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ABSTRACT
AFFINE GRASSMANNIANS AND SPLITTING MODELS FOR TRIALITY GROUPS
By
Zhihao Zhao

This thesis concerns the study of affine Grassmannians and of local models for ramified
triality groups. The triality groups we consider are groups of type 3Dy, so they are forms
of the orthogonal or the spin groups in 8 variables. They can be given as automorphisms
of certain twisted composition algebras obtained from the octonion algebra. Using these
composition algebras, we give descriptions of the affine Grassmannians and of the global
affine Grassmannians for these triality groups as functors classifying suitable lattices in a
fixed space. We combine these descriptions with the Pappas-Zhu construction, to obtain a
corresponding description of local models for triality groups; the singularities of these models
are supposed to model the singularities of certain orthogonal Shimura varieties.

Moreover, we give a definition of a corresponding splitting model in terms of linear algebra
data; this splitting model is expected to provide a partial resolution of the local model. By
explicit calculations, we find equations that describe affine charts of the splitting model.
Using these calculations, we show that the splitting model is isomorphic to the blow-up of
a quadratic hypersurface along a specific smooth closed subscheme of its special fiber. It
follows that the splitting model is regular and has special fiber which is the union of two

smooth irreducible components that intersect transversely.
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Chapter 1

Introduction

Local models are certain projective schemes over the spectrum of a discrete valuation ring
which have a homogeneous space for a reductive group as generic fiber. Their singularities
are supposed to model the singularities of natural integral models of Shimura varieties with
parahoric level structure, i.e., each point on the integral model of the Shimura variety should
have an étale neighborhood which is isomorphic to an étale neighborhood of a corresponding
point on the local model. So the problem of studying singularities of reductions of Shimura
varieties becomes studying singularities of corresponding local models. Therefore, it is in-
teresting to study good properties of local models, such as flatness or Cohen-Macaulayness.
Local models for Shimura varieties of PEL type were given by Rapoport and Zink in [27];
sometimes, these are called “naive local models”. Naive local models are defined directly in
terms of linear algebra data; they are closed subschemes in the product of Grassmannian
varieties and they can be calculated explicitly. Unfortunately, naive local models are not
always flat (see [21]). Some of these non-flat examples arise due to the fact that the group
defining the Shimura variety is non-split over p. In the ramified PEL case, corrected local
models for classical groups have been studied case by case. The local structure of local mod-
els was considered in several papers by Gortz[7], [8], [9], by Kramer [16], by Smithling [30],
by Arzdorf [1] and others. We refer the survey [24] for an overview and more references.

In [26], Pappas and Zhu gave a uniform group-theoretic construction of local models for



tamely ramified groups; we call these “PZ-local models”. Roughly speaking, PZ-local models
are given as the Zariski closure of a homogeneous space in a global affine Grassmannian over
a ring of p-adic integers. Pappas and Zhu showed that PZ-local models have many good
properties. However, these local models are not defined directly in terms of linear algebra
data. One of our goals in this work is to give a linear algebra description of PZ-local models
for certain orthogonal groups. A similar result, for classical orthogonal (split) groups has
been recently obtained by Zachos, and Zachos-Pappas in [25], [32]. Here, we consider the
harder case of ramified triality groups.

What are triality groups? Let G be an adjoint Chevalley group of type Dy over a field

Fy. Consider the Dynkin diagram:

The Dynkin diagram of type D4 has a symmetry not shared by other Dynkin diagrams: it
admits automorphisms of order 3. Since the automorphism of the Dynkin diagram of type
Dy is isomorphic to the symmetric group S3, there is a split exact sequence of algebraic
groups:

1 Gy — Aut(Go) b S5 — 1.

Thus, Gy admits outer automorphisms of order 3, which we call trialitarian automorphisms.

The fixed elements of Gy under such an outer automorphism, define groups of type Go:

Gy e & e



Consider the Galois cohomology set H1(Fy, Aut(Gg)) = H (I, Aut(Gp)), where Iy is
the absolute Galois group Gal(F{ sep/Fp). Adjoint algebraic groups of type Dy over Fj
are classified by H(F, Aut(Gp)) (29.B, [14]), and the map induced by f in cohomology
L HY(Fy, Aut(Gg)) — HY(Fp, S3) associates to G of type Dy the isomorphism class of a

cubic étale Fy-algebra F', see [14]. The possibilities of I’ are summarized as follows:

F type Go
Fy x Fy x F Ip,
Fy x A 2D,
Galois field ext. 3Dy
non-Galois field ext. 6Dy

The group Gy is said to be of type 1Dy if F' is split, of type 2Dy if F = Fy x A for some
quadratic separable field extension A/Fj, of type 3D, if F is a cyclic field extension over
Fp, and of type 6pyif Fisa non-cyclic field extension. In our paper, we consider the 3Dy
case and call the corresponding GGy the triality group.

These triality groups are often studied by composition algebras. By composition algebras,
we mean algebras (not necessarily associative) with a nonsingular quadratic form ¢ such
that g(z - y) = q(z)q(y) for all x, y in this algebra. We give a review of different types
of composition algebras in §2. Composition algebras can be used to describe exceptional
groups. For example, Springer shows the automorphism of an octonion algebra is of type Go
(§2.3, [31]). Here the octonion algebra is an 8-dimensional composition algebra. We can view
this automorphism group as the fixed subgroup of a spin group of an octonion algebra under

outer automorphisms (Proposition 35.9, [14]). In §3, we extend this result and show that the



subgroup of a spin group of a normal twisted composition algebra, which is fixed under outer
automorphisms, is of type 3D4. This will be our main tool to study affine Grassmannians
and local models for triality groups.

Before considering local models for triality groups in global affine Grassmannians, we
will give an explicit description of the triality affine Grassmannian in terms of lattices with
extra structure. Corresponding explicit descriptions of affine Grassmannians/flag varieties
are known and have been quite useful. Lusztig [18] first showed that affine Grassmannians
for simple Lie algebras can be described in terms of certain orders, which are lattices closed
under the Lie bracket. Here we aim for an explicit description in terms of lattices in the
standard representation which is more in line with such descriptions known for classical
groups. For example, Pappas and Rapoport gave such descriptions for affine Grassmannians
and affine flag varieties for unitary groups in [23] using lattices (or lattice chains) which
are self-dual for a hermitian form. See also work of Gortz [8] and of Smithling [29] for the
symplectic and the split orthogonal groups, respectively. It turns out that the case of the
ramified triality group, which we consider here, is considerably more complicated. We believe
that these objects are of independent interest and we begin by discussing them in detail.

Let k be a field with characteristic char(k) # 2,3. We assume the cubic primitive root
€ isin k. We set Fy = k((t)) (resp. F' = k((u))) the ring of Laurent power series, with ring
of integers k[t] (resp. k[u]). Set u3 = t so that F/Fy is a cubic Galois extension with
Gal(F/Fy) = (p) = As, where p acts on u by p(u) = &u. In §2.3, we define the normal
twisted composition algebra (V,*) over F'. Here (V, %) is an 8-dimensional vector space with
an Fp-bilinear product * and a nonsingular quadratic form ¢ satisfying certain properties
(see Definition 2.3.1). We also fix a finitely generated projective k[u]-module L in V', which

we call the standard lattice in V. Denote by ( , ) the bilinear form associated to q. We



show that the spin group Spin(V,*) over F' has an outer automorphism, and the subgroup
of Resp /F, Spin(V, x), which is fixed under the outer automorphism, is the triality group G
we are interested in, i.e.,

G = ResF/FOSpin(V, *)A?).

We now choose the parahoric group scheme ¢ over Spec(k[t]) given by the lattice L. This is
a smooth group scheme with ¢ @] k(t) = G. Set ¢4, the generic fiber of &. We consider
the associated loop group L%, (resp. positive loop group L"), which is the ind-scheme

representing the functor:
R LGy (R) :== %,(R(1), (resp. R~ LYY (R) := 9(R[t])),
for any k-algebra R. The quotient fpqc sheaf L%,/ LT is by definition the affine Grass-

mannian for the triality group over Spec(k). Our first main theorem is:

Theorem 1.0.1. There is an LY,)-equivariant isomorphism
L4, LYY ~F
where the functor . sends a k-algebra R to the set of finitely generated projective R[u]-
modules L (i.e., R[u]-lattices) of V @} R = R((u))®, such that
(1) L is self dual under the bilinear form (, ), i.e., L ~ HomR[[u]](L, R[u]).
(2) L is closed under multiplication, L x L C L.

(3) There exists a € L, such that g(a) =0, (a*a,a) = 1.



(4) Fora asin (3), let e = a+axa. Then, we have exx = —& = T x € for any T satisfying

(z,e)y = 0. (Here, T is the image of x under the canonical map L — L/uL.)

This theorem is proven in §5.2. In particular, it gives a bijection between k-points in the
affine Grassmannian for triality groups and a certain set of k[u]-lattices in V' that satisfy
some special conditions.

We are now ready to give definitions of global affine Grassmannians and local models
for triality groups. Let Fy = Q""" be the maximal unramified extension of Q) for p # 2, 3.
Let K/Qp be a cubic extension and F' = KQp"". Then F/Fj is a cubic Galois extension.
Choose a uniformizer 7 (resp. my) in the ring of integers O (resp. Op) of F' (resp. Fp). In
the second part of the paper, we construct a group scheme H over F. This is a generalized

group scheme containing Spin(V,*). Here H sits in the following exact sequence:
1 — Spin(V, %) — H — G$3.

The Galois group Gal(F/Fy) = Asz also acts on H, and we denote by G the subgroup
of Resp / F()H fixed under the Galois group. We call G the triality group for the general
orthogonal group over Spec(Fj).

Consider the affine line A%QO = Spec(Op|u]) and its cover Spec(Oglv]) — Spec(Oglu))
W)

given by u — v3. We can get the cubic field extension F/Fy from Og[v™1]/Op] by base

changing via v — m. Thus, there is a normal twisted composition algebra V over O [vil]
with a bilinear form ( , ), such that the base change 1% ®OO ] F' is isomorphic to V. We
fix an Op[v]-lattice in V, and still call it the standard lattice LL for simplicity. Following [26],

we construct a reductive group scheme G over Spec(Qy [uil]). It is a quasi-split (split after

a tamely ramified extension) group scheme such that the base change G ® Oplut]] Fy given

6



by (’)O[uil] — Fj,u — m, is isomorphic to G. Having given GG, we can now choose the
parahoric subgroup ¢ over Spec(Op[u]) given by L. The global affine Grssmannian Gry is

now defined as the quotient fpqc sheaf L% /LT%. Our second main theorem is:

Theorem 1.0.2. Suppose R is an Og-algebra. There is an LY -equivariant isomorphism
between Gry(R) and the set of pairs (L, [A]), where L is a Ru — m] ®0oglu] Q0 [v]-lattice of

1% ®Oo[uil] R((u — m)), and X is in (R((u — mg)) ®0g[u] Q0 [v])*, which satisfy:

(1) Under the bilinear form ( , ), we have
(2 )5 L@ L = p(NN (R — w0 @0, ) Oolt])

which is perfect, i.e., L = Hom(L, p(A\)0(N)(R[u — mg] D00 [u] Oglv])). Here the tensor
® and Hom are for the R]u — ] R0y [u] Op[v]-mod structure.

(2) We have L« L C \L.

(3) There exists a € L, such that q(a) = 0, (a * a,a) = Ap(A)O(N).

(4) Fora as in (3), let e = a4+ AX"Yaxa). Thus, we have \™1 - exz = -z = \"1 . T¥e,
for any T satisfying (z,€) = 0, where T is the image of x under the canonical map

L— L/(u—mgy,v)L.

We refer §6.2 for notations in detail, and the proof is in §6.3. This theorem generalizes
our first main theorem.

To define local models for triality groups, we need to fix a coweight i of G. This coweight
gives a morphism p: Gy, p = G® Fy F, which gives a F-valued point of LG. After showing

Yrymy =Y 0] Folu — mo] = G ®F, Folu — mg] in §7.1, we get an F-valued point in



LY Fy.mg- Denote by s, the corresponding F-valued point in LY Fy,my- We consider the orbit
X,=L"9 Fy.mg [sp] in the generic fiber of Grgy IoNt O. Then following the definition in
26], the local model for triality groups is the Zariski closure of the orbit X, in the ind-scheme
Grg o = Gry D0q[u] O. The description of the global affine Grassmannian as a functor
classifying lattices given by the theorem above, now also implies a corresponding description
of the local model as classifying such lattices whose distance from the standard lattice is
“bounded by p”.

Although the definition of local models for triality groups looks complicated, the generic
fiber of this local model has a simple description. Let C' be an 8-dimensional vector space
equipped with a nondegenerate symmetric quadratic form ¢. Let ) be the projective
quadratic hypersurface defined by gq. There are two different orthogonal Grassmannians,
which contain maximal isotropic subspaces of C. We denote them by @, Q. Then, we

have a “triple graph™:
Q \
Q* > Q7

(see §20.3, [5]). The outer automorphism of triality groups can be viewed as a counterclock-

wise action in the above “triple graph”. Hence, the fixed subgroup under outer automorphism
is isomorphic to the quadratic hypersurface ), and the generic fiber of local models for triality
groups is also isomorphic to the quadratic hypersurface (). See §7.2 for details.

The last part of this paper is about “splitting models” for triality groups. The original
purpose of introducing splitting models by Pappas and Rapoport ([22]) was to modify “naive
local models” in the ramified case, so that the modified models are flat and have reasonable

singularities. We can view splitting models as “partial resolutions of local models”. In [22],



Pappas and Rapoport consider the cases where the quasi-split form of G is the general linear
group GL,; or the general symplectic group GSpy,,. We will give the definition of splitting

models M5Pt for triality groups in terms of linear algebra data. Our last main theorem is
Theorem 1.0.3. The scheme MSPUt s isomorphic to the blow-up Q of Q along Z.

Here () is the quadratic hypersurface in P? , and Z is the closed subscheme that contains
all isotropic lines orthogonal to the para-unit e in the special fiber of @) (see §8.2). It
easily follows that Msplit g regular and has special fiber which is the union of two smooth
irreducible components that intersect transversely. Although we believe that there should be
“partial resolution” (birational) morphism: MSPHt s Aqloc - we were not able to establish
that yet.

The organization of the paper is as follows. In §2, we review the definition and basic
propositions of composition algebras, including unital composition algebras, symmetric com-
position algebras, and twisted composition algebras. We are particular interested in normal
twisted composition algebras, since the spin group of normal twisted composition algebras is
an ingredient to construct triality groups. We explain relations between isotropic subspaces
in the normal twisted composition algebras (we call it “triality triple”) in §2.4. In §3.1 —
3.2, we review orthogonal groups and give the principle of triality proposition, which we will
use them to explain our construction of triality groups. In §3.3 — 3.4, we give the definition
of triality groups, both for the special orthogonal groups and for the general orthogonal
groups. In §4 we review loop groups and affine Grassmannians. In §5, we first review Galois
cohomology theory, which we will use to prove our first main theorem. We fix the parahoric
subgroup for triality groups by picking a lattice, and show our first main theorem in §5.2, to

identify points in affine Grassmannian for triality groups with lattices satisfying some special



conditions. In §6, we discuss global affine Grassmannians for triality groups. We first recall
the general construction by [26] in §6.1. Our special construction with the statement of our
second main theorem is in §6.2, whose proof occupies §6.3. This proof is similar but more
general than the proof in §5.2. Finally, we give the definition of local models for triality
groups in §7. We show the generic fiber of M!o¢ ig isomorphic to the triality triple in some
sense. We explain our motivation for splitting models in §8.1, and define splitting models for
triality groups Meplit being the flat closure of some “naive splitting models” M. They are
isomorphic in the generic fiber, which are exactly the generic fiber of quadratic hypersurface
. Our last main theorem is in §8.2. We conclude the paper in §8.3-8.6, which include

calculation results that we need for the proof of our last main theorem.

10



Chapter 2

Composition Algebras

The main topic of this section is composition algebras. We give the definition of unital com-
position algebras, symmetric composition algebras and normal twisted composition algebras.
We will see that they have close connection with each other.

Let F' be a field, and suppose char(F') # 2,3. In this and the following sections, by
an F-algebra A we mean (unless further specified) a finite dimensional vector space over
F equipped with an F-bilinear multiplication m : A x A — A. Here m is not necessarily
associative. Later we will use different notations for the multiplication to distinguish different

composition algebras. We do not assume that the algebra A has an identity.

Definition 2.0.1. An involution on an algebra A over a field F is a map o : A — A such

that
(1) o(x+y) =o(x)+o(y),
(2) o(xy) = o(y)o(x),
(3) o*(z) =z,

for any z,y € A.

A morphism with involution is a morphism of algebras which commutes with the invo-

lution. A quadratic form on A over F' is a mapping q : A — F with the properties:

11



(1) q(\z) = A2q(z) for A€ F, x € A.

(2) The mapping (, ): A x A — A defined by

(z,y) = q(z +y) — q(z) — q(y)

is bilinear.

We always assume ¢ is nonsingular in this paper, i.e., if (x,y) = 0 for all y € A, we have
x = 0. An element = in A is called isotropic if ¢(z) = 0 and anisotropic if ¢(x) # 0. The

quadratic form ¢ is said to be isotropic if there exist nonzero isotropic elements in A.

Definition 2.0.2. A composition algebra A over a field F' with multiplication x -y = m(z,y)

is an algebra with a nonsingular quadratic form q on A satisfying:

q(z-y) = q(x)q(y).

This quadratic form q is often referred to as the norm on A, and the associated bilinear form

(, ) is called the inner product.

A subalgebra of a composition algebra is an F-subspace that is closed under multipli-
cation, and the homomorphisms between composition algebras are the F-linear maps that

preserve the multiplication.

2.1 Unital composition algebras

Let A be a composition algebra over F' with identity e, and denote by x ¢y the multiplication

m(x,y). We call the triple (A, ¢, q) a unital composition algebra. It turns out that every

12



element of a unital composition algebra satisfies a quadratic polynomial. This is the minimal
polynomial if the element is not a scalar multiple of the identity. (A minimal polynomial of
an element xg € A is the unique irreducible monic polynomial p(z) € F[z] of smallest degree

such that p(zg) = 0.)

Proposition 2.1.1. Fvery element x of a unital composition algebra (A,©,q) satisfies

rox— (r,e)xr+ q(x)e = 0.

For x,y € A, we have

roy+yox—(r,e)y— (y,e)x+ (z,y)e=0.

Proof. See Proposition 1.2.3, [31]. O

By using this proposition, we can define an involution r :  — r(x) by
r(z) = (z,e)e — x,
for z € A. We call r(z) the conjugate of x. The following results hold in every unital
composition algebra (A, ¢, q):
Lemma 2.1.2. We have
(1) xor(z) =r(z)ox=q(x)e,
(2) r*(x) =,

(3) q(r(z)) = q(z),

13



(4) r(z+y) =r(x) +r(y),
(5) (r(z),r(y)) = (z,y),
(6) r(xoy) =r(y)or(z),
for all z,y € A.
Proof. See Lemma 1.3.1, [31]. 0

From the above, we see that r : x +— r(z) is indeed an involution. We list some useful

equations that we will use later in the following lemmas (See §1.2, §1.3, [31]):

Lemma 2.1.3. We have

(1) (xozy0z2) = (z,y)q(2),

(2) (zox,zoy) = q(2){z,y)),

(8) (xoz,yow)+ (row,yoz) = (r,y){z,w),

forall x,y,z € A.

Proof. See §1.2, [31]. O

Lemma 2.1.4. We have

(1) xo(r(z)oy) = q(x)y,

(2) (xor(y)) oy =qly)z,

(3) xo(r(y)oz)+yo(r(z)oez) = (x,y)z,

(4) (wor(y)) oz + (zor(z)) oy = (y,2),

14



forall x,y,z € A.
Proof. See Lemma 1.3.3, [31]. O

Unital composition algebras are described by the Cayley-Dickson process. Suppose that
(A, r) is a unital composition algebra with an involution r. Let A € F*. The Cayley-Dickson

algebra C'D(A, \) associated to (A,r) and A is the vector space

CD(A,\) == A& vA,

where v is a new symbol, endowed with the multiplication:

(a+wvb)o(d +vb) = (aod + X ord)) +v(r(a) ot +d ob),

for a,a’,b and b’ € A. We set g(a + vb) := q(a) — Aq(b), and r(a + vb) := r(a) — vb. One
can check that (CD(A,\),©,q) is an algebra with identity 1 = e + v - 0. The algebra A is
contained in C'D(A, ). This process from A to CD(A, \) is called a Cayley-Dickson process.
We refer §33.C, [14] or §1.5, [31] for details. By using the Cayley-Dickson process, we now

come to the well-known classification of unital composition algebras:

Theorem 2.1.5. FEvery unital composition algebra over F' is obtained by the Cayley-Dickson
process. The possible dimensions are 1,2,4 and 8. Composition algebras of dimension 1 or 2
are commutative and associative, those of dimension 4 are associative but not commutative,

and those of dimension 8 are neither commutative nor associative.

See §1.5, [31] and §33.C, [14] for the proof. By repeating the process from A = F - e, we

get a quadratic étale algebra, a quaternion algebra, and a Caylay algebra corresponding to

15



the unital composition algebra of dimension 2, 4 and 8. The Cayley-Dickson process applied
to a Cayley algebra does not yield a composition algebra.

Now we consider the isomorphism classes of unital composition algebras. Let (A, <, q),
(A", ¢') be two composition algebras. A similitude is an F-linear map: ¢ : (A4,0,q) —
(A, o' ¢) for which there exists a constant o € F™* such that (g(x),g(y)) = alx,y) for all
x,y € A. We call a the multiplier of a similitude g. A similitude with multiplier a = 1 is

called an isometry.

Proposition 2.1.6. Let (A4,¢,q), (A,o/,¢") be two composition algebras. The following

claims are equivalent:
(1) g: A— A is an isomorphism.
(2) g: A— A is a similitude.
(3) g: A— A is an isometry.
Proof. See Theorem 33.19, [14]. O

Proposition 2.1.7. If the quadratic form of a unital composition algebra is isotropic, it is

hyperbolic.
Proof. See Proposition 33.23, [14]. O

It follows from the above propositions that in each possible dimension, there is only one
isomorphism class of unital composition algebras with isotropic quadratic form. We are
specifically interested in Cayley algebras in this paper. We call the (unique up to isomor-

phism) Cayley algebra with isotropic norm the split Cayley algebra.
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2.2 Symmetric composition algebras

In this section we discuss a special class of composition algebras without identity. Let (S, q)

be a composition algebra over F', and denote by x x y the multiplication m(z,y).

Definition 2.2.1. A symmetric composition algebra (S, *,q) is a composition algebra satis-

fying

(xxy,2) = (z,y%2),
forall x,y,z € S.

Similar to Lemma 2.1.2, Lemma 2.1.3, the following results hold in every symmetric

composition algebra (S, , q):
Lemma 2.2.2. We have
(1) {xx2z,y%2) = (x,9)q(2),
(2) (zxx,z2%y) = q(2)(z,)),
(3) (xxz,yxw) + (xxw,y*z) = (x,y)(z,w),
forallx,y,z € S.
Lemma 2.2.3. We have
(1) (@xy)*z+ (2 *y) xz = (z,2)y,
(2) xx(y*xz)+zx(y*xz)=(z,2)y,

for all x,y,z € S. In particular, we have (x xy) xx =z * (y *x) = q(z)y.
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See Lemma 34.1, [14] for the proof. Starting from a unital composition algebra (A, <, q),
we can get a symmetric composition algebra (A,*,q) by defining x xy = r(x) o r(y). It
satisfies (zxy, z) = (y*z, ) since we have (zoy,r(z)) = (yoz,r(x)) for any z,y,z € A. We
say that (A, *,q) is a para-quadratic algebra (resp. para-quaternion algebra or para-Cayley
algebra) if it is obtained from (A,¢,q) a quadratic algebra (resp. quaternion algebra or
Cayley algebra). It turns out that the identity element e € (A, ¢, q) plays an important role
in the corresponding symmetric composition algebra (A, x,q): By z xy = r(x) o r(y), it is
easy to see that e is an idempotent (e x e = e) and satisfies e x x = z xe = —z for any
x € A orthogonal to e ((z,e) = 0). We call an element which satisfies the above condition a
para-unit.

Not every symmetric composition algebra can be obtained in this way. For example, we
have Okubo algebras in dimension 8. This is shown in §34, [14]. We call a symmetric com-
position algebra a para-Hurwitz algebra if it is obtained from a unital composition algebra

by defining x xy = r(z) o r(y).

Proposition 2.2.4. A symmetric composition algebra is para-Hurwitz if and only if it admits

a para-unit.

Proof. See Proposition 34.8, [14]. O

We are specifically interested in para-Cayley algebras in this paper. By Proposition 34.4,
[14], any isomorphism of unital composition algebras is an isomorphism of the corresponding
para-Hurwitz algebras. Conversely, when dimension > 4, any isomorphism of para-Hurwitz
algebras is an isomorphism of the corresponding unital composition algebras. Hence there
is an equivalence of groupoids of unital composition algebras and para-Hurwitz algebras

of dimension 4 or 8. Since the split Cayley algebra is unique up to isomorphism, we get
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Table 2.1: The split para-Cayley algebra (C,*

)

with multiplication x xy

y

el €9 €3 €4 €5 €6 er es
€1 —€1 —€2 €3 —€4
€9 el —e9 . —e5  —eg
€3 —€1 —€3 —¢€5 ) €7
€4 —e9 —e3 e . . —eg

x| e5| —ep . . e, —eg —er :

e6 | €2 —eq4 —e€4 . —eg
e7 | —es —eq . —e7 . es .
€8 | —€5 €6 —e7 ) —e€8 )

the corresponding algebra is also unique up to isomorphism, and denote by (C,x) the split
para-Cayley algebra. The multiplication table of the split Cayley algebra is given by Table

2.1.

2.3 Twisted composiiton algebras

Twisted composition algebras were introduced by Springer in his 1963 lecture notes [31], to
get a new description of Albert algebras. We recall the definition from [31] and [15]. Let Fy
be a field with char(Fy) # 2,3, and let F' be a separable cubic field extension of F. The
normal closure of F' over Fy is F/ = F(d), where d satisfies a separable quadratic equation
over Fyy (see Theorem 4.13, [11]). We can take d = v/D, the square root of the discriminant
D of F over Fy. We set Fj) = Fy(d). So either F is the Galois extension of Fy with cyclic
Galois group of order 3, and then F’' = F, Fé = Fy; or F' and F(’) are quadratic extensions of
F and Fy, respectively, and F’ is the Galois extension of F6 We will focus on the case that
the separable cubic extension F'/Fj is also normal, and call algebras of this type “normal

twisted composition algebras”.
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Let F/Fy be a cubic Galois extension. We set I' = Gal(F'/Fy), with p the generator of

. Set § = p?, then I' = {1, p, 6}.

Definition 2.3.1. A normal twisted composition algebra (of dimension 8) is a 5-tuple
(A, F,q,p,*), where A is a vector space of dimension 8 over F' with a nonsingular quadratic
form q, and associated bilinear form { , ). We have an Fy-bilinear product x : A x A — A

on F with the following properties:

(1) The product x *y is p-linear in x and O-linear in y, that is:

(Az) xy = p(A)(z *y), zx(Ay) =0(\)(z xy),

(2) We have q(x +y) = p(a(x))0(q(y)),
(3) We have (z %y, 2) = p((y * 2, 7)) = 0((z x 2, y))
forall x,y,z € A, and A € F.
Let A" = (A, F,¢, p',+") be another normal twisted composition algebra. A similitude

A — A’ is defined to be an F-linear isomorphism ¢ : A — A’ for which there exists A € F*,

such that

¢ (9(x)) = p(\)0(N)q(z), g(x) ¥ gly) = Ag(z *y),

for all z,y € A. We denote by A’ = A\. The scalar ) is called the multiplier of the similitude.
Similitudes with multiplier 1 are called isometries.
It turns out that a normal twisted composition algebra can be obtained by scalar exten-

sion from a symmetric composition algebra: Given a symmetric composition (.S, *,q) over
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Fjy. We define a normal twisted composition algebra S = S ® (F, p) as follows:

S®(Fap):(S®FOF7F7QF7p7*)

where g is the scalar extension of ¢ to F' and * is defined by extending « linearly to S® Ry F

and setting

2%y = (idg ® p)(x) « (ids ® 0)(y), forall 2,y € S @5 F

(see §2, [15]). A normal twisted composition algebra A over F' is said to be reduced if there

exist a symmetric composition algebra S over Fy and A € F* such that A is isomorphic to

Sy.

