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ABSTRACT

NONLINEAR CONTROL OF ROBOTIC FISH

By

Maria L. Castaño

In the past few decades, robots that propel and maneuver themselves like fish, known as robotic fish,

have received substantial attention due to their efficiency, maneuverability, and lifelike features.

Their agile locomotion can be partially attributed to their bio-inspired propulsion methods, which

range from tail (caudal) and dorsal to paired pectoral fins. While these characteristics make robotic

fish an attractive choice for a myriad of aquatic applications, their highly nonlinear, often under-

actuated dynamics and actuator constraints present significant challenges in control design. The

goal of this dissertation is to develop systematic model-based control approaches that guarantee

closed-loop system stability, accommodate input constraints, and are computationally viable for

robotic fish.

We first propose a nonlinear model predictive control (NMPC) approach for path-following of

a tail-actuated robotic fish, where the control design is based on an averaged dynamic model. The

bias and the amplitude of the tail oscillation are treated as physical variables to be manipulated and

are related to the control inputs via a nonlinear map. A control projection method is introduced to

accommodate the inputs constraints while minimizing the optimization complexity in solving the

NMPC problem. Both simulation and experimental results on a tail-actuated robotic fish support

the efficacy of the proposed approach and its advantages over alternative approaches.

Although NMPC is a promising candidate for tracking control, its computational complexity

poses significant challenges in its implementation on resource-constrained robotic fish. We thus pro-

pose a backstepping-based trajectory tracking control scheme that is computationally inexpensive

and guarantees closed-loop stability. We demonstrate how the control scheme can be synthesized to

handle input constraints and establish via singular perturbation analysis the ultimate boundedness

of three tracking errors (2D-position and orientation) despite the under-actuated nature of the robot.



The effectiveness of this approach is supported by both simulation and experimental results on a

tail-actuated robotic fish.

We then turn our attention to pectoral fin-actuated robotic fish. Despite its benefits in achieving

agile maneuvering at low swimming speeds, the range constraint of pectoral fin movement presents

challenges in control. To overcome these challenges, we propose two different backstepping-based

control approaches to achieve trajectory tracking and quick-maneuvering control, respectively. We

first propose a scaling-based approach to develop a control-affine nonlinear dynamic average model

for a pectoral fin-actuated robotic fish, which is validated via both simulation and experiments.

The utility of the developed average dynamic model is then demonstrated via the synthesis of a

dual-loop backstepping-based trajectory tracking controller.

Cyclic actuation can often limit precise manipulation of the fin movements and the full ex-

ploitation of the maneuverability of pectoral fin-actuated robotic fish. To achieve quick velocity

maneuvering control, we propose a dual-loop control approach composed of a backstepping-based

controller in the outer loop and a fin movement-planning algorithm in the inner loop. Simulation

results are presented to demonstrate the performance of the proposed scheme via comparison with

a nonlinear model predictive controller.
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CHAPTER 1

INTRODUCTION

The efficiency, astounding agility, and remarkable feats in swimming of real fish have motivated

and inspired scientific interest in developing a class of autonomous underwater vehicles called

robotic fish. As illustrated in Figure 1.1, various bio-inspired actuation mechanisms, ranging from

oscillating tail (caudal) and paired pectoral fins [2, 3], a combination of both movements [4], to

undulatory motion of the entire body [5], have been explored in the design of these robots. In

addition to being promising platforms in applications such as aquatic environmental monitoring

and search and rescue, robotic fish are also useful tools to study robot-animal interactions [6–9].

Their efficiency, maneuverability, and stealth are some of the characteristics that have made robotic

fish an attractive choice over traditional propeller-driven underwater vehicles [10–12].

(a) Ghostswimmer, a robotic fish developed
by Boston Engineering Corporation [13].

(b)Robotic fish developed byDelft University of Tech-
nology [14].

(c) A robotic fish developed at New York
University [9].

(d)Arobotic fish developed by the SmartMicrosys-
tems Lab at Michigan State University.

Figure 1.1: Examples of reported robotic fish prototypes.
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1.1 Control of Robotic Fish

To be suitable for aquatic applications and effectively carry out monitoring and sensing tasks,

accurate trajectory tracking is essential for robotic fish. For example, trajectory tracking is critical

when exploring and sampling specific areas, seeking pollutant sources, and mapping the whole

aquatic environment. However, input constraints, and highly nonlinear and often under-actuated

dynamics of these robots present significant challenges in trajectory control.

Much of the work done on robotic fish has been focused on robot development, prototyping,

[1, 5, 10, 15–31] and high-fidelity modeling [32–38]. There has also been extensive work on

motion control of robotic fish, which has mainly been focused on the generation of coordinated

movements of the actuation components to produce some fish-like swimming gaits. In the case

of swimming gait generation, several kinematics and dynamics-based schemes [39–47], as well

as bio-inspired approaches, such as central pattern generators [48–53], have been used to produce

fish-like swimming. However, these approaches are typically open-loop in nature. Although

some works have examined closed-loop approaches to drive the robot to achieve some desired

motion [31, 54, 55], they have mainly been focused on heading or depth control.

1.1.1 Control of Body and Caudal Fin (BCF)-actuated Robotic Fish

There has been additional work done onmodel-based closed-loopmotion control of body and caudal

fin-actuated robotic fish to achieve maneuvering, speed and orientation control, path following,

point-to-point tracking, and line-of-sight (LOS) control [56–63]. In [56] a point-to-point control

of a four-link robotic fish with an oscillating tail was implemented, where a classical proportional-

integral-derivative controller combined with a fuzzy logic controller was designed for speed and

orientation control. The authors in [57] devised a control strategy using motion primitives to

achieve maneuvering of an aquatic vehicle using an oscillating foil. The strategy consists of an

optimal off-line primitive planning step and an online feedback control step composed of a cascade

of finite-time, time-scalable linear quadratic control, and input-output linearization, in combination
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with a sliding mode controller. Furthermore, in [58] a target-tracking and collision-avoidance

algorithm for two autonomous robotic fish was implemented via a situated-behavior-based and

motion primitive decentralized control approach, in combination with an attractive force toward a

target and a repulsive force for collision avoidance. In [59] three simplified linearized models of the

decoupled fish dynamics were used for the design of linear quadratic regulators to achieve speed

and orientation control and to stabilize the pitch and roll. Furthermore, a line-of-sight guidance

schemewas implemented for way-point tracking using linearized controllers. Zou et al. developed a

neural-network-based slidingmode control algorithm for cooperative trajectory tracking of multiple

robotic fish [60]. The authors in [61] designed a sliding mode controller for swimming, orientating,

and LOS way-point tracking of robotic fish in three-dimensional motion. In [62], the authors

proposed a target-tracking hybrid controller that consists of an open-loop turning controller and a

closed-loop backstepping controller to drive a robotic fish to a specified target location. Finally,

in [63], the authors proposed a backstepping controller for tracking control of a nonholonomic fish

robot with dynamics that can be expressed in a chained form.

Despite the aforementioned progress in the control of robotic fish, most of the work focused

on speed, orientation, and way-point tacking control. Furthermore, it has relied on utilizing

either motion primitives, which can be system-specific, or linearized methods, which only provide

local results (i.e., stability is only guaranteed in a neighborhood of the selected operating points).

A unified, systematic control approach that accommodates input constraints and has stability

guarantees is in general lacking for such robots.

1.1.2 Control of Pectoral Fin-actuated Robotic Fish

While caudal fins have proven to be an efficient propulsion mode at higher speeds, pectoral fins are

vital in assisting propulsion and achieving agile maneuvering at low swimming speeds [25,64,65].

As shown in Figure 1.2, pectoral fin motions can generally be classified into three modes based

on the axis of rotation: rowing, feathering, and flapping, where the axes of rotation are vertical,

transverse, and longitudinal, respectively. Rowing motion is classified as a “drag-based” swimming
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Figure 1.2: The main types of pectoral fin motion (adapted from [1]). The rotation axes for the
rowing, feathering, and flapping motions are vertical, transverse, and longitudinal, respectively.

mechanism, where the drag element of fluid dynamics generates the thrust, and it is often regarded

as an effective type of motion for achieving a number of in-plane locomotion and maneuvering

tasks, such as forward swimming, side-way swimming, and turning [66,67]. The rowing motion of

pectoral fins comprises two sub-movements during the fin-beat cycle: a power stroke and a recovery

stroke. During the power stroke, the pectoral fin moves backward to produce thrust through induced

drag on the pectoral fin surface, while during the recovery stroke, the fin moves toward the front of

the body, ideally with minimal loading, to get ready for the next fin-beat cycle.

Although beneficial in maneuvering, utilizing rowing motion for propulsion gives rise to chal-

lenges for the control of robotic fish. The challenge lies with the actuation constraints (i.e., angular

position, velocity, and acceleration limitations) and the mechanism in which the “drag-based”

swimming method is used to generate thrust. For example, forward thrust can only be generated

during the power stroke; however, when the pectoral fin reaches its maximum angular position,

it has to recover in order to be able to generate forward thrust again. During the recovery phase,

the fin will produce a “negative” thrust, thus opposing the objective of producing forward thrust

in the first place. While such “backing-up” behavior seems natural to human understanding and is

widely used by live fish, it is challenging to incorporate this behavior through systematic, rigorous

controller synthesis.

Significant work has been done on the modeling of pectoral fin-actuated robotic fish [3,5,24–30,

68–70]. Some of these works have focused on developing Computational Fluid Dynamics (CFD)

models to carry out numerical analysis of the robot’s hydrodynamic characteristics and the force
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generation of the fins. Despite being instrumental in studying pectoral fins’ propulsive mechanism,

CFD-based models are not suitable for control design. Some efforts have also gone into developing

analytical models to study the propulsive mechanism and gait analysis. For example, [71] and [72]

utilized blade element theory (BET) to evaluate the quasi-static hydrodynamic forces generated

by undulating and rowing fins, respectively, and [73] utilized Euler-Lagrange equation methods

to develop a dynamic model for batoid swimming robots. Others have focused on developing

modeling frameworks for analyzing the effects of different pectoral fin designs and materials on the

robot’s swimming performance and mechanical efficiency [2,25,26,74,75]; however, these models

tend to be complex and are not amenable to controller design. Control-affine models that easily

allow studying the effect of the input parameters on the dynamics and fins movement are essential

for control design and are lacking for these types of robots.

Limited work has been reported on the control of pectoral fin-actuated robotic fish. Some of

the work in this area has focused on open-loop motion control, i.e., the generation of coordinated

movements of the actuation components to produce some fish-like swimming gaits [4, 76–78].

In terms of closed-loop control, several authors have proposed sensory-feedback Central Pattern

Generators (CPGs) for target tracking or obstacle avoidance control [79, 80]. Similarly, in [81]

the authors proposed a control strategy composed of two layers: an upper decision-making layer

that uses a finite state machine to determine the proper swimming gait and a layer that uses a

CPG to implement the desired gait. Fuzzy rule-based control laws were proposed in [82] to

control fin-beat parameters to drive a robotic fish to perform rendezvous and docking in a three-

dimensional workspace. The authors in [31] implemented geometric control methods for closed-

loop depth control of a robotic fish using pectoral fins undergoing feathering motion. All of the

aforementioned work is based on motion primitives, which can be system-specific, or have focused

mainly on heading, depth, and velocity tracking for robotic fish using pectoral fins undergoing

feathering or lead-lag motion. Systematic trajectory tracking control approaches that accommodate

input constraints and have closed-loop stability guarantees have not been proposed for robotic fish

with pectoral fins undergoing rowing motion.
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The limited work on control of pectoral fin-actuated robotic fish utilized cyclic fin actuation

for the lead-lag or feathering motion of the fins while treating the fin-beat parameters or the phase

differences between the fins as the control variables for the fish locomotion control. However,

such cyclic fin movement limits precise manipulation of the fin movements and the thrust profile

that can be generated, which impedes full exploitation of the maneuverability of pectoral fin-

actuated robotic fish. Acyclic thrust or moments could be more instrumental for generating a

quick maneuvering response, which can be valuable in scenarios like counteracting disturbances or

avoiding fast obstacles.

1.2 Overview of Contributions

The contributions of this dissertation reside in the development of systematic model-based

control approaches that guarantee closed-loop system stability, accommodate input constraints,

and are computationally viable for robotic fish. In particular, we present two nonlinear model-

based control approaches for path-following and trajectory tracking of a tail-actuated robotic fish.

Furthermore, to exploit the benefits of pectoral fins and overcome their challenges in actuation,

we propose two different backstepping-based control approaches to achieve trajectory tracking and

quick-maneuvering control, respectively. The contributions of this research are further summarized

in the following subsections.

1.2.1 Model Predictive Control-based Path Following for Tail-actuated Robotic Fish

First, we propose a nonlinear model predictive control (NMPC) approach to path-following of a

tail-actuated robotic fish that accommodates the nonlinear dynamics and actuation constraints while

minimizing the control effort. Although there is extensive work on NMPC for path-following of

mobile robots [83–88], little work has been reported on its application to control of robotic fish.

In this controller design, a high-fidelity averaged nonlinear dynamic model developed in [89]

is used. The physical control inputs consist of two of the tail-beat parameters, the bias and the

amplitude, while the angular frequency of the tail beat is kept constant. We propose a scheme to
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address the nonlinear input constraints. Specifically, to maximize the use of the admissible control

and handle the nonlinear control constraints in a computationally efficient manner, we employ an

analytical projection scheme for the control inputs. We further propose a novel estimation scheme

to identify some critical unknown parameters in the robotic fishmodel. In particular, inspired by the

work in [89], we develop a parameter estimation method to empirically identify the hydrodynamic

and scaling coefficients of the model instead of utilizing time-consuming CFD simulations, or

relying on trial-and-error data-fitting between dynamic simulation and experimental measurement.

To implement the controller in real-time, we employ theACADOToolkit [90] to solve repeatedly the

optimal control problem, and an image processing algorithm using OpenCV to provide feedback.

Some preliminary results of this work were presented at the 2016 ASME Dynamic Systems

and Control Conference [91]. More comprehensive results were published in ASME Journal

of Dynamic Systems and Control [92], where we proposed a computation-efficient method to

deal with the nonlinear constraints, formulated a parameter estimation scheme to identify crucial

parameters in the model, and reported experimental results on a tail-actuated robotic fish. The

proposed NMPC scheme was compared with two alternative approaches. In one approach, the

nonlinear input constraints were directly defined, and in the other boxed constraints were used.

Overall, the tracking simulation and experimental results showed that the proposed NMPC scheme

with projection resulted in faster convergence to the desired path and smaller path error than the

alternative approaches. Chapter 2 describes the details of this work.

1.2.2 Backstepping Control-based Trajectory Tracking for Tail-actuated Robotic Fish

Although NMPC is a promising candidate for tracking control, its computational complexity

poses significant challenges in implementing such controllers on resource-constrained robotic fish.

Backstepping-based control design presents a practical and promising approach for trajectory

tracking with stability guarantees. In particular, it is computationally inexpensive, especially

when compared to methods such as NMPC, offers a systematic framework for the design of the

feedback control law, guarantees the stability of the system, and allows the accommodation of input
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constraints.

Some limited work has been reported on backstepping-based control of robotic fish [62, 63].

In [62], the authors proposed a target-tracking hybrid controller that consists of an open-loop

turning controller and a closed-loop backstepping controller to drive a robotic fish to a specified

target location. In [63], the authors proposed a backstepping controller for tracking control of a

nonholonomic fish robot with dynamics that can be expressed in a chained form. The proposed

approach guaranteed asymptotic convergence to a desired trajectory generated by a reference fish

robot, but limitations were placed on the desired trajectory since it had to be generated by dynamics

in the same chained form. Furthermore, input constraints were not accommodated.

In thiswork, we address the trajectory tracking control problem for a general class of autonomous

under-actuated planar aquatic robots. In particular, we present a systematic method to synthesize a

backstepping-based continuous tracking controller to ultimately bound the position tracking errors

and the orientation error between the robot’s heading and a vector tangential to the reference.

Via multi-time-scale analysis of perturbed systems, we prove how the control scheme achieves

boundedness and convergence of the tracking errors to a neighborhood of the origin.

The scheme proposed in this work is inspired by the approach in [93]. In particular, we utilize

the idea of introducing an additional error coordinate that couples the lateral position error and

the heading angle error. In this manner, by stabilizing the longitudinal tracking error along with

this new state, we can guarantee that the whole error system is stabilized at a neighborhood of the

origin. Furthermore, we establish a systematic method that provides necessary conditions to be

considered when designing this augmenting state for a general class of systems.

The proposed control approach is implemented in a tail-actuated robotic fish, where the con-

troller design uses a high-fidelity averaged nonlinear dynamic model [89]. In addition, the physical

control inputs consist of the tail amplitude, and bias with the angular frequency kept constant.

Furthermore, an auxiliary system is designed to accommodate the input constraints such that the

controller compensates for the error due to the difference between the feasible and nominal inputs.

Finally, simulation and experimental results demonstrate the effectiveness of the controller.
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Preliminary simulation resultswere presented at the 2019 International Conference onAdvanced

Intelligent Mechatronics [94]. The details of this work are provided in Chapter 3.

1.2.3 AveragedModeling and Trajectory Tracking Control of Pectoral Fin-actuated Robotic
Fish

Pectoral fins have become a useful actuation mechanism for robotic fish [25, 64, 65]. Utilizing

pectoral fins for locomotion improves maneuverability and can allow robotic fish to achieve tra-

jectories that could not otherwise be possible with just a tail fin, such as circular trajectories with

smaller radii, and sharp, aggressive turning. However, despite their benefit, pectoral fins give rise

to challenges in control.

Given the rhythmic nature of the robotic fish’s body and fin movements, averaging has proven

to be a useful approach in obtaining control-affine models [95, 96] and studying the effect of the

input parameters on its dynamics and fins movement [31, 54, 89]. This makes an averaged model

best suited for trajectory planning and tracking control. To the best of our knowledge, the use

of averaging has not been explored in developing control-affine models for pectoral fin-actuated

robotic fish.

In this work, we present a nonlinear dynamic average model for robotic fish propelled by a pair

of rigid pectoral fins undergoing rowing motion. In particular, we consider the robot undergoing

planar motion, with its original dynamics incorporating pectoral fin-generated hydrodynamic forces

evaluated via the blade element theory. Inspired by the work in [89], which deals with averaged

dynamics for tail-actuated robotic fish, we seek scaling factors, as functions of fin-beat parameters,

for the original hydrodynamic forces and moment. These scaling factors are determined such that

when classical averaging is applied to the resulting modified dynamics, the obtained average model

produces locomotion behaviors close to those of the original dynamicmodel. One fundamental step

in identifying the scaling functions is estimating the scaling values for a given fin-beat pattern. [89]

used a trial-and-error approach for the tail-actuated robotic fish, which is time-consuming. We

propose a novel systematic approach to finding optimal scaling values by formulating a nonlinear
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model-predictive control (NMPC) problem, which can be readily solved with NMPC packages

instead. Once the scaling values are found for a set of fin-beat patterns, nonlinear regression is

used to determine the scaling functions with minimal complexity. Simulation comparison between

the averaged model and the original dynamic model, under fin-beat patterns not used in identifying

the scaling functions, supports the efficacy of the developed averaged model. Furthermore, we

conduct experiments on a pectoral fin-actuated robotic fish and compare the experimental results

with simulation predictions when considering the forward swimming motion, where both fins are

actuated symmetrically.

Finally, to demonstrate the utility of the dynamic average model, we design a controller for

trajectory tracking of a pectoral fin-actuated robotic fish. In particular, the proposed scheme uses

a backstepping-based controller that finds the needed inputs for the robot to track the desired

trajectory based upon the averaged model. In this design, the physical control inputs involve two of

the fin-beat parameters, the bias, and the amplitude, while the other parameters (angular frequency

and power/recover stroke ratio) are kept constant. We further use a multi-variable minimization

solver to determine the optimal fin-beat parameters such that the achieved inputs are closed to the

needed values. Simulation results are presented to demonstrate the effectiveness of the proposed

model-based tracking control scheme.

Preliminary experimental results demonstrating the effectiveness of the proposed averagemodel

will be presented at the 2021 Modeling, Estimation and Control Conference (MECC) [97]. Chap-

ter 4 provides more detail of this work.

1.2.4 Rapid Maneuvering Control of Pectoral Fin-actuated Robotic Fish

Cyclic fin movement can limit precise manipulation of the fin movements and the thrust profile

that can be generated which can be detrimental in tasks like maneuvering. Acyclic actuation

could be more instrumental in such scenarios. In this work, we propose a systematic approach

to the control of pectoral fins that naturally accommodates the fins’ constraints and automatically

generates “intelligent” behavior (e.g., “backing-up” when required) to produce acyclic thrust for
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quick maneuvering. In particular, we consider the velocity tracking problem as an example to

illustrate the challenges and propose a dual-loop control structure to drive the velocity tracking

error to a neighborhood of the origin. The outer loop of the proposed scheme is composed of a

backstepping-based velocity-tracking controller that finds the needed thrust and moment for the

robot’s velocity to track the desired velocity profile. The inner loop is composed of a randomized,

model-predictive fin planning algorithm, which determines a feasible sequence for the fins’ angular

accelerations such that the thrust andmoments generated are close to desired values. To demonstrate

the effectiveness of the proposed scheme, we present simulation results on tracking forward and

angular velocities that are abruptly changing. The proposed scheme is compared with an alternative

approach, in which the inner loop is implemented with a nonlinear model predictive controller

(NMPC).

Preliminary simulation resultswere presented at the 2021 International Conference onAdvanced

Intelligent Mechatronics [98]. Further details of this work are presented in Chapter 5.
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CHAPTER 2

MODEL PREDICTIVE CONTROL-BASED PATH FOLLOWING FOR
TAIL-ACTUATED ROBOTIC FISH

To be suitable for monitoring and sensing aquatic environments, accurate path-following control

is vital for robotic fish. In this chapter we propose a nonlinear model predictive control (NMPC)

approach for path-following of a tail-actuated robotic fish. In this controller design, a high-fidelity

averaged nonlinear dynamic model is used, and the physical control inputs consist of two of the tail-

beat parameters, the bias and the amplitude, while the other parameter (angular frequency) is kept

constant. To address the nonlinear input constraints and maximize the use of the admissible control

in a computationally efficient manner, we employ an analytical projection scheme. Furthermore, we

present a novel parameter estimation scheme to empirically identify unknown parameters present

in the robotic fish model instead of utilizing time-consuming CFD simulations or relying on trial-

and-error data fitting between dynamic simulation and experimental measurement. To implement

real-time control, we employ ACADO Toolkit [90] to solve repeatedly the optimal control problem,

and an image processing algorithm using OpenCV to provide feedback.

This chapter is organized as follows. In section 2.1, the dynamic and scaled averaging models

of the tail-actuated robotic fish, followed by a simplified averaged model, are reviewed. In Section

2.2 the path-following problem formulation is presented, followed by the NMPC design and the

proposed control projection scheme. In Section 2.3 simulation results are discussed, and in Section

2.4 the experimental setup, the proposed parameter estimation scheme and the experimental results

are presented.

2.1 Tail-actuated Robotic Fish Model

2.1.1 Dynamic Model

As presented in [89], the tail-actuated robotic fish is modeled as a rigid body with a rigid tail

that is actuated at its base, and it is assumed that the robot operates in an inviscid, irrotational,
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and incompressible fluid within an infinite domain. Let [X,Y,Z]) and [x, y, z]) be the inertial

coordinate system and the body-fixed coordinate system, respectively, as illustrated in Figure 2.1.

The velocity of the center ofmass in the body-fixed coordinates is expressed asV2 = [+2G , +2H , +2I ],

where+2G ,+2H , and+2I denote the surge, sway, and heave velocities, respectively. Furthermore, let

V denote the angle of attack, formed by the direction of V2 with respect to the x-axis, and k denote

the heading angle, formed by the x-axis relative to the X-axis. The angular velocity expressed in

the body-fixed coordinate system is given by l = [lG , lH, lI], which is composed of roll (lG),

pitch (lH), and yaw (lI). Finally, let U denote the tail deflection angle with respect to the negative

x-axis.
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Tail Fin
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Figure 2.1: Top view of the tail-actuated robotic fish undergoing planar motion.

We only consider the planar motion and further assume that the body is symmetric with respect

to the xz-plane and that the tail moves in the xy-plane. As a result, the system has three degrees

of freedom, surge (+2G ), sway (+2H ), and yaw (lI). It is further assumed that the inertial coupling

between yaw, sway and surge motions is negligible, which leads to the following equations of planar
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motion

(<1 − <0G ) ¤+2G = (<1 − <0H )+2HlI + 5G (2.1)

(<1 − <0H ) ¤+2H = −(<1 − <0G )+2GlI + 5H (2.2)

(�1I − �0I ) ¤lI = (<0H − <0G )+2G+2H + "I (2.3)

where <1 is the mass of the body, �1I is the inertia of the body about the z-axis, <0G and <0H are

the hydrodynamic derivatives that represent the added masses of the robotic fish along the x and

y directions, respectively, and �0I represents the added inertia effect of the body about the z-axis.

The hydrodynamic forces and moment due to tail fin actuation and the interaction of the body itself

with the fluid are captured by 5G , 5H, and "I. To evaluate the hydrodynamic forces exerted by the

tail, Lighthill’s large amplitude elongated body theory is used [89]. The kinematic equations for

the robotic fish are given by

¤- = +2G cosk −+2H sink (2.4)

¤. = +2G sink ++2H cosk (2.5)

¤k = lI (2.6)

Given the rhythmic nature of the robotic fishmovement and the periodic tail actuation, averaging

has proven to be a useful approach in studying the effect of the input parameters on the dynamics

of the robotic fish [89]. Furthermore, in practical applications, it is more natural to control the

parameters for periodic fin beats than to directly control the fin position at everymoment. Therefore,

an averaged model is best suited for trajectory planning and tracking control. We next review the

averaged model proposed in [89], where the following periodic pattern for the tail deflection angle

is considered:

U(C) = U0 + U0 sin(lUC) (2.7)

where U0, U0, andlU represent the bias, amplitude, and frequency of the tail beat, respectively. The

original hydrodynamic force and moment terms in Eqs. (2.1)-(2.3) are scaled by some functions
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dependent on the tail beat parameters, U0, U0, and lU, and classical averaging is then conducted

over these scaled dynamics. In particular, we define the states G1 = +2G , G2 = +2H and G3 = lI, so

that the averaged dynamics takes the following form

¤G1 = 51(G1, G2, G3) +  5 5̄4(U0, U0, lU) (2.8)

¤G2 = 52(G1, G2, G3) +  5 5̄5(U0, U0, lU) (2.9)

¤G3 = 53(G1, G2, G3) +  < 5̄6(U0, U0, lU) (2.10)

with

51(G1, G2, G3) =
<2
<1
G2G3 −

21
<1
G1

√
G2

1 + G
2
2 +

22
<1
G2

√
G2

1 + G
2
2 arctan( G2

G1
) (2.11)

52(G1, G2, G3) = −
<1
<2
G1G3 −

21
<2
G2

√
G2

1 + G
2
2 −

22
<2
G1

√
G2

1 + G
2
2 arctan( G2

G1
) (2.12)

53(G1, G2, G3) =(<1 − <2)G1G2 − 24l
2
Isgn(lI) (2.13)

5̄4(U0, U0, lU) =
<

12<1!2l
2
UU

2
0 (3 −

3
2
U2

0 −
3
8
U2
0) (2.14)

5̄5(U0, U0, lU) =
<

4<2!2l
2
UU

2
0U0 (2.15)

5̄6(U0, U0, lU) = −
<

4�3!2 cl
2
UU

2
0U0 (2.16)

where <1 = <1 − <0G , <2 = <1 − <0H , �3 = �1I − �0I , 21 =
1
2
d(�� , 22 =

1
2
d(�! , 23 =

1
2
<!2, 24 =

1
(�3)

 � , 25 =
1
(2�3)

!2<2, and 26 =
1
(3�3)

!3<. Here ( denotes the reference

surface area for the robot body, �� , �! and  � represent the drag force coefficient, lift coefficient,

and drag moment coefficient, respectively, d is the density of water, ! is the tail length, 2 is the

distance from the body center to the pivot point of the actuated tail and < represents the mass of

water displaced by the tail per unit length and is approximated by c
4 d3

2 with 3 denoting the tail

depth.  5 is a scaling constant, and  < (U0) is a scaling function affine in U0. To further facilitate

control design, in this work  < is considered as a constant during the NMPC design. This term

is found by taking the average of  < for a given range of U0. The resulting model is called the

simplified averaged model in this dissertation.
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2.2 Path-following Control Algorithm

It is important to design a controller that is able to meet performance objectives such as

minimizing the path-tracking error while accommodating input constraints. We are thus motivated

to develop an NMPC scheme for path-following. NMPC is an attractive choice because it allows

explicit consideration of state and input constraints, is capable of handling nonlinear models, and

can optimize control performance [99, 100].

