
ISOSPIN-BREAKING INTERACTIONS IN THE NUCLEAR SHELL MODEL

By

Aaron Magilligan

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Physics – Doctor of Philosophy

2021



ABSTRACT

ISOSPIN-BREAKING INTERACTIONS IN THE NUCLEAR SHELL MODEL

By

Aaron Magilligan

The ever advancing scale of experimental nuclear physics has lit a fire under nuclear theorists.

With the inevitable explosion in the number of exotic isotopes available for study at the soon to be

operational Facility for Rare Isotope Beams and other rare isotope labs, the need for quantitative

descriptions of nuclei far from stability is clear.

The Nuclear Shell Model allows for the calculation of realistic nuclear wavefunctions using

configuration-interaction theory. This theory examines only the valence nucleons in a restricted

model space or "nuclear shell" and treats the filled shells in the core of the nucleus as inert.

Interactions used in this theory usually take the form of one- and two-body terms which can be built

up from fundamental theory using various many-bodymethods and are continually being improved.

The ab initio based methods now include three-body interactions together with improved methods

for handling short range correlations and model space truncations. This enables them to describe

binding energies within several MeV and energy spectra within about 500 keV.

One can phenomenologically improve upon these interactions by using the energy data for

nuclei in a given mass region to obtain effective two-body matrix elements for a given model

space. The best method for doing this is to start with an ab initio based Hamiltonian and then

to modify the best determined linear combinations of interaction parameters as determined by the

energy data using what is called the singular value decomposition method. This can be thought

of as a truncation of the allowed parameter space. The result is that both binding and excitation

energies can be described to within 150-200 keV. The relatively small modifications to the ab initio

interaction parameters reflect deficiencies in the many-body methods and their inputs.

This method has resulted in widely used Hamiltonians for several model spaces. Universal

effective sd-shell Hamiltonians have a history dating back to the 1970s, and the newest updates are



presented in this dissertation. The USDC interaction, as it is called, and its companion interactions

are the first effective sd-shell interactions that incorporate energies in the fitting protocol from

proton-rich nuclei and explicitly includes isospin-breaking terms. Apart from the addition of a

Coulomb interaction, an isotensor term is added to the strong interaction in order to reproduce the

oscillation found in the c-coefficients of the Isobaric Multiplet Mass Equation. A modified version

of Coulomb is used in the USDCm interaction, which was constrained to better reproduce mirror

energy differences.

Experimental binding and excitation energies across the shell are reproduced by USDC, apart

from the known island of inversion nuclei and the neutron-rich fluorine isotopes. A single-particle

model of the Thomas-Ehrman shift is developed to account for coupling to the continuum not

present in the shell model results for nuclei at or near the proton dripline. Using this model and

the improved theoretical binding energies, new predictions for the proton and neutron driplines are

presented. The possibility of 34Ca being a two-neutron emitter is explored.

Isospin level mixing of isobaric analogue states with nearby states can significantly impact

nuclear decays. Several cases with experimentally measured isospin mixing are explained with the

new interactions. However, USDCm over-predicts the strength of the associated matrix elements.

This motivates a refinement of USDC in which an isovector term is added to the strong interaction

and constrained to reproduce changes of mirror energy differences in the isobaric doublets. This is

shown to provide the benefits of the modified Coulomb interaction without its detriments.

An effective fp-shell interaction is presented tailored to the neutron rich calcium isotopes out

to 60Ca. This is constrained with the nuclear interaction fitting code FINCH, developed during the

creation of the USDC interactions. This interaction is shown to be a good renormalized fp-shell

interaction and several predictions for unobserved states are presented. Using this and inter-model

comparisons leads us to conclude that 60Ca is likely doubly-magic to a similar level as 68Ni.

Following these successful implementations of effective universal configuration-interaction

Hamiltonians, future research aims to develop an sdp f model space interaction for deeper study of

the N =20, 28, and 42 islands of inversion.
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CHAPTER 1

FOUNDATIONS

The goal of this opening chapter is to lay out the foundations of nuclear physics needed to follow

along with the work contained in this dissertation. Each section will cover an individual topic, so

that the reader need only review those sections with which they are unfamiliar. These are not meant

to be comprehensive, but rather serve as in introduction to the terminology and ideas that will be

used throughout later chapters.

It is estimated that the universe is made up of roughly 68% dark energy and 27% dark matter,

with the remaining 5% being made up of the “ordinary" matter with which we are all familiar.

This ordinary matter is governed by the Standard Model of particle physics and consists of quarks,

leptons, and the force carrying particles called bosons. The quarks come together to achieve

stability in groups of two (mesons) or three (baryons) called hadrons. Baryons primarily come

in two forms and are called nucleons. These nucleons can have either a positive electric charge

(protons) or a neutral charge (neutrons).

These nucleons can then in turn be held together by the nuclear strong force in groups called

nuclei. Due to the positive charge of the protons, these nuclei attract electrons (a type of lepton with

a negative charge) to form neutrally charged atoms. These atoms in turn make up all of the “stuff"

that we interact with on a day-to-day basis. Every star, every moon, every book, every person,

consists of an absolutely massive number of different kinds of atoms in different configurations.

However, it is the realm of chemistry to discuss the interactions of atoms. Instead, we are

interested in what lies at the center of those atoms. Inside stars the intense heat and pressure causes

atoms to become ionized and lose their electrons, leaving behind only the nucleus of protons and

neutrons. It is these nuclei that drive the evolution of the stars and galaxies, so to understand those

objects at the largest scales we must study the internal structure of an object 10,000,000,000,000

times smaller than a baseball.

To do so, we will first define a number of terms needed to discuss nuclei in general. Then

1



we will introduce gradually more and more complex models of the nucleus and its properties,

culminating in the Nuclear Shell Model and the development of universal effective Hamiltonians

for use in Configuration-Interaction calculations.

1.1 Building the Chart of the Nuclides

All atoms in the universe consist of a core nucleus that contains almost all of the atom’s mass. The

nucleus is composed of protons and neutrons, which are collectively called nucleons. A nucleus

in an atom is surrounded by an "electron cloud" that is 100,000 to 1,000,000 times larger than the

nucleus itself. An electrically neutral atom will have an equal number of protons and electrons.

We differentiate atoms from one another first by giving them element names based on the number

of protons in their nucleus which we call Z .

The Periodic Table of Elements is an organizational tool to show the chemical properties of

all of the elements that exist in nature. It does this by organizing the elements in order of proton

number in columns corresponding to the electron cloud configurations that control the chemical

properties of the element. This is an excellent tool for chemists, however in nuclear physics we

must be able to differentiate a carbon atom with 7 neutrons and a carbon atom with 8 neutrons.

While they may behave similarly chemically, the structure and decay properties of the nuclei at the

center of the atoms can be very different.

We call these different atoms within the same element family (same Z) "isotopes." They are

denoted as A
N Z where N is the number of neutrons and A is the atomic mass number defined as

the total number of protons and neutrons or N + Z . Each pair of proton and neutron numbers

corresponds to a distinct nucleus called a nuclide. You can then imagine unfolding the periodic

table into a grid, with the proton number on the Y-axis and the neutron number on the X-axis. This

forms the basis of the Chart of the Nuclides, and is shown in Fig. 1.1.

While there are only 118 known elements, there are over 3,000 isotopes that have been mea-

sured experimentally! Over 70 of these were discovered at Michigan State University’s National

Superconducting Cyclotron Lab (NSCL) [2]. Additionally, nuclear theory predicts that there are
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Figure 1.1: A chart of the nuclides with proton number Z on the vertical axis and neutron number
N on the horizontal axis. The primary decay mode of each isotope is shown in the legend. Image
taken from [1].

several thousand yet to be discovered! With the retirement of the coupled cyclotrons at the NSCL,

the nuclear science community is anxiously awaiting its soon to be operational replacement. The

Facility for Rare Isotope Beams (FRIB) is a United States Department of Energy funded project

which uses a linear accelerator to probe the inner workings of exotic nuclei. It is expected that

the new facility will extend our reach into the unprobed regions of the nuclear chart towards the

neutron dripline and discover many new isotopes.