We denote by (V,*) the normal twisted composition algebra obtained from the para-
Cayley algebra. Similar to unital composition algebras and symmetric composition algebras,
we list some general properties for normal twisted composition algebras before we move on.

Let (A, F,q, p,*) be a normal twisted composition algebra.
Lemma 2.3.2. We have
(1) (zxzyx*z) = p({z,y))0(q(2)),
(2) (%22 xy) = 04 ))p(a(2)),
(3) (zxz,yxw,) +(zxw,yx*z) = p((z,9))0({z,w)),
for all x,y, z,w € A.
Proof. See Lemma 4.1.2, [31]. O

Lemma 2.3.3. We have
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(1) wx(yxx) = plg(x))y, (zxy)*z=~0(qr))y,
(2) wx(yxz)+zx(yxz)=p((z,2))y, (zxy)*z+(2xy)*z=0(z,2))y,
(3) (z*1) % (x*2) = T(@)z — q(z)(z * z), where T(z) := (x + z,z) € Fp,
for all z,y,z € A.
Proof. See Lemma 4.1.3, [31]. 0

Remark 2.3.4. Let (A, F,q, p,*) be a normal twisted composition algebra. Consider the
extended algebra A’ = A ® Fy I'. We claim this extension algebra A’ is also a twisted
composition algebra. In fact, we have a nice description of A’. Consider an isomorphism of

F-algebras
v:F ®F, FS FxFxF givenby 11 ®rg— (r1r9, p(r1)re, 0(r1)rs).

Note that p ® idp is identified with the map defined by p(r1,79,73) = (72,73,71) to make

the diagram commutative:

Fop F 2 Fog F

| |

FxFxF - FPxFxF

We define the twisted vector spaces P A and 04
PA={Pz|ze A}, A={%xzc A}

with the operations: ?(rz) = p(r)Pxz, P (z4y) = Pr+Py, and O (re) = 0(r)0z, % (x4y) = P40y,
for all x,y € A,r € F. Then there exists an F-isomorphism A R, F3 AxPAx%4 given
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r@r— (re,r(Pz), 7‘(91’))

(see Remark 2.3, [15]). To describe the multiplication in A ®p, £ and AxPAx 9 A, we need

to consider F-bilinear maps:
wig  PAXPA 5 A 5, PAX A PA x5 AxPAS0A

given by

Prxigly=axy, Yzx,y="Plaxy), zxPy="xxy),

for all z,y € A. Then the product ¢ : (A xPAxA) x (AxPAxPA) - AxPAxYA given
by
(,72,%2) o (1,79, %) = (P2 i Py.0 w5y, 2 %9 Py),

will make the following diagram commutative:

(Aep F)x (Aop F) — U, sgp F
Ep Fp Fp

| |

(AxPAxPA)x (AxPAxIA) 25 AxrPAxIA

Finally, define quadratic forms Pq: PA — F and g : YA — F by

Pq(Px) = pla(@)),  “a(’x) = O(g()).
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We have an isomorphism:

(A®FOF,F®F0 F.qp,p®Qidp,* Qidp) ~ (AprxeA,FxeF,q quxeq,ﬁ,<>>.

2.4 'Triality triple

In this section we will discuss isotropic subspaces in twisted composition algebras. The
main results in [31] concerning isotropic subspaces in the split Cayley algebra. Matzri and
Vishne translate them to arbitrary composition algebras, specially to symmetric composition
algebras (see [20]). We are going to translate them further to normal twisted composition
algebras.

Set F'/Fy a cubic Galois extension with Galois group I' = Gal(F/Fy) = {1,p,0}. Let
(C,%) be the split para-Cayley algebra over Fj with a quadratic form ¢, and (V,x) be
the normal twisted composition algebra obtained from (C,x), ie., V = C® Ry F'| where
xxy = p(x)*0(y) for all z,y € V. If (, ) is the bilinear form corresponding to the quadratic
form ¢, we have the scalar extension of ( , ) to I as the bilinear form of (V x).

Recall that an element x is said to be isotropic if ¢(x) = 0. A subspace U is said to be
isotropic if ¢(z) = 0 for all x € U. A maximal isotropic subspace is an isotropic subspace
with the maximal dimension. All maximal isotropic subspaces of V' have the same dimension,
which is called the Witt index of ¢. This index is at most equal to %dim V. In our case,
the maximal isotropic subspaces have dimension 4. We first classify all isotropic subspaces

of the split para-Cayley algebra (C,*).

Proposition 2.4.1. Fvery maximal isotropic subspace of (C, %) is of the form xxC or C'xz,

where x is an isotropic element. Furthermore, x x C' =y C if and only if xFy = yFy.
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Proof. See Theorem 3.1, Proposition 3.2, [20] O

For the intersection of two maximal isotropic subspaces, we will get isotropic subspaces
of dimension 0 or 2 when they are same types, and dimension 1 or 3 when there are different
types. Denote by U~ the orthogonal subspace to U, i.e., UL = {zr e C|(z,y) =0forallz €

U}.
Proposition 2.4.2. Let x,y be linearly independent isotropic elements in (C,*), then

(1) If (x,y) = 0, then xxCNy*C is equal to x* (Cxy) = y*(C*x), which has dimension

2. Otherwise, tx CNyxC = 0.

(2) If (x,y) = 0, then CxxNCxy is equal to (yxC)*x = (x*C)xy, which has dimension

2. Otherwise, CxxNCxy=0.
Proof. See Proposition 3.7, [20]. O

Proposition 2.4.3. Let z,y be linearly independent isotropic elements in (C,*), then x x

CNCxy is:
(1) The 1-dim isotropic subspace (x xy)Fy, if x xy # 0.
(2) The 3-dim isotropic subspace x xy~ =zt xy, if xxy = 0.
Proof. See Proposition 3.8, [20]. O

In fact, all isotropic subspaces of dimension 1,2,3 can be obtained from the intersection
of maximal subspaces (Proposition 4.1, [20]). Hence we classify all isotropic subspaces of
the split para-Cayley algebra. We are particular interested in the relations between 1-

dim isotropic lines and 4-dim maximal isotropic subspaces. That is why we introduce the
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following multiplication operators Ly, Ry:

Ly(y):=x*y, Rgz(2)=zxuz,

for all z,y, 2 € (C,*).

Lemma 2.4.4. Let x # 0 be an isotropic element in (C, ), then

ker(Ly) = im(Ry), ker(Rg) =im(Ly).

Proof. By Lemma 2.2.3, the composition RzoL, = LyoR, is a multiplication by ¢(x) = 0. So
im(R,) C ker(Ry). We claim that ker(L,) is an isotropic subspace. For any y, z € ker(Ly),
we have x x a = x b = 0, which implies g(a)r = ax (z xa) = 0, g(b)x = bx (xxb) = 0,
and also g(a + b)x = 0. Since = # 0, we get a,b,a + b are isotropic elements. Therefore

(a,b) = gla+b) —q(a) — q(b) = 0.
Since im(R;) = C * x is a 4-dim isotropic subspace, and dim(ker(L;)) < 4 by ker(L;)

isotropic, we have ker(L;) = im(R;). The argument for ker(R,;) = im(L;) is similar. O]
Now let us turn to the intersection of an arbitrary number of maximal isotropic subspaces.

Definition 2.4.5. Let U be any isotropic subspace in (C,%). We define:

LU) = Ngev(Cxz), R(U) =Ngey(zx0O).

It is easy to see that L(U) = {y | y € im(Ry) for anyx € U} = {y | y € ker(Ly) for any = €

U} ={y | Uxy=0}. Similarly, R(U) = {z | 2« U = 0}. Furthermore, we have

Proposition 2.4.6.
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(1) For every isotropic line v Fy, we have L(xFy) = Cxx, R(xFy) =z x C;

(2) For every mazimal isotropic subspace, we have

LICxz)=0, R(C*zx)==xF,

L(xxC)=1aFy, R(z+C)=0.

Proof. (1) follows directly from the definition. (2) For any y € L(C « x), it is equivalent to
(Cxx)*y = 0. Since L(U) is the intersection of isotropic subspaces, every element in it is

also isotropic. Hence

Cxx Cker(Ry) =im(Ly) = y*C,

if y # 0. But it is contradiction to Proposition 2.4.3 since the dimension of the intersection of
different types of maximal subspaces is 1 or 3. Hence y = 0. Similarly, for any z € R(C % x),
it is equivalent to C'x x C C  z, which gives z € xFy by Proposiition 2.4.1. The proof for

other half part is the same. [

By Proposition 2.4.6, we have the following diagram:

:L’FO

PN

Cxx RoR s % C.

We call it the geometric triality graph.

Now let us consider the normal twisted composition algebra (V). We can view (V%)
as a split para-Cayley algebra over F' without twisting, and have = x y = p(z) x 0(y) for all
z,y € V. Then zxV =0(x)*V, Vxz =V xp(x). From Proposition 2.4.1, it is immediately

to get:
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Proposition 2.4.7. FEvery maximal isotropic subspace of (V, *) is of the form xxV orV xz,

where x is an isotropic element. Furthermore, x xV =y *V if and only if vF = yF.

Similarly, we can check that x « V Ny xV = p(z) * V N p(y) » V, which is equal to
p(x) * (Vxp(y)) = x* (Vxy). Similarly, z « VNV %y is equal to p(x) * VNV x0(y). We

have p(x) % G(y)L = 2 % y~. Hence by Proposition 2.4.2, 2.4.3, we obtain:
Proposition 2.4.8. Let x,y be linearly independent isotropic elements in (V,*), then
(1) If (x,y) =0, then zxV NyxV is equal to zx(V xy) = y* (V *xx), which has dimension
2. Otherwise, xxV Ny*xV = 0.
(2) If (x,y) =0, then VxxNV xy is equal to (yxV)xx = (x+ V) xy, which has dimension
2. Otherwise, Vxx NV xy = 0.

Proposition 2.4.9. Let x,y be linearly independent isotropic elements in (V, %), then x

VNVsxy is:
(1) The 1-dim isotropic subspace (x *y)F, if t xy # 0.
(2) The 3-dim isotropic subspace = x y— =zt xy, if zxy = 0.

To give the geometric triality graph for normal twisted composition algebras, we need to

define multiplication operators L., R/, as:

Li(y) = *y, Ri(z)=zx*z,

for all z,y,z € (V, ).

Lemma 2.4.10. Let x # 0 be an isotropic element in (V,*), then

ker(L),) =im(R.), ker(R.)=im(L.).
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Proof. By ker(L)) = {z € V | z %z = p(z) x0(z) = 0}, we have 0(x) x z = 0, hence
PARS ker(Lg(x)) = iHI(RQ(x)). And 1m(R;3) = {w eV ‘ w eV % 33'} = V*e(l’) = im(R@(aﬁ))’

which gives us ker(L/,) = im(R/,). The proof for the other half part is the same. O

Example 2.4.11. Take z = meq + e9 € V, where 7 is the uniformizer of the valuation ring

Op, with p(7m) = m¢. We have

ker(L},) = im(R}) = Fleq, ea, m€%e3 + ey, €25 — eg),

ker(Rl,) =im(L),) = F(e1, ea, n&es — e5, méeq + €g).

Similar to Definition 2.4.5, we now consider the intersection of maximal isotropic sub-

spaces in (V| *):

Definition 2.4.12. Let U be any isotropic subspace in (V,*). We define:

L'U) = gey(Vxa), RI(U)=Ngep(z*V).

Proposition 2.4.13.
(1) For every isotropic line xF, we have L' (xF) =V x 2z, R!(2F) =2 % V;

(2) For every maximal isotropic subspace, we have

L'(Vxz)=0, R(Vxzx)==zF,

L(zxV)=aF, R(zxV)=0.

Proof. (1) follows directly from the definition. (2). From L'(V %) = Nyey 4 (V *y), we can

see that y € V x o =V x0(x). Hence y € V * x is equivalent to 6(y) € V * p(x) by acting 0
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on both sides. So

LV #2) = Nyevia(V * 1) = Ngyevape) (V * ) = LIV % p(a)).

By Proposition 2.4.6, we get £'(V % 2) = 0. The proof for the rest is similar. O

From the above discussion, the geometric triality graph for normal twisted composition

algebras is:
xF

[y
Vxzx R oR s ok V.

We call (zF,V xx,z % V) the triality triple for (V, x).
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Chapter 3

Orthogonal groups, similitudes and

triality

3.1 Preliminaries

Let (V, q) be a vector space with a nonsingular quadratic form ¢ over a field F', char(F') # 2.
Denote by (, ) the bilinear form corresponding to ¢. Similar to composition algebras, an
element z is called isotropic if g(x) = 0. A subspace W of V is said to be isotropic if
q(z) = 0 for all x € W. A maximal isotropic subspace is an isotropic subspace with the
maximal dimension.

For any f € Endp(V), there exists an element o4(f) € Endp (V') such that (z, f(y)) =
(op(f)(z),y). We can see this using matrices: If b € GL(V) denotes the Gram matrix of
(', ) with respect to a fixed basis, then (z,y) = 2'by. Let oq4(f) = b~ 1f!b. We have
(z, f(y)) = 2'bf(y) = (op(f)(x),y). Tt is easy to see that oq : Endp(V) — Endp(V) given
by f+ o4(f) is an involution of Endp(V).

The orthogonal group O(V, q) is the subgroup of the isomorphism group Isom(V,¢) that

preserves the form ( , ):

O(V,q) := {g € Isom(V,q) | (9(x),9(y)) = (z,9)}.
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Since det(g) = £1 for g € O(V,q), we have the special orthogonal group consists of g €
O(V,q) with detg = 1, denoted by SO(V,q) or OT(V,q). Elements in SO(V,q) are called
proper isometries. The universal covering of SO(V,q) is the spin group Spin(V,¢), which
will be used to define the triality group. We give a short review of Clifford algebras before

introducing the spin group.

Definition 3.1.1. The Clifford algebra C(V,q) is the quotient of the tensor algebra T'(V') =
Sn>0VE" by the ideal I1(q) generated by all the elements of the form v ® v — q(v) - 1 for

veV.

Since T'(V) is a graded algebra, we have T'(V') = Top(V)@T1(V), where Ty (V) = T(V®V)

and T1(V) =V & Ty(V). It induces a Z/2Z-grading of C(V, q):

C(V,q) = Co(V,q) ® C1(V, q).

We call Cy(V,q) the even Clifford algebra and C1(V,q) the odd Clifford algebra. When
dimV = n, we have dimC(V,q) = 2", and dim Co(V,q) = 2"~ (see Chapter IV, [13]).
For every quadratic space (V] q), the identity map on V' extends to involution on the tensor
algebra T(V') which preserve the ideal I(q): (11 ®---®@uvp)! := v, ®---®@uy for vy,..., v, € V.
It is therefore inducing a canonical involution of the Clifford algebra 7 : C(V,q) — C(V,q)

given by 7(v1 ---vg) = vg---v1. Then the spin group is a subgroup of Cy(V, ¢)*:

Spin(V, q) = {c € Co(V,q)* | Ve~ =V, 7(c)e = 1}.

For any ¢ € Spin(V, ¢), we have a linear map Y : « — czc™ . This is an element in SO(V; q)

since q(xe(z)) = cxze Lexe™ = g(z), and we can show that Spin(V, q) — SO(V, q) given by
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c +— X is surjective. We have an exact sequence:

1 — Z/2Z — Spin(V, q) — SO(V,q) — 1.

The orthogonal group scheme O(V,q) and the special orthogonal group scheme SO(Vq)

over F' are defined by:

O(V,q)(R) := {g € Isom(Vg,q) | (9(x),9(y)) = (z,y)}.

SOV, q)(R) :={g € Isom(VR,q) | (9(x),9(y)) = (z,y),det g = 1}.

for any F-algebra R. Similarly, we have Spin(V,¢)(R) := {c € Co(Vg,q)* | ¢Vre ! =
Vg, 7(c)c = 1}, where Vp =V ®p R.

More generally, a similitude of (V,q) is a linear map ¢g : V' — V for which there exist
a constant p(g) € F* such that (g(x),g(y)) = u(g){x,y) for all x,y € V. We define the

general orthogonal group scheme over F' as:

GO(V,q)(R) := {g € Isom(VR, q) | (g(),9(y)) = u(g){x,y) for some u(g) € R*}.

for R € Algp. The factor p(g) is called the multiplier of the similitude g. A similitude
with multiplier 1 is called an isometry, i.e., g € O(V,q). If b € GL(V) denotes the Gram
matrix of ( , ) with respect to a fixed basis, then (g(x),g(y)) = u(g)(z,y) is equivalent to
g'bg = 1u(g)b, hence

u(g) = b~ g'bg = o4(9)g.
By taking the determinant on both sides, we obtain (det ¢)? = (g)"” where dimV = n. It
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n/2 if n is even

follows that the determinant of an isometry is £1 and that, det(g) = +u(g)
for g € GO(V,q). We say g € GO(V, q)(R) is a proper similitude if det(g) = u(g)”/Z. Thus,

the group of proper similitudes is defined as:

GO™(V,q)(R) := {g € Isom(Vg,q) | (g(), 9(y)) = u(g){z,y), det(g) = u(g)"/%},

if n is even. For any similitude f € GO(V q), we have an automorphism Cy(f) : Co(Vg,q) —

Co(VR, q) of the even Clifford algebra given by

Co(f)(vr---v2p) = p(f) " fv1) -+ flvzp),

(see Proposition (13.1) in [14]). Let PGO(V, Q) be the quotient group GO(V, q)/Gy,. It is
easy to see that the automorphism Cy(f) only depends on the image [f] € PGO(V,q), and

we shall use the notation Cy|[f] for Cy(f).

3.2 The principle of triality

In this section we deal with algebraic triality for the special orthogonal groups and general
orthogonal groups. Algebraic triality defines outer automorphisms of PGO(V, q). In [31,
Chapter 3], T.A.Springer defined algebraic triality for the Cayley algebra. In [4], Knus and
Tignol defined algebraic triality for the para-Cayley algebra (C,*). We are going to consider
algebraic triality for the normal twisted composition algebra.

Recall that F)/Fy is a cubic Galois extension, and set I' = Gal(F/Fy) = (p), 8 = p?. Let

(V, %) be a normal twisted composition algebra. We define the twisted vector spaces PV o0y
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in Remark 2.3.4. For x € V, consider the F-linear maps
L PV =0V, OV ey,
given by
L("y) =@ xy) and ro(P2) =P(zx2).

By §3,[15], the map

x> € Endp("V & V)

extends to an isomorphism of algebras with involution:

a:(C(V.g),m) = (Endp(*V & V)0, 4,),

since a(x)? = g(z)id. In particular, if we restrict this isomorphism to the even Clifford

algebra Cy(V, q), we get
a:(Co(V.q),m) = (Endp("V),0p,) x (Endp(*V), 09, ),

where op,, oy, are the involutions corresponding to the quadratic forms g, eq, respectively.

Proposition 3.2.1. (The principle of triality) For g1, go, g3 € GO(V, q) " (F), the following

statements are equivalent:

1) There exist a scalar \y € F* such that

M1z xy) = ga(x) * g3(y), foranyx,y € V.
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2) There exist a scalar Ay € F™* such that

Noga(z*y) = g3(z) * g1(y), for anyz,y € V.

3) There exist a scalar A3 € F* such that

A3g3(z *y) = g1(x) * g2(y), for any x,y € V.

4) The following diagram commutes:

Co(V,q) —*— Endp(’V) x Endp(?V)
lCO(gl) llnt(ng)xlm(%?,)

Co(V,q) —*— Endp(?V) x Endp(?V).

When these properties hold, the scalars \; and the multipliers p(g;) are related by

1(gi) = p(Nir1)0(Nig2)-

Remark 3.2.2. We may change the scalars \; by scaling g; in the proposition. For instance,
we can let A\ = 1, then the multiplier u(g;) satisfies u(g1) = p(u(g2))0(u(gs)). If, as

in [14, Propostion (36.17)], we let A\; = p(g;)~ ", then the multipliers are related by 1 =
1(91)p(1(92))0(1(93))-

Proof. 1) = 2): By multiplying each side of 1) on the left by ¢g3(y) and using Lemma 2.3.2,

we obtain:

0(A1)(93(y) * g1(x *y)) = p(q(93(y)))g2(x) = p(u(g3)p(q(y)))g2(z).
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Let X =y,Y = xxy. Then, we have X xY = p(¢q(y))x by Lemma 2.3.3, and we derive from

the preceding equation:

0(A1)(93(X) * g1(Y)) = p(u(g3))g2(X *Y).

Hence, there exist A9 € F'* such that Aoga(x*y) = g3(x)*g1(y), where Ao-0(A1) = p(u(g3)),
ie.,

p(g3) = p(A1)0(A2).

Similar arguments yield 2) = 3), 3) = 1), with u(g;) = p(Air1)0(Ni12).
Now, assume 1), 2), 3) hold. Forany zy € Cy(V, q), we have Co(g1)(xy) = p(91) g1(2)g1(y)-
Since a(zy) = (rely, lary), 4) is equivalent to

1 1

— -1 = 0 o -1
u(gl)rgl(x)lgl(y):ng'rxly.(pQQ) g @ ) = 93 lary - (Cg3)

For any Pz € PV, we obtain

P(go((y + g5 1 (2)) % 7)) = W”(sz(y x5 1(2)) * g1(x))

_ ! p([%g<gl<y>*zn*gl<x>>

= oo (0@ )] = 1)

= ——"([(91(y) * 2)] ¥ 91(x)).

1

Hence u(gl)_lrgl(x)lgl(y) = Pgo - ryly - (Pg2)” . Similarly, we get M(gl)_llgl(x)rgl(y) =

Og3 - Lury - (Pg3) 7"
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Finally, assume 4) holds. Consider the map

B:x—

Tgl)lgl (2)

It is easty to check that 82(z) = ¢(z)id, so we can extend S to an isomorphism of algebras
with involution 8 : (C(V,q),7) — (Endp(PV & V), quj_gq) by the universal property of
Clifford algebras. Then the automorphism 3 - a ! is inner by the Skolem-Noether theorem

(see Theorem 1.4, [14]). Hence there exist ¢, 1 € Endp(V, q), such that

1 Po 0
b-a " =Int

0 %y

It is equivalent to ¢(z * y) = ¥(x) * g1(y), p(u(g1))¥(z xy) = g1(x) * p(y). Set go =

)\2_190,93 = 1. We get
Aaga(x *y) = g3(x) * g1(y), A393(x *y) = g1(x) * g2(v).

Therefore, 4) implies 1), 2), 3). O
From the principle of triality, we can directly get:

Corollary 3.2.3. For g1, 92,93 € SO(V, q)(F), the following statements are equivalent:

(1) gi(z*y) = gir1(x) * git2(y),i = 1,2,3 (mod 3) for any z,y € V.
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(2) The following diagram commutes:
Co(V,q) —%— Endp(PV) x Endp(?V)

lCO(gl) llnt(pgz)xlnt(agg)
Co(V,q) —%— Endp(°V) x Endp(?V).

3.3 Special orthogonal groups and triality

We will discuss triality for the special orthogonal group in this section. We continue with
the same notations. Let (V) *) be a normal twisted composition algebra over F. Recall that

the spin group Spin(V, %) is defined as
Spin(V, %)(R) = {c € Co(V)} | Vpe L =V, 7(c)e =1}

for any F-algebra R, where Vp =V ®@p R. It turns out that the isomorphism « in the above

section gives a nice description of Spin(V, %) := Spin(V, x)(F).

Theorem 3.3.1. There is an isomorphism

Spin(V, %) = {(g1, 92, 93) € SOV, q)*3 | gi(x % y) = gis1(x) * gis2(y), for any z,y € V}

Proof. Let ¢ € Cy(V)*. Using the isomorphism with involution «, we obtain g9 € Endp(PV)

and g3 € Endp(?V) such that

alec) = € Endp(V) x Endp(°V).
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We have
Pog(g2) 0 Pga 0
a(r(ee) = | " =1,
0 Pog(gs) 0 g3
which implies o4(g2)g2 = 1,04(93)g93 = 1, i.e., g2,g3 are isometries. Consider x¢(z) =

cxe~t € V. By applying a on both sides, we have a(xe(x)) = a(c)a(x)oz(cfl), which gives

us:

Xc(gg) 0 ,Dg2 Ty 90q(93)

lxc(a';) 0 993 : llE : pUq (92> 0

It is equivalent to Pgor, = rXC(x)agg, 0 galy = ZXC(:E)pgg, ie.,

g2z xy) = g3(2) * xc(y), g3(7 *y) = xc(¥) * g2(v).

Finally, y is an isometry since ¢(xc(z)) = cze texe™ = ¢(z). Thus, let g1 = xe. We get

related equations as above. We now send ¢ — (g1, g2, g3) that gives as above. This giving

map is an injective group homomorphism since « is an isomorphism. It is also surjective,

since, given any (g1, g2, g3) satisfying g;(z % y) = gi41(z) * gia(y). there exist ¢ € Co(V)

Pga 0
such that a(c) = : O
0 fygs

From the above theorem, we have an isomorphism between group schemes over Fj:

Res g/, (Spin(V, %)) (R) = {(g1, 92, 93) € Resp/ g, (SO(V.q)(R)? | gi(wxy) = gir1(x)xgit2(y)}

for any Fyp-algebra R. The transformation p : (g1,92,93) — (92,93,91) is an outer au-
tomorphism of Resp) FO(Spin(V, %)) satisfying 2 = 1. Here j generate a subgroup of

Aut(Resp, FO(Spin(V, %))) which is isomorphic to Az. Consider the fixed points of the core-
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striction of Spin(V,*) from F' to Fj under A3 = (p). We obtain the triality group for the

special orthogonal group G:

G(R) := Respyp, (Spin(V; ))"3(R)

={9 eSOV, q)(R@p, F) | g(zxy) = g(x) * g(y) for all z,y € V @ p, R}.

for any Fp-algebra R.

3.4 General orthogonal groups and triality

We keep the same notations as in the previous sections. We want to construct a similar trial-
ity type group scheme for GO™(V, q). It should be a group scheme that contains Spin(V, *)

and should have an action of Ag acting on it. Define the group:

0
H(R) = {(c,\) € Co(VR)*xR* | ¢Vr7(c) = Vg,a(r(c)c) = : € End(pVR)xEnd(eVR) }

where R is an F-algebra, u, v € R. The group scheme H plays the similar role as Spin(V/, *).

In fact, we have:

Theorem 3.4.1. There is an isomorphism

H(R) = {(g1,92,93) € GO (V,q)(R)*® | Nigi(zxy) = gir1()*gir2(y), i = 1,2,3 mod 3},

for any z,y € Vp, N\ € R*, where \y = A~ gy = 00w), A3 = p(Ap) € R*, and the
R

multipliers p(g2) = (1), p(g3) = p(v), p(g1) = Npv.
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Proof. The proof is similar to the spin group case. Let ¢ € Cy(V, q)% Then, there exist

Pgy € Endp(PVg) and Yg3 € Endp(?Vg) such that

Pgo 0 0
a(c) = c EndR<pVR) X EndR( VR)
0 Y3
We have
Paq(g2) 0 Pga 0 p 0
ar(@e) = | " - ,
0 Poylgs) 0 g3 0 v

which implies ”(04(g92)g2) = u,e(aq(gg)gg) = v, i.e., g9, g3 are similitudes with multipliers
w(g2) = 0(n), u(g3) = p(v). Define f(z) = cx7(c) € Vi. By applying o on both sides, we

obtain a(f(z)) = a(c)a(x)a(r(c)). Thus,

0 T f(z) 0 Pgg -1y - 006](93)

lizy O 993 - 1u - oq(g2) 0

It is equivalent to Pgare = ()" (1(g3) ~1g3), Yg3le = 1p()P (1(g2) "L g2), e,

0(v)ga(x *y) = g3(x) * f(y),

p(p)g3(z xy) = f(z) * g2(y).

w0
Finally, consider ¢(f(z)) = cxr(c)cxr(z). Since a(7(c)c) = , we obtain
0 v
V-ryply 0 w0
a(zt(c)cx) = = q(x)
0 e lpry 0 v
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0
by Lemma 2.3.3. Hence a(q(f(z))) = prq(x) ’ , which implies q(f(x)) = pv - q(z).

