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ABSTRACT 

ASSESSMENT OF STATE-SPECIFIC DNA METHYLATION PATTERNS TO IMPROVE 
FUNCTIONAL ANNOTATION OF FARM ANIMAL GENOMES 

By 

Ryan James Corbett 

Over the past several decades, genetic advancements in the domestic pig (Sus scrofa) and other 

farm animal species have resulted in increased economic output and expanded use of these 

organisms as biomedical models to study human disease. However, limited functional annotation 

of the porcine genome—particularly in non-coding regulatory regions—hinders both identification 

of causal genes for complex traits and translational research capabilities. The Functional 

Annotation of Animal Genomes consortium seeks to map functional elements in domesticated 

animal genomes in part by performing sequencing assays to characterize the animal epigenome, 

as specific chromatin modifications have been shown to be predictive of regulatory regions. DNA 

methylation is the most ubiquitous epigenetic modification made to the DNA molecule, and in 

mammals occurs almost exclusively at cytosines in CpG dinucleotides. DNA methylation exerts 

regulatory effects through numerous mechanisms, including the occlusion of transcription factors 

at activating regulatory regions, and as such has been shown to play important roles in establishing 

spatiotemporal gene expression. Furthermore, differential methylation has been associated with 

genomic imprinting and stress-induced physiological changes in mammals. Assessment of DNA 

methylation in the pig and other farm animal species has thus far been limited in scope. In this 

dissertation, I have characterized state-specific DNA methylation patterns in farm animal genomes 

across a diverse collection of cell types, developmental stages, and environmental conditions, to 

enhance understanding of epigenetic gene regulation in livestock and poultry. First, I demonstrate 

that sorted porcine immune cells exhibit unique DNA methylation landscapes that are strongly 



  

correlated with local and distal gene expression as well as binding sites for transcription factors 

regulating immune cell-specific functions. The co-localization of immune cell differentially 

methylated regions with GWAS SNPs for immune-related traits supports the use of epigenomics 

assays to increase functional annotation of economically relevant genomic regions. Second, I show 

that development of four porcine fetal tissues (whole brain, liver, loin muscle, and placenta) is 

associated with increased differentiation of DNA methylation profiles that likely contributes to 

tissue-specific transcriptomes and transcription factor regulatory potential. I also report 

widespread allele-biased methylation in fetal tissues associated with breed-specific gene regulation 

as well as putative regions of genomic imprinting events. Third, I characterize associations 

between environmental stimuli and DNA methylation patterns in two studies. I show that piglet 

weaning correlates with changes in peripheral blood mononuclear cell DNA methylation, and that 

increased weaning stress is associated with increased methylation and decreased expression of T 

cell-enriched genes, suggesting a diminished adaptive immune response. Lastly, I assess the 

impact of broiler chick incubation parameters on cardiac DNA methylation and observe significant 

temperature-associated differential methylation of genes involved in heart morphogenesis. I 

identified differentially methylated and expressed genes between temperature treatments that may 

influence environment-driven differences in cardiovascular development. In conclusion, I have 

performed the most expansive survey of whole-genome DNA methylation in farm animal species 

to date and have identified thousands of putative regulatory elements influencing state-specific 

gene and phenotype expression. These data will be a valuable resource for future functional 

annotation efforts seeking to identify mechanistic links between genetic and phenotypic variation 

in animal species.       
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CHAPTER 1 

INTRODUCTION 

 
 
1.1     Increasing power of swine genomics research through functional annotation  

Over the past several decades, advancements in genetics research in the domestic pig (Sus scrofa) 

have led to improvements in selection for agriculturally relevant traits as well as its use as a 

biomedical model. The development and application of porcine SNP genotyping arrays in genome-

wide association studies (GWAS) has led to the identification of variants and quantitative trait loci 

(QTL) associated with hundreds of growth, reproductive, and disease traits [1, 2]; to date 33,143 

such associations have been submitted to the Pig QTL database 

(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index). Furthermore, high-quality genome 

assemblies are publicly available to advance swine research: a reference genome assembly created 

from a combination of long-read and short-read sequencing strategies greatly improved S. scrofa 

gene annotation over the previous assembly, and short-read assemblies for 12 additional pig breeds 

have been generated to better represent the diversity of the porcine genome sequence [3]. In 

addition to common anatomical and physiological characteristics, the observed similarities in 

genome sequence and gene content between pig and human have resulted in increased use of the 

pig as a biomedical model in cardiovascular, brain, and gut physiology research, among other areas 

[4]. For example, comparative genomics studies have revealed greater immune gene conservation 

between pigs and humans than between mice and humans, strengthening the argument for 

continued use of the pig as an infectious disease model [5].  

 Despite increased knowledge of genetic variation and sequence in the pig, a limited 

understanding of genome function hinders continued progress in genetic selection and translational 
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research. A significant proportion of identified pig QTL are megabases in length due to high 

linkage disequilibrium in tested populations, and many of these lie within intergenic regions of the 

genome for which no functional role has been assigned [6]. It is being increasingly appreciated 

that such non-coding regions of the genome harbor cis-regulatory elements that play important 

roles in influencing gene expression. These include but are not limited to: enhancers that act 

distally to increase rates of transcription through chromatin looping [7]; insulator elements that 

delineate chromatin into topologically-associated domains [8]; and silencers that inhibit gene 

expression via the recruitment of transcriptional repressors [9]. In addition to their effects on 

transcript diversity, intergenic regions of the genome have been shown to disproportionately 

harbor variants that influence complex trait variation [10]. Recognizing the wealth of knowledge 

to be gained by identifying such regulatory regions, the Encyclopedia of DNA Elements 

(ENCODE) project was initiated in 2011 with the goal of increasing functional annotation in the 

human genome. To date, ENCODE has assigned a functional role to 80% of the human genome, 

and has identified hundreds of thousands of putative enhancer, silencer, and insulator elements 

[11]. Similar large-scale annotation projects have been undertaken in mice (the mouseENCODE 

project) and other model organisms such as Drosophila and C. elegans (modENCODE) and have 

produced similar findings [12–14]. ENCODE project data has been subsequently utilized to refine 

previously identified GWAS regions as well as predict causal variants for disease traits and their 

target genes [15, 16]. Pigs and other domesticated animals still lag far behind humans and model 

organisms with respect to their own genome annotation, despite the potential use of such data in 

improving agricultural output and biomedical research.  

 In light of this gap in knowledge, the Functional Annotation of Animal Genomes (FAANG) 

consortium was founded in 2015 to enhance the discovery of functional elements in domesticated 
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animal genomes. The findings of this consortium will not only aid in the identification of 

mechanistic links between genotypic and phenotypic variation, but increase the efficacy of animal 

species as models for human disease [17]. To achieve such ends, the FAANG consortium seeks to 

perform next-generation sequencing assays to identify functional genetic loci across tissues and 

cell types, developmental stages, and environmental conditions. Many proposed assays will 

characterize transcribed portions of the genome, including transcription start sites and novel 

transcript isoforms. However, a large proportion of FAANG efforts is dedicated to describing 

proximal and distal cis-regulatory regions that have been shown in other species to influence gene 

and phenotype expression. To date, FAANG projects have begun to elucidate conserved and 

species-specific regulatory elements through the assessment of chromatin states, including within 

a small subset of tissues in the pig [18, 19]. Of note, these studies report that, despite relative lack 

of genomic conservation across mammalian species within intergenic enhancers, these elements 

were nevertheless functionally conserved to regulate similar genes and signaling pathways.  

1.2     DNA methylation and its role in gene regulation and expression  

While regulatory elements can bear characteristic DNA sequences that may allow for 

computational prediction of their locations, knowledge of their activation status and tissue-

specificity cannot be discerned from genome sequence data alone [20]. It is now recognized that 

such state-specific regulatory information can be obtained through assessment of animal 

epigenomes. Broadly defined as the repertoire of chemical modifications made to chromatin that 

do not involve changes in DNA sequence, the epigenome is primarily established by two classes 

of mechanisms: those that act on the DNA molecule itself (e.g., DNA methylation and 

hydroxymethylation) and those resulting in histone tail modifications. Previous research has shed 

light on the prevalence of characteristic epigenomic modifications at various regulatory elements, 
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leading to their increased use as molecular signposts to predict function. For example, 

trimethylation of lysine 4 on the histone 3 tail (H3K4me3) is highly prevalent at gene promoters, 

while monomethylation of the same residue (H3K4me1) co-localizes with enhancer elements [21]. 

Other modifications are predictive of repressive elements, such as trimethylation of H3 lysine 27 

(H3K27me3) that contributes to chromatin compaction [22]. Sequencing strategies to assess 

genome-wide modifications have been implemented by the FAANG consortium and have been 

successful in the early prediction of functional elements in animal genomes. Studies have shown 

that not only do epigenomic modifications associate with tissue-specific gene regulation [19], but 

that the deposition of histone marks is highly dynamic throughout such processes as the innate 

immune response in the pig [23], strengthening the argument for continued spatiotemporal 

assessment of farm animal epigenomes.  

 Among epigenetic mechanisms, DNA methylation is the most widespread modification 

made to the DNA molecule and refers broadly to the enzymatic addition of a methyl group to DNA 

bases. In mammals, DNA methylation occurs almost exclusively at cytosine bases, and is further 

restricted to cytosine-guanine dinucleotides (CpGs) in most tissues with the exception of the 

nervous system and embryonic stem cells [24, 25]. Mammalian genomes generally exhibit CpG 

methylation rates between 60% and 80%, with local methylation being strongly inversely 

correlated with CpG density [26]. While the majority of mammalian genomes are CpG-sparse and 

exhibit high methylation rates, regions of high CpG density, referred to as CpG islands, exhibit 

low methylation rates on average, due in part to local histone modifications that inhibit DNA 

methylation [27]. Cellular DNA methylation levels are carefully regulated by the activity of DNA 

methylation and demethylation enzymes. Cytosine methylation is performed by the DNA 

methyltransferase family of enzymes, of which three members—DNMT1, DNMT3A, and 
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DNMT3B—actively deposit methyl groups (Figure 1.1A). DNMT1 acts as a maintenance 

methyltransferase, and functions primarily at newly replicated DNA to preserve methylation 

patterns at hemi-methylated bases [28]. DNMT3A and DNMT3B are both responsible for de novo 

DNA methylation, with DNMT3B expression more restricted to early embryonic development 

[29]. Loss of methylation can occur either passively following successive rounds of DNA 

replication, or actively via TET methylcytosine deoxygenase (TET) activity that initiates the DNA 

demethylation pathway [30].  

 Studies over the past several decades have revealed context-specific relationships between 

DNA methylation and local and distal gene expression. At activating regulatory elements, such as 

gene promoters and intergenic and intronic enhancers, hypermethylation has generally been 

associated with suppression of corresponding gene transcription [25, 31, 32], and several 

mechanisms governing this inverse correlation have been proposed (Figure 1.1B). In many cases, 

DNA methylation has been shown to occlude transcription factor binding through the alteration of 

cis-acting elements [33]. Conversely, methyl-binding proteins recognize methylated DNA 

sequences and act as transcriptional repressors by recruiting other chromatin remodeling enzymes 

that promote a heterochromatic state and reduce RNA polymerase II elongation efficiency [34, 

35]. While once thought to exert solely repressive effects, it is now acknowledged that, in several 

contexts, DNA methylation levels are positively correlated with rates of gene transcription (Figure 

1.1C). DNA hypermethylation is often observed in highly expressed genes [36]; while this has 

been attributed to the prevention of spurious transcription from alternative transcription start sites 

[37], much of the DNA methylation in this context has been hypothesized   
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Figure 1.2. DNA methylation in mammals and its associations with gene expression.  
(A) Methylation of cytosine-guanine (CpG) dinucleotides can occur de novo via DNA 
methyltransferase 3A (DNMT3A) and DNMT3B, or at hemi-methylated DNA following DNA 
replication via DNMT1-directed maintenance methylation. (B) Methylation of activating 
regulatory elements (e.g., promoters, enhancers) is associated with gene repression via the 
exclusion of transcription factor (TF) binding or the recruitment of methyl-CpG binding proteins 
(MBDs) and other transcriptional repressors. (C) Methylation in some contexts can have positive 
associations with gene expression. In the case of Gene B, intragenic methylation inhibits spurious 
transcription from alternative start sites. In the case of Gene C, methylation of an insulator element 
prevents CTCF binding and the creation of a chromatin boundary, allowing for an upstream 
enhancer to activate transcription. 
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to be passively deposited as a result of increased accessibility of DNA by RNA polymerase activity  

[38]. Lastly, suppressive effects of DNA methylation may indirectly activate expression of another 

gene. For example, hypermethylation of an insulator element in the H19/IGF2 gene cluster inhibits 

a nearby enhancer from acting on H19, but promotes its acting on IGF2, while the opposite pattern 

is observed under insulator hypomethylation [39]. In the IGF2R locus, hypermethylation of an 

intragenic element promotes IGF2R expression by inhibiting transcription of an IGF2R antisense 

RNA [40]. In conclusion, while feature-specific correlations between DNA methylation and gene 

expression have been identified across mammalian species, the mechanisms governing this 

relationship appear to be highly gene-specific and are thus worthy of further study.  

1.3     DNA methylation patterns govern tissue- and stage-specific gene expression 

Since the advent of bisulfite-sequencing strategies to assess genome-wide DNA methylation, 

functional annotation projects in humans and other model organisms have provided unique insights 

into methylation variation across diverse tissues and cell types. Initial DNA methylation data 

generated from the ENCODE project reported that over 90% of CpGs exhibited variable 

methylation levels across assayed samples, and that such variation was strongly correlated with 

local gene expression as well as enhancer activity [25]. Furthermore, assessment of methylation 

states across neighboring CpGs has led to the discovery of human tissue- and cell-specific 

differentially methylated regions (DMRs) that represent putative regulatory elements governing 

state-specific gene expression [32, 41]. Tissue-specific DMRs were not only found to be enriched 

for binding motifs of relevant transcription factors, but disproportionately harbored GWAS SNPs 

associated with tissue-related traits, highlighting the potential role of these regions in regulating 

phenotype expression. Initial surveys of DNA methylation patterns in porcine tissues have 

revealed similar genome-wide methylation patterns and context-specific associations with gene 
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expression as has been reported in other mammals [42]. However, knowledge of such patterns 

across a wide set of porcine states is still limited, particularly in cell types relevant to industry 

performance and biomedical research use. For example, little is known about the contribution of 

DNA methylation to regulatory variation in porcine immune cells, despite its potential usefulness 

in selection for disease resistance phenotypes and in translational research applications.  

 In contrast to the often-stable patterns observed in differentiated animal tissues, DNA 

methylation is highly variable throughout early mammalian development. While the early embryo 

is subject to global demethylation followed by remethylation to erase most parentally-inherited 

epigenomic marks, DNA methylation patterns continue to be highly dynamic throughout cell 

lineage commitment, differentiation, and maturation in coordination with stage-specific gene 

expression demands [43]. Studies of human fetal development have shown that tissue-specific 

DNA methylation patterns are observed by the first trimester, with subsequent differential 

methylation being associated with suppression of early development genes and activation of tissue-

specific genes [44]. Despite the fact that many economically important phenotypes in the pig are 

influenced by prenatal physiology and gene expression [45, 46], assessment of epigenomic 

variation and discovery in pig fetal tissues has been limited. Additionally, epigenomic variation 

likely contributes to observed developmental differences in anatomy, physiology, and gene 

expression between divergent pig breeds, although the exact mechanistic links between genetic 

background and developmental variation have been largely unexplored.  

  In addition to exhibiting temporal variation, DNA methylation plays important roles in 

conferring parent-of-origin-specific regulatory effects. The phenomenon of genomic imprinting 

results in biased or exclusive gene expression from the paternal or maternal allele, and primarily 

affects genes involved in fetal growth and development [47–49]. As imprinting has been shown to 
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occur even in diploid organisms with genetically identical alleles, epigenetic mechanisms were 

hypothesized as primary regulators of this process. Indeed, it is now recognized that imprinted 

alleles possess imprinting control regions (ICRs) at which differential DNA modifications—in 

particular DNA methylation—result in biased or monoallelic gene expression [49]. While over 

100 genes in humans and mice have been identified as imprinted, and many corresponding ICRs 

have been identified, the number of experimentally-verified imprinted genes and ICRs in the pig 

and other livestock species is comparatively few [50]. However, the identification of genetic 

variation in imprinted alleles in livestock species has led to the recognition that such QTL are 

inheritance-specific. In the pig, two alleles have been identified in the paternally-expressed IGF2 

gene that differ in a single G-to-A point mutation; the ‘A’ allele results not only in increased IGF2 

expression, but increased muscle mass and lower body fat, although this effect is only observed 

on the IGF2-expressing paternal allele [51, 52]. Such knowledge of parent-of-origin-specific 

genetic effects across imprinted loci in farm animal genomes has the potential to improve 

quantitative genetics models and genomic selection strategies.  

1.4     DNA methylation as a mediator of environment-induced physiological changes 

It has long been appreciated that early life stress can result in epigenomic reprogramming that has 

physiological and behavioral outcomes in animal species [53]. Due to the dynamic nature of DNA 

methylation during pre- and perinatal development, the methylome is hypothesized to be more 

susceptible to environmental insults during this period. Thus, research in humans and rodents has 

been focused on the impact of early life stimuli on epigenetic regulation in stress response systems, 

particularly the hypothalamic-pituitary-adrenal (HPA) axis. Studies in rats have demonstrated that 

levels of perinatal maternal care are significantly associated with neuronal DNA methylation 

patterns; of note, decreased maternal grooming has been associated with increased gene 
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methylation and decreased expression of the glucocorticoid receptor gene (NR3C1), a critical 

negative feedback regulator of the HPA axis response [54, 55].  Studies assessing the effects of 

stress on DNA methylation have also sought to characterize patterns in peripheral blood, as this 

can be more easily sampled and has been shown to serve as a suitable ‘surrogate’ for methylation 

and expression patterns in other tissues [56]. Human studies have reported similar effects of early 

life stress on NR3C1 methylation in peripheral blood [57, 58], and, in cattle, transportation stress 

has been associated with HPA axis gene methylation changes, including within genes involved in 

corticotropin releasing hormone signaling [59, 60]. Recent studies in the pig have begun to 

elucidate DNA methylation changes in the brain associated with early life nutritional stress and 

viral infection [61]. However, pigs experience numerous stressors in production systems that likely 

elicit specific molecular and physiological responses, necessitating additional studies of stress-

induced epigenomic alterations and their impact on gene expression.   

 Research over the past several decades have also proposed epigenetic mechanisms as 

mediators of abiotic stress-induced physiological changes in animals [62, 63]. Temperature is 

among the most consequential abiotic factor influencing animal growth, metabolism, and behavior; 

as such, numerous studies in livestock and poultry species have examined epigenomic patterns 

associated with variable environmental temperature. Studies of heat stress in livestock species have 

reported significant DNA methylation differences in skeletal muscle and whole blood, impacting 

genes involved in lipid metabolism and immune and stress response, respectively [64, 65]. Poultry 

species are known to be particularly sensitive to changes in incubation temperature, with profound 

effects on early and later-life metabolism and thermoregulation [66–68]. Thermal manipulation 

studies during broiler chick embryonic development have reported alterations in histone 

modifications patterns in the hypothalamus associated with brain development and metabolism 
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[69]. Furthermore, adult differential DNA methylation patterns in heat shock protein genes have 

been observed in brain tissue of broiler chickens exposed to early life heat stress versus control 

birds, providing evidence for epigenetic ‘memory’ of environmental insults [70]. The extent to 

which such changes are present in the most temperature-responsive organ systems, such as the 

cardiovascular system, remain unexplored in poultry species.  

1.5     Project Goals & Significance 

In summary, there is a need for increased characterization of DNA methylation patterns across 

farm animal cell types, developmental stages, and environmental conditions. Knowledge of such 

state-specific epigenomic modifications will aid in the identification of regulatory elements 

associated with gene expression and provide additional layers of regulatory information in poorly-

annotated regions of animal genomes. This dissertation presents findings from whole-genome 

DNA methylation analyses of porcine and avian tissues and cell types of economic relevance. 

First, I report that sorted porcine immune cells exhibit unique DNA methylation patterns that 

significantly co-localize with cell-enriched gene expression, binding motifs for transcription 

factors regulating immune cell function, and GWAS SNPs for immune capacity traits (Figure 

1.2A, Chapter 2). Second, I demonstrate that fetal tissue differentiation is associated with genome-

wide DNA methylation changes that aid in establishment of unique transcriptomic profiles, and 

that allele-specific methylation is widespread in pig fetal tissues in both a genotype-dependent and 

independent manner (Figure 1.2B, Chapters 3 & 4). Lastly, I provide evidence that farm animal 

methylomes are responsive to stresses experienced in production settings, including weaning stress 

in piglets (Chapter 5) and incubation temperature and CO2 concentration in broiler chicks (Figure 

1.2C, Chapter 6). The results presented in this dissertation will not only serve as a valuable 

resource in genome annotation-driven searches for causative variants influencing economically 
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important traits, but have also revealed novel genomic loci subject to allele-specific and 

environment-dependent epigenetic gene regulation.   

 

 

 

 
Figure 1.2. Overview of project goals and rationale. (A) Assessment of DNA methylation 
patterns in adult porcine immune cells will reveal cell-type specific differentially methylated 
regions (DMRs, black boxes) associated with immune cell gene regulation and improve functional 
annotation of the porcine immunome. (B) Identification of stage-specific DMRs in differentiating 
pig fetal tissues (e.g., muscle, shown) will increase understanding of epigenetic gene regulation 
during development of economically-relevant organ systems. Furthermore, analysis of allele-
biased methylation (white boxes) will uncover novel genetic loci under breed-specific and 
imprinting regulation. (C) Differential DNA methylation patterns between animals in different 
environmental conditions is indicative of putative long-term changes in gene regulation as a result 
of external stimuli, and will reveal candidate genes driving environment-induced physiological 
changes. White circles = unmethylated CpGs, black circles = methylated CpGs. 
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CHAPTER 2 
 

ASSESSMENT OF DNA METHYLATION IN PORCINE IMMUNE CELLS REVEALS 
NOVEL REGULATORY ELEMENTS ASSOCIATED WITH CELL-SPECIFIC GENE 

EXPRESSION AND IMMUNE TRAITS 
 
 

This chapter is currently being prepared for publication. It was prepared alongside co-authors 

Andrea M. Luttman, Juber Herrera-Uribe, Haibo Liu, Nancy E. Raney, Jenna M. Grabowski, 

Crystal L. Loving, Christopher K. Tuggle, and Catherine W. Ernst. 

 

2.1     Abstract 

The porcine immune system possesses a vast repertoire of broad-mammalian and species-enriched 

cell types that are critical in combatting infection. Genetics studies have enhanced pig selection 

practices for disease resistance phenotypes as well as increased the efficacy of the porcine model 

in biomedical research; however limited functional annotation of the porcine immunome has 

hindered progress on both fronts. Among various epigenetic mechanisms that regulate mammalian 

gene expression, DNA methylation is the most ubiquitous modification made to the DNA molecule 

and has been shown to influence transcription factor binding as well as gene and phenotype 

expression. Human and mouse DNA methylation studies have improved mapping of regulatory 

elements in these species, but comparable studies in the pig have been limited in scope. We 

performed whole-genome bisulfite sequencing in nine porcine immune cell populations to assess 

cell-specific DNA methylation patterns and their associations with: 1) cell-enriched functions and 

gene expression, 2) transcription factor binding motifs, and 3) GWAS SNPs for immune capacity 

and disease traits. Whole blood was collected from two crossbred barrows and subjected to density 

gradient centrifugation to remove red blood cells and separate out neutrophils, and peripheral 

blood mononuclear cells underwent magnetic- and fluorescence-activated cell sorting into myeloid 
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cells, natural killer (NK) cells, two B cell fractions (CD21+ and CD21-) and four T cell fractions 

(CD4+, CD8+, CD4+CD8+, and SWC6γδ+). We identified 54,391 immune cell differentially 

methylated regions (cDMRs), and clustering by cDMR methylation rate grouped samples by cell 

lineage. 32,737 cDMRs were classified as cell lowly methylated regions (cLMRs) in at least one 

cell type (methylation<75% and z-score<-1), and cLMRs were broadly enriched in genic regions 

as well as regions of intermediate CpG density. Immune cDMRs exhibited methylation rates that 

were significantly correlated with local transcript abundance across cell types, with the majority 

of these correlations being negative. Furthermore, cell lowly methylated genes were 

overrepresented among expression-enriched genes for the same cell type, suggesting that low 

methylation is strongly associated with cell-specific gene activation. Motif analysis of cLMR 

sequences revealed cell type-specific enrichment of transcription factor binding motifs among B, 

T, myeloid, and NK cells, indicating that cell-specific methylation patterns may influence 

accessibility by trans-acting factors. Lastly, cDMRs were specifically enriched for immune 

capacity GWAS SNPs; many such overlaps occurred within genes known to influence immune 

cell development and function and have previously been associated with immune phenotypes, 

including CD8B and NDRG1. Overall, our DNA methylation data improve functional annotation 

of the porcine genome through characterization of epigenomic regulatory patterns that contribute 

to immune cell identity and function, and increase the potential for identifying mechanistic links 

between genotype and immune and disease trait variation.  

2.2     Introduction 

The porcine immune system plays critical roles in combatting infectious diseases, including those 

prevalent in production systems [71]. As in other mammals, pig immunity is conferred by two 

defense systems – innate and adaptive immunity. Innate immunity involves many barrier systems 
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and immune cells including myeloid-derived macrophages, dendritic cells and granulocytes as 

well as lymphoid-derived natural killer (NK) cells. Adaptive immunity refers to acquired immunity 

and is conferred by a system of lymphoid-derived B and T cells. In addition to adaptive immune 

cells phentoyped in humans and mice, pigs exhibit an overrepresentation of specific T cell subsets 

in peripheral blood. These include CD4+CD8+ double positive (DP) T cells, which express CD8aa 

as opposed to CD8ab on conventional cytotoxic T cells and are functionally characterized as a 

memory T cell population with MHC-II restriction [72, 73]. In addition, pigs are considered a 

gamma-delta (γδ) high species with frequencies of circulating γδ T cells of up to 30% [74]. gd T 

cells are defined by the expression of T cell receptors (TCR) composed of gamma and delta 

subunits, as opposed to the alpha and beta chain TCR of more conventional ab T cells. gd T cells 

play roles in both the innate and adaptive immune response [75] and differential expression of 

CD2 and CD8a on gd T cells is indicative of function [76]. Increased functional characterization 

of pig leukocytes—and in particular pig-enriched T cell populations—will inform understanding 

of their unique roles in immune response pathways.    

 Genetics studies in the pig have enhanced the discovery of DNA variants associated with 

immune-related traits: to date 3,231 and 610 genetic associations with immune capacity and 

disease susceptibility traits, respectively, have been submitted to the Pig QTL Database 

(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index). Furthermore, comparative genomics 

studies revealed greater preservation of human immune genes and gene sequences in pigs relative 

to mice [5], making the pig a promising biomedical model to study genetic contributions to human 

diseases [77, 78]. However limited functional annotation of the porcine genome—particularly 

within regulatory regions—has limited both the search for causative variants influencing disease 

and production traits in pigs as well as the translational capabilities of the pig as a model organism 
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[79]. To this end, the Functional Annotation of Animal Genomes (FAANG) consortium was 

initiated to map functional elements in domesticated animal species through the use of high-

throughput sequencing data generated from tissues and cell types of relevance, including those of 

the immune system [17, 18]. Among the core FAANG assays are many that assess epigenomic 

modifications that regulate chromatin accessibility and gene expression, including DNA 

methylation, histone modifications, and long non-coding RNAs [63]. FAANG projects in the pig 

have begun characterizing epigenomic patterns in immune cell populations, including in LPS- and 

Poly-I:C-stimulated cells [23, 80, 81].    

 DNA methylation involves the enzymatic addition of a methyl group to the 5-position of 

cytosine rings, producing 5-methylcytosine. Methylation occurs almost exclusively at CpG 

dinucleotides in mammals and has context-specific associations with gene expression. At gene 

promoters and enhancers, methylation generally functions to decrease levels of transcription 

through the alteration of transcription factor (TF) binding sites or the recruitment of transcriptional 

repressors and chromatin-modifying enzymes [25, 31, 82]. Generation of DNA methylomes from 

diverse tissues and cell types across animal species has led to the identification of differentially 

methylated regions (DMRs) that have vastly improved understanding of tissue- and cell-specific 

epigenetic gene regulation. Many such studies have identified strong associations between cell-

specific lowly methylated regions (LMRs) and TF binding motifs as well as GWAS SNPs for 

relevant traits, highlighting the potential significance of these regions and of DNA methylation in 

regulating gene and phenotype expression [32, 41, 83–85]. DNA methylation patterns have 

previously been characterized in heterogeneous porcine immune cell populations [80, 86]. 

However, assessment of methylation patterns in specific cell types has not been performed, but 

could provide insight on transcriptional regulation and hence function relevant to pig health.   
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 Here we report the first genome-wide DNA methylation study in porcine granulocytes 

(primarily neutrophils) and eight sorted immune cell populations: myeloid cells, NK cells, two B 

cell fractions (CD21+ and CD21-) and four T cell fractions (CD8+, CD4+, CD8+CD4+, and 

SWC6γδ+). Using whole-genome bisulfite sequencing (WGBS), we identified cell-differential 

DNA methylation patterns strongly associated with enriched gene expression and TF binding sites 

governing cell specificity. Furthermore, we report DMRs overlapping previously-identified 

GWAS SNPs for immune-related traits, suggesting they may play important roles in regulating 

gene expression that impacts phenotypic variation. Our data massively improve functional 

annotation of the porcine immunome and provide unique insight into epigenetic gene regulation 

in understudied immune cell populations.   

