s w iu o id ih i&mm r i ■■ .fg 1■— 1 'on N oiivonand 333930 V m T t y f ™ ' )' i i , yf 4 1- ? / 5 w .--a / '^ n w r n r im B \h 1 h . mw m m rn m m o im m ff 7/ W .• ■V / / / IL n Hi 31111 AN APPROACH TO THE DISINFECTANT MENSURATION OF PEN ETRA BILITY By M A NLEY A MANDEL THESIS Su bmi tte d , to t h e S c h o o l of G r a d u a t e S t u d ie s of M i c h i g a n S t a t e C o l l e g e of A g r i c u l t u r e an d A p p li e d S c ie n c e in p a r t i a l f u l f i l l m e n t of the r e q u i r e m e n t s f o r the d e g r e e of DOCTOR OF PHILOSOPHY D e p a r t m e n t of B a c t e r i o l o g y 1952 To m y M o t h e r and F a t h e r ACKNOWLEDGMENTS I extend my m o s t sin c e re M allm ann. H is guid ance work m ad e the gratitude to P r o f e s s o r W. L. and c o u n s e l d u r in g the c o u r s e of t h i s s u c c e s s f u l c o m p l e t i o n of the w o r k p o s s i b l e . e n c o u r a g e m e n t a n d p r o v i s i o n of i d e a s , were assistance His and m a te r ie l invaluable. The a u th o r w ish e s D elap p e f o r h i s p a t i e n c e problem s of t h i s to e x p r e s s d u r in g n u m e r o u s discussions of the m anuscript. of P r o f e s s o r H. J . I am m y a p p r e c i a t i o n of the e f f o r t s S t a f s e t h in the c o r r e c t i o n of th is i n d e b t e d to M r . of e q u i p m e n t ; nations; b u m in ; to M r . I. P . e x a m i n e d h e r e i n and f o r h is a i d in the p r e p a r a t i o n I a l s o w i s h to e x p r e s s item s his gratitu d e to M r . I. L . D a h l j e l m f o r the us e of m a n y R. W. G r i m e s f o r n i t r o g e n d e t e r m i ­ to D r . K. B. M c C a ll f o r a n d to M r . m anuscript. sam ples of h u m a n serum al­ E. J . S w a r t h o u t f o r t e c h n i c a l a s s i s t a n c e . I w i s h to e x t e n d m y a p p r e c i a t i o n to the A l u m n i of M i c h ­ i g an S t at e C o l l e g e f o r t h e i r f i n a n c i a l a id t h r o u g h the MSC F un d. iv In f a i r n e s s to a l l who have a id e d m e , l e t it be u n d e r ­ st o o d t h a t a n y e r r o r s t h o s e of the a u t h o r . of o m i s s i o n o r c o m m i s s i o n a r e entirely M a n le y M andel c a n d i d a te f o r the d e g r e e of D o c to r of P h i lo s o p h y F i n a l e x a m i n a t i o n , M a r c h 24, D issertation: 1952 An A p p r o a c h to the M e n s u r a t i o n of D is i n f e c ta n t Penetrability O u tlin e of St u d i e s M a jo r M i n or subject: subject: Bacteriology B iochem istry B iographical Item s Born, July 10, 1923, in P h i l a d e l p h i a , P e n n s y l v a n i a U n d e r g r a d u a t e S t u d i e s , B r o o k ly n C olle g e , 1939-43 G r a d u a t e S t u d i e s , M i ch ig an State C o lle g e , U n i v e r s i t y of C a l i f o r n i a , 1948-50 1947, Experience: 1950-52; L a b o r a t o r y a s s i s t a n t a t B r o o k ly n C olleg e , 1946-47; G u e s t I n v e s t i g a t o r at H a s k in s L a b ­ o r a t o r i e s , 1946, 1947-48; T e a ch in g A s s i s t a n t a t U n i v e r s i t y of C a l i f o r n i a a t Dav is, 1948-50; R e s e a r c h F e l l o w a t M ic h ig a n State Colle ge , 1950-52. M e m b e r of S o c i e t y of A m e r i c a n B a c t e r i o l o g i s t s , Societ y of the S i g m a Xi, C a l i f o r n i a A c a d e m y of S c i e n c e s TABLE OF CONTENTS Page I N T R O D U C T I O N ......................................................................... HISTORICAL REVIEW 1 .......................................................................... 10 The D e v e l o p m e n t of M ethod s f o r M e a s u r i n g the P e n e t r a t i v e P o w e r s of D i s i n f e c t a n t s .............................. C o l l o i d a l I o d i n e ......................................................................... M A TERIALS AND 10 19 M E T H O D S ........................................................... 26 The I n h i b i t i o n of S p o r u l a ti o n of C o c c id ia l O o c y s t s ........................................................................................................ The "P enetube" T e c h n ic . . . . . . . . . . 28 The D i s i n f e c t i o n of C h ick e n F e c e s .................................... Special V e s s e l s Three AND 33 C om partm ent T e c h n i c s ................................................................................................. EXPERIMENTAL 26 R E S U L T S .................................................... E x p e r i m e n t s U s i n g O o c y s t s of I£.t e n e l l a E x p e r i m e n t s wi th the " P e n e t u b e " T e c h n ic . . . . . . 34 36 36 . 37 I n d i c a t o r o r g a n i s m s ................................................................... 37 The e f f e c t of pH v a r i a t i o n .................................................. 39 The e f f e c t of tem perature 41 v a r i a t i o n ............................ Vll Page T h e e f f e c t of v a r i a t i o n of d i s i n f e c t a n t concentration ............................................................................ T he v a r i a t i o n of s t a t i o n a r y p h a s e The rate E xperim ents . 48 of d i f f u s i o n .................................................................... 52 o n the com ponents . 44 D i s i n f e c t i o n of C h i c k e n F e c e s ................................................................................................ T h e v a r i a t i o n of d i s i n f e c t a n t c o n c e n t r a t i o n The rate of d i s i n f e c t i o n of c h i c k e n f e c e s The ch a n g e s 53 . . 53 . . 58 in th e b a c t e r i a l f l o r a of the f e c e s following d is in fe c tio n . . . . . . . 61 D I S C U S S I O N ................................................................................................ 63 The M e a s u r e m e n t of P e n e t r a b i l i t y ........................... 63 T e c h n i c .......................................................... 66 The "P enetub e" The D isinfection P r o c e s s a s A f f e c t e d by P e n e t r a b i l i t y .................................................................................. T he P e n e t r a t i v e P o w e r of C o llo id a l Iodine . 70 . . 79 S U M M A R Y .......................................................................................... B I B L I O G R A P H Y .......................................................................................................... 84 INTRO DU CTION L o g ic is a n i n t e l l e c t u a l t r e a d ­ m i l l w h ic h t a k e s the m i n d r o u n d a n d r o u n d in the s a m e c o u r s e , p e r p e t u a l l y r e s t r a i n i n g it f r o m n e w a v e n u e s of a d v e n t u r e , a nd leading it now here. R o b e r t C. M iller In t h e e v a l u a t i o n of s u b s t a n c e s u s e d f o r o r for disinfection p r o c e s s e s , a l a r g e n u m b e r of t e s t i n g p r o c e d u r e s h av e b e e n d e v e l o p e d in the p a s t h a lf c e n t u r y . developm ents i s b e y o n d the say that m ethods recom m ended A r e v i e w of s u c h s c o p e of t h i s e f f o r t ; su ff ic e i t to h a v e b e e n d e v i s e d w hic h a r e a d e q u a t e f o r the d e t e r m i n a t i o n of the e f f i c a c y of a c o m p o u n d in k il li n g t e s t o rganism s s u s p e n d e d in an a q u e o u s m e d i u m o r lim ite d conditions. form The u s e of s u c h t e s t s under special w ill i m m e d i a t e l y i n ­ the i n v e s t i g a t o r if a c o m p o u n d is w ith o u t v a lu e infectant, as a d is ­ i n a s m u c h a s i t m a y be a s s u m e d t h a t a c o m p o u n d f a i l ­ ing to k i l l m i c r o o r g a n i s m s u n d e r the of the P h e n o l C o e f f i c i e n t t e s t (a s p e c t e d to b e a s a t i s f a c t o r y rath er id e a liz e d conditio ns an e x a m p le ) c a n n o t be e x ­ d i s i n f e c t a n t u n d e r the m o r e r c o n d i t i o n s o b t a i n i n g in p r a c t i c a l s i t u a t i o n s . rigorous 2 Com pounds w hich have been sho w n to be of h ig h g e r m i ­ c i d a l a c t i v i t y b y t h e P h e n o l C o e f f i c i e n t t e s t m a y o f te n be d e m ­ o n s t r a t e d to b e wh en o r g a n i c T h is ineffective compounds a re illustrates stance o r of c o n s i d e r a b l y l e s s e n e d a c t i v i t y a d d e d to the t e s t s y s t e m t h e f a c t t h a t the v a l u e of a d i s i n f e c t i n g c a n n o t b e p r e d i c t e d by one t e s t a l o n e . (3) r e c o m m e n d t h a t a "p ro file” made em ploying an a r r a y dem onstrate terio sta sis, organic m irable, a g e rm ic id e 's its m atter (1, 2). This perform ance tissue and its p e n e tra b ility .* a l t h o u g h i t m a y be c l u s i o n of t i s s u e S a ll e a n d C a t l i n e v a l u a t i o n of a d i s i n f e c t a n t be of t e s t s . s p e e d of a c t i o n , sub­ array is d e s i g n e d to in the a b s e n c e toxicity, This of b a c - i n a c t i v a t i o n by v ie w p o in t i s a d ­ s o m e w h a t e x a g g e r a t e d by th e i n ­ toxicity te s ts (a p r o t e a n t a s k in e x e c u t i o n !) . The c h i e f c u r r e n t t r e n d in c h e m i c a l d i s i n f e c t i o n is t o w a r d e n ­ vironm ental sanitation (4) a n d the c l i n i c a l u s e of d i s i n f e c t a n t s f o r wound t r e a t m e n t h a s l a r g e l y b e e n s u lf a d r u g s a nd the a n t i b i o t i c s (4), s u p p l a n t e d by u s e It i s , how ever, of the the l a s t * " P e n e t r a b i l i t y " is u s e d in the a n t i t h e t i c a l s e n s e of the d i c t i o n a r y d e f i n i t i o n a n d , a s s u c h , i s e q u i v a l e n t in m e a n i n g to " t h e p e n e t r a t i v e p o w e r of a s u b s t a n c e " o r " t h e d i f f u s i b i l i t y of a s u b s t a n c e . " T h i s d e f i n i t i o n is w a r r a n t e d by r e a s o n of usage and co n v en ien ce. 3 criterion t h a t of p e n e t r a b i l i t y upon w hich I w ish to p lac e m ajor em phasis. P re s e n t practices in s a n it a ti o n e m p h a s i z e the i m p o r t a n c e of the r i g o r o u s c l e a n i n g of s u r f a c e s p r i o r to any a t t e m p t s d i s in f e c t io n . at T h i s e m p h a s i s is fully j u s t i f i e d and the following r e m a r k s p e r t a i n only to the p r o v i s i o n of an ad eq ua te m a r g i n of s a f et y in the d i s i n f e c t i o n of the r e s i d u a l d e b r i s on s u r f a c e s s u b j e c t e d to t r e a t m e n t with c h e m i c a l d i s i n f e c t a n t s a f t e r ad e qu a t e c l ean i n g of the surface. It s ho u ld be o bv io us th a t u n l e s s a c h e m i c a l d i s i n f e c t a n t is ca p ab l e of p e n e t r a t i n g an o r g a n i c o r p r o t e i n a c e o u s m a t r i x to r e a c h o r g a n i s m s e m b e d d e d t h e r e i n , it will be of doubtful value a s an e n v i r o n m e n t a l o r c l i n i c a l d i s i n f e c t a n t in situ a ti o n s where o r g a n is m s are so p r o t e c t e d . F o r th o se d i s i n f e c t a n t s whose m od e of a c t i o n in killing m i c r o b e s is o t h e r than by p u r e l y surface a c t i v i t y p h e n o m e n a , the c e l l wall and m e m b r a n e of the o r g a n i s m to be k i l l e d a c t s a s a b a r r i e r to the p e n e t r a t i o n of the d i s i n f e c t a n t , a nd it is a p p a r e n t th a t s u c h com po un ds a s do k ill m u s t have the p o w e r to p e n e t r a t e or le s s e r th e s e b a r r i e r s to a g r e a t e r e x t e n t in a d d i ti on to p o s s e s s i n g c h a r a c t e r i s t i c s c a u s e t h e m to be l e t h a l once within the c y t o p l a s m . which Speed of 4 d is i n f e c ti o n t e s t s two e f f e c t s ; c a n give us in f o r m a t i o n c o n c e r n in g the s u m of the r a t e of d is i n f e c ti o n will be a function of the e x ­ t r i n s i c m o b i l i t y of the d i s i n f e c t a n t a c r o s s the c e ll wall o r m e m ­ brane b a r r i e r and of the i n t r i n s i c r a t e of r e a c t i o n of the d i s i n ­ f e c ta n t with s u c h c e n t e r s of a c ti v it y within the o r g a n i s m a s m a y be r e s p o n s i b l e f o r th e u l t i m a t e killing a c tio n . F a i l u r e to give a high r a t e of k i l l m a y , of c o u r s e , be a t t r i b u t a b l e to the influe nc e of e i t h e r f a c t o r in the p a r t i c u l a r t e s t s y s t e m . It is c e r t a i n that, in a s p e e d of d i s i n f e c t i o n t r i a l , if a com pound c a n a c c o m ­ p li s h the d e s t r u c t i o n of life of the o r g a n i s m s in the r e a c t i o n v e s s e l in a v e r y s h o r t t i m e i n t e r v a l , then the t im e n e c e s s a r y f o r the c o m p o u n d to have p e n e t r a t e d the o r g a n i s m s in su ffi c i e n t c o n c e n t r a t i o n to be l e t h a l in s u b s e q u e n t r e a c t i o n s with the c yt o­ p l a s m of the o r g a n i s m s m u s t be s o m e w h a t l e s s than the t ota l ti m e inv olv e d. T h i s t i m e f o r p e n e t r a t i o n of the c o m pou n d to the ad e q u a t e c o n c e n t r a t i o n c a n n o t be g r e a t e r th a n the to ta l t i m e i n t e r v a l i n v o l v e d in the t e s t . If t h i s t i m e i n t e r v a l is a c c e p t e d a s the m a x i m u m v a lu e f o r p e n e t r a t i o n to have o c c u r r e d within, th en s p e e d of d i s i n f e c t i o n t e s t s ca n be c o n s i d e r e d to m e a s u r e the o v e r — a l l e f f i c a c y of a c o m po und with the p e n e t r a b i l i t y of the co m p o u n d c o n s i d e r e d a s one of the l i m i t a t i o n s of the r a t e of 5 kill. T h e s e t e s t s , h o w e v e r , ca nno t divulge i n f o r m a tio n about the e x a c t r a t e of p e n e t r a t i o n and, thus, w he re p e n e t r a b i l i t y alone is to be m e a s u r e d , o t h e r m e a n s of m e a s u r i n g p e n e t r a t i o n of c o l ­ loid b a r r i e r s m u s t be r e s o r t e d to. A t t h i s po int, the t e r m p e n e t r a b i l i t y m u s t be defined and I cho ose to do so a s f o l lo w s. The p e n e t r a b i l i t y of a c h e m ic a l d i s in f e c t a n t is the a b i l i t y of a d is in f e c t a n t a t som e o r ig in a l c o n ­ c e n t r a t i o n in the e n v i r o n m e n t to e n t e r a co lloid b a r r i e r and r e ­ sult in a c o n c e n t r a t i o n s u f f ic ie n t to kill o r g a n i s m s at this site in so m e m i n i m u m t i m e i n t e r v a l . T h is m ay be a l t e r n a t e l y t ake n to m ea n th a t p e n e t r a b i l i t y is a fu nction of the r a t e d i s in f e c ta n t wi ll t r a v e r s e a l i n e a r d is ta n c e at which the th ro u g h a colloid a l b a r r i e r w hic h m a y o r m a y not have the c a p a c ity to e n t e r into c h e m i c a l o r p h y s i c a l c o m b in a tio n with the p e n e t r a t i n g s u b s ta n c e . This i s c l e a r l y a s t a t e m e n t of the r a t e of diffusion of a su b ­ s t an ce w ith the a d d e d q u a l ific atio n th a t the s t a t i o n a r y p h a se of the s y s t e m m a y e n t e r into c h e m i c a l o r p h y s ic a l co m b in a tio n with the m i g r a t i n g substance. It then follows that when one c o n s i d e r s p e n e t r a b i l i t y , one m u s t c o n s i d e r the n a t u r e of both the diffusing s u b s t a n c e a n d the s t a t i o n a r y p h a s e , the c o n c e n t r a ­ tion of the diffusing s u b s t a n c e and of the e l e m e n t s of the 6 stationary phase s u s c e p t i b l e of c o m b in a tio n with this substance. The co n d i t i o n s of t e m p e r a t u r e , p r e s s u r e , pH (due to the effe ct on ionic s p e c i e s of the c o m p o n e n ts of both p ha ses ) and the p r e s e n c e of a d d i t i o n a l ions p r e s e n t in e i t h e r ph ase will l i k e ­ w ise a f f ec t the r a t e a nd e x te n t of the p e n e t r a t i o n . If a d e q u a t e i n f o r m a t i o n c o n c e rn in g the diffusion c o e f fi ­ c ie n t s of s u b s t a n c e s u s e d as d is in f e c ta n ts v e r s u s the a p p r o p r i a t e s t a t i o n a r y p h a s e s l i k e l y to be e n c o u n t e r e d in a p p lic a tio n of d i s ­ i n f e c tan t s w e r e a v a i l a b l e , it would be a m a t t e r of s im p le c a l ­ cu latio n to p r e d i c t p e n e t r a b i l i t y . U n fo rtu n a tel y , this conditi on does n o t e x i s t f o r a n y c o m b in a tio n of e i t h e r p r a c t i c a l o r t h e ­ o r e t i c a l i n t e r e s t , a s a b r i e f e x a m i n a ti o n of the I n te r n a t io n a l C ritical Tables (5) wi ll d i s c l o s e . Therefore, e m p i r i c a l m e t hod s f o r the d e t e r m i n a t i o n of p e n e t r a b i l i t y m u s t be em ploy ed. Many e m p i r i c a l t e s t s (to be d e s c r i b e d m o r e c o m p l e t e l y in the s u c c e e d i n g se ctio n) have b e e n d e v i s e d f o r the o s t e n s i b l e d e t e r m i n a t i o n of p e n e t r a b i l i t y employing tionary p h ases. 1' n o n r e p r o d u c i b l e 11 s t a ­ An e x a m p le of one suc h tech nic is a m od i fi e d a g a r cup p r o c e d u r e w h e r e i n the d is in f e c t a n t is s e a le d in a sac m ad e of a l e n g t h of c h i c k e n in te s tin e tie d at the a m p u ta te d ends and the whole e m b e d d e d in a b a c t e r i a - s e e d e d n u t r i e n t a g a r 7 p l a t e , d i f f u s i o n of the the i n t e s t i n e d i s i n f e c t a n t th r o u g h the t i s s u e l a y e r s r e s u l t i n g in a g r e a t e r o r l e s s e r of zone of in h ib i t i o n of the b a c t e r i a l g r o w t h in the surrounding m edium . Such t e s t s , e m p lo y i n g t i s s u e s a s b a r r i e r s to the p e n e t r a t i o n of a d i s i n f e c ­ t a n t , f a i l in s i m p l i c i t y of e x e c u t i o n and c o m p a r a t i v e va lue b e ­ c a u s e of th e e s s e n t i a l n o n r e p r o d u c i b i l i t y of the T h is type of t e s t i s i n a d e q u a t e in y e t a n o t h e r i n v e s t i g a t o r ‘ s c h o i c e of p r i m a r y stationary phase. r e s p e c t , a s the stationary phases is d i s t i n c t l y l i m i t e d and e x p e r i m e n t a l v a r i a t i o n of the c o n c e n t r a t i o n and c o n ­ d itio n of t h i s p h a s e i s n o t f l e x i b l e . If, t h e n , a t i s s u e b a r r i e r be o m i t t e d and only a b a c t e r i a seed ed n u t r i e n t a g a r gel p h a s e u tiliz e d , a s e r io u s rem ains in t h a t g r o w t h of the o r g a n i s m s d ic a to r s is p r o c e e d in g in a l o g a r i t h m i c o b je c tio n u s e d a s b io lo g i c a l i n ­ o r d e r while the diffu­ sio n of th e d i s i n f e c t a n t c a n n o t e x c e e d t h a t of a f i r s t o r d e r a c ti o n r a t e . Hence, still re­ the a d v a n c in g g e r m i c i d a l c o n c e n t r a t i o n of the d i s i n f e c t a n t e n c o u n t e r s i n c r e a s i n g l y g r e a t e r n u m b e r s t e r i a in v a r y i n g p h y s i o l o g i c a l s t a t e s . when d i f f e r e n t o r g a n i s m s are at identical c o n cen tratio n s. of b a c ­ T h is f a c t o r is m o s t e v i d e n t t e s t e d a g a i n s t the The d if f e r in g s a m e c o m po un d d i a m e t e r s of the z on e s of in h ib i ti o n o b v i o u s l y c a n n o t be due to a v a r y in g diffusion r a t e 8 (a c o n s t a n t f o r i d e n t i c a l c o n d it io n s ) , a p p e a r to b e c a u s e d by d if f e r in g to the c o m p o u n d . s u p e r f i c i a l l y th e n th is would s u s c e p t i b i l i t i e s of the o r g a n i s m s A c t u a l l y the p h e n o m e n o n m a y be m o s t e n t i r e l y to t h e d i f f e r e n t g r o w t h r a t e s of the o r g a n i s m s and p a r t l y to d i f f e r e n t s u s c e p t i b i l i t i e s of the o r g a n i s m s f e c t a n t. This c r itic is m to d e t e r m i n e sh o u ld l i k e w i s e the a n t i b i o t i c related al­ to the d i s i n ­ e x te n d to t h o s e s p e c t r a by the same attem pts rationale. A f u r t h e r l i m i t a t i o n of t h i s m e t h o d i s t h a t the i n v e s t i g a t i o n is l i m i t e d , by the r e q u i r e m e n t t h a t g r o w t h of the i n d i c a t o r o r g a n ­ ism m u s t take pla c e in the su sp e n d in g m enstruum , to the p h y s i ­ o l o g ic a l r a n g e of t e m p e r a t u r e , pH a nd s a l t c o n c e n t r a t i o n , a nd the e l i m i n a t i o n of b a c t e r i o s t a s i s is qu ite d if f ic u lt when not i m ­ possible. T he p r o b l e m t h u s p r e s e n t e d is to ev olve for m e a s u r i n g the r a t e s in r e p r o d u c i b l e s y s t e m s of the e x p e r i m e n t e r Ls d e s ig n , to h a v e a v a i l a b l e te ch ni c of d iff u si o n of d i s i n f e c t a n t c o m p o u n d s none of the a b o v e c r i t i c i s m s p e r t a i n . sirable some w here F u r t h e r , it would be d e ­ a s e c o n d te c h n ic u ti li z in g a c o m p l e t e l y d i f f e r e n t m o d u s o p e r a n d i w h e r e b y c h e c k in g of r e s u l t s cou l d be pos s i b l e . 