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ABSTRACT

AFFINE GRASSMANNIANS AND SPLITTING MODELS FOR TRIALITY GROUPS

By

Zhihao Zhao

This thesis concerns the study of affine Grassmannians and of local models for ramified

triality groups. The triality groups we consider are groups of type 3D4, so they are forms

of the orthogonal or the spin groups in 8 variables. They can be given as automorphisms

of certain twisted composition algebras obtained from the octonion algebra. Using these

composition algebras, we give descriptions of the affine Grassmannians and of the global

affine Grassmannians for these triality groups as functors classifying suitable lattices in a

fixed space. We combine these descriptions with the Pappas-Zhu construction, to obtain a

corresponding description of local models for triality groups; the singularities of these models

are supposed to model the singularities of certain orthogonal Shimura varieties.

Moreover, we give a definition of a corresponding splitting model in terms of linear algebra

data; this splitting model is expected to provide a partial resolution of the local model. By

explicit calculations, we find equations that describe affine charts of the splitting model.

Using these calculations, we show that the splitting model is isomorphic to the blow-up of

a quadratic hypersurface along a specific smooth closed subscheme of its special fiber. It

follows that the splitting model is regular and has special fiber which is the union of two

smooth irreducible components that intersect transversely.
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Chapter 1

Introduction

Local models are certain projective schemes over the spectrum of a discrete valuation ring

which have a homogeneous space for a reductive group as generic fiber. Their singularities

are supposed to model the singularities of natural integral models of Shimura varieties with

parahoric level structure, i.e., each point on the integral model of the Shimura variety should

have an étale neighborhood which is isomorphic to an étale neighborhood of a corresponding

point on the local model. So the problem of studying singularities of reductions of Shimura

varieties becomes studying singularities of corresponding local models. Therefore, it is in-

teresting to study good properties of local models, such as flatness or Cohen-Macaulayness.

Local models for Shimura varieties of PEL type were given by Rapoport and Zink in [27];

sometimes, these are called “naive local models”. Naive local models are defined directly in

terms of linear algebra data; they are closed subschemes in the product of Grassmannian

varieties and they can be calculated explicitly. Unfortunately, naive local models are not

always flat (see [21]). Some of these non-flat examples arise due to the fact that the group

defining the Shimura variety is non-split over p. In the ramified PEL case, corrected local

models for classical groups have been studied case by case. The local structure of local mod-

els was considered in several papers by Görtz[7], [8], [9], by Krämer [16], by Smithling [30],

by Arzdorf [1] and others. We refer the survey [24] for an overview and more references.

In [26], Pappas and Zhu gave a uniform group-theoretic construction of local models for
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tamely ramified groups; we call these “PZ-local models”. Roughly speaking, PZ-local models

are given as the Zariski closure of a homogeneous space in a global affine Grassmannian over

a ring of p-adic integers. Pappas and Zhu showed that PZ-local models have many good

properties. However, these local models are not defined directly in terms of linear algebra

data. One of our goals in this work is to give a linear algebra description of PZ-local models

for certain orthogonal groups. A similar result, for classical orthogonal (split) groups has

been recently obtained by Zachos, and Zachos-Pappas in [25], [32]. Here, we consider the

harder case of ramified triality groups.

What are triality groups? Let G0 be an adjoint Chevalley group of type D4 over a field

F0. Consider the Dynkin diagram:

•

D4 • •

•

The Dynkin diagram of type D4 has a symmetry not shared by other Dynkin diagrams: it

admits automorphisms of order 3. Since the automorphism of the Dynkin diagram of type

D4 is isomorphic to the symmetric group S3, there is a split exact sequence of algebraic

groups:

1→ G0 → Aut(G0)
f→ S3 → 1.

Thus, G0 admits outer automorphisms of order 3, which we call trialitarian automorphisms.

The fixed elements of G0 under such an outer automorphism, define groups of type G2:

G2 •W •
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Consider the Galois cohomology set H1(F0,Aut(G0)) := H1(Γ0,Aut(G0)), where Γ0 is

the absolute Galois group Gal(F0,sep/F0). Adjoint algebraic groups of type D4 over F0

are classified by H1(F,Aut(G0)) (29.B, [14]), and the map induced by f in cohomology

f1 : H1(F0,Aut(G0))→ H1(F0, S3) associates to G0 of type D4 the isomorphism class of a

cubic étale F0-algebra F , see [14]. The possibilities of F are summarized as follows:

F type G0

F0 × F0 × F0 1D4

F0 ×∆ 2D4

Galois field ext. 3D4

non-Galois field ext. 6D4

The group G0 is said to be of type 1D4 if F is split, of type 2D4 if F ∼= F0 × ∆ for some

quadratic separable field extension ∆/F0, of type 3D4 if F is a cyclic field extension over

F0, and of type 6D4 if F is a non-cyclic field extension. In our paper, we consider the 3D4

case and call the corresponding G0 the triality group.

These triality groups are often studied by composition algebras. By composition algebras,

we mean algebras (not necessarily associative) with a nonsingular quadratic form q such

that q(x · y) = q(x)q(y) for all x, y in this algebra. We give a review of different types

of composition algebras in §2. Composition algebras can be used to describe exceptional

groups. For example, Springer shows the automorphism of an octonion algebra is of type G2

(§2.3, [31]). Here the octonion algebra is an 8-dimensional composition algebra. We can view

this automorphism group as the fixed subgroup of a spin group of an octonion algebra under

outer automorphisms (Proposition 35.9, [14]). In §3, we extend this result and show that the
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subgroup of a spin group of a normal twisted composition algebra, which is fixed under outer

automorphisms, is of type 3D4. This will be our main tool to study affine Grassmannians

and local models for triality groups.

Before considering local models for triality groups in global affine Grassmannians, we

will give an explicit description of the triality affine Grassmannian in terms of lattices with

extra structure. Corresponding explicit descriptions of affine Grassmannians/flag varieties

are known and have been quite useful. Lusztig [18] first showed that affine Grassmannians

for simple Lie algebras can be described in terms of certain orders, which are lattices closed

under the Lie bracket. Here we aim for an explicit description in terms of lattices in the

standard representation which is more in line with such descriptions known for classical

groups. For example, Pappas and Rapoport gave such descriptions for affine Grassmannians

and affine flag varieties for unitary groups in [23] using lattices (or lattice chains) which

are self-dual for a hermitian form. See also work of Görtz [8] and of Smithling [29] for the

symplectic and the split orthogonal groups, respectively. It turns out that the case of the

ramified triality group, which we consider here, is considerably more complicated. We believe

that these objects are of independent interest and we begin by discussing them in detail.

Let k be a field with characteristic char(k) 6= 2, 3. We assume the cubic primitive root

ξ is in k. We set F0 = k((t)) (resp. F = k((u))) the ring of Laurent power series, with ring

of integers k[[t]] (resp. k[[u]]). Set u3 = t so that F/F0 is a cubic Galois extension with

Gal(F/F0) = 〈ρ〉 ∼= A3, where ρ acts on u by ρ(u) = ξu. In §2.3, we define the normal

twisted composition algebra (V, ∗) over F . Here (V, ∗) is an 8-dimensional vector space with

an F0-bilinear product ∗ and a nonsingular quadratic form q satisfying certain properties

(see Definition 2.3.1). We also fix a finitely generated projective k[[u]]-module L in V , which

we call the standard lattice in V . Denote by 〈 , 〉 the bilinear form associated to q. We
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show that the spin group Spin(V, ∗) over F has an outer automorphism, and the subgroup

of ResF/F0Spin(V, ∗), which is fixed under the outer automorphism, is the triality group G

we are interested in, i.e.,

G = ResF/F0
Spin(V, ∗)A3 .

We now choose the parahoric group scheme G over Spec(k[[t]]) given by the lattice L. This is

a smooth group scheme with G ⊗k[[t]] k((t)) = G. Set Gη the generic fiber of G . We consider

the associated loop group LGη (resp. positive loop group L+G ), which is the ind-scheme

representing the functor:

R 7→ LGη(R) := Gη(R((t))), (resp. R 7→ L+G (R) := G (R[[t]])),

for any k-algebra R. The quotient fpqc sheaf LGη/L
+G is by definition the affine Grass-

mannian for the triality group over Spec(k). Our first main theorem is:

Theorem 1.0.1. There is an LGη-equivariant isomorphism

LGη/L
+G ' F

where the functor F sends a k-algebra R to the set of finitely generated projective R[[u]]-

modules L (i.e., R[[u]]-lattices) of V ⊗k R
∼= R((u))8, such that

(1) L is self dual under the bilinear form 〈 , 〉, i.e., L ' HomR[[u]](L,R[[u]]).

(2) L is closed under multiplication, L ∗ L ⊂ L.

(3) There exists a ∈ L, such that q(a) = 0, 〈a ∗ a, a〉 = 1.

5



(4) For a as in (3), let e = a+a∗a. Then, we have e ∗ x = −x̄ = x ∗ e for any x̄ satisfying

〈x̄, ē〉 = 0. (Here, x̄ is the image of x under the canonical map L→ L/uL.)

This theorem is proven in §5.2. In particular, it gives a bijection between k-points in the

affine Grassmannian for triality groups and a certain set of k[[u]]-lattices in V that satisfy

some special conditions.

We are now ready to give definitions of global affine Grassmannians and local models

for triality groups. Let F0 = Qunr
p be the maximal unramified extension of Qp for p 6= 2, 3.

Let K/Qp be a cubic extension and F = KQunr
p . Then F/F0 is a cubic Galois extension.

Choose a uniformizer π (resp. π0) in the ring of integers O (resp. O0) of F (resp. F0). In

the second part of the paper, we construct a group scheme H over F . This is a generalized

group scheme containing Spin(V, ∗). Here H sits in the following exact sequence:

1→ Spin(V, ∗)→ H → G×3m .

The Galois group Gal(F/F0) ∼= A3 also acts on H, and we denote by G the subgroup

of ResF/F0
H fixed under the Galois group. We call G the triality group for the general

orthogonal group over Spec(F0).

Consider the affine line A1
O0

= Spec(O0[u]) and its cover Spec(O0[v]) → Spec(O0[u])

given by u 7→ v3. We can get the cubic field extension F/F0 from O0[v
±1]/O0[u

±1] by base

changing via v 7→ π. Thus, there is a normal twisted composition algebra Ṽ over O0[v
±1]

with a bilinear form 〈 , 〉, such that the base change Ṽ ⊗O0[v±1] F is isomorphic to V . We

fix an O0[v]-lattice in Ṽ , and still call it the standard lattice L for simplicity. Following [26],

we construct a reductive group scheme G over Spec(O0[u
±1]). It is a quasi-split (split after

a tamely ramified extension) group scheme such that the base change G⊗O0[u±1] F0 given
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by O0[u
±1] → F0, u 7→ π0, is isomorphic to G. Having given G, we can now choose the

parahoric subgroup G over Spec(O0[u]) given by L. The global affine Grssmannian GrG is

now defined as the quotient fpqc sheaf LG /L+G . Our second main theorem is:

Theorem 1.0.2. Suppose R is an O0-algebra. There is an LG -equivariant isomorphism

between GrG (R) and the set of pairs (L, [λ]), where L is a R[[u− π0]]⊗O0[u] O0[v]-lattice of

Ṽ ⊗O0[u±1]
R((u− π0)), and λ is in (R((u− π0))⊗O0[u] O0[v])

∗, which satisfy:

(1) Under the bilinear form 〈 , 〉, we have

〈 , 〉 : L⊗ L→ ρ(λ)θ(λ)(R[[u− π0]]⊗O0[u] O0[v])

which is perfect, i.e., L ∼= Hom(L, ρ(λ)θ(λ)(R[[u− π0]]⊗O0[u]O0[v])). Here the tensor

⊗ and Hom are for the R[[u− π0]]⊗O0[u] O0[v]-mod structure.

(2) We have L ∗ L ⊂ λL.

(3) There exists a ∈ L, such that q(a) = 0, 〈a ∗ a, a〉 = λρ(λ)θ(λ).

(4) For a as in (3), let e = a+ λ−1(a ∗ a). Thus, we have λ̄−1 · e ∗ x = −x̄ = λ̄−1 · x ∗ e,

for any x̄ satisfying 〈x̄, ē〉 = 0, where x̄ is the image of x under the canonical map

L→ L/(u− π0, v)L.

We refer §6.2 for notations in detail, and the proof is in §6.3. This theorem generalizes

our first main theorem.

To define local models for triality groups, we need to fix a coweight µ of G. This coweight

gives a morphism µ : Gm,F → G⊗F0
F , which gives a F -valued point of LG. After showing

G F0,π0
:= G ⊗O0[u] F0[[u − π0]]

∼= G ⊗F0
F0[[u − π0]] in §7.1, we get an F -valued point in
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LG F0,π0
. Denote by sµ the corresponding F -valued point in LG F0,π0

. We consider the orbit

Xµ = L+G F0,π0
[sµ] in the generic fiber of GrG ⊗O0[u] O. Then following the definition in

[26], the local model for triality groups is the Zariski closure of the orbit Xµ in the ind-scheme

GrG ,O := GrG ⊗O0[u] O. The description of the global affine Grassmannian as a functor

classifying lattices given by the theorem above, now also implies a corresponding description

of the local model as classifying such lattices whose distance from the standard lattice is

“bounded by µ”.

Although the definition of local models for triality groups looks complicated, the generic

fiber of this local model has a simple description. Let C be an 8-dimensional vector space

equipped with a nondegenerate symmetric quadratic form q. Let Q be the projective

quadratic hypersurface defined by q. There are two different orthogonal Grassmannians,

which contain maximal isotropic subspaces of C. We denote them by Q+, Q−. Then, we

have a “triple graph”:
Q

Q+ Q−

(see §20.3, [5]). The outer automorphism of triality groups can be viewed as a counterclock-

wise action in the above “triple graph”. Hence, the fixed subgroup under outer automorphism

is isomorphic to the quadratic hypersurfaceQ, and the generic fiber of local models for triality

groups is also isomorphic to the quadratic hypersurface Q. See §7.2 for details.

The last part of this paper is about “splitting models” for triality groups. The original

purpose of introducing splitting models by Pappas and Rapoport ([22]) was to modify “naive

local models” in the ramified case, so that the modified models are flat and have reasonable

singularities. We can view splitting models as “partial resolutions of local models”. In [22],
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Pappas and Rapoport consider the cases where the quasi-split form of G is the general linear

group GLd or the general symplectic group GSp2n. We will give the definition of splitting

models Msplit for triality groups in terms of linear algebra data. Our last main theorem is

Theorem 1.0.3. The scheme Msplit is isomorphic to the blow-up Q̃ of Q along Z.

Here Q is the quadratic hypersurface in P7O, and Z is the closed subscheme that contains

all isotropic lines orthogonal to the para-unit e in the special fiber of Q (see §8.2). It

easily follows that Msplit is regular and has special fiber which is the union of two smooth

irreducible components that intersect transversely. Although we believe that there should be

“partial resolution” (birational) morphism: Msplit → Mloc, we were not able to establish

that yet.

The organization of the paper is as follows. In §2, we review the definition and basic

propositions of composition algebras, including unital composition algebras, symmetric com-

position algebras, and twisted composition algebras. We are particular interested in normal

twisted composition algebras, since the spin group of normal twisted composition algebras is

an ingredient to construct triality groups. We explain relations between isotropic subspaces

in the normal twisted composition algebras (we call it “triality triple”) in §2.4. In §3.1 –

3.2, we review orthogonal groups and give the principle of triality proposition, which we will

use them to explain our construction of triality groups. In §3.3 – 3.4, we give the definition

of triality groups, both for the special orthogonal groups and for the general orthogonal

groups. In §4 we review loop groups and affine Grassmannians. In §5, we first review Galois

cohomology theory, which we will use to prove our first main theorem. We fix the parahoric

subgroup for triality groups by picking a lattice, and show our first main theorem in §5.2, to

identify points in affine Grassmannian for triality groups with lattices satisfying some special
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conditions. In §6, we discuss global affine Grassmannians for triality groups. We first recall

the general construction by [26] in §6.1. Our special construction with the statement of our

second main theorem is in §6.2, whose proof occupies §6.3. This proof is similar but more

general than the proof in §5.2. Finally, we give the definition of local models for triality

groups in §7. We show the generic fiber of Mloc is isomorphic to the triality triple in some

sense. We explain our motivation for splitting models in §8.1, and define splitting models for

triality groups Msplit being the flat closure of some “naive splitting models” M. They are

isomorphic in the generic fiber, which are exactly the generic fiber of quadratic hypersurface

Q. Our last main theorem is in §8.2. We conclude the paper in §8.3-8.6, which include

calculation results that we need for the proof of our last main theorem.
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Chapter 2

Composition Algebras

The main topic of this section is composition algebras. We give the definition of unital com-

position algebras, symmetric composition algebras and normal twisted composition algebras.

We will see that they have close connection with each other.

Let F be a field, and suppose char(F ) 6= 2, 3. In this and the following sections, by

an F -algebra A we mean (unless further specified) a finite dimensional vector space over

F equipped with an F -bilinear multiplication m : A × A → A. Here m is not necessarily

associative. Later we will use different notations for the multiplication to distinguish different

composition algebras. We do not assume that the algebra A has an identity.

Definition 2.0.1. An involution on an algebra A over a field F is a map σ : A → A such

that

(1) σ(x+ y) = σ(x) + σ(y),

(2) σ(xy) = σ(y)σ(x),

(3) σ2(x) = x,

for any x, y ∈ A.

A morphism with involution is a morphism of algebras which commutes with the invo-

lution. A quadratic form on A over F is a mapping q : A→ F with the properties:
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(1) q(λx) = λ2q(x) for λ ∈ F , x ∈ A.

(2) The mapping 〈 , 〉 : A× A→ A defined by

〈x, y〉 = q(x+ y)− q(x)− q(y)

is bilinear.

We always assume q is nonsingular in this paper, i.e., if 〈x, y〉 = 0 for all y ∈ A, we have

x = 0. An element x in A is called isotropic if q(x) = 0 and anisotropic if q(x) 6= 0. The

quadratic form q is said to be isotropic if there exist nonzero isotropic elements in A.

Definition 2.0.2. A composition algebra A over a field F with multiplication x ·y = m(x, y)

is an algebra with a nonsingular quadratic form q on A satisfying:

q(x · y) = q(x)q(y).

This quadratic form q is often referred to as the norm on A, and the associated bilinear form

〈 , 〉 is called the inner product.

A subalgebra of a composition algebra is an F -subspace that is closed under multipli-

cation, and the homomorphisms between composition algebras are the F -linear maps that

preserve the multiplication.

2.1 Unital composition algebras

Let A be a composition algebra over F with identity e, and denote by x�y the multiplication

m(x, y). We call the triple (A, �, q) a unital composition algebra. It turns out that every
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element of a unital composition algebra satisfies a quadratic polynomial. This is the minimal

polynomial if the element is not a scalar multiple of the identity. (A minimal polynomial of

an element x0 ∈ A is the unique irreducible monic polynomial p(x) ∈ F [x] of smallest degree

such that p(x0) = 0.)

Proposition 2.1.1. Every element x of a unital composition algebra (A, �, q) satisfies

x � x− 〈x, e〉x+ q(x)e = 0.

For x, y ∈ A, we have

x � y + y � x− 〈x, e〉y − 〈y, e〉x+ 〈x, y〉e = 0.

Proof. See Proposition 1.2.3, [31].

By using this proposition, we can define an involution r : x 7→ r(x) by

r(x) := 〈x, e〉e− x,

for x ∈ A. We call r(x) the conjugate of x. The following results hold in every unital

composition algebra (A, �, q):

Lemma 2.1.2. We have

(1) x � r(x) = r(x) � x = q(x)e,

(2) r2(x) = x,

(3) q(r(x)) = q(x),
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(4) r(x+ y) = r(x) + r(y),

(5) 〈r(x), r(y)〉 = 〈x, y〉,

(6) r(x � y) = r(y) � r(x),

for all x, y ∈ A.

Proof. See Lemma 1.3.1, [31].

From the above, we see that r : x 7→ r(x) is indeed an involution. We list some useful

equations that we will use later in the following lemmas (See §1.2, §1.3, [31]):

Lemma 2.1.3. We have

(1) 〈x � z, y � z〉 = 〈x, y〉q(z),

(2) 〈z � x, z � y〉 = q(z)〈x, y〉〉,

(3) 〈x � z, y � w〉+ 〈x � w, y � z〉 = 〈x, y〉〈z, w〉,

for all x, y, z ∈ A.

Proof. See §1.2, [31].

Lemma 2.1.4. We have

(1) x � (r(x) � y) = q(x)y,

(2) (x � r(y)) � y = q(y)x,

(3) x � (r(y) � z) + y � (r(x) � z) = 〈x, y〉z,

(4) (x � r(y)) � z + (x � r(z)) � y = 〈y, z〉x,
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for all x, y, z ∈ A.

Proof. See Lemma 1.3.3, [31].

Unital composition algebras are described by the Cayley-Dickson process. Suppose that

(A, r) is a unital composition algebra with an involution r. Let λ ∈ F ∗. The Cayley-Dickson

algebra CD(A, λ) associated to (A, r) and λ is the vector space

CD(A, λ) := A⊕ vA,

where v is a new symbol, endowed with the multiplication:

(a+ vb) � (a′ + vb′) := (a � a′ + λb′ � r(b)) + v(r(a) � b′ + a′ � b),

for a, a′, b and b′ ∈ A. We set q(a + vb) := q(a) − λq(b), and r(a + vb) := r(a) − vb. One

can check that (CD(A, λ), �, q) is an algebra with identity 1 = e + v · 0. The algebra A is

contained in CD(A, λ). This process from A to CD(A, λ) is called a Cayley-Dickson process.

We refer §33.C, [14] or §1.5, [31] for details. By using the Cayley-Dickson process, we now

come to the well-known classification of unital composition algebras:

Theorem 2.1.5. Every unital composition algebra over F is obtained by the Cayley-Dickson

process. The possible dimensions are 1, 2, 4 and 8. Composition algebras of dimension 1 or 2

are commutative and associative, those of dimension 4 are associative but not commutative,

and those of dimension 8 are neither commutative nor associative.

See §1.5, [31] and §33.C, [14] for the proof. By repeating the process from A = F · e, we

get a quadratic étale algebra, a quaternion algebra, and a Caylay algebra corresponding to
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the unital composition algebra of dimension 2, 4 and 8. The Cayley-Dickson process applied

to a Cayley algebra does not yield a composition algebra.

Now we consider the isomorphism classes of unital composition algebras. Let (A, �, q),

(A′, �′, q′) be two composition algebras. A similitude is an F -linear map: g : (A, �, q) →

(A′, �′, q′) for which there exists a constant α ∈ F ∗ such that 〈g(x), g(y)〉′ = α〈x, y〉 for all

x, y ∈ A. We call α the multiplier of a similitude g. A similitude with multiplier α = 1 is

called an isometry.

Proposition 2.1.6. Let (A, �, q), (A′, �′, q′) be two composition algebras. The following

claims are equivalent:

(1) g : A→ A′ is an isomorphism.

(2) g : A→ A′ is a similitude.

(3) g : A→ A′ is an isometry.

Proof. See Theorem 33.19, [14].

Proposition 2.1.7. If the quadratic form of a unital composition algebra is isotropic, it is

hyperbolic.

Proof. See Proposition 33.23, [14].

It follows from the above propositions that in each possible dimension, there is only one

isomorphism class of unital composition algebras with isotropic quadratic form. We are

specifically interested in Cayley algebras in this paper. We call the (unique up to isomor-

phism) Cayley algebra with isotropic norm the split Cayley algebra.
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2.2 Symmetric composition algebras

In this section we discuss a special class of composition algebras without identity. Let (S, q)

be a composition algebra over F , and denote by x ⋆ y the multiplication m(x, y).

Definition 2.2.1. A symmetric composition algebra (S, ⋆, q) is a composition algebra satis-

fying

〈x ⋆ y, z〉 = 〈x, y ⋆ z〉,

for all x, y, z ∈ S.

Similar to Lemma 2.1.2, Lemma 2.1.3, the following results hold in every symmetric

composition algebra (S, ⋆, q):

Lemma 2.2.2. We have

(1) 〈x ⋆ z, y ⋆ z〉 = 〈x, y〉q(z),

(2) 〈z ⋆ x, z ⋆ y〉 = q(z)〈x, y〉〉,

(3) 〈x ⋆ z, y ⋆ w〉+ 〈x ⋆ w, y ⋆ z〉 = 〈x, y〉〈z, w〉,

for all x, y, z ∈ S.

Lemma 2.2.3. We have

(1) (x ⋆ y) ⋆ z + (z ⋆ y) ⋆ x = 〈x, z〉y,

(2) x ⋆ (y ⋆ z) + z ⋆ (y ⋆ x) = 〈x, z〉y,

for all x, y, z ∈ S. In particular, we have (x ⋆ y) ⋆ x = x ⋆ (y ⋆ x) = q(x)y.
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See Lemma 34.1, [14] for the proof. Starting from a unital composition algebra (A, �, q),

we can get a symmetric composition algebra (A, ⋆, q) by defining x ⋆ y = r(x) � r(y). It

satisfies 〈x⋆y, z〉 = 〈y ⋆z, x〉 since we have 〈x�y, r(z)〉 = 〈y � z, r(x)〉 for any x, y, z ∈ A. We

say that (A, ⋆, q) is a para-quadratic algebra (resp. para-quaternion algebra or para-Cayley

algebra) if it is obtained from (A, �, q) a quadratic algebra (resp. quaternion algebra or

Cayley algebra). It turns out that the identity element e ∈ (A, �, q) plays an important role

in the corresponding symmetric composition algebra (A, ⋆, q): By x ⋆ y = r(x) � r(y), it is

easy to see that e is an idempotent (e ⋆ e = e) and satisfies e ⋆ x = x ⋆ e = −x for any

x ∈ A orthogonal to e (〈x, e〉 = 0). We call an element which satisfies the above condition a

para-unit.

Not every symmetric composition algebra can be obtained in this way. For example, we

have Okubo algebras in dimension 8. This is shown in §34, [14]. We call a symmetric com-

position algebra a para-Hurwitz algebra if it is obtained from a unital composition algebra

by defining x ⋆ y = r(x) � r(y).

Proposition 2.2.4. A symmetric composition algebra is para-Hurwitz if and only if it admits

a para-unit.

Proof. See Proposition 34.8, [14].

We are specifically interested in para-Cayley algebras in this paper. By Proposition 34.4,

[14], any isomorphism of unital composition algebras is an isomorphism of the corresponding

para-Hurwitz algebras. Conversely, when dimension ≥ 4, any isomorphism of para-Hurwitz

algebras is an isomorphism of the corresponding unital composition algebras. Hence there

is an equivalence of groupoids of unital composition algebras and para-Hurwitz algebras

of dimension 4 or 8. Since the split Cayley algebra is unique up to isomorphism, we get
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Table 2.1: The split para-Cayley algebra (C, ⋆) with multiplication x ⋆ y

y
e1 e2 e3 e4 e5 e6 e7 e8

e1 · · · −e1 · −e2 e3 −e4
e2 · · e1 · −e2 · −e5 −e6
e3 · −e1 · · −e3 −e5 · e7
e4 · −e2 −e3 e5 · · · −e8

x e5 −e1 · · · e4 −e6 −e7 ·
e6 e2 · −e4 −e6 · · −e8 ·
e7 −e3 −e4 · −e7 · e8 · ·
e8 −e5 e6 −e7 · −e8 · · ·

the corresponding algebra is also unique up to isomorphism, and denote by (C, ⋆) the split

para-Cayley algebra. The multiplication table of the split Cayley algebra is given by Table

2.1.

2.3 Twisted composiiton algebras

Twisted composition algebras were introduced by Springer in his 1963 lecture notes [31], to

get a new description of Albert algebras. We recall the definition from [31] and [15]. Let F0

be a field with char(F0) 6= 2, 3, and let F be a separable cubic field extension of F0. The

normal closure of F over F0 is F ′ = F (d), where d satisfies a separable quadratic equation

over F0 (see Theorem 4.13, [11]). We can take d =
√
D, the square root of the discriminant

D of F over F0. We set F ′0 = F0(d). So either F is the Galois extension of F0 with cyclic

Galois group of order 3, and then F ′ = F, F ′0 = F0; or F ′ and F ′0 are quadratic extensions of

F and F0, respectively, and F ′ is the Galois extension of F ′0. We will focus on the case that

the separable cubic extension F/F0 is also normal, and call algebras of this type “normal

twisted composition algebras”.
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Let F/F0 be a cubic Galois extension. We set Γ = Gal(F/F0), with ρ the generator of

Γ. Set θ = ρ2, then Γ = {1, ρ, θ}.

Definition 2.3.1. A normal twisted composition algebra (of dimension 8) is a 5-tuple

(A,F, q, ρ, ∗), where A is a vector space of dimension 8 over F with a nonsingular quadratic

form q, and associated bilinear form 〈 , 〉. We have an F0-bilinear product ∗ : A × A → A

on F with the following properties:

(1) The product x ∗ y is ρ-linear in x and θ-linear in y, that is:

(λx) ∗ y = ρ(λ)(x ∗ y), x ∗ (λy) = θ(λ)(x ∗ y),

(2) We have q(x ∗ y) = ρ(q(x))θ(q(y)),

(3) We have 〈x ∗ y, z〉 = ρ(〈y ∗ z, x〉) = θ(〈z ∗ x, y〉)

for all x, y, z ∈ A, and λ ∈ F .

Let A′ = (A′, F, q′, ρ′, ∗′) be another normal twisted composition algebra. A similitude

A→ A′ is defined to be an F -linear isomorphism g : A→ A′, for which there exists λ ∈ F ∗,

such that

q′(g(x)) = ρ(λ)θ(λ)q(x), g(x) ∗′ g(y) = λg(x ∗ y),

for all x, y ∈ A. We denote by A′ = Aλ. The scalar λ is called the multiplier of the similitude.

Similitudes with multiplier 1 are called isometries.

It turns out that a normal twisted composition algebra can be obtained by scalar exten-

sion from a symmetric composition algebra: Given a symmetric composition (S, ⋆, q) over
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F0. We define a normal twisted composition algebra S̃ = S ⊗ (F, ρ) as follows:

S ⊗ (F, ρ) = (S ⊗F0
F, F, qF , ρ, ∗)

where qF is the scalar extension of q to F and ∗ is defined by extending ⋆ linearly to S⊗F0
F

and setting

x ∗ y = (idS ⊗ ρ)(x) ⋆ (idS ⊗ θ)(y), for all x, y ∈ S ⊗F0
F

(see §2, [15]). A normal twisted composition algebra A over F is said to be reduced if there

exist a symmetric composition algebra S over F0 and λ ∈ F ∗ such that A is isomorphic to

S̃λ.

We denote by (V, ∗) the normal twisted composition algebra obtained from the para-

Cayley algebra. Similar to unital composition algebras and symmetric composition algebras,

we list some general properties for normal twisted composition algebras before we move on.

Let (A,F, q, ρ, ∗) be a normal twisted composition algebra.

Lemma 2.3.2. We have

(1) 〈x ∗ z, y ∗ z〉 = ρ(〈x, y〉)θ(q(z)),

(2) 〈z ∗ x, z ∗ y〉 = θ(〈x, y〉)ρ(q(z)),

(3) 〈x ∗ z, y ∗ w, 〉+ 〈x ∗ w, y ∗ z〉 = ρ(〈x, y〉)θ(〈z, w〉),

for all x, y, z, w ∈ A.

Proof. See Lemma 4.1.2, [31].

Lemma 2.3.3. We have
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(1) x ∗ (y ∗ x) = ρ(q(x))y, (x ∗ y) ∗ x = θ(q(x))y,

(2) x ∗ (y ∗ z) + z ∗ (y ∗ x) = ρ(〈x, z〉)y, (x ∗ y) ∗ z + (z ∗ y) ∗ x = θ(〈x, z〉)y,

(3) (x ∗ x) ∗ (x ∗ x) = T (x)x− q(x)(x ∗ x), where T (x) := 〈x ∗ x, x〉 ∈ F0,

for all x, y, z ∈ A.

Proof. See Lemma 4.1.3, [31].

Remark 2.3.4. Let (A,F, q, ρ, ∗) be a normal twisted composition algebra. Consider the

extended algebra A′ = A ⊗F0
F . We claim this extension algebra A′ is also a twisted

composition algebra. In fact, we have a nice description of A′. Consider an isomorphism of

F -algebras

ν : F ⊗F0
F
∼→ F × F × F given by r1 ⊗ r2 7→ (r1r2, ρ(r1)r2, θ(r1)r2).

Note that ρ ⊗ idF is identified with the map defined by ρ̃(r1, r2, r3) = (r2, r3, r1) to make

the diagram commutative:

F ⊗F0
F F ⊗F0

F

F × F × F F × F × F.