2.3     Materials & Methods 

2.3.1     Blood Collection and Separation 

Blood was collected from two crossbred (predominantly Large White and Landrace heritage) male 

pigs between 4 and 6 months of age. Pigs were housed in BSL2 rooms at the National Animal 

Disease Center (Ames, IA) and all animal procedures were performed in compliance with and with 

approval by the Institutional Animal Care and Use Committee. Blood was drawn and peripheral 

blood mononuclear cells (PBMCs) were isolated as described in Herrera-Uribe et al. 2021 [81]. 

For granulocyte isolation, blood was collected in BD Vacutainer ACD solution A tubes and 

subjected to dextran sedimentation using 6% Dextran / 0.9% NaCl solution at room temperature 

for 45-60 minutes. The supernatant was transferred to a conical tube and centrifuged for 12 minutes 

at 300 RCF and 4o C, after which pelleted erythrocytes were lysed with ACK Lysing buffer per 

manufacturer’s instructions (Thermo Fisher). The pellet was resuspended and overlayed onto 
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Ficoll-Histopaque-1077 and centrifuged for 30 min at 450 RCF at room temperature. The 

mononuclear cell layer was discarded and the pellet containing granulocytes (primarily 

neutrophils) was resuspended in phosphate buffered saline (PBS) and centrifuged at 450 RCF for 

5 minutes. The resulting pellet was resuspended in 2 mL HBSS, and viable cells were enumerated 

using the Count and Viability Assay Kit on the MUSE® detection system (Merck Millipore).  

2.3.2     Immune Cell Sorting from PBMCs 

PBMCs underwent magnetic- and fluorescence-activated cell sorting (MACS/FACS) as 

previously described [81]. Briefly, PBMCs were incubated with biotin labeled anti-porcine CD3e 

(PPT3, Washington State University Monoclonal Antibody Center) and separated into CD3e -

positive and CD3e -negative fractions on LS columns. Both fractions were further separated by 

FACS into four subpopulations based on extracellular markers. Isolated subpopulations in the 

CD3e-positive fraction included SWC6γδ+ T cells (SWC6gdT; CD3e+SWC6+), CD4+ T cells 

(CD4T; CD3e+SWC6-CD8a-CD4+), CD8+ T cells (CD8T; CD3e+SWC6-CD8a+CD4-), and 

CD8+CD4+ T cells (CD4CD8T; CD3e+SWC6-CD8a+CD4+). Isolated subpopulations from the 

CDe -negative fraction included myeloid leukocytes (myeloid; CD3e-CD172a+CD8a-), NK cells 

(NK; CD3e-CD172a-CD8a+), CD21+ B cells (CD21pB; CD3e-CD172a-CD8a-CD21+), and 

CD21- B cells (CD21nB; CD3e-CD172a-CD8a-CD21-). A fraction of each sorted population and 

isolated granulocytes were flash-frozen and stored at -20oC.  

2.3.3     DNA Isolation and Bisulfite Sequencing  

DNA was isolated from cells using the Qiagen AllPrep DNA/RNA Minikit and quantified using a 

Qubit fluorometer. Prior to library preparation, sample DNA was spiked with unmethylated 

lambda phage DNA (Promega) at a concentration of 5 ng lambda DNA/1 µg sample DNA. DNA 
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was fragmented to approximately 350bp using a Covaris M220 Sonicator, and bisulfite-converted 

using the Zymo EZ DNA Methylation-Gold Kit according to manufacturer’s instructions (Zymo 

Research). Bisulfite sequencing libraries were prepared using the Accel-NGS Methyl-Seq DNA 

Library Kit and Methyl-Seq Combinatorial Dual Indexing Kit (Swift Biosciences). Completed 

libraries were quantified and QC’ed using Qubit dsDNA HS and Agilent 4200 TapeStation HS 

DNA1000 assays, respectively.  

 Sequencing libraries were divided into three pools, and WGBS was performed on each 

pool across three flow cell lanes on an Illumina HiSeq 4000 instrument in 2x150PE format using 

HiSeq 4000 reagents. A PhiX control DNA library was spiked into each lane at 10% of the total 

to account for the unbalanced base composition inherent in Methyl-Seq libraries. Base calling was 

done by Illumina Real Time Analysis (RTA) v2.7.7 and output of RTA was demultiplexed and 

converted to FastQ format with Illumina Bcl2fastq v2.19.1. 

2.3.4     WGBS Bioinformatics Analyses 

WGBS libraries were trimmed of technical sequences and low-quality bases using Trimmomatic 

v.0.39 [87]. Forward and reverse reads were subjected to removal of the first 10 and 15 bases, 

respectively, according to the Swift Biosciences Library Kit instructions. Reads were further 

trimmed using the following parameters: ILLUMINACLIP:<adapter sequence>:2:30:10 

LEADING:25 TRAILING:25 AVGQUAL:20 MINLEN:30. Trimmed reads were aligned to the 

Sus scrofa reference genome (v11.1) using Bismark [88]. The bismark_genome_preparation 

command was used to prepare an in-silico bisulfite-converted bowtie2 index using default 

parameters. WGBS paired-end alignment was performed using the parameters: -X 1000 --

score_min L,0,-0.6. Unmapped forwards reads were merged with forwards reads left unpaired 

following trimming and aligned using the same parameters. All libraries were also aligned to the 
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lambda phage genome using default parameters, and the percentage of methylated cytosines 

among lambda-derived reads was subtracted from 100 to calculate bisulfite conversion efficiency. 

Aligned WGBS reads were deduplicated using the bismark_deduplicate command, and CpG 

methylation reports were generated using the bismark_methylation_extractor command using 

default parameters.  

2.3.5     cDMR and cLMR Identification 

Genome regional methylation rates were calculated using the methylKit R package [89]. Briefly, 

CpG reports from all samples were merged, and genome tiling was performed to calculate average 

methylation rates for 1kb non-overlapping regions in the pig genome. Regions with coverage >25 

in at least 7 cell types per animal were retained for further analysis. We generated linear mixed 

models for each region with average methylation rate as a response and included the fixed effect 

of cell type and random effect of animal. We assessed the significance of the cell effect using two-

way analysis of variance (ANOVA), and regions with a multiple test-corrected cell effect false 

discovery rate (FDR) <0.01 were defined as cell differentially methylated regions (cDMRs). 

Standardized scores (z-scores) were calculated from methylation rates at each cDMR, and those 

regions with z-score <-1 and mean methylation rate <75% in a given cell type were further 

classified as cell lowly methylated regions (cLMRs) for that cell type. cLMRs were annotated 

using the genomation R package [90], and cLMR genes were submitted to the Panther database 

for gene set enrichment analysis [91, 92].  

2.3.6     Integration of Gene Methylation and Expression Data 

RNA-sequencing data from the same sorted immune cell populations was previously reported and 

was used in the current analysis [81]. The transcript data from bulk sorted PBMCs was used in the 

current analysis, and this is the first report on the neutrophil RNA-seq data. Briefly, transcript 
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abundance was quantified as transcripts per kilobase million (TPM) for all samples, and genes 

exhibiting cell-enriched expression were identified using the DESeq2 R package [93] and defined 

as genes with log2-fold change >1 and FDR <0.05 in a cell type relative to all other cell types. We 

calculated Pearson correlation coefficients between cDMR methylation rates and transcript 

abundance of overlapping Ensembl-annotated genes, further separating cDMRs into those 

overlapping promoters (<2kb from transcription start site), gene bodies (intragenic), and 

transcription termination sites (TTSs). We compared correlation distributions to those derived 

from a random sampling of 1kb regions for each feature and corresponding transcript abundances. 

To determine the degree of association between low gene methylation and enriched expression, 

we calculated enrichment p-values between lowly methylated genes and expression-enriched 

genes for each cell type using hypergeometric tests performed using R software.  

2.3.7     Transcription Factor Binding Motif Enrichment Analyses 

We extracted cLMR sequences as well as sequences from an equal number of random regions for 

each cell type. cLMR sequences were submitted for Analysis of Motif Enrichment by the MEME 

Suite [94, 95], using random sequences as controls. Motifs from the JASPAR CORE vertebrates 

NON-REDUNDANT (in-vivo and in-silico), UniProbe Mouse, and Jolma2013 Human and Mouse 

databases [96–98] were scored using the average odds score method, and motif enrichment was 

calculated using Fisher’s exact test. Motif enrichment clustering was performed using the 

pheatmap R package v.1.0.12 [99].  

2.3.8     GWAS SNP Enrichment Analysis 

GWAS SNPs associated with immune-related and nonrelated traits were downloaded from the Pig 

QTL Database [100]. We performed hypergeometric tests using R software to calculate the 

enrichment of peak SNPs for select trait classes within cDMRs.  



 

 22 

2.3.9     RT-qPCR Analyses 

We quantified transcript abundances of genes overlapping cLMRs and previously-reported GWAS 

SNPs using quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). Buffy coat 

samples collected from an equal number of male and female 7-week-old Yorkshire pigs 

representing selected SNP genotypes underwent RNA extraction with TRIzol. 2 ug RNA was 

reverse transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) and cDNA was quantified on a Nanodrop spectrophotometer. B2M and GAPDH were 

selected as reference genes due to their reported consistent expression across PBMC isolations 

[101, 102]. qPCR assays were performed in duplicate on a StepOnePlus Real-time PCR Instrument 

(Applied Biosystems) using 5 µl cDNA (500 ng total), 1 µl TaqMan Gene Expression Assay 

(Applied Biosystems Assay Nos. Ss03391669 (CD8A), Ss06890240 (NDRG1), Ss03374854_g1 

(B2M), Ss03391154_m1 (GAPDH)), 10 µl TaqMan Fast Advanced Mastermix (Applied 

Biosystems), and 4 µl water. Reaction conditions were 50oC for 2 min and 95oC for 2 min, 

followed by 40 cycles of 95oC for 1 s and 60oC for 20 s. Delta Cts (dCts) were obtained for each 

sample by subtracting the geometric mean of reference gene Cts from the test gene Ct, and 

ANOVA and post-hoc pairwise comparisons were performed to identify significant differences 

between genotypes. 
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Table 2.1. Summary of Immune Cell WGBS Libraries and Global DNA Methylation 

Cell Type Symbol 
No. Raw 

Reads 
(M) 

Mapping 
Rate (%) 

Conversion 
Efficiency 

(%) 

Global 
Methylation 
Rate (%)* 

Rep 
Corr. 

CD21- B cells CD21nB 152.4 88.5 99.4 82.2abc 0.80 
CD21+ B cells CD21pB 150.6 90.3 99.4 80.3bc 0.83 
Myeloid cells Myeloid 146.0 88.8 99.4 83.5a 0.81 
Neutrophils Neut 162.6 90.5 99.4 82.3ab 0.80 

NK cells NK 172.8 88.9 99.4 80.3bc 0.80 
CD4+ T cells CD4T 174.1 88.3 99.4 84.3a 0.84 
CD8+ T cells CD8T 183.8 88.6 99.4 83.1a 0.81 
CD4+CD8+ T 

cells CD4CD8T 170.1 91.0 99.4 80.1c 0.83 

SWC6γδ+ T 
cells SWC6gdT 168.1 88.6 99.4 84.1a 0.81 

*Letters indicate statistically significant differences between cell types 
 

2.4     Results 

2.4.1     Porcine immune cells exhibit unique DNA methylation patterns associated with 
cell-specific co-receptor activation and biological processes 

We generated 146-184M WGBS reads for each immune cell subpopulation, of which 88.3-91.0% 

aligned to the S. scrofa reference genome (Table 2.1). We observed bisulfite conversion rates 

>99% and Pearson correlation coefficients between replicates >0.8, meeting the standards for 

WGBS libraries previously set by ENCODE (https://www.encodeproject.org/data-

standards/wgbs/). Average global CpG methylation rates ranged from 80.1% to 84.3%, with 

significant differences observed between cell types. Methylation rates of myeloid, CD4T, CD8T, 

and SWC6gdT cells were significantly higher than those of CD21pB, NK, and CD4CD8T cells. 

We assessed whether global methylation rates were associated with corresponding expression of 

DNA methyltransferases (DNMTs) and observed a moderate positive correlation with DNMT3A 

(r=0.469, p=0.057), a marginal negative correlation with DNMT1 (r=-0.249, p=0.336) and a 
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significant negative correlation with DNMT3B (r=-0.517, p=0.034; Figure A.1). When taking into 

account the positive association with DNMT3A and the negative associations with DNMT1 and 

DNMT3B, overall DNMT abundance was most significantly correlated with CpG methylation 

(r=0.649, p=5.00E-3), demonstrating that combined DNMT expression explained a significant 

proportion of global methylation variation. DNMT1 and DNMT3B play important roles in 

methylation of replicating DNA by methylating newly synthesized DNA and centromeric regions, 

respectively [103]. Indeed, relative centromeric methylation in porcine immune cells was 

positively correlated with DNMT3B expression (r=0.613, p=5.13E-03), suggesting that DNMT3B 

activity may be localized to these regions. Furthermore, we observed that the genes most 

significantly correlated with global CpG methylation were enriched for DNA replication GO terms 

(data not shown). We have thus identified methyltransferase and DNA replication genes as 

significant correlates with DNA methylation levels, suggesting that these processes have a 

significant impact on methylation signatures in porcine immune cells.   

 We identified 54,391 regions at which methylation rate was significantly associated with 

cell type, hereby classified as cell differentially methylated regions (cDMRs). A principal 

component analysis (PCA) revealed that PC1 and PC2 explained 41.1% and 29.2% of the variance 

in cDMR methylation, respectively, and clearly separated cell types into those of the B cell, T cell, 

and myeloid lineages (Figure 2.1A). To determine if differential immune cell methylation was 

occurring within expected genes, we scanned for cDMRs within genes encoding proteins used for 

cell sorting. We identified multiple cDMRs within the CD3 multi-gene locus at which T cell 

methylation was significantly lower than in other cell types (Figure 2.1B). Furthermore, NK cells, 

known to express CD3D and CD3G but not CD3E, exhibited relatively low methylation at CD3D   
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Figure 2.1. Evidence for lineage-specific immune cell differential methylation.  (A) Principal 
component analysis plot of porcine immune cells based on cell differentially methylated region 
(cDMR) methylation rate. (B) Methylation rates across the CD3 gene locus for expressing and 
non-expressing cell types. Gray boxes indicate cDMRs, and black dots indicate CpG coordinates. 
(C) Heatmap of immune cell lowly methylated region (cLMR) enrichment scores in genomic 
features.   

and CD3G promoters but high methylation comparable to other CD3e- cell types at the CD3E 

promoter, demonstrating the high resolution of WGBS libraries. We observed additional cDMRs 

exhibiting hypomethylation at the immune cell marker genes CD4 (in CD4T cells and CD4CD8T 

cells), CD8A (in NK cells, CD8T cells, and CD4CD8T cells), SIRPA (in myeloid cells and 
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neutrophils) and CD19 (in B cells; Figure A.2), revealing putative novel sites of gene regulation 

associated with receptor expression.   

 To further classify cDMRs based on cell types in which low methylation was observed, we 

designated all cDMRs with methylation rate <75% and z-score <-1 in a given cell type as cell 

lowly methylated regions (cLMRs). A total of 32,737 cLMRs were identified, ranging from 1,196 

in CD21nB cells to 13,701 in CD21pB cells (Table A.1). We mapped cLMRs to gene features as 

well as CpG Islands (CGIs) and identified feature- and cell-specific enrichment (Figure 2.1C). 

cLMRs in six of the nine immune cell types were most significantly enriched in gene promoters, 

and to a lesser extent in other gene features (exons, introns, and TTSs) as well as CpG shores. 

Conversely, little to no enrichment was observed in intergenic regions, CGIs, and non-CGIs across 

cLMRs, suggesting that cell-specific low methylation indicative of gene regulation is more 

prominent in genomic regions proximal to genes as well as loci of intermediate CpG density. 

LMRs in three cell types (CD21pB, NK and CD4CD8T cells) were not enriched for any genomic 

features, which is in agreement with the observed global hypomethylation of these immune cell 

types relative to other cell types. We submitted cLMR-overlapping genes of each cell type for 

GSEA and identified uniquely enriched GO terms associated with respective cell functions (Table 

2.2). Notably, we identified significant enrichment of CD4CD8T cell LMR genes for processes 

related to interferon gamma production and interleukin-15 signaling, in agreement with known 

function of CD4CD8T cells in the porcine periphery [104]. Overall, these results indicate a strong 

association between immune cell differential methylation and marker gene expression as well as 

genes involved in cell-specific biological processes. 
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2.4.2     Immune cell differential methylation is strongly associated with differential gene 
expression 

To determine if immune cell differential methylation was associated with differential expression 

of overlapping genes, we utilized bulk RNA-sequencing data generated from the same porcine 

immune cell populations [81] and tested for significant associations between cDMRs and transcript 

abundance of overlapping genes. Methylation rates of promoter and intragenic cDMRs were 

heavily biased towards being significantly correlated with local transcript abundance compared to 

a random sampling of regions from each respective feature (Figure 2.2A-B). For cDMRs in 

Table 2.2. Enriched GO terms among cell lowly methylated genes 

GO Term No. Genes Enrichment FDR 

CD21nB cell LMR Genes 

Regulation of B cell receptor signaling 
pathway  9 5.54 1.06E-02 

B cell activation 32 3.14 2.17E-05 

B cell differentiation  21 2.95 3.62E-03 

Neut LMR Genes 

Positive regulation of cell motility  107 1.81 1.25E-05 

Neutrophil activation involved in immune 
response  94 1.80 7.59E-05 

Neutrophil degranulation  93 1.80 9.29E-05 

CD4T cell LMR Genes 

Alpha-beta T cell differentiation  16 6.9 1.85E-06 

CD4-positive, alpha-beta T cell differentiation  11 6.81 2.24E-04 

T-helper cell differentiation  8 6.67 3.95E-03 

CD4CD8T cell LMR Genes 

Interleukin-15 mediated signaling pathway 8 5.32 1.65E-02 

Positive regulation of interferon-gamma 
production 21 2.71 6.90E-03 

Regulation of interferon-gamma production  27 2.22 1.14E-02 
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intergenic regions, we identified the gene with the most proximal transcription start site (TSS) and 

saw a similar overrepresentation of significant correlations between intergenic methylation and 

gene expression as those for cDMRs and overlapping genes (Figure 2.2C). cDMRs across gene 

features were more enriched for negative associations with transcript abundance, although a small 

but significant enrichment for positive associations was also evident (Figure 2.2D). We observed 

that genes in which cDMR methylation was positively correlated with transcript abundance were 

more lowly expressed on average compared to genes with negative methylation-transcript 

abundance associations, and furthermore that these positively correlated cDMRs exhibited higher 

methylation rates on average (data not shown). Within immune cell marker genes, cDMRs 

exhibited methylation rates that were significantly negatively correlated with abundances of 

corresponding transcripts (Figure A.3). Furthermore, by identifying the most proximal TSSs to 

intergenic cDMRs, we identified a region approximately 19kb upstream of the SIRPA TSS that 

was lowly methylated in myeloid cells and neutrophils (Figure 2.2E). While there was no evidence 

of TSS-proximal differential methylation between SIRPA-expressing and non-expressing cell 

types, methylation at this upstream locus was significantly negatively correlated with SIRPA 

abundance (r = -0.94), suggesting putative enhancer-like function. A region of open chromatin as 

measured by ATAC-seq has been identified in the same region in myeloid cells (Juber Herrera-

Uribe, personal communication), providing additional evidence for a myeloid-specific enhancer 

element at this locus. Collectively, these results elucidate context-specific associations between 

DNA methylation and both proximal and distal gene expression, and highlight putative sites of 

transcriptional epigenetic gene regulation. 

 We calculated the degree to which cLMRs associated with cell-enriched gene expression 

using the same RNA-seq data sets. We identified 2,895 genes exhibiting enriched gene expression  
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Figure 2.2. Porcine immune cell differential methylation is associated with differential gene 
expression. (A-C) Histograms of cDMR methylation-gene expression Pearson correlation 
coefficients in promoter, intragenic, and intergenic regions, inset by distributions at a random 
sampling of regions overlapping each feature. (D) Enrichment of cDMRs for regions positively 
and negatively correlated with gene expression, separated by gene feature. (E) A myeloid cell 
and neutrophil lowly methylated region located ~19kb upstream of the SIRPA gene is 
significantly negatively correlated with SIRPA abundance.  

in one or more cell types, ranging from 244 genes in CD4CD8T cells to 1,261 in myeloid cells 

(Table A.2). Overall, cLMRs were highly overrepresented among expression-enriched genes of 

the same or related cell types (Figure 2.3A-C). Promoter and TTS cLMRs tended to have stronger 

and exclusive associations with expression-enriched genes of the same cell type; however, this 

pattern was also observed to a lesser extent among intragenic cLMRs, demonstrating that low 

methylation outside of promoter regions is associated with enriched gene expression. We provide 

here ample evidence that cell-specific differential methylation in porcine immune cells is highly 

correlated with transcript abundance and co-localizes with genes associated with immune cell 

state.  
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Figure 2.3. Cell lowly methylated regions (cLMRs) are enriched within expression-enriched 
genes. (A-C) Heatmap of normalized enrichment p-values between expression-enriched genes 
and genes overlapping promoter, intragenic, and transcription termination site cLMRs for each 
cell type.  

2.4.3     Cell lowly methylated regions are enriched for cell-specific transcription factor 
binding motifs  

Because DNA methylation is known to inhibit TF activity, and lowly methylated regions are thus 

more likely to be permissive to TF binding, we submitted cLMR and random control sequences 

for analysis of motif enrichment to identify enriched TF binding motifs. Clustering of cells based 

on cLMR enrichment for 1808 human motifs grouped cell types into B cells, myeloid cells, NK 

and CD4CD8T cells, and the remaining T cell subpopulations (data not shown). The most enriched 

binding motifs among cLMRs were highly cell-type specific, and many play an important role in 

the respective cell type’s development, maturation, and function (Figure 2.4A). These included 

motifs for transcription factor E2-alpha (TCF3) in lymphocytes and the CCAAT enhancer binding 

protein (CEBP) family in myeloid cells. Other binding motifs were enriched among lymphocyte 

subtypes: motifs of early B cell factor 1 (EBF1) and paired box 5 (PAX5) were enriched among B 

cell LMRs, while transcription factor 7 (TCF7) and lymphoid enhancer binding factor 1 (LEF1) 

motifs were enriched in ab TCR cell (CD4T, CD8T, CD4CD8T) LMRs. Several TFs possessed   
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Figure 2.4. Porcine immune cell lowly methylated regions (cLMRs) co-localize with unique 
transcription factor (TF) binding motifs. (A) Normalized heatmap of enrichment scores for most 
significantly enriched TF binding motifs among cLMRs. (B) Pearson correlation coefficients 
between TF expression and –log10 p-value of motif enrichment among cLMRs. Red and blue bars 
indicate positive and negative correlations, respectively. 

enriched motifs among LMRs for a single cell type, such as T-bet (TBX21) and Eomesodermin 

(EOMES) among NK cell LMRs, Fos:JunB heterodimers among CD4CD8T cell LMRs, and 

GATA binding proteins (GATAs) among SWC6gdT cell LMRs.  

 To determine if binding motif enrichment among cLMRs was associated with increased 

expression of corresponding TFs, we assessed transcript abundances for all TFs in Figure 2.4A. 

Of the 25 expressed TFs, 13 exhibited transcript abundances that were significantly positively 

correlated (r>0.5) with cLMR enrichment for the corresponding binding motif, and all but 6 

correlations were positive (Figure 2.4B). Furthermore, many of the TFs exhibited significantly 

enriched expression in the same cell types for which their binding motifs were enriched among 

cLMRs: EBF1, POU2F3, PAX5, TCF3, and TCF4 (B cells), TCF7 and LEF1 (T cells), TBX21 

(NK cells), CEBPA/B/D and SPI1 (myeloid cells), and GATA3 (SWC6gdT cells) (Figure A.4). 
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These data support the conclusion that regions of cell-specific low methylation are associated with 

regulatory potential of biologically-relevant trans-acting factors regulating immune cell 

development and function.  

2.4.4     Immune cell differential methylation co-localizes with candidate loci for immune 
capacity and disease traits 

To determine if observed immune cell differential methylation was associated with genomic 

regions influencing economically important traits, we identified cDMRs harboring previously-

reported GWAS SNPs in the Pig QTL Database. Among various trait classes, we identified cDMR 

enrichment exclusively for SNPs associated with immune capacity traits, and no significant 

enrichment for SNPs associated with growth, reproductive, or behavioral traits (Figure 2.5A). 

Fifty-three immune capacity GWAS SNPs overlapped cDMRs, and several were within 

biologically-relevant genes exhibiting transcript abundance that was significantly correlated with 

regional methylation rate (Table 2.3). We identified a SNP associated with the traits ‘CD8+ T cell 

percentage’ and ‘CD8- T cell percentage’ that co-localized with a CD8T cell LMR within CD8B 

(Figure 2.5B) [105]. This gene encodes the beta subunit of the CD8 T cell co-receptor and 

exhibited the highest transcript abundance in CD8T cells (log2FoldChange=6.32). The GWAS 

SNP (rs81371115, 4:g.57971247C>T) lies in an intronic CpG upstream of exon 2. To determine 

if this SNP was also associated with local gene expression, we quantified transcript abundances of 

CD8B and CD8A via RT-qPCR in PBMCs across rs81371115 genotypes in an unrelated MSU pig 

resource population. While CD8B abundance was too low to detect significant differences, SNP 

genotype was significantly associated with CD8A expression (p=0.027), with the TT genotype 

exhibiting significantly lower abundance than CC and CT genotypes (Figure 2.5C). These results 

corroborate previous findings that rs81371115 genotype is associated with CD8+ T cell 
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composition phenotypes, and demonstrate the regulatory potential of the LMR overlapping this 

SNP in influencing CD8 co-receptor expression.  

 Lastly, we also queried disease-associated GWAS SNPs for co-localization with cDMRs, 

and identified a myeloid and NK cell LMR in N-Myc Downstream Regulated 1 (NDRG1) 

harboring a SNP associated with number of mummified piglets (rs327164077, 4:g.8034723T>C). 

The phenotype of mummified piglets is often caused by porcine reproductive and respiratory 

syndrome virus (PRRSv) infection in the sow [106], and NDRG1 has previously been implicated 

in PRRSv response [107]. In adult porcine PBMCs, we observed significantly lower NDRG1 

abundance in the CT genotype relative to CC (p=0.001) while the TT genotype exhibited 

intermediate expression, providing evidence of a shared genetic association for reproductive 

performance and NDRG1 expression (Figure 2.5D). In summary, our results have enhanced 

Table 2.3. SNPs within cLMRs associated with transcript abundance 

SNP Pos Trait cLMR 
Cell Gene 

Meth-
TPM 
cor 

Meth-
TPM 

pvalue 

Expression 
Enrichment 

3:30799911 CD8+T%, 
CD8-T% 

CD4T, 
SWC6gdT SNX29 0.673 0.003 CD21pB 

3:56530168 CD8+T%, 
CD8-T%, 

CD3-CD8-
T% 

CD21nB, 
SWC6gdT ZAP70 -0.752 0.0005 

CD21nB, 
SWC6gdT, 

Neut 

3:57971274 CD8T CD8B -0.839 2.56E-05 CD8T, NK 

3:58968002 NK ATOH8 -0.715 0.0012 CD8T, NK 

8:30368512 
Lymphocyte 
percentage, 

20 d 

CD21pB, 
Myeloid KLHL5 -0.446 0.073 Myeloid 

4:8034723 
No. of 

mummified 
pigs 

Myeloid, 
NK NDRG1 -0.614 0.0087 Myeloid 
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functional annotation in genomic regions at which genetic variation is associated with immune 

traits, and have further linked such genetic variation to local gene expression. 

 
Figure 2.5. Immune cell differentially methylated region (cDMRs) harbor immune capacity 
GWAS SNPs. (A) Enrichment barplot of GWAS SNPs for various trait classes among cDMRs. 
Dashed line indicates threshold for significance. (B) CD8B/CD8A locus methylation plot 
including a CD8T cell LMR overlapping a CD8+ T cell %/CD8- T cell % GWAS SNP (red 
asterisk). Gray boxes indicate cDMRs, and black dots indicate CpG coordinates. (C&D) 
Normalized CD8A and NDRG1 abundance in porcine peripheral blood mononuclear cells by 
CD8B and NDRG1 SNP genotype, respectively. Different letters indicate statistically significant 
differences (FDR<0.05). 

2.5     Discussion 

We report here the first genome-wide assessment of DNA methylation in different porcine 

circulating immune cells, and correlate methylation with gene expression of the same sorted cells. 

Using these data, we have identified thousands of genomic regions where methylation rate is 

associated with immune cell type, which suggests that these regions play important roles in cell-
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specific gene regulation. Previous ENCODE studies have surveyed DNA methylation in B and T 

cell subpopulations from healthy individuals and leukemia patients, and have reported similar 

trends of cell-specific DNA methylation patterns between cell types and states [25, 41]. We have 

surveyed a greater diversity of circulating immune cell populations in the pig derived from both 

myeloid and lymphoid lineages, including T cell populations that are uniquely overrepresented in 

the pig relative to human and mouse. Our DNA methylation analyses thus provide unique insights 

into epigenetic gene regulation in understudied immune cells.  

