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ABSTRACT

ON PERMUTATION PATTERNS, PINNACLE SETS, AND BACKBONES OF BIPARTITE
PROJECTIONS

By

Rachel Domagalski

This dissertation encompasses the study of two different fields, one regarding permutations in-

cluding pattern containment and pinnacle sets, and the other on weighted networks, specifically

bipartite projections and their backbones.

The study of pattern containment and avoidance for linear permutations is a well-established

area of enumerative combinatorics. A cyclic permutation is the set of all rotations of a linear

permutation. Callan initiated the study of permutation avoidance in cyclic permutations and

characterized the avoidance classes for all single permutations of length 4. We continue this

work. In particular, we establish a cyclic variant of the Erdős-Szekeres Theorem that any linear

permutation of length <= + 1 must contain either the increasing pattern of length < + 1 or the

decreasing pattern of length = + 1. We then derive results about avoidance of multiple patterns of

length 4. We also determine generating functions for the cyclic descent statistic on these classes.

We then study the pinnacle set, which is the value analogue of a well-studied permutation

statistic, the peak set. Let c = c1c2 . . . c= be a permutation in the symmetric groupS= written in

one-line notation. The pinnacle set of c, denoted Pin c, is the set of all c8 such that c8−1 < c8 > c8+1.

The classic peak set statistic consists of the positions of these values. The pinnacle set was

introduced by Davis, Nelson, Petersen, and Tenner who showed that it has many interesting

properties. In particular, they proved that the number of subsets of [=] = {1, 2, . . . , =} which can

be the pinnacle set of some permutation is a binomial coefficient. Their proof involved a bijection

with lattice paths and was somewhat involved. We give a simpler demonstration of this result which

does not need lattice paths. Moreover, we show that our map and theirs are different descriptions

of the same function. Davis et al. also studied the number of pinnacle sets with maximum < and

cardinality 3 which they denoted byp(<, 3). We show that these integers are the well-known ballot



numbers and give two proofs of this fact: one using finite differences and one bijective. Diaz-

Lopez, Harris, Huang, Insko, and Nilsen found a summation formula for calculating the number

of permutations in S= having a given pinnacle set. We derive a new expression for this number

which is faster to calculate in many cases. We also show how this method can be adapted to find

the number of orderings of a pinnacle set which can be realized by some c ∈ S=. This concludes

our research on permutations.

Bipartite projections are used in a wide range of network contexts including politics (bill co-

sponsorship), geography (firm co-location), genetics (gene co-expression), economics (executive

board co-membership), and innovation (patent co-authorship). However, because bipartite pro-

jections are always weighted graphs, which are inherently challenging to analyze and visualize,

it is often useful to examine the ‘backbone,’ an unweighted subgraph containing only the most

significant edges. We introduce the R package backbone for extracting the backbone of weighted

bipartite projections, and use two empirical datasets to demonstrate its functionality, bill sponsor-

ship data from the 114th session of the United States Senate and a Globalization and World Cities

data set regarding firm locations in 2000.

After introducing and demonstrating five different models for backbone extraction, the fixed fill

model (FFM), fixed row model (FRM), fixed column model (FCM), fixed degree sequence model

(FDSM), and stochastic degree sequence model (SDSM), we compare them in terms of accuracy,

speed, statistical power, similarity, and community detection. Here, we aim to find which models

perform similarly to FDSM, since the FDSM model controls for both degree sequences exactly.

We find that the computationally-fast SDSM offers a statistically conservative but close approx-

imation of the computationally-impractical FDSM under a wide range of conditions, and that it

correctly recovers a known community structure even when the signal is weak. Therefore, although

each backbone model may have particular applications, we recommend SDSM for extracting the

backbone of most bipartite projections.
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CHAPTER 1

INTRODUCTION

This doctoral thesis is the culmination of two combinatorial projects. The first explores permutation

patterns and statistics, specifically looking at pattern containment and avoidance of cyclic permu-

tations, and generating functions of cyclic descent statistics. Additionally, we study a particular

permutation statistic, the pinnacle set. The second project involves bipartite projections, a type of

weighted graph. When a weighted graph represents a social relationship, it is of interest to know

whether an edge weight should be considered particularly strong or weak. We provide various

probabilistic null models to which one can compare an edge weight to determine its statistical

significance. Edges deemed significant are part of the backbone subgraph.

The initial three chapters will describe the project on permutations, beginning with background

information in chapter 2, then discussing permutation patterns and avoidance in chapter 3, and fi-

nally pinnacle set properties in chapter 4. We begin by expanding on the well-studied field of pattern

avoidance in linear permutations by considering its implications in cyclic permutations. Specifi-

cally, we begin chapter 3 by proving a cyclic variant of the Erdős-Szekeres theorem in section 3.1.

This new theorem states that in any cyclic permutation of size <= + 2, there is either an increasing

subsequence of length < + 2 or a decreasing subsequence of length =+ 2. This theorem becomes of

great use in our study of length four pattern avoidance in sections 3.2 and 3.3. While linear pattern

avoidance has origins reaching back to the early 1900’s, the study of cyclic pattern avoidance was

introduced relatively recently by Callan [Cal02] in 2002. He was able to count the number of

cyclic permutations that avoid single patterns of length four (length three pattern avoidance being

relatively trivial). We complete this study of length four pattern avoidance by counting the number

of cyclic permutations that avoid any set of length four patterns, specifically providing proof for all

pairs and triples. These proofs utilize the proof technique of generating trees. As the cardinality

of the set of patterns increases, the number of permutations that avoid the set decreases. These

results allow us to completely count all avoidance sets of any size of length four patterns. After
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this classification, we discuss cyclic descent generating functions in section 3.4. These generating

functions allow us to count the numbers of cyclic descents in permutations that avoid a given set of

patterns, refining our enumerations of the avoidance classes. Chapter 3 is concluded by a section

on open problems raised within this work, namely now that patterns of length three and four are

characterized, future projects could include looking for enumerative formulas for patterns of length

five and higher. It is also of interest to look at the generating functions for other permutation

statistics over the avoidance classes. We provide one result which counts the joint distribution of

cyclic descents and cyclic peaks. Additionally vincular pattern avoidance can be studied. In this

scenario, occurrences of the pattern in a permutation may require different elements to be adjacent

to one another. We conjecture an exponential generating function which will count the number of

permutations that avoid 123 and 213, concluding chapter 3. Recently, Sergi Elizalde and Bruce

Sagan have proven this conjecture [ES21].

Using the background on permutations and permutation statistics presented in chapter 2, in chap-

ter 4 we will explore the pinnacle set of a permutation and prove a number of results related to

counting either the number of pinnacle sets or the number of permutations with a given pinnacle set.

In section 4.1, we reprove a result of [DNKPT18] that counts the number of pinnacle sets. Their

proof involved lattice paths and was somewhat complicated, while ours is a simpler demonstration

that does not need lattice paths. In fact, we show that our map and theirs are different descriptions

of the same function. We then turn our attention to counting pinnacle sets with a defined maximum

and size in section 4.2. While [DNKPT18] proved these counts satisfied a nice recurrence, they

did not provide a formula to find the exact count. We show that these counts are actually just ballot

numbers, and do this in two ways: using the theory of finite differences and via a bijection. Since we

now have counts of the number of pinnacle sets of given sizes, it is natural to turn one’s attention to

counting the number of permutations with a given pinnacle set. We address this area in section 4.3.

While a summation formula that counts such permutations was given in [DLHH+21], we construct

a new formula that is more computationally efficient in many cases. We also show how this formula

can be modified to answer a similar question: how many admissible orderings of a pinnacle set are

2



there? Both of the enumerations found in this section have been of great interest to the research

community in recent weeks, and we conclude this chapter by describing the recent progress made

in constructing even faster formulas in section 4.4, which completes our study of permutations.

The remaining chapters will discuss the backbone of a weighted network. We begin by

introducing the concept of bipartite projections and backbone extraction in chapter 5. While

bipartite networks are used to describe and represent a wide range of scenarios, their projections

are challenging to analyze as they are dense and weighted. In addition, the projection loses

information about the original row and column degree sequences of the bipartite network. Ideally,

we’d like to reduce the complexity of these networks to a backbone network that contains only

the most important edges. The edges retained should be those that had a higher or lower weight

than would be expected in a random scenario. To find these backbone networks, we introduce five

different bipartite ensemble backbone models in chapter 6. Each of the different bipartite ensemble

models constrain the degree sequences of the set of all bipartite networks to which we compare our

data. We prove the probability mass functions for the stochastic degree sequence model (SDSM),

fixed row model (FRM), fixed column model (FCM), and fixed fill model (FFM). The FDSM

is considered the ‘gold standard’ model as it exactly fixes both degree sequences. However, its

distribution remains unknown, and therefore wemust approximate it throughMonte Carlo methods.

Whilemethods for backbone extraction including a few of the onesmentioned above have existed

in the literature for several years, there did not exist one central software package or program where

they were all implemented. This meant that researchers who wanted to find a backbone of their

network would have to first find which method they wanted to use, potentially guessing which was

best for their purposes, and then see if the algorithm was already implemented or available for

use. To increase the ease of access for backbone methods, we’ve implemented the SDSM, FDSM,

FRM, FCM, and FFM in the new R package backbone. The package and its usage are described

in chapter 7. To demonstrate how to use backbone, we apply the functions to two different data sets,

a legislative network and a spatial network. Through implementing the R package and increasing

its user base, we’re often met with the same question from researchers: “which model should be

3



used for my data?” This is the question we investigate in chapter 8.

In chapter 8 we consider each of the five aforementioned models and compare their accuracy,

speed, statistical power, similarity, and community detection. These analyses are conducted in four

studies. In section 8.1, we evaluate the accuracy and speed of different approaches for estimating

cell-filling probabilities used by the SDSM. In section 8.2, we evaluate the statistical power of

the SDSM relative to the FDSM. In section 8.3, we examine how degree distributions impact

the similarity of backbones extracted using different models. In section 8.4, we examine the

extent to which backbones extracted using different models accurately recover a known community

structure. Finally, we conclude in section 8.5 with recommendations for backbone model selection

and opportunities for future model development.
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CHAPTER 2

BACKGROUND ON PERMUTATION PATTERNS AND STATISTICS

We begin by reviewing some notions from the well-studied theory of patterns in (linear) permuta-

tions. We then discuss permutation statistics and generating functions for cyclic descents. We’ll

finish by exploring what is known about the pinnacle set. The pinnacle set is the value analogue

of a particular permutation statistic, the peak set. More information on the topic of patterns in

permutations can be found in the texts of Bóna [Bón04], Sagan [Sag20], or Stanley [Sta97, Sta99].

Let N and P be the nonnegative and positive integers, respectively. If <, = ∈ N then we define

[<, =] = {<, < + 1, . . . , =}; if < = 1 we then abbreviate to [=] = [1, =]. Consider the symmetric

group S= of all permutations c = c1c2 . . . c= of [=] written in one-line notation. We call = the

length of c and write |c | = =. We will also use this notation to represent the cardinality of a

set, where the difference should be clear by context. We will sometimes put commas between the

elements of c for readability. We say that two sequences of distinct integers c = c1 . . . c: and

f = f1 . . . f: are order isomorphic, written c � f, whenever c8 < c 9 if and only if f8 < f9 . If

f ∈ S= and c ∈ S: then f contains c as a pattern if there is a subsequence f′ of f with |f′| = :

and f′ � c. If no such subsequence exists then f avoids c. We use the notation

Av= (c) = {f ∈ S= | f avoids c}

for the avoidance class of c. For example f = 42351 contains the pattern c = 3241 because of the

subsequence 4251, among others. But it avoids 1234 because it has no increasing subsequence of

length 4. One can extend this notion to sets of permutations Π by letting

Av= (Π) = {f ∈ S= | f avoids all c ∈ Π} =
⋂
c∈Π

Av= (c).

A famous theorem of Erdős and Szekeres [ES35] can be stated in terms of pattern containment

and avoidance. Let

]= = 12 . . . = and X= = = . . . 21
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Figure 2.1: The graph of 42351 on the left and of [42351] on the right

be the increasing and decreasing permutations of length =, respectively.

Theorem 2.0.1 ([ES35]). Suppose <, = ∈ N. Then any f ∈ S<=+1 contains either ]<+1 or X=+1.

This is the best possible in that there exist permutations inS<= which avoid both ]<+1 and X=+1.

The diagram of c ∈ S= is the collection of points (8, c8) in the first quadrant of the Cartesian

plane. The graphical representation of c = 42351 is given on the left in Figure 2.1. It follows that

we can act on c with the dihedral group of the square

�4 = {d0, d90, d180, d270, A0, A1, A−1, A∞}

where d\ is rotation counterclockwise through \ degrees and A< is reflection in a line of slope <.

We wish to write some of these rigid motions in terms of the one-line notation for c = c1c2 . . . c=.

Reflection in a vertical line gives the reversal of c which is

cA = c= . . . c2c1.

Similarly, reflection in a horizontal line results in the complement of c

c2 = = + 1 − c1, = + 1 − c2, . . . , = + 1 − c=.

Combining these two operations gives rotation by 180 degree or reverse complement

cA2 = = + 1 − c=, . . . , = + 1 − c2, = + 1 − c1.
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f1

f2
f3

Figure 2.2: The diagram of 132 (left) and 132〈f1, f2, f3〉 (right)

We apply any of these operations to sets of permutations by applying them to each element of the

set.

We can use diagrams to inflate permutations. If we are given c = c1c2 . . . c= ∈ S= and

permutations f1, f2, . . . , f= then the inflation of c by the f8 is the permutation c〈f1, f2, . . . , f=〉

whose diagram is obtained from that of c by replacing each vertex (8, c8) by a copy of f8. For

example, given c = 132 and f1, f2, f3 then a schematic of the diagram of 132〈f1, f2, f3〉 is given

on the right in Figure 2.2. More concretely, if f1 = 21, f2 = 1, and f3 = 213 then

132〈f1, f2, f3〉 = 216435.

We say that patterns c and c′ are Wilf equivalent, written c ≡ c′, if # Av= (c) = # Av= (c′) for

all = ∈ N, where the hash symbol denotes cardinality. This definition extends in the obvious way

to sets of patterns. Note that if c and c′ are Wilf equivalent then both must be in the sameS=. It

is easy to see that if q ∈ �4 then c ≡ q(c) and so these are called trivial Wilf equivalences. It is

well known that all elements ofS3 are Wilf equivalent.

Theorem 2.0.2. If c ∈ S3 then

# Av= (c) = �=

where �= = 1
=+1

(2=
=

)
is the =th Catalan number.

Trivial Wilf equivalence carries over to sets Π of permutations. Simion and Schmidt [SS85]

determined all Wilf equivalences among the Av= (Π) for all Π ⊆ S3.
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A permutation statistic is a map st : ]=≥0S= → ( where ( is some set. Famous permutation

statistics include the descent set statistic

Des c = {8 | c8 > c8+1},

where the elements 8 ∈ Des c are called descents and if c8 < c8+1 then 8 is called an ascent,

the descent number statistic

des c = # Des c,

the major index statistic

maj c =
∑

8∈Des c
8,

the inversion statistic

inv c = #{(8, 9) | 8 < 9 and c8 > c 9 },

the excedance statistic

exc c = #{8 | c(8) > 8},

and the peak set statistic

Pk c = {8 | c8−1 < c8 > c8+1}.

Returning to the example given in fig. 2.1, the permutation c = 42351 has Des c = {1, 4},

des c = 2, maj c = 5, inv c = 6, and exc c = 2, and Pk c = {4}.

Let st be a statistic whose range is N and let @ be a variable. If Π is a set of patterns then its

avoidance class has a corresponding generating function

�st
= (Π) = �st

= (Π; @) =
∑

f∈Av= (Π)
@stf .

Say that Π and Π′ are st-Wilf equivalent and write Π st≡ Π′ if �st
= (Π) = �st

= (Π′) for all = ≥ 0.

Clearly st-Wilf equivalence implies Wilf equivalence. The maj- and inv-Wilf equivalence classes

for Π ⊆ S3 were determined by Dokos, Dwyer, Johnson, Sagan, and Selsor [DDJ+12].

If c = c1c2 . . . c= ∈ S= then the corresponding cyclic permutation is the set of all rotations of

c, denoted

[c] = {c1c2 . . . c=, c2 . . . c=c1, . . . , c=c1 . . . , c=−1}.

8



Continuing our example from the beginning of the section,

[42351] = {42351, 23514, 35142, 51423, 14235}.

If necessary, we will call permutations fromS= linear to distinguish them from their cyclic cousins.

We also use square brackets to denote cyclic analogues of objects defined in the linear case. For

example, [S=] is the set of all cyclic permutations of length =. We say a cyclic permutation [f]

contains [c] as a pattern if there is some rotation f′ of f which contains c linearly. Otherwise

[f] avoids [c]. In our perennial example, even though 42351 avoids 1234 we have that [42351]

contains [1234] since the rotation 14235 has the copy 1235 of this pattern. Given a set [Π] of cyclic

patterns the cyclic avoidance class Av= [Π] is defined as expected. Note that when using a specific

set of cyclic permutations the square brackets will be put around the permutations themselves, for

example, Av= ( [c], [c′]). Callan [Cal02] determined # Av= [c] for all [c] ∈ [S4]. Gray, Lanning,

and Wang continued work in this direction considering cyclic packing of patterns [GLW18] and

patterns in colored cyclic permutations [GLW19].

The graph of a cyclic permutation [c] is obtained by embedding the graph of c on a cylinder.

This is indicated on the right in Figure 2.1 by identifying the two dotted arrows. Cyclic Wilf

equivalence has the obvious definition. But note that now there are fewer trivial cyclic Wilf

equivalences since we need the chosen group element to preserved the cylinder, not just the square.

So the only trivial equivalences are

[c] ≡ [cA ] ≡ [c2] ≡ [cA2] . (2.1)

Certain linear permutation statistics have obvious cyclic analogues. For example, if c ∈ S=

then its cyclic descent number is

cdes[c] = #{8 | c8 > c8+1 where subscripts are taken modulo =}.

Note that this is well defined because the cardinality does not depend on which representative of

[c] is chosen. To illustrate, c = 23514 has cyclic descents at indices 3 and 5 so cdes[c] = 2. The
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corresponding generating function �cdes
= [Π] where [Π] is a set of cyclic permutations, and cdes-

Wilf equivalence should now need no definition. Note that cdes is another form of the excedance

statistic on linear permutations. In particular, if c = c1c2 . . . c= then

cdes[c] = exc(c=, . . . , c2, c1)

where (c=, c=−1 . . . , c1) is cycle notation for the linear permutation which, as a function, sends c8

to c8−1 for all 8 modulo =.

We return our attention to the peak set statistic on linear permutations,

Pk c = {8 | c8−1 < c8 > c8+1} ⊆ [2, = − 1] .

For example, if c = 18524376 then Pk c = {2, 5, 7} since c2 = 8, c5 = 4, and c7 = 7 are all bigger

than the elements directly to their left and right. It is easy to see that ( ⊆ [2, = − 1] is the peak set

of some c ∈ S= if and only if no two elements of ( are consecutive. So the number of possible

peak sets is a Fibonacci number. One could also ask how many permutations have a given peak

set. This question was answered by Billey, Burdzy and Sagan.

Theorem 2.0.3 ([BBS13]). If = ∈ P and ( ⊆ [2, =] then

#{c | Pk c = (} = ?((; =)2=−#(−1

where # denotes cardinality and ?((; =) is a polynomial in = depending on (.

It is natural to study the values at the peak indices. This line of research was initiated by Davis,

Nelson, Petersen, and Tenner [DNKPT18] and continued by Rusu [Rus20]; Diaz-Lopez, Harris,

Huang, Insko, and Nilsen [DLHH+21]; and Rusu and Tenner [RT]. Define the pinnacle set of a

permutation c ∈ S= to be

Pin c = {c8 | c8−1 < c8 > c8+1} ⊆ [3, =]

Continuing with the example c = 18524376 we see that Pin c = {4, 7, 8}. Following Davis et al.,

call a set ( an admissible pinnacle set if there is some permutation c with Pin c = (. They found a
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criterion for ( to be admissible which will be useful in this work. This result was stated in recursive

fashion, but it is clearly equivalent to the following non-recursive version.

Theorem 2.0.4 ([DNKPT18]). Let ( = {B1 < B2 < . . . < B3} ⊂ P. The set ( is an admissible

pinnacle set if and only if we have

B8 > 28

for all 8 ∈ [3].

Davis et al. were able to count the number of admissible pinnacle sets for c ∈ S=.

Theorem 2.0.5 ([DNKPT18]). If

A= = {( | ( = Pin c for some c ∈ S=}

then

#A= =
(
= − 1⌊
=−1

2

⌋) .
They also studied the more refined constants

p(<, 3) = #{( ∈ A= | max ( = < and #( = 3}

where = ≥ <. Note that if ( = Pin c for some c ∈ S= then ( is also a pinnacle set of some c′ ∈ S=′

for all =′ ≥ = since one can just add values larger than = to the beginning of c in decreasing order.

It follows that the exact value of = does not play a role in the definition of p(<, 3).

A number of questions have been raised about pinnacle sets. For example, if

?( (=) = #{c ∈ S= | Pin c = (}

then how can one compute these numbers as there does not seem to be an analogue of Theorem 2.0.3

in the context of pinnacles. Davis et al. gave a recursive procedure for doing so, and then a non-

recursive summation formula for determining the ?( (=) was proposed in the paper of Diaz-Lopez

et al.
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Another problem suggested earlier is as follows. Given an admissible (, a permutation f of (

is called an admissible ordering if there is a c ∈ S= with Pin c = ( and the pinnacles of c occur in

the same order as they do in f. Let

O(() = {f | f is an admissible ordering of (}.

For example, if ( = {3, 5, 7} then f = 537 ∈ O(() as witnessed by c = 4513276. But 375 ∉ O(()

since in order for 6 not to be a pinnacle, it must be directly to the left or right of 7 and both

choices lead to a contradiction. The set O( was studied in the articles of Rusu, and of Rusu and

Tenner [Rus20, RT]. In the latter paper, the authors asked for a function to compute #O(().

With these definitions and results in hand, we first examine cyclic pattern containment and

avoidance in the following chapter 3. We begin by proving a cyclic version of the Erdős-Szekeres

Theorem 3.1.1 in section 3.1. This result is used to help us count # Av= ( [Π]) in sections 3.2

and 3.3, where [Π] ⊆ [S4] and #[Π] ≥ 2 . We then consider cyclic descent generating functions

over Av= ( [Π]) in section 3.4, and find �cdes
= [Π] for #[Π] = 1, 2 and [Π] ⊆ [S4].

We then continue to our study of pinnacle sets in chapter 4. We begin by counting the number

of admissible pinnacle sets in section 4.1. This quantity, given in theorem 2.0.5, was already

found in [DNKPT18]. Here we provide a simpler proof using a bijection using interleaved and right

canonical permutations. Asmentioned, [DNKPT18] also studied the valuesp(<; 3). In section 4.2,

we show these constants are actually ballot numbers, specifically p(<; 3) = <−23+1
<−1

(<−1
3−1

)
. We

do this in two ways, using finite differences and a bijection. Once we’ve counted the number

of admissible pinnacle sets, we consider the number of permutations with a given pinnacle set

in section 4.3. We provide a sum to count ?( (=) in theorem 4.3.1 which is asymptotically

more efficient than previously existing methods. We then extend this result to count #O(()

in theorem 4.3.12.
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CHAPTER 3

CYCLIC PATTERN CONTAINMENT AND AVOIDANCE

This chapter contains material from Domagalski, Liang, Minnich, Sagan, Schmidt, and Siet-

sema [DLM+21a]. All results in this chapter come from this manuscript except as otherwise

noted.

3.1 A cyclic Erdős-Szekeres Theorem

In this section we will use the linear Erdős-Szekeres Theorem to prove a cyclic analogue. We

will need a variant of the decreasing permutation X= defined as follows. Given nonnegative integers

= (the length), 3 (the difference), and B (the smallest value) define the decreasing sequence

X=,3,B = B + (= − 1)3, B + (= − 2)3, . . . , B + 3, B.

For example

X5,2,3 = 11, 9, 7, 5, 3.

Theorem 3.1.1. Suppose <, = ∈ N. Then any [f] ∈ [S<=+2] contains either []<+2] or [X=+2].

This is the best possible in that there exist permutations in [S<=+1] which avoid both []<+2] and

[X=+2].

Proof. To prove the first statement we can assume, by rotating c if necessary, that

f = f1, f2, . . . , f<=+1, <= + 2.

So f′ = f1f2 . . . f<=+1 ∈ S<=+1 and, by Theorem 2.0.1, contains a copy ^ of either ]<+1 or X=+1.

In the first case, the concatenation ^, <= + 1 is a copy of []<+2] in [c]. In the second case, we have

that <= + 1, ^ is a copy of [X=+2] in [f].

To prove the second statement, consider the concatenation

f = 1, X=,<,2, X=,<,3, . . . , X=,<,<+1.
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Figure 3.1: The graph of [f] when < = 5 and = = 3

For example, when < = 5 and = = 3, then

[f] = [1, 12, 7, 2, 13, 8, 3, 14, 9, 4, 15, 10, 5, 16, 11, 6]

whose graph is shown in Figure 3.1. Define f′ by f = 1f′ and note that f′ can be written either

as a disjoint union of < decreasing subsequences of length =, or of = increasing subsequences

of length <. In a linear permutation, any increasing subsequence can intersect any decreasing

subsequence at most once. So any increasing subsequence of f′ has length at most <, and any

decreasing subsequence has length at most =. Now let [c] be a subsequence of [f]. We consider

two cases.

Suppose first that [c] contains 1. If [c] is increasing then rotate, if necessary, until c = 1c′ for

some c′ which is a subsequence of f′. But from the previous paragraph, |c′| ≤ < which implies

|c | ≤ < + 1 as desired. If [c] is decreasing then we pick a representative c = c′1 and proceed as

in the increasing case to get |c | ≤ = + 1.

Now consider the possibility that [c] does not contain 1. Again, we start with the subcase when
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[c] is increasing. Suppose, for simplicity, that c contains an element of G ∈ X=,<,2 as the proof

will be similar for the other deltas. As before, c can contain at most one element of each of X=,<,3

through X=,<,<+1. Now [c] can wrap around and pick up other elements. But those elements must

come before G. And since X=,<,2 is decreasing, at most one other element can be added in this way.

It follows that |c | ≤ < + 1. On the other hand, if [c] is decreasing then the proof is similar. The

only difference is that if one attempts to pick up elements of X=,<,2 before G then this is impossible

since such elements are larger than G and [c] is decreasing. So |c | ≤ = which is an even tighter

bound. This completes the demonstration of the theorem.

