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ABSTRACT

INVOLUTIONS AND HEEGAARD FLOER HOMOLOGY

By

Abhishek Mallick

This Ph.D. dissertation studies the relationship of an involution acting on a 3-manifold (or

a knot K) with the Heegaard Floer homology. There are three main aspects of this project:

strong cork detection, studying homology bordism group of diffeomorphisms and explicitly

computing the action of symmetry on the Knot Floer complex for symmetric knots. In

Chapter 2, we study pairs (Y 3, τ) of an integer homology sphere equipped with an involution

τ : Y → Y modulo equivariant homology cobordisms. We show that equivalence classes of

the above relation form an abelian group under the group operation as disjoint union. We

refer to this group as the homology bordism group of involutions, Θτ
Z. This group can be

thought of as a generalized version of the bordism group of diffeomorphisms, which was first

studied by Browder. We define two Floer-theoratic invariants of Θτ
Z, hτ and hι◦τ using

the framework of involutive Heegaard Floer homology, recently developed by Hendricks and

Manolescu [19].

Corks play an important role in the study of exotic smooth structures on 4-manifolds. As

shown by Matveyev [28] and Curtis-Freedman-Hsiang-Stong [6], any two smooth structures

on a simply connected topological 4-manifold are related by the action of cork twist. In

[25] Lin-Ruberman-Saveliev studied a more generalised version of a cork, called the strong

cork. These are corks for which the cork-twist involution does not extend over any homology

4-ball that the cork may bound. They [25] also constructed the first example of such a

strong cork by studying the induced action of a cork-twist on monopole Floer homology.

In Chapter 3, we show that the invariants hτ , and hι◦τ developed in Chapter 2 also detect

strong corks. We then go on to establish several new families of corks and prove that various

known examples corks are actually strong. Our main computational tool is a monotonicity



theorem which constrains the behavior of our invariants under equivariant negative-definite

cobordisms, and an explicit method to construct equivariant cobordisms. The contents of

Chapter 2, and Chapter 3 are from a joint work of the author with Irving Dai and Matthew

Hedden [7]. In Chapter 4 we study symmetric knots. We show that each symmetry of a

knot induces a map on the knot Floer complex. We further show that these induced maps

behave differently according to how the fixed set of the symmetry intersects knot. We then

explicitly compute some of those maps.
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CHAPTER 1

BACKGROUND

1.1 Heegaard Floer homology

Given a based 3-manifold (Y, z), Ozsváth and Szabó defined an invariant [34] called the

Heegaard Floer homology. These invariants come in different flavors, ĤF , HF− and HF+.

For example, HF− assigns an F2[U ]-module to (Y, z). The input for this invariant is a

Heegard tuple (Σ,α,β, J, z, s).

• Here Σ ⊂ Y is an embedded, oriented surface of genus g, which splits Y as two different

handlebodies U0 and U1.

• α = {α1, α2, · · · , αg} is a g-tuple of simple closed curves on Σ which bound disks in

U1.

• β = {β1, β2, · · · , βg} is a similar set of curves which bound disks in U2. The α and

the β curves only intersect transversely.

• z is a basepoint on Σ−α− β.

• J is an almost-complex structure on Symg(Σ) (here g is the genus of Σ).

• s is a spinc-structure on Y .

We will abbreviate a Heegaard tuple by H. Associated to H, Ozsváth and Szabó define

a chain complex CF−(H) over F2[U ]. The chain complex is generated by the intersection

points between the α and the β curves, roughly the differential counts the homolomorphic

disks bounded by the α and β curves. Ozsváth and Szabó then show that

Theorem 1.1.1 ([34]). The isomorphism class of the homology HF−(H) of the above chain

complex is independent of the choices made in the definition, namely H.
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For a long time it was unknown whether their is a canonical isomorphism between two

Heegaard Floer homology group corresponding to the same based 3-manifold (Y, z). Later

[21] and [19] showed that the homotopy equivalence class of the chain complex CF−(H) is

an invariant of (Y, z). More precisely they showed

Theorem 1.1.2 ([21], [19]). Let Hi be any any three Heegaard tuple representing (Y, z), for

i = 1, 2, 3. Then there is a chain homotopy equivalence,

Φ(H1,H2) : CF−(H1)→ CF−(H2)

which is unique up to chain homotopy and satisfies the following relations

• Φ(H1,H2) ◦ Φ(H2,H3) ' Φ(H1,H3).

• Φ(H1,H1) ' id.

The relations above imply that the chain complexes CF−(H) associated to (Y, z), form

a transitive system in the homotopy category of chain complexes of F2[U ]-modules. We can

then refer to CF−(Y, z) as the inverse limit of the above system.

The authors in [35, Theorem 3.1] also define maps FW,s associated to a cobordism W

between two 3-manifolds (Y1, s1, z1) and (Y2, s1, z2). Here si are certain spinc-structures on

Yi which extend to s on W .

FW,s : HF−(Y1, s1, z1)→ HF−(Y2, s2, z2).

Later Zemke [41, Theorem A] showed that maps FW,s are actually well-defined on the

chain complex level. More specifically, in [41] the author showed that, given two tuples

(Yi, si, zi) as before and a cobordism (W, s, γ) (here the extra information γ is a path between

the basepoints z1 and z2) there is a cobordism map on the chain level

fW,s,γ : CF−(Y1, s1, z1)→ CF−(Y2, s2, z2).
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which descends to the map FW,s defined above, in homology. The map fW,s,γ is defined

using a handle decomposition of W .

Theorem 1.1.3. [41, Theorem A] The map fW,s,γ : CF−(Y1, s1, z1) → CF−(Y2, s2, z2) is

independent of the choice of the handle-decomposition of W up to chain homotopy.

1.2 Knot Floer homology

Given a doubly-based knot (K,w, z) inside a 3-manifold Y , Ozsváth and Szabó defined an

invariant [33] called the Knot Floer homology. As before the input for this invariant is again

the Heegaard data, (Σ,α,β, J, z, w, s), with the exception that now it has two basepoints

instead of one. The output again is a chain complex which comes in different flavors. For

this study, we will need to consider the infinity version CFK∞, which is a Z ⊕ Z-filtered

chain complex over F2[U,U−1]. The associated graded homology of this chain complex is

called the Knot Floer homology. Instead of going too much into the theory of knot Floer

homology, we recommend the reader to [26] for a great introduction.

1.3 Involutive Heegaard Floer homology

In [27] Manolescu proved the triangulation conjecture using a the construction of a Pin(2)-

equivariant version of Seiberg-Witten Floer homology. On the other hand, by the work of

Kutluhan-Lee-Taubes [24], there is an isomorphism between the Heegaard Floer homol-

ogy and the monopole Floer homology. Motivated by this, one can then ask for a Pin(2)-

equivariant version of Heegaard Floer homology. The [19] Hendricks and Manolescu provide

a partial answer to this question by constructing a Z4- equivariant version of Heegaard Floer

homology, where Z4 is thought of as a subgroup of the Pin(2)-group. The authors refer to

Z4-equivariant version of Heegaard Floer homology as Involutive Heegaard Floer homology.

We now focus on the construction of involutive Heegaard Floer homology.

Recall from Theorem 1.1.2 that we know that the chain homotopy class of the Heegaard

Floer chain complex CF− is an invariant of (Y, s, z), where s is a spinc-structure on Y . Note
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that given a spinc-structure on Y , there is an associated spinc-structure s̄ on Y , called the

conjugate of s. This yields a conjugation symmetry on the Heegaard Floer homology groups,

J : HF−(Y, s, z)→ HF−(Y, s̄, z).

In [33, Proposition 3.9.], the authors show that the above isomorphism is induced by

switching the orientation of the Heegaard surface and the interchanging roles of α and β

curves.

(Σ,α,β, z)→ (−Σ,β,α, z).

J 2 = id, so the spinc-conjugation induces an involution on the Heegaard Floer chain

complex. Hendricks and Manolescu define this action on the chain complex level

ι : CF−(Y, s, z)→ CF−(Y, s̄, z).

so that ι induces the map J in homology. We briefly discuss the construction on the chain

level.

Note that (Σ,α,β, z) and (−Σ,β,α, z) are both Heegaard diagrams of the same based

3-manifold (Y, z). Informally, this corresponds to turning the handlebody upside down. Now

let H and H̄, respectively, denote the original Heegaard diagram and its conjugate. Note

that there is always an abstract isomorphism η

η : CF−(H, s)→ CF−(H̄, s̄).

induced by the one-to-one correspondence between the intersection points of the Heegaard

diagrams of (Σ,α,β, z) and (−Σ,β,α, z). Moreover from 1.1.2 we know that there is a

chain homotopy equivalence , well defined up to chain homolopy

Φ(H̄,H) : CF−(H̄, s̄)→ CF−(H, s)

We then compose Φ with η and define ι := Φ ◦ η.

4



CF−(H, s) CF−(H̄, s̄)

CF−(H, s)

ι

η

Φ

This defines an automorphism of the chain complex associated to spinc-conjugation.

Hendricks and Manolescu showed that

Proposition 1.3.1. [19, Lemma 2.5.] ι is a homotopy involution i.e. ι2 ' id.

The main idea of the proof of the above proposition is that since η2 = id the composition

η ◦ Φ(H̄,H) ◦ η

conjugates Φ(H̄,H) which is homotopic to Φ(H, H̄). The result then follows by appealing

to the Theorem 1.1.2 as

Φ(H, H̄) ◦ Φ(H̄,H) ' id.

Let us now restrict to the case where the spinc-structure is self-conjugate, i.e. s = s̄ 1.

Note that in this case ι is an automorphism of CF−(H, s). Hendricks and Manolescu then

consider the mapping cone of the map

id + ι : CF−(H, s)→ CF−(H, s)

and denote it as CFI−(H, s). They show the following

Theorem 1.3.2. [19, Proposition 2.8] The quasi-isomorphism class of CFI−(H, s) is an

invariant of the pair (Y, s).

1This restriction is not necessary to carry out the construction of involutive Heegaard
Floer homology, but it turns out the invariant is determined by the original HF homology
in a straight forward manner in the case s 6= s̄. See [19, Proposition 4.5.]
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We briefly discuss the proof here, which relies on the fact that chain homotopic maps

induce quasi-isomorphic mapping cone complexes. Hence it suffices to show that given

two different Heegaard diagrams H1 and H2 of (Y, z), the corresponding ι maps are chain

homotopic. The authors use Theorem 1.1.2 to conclude that the following square commutes

up to chain homotopy.

CF−(H1, s) CF−(H1, s)

CF−(H2, s) CF−(H2, s)

Φ(H1,H2)

ι

Φ(H1,H2)

ι

This paired with the fact that commutation of ι with η is tautological, completes the proof.

Homology of CFI−(H, s) is called the involutive Heegaard Floer homology HFI−(Y, z)

of the pair (Y, z). Unlike Theorem 1.1.2, at the time of writing it is still not known whether

there is higher order naturality for the involutive Floer chain complex CFI− is an invariant.

It is conjectured to have such properties, see [19].

Another interesting aspect of involutive Floer homology is that, the action of ι is some-

what natural with respect to the cobordism map. This in turn shows that there is a map

between involutive chain complexes associated to a cobordism. More specifically in [19] the

authors show that

Theorem 1.3.3. [19, Proposition 4.9.] Let (W, s, γ) be a cobordism between (Y1, s1, z1)

and (Y2, s2, z2), where s is a self-conjugate spinc-structure on W which restricts to the self-

conjugate spinc-structures si on Yi, and γ is a path between the basepoints z1 and z2. Then

there is an associated cobordism map

F I(W,s,γ) : HFI−(Y1, s1, z1)→ HFI−(Y2, s2, z2)

Again unlike Theorem 1.1.3 in Heegaard Floer homology, it is not known whether the

this cobordism map is independent of the choice of the handle decomposition that is used to

define it. Let us now discuss the main ideas of the proof.
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Let H1 and H2 represent the Heegaard diagrams for (Y1, z1) and (Y2, z2) and fW,s,γ be

the map induced on the Heegaard Floer chain complexes

fW,s,γ : CF−(H, s1, z1)→ CF−(H, s2, z2)

First, the authors show that the following diagram commutes up to chain homotopy.

CF−(H1, s1) CF−(H2, s2)

CF−(H1, s1) CF−(H2, s2)

Φ(H1,H1)

fW,s,γ

Φ(H2,H2)

fW,s,γ

To see this, the authors invoke the diffeomorphism invariance of cobordism maps on Heegaard

Floer homology; see Theorem 1.1.3. Here one regards Φ(H2,H2) ◦ fW,s,γ and fW,s,γ ◦

Φ(H1,H1) as maps associated to the cobordism W . Hence they must be homotopic to each

other. This in turn implies that ι intertwines with the cobordism map fW,s,γ up to chain

homotopy. The argument now follows from standard homological algebra, which shows that

fW,s,γ induces a map on the mapping cones of (id + ι), i.e. between CFI−(Y1, s1, z1) and

CFI−(Y2, s2, z2).
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CHAPTER 2

HOMOLOGY BORDISM AND HEEGAARD FLOER HOMOLOGY

2.1 Introduction

An area of intense study in low-dimensional topology is the homology cobordism group

Θ3
Z in dimension 3. To define it, one introduces equivalence relation on the set of ZHS3 by

saying, Y1 is equivalent to Y2 if there exists a cobordism W such that ∂W = Y1 t −Y2 and

the inclusions Yi ↪→ W induce isomorphisms in homology. The equivalence classes under

this relation form an abelian group under the connect sum operation which is referred to as

the homology cobrodism group. This group has been studied using various tools:

• The first known result about the structure of Θ3
Z was the existence of the Rokhlin

homomorphism µ : Θ3
Z → Z/2Z.

Several mathematicians have since improved our knowledge about the structure of this group.

For example using the techniques from gauge theory the following theorems were proved.

• Θ3
Z is infinite. (Fintushel-Stern)[12]

• There is a Z∞-subgroup of Θ3
Z. (Furuta, Fintushel-Stern)[15], [13]

• There is a Z-summand in Θ3
Z. (Frøyshov)[14]

One of the recent success has been the following theorems

Theorem 2.1.1. [27] If µ(Y ) = 1, then Y is not of order 2 in Θ3
Z.

Theorem 2.1.2. [8] Θ3
Z contains a direct summand isomorphic to Z∞.

For the former theorem Manolescu uses Pin(2)-equivariant Seiberg-Witten Floer theory

and the latter by Dai-Hom-Stoffregen-Truong uses its counterpart in Heegaard Floer theory,
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involutive Heegaard Floer homology. Despite these developments several questions about the

structure of Θ3
Z still remain open, including whether it contains any torsion.

To this end, one can ask for a generalization of the cobordism where the manifolds

are equipped with diffeomorphism. Let (M1, f1) and (M2, f2) be pair of 3-manifold each

equipped with a diffeomorphism (here, we do not require Mi to be connected.) We say that

(M1, f1) is bordant to (M2, f2) if there exist a pair (W, f) where W is a cobordism between

M1 and M2 and f is a diffeomorphism on it, extending the boundary diffeomorphisms. The

3-dimensional bordism group ∆3, is an abelian group whose underlying set consist of bordism

classes, endowed with the operation induced by disjoint union. This group can be defined

and understood in all dimensions, by work of Kreck [22] (for n ≥ 4), Melvin [29] (n = 3),

and Bonahon [3] (for n = 2). Notably Melvin showed

Theorem 2.1.3. [29] ∆3 = 0.