 We observed global DNA methylation rates between 80-84% that are comparable to those 

reported across mammalian species [27]. Among cell types, CD21pB cells, NK cells, and 

CD4CD8T cells possessed significantly lower methylation rates relative to other immune cells. 

Previous studies have shown that B and NK cell development and activation are associated with 

global DNA hypomethylation [108–111]. We identified significant correlates with global 

methylation rates, most notably abundance of DNA methyltransferase transcripts. While 

DNMT3A, DNMT1 and DNMT3B are all responsible for catalyzing cytosine methylation, 

transcript abundances of the latter two were negatively correlated with global CpG methylation 

rates in our study, such that their abundances subtracted from DNMT3A abundance explained the 

greatest proportion of variance in immune cell methylation rate. DNMT3A is responsible for de 

novo DNA methylation, thus higher expression would be expected to result in increased 

methylation rates genome-wide [112]. The negative correlations between global methylation and 

DNMT1 and DNMT3B abundance may be due to their associations with replicating DNA and 

dividing cells. Newly synthesized DNA is inherently hemi-methylated following replication, and 

requires the activity of maintenance methyltransferase DNMT1 to conserve CpG methylation 

[113]. Furthermore, DNMT3B, a de novo methyltransferase, can promote mitotic division by 
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methylating centromeric regions and establishing chromosome stability [103]. We provide 

evidence that global hypomethylation of cell types may be associated with increased rates of cell 

division due to their higher rates of relative centromeric methylation as well as increased 

expression of genes involved in DNA replication and cell division. Overall, these data suggest that 

variation in genome-wide DNA methylation levels can be explained in part by differences in 

DNMT expression and, potentially more directly, mitotic capacity of cell types. 

 We identified tens of thousands of genomic loci exhibiting differential methylation 

associated with porcine immune cell type. As regions of epigenetic variation, cDMRs represent 

likely regions of gene regulation that are associated with cell identity and function. In support of 

this claim, clustering by cDMR methylation rate broadly grouped samples by cell lineage, and 

numerous cDMRs were present within immune cell-specific co-receptors. The majority of cDMRs 

were further classified as cLMRs for the cell types known to express the encoded marker, 

suggesting that these loci may promote expression of the resulting transcript. While cLMRs of 

some marker genes were limited to promoter regions (e.g. CD4, CD19), others exhibited cell-

specific low methylation in intragenic regions (e.g. CD8A, SIRPA). Lowly methylated intragenic 

regions associated with gene activation have been shown to be predictive of intronic enhancer 

elements in human tissues and cell lines [25], suggesting similar regions in porcine immune cells 

are promising candidates for distal regulatory elements. Among cell lowly methylated genes, we 

identified enrichment for cell-specific processes for the majority of cell types, demonstrating that 

low methylation genome-wide occurs disproportionately in functionally-relevant loci.  

 By integrating methylation data with transcript abundance data from the same porcine 

immune cell samples, we identified an overrepresentation of regions at which methylation rate was 

significantly correlated with expression of overlapping genes. Intergenic cDMRs were also 
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disproportionately correlated with abundance of the most proximal gene’s transcript, signifying 

putative roles for these regions as distal regulators of gene expression. The majority of significant 

cDMR-transcript abundance correlations—particularly in promoter regions—were negative, 

which is in agreement with the predominantly repressive role of DNA methylation at promoter 

and enhancer regions previously reported in other mammals [25, 32]. However, enrichment for 

positive correlations between cDMR methylation and expression was also observed, and was more 

common in genes exhibiting lower expression and higher methylation. This finding is in agreement 

with previous work reporting expression-dependent relationships between differential gene 

methylation and transcript abundance: for genes of lower basal expression levels, methylation 

increases with increasing transcription rates due to increased chromatin opening by RNA 

Polymerase II (Pol II), but at a certain expression threshold methylation disrupts RNA Pol II and 

vice versa [38].  We demonstrate that integrating immune cell methylation data with gene 

expression data can identify putative distal-acting regulatory elements, exemplified by a putative 

myeloid enhancer upstream of SIRPA at which methylation was negatively correlated with SIRPA 

abundance. Cell-enriched gene expression was most strongly correlated with lowly methylated 

regions, suggesting that any active role DNA methylation plays in regulating porcine immune gene 

expression is largely suppressive. The colocalization of enriched genes with LMRs across all gene 

features signify the importance of intragenic epigenetic gene regulation in maintaining cell-type 

specific gene expression.  

 We have shown that immune cell differential methylation is associated with regions 

harboring TF binding motifs, many of which govern cell-specific functions. It has long been 

understood that differential methylation acts in coordination with changes in trans-acting factor 

binding to regulate gene expression, although the exact mechanisms governing this relationship 
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remain debated and are likely context-specific [114]. In general, DNA hypomethylation in 

promoters and enhancers is associated with increased binding of activating TFs, while 

hypermethylation is associated with exclusion of activating TFs and recruitment of transcriptional 

repressors [31, 82]. Human and mouse DNA methylation studies report enrichment for binding 

sites of functionally-relevant TFs within LMRs unique to tissues and cell types [32, 41, 85]. 

Similarly, we identified enriched TF motifs among cLMRs that play known roles in regulating 

development and function, including: the CEBP family of TFs in myeloid cells [115–117]; EBF1 

and PAX5 in B cells [118, 119], TCF7 in T cells [120], and EOMES and T-bet/TBX21 in NK cells 

[121]. Furthermore, we identified overrepresented motifs within porcine-enriched T cell LMRs 

that provide insight into gene regulation in these subpopulations. Multiple GATA TF motifs were 

enriched solely among SWC6gdT cell LMRs in our analysis. Among these, GATA3 has previously 

been shown to be highly expressed in porcine γδ T cells, and also exhibited enriched expression 

in our study (log2FoldChange=4.89) [122]. It is thus likely that GATA3 plays a critical role in 

mature γδ T cells that is unique from its role in other T cell subtypes. A recent single-cell RNA-

sequencing analysis in PBMCs from the same individuals reported greater GATA3 expression in 

CD2- γδ T cell clusters relative to CD2+ γδ T cell clusters, suggesting even further restriction of 

GATA3 activity to certain γδ T cell subpopulations [81]. In CD4CD8T cell LMRs, we identified 

enrichment of multiple AP-1 TF complex motifs, with c-Fos:JunB heterodimers being the most 

enriched. c-fos deficiency in mice has previously been linked to decreased AB T cell production 

in cultured thymocytes [123]. However, the presence of lowly methylated AP-1 binding sites in 

mature DP T cells indicates a potential outsized role for these TFs beyond thymic T cell 

development. AP-1 TF binding has been shown to activate IFNg, which DP T cells are known to 
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express at high levels [124]. Future studies should seek to assess the genome-wide consequences 

of AP-1 motif hypomethylation and its association with AP-1 activity in porcine DP T cells.  

 Lastly, we provide evidence that differential methylation is associated with reported QTL 

for pig immune traits. Previous studies have identified tissue- and cell-specific enrichment of 

LMRs for human and livestock GWAS SNPs of relevant traits [41, 83, 84]. We similarly identified 

immune cell DMR enrichment exclusively for pig immune capacity traits, and not for traits related 

to growth, reproduction, and behavior that are less likely to be directly impacted by immune system 

gene regulation. In addition to observed overall enrichment, cDMRs overlapped GWAS SNPs 

within strong candidate genes for associated traits. These included a SNP associated with various 

T cell subpopulation percentages in a CD8T cell LMR overlapping the CD8B/CD8A locus. We 

show here that the same SNP is associated with PBMC CD8A expression in a separate pig 

population, demonstrating that CD8 co-receptor transcript abundance may serve as an intermediate 

molecular phenotype linking genetic variation with previously observed variation in T cell 

composition. Furthermore we also show that a SNP within a myeloid and NK cell LMR 

overlapping NDRG1 is significantly associated with NDRG1 expression, while also having been 

previously associated with number of mummified piglets [125]. Both reproductive performance 

and NDRG1 expression have been shown to be negatively impacted by PRRSV infection, with 

downregulation of NDRG1 contributing to increased PRRSV replication rate [106, 107]. It is thus 

intriguing to hypothesize that NDRG1 expression may act as an intermediate molecular phenotype 

linking NDRG1 genotype with observed reproductive variation, and that this relationship may be 

further affected by viral infection.  

 In summary, we have vastly improved the understanding of epigenetic gene regulation in 

porcine immune cells through the generation of DNA methylation profiles across diverse cell 
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types. These data sets will contribute to the efforts of the Functional Annotation of Animal 

Genomes (FAANG) project by providing additional regulatory information in important porcine 

cell types. Additionally, we believe the results presented here will prove valuable in further 

understanding how cell-specific epigenomic modifications contribute to pig immune and disease 

phenotypes, and inspire future studies seeking to integrate functional annotation data to enhance 

the search for causative variants for complex traits.  
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CHAPTER 3 
 

PIG FETAL SKELETAL MUSCLE DEVELOPMENT IS ASSOCIATED WITH 
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3.1     Abstract 

Fetal myogenesis represents a critical period of porcine skeletal muscle development and requires 

the coordinated expression of thousands of genes. While numerous studies have transcriptionally 

profiled prenatal skeletal muscle, the cis-regulatory dynamics associated with porcine myogenesis 

remain poorly characterized. Epigenetic mechanisms play important roles in regulating 

development and differentiation; among such mechanisms, DNA methylation exhibits context-

specific associations with gene expression and has been shown to be highly dynamic during 

developmental processes. We performed whole-genome bisulfite sequencing to assess DNA 

methylation in pig fetal longissimus dorsi (LD) muscle at 41 and 70 days of gestation (dg), as well 

as RNA- and small RNA-sequencing in the same samples to identify coordinated changes in 

methylation and expression between myogenic stages. We observed global loss of DNA 

methylation in LD muscle at 70 dg: among the 45,739 differentially methylated regions (DMRs) 

identified, the majority (N=34,232) were hypomethylated at 70 vs. 41 dg. Developmental DMRs 

exhibited feature-specific enrichment in gene regulatory regions, as well as in regions proximal to 

micro-RNAs (miRNAs) that play known roles in myogenesis. Integration of DNA methylation 

and gene expression data revealed strong associations between differential transcript abundance 

and gene methylation. Of particular note was the finding that differential miRNA methylation was 
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significantly negatively correlated with abundance, and that differential expression patterns 

continued for assayed miRNAs well into postnatal life. Motif analysis revealed significant 

enrichment of myogenic regulatory factor binding motifs among hypomethylated regions, 

suggesting that loss of methylation may function in part to increase accessibility of muscle-specific 

transcription factors. Lastly, we show that developmental DMRs are enriched for GWAS SNPs 

associated with muscle physiology and meat quality traits, demonstrating the potential for 

epigenetic processes in these regions to influence phenotypic diversity. Our results enhance 

understanding of DNA methylation dynamics in pig fetal skeletal muscle, and reveal putative cis-

regulatory elements under epigenetic control during porcine myogenesis.      

3.2     Introduction 

Skeletal muscle accounts for the majority of carcass weight in pigs and other livestock species, 

and its physiology influences numerous meat quality phenotypes [126]. Fetal myogenesis 

represents a critical window in skeletal muscle growth and development: while muscle continues 

to grow postnatally via hypertrophy, the fiber numbers in most muscle types are established 

prenatally in two waves of myoblast fusion and differentiation [127]. In the pig, primary 

myogenesis occurs between 30 and 60 days gestation (dg), at which time myoblasts fuse de novo 

to form primary myotubes [45]. During secondary myogenesis (54-90 dg) myoblasts fuse using 

primary myotubes as a scaffold to form secondary myotubes [45]. It has long been recognized that 

the migration, proliferation, and differentiation of skeletal muscle precursors requires the 

coordinated expression of thousands of genes, and the family of myogenic regulatory factors 

(MRFs)—including MYOD1, MYF5, myogenin (MYOG), and MRF4/MYF6—have emerged as 

critical regulators of these processes [128]. Over the past two decades transcriptome-wide profiling 

of fetal skeletal muscle has been performed in multiple pig breeds [129–134]. Furthermore, 
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expression of small RNAs (smRNAs) in developing muscle has gained increased appreciation in 

recent years. In particular micro-RNAs (miRNAs)—a class of smRNAs known to inhibit gene 

expression via binding of target transcripts—have been shown to play important roles throughout 

muscle development [135], and a number of studies have assessed miRNA expression in prenatal 

and postnatal porcine skeletal muscle [136–139].  

 Despite insights into gene expression dynamics throughout muscle development, the cis-

regulatory elements driving expression of RNAs and miRNAs during pig skeletal muscle 

development have remained understudied, particularly those regulated by epigenetic processes. 

Among epigenetic modifications, DNA methylation is the most prevalent modification made to 

the DNA molecule, and in mammals primarily involves the enzymatic addition of a methyl group 

to the 5-position of cytosines in CpG dinucleotides. DNA methylation has been shown to exhibit 

context-specific associations with gene expression: methylation in promoter and enhancer regions 

is generally inversely correlated with transcript abundance, either through the alteration of 

transcription factor (TF) binding sites or the recruitment of transcriptional repressors and 

chromatin-modifying enzymes [25, 31, 82]. Intragenic DNA methylation has been shown to be 

highly gene- and site-specific, due in part to the high frequency of intronic regulatory elements 

[25]. Several studies have recently reported DNA methylation patterns in adult porcine skeletal 

muscle as well as across developmental stages [140–144]. However, associations between DNA 

methylation and RNA and smRNA expression have not been extensively studied, limiting 

understanding of epigenetic gene regulation by DNA methylation during myogenesis.  

 We have performed whole-genome bisulfite sequencing (WGBS) in tandem with RNA-

sequencing (RNA-seq) and smRNA-seq in porcine fetal longissimus dorsi (LD) muscle at 41 dg 

and 70 dg, representing stages of primary and secondary myogenesis, respectively. The goals of 
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the current study were to identify differentially methylated regions (DMRs) between myogenic 

stages and characterize their relationships with differential RNA and miRNA abundance. We 

demonstrate that LD muscle DNA is extensively hypomethylated during developmental 

progression, and is strongly associated with gene expression dynamics as well as muscle-specific 

cis-regulatory elements. Our results greatly increase understanding of epigenetic gene regulation 

during pig fetal skeletal muscle development and reveal putative regulatory regions that may 

contribute to variation in skeletal muscle phenotypes.  

3.3     Materials & Methods  

3.3.1     Sample Collection and Nucleic Acid Isolation  

LD muscle was sampled from fetuses of three Yorkshire x Landrace gilts each at 41 dg and 70 dg. 

41 dg littermate samples were pooled irrespective of sex, while pooled 70 dg samples contained 

tissue from only female fetuses. DNA was isolated using the PureLink Genomic DNA Kit 

(Invitrogen), and quality and quantity were assessed on the Qubit fluorometer. DNA samples were 

spiked with unmethylated lambda phage DNA (5 ng lambda DNA/ 1ug sample DNA) to assess 

bisulfite conversion rates. Sodium bisulfite conversion was performed using the Zymo EZ DNA 

Methylation-Gold Kit, and sequencing libraries were prepared using the Kapa Hyper Prep DNA 

Kit (Roche). WGBS was performed as described in Section 2.3.3.  

 RNA was isolated from five of the six LD samples using the TRIzol extraction method, 

and isolated from one sample (41dg_3) using the miRNAeasy mini kit (Qiagen). RNA quality and 

quantity were assessed on the Agilent Bioanalyzer. RNA-and smRNA-seq libraries were prepared 

using the Illumina TruSeq Stranded Total RNA Ribozero Library Preparation Kit and the Illumina 

TruSeq Small RNA Library Preparation Kit, respectively, following manufacturer’s instructions. 
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Completed libraries were QC’ed and quantified using a combination of Qubit dsDNA High 

Sensitivity (HS) and Agilent Bioanalyzer HS DNA assays. RNA-seq (2x150bp PE) and smRNA-

seq (1x50bp single-end) were performed on an Illumina HiSeq 4000 instrument.  

3.3.2     Bioinformatics Analyses  

WGBS read trimming, alignment, and methylation extraction were performed as described in 

Section 2.3.4. Due to the suboptimal conversion rates obtained across samples, we used the 

filter_non_conversion command from Bismark to remove aligned reads with >3 consecutive 

methylated non-CpG cytosines. This filtering resulted in homogeneous bisulfite conversion rates 

> 99% across samples (Table B.1).  

 RNA-seq and smRNA-seq reads were trimmed of adapters and low-quality bases using 

Trimmomatic [87]. Trimmed RNA-seq reads were aligned to the Sus scrofa reference genome 

using TopHat2 [145], and gene counts were obtained from uniquely aligned reads using HTSeq-

count [146]. smRNA-seq reads were aligned to the S. scrofa reference genome and counts of 

mature miRNAs were obtained using the miRDeep2 suite [147]. 

3.3.3     Methylation Analyses  

Regional differential methylation analysis between stages was performed using the methylKit R 

package [89]. Briefly, average CpG methylation rates were calculated for 1kb non-overlapping 

regions of the S. scrofa genome, and regions covered by at least 20 reads were retained for further 

analysis. Logistic regression models were fitted for each region and an analysis-of-deviance was 

performed to determine the significance of the stage parameter’s inclusion in the model. Regions 

with a mean difference >10% between stages and FDR <0.05 were considered DMRs. Annotation 

of DMRs and gene set enrichment analysis (GSEA) of differentially methylated genes was 
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performed as described in Section 2.3.5. We classified any gene with a promoter-DMR as a 

promoter-DMG, and any gene with an intragenic-DMR an intragenic-DMG.  

3.3.4     Differential Expression Analyses 

Differential expression analysis of transcripts and miRNAs was performed using the DESeq2 R 

package [93]. Briefly, sample-specific size factors were determined to account for differences in 

sequencing depth, and gene-specific dispersion parameters were estimated to define mean-

variance relationships. Lastly, a negative binomial generalized linear model was fitted and a Wald 

test for the significance of stage coefficient (βi) for gene counts was performed. Genes and 

miRNAs with an absolute log2-fold-change>1 between stages and a Benjamini-Hochberg adjusted 

p-value<0.05 were considered differentially expressed. GSEA of DEGs was assessed using the 

Panther Database.  

 DNMT transcripts and miRNAs were selected for expanded expression profiling using 

reverse-transcriptase quantitative PCR (RT-qPCR). Briefly, total RNA at three additional ages 

(105 dg and 1 wk and 5 wk post-natal) was isolated using the TRIzol extraction method, and RNA 

and miRNA cDNA was reverse transcribed using the High-Capacity cDNA Reverse Transcription 

Kit and Taqman Advanced miRNA cDNA Synthesis Kit, respectively (Applied Biosystems). PPIA 

and HPRT1 were selected as reference genes for DNMT RT-qPCR and let-7a and miR-30e were 

selected as reference assays for miRNA RT-qPCR based on their observed stable expression across 

assayed developmental stages (data not shown). qPCR reactions were performed in triplicate as 

described in Section 2.3.9, with the modification of using 50 ng of cDNA at 5 µl total volume per 

reaction well. Statistical analyses of qPCR data were performed as described in Section 2.3.9 to 

test for significant differences between developmental stages.  
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3.3.5     Motif Enrichment Analyses  

Hyper- and hypomethylated DMR sequences were submitted for analysis of motif enrichment 

using the MEME suite [94]. Analyses were performed as described in Section 2.3.7.  

3.3.6     GWAS SNP Enrichment Analyses 

We extracted genomic coordinates of peak GWAS SNPs for all published traits from the Pig QTL 

database [100]. For each trait, enrichment scores were calculated corresponding to the associated 

GWAS SNPs’ enrichment within hyper- and hypomethylated DMRs. 

3.4     Results & Discussion 

3.4.1     Fetal pig skeletal muscle development is associated with genome-wide and regional 
hypomethylation 

We obtained 146-167M WGBS PE reads per sample (Table B.1), from which 402,438 1kb 

genomic regions with sufficient coverage were retained for differential methylation analyses. 

43,481 regions overlapped gene promoters, while 192,777 and 166,180 overlapped intragenic and 

intergenic regions, respectively. In total, 73.0% of annotated genes in the pig genome were covered 

by at least one region.  

 The greatest proportion of variance in LD methylation could be explained by gestational 

age (Figure B.1). Furthermore, we observed significant global DNA hypomethylation at 70 dg 

relative to 41 dg (Figure 3.1A; t=15.72, p=6.24E-4). To determine if global methylation 

differences were associated with differential expression of DNA methylation and demethylation 

enzymes, we assessed transcript abundances of DNA methyltransferases (DNMTs) and TET 

methylcytosine dioxygenases (TETs) between stages using RNA-seq data from the same samples. 

We observed significant decreases in abundance at 70 dg for DNMT1 (log2FC=-0.54, FDR=5.65E-

5), DNMT3A (log2FC=-0.68, FDR=7.78E-5), and DNMT3B (log2FC=-0.62, FDR=9.63E-3). 
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Conversely, members of the TET family, known to participate in active DNA demethylation [30], 

were significantly upregulated at 70 dg, including TET1 (log2FC=0.61, FDR=1.48E-5) and TET2 

(log2FC=0.65, FDR=5.10E-5). Yang et al. observed similar decreases in DNMT expression and 

moderate increases in TET abundance during prenatal LD muscle development [141]; however we 

observe equal changes in magnitude among both gene families. We quantified expression of 

DNMT transcripts at additional stages of prenatal LD muscle development via RT-qPCR; while 

within-stage variances were too large to detect significant differences in DNMT1 and DNMT3A 

abundance, we observed a significant decrease in DNMT3B abundance after 41 dg (Figure 3.1B; 

p <0.001) that validates patterns observed in RNA-seq data and demonstrates that DNMT3B is 

primarily active in early muscle development. These data suggest that global hypomethylation of 

developing pig fetal skeletal muscle may be due in part to decreased DNA methyltransferase 

activity and increased activity of demethylating enzymes.  

 We identified 45,739 DMRs between gestational ages, of which 11,507 were 

hypermethylated at 70 dg relative to 41 dg and 34,232 hypomethylated (Table 3.1). We surveyed 

MRF genes to determine if differential methylation was present in expected genomic regions. 

Within the MYF5 and MYF6 locus, MYF5 was significantly promoter-hypermethylated at 70 dg, 

whereas MYF6 was significantly hypomethylated upstream of its transcription start site (TSS; 

Figure 3.1C). MYF5 is the earliest expressed MRF and primarily functions in myoblast 

proliferation and determination [148], while MYF6 functions in muscle cell differentiation [149, 

150].  These patterns are thus in agreement with expected downregulation of MYF5 and 

upregulation of MYF6 as muscle development progresses, and demonstrate that differential 

methylation is evident at myogenic TFs.   
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Figure 3.1. Fetal skeletal muscle development is associated with genome-wide and site-
specific differential DNA methylation. (A) Dot plot of global DNA methylation of fetal 
longissimus dorsi (LD) muscle by developmental stage. (B) Fold change in DNMT3B abundance 
in fetal LD muscle relative to 41 days gestation across multiple developmental stages. (C) Gene 
methylation plot for muscle-specific transcription factors MYF5 and MYF6. Gray boxes indicate 
differentially methylated regions, and dots indicate CpG coordinates. **p < 0.05    

Table 3.1. Summary of differentially methylated regions (DMRs) and genes (DMGs) 
 DMRs Promoter-DMGs Intragenic-DMGs 
Total (70dg vs 41dg) 45,739 3,635 7,269 
   Hypermethylated 11,507 1,414 2,438 
   Hypomethylated  34,232 2,221 4,831 
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3.4.2     Skeletal muscle differential methylation is enriched in gene features and micro-
RNAs 

To determine if differential methylation was overrepresented in specific genomic regions, we 

annotated DMRs with respect to gene features, CpG islands (CGIs) and shores, and miRNA genes. 

Enrichment analyses revealed feature-specific enrichment of hyper- and hypomethylated regions 

(Figure 3.2A). Hypermethylated regions were significantly enriched in gene promoters and 

miRNAs, as well as within CGIs and CpG shores. The magnitude of DNA hypomethylation 

significantly impacted feature enrichment—potentially due to the global hypomethylation 

observed at 70 dg—however enrichment for miRNAs and CpG shores was consistently observed. 

CpG islands and shores are strongly associated with gene promoters and other gene regulatory 

features [151]. While generally non-methylated, studies have shown that a small proportion of 

CGIs become methylated during normal tissue differentiation [152–154]. Our data showing 

dynamic CGI methylation in pig fetal LD muscle is in agreement with these previous findings, and 

also highlight a potential role for DNA methylation in regulating miRNAs.  

 Due to the enrichment of DNA hyper- and hypomethylation in the vicinity of miRNAs, we 

looked more closely at patterns of miRNA methylation with particular focus on a class of miRNAs 

termed ‘myomiRs’ that play important roles in regulating myogenesis [135]. We identified 

hypomethylated DMRs within 2kb of four intronic myomiR genes—ssc-mir-1, ssc-mir-133a-1, 

ssc-mir-206, and ssc-mir-208a—suggesting that miRNAs may be epigenetically regulated 

independently of their host genes to confer activation (Figure B.2A-D). Furthermore we also 

observed significant hypomethylation flanking ssc-mir-378-2 and ssc-mir-338 (Figure 3.2B-C), 

which encode miRNAs promoting muscle differentiation and mitochondrial respiration, 

respectively [155, 156]. Among the most significantly hypermethylated miRNAs were ssc-mir-

196a and ssc-mir-615, both of which lie in the embryonic homeobox (HOX) gene cluster and have 
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Figure 3.2. Fetal skeletal muscle differential methylation exhibits feature-specific 
enrichment. (A) Enrichment of hyper- and hypomethylated regions in gene features, CpG islands, 
and miRNAs. (B&C) Stage-specific methylation plots for regions overlapping ssc-mir-378-2 and 
ssc-mir-338, respectively. Black horizontal lines indicate miRNA gene coordinates. 

 

 

Table 3.2. Enriched GO terms among promoter differentially methylated genes 
Promoter Hypermethylated Genes 

GO Term No. Genes Enrichment FDR 
Muscle cell fate commitment 6 6.36 4.48E-02 
Regulation of animal organ formation 11 6.28 8.50E-04 
Muscle tissue morphogenesis 13 2.92 4.93E-02 
Muscle organ development 40 2.12 2.44E-03 
DNA-binding transcription factor activity 179 1.83 5.51E-11 

Promoter Hypomethylated Genes 
GO Term No. Genes Enrichment FDR 

Regulation of release of sequestered calcium ion into 
cytosol 21 2.5 4.04E-02 

Regulation of cation transmembrane transport 39 2.2 5.34E-03 
Actin binding  78 1.63 2.09E-02 
Sarcomere 40 1.83 3.40E-02 
Actin cytoskeleton 84 1.55 1.49E-02 
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previously been shown to be downregulated during mammalian muscle development [137, 157] 

(Figure B.2E-F). These data demonstrate that DNA hyper- and hypomethylation are associated 

with embryonic and muscle-enriched miRNAs, respectively.  

 Annotation of DMRs resulted in identification of 3,635 promoter DMGs and 7,269 

intragenic DMGs (Table 3.1), and we identified uniquely enriched gene ontology (GO) terms  

between hyper- and hypomethylated gene sets (Table 3.2). Promoter-hypermethylated genes were 

enriched for terms related to organ and muscle development, as well as for terms associated with 

transcriptional regulation. Conversely, promoter-hypomethylated genes were broadly enriched for 

numerous GO terms, reflecting the global hypomethylation at 70 dg. However, the most enriched 

GO terms were related to calcium transport as well as structural components of muscle (e.g., 

sarcomere and actin cytoskeleton). Intragenic DMGs followed a similar trend in which the most 

enriched terms among hypermethylated genes were associated with early developmental 

processes, and the most enriched among hypomethylated genes were related to calcium and ion 

transport. In summary, the enriched terms associated with DMGs are in agreement with expected 

downregulation (via hypermethylation) of genes involved in early muscle cell development, and 

activation (via hypomethylation) of genes involved in muscle hypertrophy, including those 

encoding components of muscle fibers and calcium transport pathways.  

3.4.3     Differential methylation is strongly associated with differential transcript and 
miRNA expression 

In order to assess the putative regulatory effects of identified DMRs, we performed both RNA-seq 

and smRNA-seq in the same fetal LD samples to characterize differential expression patterns and 

their association with differential methylation. We obtained 37-58M RNA-seq reads per sample  

and 17,414 genes exhibited non-zero gene counts (Table B.2). Among these, 1,546 genes were 
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Figure 3.3. Fetal skeletal muscle differential methylation is associated with differential 
transcript and miRNA abundance. (A) Line plot of differential methylation by level of transcript 
abundance fold change between stages. NotDE = Not differentially expressed. (B) Enrichment 
heatmap for promoter and intragenic (GB) differentially methylated genes among differentially 
expressed transcripts and miRNAs. (C) Normalized transcript abundances for five differentially 
methylated and DE miRNAs across pre- and postnatal longissimus dorsi developmental stages. 

differentially expressed between stages (867 upregulated and 679 downregulated at 70 vs. 41 dg). 