ρ⊗idF

ρ̃

We define the twisted vector spaces ρA and θA

ρA = {ρx | x ∈ A}, θA = {θx | x ∈ A},

with the operations: ρ(rx) = ρ(r)ρx, ρ(x+y) = ρx+ρy, and θ(rx) = θ(r)θx, θ(x+y) = θx+θy,

for all x, y ∈ A, r ∈ F . Then there exists an F -isomorphism A⊗F0
F
∼→ A× ρA× θA given
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by:

x⊗ r 7→ (rx, r(ρx), r(θx))

(see Remark 2.3, [15]). To describe the multiplication in A⊗F0
F and A× ρA× θA, we need

to consider F -bilinear maps:

∗id : ρA× θA→ A, ∗ρ : θA× A→ ρA, ∗θ : A× ρA→ θA,

given by

ρx ∗id θy = x ∗ y, θx ∗ρ y = ρ(x ∗ y), x ∗θ ρy = θ(x ∗ y),

for all x, y ∈ A. Then the product � : (A× ρA× θA)× (A× ρA× θA)→ A× ρA× θA given

by

(x, ρx, θx) � (y, ρy, θy) = (ρx ∗id θy,θ x ∗ρ y, x ∗θ ρy),

will make the following diagram commutative:

(A⊗F0
F )× (A⊗F0

F ) A⊗F0
F

(A× ρA× θA)× (A× ρA× θA) A× ρA× θA.

∗⊗idF

�

Finally, define quadratic forms ρq : ρA→ F and θq : θA→ F by

ρq(ρx) = ρ(q(x)), θq(θx) = θ(q(x)).
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We have an isomorphism:

(A⊗F0
F, F ⊗F0

F, qF , ρ⊗ idF , ∗ ⊗ idF ) '
(
A× ρA× θA,F × F × F, q ×ρ q ×θ q, ρ̃, �

)
.

2.4 Triality triple

In this section we will discuss isotropic subspaces in twisted composition algebras. The

main results in [31] concerning isotropic subspaces in the split Cayley algebra. Matzri and

Vishne translate them to arbitrary composition algebras, specially to symmetric composition

algebras (see [20]). We are going to translate them further to normal twisted composition

algebras.

Set F/F0 a cubic Galois extension with Galois group Γ = Gal(F/F0) = {1, ρ, θ}. Let

(C, ⋆) be the split para-Cayley algebra over F0 with a quadratic form q, and (V, ∗) be

the normal twisted composition algebra obtained from (C, ⋆), i.e., V = C ⊗F0
F , where

x∗y = ρ(x)⋆θ(y) for all x, y ∈ V . If 〈 , 〉 is the bilinear form corresponding to the quadratic

form q, we have the scalar extension of 〈 , 〉 to F as the bilinear form of (V, ∗).

Recall that an element x is said to be isotropic if q(x) = 0. A subspace U is said to be

isotropic if q(x) = 0 for all x ∈ U . A maximal isotropic subspace is an isotropic subspace

with the maximal dimension. All maximal isotropic subspaces of V have the same dimension,

which is called the Witt index of q. This index is at most equal to 1
2 dimV . In our case,

the maximal isotropic subspaces have dimension 4. We first classify all isotropic subspaces

of the split para-Cayley algebra (C, ⋆).

Proposition 2.4.1. Every maximal isotropic subspace of (C, ⋆) is of the form x⋆C or C ⋆x,

where x is an isotropic element. Furthermore, x ⋆ C = y ⋆ C if and only if xF0 = yF0.
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Proof. See Theorem 3.1, Proposition 3.2, [20]

For the intersection of two maximal isotropic subspaces, we will get isotropic subspaces

of dimension 0 or 2 when they are same types, and dimension 1 or 3 when there are different

types. Denote by U⊥ the orthogonal subspace to U , i.e., U⊥ = {x ∈ C | 〈x, y〉 = 0 for all x ∈

U}.

Proposition 2.4.2. Let x, y be linearly independent isotropic elements in (C, ⋆), then

(1) If 〈x, y〉 = 0, then x⋆C ∩y ⋆C is equal to x⋆ (C ⋆y) = y ⋆ (C ⋆x), which has dimension

2. Otherwise, x ⋆ C ∩ y ⋆ C = 0.

(2) If 〈x, y〉 = 0, then C ⋆x∩C ⋆y is equal to (y ⋆C)⋆x = (x⋆C)⋆y, which has dimension

2. Otherwise, C ⋆ x ∩ C ⋆ y = 0.

Proof. See Proposition 3.7, [20].

Proposition 2.4.3. Let x, y be linearly independent isotropic elements in (C, ⋆), then x ⋆

C ∩ C ⋆ y is:

(1) The 1-dim isotropic subspace (x ⋆ y)F0, if x ⋆ y 6= 0.

(2) The 3-dim isotropic subspace x ⋆ y⊥ = x⊥ ⋆ y, if x ⋆ y = 0.

Proof. See Proposition 3.8, [20].

In fact, all isotropic subspaces of dimension 1,2,3 can be obtained from the intersection

of maximal subspaces (Proposition 4.1, [20]). Hence we classify all isotropic subspaces of

the split para-Cayley algebra. We are particular interested in the relations between 1-

dim isotropic lines and 4-dim maximal isotropic subspaces. That is why we introduce the
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following multiplication operators Lx, Rx:

Lx(y) := x ⋆ y, Rx(z) = z ⋆ x,

for all x, y, z ∈ (C, ⋆).

Lemma 2.4.4. Let x 6= 0 be an isotropic element in (C, ⋆), then

ker(Lx) = im(Rx), ker(Rx) = im(Lx).

Proof. By Lemma 2.2.3, the compositionRx◦Lx = Lx◦Rx is a multiplication by q(x) = 0. So

im(Rx) ⊂ ker(Rx). We claim that ker(Lx) is an isotropic subspace. For any y, z ∈ ker(Lx),

we have x ⋆ a = x ⋆ b = 0, which implies q(a)x = a ⋆ (x ⋆ a) = 0, q(b)x = b ⋆ (x ⋆ b) = 0,

and also q(a + b)x = 0. Since x 6= 0, we get a, b, a + b are isotropic elements. Therefore

〈a, b〉 = q(a+ b)− q(a)− q(b) = 0.

Since im(Rx) = C ⋆ x is a 4-dim isotropic subspace, and dim(ker(Lx)) ≤ 4 by ker(Lx)

isotropic, we have ker(Lx) = im(Rx). The argument for ker(Rx) = im(Lx) is similar.

Now let us turn to the intersection of an arbitrary number of maximal isotropic subspaces.

Definition 2.4.5. Let U be any isotropic subspace in (C, ⋆). We define:

L(U) = ∩x∈U (C ⋆ x), R(U) = ∩x∈U (x ⋆ C).

It is easy to see that L(U) = {y | y ∈ im(Rx) for any x ∈ U} = {y | y ∈ ker(Lx) for any x ∈

U} = {y | U ⋆ y = 0}. Similarly, R(U) = {z | z ⋆ U = 0}. Furthermore, we have

Proposition 2.4.6.
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(1) For every isotropic line xF0, we have L(xF0) = C ⋆ x, R(xF0) = x ⋆ C;

(2) For every maximal isotropic subspace, we have

L(C ⋆ x) = 0, R(C ⋆ x) = xF0,

L(x ⋆ C) = xF0, R(x ⋆ C) = 0.

Proof. (1) follows directly from the definition. (2) For any y ∈ L(C ⋆ x), it is equivalent to

(C ⋆ x) ⋆ y = 0. Since L(U) is the intersection of isotropic subspaces, every element in it is

also isotropic. Hence

C ⋆ x ⊂ ker(Ry) = im(Ly) = y ⋆ C,

if y 6= 0. But it is contradiction to Proposition 2.4.3 since the dimension of the intersection of

different types of maximal subspaces is 1 or 3. Hence y = 0. Similarly, for any z ∈ R(C ⋆x),

it is equivalent to C ⋆ x ⊂ C ⋆ z, which gives z ∈ xF0 by Proposiition 2.4.1. The proof for

other half part is the same.

By Proposition 2.4.6, we have the following diagram:

xF0

C ⋆ x x ⋆ C.
L
R◦R

L

We call it the geometric triality graph.

Now let us consider the normal twisted composition algebra (V, ∗). We can view (V, ⋆)

as a split para-Cayley algebra over F without twisting, and have x ∗ y = ρ(x) ⋆ θ(y) for all

x, y ∈ V . Then x⋆V = θ(x)∗V , V ⋆x = V ∗ρ(x). From Proposition 2.4.1, it is immediately

to get:
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Proposition 2.4.7. Every maximal isotropic subspace of (V, ∗) is of the form x∗V or V ∗x,

where x is an isotropic element. Furthermore, x ∗ V = y ∗ V if and only if xF = yF .

Similarly, we can check that x ∗ V ∩ y ∗ V = ρ(x) ⋆ V ∩ ρ(y) ⋆ V , which is equal to

ρ(x) ⋆ (V ⋆ ρ(y)) = x ∗ (V ∗ y). Similarly, x ∗ V ∩ V ∗ y is equal to ρ(x) ⋆ V ∩ V ⋆ θ(y). We

have ρ(x) ⋆ θ(y)⊥ = x ∗ y⊥. Hence by Proposition 2.4.2, 2.4.3, we obtain:

Proposition 2.4.8. Let x, y be linearly independent isotropic elements in (V, ∗), then

(1) If 〈x, y〉 = 0, then x∗V ∩y ∗V is equal to x∗ (V ∗y) = y ∗ (V ∗x), which has dimension

2. Otherwise, x ∗ V ∩ y ∗ V = 0.

(2) If 〈x, y〉 = 0, then V ∗x∩V ∗y is equal to (y ∗V )∗x = (x∗V )∗y, which has dimension

2. Otherwise, V ∗ x ∩ V ∗ y = 0.

Proposition 2.4.9. Let x, y be linearly independent isotropic elements in (V, ∗), then x ∗

V ∩ V ∗ y is:

(1) The 1-dim isotropic subspace (x ∗ y)F , if x ⋆ y 6= 0.

(2) The 3-dim isotropic subspace x ∗ y⊥ = x⊥ ∗ y, if x ∗ y = 0.

To give the geometric triality graph for normal twisted composition algebras, we need to

define multiplication operators L′x, R′x as:

L′x(y) := x ∗ y, R′x(z) = z ∗ x,

for all x, y, z ∈ (V, ∗).

Lemma 2.4.10. Let x 6= 0 be an isotropic element in (V, ∗), then

ker(L′x) = im(R′x), ker(R′x) = im(L′x).
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Proof. By ker(L′x) = {z ∈ V | x ∗ z = ρ(x) ⋆ θ(z) = 0}, we have θ(x) ⋆ z = 0, hence

z ∈ ker(Lθ(x)) = im(Rθ(x)). And im(R′x) = {w ∈ V | w ∈ V ∗ x} = V ⋆ θ(x) = im(Rθ(x)),

which gives us ker(L′x) = im(R′x). The proof for the other half part is the same.

Example 2.4.11. Take x = πe1 + e2 ∈ V , where π is the uniformizer of the valuation ring

OF , with ρ(π) = πξ. We have

ker(L′x) = im(R′x) = F 〈e1, e2, πξ2e3 + e4, πξ
2e5 − e6〉,

ker(R′x) = im(L′x) = F 〈e1, e2, πξe3 − e5, πξe4 + e6〉.

Similar to Definition 2.4.5, we now consider the intersection of maximal isotropic sub-

spaces in (V, ∗):

Definition 2.4.12. Let U be any isotropic subspace in (V, ∗). We define:

L′(U) = ∩x∈U (V ∗ x), R′(U) = ∩x∈U (x ∗ V ).

Proposition 2.4.13.

(1) For every isotropic line xF , we have L′(xF ) = V ∗ x, R′(xF ) = x ∗ V ;

(2) For every maximal isotropic subspace, we have

L′(V ∗ x) = 0, R′(V ∗ x) = xF,

L′(x ∗ V ) = xF, R′(x ∗ V ) = 0.

Proof. (1) follows directly from the definition. (2). From L′(V ∗x) = ∩y∈V ∗x(V ∗y), we can

see that y ∈ V ∗ x = V ⋆ θ(x). Hence y ∈ V ∗ x is equivalent to θ(y) ∈ V ⋆ ρ(x) by acting θ
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on both sides. So

L′(V ∗ x) = ∩y∈V ∗x(V ∗ y) = ∩θ(y)∈V ⋆ρ(x)(V ⋆ θ(y)) = L(V ⋆ ρ(x)).

By Proposition 2.4.6, we get L′(V ∗ x) = 0. The proof for the rest is similar.

From the above discussion, the geometric triality graph for normal twisted composition

algebras is:
xF

V ∗ x x ∗ V.
L′R′◦R′ L

′

We call (xF, V ∗ x, x ∗ V ) the triality triple for (V, ∗).
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Chapter 3

Orthogonal groups, similitudes and

triality

3.1 Preliminaries

Let (V, q) be a vector space with a nonsingular quadratic form q over a field F , char(F ) 6= 2.

Denote by 〈 , 〉 the bilinear form corresponding to q. Similar to composition algebras, an

element x is called isotropic if q(x) = 0. A subspace W of V is said to be isotropic if

q(x) = 0 for all x ∈ W . A maximal isotropic subspace is an isotropic subspace with the

maximal dimension.

For any f ∈ EndF (V ), there exists an element σq(f) ∈ EndF (V ) such that 〈x, f(y)〉 =

〈σb(f)(x), y〉. We can see this using matrices: If b ∈ GL(V ) denotes the Gram matrix of

〈 , 〉 with respect to a fixed basis, then 〈x, y〉 = xtby. Let σq(f) = b−1f tb. We have

〈x, f(y)〉 = xtbf(y) = 〈σb(f)(x), y〉. It is easy to see that σq : EndF (V ) → EndF (V ) given

by f 7→ σq(f) is an involution of EndF (V ).

The orthogonal group O(V, q) is the subgroup of the isomorphism group Isom(V, q) that

preserves the form 〈 , 〉:

O(V, q) := {g ∈ Isom(V, q) | 〈g(x), g(y)〉 = 〈x, y〉}.
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Since det(g) = ±1 for g ∈ O(V, q), we have the special orthogonal group consists of g ∈

O(V, q) with det g = 1, denoted by SO(V, q) or O+(V, q). Elements in SO(V, q) are called

proper isometries. The universal covering of SO(V, q) is the spin group Spin(V, q), which

will be used to define the triality group. We give a short review of Clifford algebras before

introducing the spin group.

Definition 3.1.1. The Clifford algebra C(V, q) is the quotient of the tensor algebra T (V ) =

⊕n≥0V ⊗n by the ideal I(q) generated by all the elements of the form v ⊗ v − q(v) · 1 for

v ∈ V .

Since T (V ) is a graded algebra, we have T (V ) = T0(V )⊕T1(V ), where T0(V ) = T (V ⊗V )

and T1(V ) = V ⊗ T0(V ). It induces a Z/2Z-grading of C(V, q):

C(V, q) = C0(V, q)⊕ C1(V, q).

We call C0(V, q) the even Clifford algebra and C1(V, q) the odd Clifford algebra. When

dimV = n, we have dimC(V, q) = 2n, and dimC0(V, q) = 2n−1 (see Chapter IV, [13]).

For every quadratic space (V, q), the identity map on V extends to involution on the tensor

algebra T (V ) which preserve the ideal I(q): (v1⊗· · ·⊗vr)t := vr⊗· · ·⊗v1 for v1, . . . , vr ∈ V .

It is therefore inducing a canonical involution of the Clifford algebra τ : C(V, q) → C(V, q)

given by τ(v1 · · · vd) = vd · · · v1. Then the spin group is a subgroup of C0(V, q)
∗:

Spin(V, q) = {c ∈ C0(V, q)
∗ | cV c−1 = V, τ(c)c = 1}.

For any c ∈ Spin(V, q), we have a linear map χc : x 7→ cxc−1. This is an element in SO(V, q)

since q(χc(x)) = cxc−1cxc−1 = q(x), and we can show that Spin(V, q)→ SO(V, q) given by
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c 7→ χc is surjective. We have an exact sequence:

1→ Z/2Z→ Spin(V, q)→ SO(V, q)→ 1.

The orthogonal group scheme O(V, q) and the special orthogonal group scheme SO(V, q)

over F are defined by:

O(V, q)(R) := {g ∈ Isom(VR, q) | 〈g(x), g(y)〉 = 〈x, y〉}.

SO(V, q)(R) := {g ∈ Isom(VR, q) | 〈g(x), g(y)〉 = 〈x, y〉, det g = 1}.

for any F -algebra R. Similarly, we have Spin(V, q)(R) := {c ∈ C0(VR, q)
∗ | cVRc−1 =

VR, τ(c)c = 1}, where VR = V ⊗F R.

More generally, a similitude of (V, q) is a linear map g : V → V for which there exist

a constant µ(g) ∈ F ∗ such that 〈g(x), g(y)〉 = µ(g)〈x, y〉 for all x, y ∈ V . We define the

general orthogonal group scheme over F as:

GO(V, q)(R) := {g ∈ Isom(VR, q) | 〈g(x), g(y)〉 = µ(g)〈x, y〉 for some µ(g) ∈ R∗}.

for R ∈ AlgF . The factor µ(g) is called the multiplier of the similitude g. A similitude

with multiplier 1 is called an isometry, i.e., g ∈ O(V, q). If b ∈ GL(V ) denotes the Gram

matrix of 〈 , 〉 with respect to a fixed basis, then 〈g(x), g(y)〉 = µ(g)〈x, y〉 is equivalent to

gtbg = µ(g)b, hence

µ(g) = b−1gtbg = σq(g)g.

By taking the determinant on both sides, we obtain (det g)2 = µ(g)n where dimV = n. It
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follows that the determinant of an isometry is ±1 and that, det(g) = ±µ(g)n/2 if n is even

for g ∈ GO(V, q). We say g ∈ GO(V, q)(R) is a proper similitude if det(g) = µ(g)n/2. Thus,

the group of proper similitudes is defined as:

GO+(V, q)(R) := {g ∈ Isom(VR, q) | 〈g(x), g(y)〉 = µ(g)〈x, y〉, det(g) = µ(g)n/2},

if n is even. For any similitude f ∈ GO(V, q), we have an automorphism C0(f) : C0(VR, q)→

C0(VR, q) of the even Clifford algebra given by

C0(f)(v1 · · · v2r) := µ(f)−rf(v1) · · · f(v2r),

(see Proposition (13.1) in [14]). Let PGO(V,Q) be the quotient group GO(V, q)/Gm. It is

easy to see that the automorphism C0(f) only depends on the image [f ] ∈ PGO(V, q), and

we shall use the notation C0[f ] for C0(f).

3.2 The principle of triality

In this section we deal with algebraic triality for the special orthogonal groups and general

orthogonal groups. Algebraic triality defines outer automorphisms of PGO(V, q). In [31,

Chapter 3], T.A.Springer defined algebraic triality for the Cayley algebra. In [4], Knus and

Tignol defined algebraic triality for the para-Cayley algebra (C, ⋆). We are going to consider

algebraic triality for the normal twisted composition algebra.

Recall that F/F0 is a cubic Galois extension, and set Γ = Gal(F/F0) = 〈ρ〉, θ = ρ2. Let

(V, ∗) be a normal twisted composition algebra. We define the twisted vector spaces ρV, θV
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in Remark 2.3.4. For x ∈ V , consider the F -linear maps

lx : ρV → θV, rx : θV → ρV,

given by

lx(
ρy) = θ(x ∗ y) and rx(

θz) = ρ(z ∗ x).

By §3,[15], the map

x 7→

 0 rx

lx 0

 ∈ EndF (
ρV ⊕ θV )

extends to an isomorphism of algebras with involution:

α : (C(V, q), τ)
∼→ (EndF (

ρV ⊕ θV ), σρq⊥θq),

since α(x)2 = q(x)id. In particular, if we restrict this isomorphism to the even Clifford

algebra C0(V, q), we get

α : (C0(V, q), τ)
∼→ (EndF (

ρV ), σρq)× (EndF (
θV ), σθq),

where σρq, σθq are the involutions corresponding to the quadratic forms ρq, θq, respectively.

Proposition 3.2.1. (The principle of triality) For g1, g2, g3 ∈ GO(V, q)+(F ), the following

statements are equivalent:

1) There exist a scalar λ1 ∈ F ∗ such that

λ1g1(x ∗ y) = g2(x) ∗ g3(y), for any x, y ∈ V.
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2) There exist a scalar λ2 ∈ F ∗ such that

λ2g2(x ∗ y) = g3(x) ∗ g1(y), for any x, y ∈ V.

3) There exist a scalar λ3 ∈ F ∗ such that

λ3g3(x ∗ y) = g1(x) ∗ g2(y), for any x, y ∈ V.

4) The following diagram commutes:

C0(V, q) EndF (
ρV )× EndF (

θV )

C0(V, q) EndF (
ρV )× EndF (

θV ).

α

C0(g1) Int(ρg2)×Int(θg3)
α

When these properties hold, the scalars λi and the multipliers µ(gi) are related by

µ(gi) = ρ(λi+1)θ(λi+2).

Remark 3.2.2. We may change the scalars λi by scaling gi in the proposition. For instance,

we can let λ1 = 1, then the multiplier µ(gi) satisfies µ(g1) = ρ(µ(g2))θ(µ(g3)). If, as

in [14, Propostion (36.17)], we let λi = µ(gi)
−1, then the multipliers are related by 1 =

µ(g1)ρ(µ(g2))θ(µ(g3)).

Proof. 1) ⇒ 2): By multiplying each side of 1) on the left by g3(y) and using Lemma 2.3.2,

we obtain:

θ(λ1)(g3(y) ∗ g1(x ∗ y)) = ρ(q(g3(y)))g2(x) = ρ(µ(g3)ρ(q(y)))g2(x).
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Let X = y, Y = x ∗ y. Then, we have X ∗Y = ρ(q(y))x by Lemma 2.3.3, and we derive from

the preceding equation:

θ(λ1)(g3(X) ∗ g1(Y )) = ρ(µ(g3))g2(X ∗ Y ).

Hence, there exist λ2 ∈ F ∗ such that λ2g2(x∗y) = g3(x)∗g1(y), where λ2 ·θ(λ1) = ρ(µ(g3)),

i.e.,

µ(g3) = ρ(λ1)θ(λ2).

Similar arguments yield 2) ⇒ 3), 3) ⇒ 1), with µ(gi) = ρ(λi+1)θ(λi+2).

Now, assume 1), 2), 3) hold. For any xy ∈ C0(V, q), we have C0(g1)(xy) = µ(g1)
−1g1(x)g1(y).

Since α(xy) = (rxly, lxry), 4) is equivalent to

1

µ(g1)
rg1(x)

lg1(y)
= ρg2 · rxly · (ρg2)−1,

1

µ(g1)
lg1(x)

rg1(y)
= θg3 · lxry · (θg3)−1.

For any ρz ∈ ρV , we obtain

ρ(g2((y ∗ g−12 (z)) ∗ x)) = 1

ρ(λ2)
ρ(g3(y ∗ g−12 (z)) ∗ g1(x))

=
1

ρ(λ2)
ρ([

1

λ3
(g1(y) ∗ z)] ∗ g1(x))

=
1

ρ(λ2)θ(λ3)
ρ([(g1(y) ∗ z)] ∗ g1(x))

=
1

µ(g1)
ρ([(g1(y) ∗ z)] ∗ g1(x)).

Hence µ(g1)
−1rg1(x)lg1(y) = ρg2 · rxly · (ρg2)−1. Similarly, we get µ(g1)−1lg1(x)rg1(y) =

θg3 · lxry · (θg3)−1.
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Finally, assume 4) holds. Consider the map

β : x 7→

 0 rg1(x)

1
µ(g1)

lg1(x)
0

 .

It is easty to check that β2(x) = q(x)id, so we can extend β to an isomorphism of algebras

with involution β : (C(V, q), τ) → (EndF (
ρV ⊕ θV ), σρq⊥θq) by the universal property of

Clifford algebras. Then the automorphism β · α−1 is inner by the Skolem-Noether theorem

(see Theorem 1.4, [14]). Hence there exist φ, ψ ∈ EndF (V, q), such that

β · α−1 = Int

 ρφ 0

0 θψ

 .

It is equivalent to φ(x ∗ y) = ψ(x) ∗ g1(y), ρ(µ(g1))ψ(x ∗ y) = g1(x) ∗ φ(y). Set g2 =

λ−12 φ, g3 = ψ. We get

λ2g2(x ∗ y) = g3(x) ∗ g1(y), λ3g3(x ∗ y) = g1(x) ∗ g2(y).

Therefore, 4) implies 1), 2), 3).

From the principle of triality, we can directly get:

Corollary 3.2.3. For g1, g2, g3 ∈ SO(V, q)(F ), the following statements are equivalent:

(1) gi(x ∗ y) = gi+1(x) ∗ gi+2(y), i = 1, 2, 3 (mod 3) for any x, y ∈ V .
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(2) The following diagram commutes:

C0(V, q) EndF (
ρV )× EndF (

θV )

C0(V, q) EndF (
ρV )× EndF (

θV ).

α

C0(g1) Int(ρg2)×Int(θg3)
α

3.3 Special orthogonal groups and triality

We will discuss triality for the special orthogonal group in this section. We continue with

the same notations. Let (V, ∗) be a normal twisted composition algebra over F . Recall that

the spin group Spin(V, ∗) is defined as

Spin(V, ∗)(R) = {c ∈ C0(V )∗R | cVRc
−1 = VR, τ(c)c = 1}

for any F -algebra R, where VR = V ⊗F R. It turns out that the isomorphism α in the above

section gives a nice description of Spin(V, ∗) := Spin(V, ∗)(F ).

Theorem 3.3.1. There is an isomorphism

Spin(V, ∗) ∼= {(g1, g2, g3) ∈ SO(V, q)×3 | gi(x ∗ y) = gi+1(x) ∗ gi+2(y), for any x, y ∈ V }

Proof. Let c ∈ C0(V )∗. Using the isomorphism with involution α, we obtain ρg2 ∈ EndF (
ρV )

and θg3 ∈ EndF (
θV ) such that

α(c) =

 ρg2 0

0 θg3

 ∈ EndF (
ρV )× EndF (

θV ).
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We have

α(τ(c)c) =

 ρσq(g2) 0

0 θσq(g3)


 ρg2 0

0 θg3

 = I,

which implies σq(g2)g2 = 1, σq(g3)g3 = 1, i.e., g2, g3 are isometries. Consider χc(x) =

cxc−1 ∈ V . By applying α on both sides, we have α(χc(x)) = α(c)α(x)α(c−1), which gives

us:  0 rχc(x)

lχc(x) 0

 =

 0 ρg2 · rx · θσq(g3)

θg3 · lx · ρσq(g2) 0

 .

It is equivalent to ρg2rx = rχc(x)
θg3, θg3lx = lχc(x)

ρg2, i.e.,

g2(x ∗ y) = g3(x) ∗ χc(y), g3(x ∗ y) = χc(x) ∗ g2(y).

Finally, χc is an isometry since q(χc(x)) = cxc−1cxc−1 = q(x). Thus, let g1 = χc. We get

related equations as above. We now send c 7→ (g1, g2, g3) that gives as above. This giving

map is an injective group homomorphism since α is an isomorphism. It is also surjective,

since, given any (g1, g2, g3) satisfying gi(x ∗ y) = gi+1(x) ∗ gi+2(y), there exist c ∈ C0(V )

such that α(c) =

 ρg2 0

0 θg3

.

From the above theorem, we have an isomorphism between group schemes over F0:

ResF/F0
(Spin(V, ∗))(R) ∼= {(g1, g2, g3) ∈ ResF/F0

(SO(V, q)(R)×3 | gi(x∗y) = gi+1(x)∗gi+2(y)}

for any F0-algebra R. The transformation ρ̃ : (g1, g2, g3) 7→ (g2, g3, g1) is an outer au-

tomorphism of ResF/F0
(Spin(V, ∗)) satisfying ρ̃3 = 1. Here ρ̃ generate a subgroup of

Aut(ResF/F0
(Spin(V, ∗))) which is isomorphic to A3. Consider the fixed points of the core-
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striction of Spin(V, ∗) from F to F0 under A3 = 〈ρ̃〉. We obtain the triality group for the

special orthogonal group G:

G(R) := ResF/F0
(Spin(V, ∗))A3(R)

∼= {g ∈ SO(V, q)(R⊗F0
F ) | g(x ∗ y) = g(x) ∗ g(y) for all x, y ∈ V ⊗F0

R}.

for any F0-algebra R.

3.4 General orthogonal groups and triality

We keep the same notations as in the previous sections. We want to construct a similar trial-

ity type group scheme for GO+(V, q). It should be a group scheme that contains Spin(V, ∗)

and should have an action of A3 acting on it. Define the group:

H(R) = {(c, λ) ∈ C0(VR)
∗×R∗ | cVRτ(c) = VR, α(τ(c)c) =

 µ 0

0 ν

 ∈ End(ρVR)×End(θVR) }

where R is an F -algebra, µ, ν ∈ R. The group scheme H plays the similar role as Spin(V, ∗).

In fact, we have:

Theorem 3.4.1. There is an isomorphism

H(R) ∼= {(g1, g2, g3) ∈ GO+(V, q)(R)×3 | λigi(x∗y) = gi+1(x)∗gi+2(y), i = 1, 2, 3 mod 3},

for any x, y ∈ VR, λi ∈ R∗, where λ1 = λ−1, λ2 = θ(λν), λ3 = ρ(λµ) ∈ R∗, and the

multipliers µ(g2) = θ(µ), µ(g3) = ρ(ν), µ(g1) = λ2µν.
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Proof. The proof is similar to the spin group case. Let c ∈ C0(V, q)
∗
R. Then, there exist

ρg2 ∈ EndR(
ρVR) and θg3 ∈ EndR(

θVR) such that

α(c) =

 ρg2 0

0 θg3

 ∈ EndR(
ρVR)× EndR(

θVR).

We have

α(τ(c)c) =

 ρσq(g2) 0

0 θσq(g3)


 ρg2 0

0 θg3

 =

 µ 0

0 ν

 ,

which implies ρ(σq(g2)g2) = µ, θ(σq(g3)g3) = ν, i.e., g2, g3 are similitudes with multipliers

µ(g2) = θ(µ), µ(g3) = ρ(ν). Define f(x) = cxτ(c) ∈ VR. By applying α on both sides, we

obtain α(f(x)) = α(c)α(x)α(τ(c)). Thus,

 0 rf(x)

lf(x) 0

 =

 0 ρg2 · rx · θσq(g3)

θg3 · lx · ρσq(g2) 0

 .

It is equivalent to ρg2rx = rf(x)
θ(µ(g3)

−1g3), θg3lx = lf(x)
ρ(µ(g2)

−1g2), i.e.,

θ(ν)g2(x ∗ y) = g3(x) ∗ f(y),

ρ(µ)g3(x ∗ y) = f(x) ∗ g2(y).

Finally, consider q(f(x)) = cxτ(c)cxτ(x). Since α(τ(c)c) =

 µ 0

0 ν

, we obtain

α(xτ(c)cx) =

 ν · rxlx 0

0 µ · lxrx

 = q(x)

 µ 0

0 ν


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by Lemma 2.3.3. Hence α(q(f(x))) = µνq(x)

 x 0

0 x

, which implies q(f(x)) = µν · q(x).

Therefore, f is a similitude with multiplier µ(f) = µν. Then, set g1 = λf . We get µ(g1) =

λ2µν, and

λigi(x ∗ y) = gi+1(x) ∗ gi+2(y), i = 1, 2, 3 mod 3.

Consider the map (c, λ) 7→ (g1, g2, g3) giving as above. It is injective: If we have (c1, λ1),

(c2, λ2) ∈ C0(VR, q) such that α(c1) = α(c2), then c1 = c2 since α is an isomorphism. We

also have λ1c1xτ(c1) = λ2c2xτ(c2), which implies λ1 = λ2. It is also surjective: For any

(g1, g2, g3) ∈ GO+(V, q)(R)×3, we will get c ∈ C0(VR, q) such that α(c) =

 ρg2 0

0 θg3

,

and λ such that g1(x) = λf(x) = λcxτ(c).

The group H sits in the following exact sequence:

1→ Spin(C, ∗)→ H → G×3m ,

where the first map is c 7→ (c, 1), and the last map is (c, λ) 7→ (λ, µ, ν). There exists an

outer automorphism on H by ρ̃ : (g1, g2, g3) 7→ (g2, g3, g1). Consider the generating group

Γ = 〈ρ̃〉 and the fixed points of ResF/F0H under Γ. We can define the triality group for the

general orthogonal group G:

G(R) := (ResF/F0
H)Γ(R)

∼= {g ∈ GO+
8 (F ⊗F0

R) | there exist λ ∈ (F ⊗F0
R)∗ such that λg(x ∗ y) = g(x) ∗ g(y)},

for any F0-algebra R.
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Chapter 4

Affine Grassmannians

In this section we review affine Grassmannians for general linear algebraic groups. We will

show that the affine Grassmannian is representable by an ind-scheme and is a quotient of

loop groups in the case the group is smooth. Our main references in this section are [23],

[33].

4.1 Loop groups

Let k be a field. We consider the field K = k((t)) of Laurent power series with indeterminate

t and coefficients in k. Let OK = k[[t]] be the discretely valued ring of power series with

coefficients in k. For any k-algebra R, we set DR = Spec(R[[t]]), resp. D∗R = DR \ {t = 0} =

Spec(R((t))), which we picture as an R-family of discs, resp. an R-family of punctured discs.

Let X be a scheme over K. We consider the functor LX from the category of k-algebras

to that of sets given by

R 7→ LX(R) := X(R((t))).

If X is a scheme over OK , we denote by L+X the functor from the category of k-algebras

to that of sets given by

R 7→ L+X (R) := X (R[[t]]).