We’ll see the advantages that Theorem 3.1.1 brings in our study of length four pattern avoidance,

specifically, when considering # Av= (() where ( contains [1234] and [1432].

3.2 Pattern avoidance of doubletons

In this section we will enumerate Av= [Π] for all [Π] ⊂ [S4] with #[Π] = 2. Any cyclic Wilf

equivalences stated without proof are trivial.

Let us first dispose of the simplest singleton avoidance classes where [c] ∈ [S: ] for : < 4. In

[S2] there is only one cyclic permutation [12] and it is easy to see that every [f] of length at least

2 contains it. In [S3] there are only the patterns [123] and [321], and these are only avoided by

[X=] and []=], respectively.

Callan [Cal02] enumerated Av= [c] for any given [c] ∈ [S4]. Recall the version of the

Fibonacci numbers defined by �1 = �2 = 1 and �= = �=−1 + �=−2 for = ≥ 3. Unlike the case of

linear permutations inS3, there are no nontrivial Wilf equivalences.

Theorem 3.2.1 ([Cal02]). For = ≥ 2 we have

#�E= [1234] = #�E= [1432] = 2= + 1 − 2= −
(
=

3

)
,

#�E= [1243] = #�E= [1342] = 2=−1 − = + 1,

#�E= [1324] = #�E= [1423] = �2=−3.

15



In presenting the enumerations for doubletons, we make the following conventions to facilitate

locating a given result. All cyclic patterns will be listed starting with 1. And all sets of cyclic

patterns will be given in lexicographic order. We will also use terms like “just before” or “just

after” in [f] to refer the left-to-right order on the cylinder of a cyclic permutation in the form of

Figure 2.1. For example, in [f] = [42351] the 5 comes just before 1 and the 4 just after. We

also say that an element G is between H and I if it is in the subsequence of [f] traversed going

left-to-right around the cylinder from H to I. Continuing our example, between 2 and 5 we have 3,

while between 5 and 2 we have 1 and 4.

One of our tools will be generating trees. To the best of our knowledge, these trees were

introduced by Chung, Grahamm, Hoggatt, and Kleiman [CGHK78] for studying Baxter permu-

tations. Since then, they have become an integral technique in the theory of pattern avoid-

ance [BBMD+02, BM03, Kre00, Wes95, Wes96]. The generating tree for an avoidance class

Av[Π], denoted ) [Π], has as its root the permutation [12]. The children of any [f] ∈ Av= [Π] are

all the [f′] ∈ Av=+1 [Π] which can be formed by inserting = + 1 into one of the spaces of [f]. A

space, also called a site, where insertion of = + 1 produces a permutation of the avoidance class is

called active while the other spaces are inactive. A useful observation is that if a space is inactive

it must be because inserting = + 1 there results in copy of a forbidden pattern [c] where = + 1 plays

the role of the largest element of c. Once we have picked a representative f = f1f2 . . . f= for [f]

we will label the spaces as 1, 2, . . . , = left to right where space 8 comes between f8 and f8+1. The

nodes for Av= [Π] will be said to be at level = in ) [Π]. We call the number of children of a vertex

its degree which is denoted deg[f]. Given 3 ∈ N, suppose that every cyclic permutation with

deg[f] = 3 has children of degrees 21, 22, . . . , 23 . Then this is denoted by the production rule

(3) → (21) (22) . . . (23).

There may be other nodes having some special characteristic - which always produces nodes

having characteristics .1, .2, . . . , .3 which correspond to a production rule

(-) → (.1) (.2) . . . (.3).
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In particular, the characteristic of being the root of the tree is denote in a production rule by (∗).

We can also have production rules which mix numbers for degrees and letters for characteristics.

If ) [c] can be characterized by production rules, these can often be used to calculate # Av= [Π].

Theorem 3.2.2. We have

{[1234], [1243]} ≡ {[1234], [1342]} ≡ {[1243], [1432]} ≡ {[1342], [1432]}.

And for = ≥ 3

# Av= ( [1234], [1342]) = 2(= − 2).

Proof. We claim that ) = ) ( [1234], [1342]) has the following production rules

(∗) → (2) (2),

(1) → (1),

(2) → (1) (2).

Once these are proven then the enumeration follows easily since one can inductively show that, for

= ≥ 3, level = consists of two nodes of degree 2 and 2(= − 3) nodes of degree 1.

It is easy to check the production rule at levels = = 2 and 3, so we assume that = ≥ 4 and also

that [f] ∈ Av= ( [1234], [1342]). First of all, note that the site before = is always active. If it were

not then the result [f′] of inserting = + 1 would have a copy ^ of one of the patterns containing

= + 1. But = can not be in ^ since neither of the patterns have 4 followed immediately in the cycle

by 3. So replacing = + 1 by = in ^ would give a forbidden pattern in [f] which is a contradiction.

Thus every [f] at has at least one child. Also f has at most two children. For suppose

f′ = = + 1, d, =, g

is the result of inserting = + 1 in f. It follows that |d | ≤ 1 since if d ≥ 2 then [f′] has a copy

of either [4123] or [4213]. Thus = + 1 must be inserted either directly before = or two elements

before =.
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Now consider

X = =, = − 1, . . . , 3, 2, 1, and n = =, = − 1, . . . , 3, 1, 2. (3.1)

It is easy to check that both sites = and = − 1 are active in these permutations and so both have

degree 2. It is also obvious that if one inserts = + 1 in site = in either permutation then one gets

another permutation of the same form.

From what we have done, we can finish the proof if we show that deg[f] = 2 implies [f] = [X]

or [f] = [n]. Write

f = =d<

where < is the last element of f and d is everything between = and <. Since deg[f] = 2, site =−1

is active and inserting = + 1 there yields

f′ = =, d, = + 1, <.

Then< ≤ 2 since otherwise [f] contains a copy of [4123] or [4213] since = ≥ 4. In the case< = 1

we must have d decreasing. For if there is an ascent G < H in d then [f′] contains [G, H, = + 1, 1]

which is a copy of [2341], a contradiction. So in this case d is decreasing and f = X. The other

possibility is that < = 2. This forces the last element of d to be 1. For if 1 is elsewhere and G is

the last element of d then then [f′] contains [1, G, = + 1, 2] which is contradictory copy of [1342].

Similarly to the first case, one can now show that d is decreasing and so f = n as desired.

Comparing our next result with the previous one will provide our first nontrivial Wilf equiva-

lence.

Theorem 3.2.3. We have

{[1234], [1324]} ≡ {[1423], [1432]}.

And for = ≥ 3

# Av= ( [1234], [1324]) = 2(= − 2).
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Proof. Let � stand for the decreasing permutation and � for the decreasing permutation with its

largest two elements swapped. We consider the root [12] to be of type �. We will show that

) = ) ( [1234], [1324]) has production rules

(1) → (1),

(�) → (�) (�),

(�) → (1) (1).

It follows by induction that level = ≥ 3 of ) has a �, an � , and 2(= − 3) nodes of degree one,

proving the theorem.

The same demonstration as in the previous theorem shows that the site before = in any [f] ∈

Av= ( [1234], [1324]) is active. So again, every such permutation has at least one child. Also, every

[f] has at most two children. Indeed, write

f = 1f2 . . . f= (3.2)

and put = + 1 in site 8 ≥ 3. Then 1, f2, f3, = + 1 is a copy of either 1234 or 1324, another

contradiction.

Now consider permutations corresponding to � and � at level =

X = 1, =, = − 1, = − 2, = − 3, . . . , 2 and n = 1, = − 1, =, = − 2, = − 3, . . . , 2. (3.3)

It is easy to check that both sites 1 and 2 are active in X, n . So, by the previous paragraph, they both

have degree 2. Furthermore, the two children of X have the form � and � .

We will be done if we can show that [f] having two children implies [f] = [X] or [n]. Write

f as in (3.2). Since the active sites must be 1 and 2, and the site before = must be active, either

f2 = = or f3 = =. If f2 = = and there is an ascent G < H in the rest of the permutation, then after

inserting =+1 in position 2 we have [G, H, =, =+1] which is a copy of [1234], a contradiction. So in

this case [f] = [X]. Alternatively, suppose f3 = =. This forces f2 = =− 1, since if f2 = G < =− 1

then = − 1 comes after =. But inserting = + 1 in position 1 gives [G, =, = − 1, = + 1] which is a copy
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of [1324]. And similarly to the first case we see that the rest of f is decreasing. The result is that

[f] = [n]. This completes the proof.

Theorem 3.2.4. We have

{[1234], [1423]} ≡ {[1324], [1432]}.

And for = ≥ 1

# Av= ( [1234], [1423]) = 1 +
(
= − 1

2

)
.

Proof. Suppose [f] ∈ Av= ( [1234], [1423]) and write

f = 1d=g (3.4)

where d and g are the subsequences between 1 and =, and between = and 1, respectively. Now

d and g must be decreasing since [f] avoids [1234] and [1423], respectively. Furthermore, d

must consist of consecutive integers since, if not, then we have G < H < I such that 1IG=H is a

subsequence of f. So [G=HI] is a copy of [1423] in [f], which is a contradiction. Conversely,

it is easy to check that if f has the form (3.4) with d and g decreasing and d consecutive then

[f] ∈ Av= ( [1234], [1423]). So we have characterized the elements of this class.

To finish the enumeration, if d = ∅ there is one corresponding f. But if d ≠ ∅ then choosing

the smallest and largest element of d from the elements 2, 3, . . . , = − 1 completely determines f.

Since these two elements could be equal, we are choosing 2 elements from = − 2 elements with

repetition which is counted by
(=−1

2
)
.

The following result follows immediately from Theorem 3.1.1

Theorem 3.2.5. We have

# Av= ( [1234], [1432]) = 0

for = ≥ 6.

We now have, by comparison with Theorem 3.2.4, another nontrivial Wilf equivalence.
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Theorem 3.2.6. We have

{[1243], [1324]} ≡ {[1243], [1423]} ≡ {[1324], [1342]} ≡ {[1342], [1423]}.

And for = ≥ 1

# Av= ( [1324], [1342]) = 1 +
(
= − 1

2

)
.

Proof. Take [f] ∈ Av= ( [1324], [1342]) and write f as in (3.4). Then d is increasing since [f]

avoids [1324]. And every element of d is smaller than every element of g since [f] avoids [1342].

To avoid a copy of one of the forbidden patterns containing the 1 of f we must have that g avoids

213 and 231. And to avoid a copy of [1324] where = plays the role of 4, it must be that g avoids

132. The g which avoid these three pattern are exactly those which are inflations of the form

g = 21〈X: , ];〉 for some :, ; ≥ 0 (see the chart on page 2773 of [DDJ+12]). Absorbing the 1 and =

of f into d and g, respectively, we see that

f = 132〈] 9 , X: , ];〉 (3.5)

where 9 , : ≥ 1 and ; ≥ 0. Again, it is not hard to check that for every f of this form we have

[f] ∈ Av= ( [1324], [1342]).

To enumerate these f, we distinguish two cases. If ; ≥ 2 then picking the smallest and

largest elements of the copy of ]; from 2, 3, . . . , = − 1 completely determines f . So in this case

there are
(=−2

2
)
choices. If ; ≤ 1 then the copy of ]; can be appended to the copy of X: so that

f = 12[] 9 , X=− 9 ]. Since we must have 1 and = in the ascending and decreasing subsequences, there

are now = − 1 choices. Adding the two counts given the desired result.

Theorem 3.2.7. For = ≥ 4 we have

# Av= ( [1243], [1342]) = 4.

Proof. Take [f] ∈ Av= ( [1243], [1342]) and write f as in (3.4). Then d and g can not both be

nonempty. For if G ∈ d and H ∈ g then 1G=H is a copy of either 1243 or 1342.
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Assume first that d = ∅ so that

f = 1=g. (3.6)

Then g must be increasing or decreasing. For suppose it was neither. Then it would contain a copy

of one of the patterns 132, 231, 213, or 312. In the first two cases this would give, together with

the 1, a copy of 1243 or 1342 in f. And in the last two cases, prepending = gives a copy of 4213

or 4312. Conversely, if f is given by (3.6) with g increasing or decreasing then it is easy to verify

that [f] ∈ Av= ( [1243], [1342]).

Using the same ideas, one can also show that if g = ∅ then one gets exactly two elements of

Av= ( [1243], [1342]), of the form f = 1d= where d is either increasing or decreasing. Thus there

are a total of four elements in the avoidance class.

Theorem 3.2.8. For = ≥ 3 we have

# Av= ( [1324], [1423]) = 2=−2.

Proof. Take [f] ∈ Av= ( [1324], [1423]) and write

f = =, d, = − 1, g.

Similar to the previous proof, one of d or g must be empty since otherwise 4132 or 4231 is a

pattern in f. If d = ∅ then one shows similarly that = − 2 either begins or ends g. Continuing in

this manner, we see that there are 2 choices for the positions of = − 1, = − 2, . . . , 2. Checking, as

usual, that all such permutations are actually in the avoidance set, the enumeration follows.

This fully characterizes all non-trivial Wilf equivalences for all length four doubletons.

3.3 Three or more patterns

We will now compute # Av= [Π] for Π ⊆ S= having #Π ≥ 3. We will not consider those

[Π] containing both [1234] and [1432] since for such classes # Av= [Π] = 0 for = ≥ 6 as in

Theorem 3.2.5.
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Theorem 3.3.1. We have

{[1234], [1243], [1324]} ≡ {[1234], [1324], [1342]} ≡ {[1243], [1423], [1432]}

≡ {[1342], [1423], [1432]}.

And for = ≥ 4

# Av= ( [1234], [1324], [1342]) = 3.

Proof. If [f] ∈ Av= ( [1234], [1324], [1342]) then [f] avoids [1324] and [1342]. So, by the

proof of Theorem 3.2.6, we can write f in the form (3.5) for 9 , :, ; ≥ 1. But since [f] also avoids

[1234] we must have 9 + ; ≤ 3. For the same reason, 9 ≤ 2 since if 9 = 3 then the copy of ]3 and

one element of the copy of X: would form a [1234]. Thus the only possibilities are ( 9 , ;) = (1, 1),

(1, 2), or (2, 1) which proves the result.

Theorem 3.3.2. We have

{[1234], [1243], [1342]} ≡ {[1243], [1342], [1432]}.

And for = ≥ 5

# Av= ( [1234], [1243], [1342]) = 2.

Proof. If [f] ∈ Av= ( [1234], [1243], [1342]) then [f] avoids [1243] and [1342]. So, by the proof

of Theorem 3.2.7, we can write

f = GHd (3.7)

where {G, H} = {1, =} and d is either increasing or decreasing. Since = ≥ 5 we have |d | ≥ 3.

But [f] also avoides [1234] and this forces d to be decreasing. So there are two choices for [f]

depending on the values of G and H.

Theorem 3.3.3. We have

{[1234], [1243], [1423]} ≡ {[1234], [1342], [1423]} ≡ {[1243], [1324], [1432]}

≡ {[1324], [1342], [1432]}.
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And for = ≥ 2

# Av= ( [1234], [1342], [1423]) = = − 1.

Proof. We will show that ) = ) ( [1234], [1342], [1423]) has production rules

(∗) → (1) (2),

(1) → (1),

(2) → (1) (2).

Then, by induction, level = ≥ 2 of ) will contain one node of degree 2 and = − 2 nodes of degree

1. Checking the root is easy, so assume = ≥ 3.

By Theorem 3.2.2, ) is a subtree of ) ( [1234], [1342]). So we just need to check which nodes

of that tree also avoid [1423]. As in the proof of that theorem, the site before = in [f] at level = in

) is still active since 4 is not followed immediately by 3 in [1423]. Thus it suffices to show that

both sites of X remain active, but only one in n where X, n are defined by (3.1). Indeed, the two sites

of X give rise to copies of X and n at level = + 1 of ) . But site = − 1 of delta which was active in the

larger tree is now inactive since inserting = + 1 there gives the copy [1, = + 1, 2, =] of [1423]. This

completes the proof.

We now have, in comparison with the previous theorem, a nontrivial Wilf equivalence.

Theorem 3.3.4. We have

{[1234], [1324], [1423]} ≡ {[1324], [1423], [1432]}.

And for = ≥ 2

# Av= ( [1234], [1324], [1423]) = = − 1.

Proof. It suffices to show that ) = ) ( [1234], [1324], [1423]) satisfies the same production rules

as in the previous theorem. Now ) is a subtree of ) ( [1234], [1324]) which was constructed in the

proof of Theorem 3.2.3. And we see in the usual way that the site before = in any [f] remains

active in ) because 4 is not immediately followed by 3 in [1423].
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So it suffices to show, with X and n as in (3.3), that site 1 remains active in X, but not in n .

Indeed, inserting = + 1 in this site of X just produces another descending sequence. But in n such a

placement gives the copy [1, = + 1, = − 1, =] of [1423].

We now have another nontrivial Wilf equivalence with Theorem 3.3.1.

Theorem 3.3.5. We have

{[1243], [1324], [1342]} ≡ {[1243], [1342], [1423]}.

And for = ≥ 4

# Av= ( [1243], [1324], [1342]) = 3.

Proof. By Theorem 3.2.7, we just need to show that exactly 3 of the 4 permutations [f] avoiding

{[1243], [1342]} also avoid [1324]. These permutations are described in equation (3.7). If G = =

and H = 1 then [f] contains the copy [=132] of this pattern. It is also easy to check that the other

three avoid it.

We now have our last nontrivial Wilf equivalence for triples.

Theorem 3.3.6. We have

{[1243], [1324], [1423]} ≡ {[1324], [1342], [1423]}.

And for = ≥ 2

# Av= ( [1324], [1342], [1423]) = = − 1.

Proof. Comparing the description of Av= ( [1324], [1342]) in the proof of Theorem 3.2.6 and that

of Av= ( [1324], [1423]) in the proof of Theorem 3.2.8, we see that any

[f] ∈ Av= ( [1324], [1342], [1423]) can be put in the form

f = 21[X: , ]=−: ]

with : ≥ 1. Also, : = = − 1 and : = = yield the same permutation. So there are = − 1 choices for

: and we are done.
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[Π] # Av= [Π]
{[1234], [1243], [1324], [1342]} 1
{[1243], [1342], [1423], [1432]}
{[1234], [1243], [1324], [1423]} 2
{[1234], [1243], [1342], [1423]}
{[1234], [1324], [1342], [1423]}
{[1243], [1324], [1342], [1423]}
{[1243], [1324], [1342], [1432]}
{[1243], [1324], [1423], [1432]}
{[1324], [1342], [1423], [1432]}
{[1234], [1243], [1324], [1342], [1423]} 1
{[1243], [1324], [1342], [1423], [1432]}

Table 3.1: Wilf equivalence classes and cardinalities of Av= [Π] for certain [Π] and = ≥ 5

When #[Π] ≥ 4 where [Π] ⊂ [S4], the size of Av= [Π] becomes constant for = ≥ 5. And this

size is trivial to calculate for = ≤ 4. Furthermore, the description of the surviving permutations

for large = is easy to obtain given our previous proofs. So we content ourselves with a listing of

the equivalence classes and associated constants in Table 3.1. Classes are separated by double

horizontal line. As usual, we do not consider classes containing both the increasing and decreasing

permutations because of the cyclic Erdős-Szekeres Theorem.

3.4 Cyclic descent generating functions

We will now consider the generating function for the number of cyclic descents over various

avoidance classes [Π] ⊂ [S4], starting with those defined by a single element. We will sometimes

use the characterizations given by Callan [Cal02] for these classes to facilitate our work, and use

the abbreviation

�= ( [Π]) = �= ( [Π]; @) =
∑

f∈Av= [Π]
@cdesf

for the generating function.

To begin, we have a lemma showing that trivial Wilf equivalences also give simple relationships

between the corresponding generating functions.
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Lemma 3.4.1. For any [Π], we have

�= ( [Π]A ; @) = �= ( [Π]2; @) = @=�= ( [c]; 1/@)

and

�= ( [Π]A2; @) = �= ( [Π]; @).

Proof. Reversing or complementing a permutation turns all cyclic descents into cyclic ascents and

vice-versa. Translating this into generating functions gives the first displayed equalities. And the

second displayed equation follows from the the previous display.

Now consider the possible �= ( [c]) for [c] ∈ [S4]. We begin with the simplest case.

Theorem 3.4.2. We have �= ( [1423]; @) = @=�= ( [1324]; 1/@) where, for = ≥ 2,

�= ( [1324]; @) =
=−1∑
:=1

(
= + : − 3
= − : − 1

)
@: .

Proof. WeuseCallan’s characterization of this avoidance class to obtain a recursion for�= ( [1324]).

If [f] ∈ Av= ( [1324]) and = ≥ 3 then write f = f1f2 . . . f=−1=. Let : be the index such that

f: = = − 1. There are two cases.

If : = =−1 then f = g, =−1, = where [g, =−1] ∈ Av=−1( [1324]) and this is a bijection. Since

cdes[f] = cdes[g, = − 1], this case contributes �=−1( [1324]) to the recursion.

If 1 ≤ : ≤ = − 2 then this forces

f = 2314[]:−1, 1, g, 1]

for some g such that [g=] avoids [1324]. Because of the extra descent caused by = − 1 we have

cdes[f] = 1 + cdes[g=]. So this case gives a contribution of ∑=−2
:=1 @�=−: ( [1324]).

Putting everything together, we have

�= ( [1324]) = �=−1( [1324]) +
=−2∑
:=1

@�=−: ( [1324]).

for = ≥ 3 and �2( [1324]) = @. It is now a simple manner of manipulating binomial coefficients to

show that the formula given in the theorem satisfies this initial value problem.

27



For the next case, we will use a characterization of the class different from the one found by

Callan. This will permit us to avoid the use of a recurrence.

Lemma 3.4.3. Suppose [f] ∈ [S=] and write f = 1d=g. We have [f] ∈ Av= ( [1342]) if and only

if the following three conditions are satisfied:

(a) d and g both avoid {213, 231},

(b) max d < min g,

(c) there is not both a descent in d and an ascent in g.

Proof. For the forward direction, suppose [f] ∈ Av= ( [1342]). Condition (a) is true since if either

d or g contains 213 then, together with =, we have that [f] contains [2134]. Similarly, if either

contains 231 then [f] contains the forbidden pattern by prepending the 1. As far as (b), if there is

H > G with H ∈ d and G ∈ g then [1H=G] is a copy of [1342]. Finally for (c), if there were a descent

in d and an ascent in g then, because of (b), putting them together would again give a copy of the

pattern to avoid.

The converse is similar where one assumes that a copy of [1342] exists and then considers all

the different intersections it could have with 1, d, =, and g. We leave the details to the reader.

In order to use this lemma, we will need a result about the ordinary descent statistic on linear

permutations avoiding {123, 231}. The next result is a specialization of Proposition 5.2 of the

paper of Dokos, Dwyer, Johnson, Sagan, and Selsor [DDJ+12] and so the proof is ommited.

Lemma 3.4.4 ([DDJ+12]). We have ∑
f∈Av= (213,231)

@desf = (1 + @)=−1.

We need one last well-known definition. Call a polynomial 5 (@) = ∑=
:=0 0:@

: of degree =

symmetric if 0: = 0=−: for all 0 ≤ : ≤ =. Note that 5 (@) of degree = is symmetric if and only if

@= 5 (1/@) = 5 (@). (3.8)
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Theorem 3.4.5. We have �= ( [1243]; @) = �= ( [1342]; @) where, for = ≥ 2,

�= ( [1342]; @) = 2@(1 + @)=−2 − @ · 1 − @=−1

1 − @

is symmetric.

Proof. It is easy to prove from the explicit form of �= ( [1342]) that it satisfies equation (3.8) and

so is symmetric. So once this is proved, the equality of the two generating functions follows from

Lemma 3.4.1.

We adopt the notation of Lemma 3.4.3 and let f: = = where 2 ≤ : ≤ =. We will consider cases

depending on whether d or g is empty. If d = ∅ then by Lemma 3.4.3 (a) and Lemma 3.4.4 we have

that the generating function for the possible linear g is (1+ @)=−3. Also, cdes[f] = 2+ des g by the

form of f, so the contribution of such [f] to �= ( [1342]) is @2(1 + @)=−3. In an analogous way,

we see that those [f] with g = ∅ yield @(1 + @)=−3. Adding these, we have a total of @(1 + @)=−2

so far.

We now assume that d, g are both nonempty so that 3 ≤ : ≤ = − 1. By parts (b) and (c)

of Lemma 3.4.3, either d must be an increasing subsequence of consecutive integers or g must

be a decreasing one. Using Lemma 3.4.4 again, we see that in the first subcase a contribution

of @2(1 + @)=−:−1 is obtained. And in the second, taking into account the descents in d, the

contribution is @=−:+1(1 + @):−3. However, these two subcases overlap when d is increasing and

g is decreasing. So we must subtract @=−:+1.

Thus we get a grand total of

�= ( [1342]) = @(1 + @)=−2 +
=−1∑
:=3
[@2(1 + @)=−:−1 + @=−:+1(1 + @):−3 − @=−:+1] .

Summing the geometric series and simplifying completes the proof.

For the avoidance class of the increasing (or decreasing) pattern in [S4], we will need another

concept. Given sequences d and g of distinct integers, their shuffle set is

d� g = {f : |f | = |d | + |g | and both d, g are subsequences of f}.
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For example,

12� 34 = {1234, 1324, 1342, 3124, 3142, 3412}.

In the statement of the next result we make the usual convention that
(=
:

)
= 0 if : > =.

Theorem 3.4.6. We have �= ( [1234]; @) = @=�= ( [1432]; 1/@) where, for = ≥ 2,

�= ( [1432]; @) = @ + (2=−1 − =)@2 +
∑
9≥3

(
=

2 9 − 1

)
@ 9 .

Proof. We use Callan’s description of the avoidance for [1234] translated by complementation to

apply to [1432]. We are going to derive a recursion for �= ( [1432]; @). If [f] ∈ S= [1432] then

suppose f= = 1 and f: = 2 for some 1 ≤ : ≤ = − 1. There are three cases.

If : = 1 then there is a bijection between such [f] and Av=−1 [1432] obtained by removing

1 and taking the order isomorphic cyclic permutation on [= − 1]. Since 2 immediately follows 1

cyclically in [f], the descent into 1 remains a descent after applying the map. So the contribution

of this case is �=−1( [1432]; @).