Upregulated genes were significantly enriched for muscle-specific GO terms, including muscle 

contraction and muscle filament sliding, and downregulated genes were significantly enriched for 

terms related to early development and synaptic signaling (data not shown). Additionally, we 

generated 36-69M smRNA-seq reads across samples (Table B.2), and among smRNA species the 

majority of reads mapped to miRNAs (data not shown). 356 miRNAs were expressed across all 

samples, and 35 and 42 exhibited significantly increased and decreased abundance at 70 vs. 41 dg, 

respectively.  

 To determine the degree to which differential methylation was associated with changes in 

transcript and miRNA abundance, we categorized genes based on their direction and magnitude of 
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differential expression between stages and calculated average methylation differences among 

groups. Increases in magnitude and direction of differential expression at 70 dg were associated 

with greater corresponding hypomethylation of promoters and miRNAs (Figure 3.3A). These 

findings are in agreement with reported inverse correlations between promoter methylation and 

gene expression [82], and suggest similar mechanisms are regulating miRNAs. Hypomethylation 

of intragenic regions was associated only with magnitude of differential expression, such that the 

most up- and downregulated genes exhibited the greatest degree of intragenic hypomethylation on 

average. Conflicting data has previously been reported on the relationship between intragenic 

methylation and gene expression, suggesting more context-specific associations than those 

observed at promoters [25].  

 We further characterized associations between differential methylation and expression by 

calculating the level of enrichment for DMGs among DEGs (Figure 3.3B). Among hyper- and 

hypomethylated regions located within 2kb of gene and miRNA TSSs, enrichment was observed 

for differential expression in the opposite direction, such that promoter-hypermethylated genes 

were enriched among downregulated transcripts and miRNAs, and promoter-hypomethylated 

genes were enriched among upregulated transcripts and miRNAs. Broader enrichment was 

observed for intragenic DMGs among DEGs, although, as in promoters, up- and downregulated 

genes were most enriched among hypo- and hypermethylated genes, respectively.  

 We quantified abundance of select differentially methylated and expressed miRNAs at 

additional stages of fetal and post-natal skeletal muscle development via RT-qPCR (Figure 3.3C). 

Abundance of hypomethylated and upregulated miRNAs miR-338, miR-133a, and miR-378a 

continued to increase throughout prenatal stages, and, in the case of the latter two, peaked in 

abundance at 5 weeks of age. miR-378a and miR-133a promote muscle differentiation through the 
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downregulation of myogenic repressor (myoR) and MAPK signaling, respectively, and have been 

reported as among the most abundant miRNAs in adult porcine skeletal muscle [136]. Expression 

of miR-338, once thought to be highly brain-specific, has recently been identified as expressed in 

porcine neonate skeletal muscle, as well as upregulated in bovine skeletal muscle exhibiting 

increased shear force [158, 159]; our data provide additional evidence that miR-338 regulation 

may be important in developing skeletal muscle, and that DNA methylation may in turn regulate 

its expression. Among the hypermethylated and downregulated miRNAs miR-196a and miR-615, 

expression continued to decrease or remain low with increasing age. These results indicate that 

differential methylation in fetal muscle precedes continued differential expression of overlapping 

miRNAs throughout skeletal muscle development. 

3.4.4     Hypomethylated regions are enriched for myogenic regulatory factor binding sites  

Differential methylation is known to exert regulatory effects in part through the alteration of TF 

binding sites [31, 82]. We therefore queried LD muscle developmental DMR sequences for 

enrichment of TF binding motifs, with particular interest in determining the degree to which MRF 

binding motifs were enriched in DMRs. Hypomethylated DMR sequences were enriched for 

MYOD1, MYF6, and MYOG motifs, while no such enrichment was observed among 

hypermethylated DMR sequences (Figure 3.4A). Enrichment of MRF motifs among 

hypomethylated regions correlates with expression patterns between stages, with MYOD1, MYOG, 

and MYF6 exhibiting moderate to significant upregulation at 70 dg relative to 41 dg (Figure 3.4B). 

As MRFs are known to regulate one another’s transcription [128], we assessed whether DMRs 

within MRF genes were associated with other MRF binding motifs. Indeed, we identified a 

MYOD1 motif within a hypomethylated region 5kb upstream of the MYOG TSS, and a MYOG 

motif within a hypomethylated region 4kb upstream of MYF6, which is in agreement with expected 
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Figure 3.4. DNA hypomethylation is enriched for myogenic regulatory factor (MRF) binding 
motifs. (A) Heatmap of –log10 enrichment p-values of differentially methylated regions (DMRs) 
for MRF binding motifs. (B) MRF transcript abundances between developmental stages. (C) CpG 
methylation rates in a DMR upstream of MYF6 overlapping a MYOG binding motif (orange 
asterisk). *p<0.05, **FDR<0.05.    

MRF regulatory interactions. Additionally, a site-specific differential methylation analysis 

revealed that the MYOG motif upstream of MYF6 co-localized with the most hypomethylated 

CpGs (Figure 3.4C), providing further evidence for an association between differential 

methylation and MYOG regulatory potential at this locus. Our data demonstrate that a large 

proportion of hypomethylated regions may serve regulatory functions via increased binding 

potential of MRFs involved in skeletal muscle differentiation.  
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3.4.5     Differentially methylated regions co-localize with GWAS SNPs for muscle and meat 
quality traits 

Regions of differential methylation represents putative sites of gene regulation with potential 

consequences on phenotype expression. We therefore curated GWAS SNPs from the Pig QTL 

Database and searched for trait classes for which associated SNPs were enriched among fetal LD 

muscle DMRs. We identified significant enrichment among DMRs for GWAS SNPs associated 

with muscle, meat quality, and fatty acid traits (Figure 3.5A). The majority of trait SNPs were  

enriched among hypomethylated regions as opposed to hypermethylated regions, suggesting that  

regions that lose methylation—and can be hypothesized to be more active—with increasing age 

may be more influential on phenotypes related to skeletal muscle growth and physiology. 

 Of note, we identified a GWAS SNP for muscle pH at 24 hr post-mortem that overlapped 

a hypomethylated region in the first intron of SCN4A (Figure 3.5B). This gene encodes a subunit 

of a voltage-gated sodium channel responsible for generation of action potentials in skeletal muscle 

[160]. We observed significant upregulation of SCN4A at 70 dg (log2FC=3.18, FDR=1.39E-43), 

suggesting that alterations in DNA methylation at this region may be required for changes in gene 

expression. These results have elucidated developmental DMRs at which genetic variation has 

been associated with muscle phenotypes, and provide additional functional data that may aid in 

the search for causative variants within these regions.  

3.5     Conclusions 

We have identified thousands of DMRs that represent putative sites of gene regulation in pig fetal 

skeletal muscle. While observed global methylation patterns were strongly associated with 

differential expression of methylating and demethylating enzymes, we provide ample evidence 

that a large proportion of differential DNA methylation correlates with differential gene expression 



 

 58 

 
Figure 3.5. Differentially methylated regions are enriched for muscle and meat quality trait 
GWAS SNPs. (A) Enrichment score heatmap for muscle- and meat-related trait GWAS SNPs 
among differentially methylated regions (DMRs). (B) SCN4A gene methylation plot, indicating 
an intronic hypomethylated DMR overlapping a SNP associated with muscle pH at 24 hr post-
mortem (red asterisk). Gray bars indicate DMR coordinates. 
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and predicted cis-regulatory elements. Furthermore, dynamic methylation in intronic, muscle-

enriched miRNAs suggests an important role for DNA methylation in regulating miRNA 

expression independently from their host genes.  

 We demonstrate that hypomethylated regions in late-myogenic fetal LD muscle are 

enriched for numerous muscle- and meat-related trait GWAS SNPs. Current functional annotation 

efforts in domesticated animal species seek to provide layers of regulatory information in genomic 

regions previously identified as associated with complex and disease traits [17]. LD muscle 

developmental DMRs identified in our study may represent stage-specific regulatory elements that 

contribute to prenatally-influenced phenotypes, or else signify permanent epigenomic changes in 

differentiated muscle tissue that contribute to gene and phenotype expression in postnatal and adult 

life. Knowledge of such stage-specific epigenomic patterns will enhance understanding of 

spatiotemporal specificity of functional elements in the porcine genome and improve the search 

for causative variants influencing traits of economic relevance.  
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CHAPTER 4 
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4.1     Abstract 

Early-life gene regulation has diverse consequences on economically important phenotypes in the 

pig, yet annotation of regulatory elements in developing porcine tissues has thus far been limited. 

It is now recognized that gene regulatory regions bear characteristic epigenetic signatures, and 

DNA methylation has been extensively characterized in mammals as having context-specific 

effects on local and distal gene expression. Furthermore, allele-biased methylation (ABM) has 

been reported in a genotype-dependent manner associated with sequence variation between 

parental alleles, as well as a genotype-independent manner indicative of genomic imprinting; both 

classes of ABM have been shown to influence mammalian development. Research into 

developmental DNA methylation patterns in the pig has thus far been restricted to single-tissue 

analyses, and the extent of ABM in developing tissues is currently unknown. We have performed 

whole-genome bisulfite sequencing (WGBS) to assess DNA methylation patterns in four pig fetal 

tissues (brain, liver, loin muscle, and placenta) at 30 and 70 days gestation (dg) in females derived 

from Meishan (MS) and White Composite (WC) reciprocal crosses. We identified unique DNA 

methylation landscapes associated with tissue and developmental stage, with increasing fetal age 

resulting in an increase in the number of lowly methylated regions across tissues. 14.2% of the 
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genome was significantly differentially methylated between stages in at least one tissue. 

Differentially methylated regions (DMRs) disproportionately overlapped tissue- or stage-

differentially expressed genes, with hypomethylated regions at 70 dg being more associated with 

upregulated and tissue-enriched genes at 70 dg in most tissues. Hypermethylated DMRs across 

tissues were enriched for similar transcription factor (TF) motifs, while hypomethylated regions 

exhibited tissue-specific motif enrichment of TFs associated with the respective tissue’s 

differentiation. We also performed allele-specific mapping of WGBS reads and identified global 

ABM between MS and WC alleles that affected genes involved in processes such as dopamine 

transport and placenta labyrinthine layer development that may confer breed-specific behavioral 

and reproductive differences. Methionine synthase reductase (MTRR) was consistently promoter-

hypomethylated in MS alleles, and this was associated with corresponding breed allele-biased 

expression (ABE) in an isoform-dependent manner. Lasty, we identified thousands of imprinting-

like ABM regions that overlapped known imprinted gene clusters and regions homologous to 

human imprinting control regions. Among novel genes exhibiting ABM and ABE, protocadherin 

GA4 (PCDHGA4) exhibited the strongest imprinting-like ABM in the fetal brain and was 

associated with isoform-specific parental ABE. These results have provided unique insight into 

developmental and allele-specific DNA methylation patterns indicative of novel regulatory regions 

in porcine fetal tissues of economic relevance.   

4.2     Introduction 

Early life development has profound effects on future livestock performance, with numerous 

economically important phenotypes in the pig having been attributed to prenatal determinants. For 

example, the number of skeletal muscle fibers in most muscles is determined prenatally, and 

decreased pig placental weight has been associated with decreases in growth potential [45, 46]. 
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Organ development requires appropriate spatiotemporal expression of thousands of genes involved 

in cellular commitment, differentiation, and maturation. Thus numerous transcriptome profiling 

studies have been performed in the pig across fetal ages, and have elucidated candidate genes 

regulating development of neuronal, skeletal muscle, and placental tissues, among others [129, 

161–164]. Much less understood are the non-transcribed regulatory regions governing dynamic 

fetal gene expression in pigs and other livestock species. Epigenomic modifications result in 

heritable changes in gene expression without altering DNA sequence, and various subtypes of 

these modifications have been shown to be predictive of regulatory elements including enhancers, 

silencers, and insulators [11]. While epigenomic patterns are known to be highly variable 

throughout early life in coordination with changing transcriptional demands, their limited 

annotation in pig fetal tissues hinders the search for gene regulatory regions influencing gene and 

phenotype expression.   

 Among epigenetic mechanisms, DNA methylation is the most prevalent modification made 

to the DNA molecule and in mammals generally involves the addition of a methyl group to the 5-

position of cytosines in CpG dinucleotides [27]. DNA methylation exhibits context-specific 

associations with gene expression: while DNA methylation levels at promoters and enhancers are 

generally negatively correlated with transcription levels through the inhibition of transcription 

factor (TF) binding or recruitment of repressors, the transcriptional consequences of methylation 

levels in other regions, including gene bodies, has been shown to be positive or negative in a gene-

specific manner [25, 33, 34]. The mammalian DNA methylation landscape is highly dynamic 

during early development. Following genome-wide demethylation and subsequent remethylation 

to erase parentally-inherited epigenetic marks during pre-implantation, the DNA methylome 

continues to undergo rapid changes in coordination with cell-specific developmental trajectories 
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[43]. Assessment of DNA methylation patterns in human fetal tissues of diverse cell lineages has 

revealed putative regulatory elements associated with activation of early development and tissue-

specific genes, and these were found to gain and lose methylation marks with increasing age, 

respectively [44]. Characterization of DNA methylation patterns has recently been performed in 

the pig fetus [141, 165]; however these studies have focused on single tissues, thereby limiting our 

understanding of tissue-specific methylation dynamics during prenatal development.  

 Allele biases in gene regulation and expression have been widely reported in mammalian 

species as having diverse developmental consequences. Genotype-dependent allele-biased 

methylation (ABM) arises from DNA sequence variation between parental alleles and has been 

extensively characterized from human bisulfite sequencing data [166–169]. Assessment of this 

phenomenon in the pig can provide unique insights into breed-specific gene regulation, particularly 

in crossbred individuals of highly divergent parentage. Chinese pig breeds have gained commercial 

interest due to their increased prolificacy and litter survival relative to European breeds, and have 

also been shown to exhibit greater docility and higher rates of intramuscular fat [170, 171]. 

Mammalian species also exhibit numerous instances of genotype-independent allelic biases in 

expression of autosomal genes. Genomic imprinting results in monoallelic or allele-biased 

expression (ABE) from either the maternal or paternal allele, and is known to effect dozens of 

genes involved in embryonic and fetal development [48]. In many cases, imprinting regulation has 

been shown to be governed by an imprinting control region (ICR) at which differential methylation 

between parental alleles is causative of observed ABE [172]. Knowledge of inheritance patterns 

of imprinted genes has proven useful in the livestock industry, as genotypes in imprinted loci have 

been shown to influence complex trait variation in a parent-of-origin-specific manner [51]. 



 

 64 

However validation of imprinted genes and their corresponding ICRs in the pig is currently limited 

in scope [173].  

 In the current study, we have performed whole-genome bisulfite sequencing (WGBS) to 

characterize DNA methylation patterns and their developmental variation in pig fetal brain, liver, 

loin muscle, and placenta tissue at two ages (30 and 70 days gestation (dg)). As fetuses were 

derived from reciprocal crosses of divergent pig breeds—Meishan (MS) and White Composite 

(WC)—we leveraged the genetic variation between alleles to identify allelic biases in methylation 

associated with breed-of-origin and with maternal or paternal alleles in an imprinting-like manner. 

We identified diverging patterns of DNA methylation with increasing fetal age across porcine 

tissues, and show that developmental differential DNA methylation is associated with differential 

and tissue-enriched gene expression. Furthermore, we report extensive ABM between breed alleles 

impacting biological pathways associated with phenotypic differences in parental pig breeds, and 

identify imprinting-like ABM regions overlapping known and putative-novel imprinted genes. 

These results have elucidated novel regulatory elements associated with prenatal porcine tissue 

development, as well as regions governing allele-specific gene regulation and expression.    

4.3     Materials and Methods  

4.3.1     Sample Collection  

Fetal tissues were collected from litters of WC x MS reciprocal crosses at the USDA ARS Meat 

Animal Research Center (USDA MARC), and collection was done in compliance with the US 

MARC Animal Care Guidelines. Sampling was performed at 30 dg and 70 dg in one litter per 

cross type, with litters of the same cross type sampled at different stages having the same sire but 

different unrelated dams. Whole brain, liver, loin muscle, and placenta tissue were collected after 



 

 65 

caesarean on slaughtered gilts immediately after electrocution, and tissue samples were 

immediately flash frozen in liquid nitrogen and stored at -80o C. Fetal sex was determined by 

genotyping an X-linked breed-specific SNP in SERPINA7 (rs45431492) using an HphI PCR-RFLP 

assay, and heterozygous genotypes were classified as female [174]. Tissues from two females per 

litter were randomly selected for sequencing analyses.  

4.3.2     DNA Isolation and Bisulfite Sequencing  

Tissue DNA was isolated using either: 1) overnight digestion with digestion buffer, 20% SDS, 

RNase A and proteinase K followed by ethanol precipitation (30 dg liver and all 70 dg samples), 

or 2) the Qiagen AllPrep DNA/RNA MiniKit (remaining 30 dg samples). Bisulfite sequencing 

libraries were prepared and QC’ed as described in Section 2.3.3. Libraries were divided into four 

pools by tissue type, and each pool was sequenced on an Illumina HiSeq 4000 instrument as 

described in Section 2.3.3.  

4.3.3     WGBS Bioinformatics  

WGBS libraries were trimmed of technical sequences and low-quality bases using Trimmomatic 

v.0.39 as described in Section 2.3.4 [87]. To increase efficiency of read mapping and accuracy of 

methylation estimates, we created animal-specific genome fasta files using whole-genome 

sequencing (WGS) data from the same fetuses (Liu et al., personal communication). Briefly, DNA 

variant calling was performed on aligned WGS reads using GATK3 [175], and identified 

homozygous and heterozygous variants were replaced and masked, respectively, in the 

corresponding animal-specific fasta file. Trimmed WGBS reads were aligned to animal-specific 

genomes using Bismark as described in Section 2.3.4 [88]. Aligned WGBS reads were 

deduplicated and calculation of CpG methylation rates was performed as described in Section 

2.3.4.  
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4.3.4     DNA Methylation Analyses  

Genome regional methylation rates were calculated using the methylKit R package [89]. Briefly, 

CpG reports from all samples were merged, and genome tiling was performed to calculate average 

methylation rates for 1kb non-overlapping regions in the Sus scrofa genome. Within a stage, tissue-

specific lowly methylated regions (LMRs) were classified as those regions with z-score <-1 and 

methylation rate <75% in only samples derived from a single tissue type. LMRs were annotated 

with respect to gene and CpG features using the genomation R package [90], and gene set 

enrichment analysis (GSEA) of tissue LMR genes was performed using the PANTHER database 

[91, 92].  

 Differential methylation analyses between fetal ages for each tissue were performed using 

the methylKit R package as described in Section 3.3.3, with stage and cross type included as fixed 

effects in logistic regression models. Genomic regions with a mean methylation difference >10% 

between stages and FDR <1E-5 were considered differentially methylated regions (DMRs). DMR 

annotation and GSEA of differentially methylated genes (DMGs) was performed as described 

previously.  

4.3.5     RNA-seq Bioinformatics and Gene Expression Analyses  

RNA-sequencing (RNA-seq) was performed on the same fetal tissue samples on an Illumina 

NextSeq 500 in PE format at USDA MARC. Reads were trimmed and aligned, and gene counts 

were obtained as described in Section 3.3.2. Differential expression analyses were performed using 

the DESeq2 R package [93]. For identification of tissue-specific gene expression, eight separate 

analyses were performed contrasting expression of one tissue versus expression of all other tissues 

within each stage. Analyses were performed as described in Section 3.3.4, with generalized linear 

models including the fixed effects of tissue, cross type and sequencing batch. Genes with log2-
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fold change >1 in a single tissue relative to other tissues and FDR <0.05 were considered tissue-

enriched. Developmental differential expression analyses were performed for each tissue and 

included cross type and sequencing batch as a fixed effect. Genes with log2-Fold Change >1 and 

FDR <0.05 between stages were considered differentially expressed. The degree of overlap 

between DMGs and both tissue-enriched genes and differentially expressed genes was assessed 

using hypergeometric tests (R software).  

4.3.6     Motif Enrichment analyses  

Developmental DMR sequences were submitted for analysis of motif enrichment using the MEME 

suite as described in Section 2.3.7 [94, 95]. Clustering of the top ten most enriched motifs for each 

DMR category (hyper- or -hypomethylated in each tissue) was performed using the pheatmap R 

package [99].  

4.3.7     Allele-Specific Methylation Analyses 

We performed allele-specific sorting of WGBS reads using SNPsplit v.0.3.4 [176]. Briefly, 

heterozygous SNPs in fetal genomes were N-masked prior to WGBS read alignment. Using WGS 

data from the parents of each reciprocal cross, genotype calls were made at identified fetal 

heterozygous SNPs using GATK3 [175] (Liu et al., personal communication). For each fetus, 

alleles were assigned to one of two parental genomes if 1) parents were homozygous for opposite 

alleles, or 2) One parent was homozygous for one allele and the other parent was heterozygous. 

Aligned WGBS reads overlapping assigned SNPs were sorted using SNPsplit into two separate 

allele-specific alignment files, after which methylation calling was performed using 

bismark_methylation_extractor with default parameters.  

 Allele-biased methylation (ABM) analyses were performed using the methylKit R package. 

Merging of methylation data and genome tiling were performed as described previously. To 
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identify ABM patterns associated with breed of origin, logistic regression models were fitted 

separately for each tissue and stage, and corrected for the effect of parental sex of derived alleles, 

and tested for the effect of breed. For identification of ABM patterns associated with paternal vs. 

maternal alleles, tissue- and stage-specific models were fitted, corrected for the effect of breed of 

origin, and tested for the effect of parental sex. Regions exhibiting a methylation difference >10% 

and FDR <0.01 were classified as exhibiting significant ABM. Allele-biased expression (ABE) 

analyses have previously been performed in the same tissue samples (Liu et al., personal 

communication), and were utilized here to identify genes exhibiting both ABE and ABM.  

4.4     Results  

4.4.1     Global DNA methylation patterns are associated with tissue type and 
developmental stage 

We obtained 162-254M PE WGBS reads per fetal tissue sample, of which an average of 85.9% 

uniquely mapped to their respective animal-specific genome assemblies (Table C.1). Library 

bisulfite conversion rates were >99% for all samples, meeting the standards for WGBS data sets 

proposed by ENCODE (https://www.encodeproject.org/data-standards/wgbs/). Global CpG 

methylation rates varied significantly between tissue types (F = 789.3, p<2.2e-16), with brain and 

muscle samples across both fetal ages being hypermethylated relative to liver and placenta (Figure 

1A). Furthermore, stage-specific differences in global CpG methylation were also observed: 70 dg 

brain, muscle and placenta were hypomethylated relative to 30 dg samples, while 70 dg liver was 

significantly hypermethylated relative to 30 dg. To determine if the observed variance in global 

methylation was associated with differences in DNA methylation or demethylation enzyme 

expression, we calculated correlation coefficients between sample methylation and DNA 

methyltransferase (DNMT) and Tet methylcytosine dioxygenase (TET) transcript abundance from 
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Figure 4.1. Landscape of porcine fetal DNA methylation. (A) Boxplot of global CpG 
methylation rates by tissue and stage. (B) Scatter plot of sample DNMT3A abundance against 
global CpG methylation rate. (C) Principal component analysis (PCA) plot of PC2 (6.2%) and 
PC3 (4.1%). Arrows denote tissue-specific direction of 30 dg to 70 dg samples.  

 
Table 4.1. Number of tissue-lowly methylated regions (LMRs) and enriched genes  

Tissue No. LMRs, 30 dg No. LMRs, 70 dg No. Enriched 
Genes, 30 dg 

No. Enriched 
Genes, 70 dg 

Brain 2554 24880 1495 3926 
Liver 316209 121328 3681 2566 

Muscle 1857 17311 443 1344 
Placenta 147135 504276 2261 2451 

  

RNA-seq data. Global methylation level was most significantly positively correlated with 

DNMT3A abundance (Figure 1B), while all other correlations were not significant.  

 A principal component analysis of fetal tissue DNA methylation revealed that the greatest 

proportion of variance (PC1=63.2%) could be attributed to global methylation rate (Figure C.1). 

The second and third principal components clearly separated samples according to tissue and fetal 
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age (Figure 1C). Among brain, muscle, and placenta samples, 30 dg samples exhibited weak 

clustering by tissue type, while the 70 dg samples exhibited better clustering and were more 

separated by tissue. These results indicate that global DNA methylation patterns are associated 

with differentiation of porcine tissues during fetal development.  

 To determine how DNA methylation may contribute to state-specific gene regulation 

during fetal development, we identified tissue-specific lowly methylation regions (LMRs) at each 

stage (Table 4.1).  There was an overall greater number of LMRs at 70 dg versus 30 dg, consistent 

with the notion that tissue differentiation is associated with unique regions of demethylation [44]. 

In agreement with observed global methylation differences, brain, muscle, and placenta possessed 

more LMRs at 70 dg relative to 30 dg, while the liver possessed fewer. Lowly methylated genes 

(LMGs) were broadly associated with tissue-enriched GO terms, and, in many cases, enrichment 

was greater in 70 dg LMGs for each tissue type while, in muscle, enrichment for muscle-specific 

terms was only observed at 70 dg (Figure 4.2A). Additionally, emergence of tissue-specific low 

methylation was observed at 70 dg for tissue-enriched genes: NEUROD6 (brain), APOH (liver), 

MYH7 (muscle) and CGA (placenta) (Figure 4.2B-E). This was achieved either through tissue-

specific DNA hypomethylation at 70 dg (NEUROD6, APOH, MYH7) or via hypermethylation of 

non-expressing tissues (CGA). These data demonstrate that tissue-specific hypomethylation during 

fetal development is highly associated with markers of tissue differentiation and enriched 

biological processes.  

 We identified thousands of genes exhibiting tissue-specific expression at both stages (Table 

4.1) and determined the degree to which enriched gene expression was associated with low 

methylation. While enrichment between expression-enriched genes and LMGs was non-specific  
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Figure 4.2. Tissue-specific lowly methylated regions in the developing pig fetus. (A) Heatmap 
of enriched gene ontology (GO) terms among tissue lowly methylated genes (LMGs). (B-E) 
Methylation levels of NEUROD6, APOH, MYH7, and CGA in fetal brain, liver, skeletal muscle, 
and placenta, respectively, plotted alongside average methylation rates in other tissues. (F-G) 
Normalized heatmaps of enrichment scores between tissue LMGs and expression-enriched genes 
at 30 and 70 dg.  
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at 30 dg, we observed exclusive enrichment for expression-enriched genes among LMGs of the 

same tissue type at 70 dg (Figure 4.2F-G). These results indicate that tissue-specific DNA 

methylation is more strongly associated with differential gene expression with increasing fetal age, 

and that other factors besides transcriptional demands may influence early fetal DNA methylation 

patterns.  

4.4.2     Developmental differential DNA methylation is associated with tissue- and stage-
specific differential gene expression 

To characterize epigenomic variation associated with porcine tissue development, we performed 

differential methylation analyses between fetal ages. We identified a total of 338,523 DMRs across 

all tissues, compromising 14.2% of the S. scrofa genome (Figure 4.3A). Consistent with changes 

in global methylation between stages, the liver exhibited a greater proportion of hyper-DMRs 

while the remaining tissues had a greater proportion of hypo-DMRs at 70 dg. Across all tissues, 

DMRs were significantly enriched in CpG islands (CGIs) and shores in the porcine genome 

(Figure C.2). GO enrichment analysis of genes overlapping CGIs revealed an enrichment for early 

developmental processes (data not shown), suggesting that dynamic CGI methylation, while 

generally unobserved in mammalian systems, may be necessary during prenatal organ 

development and differentiation. Differentially methylated genes (DMGs) in each tissue were 

enriched for unique biological processes that are generally in agreement with expected gene 

activation and suppression throughout development (Table 4.2). Within promoters, 

hypomethylated genes were associated with differentiating tissue-specific processes (e.g., ‘Neuron 

recognition’ in brain and ‘myofibril assembly’ in muscle), while hypermethylated genes were 

associated with general and tissue-specific early developmental processes (e.g. ‘hemopoiesis’ in 

liver and ‘muscle tissue morphogenesis’ in muscle). 
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Table 4.2. Enriched GO terms among promoter differentially methylated genes (DMGs) 
DMG Class Go Term No. Genes Enrichment FDR 

Brain 
Hyper-
DMGs 

embryonic neurocranium 
morphogenesis 4 12.01 3.33E-02 

dentate gyrus development 5 9.01 2.23E-02 
forebrain regionalization 6 7.05 2.02E-02 

Brain 
Hypo-
DMGs 

Neuron recognition 19 2.87 2.51E-02 
Oligodendrocyte differentiation 23 2.42 3.17E-02 
Regulation of neurotransmitter 

transport 30 2.07 4.19E-02 

Liver 
Hyper-
DMGs 

anterior/posterior pattern specification 34 3.45 2.61E-06 
embryonic organ development 51 2.41 2.94E-05 

hemopoiesis 52 1.83 8.90E-03 

Liver Hypo-
DMGs 

regulation of lipid metabolic process 20 3.03 1.70E-02 
protein modification process 84 1.61 1.12E-02 

metabolic process 198 1.37 1.37E-04 
Muscle 
Hyper-
DMGs 

proximal/distal pattern formation 15 7.45 2.51E-06 
neuromuscular junction development 9 3.78 3.05E-02 

muscle tissue morphogenesis 13 3.18 1.48E-02 
Muscle 
Hypo-
DMGs 

myofibril assembly 24 2.4 3.98E-02 
muscle contraction 85 2.01 4.38E-05 

striated muscle cell differentiation 64 1.91 2.06E-03 
Placenta 
Hyper-
DMGs 

Trophoblast giant cell differentiation 4 15.96 1.82E-02 
dorsal/ventral pattern formation 11 7.51 9.65E-05 

anterior/posterior pattern specification 29 7.41 7.83E-13 

Placenta 
Hypo-
DMGs 

regulation of plasma membrane-
bounded cell projection assembly 49 1.87 1.75E-02 

myeloid leukocyte activation 125 1.51 5.36E-03 
organic substance transport 417 1.43 7.96E-09 

 

 To determine the degree to which developmental differential DNA methylation is 

associated with tissue- and developmental differential gene expression, we performed 

hypergeometric tests between tissue DMGs and 1) tissue-enriched genes and 2) Stage DEGs for 

each tissue. Overall differential gene methylation was strongly associated with tissue-enriched 

genes at 70 dg: brain-, muscle- and placenta-enriched genes were disproportionately 

hypomethylated across genomic features, although hypermethylation in a subset of intragenic and 

CpG-sparse regions of the genome was also observed in brain- and muscle-enriched genes (Figure 

4.3B). Similar DMG enrichment was not observed among 30 dg tissue-enriched genes, indicating  
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Figure 4.3. Developmental differential DNA methylation in porcine fetal tissues. (A) Volcano 
plots of regional differential methylation between fetal ages in each tissue. Left and right numbers 
on each plot denote number of hypo- and hypermethylated regions, respectively. (B) Bar plots of 
enrichment p-values between tissue-enriched genes and developmental DMRs within gene and 
CpG features. (C) Bar plots of enrichment p-values between differentially expressed genes and 
developmental DMRs within gene and CpG features. Vertical dashed lines indicate thresholds for 
significance. 

many genes gaining tissue-specificity in expression throughout development also undergo 

dynamic methylation—and in particular hypomethylation—between developmental ages.  