2.2.1 Path-following Error Coordinates

In contrast to trajectory tracking, in path-following one is interested in following a geometric

reference parametrized by some scalar without any specified timing. The kinematic model of the

robotic fish is expressed in a Frenet-Serret frame {F} that moves along the reference path according

to some desired function of time. Figure 2.2 illustrates the path-following problem.

Desired 
Pathθ c

V c

y

Robotic
 Fish
 Body

X

Y

Z

C

P̄
C̄

p

Y p

{B }

{F }

p(s)

Figure 2.2: Illustration of the path-following problem for robotic fish.

Assume that the reference path is a twice continuously differentiable geometric curve that is
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defined as a set of points V parametrized by the scalar B,

P = {V ∈ R2 |V = p(B),∀B ∈ [0, ;?]} (2.17)

where ;? denotes the length of the path, and the function p : R1 → R2 is twice differentiable. Let

P denote a point on the path to be followed, \? the tangential angle of the path at point P, and \2 the

angle between the robotic fish velocity vector V2 and the inertial X-axis, while the coordinate axes

x? and y? are directed along the tangential and normal directions at point P. We let point C denote

the center of the robotic fish, and the vectors C̄ and P̄ describe the positions of C and P in the 3-D

inertial frame {I}. Note that since we are only considering the planar case, the third component of

the position vectors is taken as 0. Let r = [-4;.4; 0]) denote the position of the robotic fish center

C with respect to the point P on the path expressed in {F}. Let �X� denote the rotation matrix from

{I} to {F} and �X� denote the rotation matrix from {F} to {I}, with

�X� =


cos \? sin \? 0
− sin \? cos \? 0

0 0 1

 (2.18)

Define ¤\? = �? (B) ¤B, where �? (B) is the path’s curvature. One can express

C̄ = P̄ +� X�r (2.19)

The velocity of C̄ in {I} is given by(dC̄
dC

)
{�}

=

(dP̄
dC

)
{�}
+� X�

(dr
dC

)
{�}
+� X� (8? × r) (2.20)

where

8? =


0
0
¤\?

 (2.21)

Multiplying the equation above on the left by �X� gives the velocity of C expressed in {F}:

�X�

(dC̄
dC

)
{�}

=

(dP̄
dC

)
{�}
+

(dr
dC

)
{�}
+ (8? × r) (2.22)
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where

(dC̄
dC

)
{�}

=


¤-
¤.
0

 (2.23)

(dP̄
dC

)
{�}

=


¤B
0
0

 (2.24)

(dr
dC

)
{�}

=


¤-4
¤.4
0

 (2.25)

8? × r =


0
0

�? (B) ¤B

 ×

-4

.4

0

 =

−�? (B) ¤B.4
�? (B) ¤B-4

0

 (2.26)

After rearranging and solving for ¤-4 and ¤.4 from Eq. (2.22), we get the following expression[
¤-4
¤.4

]
=

[
¤- cos \? + ¤. sin \? − ¤B + �? (B) ¤B.4
− ¤- sin \? + ¤. cos \? − �? (B) ¤B-4

]
(2.27)

Let U4 = k − \? , and further expand ¤- and ¤. with Eq. (2.4) and Eq. (2.5), respectively, which

results in the following error state model

©­­­­«
¤-4
¤.4
¤U4

ª®®®®¬
=

©­­­­«
+2 cos(U4 + V) − ¤B + �? (B) ¤B.4
+2 sin(U4 + V) − �? (B) ¤B-4

lI − �? (B) ¤B

ª®®®®¬
(2.28)

where +2 is the magnitude of the robotic fish’s translational velocity. The dynamical model of the

robotic fish in the error state is then obtained by augmenting the equations above with the simplified

averaged scaled dynamics as seen in Eqs. (2.8)-(2.10). Ideally, one would like the robotic fish to

not only converge to a desired path, but also move along the path with some desired surge velocity

and desired angular velocity. Let +3G be the desired surge velocity, and let the velocity error states

be defined by [4 = +2G −+3G , l4 = lI − �? (B) ¤B, and Z4 = ¤B −+2 cos(U4 + V) so that
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©­­­­«
¤[4
¤l4
¤Z4

ª®®®®¬
=

©­­­­«
¤+2G − ¤+3G

¤lI − �? (B) ¥B − 62 (B) ¤B2

¥B − ¤+2 cos(U4 + V) ++2 sin(U4 + V) ( ¤U4 + ¤V)

ª®®®®¬
(2.29)

where 62 (B) = d�?(B)
dB . Since we are interested in steering the robotic fish such that +2G = +3G , and

lI = �? (B) ¤B, by doing a change of variables on Eqs. (2.8)-(2.10) using the above definitions, we

can express the robotic fish dynamic equations in terms of the error velocity states. Note that in

this work we assume ¤+3G = 0. The error state vector is then given by


4 =

©­­­­­­­­­­­­«

-4

.4

U4

[4

l4

Z4

ª®®®®®®®®®®®®¬
(2.30)

Since we have formulated the problem with respect to the error dynamics, and have shifted

the equilibrium point of the dynamic equations, our control objective has become a stabilization

problem for the resultant error dynamics.

2.2.2 Path-following Control Design

To steer the robotic fish to the desired path, and drive the error state vector 
4 to zero, we utilize

an NMPC scheme using the robot’s simplified averaged model. NMPC is an optimization-based

method for feedback control of nonlinear systems, where the basic idea is to repeatedly solve

a finite-horizon optimization problem subject to state and input constraints. At a given time C,

measurements are obtained, and using a model of the process, the controller predicts the behavior

of the system over a prediction horizon )? and then determines over the control horizon )2 the input

necessary to maximize the performance objective. The first part of the optimal control obtained

is implemented until the next sampling instant, and then a new measurement is obtained and the

process repeats [100].
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To design the controller, we consider the robot’s simplified averaged model in which the control

represents functions of the actual control variables, namely, the tail-beat pattern parameters U0, U0,

and lU. By choosing the control in this manner, we allow the control inputs to appear linearly in

the dynamic equation. In particular, we have chosen our control inputs as

D 51 = U
2
0 (3 −

3
2
U2

0 −
3
8
U2
0) (2.31)

D 52 = U
2
0U0 (2.32)

which are present in functions 54(U0, U0, lU) to 56(U0, U0, lU) in Eqs. (2.8)-(2.10). To simplify

discussion, it is assumed that the robotic fish uses a fixed tail-beat frequency lU. Furthermore,

since the system dynamics are expressed in terms of the velocity errors states, by doing a change of

variables we have essentially shifted the equilibrium point of the dynamical system, which means

that there is also a shift on the control inputs D 51 and D 52 . Let D2BB and D3BB represent the shifted

control values, which are defined as follows

D2BB =
6dB��+2

3G

 5<!
2lU2 (2.33)

D3BB =
4 ��% (B)+2

3G

 <<!
22lU2 (2.34)

In order to satisfy the condition that ¤
4 = 0 when 
4 = 0 and u4 = 0, we define the control

inputs as follows

u4 =

©­­­­«
D41

D42

D43

ª®®®®¬
=

©­­­­«
¥B − ¤+2 cos(U4 + V) ++2 sin(U4 + V) ( ¤U4 + ¤V)

D 51 − D2BB

D 52 − D3BB

ª®®®®¬
(2.35)

where D41 is essentially ¤Z4 as seen in (2.29).

Since one is interested in steering the robotic fish to the desired path, we employ a stage cost that

is a function of the error state vector 
4. Furthermore, to minimize the control effort a weighting

term on the control inputs is introduced. The following quadratic cost is chosen:

� (
4, u4) = (
4))&(
4) + (u4))'(u4) (2.36)
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where & and ' are positive definite weighting matrices that penalize deviations from the desired

values.

Furthermore, to guarantee closed-loop stability and convergence, we utilize the terminal penalty,

and the fictitious terminal control law c(
4) as proposed in [101], where a polytopic linear

differential inclusion (PLDI)-based method is employed to obtain the weighting matrix &) for a

terminal penalty of the following form

� (
4 (C + )?)) = (
4 (C + )?)))&) (
4 (C + )?)) (2.37)

The reader is referred to [101] for details on how to obtain this weighting matrix.

By solving the optimal control problem we obtain the optimal control sequence for D41 , D42 ,

and D43 . From D41 , we can obtain ¤Z4, and thus the state Z4 from which we can then solve for ¤B.

Furthermore, from D42 and D43 , along with Eqs.(2.31)-(2.34), one can solve for the actual robotic

fish control variables U0 and U0.

2.2.3 Control Projection

Given that the NMPC inputs, D42 and D43, consist of functions of the actual robotic fish control

variables U0 and U0, the NMPC input constraints are nonlinear in nature. As an illustration,

Figure 2.3 plots the admissible control inputs in terms of D 51 and D 52 when the tail beat bias and

amplitude have the following limits:

U0min = −40◦, U0max = 40◦, U0min = 0◦, U0max = 30◦

where U0min , U0max , U0min and U0max are the physical limits on the tail-beat bias and amplitude,

respectively.

Although NMPC is able to handle nonlinear control constraints, defining the constraints in this

manner leads to an increase in computational time and complexitywhich in turnmakes it challenging

to implement in real time. It is thus desirable to define boxed-constraints since this can reduce

significantly the complexity of the optimization problem and thus lower the computational time.
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Figure 2.3: Illustration of the admissible input control set for robotic fish.

One way of handling the irregular sector-shaped admissible control region shown in Figure 2.3, is to

choose a rectangular area that lies inside this sector-shaped region as depicted by the light gray box

in Figure 2.4. However, this deprives one of fully utilizing the admissible control. To overcome this

problem, we propose to employ a projection method, where we define the NMPC boxed constraint

to be such that it encompasses the admissible control region as depicted in Figure 2.5, and then

project the computed values onto the true region depicted by the red sector-shaped section.

Let I denote a control point anywhere in this rectangular region, and let the sector-shaped set

be represented by*. We can then project the point I onto the convex set* such that

%A> 9* (I) , arg min
D∈*
‖I − D‖ (2.38)

Given that * is convex, this problem is then well defined and %A> 9* (I) is unique. Instead of

relying on an iterative optimization algorithm to determine the projected value, one can directly

obtain an analytical solution that will simplify the projection andminimize computational complex-

ity, as explained next. By taking advantage of the symmetry of the admissible control set, one can

restrict the analysis to the left-half plane. To characterize the boundaries of the admissible control
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Figure 2.4: Illustration of a rectangular section chosen from the admissible control set.

Figure 2.5: Boxed section encompassing the admissible control set.

region, we obtain the relationship between D 51 , D 52 , and U0 by solving for U0 from Eq. (2.32) and

then substituting that into Eq. (2.31). Similarly, by solving for U0 from Eq. (2.32), we can obtain

an equation that captures the relationship between D 51 , D 52 , and U0.These equations are given as
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follows

j1(D 51 , D 52 , U0) , −U2
0D 51 + (3 −

3
2
U2

0)U0D 52 −
3
8
D2
52
= 0 (2.39)

j2(D 51 , D 52 , U0) , −U
2
0D 51 −

3
2
D2
52
+ 3U4

0 −
3
8
U2
0 = 0 (2.40)

where Eq. (2.39) represents the left boundary when U0 = U0<8= and Eq. (2.40) represents the arc at

the top when U0 = U0max . To implement the projection scheme, the following cases are considered:

(�) j1(D 51 , D 52 , U0min) ≤ 0 and j2(D 51 , D 52 , U0max) ≤ 0

(�) j1(D 51 , D 52 , U0min) ≤ 0 and j2(D 51 , D 52 , U0max) > 0

(�) j1(D 51 , D 52 , U0min) > 0 and j2(D 51 , D 52 , U0max) ≤ 0

(�) j1(D 51 , D 52 , U0min) > 0 and j2(D 51 , D 52 , U0max) > 0

For case (�), the point to be projected is inside or on the boundary of the convex set *

and no projection is needed. For case (D), the point to be projected would be outside of the box

encompassing the constraint set* and thus does not need to be considered. For case (�), the point to

be projected is above the arc, and therefore %A> 9* (I) can be found by finding the minimum distance

from the point I to the arc described by Eq. (2.40). Let I = (?, @) and D∗ = (D∗
51
, D∗
52
) = %A> 9* (I).

The relationship between D∗
51
and D∗

52
is given by

D∗
51
=

1
U2
0max

(−3
2
D∗
52

2 + 3U4
0max −

3
8
U6
0max) (2.41)

and the distance between I and D∗ is then given by

62(D∗52) =(D
∗
52
− ?)2 + (D∗

51
− @)2

=(D∗
52
− ?)2 + ( 1

U2
0max

(−3
2
D∗
52

2 + 3U4
0max −

3
8
U6
0max) − @)

2
(2.42)

By taking the partial derivative of 62(D∗52) with respect to D
∗
52
, one obtains the following

m6(D∗
52
)

mD∗
52

= 2(D∗
52
− ?) + 2( 1

U2
0

(3
2
D∗
52
+ 3U4

0 −
3
8
U6
0) − @) (2(

−3
2U2
0

)) = 0 (2.43)
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After simplifying Eq. (2.43), we obtain

9D∗
52

3

U4
0

+ (18 −
18U2

0

8
− 6@
U2
0

+ 2)D∗
52
− 2? = 0 (2.44)

and by setting Eq (2.44) to zero, we can obtain a unique real root for D∗
52
that would minimize this

distance. Finally, D∗
51
is obtained with Eq. (2.41).

For case (�), the point to be projected is below the left boundary. In this case, D∗
51
and D∗

52
are

related by

D∗
51
=

1
U2

0min

(
−3U3

0min
2

D∗
52
+ 3U0minD

∗
52
− 3

8
D∗
52

2) (2.45)

and the distance between I and D∗ can be captured by:

63(D∗52) =(D
∗
52
− ?)2 + (D∗

51
− @)2

=(D∗
52
− ?)2 + (

−3U2
0min
2

D∗
52
+

3D∗
52

U0min
− 3

8
D∗
52

2 − @)2
(2.46)

By taking the partial derivative of 63(D∗52) with respect to D
∗
52
as follows:

m63(D∗52)

mD∗
52

= 2(D∗
52
− ?) + (−6

2
D∗
52
U0 +

6
U0
D∗
52
− 6

8U2
0
D∗
52

2 − @) (−3
2
+ 3
U0
−

6D∗
52

2

8U2
0
) = 0 (2.47)

and by setting it to zero, we can obtain a unique real root for D∗
52
, and consequently D∗

51
with

Eq. (2.45).

2.3 Simulation Results

To evaluate the effectiveness of the designed controller, simulation was carried out using

ACADO Model Predictive Control Toolkit. The parameters used (Table 2.1) were based on

a robotic fish developed by Smart Microsystems Lab at Michigan State University. Furthermore,

while the input constraints are the same as those presented in the experiment section, the parameters

used to solve the optimization problem and implement the NMPC are as follows:

Length of optimization horizon : )2 = )? = 12 s

Sampling interval : CB = 1 s
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Weighting matrix : & = 3806(7, 7, 0.3, 1, 1, 7)

Control weighting matrix : ' = 0.001O3

+2 max = 0.04 m/sec

¤Bmax = 0.04 m/sec

U0min = −40◦

U0max = 40◦

U0min = 0◦

U0max = 30◦

where+2 max is the maximum velocity the robotic fish can achieve, ¤B<0G is the maximum speed the

point B can move along the path with, and U0min , U0max , U0min and U0max are the physical limits

on the tail-beat bias and amplitude, respectively. Note that all of the following simulation was run

with the same set of parameters and initial conditions. Furthermore, the terminal penalty weighting

matrix was determined as described in Section 2.2.2. Though the controller was designed using

the simplified averaged model, the simulation was performed using the original dynamic model. In

other words, the model of the process was based on the simplified averaged dynamics as described

by Eqs.(2.8)-(2.10), and the inputs obtained from solving the optimization problem were applied

to the system described by Eqs. (2.1)-(2.3).

We first considered the following path

G? = B

H? = 0
(2.48)

where G? and H? represent the position of the point P in the {I} frame. This path has a curvature

of 2? (B) = 0, and we chose to require the robotic fish to move with a constant velocity +2 = 0.03

m/s. In Figures 2.6-2.8 we compare the desired path and the closed-loop trajectory of the robotic

fish for three cases. In particular, Figure 2.6 shows the simulation results of the NMPC utilizing
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Figure 2.6: Simulation: line-tracking results for NMPC with the proposed control projection
method.

the projection scheme, while Figure 2.7 shows the results for the case when no projection was

employed and a boxed constraint within * was chosen instead (as shown in Figure 2.4). Finally,

Figure 2.8 shows the results when the nonlinear constraints for the set * were directly defined.

Note that in this work the blue dashed line represents the closed-loop trajectory of the robotic fish

while the solid red line represents the desired path, and the arrowheads point in the direction of

progression. Furthermore, the red diamond represents the starting position of the robotic fish, the

green dot represents the starting point of the path, and the magenta box represents the imaginary

boundaries of the fish tank.

Figure 2.7: Simulation: line-tracking results for NMPC with boxed constraints inside the admis-
sible sector-shaped control region.
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Figure 2.8: Simulation: line-tracking results for NMPC with direct nonlinear control constraints.

Similarly, we considered the following circular path

G? = 0.3 sin(B)

H? = 0.3 cos(B)
(2.49)

which has a constant curvature of 2? (B) = 3.03. In Figures 2.9-2.11 we compare the desired path

trajectory with those obtained by the robotic fish using the three aforementioned control schemes,

respectively.

Figure 2.9: Simulation: arc-tracking results for NMPC with the proposed control projection
method.

From the simulation results, one can see that the proposed NMPC scheme with projection

outperforms the other two schemes in both line-tracking and arc-tracking cases; in particular, it

results in smaller tracking error at the steady state. Compared with the case with boxed constraint

within the set *, the proposed scheme offers larger control authority. The better tracking results

from the proposed scheme compared to the case using direct, nonlinear constraints, however, were

28



Figure 2.10: Simulation: arc-tracking results for NMPC with boxed constraints inside the admis-
sible sector-shaped control region.

Figure 2.11: Simulation: arc-tracking results for NMPC with nonlinear control constraints.

somewhat surprising. We conjecture that this is because the latter algorithm cannot reach an optimal

solution within the allotted computing time. In particular, directly defining the nonlinear constraints

requires the optimization algorithm to conduct more iterations in order to find the solution, which

also makes it difficult to implement in real time.

2.4 Experimental Results

In order to evaluate the effectiveness of the designed controller, experiments were carried out us-

ing the robotic fish depicted in Figure 2.13. The robot consisted of a rigid-shell body and a relatively

rigid tail, which were both 3D-printed. The tail was actuated using a Hitec digital micro waterproof

servo (HS-5086WP), while aMicrochip Digital Signal Processors and Controller (DSPIC30F6014)

was used to control the tail actuation. Furthermore, an XBee-PRO module was used for commu-

nication with a computer. Two Tenergy Li-Ion rechargeable batteries(7.4V, 3350mAh) were used
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to power the robot. For the experiments, the robotic fish was run in an approximately 1.4 m by 0.8

m tank equipped with an overhead Logitech camera as seen in Figure 2.12. Furthermore, to obtain

the robotic fish’s position and orientation in the tank, two markers were attached to the anterior and

posterior of the robotic fish body. We then captured an overhead video of the robotic fish swimming

in the tank using the camera, and utilized Visual C++ and the OpenCV library to implement an

image processing algorithm. The algorithm detected the positions of the two markers and then

used their average to obtain the center position of the robotic fish. The heading angle of the robot

was estimated using the positions of the two markers. Additionally, the Kalman filter function in

OpenCV was used to estimate the linear and angular velocities of the robot based on the measured

position and heading. During every sampling time CB, the OpenCV algorithm was used to obtain

measurements for NMPC, which were then passed to the nonlinear optimization tool ACADO to

solve the optimal control problem. In particular, we ran the software on a Surface Pro tablet with

an Intel(R) Core(TM) i5 CPU @ 2.50 GHz with 4.0 GB of DDR3 RAM. Once the control inputs

were calculated, the bias and amplitude values for the tail beat were obtained and then transmitted

to the robotic fish wirelessly, and the process was repeated.
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Camera

Robotic 
Fish

Figure 2.12: The experimental setup.

Position Markers

Tail Fin

Figure 2.13: Tail-actuated robotic fish develop at Smart Microsystems Lab.
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2.4.1 Model Parameter Identification

Table 2.1: Identified parameters for the robotic fish used in this work.

PARAMETER VALUE
<1 0.725 kg
<0G -0.217 kg
<0H -0.7888 kg
�1I 2.66×10−3 kg ·m2

�0I -7.93×10−4 kg ·m2
! 0.071 m
3 0.04 m
2 0.105 m
d 1000 kg/m3

( 0.03 m2
�� 0.97
�! 3.9047
 � 4.5 ×10−3 kg·m2
 5 0.7

 <(averaged) 0.45

The robotic fish mass and tail fin dimensions were measured, the values of which are as shown

in Table 2.1. Furthermore, the added masses, added inertia, and wetted surface were calculated

based on a prolate spheroid approximation of the robotic fish body [102]. Identification of the

hydrodynamic parameters (such as�� ,�! , and  �) of the robotic fish model (2.8)-(2.16) typically

requires extensive effort in fitting dynamic simulation data to experimental data by scanning the

parameter space [35]. Furthermore, the determination of the scaling coefficients of  5 and  <

requires scanning the parameter space for multiple sets of tail beat patterns and matching the

simulated average model data to the simulated dynamic model [89], which is time-consuming. In

this work, we propose an efficient and systematic way to identify the model parameters by exploiting

the approximate, analytical relationship between the steady-state turning parameter (turning radius,

turning period, etc.) and themodel parameters established in [89]. With the assumption
��G1

�� � ��G2
��,

which is reasonable in general, we can obtain the unique equilibrium of the system (2.8)-(2.10),
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under a given tail beat pattern, as

Ḡ1 =

√√√√
 5<!

2l2
UU0 (3 −

3
2
U2

0 −
3
8
U2
0)

6d(��
(2.50)

Ḡ2 =
 5

2d((�� + �!)

√√√√√6<d(��!2l2
UU

2
0U

2
0

 5 (3 −
3
2
U2

0 −
3
8
U2
0)
+

2<1
d((�� + �!)

√
 <<!

22l2
UU

2
0U0

4 �

(2.51)

Ḡ3 = −

√
 <<!

22l2
UU

2
0U0

4 �
(2.52)

And the steady-state turning period )? (i.e., how long the robot takes to complete a full orbit),

turning radius ', and angle of attack V can be expressed as

)? = 2c/
��Ḡ3

�� (2.53)

' =

√
(Ḡ2

1 + Ḡ
2
2)/

��Ḡ3
�� (2.54)

V = arctan(Ḡ2/Ḡ1) (2.55)

Using Eqs. (2.50)-(2.55), we formulate the following algorithm to obtain the hydrodynamic coeffi-

cients �� , �! and  � , as well as the scaling coefficients  < and  5 for the averaged model. Let

'1 =
 5

��
. By solving for the ratio

 5

��
from Eq. (2.50), we obtain

'1 =
6d(Ḡ2

1

<!2l2
UU0 (3 −

3
2
U2

0 −
3
8
U2
0)

(2.56)

Using the equation above, one can obtain the numerical value of the ratio '1 for a given set of tail

beat parameters and the corresponding measured Ḡ1. In particular, we found this ratio by averaging

the different values obtained for each set of measurements. Furthermore, let  < =  0 +  1U0. By

solving for  <
 �

from Eq. (2.52), and using the definition \0 =  0/ � and \1 =  1/ � , one gets

\0 + U0\1 =
Ḡ2

3
<!22l2

UU
2
0U0

(2.57)
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Using Eq. (2.57) one can then estimate the numerical values for \0 and \1 by utilizing, for example,

the constrained linear least squares (;B@;8=) function inMATLAB, based on the tail beat parameters

and the corresponding measurement of Ḡ3 for a set of experiments.

By considering '1 and the ratio
 <
 �

, we have reduced the number of parameters to be estimated

from 5 ( 5 ,  < , �� , �! ,  �) to 3 ('1,
 <
 �

, �!). In order to obtain the particular values for �� ,

 5 ,  < , and  � , and to estimate the remaining parameter �! , we utilize Eqs. (2.56) and (2.57)

along with Eqs. (2.51) and (2.54). By letting 20 = �� + �! and substituting '1, \0 and \1 into

(2.54), one obtains

'2��Ḡ3
��2 = Ḡ2

1 +
(
��

20
31 +

32
20

)2
(2.58)

where

31 = '1

√√√√√ 6<d(!2l2
UU

2
0U

2
0

'1(3 −
3
2
U2

0 −
3
8
U2
0)

(2.59)

32 =
2<1
d(

√
(\1 + \2U0)<!22l2

UU
2
0U0

4
(2.60)

Using Eq. (2.58) and letting 21 =
1
20
, we can obtain the following:

H = 22
13

2
2 + 3

2
1�

2
�2

2
1 + 2213231�� (2.61)

where H = '2 |Ḡ3 |2 − Ḡ2
1. Letting q1 = 2

2
1, q2 = �

2
�
22

1, and q3 = 2
2
1�� , one can rewrite the above

expression as

H = q13
2
2 + 3

2
1q2 + 23231q3 (2.62)

With a set of collected data, the parameters q1 through q3 can be estimated readily using

techniques, such as the constrained linear-least square method. We can then solve for �� , �! and

 5 using the definitions established above. Since the proposed estimation method only provides

the ratio  <
 �

, to obtain the values for  < and  � , we run simulations with the original dynamical

model and choose  � such that the angular velocity of the dynamic model matches that of the

averaged model.
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Table 2.2: Model validation results: relative model prediction error for
turning radius and turning period, when the tail beats at 1.5 Hz.

(U0, U0) Turning Radius Error(%) Turning Period Error(%)
(15◦, 45◦ ) 11.23 8.80
(15◦, 50◦ ) 7.57 11.65
(20◦, 45◦ ) 8.46 3.82
(20◦, 50◦ ) 8.74 12.55
(25◦, 45◦ ) 2.90 0.97
(25◦, 50◦ ) 11.07 15.88

For the implementation of the above parameter estimation scheme, we first ran experiments

to obtain the steady-state turning radii and periods for different tail biases (0◦, 25◦, 40◦), and

amplitudes (15◦, 20◦, 25◦) while holding the frequency at 1 Hz. The values obtained for the

parameters  5 ,  < ,�� ,�! and  � are listed in Table 2.1. Furthermore, to validate the models we

ran experiments with the same set of biases and amplitudes as previously stated while holding the

frequency at 1.5 Hz. Table 2.2 lists the errors in turning radius and period between those obtained

from experiments and those obtained from simulation using the parameters estimated above. The

comparison indicates that the estimated model has acceptable accuracy.

