2014). In non-domination 

sorting, feasible solutions will always be on top of infeasible solutions. Likewise, the selection 

operation when creating the offspring population is modified for constrained problems (Jain and 

Deb, 2014). 

NSGA-III and U-NSGA-III have been implemented in previous water resources 

applications, such as multivariate model calibration using streamflow and evapotranspiration 

data (Herman et al., 2020), multi-objective calibration targeting different flow conditions 

(Hernandez-Suarez et al., 2018), irrigation scheduling (Kropp et al., 2019; Mwiya et al., 2020), 

reservoir design and operation (Chen et al., 2020; Pourshahabi et al., 2020), and optimization of 

land use practices (Raschke et al., 2021). In this study, an interface for modifying SWAT input 

files and executing the model was developed in Python 3.7. This interface also included the 

computation of the ERHIs reported by Henriksen et al. (2006) and Archfield et al. (2014), and 

was coupled with the Python library pymoo (Blank and Deb, 2020) to implement the U-NSGA-

III algorithm. The stopping criterion was set as a maximum of 1000 generations for the multi-

objective optimization, with a number of reference directions assigned equal to 100. Well-spaced 

reference directions were generated using the recently developed Riesz s-Energy method (Blank 

et al., 2021) included in the pymoo library. The operators and parameters chosen for crossover 

and mutation were the same as the ones presented in section 5.2.4.1 for the GA, which are 

standard and recommended (Deb et al., 2002b). Convergence to a near-optimal solution was 
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analyzed using the Hypervolume indicator (Auger et al., 2009), which is a measure of the 

collective volume of the region dominated by the Pareto-optimal solutions in the objective space. 

5.2.7 Selection of Preferred Tradeoff Solutions 

Since we were interested in obtaining solutions providing balanced representations of 

different streamflow regime facets, we compared a set of preferred solutions from different 

MCDM methods. Particularly, two approaches were implemented: compromise programming 

(Zeleny, 2011), and the pseudo-weight method (Deb, 2001). The compromise programming 

approach identifies the closest Pareto-optimal solution to a reference point using a user-defined 

distance metric. Usually, the reference point is the ideal point, representing the best-expected 

objective function values. In this study, the ideal point was the origin of the objective space. As 

distance metrics, we used the ℓ𝑝 norm with 𝑝 = 2 (Euclidian distance) and 𝑝 → ⁡∞ (Chebyshev 

distance). The latter is preferred for non-convex Pareto-optimal solutions. The metrics for a 

Pareto-optimal solution were computed as follows (Branke et al., 2008): 

ℓ𝑝 = (∑ |𝑓𝑚 − 𝑧𝑚|
𝑝𝑀

𝑚=1 )
1

𝑝        (4) 

ℓ𝑝→∞ = max
𝑚

(|𝑓𝑚 − 𝑧𝑚|)         (5) 

where M is the number of objective functions, 𝑓𝑚 is the value for the m-th objective 

function, and 𝑧𝑚 is the value of the m-th component of the reference point. Before applying any 

distance metrics, the objective functions were normalized to values between 0 and 1. Meanwhile, 

the pseudo-weight method generates a vector for each Pareto-optimal solution representing the 

relative importance (or weight) of each objective function. The sum of the different weights in 

each vector is forced to one. The pseudo-weight 𝑤𝑖 for the i-th component in a Pareto-optimal 

solution was computed as follows (Deb, 2001): 
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𝑤𝑖 =
(𝑓𝑖

max−𝑓𝑖)⁡ (𝑓𝑖
max−𝑓𝑖

min)⁄

∑ (𝑓𝑚
max−𝑓𝑚) (𝑓𝑚

max−𝑓𝑚
min)⁄𝑀

𝑚=1
        (6) 

where 𝑓𝑖
max and 𝑓𝑖

min are the maximum and minimum values for the i-th objective 

function among all Pareto-optimal solutions, respectively. The denominator in Eq. 6 guarantees 

that the sum of all pseudo-weight vector components for a Pareto-solution is equal to one. 

Pseudo-weights are proportional to the difference between the maximum objective function 

value and the solution’s value for a particular component. Thus, a higher pseudo-weight 

indicates that the point is closer to the minimum objective function value for that component. In 

other words, a higher pseudo-weight value indicates a higher preference for the corresponding 

objective function. In this study, we selected the most balanced Pareto-optimal solution as the 

one with the closest pseudo-weight vector to the M-dimension target vector [1/𝑀 ⋯ 1/𝑀]. 

Different target vectors can be used to explore how a Pareto solution changes when giving more 

relevance to a particular objective function. 

5.2.8 Evaluation of Calibration Results Using Water Balance, Flow Duration Curve 

Characteristics, and Additional Hydrologic Indices 

The Flow Duration Curve (FDC) is the complement of the streamflow cumulative 

distribution function (Vogel and Fennessey, 1994). FDCs are signatures of runoff variability and 

summarize a watershed's ability to generate streamflow values of different magnitude (Yilmaz et 

al., 2008). FDCs have been widely used for model evaluation and calibration (Fenicia et al., 

2018). Since a FDC is a frequency-domain representation of a hydrograph, information 

concerning to streamflow timing is lost, limiting its utility to diagnose the overall streamflow 

regime. However, some characteristics extracted from FDCs are useful for understanding key 

hydrological processes and their ecohydrological significance (McMillan, 2020a, 2020b). In this 

study, we computed the percent bias (PBIAS) of four indices extracted from FDCs to evaluate 
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the consistency between calibration results and SFCs that have been typically used in signature-

based model calibration. The characteristics derived from FDCs were the very-high-segment 

volume (FHV), high-segment volume (FMV), midsegment slope (FMS), and low-segment 

volume (FLV) (Ley et al., 2016; Yilmaz et al., 2008). The aforementioned segments were 

subjectively defined by Yilmaz et al. (2008) using the 2%, 20%, and 70% flow exceedance 

probabilities. FMS is a signature of the vertical soil moisture redistribution and streamflow 

flashiness. Likewise, FHV provides additional information regarding streamflow flashiness and 

quantifies watershed reactions to large precipitation events. Meanwhile, FMV quantifies the 

watershed response to heavy rainfall. Finally, FLV, which is related to long-term baseflow, was 

computed using the modification reported by Casper et al. (2012) to reduce the effect of the 

difference in lowest simulated and observed flows on the PBIAS computation. Long-term water 

balance was also considered by computing the PBIAS in the overall runoff ratio (RR) (Yilmaz et 

al., 2008). 

The IHA indices that were selected in this study are computed from metrics obtained on 

an annual basis and represent the central tendency (i.e., mean) of annual metrics (Table 8). When 

setting environmental flows or evaluating streamflow regime alteration, widely used methods 

such as the Range of Variability Approach (Richter et al., 1997, 1996) also consider the 

associated interannual variability in those metrics. These methods define streamflow alteration 

targets as a function of central tendency and variability metrics. These targets are defined for 

each streamflow regime facet using meaningful indices and are further customized depending on 

the available ecological information of the study area (Poff et al., 2010; Richter et al., 1997). 

Given the relevance of streamflow variability in ecohydrological applications, especially in the 

definition of limits of streamflow alteration, we evaluated the impact of the two calibration 
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strategies defined in this study (which use only central tendency indices) in the replication of 

associated variability indices. These variability indices are expressed here in terms of 

coefficients of variation following Henriksen et al. (2006). 

5.3 RESULTS AND DISCUSSION 

5.3.1 Performance of Single-objective Model Calibration Using Transformed Metrics 

The relative errors for EHRIs replication under each optimal solution using the 

transformed measures indicated in section 5.2.4.1 are presented in Figure 9. These results were 

obtained as part of the objective functions’ selection routine under Strategy 1. Using hierarchical 

clustering with Euclidean distances and Ward’s method, five groups of performance metrics 

were identified based on their similarity in replicating ERHIs. These groups are presented in 

Table 9 and can be visualized in Figure 9 for the different categories of hydrologic indices 

(performance metrics were arranged by similarity in the y-axis). These groups revealed that 

optimal solutions using R2 and relative-transformed metrics as objective functions behaved 

drastically different, compared to the other evaluated metrics. Generally, optimal simulations 

using the former metrics were able to represent those ERHIs that did not fall within the 30% 

relative error threshold using KGE- and sum-of-square-errors-based metrics. For example, in 

Figure 3b indices ML9 and ML10 are better represented by R2 and relative-transformed metrics 

than any other metrics. Similar examples can be observed for DL6 and DL11 in Figure 3d, for 

FH5 in Figure 3g, or for RA3 and RA6 in Figure 3k. Still, the overall performance in ERHIs 

replication was very poor for R2 and relative-transformed metrics (having less than 51% of 

ERHIs within the threshold according to Table 9). Other poor-performing metrics included 

inverse- and log-transformed NSE. These results suggest that those measures should be used as 
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complementary criteria rather than objective functions in single-objective model calibration 

when targeting the overall streamflow regime representation. 

Different performance metrics or groups of metrics are more suitable in replicating 

specific index categories or streamflow regime facets (see Table 9). In terms of magnitude, 

standard or square-root-transformed metrics are preferred when targeting average and high flows 

(MA and MH, respectively), whereas low flows (ML) were best represented by optimal solutions 

when using R2 for model calibration. Regarding duration, KGE and KGE’ provided the best 

performing solutions for low flows (DL), whereas standard and square-root-transformed metrics 

were better suited for high flows (DH). For frequency, most of the standard, square-root-, and 

inverse-transformed metrics were better suited for low flows (FL), whereas KGEsqrt yielded the 

highest proportion of well-replicated high flow (FH) indices. With respect to timing, standard 

square-root-, or most of the log-transformed metrics are preferred when targeting average (TA) 

and high flows (TH). Meanwhile, IoArel, IoAlog, KGE’inv, and R2 were the best performing 

metrics when looking for optimal solutions in replicating low flows timing (TL). Those indices 

representing the change of flow and reversals showed an acceptable replication under some R2-

based or relative-transformed metrics. However, in general, an acceptable representation of rate 

of change indices (RA) was quite difficult, and none of the performance metrics that were 

employed in this study resulted in an outstanding performance. Finally, all of the Magnificent 

Seven indices (MAG) were well-replicated by optimal results using standard, square-root- or 

log-transformed metrics.  

It is worth noting that none of the 23 identified optimal solutions were able to represent 

five indices within the pre-defined acceptability threshold of 30% relative error. These indices 

were the mean duration of flows exceeded 25% of the time (DH21), mean low flow pulse 
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duration (DL16), mean low flow pulse count (FL1), mean number of high flow events using the 

flow exceeded 25% of the time as a threshold (FH9), and mean high flow volume using the 

median annual flow as a threshold (MH21). 

5.3.2 Selected Metrics for Constrained Performance-Based Model Calibration 

The selection process of objective functions under Strategy 1 resulted in three different 

lists of six transformed measures jointly representing 168 out of 178 ERHIs within the 30% 

relative error range. These lists had in common the first five measures: standard and inverse 

KGE, and standard, inverse, and square root R2. The sixth measure was either R2
log, KGE’inv, or 

IoArel. We decided to proceed with the list containing IoArel because, opposite to the other two 

lists, this one represented all rate of change indices within the 30% acceptability threshold. The 

optimal solution using standard KGE was able to provide the highest number of indices within 

the error threshold (i.e., 128 indices or 72% of all ERHIs, see Table 9). Note that the selected list 

of metrics includes most of the best performing measures for each group reported in Table 9 (i.e., 

metrics in bold). However, this list did not well-represent five indices related to flow variability 

and high flow magnitude: variability in annual minima of daily flows (DL6 and ML21), 

variability in February and August flows (MA25 and MA31, respectively), and mean peak flows 

using the median annual flow as a threshold (MH24). These indices were added to the five 

indices that were not represented by an optimal solution (see Section 5.3.1). 
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Figure 9 Heatmaps with relative errors for 178 ecologically relevant hydrologic indices when 

optimizing different transformed measures. Panels a) to l) represent an individual category of 

hydrological indices as presented in Table 9 
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Table 9 Proportion of indices falling within the 30% relative error threshold under different categories of hydrologic indices. 