0 =z
Therefore, f is a similitude with multiplier p(f) = pr. Then, set g1 = Af. We get u(g1) =

M up, and

Nigi(z *y) = git1(w) * gizo(y), i=1,2,3 mod 3.

Consider the map (¢, \) — (g1, g2, 93) giving as above. It is injective: If we have (c1, A1),
(ca,A2) € Cy(VR,q) such that a(c;) = a(cg), then ¢; = 9 since « is an isomorphism. We

also have Ajciz7(c1) = AocoxT(cy), which implies A = A9. It is also surjective: For any

p 0
g2
(91,92, 93) € GO (V, q)(R)X?’, we will get ¢ € Cy(VRg, q) such that a(c) = ,

0 g3
and A such that g (z) = Af(x) = Aex7(c). O

The group H sits in the following exact sequence:
1 — Spin(C, %) — H — GX3,

where the first map is ¢ — (¢, 1), and the last map is (¢, A) — (A, p,v). There exists an
outer automorphism on H by p : (91,92, 93) — (92,93, 91). Consider the generating group
I' = (p) and the fixed points of Resp / FOH under I'. We can define the triality group for the

general orthogonal group G:

G(R) := (Resp/p, H)" (R)

~{ge GO;{(F ® R, R) | there exist A € (F ®p, R)* such that \g(z *y) = g(z) x g(v)},

for any Fp-algebra R.
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Chapter 4

Affine Grassmannians

In this section we review affine Grassmannians for general linear algebraic groups. We will
show that the affine Grassmannian is representable by an ind-scheme and is a quotient of
loop groups in the case the group is smooth. Our main references in this section are [23],

33).

4.1 Loop groups

Let k be a field. We consider the field K = k((¢)) of Laurent power series with indeterminate
t and coefficients in k. Let O = k[t] be the discretely valued ring of power series with
coefficients in k. For any k-algebra R, we set Dr = Spec(R[t]), resp. D =D\ {t =0} =
Spec(R((t))), which we picture as an R-family of discs, resp. an R-family of punctured discs.

Let X be a scheme over K. We consider the functor LX from the category of k-algebras

to that of sets given by

R LX(R) := X(R(t)).

If X is a scheme over O, we denote by LTX the functor from the category of k-algebras

to that of sets given by

R— LTX(R) := X(R[t]).

The functors LX, LT X give sheaves of sets for the fpqc topology on k-algebras. In what
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follows, we will call such functors “k-spaces” for simplicity.

Definition 4.1.1. A ind-scheme is a functorY : AfEISch®P — Sets from the category of affine
schemes which admits a presentation Y ~ colim;c1Y; as a filtered colimit of schemes. The

ind-scheme is strict if all transition maps Y; — Yj,1 < j, are closed immersions.

Itx = AZ,)K is the affine space of dimension r over O, then LTX is the infinite

o0
dimensional affine space LTX = [[ A", via:
1=0

L X(R) = Homyp (K[A[T1, ..., Ty), R[t]) = R[#])" = HR?“ HAT(R)

Let & be the closed subscheme of AZ)K defined by the vanishing of polynomials fi,..., fn
in k[t][T1, ..., Ty]. Then LT X(R) is the subset of LT A" (R) of k[t]-algebra homomorphisms
k[t][Ty,...,Ty] — R[t] which factor through k[t][T1,...,T+]/(f1,., fn). If X is an affine

K-scheme, LX is represented by a strict ind-scheme.

Definition 4.1.2. Let G be a linear algebraic group over K. The loop group associated to

G is the ind-scheme LG over Spec(k).
We list some properties of loop groups:
(1) L(X x,Y)=LX xj, LY;

(2) If k' is a k -field extension, then we have an isomorphism of ind-schemes over k'
LG x}, Spec(k) = L(G Xy Spec(k'(t));

(3) Assume that K'/K is a finite extension of K, where K/ = k((u)). If G = Resper e for

some linear algebraic group H over K’, then we have an isomorphism of ind-schemes
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over k:

LG ~ LH,

4.2 Affine Grassmannians

Now let G be a flat affine group scheme of finite type over k[t]. Let Gy denote the generic

fiber of G, which is a group scheme over k((t)). We consider the quotient sheaf over Spec(k):
Fg = LGy/LTG.
This is the fpqc sheaf associated to the presheaf which to a k -algebra R associates the

quotient G(R((t)))/G(R[t]). Generally, we define affine Grassmannians as follows:

Definition 4.2.1. Let G be an affine group scheme over k[t]. The affine Grassmannian
for G is the functor Grg : Alg;, — Sets which associates to a k-algebra R the isomorphism

classes of pairs (€, ) where £ — Dy is a left fppf G-torsor and a € E(D}) is a section.

Here a pair (£,q) is isomorphic to (€',a’) if there exists a morphism of G -torsors
7 : & — & such that m o a = o/. The datum of a section a € £(D},) is equivalent to the

datum of an isomorphism of G -torsors
Eolmx — E|ry ) = g-a,
O|]D) R ’D R g g

where & := G is viewed as the trivial G -torsor. The loop group LG acts on the affine
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Grassmannian via g - [(£, )] = [(€, ga)].

Proposition 4.2.2. If G — Spec(k[t]) is a smooth affine group scheme, then the map

LG — Grg given by g — [(£9,9)] induces an isomorphism of fpqc quotients:
./—"G = GI‘G.

Proof. See Proposition 1.3.6, [33]. O
Here are a few observations:

(1) If p: G — H is a map of group schemes which are flat of finite presentation over k[t],

then there is a map of functors:
Grg — Gry, (€, a) = (p«&, psa),

where ps€ = H x& & denotes the push out of torsors, and pya = (id,a) : (H x©

50)|D>]k%—> (H xG 5)|D>]k% in this description.

(2) If k' is a k-field extension, then we have:
/
Grg X, Spec(k') ~ Gerk[[t]] Spec(K[1])"

When G = GL;,, a G -bundle on & — Dp is canonically given by a rank n vector bundle,
i.e., a rank n locally free R[t]-module L. The trivialization « induces an isomorphism of
R((t)-modules L[t—1] ~ R((t)™. By taking the image of L C L[t] under this isomorphism,
we obtain a well defined finite locally free R[¢] -module A = A(g ) C R(()" such that

A[t71] = R((t)". Note that A depends only on the class of (£, a).
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Chapter 5

Affine Grassmannians for triality

groups

5.1 Galois cohomology

Let us recall some basic definitions in the Galois cohomology theory, since we will use them
later. Our main reference is [28].

A topological group which is the projective limit of finite group, each given the discrete
topology, is called a profinite group. Such a group is compact and totally disconnected.
Conversely, a compact totally disconnected topological group is profinite. For example, let
L/F be a Galois extension of fields. The Galois group Gal(L/F') of this extension is the
projective limit of the Galois groups Gal(L;/F") of the finite Galois extensions L;/F which
are contained in L/F. Thus, Gal(L/F) is a profinite group.

Let I' be a profinite group. A I'-group A is a discrete group on which I' acts continuously,
with a group structure invariant under I, i.e., 5(zy) = *x%y for any s € I'.' A homomorphism
A — A’ is a group homomorphism which commutes with the action of T.

We put HO(F, A) = AL the set of elements of A fixed under I, and we call 1-cocycle of T’
in Aamap «: ' — A given by s — ag, which is continuous and satisfies ag = asay for all

s,t € T. The set of these cocycles will be denoted ZH(T", A). Two cocycles a and o' are said
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to be cohomologous if there exists b € A such that o, = b~ 1as*b. Denoted by o, ~ as. Tt is
easy to see that this is an equivalence relation in Z 1(F, A), and the quotient set is denoted

by HY(I', A). This is the first cohomology set of I in A. We can check that
HY(T, A) = lim H(T/U, AY)

for U running over the set of open normal subgroups of I' (see §5,[28]).
Let A and B be two I'-groups, and let f : A — B be a ['-homomorphism. If a € A is

fixed by I, then so is f(a) € B. Therefore, f restrict to a map:
fO =Y, 4) - HOT, B).
Moreover, there is an induced map:
L HY (T, A) — HY(T, B),

which carries the cohomology class of any 1-cocycle a to the cohomology class of the 1-
cocycle f(a) defined by fl(a)s :== f(as). Set afy = b~lag®b for some b € A. We have
flas) = f(O) L f(as)5f(b), so it is well defined.

Let B be a I'-group. We call A C B a I'-subgroup if A is a subgroup of B and ®a € A for
all s € I'a € A. Let B/A be the I'-set of left cosets of A in B, i.e., B/A={b-A|be B}.
The natural projection of B onto B/A induces a map of pointed sets BT — (B/A)'. Let
b-Ac (B/A. Wehaveb-A =5b-A,ie., b 1-h e Aforany s € I'. Defineamapa:I' — A

given by ag := b~1 - 5b. This is a I1-cocycle with values in A, whose class [a] € H(T', A) is
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independent of choice of b in b+ A. Hence we have a map of pointed sets:
§:(B/A)Y = HYT,A), b-Aw[a], where as=0b"1-%.

By definition, the kernel ker(g) of a map of pointed sets g : B — C'is the subset of all b € B
such that g(b) is the base point of C. A sequence of maps of pointed sets A i> B Cis
exact if im(f) = ker(g). From that, the sequence A 1B 5 1 s exact if and only if f is
surjective. The sequence 1 — B Yy O is exact if and only if the base point of B is the only
element in B mapped to the base point of C. Note that this condition does not imply that

g is injective.
Proposition 5.1.1. If A is normal in B, and set C' = B/A, then the sequence of pointed
sets:

1— HYI, A) - HY(, B) - H)(I,C) - H\(I',A) - H\(I', B) - H\(T",C)

s ezact.
Proof. See Proposition 38, [28]. O

Now we consider Galois groups. Let G be a finite Galois group. Let H C G be a subgroup
and A a commutative G-group. The action of G restricts to a continuous action of H. The

obvious inclusion AG ¢ A is called restriction:
Res : H)(G, A) — HO(H, A).

Moreover, the restriction of a 1-cocycle a € Z1 (G, A) to H is a 1-cocycle of H with values
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in A. Thus, there is a restriction map:
Res: HY(G,A) — HY(H, A).

Conversely, we have the corestriction map defined by the norm:

Ng/mar Z %a,
seG/H

form A" to AG. We can extend this corestriction in Cor = Na/g HO(H, A) — HY(G, A)
to a unique map Cor : H(H, A) — H'(G, A). Since the cohomological functor H*(H, —) is

effaceable in degree > 1 (see §1.6, [10]).

Proposition 5.1.2. Let m = [G : H] be the index of H in G. Then the composite Cor o Res

is the multiplication by m in HY(G, A).
Proof. See Theorem 1.48, [10]. O

Let H = {1}. We have |G|-H' (G, A) = 0 for G a finite Galois group and A a commutative
G-group from Proposition 5.1.2, i.e., HY(G, A) is |G|-torsion. In particular, if A is n -torsion

with 7 prime to |G|, we obtain H(G, A) = 0.

Proposition 5.1.3. If U is a connected unipotent G-group over F', where char(F') prime to
|G|. Then we have

HYG,U)=0

Proof. We prove this by induction. In a connected unipotent group U, there is a sequence
of normal subgroups
U=U; DUy D..DU,={e},
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such that all quotients U;/U;yq are one-dimensional. Every connected one-dimensional
unipotent algebraic group is isomorphic to Gg. Since G, over F' and char(F') prime to

|G|, we get H(G,G,) = 0. By Proposition 5.1.1, we have an exact sequence:
L= HY(G.Uz) » HY(G,U1) - H'(G,U1/Uy) = HY(G,Uz)  H(G.U1) = H'(G,U1/Us).

Since H(G, Us) = 0 by induction and H (G, Uy /Us) = HY(G, G,) = 0, we have H(G,U7) =

0. U

5.2 Statement of the main theorem

In this section we will give a explicitly description of the affine Grassmannian for triality
groups. In what follows, let k be a field with char(k) # 2, 3. Suppose that the cubic primitive
root & is in k. We set F' = k((u)), Fy = k((t) with u3 = t. Thus F/Fy = k(w)/k(t) is a
cubic Galois field extension. Set I' = Gal(F/Fj) with generator p with p(u) = u. Then
k[t] (resp. k[u]) is the ring of integers of F{y (resp. F).

Recall that (V, %) is a normal twisted composition algebra obtained from the para-Cayley
algebra over F'| i.e., there is a basis {ey, ..., eg} of (V%) in the Table 2.1, with the multipli-
cation

rxy = (ido ® p)(z) * (idc ® 0)(y) forall x,y € C ®F, F,

where (C, ) is the split para-Cayley algebra. The quadratic form of (V) is determined by
the multiplication by Lemma 2.3.3. Denote by ( , ) the bilinear form: (, ): V@V — F
corresponding to the quadratic form. Let R be an Fj-algebra. Notice that the base change

V® 7y R is isomorphic to R((u)8. A finitely generated projective submodule in V ® 7y R
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is called a lattice in V' ® Fy . Weset L = @ZSZIR[[U]]eZ-, and call it the standard lattice in
V DRy R.

In §3.3, we defined the triality group for the special orthogonal group over Fj:

G(R) = Respj, (Spin(V, %)) '3 (R)

={g €SO0V, q)(R@p, F) | g(z*y) = g(x) * g(y) for all 2,y € V @p, R},

for any Fy-algebra R. With F' = k((u)), Fy = k((t)), we can rewrite this triality group. Let ¢4
be the affine group scheme over k[t] that represents the functor from k[t]-algebras to groups

that sends R to
G (R) :={g € SOg(k[u]l @ R) | 9(z *y) = g(x) * g(y) for all z,y € L}.

We will prove that this affine group scheme is smooth in the next section. In fact, this affine
group ¥ is the parahoric subgroup of G given by L by Proposition 1.3.9, [12]. The generic
fiber ¢, is equal to G. We denote by L%, (resp. LT%) the functor from the category of
k-algebras to groups given by L%, (R) = %,(R((t))) (resp. L9 (R) = 4(R[t])). Then the
quotient fpqc sheaf L9,/ L7 is by definition the affine Grassmannian for the triality group

% . Our main theorem in this section is:

Theorem 5.2.1. There is an LY,)-equivariant isomorphism
L4, LYY ~F
where the functor F sends a k-algebra R to the set of finitely generated projective R[u]-

53



modules L (i.e., R[u]-lattices) of V ®j, R = R((u))®, such that
(1) L is self dual under the bilinear form (, ), i.e., L ~ Hompgp, (L, R[u]).
(2) L is closed under multiplication, L x L C L.
(3) There exists a € L, such that q(a) =0, {(a*a,a) = 1.

(4) Fora asin (3), let e = a+axa. Then, we have exx = —T = T * € for any T satisfying

(z,e) =0. (Here, T is the image of x under the canonical map L — L/ulL.)
Proof. To prove the theorem it suffices to check the following two statements:
(i) For any R, g € LY,(R), L = g(L) satisfies condition (1)-(4).

(ii) For any L € .#(R) with (R, m) a local henselian ring with the maximal ideal m, there

exists g € L%, (R) such that L = g(L).

Part (i) is easy to prove, since g preserves the bilinear form ( , ) and the product *. For
any x,y € L, let x = g(zg),y = g(yg) where xg,yg € L. Then x xy = g(zqg) * g(yg) =
g(xo*yg) € L, so (2) satisfied. (1) is obvious via (g(x), g(y)) = (x,y). For (3), let a = g(ey).
Then (a* a,a) = (g(es) * g(ea), g(ea)) = (g(es), gea)) = (eq,e5) = 1, and g(a) = q(eq) = 0.
For g(e) = g(a) + g(a * a), we have g(e) * g(x) + g(x) = g(x) * g(e) + g(x) = 0 for any g(z)
satisfying (g(x), g(e)) = (z,e) = 0.

To prove part (ii), the key is to find a basis in L such that the multiplication table under
the basis is the same as Table 2.1, i.e., we need to find a basis {f;} € L such that f;x f; = f},
for e; * ej = e}, in the Table 2.1. Thus we can define g(e;) = f;, and g is then in L%, (R).

We claim that a as in assumption (3) is a primitive element in L (an element in L that
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extends to a basis of L). Consider the quotient map
R[u] = R — R/m = &,

where « is the residue field of R. There is a base change L — L ® R[u] and we still denote
by Z the image of x € L. Consider a € L D R[] *- We have (a*a,a) = 1, hence a # 0. By
Nakayama’s lemma, we can extend a to a basis of L. Similarly, we can show that a * a is
also a primitive element. Here a, a * a are independent by (a,a*a) = 1. Let vy, ..., vg be any

base extension for a,a x a. We define a sublattice Ly C L:
Ly:={x € L|{(x,a) =0,(z,a*xa) =0}.

For any x € L, we can write x as 255:1 riv; + r7a + rg(a * a) for some r; € R]u]. Consider
vl =v; — (a,v;)a*xa— (axa,v;)a. It is easy to see that (v},a) =0, (v},a*xa) =0, so v} € L.

And vg, a,a % a are linear independent. We obtain

6 6

r = Zrivg + (r7 + Zm(vi,a xa))a+ (rg + Zri@i,a))(a *a).

i1=1 1=1 1=1

Therefore, L = R[u]a @ R[u](a * a) @ Lg, where L is a sublattice of rank 6.
Set fi = a, fo = axa. Here f1, fo play similar roles as for e4, e5 in the Table 2.1. By

Lemma 2.3.2 and Lemma 2.3.3, we obtain a hyperbolic subspace Ru]a @ Ru](a * a) with:

Jixfi=ra Jfoxfo=f1,
Jixfo=fox f1 =0,
q(f1) =q(f2) =0, (f1,f2) =1
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Lemma 5.2.2. We have

Lo f; C Ly, fi*LoC Lo,
fori=1,2.

Proof. For any x € Lo, we have (z x f;, f;) = p((fi * fi,x)) = 0, and (z * f;, fir1) =

p({fi * fix1,x)) = 0 by Lemma 2.3.3. Similarly for f; x x. O

Define the p-linear transformations t; : Ly — L, given by t;(x) = x * f; for i = 1,2.
Here the p-linear transformation means ¢;(rz) = p(r)t;(x) for r € Ru],z € Lg. Take
L; =t;(Lg) = Lo * f;. Trivially, ¢;(L;) C L;. Both L; are isotropic with rank (L;) < 3 since

fi is an isotropic element. For any =z € L, we have

(foxx)x f1+ (f1*x2) x fo = 0((f1, f2))x = =,

by Lemma 2.3.3. So Ly = L1 + Lg. Since rank(L;) < 3, we must have a direct sum

composition: Ly = L1 & Lo.

Lemma 5.2.3.
(1) For any x € Ly, t%(x) =—fir1*2z (i=1,2 mod 2).
(2) For any x € L;, t3(z) = —x.

(3) From (2), t; is a R[t]-isomorphism when restricted at L;, more precisely, we have

t;: L; — L;j, ©v+— x* f;. The inverse map t;l = —tzz is a B-linear transformation.

(4) Forx € Ly,y € Ly, we have (t1(x), t2(y)) = p({z,y)).

Proof. (1) For x € Lg, we have t3(x) = ((x * f1) * f1) = —((f1 * f1) *2) = —(fo * x) by

Lemma 2.3.3. A similar argument gives t%(x) = —f] * .
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(2) For any = € L1, we have t:{’(x) = —((fo * ) * f1). Consider

(foxm)* f1 + (f1x2)* fo = 0((f1, fo))r = m,

by Lemma 2.3.3. Let x = z % f| € Ly for some z € Ly. Then fi xx = fix (2% f1) =0
by q(f1) = 0. Hence (f * x) x fi = x, and we obtain t:f(x) = —x. Similar calculations for
y € Lo, and gives t%(y) = —y.

Part (3) follows from (2) immediately. For (4), we know that (t1(z),ta(y)) = (z x f1,y *

f2) = p((f1 * (y * f2),x)), and

fix(y* f2) = —t3(y * f2) = —13 - ta(y) = —t3(y) = v,

by (1) and (2). Hence (t1(z),t2(y)) = p({z,9))- B

Remark 5.2.4. (1) From the proof of above Lemma, we can see that f; « L; = 0, and
L;* fiy1 =0fort=1,2 mod 2.
(2) Since L1, Lo are isotropic and ( , ) restricted to Lg is nondegenerate, the L; are in

duality by the isomorphism L; — LY given by x — (z, —). Hence L ~ Hom(Lg, R[u]).

Lemma 5.2.5. We have
(1) L1 * Lo C R[u]f1, Lox Ly C Rlu]fs,
(2) L;x L; C Li—l—l (Z =1,2 mod 2).

Proof. (1) For any = € Ly,y € Lo, we write x as x = x1 * f| with x1 € Ly, and y as
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y = y1 * fo with y1 € Lg. Consider

rxy = (z1* f1)* (Y1 * fo) = —((y1 * f2) * f1) * 21 + 0({z1, 91 * f2)) [,

by Lemma 2.3.3. Notice that (y1*fo)*f1 € Lok fi = 0. Thus we have zxy = 0({x1, y1*f2)) f1-

Further,

(z1,y1 % f2) = 0((t1(w1), t2(y2 * f2)))

= 0({z, 12(y))),

by Lemma 5.2.3 (4). Hence x*y = p((z,t2(y)))f1. Similarly, we have y*xxz = p({t1(z),y)) f2.

(2) For any x1,x9 € Ly, we first claim that x1 *x 29 € Ly. Consider (x1 * x9, f1) =

O((f1 xx1,22)) = 0by f1* L1 =0, and (x1 * z9, f2) = p((x2 * fa,21)) = 0 by L1 * fo = 0.

Using Lemma 2.3.3, we find that

t1(z1) * t1(w) = (x1 * f1) * (w2 * f1)
= —f1x (w2 * (z1 % f1))
= f1* (f1 * (x1 * 22))

by (z1x* f1, f1) = 0 and (f1,z9) = 0. We also have fi * (f1*(z1*x9)) = fl*(—t%(xl *1x9)) =

t%(xl % x9) = —t9(x1 * x9). Therefore,

ti(xy) x t1(22) = —to(x1 * 2).

Since x1 * x9 € Lg, we obtain that to(xy * x9) € Lg. Hence Ly x L1 C Lo. Similarly,
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Lo x Lo C Lj. []

We now prove that L has the same multiplication table as the Table 2.1: We want to
find a basis {x1,x9,23} for L1 (resp. {y1,y2,y3} for Lo) such that ti(z;) = —id (resp.
to(y;) = —id). Consider the quotient map R[u] — x = R[u]/(m,u). We set L = L OR[u] K

Li=L;® R[u] ¥ with multiplication  x § = T* y, and

t;: Ly — L;, given by ti(z) = f*fi,

for i = 0,1,2.

Proposition 5.2.6. Given (L, *,(, )) satisfying (1)-(4) as above. Then (L,x) is isomorphic

to the split para-Cayley algebra.

Proof. Tt is easy to see that ¢(Zxy) = ¢(Z)q(y), and (%7, Z) = (§*Z,Z), so L is a symmetric
composition algebra. By Proposition 2.2.4, a symmetric algebra is a para-Cayley algebra if

and only if it admits a para-unit, i.e., there exist an element € € L, such that

™|
*
o
I
o
o
*
Kl
Il
Kl
*
o
I
|
8

for all z € L satisfying (€,Z) = 0. Set e = f; + fo in our case. We can see that e is an
idempotent element by e x e = (f1 + f2) * (f1 + f2) = f1 + fo = e. By condition (4), we get
ExT =Tx€=—1I, for all ¥ € L satisfying (¢,z) = 0. Thus € is a para-unit in L, and L is a
para-Cayley algebra. It is split since ¢ is an isotropic norm. O

Lemma 5.2.7. For t; : L; — L;, we have t;(Z) = T f; = —% for any © € L;. Then
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Proof. By Lemma 34.8, [14], we can define T o4 = (é x T) x (§ * €) as a unital composition
algebra with the identity element e. We have z xy = r(Z) o r(y), where r(z) = (€,Z)é — T is

the conjugation of . By Proposition 2.1.1,

Toy+yox— (T, e)y— (y,€)T + (T,y)e = 0.

Using 2 xy = r(z) or(y) and (r(z),r(y)) = (Z,y), we obtain

Let 4 = fi. We get Z* f; + f; @ = r(Z). Therefore, if Z € Lg * f;, we have f; xZ = 0 by

q(f;) =0, and

TxJ;=Txf;+

*T = (€,T)e — T = —1I.

~
.

This implies Lo f; C {Z € Ly | Z f; = —z}. It is obvious that {Z € Ly | Zx f; = —2} C

Lo * f;. Hence we get

-
I
wll

o
*
Il

—
&I
Mm
wll

o
]
*
|

|
]
-

and t; = —id. H

So far we know t; : L; — L; is a p-linear isomorphism with t? = —id, and t; = —id.
We will use non-abelian Galois cohomology to prove that t; and —id are the same up to p-
conjugacy. More precisely, if we fix a basis for L; = R[u]® and let A; € GL3(R[u]) represent

t;, we can find a new basis for L; with transition matrix b € GL3(R[u]), such that

—I=b"14;p(b).
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Let I' = {1, p, 8} be the cyclic group. Set B = Aut(L1) = GL3(R[u]). Consider the quotient

map R[u] — k. Since (R[u], (u)), (R, m) are henselian pairs, we obtain the exact sequence:

1 - U — GL3(R[u]) — GL3(k) — 1

where U is the kernel of GLg(R[u]) — GL3(k). Here I' acts on GL3(R[u]) by p(u) = u,

and I acts trivially on GL3(k). We obtain the exact sequence of pointed sets:

1 U = GL3(R[u])" — GLg(x)" — HY(T',U) — HYT, GL3(R[u]) — HY(T, GL3(k)).

Since U is a unipotent group over k[u] with char(k) # 3, we have HY(I',U) = 1 by Propo-
sition 5.1.2. Hence the only element mapped to the base point of H(I', GL3(k)) is the base
point of HY(I', GL3(R[u]), i.e., for any [as] € H(I', GL3(R[u])) satisfying [as] = 1, we have
las] = 1.

Consider t; : Ly — Ly. The subgroup of GL3(R[u]) generated by ¢y is {1,t%,—id,
—t1, —t%,id} given by ti)’ = —id. If we fix the basis and use Ay to represent t1, we get

t% = A1p(Ay), t:f = A1p(A1)0(A1) = —I. Define a map:

a: 1" — GL3(R[u])

given by p — a, = —A;. Using ag = as®ay, we get § — ag = app(a,) = A1p(Aq), and 1 —
a1 = I. Hence the image of I' = {p, 0, 1} is the subgroup {t4 = —tl,tgf = t2,t%2 =1id} C (t).
This is a 1-cocycle. Take the image [a] of [a] under the injective map

HY (I, GL3(R[u]) — HY(I, GL3(k)).
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We get [a,] = —[t] = 1 by Lemma 5.2.7. Therefore [a,] = 1. In matrix language, there exist
b € GL3(R[u]) such that

I=b"Y(=A)p(b), t1~ —id.

We have a similar conclusion for t».