Now suppose that 2 ≤ : ≤ = − 1 and write

f = d2g1.

where |d | = : − 1, |g | = = − : − 1. As Callan proves, d must be increasing. So there are two

more cases depending upon whether the elements of d are consecutive or not. Suppose first that

they are not consecutive. In this case, g must also be increasing so cdes[f] = 2. To compute

the number of such f, note that once the elements of d have been picked from [3, =], all of f is

determined. The total number of nonempty subsets of this interval is 2=−2 − 1. And those which

consist of consecutive integers are determined by their minimum and maximum element, which

could be equal. So there are
(=−1

2
)
subsets to exclude. The contribuion of this case is then(

2=−2 −
(
= − 1

2

)
− 1

)
@2.

Finally we consider the case when d ≠ ∅ is consecutive (and still increasing), say with minimum

< +1 and maximum " −1. Note that if ; = |g | then 0 ≤ ; ≤ =−3. Callan shows that the possible g
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are the elements of (34 . . . <)� (", " +1, . . . , =). Since a permutation can be written as a shuffle

in many ways, the same shuffle could occur for different d. So it will be convenient to color the

elements of the second sequence bymarking themwith a hat. Thus thef in this case are in bijection

with colored shuffles (34 . . . <) � ("̂, "̂ + 1, . . . , =̂). It will also be convenient to consider these

as corresponding to the sequences 2g by prepending a 2 to each shuffle and considering 2 as an

uncolored element. Set ( be the set of such sequences B = 2B2B3 . . . B;+1 where ;, <, " are allowed

to vary over all possible values. Note that if B corresponds to f then desf = 2+ des B. To compute

des B, we consider the transition indices

Tr B = {8 | B8 is colored and B8+1 is not, or vice-versa}.

For example, if B = 23̂645̂7̂8 then Tr B = {2, 3, 5}. It is easy to see that the map Tr : ( → 2[;] , the

range being all subsets of [;], is a bijection. Also, every other transition index of B starting with the

second corresponds to a descent. So, using the round down function, des B = b# Tr B/2c. We can

now complete this case using 8 = # Tr B to see that the contribution is

=−3∑
;=0

;∑
8=0

(
;

8

)
@b8/2c+2 =

=−3∑
8=0

@b8/2c+2
=−3∑
;=8

(
;

8

)
=

=−3∑
8=0

(
= − 2
8 + 1

)
@b8/2c+2

= @2
∑
9≥0

[(
= − 2
2 9 + 1

)
+

(
= − 2
2 9 + 2

)]
@ 9

= @2
∑
9≥0

(
= − 1
2 9 + 2

)
@ 9 .

Putting all the cases together we have

�= ( [1432]; @) = �=−1( [1432]; @) + @2
2=−2 −

(
= − 1

2

)
− 1 +

∑
9≥0

(
= − 1
2 9 + 2

)
@ 9

 .
As usual, the routine verification that our desired formula satisfies this recursion and the initial

condition is left to the reader.
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We now turn to the cyclic descent polynomials for pairs in [S4]. To simplify notation, for any

polynomial 5 (@) and = ∈ N we let

5 (=) (@) = @= 5 (1/@).

Theorem 3.4.7. We have the following descent polynomials.

(a) We have

�= ( [1234], [1243]) = �= ( [1342], [1432]) = � (=)= ( [1243], [1432])

= �
(=)
= ( [1234], [1342]).

And for = ≥ 3

�= ( [1234], [1342]; @) = (2= − 5)@=−2 + @=−1.

(b) We have

�= ( [1423], [1432]) = � (=)= ( [1234], [1324]).

And for = ≥ 3

�= ( [1234], [1324]; @) = (2= − 5)@=−2 + @=−1.

(c) We have

�= ( [1324], [1432]) = � (=)= ( [1234], [1423]).

And for = ≥ 1

�= ( [1234], [1423]; @) = @=−1 +
(
= − 1

2

)
@=−2.

(d) We have

�= ( [1243], [1423]) = �= ( [1342], [1423]) = � (=)= ( [1243], [1324])

= �
(=)
= ( [1324], [1342]).

And for = ≥ 1

�= ( [1324], [1342]; @) = @ +
=−1∑
:=2
(= − :)@: .
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(e) For = ≥ 4 we have

�= ( [1243], [1342]; @) = @ + @2 + @=−1 + @=−2.

(f) For = ≥ 3 we have

�= ( [1324], [1423]; @) = @(1 + @)=−2.

Proof. We will only prove (a) as the others follow easily in a similar fashion from the descriptions

of the avoidance classes in Section 3.2. We adopt the notation of the proof of Theorem 3.2.2.

Wewill use the description of the generating tree to obtain a recursion for �=+1 [1243], [1432]).

Note that if = + 1 is inserted in site 8 of f to form f′ then

cdes[f′] =


cdes[f] if 8 is a cyclic descent,

cdes[f] + 1 if 8 is a cyclic ascent.

Since the site before = is always active, and such a site is a cyclic ascent, these children will

give a contribution of @�= ( [1243], [1432]). In X and n , insertion in the other active site gives

permutations with = − 1 descents. So

�=+1 [1243], [1432]) = 2@=−1 + @�= ( [1243], [1432]).

It is now easy to check that the formula in (a) satisfies this recursion and is also valid at = = 3,

completing the proof.

For classes avoiding 3 or more patterns, we will only write down the results for those which are

not eventually constant. The interested reader can easily compute the polynomials for the remaining

classes. We also content ourselves with stating the polynomial for one member of every trivial Wilf

equivalence class since the rest can be computed from Lemma 3.4.1.

Theorem 3.4.8. We have the descent polynomials

�= ( [1234], [1342], [1423]; @) = �= ( [1234], [1324], [1423]; @) = (= − 2)@=−2 + @=−1

and

�= ( [1324], [1342], [1423]; @) = @ · 1 − @=−1

1 − @
for = ≥ 2.
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3.5 Open problems and concluding remarks

We collect here various areas for future research in the hopes that the reader will be interested

in pursuing this work.

3.5.1 Longer patterns

There has been very little work about containment and avoidance for cyclic patterns of length

longer than 4. Of course, the cyclic Erdős-Szekeres Theorem, Theorem 3.1.1 above, is one such

result. There is also a paper of Gray, Lanning and Wang [GLW18] where the authors consider

cyclic packing (maximizing the number of copies of a given pattern among all the permutations

[f] ∈ [S=] for some =) and superpatterns (permutations containing all the patterns [c] ∈ [S: ] for

some :). It would be interesting to see if there are nice enumerative formulas for classes consisting

of cyclic patterns of length 5 and up.

3.5.2 Other statistics

We have previously mentioned the peak set of a linear permutation,

Pk c = {8 | c8−1 < c8 > c8+1}

which has corresponding peak number

pk c = # Pk c.

Peaks are an important part of Stembridge’s theory of enriched %-partitions [Ste97] where % is

a partially ordered set. On the enumerative side, the study of permutations which have a given

peak set has been a subject of current interest [BBPS15, BBS13, BFT16, CVDLO+17, DLHIO17a,

DLHIO17b, DLHIPL17]. Now define the cyclic peak number to be

cpk[c] = #{8 | c8−1 < c8 > c8+1 where subscripts are taken modulo =}.
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As with cdes, this is well defined since it is independent of the choice of representative of [c].

There should be interesting generating functions for the distribution of cpk over avoidance classes,

or even for the joint distribution of cdes and cpk. As evidence, we prove one such result.

Theorem 3.5.1. For = ≥ 3∑
[f]∈Av= ( [1234],[1342])

@cdes[f] Ccpk[f] = @=−2C + (2= − 6)@=−2C2 + @=−1C.

Proof. Let �= (@, C) denote the desired generating function. We proceed as in the proof of Theo-

rem 3.4.7 (a) to find a recursion for �=+1(@, C). Since the largest element of [f] is always a cyclic

peak, inserting = + 1 before = does not change cpk. So this contributes @�= (@, C) to the recursion.

For X and n , inserting = + 1 in the other active site increases the number of peaks to 2. So the

contribution from these cases is 2@=−1C2. In summary

�=+1(@, C) = 2@=−1C2 + @�= (@, C)

and the desired polynomial is easily seen to be the solution.

In a recent paper Adin, Gessel, Reiner, and Roichman [AGRR20] defined a cyclic analogue of

the Hopf algebra of quasisymmetric functions. In this context the cyclic descent set of a linear

permutation arises naturally in the description of the product in this algebra. They also raise the

following intriguing question.

Question 3.5.2. Find an analogue of the major index for cyclic permutations that has nice proper-

ties, such as a generating function over [S=] which factors nicely as does the generating function

for the ordinary major index overS=.

3.5.3 Vincular patterns

The study of vincular patterns was originated by Babson and Steingrímsson [BS00] and has since

become a mainstay of the pattern field. We consider c as a vincular pattern if one only counts

occurrences in f where certain adjacent elements of c must also be adjacent in the copy in f. Such
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adjacent elements are overlined in c. For example, f = 24513 contains two copies of c = 132,

namely 243 and 253. But only 243 is a copy of 132. Avoidance and Wilf equivalence are defined

in the obvious way. These notions and the corresponding notation carry over to cyclic patterns

without change. There are undoubtedly nice results which can be proven about vincular cyclic

patterns. As an example, we show how one vincular class is enumerated by the Catalan numbers.

Theorem 3.5.3. We have

[1324] ≡ [1423] ≡ [1324] ≡ [2314] .

And for = ≥ 1

# Av= [1324] = �=−1.

Proof. The Wilf equivalences are trivial. To prove the Catalan formula, suppose that [f] ∈

Av= [1324] for = ≥ 2 and write f so that f= = = and f=−1 = < for some < ∈ [= − 1]. First notice

that f = dg<= where d and g are permutations of [< + 1, = − 1] and [< − 1], respectively. For if

there are G < < < H < = with G before H in f then [GH<=] is a copy of [1324]. Furthermore, it is

clear that [<d] and [g<] must avoid the forbidden pattern.

We claim the if f = dg<= where d and g obey the restrictions of the previous paragraph then

[f] avoids [1324]. Suppose, towards a contradiciton, that a copy [^] = [FHGI] exists with FHGI

order isomorphic to 1324. Consider the elements G and I which play the roles of 2 and 4. The

possibility that they are < and =, respectively, is ruled out by the fact that every element of d is

larger than every element of g. If I ∈ g< then all of ^ must be in this subsequence since I is

the largest element of the copy. But this is impossible since [g<] avoids the bad pattern. Finally,

suppose I ∈ d. This forces G ∈ d since it is comes cyclically just before I, and = is too large to be

G. We must also have H ∈ d since G < H < I. But now there is no possible choice for F. Indeed,

if F ∈ [<d] then [^] is in this subsequence, contradicting our assumption. And if F ∈ g then it

could be replaced by < since G, H, I > <, yielding the same contradiction as before.

36



From the first two paragraphs we immediately get the recursion

# Av= [1324] =
=−1∑
<=1

# Av< [1324] · # Av=−< [1324] .

From this the Catalan enumeration follows by induction.

It appears that sometimes rather than trying to find the size of the avoidance class directly, it

may be easier to use exponential generating functions. Given a set of (possibly vincular) patterns

[Π], let

� [Π] =
∑
=≥0

# Av= [Π]
G=

=!
.

We have the following conjectures for two vincular avoidance classes. Once the corresponding

differential equation is proved, an explicit solution can easily found using separation of variables.

Conjecture 3.5.4. We have the following.

1. If � = � [123] then

�′ = �2 − � + 1.

2. If � = � [213] then

�′ = 4�−
G2
2 .

Recently, Sergi Elizalde and Bruce Sagan have constructed proofs of both conjectured results

through a more general result using generating functions which keep track of the number of cyclic

occurrences, instead of just avoidance [ES21].
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CHAPTER 4

PINNACLE SET PROPERTIES

This chapter contains material from Domagalski, Liang, Minnich, Sagan, Schmidt, and Siet-

sema [DLM+21c]. All results in this chapter are from this manuscript except as otherwise noted.

4.1 Counting admissible pinnacle sets

In this section we give our proof of Theorem 2.0.5, which gives the number of admissible

pinnacle sets ( = Pin c for some c ∈ S=. Our strategy will be as follows. First, we will introduce

the set of interleaved permutations which are obviously counted by the desired binomial coefficient.

Next, we will associate with each admissible pinnacle set ( a particular permutation c such that

Pin c = (. This permutation will be called right canonical because its pinnacles will be as far

right as possible. Finally, we will show that the set of interleaved permutations and the set of right

canonical permutations are, in fact, the same. This will complete the proof of the theorem.

An interleaved permutation c ∈ S= is one constructed in the following manner. Pick any

� ⊆ [2, =] with #� =
⌊
=−1

2

⌋
.

I1 Fill the first
⌊
=−1

2

⌋
even positions of c with the elements of � in increasing order.

I2 Fill the remaining positions of c with the elements of � = [=] − � in increasing order.

As an example, suppose = = 9 and � = {2, 3, 7, 9}. After step I1 we have

c = 2 3 7 9 .

Since � = {1, 4, 5, 6, 8}, after I2 we have the full interleaved permutation

c = 1 2 4 3 5 7 6 9 8. (4.1)

Let

I= = {c ∈ S= | c is interleaved}.
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Clearly c ∈ I= is completely determined by the choice of �. It follows immediately that

#I= =
(
= − 1⌊
=−1

2

⌋) . (4.2)

Now given an admissible pinnacle set ( = {B1 < B2 < . . . < B3} ⊂ [=] we wish to construct

a permutation c ∈ S= with Pin c = (. We use the following algorithm to construct the right

canonical permutation c from (. We first deal with the case where = is odd. Let ( = [=] − (.

C1 Place elements of ( in c moving right to left, starting with the largest unused element of (

and then decreasing until an element less than the largest unused element of ( is placed.

C2 Place the largest unused element of ( in the rightmost unused position.

C3 Iterate C1 and C2 until all elements of ( and ( are placed.

If = is even, the only change to this procedure is that we fill both c= and c=−1 with elements of (

before considering whether to place an element of (. To illustrate, consider = = 9 and ( = {4, 7, 9}.

So ( = {1, 2, 3, 5, 6, 8}. Here is the construction of c where, at each stage, we note whether C1 or

C2 is being used.

step C1 C2 C1 C2 C1 C1 C2 C1 C1

c 8 98 698 7698 57698 357698 4357698 24357698 124357698

So the right canonical permutation for ( = {4, 7, 9} is c = 124357698. Note that Pin c = (.

Furthermore, this is the same permutation as obtained in (4.1). However, neither the sets � nor �

equals (. Let

C= = {c ∈ S= | c is right canonical}.

We first need to show that C1–C3 is well defined in that every position of c gets filled and that

we always have Pin c = (. Recall that A= = {( | ( = Pin c for some c ∈ S=}.

Lemma 4.1.1. If ( ⊂ [=] is an admissible set then C1–C3 produces a permutation c with Pin c = (.

Thus

#C= = #A=.
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Proof. Clearly the second sentence follows from the first. For the first sentence, we will present

details for the case when = is odd. If = is even, then one can just place the largest element of ( in

position = and proceed as in the odd case.

The following notation will be useful. Let

( = {B1 < B2 < . . . < B3},

( = {B̄1 < B̄2 < . . . < B̄=−3}.

We will also let (? and (? denote the elements of ( and of (, respectively, which have not been

used during the placement of c=, c=−1, . . . , c? .

We will use reverse induction on the position ? being filled in c. When ? = =, we have ( ≠ ∅

since 1, which is always a non-pinnacle, must be in (. So there is an element B̄=−3 to place in

position =. Furthermore this element can not be a pinnacle since it is the last element of the

permutation, which agrees with the fact that it is in (.

Suppose that c=, c=−1, . . . , c?+1 have been constructed. Suppose first that c?+1 ∈ (. One

subcase is if either (? = ∅, or (? ≠ ∅ and c?+1 > max (? . We must show that (? ≠ ∅ so that we

can let c? = max (? . This is true when (? = ∅ since |(? ] (? | = ?. If the second option holds then

we have c?+1 > max (? . But there must be at least two elements of ( smaller than max (? since

( is admissible and so there is some permutation making max (? a pinnacle. Also, these elements

must still be in (? since elements of this set are placed in decreasing order right to left. Thus this

set is nonempty as desired. Furthermore, c? is not a pinnacle since it is smaller than c?+1.

Now consider the subcase when c?+1 < max (? . Then we let c? = max (? which is well

defined. But we must show that c? is a pinnacle. We know c? > c?+1. So there remains to check

whether one can construct c?−1 with c?−1 < c? . For this, it suffices to show that (?−1 ≠ ∅ since

then we will have c?−1 = max (?−1 < c?+1 < c? . Note that this will also finish the induction

step.

We claim that if c? = B8 and c?+1 = B̄ 9 then 9 > 8. It will then follow that B̄ 9−1 exists and can

be used for c?−1. But by Theorem 2.0.4 we have B8 > B̄8+1. Indeed, if B8 < B̄8+1 then at most the

elements B1, . . . , B8−1, B̄1, . . . , B̄8 are less than B8 so that B8 ≤ 28, a contradiction. Also, elements of
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( are placed in decreasing order with B8 being placed as early as possible with a smaller element to

its right. The desired bound on 9 follows.

We are now ready to give our proof of Theorem 2.0.5.

Theorem 4.1.2. We have C= = I=. Thus

#A= =
(
= − 1⌊
=−1

2

⌋) .
Proof. The second statement follows directly from the first, Lemma 4.1.1, and equation (4.2). So

we only need to prove that the two sets are the same. We will consider the case when = is odd, as

the even case is similar.

We begin by showing that any right canonical permutation c is interleaved. That is to say, the

subword consisting of all even indices is an increasing sequence, and the subword consisting of all

odd indices is an increasing sequence starting with 1.

In terms of the placement of 1, note that c1 is not a pinnacle. And since non-pinnacles are

placed in decreasing order from right to left, we must have c1 = 1.

To finish this direction, it is enough to show that for any elements c8 and c8+2, we have that

c8+2 > c8. Note that we are done immediately if c8 and c8+2 are either both pinnacles or both

non-pinnacles since the construction places them in decreasing order from right to left. If c8+2 is

a pinnacle and c8 is not, then by the pinnacle assumption c8+2 > c8+1. And since non-pinnacles

are placed in decreasing order right to left, c8+1 > c8. Combining the two inequalities gives the

desired result. Finally, suppose c8 is a pinnacle and c8+2 is not. Then c8+1 is not a pinnacle, being

adjacent to c8. And, by construction, c8+1 must be the first available non-pinnacle right to left

which is smaller than c8. It follows that c8+2 > c8.

For set containment the other way, let c be an interleaved permutation. It suffices to show that if

the elements of c are placed right to left then they follow C1–C3. Consider c8 placed after c8+1 with

1 < 8 < =. The boundary cases when 8 = 1 or = are similar. If c8 < c8+1 then c8 is a non-pinnacle

and c8+1 is either a non-pinnacle or a pinnacle. In the first case, the non-pinnacles are being placed

in decreasing order as desired. In the second, the previously placed non-pinnacle is c8+2. So the
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Figure 4.1: The lattice path ! for � = {2, 3, 7, 9}

same conclusion holds by the interleaving condition. Now consider the possibility c8 > c8+1. By

the interleaving condition, c8−1 < c8+1 so c8 is a pinnacle. Either c8+2 is a pinnacle or not, the

latter possibility including the case that c8+2 does not exist. If it is, then the interleaving condition

shows that pinnacles are being placed in decreasing order. If c8+2 is not a pinnacle, then this fact

and the interleaving condition again imply c8 < c8+2 < c8+3. It follows that c8 was placed after the

first smaller non-pinnacle and, by the interleaving condition one last time, that any pinnacles to its

right are larger. This completes the proof of the other containment.

Given a set � and : ∈ Nwe let
(�
:

)
be the set of all :-element subsets of �. The above construct

gives us a bijection

k :
( [2, =]⌊
=−1

2

⌋) → A=
given by

k(�) = Pin c

where c is the interleaving permutation corresponding to �.

In [DNKPT18], the authors proved Theorem 2.0.5 using a bijection

q :
( [2, =]⌊
=−1

2

⌋) → A=
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defined as follows. An up-down lattice path ! starts at the origin and uses steps which are either

up (*) or down (�) parallel to the vectors [1, 1] and [1,−1], respectively. For more information

about lattice paths, see the text of Sagan [Sag20]. It will be convenient to index the steps of ! with

[2, =] and write ! = B2B3 . . . B=. Associate with � ∈
( [2,=]⌊
=−1

2
⌋ ) the lattice path ! such that

B8 =


� if 8 ∈ �,

* if 8 ∉ �.

To illustrate, if = = 9 and � = {2, 3, 7, 9} as in the example beginning this section then

! = ��***�*�

as depicted in Figure 4.1 where each step is labeled by its index. We now define

q(�) = {8 | in ! either B8 = * strictly below the G-axis, or B8 = � weakly above the G-axis}.

Continuing our example, q({2, 3, 7, 9}) = {4, 7, 9} = k({2, 3, 7, 9}). This is not an accident.

Proposition 4.1.3. We have

q = k.

Proof. We will give the proof for = odd as the even case is similar. Let ; = (= − 1)/2. We

need to show that q(�) = k(�) for all � ∈
([2,=]
;

)
. Suppose � = {01 < 02 < . . . < 0;} and

� = [=]−� = {01 < 02 < . . . < 0=−;}. Let ! and c be the lattice path and interleaved permutation,

respectively, associated with �. So k(�) = Pin c and there will be two cases depending on whether

a pinnacle of c comes from � or �

In the first case, suppose 08 ∈ Pin c. Since c is interleaved, this is equivalent to 08 = c28 >

c28+1 = 08+1. Recall that 08 indexes the 8th � step of !, and similarly for 08+1 and * steps. So the

previous inequality is equivalent to step B08 = � being preceded by more up steps than down steps.

And this is precisely the condition for 08 to be the index of a down step weakly above the G-axis,

which means it is in q(�). Thus this case is complete.

In a similar manner, one proves that 08 ∈ Pin c if and only if 08 is the index of an up step strictly

below the G-axis. This completes the second case and the proof.
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4.2 Ballot numbers

Davis et al. derived a number of properties of the constants p(<, 3) which count the number of

admissible pinnacle sets ( with 3 elements and maximum <. In this section we prove that these

constants are, in fact, ballot numbers. We give two proofs of this result. In the first, we derive

a formula for p(<, 3) using finite differences and then show that it agrees with the well-known

expression for ballot numbers. In the second, we give an explicit bijection between these admissible

sets and ballot sequences.

Suppose we are given nonnegative integers ? > @. A (?, @) ballot sequence is a permutation

V = V1V2 . . . V?+@ of ? copies of the letter - and @ copies of the letter. such that in any nonempty

prefix V1V2 . . . V8 the number of -’s is greater than the number of . ’s. Let

B?,@ = {V | V is a (?, @) ballot sequence}.

The following result is well known.

Theorem 4.2.1 ([And87],[Ber87]). For nonnegative integers ? > @ we have

#B?,@ =
? − @
? + @

(
? + @
@

)
.

Note that if we let ? = 3 + 1 and @ = 3 then the previous result gives get

#B3+1,3 =
1

23 + 1

(
23 + 1
3

)
= �3

where �3 is the 3th Catalan number.

Our first proof that the p(<, 3) are ballot numbers will use the theory of finite differences. If

5 (<) is a function of a nonnegative integer < then its forward difference is the function Δ 5 defined

by

Δ 5 (<) = 5 (< + 1) − 5 (<).

For a fixed 3 ∈ P, define the following polynomial in < of degree 3 − 1

?3 (<) =
< − 23 + 1
(3 − 1)!

3−1∏
8=2
(< − 8).
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Lemma 4.2.2. The polynomial ?3 (<) satisfies

Δ ?3 (<) = ?3−1(<)

and

?3 (23 + 1) = �3 .

Proof. To prove the first equality, we compute

Δ ?3 (<) = ?3 (< + 1) − ?3 (<)

=
< − 23 + 2
(3 − 1)!

3−1∏
8=2
(< + 1 − 8) − < − 23 + 1

(3 − 1)!

3−1∏
8=2
(< − 8)

=
(< − 23 + 2) (< − 1) − (< − 23 + 1) (< − 3 + 1)

(3 − 1)!

3−2∏
8=2
(< − 8)

=
(3 − 1) (< − 23 + 3)

(3 − 1)!

3−2∏
8=2
(< − 8)

= ?3−1(<).

For the second equality, we have

?3 (23 + 1) = 2
(3 − 1)!

3−1∏
8=2
(23 + 1 − 8)

=
23
3!
· (23 − 1)!
(3 + 1)!

=
(23)!

3!(3 + 1)!

= �3

which finishes the proof.

Note that by the criterion in Theorem 2.0.4, p(<, 3) can only be nonzero if < > 23. We thank

Richard Stanley who, on being shown Lemma 4.2.2, pointed out that p(<, 3) is a ballot number.
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Theorem 4.2.3. If <, 3 ∈ P with < > 23 then p(<, 3) = ?3 (<). Thus

p(<, 3) = < − 23 + 1
< − 1

(
< − 1
3 − 1

)
= #B<−3,3−1.

Proof. Induct on 3 where the base case of 3 = 1 is trivial to verify. To finish the first claim, it suffices

to use the previous lemma and show that both Δp(<, 3) = p(<, 3 − 1) and p(23 + 1, 3) = �3 . But

these were proved in [DNKPT18, Sections 2.2–2.3]. The first displayed equality now follows from

simple manipulation of the definition of ?3 (<), while the second comes from Theorem 4.2.1.

We would like to give a bijective proof of the relationship between admissible pinnacle sets and

ballot sequences from the previous theorem. Let

P(<, 3) = {( | ( admissible with max ( = < and #( = 3}

so that #P(<, 3) = p(<, 3). For < > 23, define a map

[ : B<−3,3−1 → P(<, 3)

by sending ballot sequence V = V1V2 . . . V<−1 to

[(V) = {8 | V8 = . } ] {<}.

For example, if < = 9, 3 = 3 and V = ---.--.- then

[(V) = {4, 7} ] {9} = {4, 7, 9}.

Theorem 4.2.4. The map [ is a well-defined bijection.

Proof. We must first show that [ is well defined in that [(V) ∈ P(<, 3). Since V ∈ B<−3,3−1

we see that the set {8 | V8 = . } is contained in [< − 1] and has cardinality 3 − 1. It follows that

( = [(V) has maximum < and cardinality 3.