9 T h is h a s b e e n the a u t h o r ' s ob je c tive , but the d e g r e e to w hich he h a s b e e n s u c c e s s f u l in attaining this end m u s t r e s t upon the a c c e p t a n c e a nd e x te n s io n of h is l a b o r s by independe nt inve s t i g a t o r s . HISTORICAL REVIEW The D e v e l o p m e n t of Methods f o r M e a s u r i n g the P e n e t r a t i v e P o w e r s of D i s in f e c ta n ts The m e t h o d o l o g i e s w hich have be e n de v elo p ed f o r m e a ­ su r in g the p e n e t r a t i v e p o w e r s of d i s i n f e c t a n t s m ay be c o n s i d e r e d u n d e r f o u r h e a d i n g s , o r g a n i z e d a s to the type of b a r r i e r p r i ­ m a r i l y i n v o l v e d in the t e s t . These c la s s e s are: (1) th o s e in which the o r g a n i s m s to be k il le d a r e p r o t e c t e d by a b a r r i e r the f o r m of a d h e r e n t p a r t i c l e s of o r g a n ic m a t t e r ; which the b a r r i e r sue); is a " n a t u r a l 11 t i s s u e (3) t h o s e in which the b a r r i e r in (2) thos e in (e.g., an e p i d e r m a l t i s ­ is an a r t i f i c i a l c o lloi d a l m a t r i x s u c h a s an a g a r i f i e d n u t r i e n t solution; and (4) tho s e in w hich the c e l l w a l l o r m e m b r a n e of a p a r t i c u l a r o r g a n i s m serves a s the only b a r r i e r to e n t r a n c e of the d is in f e c t a n t. Un d e r the f i r s t heading, this m ethod olog y was in tr o d u c e d by V i n c e n t (6) in 1897. disinfecta nts T his i n v e s t i g a t o r stu d ie d the act ion of in u s e a t t h a t tim e upon f e c a l m a t e r i a l and d e m o n ­ s t r a t e d t h a t c h e m i c a l a g e n ts w e r e l a r g e l y ineffective in the d i s ­ i n f ect io n of s u c h m a t t e r . The e n c l o s u r e of b a c t e r i a in the o r ­ g an ic m a t t e r of the f e c e s s e r v e d as an effective p r o t e c t i v e d evice a g a i n s t the a c t i o n of the c h e m i c a l a ge nts em ployed. This s a m e m eth o do lo g y was l a t e r em ploye d by Mallm ann and Ch a n dl e r (7) in an i n v e s t i g a t i o n d e s ign ed to find a di si n fe c ta n t which could d e s t r o y all the b a c t e r i a p r e s e n t in f e c e s while not a d v e r s e l y a f­ fecting c o c c i d i a . In th is study, it was r e c o g n iz e d that the finely d ivided p a r t i c l e s of the a vian f e c e s t r a t i o n of the d i s i n f e c t a n t . s e r v e d as a b a r r i e r to p e n e ­ As a r e s u l t a n t of this e x p e r im e n t a l p r o c e d u r e , i t was found t h a t Iodine S u sp e n so id (Merck) was the only d i s i n f e c t a n t of the many th a t w e r e t e s t e d which would ra pidly s t e r i l i z e the a v i a n f e c e s u n d e r the t e s t conditions. A high d e ­ g r e e of p e n e t r a b i l i t y was a s c r i b e d to this p r e p a r a t i o n , about which m o r e will be s a i d below. Jo h n s (8) d e s c r i b e d a m eth o d f o r d e te r m in in g sanitiz ing e f f i c ie n c ie s of c o m p ou nd s which em ploye d an o r g a n i s m - s e e d e d sk i m m ilk d r i e d in a f i l m on s t e r i l e g l a s s s l id e s . These p r e ­ p a r e d s l i d e s w e r e d ipp ed in the solution to be te s t e d , r i n s e d , p la c e d in s t e r i l e P e t r i d i s h e s and c o v e r e d with a n u t r i e n t a g a r . The r e s u l t i n g d i mi n u t io n in n u m b e r s of colonies a p p e ar in g ex­ p r e s s e d the e f f i c i e n c y of the t e s t compound in p e n e tr a ti n g the m ilk so lid p a r t i c l e s and in killing the e m be dde d o r g a n i s m s . 12 The s e c o n d c a t e g o r y of m e th o d s, w here n a t u r a l b a r r i e r s have b e e n u s e d in d e m o n s tr a ti n g p e n e t r a b i l i t y of d isin fe c ta n t s , m ain ly h a s b e e n u s e d f o r the study of com pounds design ed f or use a s a n t i s e p t i c s in p r e s u r g i c a l p r e p a r a t i o n s . Seelig and Gould (9) i m p l a n t e d c a p s u l e s containing iodine o r alcohol in living a n i m a l sk in t i s s u e to d e t e r m i n e the o sm o tic b e h a v io r of th ese co m p o u n d s in p e n e t r a t in g the living t i s s u e . N y iri and Ja n n itt e (10) p l a c e d v a r i o u s iodine p r e p a r a t i o n s on the sound skin of dogs and r a b b i t s to d e m o n s t r a t e the p e n e tr a ti o n of the skin by iodine. Only i o d i d e -c o n tain in g p r e p a r a t i o n s a p p e a r e d to p e n e t r a t e to a ny d e g r e e . K a r n s (11) and K a r n s , C r e t c h e r and Beal (12) u s e d guin ea pig skin as the b a r r i e r to d e m o n s tr a te th at i o d id e - c o n t a i n i n g and aqueous p r e p a r a t i o n s of iodine we re s u p e r i o r in p e n e t r a b i l i t y to t i n c t u r e s and non iodide-con tainin g p r e p a r a t i o n s of iodin e. E s s e n t i a l l y the s a m e r e s u l t s w ere ob­ tai n ed by B i s k i n d (13) e mploying fro g e p i d e r m i s . A n d e rso n and M al lm an n (14) s t u d i e d the p e n e tr a ti o n of living r a b b it skin, u s ­ ing a m o d i f ic a t i o n of the ti s s u e i r r i t a n t d e te r m in a t io n technic d e v ise d by E t c h e l l s and F a b ia n (15), and the p e n e tr a ti o n of r a b b i t skin r e m o v e d f r o m sacrificed anim als. The ' ‘d e a d 11 skin in the l a t t e r t e s t was e m p l o y e d as a b a r r i e r betw een the t e s t disi n fe c t a n t and a sali n e s u s p e n s i o n of b a c t e r i a . The r a t e of b a c t e r i a l death in the l a t t e r i n s t a n c e c o r r e l a t e d with the r e s u l t s obtained in the t e s t s emplo y in g the " l i v i n g " skin and with the a fo re m e n tio n e d r e s u l t s of K a r n s e t al. on iodine p r e p a r a t i o n s . In the sa m e p ub licatio n, A n d e r s o n and M allm an n ex am in ed the s a m e s e r i e s of d isin f e c t i n g a g e n t s f o r t h e i r ability to p e n e t r a t e e x c ise d adult ch icken c e c a . The w a s h e d c e c a w e re filled with the compound to be t e s te d , the o pe n end tie d off with t h r e a d and e a c h ce c u m su sp en d ed in a b r o t h c u l t u r e of the t e s t o r g a n i s m . The rap i di t y with which d e a t h of the o r g a n i s m s in the c u lt u r e m e d iu m en ­ sued i n d i c a t e d the r a t e of p e n e t r a t i o n throug h the t i s s u e of the ce cu m by the d i s i n f e c t a n t . Again, as in the p r e v i o u s ly cited p u b li c a ti on s , the i o d i d e - c o n tain in g iodine p r e p a r a t i o n was su p e ­ r i o r to o t h e r iodine p r e p a r a t i o n s , and iodine in the c o n c e n t r a ­ tion em p lo y e d s u p e r i o r to all o th e r d is in f e c ta n ts studied. The t h i r d c l a s s of m etho dolog ies can be c o n s i d e r e d to be an i n v e r s i o n of the c l a s s i c a l auxa nog raph ic te c h n ic s deve l ­ oped by B e i j e r i n c k (16) in 1889 fo r the study of n u tr iti o n a l r e s p o n s e s of m i c r o b e s to o rg a n ic com pounds. In an auxanogra phic t ech n i c, a s the n a m e i m p l i e s , the t e s t w r i t e s its own a n s w e r a p u tative i n h i b i t o r of b a c t e r i a l growth p la c e d on a b a c t e r i a —se e de d 14 n u t r i e n t a g a r p l a t e i n d i c a t e s its activ ity by the p r e s e n c e o r a b­ sence of a zone of inhibition at the site of p la c e m e n t. In this m an n e r , K e n d a l l and E d w a r d s (17) p r e p a r e d a g a r c y li n d e r s s e ed ed with b a c t e r i a . A f t e r c o n ta c t with a solution of a d i s i n ­ f ectan t a c o r e was r e m o v e d and the ex te nt of inhibition of grow t h in t h is c o r e r e p r e s e n t e d the p e n e t r a ti o n of the d isinfe ctan t. In 1918, C a r n o t and Dumon t (18) a s c e r t a i n e d diffusion of d i s in f e c ­ tants in the h o r i z o n t a l plane by p o uring se e d e d a g a r p la te s and placing the d i s i n f e c t a n t in a p e r f o r a t e d g l a s s cup e m be dd ed in the c e n t e r of the p l a t e . The p e n e t r a b i l i t y of the dis infe cta n t was r e p r e s e n t e d a s the d i a m e t e r of the su b se qu e n t zone of in­ hibition. Th is t e c h n i c , with m in o r m odification, was l a t e r r e c ­ o m m en d e d by Ruehle and B r e w e r (19) fo r d e te r m in in g the c o m ­ p a r a t i v e p e n e t r a b i l i t y of d is in f e c ta n ts and a n t i s e p t i c s . This t e s t is g e n e r a l l y r e f e r r e d to as the " F D A a g a r - c u p p r o c e d u r e " and i s p r o b a b l y the m o s t widely u s e d t e s t f o r p e n e tr a ti v e po w e rs of d i s i n f e c t a n t s in th o se r a r e in s ta n c e s when p e n e tr a b i li ty is c o n s i d e r e d in the e v a l u a t i on of a d isin fe c tan t. pro ced u re has This testing s in c e b e e n ad a p te d f o r s p e c i a li z e d app lica tio n s . A n d e r so n and M a l l m a n n (14) d e m o n s t r a t e d that volatile sub­ s ta n c e s c o ul d not be a s s a y e d by the FDA p r o c e d u r e b e c a u s e of 15 d i st il lati o n of the d i s i n f e c ta n t f r o m the c e n t e r cup to the su rf a c e of the p l a t e wi th c o n s e q u e n t e r r o n e o u s i m p r e s s i o n s of high a c ­ tivity. T h i s o b j e c t i o n was m e t by co v erin g the a g a r s u rf a c e with a l a y e r of p a r a f f i n . To a c c o m p l i s h the m e a s u r e m e n t of the r a t e s of d iffusio n of iodine p r e p a r a t i o n s , the b a c t e r i a in the a g a r w e r e r e p l a c e d with s t a r c h - i o d i d e solution and the ex te nt of the blue zone wa s r e c o r d e d a t f r e q u e n t i n t e r v a l s . organism s were Where s e e d e d in the a g a r , and a s e r i e s of disinfe ct ing agents t e s t e d by t h i s a d a p te d te c h n ic , the r a t e s of diffusion w e re not in t h e m s e l v e s d e t e r m i n a b l e , only the fin a l e x te n t of the zones of in hibition w e r e recorded. by A n d e r s o n a nd M a l l m a n n , This technic was f u r t h e r m od ifie d so th a t the d is in f e c ta n t was e n c l os e d in a sac ma d e of a s e c t i o n of chicken in te st in e and the l a t t e r b u r i e d in the n u t r i e n t a g a r . The p r e s e n c e of a zone of inhi bi ­ tion about the s e c t i o n of in te s tin e ind ica ted p e n e t r a t i o n of the t i s s u e , the a u t h o r s d i s c l a i m in g any im p o r ta n c e a s c r i b a b l e to the size of the zone of inh ibition. This m ethod, which has b e e n d i s ­ c u s s e d a t l e n g t h in the I ntrodu ction, is a c tu a lly m o r e c lo se l y r e l a t e d to the s e c o n d g r o up of m e tho do logies than to this t h i r d group, in w h ic h i t h a s b e e n included b e c a u s e of its develop­ m en t al h i s t o r y . 16 The f o u r t h c a t e g o r y of m ethod olog ical a p p r o a c h e s to the p r o b l e m of p e n e t r a b i l i t y c o m p r i s e s those m ethod s in which so me p a r t i c u l a r a m in ed . usually l a r g e m i c r o o r g a n i s m has been e x­ In 1924, C h a n d le r (20) r e p o r t e d that aqueous of iodine w e r e of high v e r m i c i d a l activity. solutions This a u th o r st a t e d his b e lie f t h a t n e m a t o d e eggs and e n c ap s u late l a r v a e w ere re­ s i s t a n t to m o s t f o r m s of d i s in fe c ta n ts b e c a u s e th e s e d is i n f e c ­ tan ts . . i m m e d i a t e l y coagulate the album inous coatings of n em ato d e e g gs and l a r v a e fo rm in g , th e re b y , an im p e rv io u s m e m ­ b r a n e which p r e v e n t s the f u r t h e r p e n e t r a t i o n of the c h e m ic a l . . C h a n d le r b e l i e v e d t h a t iodine did not do this and thus was c a p ­ able of p e n e t r a t i n g the v ita ls of the o r g a n i s m s and cau sing t h e i r death. In 1930, K n a y s i (21, 23, 24, 25) and K naysi and Gordon (22) p u b l i s h e d a s e r i e s of p a p e r s dealing with the kinetic a s p e c t s of d is in f e c t i o n . K n a y s i and Gordon s u b s c r i b e d to the view that the d e a t h r a t e of b a c t e r i a obtained in stud ies on c h e m ic a l d i s ­ in fectio n was a f unc tion of the d is tr ib u ti o n of v a r ia ti o n in r e ­ s is t a n c e a mo n g the b a c t e r i a l population. T his view was at v a r i a n c e with t h o s e p r o po un de d by Chick (26) and by Rahn (27) who held the r a t e of d e ath to be an e x p r e s s i o n of the ra te of 17 c h e m i c a l c o m b i n a t i o n in m o n o m o le c u la r and p o ly m o le c u la r r e ­ a c t io n s . K n a y s i s t r e s s e d p e n e t r a b i l i t y as the lim iting f a c t o r in the r a t e of d e a t h and stated: 1‘If a poison is to kill . . . a cell, it m u s t f i r s t p e n e t r a t e the s y s t e m of m e m b r a n e s and come into c o n t a c t with the p r o t o p l a s m . 11 He c l a im e d to d e m o n s t r a t e , u sing S a c c h a r o m y c e s c e r e v i s i a e , that individual c e ll s v a r i e d in t h e i r p e n e t r a b i l i t y to iodine and that th e r e w e re a p p a r e n t r e ­ gions of the c e l l wall and m e m b r a n e s p o s s e s s i n g h ig h e r p e r m e ­ ab ility to iodine t han o t h e r a r e a s . K naysi a ls o d e m o n s t r a t e d t h at iodine was t a k e n up f r o m solution by y e a s t c e lls in a c c o r ­ dance with an a d s o r p t i o n i s o t h e r m . F i s h (28), in 1931, d e m o n s t r a t e d the e x t r e m e resistance of o o c y s t s of E i m e r i a t e n e ll a to p h y s ic a l and c h e m ic a l age nt s . A n d e r s o n and M a l l m a n n (14) a tt r i b u te d this high r e s i s t a n c e of the c o c c i d i a l o o c y s t s to the p r e s e n c e of a heavy c ell wall which a c t e d as a b a r r i e r to p e n e tr a ti o n of c h e m ic a l agents. in v e s t i g a t o r s t h e r e f o r e The s e us ed su s p e n si o n s of the c y s ts of E . t e n e l la f o r d e t e r m i n i n g the p e n e tr a ti v e power of c h e m ic al d i s ­ in f e c tan t s . The r a t e s of p e n e t r a ti o n of d isin fe c ta n ts w ere m e a ­ s u r e d by the p e r c e n t a g e inhibition of s p o ru la tio n of the ooc ys ts following e x p o s u r e to the d is in f e c ta n ts . They found an iodine 18 h y d r o so l to be the only su b sta n c e effective in killing the o o c y s t s and r e l a t e d t h is to a s u pposed high p e n e t r a ti v e power of the preparation. A n d e r s o n and M allm ann (14) a lso s e le c te d stro ng yl i d la r v a e a s o r g a n i s m s in f e c tan t s . s u i te d f o r o b se rv in g the p e n e tr a ti o n of d i s ­ This o r g a n i s m is p r o t e c t e d by a waxy cuticle and was shown to be r e s i s t a n t to the action of m o s t disin fe c ta n t s ex cep t the h a l o g e n s c h lo rin e and iodine. Chlorine was o b s e r v e d to d ig e s t the o u t e r c o v e rin g of the la r v a e and su bse qu en tly m o v e ­ m e n ts of the l a r v a e c e a s e d ; iodine c a u s e d a ra p id c e s s a t i o n of m o v e m e n t s of the l a r v a e , with no p r i o r digestion of the cu ti cle observed. A n d e r s o n and M a llm ann (14) a ls o d e s c r i b e d a speed of disinfection t e s t e mplo ying M ic r o c o c c u s pyogenes v a r . a u r e u s as the t e s t o r g a n i s m . This t e s t was a r a te of disinfe ction d e ­ t e r m i n a t i o n in the a b s e n c e of organic m a t t e r with sam plin g c on­ ducted in the s h o r t e s t p o s s ib le in t e r v a l s . The t e s t was r e p o r t e d to m e a s u r e p e n e t r a b i l i t y of d is in fe c ta n ts and gave s i m i l a r r e ­ su lts with the c o mp ou nd s t e s t e d as did the t e s t s employing c o c cid i al o o c y s t s and s t r o n g ylid l a r v a e . In 1947, M a l l m a n n (29) upon a d d r e s s in g the National A s ­ so c iati o n of I n s e c t i c i d e and Disinfectant M a n u f a c tu r e r s , stressed 19 the i m p o r t a n c e of a d i s i n f e c t a n t having the p r o p e r t y of p e n e t r a n c e into o r g a n i c b a r r i e r s and e m p h a s i z e d the n e g l e c t of this c h a r a c ­ t e r in the l a b o r a t o r y e v a l u a tio n of p r o s p e c t i v e d i s in f e c ta n ts . difficulty of p e r f o r m i n g s t a t e m e n t, The s u c h ev a lu atio n s was highlighted by his " A t p r e s e n t t h e r e a r e no good ro utine l a b o r a t o r y p r o c e d u r e s ( fo r d e t e r m i n i n g p e n e tr a b il it y ) th a t yie ld s a t i s f a c t o r y resu lts." Th is a u t h o r is in c o m p le te a c c o r d with M a llm a n n in t ha t r e s p e c t a nd would go so f a r as to s ta te th a t in his opinion t h e r e do not a p p e a r to be any r e s e a r c h p r o c e d u r e s f o r the d e ­ t e r m i n a t i o n of the p e n e t r a t i v e p o w e r s of d is in f e c t a n t s which have been e s t a b l i s h e d on a sound b a s i s . C o l lo ida l Iodine A m m a n (30), in 1910, o b s e r v e d th a t c e r t a i n solutions of iodine e x h i b i t e d a T y n d a l l effec t and thus concluded that s u s ­ pe n d