Using the above we see that there exist a basis {z1, 29,23} for L1, and a dual basis
{y1,y2,y3} for Lo, such that t1(v;) = —x;, ta(y;) = —y;, with (v;,y;) = §;;. By Lemma
5.2.3, we have

wi*x f1 =—x;  Jixa; =0,
zi* fa =0, foxx;=—u;,
yixf1 =0, fixyi=—y,
yix fa=—yi, faxyi=0.

By Lemma 5.2.5, we have

Tk y; = —0;f1,  Yi*xj = —0i;f2.

It reminds to calculate the terms in L;* L;. To approach this goal, we define a wedge product
A:L; x Ly = L;;1 given by

uAv = ti_l(u) * 1 (v),
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for any u,v € L;. Let u € L. It is immediate to get

wAu =ty u) by (u)
= (foxu) * (ux f1)
= ((ux f1)) *u) * f2
= fixfo=0

by (fo,ux* f1) = 0,¢q(u) = 0. By linearizing the equation, we find uAv = —vAwu for u,v € L.
A similar argument can be made for u,v € Ly. Now define a trilinear function ( , , ) on L;
by (u,v,w) := (u,v Aw). It is an alternating trilinear function since (u,w,v) = (u, w Av) =

—(u,v ANw) = —(u,v,w), and

(v, u,w) = (v, u A w)
= (v, t; () % ti(w))

= p({t;(w) * v, t; L (w)))

We can now calculate the terms in L; x L;. Consider x1 * z9. We have (z1 * x9,21) =
—(z1 * 29, t1(21)) = — (21 * 2,71 * f1) = 0 by (29, f1) = 0. Similarly (zq * 9, 29) = 0.
Hence we have x1 *x9 = bys for some b = (z1*x9, x3) € R[u]. Multiplying by y1 on the right

side, we obtain (x1*x2)*y; = (bys)*y1. Since (x1xx9)xy1+(y1*x2)*x1 = 0((x1,y1))T2 = X3,
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and y1 * 9 = 0, we have

z2 = p(b)(y3 * y1)-

Therefore b, p(b) ™' € R[u], which implies b € R[u]*. Let b = —1, and get 1 % x93 = —y3
(replace bys by —ys3, and also replace b~ lzs by —x3). We can perform similar calculations

for the other x; x x; and y; * y;. By using the alternating trilinear form, we obtain

Table 5.1: Multiplication table z; xz; ~ Table 5.2: Multiplication table y; * y;

* T1 9 | T3 * Y1 Y2 Y3
z1 | 0 | -y3 | y2 yr| 0 | —z3| 22
z2 | y3 | 0 |-»1 Y2 | 3 0 | —=
3| —y2 | y1 | O ys | —x2 | 21 0

Therefore, we complete the multiplication table of L. By letting g(e4) = f1,9(e5) = fo,

and
gler) =z1,  gleg) = vz, gler) = w3,
gleg) =y1, gles) =v2, gle2) = y3.
We obtain g(e;) * g(e;j) = g(e; * €;). So, there exist g € LZ(R) such that L = g(L). O

5.3 Smoothness of triality groups

In this section, we will show that the affine group scheme ¢(R) is smooth over k[t]. Recall

that L = @§:1Rﬂuﬂ€i is the standard lattice in V ®@p, R.

Theorem 5.3.1. The functor from Algk[[t]] to the groups that send R to

Y (R) = {g € SOs(k[u] ®ypq R) | 9(z *y) = g(x) * g(y) for all z,y € V ®@p, R},
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18 smooth.

We want to show that ¢ is formally smooth, i.e., for any surjective ring hommorphism
S — R with nilpotent kernel I, we can lift an a € 4 (R) to & € 4(S). The idea is to lift

basis from R-modules to the S-modules.

Proposition 5.3.2. Let M be the S-module satisfying conditions (1)-(4). Assume I C S
is an ideal with I> = 0, then the R-module M = M/IM also satisfies condition (1)-(4).

Assume that fi =a, fa=axa, e= fi + fo € M satisfying

q(f1) =0, (fi,fa) =1, exT2+x=0, Txe+z =0,

then there exist f1, fo € M such that f; mod I is f; and

¢ f1)=0, (fi,fo) =1, exx+rcIMarxet+xcIM

for any x (resp. x) satisfying (e,x) =0 (resp. (€,z) =0).

Proof. Let f1 be any liftes of f;. Then (f1, f1) = m € I[u]. Consider f| = fi + y, where
y € IM. We have (f1 + v, f1 +y) = m+2(f1,y) by (y,y) € I%2 = 0. By perfectness of the
form, any linear form on M with values in I [u] is of the type (y, —) for some y € IM. Hence
we can choose y such that (f1,y) = —%5 to make f{ isotropic.

Let f{' = f] + z for some z € IM, and fY = f' = f{' = f{ = f{ + f{ * =+ z % f{. Suppose

that (f1, f{ * f]) = 1 +n, where n € I[u], also notice that n € S[t], since (f], f] * f]) =
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p((f1, f1# 1)) = 0((f1, f1 * f1))- Thus, we get

(1 fay =14n+ (fl =2 f1) + (2= f1, f1) + {f1 * f1,2)

= 1+n+0((f] % f1,2)) + p({f1 * f1,2)) + (f1 = f1, 2).

We can find z € IM such that (f] * f{,z) = —%. We also need that f{' is isotropic,
ie, (f, fi) = 2(f{,z) = 0. Therefore, it is enough to find z such that (f{,z) = 0,
(fi * f1,z) = —%. Such z exists by perfectness of the form. Then, set fi = f] + 2,
f = f = f{'. We obtain q(f{) = 0, (f{, f4) = 1. The last equation is obvious satisfied

since f!’, fé’ are liftes of fi, fo. [

Proof of Theorem 5.3.1: For any S — R surjective morphism with nilpotent kernel I
(we can just assume [ 2 = 0), consider the automorphism « : L. — L with R = S/I. Set

M =L®pgsS. Let f1 € M satistying

q(f1)=0, (fi,fo)=1 exx+xecIM, x*xet+axcIM.

By the construction in the proof of Theorem 5.2.1, we have M ~ S[u] f1 & S[u] fo ® L1 ® L.
Then the projection map M — L maps f; to f; also satisfying the above condition. We

have L = R[u] f1 ® R[u] fo ® L1 ® Ly where fo = f1 * f1.

M-25 M
|
L%, L

Notice that we can lift a(f;) to M, denoted by hy by Proposition 5.3.2. So there is

another construction for M: M ~ S[u]h;®S[u]ho@ L] & LY. Then we have an automorphism
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a9 : M — M satisfying a(f1) = hy by Theorem 5.2.1. It is obvious to see that as = a.

Thus, we can lift an o € ¥(R) to ag € ¥(S). Hence ¢ is formally smooth.
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Chapter 6

Global affine Grassmannians

In this section, we will discuss global affine Grassmannians for triality groups. Global affine

Grassmannians were introduced by Beilinson-Drinfeld in [3].

6.1 General construction

Our main reference in this section is [26]. Suppose that Fj is either a p-adic field (i.e. a
finite extension of @) or the field of Laurent power series k((t)) with k finite. In either case
the residue field k has cardinality ¢ = p" for some m. Let Qg be the valuation ring of Fj.
We fix a separable closure Fg of Fjy and denote by Fj"" the maximal unramified extension
of Fy in Fg, with the valuation ring Of"".

Let GG be a connected reductive group over Fyy. Denote by H the Chevalley group scheme
over Z which is the split form of G. We will assume that:

Tameness hypothesis: G splits over a finite tamely ramified Galois extension F/Fy, i.e.,
G® P =HegF.

Let 7y be a uniformizer of Opy. Pappas and Zhu show that there exist a reductive group

G over Spec(Op[u™]), which extends G in the sense that its base change
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is isomorphic to G' (see §3, [26]). Denote by F{y the maximal unramified extension of Fj that

is contained in F, and by O, O the valuation rings of Fy, F respectively. Set e = [F - FO]

and let 7y be a generator of Gal(F/Ep). Recall that by Steinberg’s theorem, the group

G Fnr = G® Fy F§™ is quasi-split. By possibly enlarging the splitting field F', we can now

assume that:

(1)

(2)

(3)

G Fy is quasi-split;

F/Fy is Galois with group I' = Gal(F/Fjy) = (o) x(79) which is the semi-direct product
of (¢) ~ Z/(r), where ¢ is a lift of the (arithmetic) Frobenius Frob, € Gal(Fy/Fy),

with the normal inertia subgroup I := Gal(F/Ey) = (y9) ~ Z/(e), with relation

oot =¢;

there is a uniformizer 7 of F' such that 7€ = .

Without further mention, we will assume that the extension F/F{ is as above. Then

we also have O = Op[r] = Oplz]/(z¢ — mg) and O contains a primitive e-th root of unity

¢ = yo(m)m~ L. Consider the affine line A}DO = Spec(Op[u]) and its cover

Spec(Op[v]) — Spec(Og[u]),

given by u — v€. The Galois group I' described as above acts on Og[v] by

(Y ai") =D ala’, w0 ai’) = aig’.

) ) 1 )

We have Og[v]l’ = Op[u]. The Restriction of this cover over the open subscheme u # 0 gives
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us:

Spec(Oplv, v1]) = Spec(Op[u, u™1]).

In what follows, we use Og[u*!] (resp. Og[vT1]) to denote Oplu, u~1] (resp. Oglv,v1]) for
simplicity. The indexed root datum for G gives a group homomorphism 7 : Gal(F/Fy) —

AutoO (H). Then we define a group scheme over O [uil]

_ 5 A 1, EL\\ T
G* = (RGSOO[U]/OO[u](H ®0o, Oolv™ )",
where v € I acts diagonally via 7(7) ® 7. Set Z = LmZ/ nZ. We define the functor from

Algoo 1] to groups that sends R to:

G(R) = G*(Of" [u™] ® 0[] R)”.

Then G is the reductive group we wanted (see §3.3.4, [26]). By descent, the group scheme G is
reductive over Op[u™!] with base change to og"™ [u*1] isomorphic to G*® O] Oy"" [ut1].
Since QF() = Q®Oo[ui1] Fy = G, we fix a point x in the Bruhat- Tits building B(G, Fp).

The parahoric group scheme P, of G is a group scheme over Spec(Q) with generic fiber

isomorphic to G such that P,(Og) C G(Fy) is the connected stabilizer of x.

Theorem 6.1.1 (Theorem 4.1, [26]). There is a unique smooth, affine group scheme ¥ =4,
over Spec(Oqlu|) (called a Bruhat-Tits group scheme for G ) with connected fibers and with

the following properties:
(1) The generic fiber 4 JoNt Oolut] is the group scheme G.
(2) The base change of 4 under Spec(Qp) — Spec(Oglu]) given by u — mq is the parahoric
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group scheme Py for G =G ®(’)0[ui1] Fp.

(3) The base change of & under Spec(k[u]) — Spec(Oglu]) given by Oylu] — k[u] is the

parahoric group scheme me((u)) for G ®(’)0[ui1] k().

Suppose that R is an Op-algebra and denote r : Spec(R) — Spec(Ogu]) given by u — 7.
Consider the closed subscheme I'y C Spec(R ®¢, Op[u]) given by the graph of r. We
have I'r = Spec(R[u]/(u —r)). The formal completion of Spec(R ®¢,, Op[u]) along I'; is
I, = Spec(R[u — r]). There is a natural closed immersion I';, — ' and we denote by 'S =
I — T = Spec(R((w — 7)), the complement of the image. When r = 0, I, = Dp, I = D%
as defined in §4.

Consider the functor that associates to a Ogu]-algebra R (given by u + r) the group
LY(R) = 4(I}) = (R(u—71)).

Since ¥ — Spec(Oglu|) is smooth and affine, L¥ is represented by a formally smooth ind-
scheme over Spec(Oplu|). Next consider the functor that associates to an Oglu| -algebra R

the group

A

L™Y(R) =4 (y) = 4 (R[u —r]).

We can see that LT is represented by a scheme over Spec(Og|[u]) which is formally smooth.
Now we define the global affine Grassmannian associated to the group ¢ over Spec(Og[ul)

to be the functor from Opu]-algebras to groups, which sends R to

Gry Oo[u](R)::{iso—classes of (£,8) | € a G-torsor on Iy, B a trivialization of £ po -
<, r
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Using this definition, we can see that LY acts on Gr%(go [4] by changing the trivialization /3.

In fact, consider the fpqc sheaf LY /LY. We have Grgoo ]~ LY|LTY.

[u

Proposition 6.1.2 (Proposition 6.5,[26]). Suppose that & is as in Theorem 6.1.1. The

functor Grg’oo[u} on (Sch/A%,)O) is representable by an ind-projective ind-scheme over A%p.

Denote by Grg o, — Spec(Qp) the base change of Gry oglu] = Spec(Oglu]), where
the map Spec(Qy) — Spec(Oglu]) is given by u — m9. We can use the descent lemma of

Beauville-Laszlo [2] and get
Proposition 6.1.3 (Corollary 6.6,(26]).

(1) The generic fiber GY%OO X0y Ey is equivariantly isomorphic to the affine Grassmannian

Grg of G over Spec(Fyp).

(2) The special fiber Grg’oo X0y s equivariantly isomorphic to the affine Grassmannian

Grp,. over Spec(k).

6.2 Global affine Grassmannians for triality groups

In this section, we will construct the global affine Grassmannians for triality groups. Let
K/Qyp be a cubic tamely ramified field extension, p # 2, 3. For any prime p and m € Zx>( not
divisible by p, there exists a primitive m-th root of unity in Q) if and only if m divides p —1
by Hensel’s lemma. So the 3rd root of unity { € Q) if and only if p = 1 mod 3. Consider
the finite unramified extensions of @p. These are in one-to-one correspondence with finite
extensions of ) since F), is a perfect field. We know that F), has a unique extension of
degree n for every n, which is the splitting field of 2P" — . Tt follows that Qp has a unique

unramified extension of degree n for each n, obtained as the splitting field of P x, i.e.,
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by adjoining the p" —1 st roots of unity. Moreover, the maximal unramified extension Q"""
of Qp corresponds to the separable closure of IFj), and so is obtained by adjoining the p" — 1
st roots of unity for all n. For any integer n with (n,p) = 1, we have p@(”) —1=0mod n,

where ¢(n) = nlIl,, (1 —p~ 1) is the Euler’s totient function. So we see that Q%" is obtained

P

by adjoining the n-th roots of unity for (n,p) = 1 for all n. In particular, £ € QY™ since
p#2,3.

Let Fy = Qp"", F' = Ky with the valuation rings Op, O respectively. Let mg (resp. )
be a uniformizer of Oy (resp. ©). Then F/Fy is a cubic Galois extension, with 73 = 7,
and O = Og[r] = Op[z]/(2® — 7). The corresponding Galois group I' = Gal(F/Fy) = (p),
where p(7) = €.

Consider the affine line A}QO = Spec(Op[u]) and its cover:
Spec(Op[v]) — Spec(Og[ul),

given by u — v3. The Galois group I' acts on Og[v] by p(v) = v€. We have Og[v]l = Oplu).

The Restriction of the map over the open subscheme u # 0 gives us:
Spec(Og[v™!]) — Spec(Op[u™]).

Now we construct global affine Grassmannians for triality groups. Recall that (V) is
the normal twisted composition algebra over F' obtained from the para-Cayley algebra. We

defined the triality group for general orthogonal groups G in §3.4 to be the group scheme
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that represents the functor from Fjy-algebras to groups, which sends R to

G(R) := (Respyp, H)' (R)

={g € GOé"(F ®F, R) | there exist A € (F @, R)* such that Ag(z *y) = g(x) * g(y)},

forallz,y e V® Fy R. Here H represents the functor form F-algebras to groups that sends
R to the group

0
{(c,\) € Co(VR)*xR* | ¢VgT(c) = Vg, a(t(c)c) = : € EndR(pVR)xEndR(QVR) }.

0 v
By using the isomorphism F' ®p) F'~ F X F' x F given by a ® b — (ab, p(a)b,0(a)b) and

Theorem 3.4.1, we can see that

G(F) ~{(g1, 92, 93) € GOJ (F)*? | there exist \; € F* such that \;g;(z *y) = g;11(2) * gir2(y)}

~ H(F).

So G satisfied the Tameness hypothesis.

Consider the ring extension Og[v*1]/Op[u™1]. Since O [ng] = Fyand Og[rT1] = F, we
can get the Galois extension F/Fy from Og[vt1]/Op[u™1] given by v + 7. Then similarly
U:l:l]

we constrict the algebra V := @§:1OO[ e; where the multiplication table of {ei}§:1 is

the same as Table 2.1, and observe that the base change isomorphism:
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given by v — m. We call (f/, *) the normal twisted composition algebra over O [Uil] obtained
from the para-Cayley algebra, with the Op[v*!]-bilinear form ( , ) : V x V — Op[v*!]
satisfying (e;, eg—;) = d;;-

Suppose that 7 is the Chevalley split form of H. For any Op-algebra R, consider R as

an Op[ul-algebra given by u — mg. Define the functor from Opu*1]-algebras to groups that

sends R to

G(R) := (Resoo[vil]/oo[uil](c%p Xz OO[Uil]))F(R)-
We have

G(Oglu™]) = A#(Op[v™'])"

= {g € GOg(Op[vF1]) | there exist A € Op[vT1]* such that Ag(x * y) = g(x) * g(y)},

for all z,y € V. It is easy to see that G ®(90[u:|:1] Fy is isomorphic to G under the base
change u +— 7. Since S is the Chevalley split form of H, by Proposition 1.3.9,[12], we can

define a group scheme over Spec(Oglu)):

9(R) = (Resoypjopiul(# @z Oolo)) (R),

for any Oglu]-algebra R. Set the base change VR((u—wo)) =V ®OO 1] R((u — mp)) and the

R]u — mo] R0y [u] Op[v]-module
L = & (R[u — m] ®y [ Oolv])e;

in ‘N/R((u—wo))' We call L the standard lattice in VR((u—wo))' Then ¥ is the parahoric subgroup
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of G given by the standard lattice L. Consider the functors that associates to an Oglul-
algebra R the group LY (R) = 4(R((u — 1)) and LTY(R) = 4(R[u — m]). The global

affine Grassmannian for ¢ is by definition the quotient fpqc sheaf:
Gry =LY /L7Y.
Remark 6.2.1. Set t = u — mg. For any Ogp[ul-algebra R, we have

LY(R) =4 (R((t))

={g € GO;(R((t)) R0 [u] Op[v]) | there exist A such that Ag(x xy) = g(z) * g(y)}

for X € (R(t) @) Qolv])*, 2.y € Vi(y), and

L4 (R) =4(R[t])

={g € GO;(R[[t]] R0 [u] Op[v]) | there exist A such that Ag(z xy) = g(z) * g(y)}

for A € (R[] R0yl Ogv])*, z,y € L.

The following theorem gives an explicitly description of the global affine Grassmannian
for ¢4 in terms of lattices. For any A € (R((u— 7)) ®0g[u] Q0 [v])*, we denote by [)] the class

of A mod (R[u — mg] R0y [u] Oplv))*.

Theorem 6.2.2. Suppose R is an Og-algebra. There is an LY -equivariant isomorphism
between Grgy(R) and the set of pairs (L, [A]), where L is a Ru — m] ®0,[u) Q0 [v]-lattice of

% ®@0[uil] R((u —mp)), and X is in (R((uw — mp)) R0 [u] Op[v])*, which satisfy:
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(1) Under the bilinear form (, ), we have

(,):L® L — p(NON) (Rl — mo] © g Oolo])

which is perfect, i.e., L = Hom(L, p(A\)O(A\)(R]u — mg] ROy [yl Op[v])). Here the tensor
® and Hom are for the R]u — ) R0y [u] Oplv]-mod structure.

(2) We have L x L C \L.

(3) There exists a € L, such that g(a) = 0, {a * a,a) = Ap(\)O(N).

(4) Fora as in (3), let e = a4+ A"Yaxa). Thus, we have \™1 - &%z = -7 =\~ . T¥e,
for any T satisfying (Z,€) = 0, where T is the image of x under the canonical map

L — L/(u — Wo,U)L.

6.3 Proof of the main result

This proof is similar to the proof of Theorem 5.2.1. The difference is that we have )\ instead
of 1 here. It is easy to see that g(IL) = LL for any g € LT¥(R) C GLg(R[u—mg] ®0,[u) Q0 [v]).
So the standard lattice is stable under L.

Next, for any g € LY (R), there exisit A € (R(<U_7TO))®(’)O[u] Op[v])* such that Ag(zxy) =
g(x) x g(y) for all z,y € VR((ufwo))' Let L = g(L), we will show that L satisfies conditions
(1)-(4). We have L« L = g(L) % g(L) C Ag(LL), so L satisfies condition (2); the quadratic
form of L is determined by the multiplication x since x * (y x x) = p(q(x))y. Replace z,y by

g9(), g(y) and we get g(x) * (g(y) * g(v)) = p(q(g(x)))g(y). Meanwhile,

g() * (g(y) * g(x)) = (M)A - g(x x (y x ) = O(AN)A - plg(z)) - g(y)-
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Combining them together, we have

which is equivalent to 1u(g) = p(\)O(\) by q(g(z)) = u(g)q(x). Hence we have (g(z), g(y)) =
p(VO(N)(z,y). Thus, we get a perfect bilinear form ( , ) : L& L — p(\ON)(Rlu—m0] @0, 1
Op[v]).

For (3) and (4), we set @ = g(ey). It implies a%a = g(e) * g(eq) = Ag(es) from the Table

2.1. It is easy to see that g(a) = 0, and (a,a * a) = A(g(eq),g(e5)) = Ap(A)G(N). Set
1
e:a—i—x(a*a) = g(eq +e5).

By the canonical map: R]u — mq] R0yl Op[v] = R®o, Oplv] = R[v] — R, the image of L
is the para-Cayley algebra L = @?ZlRe_i, which satisfied (eq + e5) *x = —Z = x % (eq + e5)

for any 7 satisfying (Z,é4 + &5) = 0. Set T+ 3 := A\~ - T*y for any x,y € L. We get

ex71 = A" (gleg +e5) * g(2)) = g((ea + e35) * 2) = —g(7) = —7,

for any x1 = g(x) € L with (Z1,e) = 0. Similarly we have 71 xé = —z1. Above all, L = g(L)
satisfying (1)-(4).

Conversely, we will show that for any L satisfying condition (1)-(4) with R a local
henselian ring, there exist g € LZ(R) such that L = g(L). We want to find a basis in
L as we did in §5.2, such that the multiplication table under the basis is the scalaring of the
Table 2.1, i.e, there exists a basis {f;} € L such that f; * f; = \f, for e; x e; = ¢, in the

Table 2.1. Then we can define g(e;) = f;, where g € LY (R).
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We first claim that a, \"!(a % a) are primitive elements. We omit the proof here since it
is similar as we did in §5.2. Since a, A"!(a % a) are linear independent by (a, A" (a % a)) =
PO, we have L = (Rlu 0] ©611 Oolea-+ (Rl —m0] £, Oole) A" (0= a) + Lo,
where

Ly:={x € L|{(x,a) =0,(z,a*xa) =0}.
Set f1 =a, fo = A (a*a). By Lemma 2.3.2 and Lemma 2.3.3, we have
fixfi=Af2, faxfa=Af,

Jixfo=fox f1=0,
q(f1) =q(f2) =0, (f1,f2) = p(N)O(N).

The following lemma is similar to Lemma 5.2.2. We omit the proof here.

Lemma 6.3.1. We have

1 1
XU@*E)CLm :ﬂﬁ*lﬂwiLo

Define the p-linear transformation ¢; : Ly — Lg given by t;(z) = XYz f;), for i = 1,2.
Take L; = t;(Lg) = A"1(Lg * f;). Both L; has rank(L;) < 3 since f; are isotropic. For any

x € Lg, we have

(1 %)) * fo] = ﬁ)e«fl, fo))e =z,

> =

It

> =

(foxz))* f1] +

> =

It

> =

by Lemma 2.3.3. So Ly = L1 + La, Since rank(L;) < 3, we must have a direct sum

composition: Ly = L1 & Lo.
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Lemma 6.3.2.
(1) For any z € Ly, t?(m) = A" Nfipr1x2),i=1,2 mod 2.
(2) For any x € L;, t3(z) = —x.

(3) From (2), t; is a Oglu]-isomorphism when restrict at L;. The inverse map ti_l(x) =

—t?(x) = AN fip1 * x) is O-linear.

(4) For x € L1,y € La, we have (t1(x),t2(y)) = p(A)A™ - p((z, y)).

Proof. (1) For any x € Lg, we have

1

1
(o) = (@ ) 1) = =y

Ap(A)

(fr f1) ) = 5 (fa =),

by Lemma 2.3.3. A similar argument gives t%(x) = AL f = 2).

(2) For any = € Ly, we have t3(z) = —(Ap(\)) "L - ((f2 * @) * f1). Consider

(foxx)* fi + (fi*xz) * fo = 0((f1, f2))x = Ap(N)z,

by Lemma 2.3.3. Let z = A\~ (2% f1) for some z € Ly. We get fr+z = 0(A\) " H(f1x(2xf1)) =0
by q(f1) = 0. Hence (fy * z) x fi = Ap(A)x, which implies ti’(x) = —x. Similar calculations
for y € L9 give t%(y) = —y.

Part (3) follows from (2) immediately. For (4), we have

(11(2) 12(0)) = 5o 1% ) = (L (3 % o), ).

Since

fux(y* fa) = =M3(y = f2) = —M3(Ma(y)) = =M\t (y) = ANy,
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by (1) and (2), we obtain

(11(2),2(9)) = 33pA0((9)) = 25 o((, ).

O]

Remark 6.3.3. (1) From the proof above Lemma, we can see that A™1(f; x L;) = 0, and

AHLi * fiz1) = 0.
(2) Since L1, Lo are isotropic and ( , ) restricted to Lg is nondegenerate, the L; are in

duality: L1 = Hom(Le, p(A)O(N)R[u — mg] ®0y[u] Oplv)).
Lemma 6.3.4. For the multiplication L; x L;, we have

(1) AN (L1xLg) € (Rlu—m0]®0, ) Colv]) fi, A~ (LaxL1) C (Rlu—mo] @0y ) Qolv]) fa-
(2) \NL; x L;) C Lizq (i =1,2 mod 2).

Proof. (1) For z € L1,y € Lo, we write x as = A" 1 (1 * f1) with some x1 € L1, and y as

y = A"y * fo) with some y; € Ly. Consider

1

X(x*y) = 00N (=((y* fo)* f1)xx1+0((x1, y1% f2)) f1),

(e fr)(nef2)) = 3507

by Lemma 2.3.3. Notice that (y1 * f2) x f1 € Lo * f{ = 0. Thus we have

(1,91 % f2) = @9(@1(961),752@2 * f2)))
= "Wt y0))

= 0(N0((z, ta(y))).
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Hence

$e ) = ol ) = 3ol )

Since (2, t2(y)) € p(NON) RIu — 0] @0, oy ole], we obtain (A(A)~Lo((z, t2(y))) € Ru—

0] ®0g[u] G0 [v]. Similarly for y * x, we have

(2) For x1,x9 € L1, we claim that A\~ (21 % 29) € Lg. Since (x1 * x9, f1) = 0({f1 *

x1,29)) = 0 by f1* L1 =0, and (21 * 22, fo) = p((z2 * f2,71)) = 0 by Ly * fo = 0. Using

Lemma 2.3.3, we find

t1(z1) xt1(zg) = p(/\)le()\) (21 % f1) * (z2 % f1))
1
= poopen e e )
1
= SO0600) (f1 % (f1 * (21 % 22))),

by (1 = f1, f1) = 0 and (f1,z9) = 0. Since fi  (f1 = (x1 x 22)) = f1 * (—At3(x1 * 22)) =

A@(A)t%(a:l x x9) = —A0(A)ta(xq * x9), we obtain:

ti(z1) xt1(xg) = mh(m * 19).

Here z1 x x9 € ALg. Let to act on both sides of above equation. We obtain to(z1 * x9) €
p(AN)Lo. Hence t1(z1) * t{(x9) € ALy, which gives us Ly *x L1 C AL9 by t; isomorphism.