There remains to show that ( = {B1 < B2 < . . . < B3} is admissible. By Theorem 2.0.4, it

suffices to show that B8 > 28 for all 8. But B8 is the index of the 8th . in V. Since V is a ballot

sequence, this . is preceded by 8 copies of . (including itself) and at least 8 + 1 copies of - . So

B8 ≥ 8 + (8 + 1) = 28 + 1 which is what we wished to prove.
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To show that [ is a bijection, we create its inverse. Given ( ∈ P(<, 3) we define [−1(() = V =

V1V2 . . . V<−1 by letting

V8 =


- if 8 ∉ (,

. if 8 ∈ (.

The proof that [−1 is well defined is similar to the one for [. And proving that the compositions of

[ with [−1 are identity maps is easy. So we are done.

4.3 Permutations with a given pinnacle set

Given an admissible set (, there does not seem to be an expression for ?( (=), the number of

permutations in S= with ( as pinnacle set, analogous to the one in Theorem 2.0.3 for peak sets.

In [DNKPT18], they found expressions for ?( (=) when #( ≤ 2 as well as bounds for general (, and

asked whether an exact formula could be given in the general case. Such an expression was given

in [DLHH+21] as a summation. In this section we will give another sum which is asymptotically

more efficient. In addition, this method can be extended to count #O((), the number of admissible

orderings of (.

Since our sum will involve a significant amount of new notation, we will collect it here and

then explain its relevance afterwards. Fix = ∈ P. Suppose we have an admissible pinnacle set

( = {B1 < B2 < . . . < B3} for permutations inS=. We use the convention B0 = 0 and B3+1 = = + 1

and let

=8 = B8+1 − B8 − 1

for 0 ≤ 8 ≤ 3. Let

� = {1; , 1A , 2; , 2A , . . . , 3; , 3A }

and give the following total order to �’s elements

1; < 1A < 2; < 2A < . . . < 3; < 3A .

We call 8; and 8A the elements of rank 8 in �. If � ⊆ � then we will let

1 = #�
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and

A 9 = the rank of the 9 th smallest element of �

for 1 ≤ 9 ≤ 1. We also define

18 = the number of elements in � with rank at least 8.

Note that we always have 11 = 1 and 13+1 = 0 since 3 is the largest rank. For example, if 3 = 4,

then � = {1; , 1A , 2; , 2A , 3; , 3A , 4; , 4A } and one possible � might be � = {1; , 3; , 3A , 4A } which has

A1 = 1, A2 = 3, A3 = 3, A4 = 4 and 11 = 4, 12 = 3, 13 = 3, 14 = 1, 15 = 0. We can now state the first

main result of this section.

Theorem 4.3.1. Given = ∈ P and admissible ( = {B1 < B2 < . . . < B3} we have

?( (=) = 2=−23−1
∑

�⊆�: |�|≤3
(−1)1 (3 − 1)!

(
1−1∏
8=0
(3 + 1 − 8 − A1−8)

) (
3∏
8=0
(3 + 1 − 8 − 18+1)=8

)
.

To prove this, it will be convenient to convert the linear permutations we have been studying

into cyclic ones in order to avoid considering boundary cases. Given a linear permutation c =

c1c2 . . . c= the corresponding cyclic permutation is the set of permutations

[c] = {c1c2 . . . c=, c2 . . . c=c1, . . . , c=c1 . . . c=−1}.

Intuitively, we think of [c] as the result of arranging the elements of c on a circle. Let

[S=] = {[c] | c ∈ S=}.

For example if c = 1324 then

[c] = {1324, 3241, 2413, 4132}.

We are also using the bracket notation in [=] where = ∈ N but this should not cause any confusion.

Cyclic permutations are of interest in part because of their relation with pattern avoidance, standard

Young tableaux, quasisymmetric functions, and other mathematical objects [AGRR20, Cal02,

DLM+21a, DLM+21b, GLW18, GLW19].
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We define the pinnacle set of [c] = [c1c2 . . . c=] to be

Pin[c] = {c8 | c8−1 < c8 > c8+1 where subscripts are taken modulo =}.

Continuing our example from the last paragraph

Pin[1324] = {3, 4}.

Note in particular that Pin[12] = {2} and, more generally, = ∈ Pin[c] for any [c] ∈ [S=] where

= ≥ 2.

Lemma 4.3.2. For = ∈ P, there is a bijection between linear permutations inS= with pinnacle set

( and cyclic permutations in [S=+1] with pinnacle set (′ = ( ∪ {= + 1}.

Proof. Given a linear c, append the element = + 1 to the end of c and take the corresponding

equivalence class in S=+1 to form an element of [S=+1]. The map is clearly invertible and does

not destroy or create any pinnacles for elements in [=]. Since = + 1 ≥ 2, we know that = + 1 will

become a pinnacle. Therefore the map has the desired properties concerning the pinnacle set.

Consider some admissible pinnacle set ( = {B1 < B2 < . . . < B3}. Given the above lemma,

we may count the number of permutations in S= with pinnacle set ( by counting the number of

cyclic permutations [c] ∈ [S=+1] with pinnacle set (′ = ( ∪ {= + 1} where we let B3+1 = = + 1.

Therefore, much of what follows will be in regards to cyclic permutations with pinnacle set (′.

A factor of a (cyclic) permutation is a subsequence of consecutive elements. We may attempt

to construct a [c] with pinnacle set (′ by first putting the elements of (′ in some cyclic order, and

then placing all elements in (′ = [= + 1] − (′ into either decreasing factors starting with some B8,

or into increasing factors ending with some B8. Such a [c] will then be completely determined

by the increasing/decreasing factors that each element of (′ falls into, and we will call every such

assignment a placement. Note that it is possible for multiple placements to result in the same

permutation since each vale (an element of [c] smaller than the elements on either side) can be

part of the factor on either side. For example, start with a desired pinnacle set {4, 5} and place
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non-pinnacles between these elements to form the cyclic permutation [c] = [14325]. Then [c]

would be associated with a placement where the decreasing factor starting with 4 is 43 and the

increasing factor ending with 5 is 25. But it would also be associated with a placement having

these factors be 432 and 5, respectively.

It is also possible, depending on the placement, that [c] will not have pinnacle set (′ if no

sufficiently small elements are placed between two pinnacles. In our example above, this could

have happened if we had placed 1, 2 and 3 all in the increasing factor ending in 5, resulting in

the cyclic permutation [41235] in which only 5 is a pinnacle. It is true, however, that any [c] so

constructed will have a pinnacle set that is a subset of (′ since every non-pinnacle was placed so

that its factor contains an B8 which is the largest element. For our arguments, we will focus on

counting placements and then convert them into permutations later.

Fix a cyclic ordering of the pinnacle indices and write it as [g] = [g1 · · · g3+1] ∈ [S3+1]. An

example is shown in Figure 4.2 where g = [7612354]. Now given a placement consistent with this

ordering, for every space between two adjacent elements in [g] define the dale set of this placement

to consist of all elements between the two corresponding pinnacles that are also smaller than both

pinnacles. So in Figure 4.2 the dales are outlined by triangles with solid lines as sides. If B8 is the

smaller of the two pinnacles, then we say that the dale has rank 8. Note that the rank is from the

index of B8 and not its actual value. We will further denote the rank as either 8; or 8A depending on

whether the dale is to the left, or right of the pinnacle B8. In Figure 4.2 the dale ranks are given

along the G-axis. Define the dale rank set � [g] to be the set of the dale ranks of [g]. And define

the master dale rank set to be

� = {1; , 1A , 2; , 2A , . . . , 3; , 3A }

so that � ⊇ � [g] for all [g]. In Figure 4.2, we have that � [g] = {1; , 1A , 2A , 3A , 41, 4A , 6;} while

� = {1; , 1A , 2; , 2A , . . . , 6; , 6A }. Note that, by our definitions, there will be no dales in the case

where 3 = 0.

Clearly � [g] will be a subset of � consisting of exactly 3 + 1 elements if 3 > 0, and empty

otherwise. We can derive further information about � [g] if we want, such as how it will always
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Figure 4.2: Example of a pinnacle set ordering [g] = [7612354] with corresponding dales.

contain both 1; and 1A if 3 > 0, how it will never contain both 3; and 3A if 3 > 1, and how � [g] will

never be able to have certain combinations of the higher ranked dales. These facts are not necessary

for proving our formula, although further analysis of them might help to improve its efficiency.

Lemma 4.3.3. For = ∈ P, a given placement will correspond to a permutation [c] ∈ [S=+1] with

pinnacle set (′ if and only if every dale is non-empty.

Proof. First, suppose 3 = 0. In this case, the theorem is trivial since there are no dales. And every

placement will automatically result in only one pinnacle, namely = + 1, as long as = > 0.

Now suppose 3 > 0. Clearly if any dale of rank 8 (whether left or right) is empty, then the

pinnacle B8 will have no smaller elements between itself and the higher pinnacle next to it, which

will force B8 to not be a pinnacle. On the other hand, if all dales have at least one element, then

the space between any two pinnacles will always contain an element smaller than both, and all

elements of (′ will in fact be pinnacles.

We can now enumerate all placements corresponding to a given cyclic ordering of the indices

of the pinnacle set (′.
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Lemma 4.3.4. Given an admissible pinnacle set (′, fix an order [g] of the pinnacle indices. The

total number of placements with order [g] that will result in a permutation with pinnacle set (′ is

given by ∑
�⊂� [g]

(−1)1
3∏
8=0

2=8 (3 + 1 − 8 − 18+1)=8

where 1, 3, the 18, and the =8 are defined above.

Proof. We will use the Principle of Inclusion and Exclusion or PIE. We let our universal set be all

possible placements with no restrictions. We then wish to exclude any placement where at least

one dale is empty. Therefore, if � is some subset of the dales, we must be able to count the number

of placements where all dales in � (and possibly others) are empty.

First consider the case when � = ∅. There are 2(3 + 1) factors of which 28 only exist below

B8. So each of the =8 non-pinnacles between B8 and B8+1 may be placed in any of the 2(3 + 1 − 8)

factors that are long enough to extend above B8. As an example, in fig. 4.2, if we look between the

horizontal boundary lines for the elements counted by =2 we see there are 10 = 2(6 + 1 − 2) such

factors represented by the diagonal lines (solid or dotted) which intersect the region.

For non-empty �, each dale of rank at least 8 + 1 that we require to be empty will result in a loss

of two additional factors, and so there are only 2(3 + 1 − 8 − 18+1) choices. Therefore, for a given

�, the total number of placements guaranteeing the dales in � are empty is

3∏
8=0

2=8 (3 + 1 − 8 − 18+1)=8 .

To use the PIE, we must also attach the sign (−1) |� | = (−1)1 to this term before summing.

Therefore, given a fixed order [g] of the pinnacle indices of (′, we have that the total number of

placements that will result in a permutation with pinnacle set (′ is∑
�⊆� [g]

(−1)1
3∏
8=0

2=8 (3 + 1 − 8 − 18+1)=8 .

Finally, when � = � [g] then 11 = #� = 3 + 1. So we can ignore this term because the product has

a factor of 3 + 1 − 11 = 0.
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The above formula must be summed over all possible [g] to give a final count for the number

of [c] with Pin[c] = (′. This results in computationally expensive double sum. Also, note that in

the above formula there may be multiple � resulting in the same term. For example, {1; , 2A , 5;}

is not the same as {1A , 2A , 5;} even though both produce the same 18. We will take care of this

redundancy when we optimize our formula below.

To fix the double sum problem, note that each � in Lemma 4.3.4 is a subset of the master dale

rank set �. We will fix some subset � ⊆ � and count the number of orderings [g] that will produce

a � [g] which can have � as a subset. This will allow us to just sum over all subsets � ⊆ � without

having to keep track of [g]. Furthermore, we only have to sum over the subsets � of cardinality at

most 3 since requiring more than 3 dales to be empty is impossible for an admissible pinnacle set.

Lemma 4.3.5. Fix some � ⊆ � with |�| ≤ 3. The number of orderings [g] that will produce a

� [g] such that � ⊆ � [g] is given by

(3 − 1)!
1−1∏
8=0
(3 + 1 − 8 − A1−8)

where 1, 3, and the A8 are defined as above.

Proof. Wewill start by viewing all 3 +1 pinnacles as separate and then adjoin them in pairs in such

a way so that the desired dales are formed. Here, “adjoining a pair of pinnacles” means requiring

that they be adjacent in [g].

We start with the dale of rank A1 the largest rank in �. In that case, the only way to generate

such a dale is to order BA1 so that one of the 3 + 1 − A1 higher pinnacles is directly to its left or

right depending on whether the corresponding element of � is a left or right rank, respectively. So

select one such pinnacle and adjoin it to the appropriate side of BA1 .

Next we will examine the dale in � with the next highest rank, A1−1. If A1−1 is a smaller rank

than A1, we may once again select a taller pinnacle to place next to BA1−1 , on either the left or right

as necessary, in order to produce the desired dale. This time however, although there are 3+1−A1−1

pinnacles higher than BA1−1 , one of them is unavailable since we have already adjoined two of the

higher-ranked pinnacles together. More specifically, because of adjoining a higher pinnacle with
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BA1 , we know that one taller pinnacle cannot be joined to its left and another cannot be joined to

its right. So no matter whether A1−1 corresponded to a left or right dale, there is one less option.

Therefore, the number of ways to append a larger pinnacle is 3 + 1− A1−1 − 1. On the other hand, if

A1−1 = A1 then we need to adjoin a second pinnacle to BA1 on the side opposite the one used when

considering A1. Again, the pinnacle already adjoined to BA1 removes one option so the number of

choices is 3 + 1 − A1−1 − 1 as before. So in either case we have the same number of possibilities.

Similar consideration show that, in general, each A1−8 results in 3+1− 8−A1−8 choices for adjoining

pinnacles. Note that for this argument we are using the fact that 1 ≤ 3 since if 1 = 3 + 1 then the

string of pinnacles would wrap into a circle before creating the final dale.

Once all dales have been created by the above process, we only need to count the number of

ways to join the resulting strings of pinnacles together. Since we have adjoined pinnacles together

1 times, we have 3 + 1 − 1 strings which we then must arrange in a circle. This can be done in

(3 + 1 − 1 − 1)! = (3 − 1)! ways. Therefore,

(3 − 1)!
1−1∏
8=0
(3 + 1 − 8 − A1−8)

is the number of orderings [g] that will allow for a given � to be a subset of � [g] .

We are now in a position to prove Theorem 4.3.1 which we restate here for ease of reference.

Theorem 4.3.6. Given = ∈ P and admissible ( = {B1 < B2 < . . . < B3} we have

?( (=) = 2=−23−1
∑

�⊆�: |� |≤3
(−1)1 (3 − 1)!

(
1−1∏
8=0
(3 + 1 − 8 − A1−8)

) (
3∏
8=0
(3 + 1 − 8 − 18+1)=8

)
.

Proof. It is easy to verify the formula if 3 = 0, so we assume 3 > 0. From Lemma 4.3.3, the

number of permutations c ∈ S=+1 with pinnacle set ( equals the number of cyclic permutations

[c] ∈ [S=+1] with pinnacle set (′ = ( ∪ {= + 1}. So we will count the latter. From Lemma 4.3.4,

the number of placements which correspond to a cyclic permutation with pinnacle set (′ is given

by ∑
[g]

∑
�⊆� [g]

(−1)1
3∏
8=0

2=8 (3 + 1 − 8 − 18+1)=8
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where the outer sum is over all possible cyclic orderings [g] of the index set of (′. We now wish

to swap the summations so that the outer sum is over all � ⊆ � with |� | ≤ 3. We may restrict to

size at most 3 since any larger � will either consist of a combination of dales that cannot exist, or

will require all 3 + 1 dales to be empty which is impossible because of the assumption that 3 > 0.

In order to interchange the summations we must multiply the term corresponding to each � by

the number of distinct permutations [g] that could have generated it. This was counted in Lemma

4.3.5, and so we get the formula∑
�⊂�: |� |≤3

(−1)1 (3 − 1)!
(
1−1∏
8=0
(3 + 1 − 8 − A1−8)

) (
3∏
8=0

2=8 (3 + 1 − 8 − 18+1)=8
)

for the number of placements.

Now we seek to turn the placements into permutations. Since all dales are guaranteed to be

non-empty, we have that every permutation corresponding to one of these placements will have

3 + 1 non-pinnacle elements that are part of both a decreasing factor and an increasing factor. This

means that every such corresponding [c] has been counted by 23+1 placements. Dividing by this,

and also pulling some common factors of two out from the second product, we have

?( (=) = 2−3−1
3∏
8=0

2=8
∑

�⊆�: |� |≤3
(−1)1 (3 − 1)!

(
1−1∏
8=0
(3 + 1 − 8 − A1−8)

) (
3∏
8=0
(3 + 1 − 8 − 18+1)=8

)
= 2=−23−1

∑
�⊆�: |� |≤3

(−1)1 (3 − 1)!
(
1−1∏
8=0
(3 + 1 − 8 − A1−8)

) (
3∏
8=0
(3 + 1 − 8 − 18+1)=8

)
where this is the formula we set out to prove.

In [DNKPT18], explicit formulas were given for ?( (=) when |( | ≤ 3. These expressions follow

easily from the previous reslt.

Corollary 4.3.7. We have the following values for ?( (=).

(1) If ( = ∅ then

?( (=) = 2=−1.
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(2) If ( = {;} where 3 ≤ ; ≤ = then

?( (=) = 2=−2(2;−2 − 1).

(3) If ( = {;, <} where ; ≥ 3, < ≥ 5, and ; < < ≤ =, then

?( (=) = 2=+<−;−5(3;−1 − 2; + 1) − 2=−3(2;−2 − 1).

Proof. In each of the results we apply Theorem 4.3.6.

(1) When 3 = 0, the first product in Theorem 4.3.6 is always empty and the second always

equals one. Therefore, everything reduces immediately to ?( (=) = 2=−1, as desired.

(2) When 3 = 1 we have =0 = ; − 1, =1 = = − ;. Therefore, we have the following possibilities

for �, and the corresponding terms in the summation

• � = ∅ : 2;−1

• � = {1;} or {1A }: −1

which when substituted into the formula gives

?( (=) = 2=−3(2;−1 − 2) = 2=−2(2;−2 − 1).

(3) When 3 = 2 we have =0 = ; − 1, =1 = < − ; − 1, and =2 = =−<. Additionally, the first inner

product will always zero out if 2A , 2; are both in �. Therefore, we have the following possibilities

for �, and the corresponding terms in the summation:

• � = ∅ : (2)3;−12<−;−1

• � = {1;} or {1A }: (−2)2;−12<−;−1

• � = {2;} or {2A }: (−1)2;−1

• � = {1; , 1A }: 2

• � = {1; , 2A } or {1A , 2A } or {1; , 2;} or {1A , 2;}: 1.
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When we substitute all these into the formula, we get

?( (=) = 2=−5 [(2)3;−12<−;−1 − (4)2;−12<−;−1 − (2)2;−1 + (2)2<−;−1 + 4]

= 2=−5 [(2)3;−12<−;−1 − (4)2;−12<−;−1 + (2)2<−;−1] − 2=−5 [(2)2;−1 − 4]

= 2=+<−;−5(3;−1 − 2; + 1) − 2=−3(2;−2 − 1)

as desired.

We can make Theorem 4.3.6 more efficient by summing over certain weak compositions rather

than subsets. A weak composition of = ∈ N is a sequence U = [U1, U2, . . . , U: ] of nonnegative

integers called parts such that
∑
8 U8 = =. In this case we write U |= = or |U | = = where |U | =

∑
8 U8.

To � ⊆ � we associate the composition U = [U1, U2, . . . , U3] where U8 is the number of dales

in � of rank 8. To illustrate, for the example in Figure 4.2 the corresponding composition is

U = [2, 1, 1, 2, 0, 1]. Note that all the necessary parameters for � can be read off of U. In particular

A 9 = min{8 | U1 + U2 + · · · + U8 ≥ 9},

and

18 = U8 + U8+1 + · · · + U3 .

Note that

1 = 11 = |U |.

Thus we will be able to sum over the following set

� (3) = {U = [U1, U2, . . . , U3] | U8 ∈ [0, 2] for all 8 and |U | ≤ 3}.

We must find how many � correspond to a given U. If U8 = 0 then � contains no dales of rank

8. If U8 = 2 then � contains both dales of rank 8. So the only choice comes if U8 = 1 in which case

� could contain either 8; or 8A . Letting

> = the number of U8 = 1

we see that the number of � represented by U is 2>. Thus we have proved the following result.
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Corollary 4.3.8. Given = ∈ P and admissible ( = {B1 < B2 < . . . < B3} we have

?( (=) = 2=−23−1
∑

U∈� (3)
(−1)12> (3 − 1)!

(
1−1∏
8=0
(3 + 1 − 8 − A1−8)

) (
3∏
8=0
(3 + 1 − 8 − 18+1)=8

)
.

In order to compare this formula to the one in [DLHH+21], we need to introduce some notation.

The vale set of a permutation c is

Val c = {c8 | c8−1 > c8 < c8+1}.

Call a pair ((, )) =-admissible if there is a permutation c ∈ S= with Pin c = ( and Val c = ) .

Define

V= (() = {) | ((, )) is =-admissible}.

Theorem 4.3.9 ([DLHH+21]). Given = ∈ P and admissible ( with #( = 3 we have

?( (=) = 2=−23−1
∑

)∈V= (()

∏
B∈(

(
#() (B)

2

) ∏
C∈[=]−((]))

#() (C)

where (8 = {B ∈ ( | B < 8}, )8 = {C ∈ ) | C < 8}, and #() (8) = #)8 − #(8.

In order to estimate the number of terms in this sum, we need a formula for #V= ((). Let

 (3) = {U = [U1, U2, . . . , U3] |= 3 | U1 + U2 + · · · + U: ≥ : for all : ∈ [3]}.

Theorem 4.3.10 ([DLHH+21]). Given = ∈ P and admissible ( = {B1 < B2 < . . . < B3} we have

#V= (() =
∑

U∈ (3)

(
=0 − 1
U1

) 3∏
8=2

(
=8−1
U8

)
.

We can now compare the number of terms in the sums of Corollary 4.3.8 and Theorem 4.3.9.

In the former we have 2(3) := #� (3) ≤ 33 terms, where the inequality comes from the fact that

every U8 ∈ {0, 1, 2}. In the latter, we have E= (() := #V= (() terms which depends on = and (, and

not just 3 as seen in Theorem 4.3.10. If =1 ≤ 4 and =8 ≤ 3 for 8 ≥ 2 then each of the binomial

coefficients in the sum is a most 3 and so E= (() could be significantly smaller than 2(3). But if
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( DLHHIN DLMSSS

{3, 5, 7, 9, 11, 13, 15, 17, 19, 21} 9.2 × 10−5 0.72
{3, 6, 9, 12, 15, 18, 21, 24, 27, 30} 0.11 0.73
{3, 7, 11, 15, 19, 23, 27, 31, 35, 39} 9.5 0.73
{3, 8, 13, 18, 23, 28, 33, 38, 43, 48} 210 0.78

Table 4.1: Run times in seconds compared when most =8 are equal

even one of the =8 is large, then the inequality will be reversed. For example, suppose =1 ≥ 23 + 1

and take U = [3, 0, 0, . . . , 0] ∈  (3). Then, by Stirling’s approximation,

E= (() ≥
(
23
3

)
∼ 43
√
c3

which will eventually be greater than 33 . So, for fixed 3, there are only finitely many = such

that E= (() ≤ 2(3). Thus, in most cases, Corollary 4.3.8 will be more efficient. We should

mention that Diaz-Lopez, Insko, and Nilsen [DLIN21] have come up with a refinement of the ideas

in [DLHH+21] which permits the product of binomial coefficients in Theorem 4.3.10 to be replaced

by 23 .

The observations of the previous paragraph are borne out by actual computer computations. In

Tables 4.1 and 4.2 we show the results of computing ?( (1000) for various sets ( (first column) with

constant 3 by the algorithm in [DLHH+21] (second column) and our algorithm (third column).

The run times are in seconds and are the average over 10 trials for each set using a 15-inch 2017

MacBook Pro with a 3.1 GHz Quad-Core Intel Core i7 processor. In Table 4.1 the =8 for 0 < 8 < 3

are constant in each set, but allowed to increase as one goes down the table. As expected, the

algorithm using vales starts out orders of magnitude faster than the one using dales but quickly

becomes orders of magnitude slower, with the latter’s times being virtually constant. Similar

behaviour is shown in the two parts of Table 4.2 which keep all of the =8 for 0 ≤ 8 < 3 constant

except for one which is allowed to grow. Note the difference in growth rate of the vale algorithm

between increasing =4 (upper chart) and =0 (lower chart).
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Increase =4 with other =8 constant

( DLHHIN DLMSSS

{3, 5, 7, 9, 11} 2.9 × 10−5 0.0014
{3, 5, 7, 9, 21} 7.1 × 10−5 0.0014
{3, 5, 7, 9, 31} 0.00012 0.0015
{3, 5, 7, 9, 41} 0.00017 0.0015

Increase =0 with other =8 constant

( DLHHIN DLMSSS

{3, 5, 7, 9, 11} 2.9 × 10−5 0.0014
{13, 15, 17, 19, 21} 0.012 0.0015
{23, 25, 27, 29, 31} 0.26 0.0015
{33, 35, 37, 39, 41} 1.8 0.0015

Table 4.2: Run times in seconds compared when most =8 are constant

Another advantage to this approach is that it can be modified to count #O((), the number of

admissible orderings of an admissible pinnacle set (. First, if we fix = > 0we have that Lemma 4.3.2

will again allow us to reduce to the case of cyclic orderings of the pinnacle set (′ for permutations

inS=+1. We now prove the following intermediate result.

Lemma 4.3.11. Consider a cyclic ordering [g] with dale set � [g] and corresponding A 9 . The

ordering is admissible if and only if

9 ≤ =0 + =1 + · · · + =A 9−1

for all 9 ∈ [3 + 1].

Proof. Note that, by definition of the =8 and A8, the right hand side of the inequality is simply the

number of non-pinnacles small enough to be placed in any of the dales having rank at least A 9 . So if

for any 9 we have 9 > =0 + =1 + · · · =A 9−1, then there will be at least 9 + 1 dales having rank at most

A 9 . This means there would not be enough small non-pinnacle elements to fill them all. Therefore,

60



any such ordering is not admissible. On the other hand, if we have that 9 ≤ =0 + =1 + · · · =A 9−1

for all 9 , then we may always fill all the dales by placing the smallest non-pinnacle in the lowest

ranked dale, and proceeding upwards. The inequalities guarantee that we will always have enough

non-pinnacles to do this at every step, and so we are done.

Since the problem is trivial if 3 = 0, so we may also assume that 3 > 0. We also define for the

master dale rank set �

�′ = � − {1; , 1A }

and for any subset �

X� =


1 if 9 ≤ =0 + =1 + · · · + =A 9−1 for all 9 ∈ [1],

0 otherwise.