It is natural to ask whether placing homological restrictions on the manifolds and bor-

disms in question results in a richer group structure. This parallels the situation in which

the three-dimensional oriented cobordism group is trivial, but understanding the homology

cobordism group Θ3
Z is difficult. In this chapter we define and study the homology bordism

group of diffeomorphisms in 3-dimensions using Heegaard Floer and involutive Heegaard

Floer homology.

2.2 Homology bordism group of diffeomorphisms

We now discuss a precise definition of the homology bordism group. First, let us recall

the definition of bordism which was first popularized by Browder.

Definition 2.2.1. Let M1 and M2 be two closed, oriented n-manifolds, each equipped with

an orientation-preserving diffeomorphism fi (i = 1, 2). We say that (M1, f1) and (M2, f2) are

bordant if there exists a bordism W between them which admits an orientation-preserving
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diffeomorphism restricting to fi on Mi. Here, neither the Mi nor W are assumed to be

connected.

Note that the bordism is an equivalence relation, where transitivity follows from unique-

ness of collar neighborhoods of boundary components.

Definition 2.2.2. ([4, pg. 22] or [23, Definition 1.4]) The 3-dimensional bordism group of

orientation-preserving diffeomorphisms ∆3 is the abelian group whose underlying set consists

of bordism classes of pairs (M3, f), endowed with the addition operation induced by disjoint

union. The empty 3-manifold serves as the identity, and inverses are given by orientation

reversal.

In analogy with Θ3
Z, one would like to refine the three-dimensional group ∆3 by requiring

M to be a homology sphere and W to be a homology cobordism. However, this presents

certain technical difficulties due to the fact that the connected sum of (M1, f1) and (M2, f2)

may not be well-defined in general. Indeed, note that in order to form (M1#M2, f1#f2), one

must first isotope each fi to fix a ball Bi ⊆ Mi. If fi and f ′i are isotopic, then (Mi, fi) and

(Mi, f
′
i) are certainly bordant via the diffeomorphism of the cylinder Mi× I induced by the

isotopy. However, it does not follow that the homology cobordism class of (M1#M2, f1#f2)

is independent of the choice of isotopy. To see this, let fi and f ′i (i = 1, 2) be two diffeomor-

phisms of Yi fixing Bi. Suppose that fi and f ′i are isotopic, but that the intermediate stages

of this isotopy do not fix any ball in Mi. Then it is not clear how to define a diffeomorphism

on (M1#M2) × I restricting to f1#f2 and f ′1#f ′2 at either end. We thus instead follow

Definition 2.2.2 and take disjoint union to be our group operation.

We will consider the following equivalence relation:

Definition 2.2.3. [7] Consider the class of pairs (Y, f), where:

1. Y is a compact (possibly empty) disjoint union of oriented integer homology 3-spheres;

and,
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2. f is an orientation-preserving diffeomorphism of Y which fixes each component of Y

setwise.

We say that two such pairs (Y1, f1) and (Y2, f2) are pseudo-homology bordant if there exists

a pair (W, g) with the following properties:

1. W is a compact, oriented cobordism between Y1 and Y2 with H2(W ) = 0; and,

2. g is an orientation-preserving diffeomorphism of W such that:

a) g restricts to fi on each Yi; and,

b) g induces the identity map on H1(W,∂W ).

In this situation, we write (Y1, f1) ∼ (Y2, f2). It is clear that ∼ is an equivalence relation.

Note that H2(W ) = H2(W,∂W ) = H2(W ) = 0. In particular, W has only one spinc-

structure.

Remark 2.2.4. Readers might think that the most natural extension of homology cobordism

in the context of disconnected boundaries is homology punctured S4. But one can check that

composition of two such punctured homology spheres need not be a punctured homology

sphere. Hence we are forced to consider the definition above, note that in the case for

homology punctured spheres, the H2(W ) still vanish.

Let us now define the homology bordism group.

Definition 2.2.5. The (3-dimensional) homology bordism group of orientation-preserving

diffeomorphisms Θdiff
Z is the abelian group whose underlying set consists of pseudo-homology

bordism classes of pairs (Y, f) as in Definition 2.2.3, endowed with the addition operation

induced by disjoint union. The empty 3-manifold serves as the identity, and inverses are

given by orientation reversal. The (3-dimensional) homology bordism group of orientation-

preserving involutions Θτ
Z is then defined to be the subgroup of Θdiff

Z generated by involutions.
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2.3 Invariants of the homology bordism group of involutions

We devote this section to defining an two invariants of the homology bordism group of

involutions, discussed in Section 2.2. These invariants are derived using the tools of involutive

Heegaard Floer homology. We refer the readers to Section 1.3 for a quick introduction to

the theory.

Let us now state the main theorem of this section, whose definition and proof occupy

rest of the section.

Theorem 2.3.1. [7, Theorem 1.1] Let Y be an integer homology sphere with involution

τ : Y → Y . Then there are two Floer-theoretic invariants

hτ (Y ) = [(CF−(Y )[−2], τ)] and hι◦τ (Y ) = [(CF−(Y )[−2], ι ◦ τ)]

associated to the pair (Y, τ). If either hτ (Y ) 6= 0 or hι◦τ (Y ) 6= 0, then τ does not extend to

a diffeomorphism of any homology ball bounded by Y . In fact, the both invariants hτ and

hι◦τ constitute homomorphisms

hτ , hι◦τ : Θτ
Z → I.

Remark 2.3.2. Here CF−(Y )[−2] represents the Heegaard Floer chain complex of Y , with a

grading shift as indicated. This is a matter of convention, since the highest graded generator

of HF−(S3) lies in grading −2, instead of 0.

In subsection below and the one succeeding it, we will define the invarints hτ and hι◦τ

and the group I.

2.3.1 Local equivalence and the group I.

We now focus on the definition of the invariants hτ and hι◦τ . From this point onward in

this chapter and the ones subsequent to it, we will only consider 3-manifolds that are integer

homology spheres. In order to define our invariants, we need the notion of local maps.

12



Definition 2.3.3. [20, Definition 8.1] An ι-complex is a pair (C, ι), where

1. C is a (free, finitely generated, Z-graded) chain complex over F2[U ], with

U−1H∗(C) ∼= F2[U,U−1].

Here, U has degree −2.

2. ι : C → C is a (F2[U ]-equivariant, grading-preserving) homotopy involution; that is,

ι2 is U -equivariantly chain homotopic to the identity.

There is also a notion of homotopy equivalence between two different ι-complexes.

Definition 2.3.4. Two ι-complexes (C, ι) and (C ′, ι′) are called homotopy equivalent if there

exist chain homotopy equivalences

f : C → C ′, g : C ′ → C

that are homotopy inverses to each other, and such that

f ◦ ι ' ι′ ◦ f, g ◦ ι′ ' ι ◦ g,

where ' denotes F2[U ]-equivariant chain homotopy.

Given a Heegaard data H for (Y, z), in [19] the authors show that the homotopy equiva-

lence class of (CF−(H, ι)) is independent of the choice of H. Hence, one can unambiguously

refer to the homotopy type of (CF (Y ), ι).

In [20], Hendricks, Manolescu, and Zemke define an equivalence relation on the set of ι-

complexes, called local equivalence. This notion captures the algebraic relationship imposed

on ι-complexes by the presence of a homology cobordism between homology spheres.

Definition 2.3.5. [20, Definition 8.5] Two ι-complexes (C, ι) and (C ′, ι′) are called locally

equivalent if there exist (U -equivariant, grading-preserving) chain maps

f : C → C ′, g : C ′ → C
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such that

f ◦ ι ' ι′ ◦ f, g ◦ ι′ ' ι ◦ g,

and f and g induce isomorphisms on homology after localizing with respect to U . We call a

map f as above a local map from (C, ι) to (C ′, ι′), and similarly we refer to g as a local map

in the other direction.

The authors in [20] then consider set I defined as

I = {(abstract) ι-complexes} / local equivalence

consisting of all possible ι-complexes modulo local equivalence. ι-complex of Y thus gives

an element of I, which we denote by h(Y ):

Y 7→ h(Y ) = [(CF−(Y )[−2], ι)].

In [20, Section 8], it was shown that I admits a group structure, with the group operation

being given by tensor product of the complexes over F2[U ]. The identity element, denoted

throughout by 0, is the local equivalence class of S3 or, more algebraically, the complex

F2[U ] with trivial differential and identity involution. With this group structure, Hendricks,

Manolescu, and Zemke show that h is an invariant of the homology cobordism group Θ3
Z, in

fact it is a homomorphism

h : Θ3
Z → I.

2.3.2 Defining the invariants hτ and hι◦τ .

Having defined the ι-complexes and local equivalence class in Subsection 2.3.1, we now move

on to defining the invariants mentioned in Theorem 2.3.1. Roughly, we will show that that

given an involution τ on a integer homology sphere Y . There is an action of τ on the

Heegaard Floer chain complex CF−(Y ), which is a homotopy involution.

τ : CF−(Y )→ CF−(Y )
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This action puts the structure of an ι-complex on the pair (CF−(Y ), τ). The invariant hτ

will then be the local equivalence class of [(CF−(Y ), τ)]. The definition of hι◦τ is slightly

more involved, as discussed later, nonetheless it represents the local equivalence of the pair

[(CF−(Y ), ι ◦ τ)] where as we will see, ι ◦ τ acts as an homotopy involution on CF−(Y ).

Firstly, let us define the action of τ of the Heegaard Floer chain complex. Recall that input

for (see Section 1.1) Heegaard Floer chain complex is the Heegaard data H = (Σ,α,β, z, J).

The fact that an involution on Y induces (the homotopy class of) a homotopy involution

τ : CF−(Y ) → CF−(Y ) follows from the work of Juhász, Thurston, and Zemke [21], who

showed that the (based) mapping class group acts naturally on Heegaard Floer homology.

Let H be a choice of Heegaard data for Y , and suppose that τ fixes the basepoint z of H.

Applying τ to H, we obtain a “pushforward” set of Heegaard data which we denote by tH.

Explicitly, we think of Σ as embedded in Y , so that τ maps Σ to another embedded surface

τ(Σ) in Y with the obvious pushforward α- and β-curves. We similarly pushforward the

family of almost complex structures J on Symg(Σ) using the diffeomorphism between Σ and

τ(Σ) effected by τ . There is a tautological chain isomorphism

t : CF−(H)→ CF−(tH)

given by the map sending an intersection point in Tα ∩Tβ to its corresponding pushforward

intersection point. The action of τ is then defined to be the homotopy class of the chain

map

τ = Φ(tH,H) ◦ t : CF−(H)→ CF−(H),

where Φ(tH,H) is the Juhász-Thurston-Zemke homotopy equivalence from CF−(tH) to

CF−(H). Theorem 1.5 of [21] shows that induced map τ∗ on homology is well-defined,

and an invariant of the pointed mapping class represented by τ . The proof of their result,

however, shows that the homotopy class of τ is also invariant. (See [19, Proposition 2.3].)

In the case that τ does not fix a point on Y , we first consider an isotopy hs : Y → Y

that moves τz back to z along some arc γ. Composing τ with the result of this isotopy gives
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an isotoped diffeomorphism τγ = h1 ◦ τ , which now fixes the basepoint z. We then define

the action of τ to be the mapping class group action of τγ :

τ = Φ(tγH,H) ◦ tγ : CF−(H)→ CF−(H),

where tγ is the tautological pushforward associated to τγ . The fact that this is independent

of γ follows from work of Zemke [41], who showed that for a homology sphere Y , the π1-action

on CF−(Y ) is trivial up to U -equivariant homotopy. Explicitly, let

fγ : CF−(tH)→ CF−(tγH)

be the pushforward map associated to isotopy along γ, so that tγ = fγ ◦ t. Let γ′ be a

different arc connecting τz to z. Then tγ′H is obtained from from tγH by an isotopy which

pushes z around the closed loop γ−1 ∗ γ′. The basepoint-moving action of γ−1 ∗ γ′ on

CF−(tγH) is equal to

(γ−1 ∗ γ′)∗ ' Φ(tγ′H, tγH) ◦ fγ′ ◦ f
−1
γ .

Since Y is a homology sphere, this is U -equivariantly homotopic to the identity by [41,

Theorem D]. We thus have

Φ(tγ′H,H) ◦ fγ′ ' Φ(tγH,H) ◦ Φ(tγ′H, tγH) ◦ fγ′ ' Φ(tγH,H) ◦ fγ .

Composing both sides of this with t shows that Φ(tγ′H,H)◦ tγ′ ' Φ(tγH,H)◦ tγ , as desired.

For the purposes of Floer theory, we will thus generally think of τ as having been isotoped

to fix a basepoint of Y , and in such situations we will blur the distinction between τ and τγ .

Lemma 2.3.6. Let Y be a homology sphere equipped with an involution τ : Y → Y . Then

the map τ : CF−(Y )→ CF−(Y ) constructed above is a well-defined homotopy involution.

Proof. A similar argument as in [19, Section 2] shows that τ is well-defined up to homotopy

equivalence (upon changing the choice of Heegaard dataH). If τ : Y → Y fixes the basepoint

of Y , then the action of τ on CF− is simply defined to be the usual mapping class group
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action of τ . In this case, the rest of the claim follows from the fact that the action of the

(based) mapping class group satisfies (f ◦ g)∗ ' f∗ ◦ g∗. If τ does not have a fixed point,

then the action of τ is instead defined to be the mapping class group action of τγ = h1 ◦ τ .

Now, τ2
γ is evidently isotopic to the identity via

Hs = (hs ◦ τ) ◦ (hs ◦ τ) : Y → Y.

However, this isotopy does not necessarily fix the basepoint z, so some care is needed. Define

a modified isotopy H ′s as follows. For each s, let as be the arc traced out by Hr(z) as r

ranges from s back to zero. At time s, let H ′s be equal to Hs, followed by the result of an

isotopy pushing Hs(z) back to z along as. Then H ′s fixes z for all s. Clearly, H ′1 is equal

to H1 composed with an isotopy pushing z around the closed curve a1. Since the π1-action

on CF−(Y ) is trivial, it follows that the induced actions of H ′1 and τ2
γ coincide (up to U -

equivariant homotopy). However, the former action is homotopy equivalent to the identity,

since H ′1 is isotopic to the identity via a basepoint-preserving isotopy.

We thus obtain:

Definition 2.3.7. Let Y be a homology sphere with an involution τ . We define the τ -

complex of (Y, τ) to be the pair (CF−(Y ), τ), where τ : CF−(Y )→ CF−(Y ) is the homotopy

involution defined above. We denote the local equivalence class of this complex by

hτ (Y ) = [(CF−(Y )[−2], τ)].