2.4.2 Experimental Results on Path-Following

The parameters used to solve the optimization problem and implement the NMPC were as follows:

Length of optimization horizon : )2 = )? = 7B

Sampling interval: CB = 1B

Weighting matrix: & = 0.9O5

Control weighting matrix: ' = 0.001O3

+2 max = 0.04 m/s

¤Bmax = 0.04 m/s

35



U0min = −40◦

U0max = 40◦

U0max = 30◦

U0min = 0◦

The following were the inputs constraints used for the case implementing projection:
−1.810 ≤ D41 ≤ 0.190

0 ≤ D 5 1 ≤ 0.794
−0.191 ≤ D 5 2 ≤ 0.191

 (2.63)

For the case using boxed constraints (without projection), we considered the following input

constraints: 
−1.81 ≤ D41 ≤ 0.1900
0.366 ≤ D 5 1 ≤ 0.794
−0.115 ≤ D 5 2 ≤ 0.115

 (2.64)

We first considered the following path

G? = B

H? = 0
(2.65)

where G? and H? represent the position of the point P in the {I} frame. The desired velocity for

the robotic fish was set to be 0.03 m/s. In Figures 2.14 and 2.15 we compare the desired path

and the closed-loop robotic fish trajectory, obtained by using the NMPC with the proposed control

projection scheme, and with a boxed constraint inside the nonlinear constraint set *, respectively.

We do not report the case of NMPC with nonlinear constraints * directly, because it could not

be implemented in real time due to its long computation time. Figure 2.16 shows the computed

physical inputs from solving the NMPC with the larger boxed constraint and their final values after

the proposed projection. Furthermore, it shows the desired surge velocity +3G versus the robot’s

linear velocity’s +2G .
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Figure 2.14: Experiments: line-tracking results for NMPC with the proposed control projection
method.

Figure 2.15: Experiments: line-tracking results for NMPC with boxed constraints inside the
admissible sector-shaped control region.

Figure 2.16: Experiments: computed NMPC physical inputs and their projected values.
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Similarly, we considered the following circular path

G? = 0.3 sin(B)

H? = 0.3 cos(B)
(2.66)

and Figure 2.17 and Figure 2.18 show the path-following results for NMPC with the proposed

projection and for NMPC with boxed constraints inside*, respectively.

Figure 2.17: Experiments: arc-tracking results for NMPC with the proposed control projection
method.

Figure 2.18: Experiments: arc-tracking results for NMPC with boxed constraints inside the
admissible sector-shaped control region.

Overall, the tracking results shown in Figures 2.14-2.18, one can see that, consistent with the

simulation results, the proposed NMPC scheme with projection resulted in faster convergence to

the desired path and smaller path error, due to the availability of larger control authority.
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2.5 Chapter Summary

In this chapter, we proposed and implemented in real time a path-following NMPC scheme for a

tail-actuated robotic fish. A high-fidelity averaged nonlinear dynamic model was used for controller

design. A parameter estimation scheme was employed to empirically identify the hydrodynamic

parameters and scaling coefficients of the model. Furthermore, given that the control inputs were

functions of two of the tail-beat parameters, specifically the tail bias and tail amplitude, a control

projection strategy was implemented to handle these nonlinear input constraints and maximize the

use of the admissible control region in a computationally efficient manner. Finally, simulation and

experimental results demonstrated the effectiveness of the proposed scheme.
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CHAPTER 3

BACKSTEPPING CONTROL-BASED TRAJECTORY TRACKING FOR
TAIL-ACTUATED ROBOTIC FISH

Although NMPC offered a systematic framework for control, its computational complexity poses

challenges on implementation in resource-constrained robotic fish. Furthermore, the effect of

the proposed projection scheme on stability is unclear and challenging to analyze. We are thus

inspired to explore alternative control approaches that can handle input constraints and provide

stability analysis of the closed-loop system. Backstepping-based control design presents a practical

and systematic approach to the trajectory tracking problem as it is computationally inexpensive,

especially when compared to methods such as nonlinear model predictive control (NMPC), and

provides stability guarantees. In this chapter, we first consider the trajectory tracking control

problem for a general class of autonomous under-actuated planar aquatic robots and then implement

the proposed schemed on a tail-actuated robotic fish.

In the case of under-actuated marine robotic systems confined to a horizontal plane, several

groups have proposed nonlinear control methods to achieve tracking of desired trajectories. How-

ever, some of these works have been limited to tracking a restrictive class of trajectories with

reference angular velocities bigger than zero [103–112]. Others have only focused on regulating

the position error while ignoring the vehicle’s orientation, which in some applications, e.g., in the

case of the robotic fish, can often lead to unstable configurations where no proper control can be

applied due to the actuator constraints [83, 113–120].

Several authors have designed backstepping and Lyapunov-based controllers that have achieved

both position and orientation tracking [121–127]. However, these approaches suffer from the

drawback that the position and orientation tracking controllers only allow the vehicles to track

pre-specified feasible state-space trajectories that are generated using the model of the vehicle.

In this work, we address the trajectory tracking control problem for autonomous under-actuated

planar aquatic robots and vehicles. In particular, we present a systematic method to design a
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backstepping-based continuous tracking controller that yields global ultimate boundedness of the

position tracking errors and the orientation error. Furthermore, we demonstrate its effectiveness

via simulation and experiments on a tail-actuated robotic fish.

The control scheme proposed in this work was inspired by [93] (chapter 5), where the control

of an under-actuated ship is considered. In particular, we utilize the idea of introducing an

augmented error coordinate to address the under-actuation issue and stabilize the heading, lateral

and longitudinal tracking errors. While [93] focuses on the dynamic model of a ship, in this

work we consider a general class of nonlinear systems with under-actuated planar dynamics and

input coupling where each input could affect multiple velocity states. Furthermore, unlike [93]

and other work previously reported in literature we do not impose that the reference trajectory

be generated from a nominal dynamics model, i.e., we do not require that the desired body-fixed

velocities are generated from a virtual vehicle with the same dynamics, nor do we assume that

the reference angular velocity is persistently exciting or decays to zero as in [93]. Another key

difference between our work and [93] is that, while [93] uses a particular form for the augmented

error state, we provide a systematic approach to the synthesis of this state that guarantees the global

boundedness and convergence of the position and heading tracking errors to a neighborhood of the

origin. We establish the theoretical results via multi-time-scale analysis of singularly perturbed

systems.

The proposed scheme is illustrated and validated via the trajectory tracking control of a tail-

actuated robotic fish, as the latter is a good example of highly nonlinear, under-actuated robotic

systems that exhibit input coupling [128]. By considering the cyclic nature of tail actuation, an

averaged dynamic model for the robotic fish is used, where the bias and amplitude of the tail

oscillation are treated as physical variables to be manipulated, while the tail beat frequency is fixed.

Experimental results demonstrate the effectiveness of the proposed scheme and show its advantages

over a well-tuned PI controller.

The rest of the chapter is organized as follows. We first describe the dynamic model for the

class of under-actuated robots considered in this work in Section 3.1. In Section 3.2, the problem
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formulation for trajectory tracking is presented, followed by the backstepping control design. The

closed-loop system stability analysis is shown in Section 3.3. In Section 3.4 the backstepping

controller is designed for a robotic fish. In Section 3.5 simulation results are presented. Finally,

in Section 3.6 the experimental set-up and experimental results for the robotic fish are discussed.

Finally, we provide some concluding remarks in Section 3.7.

3.1 System Model

Figure 3.1: Top view of an aquatic robotic system undergoing planar motion.

Consider an under-actuated robotic system modeled as a 3-DOF rigid body with two inputs.

Let {I} denote the inertial coordinate frame and {B} the body-fixed reference frame attached to the

center of mass of the robot. In particular, let [X, Y, Z]) and [Ĝ, Ĥ, Î]) denote the inertial and

the body-fixed coordinate systems, respectively, as illustrated in Figure 3.1. Assume that the robot

undergoes planar motion such that its configuration (�X� , p) is an element of the Special Euclidean

group (� (2): = ($ (2) × R2 where �X� ∈ R2×2:{�X� �X)� = I2, det(�X� ) = +1} is a rotation

matrix that maps the vehicle’s body coordinates into the inertial coordinates, and p = [G? , H?]) is

the position of the origin of {B} in {I}. Let v = [E1 E2]) denote the body-fixed linear velocity,
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where E1 and E2 denote the surge and sway velocities, respectively. The angular velocity expressed

in the body-fixed coordinates is given by l ∈ R. Furthermore, let V denote the angle of attack,

formed by the direction of v with respect to the body-fixed Ĝ-axis, and let k denote the heading

angle, formed by the body-fixed Ĝ-axis relative to the inertial X-axis. The robot’s kinematics are

thus expressed as

¤p =� X� v (3.1a)

� ¤X� =� X�Y(l) (3.1b)

where

�X� =


cosk − sink
sink cosk

 (3.2)

and Y(·) is the skew-symmetric matrix defined as

Y(l) =

0 −l
l 0

 (3.3)

Let ( = [E1 E2 l], and consider the class of under-actuated aquatic robot models with the

following dynamic equations of motion:

¤( = � (() + �* (3.4)

where

� (() =


ℎ1(()
ℎ2(()
ℎ3(()

 , � =


11 12

13 14

15 16

 , * =


D1

D2


D1, D2 represent the inputs, 11− 16 are constants, and ℎ1(·), ℎ2(·), ℎ3(·) can be nonlinear functions

of the velocity states.

Assumption 1 The dynamic system described by Eq. (3.4) is input-to-state stable.

Assumption 2 The sway velocity is bounded such that |E2 | ≤ ō for some constant ō > 0.
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Assumption 3 The submatrix

1̄ =


11 12

15 16

 (3.5)

is not singular.

3.2 Trajectory Tracking Control Algorithm

3.2.1 Trajectory Tracking Error Coordinates

The trajectory tracking problem involves the design of a control law that enables the robot to track

a desired reference trajectory in the inertial frame, i.e., a geometric path with a specified time law,

such that the robot’s position and pose coincide with those of the desired trajectory. Figure 3.1

depicts the general idea.

Consider a robot with dynamics given by Eq. (3.1) and (3.4), and let the vectors P̄(C) and T̄(C)

denote the robot’s actual and desired position and pose with respect to the inertial frame {I} at a

given time C, respectively, such that

P̄ =


G?

H?

k

 , T̄ =


GA

HA

kA

 (3.6)

For ease of presentation, the time-dependence notation is omitted for the remainder of the paper.

Assume that the time evolution of T̄ is given by

dT̄
dC
=


¤GA
¤HA
¤kA

 =

EA coskA
EA sinkA
lA

 (3.7)

where EA and lA are some desired surge and angular velocities, respectively. Note that in this work,

we are interested in aligning the robot’s heading angle k with the velocity vector vA = [ ¤GA , ¤HA ],

which lies tangent to the reference trajectory, i.e., kA = arctan
¤HA
¤GA
.

Furthermore, let e = [G4 H4 k4]) denote the tracking error vector expressed in the body-fixed

frame such that

e =
( �X� 02×1

01×2 1

)
(P̄ − T̄) (3.8)
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where �X� denotes the rotation matrix from the inertial frame {I} to the body-fixed frame {B}.

The derivative of e (expressed in {B}) is given by

de
dC
= Ȳ

( �X� 02×1

01×2 1

)
(P̄ − T̄) +

( �X� 02×1

01×2 1

) (dP̄
dC
− dT̄

dC

)
(3.9)

where

Ȳ =

(
−Y(l) 02×0

01×2 0

)
(3.10)

By solving for
de
dt

from Eq. (3.9), and by augmenting the error state model with the robot’s

dynamics (3.4), one can obtain the following error state model

¤G4
¤H4
¤k4
¤E1

¤E2

¤l


=



E1 − EA cos(k4) + lH4
E2 + EA sin(k4) − lG4

l − lA
ℎ1(E1, E2, l) + 11D1 + 12D2

ℎ2(E1, E2, l) + 13D1 + 14D2

ℎ3(E1, E2, l) + 15D1 + 16D2


(3.11)

Assumption 4 The reference velocities EA and lA are bounded and differentiable with bounded

derivatives ¤EA and ¤lA . In particular, we assume |lA | ≤ l<0GA and 0 < EA ≤ E<0GA .

By formulating the tracking problem in terms of the error dynamics, the trajectory tracking

control problem has become a stabilization problem. In particular, the trajectory-tracking problem

is to find a control law such that, for an arbitrary initial error, the states (G4, H4, k4) of system (3.11)

converges to a neighborhood of the origin.

3.2.2 Backstepping Control Design

In this subsection we synthesize the backstepping-based controller such that the tracking error

states, G4, H4, and k4, are stabilized at a neighborhood of the origin.
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Let 4 = [G4, H4, k4]) such that (3.11) is expressed as

¤e =� (C, e) + ! (e)( (3.12)

¤( =� (() + �* (3.13)

where

� (C, e) =


−EA cos(k4)
EA sin(k4)
−lA

 , ! (e) =


1 0 H4

0 1 −G4
0 0 1

 (3.14)

Note that the time dependence in the system above stems from the time-varying reference

trajectory. From (3.12)-(3.13), one can see that this system can be viewed as a cascade connection

of two subsystems, where the first subsystem is given by Eq. (3.12) with ( as input, and the second

subsystem is given by Eq. (3.13) with * as input. By treating ( as a virtual control input for the

stabilization of e, the objective of backstepping control is to design a state feedback control law,

such that e → 0 as C → ∞. Ideally one would seek a state feedback law ( = q(e) such that the

system

¤e = � (C, e) + ! (e)q(e)

is asymptotically stable. However, although one could find a choice of q that would stabilize e at the

origin, this would entail utilizing three virtual inputs (E1, E2, l). Given the under-actuated nature

of the dynamics of (, this would lead to an over-constrained problem as one would be attempting

to manipulate three virtual inputs with only two actual inputs D1 and D2. The under-actuation of

the dynamics thus implies that only two virtual inputs are available to stabilize e. Alternatively,

one could attempt to stabilize only two of the states at the origin, for example, G4 and H4; however,

the third state, in this case, k4, is not guaranteed to converge to the origin or even be bounded.

The choice of virtual inputs should also consider practicality. For example, choosing the sway

velocity E2 as a virtual input is impractical in reality because either it can lead to unstable whirling

of the robot or it is not directly actuated (when 13 and 14 are zero); therefore, the most viable

virtual input choices are E1 and l. It is natural to use E1 to regulate the error in the longitudinal
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axis (G4), which leaves l as a virtual input to drive the lateral (H4) and heading angle (k4) errors

to the origin.

The control scheme proposed in [93] for a ship, overcame a similar limitation by introducing

a new error state that couples the lateral and heading angle errors. By stabilizing the longitudinal

tracking error along with this new state, the authors were able to stabilize the whole error system

at the origin. Inspired by this work, we propose a similar approach; however, whereas [93] only

provided a specific form of this new error state, in this work, we provide a systematic approach to

its design for a general class of under-actuated dynamics. In particular, we establish the sufficient

conditions needed to achieve closed-loop stability and via time-scale analysis, we provide further

insight into the structure that this new error state needs in order to achieve ultimate boundedness

of the error state system.

We define a new state, referred to as a “modified error” Ib , which is a function of H4 and k4 and

couples them in such a way that the convergence of one implies the convergence of the other. This

new state can be viewed intuitively as a “correction angle”, where essentially the heading angle

error k4 is “corrected” with an angle that is correlated to the magnitude of the error H4, such that it

determines the rotation needed for the robot to point towards the desired trajectory. Following this

intuition, let the “modified error” state be defined as Ib = @(C, H4, k4) = @1(C, H4) + @2(C, k4). Let

@(·, ·, ·) satisfy the following assumption:

Assumption 5 The function @(C, H4, k4) is continuously differentiable with respect to all its argu-

ments, @2(C, k4) is invertible with respect to k4, the range of @1 is bounded, and @(C, 0, 0) = 0.

Furthermore, write the time derivative of @(·, ·, ·) as

d@
dC
=
m@1(C, H4)
mH4

(E2 + EA sin(k4) − lG4) +
m@2(C, k4)
mk4

(l − lA ) +
m@(C, H4, k4)

mC

d@
dC
=l: (C, e) + ?(C, e, E2)

where ?(C, e, E2) =
m@1(C, H4)
mH4

(E2 + EA sin(k4)) −
m@2(C, k4)
mk4

(lA ) +
m@(C, H4, k4)

mC
,

: (C, e) = m@2(C, k4)
mk4

− m@1(C, H4)
mH4

G4. It is assumed that : (C, e) ≠ 0 ∀ C ≥ 0,∀ e ∈ �, in which

� ⊂ R= is a domain that contains the origin and the initial error state 4(0).
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Using this new error variable, the error system (3.12)-(3.13) is augmented to the following

¤e =� (C, e) + ! (e)( (3.15a)

¤Ib =?(C, e, E2) + l: (C, e) (3.15b)

¤( =� (() + �* (3.15c)

The function @(·, ·, ·) should be defined such that driving Ib and G4 to a neighborhood of the origin

guarantees that the error system e converges to a neighborhood of the origin. The reason and

mechanism to why this is true will be evident later with the time-scale analysis.

To guarantee that the dynamics of ¤G4 and ¤Ib are asymptotically stable, a state feedback law q(·)

needs to be designed. Let ( = q(·) = [q1 0 q3]) , where q1 and q3 will be determined shorty.

Let the candidate Lyapunov function for the ¤G4, ¤Ib system be chosen as

+ (G4, Ib) =
1
2
G2
4 +

1
2
I2b (3.16)

The derivative of + with respect to time is then given by

¤+ (G4, Ib) = G4 (−EA cos(k4) + q1 + H4q3) + Ib (q3: (C, e) + ?(C, e, E2)) (3.17)

By choosing

q3(C, e, E2, Ib) =
−?(C, e, E2) −  Ib Ib

: (C, e) (3.18a)

q1(C, e, E2, Ib) =EA cos(k4) − H4q3 −  G4G4 (3.18b)

one can get

¤+ (G4, Ib) = − G4G2
4 −  Ib I

2
b

(3.19)

where  G4 > 0 and  Ib > 0 are tuning parameters.

From the above it can be concluded that Ib and G4 will asymptotically converge to the origin

so long as ( is identical to q. However, given that there is no direct control over the virtual

inputs, another ‘step’ in the backstepping design must be performed such that the actual input *
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appears. By adding and subtracting ! (e)q(C, e, E2, Ib) on the right hand side of Eq. (3.15a) and

: (C, e)q3(C, e, E2, Ib) on the right hand side of Eq. (3.15b), one can obtain the following:

¤e = � (C, e) + ! (e)q(C, e, E2, Ib) + ! (e)
(
( − q(C, e, E2, Ib)

)
(3.20a)

¤Ib = ?(C, e, E2) + : (C, e)q3 + : (C, e)
(
l − q3

)
(3.20b)

¤( = � (() + �* (3.20c)

Let the virtual input error be defined as

e[ =


4[1
4[2
4[3

 =

E1 − q1 + H4 (l − q3)

0
: (C, e)

(
l − q3

)


=&̄(C, e) (( − q(C, e, E2, Ib))

(3.21)

where

&̄(C, e) =


1 0 H4

0 0 0
0 0 : (C, e)

 (3.22)

The time derivative of e[ is given by

¤e[ =


¤4[1
¤4[2
¤4[3

 = &̄(C, e)
(
�̄ (() + �̄*

)
+

( ¤̄&(C, e) (( − q(C, e, E2, Ib)
)
− &̄(C, e) ¤q(C, e, E2, Ib)

)
︸                                                                ︷︷                                                                ︸

k(C,e,E2,Ib )

= &̄(C, e)�̄ (() + &̄(C, e)�̄* + k(C, e, E2, Ib)

(3.23)
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where

�̄ (() =


ℎ1(()

0
ℎ3(()

 , �̄ =


11 12

0 0
15 16


¤q1(C, e, E2, Ib) =

[
mq1
me

mq1
mE2

mq1
mIb

] 
� (C, e) + ! (e)(

ℎ2(() + 13D1 + 14D2
l: (C, e) + ?(C, e, E2)

 +
mq1
mC

¤q3(C, e, E2, Ib) =
[
mq3
me

mq3
mE2

mq3
mIb

] 
� (C, e) + ! (e)(

ℎ2(() + 13D1 + 14D2
l: (C, e) + ?(C, e, E2)

 +
mq3
mC

(3.24)

Furthermore, since E1 and l are the only virtual inputs to be directly manipulated, the sway

velocity E2 is an uncontrolled state, so we let it signify a perturbation to the system and define

(̄ =


0
[̄

0

 =


0
E2

0

 (3.25)

To ease the control synthesis and the analysis of the closed-loop system, using Eqs. (3.20)-(3.23)

and (3.25), we rewrite the error system as

¤e = � (C, e) + ! (e)q(C, e, E2, Ib) + !̄ (C, e)e[ + (̄ (3.26a)

¤Ib = ?(C, e, [̄) + : (C, e)q3 + 4[3 (3.26b)

¤e[ = &̄(C, e)�̄ (() + &̄(C, e)�̄* + k(C, e, E2, Ib) (3.26c)

¤̄[ = ℎ2(() + 13D1 + 14D2 (3.26d)

where

!̄ (C, e) =


1 0 0
0 0 − G4

: (C, e)
0 0

1
: (C, e)


(3.27)

When e[ is zero (implying the virtual inputs E1 and l equal q1 and q3, respectively), G4

and Ib approach zero asymptotically as previously shown with the Lyapunov function + (G4, Ib).
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We thus would like to drive e[ asymptotically to the origin. To ease the control design, let

&̄�̄* = (- − k(C, e, E2.Ib)), where - ∈ R3×1 is the nominal control input defined as

- =


`1

0
`2

 (3.28)

Note that since the second element of - as well as the second row of of the right hand side of

(3.26c) are zero, a unique expression for - can be obtained using the definition above. With (3.28),

the error system (3.26) then becomes

¤e = � (C, e) + ! (e)q(C, e, E2, Ib) + !̄ (C, e)e[ + (̄ (3.29a)

¤Ib = ?(C, e, [̄) + : (C, e)q3 + 4[3 (3.29b)

¤e[ = &̄(C, e)�̄ (() + - (3.29c)

¤̄[ = ℎ2(() + 13D1 + 14D2 (3.29d)

Considering the system composed of G4, Ib , e[, we define a new Lyapunov function +2 as

+2(G4, Ib , e[) = + (G4, Ib) +
1
2
e)[ e[ (3.30)

with its time derivative given by

¤+2 =

[
m+ (G4, Ib , e[)

mG4

m+ (G4, Ib , e[)
mIb

] 
−EA cos(k4) + q1 + q3H4

?(C, e, [̄) + : (C, e)q3


+

[
m+ (G4, Ib , e[)

mG4

m+ (G4, Ib , e[)
mIb

] 
4[1
4[3

 + e)[ ¤e[
= −  G4G2

4 −  Ib I
2
b + G44[1 + Ib4[3 + e

)
[

(
&̄(C, e)�̄ (() + -

)
(3.31)

Let

- = −&̄(C, e)�̄ (() −  e[ e[ (3.32)

where

 e[ =


 4[1 0 0

0 0 0
0 0  4[3


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which yields

¤+2 = − G4G2
4 −  Ib I

2
b + G44[1 + Ib4[3 − ( 4[1 4

2
[1 +  4[3 4

2
[3) (3.33)

After adding and subtracting
42[1

4 G4
and

42[3
4 Ib

and completing the square, one can arrive at

¤+2 ≤ − G4
(
G4 −

4[1
2 G4

)2
−  Ib

(
Ib −

4[3
2 Ib

)2

− 42
[1

(
 4[1 −

1
4 G4

)
− 42

[3

(
 4[3 −

1
4 Ib

) (3.34)

If  G4 > 0,  Ib > 0,  4[1 >
1

4 G4
and  4[3 >

1
4 Ib

, then ¤+2 < 0 unless G4 = Ib = 4[1 = 4[3 = 0.

FromLyapunov theory ( [129]), one can conclude the convergence of (G4, Ib , 4[1 , 4[3) to the origin.

Finally, let k = [k1 0 k2]) such that the input* is given by

* = � (C, e)

`1 − k1

`2 − k2

 (3.35)

where � (C, e) is given by

� (C, e) =


16

1116 − 1215
− (12 + 16H4)
: (C, e) (1116 − 1215)

− 15
1116 − 1215

(11 + 15H4)
: (C, e) (1116 − 1215)


(3.36)

Remark 1 Note that Assumption 3 guarantees that 1116 − 1215 is nonzero.

Theorem 3.2.1 Consider the error dynamics given by (3.11). If the system dynamics satisfy

Assumptions 1 and 3 and the desired trajectory satisfies Assumption 4, then the backstepping control

law (3.35) guarantees the convergence of the longitudinal tracking error G4 and the modified error

Ib to the origin. Furthermore, if the system dynamics satisfies Assumptions 2 , then (G4, H4, k4)

from the error system (3.11) are stabilized at a neighborhood of the origin and are ultimately

bounded as

‖e‖ ≤ max{V(‖e(C0)‖, C − C0), d(b)}, ∀ C ≥ C0 (3.37)

where V(‖e(C0)‖, C− C0) is a classKL function, d(b) is a classK function and b is an upper bound

to be determined.
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Remark 2 Note that typically for any set of inputs D1 and D2, |E2 | ≤ |E1 | is satisfied in the absence

of external disturbances. This assumption is often made in literature and it is reasonable in practice

as many aquatic robotic systems satisfy this condition when no disturbances are present. Relevant

examples include robotic fish [89] and under-actuated ships/surface vessels [130]. Therefore, the

disturbance that arises from E2 is expected to be relatively small.

Note that the backstepping controller guarantees the convergence of G4 and Ib to the origin.

The following analysis in Section 3.3 shows how the rest of the error states H4 and k4 are stabilized.

3.3 Stability Analysis of the Closed-Loop System

We first show how the error system (3.11) is stable at the origin under the assumption that the

perturbation arising from the uncontrolled state E2 is identically zero, that is [̄(0) = 0 and ¤̄[ = 0.

The case of E2 not being constantly zero will be considered in a later part of the stability analysis.

With the control law - substituted into Eq. (3.26), the closed-loop system is obtained as follows:

¤H4 = EA sin(k4) − G4q3 −
G44[3

: (C, H4, Ib , G4)
(3.38a)

¤k4 = −lA + q3 +
4[3

: (C, H4, Ib , G4)
(3.38b)

¤G4 = − G4G4 + 4[1 (3.38c)

¤Ib = − Ib Ib + 4[3 (3.38d)

¤e[ = − e[ e[ (3.38e)

¤̄[ = 0 (3.38f)

Eq. (3.38) allows one to see the time-scale structure of the closed-loop system as it is evident that

e[, Ib , and G4 are “fast” converging states if  e[ ,  Ib and  G4 are chosen adequately large. Inspired

by this, we utilize singular perturbation methods for nonautonomous systems [131] to analyze the

stability properties of the closed-loop system.
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3.3.1 Asymptotic Stability of Multi-Time-Scale Systems: The Setup

In general, multi-time-scale analysis involves the decomposition of a system into stages dictated by

the separation of different time scales. In particular, the system is decomposed into a “slow” reduced

model that dominates the system behavior and a “fast” boundary layer which is composed of the

states that evolve in faster time scales and represent deviations from the slow system. Following this

intuition, let j = [j1 j2 j3 j4]) = [Ib G4 4[1 4[3]
) and n =

1
max( Ib ,  G4 ,  4[1 ,  4[3 )

such that the closed-loop system (3.38), excluding (3.38b), is transformed into a two-time scale

singular perturbation model of the following form:

¤H4 = 5 (C, H4, j) (3.39)

n ¤j = 6(C, H4, j, n) (3.40)

¤̄[ = 0 (3.41)

where

5 (C, H4, j) =\A sin(k4) − j2q3 −
j2j4

: (C, H4, j)
(3.42a)

6(C, j, n) =


−0̄j1 + n j4

−1̄j2 + n j3

−2̄j3

−3̄ j4


(3.42b)

=


−0̄ 0 0 n

0 −1̄ n 0
0 0 −2̄ 0
0 0 0 −3̄

︸                    ︷︷                    ︸
�


j1

j2

j3

j4


(3.42c)

where 0̄ =
 Ib

max( Ib , G4 , 4[1 , 4[3 )
, 1̄ =  G4

max( Ib , G4 , 4[1 , 4[3 )
, 2̄ =

 [1
max( Ib , G4 , 4[1 , 4[3 )

,

3̄ =
 [3

max( Ib , G4 , 4[1 , 4[3 )
, H4 is the slow variable, and j is the fast variable. Furthermore,

consider n � 1. Eqs. (3.39)-(3.40) represent the singularly perturbed full system, which for

simplicity is denoted as the Υ(� system. Similarly, the different sub-index combinations in Υ∗
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Figure 3.2: The bottom-up approach to the analysis of two-time-scale system.

denote the different subsystems. For example, Υ( denotes the slow subsystem. Note that the state

k4 has not been included in the perturbation model, since we exploit its relationship with the error

state H4 and the new error coordinate Ib , and instead analyze the evolution of Ib . In other words, we

utilize the relationship Ib = @1(C, H4) + @2(C, k4), which is enforced via the backstepping feedback

law.