With this notation, we can count admissible orderings.

Theorem 4.3.12. If 3 ∈ P and ( is admissible then

#O(() =
∑

�⊆�′: |� |=3−1
X�∪{1; ,1A }

3−2∏
8=0
(3 + 1 − 8 − A3−1−8) .

Proof. We first wish to sum over all possible orderings, partitioned by their dales. Since every dale

set for 3 > 0 is guaranteed to have 3 + 1 elements and contain {1; , 1A }, we may index the dales by

taking � ⊆ �′ where |� | = 3 − 1. We then consider the following summation∑
�⊆�′: |�|=3−1

3−2∏
8=0
(3 + 1 − 8 − A3−1−8) .

Clearly this sums over every possible dale set once, and the expression inside comes from Lemma

4.3.5, which counts the number of cyclic orderings of (′ which have dales containing those in �.

However, due to the restrictions placed on the size of � and the comments above, this expression

will count those cyclic orderings of (′ which have dales equal to � ∪ {1; , 1A } instead of just a

subset. Therefore, no ordering can be counted twice by two different �’s and so every ordering is

accounted for exactly once in the above summation, making the total 3!.
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Finally, using Lemma 4.3.11, we may exclude from this sum precisely those orderings which

are not admissible by writing it as

∑
�⊆�′: |� |=3−1

X�∪{1; ,1A }
3−2∏
8=0
(3 + 1 − 8 − A3−1−8) .

This completes the proof.

We may also rewrite our result in terms of compositions for a faster summation. Lemma 4.3.11

still holds as the A 9 are the same whether or not the dales sets are represented as compositions, but

now we will need make some new definitions. Let

�′(3) = {U = [U1, U2, . . . , U3−1] |= [3 − 1] | U8 ∈ [0, 2] for all 8},

and if U |= 1

XU =


1 if 9 ≤ =0 + =1 + · · · + =A 9−1 for all 9 ∈ [1],

0 otherwise.

Also, if U = [U1, U2, . . . , U3−1] then define

2 ⊕ U = [2, U1, U2, . . . , U3−1] .

The following result follows from Theorem 4.3.12 in much the same way that Corollary 4.3.8

followed from Theorem 4.3.6. So the proof is omitted.

Corollary 4.3.13. If 3 ∈ P and ( is admissible then

#O(() =
∑

U∈�′(3)
X2⊕U2>

3−2∏
8=0
(3 + 1 − 8 − A3−1−8).

4.4 Open problems and concluding remarks

Others have also been working on finding a fast formula for computing the number of permu-

tations with a given pinnacle set. Recently, Falque, Novelli, and Thibon [FNT21] have constructed

an efficient recursion to compute ?( (=). This formula is a low degree polynomial in both <, the

62



maximum of the pinnacle set ( and 3, the cardinality of the set, and has complexity O(<32). While

the result was originally stated in terms of = instead of <, we can simplify in the following way. A

permutation inS< with pinnacle set ( can be extended to a permutation inS<+1 by placing < + 1

at either the far left or the far right of the permutation. Any other way of inserting < + 1 into the

permutation would make < + 1 a pinnacle. Recursively applying this procedure to c ∈ S< with

the elements {< + 1, < + 2, . . . , =} will extend it to a permutation c′ ∈ S=. Since there were two

possible positions to place each of the elements {<+1, <+2, . . . , =}, we have ?= (() = 2=−<?< (()

and thus the result can be stated in terms of <. In addition, they provide a conjectured formula for

the weighted sum introduced in [DNKPT18]:

@( (=) :=
∑
�⊂(

2|� |?� (=). (4.3)

Following this work, Fang [Fan21] provided another recurrence to compute ?( (=) with com-

plexity O(34 + 3 log =). He also proved an expression for eq. (4.3) which is simpler than the earlier

conjecture and which is very combinatorial in nature. Quinn Minnich has recently found a simpler

proof of this result.
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CHAPTER 5

BACKGROUND ON BACKBONE EXTRACTION

Bipartite or two-mode networks are composed of two types of nodes, which we call agents and

artifacts, and edges between nodes of one type and nodes of the other type. They can be used to

represent a wide range of phenomena and therefore are studied in a diverse range of disciplines.

For example, natural selection unfolds as species (the agents) compete over sites (the artifacts),

commerce is possible as traders exchange resources, scientific advances are reported as scholars

write papers, and laws are adopted as legislators sponsor bills. Although bipartite networks

are useful in their own right, they can also be useful for inferring unipartite (i.e., one-mode)

networks that would otherwise be difficult or impossible to measure directly. A bipartite projection

transforms a bipartite network into a unipartite co-occurrence network inwhich agents are connected

to the extent that they share artifacts. For example, competitive interaction networks can be

inferred from species’ co-occurrence in sites [Dia75], trade networks can be inferred from firm

co-location [TCW02] or product co-exchange [SDCGS15], scholarly collaboration networks can

be inferred from paper co-authorship [New01], and political alliance networks can be inferred from

bill co-sponsorship [Nea20]. Throughout this thesis, we use these applications to offer concrete

examples, however the models we discuss are perfectly general and can be applied to derive

unipartite backbones in a range of contexts [AABB11, Tol21, ZH05]. Indeed, in principle any

unipartite network can be represented as the projection of some bipartite network [VFO20, GL04,

NP03] .

Despite their promise, bipartite projections (i.e., co-occurrence networks) are challenging to

analyse because they are typically dense and weighted, and because the edge weights do not

necessarily capture the strength of the relationship between nodes [Nea14]. In particular, when

transforming a bipartite graph into a unipartite graph via projection, information about the artifacts

responsible for edges between vertices is lost [LMDV08], specifically, one no longer knows which

artifact(s) gave rise to a given edge and therefore no longer knows whether the artifact(s) are large
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or small (i.e. the column sums of the bipartite matrix). This is important because co-participation

in small artifacts provides more information about the relationship between two vertices than co-

participation in large artifacts [Nea14]. For example, observing two people attending the same small

party provides more information about a potential social relationship between them than observing

these individuals attending the same large gathering. Similarly, observing two legislators co-

sponsoring the same unpopular bill (i.e. one that is co-sponsored by no one else) provides more

information about a potential political relationship between them than observing these legislators

co-sponsoring the same popular bill (i.e. one that is co-sponsored by many others also).

Bipartite projection also involves the loss of information about the individual vertices, one no

longer knows how many artifacts a given vertex participated in (i.e. the row sums of the bipartite

matrix). This information is important to consider because the scale of each edge weight in

a bipartite projection is driven by the number of artifacts participated in by the two vertices it

connects [Nea14]. For example, on average the number of events co-attended by two people who

each attend many events will be larger (on average) than the number of events co-attended by two

people who each attend few events. Similarly, on average the number of bills co-sponsored by

two legislators who each sponsor many bills will be larger (on average) than the number of bills

co-sponsored by two legislators who each sponsor few bills. Therefore, what counts as a ‘large’

or ‘small’ number of co-attendances or co-sponsorships depends in part on the total number of

attendances or sponsorships of both members of a dyad. As we will see, the backbone extraction

methods we consider cope with these challenges by controlling for the row and column sums of the

bipartite matrix associated with the bipartite graph in question.

As a result of these challenges, it is often useful to analyze the backbone of a bipartite projection,

which is an unweighted and typically sparser network that retains only the most ‘important’ edges.

Although well-known methods exist for extracting the backbone of weighted networks that are not

bipartite projections [SBV09, Dia16], methods designed specifically for bipartite projections have

recently been developed [Nea14, ZK11, SSDC+17, TML+11].

To begin, we’ll define notation and language for discussing bipartite projections and backbones.
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Throughout this chapter, we use the ecological case of Darwin’s Finches to provide a concrete

example [San00, Got00]. On his voyage to the Galapagos Islands on the H.M.S. Beagle, Darwin

observed that only some species of finches lived on each island. These patterns can be represented

as a bipartite network in which finch species (the agent nodes) are connected to the islands (the

artifact nodes) where they are found [NN20]. A bipartite network can be represented as a binary

matrix in which the agents are arrayed as rows, and the artifacts are arrayed as columns. We use

B to denote a bipartite network’s representation as a matrix, where �8: = 1 if agent 8 is connected

to artifact : , and otherwise is 0. The sequence of row sums and the sequence of column sums of

B are called the agent and artifact degrees sequences, respectively. These sequences are among

the bipartite network’s most significant features and are known to have implications for bipartite

projections and backbones [VFO20, DNS21, NDS21a]. In the ecological case, the agent degree

sequence captures the number of islands where each species is found, while the artifact degree

sequence captures the number of species found on each island.

The projection of a bipartite network is a weighted unipartite co-occurrence network in which

a pair of agents is connected by an edge with a weight equal to their number of shared artifacts. For

example, the bipartite projection of Darwin’s species location network is a species co-occurrence

network in which a pair of species is connected by an edge with a weight equal to the number of

islands where they are both found. We use P to denote the matrix representation of a bipartite

projection, which is computed as BB) , where B) indicates the transpose of B. In a projection P,

%8 9 indicates the number of times both 8 and 9 were connected to the same artifact : in B. The

diagonal entries of P, %88, are equal to the agent degrees. Typically the backbone of P will discard

these diagonal entries, though their values are used in deciding which other edges are deemed

important.

As the readermay have inferred, bipartite networks and their weighted projections are equivalent

to bipartite andweighted graphs. This equivalence helps in the visualization and analysis techniques

in the network sciences. A graph � is a set of objects called vertices, together with a set of 2-

element subsets of the vertices which are called edges. An edge between vertices 8 and 9 can be
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Figure 5.1: Bipartite and bipartite projection networks

denoted as 4 = 8 9 . If there exists an edge 4 = 8 9 between vertices 8 and 9 , we say that 8 and 9 are

adjacent. We call a graph weighted if each edge has an associated numeric value, and unweighted

otherwise. The weight of edge 4 = 8 9 is denoted F(8 9); in unweighted graphs, we set F(8 9) = 1 for

all present edges. The degree of vertex 8 is the number of edges of the form 8 9 for some 9 . Graphs

are often discussed by viewing their adjacency matrices G, where �8 9 = F(8 9). As mentioned

above, the matrix representation of a bipartite network B is the graph’s bipartite adjacency matrix,

while the matrix P is the adjacency matrix of the weighted graph. See fig. 5.1 for an example of

this connection.

The backbone of a bipartite projection is a binary representation of P that contains only the most

‘important’ or ‘significant’ edges. For example, the backbone of a species co-occurrence network

connects pairs of species if they are found on a significant number of the same islands, which

might be interpreted as evidence that the two species do not compete for resources and perhaps are
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symbiotic. We use P′ to denote the matrix representation of the backbone of P. Because multiple

methods exist for deciding when an edge is significant and thus should occur in the backbone, we

use P
′M to denote a backbone extracted using method " .

Backbone extraction methods that were originally developed for non-projection weighted net-

works are often also applied to weighted bipartite projections. One simple method preserves an

edge in the backbone if its weight in the projection exceeds some universal threshold ) . However,

when ) = 0 is chosen (which is common), since each artifact of degree 3 induces 3 (3 − 1)/2 edges

in the backbone, this leads to a very dense backbone with a high clustering coefficient [LMDV08].

Here, density refers to the number of edges present in the network divided by the maximum possible

number of edges. A network clustering coefficient measures how many ‘triangles’, three pairwise

adjacent vertices, are present in the network compared to all triples. Backbones with high density

and clustering coefficient may not elucidate any interesting information regarding the network.

Using ) > 0 can yield a sparser and less clustered backbone [DT05, Fon20, BR11], but the choice

of a particular threshold value is arbitrary, and applying the same threshold to all edges yields

backbones that overlook agents with low degree in the projection [SBV09]. More sophisticated

methods, including the disparity filter [SBV09] and likelihood filter [Dia16], aim to overcome these

limitations of the universal threshold method by using a different threshold for each edge based on

a null model. However, all methods that can be applied to non-projection weighted networks have

the same shortcoming when applied to weighted bipartite projections: they ignore information

about the artifacts [Nea14]. In the ecological case, the universal threshold, disparity filter, and

likelihood filter methods all decide whether two species should be connected in the backbone only

by examining how many islands they are both found on, but do not consider the characteristics of

those islands, including howmany other species are found there, or even howmany islands there are.

Therefore, although these methods are promising for extracting the backbone from non-projection

weighted networks, different methods are required for extracting the backbone from a bipartite

projection.
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CHAPTER 6

BACKBONE MODELS AND THEIR PROBABILITY MASS FUNCTIONS

This chapter contains material from Neal, Domagalski, and Sagan [NDS21b]. All results in this

chapter are from this manuscript unless otherwise noted.

6.1 Bipartite ensemble backbone models

Bipartite ensemble backbone models decide whether an edge’s observed weight %8 9 is signif-

icantly large, and thus whether a corresponding edge should be included in the backbone, in the

following way. Let B be the set of all bipartite networks B∗ having the same number of agents

and artifacts as B. In the ecological case, B∗ might be viewed as representing a possible world

containing the same species and islands, but in which locations of species on islands is different,

and likewise B is the set of all such possible worlds. We will create our ensembles by taking a

subset BM of B subject to certain constraints " and imposing a probability distribution on it. In all

our models except the SDSM, we impose the uniform probability distribution on BM, that is, each

element of the ensemble is equally likely. We will then extract the backbone from the projection of

B by using the distribution of edge weights arising from projections of members of the ensemble

under consideration.

We use %∗
8 9
to denote a random variable equal to (B∗B∗) )8 9 for B∗ ∈ BM. That is, %∗

8 9
is the

number of artifacts shared by 8 and 9 in a bipartite network randomly drawn from BM. In the

ecological case, %∗
8 9

represents the number of islands that are home to both species 8 and 9 in a

possible world, while the distribution of %∗
8 9
is the distribution of the number of islands shared by

species 8 and 9 in all possible worlds.

Decisions about which edges should appear in a backbone extracted at the two-tailed statistical
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significance level U are made by comparing %8 9 to %∗8 9

%′8 9 =


1 if Pr(%∗

8 9
≥ %8 9 ) < U

2 ,

0 otherwise.

This test preserves an edge in the backbone if its weight in the observed projection is uncommonly

large compared to its weight in projections of members of the ensemble. A two-tailed significance

test is used because, in principle, an edge’s weight in the observed projection could be uncommonly

larger or uncommonly smaller than its weight in projections of members of the ensemble. One can

use the same principles to obtain a signed backbone by comparing %8 9 to %∗8 9 with

%′8 9 =



1 if Pr(%∗
8 9
≥ %8 9 ) < U

2 ,

−1 if Pr(%∗
8 9
≤ %8 9 ) < U

2 ,

0 otherwise.

In the ecological case, two species are connected in the backbone if their number of shared

islands in the observed world is uncommonly large compared to their number of shared islands in

all possible worlds.

There are many ways thatB can be constrained [SUG18], with each set of constraints describing

a different ensembleBM and different ensemble backbonemodel; however, in this work we focus on

five possibilities. We describe each of these models and their meaning in the context of Darwin’s

species and islands, and derive their probability mass functions for the respective edge weight

distributions. These probability mass functions of %∗
8 9
are used by ensemble backbone models to

evaluate the statistical significance of the weight of edge %8 9 in a bipartite projection. We use the

following notation:

• Let B be an < × = bipartite matrix, with a vector of row sums ' = (A1, . . . , A<), a vector of

column sums � = (21, . . . , 2=), and 5 cells containing a 1. So

5 =

<∑
8=1

A8 =

=∑
9=1

2 9 .

70



• Let BM be the ensemble of all < × = matrices B∗ = (�∗
8 9
) that obey the constraints of the

respective model. In all models, the probability distribution on BM is uniform except in the

stochastic case.
• Let %∗

8 9
be a random variable equal to (B∗B∗) )8 9 for all B∗ ∈ BM. Note that we have

%∗8 9 = �
∗
81�
∗
91 + �

∗
82�
∗
92 + · · · + �

∗
8=�
∗
9=. (6.1)

6.2 Fixed degree sequence model (FDSM)

In the fixed degree sequencemodel (FDSM)B∗ ∈ BFDSM are constrained to have the same agent

and artifact degree sequences as B. Adopting the FDSM implies, for example, that in all possible

worlds a given species is found on exactly the same number of islands, and a given island is home to

exactly the same number of species. The distribution of %∗
8 9
arising from BFDSM is unknown, but

can be approximated by uniformly samplingB∗ fromBFDSM, constructingP∗, and saving the values

%∗
8 9
. In the studies below, we use 1000 samples of B∗ generated using the ‘curveball’ algorithm,

which is among the fastest methods to sample BFDSM uniformly at random [SNB+14, Car15].

The FDSM has been used to extract the backbone of bipartite projections of, for example, movies

co-liked by viewers [ZK11] and conference panel co-participation by scholars [SR12, DL16]. In

this paper, we use the FDSM as the reference model to which other ensemble models are compared

because it fully controls for both degree sequences.

The primary limitation of the FDSM is its computational cost. First, constructing each P∗

requires matrix multiplication, which must be performed repeatedly and has complexity O(=2.37)

for two =×=matrices using the fast Coppersmith-Winograd algorithm [CW90]. Second, computing

Pr(%∗
8 9
≥ %8 9 ) with sufficient precision to achieve a two-tailed familywise error rate of U requires

at least .5<
2−.5<
U/2 + 1 samples, where < is the number of rows (i.e., agents) in B and P. Thus, for

example, extracting the backbone of a bipartite projection with 1000 agents at a family-wise error

rate of 0.05 would require performing at least 20 million matrix multiplications. Therefore, the

tightly-constrained FDSM is frequently impractical for backbone extraction. However, models that

rely on ensembles with more relaxed constraints offer computationally-feasible alternatives.
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6.3 Fixed fill model (FFM)

In the highly relaxed fixed fill model (FFM), B∗ ∈ BFFM are simply constrained to contain

the same number of 1s as B. Adopting the FFM implies, for example, that in all possible worlds

only the total number of species-habitat pairs is fixed, but any given species may be found on a

different number of islands and any given island may be home to a different number of species.

The distribution of %∗
8 9
arising from �FFM has not been described before. We derive it and call it a

Jacobi distribution because it is related to Jacobi polynomials.

Let the fixed fill model constrain all B∗ ∈ BFFM to contain the same number of 1s (i.e. fill) as

B.

Theorem 6.3.1. Under the fixed fill model, the distribution of %∗
8 9
for 8 ≠ 9 satisfies

Pr(%∗8 9 = :) =

(
=

:

) ∑
A

2=−:−A
(
= − :
A

) (
(< − 2)=

5 − = − : + A

)
(
<=

5

) . (6.2)

Proof. For the denominator we need to compute the cardinality #BFFM. If B∗ ∈ BFFM then B∗

has <= entries of which 5 must be chosen to be ones. So

#BFFM =

(
<=

5

)
.

For the numerator, suppose %∗
8 9
= : . We see from equation (6.1) that there are exactly :

columns 2 where �∗
82
= �∗

92
= 1. There are

(=
:

)
ways to choose these columns. Now define the

following parameters:

? = number of columns 2 where �∗82 = 1 and �∗92 = 0,

@ = number of columns 2 where �∗82 = 0 and �∗92 = 1,

A = number of columns 2 where �∗82 = 0 and �∗92 = 0.

The number of ways to pick the columns counted by these parameters from the = − : columns

which do not contains ones in both rows is the trinomial coefficients
( =−:
?,@,A

)
. Now we have used
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2: + ? + @ ones in rows 8 and 9 . So there are 5 − 2: − ? − @ left to distribute to the remaining < − 2

rows. And these rows have (< − 2)= entries. So the number of possibilities for these remaining

ones is
( (<−2)=
5−2:−?−@

)
. Thus the total number of choices from this and the previous paragraph is(

=

:

) ∑
?+@+A==−:

(
= − :
?, @, A

) (
(< − 2)=

5 − 2: − ? − @

)
=

(
=

:

) ∑
?+@+A==−:

(
= − :
A

) (
= − : − A

?

) (
(< − 2)=

5 − = − : + A

)
=

(
=

:

) ∑
A

(
= − :
A

) (
(< − 2)=

5 − = − : + A

) ∑
?

(
= − : − A

?

)
=

(
=

:

) ∑
A

2=−:−A
(
= − :
A

) (
(< − 2)=

5 − = − : + A

)
as desired.

For even modestly large B, computing equation (6.2) involves values larger than can be handled

by some programs. In practice, we use logs to make these computations practical.

We now show that the sum in the numerator of this probability is related to the famous Jacobi

orthogonal polynomials. This sum is a terminating hypergeometric series. Given a real number 0

and a nonnegative integer A the corresponding Pochhammer symbol or rising factorial is

(0)A = 0(0 + 1) (0 + 2) · · · (0 + A − 1).

Note that if 0 is an integer with −A < 0 ≤ 0 then (0)A = 0 because the product contains 0 as a factor.

Given real numbers 01, 02, . . . , 0? and 11, 12, . . . , 1@ as well as a variable I, the corresponding

hypergeometric series is

?�@


01 02 . . . 0?

11 12 . . . 1@

; I

 =
∑
A≥0

(01)A (02)A · · · (0?)A
(11)A (12)A · · · (1@)A

IA

A!
.

Note that if any of the 08 are negative integers then, because of the remark above, this series will

terminate and become a polynomial in I.
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To convert a binomial coefficient into Pochhammer symbols, we write(
=

A

)
=
(=) (= − 1) · · · (= − A + 1)

A!

=
(−1)A (−=) (−= + 1) · · · (−= + A − 1)

(1)A

=
(−1)A (−=)A
(1)A

.

The following identity will also be useful

(0)1+A = (0) (0 + 1) · · · (0 + 1 − 1) × (0 + 1) (0 + 1 + 1) · · · (0 + 1 + A − 1)

= (0)1 (0 + 1)A .

We now return to the sum in the numerator of equation (6.2). We will ignore the factor of

2=−: since it is constant with respect to the sum and so can be pulled outside. For simplicity of

calculation we will also use the substitutions

B = (< − 2)=, C = 5 − = − :.

Thus we have∑
A

2−A
(
= − :
A

) (
(< − 2)=

5 − = − : + A

)
=

∑
A

(
= − :
A

) (
B

C + A

)
(1/2)A

=
∑
A

(−1)A (: − =)A
(1)A

· (−1)C+A (−B)C+A
(1)C+A

(1/2)A

= (−1)C
∑
A

(: − =)A (−B)C (−B + C)A
(1)C (C + 1)A

(1/2)A
(1)A

=
(−1)C (−B)C
(1)C

∑
A

(: − =)A (−B + C)A
(C + 1)A

(1/2)A
A!

=

(
B

C

)
2�1


: − = − B + C

C + 1
;

1
2


We are indebted to Marko Petkovšek [personal communication] for pointing out that this 2�1

is, up to a factor, a specialization of a Jacobi polynomial. Given a nonnegative integer ℓ and real
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numbers U, V the associated Jacobi polynomial is

%
(U,V)
ℓ
(I) =

(
U + ℓ
ℓ

)
2�1


−ℓ ℓ + U + V + 1

U + 1
;

1 − I
2


To make these 2�1 polynomials agree we can let ℓ = = − : , U = C = 5 − = − : ,

V = −B + C − (ℓ + U + 1) = : − (< − 1)= − 1

and I = 0. With these substitutions we get

∑
A

2−A
(
= − :
A

) (
(< − 2)=

5 − = − : + A

)
=

(
(< − 2)=
5 − = − :

)
(
5 − 2:
= − :

) %
( 5−=−:, :−(<−1)=−1)
=−: (0).

6.4 Fixed row model (FRM)

In the more constrained fixed row model (FRM), B∗ ∈ BFRM are constrained to have the same

agent degree sequence as B, but have unconstrained artifact degree sequences. Adopting the FRM

for backbone extraction implies, for example, that in all possible worlds a given species is found

on the same number of islands, but a given island may be home to a different number of species.

The distribution of %∗
8 9

arising from BFRM is hypergeometric [TML+11, Nea13]. The FRM has

been used to extract the backbone of bipartite projections of, for example, movies co-starring

actors [TML+11], papers co-written by authors [TML+11], parties co-attended by women [Nea13],

majority opinions joined by Supreme Court justices [Nea13], and microRNAs co-associated with

diseases [CXW+18].

Let the fixed row model constrain all B∗ ∈ BFRM to have the same row sums as B.

Theorem 6.4.1. Under the fixed row model, the distribution of %∗
8 9
for 8 ≠ 9 is hypergeometric and

satisfies

Pr(%∗8 9 = :) =

(
A 9

:

) (
= − A 9
A8 − :

)
(
=

A8

) .
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Proof. The total number of ways to pick A8 of the = columns for ones in the 8th row and A 9 of the =

columns for ones in the 9 th row is (
=

A8

) (
=

A 9

)
=

(
=

A8

)
=!

A 9 !(= − A 9 )!
. (6.3)

So that will go in the denominator of the desired probability.

For the numerator we follow the same line of reasoning as in the previous proof, where the

parameters therein can be expressed as

? = A8 − :,

@ = A 9 − :,

A = = − A8 − A 9 + :.

So we have a total of (
=

:

) (
= − :
?, @, A

)
=

=!
:!(A8 − :)!(A 9 − :)!(= − A8 − A 9 + :)!

(6.4)

choices.

Dividing equation (6.4) by (6.3) and cancelling =! gives

Pr(%∗8 9 = :) =

A 9 !
:!(A 9 − :)!

·
(= − A 9 )!

(A8 − :)!(= − A8 − A 9 + :)!(
=

A8

) =

(
A 9

:

) (
= − A 9
A8 − :

)
(
=

A8

) .

as desired.

6.5 Fixed column model (FCM)

In the closely related fixed column model (FCM), B∗ ∈ BFCM are constrained to have the same

artifact degree sequence as B, but have unconstrained agent degree sequences. Adopting the FCM

for backbone extraction implies, for example, that in all possible worlds a given species may be

found on a different number of islands, but a given island is home to the same number of species.
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The distribution of %∗
8 9
arising from BFCM has not been described before, but we derive it here to

show it is Poisson-binomial.

Let the fixed column model constrain all B∗ ∈ BFCM to have the same column sums as B.

Let -1, . . . , -= be independent Bernoulli random variables. Let the probability of success for

-8 be

Pr(-8 = 1) = ?8 .

The random variable

- = -1 + · · · + -= (6.5)

is said to have the Poisson binomial distribution with parameters ?1, . . . , ?=.