ed iodine p a r t i c l e s of fine size could e x is t. B o r d i e r and Roy (31) o b t a i n e d a f a i r l y stab le h y d r o s o l of iodine in w a t e r by the d ilu t io n with w a t e r of a s a t u r a t e d alc o h o lic in the p r e s e n c e of g e l a t i n as a s t a b i l i z e r . solution of iodine In 1924, C ha nd le r (20) r e p o r t e d the p r e p a r a t i o n of a " h y p e r a c t i v e " aration. iodine p r e p ­ C h a n d l e r a nd M i l l e r (32) d e s c r i b e d the p r e p a r a t i o n 20 and p h y s i c a l p r o p e r t i e s of th is 1’h y p e r a c t i v e 11 iodine and r e d e s i g ­ n a t e d it a s Co l l o i d a l I odine. The p r e p a r a t i o n was m ad e by a c i d i ­ f i c a t io n with h y d r o c h l o r i c a c id of an o s te n s i b l e p oio dite a t 0 C in the p r e s e n c e s t a b il izin g a g e n t. p r e p a r a t i o n in fu ll . sodium iodohy- of gum a r a b i c as a p r o te c t i v e B e n n e tt (33) h as d e s c r i b e d the d e ta ils of T h i s c o llo id a l s u s p e n s i o n of iodine has b e en m a r k e t e d a s Iodine S u sp e n s o id (Merck) and as Iodine V e r ­ m i ci d e ( M e r c k ) . The c h ie f i n t e r e s t s in the use of C olloidal Iodine as a d i s i n f e c t a n t a nd a s a t h e r a p e u t i c a g e n t lie in th a t it c onta i ns n e i t h e r io d i d e s n o r a l c o h o ls and s t ill is a v a ila b le in c o n c e n t r a t e d f o r m , in t h a t it h a s b e e n shown to be of low toxicity, in i t s value a s a v e r m i f u g e , and in the f a c t th a t it is the only p r e p a r a t i o n to the a u t h o r ' s kno wle dg e f o r which the sp ec ific p r o p e r t y of high p enetrability has been claim ed. In 1924, C h a n d l e r (20) r e p o r t e d th a t " h y p e r a c t i v e " iodine in a c a s t o r o i l v e h i c l e was effective in the t r e a t m e n t in the fie l d of a s c a r i d a nd h e t e r a k i d infe c tion s of p o u lt r y , a s c a r i d and hook­ w o r m i n f e c t i o n s of fo x e s and a s c a r i d infections of swine. M e r c k p r e p a r a t i o n s w e r e u s e d in s u b s e q u e n t s tu d ie s . The Cha nd l e r and F e r g u s o n (34) d e m o n s t r a t e d one h u n d r e d p e r cent efficiency Z1 f o r the p r e p a r a t i o n s w o r m s of p o u l t r y . in the t r e a t m e n t of t a p e w o r m s and rou nd ­ A l d e r m a n (35) c o n f i r m e d t h e s e findings. C h a n d ler (36) r e p o r t e d k il ling the s to m a c h w o r m s in 97 of 98 lam bs s u b j e c t e d to t r e a t m e n t with Colloidal Iodine. W e is n e r (37) d e m o n s t r a t e d t h a t Co l loid al Iodine was of value in the c on­ t r o l of c o c c i d i o s i s in p o u l t r y and r a b b i t s , and C h a n d l e r (38) d e m ­ o n s t r a t e d the a b i l i t y of t h i s p r e p a r a t i o n to k ill s p o r u l a t e d and u n s p o r u l a t e d o o c y s t s of E i m e r i a t e n e l la and r e c o m m e n d e d its use a s a d i s i n f e c t a n t in p o u l t r y p r a c t i c e . W ilson (39) r e p o r t e d the d e s t r u c t i o n of H a b r o n e m a spp. in the s t o m a c h and up p e r in­ t e s t i n e of the h o r s e , a nd the r e m o v a l of l a r g e l a r v a e of a G a s t e r o p h i l u s s p . , a lth ou gh s m a l l l a r v a e w e r e not a f f e c te d by the iodine t h e r a p y . S ta f s e t h (40) d e t e r m i n e d t h a t Iodine V e r m i c id e (Merck) w as ca p ab l e m v i t r o of k i llin g a s c a r i d s o n c h o s p h e r e s of t a p e w o r m s . and the p r o g l o tt i d s and He d e m o n s t r a t e d , how ev er, th at the s c o l i c e s of the t a p e w o r m s infecting the c h ick e n w ere n e i t h e r d i sl o d g e d n o r k i l l e d by the t r e a t m e n t with Colloidal Iodine. Sub­ seq u e n t to the r e m o v a l of the s t r o b i l a e of the t a p e w o r m s by the Iodine V e r m i c i d e d o s a g e , S ta f s e th d e m o n s t r a t e d th a t the d e v e l ­ o p m e n t of the p a r a s i t e s c on tinu ed. Two to t h r e e weeks were th en n e c e s s a r y f o r the d e v e lo p m e n t of m a t u r e R a i ll ie ti n a c e s t i cil lu s in c h i c k e n s . It i s a p p a r e n t then, th a t the high effic i e n c y of iodine p r e p a r a t i o n s in a p p a r e n t l y c u rin g t a p e w o r m infect ions in p o u l tr y , m a y have b e e n only a c o n c o m it a n c e of the tech ni c of a d m i n i s t e r i n g a c h e c k dose a few days a f t e r the in itial t h e r a ­ p eu t ic d ose and adjudging the infe ction t e r m i n a t e d if no ova n or p r o g lo t t i d s w e r e found in the f e c e s . As S ta fs e th po inted out, C o l lo id al Iodine c a n s t i l l be r e c o m m e n d e d as a v e rm if u g e w he re the o b jec t i v e i s to b r e a k the cycle of d e v e lo p m e n t of the p a r a s i t e for a lim ited tim e. At the p r e s e n t , h o w ev er, Colloidal Iodine is not r e p o r t e d a s the d ru g of choice fo r any of the w o r m o r p r o to z o a n infections of a n i m a l s o r m an. As m e n t i o n e d a b ove, M allm a n n and C h a n d le r (7) r e p o r t e d the e f f e c t i v e n e s s of C o l l oidal Iodine in d isin fe c tin g chicken fe c e s , a c c o m p l is h i n g s t e r i l i z a t i o n (sic) of the f e c e s in ten m in u te s while no o t h e r d i s i n f e c t a n t t e s t e d could a c c o m p l i s h this fe a t in m o r e e x t e n d e d p e r i o d s of ti m e . A n d e r s o n (41) d e t e r m i n e d the P h e n o l C o e f f i c i e n t of Colloidal Iodine to be ide n tic a l to tha t of L u g o l 's Solution and to T in c t u r e of Iodine. A n d e r s o n and M a l lm a n n (14) a nd M a l l m a n n (29) a s c r i b e d the h i g h e r ac tivi t y of the Co l l o i d a l Iodine to g r e a t e r p e n e t r a t i v e pow er of this 23 preparation. A n d e r s o n a nd M a llm a n n (14) c o m p a r e d the p e n e t r a ­ b i l it y of the t h r e e io dine p r e p a r a t i o n s by m e a n s of the p a r a f f i n - c o v e r e d a g a r cup p l a t e m e t h o d and found th a t Co lloid al Iodine in five p e r c e n t c o n c e n t r a t i o n gave a l e s s e r zone of inhibitio n than did the L u g o l ' s Solution o r the T i n c t u r e of Iodine in like concentrations. S i m i l a r r e s u l t s w e r e o b ta in e d usin g the te c h ­ n i c s em p lo y i n g c h i c k e n i n t e s t i n e s o r c e c a a s b a r r i e r s . o r d e r of e f f e c t i v e n e s s in t h e s e c a s e s w as: (1) L u g o l ’s Solution, (2) T i n c t u r e of Io d in e , a n d (3) C olloidal Iodine. w a s m o s t e f f e c t i v e in the The Co lloid al Iodine s p e e d of d i s in f e c ti o n t e s t , in the in­ hib i tio n of s p o r u l a t i o n of c o c c i d ia l o o c y s ts and in the d e s t r u c ­ tion of s t r o n g y l i d l a r v a e . disparate ologies. It w a s a p p a r e n t th at ex ce e d in g ly r e s u l t s w e r e o b t a in e d by t h e s e two g r o u p s of m e th o d ­ A n d e r s o n a nd M a ll m a n n b e l i e v e d th a t the s e ttlin g of the c o l lo i d p a r t i c l e s in the f i r s t g r o u p of e x p e r i m e n t s c ited m a y h ave p r e v e n t e d e s t a b l i s h m e n t of a u n if o r m m a x i m u m c o n c e n ta ti o n of io din e in th e s olution, and that the t i o n s a c t u a l l y m a y have h a d a g r e a t e r c o l lo i d a l p r e p a r a t i o n . separate This "diffusibility" "diffusibility" an d d i s t i n c t f r o m p e n e t r a b i l i t y b elieves untenable. s o lv a te d p r e p a r a ­ than the they b e li e v e d to be an a r g u m e n t this a u t h o r It m u s t be noted th a t in t h e i r e x p e r i m e n t s 24 the h y d r o g e n io n c o n c e n t r a t i o n s of the p r e p a r a t i o n s a d j u s t e d to l i k e v a l u e s n o r r e c o r d e d , were stu dy in g the p r o p e r t i e s w e r e not i n a s m u c h as t h e s e a u t h o r s of the p r e p a r a t i o n s as g e n e r a l l y o b t a in e d a nd the pH of e a c h p r e p a r a t i o n was of no i n t r i n s i c i n t e r e s t to t h e m . G e r s h e n f e l d and W itlin (42) have d e m o n s t r a t e d the a cu te d e p e n d e n c e of the b a c t e r i c i d a l e f f ic ie n c y of iodine upon the pH a t w h i c h t e s t s a r e of the t h r e e co nd uc ted. iodine p r e p a r a t i o n s The d i f f e r e n c e in a c t i v i t i e s a s d e t e r m i n e d by the s p e e d of d i s i n f e c t i o n t e s t , the i n h i bitio n of s p o r u l a t i o n of c o c c i d i a l o o c y s t s and the kill in g of s t r o n g y l i d l a r v a e m a y be a r e f l e c t i o n of dif­ f e r i n g pH v a l u e s in e a c h p r e p a r a t i o n . That th is is p o s s i b l e will be d e m o n s t r a t e d be low. C o l l o i d a l Iodine h a s b e e n d e m o n s t r a t e d to be only o n e f o u r t h a s t oxic a s T i n c t u r e i s t e r e d o r a l l y (43). of Iodine to r a b b i t s when a d m i n ­ I n t r a v e n o u s a d m i n i s t r a t i o n of e i t h e r p r e p ­ a r a t i o n r e s u l t e d in d e a t h of r a b b i t s with the d o s e. sam e m inim um C h a n d l e r a nd M i l l e r (32) a ls o no ted th a t c o n c e n t r a t i o n s of C o l lo i d a l Iodine s u f f i c ie n t f o r g e r m i c i d a l p u r p o s e s did not c o r r o d e the skin a n d o t h e r t i s s u e s to the ex ten t that alcoh o l ic so l u t io n s did, n o r did it s ta in the skin as in t e n s e l y as did the latter. 25 C o l lo i d a l Iodine would thus s e e m to be m o r e d e s i r a b l e tha n t i n c t u r e s f o r wound d r e s s i n g and f o r i n t e r n a l m e d ic a tio n . The i n d ic a ti o n s t h a t it m a y p o s s e s s ity m a k e it a good s u b j e c t f o r a high d e g r e e of p e n e t r a b i l ­ st u d ie s on this s u b j e c t and so a l a r g e p o r t i o n of the e x p e r i m e n t a l w or k to be r e p o r t e d below i s t h e r e f o r e c o n c e r n e d wi th the e x a m i n a t i o n of the p e n e t r a t i v e p o w e r of th i s p r e p a r a t i o n . MATE RIALS AND METHODS The I n h i b iti o n of S p o r u la tio n of C o c c i d ia l O o c y s ts E i m e r i a t e n e l l a was p r o p a g a t e d in six to eig ht wee k old cockerels. On the t e n t h day of inf e c tio n (when o o c y s t p r o d u c t i o n is a t a m a x i m u m ) lected. the c h ic k s w e r e s a c r i f i c e d and the c e c a c o l ­ C e c a showing v i s ib le l e s i o n s w e r e h o m o g e n iz e d in the W ar in g B l e n d o r a nd the o o c y s t s sep arated from tissue fra g ­ m e n t s by s t r a i n i n g t h r o u g h f o u r l a y e r s of c l e a n c h e e s e c l o t h . The o o c y s t s w e r e c o n c e n t r a t e d by flo ta tio n in a c o n c e n t r a t e d sugar so l u t io n f o ll owe d by d i f f e r e n t i a l c e n t r i f u g a t i o n in a r e ­ f rig e ra te d centrifuge. distilled w ater The fi n a l s u s p e n s i o n s w e r e dilu te d with so a s to c o n ta in a p p r o x i m a t e l y 200,000 o o c y s t s p e r m l a n d s t o r e d in the r e f r i g e r a t o r a t 4 C f o r f u tu re use. F i v e —m l p o r t i o n s of iodine p r e p a r a t i o n s at the d e s i r e d c o n c e n t r a t i o n s a n d pH v a lue w e r e b r o u g h t to 27 C in a w a t e r b a th . The s o l u t i o n s w e r e in g r a d u a t e d c e n tr if u g e tu b e s p e r e d w i th r u b b e r s t o p p e r s . A fter te m p e ra tu re s to p ­ e q u il i b r a ti o n , a o n e - m l p o r t i o n of the o o c y s t s u s p e n s i o n was added to e a c h tube of d i s i n f e c t a n t and i m m e d i a t e l y sha ke n by hand to i n s u r e 27 d i s t r i b u t i o n of the tube c o n te n ts . A fte r incubation fo r the d e ­ s i r e d e x p o s u r e p e r i o d , f o u r m l of a s a t u r a t e d sodium t h io s u l fate so lu t io n was r a p i d l y p ip e tte d into the c e n trif u g e tube to n e u t r a l i z e the iodin e. Co ntrol s u s p e n s io n s of the o o c y s ts w e re t r e a t e d in the s a m e m a n n e r , with d is t il l e d w a te r re p la c i n g the d is in f e c t a n t . Foll owin g n e u tr a l i z a t i o n , the su s p e n s io n s we re c e n t r i f u g e d a nd the s u p e r n a t a n t liquid d ec an ted , the t e n - m l vol­ ume w as r e s t o r e d with d is ti ll e d w a t e r and r e c e n t r i f u g e d . The s u p e r n a t a n t was a g a in d i s c a r d e d to le av e a volume of one m l of s e d i m e n t and f luid in e a c h tube. so lu tio n of p o t a s s i u m d i c h r o m a t e One m l of a 2.5 p e r c e nt was added and the s e d i m e n t w as su s p e n d e d by t r i t u r a t i o n with a wooden a p p l i c a t o r . The t u b es w e r e i n c u b a t e d in an in c lin e d p o sit io n f o r 48 h o u rs at r o o m t e m p e r a t u r e to p e r m i t sp o r u la tio n of the o o c y s t s . The s u s p e n s i o n s w e r e t hen e x a m in e d un d e r the m i c r o s c o p e using 430X m a g n i f i c a t i o n , d u p l icate coun ts of e a c h tube w e re m ad e . The n u m b e r s of s p o r u l a t e d o o c y s t s in a total of 100 w ere counted.. The r e s u l t s w e r e e x p r e s s e d a s the p e r c e n ta g e of i n­ h ib itio n of s p o r u l a t i o n on the b a s i s of the s p o r u la tio n of the untreated controls. The All g la s s w a r e 1' P e n e t u b e N T e c h n ic u s e d in t h i s p o r t i o n of the studies was c l e a n e d by s o a k i n g f o r a t l e a s t 24 h o u r s in a c i d —d i c h r o m a t e cleaning solution. tap w a te r, The a c id w as r e m o v e d by five rinses in a 24— h o u r s o a k in d i s t i l l e d w a t e r and f o u r s u b s e ­ quent r in s in g s in d i s t i l l e d w a t e r . The g l a s s w a r e w as the n d r a i n e d a n d a i r —d r i e d . A ll c h e m i c a l s u s e d w e r e c .p . g r a d e unless otherw ise specifie d. A ll r e a g e n t s a nd s o lu ti o n s w e r e p r e p a r e d with d i s t i l l e d w a t e r w h i c h h ad b e e n r e d i s t i l l e d f r o m s o lu t io n in a g l a s s an a lk a li n e p e r m a n g a n a t e still. C u l t u r e s of b a c t e r i a w e r e checked for p urity at frequent i n t e r v a l s by r e p e a t e d s t r e a k i n g on a tr y p to n e g lu c o s e y e a s t e x ­ tract agar sm ears (TGE) an d by d i r e c t m i c r o s c o p i c e x a m i n a t i o n of s t a i n e d by the G r a m te c h n ic (H u c k e r m o d ifi c a tio n ). c u ltu re s were m a i n t a i n e d on TGE s l a n t s in s c r e w - c a p p e d v i a l s . P y re x glass tubing of 5 - m m o u ts id e d i a m e t e r was c ut in 1 2 - c m l e n g t h s a n d one end g r o u n d f la t on a fine e m e r y w h e e l. The A f t e r c l e a n i n g a nd d r y in g , the u n p o lis h e d end was pl ug ged w ith c o t to n . The tubes w e r e d i s t r i b u t e d in c le a n t e s t t u b e s and s t e r i l i z e d in the d r y - a i r oven at 170 C f o r 2 h o u r s . The c o l l o i d s y s t e m to be e x a m in e d co n ta in e d a g a r (Difco g r a n u la t ed ) in a f in a l c o n c e n t r a t i o n of 1.5 p e r c e n t. e s s a r y to p r e p a r e It was n e c ­ the a g a r gel in a c o n c e n t r a t i o n su ch that, upon dilu tio n of 16.2 m l with a d jun c t s u b s t a n c e s to 20.0 m l, the final c o n c e n t r a t i o n would be a s s ta t e d above. T hus, 16.2 m l of this a g a r g el w a s d i s t r i b u t e d p e r 50—m l E h r l e n m e y e r f la s k and a u t o c l a v e d a t 121 C f o r 20 m i n u t e s . The gauze plug of e a c h fl a s k w as w r a p p e d with " p a r a f i l m 11 and th e se f l a s k s could then be s t o r e d in the r e f r i g e r a t o r at 4 C f o r p e r i o d s in l e n g th with no d i s c e r n i b l e l o s s of m o i s t u r e . up to one m onth P r i o r to us e , the a g a r g el wa s m e l t e d and c oo led to 45 C and 2.0 m l of m o l a r p h o s p h a t e b u f f e r s o lution added so th a t the final c o n c e n ­ t r a t i o n of the b u f f e r was te n th m o l a r at the d e s i r e d pH value . E i t h e r 0 .8 m l of a p r o t e i n solution, d i s t i l l e d w a t e r o r a c o m b i ­ na ti o n of t h e s e to the s a m e volum e was then added. E a c h fl a s k was s e e d e d wi th 1.0 m l of a s u s p e n s i o n of b a c t e r i a in d is t i l l e d w ater. This s u s p e n s i o n was p r e p a r e d by washing the b a c t e r i a f r o m the s u r f a c e of a 2 4 - h o u r TGE a g a r slope c u lt u r e with distilled w ater. The t u r b id it y of the b a c t e r i a l s u s p e n s i o n was a d j u s t e d to 15 p e r c e n t t r a n s m i t t a n c e a t 490 m u in a C e nc o Sheard-Sanford P h o te lo m e te r. The s e e d e d a g a r gel, now at a v o lu m e of 20.0 m l , was a g i t a t e d to d i s t r i b u t e the c o n te n ts and w as m a i n t a i n e d a t 45 C du rin g s u b s e q u e n t m a n ip u la tio n s. To p r e p a r e c o l u m n s of the a g a r gel within the tube s it w as n e c e s s a r y to d e v i s e a m eth o d f o r setting the gel ra p id l y so t h at l a r g e n u m b e r s of tub es could be p r e p a r e d without an ag o n i zi ng w a it b e t w e e n the filling of e a c h s u c c e ed in g tube. This w as done by dipping a s t e r i l e tube into the m o lt e n a g a r gel and d r aw i n g a c o l u m n of the liqu id into the tube to a height of 5 to 7 cm. With the f o r e f i n g e r c o v e r in g the plugged end of the tube, the tube wa s r o t a t e d o v e r the s u r f a c e of an ice cube fo r about four seconds so t h a t the a g a r gel r a p id ly end of the tu be . solid ified in the u p p e r The tube could then be la i d in a P e t r i d i s h h alf to c o m p l e t e g e l a t i o n while o t h e r tubes w e r e being p r e p a r e d . It w as found c o n v e n i e n t to i n s u r e s t a b il it y of the ice cu b es by p l a c in g t h e m on a n o t h e r f i ll e d t r a y of ice cubes so that the t e n d e n c y to s l i t h e r a bout was inh ibited by the p a r t i t i o n s of the tray. If a m e n i s c u s d e p r e s s i o n a p p e a r e d at the lo w e r end of a tube due to d r a i n a g e , the tube was touc he d to the s u r f a c e the m o lt e n a g a r a t an a cu te angle and this d e p r e s s i o n filled. of 31 T ub e s b e a r i n g a g a r g e l c o l u m n s of d if f e r in g c o n s t i t u t i o n w e r e c o lo r coded with w a x - c r a y o n m a r k s p l ug . In a l m o s t a l l c a s e s , th is a t the end having the co t ton m e t h o d r e s u l t e d in the p r e p a r a ­ t ion of a u n i f o r m c o l u m n of a b a c t e r i a - s e e d e d a g a r ge l with a b o t t o m n e a r l y p e r f e c t l y f l a t w hose c r o s s - s e c t i o n a l a r e a was 7.06 mm 2 ± 0 . 