Similarly, Lo % Lo C A\Lq. [
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So far we discussed the multiplication on L. To make it similar to the Table 2.1, we
want to find a basis {x1,x9,x3} for Ly (resp. {y1,y2,y3} for Lo) such that t1(z;) = —id
(resp. to(y;) = —id). To do that, we first check {; = —id under the canonical map L —
L/(u— mgy,v)L.

Recall that we define 7« = A~! - Zxy. Denote by (, )y := A"2(, ) the bilinear form

corresponding to x and ¢y the quadratic form corresponding to x. We have:

Proposition 6.3.5. Suppose R is a local henselian ring with the maximal ideal m. Given
(L,*,{, )) a RJu— m] R0y [u] Opv]-lattice satisfying (1)-(4) as above. Set L = L/(u —
70, v, m) L with multiplication Ty = A1 T*y forallx,y € L. We have (L, %) is isomorphic
to the split para-Cayley algebra.

Proof. 1t is easy to see that ¢5(Z x7) = ¢5(Z)g5(¥), and (T x 7, 2)5 = (J * Z,T)5, so Lisa
symmetric composition algebra. We need to find a para-unit, i.e. an element € € L, such
that exé =€, exT =2 ~¢e = —7 for all Z € L satisfying (e,7)y = 0. Set e = f1 + fo. Here

e is an idempotent since

exe=((fi+f2) % (h+ ) = S (A + ) = .

By condition (4), we get éx % = T x& = —%. Therefore ¢ is a para-unit in L. Thus L is a

para-Cayley algebra. It is split since ¢ is an isotropic norm. O

Proposition 6.3.6. We have L; = Lo~ f; = {Z € Lo | Z* f; = —x}. Hence for
LTi : Li — Li,

we have t; = —id.
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Proof. By Lemma 34.8, [14], we can define T o4 = (é x T) x (§ * €) as a unital composition
algebra with identity element e. We have T x § = 7(¥) ¢ r(y), where r(Z) = (¢,7)yé — 7 is

the conjugation of . By Proposition 2.1.1,

™|

Using zx gy = r(Z) or(y) and (r(z),7(y))y = (Z,)y, we obtain

Therefore, if Z € Ly * f;, we have f; «Z = 0 by q;\(fi) =0, and
Tx fi+ fix7 = (& f1)5r(z) = r(2).

Hence Zx f; =« f; + fixZ = (6,z)\é =& = —Z. Then Lo f; C{z € Ly | Z* f; = —Z}.

It is obvious that {# € Ly | % f; = —Z} C Lo * f;. So we get
Li=Loxfi={z€Ly|zf;=-1}

and t; = —id. O

Now we prove that ¢; and —id are the same up to p-conjugacy. This part is similar to §5.2.
We fix a basis for L; = (R[u — ] R[] Op[v])? and let A; € GL3(R]u — 7] =IOND Op[v])
representing ¢;. We can find a new basis for L; with transition matrix b € GL3(R[u —
70 ®0g[u] Q0 [v]) such that

—I=b"14;p(b).
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Consider ¢1 : Ly — Ly, the subgroup of GL3(R]u — m] ®0,u] Q0 [v]) generated by t1 is the
cyclic group of order 6 (75613 = (—z'd)2 = id). If we fix the basis and use Ay representing t1, we

have t% = Alp(Al),ti)’ = A1p(A1)0(A1) = —I. Consider the map
I' = GL3(R[u — m] ® oy u) Oolv])

by p = ap, = —A;. Using asy = as®ar, we get 0 — ag = app(ap) = A1p(A1), and 1 +— a3 = 1.
The image of {p, 0,1} is {t+ = —t, 25513 =2, t%z = id}, so ap is a 1-cocycle. Denote by [a,] the

1-cocycle in HY(I', GL3(R[u — m] R0yl Oplv]). Using the quotient map
R[u — mo] By [ul Oglv] = R — &,

and the fact that R is a local henselian ring. We have (R[u — 7] D0y Q0 [v], (u — 7)),

(R[v], (v)), (R, m) are Henselian pairs. Hence we obtain the exact sequence:
1 —- U — GL3(R[u — mg] ®00[u] Oplv]) — GL3(k) — 1

where U is the kernel. The group I" acts on GL3(R[u — ] R0yl Q0 [v]) by p on Og[v], and

[ acts trivially on GL3(x). So we obtain the exact sequence of pointed sets:
o= HY(D,U) = HN(T, GL3(R[u — mo] ©¢ 1y Oolv]) = H'(T, GL3(x)).

Since |I'|= 3 and p # 3, we get H'(I',U) = 1. Hence for any [as] € H'(I', GL3(R[u —
0] R0y [u] Oplv]) satistying [as] = 1, we get [as] = 1. Under this observation, we get

lap) = —[t] = 1 by Proposition 6.3.6. Therefore [a,] = 1 by the exact sequence. In matrix
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language, there exist b € GLg(R[u — mg] ®0y[u] Oplv]) such that

I=b""=App(b), t1~ —id.

We have a similar conclusion for t9.
Using the above we see that there exist a basis {z1, 29,23} for L1, and a dual basis

{y1,y2,y3} for Lo, such that ty(z;) = —id, t2(y;) = —id, (z;,y;) = p(A)0(A)d;j. We have

ri* f1=—Ar;, fi*xxz;=0,
;i x fo =0, foxx;=—Ar;,
vyix f1 =0, f1*xy =Ny,

yi * fo = =Xy, foxy; =0.

By Lemma 6.3.4, we have

Ti*yj = —A0ijf1, yixxj = —Adjjfa.

It reminds to calculate the terms in L; % L;, which we will also define a wedge product

A L; x Ly = L;;1 given by

(t; ! (u) * £i(v)),

> =

uNv =
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for all u,v € L;. Let v € Ly. It is immediate that

by (fo,u * f1) = 0,q(u) = 0, and similarly for u € Lo. By linearizing the equation we find
uAv=—v Au. Now define a trilinear function ( , , ) on L; by (u,v,w) = (u,v Aw). It is
an alternating trilinear function (Similar proof as in §5.2).

Consider A™1(x1 % 29), we have (\ 1 (z1 * 29), 21) = = A"y x 29, t1(21)) = =X "2 (1 *
z9,x1 % f1) = 0 by (x9, f1) = 0. Similarly (\~!(zq * 29), 29) = 0. Hence we have A\™1(z] *

x9) = bys for some b:

b= m@:l x 9, x3) € Rlu — m] Q0 [u] Oplv].

Multiplying y; on the right side, we obtain p(A) ™ ((x1 % z2) * y1) = (bys) * y;. Since

(21 * 22) * y1 + (y1 * 2) * 11 = 0((z1,91)) 2 = Ap(N)72, and y1 x x9 = 0, we have

Azg = p(b)(y3 * y1)-

Therefore we obtain b, p(b) ™! € Ru— ] R0oy[ul Oplv], which implies b € (R]u— ] R0y [u]
Oplv])*. We can let b = —1, and get 1 * x9 = —Ay3. We can perform similar calculations

for the other x; x r; and y; * y;. By using alternating trilinear form, we obtain:
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Table 6.1: Multiplication table z; xz; ~ Table 6.2: Multiplication table y; * y;

* T1 Z2 z3 * Y1 Y2 Y3

r1 | 0 | -Ays | Ay2 yi| 0 | —Azz | Az

T2 | Ay3 0 | -Ay Y2 | Azs 0 | =Any

x3 | —Ay2 | Ay | O

y3 | —Azo | Ay 0

Therefore, we complete the multiplication table for L. By letting g(e4) = f1,9(e5) = fo,

and
gler) =x1, gleg) =x9, gler) =3,
gles) = w1, glez) =v2, glea) =ys.

We have g(e;) * g(ej) = Ag(e; x ), so there exist g € LY such that L = g(L).
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Chapter 7

PZ-local models for triality groups

Now we are ready to give the definition of PZ-local models. The generalized local models
were introduced by Pappas and Zhu in §7, [26]. We will give an explicit description of PZ

local models for triality groups.

7.1 General construction of PZ-local models

We used the same notations as in §6.1. That is, let F{y be a p-adic field with valuation ring
Oo, p # 2,3. Let my be a uniformizer of Oy. Set the residue field k = Oy/(m). We fix a
separable closure F(‘f of Fy and denote by Fjj"" the maximal unramified extension of Fp in
F(‘)S, with valuation ring Oy"". Consider a Galois extension F'/F{. Denote by F} the maximal
unramified extension of Fy that is contained in F, and by Oy, O the valuation rings of Fy, F
respectively. Set e = [F : Fy]. Then there is a uniformizer 7 of F such that 7€ = 7.

Let G be a connected reductive group over Fp, which splits over a tamely ramified
extension. Then G Ry = G ®F, Fy is quasi-split. In [26], it is shown that there exist a

reductive group G over Spec(Op[ut]), which extends G in the sense that its base change
Q®Oo[ui] F07 u = T,

is isomorphic to G. By fixing a point z in the Bruhat- Tits building B(G, Fy), Pappas and
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Zhu constructed a unique smooth, affine group scheme & = ¢, over Spec(Oglu]) (called a
Bruhat-Tits group scheme for G ) which satisfies the properties in Theorem 6.1.1.
Using the local parameter ¢ = u—mo, we define &, 7 := %@Oo[u] Fy[t] where Oglu] —

Fy[t] given by u +— t 4+ mg. Notice that there is an isomorphism:

Oplv™] Dol Foltl = Fle] = Flt],

(see (6.10), [26]) given by v — m(1 + z), and z maps to the power series (1 + %)1/6 -1,
where the e-th root is expressed using the standard binomial formula. This isomorphism
also matches the action of I' on the left side (coming from the cover Op[u] — Op[v] by base
change), with the action on F[z] given by the Galois action on the coefficients F'. Using this

isomorphism and G ® Oplut] Fy ~ G, we obtain

gFO’T"O ~ G ®FO FO[[t]]'

Let LY Fy.mg be the loop group over Spec(Fy) representing the functor from Fy- algebras to

groups that sends R to

LY iy rg(R) = Ly o (R(D)).

and LY Fy,my Over Spec(Fy) representing the functor from Fy- algebras to groups that sends

R to

LYY gy mo (R) = 9y (RILD)-

Consider Gr R) =LY Lty as a fpqc sheaf over Spec(F{y). By Proposition
Y Fy,mg Fomo Fo:mo
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6.4, [26], we have an isomorphism:

GY%OO [u] XOO[U} FO - GrgFoﬂTo’

given by u + my. Combining this isomorphism with Proposition 6.1.3, we obtain Grg Formo ~
Grg.

Now we define the PZ-local models. Suppose that {u} is a geometric conjugacy class of
one parameter subgroups of G. Let E be the reflex field of (G, {u}). Since G is quasi-split
over the maximal unramified extension F, we can find a representative of y over E' := EF
such that p: G, pr = G = G QF, E'. Notice that p gives an E[zT1]-valued point of

G g, therefore an E'((z))-valued point of G . Hence we have an E’-valued point of the loop

group LG. By ¥y 7y ~ G ®p, Fy [t], we have an isomorphism:

G(EN(2)) S5 Dy o (Fo(2) = Ly g (FOl(1).

We denote by s,, the corresponding E’-valued point in LY Fy.mo» and [s,] the correspond-
ing point in the affine Grassmannian Grgy Fomo XF, E'. Consider the LTY FO,WO—orbit:
(L+gF0,W0)E/ - [su). This orbit is contained in GrgFO:WO X R E’, which by Theorem 6.1.1,
can be identified with the generic fiber of Grg,oo X0, Opr. Since the conjugacy class of i is
defined over E, the same is true for the orbit (LT¥ FOJTO) gt - [su]: There is an E-subvariety

Xy, of Gr%FOJTO XFy E such that
X/L XE E/ = <L+gF0,7T0)E/ ’ [SN]‘

Definition 7.1.1. The PZ-local model My , is the reduced scheme over Spec(Of) which
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is the Zariski closure of the orbit X, in the ind-scheme Grg’oE = Grg’o[u] X O] Og over

Spec(OFg).

7.2 PZ-local models for triality groups

We continued with the same notations in §6.2. That is, let &K/Q) be a cubic tamely ramified
field extension, p # 2,3. Let Fy = Qp""", F' = K with the valuation rings O, O respec-
tively. Let mg (resp. 7) be a uniformizer of Oy (resp. ©) with 73 = my. Then F/F} is a cubic
Galois extension, and O = Og[r|. The corresponding Galois group I' = Gal(F/Fy) = (p),
where p(7) = €.

Recall that we define the parahoric group given by the standard lattice L:

4 = (Respyu]/0qu]( @z Oolu])'

as a smooth affine group scheme over A}QO = Spec(Op[u]) (Here 7 is the Chevalley form of

H). We described the global affine Grassmannian as a fpqc sheaf:
Grgy = Lg/ﬁg,

and there is a natural identification between the points in Grg(R) and the set of R[u —
0] 0[] Q0 [v]-lattices satisfying conditions (1)-(4) in §6.2. To describe PZ-local models
for triality groups, we need to fix some coweights of GOg. Set t = u — 7.

Suppose that {u;};—123 are coweights of GOg. We fix y; : G, p — GOg(V,q) given

92



p1(t) = diag(t=1,1,1,1,1,1,1,1),
/’L2(t> = diag(t_17 t_17 t_17 17 t_17 17 17 ]')7

po(t) = diag(t—, e~ e 171 1,1,1,1),

For any O-algebra R, denote by LL; = @%ZlR[[t]] e the standard lattices in the vector space
VR(t) = @%ZlR((t))ek for i =1,2,3, where {e}, }—1 g satisfies the multiplication in Table
2.1. Similarly, denote L; p = @2:1F [t]es the base change IL; ® p F'. There is a R((t))-bilinear
form (, ) : Vr@) * Vr() = R((t)) given by (e;,eg—_;) = 0;;. Let Z;(0) = p;(t)L;, and

2 7(0) = pi(t)L; p, ie.,

21(0) = R(t)(t Ley, eq, ..., e7, teg),
25(0) = R()(t tej,e)im1235 j=4.67.8

2(0) = R(E)(t Lej,e5)im1234, j=5.678-

In what follows, we will use the isomorphism F'® Ry F =2 FxFxF. Consider the embeddings
@i F' = F @p, F for i = 1,2, which are given by o1(f)=f®1, pa(f) =1® f. We use
F, F5 to denote the two isomorphic copies of F', obtained as the image of the embeddings
i I = Fop F,ie, I = ©1(F), F5 = @oF). In this identification, we set the

1/3
0

uniformizers t=7® 1€ O Ty =leme O Fy- Notice that there are isomorphisms

Foltl ®og ) Oolvl = Filz] = Fi[t],

where the first map is given by v — 7(1 + z), and the second map is given by

t1/3 t 2 53
=1+ ) —1=— - — +——=+..€ Rt 7.2.1
z p) 5 o2 88 2[t] (7.2.1)
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Applying the tensor product Fp ® Fy — on both sides. We obtain:

Oolv] @y F2lt] = F1 © 5, B[] = Folt] x B[] x B[],

the first part given by v — 7(1+ 2), and the second part given by 7w — (7‘(‘0/ , é/gf, 1/352).

Recall that L = @%:l(Rﬂu — 7] R0yl Oplv])e;. is the standard lattice in VR((U_WO)). Set
2(0) = (v — 75/ a0 — w2 pa(o — mp €L,
i.e, Z(0) is a free R[t] ®0oy[ul Oplv]-module with the basis:
1 61, 1 1 1 es, e (0 — 1/ e
YT w24 e /3 1/352 Gl ”3/35 : h i=2,3, j=6,7

When R = F, we denote by Z(0)p the F[t] R0 u] Op[v]-lattice with the same basis as
above. By Oglv] R0yl F[t] ~ F[t]*3, we can check that v — 71'(1)/3 maps to (Wé/ z Wé/3(£

1+¢&2), 1/3(§ 14 €22)). Tt is easy to see that £ — 1 + &z and &2 — 1 + €22 are units in
F[t]. Hence (€ — 1+ &£2)F[t] = (€2 — 14 €22)F[t] = F[t], and zF[t] = tF1[t] by Equation

(7.2.1). Therefore,
1/3 ~ x3
(F[t] @04y QolvD (v —my"™) = (¢, 1, 1) F[e] .
Similarly, we have (F[t] @0, Oolv))(v — mg/*) 1 2 (71,1, 1) F[]3, and

(] ® 0y Oole) (v — mg/ *6)* = (1,751, 1) F[]3,

(F[t] ®0y[ Colo)) (v — my € *Le; = (1,1, 1) F[1] 3.
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Combining the above results, we obtain:

Z0)p = (A,r(0), £ r(0), 25 £(0)),

by Oplv] @0, Flt] = Ft]*3.
Proposition 7.2.2. For any O-algebra R, we have:

(1) (u—m)L € Z(0) C (u—m)~ 'L, and £(0) is a Ru — o] R0Oy[u] Ogv]-lattice

satisfying conditions (1)-(4) in §6.2, i.e., £(0) € Grg(R).

(2) %;(0) satisfy the following diagrams:

(i)
Ly
C C
(u—mo)Ly C £ (0) N1y 21(0) + Ly C (u—mp) L,
C C
£1(0)

where the quotients arising from all slanted inclusions are generated as O-modules by
one element (we say that they have rank 1), and the quotients from (u — mg)Lq C
Z1(0)NLy, Z(0)+ 1Ly € (u—mp) 'Ly have rank 7.
(i)

(u—mo)La C % (0)Y C Ly € %(0) C (u—mp) Lo,

(u—mp)Lg C £3(0)Y C Ly C £(0) C (u—m) 'L,
where L;(0)V is the dual lattice of L;(0) under the bilinear form: {, ) : VR)*Vr(t) =

R((t)). The quotients arising from all inclusions have rank 4.

95



(8) The triple ((£1,F(0) + 1Ly p)/L1 p, £ £(0)/ Lo p, £3 (0)/1L3 ) is isomorphic to the
triality triple (Fey, V«Fey, Fei*V'). Recall that (V, %) is the normal twisted composition

algebra obtained from the split para-Cayley algebra.

Proof. (1) (u— )L € Z(0) C (u— mp) 'L is directly from defintion. We can check that

Z(0)* Z(0) C \Z(0) with A = (v — Wé/3)_1. In fact, let

§

fima=——1m—es, fa=A"(axa)=—Fr¢5
U—T[‘O/ £2 v—ﬁo/f

We have ¢(a) = 0, (a,a * a) = (u — 7)1, and there exist a basis of .Z(0) such that:

AL e s f1) = —Z—e, AT 1 eg * fo) = — : €9
4o U v2+7r1/3v+7r(2)/3 v2+7r(1)/3v+7r8/3 ’
A Heg * f1) = —eg A 1 e3* fo) = — i e3
’ v2+7r1/3v+7rg/3 v2+7r(1)/3v+7rg/3 ’
-1 -1 1/3 1/3
A" (er x f1) = —er, A (v =7y V)eg * fo) = —(v — 7y " )es.

Then (Z£(0), %) satisfies conditions (1)-(4) in §6.2, i.e., £(0) € Grgy(R).
(2) We have
£(0)Y = R[t]{ej, tej)i=1235, j=16.7.8

25(0)Y = R[t]{ej, tej)i=123.4, j=5678

One can check the diagrams directly from that.
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(3) It is easy to see that

(Z1.p(0) + Ly p)/Ly g = (¢ F[t]/F[t])er = Fe,

% p(0) /Lo p = (t  F[t]/F[t]){e1, e2, €3, €5) = Feq + Feg + Feg + Fes,

23 7(0)/Ly p = (t'F[t]/F[t]){e1. e2, €3, e4) = Fey + Feg + Feg + Fey.

So ((Z1,r(0) + Ly p) /Ly p, £5 p(0) /Lo p, L3 p(0) /L3 p) = (Fe1,V x Fey, Feyp x V). [0

Set s, = p1(v — Wé/?))ug(v - Wé/gf),ug(v — ﬂé/gég). Let X, = (L7¥).2(0) be the orbit

of Z(0) = s,L. We now define the PZ-local model for triality groups:

Definition 7.2.3. The PZ-local model M (y) is the Zariski closure of X, in the induced

scheme Grg o = Grg X o [y O over Spec(O).
For any . € M(u)(R), we have a similar proposition as Proposition 7.2.2:

Proposition 7.2.4. (1) (u — m)L C £ C (u — m) L.
(2) Let L be any point of the generic fiber of M(u). Then Lp is a F[t] ROy [u] Oplv]-
lattice. If L = (A p, Lo F, L3 F) given by F[t] R0yl Oolv] ~ F[t]*3, then <, F satisfy

the following diagrams:
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Lip
C «
(u—mo)ly p C A FNLyF Arp+LipC(u—m) Ly p,
« C
A F

(i)

1
(u—mo)lop C L/p Cloyp C %y C (u—m) 'Ly,

(ii)

-1
(u—mo)ls p C L'p CLlygp C L C (u—m) 'Ly,

such that (A g+ p) /L1 p, Lo p /Lo p, L3 1 /L3 ) is isomorphic to the triality triple

I,V x 1, 1% V) for some isotropic linel € V.

Proof. (1) is obvious. For (2), consider
LTY(F) = {g = (91.92,93) € GOs(F[t]) | Nigi(x *y) = gis1(x) * gir2(y) mod 3}.

Suppose that Zp = (L p, Lo 5, L3 r) = 9(L1,7(0), L5 p(0), L3 p(0)) for some g =

(91,92, 93) € LYE(F), then

911, 7(0) + Ly p/Ly p = g1(L1,r(0) + Ly p/Ly ),
92(Z5 (0)) /Lo p = G2(L5 1 (0) /Lo ),

92(L3.7(0))/Ls p = g3(L3 p(0) /L3 p),
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where g; = g; mod ¢. Denote by [ the isotropic line g1 (Fe1) = g1(£1 r(0)) + L1 /Ly F).
We get go(Zo 1(0)/Lg ) = go(V x Fer) =V x gi(Fer) = V x [, and g3(Z3 p(0)/L3 F) =

g3(Fep xV)=gi(Fep)*«V =1%V hence

(A r+Lyp)/lyp, Lo p/lop, L3 p /Ly p) = (1L,V*1L1IxV).
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Chapter 8

Splitting models for triality groups

The original purpose of introducing splitting models is to modify local models in the ramified
case, so that the modified models are flat and have reasonable singularities. Pappas and Zhu
discuss the cases where the quasi-split form of GG is the general linear group GL; or the general
symplectic group GSp,,. In the following sections, we will consider the splitting model for

triality groups. We will see that it is isomorphic to the blow-up of some hypersurface scheme.

8.1 Definition of splitting models for triality groups

Suppose R is an O-algebra. Recall that we set s, = 1 (v —W(l)/?))ug(v —Wé/gg)ug(v —Wé/3§2)
and .Z(0) = s,LL in §7.2. The PZ-local models for triality groups M (j) is the Zariski closure
of the orbit X, = (LT9).£(0). To define splitting models, we consider “partial resolutions

of M(u)”. More precisely, set
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Then we obtain:
Lc . 2W0) c 2®0) c 23(0) c (u—m) L.

We have the following propositions for {Z(i)(O)}Z‘:LQ,gZ
1) (-’20 0) 2@ 0),  (v-my°).2P(0) ¢ 2D (0), (-2 W (0) ¢

L.
(2) L+.2W0) c 2@0), 2W0)«Lc.2®)0).

(3) Z(0) is self dual with respect to the form (, ) : Z(0)®Z(0) — p(N)O(N)(R]t] D0y [u]

Op[v]), where A = (v — 7T(1)/3)_1.

These propositions are directly from the definitions of .Z (i)(O) we set. Generally, for any £

in the orbit X, we have .2 = ¢(.Z(0)) for some g in
LYY(R)={g € GO;(R[[t]] ®0Oy[u] Op[v]) | there exist A such that Ag(z xy) = g(z) * g(y)}

for A € (R[] ®0y[u] O], z,y € L. Set L) = ¢(£1(0)) for i = 1,2,3. We observe
that {$<i)}i:172’3 have the same propositions as above:

(1) Lc2Wc 2@ c26) c(u—m) L.

@) (-2 2B c 2@, w-rP2® c 2O (w-z}PHr® L,

3) Lx2W c 2@ 20 Lc.26)
(1) and (2) are directly from .2 = ¢(£@(0)). For (3), consider L x Z1) = g(L) x
g(ZM(0)) = A gL « (£M(0)), and g(L * (ZM(0)) c g(£@(0)) = @), We have
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Lx. 20 c x12@) Since A is a unit in R[t] R0y [u] Op[v], we obtain L + (1) ¢ #(2).
Similarly, LW« L c 2B,

Furthermore, since I. C 2 (u— 7r0)_1]L for i = 1,2,3, let F* be the image of ()
under the map:

t:(u—mp) 'L — L/(u—m)L,

recall t = u — 7). Set A = L/tL. Notice that A = &% _, (R ®¢p., O)e;, with a bilinear form
=1 00 1
() A®A = R®p, O since Op[v] is isomorphic to O by v3 = u = mg. Therefore, we have

R®0o, O-modules F! satisfying
ocrlcFPcFcA

By R ®0, O = R® Rr ® Rr?, we can view A as a 24-rank R free module with basis {eri,

me;, €;}i=1,..8- In particular, the image of iﬂ(i)(O) are:

FL0) = R(x%e; + 7T(1)/37T61 + 71'(2)/361),

1/3 1/3 1/3 2/3
F(0) = R(wey — 770/ ¢%e1) @ R(n’er — Wo/ &rer) Sp_nz5 R(m ey + WO/ ey + 7To/ Eep),
F3(0) = Rey ® Rmey & Rreq DOr—23 R(rey, — Wé/gek) Dr=2.3 R(m%ej, — 7T(1)/37T6k)

@ R(7T2€4 + wé/3£27re4 -+ W8/3§e4) &> R(ﬂ'2€5 + Wé/3§ﬂ'€5 + W§/3£265),

with rank(F1) = 1, rank(F2) = 5, rank(F3) = 9, when we view F* as R-modules.
Collections {./—"i}izl’z’g satisfy some similar propositions as {.& (i)}. By viewing F' as
t.20 JHL, we have A FL = L t.Z(1) mod tL C £.2?) mod tL c F2. Similarly F1xA C

F3. Hence:
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(HocFlcFPcFcA
@) (r-m*AF c P, (r-mP9F c F, (r-m/)Fl =0
(3) AxFlc F?, FlsxAc F3

Finally, we claim that F? are isotropic under the bilinear form: (, ) : A®@ A — R ®0, O.
Consider the bilinear form ( , ) : Z(0) ® Z(0) — p(N)O(N)(R[t] ®0y[u] Oplv]), where

A= (v— 7ré/3)_1. Since .Z()(0) = 2(0) + L, we get

(2,y) € (u—m0) " (R[] ®0y ) Oolt]).

for all z,y € .,2”(3)(0). It keeps the same for z,y € Z3). Therefore, (tz, ty) € t(R[t] B0 u]

Oplv]) for all z,y € £B) Set 2/ =tz mod tL,y’ =ty mod {L. We obtain
(x’,y/)y =0, for all 2,y € F3.

Definition 8.1.1. Suppose that M is the functor from O-algebras to sets that sends R to

M(R) of collections {.Fi}izl,g’;;, where F' are R ®0, O-submodules of A, which fit into:
0cFlcFPcFicA

such that:

(1) F' are locally direct summand of A, with rank(F') = 1, rank(F?) = 5, rank(F3) = 9
when we view F' as R-modules.

T Y T L )
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(3) AxFtc F?, FlsAcCF3
(4) (z.y) =0, for allx,y € F>.

We call M the “naive splitting model for triality groups”. Unfortunately, the scheme M
is not flat, so we need to consider its flat closure, and call it the splitting model for triality

groups:

Definition 8.1.2. The splitting model for triality groups MSPt s the flat closure of M.