Theorem 6.5.1. Under the fixed column model, the distribution of %∗
8 9
for 8 ≠ 9 is Poisson binomial

with parameters

?1 =
21(21 − 1)
<(< − 1) , ?2 =

22(22 − 1)
<(< − 1) , . . . , ?= =

2= (2= − 1)
<(< − 1) .

Proof. The �∗
8:

are all either zero or one and are independent in different columns when only the

column sums are fixed. So as : varies, the products �∗
8:
�∗
9 :

are independent Bernoulli random

variables. Comparing equations (6.1) and (6.5), we see that the distribution of %∗
8 9

is Poisson

binomial.

If column : has column sum 2 = 2: then all zero-one vectors with sum 2 are equally likely for

that column of B∗. So there are
(<
2

)
possible :th columns. The number of ways to have a success

is the number of possible columns which have ones in both positions 8 and 9 where 8 ≠ 9 . So the

number of choices is the number of ways to choose the remaining 2 − 2 ones in that column from

the other < − 2 positions, that is,
(<−2
2−2

)
. Thus

?: = Pr(�∗
8:
�∗
9 :
= 1) =

(
< − 2
2 − 2

)
(
<

2

) =
2(2 − 1)
<(< − 1)

which finishes the demonstration.
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6.6 Stochastic degree sequence model (SDSM)

Finally, the stochastic degree sequence model (SDSM) takes BSDSM to be all binary < × =

matrices, but also gives a process for generating these matrices with different probabilities. Each

B∗ is generated by filling the cells �∗
8:

with a 0 or 1 depending on the outcome of an independent

Bernoulli trialwith probability ?∗
8:
. The distribution of the randomvariable%∗

8 9
arising fromBSDSM

is Poisson-binomial with parameters which can be computed using the ?∗
8:

[DNS21, LR16]. There

are many ways to choose ?∗
8:
, but in the studies in chapter 8, we choose ?∗

8:
so that it approximates

Pr(�∗
8:
= 1) for B∗ ∈ BFDSM, with the goal of ensuring that the expected agent and artifact

degree sequences of B∗ ∈ BSDSM match those of B. Adopting such a version of SDSM implies,

for example, that in each possible world a given species may be found on many or few islands

and a given island may be home to many or few species, but the average number of islands on

which a given species lives in all possible worlds and the average number of species that live on

an given island in all possible worlds matches these values the observed world. The SDSM has

been used to extract the backbone of bipartite projections of, for example, legislators co-sponsoring

bills [Nea20,Nea14, SB20], zebrafish (Danio rerio) sharing operational taxonomic units [BDS+20],

countries sharing exports [SDCGS15], and genes expressed in genesets [MLLS21].

In the stochastic degree sequencemodel,BSDSM consists of all binary<×=matrices. Amethod

is then chosen to generate probabilities ?∗
8:
. Finally, matrices B∗ ∈ BSDSM are generated using

these probabilities for independent Bernoulli trials, where �∗
8:

is filled with a one with probability

?∗
8:

and zero otherwise.

Theorem 6.6.1. Under the stochastic degree sequence model, the distribution of %∗
8 9

for 8 ≠ 9 is

Poisson binomial with parameters

?1 = ?
∗
81?
∗
91, . . . , ?= = ?

∗
8=?
∗
9=.

Proof. The fact that the distribution is Poisson binomial follows immediately from the independence

assumption on the Pr(�∗
8:
) and equation (6.1). Furthermore, the probability that the :th variable is
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one is

?: = Pr(�∗
8:
�∗
9 :
= 1) = Pr(�∗

8:
= 1) Pr(�∗

9 :
= 1) = ?∗

8:
?∗
9 :
.

So we are done.

In the following chapter, we will implement these emsemble methods in the R package

backbone.
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CHAPTER 7

BACKBONE: AN R PACKAGE FOR EXTRACTING THE BACKBONE OFWEIGHTED
GRAPHS

This chapter contains material from Domagalski, Neal, and Sagan [DNS21, NDS21a], and back-

ground from Neal, Domagalski, and Yan [NDY22]. Replication materials are available at

https://www.github.com/domagal9/dissertation.

We now introduce the R package backbone that implements these five models, fixed degree

sequence model (FDSM), fixed fill model (FFM), fixed column model (FCM), fixed row model

(FRM), and the stochastic degree sequence model (SDSM). The backbone package provides these

methods in a common framework making them both accessible and easy to use for scientists and

researchers. It can be installed in R [R C18] from The Comprehensive R Archive Network (CRAN)

via install.packages("backbone") and used with library(backbone) [DNS20]. Informa-

tion regarding the CRAN distribution is found at https://CRAN.R-project.org/package=backbone.

Additional materials relating to backbone including papers, presentations, workshop materials,

and datasets are available at https://rbackbone.net.

7.1 Two Illuminating Data Sets

We illustrate the use of the R backbone package to extract the backbone of two networks:

the first is a network of bill co-sponsorship relations among Senators in the 114th session of the

United States Senate, the second is a network of world city firm co-locations amongst large cities

in the year 2000. Both of these networks, legislative and spatial, are used as templates for network

research in their corresponding fields.

7.1.1 Legislative Networks

For more than a decade, legislative networks have shed new light on understanding legislative

behavior [Fow06a, Fow06b]. Although legislative networks clarify that governance is an interactive
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and interdependent process, they are most useful if they help us explain or predict key parts of this

process. The most consequential action a legislator can take is voting, and several studies have

shown that a legislator’s position in a legislative network helps explain their voting behavior. For

example, [Fow06a] found that US legislators were more likely to vote in favor of bills sponsored by

well-connected legislators, even after controlling for shared party membership, and therefore that

well-connected legislators were more effective at advancing their legislative agendas. Similarly,

[RNH13] found that social ties among European legislators exacerbated ideological voting patterns:

friendship increased the likelihood of political allies voting the same way, but decreased the

likelihood of political adversaries voting the same way. [Fon20] offers one potential explanation

for the network’s influence over voting behavior: “When legislators are called on to vote on a

question that they do not understand, they take cues from experts who are nearby in the legislative

network” (p. 270). Although voting is particularly consequential, legislative networks have also

been used to explain how the coalitions that shape voting outcomes change over time. For example,

[Nea20] demonstrated that the US Congress has become substantially more partisan since 1973

with legislators increasingly collaborating only with members of the same party, and opposing

members of the other party. However, [KMN16] and [AN20a] clarified that these coalitions are

not strictly partisan and frequently include members from both parties.

Directly measuring legislative networks (e.g., simply asking legislators who they work with) is

challenging because legislators are busy and may have motivations to conceal or misrepresent their

true collaborations. As a result, most studies of legislative networks rely on more indirect mea-

surements derived from bill sponsorship [e.g., Nea20], committee memberships [e.g., PMNW05],

attendance at press events [e.g., DMSK15], and roll call votes [e.g., ALH+15a]. What do such

indirectly measured legislative networks measure? Different source data provides information

about different types of relations among legislators. For example, voting similarly in roll call votes

provides information about ideological alignment, whereas sharing membership on a committee

provides information about alignment on prioritized issues. The majority of legislative networks

are derived from patterns of bill sponsorship, which also provides information about ideological
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and issue alignment, but more directly provides information about collaboration as legislators join

together in lending their collective support to bills [Kir11, KK96].

All but the most popular legislative measures require collaboration to cultivate support and

ensure their eventual passage. Past studies have identified many factors that influence when

legislators choose to collaborate, consistently finding support for homophily [MSLC01]: similar

legislators are more likely to collaborate [CP87]. In the context of legislative collaboration,

homophily with respect to political party is known as partisanship, which when particularly intense

leads to partisan polarization. Both research [e.g., Nea20, LCH06, MM13] and media reports [e.g.,

Ing15] confirm that polarization has become a hallmark of legislative relations in the US Congress,

so observing party homophily in networks of legislative collaboration is expected.

To demonstrate how the backbone package works, we employ its use on a co-sponsorship

network of the United States Senate during the 114th session. Since both prior research [LCH06,

Nea20, SB20, ALH+15b, AN20b] and media accounts [Dru16] of the current US political climate

provide us with a priori expectations about what structure a properly extracted backbone should

have, we expect positive relationships to form primarily between those in the same political party,

and accordingly a relatively large modularity statistic computed from a partition of the nodes by

political party. Modularity measures the strength of division within the network. Specifically, for

a network G with vertex degree sequence (31, . . . , 3=), it is given by the quantity

& =
1

2
∑

G

∑
8, 9

�8 9 − 383 9
2
∑

G
X(28, 2 9 ),

where 28 and 2 9 represent the communities (in this case political party) that vertices 8 and 9 belong

to, and X(28, 2 9 ) is the Kronecker delta function. In visualizations of the extracted backbones, we

depict Republican senators by red vertices, and both Democratic and Independent senators who are

left-leaning and caucused with Democrats by blue vertices. Although we discuss signed backbones

in the text, for visual clarity we only provide figures for binary backbones which contain positive

edges. Positive relations of collaboration between two Republicans are depicted in red, between

two Democrats are blue, and for all other pairs are purple. For an example, see fig. 7.1
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Alexander, L. (TN−R)

Boxer, B. (CA−D)

Cantwell, M. (WA−D)

Carper, T. (DE−D)

Cochran, T. (MS−R)

Collins, S. (ME−R)

Cornyn, J. (TX−R)

Crapo, M. (ID−R)

Durbin, R. (IL−D)

Enzi, M. (WY−R)

Feinstein, D. (CA−D)

Graham, L. (SC−R)

Grassley, C. (IA−R)

Hatch, O. (UT−R)

Inhofe, J. (OK−R)

Leahy, P. (VT−D)

McCain, J. (AZ−R)

McConnell, M. (KY−R)

Mikulski, B. (MD−D)

Murkowski, L. (AK−R)

Murray, P. (WA−D)

Nelson, B. (FL−D)

Reed, J. (RI−D)

Reid, H. (NV−D)

Roberts, P. (KS−R)

Schumer, C. (NY−D)

Sessions, J. (AL−R)

Shelby, R. (AL−R)

Stabenow, D. (MI−D)

Wyden, R. (OR−D)

Baldwin, T. (WI−D)

Blunt, R. (MO−R)

Boozman, J. (AR−R)

Brown, S. (OH−D)

Burr, R. (NC−R)

Capito, S. (WV−R)

Cardin, B. (MD−D)

Flake, J. (AZ−R)

Isakson, J. (GA−R)

Kirk, M. (IL−R)

Markey, E. (MA−D)

Menéndez, R. (NJ−D)

Moran, J. (KS−R)

Portman, R. (OH−R)

Sanders, B. (VT−I)

Toomey, P. (PA−R)

Udall, T. (NM−D)

Vitter, D. (LA−R)

Wicker, R. (MS−R)

Thune, J. (SD−R)

Coats, D. (IN−R)

Murphy, C. (CT−D)

Hirono, M. (HI−D)

Donnelly, J. (IN−D)

Heller, D. (NV−R)

Gillibrand, K. (NY−D)

Klobuchar, A. (MN−D)

McCaskill, C. (MO−D)

Tester, J. (MT−D)

Casey, R. (PA−D)

Whitehouse, S. (RI−D)

Corker, B. (TN−R)

Barrasso, J. (WY−R)

Cassidy, B. (LA−R)

Heinrich, M. (NM−D)

Peters, G. (MI−D)

Warner, M. (VA−D)

Risch, J. (ID−R)

Shaheen, J. (NH−D)

Merkley, J. (OR−D)

Bennet, M. (CO−D)

Franken, A. (MN−D)

Coons, C. (DE−D)

Manchin, J. (WV−D)

Gardner, C. (CO−R)

Lankford, J. (OK−R)

Scott, T. (SC−R)

Blumenthal, R. (CT−D)

Rubio, M. (FL−R)

Paul, R. (KY−R)

Ayotte, K. (NH−R)

Hoeven, J. (ND−R)

Lee, M. (UT−R)

Johnson, R. (WI−R)

Schatz, B. (HI−D)

Cotton, T. (AR−R)

Warren, E. (MA−D)

King, A. (ME−I)

Daines, S. (MT−R)

Heitkamp, H. (ND−D)

Fischer, D. (NE−R)

Cruz, T. (TX−R)

Kaine, T. (VA−D)

Booker, C. (NJ−D)

Sullivan, D. (AK−R)

Perdue, D. (GA−R)

Ernst, J. (IA−R)

Tillis, T. (NC−R)

Rounds, M. (SD−R)

Sasse, B. (NE−R)

Figure 7.1: An example of an extracted backbone, with Democratic senators represented by blue
vertices, and Republican senators represented by red vertices.

The data set consists of 100 senators and the 3589 bills that they have sponsored or co-sponsored

in the 114th session of Congress [USG20]. This data takes the form of a bipartite network B, where

the agents are the senators (rows) and the artifacts are the bills (columns). Here, �8: = 1 if senator

8 sponsored or co-sponsored bill : , and otherwise is 0. Below we examine the data set. Notice

that the row names correspond to each senator (including their party affiliation and the state they

represent) and the column names refer to the bill number.

> set.seed(19)

> library(backbone)

> senate <- read.csv("S114.csv", row.names = 1, header = TRUE)

> senate <- as.matrix(senate)

> dim(senate)

[1] 100 3589

> senate[1:5, 1:5]

sj9 sj8 sj7 sj6 sj5

Alexander, L. (TN-R) 0 1 0 1 0
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Boxer, B. (CA-D) 0 0 0 0 1

Cantwell, M. (WA-D) 0 0 0 0 1

Carper, T. (DE-D) 0 0 0 0 1

Cochran, T. (MS-R) 0 1 0 1 0

A weighted network P can be constructed from B via bipartite projection, where P = BB) and

%8 9 contains the number of bills that both senator 8 and senator 9 sponsored. Notice the network is

now 100 rows by 100 columns.

> G <- senate%*%t(senate)

> dim(G)

[1] 100 100

> G[1:5, 1:2]

Alexander, L. (TN-R) Boxer, B. (CA-D)

Alexander, L. (TN-R) 141 10

Boxer, B. (CA-D) 10 303

Cantwell, M. (WA-D) 15 82

Carper, T. (DE-D) 12 55

Cochran, T. (MS-R) 40 25

The projected network P now indicates that Senator Lamar Alexander sponsored a total of 141

bills in the 114th session. Among these 141 bills, 10 were co-sponsored with Senator Barbara

Boxer, and 15 were co-sponsored with Senator Maria Cantwell.

We can use the values of graph P to observe differences between those with similar or dissimilar

ideology. Below, we compare the number of bills co-sponsored by two individuals with similar

political ideology, Senators Cory Booker and Elizabeth Warren, versus those with dissimilar

ideology, Senators Ted Cruz and Bernie Sanders. The results are consistent with the expectation

that legislators sharing a similar ideology engage in more co-sponsorships.
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> G["Booker, C. (NJ-D)", "Warren, E. (MA-D)"]

[1] 98

> G["Cruz, T. (TX-R)", "Sanders, B. (VT-I)"]

[1] 5

The differences in the number of bills co-sponsored prompts an important underlying question:

how many bills do two senators have to co-sponsor before we would be justified in concluding they

are political collaborators? Similarly, how few bills do they have to co-sponsor before we would

be justified in concluding they are political opponents? These questions are what the backbone

package seeks to answer.

7.1.2 Spatial Networks

The second type of network we will examine with the backbone package is a spatial network.

Bipartite projections appear in spatial analysis, where they can take two distinct forms depending

on whether the agents or artifacts are spatial entities (i.e., locations). In the locations-as-agents

approach, a spatial bipartite projection is a network of locations, such that a pair of locations is

connected to the extent that they share artifacts. Calling it the “interlocking world city network

model,” this is the approach that [Tay01] proposed and which launched a wave of research on

world city networks: major cities (the agents, which are locations) are connected to the extent that

they house branch offices of the same advanced producer services firms (e.g., finance, accounting,

consulting; the artifacts). It rests on the logic that offices of the same firm must communicate and

interact with one another, and therefore that when two cities have an office of the same firm, there

is likely interaction between them. Spatial networks adopting the locations-as-agents approach to

measurement via bipartite projection are quite common atmultiple spatial scales, and have been used

to measure networks among urban locations connected by twitter users [Poo18], bus routes [LD20],

networks among cities connected by patents [BR17], banking syndicates [PWK19], networks among

countries connected by treaties [HBKM09], trade [SCS17], and corporate executives [HFC16].
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In the locations-as-artifacts approach, a spatial bipartite projection is a network of agents (often

people or other social actors), such that a pair of agents is connected to the extent that they share

locations. The locations-as-artifacts approach is less common in geography because the spatial

units play only an instrumental role in the network, forging the links between agents, but do not

appear in the bipartite projection network itself. However, it is common in sociological research,

where the focus is on social networks emerging from spatial interactions. For example, [BCS+17]

and [XCB20] use this approach to measure and study the social network among households in

Los Angeles: households (the agents) are connected to the extent that they visit the same routine

activity locations (e.g., school, work; the artifacts). This rests on the logic that places offer

opportunities for casual encounters which lead to the formation of social bonds, and therefore when

two households frequent the same places, they are more likely to interact with each other [Jac61].

[HKBH07] adopted a similar locations-as-artifacts approach to derive a ‘product space’ in which

export products were connected to the extent that they were exported by the same countries. This

follows the logic that “if [the production of] two goods...require similar institutions, infrastructure,

physical factors, technology, or some combination thereof, theywill tend to be produced [in the same

location],” and therefore the spatial co-production of products indirectly captures their production

technology similarity [HKBH07, p. 484].

There is an important link between these two approaches. When B is a bipartite network where

the rows represent locations, then BB′ will yield a locations-as-agents bipartite projection, while

B′B will yield a locations-as-artifacts bipartite projection. Therefore, a single bipartite network

can be studied from both perspectives. For example, although the world cities literature usually

focuses on cities linked by sharing firms, some have simultaneously examined a network of firms

linked by their co-location in cities [e.g., Nea08, VMND16]. Similarly, [SCS17] examined not

only a network of countries linked by trading the same products, but also a network of products

that are traded by the same countries.

The key advantage to measuring spatial networks using bipartite projections lies in the relative

ease of data collection. For example, data about economic exchanges between cities may not be
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available from official government sources, and collecting such data directly is often impractical.

However, data about where firms’ offices are located is readily available, usually on the firms’

own websites. Accordingly, bipartite projections offer a practical way for researchers to indirectly

approximate a city-level economic network. Similarly, because social network analysis requires

data from a population (not a sample) and is sensitive to missingness, it is often impractical to

collect data on the social network among residents of a large city. However, data about the places

residents visit or tweet about can be collected using routine surveys, remote sensing, and digital

trace measures. Accordingly, bipartite projections also offer a practical way for researchers to

indirectly approximate social networks in large geographic areas.

In the context of spatial analysis, it can be used for research adopting a locations-as-agents

approach, to infer the spatial network among a set of locations from data on their shared character-

istics. However, it can also be used for research adopting a locations-as-artifacts approach, to infer

a social network among a set of actors from data on their shared locations. To illustrate backbone’s

application in one specific spatial analytic context, we will demonstrate its use to examine the world

city network and identify the most central cities in it.

The Globalization and World Cities (GaWC) “Data Set 11” was originally collected in 2000,

and records the extent of 100 advanced producer services firms’ presence in each of 315 large cities

[TCW02]. These data served as the foundation for one of the earliest and most comprehensive

empirical studies of the world city network [Tay04], and as a template for a substantial body of

empirical research conducted by those associated with the GaWC research network. Formally, the

data set takes the form of a rectangular 315 × 100 bipartite matrix B, in which �8: contains the

‘service value’ of firm :’s presence in city 8. The service values are an ordinal scale intended to

capture the importance or extent of a firm’s presence in a city, and ranged from 0 (no presence) to

5 (global headquarters), with a value of 2 representing an presence that provides “the ‘normal’ or

‘typical’ service level of the given firm in a city” [TCW02, p. 2370]. These publicly available data

can be loaded into R directly from the GaWC website (as of July 2021) and converted to matrix

form. This data set is also included in the replication materials.
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> cities <- read.csv(file="https://www.lboro.ac.

uk/gawc/datasets/da11.csv",

header = TRUE,

row.names = 1)

> cities <- as.matrix(cities)

The backbone package is designed for use with binary bipartite data, so for this illustration we

transform the original ordinal B into a binary B′ such that

�′8 9 =


1 if �8 9 ≥ 3

0 if �8 9 ≤ 2
.

This transformation can be achieved, and the cities that contain no firms with a larger-than-typical

presence can be excluded, by typing:

> cities[cities <= 2] <- 0

> cities[cities >= 3] <- 1

> cities <- cities[rowSums(cities) != 0,]

This transformation allows us to focus only on firms that maintain a larger-than-typical presence in

a given city, and only on the 196 cities that contain at least one such firm. For convenience, we use

B to refer to this binary matrix in the remainder of this section. Once the bipartite data has been

loaded and transformed, it is possible to examine some of its features. For example, it is possible

to look at the pattern of firms’ presence in cities.

> cities[114:117,8:11]

Horwath KPMG Summit...Baker RSM

MELBOURNE 0 1 0 1

MEXICO CITY 0 1 0 0

MIAMI 1 1 0 1

MILAN 0 0 0 1
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This command shows the portion of B that includes the 114th to 117th cities, and 8th to 11th firms.

The output shows that while the accounting firms of KPMG and RSMmaintained offices in several

of these cities, Horwath and Summit International+Baker Tilley did not.

Two key characteristics of any bipartite data are the row sums and column sums. In these data,

the row sums indicate the number of firms located in a city, while the column sums indicate the

number of cities in which a firm maintains a presence.

> rowSums(cities)["AMSTERDAM"]

AMSTERDAM

29

> rowSums(cities)["NEW YORK"]

NEW YORK

74

> colSums(cities)["KPMG"]

KPMG

76

> colSums(cities)["HSBC"]

HSBC

43

For example, there are 74 firms that maintain a larger-than-typical presence in New York,

but only 29 firms that maintain a larger-than-typical presence in Amsterdam. Likewise, KPMG

maintains a larger-than-typical presence in 76 cities, while HSBC maintains a larger-than-typical

presence in only 43 cities. Figure 7.2 illustrates these values for all cities and firms in these data.

Specifically, Figure 7.2A shows that while most cities contain fewer than 20 firms, some cities

contain many more firms. Similarly, Figure 7.2B shows that while most firms maintain a presence

fewer than 40 cities, some firms maintain a presence of many more cities.
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Figure 7.2: The distribution of (A) row sums and (B) column sums in the GaWC Dataset 11.

The conventional “specification of the world city network” used in GaWC research involves

computing a weighted bipartite projection P from the original bipartite data B [Tay01].

> P <- cities %*% t(cities)

Following this specification, the cities are treated as agents and the firms are treated as artifacts.

The resulting square matrix P is treated as a weighted world city network in which the strength

of the connection between a pair of cities is measured by their number of co-located firms. For

example, examining the matrix cell corresponding to the connection between Amsterdam and New

York

> P["AMSTERDAM","NEW YORK"]

[1] 26

indicates that 26 firms maintain a presence in both cities, and might be interpreted as evidence that

they interact economically.

Many analyses of the world city network focus on cities’ degree centrality, or what is sometimes

called a city’s “global network centrality” (GNC). This value measures a city’s total number or
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strength of connections in the network, and is interpreted as an indicator of a city’s status or

importance in the network.

> sort(rowSums(P), decreasing = TRUE)[1:5]

LONDON NEW YORK PARIS HONG KONG SINGAPORE

1496 1403 1043 1032 913

In these data, London and New York have the greatest centrality, occupying the top tier of the

urban hierarchy as what GaWC research calls Alpha++ cities [BST99]. They are followed by a

second tier of Alpha+ cities that include Paris, Hong Kong, and Singapore. This approach appears

to successfully identify what nearly any scholar of globalization would regard as the cities “used

by global capital as basing points in the spatial organization and articulation of production and

markets” [Fri86, p. 71].

However, these values and this weighted spatial network are less informative than they might

seem. The centrality values derived from this network are almost perfectly correlated with the

number of firms located in each city (i.e. the row sums of B).

> cor(rowSums(P), rowSums(cities))

[1] 0.9767704

The high correlation indicates that this approach to identifying central cities in a world city network

is actually just identifying cities that contain many firms. This occurs because measuring a world

city network using a weighted bipartite projection of firm locations guarantees that cities with many

firms will have stronger connections and larger centrality values [Nea12]. If world city researchers

were simply interested in finding cities with many firms, there are much simpler ways achieve this

(e.g., counting a city’s number of firms).

In practice, world city researchers are interested in somethingmore nuanced: studying cities that

are central in a network of economic interactions. The challenge is that although firm co-location

may provide information about which cities interact economically, firm co-location is not the same
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as economic interaction. The backbone package can be used to make inferences about which

cities are engaged in economic interaction based on firm co-location patterns. Specifically, it can

be used to estimate whether the number of firms co-located in two cities is large enough to warrant

concluding that the two cities are engaged in meaningful economic interaction. The backbone of

the world city network is a binary network in which pairs of cities are connected only if their number

of co-located firms suggests they are engaged in meaningful economic interaction, and therefore

provides a simplified and potentially more focused depiction of the world city network.

We’ll now examine how the backbone package’s functionality provides insights on both the

spatial and legislative networks described.

7.2 Universal Threshold universal()

The simplest approach to backbone extraction applies a single threshold value ) to all edges.

As mentioned previously, often ) = 0 is used which leads to very dense and highly clustered

backbones. While we do not recommend using a universal threshold method, this is included in

the backbone package for comparison purposes. The function, universal() allows the user to

extract a single threshold ) , or extract a signed backbone by selecting upper and lower thresholds

)+ and )−.

For both the senate and the world cities data sets, we’ll use the universal() function to

compute a backbone with a single threshold of 0. Thus in the legislative network, if two senators

have co-sponsored one or more bills, there will be an edge between them. Similarly, any number of

firm co-locations is interpreted as evidence of economic interaction between a pair of cities. Notice

that our backbone graph is represented by a square adjacency matrix with 0-1 entries.

> universalbb <- universal(senate, upper = 0, bipartite = TRUE)

> universalbb$backbone[1:5, 1:2]

Alexander, L. (TN-R) Boxer, B. (CA-D)

Alexander, L. (TN-R) 0 1

Boxer, B. (CA-D) 1 0
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Figure 7.3: The positive backbone of the US Senate co-sponsorship network with edges retained
between two senators if they sponsored at least 1 bill together.

Cantwell, M. (WA-D) 1 1

Carper, T. (DE-D) 1 1

Cochran, T. (MS-R) 1 1

The density of a network is the number of edges in the network, divided by the number of

possible edges in the network. Plotting this backbone using the igraph package [CN06] reveals

that it is extremely dense as only 1 pair of senators out of the total 4950 unique pairs have not

sponsored at least one bill together (see fig. 7.3). Accordingly, this universal threshold backbone is

uninformative about the underlying structure of the network. Moreover, partitioning this backbone

into two groups by political party yields a modularity near zero, which indicates that this backbone

does not reflect the partisan polarization known to exist in the US Senate.