Proportions are reported for each performance metric considered in the single-objective calibration process. Performance metrics were 

grouped following proportions similarity. The best performing metric overall is in bold within each group. Proportions are color-coded 

as follows: 100% are dark green (excellent), 70-99% are light green (good), 55-69% are dark yellow (fair), 40-54% are light yellow 

(poor), and 0-39% are red (very poor) 

Group 
Performance 

metric 

 Hydrologic indices category* 
Overall 

MA ML MH DL DH FL FH TA TL TH RA MAG 

 Number of indices  

Near-optimal 

value  
45 22 27 20 24 3 11 3 4 3 9 7 178 

1 NSE 0.78 76% 41% 89% 60% 79% 67% 64% 100% 50% 100% 22% 100% 70% 

KGE 0.88 76% 41% 89% 75% 79% 67% 55% 100% 50% 100% 44% 100% 72% 

KGE' 0.86 73% 41% 85% 75% 75% 67% 55% 100% 25% 100% 22% 100% 69% 

IoA 0.93 73% 45% 78% 65% 79% 67% 55% 100% 50% 100% 11% 100% 67% 

R4MS4E (m3/s) 10.7 67% 45% 89% 60% 75% 33% 55% 100% 25% 100% 22% 100% 66% 

NSEsqrt 0.72 76% 36% 85% 55% 79% 67% 64% 100% 50% 100% 22% 100% 68% 

KGEsqrt 0.87 76% 41% 89% 55% 79% 33% 73% 100% 50% 100% 33% 100% 70% 

KGE'sqrt 0.85 76% 45% 78% 55% 79% 67% 36% 100% 50% 100% 11% 100% 66% 

2 IoAsqrt 0.93 76% 55% 78% 65% 75% 67% 45% 100% 50% 100% 33% 100% 69% 

KGElog 0.83 71% 45% 63% 55% 79% 33% 36% 100% 50% 100% 33% 100% 63% 

KGE'log 0.84 73% 45% 63% 55% 75% 67% 45% 100% 50% 100% 33% 100% 64% 

IoAlog 0.92 69% 55% 63% 60% 63% 67% 36% 100% 100% 100% 44% 100% 64% 

3 NSElog 0.55 71% 41% 44% 35% 71% 33% 36% 33% 75% 67% 22% 100% 54% 

NSEinv 0.45 64% 36% 22% 45% 54% 33% 36% 33% 75% 67% 11% 57% 46% 

KGEinv 0.67 71% 50% 41% 65% 67% 67% 55% 67% 75% 67% 33% 71% 60% 

KGE'inv 0.67 78% 45% 30% 70% 54% 67% 55% 67% 100% 67% 22% 100% 59% 

IoAinv 0.81 73% 45% 44% 65% 58% 67% 36% 67% 75% 67% 33% 71% 58% 

4 R2 0.80 42% 73% 37% 70% 38% 0% 36% 67% 100% 100% 33% 86% 51% 

R2
sqrt 0.78 33% 23% 19% 40% 29% 33% 45% 67% 50% 100% 44% 71% 35% 

R2
log 0.77 16% 5% 15% 30% 33% 33% 36% 67% 75% 100% 33% 57% 26% 

R2
inv 0.59 4% 9% 11% 50% 21% 33% 27% 33% 75% 33% 33% 14% 20% 

5 NSErel 0.79 33% 45% 22% 50% 38% 33% 36% 67% 75% 67% 22% 57% 38% 

IoArel 0.93 42% 50% 19% 45% 38% 33% 36% 100% 100% 67% 33% 43% 41% 

 
* MA = magnitude – average flows, ML = magnitude – low flows, MH = magnitude – high flows, DL = duration – low flows, DH = duration – high flows, FL = 

frequency – low flows, FH = frequency – high flows, TA = timing – average flows, TL = timing – low flows, TH = timing – high flows, RA = rate of change, 

MAG = magnificent seven indices.  
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5.3.3 Overall Performance of Pareto-Optimal Solutions 

Each multi-objective calibration strategy was executed using 20 threads in parallel on a 

machine equipped with two Intel® Xeon® CPU E5-2640 Processor at 2.5 GHz with 64 GB 

RAM running Ubuntu 16.04.7 LTS. Total computation time for Strategies 1 and 2 were 32.43 

and 30.86 hours, respectively. Strategy 1 successfully identified Pareto solutions satisfying the 

defined constraint for all 39 ERHIs of interest. The first feasible solution was found at generation 

48, and convergence to a near-optimal Pareto front was achieved after 800 generations once the 

hypervolume indicator started to show a steady behavior (Figure 10a). Pareto front sizes at the 

end of each generation over the U-NSGA-III search process did not exceed 35 solutions, with 25 

near-optimal Pareto solutions for the 1000th generation. Similarly, Strategy 2 converged to a 

near-optimal Pareto front after 800 generations. In this case, Pareto front sizes at the end of each 

generation mostly varied between 20 and 40 solutions, with 29 near-optimal Pareto solutions for 

the 1000th generation. 

Performance of near-optimal Pareto solutions for both strategies improved with respect to 

the initial random population sampled from uniform distributions of model calibration 

parameters (Figures 10b and c). Near-optimal solutions from Strategy 1 resulted in linear 

correlations r between 0.80 and 0.85, whereas Strategy 2 provided results with a broader range 

for r between 0.70 and 0.85. All Pareto solutions from Strategy 1 overestimated up to 1.3 times 

the standard deviation in observations while showing a ratio between simulated and observed 

means between 0.95 and 1.05. Meanwhile, Strategy 2 resulted in a more balanced and wider set 

of near-optimal Pareto solutions in terms of both simulated/observed standard deviation and 

mean ratios ( and , respectively). Under both strategies, the standard deviation of model 

residuals was around 60-70% of the standard deviation of observations. 
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Figure 10 Overall performance of the two model calibration strategies: a) 10-generations 

moving average of normalized hypervolume indicator and number of Pareto solutions over the 

U-NSGA-III search process, lighter colors represent values for each generation; b) Taylor 

diagram for the initial population and Pareto solutions at the last generation, contour lines 

represent the ratio of the standard deviation of residuals and standard deviation of observations, 

 is the ratio of simulated and observed standard deviations, and r is the linear correlation 

coefficient; c) behavior of the ratio of simulated and observed means () obtained for the initial 

population and Pareto solutions at the last generation 

A summary of the metrics and objectives (median, interquartile range (IQR), maximum, 

and minimum) that were used to obtain the near-optimal Pareto and preferred tradeoffs solutions 

are presented in Table 10. In both strategies, the performance metric showing the highest 

variability, as presented by IQR, was KGEinv, which emphasizes low flow conditions. In general, 

near-optimal Pareto solutions from Strategy 2 showed a higher variability of objective function 

values compared to Strategy 1. In terms of KGEinv, Strategy 2 provided an overall better 

performance, but also had solutions with very low values (minimum was -1.43). It is worth 

noting that none of the maximum values for the performance metrics chosen under Strategy 1 

were as high as those found when executing single-objective model calibration. For example, the 

maximum KGE of 0.83 obtained from the near-optimal Pareto set from Strategy 1 reported in 

Table 10 was below the near-optimum value of 0.88 reported for KGE in Table 9. These results 
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indicate that simulations with ERHIs of interest within 30% relative error are not necessarily 

close to an optimum in terms of a particular performance metric. 

Table 10 Overall performance of near-optimal Pareto and preferred tradeoffs solutions under 

each model calibration strategy. Values in parenthesis correspond to the validation period 

Metric* 

Near-optimal Pareto solutions  

Strategy 1 

Near-optimal Pareto solutions  

Strategy 2 

Preferred tradeoffs 

 

Median IQR Max Min Median IQR Max Min 
Compromise 

prog.  
(Strategy 1) 

Pseudo-

weights 
(Strategy 1) 

Compromise prog.  
(Strategy 2) 

Strategy 1 performance metrics 

KGE 0.77 0.06 0.83 0.67 0.77 0.04 0.83 0.68 
0.75 

(0.81) 

0.76 

(0.81) 

0.77 

(0.74) 

KGEinv 0.46 0.25 0.60 0.22 0.56 0.61 0.65 -1.43 
0.40 

(0.58) 
0.41 

(0.57) 
0.47 

(0.53) 

R2 0.72 0.01 0.74 0.70 0.64 0.07 0.71 0.53 
0.73 

(0.71) 
0.71 

(0.69) 
0.66 

(0.58) 

R2
sqrt 0.72 0.02 0.74 0.70 0.66 0.05 0.73 0.62 

0.74 

(0.71) 

0.73 

(0.70) 

0.69 

(0.64) 

R2
inv 0.40 0.02 0.43 0.37 0.44 0.04 0.52 0.37 

0.40 

(0.38) 

0.41 

(0.38) 

0.41 

(0.35) 

IoArel 0.92 0.01 0.92 0.90 0.88 0.04 0.92 0.82 
0.91 

(0.92) 

0.91 

(0.92) 

0.90 

(0.91) 

Strategy 2 objectives 

f1 11.6% 1.0% 14.5% 10.5% 10.7% 2.1% 22.8% 8.8% 
11.4% 

(9.1%) 

11.6% 

(9.2%) 

11.3% 

(13.6%) 

f2 11.8% 3.1% 18.1% 7.8% 15.5% 9.7% 40.4% 8.2% 
13.4% 
(5.5%) 

11.7% 
(6.3%) 

8.6% 
(7.3%) 

f3 26.4% 1.3% 27.7% 20.9% 12.6% 11.6% 26.0% 3.3% 
26.0% 

(21.9%) 
26.7% 

(19.6%) 
15.8% 

(13.6%) 

f4 11.9% 5.1% 21.2% 2.2% 13.5% 37.9% 107.9% 4.1% 
15.0% 

(29.8%) 

10.5% 

(23.5%) 

18.9% 

(40.6%) 

f5 16.9% 1.5% 19.9% 14.6% 14.2% 11.6% 27.9% 6.8% 
18.6% 

(17.1%) 

15.1% 

(25.1%) 

10.5% 

(23.0%) 

f6 7.9% 3.6% 12.1% 4.2% 6.9% 7.6% 15.0% 3.8% 
7.1% 

(9.4%) 

7.2% 

(8.1%) 

6.3% 

(10.0%) 

 
*f1 = objective function for IHA Group 1 (magnitude of monthly water conditions); f2 = objective function for IHA 

Group 2 (magnitude and duration of annual extreme water conditions); f3 = objective function for IHA Group 3 

(timing of annual extreme water conditions); f4 = objective function for IHA Group 4 (frequency and duration of 

high and low pulses); f5 = objective function for IHA Group 5 (rate and frequency of water condition changes); f6 = 

objective function for Magnificent Seven indices. See Equation 3. 

 

5.3.4 Replication of Ecologically Relevant Hydrologic Indices of Interest 

Figure 11 shows the distribution of relative errors for each ERHI of interest and model 

calibration strategy during both calibration and validation periods. During the calibration period, 

which was defined between 2003 and 2014, all the indices computed from the near-optimal 
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Pareto set from Strategy 1 fell within the 30% relative error range. Meanwhile, Strategy 2 

provided median values for almost all ERHI of interest (MA19, i.e., August mean flow, was the 

exception) within the same range, with some near-optimal Pareto solutions generating index 

values outside this range. In general, Strategy 1 resulted in a lower variability of EHRIs values 

compared to Strategy 2. Additionally, median relative errors had a similar behavior among both 

calibration strategies. Some exceptions included DH1 to DH5 (i.e., duration of annual maxima) 

in Figure 11b, which exhibited opposite trends under both strategies (i.e., overestimation for 

Strategy 1 and underestimation for Strategy 2). 

Indices that showed the highest variability during the calibration period in both strategies 

were mostly related to low flow conditions. These indices include DL1 to DL5 (i.e., duration of 

annual minima) and ML17 (i.e., baseflow index) in Figure 5b, row 1; DL16 and FL1 (i.e., low 

flow pulse duration and frequency), and RA3 (i.e., fall rate) in Figure 5c, row 1; and MAG3 and 

MAG4 (i.e., skewness and kurtosis) in Figure 5d, row 1. Strategy 1 presented the most biased 

results for indices in the IHA3 category representing the timing of annual extremes. This is 

consistent with the f3 median value of 26.4% for this strategy, reported in Table 10, which is the 

highest median value among both strategies and objectives used in Strategy 2. It is worth noting 

that median values for objectives f2 and f4 (related to duration and frequency, respectively) were 

lower and better for Strategy 1 than Strategy 2. 
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Figure 11 Boxplots representing the distribution of relative errors for each Ecologically Relevant 

Hydrologic Index of interest for the near-optimal Pareto solutions obtained under each model 

calibration strategy, horizontal dashed lines represent the 30% interval: a) magnitude of 

monthly water conditions; b) magnitude and duration of annual extreme water conditions; c) 

duration and frequency of high and low pulses, rate and frequency of water condition changes, 

and timing of annual extreme water conditions; d) Magnificent seven indices. Index 

abbreviations are listed in Table 8 

Near-optimal Pareto sets of model parameters obtained during model calibration were 

validated for a 12-year period between 1983 and 1994. Validation results for the replication of 

ERHIs of interest are also presented in Figure 11. From the list of 39 ERHI of interest, the 
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median relative errors for three indices fell outside the acceptability range of 30%. These 

indices were RA3 for both strategies, FL1 for Strategy 1, and DH15 for Strategy 2 (Figure 5c, 

row 2). RA3 relative error values were mostly distributed within -50% and -40%, and median 

relative error values for FL1 and DH15 were very close to -30% and 30% limits, respectively 

(excepting DH15 for Strategy 2). These results are indicative of the robustness of both 

calibration strategies. Variability of ERHIs of interest behaved similarly during the calibration 

and validation periods. However, DH15 and TH1, related to duration and timing of high flow 

events, drastically increased their variability during the validation period. 

5.3.5 Performance of Preferred Tradeoff Solutions 

We obtained three different solutions (two from Strategy 1 and one from Strategy 2) 

targeting a balanced representation of the different streamflow regime facets. Both Euclidean and 

Chebyshev distances used for the compromise programming method selected the same preferred 

solution from the near-optimal Pareto sets under each calibration strategy. For Strategy 2, the 

pseudo-weight method's preferred solution was the same as the compromise programming 

method. The overall calibration performance for these preferred solutions is reported on the right 

side of Table 10.  

There are no major differences between the three preferred solutions in terms of 

performance during the calibration period. Strategy 2 provided slightly better results for KGE 

and KGEinv, whereas Strategy 1 solutions presented better R2 and R2
sqrt values. It is worth noting 

that NSE values were 0.61 and 0.60 for compromise programming and pseudo-weight solutions 

in Strategy 1, respectively. The preferred solution under Strategy 2 attained a lower NSE of 0.56. 

Regarding the replication of ERHIs of interest, the Strategy 2 preferred solution provided, in 

average, lower absolute relative errors for five of six categories of hydrologic indices during the 
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calibration period. Meanwhile, Strategy 1 preferred solutions attained better replication results 

for the IHA4 category, which is related to frequency and duration of high and low pulses.  