As we will see in Lemma 2.3.9, ι and τ homotopy commute. Hence their composition is

another well-defined homotopy involution. We thus have:

Definition 2.3.8. Let Y be a homology sphere with an involution τ . We define the ι ◦ τ -

complex of (Y, τ) to be the pair (CF−(Y ), ι ◦ τ). We denote the local equivalence class of

this complex by

hι◦τ (Y ) = [(CF−(Y )[−2], ι ◦ τ)].
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Note that ι and τ homotopy commute, so nothing is gained by considering the homotopy

involution τ ◦ ι. This is just a re-phrasing of the fact that ι is well-defined up to homotopy

(so that conjugating by any diffeomorphism replaces ι with a homotopy equivalent map).

We make this explicit in the following lemma

Lemma 2.3.9. Let Y be a homology sphere with an involution τ . Then ι ◦ τ ' τ ◦ ι.

Proof. Let H be a choice of Heegaard data for Y , and let tH be as above. For notational

convenience, let ηH denote the conjugate Heegaard data H. Note that we also have the

Heegaard data ηtH, which consists of first pushing forward via τ and then interchanging

the α- and β-curves (and conjugating the almost complex structure). Similarly, we have the

Heegaard data tηH which is formed by first conjugating and then pushing forward. However,

it is evident that ηtH = tηH, and moreover that t and η commute as isomorphisms of the

relevant Floer complexes. Now choose any sequence of Heegaard moves from ηH to H.

Taking the pushforward sequence of Heegaard moves gives the commutative diagram on the

left in Figure 2.1. Similarly, choosing any sequence of Heegaard moves from tH to H and

then applying η gives the commutative diagram on the right.

CF−(H)CF−(ηH)

CF−(tH)CF−(tηH)

t t

Φ(ηH,H)

Φ(tηH, tH)

CF−(H)CF−(tH)

CF−(ηH)CF−(ηtH)

η η

Φ(tH,H)

Φ(ηtH, ηH)

Figure 2.1: Commutative diagrams for t and η.
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We thus have

τ ◦ ι = Φ(tH,H) ◦ t ◦ Φ(ηH,H) ◦ η

= Φ(tH,H) ◦ Φ(tηH, tH) ◦ t ◦ η

= Φ(tH,H) ◦ Φ(ηtH, tH) ◦ η ◦ t

' Φ(ηH,H) ◦ Φ(ηtH, ηH) ◦ η ◦ t

= Φ(ηH,H) ◦ η ◦ Φ(tH,H) ◦ t

= ι ◦ τ.

Here, in the fourth line we have used the fact that the maps Φ(tH,H) ◦ Φ(ηtH, tH) and

Φ(ηH,H) ◦ Φ(ηtH, ηH) are chain homotopic, since they are both induced by sequences of

Heegaard moves from ηtH to H.

2.4 Equivariant graph cobordism and the τ-local equivalence

In [35] the authors defined maps in Heegaard Floer homology associated to cobordisms.

Unfortunately, their formalism only works when the boundaries of the cobordism have only

one connected component. In [41] Zemke generalized the cobordism maps to a version

called the graph cobordism, which allow the boundaries of the cobordism to be disconnected.

Roughly speaking these maps depend on the extra information of an embedded graph in the

cobordism, which has ends in different connected components of the boundary on either side.

Cobordism maps of this form are necessary for our framework, in order to study the group

Θτ
Z (recall from Section 2.2 that the ends of Θτ

Z are allowed to be disconnected). We begin

this section with a brief overview of graph cobordisms, and the induced maps on Heegaard

Floer homology. In the following subsection we show that an equivariant graph cobordism

produces local map.
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2.4.1 Introduction to graph cobordism.

In what follows, we allow each manifold Y to have a collection of basepoints w. Usually,

one introduces different U -variables to keep track of the different basepoints, but here we

will identify all of these into a single U -variable. In the terminology of [41], this is called the

trivial coloring.

Let W be a cobordism between two (possibly disconnected) 3-manifolds (Y1,w1) and

(Y2,w2). A ribbon graph in W is an embedded graph Γ whose intersection with each Yi is

precisely wi. We also require that Γ be given a formal ribbon structure, which is a choice of

cyclic ordering at every internal vertex of Γ. We refer to the pair (W,Γ) as a ribbon graph

cobordism. Associated to any such (W,Γ), Zemke constructs a chain map

FAW,Γ,s : CF−(Y1,w1, s|Y1
)→ CF−(Y2,w2, s|Y2

).

This is well-defined up to U -equivariant homotopy and is an invariant of the smooth isotopy

class of Γ in W [41, Definition 3.4]. In fact, FA is invariant under a weaker notion of

equivalence called ribbon equivalence; see [42, Corollary D]. There is another version of the

graph cobordism maps FAW,Γ,s, the ‘B’-version, which is constructed similarly as the ‘A’

version. Since we will only use the A-version, we choose to omit details about the B-version.

Interested readers can look at [41].

Now let Y1 and Y2 be disjoint unions of homology spheres, and equip each connected

component of Y1 and Y2 with a single basepoint. Let f be a diffeomorphism of W restricting

to τi on each Yi. If τi fixes the basepoints of Yi, then it follows from [41, Theorem A] (together

with the well-definedness of graph cobordism maps up to U -equivariant homotopy) that

τ2 ◦ FAW,Γ,s ' FAW,f(Γ),f∗(s) ◦ τ1. (2.1)

See [41, Equation 1.2]. If τi does not fix the basepoints of Yi, then (2.1) is not quite correct,

since in this case we have defined the action of τi on CF− using an isotoped version of τi

instead. Clearly, however, we can isotope f so that it restricts to the isotoped versions of
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τi at either end. Thus, (2.1) holds after replacing f(Γ) with a slightly altered graph f(Γ)

which has the same endpoints as Γ. (Usually, we will be sloppy and continue to write f(Γ)

despite this difference.)

In order to define the FA-maps, Zemke first defines graph cobordism maps in the case

of a product cobordism Y × I. In this situation, we can use the projection map to view Γ

as being embedded in Y (after perturbing slightly, if necessary). In [41], Zemke introduces

a set of auxiliary maps on CF−(Y ) which can be used to associate to any such graph an

endomorphism AGΓ of CF−(Y ). These auxiliary maps include the free stabilization maps

S±w , as well as the relative homology maps Aλ. We will assume some familiarity with these

constructions; the reader is referred to [20, Section 3] for a concise and helpful summary.

In order to understand FA for a general cobordism W , it is helpful to keep in mind the

desired composition law. Let (W,Γ) = (W2,Γ2)∪ (W1,Γ1). If s1 and s2 are spinc-structures

on W1 and W2, then the obvious generalization of the usual composition law of Ozsváth and

Szabó yields:

FAW2,Γ2,s2
◦ FAW1,Γ1,s1

'
∑

s ∈ spinc(W )
s|W2

= s2
s|W1

= s1

FAW,Γ,s. (2.2)

To this end, consider a parameterized Kirby decomposition for W , and split

W = W2 ◦W1,

where W1 is the subcobordism consisting of all 0- and 1-handles. We denote the outgoing

boundary of W1 by Y . Note that for such a splitting, a spinc-structure s on W is uniquely

determined by its restrictions si to each Wi.

The underlying Morse function on W provides a gradient-like vector field ~v on W . After

a small perturbation, we can assume that Γ is disjoint from the descending manifolds of

the index-one critical points, the ascending manifolds of the index-three critical points, and

both the ascending and descending manifolds of the index-two critical points. Using ~v, we

flow each point of Γ backwards or forwards so that it hits Y . This gives (possibly after a
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small perturbation) an embedded graph in Y , which we may think of as a ribbon graph in

Y × (−ε, ε). We connect this to the basepoints of the Yi via arcs going along the flow lines

of ~v. Denote these collections of arcs by Γ1 and Γ2. The map FAW,Γ,s is then equal to the

composition

FAW,Γ,s ' FAW2,Γ2,s2
◦ AGΓ ◦ F

A
W1,Γ1,s1

. (2.3)

Here, AGΓ : CF−(Y )→ CF−(Y ) is the graph action map associated to the flowed image of Γ

in Y , and should be thought of as defining the cobordism map in the case where W = Y × I.

When no confusion is possible, we will sometimes suppress notation and write the outer two

maps as FAW1,s1
and FAW2,s2

. See Figure 2.2.

flow of ~v
Y × (−ε, ε)

W W

isotopy of Γ

W1 W2

Figure 2.2: Schematic depiction of flowing Γ into Y . In actuality, Y will have some
topology and Γ need not be a path.

Roughly speaking, we think of the whole procedure as isotoping Γ so that it is uninter-

esting outside of Y ; the maps associated to (W1,Γ1) and (W2,Γ2) can then be defined using

only a slight modification of the construction of Ozsváth and Szabó. In what follows, we

similarly use the technique of flowing Γ so that it is “concentrated” in a convenient slice.

In particular, note that if Γ and Γ′ are two ribbon graphs in W , then their flowed versions

agree outside of Y .

For convenience, we also record the grading shift formula established in [20, Proposition

4.1] which will be useful to us later. Let (W,Γ) be a ribbon graph cobordism from (Y1,w1)

to (Y2,w2) and let s be a spinc-structure on W . Define the reduced Euler characteristic of

Γ to be

χ̃(Γ) = χ(Γ)− 1

2
(|w1|+ |w2|).
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The grading shift associated to FAW,Γ,s is then given by

∆(W,Γ, s) =
c1(s)2 − 2χ(W )− 3σ(W )

4
+ χ̃(Γ).

Note that if Γ is a path, then the reduced Euler characteristic of Γ is zero.

2.4.2 Independence for paths

In this subsection, we verify that if Γ is a path, then the map FAW,Γ depends only on the

homology class [Γ] ∈ H1(W,∂W )/Tors. This is rather well-known to experts, but we record

it here for completeness. Note that if Γ is a path, then FA and FB are homotopy equivalent

and coincide with the usual construction of Ozsváth and Szabó by [41, Theorem B]. In this

situation we will thus write F instead of FA.

Lemma 2.4.1. Let W be a cobordism between two singly-based (connected) 3-manifolds

(Y1, w1) and (Y2, w2). Let γ and γ′ be two paths in W from w1 to w2. Suppose that

[γ − γ′] = 0 ∈ H1(W )/Tors.

Then

FW,γ,s ' FW,γ′,s.

Proof. Decompose W as before. Flow γ and γ′ into Y and denote the images of w1 and w2

in Y by v1 and v2. We obtain two arcs in Y that go between v1 and v2 which, by an abuse

of notation, we continue to denote by γ and γ′. Let AG and AG′ be the graph action maps

on CF−(Y ) associated to γ and γ′. Note that c = γ ∗ (γ′)−1 is a closed loop in Y which is
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zero when included into H1(W )/Tors. We now have:

FW,γ,s − FW,γ′,s ' FW2,s2
◦ AG ◦ FW1,s1

− FW2,s2
◦ AG′ ◦ FW1,s1

= FW2,s2
◦ (AG − AG′) ◦ FW1,s1

= FW2,s2
◦ S−v1(Aγ − Aγ′)S

+
v2
◦ FW1,s1

= FW2,s2
◦ S−v1AcS

+
v2
◦ FW1,s1

' FW2,s2
◦ AcS−v1S

+
v2
◦ FW1,s1

Here, in the third line, we have used the definition of AGΓ [41, Equation 7.5], while in the

fourth and fifth lines we have used [41, Lemma 5.3] and [41, Lemma 6.13], respectively.

Note that Ac is the usual H1(Y )/Tors-action on CF−(Y ). We claim that the map

FW2,s2
◦Ac is U -equivariantly nullhomotopic. For this, we use the following result from [17].

Let W be a cobordism from Y to Y ′, and let c ⊆ Y and c′ ⊆ Y ′ be two closed curves that

are homologous in W . Then [17, Theorem 3.6] states that

FW2,s
◦ Ac ' Ac′ ◦ FW2,s

,

where FW2,s
is the usual cobordism map of Ozsváth and Szabó As written, [17, Theorem

3.6] deals with the total homology map on ĤF . However, the proof is easily modified to

hold on the level of U -equivariant homotopy (for CF−), and can be refined to take into

account individual spinc-structures. See [17, Remark 3.7]. In our case, note that W1 consists

of adding 1-handles to Y1. A Mayer-Vietoris argument then shows that the inclusion of

H1(W2) into H1(W ) is injective. Hence some multiple of [c] is actually nullhomologous in

W2. The claim then follows from the above commutation relation by choosing c′ in Y2 to be

empty (or a small unknot).
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2.4.3 Proof of invariance

In this subsection, we prove that hτ and hι◦τ , defined in Subsection 2.3.2 are invariants of

the group Θτ
Z. Moreover we will show that the invariants induce homomorphisms

hτ , hι◦τ : Θτ
Z → I.

which will complete thr proof of Theorem 2.3.1.

Our strategy for proving Theorem 2.3.1 is showing that any pseudo-homology bordism

induces a local equivalence between the τ -complexes (and ι ◦ τ -complexes) of its incoming

and outgoing ends. Firstly we will choose a specific graph on the cobordism.

Throughout, let (W, f) be a pseudo-homology bordism between (Y1, τ1) and (Y2, τ2),

where Y1 and Y2 are disjoint unions of homology spheres. We equip each connected compo-

nent of Y1 and Y2 with a single basepoint. For simplicity, assume that W itself is connected.

Let Wa be the cobordism formed by an iterated sequence of 1-handle attachments joining

together the components of Y1, as displayed in Figure 2.3. Let Wb be (the reverse of) the

analogous cobordism joining together the components of Y2. Clearly, we can embed Wa and

Wb in W to obtain a decomposition

W = Wb ◦W0 ◦Wa,

where W0 is now a cobordism between two homology spheres. Note that the inclusion of W0

into W induces an isomorphism on H1.

Definition 2.4.2. We define a ribbon graph Γ in W as follows. On Wa, let Γ be any trivalent

1-skeleton corresponding to the iterated sequence of 1-handle attachments, as displayed in

Figure 2.3. For concreteness, we fix an ordering for the connected components of Y1. (This

specifies an order for taking the iterated connected sum, and also a way to choose a cyclic

ordering at each internal vertex.) We define Γ on Wb similarly. To define Γ on W0, first

choose a path γ running between the two ends of W0. Fix an ordered basis e1, · · · , en of

H1(W0), and represent each ek by a simple closed curve ck that does not intersect γ. We then
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join each ck to γ via an arc, which we refer to as a connecting arc. Again, for concreteness,

fix a cyclic ordering at each internal vertex. We call any Γ constructed in this fashion a

standard graph. See Figure 2.3.

Wa W0 Wb

γ

Figure 2.3: Schematic decomposition W = Wb ◦W0 ◦Wa. The path γ is drawn in green,
while the curves ck are drawn in blue. We choose the indicated cyclic ordering at each
internal vertex.

Now consider the cobordism map FAW,Γ associated to a standard graph. Our goal will

be to show that this is a local map (with respect to both τ and ι ◦ τ). As a first step, it

will be helpful for us to have the following alternative formulation of FAW,Γ. Let Γred be

the “reduced” ribbon graph formed by replacing the subgraph Γ ∩W0 in Definition 2.4.2

with the path γ. Let Wred be obtained from W by surgering out the curves ck. Note that

Wred = Wb ◦Wh ◦Wa, where Wh is a homology cobordism. The image of Γred under this

surgery defines a ribbon graph in Wred, which we also denote by Γred.