Any given element can have dozens of isotopes, and we differentiate these isotopes by referring

to them by their mass number. For example, we can have 28Si which is an isotope of silicon

(Z = 14) with 14 neutrons giving is a total mass of A = 14 + 14 = 28. This is a stable isotope of

silicon, meaning that it will not decay. An unstable isotope of silicon is 27Si which has one fewer
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Figure 1.2: Binding energy per nucleon plotted against mass, showing the so called "iron peak".
Image taken from Hyperphysics [3].

neutron. This isotope will undergo a process known as β-decay. During this process, one of its

protons will convert to a neutron while emitting a positron and a neutrino resulting in the daughter

nucleus 27Al. The daughter nucleus has the same total mass number as the parent nucleus in a

β-decay, but is now a different element. This process is discussed further in Sections 1.5 and 3.7.

The reason one nucleusmay decay and onemay not is due to the relative binding energy between

a nucleus and its possible decay products. The binding energy of a nucleus is the difference in

energy of the nucleus and that of a corresponding set of "free" nucleons (nucleons not contained in

a nucleus). This can be thought of as the amount of energy you could release if you separated all

of the nucleons from one another. 27Si is less well bound than 27Al, and so it is decays to the lower

energy configuration. A mathematical definition of this binding energy difference is given by,

BE(N, Z) = Z MHc2 + N Mnc2 − M(N, Z)c2, (1.1)

where the atomic mass of a nucleus is written as M(N, Z). However, in the literature you are likely

to see nuclear masses reported in terms of the "mass excess" of the nucleus. The mass excess, or
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∆(N, Z), is the difference between the actual mass of a nuclide and its mass number A. Therefore

it is helpful to rewrite the definition of binding energy to be,

BE(N, Z) = Z∆Hc2 + N∆nc2 − ∆(N, Z)c2, (1.2)

with ∆Hc2 = 7.2890 MeV and ∆nc2 = 8.0713 MeV. Often times we may want to discuss the total

energy of a nucleus rather than its binding energy. Instead of imagining the amount of energy

needed to separate the nucleons contained in a nucleus from one another, you can ask what is

the energy needed to bring together free nucleons into a nucleus. We can define this energy as

E = −BE. In this way, a stable nucleus would have a negative total energy but a positive total

binding energy.

If one were to take a stable element such as 28Si and continually add neutrons to it, increasing

the total mass but keeping Z constant the nucleus would become unstable to β-decay. If even more

neutrons were added eventually the nucleus would bump up against the neutron dripline. At this

point any additional neutron added to the nucleus would immediately “drip" out of the nucleus,

rather than undergo β-decay. The same is true for the addition of protons, at some point you run

into the proton dripline. These driplines define the limits of stability on the Chart of Nuclides.

One can imagine examining the average binding energy per nucleon within a nucleus to reveal

further insights. The binding energy per nucleon is a lot like looking at the Gross Domestic Product

(GDP) per capita for a country. It would be misleading to compare the total GDP of a large country

to that of a small country, but by looking at how the GDP is distributed amongst their populations

you can get an idea of the relative wealth of a country. Fig. 1.2 shows the experimentally measured

BE/A in MeV plotted against mass number. Starting with the simplest nucleus 1H (a single proton),

the binding energy is by definition zero. With an increase in mass there is a rapid increase in nuclear

binding energy per nucleon up to a maximum around 8 MeV. Increasing the mass number after this

point will result in a lower binding energy per nucleon. This maximum is referred to as the "iron

peak" after the iron core formed through fusion in massive stars.

In the core of a newly formed star hydrogen is fused together into helium, which releases a large

amount of energy in the form of radiation due to their differences in binding energy. The radiative
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pressure from nuclear fusion pushing out from the core battles against the pull of gravity trying to

collapse the star. Eventually, a hydro-static equilibrium is achieved and the star becomes stable.

When there is no longer enough hydrogen in the core of the star to sustain the fusion reaction, the

star must begin burning a new fuel source, namely helium. The helium and its products are fused

into heavier and heavier elements. In a sufficiently massive star, fusion of these lighter elements

will continue until a core of iron has been formed.

This is the end of the road however, as iron is essentially nuclear ash. It actually costs energy

to fuse two iron nuclei together into a heavier nucleus, due to the lower binding energy per nucleon

found in heavier nuclides. Without the pressure supplied by a sustained nuclear fusion reaction at

the core, the overwhelming might of the stars own gravitational pull causes the star to collapse in

on itself. What is left is an incredibly dense object, either a neutron star or black hole depending

on the total mass of the star. Neutron stars are held up by nuclear degeneracy pressure (a purely

quantum effect!) rather than through fusion, and the true secrets of black holes are hidden behind

an event horizon beyond which nothing can escape.

One goal of nuclear physics is to further understand processes like stellar evolution that, on first

glance, may seem to have very little to due with nuclear physics. Through the study of the structure

of nuclei we can achieve great insight into the Cosmos, and in the next few sections we will cover

more and more complex models of the nucleus.

1.2 The Liquid Drop Model

There have been many models that attempt to describe the structure of the nucleus since the

discovery of the atom. From the plum pudding model first proposed by J. J. Thomson in 1904 [4] to

the Bohr model of the atom in 1913 [5] that could describe electron orbitals, incremental progress

was made in our understanding of the atom and its nucleus. Humbly, I would argue that the first

truly scientific model of the nucleus itself is the Liquid Drop Model (LDM) proposed by George

Gamow in 1930 [6] and quantified in the Semi-Empirical Mass Formula (SEMF) developed by

Bethe andWeizsäcker in 1935 [7]. The LDM posits that we can understand the nucleus as a drop of
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Figure 1.3: The terms of the liquid drop model visualized. Image taken from [8]

an in-compressible liquid at an extremely high pressure held together by the nuclear strong force.

The strong force, as it often referred to, is a short range attractive force between nucleons. Like a

liquid drop, the nucleus must perform a balancing act between different forces to maintain stability.

The SEMF estimates the binding energy of any nucleus and consists of five terms, each

describing a different source of energy for the drop. The first is the volume term that describes the

binding energy that comes from a nucleon being surrounded by other nucleons in the interior of

the nucleus, each exerting an attractive force upon it. Not every nucleon is fully enveloped by other

nucleons though, so the surface term adds a negative binding energy proportional to the surface

area to correct for this.

While the nuclear strong force that binds the nucleus affects both the protons and neutrons

(roughly) equally, the observant reader will recall that protons and neutrons are not identical. The

proton has an electric charge, whereas the neutron does not. These positive charges repel one

another and this adds an additional negative term to the total binding energy of the nuclear drop

proportional to the number of proton pairs it contains.

The last two terms are contributions due to quantum effects. The first is the asymmetry term

that seeks to balance the number of protons and neutrons within the nucleus. A greater number of

neutrons than protons requires that higher energy levels be occupied for the protons, while leaving

lower energy levels unoccupied for the neutrons (or vice-versa). Finally, we add a pairing term to

account for the experimentally verified preference that protons (and neutrons) prefer to exist in pairs

with zero total spin due to spin-coupling as they are spin 1/2 particles. This addition, which gives
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energetic preference to pairs of nucleons over unpaired nucleons, results in the most tightly-bound

nuclei being even-even. That is to say, the most bound nuclei will be those with an even number of

protons and an even number of neutrons.

Visualizations of these terms are shown in Fig. 1.3, and putting things all together we come to

the formulation of the SEMF,

BELDM = avA − as A2/3 − ac
Z(Z − 1)

A1/3 − aA
(N − Z)2

A
+ δ(N, Z). (1.3)

The Atomic Mass Evaluation of 2016 has 1000s of well known nuclear ground state energies,

which we can use to constrain the full five-parameter model. This can be done with a simple

χ2 minimization quite quickly. Doing this and plotting the residuals from theory and experiment

creates a striking pattern on the nuclear chart shown in Fig. 1.4.

The first thing to note from the figure is the fairly remarkable agreement we are able to achieve

across the entire nuclear chart with just five terms. The root mean square (rms) deviation for

absolute binding energy between LDM and experiment is on the order of 3 MeV (the figure shows

the results per nucleon). The residuals per nucleon are on the order of only a few percent. This

shows that the liquid drop model is an incredibly powerful model, but we also notice a grid like

pattern where the theory is under predicting the binding energy (blue) while also over predicting

(red) in between these blue bands.

As is often the case in science, it is both helpful and informative to look at these deviations in

a slightly different manner. Fig. 1.5 shows a one-dimensional projection of the residuals from the

nuclear chart in Fig. 1.4 plotted against both neutron number N and proton number Z . At lowmass,

there is no real discernible pattern to be seen through the noise. However, at higher proton/neutron

number there are clear peaks in the residual binding energies between theory and experiment.