The functors LX,L+X give sheaves of sets for the fpqc topology on k-algebras. In what
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follows, we will call such functors “k-spaces” for simplicity.

Definition 4.1.1. A ind-scheme is a functor Y : AffSchop → Sets from the category of affine

schemes which admits a presentation Y ' colimi∈IYi as a filtered colimit of schemes. The

ind-scheme is strict if all transition maps Yi → Yj , i ≤ j, are closed immersions.

If X = Ar
OK

is the affine space of dimension r over OK , then L+X is the infinite

dimensional affine space L+X =
∞∏
i=0

Ar, via:

L+X (R) = Homk[[t]](k[[t]][T1, ..., Tr], R[[t]]) = R[[t]]r =
∞∏
i=0

Rr =
∞∏
i=0

Ar(R).

Let X be the closed subscheme of Ar
OK

defined by the vanishing of polynomials f1, ..., fn

in k[[t]][T1, ..., Tr]. Then L+X (R) is the subset of L+Ar(R) of k[[t]]-algebra homomorphisms

k[[t]][T1, ..., Tr] → R[[t]] which factor through k[[t]][T1, ..., Tr]/(f1, ..., fn). If X is an affine

K-scheme, LX is represented by a strict ind-scheme.

Definition 4.1.2. Let G be a linear algebraic group over K. The loop group associated to

G is the ind-scheme LG over Spec(k).

We list some properties of loop groups:

(1) L(X ×k Y ) = LX ×k LY ;

(2) If k′ is a k -field extension, then we have an isomorphism of ind-schemes over k′

LG×k Spec(k
′) ' L(G×k((t)) Spec(k

′((t))));

(3) Assume that K ′/K is a finite extension of K, where K ′ = k((u)). If G = ResK′/KH for

some linear algebraic group H over K ′, then we have an isomorphism of ind-schemes
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over k:

LG ' LH,

by

(LG)(R) = G(R((t))) = H(R((t))⊗k((t)) k((u))) = H((R((u))) = LH(R).

4.2 Affine Grassmannians

Now let G be a flat affine group scheme of finite type over k[[t]]. Let Gη denote the generic

fiber of G, which is a group scheme over k((t)). We consider the quotient sheaf over Spec(k):

FG := LGη/L
+G.

This is the fpqc sheaf associated to the presheaf which to a k -algebra R associates the

quotient G(R((t)))/G(R[[t]]). Generally, we define affine Grassmannians as follows:

Definition 4.2.1. Let G be an affine group scheme over k[[t]]. The affine Grassmannian

for G is the functor GrG : Algk → Sets which associates to a k-algebra R the isomorphism

classes of pairs (E , α) where E → DR is a left fppf G-torsor and α ∈ E(D∗R) is a section.

Here a pair (E , α) is isomorphic to (E ′, α′) if there exists a morphism of G -torsors

π : E → E ′ such that π ◦ α = α′. The datum of a section α ∈ E(D∗R) is equivalent to the

datum of an isomorphism of G -torsors

E0|D∗R
'−→ E|D∗R

, g 7→ g · α,

where E0 := G is viewed as the trivial G -torsor. The loop group LG acts on the affine
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Grassmannian via g · [(E , α)] = [(E , gα)].

Proposition 4.2.2. If G → Spec(k[[t]]) is a smooth affine group scheme, then the map

LG→ GrG given by g 7→ [(E0, g)] induces an isomorphism of fpqc quotients:

FG ∼= GrG.

Proof. See Proposition 1.3.6, [33].

Here are a few observations:

(1) If ρ : G→ H is a map of group schemes which are flat of finite presentation over k[[t]],

then there is a map of functors:

GrG → GrH , (E , α) 7→ (ρ∗E , ρ∗α),

where ρ∗E = H ×G E denotes the push out of torsors, and ρ∗α = (id, α) : (H ×G

E0)|D∗R
→ (H ×G E)|D∗R

in this description.

(2) If k′ is a k-field extension, then we have:

GrG ×k Spec(k
′) ' GrG×k[[t]]Spec(k

′[[t]]).

When G = GLn, a G -bundle on E → DR is canonically given by a rank n vector bundle,

i.e., a rank n locally free R[[t]]-module L. The trivialization α induces an isomorphism of

R((t))-modules L[t−1] ' R((t))n. By taking the image of L ⊂ L[[t]] under this isomorphism,

we obtain a well defined finite locally free R[[t]] -module Λ = Λ(E ,α) ⊂ R((t))n such that

Λ[t−1] = R((t))n. Note that Λ depends only on the class of (E , α).
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Chapter 5

Affine Grassmannians for triality

groups

5.1 Galois cohomology

Let us recall some basic definitions in the Galois cohomology theory, since we will use them

later. Our main reference is [28].

A topological group which is the projective limit of finite group, each given the discrete

topology, is called a profinite group. Such a group is compact and totally disconnected.

Conversely, a compact totally disconnected topological group is profinite. For example, let

L/F be a Galois extension of fields. The Galois group Gal(L/F ) of this extension is the

projective limit of the Galois groups Gal(Li/F ) of the finite Galois extensions Li/F which

are contained in L/F . Thus, Gal(L/F ) is a profinite group.

Let Γ be a profinite group. A Γ-group A is a discrete group on which Γ acts continuously,

with a group structure invariant under Γ, i.e., s(xy) = sxsy for any s ∈ Γ. A homomorphism

A→ A′ is a group homomorphism which commutes with the action of Γ.

We put H0(Γ, A) = AΓ, the set of elements of A fixed under Γ, and we call 1-cocycle of Γ

in A a map α : Γ→ A given by s 7→ αs, which is continuous and satisfies αst = αs
sαt for all

s, t ∈ Γ. The set of these cocycles will be denoted Z1(Γ, A). Two cocycles α and α′ are said
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to be cohomologous if there exists b ∈ A such that α′s = b−1αssb. Denoted by α′s ∼ αs. It is

easy to see that this is an equivalence relation in Z1(Γ, A), and the quotient set is denoted

by H1(Γ, A). This is the first cohomology set of Γ in A. We can check that

H1(Γ, A) = lim−→H1(Γ/U,AU )

for U running over the set of open normal subgroups of Γ (see §5,[28]).

Let A and B be two Γ-groups, and let f : A → B be a Γ-homomorphism. If a ∈ A is

fixed by Γ, then so is f(a) ∈ B. Therefore, f restrict to a map:

f0 : H0(Γ, A)→ H0(Γ, B).

Moreover, there is an induced map:

f1 : H1(Γ, A)→ H1(Γ, B),

which carries the cohomology class of any 1-cocycle α to the cohomology class of the 1-

cocycle f1(α) defined by f1(α)s := f(αs). Set α′s = b−1αssb for some b ∈ A. We have

f(αs) = f(b)−1f(αs)sf(b), so it is well defined.

Let B be a Γ-group. We call A ⊂ B a Γ-subgroup if A is a subgroup of B and sa ∈ A for

all s ∈ Γ, a ∈ A. Let B/A be the Γ-set of left cosets of A in B, i.e., B/A = {b · A | b ∈ B}.

The natural projection of B onto B/A induces a map of pointed sets BΓ → (B/A)Γ. Let

b·A ∈ (B/A)Γ. We have b·A = sb·A, i.e., b−1 ·sb ∈ A for any s ∈ Γ. Define a map α : Γ→ A

given by αs := b−1 · sb. This is a 1-cocycle with values in A, whose class [α] ∈ H1(Γ, A) is
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independent of choice of b in b · A. Hence we have a map of pointed sets:

δ : (B/A)Γ → H1(Γ, A), b · A 7→ [α], where αs = b−1 · sb.

By definition, the kernel ker(g) of a map of pointed sets g : B → C is the subset of all b ∈ B

such that g(b) is the base point of C. A sequence of maps of pointed sets A f→ B
g→ C is

exact if im(f) = ker(g). From that, the sequence A f→ B → 1 is exact if and only if f is

surjective. The sequence 1→ B
g→ C is exact if and only if the base point of B is the only

element in B mapped to the base point of C. Note that this condition does not imply that

g is injective.

Proposition 5.1.1. If A is normal in B, and set C = B/A, then the sequence of pointed

sets:

1→ H0(Γ, A)→ H0(Γ, B)→ H0(Γ, C)→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)

is exact.

Proof. See Proposition 38, [28].

Now we consider Galois groups. Let G be a finite Galois group. Let H ⊂ G be a subgroup

and A a commutative G-group. The action of G restricts to a continuous action of H. The

obvious inclusion AG ⊂ AH is called restriction:

Res : H0(G,A)→ H0(H,A).

Moreover, the restriction of a 1-cocycle α ∈ Z1(G,A) to H is a 1-cocycle of H with values
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in A. Thus, there is a restriction map:

Res : H1(G,A)→ H1(H,A).

Conversely, we have the corestriction map defined by the norm:

NG/H : a 7→
∑

s∈G/H

sa,

form AH to AG. We can extend this corestriction in Cor = NG/H : H0(H,A)→ H0(G,A)

to a unique map Cor : H1(H,A)→ H1(G,A). Since the cohomological functor Hi(H,−) is

effaceable in degree > 1 (see §1.6, [10]).

Proposition 5.1.2. Let m = [G : H] be the index of H in G. Then the composite Cor ◦Res

is the multiplication by m in H1(G,A).

Proof. See Theorem 1.48, [10].

Let H = {1}. We have |G|·H1(G,A) = 0 for G a finite Galois group and A a commutative

G-group from Proposition 5.1.2, i.e., H1(G,A) is |G|-torsion. In particular, if A is n -torsion

with n prime to |G|, we obtain H1(G,A) = 0.

Proposition 5.1.3. If U is a connected unipotent G-group over F , where char(F ) prime to

|G|. Then we have

H1(G,U) = 0

Proof. We prove this by induction. In a connected unipotent group U , there is a sequence

of normal subgroups

U = U1 ⊃ U2 ⊃ ... ⊃ Un = {e},
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such that all quotients Ui/Ui+1 are one-dimensional. Every connected one-dimensional

unipotent algebraic group is isomorphic to Ga. Since Ga over F and char(F ) prime to

|G|, we get H1(G,Ga) = 0. By Proposition 5.1.1, we have an exact sequence:

1→ H0(G,U2)→ H0(G,U1)→ H0(G,U1/U2)→ H1(G,U2)→ H1(G,U1)→ H1(G,U1/U2).

SinceH1(G,U2) = 0 by induction andH1(G,U1/U2) ∼= H1(G,Ga) = 0, we haveH1(G,U1) =

0.

5.2 Statement of the main theorem

In this section we will give a explicitly description of the affine Grassmannian for triality

groups. In what follows, let k be a field with char(k) 6= 2, 3. Suppose that the cubic primitive

root ξ is in k. We set F = k((u)), F0 = k((t)) with u3 = t. Thus F/F0 = k((u))/k((t)) is a

cubic Galois field extension. Set Γ = Gal(F/F0) with generator ρ with ρ(u) = ξu. Then

k[[t]] (resp. k[[u]]) is the ring of integers of F0 (resp. F ).

Recall that (V, ∗) is a normal twisted composition algebra obtained from the para-Cayley

algebra over F , i.e., there is a basis {e1, ..., e8} of (V, ∗) in the Table 2.1, with the multipli-

cation

x ∗ y = (idC ⊗ ρ)(x) ⋆ (idC ⊗ θ)(y) for all x, y ∈ C ⊗F0
F,

where (C, ⋆) is the split para-Cayley algebra. The quadratic form of (V, ∗) is determined by

the multiplication by Lemma 2.3.3. Denote by 〈 , 〉 the bilinear form: 〈 , 〉 : V ⊗ V → F

corresponding to the quadratic form. Let R be an F0-algebra. Notice that the base change

V ⊗F0
R is isomorphic to R((u))8. A finitely generated projective submodule in V ⊗F0

R
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is called a lattice in V ⊗F0
R. We set L = ⊕8

i=1R[[u]]ei, and call it the standard lattice in

V ⊗F0
R.

In §3.3, we defined the triality group for the special orthogonal group over F0:

G(R) = ResF/F0
(Spin(V, ∗))A3(R)

∼= {g ∈ SO(V, q)(R⊗F0
F ) | g(x ∗ y) = g(x) ∗ g(y) for all x, y ∈ V ⊗F0

R},

for any F0-algebra R. With F = k((u)), F0 = k((t)), we can rewrite this triality group. Let G

be the affine group scheme over k[[t]] that represents the functor from k[[t]]-algebras to groups

that sends R to

G (R) := {g ∈ SO8(k[[u]]⊗k[[t]] R) | g(x ∗ y) = g(x) ∗ g(y) for all x, y ∈ L}.

We will prove that this affine group scheme is smooth in the next section. In fact, this affine

group G is the parahoric subgroup of G given by L by Proposition 1.3.9, [12]. The generic

fiber Gη is equal to G. We denote by LGη (resp. L+G ) the functor from the category of

k-algebras to groups given by LGη(R) = Gη(R((t))) (resp. L+G (R) = G (R[[t]])). Then the

quotient fpqc sheaf LGη/L
+G is by definition the affine Grassmannian for the triality group

G . Our main theorem in this section is:

Theorem 5.2.1. There is an LGη-equivariant isomorphism

LGη/L
+G ' F

where the functor F sends a k-algebra R to the set of finitely generated projective R[[u]]-
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modules L (i.e., R[[u]]-lattices) of V ⊗k R
∼= R((u))8, such that

(1) L is self dual under the bilinear form 〈 , 〉, i.e., L ' HomR[[u]](L,R[[u]]).

(2) L is closed under multiplication, L ∗ L ⊂ L.

(3) There exists a ∈ L, such that q(a) = 0, 〈a ∗ a, a〉 = 1.

(4) For a as in (3), let e = a+a∗a. Then, we have e ∗ x = −x̄ = x ∗ e for any x̄ satisfying

〈x̄, ē〉 = 0. (Here, x̄ is the image of x under the canonical map L→ L/uL.)

Proof. To prove the theorem it suffices to check the following two statements:

(i) For any R, g ∈ LGη(R), L = g(L) satisfies condition (1)-(4).

(ii) For any L ∈ F (R) with (R,m) a local henselian ring with the maximal ideal m, there

exists g ∈ LGη(R) such that L = g(L).

Part (i) is easy to prove, since g preserves the bilinear form 〈 , 〉 and the product ∗. For

any x, y ∈ L, let x = g(x0), y = g(y0) where x0, y0 ∈ L. Then x ∗ y = g(x0) ∗ g(y0) =

g(x0 ∗y0) ∈ L, so (2) satisfied. (1) is obvious via 〈g(x), g(y)〉 = 〈x, y〉. For (3), let a = g(e4).

Then 〈a ∗ a, a〉 = 〈g(e4) ∗ g(e4), g(e4)〉 = 〈g(e5), g(e4)〉 = 〈e4, e5〉 = 1, and q(a) = q(e4) = 0.

For g(e) = g(a) + g(a ∗ a), we have g(e) ∗ g(x) + g(x) = g(x) ∗ g(e) + g(x) = 0 for any g(x)

satisfying 〈g(x), g(e)〉 = 〈x, e〉 = 0.

To prove part (ii), the key is to find a basis in L such that the multiplication table under

the basis is the same as Table 2.1, i.e., we need to find a basis {fi} ∈ L such that fi ∗fj = fk

for ei ∗ ej = ek in the Table 2.1. Thus we can define g(ei) = fi, and g is then in LGη(R).

We claim that a as in assumption (3) is a primitive element in L (an element in L that

54



extends to a basis of L). Consider the quotient map

R[[u]]→ R→ R/m = κ,

where κ is the residue field of R. There is a base change L→ L⊗R[[u]] κ, and we still denote

by x̄ the image of x ∈ L. Consider ā ∈ L⊗R[[u]] κ. We have 〈a ∗ a, ā〉 = 1, hence ā 6= 0. By

Nakayama’s lemma, we can extend a to a basis of L. Similarly, we can show that a ∗ a is

also a primitive element. Here a, a ∗ a are independent by 〈a, a ∗ a〉 = 1. Let v1, ..., v6 be any

base extension for a, a ∗ a. We define a sublattice L0 ⊂ L:

L0 := {x ∈ L | 〈x, a〉 = 0, 〈x, a ∗ a〉 = 0}.

For any x ∈ L, we can write x as
∑6

i=1 rivi + r7a + r8(a ∗ a) for some ri ∈ R[[u]]. Consider

v′i = vi−〈a, vi〉a ∗ a−〈a ∗ a, vi〉a. It is easy to see that 〈v′i, a〉 = 0, 〈v′i, a ∗ a〉 = 0, so v′i ∈ L0.

And v′i, a, a ∗ a are linear independent. We obtain

x =
6∑

i=1

riv
′
i + (r7 +

6∑
i=1

ri〈vi, a ∗ a〉)a+ (r8 +
6∑

i=1

ri〈vi, a〉)(a ∗ a).

Therefore, L = R[[u]]a⊕R[[u]](a ∗ a)⊕ L0, where L0 is a sublattice of rank 6.

Set f1 = a, f2 = a ∗ a. Here f1, f2 play similar roles as for e4, e5 in the Table 2.1. By

Lemma 2.3.2 and Lemma 2.3.3, we obtain a hyperbolic subspace R[[u]]a⊕R[[u]](a ∗ a) with:

f1 ∗ f1 = f2, f2 ∗ f2 = f1,

f1 ∗ f2 = f2 ∗ f1 = 0,

q(f1) = q(f2) = 0, 〈f1, f2〉 = 1.
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Lemma 5.2.2. We have

L0 ∗ fi ⊂ L0, fi ∗ L0 ⊂ L0,

for i = 1, 2.

Proof. For any x ∈ L0, we have 〈x ∗ fi, fi〉 = ρ(〈fi ∗ fi, x〉) = 0, and 〈x ∗ fi, fi+1〉 =

ρ(〈fi ∗ fi+1, x〉) = 0 by Lemma 2.3.3. Similarly for fi ∗ x.

Define the ρ-linear transformations ti : L0 → L0, given by ti(x) = x ∗ fi for i = 1, 2.

Here the ρ-linear transformation means ti(rx) = ρ(r)ti(x) for r ∈ R[[u]], x ∈ L0. Take

Li = ti(L0) = L0 ∗ fi. Trivially, ti(Li) ⊂ Li. Both Li are isotropic with rank (Li) ≤ 3 since

fi is an isotropic element. For any x ∈ L0, we have

(f2 ∗ x) ∗ f1 + (f1 ∗ x) ∗ f2 = θ(〈f1, f2〉)x = x,

by Lemma 2.3.3. So L0 = L1 + L2. Since rank(Li) ≤ 3, we must have a direct sum

composition: L0 = L1 ⊕ L2.

Lemma 5.2.3.

(1) For any x ∈ L0, t2i (x) = −fi+1 ∗ x (i = 1, 2 mod 2).

(2) For any x ∈ Li, t3i (x) = −x.

(3) From (2), ti is a R[[t]]-isomorphism when restricted at Li, more precisely, we have

ti : Li → Li, x 7→ x ∗ fi. The inverse map t−1i = −t2i is a θ-linear transformation.

(4) For x ∈ L1, y ∈ L2, we have 〈t1(x), t2(y)〉 = ρ(〈x, y〉).

Proof. (1) For x ∈ L0, we have t21(x) = ((x ∗ f1) ∗ f1) = −((f1 ∗ f1) ∗ x) = −(f2 ∗ x) by

Lemma 2.3.3. A similar argument gives t22(x) = −f1 ∗ x.
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(2) For any x ∈ L1, we have t31(x) = −((f2 ∗ x) ∗ f1). Consider

(f2 ∗ x) ∗ f1 + (f1 ∗ x) ∗ f2 = θ(〈f1, f2〉)x = x,

by Lemma 2.3.3. Let x = z ∗ f1 ∈ L1 for some z ∈ L0. Then f1 ∗ x = f1 ∗ (z ∗ f1) = 0

by q(f1) = 0. Hence (f2 ∗ x) ∗ f1 = x, and we obtain t31(x) = −x. Similar calculations for

y ∈ L2, and gives t32(y) = −y.

Part (3) follows from (2) immediately. For (4), we know that 〈t1(x), t2(y)〉 = 〈x ∗ f1, y ∗

f2〉 = ρ(〈f1 ∗ (y ∗ f2), x〉), and

f1 ∗ (y ∗ f2) = −t22(y ∗ f2) = −t
2
2 · t2(y) = −t

3
2(y) = y,

by (1) and (2). Hence 〈t1(x), t2(y)〉 = ρ(〈x, y〉).

Remark 5.2.4. (1) From the proof of above Lemma, we can see that fi ∗ Li = 0, and

Li ∗ fi+1 = 0 for i = 1, 2 mod 2.

(2) Since L1, L2 are isotropic and 〈 , 〉 restricted to L0 is nondegenerate, the Li are in

duality by the isomorphism L1 → L∨2 given by x 7→ 〈x,−〉. Hence L1 ' Hom(L2, R[[u]]).

Lemma 5.2.5. We have

(1) L1 ∗ L2 ⊂ R[[u]]f1, L2 ∗ L1 ⊂ R[[u]]f2,

(2) Li ∗ Li ⊂ Li+1 (i = 1, 2 mod 2).

Proof. (1) For any x ∈ L1, y ∈ L2, we write x as x = x1 ∗ f1 with x1 ∈ L1, and y as
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y = y1 ∗ f2 with y1 ∈ L2. Consider

x ∗ y = (x1 ∗ f1) ∗ (y1 ∗ f2) = −((y1 ∗ f2) ∗ f1) ∗ x1 + θ(〈x1, y1 ∗ f2〉)f1,

by Lemma 2.3.3. Notice that (y1∗f2)∗f1 ∈ L2∗f1 = 0. Thus we have x∗y = θ(〈x1, y1∗f2〉)f1.

Further,

〈x1, y1 ∗ f2〉 = θ(〈t1(x1), t2(y2 ∗ f2)〉)

= θ(〈x, t2(y)〉),

by Lemma 5.2.3 (4). Hence x∗y = ρ(〈x, t2(y)〉)f1. Similarly, we have y ∗x = ρ(〈t1(x), y〉)f2.

(2) For any x1, x2 ∈ L1, we first claim that x1 ∗ x2 ∈ L0. Consider 〈x1 ∗ x2, f1〉 =

θ(〈f1 ∗ x1, x2〉) = 0 by f1 ∗ L1 = 0, and 〈x1 ∗ x2, f2〉 = ρ(〈x2 ∗ f2, x1〉) = 0 by L1 ∗ f2 = 0.

Using Lemma 2.3.3, we find that

t1(x1) ∗ t1(x2) = (x1 ∗ f1) ∗ (x2 ∗ f1)

= −f1 ∗ (x2 ∗ (x1 ∗ f1))

= f1 ∗ (f1 ∗ (x1 ∗ x2))

by 〈x1 ∗f1, f1〉 = 0 and 〈f1, x2〉 = 0. We also have f1 ∗ (f1 ∗ (x1 ∗x2)) = f1 ∗ (−t22(x1 ∗x2)) =

t42(x1 ∗ x2) = −t2(x1 ∗ x2). Therefore,

t1(x1) ∗ t1(x2) = −t2(x1 ∗ x2).

Since x1 ∗ x2 ∈ L0, we obtain that t2(x1 ∗ x2) ∈ L2. Hence L1 ∗ L1 ⊂ L2. Similarly,
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L2 ∗ L2 ⊂ L1.

We now prove that L has the same multiplication table as the Table 2.1: We want to

find a basis {x1, x2, x3} for L1 (resp. {y1, y2, y3} for L2) such that t1(xi) = −id (resp.

t2(yi) = −id). Consider the quotient map R[[u]]→ κ = R[[u]]/(m,u). We set L̄ = L⊗R[[u]] κ,

L̄i = Li ⊗R[[u]] κ with multiplication x̄ ⋆ ȳ = x ∗ y, and

t̄i : L̄i → L̄i, given by t̄i(x̄) = x̄ ⋆ f̄i,

for i = 0, 1, 2.

Proposition 5.2.6. Given (L, ∗, 〈 , 〉) satisfying (1)-(4) as above. Then (L̄, ⋆) is isomorphic

to the split para-Cayley algebra.

Proof. It is easy to see that q(x̄⋆ ȳ) = q(x̄)q(ȳ), and 〈x̄⋆ ȳ, z̄〉 = 〈ȳ ⋆ z̄, x̄〉, so L̄ is a symmetric

composition algebra. By Proposition 2.2.4, a symmetric algebra is a para-Cayley algebra if

and only if it admits a para-unit, i.e., there exist an element ē ∈ L̄, such that

ē ⋆ ē = ē, ē ⋆ x̄ = x̄ ⋆ ē = −x̄,

for all x̄ ∈ L̄ satisfying 〈ē, x̄〉 = 0. Set e = f1 + f2 in our case. We can see that e is an

idempotent element by e ⋆ e = (f1 + f2) ∗ (f1 + f2) = f1 + f2 = e. By condition (4), we get

ē ⋆ x̄ = x̄ ⋆ ē = −x̄, for all x̄ ∈ L̄ satisfying 〈ē, x̄〉 = 0. Thus ē is a para-unit in L̄, and L̄ is a

para-Cayley algebra. It is split since q is an isotropic norm.

Lemma 5.2.7. For t̄i : L̄i → L̄i, we have t̄i(x̄) = x̄ ⋆ f̄i = −x̄ for any x̄ ∈ L̄i. Then

L̄i = L̄0 ⋆ f̄i = {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄}, i = 1, 2.

59



Proof. By Lemma 34.8, [14], we can define x̄ � ȳ = (ē ⋆ x̄) ⋆ (ȳ ⋆ ē) as a unital composition

algebra with the identity element ē. We have x̄ ⋆ ȳ = r(x̄) � r(ȳ), where r(x̄) = 〈ē, x̄〉ē− x̄ is

the conjugation of x̄. By Proposition 2.1.1,

x̄ � ȳ + ȳ � x̄− 〈x̄, ē〉ȳ − 〈ȳ, ē〉x̄+ 〈x̄, ȳ〉ē = 0.

Using x̄ ⋆ ȳ = r(x̄) � r(ȳ) and 〈r(x̄), r(ȳ)〉 = 〈x̄, ȳ〉, we obtain

x̄ ⋆ ȳ + ȳ ⋆ x̄ = 〈ē, x̄〉r(ȳ) + 〈ē, ȳ〉r(x̄)− 〈x̄, ȳ〉ē.

Let ȳ = f̄i. We get x̄ ⋆ f̄i + f̄i ⋆ x̄ = r(x̄). Therefore, if x̄ ∈ L̄0 ∗ f̄i, we have f̄i ⋆ x̄ = 0 by

q(f̄i) = 0, and

x̄ ⋆ f̄i = x̄ ⋆ f̄i + f̄i ⋆ x̄ = 〈ē, x̄〉ē− x̄ = −x̄.

This implies L̄0 ⋆ f̄i ⊂ {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄}. It is obvious that {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄} ⊂

L̄0 ⋆ f̄i. Hence we get

L̄i = L̄0 ⋆ f̄i = {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄},

and t̄i = −id.

So far we know ti : Li → Li is a ρ-linear isomorphism with t3i = −id, and t̄i = −id.

We will use non-abelian Galois cohomology to prove that ti and −id are the same up to ρ-

conjugacy. More precisely, if we fix a basis for Li ∼= R[[u]]3 and let Ai ∈ GL3(R[[u]]) represent

ti, we can find a new basis for Li with transition matrix b ∈ GL3(R[[u]]), such that

−I = b−1Aiρ(b).
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Let Γ = {1, ρ, θ} be the cyclic group. Set B = Aut(L1) = GL3(R[[u]]). Consider the quotient

map R[[u]]→ κ. Since (R[[u]], (u)), (R,m) are henselian pairs, we obtain the exact sequence:

1→ U → GL3(R[[u]])→ GL3(κ)→ 1

where U is the kernel of GL3(R[[u]]) → GL3(κ). Here Γ acts on GL3(R[[u]]) by ρ(u) = uξ,

and Γ acts trivially on GL3(κ). We obtain the exact sequence of pointed sets:

1→ UΓ → GL3(R[[u]])
Γ → GL3(κ)

Γ → H1(Γ, U)→ H1(Γ,GL3(R[[u]])→ H1(Γ,GL3(κ)).

Since U is a unipotent group over k[[u]] with char(k) 6= 3, we have H1(Γ, U) = 1 by Propo-

sition 5.1.2. Hence the only element mapped to the base point of H1(Γ,GL3(k)) is the base

point of H1(Γ,GL3(R[[u]]), i.e., for any [as] ∈ H1(Γ,GL3(R[[u]])) satisfying [ās] = 1, we have

[as] = 1.

Consider t1 : L1 → L1. The subgroup of GL3(R[[u]]) generated by t1 is {1, t21,−id,

−t1,−t21, id} given by t31 = −id. If we fix the basis and use A1 to represent t1, we get

t21 = A1ρ(A1), t31 = A1ρ(A1)θ(A1) = −I. Define a map:

a : Γ→ GL3(R[[u]])

given by ρ 7→ aρ = −A1. Using ast = as
sat, we get θ 7→ aθ = aρρ(aρ) = A1ρ(A1), and 1 7→

a1 = I. Hence the image of Γ = {ρ, θ, 1} is the subgroup {t41 = −t1, t81 = t21, t
12
1 = id} ⊂ 〈t〉.

This is a 1-cocycle. Take the image [ā] of [a] under the injective map

H1(Γ,GL3(R[[u]])→ H1(Γ,GL3(k)).
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We get [āρ] = −[t̄] = 1 by Lemma 5.2.7. Therefore [aρ] = 1. In matrix language, there exist

b ∈ GL3(R[[u]]) such that

I = b−1(−A1)ρ(b), t1 ∼ −id.

We have a similar conclusion for t2.

Using the above we see that there exist a basis {x1, x2, x3} for L1, and a dual basis

{y1, y2, y3} for L2, such that t1(xi) = −xi, t2(yi) = −yi, with 〈xi, yj〉 = δij . By Lemma

5.2.3, we have

xi ∗ f1 = −xi, f1 ∗ xi = 0,

xi ∗ f2 = 0, f2 ∗ xi = −xi,

yi ∗ f1 = 0, f1 ∗ yi = −yi,

yi ∗ f2 = −yi, f2 ∗ yi = 0.

By Lemma 5.2.5, we have

xi ∗ yj = −δijf1, yi ∗ xj = −δijf2.

It reminds to calculate the terms in Li∗Li. To approach this goal, we define a wedge product

∧ : Li × Li → Li+1 given by

u ∧ v := t−1i (u) ∗ ti(v),
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for any u, v ∈ Li. Let u ∈ L1. It is immediate to get

u ∧ u = t−11 (u) ∗ t1(u)

= (f2 ∗ u) ∗ (u ∗ f1)

= ((u ∗ f1)) ∗ u) ∗ f2

= f1 ∗ f2 = 0

by 〈f2, u∗f1〉 = 0, q(u) = 0. By linearizing the equation, we find u∧v = −v∧u for u, v ∈ L1.

A similar argument can be made for u, v ∈ L2. Now define a trilinear function 〈 , , 〉 on Li

by 〈u, v, w〉 := 〈u, v ∧w〉. It is an alternating trilinear function since 〈u,w, v〉 = 〈u,w ∧ v〉 =

−〈u, v ∧ w〉 = −〈u, v, w〉, and

〈v, u, w〉 = 〈v, u ∧ w〉

= 〈v, t−1i (u) ∗ ti(w)〉

= ρ(〈ti(w) ∗ v, t−1i (u)〉)

= 〈ti+1(ti(w) ∗ v), u〉

= 〈t2i (w) ∗ ti(v), u〉

= 〈w ∧ v, u〉 = −〈u, v ∧ w〉.

We can now calculate the terms in Li ∗ Li. Consider x1 ∗ x2. We have 〈x1 ∗ x2, x1〉 =

−〈x1 ∗ x2, t1(x1)〉 = −〈x1 ∗ x2, x1 ∗ f1〉 = 0 by 〈x2, f1〉 = 0. Similarly 〈x1 ∗ x2, x2〉 = 0.

Hence we have x1∗x2 = by3 for some b = 〈x1∗x2, x3〉 ∈ R[[u]]. Multiplying by y1 on the right

side, we obtain (x1∗x2)∗y1 = (by3)∗y1. Since (x1∗x2)∗y1+(y1∗x2)∗x1 = θ(〈x1, y1〉)x2 = x2,
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and y1 ∗ x2 = 0, we have

x2 = ρ(b)(y3 ∗ y1).

Therefore b, ρ(b)−1 ∈ R[[u]], which implies b ∈ R[[u]]∗. Let b = −1, and get x1 ∗ x2 = −y3

(replace by3 by −y3, and also replace b−1x3 by −x3). We can perform similar calculations

for the other xi ∗ xj and yi ∗ yj . By using the alternating trilinear form, we obtain

Table 5.1: Multiplication table xi ∗ xj

∗ x1 x2 x3

x1 0 -y3 y2

x2 y3 0 -y1

x3 −y2 y1 0

Table 5.2: Multiplication table yi ∗ yj

∗ y1 y2 y3

y1 0 −x3 x2

y2 x3 0 −x1

y3 −x2 x1 0

Therefore, we complete the multiplication table of L. By letting g(e4) = f1, g(e5) = f2,

and
g(e1) = x1, g(e6) = x2, g(e7) = x3,

g(e8) = y1, g(e3) = y2, g(e2) = y3.