 We identified 1,471-4,558 DEGs between fetal ages for each tissue type, and these were 

significantly enriched for tissue DMGs (Figure 4.3C). Brain and muscle generally exhibited 

canonical associations between differential methylation and expression: upregulated genes were 

enriched for hypomethylated genes across gene features, while downregulated genes were 
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enriched for gene hypermethylation, particularly in promoters. Conversely, upregulated genes at 

70 dg in liver were broadly enriched for hypermethylated genes, and liver DMRs were not 

associated with gene downregulation. Given the unique associations observed between 

methylation and gene expression dynamics in the liver, we explored other potential factors 

influencing methylation patterns. Dividing cells are inherently hypomethylated due to the 

formation of hemi-methylated DNA following replication. We found that cell division and DNA 

replication processes were uniquely enriched among liver-specific genes at both stages, and 

furthermore that downregulated genes in 70 dg liver were enriched for similar processes (data not 

shown). Most notably, 70 dg liver was enriched for expression of DNMT1, the methyltransferase 

responsible for methylating newly-synthesized DNA strands [28]. These data provide evidence 

that global hypermethylation of fetal liver from 30 dg to 70 dg may be driven primarily by 

decreases in DNA replication and cell division, and may explain the lack of association between 

differential methylation and expression that is observed in other tissues.  

4.4.3     Differentially methylated regions co-localize with tissue-specific transcription factor 
binding motifs 

To assess whether regions of developmental differential methylation co-localized with TF binding 

motifs, we performed analysis of motif enrichment among DMRs. Clustering DMRs by motif 

enrichment scores grouped all hypermethylated regions together, suggesting that similar motifs 

gain methylation during fetal development regardless of tissue (Figure 4.4A). Conversely 

hypomethylated regions in fetal brain, muscle, and placenta exhibited distinct motif enrichment 

profiles, demonstrating loss of methylation of TF motifs in a tissue-dependent manner. These 

clustering patterns were preserved when considering only the most significantly enriched motifs 

in each set of DMRs, and revealed broad and tissue-specific enrichment for TF families (Figure 

4.4B). Hypermethylated regions across tissue types were enriched for binding motifs of 



 

 76 

transcription factor AP-2 (TFAP2) and SP TF family members that are known to play important 

roles in early animal development and cellular differentiation [177, 178]. Hypomethylated regions 

exhibited unique motif enrichment for TFs know to play important roles in tissue-specific 

development: nuclear factor I X (NFIX) and notochord homeobox (NOTO) in brain, myogenic 

differentiation 1 (MYOD1) and myogenin (MYOG) in skeletal muscle, and aryl hydrocarbon 

receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), and hypoxia-inducible 

factor 1A (HIF1A) in placenta [179].  

 To determine if TFs of DM motifs also exhibited coordinated changes in expression, we 

assessed patterns of differential transcript abundance of TFs in Figure 4.4B. Among 

hypermethylated motifs across 70 dg fetal tissues, we observed corresponding trends towards 

downregulation for most TF transcripts (Figure 4.4C). Conversely TFs with hypomethylated 

motifs in specific tissues exhibited increases in transcript abundance in that same tissue, including 

NFIX and NOTO (brain) and MYOD1 and MYOG (skeletal muscle) (Figure 4.4D). These data 

provide additional molecular evidence that developmental differential methylation is associated 

with binding sites for tissue- and stage-specific transcription factors.  

4.4.4     Genotype-dependent allele-biased methylation is widespread in pig fetal tissues 

Twenty-five to 33% of WGBS reads across sample libraries overlapped heterozygous variants and 

could be confidently assigned to one of two parental alleles (Table C.2). Consistent with variation 

observed in the diploid genome, we observed global differences in DNA methylation associated 

with fetal age (Figure C.3). However, across all tissues significant global differences were also 

observed between breed alleles, with those derived from the MS parents being significantly 

hypomethylated relative to the WC allele from the same individual (data not shown).  
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Figure 4.4. Pig fetal tissue differentially methylated regions (DMRs) are associated with 
unique transcription factor (TF) binding motifs. (A) Normalized clustered heatmap of DMR 
enrichment p-values for TF motifs in the JASPAR human motif database. (B) Normalized heatmap 
of the most enriched TF motifs among fetal DMRs. (C) Tissue-averaged log2-fold change in 
abundance of TFs with commonly-enriched motifs across hypermethylated regions. (D) log2-fold 
change in abundance of TFs with enriched motifs among hypomethylated-DMRs in fetal brain 
(NFIX, NOTO) and skeletal muscle (MYOG, MYOD1).   

 We identified 116,467 regions exhibiting breed ABM in at least one comparison (Figure 

4.5A). In all tissues a greater number of breed-ABM regions were identified at 70 dg relative to 

30 dg, suggesting that breed-specific gene regulation may be more prevalent as development 

progresses. Gene-set enrichment analysis of breed-ABM genes revealed uniquely enriched GO 

terms related to organ morphology and physiology (Table 4.3). 30 dg brain breed-ABM genes  
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Figure 4.5. Breed allele-biased methylation (ABM) is widespread in pig fetal tissues. (A) 
Volcano plots of breed allele differential methylation within each tissue at 30 dg (blue) and 70 dg 
(red). Upper and lower numbers in each plot represent number of WC and MS-hypomethylated 
regions, respectively. (B) Heatmap of methylation differences (Meishan vs. White Composite) in 
genes exhibiting allele-biased methylation and expression in multiple tissue. (C) MTRR promoter 
methylation plot in 70 dg skeletal muscle. Gray box denotes region of significant ABM. (D) 
Gene track of MTRR transcript isoforms. Black bars indicate regions of detected allele-biased 
expression, with corresponding bar plots showing percentage of transcripts derived from each 
breed allele in pig fetal tissues. Error bars indicate standard deviation. 

were significantly enriched for terms associated with dopamine transport. This group of genes 

included multiple solute carrier family members: the dopamine transporter SLC6A3 as well as 

SLC22A1, SLC22A2, and SLC22A3, all of which are responsible for translocation of dopamine and 

other neurotransmitters [180]. The majority of dopamine-associated genes were MS-

hypomethylated, suggesting common epigenetic regulation of this process. In muscle, breed-ABM 

genes were most enriched for the term ‘negative regulation of muscle hypertrophy’ and contained 
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an equal number of MS- and WC-hypomethylated genes. Placenta breed-ABM genes were 

enriched for the term ‘labyrinthine layer morphogenesis’, with related genes being primarily MS 

hypomethylated and, in the case of FGFR2, also exhibiting a significant MS-bias in expression. 

ABM genes in the placenta were also enriched for the term ‘Tolerance induction to self-antigen’, 

with all related genes being hypomethylated in WC alleles. These results indicate potential 

implications of breed- and tissue-specific gene regulation on processes influencing behavior, 

growth, and in utero development.  

 

Table 4.3. Top enriched GO terms among tissue breed-ABM genes 
Tissue-Stage GO Term Enrichment FDR Genes 

Brain-30 dg Dopamine Uptake 4.61 3.43E-02 

DBH, NET1, PRKN, 
SNCA, SLC22A2, 

SLC22A1, SLC22A3, 
SLC6A3 

Muscle-70 dg Negative regulation of 
muscle hypertrophy 2.37 4.20E-02 

ATP2B2, FOXO1, 
GATA5, GLRX3, 
G6PD, JARID2, 

NOTCH1, LMNA, 
MLIP, P2RX4, PAK1, 

PPARA, SMAD3, 
SMAD4, TRIM63, YY1 

Placenta-30 dg Labyrinthine layer 
Development 2.66 4.17E-02 

BIRC6, BMP7, 
CITED1, DNAJB2, 

FGFR2*, GRB2, 
GRHL2, IL10, 

MAP2K1, NCOA1, 
ST14, VASH1, WNT2, 

WNT7B 

Placenta-30 dg Tolerance induction to 
self-antigen 5.31 3.82E-02 AIRE, BLK, FOXP3, 

LYN, XKR8 
Bold: hypomethylated in Meishan (MS); Underline: hypomethylated in White Composite (WC); Bold & 
Underline: regions of MS and WC hypomethylation  
*Gene exhibits MS ABE 
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 Allele-biased expression (ABE) within the same pig fetal tissues has previously been 

reported (Liu et al., personal communication), and we sought to identify genes exhibiting 

coordinated allele biases in expression and methylation. A total of 2,348 genes exhibited ABE in 

a breed-specific manner, and these were significantly enriched among breed-ABM genes (p=7.2E-

246). Interestingly, we did not observe tissue- or stage-specific enrichment between ABM and 

ABE genes, due in part to the high degree of overlap between ABM and ABE genes across multiple 

tissues and stages (data not shown). We therefore identified the most common ABM and ABE 

genes observed across tissues and fetal ages. Twenty-five such genes were common to at least six 

tissue-stage combinations (Figure 4.5B). Among these were genes previously shown to exhibit 

differential genetic selection in European vs. Chinese pig breeds, including two genes known to 

influence coat color (EXOC2 and KIT) as well as BPHL, FOXK1, and UTRN [181–183].  

 In all tissues and stages, methionine synthase reductase (MTRR) exhibited MS 

hypomethylation in a region overlapping the promoter and first exon (Figure 4.5C). This gene 

encodes an enzyme responsible for reactivation of methionine synthase, and MTRR deficiency has 

been associated with multiple morphological and physiological phenotypes in the mammalian 

brain, liver, and placenta. Due to its reported associations with organ systems relevant to this study, 

we further assessed how breed-ABM in MTRR correlated with expression patterns. We identified 

MTRR transcript regions with conflicting breed-ABE (Figure 4.5D). In two regions overlapping 

exons common to all annotated MTRR isoforms, MS alleles represented a significantly higher 

proportion of transcripts in all tissues. However, in regions overlapping more isoform-specific 

exons, WC alleles were the predominant transcript detected. These findings suggest that MS 

hypomethylation in the MTRR promoter is associated with overall MS bias in MTRR expression, 

but that WC alleles may express specific isoforms at higher frequencies.  
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4.4.5     Genotype-independent allele biases in pig fetal tissues reveal putative novel 
imprinted loci  
 
We assessed patterns of ABM between paternal and maternal alleles as putative regions of 

imprinting regulation. We identified 40,030 regions exhibiting imprinting-like ABM across tissues 

and stages (diff >20, FDR <0.01) and, as with breed-ABM, a greater number of imprinting-like 

ABM regions were observed at 70 dg in all tissues. To validate our results, we queried the regions 

with the greatest methylation biases between parental alleles, and these primarily overlapped 

known imprinted genes (Figure 4.6A). Imprinting-like ABM ‘hotspots’ were also identified 

containing multiple ABM regions, and these were within known imprinting clusters such as DLK1, 

GNAS, KCNQ1, and Pws. When testing for overall enrichment of imprinting-like ABM genes 

among known human imprinted genes, the degree of overlap was not significant (p=0.32). 

However, when considering only the genes exhibiting ABM >50% between parental alleles, the 

observed enrichment was statistically significant (p=2.47E-03), indicating that greater ABM biases 

are associated with previously-validated human imprinted genes.  

 Differential parental methylation of ICRs is known to act as a primary regulator of 

imprinting monoallelic expression. We therefore sought to determine whether imprinting-like 

ABM regions overlapped putative ICRs that have been extensively studied in other mammalian 

species. The human and mouse H19/insulin-like growth factor 2 (H19/IGF2) ICR contains 

multiple CTCF binding sites, and paternal hypermethylation of this locus results in CTCF 

inhibition and a nearby enhancer activating IGF2 expression solely from the paternal allele. We 

identified a paternally-hypermethylated region in multiple tissues located in an intergenic region 

between IGF2 and H19, and this region shared significant sequence identity with a segment of the 

human H19/IGF2 ICR (Figure 4.6B). The putative CTCF binding site within this locus also 

overlapped the most significantly DM CpGs within the ABM region, providing additional 
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evidence that observed ABM is associated with differential insulator potential and putative ICR 

activity. We also queried for putative ICRs in the paternally-imprinted IGF2 receptor (IGF2R); in 

humans and mice, an intragenic region of IGF2R regulates expression of an IGF2R antisense RNA 

(AIRN), and maternal IGF2R expression has been shown to arise from DNA hypermethylation of 

this locus that suppresses AIRN expression, while this locus is hypomethylated on the paternal 

allele. We identified a maternally-hypermethylated region within IGF2R in 70 dg skeletal muscle, 

 
Figure 4.6. Evidence for imprinting-like allele-biased methylation in pig fetal tissues. (A) 
Miami plot of maximum methylation difference between parental alleles at each tested genomic 
region across tissues and fetal ages. Labels indicate regions overlapping known mammalian 
imprinted genes, and alternating colors denote different chromosomes. (B) Methylation plot of a 
region downstream of IGF2 in 30 dg liver at which a paternally-hypermethylated region shares 
homology with a segment of the human H19/IGF2 imprinting control region and a CTCF 
binding site. (C) Methylation plot of an IGF2R intragenic region at which a maternally-
hypermethylated region lies upstream of a region with homology to the human IGF2R antisense 
RNA (AIRN). Bold lines indicate parental averages across individual alleles (dashed lines), and 
black does denote CpG coordinates. (D) Dot plot of maximum differential methylation between 
parental alleles among regions in the Sus scrofa protocadherin locus. (E) Methylation plot of a 
PCDHGA4 promoter region exhibiting extreme differential methylation between parental alleles 
in 30 dg brain. Bold lines indicate parental averages of individual alleles (dashed lines). (F) Bar 
plot showing percentage of PCDHGA4 transcripts derived from parental alleles within two 
separate regions in the gene locus. Error bars indicate standard deviation.   
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and a BLAST search of the region downstream of this locus revealed significant sequence identity 

to the human AIRN lncRNA gene (Figure 4.6C). Thus, our assessment of paternal and maternal 

ABM has revealed not only significant overlap with known imprinted genes, but also with regions 

known to regulate genomic imprinting in other species, providing evidence for their similar 

function in the pig.  

 We identified 453 genes exhibiting ABE between maternal and paternal alleles and these 

were enriched among imprinting-like ABM genes (p=1.33E-37). Twenty-three ABE genes 

exhibited high imprinting-like ABM (methylation difference >30%) and have not been 

characterized as imprinted in other mammals (Table 4.4). Protocadherin gamma-A4 (PCDHGA4) 

exhibited the strongest imprinting-like ABM, and was among multiple genes in the protocadherin 

domain on S. scrofa chromosome 1 exhibiting significant ABM (Figure 4.6D). Porcine PCDHGA4 

possesses 10 known transcript isoforms, and we observed significant paternal hypomethylation in 

a downstream promoter region in 30 dg brain (Figure 4.6E). Assessment of PCDGHA4 ABE 

revealed isoform-dependent parental biases in expression: transcripts derived from the most 

upstream regions of PCDHGA4 exhibited significant maternal biases in abundance, while those 

transcripts derived from regions in the vicinity of and downstream of the paternally-

hypomethylated promoter exhibited paternal ABE (Figure 4.6E). These results suggest a putative 

imprinting-like mechanism whereby differential allelic methylation is associated with differential 

PCDHGA4 isoform usage between paternal and maternal alleles in the pig fetal brain.  
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Table 4.4. Novel genes exhibiting imprinting-like allele methylation and expression biases 
Tissue 30 dg 70 dg 

Brain P3H1, PCDHGA4 AMOTL1, CACNB2, SEMA5A, TOR1AIP1 

Liver OXR1 LASP1, PARD3B 

Muscle SEMA5A, TGFBR3 COMMD2, PARD3B, SEMA5A 

Placenta FSCN1, TGFBR3 
ATP6V1B1, CYP20A1, DNER, FBLN5, HGS, 
IFFO2, PARD3B, PTPRQ, RGS6, SLC1A2, 

SOX5, TRPV5 
Bold: Maternal allele-biased expression (ABE); Italics: paternal ABE 
Bold and Italics: ABE from both alleles at different locations in transcript 

4.5     Discussion 

We present here the first multi-tissue survey of genome-wide DNA methylation in the developing 

pig fetus. By profiling organs derived from unique germ layers—the endoderm (liver), mesoderm 

(skeletal muscle), and ectoderm (brain)—as well as the trophectoderm (placenta), our data capture 

temporal DNA methylation dynamics across distinct cell lineages. Furthermore, the morphology 

and physiology of these organs influence a myriad of economically important pig phenotypes 

related to growth, behavior, and meat quality, thereby making them excellent specimens in which 

to better understand epigenetic gene regulation during their respective development. 

 We observed tissue and stage variation in global DNA methylation that is consistent with 

tissue differentiation in the developing fetus, with methylomes of 70 dg samples being more 

distinct from one another than their 30 dg counterparts. This is consistent with findings in Slieker 

et al. which assessed DNA methylation patterns in four human fetal tissues, including whole brain 

and placenta [44]. Our results demonstrate that differentiation of organ tissues is concurrent with 

differentiation of DNA methylation profiles that likely reflect changing gene regulatory demands 

throughout development. Beyond observed global differences in methylation, we identified 

distinct regional methylation signatures in fetal tissues indicative of unique regulatory landscapes. 

Tissue-specific regions of low methylation have previously been shown to act as regulatory regions 
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through the permissive binding of unique transcription factors [184]; we therefore sought to 

identify LMRs in pig fetal tissues to be classified as putative regulatory elements. The overall gain 

in tissue LMRs from 30 dg to 70 dg demonstrates that unique hypomethylation of genes and 

regulatory regions is associated with distinct differentiation trajectories. We not only observed that 

markers of differentiation for each tissue display low methylation specificity at 70 dg, but that 

there is a greater enrichment for tissue-specific GO terms among LMGs at 70 dg vs. 30 dg. 

Interestingly, we also observed tissue-specific enrichment for LMGs among expression-enriched 

genes exclusively at 70 dg, while this enrichment was not specific at 30 dg. Early development is 

known to involve large-scale changes in genome architecture in response to cellular identity 

commitment and differentiation [185]. Tissue-specific low methylation may therefore more 

accurately reflect gene expression demands with increasing fetal age. 

 Assessment of distinct regions of hyper- and hypomethylation between fetal ages revealed 

both common and tissue-specific methylation dynamics associated with gene regulation and 

expression. The enrichment of tissue DMRs in CpG islands and shores is consistent with previous 

findings that a small subset of CGIs is dynamically methylated during mammalian development 

[152, 154]. Moreover, genes overlapping DM CGIs have been shown to be involved in pattern 

specification and other early embryonic processes, and we show that hypermethylated CGIs across 

tissues are associated with homeobox and t-box gene families, among others. Differential 

methylation patterns were strongly associated with tissue-enriched and differential gene 

expression, with most tissues exhibiting relationships that are consistent with known associations 

between methylation and expression. These developmental DMRs overlapping DEGs represent 

likely cis-acting regulatory elements governing tissue-specific developmental gene expression.  
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 In contrast to the associations between differential methylation and expression seen in other 

tissues, the fetal liver exhibited distinct correlations that emphasize its unique methylation 

dynamics reported in this study. In addition to being the only globally-hypermethylated tissue at 

70 dg, fetal liver DMRs were not associated with liver-enriched genes, and upregulated genes were 

disproportionately hypermethylated as opposed to hypomethylated as was observed in other 

tissues. We provide evidence here that liver methylation patterns may be more influenced by 

changes in proliferative capacity than are patterns in other tissues by demonstrating that 1) 

downregulated genes in the 70 dg fetal liver are uniquely enriched for DNA replication and cell 

division GO terms, and 2) the 70 dg fetal liver exhibits enriched expression of genes involved in 

these processes.  Previous research has similarly observed global DNA hypermethylation in human 

adult vs. fetal liver that is not associated with gene downregulation, and reported that genes 

involved in DNA replication were enriched in the fetal liver [186]. These results suggest that the 

developing liver exhibits stronger replication-dependent methylation levels than those observed in 

other fetal tissues. As fully-differentiated hepatocytes can re-enter the cell cycle well into adult 

life, this likely has unique impacts on the epigenome not observed in other mature tissues.  

 The reciprocal crosses of two divergent pig breeds used in this study allowed for extensive 

profiling of ABM in a tissue- and stage-specific manner. Allele-specific methylation patterns have 

previously been reported in human populations and can be attributed to differences in genetic 

sequence [167, 187, 188]. We similarly identified global and region-specific differences between 

fetal alleles derived from MS and WC parents. We demonstrate that tissue-specific ABM is 

associated with biological pathways previously linked to observed phenotypic differences between 

Chinese and European pig breeds. Breed-ABM genes in the fetal brain were most enriched for 

terms related to dopamine signaling, and dopamine transport and metabolism gene polymorphisms 
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have previously been associated with variation in aggressive behavior in MS vs. Large White 

breeds [171]. ABM genes in the fetal placenta were disproportionately associated with 

development of the placenta labyrinthine layer, the region of extensive vascularization and nutrient 

exchange between mother and fetus [189]. Increased vascularization of MS placentas has been 

extensively characterized as the primary mechanism to meet fetal nutritional demands in the 

absence of placental growth [170]. Among labyrinth-associated ABM genes, FGFR2 also 

exhibited MS-biased expression. A human case-control study demonstrated that FGFR2 

methylation was negatively correlated with fetal birth weight and placental surface area, 

implicating epigenetic regulation of FGFR2 in adverse developmental outcomes [190]. These 

results have thus identified strong tissue-specific candidate genes and pathways influencing 

behavioral and reproductive traits in pig breeds.  

 We identified consistent MTRR promoter hypomethylation in MS alleles across all tissues. 

MTRR-encoded methionine synthase reductase is required for optimal synthesis of methionine, an 

amino acid that is essential for diverse biological processes including protein and phospholipid 

biosynthesis as well as DNA methylation [191]. Studies in MTRR-deficient mouse models have 

reported numerous morphological and physiological consequences, including decreased 

embryonic and placental weight, decreased liver glycogen content, and  decreased acetylcholine 

and DNA methylation levels in the brain [192–194]. MTRR hypomethylation in MS alleles was 

associated with overall MS-biased MTRR expression, as evidenced by significantly higher 

proportions of MS-derived transcripts at common exons. MTRR expression has previously been 

shown to be upregulated in the endometrium of MS vs. WC sows, as has gene expression of other 

methionine synthesis genes in the placenta when comparing the same pig breeds [195, 196]. 

However, we observed significant WC bias in abundance of isoform-specific exons, suggesting 
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the WC genetic background may express unique MTRR isoforms at higher frequencies. Due to 

their diverse physiological roles as well as observed differential expression in porcine reproductive 

tissues, MTRR and other methionine synthesis genes represent intriguing candidates regulating 

complex trait variation between Chinese and European pig breeds.  

 Leveraging genetic variation to assess allelic methylation also resulted in the identification 

of widespread genotype-independent ABM between parental alleles. We found that the majority 

of regions exhibiting extreme ABM between maternal and paternal alleles in our analysis 

overlapped known mammalian imprinted genes, and that clusters of imprinting-like ABM regions 

co-localized with known imprinted gene clusters. Numerous imprinted gene clusters have been 

shown to possess a cis-regulatory region at which differential methylation between maternal and 

paternal alleles governs monoallelic gene expression [49]. We identified imprinting-like ABM 

regions in both H19/IGF2 and IGF2R, and their co-localization with homologous ICR-proximal 

elements in humans—a CTCF binding site and AIRN at IGF2 and IGF2R, respectively—provide 

evidence for a similar regulatory role for these regions in the pig. Both IGF2 and IGF2R are known 

to be mono-allelically expressed [197, 198], and while an extreme difference in methylation was 

observed at the putative IGF2R ICR, the difference at the IGF2 ABM locus was only moderate 

(~20%). As the human H19/IGF2 ICR is known to contain seven CTCF binding sites [199], it is 

possible that ABM at each element contributes cumulatively to exclusive IGF2 expression from 

the paternal allele.    

 We identified dozens of genes exhibiting novel imprinting-like ABM and ABE in pig fetal 

tissues. Among these, PCDHGA4 exhibited extreme paternal hypomethylation in the 30 dg brain 

and was among multiple regions of imprinting-like ABM in the S. scrofa protocadherin gene 

cluster. Protocadherin genes have previously been shown to exhibit allele biases in expression in 
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a stochastic manner similar to X chromosome inactivation, such that, at a given locus, monoallelic 

expression may occur from the maternal or paternal allele [200]. We provide evidence here for an 

imprinting-like bias in both protocadherin methylation and expression that is distinct from the 

random allelic variation that has been reported in humans and mice, particularly in PCDHGA4. 

While the observed paternal hypomethylation of PCDHGA4 in 30 dg brain was associated with 

paternal ABE of nearby transcript isoforms, more distal and upstream isoforms exhibited maternal 

ABE. These results provide evidence for non-random PCDHGA4 activation from distinct TSSs 

between parental alleles in the developing pig brain. Future research should seek to further assess 

the extent of imprinting-like biases in porcine protocadherin gene expression, and whether 

differential methylation of a cis-acting element governs these biases as has been observed in other 

imprinted genes.  

 In conclusion, we have dramatically improved the functional annotation of fetal porcine 

tissues through the assessment of DNA methylation patterns at two critical stages of prenatal 

development. Identified DMRs represent putative novel regulatory regions that may govern 

temporal gene expression. Furthermore, we report thousands of genes exhibiting allele biases in 

methylation that represent candidate loci governing breed-specific and imprinting-like gene 

regulation. These data will serve as a valuable resource for future endeavors seeking to define 

enhancers, silencers, and insulator elements important for pig fetal tissue development. 
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CHAPTER 5 
 

WEANING INDUCES STRESS-DEPENDENT DNA METHYLATION AND 
TRANSCRIPTIONAL CHANGES IN PIGLET PBMCS 

 
 

This chapter has been published previously [86]. It was prepared alongside co-authors 

Andrea M. Luttman, Kaitlin E. Wurtz, Janice M. Siegford, Nancy E. Raney, Laura M. Ford, and  

Catherine W. Ernst. 

 

5.1     Abstract 

Changes to the epigenome, including those to DNA methylation, have been proposed as 

mechanisms by which stress can induce long-term physiological changes in livestock species. Pig 

weaning is associated with dietary and social stress, both of which elicit an immune response and 

changes to the hypothalamic-pituitary-adrenal (HPA) axis. While differential methylation 

following stress has been assessed in model organisms, it remains poorly understood how the pig 

methylome is altered by stressors in production settings. We quantified changes in CpG 

methylation and transcript abundance in piglet peripheral blood mononuclear cells (PBMCs) 

following weaning, and also assessed differential patterns in pigs exhibiting high and low stress 

response as measured by cortisol concentration and lesion scores. Blood was collected from nine 

gilt piglets 24h before and after weaning, and whole-genome bisulfite sequencing (WGBS) and 

RNA-sequencing were performed on six and nine animals, respectively, at both time points. We 

identified 2,674 differentially methylated regions (DMRs) which were enriched within promoters 

of genes associated with lymphocyte stimulation and transcriptional regulation. Stress groups 

displayed unique differential methylation and expression patterns associated with activation and 

suppression of T cell immunity in low and high stress animals, respectively. Differential 
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methylation was strongly associated with differential expression; specifically, upregulated genes 

were enriched among hypomethylated genes. We observed post-weaning hypermethylation of the 

glucocorticoid receptor (NR3C1) promoter, and a significant decrease in NR3C1 expression (n=9, 

p=6.1E-3). Our results indicate weaning-associated stress elicits genome-wide methylation 

changes associated with differential gene expression, reduced T cell activation, and an altered HPA 

axis response.   