In nuclear physics we call these the "magic" numbers, as nuclei with these number of protons

or neutrons display stronger binding than expected from the naive LDM. To understand the source

of these peaks, and why some numbers are magic while others are not, we have to leave the world

of the semi-classical and jump head first into the world of quantum mechanics!
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Figure 1.4: The difference in BE/A between experiment and the Liquid Drop Model. A positive
number indicates that experiment is more bound than theory.

1.3 The Nuclear Shell Model

“Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make

it quantum mechanical."

Richard Feynman

Transitioning to a quantummodel of reality requires that we stop thinking about the nucleons as

particles, and begin thinking of them as waves with an associated wave function. Let us start at the

beginning then, and write down a simple Schrödinger Equation for a nucleon to try and understand
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Figure 1.5: The difference in nuclear binding energy per nucleon between experiment and the
Liquid Drop Model prediction plotted against neutron number (top) and proton number (bottom).
The magic numbers are indicated by the black vertical lines.

the behavior of a nucleon in a nuclear potential generated collectively by all of the nucleons,

−
~2

2m
∇2
Ψ + VnucΨ = EΨ. (1.4)

As the strong nuclear force is short ranged and rotationally symmetric with no preferred

direction, we choose a 3-dimensional radially symmetric Woods-Saxon potential to model it. This

gives us a starting potential of the form,

VWS(r) =
V0

1 + er−R/a
, (1.5)

where R ≈ 1.2A1/3 fm and a ≈ 0.60 fm. There are many standard techniques to solve the

Schrödinger Equation, and we could apply those and stop here to get a relatively good quantum
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mechanical model of a nucleon in a nucleus. But when we do so we find that we are unable to

reproduce the magic numbers we discovered at the end of the last section.

The key addition to this simple model that won Maria Goeppert Mayer and Hans Jensen a share

of the Nobel Prize for Physics in 1963 [10] was realizing that the spin of the nucleon would couple

to the angular momentum of the quantum orbits. This spin-orbit coupling is defined as

Vso(r) = Vso
1
r

dfso(r)
dr

, (1.6)

with

fso(r) =
(
1 + [er−Rso/aso]

)−1
. (1.7)

With this added term, the spin S is no longer a “good" quantum number, that is to say not

every eigenvector of the system maintains the same eigenvalue as time evolves. The orbital and

angular momentum couple together to a definite total angular momentum J, which is a good

quantum number. The eigenstates of this system are then defined by J and the projection M of

the total angular momentum. Each orbit associated with a total angular momentum J can contain

2J + 1 nucleons. The calculated energy levels from the Woods-Saxon potential with the spin-orbit

coupling addition are shown in Fig. 1.6. Each orbital is labeled by its principal quantum number n,

a letter corresponding to its intrinsic angular momentum l, and finally the total angular momentum

J. Without the spin-orbit term, the magic numbers discovered in the previous section were not

recovered, but the energy gaps are clear in the figure showing 2, 8, 20, 28, and so on.

We now have a realistic nuclear potential for individual nucleons that recreates the "shell gaps"

at the expected magic numbers that were discovered experimentally. As more and more neutrons

and protons are added to the system, they will naturally fill the orbitals starting at the lowest energies

up to what is called the "Fermi Energy." If a hole were to be left in a lower lying orbital then it

would be energetically favorable for the system to decay to this lower energy state and it would

quickly do so.

We can imagine nucleons sitting “on top of" the very doubly magic 16O nucleus. We call these

excess nucleons "valence" nucleons. The next step is to restrict the number of orbitals that we will
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Figure 1.6: Quantum energy levels associated with the Harmonic Oscillator potential (left), the
Woods-Saxon Potential (center) and the Woods-Saxon potential with a spin-orbit Coupling term
(right). On the right we see the familiar nuclear magic numbers in the resulting shell gaps. Image
taken from [9].
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Figure 1.7: A portion of the Chart of the Nuclides showing those isotopes in the sd-shell. Stable
nuclei are in black, nuclei that decay via β− / β+ in blue/red, and nuclei outside of the neutron/proton
dripline are shown in dark blue/dark red.

be studying at any given time. As there are an infinite number of higher laying orbitals, this is

necessary. Let us consider the three orbitals which make up the so-called sd-shell: 0d5/2, 0d3/2,

and 1s1/2. These exist between the two magic numbers and should be relatively decoupled from

the other orbits. We have now separated the infinite set of orbitals into three groups: the high

lying orbitals which we assume are out of reach energetically and so will not impact the low lying

energy spectra in a nucleus, the model space consisting of three orbits which we allow our valence

nucleons to occupy, and an inert core of 16O consisting of the filled 0s1/2, 0p3/2, and 0p1/2 orbitals.
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Figure 1.8: The left panel shows an example experimental spectra for a nucleus. The center
panel shows the spectra calculated with an “effective" interaction, with the right panel showing the
predicted spectra from an ab initio interaction based on NN scattering data.

A zoomed in portion of the nuclear chart that shows the nuclei that exist in this restricted

model space is shown in Fig. 1.7, spanning from Z = 8 − 20 and N = 8 − 20. This model space

separates the magic numbers 8 and 20 for protons and neutrons, and will be the focus of the middle

chapters of this dissertation. A practical benefit of focusing on this model space is the relatively

low computation cost compared to larger and higher energy model spaces. This allows for large

sets of calculations to be completed in a reasonable time frame on a powerful desktop computer.

To complete these calculations the NuShellX codebase [11, 12] is used, which uses the shell

model to calculate nuclear wavefunctions and energies. To perform the calculations, a Hamilto-

nian that describes the valence space interaction is needed. Hamiltonians used in configuration-

interaction calculations can be written as a sum of one- and two-body operators:

H =
∑

a

εan̂a +
∑

a≤b,c≤d

∑
JT

VJT (ab; cd)T̂JT (ab; cd), (1.8)
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where n̂a is the number operator for the spherical orbit a with quantum numbers (na,la, ja) and

T̂JT (ab; cd) =
∑
MTz

A†JMTTz
(ab)AJMTTz (cd), (1.9)

is the scalar two-body density operator for nucleon pairs in the orbits a, b, c, and d coupled to the

spin quantum number JM and isospin quantum numbers TTz.

These Hamiltonians are continually being improved. The ab initio based methods now include

three-body interactions together with improved methods for handling short range correlations and

model space truncations [13] and are now able to describe binding energies within several MeV

and energy spectra within about 500 keV. A recent example for the sd-shell is shown in [13].

One can phenomenologically improve upon these interactions by using the experimental energy

data for nuclei in a given mass region to obtain effective two-body matrix elements (TBME) for a

givenmodel space. An effective method for doing this is to start with an ab initio based Hamiltonian

and then to modify the best determined linear combinations (LC) of TBME that are required by the

energy data using the singular value decomposition (SVD) method. The result is that both binding

energies and energy spectra can be described to within 150-200 keV (see Fig. 9 of [13] and Fig. 5

of [14]).

The SVD method has resulted in widely used Hamiltonians for the sd model space [14, 15], the

fp model space [16–18], the mixed sd (protons) fp (neutrons) model space [19], the sd − p f model

space with particle-hole excitations [20, 21], and the j j44 model space (see the appendix in [22]).

The relatively small modifications to the ab initio based TBME (on the order of up to 100-200 keV)

reflect deficiencies in the many-body method, as well as the input NN + 3N force. This method is

covered in detail in the Section 1.6.

1.4 The Isobaric Multiplet Mass Equation

Isospin, first introduced by Heisenberg in 1932 [23] allows for protons and neutrons to be treated

as the same particle, a nucleon, but in different isospin projection states. Apart from the proton

having an electric charge, there are many reasons to believe this is a useful tool. The masses of the

two particles are very similar and their behaviour under the influence of the strong force are nearly
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identical. The introduction of isospin provides two new quantum numbers, T and Tz, analogous to

the spin quantum numbers, J and Jz, on which the formalism of isospin is based.

The proton and neutron are T = 1/2 particles with opposite isospin projection, Tz = −1/2

and Tz = 1/2 respectively. The total isospin projection of a given nucleus with N neutrons and Z

protons is then Tz = (N − Z)/2. The convention of positive sign for neutron and negative for proton

is arbitrary, but as most isotopes in nature have an excess of neutrons to protons this keeps the total

isospin projection positive for most of the nuclei that we can study.