By considering the singular perturbation parameter n , the Υ(� system can be broken into a pair

of slow and fast subsystems, and its time-scale properties can be analyzed in an ascending manner.

Figure 3.2 illustrates this methodology. The standard two-time scale stability analysis is based on

the following result.

Lemma 1 ( [131]) Consider the singularly perturbed system

¤Z (C) = 5 (C, Z , W, n), Z ∈ R=

n ¤W = 6(C, Z , W, n), W ∈ R<
(3.43)

Assume that the following assumptions are satisfied for all

(C, Z , W, n) ∈ [0,∞) × �Z × �W × [0, n0], �Z ⊂ R=, �W ⊂ R< , and 0 < n0 ∈ R

1. 5 (C, 0, 0, n) and 6(C, 0, 0, n) = 0.

2. The equation

6(C, Z , W, 0) = 0

has an isolated root W = � (C, Z), and there exists a class K function ?1 such that

‖� (C, Z)‖ ≤ ?1(‖Z ‖)

55



3. The functions 5 , 6, and � are smooth and their partial derivatives up to the second order are

bounded for W − � (C, Z) ∈ �W .

4. The origin of the reduced order system

¤Z (C) = 5 (C, Z , � (C, Z), 0)

is asymptotically stable; there exists a positive-definite Lyapunov function candidate +' that

satisfies

0 < B1(‖Z ‖) ≤ +' (C, Z) ≤ B2(‖Z ‖)

for some class K functions B1(·) and B2(·), and

m+' (C, Z)
mC

+ m+' (C, Z)
mZ

5 (C, Z , � (C, Z), 0) ≤ −U′1Ψ
2(Z)

where U′1 > 0 and Ψ(·) is a continuous scalar function of Z that vanishes only at Z = 0.

5. The origin of the boundary-layer system

3V

3g
= 6(C, Z , V + � (C, Z), 0)

where V = W − � (C, Z) and g = (C − C0)
n

, is asymptotically stable at the origin, uniformly in

(C, Z); there exists a Lyapunov function candidate, (C, Z , W), that satisfies

0 < B3(‖W − � (C, Z)‖) ≤ , (C, Z , W) ≤ B4(‖W − � (C, Z)‖)

for some class K functions B3(·) and B4(·), and that satisfies the following:

m, (C, Z , W)
mW

6(C, Z , W, 0) ≤ −U′2Φ
2(W − � (C, Z)),

where U′2 > 0 and Φ(·) is a continuous function of an R< vector I 5 which vanishes only at

I 5 = 0.

6. +' (C, Z) satisfies the following interconnection condition:

m+'

mZ
[ 5 (C, Z , W, n) − 5 (C, Z , � (C, Z), 0)] ≤ V′1Ψ(Z)Φ(W − � (C, Z)) + n_

′
1Ψ

2(Z)

where the constants V′1 and _′1 are nonnegative.
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7. , (C, Z , W) satisfies the second and third interconnection conditions:

m,

mW
[6(C, Z , W, n) − 6(C, Z , � (C, Z), 0)] ≤ n_′2Φ(W − � (C, Z)) + n V

′
2Ψ(Z)

′Φ(W − � (C, Z))

m,

mC
+ m,
mZ

5 (C, Z , W, n) ≤ _′3Φ
2(W − � (C, Z)) + V′3Ψ(Z)Φ(W − � (C, Z))

where the constants _′2, _
′
3,V
′
2, and V

′
3 are nonnegative.

Then there exists n∗ > 0 such that for all n < n∗, the origin of (3.43) is uniformly asymptotically

stable. Moreover, there exists a composite Lyapunov function defined as

a(C, Z , W) = (1 − 3′)+' (C, Z) + 3′, (C, Z , W), 0 < 3′ < 1

such that

¤a(C, Z , W) ≤ −


Ψ(Z)
Φ(W − � (C, Z))


)

Λ


Ψ(Z)

Φ(W − � (C, Z))


where

Λ =


(1 − 3′) (U′1 − n_

′
1) −1

2
(1 − 3′)V′1 −

1
2
3′(V′2 + V

′
3)

−1
2
(1 − 3′)V′1 −

1
2
3′(V′2 + V

′
3)

3′

n

(
U′2 − n (_

′
2 + _

′
3)

)  (3.44)

which is positive definite for

n <
U′1U
′
2

U′1(_
′
2 + _

′
3) + U

′
2_
′
1 +

1
4(1 − 3′)3′ [(1 − 3

′)V′1 + 3
′(V′2 + V

′
3)]

2

def
= n3 (3.45)

The maximum of n3 is given by

n3 |3′=V′1/(V
′
1+(V

′
2+V
′
3))

= n∗ =
U′1U
′
2

U′1(_
′
2 + _

′
3) + U

′
2_
′
1 + V

′
1(V
′
2 + V

′
3)

TheΥ(� subsystem is formed by the reduced-order slow-subsystemΥ( and the four-dimensional

fast Υ� boundary layer. Let � (C, H4) denote the unique equilibrium point of 6(C, H4, � (C, H4), 0)

when n = 0, such that

0 = 6(C, H4, j, n) → j = � (C, H4) = 0 (3.46)

By considering the stretched time scale defined by g1 = (C − C0)/(n), the slow model is given by

the Υ(

¤H4 = 5 (C, H4, � (C, H4)) = EA sin(k4) (3.47)
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Subsystem Condition

Assumption 4 of Lemma 1: Reduced System

Υ(�
m+( (C, H4)

mH4
5 (C, H4, � (C, H4)), 0) +

m+( (C, H4)
mC

≤ −U1Ψ
2
1

Assumption 5 of Lemma 1: Boundary-Layer

Υ(�
m+� (C, G)

mG
6(C, H4, j, 0) ≤ −U2Φ

2
1

Assumption 6 of Lemma 1: Interconnection Condition 1

Υ(�
m+( (C, H4)

mH4

{
[ 5 (C, H4, j, n) − 5 (C, H4, � (C, H4), 0)]

}
≤ V1Ψ1Φ1+ n_1Ψ

2
1

Assumption 7.a of Lemma 1: Interconnection Condition 2

Υ(�
m+� (C, j)
mH4

[6(C, H4, j, n) − 6(C, H4, � (C, H4), 0)] ≤ n_2Φ1 + n V2Ψ1Φ1

Assumption 7.b of Lemma 1: Interconnection Condition 3

Υ(�
m+� (C, j)
mH4

5 (C, H4, j, n) +
m+� (C, G)

mC
≤ _3Φ

2
1 + V3Ψ1Φ1

Table 3.1: Comparison functions and inequalities that guarantee the asymptotic stability require-
ments for the two-time scale system.

while the fast model or boundary layer for the Σ(�-subsystem is given by the Σ�-subsystem as

3j

3g1
= 6(C, H4, j(g1), 0) =


−0̄j1

−1̄j2

−2̄j3

−3̄ j4


(3.48)

Recall that one of the fast variables, Ib , denotes the “modified error” defined as Ib = @1(C, H4) +

@2(C, k4). At this time-scale stage, Ib reaches equilibrium faster than H4, i.e, Ib → 0 which

implies that @2(C, k4) → −@1(C, H4). Since @2(C, k4) satisfies Assumption 5, this suggests that

k4 → −@−1
2 (@1(C, H4)), and implies that once Ib has reached equilibrium, k4 is forced to move

in a manifold defined by k4 = −@−1
2 (@1(C, H4)) (enforced by the backstepping controller). By

considering that k4 is constrained to evolve on this manifold, Eq. (3.47) can thus be rewritten as

¤H4 = 5 (C, H4, � (C, H4)) (3.49a)

= −EA sin(@−1
2 (@1(C, H4))) (3.49b)
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One can then carry out the stability analysis on the subsystem composed of the slow variable H4

and the fast variable Ib with k4 subject to evolving on the manifold defined by −@−1
2 (@1(C, H4)).

Note this means that the convergence of k4 is implied once H4 converges.

3.3.2 Lyapunov Function Candidates and Two-Time-Scale Analysis

As seen from Lemma 1, the asymptotic stability analysis requires the existence of Lyapunov

functions for each of the subsystems. These Lyapunov functions, in turn, will be utilized to form a

composite Lyapunov function for the complete Υ(� system.

To choose the Lyapunov functions at each stage, we consider each of the subsystems in a

descending manner. In particular, we first consider the reduced-order slow Υ(-subsystem given by

Eq. (3.49), and let +( (C, H4) represent its Lyapunov function, where the exact structure of +( (C, H4)

is dependent upon the choice of the @1 and @2 functions. Note that +( (C, H4) is allowed to depend

on time. An example of a candidate Lyapunov function will be given briefly. On the other hand,

for the corresponding fast Υ�-subsystem (3.48), a natural choice is

+� (j) = j)%j (3.50)

where % is a real, symmetric positive-definite matrix and the solution to the Lyapunov equation

%� + �)% = −( where ( = () > 0. Note that since A is Hurwitz, % is the unique solution of the

Lyapunov equation (Theorem 3.7 [129]).

Considering the above Lyapunov functions, one can then establish asymptotic stability of

the origin by satisfying assumptions (1)-(7) of Lemma 1. Table 3.1 summarizes the equivalent

assumptions by substituting the corresponding system dynamics.

It can be verified that (0, 0) is an equilibrium of the system given by Eqs. (3.39)-(3.40). The

time derivative of +( (C, H4) is given

¤+( (C, H4) = −
m+(

mH4
EA sin(@−1

2 (@1(C, H4))) +
m+(

mC
(3.51)

Depending on the choice of @1 and @2, +( (C, H4) can be determined such that ¤+( (C, H4) is shown

to be negative definite. In general, with the appropriate choice of U1 and Ψ1, Assumption 4 of
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Lemma 1 can be satisfied. Take for example +( (H4) = (1 − cos(@−1
2 (@1(H4))), where @1 and @2

are chosen to be independent of C, in which case

¤+( (H4) = −EA sin2(@−1
2 (@1(H4)))

m (@−1
2 (@1(H4)))
mH4

(3.52)

As a simple choice, let @2 =  4k4, with  4 > 0, such that

¤+( (H4) = −EA sin2( @1(H4)
 4

) m (@1(H4))
 4mH4

(3.53)

By choosing @1 such that
m (@1(H4))
mH4

> 0, ¤+( (H4) can be made negative definite. From Assumption

5, @1 must be chosen such that it is continuously differentiable and well defined for all real numbers

of H4 and has a bounded range. arcsin( H4√
1+H2

4

) is one viable option that would satisfy all the

aforementioned assumptions. Note that arcsin(·) has a limited domain; however, its argument is

restricted since −1 ≤ H4√
1+H2

4

≤ 1. Let @1 =  3 arcsin( H4√
1+H2

4

) such that

¤+( (H4) = −EA
 3

 4
sin2( 3

 4
arcsin( H4√

1 + H2
4

))
( 1
1 + H2

4

)
(3.54a)

≤ −E<8=A

 3

 4
sin2( 3

 4
arcsin( H4√

1 + H2
4

))
( 1
1 + H2

4

)
(3.54b)

where  3 > 0 can be thought of as a scale to determine the effect of the “correction” term.

: (C, e) = m@2(C, k4)
mk4

− m@1(C, H4)
mH4

G4 =  4 −
 3G4

1 + H2
4

satisfies : (C, e) ≠ 0 ∀ C ≥ 0,∀ |G4 | <
 4

 3

. In this example, Assumption 4 of Lemma 1 can be satisfied with U1 ≥ E<8=A
 3
 4

and Ψ1 =

sin2( 3
 4

arcsin( H4√
1+H2

4

))
( 1
1 + H2

4

)
. For another example we refer the reader to Section 3.4.3.

Using Eq. (3.50), it can be shown that by letting U2 ≥ _̄<8= ((), Φ1 = ‖j‖, where _̄<8= (() is

the smallest eigenvalue of (, Assumption 5 of Lemma 1 can be satisfied. Furthermore, with the

appropriate choice V1 and _1 = 0, Assumption 6 of Lemma 1 can also be satisfied. Finally, with

_2 = 0, V2 = 0, _3 = 0, and V3 = 0, Assumption 7.a and Assumption 7.b of Lemma 1 can be

satisfied.

A composite Lyapunov function for the Υ(�-subsystem is given by

+1(C, H4, j) = (1 − 31)+( (C, H4) + 31+� (j) (3.55)
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with

¤+1(C, H4, j) = −

Ψ1(H4)
Φ1(j)


)

Λ1


Ψ1(H4)
Φ1(j)

 ≤ −_(Λ1)



Ψ1(H4)
Φ1(j)




2

︸       ︷︷       ︸
f2

where Λ is given by

Λ =


(1 − 31)U1 −1

2
(1 − 31)V1

−1
2
(1 − 31)V1 31

(U2
n

) 
and _(Λ) is its smallest eigenvalue of Λ. The stability of the two time-scale Υ(�-subsystem is then

guaranteed for

n <
431U1U2
(1 − 31)V2

1

def
= n3

3.3.2.1 Asymptotic Stability of the Closed-Loop Perturbed System

Throughout the stability analysis done so far, it has been assumed that the perturbation [̄ that

results from the uncontrolled sway velocity E2 is identically zero. However, to complete the proof

of Theorem 3.2.1 and show how the error system (3.11) is ultimately bounded we incorporate E2 as

a disturbance and treat the resultant closed-loop system as a disturbed system. Using the perturbed

system theory as presented in [129] (Lemma 4.4), stability analysis can be carried out.

Let the perturbed Υ(� system be expressed as

¤� = &(C,�) + A (C,�) =


5 (C,�)
6(C,�)

0

 + A (C,�) (3.56)

where � = [H4, j, [̄])

5 (C,�) =
EA sin(k4) −

j2(−?̄(C, H4, j) − :Ib j1)
: (C, H4, j)

− j2j3
: (C, H4, j)

 (3.57)

6(C,�) =


−0̄j1 + n j4

−1̄j2 + n j3

−2̄j3

−3̄ j4


(3.58)
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A (C,�) =



−m@1(C, H4)
mH4

[̄j2

: (C, H4, j)
+ [̄

0
0
0
0

ℎ2(E1, [̄, l) + 13D1 + 14D2



(3.59)

?̄(C, H4, j1, j2) =
m@1(C, H4, j)

mH4
EA sin(k4) −

m@2(C, H4, j)
mk4

lA +
m@(C, H4, j)

mC
(3.60)

Note that in this manner the nominal system is represented by &(C,�) while the perturbation is

denoted by A (C,�). In the previous section it was shown that the nominal system given by ¤� = &(�)

is asymptotically stable. Furthermore, a composite Lyapunov function+1(C,�) for the full nominal

system is found, for which it can be shown that

Γ1(‖�‖) ≤ +1(C,�) ≤ Γ2(‖�‖),
m+1
m�

&(C,�) + m+1
mC
≤ −Γ3(‖�‖),




m+1
m�




 ≤ e (3.61)

for all � ∈ �', where �' ⊂ R= and Γ8, 8 = 1, 2, 3 are class K functions.

Considering the same Lyapunov function +1 for the pertubed system, we can express the

derivative of +1 along the trajectories of (3.56) as

¤+1(C,�) =
m+1
mC
+ m+1
m�

&(�) + m+1
m�

A (C,�) (3.62a)

≤ −Γ3(‖�‖) +



m+1
m�







A (C,�)


 (3.62b)

Suppose that the perturbation term satisfies the bound

‖A (�, C)‖ ≤ i <
\Γ3(Γ−1

2 (Γ1(')))
e

(3.63)

for all C ≥ 0 and � ∈ �', with some positive constant \ < 1. The derivative of +1 along the
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trajectories of (3.56) becomes

¤+1(C,�) =
m+1
m�

&(C,�) +
m+1
m�

A (C,�) (3.64a)

≤ − Γ3(‖�‖) +



m+1
m�




‖A (C,�)‖ (3.64b)

≤ − Γ3(‖�‖) + ei (3.64c)

≤ − (1 − \)Γ3(‖�‖) − \Γ3(‖�‖) + ei (3.64d)

≤ − (1 − \)Γ3(‖�‖), ∀ ‖�‖ ≥ Γ−1
3

( ei
\

)
(3.64e)

Then for all �(C0) ∈ {+1(�) ≤ Γ1(')}, the solution �(C) of the perturbed system satisfies

‖�‖ ≤ max{V(‖�(C0)‖, C − C0), d(i)}, ∀ C ≥ C0 (3.65)

for some class KL functions V, and a class K function d given by

d(i) = Γ−1
1 (Γ2(Γ−1

3 (
ie

\
)))

3.4 Backstepping Control of Robotic Fish

To demonstrate the effectiveness of the proposed approach, the backstepping control algorithm

is implemented in a robotic fish, as this system has highly nonlinear dynamics with input coupling

and is under-actuated.

3.4.1 Dynamic Model of Robotic Fish

The tail-actuated robotic fish is modeled as a rigid body with a rigid tail that is actuated at its base,

and is considered to undergo planar motion [89]. The system has three degrees of freedom, namely

surge, sway, and yaw. The tail deflection angle is assumed to have the following periodic pattern:

U(C) = U0 + U0 sin(lUC) (3.66)
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where U0, U0, and lU represent the bias, amplitude, and frequency of the tail beat, respectively.

The dynamics of the system are described with an average model [89] and is given by

¤E1 = ℎ1(E1, E2, l) +  5 27 5̄4(U0, U0, lU) (3.67a)

¤E2 = ℎ2(E1, E2, l) +  5 28 5̄5(U0, U0, lU) (3.67b)

¤l = ℎ3(E1, E2, l) +  <29 5̄6(U0, U0, lU) (3.67c)

with 

ℎ1(E1, E2, l) =
<2
<1
E2l −

21
<1
E1

√
E2

1 + E
2
2

+ 22
<1
E2

√
E2

1 + E
2
2 arctan( E2

E1
)

ℎ2(E1, E2, l) = −
<1
<2
E1l −

21
<2
E2

√
E2

1 + E
2
2

− 22
<2
E1

√
E2

1 + E
2
2 arctan( E2

E1
)

ℎ3(E1, E2, l) =(<1 − <2)E1E2 − 24l
2sgn(l)

5̄4(U0, U0, lU) =l2
UU0 (3 −

3
2
U2

0 −
3
8
U2
0)

5̄5(U0, U0, lU) =l2
UU

2
0U0

5̄6(U0, U0, lU) =l2
UU

2
0U0

(3.68)

where <1 = <1 − <0G , <2 = <1 − <0H , �3 = �1I − �0I , 21 =
1
2d(�� , 22 =

1
2d(�! , 24 =

 �
�3
, 27 =

<!2
12<1

, 28 =
<!2
4<2

, and 29 = −c<!
2

4�3
. Here <1 is the mass of the body, �1I is the

inertia of the body about the body-fixed I-axis, <0G and <0H are the hydrodynamic derivatives that

represent the added masses of the robotic fish along the body-fixed G and H directions, respectively,

and �0I represents the added inertia effect of the body about the body-fixed z direction. ( denotes

the reference surface area for the robot body, �� , �! and  � represent the drag force coefficient,

lift coefficient, and drag moment coefficient, respectively, d is the density of water, ! is the tail

length, 2 is the distance from the body center to the pivot point of the actuated tail and < represents

the mass of water displaced by the tail per unit length and is approximated by c4 d3
2 with 3 denoting

the tail depth.  5 is a scaling constant, and  < is a scaling function affine in U0. As done in [92],

to further facilitate control design, in this work  < is considered as a constant by taking the average
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of  < for a given range of U0. Furthermore, let (G? , H?) denote the robot’s center of mass and k the

heading angle, formed by the body fixed axis relative to the inertial axis. The system’s kinematics

are thus given by

¤G? = E1 cosk − E2 sink (3.69a)

¤H? = E1 sink + E2 cosk (3.69b)

¤k = l (3.69c)

The robotic fish dynamics satisfy Assumption 1, and Assumption 2, the proof for which can be

found in Appendix A.

3.4.2 Backstepping Control Design

To design the controller, the robot’s simplified averaged model presented above is considered.

Here the control inputs are functions of the actual physical variables, namely the tail-beat pattern

parameters U0, U0, and lU. To simplify discussion, a fixed tail-beat frequency lU is assumed. The

control inputs are then chosen as

D1 = U0 (3 −
3
2
U2

0 −
3
8
U2
0) (3.70)

D2 = U
2
0U0 (3.71)

which are present in functions 5̄4(U0, U0, lU) to 5̄6(U0, U0, lU) in Eqs. (3.67a)-(3.67c). Note

that the control inputs defined this way appear linearly in the dynamic equations. In this manner,

(3.67a)-(3.67c) thus resembles (3.4) with 11 =  5 27l
2
U, 12 = 0, 13 = 0, 14 =  5 28l

2
U, 15 = 0

and 16 =  <29l
2
U.

The modified error function @ for the robotic fish should be chosen such that the heading angle

of the robot can be used to minimize H4, but still allow tracking of kA when H4 is small enough.

For simplicity, we choose @2 = k4, and consider the Lyapunov function +( proposed in Section

3.3.2 to determine possible choices for @1. In particular the derivative of +( with respect to time is
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given by

¤+( (H4) = −EA sin2(@−1
2 (@1(H4)))

m (@1(C, H4))
mH4

+ m+(
mC

(3.72)

From the above, @1 need to be chosen such that ¤+( is negative definite. For simplicity, we let @1

be only a function of H4. Furthermore, taking into consideration Assumption 5, @1 needs to be a

continuously differentiable function that is well defined for all real numbers of H4 and has a bounded

range. The function arctan(H4) is an attractive choice since it satisfies all of the aforementioned

assumptions. Furthermore, its derivative with respect to H4,
m (@1(C, H4))

mH4
=

1
1 + H2

4

, is positive for

all H4. The modified error for the robotic fish system is thus chosen as

Ib = @(H4, k4) = k4 + @2(H4) (3.73)

where @2 is given by

@2(H4) = :X1 arctan(:X2H4) (3.74)

where :X1 and :X2 are positive constants. In particular, :X1 can be thought of as a scale for the

“correction” angle within the total error Ib , while :X2 tunes the magnitude of the angle. Note that

with this choice we also satisfy : (C, e) = m@2(C, k4)
mk4

− m@1(C, H4)
mH4

G4 = 1 −
:X1:X2G4

1 + (:X2H4)
2 such that

: (C, e) ≠ 0 ∀ C ≥ 0,∀ |G4 | <
1

:IX1
:IX2

.

3.4.2.1 Control Synthesis

The backstepping controller for the robotic fish can be designed by following the procedure from

Section 3.2.2. First, to stabilize the (G4, Ib) subsystem, the following candidate Lyapunov function

is chosen

+ =
1
2
G2
4 +

1
2
I2b (3.75)

Let E1 = q1 and l = q3 represent the virtual inputs, which will be chosen shortly. The time

derivative of Eq. (3.75) is given by

¤+ =G4 ¤G4 + Ib ¤Ib

=G4 (q1 − \A cos(k4) + q3H4) + Ib (: (C, e)q3 + ?(C, e, E2))
(3.76)
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where

?(C, e, E2) = :X1:X2
(\A sin(k4) + E2)
(:X2H4)

2 + 1
− lA (3.77)

: (C, e) = 1 −
:X1:X2G4

(:X2H4)
2 + 1

(3.78)

Let

q1 = \A cos(k4) − q3H4 −  G4G4 (3.79)

q3 =
−?(C, e, E2) −  Ib Ib

: (C, e)
(3.80)

so that

¤+ = −  G4G2
4 + − Ib I

2
b

(3.81)

Let the virtual input error be given by
4[1
4[3

 =

E1 − q1 + H4 (l − q3)
: (C, e)

(
l − q3

)  (3.82)

and define a new Lyapunov function

+2 = + +
1
2
42
[1 +

1
2
42
[3 (3.83)

The time derivative of Eq. (3.83) is given by

¤+2 = ¤+1 + 4[1 ¤4[1 + 4[3 ¤4[3 (3.84)

With Eqs. (3.67a)-(3.67c) along with the input definition Eq. (3.70)- (3.71), one can expand the ¤E1,

¤E2 and ¤l terms that appear in Eq. (3.84). To make ¤+2 negative definite, let D1 and D2 be chosen as[
D1

D2

]
=

[
 5 27  <29.4

0 [

]−1 [
)1

)2

]
(3.85)
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with

)1 = − ℎ1(·) + ¤\A cos(k4) − \A sin(k4) ¤k4

− ℎ3(·)H4 − l ¤H4 −  G4 ¤G4 −  4[1 4[1

(3.86)

)2 = − ℎ3(·): (·) − ¤: (·) (l − q3) − : (·)Δ −  4[3 4[3
(3.87)

¤: (·) = − :IX1:IX2
¤G4

(:IX2H4)
2 + 1)

+ :IX1:
2
IX2

2G4H4 ¤H4
((:IX2H4)

2 + 1)2
(3.88)

Δ =:IX1:IX2

− ¤̂? −  Ib ¤Ib
: (·) − :IX1:IX2

¤: (·)
−? −  Ib Ib

: (·)2
(3.89)

¤̂? =:IX1:IX2
ℎ2(·) + ¤\A sin(k4) + \A cos(k4) ¤k4

(:IX2H4)
2 + 1

− :IX1:
2
IX2

2H4 ¤H4 (\A sin(k4) + E2)
((:IX2H4)

2 + 1)2
(3.90)

[ =:IX1:IX2
 5 28

(:IX2H4)
2 + 1

+  <29: (C, e) (3.91)

3.4.2.2 Control Synthesis Incorporating Input Constraints

Given that robot fish actuators have physical limitations, the backstepping-based controller design

should accommodate these constraints so that the control scheme can be successfully implemented.

In this section, we present the control synthesis incorporating the input constraints. However, note

that the time-scale stability analysis assumes that the nominal inputs are achievable.// The latter can

be true given that the desired trajectory is feasible. In other words, when the desired trajectory is

such that the nominal values will lie within the actuator constraints, then the achievable input will

converge to the nominal input.

In order to address magnitude constraints on the control inputs, we employ the following scheme

inspired by [132] and [133]. Let E1 and E2 represent the nominal backstepping control inputs, and

let D1 and D2 be the inputs that can be practically implemented. To obtain the value for D1 and

D2, first the values given by E1 and E2 are used to solve for the tail-beat parameters U0, U0 using

Eqs. (3.70)-(3.71), and then the tail-beat parameter values are saturated such that they lie within the

range [U0<8= , U0<0G ], and [U0<0G , U0<8=]. Finally D1 and D2 are obtained using Eqs. (3.70)-(3.71)

68



with the saturated values.