5.2     Introduction 

Livestock animals experience numerous stressors throughout their lifetime that result in short- and 

long-term effects on physiology and performance [201–205]. Weaning represents a period of 

dietary and social stress in pig production systems with acute effects on digestive physiology and 

immune response [206]. In addition to direct effects of weaning, piglets are exposed to unfamiliar 

individuals in nursery pens, which results in aggressive encounters and skin lesion development 

[207]. Overall blood lymphocyte concentrations have been shown to be significantly reduced in 

weaned pigs [208], and additional psychosocial stress experienced during weaning has been 

associated with lower concentrations of T cell subpopulations [209]. One reliable indicator of 

stress response following pig weaning and mixing is lesion counts, as this measure has been shown 

to be associated with aggressive behavior, hypothalamic-pituitary-adrenal axis (HPA) activity, and 

risk of infection, as well as negatively associated with immunocompetence [210–213]. Weaning 

stress can have long-term consequences on gut health and disease susceptibility [214], yet the 

molecular mechanisms underlying these relationships remain poorly characterized. It has been 

proposed that epigenetic mechanisms may link stress from environmental stimuli to lasting 

changes in gene expression and physiology [62, 215].  
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 DNA methylation is an epigenetic modification involving the enzymatic addition of a 

methyl group to the 5-carbon of cytosine rings, producing 5-methylcytosine. Methylation occurs 

almost exclusively at CpG dinucleotides in mammals and has context-specific associations with 

gene expression. In gene promoters and intronic enhancers, methylation generally functions to 

decrease levels of transcription through the alteration of transcription factor binding sites or the 

recruitment of transcriptional repressors [25, 31, 82]. Numerous studies have assessed DNA 

methylation patterns in peripheral blood mononuclear cells (PBMCs), as these can be repeatedly 

obtained from the same subjects and provide indications of alteration in stress response pathways; 

for instance, human studies have found increased levels of stress exposure to be associated with 

increased glucocorticoid receptor (NR3C1) methylation and decreased NR3C1 expression in blood 

[56, 216, 217]. DNA methylation studies have been performed in pig tissues in response to 

different stressors [64, 80]. However, assessment of DNA methylation in the pig in response to 

natural production stressors has not been extensively studied, nor has the association between 

differential methylation and gene expression.  

 In the current study, we sought to identify differentially methylated regions (DMRs) and 

differentially expressed genes (DEGs) associated with weaning. We also assessed differential 

methylation and expression separately in pigs exhibiting high and low levels of weaning stress as 

determined by changes in serum cortisol concentration and post-weaning lesion counts. Lastly, we 

looked specifically at the effect of weaning on NR3C1 methylation and expression as an indicator 

of alterations in the HPA axis response. 
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5.3     Materials & Methods 

5.3.1     Sample Collection  

Blood was sampled from nine crossbred gilts (four and five from two litters) weaned at 28-29 d of 

age. At weaning, littermates were separated into nursery pens containing 6 gilts of various litters. 

Samples were collected 24 h before and 24 h after weaning, and body lesions were counted 

immediately before and 24 h after weaning by the same trained counter [207]. Blood was collected 

from each animal per time point in Vacutainer whole blood collection tubes with no additive 

(Becton Dickinson) for serum isolation and Vacutainer tubes containing freeze-dried sodium 

heparin (VWR) for PBMC isolation. PBMCs were isolated from each animal at both time points 

following centrifugation in ACCUSPINTM System-Histopaque-1077® tubes (Sigma Aldrich) 

according to manufacturer’s instructions. Serum cortisol concentrations were measured using the 

DetectX Cortisol Enzyme Immunoassay from Serum and Plasma Kit (Arbor Assays). Optical 

density was measured at 450nm using a microplate reader, and readings were converted to ng/ml 

concentrations using Arbor Assays software. We assessed changes in serum cortisol concentration 

and post-weaning lesion counts as phenotypic measurements of stress response. High stress (HS) 

and low stress (LS) animals were visually selected as those at the extremes of the two-dimensional 

plot of the two phenotypes, and further subjected to DNA methylation analyses (Fig S1). 

5.3.2     Nucleic Acid Isolation and Sequencing 

DNA was isolated from six pre- and six post-weaning PBMC samples using the PureLink Genomic 

DNA Kit. Prior to library preparation, DNA samples were spiked with unmethylated lambda phage 

DNA (5 ng lambda DNA/1 µg sample DNA) to assess sodium bisulfite conversion. DNA was 

sodium bisulfite converted using the Zymo EZ DNA Methylation-Gold Kit. Eight of the 12 

libraries were prepared using the Kapa Hyper Prep DNA Kit (Roche), and the remaining four 



 

 94 

libraries were prepared using the Swift Biosciences Accel-NGS Methyl-Seq Library Kit. WGBS 

was performed as described in Section 2.3.3. 

 PBMC RNA from all animals at both time points was isolated using the miRNeasy Mini 

Kit (Qiagen). For eight of the 18 RNA samples, ribosomal RNA (rRNA) was depleted using the 

Illumina Ribo-Zero Gold Kit; the remaining RNA samples were subject to rRNA and globin RNA 

depletion using Illumina Ribo-Zero Plus Kit. All sequencing libraries were prepared using the 

Illumina TruSeq Total RNA Library Preparation Kit. RNA-sequencing (RNA-seq) was performed 

as described in Section 3.3.1. 

5.3.3     WGBS Bioinformatics 

WGBS read trimming, alignment, deduplication, and methylation extraction was performed as 

described in Section 2.3.4. Due to sub-optimal conversion in some samples, we ran Bismark’s 

filter_non_conversion command with default parameters to remove reads that contained >3 

consecutive methylated non-CpG cytosines. Conversion rates were >99.5% in all libraries 

following this filtering.  

 Differential methylation analysis between stages was performed using the methylKit R 

package v.1.6.3 as described in Section 3.3.3. [89]. Logistic regression models were fitted for each 

region accounting for the fixed effects of library prep and animal within library prep, and random 

effect of litter to test if stage (post- vs. pre-weaning) had a significant effect on the log odds ratio 

of regional CpG methylation rate. DMRs were classified as those with methylation difference 

>10% and FDR <0.05. Separate post-weaning differential methylation analyses were also run for 

LS and HS animals using the same methods.  

 DMRs were annotated with respect to their overlap with gene features to identify 

differentially methylated genes (DMGs). Genes were classified as promoter- or gene body-DMGs 
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if they contained a DMR in their promoter (2kb up- or downstream of transcription start site (TSS)) 

or gene body, respectively. DMRs not overlapping a gene were classified as intergenic. DMG lists 

were submitted for gene set enrichment analysis (GSEA) using GOrilla software [218]. 

5.3.4     RNA-sequencing Bioinformatics  

RNA-seq reads were trimmed of adapters and low-quality bases using Trimmomatic 

(HEADCROP:10 LEADING:25 TRAILING:25 AVGQUAL:20 MINLEN:30). Trimmed reads 

were aligned to the S. scrofa reference genome using TopHat2 [145] (parameter: --library-type ‘fr-

firststrand’), and gene counts were obtained using HTSeq-count [146] (parameters: -m 

intersection-nonempty -i gene_id -t exon -s reverse).  

 Differential expression analyses were performed using the DESeq2 R package [93]. A 

negative binomial model was fitted that tested for the effect of stage, and corrected for the effects 

of litter, library preparation and animal within library preparation. DEGs were classified as those 

with FDR <0.05, regardless of log2-Fold Change. DEGs were submitted for GSEA using GOrilla 

to identify enriched GO terms. Four separate DEseq2 analyses were performed for: 1) all animals 

(n=9/stage), 2) HS animals and 3) LS animals (n=3/stage), and 4) animals with WGBS data 

(n=6/stage). 

5.3.5     Assessment of NR3C1 Methylation and Expression 

We assessed NR3C1 promoters for regional and site-specific methylation differences, and PBMC 

NR3C1 transcript abundance was measured by RNA-seq and RT-qPCR. Total RNA from PBMCs 

was reverse transcribed as described in Section 2.3.9. B2M and GAPDH were used as reference 

genes due to their reported stable expression in PBMCs [101, 102]. qPCR assays were performed 

in triplicate as described in Section 2.3.9, with the modification of adding 50 ng cDNA at 5 µl 

volume to each reaction well. Delta Cts (dCts) were obtained for each sample by subtracting the 
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geometric mean of the reference gene Cts from the NR3C1 Ct, and a paired t-test was performed 

to assess the significance of stage on dCts. Fold change in abundance at post- versus pre-weaning 

was calculated using the 2^-ddCt method.  

 

Figure 5.1. Total post-weaning lesion score plotted against percent change in cortisol 
concentration (post- vs. pre-weaning) in nine piglets. Samples in green and red boxes were 
designated as low stress and high stress, respectively.  

5.4     Results 

5.4.1     Serum cortisol and lesion count measurements identify low- and high-stress animals 
following weaning 

We measured serum cortisol concentrations and skin lesion counts before and after weaning in 

nine gilts in order to assess differential stress response. Percent change in serum cortisol 

concentration was significantly positively correlated with post-weaning lesion counts (r=0.70, 

p=0.036; Figure 5.1). We designated the three animals exhibiting the lowest and highest values of 

these parameters as LS (two gilts from litter 98 and one from litter 102) and HS (one gilt from 

litter 98 and two from litter 102), respectively.  
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5.4.2     Weaning differential methylation is associated with lymphocyte immune response 
genes 

We obtained 128-194M WGBS reads across samples, of which 86-89% uniquely aligned to the S. 

scrofa reference genome (Table D.1). We achieved sufficient coverage to assess differential 

methylation post- versus pre-weaning at 972,067 1kb regions. We observed clustering of samples 

based on litter (data not shown), and thus corrected for this as a random effect in our differential 

methylation analysis. We identified 2,674 DMRs between stages when considering all animals, of 

which 1,363 were hypermethylated and 1,311 hypomethylated post-weaning (Figure 5.2A). We 

annotated DMRs along with all tested regions to gene features, and observed a 3.4-fold and 2.1-

fold overrepresentation of hyper- and hypo-DMRs in gene promoters, respectively (Figure 5.2B). 

Conversely, there was a depletion of DMRs in gene bodies and intergenic regions.  

 We also assessed post- versus pre-weaning differential methylation separately in LS and 

HS animals, and identified unique patterns between groups. HS animals possessed a greater 

number of DMRs overall (9,945 vs 6,141); however, while HS animals had roughly the same 

number of hyper- and hypo-DMRs (4,938 and 5,007, respectively), LS animals had a greater 

proportion of hypo-DMRs (n=3,473) relative to hyper-DMRs (n=2,668). Similar to DMRs among 

all animals, HS hyper-DMRs were more overrepresented in promoters than were HS hypo-DMRs 

(Figure 5.2B), while LS hyper and hypo-DMRs were overrepresented in promoters at similar 

magnitudes. These results indicate that differential methylation at weaning is strongly associated 

with gene promoters, and suggest that the proportions of hyper- and hypo-DMRs are dependent 

on stress level.    
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Figure 5.2. Differential methylation in post- versus pre-weaning PBMCs. (A) Volcano plot of 
methylation difference against –log10(qvalue). Red dots indicate significant differentially 
methylated regions (DMRs). (B) Enrichment of hypomethylated and hypermethylated DMRs for 
All, HS, and LS pigs in gene features. Horizontal line indicates expected relative proportion of 
DMRs in feature if no enrichment (i.e. 1). HS = high stress; LS = low stress. 

 To determine if differential methylation influences genes involved in similar biological 

processes, we submitted DMGs for gene set enrichment analysis (Table 5.1). Among all animals, 

promoter-DMGs were enriched for T cell- and plasma cell-specific processes. Genes 

hypermethylated in their promoters included interleukin 2 receptor alpha (IL2RA) and LIM domain 

only 1 (LMO1), whereas hypomethylated genes included several involved in T cell proliferation 

(CD3E and TNFSF14) and apoptosis (LGALS1). While hypermethylated gene body-DMGs were 

not enriched for specific processes related to immunity, we identified several such processes 

enriched among hypomethylated DMGs including ‘Positive regulation of lymphocyte 

differentiation’ and ‘B cell receptor signaling pathway’.  
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Table 5.1. Enriched GO Terms among promoter- and gene body-DMGs 
Hypermethylated Promoter-DMGs 

GO Term Enrichment P-value Genes 
Catecholamine secretion 34.05 8.60E-04 MECP2, NISCH 
Regulation of T cell 
homeostatic proliferation 34.05 8.60E-04 IL2RA, LMO1 

Hypomethylated Promoter-DMGs 
GO Term Enrichment P-value Genes 
T cell costimulation 7.44 5.30E-04 PTPN6, TNFSF14, LGALS1, CD3E, 

PIK3R1 Lymphocyte costimulation 7.28 5.8E-04 
Plasma cell differentiation 43.66 6.98E-04 LGALS1, ITM2A 

Hypomethylated Gene Body-DMGs 
GO Term Enrichment P-value Genes 
Positive regulation of 
lymphocyte differentiation 3.62 2.07E-04 

PIK3R6, RASGRP1, IL4R, TOX, 
ZBTB7B, IL2RA, IL12RB1, PTPRC, 

INPP5D, ZMIZ1, RUNX1 
Regulation of response to 
stimulus 1.28 2.68E-04 157 genes 

Positive regulation of 
leukocyte differentiation 2.92 3.06E-04 

PIK3R6, IL4R, TOX, IL2RA, TRIB1, 
IL12RB1, GNAS, INPP5D, RUNX1, 

RASGRP1, ZBTB46, ZBTB7B, 
PTPRC, ZMIZ1 

Immune response-
activating cells surface 
receptor signaling pathway 

2.31 4.34E-04 

VAV3, ELMO2, ICAM2, MAPK1, 
BLK, INPP5D, PSMB7, MYO1G, 
CYFIP2, ACTB, LCP2, PRKCB, 

BTRC, EIF2B2, MYO1C, NFATC2, 
PTPRC, ARPC1B, CD247, PDE4B 

B cell receptor signaling 
pathway 5.50 6.17E-04 VAV3, ELMO2, ICAM2, MAPK1, 

BLK, PTPRC, NFATC2 
 

 We also identified shared and unique enriched GO terms among DMGs in LS and HS 

animals (Table 5.2). In both groups, post-weaning promoter hypomethylation was enriched in 

genes involved in leukocyte differentiation and activation. Post-weaning hypomethylated genes in 

the LS group were also enriched for T cell-related processes (‘alpha-beta T cell receptor complex’, 

‘regulation of gamma-delta T cell activation’). Conversely, terms related to T cells (‘alpha-beta T 

cell activation’, T cell differentiation’) were enriched among hypermethylated genes in the HS 

group. As gene hypomethylation is generally associated with gene activation, these data suggest 

that weaning stress level is negatively associated with T cell activity in part through differences in  
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Table 5.2. GO Terms enriched among DMGs in low and high stress (LS & HS) groups 
GO Term No. Genes Enrichment P-value 

LS Hypermethylated Genes 
Platelet activation 14 2.74 4.98E-04 
LS Hypomethylated Genes 
Positive regulation of myeloid cell differentiation 13 3.15 2.12E-04 
Alpha-beta T cell receptor complex 4 15.7 3.21E-05 
Regulation of gamma-delta T cell activation 4 8.29 5.47E-04 
HS Hypermethylated Genes 
T cell differentiation 21 2.57 4.18E-04 
Alpha-beta T cell activation 11 3.11 5.07E-04 
B cell receptor signaling pathway 10 3.93 1.04E-04 
HS Hypomethylated Genes 
Regulation of leukocyte degranulation 8 5.65 6.23E-05 
Leukocyte activation 47 1.74 1.47E-04 

 

DNA methylation. To further test this hypothesis, we assessed T cell co-receptor genes for post-

weaning differential methylation in both stress groups. We identified opposing differential 

methylation in these genes between stress groups (Table 5.3). Regions in CD3E, CD3D, CD3G, 

and CD4 were hypomethylated post-weaning in the LS group but not DM in the HS group, while 

a CD8B region was hypermethylated post-weaning in the HS group and not DM in the LS group. 

5.4.3     Weaning differential gene expression is associated with differential gene methylation 

We assessed PBMC gene expression in nine gilts via RNA-seq and obtained 62-108M reads per 

sample (Table D.2). We identified 13,580 expressed genes and 1,480 DEGs between stages (721 

upregulated and 759 downregulated post-weaning). Numerous GO terms were enriched among 

upregulated genes, the most significant of which were related to immune, inflammatory, and stress 

response (data not shown). Downregulated genes were enriched for terms related to transcriptional 

and post-transcriptional regulation (data not shown).  
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Table 5.3. Weaning differential methylation and expression of T cell co-receptor genes.   

Gene DMR 
location 

Gene 
Feature 

Methylation Difference 
(Post vs Pre) 

Log2 Fold Change (post 
vs. pre-weaning) 

All LS HS All LS HS 

CD3E 

9:45620001 Promoter -9.13 -13.17 -6.02 

0.076 0.064 0.024 9:45621001 Promoter -16.43 -19.64 -17.50 

9:45624001 Gene 
Body -6.63 -13.63 2.98 

CD3D 9:45645001 Promoter -5.08 -18.71 2.95 0.273 0.165 0.081 
CD3G -0.460 -0.528 -0.588 
CD4 5:63916001 Promoter -5.39 -17.70 6.06 -0.122 -0.143 -0.387 
CD8A --- --- --- --- --- -0.311 -0.079 -0.59 

CD8B 
3:57970001 Promoter 16.50 15.17 17.49 

-0.80 -0.251 -1.67 
3:57988001 Gene 

Body 11.93 -0.81 20.57 

 

 Differential expression analyses were also performed on LS and HS animals separately. A 

larger number of weaning DEGs were identified in the LS group (134 upregulated and 42 

downregulated post-weaning) compared to the HS group (49 genes upregulated and 13 

downregulated). DEGs were submitted for GSEA, and only upregulated genes contained enriched 

GO terms. There were numerous terms enriched among both sets of upregulated genes (e.g. 

‘Inflammatory response’, ‘Positive regulation of cytokine production’), but unique GO terms were 

also enriched (Table 5.4). LS upregulated genes were enriched for terms related to viral response, 

type I interferon signaling, and NIK/NF-kappaB signaling. HS upregulated genes were enriched 

for terms related to apoptosis and negative regulation of CD4-positive, alpha-beta T cell 

proliferation and activation.  

 To determine the degree of overlap between DEGs and DMGs, we identified DEGs 

between stages in the same six animals for which methylation data were generated. There was a 

total of 387 DEGs (275 upregulated and 112 downregulated), and these were significantly enriched 

among DMGs. Twenty-eight DEGs were also promoter-DMGs, and there was particular 

enrichment for upregulated genes among hypomethylated promoter-DMGs (p=3.56E-3). 
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Additionally, 29 DEGs were also gene body-DM, and there was again enrichment for upregulated 

genes among hypomethylated gene body-DMGs (p=0.021). There is thus evidence that differential 

methylation is strongly associated with differential expression in post-weaning piglet PBMCs, and 

specifically that hypomethylation is associated with increased gene expression. 

Table 5.4. GO terms enriched among upregulated genes in low and high stress groups 
GO Term No. Genes Enrichment P-value 

LS Upregulated Genes 
Inflammatory response 23 5.95 4.35E-12 
Positive regulation of cytokine production 27 5.99 3.96E-14 
Type I interferon signaling pathway 17 29.38 1.12E-21 
Interferon-gamma-mediated signaling pathway 13 19.4 4.88E-14 
Positive regulation of NIK/NF-kappaB signaling 6 7.43 1.44E-04 
Response to virus  36 12.06 2.02E-29 
HS Upregulated Genes 
Inflammatory response 13 8.51 2.46E-09 
Positive regulation of cytokine production 10 5.62 9.16E-06 
Positive regulation of T cell apoptotic process 3 55.46 1.69E-05 
Positive regulation of lymphocyte apoptotic process 3 41.59 4.37E-05 
Negative regulation of alpha-beta T cell activation 3 19.2 4.87E-04 
Negative regulation of alpha-beta T cell proliferation 2 66.55 3.51E-04 

 

 Because T cell co-receptor genes exhibited unique differential methylation patterns 

between stress groups, we determined the extent to which such patterns associated with differential 

expression between HS and LS animals. CD8B, which was gene body-hypermethylated only in 

the HS group post-weaning, was also significantly downregulated in the HS group (Table 5.3; 

log2FC=-1.67) but not in the LS group (log2FC=-0.25). CD4 exhibited post-weaning promoter 

hypomethylation in the LS group but not in the HS group, and exhibited a greater decrease in 

expression in the HS group (log2FC= -0.387) although this difference was not statistically 

significant. Changes in expression of genes with associated differences in regional methylation  
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Figure 5.3. Glucocorticoid receptor (NR3C1) gene methylation and expression in response 
to weaning. (A) Two CpG sites in the NR3C1 promoter (797 and 328 bp downstream of TSS) 
are significantly hypermethylated post-weaning. (B) NR3C1 transcript abundance is significantly 
reduced post-weaning, as measured by RNA-sequencing and RT-qPCR. 

suggest that such regions may harbor regulatory elements that dictate stress-dependent T cell 

gene expression. 

5.4.4     NR3C1 differential methylation and expression is indicative of altered HPA axis 
response  

We did not observe significant regional differences in CpG methylation associated with weaning 

in the two NR3C1 promoters in the pig genome. We thus assessed individual CpG methylation 

differences and identified two differentially methylated CpGs (DMCs), both of which were 

hypermethylated post-weaning (Figure 5.3A). These DMCs lie 797 and 328 bp downstream of the 

first NR3C1 TSS, and exhibited 17% and 21% increases in methylation post-weaning, respectively. 

We observed a corresponding decrease in NR3C1 transcript abundance via RNA-seq (Figure 5.3B; 

log2FC=-0.588, p=0.026), which was also validated via RT-qPCR (log2FC=-0.455, p=6.1E-3).  

These results recapitulate findings in human and mouse studies that stress exposure is associated 

with NR3C1 promoter hypermethylation and decreased expression in peripheral tissues.    
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5.5     Discussion 

This study has identified epigenetic alterations in pigs as a response to weaning stress by assessing 

DNA methylation patterns in piglet PBMCs prior to and after weaning and mixing with unfamiliar 

individuals. By selecting animals displaying extremes in post-weaning serum cortisol change and 

skin lesion counts, we were able to assess not only the overall effect of weaning on DNA 

methylation in PBMCs, but also how responses varied depending on stress level. PBMCs are a 

valuable peripheral cell type to study in the context of weaning for numerous reasons; first, they 

consist primarily of monocytes and lymphocytes whose activity, proliferation, and differentiation 

has been shown to be significantly altered by weaning-associated stress [208, 219, 220]. 

Furthermore, PBMC expression and methylation of genes involved in the HPA axis—namely 

NR3C1—have been shown to be suitable ‘surrogates’ for measurement of gene activity in neuronal 

tissues [56].   

 We observed global CpG methylation rates in piglet PBMCs between 79.1% and 82.9%. 

A high proportion of variation in DNA methylation could be attributed to litter, which emphasized 

the need to correct for this variable when assessing for weaning-specific differential methylation 

patterns. The presence of 2,674 DMRs between stages indicates that weaning-associated changes 

in DNA methylation were present at many genomic loci. Additionally, we observed unique 

differential methylation patterns between LS and HS animals, with HS animals possessing more 

DMRs but LS animals having a greater proportion of hypomethylated regions. Previous studies in 

livestock species have identified differential methylation patterns in stressed versus non-stressed 

animals. Hao et al. 2016 identified thousands of DMRs in longissimus dorsi muscle of heat-

stressed vs. control pigs within genes involved in energy metabolism, stress response, and calcium 

signaling [64]. Multiple studies have identified differential lymphocyte DNA methylation 
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associated with prenatal transportation stress in Brahman bulls and heifers [59, 221, 222], and 

identified thousands of DM loci enriched in stress and immune response genes.  Our results 

indicate that weaning stress also alters DNA methylation patterns in pig immune cells—

particularly within gene promoters—and that the magnitude and direction of such alterations may 

be dependent on the level of stress experienced.   

 When considering all animals, post-weaning differential methylation impacted genes 

involved in immune cell processes. IL2RA exhibited hypermethylation in post-weaning PBMCs; 

this gene has previously been shown to possess extensive promoter hypomethylation in activated 

CD4+ T cells [223], suggesting that the opposite state observed here may suppress such activation. 

Clear differences were observed when assessing GO enrichment among LS and HS DMGs. 

Particularly, LS animals exhibited hypomethylation of genes involved in T cell activation and 

differentiation, while HS animals exhibited hypermethylation of genes involved in these processes. 

Overall, expression patterns were consistent with the differential methylation observed in LS and 

HS animals in terms of impacted biological processes. Upregulated HS genes were enriched for 

GO terms related to T cell apoptosis and negative regulation of CD4+ T cell proliferation, and these 

were not observed among the LS upregulated genes. Previous studies have shown CD4+ T cell 

concentrations to be the most significantly reduced following periods of psychosocial and weaning 

stress [209]. Our data suggest that differential gene regulation by DNA methylation may play a 

role in a reduced T cell response with increasing levels of stress. This was particularly evident 

when assessing differential methylation and expression by stress group among T cell co-receptor 

genes. Many of these genes exhibited post-weaning differential methylation patterns indicative of 

lower gene activation in the HS group compared to the LS group, and CD8B also exhibited 

significantly lower expression post-weaning only in the HS group. CD8B encodes a subunit of the 
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CD8 co-receptor in cytotoxic T cells. Studies have shown that corticosterone injections decrease 

CD8+ T cell concentrations in humans [224, 225], and that in pigs cytotoxic T cell concentrations 

decrease following weaning [208]. Our methylation analyses have identified a DMR in the gene 

body of CD8B that may act in regulating CD8B expression, particularly in response to weaning 

stress and cortisol levels.  

 Lastly, we observed significant post-weaning hypermethylation in CpGs in the NR3C1 

promoter, and a corresponding decrease in expression. The glucocorticoid receptor not only 

functions as an inducer of cortisol-mediated transcription in peripheral tissues, but also regulates 

the HPA axis response in a negative feedback loop [226]. NR3C1 hypermethylation and 

downregulation in the hypothalamus has often been an indicator of stress vulnerability, and recent 

studies have shown comparable patterns in PBMCs [216, 217]. Our data show that pigs exhibit 

similar patterns of NR3C1 hypermethylation and downregulation in response to weaning stress. 

However, we did not observe significant differences in post-weaning NR3C1 methylation and 

expression between LS and HS pigs, potentially due to our limited sample size in this study.    

 In summary, we have elucidated epigenetic patterns of acute weaning-associated stress 

response in pigs. Future studies should seek to assess patterns of methylation and expression in 

PBMCs at later periods following weaning to assess long-term effects of weaning stress on pig 

immunity and performance. Additionally, assessment of other tissues involved in the HPA axis 

would provide a more direct measurement of stress response that could be compared to regulation 

and expression of genes in peripheral tissues. Continued analysis of genes undergoing stress-

dependent gene regulation and expression may reveal biomarkers that are predictive of pig stress 

resilience.  
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CHAPTER 6  
 

GENOME-WIDE ASSESSMENT OF DNA METHYLATION IN CHICKEN CARDIAC 
TISSUE EXPOSED TO DIFFERNET INCUBATION TEMPERATURES AND CO2 

LEVELS 
 
 

This chapter has been published previously [227]. The manuscript was prepared alongside 

co-authors Marinus F.W. te Pas, Henry van den Brand, Martien A.M. Groenen, Richard P.M.A. 

Crooijmans, Catherine W. Ernst, and Ole Madsen.  

 

6.1     Abstract 

Temperature and CO2 concentration during incubation have profound effects on broiler chick 

development, and numerous studies have identified significant effects on hatch heart weight (HW) 

as a result of differences in these parameters. Early-life environment has also been shown to affect 

broiler performance later in life; it has thus been suggested that epigenetic mechanisms may 

mediate long-term physiological changes induced by environmental stimuli. DNA methylation is 

an epigenetic modification that can confer heritable changes in gene expression. Using reduced-

representation bisulfite sequencing (RRBS), we assessed DNA methylation patterns in cardiac 

tissue of 84 broiler hatchlings incubated at two egg shell temperatures (EST; 37.8oC and 38.9oC) 

and three CO2 concentrations (0.1%, 0.4%, and 0.8%) from day 8 of incubation onward. We 

assessed differential methylation between EST treatments and identified 2,175 differentially 

methylated (DM) CpGs (1,121 hypermethylated, 1,054 hypomethylated at 38.9o vs. 37.8o) in 269 

gene promoters and 949 intragenic regions. DM genes (DMGs) were associated with heart 

developmental processes, including cardiomyocyte proliferation and differentiation. We identified 

enriched binding motifs among DM loci, including those for transcription factors associated with 

cell proliferation and heart development among hypomethylated CpGs that suggest increased 
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binding ability at higher EST. We identified 9,823 DM CpGs between at least two CO2 treatments, 

with the greatest difference observed between 0.8% and 0.1% CO2 that disproportionately 

impacted genes involved in cardiac muscle development and response to low oxygen levels. Using 

HW measurements from the same chicks, we performed an epigenome-wide association study 

(EWAS) for HW, and identified 23 significantly associated CpGs, nine of which were also DM 

between ESTs. We found corresponding differences in transcript abundance between ESTs in three 

DMGs (ABLIM2, PITX2, and THRSP). Hypomethylation of an exonic CpG in PITX2 at 38.9oC 

was associated with increased expression, and suggests increased cell proliferation in broiler 

hatchlings incubated at higher temperatures. Overall, these results identified numerous epigenetic 

associations between chick incubation factors and heart development that may manifest in long-

term differences in animal performance.  