The isospin T of a particular energy level in a nucleus is less determined with possible values

from,

T =
|N − Z |

2
,
|N − Z |

2
+ 1, ...,

N + Z
2
− 1,

N + Z
2

. (1.10)

Generally the ground state of a nucleus takes on the lowest allowed T value, with the higher values

found amongst the excited states at higher energies.

We can now think of grouping together those nuclei with similar quantum numbers including

isospin projection. Nuclei with the same total mass number A are known as isobars. If we add

the further restriction that those isobars have the same angular momentum J, parity π, and isospin

T then we have defined an isobaric multiplet. Member states of this multiplet are referred to as

Isobaric Analogue States (IAS).

An example isobaric multiplet is the A = 20, T = 2 ground state multiplet. This consists of

2T + 1 = 5 nuclei, namely 20Mg, 20Na, 20Ne, 20F, and 20O. We take the T = 2 ground states of

those nuclei with |Tz | = T = 2, and so Jπ = 0+. As the ground states of the three interior nuclei are

not T = 2 states we have to look at their excited states for the IAS. We can then plot the absolute

energies of these states to look for any pattern. The top panel of Fig. 1.9 shows unaltered energies

of the five T = 2 IAS as well as the lower T states for the interior nuclei. The bottom panel subtracts

a phenomenological correction to the IAS to remove the effects of the Coulomb interaction, leaving

the IAS are now roughly in agreement.

Weinberg and Treiman first defined the relationship between the binding energies of the IAS in
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Figure 1.9: The top panel shows the unchanged T =0, 1, and 2 energies of the A = 20, T = 2
multiplet. The T = 2 states are connected to show the quadratic nature of the IMME. The bottom
panel shows the same states with a phenomenological correction associated with the Coulomb
interaction subtracted from their energies.
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the Isobaric Multiplet Mass Equation (IMME) [24, 25],

BE(A,T,Tz, α) = a(A,T, α) + b(A,T, α)Tz + c(A,T, α)T2
z , (1.11)

with a, b, and c being coefficients dependent on A,T , and α representing all other quantum numbers

except Tz.

If isospin were a good quantum number, that is if it were conserved in all cases, then the member

states of this multiplet should have identical properties. However, these isobaric analogue states

are known to not have identical binding energies. The obvious breakdown of isospin symmetry is

clear from the existence of the Coulomb interaction which does not affect neutrons due to their lack

of charge. There is also a breaking of isospin symmetry in the nuclear strong force on the order of

a couple percent. First order perturbation theory shows that the binding energies of the IAS do not

have terms higher than T2
z if the splitting is due entirely to Coulomb. The Coulomb interaction can

be written as isospin tensors of rank 0, 1 and 2. Using the Wigner-Eckart theorem, one can show

that the highest order allowed is quadratic in Tz [24].

For use as a sanity check later it is useful to derive the LDM predictions for the IMME

coefficients. Using,

Tz =
(N − Z)

2
→ Z =

A
2
− Tz (1.12)

the Coulomb term from the SEMF can be written as,

WC = aC

(
1
4

A2 −
1
2

A −
A − 1
A1/3 Tz + A−1/3T2

z

)
. (1.13)

This expression is now quadratic in Tz and the IMME coefficients can be read directly from it.

The linear coefficient,

bLDM(A) = −aC
A − 1
A1/3 (1.14)

and the quadratic coefficient

cLDM(A) = aC A−1/3 (1.15)

These predictionswill be used later in the dissertation for comparisons to experiment and configuration-

interaction calculations.
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Figure 1.10: Curves showing the LDM predictions for the a-, b-, and c-coefficients of the IMME
plotted against mass number.

Further breakdown of isospin symmetry can be probed by studying those isobaric multiplets

with T ≥ 3/2. When there are more members of a multiplet than there are free parameters in the

IMME (3) then any deviation from the quadratic form can be exactly tested. If a nonzero cubic,

d(A,T), or quartic, e(A,T), correction is needed to recreate the experimental energies, then that is a

sign of a breakdown in isospin symmetry beyond Coulomb and involves the more subtle splitting of

isospin symmetry in the nuclear strong force. We will examine some example cases of a breakdown

in isospin symmetry in Chapter 3.

1.5 Understanding β-Decay

When a nucleus is unstable but within the driplines of the nuclear chart, one of the ways it

can decay is through β-decay which is governed by the weak nuclear interaction. This process

was discovered by Ernest Rutherford in 1899 while studying radioactive isotopes in a magnetic

field. When a nucleus undergoes β-decay a proton (neutron) decays into a neutron (proton) while

emitting an positron (electron) and a neutrino. Of course the protons and neutrons themselves are

not fundamental particles, they are made up of quarks and gluons. A proton consists of two “up"

u quarks that have charge an electric charge of 2
3e each (where e is the charge of an electron) and a

“down" quark d which has a negative electric charge of −1
3e. Likewise a neutron consists of two d
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quarks and one u quark. The Standard Model describes the process of β− decay most simply as

d → u + e− + ν̄e. (1.16)

This process changes the total isospin projection of the nucleus but does not change its mass

number. The rate of this decay is dependent on the gap Q in energy between the initial nucleus and

its daughter nucleus

β-decay measurements can be useful sources of information for studying the weak interaction

as well as the structure of the nucleus which is largely governed by the strong and Coulomb

interactions. There are many types of β-decay, and it is therefore useful to categorize them by

the angular momentum transferred from the nucleus to the escaping electron and neutrino. Those

decays with no angular momentum transfer, ∆l = 0, are known as “allowed" β-decay for historical

reasons in contract to so-called "forbidden" decays with ∆l = 0.

Allowed β-decays come in two flavors. The first is the Fermi decay, which is characterized by

its isospin conservation. The operator for the Fermi decay is

Ô(F±) =
∑

k

tk±, (1.17)

where tk± are the nucleon isospin raising and lowering operators. These operators are only able to

connect isobaric-analog states (IAS) making the Fermi decay a measure of isospin conservation in

nuclei.

The second is the Gamow-Teller decay which does not conserve isospin. The operator for this

decay is

Ô(GT±) =
∑

k

σk tk±, (1.18)

which appears similar to that of the Fermi decay, but contains the nucleon spin operator. Since the

total spin S is not a good quantum number, this operator can connect to many final states and in

general does so. This makes it an excellent test of shell-model configuration mixing in the nucleus.
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1.6 The Singular Value Decomposition (SVD) Fitting Method

While the results of several fitted interactions are presented in this document, they all share a

similar "backbone" of statistical methods. Deviations from this outline will be noted in the results

section for each interaction. This section follows much of the formalism laid out in Refs. [26, 27]

for tracking uncertainties, and is a detailed description of the method used to develop USDA and

USDB [15].

In a simplified notationwe canwrite the configuration-interactionHamiltonian in a parametrized

form,

H( ®p) =
NP∑
i=1

piOi, (1.19)

where Oi are the operators or linear combinations of operators corresponding to parameters pi =

1, ...,Np. These Hamiltonians will have eigenvectors φα, and eigenvalues λα which we express as

λα =

Np∑
i=1

pi < φα |Oi |φα >=

Np∑
i=1

piβ
α
i . (1.20)

The starting Hamiltonians used in these fits may be combinations of many such interactions.

For the purposes of the statistical analysis, we can define a starting interaction as

H( ®p) = H0 + H1( ®p), (1.21)

dividing it into a static Hamiltonian that we do not wish to fit H0, and H1( ®p) that contains the full

interaction’s dependence on the chosen model parameters, ®p. Likewise, the calculated energies are

given by:

Ei( ®p) =< φi |H0 |φi > + < φi |H1( ®p)|φi >

= E0
i + εi( ®p).

(1.22)

Experimental energies are not generally reported this way, and so to obtain the expected experi-

mental energy contribution due to H1( ®p), we define ε exp
i = Eexp

i − E0
i .

Now we formulate the problem as a χ2 minimization of Np parameters p j on a data set of size

Nd .

χ2 =

Nd∑
i

wi(εi( ®p) − ε
exp
i ), (1.23)
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where the weights are set to wi = (σi)
−2. The adopted errors σi for the data set are a combination

of the recorded experimental errors and a theoretical error σth = 100 keV chosen to normalize the

minimized χ2 to the degrees of freedom, Nd − Np.