We obtain g(ei) ∗ g(ej) = g(ei ∗ ej). So, there exist g ∈ LG (R) such that L = g(L).

5.3 Smoothness of triality groups

In this section, we will show that the affine group scheme G (R) is smooth over k[[t]]. Recall

that L = ⊕8
i=1R[[u]]ei is the standard lattice in V ⊗F0

R.

Theorem 5.3.1. The functor from Algk[[t]] to the groups that send R to

G (R) = {g ∈ SO8(k[[u]]⊗k[[t]] R) | g(x ∗ y) = g(x) ∗ g(y) for all x, y ∈ V ⊗F0
R},
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is smooth.

We want to show that G is formally smooth, i.e., for any surjective ring hommorphism

S → R with nilpotent kernel I, we can lift an α ∈ G (R) to α̃ ∈ G (S). The idea is to lift

basis from R-modules to the S-modules.

Proposition 5.3.2. Let M be the S-module satisfying conditions (1)-(4). Assume I ⊂ S

is an ideal with I2 = 0, then the R-module M̄ = M/IM also satisfies condition (1)-(4).

Assume that f̄1 = ā, f̄2 = ā ∗ ā, ē = f̄1 + f̄2 ∈ M̄ satisfying

q(f̄1) = 0, 〈f̄1, f̄2〉 = 1, ē ∗ x̄+ x̄ = 0, x̄ ∗ ē+ x̄ = 0,

then there exist f1, f2 ∈M such that fi mod I is f̄i and

q(f1) = 0, 〈f1, f2〉 = 1, e ∗ x+ x ∈ IM, x ∗ e+ x ∈ IM

for any x (resp. x̄) satisfying 〈e, x〉 = 0 (resp. 〈ē, x̄〉 = 0).

Proof. Let f1 be any liftes of f̄1. Then 〈f1, f1〉 = m ∈ I[[u]]. Consider f ′1 = f1 + y, where

y ∈ IM . We have 〈f1 + y, f1 + y〉 = m + 2〈f1, y〉 by 〈y, y〉 ∈ I2 = 0. By perfectness of the

form, any linear form on M with values in I[[u]] is of the type 〈y,−〉 for some y ∈ IM . Hence

we can choose y such that 〈f1, y〉 = −m
2 to make f ′1 isotropic.

Let f ′′1 = f ′1 + z for some z ∈ IM , and f ′′2 = f ′′1 ∗ f
′′
1 = f ′1 ∗ f

′
1 + f ′1 ∗ z + z ∗ f ′1. Suppose

that 〈f ′1, f ′1 ∗ f ′1〉 = 1 + n, where n ∈ I[[u]], also notice that n ∈ S[[t]], since 〈f ′1, f ′1 ∗ f ′1〉 =
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ρ(〈f ′1, f
′
1 ∗ f

′
1〉) = θ(〈f ′1, f

′
1 ∗ f

′
1〉). Thus, we get

〈f ′′1 , f
′′
2 〉 = 1 + n+ 〈f ′1 ∗ z, f

′
1〉+ 〈z ∗ f

′
1, f
′
1〉+ 〈f

′
1 ∗ f

′
1, z〉

= 1 + n+ θ(〈f ′1 ∗ f
′
1, z〉) + ρ(〈f ′1 ∗ f

′
1, z〉) + 〈f

′
1 ∗ f

′
1, z〉.

We can find z ∈ IM such that 〈f ′1 ∗ f ′1, z〉 = −n
3 . We also need that f ′′1 is isotropic,

i.e., 〈f ′′1 , f ′′1 〉 = 2〈f ′1, z〉 = 0. Therefore, it is enough to find z such that 〈f ′1, z〉 = 0,

〈f ′1 ∗ f
′
1, z〉 = −n

3 . Such z exists by perfectness of the form. Then, set f ′′1 = f ′1 + z,

f ′′2 = f ′′1 ∗ f
′′
1 . We obtain q(f ′′1 ) = 0, 〈f ′′1 , f

′′
2 〉 = 1. The last equation is obvious satisfied

since f ′′1 , f ′′2 are liftes of f̄1, f̄2.

Proof of Theorem 5.3.1: For any S → R surjective morphism with nilpotent kernel I

(we can just assume I2 = 0), consider the automorphism α : L → L with R ∼= S/I. Set

M = L⊗R S. Let f1 ∈M satisfying

q(f1) = 0, 〈f1, f2〉 = 1, e ∗ x+ x ∈ IM, x ∗ e+ x ∈ IM.

By the construction in the proof of Theorem 5.2.1, we have M ' S[[u]]f1⊕S[[u]]f2⊕L1⊕L2.

Then the projection map M → L maps f1 to f̄1 also satisfying the above condition. We

have L ∼= R[[u]]f̄1 ⊕R[[u]]f̄2 ⊕ L̄1 ⊕ L̄2 where f̄2 = f̄1 ∗ f̄1.

M M

L L

α2

α

Notice that we can lift α(f̄1) to M , denoted by h1 by Proposition 5.3.2. So there is

another construction forM : M ' S[[u]]h1⊕S[[u]]h2⊕L′1⊕L
′
2. Then we have an automorphism
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α2 : M → M satisfying α(f1) = h1 by Theorem 5.2.1. It is obvious to see that ᾱ2 = α.

Thus, we can lift an α ∈ G (R) to α2 ∈ G (S). Hence G is formally smooth.
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Chapter 6

Global affine Grassmannians

In this section, we will discuss global affine Grassmannians for triality groups. Global affine

Grassmannians were introduced by Beilinson-Drinfeld in [3].

6.1 General construction

Our main reference in this section is [26]. Suppose that F0 is either a p-adic field (i.e. a

finite extension of Qp) or the field of Laurent power series k((t)) with k finite. In either case

the residue field κ has cardinality q = pm for some m. Let O0 be the valuation ring of F0.

We fix a separable closure F̄ s
0 of F0 and denote by Funr

0 the maximal unramified extension

of F0 in F̄ s
0 , with the valuation ring Ounr

0 .

Let G be a connected reductive group over F0. Denote by H the Chevalley group scheme

over Z which is the split form of G. We will assume that:

Tameness hypothesis: G splits over a finite tamely ramified Galois extension F/F0, i.e.,

G⊗F0
F ∼= H ⊗Z F .

Let π0 be a uniformizer of O0. Pappas and Zhu show that there exist a reductive group

G over Spec(O0[u
±]), which extends G in the sense that its base change

G⊗O0[u±] F0, u 7→ π0,
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is isomorphic to G (see §3, [26]). Denote by F̃0 the maximal unramified extension of F0 that

is contained in F , and by Õ0, O the valuation rings of F̃0, F respectively. Set e = [F : F̃0]

and let γ0 be a generator of Gal(F/F̃0). Recall that by Steinberg’s theorem, the group

GFunr
0

:= G⊗F0
Funr
0 is quasi-split. By possibly enlarging the splitting field F , we can now

assume that:

(1) G
F̃0

is quasi-split;

(2) F/F0 is Galois with group Γ = Gal(F/F0) = 〈σ〉o〈γ0〉 which is the semi-direct product

of 〈σ〉 ' Z/(r), where σ is a lift of the (arithmetic) Frobenius Frobq ∈ Gal(F̃0/F0),

with the normal inertia subgroup I := Gal(F/F̃0) = 〈γ0〉 ' Z/(e), with relation

σγ0σ
−1 = γ

q
0;

(3) there is a uniformizer π of F such that πe = π0.

Without further mention, we will assume that the extension F/F0 is as above. Then

we also have O = Õ0[π] = Õ0[x]/(x
e − π0) and Õ0 contains a primitive e-th root of unity

ξ = γ0(π)π
−1. Consider the affine line A1

O0
= Spec(O0[u]) and its cover

Spec(Õ0[v])→ Spec(O0[u]),

given by u 7→ ve. The Galois group Γ described as above acts on Õ0[v] by

σ(
∑
i

aiv
i) =

∑
i

σ(ai)v
i, γ0(

∑
i

aiv
i) =

∑
i

aiξ
ivi.

We have Õ0[v]
Γ = O0[u]. The Restriction of this cover over the open subscheme u 6= 0 gives
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us:

Spec(Õ0[v, v
−1])→ Spec(O0[u, u

−1]).

In what follows, we use O0[u
±1] (resp. Õ0[v

±1]) to denote O0[u, u
−1] (resp. Õ0[v, v

−1]) for

simplicity. The indexed root datum for G gives a group homomorphism τ : Gal(F/F0) →

AutO0(H). Then we define a group scheme over O0[u
±1]

G∗ = (ResÕ0[v]/O0[u]
(H ⊗O0 Õ0[v

±1]))Γ,

where γ ∈ Γ acts diagonally via τ(γ) ⊗ γ. Set Ẑ = lim←−Z/nZ. We define the functor from

AlgO0[u±1]
to groups that sends R to:

G(R) = G∗(Ounr
0 [u±1]⊗O0[u±1]

R)Ẑ.

Then G is the reductive group we wanted (see §3.3.4, [26]). By descent, the group scheme G is

reductive over O0[u
±1] with base change to Ounr

0 [u±1] isomorphic to G∗⊗O0[u±1]O
unr
0 [u±1].

Since GF0
= G⊗O0[u±1]

F0 ∼= G, we fix a point x in the Bruhat- Tits building B(G,F0).

The parahoric group scheme Px of G is a group scheme over Spec(O0) with generic fiber

isomorphic to G such that Px(O0) ⊂ G(F0) is the connected stabilizer of x.

Theorem 6.1.1 (Theorem 4.1, [26]). There is a unique smooth, affine group scheme G = G x

over Spec(O0[u]) (called a Bruhat-Tits group scheme for G ) with connected fibers and with

the following properties:

(1) The generic fiber G ⊗O0[u] O0[u
±1] is the group scheme G.

(2) The base change of G under Spec(O0)→ Spec(O0[u]) given by u 7→ π0 is the parahoric
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group scheme Px for G = G⊗O0[u±1]
F0.

(3) The base change of G under Spec(κ[[u]]) → Spec(O0[u]) given by O0[u] → κ[[u]] is the

parahoric group scheme Pxκ((u)) for G⊗O0[u±1] κ((u)).

Suppose that R is an O0-algebra and denote r : Spec(R)→ Spec(O0[u]) given by u 7→ r.

Consider the closed subscheme Γr ⊂ Spec(R ⊗O0 O0[u]) given by the graph of r. We

have Γr = Spec(R[u]/(u − r)). The formal completion of Spec(R ⊗O0 O0[u]) along Γr is

Γ̂r = Spec(R[[u− r]]). There is a natural closed immersion Γr → Γ̂r and we denote by Γ̂◦r =

Γ̂r − Γr = Spec(R((u− r))), the complement of the image. When r = 0, Γr = DR, Γ̂r = D∗R

as defined in §4.

Consider the functor that associates to a O0[u]-algebra R (given by u 7→ r) the group

LG (R) = G (Γ̂◦r) = G (R((u− r))).

Since G → Spec(O0[u]) is smooth and affine, LG is represented by a formally smooth ind-

scheme over Spec(O0[u]). Next consider the functor that associates to an O0[u] -algebra R

the group

L+G (R) = G (Γ̂r) = G (R[[u− r]]).

We can see that L+G is represented by a scheme over Spec(O0[u]) which is formally smooth.

Now we define the global affine Grassmannian associated to the group G over Spec(O0[u])

to be the functor from O0[u]-algebras to groups, which sends R to

GrG ,O0[u](R):={iso-classes of (E , β) | E a G -torsor on Γ̂r, β a trivialization of E |
Γ̂◦r

}.
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Using this definition, we can see that LG acts on GrG ,O0[u] by changing the trivialization β.

In fact, consider the fpqc sheaf LG /L+G . We have GrG ,O0[u] ' LG /L+G .

Proposition 6.1.2 (Proposition 6.5,[26]). Suppose that G is as in Theorem 6.1.1. The

functor GrG ,O0[u] on (Sch/A1
O0

) is representable by an ind-projective ind-scheme over A1
Zp.

Denote by GrG ,O0 → Spec(O0) the base change of GrG ,O0[u] → Spec(O0[u]), where

the map Spec(O0) → Spec(O0[u]) is given by u → π0. We can use the descent lemma of

Beauville-Laszlo [2] and get

Proposition 6.1.3 (Corollary 6.6,[26]).

(1) The generic fiber GrG ,O0×O0F0 is equivariantly isomorphic to the affine Grassmannian

GrG of G over Spec(F0).

(2) The special fiber GrG ,O0×O0 κ is equivariantly isomorphic to the affine Grassmannian

GrPκ over Spec(κ).

6.2 Global affine Grassmannians for triality groups

In this section, we will construct the global affine Grassmannians for triality groups. Let

K/Qp be a cubic tamely ramified field extension, p 6= 2, 3. For any prime p and m ∈ Z≥0 not

divisible by p, there exists a primitive m-th root of unity in Qp if and only if m divides p− 1

by Hensel’s lemma. So the 3rd root of unity ξ ∈ Qp if and only if p ≡ 1 mod 3. Consider

the finite unramified extensions of Qp. These are in one-to-one correspondence with finite

extensions of Fp since Fp is a perfect field. We know that Fp has a unique extension of

degree n for every n, which is the splitting field of xpn − x. It follows that Qp has a unique

unramified extension of degree n for each n, obtained as the splitting field of xpn − x, i.e.,
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by adjoining the pn− 1 st roots of unity. Moreover, the maximal unramified extension Qunr
p

of Qp corresponds to the separable closure of Fp, and so is obtained by adjoining the pn− 1

st roots of unity for all n. For any integer n with (n, p) = 1, we have pφ(n) − 1 ≡ 0 mod n,

where φ(n) = nΠp|n(1−p−1) is the Euler’s totient function. So we see that Qunr
p is obtained

by adjoining the n-th roots of unity for (n, p) = 1 for all n. In particular, ξ ∈ Qunr since

p 6= 2, 3.

Let F0 = Qunr
p , F = KF0 with the valuation rings O0,O respectively. Let π0 (resp. π)

be a uniformizer of O0 (resp. O). Then F/F0 is a cubic Galois extension, with π3 = π0,

and O = O0[π] = O0[x]/(x
3 − π0). The corresponding Galois group Γ = Gal(F/F0) = 〈ρ〉,

where ρ(π) = πξ.

Consider the affine line A1
O0

= Spec(O0[u]) and its cover:

Spec(O0[v])→ Spec(O0[u]),

given by u 7→ v3. The Galois group Γ acts on O0[v] by ρ(v) = vξ. We have O0[v]
Γ = O0[u].

The Restriction of the map over the open subscheme u 6= 0 gives us:

Spec(O0[v
±1])→ Spec(O0[u

±1]).

Now we construct global affine Grassmannians for triality groups. Recall that (V, ∗) is

the normal twisted composition algebra over F obtained from the para-Cayley algebra. We

defined the triality group for general orthogonal groups G in §3.4 to be the group scheme
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that represents the functor from F0-algebras to groups, which sends R to

G(R) := (ResF/F0
H)Γ(R)

= {g ∈ GO+
8 (F ⊗F0

R) | there exist λ ∈ (F ⊗F0
R)∗ such that λg(x ∗ y) = g(x) ∗ g(y)},

for all x, y ∈ V ⊗F0
R. Here H represents the functor form F -algebras to groups that sends

R to the group

{(c, λ) ∈ C0(VR)
∗×R∗ | cVRτ(c) = VR, α(τ(c)c) =

 µ 0

0 ν

 ∈ EndR(
ρVR)×EndR(θVR) }.

By using the isomorphism F ⊗F0
F ' F × F × F given by a ⊗ b 7→ (ab, ρ(a)b, θ(a)b) and

Theorem 3.4.1, we can see that

G(F ) ' {(g1, g2, g3) ∈ GO+
8 (F )

×3 | there exist λi ∈ F ∗ such that λigi(x ∗ y) = gi+1(x) ∗ gi+2(y)}

' H(F ).

So G satisfied the Tameness hypothesis.

Consider the ring extension O0[v
±1]/O0[u

±1]. Since O0[π
±1
0 ] = F0 and O0[π

±1] = F , we

can get the Galois extension F/F0 from O0[v
±1]/O0[u

±1] given by v 7→ π. Then similarly

we constrict the algebra Ṽ := ⊕8
i=1O0[v

±1]ei where the multiplication table of {ei}8i=1 is

the same as Table 2.1, and observe that the base change isomorphism:

Ṽ ⊗O0[v±1]
F ' V,
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given by v 7→ π. We call (Ṽ , ∗) the normal twisted composition algebra overO0[v
±1] obtained

from the para-Cayley algebra, with the O0[v
±1]-bilinear form 〈 , 〉 : Ṽ × Ṽ → O0[v

±1]

satisfying 〈ei, e9−j〉 = δij .

Suppose that H is the Chevalley split form of H. For any O0-algebra R, consider R as

an O0[u]-algebra given by u 7→ π0. Define the functor from O0[u
±1]-algebras to groups that

sends R to

G(R) := (ResO0[v±1]/O0[u±1]
(H ⊗Z O0[v

±1]))Γ(R).

We have

G(O0[u
±1]) = H (O0[v

±1])Γ

= {g ∈ GO8(O0[v
±1]) | there exist λ ∈ O0[v

±1]∗ such that λg(x ∗ y) = g(x) ∗ g(y)},

for all x, y ∈ Ṽ . It is easy to see that G ⊗O0[u±1] F0 is isomorphic to G under the base

change u 7→ π0. Since H is the Chevalley split form of H, by Proposition 1.3.9,[12], we can

define a group scheme over Spec(O0[u]):

G (R) := (ResO0[v]/O0[u](H ⊗Z O0[v]))
Γ(R),

for any O0[u]-algebra R. Set the base change ṼR((u−π0)) := Ṽ ⊗O0[u±1]
R((u− π0)) and the

R[[u− π0]]⊗O0[u] O0[v]-module

L = ⊕8
i=1(R[[u− π0]]⊗O0[u] O0[v])ei

in ṼR((u−π0)). We call L the standard lattice in ṼR((u−π0)). Then G is the parahoric subgroup

75



of G given by the standard lattice L. Consider the functors that associates to an O0[u]-

algebra R the group LG (R) = G (R((u − π0))) and L+G (R) = G (R[[u − π0]]). The global

affine Grassmannian for G is by definition the quotient fpqc sheaf:

GrG := LG /L+G .

Remark 6.2.1. Set t = u− π0. For any O0[u]-algebra R, we have

LG (R) =G (R((t)))

={g ∈ GO+
8 (R((t))⊗O0[u] O0[v]) | there exist λ such that λg(x ∗ y) = g(x) ∗ g(y)}

for λ ∈ (R((t))⊗O0[u] O0[v])
∗, x, y ∈ ṼR((t)), and

L+G (R) =G (R[[t]])

={g ∈ GO+
8 (R[[t]]⊗O0[u] O0[v]) | there exist λ such that λg(x ∗ y) = g(x) ∗ g(y)}

for λ ∈ (R[[t]]⊗O0[u] O0[v])
∗, x, y ∈ L.

The following theorem gives an explicitly description of the global affine Grassmannian

for G in terms of lattices. For any λ ∈ (R((u−π0))⊗O0[u]O0[v])
∗, we denote by [λ] the class

of λ mod (R[[u− π0]]⊗O0[u] O0[v])
∗.

Theorem 6.2.2. Suppose R is an O0-algebra. There is an LG -equivariant isomorphism

between GrG (R) and the set of pairs (L, [λ]), where L is a R[[u− π0]]⊗O0[u] O0[v]-lattice of

Ṽ ⊗O0[u±1]
R((u− π0)), and λ is in (R((u− π0))⊗O0[u] O0[v])

∗, which satisfy:
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(1) Under the bilinear form 〈 , 〉, we have

〈 , 〉 : L⊗ L→ ρ(λ)θ(λ)(R[[u− π0]]⊗O0[u] O0[v])

which is perfect, i.e., L ∼= Hom(L, ρ(λ)θ(λ)(R[[u− π0]]⊗O0[u]O0[v])). Here the tensor

⊗ and Hom are for the R[[u− π0]]⊗O0[u] O0[v]-mod structure.

(2) We have L ∗ L ⊂ λL.

(3) There exists a ∈ L, such that q(a) = 0, 〈a ∗ a, a〉 = λρ(λ)θ(λ).

(4) For a as in (3), let e = a+ λ−1(a ∗ a). Thus, we have λ̄−1 · e ∗ x = −x̄ = λ̄−1 · x ∗ e,

for any x̄ satisfying 〈x̄, ē〉 = 0, where x̄ is the image of x under the canonical map

L→ L/(u− π0, v)L.

6.3 Proof of the main result

This proof is similar to the proof of Theorem 5.2.1. The difference is that we have λ instead

of 1 here. It is easy to see that g(L) = L for any g ∈ L+G (R) ⊂ GL8(R[[u−π0]]⊗O0[u]O0[v]).

So the standard lattice is stable under L+G .

Next, for any g ∈ LG (R), there exisit λ ∈ (R((u−π0))⊗O0[u]O0[v])
∗ such that λg(x∗y) =

g(x) ∗ g(y) for all x, y ∈ ṼR((u−π0)). Let L = g(L), we will show that L satisfies conditions

(1)-(4). We have L ∗ L = g(L) ∗ g(L) ⊂ λg(L), so L satisfies condition (2); the quadratic

form of L is determined by the multiplication ∗ since x ∗ (y ∗ x) = ρ(q(x))y. Replace x, y by

g(x), g(y) and we get g(x) ∗ (g(y) ∗ g(x)) = ρ(q(g(x)))g(y). Meanwhile,

g(x) ∗ (g(y) ∗ g(x)) = θ(λ)λ · g(x ∗ (y ∗ x)) = θ(λ)λ · ρ(q(x)) · g(y).
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Combining them together, we have

ρ(q(g(x))) = θ(λ)λρ(q(x)),

which is equivalent to µ(g) = ρ(λ)θ(λ) by q(g(x)) = µ(g)q(x). Hence we have 〈g(x), g(y)〉 =

ρ(λ)θ(λ)〈x, y〉. Thus, we get a perfect bilinear form 〈 , 〉 : L⊗L→ ρ(λ)θ(λ)(R[[u−π0]]⊗O0[u]

O0[v]).

For (3) and (4), we set a = g(e4). It implies a∗a = g(e4)∗g(e4) = λg(e5) from the Table

2.1. It is easy to see that q(a) = 0, and 〈a, a ∗ a〉 = λ〈g(e4), g(e5)〉 = λρ(λ)θ(λ). Set

e = a+
1

λ
(a ∗ a) = g(e4 + e5).

By the canonical map: R[[u− π0]]⊗O0[u] O0[v]→ R⊗O0 O0[v] = R[v]→ R, the image of L

is the para-Cayley algebra L = ⊕8
i=1Rēi, which satisfied (e4 + e5) ∗ x = −x̄ = x ∗ (e4 + e5)

for any x̄ satisfying 〈x̄, ē4 + ē5〉 = 0. Set x̄ ⋆ ȳ := λ̄−1 · x ∗ y for any x, y ∈ L. We get

ē ⋆ x̄1 = λ̄−1 · (g(e4 + e5) ∗ g(x)) = g((e4 + e5) ∗ x) = −g(x̄) = −x̄1,

for any x1 = g(x) ∈ L with 〈x̄1, ē〉 = 0. Similarly we have x̄1 ⋆ ē = −x̄1. Above all, L = g(L)

satisfying (1)-(4).

Conversely, we will show that for any L satisfying condition (1)-(4) with R a local

henselian ring, there exist g ∈ LG (R) such that L = g(L). We want to find a basis in

L as we did in §5.2, such that the multiplication table under the basis is the scalaring of the

Table 2.1, i.e, there exists a basis {fi} ∈ L such that fi ∗ fj = λfk for ei ∗ ej = ek in the

Table 2.1. Then we can define g(ei) = fi, where g ∈ LG (R).
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We first claim that a, λ−1(a ∗ a) are primitive elements. We omit the proof here since it

is similar as we did in §5.2. Since a, λ−1(a ∗ a) are linear independent by 〈a, λ−1(a ∗ a)〉 =

ρ(λ)θ(λ), we have L = (R[[u−π0]]⊗O0[u]O0[v])a+(R[[u−π0]]⊗O0[u]O0[v])λ
−1(a ∗ a)+L0,

where

L0 := {x ∈ L | 〈x, a〉 = 0, 〈x, a ∗ a〉 = 0}.

Set f1 = a, f2 = λ−1(a ∗ a). By Lemma 2.3.2 and Lemma 2.3.3, we have

f1 ∗ f1 = λf2, f2 ∗ f2 = λf1,

f1 ∗ f2 = f2 ∗ f1 = 0,

q(f1) = q(f2) = 0, 〈f1, f2〉 = ρ(λ)θ(λ).

The following lemma is similar to Lemma 5.2.2. We omit the proof here.

Lemma 6.3.1. We have

1

λ
(L0 ∗ fi) ⊂ L0,

1

λ
(fi ∗ L0) ⊂ L0.

Define the ρ-linear transformation ti : L0 → L0 given by ti(x) = λ−1(x ∗ fi), for i = 1, 2.

Take Li = ti(L0) = λ−1(L0 ∗ fi). Both Li has rank(Li) ≤ 3 since fi are isotropic. For any

x ∈ L0, we have

1

λ
[(
1

λ
(f2 ∗ x)) ∗ f1] +

1

λ
[(
1

λ
(f1 ∗ x)) ∗ f2] =

1

λρ(λ)
θ(〈f1, f2〉)x = x,

by Lemma 2.3.3. So L0 = L1 + L2, Since rank(Li) ≤ 3, we must have a direct sum

composition: L0 = L1 ⊕ L2.
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Lemma 6.3.2.

(1) For any x ∈ L0, t2i (x) = λ−1(fi+1 ∗ x), i = 1, 2 mod 2.

(2) For any x ∈ Li, t3i (x) = −x.

(3) From (2), ti is a O0[[u]]-isomorphism when restrict at Li. The inverse map t−1i (x) =

−t2i (x) = λ−1(fi+1 ∗ x) is θ-linear.

(4) For x ∈ L1, y ∈ L2, we have 〈t1(x), t2(y)〉 = ρ(λ)λ−1 · ρ(〈x, y〉).

Proof. (1) For any x ∈ L0, we have

t21(x) =
1

λρ(λ)
((x ∗ f1) ∗ f1) = −

1

λρ(λ)
((f1 ∗ f1) ∗ x) = −

1

λ
(f2 ∗ x),

by Lemma 2.3.3. A similar argument gives t22(x) = −λ−1(f1 ∗ x).

(2) For any x ∈ L1, we have t31(x) = −(λρ(λ))−1 · ((f2 ∗ x) ∗ f1). Consider

(f2 ∗ x) ∗ f1 + (f1 ∗ x) ∗ f2 = θ(〈f1, f2〉)x = λρ(λ)x,

by Lemma 2.3.3. Let x = λ−1(z∗f1) for some z ∈ L0. We get f1∗x = θ(λ)−1(f1∗(z∗f1)) = 0

by q(f1) = 0. Hence (f2 ∗ x) ∗ f1 = λρ(λ)x, which implies t31(x) = −x. Similar calculations

for y ∈ L2 give t32(y) = −y.

Part (3) follows from (2) immediately. For (4), we have

〈t1(x), t2(y)〉 =
1

λ2
〈x ∗ f1, y ∗ f2〉 =

1

λ2
ρ(〈f1 ∗ (y ∗ f2), x〉).

Since

f1 ∗ (y ∗ f2) = −λt22(y ∗ f2) = −λt
2
2(λt2(y)) = −λθ(λ)t

3
2(y) = λθ(λ)y,
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by (1) and (2), we obtain

〈t1(x), t2(y)〉 =
1

λ2
ρ(λ)λρ(〈x, y〉) = ρ(λ)

λ
ρ(〈x, y〉).

Remark 6.3.3. (1) From the proof above Lemma, we can see that λ−1(fi ∗ Li) = 0, and

λ−1(Li ∗ fi+1) = 0.

(2) Since L1, L2 are isotropic and 〈 , 〉 restricted to L0 is nondegenerate, the Li are in

duality: L1 ∼= Hom(L2, ρ(λ)θ(λ)R[[u− π0]]⊗O0[u] O0[v]).

Lemma 6.3.4. For the multiplication Li ∗ Lj , we have

(1) λ−1(L1∗L2) ⊂ (R[[u−π0]]⊗O0[u]O0[v])f1, λ−1(L2∗L1) ⊂ (R[[u−π0]]⊗O0[u]O0[v])f2.

(2) λ−1(Li ∗ Li) ⊂ Li+1 (i = 1, 2 mod 2).

Proof. (1) For x ∈ L1, y ∈ L2, we write x as x = λ−1(x1 ∗ f1) with some x1 ∈ L1, and y as

y = λ−1(y1 ∗ f2) with some y1 ∈ L2. Consider

1

λ
(x∗y) = 1

λρ(λ)θ(λ)
((x1∗f1)∗(y1∗f2)) =

1

λρ(λ)θ(λ)
(−((y1∗f2)∗f1)∗x1+θ(〈x1, y1∗f2〉)f1),

by Lemma 2.3.3. Notice that (y1 ∗ f2) ∗ f1 ∈ L2 ∗ f1 = 0. Thus we have

〈x1, y1 ∗ f2〉 =
θ(λ)

λ
θ(〈t1(x1), t2(y2 ∗ f2)〉)

=
θ(λ)

λ
θ(〈x, t2(λy)〉)

= θ(λ)θ(〈x, t2(y)〉).
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Hence
1

λ
(x ∗ y) = 1

λρ(λ)θ(λ)
ρ(λ)ρ(〈x, t2(y)〉)f1 =

1

λθ(λ)
ρ(〈x, t2(y)〉)f1.

Since 〈x, t2(y)〉 ∈ ρ(λ)θ(λ)R[[u−π0]]⊗O0[u]O0[v], we obtain (λθ(λ))−1ρ(〈x, t2(y)〉) ∈ R[[u−

π0]]⊗O0[u] O0[v]. Similarly for y ∗ x, we have

1

λ
(y ∗ x) = 1

λθ(λ)
ρ(〈t1(x), y〉)f2.

(2) For x1, x2 ∈ L1, we claim that λ−1(x1 ∗ x2) ∈ L0. Since 〈x1 ∗ x2, f1〉 = θ(〈f1 ∗

x1, x2〉) = 0 by f1 ∗ L1 = 0, and 〈x1 ∗ x2, f2〉 = ρ(〈x2 ∗ f2, x1〉) = 0 by L1 ∗ f2 = 0. Using

Lemma 2.3.3, we find

t1(x1) ∗ t1(x2) =
1

ρ(λ)θ(λ)
((x1 ∗ f1) ∗ (x2 ∗ f1))

=
1

ρ(λ)θ(λ)
(−f1 ∗ (x2 ∗ (x1 ∗ f1)))

=
1

ρ(λ)θ(λ)
(f1 ∗ (f1 ∗ (x1 ∗ x2))),

by 〈x1 ∗ f1, f1〉 = 0 and 〈f1, x2〉 = 0. Since f1 ∗ (f1 ∗ (x1 ∗ x2)) = f1 ∗ (−λt22(x1 ∗ x2)) =

λθ(λ)t42(x1 ∗ x2) = −λθ(λ)t2(x1 ∗ x2), we obtain:

t1(x1) ∗ t1(x2) =
−λ
ρ(λ)

t2(x1 ∗ x2).

Here x1 ∗ x2 ∈ λL0. Let t2 act on both sides of above equation. We obtain t2(x1 ∗ x2) ∈

ρ(λ)L2. Hence t1(x1) ∗ t1(x2) ∈ λL2, which gives us L1 ∗ L1 ⊂ λL2 by t1 isomorphism.

Similarly, L2 ∗ L2 ⊂ λL1.
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So far we discussed the multiplication on L. To make it similar to the Table 2.1, we

want to find a basis {x1, x2, x3} for L1 (resp. {y1, y2, y3} for L2) such that t1(xi) = −id

(resp. t2(yi) = −id). To do that, we first check t̄i = −id under the canonical map L →

L/(u− π0, v)L.

Recall that we define x̄ ⋆ ȳ = λ̄−1 · x ∗ y. Denote by 〈 , 〉λ̄ := λ̄−2〈 , 〉 the bilinear form

corresponding to ⋆ and qλ̄ the quadratic form corresponding to ⋆. We have:

Proposition 6.3.5. Suppose R is a local henselian ring with the maximal ideal m. Given

(L, ∗, 〈 , 〉) a R[[u − π0]] ⊗O0[u] O0[v]-lattice satisfying (1)-(4) as above. Set L̄ = L/(u −

π0, v,m)L with multiplication x̄⋆ȳ = λ̄−1 ·x ∗ y for all x, y ∈ L. We have (L̄, ⋆) is isomorphic

to the split para-Cayley algebra.

Proof. It is easy to see that qλ̄(x̄ ⋆ ȳ) = qλ̄(x̄)qλ̄(ȳ), and 〈x̄ ⋆ ȳ, z̄〉λ̄ = 〈ȳ ⋆ z̄, x̄〉λ̄, so L̄ is a

symmetric composition algebra. We need to find a para-unit, i.e. an element ē ∈ L̄, such

that ē ⋆ ē = ē, ē ⋆ x̄ = x̄ ⋆ ē = −x̄ for all x̄ ∈ L̄ satisfying 〈ē, x̄〉λ̄ = 0. Set e = f1 + f2. Here

e is an idempotent since

e ⋆ e =
1

λ
((f1 + f2) ∗ (f1 + f2)) =

1

λ
(λ(f1 + f2)) = e.