8.2 Blow-up of a quadratic hypersurface

In this section, we will prove the splitting model M5PIt is isomorphic to the blow-up of a
quadratic hypersurface. Before we move on to our main result, let us consider the generic
fiber of MSPlit, Recall that the isomorphism F & Fy F~FxF x Fisgiven by 1| ® rg —
(rirg, p(ri)re, 0(r1)ra), and we use F, Fy to denote the two isomorphic copies of F', obtained

by the image of the embeddings ¢; : ' — F R, F, where o1(f) = f®1, po(f) = 1® f.

/

Set the uniformizers Tt =7 ® 1 € OFl,Tfé 51 QmE OF2. By this isomorphism, we get:

1 9 1/3 2/3
—2/3( —|—7T0 7T+7TO
37?0
§
2/3
37r0
£2

2/3
37?0

) — (1,0,0),

(72 + mtBem + 72362) s (0,1,0),

(7r2 + Wé/?)f?ﬂ + Wg/gf) — (0,0,1).

In§8.1, weset A = L/tL = @§:1(R®@0 O)e;, with a bilinear form (, ) : AQA — R®¢,, O for

any O-algebra R. Let Ap = @§:1(F ®0, O)e; be a 24 dimension F-vector space. Consider
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the linear isomorphism 7 : Ap — Ap, where 7 is represented by the matrix:

0 I O
= 0 0 I
mol 0 0

with respect to the order of basis {7%eq, ..., m2eg, weq, ..., meg, ..., €1, ..., eg }. Here I is the 8 x 8

identity matrix. We call this order the standard order of basis.

3

By the characteristic equation 7° — 7y = (7 — 7T0/3)<7T — 7(1)/35)(7T 1/352) =0, it is

easy to see that 7 has 3 eigenvalues wé/ 3, ) 5 , and T 352. Since

(2 Hl/3 n 2/3> 3/3(ﬂ2+ﬂ(1)/37r+ 2/3)’
w(w? +7T0 §7T+ 2/352) 1/35(7r2+7r Em + 2/352) (8.2.1)

2/3 2/35)’

(72 +7T 527T—|— §) = 1/352( 527T+

k
the eigenvectors ff corresponding to eigenvalues Wé/gfk for k=0,1,2,i=1,..,8 are:

f; = w2e; + Wé/ me; + 7r(2)/ €is
f5 = n2e; + 7T0 fﬂei + Wo/gfzei,
f§2 1/352

—7re+7r me; +7r0 561

These three eigenspaces have a close relation with the generic fiber of the splitting model

MSPL Ty fact, we will show that the generic fiber of MBPIt §g gimilar to a triality triple in
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some sense. For example, consider {.7-‘%(0)}2-:1,273. We have:

]:}17(0) = F(r%e; + 7T(1)/37T61 + W(Q)/Sel),
1/3 1/3 1/3 2/3
.7:]2;(0) = F(mep — 7T0/ §261) D F(7T261 — 7r0/ §2W61) Br=235 F(7r2ek + 7r0/ Emey, + 7T0/ fzek),
1
}"%(O) = Fey ® Frrey ® Frley DBr—23 F(mey, — ﬂé/gek) Dr—2.3 F(r2e), — 7T0/37T€k)

& F(7r2e4 + ﬂé/3§27re4 + W§/3£e4) &> F(7r2e5 + Wé/?’gweg) + WS/35265),

By using the notations we just set, it is easy to see f};(()) = F f1. Observe that

1/3 1/3

F(meq — 7r0/ 5261) @ F(7T2€1 — 770/ 527r61) =Ffi® Fflg,
so we get f%(O) =Ff1®5=1235 Fflf. Similarly,
Fi0)=F Ff; P
F( ) fl ) D fz ) D fj .
i=1,235 ° j=12,3.4

Recall that a triality triple is (I,V = ,1 % V') for some isotropic line [ in (V,x). Let [ = fi.
2

Then we have A fi = i1 235F ff and fi+Ap = @j-1234Ff5 . So F3(0) = Fh(0) +

Ap+FL(0), and F3(0) = FL(0) + Ap* FH(0) + FL(0) * Ap. Generally, for any point {F%}

in the generic fiber My = M ®p F, we have:

Theorem 8.2.2. The generic fiber My, has dimension 6. For any {.7-"};} € My(F), we have

f%%l, f%%“l—l—AF*l, fl%a%l—i-/\p*l—l-l*AF,

in Ap, where [ is an isotropic line in the ker(m — ﬂé/g\AF).
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Proof. By (m — Wé/3)fl]_‘7 = 0, we have .7-'11; = F' - [ for some line [ in the ker(m — 7T(1)/3|AF).
Since (F 3 F 3) = 0, we have [ is isotropic. Then Ap * ]-"}7 is a 4-dim isotropic subspaces in
the eigenspace corresponding to the eigenvalue Fé/ 3§ . The generators of Ap * F }1; and .7-}
are linear independent. So we get ]:% =1+ Ap * [ since rank(f%) = 5. Similarly, .7-"}7 * A p
is a 4-dim isotropic subspaces in the eigenspace corresponding to the eigenvalue 7r(1)/ 35 2 We

have F3. =1+ Ap 1+ 1 Ap. O

Now we consider the general case. We have 7 being a root of the Eisenstein polynomial:
P(T) = T3 — mp, and

O[T]/(P(T)) = O @0, O,

given by T+ 7. For i = 0,1, 2, we set
i 2 1/3 ! 1/3
PUT) = T[T ==y*¢), Py = [ = =/°¢0). (Po(T) = 1)

so that PO(T) = P(T), and P{(T)P;(T) = P(T). There are exact sequences

3
E
<

o)) " omyypay T oy ().

o)) " o) 1Y oy pa)).

Thus, by PL(T) = T — > PYT) = T2+ 7/ *T + 72/ we get ker(Py(T) | O[T)/(P(T))) =

im(PY(T) | O[T]/(P(T))). In other word, there is an isomorphism:
ker(m — 7r(1)/3|A) ~ (7 + ﬂé/gw + 7T(2)/3)A.

Thus, ker(m — W(l)/g) is a free O-module with basis {f;} for i = 1,2,...,8. Consider the
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conditions that F1 satisfying
1y _ B VA N 1 1y _
rank(F) =1, (r—7y")F =0, (F,F)=0.

For any O-algebra R, we can set F! = Z§:1 x; fi € ker(m — 7T(1)/3|AR) for all z; € R. By
(FL,F1Y = 0, we get a quadratic equation Qg = x1xg + Tox7 + 2376 + 2425 = 0. Define a

group scheme @ over Spec(O):
Q ={L e a? ,0f; | Lis locally direct summand of A with rank(L) = 1, (L, L) = 0}.
Then @ is a quadratic hypersurface in P7,, with homogeneous coordinate ring:
S(Q) = Olxy,x9, ..., x8] /(128 + Tox7 + T3TH + T4TH).

Let U; = {fi + > ;2 x;f;} be affine charts in PZQ for i =1,2,...,8. We have IP’ZD = U U
In what follows, we consider affine charts @) N U; in @) and still denote by U; if there is no
confusion.

We have a morphism: M — @ given by {.Fi}izl’g’g — FL. This is an isomorphism
over the generic fiber since Fa, ]:% are determined by ]—"11? by Theorem 8.2.2. It follows that

M — Q factor through the flat closure MSPlt:

Msplit < . M

NS

Here II : MSPt 5 () is a projective morphism since M5Pit — Af is a closed immersion
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and M — @ is projective. We see that II : Msplit ( is also isomorphism in the generic
fiber, since M®Plit @ F' ~ M ® F. Similarly, we have morphisms M — Gr(5,24) and M —
G1(9,24) given by {F'};—1 93 — F2 and {F'};—1 93 — F by rank(F2) = 5, rank(F3) = 9.
We say that F2 (resp. F3) are in some affine chart of the Grassmannian Gr(5,24) (resp.
Gr(9,24)) if the image of {Fi}izl’zg in M — Gr(5,24) (resp. M — Gr(9,24)) is in that
affine chart.

Consider the closed subscheme Z in the special fiber Qs of ), where Z contains all
isotropic lines orthogonal to the para-unit e. In our case, e = e4 + e5 by the Table 2.1, and

l= Z?:l z;m2e; € Qg for all x; € k. By
2 2
(m%e;,e9—j) = m°0;,

it is easy to see that ([,e) = 0 if and only if x4 + x5 = 0. Then Z = V(x4 + x5,7ré/3) C Q.

Let @ be the blow-up of the quadratic hypersurface @ along Z. Let [ = (x4 + x5, Wé/ 3)
be the homogeneous ideal in S(Q)) and Z be the quasi-coherent sheaf associating to I. Then
B := @,>0Z" (where IV = S(Q)) is a homogeneous O-algebra, and Q = ProjB. Our main

result is:
Theorem 8.2.3. The scheme MSPlt g isomorphic to the blow-up @ of Q along Z.
From Theorem 8.2.3, it is easy to get a corollary by considering the blow-up @:

Corollary 8.2.4. The scheme MPlt g reqular and has a special fiber, which is the union

of two smooth irreducible components.
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To prove Theorem 8.2.3, we first show that there is a morphism IT : MsPlit @:

For IT : Mt 5 Q, recall that IT~1(Z) is an H_l(ﬁQ)—module, and IT*(Z) := H_l(I)@)H_l
o vsplit isan O Mspht—algebra, which we call the inverse image of Z under II. By the uni-
versal property of blow-up, there is a unique morphism from MSPIt to @ if IT*(Z) is an
invertible sheaf of ideals on &) )it 1., IT*(Z) is locally principal ideal sheaf on & wsplit-
To prove this, we will check II*(Z)|; is principal for U running through affine charts in
Msplit, Fortunately, we just need to consider some special affine charts. The other affine

charts have similar results. Let R be a local ring over O with maximal ideal m.

Proposition 8.2.5. For any {]:i}izl’g,g e MSPEY(R), if F1 € Ui(R), then F? is either
in the affine chart with leading te’f’mS{’]TZBk,Wel}k:LQ’g’E) or in the affine chart with leading

terms {m2e;}i=1._ 5.

(1) If F? is in the affine chart with leading terms {ﬂzek,ﬂel}kzl,zg’g), then F3 is in the

affine chart with leading terms

2
{7%ei, mej,e1ti=1,..5, j=1,2.3-

Under this affine chart in P7 x Gr(5,24) x Gr(9,24), the corresponding open subscheme

in MSPUY s isomorphic to

1/3
Spec(Olx1, 9, 3, 24, 5, T6, 7, 78, 01/ (21 — 1, Qo, (24 + 75) — 770/ (1 =&)b1)).
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(2) If F2 is in the affine chart with leading terms {7r2ei}i:17._.75, we have F3 is in the

affine chart with leading terms

{r?e;,me1}iz1, s

Under this affine chart in P7 x Gr(5,24) x Gr(9,24), the corresponding open subscheme

in MSPUt s isomorphic to
1/3
Spec(O[x1, w2, ¥3, 14, 5, T6, T7, T8, ka] /(11 — 1, Qo, ka(w4 + 75) — 7To/ (1=9))).

Here Qo = x1x8 + xox7 + 2326 + T4X5.

Proposition 8.2.6. If F! = f4—|—2#4 x;fi, wherex; € m, then F2 isin the affine chart with
leading terms {71'262‘}1':1,47576’7, F3 isin the affine chart with leading terms {mes, 7T2ei}i:1,...,8-
Under this affine chart in PT x Gr(5,24) x Gr(9,24), the corresponding open subscheme in

MSPUt s isomorphic to

1/3
Spec(Olx1, x9, ¥3, 14, T5, 16, 27, 8, ko] /(Qo, w4 — 1, ko (w4 + 25) — WO/ (1-9)),

where Qo = x128 + Tox7 + X376 + T4T5.

The proof of Proposition 8.2.5 and 8.2.6 will show in the following sections §8.3, §8.4,
§8.5. For other affine charts in M5PHt, suppose that F1 = > x;f; with z; € R. If x; € R*
for i # 4,5, then we can transform it to z; € R*, and use the result in Proposition 8.2.5. If
all z; € m for i # 4,5, we get xq4x5 = —(x128+x2w7+2326) € m by the quadratic equation.

Hence at least one of 24, x5 is in m. Without loss of generality, we assume x4 € R*, x5 € m,

111



and that comes to Proposition 8.2.6 (see §8.6 for details). Above all, we just need to consider
affine charts in Proposition 8.2.5 and 8.2.6.

If U ¢ MUt s the affine chart described in Proposition 8.2.5 (1), then we have

1/3
x4+x5:7ro/

(1=&)b1.

1/3

So IT*(Z)|y is the ideal sheaf corresponding to 1O U) =m0 U), which is

Msplit ( AMsplit (

principal. If U ¢ MSPIt ig the affine chart described in Proposition 8.2.5 (2), then we have
1/3 _
m/* = (U= ) Mkl + 25),

So IT*(Z) |y is the ideal sheaf corresponding to ]OMSth(U) = (24 + I5)0Mspht(U). Simi-
larly, if U is the affine chart in Proposition 8.2.6, then IT*(Z)|;; is the ideal sheaf correspond-

ing to (x4 + x5)O U). Therefore, I1*(Z) is locally principal ideal sheaf on & wsplit

Asplit (

and we have a morphism:

EPYC ;)

Proof of Theorem 8.2.3: Since II is of finite type with finite fibers, hence it is quasi-finite.
By Zariski Main Theorem (Corollary 4.7, [17]), we have II is a finite morphism since II is
projective. Meanwhile, we claim that I1 is flat. Since flatness is a local property, we consider
1|7 for some affine chart U. By Proposition 8.2.5 and 8.2.6, we can sce that ﬁMsplit(U) is
a regular local ring, then it is Cohen-Macaulay. Notice that @ is a regular scheme. Both @
and Mt have dimension 7. By Miracle Flatness Theorem (Theorem 23.1, [19]), we get
II is a flat morphism. Since II is finite and flat, we have that I1,& vsplit 19 locally free over

Og. In the generic fiber, both MLt and @ is isomorphic to Q. Thus ﬁn is isomorphism.
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Therefore, 11,0 split is locally free of rank 1 over 0. We obtain IL,0 Asplit = 0, which

implies that II is isomorphism.

8.3 Affine chart U;, part I.

In what follows, we denote by A; the i-th column of a matrix A, and Al the matrix consisting

L]

of the last j rows of A. Likewise, we write A,&-j for the i-th column with last j rows vector
of A. Let R be a local ring with maximal ideal m.

Consider the affine chart Uj(R) = {f1 + > ;4 «;f;} for z; € R. For any point
{fi}i:172’3 € MSpht(R), suppose that F1 € Uj(R), ie., let F1 = R(f; + Zz’;él i fi)

Consider (F1, F1) = 0. Observe that

(Fir foi) = (02 + w2 + 1225,

2/3, 9 . 1/3 2/3

= 3my (77 + w4y )04

Then we have 3%3/3(3:8 + w7 + w336 + 2425) = 0. Since MSPH ig the flat closure of M,

variables z; in MSPIt are satisfied in equation g + xox7 + 2376 + 1475 = 0.

Lemma 8.3.1. For any {fi}izl’g,g e MPUY(R) if FL € U(R), then F? is either in the
affine chart with leading terms {eri, me1}ti—1,2,3,5 or in the affine chart with leading terms

{n?%e;}iz1. 5.

Proof. Since rank(F 2) = 5, we want to find 5 generators of F2, where the leading terms of
generators are chosen from 7T2€Z', me;, ore; (1 =1,...,8). Consider the point .Fg = Fi®k in the

special fiber of the splitting model szlit = MPlit @ We get .7-"81 = k(m2e +Zj7é1 [Ej7T2€j).
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The generators for Ag * Fl are:

7T2€1 — x57r264 + 515677266 + $77T267,

T2eq — x3mley — ramleq — T7TER,
2 2

T“es + x27r2e4 + :v47r267 — rgmes,

7r2€5 — x27r266 + :)337r267 + 3557r268.

By As * F& C F2, it is easy to see that F2 contains elements with leading terms n2ey,
for k = 1,2,3,5. Hence we only need to consider the last generator for F2. We start
with considering the last generator with leading term e; for some i € {1,2,...,8}. Then by
TF2 C FL, we obtain an element with leading term me; in Fl = x(n%e; + D it 33j7T26j),
which is impossible. Next, suppose that the last generator has the leading term me; for some

i€{l1,2,...,8}. Take mweg for instance. We can write the last generator as:

mTeg + Z YT eZ—I—Zyﬂre + Z ykek.

1=4,6,7,8 J#2

By 7F2 C FL, we have

T 62+Zy]7r ej + Z ykﬂek € ]—"é},
J72

which implies yg =0for k=1,..,8 and yg- = y’lxj for j # 1,2, y’lxg = 1. Thus, y’l is
a unit in R. By multiplying xo to the last generator, we can rewrite it as an element with
leading term mwey. Similarly, if the last generator has the leading term me; for some 7 # 1, we
can rewrite it as an element with leading term me;. Namely, J’:Sz is in the affine chart with

leading terms {m2e;, me1}i=1,235, SO is F2.
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Less obvious is the last generator with leading term 72ej, for some k € {4,6,7,8} to be
checked. Take 7T266 for instance. Before examining the conditions in Definition 8.1.1, we
take a look for an equation: Giving ar?e; + bre; + ce; for some a,b,c € R and i € {1, ...,8}.
Suppose:

1 1 2
(m— Wo/gf)(aﬂ'2€i + brej + ce;) = m(nle; + 770/37rei + 7r0/3)
for some m € R. Then we have:

m = —Wé/gga + b,

2/3 1/3
c= 7r0/ g — 7r0/ &m.

So we can rewrite ar2e; + bre; + ce;j as:

2

1 1
ar’e; + bre; + ce; = a(wle; + 7T0/3§7T6i + ﬂ§/3§26i) + m(me; — 7T0/3§2€Z')

— afif + m(me; — 7T(1)/3£26i).

This calculation result is easy to remember: here am?e; + bre; + ce; is separated to 2 parts,
the first part is an eigenvector corresponding to eigenvalue ’/Té/ 35 , the second part satisfying

(m— W(l)/ 3§ )(m— Wé/ 3{ 2)e; = f;. From above discussion, we can rewirite the generators of F2

115



(in the affine chart with leading terms {W2€k}k:172,3,576) as the following form:

Cr= f+anf + a21f§ +ag) f§ + ka[(meq — 75/35261) + > wi(me; — 78/35261)],

i£1
Cy = 5 + arafs + a22f7€ + a32f§ + ko[(mep — 7T(1)/3§2€1) + 521 zi(me; — Wé/gf%i)]v
C3 = fgg + a13f§ + a23f7€ + a33f§ + k3[(mey — Wé/3§261) + El zi(me; — Wé/gf%z')]a
Cy = f§ +agafs + aga f5 + azafs + kal(mey — 75/35261) + g;l zi(me; — Wé/gﬁ%z’)]a
C5 = fg +arsfS + a25f7€ + a35f§ + ks[(mey — W(l)/3§2€1) + El zi(me; — 75/36261')]

3

So that (m—m/*¢)C; € F1 (we have (m— g/ *€)C; = ki fi + i1 w4fy) for some variables

a;j, bi, ki € R. Next, consider A x F L'« F2. Since A x F! is the maximal isotropic subspace
with generators:

I} = wsf§ +a6f§ + arf,

f5 — w3 fy — aaf§ — wrf§,

15 + a2 f5 + wafy — w6,

& —wafS + a3 ft +asfl.

Condition A * F1 ¢ F2? is equivalent to:

s — s fs + a6 S+ arft = C1 + 76Cs,
5 — a3 fs —wafS — wrf§ = Cy — 24Cs,
5+ waff + zafs — w6 f§ = Cs,

o —wafS + a3 ft + 5§ = Cy — 29Cs.
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2

Comparison of coefficients of w2ey, 71'267, m“eg and meq in these equations yields:

all +reals = —r5, a2 — r4a15 = —T3, a13 = T2, a4 — w2015 =0,
al + rgags = x7,  age — wqazs =0, a3 = T4, Q14 — T2a15 = T3, (8.3.2)
a3zl + rgazs = 0, agg — r4a35 = —T7, a33 = —ITG, A14 — L2015 = T5.
and
k1 +xgks =0, ko —a4ks =0, k3=0, kg—x9ks=0. (8.3.3)

So variables in F2 are determined by ais, a95, a3 and ks. Finally, we consider condition

FL < 72, which is equivalent to:

J1+ Z z; fi = C1 + 2202 + 23C3 + 25Cy + 26C5.
i#1

2

Comparison of the coefficients of w2ey, 7r267, m“eg and meq in this equation yields

a1 + x2a12 + r3013 + r5a14 + Tea1s = T4,
a1 + xoa92 + x3a23 + xr5024 + Teags = 7,

(8.3.4)
a3l + rga32 + r3a33 + r5a34 + Tea35 = T§,

k1 + xoko + x3k3 + x5ky + x6ks = 7T(1)/3(1 —£).

From (8.3.3), variables k1, ko, k4 are determined by z; and k5. Replace them back into the

last equation of (8.3.4), we get:
1/3
Toks (14 + v5) = 7To/ (1-¢)

Similarly, from (8.3.2), variables a1y, aq2,a13, a4 are determined by z; and aj5. Replacing
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them back into the first equation of (8.3.4) yields:
(z4 + 25)(z2015 — 1) = 0.

Thus, by multiplying x9ks on both sides to the above equation, we get Wé/g(l — &) (woa15 —
1) = 0. Since MBPIt ig the flat closure of M, we have roais — 1 =0, i.e., ajs is a unit in R.

By multiplying o to the generator C5, we can rewrite C5 as:

1/3 1/3
Cs = f5+ $2f§ + $2a25f7£ + $2a35f§ + xoks[(mer — Wo/ %e1) + Zi# zi(me; — Wo/ %e;)).

In other word, F2 is in the affine chart with leading terms {7r2ei}i:1,273’4,5. Similarly, if we

20g, we can find the coefficient of m2ey

choose the last generator with leading terms m2e7 or 7
in the last generator is also a unit. Thus, we only need to consider the situation where the

affine chart with leading terms {7r2ei}i:172,3,475. O

We consider that F? is in the affine chart with leading terms {7r2ei, me1}i=1,2,3,5 in this
section, and discuss F2 in the affine chart with leading terms {71'262'}1':17_“,5 in the next
section. With respect to the standard order of basis, generators of F 2 can be described as

the column span of a 24 x 5 matrix C' having entries in R and being of the following form:

A B
C —_— A, B/
A// B//

where A8X4,Agx4,Agx4 are M (R)-matrices, and ngl,Béxl,ngl are R-vectors. More
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precisely, we have:

1 0
1 0

1 0 0 0 1

/ / /

a1l a2 aiy ay b ap; oAy b

A= ) B = 9 A/ = ) B/ = )

1 0

asl age a3 a4 ba gy oo ahy b,
agl azy asz asq bs
aq] a42 G43 44 by

For example, the first column C] is represented the first generator of F2:
7 8
Ch = 7T2€1 + a117r2e4 + a217r266 + a317r2e7 + a417r2eg + Z a}lﬂejurl + Z a%lek.
j=1 k=1

We need to check:
(r—mPOF2C FY, AxF'cF Flc R (FLFY) =0

(1). (m —Wé/gf)FQ C FL. We claim that matrices A’, A”, B', B" are determined by A, B
and z;. Calculation for this condition is similar to what we did in the proof of Lemma 8.3.1.

For instance, consider C. We have

8
2/3 1/3 1/3
Cy = (ney — 7T0/ e1) + a11ff + a21f§ + a31f§ + Cl41f§ - 7T0/ €Y wi(me; — Wo/ i),
i—2
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such that (7 — 7T(1)/3§>01 = 1/3 €(f1 4+ X241 @ifi). Generally, the generators of F2 (the

columns Cj; of C') are:

Cy =(n?ey — 7?3/3561) + allff + a21f§ + a31f§ + a41f8 - Wé/gﬁz i(me; — Wo/ e;).
Co =f§ + alsz + azzfg5 + a32f§ + a42f§,
Cs =f§ + aleZC + a23f§ + a33f§ + a43f§7
Cy =f§ + a14f§ + a24f§ + a34f7§ + a44f§,

1/3
Cy =(me — 71'0 5261) + b1f4 + b2f6 + b3f7 + b4f8 + Z i(me; — g 5261)

Let X be a vector (1 29 x3 --- 2g). Denote by (X 00 0) the matrix where the first column

is X and the rest columns are 0. It is easy to see that:

A =allPea—zPex 000),
A= 72324 723X 000),
B =m/%¢B+X,

2/352 1/3§2X

Hence A’, A", B', B"” are determined by A, B and z;.

(2). AxF' c F2. We show that A is determined by B and x;. This condition is
equivalent to:
1§ = a5 f§ + wef§ +arfs = C1 - meCs,
15 — a3 f§ —wafs —a1f§ = Co,
15 +waf§ + waff — a6 f§ = Cs,

f§ - $2f§ +563f$ +$5f§ = Cy,
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2

Comparison of the coefficients of m2e4, m2eg, m2ey yields several identities involving a;j and

b; variables:

ajpg = —x3, aze = —x4, az2 =0, a4 = —w7,
a;3 =x2, a3 =0, a3 = x4, a43 = —T6, (8.3.5)
ajq =0, ag4 = —T2, a34 = X3, 44 = T5,

and

1/3 1/3
ann + iy 2eb = —s5, az + g/ by = w, (8.3.6)
1/3 1/3 -
azl + 7T0/ &by =7, a4+ 7T0/ &by = 0.

(3). F' ¢ F?. We show that B is determined by by and z;. For fi + Z?:Q zifi € F2,

we have the following equation by comparing the coefficients of 72eq, 7w2eq, m2es, T2es, meq:
5 1/3
f1+ szfz =1 4+ 2909 + x3Cs + x5C4 + 7T0/ Cs.
1=2
By (8.3.5), the right side of this equation is equivalent to:

fi+xafo+a3fs+a5f5 + (a1 + Wé/gbﬂff + [(ag1 + 7Té/?’b2) — wo(zg + w3)] £
+ [(az1 + Wé/sb?,) +ag(wg + o5)] f5 + [(ags + Wé/gbzl) + (23 — wyry — w376)] 1S

1/3 1/3 1/3 2
+ (7?0/ — 7r0/ é) Zi:4,6,7,8 xi(ﬂ'ei — 71-0/ ¢ ei).
Compare to the left side, we get:

T4 = aq1 + Wé/Bbl,
1/3
zg = (ag + 7To/ bo) — oy + 75), (3.7)
1/3 o
x7 = (a31 + WO/ b3) + w3(z4 + 25),

1/3
rg = (aq1 + 7r0/ by) + (22 — w7 — 2376).
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Replace a11, a1, as1,aq1 by b; and x; from (8.3.6). Equations (8.3.7) yields:

T4+ a5 = Wé/g(l —§)b1,
Wé/g(l —&)(bg — 22b1) =0,
W(l)/g(l —&)(bg + w3b1) =0,

/31— €)(by + w5by) = 0.

Since MSPIit is the flat closure of M, we see that bo, b3, by are determined by x;, by:
1/3
T4+ x5 =T, (1—=¢&)by, by —ax9by =0, bg+ax3b1 =0, by+a5by =0.
Thus, the generators Cy, Cy, ..., Cs of F? are of the forms:

C1 =(n2e1 — ) *6er) — (w5 + mo b0 I + (w6 — my *Ebo) f5 + (g — my! *ebg) £ — m *ebaf§
— /% 2522 zi(me; — my) *€2e;),

Co =15 —asf] —aaf§ —a1f5,

Cs =[5 + 2o ff +xafs — w6,

Cy =[5 — wof§ +asfs +asf,

1/3 8 1/3
Cs =(me1 — 7T()/ £%e1) + blff + b2f§ + b3f§ + b4f§ + Zi:Z vi(Te; — WO/ %),

where variables b1, ba, b3, by satisfy:
T4 + .ZU5 = Wé/g(l — é.)blv b2 = ;L‘2b1’ b3 — —xgbl7 b4 — _x5b1_ (838)

It is easy to check that C1, ..., C5 already satisty (C;, C;) = 0 for 7, j € {1,2,3,4,5}.
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Lemma 8.3.9. For any {.7-""}1-:172’3 e MPUY(R) if F1 e U1(R), and F? is in the affine

2

chart with leading terms {’/T261,7T 62,7T263,7T265,7T€1}. Then F3 is in the affine chart with

leading terms

{7T26i,7T6j,61} fori=1,..,5j=1,23.