0 03 m m To c l e a n , buffer so l u t i o n , 2 . dry, 2 0 -m m te s t tubes, 5.0 m l of d is in f e c t a n t , s a l t s o r o t h e r a d ju v a n t s u b s t a n c e s w e r e ad d e d a nd b r o u g h t to t he d e s i r e d t e m p e r a t u r e in a w a t e r b a th . The f i n a l b u f f e r c o n c e n t r a t i o n w a s h alf m o l a r and the b u f f e r s o l u ­ tions w e re m a d e of a p p r o p r i a t e m i x t u r e s of m o n o - and d i p o t a s ­ sium phosphates. T he p r e p a r e d t u b e s c o n ta in in g the a g a r g e l c o l u m n s w e r e w ip ed d r y wi th c l e a n c h e e s e c l o t h t u b e s c o n t a i n i n g t he d i s i n f e c t i n g s t o p p e r e d w i t h No. 2 r u b b e r com m odate as many as squares s o l u ti o n s and th e s e l a t t e r t ube s stoppers. 7 tubes. two t u b e s p e r t e s t tube to i n s u r e and p l a c e d in the t e s t There E a c h t e s t tube c o u ld a c ­ w ere a lw a y s a t l e a s t a g a i n s t a tig h t s e a t b e tw e e n the b o t t o m of the t e s t tu b e and the c i r c u m f e r e n c e c o n t a i n in g th e a g a r gel c o lu m n . of the tube 32 When v o l a t i l e the r u b b e r s t o p p e r s d i s i n f e c t a n t s w h ic h m ig h t be a b s o r b e d by (e.g., h a lo g e n s ) s to p p e re d a m b e r m ixing c y lin d e r s w ere tested, 25-m l g la s s - r e p l a c e d the t e s t t u b e s and rubber stoppers. A t t h e e n d of t he e x p o s u r e p e r i o d , the tu b e s w e r e m o v e d f r o m the d i s i n f e c t a n t by m e a n s of a f o r c e p s cess and the e x ­ d i s i n f e c t a n t r e m o v e d by r i n s i n g the t u b e s in s t e r i l e tilled w ater or The c o l u m n of a g a r g e l w a s in a s o l u t i o n of a s u i t a b l e n e u t r a l i z i n g t e s t tu be of an a p p r o p r i a t e n eutralizing a g e n t to i n the c o lu m n . re­ dis­ agen t. e x p r e s s e d f r o m the tube into a sterile n u t r i e n t b r o t h c o n ta in in g a p e r m i t the d e v e l o p m e n t of via b le o r g a n i s m s T h e e x t r u s i o n of the c o l u m n was accom plished by b lo w i n g a t the p l u g g e d en d w ith the m o u th o r by em ploy i ng the c o t to n p lug a n d a n a p p l i c a t o r as a p i s t o n and p l u n g e r . b r o t h tu b e s w e r e t h e n i n c u b a t e d a t 37 C f o r 18 to 24 h o u r s The in a forced— draft incubator. The c o n t e n t s of e a c h b r o t h tube w e r e t h e n p o u r e d into a P e t r i d i s h and e x a m i n e d by i l l u m i n a t i o n f r o m b e n e a t h the p l a t e . The c l e a r z o n e s of in h ib itio n w e r e w ith the a id of a s t e e l d i v i d e r and m e t r i c tenth m i l l i m e t e r . i nh ib i ti o n a r e The a p p e a r a n c e of s o m e d e m o n s t r a t e d in P l a t e 1. s c a le m easured to the n e a r e s t typ ic a l z o n e s of PLATE 1. The a p p e a r a n c e of som e typical zones of inhibition in a g a r gel c o lu m n s following d ev elop m en t. A. C o lu mn s ex p o se d to Colloidal Iodine for h o u r s at pH 5.0 and 27 C. 24 B. Co l u m n s ex p o se d to phenol fo r 24 hours pH 5.0 and 2 7 C. at 33 The D i s i n f e c tio n of C hicken F e c e s Ch i ck e n f e c e s was c o l le c te d f r o m at l e a s t six c a g e s c o n tain in g n o r m a l a d u l t b i r d s of both s e x e s on a g r a i n die t. Twice the we ight of d i s t i l l e d w a t e r was added to the f e c e s and the m i x t u r e h o m o g e n iz e d f o r one m inu te in the W aring B lendor. The r e s u l t i n g s u s p e n s i o n was s t r a i n e d th ro u g h a double l a y e r of c h e e s e c l o t h and c o l l e c t e d in s c r e w - c a p p e d v i a l s . With the a i d of the m i c r o s c o p e , the s u s p e n s i o n s w e r e c o n t ai n m a n y p a r t i c l e s of m a t t e r of v a ry in g s i z e s , which w e r e a s l a r g e a s 20 m i c r a in d i a m e t e r , m erous bacteria freely s u s p e n d e d in the fluid. p r o b a b l y of p r e c i p i t a t e d u r a t e s , To c l e a n s t e r i l e s e e n to so m e of as well a s n u ­ Some c r y s t a l s , were encountered. s c r e w - c a p p e d v ia l s , 9.5 m l of the d i s ­ in f e c ta n t p l u s p h o s p h a t e b u ff e r m i x t u r e w e r e added. The fina l c o n c e n t r a t i o n of the b u f f e r was half m o l a r at the d e s i r e d pH v alu e. The t u b e s w e r e p l a c e d in a w a t e r b a th and b ro u g h t to tem p eratu re e q u i l i b r i u m a t 27.5 C ± 0.5 C. The f e c e s s u s p e n s i o n was thoroug hly a g i ta t e d with a p ip e tt e and 0.5 m l add ed to e a c h d i s i n f e c t a n t - b u f f e r tube and to a d i s t i l l e d w a t e r - b u f f e r c o n tr o l tube. The c on tents w er e m ix e d by i n v e r s i o n of the tubes a n u m b e r of t i m e s during the 34 c o u r s e of th e e x p o s u r e s . sam ples priate A f t e r the e x p o s u r e interval, 1.0—ml w e r e w i t h d r a w n a nd p i p e t t e d into 9.0 m l of an a p p r o ­ n e u t r a l i z i n g a g e n t to stop the a c tio n of the d i s i n f e c t a n t . T h is t e n f o l d d i l u t i o n w a s t h e n s h a k e n f o r five m i n u t e s on a m e c h a n i c a l d e v i c e a t a r a t e of 200 s t r o k e s p e r m in u te th r o u g h a one-inch excursion. A ppropriate in d u p li c a t e wi th TGE a g a r . 37 C, the p l a t e s w e r e recorded. d i lu tio n s w e r e th e n p l a t e d ATter i n c u b a t io n f o r 48 h o u r s a t e x a m i n e d an d the n u m b e r s of c o lo n i e s R esults w ere e x p r e s s e d a s the n u m b e r s of o r g a n ­ i s m s p e r m l of th e r e a c t i o n m i x t u r e s . S p ecial V e s s e l s A ttem pts w ere Three C o m p a rtm e n t Technics m a d e to c o n s t r u c t d if fu s io n c e l l s w h e r e a d i s i n f e c t a n t s o l u t i o n c o u ld be separated from p e n s i o n by a b a r r i e r C o llo d io n s a c s w e r e i n t u s s u s - s o l u tio n . a bacterial sus­ c e p t e d o v e r the e n d s of g l a s s tubing and s u s p e n d e d in a l a r g e r v e s s e l c o n t a i n i n g th e s u s p e n s i o n of b a c t e r i a . c o m p a r t m e n t c o n t a i n e d th e d i s i n f e c t a n t , the b a r r i e r substance the m i d - c o m p a r t m e n t in the f o r m of a s o lu tio n o r gel. n a t e l y , th e p o s i t i o n of the b a c t e r i a l fectant was The i n n e r m o s t r e v e r s e d in the system . A lter­ s u s p e n s i o n and the d i s i n ­ No r e s u l t s w e r e o b tai n e d 35 w ith t h e s e c e l l s a s the m e m b r a n e s w e r e e x c ee d in g ly f r a g i l e a nd h ad a g r e a t t e n d e n c y to b r e a k du ring t r i a l r u n s . C e l l s w e r e c o n s t r u c t e d of thin r i n g s of u n g la z e d p o r c e ­ lain. A s m a l l r i n g was c e m e n t e d to a c o v e r g l a s s with de K h o ti n s k y c e m e n t a nd a l a r g e r rin g the n c e m e n t e d in a con­ ce n tric position. The c e n t e r w ell was f il le d with the d i s i n f e c ­ t a n t an d the a n n u l u s wi th the b a r r i e r substance. A cover glass w as s e a l e d to the top s u r f a c e s of the r i n g s and the whole a r ­ r a n g e m e n t d r o p p e d in a s u s p e n s i o n of b a c t e r i a in d i s t i l l e d w ater. This s u s p e n s i o n was s t i r r e d by m e a n s of a m a g n e ti c s t i r r i n g d ev i c e a n d s a m p l e s w ith d r a w n at i n t e r v a l s f o r the e nu­ m e r a t i o n of the v i a b l e b a c t e r i a . The f r a g i l i t y of the s y s t e m and the d i f f ic u l t y i n v o l v e d in obtaining a p e r f e c t s e a l b e tw e e n the i n n e r r i n g a n d the top c o v e r g l a s s ob v iated continued us e of t h i s te c h n i c a nd so the m e th o d w as a l s o a b an don ed and no results are r e c o r d e d f o r e x p e r i m e n t a l u se of the m ethod . EXPERIM ENTAL AND RESULTS E x p e r i m e n t s Using O o c y s t s of E_. T e n e l l a The e f f e c t of h y d r o g e n ion c o n c e n t r a t i o n on the d i s i n f e c ­ tio n of o o c y s t s of K_. t e n e l l a by iodine w a s d e t e r m i n e d . of Iodine S u s p e n s o i d (Me rck) d e t e r m i n e d to be 2.0. in 5.0 p e r c e n t c o n c e n t r a t i o n was A 5.0 p e r c e n t L u g o l ' s Solution was a d ­ j u s t e d to t h is pH with c o n c e n t r a t e d HC1. p re p a ra tio n were The pH O ther portions a d j u s t e d to pH 7.0 with 2.5 N NaOH. s u r e of the o o c y s t s to a l iq u o ts of th e s e p r e p a r a t i o n s a s d e s c r i b e d a b o ve , f o r p e r i o d s of 5, of e a c h E xp o ­ were made, 10 and 20 m i n u t e s . The p e r c e n t of i n h ib i t io n of s p o r u l a t i o n of the o o c y s t s a s c o m p u t e d from control sporulations is given in T ab le 1. These d a t a show the m a r k e d e f f e c t of h y d ro g e n ion c o n c e n t r a t i o n on the kill of the c o c c i d i a l o o c y s t s . At the s a m e pH v a l u e s , t h e r e is v e r y l i t t l e d i f f e r e n c e in a c t i v i ty b e tw e e n the two iodine p r e p a r a t i o n s . The c o l lo i d a l p r e p a r a t i o n h a s a sligh tly h i g h e r a c tiv ity but no­ w h e r e of the o r d e r of d i f f e r e n c e as d e t e r m i n e d by A n d e r s o n and M a ll m a n n (14). T h i s d i s c r e p a n c y is e a s i l y u n d e r s t o o d on the b a s i s of the h ig h a c i d i t y of the c o llo id a l p r e p a r a t i o n as c o m p a r e d TABLE T HE 1 P E N E T R A T I O N O F COCCIDIAL OOCYSTS BY C E N T IODINE P R E P A R A T I O N S AT 27.0 C 5% I odine a s 5 PER P e r C en t In h ib itio n of S p o r u la ti o n * PH 5 m in 10 m in 20 m i n S usp en so id (M erck) 2.0 76 96 100 S u sp e n so id (M erck) 7.0 43 89 99 L u g o l's Solution 2.0 69 91 100 L u g o l ’s S o l u t i o n 7.0 41 79 97 * The i o d i n e w a s n e u t r a l i z e d w ith s o d i u m t h i o s u l f a t e i m m e d i a t e l y a f t e r t h e n o t e d e x p o s u r e p e r i o d and s p o r u l a t i o n of the o o c y s t s a c c o m p l i s h e d in 2.5% p o t a s s i u m d i c h r o m a t e f o r 48 h o u r s a t " r o o m " t e m p e r a t u r e . 37 to t h a t of LiUgol's So l u tio n . are in the P reparations of the l a t t e r u s u a l l y r a n g e of pH 5 to pH 6. T h e p r e p a r a t i o n of s u s p e n s i o n s of o o c y s t s of 12. t e n e l l a w a s q u i te t e d i o u s a n d the r e s u l t i n g able sporulation p e rc en ta g e s. c e n t in s o m e i n s t a n c e s . s u s p e n s i o n s gave These quite r a n g e d a s low a s vari­ 6 per No f u r t h e r e x p e r i m e n t s w e r e c o n d u c t e d w i th t h i s m e t h o d . E xperim ents w i t h the Indicator o r g a n i s m s . "P enetube" T e c h n ic P enetub es w ere p r e p a r e d contain­ ing a g a r and M / 1 0 p h o s p h a te b u f f e r a t pH 5.0. penetubes contained M . pyogenes v a r. a u re u s indicator o rg a n is m a nd a n o t h e r One series (FDA 209) s e t c o n t a in e d K . of a s the c o li ( l a b o r a ­ to ry strain) a s th e i n d i c a t o r o r g a n i s m . T h ese penetubes were exposed for 24 h o u r s a t 27.0 C in tu b e s c o n ta in in g M / 2 p h o s ­ p h a te b u f f e r a t pH 5.0 a n d R o c c a l o r ph en o l in v a r i e d c o n c e n ­ trations. A fter exposure developed. the t u b e s w e r e r i n s e d and the c o l u m n s The c o l u m n s w hic h had b e e n e x p o s e d to ph en ol w e r e d e v e l o p e d in FD A b r o t h a n d th o s e w hich had b e e n e x p o s e d to Roccal w ere T am ol— N. d e v e l o p e d in F D A b r o t h c o n tain in g 0.1 p e r c e n t A f t e r d e v e l o p m e n t , the z o n e s of inhib ition w e r e 38 m e a s u r e d a n d the a v e r a g e v a lu e f o r e a c h p o in t p l o t t e d in F i g ­ ure 1. In F i g u r e trates 1A, i t c a n be fu rth e r where c o li h a s b e e n u s e d . M. aureus T h i s is seen that R occal ap p aren tly pene­ is the i n d i c a t o r th a n w h e r e m ore a p p a r e n t tha n r e a l . p l a n a t i o n of t h i s i s t h a t M . a u r e u s is m o r e sensitive i n fe c ti n g a c t i o n of R o c c a l t h a n is Is. c o l i . e v i d e n t t h a t on e x p o s u r e m ore In F i g u r e I£. The e x ­ to the dis­ IB, it is to p h e n o l, M. a u r e u s i s only s li g h t l y s e n s i t i v e t h a n i s Is. c o l i . These results are in a c c o r d a n c e w i th th e g e n e r a l e x p e c t a t i o n t h a t M. a u r e u s will d i s p l a y a g r e a t e r s e n s i t i v i t y to the a c t i o n of m o s t d i s i n f e c t a n t s th an will E^. c o l i . The s h a p e s of t h e c u r v e s f o r e i t h e r d i s i n f e c t a n t a r e sam e w hether M . aureus indicates The d i f f e r e n c e case. as T hi s i n d e p e n d e n t of the i n d i c a t o r o r g a n i s m . in s e n s i t i v i t i e s of the o r g a n i s m s to the d i s i n ­ r e s u l t in a d i f f e r e n t e n d p o in t b e in g These endpoints M. a u r e u s an in d ic a to r b e c a u s e r e a c h e d in e a c h r e f l e c t the e x t e n t of the c o n c e n t r a t i o n g r a d i e n t of the d i s i n f e c t a n t in the is k ille d . indicators. t h a t p e n e t r a t i o n i s p r o c e e d i n g in i d e n t i c a l f a s h i o n in e a c h s e t of p e n e t u b e s , fectants o r Is. c o li s e r v e the appears range to be w here each o rganism m ore s u it a b le f o r use a s of i t s low r e s i s t a n c e . A (A) Roccal (B) Phenol 8 16 --------- --- UJUJ £ 4 E 8 O 1.0 % 2.0 disinfectant O 1.0 2.0 % disinfectant Figure l-A,B. The penetration, at pH5.0 and 27°C., of Roccal and Phenol in increasing concentration with M. pyogenes (var. aureus) (— )o r E.coli( ) as indicators in ag ar. 39 In a d d i t i o n a l e x p e r i m e n t s M y c o b a c t e r i u m p f l e i and B a ­ cillus the subtilis w ere used as indicator o r g a n is m s . s t r i c t a e r o b i c n a t u r e of bo th o r g a n i s m s , B e c a u s e of d e v e l o p m e n t was a c c o m p l i s h e d in P e t r i d i s h e s c o n ta in in g the b r o t h r a t h e r th a n in p l u g g e d t e s t t u b e s . adequate T h is t r e a t m e n t was n e c e s s a r y to p r o v i d e a e r a t i o n a n d w a s found to be e x t r e m e l y i n c o n v e n ie n t a s a r o u t in e p r o c e d u r e . Under these conditions, colum ns con­ t a i n in g 15. s u b t i l i s g ave i d e n t i c a l z o n e s of in h ib iti o n a s c o l u m n s c o n ta i n in g M . a u r e u s f o l l o wing e x p o s u r e p f le i did n o t g ive c o l u m n s the dem onstrating to iodine s o lu ti o n s . sharp M. d e m a r c a t i o n s of z o n e s of i n h i b i t i o n , p r o b a b l y b e c a u s e of the f a i l u r e to o b ­ tain u n ifo rm m ents w ere s u s p e n s i o n s of th is o r g a n i s m . No f u r t h e r e x p e r i ­ c o n d u c t e d w i th t h e s e o r g a n i s m s . A ll s u b s e q u e n t e x p e r i m e n t s w ith M . a u r e u s made a s th e i n d i c a t o r o r g a n i s m . The e f f e c t of pH v a r i a t i o n . c o n t a in i n g a g a r , r e p o r t e d b e lo w w e r e a g a r plus 1.0 p e r c e n t h u m a n s e r u m 1.0 p e r a lb u m in . P enetubes were p re p a re d c e n t g e l a t i n e and a g a r p l u s Each s e t a l s o c o n ta in e d M / 1 0 p h o s p h a t e b u f f e r a t the pH value to w hich the tu b e s w e r e to be e x p o s e d . The indicator o rg a n ism was M. a u r e u s . 40 Series of e x p o s u r e tu b e s c o n ta in in g the d i s i n f e c t a n t s the i n d i c a t e d f i n a l c o n c e n t r a t i o n s p r e p a r e d a t pH v a l u e s c o v e r i n g at in M / 2 p h o s p h a t e b u f f e r w e r e the r a n g e f r o m pH 5 to pH 9. D u p li c a t e p e n e t u b e s w e r e p l a c e d in e a c h e x p o s u r e c u b a t e d a t 27.0 C f o r 24 h o u r s . A fter exposure tube an d i n­ the t u b e s were r e m o v e d a n d r i n s e d a n d t h e n the a g a r c o l u m n s d e v e l o p e d i n the appropriate neutralizing broths. i n h ib i ti o n w e r e in F i g u r e s The l e n g t h s of the z o n e s of r e c o r d e d an d a v e r a g e d r e p r e s e n t a t i v e data graphed 2 a n d 3. Figure 2A i l l u s t r a t e s the r a p i d l o s s of i o d in e w i t h i n c r e a s i n g pH. of p e n e t r a t i v e p o w e r Th e d e p r e s s i n g e f f e c t of th e p r o ­ t e i n a d d i t i v e s i s w e l l i l l u s t r a t e d in th e l o w e r l i n e s of the g r a p h . N o t i l l u s t r a t e d is the e x t e n t of v o l a t i l i z a t i o n of the iod ine a t the d i f f e r e n t pH v a l u e s . T h i s v o l a t i l i t y of iodine of i n h i b it i o n b e i n g e v i d e n t a t the u p p e r e n d s (see P la te alone is It is io d i n e 1A). At pH 5.0, the l e n g t h of th is 12.5 m m , d e c r e a s i n g r a p i d l y to z e r o results in zo ne s of the c o l u m n s zone in a g a r m m a t pH 9.0. e v i d e n t t h e n , t h a t if it w e r e p o s s i b l e to p r e v e n t e s c a p e of m olecules fro m the s o lu tio n to the g a s p h a s e , the e x t e n t of p e n e t r a t i o n a t l o w e r pH v a l u e s would be a c c o r d i n g l y i n c r e a s e d . A (B) 1.0% Phenol (A) .0 5 % lodine(Colloid) 20 20 01UJ .10 -~o cx *o— ^ ° 5 i 6 i 7 pH —I■I 8 ra 9 0 5 6 7 pH 8 9 Figure 2 -A ,B . The penetration of Iodine and Phenol with respect to pH into agar(— ), agar+ 1.0% gelatine (— and agar + 1.0% human serum albumen(— ). 41 F igure 2B r e p r e s e n t s the e x t e n t of p e n e t r a t i o n of p e r c e n t p h e n o l in to th e t h r e e gel p h a s e s . T he g r e a t e r of d i f f u s i o n in a g a r a l o n e a t l o w e r pH v a l u e s evident. 1.0 extent (below pH 6.4) i s T h e d i m i n i s h i n g p e n e t r a t i o n w ith i n c r e a s i n g pH in the pro tein — c o n t a i n i n g g e l s i s p a r t l y a r e f l e c t i o n of t h i s l o w e r dif­ fusion ra te of p h e n o l a t h i g h e r pH v a l u e s a n d p a r t l y to the i n ­ f l u e n c e of th e h y d r o g e n ion c o n c e n t r a t i o n on the the p r o t e i n w i t h p h e n o l . f o r i o d in e reactivity C o m p a r i s o n of t h e s e f i g u r e s of w ith t h o s e s h o w t h a t p h e n o l p e n e t r a t i o n is n o t as a d v e r s e l y a f ­ f e c t e d by i n c r e a s i n g pH as protein as w ith io d in e . inhibitory as In F i g u r e i s io d in e , n o r is the 3, t h e i n f l u e n c e the q u a t e r n a r y a m m o n i u m p r e s e n c e of of pH on the p e n e t r a t i o n of compounds Hyam ine In a l l c a s e s 1622, C hloride and R o c c a l is g ra p h e d . of t h e s e c o m p o u n d s i s g r e a t e r w ith i n c r e a s i n g pH. Z ephiran the p e n e t r a t i o n The d e ­ p e n d e n c e of p e n e t r a t i o n upon pH d o e s n o t a p p e a r to be a s g r e a t as in t h e c a s e s of p h e n o l a nd of io d in e , n o r is the e x t e n t of i n h ib i t i o n by p r o t e i n a s g r e a t . T h e e f f e c t of t e m p e r a t u r e ing a g a r and a g a r p lu s 1.0 p e r p r e p a r e d w i th M_. a u r e u s as variation. cent human P enetubes serum contain­ a l b u m in w e r e the i n d i c a t o r o r g a n i s m . The c o l u m n s (A) .0 5 % Hyamine 1622 (B) . 