6.2     Introduction 

Early-life environmental parameters have profound effects on broiler chick development and post-

hatch performance. Incubation temperature is one of the most important factors influencing 

embryonic growth, development, and physiology [228–231]. In studies assessing the effects of 

incubation egg shell temperature (EST) on organ growth, heart weight (HW) is consistently 

observed to be negatively correlated with EST [67, 202, 232–234]. Mechanisms linking incubation 

EST and heart development have been proposed; studies have shown that increased incubation 

temperature decreases the mitotic index of cardiomyocytes [235], as well as the concentration of 

circulating T3, the metabolically active form of thyroid hormone [236, 237]. Additionally, 

phenotypic differences in adult broilers associated with differences in early life temperature have 

been observed. Chicks incubated at a higher EST from embryonic day 7 (E7) to hatch were found 

to have a higher incidence of ascites mortality at six weeks of age [238, 239]. However, broilers 
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exposed to increased temperature early in life exhibited decreased mortality when exposed to heat 

stress again at 6 weeks of age relative to unexposed animals, suggesting that early heat stress 

confers thermotolerance that can improve performance upon subsequent exposures [201].  

 In addition to temperature, CO2 concentration during the incubation period has been 

suggested to be important for regulating chick growth and physiology. Embryos incubated at 

increased CO2 concentration have been found to exhibit numerous phenotypes: in addition to a 

significantly greater average HW at hatch [234], lower blood oxygen levels relative to control 

chicks have also been observed [240]. Increased incubator CO2 concentration was associated with 

decreased ascites mortality in broilers later in life [241], suggesting long-term effects of early life 

CO2 exposure. Alterations made to the epigenome have been proposed as one mechanism by which 

early-life environmental differences can manifest in phenotypic differences in adult precocial birds 

[62, 242], and it has recently been shown that embryonic thermal manipulation induces epigenetic 

modifications in the hypothalamus of 35-day old broilers [69]. 

 Numerous epigenetic molecular mechanisms including DNA methylation, histone tail 

modifications, and non-coding RNA interactions have been observed to induce mitotically 

heritable changes in gene expression without altering DNA sequence [63, 243]. DNA methylation 

is an epigenetic modification involving the enzymatic addition of a methyl group to the 5-carbon 

of cytosine rings, producing 5-methylcytosine. Methylation occurs almost exclusively at CpG 

dinucleotides in vertebrates and has context-specific associations with gene expression. In gene 

promoters, methylation generally functions to decrease levels of transcription through the 

alteration of transcription factor (TF) binding sites, the recruitment of transcriptional repressors, 

or changes in chromatin conformation [31, 82]. Conversely, gene body methylation is generally 

associated with increased levels of transcription [35, 37, 244], although negative associations have 
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been identified in the context of genic enhancers [25]. Epigenetic processes are known to be altered 

in response to environmental perturbations, and this phenomenon has been studied in livestock 

species in response to heat stress [64, 70, 245]. Additionally, numerous epigenome-wide 

association studies (EWAS) have been performed in humans and mice to identify loci at which 

methylation level is significantly associated with complex and disease traits [246, 247]. Bisulfite-

sequencing approaches allow for genome-wide assessment of DNA methylation patterns, yet this 

approach has been underutilized in the chicken thus far [248–251].  

 In the current study, we assessed DNA methylation patterns in cardiac tissue of broiler 

chicks incubated at normal or high EST (37.8 or 38.9oC, respectively) and low, medium, or high 

CO2 concentration (0.1%, 0.4%, 0.8%, respectively) from embryonic day 8 (E8) until hatch. Using 

reduced representation bisulfite sequencing (RRBS), we tested for differences in CpG methylation 

rates between EST and CO2 treatments and identified thousands of loci exhibiting differential 

methylation that are associated with heart development. Additionally, by integrating phenotypic 

records from the same samples, we performed an EWAS and identified loci at which methylation 

rate was significantly associated with HW, and many of these sites were within genes with known 

roles in heart development. Our results provide evidence that EST and CO2 may be influencing 

heart growth and physiology through changes in cardiac DNA methylation patterns.   

6.3     Material and Methods 

6.3.1     Experimental Design and Sample Collection  

Heart tissue samples were collected from a 2x3 factorial study. Briefly, Cobb 500 broiler eggs 

were obtained from commercial broiler breeder farms and incubated in six consecutive batches. 

From day 0 to 8 of incubation (E8), all eggs were incubated at an EST of 37.8oC and 0.1% CO2. 
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At E8 eggs were divided into two ESTs (37.8oC and 38.9oC) and three CO2 concentrations (0.1%, 

0.4%, and 0.8% CO2) until hatch. Both EST treatments were applied in all batches, but CO2 

treatment application varied between batches. Time until hatch was recorded for each chick, and 

animals were removed from the incubator six hours post-hatch. Chicks were then killed by cervical 

dislocation followed by decapitation. Hearts were removed and stored at -20oC until further 

analysis. Heart samples derived from the left ventricle of 84 chicks (13 to 15 samples per EST-

CO2 combination) were utilized for DNA isolation and RRBS.  

6.3.2     Statistical Analyses of Heart Weight  

We tested for the significance of EST, CO2 concentration, and their interaction on HW using 

analysis of variance (ANOVA). To account for the significantly shorter incubation time of 38.9oC 

chicks, we constructed a linear model with HW as the response variable and incubation time as a 

fixed effect, and subsequently used the model residuals as a response variable to test the 

significance of the environmental parameter main effects and their interaction.   

6.3.3     Sample Processing and Bisulfite Sequencing   

DNA and RNA from heart samples were isolated using the AllPrep DNA/RNA Mini Kit (Qiagen) 

following manufacturer’s instructions. The RRBS libraries were prepared with the Ovation RRBS 

Library construction kit from Nugen following manufacturer’s instructions. Isolated DNA was cut 

with MspI and a fragment size selection of 20-250 bases was applied. Samples were pooled across 

9 flow cell lanes with each pool containing no more than 10 samples, and all pools were sequenced 

for 161 cycles on a HiSeq 2500 using the TruSeq SBS sequencing kit version 4. Fastq files were 

generated and demultiplexed with the bcl2fastq v2.17.1.14 Conversion Software (Illumina).  
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6.3.4     Bioinformatics Analyses  

Raw RRBS FASTQ files were trimmed of adapter sequences using Trim Galore v0.5.0 with 

Cutadapter v1.8.1 (Babraham Bioinformatics) and the parameters: -a AGATCGGAAGAGC. 

Reads were subsequently filtered for only those beginning with the expected YGG trinucleotide 

sequence using a python script provided by NuGEN Technologies 

(https://github.com/nugentechnologies/NuMetRRBS).  

 Read alignment was performed using BS-seeker2 v2.1.3 [252]. An RRBS bowtie2 index 

was generated from the Gallus gallus GRCg6a reference genome assembly using 

bs_seeker_build.py with the following parameters: --aligner bowtie2 --rrbs --low 10 --up 280. 

Trimmed reads were subsequently aligned to the RRBS index using bs_seeker2-align.py with the 

following parameters: --rbbs --low 10 –up 280 --mismatches 0.05 --aligner=bowtie2 --bt2-p 10  

--bt--local --bt2-N 1. Binary alignment map (BAM) files were converted to CGmap files using 

CGmaptools v0.1.2 [253], which reports methylation rates for all covered CpGs.  

 CGmap files were used to calculate sample global methylation rates, and to assess their 

associations with EST, CO2, and individual CpG methylation rates. We identified an 

overrepresentation of CpG sites where methylation was significantly correlated with sample global 

CpG methylation rate (data not shown). We therefore corrected for this factor in subsequent site-

specific differential methylation analyses.   

6.3.5     Differential Methylation Analyses 

We filtered CGmap files to only include CpGs with coverage of at least 10 reads within a sample. 

Filtered CGmap files were subsequently converted to CpG report text files for methylKit analysis 

using a custom python script. Differential methylation analyses were performed using the 

methylKit R package v1.8.1 [89]. Briefly, we removed CpGs in the 99.5th percentile of coverage 



 

 114 

for each sample to remove potential PCR duplicates. For the EST differential methylation analysis 

(38.9oC vs. 37.8oC), CpGs were retained if they were covered in at least 25 samples per EST 

treatment over all CO2 treatments. A logistic regression model was fitted for each CpG accounting 

for the covariates of CO2 level and sample mean CpG methylation rate to test if EST had a 

significant effect on the log odds ratio of the CpG methylation rate. For CO2 differential 

methylation analyses, CpGs were retained if they were covered in at least 16 samples per CO2 

treatment over both EST treatments. Three different analyses were performed to contrast the three 

different CO2 treatment pairs (0.4% vs. 0.1%, 0.8% vs. 0.4%, and 0.8% vs. 0.1% CO2). Again, a 

logistic regression model was fitted for each CpG, accounting for covariates of EST and sample 

mean CpG methylation rate, and testing for the effect of CO2 level. A CpG site was considered 

significantly differentially methylated (DM) if the difference in methylation rate between 

treatments was greater than 10% and the corresponding q-value was less than 0.05 in both EST 

and CO2 comparisons.  

6.3.6     CpG Annotation 

All analyzed CpGs were annotated with respect to overlap with genes using the genomation R 

package v1.14.0 [90]. We defined promoter CpGs as those within 2kb upstream or 200bp 

downstream of a gene transcription start site (TSS). Intragenic CpGs were defined as CpGs within 

any other region of a gene, while all remaining CpGs were classified as intergenic. Promoter- and 

intragenic-DM genes (DMGs) were defined as those with a DM promoter and intragenic CpG, 

respectively. To determine if DMGs were disproportionately involved in certain biological 

processes, gene lists were submitted for gene set enrichment analysis (GSEA) using the Panther 

database [91, 92]. We submitted promoter- and intragenic-DMG lists separately, and a background 
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list composed of all genes with CpGs covered by our RRBS data was applied. We considered GO 

terms significantly enriched at FDR < 0.05.  

6.3.7     Motif Enrichment Analysis 

We extracted 100bp genomic sequences centered around EST hyper- and hypomethylated CpGs, 

as well as 100bp sequences at 10k random CpGs included in the DM analysis to use as control 

sequences. Analysis of motif enrichment was performed using the MEME suite as described in 

Section 2.3.7. We identified motifs that were uniquely enriched among hyper- or hypomethylated 

sequences, as well as their corresponding TFs. The genes encoding these TFs were submitted to 

GSEA using the PANTHER database to identify enriched GO terms.  

6.3.8     Epigenome-Wide Association Study 

We performed an EWAS to identify significant associations between CpG methylation rates and 

HW. CpG sites with a methylation rate variance > 1 across samples with coverage > 10 were 

retained for further analysis. For each CpG site, a linear model was fitted with methylation rate as 

a response variable and including the fixed effects of sample mean methylation rate and CO2 level. 

Residual methylation rates were extracted and used for subsequent association analyses. For each 

CpG site, a linear model was fitted with log2-transformed HW as a response variable, and CO2 

concentration, sample mean methylation rate, and CpG methylation rate as fixed effects. Analysis 

of variance was performed to assess the effect of the CpG methylation rate on HW, and this process 

was repeated for all sites. Associations were considered significant at p <1E-5.  

6.3.9     Quantitative reverse-transcription PCR  

We performed quantitative reverse-transcription PCR (RT-qPCR) on eight DMGs (TBX1, TBX4, 

THRSP, PITX2, ABLIM2, NGB, GSC, and DAG1). Total RNA from six samples per EST treatment 
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was reverse transcribed using Superscript II Reverse Transcriptase (Invitrogen). Custom primers 

were designed for the eight DMGs and two stably methylated genes (MEAF6 and SRRM1), as well 

as for YWHAZ and RPL13 which have been cited as suitable reference genes in chicken heart [254]. 

All assays were performed in singleton on a QuantStudio 5 Real-Time PCR System (Thermo 

Fisher) using 3.75 µl cDNA template (10ng total), 1.25 µl of forward and reverse primers, and 

6.25 µl MESA BLUE qPCR MasterMix (Eurogentec). Cycling conditions were 50oC for 2 min. 

and 95oC for 10 min., followed by 40 cycles of 95oC for 15 s and 60oC for 1 min., followed by a 

melt curve stage of 95oC for 15 s and 60oC for 1 min. and a dissociation step of 95oC for 15 s. 

Delta Cts (dCts) were obtained for each gene per sample by subtracting the test gene Ct from the 

geometric mean of the reference gene Cts, and analyses of variance were performed to assess the 

significance of EST on dCts correcting for sample CO2 concentrations. Fold changes in abundance 

at 38.9oC relative to 37.8oC were calculated using the 2^-ddCt method.   

6.4     Results 

6.4.1     Broiler chicks differ significantly in HW between ESTs 

We measured HW in all broiler chicks six hours post-hatch. Chicks incubated at 38.9oC exhibited 

significantly lower HW relative to 37.8oC chicks (Figure 6.1; F=37.53, p=3.19E-08). There was 

no significant effect of CO2 concentration (F=0.254, p=0.62) or EST-CO2 interaction (F=0.257, 

p=0.61) on HW. When correcting for the significantly shorter incubation time of 38.9oC chicks 

(F=52.79, p=2.18E-10), the difference in HW between ESTs remained significant (F=12.75, 

p=6.05E-04). These results recapitulate the well-established negative association between 
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incubation EST and HW that has been found in numerous studies [67, 202, 232–234], and provide 

strong support for the assessment of associated differences in cardiac methylation between ESTs.  

 
Figure 6.1. Increased egg shell temperature (EST) is associated with significantly lower 
heart weight. Notched horizontal lines and red dots indicate median and mean values, 
respectively. ***p < 0.001. 

6.4.2    RRBS reads capture predominantly lowly methylated regions of the chicken genome 

An average of 18.9 million RRBS reads were generated per sample, of which 18.3 million 

remained after trimming (Table E.1). Mapping of RRBS reads to the G. gallus reference genome 

resulted in an average unique alignment rate of 73.8%, and an average of 3.1 million CpGs covered 

at a read depth >10X. Global CpG methylation rates across all samples were low on average 

(17.7%), likely due in part to the fact that RRBS targets CpG-rich regions of the genome which 

are lowly methylated [255]. Average CHG and CHH methylation rates were 0.55% and 0.56%, 

respectively; given the inherently low prevalence of methylation in non-CpG contexts in 

vertebrates [24], this suggests high bisulfite conversion efficiency of RRBS reads. 
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 A total of 1,874,588 CpG sites were covered by reads in at least 25 samples per EST 

treatment, and the majority of these (40.56%) were within gene promoters. 35.18% of CpGs were 

within gene bodies (25.67% in introns and 12.51% in exons), while 21.26% were intergenic. 

Promoter CpGs exhibited the lowest methylation rate on average (7.76%), with 85% of sites 

having an average methylation rate less than 10% (data not shown). The percentage of lowly 

methylated (<10%) CpGs in exons, introns, and intergenic regions was significantly lower—

42.74%, 54.52%, and 51.77%, respectively (data not shown). The low methylation observed at a 

majority of CpGs indicates that many loci covered by our RRBS data are not dynamically 

methylated in response to the applied environmental conditions, but remain relatively 

unmethylated regardless of EST or CO2 treatment.     

6.4.3     EST impacts the methylation state of genes involved in general and heart-specific 
developmental processes 

We identified a total of 2,175 DM CpGs between EST treatments, of which 1,121 were 

hypermethylated and 1,054 hypomethylated at 38.9oC relative to 37.8oC. Differential methylation 

was more likely to occur outside of promoter regions; of the 760,332 promoter CpGs tested, only 

285 (0.05%) were DM, while 0.14%, 0.18%, and 0.15% of exonic, intronic, and intergenic CpGs, 

respectively, were DM. In total 269 genes were promoter-DM (promoter-DMGs; 123 hyper- and 

146 hypomethylated), while 949 genes were intragenic-DM (intragenic-DMGs; 526 hyper- and 

423 hypomethylated).  

 DMG lists were submitted to Panther for GSEA, and we identified uniquely enriched 

biological processes among different gene sets (Table 6.2). We did not identify enriched GO terms 

when considering hyper- and hypomethylated promoter-DMGs separately, however when 

combining the two groups we identified enrichment of the terms ‘Multicellular Organism 

Development’, ‘Animal Organ Development’, and ‘Anatomical Structure Development’. Among 
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promoter-DMGs, several are known to play roles in heart development, including T-box 

transcription factors 1 and 4 (TBX1 and TBX4) that were hypomethylated at 38.9oC, and two genes 

involved in thyroid hormone signaling: thyroid hormone receptor alpha (THRA) and thyroid 

hormone responsive (THRSP), which were hypo- and hypermethylated, respectively (Figure E.1). 

As promoter methylation is generally inversely correlated with gene expression, hypomethylation 

of these gene promoters at 38.9oC is indicative of increased potential for gene activation, while 

hypermethylation suggests decreased activation.  

  Intragenic-DMGs were enriched for processes related to cardiac muscle development 

(Table 6.2). Specifically, hypermethylated intragenic-DMGs were enriched for GO terms such as 

‘Heart Development’, ‘Regulation of Myoblast Differentiation’, and ‘Cardiovascular System 

Development’, while hypomethylated intragenic-DMGs were enriched for terms including ‘Cell 

Differentiation’, ‘Cell Adhesion’, and ‘Glycosaminoglycan Metabolic Process’. Among genes 

associated with these GO terms are many involved in cardiomyocyte proliferation and 

differentiation, including: dystroglycan 1 (DAG1, hyper- and hypomethylated; Figure E.1), paired 

like homeodomain 2 (PITX2, hypomethylated; Figure E.1), and Erb-B2 receptor tyrosine kinase 2 

(ERBB2, hypomethylated) and 4 (ERBB4, hyper- and hypomethylated). Associations between 

intragenic methylation and gene expression are context-specific [25]. Nevertheless, temperature-

associated differential methylation within genes involved in heart development demonstrates the 

potential for corresponding differences in gene expression.  
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Table 6.1. Enriched GO Terms among DMGs between EST treatments 
Promoter-DMGs 
GO Term No. Genes Enrichment P-value 
anatomical structure development  86 1.53 1.19E-05 
animal organ development 60 1.81 4.22E-06 
multicellular organism development 84 1.61 2.06E-06 
Intragenic Hypermethylated Genes 
GO Term No. Genes Enrichment P-value 
anatomical structure development  179 1.82 1.93E-18 
cell differentiation 131 1.95 3.15E-11 
cardiovascular system development 29 3.04 2.71E-07 
negative regulation of myoblast differentiation 5 10.21 2.37E-04 
heart development 22 2.30 4.33E-04 
regulation of cardiac muscle tissue development 7 4.82 9.30E-04 
Intragenic Hypomethylated Genes 
GO Term No. Genes Enrichment P-value 
anatomical structure development 165 1.97 2.32E-21 
cell differentiation 111 1.93 1.65E-12 
cell adhesion  36 2.53 8.86E-07 
positive regulation of transcription  50 2.08 1.20E-06 
glycosaminoglycan metabolic process 11 4.64 4.52E-05 

 

6.4.4     EST differential methylation impacts binding sites for TFs involved in cell 
proliferation  

As methylation is known to affect gene regulation through the alteration of TF binding sites, we 

sought to identify enriched motifs in the vicinity of DM CpGs between ESTs. We submitted 100-

bp sequences centered on the 2,175 DM CpGs for motif enrichment analysis, and were specifically 

interested in identifying motifs that were uniquely enriched among hyper- or hypomethylated 

sequences. We identified 71 motifs for 49 TFs uniquely enriched among hypermethylated regions, 

and 120 motifs for 81 TFs enriched among hypomethylated regions (data not shown). Among the 

most uniquely enriched binding motifs for hypermethylated regions were numerous members of 

the zinc finger and BTB domain containing (ZBTB) family (ZBTB7C, ZBTB7A, ZBTB7B, 
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ZBTB49), many of which have been shown to negatively regulate cell proliferation [256, 257]. 

Among hypermethylated regions, the most uniquely enriched binding motif was for musculin 

(MSC), which functions as a repressor of the myogenic factor MYOD [258].  

 We submitted the gene IDs for TFs of hyper- and hypomethylated motifs to the PANTHER 

database for GO enrichment analysis. Uniquely enriched terms among TFs of hypermethylated 

motifs were not directly related to heart development or function; however, TFs of hypomethylated 

motifs were uniquely enriched for the GO terms ‘cardiovascular system development’ and 

‘positive regulation of cell population proliferation’ (Table 6.2). Genes associated with these terms 

included several with known roles in positively regulating cardiomyocyte proliferation, including 

retinoic acid receptor alpha (RARA) [259], T-box transcription factor 20 (TBX20) [260], lymphoid 

enhancer binding factor 1 (LEF1) [261] and PITX2, which was also found to be hypomethylated 

at 38.9oC. Overall, these results reveal the potential for decreased binding ability (via 

hypermethylation) of TFs involved in negatively regulating cell proliferation, and increased 

binding ability (via hypomethylation) of TFs involved in positively regulating cardiomyocyte 

proliferation at 38.9oC versus 37.8oC.  

Table 6.2. Uniquely enriched GO terms among TFs of hypomethylated motifs 
GO Term No. Genes Enrichment p-value 

embryo development ending in birth or egg 
hatching 13 5.42 8.08E-07 

vasculature development 9 4.77 1.20E-04 
cardiovascular system development 9 4.68 1.38E-04 
circulatory system development 12 3.79 7.37E-05 
positive regulation of cell population proliferation 12 3.58 1.25E-04 
cellular response to stress 17 2.67 1.59E-04 
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6.4.5     CO2 differential methylation impacts genes involved in heart development and 
response to hypoxia  

We identified a total of 9,823 DM CpG between at least one pair of CO2 treatments. Among these, 

3,652 were DM between 0.4% and 0.1% CO2 chicks, 4,695 between 0.8% and 0.4% CO2, and 

4,482 between 0.8% and 0.1% CO2 (Table 6.3). In each contrast, the higher CO2 treatment was 

associated with a higher proportion of hypermethylated CpGs, especially when comparing 0.8% 

CO2 to the other treatments.  

 DMGs were enriched for more heart- and muscle-specific GO terms when contrasting 0.8% 

CO2 to either of the other two CO2 treatments (Table 6.4) Among hypermethylated intragenic-

DMGs for each of the three contrasts, 18 such GO terms were enriched among the 0.8% vs. 0.1% 

contrast, while only five and six terms were enriched at 0.4% vs. 0.1% and 0.8% vs. 0.4%, 

respectively. Among hypomethylated intragenic-DMGs, the 0.8% vs. 0.4% CO2 contrast yielded 

the greatest number of enriched heart/muscle-related terms (n=23), while the 0.4% vs. 0.1% and 

0.8% vs. 0.1% yielded only three and seven, respectively. Intragenic-DMGs at 0.8% CO2 versus 

0.4% and 0.1% included: PDLIM7, whose resulting protein regulates valve annulus size and 

hemostasis [262]; TGFB1, which regulates postnatal cardiomyocyte differentiation [263]; and ILK, 

which has been shown to exhibit protective effects against cardiomyopathy [264]. Additionally, 

we also identified an enrichment of DMGs associated with response to low oxygen only when 

comparing 0.8% to 0.1% CO2 (Table 6.4). Hypomethylated intragenic-DMGs were enriched for  

Table 6.3. Summary of CO2 differential methylation analyses 

Contrast DM CpGs Hyper-
methylated 

Hypo-
methylated 

Promoter 
Hyper/Hypo 

DMGs 

Intragenic 
Hyper/Hypo 

DMGs 
0.4 vs 0.1% 3652 1951 1701 124/106 524/517 

0.8% vs 0.4% 4695 2760 1935 165/156 744/514 
0.8% vs 0.1% 4482 2782 1670 176/119 671/457 
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Table 6.4. Enriched GO terms among CO2 DMGs related to heart/muscle development and 
hypoxia 

Intragenic-hypermethylated Genes 

GO Term 0.4 vs. 0.1 
CO2 

0.8 vs. 0.4 
CO2 

0.8 vs. 0.1 
CO2 

positive regulation of striated muscle cell differentiation  2.3E-04  2.5E-04 
positive regulation of muscle organ development  6.5E-04  7.6E-04 
cardiac ventricle development  5.1E-04  3.5E-04 
cardiac chamber development  4.7E-04 5.9E-04 5.2E-04 
muscle organ development   3.4E-05 2.9E-05 
muscle structure development   1.6E-05 5.2E-06 
muscle tissue development   9.7E-04  
heart development   1.8E-04 1.3E-04 
cardiovascular system development   5.3E-09 1.7E-07 
positive regulation of myotube differentiation   1.2E-03 
positive regulation of striated muscle cell differentiation    2.5E-04 
positive regulation of muscle cell differentiation    5.7E-05 
positive regulation of muscle tissue development    8.3E-04 
cardiac chamber morphogenesis    1.3E-03 
cardiac muscle tissue development    1.2E-03 

Intragenic-hypomethylated Genes 

GO Term 0.4 vs. 0.1 
CO2 

0.8 vs. 0.4 
CO2 

0.8 vs. 0.1 
CO2 

positive regulation of striated muscle tissue development  5.1E-04 
  

positive regulation of muscle organ development  5.1E-04 
  

mitral valve development  
 

2.8E-05 
 

heart valve formation  
 

4.8E-04 
 

pulmonary valve morphogenesis  
 

1.2E-03 
 

atrioventricular valve development 
 

5.8E-04 
 

aortic valve morphogenesis  
 

6.9E-04 
 

heart valve morphogenesis  
 

1.1E-05 2.0E-04 
aortic valve development  

 
1.1E-03  

cardiac atrium development  
 

3.6E-04  
heart valve development  

 
2.5E-05 3.7E-04 

ventricular septum development  
 

1.1E-04  
cardiac septum development  

 
1.2E-04  

cardiac ventricle development  
 

4.3E-04  
cardiac muscle tissue development  

 
3.2E-04  

heart morphogenesis  
 

6.0E-04 1.5E-04 
heart development  

 
1.5E-04 6.1E-04 

cardiac chamber morphogenesis  
  

6.6E-04 
cardiovascular system development  

  
2.5E-06 

cellular response to oxidative stress  
  

1.0E-03 
response to hypoxia  

  
1.1E-04 

response to decreased oxygen levels  
  

1.7E-04 
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Figure 6.2. Epigenome-wide association study for heart weight. Manhattan plot of -log10 p-
values of association between CpG methylation rate and log2-transformed relative heart weight, 
ordered by chromosome. Red points indicate DM CpGs; significantly associated and DM CpGs 
are labeled with their corresponding gene ID (int = intergenic). 

the GO terms ‘response to decreased oxygen levels’ and ‘response to hypoxia’, and these were not 

enriched among the DMGs in the other two contrasts. 

6.4.6     EWAS identifies methylation signatures significantly associated with HW 

Given the significant difference in HW between chicks of different incubation ESTs, we sought to 

identify CpG sites at which methylation rate was significantly associated with HW. We tested 

1,521,346 CpG sites and identified 23 significant associations (Figure 6.2), which represented a 

modest enrichment in significant p-values compared to a random distribution (data not shown). 

Three of these CpGs were within gene promoter regions (in GFI1, SP9, and ST6GALNAC4), 13 

were within gene bodies (exons or introns), and seven were in intergenic regions.    

 Among the 23 significantly associated CpG sites, nine were also significantly DM between 

EST treatments, and only one site—the hypomethylated CpG in PITX2—had a methylation 

difference greater than 10%. This site was found to be significantly positively correlated with HW 

(r=0.60, p=2.97E-06), along with four other sites: two exonic CpGs in neuroglobin (NGB) and 

goosecoid homeobox (GSC), an intronic CpG in calcium voltage-gated channel subunit alpha1 G 
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(CACNA1G), and an intergenic CpG. Four hypermethylated CpGs were negatively associated with 

HW: an exonic CpG in ENSGALG00000011444, an intronic CpG in actin binding LIM protein 

family member 2 (ABLIM2), and two intergenic CpGs. 

6.4.7     RT-qPCR identifies genes with coordinated differences in gene methylation and 
expression between EST treatments  

We assessed transcript abundance of eight genes exhibiting differential methylation and/or 

significant associations with HW via RT-qPCR, to determine if differential methylation was 

associated with differences in gene expression. We detected quantifiable transcript abundance for 

all genes except NGB, which was undetectable in multiple samples in both EST treatments. Three 

genes—ABLIM2, PITX2, and THRSP—exhibited significant differences in transcript abundance 

between EST treatments (Figure 6.3). In all three cases, abundance was higher in the treatment 

with lower methylation. We observed significantly lower THRSP abundance in 38.9oC chicks 

(p=0.046), which is consistent with the promoter hypermethylation observed. Abundance of 

PITX2, which contained a hypomethylated CpG in its last exon, was significantly higher in 38.9oC 

chicks (p=7.59E-03). ABLIM2, containing a hypermethylated intronic CpG, exhibited lower 

abundance at 38.9oC (p=1.37E-03). Among the remaining five DMGs, the differences in 

expression were negatively associated with the differences in methylation for DAG1, while the 

differences were positively associated for TBX1, TBX4, and GSC. We also assessed transcript 

abundance in two genes that did not exhibit differential methylation (MEAF6 and SRRM1), and 

did not detect differences in abundance between ESTs. These results have identified candidate 

genes exhibiting coordinated differences in methylation and expression in the developing chick 

heart that are associated with incubation EST.    
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Figure 6.3. Relative fold changes in transcript abundance (38.9oC relative to 37.8oC) for seven 
expressed genes exhibiting differential methylation and 2 stably methylated genes between 
temperature treatments. Error bars indicate standard deviation. *p<0.05, **p<0.01. 