σ2
i = (σ

exp
i )

2 + (σth
i )

2 (1.24)

We now denote the weighted energies as

zi =
√
wiε

exp
i = σ−1

i ε
exp
i (1.25)

and the Jacobian matrix which contains the weighted regression coefficients

Jji =
√
w j

(
∂ε j

∂pi

)
=
√
w j β

j
i . (1.26)

Starting with parameters ®ps informed from theory, we calculate the β j
i and then minimize χ2

by requiring ∂pj χ
2 = 0. This produces a set of Np linear equations

G ®p = ®e, (1.27)

where

Gi j = (JT J)i j =

Nd∑
α

wαβ
α
i β

α
j , (1.28)

and

ei = (JT ®z)i =
Nd∑
α

wαε
exp
i βαi . (1.29)

An inversion of the G matrix gives the full χ2 solution,

®p = G−1 ®e. (1.30)

If G is not invertible you may have an insufficient data set to constrain the chosen parameter space.

To take into account the implicit pi dependence of βαi , this procedure is repeated until convergence

to determine ®p0 that minimizes χ2. If you don’t wish to maintain any knowledge from your starting

parameter set, and trust the data to fully constrain every parameter then you can stop here. However,
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In large dimensional fits, the parameters are often highly correlated. It is advisable then to reframe

the problem in terms of an orthogonal basis of the model parameters.

Taking a singular value decomposition of G gives us:

G = AT DA. (1.31)

From Eq. 1.28 it is clear that G is both real and symmetric, and so we obtain a diagonal matrix

D whose elements are the singular values of G, and a "rotation" matrix A made up of column

vectors that define the uncorrelated linear combinations of parameters that form an orthogonal

basis in parameter space.

We now introduce a new set of parameters

®y = A®p, (1.32)

which represent a point in the parameter space denoted using a set of independent basis vectors

yi and not the original model parameter. When a point in parameter space is expanded in this

basis, the deviations of the χ2 from its minimum value take the form of a system of m uncoupled

harmonic oscillators—with the singular-values playing the role of the m spring constants.

Inserting Eqs. 1.31 and 1.32 into 1.27, this definition and the SVD of G provides the solution

yi = (D−1 A®e)i = dici, (1.33)

where we have introduced the notation di = 1/Dii and defined a "rotated" data vector ®c = A®e. It

is clear that for small singular values, the resulting yi are strongly affected by small changes in the

data through ci. As such we are motivated to truncate the effective parameter space. To get the

new set of parameters, we use the "rotated" (uncorrelated) linear combination basis and replace the

poorly determined values using an ab initio interaction with ®ys = A ®ps.

yi =


dici for i < n

ys
i for i ≥ n

(1.34)

Where n represents the number of linear combinations allowed to vary in the minimization. We

can then transform back into the original model basis to obtain ®p(n) = AT ®y(n), which is then used

to iterate until convergence. This procedure results in a family of solutions ®p0(n).
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For a full χ2 minimization, the covariance matrix S of the parameters can be obtained by

S = G−1 = (JT J)−1. (1.35)

And then the variance ∆pi for each parameter can be taken as
√

Sii. To obtain a dimensionless

representation of the covariance matrix, we formulate the correlation matrix R defined as:

Rxy =
Sxy√

SxxSyy
=

Sxy

∆px∆py
. (1.36)

This results in a matrix with ones along the diagonal, and off diagonal entries between -1 and 1

showing the inter-parameter correlations.

Covariance and correlation matrices can be generated for the data as well as the model variables.

The data covariance matrix is dependent on the parameter covariance matrix through,

Sd = JSJT (1.37)

This matrix can be used to generate uncertainties and determine correlations for the data in the

same way as the parameter covariance matrix.

If we want to obtain the covariance matrix when only n of the uncorrelated linear combinations

of parameters are allowed to vary, there are more things to consider. We wish to quantify the

statistical uncertainty that is introduced by the fit, and separate it from the systematic uncertainties

inherent in the model. To this end, we write the inverse of G in its deconstructed form

C = AD−1 AT . (1.38)

Again the diagonal entries of D−1 are given by di = 1/Dii, but we make the change that

di≥n = 0. (1.39)

This then allows us to isolate the variances and covariances introduced to the model parameters

from the regression, and maintain the ab initiomodel’s influence on those poorly determined linear

combinations. We then have a series of covariance matrices, one for each n value.

C(n) = Ad(n)AT (1.40)
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Using these we can generate the statistical uncertainty introduced to the parameters and ob-

servables at each n. At n = 0 we expect the calculated uncertainties to be zero (this is clear in Eq.

1.40), and to grow with n.
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CHAPTER 2

NEW ISOSPIN-BREAKING USD INTERACTIONS

Two new USD-type Hamiltonians, USDC and USDI, have been developed that directly incorporate

Coulomb and other isospin-breaking interactions. Starting from ab initio interactions, linear

combinations of two-body matrix elements were constrained by experimental energy levels in sd-

shell nuclei. With this method, binding energies and excitation energies of proton-rich nuclei in

the shell can be added to the data set used in the fit. USDC and USDI contain an analytic Coulomb

interaction with Miller-Spencer short range correlations and an effective isotensor interaction.

Also presented are modifications to these interactions, USDCm and USDIm, that have had

the Coulomb interaction constrained to better reproduce the experimental b coefficients of the

Isobaric Mass Multiplet Equation. These Hamiltonians are used to provide new predictions for

the proton-dripline and to examine isospin level mixing and other properties of sd-shell nuclei.

Several examples of states with large Thomas-Ehrman Shifts (for more on Thomas-Ehrman Shifts)

see Section 3.1) are modeled using USDC and a single-particle interaction.

The universal sd-shell (USD) Hamiltonian [28, 29] has provided realistic sd-shell (0d5/2, 0d3/2,

1s1/2) wave functions for use in nuclear structure models, nuclear spectroscopy, and nuclear astro-

physics since its development thirty-five years ago. Its successors USDA and USDB [15, 30] were

developed in 2006 using an updated and expanded set of nuclear energy levels. These USD-type

Hamiltonians are defined by three single-particle energies (SPE) and 63 two-body matrix elements

(TBME) in isospin formalism, which are derived from a renormalized G matrix and then fit to a

set of binding energies and excitation energies.

The USD-type Hamiltonians were all developed in isospin formalism in which the Coulomb

interaction is treated as a perturbation. The interaction most widely used for isospin-breaking

calculations before the development of USDC is called USDB-CD [31, 32]. While USDB-CD is

quite good at predicting excited energy spectra for sd-shell nuclei, it does a poor job at determining

absolute ground state binding energies. Further discussion ofUSDB-CD appears in the next section.
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Lack of reliable binding energy calculations results in poor predictions for separation energies and

decay properties.

We are therefore motivated to extend the derivation of USD-type Hamiltonians to include

isospin-breaking interactions directly. Isospin formalism restricts the TBME so that the wavefunc-

tions produced by the interaction have good isospin, thus the inclusion of isospin-breaking terms in

the Hamiltonians requires us to move to proton-neutron (pn) formalism. We introduce groupings

of TBME to restrict the total number of parameters and keep our results physically reasonable. For

the first time, binding energies and excitation energies in proton-rich nuclei are able to be included

in the fit and no a priori Coulomb corrections to the data are necessary. This makes us able to

consider 854 states in 117 nuclei.

In this chapter, we introduce four new isospin-breaking USD-type Hamiltonians. The spiritual

successor of USD and USDA/USDB, which is based on the same renormalized G matrix sd-shell

interaction (SDBA) [33], is USDC. Additionally, we derive USDI which starts from a new ab initio

interaction based on a set of In-Medium Similarity Renormalization Group (IMSRG) Hamiltonians

[34, 35] that are nuclei-specific, but otherwise the same fitting procedure is followed.

There are many levels of many-body physics involved in the development of the IMSRG

interactions in which deficiencies could arrive. The use of a harmonic oscillator basis for the

intruder and continuum states may be insufficient for describing exotic nuclei near separation

energy that interact strongly with the continuum states. This motivates us to employ the techniques

for refining effective interactions on these new ab initio theories.

Also presented are USDCm and USDIm in which the Coulomb TBME are further constrained.

2.1 A brief history of Configuration-Interaction Hamiltonians for the sd-
shell

There is a long history of using configuration-interaction calculations to study sd-shell nuclei. The

first major development was in 1968 by Kuo and Brown. They worked to develop a theory that

takes nucleon-nucleon scattering potentials and builds up two-body matrix elements (TBME) that
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Figure 2.1: Number of energy levels in each sd-shell nuclei used in the data set for constraining the
CWP and CWH Hamiltonians.

describe the interaction between pairs of nucleons. After accounting for short range correlations

between the nuclei and the effects of the model space truncation, this model could then very well

describe the behavior of two-particle (A=18) and two-hole (A=38) nuclei.