During the validation period, preferred solutions from Strategy 1 improved in terms of 

KGE, KGEinv and IoArel (~7%, ~42%, and ~1%, respectively) while slightly worsening in terms 

of R2, R2
sqrt and R2

inv (~3%, ~4%, and ~6%, respectively). NSE improved to 0.65 and 0.63 (~6%) 

for the compromise programming and pseudo-weight method solutions, respectively. Average 

absolute relative errors improved for the three first ERHI categories (i.e., magnitude of monthly 

flows, duration and timing of extremes) and deteriorated for the remaining categories, especially 

for the IHA4 category. Regarding Strategy 2, the preferred solution generally worsened in terms 

of both performance metrics and ERHI replication, especially for the IHA4 category, which 

exceeded the 30% threshold on average. Likewise, the validation NSE was reduced to 0.48 (14% 

reduction). 

5.3.6 Representation of Water Balance and Flow Duration Curve Characteristics 

Percent bias for long-term water balance and FDC characteristics are presented in Figure 

12. In the same figure, FDCs for the preferred tradeoff solutions and near-optimal Pareto sets 

under each strategy are compared against the observed FDC during the calibration period. 

Generally, absolute biases of FDC characteristics for the validation period were lower than the 

calibration period. Most of the near-optimal Pareto solutions over-estimated FMV (high-segment 

volume) and FMS (midsegment slope), whereas FLV (low-segment volume) was mostly under-

estimated. Opposite to Strategy 1, FHV (very-high-segment volume) was mostly under-estimated 

in Strategy 2. The maximum absolute bias for Strategy 1 was below 30%. For Strategy 2, the 

maximum bias was just below 100%. Meanwhile, the largest variability resulted from FMS 

under both Strategies, whereas the highest variability for FLV occurred under Strategy 2. The 

overall RR (runoff ratio) showed a lower variability compared to the FDC characteristics. 
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Moreover, this index was mostly under-estimated during both calibration and validation periods. 

Concerning the preferred tradeoff solutions, none of them exceed the 30% absolute threshold for 

any water balance or FDC characteristic. For these solutions, the most biased FDC characteristic 

was FMS and the least biased was FHV. It is worth noting that, during validation, the minimum 

observed flow was at least 0.5 m3/s lower than the minimum simulated flow for any preferred 

tradeoff solution. 

 

Figure 12 Flow duration curves (FDCs) for the preferred tradeoff solutions identified for each 

calibration strategy compared against the observed FDC from 2003 to 2014: a) FDCs from near-

optimal Pareto solutions for Strategy 1; b) FDCs from near-optimal Pareto solutions for Strategy 

2; c) and d) represent the bias for FDC and water balance measures for Strategy 1 and Strategy 2, 

respectively, under calibration and validation periods 
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5.3.7 Relationship between Water Balance, Flow Duration Curve Characteristics, and 

Ecologically Relevant Hydrologic Indices of Interest 

The results obtained in the previous section indicated that constraining or targeting 

ERHIs of interest during model calibration did not drastically worsen long-term water balance 

and FDC representation. Instead, calibration and validation results for ERHIs were relatively 

consistent with the behavior of the five SFCs addressed above. For instance, FLV under-

estimation is related to the observed under-estimation of most of the monthly mean flows 

(indices MA12-23 showed in Figure 11a). Likewise, baseflow index behavior (see ML17 in 

Figure 11b) under both calibration and validation periods was consistent with RR. Lower values 

in the latter (i.e., lower simulated mean flow) resulted in an increase of ML17, which is 

computed as the ratio between the minimum 7-day flow and the overall mean flow (assuming the 

minimum 7-day flow does not change drastically). Another example is the under-estimation of 

FHV, which is related to the under-estimation of DH indices (Figure 11b), which can be caused 

by missing high flow events or low volume events. The same logic applies to FHV over-

estimation. 

On the other hand, FMS interpretation posed a different and remarkable case. In this 

study, simulations under both strategies were prone to yield steeper midsegment slopes. An 

initial explanation for this behavior was that the chosen model structure and calibrated 

parameters favored flashiness (i.e., abrupt ascendant and descendant streamflow changes after 

the occurrence of rainfall events). However, this explanation contradicted the observed 

underestimation of the fall rate (see RA3 in Figure 11c). When explicitly considering the timing 

facet (neglected when constructing FDCs), we obtained a more consistent interpretation. For this 

purpose, it is worth noting that end-of-summer monthly flows (i.e., MA18 and MA19, linked to 

July and August months, respectively) were drastically over-predicted, whereas September and 



 120 

October monthly flows were under-predicted. Also, the timing of flow minima (TL1), which 

usually occurs during the summer season, was generally over-estimated. The latter followed the 

lower simulated fall rate for the spring-to-summer transition. The lagged timing prediction in 

annual minima resulted in the over-estimation of summer flows. Likewise, there was an 

additional delay in the transition towards the fall season. This delay was one of the reasons for 

the observed under-prediction in monthly flows for the fall season. Adding up this behavior 

across all the simulated years mainly explained the FMS results. Given the consistency between 

ERHIs constraining/targeting and FDC/water balance characteristics, model structure 

inadequacies in representing intermediate and baseflows were likely the main factors 

contributing to the previous inaccuracies. 

5.3.8 Replication of Variability in Ecologically Relevant Hydrologic Indices  

Figure 13 shows the distribution of relative errors for IHA variability indices under each 

model calibration strategy. Opposite to Strategy 2, many of the interannual variabilities of 

monthly flows were not captured by Strategy 1 for the calibration period using the 30% relative 

error threshold. However, most of these indices were well represented during the validation 

period under both strategies. According to Figure 13a, the variabilities of winter flows (i.e., 

MA24-25, MA34-35) were over-predicted, with median relative errors as high as ~110%. 

Variabilities of summer flows (i.e., MA29-31) were generally under-predicted, with absolute 

median relative errors as high as ~50%. Indices representing variabilities in magnitude and 

duration of annual extreme water conditions were mostly well represented under both strategies. 

Compared to Strategy 1, Strategy 2 resulted in more over-predicted indices under this category 

outside the acceptability threshold, especially those representing the duration of high flows 

(Figure 13b). It is worth noting that median relative errors for the variability in the duration of 
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annual 1-day minimum flows (i.e., DL6) were slightly below -30% under both strategies and for 

both calibration and validation periods. Regarding other streamflow facets (i.e., frequency, rate 

of change, and timing), some calibration and validation results showed a contrasting behavior 

(Figure 13c). For the calibration period, most of variability indices median relative errors fell 

within the acceptability threshold regardless of the strategy. The most problematic index was the 

coefficient of variation of the Julian day of annual minimum (i.e., TL2), which was over-

predicted with median relative errors around ~100%. Meanwhile, most indices of variability in 

frequency/duration of flow pulses and variability in rate of change of flows were largely over-

predicted during the validation period, with median relative errors as high as ~120%. Therefore, 

our results suggest that water resources managers must be particularly cautious when defining 

streamflow regime alteration limits based on simulated low flow timing, rate of change, and 

extreme events duration and frequency given the observed bias in both associated central 

tendency and variability indices during model validation. 
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Figure 13 Boxplots representing the distribution of relative errors for variability hydrologic 

indices under each model calibration strategy, horizontal dashed lines represent the 30% 

interval: a) variability in the magnitude of monthly water conditions; b) variability in the 

magnitude and duration of annual extreme water conditions; c) variability in the duration and 

frequency of high and low pulses, rate and frequency of water condition changes, and the timing 

of annual extreme water conditions. Index abbreviations are presented in Table 3 

5.4 CONCLUSIONS 

Implementing the performance-based calibration strategy confirmed that various 

performance metrics and transformations are better suited for particular streamflow regime 

facets. Also, it was revealed that R2 and relative-transformed metrics behaved drastically 
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different comparing to KGE- and sum-of-square-errors-based metrics when replicating 

hydrologic indices. Moreover, results showed that a balanced representation of the streamflow 

regime is not directly related to the improvement of a particular performance metric. Instead, it 

responded to tradeoffs among different performance-based objective functions stressing different 

regime facets (i.e., magnitude, duration, frequency, rate of change, and timing) and flow 

conditions (i.e., high, moderate, and low flows).  

The successful implementation of the signature-based calibration strategy demonstrated 

that it is possible to obtain consistent hydrological responses by simultaneously targeting 

multiple streamflow regime facets. More importantly, this was achieved without using any 

performance-based objective function. However, compared to the latter, the signature-based 

strategy resulted in higher variability in the near-optimal Pareto solutions, many of them with 

simulated indices falling outside the acceptability threshold (30% relative error). Similarly, this 

strategy resulted in a highly variable representation of water balance and FDC characteristics 

compared to the performance-based strategy. Therefore, performance-based calibration is 

preferable. It is worth noting that the variability in the near-optimal Pareto solutions obtained 

under the two calibration strategies was driven mostly by the representation of low flows, as 

revealed by the highly variable inverse-transformed KGE values and low-flow related FDC 

characteristics among these solutions. 

The model calibration framework developed here can also be used as a diagnosis tool. 

For instance, results revealed limitations of the SWAT model structure when representing the 

vertical redistribution of soil moisture, fall rate, and timing of annual extremes. Likewise, the 

representation of low flow magnitude and timing, rate of change of flows (especially rise and fall 

rates), and duration and frequency of extreme flows was limited in terms of interannual 
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variability. These limitations impact the definition of limits to hydrologic alteration, which are 

relevant when defining environmental flows and managing social-hydrological systems. Thus, 

water managers and modelers must account for limitations in hydrologic indices replication 

when defining or selecting streamflow regime targets as part of broader ecohydrological 

frameworks and applications in ungauged or poorly gauged watersheds. 

In this study, we focused on analyzing the objective space and output variables of 

interest. Analyzing the near-optimal decision variables (i.e., model parameters) and intermediate 

variables representing other water cycle components (e.g., evapotranspiration, soil moisture, 

groundwater) was out of the scope of this study. Our framework detected modeling limitations 

when representing various streamflow regime facets, which is useful to address structural 

inadequacies and improving the overall modeling process. Future research should involve 

redesigning hydrological models and tailoring modeling practices (e.g., input data processing, 

model parameters selection, choosing calibration/validation time periods/lengths) to better 

represent ecologically-relevant characteristics of riverine ecosystems. Likewise, we recommend 

future studies to analyze model parameter behavior and other water cycle components when 

using any of the proposed calibration methods. In this regard, the proposed performance-based 

method is flexible enough to implement multi-variable and multi-site model calibration. 
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6 PROBABILISTIC PREDICTIONS OF ECOLOGICALLY RELEVANT 

HYDROLOGIC INDICES USING A HYDROLOGICAL MODEL 

 

6.1 INTRODUCTION 

Hydrologic signatures (a.k.a., hydrologic indices) are quantitative features that 

characterize the statistical properties of hydrologic time series (McMillan, 2020b). These 

signatures, which are most likely obtained from streamflow data, have received increasing 

attention due to their significance in understanding hydrologic and ecological processes (Carlisle 

et al., 2017; McMillan, 2020a). In hydrological modeling, streamflow signatures are typically 

used for model evaluation (Euser et al., 2013; Gupta et al., 2008; Jehn et al., 2019), model 

calibration (Shafii and Tolson, 2015), and for informing watershed management in ungauged and 

poorly gauged watersheds (Guo et al., 2021). Ecologically relevant hydrologic indices (ERHIs) 

are a subset of hydrologic signatures that can be obtained from hydrologic simulations to predict 

the biological condition of freshwater ecosystems in sites lacking streamflow or biological data 

(Hernandez-Suarez and Nejadhashemi, 2018; Mazor et al., 2018). Likewise, simulated ERHIs 

can be used to evaluate hydrologic and ecological alterations due to anthropogenic interventions 

or changes in climate and land use (Bejarano et al., 2019; McKay et al., 2019; Sengupta et al., 

2018).  

Using hydrologic models to simulate ERHIs introduces uncertainty. However, 

uncertainty sources are not only limited to modeling uncertainties (i.e., inputs, structure, 

parameters, initial/boundary conditions, and measurement errors), but also include the signature 

computation method (Westerberg et al., 2016; Westerberg and McMillan, 2015), the time series 

length, and non-stationarity effects (Kennard et al., 2010a). For this reason, simulated ERHIs can 

result in large prediction errors, especially when hydrologic models do not explicitly target those 
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ERHIs during model calibration (Hallouin et al., 2020; Vigiak et al., 2018). Whether a 

calibration method accounts for uncertainties or not, it can be broadly classified into probabilistic 

and deterministic methods (Tasdighi et al., 2018). 

On one side, probabilistic methods for model calibration consider different uncertainty 

sources and can be classified into informal and formal approaches (Schoups and Vrugt, 2010). 

The most important difference in these two approaches resides in the likelihood function 

formulation (Beven and Binley, 2014). Informal methods use subjective measures (i.e., Limits of 

Acceptability) to identify those simulations that are a good fit to the observations (i.e., behavioral 

solutions), and then generate predictive distributions of the model parameters using sampling 

algorithms (Vrugt and Beven, 2018). Generally, the characteristics of model residual errors are 

treated implicitly and mapped onto the resulting parameter distributions (Beven and Smith, 

2015). In this context, hydrologic signatures are typically used to further constrain the 

identification of behavioral solutions (Blazkova and Beven, 2009). Examples using informal 

methods and EHRIs can be found in Kiesel et al. (2020, 2017). Meanwhile, formal methods 

explicitly consider a model of residual errors to formulate the likelihood function, providing 

uncertainty estimates for the parameters of both hydrological and error models (McInerney et al., 

2017; Smith et al., 2015). Under a Bayesian framework, different sources beyond parameter 

uncertainty can be explicitly addressed (Moges et al., 2021). However, the most common 

practice, which is also conceptually problematic, uses a lumped error model to account for those 

sources (Ammann et al., 2019). One of the major difficulties with hydrologic signatures has been 

the formulation of closed-form and tractable likelihood functions (Sadegh et al., 2015). Thus, 

these methods have been mainly implemented when the modeling objective is to predict the 

streamflow time series. However, in recent years, the application of signature-based formal 
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probabilistic calibration was introduced by implementing Approximate Bayesian Computation 

(ABC) methods. ABC methods do not require likelihood function evaluations and, instead, they 

sample Bayesian posterior distributions at the expense of a higher number of model evaluations 

(Fenicia et al., 2018; Kavetski et al., 2018; Sadegh and Vrugt, 2014).  