2

Proof. By F? C F3, we have elements with leading terms {m2e1,n2eq, w23, m2es5, meq }.

el £ L2 £ _ 7l 3 -
Since f; + zofg r3f7 +aafg € F x A C F°, we have an element with leafing term

72ey in F3. By rank(]—"g) =9, it reminds to find the other three generators of F3. Set:

ai =f§ - x3ff - x4f6€ - x?fg's,
ag =f55 - 932f§ +933f7g +$5f§,

2 2 2 2
o3 =15 +asfs +asfy —wrfs .

2 2 2 2
g =fi +arf —asff s

Here ap, a9 € A F! and ag,ay € FL % A, so they are elements in F3. Consider a; — a3 +

T3009 + T304:

2 2 2 2
a1 — a3 + w309 + w304 =(f5 — f5 ) — w3(f5 — 15 )+ az(fs — 15) — waws(F5 — f5)

2 2 2 2
2315 — 15 —aq(fS = ) — (wafS +asfS) + walasfs + wafs ).

2 2 2
Since ff — ff , x4ff + x5ff , :1:5fzg + x4ff for i € {1,...,8} are divisible by 7T(1)/3 by:

2
e e S ]

2
waff +asft = (wa+ zs)nle; + my) (wa€ + as€me; + my (24€? + w5)e

2 3 2/3
$5f§+$4f¢g = (1‘4+$5)7T261‘+7T(1)/ (1‘5§+x452)7fez‘+”0/ (2567 + 24€)e;,
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(here we use the equation x4 + x5 = 7T(1)/3<1 — §)b1), we obtain that a1 — ag + r3as + r304
e 1/3 . 1/3 . . .
is divisible by m,"". After dividing m;’", we get an element with leading term weg, withr

nonzero terms 7T2€6, 7T2€8, me; for 1 = 4,5,6,7,8. Similarly, by comparison

15+ wofs + waft — w6 fS,

2 2 2 2
£5 = aafs —asft —wefS
& — waf + w3 fl + a5,

2 2 2 2
£ aafs —asfs +aafl

We have an element with leading term 7es in F3. The last generator is less obvious to find.

Consider (e4 + e5) * (f1 + Xoj21 @ifi) and (f1 + X221 @ifi) * (ea + e5). Set:

Bi=fi+ Y, wifi+wafs+xsfs,

i#1,4,5
Bo=—fr— 3 wift +asfi +aafs,
i#£1,4,5
2 2 2 2
By=— 12— S wift vasfi +aufs
i#£1,4,5
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By using x4 + x5 = Wé/3(1 — &)by, we have:

_|_
5;,—52 = (mep — W(l)/3§2€1) + by (m2ey + wles) + (w4 + W(l)/3§b1)7T64 — (74 — 7T8/351)7”35
o (1-¢)
+ S wime; — my 2 Per) — my A Ps — w200 ea + my P (s + 7y Pbi)es,
i£1 4,5
+
B St = (mey1 — ﬂé/?’fel) — b1§(7r2e4 + 77265) + (x4 — Wé/3b1)77'64 — (zq4 + Wé/gfbl)ﬂ%

/31— €2)

+ S ailme; —myYee) — myH(gwa + g Pb0)en + my P (gws — my Pebr)es.
i#1,4,5

Consider

bi+b P+ D53 +b162(ag + ay).

Pa-g  xa-e

We can check that every part in the above equation is divisible by 71'(1)/ 3, and after dividing
Wé/ 3, we get an element with leading terms e; in F3. Above all, we have an affine chart

with leading terms {7r2ei,7rej,el} fori=1,2,...,5,7=1,2,3. O

Now we consider conditions of variables in this affine chart for F3. With respect to the

standard order of basis, the form F? is represented by the matrix D:

I 0 0
v v W
0 I 0
D p—
U/ V/ W/
0 O 1
U/I V// Wl/
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where U3><5,U£X5,Ué’x5,V3X3,VgX3,V7”X3 are M (R)-matrices, and W3><17WE/>><17W§/><1 are
R-vectors. More precisely, if we set U; (resp. UZ( , UZ(’ , Vi, VZ , VZ-” ) the i-th column for U
(resp. U', U", V., V', V"), then the generators of F3, which is the columns D; of the matrix

D, are of the following forms:

3 5 7
D; = 7T2€Z' + Z Uji7T2€j_|_5 + Z u%iﬂek_% + Z uggeHl, for 1 <7 <5,
j=1 k=1 =1
3 ) 7
D 5 =me; + Z UjiW26j+5 + Z vfﬂ-wem_g + Z U;;eH_l, for 1 <i <3,
j=1 k=1 =1
3 5 7
Dg =e1 + Z U)j7T2€j+5 + Z U);CT('B]H_Q, + ng'elﬂ.
j=1 k=1 =1

Conditions that we need to check are:
Flanc P, FPcF, (m-nPFcr (FLF)=o
(1). FL« A c F3. By Table 2.1, the generators of F! A are:

2 2 2 2
£ =g fs S +anft
2 2 2 2
f5 + a3t v asfs —wrfl
2 2 2 2
£ —aafs —asft —aefS

2 2 2 2
ff +$2fg —(E3f75 +x4f§.
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Then the condition F! « A c F3 is equivalent to:

2 2 2 2 1/3 2/3
£ —aafs v aefS +arft =D+ 22Dg + 72/ 3¢ Dy — 24D,

2 2 2 2 1/3
f§ +$3f5§ +I‘5f§ —937f§ =D2+7T0/ ¢2D7 + 23D, (8:3.10)
¢2 ¢2 £2 €2 1/3 .9 -
I3 —wxofs —asf; —wefg = Dg+my "§°Dg —x9Ds,

2 2 2 2
£+ wafs —asft +aaff =Dy

Before moving on to the calculation, let us take a look at the matrix that represents F1 « A.

Set:
1
1
1
1
K =

—r4 x3 —x2 0
T  Ts 0 9
7 0 —x5 —x3
0 —x7 —xg x4

Recall that we denote by K 7] the matrix consisting of the last j rows of K. With respect

to the standard order of basis, F1 % A is represented by the matrix:

K
1 _ 1/3
Frx A= WO/SQK

3¢k
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Thus, by comparison of the coefficients of 72eg, T2e7, m2eg in (8.3.10), we obtain:

Uy + 70362V 4 723w — oyUs = K Uy + 7362 4 2305 = K,

(8.3.11)
Us + mo/ 2€2Vs — aolUs = K, Uy = K7,
By comparison of the coefficients of me; for j =4,5,6,7,8 in (8.3.10), we obtain:
Ul + miBe2vi 4 72Bew — oyUt = x}3e2 kP,
Uy +my 262V + w3t = my P2k,
(8.3.12)
UL+ )/ 3£2V3 :c2Ug /32 P
By comparison of the coefficients of e for k = 2, ..., 8 in (8.3.10), we obtain:
U{'—{— 1/352‘/1// —|—7T§/3€W” _ ZL‘4U” 2/3§K1 7
Ué’ 1/352 i ng// 2/35[(2 ’
(8.3.13)

1/3 2/3
l/ /52 $2U5 /§K

U// — 2/3€K

(2). F2 c F3. We show that U, V] (resp. U, v/, 0", V') are determined by V3, V3, W

(resp. V2’,V3',W’, V' VI W) and ;. Since F2 = R(C4, ..., Cs), condition F? C F3 comes
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to:

Cy = Dy — /%Dy — (w5 + my/ 3eb1) Dy — 7/ *ewa Dy — 7/ 3easDg,

Co =Dy + Wé/3§D7 — x3Dy,

Cs = D3 + m/ %¢Dg + 25Dy, (8.3.14)
Cy = Ds,

Cs = Dg — Wé/3§2D9 + b1 Dy + x9D7 4 x3D3.

Analogously to F! « A C F3, we compare the coefficients of (8.3.14). This has to be
done carefully since the blocks of the matrix C are of different sizes. Recall that we set
X = (19 --- 28)T. By comparison of the coefficients of w2eg, m2e7, m2eg in (8.3.14), we

obtain:

2/3 1/3 1/3 1/3 3
U1 - 7To/ §W — (x5 +7T0/ §b1)Us — Wo/ {xgVo — Wo/ fxgVy = A[l !

Uy + 70 eV — wgUy = AS)

Us + 7o/ 2€Vs + oy = AS) (8.3.15)
Uy = A9,
3

Vi—m £2W+61U4+x2V2+x3V3:B[3],
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By comparison of the coefficients of 7e; for j =4,5,6,7,8 in (8.3.14), we obtain:

Ul — w23ew! — (w5 + i Peb)) U, — mi PewaVi — mt Bgwgv] = ni/Peal —
Ué 1/36‘/2 U!l _ 1/3§A2 ’

U+ mo 3eVd + 2ol = it/ Pe Al

UL = 1/3§A4 |

V! — mtBE2W 1 by U + 29V + 23V = mt 3¢ BB 4 X151,

By comparison of the coefficients of e for k = 2,...,8 in (8.3.14), we obtain:

Uy —

/l

//

" __
Us =

"
Vi —

Consider Equations (8.3.11) and (8.3.15).

ur 3€W” — (x5 + ﬂé/gfbl) — 7TO fx — 7T(1)/3€$3V3” 2/3§2A
mo*eVy! — asUy = m/*e2all),
1/3§ 4 ol = 2/352143 |
2/3€2A4 7
ro SERW 4y U + woVy + a3V = mo 2e2BlT — 2232 x (7,

1/3§X

(8.3.16)

2/3X[7]

bl

(8.3.17)

Equations in (8.3.11) show that Uy, Us, Us, Uy

are determined by the matrix V' = (V] V5 V3), the vector W, and the last two equa-

tions in (8.3.15) show that Uy, V] are determined by V5, V3, W. Put the expression U =
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(Uy Ug Us Uy Us) and Vq back into the first 3 equations in (8.3.15). We get:

—(xq + x5) 0
ro/ 21— )Va = 0 CnlPea—ovs=|  ate |
r3(xq + 25) —x9(x4 + x5)
0

2/3 2/3

2
bl

It is easy to see that V5, V3, W are determined by variables z; and by: Since x4 + x5 =

Wé/3(1 — £)b1, we obtain

—by 0 0
Vy = &2 0 , Vy=¢2 by , W=¢&| o
23b —z9by b2

1

We can perform similar calculations for (8.3.12) and (8.3.16), and get:

—1
-3 0
3 3
Vo= —zoz3— (24 + 7(1)/3551) Vg = ”3/3 —r3 ;
x% rowy — (x5 + W(l)/3£b1)
—x7 + x3(z5 + Wé/3§b1) —x%
z3(z4 + ﬂé/gébl) + 27
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W/ — _§2

terms:

)
7

1/3
—x9x3 + (T4 + FO/ £by)

1/3
—x6 — 2(T5 + 7r0/ £b)

—&by

2y

—biz3

1/3
by — Emy *b2

bl[L‘Q )

V=

Wl/ —

equations of variables in this affine chart are:

1/3
70

)
r3
T4
5
6

7

o

8

0
—1
a4
)
a2
rox3 + (75 + W(l)/gé’bl)

1/3
—xo(Tg + 7T0/ &b1) + zg

0
0
—&by

o’ e

52
b1wa

—b1x3

1
by + w82

Above all, all matrices U, U’ U",V, V', V" and vectors W, W', W' are determined by x;, b;.

We can check that (m — Wé/3§2)}"3 C F2,(F3,F3) = 0 are already satisfied. Therefore, the

Proposition 8.3.18. Consider the affine chart in P7 x Gr(5,24) x Gr(9, 24) with the leading

{r?e1} x {m2ex, me1}po1235 X {m2€i, Tej, €1 iml,.. 5 j=1,2,3
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Under this affine chart, the corresponding open subscheme in MPlt g isomorphic to

1/3
O[[El,IQ,1'3,IE4,.I'5,ZEG,LE?,I’S,bl]/(ml - 17Q07 (134 + .ZU5) - 7T0/ (1 - €)b1)7

where Qo = 128 + xox7 + T3x6 + T475. Hence it is smooth.

8.4 Affine chart U;, part 11

We continue discuss the affine chart U;. By Lemma 8.3.1, for any {Fi}izl’zg e MSPlt(R).
if F1 € U1(R), then F? is either in the affine chart with leading terms {7r%ey, T} k=1,2,35;
or in the affine chart with leading terms {71'262'}@':1,“.,5. In §8.3, we considered F2 in the
first case. Now we consider the second case, where F? is in affine chart with leading terms
{r?ei}iz1,..5

With respect to the standard order of basis, the generators of F2 are represented by the

columns of a matrix C, where

I5x5
A
. ary---ais
C=1 4 |, with A=
azi - as
A/l
a31---ags

Here A, A", A” are 8 x 5 matrices in M(R). We can perform similar calculations as in §8.3.
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Consider the generators of F2 are of the following forms by (7 — Wé/ 35 )F2 c Fl.

S anfé + Cl21f7€ + a31f§ + k[(mey — 7T(1)/3§2€1) + gé:l zi(me; — W(l)/gf%i)]v
Cy = 5+ a12f§ + a22f7€ + a32f§ + ko[(me1 — 78/35261) + El zi(me; — Wé/gf%z')]a
C3 = f§ + a13f§ +ag3 f5 + aga f§ + kal(mer — 75/35261) + Z_; zi(me; — Wé/?’ﬁ?ez’)],
Cy= 15+ a14f§ + a24f7€ + a34f§ + kg[(mey — 7r8/36261) + El zi(me; — 75/36261')]7
Cs = f5 + arsfs + ags f2 + ags f§ + ks(mer — Wé/3§261) + Z;l vi(me; — Wé/gf%z')]a

with variables k; € R for j = 1,...,5. The description of columns Cj; implies that A’, A”
are determined by the variables in matrix A and z;, k;. More precisely, recall that we set
X =y - 28)T. Denote by (k1 X koX k3X k4X k5X) the 8 x 5 matrix where the i-th

column is k; X. Then we have:

A = b BEA 4+ (kX ko X ks X kyX k5X),

A" = 72324~ 7l B2l X kX kg X kyX ks X).

We still need to check:
AxFlcr? Flcr? (FRLFH=o.

(1). AxF! ¢ F2. We show that a;;j are determined by a14, a4, a4, v;, and kq, ko, k3, ks
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variables are determined by k9, ;. This condition is equivalent to:

f1§ - $5f§ +$6f6£ +5L’7f$ = C1 — w504,
5 — w3 fs — waf§ — wpf§ = Cy — w30y,
£S5+ aafs + aafs — w65 = O3+ 220y,

o —aafS +asft +asf§ = Cs,

by comparison of the coefficients of 72e, for k = 1,...,5. Then we get:

a1 — Tha14 = Te, Q12 —X3014 = —T4, Q13+ 22014 = 0, als = —72,
a1 — L5024 = X7, 22 — T30424 = 0, a93 + T2a94 = T4, ais = I3, (841)
a3y — xsaz4 =0, a3z — x3a34 = —T7, G33 + T2034 = —TG, 15 = T5.
and
ki1 —x5ky =0, ko —x3ky =0, k3+ax9ky=0, k5=0. (8.4.2)

when we compare the coefficients of 7T2€k for k = 6,7,8, and the coefficient of 7e;.
(2). F! ¢ F2. We show that a4, asq, asy are determined by ;. For this purpose, we

consider the equation:

Ji+ szfz = C1 + 2209 + 2303 + 24Cy + 5C5,
i1

obtained from the comparison of 7T26k for k=1,2,3,4,5. Since f; = ff + 7r(1)

B —)(me; -
Wé/3£2€i), we get

a;1 + 2050 + 30,3 + v4a54 + 5055 = Tiys, (8.4.3)
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ki + woky + wsks + z4ky + w5ks = 7 S(1— €), (8.4.4)
for i = 1,2,3. Combining (8.4.1)-(8.4.3) yields the following equations:

ky(ry +25) = Wé/?)(l — &),

(24 + 25)(a14 — 22) =0,
(8.4.5)
(x4 + x5)(agq + 23) = 0,

(24 + 25)(ags + 25) = 0.

By multiplying k4 on both sides of the last 3 equations in (8.4.5) and using k4(z4 + z5) =
wé/?)(l —§), we get ajy = x9, agy = —x3,a34 = —x5. Thus, all variables are determined by
z; and ky. We can check (C;,C;) = 0 for all 4, j € {1,2,3,4,5}, hence (F2,F2) = 0. We

rewrite the generators of F2 (the columns of the matrix C) as the following forms:

Cq = ff + (w6 + :U2$5)f§ + (27 — £C3$5)f7£ - x%fgf + ki[(meq — W(l)/3€261)

+ ) wi(me; — W(1)/3€26i)]
i1
Cy = f§ + (—xq4 + $2$3)f§ - $§f§ — (z7 + £U3$5)f§ + ka[(mep — 73/35261)
+ ) wi(me; — W(l)/3€2€z')]
i1
C3 = f§ — x%fé + (74 + :U2563)f§ + (—z6 + :172565),7"8f + k3[(me1 — Wé/gf%l)
+ ) wi(me; — Wé/gf%i)]
i1

Cy = ff + 562f§ - 563f$ - x5f§ + ky[(mer — Wé/3§261) + ) wi(me; — Wé/gf%i)]
i1

Cs = [5 — oo fS + a3 /5 + 2515,
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with

1/3
ka(eg+25) =72 (1= €), ki =ashy, hy=agks, ks = —why. (8.4.6)

Lemma 8.4.7. For any {.7-"2.}1-2172’3 e M®UY(R) if F1 e U1(R), and F? is in the affine

chart with leading terms {7T2€i}2':17__,5. Then F3 is in the affine chart with leading terms

{r%e;,me1}iz1, 8-

Proof. This proof is similar to the proof of Lemma 8.3.9. The difference is that we do not
1/3

assume 4+ is divisible by 7y’ ~ anymore. From the discussion of F 2 as above, we have the

equation ky(xg+x5) = ﬂé/g(l—f). By F2 ¢ F3, we know that F3 has elements with leading
terms m2e; for i = 1,2,3,4,5. Analogous to Lemma 8.3.9, we consider aj — ag + x309 + 2304

where

ap =f5 — w3 fs — waf — arfS,
ay =5 — wofs + w3 fs + 5SS,

2 2 2 2
a3 =f5 +asfl +asfs —wrfs

2 2 2 2
ay =5 +aofS —asfs +aafs
are elements in F2. Since

2 2 2 2
a1 — a3 + w309 + w300 =(f5 — f5 ) — w3(f5 — 15 )+ az(fs — 157) — waws(F5 — 15

2 2 2 2
315 — 15 —ag(fS = £$) — (waf§ + s fS ) + ws(asfS + xafs ),
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€ L2 1/3 e 1/3
and fp — f7 s divisible by 7,"". We have ky(a1 — a3 + r3as + r304) is divisible by m;"".

More precisely,

k _
glar — a3 +x3a +x304) r2eg — 3+
1/3
o (1-9)

je2.a5.0,78WimC HYjE)

2

for some y;, yg- € R. Thus, we have an element with leading term 7w2eg in F3. Similarly,

consider the linear combination of

15 + oo fs + waft — w6 fS,

2 2 2 2
£ —wafs —asfs — el
o — xS + a3 fs + w58,

2 2 2 2
£+ aafs —asfs +aafl

We can get an element in F: 7T267—1327'(2684-2]':3’4,576’7’8(Zjﬂ6j+2§€j) for some z;, Z; € R.
So we have an element with leading term m2e7. Next, we claim that there are elements with

leading terms me; and m2eg in F3. Recall that we set:

BL=f1+ Y. wifi+wafs+asfs,

i#1,4,5
Bo=— 12— N wift +asfi +aafs,
i#1,4,5
2 2 2 2
By=—fr = 3 aft vasfl vaafl
i#£1,4,5

They are elements in F3 by (eates)x(f1+D 541 %ifi) € F3and (S22 wifi)x(eates) €
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F3. Consider —fy + (B3. We obtain:

Wé/?’g(l 5)[(7‘(‘61—7‘(‘0 61 +Zg7é145 71'6Z 77-8/3@2-)—:E5(7T64—7T(1)/3@4)—x4(71'€5—7ré/3e5)].

1/3

It is divisible by 7,’". Then we have an element with leading term me; in F3. Finally, by

using kyq(xg4 + x5) = 7r0/ (1 =¢), we have:

k4(B1 + B2)
o2 (1 €)

2 1/3)

1/3 1/3
eq + m2e5) + ka[(mer — 7r0/ %eq) — (kaws — 7, /3

= (m mey — (kywy — my' " )mes

1/3 1/3 1/3 1/3 1/3
+ E x;(me; — 7r0/ 5262')] + 7TO/ (§2k4x5 + 7TO/ Jeq + 7T0/ (§2k4x4 + 7T0/ )es,
i#1,4,5

ka(B1+B3) _

_g(n%ey + wles) + kyl(mey — m Sger) — (huws + w2 mey — (kywy + 7 2€)mes
/301 - €2)

+ 3 ailme; —my Yeen) + my P (ehaws — my *€)es + iy (Ehawa — ) *6)es.
i#1,4,5

Since

k41</§1 ) kil/<3ﬂ1 o +£%(ag+ay) = 52(x4+335)ﬂ2€8+7fé/3( > rmeit D> rher).
S j=4,5,6,7,8 k=1,...,.8

for some r;, 7";6 € R. Therefore, we can multiply k4 on both sides and get an element with

leading term 7r268 in 3. Above all, we see that F3 is in the affine chart with leading terms

{n2e;,me1}iz1...s- O

With respect to the standard order of basis, the generators of F 3 are described as the
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columns span of the 24 x 9 matrix D. Here D is of the following form:

I 0
Q |-
P/ Ql

where Pgys, PS/ «g are matrices, and Qgx1, Qéxl are vectors. More precisely, we have

T
P = , Q=1¢293 919596 g7 @’)"
pij 2<<8, 1558

and P’ = (pgjhgi,jg& Q = (¢} - qé)T. Recall that we use P; (resp. P!) to denote the
i-th column of the matrix P (resp. P’). Thus, the generators of JF 3 (resp. the columns of

D) are:

8
_ 2. E o E /
Dz’ =7r"e; + j£1 PjiTe; + k=1 D€k

8
Dg =me; + Zj;él q;me; + Zk:l q1.Ck>

forv=1,2,...,8. We need to check:

Flsnc F3, FrPcrs, (FLF)=o.

140



(1). FL« A ¢ F3. Recall that we defined the matrix K as:

1
1
1
1
K —
—r4 x3 —x2 0
Tg 5 0 9
T 0 —x5 —x3
0 —z7 —x6 w4

in §8.3. With respect to the standard order of basis, F1 % A is represented by the matrix:

K
1 _ 1/3
FrxN= 7r0/§2K

78/35}(

We perform similar calculations as what we did in §8.3, but have different leading terms this

time. Condition F! % A C F3 is equivalent to:

2 2 2 2 1/3
£ —aafS 4 aefS +arfS =Dy —ayDs+ 26Dg + 2707 + iy 262Dy,
¢2 ¢2 ¢2 ¢2
Is t+ax3fz tasfs —xrf3 = Do+ a3D5+ x5D6 — x7D5, (8.4.8)
2 2 2 2 o
5 —aafs —asfS —a6fS = D3 — 9D — w5Dy — w6Ds,

&2 & ¢ ¢2
f4 + x2f6 — :L’3f7 + :L’4f8 = Dy +x9Dg — x3D7 + x4 D5.
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By comparison of the coefficients of mwe; for i = 2,...,8 in (8.4.8), we obtain:

Py — x4 P5+ 26 FPg + x7P7 + Wé/gsz = 7T(1)/3§2K1,

Py + x3P5 4+ x5P5 — x7Ps = Wé/3§2K2,

(8.4.9)
1/3 2
Py —x9P5 — x5 Pr — 163 = my’ "{7 K33,
_ - 1/3.2
Py+ x9Ps — x3P7 + x4 Py = my' "7 Ky.
Similarly, comparing coefficients of e; for ¢+ = 1, ..., 8 yields to:
Pl — 24Pl + 26 P} + w7 Pl+ i 32Q) = n23¢k,
Pl + a3P! + a5P! — a7 P, = 12/ €K,
2 ° 0 500 (8.4.10)

2/3
P} — 29Pl — a5 Pl — 2P} = o ¢ K,

2
P+ 39P} — o3Pl + 24P} = 72 3¢ K.

(2). F2 c F3. We just need to check that the generators of F? are elements in F5.

Compare coefficients of me; and 7T2€i for i = 1,...,8. This condition is equivalent to:

Cy = Dy + (w6 + 2225) Dg + (7 — 2325) D7 — 23 Dg + (W(l)/gé’ + k1) Dy,
Cy = Dy + (=24 + w913) Dg — 23D7 — (w7 + w305) Dg + ko Dy,

C3 = D3 — 23Dg + (14 + x923) D7 + (—26 + 925) D + k3 Dy,

Cy = Dy + x9Dg — x3D7 — x5Dg + kg Dy,

Cs = Dy — x9Dg + v3D7 + x5Dsg,
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where k1 = x5ky, ko = x3ky, k3 = —x9ky. Recall that the matrix C' is of the form

I5xs
A
aiy---ais
C=1 A" |, where A= ,
agl - azs
A//
agy - ass

and A’, A" are determined by A:

A = mdPEA + (k1 X ko X ksX kyX 0),

A" = 72324 — B2 () X kX ks X kyX 0),

for X = (1xg --- xg)T. Then by comaprison of coefficients of we; and e;, we get:

Py + (6 + w925) Ps + (w7 — a325) Pr — 23 Pg + (Wé/gé +k1)Q = Wé/g&h + k1 X,
Py + (—24 + 29w3) Ps — 23P7 — (w7 + w375) P + ko Q = my "€ Ag + kX,

P3 — 33 Ps + (24 + 2923) Pr + (—26 + 2975) Ps + k3Q = Wé/ngg + k3 X,

Py + 2pPs — a3Pr — 5Py + kaQ =y *EA4 + kX,

Py — x9Ps 4+ x3P7 + x5 PR = 78/35145
(8.4.11)
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and

1/3 2/3 1/3
Pll + (zg + x2x5)Pé + (27 — {L’3335)P/ — $5P8 ( / E+ k )Q = 7T0/ 52141 — 7r0/ f2k‘1X,

Pé + (—z4 + xzxg)Pé - $§P§ — (z7 4+ I3x5)Pé +koQ' = 7T0 §2A2

2/3
Py — x5 P§ + (w4 + ow3) P} + (=6 + 975) Py + k3Q' = Wo/ ¢ A3 —

Pi + xQPé — ng% — x5Pé + k4Ql = 7T(2)/352A4 — 71'8/362/64)(,

2/3

Pé — :L’QPé + Z‘3P§ + $5Pé = §2A5

— rt ey X,

ro/3¢2kg X,

(8.4.12)

It is easy to see that P; (resp. PZ-’) for i = 1,...,5 are determined by Fg, P7, Pg, @ (resp.