The second series of developments to describing this model space were by Chung and Wilden-

thal. Through the use of many-body techniques, they were able to apply the TBME to a much

larger set of nuclei. It was discovered that the calculated spectra were generally worse the more

particles (or holes) are included in the calculations. However, they could be improved to match

more closely to experiment with only small changes to the TBME. This key insight has lead to

massive improvement in interactions over the years.
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Figure 2.2: Number of energy levels in each sd-shell nuclei used in the data set for constraining the
USD (W) Hamiltonian.

These first attempts at so called “Effective Interactions" (as opposed to the ab initio work of

Kuo and Brown) required massive amounts of computation time as well as sufficient experimental

data with which to constrain the TBME. In the end, two interactions were developed. One for the

bottom of the shell called CWP and one for the top of the shell called CWH. Fig. 2.1 shows the

distribution of levels used in their fits, as well as the reasonable applicability of the interactions.

Calculations involving nuclei in the middle of the shell such as 28Si were very costly, and so the

two interactions do not connect. The statistical methods used for constraining these interactions

are outlined in the final section of this Chapter.

The first truly universal sd-shell interaction, that is one set of TBME that could describe nuclei
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Figure 2.3: Number of energy levels in each sd-shell nuclei used in the data set for constraining the
USDA and USDB Hamiltonians [15]

across the entire shell, was developed by Wildenthal from 1976 to 1982 as computers became

more powerful. The larger set of 446 energy levels from 67 nuclei is shown in Fig. 2.2. Apart

from the increased computational resources he had access to, the idea of a smooth mass scaling

of the TBME was introduced. This smooth mass scaling helped to account for the difference in

size between nuclei with different mass numbers while maintaining the underlying TBME. This

helped to improve the predictive power of the interaction. This interaction is simply called the

USD interaction, as in the Universal sd-shell interaction, and had an rms deviation of about 150

keV compared to the experimental excitation energies.

The next iteration of what are now called USD-type Hamiltonians came in 2006 when USDA
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and USDB were developed using the same fitting procedure as USD, with 30 linear combinations

of one- and two-body matrix elements varied for USDA and 56 for USDB, with the remaining

linear combination fixed values determined by SDBA (the ab initio interaction used to develop

USD). The resulting rms deviation between experimental and theoretical energies were 170 keV

and 130 keV for USDA and USDB, respectively. An increased data set was used for USDA and

USDB with 608 well known energy levels in 77 nuclei with N ≥ Z mainly added data for the

middle of the sd-shell. The distributions of the 607 experimental energies spread across 76 nuclei

used in this fit are shown in Fig. 2.3.

Something that all of these interaction have in common is that they are isospin conserving. That

is, they treat the proton and neutron as different projections of a single particle called the nucleon.

The pesky fact the protons are not identical to neutrons given their electric charge was dealt with

perturbatively. As these were developed as isospin-conserving Hamiltonians, the energies used

in the fit had to include Coulomb energy corrections [15]. These corrections were obtained from

examining mirror energy differences of isobaric analog states near the N = Z line. For exact values

of the corrections see page 2 of Ref. [15].

As mentioned, there exist isospin non-conserving additions to USD consisting of a Coulomb

interaction, an isovector term, and an isotensor term [31, 32]. These additions were fit to exper-

imental b- and c-coefficients of the Isobaric Multiplet Mass Equation (IMME). It is important to

note however that this was done without modifying the underlying USD interaction. The addition

from [31] is often used with USDB to perform configuration-interaction calculations and is referred

to as USDB-CD.

2.2 The expanded Data Set

In the last update of the “USD” Hamiltonians in 2006 [15], 607 levels in 76 nuclei were used in

N ≥ Z nuclei in the sd-shell. This included the 77 ground state energies and 531 excited state

energies. The distribution of these states in the shell can be seen in Fig. 2.3. The restriction to

neutron-rich nuclei was made because USDA and USDB were made in isospin formalism, which
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Figure 2.4: Number of energy levels in each sd-shell nuclei used in the data set for constraining the
USDC family of Hamiltonians.

assumed that mirror nuclei were identical apart from a simple Coulomb energy correction. Also

for this reason, T = 1 isobaric analogue states in the N = Z nuclei were excluded from the data set.

Those IAS excluded from previous fits but that fit all other criteria described below are included in

the updated data set.

By changing our interaction to the pn formalism, we now allow all well known sd-shell states in

nuclei with 8 ≤ N ≤ 20 and 8 ≤ Z ≤ 20, to be used in the data set to constrain our Hamiltonians.

This expanded data set includes ground state energies for 116 nuclei, with at least one excited state

included for 107 of those nuclei. The level distribution over sd-shell nuclei is shown in Fig. 2.4.

Ground state binding energies used are taken from the 2016 atomic mass evaluation of Wang et. al
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[36] and taken relative to that of 16O,

BE(A, Z)r = BE(A, Z) − BE(16O). (2.1)

Excited state energies are taken from the ENSDF database. The number of levels with experi-

mental errors less than 0.2 MeV included in the data set from each nucleus are shown in Fig. 2.4.

Generally, excited states were only included if the Jπ for all lower states are known. This is done to

ensure that only states with purely sd-shell configurations are included. So called "intruder states"

that involve orbitals outside of our model space are omitted from the data set as we know that our

model will not be able to replicate them. These typically occur at high excitation energies where

the experimental level density is much higher than the theoretical level density.

Recently, an extensive measurement of the mirror energy differences in 27Al and 27Si was

conducted by Gavin Lotay [37], providing 43 well known mirror pairs in the A = 27, T = 1/2

isobaric pair. This wealth of data will be used later to improve our constraints on the Coulomb

interaction.

A collection of nuclei with N = 19 − 20 and Z = 10 − 12 are in the “island of inversion"

[38]. The ground states of these six nuclei are bound by ≈ 2 MeV more than expected in sd-shell

configuration-interaction calculations. This is understood to be due to an inversion of the standard

level scheme and requires extension to the p f -shell to be properly calculated [38]. Essentially, an

intruder state is so well bound that it supplants the ground state and the expected sd-shell ground

state is in actuality an excited state of the nucleus. Ground states and excited states for these nuclei

are therefore excluded from the fit.

Several states that have a large Thomas-Ehrman Shift (TES) are excluded from the fit. These

states are in proton-rich nuclei and are near the proton separation energy. A discussion of these

states and analysis of their TES is found in the first section of Chapter 3. A full list of the levels

used in the fitting procedure for this work is shown in Table A1 in Appendix A.
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2.3 Sensitivity levels in the fit

We will be examining energy differences at several different scales while constraining a new inter-

action for the sd-shell. Therefore it is advantageous to separate the interaction into its component

pieces. In this work, we separate the Hamiltonian into three parts

H = H0 + HINC + HC, (2.2)

where H0 is the isospin-conserving strong interaction, HINC is the isospin-breaking portion of the

strong interaction, and HC is the Coulomb interaction. This allows us to separate the eigenvalues

λk of the full Hamiltonian with eigenvectors φk into

λk = 〈φk | H |φk〉

= 〈φk | H0 |φk〉 + 〈φk | HINC |φk〉 + 〈φk | HC |φk〉

= λ0
k + λ

INC
k + λC

k .

(2.3)

The method of fitting used in this work has three levels of sensitivity. First, the H0 was fit using

all available energy levels in the shell, while HC and HINC are held constant at reasonable initial

values. Second, HC was modified in the case of USDCm and USDIm to reproduce the experimental

linear (b) coefficients in the IMME. And lastly, the isotensor strength modification in HINC , that

is the change in strength for the T = 1 pn TBME, was set to minimize the rms deviation of the

quadratic (c) coefficients of the IMME. After these steps, we once again fit H0 while holding HC and

HINC constant at the new constrained values. We explored adding an isovector component to the

interactions but found that it could not be well constrained by the data set and did not significantly

impact the results of the fits. This will be revisited in Chapter 4.

As in the derivation of USDA and USDB, a reformulation of the least-squares fit in terms

of uncorrelated linear combinations through a SVD of the error matrix is used to constrain the

SPE and TBME to experimental energies. The strength of this method is in the separation of

well determined and poorly determined linear combinations, allowing us to replace those not well
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constrained values using a starting ab initio Hamiltonian. A full explanation of the method used

for USDA/USDB can be found in [15], and a generalized method can be found in Chapter 1.