By condition (4), we get ē ⋆ x̄ = x̄ ⋆ ē = −x̄. Therefore ē is a para-unit in L̄. Thus L̄ is a

para-Cayley algebra. It is split since q is an isotropic norm.

Proposition 6.3.6. We have L̄i = L̄0 ⋆ f̄i = {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄}. Hence for

t̄i : Li → Li,

we have t̄i = −id.
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Proof. By Lemma 34.8, [14], we can define x̄ � ȳ = (ē ⋆ x̄) ⋆ (ȳ ⋆ ē) as a unital composition

algebra with identity element ē. We have x̄ ⋆ ȳ = r(x̄) � r(ȳ), where r(x̄) = 〈ē, x̄〉λ̄ē − x̄ is

the conjugation of x̄. By Proposition 2.1.1,

x̄ � ȳ + ȳ � x̄− 〈x̄, ē〉λ̄ȳ − 〈ȳ, ē〉λ̄x̄+ 〈x̄, ȳ〉λ̄ē = 0.

Using x̄ ⋆ ȳ = r(x̄) � r(ȳ) and 〈r(x̄), r(ȳ)〉λ̄ = 〈x̄, ȳ〉λ̄, we obtain

x̄ ⋆ ȳ + ȳ ⋆ x̄ = 〈ē, x̄〉λ̄r(ȳ) + 〈ē, ȳ〉λ̄r(x̄)− 〈x̄, ȳ〉λ̄ē.

Therefore, if x̄ ∈ L̄0 ⋆ f̄i, we have f̄i ⋆ x̄ = 0 by qλ̄(f̄i) = 0, and

x̄ ⋆ f̄i + f̄i ⋆ x̄ = 〈ē, f̄1〉λ̄r(x̄) = r(x̄).

Hence x̄ ⋆ f̄i = x̄ ⋆ f̄i + f̄i ⋆ x̄ = 〈ē, x̄〉λē− x̄ = −x̄. Then L̄0 ⋆ f̄i ⊂ {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄}.

It is obvious that {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄} ⊂ L̄0 ⋆ f̄i. So we get

L̄i = L̄0 ⋆ f̄i = {x̄ ∈ L̄0 | x̄ ⋆ f̄i = −x̄}

and t̄i = −id.

Now we prove that ti and −id are the same up to ρ-conjugacy. This part is similar to §5.2.

We fix a basis for Li ∼= (R[[u− π0]]⊗O0[u]O0[v])
3 and let Ai ∈ GL3(R[[u− π0]]⊗O0[u]O0[v])

representing ti. We can find a new basis for Li with transition matrix b ∈ GL3(R[[u −

π0]]⊗O0[u] O0[v]) such that

−I = b−1Aiρ(b).
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Consider t1 : L1 → L1, the subgroup of GL3(R[[u− π0]]⊗O0[u] O0[v]) generated by t1 is the

cyclic group of order 6 (t61 = (−id)2 = id). If we fix the basis and use A1 representing t1, we

have t21 = A1ρ(A1), t
3
1 = A1ρ(A1)θ(A1) = −I. Consider the map

Γ→ GL3(R[[u− π0]]⊗O0[u] O0[v])

by ρ 7→ aρ = −A1. Using ast = as
sat, we get θ 7→ aθ = aρρ(aρ) = A1ρ(A1), and 1 7→ a1 = I.

The image of {ρ, θ, 1} is {t41 = −t, t81 = t2, t121 = id}, so aρ is a 1-cocycle. Denote by [aρ] the

1-cocycle in H1(Γ,GL3(R[[u− π0]]⊗O0[u] O0[v]). Using the quotient map

R[[u− π0]]⊗O0[u] O0[v]→ R→ κ,

and the fact that R is a local henselian ring. We have (R[[u − π0]] ⊗O0[u] O0[v], (u − π0)),

(R[v], (v)), (R,m) are Henselian pairs. Hence we obtain the exact sequence:

1→ U → GL3(R[[u− π0]]⊗O0[u] O0[v])→ GL3(κ)→ 1

where U is the kernel. The group Γ acts on GL3(R[[u−π0]]⊗O0[u]O0[v]) by ρ on O0[v], and

Γ acts trivially on GL3(κ). So we obtain the exact sequence of pointed sets:

...→ H1(Γ, U)→ H1(Γ,GL3(R[[u− π0]]⊗O0[u] O0[v])→ H1(Γ,GL3(κ)).

Since |Γ|= 3 and p 6= 3, we get H1(Γ, U) = 1. Hence for any [as] ∈ H1(Γ,GL3(R[[u −

π0]] ⊗O0[u] O0[v]) satisfying [ās] = 1, we get [as] = 1. Under this observation, we get

[āρ] = −[t̄] = 1 by Proposition 6.3.6. Therefore [aρ] = 1 by the exact sequence. In matrix
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language, there exist b ∈ GL3(R[[u− π0]]⊗O0[u] O0[v]) such that

I = b−1(−At)ρ(b), t1 ∼ −id.

We have a similar conclusion for t2.

Using the above we see that there exist a basis {x1, x2, x3} for L1, and a dual basis

{y1, y2, y3} for L2, such that t1(xi) = −id, t2(yi) = −id, 〈xi, yj〉 = ρ(λ)θ(λ)δij . We have

xi ∗ f1 = −λxi, f1 ∗ xi = 0,

xi ∗ f2 = 0, f2 ∗ xi = −λxi,

yi ∗ f1 = 0, f1 ∗ yi = −λyi,

yi ∗ f2 = −λyi, f2 ∗ yi = 0.

By Lemma 6.3.4, we have

xi ∗ yj = −λδijf1, yi ∗ xj = −λδijf2.

It reminds to calculate the terms in Li ∗ Li, which we will also define a wedge product

∧ : Li × Li → Li+1 given by

u ∧ v :=
1

λ
(t−1i (u) ∗ ti(v)),
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for all u, v ∈ Li. Let u ∈ L1. It is immediate that

u ∧ u =
1

λ
(t−11 (u) ∗ t1(u))

=
1

λρ(λ)θ(λ)
((f2 ∗ u) ∗ (u ∗ f1))

=
1

λρ(λ)θ(λ)
(((u ∗ f1)) ∗ u) ∗ f2)

=
q(u)

λρ(λ)θ(λ)
(f1 ∗ f2) = 0

by 〈f2, u ∗ f1〉 = 0, q(u) = 0, and similarly for u ∈ L2. By linearizing the equation we find

u ∧ v = −v ∧ u. Now define a trilinear function 〈 , , 〉 on Li by 〈u, v, w〉 = 〈u, v ∧ w〉. It is

an alternating trilinear function (Similar proof as in §5.2).

Consider λ−1(x1 ∗ x2), we have 〈λ−1(x1 ∗ x2), x1〉 = −λ−1〈x1 ∗ x2, t1(x1)〉 = −λ−2〈x1 ∗

x2, x1 ∗ f1〉 = 0 by 〈x2, f1〉 = 0. Similarly 〈λ−1(x1 ∗ x2), x2〉 = 0. Hence we have λ−1(x1 ∗

x2) = by3 for some b:

b =
1

λρ(λ)θ(λ)
〈x1 ∗ x2, x3〉 ∈ R[[u− π0]]⊗O0[u] O0[v].

Multiplying y1 on the right side, we obtain ρ(λ)−1((x1 ∗ x2) ∗ y1) = (by3) ∗ y1. Since

(x1 ∗ x2) ∗ y1 + (y1 ∗ x2) ∗ x1 = θ(〈x1, y1〉)x2 = λρ(λ)x2, and y1 ∗ x2 = 0, we have

λx2 = ρ(b)(y3 ∗ y1).

Therefore we obtain b, ρ(b)−1 ∈ R[[u−π0]]⊗O0[u]O0[v], which implies b ∈ (R[[u−π0]]⊗O0[u]

O0[v])
∗. We can let b = −1, and get x1 ∗ x2 = −λy3. We can perform similar calculations

for the other xi ∗ xj and yi ∗ yj . By using alternating trilinear form, we obtain:
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Table 6.1: Multiplication table xi ∗ xj

∗ x1 x2 x3

x1 0 -λy3 λy2

x2 λy3 0 -λy1

x3 −λy2 λy1 0

Table 6.2: Multiplication table yi ∗ yj

∗ y1 y2 y3

y1 0 −λx3 λx2

y2 λx3 0 −λx1

y3 −λx2 λx1 0

Therefore, we complete the multiplication table for L. By letting g(e4) = f1, g(e5) = f2,

and
g(e1) = x1, g(e6) = x2, g(e7) = x3,

g(e8) = y1, g(e3) = y2, g(e2) = y3.

We have g(ei) ∗ g(ej) = λg(ei ∗ ej), so there exist g ∈ LG such that L = g(L).
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Chapter 7

PZ-local models for triality groups

Now we are ready to give the definition of PZ-local models. The generalized local models

were introduced by Pappas and Zhu in §7, [26]. We will give an explicit description of PZ

local models for triality groups.

7.1 General construction of PZ-local models

We used the same notations as in §6.1. That is, let F0 be a p-adic field with valuation ring

O0, p 6= 2, 3. Let π0 be a uniformizer of O0. Set the residue field κ = O0/(π0). We fix a

separable closure F̄ s
0 of F0 and denote by Funr

0 the maximal unramified extension of F0 in

F̄ s
0 , with valuation ring Ounr

0 . Consider a Galois extension F/F0. Denote by F̃0 the maximal

unramified extension of F0 that is contained in F , and by Õ0, O the valuation rings of F̃0, F

respectively. Set e = [F : F̃0]. Then there is a uniformizer π of F such that πe = π0.

Let G be a connected reductive group over F0, which splits over a tamely ramified

extension. Then G
F̃0

:= G ⊗F0
F̃0 is quasi-split. In [26], it is shown that there exist a

reductive group G over Spec(O0[u
±]), which extends G in the sense that its base change

G⊗O0[u±] F0, u 7→ π0,

is isomorphic to G. By fixing a point x in the Bruhat- Tits building B(G,F0), Pappas and
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Zhu constructed a unique smooth, affine group scheme G = G x over Spec(O0[u]) (called a

Bruhat-Tits group scheme for G ) which satisfies the properties in Theorem 6.1.1.

Using the local parameter t = u−π0, we define G F0,π0
:= G ⊗O0[u]F0[[t]] where O0[u]→

F0[[t]] given by u 7→ t+ π0. Notice that there is an isomorphism:

Õ0[v
±1]⊗O[u±1] F0[[t]]

∼→ F [[z]]
∼→ F [[t]],

(see (6.10), [26]) given by v 7→ π(1 + z), and z maps to the power series (1 +
u−π0
π0

)1/e − 1,

where the e-th root is expressed using the standard binomial formula. This isomorphism

also matches the action of Γ on the left side (coming from the cover O0[u]→ Õ0[v] by base

change), with the action on F [[z]] given by the Galois action on the coefficients F . Using this

isomorphism and G⊗O0[u±] F0 ' G, we obtain

G F0,π0
' G⊗F0

F0[[t]].

Let LG F0,π0
be the loop group over Spec(F0) representing the functor from F0- algebras to

groups that sends R to

LG F0,π0
(R) = G F0,π0

(R((t))),

and L+G F0,π0
over Spec(F0) representing the functor from F0- algebras to groups that sends

R to

L+G F0,π0
(R) = G F0,π0

(R[[t]]).

Consider GrGF0,π0
(R) := LG F0,π0

/L+G F0,π0
as a fpqc sheaf over Spec(F0). By Proposition
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6.4, [26], we have an isomorphism:

GrG ,O0[u] ×O0[u] F0
∼→ GrGF0,π0

,

given by u 7→ π0. Combining this isomorphism with Proposition 6.1.3, we obtain GrGF0,π0
'

GrG.

Now we define the PZ-local models. Suppose that {µ} is a geometric conjugacy class of

one parameter subgroups of G. Let E be the reflex field of (G, {µ}). Since G is quasi-split

over the maximal unramified extension F̃0, we can find a representative of µ over E′ := EF̃0

such that µ : Gm,E′ → GE′ = G ⊗F0
E′. Notice that µ gives an E[z±1]-valued point of

GE′ , therefore an E′((z))-valued point of GE′ . Hence we have an E′-valued point of the loop

group LG. By G F0,π0
' G⊗F0

F0[[t]], we have an isomorphism:

G(F0((z)))
∼→ G F0,π0

(F0((z))) = G F0,π0
(F0((t))).

We denote by sµ the corresponding E′-valued point in LG F0,π0
, and [sµ] the correspond-

ing point in the affine Grassmannian GrGF0,π0
×F0

E′. Consider the L+G F0,π0
-orbit:

(L+G F0,π0
)E′ · [sµ]. This orbit is contained in GrGF0,π0

×F0
E′, which by Theorem 6.1.1,

can be identified with the generic fiber of GrG ,O0×O0OE′ . Since the conjugacy class of µ is

defined over E, the same is true for the orbit (L+G F0,π0
)E′ · [sµ]: There is an E-subvariety

Xµ of GrGF0,π0
×F0

E such that

Xµ ×E E′ = (L+G F0,π0
)E′ · [sµ].

Definition 7.1.1. The PZ-local model MG ,µ is the reduced scheme over Spec(OE) which
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is the Zariski closure of the orbit Xµ in the ind-scheme GrG ,OE = GrG ,O[u] ×O[u] OE over

Spec(OE).

7.2 PZ-local models for triality groups

We continued with the same notations in §6.2. That is, let K/Qp be a cubic tamely ramified

field extension, p 6= 2, 3. Let F0 = Qunr
p , F = KF0 with the valuation rings O0,O respec-

tively. Let π0 (resp. π) be a uniformizer of O0 (resp. O) with π3 = π0. Then F/F0 is a cubic

Galois extension, and O = O0[π]. The corresponding Galois group Γ = Gal(F/F0) = 〈ρ〉,

where ρ(π) = πξ.

Recall that we define the parahoric group given by the standard lattice L:

G := (ResO0[v]/O0[u](H ⊗Z O0[v]))
Γ,

as a smooth affine group scheme over A1
O0

= Spec(O0[u]) (Here H is the Chevalley form of

H). We described the global affine Grassmannian as a fpqc sheaf:

GrG := LG /L+G ,

and there is a natural identification between the points in GrG (R) and the set of R[[u −

π0]] ⊗O0[u] O0[v]-lattices satisfying conditions (1)-(4) in §6.2. To describe PZ-local models

for triality groups, we need to fix some coweights of GO8. Set t = u− π0.

Suppose that {µi}i=1,2,3 are coweights of GO8. We fix µi : Gm,F → GO8(V, q) given
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by

µ1(t) = diag(t−1, 1, 1, 1, 1, 1, 1, t),

µ2(t) = diag(t−1, t−1, t−1, 1, t−1, 1, 1, 1),

µ2(t) = diag(t−1, t−1, t−1, t−1, 1, 1, 1, 1).

For any O-algebra R, denote by Li = ⊕8
k=1R[[t]]ek the standard lattices in the vector space

VR((t)) := ⊕8
k=1R((t))ek for i = 1, 2, 3, where {ek}k=1,...,8 satisfies the multiplication in Table

2.1. Similarly, denote Li,F = ⊕8
k=1F [[t]]ek the base change Li⊗RF . There is a R((t))-bilinear

form 〈 , 〉 : VR((t)) × VR((t)) → R((t)) given by 〈ei, e9−j〉 = δij . Let Li(0) = µi(t)Li, and

Li,F (0) = µi(t)Li,F , i.e.,

L1(0) = R((t))〈t−1e1, e2, ..., e7, te8〉,

L2(0) = R((t))〈t−1ei, ej〉i=1,2,3,5, j=4,6,7,8,

L2(0) = R((t))〈t−1ei, ej〉i=1,2,3,4, j=5,6,7,8.

In what follows, we will use the isomorphism F⊗F0
F ∼= F×F×F . Consider the embeddings

φi : F → F ⊗F0
F for i = 1, 2, which are given by φ1(f) = f ⊗ 1, φ2(f) = 1 ⊗ f . We use

F1, F2 to denote the two isomorphic copies of F , obtained as the image of the embeddings

φi : F → F ⊗F0
F , i.e., F1 = φ1(F ), F2 = φ2(F ). In this identification, we set the

uniformizers π = π ⊗ 1 ∈ OF1
, π

1/3
0 = 1⊗ π ∈ OF2

. Notice that there are isomorphisms

F0[[t]]⊗O0[u] O0[v] ∼= F1[[z]] ∼= F1[[t]],

where the first map is given by v 7→ π(1 + z), and the second map is given by

z 7→ (1 +
t

p
)1/3 − 1 =

t

3p
− t2

9p2
+

5t3

81p3
+ ... ∈ F2[[t]]. (7.2.1)
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Applying the tensor product F2 ⊗F0
− on both sides. We obtain:

O0[v]⊗O0[u] F2[[t]]
∼→ F1 ⊗F0

F2[[t]]
∼→ F2[[t]]× F2[[t]]× F2[[t]],

the first part given by v 7→ π(1+z), and the second part given by π 7→ (π
1/3
0 , π

1/3
0 ξ, π

1/3
0 ξ2).

Recall that L = ⊕8
k=1(R[[u− π0]]⊗O0[u] O0[v])ek is the standard lattice in ṼR((u−π0)). Set

L (0) = µ1(v − π
1/3
0 )µ2(v − π

1/3
0 ξ)µ3(v − π

1/3
0 ξ2)L,

i.e, L (0) is a free R[[t]]⊗O0[u] O0[v]-module with the basis:

 1

u− π0
e1,

1

v2 + π
1/3
0 v + π

2/3
0

ei,
1

v − π1/30 ξ2
e4,

1

v − π1/30 ξ
e5, ej , (v − π

1/3
0 )e8


i=2,3, j=6,7

.

When R = F , we denote by L (0)F the F [[t]] ⊗O0[u] O0[v]-lattice with the same basis as

above. By O0[v]⊗O0[u] F [[t]] ' F [[t]]×3, we can check that v−π1/30 maps to (π
1/3
0 z, π

1/3
0 (ξ−

1 + ξz), π
1/3
0 (ξ2 − 1 + ξ2z)). It is easy to see that ξ − 1 + ξz and ξ2 − 1 + ξ2z are units in

F [[t]]. Hence (ξ− 1+ ξz)F [[t]] = (ξ2− 1+ ξ2z)F [[t]] = F [[t]], and zF1[[t]] = tF1[[t]] by Equation

(7.2.1). Therefore,

(F [[t]]⊗O0[u] O0[v])(v − π
1/3
0 ) ∼= (t, 1, 1)F [[t]]×3.

Similarly, we have (F [[t]]⊗O0[u] O0[v])(v − π
1/3
0 )−1 ∼= (t−1, 1, 1)F [[t]]×3, and

(F [[t]]⊗O0[u] O0[v])(v − π
1/3
0 ξ)±1 ∼= (1, t±1, 1)F [[t]]×3,

(F [[t]]⊗O0[u] O0[v])(v − π
1/3
0 ξ2)±1ei ∼= (1, 1, t±1)F [[t]]×3.
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Combining the above results, we obtain:

L (0)F
∼= (L1,F (0),L2,F (0),L3,F (0)),

by O0[v]⊗O0[u] F [[t]] ' F [[t]]×3.

Proposition 7.2.2. For any O-algebra R, we have:

(1) (u − π0)L ⊂ L (0) ⊂ (u − π0)
−1L, and L (0) is a R[[u − π0]] ⊗O0[u] O0[v]-lattice

satisfying conditions (1)-(4) in §6.2, i.e., L (0) ∈ GrG (R).

(2) Li(0) satisfy the following diagrams:

(i)

L1

(u− π0)L1 ⊂ L1(0) ∩ L1 L1(0) + L1 ⊂ (u− π0)−1L1,

L1(0)

⊂⊂

⊂ ⊂

where the quotients arising from all slanted inclusions are generated as O-modules by

one element (we say that they have rank 1), and the quotients from (u − π0)L1 ⊂

L1(0) ∩ L1, L1(0) + L1 ⊂ (u− π0)−1L1 have rank 7.

(ii)

(u− π0)L2 ⊂ L2(0)
∨ ⊂ L2 ⊂ L2(0) ⊂ (u− π0)−1L2,

(u− π0)L3 ⊂ L3(0)
∨ ⊂ L3 ⊂ L3(0) ⊂ (u− π0)−1L3,

where Li(0)∨ is the dual lattice of Li(0) under the bilinear form: 〈 , 〉 : VR((t))×VR((t)) →

R((t)). The quotients arising from all inclusions have rank 4.
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(3) The triple ((L1,F (0)+L1,F )/L1,F ,L2,F (0)/L2,F ,L3,F (0)/L3,F ) is isomorphic to the

triality triple (Fe1, V ∗Fe1, F e1∗V ). Recall that (V, ∗) is the normal twisted composition

algebra obtained from the split para-Cayley algebra.

Proof. (1) (u − π0)L ⊂ L (0) ⊂ (u − π0)−1L is directly from defintion. We can check that

L (0) ∗L (0) ⊂ λL (0) with λ = (v − π1/30 )−1. In fact, let

f1 = a =
ξ2

v − π1/30 ξ2
e4, f2 = λ−1(a ∗ a) = ξ

v − π1/30 ξ
e5.

We have q(a) = 0, 〈a, a ∗ a〉 = (u− π0)−1, and there exist a basis of L (0) such that:

λ−1( 1
u−π0

e1 ∗ f1) = − 1
u−π0

e1, λ−1( 1

v2+π
1/3
0 v+π

2/3
0

e2 ∗ f2) = − 1

v2+π
1/3
0 v+π

2/3
0

e2,

λ−1(e6 ∗ f1) = −e6, λ−1( 1

v2+π
1/3
0 v+π

2/3
0

e3 ∗ f2) = − 1

v2+π
1/3
0 v+π

2/3
0

e3,

λ−1(e7 ∗ f1) = −e7, λ−1((v − π1/30 )e8 ∗ f2) = −(v − π
1/3
0 )e8.

Then (L (0), ∗) satisfies conditions (1)-(4) in §6.2, i.e., L (0) ∈ GrG (R).

(2) We have

L2(0)
∨ = R[[t]]〈ei, tej〉i=1,2,3,5, j=4,6,7,8,

L3(0)
∨ = R[[t]]〈ei, tej〉i=1,2,3,4, j=5,6,7,8.

One can check the diagrams directly from that.
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(3) It is easy to see that

(L1,F (0) + L1,F )/L1,F = (t−1F [[t]]/F [[t]])e1 ∼= Fe1,

L2,F (0)/L2,F = (t−1F [[t]]/F [[t]])〈e1, e2, e3, e5〉 ∼= Fe1 + Fe2 + Fe3 + Fe5,

L3,F (0)/L3,F = (t−1F [[t]]/F [[t]])〈e1, e2, e3, e4〉 ∼= Fe1 + Fe2 + Fe3 + Fe4.

So ((L1,F (0) + L1,F )/L1,F ,L2,F (0)/L2,F ,L3,F (0)/L3,F )
∼= (Fe1, V ∗ Fe1, F e1 ∗ V ).

Set sµ = µ1(v − π
1/3
0 )µ2(v − π

1/3
0 ξ)µ3(v − π

1/3
0 ξ2). Let Xµ = (L+G )L (0) be the orbit

of L (0) = sµL. We now define the PZ-local model for triality groups:

Definition 7.2.3. The PZ-local model M(µ) is the Zariski closure of Xµ in the induced

scheme GrG ,O = GrG ×O0[u] O over Spec(O).

For any L ∈M(µ)(R), we have a similar proposition as Proposition 7.2.2:

Proposition 7.2.4. (1) (u− π0)L ⊂ L ⊂ (u− π0)−1L.

(2) Let LF be any point of the generic fiber of M(µ). Then LF is a F [[t]]⊗O0[u] O0[v]-

lattice. If LF = (L1,F ,L2,F ,L3,F ) given by F [[t]]⊗O0[u]O0[v] ' F [[t]]×3, then Li,F satisfy

the following diagrams:

97



(i)

L1,F

(u− π0)L1,F ⊂ L1,F ∩ L1,F L1,F + L1,F ⊂ (u− π0)−1L1,F ,

L1,F

⊂⊂

⊂ ⊂

(ii)

(u− π0)L2,F ⊂ L ∨2,F ⊂ L2,F ⊂ L2,F ⊂ (u− π0)−1L2,F ,

(iii)

(u− π0)L3,F ⊂ L ∨3,F ⊂ L3,F ⊂ L3,F ⊂ (u− π0)−1L3,F ,

such that ((L1,F+L1,F )/L1,F ,L2,F /L2,F ,L3,F /L3,F ) is isomorphic to the triality triple

(l, V ∗ l, l ∗ V ) for some isotropic line l ∈ V .

Proof. (1) is obvious. For (2), consider

L+G (F ) = {g = (g1, g2, g3) ∈ GO8(F [[t]]) | λigi(x ∗ y) = gi+1(x) ∗ gi+2(y) mod 3}.

Suppose that LF = (L1,F ,L2,F ,L3,F ) = g(L1,F (0),L2,F (0),L3,F (0)) for some g =

(g1, g2, g3) ∈ L+G (F ), then

g1(L1,F (0)) + L1,F /L1,F = ḡ1(L1,F (0)) + L1,F /L1,F ),

g2(L2,F (0))/L2,F = ḡ2(L2,F (0)/L2,F ),

g2(L3,F (0))/L3,F = ḡ3(L3,F (0)/L3,F ),

98



where ḡi = gi mod t. Denote by l the isotropic line ḡ1(Fe1) = ḡ1(L1,F (0)) + L1,F /L1,F ).

We get ḡ2(L2,F (0)/L2,F ) = ḡ2(V ∗ Fe1) = V ∗ ḡ1(Fe1) = V ∗ l, and ḡ3(L3,F (0)/L3,F ) =

ḡ3(Fe1 ∗ V ) = ḡ1(Fe1) ∗ V = l ∗ V , hence

((L1,F + L1,F )/L1,F ,L2,F /L2,F ,L3,F /L3,F )
∼= (l, V ∗ l, l ∗ V ).
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Chapter 8

Splitting models for triality groups

The original purpose of introducing splitting models is to modify local models in the ramified

case, so that the modified models are flat and have reasonable singularities. Pappas and Zhu

discuss the cases where the quasi-split form ofG is the general linear group GLd or the general

symplectic group GSpn. In the following sections, we will consider the splitting model for

triality groups. We will see that it is isomorphic to the blow-up of some hypersurface scheme.

8.1 Definition of splitting models for triality groups

Suppose R is an O-algebra. Recall that we set sµ = µ1(v−π
1/3
0 )µ2(v−π

1/3
0 ξ)µ3(v−π

1/3
0 ξ2)

and L (0) = sµL in §7.2. The PZ-local models for triality groups M(µ) is the Zariski closure

of the orbit Xµ = (L+G )L (0). To define splitting models, we consider “partial resolutions

of M(µ)”. More precisely, set

L (3)(0) = L (0) + L,

L (2)(0) = µ1(v − π
1/3
0 )µ2(v − π

1/3
0 ξ)L+ L,

L (1)(0) = µ1(v − π
1/3
0 )L+ L.
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Then we obtain:

L ⊂ L (1)(0) ⊂ L (2)(0) ⊂ L (3)(0) ⊂ (u− π0)−1L.

We have the following propositions for {L (i)(0)}i=1,2,3:

(1) (v−π1/30 ξ2)L (3)(0) ⊂ L (2)(0), (v−π1/30 ξ)L (2)(0) ⊂ L (1)(0), (v−π1/30 )L (1)(0) ⊂

L.

(2) L ∗L (1)(0) ⊂ L (2)(0), L (1)(0) ∗ L ⊂ L (3)(0).

(3) L (0) is self dual with respect to the form 〈 , 〉 : L (0)⊗L (0)→ ρ(λ)θ(λ)(R[[t]]⊗O0[u]

O0[v]), where λ = (v − π1/30 )−1.

These propositions are directly from the definitions of L (i)(0) we set. Generally, for any L

in the orbit Xµ, we have L = g(L (0)) for some g in

L+G (R) = {g ∈ GO+
8 (R[[t]]⊗O0[u] O0[v]) | there exist λ such that λg(x ∗ y) = g(x) ∗ g(y)}

for λ ∈ (R[[t]] ⊗O0[u] O0[v])
∗, x, y ∈ L. Set L (i) = g(L (i)(0)) for i = 1, 2, 3. We observe

that {L (i)}i=1,2,3 have the same propositions as above:

(1) L ⊂ L (1) ⊂ L (2) ⊂ L (3) ⊂ (u− π0)−1L.

(2) (v − π1/30 ξ2)L (3) ⊂ L (2), (v − π1/30 ξ)L (2) ⊂ L (1), (v − π1/30 )L (1) ⊂ L.

(3) L ∗L (1) ⊂ L (2), L (1) ∗ L ⊂ L (3).

(1) and (2) are directly from L (i) = g(L (i)(0)). For (3), consider L ∗ L (1) = g(L) ∗

g(L (1)(0)) = λ−1g(L ∗ (L (1)(0)), and g(L ∗ (L (1)(0)) ⊂ g(L (2)(0)) = L (2). We have
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L ∗L (1) ⊂ λ−1L (2). Since λ is a unit in R[[t]] ⊗O0[u] O0[v], we obtain L ∗L (1) ⊂ L (2).

Similarly, L (1) ∗ L ⊂ L (3).

Furthermore, since L ⊂ L (i) ⊂ (u− π0)−1L for i = 1, 2, 3, let F i be the image of L (i)

under the map:

t : (u− π0)−1L→ L/(u− π0)L,

(recall t = u− π0). Set Λ = L/tL. Notice that Λ = ⊕8
i=1(R⊗O0 O)ei, with a bilinear form

〈 , 〉 : Λ⊗Λ→ R⊗O0 O since O0[v] is isomorphic to O by v3 = u = π0. Therefore, we have

R⊗O0 O-modules F i satisfying

0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ Λ.

By R⊗O0 O = R⊕Rπ⊕Rπ2, we can view Λ as a 24-rank R free module with basis {π2ei,

πei, ei}i=1,...,8. In particular, the image of L (i)(0) are:

F1(0) = R(π2e1 + π
1/3
0 πe1 + π

2/3
0 e1),

F2(0) = R(πe1 − π
1/3
0 ξ2e1)⊕R(π2e1 − π

1/3
0 ξ2πe1)⊕k=2,3,5 R(π

2ek + π
1/3
0 ξπek + π

2/3
0 ξ2ek),

F3(0) = Re1 ⊕Rπe1 ⊕Rπ2e1 ⊕k=2,3 R(πek − π
1/3
0 ek)⊕k=2,3 R(π

2ek − π
1/3
0 πek)

⊕R(π2e4 + π
1/3
0 ξ2πe4 + π

2/3
0 ξe4)⊕R(π2e5 + π

1/3
0 ξπe5 + π

2/3
0 ξ2e5),

with rank(F1) = 1, rank(F2) = 5, rank(F3) = 9, when we view F i as R-modules.

Collections {F i}i=1,2,3 satisfy some similar propositions as {L (i)}. By viewing F i as

tL (i)/tL, we have Λ ∗F1 = L ∗ tL (1) mod tL ⊂ tL (2) mod tL ⊂ F2. Similarly F1 ∗Λ ⊂

F3. Hence:
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(1) 0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ Λ.

(2) (π − π1/30 ξ2)F3 ⊂ F2, (π − π1/30 ξ)F2 ⊂ F1, (π − π1/30 )F1 = 0.

(3) Λ ∗ F1 ⊂ F2, F1 ∗ Λ ⊂ F3.

Finally, we claim that F i are isotropic under the bilinear form: 〈 , 〉 : Λ ⊗ Λ → R ⊗O0 O.

Consider the bilinear form 〈 , 〉 : L (0) ⊗ L (0) → ρ(λ)θ(λ)(R[[t]] ⊗O0[u] O0[v]), where

λ = (v − π1/30 )−1. Since L (3)(0) = L (0) + L, we get

〈x, y〉 ∈ (u− π0)−1(R[[t]]⊗O0[u] O0[v]),

for all x, y ∈ L (3)(0). It keeps the same for x, y ∈ L (3). Therefore, 〈tx, ty〉 ∈ t(R[[t]]⊗O0[u]

O0[v]) for all x, y ∈ L (3). Set x′ = tx mod tL, y′ = ty mod tL. We obtain

〈x′, y′〉 = 0, for all x′, y′ ∈ F3.

Definition 8.1.1. Suppose that M is the functor from O-algebras to sets that sends R to

M(R) of collections {F i}i=1,2,3, where F i are R⊗O0 O-submodules of Λ, which fit into:

0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ Λ

such that:

(1) F i are locally direct summand of Λ, with rank(F1) = 1, rank(F2) = 5, rank(F3) = 9

when we view F i as R-modules.

(2) (π − π1/30 ξ2)F3 ⊂ F2, (π − π1/30 ξ)F2 ⊂ F1, (π − π1/30 )F1 = 0.
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(3) Λ ∗ F1 ⊂ F2, F1 ∗ Λ ⊂ F3.

(4) 〈x, y〉 = 0, for all x, y ∈ F3.