On the other side, deterministic methods are mainly comprised of optimization methods 

using single or multiple objective functions to generate parameter sets that provide the best fit 

between observations and simulations. Single-objective methods are rather unreliable for 

decision-making since they do not address equifinality and identifiability issues (Beven, 2006). 

In addition, they only provide point estimates of model parameters and predictions and ignore 

the distributional properties of the model residual errors (Farmer and Vogel, 2016). In contrast, 

multi-objective methods provide ranges of solutions (i.e., Pareto-optimal solutions). However, 

the resulting Pareto-optimal distribution of model parameters and predictions do not necessarily 

correspond to probabilistic solutions suitable for uncertainty analysis (Reichert and Schuwirth, 

2012; Tang et al., 2018). In ecohydrological applications, replication of ERHIs using 

deterministic methods have been the rule rather than the exception when performing model 

calibration (Hallouin et al., 2020; Hernandez-Suarez et al., 2018; Parker et al., 2019; Pool et al., 

2017; Sengupta et al., 2018; Shrestha et al., 2016, 2014; Vigiak et al., 2018; Vis et al., 2015; 

Zhang et al., 2016). However, it is worth noting that the reported prediction errors for some of 

these studies are originated based on the distribution of the relative differences between observed 

and point predictions of ERHIs across multiple locations (Vigiak et al., 2018), multiple 

calibration trials (Pool et al., 2018; Vis et al., 2015), or Pareto-optimal solutions (Hernandez-

Suarez et al., 2018). These distributions are valuable since they can be used in other modeling 
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processes as prior knowledge, especially when using probabilistic methods (Almeida et al., 

2013). 

Improvements in ERHIs prediction have been mainly driven by the choice of objective 

functions on untransformed or transformed streamflows. These objective functions target either 

specific flow conditions (i.e., high, low flows), regime facets (i.e., magnitude, duration, 

frequency, rate of change, timing), or hydrologic indices (Hallouin et al., 2020). As a result, 

several calibration strategies have been devised, some of them resulting in ensembles of model 

solutions (Hernandez-Suarez et al., 2018; Kiesel et al., 2020; Sengupta et al., 2018). Among 

these strategies, those using multi-objective calibration gained popularity since they consider 

tradeoffs among different targets (Efstratiadis and Koutsoyiannis, 2010; Kollat et al., 2012). 

However, these methods do not provide formal uncertainty estimates for model parameters and 

outputs. These estimates are relevant when predicting streamflows and ERHIs within the spatial 

domain of distributed or semi-distributed models. In addition, it is important to estimate 

uncertainty when developing and evaluating regionalization schemes based on hydrological 

modeling results (Addor et al., 2018; Almeida et al., 2016; Guo et al., 2021; Mazor et al., 2018; 

Moges et al., 2021; Prieto et al., 2019).  

Here, we evaluated the effect of prior knowledge obtained from multi-objective 

calibration on the resulting posterior parameter distributions and ERHIs predictions when using a 

time-domain Bayesian calibration method. This allows linking the advances in deterministic 

ERHIs prediction and uncertainty quantification. To the best of our knowledge, this is the first 

time that an evaluation of this kind is performed for predicting ERHIs. The objectives of this 

study were to 1) estimate the total uncertainty in predicting a set of ERHIs when targeting the 

overall streamflow time series, 2) compare the posterior model parameter distributions when 
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using non-informative versus Pareto-optimal priors, and 3) identify changes in parameter 

estimation performance when using non-informative versus Pareto-optimal priors. We performed 

this evaluation in an agriculture-dominated watershed in Michigan, US, using the Unified Non-

dominated Sorting Algorithm III (U-NSGA-III) (Seada and Deb, 2016) for multi-objective 

calibration, the Soil and Water Assessment Tool (SWAT) as the hydrological model, and the 

multiple-try Differential Evolution Adaptive Metropolis (ZS) (MT-DREAM(ZS)) algorithm 

(Laloy and Vrugt, 2012) for sampling the posterior distributions. For the likelihood function, we 

used a lumped residual errors model accounting for heteroscedasticity and autocorrelation 

(McInerney et al., 2017).  

6.2 MATERIALS AND METHODS 

We outlined two experiments using daily data to compare the performance of time-

domain Bayesian calibration under different prior knowledge conditions. We employed the same 

likelihood function regardless of the experiment. For each experiment, we defined two time 

periods with the same number of consecutive streamflow observations. In Experiment 1, we 

employed non-informative priors for inferring model and error parameters for each time period. 

Meanwhile, Experiment 2 was devised to evaluate the effect of prior knowledge obtained from 

multi-objective calibration in Bayesian parameter estimation. For this purpose, we obtained 

Pareto-optimal parameter distributions from one time period (Period 1) and used them as prior 

knowledge for calibrating the model using data for the other time period (Period 2). We 

compared the Pareto-optimal parameter distributions against the posterior distributions using 

Bayesian inference for Period 1 with non-informative priors. Likewise, we compared the 

predictive distributions for model parameters and ERHIs using informative and non-informative 
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priors under Period 2. Finally, we assessed the reliability, precision, and bias of the streamflow 

and ERHIs predictions for each experiment. 

6.2.1 Bayesian Parameter Estimation 

In this study, we assumed that a streamflow observation 𝑌̃𝑡 at time step 𝑡 is linked to a 

deterministic hydrological model 𝐻 with model parameters 𝜽𝐻, and given forcing data 𝑿̃, as 

follows, 

𝑌̃𝑡 ← 𝐻𝑡(𝜽𝐻, 𝑿̃) + 𝜀𝑡(𝜽𝜀)        (1) 

where, 𝜀𝑡 represents the raw residuals as an aggregated measure of predictive errors. We 

also assumed that the residuals follow a probability distribution with parameters 𝜽𝜀. Using the 

Bayes equation, the posterior probability distribution of hydrological and residual error model 

parameters can be obtained by conditioning the model to observations and the given forcing data 

(McInerney et al., 2017; Vrugt, 2016), 

𝑝(𝜽𝐻 , 𝜽𝜀|𝑿̃, 𝒀̃) ∝ 𝑝(𝒀̃|𝜽𝐻, 𝜽𝜀 , 𝑿̃)𝑝(𝜽𝐻, 𝜽𝜀)      (2) 

where, 𝑝(𝜽𝐻, 𝜽𝜀) is the joint prior distribution of hydrological and residual error model 

parameters, and 𝐿(𝜽𝐻, 𝜽𝜀|𝑿̃, 𝒀̃) ≡ 𝑝(𝒀̃|𝜽𝐻 , 𝜽𝜀 , 𝑿̃) is the likelihood function. In the following 

sections, we present the model of residual errors and corresponding likelihood function (section 

6.2.1.1), the prior distributions we used (section 6.2.1.2), and the sampling procedure to 

approximate the posterior distributions (section 6.2.1.3). 

6.2.1.1 Likelihood function 

The likelihood function summarizes the distance between the model simulations and 

observations and is built on top of the model of residual errors (Vrugt, 2016). The error model 

used here corresponds to a typical formulation in hydrological sciences that describes the total 

effect of all sources of error (Ammann et al., 2019). We followed a transformational strategy to 
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account for heteroscedasticity and skewness in predictive errors (McInerney et al., 2017). For 

this purpose, we used the Box-Cox or power transformation with parameter 𝜆 (Box and Cox, 

1964), 

𝑧[𝑌; 𝜆] = {
(𝑌𝜆 − 1) 𝜆⁄ ⁡⁡⁡if⁡𝜆 ≠ 0

log 𝑌 ⁡⁡⁡⁡⁡⁡⁡⁡⁡otherwise
          (3) 

Thus, the transformed residual 𝜂 at time step 𝑡 is obtained as follows, 

𝜂𝑡 = 𝑧[𝑌̃𝑡, 𝜆] − 𝑧[𝐻𝑡(𝜽𝐻, 𝑿̃); 𝜆]       (4) 

Since errors in daily hydrological model outputs are usually highly autocorrelated, we 

used a first-order autoregressive (AR1) model to consider the temporal persistence of the 

(transformed) residual errors, 

𝜂𝑡 = 𝜙𝜂𝑡−1 +𝑊𝑡         (5) 

where, 𝜙 is the autoregressive parameter and 𝑊𝑡 is the disturbance or innovation. We assumed 

that innovations followed a truncated Gaussian distribution to avoid negative streamflow 

predictions with parameters 𝜇 = 0, 𝜎 = 𝜎𝑊, and lower bound 𝐿𝑊,𝑡 (Fenicia et al., 2018), 

𝑊𝑡~𝒯𝒩 (0, 𝜎𝑊, 𝐿𝑊,𝑡(𝜽𝐻, 𝑿̃, 𝜂𝑡−1))        (6) 

Note that 𝐿𝑊,𝑡 is defined such that 𝑧[𝐻𝑡(𝜽𝐻, 𝑿̃); 𝜆] + 𝜂𝑡(𝜽𝜀) ≥ 𝑧[0; 𝜆], which makes it 

time-dependent. Assuming innovations are independent, the likelihood function is formulated as 

follows (Fenicia et al., 2018): 

𝐿(𝜽𝐻, 𝜽𝜀|𝑿̃, 𝒀̃) =∏
𝑓𝑁(𝑊𝑡|0, 𝜎𝑊)

1 − 𝐹𝑁(𝑧[0; 𝜆] − 𝑧[𝐻𝑡(𝜽𝐻, 𝑿̃); 𝜆] − 𝜙𝜂𝑡−1|0, 𝜎𝑊)
×
𝜕𝑧[𝑌̃𝑡; 𝜆]

𝜕𝑌

𝑁𝑡

𝑡=1

 

(7) 

where, 𝑊𝑡 = 𝜂𝑡 − 𝜙𝜂𝑡−1, 𝑓𝑁(𝑣|𝜇, 𝜎) is the Gaussian probability distribution function with mean 

𝜇 and standard deviation 𝜎 evaluated for 𝑣, 𝐹𝑁(𝑣|𝜇, 𝜎) is the corresponding cumulative 
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distribution function (CDF), and 𝑁𝑡 is the total number of observations. It is worth noting that for 

large 𝑁𝑡, which is the case for hydrologic time series, the likelihood is a very small number that 

can result in arithmetic underflow. Thus, it is common to work with the log-likelihood, 

ℒ(𝜽𝐻, 𝜽𝜀|𝑿̃, 𝒀̃), instead, 

ℒ(𝜽𝐻 , 𝜽𝜀|𝑿̃, 𝒀̃)

≅ −
𝑁𝑡
2
log 2𝜋 − 𝑁𝑡 log 𝜎𝑊 −

1

2𝜎𝑊
2 ∑(𝜂𝑡 − 𝜙𝜂𝑡−1)

2

𝑁𝑡

𝑡=2

+∑log
𝜕𝑧[𝑌̃𝑡; 𝜆]

𝜕𝑌

𝑁𝑡

𝑡=1

−∑log{1 − 𝐹𝑁(𝑧[0; 𝜆] − 𝑧[𝐻𝑡(𝜽𝐻, 𝑿̃); 𝜆] − 𝜙𝜂𝑡−1|0, 𝜎𝑊)}

𝑁𝑡

𝑡=2

 

(8) 

The complete set of error model parameters is 𝜽𝜀 = {𝜆, 𝜙, 𝜎𝑊}. In this study, we fixed the 

values of 𝜆 and 𝜙 to 0.2 and 0.8, respectively, following Evin et al. (2014) and McInerney et al. 

(2017) recommendations for reducing parameter interactions during model calibration.  