We see a similar density problem occur in the world cities network.

> universal0 <- universal(cities, upper = 0, bipartite = TRUE)
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> table(universal0$backbone)

0 1

21506 16910

> mean(universal0$backbone)

[1] 0.4401812

> sort(rowSums(universal0$backbone), decreasing = TRUE)[1:5]

LONDON NEW YORK PARIS HONG KONG LOS ANGELES

191 185 175 171 171

> cor(rowSums(universal0$backbone), rowSums(cities))

[1] 0.7407175

A backbone extracted using ) = 0 is quite dense (44% of possible inter-city connections

are present) because it treats even small numbers of firm co-locations as evidence of economic

interaction between cities. As a result, the most central cities are still obviously large cities

that contain many firms, and indeed, cities’ centrality in this network remains highly correlated

(A = 0.74) with their total number of firms.

A sparser network containing fewer inter-city connections can be obtained using a higher (i.e.

more stringent) threshold that retains only particularly strong connections [e.g., DT05]. For

example, the universal() function can be used to extract a backbone where ) = 25, and therefore

only cities with more than 25 co-located firms are counted as connected:

> universal25 <- universal(cities, upper = 25, bipartite = TRUE)

> mean(universal25$backbone)

[1] 0.001665973

> sort(rowSums(universal25$backbone), decreasing = TRUE)[1:5]

LONDON NEW YORK HONG KONG PARIS CHICAGO

15 12 5 5 3

> cor(rowSums(universal25$backbone), rowSums(cities))
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[1] 0.8381523

This more stringent universal threshold is indeed much less dense (only 0.16% of possible edges

are present). However, it still remains focused on the largest cities, whose centrality is highly

correlated (A = 0.84) with the total number of firms.

These approaches involve an arbitrarily-selected threshold, however the universal() function

can also be used to apply a universal threshold that is based on characteristics of the weighted

bipartite projection P. For example, it is possible to extract a backbone in which cities are

connected if they have more than two standard deviations above the average number of co-located

firms.

> universal.meansd <- universal(B, upper = function(x)mean(x)+2*sd(x),

bipartite = TRUE)

> mean(universal.meansd$backbone)

[1] 0.03092461

> sort(rowSums(universal.meansd$backbone), decreasing = TRUE)[1:5]

LONDON NEW YORK HONG KONG PARIS SINGAPORE

64 61 51 49 42

> cor(rowSums(universal.meansd$backbone), rowSums(cities))

[1] 0.9655334

This backbone is also lower density (3% of possible edges are present), but once again it focuses

only on large cities, whose centrality is nearly identical to their total number of firms (A = 0.97).

To create a signed backbone, we can apply both an upper and lower threshold value. The

following code will return a backbone where the positive edges indicate two senators co-sponsored

more than 1 standard deviation above the mean number of co-sponsored bills and negative edges

indicate two senators co-sponsored less than 1 standard deviation below the mean number of

co-sponsored bills. The graph of the positive edges of this backbone can be seen in fig. 7.4.

> universalbb2 <- universal(senate, upper = function(x) mean(x)+sd(x),
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Figure 7.4: The positive backbone of the US Senate co-sponsorship network with edges retained
between two senators if they sponsored more bills together than one standard deviation above the
mean.

lower = function(x) mean(x)-sd(x), bipartite = TRUE)

The resulting graph in fig. 7.4 is much less dense than when using an upper threshold of 0.

Additionally, the polarized structure of the Senate by political party is visible, and is confirmed by a

larger modularity (& = 0.277). However, it still does not necessarily reveal the underlying structure

of the network among legislators. In this case, “the application of a threshold to the global weight

distribution...belittles nodes with a small [degree],” resulting in a backbone that preserves edges

only among legislators who sponsor many bills, and treating legislators who sponsor few bills as

isolates [SBV09, p. 6484]. Similarly in the world cities network, the universal threshold backbone

extraction does not take into account variations in the number of firms located in each city. By

not controlling for these variations (which are substantial in this data, see 7.2A) when deciding

whether two cities are connected, it privileges cities that contain many firms. In these data, because

there are large variations in the number of firms located in each city that must be controlled for, a
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universal threshold backbone is not appropriate.

To obtain meaningfully sparse graphs that do not ignore the multi-scalar character of node

degrees we must allow the threshold to vary for different edges. To improve our backbone results,

we move to methods of bipartite projection backbones that rely on a distinct threshold value for

each pair of vertices.

Extracting a null model backbone: backbone.extract( )

Instead of using a universal threshold to determine a backbone, the backbone package in-

corporates the five different ensemble methods previously mentioned in chapter 6: FFM, FRM,

FCM, SDSM, and FDSM. These models " do control for variation in the row and column degree

sequences of B∗ ∈ B" . To use these methods in backbone, one first calls to an ensemble model

function (fixedfill(), fixedrow(), fixedcol(), sdsm(), or fdsm()), which finds the prob-

ability of observing an edge with the observed weight in a corresponding null model, returning an

object of class ‘backbone.’ This object contains the following: a positivematrix with (8, 9) entry

equal to the probability that�∗
8 9
is equal to or above the corresponding entry in�, and a negative

matrix with (8, 9) entry equal to the probability that �∗
8 9

is equal to or below the corresponding

entry in �, and summary, a data frame summary of the inputted matrix and model including the

class, model name, number of rows, and number of columns.

This ‘backbone’ object is then supplied to backbone.extract(), which performs the hypoth-

esis test for a given significance value and returns a backbone graph. The user can input bipartite

graph objects of class ‘matrix’, ‘sparseMatrix’, ‘Matrix’, ‘igraph’, ‘network’, and ‘edgelist’ (amatrix

of two columns), and can choose the type of backbone returned by specifying the desired class in

backbone.extract(). The backbone.extract() function allows the user to input the backbone

class object and obtain either a signed or positive backbone. This backbone.extract() function

has five arguments: matrix, signed, alpha, class, narrative, and fwer. The matrix argu-

ment takes a backbone object generated by fixedfill(), fixedrow(), fixedcol(), sdsm(),

or fdsm() and returns a backbone graph of class = class using a two-tailed significance test with
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significance value U = alpha. If the signed parameter is set to TRUE then a signed backbone is

returned, if it is set to FALSE then a positive backbone is returned. If the narrative parameter is

set to TRUE then suggested narrative text for a manuscript, including possible citations, is displayed.

Extracting the backbone of a bipartite projection involves conducting an independent statistical

test on ℓ = <(< − 1)/2 edges in the projection, where < is the number of vertices in the bipartite

projection. Because each of these tests is independent, this can inflate the familywise error rate

beyond the desired alpha. The fwer parameter offers two ways to correct for this: the classical

Bonferroni correction is applied when fwer = ‘bonferroni’, and the more powerful Holm-

Bonferroni correction is applied when fwer = ‘holm’ [Hol79].

7.3 Fixed fill model fixedfill()

The fixedfill() function will apply the fixed fill ensemble model to the bipartite network.

Due to the large binomial coeffients in the probability distribution, this model as currently imple-

mented in backbone v1.5.0 is infeasible on large networks like the Senate data set. However,

we can still apply it to the world cities network and do so below. Regardless, as we’ll see in

Chapter chapter 8, FFM is not the recommended model for bipartite backbone extraction when

there is concern regarding the degree sequences.

> fixedprobs <- fixedfill(cities)

> fixedbb <- backbone.extract(fixedprobs)

In this nullmodel, the number of edges in the network is held constant, that is, our observedworld

cities network is compared to all other possible networks with the same density. Specifically in this

instance, the number of firms present in cities remains fixed, but the number of firms per company

and number of firms per city may vary. Notice above we’ve applied the backbone.extract()

function here after choosing the fixedfill() function which determined the ensemble method.

Under the default settings, backbone.extract() has extracted a positive backbone under an alpha

value of 0.05. Since all statistical tests are two-tailed tests, an edge is retained in the cities network
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if the probability of two cities having the observed number of co-located firms is greater than or

equal to 0.025, i.e., the upper tail of the Jacobi distribution.

> mean(fixedbb)

[1] 0.07418784

> sort(rowSums(fixedbb), decreasing = TRUE)[1:5]

LONDON NEW YORK PARIS HONG KONG TOKYO

94 87 76 71 71

> cor(rowSums(fixedbb), rowSums(cities))

[1] 0.9293961

This FFM backbone network has a low density but again provides information focused around

the largest cities. The centrality is highly correlated with number of firms. Instead of this model

which compares a bipartiteBwith other networks of the same density, we’ll now apply the remaining

models which are based upon the degree sequences.

7.4 Fixed row model fixedrow()

To apply the fixed row distribution to a bipartite graph, one uses the fixedrow() function. The

FRM is also often called hypergeometric as it estimates a hypergeometric probability distribution

for each pair of nodes in the network. As an example,

> rowprobs <- fixedrow(senate)

> rowbb <- backbone.extract(rowprobs, alpha = .01)

We can now examine how this method has changed the appearance of our network, focusing

only on the positive edges of the signed backbone in fig. 7.5. We can see that the FRM has reduced

the density of our network and that we begin to see some of the two party structure that is inherent

in the United States Senate. The known polarized structure is also apparent, which is reflected in

this network’s modularity (& = 0.215).
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Figure 7.5: The positive backbone of the US Senate co-sponsorship network under the fixed row
model.

Specifically, for our example, the fixed row function will fix the number of bills that each senator

sponsors, while allowing each bill to be sponsored by a varying number of senators. The function

will compute the probability of each senator sponsoring at least (or at most) the observed number

of bills when the bills which they sponsor were chosen randomly.

Similarly, we can see how the fixed row model affects the world cities network.

> rowprobs2 <- fixedrow(cities)

> rowbb2 <- backbone.extract(rowprobs2, alpha = .1)

> mean(rowbb2)

[1] 0.09225323

> sort(rowSums(rowbb2), decreasing = TRUE)[1:5]

INDIANAPOLIS PORTLAND MELBOURNE LYON AUCKLAND

60 54 52 49 44
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> cor(rowSums(rowbb2), rowSums(cities))

[1] 0.3039028

First, it is less dense than the ) = 0 universal threshold backbone, but denser than the 25-

threshold or mean-threshold backbones, containing 9.2% of possible edges. That is, this model

does reduce the complexity of the original network, but still preserves many intercity connections.

Second, and perhaps more notably, because the FRM controls for the number of firms in each city

when deciding which intercity connections to keep, it does not simply focus on cities that are large

and contain many firms. Indeed, while the most central cities are major financial centers, they

are not the obvious ones typically highlighted in world cities research. Moreover, cities’ centrality

and total firm count are only modestly correlated (A = 0.30), indicating that cities’ centrality in

this network provides information that is unique from what could have been learned from simply

counting their number of firms.

Although the FRM does control for the number of firms in each city (i.e. the row sums of

B∗ ∈ B�'" ), it does not control for the number of cities where each firm maintains a presence (i.e.

the column sums of B∗ ∈ B�'" ). However, there is substantial variation in the number of cities

where each firm maintains a presence (see Figure 7.2B), and not controlling for this variation can

distort decisions about whether a particular city pair’s number of co-located firms is significant.

For example, if Firm X maintains a presence in every city, then observing that it is co-located in

Amsterdam and New York is trivial. In contrast, if Firm Y maintains a presence in only two cities

then observing that it is co-located in Amsterdam and New York is quite noteworthy. Because these

data contain not only large variations in the number of firms in each city (see figure 7.2A) but also

large variations in the number of cities where each firm maintains a presence (see figure 7.2B),

the FRM is not appropriate. More generally, a FRM backbone and the fixedrow() function are

appropriate only when there is variation in the row sums of B, but limited variation in the column

sums of B.
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Figure 7.6: The positive backbone of the US Senate co-sponsorship network under the fixed
column model.

7.5 Fixed column model fixedcol()

The fixed column distribution can be used through the fixedcol() function. In this scenario,

the fixed column function fixes the number of senators that sponsor each bill, while allowing each

senator to sponsor a varying number of bills.

> colprobs<- fixedcol(senate)

> colbb <- backbone.extract(colprobs, alpha = .01)

We can now examine how the fixed column model (also called Poisson binomial) has changed

the appearance of our co-sponsorship network, again examining the positive edges in fig. 7.6. We

can see that the fixed column function has again reduced the density of our network and the two

party structure is more apparent. The known polarized structure is reflected in this network’s even

higher modularity (& = 0.424).

We mentioned the FRM is not a good choice for the world cities network because of the

substantial variation in the column sums. Here, the FCMwould control for this variation in number
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of cities where each firm maintains a presence, but introduces a similar problem in that the row

sums are now also not controlled for. The high correlation with total number of firms exemplifies

this issue.

> colprobs2 <- fixedcol(cities)

> colbb2 <- backbone.extract(colprobs2, alpha = 0.1, signed = FALSE)

> mean(colbb2)

[1] 0.07418784

> sort(rowSums(colbb2), decreasing = TRUE)[1:5]

LONDON NEW YORK PARIS HONG KONG TOKYO

94 87 76 71 71

> cor(rowSums(fixedcol_bb2), rowSums(cities))

[1] 0.9293961

We’ll now attempt to approach our ‘gold-standard’ model, where we compare our observed data

set to all other bipartite networks with the exact same degree sequences. The backbone package

provides two ways to do this, SDSM where the degree sequences are approximately fixed and the

probability mass function is known, and FDSM where the probability mass function is unknown

and thus the distribution is constructed through sampling.

7.6 Stochastic degree sequence model sdsm()

When describing the Stochastic degree sequence model in chapter 6, we choose probabilities

?∗
8:

so that it approximates Pr(�∗
8:
= 1) for B∗ ∈ B(�(" . Here we use the Bipartite Configuration

Model or BiCM to compute those probabilities for the Poisson binomial distribution, which is used

in the SDSM. In the following chapter 8, we will demonstrate why BiCM is the right choice for

computing these probabilities.

In the context of the senate co-sponsorship matrix, the stochastic degree sequence model will

compare our observed values to a distributionwhere each senator sponsors roughly the same number

of bills, and each bill is sponsored by roughly the same number of people. Also demonstrated is
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the ‘narrative’ parameter which prints out information regarding the backbone network and the

citations for the model used.

> sdsm <- sdsm(senate)

> sdsmbb <- backbone.extract(sdsm, narrative = TRUE, alpha = .01)

Suggested manuscript text and citations:

From a bipartite graph containing 100 agents and 3589 artifacts, we obtained

the weighted bipartite projection, then extracted its binary backbone using

the backbone package (Domagalski, Neal, & Sagan, 2021). Edges were retained

in the backbone if their weights were statistically significant

(alpha = 0.01) by comparison to a null Stochastic Degree Sequence Model

(SDSM; Neal, 2014).

Domagalski, R., Neal, Z. P., and Sagan, B. (2021). backbone: An R Package

for Backbone Extraction of Weighted Graphs. PLoS ONE.

https://doi.org/10.1371/journal.pone.0244363

Neal, Z. P. (2014). The backbone of bipartite projections: Inferring

relationships from co-authorship, co-sponsorship, co-attendance and other

co-behaviors. Social Networks, 39, 84-97.

https://doi.org/10.1016/j.socnet.2014.06.001

We are able to see more of the partisan structure that is suggested to be present in the US

Senate in fig. 7.7, and this visualization provides more information than the extremely dense graph

found using a universal threshold. Moreover, the known polarized structure of the US Senate is

particularly evident, and confirmed by the much larger modularity (& = 0.471).
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Figure 7.7: The positive backbone of the US Senate co-sponsorship network under the stochastic
degree sequence model.

Before examining the entire SDSM world cities backbone, consider how it determines whether

the number of co-located firms is statistically significant for a single city-pair. In fig. 7.8, three

of our ensemble models are drawn. The blue curve shows the number of firms that would be

co-located in Amsterdam and New York if all firms located in cities randomly, but on average

the number of firms in each city did not change and on average the number of cities where each

firm maintains a presence did not change. The SDSM distribution is wider and flatter than the

FDSM distribution, but has nearly the same midpoint. These differences arise because the SDSM

distribution is an approximation of the more targeted FDSM distribution. As an approximation

with a wider distribution, the SDSM is less statistically powerful, therefore we use a more liberal

threshold of statistical significance so that it will more closely mirror the FDSM. The 26 co-located

firms actually observed in Amsterdam and New York is in the middle of the SDSM distribution,

which indicates that this value is about what might be expected even under random conditions

(i.e. not statistically significant). Therefore, the SDSM backbone does not include a link between
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Figure 7.8: Null weight distributions generated using the backbone package on from the GaWC
Dataset 11

Amsterdam and New York.

> sdsm2 <- sdsm(cities)

> sdsmbb2 <- sdsm(sdsm2)

> mean(sdsmbb2)

[1] 0.01973136

> sort(rowSums(sdsmbb2), decreasing = TRUE)[1:5]

KANSAS CITY CHARLOTTE RICHMOND INDIANAPOLIS BORDEAUX

24 21 20 18 17

> cor(rowSums(sdsmbb2), rowSums(cities))

[1] -0.1062661

The SDSM backbone is a sparse network, in which medium-sized regional centers are the most

central cities, and cities’ centrality and total firm count are uncorrelated (A = −0.11).
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7.7 Fixed degree sequence model fdsm()

As mentioned in the previous chapter, the fixed degree sequence model first samples random

bipartite networks �∗ ∈ B��(" that preserves both degree sequences using the curveball algorithm

[SUG18]. These bipartite graphs �∗ are then projected to obtain random weighted bipartite

projection P∗ = B∗B∗>. These two steps are repeated a number of times to sample the space of

possible %∗
8 9
. At each iteration, we compare %8 9 to the value of %∗8 9 and keep a record of how often

it was above, below, or equal to the generated value. The fdsm() function returns a backbone

object containing a matrix object positive of the proportion of times %∗
8 9
is equal to or above the

corresponding entry in P, and a matrix object negative containing the proportion of times %∗
8 9
is

equal to or below the corresponding entry in P. This differs from the previous ensemble methods

where the exact probability mass function is known and a probability can be given.

The fdsm() function can also save each value of %∗
8 9

for a given 8, 9 . This is useful for

visualizing an example of the empirical null edge weight distribution generated by the model. The

values 8, 9 correspond to the row and column indices of a cell in the projected matrix and can be

input as either numeric values or a string containing the row names. These values are returned in

the list dyad_values.

Using the fixed degree sequence model on the senate data set will allow us to compare our

observed values to a distribution where each senator sponsors the exact same number of bills and

each bill is sponsored by the exact same number of people. We can find the backbone using the

fixed degree sequence model as follows:

> fdsm <- fdsm(senate, trials = 1000, dyad = c("Booker, C. (NJ-D)",

"Warren, E. (MA-D)"))

The dyad_values output is a list of the �∗
8 9

values for each of the 1000 trials, where 8 =

“Booker, C. (NJ-D)” and 9 = “Warren, E. (MA-D)”. These values correspond to the number of bills

Senators Booker and Warren would be expected to co-sponsor when we create a random bipartite

graph with the curveball algorithm where: (a) the number of bills sponsored by Senator Booker, by
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Figure 7.9: A histogram of the expected co-sponsorships between Senators Cory Booker and
Elizabeth Warren under the fixed degree sequence model (1000 samples). A positive edge
between Booker and Warren would be preserved in the FDSM backbone because their actual
number of co-sponsorships (98) is statistically significantly larger.

Senator Warren, and all other Senators was fixed, and (b) the number of senators sponsoring each

bill was fixed. We can compare their actual number of co-sponsorships, 98, to what is generated

under our null model. We can view a histogram of the expected co-sponsorships generated in each

of the 1000 trials as follows (see fig. 7.9):

> hist(fdsm$dyadvalues, freq = FALSE, xlab = "Number of Co-Sponsorships")

> lines(density(fdsm$dyadvalues))

> fdsmbb <- backbone.extract(fdsm, alpha = 0.01, signed = TRUE)

The FDSM backbone, based on 1000 Monte Carlo samples, requires approximately 81 seconds
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Figure 7.10: The positive backbone of the US Senate co-sponsorship network under the fixed
degree sequence model.

to extract. Using the fixed degree sequence model allows us to see more of the partisan structure

we assume to be present in the United States Senate in fig. 7.10. This expected partisan structure

is confirmed by the backbone’s high modularity (& = 0.468).

The spatial network backbone extracted using FDSM is noticeably different from the other

networks extracted using FFM, FRM, FCM, and SDSM.

> fdsm2 <- fdsm(cities, trials = 10000)

> fdsmbb2 <- backbone.extract(fdsm2, alpha = 0.1, signed = FALSE)

> mean(fdsmbb2)

[1] 0.02207414

> sort(rowSums(fdsmbb2), decreasing = TRUE)[1:5]

KANSAS CITY CHARLOTTE INDIANAPOLIS RICHMOND BORDEAUX

24 21 20 20 17
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> cor(rowSums(fdsmbb2), rowSums(cities))

[1] -0.001015871

> cor(as.vector(fdsmbb2),as.vector(sdsmbb2))

[1] 0.9315762

First, it has a very low density, containing only 2.2% of possible edges. Second, the cities with

the highest centrality are medium-sized regional centers. Moreover, cities’ centrality and total firm

count are uncorrelated (A = −0.001), indicating that the FDSM backbone is detecting interaction

patterns unrelated to a city’s number of firms. Importantly, the pattern of intercity links in the

SDSM and FDSM backbones are highly correlated (A = 0.93).

The original bipartite firm location data are known to contain substantial variation in both

number of firms in each city (see figure 7.2A) but also large variations in the number of cities where

each firm maintains a presence (see figure 7.2B). Because the FDSM controls for variation in these

two characteristics, it is an appropriate model to use for backbone extraction in this case. Using

it yields a world city network backbone that contains only those intercity links that are not simply

the product of these characteristics. That is, the FDSM backbone allows world city researchers

to look beyond these characteristics to identify pairs of cities with unexpectedly-large numbers of

firm co-locations, which are potentially indicative of unexpectedly-strong economic interaction.

More generally, the FDSM and fdsm() function are appropriate when there is variation in both

the row sums of B and the column sums of B, which is likely to occur in most empirical bipartite

data. However, although FDSM may often be the most suitable model for many empirical data,

its simulation-based approach can be impractically slow when applied to bipartite data containing

many agents and artifacts. As we’ll see in the following chapter 8, in such cases, the SDSM model

is the recommended alternative. Additionally, we’ll investigate the relationship between the alpha

values used in SDSM and those used in FDSM. The backbone R package in the future will also be

home to additional backbone extraction methods, adding functionality for weighted networks that

are not bipartite projections.
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CHAPTER 8

COMPARING MODELS FOR BACKBONE EXTRACTION

All results in this chapter are from Neal, Domagalski, and Sagan [NDS21b]. Replication materials

are available at https://www.github.com/domagal9/dissertation.

In this chapter we will compare the different bipartite ensemble backbone models. We begin

by examining different methods for choosing the cell-filling probabilities in SDSM. As mentioned

in chapter 7, this study will eventually conclude with deciding that the Bipartite Configuration

Model is the best choice for these values. After having a defined SDSM to work with, we study its

statistical power as compared to the FDSM backbones. Again, we’ll use the world cities network for

this analysis. Following this comparison, we can evaluate each of the five different models under

varying degree distributions, looking to examine their speed, accuracy, similarity, and community

detection. The culmination of these studies allows us to make a recommendation that in general,

SDSM is the correct backbone extraction method to use for most bipartite projections.

8.1 Study 1: Choosing cell-filling probabilities for the SDSM

The SDSM requires choosing ?∗
8:
, which we want to approximate Pr(�∗

8:
= 1) forB∗ ∈ BFDSM.

There are three types of methods that might be used for doing so: arithmetic, general linear models,

and entropy maximization. First, we can choose ?∗
8:
= (A8 × 2: )/ 5 , where A8 is the sum of entries

in row 8 of B, 2: is the sum of entries in column : of B, and 5 is the sum of all entries in B. When

?∗
8:

falls outside the [0, 1] range, it is truncated toward 0 or 1, respectively [Got00]. We call this

method RCF because the value is chosen based on a row sum, a column sum, and the number of

entries of B that are filled with a one. Second, an estimate can be obtained by fitting a general

linear model of the form:

�8: = V0 + V1A8 + V22: + n , or

�8: = V0 + V1A8 + V22: + V3A82: + n,
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where the V’s are estimated coefficients and n is an error term. If the model is treated as a

linear regression and the coefficients are estimated using ordinary least squares, then the predicted

value of �8: is chosen for ?∗
8:
, either truncating values outside the required [0, 1] range (linear

probability model; LPM) or transforming them into the required range using a linear discriminant

model (LDM) [AWvH20]. If the model is treated as a logistic regression and the coefficients are

estimated using maximum likelihood, then the predicted probability that �8: = 1 is chosen for

?∗
8:
. In prior work, the logistic regression approach has used a scobit or logit link function, with

or without an interaction term (V3) [Nea14, SB20, Nea20]. Finally, an estimate can be obtained

by entropy maximization methods, including the polytope method (Poly) [DNS21, NDY22] or

bipartite configuration model (BiCM) [SSDC+17]. In this study, we evaluate the accuracy and

speed of these methods for choosing ?∗
8:

that approximate Pr(�∗
8:
= 1) for B∗ ∈ BFDSM.

8.1.1 Methods

To evaluate accuracy, we begin by enumerating all the members of a small BFDSM. For example,

given an agent degree sequence of [1, 1, 2] and an artifact degree sequence of [1, 1, 2], BFDSM

contains 5 members (see Table 8.1A). Second, from this complete enumeration, we compute the

probabilities wewish ?∗
8:
to approximate (i.e., Pr(�∗

8:
= 1) forB∗ ∈ BFDSM, see Table 8.1B). Third,

we compute ?∗
8:

using each of nine methods (see Table 8.1C for values obtained using the BiCM

method). Finally, we quantify the accuracy with which ?∗
8:

approximates the desired probabilities

using the absolute mean difference for all 8, : . In the example shown in Table 8.1, BiCM’s accuracy

for these degree sequences is 0.028. That is, on average ?∗
8:

chosen using BiCM deviates from the

desired probabilities by ± 0.028. Because evaluating accuracy in this way requires enumerating all

members of BFDSM, it is possible only for short degree sequences that define BFDSM with small

cardinality. We focus on degree sequences ranging in length from 2 to 5, which define 384 unique

BFDSM ranging in cardinality from 4 to 2040.