We callM the “naive splitting model for triality groups”. Unfortunately, the schemeM

is not flat, so we need to consider its flat closure, and call it the splitting model for triality

groups:

Definition 8.1.2. The splitting model for triality groups Msplit is the flat closure of M.

8.2 Blow-up of a quadratic hypersurface

In this section, we will prove the splitting model Msplit is isomorphic to the blow-up of a

quadratic hypersurface. Before we move on to our main result, let us consider the generic

fiber of Msplit. Recall that the isomorphism F ⊗F0
F ' F × F × F is given by r1 ⊗ r2 7→

(r1r2, ρ(r1)r2, θ(r1)r2), and we use F1, F2 to denote the two isomorphic copies of F , obtained

by the image of the embeddings φi : F → F ⊗F0
F , where φ1(f) = f ⊗ 1, φ2(f) = 1 ⊗ f .

Set the uniformizers π = π ⊗ 1 ∈ OF1
, π

1/3
0 = 1⊗ π ∈ OF2

. By this isomorphism, we get:

1

3π
2/3
0

(π2 + π
1/3
0 π + π

2/3
0 ) 7→ (1, 0, 0),

ξ

3π
2/3
0

(π2 + π
1/3
0 ξπ + π

2/3
0 ξ2) 7→ (0, 1, 0),

ξ2

3π
2/3
0

(π2 + π
1/3
0 ξ2π + π

2/3
0 ξ) 7→ (0, 0, 1).

In §8.1, we set Λ = L/tL = ⊕8
i=1(R⊗O0O)ei, with a bilinear form 〈 , 〉 : Λ⊗Λ→ R⊗O0O for

any O-algebra R. Let ΛF = ⊕8
i=1(F ⊗O0 O)ei be a 24 dimension F -vector space. Consider
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the linear isomorphism π : ΛF → ΛF , where π is represented by the matrix:

π =


0 I 0

0 0 I

π0I 0 0



with respect to the order of basis {π2e1, ..., π2e8, πe1, ..., πe8, ..., e1, ..., e8}. Here I is the 8×8

identity matrix. We call this order the standard order of basis.

By the characteristic equation π3 − π0 = (π − π1/30 )(π − π1/30 ξ)(π − π1/30 ξ2) = 0, it is

easy to see that π has 3 eigenvalues π1/30 , π
1/3
0 ξ, and π

1/3
0 ξ2. Since

π(π2 + π
1/3
0 π + π

2/3
0 ) = π

1/3
0 (π2 + π

1/3
0 π + π

2/3
0 ),

π(π2 + π
1/3
0 ξπ + π

2/3
0 ξ2) = π

1/3
0 ξ(π2 + π

1/3
0 ξπ + π

2/3
0 ξ2),

π(π2 + π
1/3
0 ξ2π + π

2/3
0 ξ) = π

1/3
0 ξ2(π2 + π

1/3
0 ξ2π + π

2/3
0 ξ),

(8.2.1)

the eigenvectors fξ
k

i corresponding to eigenvalues π1/30 ξk for k = 0, 1, 2, i = 1, .., 8 are:

fi = π2ei + π
1/3
0 πei + π

2/3
0 ei,

f
ξ
i = π2ei + π

1/3
0 ξπei + π

2/3
0 ξ2ei,

f
ξ2

i = π2ei + π
1/3
0 ξ2πei + π

2/3
0 ξei.

These three eigenspaces have a close relation with the generic fiber of the splitting model

Msplit. In fact, we will show that the generic fiber of Msplit is similar to a triality triple in
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some sense. For example, consider {F i
F (0)}i=1,2,3. We have:

F1
F (0) = F (π2e1 + π

1/3
0 πe1 + π

2/3
0 e1),

F2
F (0) = F (πe1 − π

1/3
0 ξ2e1)⊕ F (π2e1 − π

1/3
0 ξ2πe1)⊕k=2,3,5 F (π

2ek + π
1/3
0 ξπek + π

2/3
0 ξ2ek),

F3
F (0) = Fe1 ⊕ Fπe1 ⊕ Fπ2e1 ⊕k=2,3 F (πek − π

1/3
0 ek)⊕k=2,3 F (π

2ek − π
1/3
0 πek)

⊕ F (π2e4 + π
1/3
0 ξ2πe4 + π

2/3
0 ξe4)⊕ F (π2e5 + π

1/3
0 ξπe5 + π

2/3
0 ξ2e5),

By using the notations we just set, it is easy to see F1
F (0) = Ff1. Observe that

F (πe1 − π
1/3
0 ξ2e1)⊕ F (π2e1 − π

1/3
0 ξ2πe1) = Ff1 ⊕ Ff

ξ
1 ,

so we get F2
F (0) = Ff1 ⊕k=1,2,3,5 Ff

ξ
k . Similarly,

F3
F (0) = Ff1 ⊕

i=1,2,3,5
Ffi ⊕

j=1,2,3,4
Ff

ξ2

j .

Recall that a triality triple is (l, V ∗ l, l ∗ V ) for some isotropic line l in (V, ∗). Let l = f1.

Then we have ΛF ∗ f1 = ⊕i=1,2,3,5Ff
ξ
i and f1 ∗ΛF = ⊕j=1,2,3,4Ff

ξ2

j . So F2
F (0) = F

1
F (0)+

ΛF ∗F1
F (0), and F3

F (0) = F
1
F (0)+ΛF ∗F1

F (0)+F
1
F (0)∗ΛF . Generally, for any point {F i

F }

in the generic fiber Mη =M⊗O F , we have:

Theorem 8.2.2. The generic fiberMη has dimension 6. For any {F i
F } ∈ Mη(F ), we have

F1
F
∼= l, F2

F
∼= l + ΛF ∗ l, F3

F
∼= l + ΛF ∗ l + l ∗ ΛF ,

in ΛF , where l is an isotropic line in the ker(π − π1/30 |ΛF ).
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Proof. By (π − π1/30 )F1
F = 0, we have F1

F = F · l for some line l in the ker(π − π1/30 |ΛF ).

Since 〈F3,F3〉 = 0, we have l is isotropic. Then ΛF ∗ F1
F is a 4-dim isotropic subspaces in

the eigenspace corresponding to the eigenvalue π1/30 ξ. The generators of ΛF ∗ F1
F and F1

F

are linear independent. So we get F2
F = l + ΛF ∗ l since rank(F2

F ) = 5. Similarly, F1
F ∗ ΛF

is a 4-dim isotropic subspaces in the eigenspace corresponding to the eigenvalue π1/30 ξ2. We

have F3
F = l + ΛF ∗ l + l ∗ ΛF .

Now we consider the general case. We have π being a root of the Eisenstein polynomial:

P (T ) = T 3 − π0, and

O[T ]/(P (T )) ∼→ O⊗O0 O,

given by T 7→ π. For i = 0, 1, 2, we set

P i(T ) =
2∏

j=i

(T − π1/30 ξj), Pi(T ) =
i−1∏
j=0

(T − π1/30 ξj), (P0(T ) := 1)

so that P 0(T ) = P (T ), and P i(T )Pi(T ) = P (T ). There are exact sequences

O[T ]/(P (T ))
Pi(T )→ O[T ]/(P (T ))

Pi(T )
→ O[T ]/(P (T )),

O[T ]/(P (T ))
Pi(T )
→ O[T ]/(P (T ))

Pi(T )→ O[T ]/(P (T )).

Thus, by P1(T ) = T −π1/30 P 1(T ) = T 2+π
1/3
0 T +π

2/3
0 , we get ker(P1(T ) | O[T ]/(P (T ))) =

im(P 1(T ) | O[T ]/(P (T ))). In other word, there is an isomorphism:

ker(π − π1/30 |Λ) ' (π2 + π
1/3
0 π + π

2/3
0 )Λ.

Thus, ker(π − π
1/3
0 ) is a free O-module with basis {fi} for i = 1, 2, ..., 8. Consider the

107



conditions that F1 satisfying

rank(F1) = 1, (π − π1/30 )F1 = 0, 〈F1,F1〉 = 0.

For any O-algebra R, we can set F1 =
∑8

i=1 xifi ∈ ker(π − π1/30 |ΛR) for all xi ∈ R. By

〈F1,F1〉 = 0, we get a quadratic equation Q0 = x1x8 + x2x7 + x3x6 + x4x5 = 0. Define a

group scheme Q over Spec(O):

Q = {L ∈ ⊕8
i=1Ofi | L is locally direct summand of Λ with rank(L) = 1, 〈L,L〉 = 0}.

Then Q is a quadratic hypersurface in P7O, with homogeneous coordinate ring:

S(Q) = O[x1, x2, ..., x8]/(x1x8 + x2x7 + x3x6 + x4x5).

Let Ui = {fi +
∑

j 6=i xjfj} be affine charts in P7O for i = 1, 2, ..., 8. We have P7O = ∪8i=1Ui.

In what follows, we consider affine charts Q ∩ Ui in Q and still denote by Ui if there is no

confusion.

We have a morphism: M → Q given by {F i}i=1,2,3 7→ F1. This is an isomorphism

over the generic fiber since F2
F , F3

F are determined by F1
F by Theorem 8.2.2. It follows that

M→ Q factor through the flat closure Msplit:

Msplit M

Q

Π

Here Π : Msplit → Q is a projective morphism since Msplit → M is a closed immersion
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and M→ Q is projective. We see that Π :Msplit → Q is also isomorphism in the generic

fiber, sinceMsplit ⊗ F 'M⊗ F . Similarly, we have morphismsM→ Gr(5, 24) andM→

Gr(9, 24) given by {F i}i=1,2,3 7→ F2 and {F i}i=1,2,3 7→ F3 by rank(F2) = 5, rank(F3) = 9.

We say that F2 (resp. F3) are in some affine chart of the Grassmannian Gr(5, 24) (resp.

Gr(9, 24)) if the image of {F i}i=1,2,3 in M → Gr(5, 24) (resp. M → Gr(9, 24)) is in that

affine chart.

Consider the closed subscheme Z in the special fiber Qs of Q, where Z contains all

isotropic lines orthogonal to the para-unit e. In our case, e = e4 + e5 by the Table 2.1, and

l =
∑8

i=1 xiπ
2ei ∈ Qs for all xi ∈ κ. By

〈π2ei, e9−j〉 = π2δij ,

it is easy to see that 〈l, e〉 = 0 if and only if x4 + x5 = 0. Then Z = V (x4 + x5, π
1/3
0 ) ⊂ Q.

Let Q̃ be the blow-up of the quadratic hypersurface Q along Z. Let I = (x4 + x5, π
1/3
0 )

be the homogeneous ideal in S(Q) and I be the quasi-coherent sheaf associating to I. Then

B := ⊕n≥0In (where I0 = S(Q)) is a homogeneous OQ-algebra, and Q̃ = ProjB. Our main

result is:

Theorem 8.2.3. The scheme Msplit is isomorphic to the blow-up Q̃ of Q along Z.

From Theorem 8.2.3, it is easy to get a corollary by considering the blow-up Q̃:

Corollary 8.2.4. The scheme Msplit is regular and has a special fiber, which is the union

of two smooth irreducible components.
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To prove Theorem 8.2.3, we first show that there is a morphism Π̃ :Msplit → Q̃:

Msplit Q̃

Q

Π

For Π :Msplit → Q, recall that Π−1(I) is an Π−1(OQ)-module, and Π∗(I) := Π−1(I)⊗
Π−1(OQ)

OMsplit is an OMsplit-algebra, which we call the inverse image of I under Π. By the uni-

versal property of blow-up, there is a unique morphism from Msplit to Q̃ if Π∗(I) is an

invertible sheaf of ideals on OMsplit , i.e., Π∗(I) is locally principal ideal sheaf on OMsplit .

To prove this, we will check Π∗(I)|U is principal for U running through affine charts in

Msplit. Fortunately, we just need to consider some special affine charts. The other affine

charts have similar results. Let R be a local ring over O with maximal ideal m.

Proposition 8.2.5. For any {F i}i=1,2,3 ∈ Msplit(R), if F1 ∈ U1(R), then F2 is either

in the affine chart with leading terms{π2ek, πe1}k=1,2,3,5 or in the affine chart with leading

terms {π2ei}i=1,...,5.

(1) If F2 is in the affine chart with leading terms {π2ek, πe1}k=1,2,3,5, then F3 is in the

affine chart with leading terms

{π2ei, πej , e1}i=1,...,5, j=1,2,3.

Under this affine chart in P7×Gr(5, 24)×Gr(9, 24), the corresponding open subscheme

in Msplit is isomorphic to

Spec(O[x1, x2, x3, x4, x5, x6, x7, x8, b1]/(x1 − 1, Q0, (x4 + x5)− π
1/3
0 (1− ξ)b1)).
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(2) If F2 is in the affine chart with leading terms {π2ei}i=1,...,5, we have F3 is in the

affine chart with leading terms

{π2ei, πe1}i=1,...,8.

Under this affine chart in P7×Gr(5, 24)×Gr(9, 24), the corresponding open subscheme

in Msplit is isomorphic to

Spec(O[x1, x2, x3, x4, x5, x6, x7, x8, k4]/(x1 − 1, Q0, k4(x4 + x5)− π
1/3
0 (1− ξ))).

Here Q0 = x1x8 + x2x7 + x3x6 + x4x5.

Proposition 8.2.6. If F1 = f4+
∑

i 6=4 xifi, where xi ∈ m, then F2 is in the affine chart with

leading terms {π2ei}i=1,4,5,6,7, F3 is in the affine chart with leading terms {πe5, π2ei}i=1,...,8.

Under this affine chart in P7 × Gr(5, 24) × Gr(9, 24), the corresponding open subscheme in

Msplit is isomorphic to

Spec(O[x1, x2, x3, x4, x5, x6, x7, x8, k2]/(Q0, x4 − 1, k2(x4 + x5)− π
1/3
0 (1− ξ))),

where Q0 = x1x8 + x2x7 + x3x6 + x4x5.

The proof of Proposition 8.2.5 and 8.2.6 will show in the following sections §8.3, §8.4,

§8.5. For other affine charts in Msplit, suppose that F1 =
∑
xifi with xi ∈ R. If xi ∈ R∗

for i 6= 4, 5, then we can transform it to x1 ∈ R∗, and use the result in Proposition 8.2.5. If

all xi ∈ m for i 6= 4, 5, we get x4x5 = −(x1x8+x2x7+x3x6) ∈ m by the quadratic equation.

Hence at least one of x4, x5 is in m. Without loss of generality, we assume x4 ∈ R∗, x5 ∈ m,
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and that comes to Proposition 8.2.6 (see §8.6 for details). Above all, we just need to consider

affine charts in Proposition 8.2.5 and 8.2.6.

If U ⊂Msplit is the affine chart described in Proposition 8.2.5 (1), then we have

x4 + x5 = π
1/3
0 (1− ξ)b1.

So Π∗(I)|U is the ideal sheaf corresponding to IOMsplit(U) = π
1/3
0 OMsplit(U), which is

principal. If U ⊂Msplit is the affine chart described in Proposition 8.2.5 (2), then we have

π
1/3
0 = (1− ξ)−1k4(x4 + x5),

So Π∗(I)|U is the ideal sheaf corresponding to IOMsplit(U) = (x4 + x5)OMsplit(U). Simi-

larly, if U is the affine chart in Proposition 8.2.6, then Π∗(I)|U is the ideal sheaf correspond-

ing to (x4 + x5)OMsplit(U). Therefore, Π∗(I) is locally principal ideal sheaf on OMsplit ,

and we have a morphism:

Π̃ :Msplit → Q̃.

Proof of Theorem 8.2.3: Since Π̃ is of finite type with finite fibers, hence it is quasi-finite.

By Zariski Main Theorem (Corollary 4.7, [17]), we have Π̃ is a finite morphism since Π̃ is

projective. Meanwhile, we claim that Π̃ is flat. Since flatness is a local property, we consider

Π̃|U for some affine chart U . By Proposition 8.2.5 and 8.2.6, we can see that OMsplit(U) is

a regular local ring, then it is Cohen-Macaulay. Notice that Q̃ is a regular scheme. Both Q̃

and Msplit have dimension 7. By Miracle Flatness Theorem (Theorem 23.1, [19]), we get

Π̃ is a flat morphism. Since Π̃ is finite and flat, we have that Π̃∗OMsplit is locally free over

OQ. In the generic fiber, both Msplit and Q̃ is isomorphic to Q. Thus Π̃η is isomorphism.
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Therefore, Π̃∗OMsplit is locally free of rank 1 over OQ. We obtain Π̃∗OMsplit
∼= OQ, which

implies that Π̃ is isomorphism.

8.3 Affine chart U1, part I.

In what follows, we denote by Ai the i-th column of a matrix A, and A[j] the matrix consisting

of the last j rows of A. Likewise, we write A[j]
i for the i-th column with last j rows vector

of A. Let R be a local ring with maximal ideal m.

Consider the affine chart U1(R) = {f1 +
∑

j 6=1 xjfj} for xi ∈ R. For any point

{F i}i=1,2,3 ∈ Msplit(R), suppose that F1 ∈ U1(R), i.e., let F1 = R(f1 +
∑

i 6=1 xifi).

Consider 〈F1,F1〉 = 0. Observe that

〈fi, f9−j〉 = (π2 + π
1/3
0 π + π

2/3
0 )2δij

= 3π
2/3
0 (π2 + π

1/3
0 π + π

2/3
0 )δij .

Then we have 3π
1/3
0 (x8 + x2x7 + x3x6 + x4x5) = 0. Since Msplit is the flat closure of M,

variables xi in Msplit are satisfied in equation x8 + x2x7 + x3x6 + x4x5 = 0.

Lemma 8.3.1. For any {F i}i=1,2,3 ∈ Msplit(R), if F1 ∈ U1(R), then F2 is either in the

affine chart with leading terms {π2ei, πe1}i=1,2,3,5 or in the affine chart with leading terms

{π2ei}i=1,...,5.

Proof. Since rank(F2) = 5, we want to find 5 generators of F2, where the leading terms of

generators are chosen from π2ei, πei, or ei (i = 1, ..., 8). Consider the point F i
s = F i⊗κ in the

special fiber of the splitting modelMsplit
s =Msplit⊗κ. We get F1

s = κ(π2e1+
∑

j 6=1 xjπ
2ej).
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The generators for Λs ∗ F1
s are:

π2e1 − x5π2e4 + x6π
2e6 + x7π

2e7,

π2e2 − x3π2e4 − x4π2e6 − x7π2e8,

π2e3 + x2π
2e4 + x4π

2e7 − x6π2e8,

π2e5 − x2π2e6 + x3π
2e7 + x5π

2e8.

By Λs ∗ F1
s ⊂ F2

s , it is easy to see that F2
s contains elements with leading terms π2ek

for k = 1, 2, 3, 5. Hence we only need to consider the last generator for F2. We start

with considering the last generator with leading term ei for some i ∈ {1, 2, ..., 8}. Then by

πF2
s ⊂ F1

s , we obtain an element with leading term πei in F1
s = κ(π2e1 +

∑
j 6=1 xjπ

2ej),

which is impossible. Next, suppose that the last generator has the leading term πei for some

i ∈ {1, 2, ..., 8}. Take πe2 for instance. We can write the last generator as:

πe2 +
∑

i=4,6,7,8

yiπ
2ei +

∑
j 6=2

y′jπej +
∑

k=1,...,8

y′′kek.

By πF2
s ⊂ F1

s , we have

π2e2 +
∑
j 6=2

y′jπ
2ej +

∑
k=1,...,8

y′′kπek ∈ F
1
s ,

which implies y′′k = 0 for k = 1, ..., 8, and y′j = y′1xj for j 6= 1, 2, y′1x2 = 1. Thus, y′1 is

a unit in R. By multiplying x2 to the last generator, we can rewrite it as an element with

leading term πe1. Similarly, if the last generator has the leading term πei for some i 6= 1, we

can rewrite it as an element with leading term πe1. Namely, F2
s is in the affine chart with

leading terms {π2ei, πe1}i=1,2,3,5, so is F2.
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Less obvious is the last generator with leading term π2ek for some k ∈ {4, 6, 7, 8} to be

checked. Take π2e6 for instance. Before examining the conditions in Definition 8.1.1, we

take a look for an equation: Giving aπ2ei + bπei + cei for some a, b, c ∈ R and i ∈ {1, ..., 8}.

Suppose:

(π − π1/30 ξ)(aπ2ei + bπei + cei) = m(π2ei + π
1/3
0 πei + π

2/3
0 )

for some m ∈ R. Then we have:

m = −π1/30 ξa+ b,

c = π
2/3
0 ξ2a− π1/30 ξ2m.

So we can rewrite aπ2ei + bπei + cei as:

aπ2ei + bπei + cei = a(π2ei + π
1/3
0 ξπei + π

2/3
0 ξ2ei) +m(πei − π

1/3
0 ξ2ei)

= af
ξ
i +m(πei − π

1/3
0 ξ2ei).

This calculation result is easy to remember: here aπ2ei + bπei + cei is separated to 2 parts,

the first part is an eigenvector corresponding to eigenvalue π1/30 ξ, the second part satisfying

(π−π1/30 ξ)(π−π1/30 ξ2)ei = fi. From above discussion, we can rewirite the generators of F2
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(in the affine chart with leading terms {π2ek}k=1,2,3,5,6) as the following form:

C1 = f
ξ
1 + a11f

ξ
4 + a21f

ξ
7 + a31f

ξ
8 + k1[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C2 = f
ξ
2 + a12f

ξ
4 + a22f

ξ
7 + a32f

ξ
8 + k2[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C3 = f
ξ
3 + a13f

ξ
4 + a23f

ξ
7 + a33f

ξ
8 + k3[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C4 = f
ξ
5 + a14f

ξ
4 + a24f

ξ
7 + a34f

ξ
8 + k4[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C5 = f
ξ
6 + a15f

ξ
4 + a25f

ξ
7 + a35f

ξ
8 + k5[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)].

So that (π−π1/30 ξ)Ci ⊂ F1 (we have (π−π1/30 ξ)Ci = ki(f1+
∑

i 6=1 xifi)) for some variables

aij , bi, ki ∈ R. Next, consider Λ ∗ F1 ⊂ F2. Since Λ ∗ F1 is the maximal isotropic subspace

with generators:

f
ξ
1 − x5f

ξ
4 + x6f

ξ
6 + x7f

ξ
7 ,

f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 ,

f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 ,

f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 .

Condition Λ ∗ F1 ⊂ F2 is equivalent to:

f
ξ
1 − x5f

ξ
4 + x6f

ξ
6 + x7f

ξ
7 = C1 + x6C5,

f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 = C2 − x4C5,

f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 = C3,

f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 = C4 − x2C5.
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Comparison of coefficients of π2e4, π2e7, π2e8 and πe1 in these equations yields:

a11 + x6a15 = −x5, a12 − x4a15 = −x3, a13 = x2, a14 − x2a15 = 0,

a21 + x6a25 = x7, a22 − x4a25 = 0, a23 = x4, a14 − x2a15 = x3,

a31 + x6a35 = 0, a32 − x4a35 = −x7, a33 = −x6, a14 − x2a15 = x5.

(8.3.2)

and

k1 + x6k5 = 0, k2 − x4k5 = 0, k3 = 0, k4 − x2k5 = 0. (8.3.3)

So variables in F2 are determined by a15, a25, a35 and k5. Finally, we consider condition

F1 ⊂ F2, which is equivalent to:

f1 +
∑
i 6=1

xifi = C1 + x2C2 + x3C3 + x5C4 + x6C5.

Comparison of the coefficients of π2e4, π2e7, π2e8 and πe1 in this equation yields

a11 + x2a12 + x3a13 + x5a14 + x6a15 = x4,

a21 + x2a22 + x3a23 + x5a24 + x6a25 = x7,

a31 + x2a32 + x3a33 + x5a34 + x6a35 = x8,

k1 + x2k2 + x3k3 + x5k4 + x6k5 = π
1/3
0 (1− ξ).

(8.3.4)

From (8.3.3), variables k1, k2, k4 are determined by xi and k5. Replace them back into the

last equation of (8.3.4), we get:

x2k5(x4 + x5) = π
1/3
0 (1− ξ)

Similarly, from (8.3.2), variables a11, a12, a13, a14 are determined by xi and a15. Replacing
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them back into the first equation of (8.3.4) yields:

(x4 + x5)(x2a15 − 1) = 0.

Thus, by multiplying x2k5 on both sides to the above equation, we get π1/30 (1− ξ)(x2a15 −

1) = 0. SinceMsplit is the flat closure ofM, we have x2a15− 1 = 0, i.e., a15 is a unit in R.

By multiplying x2 to the generator C5, we can rewrite C5 as:

C5 = f
ξ
4 + x2f

ξ
6 + x2a25f

ξ
7 + x2a35f

ξ
8 + x2k5[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)].

In other word, F2 is in the affine chart with leading terms {π2ei}i=1,2,3,4,5. Similarly, if we

choose the last generator with leading terms π2e7 or π2e8, we can find the coefficient of π2e4

in the last generator is also a unit. Thus, we only need to consider the situation where the

affine chart with leading terms {π2ei}i=1,2,3,4,5.

We consider that F2 is in the affine chart with leading terms {π2ei, πe1}i=1,2,3,5 in this

section, and discuss F2 in the affine chart with leading terms {π2ei}i=1,...,5 in the next

section. With respect to the standard order of basis, generators of F2 can be described as

the column span of a 24× 5 matrix C having entries in R and being of the following form:

C =


A B

A′ B′

A′′ B′′



where A8×4, A′8×4, A
′′
8×4 are M(R)-matrices, and B8×1, B′8×1, B8×1 are R-vectors. More
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precisely, we have:

A =



1

1

1

a11 a12 a13 a14

1

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



, B =



0

0

0

b1

0

b2

b3

b4



, A′ =



0 · · · 0

a′11 · · · a′14

· · · · · · · · ·

a71′ · · · a′74


, B′ =



1

b′1
...

b′7


,

For example, the first column C1 is represented the first generator of F2:

C1 = π2e1 + a11π
2e4 + a21π

2e6 + a31π
2e7 + a41π

2e8 +
7∑

j=1

a′j1πej+1 +
8∑

k=1

a′′k1ek.

We need to check:

(π − π1/30 ξ)F2 ⊂ F1, Λ ∗ F1 ⊂ F2, F1 ⊂ F2, 〈F2,F2〉 = 0.

(1). (π−π1/30 ξ)F2 ⊂ F1. We claim that matrices A′, A′′, B′, B′′ are determined by A,B

and xi. Calculation for this condition is similar to what we did in the proof of Lemma 8.3.1.

For instance, consider C1. We have

C1 = (π2e1 − π
2/3
0 ξe1) + a11f

ξ
4 + a21f

ξ
6 + a31f

ξ
7 + a41f

ξ
8 − π

1/3
0 ξ

8∑
i=2

xi(πei − π
1/3
0 ξ2ei),
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such that (π − π1/30 ξ)C1 = −π1/30 ξ(f1 +
∑

i 6=1 xifi). Generally, the generators of F2 (the

columns Ci of C) are:

C1 =(π2e1 − π
2/3
0 ξe1) + a11f

ξ
4 + a21f

ξ
6 + a31f

ξ
7 + a41f

ξ
8 − π

1/3
0 ξ

∑8

i=2
xi(πei − π

1/3
0 ξ2ei),

C2 =f
ξ
2 + a12f

ξ
4 + a22f

ξ
6 + a32f

ξ
7 + a42f

ξ
8 ,

C3 =f
ξ
3 + a13f

ξ
4 + a23f

ξ
6 + a33f

ξ
7 + a43f

ξ
8 ,

C4 =f
ξ
5 + a14f

ξ
4 + a24f

ξ
6 + a34f

ξ
7 + a44f

ξ
8 ,

C5 =(πe1 − π
1/3
0 ξ2e1) + b1f

ξ
4 + b2f

ξ
6 + b3f

ξ
7 + b4f

ξ
8 +

∑8

i=2
xi(πei − π

1/3
0 ξ2ei).

Let X be a vector (1 x2 x3 · · · x8)T . Denote by (X 0 0 0) the matrix where the first column

is X and the rest columns are 0. It is easy to see that:

A′ = π
1/3
0 ξA− π1/30 ξ(X 0 0 0),

A′′ = π
2/3
0 ξ2A+ π

2/3
0 (X 0 0 0),

B′ = π
1/3
0 ξB +X,

B′′ = π
2/3
0 ξ2B − π1/30 ξ2X.

Hence A′, A′′, B′, B′′ are determined by A,B and xi.

(2). Λ ∗ F1 ⊂ F2. We show that A is determined by B and xi. This condition is

equivalent to:

f
ξ
1 − x5f

ξ
4 + x6f

ξ
6 + x7f

ξ
7 = C1 − π

1/3
0 ξC5,

f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 = C2,

f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 = C3,

f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 = C4,
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Comparison of the coefficients of π2e4, π2e6, π2e7 yields several identities involving aij and

bi variables:

a12 = −x3, a22 = −x4, a32 = 0, a42 = −x7,

a13 = x2, a23 = 0, a33 = x4, a43 = −x6,

a14 = 0, a24 = −x2, a34 = x3, a44 = x5,

(8.3.5)

and
a11 + π

1/3
0 ξb1 = −x5, a21 + π

1/3
0 ξb2 = x6,

a31 + π
1/3
0 ξb3 = x7, a41 + π

1/3
0 ξb4 = 0.

(8.3.6)

(3). F1 ⊂ F2. We show that B is determined by b1 and xi. For f1 +
∑8

i=2 xifi ∈ F2,

we have the following equation by comparing the coefficients of π2e1, π2e2, π2e3, π2e5, πe1:

f1 +
8∑

i=2

xifi = C1 + x2C2 + x3C3 + x5C4 + π
1/3
0 C5.

By (8.3.5), the right side of this equation is equivalent to:

f1 + x2f2 + x3f3 + x5f5 + (a11 + π
1/3
0 b1)f

ξ
4 + [(a21 + π

1/3
0 b2)− x2(x4 + x5)]f

ξ
6

+ [(a31 + π
1/3
0 b3) + x3(x4 + x5)]f

ξ
7 + [(a41 + π

1/3
0 b4) + (x25 − x2x7 − x3x6)]f

ξ
8

+ (π
1/3
0 − π1/30 ξ)

∑
i=4,6,7,8

xi(πei − π
1/3
0 ξ2ei).

Compare to the left side, we get:

x4 = a11 + π
1/3
0 b1,

x6 = (a21 + π
1/3
0 b2)− x2(x4 + x5),

x7 = (a31 + π
1/3
0 b3) + x3(x4 + x5),

x8 = (a41 + π
1/3
0 b4) + (x25 − x2x7 − x3x6).

(8.3.7)
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Replace a11, a21, a31, a41 by bi and xi from (8.3.6). Equations (8.3.7) yields:

x4 + x5 = π
1/3
0 (1− ξ)b1,

π
1/3
0 (1− ξ)(b2 − x2b1) = 0,

π
1/3
0 (1− ξ)(b3 + x3b1) = 0,

π
1/3
0 (1− ξ)(b4 + x5b1) = 0.

Since Msplit is the flat closure of M, we see that b2, b3, b4 are determined by xi, b1:

x4 + x5 = π
1/3
0 (1− ξ)b1, b2 − x2b1 = 0, b3 + x3b1 = 0, b4 + x5b1 = 0.

Thus, the generators C1, C2, ..., C5 of F2 are of the forms:

C1 =(π2e1 − π
2/3
0 ξe1)− (x5 + π

1/3
0 ξb1)f

ξ
4 + (x6 − π

1/3
0 ξb2)f

ξ
6 + (x7 − π

1/3
0 ξb3)f

ξ
7 − π

1/3
0 ξb4f

ξ
8

− π1/30 ξ
∑8

i=2
xi(πei − π

1/3
0 ξ2ei),

C2 =f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 ,

C3 =f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 ,

C4 =f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 ,

C5 =(πe1 − π
1/3
0 ξ2e1) + b1f

ξ
4 + b2f

ξ
6 + b3f

ξ
7 + b4f

ξ
8 +

∑8

i=2
xi(πei − π

1/3
0 ξ2ei),

where variables b1, b2, b3, b4 satisfy:

x4 + x5 = π
1/3
0 (1− ξ)b1, b2 = x2b1, b3 = −x3b1, b4 = −x5b1. (8.3.8)

It is easy to check that C1, ..., C5 already satisfy 〈Ci, Cj〉 = 0 for i, j ∈ {1, 2, 3, 4, 5}.
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Lemma 8.3.9. For any {F i}i=1,2,3 ∈ Msplit(R), if F1 ∈ U1(R), and F2 is in the affine

chart with leading terms {π2e1, π2e2, π2e3, π2e5, πe1}. Then F3 is in the affine chart with

leading terms

{π2ei, πej , e1} for i = 1, ..., 5, j = 1, 2, 3.

Proof. By F2 ⊂ F3, we have elements with leading terms {π2e1, π2e2, π2e3, π2e5, πe1}.

Since fξ
2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 ∈ F
1 ∗ Λ ⊂ F3, we have an element with leafing term

π2e4 in F3. By rank(F3) = 9, it reminds to find the other three generators of F3. Set:

α1 =f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 ,

α2 =f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 ,

α3 =f
ξ2

2 + x3f
ξ2

5 + x5f
ξ2

6 − x7f
ξ2

8 ,

α4 =f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 .