Briefly, the optimization of the interaction with Np parameters, pi = 1, ...,Np (the SPE and

TBME), that are adjusted to fit Nd experimental energies Eexp through the minimization of:

χ2(p) =
N∑

k=1

(
E k

exp − λk(p)
σk

)2

, (2.4)

where σk are the adopted errors corresponding to the experimental energies and include both

experimental and theoretical errors. To minimize the arbitrariness of the selection of the theoretical

error, the adopted errors can be tuned so that the χ2 function is normalized to the number of degrees

of freedom Ndo f = Nd − Np at the minimum ®p0 [27]. Here that provides a theoretical error of

140 keV.

A new addition to these isospin-breaking USD-type Hamiltonians is a statistical uncertainty for

each of the fitting parameters. This was done following the prescription of [27], first defining the

covariance matrix C in terms of the Jacobian J:

C ≈ (JT J)−1 , Jiα =
1
σi

∂E k
exp

∂pα

�����
®p0

. (2.5)

Statistical uncertainties for the fitted parameters can then be calculated as ∆pα =
√

Cαα. Statistical

uncertainties for calculated observables can also be determined using the covariance matrix.

Recently, uncertainty quantification of shell model parameters in the sd-shell was carried out

using principal component analysis in Ref. [39].

2.3.1 Binding and Excitation Energies

Some changes to the SVD fit method outlined in Chapter 1 are needed to transition to the pn

formalism. It was necessary to group the strong force TBME that would be identical in an isospin-

symmetric interaction. For example the following TBME in isospin formalism transforms into three

equal (up to a phase) TBME in pn-formalism; namely a proton-proton term, a neutron-neutron
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term, and a proton-neutron term.

V0,1(k, k; k, k) → V0,1(pk, pk; pk, pk)

V0,1(pk,nk; pk,nk)

V0,1(nk,nk; nk,nk),

(2.6)

where the label k represents an sd-shell orbit (s1/2, d5/2, or d3/2) and the prefixes p and n indicate

whether it is a proton or neutron orbit, respectively. We therefore want these terms in H0 to evolve

together during the fit. This takes the 202 TBME in H0 and puts them into 63 TBME groups. The

breaking of this isospin symmetry will be brought in by HINC .

Since we are not fitting the entire Hamiltonian at once, and instead are doing so in stages,

we must also subtract the contributions to the energy eigenvalues due to HINC and HC from the

experimental energies in the data set. This is because we wish to minimize the quantity

χ2 =
N∑

k=1

(
E k

exp − λk

σk
exp

)2

=

N∑
k=1

(
Ẽ k

exp − λ
0
k

σk
exp

)2

, (2.7)

where E k
exp are the experimental energies,σk

exp are the associated errors, and Ẽ k
exp = E k

exp−λ
INC
k −λC

k

is the effective experimental energies used in the first stage of the fit.

2.3.2 Mirror Energy Differences

Unlike the nuclear strong froce, we can derive the Coulomb interaction for the sd-shell analytically

directly from theory. Three methods of doing so were considered for the two-body Coulomb

interaction. The first is an analytic Coulomb potential in the simple harmonic oscillator basis. A

benefit of harmonic oscillator wave functions is the simplification of the separation into relative

and center-of-mass coordinates. Using this potential requires that ~ω have a mass dependence

≈ 41A−1/3 to adequately reproduce the experimental rms charge radii. The consequence of this is

an overall mass dependence for the Coulomb TBME of 〈1/r〉 ∼ (~ω)1/2 ∼ A−1/6.

A more realistic basis using a Skyrme energy density functional was also used to calculate a

two-body Coulomb interaction. Lastly, we can take the Coulomb component of the nuclei-specific
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IMSRG Hamiltonians for nuclei with N = Z in the sd-shell. The Coulomb contribution to the

IMSRG TBME was determined by taking the difference of the pp and nn T = 1 terms. We then

take an average of these IMSRG Coulomb TBME as another HC to test in the fit.

In the first two cases, correctionsmay be added to the Coulomb potential to account for the short-

range correlations between the protons and for the finite size of the proton. These are discussed

later in the chapter.

The b-coefficient of the IMME is due primarily to the Coulomb force. Therefore, the b-

coefficient rms deviation between experiment and theory calculations serves as a good test to

differentiate these three choices for HC . In the data set, there are 206 mirror energy states (38

ground state pairs, and 168 excited state pairs) with experimental errors < 0.2 MeV. It is important

to exclude those pairs which have a large (TES). Due to different radial extents of the s and d

orbitals, the energies of isobaric mirror states are shifted down by the Coulomb interaction [40,

41]. These excluded pairs will be discussed in Chapter 3.

Just as an SVD fit was done for H0, the method can be applied to the 30 TBME and 3 SPE in

HC to further reduce the b-coefficient rms deviation. This requires re-framing the minimization

parameter to

χ2
b =

Nb∑
k=1

(
bk

exp − bk
f it

σk

)2

, (2.8)

where

bk =
E k(Tz = T) − E k(Tz = −T)

2T
, (2.9)

for a pair of states in mirror nuclei. Here the theoretical error added in quadrature with the reported

experimental values is 70 keV or about half of the theoretical error associated with the energy

levels.

Whether a mass dependence for the SPE should be added was investigated, but no improvement

in spectra or rms deviations was achieved and so we do not include it. This is consistent with

previous work in the sd-shell. A slight mass dependence was noticed in the IMSRG interactions,

but they also include variable zero-body energy terms. These terms are a combination of kinetic
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Figure 2.5: A visualization of the two types of T = 1 triplets in the sd-shell. Isobaric triplets whose
Tz = 0 member is an even-even nucleus (green) and those whose Tz = 0 member is an odd-odd
nucleus (violet). This difference causes the oscillation in the c-coefficients.

and potential energy contributions, and so trying to separate their interpretations becomes very

difficult.

2.3.3 IMME c-coefficients

Isospin symmetry is not broken solely by the Coulomb interaction, it is also only an approximate

symmetry for the strong nuclear Hamiltonian. Nucleon-nucleon scattering data has shown that the

Vnn strength is slightly larger than Vpp, and further that Vnp is greater than the average of Vnn and

Vpp. This has been previously been approximated as a 1% increase in theT = 1 pn two-body matrix

elements and a 1% decrease in the T = 1 nn and pp two-body matrix elements. For this work, the
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Figure 2.6: The c-coefficients of the lowest lying T = 1 sd-shell triplets. The crosses show
predictions using USDI. The dashed line shows the contribution to the c-coefficients from the
Coulomb interaction. The solid line shows the combined contribution from the Coulomb interaction
and a 2.2% increase in theT = 1 pnTBME to capture the isotensor interaction (see text). Experiment
is shown as filled circles.

same isotensor effect can be captured by simply increasing the T = 1 pn matrix elements by

VJ,1(pn) = (1 + αT )

(
VJ,1(pp) + VJ,1(nn)

2

)
, (2.10)

with αT being set initially to 0.02 or 2%. This is also consistent with the results of [31]. In this

work, we also take Vpp = Vnn in H0.

While the b-coefficient of the IMME is sensitive to the Coulomb interaction, the quadratic (c)

coefficient is sensitive to the asymmetry between the pn interaction to the strong components of

the nn and pp interactions. This is due to a cancellation of other terms in the calculation of the

c-coefficients, most evident in the equation for T = 1 multiplets.
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The triplets can be categorized into two groups, shown in Fig. 2.5. The first is those with an

even-even Tz = 0 nucleus (shown in green) and those with an odd-odd Tz = 0 nucleus. This results

in an oscillation of the c-coefficients as you move up the shell.

Fig. 2.6 shows this odd-odd to even-even oscillation of the c-coefficients for the ground-state

T = 1 triplets in the sd-shell. Including Coulomb as a source of isospin breaking can only partially

explain the size of the oscillation. However, the addition of an isotensor component creates much

better agreement with experiment.

The oscillations in the c-coefficients arise from the J-dependence of the TBME. The values of

the VJ,T=1(5,5; 5,5) TBME are −2.5601 MeV (J = 0), −0.9894 MeV (J = 2), and −0.1982 MeV

(J = 4) for the strong (isospin-conserving) interaction and 0.4386 MeV (J = 0), 0.3852 MeV

(J = 2), and 0.3612 MeV (J = 4). As J increases, there is a much steeper drop-off in the isospin-

conserving TBME compared to the Coulomb TBME. And as the isotensor interaction is modeled as

proportional to the isospin-conserving TBME, the same drop-off is found in the isotensor TBME.