To analyze the influence of the input constraints, the following auxiliary system is chosen,

¤_1 = −Z1_1 + _2

¤_2 = −Z2_2 +  5 27(D1 − E1) + .4 <29(D2 − E2)

¤_3 = −Z3_3 + _4

¤_4 = −Z4_4 − [(D2 − E2)

(3.92)

The variables _1-_4 defined above represent the filtered effect of the non-achievable portion

of the virtual and control inputs. In particular, the additional tracking error that arises because of

mismatch between the nominal and implementable inputs is represent by _1 and _3, while _2 and

_4 represent the error propagated to the virtual inputs. As a result, the modified tracking errors are

defined as follows:

Ḡ4 = G4 − _1 (3.93)

Īb = Ib − _3 (3.94)

Furthermore, let the modified virtual errors be given as

4̄[1 = E1 − q1 + H4 (l − q3) − _2 (3.95)

4̄[3 = : (C, e) (l − q3) − _4 (3.96)

To stabilize the (Ḡ4, Īb) subsystem, the following Lyapunov function is chosen

+̄ =
1
2
Ḡ2
4 +

1
2
Ī2b (3.97)

With these new definitions, similar stability analysis as done in Eq. (3.76)-(3.81) is carried out.

Let the virtual inputs be defined as

q1 =\A cos(k4) − lH4 −  G4 Ḡ4 − Z1_1 (3.98)

q3 =
−?(C, e, E2) −  Ib Īb − Z3_3

: (C, e) (3.99)
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so that
¤̄+ = Ḡ4 (4̄[1 −  G4 Ḡ4) + Ī4 (4̄[3 −  Ib Īb) (3.100)

Then a new Lyapunov function is defined as

+̄2 = +̄ +
1
2
4̄2
[1 +

1
2
4̄2
[3 (3.101)

The time derivative of Eq. (3.101) is given by

¤̄+2 =
¤̄+ + 4̄[1

¤̄4[1 + 4̄[3
¤̄4[3 (3.102)

As previously done, the terms ¤E1, ¤E2 and ¤l that appear in Eq. (3.102) can be further expanded.

After simplifying the above, E1 and E2 can be chosen as

 5 27E1 +  <29H4E2 = − ℎ1(·) + ¤\A cos(k4) − \A sin(k4) ¤k4 − ℎ3(·)H4 − lI ¤H4 −  G4 ¤̄G4

+ Z2
1_1 − (Z1 + Z2)_2 −  4[1 4̄[1

(3.103)

[E2 = − ℎ3(·): (·) − ¤: (·) (l − q3) − : (·)Δ̄ + Z2
3_3 − (Z3 + Z4)_4 −  4[3 4̄[3

(3.104)

where

Δ̄ =:IX1:IX2

− ¤̂? −  Ib ¤̄Ib
: (·) − :IX1:IX2

¤: (·)
−? −  Ib Īb

: (·)2
(3.105)

¤̂? =:IX1:IX2
ℎ2(·) + ¤\A sin(k4) + \A cos(k4) ¤k4

(:IX2H4)
2 + 1

− :IX1:IX2
2H4 ¤H4 (\A sin(k4) + E2)
((:IX2H4)

2 + 1)2
(3.106)

By following similar stability analysis as previously done for the constraints-free case, one can

arrive at the following

¤̄+2 = −  G4 (Ḡ4 −
1

2 G4
4̄[1)

2 −  Ib ( Īb −
1

2 Ib
4̄[3)

2 − 4̄2
[1 ( 4[1 −

1
4 G4

) − 4̄2
[3 ( 4[3 −

1
4 Ib

)

(3.107)

If  G4 > 0,  Ib > 0,  4[1 > 1
4 G4

and :4[3 > 1
4 Ib

, then ¤̄+2 < 0 unless when Ḡ4 = Īb =

4̄[1 = 4̄[3 = 0, implying the convergence of (Ḡ4, Īb , 4̄[1 , 4̄[3) to zero as time approaches infinity.

70



Furthermore, since 0 ≤ +̄2(C) ≤ +̄2(0), one can conclude that (Ḡ4, Īb , 4̄[1 , 4̄[3) are each in L2.

This shows that even when physical limitations do not allow the the desired control signals to be

implemented, the quantities Ḡ4 and Īb do not diverge. In other words, this guarantees convergence

for the compensated tracking errors Ḡ4 and Īb but not the actual tracking errors G4 and Ib . The

latter may actually increase during periods when input limitations are in effect given that the desired

control signal is not being implemented (i.e. D1 ≠ E1 and/or D2 ≠ E2). However, when the control

signal limitations are not in effect, (i.e. D1 = E1 and D2 = E2), _1-_4 approach zero, and (Ḡ4, Īb)

converges towards (G4, Ib). Once the control input limitatiosn are not in the effect, the time-scale

analysis previously presented will apply. Finally the nominal inputs E1 and E2 can be obtained from

(3.105).

In the following section we establish the stability analysis for the robotic fish under the assump-

tion that the nominal input values are achieved.

3.4.3 Stability Analysis of Closed-Loop Robotic Fish System

Following the time-scale analysis presented in Section 3.3, it can be shown that by choosing

+( (H4) = (1 − cos(:X1 arctan(:X2H4))) (3.108a)

+� (j) = j)%j (3.108b)

and a composite Lyapunov function

+1(C, H4, j) = (1 − 31)+( (C, H4) + 31+� (j) (3.109)

then for all �(C0) ∈ {+1(C,�) ≤ Γ1(')}, the solution �(C) of the robotic fish perturbed system

satisfies

‖�‖ ≤ max{V(‖�(C0)‖, C − C0), d(i)}, ∀ C ≥ C0 (3.110)

where d is given by

d(i) =
(√ ie

\_<8= (Λ)

)
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and

e =

√(
21(1 − 31)E<0GA :X1:IX2

)2 + (231_̄<0G (?))2‖'‖

i =

:IX1
:IX2

ō

�4
‖'‖

(3.111)

with �4 defined such that

|G4 | (1 + :IX1
:IX2
)

(:IX2
H4)2 + 1 − :I41:IX2

G4
≤ |G4 |
�4

(3.112)

for |G4 | <
1

:IX1
:IX2

. The reader is referred to Appendix B for a detailed proof of the time-scale

analysis without perturbation and Appendix C for the stability analysis of the perturbed robotic fish

system.

3.5 Simulation Results

To evaluate the effectiveness of the designed controller, simulations were carried out using

MATLAB. Furthermore, a PI controller was implemented to provide performance comparison.

The robotic fish parameters used for simulation are listed Table 3.2.

The tunable backstepping and PI controller parameters for the line trajectory (defined briefly)

in the simulation were chosen as follows:

 G4=1.1  Ib=1.2  4[1=0.69  4[3=0.41

Z1=0.4 Z2=0.8 Z3=0.9 Z4=0.9
:IX1=5 :IX2=63.3  %1=3.5  %2=0.85
 �1=0.021  �2=0.023 U0min=-50

◦ U0max=50
◦

U0min=0
◦ U0max=30◦ CB =0.66 s lU= 3c

where U0min , U0max , U0min and U0max are the physical limits on the tail-beat bias and amplitude

respectively. Furthermore,  %1,  %2,  �1, and  �2 are the PI controller tunable parameters. The

variable CB is the sampling interval which pertains to the amount of time between an update to the

control inputs. In this design, we chose CB = 0.66 seconds given that the tail-beat frequency is
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1.5 Hz. The controller parameters were chosen such that under the right values the backstepping

controller was able to regulate the error system to the origin. We found that varying Z1 − Z4

controlled the convergence rate of the errors _1 − _4, which are a consequence of the effect of the

input constraints. For the PI controller, its gain parameters were tuned carefully in simulation using

Ziegler-Nichols’ closed-loop method [134].

Note that although the backstepping controller was designed using the simplified averaged

model, the simulations were performed on the original dynamic model. The following line and

circular trajectories were considered

¤GA = vA cos(kA ), ¤HA = 0, ¤kA = lA ,with vA = 0.02, lA = 0 and

¤GA = vA cos(kA ), ¤HA = vA sin(kA ), ¤kA = lA , with

vA = '1 |lA |, '1 = 0.2, lA = −0.09,

(3.113)

where ¤GA and ¤.A represent the velocity of the trajectory in the {I} frame.

Figures 3.3a-3.3b depict the desired and the closed-loop trajectories of the robotic fish for the

backstepping-based and PI controller in both the line and circular cases. Note that the diamonds

represents the starting position of the robotic fish, while the green circle represents the starting

point of the path. In particular, 10 simulations trials were run for each type of trajectory with

different initial conditions.

Figures 3.4-3.5 illustrate the averaged magnitude of the position errors over time along with the

corresponding standard deviations for line and circular tracking, respectively, for both the proposed

backstepping scheme and the PI controller. Similarly, Figures 3.6-3.7 illustrate the averaged

magnitude of the angle errors over time along with the corresponding standard deviations for line

and circular tracking, respectively, for both the proposed backstepping scheme and the PI controller.

From simulation results, in particular from Figures 3.4-3.7, one can see that, with the proposed

backstepping scheme, smaller position tracking error in the allotted time is obtained, as well as a

faster convergence to the desired trajectory.
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(a) Line-tracking trajectories.
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(b) Circle-tracking trajectories.

Figure 3.3: Simulation: line and circle-tracking trajectory results, respectively, for backstepping-
based and PI control.
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Figure 3.4: Simulation: line-tracking position error for backstepping-based and PI control.
“STD” curves represent the standard deviation envelopes for the average error under each con-
troller.
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Figure 3.5: Simulation: circle-tracking position error for backstepping-based and PI control.
“STD” curves represent the standard deviation envelopes for the average error under each
controller.

Figure 3.6: Simulation: line-tracking angle error for backstepping-based and PI control. “STD”
curves represent the standard deviation envelopes for the average error under each controller.

Figure 3.7: Simulation: circle-tracking angle error for backstepping-based and PI control.
“STD” curves represent the standard deviation envelopes for the average error under each
controller.
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Table 3.2: Parameters of the robotic fish.

PARAMETER VALUE PARAMETER VALUE
<1 0.725 kg <0G -0.217 kg
<0H -0.7888 kg 2 0.105 m
�0I -7.93×10−4 kg ·m2 ! 0.071 m
�1I 2.66×10−3 kg ·m2 3 0.04 m
d 1000 kg/m3 ( 0.03 m2
�� 0.97 �! 3.9047
 � 4.5 ×10−3 kg·m2  5 0.7
 <(averaged) 0.45 .

3.6 Experimental Results

In order to evaluate the validity of the proposed scheme, experiments were carried out using the

robotic fish presented in the previous Chapter (Figure 2.13). Furthermore, a similar experimental

set up was utilized (Figure. 2.12). Finally, the parameters for the robotic fish are as shown in

Table 3.2.

To demonstrate the effectiveness of the proposed approach, experiments were carried out to

compare the performance of the backstepping-based controller with that of a proportional-integral

(PI) controller in terms of tracking performance. It is important to emphasize that the robotic fish

has actuator constraints that must be considered when implementing the controller. To address

this, the backstepping controller was modified as shown in Section 3.4.2.2. Furthermore, the inputs

were saturated in a similar fashion as described in Section 3.5. In the case of the PI controller, the

original calculated values for the tail-beat parameters were saturated to obtain the realizable values

and thus the viable inputs.

The tunable controller parameters were chosen as follows:

 G4= 0.6  /b
= 0.6  4[1= 1.02  4[2= 1.02

Z1= 0.6 Z2= 0.6 Z3= 0.5 Z4= 0.5
:X1= 1 :X2= 1.6  %1=0.25  %2= 0.31
 �1= 0.01  �2= 0.0071 U0min=-50

◦ U0max= 50◦

U0min= 0◦ U0max= 30◦ CB = 0.66 s
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where U0min ,U0max , U0min and U0max are the physical limits on the tail-beat bias and amplitude

respectively. Furthermore,  %1,  %2,  �1, and  �2 are the PI controller tunable parameters. CB is

the sampling interval that pertains to the amount of time between an update to the control inputs.

In this design, we chose CB= 0.66 seconds given that the tail-beat frequency is 1.5 Hz. Finally, Z1-Z4

are the controller parameters used to handle the input constraints. The PI gain parameters were

tuned in experiments using Ziegler-Nichols’ closed-loop method [134].

The following line and circular trajectories were considered for the tracking tasks

¤GA = v1A cos(kA ), ¤HA = 0, ¤kA = lA ,with v1A = 0.02, lA = 0 and

¤GA = v1A cos(kA ), ¤HA = v1A sin(kA ), ¤kA = lA , with

v1A = '1 |lA |, '1 = 0.2, lA = −0.09,

(3.114)

In particular, ten different trials with similar initial conditions were performed for both the

backstepping and PI controllers. In Figure 3.8, the desired and the closed-loop robotic fish

trajectories for all ten trials are depicted for both the line and circular trajectories, while in Figure 3.9

the tracking results for only one of the trials is depicted. In particular, Figure 3.9a illustrates the

tracking results for backstepping-based control, and Figure 3.9b illustrates those obtained for PI

control. In both figures the yellow diamond depicts the starting position of the robot while the

green circle depicts the start of the trajectory. Furthermore, the blue solid line depicts the desired

trajectory while the red solind like depicts that of the robotic fish. Finally, the arrowheads on the

lines denote the direction of progression.

In addition, Figure 3.10 depicts the averaged position tracking error alongwith its corresponding

standard deviation for both control schemes in each trajectory case. In particular, the solid blue

line with circular markers represents the averaged tracking error obtained for backstepping-based

control, while the dotted blue lines represent its standard deviation. Similarly, the solid magenta

line represents the averaged error obtained for PI control, while the dotted-dashed magenta lines

represent its standard deviation. Similarly, Figure 3.11 depicts the averaged angle tracking error

along with its corresponding standard deviation for both control schemes in each trajectory case.
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(a) Line-tracking trajectories.
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(b) Circle-tracking trajectories.

Figure 3.8: Experiments: line and circle-tracking trajectory results, respectively, for backstepping-
based and PI control.

From the average errors depicted in Figures 3.10-3.11 one can see that overall the proposed

backstepping scheme resulted in faster convergence to the desired trajectory and achieves a smaller

steady-state error for both types of trajectory.

3.7 Chapter Summary

In this chapter, we proposed a backstepping-based scheme to achieve trajectory tracking of

under-actuated planar robotic systems. In particular, we proposed a scheme that would guarantee

the ultimate boundedness of the position and heading tracking errors to a neighborhood of the origin.

This was achieved via defining a new error coordinate that coupled the lateral and heading errors.

The controller was then synthesized such that it guaranteed the convergence of the longitudinal

and new coordinate error. Via time-scale analysis of perturbed system, it was shown that the
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(a) Backstepping-based control.

(b) PI control.

Figure 3.9: Asnapshot of an experimental run for line and circle-tracking using backstepping-based
(a) and PI control (b), respectively.

convergence of these then guarantees the stabilization of the whole error system to a neighborhood

around the origin.

The proposed scheme was implemented on a tail-actuated robotic fish, where a high-fidelity

averaged nonlinear dynamic model was used for controller design. The actuator constraints of the

system were handled via an auxiliary system. Finally, real-time experimental results demonstrated

the effectiveness of the proposed scheme and showed its value over standard PI control. While

most of the discussions in this work were framed in the context of aquatic robots and vehicles, the

approach applies to ground robots and vehicles with similar under-actuated constraints.
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(a) Line-tracking averaged position error and its standard deviation.
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(b) Circle-tracking averaged position error and its standard deviation.

Figure 3.10: Experiments: line-tracking (3.10a) and circle-tracking (3.10b) averaged position
error for backstepping-based control and PI control. The solid blue line with circular markers
represents the averaged position error obtained for backstepping-based control, while the dashed
blue lines represent its standard deviation. Similarly, the solid magenta line represents the averaged
position error obtained for PI control, while the dotted-dashed magenta lines represent its standard
deviation.
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(a) Line-tracking averaged angle error and its standard deviation.

(b) Circle-tracking averaged angle error and its standard deviation.

Figure 3.11: Experiments: line-tracking (3.11a) and circle-tracking (3.11b) averaged angle error
for backstepping-based control and PI control. The solid blue line with circular markers represents
the averaged angle error obtained for backstepping-based control, while the dashed blue lines
represent its standard deviation. Similarly, the solid magenta line represents the averaged angle
error obtained for PI control, while the dotted-dashedmagenta lines represent its standard deviation.
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CHAPTER 4

AVERAGED MODELING AND TRACKING CONTROL OF PECTORAL
FIN-ACTUATED ROBOTIC FISH

The approaches proposed in Chapter 2 and Chapter 3 focused on the control of tail fin-actuated

robotic fish. While caudal fins have proven to be an efficient propulsion mode at higher speeds,

pectoral fins play a vital role in maneuvering and stability while providing or assisting propulsion

at lower speeds [25].

Pectoral fin motions can generally be classified into three modes based on the axis of rotation:

rowing, feathering, and flapping. Feathering and flapping involve fin rotation about the transverse

and longitudinal axis, respectively, while rowing motion involves fin rotation about the vertical

axis. Rowing motion is classified as a “drag-based” swimming mechanism, where the drag element

of fluid dynamics generates the thrust and can be utilized for a number of in-plane locomotion and

maneuvering tasks, such as forward swimming, sideway swimming, and turning [66, 67].

The fin beat cycle in the rowing motion of pectoral fins comprises two sub-movements: a power

stroke and a recovery stroke. During the power stroke, the pectoral fin rotates towards the back

of the robot to produce thrust through induced drag on the pectoral fin surface, while during the

recovery stroke, the fin moves toward the front of the body, ideally with minimal loading, to get

ready for the next fin-beat cycle.

Considering the cyclic nature of typical actuation modes, it is of interest to develop a dynamic

average model that is amenable to controller design, where the control inputs are actuation pattern

parameters. Furthermore, in practical applications it is more natural to control the parameters

of periodic fin beats than to directly control the fin position at every moment, which makes

an averaged model best suited for trajectory planning and tracking control. In this chapter, we

present a nonlinear dynamic average model for robotic fish propelled by a pair of rigid pectoral

fins undergoing rowing motion. In particular, we consider the robot undergoing planar motion,

with its original dynamics incorporating pectoral fin-generated hydrodynamic forces evaluated via
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the blade element theory. Inspired by the work in [89], which deals with averaged dynamics

for tail-actuated robotic fish, we seek scaling factors, as functions of fin-beat parameters, for the

original hydrodynamic forces and moment, such that when classical averaging is applied to the

resulting modified dynamics the obtained average model produces locomotion behaviors close to

those of the original dynamic model. One fundamental step in identifying the scaling functions is

estimating the scaling values for a given fin-beat pattern. [89] used a trial-and-error approach for

the tail-actuated robotic fish, which is time-consuming. We propose a novel systematic approach

to finding optimal scaling values by formulating a nonlinear model-predictive control (NMPC)

problem, which can be readily solved with NMPC packages. Once the scaling values are found

for a set of fin-beat patterns, nonlinear regression is used to determine the scaling functions with

minimal complexity. Simulation comparison between the averaged model and the original dynamic

model, using fin-beat patterns not used in identifying the scaling functions, supports the efficacy

of the developed averaged model. Furthermore, we conduct experiments on a pectoral fin-actuated

robotic fish and compare the experimental results with simulation predictions when considering

the forward swimming motion, where both fins are actuated symmetrically.

Finally, to demonstrate the utility of the dynamic average model, we design a controller for

trajectory tracking of a pectoral fin-actuated robotic fish. In particular, the proposed scheme uses

a backstepping-based controller that finds the needed inputs for the robot to track the desired

trajectory based upon the averaged model. In this design, the physical control inputs involve two of

the fin-beat parameters, the bias, and the amplitude, while the other parameters (angular frequency

and power/recover stroke ratio) are kept constant. We further use a multi-variable minimization

solver to determine the optimal fin-beat parameters such that the achieved inputs are closed to the

needed values. Simulation results are presented to demonstrate the effectiveness of the proposed

model-based tracking control scheme.

The rest of the chapter is organized as follows. We first review the dynamic model of the

pectoral fin-actuated robotic fish in Section 4.1. In Section 4.2 we present the development of the

proposed averaged model. In Section 4.3 we present the scheme to determine the model parameters
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and the averaged scaling functions, as well as the experimental and simulation validation of the

resulting average model. In Section 4.4 we detail the proposed backstepping-based tracking control

approach, with simulation results in Section 4.5. Finally, we provide some concluding remarks in

Section 4.6.

4.1 Dynamic Model For Pectoral Fin-actuated Robotic Fish

4.1.1 Rigid Body Dynamics

We consider the robot to be a rigid body with rigid pectoral fins that are actuated at the base, and

we assume that the robot operates in an inviscid, irrotational, and incompressible fluid within an

infinite domain.
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Figure 4.1: (a) Top view of the pectoral fin-actuated robotic fish undergoing planar motion; (b)
side view and blade element of the right pectoral fin with its parameters and variables; (c) top view
of the pectoral fin with its associated forces and angles.

As illustrated in Figure 4.1(a), we define [X,Y,Z])and [Ĝ, Ĥ, Î]) as the inertial coordinate

system and the body-fixed coordinate system, respectively. The velocity of the center of mass in

the body-fixed coordinates is expressed as \2 = [+2G , +2H , +2I ], where +2G , +2H , and +2I indicate

surge, sway, and heave velocities, respectively. The angular velocity expressed in the body-fixed

coordinate system is given by l = [lG , lH, lI], which is composed of roll (lG), pitch (lH), and
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yaw (lI). We let U denote the angle of attack, formed by the direction of \2 with respect to the

Ĝ-axis and is given by U = arctan(
+2H
+2G
). Let k denote the heading angle, formed by the Ĝ-axis

relative to the X-axis, �? be the distance between the pectoral fin base and the body’s center of

mass, and �0! and �0' denote the pivot points for the left and right fins, respectively. Finally, W!

and W' represent the angles between the left pectoral fin and the body-fixed Ĝ-axis and the right

pectoral fin and the body-fixed Ĝ-axis, respectively.

We only consider the robot’s planar motion, and further assume that the body is symmetric with

respect to the Ĝ Î-plane and that the pectoral fins move in the Ĝ Ĥ-plane, such that the system only

has three degrees of freedom, surge (+2G ), sway (+2H ), and yaw (lI). Furthermore, we assume that

we can neglect the inertial coupling between yaw, sway and surge motions [102], and arrive at the

following equations of planar motion

(<1 − <0G ) ¤+2G = (<1 − <0H )+2HlI + 5G (4.1)

(<1 − <0H ) ¤+2H = −(<1 − <0G )+2GlI + 5H (4.2)

(�1I − �0I ) ¤lI = (<0H − <0G )+2G+2H + gI (4.3)

where <1 is the mass of the body, �1I is the inertia of the body about the Î-axis, <0G and <0H

are the hydrodynamic derivatives that represent the added masses of the robotic fish along the Ĝ

and Ĥ directions, respectively, and �0I represents the added inertia effect of the body about the Î

direction. Finally, the hydrodynamic forces and moment due to the pectoral fin actuation and the

interaction of the body itself with the fluid are captured by 5G , 5H, and gI and are given by

5G = 5ℎG − �� cos(U) + �! sin(U) (4.4)

5H = 5ℎH − �� sin(U) − �! sin(U) (4.5)

gI =gℎI + "� (4.6)

where 5ℎG , 5ℎH , and gℎI are the hydrodynamic forces and moment transmitted to the fish body

by the right and left pectoral fins, while �� , �! , and "� are the body drag, lift, and moment,

respectively.
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4.1.2 Drag and Lift on the Robot Body

The lift force �! , drag force �� , and drag moment "� acting on the robotic fish can be captured

by ( [31, 135])

�� =
1
2
d |+2 |2(��� (4.7)

�! =
1
2
d |+2 |2(��!U (4.8)

"� = − �"l2
Isgn(lI) (4.9)

where d is the density of water, |+� | is the linear velocity magnitude of the body in the body-fixed

frame and is defined as |+2 | =
√
+2
2G ++

2
2H , (� is the wetted surface area for the robot, �� is the

drag force coefficient, �! is the lift force coefficient, �" is the drag moment coefficient, and sgn(·)

is the signum function.

4.1.3 Hydrodynamic Forces from Rowing Pectoral Fins

As shown in Figure 4.1(b), we consider the pectoral fins to be rectangular with span length (? and

chord length�? , and assume that they performpure rowingmotion. To evaluate their hydrodynamic

forces, we adopt the procedure proposed in [136]. Furthermore, we illustrate the force calculations

using only the right pectoral fin, since they can be trivially extended to the left pectoral fin.

We consider a coordinate system with unit vectors <̂' and =̂' that are attached to the pectoral

fin. The relationship between these unit vectors and the robotic fish body-fixed coordinates is given

by

<̂' = cos W' Ĝ − sin W' Ĥ (4.10)

=̂' = − sin W' Ĝ − cos W' Ĥ (4.11)

In the following calculations we assume an anchored robotic fish body, often adopted in

literature as it simplifies calculation without incurring significant error [25,137]. The velocity and
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acceleration at the point B along the fin are then given by

E?' (B, C) =B ¤W'=̂
' (4.12)

0' (B, C) =B ¥W'=̂' − B ¤W2
'<̂

' (4.13)

where ¤W' and ¥W' indicate the first and second time derivatives of W', respectively.

The hydrodynamic forces on the pectoral fin have both span-wise and normal components.

However, the fins are considered to have pure rowing motion which implies that the span-wise force

that arises from friction is very small and can thus be neglected [138]. Using blade theory, we can

then calculate the differential normal force d�=' (B, C) on each blade element dB on the pectoral fin

at time C as

d�=' (B, C) = −
1
2
�= (i' (B, C))d�? |E?' (B, C) |

2dB =̂' (4.14)

where �= (i' (B, C)) = _ sin i' (B, C) is the normal force coefficient, which depends on the angle

of attack of each arbitrary blade, i' (B, C), and _ is a parameter that can be evaluated empirically

through experiments. The angle of attack of the right pectoral fin at each point, i' (B, C), is defined

as

tan i' (B, C) =
< E?' (B, C), =̂

' >

< E?' (B, C), <̂' >
(4.15)

where < ·, · > denotes the inner product. Note that in this work we assume < E?' (B, C), <̂' >= 0.

The total hydrodynamic force acting on each pectoral fin is calculated by integrating the force

density along the span length of the fin such that

�=' (C) = −
∫ (?

0
d�=' (B, C)

= −
∫ (?

0

1
2
_d�? |E?' (B, C) |2dB =̂'

= − 1
6
_d�?(

3
? ¤W2
' sin i' =̂'

= − 1
6
_d�?(

3
? ¤W2
'sgn( ¤W') =̂

'

(4.16)
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where we used sin i' = sin(arctan( B ¤W'0 )) =
B ¤W'√
(B ¤W')2

= sgn( ¤W'). The total force acting on the

right fin is determined by

®�' = �=' =̂
' − ®��0' = <?0' (B, C)

��
B=
(%
2

(4.17)

where ®��0 represents the force applied by the rigid pectoral fin on the servo joint, and <? is the

effective mass of the rigid fin (the fin mass <? 5 and the added mass, where the added mass is

calculated based on a rigid plate moving in water [139]).

The moment of the fin relative to its pivot point (�0') is given by

®"=' =
∫ (?

0
B<̂' × d�=' (4.18)

Finally, the force and moment exerted on the robotic fish body by the right pectoral fin is given

by

5ℎG' = <
®��0', Ĝ >

=
1
6
_d�?(

3
? ¤W2
' sin W'sgn( ¤W') − <? (−

(?