0 5 % Zephiran Cl 10 8 U JU J .6 E E -o— , 4 2 0 pH 12 5 6 7 pH 8 9 (C) 0.1% Roccal 10 8 6 4 2 O 5 6 7 pH 8 9 Figure 3-A,B,C. The penetration of quats with respect to pH into a g a r ( — ), agar-*-1.0% gelatine (— ), and agar+l.0% human serum albumen(— ). 42 w e r e b u f f e r e d a t pH 5.0 a nd pH 9.0 in the u s u a l m a n n e r and ex p o sures w ere m a d e to d i s i n f e c t a n t s M /2 phosphate b u ffers. Exposure baths at t e m p e r a tu r e s f ro m a t the s a m e pH v a l u e s in w a s f o r 24 h o u r s in w a t e r 2.5 C to 37.0 C. n e u t r a l i z a t i o n of the c o l u m n s w e r e D e v e l o p m e n t and ac co m p lish ed as p rev io u sly d e s c rib e d fo r each disinfectant. F igure 4 represents d i s i n f e c t a n t a t pH 5.0. the e x t e n t of p e n e t r a t i o n of e a c h F igure 4A i l l u s t r a t e s the l i n e a r i n c r e a s e in the p e n e t r a t i o n of 0.75 p e r c e n t p h e n o l w ith i n c r e a s i n g t e m ­ p erature. shows R o c c a l a t 0.1 p e r cent con centratio n (Figure 4B) a s i m i l a r l i n e a r i n c r e a s e of p e n e t r a t i o n w ith i n c r e a s i n g tem p eratu re. In F i g u r e m ide per 4C a n d D the l i n e a r c o n t a i n i n g 0 . 02 5 p e r r e s p o n s e s of S u c c i n c h l o r i - cent available c e n t I o d i n e S u s p e n s o i d (M e rc k ) chlorine a r e plotted. i n h ib i t i o n due to the v o l a t i l i t y of the h a lo g e n s th e "upper these latter zo nes." zones The l e s s e r A linear in crease a nd of 0.05 The z o n e s of are in d icated as in the p e n e t r a t i o n in i s a l s o no ted. slopes of the l i n e s representing t i o n of e a c h d i s i n f e c t a n t in the p r e s e n c e c a te th a t with i n c r e a s i n g t e m p e r a t u r e the the p e n e t r a ­ of the a l b u m i n in d i ­ r e a c t i o n of the (A) .7 5 % Phenol (B) 0.1% Roccal mm 20 -O E E 20 30 temp. °C. 20 30 temp. °C. 40 40 (D) .05% l2(Suspensoid) (C) Succinchlorim ide(025% av CL) 20 20 iio upper zone EIO upper vzone — o------e_o_ 0 10 20 temp. °C. 30 o -------- -o 40 20 30 temp °C. 40 Figure 4-A ,B ,C ,D . The effect of temperature on the diffusion of various disinfectants at pH5.0 into agar(—) and agar+l.0% human serum albumen. (— ) 43 d i s i n f e c t a n t w i t h t h e p r o t e i n i s i n c r e a s e d , o t h e r w i s e the of th e l i n e s w o u l d b e i d e n t i c a l to t h o s e r e p r e s e n t i n g the d i ffu­ s i o n in a g a r a l o n e , a l t h o u g h in s u c h c i r c u m s t a n c e s of th e l i n e s slopes the p o s i t i o n w o u l d s t i l l be a t a l o w e r p o s i t i o n in the g r a p h s . W h e r e th e l i n e s protein are r e p r e s e n t i n g the p e n e t r a t i o n in a g a r and in alm ost p arallel, a s w ith S u c c i n c h l o r i m i d e , a hi gh a v i d it y of t he d i s i n f e c t a n t f o r the p r o t e i n i s i n d i c a t e d . The t o t a l r e a c t i o n of th e d i s i n f e c t a n t with the p r o t e i n m u s t be n e a r l y com plete a t the l o w e r t e m p e r a t u r e perature do n o t h a v e a m a r k e d in f lu e n c e on the A t p H 9.0 the n a t u r e and th u s i n c r e a s e s of the r e s p o n s e in t e m ­ reaction rate. of p e n e t r a t i o n of the d i s i n f e c t a n t s to t e m p e r a t u r e v a r i a t i o n d i f f e r s f r o m the l i n e a r responses s e e n in F i g u r e a t t h e l o w e r pH. disinfectants As te s te d gives a lin e a r i n c r e a s e r e s p e c t to i n c r e a s i n g t e m p e r a t u r e . cal, sam e Z e p h ira n C hloride and H yam ine data yield s tra ig h t lin es trations in p e n e t r a t i o n w i th The c u r v e s f o r p h e n o l , 1622 a r e logarithm ic. when the l o g a r i t h m s a r e p l o t t e d a g a i n s t the t e m p e r a t u r e . ing l o g a r i t h m i c p l o t s h a v e the 5, none of the sam e slope. RocThese of the p e n e ­ All t h e s e resu lt­ No s a t i s f a c t o r y ex­ p l a n a t i o n f o r t h i s b e h a v i o r h a s b e e n p r o p o u n d e d by the a u t h o r . I odine S u s p e n s o i d u n d e r t h e s e sam e c o n d it io n s g i v e s c u r v e s as (A) .7 5 % Phenol (B) . 0 5 % Roccal o- or 20 30 temp. °C. 15 (C) .0 5 % .0 5 % 20 30 temp. °C. 40 Z ephiran Cl2 Hyamine 1622 40 (0) .05% l2(Suspensoid) 10 E E -o 5 -o ' 0 10 20 30 temp. °C. 40 20 30 temp. °C. 40 Figure 5 - A,B,C,D. The effect of temperature on the diffusion of various disinfectants at pH9.0 into a g a r ( — ) and ag ar+ l.0 % human serum album en.(— ). 44 in F i g u r e 5D. The p e n e t r a t i o n approxim ately plain, 15 C. a m a x i m u m v a lu e T h is condition is lik ew ise i n a s m u c h a s no pH v a l u e reaches "upper a n d s o th e d e c r e a s e c a n n o t b e due to a l o s s at d if f i c u l t to e x ­ z o n e s ' 1 of i n h ib i ti o n o c c u r at this in p e n e t r a t i o n a t high t e m p e r a t u r e s of i o d in e t h r o u g h v o l a t i l i z a t i o n . T h e e f f e c t of v a r i a t i o n of d i s i n f e c t a n t c o n c e n t r a t i o n . etubes w ere p r e p a r e d ex perim ents. hours i n the m a n n e r as D uplicate tubes w ere to d i s i n f e c t a n t s b u ffe r a t the in v a ry in g experim ents. in the p r e c e d i n g e x p o s e d a t 27.0 C f o r concentrations s e l e c t e d pH v a l u e s . m e n t of the c o l u m n s w e r e previous sam e Pen- 24 in M / 2 p h o s p h a t e N e u t r a l i z a t i o n a nd d e v e l o p ­ accom plished as i n d i c a t e d in the T he p r o t o c o l of e a c h e x p e r i m e n t i s d e ­ s c r i b e d below. T h e p e n e t r a t i o n of io d in e p r e p a r a t i o n s containing p r o te in s was e t r a t i o n of L u g o l ' s S o l u t i o n a n d Iod ine T i n c t u r e concentrations cent human pH 5.0. m anner tions exam ined. into a g a r an d a g a r - i n to a g a r p l u s serum album in. 1.0 p e r These I o d i n e S u s p e n s o i d ( M e rc k ) an d the c u r v e s w ere sim ilar Shown in F i g u r e at increasing cent gelatine and exposures w ere of F i g u r e 6. 1.0 p e r made w a s e x a m i n e d in the for p e n e tra tio n at in c re a s in g to t h o s e 6 is the p e n ­ at sam e concentra­ Typical c u rv e s for A (A) Lugols" (B) Tincture 16 12 JO UJUJ E8 8 4 0 1.0 % I 2.0 2.0 % \2 Figure 6-A,B. The penetration of Iodine preparations, with respect to increasing concen­ tration, into agar + 1.0% gelatine (— ) and agar+ 1.0% human serum albumen (— -) 45 the C o l lo i d a l I o din e m a y b e e n t i r e f a m i l y of c u r v e s s e e n in F i g u r e 12A, B and C. This a p p e a r to be c a s e s of H i l l ' s e q ua tion and will b e d i s c u s s e d f r o m t h i s s ta n d p o in t in a l a t e r p e n e t r a t i n g a b i l i t y of the t h r e e s e c t io n . iodine p r e p a r a t i o n s , The in d e sc e n d i n g o r d e r , i s L u g o l ' s So lu tio n, T i n c t u r e of Iodine and Colloidal Io­ dine. T h is o r d e r i s i n a g r e e m e n t w ith the r e s u l t s o b ta in e d by A n d e r s o n an d M a l l m a n n (14) u sin g the p a r a f f i n - c o v e r e d a g a r p l a te m e t h o d . In a n o t h e r s e t of e x p e r i m e n t s , f o u r p r e p a r a t i o n s l o i d a l Iodine of v a r y i n g p a r t i c l e s iz e w e r e p r e p a r e d in a c c o r d a n c e with the d i r e c t i o n s of M i l l e r (44). w e r e of i n c r e a s i n g p a r t i c l e size, r e d (I) t h r o u g h i n c r e a s i n g d a r k (IV). These suspensoids w ere centrations as p re p a ra tio n s These suspensoids (I - r a n g in g in c o l o r f r o m IV) a brick s h a d e s of b ro w n (II, III) to b l a c k d ilu te d to the same iodine c o n ­ of the M e r c k S u s p e n s o i d and all a d j u s t e d to pH 5.0 w i th M / 2 p h o s p h a te b u f f e r . t a i n in g a g a r a n d a g a r p l u s of C o l ­ Penetubes con­ 1.0 p e r c e n t g e la tin e w e r e exposed in t h e s e h y d r o s o l s a n d a f t e r d e v e lo p m e n t in the u s u a l m a n n e r the z o n e s of i n h i b i t i o n r e c o r d e d . Tab le 2. It c a n be These results are shown in s e e n t h a t the zones of inhibition p r o d u c e d by a ll the p r e p a r a t i o n s are n e a r l y i d e n ti c a l a t id e n ti c a l TABLE 2 THE E F F E C T O F P A R T I C L E SIZE ON THE P E N E T R A T IO N O F C O LLOIDAL IODINE INTO AGAR P L U S 1.0 P E R CEN T G E L A T I N E AT pH 5.0 AND 27.0 C FO R 24 HOURS m m P e n e t r a t i o n with Preparation 0.29% I 0.0 3% I Cm M e rc k Suspensoid 15.1 15.1 5.2 5.2 Suspensoid I 15.2 15.2 5.2 5.2 S u s p e n s o i d II 15.8 15.7 5.3 5.2 S u s p e n s o i d III 14.8 1 5.2 5.3 5.1 S u s p e n s o i d IV 15.6 15.6 5.1 5.2 15.3 5.2 Average 46 concentrations. Th e p a r t i c l e size of the s u s p e n s o i d s d o e s not a p p e a r to be c r i t i c a l i n the p e n e t r a t i o n of the iodine d e r i v e d fro m these p a r tic le s . C h l o r i n e c o m p o u n d s w e r e i n v e s t i g a t e d in the a s the io d ine p r e p a r a t i o n s , Figure 7. The shape w ith the of the c u r v e s brought about by i n c r e a s i n g a r e the sam e o b ta in e d p l o t t e d in r e p r e s e n t i n g the p e n e t r a t i o n concentrations of a v a i l a b l e c h l o r i n e a s t h o s e fou nd f o r the iodine p r e p a r a t i o n s . c o m p a r i s o n of F i g u r e s sodium h y p o c h lo rite respectively, results sam e m anner 7A and B, A r e p r e s e n t i n g the d a ta fo r (Rom an C le a n se r) a t pH 5.0 and pH 9.0 s h o w s the m a r k e d d e p e n d e n c e of t h i s c o m p o u n d upon h y d r o g e n ion c o n c e n t r a t i o n . It is a l s o a p p a r e n t f r o m c u r v e s th a t the p e n e t r a t i o n of t h e s e m a r k e d l y l i m i t e d by the p r e s e n c e the c h l o r i n e c o m p o u n d s is m o s t of p r o t e i n s c o m p o u n d s in g e n e r a l do n o t p e n e t r a t e and th a t c h lo r i n e the t e s t s y s t e m s to the sam e ex ten t a s iodine. P h e n o l p e n e t r a t i o n is shown in F i g u r e 8. It c a n be s e e n t h a t the p e n e t r a t i o n of p h e n o l is n ot a f f e c te d to the same by the h y d r o g e n ion c o n c e n t r a t i o n n o r by the p r e s e n c e teins a s a r e of the the h a l o g e n s . sam e nature The c u r v e s degree of p r o ­ o b ta in e d with phe no l a r e a s t h o s e o b ta in e d with the h a lo g e n s alth ough (A) NaOCI pH5.0 (B) NaOCI 25 25 E 15 E 15 pH9 0 — o o .05 .10 % available Cl2 .10 .05 % available Cl2 (D)Succinchlorimide pH5.0 (C) Chloramine T pH5.0 30 30 E 15 o % .10 .05 available Cl2 .10 .05 % available Cl2 Figure 7-A ,B ,G ,D . The penetration of chlorine compounds, with respect to increasing concentration, into agar(— ) and agarH-l.0% human serum albumen. (— -). (A) pH50 (B) pH 9 .0 20 20 -or UUUJ EI0 2.5 % 0.5 phenol 25 (C) 2.5 % phenol pH5.0 % 1.0 phenol 20 Figure 8 - A,B,C. The penetration of phenol, with respect to increasing concentration, into agar(— ), a g a r+-1.0% gelatine (— ), and agar+l.0% human serum albumen. (— ). 47 the i n it ial slope is l o w e r than in the c u r v e s r e l a t i n g the p e n e ­ t r a t i o n of the h a l o g e n s to the c o n c e n t r a t i o n t h e r e o f . The p e n e t r a t i o n of R o c c a l at i n c r e a s i n g c o n c e n t r a ti o n s into a g a r and a g a r p l u s shown in F i g u r e 9. 1.0 p e r c e n t h u m an s e r u m albu m in is The p e n e t r a t i o n of this com pound at pH 9.0 is se e n to be g r e a t e r than a t pH 5.0. The p r e s e n c e of the p r o t e i n d o es n o t a p p e a r to inhibit the p e n e t r a t i o n to as g r e a t a d e g r e e as wi th the h a l o g e n s . M e r t h i o l a t e wa s e x a m in e d as an aq u eo u s solution and a s a t i n c t u r e c o n t a i n i n g 35 p e r ce nt eth an o l. The n e u t r a l i z a ­ tion an d d e v e l o p m e n t of c o lu m n s e x p o s e d to this com pound w e re a c c o m p l i s h e d in f r e s h l y p r e p a r e d F l u i d T hio gly co llate Medium (Difco)i In F i g u r e experim ents tincture. 10A and B the r e s u l t s a r e p lo tte d f o r two r u n c o n c u r r e n t l y with the aqueou s solution and the The c u r v e s o b t a ine d with the t i n c t u r e have not been c o r r e c t e d f o r the e f f e c t of ethanol alone, w hich can be s e e n to a c co u n t f o r a p p r o x i m a t e l y 5.0 m m of the p e n e t r a t i o n . p e n e t r a t i o n of the t i n c t u r e The is not as g r e a t l y r e d u c e d by the p r e s e n c e of g e l a t i n e a s the aqueous solution. m en t s of t h is type gave highly v a r i a b l e Repeat ex p eri­ results. a n o th e r e x p e r i m e n t with a queous M e r th io l a te In F i g u r e is r e c o r d e d . 10C, It (A) pH 5.0 (B) pH9.0 'UJUi E E 2.0 1.0 % Roccal 1.0 2.0 % Roccal Figure 9-A,B. The penetration of Roccal, with respect to increasing concentration, into agar (— ) and agar + 1.0% human serum albumen(——). (A) Aqueous (B) 20 20 §10 EIO .05 merthiolate Tincture .02 % 25 .05 merthiolate .02 % (C) Aqueous o 0.2 % merthiolate Figure 1 0 - A,B,C. The penetration of mer­ thiolate at pH5.0, with respect to increasing concentration, into agar(— ), a g a r+ 1.0% gelatine, (— ), and agar + 1.0% human serum albumen(--). 48 can be s e e n t h a t the e x t e n t of p e n e t r a t i o n of the M e r t h i o l a t e in th is e x p e r i m e n t i s f a r g r e a t e r th a n in the e x p e r i m e n t g r a p h e d in F i g u r e 10A. One w o n d e r s w h e t h e r n e u t r a l i z a t i o n of the e x ­ c e s s M e r t h i o l a t e h a s b e e n s u c c e s s f u l in a ll t r i a l s . The v a r i a t i o n of s t a t i o n a r y p h a s e c o m p o n e n t s . Penetubes w e r e p r e p a r e d c o n t a i n i n g g e l a ti n e o r h u m a n s e r u m a lb u m in at c o n c e n t r a t i o n s f r o m z e r o to 1.0 p e r c e n t. um n s w as The pH of th e s e c o l ­ s e t a t pH 5.0 with M /1 0 p h o s p h a te b u f f e r . t u b es w e r e e x p o s e d to 0.1 p e r c e n t R o c c a l, The p e n e ­ 1.0 p e r c e n t phenol and 0.05 p e r c e n t Iodine S u s p e n s o id a t pH 5.0 and 27.0 C f o r 24 h o u r s . N e u t r a l i z a t i o n and d e v e l o p m e n t w e r e a c c o m p l i s h e d a s b e f o r e a n d the r e s u l t i n g r e s u l t s a p p e a r in F i g u r e t e s t e d it c a n be z o n e s of inhib ition r e c o r d e d . 11. F o r e a c h of the d i s i n f e c t a n t s s e e n t h a t the a lb u m in is m o r e p e n e t r a t i o n of the d i s i n f e c t a n t than g e l a ti n e . f e a t u r e of the c u r v e s above These in h ib ito ry to the A n o th e r s a li e n t is t h a t they le v e l off, d e m o n s t r a t i n g tha t so m e c o n c e n t r a t i o n of the p r o t e i n the r a t e of p e n e t r a t i o n of the d i s i n f e c t a n t s is n e a r l y in d e p e n d e n t of the p r o t e i n c o n c e n ­ tration. T h i s o b s e r v a t i o n m a k e s lo g ic a l the use of protein concentrations circum stances, in the o t h e r e x p e r i m e n t s . m inor e r r o r s 1.0 p e r c e nt U n d e r th e s e in the addition of the p r o t e i n will (A) 0.1% Roccal (B) 1.0% Phenol 161 UiUJ --------- -o £8- o - ---- 4 - % 0.5 1.0 protein % protein (C) .05% I.(colloid) 20 E 10 —o 1.0 0.5 % protein Figure II - A, B,C. The penetration of Roccal, Phenol, and Iodine at pH5.0 and 27°C. into an agar stationary phase containing increasing concentrations of gelatine (— ) or human serum albumen (— ). 49 not th en c a u s e l a r g e errors in the r e s u l t i n g o b s e r v a t i o n s . Once again , i t is n o t e d t h a t p e n e t r a t i o n of R o c c a l and phenol is l e s s a d v e r s e l y a f f e c t e d t h a n iodine by the p r e s e n c e of p r o t e i n . The r e s u l t s p l o t t e d in F i g u r e 12A and B d e m o n s t r a t e the ef f e c t of a dding 0.5 p e r c e n t p o t a s s i u m iodide o r sodium c h lo r i d e to the s t a t i o n a r y p h a s e on the p e n e t r a t i o n of iodine into su c h g el s y s t e m s . The p e n e t r a t i o n of C olloidal Iodine when s o d iu m c h l o r i d e i s c o n t a i n e d in the gel p h a s e is id e n ti c a l to the p e n e t r a t i o n when no s a l t is added. The p r e s e n c e of p o t a s s i u m iodide in the g el p h a s e e n h a n c e s the p e n e t r a t i o n of the co lum ns by io dine. T h i s e x p e r i m e n t was co n d u cted at pH 5.0 and 27.0 C f o r 24 h o u r s . In a s u b s e q u e n t e x p e r i m e n t an u n b u ff e re d solution of iodine in d i s t i l l e d w a t e r containing 0.028 p e r ce nt iodine was all ow ed to p e n e t r a t e dition of e i t h e r to the a g a r gel c o lu m n s and c o lu m n s with the a d ­ 1.0 p e r c e nt p o t a s s i u m iodide o r stationary phase. A du plicate g el at in e wa s a l s o e x p o s e d . sodium c h l o ri d e s e t containing The e x p o s u r e 1.0 p e r c e n t was m a d e at 27.0 C f o r 24 h o u r s a nd the r e s u l t s a r e ta b u la te d in Table 3. results are in a g r e e m e n t with tho se p r e v i o u s l y c ited . These It is a p p a r e n t t h a t the a d d i ti o n of p o t a s s i u m iodide has o c c a s io n e d (A). Agar (B) Agar+10% gelatine 30 20 NaCI 20 NaCI 10 0 .01 .02 .03 .04 % I* % l2 (C) Agar 30 (D) Agar, I32%KI 20 ,cr .05 pH 5.0 —o JL, o» .05 .05 % \2 % l2 Figure 15-A, B. The reduction of the bacterial population of chicken feces in 5.0 min. at pH5 0 , 2 5 ° C., by: A."Fine" l2 suspensoid, B."Coarse1 \2 suspensoid. d e a c h c o m p o u n d w a s e x p r e s s e d a s the p e r c e n t a v a i l a b l e a s d e t e r m i n e d b y s o d i u m t h i o s u l f a t e t i t r a t i o n (45). an d B, the d a t a f o r s o d i u m h y p o c h lo r it e Chloram ine T (Wyandotte) are The s o d i u m h y p o c h l o r i t e a p p e a r s In F i g u r e (R o m an C l e a n s e r ) respectively s i m i l a r to e a c h o t h e r a nd r e s e m b l e chlorine graphed. and Both a r e t y p i c a l 11d i e - a w a y " to be 16A s li g h tly m o r e curves. eff e c t i ve in r e d u c i n g the b a c t e r i a l p o p u la t io n of the c h i c k e n f e c e s than does Chloram ine T. Succinchlorim ide i s p r e s e n t e d in F i g u r e 16C. This (N atio n a l Dyes) activity c o m p o u n d d i s p l a y s an a c t i v i t y d e c i d e d l y d i f f e r e n t f r o m t h a t of the o t h e r two c o m p o u n d s class w i t h r e s p e c t to c o n c e n t r a t i o n . The slope of the b a c t e r i a l r e d u c t i o n a t lo w c o n c e n t r a t i o n s of s u c c i n c h l o r i m i d e s t e e p e r t h a n t h o s e of the o t h e r c h a n g e s to a f a r l o w e r per chlorine c o m p o u n d s , bu t r a p i d l y Succinchlorim ide e f f e c t iv e t h a n the h y p o c h l o r i t e o r the In F i g u r e is m u c h slope a t c o n c e n t r a t i o n s in e x c e s s cent available c h lo rin e . in i ts appears C hloram ine of 0.02 to be l e s s T. 17A a nd B the e f f e c t of i n c r e a s i n g c o n c e n t r a ­ t io n s of R o c c a l a t p H 5.0 and pH 9.0 on the d i s i n f e c t i o n of c h i c ke n f e c e s is shown. The t en fo ld n e u t r a l i z i n g d il u tio n s w e r e F D A b r o t h c o n t a i n i n g one p e r c e n t of T a m o l — N. w ere These i n c u b a t e d a t 37 C and g r o w t h o c c u r r e d in all tu b es made in di l ut i on s w ithin (A) Sodium Hypochlorite (B) Chloramine T (O CO cn S2 .05 Vo % av. .05 % av. 1.0 Cl2 1.0 C l2 (C) Succinchlormide i—> CJ> .05 1.0 % av. Cl2 Figure I6-A,B,C. The reduction of the bacterial population of chicken feces in 5.0 min. at pH 50, 27.5°C. by chlorine compounds. 