6.5     Discussion 

To the best of our knowledge, this study represents the largest epigenome-wide analysis in 

livestock species, the first EWAS in broiler chickens, and the first study assessing genome-wide 

DNA methylation between chickens incubated in different environments. RRBS was performed 

in cardiac tissue collected from broiler chicks in a study that recapitulated the established negative 

correlation between incubation EST and HW. We observed significantly lower HW in chicks 

incubated at 38.9oC versus 37.8oC, which was independent of differences in incubation length. The 

heart appears to be uniquely impacted by incubation EST, a finding that has been observed in 

numerous studies showing up to 30% lower HW in 38.9oC chicks with no significant differences 

in organs such as the liver, intestines or stomach [67, 234, 238, 265].  

 Using RRBS, we assessed methylation at over 3 million CpGs across 84 heart samples. 

Global methylation rates in these samples were low (13.8-20.4%), due to the fact that a majority 

of sites exhibited methylation rates less than 10%. RRBS reads are disproportionally derived from 

CpG dense regions of the genome, which are known to be less methylated than the genome at large 
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[255]. However, RRBS data from eight pig tissues revealed an average methylation rate of 41% 

[42]. Thus the low methylation observed in our data may be specific to the species, tissue, or stage 

of development. To date, whole-genome bisulfite sequencing studies in G. gallus and other avian 

species have reported global CpG methylation rates between 50% and 65% [248–251, 266], which 

is lower than the 60% to 80% that has been reported in mammalian studies. It is possible that the 

low levels of CpG methylation detected in our data can be attributed to lower CpG methylation 

rates in avian genomes.  

 We identified thousands of DM CpGs between ESTs, and annotation of DMGs revealed 

an enrichment for general and heart-specific developmental processes. While promoter-DMGs 

were only significantly enriched for processes related to general development, many of these genes 

are known to be involved in heart development. Among these were two T-box transcription factors, 

TBX1 and TBX4, that were promoter-hypomethylated at 38.9oC. TBX1 has been shown to promote 

cell proliferation and inhibit differentiation of heart cells [267, 268]. TBX4 has been shown to be 

expressed in the developing heart, and has been hypothesized to play a role in regulating tissue-

specific gene expression [269]. Also among promoter-DMGs were two genes involved in response 

to thyroid hormone (THRA, hypomethylated and THRSP, hypermethylated at 38.9oC), which has 

previously been hypothesized to mediate temperature-driven differences in heart growth. THRA is 

the major thyroid hormone receptor expressed in the heart [270], and THRA mutations in zebrafish 

have been linked to defects in heart development [271]. THRSP is expressed in chicken cardiac 

tissue [272], and research has shown that overexpression of THRSP results in decreased levels of 

genes involved in heart development [273]. Intragenic-DMGs were enriched for GO terms related 

to heart development. Among these, DAG1 possessed hypo- and hypermethylated CpGs, and 

encodes a glycoprotein that has been shown to play an important role in the inhibition of 
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cardiomyocyte proliferation in mice [274]. PITX2 contained an exonic CpG that was significantly 

hypomethylated at 38.9oC. This gene encodes a homeobox TF with roles in heart development that 

have been reviewed extensively [275]; of note, it has been shown to promote cardiomyocyte 

proliferation in mice [276]. ERBB2 and ERBB4 encode receptor kinases that have been shown to 

promote cardiomyocyte proliferation and survival [277]. The observed differential epigenetic 

regulation of genes involved in cardiomyocyte proliferation and differentiation may be 

contributing to observed differences in HW between chicks of different incubation ESTs.  

 Furthermore, assessment of enriched binding motifs among DM loci provides evidence 

that temperature-differential methylation is impacting the developmental trajectories of the chick 

heart. Methylation is known to reduce the binding potential of TFs by altering binding motif 

sequences [33] At 38.9oC, hypomethylated binding motifs—which would be predicted to be more 

accessible due to lower methylation levels—were enriched for TFs involved in positive regulation 

of cardiomyocyte proliferation. Conversely, the binding sites for TFs involved in negative 

regulation of cell proliferation—namely TFs in the ZBTB family—were the most enriched motifs 

among hypermethylated regions, which would be expected to be less accessible. The more 

favorable binding of pro-proliferation TFs in the cardiac methylome of chicks at higher 

temperatures suggests that observed differences in HW may be associated with differences in rates 

of differentiation and maturation.   

 We also identified thousands of DM CpGs between CO2 treatments. Increasing CO2 

concentrations above 0.8% during late stages of incubation have benefits in commercial settings 

such as reduced hatching time variability [278]. However, continuous incubation in a hypercapnic 

environment has been shown to increase ascites incidence later in life [240]. Not only did 

differential methylation at 0.8% CO2 relative to the lower treatments disproportionately affect 
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genes involved in heart development, but contrasting 0.8% with 0.1% CO2 revealed differential 

methylation of genes involved in hypoxia response. These included: ETS1, a TF that has been 

shown to activate hypoxia-inducible genes [279]; SRC, encoding a tyrosine kinase that is 

upregulated in rat cardiomyocytes by hypoxia to activate MAPK signaling pathways [280]; and 

DNM2, encoding a GTPase and actin-binding protein that has been shown to be downregulated in 

cardiomyocytes subject to hypoxic conditions [281]. Hypoxia-inducible genes being specifically 

overrepresented when comparing extremes for CO2 indicate a cardiac response to differences in 

gas exchange via differences in gene regulation. Incubation CO2 level was not associated with 

differences in HW in this study, which has been shown previously [234]. However, CO2 

concentration may have observable effects on physiological processes that were not assessed 

here—including angiogenesis—that may contribute to adverse conditions later in life including 

increased ascites risk. 

 Our EWAS revealed a small but significant enrichment of association p-values between 

CpG methylation and HW, suggesting a relationship between gene regulation in the heart and its 

size at hatch. A DM CpG in an exon of PITX2 was also the most significantly positively correlated 

with HW. We identified additional significant CpGs in our EWAS that were also DM, albeit at a 

difference less than 10%. An intragenic CpG in ABLIM2 was significantly hypermethylated at 

38.9oC and negatively correlated with HW; this gene encodes a actin binding protein that has been 

shown to be highly expressed in striated muscle and is thought to regulate cytoskeletal signaling 

pathways [282]. CpGs in these genes, along with those identified in other genes and in intergenic 

regions, are strong candidates for identifying epigenetic-mediated associations between 

temperature and heart development.  
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 We identified coordinated changes in methylation and expression for three of the eight 

tested genes: ABLIM2, PITX2, and THRSP. In all three cases, direction of the difference in gene 

expression was opposite that of the difference in methylation between ESTs. This inverse 

relationship was expected at THRSP, since the DM CpG was immediately upstream of the TSS in 

the likely promoter region. Intragenic methylation in ABLIM2 and PITX2 were also negatively 

associated with expression, and this is in contrast to findings in other animal studies that the 

majority of CpGs in such regions are positively correlated with gene expression. Cases of 

intragenic methylation being negatively associated with gene expression have been reported by 

ENCODE [25], and they found these CpGs to be enriched in intragenic enhancers. The presence 

of CpGs in ABLIM2 and PITX2 at which methylation rate is inversely correlated with gene 

expression suggests that these CpGs may be located within gene regulatory elements. To explore 

this idea, we searched for binding motifs in the genomic regions flanking in DM CpGs in ABLIM2 

and PITX2. The PITX2 DM regions had strong sequence similarity to the Kruepell Like Factor 5 

(KLF5) binding motif, and this TF has been shown to be upregulated during heat stress in chickens 

previously [283]. Additionally, the ABLIM2 DM regions showed strong sequence similarity to the 

binding motif of Achaete-Scute Family BHLH Transcription Factor 2 (ASCL2), which is a known 

inhibitor of myogenic differentiation [284]. While differential expression was not observed for 

five of the eight tested DMGs, this could be due in part to the limited number of samples that were 

assayed via qPCR (n=6/trt) relative to the number assayed via RRBS (n=42/trt).  

 Among these three DM and differentially expressed genes, PITX2 has the most well-

established role in heart development, specifically in promoting cardiomyocyte proliferation. In 

this study, increased EST was associated with both decreased methylation at an exonic CpG in 

PITX2 as well as increased PITX2 transcript abundance. As PITX2 is known to promote 
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cardiomyocyte proliferation, this suggests an increased proliferative capacity in the hearts of 

38.9oC chicks. This conflicts with results reported in Romanoff 1960, in which increased 

incubation temperature was associated with a reduced mitotic index from E8 to hatch [235]. 

However, our results indicate that proliferation in high EST chicks may be increased relative to 

lower EST chicks as a partial compensatory mechanism immediately following hatch, and that 

developmental trajectories of hearts at different ESTs continue to be affected even after incubation.   

 In conclusion, this study has identified differential methylation patterns in the post-hatch 

chick heart associated with differences in incubation EST and CO2 level, and such differences may 

be impacting heart growth and development through associated changes in TF binding and gene 

expression. Future studies should seek to further assess differences in methylation between 

incubation treatments at later stages of post-hatch life. Additionally, characterizing epigenetic 

patterns in additional organs responsible for regulating body temperature, including the 

hypothalamus and thyroid gland, may help in characterizing the mechanisms regulating 

temperature-driven differences in heart development. Knowledge of such epigenetic signatures 

influenced by early-life environment may benefit animal breeding by serving as predictors of 

future animal performance.  
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CHAPTER 7      

CONCLUSIONS & FUTURE DIRECTIONS 

The results presented in chapters 2 through 6 of this dissertation represent the most expansive 

survey of whole-genome DNA methylation in farm animal genomes to date. DNA methylation is 

the most prevalent epigenetic modification made to DNA molecule, and acts in concert with other 

chromatin modifiers to establish cell-, stage-, and environment-specific gene expression. I have 

demonstrated that state-specific DNA methylation patterns in farm animal species exhibit similar 

characteristics to those reported in other mammals in terms of global prevalence and distribution. 

Furthermore, we demonstrate that variation in DNA methylation between cell types and time 

points is strongly associated with differential gene expression as well as transcription factor 

binding motifs, revealing putative regulatory and transcriptional consequences of differentially 

methylated regions (DMRs). These data sets will prove valuable to future Functional Annotation 

of Animal Genomes (FAANG) consortium efforts to utilize epigenomics data to enhance 

discovery of regulatory elements influencing complex trait variation [17]. To achieve this end, raw 

bisulfite sequencing data will be publicly available for use by other scientists, and DNA 

methylation data in different tissues and cell type will be available for viewing in appropriate 

databases such as the University of California Santa Cruz (UCSC) Genome Browser.  

 In Chapter 2, I have defined differentially methylated regions in sorted porcine immune 

cells that represent likely regulatory regions governing immune cell state and function. We 

associated a large proportion of these regions with either 1) local gene expression or 2) regulatory 

potential of immune-related transcription factors, including in pig-enriched T cell subpopulations 

for which similar data in other mammals is currently unavailable. DMRs were also enriched among 

genetic loci associated with immune capacity traits, demonstrating their potential use in 
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characterizing mechanistic links between genetic variation and immune system phenotypes.  

Fluorescence activated cell-sorting of peripheral blood mononuclear cells allowed for assessment 

of DNA methylation in distinct leukocyte subpopulations. However, it is known that there is 

extensive heterogeneity even within the sorted cell types sequenced in this study, as evidenced by 

single-cell RNA-sequencing (scRNA-seq) performed in PBMCs from the same animals [81]. 

Therefore, results still reflect composite epigenomic profiles that may be fine-tuned in the future 

by additional single-cell sequencing assays.  

 Many current functional annotation projects in farm animal species seek to define distinct 

chromatin states across a diverse set of tissues and cell types, with particular focus on those 

systems known to contribute to phenotypes of economic interest [18]. Thus, similar analyses as 

performed in Chapter 2 to define DNA methylation patterns across the peripheral immune system 

should be performed in other pig organ systems, including the digestive and reproductive systems. 

DNA methylation is also known to interact with other epigenetic modifications to modify locus-

specific regulatory activity, emphasizing the need to integrate epigenomics assays to better define 

local and distal-acting cis elements [27]. For example, preliminary data in adult porcine skeletal 

muscle and digestive tissues demonstrated that tissue-specific lowly methylated regions (LMRs) 

disproportionately overlapped regions displaying activating histone modifications (e.g., H3K27ac, 

H3K4me3) and were mutually exclusive from repressive histone modifications (H3K27me3) (Pan 

et al., personal communication). Generation of similar histone modification data in porcine 

immune cells would lead to increased efficacy of regulatory element prediction through the use of 

evidence from multiple epigenomics data sets. All functional assays performed in porcine immune 

cells and other organ systems has the potential to enhance the search for causative variants 

influencing complex traits. The use of functional biological data has proven useful in the 
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refinement of previously identified QTL in livestock species [285, 286]. Furthermore, functional 

data generated in the pig has been utilized in GWAS studies to weight SNPs in annotated regions 

more highly than unannotated SNPs, and resulted in the identification of novel loci associated with 

feed efficiency traits [287, 288]. DNA methylation data generated in this chapter may prove useful 

in performing similar analyses of immune system traits.   

 In Chapters 3 and 4, we identified hundreds of thousands of DMRs between different 

developmental stages, representing putative sites of stage-specific gene regulation in pig fetal 

organs. We chose to assess DNA methylation at fetal ages representing critical periods of organ 

development; for example, 41 and 70 days gestation represent midpoints of primary and secondary 

pig skeletal muscle myogenesis, respectively. However, it is likely that there is extensive variation 

in gene regulation—and thus DNA methylation—within the interval between surveyed stages. It 

would be beneficial to collect epigenomics data at intermediate time points to better describe 

temporal specificity of regulatory element activation. Pig prenatal physiology is known to have 

impacts on growth and meat quality traits [45]. I show in Chapter 3 that areas that lose methylation 

during skeletal muscle development—and thus may be more active in gene regulation—are 

enriched for GWAS SNPs for muscle and meat-related traits measured in adult pigs, suggesting 

that these regions may play important roles in regulating phenotype expression early in life. The 

use of epigenomics data from fetal timepoints may thus prove useful in determining any 

associations between observed chromatin state and later-life animal performance.  

 In Chapter 4, I also report extensive allele-biased methylation (ABM) in pig fetal tissues, 

representing the first report of allele-specific chromatin events in the pig. Fetuses were derived 

from crosses of highly divergent pig breeds—European White Composite and Chinese Meishan— 

that allowed for identification of extensive breed-specific ABM that is indicative of distinct gene 
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regulatory landscapes. We identified candidate genes exhibiting both ABM and allele-biased 

expression between breed alleles, including genes such as methionine synthase reductase (MTRR) 

that has been shown to regulate diverse developmental phenotypes in other mammals. Future 

research characterizing the impacts of breed-specific expression of genes identified in this study 

may elucidate regulatory pathways driving behavioral, growth, and reproductive differences 

between European and Chinese pig breeds. Furthermore, assessment of molecular biases between 

breed alleles in other pig populations may provide additional insight into regulatory differences 

associated with pig genetic background. I have also reported thousands of regions exhibiting 

imprinting-like biases in methylation, representing known and novel imprinted genes and control 

regions. These candidate genes will also require extensive validation (e.g., by pyrosequencing), 

particularly those genes that have not been reported as imprinted in other species. Additionally, 

our analyses likely only captured a fraction of imprinting-like ABM events due to our limited SNP 

coverage of the porcine genome (~15%). The use of different pig populations or different 

methodologies may be beneficial in further discovery of candidate imprinted loci.   

 In Chapters 5 and 6, I have defined DMRs associated with pig weaning and broiler chick 

incubation parameters, respectively, thus representing sites of epigenetic alteration in response to 

environmental condition. In chapter 5, I observed extensive differential methylation of piglet 

peripheral blood mononuclear cells associated with acute weaning stress, particularly among T 

cell receptor genes that is in agreement with previously-observed diminished response of T cells 

following weaning [208]. In chapter 6, I demonstrate that broiler chick incubation temperature and 

CO2 concentration is associated with differential methylation of genes involved in heart 

development and hypoxia response, respectively, and furthermore identified candidate genes that 

may mediate temperature-driven differences in heart morphology. The data presented in chapter 6 
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represent the largest epigenome-wide associated study to date in farm animal species, and 

underlines the potential for population-wide assessment of DNA methylation to identify 

epigenomic signatures associated with complex trait variation. 

 Chapters 5 and 6 both identified DNA methylation differences associated with short-term 

response to environmental stimuli—piglet PBMCs were collected 24 hours post-weaning, and 

broiler chick heart tissue was collected 6 hours after hatch from different incubation settings. We 

therefore did not measure any potential long-term consequences of these stimuli by quantifying 

DNA methylation at later time points. However, weaning stress and incubation parameters have 

been shown to impact adult pig and broiler performance, respectively [289, 290], and short-term 

differences in DNA methylation observed here indicate the potential for persistent changes in 

response to environment via this mechanism. Additionally, organ systems beyond those surveyed 

in chapters 5 and 6 are likely similarly impacted by applied treatments and may even drive 

observed physiological and molecular differences in peripheral tissues. For example, psychosocial 

stress in pigs and incubation temperature in broiler chicks have been shown to alter gene 

expression and histone modification patterns in neuronal and endocrine tissues [69, 209]. 

Assessment of environment-driven epigenetic changes in a larger set of tissues will provide a more 

comprehensive understanding of physiological pathways impacted by various external stimuli. 

Knowledge of the mechanisms mediating long-term impacts of early life-environment may aid in 

future selection practices for resilience phenotypes. 

 In conclusion, the results presented in this dissertation have provided new insights into 

spatiotemporal DNA methylation patterns associated with cell identity, fetal development, and 

environment in farm animal species. The data generated by these projects will serve as a resource 

for the FAANG consortium to combine with other transcriptomic and epigenomics data sets to 
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map functional elements in the porcine genome. Enhanced functional annotation of porcine and 

avian genomes using epigenomics data will provide novel mechanistic frameworks that may be 

leveraged for continued genetic improvement of these species for agricultural and biomedical 

applications.  
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APPENDIX A      

CHAPTER 2 SUPPLEMENTARY MATERIAL 

 

 
Figure A.1. Associations between immune cell global methylation and DNA 
methyltransferase (DNMT) expression.  Moderate negative and positive correlations were 
observed between global methylation and normalized transcript abundance of DNMT1 (A) and 
DNMT3A (B), respectively. Normalized DNMT3B abundance was significantly negatively 
correlated with global DNA methylation (C). Considering abundance of all DNMTs, the 
normalized abundances of DNMT1 and DNMT3B subtracted from DNMT3A abundance was 
significantly positively correlated with global methylation (D). 

 
Table A.1. Summary of identified cell lowly methylated regions and overlapping genes 

Cell Type No. cLMRs No. Unique cLMRs No. Genes No. Unique Genes 
CD21nB 1196 174 (14.5%) 860 42 (4.9%) 
CD21pB 13701 9398 (68.6%) 5327 2201 (41.3%) 
Myeloid 7959 4640 (58.3%) 3975 1243 (31.8%) 

Neut 2837 666 (23.5%) 1880 194 (10.3%) 
NK 4894 2410 (49.2%) 2268 476 (21.0%) 

CD4T 1785 450 (25.2%) 1057 96 (9.1%) 
CD8T 1493 375 (25.1%) 901 64 (7.1%) 

CD4CD8T 7873 3598 (45.7%) 3412 815 (23.9%) 
SWC6gdT 1655 907 (54.8%) 1061 183 (17.24%) 
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Figure A.2. Methylation rates across immune cell marker genes (A) CD4, (B) CD8A, (C) 
SIRPA, and (D) CD19 for cell types positive and negative for each co-receptor. Gray boxes 
indicate cell differentially methylated regions (cDMRs) within each gene locus, and black dots 
indicate CpG coordinates.  

 
 
 
 

Table A.2. Number of expression-enriched genes for each immune cell type 
Cell Type No. cLMRs 
CD21nB 1196 
CD21pB 13701 
Myeloid 7959 

Neut 2837 
NK 4894 

CD4T 1785 
CD8T 1493 

CD4CD8T 7873 
SWC6gdT 1655 
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Figure A.3. Correlation dot plots of transcript abundance versus promoter expression of 
marker genes. (A) CD4, (B) CD8A, and (C) CD19.  
 

 
Figure A.4. Transcript abundance of five transcription factors with cLMR-enriched 
binding motifs. EBF1 (A), CEBPA (B), TBX21 (C), TCF7 (D), and GATA3 (E).  
*** = Significantly enriched gene expression.  
 
  

A B C

Figure S5. Transcript abundance of five transcription factors with cLMR-enriched binding motifs: EBF1 (A), CEBPA (B), 
TBX21 (C), TCF7 (D), and GATA3 (E). *** = Significantly enriched gene expression. 
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APPENDIX B      

CHAPTER 3 SUPPLEMENTARY MATERIAL 

 

 
Table B.1. Fetal longissimus dorsi WGBS summary statistics 

Sample No. Raw 
Reads 

Unique 
Alignment 
Rate (%) 

Bisulfite 
Conversion 
Rate (%) 

Global CpG 
Methylation 

Rate (%) 

41dg_1 167,861,798 89.1 99.2 76.2 
41dg_2 146,709,279 87.7 99.3 76.23 
41dg_3 163,976,885 89.4 99.2 76.08 
70dg_1 163,646,699 83.6 99.3 73.89 
70dg_2 161,096,923 87.5 99.3 74.24 
70dg_3 160,140,859 88.0 99.2 74.52 

 
 
 

 
Figure B.1. Principal component analysis plot of fetal longissimus dorsi muscle samples by 
global CpG methylation rates.  
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Figure B.2. Differential methylation of miRNAs in developing fetal skeletal muscle. (A-D) 
Methylation dot plots for hypomethylated regions proximal to mir-1, mir-133a-1, mir-206, and 
mir-208a. (E-F) Methylation dot plots for hypermethylated regions proximal to mir-196a-2 and 
mir-615. Gray dots and lines indicate mean and standard deviation, respectively. 

 
 

Table B.2. RNA-seq and smRNA-seq summary statistics   

Sample  
RNA-seq smRNA-seq 

No. Reads Unique Alignment 
Rate (%) No. Reads Unique Alignment 

Rate (%) 
41dg_1 41,793,915 92.1 63,063,427 90.6 
41dg_2 41,239,214 93.1 69,077,421 90.7 

41dg_3 52,383,096 93.2 40,699,087 81.4 
70dg_1 57,796,034 93.0 53,306,905 90.6 
70dg_2 58,798,551 94.0 66,421,476 90.7 

70dg_3 37,142,338 93.1 36,303,827 91.4 
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CHAPTER 4 SUPPLEMENTARY MATERIAL 

 

Table C.1. Fetal tissue whole-genome bisulfite sequencing library summary statistics 

Tissue, Stage 
No. Raw 

Reads 
(Range)  

Unique 
Mapping 
Rate (%) 

Bisulfite 
Conversion 
Efficiency 
(Avg, %) 

Average Methylation Rate (%) 

CpG CHG CHH 

Brain, 30 dg 181-254M 84.4-84.8 99.1 79.9 1.4 1.5 
Brain, 70 dg 185-221M 84.2-86.5 99.1 76.9 1.5 1.6 
Liver, 30 dg 214-246M 82.8-83.4 99.5 62.7 1.0 0.9 
Liver, 70 dg 189-221M 81.8-82.4 99.5 65.2 0.9 0.9 
Muscle, 30 dg 198-223M 85.0-85.9 99.1 78.0 1.5 1.7 
Muscle, 70 dg 176-216M 84.8-85.7 99.1 73.9 1.5 1.6 
Placenta, 30 dg 186-244M 86.6-87.4 99.1 62.8 1.4 1.5 
Placenta, 70 dg 162-212M 85.1-86.5 99.1 60.1 1.6 1.7 

 

 

 
Figure C.1 Correlation between first principal component eigenvalues and global 
methylation rates in pig fetal tissues. 
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Figure C.2. Normalized heatmap of DMR enrichment in gene and CpG features.  

 

 
Figure C.3. Principal component analysis (PCA) plots of allele methylation rates by tissue. 
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Table C.2. Summary of allele-specific sorting of WGBS reads 

Sample 
% Reads 

assigned to 
Meishan allele 

% Reads 
assigned to 
White allele 

% Reads 
unassigned 

% Reads 
conflicting 

Brain_30dg_1 14.29 14.5 70.4 0.82 
Liver_30dg_1 16.13 16.39 66.54 0.93 

Muscle_30dg_1 14.59 14.79 69.82 0.8 
Placenta_30dg_1 14.4 14.74 70.02 0.83 

Brain_30dg_2 14.66 14.82 69.67 0.86 
Liver_30dg_2 15.92 16.11 67.03 0.94 

Muscle_30dg_2 14.62 14.76 69.77 0.85 
Placenta_30dg_2 14.65 14.92 69.55 0.88 

Brain_30dg_3 12.49 12.6 74.19 0.72 
Liver_30dg_3 13.98 14.14 71.01 0.87 

Muscle_30dg_3 12.45 12.57 74.22 0.76 
Placenta_30dg_3 12.8 12.58 73.88 0.74 

Brain_30dg_4 12.79 12.91 73.47 0.83 
Liver_30dg_4 14.45 14.59 69.96 0.99 

Muscle_30dg_4 12.81 12.92 73.44 0.83 
Placenta_30dg_4 13.27 13.1 72.74 0.89 

Brain_70dg_1 13.31 13.5 72.25 0.94 
Liver_70dg_1 14.61 14.79 69.55 1.04 

Muscle_70dg_1 13.39 13.49 72.17 0.95 
Placenta_70dg_1 13.95 13.41 71.56 1.08 

Brain_70dg_2 13.95 11.17 72.95 1.92 
Liver_70dg_2 14.48 14.64 69.75 1.13 

Muscle_70dg_2 14.19 11.36 72.5 1.95 
Placenta_70dg_2 14.34 11.49 72.24 1.93 

Brain_70dg_3 14.58 14.72 69.74 0.95 
Liver_70dg_3 16.18 16.36 66.36 1.11 

Muscle_70dg_3 14.76 14.88 69.46 0.9 
Placenta_70dg_3 14.11 14.42 70.59 0.89 

Brain_70dg_4 14.88 13.66 68.98 2.49 
Liver_70dg_4 16.26 16.52 66.12 1.1 

Muscle_70dg_4 14.76 13.51 69.37 2.36 
Placenta_70dg_4 14.55 13.23 69.84 2.38 
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APPENDIX D      

CHAPTER 5 SUPPLEMENTARY MATERIAL 

 

Table D.1. PBMC whole-genome bisulfite sequencing summary statistics 

Sample ID No. Raw Reads % Uniquely 
Mapped 

Bisulfite 
Conversion 

Efficiency (%) 

Global CpG 
Methylation 

Rate (%) 
98-7_Pre 171,913,620 88.08 99.5 80.80 
98-7_Post 148,621,253 88.25 99.5 81.10 
98-8_Pre 129,793,223 85.95 99.6 79.12 
98-8_Post 146,807,971 89.19 99.6 80.13 
98-19_Pre 160,226,014 89.16 99.6 80.60 
98-19_Post 140,287,192 88.75 99.6 80.97 
102-1_Pre 136,042,171 88.20 99.7 80.10 
102-1_Post 128,217,018 88.77 99.6 81.02 
102-7_Pre 173,164,750 87.64 99.4 80.60 
102-7_Post 154,119,196 86.76 99.4 80.30 
102-9_Pre 146,145,767 88.97 99.6 82.85 
102-9_Post 194,528,096 89.28 99.6 79.93 

 

Table D.2. PBMC RNA-sequencing read summary  
Sample ID No. Raw Reads % Trimmed % Uniquely Aligned  

98-8_Pre 108,119,016 99.98 51.97 
98-8_Post 69,009,261 99.99 52.72 
98-19_Pre 85,203,141 99.99 52.86 
98-19_Post 95,056,244 99.99 49.27 
102-1_Pre 75,870,039 99.99 55.75 
102-1_Post 95,187,993 99.98 52.33 
102-9_Pre 95,458,301 99.99 51.13 
102-9_Post 75,575,119 99.99 52.21 
98-7_Pre 64,258,319 99.97 64.90 
98-7_Post 72,477,865 99.99 67.38 
98-9_Pre 75,632,223 99.98 63.60 
98-9_Post 61,798,005 99.98 62.72 
102-6_Pre 62,488,241 99.98 66.59 
102-6_Post 65,092,215 99.97 60.10 
102-7_Pre 72,732,496 99.99 54.00 
102-7_Post 64,944,140 99.98 64.06 
102-8_Pre 107,578,353 99.92 69.27 
102-8_Post 62,706,578 99.99 64.57 
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CHAPTER 6 SUPPLEMENTARY MATERIAL 

 

 
Table E.1. Chick heart reduced representation bisulfite sequencing summary statistics 

 
No. Raw 

Reads 

No. 
Trimmed 

Reads 

Unique 
Mapping 
Rate (%) 

CpG 
Meth 

Rate (%) 

CHG 
Meth 

Rate (%) 

CHH 
Meth 

Rate (%) 

CpGs 
Covered 

Mean 18.9M 18.3 73.8 17.7 0.55 0.56 3.1M 
Range 10.1-34.1M 9.6-32.8M 77.1-69.9 13.8-20.4 0.48-0.78 0.49-0.77 2.3-3.5M 

 
 

 

 
Figure E.1. Egg shell temperature (EST) differential methylation in genes influencing heart 
development. Dot plots of methylation rates by EST for CpGs in the promoters of TBX1 and 
THRSP and exons of DAG1 and PITX2. Notched horizontal lines and red dots indicate median 
and men methylation rate, respectively. 
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