We now prove the Theorem assuming a few Lemmas that we will come back to later.

Proof of Theorem 2.3.1. Let (W, f) be a pseudo-homology bordism from (Y1, τ1) to (Y2, τ2).

We wish to show:

1. FAW,Γ ◦ ι1 ' ι2 ◦ FAW,Γ;

2. FAW,Γ ◦ τ1 ' τ2 ◦ FAW,Γ; and,
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3. FAW,Γ maps U -nontorsion elements in homology to U -nontorsion elements in homology

(and has zero grading shift).

The first and third claims follow immediately from Lemma 2.4.3 and standard results of

Hendricks, Manolescu, and Zemke. Indeed, according to Lemma 2.4.3, we have

FAW,Γ ' FAWred,Γred
.

The latter cobordism is equal to the composition Wb ◦Wh ◦Wa, where the outer two terms

are compositions of connected sum cobordisms (or their reverses), and Wh is a homology

cobordism equipped with a path γ. By [20, Proposition 5.10] and [19, Proposition 4.9], the

maps associated to each of these pieces commutes with ι up to homotopy. Applying the

composition law, we thus see that FAW,Γ homotopy commutes with ι also. The third claim is

similarly verified by establishing the desired condition for each piece. To prove the second

claim, we apply (2.1) and Lemma 2.4.7:

FAW,Γ ◦ τ1 ' τ2 ◦ FAW,f(Γ) ' τ2 ◦ FAW,Γ.

This proves that FAW,Γ is a local map with respect to τ . Turning W around shows that

hτ1(Y1) = hτ2(Y2), as desired. To show that FAW,Γ preserves hι◦τ , we apply the first and

second claims to obtain

FAW,Γ ◦ (ι1 ◦ τ1) ' (ι2 ◦ τ2) ◦ FAW,Γ.

Hence hτ and hι◦τ are well-defined maps from Θτ
Z to I. Since CF− takes disjoint unions to

tensor products (for the trivial coloring), this completes the proof.

We now move on to proving the Lemmas used above.

Lemma 2.4.3. Let Γ be a standard graph in W . Then

FAW,Γ ' FAWred,Γred
.

Proof. Note that by [41, Proposition 11.1], the cobordism maps FA are unchanged under

puncturing. More precisely, suppose that (W,Γ) is any cobordism from Y1 to Y2. Puncture
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W at any interior point and equip the new boundary S3 with a single basepoint. We modify

the original ribbon graph Γ by joining this basepoint to Γ via an arc (and choosing any cyclic

ordering at the new internal vertex). Let the new incoming boundary be given by Y1 t S3.

Then it follows from [41, Proposition 11.1] that under the identification of CF−(Y1) with

CF−(Y1 t S3) ' CF−(Y1) ⊗ CF−(S3), the cobordism map remains unchanged up to U -

equivariant homotopy.

In our case, consider the cobordism W
S1×B3 from S3 to S1 × S2 formed by puncturing

S1 × B3 at any interior point. We define a ribbon graph Γ
S1×B3 on W

S1×B3 by taking a

closed loop generating H1(S1×B3) and joining this to each boundary component via an arc.

Now identify a neighborhood of each ck with ν(ck) ∼= S1×B3, and puncture W at an interior

point of each of these neighborhoods. This punctured version of W may be viewed as the

composition of several copies of (W
S1×B3 ,ΓS1×B3), together with the complement of the

ν(ck) in W . We similarly define W
D2×S2 by puncturing D2 × S2 at any interior point and

equipping this with an arc Γ
D2×S2 running between the two boundary components. Then

Wred may be viewed (after puncturing) as several copies of (W
D2×S2 ,ΓD2×S2), together

with the same complement as before. By the composition law, to establish the lemma it

thus suffices to show that

FAW
S1×B3 ,ΓS1×B3

' FAW
D2×S2 ,ΓD2×S2

as maps from CF−(S3) to CF−(S1 × S2). This is a standard calculation.

In light of Lemma 2.4.3, the reader may wonder why we have not simply defined our

cobordism maps directly in terms of Wred and Γred, rather than Γ. (Indeed, this corresponds

to the usual approach in Floer theory when dealing with cobordisms with b1 > 0; see for

example the proof of [32, Theorem 9.1].) The reason is that ck need not be fixed by f ,

so the surgered cobordism Wred may not inherit an extension of τi. Thus, a priori there

is no reason to think that the surgered cobordism interacts nicely with τ . In actuality, we

will show that FAW,Γ homotopy commutes with τ , which implies that FAWred,Γred
does also.
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Alternatively, one can also define FAW,Γ by considering the graph Γred in W and cutting down

via the H1(W )/Tors-actions of each of the ek. This is essentially what we do in Lemma 2.4.7,

except in a language more amenable to that of [41].

When dealing with the action of f on W , we will thus need to take a slightly different

approach. We begin with a more refined decomposition theorem, which is essentially taken

from the proof of [32, Theorem 9.1].

Lemma 2.4.4. Let W be a definite cobordism between two 3-manifolds. Then there exists a

decomposition W = W2 ◦W1 of W for which the following holds:

1. W1 consists of 1- and 2-handles,

2. W2 consists of 2- and 3-handles; and,

3. Let Y be the slice given by the outgoing boundary of W1. Then the map induced by the

inclusion of Y into W

i∗ : H1(Y )/Tors→ H1(W )/Tors

is an isomorphism.

Proof. Give W a handle decomposition consisting of 1-handles, 2-handles, and 3-handles

(attached in that order). According to the proof of [32, Theorem 9.1], we can re-index the

sequence of 2-handle attachments as follows. Let the 2-handles be denoted by {hi}ni=1, and

for each i let Si be the outgoing boundary obtained after attaching hi. Let the incoming

boundary of the very first 2-handle be denoted by S0. According to the proof of [32, Theorem

9.1], we may assume that the sequence of Betti numbers {b1(Si)}ni=0 at first monotonically

decreases with i, then is constant, and then finally monotonically increases with i. Ozsváth

and Szabó refer to such an ordering of the hi as a standard ordering. This can be achieved

whenever W is definite.

We now choose Y = Si to be any slice in the above sequence for which b1(Si) attains

its minimum value. This decomposes W into two subcobordisms Wa and Wb that obviously
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satisfy the first two desired properties. Let the 2-handles hj for j > i be attached to Y

along a link whose components we denote by Kj . We claim that each of these components is

rationally nullhomologous in Y . Indeed, the condition b1(Si) ≤ b1(Si+1) implies that Ki+1

is rationally nullhomologous in Y ; proceeding by induction, we assume that Ki+1, . . . ,Kl

are rationally nullhomologous in Y . Now, Kl+1 is rationally nullhomologous in Sl, which

is obtained from Y by integer surgery along Ki+1, . . . ,Kl. The inductive hypothesis then

easily implies that Kl+1 is rationally nullhomologous in Y also.

It follows immediately that the induced inclusion map i∗ : H1(Y )/Tors→ H1(Wb)/Tors

is an isomorphism, since Wb is built from Y × I via attaching rationally nullhomologous

2-handles and then some 3-handles. Turning the cobordism around, we obtain the same

result with Wa in place of Wb. A standard Mayer-Vietoris argument then gives the desired

claim.

Definition 2.4.5. Let Y be any 3-manifold equipped with a collection of incoming base-

points Vin and outgoing basepoints Vout. We say that a ribbon graph Λ in Y ×I is star-shaped

if it has a unique internal vertex, which is connected to each basepoint via a single arc. We

also fix a formal ribbon structure; this corresponds to a cyclic ordering of Vin ∪ Vout. Note

that given any incoming basepoint vi and outgoing basepoint vj , there is a unique path in

Λ going from vi to vj , which we denote by lij .

The proof of the next technical lemma is similar to that of [41, Lemma 7.13]. The authors

would like to thank Ian Zemke for help with the proof and a discussion of the surrounding

ideas.

Lemma 2.4.6. Let Λ and Λ′ be two star-shaped graphs in Y × I. Suppose that for any

incoming basepoint vi and outgoing basepoint vj, we have

[lij − l′ij ] = 0 ∈ H1(Y )/Tors.
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Suppose moreover that Λ and Λ′ have the same formal ribbon structure (viewed as cyclic

orderings of the set of basepoints). Then for any spinc-structure s on Y × I, we have

FAY×I,Λ,s ' FA
Y×I,Λ′,s.

Proof. Without loss of generality, we may isotope Λ and Λ′ so that they share the same

internal vertex v. For any basepoint vi, denote the edge of Λ joining vi to v by ei.
1 We

claim that there is a fixed element λ ∈ H1(Y )/Tors such that [e′i − ei] = λ for all i. Indeed,

consider any pair of incoming and outgoing vertices vi and vj . Then

[e′i − ei]− [e′j − ej ] = [l′ij − lij ] = 0 ∈ H1(Y )/Tors.

Set λ = [e′i − ei]. Varying j (and then varying i) gives the claim.

We now turn to the assertion of the lemma. Without loss of generality, let the basepoints

of Y be given by Vin ∪ Vout = {vi}ni=1, and let the cyclic order corresponding to the formal

ribbon structure be v1, . . . , vn. By [41, Equation 7.2],

FAY×I,Λ =

 ∏
x∈Vin∪{v}

S−x

 ◦ Aen ◦ · · · ◦ Ae1 ◦
 ∏
x∈Vout∪{v}

S+
x

 .

A similar expression holds for Λ′ after replacing each ei with e′i. By [41, Lemma 5.3] and

the fact that [e′i − ei] = λ, we have Ae′i
' Aei + Aλ. Hence

Ae′n
◦ · · · ◦ Ae′1

' (Aen + Aλ) ◦ · · · ◦ (Ae1 + Aλ)

' Aen ◦ · · · ◦ Ae1 + Aλ ◦

(∑
i

Aen ◦ · · · ◦ Âei ◦ · · · ◦ Ae1

)
.

Here, the notation Âei means that Aei should be omitted from the composition. In the

second line, we have expanded the product and used the fact that Aλ ◦ Aλ ' 0 whenever λ

is a closed curve (see [41, Lemma 5.5]). Substituting this into the expression for FA
Y×I,Λ′ , it

thus clearly suffices to show

S−v ◦

(∑
i

Aen ◦ · · · ◦ Âei ◦ · · · ◦ Ae1

)
◦ S+

v ' 0.

1By [41, Lemma 5.3], note that A−ei = −Aei . Since this coincides with Aei mod 2, we
will occasionally use ei to also denote the same edge with reversed orientation.
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Throughout, we have used the fact that Aλ commutes with the Aei and the stabilization

maps S±v , since λ is a closed curve. (See [41, Lemma 5.4] and [41, Lemma 6.13].)

· · · · · · · · · · · ·

+ + + · · · +

· · · · · · · · · · · ·

+ + + · · · +

· · · · · · · · ·

+ + · · · +

'

'

+ + ' 0

Figure 2.4: Diagrammatic proof of Lemma 2.4.6. The ellipses above each star-shaped
graph indicate further edges attached to the interior vertex.

We proceed by induction. For n = 3, we claim that

S−v (Ae3Ae2 + Ae3Ae1 + Ae2Ae1)S+
v ' S−v (Ae3 + Ae2)(Ae2 + Ae1)S+

v .

This follows by expanding the right-hand side and noting that S−v Ae2Ae2S
+
v ' US−v S

+
v ' 0

by Lemmas 5.5 and 6.15 of [41]. On the other hand, we have

S−v (Ae3 + Ae2)(Ae2 + Ae1)S+
v ' S−v Ae3∗e2Ae2∗e1S

+
v ' Ae3∗e2Ae2∗e1S

−
v S

+
v ' 0.

Here, to obtain the second homotopy equivalence, we have used [41, Lemma 6.13] and the

fact that e3 ∗ e2 and e2 ∗ e1 are paths which do not have v as an endpoint. This establishes

the base case.

The inductive step is diagrammatically described in Figure 2.4. In the first row of Fig-

ure 2.4, we have displayed three graphs corresponding to the three terms in the case n = 3.

In the second row, we have displayed the sum in question for general n. We modify each of
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the graphs in the second row by introducing an additional internal vertex and edge, as in

the third row of Figure 2.4. Note that this does not change the ribbon equivalence class. We

then view the first two terms as composite graphs with the splittings indicated by the dashed

arcs, and apply the n = 3 case to obtain the fourth row. We similarly view each graph in the

fourth row as a composition of two subgraphs, corresponding to the pieces above and below

the dashed line. Factoring out the map corresponding to the subgraph below the dashed

line, the remaining sum is precisely the inductive hypothesis for n − 1. This completes the

proof.

We now come to the central lemma of this section:

Lemma 2.4.7. Let (W, f) be a pseudo-homology bordism and let Γ be a standard graph in

W . Then

FAW,Γ ' FAW,f(Γ).

Proof. For convenience, denote Γ′ = f(Γ). Decompose W as in Lemma 2.4.4, and flow Γ and

Γ′ into the slice Y afforded by Lemma 2.4.4. (Here, we are using the fact that Wa consists

of 1- and 2-handles, while Wb consists of 2- and 3-handles.) Without loss of generality, we

may thus assume that Γ and Γ′ agree outside of Y × I. By abuse of notation, we denote the

subgraphs Γ ∩ (Y × I) and Γ′ ∩ (Y × I) by Γ and Γ′ also. Applying the composition law, it

clearly suffices to prove that FAY×I,Γ ' FA
Y×I,Γ′ . Note that we implicitly equip Y × I with

the pullback of the single spinc-structure on W . See the top-left of Figure 2.5.

Define Γred to be Γ with the curves ck and connecting arcs deleted. By [44, Proposition

4.6], we have2

FAY×I,Γ ' FAY×I,Γred
◦

(∏
k

Ack

)
.

Note that Γ′ is combinatorially isomorphic to Γ. In particular, Γ′ consists of a set of closed

loops c′k, which are joined to an underlying tree via connecting arcs. These loops are in

2Compare Figure 2.5 and [44, Figure 4.5]. In our case, contracting each individual con-
necting arc to a point does not change the ribbon equivalence class.
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W1 Y × I W2 W1 Y × I W2

W1 Y × I W2

Γ Γred

Λ

Figure 2.5: Top left: the flowed graph Γ. Top right: the modified graph Γred. Bottom
middle: the graph Λ. The path lij from the proof of Lemma 2.4.7 is marked in green; the
path gij is marked in blue. In general, Y will have some topology.

correspondence with the analogous loops ck in Γ. Defining Γ′red similarly, we have

FA
Y×I,Γ′ ' FA

Y×I,Γ′
red
◦

(∏
k

Ac′
k

)
.

Since f acts as the identity on homology, we have [c′k] = [ck] in H1(W ) for each k. By

Lemma 2.4.4, this implies that [c′k] = [ck] in H1(Y )/Tors, and thus that Ac′
k
' Ack for

each k by [41, Proposition 5.8]. Hence to establish the claim, it suffices to prove that

FAY×I,Γred
' FA

Y×I,Γ′
red

. See the top-right of Figure 2.5.