2
¥W' sin W' −

(?

2
¤W2
' cos W') Ĝ

(4.19)

5ℎH' = <
®��0', Ĥ >

=
1
6
_d�?(

3
? ¤W2
' cos W'sgn( ¤W') − <? (−

(?

2
¥W' cos W' +

(?

2
¤W2
' sin W') Ĥ

(4.20)

gℎI' =�? Ĥ × ®��0

= − �? (
1
6
_d�?(

3
? ¤W2
' sin W'sgn( ¤W') − <? (−

(?

2
¥W' sin W' −

(?

2
¤W2
' cos W')) :̂

(4.21)

For a more comprehensive derivation of the hydrodynamic forces, we refer the reader to

[136]. By considering the kinematic equations of the robotic fish, the final dynamic model can be

summarized as follows:
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

¤-
¤.
¤k
¤E2G
¤E2H
¤lI


=



E2G cosk − E2H sink
E2G sink + E2H cosk

lI

51(E2G , E2H , lI) +
5ℎG' + 5ℎG!

<1

52(E2G , E2H , lI) +
5ℎH' + 5ℎH!

<2

53(E2G , E2H , lI) +
gℎ'
+ gℎ!
�3



(4.22)

where

51(E2G , E2H , lI) =
<2
<1
E2HlI −

21
<1
E2G

√
E2
2G + E

2
2H +

22
<1
E2H

√
E2
2G ++

2
2H arctan(

E2H

E2G
)

52(E2G , E2H , lI) = −
<1
<2
E2GlI −

21
<2
E2H

√
E2
2G + E

2
2H −

22
<2
E2G

√
E2
2G + E

2
2H arctan(

E2H

E2G
)

53(E2G , E2H , lI) =
(<1 − <2)

�3
E2GE2H − 24l

2
Isgn(lI)

(4.23)

with <1 = <1 −<0G , <2 = <1 −<0H , �3 = �1I − �0I , 21 =
1
2d(�� , 22 =

1
2d(�! , 24 =

1
(�3)

�" .

4.2 Averaging with Scaled Forcing

In this sectionwe present the scaled-averaging approach and the proposed scheme to estimate the

scaling functions. Finally, we present experimental and simulation results to validate the proposed

averaged model.

4.2.1 Averaged Model

In order to generate a net thrust over each cycle, the pectoral fins need to be actuated differently in

the power and recovery strokes. For example, to generate forward thrust the fin has to be actuated

faster in the power stroke than in the recovery stroke. We specify the fin beat pattern as

W(C) =


W0 − W� cos[c (Z + 1)

)?
C], 0 ≤ C ≤

)?

Z + 1

W0 + W� cos[c
( Z + 1
Z)?

)
(C −

)?

Z + 1
)],

)?

Z + 1
< C ≤ )?

(4.24)
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where W0 is the fin-beat bias, W� is the fin-beat amplitude, )% is the fin-beat period, and Z is a

parameter defining the ratio of angular velocities of the fin during the power and recovery strokes,

respectively.

Under this periodic fin movement, averaging can be a useful tool for gaining insight into the

effect of the input parameters (such as the beat bias W0, amplitude W�, period )? , and ratio Z) on the

dynamics and for designing controllers. First-order averaging [96] tends to generate prohibitively

complex model for control [89]. On the other hand, classical averaging (directly averaging the

vector field over one period of the fin-beat) cannot be directly applied since the dynamics is not

slow in typical scenarios as shown in [89]. Therefore, we first scale the original forcing terms

with functions that are potentially dependent on the fin-beat parameters, and then apply classical

averaging over the modified dynamics.

Specifically, let the original system (4.22) be modified as

¤E2G = 51(E2G , E2H , lI) +  5G' (W0', W�', )?', Z') · 5ℎG' (C)

+  5G ! (W0! , W�! , )?! , Z!) · 5ℎG! (C)
(4.25)

¤E2H = 52(E2G , E2H , lI) +  5H' (W0', W�', )?', Z') · 5ℎH' (C)

+  5H! (W0! , W�! , )?! , Z!) · 5ℎH! (C)
(4.26)

¤lI = 53(E2G , E2H , lI) +  <' (W0', W�', )?', Z') · gℎ' (C)

+  <! (W0! , W�! , )?! , Z!) · gℎ! (C)
(4.27)

where  5G' (·),  5H' (·),  <' (·),  5G ! (·),  5H! (·),  <! (·) are scaling functions to be determined

later (Section 4.3.3), and are {W0', W�', )?', Z'} and {W0! , W�! , )?! , Z!} are the fin-beat pa-

rameters of the right fin and left fin, respectively. For brevity, the arguments of the functions

51(·), 52(·), 53(·) and the scaling functions are omitted in the remainder of the chapter, and the

calculations are illustrated using only the right fin since they can be extended for the left fin in a

straightforward manner.

To avoid the integration of nested sin functions and facilitate the computation of the averaging,

we first use the second-order Taylor series expansion to approximate the cos(W) and sin(W) terms
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that appear in the forcing terms in 5ℎG and 5ℎH . After conducting classical averaging, the following

averaged system is obtained
¤̄E2G = 51 +  5G' · 5̄ℎG' (W0', W�', )?', Z') +  5G ! · 5̄ℎG! (W0! , W�! , )?! , Z!)

¤̄E2H = 52 +  5H' · 5̄ℎH' (W0', W�', )?', Z') +  5H! · 5̄ℎH! (W0! , W�! , )?! , Z!)

¤̄lI = 53 +  <' · ḡℎ' (W0', W�', )?', Z') +  <! · ḡℎ! (W0! , W�! , )?! , Z!)

(4.28)

where

5̄ℎG' =
�?_;

3
?(

3
?c

2dW0W
2
�
(−4W2

0 − 3(−8 + W2
�
)) (−1 + Z2)

288<1Z)
2
?

(4.29)

5̄ℎH' =
−W2

�
;?c

2

96<2)
2
? Z

(
4�?W2

0_;
2
?d(−1 + Z2)+

�? (−8 + W2
�
)_;2?d(−1 + Z2) − 4W3

0<? (1 + Z)
2 − 3W0W

2
�
<? (1 + Z)2

) (4.30)

ḡℎ'
=
�?�?_;

3
?c

2dW0W
2
�
(−4W2

0 − 3(−8 + W2
�
)) (−1 + Z2)

288�3Z)
2
?

(4.31)

Note that the model (4.28) can be expressed in a control-affine form if one defines the control

inputs as U1 =  5G' 5̄ℎG', U2 =  5G ! 5̄ℎG! , U3 =  5H' 5̄ℎH' and U4 =  5H! 5̄ℎH! . As an example,

we refer the reader to [92], where the authors show how one can express an averaged model for a

trail-actuated robotic fish in a control-affine form and use it to design a model-predictive controller.

4.3 Simulation and Experimental Model Validation

In order to validate the presented averaged model, we must first identify the hydrodynamic pa-

rameters (�� ,�! , and�" ), the fin parameter (_), and the scaling functions ( 5G',  5H',  <' ,  5G ! ,

 5H! ,  <! ) for the model. In this section we present the experimental setup and discuss the ex-

perimental identification and validation of the hydrodynamic and fin model parameters and present

an estimation scheme to obtain the scaling coefficients. Finally, we present simulation and experi-

mental results to evaluate the effectiveness of the proposed averaged model.
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4.3.1 Experimental Setup

To validate the presented averagedmodel, we conduct experiments using the free-swimming robotic

fish depicted in Figure 4.2. The robot consists of a rigid-shell body, a tail and two rigid pectoral

fins, which were all 3D-printed. Although the robot also has a servo-actuated caudal fin, the

tail-actuation is not included in this work. The body and fins dimensions are shown in Table 4.1.

Two Tenergy Li-Ion rechargeable batteries (7.4V, 3350mAh) are used to power the robot, and two

Hitec digital micro waterproof servos (HS-5086WP) are used to actuate the pectoral fins. Finally, a

Microchip Digital Signal Processor and Controller (DSPIC30F6014) is used to realize the control

of the servos and a Xbee module is used for wireless communication with a computer.

The robotic fish is run in a 2.30 m by 1.2 m space enclosed within a tank equipped with an

overhead Logitech C930E camera as seen in Figure 4.2. To obtain the robotic fish’s position and

orientation in the tank, two markers were attached to the anterior and posterior of the robotic fish

body. An overhead video of the robotic fish swimming in the tank is captured using the camera,

and Visual C++ with the OpenCV library is used to implement an image processing algorithm.

The algorithm detects the positions of the two markers and uses their average to obtain the center

position of the robotic fish. In addition, the heading angle of the robot is estimated using the

positions of the two markers, and a high gain observer is used to estimate the linear and angular

velocities of the robot based on the measured position and heading.

4.3.2 Original Dynamics Parameter Identification

Before identifying the scaling functions and validating the averaged model, the hydrodynamic

parameters present in the dynamic and averaged model must first be identified. These parameters

are either measured directly or calculated based on measurements and are summarize in Table 4.1.

As typically done in literature [102, 140], the body inertia about Î-axis is evaluated as �1I =
1
5<1 (0

2 + 22), where 0 = Body lenght
2 and 2 = Body width

2 are the semiaxis lengths. Furthermore,

the added masses, added inertia, and wetted surface are calculated based on a prolate spheroid

approximation of the robotic fish body [102,130].
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Figure 4.2: The experimental setup. During experiments the pectoral-fin actuated robotic fish
swims within the enclosed area (denoted by the yellow lines) in the tank, and the overhead Logitech
camera captures a video of the robot swimming. An image processing algorithm detects the red
and blue markers placed on top of the robot to localize it and determine its heading.

The fin normal force coefficient _, as well as the body drag and lift coefficients (�� , �! ,

and �" ) are identified empirically from data collected using the robotic fish described above. In

particular, we consider only turning motions which are achieved by activating only one fin at a time

according to (4.24).

To determine the body drag, lift and moment coefficients (�� , �! , and �" ), we let the robotic

fish swim for some time (approximately 35 s) to reach the steady-state motion, and then stop

actuating the pectoral fin such that the robot slowly halts to a stop. In particular, considering (5.2),

once the actuation has stopped, the dynamics equations become


¤E2G
¤E2H
¤lI

 =


<2
<1
E2HlI −

21
<1
E2G

√
E2
2G + E

2
2H +

22
<1
E2H

√
E2
2G + E

2
2H

−<1
<2
E2GlI −

21
<2
E2H

√
E2
2G + E

2
2H −

22
<2
E2G

√
E2
2G + E

2
2H

(<1 − <2)
�3

E2GE2H − 24l
2
Isgn(lI)


(4.32)

where <1 = <1 −<0G , <2 = <1 −<0H , �3 = �1I − �0I , 21 =
1
2d(�� , 22 =

1
2d(�! , 24 =

1
�3
�" .

Let q = [�� �! �" ]) and rearrange (4.32) such that
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. = -q (4.33)

where

. =


¤E2G −

<2
<1
E2H

¤E2H −
<1
<2
E2GlI

¤lI −
(<1 − <2)

�3
E2GE2H


(4.34)
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2
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0 0 −2̄4l
2
Isgn(lI)


(4.35)

where 2̄1 =
1
2d(, 2̄2 =

1
2d(, 2̄4 =

1
�3
. We use the captured video along with the image processing

algorithm to determine the body-fixed velocities, and a high gain observer to estimate the body-fixed

acceleration for different sets of fin amplitudes (W�'): 15◦, 18◦, 20◦, 25◦, 30◦; biases (W0'): 80◦,

90◦, 100◦, 110◦; periods ()?'): 0.5, 0.66, 1 s; and power/ recovery stroke ratios (Z ): 5, 6.

Furthermore, to estimate the fin parameter _, we formulate another parameter estimation

paradigm, where we consider constant actuation. In particular, using the hydrodynamic parame-

ters estimated above along with the dynamic equations and Eqs. (4.19)-(4.21), we can obtain the

following 
¤+2G − 51(+2G , +2H , lI) −

5̂ℎG
<1

¤+2H − 52(+2G , +2H , lI) −
5̂ℎH
<2

¤lI − 53(+2G , +2H , lI) −
ĝℎI
�3


= _



1
6 d�?(

3
? ¤W2
'

sin W'sgn(B ¤W')
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1
6 d�?(

3
? ¤W2
'

cos W'sgn(B ¤W')
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−�? 1
6 d�?(
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? ¤W2
'

sin W'sgn(B ¤W')
�3


(4.36)

where
5̂ℎG' = − <? (−

(?

2
¥W' sin W' −

(?

2
¤W2
' cos W')

5̂ℎH' = − <? (−
(?

2
¥W' cos W' +

(?

2
¤W2
' sin W')

ĝℎI' = − �? (−<? (−
(?

2
¥W' sin W' −

(?

2
¤W2
' cos W'))

(4.37)
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We collect the robotic fish steady-state body-fixed velocities for another set of fin amplitudes

(W�'): 8◦, 10◦, 13◦, 15◦, 18◦; biases (W0'): 85◦, 93◦, 98◦, 100◦, 103◦; periods ()?'): 0.5, 0.66

s ; and power/ recovery stroke ratios (Z): 4, 5, and estimate the parameter _ using (4.36). The

resulting coefficients are listed in Table 4.1. These parameters are then used in independent model

validation for the dynamic model.

Table 4.1: Identified model parameters for the robotic fish.

Robot Body
Parameter Value unit
Body Length 0.198 m
Body Height 0.1 m
Body Width (�%) 0.03 m
Mass (<1) 0.795 kg
Inertia (�1I) 4.26×10−4 kg ·m2
−<0G 0.095 kg
−<0H 0.1794 kg
−�0I 2.7 × 10−5 kg/m2

Wet surface area ((�) 0.325 m2
Drag coef. (��) 0.3870 -
Lift coef. (�!) 0.0808 -
Moment coef. (�" ) 8.5 ×10−3 kg/m2

Pectoral Fin
Parameter Value unit
Fin Length ((?) 0.061 m
Fin Heigth (�?) 0.041 m
Fin Mass (<? 5 ) 0.008 kg
Effective mass (<?) 0.008 kg
Water density (d) 1000 kg/m3
_ 4.1464 -

To validate the dynamic model, we conduct experiments based on different fin actuation pa-

rameters in both forward swimming and turning. In the forward swimming case both left and right

fins are actuated in sync with the same fin-beat patterns. We compare the steady state swimming

speeds predicted by the model and those obtained from experiments in the forward swimming case,

whilst in the turning cases we compare the turning radius and period. Each experiment is repeated

four times to obtain the average and standard deviation. Table 4.2 and Table 4.3 list the percent

errors between the values obtained from experiments and those obtained from simulation using

the parameters estimated earlier. The comparison indicates that the dynamic model has acceptable

accuracy.
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Table 4.2: Model validation results: relative model prediction error for turning radius and turning
period.

(W0! , W�! , )?! , Z!) Turning Radius Error(%) Turning Period Error(%)
(85◦, 18◦, 1 s, 4 ) 10.96 5.96
(85◦, 18◦, 1 s, 3 ) 4.66 17.92
(80◦, 22◦, 1 s, 4 ) 12.67 4.91
(80◦, 22◦, 1 s, 3 ) 16.15 2.12
(85◦, 22◦, 1 s, 4 ) 2.60 1.39
(85◦, 22◦, 1 s, 3 ) 13.61 4.82

Table 4.3: Model validation results: surge velocities predicted by the original model and measured
from experiments, and their relative error.

(W0! , W�! , )?! , Z!) Surge Velocity(Experiments) Surge Velocity(Model) Error (%)
(95◦, 12◦, 1 s, 4 ) 0.0383 0.0397 3.60

(95◦, 12◦, 0.66 s, 5 ) 0.0423 0.0449 5.77
(100◦, 12◦, 0.8 s, 4 ) 0.0536 0.0494 8.52
(100◦, 12◦, 0.8 s, 5 ) 0.0614 0.0558 9.96
(100◦, 12◦, 0.66 s, 5 ) 0.0490 0.0447 9.74

4.3.3 Identification of Scaling Functions

To identify the corresponding scaling functions for the averaged model, we conduct simulations

using the original dynamic model (with the experimentally identified parameters presented in the

previous subsection) considering only one fin (the right fin) actuated with a given fin-beat pattern,

and seek the corresponding values of the scaling functions (i.e.,  5G',  5H',  <' ) such that the

resulting average model (4.28) produces the best match in the turning radius and turning period

with those of the original dynamics (4.22).

Under a given fin actuation pattern, instead of conducting blanket-search of the scaling param-

eters as done in [89], we propose a novel formulation that treats the scaling values for the given

actuation pattern as constant control inputs to the averaged model and solve for these values through

nonlinear model predictive control [100], such that the averaged system tracks the surge, sway, and

angular velocities extracted from the simulated trajectory of the original dynamics (4.22) under the

same fin-actuation pattern. We elaborate on this below.
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Simulations are first conducted using the original dynamic model with different sets of fin-beat

parameters (W0, W�, )%, Z), where we use body parameters identified in the previous subsection

(Table 4.1). Only the right fin is actuated, since the scaling functions are considered left-right

symmetric. In particular, 560 simulations are conducted with the combination of the following

fin-beat patterns: 7 different amplitudes (W�') : 10◦, 15◦, 20◦, 22◦, 25◦, 28◦, 30◦; 5 different

biases (W0'): 50◦, 60◦, 70◦, 80◦, 90◦; 4 different periods ()?'): 0.5, 0.66, 1, 2 s; and 4 different

power/recovery stroke ratios (Z): 2, 3, 4, 5.

For each simulation, we extract the turning radius ', turning period )1 (time taken to complete

one turn) and angle of attackU of the robot at the steady state, and then use the following relationships

to determine the corresponding steady-state body-fixed linear (E2G , E2H ) and angular (lI) velocities

for the original dynamics:

)1 =
2c
lI
, ' =

√
E2
2G + E

2
2H

lI
, U = arctan

E2H

E2G
(4.38)

These velocities (E2G , E2H , lI) are then considered as desired values to be tracked by the

averaged model: ĒGA = E2G , ĒHA = E2H , l̄A = lI. We further let D1 =  5G', D2 =  5H', D3 =  <'

such that (4.28) can be rewritten as

¤̄E2G = 51 + D1 5̄ℎG' (4.39)

¤̄E2H = 52 + D2 5̄ℎH' (4.40)

¤̄lI = 53 + D3ḡℎ'
(4.41)

We construct the velocity tracking error as

e( =

[Ē2G − ĒGA
Ē2H − ĒHA
l̄I − l̄A

]
(4.42)

The objective is to determine D1, D2, D3 such that the tracking error states of system (4.42) are

driven to zero. To do so, we define an objective function with the following stage cost � (·) and
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Figure 4.3: Obtained scaling values  5G',  5H',  <' versus the amplitude W�' and bias W0' ,
for fixed actuation period )?' = 1 s and ratio Z = 2.

terminal penalty � (·)

� (e(, u) =e( (g))&e( (g) (4.43)

� (e( (C + ))) =(e( (C + ))))&) (e( (C + ))) (4.44)

where ) is the prediction horizon, u(g) = [D1 D2 D3]) , and & and &) are positive-definite

weighting matrices that penalize deviations from the desired values. By solving the nonlinear

model predictive control (NMPC) problem (for example, using ACADOModel Predictive Control

Toolkit [90]), we obtain the optimal inputs D1, D2, D3 and thus the values for  5G',  5H',  <' for

a given fin-beat parameter combination. Specifically, the following NMPC parameters are used in

solving for the scaling values:

Length of optimization horizon : ) = 10 s

Sampling interval : CB = 1 s

Weighting matrix : & = 2000O3

Terminal Penalty Weighting matrix : &) = 80O3

where O3 is a 3 by 3 identity matrix. Figure 4.3 shows the resultant 3D surfaces of optimal

coefficients obtained for different fin amplitudes and fin biases when the fin actuation period and
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Table 4.4: Averaged model validation results: relative model prediction error between the original
and averaged models for turning radius and turning period.

(W0! , W�! , )?! , Z!) Turning Radius Error(%) Turning Period Error(%)
(90◦, 22◦, 1 s, 4 ) 3.51 0.21
(90◦, 22◦, 1 s, 3 ) 3.58 3.13
(90◦, 20◦, 1 s, 4 ) 3.45 1.34
(90◦, 20◦, 1 s, 3 ) 3.77 5.58
(80◦, 22◦, 1 s, 4 ) 2.93 1.84
(80◦, 22◦, 1 s, 3 ) 3.31 2.56
(80◦, 20◦, 1 s, 4 ) 2.86 0.73
(80◦, 20◦, 1 s, 3 ) 3.78 2.17
(60◦, 22◦, 1 s, 4 ) 2.14 4.06
(60◦, 22◦, 1 s, 3 ) 2.29 2.00
(60◦, 20◦, 1 s, 4 ) 1.97 0.19
(60◦, 20◦, 1 s, 3 ) 2.28 4.60

power/recover stroke ratio are fixed at some particular values. Results for other period and ratio

combinations are similar and thus omitted in the interest of brevity.

To obtain closed-form expressions for the relationships between each scaling coefficient and the

fin-beat parameters, we implement a multivariate nonlinear regression scheme using the MATLAB

command 5 8C=;<, where we seek the lowest-degree polynomials that provide adequate match with

the computed scaling coefficients, and obtain the following:

 5G' =0.9801 − 0.0653W�' + 0.0828W0' − 0.0007Z' − 0.0069)?' (4.45)

 5H' = − 529.2 + 0.6W�' + 1893.4W0' − 3.8W2
�'
− 2500.6W2

0'
− 0.0000276Z2

'

− 0.0001324)2
?' + 9.1W3

�'
+ 1446.6W3

0'
− 8.2W4

�'
− 309.1W4

0'

(4.46)

 <' =0.9869 − 0.4004W�' + 0.0661W0' − 0.0007Z' − 0.0059)?' (4.47)

4.3.4 Validation of the Averaged Model

We first compare the turning radius and period predictions between the averaged and the dynamic

model for the turning case. Table 4.4 lists the errors between the predictions obtained from the

averaged model and those obtained from the dynamic model for different sets of fin parameters.

Furthermore, Figure 4.4 depicts circular trajectories obtained from experiments and simulation

using the dynamic and averaged models. From the figure, we can see how the trajectory behavior
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Figure 4.4: Circular trajectories captured in experiments and predicted by the original and average
dynamic models. In this case the right fin remains still and the left fin undergoes actuation with the
following parameters fixed: W�! = 22◦, W0! = 85◦, )%! = 1 and Z = 4.

and steady-state radius of the dynamic and averaged model predictions match that of experiments,

which suggest that the average model is able to capture well the behavior of the original dynamics

and the dynamics of the robot under the new actuation patterns.

To further validate the average model, we conduct simulations and experiments considering

the forward swimming motion. The forward swimming case was not used in obtaining the scaling

functions, and thus provides independent validation for the proposed average model. Figure 4.5

compares the simulated steady-state forward swimming speeds predicted with the original dynamic

and the average models, and those obtained from the experiments. Note that the steady state is

considered to be reached after the first 15 s of the robot swimming. In the experiments, for the given
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Figure 4.5: Comparison between experimental results and the predictions of the steady-state
forward swimming speed based on the average model and the original dynamic model. In this
study the left and right fins undergo symmetric actuation with the following parameters fixed:
W� = 15◦, W0 = 95◦ and Z = 4.

Z = 4, to prevent exceeding the speed limit of the servo motors, a maximum actuation frequency

1.75 Hz is used. We have extended the simulation results to fin-beat frequency up to 2.75 Hz in

order to capture the performance trend of the robotic fish.

4.4 Average Dynamic Model-based Trajectory Tracking Control

To illustrate the utility and further evaluate the validity of the proposed averaged model, we

consider the trajectory tracking control problem as an example.

4.4.1 Trajectory Tracking Problem

Let the vectors F̄(C) = [- . k]) and T̄(C) = [-A .A kA ]) denote the position (of the center) and

orientation of the robotic fish and the desired position/orientation, respectively, with respect to

the inertial frame {I} at a given time C. Let ej = [-4 .4 k4]) denote the tracking error vector

expressed in the robot’s body-fixed frame:

ej =
�X� (F̄ − T̄) (4.48)
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where �X� is the rotation matrix from the inertial frame {I} to the body-fixed frame {B} and it is

defined as where

�X� =


cosk sink 0
− sink cosk 0

0 0 1

 (4.49)

Following the procedure outlined in Chapter 3, the following error state model augmented with the

averaged dynamics (Eq. (4.28)), is obtained

¤-4
¤.4
¤k4
¤̄E2G
¤̄E2H
¤̄lI


=



Ē2G − \A cos(k4 − k̄A ) + l̄I.4
Ē2H + \A sin(k4 − k̄A ) − l̄I-4

l̄I − lA
51 +  5G' · 5̄ℎG' +  5G ! · 5̄ℎG!
52 +  5H' · 5̄ℎH' +  5H! · 5̄ℎH!
53 +  <' · ḡℎ' +  <! · ḡℎ!


(4.50)

where\A =
√
¤D2
A + ¤E2

A , k̄A = arctan( EADA ),lA = ¤k, and DA , EA andlA are some surge, sway and angular

velocities, respectively, used to generate the desired trajectory such that ¤-A = DA coskA − EA sinkA

and ¤.A = DA sinkA + EA coskA .

By formulating the tracking problem in terms of the error dynamics, the control objective has

become a stabilization problem, where the task is to find a control law such that, for an arbitrary

initial error, the position and orientation error states (-4,.4,k4) of system (4.50) converge to the

neighborhood of the origin.

4.4.2 Trajectory Tracking Control Algorithm

To design the controller, let the control inputs be chosen as

D1 = 5G' · 5̄ℎG' +  5G ! · 5̄ℎG! (4.51)

D2 = 5H' · 5̄ℎH' +  5H! · 5̄ℎH! (4.52)

D3 = <' · ḡℎ' +  <! · ḡℎ! (4.53)

such that the averaged dynamic model (4.28) is expressed in the control-affine form as
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Figure 4.6: Illustration of the proposed dual-loop pectoral fin-actuated robotic fish control scheme.
The green dashed line encompasses the outer loop trajectory tracking controller, while the inner
red dotted and dashed line encompasses the fin parameter optimization algorithm.


¤̄E2G
¤̄E2H
¤̄lI

 =

51 + D1

52 + D2

53 + D3

 (4.54)

where the inputs appearing linearly.

To achieve trajectory tracking, we use a backstepping controller that determines the inputs D1, D2

and D3 needed such that (-4, .4, k4) → 0. We then determine the fin-beat parameters, considering

their practical constraints, such that the generated inputs are close to the desired values. The

difference between the generated and desired input values is captured by the states of an auxiliary

system, which is used along with the backstepping controller to guarantee closed-loop stability, as

is similarly done in [94,132]. Figure 4.6 illustrates the control scheme. We elaborate the controller

design below.

Let E1, E2 and E3 represent the nominal inputs from the backstepping design, and let D1, D2 and

D3 be the inputs that can be practically implemented. To analyze the influence of the mismatch
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between the nominal and actual inputs, the following auxiliary system is chosen

¤_1 = −Z1_1 + _2

¤_2 = −Z2_2 + (D1 − E1) + .4 (D3 − E3)

¤_3 = −Z3_3 + _4

¤_4 = −Z4_4 + (D2 − E2) − -4 (D3 − E3)

¤_5 = −Z5_5 + _6

¤_6 = −Z6_6 + (D3 − E3)

(4.55)

where Z1, Z2, Z3, Z4, Z5, Z6 are positive tuning constants. The variables _1, _3 and _5 represent the

filtered effect of the non-achievable portion of the inputs as well as the additional tracking error

that arises because of the mismatch between the nominal and implementable inputs.