57 24 h o u r s , d e m o n s t r a t i n g t h a t no b a c t e r i o s t a t i c a c t i o n r e m a i n e d follo w in g t h i s f o r m th i s m a n n e r a r e curve of n e u t r a l i z a t i o n . very representing The c u r v e s o b ta in e d in s i m i l a r a t b o th pH v a lu e s ; d i s i n f e c t i o n at pH 9.0 is a t low c o n c e n t r a t i o n s of the c o m p o u n d . ness in the f i v e - m i n u t e 0.02 p e r i s the s a m e made The m a x i m u m e f f e c t i v e ­ in b o th c a s e s . m anner, the f i r s t d ilu t i o n s in F D A b r o t h to stop the a c t i o n of the ph en o l by m e a n s o f d i l u t i o n a n d c o m b i n a t i o n w ith the o r g a n i c th e b r o t h . g r o w th , ure is a t a bout a nd the n u m b e r of r e s i d u a l r e s i s t a n t P h e n o l w a s e x a m i n e d in like were somewhat ste e p e r e x p o s u r e p e r i o d in b o th c a s e s cent concentration, organism s h o w e v e r , the I n c u b a t i o n of t h e s e b r o t h d il u tio n s m a t t e r of r e s u l t e d in p r o m p t d e m o n s t r a t i n g t h a t the n e u t r a l i z a t i o n w as e f f e c ti v e . 17C s h o w s the s i g m o i d c h a r a c t e r of the survival curve ta i n e d w i t h i n c r e a s i n g c o n c e n t r a t i o n of p h en o l. the h o r i z o n t a l b r a n c h of the c u r v e d e s c e n d i n g b r a n c h i l l u s t r a t e the t iv i ty of t h i s and the rapid loss c o m p o u n d with d ilu tio n . at which s u r v iv a l b e c o m e s p e r cent phenol. F ig­ ob­ The e x t e n t of steepness of the of g e r m i c i d a l a c ­ The c o n c e n t r a t i o n of phe no l a s y m p t o t i c to c o n c e n t r a t i o n is a t 1.0 (A) Roccal, pH5 0 (B) Roccal, p H 9 0 CO 6 Log [^Survivors] 8 o2 _i O (C) Phenol, 0.2 pH5.0 0.2 0.1 % (D) Merthiolate, pH5.0 6 Log t*Survivors] 8 0.1 O 0.1 Oi 0.2 Figure I7-A,B,C,D. The reduction of the bacterial population of chicken feces in 5.0 min. at 2 75°C ., by various compounds. M erthiolate and the r e s u l t i n g o b ta i n e d . in a q u e o u s so lu tio n at pH 5.0 was e x a m i n e d survivor curve as shown in F i g u r e N e u t r a l i z a t i o n and d e c i m a l d ilution w e r e in f r e s h l y p r e p a r e d F l u i d 17D wa s accom plished T h i o g ly c o lla te M e d iu m (Difco), i n c u b a ­ tio n of w h i c h d e m o n s t r a t e d g r o w th and he nc e a d eq u ate n e u t r a l i ­ za ti o n of t h e b a c t e r i o s t a t i c a c t i o n of m e r t h i o l a t e . curve d e m o n s tra te s that m erth io la te The s u r v i v a l is p r a c t i c a l l y ine ffec t i ve in r e d u c i n g the b a c t e r i a l c ount of c h ic k e n f e c e s u n d e r t h e s e c o n ­ d i ti o n s. The r a t e of d i s i n f e c t i o n of c h ic k e n f e c e s . The five iodine p r e p a r a t i o n s w e r e a l l a d j u s t e d to 0.05 p e r c e n t iodine c o n c e n t r a ­ tio n a t pH 5.0 in M / 2 p h o s p h a te b u f f e r . of the b u f f e r a l o n e . C o n tr o ls w e r e p r e p a r e d A fter exposure periods u t e s , n e u t r a l i z a t i o n a n d dilutio n w e r e of 1.0 and 5.0 m i n ­ accom plished as previously d e s c r i b e d a n d s a m p l e s p l a t e d f o r e n u m e r a t i o n of the su rv i v i n g organism s. The p e r c e n t k ill, e f f e c te d in t h e s e p e r i o d s of e x ­ p o su re, was r e c k o n e d f r o m the co u n ts o b ta in e d by id e n tic a l t r e a t m e n t of the f e c a l s u s p e n s i o n in the p h o s p h a te b u f fe r c on­ trols. These d a t a a r e p r e s e n t e d in T a b le 4. p e r i o d of 1.0 m i n u t e , the 0.05 p e r A f t e r an e x p o s u re ce nt iodine in the five p r e p a ­ r a t i o n s g a v e a n a v e r a g e k ill of 99.82 p e r c e n t with a m e a n TABLE 4 THE P E R C E N T K I L L O F THE B A C T E R IA L P O P U L A T IO N O F CHICKEN F E C E S A F T E R EX PO SU R E F O R THE I NDICATED PE R IO D S TO 0.0 5 P E R CENT IODINE AT pH 5.0 AND 27 C Per 0.05% I_ a s 2 C e n t K ill A f te r Exposure for 1.0 m in 5.0 m in S u sp en so id (Merck) 99.95 99.97 "F in e" 99.37 99.84 " C o a r s e 11 s u s p e n s o i d 99.98 99.99 L u g o l ' s So l u t io n 99.84 99.94 I odine T incture 99.98 99.98 A verage 99.82 99.96 suspensoid 59 d e v ia ti o n of 0 . 16 p e r c e n t . T h is represents b e t t e r th a n two p a r t s p e r t h o u s a n d . p o s u r e , the p r e p a r a t i o n s A fter an a c c u r a c y s lightly 5.0 m i n u t e s of e x ­ at th is c o n c e n t r a t i o n c a u s e d an a v e r a g e k i l l of 99.96 p e r c e n t w ith a m e a n d e v ia tio n of only 0.4 p e r c e nt , r e p r e s e n t i n g a n a c c u r a c y of f o u r p a r t s p e r te n tho u sa n d . None of the d e v i a t i o n s f r o m e i t h e r m e a n e x c e e d the m e a n d e v i a t i o n by a f a c t o r of f o u r , as r e p r e s e n tin g so t h a t a ll v a l u e s o b ta in e d c a n be c o n s i d e r e d s a m p l e s f r o m the sam e specim en. t h a t f o r the d i s i n f e c t i o n of c h i c k e n f e c e s , S olu tio n a n d I odin e T incture are It is e v i de n t C ollo id a l Iodine, L u g o l ' s i d e n t i c a l in a c ti v it y when m e a ­ s u r e d a t c o n s t a n t t e m p e r a t u r e , pH and c o n c e n t r a t i o n . C h l o r i n e c o m p o u n d s , ph e n o l, R o c c a l and M e r t h i o l a t e w e r e e x a m i n e d in a s o m e w h a t d i f f e r e n t f a s h io n . The e x p e r i m e n t a l p r o ­ c e d u r e w a s a s g i v e n f o r iod in e , b u t the i n t e r v a l s of e x p o s u r e were e x t e n d e d to 30 m i n u t e s . p h o s p h a t e b u f f e r a n d d u p li c a te 5.0 an d pH 9 .0 . c a n be a g a in w e r e concentrations w ere ru n in M / 2 s e t a t pH The e f f e c t of the p h o s p h a te b u f f e r a t pH 5.0 s e e n to b e n i l ( F i g u r e exposure. C ontrols 18A) e v e n a f t e r 30 m i n u t e s of In p h o s p h a t e b u f f e r a t pH 9.0 t h e r e significant d e c r e a s e in the n u m b e r s 30 m i n u t e s t h i s d e c r e a s e is a s m a l l but of viab le o r g a n i s m s , a m o u n t s to a p p r o x i m a t e l y after 50 p e r c e n t . bO The c u r v e s o b t a i n e d f o r d is i n f e c t a n t s in th e se b u ff e r s have not b een c o r r e c t e d f o r t h i s e ffect of the b u ff e r alone and thus the b a c t e r i c i d a l e f f e c t of the a lka line b u ff e r ha s d e p r e s s e d the c u r v e s o b tain ed a t pH 9.0 s o m e w h a t. R e s u l t s wi th c h l o r i n e G r a p h B i l l u s t r a t e s the r a t e com pounds a r e shown in F i g u r e 18. of d is in f e c tio n of c h ic k e n f e c e s by so d iu m h y p o c h l o r i t e c o n taining 0.03 p e r c e n t a v ailab le c h lo ri n e . At pH 5.0 the i n i t i a l r a t e is g r e a t e r than a t pH 9.0, although a f t e r ten m i n u t e s e x p o s u r e both r a t e s have b ec o m e the s a m e . With C h l o r a m i n e T ( G r a p h C) and S u c c in c h lo r im id e (Graph D), b o th co nta in in g 0.05 p e r c e n t a v a ila b le c h lo r i n e , the r a t e of d i s ­ in fectio n a t the a c i d pH is ex cee din gly g r e a t e r than at the a l ­ k ali ne pH. Within the 30—m inute e x p o s u r e p e r i o d th e se com­ pounds a t pH 9.0 did not effect as g r e a t a kill as they did at pH 5.0 in c o n t r a d i s t i n c t i o n to the h y p o c h lo rite . This d iff e re n c e would a p p e a r to be r e l a t e d to the d is s o c i a t i o n of th e s e o rg a n i c co m p o u nd s a t t h e s e pH va lue s to yield hy po ch lorite ion and s u b ­ seq u en t ly the f r e e c h l o r i n e . In F i g u r e 19A, the r a t e s of d is in fe c tio n p r o d u c e d by 1.0 p e r c e n t p he no l a t pH 5.0 and 9.0 a r e shown. T h e r e is a high r a t e of k ill in the f i r s t m inute and the r a t e then d e c r e a s e s at (A) M/2 Phosphate Buffer (B)0.03% Sod. Hypochlorite 8 r~\ to k_ O V) > > -o ~ry 7 o* o _J 6 O 10 20 min. 30 20 min. 30 (D)0.05% Succinchlorimide (0)0.05% Chloramine T I— V -CX. —o X) o> min. 30 20 min. 30 Figure I8-A,B,C,D. The rate of reduction of the bacterial population of chicken feces at pH5.0 (— ) and pH9.0(— *), temperature 275°C. The concentration of the chlorine compounds is given as percent available Cl2. 61 succeedin g tim e intervals. Under these c o n d iti o n s , the h y d r o g e n ion c o n c e n t r a t i o n d o e s not a p p e a r to a ff e c t the r a t e of d i s i n f e c ­ tio n of p h e n o l . R o c c a l a t 0 .0 2 p e r c e n t c o n c e n t r a t i o n g iv e s s u lt s to t h o s e of p h e n o l, a s the r a t e is the a t pH 5.0. rate power, re­ At pH 9.0 of tim e tha n is 19C the e f f e c t of 0.2 p e r c e n t m e r t h i o l a t e on the d i s i n f e c t i o n of the f e c e s r e a d i l y be 19B. s l i g h t l y h i g h e r in the e a r l y i n t e r v a l s In F i g u r e ( aqueous) shown in F i g u r e sim ilar is shown. It c a n s e e n t h a t t h is c o m p o u n d h a s v e r y li tt le d is in f e c t i n g s c a r c e l y b e t t e r th a n a lk a l i n e p h o s p h a te b u f f e r al one. The c h a n g e s in the b a c t e r i a l f l o r a of the f e c e s following disinfection. Colonies w e re r a n d o m l y p ic k e d f r o m the p l a t e s in the p r e c e d i n g experim ents. s l a n t s of s t e r i l e TGE a g a r and c h e c k e d f o r p u r i t y by s t r e a k i n g on s t e r i l e p l a t e s of the sam e T h e s e f is h i n g s w e r e p la n t e d on com position. The c u l t u r e s then e x a m in e d m ic r o s c o p i c a l l y as g r a m - s t a i n e d wet m ounts to o b s e r v e m otility. a b i l i t y to p r o d u c e c a t a l a s e sm ears w e re a nd as T h ey w e r e t e s t e d f o r t h e i r and to f e r m e n t B r i l l i a n t G r e e n L a c ­ t o s e B il e b r o t h in 48 h o u r s . T w en ty c u l t u r e s f r o m the c o n t r o l (A) (8) 0 .0 2 % Roccal O 20 1.0% Phenol '> 6 if) \_/ 0 10 .2 0 min. 30 10 mm. 30 (C )0 .2 % Merthiolate < /> w >7 — — —o -- CO 0 10 20 min. 30 Figure I9-A,B,C. The rate of reduction of the bacterial population of chicken feces at pH 5 0 (— ) and pH9 . 0 temperature 275°C. 62 p l a t e s w e r e e x a m i n e d and ten c u l t u r e s f r o m e a c h of the d i s i n ­ fectant tre a tm e n ts . The s i g n i f i c a n t findings f r o m th is c u r s o r y e x a m in a t i o n of the b a c t e r i a l f l o r a r e v e a l e d th a t in the o r i g i n a l f l o r a the spore-form ing r o d s c o m p r i s e d 20 p e r c e n t of the i s o l a t e s . F o ll o w i n g t r e a t m e n t with iodine c o m p o u n d s, c h l o r i n e com p o un ds , p h eno l a nd R o c c a l the p r o p o r t i o n of s p o r e - f o r m i n g r o d s i n c r e a s e d to 50 to 90 p e r c e n t . A fter 30 m in u te s t r e a t m e n t with R o c c a l at pH 9.0, 40 p e r c e n t of the r e s i d u a l p o pu lation w e r e slow l a c t o s e - f e r m e n t i n g c o l i f o r m o r g a n i s m s a s c o m p a r e d to 20 p e r c e n t of the o r i g i n a l p o p u l a t i o n as c o l i f o r m o r g a n i s m s w hich f e r m e n t e d lactose prom ptly. The c o m p o s i t i o n of the o r i g i n a l b a c t e r i a l f l o r a of the c h ic k e n f e c e s did n o t d i f f e r m a r k e d l y f r o m the c o m p o s i t i o n s n o te d by E m m e l (46) and by J o h a n s s o n , et al_. (47). DISCUSSION " I t is c h a r a c t e r i s t i c of the a d ­ v a n c e of s c i e n c e th a t l e s s and l e s s is found to be d a tu m , and m o r e and m o r e is found to be in feren ce." B ertra n d R ussell The M e a s u r e m e n t of P e n e t r a b i l i t y In the e x p e r i m e n t a l s e c t i o n the r e s u l t s o b ta in e d with the "penetube" technic been p re se n te d . a n d the d i s i n f e c t i o n of c h ic k e n f e c e s h ave It i s o b vio u s t h a t in the "penetube" tech ni c the d if f u s i o n of a d i s i n f e c t a n t into an a g a r g el c o lu m n p e r m i t s m e a s u r e m e n t of a l i n e a r d i s t a n c e t r a v e l e d by th a t d i s i n f e c t a n t . The e n d p o i n t m e a s u r e d i s no t n e c e s s a r i l y the full d i s t a n c e t h a t h a s b e e n t r a v e l e d b y a l l m o l e c u l e s of the d i s i n f e c t a n t but t hi s e n d p o in t d o e s r e p r e s e n t the p o in t w h e r e a m inim al c o n c e n tra ­ t io n of t he d i s i n f e c t a n t h a s b e e n l e t h a l to the i n d i c a t o r o r g a n ­ i s m in the p e r i o d of e x p o s u r e . reference T h i s po in t h a s b e e n ta k e n a s a p o i n t f o r the c o m p a r i s o n of the p e n e t r a t i o n of d i f­ f e r e n t d i s i n f e c t a n t s o r of one d i s i n f e c t a n t u n d e r d i f f e r e n t c on­ ditions. C om parisons h ave b e e n m a d e only w h e r e i n d i c a t o r o r g a n i s m w a s u s e d in e a c h c a s e . the same The p e n e t r a t i o n of 64 proteinaceous m a t r i c e s by d i s i n f e c t a n t s h a s a l s o bee n m e a s u r e d by m e a n s of t h i s technic and the d i f f e r e n t i a l e f f e c ts of the p r o ­ t e i n s on th e p e n e t r a t i o n w e r e n o te d abo ve . A few g e n e r a li z a tio n s are in o r d e r . In t h e s e p e n e t r a t i o n s t u d i e s i t w a s fo un d, p e r h a p s f o r t u n a t e l y f o r the s u c c e s s of the sanitarian, t h a t the h i g h e s t p e n e t r a t i o n o b ta in e d by d is in fe c t i n g compounds w a s a t the h y d r o g e n ion c o n c e n t r a t i o n s a t w hic h the compounds are m ost germ icidal. may to i n d i c a t e t h a t the e x t e n t of the z o n e s of inhibition a r e T h is c o r r e l a t i o n seem a func­ t io n of g e r m i c i d a l a c t i v i t y a lo n e an d n o t of p e n e t r a t i o n . t h i s i s n o t the c a s e c a n be s e e n f r o m w a s a d d e d to io d i n e s o l u t i o n s w ith r e s u l t i n g i n c r e a s e s z o n e s of i n h i b i t i o n . M arks io d id e i o n s a r e l e s s g e r m i c i d a l th a n m o l e c u l a r iodine, the g r e a t e r the s t u d i e s and S t r a n s k o v (48) T ha t in whic h iodide in the sh ow ed th a t t r i ­ z o n e s of i n h ib iti o n in the g e ls c o lu m n s so t h a t ca n n ot be due to a g r e a t e r g e r m i c i d a l a c t i v i t y of the t r i i o d i d e io n s . h a s b e e n d e m o n s t r a t e d (49) t h a t ion s diffuse m o r e t h a n do the c o m p l e m e n t a r y m o l e c u l e s . fused fu rth e r, It r a p id l y T r i i o d i d e ions the n dif­ a n d a l t h o u g h i n t r i n s i c a l l y l e s s g e r m i c i d a l tha n io d in e , c a u s e d a g r e a t e r zone of inh ib ition . We m u s t conc lude th a t t he t e c h n i c d o e s a c t u a l l y m e a s u r e not m e r e l y r e f l e c t d i f f e r e n c e s p e n e t r a b i l i t y and does in g e r m i c i d a l a c tiv ity . The d i s i n f e c t i o n of c h ic k e n f e c e s is not a s obviou s a t e s t of th e p e n e t r a t i v e p o w e r of a d is i n f e c t a n t . of b a c t e r i a in o r g a n i c p a r t i c l e s is not s t r i c t l y u n i f o r m a nd at l e a s t h a l f of the p o p u l a t i o n of the f e c a l the s u s p e n d i n g m e d i u m . freely suspension a re free t io n in the d i s i n f e c t i o n p r o c e s s . resem blance to the and M a l l m a n n (14). in The p e n e t r a t i o n of the b a c t e r i a , w h e t h e r s u s p e n d e d o r e n c l o s e d in p a r t i c l e s , a close The e n c l o s u r e In th is m u s t be a c o n s i d e r a ­ r e s p e c t the t e s t b e a r s s p e e d of d is in f e c t i o n t e s t of A n d e r s o n The t e s t e m p l o y e d in th is stud y has the added c o m p l i c a t i o n s of the p r e s e n c e of o r g a n i c and p a r t i c u l a t e m a t t e r and a n o n u n i f o r m p o p u l a tio n . in t h is t e s t system able p r o p e r t i e s , it m u s t have a c o m b in a t io n of highly d e s i r ­ and, so, th is t e s t is a r i g i d one, d e s ig n e d to w eed o u t “ wea k s i s t e r s . 