We now contract all of the internal edges in Γred to obtain a star-shaped graph Λ, as

displayed in the second row of Figure 2.5. This does not change the ribbon equivalence class

of Γred. We similarly contract all the edges of Γ′red to obtain a star-shaped graph Λ′. It

remains to verify the hypotheses of Lemma 2.4.6. Let vi be an incoming basepoint in Y × I

and let vj be an outgoing basepoint. Let gij be the obvious path in Γ (viewed as a graph in

W ) going between the corresponding basepoints wi and wj of W , as in Figure 2.5. Define

g′ij similarly. Note that gij and g′ij agree outside of Y × I, and [gij ] = [g′ij ] ∈ H1(W,∂W )
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since f acts as the identity on H1(W,∂W ). Clearly, lij and gij ∩ (Y × I) are isotopic in

Y × I (rel boundary), and similarly for l′ij and g′ij . Hence

[lij − l′ij ] = [gij − g′ij ] = 0 ∈ H1(W ).

By Lemma 2.4.4, we thus have that [lij − l′ij ] = 0 in H1(Y )/Tors. Applying Lemma 2.4.6

completes the proof.
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CHAPTER 3

CORKS AND HEEGAARD FLOER HOMOLOGY

3.1 Introduction

Smooth structures on 4-manifolds have been of central interest in low-dimensional topol-

ogy for decades. Much attention, in particular, has been paid to finding pairs of smooth,

closed, simply connected 4-manifolds that are homeomorphic but not diffeomorphic. Corks

are objects of central importance to this study. A cork is a tuple (Y, τ,W ) of a 3-manifold

Y 3, a contractible 4-manifold W 4 bounded by Y , and an orientation preserving involution τ

on Y that does not extend over W as a diffeomorphism. A cork-twist is an operation of cut-

ting and re-gluing a cork along its boundary involution, when it is embedded inside a closed

4-manifold. A remarkable theorem by [6, 28] establishes that any two smooth structures of

a simply-connected topological 4-manifold are related by a cork-twist. The first example of

a cork was found by [1]. Since then numerous examples of corks have been produced using

various techniques. The most common way of detecting corks has been to embed them inside

a larger closed 4-manifold W and then showing that the cork-twist changes a certain type

of smooth 4-manifold invariant, for example the Ozsváth-Szabó 4-manifold invariant [35].

Recently [25] introduced a generalized version of cork, called a strong cork, which is

a cork where the involution of the boundary does not extend over any homology 4-ball.

They also gave an example of a strong cork, by showing that the so-called Akbulut cork is

strong. Their proof required construction of an appropriate long exact sequence on Monopole

Floer homology with Q-coefficients and showing a certain cork-twist changes the 4-manifold

invariant.

In this section, we study corks through the lens of homology cobordism. Firstly, we note

that the invariants hτ and hι◦τ developed in the Chapter 2 are useful in detecting strong

corks. We then prove a certain monotonocity theorem, regarded as a computational aid
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which constrains the behavior of our invariants under equivariant negative-definite cobor-

disms. Furthermore, we then produce explicit methods of constructing such cobordisms via

equivariant surgery. Note that, directly computing the invariants hτ and hι◦τ by computing

the action of τ on the CF− would be quite cumbersome. This is because computing the

action would require explicit information of how a Heegaard surface and the α and β curves

behave under the action of τ , together with the knowledge of how those interact with the

chain complexes. To the best of author’s knowledge, no such non-trivial example of directly

computing the action of τ on the chain complex CF− (up to chain homotopy), exists the

literature. In contrast, via the aforementioned techniques, we compute the invariants for a

number of examples which, in turn, yields many new examples of strong corks. Some of

them were previously not even known to be (standard) corks.

3.2 Strong corks

Definition 3.2.1. Let Y be an integer homology sphere equipped with an (orientation-

preserving) involution τ : Y → Y , and suppose that Y bounds a compact, contractible

manifold W . We say that the triple (Y,W, τ) is a cork if τ does not extend over W as a

diffeomorphism.

In [25] the authors recently consider a slightly generalized version of corks.

Definition 3.2.2. [25, Section 1.2.2] Let Y be a homology sphere, equipped with an invo-

lution τ : Y → Y . Moreover, assume that Y bounds atleast one contractible 4-manifold W .

Then we say that the pair (Y, τ) is a strong cork if for any homology ball X with Y = ∂X,

τ does not extend over X as a diffeomorphism.

Note that unlike the definition of a cork, a strong cork is defined using 3-dimensional

data. The most common way of detecting a cork has been as follows. Consider an embedding

of a cork (Y,W ) inside a larger closed 4-manifold X. Then cut out and re-glue via the cork

twist. One the calculates the a smooth 4-manifold invariant for the resulting 4-manifold X ′
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to show that its value is different to that of X. This implies the involution τ on Y cannot

possibly extend over W as a diffeomorphism. The process of calculating the 4-manifold

invariant for X ′, is where one requires specific knowledge about the boundary involution τ .

For example, when the 4-manifold invariant is the Ozsváth-Szabó 4-manifold invariant one

needs to compute the action induced by τ on the Floer homology:

τ : HF+(Y )→ HF+(Y )

Moreover since we used the embedding of W inside X, this process only shows that τ on

Y does not extend over W . In particular, traditional methods for showing that a standard

cork is strong fails. Lin, Ruberman, and Saveliev devised a way to show that Akbulut’s

first example of a cork is strong [25, Theorem D]. They established a certain long exact

sequence for monopole Floer homology with Q-coefficients, and then explicitly understood

the induced action of τ in monopole Floer homology, finally they appealed to the Seiberg-

Witten 4-manifold invariant to prove that the Akbukut cork is indeed strong.

As we will see in the subsequent sections, our approach does not involve any direct/explicit

computation of the induced action of τ on HF− or CF− nor do we refer to the any smooth

4-manifold invariant. In most cases this makes proving that a (Y, τ) is strong much more

rather straight forward. Below we state our main obstruction result, which concerns the

invariants of the group Θτ
Z defined earlier, see Chapter 2.

Corollary 3.2.3. Let Y be an integer homology sphere with involution τ : Y → Y , and

suppose Y bounds at least one contractible 4-manifold W . Then, if either hτ (Y ) 6= 0 or

hι◦τ (Y ) 6= 0, the pair (Y, τ) is a strong cork.

Proof. The proof is immediate from statement of Theorem 2.3.1.

Note that doing 1/k surgery on a slice knot results in a 3-manifold which bounds a

contractible 4-manifold [16, Section 6]. Moreover if there is a symmetry on the knot, then

it induces a symmetry on the manifold obtained by surgery. A natural question is then,

whether one can obtain strong cork from surgery on symmetric knots. We show
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Theorem 3.2.4. [7] For n > 0, let K−n,n+1 be the family of slice doubly-twist knots dis-

played in Figure 3.1. For k positive and odd, let Vn,k be the (1/k)-surgery

Vn,k =


S1/k(K−n,n+1) if n is odd

S1/k(K−n,n+1) if n is even.

Equip Vn,k with the indicated involutions τ and σ. For n odd, we consider the obvious

involutions on the mirrored diagram. Then (Vn,k, τ) and (Vn,k, σ) are both strong corks.

−n

τ

σ

n
+
1

−1

+
1

=

=

Figure 3.1: Doubly-twist knot K−n,n+1. The indicated symmetries τ and σ are given by
180◦ rotations about the blue and red axes, respectively. In the latter case, it may be
helpful to view K−n,n+1 as an annular knot; the action of σ is given by rotation about the
core of the solid torus. Black dots indicate the intersections of K−n,n+1 with the axes of
symmetry.

To the best of the authors’ knowledge, none of manifolds in Theorem 3.2.4 were previously

known to be (the boundaries of) corks, strong or otherwise.

As seen in the previous Theorem, One of our principal ways of finding corks will be to

consider surgeries on equivariant slice knots. In this vein, we have

Theorem 3.2.5. Let K be a knot in S3 equipped with a strong inversion τ , and let k 6= −2, 0.

Then we have both hτ (S1/(k+2)(K)) ≤ hτ (S1/k(K)) and hι◦τ (S1/(k+2)(K)) ≤ hι◦τ (S1/k(K)).

We now turn to some examples given by surgeries on links. The family we consider is a

generalization of the initial cork from [1]:
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Theorem 3.2.6. For n > 0, let Mn be the family of two-component link surgeries displayed

on the left in Figure 3.3. Equip Mn with the indicated involution τ . Then (Mn, τ) is a

strong cork. In fact, we may modify each Mn by introducing any number of symmetric pairs

of negative full twists, as on the right in Figure 3.3, and this conclusion still holds.

In the theorems mentioned above, we compare the involution on τ on the proposed strong

cork with the a certain involutions on certain Brieskorn homology spheres. We also show

that it is possible to ‘compare’ involution on a strong cork to an involution on a manifold

that is not a Seifert homology sphere. This example comes from the family of “positron”

corks introduced by Akbulut and Matveyev in [2]. Here, we show that the first member of

this family is a strong cork.

Theorem 3.2.7. Let P be the two-component link surgery displayed in the left in Figure 3.2.

Equip P with the indicated involution τ . Then (P, τ) is a strong cork. In fact, we may modify

P by introducing any number of symmetric pairs of negative full twists, as on the right in

Figure 3.2, and this conclusion still holds.

00

τ
00

τ

−n1 −n1

−n2 −n2

Figure 3.2: Left: the “positron” cork from [2]. Right: adding symmetric pairs of negative
full twists to P .
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Figure 3.3: Left: the manifold Mn. Right: an example of adding symmetric pairs of
negative full twists to M2.

We hope that the argument in the proof of Theorem 3.2.7 can be adopted for computing

the invariants and providing a wide range of strong corks.

3.3 Bordism and equivariant Kirby diagrams

Before moving on to proving the theorems listed in the previous section, we develop a

key topological tool which will be useful to us in constraining the behavior of the invariants.

Specifically, we focus on constructing explicit bordisms using the Kriby diagram. Here by a

bordism we refer to an equivariant cobordism, see Chapter 2.

Let K be a knot in a 3-manifold Y , and let τ be an orientation-preserving involution on Y

that fixes K setwise. In the case that Y = S3, we will often draw τ as 180◦ rotation though

some axis of symmetry. (By work of Waldhausen, any orientation-preserving involution

of S3 is conjugate to one of this form [39].) Usually, we draw this axis as a line in R3,

but sometimes it will be more convenient to draw the axis of rotation as an unknot, as in

Figure 3.1.
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In this subsection, we verify that τ induces an involution on any manifold obtained by

surgery on K and, similarly, on any cobordism formed from handle attachment along K.

This is well-known and implicit in many sources, e.g. [30], but we include the proofs here for

completeness.

Definition 3.3.1. An involution τ of (Y,K) is said to be a strong involution (or strong

inversion) if τ fixes two points on K. If instead the action is free on K, we say that τ is a

periodic involution. Note that a strong involution reverses orientation on K, while a periodic

involution preserves orientation. We will sometimes refer to such a K as an equivariant knot.

Now letK be an equivariant knot in Y . It is easily checked that there exists an equivariant

framing of K, as follows. By averaging an arbitrary Riemannian metric with its pullback

under τ , we may assume that τ acts as an isometry on Y , and hence also on the normal

bundle to K. If we fix an arbitrary framing of K, we can choose coordinates

ν(K) ∼= S1 ×D2 = {(z, w) : |z| = 1, |w| ≤ 1},

such that:

1. If τ is strong, then the action of τ on ν(K) is τ(z, w) = (z̄, Azw̄).

2. If τ is periodic, then the action of τ on ν(K) is τ(z, w) = (−z, Azw).

In both cases, Az denotes a continuous family of matrices parametrized by S1. In the strong

case, we have Az ∈ O(2) and det Az = −1, while in the periodic case, we have Az ∈ SO(2).

If τ is strong, then τ fixes the two discs {1}×D2 and {−1}×D2 setwise, and has two fixed

points on the boundary of each. Take any arc γ on ∂ν(K) running from a fixed point of τ

on {1} × S1 to a fixed point of τ on {−1} × S1. (We may also assume that γ projects as a

diffeomorphism onto a subarc of K.) Then γ ∪ τγ constitutes an equivariant framing of K

(and in fact any framing can be realized). If τ is periodic, then we instead take γ to be a

similar arc joining an arbitrary point p in {1} × S1 to its image τp in {−1} × S1. Clearly,

γ ∪ τγ is again an equivariant framing of K.
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It follows that we can re-parameterize our neighborhood of K so that the equivariant

framing constructed above is given by S1 × {1}. Then:

1. If τ is strong, then the action of τ on ν(K) is τ(z, w) = (z̄, w̄).

2. If τ is periodic, then the action of τ on ν(K) is τ(z, w) = (−z, w).

Lemma 3.3.2. Let K be an equivariant knot in Y with symmetry τ . Fix any framing K ′ of

K, and let Yp/q(K) be (p/q)-surgery on K with respect to this framing. Then τ extends to

an involution on Yp/q(K). This extension is unique up to isotopy.

Proof. It suffices to prove the claim under the additional assumption that K ′ is equivariant.

Indeed, since the claim of the lemma holds for all surgeries, proving the desired statement

for a single framing establishes it for all framings.

On the complement of ν(K), we define our involution to be equal to τ . Parameterize the

boundary of ν(K) by z and w, as above. The surgered manifold Yp/q(K) is obtained from

the complement of K by gluing in the solid torus

S1 ×D2 = {(z′, w′) : |z′| = 1, |w′| ≤ 1}

via the boundary diffeomorphism

f(z′, w′) = (z = (z′)s(w′)q, w = (z′)r(w′)p)

where r and s are integers such that ps − qr = 1. If τ is strong, then we have the obvious

extension by complex conjugation

τ(z′, w′) = (z̄′, w̄′).

If τ is periodic, then we have the extension:

τ(z′, w′) =


(−z′,−w′) if (p, q, r, s) = (1, 0, 1, 1) or (1, 1, 1, 0) mod 2

(−z′, w′) if (p, q, r, s) = (1, 0, 0, 1) or (1, 1, 0, 1) mod 2

(z′,−w′) if (p, q, r, s) = (0, 1, 1, 0) or (0, 1, 1, 1) mod 2.
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Note that the diffeomorphism between the gluings corresponding to (p, q, r, s) and (p, q, r +

p, s + q) sends (z′, w′) to (z′, z′w′). This intertwines τ , so (up to re-parameterization) our

extension of τ does not depend on (r, s).

It is easy to check that any two extensions of τ must be isotopic to each other. For

example, in the case of a strong involution, τ fixes a meridional curve on the torus boundary

setwise. Hence any extension of τ maps the disk D bounded by this curve to some other

disk D′ with ∂D = ∂D′. It is then clear that we can isotope τ (rel boundary) so that it fixes

D. Cutting out D, we then use the fact that every diffeomorphism of S2 extends uniquely

over B3 (up to isotopy).

Given an equivariant knot, we will thus freely view its symmetry as defining a symmetry on

any surgered manifold.