Here α1, α2 ∈ Λ ∗ F1 and α3, α4 ∈ F1 ∗ Λ, so they are elements in F3. Consider α1 − α3 +

x3α2 + x3α4:

α1 − α3 + x3α2 + x3α4 =(f
ξ
2 − f

ξ2

2 )− x3(f
ξ
4 − f

ξ2

4 ) + x3(f
ξ
5 − f

ξ2

5 )− x2x3(f
ξ
6 − f

ξ2

6 )

+ x23(f
ξ
7 − f

ξ2

7 )− x7(f
ξ
8 − f

ξ2

8 )− (x4f
ξ
6 + x5f

ξ2

6 ) + x3(x5f
ξ
8 + x4f

ξ2

8 ).

Since fξi − f
ξ2

i , x4fξi + x5f
ξ2

i , x5fξi + x4f
ξ2

i for i ∈ {1, ..., 8} are divisible by π1/30 by:

f
ξ
i − f

ξ2

i = π
1/3
0 (ξ − ξ2)(πei − π

1/3
0 ei),

x4f
ξ
i + x5f

ξ2

i = (x4 + x5)π
2ei + π

1/3
0 (x4ξ + x5ξ

2)πei + π
2/3
0 (x4ξ

2 + x5ξ)ei,

x5f
ξ
i + x4f

ξ2

i = (x4 + x5)π
2ei + π

1/3
0 (x5ξ + x4ξ

2)πei + π
2/3
0 (x5ξ

2 + x4ξ)ei,
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(here we use the equation x4 + x5 = π
1/3
0 (1− ξ)b1), we obtain that α1 − α3 + x3α2 + x3α4

is divisible by π
1/3
0 . After dividing π

1/3
0 , we get an element with leading term πe2, withr

nonzero terms π2e6, π2e8, πei for i = 4, 5, 6, 7, 8. Similarly, by comparison

f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 ,

f
ξ2

3 − x2f
ξ2

5 − x5f
ξ2

7 − x6f
ξ2

8 ,

f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 ,

f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 .

We have an element with leading term πe3 in F3. The last generator is less obvious to find.

Consider (e4 + e5) ∗ (f1 +
∑

i 6=1 xifi) and (f1 +
∑

i 6=1 xifi) ∗ (e4 + e5). Set:

β1 =f1 +
∑

i 6=1,4,5

xifi + x4f4 + x5f5,

β2 =− fξ1 −
∑

i 6=1,4,5

xif
ξ
i + x5f

ξ
4 + x4f

ξ
5 ,

β3 =− fξ
2

1 −
∑

i 6=1,4,5

xif
ξ2

i + x5f
ξ2

4 + x4f
ξ2

5 ,
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By using x4 + x5 = π
1/3
0 (1− ξ)b1, we have:

β1 + β2

π
1/3
0 (1− ξ)

= (πe1 − π
1/3
0 ξ2e1) + b1(π

2e4 + π2e5) + (x4 + π
1/3
0 ξb1)πe4 − (x4 − π

1/3
0 b1)πe5

+
∑

i 6=1,4,5

xi(πei − π
1/3
0 ξ2ei)− π

1/3
0 (ξ2x4 − π

1/3
0 ξ2b1)e4 + π

1/3
0 (ξ2x4 + π

1/3
0 b1)e5,

β1 + β3

π
1/3
0 (1− ξ2)

= (πe1 − π
1/3
0 ξe1)− b1ξ(π2e4 + π2e5) + (x4 − π

1/3
0 b1)πe4 − (x4 + π

1/3
0 ξb1)πe5

+
∑

i 6=1,4,5

xi(πei − π
1/3
0 ξei)− π

1/3
0 (ξx4 + π

1/3
0 ξ2b1)e4 + π

1/3
0 (ξx4 − π

1/3
0 ξb1)e5.

Consider
β1 + β2

π
1/3
0 (1− ξ)

− β1 + β3

π
1/3
0 (1− ξ2)

+ b1ξ
2(α2 + α4).

We can check that every part in the above equation is divisible by π1/30 , and after dividing

π
1/3
0 , we get an element with leading terms e1 in F3. Above all, we have an affine chart

with leading terms {π2ei, πej , e1} for i = 1, 2, ..., 5, j = 1, 2, 3.

Now we consider conditions of variables in this affine chart for F3. With respect to the

standard order of basis, the form F3 is represented by the matrix D:

D =



I 0 0

U V W

0 I 0

U ′ V ′ W ′

0 0 1

U ′′ V ′′ W ′′


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where U3×5, U ′5×5, U ′′7×5, V3×3, V ′5×3, V ′′7×3 are M(R)-matrices, and W3×1,W ′5×1,W
′′
7×1 are

R-vectors. More precisely, if we set Ui (resp. U ′i , U
′′
i , Vi, V ′i , V ′′i ) the i-th column for U

(resp. U ′, U ′′, V , V ′, V ′′), then the generators of F3, which is the columns Di of the matrix

D, are of the following forms:

Di = π2ei +
3∑

j=1

ujiπ
2ej+5 +

5∑
k=1

u′kiπek+3 +
7∑

l=1

u′′liel+1, for 1 ≤ i ≤ 5,

Di+5 = πei +
3∑

j=1

vjiπ
2ej+5 +

5∑
k=1

v′kiπek+3 +
7∑

l=1

v′′liel+1, for 1 ≤ i ≤ 3,

D9 = e1 +
3∑

j=1

wjπ
2ej+5 +

5∑
k=1

w′kπek+3 +
7∑

l=1

w′′l el+1.

Conditions that we need to check are:

F1 ∗ Λ ⊂ F3, F2 ⊂ F3, (π − π1/30 ξ2)F3 ⊂ F2, 〈F3,F3〉 = 0.

(1). F1 ∗ Λ ⊂ F3. By Table 2.1, the generators of F1 ∗ Λ are:

f
ξ2

1 − x4f
ξ2

5 + x6f
ξ2

6 + x7f
ξ2

7 ,

f
ξ2

2 + x3f
ξ2

5 + x5f
ξ2

6 − x7f
ξ2

8 ,

f
ξ2

3 − x2f
ξ2

5 − x5f
ξ2

7 − x6f
ξ2

8 ,

f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 .
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Then the condition F1 ∗ Λ ⊂ F3 is equivalent to:

f
ξ2

1 − x4f
ξ2

5 + x6f
ξ2

6 + x7f
ξ2

7 = D1 + π
1/3
0 ξ2D6 + π

2/3
0 ξD9 − x4D5,

f
ξ2

2 + x3f
ξ2

5 + x5f
ξ2

6 − x7f
ξ2

8 = D2 + π
1/3
0 ξ2D7 + x3D5,

f
ξ2

3 − x2f
ξ2

5 − x5f
ξ2

7 − x6f
ξ2

8 = D3 + π
1/3
0 ξ2D8 − x2D5,

f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 = D4.

(8.3.10)

Before moving on to the calculation, let us take a look at the matrix that represents F1 ∗Λ.

Set:

K =



1

1

1

1

−x4 x3 −x2 0

x6 x5 0 x2

x7 0 −x5 −x3

0 −x7 −x6 x4


Recall that we denote by K [j] the matrix consisting of the last j rows of K. With respect

to the standard order of basis, F1 ∗ Λ is represented by the matrix:

F1 ∗ Λ =


K

π
1/3
0 ξ2K

π
1/3
0 ξK


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Thus, by comparison of the coefficients of π2e6, π2e7, π2e8 in (8.3.10), we obtain:

U1 + π
1/3
0 ξ2V1 + π

2/3
0 ξW − x4U5 = K

[3]
1 , U2 + π

1/3
0 ξ2V2 + x3U5 = K

[3]
2 ,

U3 + π
1/3
0 ξ2V3 − x2U5 = K

[3]
3 , U4 = K

[3]
4 .

(8.3.11)

By comparison of the coefficients of πej for j = 4, 5, 6, 7, 8 in (8.3.10), we obtain:

U ′1 + π
1/3
0 ξ2V ′1 + π

2/3
0 ξW ′ − x4U ′5 = π

1/3
0 ξ2K

[5]
1 ,

U ′2 + π
1/3
0 ξ2V ′2 + x3U

′
5 = π

1/3
0 ξ2K

[5]
2 ,

U ′3 + π
1/3
0 ξ2V ′3 − x2U

′
5 = π

1/3
0 ξ2K

[5]
3 ,

U ′4 = π
1/3
0 ξ2K

[5]
4 .

(8.3.12)

By comparison of the coefficients of ek for k = 2, ..., 8 in (8.3.10), we obtain:

U ′′1 + π
1/3
0 ξ2V ′′1 + π

2/3
0 ξW ′′ − x4U ′′5 = π

2/3
0 ξK

[7]
1 ,

U ′′2 + π
1/3
0 ξ2V ′′2 + x3U

′′
5 = π

2/3
0 ξK

[7]
2 ,

U ′′3 + π
1/3
0 ξ2V ′′3 − x2U

′′
5 = π

2/3
0 ξK

[7]
3 ,

U ′′4 = π
2/3
0 ξK

[7]
4 .

(8.3.13)

(2). F2 ⊂ F3. We show that U, V1 (resp. U ′, V ′1, U ′′, V ′′1 ) are determined by V2, V3,W

(resp. V ′2, V ′3,W ′, V ′′2 , V ′′3 ,W ′′) and xi. Since F2 = R〈C1, ..., C5〉, condition F2 ⊂ F3 comes
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to:

C1 = D1 − π
2/3
0 ξD9 − (x5 + π

1/3
0 ξb1)D4 − π

1/3
0 ξx2D7 − π

1/3
0 ξx3D8,

C2 = D2 + π
1/3
0 ξD7 − x3D4,

C3 = D3 + π
1/3
0 ξD8 + x2D4,

C4 = D5,

C5 = D6 − π
1/3
0 ξ2D9 + b1D4 + x2D7 + x3D8.

(8.3.14)

Analogously to F1 ∗ Λ ⊂ F3, we compare the coefficients of (8.3.14). This has to be

done carefully since the blocks of the matrix C are of different sizes. Recall that we set

X = (1 x2 · · · x8)T . By comparison of the coefficients of π2e6, π2e7, π2e8 in (8.3.14), we

obtain:

U1 − π
2/3
0 ξW − (x5 + π

1/3
0 ξb1)U4 − π

1/3
0 ξx2V2 − π

1/3
0 ξx3V3 = A

[3]
1 ,

U2 + π
1/3
0 ξV2 − x3U4 = A

[3]
2 ,

U3 + π
1/3
0 ξV3 + x2U4 = A

[3]
3 ,

U5 = A
[3]
4 ,

V1 − π
1/3
0 ξ2W + b1U4 + x2V2 + x3V3 = B[3],

(8.3.15)
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By comparison of the coefficients of πej for j = 4, 5, 6, 7, 8 in (8.3.14), we obtain:

U ′1 − π
2/3
0 ξW ′ − (x5 + π

1/3
0 ξb1)U

′
4 − π

1/3
0 ξx2V

′
2 − π

1/3
0 ξx3V

′
3 = π

1/3
0 ξA

[5]
1 − π

1/3
0 ξX [5],

U ′2 + π
1/3
0 ξV ′2 − x3U

′
4 = π

1/3
0 ξA

[5]
2 ,

U ′3 + π
1/3
0 ξV ′3 + x2U

′
4 = π

1/3
0 ξA

[5]
3 ,

U ′5 = π
1/3
0 ξA

[5]
4 ,

V ′1 − π
1/3
0 ξ2W ′ + b1U

′
4 + x2V

′
2 + x3V

′
3 = π

1/3
0 ξB[5] +X [5].

(8.3.16)

By comparison of the coefficients of ek for k = 2, ..., 8 in (8.3.14), we obtain:

U ′′1 − π
2/3
0 ξW ′′ − (x5 + π

1/3
0 ξb1)U

′′
4 − π

1/3
0 ξx2V

′′
2 − π

1/3
0 ξx3V

′′
3 = π

2/3
0 ξ2A

[7]
1 + π

2/3
0 X [7],

U ′′2 + π
1/3
0 ξV ′′2 − x3U

′′
4 = π

2/3
0 ξ2A

[7]
2 ,

U ′′3 + π
1/3
0 ξV ′′3 + x2U

′′
4 = π

2/3
0 ξ2A

[7]
3 ,

U ′′5 = π
2/3
0 ξ2A

[7]
4 ,

V ′′1 − π
1/3
0 ξ2W ′′ + y4U

′′
4 + x2V

′′
2 + x3V

′′
3 = π

2/3
0 ξ2B[7] − π2/30 ξ2X [7],

(8.3.17)

Consider Equations (8.3.11) and (8.3.15). Equations in (8.3.11) show that U1, U2, U3, U4

are determined by the matrix V = (V1 V2 V3), the vector W , and the last two equa-

tions in (8.3.15) show that U5, V1 are determined by V2, V3,W . Put the expression U =
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(U1 U2 U3 U4 U5) and V1 back into the first 3 equations in (8.3.15). We get:

π
1/3
0 ξ(1− ξ)V2 =


−(x4 + x5)

0

x3(x4 + x5)

 , π
1/3
0 ξ(1− ξ)V3 =


0

x4 + x5

−x2(x4 + x5)

 ,

π
2/3
0 W = π

2/3
0 ξ


0

0

b21

 .

It is easy to see that V2, V3, W are determined by variables xi and b1: Since x4 + x5 =

π
1/3
0 (1− ξ)b1, we obtain

V2 = ξ2


−b1

0

x3b1

 , V3 = ξ2


0

b1

−x2b1

 , W = ξ


0

0

b21

 .

We can perform similar calculations for (8.3.12) and (8.3.16), and get:

V ′2 =



−x3

x3

−x2x3 − (x4 + π
1/3
0 ξb1)

x23

−x7 + x3(x5 + π
1/3
0 ξb1)


, V ′′2 = π

1/3
0



−1

0

x3

−x3

x2x3 − (x5 + π
1/3
0 ξb1)

−x23

x3(x4 + π
1/3
0 ξb1) + x7



,

131



V ′3 =



x2

−x2

x22

−x2x3 + (x4 + π
1/3
0 ξb1)

−x6 − x2(x5 + π
1/3
0 ξb1)


, V ′′3 = π

1/3
0



0

−1

−x2

x2

−x22

x2x3 + (x5 + π
1/3
0 ξb1)

−x2(x4 + π
1/3
0 ξb1) + x6



,

W ′ = −ξ2



−ξb1

ξ2b1

b1x2

−b1x3

−b1x5 − ξπ
1/3
0 b21


, W ′′ =



x2

x3

x4

x5

x6

x7

x8



+ π
1/3
0 ξ2



0

0

−ξb1

ξ2b1

b1x2

−b1x3

−b1x5 + π
1/3
0 b21



.

Above all, all matrices U,U ′, U ′′, V, V ′, V ′′ and vectors W,W ′,W ′′ are determined by xi, b1.

We can check that (π − π1/30 ξ2)F3 ⊂ F2, 〈F3,F3〉 = 0 are already satisfied. Therefore, the

equations of variables in this affine chart are:

Proposition 8.3.18. Consider the affine chart in P7×Gr(5, 24)×Gr(9, 24) with the leading

terms:

{π2e1} × {π2ek, πe1}k=1,2,3,5 × {π2ei, πej , e1}i=1,...,5,j=1,2,3
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Under this affine chart, the corresponding open subscheme in Msplit is isomorphic to

O[x1, x2, x3, x4, x5, x6, x7, x8, b1]/(x1 − 1, Q0, (x4 + x5)− π
1/3
0 (1− ξ)b1),

where Q0 = x1x8 + x2x7 + x3x6 + x4x5. Hence it is smooth.

8.4 Affine chart U1, part II

We continue discuss the affine chart U1. By Lemma 8.3.1, for any {F i}i=1,2,3 ∈Msplit(R),

if F1 ∈ U1(R), then F2 is either in the affine chart with leading terms {π2ek, πe1}k=1,2,3,5,

or in the affine chart with leading terms {π2ei}i=1,...,5. In §8.3, we considered F2 in the

first case. Now we consider the second case, where F2 is in affine chart with leading terms

{π2ei}i=1,...,5.

With respect to the standard order of basis, the generators of F2 are represented by the

columns of a matrix C, where

C =


A

A′

A′′

 , with A =



I5×5

a11 · · · a15

a21 · · · a25

a31 · · · a35


.

Here A,A′, A′′ are 8× 5 matrices in M(R). We can perform similar calculations as in §8.3.
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Consider the generators of F2 are of the following forms by (π − π1/30 ξ)F2 ⊂ F1:

C1 = f
ξ
1 + a11f

ξ
6 + a21f

ξ
7 + a31f

ξ
8 + k1[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C2 = f
ξ
2 + a12f

ξ
6 + a22f

ξ
7 + a32f

ξ
8 + k2[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C3 = f
ξ
3 + a13f

ξ
6 + a23f

ξ
7 + a33f

ξ
8 + k3[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C4 = f
ξ
4 + a14f

ξ
6 + a24f

ξ
7 + a34f

ξ
8 + k4[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

C5 = f
ξ
5 + a15f

ξ
6 + a25f

ξ
7 + a35f

ξ
8 + k5[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)],

with variables kj ∈ R for j = 1, ..., 5. The description of columns Ci implies that A′, A′′

are determined by the variables in matrix A and xi, kj . More precisely, recall that we set

X = (1 x2 · · · x8)T . Denote by (k1X k2X k3X k4X k5X) the 8× 5 matrix where the i-th

column is kiX. Then we have:

A′ = π
1/3
0 ξA+ (k1X k2X k3X k4X k5X),

A′′ = π
2/3
0 ξ2A− π1/30 ξ2(k1X k2X k3X k4X k5X).

We still need to check:

Λ ∗ F1 ⊂ F2, F1 ⊂ F2, 〈F2,F2〉 = 0.

(1). Λ∗F1 ⊂ F2. We show that aij are determined by a14, a24, a34, xi, and k1, k2, k3, k5
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variables are determined by k2, xi. This condition is equivalent to:

f
ξ
1 − x5f

ξ
4 + x6f

ξ
6 + x7f

ξ
7 = C1 − x5C4,

f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 = C2 − x3C4,

f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 = C3 + x2C4,

f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 = C5,

by comparison of the coefficients of π2ek for k = 1, ..., 5. Then we get:

a11 − x5a14 = x6, a12 − x3a14 = −x4, a13 + x2a14 = 0, a15 = −x2,

a21 − x5a24 = x7, a22 − x3a24 = 0, a23 + x2a24 = x4, a15 = x3,

a31 − x5a34 = 0, a32 − x3a34 = −x7, a33 + x2a34 = −x6, a15 = x5.

(8.4.1)

and

k1 − x5k4 = 0, k2 − x3k4 = 0, k3 + x2k4 = 0, k5 = 0. (8.4.2)

when we compare the coefficients of π2ek for k = 6, 7, 8, and the coefficient of πe1.

(2). F1 ⊂ F2. We show that a14, a24, a34 are determined by xi. For this purpose, we

consider the equation:

f1 +
∑
i 6=1

xifi = C1 + x2C2 + x3C3 + x4C4 + x5C5,

obtained from the comparison of π2ek for k = 1, 2, 3, 4, 5. Since fi = f
ξ
i + π

1/3
0 (1− ξ)(πei −

π
1/3
0 ξ2ei), we get

ai1 + x2ai2 + x3ai3 + x4ai4 + x5ai5 = xi+5, (8.4.3)
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k1 + x2k2 + x3k3 + x4k4 + x5k5 = π
1/3
0 (1− ξ), (8.4.4)

for i = 1, 2, 3. Combining (8.4.1)-(8.4.3) yields the following equations:

k4(x4 + x5) = π
1/3
0 (1− ξ),

(x4 + x5)(a14 − x2) = 0,

(x4 + x5)(a24 + x3) = 0,

(x4 + x5)(a34 + x5) = 0.

(8.4.5)

By multiplying k4 on both sides of the last 3 equations in (8.4.5) and using k4(x4 + x5) =

π
1/3
0 (1− ξ), we get a14 = x2, a24 = −x3, a34 = −x5. Thus, all variables are determined by

xi and k4. We can check 〈Ci, Cj〉 = 0 for all i, j ∈ {1, 2, 3, 4, 5}, hence 〈F2,F2〉 = 0. We

rewrite the generators of F2 (the columns of the matrix C) as the following forms:

C1 = f
ξ
1 + (x6 + x2x5)f

ξ
6 + (x7 − x3x5)f

ξ
7 − x

2
5f

ξ
8 + k1[(πe1 − π

1/3
0 ξ2e1)

+
∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)]

C2 = f
ξ
2 + (−x4 + x2x3)f

ξ
6 − x

2
3f

ξ
7 − (x7 + x3x5)f

ξ
8 + k2[(πe1 − π

1/3
0 ξ2e1)

+
∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)]

C3 = f
ξ
3 − x

2
2f

ξ
6 + (x4 + x2x3)f

ξ
7 + (−x6 + x2x5)f

ξ
8 + k3[(πe1 − π

1/3
0 ξ2e1)

+
∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)]

C4 = f
ξ
4 + x2f

ξ
6 − x3f

ξ
7 − x5f

ξ
8 + k4[(πe1 − π

1/3
0 ξ2e1) +

∑
i 6=1

xi(πei − π
1/3
0 ξ2ei)]

C5 = f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 ,
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with

k4(x4 + x5) = π
1/3
0 (1− ξ), k1 = x5k4, k2 = x3k4, k3 = −x2k4. (8.4.6)

Lemma 8.4.7. For any {F i}i=1,2,3 ∈ Msplit(R), if F1 ∈ U1(R), and F2 is in the affine

chart with leading terms {π2ei}i=1,..,5. Then F3 is in the affine chart with leading terms

{π2ei, πe1}i=1,...,8.

Proof. This proof is similar to the proof of Lemma 8.3.9. The difference is that we do not

assume x4+x5 is divisible by π1/30 anymore. From the discussion of F2 as above, we have the

equation k4(x4+x5) = π
1/3
0 (1−ξ). By F2 ⊂ F3, we know that F3 has elements with leading

terms π2ei for i = 1, 2, 3, 4, 5. Analogous to Lemma 8.3.9, we consider α1−α3+x3α2+x3α4

where

α1 =f
ξ
2 − x3f

ξ
4 − x4f

ξ
6 − x7f

ξ
8 ,

α2 =f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 ,

α3 =f
ξ2

2 + x3f
ξ2

5 + x5f
ξ2

6 − x7f
ξ2

8 ,

α4 =f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 ,

are elements in F3. Since

α1 − α3 + x3α2 + x3α4 =(f
ξ
2 − f

ξ2

2 )− x3(f
ξ
4 − f

ξ2

4 ) + x3(f
ξ
5 − f

ξ2

5 )− x2x3(f
ξ
6 − f

ξ2

6 )

+ x23(f
ξ
7 − f

ξ2

7 )− x7(f
ξ
8 − f

ξ2

8 )− (x4f
ξ
6 + x5f

ξ2

6 ) + x3(x5f
ξ
8 + x4f

ξ2

8 ),
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and f
ξ
i − f

ξ2

i is divisible by π1/30 . We have k4(α1 − α3 + x3α2 + x3α4) is divisible by π1/30 .

More precisely,

−k4(α1 − α3 + x3α2 + x3α4)

π
1/3
0 (1− ξ)

= π2e6 − x3π2e8 +
∑

j=2,4,5,6,7,8
(yjπej + y′jej)

for some yj , y′j ∈ R. Thus, we have an element with leading term π2e6 in F3. Similarly,

consider the linear combination of

f
ξ
3 + x2f

ξ
4 + x4f

ξ
7 − x6f

ξ
8 ,

f
ξ2

3 − x2f
ξ2

5 − x5f
ξ2

7 − x6f
ξ2

8 ,

f
ξ
5 − x2f

ξ
6 + x3f

ξ
7 + x5f

ξ
8 ,

f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 .

We can get an element in F3: π2e7−x2π2e8+
∑

j=3,4,5,6,7,8(zjπej+z
′
jej) for some zj , z′j ∈ R.

So we have an element with leading term π2e7. Next, we claim that there are elements with

leading terms πe1 and π2e8 in F3. Recall that we set:

β1 =f1 +
∑

i 6=1,4,5

xifi + x4f4 + x5f5,

β2 =− fξ1 −
∑

i 6=1,4,5

xif
ξ
i + x5f

ξ
4 + x4f

ξ
5 ,

β3 =− fξ
2

1 −
∑

i 6=1,4,5

xif
ξ2

i + x5f
ξ2

4 + x4f
ξ2

5 .

They are elements in F3 by (e4+e5)∗(f1+
∑

i 6=1 xifi) ∈ F3 and (f1+
∑

i 6=1 xifi)∗(e4+e5) ∈
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F3. Consider −β2 + β3. We obtain:

π
1/3
0 ξ(1−ξ)[(πe1−π

1/3
0 e1)+

∑
i 6=1,4,5

xi(πei−π
1/3
0 ei)−x5(πe4−π

1/3
0 e4)−x4(πe5−π

1/3
0 e5)].

It is divisible by π
1/3
0 . Then we have an element with leading term πe1 in F3. Finally, by

using k4(x4 + x5) = π
1/3
0 (1− ξ), we have:

k4(β1 + β2)

π
1/3
0 (1− ξ)

= (π2e4 + π2e5) + k4[(πe1 − π
1/3
0 ξ2e1)− (k4x5 − π

1/3
0 )πe4 − (k4x4 − π

1/3
0 )πe5

+
∑

i 6=1,4,5

xi(πei − π
1/3
0 ξ2ei)] + π

1/3
0 (ξ2k4x5 + π

1/3
0 )e4 + π

1/3
0 (ξ2k4x4 + π

1/3
0 )e5,

k4(β1 + β3)

π
1/3
0 (1− ξ2)

= −ξ(π2e4 + π2e5) + k4[(πe1 − π
1/3
0 ξe1)− (k4x5 + π

1/3
0 ξ)πe4 − (k4x4 + π

1/3
0 ξ)πe5

+
∑

i 6=1,4,5

xi(πei − π
1/3
0 ξei)] + π

1/3
0 (ξk4x5 − π

1/3
0 ξ)e4 + π

1/3
0 (ξk4x4 − π

1/3
0 ξ)e5.

Since

k4(β1 + β2)

π
1/3
0 (1− ξ)

− k4(β1 + β3)

π
1/3
0 (1− ξ2)

+ξ2(α2+α4) = ξ2(x4+x5)π
2e8+π

1/3
0 (

∑
j=4,5,6,7,8

rjπej+
∑

k=1,...,8

r′kek).

for some rj , r′k ∈ R. Therefore, we can multiply k4 on both sides and get an element with

leading term π2e8 in F3. Above all, we see that F3 is in the affine chart with leading terms

{π2ei, πe1}i=1,...,8.

With respect to the standard order of basis, the generators of F3 are described as the
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columns span of the 24× 9 matrix D. Here D is of the following form:

F3 = D =


I 0

P Q

P ′ Q′

 ,

where P8×8, P ′8×8 are matrices, and Q8×1, Q′8×1 are vectors. More precisely, we have

P =

 0 ... 0

pij 2≤i≤8, 1≤j≤8

 , Q = (1 q2 q3 q4 q5 q6 q7 q8)
T ,

and P ′ = (p′ij)1≤i,j≤8, Q′ = (q′1 · · · q
′
8)

T . Recall that we use Pi (resp. P ′i ) to denote the

i-th column of the matrix P (resp. P ′). Thus, the generators of F3 (resp. the columns of

D) are:

Di =π
2ei +

∑
j 6=1

pjiπej +
∑8

k=1
p′kiek,

D9 =πe1 +
∑

j 6=1
qjπej +

∑8

k=1
q′kek,

for i = 1, 2, ..., 8. We need to check:

F1 ∗ Λ ⊂ F3, F2 ⊂ F3, 〈F3,F3〉 = 0.
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(1). F1 ∗ Λ ⊂ F3. Recall that we defined the matrix K as:

K =



1

1

1

1

−x4 x3 −x2 0

x6 x5 0 x2

x7 0 −x5 −x3

0 −x7 −x6 x4



in §8.3. With respect to the standard order of basis, F1 ∗ Λ is represented by the matrix:

F1 ∗ Λ =


K

π
1/3
0 ξ2K

π
1/3
0 ξK


We perform similar calculations as what we did in §8.3, but have different leading terms this

time. Condition F1 ∗ Λ ⊂ F3 is equivalent to:

f
ξ2

1 − x4f
ξ2

5 + x6f
ξ2

6 + x7f
ξ2

7 = D1 − x4D5 + x6D6 + x7D7 + π
1/3
0 ξ2D9,

f
ξ2

2 + x3f
ξ2

5 + x5f
ξ2

6 − x7f
ξ2

8 = D2 + x3D5 + x5D6 − x7D8,

f
ξ2

3 − x2f
ξ2

5 − x5f
ξ2

7 − x6f
ξ2

8 = D3 − x2D5 − x5D7 − x6D8,

f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 + x4f
ξ2

8 = D4 + x2D6 − x3D7 + x4D8.

(8.4.8)
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By comparison of the coefficients of πei for i = 2, ..., 8 in (8.4.8), we obtain:

P1 − x4P5 + x6P6 + x7P7 + π
1/3
0 ξ2Q = π

1/3
0 ξ2K1,

P2 + x3P5 + x5P6 − x7P8 = π
1/3
0 ξ2K2,

P3 − x2P5 − x5P7 − x6P8 = π
1/3
0 ξ2K3,

P4 + x2P6 − x3P7 + x4P8 = π
1/3
0 ξ2K4.

(8.4.9)

Similarly, comparing coefficients of ei for i = 1, ..., 8 yields to:

P ′1 − x4P
′
5 + x6P

′
6 + x7P

′
7 + π

1/3
0 ξ2Q′ = π

2/3
0 ξK1,

P ′2 + x3P
′
5 + x5P

′
6 − x7P

′
8 = π

2/3
0 ξK2,

P ′3 − x2P
′
5 − x5P

′
7 − x6P

′
8 = π

2/3
0 ξK3,

P ′4 + x2P
′
6 − x3P

′
7 + x4P

′
8 = π

2/3
0 ξK4.

(8.4.10)

(2). F2 ⊂ F3. We just need to check that the generators of F2 are elements in F3.

Compare coefficients of πe1 and π2ei for i = 1, ..., 8. This condition is equivalent to:

C1 = D1 + (x6 + x2x5)D6 + (x7 − x3x5)D7 − x25D8 + (π
1/3
0 ξ + k1)D9,

C2 = D2 + (−x4 + x2x3)D6 − x23D7 − (x7 + x3x5)D8 + k2D9,

C3 = D3 − x22D6 + (x4 + x2x3)D7 + (−x6 + x2x5)D8 + k3D9,

C4 = D4 + x2D6 − x3D7 − x5D8 + k4D9,

C5 = D5 − x2D6 + x3D7 + x5D8,
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where k1 = x5k4, k2 = x3k4, k3 = −x2k4. Recall that the matrix C is of the form

C =


A

A′

A′′

 , where A =



I5×5

a11 · · · a15

a21 · · · a25

a31 · · · a35


,

and A′, A′′ are determined by A:

A′ = π
1/3
0 ξA+ (k1X k2X k3X k4X 0),

A′′ = π
2/3
0 ξ2A− π1/30 ξ2(k1X k2X k3X k4X 0),

for X = (1 x2 · · · x8)T . Then by comaprison of coefficients of πei and ei, we get:

P1 + (x6 + x2x5)P6 + (x7 − x3x5)P7 − x25P8 + (π
1/3
0 ξ + k1)Q = π

1/3
0 ξA1 + k1X,

P2 + (−x4 + x2x3)P6 − x23P7 − (x7 + x3x5)P8 + k2Q = π
1/3
0 ξA2 + k2X,

P3 − x22P6 + (x4 + x2x3)P7 + (−x6 + x2x5)P8 + k3Q = π
1/3
0 ξA3 + k3X,

P4 + x2P6 − x3P7 − x5P8 + k4Q = π
1/3
0 ξA4 + k4X,

P5 − x2P6 + x3P7 + x5P8 = π
1/3
0 ξA5

(8.4.11)
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and

P ′1 + (x6 + x2x5)P
′
6 + (x7 − x3x5)P ′7 − x

2
5P
′
8 + (π

1/3
0 ξ + k1)Q

′ = π
2/3
0 ξ2A1 − π

1/3
0 ξ2k1X,

P ′2 + (−x4 + x2x3)P
′
6 − x

2
3P
′
7 − (x7 + x3x5)P

′
8 + k2Q

′ = π
2/3
0 ξ2A2 − π

1/3
0 ξ2k2X,

P ′3 − x
2
2P
′
6 + (x4 + x2x3)P

′
7 + (−x6 + x2x5)P

′
8 + k3Q

′ = π
2/3
0 ξ2A3 − π

1/3
0 ξ2k3X,

P ′4 + x2P
′
6 − x3P

′
7 − x5P

′
8 + k4Q

′ = π
2/3
0 ξ2A4 − π

1/3
0 ξ2k4X,

P ′5 − x2P
′
6 + x3P

′
7 + x5P

′
8 = π

2/3
0 ξ2A5.

(8.4.12)

It is easy to see that Pi (resp. P ′i ) for i = 1, ..., 5 are determined by P6, P7, P8, Q (resp.