6.2.1.2 Prior distributions 

6.2.1.2.1 Experiment 1 – Non-informative priors 

In this experiment, we used uniform distributions that defined the feasible parameter 

space by providing the minimum and maximum values for the hydrological and error model 

parameters. Upper and lower limits for the hydrological model parameters were determined from 

the literature and previous modeling exercises in the study area (see section 6.2.4.3), whereas 𝜎𝑊 

limits were defined from an initial screening of modeling results. The initial states for the chains 

used by the Markov chain Monte Carlo (MCMC) sampling algorithm for Bayesian inference (see 

section 6.2.1.3) were drawn using Latin-Hypercube Sampling (McKay et al., 1979) subject to the 

aforementioned parameter limits. 
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6.2.1.2.2 Experiment 2 – Multi-objective model calibration  

A constrained, performance-based, multi-objective calibration targeting a set of ERHIs 

was executed to obtain near-optimal Pareto distributions of model parameters. We implemented 

the recently developed evolutionary multi-objective optimization algorithm U-NSGA-III (Seada 

and Deb, 2016). The calibration consisted in minimizing six objective functions 𝑓(𝜽𝐻) derived 

from performance metrics 𝑃𝑚(𝜽𝐻). Each 𝑓(𝜽𝐻)⁡is computed on transformed or untransformed 

streamflow values to accentuate different flow conditions or regime facets,  

𝑓𝑗(𝜽𝐻) = 1 − 𝑃𝑚𝑗
(𝜽𝐻)        (9) 

where, 𝑗 = 1, 2, … , 6. The performance metrics used in this study for calibration were the 

Kling-Gupta Efficiency (Gupta et al., 2009) computed on untransformed and inverse-

transformed values (𝐾𝐺𝐸 and 𝐾𝐺𝐸𝑖𝑛𝑣, respectively), the relative Index of Agreement 𝑑𝑟𝑒𝑙 

(Krause et al., 2005), and the coefficient of determination computed on untransformed, inverse-, 

and square-root-transformed values (𝑅2, 𝑅𝑖𝑛𝑣
2 , and 𝑅𝑠𝑞𝑟𝑡

2 , respectively). An optimization 

constraint, which must not be greater than 0, was defined to limit all targeted ERHIs to not 

exceed a predefined acceptability threshold 𝜏 in terms of relative error 𝑒𝑟𝑒𝑙(𝜽𝐻), 

𝑒𝑟𝑒𝑙𝑖(𝜽𝐻) =
𝐼𝑖 (𝐻(𝜽𝐻, 𝑿̃)) − 𝐼𝑖(𝒀̃)

𝐼𝑖(𝒀̃)
 

          (10) 

where, 𝐼𝑖 is the i-th ERHI evaluated for the simulation 𝐻(𝜽𝐻, 𝑿̃) and observations 𝒀̃. The 

constraint 𝐶𝑉(𝜽𝐻) was formulated to penalize high relative errors and for separating feasible 

from unfeasible solutions. An unfeasible solution results in ERHI values outside the predefined 

acceptability threshold, 
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𝐶𝑉(𝜽𝐻) =∑𝑘𝑖(𝜽𝐻)

𝑚

𝑖=1

[1 + 𝑤𝑖 (
|𝑒𝑟𝑒𝑙𝑖(𝜽𝐻)|

𝜏
− 1)] 

𝑘𝑖(𝜽𝐻) = {0⁡⁡⁡⁡if⁡
|𝑒𝑟𝑒𝑙𝑖(𝜽𝐻)|

𝜏
− 1 ≤ 0

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Otherwise

 

𝑤𝑖 =
1

𝑔 × ℎ𝑖
 

           (11) 

where, 𝑚 is the total number of ERHIs, 𝑤𝑖 is the weighting factor for the i-th ERHI, g is the 

number of ERHI categories, and ℎ𝑖 is the total number of ERHIs in the category that contains the 

i-th ERHI. The ERHIs used in this study and their categories are presented in section 6.2.4.4. 

The value of 𝜏 used in this study was 0.3 (Hernandez-Suarez et al., 2018), which means that all 

the targeted ERHIs must attain relative errors within 30%. Once the near-optimal Pareto 

solutions were obtained, we computed 𝜎𝑊 for each individual solution using equations 3 – 5. A 

multivariate kernel distribution was generated to have a non-parametric representation of the 

joint distribution of parameters 𝜽𝐻 and 𝜎𝑊 using the resulting near-optimal Pareto parameter 

sets. For this purpose, we employed the mvksdensity function in Matlab R2019b using a 

Gaussian kernel. An initial vector of bandwidths was defined using the Silverman’s rule of 

thumb (Silverman, 1986), 

𝑏𝑘 = 𝜎𝑘 [
4

(𝑑 + 2)𝑛
]

1
(𝑑+4)⁄

 

(12) 

where, 𝑑 is the number of dimensions (i.e., number of hydrological and error model parameters), 

𝑛 is the number of observations (i.e., Pareto-optimal solutions), 𝑘 = 1, 2, … , 𝑑 , and 𝜎𝑘 is the 

standard deviation of the k-th variate (i.e., parameter). This vector of bandwidths was further 
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refined by maximizing the agreement between the marginal empirical CDF of each parameter 

and the corresponding marginal CDF obtained from the multivariate kernel density distribution 

using a 5-fold cross-validation and a genetic algorithm. The resulting optimized multivariate 

kernel distribution was then used as the prior distribution 𝑝(𝜽𝐻, 𝜽𝜀) under this experiment. It is 

worth noting that the initial states for the chains used by the MCMC sampling algorithm were 

directly drawn from 𝑝(𝜽𝐻, 𝜽𝜀). 

6.2.1.3 Sampling algorithm 

In this study, the MT-DREAM(ZS) algorithm (Laloy and Vrugt, 2012) was used to 

efficiently explore the posterior distribution of hydrological and error model parameters. MT-

DREAM(ZS) is an adaptive MCMC algorithm using multiple-try sampling, snooker updating, and 

an archive of past states to improve the convergence of computationally intensive and high-

dimensional models (Vrugt, 2016). This method belongs to the Differential Evolution Adaptive 

Metropolis (DREAM) multi-chain family of algorithms for Bayesian inference. The original 

DREAM algorithm automatically adjusts the scale and orientation of the proposal distribution 

used for posterior inference. In addition, it employs subspace sampling and outlier chain 

correction while maintaining balance and ergodicity (Vrugt et al., 2009). DREAM(ZS) introduced 

the use of past samples (from an external archive) into the jump distribution. As a result, the 

sampling procedure requires a smaller number of chains to explore the target distribution, 

outliers do not need a forceful treatment, and chains can run in a distributed manner (Vrugt, 

2016). To ensure convergence (given the violation of Markovian principles introduced by 

adaptive Metropolis samplers), the adaptation rate decreases with the number of generations (Ter 

Braak and Vrugt, 2008). MT-DREAM(ZS) introduced multiple-try sampling in each of the chains, 
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creating 𝑚𝑡 different proposals in each chain that can be evaluated in parallel, which is more 

practical than running DREAM with large chain numbers (Laloy and Vrugt, 2012).  

Convergence to a stationary posterior distribution was monitored using the multivariate 

𝑅̂-statistic proposed by Gelman and Rubin (1992). The multivariate 𝑅̂-statistic, which is 

computed using the last 50% samples of each parallel chain, is used to evaluate whether the 

between- and within-covariance matrices of these chains are similar. When these matrices are 

very similar, the 𝑅̂-statistic is close to unity. An 𝑅̂-statistic below 1.2 is used in practice to 

declare convergence (Gelman et al., 2013). 

6.2.2 Generation of Predictive Distributions of ERHIs 

Predictive distributions were generated by propagating the posterior probability 

distributions for the model and error parameters through the hydrologic model and ERHIs 

computation methods. For an individual set of parameters 𝜽𝑖 = (𝜽𝐻
𝑖 , 𝜽𝜀

𝑖 ), a prediction of a given 

ERHI was obtained as follows (Fenicia et al., 2018; McInerney et al., 2017): 

1) Sample 𝑊𝑡 using equation 6. 

2) Obtain 𝜂𝑡
𝑖  using equation 5. For 𝑡 = 1, 𝜂𝑡

𝑖  is directly sampled and step 1 is ignored: 

𝜂1
𝑖 ← 𝑓𝑁(0, 𝜎𝜂

𝑖)           (13) 

where, 𝜎𝜂
2 = 𝜎𝑊

2 /(1 − 𝜙2) 

3) Compute the streamflow prediction at time step t for the given 𝜽𝑖 as follows: 

𝑌𝑡
𝑖(𝜽𝑖) = 𝑧−1(𝑧[𝐻𝑡(𝜽𝐻

𝑖 , 𝑿̃); 𝜆𝑖] + 𝜂𝑡
𝑖)        (14) 

where, 𝑧−1 is the inverse Box-Cox transformation. 

4) Once 𝑌𝑡
𝑖 is obtained for the 𝑁𝑡 time steps, the j-th ERHI is computed using equation 15: 

𝐸𝑅𝐻𝐼𝑗
𝑖 = 𝐼𝑗 (𝑌

𝑖(𝜽𝒊))          (15) 
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The parameter sets were taken from the last 20% posterior samples obtained by the MT-

DREAM(ZS) algorithm. 

6.2.3 Performance evaluation 

We computed three measures to quantify reliability, precision, and bias for evaluating the 

performance of the Bayesian parameter estimation under each experiment. A prediction is 

reliable when the observations can be considered samples of the predictive distribution (i.e., 

observations consistently fall within the prediction bounds). The reliability measure that was 

employed in this study represents the average absolute difference between the predictive 

quantile-quantile (PQQ) plot and a 1:1 line representing the CDF of a standard uniform 

distribution 𝑈(0,1) (McInerney et al., 2017). Regarding precision, we determined the average 

coefficient of variation of the predicted streamflows using the observations as a proxy to the 

average streamflow at each time step (McInerney et al., 2017). The precision measure represents 

the width of the prediction bounds. The following equation was used to compute the precision: 

Precision[𝑌, 𝑌̃] =
1

𝑁𝑡
∑

𝑠𝑡𝑑(𝑌𝑡)

𝑌̃𝑡

𝑁𝑡

𝑡=1

 

          (16) 

where, 𝑠𝑡𝑑(𝑌𝑡) is the standard deviation of streamflow predictions at time step 𝑡. Finally, we 

computed the absolute volumetric bias to evaluate the long-term water balance error of the 

predictions. For this purpose, we used the mean prediction value at each time step 𝑌̅𝑡: 

Bias[𝑌, 𝑌̃] = |
∑ 𝑌̃𝑡
𝑁𝑡
𝑡=1 − ∑ 𝑌̅𝑡

𝑁𝑡
𝑡=1

∑ 𝑌̃𝑡
𝑁𝑡
𝑡=1

|⁡ 

          (17) 

The reliability, precision, and bias measures used herein targeted the overall streamflow 

predictions; for the ERHIs predictions, we directly compared the resulting predictive 
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distributions against the ERHIs obtained from the observations. For the latter, we visually 

inspected whether the ERHIs from observations fell within the corresponding predictive bounds. 

Also, we verified whether the median relative errors felt within the nominal ±30% relative error 

range. This error range has been reported in previous studies as a reference value for uncertainty 

in ERHIs due to data length effects when working with 15-year time series (Kennard et al., 

2010a). In addition, we computed the coefficient of variation of each ERHI distribution using the 

observed ERHI as a reference and obtained the average relative error between each predicted and 

observed ERHI. 

6.2.4 Case study 

6.2.4.1 Study area and model 

We executed the calibration experiments in the Honeyoey Creek-Pine Creek Watershed 

located in east-central Michigan, US (Figure 14). This watershed has a drainage area of 1010 

km2, and its land use is predominantly agriculture, covering about 50% of the total area, followed 

by forests (~24%) and wetlands (~16%). Developed areas account for less than 4% of the total 

watershed area (Hernandez-Suarez et al., 2018). SWAT 2012, Rev. 622 was used as the 

deterministic hydrological model in equation 1 for predicting streamflow at the watershed outlet. 

SWAT is a process-based model widely used to simulate daily water quantity and quality time 

series at the watershed scale (Arnold et al., 2012). In SWAT, a watershed is divided into 

subwatersheds, which are comprised of hydrologic response units (HRUs). An HRU is a 

homogeneous land unit concerning land use/cover, soil type, and slope. In this study, the 

Honeyoey Creek-Pine Creek Watershed was divided into 250 subwatersheds, each one 

comprised by a single HRU representing the dominant land use, soil type, and slope conditions 

(Einheuser et al., 2012). SWAT was used to simulate daily streamflows from 2003 to 2014 

(Period 1) and from 1983 to 1994 (Period 2). Warm-up periods of 2 years (1981-1982, and 
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2001-2002) were used to reduce the effect of initial conditions in both periods. Potential 

evapotranspiration was estimated using the Penman-Monteith equation (Monteith, 1965). 

Surface runoff was obtained using the Soil Conservation Service (SCS) curve number method 

(USDA-SCS, 1972), and the selected routing method was the variable storage coefficient routine 

developed by Williams (1969). 

 

Figure 14 Study area location and major land uses 

6.2.4.2 Data collection 

Input data included the 30-m resolution National Elevation Dataset provided by the US 

Geological Survey (USGS, 2018), the 30-m resolution Cropland Data Layer provided by the 

National Agricultural Statistics Service of the US Department of Agriculture (USDA-NASS, 

2012), soil properties extracted from the Soil Survey Geographic Database (SSURGO) from the 

USDA Natural Resources Conservation Service (USDA-NRCS, 2020), and daily precipitation 

and maximum and minimum air temperature time series from 1981 to 2014 collected at two land 
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stations from the National Centers for Environmental Information of the National Oceanic and 

Atmospheric Administration (NOAA-NCEI, 2020). Missing values and remaining input weather 

data such as solar radiation, wind speed, and relative humidity were estimated using the SWAT 

built-in WXGEN stochastic weather generator (Neitsch et al., 2011). Daily observed streamflow 

records were obtained at the watershed outlet for the period of study from the Pine River Near 

Midland USGS gauging station 04155500 (USGS, 2020). 

6.2.4.3 Calibration parameters 

The set of 𝜽𝐻 to be estimated was comprised of 15 SWAT model parameters. Maximum 

and minimum limits for each parameter were defined following the model documentation 

(Neitsch et al., 2011) and previous studies (Herman et al., 2018; Hernandez-Suarez et al., 2018). 

Model parameters were adjusted during the calibration process either by replacing the original 

value with a new one or by perturbing the original value by a fraction. Most of the parameters 

were assumed to have the same value in every HRU. Only the Curve Number for moisture 

condition II (CN2) and the available water capacity of the soil layer (SOL_AWC) were assumed 

to spatially change and were adjusted by perturbing the initial default values by a global fraction. 