Lemma 3.3.3. Let K be an equivariant knot in Y with symmetry τ . Fix any framing K ′ of

K. Then τ extends over the 2-handle cobordism given by attaching a 2-handle along K with

framing n (relative to K ′). The involution on the boundary is the extension of τ to Yn(K)

afforded by Lemma 3.3.2.

Proof. It suffices to prove the claim under the additional assumption that K ′ is equivariant.

Indeed, since the claim of the lemma holds for all n, proving the desired statement for a

single framing establishes it for all framings.

Parameterize the 2-handle by

D2 ×D2 = {(z′, w′) : |z′| ≤ 1, |w′| ≤ 1}.

The boundary subset S1 ×D2 ⊂ D2 ×D2 is identified with ν(K) via the map sending

(z′, w′) 7→ (z = z′, w = (z′)nw′).

If τ is strong, then the extension is given by

τ(z′, w′) = (z̄′, w̄′).
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If τ is periodic, then the extension is given by

τ(z′, w′) =


(−z′,−w′) if n is odd

(−z′, w′) if n is even,

as desired.

This shows that if K is an equivariant knot, then equivariant handle attachment along K is

well-defined, and that τ moreover extends over the handle attachment cobordism.

We will also consider surgeries on links in which τ exchanges some pairs of link compo-

nents (with the same framing), in addition to possibly fixing some components. Given the

above treatment of the fixed link components, it is clear that such τ extend to involutions on

the surgered manifolds and over the handle attachment cobordisms (whenever the surgery

coefficients are integral).

3.3.1 Actions on spinc-structures

We now specialize to the case where Y is a homology sphere. Let K be an equivariant

knot in Y with symmetry τ . Let W be the cobordism formed by (−1)-handle attachment

along K, relative to the Seifert framing. This is a negative-definite cobordism whose second

cohomology H2(W ) is generated by a single element x. Note that the spinc-structures on

W with c1(s) = ±x have ∆(W, s) = 01. We claim that if the involution τ is periodic, then

W is spinc-fixing, while if τ is strong, then W is spinc-conjugating. To see this, it suffices

to understand the action of τ on H2(W ). Under the isomorphism H2(W ) ∼= H2(W,∂W ),

the generator x corresponds to the cocore of the attaching 2-handle. In the notation of

Lemma 3.3.3, this is given by

{0} ×D2 = {(z′, w′) : z′ = 0, |w′| ≤ 1}.

1 Suppose that W is definite. By a well-known result of Elkies [11], ∆(W, s) = 0 if and
only if the intersection form of W is diagonalizable (over Z) and c1(s) has all coefficients
equal to ±1 in the diagonal basis.
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An examination of the extension of τ over W shows that τ reverses orientation on the cocore

if τ is strong and preserves orientation if it is periodic. Hence if τ is strong, it acts via

multiplication by −1 on H2(W ), and otherwise fixes H2(W ). We thus define:

Definition 3.3.4. Let Y1 be a homology sphere with involution τ . Let K be an equivariant

knot in Y1. Suppose that Y2 is obtained from Y1 by doing (−1)-surgery on K, relative to

the Seifert framing. Then the corresponding handle attachment cobordism constitutes an

equivariant cobordism from Y1 to Y2, where the latter is equipped with the usual extension

of τ . This is spinc-fixing if τ is periodic and spinc-conjugating if τ is strong. We refer to

these as spinc-fixing (−1)-cobordisms and spinc-conjugating (−1)-cobordisms, respectively.

Similarly, we may consider attaching a pair of handles to Y1 along a two-component

link with algebraic linking number zero whose components are interchanged by τ . In this

situation, H2(W ) is generated by two elements x and y, where τx = y and τy = x (with

appropriately chosen orientations). Choosing the spinc-structure s with c1(s) = x + y then

yields a spinc-fixing cobordism, while choosing the spinc-structure with c1(s) = x− y yields

a spinc-conjugating cobordism.

Definition 3.3.5. Let Y1 be a homology sphere with involution τ . Let L be a two-component

link in Y1 with algebraic linking number zero whose components are interchanged by τ . Let

Y2 be obtained from Y1 by doing an additional (−1)-surgery on each component of L, relative

to the Seifert framing. Then the corresponding handle attachment cobordism constitutes an

equivariant cobordism from Y1 to Y2, where the latter is equipped with the usual extension of

τ . This is both spinc-fixing and spinc-conjugating (with respect to different spinc-structures).

We refer to such a cobordism as an interchanging (−1,−1)-cobordism.

Of course, we have the analogous notion of (+1)- and (+1,+1)-cobordisms. We obtain

a similar set of inequalities (going in the opposite direction) by turning these cobordisms

around.
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3.3.2 Equivariant blow up/downs

We will occasionally need to compare symmetries in two different surgery descriptions of the

same 3-manifold. Although we will not belabor the point, the reader should check that the

blow-up and blow-down operations displayed in Figure 3.4 can be performed equivariantly.

Note that if u is an equivariant (1/k)-framed unknot which is split off from the rest of a

surgery diagram, then u can be deleted. Indeed, let u be contained in a ball B3. Then

(1/k)-surgery on u is again a ball, equipped with a slightly different extension of the 180-

degree-rotation on S2 = ∂B3. However, every diffeomorphism of ∂B3 extends uniquely over

B3 up to isotopy rel boundary.

τ ττ

=

simultaneously
slide

+1 +1
+1

±1

∓1

±1

∓
1

±1

equivariant
isotopy

or

τ τ τ τ τ

τ

τ

Figure 3.4: Top: various equivariant blow-up/blow-down operations. Bottom: an
equivariant (simultaneous) slide followed by an equivariant isotopy.

3.4 Computational aid: A monotonicity theorem

We now prove a result that will constrain the behavior of the invarinats hτ and hι◦τ

defined in Chapter 2 under negative definite equivariant cobordisms. Before going into the

Theorem we discuss a certain property of the group I, defined in Section 2.3.1.
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Definition 3.4.1. Let (C1, ι1) and (C2, ι2) be two ι-complexes. If there is a local map

f : C1 → C2, then we write (C1, ι1) ≤ (C2, ι2). If, in addition, there does not exist any local

map from (C2, ι2) to (C1, ι1), we write the strict inequality (C1, ι1) < (C2, ι2).

Since the composition of two local maps is local, it is clear that the above definition respects

local equivalence. Because the tensor product of two local maps is also local, this partial

order respects the group structure on I.

Remark 3.4.2. Note that it is not always true that a given ι-complex can be compared

to the trivial complex. That is, Definition 3.4.1 does not define a total order on I. See [9,

Example 2.7] for further discussion.

Theorem 3.4.3. Let (Y1, τ1) and (Y2, τ2) be homology spheres equipped with involutions τ1

and τ2.

1. Suppose there is a spinc-fixing (−1)-cobordism from (Y1, τ1) to (Y2, τ2). Then we have

hτ1(Y1) ≤ hτ2(Y2).

2. Suppose there is a spinc-conjugating (−1)-cobordism from (Y1, τ1) to (Y2, τ2). Then we

have hι◦τ1(Y1) ≤ hι◦τ2(Y2).

3. Suppose there is an interchanging (−1,−1)-cobordism from (Y1, τ1) to (Y2, τ2). Then

we have hτ1(Y1) ≤ hτ2(Y2) and hι◦τ1(Y1) ≤ hι◦τ2(Y2).

We will prove a more generalized statement below, from which the Theorem 3.4.3 will

follow. Let Y1 and Y2 are two homology spheres as before and Let W be a cobordism from

Y1 to Y2 and let s be a spinc-structure on W . Recall that the associated Heegaard Floer

grading shift is given by

∆(W, s) =
c1(s)2 − 2χ(W )− 3σ(W )

4
.

In what follows, we will be concerned with negative-definite cobordisms admitting s for which

∆(W, s) = 0.
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Lemma 3.4.4. Let Y1 and Y2 be two homology spheres equipped with involutions τ1 and

τ2, respectively. Let (W, f) be a negative-definite cobordism from (Y1, τ1) to (Y2, τ2) with

b1(W ) = 0, and let s be a spinc-structure on W with ∆(W, s) = 0. Then:

1. If f∗s = s, then hτ1(Y1) ≤ hτ2(Y2).

2. If f∗s = s̄, then hι◦τ1(Y1) ≤ hι◦τ2(Y2).

Proof. The proposition is a straightforward consequence of the functorial properties of Hee-

gaard Floer homology under cobordisms. By the proof of [32, Theorem 9.1], the cobordism

map

FW,s : CF−(Y1)→ CF−(Y2)

sends U -nontorsion elements to U -nontorsion elements in homology. By [19, Proposition

4.9], we have

FW,s̄ ◦ ι1 ' ι2 ◦ FW,s.

The analogous commutation relation for τ is given by

FW,f∗s ◦ τ1 ' τ2 ◦ FW,s.

Note that implicitly, FW,s depends on a choice of path γ from Y1 to Y2. The two cobordism

maps above should thus be taken with respect to different paths, with the map on the left

being taken with respect to f(γ). However since b1(W ) = 0, it follows from Lemma 2.4.1

that FW,s is independent of the choice of path (up to U -equivariant homotopy).

If f∗s = s, then the commutation relation for τ immediately exhibits FW,s as the desired

local map for the first claim. If f∗s = s̄, we instead observe that

FW,s ◦ (ι1 ◦ τ1) ' ι2 ◦ FW,s̄ ◦ τ1 ' (ι2 ◦ τ2) ◦ FW,f∗s̄.

Noting that f∗ commutes with conjugation, we thus see that FW,s effects the desired local

map for the second claim.

We now turn to the proof of Theorem 3.2.5.
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Proof of Theorem 3.2.5. Let K be a knot in S3 with a strong involution τ . Then (1/k)-

surgery on K is equivariantly diffeomorphic to the two-component link surgery consisting

of 0-surgery on K, together with (−k)-surgery on a meridian µ of K. Choosing µ to be

an equivariant unknot near one of the fixed points on K makes this diffeomorphism τ -

equivariant. Let u and τu be an additional pair of (−1)-framed unknots which each link

µ, as in Figure 3.5. Blowing down, the resulting manifold is equivariantly diffeomorphic to

surgery on K with coefficient 1/(k − 2). We claim that handle attachment along u and τu

constitutes an interchanging (−1,−1)-cobordism from S1/k(K) to S1/(k−2)(K). To see this,

we equivariantly slide u and τu over K, which algebraically unlinks them from the rest of

the diagram (see Figure 3.5). The claim then follows from Theorem 3.4.3.

0

−k

−1 −1

K

u τu

µ

τ

(K,µ) = 1

(u, µ) = 1

(τu, µ) = −1

u′ = u−K

τu′ = τu+K

(K,u′) = (K, τu′) = 0

(u′, µ) = (τu′, µ) = 0

(u′, u′) = (τu′, τu′) = −1

(u′, τu′) = 0

Figure 3.5: Left: the equivariant cobordism used in the proof of Theorem 3.2.5. Right:
handleslides establishing that this is an interchanging (−1,−1)-cobordism. Since τ reverses
orientation on K, the indicated handleslides are τ -equivariant.

3.5 Constraining the hτ and hι◦τ invariants

In this section we prove the Theorems stated in the Section 3.2. Our strategy for showing

a pair (Y, τ) is a strong cork will be, by showing that either hτ or hι◦τ is non-zero for (Y, τ).

In order to bound the invariants from below or above, we first construct an equivariant

cobordism from (Y, τ) to a ‘simpler’ integer homology sphere with an involution, then use

the monotonicity theorem from the previous section to obtain inequalities on hτ or hι◦τ .

Finally, we show that inequalities are sharp using the spinc-conjugation action.

Before diving into the proof, we note the following.
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Remark 3.5.1. To rule out the existence of a local map (see Section 2.3.1) between two

ι-complexes (C1, ι1) to (C2, ι2), it suffices to prove that there is no F2[U ]-module map F

from H∗(C1) to H∗(C2) such that:

1. F maps U -nontorsion elements to U -nontorsion elements; and,

2. F intertwines the actions of (ι1)∗ and (ι2)∗.

In light of the above remark, we now give a brief introduction to a certain presentation

of the Heegaard Floer homology groups, HF−. This will be useful to later, while trying to

compute the action of τ in homology, for certain Brieskorn homology spheres.

3.5.1 Graded roots

Let G be a weighted graph, and let Y (G) be the boundary of the corresponding plumbing

of S2. In [31] Nemethi computed the Heegaard Floer homology of Y (G), where G has at

most one bad vertex (Instead of going into the definition of bad vertices we refer readers to

[10]), as this particular concept will not be so useful to us for the rest of the discussing). The

computation is done by demonstrating an isomorphism between HF− and a combinatorial

object in the shape of an infinite tree. Instead of going deep into the theory, we demonstrate

by example such a graded root.

For i > 0, consider the chain complex spanned by the generators v, ιv, and α, with

∂α = U i(v + ιv).

Here, v and ιv lie in Maslov grading zero, while α has grading −2i + 1. The action of

ι interchanges v and ιv and fixes α. We denote this ι-complex (or sometimes its local

equivalence class) by Xi. The homology of Xi is displayed in Figure 3.6; note that the

induced action of ι is given by the obvious involution reflection through the vertical axis.

It can be verified that the only self-local equivalences of Xi are isomorphisms. In par-

ticular, this shows that the local equivalence classes of the Xi are nonzero and mutually
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ι

0

−2i

Figure 3.6: Homology of Xi, expressed as a graded root with involution. Vertices of the
graph correspond to F-basis elements supported in grading given by the height (shown on
the left). Edges between vertices indicate the action of U , and we suppress all vertices
forced by this relation. Thus, for instance, the two upper legs of the graded root contain i
vertices (excluding the symmetric vertex lying in grading −2i). See for example [10,
Definition 2.11].

distinct. We can refine their distinction by considering the partial order on I. It is easily

checked that

· · · < X3 < X2 < X1 < 0,

where 0 denotes the trivial ι-complex. Indeed, there is evidently a local map showing that

X1 ≤ 0, by mapping both v and ιv to x and α to zero. However, the only ι-equivariant map

in the other direction sends x to v + ιv, which is U -torsion in homology (See Figure 3.7.)

Thus, the inequality is strict. The proof that Xi+1 < Xi is similar.

xv ιv

α

Figure 3.7: Left: the complex X1. Right: the trivial complex 0.

The classes Xi actually play quite an important role in the study of Θ3
Z and I. In [10,

Theorem 1.7], it is shown that the Xi are linearly independent in I, and in fact they span a

Z∞-summand of I by [9, Theorem 1.1]. In this section, we will use the fact that (−1)-surgery
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on the right-handed (2, 2n+ 1)-torus knots realize the Xi:

h(S−1(T2,2n+1)) = Xb(n+1)/2c

See the proof of [18, Theorem 1.4]. Note that S−1(T2,2n+1) can be identified with the

Brieskorn sphere Σ(2, 2n+ 1, 4n+ 3).

3.5.2 Computations

We are now in place to constrain the hτ and hι◦τ invariants. Let us firstly consider an

example to demonstrate our strategy.