To stabilize the ej error while also considering the difference between nominal and achievable

inputs, we define the following Lyapunov function

+1( -̄4, .̄4, k̄4) =
1
2
-̄2
4 +

1
2
.̄2
4 +

1
2
k̄2
4

=
1
2
(-4 − _1)2 +

1
2
(.4 − _3)2 +

1
2
(k4 − _5)2

(4.56)

where -̄4, .̄4 and k̄4 are the modified tracking errors. The time derivative of Eq. (4.56) is given by

¤+1 =-̄4 (Ē2G − \A cos(k4 − k̄A ) + l̄I.4 + Z1_1 − _2)

+ .̄4 (Ē2H + \A sin(k4 − k̄A ) − l̄I-4 + Z3_3 − _4)

+ k̄4 (l̄I − lA + Z5_5 − _6)

(4.57)

Let the U1 = Ē2G , U2 = Ē2H and U3 = l̄I denote the virtual inputs with U31, U32 and U33 as the

corresponding desired virtual inputs. The modified virtual inputs errors are then defined as

/̄1 = U1 − U31 − _2 (4.58)

/̄2 = U2 − U32 − _4 (4.59)

/̄3 = U3 − U33 − _6 (4.60)
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Let the desired virtual inputs be given by

U31 = \A cos(k4 − k̄A ) − l̄I.4 − Z1_1 −  -̄4 -̄4 (4.61)

U32 = − \A sin(k4 − k̄A ) + l̄I-4 − Z3_3 −  .̄4.̄4 (4.62)

U33 =lA − Z5_5 −  k̄4 k̄4 (4.63)

such that (4.57) becomes

¤+1 =-̄4 (/̄1 −  -̄4 -̄4) + .̄4 (/̄2 −  .̄4.̄4) + k̄4 (/̄3 −  k̄4 k̄4) (4.64)

where  -̄4,  .̄ 4 and  k4 are positive tuning constants.

To account for the virtual input errors, we then define a new Lyapunov function

+̄2 = +̄1 +
1
2
/̄2

1 +
1
2
/̄2

2 +
1
2
/̄2

3 (4.65)

with its time derivative is given by

¤̄+2 =
¤̄+1 + ¤̄/1/̄1 + ¤̄/2/̄2 + ¤̄/3/̄3 (4.66)

Eq. (4.66) can be further expanded using Eq. (4.28) along with the input definition Eq. (4.51). After

simplification, E1, E2 and E3 can be obtain from


E1

E2

E3

 =

1 0 .4

0 1 −-4
0 0 1


−1 

Γ1

Γ2

Γ3

 (4.67)

where

Γ1 = − 51 − 53.4 + ¤\A cos(k4 − k̄A ) − \A sin(k4 − k̄A ) ( ¤k4 − ¤̄kA ) − l̄I ¤.4

−  -̄4
¤̄-4 − Z1(−Z1_1 + _2) − Z2_2 −  1/̄1

(4.68a)

Γ2 = − 52 + 53-4 − ¤\A sin(k4 − k̄A ) + l̄I ¤-4 − \A cos(k4 − k̄A ) ( ¤k4 − ¤̄kA )

−  .̄ 4
¤̄.4 − Z3(−Z3_3 + _4) − Z4_4 −  2/̄2

(4.68b)

Γ3 = − 53 + ¤lA − Z5(−Z5_5 + _6) − Z6_6 −  k̄4
¤̄k4 −  3/̄3 (4.68c)
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By adding and subtracting 1
4 
-̄4
/̄2

1 ,
1

4 
.̄4
/̄2

2 and 1
4 
k̄4
/̄2

3 to Eq. (4.66), and after completing the

square one can arrive at

¤̄+2 = −  -̄4 ( -̄4 −
1

2 -̄4
/̄1)2 −  .̄4 (.̄4 −

1
2 .̄4

/̄2)2 −  k4 (k̄4 −
1

2 k̄4
/̄3)2 − /̄2

1 ( 1 −
1

4 -̄4
)

− /̄2
2 ( 2 −

1
4 .̄4

) − /̄2
3 ( 3 −

1
4 k̄4

)

(4.69)

If  -̄4 > 0,  .̄4 > 0, k̄4 > 0,  1 >
1

4 -̄4
,  2 >

1
4 .̄4

and  3 >
1

4 k̄4
, then ¤̄+2 < 0

unless when -̄4 = .̄4 = k̄4 = /̄1 = /̄2 = /̄3 = 0, implying the convergence of ( -̄4, .̄4, k̄4) to zero

as time approaches infinity. Given that 0 ≤ +̄1(C) ≤ +̄1(0), one can conclude that ( -̄4, .̄4, k̄4)

belongs to L2, which implies that even when the desired force and moment are not implemented,

the quantities -̄4, .̄4 and k̄4 do not diverge. Note that while the convergence for the modified

tracking errors -̄4, .̄4 and k̄4 is guaranteed, that of the actual tracking error ej is not. The latter

may actually increase during periods when input limitations are in effect and the desired values

cannot be implemented (i.e. D1 ≠ E1, D2 ≠ E2 and/or D3 ≠ E3). However, when the control

signal limitations are not in effect, and _1, _2 and _3 approach zero, (-̄4, .̄4, k̄4) converges towards

(-4, .4, k4) and the tracking errors can be stabilized.

Let E1, E2 and E3 represent the nominal inputs obtained from the backstepping design. One

needs to determine the (feasible) fin-beat parameters such that the resultant inputs D1, D2, and

D3 are close to E1, E2, and E3, respectively. Note that to ease the discussion, in this work we fix

)?! , Z! , )?' and Z', leaving (W0', W�') and (W0! , W�!) as the fin parameters to be found. We use a

constrained multi-variable minimization solver, in particular, a controlled, elitist genetic algorithm

available in MATLAB (a variant of NSGA-II [141]), to find the best fin parameters. Given E1, E2
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and E3, the constrained multi-variable optimization problem at time C is posed as

argmin
W0',W�',W0!,W�!



( 5G' · 5̄ℎG' +  5G ! · 5̄ℎG! − E1)2

( 5H' · 5̄ℎH' +  5H! · 5̄ℎH! − E2)2

( <' · ḡℎ' +  <! · ḡℎ! − E3)2

subject to: W�', W�! ∈ [W�min, W�max]

W0', W0! ∈ [W0 min, W0 max] (4.70)

where [W�min, W�max] and [W0 min, W0 max] represent the ranges of the fin-beat amplitude and bias,

respectively.

4.5 Trajectory Tracking Simulation Results

Simulation is conducted to evaluate the effectiveness of the designed controller, where the

following parameters for the simulation are used:

 -̄4=0.3  .̄ 4=0.2  k̄4=0.3  1=1.03
 2= 1.45  3=1.03 Z1=0.1 Z2=0.1
Z3=0.1 Z4=0.2 Z5=0.2 Z6=0.2
W�min = 0◦ W�max = 50◦ W0min = 40◦ W0max = 100◦

)?=1 s Z = 3 CB=1 s

where  -̄4,  .̄ 4,  k̄4,  1,  2,  3, Z1, Z2, Z3, Z4, Z5, Z6 are tuning parameters for the backstepping

controller an auxiliary system. Note that although the controller is designed using the averaged

model, inputs from the controller are applied to the original dynamics described by Eq. (4.22).

The following line and circular trajectories are considered

¤-A =DA , ¤.A = EA , ¤kA = lA ,with

DA =0.03, EA = 0, lA = 0 and

¤-A ='1lA cos(lA C), ¤.A = −'1lA sin(lA C),

¤kA =lA , with '1 = 0.25, lA = 0.09,

(4.71)
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Robotic Fish State

Figure 4.7: Simulation: position, heading angle and velocity tracking for the line-tracking case.

Figure 4.8: Simulation: position, heading angle and velocity tracking for the circle-tracking
case.

where ¤-A and ¤.A represent the velocity of the trajectory in the {I} frame. In Figures 4.7-4.8 the

desired and the closed-loop trajectories of the robotic fish are compared for both the line and

circle-tracking cases. Furthermore, the surge, sway and angular velocities for the desired trajectory

and robotic fish are presented. Finally, Figure 4.9 depicts the desired versus the achievable inputs
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Figure 4.9: Simulation: desired input versus achievable inputs for the line tracking case.

for the line tracking case. From the results, we can see that the robot is able to track the desired

position and heading angle trajectories.

4.6 Conclusion

In this work, we presented a nonlinear dynamic average model for a pectoral fin-actuated robotic

fish. In particular, we proposed a scaling averaging scheme, where the pectoral fin-generated

hydrodynamic forces and moment are first scaled using functions of the fin-beat parameters, and

classical averaging is then conducted over the resulting dynamics. Furthermore, we proposed

a novel estimation scheme employing a nonlinear model predictive controller and a multivariate

nonlinear regression scheme to determine the scaling functions. To evaluate the averaged model,

simulation and experimental results comparing the predictions from the original and averagemodels

were presented. Furthermore, the utility of the proposed modeling scheme was demonstrated via

the design of a backstepping-based trajectory tracking controller.

109



CHAPTER 5

RAPID MANEUVERING CONTROL OF PECTORAL FIN-ACTUATED ROBOTIC FISH

Although useful in practical applications, cyclic fin movement limits precise manipulation of the

fin movements and the thrust profile that can be generated, which impedes full exploitation of the

maneuverability of pectoral fin-actuated robotic fish. On the other hand, acyclic thrust or moments

could be more instrumental for generating a quick maneuvering response, which can be valuable

in scenarios like counteracting disturbances or avoiding fast obstacles.

While rowing motion is beneficial in maneuvering, the actuation constraints (i.e., angular

position, velocity, and acceleration limitations) and the mechanism in which the “drag-based”

swimming method is used to generate thrust give rise to challenges for maneuvering control of

robotic fish. In particular, the range constraint of the fin movement can often inhibit the robot

from generating thrust in a direction required for maneuvering. The latter could necessitate the fin

moving first in a direction opposite to the desired one (which in turn generates unwanted drag) in

order to “back up” and create enough room for accelerating.

While seeming natural for fish or humans, such fin maneuvers are difficult to engineer with

existing control design methods. To overcome these challenges and achieve quick maneuvering

control, in this work, we propose a dual-loop control approach composed of a backstepping-based

controller in the outer loop and a fin movement-planning algorithm in the inner loop. In particular,

for the inner loop, we propose amodel-predictive planning scheme based on a randomized sampling

algorithm that accommodates the fins’ constraints and “intelligently” determines the necessary fins’

movements to produce a desired thrust despite the fins’ current configuration. Simulation results are

presented to demonstrate the performance of the proposed scheme via comparison with a nonlinear

model predictive controller (NMPC) in rapid velocity maneuvering.

The rest of this chapter is organized as follows. We first review the dynamic model of the

pectoral fin-actuated robotic fish in Section 5.1. In Section 5.2, we present the proposed control

approach in detail. In Section 5.3, simulation results are discussed. Finally, we provide some
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concluding remarks in Section 5.4.

5.1 Dynamic Model of Pectoral Fin-actuated Robotic Fish

The dynamic model of the robotic fish is presented in Section 4.1 of Chapter 4. By letting

¥W' = ¤l', ¥W! = ¤l! , D1 = ¤l' and D2 = ¤l! , and by considering the kinematic equations of the

robotic fish, the dynamic model can be summarized as follows:



¤-
¤.
¤k
¤+2G
¤+2H
¤lI
¤W!
¤W'
¤l!
¤l'



=



+2G cosk −+2H sink
+2G sink ++2H cosk

lI

51(+2G , +2H , lI) +
5ℎG
<1

52(+2G , +2H , lI) +
5ℎH
<2

53(+2G , +2H , lI) +
gℎI
�3

l!

l'

D1

D2



(5.1)

with 

51(+2G , +2H , lI) =
<2
<1
+2HlI −

21
<1
+2G

√
+2
2G ++

2
2H+

22
<1
+2H

√
+2
2G ++

2
2H arctan(

+2H

+2G
)

52(+2G , +2H , lI) = −
<1
<2
+2GlI −

21
<2
+2H

√
+2
2G ++

2
2H

− 22
<2
+2G

√
+2
2G ++

2
2H arctan(

+2H

+2G
)

53(+2G , +2H , lI) =
(<1 − <2)

�3
+2G+2H − 24l

2
Isgn(lI)

(5.2)

where<1 = <1−<0G ,<2 = <1−<0H , �3 = �1I−�0I , 21 =
1
2d(�� , 22 =

1
2d(�! , 24 =

1
(�3)

�" .

Note that 5ℎG = 5ℎG' + 5ℎG! , 5ℎH = 5ℎH' + 5ℎH! and gℎI = gℎI' + gℎI! .
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Robotic Fish Dynamics
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Figure 5.1: Illustration of the proposed dual-loop pectoral fin-actuated robotic fish control scheme.
The green dashed line encompasses the outer loop velocity tracking controller, while the inner red
dotted and dashed line encompasses the fin movement planning and control algorithm.

5.2 Dual-Loop Fin Control Scheme

Using the validated model proposed in Section 4.1, in this section we propose a dual-loop fin

control scheme to achieve velocity tracking for a pectoral fin-actuated robotic fish.

5.2.1 Velocity Tracking Problem

The velocity tracking problem involves controlling the robot to track desired body-fixed velocity

trajectories that are parameterized in time t. Given the underactuated nature and input coupling of

the robotic fish, tracking three velocities is challenging [94]; since the main focus of this work is

in fin control we only consider tracking of the surge and angular velocity and leave the former for

future work. Let the velocity tracking error at time C be given by

e( =

[
4E

4l

]
=

[
+2G −+2GA (C)
lI − lA (C)

]
(5.3)

For brevity we drop the time-dependence for the remainder of the chapter. By formulating the

tracking problem in terms of the error state, the control objective becomes a stabilization problem,

where the task is to find suitable control laws for D1, D2 such that for an arbitrary initial error, the

states (4E , 4l) of system (5.3) can be held near the origin (0,0).
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5.2.2 Velocity Tracking Control Algorithm

To achieve velocity tracking, a dual loop control structure is proposed. The outer loop is composed

of a backstepping controller that determines the thrust and moment needed such that e( → 0. In

particular, with sampling time CB, the robotic fish and auxiliary system states are sampled. The

robot’s velocities are compared to the reference velocities +2GA and lA and the tracking error e( is

then calculated. The error e( is used by the outer loop controller (i.e., the backstepping controller)

to determine the thrust �ℎG3 and moment "ℎI3 needed to drive e( to the origin. On the other hand,

the inner loop is composed of a pectoral fin controller that determines the inputs D1 and D2 such

that the pectoral fins generate a thrust �ℎG and moment "ℎI that are close to the desired values

�ℎG3 and "ℎI3 . The robotic fish dynamics are then propagated using D1 and D2, and the difference

between the generated and desired thrust is captured by the states of an auxiliary system which

is used along with the backstepping controller to guarantee closed-loop stability. At time C + CB

the process repeats. Figure 5.1 illustrates the proposed method. A detailed overview of proposed

control approach will be provided in the following sub-sections.

5.2.3 Outer-loop Tracking Control Synthesis

Backstepping control is a practical and systematic approach that provides stability guarantees, which

makes it an attractive choice for velocity tracking. In this work, a backstepping-based controller is

proposed to determine the thrust and moments necessary to drive the states (4E , 4l) of the error

system (5.3) to a neighborhood of the origin.

In order to successfully stabilize the error states to the origin and guarantee closed-loop sta-

bility, the backstepping controller must accommodate magnitude constraints on the thrust 5ℎG and

moments gℎI that can be generated by the pectoral fins at a given time. In order to address this

limitations, we adopt a similar scheme to that proposed in [94, 132].

Let �ℎG3 and "ℎI3 represent the nominal backstepping control inputs, and let �ℎG and "ℎI

be the forces and moments that that can be practically implemented by the fins. Note that the �ℎG

and "ℎI will be determined by the inner loop fin controller. To analyze the influence of the input
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difference, the following auxiliary system is chosen

¤_1 = − Z1_1 +
�ℎG − �ℎG3

<1
(5.4a)

¤_2 = − Z2_2 +
"ℎI − "ℎI3

�3
(5.4b)

The auxiliary system composed of the variables _1 and _2 defined above represents the filtered

effect of the non-achievable portion of the control inputs. In other words, they represent the addi-

tional tracking error that arises because of the mismatch between the nominal and implementable

forces and moments.

To stabilize the (4E , 4l) subsystemwhile also considering the difference in inputs, the following

candidate Lyapunov function is proposed

+1 =
1
2
4̄2
E +

1
2
4̄2
l =

1
2
(4E − _1)2 +

1
2
(4l − _2)2 (5.5)

where 4̄E and 4̄l are the modified tracking errors. The time derivative of Eq. (5.5) is given by

¤+1 =4̄E ¤̄4E + 4̄l ¤̄4l

=4̄E ( 51(+2G , +2H , lI) − ¤+2GA +
�ℎG3

<1
+ Z1_1) + 4̄l ( 53(+2G , +2H , lI) − ¤lA +

"ℎI3

�3
+ Z2_2)

(5.6)

Let �ℎG3 and "ℎI3 be given by

�ℎG3
=<1(− 51(+2G , +2H , lI) + ¤+2GA − Z1_1 −  4̄E 4̄E) (5.7a)

"ℎI3 =�3(− 53(+2G , +2H , lI) + ¤lA − Z2_2 −  4̄l 4̄l) (5.7b)

such that (5.6) becomes

¤+1 = −  4̄E 4̄2
E −  4̄l 4̄2

l (5.8)

If  4̄E > 0 and  4̄l > 0, then ¤̄+1 < 0 except when 4̄E = 4̄l = 0 implying the convergence

of (4̄E , 4̄l) to zero as time approaches infinity. Given that 0 ≤ +̄1(C) ≤ +̄1(0), one can conclude

that (4̄E , 4̄l) belongs to L2, which implies that even when the desired force and moment are not

implemented, the quantities 4̄E and 4̄l do not diverge. While the convergence for the modified

tracking errors 4̄E and 4̄l is guaranteed, that of the actual velocity tracking errors 4E and 4l is not,
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as the latter may actually increase during periods when the force and moment limitations are in

effect and the desired values cannot be implemented (i.e. �ℎG ≠ �ℎG3 or "ℎI ≠ "ℎI3). On the

other hand, when the control signal limitations are not in effect (i.e., �ℎG = �ℎG3 and"ℎI = "ℎI3),

_1 and _2 approach zero, and (4̄E , 4̄l) converges towards (4E , 4l) and thus the velocity error can

be stabilized.

From Eq. (4.21) and Eqs. (5.7a)-(5.7b), the desired left and right pectoral fin forces can be

determined as

5ℎG3! =
�3

2�?
(− 53(+2G , +2H , lI) + ¤lA + Z2_2 −  4̄l 4̄l)

−
<1
2
(− 51(+2G , +2H , lI) + ¤+2GA − Z1_1 −  4̄E 4̄E)

(5.9)

5ℎG3' =
�3

2�?
(− 53(+2G , +2H , lI) + ¤lA + Z2_2 −  4̄l 4̄l)

+
<1
2
(− 51(+2G , +2H , lI) + ¤+2GA − Z1_1 −  4̄E 4̄E)

(5.10)

5.2.4 Pectoral Fin Control Algorithm

The goal of the pectoral fin control algorithm is to determine the inputs D1 and D2 such that pectoral

fin movement generates forces that track the desired forces 5ℎG3! and 5ℎG3'.

To achieve this goal, we propose a model-predictive planning algorithm to determine an angular

acceleration trajectory for each fin that accommodates the feasibility of the fin movement while

producing a thrust that is close to the desired value for a given interval of time )? , where )? = CB.

The general procedure to determine the angular trajectory is as follows: )% is discretized into

multiple evenly spaced sub-intervals. For the first sub-interval, a fixed number of � different

possible (constant) fin acceleration choices are generated by randomly sampling a distribution (the

design of which will be discussed later), and their corresponding angular velocities, positions

and force trajectories within the said sub-interval are calculated based on a constant-acceleration

model. For the next sub-interval, for each choice previously generated, a new set of � choices

for the acceleration are generated and once again the fins’angular velocities, positions and force

trajectories within the sub-interval are calculated for all choices. The process repeats until the total
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number of sub-intervals is reached. In this manner the number of choices per sub-interval increases

exponentially with the sub-interval stage. Figure 5.2 depicts an example of the general idea, where

different possible acceleration, velocity and position trajectories generated for a planning interval)%

are shown. The assemblage of individual angular accelerations values (and corresponding position

and velocities) from each interval is considered a plausible angular trajectory for the period )? .

Each possible angular trajectory is assigned a cost that is dependent on the difference between its

corresponding generated force trajectory and the desired value. The trajectory that yields the lowest

cost is selected as the solution. To elaborate on the control algorithm in detail, we utilize the right

fin as an example; however, the same approach can be trivially extended to the left pectoral fin.

Figure 5.2: Example of different possible fin acceleration, velocity and position trajectories
generated within a planning interval )% that is divided into three sub-intervals.

The outer loop control inputs are updated every CB seconds and new 5ℎG3! and 5ℎG3' forces

are calculated. For the duration of CB, the desired forces remain constant and become the tracking

reference for the fin control algorithm. Note that )? = CB. Let )% be discretized into =0 evenly

spaced sub-intervals of length ΔC and let ¥W'8 be constant throughout the 8th sub-interval, where

8 = 1, · · · , =0. At a given 8th sub-interval there will be �8 different choices for ¥W', such that for

a given period )% there area a total of �=0 possible choices of (piecewise constant) acceleration
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trajectories.

For a given choice of angular accelerations up to the beginning of the 8th sub-interval, the

following elaborates on the procedure for the related computation:

1. Determine allowed range for ¥$X : Given that the pectoral fins position W' is physically

limited, the allowed angular velocities ¤W' and angular acceleration ¥W' are constrained to lie within

a range dependent on the current fin’s position and velocity. Since ¥W' is constant throughout

each sub-interval, using the standard constant acceleration model the allowed ¥W' within ΔC can be

determined as follows

¥W'(<0G)8 =
2(W'<0G − W

(8)
'0 − ¤W

(8)
'0ΔC)

(ΔC)2
(5.11a)

¥W'(<8=)8 =
2(W'<8= − W

(8)
'0 − ¤W

(8)
'0ΔC)

(ΔC)2
(5.11b)

where W'<0G and W'<8= denote themaximumandminimumallowedfin position, respectively, while

W
(8)
'0 and ¤W (8)

'0 denote the value of W' and ¤W' at the beginning of the 8th sub-interval, respectively.

2. Calculate desired ¥$Xd : Given 5ℎG3', a desired ¥W'3 is calculated from Eq. (4.19) as

follows

¥W'38 = −
_d�?(

2
? ( ¤W
(8)
'0)

2sgn( ¤W (8)
'0)

3<?

−
( ¤W (8)
'0)

2 cos W (8)
'0

sin W (8)
'0

+
2 5ℎG'3

(?<? sin W (8)
'0

(5.12)

3. Generate the sampling distribution and sample H values : The � different ¥W' values are

sampled from a distribution which is generated by dividing the allowable ¥W'8 range into # evenly

spaced discrete values. Each possible =th value is assigned a normalized weight,= determined by

the following:

,= =
4−3=∑#
==1 4

−3=
(5.13)

where = = 1, · · · # , and 3= =
√
( ¥W (=)
'8
− ¥W'3)2 is the Euclidean distance between the =th ¥W'8 value

and the desired ¥W'38. Note Σ#==1,= = 1.
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Figure 5.3: Example of weights for each value of ¥W'8 within a given allowed range. The vertical
dotted red lines indicate the maximum and minimum values allowed for ¥W'8 in the 8th interval,
while the green solid line represents the desired value.

To sample from this distribution, generate % “particles", where each “particle" is representative

of each discrete value of ¥W'8. The number of particles generated for a particular discrete value of

¥W'8 is given by

%= = ,=% (5.14)

Note that %= must be rounded to the nearest integer and that
∑#
==1 %= = %. Figure 5.3 illustrates

an example of the weights calculated for a given range of ¥W'8. Finally, � “particles" are uniformly

sampled from the whole set of % particles, which results in random choices of ¥W'8 with preference

towards values closer to ¥W'3 .

4. Calculate $Xi and ¤$Xi : For a given ¥W'8, the resultant ¤W (8)
'

and W (8)
'

trajectories can be

obtained from the constant acceleration model as follows

W
(8)
'
(C8, C8+1) =W'0 + ¤W

(8)
'0C +

1
2
¥W'8C2 (5.15a)

¤W (8)
'
(C8, C8+1) = ¤W

(8)
'0 + ¥W'8C (5.15b)

where C ∈ [C8, C8+1] .

5. Determine the force f
(i)
hxX

for a given ¥$Xi : From Eq. (4.19), the force generated by the
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fin in the 8th interval is calculated as

5
(8)
ℎG'
(C8 , C8+1) =

1
6
_d�?(

3
? ( ¤W
(8)
'
)2 sin W(8)

'
sgn( ¤W(8)

'
)

− <? (−
(?

2
¥W(8)
'

sin W(8)
'
−
(?

2
( ¤W(8)
'
)2 cos W(8)

'
)

(5.16)

6. Calculate cost for each ¥$Xi: A cost is assigned to each generated acceleration choice

within the 8th sub-interval. The cost function is given by

 8 =

( ∫ C8+1

C8

5
(8)
ℎG'
(g) − 5ℎG'3

)2
3g (5.17)

7. Determine the best ¥$X trajectory among the Hn0 candidates :

min
¥W' (·)

=0∑
?=1

 8 (5.18)

Note that in steps 1-5 sets of possible accelerations for each interval are generated, while in the

steps 6-7 the best candidate is determined. Furthermore, by sampling from the skewed distribution

presented in step 3, we take into consideration the ideal ¥W'3 , which allows us to make an educated

guess as to what possible ¥W' should be generated in order to find a good solution. Finally, since the

algorithm considers the angular position constraints, a plausible ¥W' trajectory is always generated.

Once the best ¥W' and ¥W! are selected, the total hydrodynamic force �ℎG and moment "ℎI that

will be exerted by the robotic fish can be calculated, and the auxiliary system states can be updated.

5.3 Simulation Results

To evaluate the effectiveness of the designed controller, simulations were carried out using

MATLAB. The robotic fish parameters used for simulation are listed in Table 4.1. Furthermore,

the backstepping controller and planning algorithm parameters were chosen as follows:

 4̄E = 1.5  4̄l = 2
Z1 = 0.1 Z2 = 0.2
W'<8= = W!<8= = 45◦ W'<0G = W!<0G = 120◦

CB = 0.2 s )% = 0.2 s
=0 = 3 � = 5
# = 20 % = 100
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where the variable CB is the sampling interval which pertains to the amount of time between an

update to the desired force and moment values, �ℎG3 and "ℎI3 . The backstepping controller

parameters were chosen such that under the right values the velocity error system was stabilized

to a neighborhood of the origin. We found that  4̄E and  4̄l regulate the balance between the

convergence rate of the 4E and 4l error, respectively, while varying Z1 and Z2 regulates the

convergence rate of the control-deviation errors _1 and _2, respectively. The randomized model-

predictive planning scheme parameters, =0, �, # and %, were chosen as to balance the trade-off

between computational effort and performance.