These global fractions were calibrated instead of estimating CN2 and SOL_AWC at each 

individual HRU. Calibration model parameters and their calibration ranges are presented in 

Table 11. 
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Table 11 Model calibration parameters and ranges 

Parameter Description Calibration range 

Biomix Biological mixing efficiency [0, 1] 

CN2* Initial Soil Conservation Service (SCS) runoff number for moisture 

condition II 

[-0.25, 0.25] 

Canmx Maximum canopy storage (mm H2O) [0, 100] 

Esco Plant uptake compensation factor [0, 1] 

Epco Soil evaporation compensation factor [0, 1] 

Alpha bf Baseflow alpha factor (days−1) [0, 1] 

Gw delay Groundwater delay time (days) [0, 500] 

Gwqmn Threshold depth of water in the shallow aquifer required for return flow 

to occur (mm H2O) 

[0, 5000] 

Gw revap Groundwater “revap” coefficient [0.02, 0.2] 

Revapmn Threshold depth of water in the shallow aquifer for “revap” or 

percolation to the deep aquifer to occur (mm H2O) 

[0, 1000] 

Rchrg dp Deep aquifer percolation fraction [0, 1] 

Ch n2 Manning’s n value for the main channel [0, 0.3] 

Ch k2 Effective hydraulic conductivity in main channel alluvium (mm h−1) [0, 500] 

Sol awc* Available water capacity of the soil layer (mm H2O mm−1 soil) [-0.25, 0.25] 

Surlag Surface runoff lag coefficient [1, 24] 

Notes: 

*These parameters were adjusted by perturbing the initial default spatially-varying values for each HRU by a 

global fraction. 

 

6.2.4.4 Ecologically Relevant Hydrologic Indices 

The selection of hydrologic indices depends on the ecohydrological application 

objectives. For instance, some studies target non-redundant hydrologic metrics for streamflow 

classification (Eng et al., 2017), others target specific hydrologic indices relevant to the condition 

of specific biological communities (George et al., 2021). Our goal in this study was to calibrate 

the hydrologic model targeting a balanced representation of the streamflow regime, which is of 

interest when defining environmental flows (Poff et al., 2010). Therefore, we selected 32 Indices 

of Hydrologic Alteration (IHA) (The Nature Conservancy, 2009), describing the central 

tendency of several streamflow regime characteristics. These indices were originally classified 

into five categories representing distinct regime facets such as magnitude, duration, frequency, 

timing, and rate of change of flows (Richter et al., 1997). In addition, we considered seven 

indices proposed by Archfield et al. (2014) (a.k.a., Magnificent seven) describing basic 
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properties of streamflow time series such as central tendency, variability, skewness, kurtosis, 

autocorrelation, and seasonality. The list of 39 ERHIs is presented in Table 12. 

Table 12 List of ERHIs used in this study 

Category Index* Description 

Magnitude of monthly water 

conditions 

MA12 – MA23 Mean monthly flows from January to December (m3 s-1) 

Magnitude and duration of 

annual extreme water 

conditions 

DL1 – DL5 Annual minimum with 1-, 3-, 7-, 30-, and 90-day 

moving average flow (m3 s-1) 

DH1 – DH5 Annual maximum with 1-, 3-, 7-, 30-, and 90-day 

moving average flow (m3 s-1) 

ML17 Baseflow index based on the 7-day minimum flow 

Timing of annual extreme 

water conditions 

TL1 Julian day of annual minimum 

TH1 Julian day of annual maximum 

Frequency and duration of high 

and low pulses 

FL1 Mean low flow pulse count per water year (year−1) 

DL16 Mean low flow pulse duration (days) 

FH1 Mean high flow pulse count per water year with a 

threshold equal to the 75th percentile of the entire flow 

record (year−1) 

DH15 Mean high flow pulse duration with a threshold equal to 

the 75th percentile of the entire flow record (days) 

Rate and frequency of water 

condition changes 

RA1 Rise rate (m3 s−1 d−1) 

RA3 Fall rate (m3 s−1 d−1) 

RA8 Reversals (year−1) 

Magnificent seven MAG1 – MAG4 First four L–moments (mean, coefficient of variation, 

skewness, and kurtosis) 

MAG5 Autoregressive lag-one AR(1) correlation coefficient 

MAG6 – MAG7 Amplitude and phase of the seasonal signal 

* Index abbreviations for Indicators of Hydrologic Alteration (IHA) as presented by Olden and Poff (2003). 

 

6.2.4.5 Experiments set up 

The U-NSGA-III algorithm was implemented using the pymoo library in Python 3.7 

(Blank and Deb, 2020). We developed a Python interface to modify SWAT’s input text files to 

link pymoo and SWAT. The multi-objective optimization algorithm was executed for 1000 

generations, using 100 well-spaced reference directions obtained with the Riesz s-Energy method 

(Blank et al., 2021). This resulted in a total number of 100,000 model evaluations. Other U-

NSGA-III parameters included the crossover probability, the distribution index for the Simulated 

Binary Crossover operator, the mutation probability, and the distribution index for the 

polynomial mutation operator, defined as 0.9, 10, 1/15 (i.e., the inverse of the number of the 
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hydrological model calibration parameters), and 20, respectively. The MT-DREAM(ZS) algorithm 

was executed in Matlab R2019b using the MT-DREAM(ZS) package developed by Vrugt (2016). 

The SWAT interface in Python was linked with Matlab to compute the log-likelihood function. 

MT-DREAM(ZS) was executed using three Markov chains and five multi-try proposals for 10,000 

generations (for a total of 150,000 model evaluations). Additional MT-DREAM(ZS) parameters 

were assigned the default values reported by Vrugt (2016). The calibration experiments were 

executed using up to 20 threads in parallel on a machine equipped with two Intel® Xeon® CPU 

E5-2640 Processors at 2.5 GHz with 64 GB RAM running Ubuntu 16.04.7 LTS. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Convergence of multi-objective and Bayesian calibration experiments 

Convergence of the U-NSGA-III algorithm (Experiment 2, Period 1) was monitored 

using the Hypervolume Indicator (Auger et al., 2009), which started to show a steady behavior 

after 800 generations (i.e., 80,000 model evaluations). The first feasible solution (i.e., model 

simulation with all the selected ERHIs within 30% relative error) was found after 4,800 model 

evaluations. The total computation time for the multi-objective calibration was 32.43 hours. 

Regarding the Bayesian calibration experiments, the MT-DREAM(ZS) algorithm converged after 

5,400 generations (i.e., 81,000 model evaluations) for the Experiment 1, Period 1; 8,400 

generations (i.e., 126,000 model evaluations) for the Experiment 1, Period 2; and 6,200 

generations (i.e., 93,000 model evaluations) for the Experiment 2, Period 2. The total 

computation times for the Bayesian calibration experiments, which were simultaneously 

executed in the same machine, were 118.74 hours for Experiment 1, Period 1; 120.19 hours for 

Experiment 1, Period 2; and 118.97 hours for Experiment 2, Period 2. It is worth noting that 

Bayesian calibration using MCMC sampling had 50% more model evaluations than the multi-
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objective calibration. According to the results, Bayesian calibration convergence using prior 

knowledge was 26% faster than the non-informative case. This faster convergence can be 

partially attributed to the further constrained search space for the informative case through the 

prior distribution.  

6.3.2 Comparison between posterior parameter distributions using non-informative 

priors and Pareto-optimal results 

The distribution of the hydrologic and error model parameters considered in this study 

are presented in Figure 15 for each experiment and calibration period. Under Experiment 1, some 

parameter distributions were similar for both calibration periods, whereas others showed a very 

distinct behavior. The latter group was comprised mostly of soil- and groundwater-related 

parameters: Epco, Gwqmn, Gw revap (which represents water movement from the shallow 

aquifer to the overlying unsaturated zone), Rchrg dp, and the Ch k2 (associated to transmission 

losses in the main channel). The standard deviation of the transformed autocorrelated residuals 

𝜎𝑊 was greater than period 2, indicating a higher total uncertainty in streamflow predictions in 

period 2 compared to period 1. These differences were perhaps originated by the time-varying 

nature of model parameters driven by non-stationarity effects from input weather data and 

changes in land use (Xiong et al., 2019). 

Regarding Experiment 2, parameter distributions were more consistent across the two 

calibration periods compared with Experiment 1. This behavior revealed the strong influence of 

the prior distribution on the Bayesian calibration results for period 2. However, some parameters 

showed important differences, including Canmx (related to surface water interception) and Alpha 

bf (related to the shape of recession curves). These differences were originated from the 

contribution of new data under period 2. Excepting the global multiplier for Sol awc, the 

posterior parameter distributions from Bayesian calibration (i.e., period 2) were narrower 
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compared to the multi-objective calibration distributions (i.e., period 1) for Experiment 2. This 

reduction in parametric uncertainty resulted from the assimilation of a greater amount of 

information (i.e., Experiment 2, period 2 ultimately used information from both periods 1 and 2). 

 

Figure 15 Distribution of model parameters obtained from multi-objective calibration 

(Experiment 2, Period 1 – MOOP1) and Bayesian parameter estimation (Experiment 1, Period 1 

– E1P1; Experiment 1, Period 2 – E1P2; Experiment 2, Period 2 – E2P2). Box and whisker plots 

represent the 50% and 95% confidence limits, respectively; points represent median parameter 

values. Parameter descriptions are reported in Table 11. *These parameters were calibrated using 

global multipliers 

In general, Experiment 2 distributions were drastically narrower than Experiment 1 

distributions. Bayesian calibration with non-informative priors (especially Experiment 1, period 

1) resulted in poorly-informative posteriors. These posteriors included distributions for Biomix, 

groundwater parameters such as Gwqmn, Gw revap, and Revapmn, and Surlag. Poorly-

informative posteriors are related to the equifinality problem, indicating that different parameter 

combinations yield similar outputs (Beven, 2006). This may apply to the groundwater parameters 

interacting with each other and Surlag, which represents water storage. Likewise, non-

informative posteriors are indicative of a low sensitivity of the modeling outputs to changes in 

those particular parameters, which can explain Biomix behavior. Nevertheless, Experiment 1, 

period 1 attained the lowest 𝜎𝑊, which can offset a lower total uncertainty in streamflow 

predictions. 
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The reduction in parametric uncertainty attained by Experiment 2 was mainly driven by 

the constraints to ERHIs simulation accuracy, introduced by the proposed multi-objective 

calibration strategy. Another effect of the ERHIs constraints was the difference in the actual 

range of values for certain parameters. For instance, Experiment 2 results indicated that the 

global multiplier perturbing initial CN2 values was around -25%, whereas Experiment 1 results 

indicated the opposite (i.e., around +25%). Higher CN2 makes the watershed more impervious, 

resulting in higher runoff generation (and therefore higher streamflows). Similarly, while 

Experiment 2 resulted in Surlag values close to unity, Experiment 1 resulted in Surlag values 

mostly between 10 and 20. Surlag controls the fraction of total available water that enters the 

main channel on a daily basis; higher Surlag values result in higher fractions. Likewise, 

Experiment 2 generated Gw delay close to zero, whereas Experiment 1 yielded values greater 

than 200 days. Gw delay represents the time that water spends in the vadose zone before 

becoming shallow aquifer recharge. Gw delay ultimately affects groundwater contributions to the 

main channel, which also impacts low-flow dynamics. 

6.3.3 Performance of uncertainty quantification of daily streamflows 

Uncertainty quantification performance of streamflow predictions is presented in Figure 

16 for each experiment and calibration period. As expected, the streamflow prediction bounds 

resulted in a lower parametric uncertainty for Experiment 2, which was consistent with the 

narrower parameter distributions presented in Figure 15 and the effects of the ERHIs’ 

optimization constraints. In fact, parametric uncertainty for Experiment 2, Period 2 (i.e., 

Bayesian parameter estimation using multi-objective calibration prior) was drastically lower 

compared to the other cases (~72% narrower compared to Experiment 1 for the same period). 

Regarding total uncertainty, the hydrographs in Figure 16 (left column) reveal wider limits for 



 147 

low flows in Experiment 1 (i.e., non-informative priors), and wider limits for high flows in 

Experiment 2. 

 

Figure 16 Uncertainty quantification performance using multi-objective calibration and 

Bayesian parameter estimation. The hydrographs (left column) represent the 95% prediction 

bounds for streamflow; light gray is for total uncertainty, dark gray is for parametric uncertainty, 

red line are observations. The middle column presents the corresponding quantile-quantile plots 

(PQQ) using a standard uniform distribution. The right column presents the overall performance 

indices for reliability (R), precision (P), and Bias. a) Experiment 1, Period 1; b) Experiment 2, 

Period 1; c) Experiment 1, Period 2; d) Experiment 2, Period 2 

In terms of reliability, PQQ plots indicated that Experiment 1 (Figure 16 row b, middle 

column) slightly over-estimated predictive uncertainty under Period 1 (curve above the 1:1 

diagonal at the lower-left corner and below the same line at the upper-right corner). Meanwhile, 

Pareto-optimal solutions (Experiment 2, Figure 16 row b, middle column) over-predicted 

streamflows under the same calibration period (curve was mostly below the 1:1 diagonal). The 
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latter occurred because total uncertainty was estimated using the 𝜎𝑤 obtained from the residuals 

of each Pareto-optimal solution. Since the multi-objective calibration strategy did not consider 

the additive error term included in the Bayesian calibration framework, the streamflow 

predictions resulted in higher values by explicitly adding the residual innovations to the Pareto-

optimal simulations. Regarding Period 2, PQQ plots indicated excellent reliability for the 

streamflow predictions in both experiments (Figure 16 rows c and d, middle column).  

When statistically comparing the observed quantiles from both experiments with a 95% 

confidence level, we did not find evidence of a significant difference in the reliability measure 

under Period 2 (p = 0.070). For Period 1, the reliability was significantly different for both 

experiments (p = 1.7 x 10-5), with Experiment 1 presenting a better result overall (i.e., 10% vs. 

13%, see Figure 16, right column). Regarding precision, no evidence of a significant difference 

was found between the two experiments under Period 1 (p = 0.11). Meanwhile, Experiment 2 

resulted in a higher precision than Experiment 1 under Period 2 (58% vs 66%, p = 1.3 x 10-8). 