Lemma 3.5.2. Let Y1 = Σ(2, 3, 7) be given by (+1)-surgery on the figure-eight knot, and let

τ and σ be as in Figure 3.8. Then

1. hτ (Y1) = h(Y1) < 0 and hι◦τ (Y1) = 0

2. hσ(Y1) = 0 and hι◦σ(Y1) = h(Y1) < 0.

Proof. Doing (+1)-surgery on the unknot indicated on the left in Figure 3.8 (and blowing

down) gives a spinc-conjugating (+1)-cobordism from (Y1, τ) to S3. Hence hι◦τ (Y1) ≥ 0.

Similarly, doing (+1)-surgery on the unknot indicated on the right gives a spinc-fixing (+1)-

cobordism from (Y1, σ) to S3. Hence hσ(Y1) ≥ 0. Now, id and ι are the only two possible

homotopy involutions on the standard complex of CF−(Y1), and the involutive complex

corresponding to ι is strictly less than zero (see Figure 3.6, where X1 is HF−(Y1) ). Hence

ι ◦ τ = id, which shows τ = ι. Similarly, we have that 0 ≤ hσ(Y1), which implies σ = id and

ι ◦ σ = ι.

We now turn to our first example of a cork. Let Y2 be given by (+1)-surgery on the

stevedore knot 61, displayed on the left in Figure 3.9. Note that Y2 bounds a contractible

manifold, see for example [16, §6, Corollary 3.1.1].

53



Figure 3.8: Two involutions on the figure-eight knot, with equivariant cobordisms of
Lemma 3.5.2.

+1

σ

τ

+1

σ

τ
−1

Figure 3.9: Cobordism from S+1(61) to Σ(2, 3, 7).

Lemma 3.5.3. Let Y2 = S+1(61) be given by (+1)-surgery on the stevedore knot 61, and

let τ and σ be as shown on the left in Figure 3.9. Then hτ (Y2) < 0 and hι◦σ(Y2) < 0. In

particular, neither τ nor σ extends over any homology ball that Y bounds.

Proof. The claim is immediate from Figure 3.9. Doing (−1)-surgery on the indicated unknot

gives a spinc-fixing cobordism from (Y2, τ) to (Y1, τ) and a spinc-reversing cobordism from

(Y2, σ) to (Y1, σ). It is easily checked that the involutions τ and σ on the right in Figure 3.9

are the same as those defined in Lemma 3.5.2.

Lemma 3.5.3 already shows that Y2 = S+1(61) is a (strong) cork (with either of the

involutions τ and σ). To the best of the authors’ knowledge, even the fact that Y2 bounds

a cork was not previously known. Again, we stress here that the entire argument is almost

completely formal: the only actual computation we have used so far is the (involutive) Floer
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homology of Y1 = Σ(2, 3, 7). In particular, we have not needed to determine the Floer

homology of Y2 (involutive or otherwise).

We now turn to the proof of Theorem 3.2.4. We start with the following Lemma.

Lemma 3.5.4. Let Kn be the family of twist knots displayed in Figure 3.11, equipped with

the indicated involutions τ and σ. Let An = S+1(Kn) = Σ(2, 3, 6n+ 1). For n positive and

odd, we have

1. hτ (An) = hι◦σ(An) = h(An) < 0

2. hι◦τ (An) = hσ(An) = 0.

· · · · · ·
n even

· · · · · ·
n odd

Figure 3.10: Local equivalence class h(An).

Proof. The Heegaard Floer homology HF−(An) is displayed in Figure 3.10. This can be

computed either by using the usual Heegaard Floer surgery formula, or by using the graded

roots algorithm of [5]. The action of ι on HF−(An) is given by reflection across the obvious

vertical axis. Using the monotone root algorithm of [10, Section 6], h(An) is locally trivial

for n even and locally equivalent to h(Σ(2, 3, 7)) for n odd. In the latter case, this means

that h(An) < 0. In Figure 3.11, we have displayed a cobordism from An to S3 consisting of

n unknots with framing +1. Note that this is spinc-conjugating for τ (since n is odd) and

spinc-fixing for σ. Hence hι◦τ (An) ≥ 0. This implies τ ' ι, since either τ ' ι or τ ' id.

Similarly, we have hσ(An) ≥ 0, which implies σ ' id.
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n

τ

σ

=

n

τ

σ

n

τ

σ

+1 +1

+1

+1

S3

Kn Kn

Figure 3.11: Top: two equivalent diagrams for An = S+1(Kn). Bottom: cobordism from
An to S3.

We are now in place to establish Theorems 3.2.4. Recall that Vn,k is defined to be

(1/k)-surgery on the doubly twist knot:

Vn,k =


S1/k(K−n,n+1) if n is odd

S1/k(K−n,n+1) if n is even.

Each Vn,k is equipped with the involutions τ and σ displayed in Figure 3.1 (or rather, the

mirrored involutions in the case that n is odd).

Proof of Theorem 3.2.4. We claim that for k = 1, we have

1. If n is odd, hι◦τ (Vn,1) ≤ hι◦σ(An) and hσ(Vn,1) ≤ hτ (An).

2. If n is even, hτ (Vn,1) ≤ hτ (An+1) and hι◦σ(Vn,1) ≤ hι◦σ(An+1).
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The relevant equivariant surgeries are displayed in Figure 3.12. (Compare Figure 3.11.)

Note that we always attach an odd number of (−1)-framed 2-handles. In the case that n is

odd, note that τ acts as a strong involution on a single unknot and interchanges the others

in pairs, while σ acts as a periodic involution on each unknot. (The roles of τ and σ are

reversed in the case where n is even.) By Lemma 3.5.4, we thus see that all of the above

local equivalence classes are strictly less than zero. Applying Theorem 3.2.5 completes the

proof.

−n

τ

σ

n
+
1

n

τ

σ

+1

n
+
1

τ

σ

+1

−
(n

+
1)

n

σ

τ

+1

+1

−1

−1

n even

n odd

K−n,n+1

K−n,n+1 Kn

Kn+1

Figure 3.12: Top (n odd): cobordism from Vn,1 to An; there are n green curves. Note that

τ on K−n,n+1 is sent to σ on Kn. Bottom (n even): cobordism from Vn,1 to An+1; there
are n− 1 green curves.

We now turn towards strong corks obtained as a surgery on symmetric links. The strategy

for constraining the invariants however remain the same.
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Proof of Theorem 3.2.6. We begin by describing a handle attachment cobordism on Mn.

Let the components of Mn be α and β, oriented such that (α, β) = 1. Consider a pair of

(−1)-framed unknots x and y that link parallel strands of α and β, as displayed on the

left in Figure 3.13. We claim that the handle attachment cobordism corresponding to x

and y is an interchanging (−1,−1)-cobordism from Mn to some manifold Yn. Indeed, a

quick computation shows that sliding x over β and y over α gives the desired claim (see

Figure 3.13). On the right in Figure 3.13, we have displayed an alternative diagram for Yn in

which x and y are replaced by two zero-framed unknots p and q, which are themselves linked

by a (+1)-framed unknot r. As a surgery diagram for Yn, this is equivariantly diffeomorphic

to the previous.

−1 −1

0 0

x y

α β

τ

(α, β) = 1

(α, x) = 1

(β, y) = 1

(x, y) = 1

x′ = x− β

y′ = y − α

(α, x′) = (β, x′) = 0

(α, y′) = (β, y′) = 0

(x′, y′) = 0

(x′, x′) = (y′, y′) = −1

00
τ

0 0

+1

p q

r

=

Figure 3.13: Fundamental cobordism in the proof of Theorem 3.2.6.

We attach the configuration of Figure 3.13 to the bottom of the link defining Mn. Clearly,

Yn can be given the alternative equivariant surgery diagram shown in Figure 3.15. We modify

this diagram by equivariantly sliding all of the (−1)-framed horizontal unknots over p and

q and deleting them. This yields the second diagram in Figure 3.15. Through equivariant

isotopy, we transfer the two half-twists of the vertical (−1)-curves onto r, and then slide the

horizontal (+1)-framed unknots over p and q. We then blow down everything except for r.

This yields the final diagram in Figure 3.15.
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−n

τ −1

−1

−1τ

Figure 3.14: Completing the cobordism from Mn to Σ(2, 3, 7).

In Figure 3.14, we display a spinc-fixing equivariant cobordism from Yn to Σ(2, 3, 7). This

consists of attaching (−1)-framed unknots and blowing down until only one full negative

twist remains. The resulting knot is just the right-handed trefoil, equipped with a strong

involution. An argument similar to the one given in Lemma 3.5.2 shows that hτ (Mn) < 0, as

desired. Moreover, it is clear that if M ′ is constructed from Mn by introducing any number

of symmetric pairs of negative full twists (as in Figure 3.3), then M ′ admits a sequence of

interchanging (−1,−1)-cobordisms to Mn. This completes the proof.

Note that in all the Theorems above the manifold that we used to constrain the invariants

were all Brieskorn homology spheres. For the strong cork in Theorem 3.2.7 however, we use

a manifold that is not a Brieskorn homology sphere. Note that the difficulty in this is that

unlike Σ(2, 3, 7), we cannot determine the action of ι on it, as needed in the proof of previous

Theorems. Hence we adapt to a rather ad-hoc argument, although we are hopeful that this

type of argument will lead to more complicated examples of strong corks.

Proof of Theorem 3.2.7. We begin by constructing an interchanging (−1,−1)-cobordism

from P to another manifold-with-involution. To this end, consider the fundamental cobor-

dism displayed on the left in Figure 3.16. This is formed by attaching two (−1)-handles

to parallel strands of P . Figure 3.16 is analogous to Figure 3.13, but differs slightly due

to the fact that the two components of P (with the orientations displayed in Figure 3.16)

have linking number −1, rather than +1. Performing a change-of-basis shows that this is
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−1−1

0 0

+1

+1

−1

−1−1

0 0

+1

+1
−1−1

0 0

+1

0 0

−1
−1

+1

+1

−n

−1

=

+1

=

α β

p q

r

Figure 3.15: Proof of Theorem 3.2.6. In the upper left, there are n horizontal (+1)-curves
and n+ 1 horizontal (−1)-curves.

an interchanging (−1,−1)-cobordism. On the right in Figure 3.16, we have displayed an

alternative surgery diagram for the resulting manifold. The reader should check that this is

equivariantly diffeomorphic to the previous.

Using the Kirby calculus manipulations shown in Figure 3.17, one can prove that our new

manifold is equivariantly diffeomorphic to S−1(62), equipped with the indicated involution

τ . Hence by Theorem 3.4.3, we have

hτ (P ) ≤ hτ (S−1(62)) and hι◦τ (P ) ≤ hι◦τ (S−1(62)).

It thus suffices to show that either of the invariants of S−1(62) are strictly less than zero.

For simplicity, we work on the level of homology by ruling out the existence of an equivariant

F2[U ]-module map from the trivial module F2[U ] (equipped with the identity involution) to

HF−(S−1(62)) (equipped with either involution τ∗ or ι∗ ◦ τ∗), as in Remark 3.5.1.

To this end, we first compute the Heegaard Floer homology of S−1(62). Since 62 is
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−1 −1

0 0

x y

α β

τ

(α, β) = −1

(α, x) = 1

(β, y) = 1

(x, y) = −1

x′ = x+ β

y′ = y + α

(α, x′) = (β, x′) = 0

(α, y′) = (β, y′) = 0

(x′, y′) = 0

(x′, x′) = (y′, y′) = −1

00
τ

0 0

+1

p q

r

=

Figure 3.16: Fundamental cobordism in the proof of Theorem 3.2.7. Here, α and β are
parallel strands in the two components of P . Note the difference in crossings from
Figure 3.13.

alternating, its knot Floer complex is determined by its Alexander polynomial. It is then

straightforward to calculate HF−(S−1(62)) via the usual surgery formula [36], although for

technical reasons we display the computation for HF +(S+1(62)) instead. (See Figure 3.18.)

For convenience, denote K = 62. Note that since K has genus two, the desired Floer

homology is not given by the large surgery formula, but rather the homology of the mapping

cone X+(1) displayed in Figure 3.19. In this case, the desired homology is quasi-isomorphic to

the kernel of the (truncated) mapping cone map with domain H∗(A+
−1)⊕H∗(A+

0 )⊕H∗(A+
+1).

The resulting calculation is displayed on the right in Figure 3.18.

We now attempt to obtain partial information regarding the action of ι∗ on HF +(S+1(K)).

As before, we can compute the action of ιK on the knot Floer complex of K; this is given by

reflection across the obvious diagonal. However, we cannot use the involutive large surgery

formula and (at the time of writing) there is not a general involutive surgery formula. We

thus resort to the following trick. Observe that there is a map

q : X+(1) −→ A+
0

formed by quotienting out X+(1) by everything other than A+
0 . In the basis of Figure 3.18,

the induced map q∗ : H∗(X+(1)) → H∗(A+
0 ) sends the two obvious unmarked generators
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Figure 3.17: Equivariant cobordism used in the proof of Theorem 3.2.7. The first diagram
is obtained by attaching the configuration of Figure 3.16 to an alternative surgery diagram
for P . In (a) we slide the nearest (+1)-curve over p and q, blow down, and transfer two of
the half-twists in α and β to r. In (b) we similarly slide the (−1)-curve over p and q and
blow down. In (c) we transfer the remaining half-twists in α and β to r, slide the
horizontal (+1)-curve over p and q, and then blow down the (+1)-curves on either side.
Finally, in (d) we blow down the remaining (+1)-curve. This yields (−1)-surgery on a knot
which the reader can check is 62.

to zero and acts as an isomorphism on the rest of the homology. According to the proof of

integer surgery formula in [36], under the identification of H∗(X+(1)) with HF +(S+1(K)),

the quotient map q coincides (on homology) with the triangle-counting map

Γ+
0 : CF +(S+1(K)) −→ A+

0

defined in [36]. Furthermore, following the proof of [19, Theorem 1.5], one can show that

(Γ+
0 )∗ intertwines the actions of ι∗ on HF +(S+1(K)) and (ιK)∗ on H∗(A+

0 ); that is,

(ιK)∗ ◦ (Γ+
0 )∗ = (Γ+

0 )∗ ◦ ι∗.
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∆(t) = −t2 + 3t− 3 + 3t−1 − t−2

a c b

c1 c2

H∗(A+
−1) H∗(A+

0 ) H∗(A+
+1)

HF+(S+1(K))

Ua + c1 c2 + Ub

a + c + b

HF−(S−1(62))

0

−1

−2

Figure 3.18: Left: the knot Floer complex of K, with the dotted line marking the
boundary of the quotient complex A+

0 . Right: various homologies H∗(A+
i ), together with

the calculation of HF +(S+1(K)).

Figure 3.19: The mapping cone X+(1). Green arrows are homotopy equivalences. The
truncated mapping cone (which carries the homology) consists of the red arrows.

More precisely, Hendricks and Manolescu consider the map Γ+
0,p : CF +(Sp(K))→ A+

0 when

p is large, and show that this intertwines ι and ιK . However, their proof of this fact does

not depend on the surgery coefficient p. Of course, Γ+
0,p no longer induces an isomorphism

for small surgeries. See [19, Equation 26] and [19, Section 6.6] .