To demonstrate the effectiveness of the proposed approach, simulations were carried out to

compare its performance with an alternative approach, where NMPC is used as the inner loop

fin controller. The cost function Eq. (5.17) was adopted to the NMPC algorithm, and the NMPC

parameters were chosen as follows:

Prediction Horizon= 0.2 s Control Intervals = 30
&=5000 CB =0.2 s

where the weighting matrix & was chosen to heavily penalize the deviation from the desired

force and the force being generated , and the prediction horizon was chosen as the length of the

sampling time CB. The following reference velocity trajectory, with abrupt changes, was considered

in simulations 

+2GA = 0.01 m/s, lA = −0.15 rad/s C < 0.8

+2GA = 0.04 m/s, lA = 0.2 rad/s 0.8 ≤ C < 1.6

+2GA = −0.01 m/s, lA = 0.4 rad/s 1.6 ≤ C < 2.2

+2GA = 0.01 m/s, lA = −0.1 rad/s 2.2 ≤ C < 2.4

+2GA = 0.01 m/s, lA = 0 rad/s 2.4 ≤ C < 3

+2GA = 0.01 m/s, lA = −0.04 rad/s 3 ≤ C < 3.4

+2GA = 0.04 m/s, lA = 0.1 rad/s 3.4 ≤ C < 4

+2GA = −0.05 m/s, lA = 0.1 rad/s 4 ≤ C < 4.4

+2GA = 0 m/s, lA = 0 rad/s 4.4 ≤ C ≤ 5
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(a) Proposed approach.
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(b) NMPC approach.

Figure 5.4: Simulation: velocity-tracking trajectories results for the proposed scheme (a) and the
alternative scheme with NMPC for the inner loop controller (b).

Note that the above desired velocities include scenarios like backwards swimming ( 1.6 ≤ C <

2.2 ), quick left and right turning, and stopping( 4.4 ≤ C ≤ 5).

In Figure 5.4 the desired and the closed-loop velocity trajectories of the robotic fish are depicted

for the proposed method (Figure 5.4a) and the alternative NMPC scheme (Figure 5.4b) , while

Figure 5.5 illustrates the fin positions over time for each scheme. From Figure 5.4 one can see that

121



(a) Proposed approach.

(b) NMPC approach.

Figure 5.5: Simulation: fin position trajectories resulting from the proposed scheme (a) and the
alternative scheme with NMPC for the inner loop controller (b). The dashed blue lines depict the
fin’s position constraints.

the proposed approach allows the robot to respond to the sudden changes of the desired velocities.

In particular, although there are slight overshoot the robot was able to change its surge and angular

velocity velocities to keep up with the quickly varying reference. In contrast, although the NMPC

approach is able to handle the fin range constraints, its tracking performance is inferior when
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compared to the proposed approach. Finally, from Figure 5.5, one can note that for both approaches

the fin’s positions constraints are not violated.

5.4 Chapter Summary

In this work, a systematic approach for maneuvering control of a pectoral-fin actuated robotic

fish was proposed. Specifically, we proposed a dual loop control scheme consisting of an outer-

loop backstepping controller and an inner loop fin movement-planning algorithm. In particular, the

outer loop backstepping-controller finds the thrust and moment required to stabilize the velocity

tracking error, while the inner loop plans the motion of the fin for a given time-interval to produce a

thrust and a moment close to their desired values by utilizing a randomized sampling algorithm. A

parameter estimation scheme was employed to empirically identify the hydrodynamic parameters

of the model. To illustrate the challenges in control, the velocity tracking problem with abrupt

velocity changes for a robotic fish was considered. Simulation results showed the effectiveness of

the proposed scheme and and its superiority over an alternative employing an NMPC in the inner

loop.
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CHAPTER 6

SUMMARY AND FUTUREWORK

6.1 Summary

This dissertation presented several systematic model-based control approaches for tail-actuated

and pectoral fin-actuated robotic fish that guarantee closed-loop system stability, accommodate

input constraints, and are computationally viable for these robots.

We first proposed and implemented in real-time a path-following NMPC scheme for a tail-

actuated robotic fish, where a high-fidelity averaged nonlinear dynamic model was used for con-

troller design. A novel parameter estimation scheme was employed to empirically identify the

averaged model’s hydrodynamic parameters and scaling coefficients. Furthermore, given that the

control inputs were functions of two of the tail-beat parameters, specifically the tail bias and tail am-

plitude, a control projection strategy was implemented to handle these nonlinear input constraints

andmaximize the use of the admissible control region in a computationally efficientmanner. Finally,

simulation and experimental results demonstrated the effectiveness of the proposed scheme.

Despite being a promising tracking control approach, NMPC’s computational complexity posed

challenges in implementation in resource-constrained robots. We thus proposed a backstepping-

based control that is practical, systematic, and computationally inexpensive, especially when com-

pared to NMPC.We first considered the trajectory tracking of under-actuated planar robotic systems

and demonstrated how the controller guarantees the ultimate boundedness of the position and head-

ing tracking errors to a neighborhood of the origin. In particular, the controller was synthesized

to guarantee the convergence of the longitudinal error and a new coordinate error that coupled the

lateral error and the heading error. Via time-scale analysis of perturbed systems, it was shown that

the convergence of these errors guarantees the stabilization of the whole error system to a neigh-

borhood around the origin. Furthermore, the proposed scheme was implemented on a tail-actuated

robotic fish, where a high-fidelity averaged nonlinear dynamicmodel was used for controller design.
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Finally, real-time experimental results demonstrated the effectiveness of the proposed scheme and

showed its value over standard PI control.

Moving forward, we then turned our attention to pectoral fin-actuated robotic fish. In practical

applications like trajectory tracking, it is more natural to control the parameters of periodic fin

beats. To this end, we presented a nonlinear dynamic average model for a pectoral fin-actuated

robotic fish that is amenable to controller design, where the control inputs are actuation pattern

parameters. In particular, we proposed a scaling averaging scheme, where the pectoral fin-generated

hydrodynamic forces and moment are first scaled using functions of the fin-beat parameters, and

classical averaging is then conducted over the resulting dynamics. Furthermore, we proposed a novel

estimation scheme employing a nonlinear model predictive controller and a multivariate nonlinear

regression scheme to determine the scaling functions. To validate the averaged model simulation

comparing the predictions from the original and average models were presented. Furthermore,

both models were validated with experimental results. Finally, the utility of the proposed modeling

scheme was demonstrated via the design of a dual-loop backstepping-based trajectory tracking

controller. Simulation results demonstrate the effectiveness of the proposed control approach.

Acyclic actuation could be more instrumental than cyclic actuation in tasks such as rapid

maneuvering. To overcome the challenges pectoral fins pose in control, a systematic approach for

maneuvering control of a pectoral-fin actuated robotic fish was proposed. Specifically, we proposed

a dual-loop control scheme consisting of an outer-loop backstepping controller and an inner-loop

fin movement-planning algorithm. The outer-loop backstepping-controller finds the thrust and

moment required to stabilize the velocity tracking error, while the inner-loop plans the motion of

the fin for a given time interval to produce a thrust and a moment close to their desired values

by utilizing a randomized sampling algorithm. To illustrate the challenges in control, the velocity

tracking problem with abrupt velocity changes for a robotic fish was considered. Simulation results

showed the effectiveness of the proposed scheme and its superiority over an alternative employing

an NMPC in the inner loop.
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6.2 Future Work

For futurework, experimental trials that validate the proposed trajectory tracking control scheme

for a pectoral fin-actuated robotic fish will be implemented. Furthermore, the proposed pectoral

fin-actuated robotic fish maneuvering scheme will be optimized to accommodate the trade-off

between performance and computational efficiency. In addition, experiments will be implemented

on a robotic fish prototype to verify the effectiveness of the proposed approach.

The work presented in this dissertation can also be expanded in different directions. First,

it would be interesting to compare the trajectory tracking performance of controllers using the

original dynamics versus the averaged dynamics when considering trajectories with sharp turns or

sudden changes. Furthermore, since the original dynamic model captures transient behavior while

the averaged dynamic model captures the steady state behavior, it would be of interest to develop

frameworks that allow the coordination of two separate model-based controllers that are designed

to implement pectoral fin-based locomotion. Finally, since the tail fin tends to be most beneficial at

higher speeds, while pectoral fins tend to be more effective for maneuvering, it would be interesting

to develop control algorithms that allow the coordination of the two forms of locomotion.

In addition, it also would be interesting to investigate the use of Linear Parameter Varying (LPV)

models for control of robotic fish [142, 143]. For example, one could explore the use of model

predictive control or linear quadratic regulator control approaches along with the LPV model to

implement trajectory tracking control.

In another direction, it would be interesting to utilize the trajectory tracking control algorithms in

an environmental sensing application, where an upper-level path planning scheme is integrated with

one of the proposed trajectory tracking schemes for active sensing. We have done some preliminary

work along this direction, where we used an ergodic exploration algorithm for trajectory planning

along with an NMPC trajectory tracking controller [144].

Finally, while model-based control tends to be effective, it is challenging to obtain high-fidelity

and accurate models that are amenable to control synthesis especially for dynamic, uncertain

environmental conditions. Furthermore, it can be difficult to estimate parameters, either offline

126



and online, accurately. Data-driven methods such as Koopman operators are promising approaches

that can facilitate learning control-affine models. In our recent work, we have explored the use of

Koopman operators for developing linear models and implementing real-time velocity control of

robotic fish [145,146]. Exploring these data-driven techniques can be useful for robotic fish due to

the highly nonlinear dynamics and the need for controllers that use limited computation.
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APPENDIX A

PROOF OF THE ROBOTIC FISH’S INPUT-TO-STATE STABILITY

Consider the robotic fish dynamics given by Eq. (3.67a)-(3.67c), where 5 is locally Lipschitz in G

and D, and D(C) is a piece-wise continuous, bounded function of C for all C ≥ 0. To determine if the

system is input-to-state stable we apply the result from [129](Lemma 4.6).

Unforced System

Let Ḡ = [Ḡ1 Ḡ2 Ḡ3]) = [E1 E2 l]. The unforced system for the robotic fish is then given by

¤̄G = 5 (Ḡ, 0) (A.1)

and in particular

¤̄G1 =
<2
<1

Ḡ2Ḡ3 −
21
<1

G1
√
Ḡ2

1 + Ḡ
2
2 +

22
<1

Ḡ2
√
Ḡ2

1 + Ḡ
2
2 arctan

Ḡ2
Ḡ1

(A.2a)

¤G2 = −
<1
<2

Ḡ1Ḡ3 −
21
<2

Ḡ2
√
Ḡ2

1 + Ḡ
2
2 −

22
<2

Ḡ1
√
Ḡ2

1 + Ḡ
2
2 arctan

Ḡ2
Ḡ1

(A.2b)

¤G3 =
(<1 − <2)

�3
Ḡ1Ḡ2 − 24Ḡ

2
3sgn(Ḡ3) (A.2c)

To prove that this system has a global asymptotically stable equilibrium point at the origin, consider

the following Lyapunov function

+ (G) = <1
2�3

Ḡ2
1 +

<2
2�3

Ḡ2
2 +

1
2
Ḡ2

3 (A.3)

such that

¤+ (G) = <1
�3
G1 ¤̄G1 +

<2
�3
Ḡ2 ¤̄G2 + Ḡ3 ¤̄G3

=

(<2
�3
− <1
�3

+ (<1 − <2)
�3

)
Ḡ1Ḡ2Ḡ3 +

(22
�3
− 22
�3

)
Ḡ1Ḡ2

√
Ḡ2

1 + Ḡ
2
2 arctan

Ḡ2
Ḡ1

− 21
�3
Ḡ2

1

√
Ḡ2

1 + Ḡ
2
2 −

21
�3
Ḡ2

2

√
Ḡ2

1 + Ḡ
2
2 − 24G

3
3sgn(Ḡ3)

= −21
�3
Ḡ2

1

√
Ḡ2

1 + Ḡ
2
2 −

21
�3
Ḡ2

2

√
Ḡ2

1 + Ḡ
2
2 − 24G

3
3sgn(Ḡ3)

(A.4)
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+ (G) is thus negative definite globally and it can be concluded that the origin is globally asymptot-

ically stable (G.A.S).

State Boundedness

Let ¤̄G = 5 (Ḡ, D) be a perturbation of the unforced system ¤G = 5 (Ḡ, 0). The function 5 (Ḡ, D) satisfies

the following

‖ 5 (Ḡ, D) − 5 (Ḡ, 0)‖ ≤ !‖D‖







 5

<!2
12<1

l2
UD1

 5
<!2
4<2

l2
UD2

− < c<!2
4�3

l2
UD2






 ≤ !‖D‖ (A.5)

where ! is a Lipschitz constant. From Definition 4.7 and Theorem 4.19 in [129], the ultimate

bound of the states can be determined. Considering the derivative of Eq.(A.3) along 5 (Ḡ, D)
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m+

mḠ
5 (Ḡ, D) =<1
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Ḡ1 ¤̄G1 +
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UD2 − G3 <

c<!2

4�3
l2
UD2

≤ − 21
�3
Ḡ2

1

√
Ḡ2

1 + Ḡ
2
2 −

21
�3
Ḡ2

2

√
Ḡ2

1 + Ḡ
2
2 − 24Ḡ

3
3sgn(Ḡ3)

+
 5<!

2

12�3
l2
U |Ḡ1 | |D1 | +

 5<!
2

4�3
l2
U |Ḡ2 | |D2 |

+  <
c<!2

4�3
l2
U |Ḡ3 | |D2 |

≤ − (1 − \1)
21
�3
Ḡ2

1 − (1 − \2)
21
�3
Ḡ2

2

− (1 − \3)24Ḡ
3
3sgn(Ḡ3) − \1

21
�3
Ḡ2

1

− \2
21
�3
Ḡ2

2 − \324Ḡ
3
3sgn(Ḡ3)

+
 5<!

2

12�3
l2
U |Ḡ1 | |D1 | +

 5<!
2

4�3
l2
U |Ḡ2 | |D2 |

+  <
c<!2

4�3
l2
U |Ḡ3 | |D2 |

≤ − (1 − \1)
21
�3
Ḡ2

1 − (1 − \2)
21
�3
Ḡ2

2

− (1 − \3)24Ḡ
3
3sgn(Ḡ3) − \1

21
�3
Ḡ2

1 − \2
21
�3
Ḡ2

2

− \324Ḡ
3
3sgn(Ḡ3) ∀ |Ḡ1 | ≥ `1, |Ḡ2 | ≥ `2, |Ḡ3 | ≥ `3

(A.6)

where when `1 =
 5<!

2

12\121
l2
U |D1 |, `2 =

 5<!
2

4\221
l2
U |D2 | and `3 =

 <2<!
2

4 �\3
l2
U |D2 |.

From Definition 4.4 of [129], for any initial state G(C0) and a bounded input D(C), the solution

G(C) exists for all C ≥ C0 and satisfies

‖G‖ ≤ max
{
V(‖G(C0)‖, C − C0), U−1

1 (U2(`))
}
∀ C ≥ C0 (A.7)
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where U1(A) = _<8= (%)A2, U2(A) = _max(%)A2. In particular, for Ḡ1, Ḡ2, and Ḡ3, respectively, the

ultimate bounds 11 − 13 are given by

11 =
 5<!

2

12\121
l2
U |D1 | (A.8a)

12 =
 5<!

2

4\221
l2
U |D2 | (A.8b)

13 =
 <2<!

2

4 �\3
l2
U |D2 | (A.8c)
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APPENDIX B

PROOF OF STABILITY OF THE PERTURBATION-FREE ROBOTIC FISH
CLOSED-LOOP SYSTEM

The asymptotic stability of the origin for the robotic fish system can be demonstrated by following

the procedure from Section 3.3. Using the following definitions

E1 = j3 + q1 − H4 (l − q3) (B.1)

l = j4 + rq3 (B.2)

we can write the closed-loop system as

¤H4
¤j1

¤j2

¤j3

¤j4
¤̄[


=



E2 + EA sin(k4) −
j2j4
: (C,e) − j2q3

− Ib j1 + j4

− G4 j2 + j3

− I1j3

− I2j4

ℎ2(E1, [̄, l) + 14 5̄5(U0, U0, lU)


(B.3)

where

k4 =j1 − :X1 arctan(:X2H4) (B.4)

: (C, e) =1 −
:IX1

:IX2j2

(:X2H4)
2 + 1

(B.5)

The reduced Υ(-subsystem for the robotic fish is defined as

¤H4 = 5 (C, H4, � (C, H4), 0)

= −EA sin(:X1 arctan(:X2H4))

Its corresponding boundary layer is given by

3j

3g1
= 6(C, H4, � (C, j(g1)), 0) =


−0̄j1

−1̄j2

−2̄j3

−3̄ j4


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Assumption 4 of Lemma 1:

¤+( =
m+(

mH4
5 (C, H4, � (C, H4)) +

m+(

mC

= −
EA :X1:X2 sin(:X1 arctan(:X2H4))

(:X2H4)
2 + 1

(B.6)

Let H4 lie within compact set such that  ̄H4 = maxH4∈Ω |H4 |. One can then find 20 such that in

an interval of H4
sin(:X1 arctan(:X2H4))

2

(:X2H4)
2 + 1

≥ 20H
2
4 (B.7)

such that

¤+( ≤ −E<8=A :X1:X220H
2
4

(B.8)

Since E<8=A , :X1 , :X2 > 0, Assumption 4 of Lemma 1 can be satisfied with U1 ≥ E<8=A :X1:X220

and Ψ1(H4) = |H4 |

Assumption 5 of Lemma 1:

m+�

mG
6(C, H4, j, 0) = −j)(j ≤ −_̄<8= (()‖j‖2 (B.9)

where _̄<8= (() is the smallest eigenvalue of (. Let U2 ≥ _̄<8= (() and Φ1 = ‖j‖

Assumption 6 of Lemma 1:

Let @ = :X1 arctan(:X2H4), and

g = :X1:X2
(EA sin(k4) + E2)
(:X2H4)

2 + 1
(B.10)
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m+(

mH4
[ 5 (C, H4, j) − 5 (C, H4, � (C, H4))]

=
:X1:X2 sin(@)
(:X2H4)

2 + 1

[
EA sin(k4) − j2

( j4 + lA − g −  Ib j1

: (C, e)

)
+ EA sin(@)

]
=
:X1:X2 sin(@)
(:X2H4)

2 + 1

[
EA

(
sin(k4) + sin(@)

)
− j2

(
j4((:X2H4)

2 + 1)
(:X2H4)

2 + 1 − :IX1
:IX2j2

−
lA ((:X2H4)

2 + 1)
(:X2H4)

2 + 1 − :IX1
:IX2j2

−
:IX1

:IX2
EA sin(k4)

(:X2H4)
2 + 1 − :IX1

:IX2j2
−

 Ib j1((:X2H4)
2 + 1)

(:X2H4)
2 + 1 − :IX1

:IX2j2

)]

= :X1:X2 sin(@)
[
EA

(
sin(j1) cos(@) − cos(j1) sin(@) + sin(@)

)
(:X2H4)

2 + 1

− j2lA
(:X2H4)

2 + 1 − :IX1
:IX2j2

− j2
(:X2H4)

2 + 1 − :IX1
:IX2j2

(
j4 −  Ib j1 −

:IX1
:IX2

EA sin(k4)

(:X2H4)
2 + 1

)]

=

EA :X1:X2 sin(@)
(

sin(j1) cos(@) + (1 − cos(j1)) sin(@)
)

(:X2H4)
2 + 1

−
j2:X1:X2 sin(@)lA

(:X2H4)
2 + 1 − :IX1

:IX2j2
−

:X1:X2 sin(@)j2

(:X2H4)
2 + 1 − :IX1

:IX2j2

(
j4 −  Ib j1

−
(:IX1

:IX2
)EA sin(k4)

(:X2H4)
2 + 1

)

(B.11)

Since  ̄H4 = maxH4∈Ω |H4 |, one can always find an interval for all H4 within the compact set

where the term
| sin(:X1 arctan(:X2H4)) |

(:X2H4)
2 + 1

is increasing and is bounded such that

20 |H4 | ≤
| sin(:X1 arctan(:X2H4)) |

(:X2H4)
2 + 1

(B.12)

Furthermore, one can fin 21 such that

| sin(:X1 arctan(:X2H4)) |
(:X2H4)

2 + 1
≤ 21 |H4 | (B.13)
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so that
| sin(@) |
(:X2H4)

2 + 1
≤ 21 |H4 |, and | sin(@) | ≤ :1 |H4 |. Similarly, let  ̄j1 = maxj∈Ω |j1 | such that

30 |j1 | ≤ (1 − cos(j1)) ≤ 31 |j1 | (B.14)

10 |j1 | ≤ sin(j1) ≤ 11 |j1 | (B.15)

Furthermore, given | sin(k4 | ≤ 1, | cos(j) | ≤ 1, and | cos(@) | ≤ 1, (B.11) can be rewritten as

m+(

mH4
[ 5 (C, H4, j) − 5 (C, H4, � (C, H4))] ≤

EA :X1:X2 sin(@)
(
11 |j1 | cos(@) + 31 |j1 | sin(@)

)
(:X2H4)

2 + 1
+

|j2 |:X1:X2 | sin(@) | |lA |
(:X2H4)

2 + 1 − :IX1
:IX2j2

+
:X1:X2 | sin(@) | |j2 |

(:X2H4)
2 + 1 − :IX1

:IX2j2

(
|j4 | +  Ib |j1 |+

:IX1
:IX2

EA | sin(k4) |

(:X2H4)
2 + 1

)
≤ Emax

A (11 + 31)21:X1:X2 |H4 | |j1 |

+
:1:X1:X2 |lA | |j2 | |H4 |

(:X2H4)
2 + 1 − :IX1

:IX2j2

+
:1:X1:X2 |H4 | |j2 |

(:X2H4)
2 + 1 − :IX1

:IX2j2

(
|j4 | +  Ib |j1 |

)
+
Emax
A :1(:X1:X2)

2 |j2 | |H4 |
(:X2H4)

2 + 1 − :IX1
:IX2j2

(B.16)

Assume that j2 is restricted to a compact set such that  ̄j2 = max6∈Ω |j2 |, and let

:IX1
:IX2
|j2 |

(:IX2
H4)2 + 1 − :I41:IX2

j2
<
|j2 |
�4

(B.17)

for |j2 | ≤
1

:IX1
:IX2

such that (B.16) becomes
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≤ 221E
max
A (11 + 31):X1:X2 |H4 | |j1 | +

21:X1:X2 |lA | |j2 | |H4 |
�4

+
21:X1:X2 |H4 | j2 |

�4

(
|j4 | +  Ib |j1 |

)
+
EA21(:X1:X2)

2 |j2 | |H4 |
�4

≤  X |H4 |‖j‖

(B.18)

where

 X =E
max
A (11 + 31)21:X1:X2

+
:1:X1:X2
�4

(
|lA | +  j2 +  j2 Ib + E

max
A (:X1:X2)

) (B.19)

Let V1 ≥  X and _1 = 0 to satisfy Assumption 6 of Lemma 1.

Assumption 7.a of Lemma 1

m+�

mH4
[6(C, H4, � (C, H4, ), n) − 6(C, H4, � (C, H4), 0)] = 0 (B.20)

Let _2 = V2 = 0 to satisfy the second interconnection condition from Assumption 7 of Lemma

1.

Assumption 7.b of Lemma 1

m+�

mH4
5 (C, H4, � (C, H4)) = 0 (B.21)

Let _3 = V3 = 0 to satisfy third interconnection condition from Assumption 7 of Lemma 1.

The composite Lyapunov function for the Υ(�-subsystem is given by

+1(H4, G, C) = (1 − 31)+( (H4) + 31+� (G), 31 ∈ (0, 1)

= (1 − 31) (1 − cos(:X1 arctan(:X2H4))) + 31(j)%j)
(B.22)

and its derivative is given by,

¤+1 ≤ −

√
|H4 |2

‖j‖


)

Λ


√
|H4 |2

‖j‖


≤ −_<8= (Λ)

(√
H2
4 + ‖j‖2

)2
(B.23)
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APPENDIX C

PROOF OF STABILITY OF THE ROBOTIC FISH’S PERTURBED CLOSED-LOOP
SYSTEM

Let the perturbed Σ(� system be expressed as

¤� = &(C,�) + A (C,�) =


5 (C,�)
6(C,�)

0

 + A (C,�) (C.1)

where

� =[H4, j, [̄]) (C.2)

5 (C,�) =
[
EA sin(k4) − (

j4+q̄3
r )j2

]
(C.3)

6(C,�) =



−0̄j1 + n1j4

−1̄j2 + n1j3

−2̄j3

−3̄ j4


(C.4)

A (C,�) =



−:IX1
:IX2

[̄j2

(:IX2
�H4)2 + 1 − :IX1

:IX2
j2
+ [̄

0

0
0
0

ℎ2(E1, [̄, l) + 14D2



(C.5)

q̄3 =lA − :IX1
:IX2

(EA sin(k4))
(:IX2

H4)2 + 1
−  /b j1 (C.6)

From Eq. (B.22)

m+1
m�

=

[
(1 − 31)

EA :X1:X2 sin(:X1 arctan(:X2H4))
(:X2H4)

2 + 1
312j)%

]
(C.7)
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Since it is assumed that H4 lies within a compact set such that  ̄H4 = maxH4∈Ω |H4 |, one can bound

the sin(:X1 arctan(:X2H4)) term in (C.7) by (B.13), such that


m+1
m�




 ≤ [
21(1 − 31)Emax

A :X1:X2 |H4 | 312‖%‖‖j‖
]

(C.8a)

≤
[
21(1 − 31)Emax

A :X1:X2 |H4 | 312_̄max(%)‖j‖
]

(C.8b)

≤# ‖�‖ (C.8c)

where we write (C.8b) as H)F and use the inequality |H)F | ≤ ‖F‖‖H‖, _̄max(%) is the maximum

eigenvalue of P and # =
√(
21(1 − 31)Emax

A :X1:X2
)2 + (231_̄max(?))2. Furthermore, recall

m+1
m�

&(C,�) ≤ −_min(Λ)
(√
(H2
4 + ‖j‖2)

)2
(C.9)

Since H4 lies within a compact set such that  ̄H4 = maxH4∈Ω |H4 |, one could find @0 and @1

such that

+1(�) =(1 − 31) (1 − cos(:X1 arctan(:X2H4))) + 31j
)%j

≤(1 − 31)@1H
2
4 + 31_̄max(%)j2

≤
√
((1 − 31)@1)2 + (31_̄max(%))2 | |� | |2

(C.10)

and

+1(�) ≥(1 − 31)@0H
2
4 + 31_̄min(%)j2

≥
√
((1 − 31)@0)2 + (31_̄min(%))2 | |� | |2

(C.11)

Therefore, for � ∈ �', the Lyapunov function +1 satisfies inequalities (3.61) with
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Γ1 =
√
((1 − 31)@0)2 + (31_̄min(%))2︸                                     ︷︷                                     ︸

0̄

‖�‖2

Γ2 =
√
((1 − 31)@1)2 + (31_̄max(%))2︸                                      ︷︷                                      ︸

1̄

‖�‖2

Γ3 = _min(Λ)‖�‖2 (C.12)

e = # ‖�‖

Recall
:IX1

:IX2
|j2 |

(:IX2
H4)2 + 1 − :IX1

:IX2
j2

<
|j2 |
�4

(C.13)

for |j2 | ≤
1

:IX1
:IX2

. Eq. (C.5) can thus be rewritten as

‖A (C,�)‖ ≤



:IX1
:IX2
|[̄ | |j2 |

�4
+ |[̄ |

0
0
0
0

ℎ2(E1, [̄, l) + 14D2


≤ (

:IX1
:IX2

ō

�4
+ 1)‖�‖

The right-hand side of (3.63) is given by

\Γ3(Γ−1
2 (Γ1(')))
e

=
_min(Λ)

#

√
0̄

1̄
\' (C.14)

The derivative of +1 along the trajectories of (C.1) satisfies

¤+1(C,�) =
m+1
m�

&(�) + m+1
m�

A (�, C)

≤ − _min(Λ)‖�‖2 + i# ‖�‖

≤ − (1 − \)_min(Λ)‖�‖2 − \_min(Λ)‖�‖2 + i# ‖�‖

≤ − (1 − \)_min(Λ)‖�‖2 ∀ ‖�‖ ≥
i#

\_min(Λ)

(C.15)
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The solution � of the perturbed system will be ultimately bounded with the bound given by

(3.110).
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