11 a close resem blance in e n v i r o n m e n t a l reproducible as a rig o ro u s F o r a d i s i n f e c t a n t to be e f f i c i e n t The c o n d iti o n s of th is t e s t a l s o b e a r to m a n y p r a c t i c a l situations encountered s a n i t a t i o n and, i n a s m u c h as it y ie ld e d f a i r l y results in the a u t h o r ' s t e s t of d i s i n f e c t a n t s . han ds, m ay find a p p l i c a t i o n 66 The a g r e e m e n t of r e s u l t s o b ta in e d with d i s i n f e c t a n t s a s m e a s u r e d by th e d i s i n f e c t i o n of c h ic k e n f e c e s tube" and by the ’' p e n e ­ te c h n i c m a y be c o i n c i d e n t a l o r m a y be due to the c o m m o n r e q u i r e m e n t of p e n e t r a t i o n in b o th t e c h n i c s . however, t h a t the f e c a l d i s i n f e c t i o n te c h n ic penetrability, a l t h o u g h the "penetube" 1 do not b e l i e v e , is a s i m p l e t e s t of te c h n ic undoubtedly is such a te st. The The r a t i o n a l e be o b v io u s . "P enetube" T ec h n ic u n d e r ly i n g this te c h n ic m a y n ot a t f i r s t It m u s t be r e c a l l e d th a t the te c h n ic w a s d e s i g n e d to a c c o m p l i s h th e m e a s u r e m e n t of p e n e t r a b i l i t y while e l i m i n a t i n g o r av o id in g the o b j e c t i o n s p r o p o u n d e d in the In tro d u c tio n . The c h a r a c t e r i s t i c s d e s i r e d in a s y s t e m f o r m e a s u r i n g the p e n e t r a t i v e p o w e r s of d i s i n f e c t a n t s a r e m an ifold . The i n­ d ic a t io n t h a t p e n e t r a t i o n has o c c u r r e d should be the v isi b l e d e a t h of b a c t e r i a . T his d e s id e r a t u m has two i m p l ic a t io n s ; f i r s t i m p l i c a t i o n b e i n g t h a t an a u x a n o g r a p h ic c i le m e a s u r e m e n t of r e s u l t s the i n d i c a t o r o r g a n i s m s and the the te st provides fa­ s e co n d th a t the d e a t h of i m p l i e s th a t a s u ff ic ie n t c o n c e n t r a t i o n of the d i s i n f e c t a n t h a s b e e n a t a definite lo c u s f o r a su ffi c ie nt 67 l e n g t h of t i m e f o r d i s i n f e c t i o n to have o c c u r r e d . The b a c t e r i a to be k i l l e d m u s t be l o c a t e d in u n i f o r m d i s p e r s i o n in a definite c o l l o i d a l b a r r i e r of o r g a n i c o r p r o t e i n a c e r o u s m a t t e r , p r o v i d i n g a v o l u m e t h r o u g h w h i c h the diffusion o r p e n e t r a t i o n of the d i s ­ in f e c t a n t m u s t u n e q u i v o c a ll y o c c u r f o r the d e a th of the i n d i c a t o r b a c t e r i a to r e s u l t . The d i s p e r s e d o r g a n i s m s m u s t not be p e r ­ m i t t e d to m u l t i p l y d u r i n g the e x p o s u r e to the d i s i n f e c t a n t so t h a t a u n i f o r m c o n c e n t r a t i o n of c e l l s will be m a in ta i n e d , a ll of w h ich wi l l be a t the sa m e p h y sio lo g ical o r m orphogenetic s ta g e of d e v e l o p m e n t . T h i s l a s t r e q u i r e m e n t , th e n , will p r e ­ v en t the r e f l e c t i o n of d i f f e r e n t i a l g r o w th r a t e s the I n t r o d u c t i o n , a nd w i ll n e c e s s i t a t e a s d i s c u s s e d in a s u b s e q u e n t t r e a t m e n t to p e r m i t the v i s i b l e d e v e l o p m e n t of viable o r g a n i s m s . Th i s step of d e v e l o p m e n t c a n be c o m b in e d w ith a n e u t r a l i z a t i o n to e l i m i n a t e t h e e f f e c t s of b a c t e r i o s t a s i s . same s te p A n o th e r d e s i r e d a t ­ t r i b u t e of th e t e c h n i c m u s t be a c a p a c i t y f o r wide e x p e r i m e n t a l v a r i a t i o n of c o m p o n e n t s and p r o c e d u r e s . The s e p a r a t i o n of the s t e p s of d i s i n f e c t i o n and g r o w th p e r m i t th is p o s s i b i l i t y . In 1921, S t i l e s a nd A d a i r (50) r e p o r t e d m e a s u r e m e n t s of the c o e f f i c i e n t s of d i f f u sion of e l e c t r o l y t e s into g e ls w h e r e the gds w ere s u p p o r t e d in g l a s s tu b e s in a f a s h i o n s i m i l a r to the 68 ’• p e n et u b e " construction. T heir r e s u lts t e r m i n a t i o n s of d if fu sio n c o e f f i c i e n t s . are M ore among the b e s t de ­ r e c e n tl y , Davis et a l . (51) r e p o r t e d a m e t h o d f o r a n t ib io ti c t e s t i n g employing l i n e a r d if fu sio n of the a n t i b i o t ic into i n o c u l a te d n u t r i e n t a g a r in g l a s s capillaries. A c c o r d i n g to th e s e a u t h o r s , l i n e a r diffusion a s s a y a f f o r d s m a n y a d v a n t a g e s o v e r a g a r p l a te m e t h o d s . There are t h e r e f o r e p r e c e d e n t s f o r d e t e r m i n i n g diffu sio n o r p e n e t r a t i o n in a l i n e a r d i r e c t i o n in g l a s s t u b e s a s has bee n done in the "penetube" technic. The p r o b l e m of c a p i l l a r y c r e e p a g e of d is in f e c t a n t betw een the w a l ls of the g l a s s tube and the p e r i p h e r a l s u r f a c e of the a g a r c o lu m n s was not a s e r i o u s one. W here c a p i l l a r y c r e e p a g e was e n c o u n t e r e d the edge of the zone of inhib ition a p p e a r e d as a c y l i n d e r t r u n c a t e d a t an angle o r a s an i n v e r t e d cone. This o c c u r r e d in l e s s th a n two tub e s p e r th o u sa n d , and, i n a s m u c h as su c h t u b e s w e r e rejected, cap illary creepage cannot be c on­ s i d e r e d a s a s e r i o u s d i s a d v a n ta g e . The i n t e r p r e t a t i o n of the tube" results g a in e d using the "pene­ t ec h n i c l e a d to the g e n e r a l i z a t i o n th a t the exten t o r ra te of p e n e t r a t i o n of a d i s i n f e c ta n t u n d e r v ar y in g conditions of pH, tem perature, presence of a d ju nc t s u b s t a n c e s , e t c ., into gels of 69 v a r i e d c o m p o s i t i o n c a n be m e a s u r e d . One substantive o b s e r v a ­ tio n of b o th p r a c t i c a l and t h e o r e t i c a l i n t e r e s t is that, fo r any p a r t i c u l a r s e t of c o n d i tions in v e s tig a te d , th e r e is found some m i n im u m c o n c e n t r a t i o n of the d is in f e c ta n t giving a l m o s t m a x i ­ m a l e x t e n t of p e n e t r a t i o n . S tate d a n o th e r way, with in c r e a s i n g c o n c e n t r a t i o n s of the d is in f e c ta n t a point of dim inishing r e t u r n s s e t s in wh i c h c a n be r e a d i l y r e c o g n iz e d on in sp ec tion of the concentration curves. in T abl e T h e se ‘' p l a t e a u 11 va lue s a r e p r e s e n t e d 5, along with like va lue s obtained f r o m the c u r v e s of the d is i n f e c t i o n of c h i ck en f e c e s . The a g r e e m e n t of the va l ue s m a y only b e c o i n c i d e n ta l o r m a y indeed signify that the two d i s s i m i l a r technics a re c o r r e la te d . This c o r r e l a t i o n , if re a l , would sig nif y t h a t the d isi n fe c ti o n p r o c e s s in the e x p e r i m e n t s with c h i c k e n f e c e s wa s e n t i r e l y dependent upon the p e n e t r a b i l i t y of the d i s i n f e c t a n t . This view and som e m a t h e m a t i c a l f o r m u l a ­ t io n s c o n c e r n i n g p e n e t r a t i o n and d isin fe c tion p r o c e s s e s a r e d i s ­ c u s s e d below. It was b e l i e v e d th a t the am ount of di si n fe c ta n t diffusing into the a g a r c o l u m n s could be r e l a t e d to the extent of p e n e ­ t r a t i o n and to the n i t r o g e n content of the c olu m ns . Iodine can be r e a d i ly a s s a y e d , and thus in s y s t e m s w here colum ns containing TABLE 5 THE CONCENTRATION O F DISINFECTANTS AT WHICH DIMINISHING E F F E C T IV E N E S S BECOMES A PP A RE N T IN THE PE N E T RA TIO N O F GEL COLUMNS AND IN THE DISINFECTION O F CHICKEN FEC ES Compo un d P l a t e a u Value in P e r Cent C o n c e n tra tio n ------------------------------------------------------------------------From "Penetube" F r o m Disinfe cti on Experim ents of Chicken F e c e s Iodine (colloid) 0.05 0.05 Iodine ( L u g o l ’s) 0.05 0.05 Iodine ( T i n c t u r e ) 0.05 0.05 Sodium Hy p o c h l o r it e 0.05 0.1 Chloram ine 0.05 0.1 Succinchlorim ide 0.02 0.01 Roccal 0.02 0.02 Phenol 1.0 1.0 0.01 0.02 M e r th i o l a t e T (aq.) 70 a g a r and a g a r p lu s p r o t e i n add itive s w e r e e x p o se d to ide nt ic a l c o n c e n t r a t i o n s of iodine, the l o s s of iodine f r o m e a c h solution was d e t e r m i n e d . All t r i a l s gave id e n tic a l l o s s e s of iodine f r o m the s o lu tio n s and s t i l l the extent of p e n e t r a t i o n v a r i e d in the m a n n e r shown in the e x p e r i m e n t a l sec tion . The n itr o g e n d e ­ t e r m i n a t i o n was the s a m e f o r gelatine and the hum an s e r u m al b u m i n alth o ug h l e s s e r p e n e t r a t i o n o c c u r r e d in the l a t t e r s y s ­ tem s. It would then a p p e a r th a t the r a t e at which m o le c u l e s of iodine e n t e r the c olum n is s t r i c t l y a function of the c o n c e n t r a ­ tion of the iodine and the c r o s s - s e c t i o n a l a r e a of the c olumn in c o n ta c t with the s olu tion. The ex ten t of p e n e t r a t i o n would then be a function of the c o n c e n t r a t io n g r a d i e n t of the u n r e a c t e d iodine in the c o l u m n s . trinsically m ore less The hum an s e r u m alb u m in is then in­ r e a c t i v e with iodine than is gelatine and a g a r r e a c t i v e than e i t h e r . The D i s infe ctio n P r o c e s s as Affected by P e n e t r a b i l i t y The d a t a and o b s e r v a ti o n s r e c o r d e d in the e x p e r i m e n t a l se c ti o n m a y be c o n s i d e r e d in the light of the disinfection p r o c ­ e s s in g e n e r a l in the hope that som e additional light m ay be shed on t h is c o n t r o v e r s i a l su b jec t. 71 In th e e a r l y s t a g e s of the p r o c e s s of d is in f e c tio n o r g a n i s m (O) m a y be c o n s i d e r e d v e r s i b l e u n io n wi th a s f i r s t e n t e r i n g into a re­ m o l e c u l e s of the d i s i n f e c t a n t (D) a s follow s: _ ki [I] O + D ='—=■ 2 , , (OD); w h e r e fe c ta n t c o m p le x and k and k -L f o r w a r d and r e v e r s e (OD) is an o r g a n i s m - d i s i n - the e q u i l i b r i u m c o n s t a n t s of the L) reactions. Su c c ee d in g this union, the fa te of c o m p l e x (OD) i s d e a t h of the o r g a n i s m reaction rate the (O^) a t so m e s pe c i fi c (h^), h e n ce: kl [Ill O + D = = = = = 2 k3 _ (OD) ------------^ O at a s te a d y s t a t e , the d r a t e of f o r m a t i o n of (OD) m u s t eq ua l the r a t e of b re a k d o w n of the c o m p l e x in a c c o r d a n c e with the following equation: (1) k N c = k [OD] + k [OD]; w h e r e N I I b J is the n u m b e r of 1 f r e e o r u n r e a c t e d o r g a n i s m s , c the c o n c e n t r a t i o n of the d i s i n ­ f e c t a n t a n d [OD] the n u m b e r of o r g a n i s m s E q u a ti o n (1) r e a r r a n g e s in c o m p l e x f o r m a t i o n . to: N k3 + k2 (2) ^QQ~j = ----£--------- » and the total- n u m b e r of o r g a n i s m s is e q u a l to the s u m of the n u m b e r of f r e e (N^ o r g a n i s m s and those in c o m p l e x f o r m a t i o n (n e g le ctin g the n u m b e r dead); the e qua ti on 72 (2) b e c o m e s : (3) Nt jqqj = k2 + k3 ~ + I; and if the m a x im u m v eloc ity a f u n c ti o n of t he t o t a l p o p u latio n and any i n t e r m e d i a t e (K) is vel oc ity (k) a f u n c t i o n of the n u m b e r of o r g a n i s m s in c o m b in a tio n with the d i s i n f e c t a n t , then: N k + k K. t 2 3 (4) ~ = j-q u j * a n d l e tti n g -----~------- = a (a no the r co nst a n t ), t h e n on s u b s t i t u t i n g e q u a tion (4) and th is c o n s ta n t into eq uati on (3), e q u a t i o n (5) i s o b t ained: (5) k = a + c . We m a y now c o m p a r e t h is t h e o r e t i c a l t r e a t m e n t with the d a ta o b t a i n e d e x p e r i m e n t a l l y f r o m the f e c a l d is in f e c tio n e x p e r i ­ ences. The d e a t h of the b a c t e r i a in the f e c a l s a m p l e s r a p i d in the f i r s t m i n u te of e x p o s u r e tio n t h at, in t h i s t e r i a in the with r e s p e c t is e x t r e m e l y and if we m ak e the a s s u m p ­ s m a l l tim e i n t e r v a l , the r a t e of kill of the b a c ­ sam ple is l o g a r i t h m i c , then the death of b a c t e r i a to t i m e will r ia originally p re s e n t, be a function of the or— dN /dt = kN; w he re n u m b e r s of b a c t e ­ k is the co e ffi c i e nt of d i s in f e c t i o n , N the n u m b e r s of b a c t e r i a and t the tim e of exposure. I n t e g r a t i o n of th is e q u a tio n b e tw e en z e r o tim e and one m i n u t e y i e l d s : k = In N , 1 In N *, w h e re N and N 2 1 2 are the n u m b e r of b a c t e r i a o r i g i n a l l y p r e s e n t and the n u m b e r of survivors respectively. The value of k can then be found for any p a r t i c u l a r c o n c e n t r a t i o n of the d i s i n f e c ta n t a t c o n s ta n t t e m ­ perature a nd pH. In a c c o r d a n c e with Chick (52), the k va l ue s have b e e n d e t e r m i n e d f o r a n u m b e r of the com pounds f r o m the e x p e r i m e n t a l d a t a r e p o r t e d above. The value of e^ f o r the t r a n s ­ f o r m a t i o n of the l o g a r i t h m s to the b a s e 10 has b e e n o m i t t e d . On p lo tting t h e s e v a l u e s of k a g a i n s t the c o n c e n t ra ti o n , the c u rv e A of F i g u r e 20 f o r the d i s i n f e c ti o n of c h ic k e n f e c e s by L u g o l ' s Solutio n a t pH 5.0 a n d 27.5 C was o b ta ine d . C o n s id e ri n g the eq u a ti o n of t h i s c u r v e to be k — K c / ( a + be), a L i n e w e a v e r - B u r k p l o t (53) e q u a t e s the eq u a t i o n b e c o m e s : value of the t h r e e c o n s t a n t s k = 4 .6 c / ( 0 ,0 3 + c). tion i s shown in F i g u r e 20 as c u r v e B. s t a n t b in t h i s e q u a t i on is so tha t the The plot of this e q u a ­ T h a t the value of c o n­ unity p r o v i d e s a ch eck on the a g r e e ­ m e n t of the e m p i r i c a l e q u a tion with the t h e o r e t i c a l l y d e r i v e d eq u a t i o n (5). e q u a tio n a r e (Fig ure The e x p e r i m e n t a l d a ta and the plot of the e m p i r i c a l in v e r y c l o s e a g r e e m e n t . 20, c u r v e C) u n d e r the s a m e Data ob ta ine d with phenol c on ditions do not follow the k O' 0.05 0.5 1.0 c. 0.15 1.5 0.2 2.0 Figure 20. The rate of disinfection (k in log of kill min"1) at increasing concentration ( c ) of Lugol's Solution (curve A), and Phenol (curve C). 0 Q Curve B is plotted from k = 0 3 +c • 74 same form . T h i s type of deviation is explicable on the b a s i s of the i r r e v e r s i b l e r e a c t i o n in f o r m u l a [II] being dependen t upon a m u l t i m o l e c u l a r r e a c t i o n be tw een phenol and the o r g a n i s m s . Thus, at low c o n c e n t r a t i o n s of the d is in f e c ta n t the r a t e of in­ crease of the d e a t h v e l o c ity c o n s ta n t will not be as g r e a t a s at in term ediate concentrations. Th is is tan tam ou nt to saying t h at p henol h a s a high c o e ffi c ie n t of dilution. The m a t h e m a t i c a l t r e a t m e n t of s u c h s i t u a t i o n s is quite co m p lex , but can be done in the s a m e f a s h i o n a s the t r e a t m e n t of de v iate d a d s o r p t io n i s o ­ th e r m s where ' ’p a c k i n g 11 of m o l e c u l a r l a y e r s occurs (54). This t r e a t m e n t will d i s c l o s e the b e h a v io r of phenol to be a spe c i a l c a s e following the s a m e g e n e r a l equation. It m u s t be n o t e d that equation (5) is a r e p r e s e n t a t i o n of the M i c h a e l i s - M e n t e n e quation (55) f o r e n z y m a tic r e a c t i o n s and, indeed , wa s d e r i v e d in analogo us fas h io n . In this d e r iv e d e q u a ­ tion, the c o n s t a n t K r e p r e s e n t s the m a x i m u m r a te of d is in f e c ­ tion a tt a i n a b l e u n d e r the p r e v a il i n g conditions and the c o n s t a n t a r e p r e s e n t s the c o n c e n t r a ti o n of the d is in f e c ta n t at which half the m a x i m u m r a t e of d i s in fe c tio n o c c u r s . It ca n be s e e n t hat w he re d isin fe c tio n p r o c e e d s in a c ­ c o r d a n c e with t h is k i n e t ic p i c t u r e , an o r g a n i s m - d i s i n f e c t a n t 75 c o m p l e x c a p a b l e of d i s s o c i a t i o n m u s t be f o r m e d . If the f i r s t step in d i s i n f e c t i o n i s then p o s tu la t e d to be a c o lli si o n be tween m o l e c u l e s of the d i s i n f e c t a n t and viable o r g a n i s m s , this c ol li s ion n e e d not n e c e s s a r i l y r e s u l t in an i m m e d ia t e irreversible reac­ tio n w ith c o n s e q u e n t d e a th of the o r g a n i s m . If the diffusion of the d i s i n f e c t a n t s c a n p r o c e e d in any m e a n f r e e path, then the r a t e a t w h i c h m o l e c u l e s of the d is in f e c ta n t will be d e s o r b e d f r o m the s u r f a c e will c o r r e s p o n d to the e q u il i b r iu m c o n s t a n t f o r the d i s s o c i a t i o n of the o r g a n i s m - d i s i n f e c t a n t co m plex . In th is study of the d i s i n f e c tio n of chicken f e c e s , w h e re the p e n e ­ t r a t i o n of the p a r t i c l e s e n c lo si n g the o r g a n i s m s has been ma de a f a c t o r in the l i m i t a t i o n of the d isi n fe c tio n p r o c e s s , the a p­ p e a r a n c e of a r e l a t i o n s h i p to this p o s t u l a t e d d isi n fe c tio n m e c h ­ a n i s m h a s b e c o m e e v i de nt. process This im p li e s that the disinfe c t ion and the c h a r a c t e r i s t i c c u r v e s ob tain e d during the c o u r s e of d i s in f e c t i o n a r e the r e s u l t of a f i r s t o r d e r r e a c t io n r a t e at low c o n c e n t r a t i o n s of the d is in f e c t a n t and a z e r o o r d e r r e a c t i o n r a t e a t high d i s i n f e c t a n t c o n c e n t r a t i o n s . This m e c h a n i s m may be f u r t h e r c o m p l i c a t e d by the p r e s e n c e of p o l y m o l e c u la r r e a c ­ tio ns and by a n o n u n i f o rm d i s t r i b u t i o n of r e s i s t a n c e of the o r ­ g a n i s m s to the a c t i o n of the di si n fe c ta n t. It is obvious that, in 76 the c i t e d e x p e r i m e n t s , t he p o p u la ti o n of m i c r o b e s was a m i s c e l ­ l a n e o u s o ne a n d t h a t g r a d e d d e g r e e s of r e s i s t a n c e an d d id o c c u r . m u s t have H o w e v e r , the p e r c e n t a g e of r e s i s t a n t o r g a n i s m s p r e s e n t w a s o n l y a p p r o x i m a t e l y 0.01 p e r c e n t of the to ta l p opu ­ l a t i o n an d a p p a r e n t l y t h i s f a c t o r i s of a l e s s e r i m p o r t a n c e t ha n m i g h t be e x p e c t e d . I t m u s t be a d m i t t e d t h a t the d e r i v a t i o n of e q u a tio n (5) was not p e r f e c tly organism s rigorous, was neglected. d e r iv e d equation f r o m i n a s m u c h a s the n u m b e r of d e a d The a g r e e m e n t of the e m p i r i c a l l y the e x p e r i m e n t a l f a c t s with the f o r m of the t h e o r e t i c a l l y d e r i v e d e q u a tio n would in d ic a te th a t th is n e g l e c t w as n o t d i s a s t r o u s . T h is c a n be ta k e n to m e a n th a t the i n t e r ­ a c t i o n of the d e a d o r g a n i s m s w ith the r e m a i n i n g the system c o m p o n e n t s of in a n y s m a l l t i m e i n t e r v a l is nil. A n o t h e r i n t e r p r e t a t i o n c a n be p l a c e d upon the c o i n c i d e n c e of f o r m of th e e q u a t i o n s e x p e r i m e n t a l l y and t h e o r e t i c a l l y d e r i v e d f o r t he d i s i n f e c t i o n p r o c e s s . The r e s e m b l a n c e of the e q u a t i o n s to th e L a n g m u i r A d s o r p t i o n I s o t h e r m is quite good. The n o n - i d e n t i f i c a t i o n of c o n s t a n t a with unity m a y m e r e l y be a c o n s e ­ q u e n c e of th e u n i t a g e e m p lo y e d . (23) t h a t y e a s t c e l l s rem ove The o b s e r v a t i o n of K n a y s i iodine f r o m so lu tio n in a c c o r d a n c e 77 w it h an a d s o r p t i o n i s o t h e r m m i g h t be r e a d i l y ta k e n as e v i de n c e t h a t the d i s i n f e c t i o n m e c h a n i s m p r o c e e d s in the n o te d o r d e r a s a r e s u l t a n t of the a d s o r p t i o n m e c h a n i s m . this r e s e m b la n c e is one n e c e s s a r y C ontrariw ise, co n d itio n f o r a l t hough such a m echan­ i s m , th is e x p l a n a t i o n i s n o t s u f f ic ie n t to e x p la in the w e l l -k n o w n (but p o o r l y u n d e r s t o o d ) r e v e r s a l e f f e c t s o b ta in a b le with m e r c u r i a l s an d q u a t e r n a r y a m m o n i u m c o m p o u n d s . The m e c h a n i s m p r o c e e d ­ ing t h r o u g h a n o r g a n i s m —d i s i n f e c t a n t c o m p l e x s u f f ic e s b e t t e r to e x p l a in a l l the kn own f a c t s c o n c e r n i n g d i s i n f e c t i o n and a ff o r d s a r e a d y a n s w e r to the r o l e of p e n e t r a t i o n by the d i s i n f e c t a n t p r e c e d e n t to the e n s u i n g l e t h a l r e a c t i o n s . T h e k i n e t i c s of c h e m i c a l a d s o r p t i o n m a y give us a d d i ­ t io n a l i n s i g h t in to the apparent fro m to r o le of p e n e t r a t i o n in d i s i n f e c ti o n . It is i n s p e c t i o n of the c u r v e s p r e s e n t e d in F i g u r e s 10, t h a t t h e r e is a re se m b la n c e to a d s o r p t i o n i s o t h e r m s . 