Using Hendricks and Manolescu’s computation of ιK for thin knots [19], we can calculate

that the action of (ιK)∗ on H∗(A+
0 ) interchanges the two elements of lowest grading. Hence

ι∗ on HF +(S+1(K)) must also interchange the two elements of lowest grading. Reflecting

HF +(S+1(K)) over a horizontal line gives HF−(S−1(62)), with the action of ι∗ exchanging

the two elements of (shifted) grading zero, as displayed in Figure 3.18. Hence one of τ∗ or
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(ι ◦ τ)∗ on HF−(S−1(62)) must also exchange the pair of elements in grading zero. Clearly,

there is no map (satisfying the properties of Remark 3.5.1) from the trivial F2[U ]-module,

equipped with the identity involution, to HF−(S−1(62)), equipped with an involution acting

nontrivially on the two elements of highest grading.

This completes the proof that (P, τ) is a strong cork. Moreover, it is clear that if P ′ is

constructed from P by introducing any number of symmetric pairs of negative full twists (as

in Figure 3.2), then P ′ admits a sequence of interchanging (−1,−1)-cobordisms to P .
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CHAPTER 4

SYMMETRIC KNOTS AND HEEGAARD FLOER HOMOLOGY

4.1 Introduction

Let K be a knot in S3. Let τ be an orientation preserving diffeomorphism of order 2 of

S3 which fixes the knot setwise. We refer to such knots as symmetric knots of order 2 (or in

short symmetric knots), where the restriction of τ to K acts as a symmetry of K. The fixed

set of τ can be either the empty set or S1. When the fixed set of τ is S1, then the fixed

set can either intersect K in two points or be disjoint from K. In the former case we refer

to (K, τ) as strongly invertible knot and for the later case, we call (K, τ) a periodic knot. It

is also well-known that surgery on such symmetric knots induce an involution on surgered

3-manifold (see Section 3.3). Montesinos [30] showed that surgery on a strongly invertible

knot is always a double branched cover of a knot inside S3. Moreover, he showed that a

3-manifold is a double branch covering of S3 if and only if it can be obtained as surgery on

a strongly invertible link. In fact, one can identify the covering involution with the induced

involution on the surgered manifold. More generally, [37] showed that any 3-manifold with

a finite order diffeomorphism can be obtained by doing surgery on a periodic link, where

the diffeomorphism on the 3-manifold is conjugate to the induced diffeomorphism on the

surgered manifold from the periodic link. This result can be interpreted as an equivariant

version of the Lickorish–Wallace theorem.

In the context of previously defined invariants and the study of group Θτ
Z where we

looked at the induced action of an involution of the Heegaard Floer chain complex of the

3-manifold (see Chapters 2 and 3), one might be interested in studying the induced action

of a symmetry on the knot Floer chain complex of K, where K is a symmetric knot. In this

chapter we initiate such a study by defining the induced action, and then computing it for

several classes of symmetric knots.
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4.2 Defining the induced actions on the knot Floer complex

In this section we define the action of a symmetry on the knot Floer chain complex. We

will restrict ourselves to knots in integer homology spheres. Let (Y,K, τ, w, z) be a tuple

where (Y,K,w, z) represents a knot K with two basepoints z and w embedded in Y , and

τ is an orientation preserving involution on (Y,K) which fixes K set-wise. We now consider

two separate families of such tuples, defined according to how the invariants act on the knot.

Definition 4.2.1. Given (Y,K, τ, w, z) as above, we say that K is 2-periodic if τ has no

fixed points on K and it preserves the orientation on K 1. On the other hand, we will say

that K is a strongly invertible if τ has two fixed points when restricted to K; note that such

an involution switches the orientation of K.

Both periodic and strong involutions induce actions on the knot Floer complex. Let us

consider the periodic case first. As before we start with a Heegaard data HK . There is a

tautological chain isomorphism

tK : CFK∞(HK)→ CFK∞(τHK)

Now note that τHK represents the same knot inside Y although the basepoints (z, w) have

moved to (τz, τw). So we apply a diffeomorphim ρ1, obtained by isotopy ρt taking τz and

τw back to z and w along an arc of the knot, following the orientation of the knot. We

also require the isotopy to be the identity outside a small neighborhood of the knot. ρ1τHK

now represents the based knot (Y,K, z, w). So by work of Hendricks-Manolescu [19] and

[21] there is a sequence of Heegaard moves relating the ρ1τHK and HK inducing a chain

homotopy equivalence

Φ(ρ1τHK ,HK) : CFK∞(ρτHK)→ CFK∞(HK)

1Since we are dealing only with involutions in this paper we will abbreviate 2-periodic
knots as just periodic.
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We now define the τ action to be

τK := Φ(ρ1τHK ,HK) ◦ tK : CFK∞(HK)→ CFK∞(HK)

The chain homotopy type of τK is independent of the choice of Heegaard data. This is

again a consequence of the naturality results shown in [21]. In particular the map descends

to a map

τK : CFK∞(K,w, z)→ CFK∞(K,w, z)

where CFK∞(K,w, z) is the transitive homotopy type of CFK∞(HK), see for example

[45].

Sarkar [38] defined a specific action on the knot Floer complex called the Sarkar map

ς obtained by moving the two base points once around the orientation of the knot, which

amounts to applying a full Dehn twist along the orientation of the knot. The map ς is a

filtered, grading-preserving chain map, which is well-defined up to filtered chain homotopy

equivalence. This map was explicitly computed in [43]; in particular we have ς2 ' id.

Analogous to the case in 3-manifolds, one can inquire whether τK is a homotopy involution.

It turns out that it is not a homotopy involution, in general, but τ4
K ' id. As a consequence

of the following:

Proposition 4.2.2. Let Y be a ZHS3 and (Y,K, τ, w, z) be a doubly-based periodic knot in

it, then τK is a grading preserving, filtered map that is well-defined up to chain homotopy

and τ2
K ' ς.

Proof. The proof is similar to that of Hendricks-Manolescu [19, Lemma 2.5.] with only

cosmetic changes, so we will omit the proof. The main idea is that since the definition τK

involves the basepoint moving map taking (z, w) to (τz, τw), τ2
K results in moving the pair

(z, w) once around the knot K along its orientation, back to (z, w). τK is grading preserving

and filtered since all the maps involved in its definition are.

We now define a similar action for strong involutions. Note that in this case τ reverses

orientation of the knot K. Since the knot Floer chain complex is an invariant (up to canonical
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chain homotopy equivalence) of oriented knots, we do not a priori have an automorphism of

K. However it is still possible to engineer an involution on the knot Floer complex induced

by τ .

As before we start by taking a Heegaard data HK = (Σ,α,β, w, z) for (Y,K,w, z).

Recall that the order of the basepoints determine an orientation for the knot, i.e they inter-

sect Σ positively at z and negatively w. Note that H−K = (Σ,α,β, z, w) then represents

(Y,−K, z, w) 2, where there is an obvious correspondence between the intersection points

of these two diagrams. In order to avoid confusion, for an intersection point x ∈ Tα ∩ Tβ

for HK , we will write the corresponding intersection point for H−K as x′. Now there is a

tautological grading preserving skew-filtered chain isomorphism,

sw : CFK∞(HK)→ CFK∞(H−K)

obtained by switching the order of the base-points z and w.

More specifically, recall that CFK∞(HK) is Z⊕Z-filtered chain complex, generated by

triples [x, i, j]. So we define sw[x, i, j] = [x′, j, i]. This map is skew-filtered in the sense

that if we take the filtration on the range to be F̄z,w([x′, i, j]) = (j, i) then sw is filtration

preserving. Notice that in the definition of sw, we are crucially using that Y is an ZHS3

or atleast that [K] = 0, since in general sw takes a torsion spinc-structure s and sends it to

s + PD(K), see for example [45, Lemma 3.3.].

Let us now define the action of τ on the knot Floer complex. To simplify the process, we

assume that τ switches the basepoints, i.e.

(τw, τz) = (z, w), as an ordered pair.

We will denote map on the knot Floer complex, as obtained by pushing-forward H−K by τ ,

as t−K and the Heegaard data as τH−K .

2Here −K represents, the knot K with its other orientation.
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We start by applying the τ to K to get

τK : CFK∞(HK)→ CFK∞(τHK)

So now τHK represents the based knot (Y,−K, τw, τz). Then by Theorem 1.1.2 there is a

chain homotopy equivalence Φ induced by the sequence of Heegaard moves connecting H−K

and τHK . Finally we apply the sw map to get back to original knot Floer complex. The

action τK , of τ on the knot Floer complex is then defined to be the composition of the maps

above, i.e we τK is the following composition

CFK∞(HK)
tK−−→ CFK∞(τHK)

Φ−→ CFK∞(H−K)
sw−−→ CFK∞(HK)

Proposition 4.2.3. Let Y be a ZHS3 and (K, τ, w, z) be a doubly-based strongly invertible

knot in it. The induced map τK an well-defined map up to chain homotopy. Furthermore,

it is a grading preserving skew-filtered involution on CFK∞(Y,K), i.e τ2
K ' id.

Proof. Firstly, we note that tK and sw satisfy the following relation, tautologically i.e we

have

sw ◦ tK ' t−K ◦ sw

The following chain of grading preserving homotopies yields the result

τ2
K = sw ◦ Φ(τHK ,H−K) ◦ tK ◦ sw ◦ Φ(τHK ,H−K) ◦ tK

' sw ◦ Φ(τHK ,H−K) ◦ tK ◦ sw ◦ tK ◦ Φ(HK , τH−K)

' sw ◦ Φ(τHK ,H−K) ◦ sw ◦ Φ(HK , τH−K)

' sw ◦ Φ(τHK ,H−K) ◦ Φ(H−K , τHK) ◦ sw

' id

Remark 4.2.4. Readers familiar with the involutive knot action ιK will recognize that

Proposition 4.2.3 implies that τK is different from the ιK in the sense that although both
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are graded, skew-filtered maps, τK does not square to the Sarkar map. In particular, it is

less rigid.

4.3 Computations

We now move on to computing the induced action for several symmetric knots. The main

strategy is to use the grading and filtration information to pin down the action on CFK∞

(up to change of basis.) Note also that computing these actions directly, by examining the

effect of τ on the Heegaard surface Σ and the α and β curves, is quite cumbersome just as

in the case for 3-manifolds. We now provide several examples of the computations.

Remark 4.3.1. In the computations of the actions we often use a particular model of the

knot Floer complex that is filtered chain homotopic to CFK∞(HK). An argument similar

to [19, Lemma 6.5.] shows that we can conjugate the action of τK on CFK∞(H) so that it

induces an action on the model complex. We will then unambiguously refer to the conjugated

action as τK .

4.3.1 Strongly invertible L-space knots and their mirrors

There are several L-space knots that admit a strong involution [40]. Here we show that we

can explicitly compute the involution in for those knots and their mirrors.

Recall that L-space knots are the knots for which S3
p(K) is an L-space, an integer p >

0. In particular, sufficiently large surgery on L-space knots are L-spaces. The knot Floer

homology for these knots are determined their Alexander polynomial. Specifically the knot

Floer homology CFK∞(K) of an L-space knot can be regarded as chain homotopic to

C ⊗ Z2[U,U−1]. Here C is a chain complex in the shape of a staircase.

In a similar fashion the knot Floer complex of the of a mirror of an L-space knot can be

taken to be a copy of a staircase, see Figure 4.1. We refer readers to [19, Section 7] for a

description of the relationship between the Alexander polynomial of L-space knots and their
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Figure 4.1: Left: CFK∞ of the left-handed trefoil

mirrors with the knot Floer complexes. Before moving forward let us recall that we have the

definition of the action

ιK : CFK∞(K)→ CFK∞(K)

on the knot Floer complex induced by spinc-conjugation defined by [19]. Starting with a

doubly-pointed Heegaard diagram (Σ,α,β, z, w), there is a tautological map

ηK : CFK∞(Σ,α,β, w, z)→ CFK∞(−Σ,β,α, z, w)

we then take the basepoint moving map ψ which sends the basepoints (z, w) to (w, z) by per-

forming half-Dehn twist along the orientation of the knot and finally since ψ(−Σ,β,α, z, w)

and (Σ,α,β, w, z) represent the same doubly pointed knot (K,w, z), there is an homotopy

equivalence Φ : CFK∞(ψ(−Σ,β,α, z, w)) → CFK∞(Σ,α,β, w, z), induced by Heegaard

moves.

ιK is then defined as ιK := Φ ◦ ψ ◦ ηK . One can then show this is an well-defined

automorphism (independent of the choices made) of CFK∞ so that ι2K ' ς.

We show the following
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Proposition 4.3.2. Let K be an L-space knot (or the mirror of an L-space knot) that is

strongly invertible with the strong-involution τK . We have

ιK ' τK .

Proof. Recall that if τK is a strong involution on a knot K, the induced map on CFK∞

is a skew-filtered map that squares to the id. As seen in [19], the fact that ιK is grading

preserving skew-filtered and it squares to identity is enough to uniquely determine it for

both L-space knots and the mirrors of L-space knots. The claim then follows from similar

computation of ιK for L-space knots from [19].

Figure 4.2: Left: left-handed trefoil with the strong inversion on the left, Right: The
induced action on the knot Floer complex.

4.3.2 Periodic involution on L-space knots and their mirrors

There are several L-space knots which admit a periodic involution. For example (2, q) torus

knots are 2-periodic. In this case we have the following
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Proposition 4.3.3. Let K be an L-space knot (or mirror of an L-space knot) with a periodic

involution τK . we have

τK ' id.

Proof. Note that when τK is a periodic involution, the induced map on the knot Floer

complex is a grading preserving filtered map that squares to the Sarkar map. The conclusion

the follows.

4.3.3 An Example

Example 4.3.4. We now look at the figure-eight knot 41 and the periodic involution τK on

it, as in Figure 4.3.4. We identify this involution on the knot Floer complex of 41. To see

this first note that, 41 is a Floer homologically thin knot.

Figure 4.3: Left: Figure-eight knot with a periodic symmetry, Right: Induced action on the
Knot Floer complex.

Now τK is a filtered grading preserving automorphism on CFK∞(K). This implies τK

sends [x, i, j] to [τK(x), i′, j′] where i′ ≤ i and j′ ≤ j. Coupled with the fact that τK
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preserves the Maslov grading and K is thin, we get τK(x) lies in the same diagonal line as

x which implies i′ = i and j′ = j.

Furthermore, we know that τ2
K ' ς from Proposition 4.2.2. The Sarkar map ς is map

known to be identity for staircases. For squares the map takes the form indicated below

Figure 4.4: Sarkar map, for figure eight knot.

ς(a) = a+ e, ς(b) = b, ς(c) = c, ς(e) = e.

We will use the constraints laid out above to find such candidate τK . The calculation

similar to that in [19, Section 8] then yields the action as shown in the Figure 4.3.4.

Remark 4.3.5. Note that the action defined in Figure 4.3.4 is different from the involutive

action on the knot Floer chain complex of the 41 knot, although both actions square to the

Sarkar map.
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