Regarding bias in the long-term water balance, no significant difference was found for Period 1 

(p = 0.40), whereas for Period 2, Experiment 2 attained a significantly lower bias compared with 

Experiment 1 (4% vs. 6%, p = 0.0059). In other words, Bayesian calibration using multi-

objective priors resulted in lower total uncertainty in streamflow predictions with lower bias in 

long-term water balance and no significant loss in reliability. 

6.3.4 Performance of uncertainty quantification of ERHIs 

Figure 17 shows the distribution of the relative errors for the 32 IHA and Magnificent 

seven indices selected in this study and reported in Table 12. This figure presents the parametric 

predictive distributions for the multi-objective calibration under Period 1 because 𝜎𝑤 was not 

directly calibrated in this case. As expected, all Pareto-optimal predictions fell within the 30% 
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relative error range due to the optimization constraints in ERHIs accuracy. However, note that 

only about 50% of the ERHIs computed on the observed streamflows fell within the Pareto-

optimal predictive distributions. The situation was not better for the non-informative Bayesian 

calibration predictions under the same period. Meanwhile, the non-informative case under 

Period 2 contained 64% of the observed ERHIs, against 56% for Experiment 2 (see columns 3 

and 4 in Table 13). Furthermore, all the predictive distributions for indices under the “frequency 

and duration of high and low pulses” category did not contain observed ERHIs under Period 2. 

The same situation was observed for DL1 (i.e., annual daily minimum), RA8 (i.e., reversals), and 

MAG3 (i.e., L-skewness). Distributions obtained with the Bayesian calibration using prior 

knowledge were particularly limited in the prediction of low-flow-related ERHIs across all the 

streamflow regime facets (i.e., magnitude, duration, frequency, rate of change, and timing). It is 

worth noting that Bayesian calibration using prior knowledge resulted in narrower predictive 

distributions compared with the non-informative case under Period 2 (see columns 7 and 8 in 

Table 13), which explains the tradeoff between precision and reliability. 

The aforementioned limitations in the accuracy of ERHIs predictive distributions were 

not surprising since we were trying to fit multiple streamflow facets simultaneously. Moreover, 

total uncertainty propagation through ERHIs computation affects precision and impacts the 

overall central tendency of the predictive distributions. Instead, our main interest was to limit the 

bias and the overall dispersion within the nominal 30% relative error range. When comparing 

the median ERHIs relative errors against the acceptability threshold, we found that both 

experiments under Period 2 yielded 90% of the median ERHIs within the acceptability threshold. 

For Experiment 2, ERHIs with the median outside the acceptability range include MA18-19 (i.e., 

monthly flows for July and August, summer flows), DL1, and FH1 (i.e., frequency of high flow 
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pulses). For Experiment 1. ERHIs with the median outside the acceptability range include MA12 

and MA15 (i.e., monthly flows for January and April), TH1 (i.e., Julian day of annual 

maximum), and FH1. 

 

Figure 17 Distribution of relative errors of the selected ERHIs using multi-objective calibration 

(Experiment 2, Period 1 – MOOP1) and Bayesian parameter estimation (Experiment 1, Period 1 

– E1P1; Experiment 1, Period 2 – E1P2; Experiment 2, Period 2 – E2P2). Box and whiskers 

represent the 50% and 95% confidence limits, respectively; points represent median relative 

error values; the vertical dotted line represents the zero axis, the gray area represent the nominal 

30% ERHI uncertainty. Index abbreviations are reported in Table 12 

In general, Experiment 2 exhibited a better performance in ERHIs prediction compared 

with Experiment 1 because the overall precision had an average increase of ~32%. Regarding 

bias, ~59% ERHIs exhibited lower (better) values for Experiment 2 compared with the non-

informative case. It is worth noting that ERHIs predictions behaved differently depending on the 

calibration approach, as revealed by the differences in some posterior model parameter 

distributions. For instance, Experiment 1 increased runoff generation and transmission losses and 

regulated groundwater return to the main channels. Meanwhile, Experiment 2 decreased runoff 
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generation, increased water storage, and increased groundwater and lateral flow contributions. 

As a result, non-informative Bayesian calibration generated results with a lower bias for low 

flow ERHIs compared with Experiment 2. Likewise, Experiment 2 resulted in a lower bias for 

high flow ERHIs compared with Experiment 1. The main factors contributing to these 

differences were the constraints inherited through the informative prior distribution and the 

likelihood function (particularly, the transformational approach selected to address 

heteroscedasticity). Deciding for a preferred calibration option ultimately requires a better 

understanding and assessment of the internal modeling processes using observations for 

variables of other water cycle components. Also, a better characterization of other uncertainty 

sources is required. 

Table 13 Performance of predictive distributions of ERHIs obtained under Period 2. Reliability 

was evaluated by identifying whether the distributions contained the ERHIs from observations, 

and whether the median of the distributions was within the ±30% relative error range 

ERHI Category ERHI 

Dist. contains 

observed ERHI 

Median within 

±30% range 
Precision (%) Bias (%) 

Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 

Magnitude of monthly 

water conditions 

MA12  ✓  ✓ 14.4 6.8 49.6 -2.7 

MA13  ✓ ✓ ✓ 12.8 7.2 27.9 1.8 

MA14  ✓ ✓ ✓ 6.4 5.8 -17.4 -4.7 

MA15  ✓  ✓ 7.7 5.7 -41.8 -8.8 

MA16 ✓  ✓ ✓ 12.6 8.1 -13.3 22.7 

MA17 ✓ ✓ ✓ ✓ 13.1 8.4 -9.6 13.9 

MA18 ✓  ✓  20.2 12.1 29.9 53.5 

MA19 ✓  ✓  17.5 10.9 26.1 34.9 

MA20 ✓ ✓ ✓ ✓ 12.9 9.4 5.2 -1.0 

MA21 ✓ ✓ ✓ ✓ 9.3 9.0 -15.9 4.9 

MA22  ✓ ✓ ✓ 9.2 7.4 -24.5 5.0 

MA23 ✓ ✓ ✓ ✓ 11.7 6.3 2.2 -4.3 
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Table 13 (cont’d). 

Magnitude and 

duration of annual 

extreme water 

conditions (mean daily 

flow) 

DL1   ✓  12.3 8.3 -28.0 -30.5 

DL2 ✓  ✓ ✓ 12.6 8.3 -21.6 -24.0 

DL3 ✓ ✓ ✓ ✓ 13.1 8.4 -12.5 -14.9 

DL4 ✓ ✓ ✓ ✓ 15.0 8.8 17.9 15.2 

DL5 ✓  ✓ ✓ 11.9 7.0 12.2 17.3 

DH1  ✓ ✓ ✓ 10.6 7.6 -27.3 -8.0 

DH2 ✓ ✓ ✓ ✓ 10.6 7.3 -24.8 -6.7 

DH3 ✓ ✓ ✓ ✓ 9.9 6.7 -21.3 -5.9 

DH4 ✓ ✓ ✓ ✓ 8.1 5.8 -14.4 -2.2 

DH5 ✓ ✓ ✓ ✓ 7.1 4.5 -12.4 2.0 

ML17 ✓  ✓ ✓ 13.7 7.3 -6.6 -18.1 

Timing of annual 

extreme water 

conditions 

TL1 ✓  ✓ ✓ 11.2 8.1 0.8 18.0 

TH1  ✓  ✓ 34.7 33.5 -59.2 -27.0 

Frequency and 

duration of high and 

low pulses 

FL1   ✓ ✓ 13.8 7.2 29.0 27.6 

DL16   ✓ ✓ 8.8 6.9 -27.6 -27.8 

FH1     11.2 8.0 46.0 30.5 

DH15   ✓ ✓ 7.2 6.7 -28.5 -20.1 

Rate and frequency of 

water condition 

changes 

RA1 ✓ ✓ ✓ ✓ 6.6 3.6 -12.6 4.3 

RA3 ✓  ✓ ✓ 8.1 4.2 12.1 25.1 

RA8   ✓ ✓ 1.9 1.8 29.5 29.5 

Magnificent seven 

MAG1 ✓ ✓ ✓ ✓ 6.4 3.4 -6.2 4.3 

MAG2 ✓ ✓ ✓ ✓ 4.4 2.3 -6.9 0.1 

MAG3   ✓ ✓ 5.4 3.7 -15.2 -9.8 

MAG4 ✓  ✓ ✓ 7.8 5.2 -14.7 -16.7 

MAG5 ✓ ✓ ✓ ✓ 2.5 2.0 1.7 -2.1 

MAG6 ✓ ✓ ✓ ✓ 20.0 10.7 4.9 -15.7 

MAG7 ✓  ✓ ✓ 5.9 3.4 -12.2 7.5 

Note: Exp. 1 = Experiment 1; Exp. 2 = Experiment 2 

6.4 CONCLUSIONS 

In this study, we successfully linked multi-objective calibration with Bayesian parameter 

estimation for ERHIs uncertainty quantification. We achieved this by using a multivariate prior 

distribution of model parameters based on near-optimal Pareto solutions. The connection allowed 

the transfer of predefined ERHIs accuracy constraints into the overall Bayesian inference 

framework. The main advantage of the developed strategy is the use of multiple sources of 

information contained within a single continuously measured quantity for improving streamflow 

regimes prediction. Other benefits – compared with Bayesian calibration using non-informative 
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priors – included: 1) faster convergence to a stationary multivariate posterior distribution of 

model parameters using the MT-DREAM(ZS) algorithm., 2) drastic reduction of parametric 

uncertainty in streamflow predictions, 3) higher precision in streamflow predictive uncertainty 

with lower bias in the long-term water balance and no significant loss in reliability, and 4) higher 

precision in ERHIs’ prediction. 

It is worth noting that using prior knowledge had an important effect on how the 

hydrological model internally simulated surface runoff, interflow, and baseflow, as reflected by 

differences in related parameter posteriors. For example, when using non-informative priors, the 

chosen likelihood function favored the representation of low flows at the expense of high flows. 

Meanwhile, multi-objective calibration priors resulted in the opposite outcomes, yielding better 

results for high flows and behaving rather poorly for low flows. Therefore, further work is 

needed for understanding the tradeoffs between priors and likelihood functions for improving 

streamflow and ERHIs prediction. Ultimately, deciding on a particular modeling path depends on 

a better characterization of uncertainty sources (e.g., weather data, land use change, non-

stationarity effects) and the incorporation of additional observations for other water cycle 

components (e.g., evapotranspiration, soil moisture, groundwater levels, leaf area index). Also, 

persistent limitations in ERHIs prediction for low flows, rate of change, and frequency and 

duration of high and low pulses require the revision of modeling workflows and structures to 

describe the ecohydrological behavior of freshwater ecosystems better. 
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7 CONCLUSIONS 

 

This research developed different calibration strategies to improve the predictability of 

ERHIs using hydrological modeling. These strategies were tested in an agriculture-dominated 

watershed in Michigan, US. The first study evaluated the predictability of an exhaustive list of 

ERHIs by comparing the performance of two multi-objective and three single-objective 

formulations for model calibration. The second study improved the multi-objective formulations 

by explicitly targeting a subset of ERHIs, providing a balanced representation of the overall 

streamflow regime. Finally, the third study quantified the uncertainty in ERHIs prediction. For 

this purpose, multi-objective calibration and Bayesian parameter estimation were linked using 

near-optimal Pareto parameter distributions as prior knowledge. The overall process 

implemented watershed modeling, streamflow regime characterization, evolutionary multi-

objective optimization, MCDM methods, and Bayesian inference using adaptive MCMC 

sampling. The following can be concluded from this research: 

 The multi-objective calibration strategy based on NSE calculated on different streamflow 

transformations was superior to the RMSE-based strategy using flow separation. Specifically, 

the NSE-based strategy achieved a faster convergence, higher accuracy in ERHIs simulation, 

lower variability in ERHIs solutions, and narrower distributions of Pareto-optimal model 

parameters. 

 NSE-based single-objective strategies calculated on untransformed and square-root-

transformed streamflows outperformed the NSE- and RMSE-based multi-objective strategies 

in terms of accuracy in high-flow indices estimation.  
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 No calibration approach among the two multi-objective and three single-objective strategies 

tested in the first study was considered as the best for all ERHIs. Instead, they can be regarded 

as complementary to each other. However, the multi-objective strategies were preferred over 

the single-objective ones because they provided ranges of solutions while accounting for 

tradeoffs between different flow conditions. 

 Outcomes from the first study help decision-makers in identifying which simulated ERHIs are 

more reliable when defining environmental standards and limits to human-driven hydrologic 

alteration. Having multiple optimal solutions provide natural resources managers with several 

options when defining these standards or limits under varying conditions (e.g., low, moderate, 

high flows). 

 Obtaining a balanced representation of the overall streamflow regime is not directly related to 

improvements in a particular performance metric computed on streamflow time series. Instead, 

the balance responds to the interaction between different regime facets and flow conditions. 

 It was possible to obtain consistent runoff simulations using multiple objective functions based 

on ERHIs that represent different streamflow regime facets. This was achieved without using 

any objective function computed on streamflow time series, at the expense of higher variability 

in the near-optimal Pareto solutions. 

 Explicitly constraining or targeting ERHIs when calibrating a hydrological model, boosts its 

ability in representing those indices. Particularly, the performance-based strategy constraining 

the ERHIs accuracy was preferred for its lower variability in near-optimal Pareto solutions. 