P ′6, P
′
7, P
′
8, Q

′) from Equations (8.4.11), (8.4.12). Represent Pi by linear combinations of

P6, P7, P8, Q (resp. P ′6, P ′7, P ′8, Q′), and put them back to equation (8.4.9)-(8.4.10). We get:

−(x4 + x5)P6 + k2Q− k2X = π
1/3
0 ξ(A2 + x3A5)− π

1/3
0 ξ2K2,

(x4 + x5)P7 + k3Q− k3X = π
1/3
0 ξ(A3 − x2A5)− π

1/3
0 ξ2K3,

−(x4 + x5)P8 + k4Q− k4X = π
1/3
0 ξA4 − π

1/3
0 ξ2K4,

(8.4.13)

and

(x4+x5)(x2P6−x3P7−x5P8)+k1Q+π
1/3
0 ξ(1−ξ)Q−k1X = π

1/3
0 ξ(A1−x4A5)−π

1/3
0 ξ2K1.

(8.4.14)

Compare equation (8.4.13) and (8.4.14). We can eliminate P6, P7, P8 and get a equation

with variables Q and xi:

π
1/3
0 ξ(1− ξ)Q = π

1/3
0 ξ(1− ξ)(1 x2 x3 − x5 − x4 x6 x7 x8)T
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Thus, Q is determined by xi. We have qi = xi for i 6= 4, 5 and q4 = −x5, q5 = −x4. Since

Q−X = −(x4 + x5)(0 0 0 1 1 0 0 0)T

PutQ back into equation (8.4.13). By multiplying k4 on both sides, we can see that P6, P7, P8

are determined by k4, xi since k4(x4 + x5) = π
1/3
0 (1− ξ). Similar calculation for P ′i , Q

′. We

obtain that P ′6, P ′7, P ′8 are determined by Q′, xi, k4, and

Q′ = −π1/30 (1 x2 x3 − x5 − x4 x6 x7 x8)T .

Therefore, we have:

Proposition 8.4.15. Consider the affine chart with leading terms

{π2e1} × {π2ek}k=1,...,5 × {π2ei, πe1}i=1,2,...,8.

in P7 ×Gr(24, 5)×Gr(24, 9). Under this affine chart, the corresponding open subscheme in

Msplit is isomorphic to

O[x1, x2, x3, x4, x5, x6, x7, x8, k4]/(x1 − 1, Q0, k4(x4 + x5)− π
1/3
0 (1− ξ))

where Q0 = x1x8 + x2x7 + x3x6 + x4x5.
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8.5 Affine chart U4

For other affine charts Ui = {fi +
∑

j 6=i xjfj} ⊂ Q, suppose that F1 ∈ Ui(R). If i 6= 4, 5,

we can get similar results as in §8.3, §8.4. Consider i = 4. We can assume that all xi

(i 6= 4, 5) are in the maximal ideal m (if xi ∈ R∗ for some i 6= 4, 5, we rewrite F1 and

consider F1 ∈ Ui(R)). By Q0 = 0, we have x5 = −(x1x8+x2x7+x3x6) ∈ m. So all xi ∈ m.

We have the following lemma:

Lemma 8.5.1. If F1 = f4 +
∑

i 6=4 xifi, where xi ∈ m, then F2 is in the affine chart with

leading terms {π2ei}i=1,4,5,6,7, F3 is in the affine chart with leading terms {πe5, π2ei}i=1,...,8.

Proof. In the special fiber, we get F1
s = κ(π2e4). Since Λs ∗ F1

s = κ〈π2ei〉i=1,5,6,7, it

is easy to see that F2
s = κ〈π2ei〉i=1,4,5,6,7 . So F2 is in the affine chart with leading

terms {π2ei}i=1,4,5,6,7. Similarly, we get Fs
1 ∗ Λs = κ〈π2ej〉j=2,3,5,8, hence π2ei ∈ F3

s

for i = 1, ..., 8. For the last generator in F3
s . Consider (e4 + e5) ∗ (f4 +

∑
i 6=4 xifi) and

(f4 +
∑

i 6=4 xifi) + (e4 + e5). We obtain:

f
ξ
5 −

∑
i 6=4,5 xif

ξ
i + x5f

ξ
4 , f

ξ2

5 −
∑

i 6=4,5 xif
ξ2

i + x5f
ξ2

4 ,

are elements in F3. Subtracting them gives us:

π
1/3
0 (ξ − ξ2)[(πe5 − π

1/3
0 e5)−

∑
i 6=4,5

xi(πei − π
1/3
0 ei) + x5(πe4 − π

1/3
0 e4)].

Thus we have

(πe5 − π
1/3
0 e5)−

∑
i 6=4,5

xi(πei − π
1/3
0 ei) + x5(πe4 − π

1/3
0 e4) ∈ F3.
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Hence πe5 ∈ F3
s . Therefore, we obtain F3 = κ〈π2ei, πe5〉i=1,...,8, and F3 is in the affine

chart with leading terms {π2ei, πe5}i=1,2,...,8.

For F2, with respect to the standard order of basis, we again use the columns of matrix

C representing the generators of F2, i.e.,

C =


A

A′

A′′



where A′8×5 = (a′ij)1≤i≤8,1≤j≤5, A
′′
8×5 = (a′′ij)1≤i≤8,1≤j≤5, are M(R)-matrices, and

A =



1

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

1

1

1

1

a31 a32 a33 a34 a35



The conditions for F2 are:

(π − π1/30 ξ)F2 ⊂ F1, Λ ∗ F1 ⊂ F2, F1 ⊂ F2, 〈F2,F2〉 = 0.

(1). (π−π1/30 ξ)F2 ⊂ F1. We can perform similar calculations as in the proof of Lemma
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8.3.1. We omit calculations here and give the results as follows:

C1 = f
ξ
1 + a11f

ξ
2 + a21f

ξ
3 + a31f

ξ
8 + k1[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4 xi(πei − π

1/3
0 ξ2ei)],

C2 = f
ξ
4 + a12f

ξ
2 + a22f

ξ
3 + a32f

ξ
8 + k2[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4 xi(πei − π

1/3
0 ξ2ei)],

C3 = f
ξ
5 + a13f

ξ
2 + a23f

ξ
3 + a33f

ξ
8 + k3[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4 xi(πei − π

1/3
0 ξ2ei)],

C4 = f
ξ
6 + a14f

ξ
2 + a24f

ξ
3 + a34f

ξ
8 + k4[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4 xi(πei − π

1/3
0 ξ2ei)],

C5 = f
ξ
7 + a15f

ξ
2 + a25f

ξ
3 + a35f

ξ
8 + k5[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4 xi(πei − π

1/3
0 ξ2ei)],

for k1, ..., k5 ∈ R. Thus, it is easy to see that A′, A′′ are determined by A and ki. Set

Y = (x1 x2 x3 1 x5 x6 x7 x8)
T . Denote by (k1Y k2Y k3Y k4Y k5Y ) the 8× 5 matrix where

the i-th column is kiY . We get:

A′ = π
1/3
0 ξA+ (k1Y k2Y k3Y k4Y k5Y ),

A′′ = −π1/30 ξ2A− π1/30 ξ2(k1Y k2Y k3Y k4Y k5Y ).

(2). Λ ∗ F1 ⊂ F2. We show that A is determined by its 2nd column, i.e., by variables

a12, a22, a32 and xi. This condition is equivalent to:

f
ξ
1 + x6f

ξ
2 − x7f

ξ
3 + x8f

ξ
4 = C1 + x8C2,

f
ξ
5 − x2f

ξ
2 − x3f

ξ
3 − x8f

ξ
8 = C3,

f
ξ
6 − x1f

ξ
2 + x3f

ξ
4 + x7f

ξ
8 = C4 + x3C2,

f
ξ
7 + x1f

ξ
3 + x2f

ξ
4 − x6f

ξ
8 = C5 + x2C2,
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by comparison of coefficients of π2ei. Then we get

a11 + x8a12 = x6, a21 + x8a22 = −x7, a31 + x8a32 = 0,

a13 = −x2, a23 = −x3, a33 = −x8,

a14 + x3a12 = −x1, a24 + x3a22 = 0, a34 + x3a32 = x7,

a15 + x2a12 = 0, a25 + x2a22 = x1, a35 + x2a32 = −x6.

(8.5.2)

and

k1 + x8k2 = 0, k3 = 0, k4 + x3k2 = 0, k5 + x2k2 = 0. (8.5.3)

Thus, A is determined by a12, a22, a32 and xi.

(3). F1 ⊂ F2. We show that a12, a22, a32 variables are determined by xi. This condition

is equivalent to:

f4 +
∑
i 6=4

xifi = x1C1 + C2 + x5C3 + x6C4 + x7C7.

By using x1x8 + x2x7 + x3x6 + x5 = 0 and (8.5.2), we have

(1 + x5)(a12 − x2) = 0, (1 + x5)(a22 − x3) = 0, (1 + x5)(a32 − x8) = 0, (8.5.4)

and

x1k1 + x5k3 + x6k4 + x7k5 + k2 = π
1/3
0 (1− ξ). (8.5.5)

By (8.5.3), the equation (8.5.5) comes to

(1 + x5)k2 = π
1/3
0 (1− ξ). (8.5.6)
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Hence we obtain a12 = x2, a22 = x3, a32 = x8 by multiplying k2 on both sides of equations

in (8.5.4). Thus, the variables in F2 are only determined by k2 and xi. We can check the

isotropic condition 〈F2,F2〉 = 0 are already satisfied, so the columns of C are:

C1 =f
ξ
1 + (x6 − x8x2)f

ξ
2 − (x7 + x8x3)f

ξ
3 − x

2
8f

ξ
8 − x8k2[(πe4 − π

1/3
0 ξ2e4)

+
∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

C2 =f
ξ
4 + x2f

ξ
2 + x3f

ξ
3 + x8f

ξ
8 + k2[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

C3 =f
ξ
5 − x2f

ξ
2 − x3f

ξ
3 − x8f

ξ
8 ,

C4 =f
ξ
6 − (x1 + x3x2)f

ξ
2 − x

2
3f

ξ
3 + (x7 − x3x8)f

ξ
8 − x3k2[(πe4 − π

1/3
0 ξ2e4)

+
∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

C5 =f
ξ
7 − x

2
2f

ξ
2 + (x1 − x2x3)f

ξ
3 − (x6 + x2x8)f

ξ
8 − x2k2[(πe4 − π

1/3
0 ξ2e4)

+
∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

with k2(1 + x5) = π
1/3
0 (1− ξ), and x1x8 + x2x7 + x3x6 + x5 = 0.

Now we consider F3 in the affine chart {π2ei, πe5}i=1,2,...,8. The conditions for F3 are:

F1 ∗ Λ ⊂ F3, F2 ⊂ F3, (π − π1/30 ξ2)F3 ⊂ F2, 〈F3,F3〉 = 0.

With respect to the standard order of basis, the generators of F3 are represented by the
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columns of the matrix D. Here D has the form:

D =


I 0

M N

M ′ N ′



where M8×8,M ′8×8 are matrices, and N8×1, N ′8×1 are vectors. More precisely, we have

M =


mij 1≤i≤4, 1≤j≤8

0 ... 0

mij 6≤i≤8, 1≤j≤8

 , N = (n1 n2 n3 n4 1 n6 n7 n8)
T ,

and M ′ = (m′ij)1≤i,j≤8, N ′ = (n′1 n
′
2 · · · n

′
8)

T . We use Mi (resp. M ′i) to denote the i-th

column for the matrix M (resp. M ′). Thus, the generators of F3 are:

Di =π
2ei +

∑
j 6=5

mjiπej +
∑8

k=1
m′kiek,

D9 =πe5 +
∑

j 6=5
njπej +

∑8

k=1
n′kek,

for i = 1, 2, ..., 8.

(1). F1 ∗ Λ ⊂ F3. The generators of F1 ∗ Λ are

f
ξ2

2 + x3f
ξ2

1 + x7f
ξ2

4 − x8f
ξ2

6 ,

f
ξ2

3 − x2f
ξ2

1 + x6f
ξ2

4 + x8f
ξ2

7 ,

f
ξ2

5 − x1f
ξ2

1 − x6f
ξ2

6 − x7f
ξ2

7 ,

f
ξ2

8 + x1f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 .
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So F1 ∗ Λ ⊂ F3 is equivalent to:

f
ξ2

2 + x3f
ξ2

1 + x7f
ξ2

4 − x8f
ξ2

6 = D2 + x3D1 + x7D4 − x8D6,

f
ξ2

3 − x2f
ξ2

1 + x6f
ξ2

4 + x8f
ξ2

7 = D3 − x2D1 + x6D4 + x8D7,

f
ξ2

5 − x1f
ξ2

1 − x6f
ξ2

6 − x7f
ξ2

7 = D5 − x1D1 − x6D6 − x7D7 + π
1/3
0 ξ2D9,

f
ξ2

8 + x1f
ξ2

4 + x2f
ξ2

6 − x3f
ξ2

7 = D8 + x1D4 + x2D6 − x3D7.

(8.5.7)

Set the matrix S:

S =



x3 −x2 −x1 0

1 0 0 0

0 1 0 0

x7 x6 0 x1

0 0 1 0

−x8 0 −x6 x2

0 x8 −x7 −x3

0 0 0 1



.

We can rewrite F1 ∗ Λ as the matrix:

F1 ∗ Λ =


S

π
1/3
0 ξ2S

π
2/3
0 ξS

 .

Recall that Si is the i-th column in the matrix S. By comparison of coefficients of πei in
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(8.5.7), we obtain:

M2 + x3M1 + x7M4 − x8M6 = π
1/3
0 ξ2S1,

M3 − x2M1 + x6M4 + x8M7 = π
1/3
0 ξ2S2,

M5 − x1M1 − x6M6 − x7M7 + π
1/3
0 ξ2N = π

1/3
0 ξ2S3,

M8 + x1M4 + x2M6 − x3M7 = π
1/3
0 ξ2S4.

(8.5.8)

By comparison of coefficients of ei in (8.5.7), we obtain:

M ′2 + x3M
′
1 + x7M

′
4 − x8M

′
6 = π

2/3
0 ξS1,

M ′3 − x2M
′
1 + x6M

′
4 + x8M

′
7 = π

2/3
0 ξS2,

M ′5 − x1M
′
1 − x6M

′
6 − x7M

′
7 + π

1/3
0 ξ2N ′ = π

2/3
0 ξS3,

M ′8 + x1M
′
4 + x2M

′
6 − x3M

′
7 = π

2/3
0 ξS4.

(8.5.9)

(2). F2 ⊂ F3. We need to check that Ci ∈ F3 for i = 1, ..., 5. Compare coefficients in

π2ei. This condition is equivalent to:

C1 = D1 + (x6 − x2x8)D2 + (−x7 − x3x8)D3 − x28D8 − x5x8k2D9,

C2 = D4 + x2D2 + x3D3 + x8D8 + x5k2D9,

C3 = D5 − x2D2 − x3D3 − x8D8 + π
1/3
0 ξD9,

C4 = D6 + (−x1 − x2x3)− x23D3 + (x7 − x3x8)D8 − x3x5k2D9,

C5 = D7 − x22D2 + (x1 − x2x3)D3 + (−x6 − x2x8)D8 − x2x5k2D9.
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Recall that C is of the form:

C =


A

A′

A′′

 ,

with
A′ = π

1/3
0 ξA+ (k1Y k2Y k3Y k4Y k5Y ),

A′′ = −π1/30 ξ2A− π1/30 ξ2(k1Y k2Y k3Y k4Y k5Y ).

for Y = (x1 x2 x3 1 x5 x6 x7 x8)
T . By comparison of coefficients of πei and ei, we get:

M1 + (x6 − x2x8)M2 − (x7 + x3x8)M3 − x28M8 − x5x8k2N = π
1/3
0 ξA1 − x8k2Y.

M4 + x2M2 + x3M3 + x8M8 + x5k2N = π
1/3
0 ξA2 + k2Y,

M5 − x2M2 − x3M3 − x8M8 + π
1/3
0 ξN = π

1/3
0 ξA3,

M6 − (x1 + x2x3)M2 − x23M3 + (x7 − x3x8)M8 − x3x5k2N = π
1/3
0 ξA4 − x3k2Y,

M7 − x22M2 + (x1 − x2x3)M3 − (x6 + x2x8)M8 − x2x5k2N = π
1/3
0 ξA5 − x2k2Y.

(8.5.10)

and

M ′1 + (x6 − x2x8)M ′2 − (x7 + x3x8)M
′
3 − x

2
8M
′
8 − x5x8k2N

′ = π
2/3
0 ξ2A1 + π

1/3
0 ξ2x8k2Y,

M ′4 + x2M
′
2 + x3M

′
3 + x8M

′
8 + x5k2N

′ = π
2/3
0 ξ2A2 − π

1/3
0 ξ2k2Y,

M ′5 − x2M
′
2 − x3M

′
3 − x8M

′
8 + π

1/3
0 ξN ′ = π

2/3
0 ξ2A3,

M ′6 + (−x1 − x2x3)M ′2 − x
2
3M
′
3 + (x7 − x3x8)M ′8 − x3x5k2N

′ = π
2/3
0 ξ2A4 + π

1/3
0 ξ2x3k2Y,

M ′7 − x
2
2M
′
2 + (x1 − x2x3)M ′3 + (−x6 − x2x8)M ′8 − x2x5k2N

′ = π
2/3
0 ξ2A5 + π

1/3
0 ξ2x2k2Y.

(8.5.11)

We can see that M1,M4,M5,M6,M7 (resp. M ′1,M
′
4,M

′
5,M

′
6,M

′
7) are determined by

M2,M3, M8, N (resp. M ′2,M ′3,M ′8, N ′) from Equation (8.5.10), (8.5.11). Replace them by
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the linear combinations of M2,M3,M8, N (resp. M ′2,M
′
3,M

′
8, N

′), and put them back to

Equation (8.5.8), (8.5.9). We get:

(1 + x5)M2 = π
1/3
0 ξ2S1 − π

1/3
0 ξ(x3A1 + x7A2 − x8A4) + x5x7k2N − x7k2Y,

(1 + x5)M3 = π
1/3
0 ξ2S2 − π

1/3
0 ξ(−x2A1 + x6A2 + x8A5) + x5x6k2N − x6k2Y,

(1 + x5)M8 = π
1/3
0 ξ2S4 − π

1/3
0 ξ(x1A2 + x2A4 − x3A5) + x5x1k2N − x1k2Y.

(8.5.12)

and

(1+x5)
∑

i=2,3,8

xiMi = π
1/3
0 ξ2S3+π

1/3
0 ξ(x1A1+x6A4+x7A5−A3)−k2x25N+π

1/3
0 (ξ−ξ2)N+k2x5Y.

(8.5.13)

Sum of 3 equations in (8.5.12) and subtract it from (8.5.13). We obtain:

π
1/3
0 (ξ2 − ξ)

(
x1 x2 x3 −x5 −1 x6 x7 x8

)T

+ π
1/3
0 (ξ2 − ξ)N = 0.

Hence we have ni = −xi for i = 1, 2, 3, 6, 7, 8, and n4 = x5. By k2(1 + x5) = π
1/3
0 (1 − ξ),

we can see that M2,M3,M8 are determined by xi (Multiply k2 on both sides of equations

in (8.5.12)). Similarly,

π
2/3
0 (ξ − ξ2)(x1 x2 x3 − x5 − 1 x6 x7 x8)

T − π1/30 (ξ − ξ2)N ′ = 0.

Hence n′i = π
1/3
0 xi for i = 1, 2, 3, 6, 7, 8, and n′4 = −π1/30 x5, n

′
5 = −π1/30 . We can check that

(π − π1/30 ξ2)F3 ⊂ F2, and 〈F3,F3〉 = 0 are already satisfied. Therefore, we can see that

F i are determined by variables xi and k2. We have:
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Proposition 8.5.14. Consider the affine chart with leading terms

{π2e4} × {π2ei}i=1,4,5,6,7 × {πe5, π2ei}i=1,...,8.

Under this affine chart in P7 × Gr(5, 24) × Gr(9, 24), the corresponding open subscheme in

Msplit is isomorphic to

Spec(O[x1, x2, x3, x4, x5, x6, x7, x8, k2]/(Q0, x4 − 1, k2(x4 + x5)− π
1/3
0 (1− ξ))),

where Q0 = x1x8 + x2x7 + x3x6 + x4x5.

8.6 Other affine charts

We calculate the affine charts for U1 and U4 above. Calculations for the rest affine charts

are similar to the calculations in U1 and U4. In this section, we will use the triality group

for special orthogonal group G to transfer our calculation results to other affine charts Ui.

Thus the ideal sheaf Π∗(I)|Ui is principal, and we have a morphism:

Π̃ :Msplit → Q̃

by the universal property of blow-up. Recall that F/F0 is the cubic Galois extension with

valuation rings O,O0, where O = O0[π]. Consider the triality group for special orthogonal
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groups G = ResF/F0
(Spin(V, ∗))A3 . We have:

G(R) = ResF/F0
(Spin(V, ∗))A3(R)

∼= {g ∈ SO(V, q)(R⊗F0
F ) | g(x ∗ y) = g(x) ∗ g(y) for all x, y ∈ V ⊗F0

R},

for any F0-algebra R. Let G be the parahoric subgroup over Spec(O0) given by L =∑8
i=1(O ⊗O0 R)ei, which represents the functor from O0-algebras to the groups that sends

R to

G (R) = {g ∈ SO8(O ⊗O0 R) | g(x ∗ y) = g(x) ∗ g(y) for all x, y ∈ L}.

For any element g ∈ G (R) and {F i}i=1,2,3 ∈Msplit(R), we have {g(F i)}i=1,2,3 ∈Msplit(R)

since g(x∗y) = g(x)∗g(y) and 〈g(x), g(y)〉 = 〈x, y〉. We want to find g such that g(U1) (resp.

g(U4)) is equal to other affine chart Ui(i 6= 4, 5) in F1. Although there are many elements

g ∈ F satisfying this requirement, we choose permutation and diagonal groups since they

are simple enough.

Recall that a square matrix is called a monomial matrix if there is exactly one non-zero

element in each row and column. Any monomial matrix is the product of a diagonal matrix

and a permutation matrix. Consider the monomial matrices with the non zero elements are

±1.

Denote by S the group of 8 × 8 monomial matrices with the non zero elements are ±1.

Then any element in S can be written as diag(a1, a2, a3, a4, a5, a6, a7, a8)σ, where σ is a

permutation in S8 and ai ∈ {±1}. Set diag(ai)
8
i=1 = diag(a1, a2, a3, a4, a5, a6, a7, a8). We

have a morphism:

S → EndL(L), diag(ai)
8
i=1σ 7→ diag(ai)

8
i=1Pσ
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given by Pσ(ei) = eσ(i) for any σ ∈ S8. We want to find the elements in S that make the

image diag(ai)
8
i=1Pσ sit in G (R).

Example 8.6.1. Set

g = diag(a, b, c, 1, 1, c, b, a)P(12)(36)(45)(78)

for a, b, c ∈ {1,−1}, then g(x ∗ y) = g(x) ∗ g(y) if and only if abc = −1.

This example is given by Garibaldi in his dissertation [6]. It is an element in G we

wanted. Notice that g(U1) = U2, and g(U4) = U5, so we can use our calculation result in

Proposition 8.2.5 (1), and transfer the affine chart with leading terms:

{π2e1} × {π2ek, πe1}k=1,2,3,5 × {π2ei, πej , e1}i=1,...,5,j=1,2,3,

to the affine chart with leading terms:

{π2e2} × {π2ek, πe2}k=1,2,4,6 × {π2ei, πej , e2}i=1,2,4,5,6,j=1,2,6,

Similarly, we can transfer affine charts in Proposition 8.2.5 (2) and Proposition 8.2.6. We

want to find other elements like Example 8.6.1. In fact, we will prove that G ∩ S is the

dihedral group D4, and it will transfer U1 (resp. U4) to all other affine charts.

Consider g = diag(ai)
8
i=1Pσ ∈ S. Suppose that g(e4) = aiei and g(e5) = ajej for some

ai, aj ∈ {1,−1}, i, j ∈ {1, 2, ..., 8}. We have

ei ∗ ei = g(e4) ∗ g(e4) = g(e5) = ajej ,

ej ∗ ej = g(e5) ∗ g(e5) = g(e4) = aiei.
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Since ek ∗ ek = 0 for any k 6= 4, 5, and e4 ∗ e4 = e5, e5 ∗ e5 = e4 by Table 2.1, we get

ai = aj = 1. Either g(e4) = e5, g(e5) = e4 or g(e4) = e4, g(e5) = e5. Set I = {1, 6, 7}, and

J = {2, 3, 8}. We consider 2 different cases in the following:

(1) g(e4) = e5, g(e5) = e4: Since ek ∗ e5 = −ek for k ∈ J , and ek ∗ e4 = −ek for k ∈ I.

We have e1 ∗ e4 = −e1, which implies g(e1) ∗ e5 = −g(e1). Then g(e1) = akek for some

k ∈ J .

(1a): Suppose that g(e1) = a2e2.

By e2 ∗ e5 = −e2, we get that g(e2) ∗ e4 = −g(e2), which implies g(e2) = akek for k ∈ I. If

g(e2) = a1e1, we get a1e1∗g(e3) = a2e2 by e2∗e3 = e1. From Table 2.1, it is easy to see that

only one ek satisfies: e1 ∗ ek = ae2 for some a ∈ {±1}, which is e6 (e1 ∗ e6 = −e2). Hence

g(e3) = a6e6, with a6 = −a1a2. Similarly, we get g(e6) = a3e3 by e1 ∗ e6 = −e2, where

a6 = −a1a2, and g(e7) = a8e8 by e1 ∗e7 = e3, where a8 = a1, g(e8) = a7e7 by e1 ∗e8 = −e4,

where a7 = a2. Combining them together, we have a monomial matrix in G (R):

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(12)(36)(78)(45). (8.6.2)

with a1, a2, a3 ∈ {±1}, a1a2a3 = −1. It is exactly the monomial matrix in Example 8.6.1.

If g(e2) = a6e6, we have g(e6) = a8e8 by e1 ∗ e6 = −e2 with a2a6a8 = 1. Similarly,

we have g(e8) = a7e7 by e1 ∗ e8 = −e4 with a2 = a7, g(e7) = a3e3 by e7 ∗ e2 = −e4 with

a3 = a6. Finally, g(e3) = a1e1 by e3 ∗ e2 = −e1 with a1a2a6 = 1. Hence we obtain:

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(126873)(45) (8.6.3)

with a1, a2, a3 ∈ {±1}, a1a2a3 = 1.

159



If g(e2) = a7e7, by e1 ∗ e6 = −e2, we have a2e2 ∗ g(e6) = a7e7. This equation does not

have a solution by Table 2.1.

(1b): Suppose that g(e1) = a3e3. Similar calculations as above. Consider g(e2) = akek

for k ∈ I. Then g(e2) = a1e1 or a7e7 (for g(e2) = a6e6, we don not have a solution by

e1 ∗ e6 = −e2). If g(e2) = a1e1, we obtain:

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(137862)(45) (8.6.4)

with a1, a2, a3 ∈ {±1}, a1a2a3 = 1. If g(e2) = a7e7, we have:

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(13)(27)(68)(45). (8.6.5)

with a1, a2, a3 ∈ {±1}, a1a2a3 = −1.

(1c): Suppose that g(e1) = a8e8. Consider g(e2) = a6e6 or g(e2) = a7e7. We get:

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(18)(26)(37)(45). (8.6.6)

with a1, a2, a3 ∈ {±1}, a1a2a3 = −1 for g(e2) = e6, and

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(8)(27)(36)(45) (8.6.7)

with a1, a2, a3 ∈ {±1}, a1a2a3 = 1 for g(e2) = e7.

(2) g(e4) = e4, g(e5) = e5. The second case has similar result to case (1). We omit the
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calculation and just list monomial matrices below. We also have 6 matrices:

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(16)(38),

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(17)(28),

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(23)(67),

(8.6.8)

with a1, a2, a3 ∈ {±1}, a1a2a3 = −1, and

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(167)(283),

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(176)(238),

g = diag(a1, a2, a3, 1, 1, a3, a2, a1)id,

(8.6.9)

with a1, a2, a3 ∈ {±1}, a1a2a3 = 1.

Monomial matrices 8.6.2-8.6.9 are all possible monomial matrices satisfy g(x ∗ y) =

g(x) ∗ g(y). They form a subgroup of G . Denote by

g1 = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(13)(27)(68)(45),

g2 = diag(a1, a2, a3, 1, 1, a3, a2, a1) P(126873)(45),

in (8.6.3) and (8.6.5). They are generators of G ∩ S. It turns out that the subgroup is

isomorphic to the dihedral group D6 = {g1, g2 | g21 = 1, g62 = 1, g1g2 = g−12 g1}. By using

a1a2a3 = −1 a1a2a3 = 1
g(e4) = e5 g1 g2
g(e5) = e4 g42g1 g52

g22g1 g32
g(e4) = e4 g2g1 g22
g(e5) = e5 g32g1 g42

g52g1 id

dihedral group D4, it is easy to see that all other affine charts Ui(i 6= 4, 5) in F1 can be
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transferred by U1 and U4.

Remark 8.6.10. Transferring from one affine chart to another is not unique . For example,

affine chart

{π2e1} × {π2ek, πe1}k=1,2,3,5 × {π2ei, πej , e1}i=1,...,5,j=1,2,3,

can be transferred to

{π2e2} × {π2ek, πe2}k=1,2,4,6 × {π2ei, πej , e2}i=1,2,4,5,6,j=1,2,6,

both by (8.6.2) and (8.6.3). But the corresponding open subscheme has the same equations

for variables.

We end this section with an example of finding generators of F2 in the affine chart U5

by using g in G ∩ S.

Example 8.6.11. Consider g = diag(a1, a2, a3, 1, 1, a3, a2, a1)P(12)(36)(78)(45). Let a1 =

a2 = 1, a3 = −1. In §8.5, we calculated the affine chart U4, where the leading terms for F i

(i = 1, 2, 3) are:

{π2e4} × {π2ek}k=1,4,5,6,7 × {π2ei, πe5}i=1,...,8.

Then g acting on this affine chart gives us:

{π2e5} × {π2ek}k=2,3,4,5,8 × {π2ei, πe4}i=1,...,8,

which is exactly the affine chart U5 that we want to calculate. More precisely, recall that
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the generators of F2 in U4 have the form:

C1 =f
ξ
1 + (x6 − x8x2)f

ξ
2 − (x7 + x8x3)f

ξ
3 − x

2
8f

ξ
8 − x8k2[(πe4 − π

1/3
0 ξ2e4)+∑

i 6=4

xi(πei − π
1/3
0 ξ2ei)],

C2 =f
ξ
4 + x2f

ξ
2 + x3f

ξ
3 + x8f

ξ
8 + k2[(πe4 − π

1/3
0 ξ2e4) +

∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

C3 =f
ξ
5 − x2f

ξ
2 − x3f

ξ
3 − x8f

ξ
8 ,

C4 =f
ξ
6 − (x1 + x3x2)f

ξ
2 − x

2
3f

ξ
3 + (x7 − x3x8)f

ξ
8 − x3k2[(πe4 − π

1/3
0 ξ2e4)

+
∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

C5 =f
ξ
7 − x

2
2f

ξ
2 + (x1 − x2x3)f

ξ
3 − (x6 + x2x8)f

ξ
8 − x2k2[(πe4 − π

1/3
0 ξ2e4)

+
∑
i 6=4

xi(πei − π
1/3
0 ξ2ei)],

with k2(1 + x5) = π
1/3
0 (1− ξ), and x1x8+ x2x7+ x3x6+ x5 = 0. Consider g(F i). We have:

g(F1) = f5 + x2f1 + x1f2 − x6f3 + x5f4 − x3f6 + x8f7 + x7f8.

Set:
y1 = x2, y2 = x1, y3 = −x6,

y6 = −x3, y7 = x8, y8 = x7.

and y4 = x5. We can rewrite g(F1) = f5+
∑

i 6=5 yifi with y1y8+ y2y7+ y3y6+ y4 = 0. The
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generators of g(F2) are:

g(C1) =f
ξ
2 − (y3 + y7y1)f

ξ
1 + (y8 − y7y6)f

ξ
6 − y

2
7f

ξ
7 − y7k2[(πe5 − π

1/3
0 ξ2e5)

+
∑
i 6=5

yi(πei − π
1/3
0 ξ2ei)],

g(C2) =f
ξ
5 + y1f

ξ
1 + y6f

ξ
6 + y7f

ξ
7 + k2[(πe5 − π

1/3
0 ξ2e5) +

∑
i 6=5

yi(πei − π
1/3
0 ξ2ei)],

g(C3) =f
ξ
4 − y1f

ξ
1 − y6f

ξ
6 − y7f

ξ
7 ,

−g(C4) =f
ξ
3 + (y2 − y6y1)f

ξ
1 − y

2
6f

ξ
6 − (y8 + y6y7)f

ξ
7 − y6k2[(πe5 − π

1/3
0 ξ2e5)

+
∑
i 6=5

yi(πei − π
1/3
0 ξ2ei)],

g(C5) =f
ξ
8 − y

2
1f

ξ
1 − (y2 + y1y6)f

ξ
6 + (y3 − y1y7)f

ξ
7 − y1k2[(πe5 − π

1/3
0 ξ2e5)

+
∑
i 6=5

yi(πei − π
1/3
0 ξ2ei)].

with y1y8 + y2y7 + y3y6 + y4 = 0, k2(1 + y4) = π
1/3
0 (1− ξ). We can check that it is exactly

F2 in U5 by using same calculation we did in §8.5.
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