Py, P}, P, Q') from Equations (8.4.11), (8.4.12). Represent P; by linear combinations of

Py, P7, Pg, Q (resp. Pé, Pé, Pé, Q"), and put them back to equation (8.4.9)-(8.4.10). We get:

1/3 1/3
—(w4 +25) P + koQ — ko X = 7r0/ §(Ag + x345) — Wo/ ¢2Ks,

1/3 1/3
(w4 +25)Pr + k3Q — k3 X = Wo/ §(Az — 2945) — Wo/ ¢2Ks,

1/3 1/3
— (4 +25) PR + kyQ — kg X = 7r0/ §A4 — 7T0/ ¢2Ky,

and

(8.4.13)

(374+5U5)<372P6—373P7—555P8)+k1Q+7T0/ §(1-6)Q— k1X—7Tg/ §(A1—x4A5)— /3§2K1-

(8.4.14)

Compare equation (8.4.13) and (8.4.14). We can eliminate Py, P7, Pg and get a equation

with variables ) and x;:

1/3 1/3
70 7o

§1-6)Q =

144

E(1—&)(1 a9 23 — x5 — 14 76 27 8)



Thus, @ is determined by x;. We have ¢; = z; for ¢ # 4,5 and q4 = —x5, q5 = —x4. Since
Q—X=—(z4+x5)(00011000)T

Put @ back into equation (8.4.13). By multiplying k4 on both sides, we can see that Pg, Py, Py

are determined by ky, z; since kq(zy + x5) = ’/Té/ 3(1 —¢). Similar calculation for Pi’ Q. We

obtain that Pé, Pé, Pé are determined by @', x;, k4, and
1/3 T
Q' = —WO/ (1 g 23 — a5 — x4 76 T7 78)" .

Therefore, we have:

Proposition 8.4.15. Consider the affine chart with leading terms

{r?er} x {mepbpmr.. 5 ¥ {mej me1tic1 2, 8.

in P7 x Gr(24,5) x Gr(24,9). Under this affine chart, the corresponding open subscheme in
MEPUE s isomorphic to
1/3

O[fEl,JfQ,$3,$4,$5,$6,$7,(E8, k}4]/(171 - 17Q07 ]{}4(1’4 + ZE5) - Tr() (1 - 5))

where Qg = 128 + xoT7 + T3xG + T4T5.
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8.5 Affine chart U,

For other affine charts U; = {f; +>_;;%;f;} C Q, suppose that Fl e Uj(R). Ifi # 4,5,
we can get similar results as in §8.3, §8.4. Consider ¢ = 4. We can assume that all z;
(i # 4,5) are in the maximal ideal m (if z; € R* for some i # 4,5, we rewrite F' and
consider F1 € U;(R)). By Qg = 0, we have x5 = — (128 + xox7 +x32¢) € m. So all z; € m.

We have the following lemma:

Lemma 8.5.1. If F1 = f;, + 2#4 z; fi, where x; € m, then F2 is in the affine chart with

leading terms {71'261‘}2‘:1,4’5,6’7, F3 isin the affine chart with leading terms {mes, 7T26i}i:17m78.
Proof. In the special fiber, we get FI = r(n2ey). Since Ag x Fl = K<W2€i>i:1’5’677, it
is easy to see that .7-"82 = I{<7T26i>i:17475’6,7 . So F? is in the affine chart with leading
terms {7‘(’262'}2':1747576’7. Similarly, we get Fj x As = l€<7'['2€j>j:2’3’578, hence n2e; € F3

for i = 1,...,8. For the last generator in F3. Consider (e4 + e5) * (f1 + >i+a%ifi) and

(fa+ Zi7,g4 x; fi) + (eq + e5). We obtain:

2 2 2
f§ — 2i#45 Scz'ff + 255, f§ — i3 f’f’iff +asfy

are elements in F3. Subtracting them gives us:

mo/ (€ — E2)(mes —my Pes) = S wilme; — my! Pes) + ws(meq — my Sey).
i#4.5

Thus we have

1/3 1/3 1/3
(res — 7T0/ e5) — Z x;(me; — 7T0/ ;) + x5(meq — 7r0/ e4) € F3.

i#4,5
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2

Hence mes € ]-"g’. Therefore, we obtain F3 = k(m“e;, Tes)i—1 .8, and F3 is in the affine

chart with leading terms {7T2€Z', me5}i=1.2,...8- ]

For F2, with respect to the standard order of basis, we again use the columns of matrix

C representing the generators of F2, i.e.,

/ / 1 1 :
where Ag, = (aij)1§i§8,1§j§57A8x5 = (%’j)lgig&lgjg& are M (R)-matrices, and

ailp ai2 ai3 ai4 ais
a1 a2 a3 a4 agzs

1

a3l az2 az3 az4 ass

The conditions for F? are:
(r—m P F2 c Fl, AxFlcFL FlcrF, (FLFY =0
(1). (m— ﬂé/ 35 )F2 c FL. We can perform similar calculations as in the proof of Lemma
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8.3.1. We omit calculations here and give the results as follows:

C1 = ff'+’@111§>+’a21f§ +’a311§-*-kd[CW€4 _’78/35264)‘+’§:i¢4;fi(76i’_'Wé/3§2€i”7
Cy ==f§‘+-a12f§-+-a22f§ +—a32f§ + kao[(mey _'73/35264)'+'§:t¢43%(76i‘_ Wé/gﬁzeiﬂ,
(Es==f§-+(u3f§-%aa3f§*—a33f§*—k3KW€4-—ﬂé/3§264)+-§:¢¢43%(W€i-ﬂé/3ézeﬂh
Cy = fg + CL14f§ + a24f§ + a34f§ + ky[(meq — W(l)/3€264) + D iza wi(me; — 7%/35261,)]7

Cs ==fg-Fal5ﬁ§*—a25f§*—a35ﬁ§*—k5KW€4-—ﬂé/3§264)+-§:¢¢43%(W€i—-ﬂé/35260]

for ki,...,ks € R. Thus, it is easy to see that A’, A” are determined by A and k;. Set
Y = (x1 @9 23 1 x5 26 27 x3)L. Denote by (k1Y koY k3Y k4Y ksY) the 8 x 5 matrix where

the i-th column is k;Y. We get:

A =l BEA+ (kY koY kY kgY ksY),

1/3 1/3

A = A -1 (k1Y koY k3Y kqY ksY).

(2). A F' < F?2. We show that A is determined by its 2nd column, i.e., by variables

a12,a292, a3z and z;. This condition is equivalent to:

f5 + w6 fs — arfS +asfs = C1 + x3Ca,
f§ = wafs —wsfy —asf{ = C
& — w15 + x3fs + w7 f§ = Cy + 2300,

841 S+ wof — w6 S5 = Cs + w90,
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by comparison of coefficients of 72e;. Then we get

ail +xgalg = xg, a1 +wxgazy = —x7, az] + rgagz =0,

a13 = —I9, a3 = —3, a3z = —Is,
(8.5.2)
ai4 + x3a12 = —r1, ay +xzaz =0, a34 + x3a32 = x7,
ais + xga12 =0, ags + Toagr = 1,  a35 + r2a32 = —Tg.
and
k1 +xgko =0, k3=0, kg+ax3ko=0, Fk5+ x2ko=0. (8.5.3)

Thus, A is determined by a2, a92,a39 and x;.
(3). F1 ¢ F2. We show that a19, agy, ass variables are determined by ;. This condition

is equivalent to:

fa+ Z z;fi = v1C1 + Co + 2503 + 26Cy + 27C7.
i#4
By using xjzg + w97 + w3716 + 25 = 0 and (8.5.2), we have

(1+w5)(a12 —x2) =0, (1+a5)(agg —x3) =0, (1+z5)(aza —2g) =0,  (8.5.4)

and

x1k1 + v5ks + xgky + x7ks + ko = Wé/g(l —§). (8.5.5)

By (8.5.3), the equation (8.5.5) comes to

(1+25)ky = w2 (1 - €). (8.5.6)
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Hence we obtain a9 = x9,a99 = 73, a3 = xg by multiplying k9 on both sides of equations
in (8.5.4). Thus, the variables in F 2 are only determined by k9 and z;. We can check the

isotropic condition (F2, F?) = 0 are already satisfied, so the columns of C' are:

Cp =f% + (6 — x8962)f§E — (w7 + I8$3)f§ - x%fé — wgho|(meq — Wé/3€264)

+ ) wi(me; — ry *€%e;)],
i#4

Co =15 + waf§ + a3 f§ + ws f + kal(mes — my *eq) + S wi(me; — my * ey,
i#4

Cs =f5 —afs — a3 f§ — asfS,
1/3
Cy =f§ — (21 + x3m0) f5 — x%féf + (27 — 333$8)f§ — x3ks|(meq — Wo/ %ey)

+ ) wi(me; — ry *€%e;)],
i#4

1/3
Cs =f§ - I%fg + (21 — $2I3)f§ — (w6 + Jizfcs)fg — x9kol(Tey — Wo/ %ey)
1/3
+ ) wi(me; — ry *€%e;)],
i#4
. 1/3
with ko(1 +25) = 7y’ (1 = ), and w128 + 297 + 2326 + 25 = 0.
Now we consider F3 in the affine chart {ﬂ'QGZ', me5}i=1,2,...8- The conditions for F3 are:

Flahc P, PP, m-nlPdrcr (B F)=o

With respect to the standard order of basis, the generators of F3 are represented by the
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columns of the matrix D. Here D has the form:

I 0
D= M N
M N’

where Mgy s, Méx g are matrices, and Ngx1, Néxl are vectors. More precisely, we have

mij 1<i<4, 1<j<8

M= 0 ... 0 ., N = (ny ng n3 nyg 1 ng nyng)?,

Mij 6<i<8, 1<j<8

and M’ = (m;j)lgi’jgg, N' = (n} nb - ng)T We use M; (resp. M) to denote the i-th

column for the matrix M (resp. M’). Thus, the generators of F3 are:

8
2 !
D; =n“e; + Zj;éS mg;me; + Zk:l M€k,

8 /
Dg =mes + 23#5 n;me; + Zk‘zl NEeL,

fori=1,2,...,8.

(1). FL« A € F3. The generators of F' % A are

2 2 2 2
15+ asfs +arfy —asf
2 2 2 2
5 —waft +agfs +asfs
2 2 2 2
=t —aefS —wrfs

2 2 2 2
o fs +aafs —asfs
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So Flx A c F3 is equivalent to:

€2 €2 €2 £2
I3 +a3f7 tarfy —asfe = Do+ x3D1 + x7Dy — 28D,
£2 £2 £2 £2
J3 —xafy +wef; +asfy = Dg—xoD1+ x6D4 + x8D7, 85.7)
£2 £2 ¢2 ¢2 1/3 .9 -
e —xify —wefg —arf; = Ds—x1D1 —a¢Dg — w7D7 + w1y "7 Dy,

£ €2 €2 2
I3 txify +aof —a3f; =Dg+a1Dy+x9Dg — x3D7.

Set the matrix S:

0 rg —x7 —x3

We can rewrite FL * A as the matrix:

S
FlaA= 7r3)/?’525

W§/3§S

Recall that S; is the i-th column in the matrix S. By comparison of coefficients of me; in
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(8.5.7), we obtain:

Mo + x5 M1 + x7 My — xgMg = Wé/?)fzsl,

Ms — xo My + xgMy + xgM7 = ﬂé/3§252,

(8.5.8)
M5 - mlMl - ZEGMG — J}7M7 + 7T(1)/3§2N = Wé/3€233,
1/3 .2
Mg + w1 My + w9 Mg — x3M7 = 75" "§°5y.
By comparison of coefficients of e; in (8.5.7), we obtain:
/ / r ;. 2/3
Mh — 2o M| + xg M} + 25 ML = 7T2/3§SQ,
3 1 4 7= ™0 (8.5.9)

M — oy M} — 2gM}, — w7 M+ 7t PN = n2/3¢ss,

M} + 2y M} + 29 M — wgML = 7238,

(2). F? € F3. We need to check that C; € F3 for i = 1,...,5. Compare coefficients in

n2e;. This condition is equivalent to:

C1 = Dy + (26 — w928) Dy + (—w7 — w328) D3 — 23 Dg — w538k Do,
Co = Dy + x9D9 + x3D3 + x8Dg + x5k9 Dy,
1/3
U3 = D5 — 29Dy — x3D3 — xgDg + 7' "{ Dy,
Cy = Dg + (—a1 — w913) — v5D3 + (v7 — w328) Dg — w375k9 Do),

C5 = D7 — 23Dg + (21 — w9x3) D3 + (—x6 — w9x8) Dg — wa5ks Do,
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Recall that C' is of the form:

A
C=1 4 |
A//
with
A = wlBeA+ (kY koY kY kyY ksY),
A" = B2 A x B Y koY gV kY ksY),

for Y = (x1 x9 23 1 x5 xg x7 xg)T. By comparison of coefficients of we; and e;, we get:

1/3
My + (xg — xoxg) Mo — (x7 + x328) M3 — .T%Mg — vrgko N = 7T0/ EA] — xgkoY.
My + xoMo + v3 M3 + x3Mg + x5k N = 71'(1)/35/12 + koY,
1/3
o/ 2eAs,

1/3
Mg — (z1 + wox3) My — 23 M3 + (17 — w3w8) My — w325k N = WO/ §Ay — 23kaY,

My — x9 Mo — x3 Mg — x3 Mg + 7T1/3§N =

M7 — {E%Mg + (z1 — wox3) M3 — (v6 + woxg) Mg — xox5ko N = 7T(1)/35A5 — x9koY.
(8.5.10)

and

M{ (xg — Jizxg)M (x7 + xgxg)Mé — x%Mé — 1’51’8/{32]\7/ = W§/3§2A1 + 77(1)/3521'8]52}/7
Mi + J,‘QMé + :EgMé + [EgMé + I5k2N’ = 7T2/3£2A2 - 7T(1)/352/{32Y,

23
/ €2 A3,

2/3 1/3
Mé + (—Il — xgxg) Mé — x%Mé + (ZE7 — a]gxg) Mé — x3x5k2N/ = 7TO/ 52144 + 7T0/ §2x3k52Y,

M — $2M2 + (x1 — zox3) Mé + (—xg — wox3) Mé — z9x5ko N' = 7T§/3€2A5 + Wé/?)EQIEQk‘QY.
(8.5.11)

We can see that My, My, Ms, Mg, My (vesp. M7, My, ML, Mg, M) are determined by

Ms, M3, Mg, N (resp. Mé,Mé,Mé,N’) from Equation (8.5.10), (8.5.11). Replace them by
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the linear combinations of My, M3, Mg, N (resp. Mé,Mé,Mé, N’), and put them back to

Equation (8.5.8), (8.5.9). We get:

(1 + l‘5)M2 = 7T1/3£251 - Wé/3§(x3A1 + x7A9 — I8A4) + x5x7ko N — x7k9Y,
(1+x5)M3 = 7T0/3§2 So — Wl/gf(—mQAl + xgA9 + x8As5) + wrrgko N — x6k2Y, (8.5.12)

(1+5)Mg = 7r0/35254 - Wé/35(961z42 + wgAy — x345) + x5x1ko N — 21k2Y.

and

(tas) > @M —W(l)/gﬁ 53+7T(1)/3§(901A1+$6A4+$7A5—A3) k2$5N+7T1/3(€—€2)N+k2I5Y
i=2.3,8
(8.5.13)

Sum of 3 equations in (8.5.12) and subtract it from (8.5.13). We obtain:

T
1/3(5 —§) (5171 r9 wx3 —x5 —1 x6 T7 338) +7T1/3(§ —§N =0.

Hence we have n; = —z; for i = 1,2,3,6,7,8, and ng = x5. By ko(1 + z5) = 7r0/ (1-29),
we can see that Mo, M3, Mg are determined by x; (Multiply ko on both sides of equations

n (8.5.12)). Similarly,

2/3(5 ) (xy w9 w3 — a5 — 1 ag 7 28)" — Wé/g(f — N

Hence n'~ = Wé/?)l‘l' fori=1,2,3,6,7,8, and nﬁl = —Wé/3x5,n’5 = —Wé/g. We can check that
(m — 1/352)}"3 C F2, and (F3, F3) = 0 are already satisfied. Therefore, we can see that

F' are determined by variables x; and ky. We have:
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Proposition 8.5.14. Consider the affine chart with leading terms

{r%es} x {m%e;}ic14567 % {mes, meitic1, s

Under this affine chart in PT x Gr(5,24) x Gr(9,24), the corresponding open subscheme in

MSPUt s isomorphic to
1/3
Spec(O[r1, ¥2, ¥3, ¥4, 5, T6, T7, T8, ko] /(Qo, 14 — 1, ko(74 + 25) — 7T0/ (1-9)),
where Qo = x128 + Tox7 + X376 + T4T5.

8.6 Other affine charts

We calculate the affine charts for U and Uy above. Calculations for the rest affine charts
are similar to the calculations in Uy and Uy. In this section, we will use the triality group
for special orthogonal group G to transfer our calculation results to other affine charts Uj.

Thus the ideal sheaf II*(Z)|y, is principal, and we have a morphism:
IT: MePlit @

by the universal property of blow-up. Recall that F'/Fy is the cubic Galois extension with

valuation rings O, Op, where O = Og[r]. Consider the triality group for special orthogonal
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groups G = ResF/FO(Spin(V, %))43. We have:

G(R) = Respy (Spin(V, %)) '3(R)

={g eSOV, q)(Rop, F) | g(z*y) = g(x) * g(y) for all 2,y € V @p, R},

for any Fp-algebra R. Let ¢4 be the parahoric subgroup over Spec(Qg) given by L =
Z§:1(O ®0, R)e;, which represents the functor from Op-algebras to the groups that sends
R to

Y (R) ={g € SOg(0O ®0, R) | g(x xy) = g(x) * g(y) for all x,y € L}.

For any element g € ¢(R) and {F'},_1 2.3 € MPH(R), we have {g(F")};—123 € MPIY(R)
since g(zxy) = g(x)*g(y) and (g(z), g(y)) = (x,y). We want to find g such that g(Uy) (resp.
g(Uy)) is equal to other affine chart U;(i # 4,5) in F'. Although there are many elements
g € 7 satisfying this requirement, we choose permutation and diagonal groups since they
are simple enough.

Recall that a square matrix is called a monomial matrix if there is exactly one non-zero
element in each row and column. Any monomial matrix is the product of a diagonal matrix
and a permutation matrix. Consider the monomial matrices with the non zero elements are
+1.

Denote by S the group of 8 x 8 monomial matrices with the non zero elements are +1.
Then any element in S can be written as diag(aq, ag, as, aq, as, ag, a7, ag)o, where o is a
permutation in Sg and a; € {+1}. Set diag(ai)?zl = diag(ay, a9, as, aq, as, ag, a7, ag). We

have a morphism:

S — Endp, (L), diag(ai)§:10 — diag(ai)ig:ng
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given by Py(e;) = €o(i) for any o € Sg. We want to find the elements in S that make the

image diag(ai)lgzng sit in 4 (R).

Example 8.6.1. Set

g = diag(a, b, ¢, 1,1,¢,b,a)P19)(36)(45)(78)

for a,b,c € {1,—1}, then g(x x y) = g(x) * g(y) if and only if abc = —1.

This example is given by Garibaldi in his dissertation [6]. It is an element in ¢ we
wanted. Notice that g(U;) = Us, and ¢(Uy) = Us, so we can use our calculation result in

Proposition 8.2.5 (1), and transfer the affine chart with leading terms:

{rPe1} x {mey, me1}po1035 X {77€;, mej €1} im1,. 5.j=1,2.3,

to the affine chart with leading terms:

{r%ea} x {m2ep, meatpo12.4.6 X {m2€i, Te}, €2}im12.45.6,j=1.2,6:

Similarly, we can transfer affine charts in Proposition 8.2.5 (2) and Proposition 8.2.6. We
want to find other elements like Example 8.6.1. In fact, we will prove that ¢4 NS is the
dihedral group Dy, and it will transfer Uy (resp. Uy) to all other affine charts.

Consider g = diag(ai)§:1Pg € S. Suppose that g(esq) = aje; and g(e5) = aje; for some

aj,aj € {1,—=1}, 4,5 € {1,2,...,8}. We have

eixe; = glea) x glea) = gles) = aje;,
ejxej = gles) x gles) = gleq) = aze;.
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Since e x e;, = 0 for any k # 4,5, and eq x eq = e5, e5 * e5 = e4 by Table 2.1, we get
a; = aj = 1. Either g(esq) = e5,9(e5) = eq or g(eq) = eq,9(e5) = e5. Set [ = {1,6,7}, and
J ={2,3,8}. We consider 2 different cases in the following:

(1) g(eq) = e5,g(e5) = eq:  Since e, x e = —ey, for k € J, and e}, x eqg = —ey, for k € I.
We have ej * e4 = —eq, which implies g(ey) * e5 = —g(e1). Then g(e1) = ape; for some
keJ.

(1a): Suppose that g(ej) = ages.

By eg * e5 = —eg, we get that g(es) x e4 = —g(e2), which implies g(eo) = ayey, for k € I. If
g(ea) = ajeq, we get ajer xg(eg) = ageg by egxeg = e1. From Table 2.1, it is easy to see that
only one ey, satisfies: e] * e, = aeg for some a € {1}, which is eg (e1 * eg = —e2). Hence
g(es) = ageg, with ag = —ajag. Similarly, we get g(eg) = aseg by e1 x eg = —eg, where
ag = —ajag, and g(ey) = ageg by ey xe7 = e3, where ag = a1, g(eg) = ayey by e xeg = —ey,

where a7 = ag. Combining them together, we have a monomial matrix in 4(R):

g = diag(ay,a9,as,1,1,a3,as, al)P(12)(36)(78)(45)- (8.6.2)

with aq,ag, a3 € {£1}, ajasaz = —1. It is exactly the monomial matrix in Example 8.6.1.
If g(es) = ageg, we have g(eg) = ageg by e1 x eg = —eg with asagag = 1. Similarly,
we have g(eg) = aye7 by e1 x eg = —eyq with ao = a7, g(e7) = ages by ey x eg = —ey with

a3 = ag. Finally, g(e3) = ajeq by e3 * eg = —e; with ajagag = 1. Hence we obtain:

9= diag(ala az, a3, 1,1, a3, az, al)P(126873)(45) (863)

with aq,ag, a3 € {£1}, ajagaz = 1.
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If g(eg) = ayer, by e1 *x eg = —eo, we have ages * g(eg) = ayey. This equation does not
have a solution by Table 2.1.
(1b): Suppose that g(e;) = asze3. Similar calculations as above. Consider g(e2) = apep,
for kK € I. Then g(ea) = ajey or ayey (for g(ea) = ageg, we don not have a solution by

el xeg = —ea). If g(ea) = ajeq, we obtain:

9= diag(al, az,asy, 1a 17 ag,az, al)P(137862)(45) (864)

with aq, ag, a3 € {£1}, ajasaz = 1. If g(ea) = ayey, we have:

9= diag(ala az,as, 17 17 ag,az, al)P(13)(27)(68)(45)' (865>

with aq,ag, a3 € {£1}, ajasasz = —1.

(1c): Suppose that g(e) = ageg. Consider g(es) = ageg or g(ea) = ayer. We get:

g = dia’g(ala ag, ag, 17 ]-7 ag, az, al)P(IS)(QG)(B'?)(ZIE)) (866)

with aq, ag,ag € {£1}, ajasaz = —1 for g(e9) = eg, and

g = diag(a1, a2, ag, 1,1, ag, az, a1) Pg)(27)(36)(45) (8.6.7)

with aq,as, a3 € {£1}, ajasagz =1 for g(e9) = er.

(2) g(eq) = eq, g(e5) = e5. The second case has similar result to case (1). We omit the
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calculation and just list monomial matrices below. We also have 6 matrices:

g = diag(alv a2,a3, 17 17 ag, az, al)P(lﬁ)(38)a
g = diag(ala ag, ag, 17 17 a3, az, al)P(l’?)(QS)a (868)

g = diag(a1, a2, a3,1,1, a3, ag, a1) P(23)(67):

with a1, ag, a3 € {£1}, ajagsaz = —1, and

9= diag(ala ag, agz, L1, ag, a, al)P(167)(283)7
g = diag(al, az,as, 17 ]-7 as, az, al)P(176)(238)7 (869)

g = diag(aq,a2,a3,1,1,a3,as,a1)id,

with aq,as, a3 € {£1}, ajasaz = 1.
Monomial matrices 8.6.2-8.6.9 are all possible monomial matrices satisfy g(z % y) =

g(x) % g(y). They form a subgroup of ¢. Denote by
g1 = dia‘g(alv a2,0as, 17 17 ag, az, al)P(13)(27)(68)(45)7
g2 = diag(a1,a2,a3,1,1,a3,a2,a1) P126873)(45),

in (8.6.3) and (8.6.5). They are generators of 4 N'S. It turns out that the subgroup is

isomorphic to the dihedral group Dg = {g1,92 | g% = 1,gg =1,9199 = 92_191}. By using

ajazaz = —1 | ajagag =1

g(eq) = e5 9N 92
g(es) = ey 9391 gg
9991 g9

_ 2

gles) = e4 9201 9
gles) = es5 9591 95
9591 id

dihedral group Dy, it is easy to see that all other affine charts U;(i # 4,5) in F 1 can be
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transferred by Uy and Uy.

Remark 8.6.10. Transferring from one affine chart to another is not unique . For example,

affine chart

{r%e1} x {mep, me1}po1235 X {m2ei, mej €1 iml .5 j=1,2,3,

can be transferred to

{r%ea} x {m2eg, meatp—12.46 X {m2€i, Tej, €2}im12.45.6,j=1,2,6:
both by (8.6.2) and (8.6.3). But the corresponding open subscheme has the same equations
for variables.

We end this section with an example of finding generators of F2 in the affine chart Us

by using g in ¥ N S.

Example 8.6.11. Consider g = diag(al,ag,ag,1,1,a3,ag,al)P(12)(36)(78)(45). Let a; =
ag =1, ag = —1. In §8.5, we calculated the affine chart Uy, where the leading terms for Fi
(i=1,2,3) are:

{r%es} x {mexthm14567 X {72ei, mes izt 8.

Then g acting on this affine chart gives us:

2 2 2
{m%es}t x {7 tr—23458 X {7 €, meati=1,.. 8,
which is exactly the affine chart Us that we want to calculate. More precisely, recall that
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the generators of F2 in Uy have the form:

1/3
Oy =15 + (w6 — xsw) f5 — (07 + $8$3)f§ - x%fg — wgho|(meq — Wo/ 2eq)+

> wi(we; — ry/ 2%,
i#4

Cy =15 + $2f§ + $3f§ + $8f§ + ko[(meq — Wé/3€264) +) wi(me; — Wé/3§26i)]7
i#4

Cs =f§ - 932]“25 - 933f§ - xsfé
1/3
Cy =15 — (w1 + w3w2) 15 — 2315 + (w7 — w328) f§ — w3hyl(meq — o €2ey)

+) wi(me; — W(l)/?’f?@i)],
i4

Cs =15 — 235 + (21 — waws) f§ — (w6 + w28) f§ — waky[(meq — o €2ey)

+) wi(me; — Wé/3§2€i)],
i4

with ko(1+ z5) = W(l)/g(l —€), and xqag + Tox7 + w326 + o5 = 0. Consider g(F?). We have:

g(FY) = f5 +aoft + w1fo — w6 f3 + w5f4 — x3f5 + 8f7 + T7f8.

Set:

Y1 = 22, Y2 =21, Y3 = —e;,
Y6 = —I3, Yr =Ty, Ys = I7.

and yy = x5. We can rewrite g(F') = f5+ 35 yifi with y1ys +y2y7 +y3y6 +y4 = 0. The
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generators of g(F?) are:

9(C1) =f5 — (3 + yry1) s + (vs — y7y6)f§ - y?ﬁ — yrka[(mes — Wé/3€265)

+ ) yilme; — ro 2€%e;)],
i£5

9(Co) =f5 + y1 f +yo s + yr 5 + kol(mes — Wé/gfz%) +Y " yi(me; — Wé/3§26i)]7
i+5

9(C3) =f5 = y1fs — vefs — vrfs,
—9(Cy) =f§ + (y2 — yﬁyl)ff - y%fg — (ys + y6y7)f§ — yeke[(mes — Wé/3§265)

+ yi(me; — 78/35261')],
i#5

9(Cs) =15 — V215 = (ya + v196) £5 + (us — v1w7) £ — yikal(mes — mo P€2es)

+) " yi(me; — Wé/3§2€i)]-
i#5
13

with y1y8 + yoy7 +y3ye +y4 = 0, ko(1 +y4) = 7y’ "(1 — §). We can check that it is exactly

F2in U 5 by using same calculation we did in §8.5.
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