 Variabilities in the near-optimal Pareto solutions for both performance- and signature-based 

strategies were mainly driven by the model representation of low flows, as revealed by highly 

variable inverse-transformed KGE values and related Flow Duration Curve metrics. 
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 The performance-based strategy tested in the second study can incorporate acceptability 

thresholds for ERHIs prediction defined by decision-makers beforehand. These thresholds are 

generally based on additional information such as preferences of riverine species and socio-

economic criteria. Therefore, the overall ecohydrological modeling process can be easily 

connected to broader decision-support tools. 

 The overall bias and precision in streamflow predictions increased at the expense of a slight 

reduction in reliability. Still, the best precision in streamflow predictions was hardly below 

60%. 

 In general, ERHI predictive distributions were narrower and more accurate when using multi-

objective calibration prior knowledge. However, ERHIs related to low flows presented a lower 

bias compared with the non-informative case. 

 While most of the ERHIs predictive distributions fell within the nominal 30% relative error 

range (i.e., expected uncertainty due to data length and non-stationarity), over 46% of ERHIs 

computed on streamflow observations did not fell within the predictive distributions, which 

can be related to model structure inadequacies. 

 All the strategies developed in this research revealed limitations of the SWAT model structure 

when representing the vertical redistribution of soil moisture, rate of change, and timing of 

annual extremes. Particularly, the simulated interannual variability of low flow magnitude and 

timing, rise and fall rates, and duration and frequency of extreme flows was very inaccurate. 

 Limitations in the representation of interannual variability have important repercussions in the 

definition of limits to hydrologic alteration, which is a major issue in freshwater systems 

protection and restoration. Thus, modelers and policymakers should account for these 
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limitations when implementing broader ecohydrological applications in ungauged and poorly 

gauged watersheds. 

 Regarding the third study, simulated ERHIs with wide ranges of variability can be seen as less 

reliable for decision-makers. As a result, other ERHIs with narrower variability can be chosen 

for making decisions using modeling results, or additional efforts can be pursued to reduce the 

uncertainty in the ERHIs of interest. 
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8 FUTURE RESEARCH 

 

This research presented novel calibration strategies based on multi-objective optimization 

and Bayesian inference to improve the predictability of ERHIs when using hydrological models. 

By linking multi-objective calibration results with Bayesian parameter estimation, multiple 

sources of information contained within a single continuously measured quantity (i.e., 

streamflow) can contribute to the overall uncertainty quantification process. In order to enhance 

the reliability of the proposed strategies, the following recommendations are provided here for 

further studies: 

 Extend the calibration strategies spatially and temporally. The developed strategies were 

tested in a watershed with a single streamflow gauging station. Therefore, it is recommended 

that future studies implement these strategies considering multiple locations for calibration and 

validation purposes. For the former, the multi-objective calibration approach is flexible enough 

for incorporating multi-site calibration. Likewise, a third independent time period should be 

added to validate the predictive distributions that are built upon data from two other periods 

(one for multi-objective calibration and the other for Bayesian calibration using prior 

knowledge). In addition, the developed strategies should be extended to consider time-varying 

parameters and their effects on ERHIs predictability. 

 Explicitly consider other uncertainty sources. In this research, only the parametric uncertainty 

was addressed explicitly. Additional uncertainty sources were aggregated into a lumped error 

model. Therefore, extending the Bayesian inference framework is recommended to account for 

other sources such as input (e.g., land use, weather, soil), model structure, measurement errors, 

data length, non-stationarity effects, and ERHIs computation methods. In addition, other error 
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models should be tested to evaluate whether a particular formulation is better suited for ERHIs 

prediction. A multi-level optimization approach can be suitable for trying different 

autocorrelation models/coefficients and transformational approaches, preventing parameter 

interaction issues. 

 Validate the modeling results with observations for other water cycle components. Multi-

variable calibration can be easily incorporated into the developed calibration strategies. With 

the advent of remotely sensed products and integrated modeling frameworks, it is 

recommended that future studies evaluate the predictability of ERHIs when considering 

additional variables representing other components of the hydrological cycle such as 

evapotranspiration, soil moisture, groundwater levels, and/or leaf area index. 

 Apply the calibration strategies with different model structures. This research used SWAT as 

the hydrological model. Since several limitations were identified for this model, it is 

recommended to implement the developed strategies with other model structures and under 

different spatial scales (e.g., regional, national, continental) and time resolutions (e.g., sub-

daily, monthly with disaggregation techniques) to evaluate any improvements in the prediction 

of ERHIs under different modeling paradigms.  

 Implement evolutionary multi-objective optimization with stochastic objective functions. The 

connection between multi-objective optimization and Bayesian inference developed in this 

research was built upon the prior distribution. However, additional integration approaches 

should be examined, such as the formulation of stochastic objective functions that incorporate 

error models to quantify the total uncertainty. 

 Quantify uncertainty throughout broader ecohydrological applications. In this research, we 

obtained prediction distributions for selected ERHIs. ERHIs are generally used as explanatory 
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variables for predicting other quantities of interest in ecohydrological applications, such as 

biological indicators or environmental flow settings. Therefore, future studies should consider 

these distributions for uncertainty quantification of ecohydrological variables.  

 Integrate surrogate modeling for computationally intensive models. One of the main 

limitations of the integrated multi-objective calibration and Bayesian inference process is the 

requirement of large numbers of model executions. In general, MCMC methods are sequential 

approaches with limited parallelization capabilities. In order to address this issue, new 

strategies incorporating surrogate models should be considered. 

 Test uncertainty quantification results in practical decision-making scenarios. Uncertainty 

analysis provides a higher transparency to the modeling process and to the discussion between 

modelers and policy and decision makers. Futures studies should consider the evaluation of 

modeling uncertainty effects on the definition of environmental standards which incorporate 

additional criteria regarding social and economic components. Other decision-making 

scenarios include prioritizing biological monitoring sites, definition of rules based on limits to 

hydrologic alteration, environmental impact assessment, and allocation of best management 

practices. 
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Table A1 Description of ecologically-relevant hydrologic indices with all, high, medium, and low flow Pareto-optimal solutions 

having median relative errors outside the ±30% bound, for each multi-objective calibration strategy. Adapted from Olden and Poff 

(2003) and Henriksen et al. (2006) 

Code Hydrologic index Units Description Calibration strategy 

Magnitude of flow events 

Average flow conditions 

MA29 Variability in June flows - 

Coefficient of variation in monthly flows 

Both NSE- and RMSE-based 

MA30 Variability in July flows - Both NSE- and RMSE-based 

MA31 Variability in August flows - Both NSE- and RMSE-based 

MA32 Variability in September flows - Both NSE- and RMSE-based 

MA33 Variability in October flows - Both NSE- and RMSE-based 

MA34 Variability in November flows - Only RMSE-based 

MA42 Variability across annual flows - 
Range of monthly flows divided by median monthly 

flows 
Only NSE-based 

MA44 Variability across annual flows - 
90th - 10th percentile of monthly flows divided by 

median monthly flows 
Only NSE-based 

MA45 Skewness in annual flows - 
(Mean annual flow - median annual flow)/median 

annual flow 
Both NSE- and RMSE-based 

Low flow conditions 

ML7 Mean minimum July monthly flow m3 s-1 

Mean minimum monthly flow 

Both NSE- and RMSE-based 

ML8 
Mean minimum August monthly 

flow 
m3 s-2 Both NSE- and RMSE-based 

ML9 
Mean minimum September monthly 

flow 
m3 s-3 Only RMSE-based 

ML14 Mean of annual minimum flows - 
Mean of the lowest annual daily flow divided by 

median annual daily flow averaged across all years 
Both NSE- and RMSE-based 
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Table A1 (cont’d). 

ML15 Low flow index - 
Mean of the lowest annual daily flow divided by 

mean annual daily flow averaged across all years 
Both NSE- and RMSE-based 

ML16 Median of annual minimum flows - 
Median of the lowest annual daily flow divided by 

median annual daily flow averaged across all years 
Both NSE- and RMSE-based 

ML17 Baseflow index 1 - 
Seven-day minimum flow divided by mean annual 

daily flows averaged across all years 
Only RMSE-based 

ML19 Basefow index 2 - 

Mean of the ratio of the lowest annual daily flow to 

the mean annual daily flow times 100 averaged 

across all years 

Both NSE- and RMSE-based 

ML21 
Variability across annual minimum 

flows 
- 

Coefficient of variation in annual minimum flows 

averaged across all years 
Both NSE- and RMSE-based 

ML22 
Specific mean annual minimum 

flows 
m3 s-1 km-2 

Mean annual minimum flows divided by catchment 

area 
Both NSE- and RMSE-based 

High flow conditions 

MH6 Mean maximum June monthly flow m3 s-1 

Mean of the maximum monthly flows 

Both NSE- and RMSE-based 

MH7 Mean maximum July monthly flow m3 s-1 Both NSE- and RMSE-based 

MH10 
Mean maximum October monthly 

flow 
m3 s-1 Both NSE- and RMSE-based 

MH11 
Mean maximum November monthly 

flow 
m3 s-1 Only RMSE-based 
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Table A1 (cont’d) 

MH21 High flow volume days 

Mean of the high flow volume (calculated as the 

area between the hydrograph and the upper 

threshold defined as the median annual flow) 

divided by median annual daily flow across all years 

Both NSE- and RMSE-based 

MH22 High flow volume days 

Mean of the high flow volume (calculated as the 

area between the hydrograph and the upper 

threshold defined as 3 times the median annual 

flow) divided by median annual daily flow across all 

years 

Only NSE-based 

MH23 High flow volume days 

Mean of the high flow volume (calculated as the 

area between the hydrograph and the upper 

threshold defined as 7 times the median annual 

flow) divided by median annual daily flow across all 

years 

Only RMSE-based 

Frequency of flow events 

Low flow conditions 

FL1 Low flood pulse count year-1 
Average number of flow events below the 25th 

percentile of the entire flow record 
Both NSE- and RMSE-based 

High flow conditions 

FH1 High flood pulse count 1 year-1 
Average number of flow events above the 75th 

percentile of the entire flow record 
Only RMSE-based 
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Table A1 (cont’d) 

FH4 High flood pulse count 2 year-1 
Average number of days per year that the flow is 

above 7 times median daily flow of the entire record 
Only NSE-based 

FH5 Flood frequency 1 year-1 

Mean number of high flow events per year using a 

threshold equal to the median flow of the entire 

record 

Both NSE- and RMSE-based 

FH8 Flood frequency 2 year-1 

Mean number of high flow events per year using a 

threshold equal to the 25th percentile of the entire 

flow record 

Only RMSE-based 

FH9 Flood frequency 2 year-1 

Mean number of high flow events per year using a 

threshold equal to the 75th percentile of the entire 

flow record 

Both NSE- and RMSE-based 

Duration of flow events 

Low flow conditions 

DL1 Annual minimum daily flow m3 s-1 
Magnitude of minimum annual flow of 1-day 

duration 
Both NSE- and RMSE-based 

DL2 
Annual minimum of 3-day moving 

average flow 
m3 s-1 

Magnitude of minimum annual flow of 3-day 

duration 
Only RMSE-based 

DL6 
Variability of annual minimum daily 

average flow 
- 

Coefficient of variation in magnitude of minimum 

annual flow of 1-day duration 
Both NSE- and RMSE-based 

DL7 
Variability of annual minimum of 3-

day moving average flow 
- 

Coefficient of variation in magnitude of minimum 

annual flow of 3-day duration 
Both NSE- and RMSE-based 
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Table A1 (cont’d) 

DL8 
Variability of annual minimum of 7-

day moving average flow 
- 

Coefficient of variation in magnitude of minimum 

annual flow of 7-day duration 
Both NSE- and RMSE-based 

DL11 
Mean of 1-day minima of daily 

discharge 
- 

Mean annual 1-day minimum, divided by median 

flow 
Both NSE- and RMSE-based 

DL12 
Mean of 3-day minima of daily 

discharge 
- 

Mean annual 3-day minimum, divided by median 

flow 
Only RMSE-based 

DL16 Low flow pulse duration days 
Mean duration of flow events below the 25th 

percentile of the entire flow record 
Both NSE- and RMSE-based 

High flow conditions 

DH15 High flow pulse duration days 
Mean duration of flow events above the 75th 

percentile of the entire flow record 
Both NSE- and RMSE-based 

DH17 High flow duration 1 days 
Mean duration of flow events above a threshold 

equal to the median flow of the entire record 
Both NSE- and RMSE-based 

DH19 High flow duration 1 days 
Mean duration of flow events above a threshold 

equal to 7 times the median flow of the entire record 
Only NSE-based 

DH20 High flow duration 2 days 

Mean duration of flow events above a threshold 

equal to the 75th percentile value for the median 

annual flows 

Only RMSE-based 

DH21 High flow duration 2 days 

Mean duration of flow events above a threshold 

equal to the 25th percentile value for the median 

annual flows 

Both NSE- and RMSE-based 
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Table A1 (cont’d) 

DH23 Flood duration 2 days 

Mean annual number of days that flows remain 

above the flood threshold (equal to the flow 

equivalent for a flood recurrence of 1.67 years) 

averaged across all years 

Only RMSE-based 

 

Timing of flow events 

Low flow conditions 

TL4 
Seasonal predictability of non-low 

flow 
- 

Maximum proportion between the number of days 

that flow is above the 5-year flood threshold and 

365 or 366 (leap year) among all years. 

Only NSE-based 

Rate of change in flow events 

Average flow conditions 

RA3 Fall rate m3 s-1 d-1 
Mean rate of negative changes in flow from one day 

to the next 
Both NSE- and RMSE-based 

RA6 Change of flow m3 s-1 
Median of difference between log10 of flows 

between two consecutive days with increasing flow 
Both NSE- and RMSE-based 

RA7 Change of flow m3 s-1 
Median of difference between log10 of flows 

between two consecutive days with decreasing flow 
Both NSE- and RMSE-based 
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