6 In a c c o r d a n c e wi th the c u s t o m a r y d e r i v a t i o n of the L a n g m u i r A d­ sorption Iso th e rm (54), an a lo g y l e a d s to the d e r i v a t i o n of an e q u a ti o n of the s a m e f o r m f o r the i n f e c t a n t in the tio n (6); k "penetube" te c h n ic . r a t e of p e n e t r a t i o n of a d i s ­ T h is t r e a t m e n t y ie l d s e q u a ­ = K c / ( b + c), w h e r e k^ is the le n g th of the i n h i b it i o n o b t a i n e d in 24 h o u r s following e x p o s u r e to the zone of 78 d i s i n f e c t a n t a t c o n c e n t r a t i o n c a t a c o n s ta n t t e m p e r a t u r e and pH. K t h e n r e p r e s e n t s the m a x i m u m r a t e of p e n e t r a t i o n ob­ ta i n a b l e u n d e r the c o n d itio n s of the t e s t and b r e p r e s e n t s the c o n c e n t r a t i o n a t w h i c h half the m a x i m a l r a t e is obtained . As in the p r e v i o u s c a s e f o r d is i n f e c t io n of ch ic k e n f e c e s , the e m ­ p i r i c a l d a t a c a n be f i t t e d to t h is e qu ation upon e v a lu a tio n of the c o n s t a n t s K a nd b. In F i g u r e 21, the e m p i r i c a l data fo r the r a t e of p e n e t r a t i o n ( e x p r e s s e d as m m p e r 24 hr.) of Iodine T i n c tu r e a t v a r y i n g c o n c e n t r a t i o n s into a g a r containing 1.0 p e r c e n t g e l a t i n e a nd 0.5 p e r c e n t p o t a s s i u m iodide a r e p lo tt e d ( cu r v e A). F r o m t h e s e d a ta , the e q ua tion is o b t ai n e d , a p l o t of w hich a p p e a r s B. in the = 22 .7c/( 0 .00 5 + c) s a m e f ig u r e a s c u rve It is t e m p t i n g , t he n, ag a in to a t t e m p t to explain dis inf e c t i on m echanics a s b e i n g e n t i r e l y de p en de n t upon the r a t e of p e n e t r a ­ ti o n of t he d i s i n f e c t a n t in a c c o r d a n c e with equation (6). On the s a m e g r o u n d s a s b e f o r e , th is is n e i t h e r n e c e s s a r y n o r a r e t h e r e su f f i c ie n t b a s e s f o r so doing. It m a y only be a co incide nc e tha t the i n t e r c o n n e c t e d p r o c e s s e s follow the sa m e rate p ro c e s s . A d i r e c t c a u s a t i o n c o n n e ctio n b e tw e e n two se q u e n tia l ev en t s is not su f f ic i e n t in s t e a d y s t a te m e c h a n i c s fo r a single s t r u e d a s the s ole step to be c o n­ r a t e - d e t e r m i n i n g f a c t o r in the o v e r - a l l — o 20 .02 .03 c .04 .05 Figure 21. The rate of penetration (kp in mm.) at increasing concentration (c) of iodine in agar +1.0% gelatine and 0.5% Kl. Curve Aexperimental data, Curve B: calculated from « 22.7c p=.005+ c 79 process. I t a p p e a r s to th is a u t h o r th a t the k i n e ti c s of de a t h of m i c r o o r g a n i s m s d u r ing c h e m i c a l d is in fe c tio n m u s t be d i c ­ ta te d by the a d s o r p t i o n of the d is in f e c ta n t f r o m the e n v ir o n ­ m en t , the s u b s e q u e n t f o r m a t i o n of a d is s o c ia b l e com plex, p e n e ­ t r a t i o n of the c y t o p l a s m and a c o n se q u e n t i r r e v e r s i b l e t h e r e i n wi th u l t i m a t e d e a th of the o r g a n i s m . Th.' reaction s u r v iv a l c u r v e s m u s t be a f u n cti on of t h e s e p a r a m e t r i c functions and can l e a d to a r e p r e s e n t a t i o n of f i r s t and z e r o o r d e r r e a c t i o n r a t e chanics. The p o s s i b i l i t y of h i g h e r o r d e r me­ r e a c ti o n r a t e s is not ex cl u d ed , n o r any c o m b in a tio n with the l o w e r o r d e r r e a c ti o n rates. The n o n u n i f o r m d i s t r i b u t i o n of r e s i s t a n c e in the popu­ lati o n e x p o s e d to the d i s in f e c ta n t is c e r t a i n l y a f a c t o r inf lue nc ­ ing the e v e n t s p o r t r a y e d . T his d is tr i b u t i o n c a n be like ne d to the d i s t r i b u t i o n of a c t i v a tio n e n e r g i e s among the m o le c u le s r e ­ ac ti n g in any c h e m i c a l r e a c t i o n and so the m e c h a n is t ic a p p r o a c h e n v is i o n e d h e r e i s c a p a b le of r a t i o n a l i z a t i o n with the biologic a l considerations. The P e n e t r a t i v e P o w e r of Colloidal Iodine As h a s b e e n n oted in the e x p e r i m e n t a l section, the p e n e ­ t r a t i v e p o w e r of Co l lo id al Iodine has bee n shown not to exc e e d 80 t h a t of o t h e r iodine p r e p a r a t i o n s with which it h a s been c o m ­ p a r e d u n d e r the s a m e c o n d i ti o n s . T h e se findings a r e in d i s a ­ g r e e m e n t wi th t h o s e of M a llm a n n and C h a n d le r (7) on the d i s i n ­ f e c t io n of a v i a n f e c e s and of A n d e r s o n and M allm an n (14) on the in h ib it io n of s p o r u l a t i o n of c o c c i d i a l o o c y s t s . m e n ts w e r e T h e se d i s a g r e e ­ shown to be a fu n c tion of the pH of the v a r i o u s p r e p a r a t i o n s a s t e s t e d a g a i n s t the o o c y s ts and f e c a l s u s p e n ­ si o n s. When t e s t e d a t equal h y d r o g e n ion c o n c e n t r a t i o n s , C o l ­ lo i d a l Iodine a n d L u g o l ' s Solution w e r e shown to be equall y a c ­ tive in a l l t e s t s y s t e m s . Co l l o i d a l Iodine do es not have any i n t r i n s i c a l l y hi g h e r p e n e t r a t i v e p o w e r t h a n o t h e r iodine p r e p a r a t i o n s . The p r e p a r a ­ ti on a s m a r k e t e d is e x t r e m e l y acid, and b e c a u s e of this a c i dit y ex h i bi t s h ig h p e n e t r a b i l i t y and g e r m i c i d a l ac tiv ity . Iodine, in the a u t h o r ’ s e x p e r i e n c e , has b e e n the d is in f e c ta n t p o s s e s s i n g the b e s t p e n e t r a t i v e p o w e r of the v a r i o u s d is in f e c ta n ts t e s t e d . C o l lo i d a l Iodine is m o r e L u g o l 1s Solution o r Iodine a re acidula ted. e f f ic ie n t in this r e s p e c t than a r e T i n c tu r e u n l e s s the se p r e p a r a t i o n s The low tox icity and low i r r i t a n t n a tu r e of C o ll oi d a l Iodine in c o m b in a t io n with the high g e r m i c i d a l and 81 p e n e t r a t i v e p o w e r s of iodine m ak e C ollo ida l Iodine a d e s i r a b l e a d j u n c t to a ny h o u s e h o l d f i r s t a id k it. F o r environm ental in an y f o r m s a n i ta t io n , is its high c o s t a s the only o b je c tio n to iodine c o m p a r e d to c h l o r i n e . w o u ld s e e m to b e , on o t h e r g r o u n d s , m o r e sa n ita tio n than c h lo r in e . effective. desirable for general Iodine p r e p a r a t i o n s a r e th a n c h l o r i n e p r e p a r a t i o n s Iodine m ore stable a t the a c i d pH v a lu e s w h e r e bot h a r e Chlorine compounds, because of this la b il it y , a r e g e n e r a l l y m a r k e t e d a s a l k a li n e p r e p a r a t i o n s , a co n d itio n i n c o m ­ p a t i b l e w i th h i g h g e r m i c i d a l a c t i v i t y . to t h i s a u t h o r t h a t if c r u d e at reaso n ab le It would s e e m iodine p r e p a r a t i o n s reasonable could be m a r k e t e d c o s t io d ine would be the d i s i n f e c t a n t of c h oi c e f o r m a n y j o b s now p r e e m p t e d by c h l o r i n e . i n v e s t i g a t e d a p r e p a r a t i o n of c r u d e w i th g oo d r e s u l t s . in the p r e s e n c e G e r s h e n f e l d and F o x (56) iodine d i s s o l v e d in a l k a l i P e r h a p s t h i s p r e p a r a t i o n co uld be a c i d u l a t e d of s o m e p r o t e c t i v e substance to yield a c r u d e io d in e h y d r o s o l of l o w c o s t f o r use a s an e n v i r o n m e n t a l d i s ­ infectant o r sanitizer. SUMMARY A l i n e a r d i f f u s i o n m e t h o d em p loy ing a g a r gel s t a t i o n a r y p h a s e s h a s b e e n d e v e l o p e d f o r the m e a s u r e m e n t of the p e n e t r a ­ b i l i t y of c h e m i c a l d i s i n f e c t a n t s . arates This "penetube" technic sep­ the d i s i n f e c t i o n p r o c e s s f r o m the g r o w th of the i n d i c a t o r organism s a nd p e r m i t s the d i s t i n c t i o n of b a c t e r i c i d a l and b a c ­ teriostatic effects. disinfectants w ere O b s e r v a t i o n s on the p e n e t r a t i o n of v a r i o u s m a d e u n d e r d i f f e r e n t c o n d iti o n s by m e a n s of th is n e w t e c h n i c . The r e l a t i o n of the p e n e t r a t i v e p o w e r s of d is in f e c t a n t s a s d e t e r m i n e d by the chicken f e c e s 1' p e n e t u b e 11 te c h n ic to the d i s i n f e c t i o n of was in v estig ated . A h y p o t h e s i s c o n c e r n i n g the r o l e of p e n e t r a t i o n in the d i s i n f e c t i o n p r o c e s s w as f o r m u l a t e d . T h is h y p o t h e s i s c o n c e r n s the f o r m a t i o n of a d i s s o c i a b l e o r g a n i s m disinfectant com plex as a n e c e s s a r y the d i s i n f e c t i o n p r o c e s s reaction m echanism s. a s a c o m b in a t io n of z e r o and f i r s t o r d e r The p o s s i b l e i n f e c ta n t m o l e c u l e s by the o r g a n i s m s resistance ste p in the a s s u m p t i o n of r o l e s of a d s o r p t i o n of d i s ­ and of the d i s t r i b u t i o n of to d i s i n f e c t i o n am o n g the c o m p o n e n t p o p ulati on a r e a l s o d i s c u s s e d in r e l a t i o n to the h y p o t h e s i s . 83 The high p e n e t r a b i l i t y p r e v io u s l y c la im e d f o r Colloidal Iodine wa s shown to be a function of its acid condition r a t h e r than an i n h e r e n t p r o p e r t y of Colloidal Iodine as such. BIBLIOGRAPHY Chick, H., a nd M a r t in , C. J . The P r i n c i p l e s Involved in the S t a n d a r d iz a t io n of D is in f e c ta n ts and the Influence of O r g a n i c M a t t e r upon G e r m i c i d a l Value. Jour. Hyg. 8; 654, 1908. G arrod, L. P . T e s tin g of D is in fe c ta n ts in the P r e s e n c e of O r g a n i c M a t t e r . J o u r . Hyg. 35: 219, 1935. Salle , A. J . a n d Catlin, B. W. P r o f i l e E v a lua tion s of G erm icides. J o u r . Am. P h a r m . A s s o c . , Sci. Ed. 36: 129, 1947. Wyss, O. C h e m ic a l D is in f e c ta n ts . 2: 413, 1948. Ann. Rev. M icrobi ol . B r u i n s , H. R. C oe fficients of Diffusion in L iq u id s. C r i t . T a b l e s 5: 63, 1929. Int. Vincent, M. H. Sur l a D e sin fe ctio n des M a t i e r e s F e c a l e s N o r m a l e s e t P a th o lo g iq u e s ; Etude de la Val e ur C om p a r e e d e s D iv e r s D e si n f e c ta n ts C h im iq u e s A c t u e l s . Ann. l ’I n s t. P a s t . 9: 1, 1895. M a l l m a n n , W. L ., and C h a n d le r, W. L. On the D i s i n fe c ­ tio n of A v ian F e c a l M a t e r i a l . J o u r . Am. Vet. Med. A s s o c . 36; 190, 1933. J o h n s , C. K. A Method f o r A s s e s s i n g the Sanitizing E ff i ­ c i e n c y of Q u a t e r n a r y A m m o n iu m and Hypoc hlorit e P roducts. Am . J o u r . Pub. H ea lth 37: 1322, 1947. Se e lig , M. G., and Gould, G. W. O s m o s i s as an I m p o r ­ t a n t F a c t o r in the A ction of A n ti s e p ti c s . Surg. Gynec. O bs t. 12: 262, 1911. 85 10. N yiri, W., a n d J a n n i t t i , M. About the F a t e of F r e e Iodine upo n A p p l i c a t i o n to the U n b ro k e n A n i m a l Skin. An E x p e r i m e n t a l Study. J o u r . P h a r m . Exp. T h e r . 4j4: 85, 1932. 11. K a r n s , G. M. Th e B e h a v i o r of Iodine Solutions at Li qui d So lid I n t e r f a c e s . I. The Wetting P o w e r of Iodine f r o m V a r i o u s A n t i s e p t i c S o lu tio n s. J o u r . Am . P h a r m . A s s o c . 2J_: 779, 1932. 12. K arns, 13. B is k i n d , M. S. P e n e t r a t i o n t h r o u g h T i s s u e of Iodine in D i f f e r e n t S o lv e n t s . P r o c . Soc. E x p . Biol, and Med. 30: 35, 1932. 14. A n d e r s o n , L . P . , and M a ll m a n n , W. L . The P e n e t r a t i v e P o w e r s of D i s i n f e c t a n t s . Mich. A g r . Exp. Sta ., T e c h . B u i . 183, 1943. 15. E t c h e l l s , J . L . , a nd F a b i a n , F . W. T e c h n ic f o r Skin I r ­ ritation T ests: T e c h n ic f o r D e t e r m i n i n g I r r i t a t i n g E f f e c t of C h e m i c a l C o m p o u n d s . J o u r . Ind. Hyg. 17: 298, 1935. 16. B e i j e r i n c k , M. W. V e r s l . en Meded. Kon. Akad. v. W e t e ns h., Afd. N a t u u r k . , A m s t e r d a m 3de R e e k s , 6; 123, 1889. c i t e d i n : van I t e r s o n , G. J r . , den D o o r e n de Jong, L . E . , a n d K l u y v e r , A. J . M a r t i n u s W illem B e i j e r i n c k . M a r t i n u s Nijhoff, The Hague, 1940. 17. K e n d a l l , A. I., a n d E d w a r d s , M. R. A M ethod f o r D e t e r ­ m i n i n g th e G e r m i c i d a l Value and P e n e t r a t i n g P o w e r of L i q u i d D i s i n f e c t a n t s . J o u r . Inf. Dis. 8; 250, 191 1. 18. C a r n o t , P . , a nd D um ont, J . T ec h n iqu e d 'E t u d e de l a P e n e ­ t r a t i o n d e s A n tis e p ti q u e s en M ilieux S o lid e s. C om pt. Ren d. Soc. B io l., 81: 1199, 1918. G. M., C r e t c h e r , L . H., and B e a l , G. D. II. The I m p o r t a n c e T h e r e o f in the P r e p a r a t i o n of New Iodine A ntiseptics. J o u r . A m . P h a r m . A s s o c . 21: 783, 1932. 86 19. R u e h l e , G. L . A., and B r e w e r , C. L . U nited S ta te s F ood a n d D r u g A d m i n i s t r a t i o n M ethod s of T e s tin g A nt i ­ s e p tic s and D isin fe c ta n ts. USDA C i r c . 198, 1931. 20. C h a n d l e r , W. L . On the V e r m i c i d a l Value of Iodine. A g r . Ex p . Sta. Q u a r . Bui. 7: 1, 1924. 21. K n a y s i , G. D i s i n f e c t io n I. The D e v e lo p m e n t of Knowledge of D i s i n f e c t io n . J o u r . Inf. Dis. 4 7 : 293, 1930. Mich. 22. K n a y s i , G . , a n d G o rd o n , M. II. The M a n n e r of D e a t h of C e r t a i n B a c t e r i a an d Y e a s t s when S u b je c te d to Mild C h e m i c a l and P h y s i c a l A g e n ts . J o u r . Inf. D i s. 47: 303, 1930. 23. K n a y s i , G. III. J o u r . Inf. The Taking up of Iodine by Y e a s t C e l l s . D is. 4 7 : 318, 1930. 24. K n a y s i , G. IV. Do B a c t e r i a Die L o g a r i t h m i c a l l y ? Inf. D i s . 47: 322, 1930. 25. K n a y s i , G. V. Som e P r o p e r t i e s of F r e q u e n c y C u r v e s and T h e i r U s e in S tud ies of D is in f e c tio n . J o u r . Inf. D i s . 42: 328, 1930. Jour. 26. Ch ic k , H. An I n v e s t i g a t i o n of the L a w s of D isin fe c t i on . J o u r . Hyg. j8: 92, 1908. 27. R a h n , O. I n j u r y and D e a th of B a c t e r i a by C h e m i c a l A g e n t s . B i o d y n a m i c a , N o r m a n d y , Mo. 1945. 28. F ish, 29. M a l l m a n n , W. L . P r a c t i c a l A s p e c t s of D is in fe c tio n . a nd S a n i t. C h e m , 2A (3): 141, 1948. 30. A m a n n , J . v. 6: 235, F. The E f fe c t of P h y s i c a l and C h e m i c a l Age nts on the O o c y s t s of E i m e r i a t e n e l l a . Sc ienc e 75: 292, 1931. U ltram ikroskopie 1910. d e r Jo d lo s u n g e n . Soap K olloid-Z. 87 31. B o r d i e r , H., a n d Roy, G. S ur l 'l o d e R e n d . 163: 567, 1916. 32. C h a n d l e r , W. L . , and M i l l e r , E. J . P h y s . C h e m . 31: 1091, 1927. 33. 34. B e n n e t , F . C. Co lloid al Iodine. 51, 1931. Colloidal. Compt. C o lloid a l Iodine. Am. Jo u r. P h a rm . Jour. 10 3: C h a n d l e r , W. L.., and F e r g u s o n , C. M. V e r m i c i d a l Iodine P reparatio n s. M ich. Sta. Bd. A g r . , Ann. R e pt. for y e a r ending Jun e 30, 1927, 311. 35. A l d e r m a n , E . M. (Chandler). V e r m i c i d a l Value of C olloidal Iodine T h e s i s (M.S.) Mich. Sta. Col., 1928. 36. C h a n d l e r , W. L . A d m i n i s t r a t i o n of Iodine V e r m ic i d e to Sheep. Mich. Sta. Bd. A g r ., Ann. Rept. f o r y e a r e nding J u n e 30, 1929, 159. 37. W e i s n e r , E. S. On the Value of C o llo id a l Iodine in the C o n t r o l of C o c c i d i o s i s in P o u l t r y and R a b b i t s . The­ s i s (M.S.) M ich. Sta. Col., 1928. 38. C h a n d l e r , W. L . C hickens. 1932. 39. W i ls o n , F . H. Stu d ies on the I n f e s t a t i o n s of H o r s e s . C o l . , 1939. 40. S t a f s e t h , H. J . On the C o n tr o l of T a p e w o r m In f e s t a t i o n in C h i c k e n s with N o te s on the P a th o lo g y of the I n t e s t i n e s of the H o s t s . Mich. A g r . Exp. Sta., T e c h . Bui. 148, 1935. 41. A n d e r s o n , L.. P . P e n e t r a t i v e P o w e r s of D i s in f e c ta n t s . T h e s i s (Ph.D.) Mich. Sta. Col., 1939. On the C o n tr o l of C e c a l C o c c i d i o s i s in Mich. A g r . Exp. Sta., T e c h . Bui. 127, T r e a t m e n t of H a b r o n e m a T h e s i s (M.S.) Mich. Sta. 88 42. G e r s h e n f e l d , L.., and Witlin, B. Iodine a s a n A n t i s e p t i c . An n . N. Y. Acad. Sci. 53, A r t . 1; 172, 1950. 43. N yiri, 44. M iller, E. J. W., a n d D ubois, L. T o x i c i t y of C o llo id a l Iodine. J o u r . Ana. P h a r m . A s s o c . 20; 546, 1931. P e r s o n a l C om m unication, 1951. 45. W i l l a r d , H. H., and F u r m a n , N. H. E l e m e n t a r y Q ua nt i t a t i ve A nalysis. 3rd Ed. D. van N o s t r a n d Co., Inc ., New Y o r k , 1940. 46. E m m e l , M. W. B a c t e r i a l F l o r a in F e c e s of the N o r m a l Fow l. J o u r . Inf. Dis. 4 6 ; 293, 19 30. 47. J o h a n s s o n , K. R . , S a r l e s , W. B., and S h a p ir o , S. K. The I n t e s t i n a l M i c r o f l o r a of H en s a s In fl u e n c e d by V a r i o u s C a r b o h y d r a t e s in a B i o t i n - D e f i c i e n t R a tio n. Jour. B a c t . 5 6 ; 619, 1948. 48. M a r k s , H. C . , a nd S t r a n d s k o v , F . B. H a lo g e n s and T h e i r Mod e of A ction. Ann. N. Y. A ca d. Sci. 53, A r t . 1: 163, 1950. 49. W i l l i a m s , J . W., and Cady, L . C. M o l e c u l a r D iffus ion in So l u t i o n . Che m . Rev. 14; 171, 1934. 50. Stiles, W., a n d A d a i r , G. M. T he P e n e t r a t i o n of E l e c t r o ­ l y t e s in to G e l s . III. T he In flue nc e of the C o n c e n t r a ­ t i o n of t h e Gel on the C o e f f ic i e n t of Diffusion of Sodium C hloride. B i o c h e m . J o u r . 15; 620, 1921. 51. D avis, W. W., P a r k e , T. V., D aily, W. A ., Ru shton, L . M., a n d M c G u i r e , J . M. So m e New P r o c e d u r e s a nd In­ s t r u m e n t s U seful fo r M i c r o b i o l o g i c a l Antibioti c T e s t i n g by Diffusion M e th o d s . V. A T e s t P r o c e d u r e E m p l o y i n g L i n e a r D iffusion into I n o c u la t e d A g a r F ille d G lass C ap illaries. Jour. Am. P h a rm . A ssoc., S c i . E d . 39: 331, 1950. 52. C h i c k , H. The T h e o r y of D is i n f e c t i o n . t e r i o l o g y _f* 179, 1930. A S y s t e m of B a c ­ 89 53. L i n e w e a v e r , H., a n d B u r k , D. The D e t e r m i n a t i o n of E n ­ zyme D issociation C onstants. J o u r . A m . C he m . Soc. 56. 658, 1934. 54. B r u n a u e r , S. Th e A d s o r p t i o n of G a s e s and V a p o r s . I. P h y s ­ ical A dsorption. P rin c e to n U niversity P r e s s , Princeton, N. J . , 1943. 55. M i c h a e l i s , L.., a n d M e n te n , M. L,. Die K ine tik d e r I n v e r t i n wirkung. B i o c h e m . Z. 4 9 : 333, 1913. 56. G e r s h e n f e l d , L,., and F o x , D. The B a c t e r i c i d a l E f f i c i e n c y of C r u d e I odine in (0.1 N) A lk a li. Am. Jour. P h a rm . 120: 279, 1948.