After identifying each method’s accuracy, we evaluate the computational running time of the

four most accurate methods by using them to choose ?∗
8:

for bipartite graphs defined by up to 3162
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(A) Members of BFDSM
1 0 0
0 0 1
0 1 1

0 0 1
1 0 0
0 1 1

0 0 1
0 0 1
1 1 0

0 0 1
0 1 0
1 0 1

0 1 0
0 0 1
1 0 1

(B) Desired probabilities (C) ?∗
8:

computed using BiCM
0.2 0.2 0.6
0.2 0.2 0.6
0.6 0.6 0.8

0.216 0.216 0.568
0.216 0.216 0.568
0.568 0.568 0.863

Table 8.1: SDSM probabilities given agent and artifact degree sequences [1,1,2]

agents and up to 3162 artifacts, and thus requiring choosing up to 10,000,000 probabilities.

8.1.2 Results

Figure 8.1A shows the accuracy of each method’s computation of ?∗
8:
. Each gray line plots the

accuracy of each method for a single BFDSM, while the red line plots the mean accuracy of each

method over all 384BFDSM. Wefind that choosing ?∗
8:
using a logistic regressionwith an interaction

term (i.e., (Scobit-I and Logit-I)) is on average least accurate [Nea14, Nea20], while choosing ?∗
8:

using entropymaximization (i.e., BiCMand Poly) is on averagemost accurate [DNS21, SDCGS15].

Figure 8.1B shows the number of seconds required to compute ?∗
8:

using a 2.3 GhZ Intel i7

processor. Among the two most accurate methods, BiCM is several orders of magnitude faster

than Polytope. When computing more than 104 probabilities, BiCM is also faster than the two

slightly less accurate Logit and LDM methods. In the largest case we evaluated, computing 107

probabilities, BiCM took only about 0.3 seconds. Therefore, we use BiCM for choosing ?∗
8:

when

extracting SDSM backbones in the remaining studies because it is both the most accurate and

fastest. In previous versions of the R package backbone, different methods for determining these

probabilities were included. However, based on these results, the sdsm() function uses the BiCM

method.
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Figure 8.1: (A) Accuracy and (B) speed computing ?∗
8:

using different methods.

8.2 Study 2: Statistical power of SDSM

Ensemble backbone models require the specification of a statistical significance level U, which

determines how uncommonly large an observed edge weight %8 9 must be when compared to edge

weights %∗
8 9

arising from an ensemble in order for a corresponding edge to be included in the

backbone. For a given model, smaller values of U represent more stringent criteria for retaining

edges, and therefore yield sparser backbones. Although FDSM and SDSM define their respective

ensembles by constraining both agent and artifact degree sequences, and thus aim to yield similar

backbones, a givenU does not necessarily represent the same level of stringency in these twomodels.

Because the SDSM allows variation in the degree sequences of B∗ ∈ BSDSM, the distribution of

%∗
8 9
is wider. These wider distributions mean that the SDSM provides a more conservative test of

edge weight significance than FDSM, or alternatively the SDSM has less statistical power to detect

significant edges than FDSM.

A concrete example serves to illustrate this difference. As in chapter 7, we study the world city

network using a bipartite projection where two cities are linked to the extent that firms maintain

locations in both cities. Recall the Globalization and World Cities (GaWC) data set takes the

form of a bipartite network recording the presence or absence of 100 firms (artifacts) in 196 cities

(agents) in the year 2000 [TCW02, NDS21a]. In this bipartite network, the agent degrees are

right-tailed because most cities contain only a few firms, while a few cities such as New York
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contain many (see fig. 7.2). Likewise, the artifact degrees are also right tailed because most firms

maintain locations in only a few cities, while a few firms such as the accounting firm KPMG

maintain locations in many.

Figure 8.2A illustrates the distribution of the Milan-Paris edge weight in projections arising

from BFDSM and BSDSM of which the observed bipartite network is a member (i.e., the random

variable %∗
8 9
). These distributions allow a researcher to decide whether Milan and Paris’s observed

number of co-located firms is significantly large, and therefore whether Milan and Paris should

be connected in a world city network backbone. The SDSM distribution is wider than the FDSM

distribution, which has implications for whether theMilan-Paris edgewill be included in a backbone

extracted at a given significance level using each model. In the observed data, there are 26 firms

co-located in Milan and Paris (i.e., %8 9 = 26). The probability of observing the same or larger edge

weight in projections from the FDSM ensemble is 0.0033, which is less than 0.05
2 , and therefore

a Milan-Paris edge is deemed significant by the FDSM and is included in the FDSM backbone

extracted at U = 0.05. In contrast, the probability of observing the same or larger edge weight

in projections from the SDSM ensemble is 0.0275, which is not less than 0.05
2 , and therefore a

Milan-Paris edge is not deemed significant by the SDSM and is not included in the SDSM backbone

extracted at U = 0.05. For a given level of significance U, this difference in statistical power leads

the SDSM backbone to be sparser than the FDSM backbone (density = 0.004 vs. 0.012), and means

that these two backbones are dissimilar (Jaccard = 0.36).

In this study, we investigate SDSM’s statistical power relative to FDSM, and specificallywhether

extracting an SDSMbackbone using amore liberal (i.e., larger) Umakes it more similar to an FDSM

backbone extracted at U = 0.05.

8.2.1 Methods

To evaluate SDSM’s statistical power and the effect of significance levels on the similarity of SDSM

and FDSM backbones, we first extracted the FDSM backbone from the GaWC bipartite network

at U = 0.05. We then extracted several SDSM backbones from the GaWC bipartite network at
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0.01 ≤ U ≤ 0.3 in 0.001 increments, each time computing the Jaccard index (�) to measure the

similarity between the SDSM and FDSM backbones. The Jaccard index is the ratio of the edges

the P′(�(" and P′��(" have in common to their total edges. After comparing SDSM and FDSM

backbones extracted from the empirical GaWC bipartite network, we repeat this process using 100

synthetic bipartite networks with the same dimensions (196 × 100), density (0.08) and right-tailed

agent and artifact degree distributions.

8.2.2 Results

The green line in Figure 8.2B shows the Jaccard similarity between an FDSM backbone extracted

from the empirical GaWC network at U = 0.05 and SDSM backbones extracted at the significance

levels shown on the x-axis. We find that an SDSM backbone achieves its maximum similarity

to the FDSM backbone (� = 0.81) when it is extracted using the more liberal significance level

of U = 0.12. Returning to the example in Figure 8.2A, using this more liberal significance level

would result in the Milan-Paris edge being deemed significant and included in the SDSM backbone

because its SDSM p-value 0.0275 < 0.12
2 . Because this more liberal significance level results in

the inclusion of additional edges, the new SDSM backbone extracted at U = 0.12 has a density

(0.01), which is closer to that of the FDSM backbone extracted at U = 0.05 (0.012).

The purple line in Figure 8.2B shows the mean Jaccard similarity between an FDSM backbone

extracted using U = 0.05 and SDSM backbones extracted using 0.01 ≤ U ≤ 0.3 from 100 bipartite

networks generated to resemble the empirical GaWC network. The shaded purple region shows

the 10th and 90th percentile of Jaccard similarities of these backbones. We find that these synthetic

networks behave similarly to the empirical network. Specifically, SDSM and FDSM backbones

extracted from a low-density 196 × 100 bipartite network with right-tailed degree distributions

achieve a maximum similarity of 0.49 < � < 0.76 when the FDSM backbone is extracted using

U = 0.05 and the SDSM backbone is extracted using U = 0.14. This is promising because it

suggests that, given the characteristics of an empirical bipartite network, it may be possible to

select a significance level for extracting a computationally-efficient SDSM backbone that closely
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Figure 8.2: Statistical power of SDSM. (A) Distribution of weights for the Paris-Milan edge in
projections derived from FDSM and SDSM ensembles. (B) Similarity of an FDSM backbone
extracted at U = 0.05 to SDSM backbones extracted at various U from an empirical bipartite
network (green line) and from 100 synthetic bipartite networks (purple line = mean, purple region
= 10th–90th percentile).

resembles a computationally-infeasible FDSM backbone.

8.3 Study 3: Backbone equivalence under varying degree distributions

Agent and artifact degree distributions are a key feature of a bipartite network, and are known to

have implications for bipartite projections [VFO20, DNS21, NDS21a]. The FDSM is particularly

appealing because it allows decisions about the significance of edges in a projection to be condi-

tioned on both bipartite degree sequences, thereby taking into account these important features.

However, because the computational requirements of the FDSM make it impractical for extracting

the backbone from most bipartite projections, it is often necessary to use a different backbone

model. In this study, we evaluate the equivalence of an FDSM backbone and backbones extracted

using more computationally efficient models. We perform this comparison for backbones extracted

from bipartite networks characterized by five types of degree distributions: right-tailed, left-tailed,

normal, constant, and uniform.

For the sake of concreteness, in this section we use the example of a bipartite network in

which authors (agents) are linked to the papers they have written (artifacts). The projection of
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Degree Distribution Authors (agents) Papers (artifacts)
Right-tailed
∼ V(1, 10)

Most write some papers, but a few
are prolific (most departments).

Most papers are sole-authored, but
some are written by large teams
(e.g., sociology).

Left-tailed ∼ V(10, 1) Most are prolific, but some are in-
active (elite departments).

Most papers are written by large
teams, but some are sole-authored
(e.g., physics).

Uniform ∼ V(1, 1) There is substantial diversity in
scholarly output (e.g., interdisci-
plinary departments).

There is substantial diversity in the
size of authorship teams (e.g., an
entire university).

Constant ∼
V(10000, 10000)

There are strong norms about how
many papers an author should
have (e.g., for performance eval-
uations).

There are strong norms about how
many authors a paper should have
(e.g., a senior author & a junior
author)

Normal ∼ V(10, 10) Scholarly output varies around
some typical level.

Authorship teams vary around
some typical size.

Table 8.2: Bipartite degree distributions, with examples in the context of a scholarly authorship
bipartite network

such a network yields a co-authorship network in which the edge weight between a pair of authors

indicates their number of co-authored papers [New01]. These edge weight values will depend

heavily on the distribution of papers written by authors (i.e., the agent degree sequence), and on

the distribution of authors on each paper (i.e., the artifact degree sequence). Different degree

distributions describe different kinds of scholarly environments as shown in Table 8.2. The choice

of a backbone model affects whether these distributions are considered, and in this example affects

whether decisions about the significance of two authors’ number of co-authored papers consider

the scholarly environment. The FDSM compares their observed number of co-authored papers to

the number that might be observed in alternative realizations of the same environment, while other

backbone models relax the extent to which the environment is held constant.

8.3.1 Methods

We evaluate similarities among the backbones extracted using different models by comparing

backbones extracted from synthetic 100 × 100 bipartite networks with a density of 0.1, and with a

combination of agent and artifact degree distributions shown in Table 8.2. Following our example,
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these synthetic bipartite networks might represent a college of 100 faculty who collectively wrote

100 papers, in a particular type of scholarly environment where each individual had a 10% chance

of being an author on each paper. After generating a bipartite network with a given size, density,

and degree distributions, we extract five different backbones from the generated bipartite network,

using the fixed fill model, fixed row model, fixed column model, stochastic degree sequence model,

and fixed degree sequence model; in all cases we use U = 0.05. We compute the similarity of the

first four backbones to the FDSM backbone using a Jaccard index, repeating this process 100 times

for each of the 25 possible combinations of agent and artifact degree distributions.

8.3.2 Results

The heatmaps in Figure 8.3 illustrate the similarity between an FDSM backbone and a backbone

extracted using an alternative model. The rows of each heat map correspond to different agent

degree distributions, and the columns correspond to different artifact degree distributions, in the

synthetic bipartite networks fromwhich the backbones were extracted. The lightest patches identify

conditions under which a given backbone model yields a backbone that is similar to what would be

obtained using the computationally costly FDSM, while darker patches identify conditions under

which these two backbones differ. We find that when agent degrees are constant (i.e., every agent

has the same degree) and artifact degrees are constant or left-tailed, all backbone models yield the

same backbone as FDSM (Mean � = 1). However, beyond this special case, which is likely to be

rare in empirical data, similarity to FDSM-extracted backbones varies.

As expected, the similarity of backbones extracted using FRM and FDSM depends primarily on

the distribution of artifact degrees, not agent degrees (see Figure 8.3B). For example, for any agent

degree distribution, these two models yield very different backbones when artifact degrees follow a

right-tailed distribution (Mean � = 0.186), but very similar backbones when artifact degrees follow

a normal distribution (Mean � = 0.863). This occurs because both models exactly control for agent

degrees, however FDSM also controls for artifact degrees, while FRM does not.

A similar but rotated pattern emerges when considering the FCM: the similarity of backbones
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Figure 8.3: Jaccard similarity of a backbone extracted at U = 0.05 using the Fixed Degree
Sequence Model and a backbone extracted using (A) the Fixed Fill Model, (B) Fixed Row Model,
(C) Fixed Column Model, (D) Stochastic Degree Sequence Model. Each cell represents the mean
over 100 instances of a 100 × 100 bipartite network with given agent and artifact degree
distributions.

extracted using FCM and FDSM depends primarily on the distribution of agent degrees, not artifact

degrees (see Figure 8.3C). For any artifact degree distribution, these twomodels yield very different

backbones when agent degrees follow a right-tailed or uniform (Mean � = 0.084) distribution , but

more similar backbones when agent degrees follow a left-tailed distribution or are constant (Mean

� = 0.617). This occurs because both models exactly control for artifact degrees, however FDSM

also controls for agent degrees, while FRM does not. However, there is a notable exception to this

general pattern: when artifact degrees follow a uniform distribution, FCM and FDSM always yield

different backbones (Mean � = 0.151).

The conditions under which the FFM yields FDSM-similar backbones occur at the intersection

of the conditions under which the FRM and FCM both yield FDSM-equivalent backbones (see
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Figure 8.3A).When artifact degrees follow a right-tailed distribution and/or the agent degrees follow

a right-tailed or uniform distribution, then FFM and FDSM backbones differ (Mean � = 0.1). In

contrast, for other combinations of degree distributions, FFM and FDSM backbones are more

similar (Mean � = 0.724).

Finally, as expected based on the findings from study 2, we observe that the SDSM generally

yields different backbones than FDSM when both are extracted at U = 0.05 (see Figure 8.3D).

Specifically, except in the narrow case where agent degrees are constant and artifact degrees are

constant or left-tailed (Mean � = 1), SDSM and FDSM backbones exhibit only modest similarity

(Mean � = 0.314). This lack of similarity or equivalence occurs because SDSM offers a less

statistically powerful (or more conservative) test of edges statistical significance than FDSM, and

therefore retains fewer edges in the backbone. However, findings from study 2 also suggested that

careful selection of the significance level used for extracting an SDSM backbone can yield results

more similar to FDSM.

To explore this possibility, we expanded the analysis reported in figure 8.3D by extracting

SDSM backbones at different significance levels. We find that when a suitably more liberal (i.e.,

larger) significance level U is used to extract an SDSM backbone, the resulting SDSM backbone

is very similar to an FDSM backbone extracted at U = 0.05 (see Figure 8.4A). Specifically, for

backbones extracted from bipartite networks with any agent or artifact degree distributions, these

two backbones tend to be nearly equivalent (Mean � = 0.865). This suggests that in principle the

fast SDSM can be used to obtain a close approximation of a computationally-infeasible FDSM

backbone from any bipartite network.

In practice, using SDSM to obtain an FDSM-like backbone requires selecting an U value for the

SDSM that corresponds to U = 0.05 in the FDSM. We observe that there are three distinct values

of such an ‘optimal’ U that depend on agent and artifact degree distributions (see Figure 8.4B).

First, when agent degrees are constant, a value only slightly higher than 0.05 (Mean = 0.062, SD

= 0.021) achieves the best approximation of an FDSM backbone. Second, when artifact degrees

are constant, a value roughly double (Mean = 0.09, SD = 0.022) achieves the best approximation
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Figure 8.4: (A) Given agent and artifact degree distributions, there exists a statistical significance
level U that maximizes the similarity between an SDSM backbone extracted at this level and an
FDSM backbone extracted at U = 0.05, and (B) when used yields an SDSM backbone that is very
similar to the corresponding FDSM backbone.

of an FDSM backbone. Finally, when neither agent nor artifact degrees are constant, which is

likely in most empirical bipartite networks, a value roughly 2.5 times larger (Mean = 0.13, SD

= 0.014) achieves the best approximation of an FDSM backbone. Although further work is needed

to facilitate the a priori selection of an U that allows an SDSM backbone to closely approximate

an FDSM backbone, these results suggest that under the most common circumstances (i.e., when

there is variation in degrees) U ≈ 0.13 may be appropriate.

8.4 Study 4: Recovery of community structure

Studies 1-3 examine the backbones extracted from synthetic random bipartite networks; how-

ever, empirical bipartite networks are generally not random, but instead have a clustered or blocked

structure. In this study, we evaluate the extent to which backbones extracted using different models

reflect a known community structure that is encoded in the bipartite data from which they are

extracted [CWW18]. As shown in chapter 7, SDSM and FDSM backbones extracted from a bi-

partite network representing bill co-sponsorship in the 114th session of the US Senate more clearly

captured the known partisan community structure than an FRM backbone [DNS21]. For the sake

of concreteness, we use this legislative network context as an example in this section, but we extend

this prior work by considering a broader range of backbone models, and by examining their ability
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to recover community structures from bipartite data containing varying levels of evidence for this

structure.

8.4.1 Methods

We investigate the ability for backbones to recover a known community structure in three steps.

First, we simulate a 200 × 1000 bipartite network with a density of 0.1 and right-tailed agent and

artifact degree distributions. We focus on a bipartite network with more artifacts than agents to

ensure that these data contain sufficient information to encode potential community memberships.

We focus on a bipartite network with right-tailed degree distributions because they are common

in many empirical unipartite [BC19] and bipartite networks [Nea20, NDS21a, AABB11]. Similar

to the Senate data set we examined in chapter 7, this synthetic bipartite network could represent a

legislative body composed of 200 legislators casting votes on 1000 bills, where any given legislator

had a 10% chance of voting in favor of any given bill. The right-tailed degree distributions capture

the fact that most legislators vote in favor of only a few bills, and that most bills receive the support

of only a few legislators, which is typical of legislative bodies. The backbone of a projection

of such a bipartite network would represent a network of collaboration or ideological alignment

among legislators [Nea20].

Second, we incorporate evidence of communities in this bipartite network by randomly assigning

each agent and each artifact to one of two groups. We then perform checkerboard swaps, which

preserve the degree distributions, until a given fraction of edges , are within-group, connecting

an agent and artifact from the same group [GSPA07]. Figure 8.5A provides graphical depictions

of the matrices describing synthetic bipartite networks at two values of , . In each plot, the rows

represent agents assigned to group A or B, the columns represent artifacts assigned to group A or

B, and a cell is shaded black if the row agent is connected to the column artifact. When, = 0.5,

agents in a given group are equally likely to associate with artifacts in either group, placing ≈ 0.5

of the edges (i.e., shaded cells) in the diagonal blocks and ≈ 0.5 of the edges in the off-diagonal

blocks. In contrast, when, = 0.8, agents in a given group are much more likely to associate with
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artifacts from their own group than artifacts in the other group, placing ≈ 0.8 of the edges in the

diagonal blocks and ≈ 0.2 of the edges in the off-diagonal blocks. Returning to our example, the

groups could represent political parties: each legislator belongs to one of two parties (i.e., there

are conservative and liberal legislators), and each bill advances the agenda of one of these parties

(i.e., there are conservative and liberal bills). When , = 0.5, a conservative legislator is equally

likely to vote for conservative and liberal bills, while when , = 0.8, a conservative legislator is

four-times more likely to vote for a conservative bill than a liberal bill.

Finally, we extract a backbone from the bipartite network using a given model and compute the

backbone’s modularity & with respect to the agents’ group assignments [NG04]. If a backbone

model is able to recover the community structure from evidence in the bipartite network, then

we expect a positive association between , and &. In the legislative example, if legislators are

bipartisan in their voting patterns (i.e.,, = 0.5), then legislators should not be clustered by party

in the backbone (i.e., & ≈ 0). In contrast, if legislators are strongly partisan in their voting patterns

(i.e.,, = 0.8), then legislators should be clustered by party in the backbone (i.e., & ≈ 0.5).

We repeat these three steps 10 times for 0.5 ≤ , ≤ 0.8 in 0.05 increments. When evaluating

the SDSM backbone, we consider both a backbone extracted using the conventional significance

level of U = 0.05 and one extracted at the more liberal U = 0.13, which study 3 suggests yields a

backbone similar to FDSM.

8.4.2 Results

Figure 8.5B shows the modularity (y-axis; with respect to known community memberships) of

backbones extracted using different models from bipartite networks with different fractions of

within-community edges (x-axis). All six lines increase monotonically, confirming that all back-

bone models yield backbones that can recover a known community structure. However, there is

notable variation among the models. As evidence of community structure grows stronger in the

bipartite network, the modularity of backbones extracted using the FFM and FCM slowly increase,

but even when the evidence of such a structure is quite strong (i.e., when, = 0.8) they only achieve
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(top) while a backbone extracted using FCM does not (bottom).

average values of & = 0.15 and 0.18, respectively. Backbones extracted using the FRM display a

similar pattern, but achieve a higher average modularity (& = 0.39) value when, is large.

In contrast, backbones extracted using FDSM and SDSM are virtually indistinguishable in

their ability to recover the known community structure, and do so very well. As evidence of a

community structure grows stronger in the bipartite network, the modularity of backbones extracted

using these models rapidly increases. When the evidence of community structure is strong (i.e.,

when , = 0.8), these backbones have very high modularity (mean & = 0.49). However, even

when there is only modest evidence of community structure in the bipartite network (e.g., when

, = 0.65), these backbones are still able to identify the community structure and have a distinctively

high modularity (mean & = 0.37).

Figure 8.5C illustrates the difference between two backbonemodels’ abilities to recover a known

community structure, when evidence of that structure is modest in the bipartite data from which

the backbone is extracted (, = 0.65). In both plots, agents from group A (e.g., conservatives, in

the legislative example) are colored red, while agents from group B (e.g., liberals, in the legislative

example) are colored blue. The FDSM-extracted backbone clearly places agents from different
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groups in separate clusters. In contrast, the FCM-extracted backbone is unable to distinguish this

group structure and fails to cluster agents according to their known group memberships. These

findings suggest that although all backbone models can yield backbones that recover a known

community structure, SDSM and FDSM backbones are able to detect this structure more clearly

and from a weaker signal.

8.5 Recommendations for Backbone Selection

Bipartite networks can be used to represent a wide range of phenomena in the social and

natural worlds including interspecies competition, global trade, scientific advances, and legislative

deliberation. Likewise, projections of bipartite networks, which take the form of co-occurrence

networks, can be useful for inferring unipartite networks that would otherwise be difficult tomeasure

directly. Several models have been proposed for extracting the backbone of bipartite projections,

and thus for making such inferences, including the fixed fill model (FFM), fixed row model (FRM),

fixed column model (FCM), fixed degree sequence model (FDSM), and stochastic degree sequence

model (SDSM).We have introduced each of thesemodels and found their probabilitymass functions

in chapter 6. To facilitate their use, we have described the R package backbone where we have

implemented each model in chapter 7. We then systematically compared these models in terms of

their relative accuracy, speed, statistical power, similarity, and ability to recover a known community

structure in chapter 8.

In study 1, we examined several methods for choosing the probabilities necessary for applying

the stochastic degree sequence model (SDSM), finding that the bipartite configuration model

(BiCM) is both the fastest and most accurate. In study 2, we examined the statistical power of the

SDSM relative to the fixed degree sequence model (FDSM), finding that the SDSM can be viewed

as a statistically less powerful (or more conservative) variant of the FDSM. In study 3, we examined

the similarity of an FDSM-extracted backbone to backbones extracted using other models, finding

that the SDSM and FDSM extract very similar backbones from bipartite networks with a wide

range of possible degree distributions when an appropriate significance level U is chosen. Finally,
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in study 4, we examined the ability for backbones extracted using different models to recover a

known community structure, finding that although all models can recover the structure, SDSM and

FDSM can detect a community structure more clearly and from a weaker signal.

Based on these findings, and with the goal of offering researchers some guidance in extracting

the backbones of bipartite projections, we offer three recommendations. First, we recommend the

stochastic degree sequence model (SDSM) for extracting the backbones of bipartite projections be-

cause it is fast, controls for both agent and artifact degree sequences, and yields modular backbones

when the bipartite data contains even modest evidence of within-community clustering. Second,

when the SDSM is used, we recommend that the cell-filling probabilities ?∗
8:

be chosen using

the Bipartite Configuration Model (BiCM) because it is faster and more accurate than any other

currently available method. Third, when an FDSM backbone extracted at the U = 0.05 significance

level is desired but computationally infeasible, we recommend extracting an SDSM backbone at the

U = 0.13 significance level, which we observe is very similar when there is variation in the agent

and artifact degree sequences. The models and options necessary to adopt these recommendations

are implemented in the backbone package for R [DNS21].

These findings and recommendations must be viewed in light of the fact that, due to the

computational requirements of the FDSM and of extracting a large number of backbones across

the four studies, these studies have relied on small synthetic bipartite networks ranging in size

from 3 × 3 (study 1) to 200 × 1000 (study 4). However, in practice bipartite networks may be

several orders of magnitude larger. For example, a bipartite network used to infer collaborations

in the US House of Representatives includes 435 agents (representatives) and over 6000 artifacts

(bills) [Nea20, NDY22], while a bipartite network used to infer movie recommendations includes

17,770 agents (films) and nearly 500,000 artifacts (viewers) [ZK11]. Future research should

explore whether these findings extend to backbones extracted from such large bipartite networks.

Limitations of existing backbone models also point to directions for future research. First, using

the FDSM will generally be computationally infeasible in practice because the distribution of %∗
8 9

arising from BFDSM must be estimated via numerical simulation. Identifying this distribution’s
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probability mass function, which is known for the other ensembles (as discussed in chapter 6),

would facilitate the use of this otherwise attractive model; however, this is a well-studied problem

and so is probably very hard to solve. Second, all the ensemble models we have considered impose

constraints on the degree sequences, but other types of constraints may also be useful. For example,

in some contexts it may be necessary to constrain all members of an ensemble to contain a 0 in a

particular cell (e.g., to represent that an author was not alive to co-author a paper, or a legislator

was not present to co-sponsor a bill). These limitations and future directions notwithstanding, the

results presented above provide a starting point for further development of backbone models, and

provide applied researchers with some practical guidance on model selection.
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