If there were no J dependence in the TBME, there would be no oscillations in Fig. 2.6. The

weak J dependence in the Coulomb TBME result in small oscillations. It is the strong J dependence

in the isotensor interaction that creates the large oscillations in the c-coefficients.

2.4 The USDC and USDI interactions

The calculations for the wavefunctions and energies were carried out with the configuration-

interaction code NuShellX. One iteration for the strong interaction fit took around 2 hours on a

powerful multi-core desktop PC.

The criteria used to include experimental data in the fit is described in Sec. II. These allow us

to consider 854 states in 116 nuclei with errors of less than 0.2 MeV. The uncertainties used show

the experimental errors σk
exp added in quadrature with a theoretical error set to 140 keV,

(σk)2 = (σk
exp)

2 + (σk
th)

2, (2.11)

in order to normalize the χ2 to the number of degrees of freedom.
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Table 2.1: Comparison of ab initio and fitted isospin-conserving TBME for the sd-shell in isospin
formalism with T = 1 (in MeV). Note that v(abcd; JT) = VJT (ab; cd)(A = 18) The orbits are
labeled by 1 = s1/2, 3 = d3/2, and 5 = d5/2. The ∆v column shows the statistical uncertainties for
USDI which are representative for all of our new Hamiltonians.

ME SDBA USDC USDCm IMSRG USDI USDIm ∆v
v(5 5 5 5; 0) −2.5418 −2.5601 −2.5700 −2.5284 −2.3690 −2.3796 0.0932
v(5 5 3 3; 0) −2.9807 −3.1774 −3.2194 −4.6033 −3.5295 −3.5705 0.1666
v(5 5 1 1; 0) −1.0885 −1.5666 −1.5843 −1.5239 −1.6163 −1.6341 0.0621
v(3 3 3 3; 0) −1.1624 −1.8877 −1.9070 −0.5971 −1.8648 −1.8826 0.0921
v(3 3 1 1; 0) −0.7911 −1.0370 −1.0578 −1.1893 −0.9147 −0.9328 0.0849
v(1 1 1 1; 0) −2.0617 −1.6433 −1.6622 −1.3890 −1.6762 −1.6962 0.0794
v(5 3 5 3; 1) −0.4249 0.6030 0.6126 0.6542 0.4130 0.4265 0.1190
v(5 3 3 1; 1) −0.0304 −0.1531 −0.1704 0.1021 −0.2856 −0.3247 0.2107
v(3 1 3 1; 1) 0.3994 0.5638 0.6042 0.3115 0.6230 0.6655 0.0646
v(5 5 5 5; 2) −0.9932 −0.9894 −1.0151 −0.9087 −0.9777 −1.0076 0.0409
v(5 5 5 3; 2) −0.1394 −0.2289 −0.2254 −0.3810 −0.1917 −0.1924 0.0478
v(5 5 5 1; 2) −0.7957 −0.9274 −0.9579 −0.9790 −0.8992 −0.9241 0.0478
v(5 5 3 3; 2) −0.9399 −1.1421 −1.1623 −1.0623 −1.2787 −1.3037 0.1450
v(5 5 3 1; 2) 0.8477 0.9137 0.9432 1.0809 0.9979 1.0254 0.0800
v(5 3 5 3; 2) −0.4043 −0.0041 −0.0300 0.4747 0.1943 0.1624 0.1023
v(5 3 5 1; 2) −0.2469 −0.3128 −0.3166 0.1527 −0.3647 −0.3682 0.0603
v(5 3 3 3; 2) −0.9871 −0.7064 −0.7041 −0.7988 −0.8317 −0.8325 0.1020
v(5 3 3 1; 2) 0.6449 0.4256 0.4292 0.8469 0.3580 0.3515 0.0910
v(5 1 5 1; 2) −1.2335 −0.9690 −0.9939 −0.8554 −0.9738 −1.0042 0.0426
v(5 1 3 3; 2) −0.6317 −0.3807 −0.3791 −0.6018 −0.2549 −0.2519 0.0962
v(5 1 3 1; 2) 1.4633 1.5668 1.5727 1.4230 1.6142 1.6209 0.0774
v(3 3 3 3; 2) 0.1427 −0.0615 −0.0422 −0.1102 −0.0852 −0.0626 0.0282
v(3 3 3 1; 2) 0.1787 0.3135 0.3247 0.2766 0.3313 0.3427 0.0474
v(3 1 3 1; 2) −0.2767 −0.3338 −0.2940 −0.0167 −0.3463 −0.3048 0.0476
v(5 3 5 3; 3) 0.5050 0.6476 0.6551 0.2937 0.6708 0.6802 0.0918
v(5 3 5 1; 3) −0.1021 −0.4971 −0.4956 −0.2474 −0.4647 −0.4656 0.0536
v(5 1 5 1; 3) 0.2781 0.6725 0.6690 0.6042 0.6536 0.6493 0.0536
v(5 5 5 5; 4) 0.0356 −0.1982 −0.2087 −0.0631 −0.1906 −0.2032 0.0206
v(5 5 5 3; 4) −1.4942 −1.3256 −1.3133 −1.4737 −1.3335 −1.3215 0.0339
v(5 3 5 3; 4) −1.6941 −1.3904 −1.4069 −0.7751 −1.4937 −1.5106 0.0716
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Table 2.2: Same as Table 2.1 but for the T = 0 isospin formalism strong TBME.

ME SDBA USDC USDCm IMSRG USDI USDIm ∆v
v(5 5 5 5; 1) −1.4315 −1.4302 −1.4317 −1.7115 −1.3929 −1.3981 0.1449
v(5 5 5 3; 1) 3.1790 3.3480 3.3348 4.8436 3.5507 3.5267 0.1210
v(5 5 3 3; 1) 1.7666 1.7134 1.7204 1.5594 1.1894 1.2067 0.4152
v(5 5 3 1; 1) 0.3628 0.2639 0.2854 −0.0049 0.3140 0.3424 0.1734
v(5 5 1 1; 1) −0.8749 −0.5303 −0.5304 −1.0724 −0.3500 −0.3566 0.1734
v(5 3 5 3; 1) −6.5104 −5.9698 −5.9608 −7.4545 −5.6815 −5.6813 0.1595
v(5 3 3 3; 1) −0.0200 −0.2165 −0.2261 0.3890 −0.2293 −0.2489 0.1747
v(5 3 3 1; 1) 1.7250 1.6755 1.6867 2.8536 1.6872 1.7019 0.1224
v(5 3 1 1; 1) 1.8887 1.9722 1.9991 2.8861 2.1688 2.1917 0.1049
v(3 3 3 3; 1) −1.3404 −1.6712 −1.6859 −0.0999 −1.5575 −1.5736 0.0947
v(3 3 3 1; 1) −0.8402 −0.6838 −0.6716 −1.2388 −0.7949 −0.7795 0.0893
v(3 3 1 1; 1) 0.0405 0.1022 0.0821 −0.2347 0.2309 0.2189 0.1387
v(3 1 3 1; 1) −3.3056 −3.8748 −3.9136 −3.7679 −4.0006 −4.0260 0.0912
v(3 1 1 1; 1) −0.2441 −0.9583 −0.9417 −1.0430 −1.0963 −1.0773 0.1054
v(1 1 1 1; 1) −3.3313 −3.6510 −3.6842 −3.0068 −3.5766 −3.6058 0.0944
v(5 3 5 3; 2) −4.5004 −4.2675 −4.2872 −5.1309 −4.5096 −4.5269 0.1454
v(5 3 5 1; 2) −1.2555 −0.7692 −0.7537 −1.6854 −0.8428 −0.8296 0.0986
v(5 3 3 1; 2) −1.4793 −0.2953 −0.2881 −1.6810 −0.3153 −0.3067 0.1317
v(5 1 5 1; 2) −0.4109 −0.3329 −0.3060 −0.4944 −0.3223 −0.2941 0.1331
v(5 1 3 1; 2) −2.7050 −2.4310 −2.4331 −2.6000 −2.2262 −2.2209 0.2112
v(3 1 3 1; 2) −1.3883 −1.9103 −1.9525 −1.6706 −1.8622 −1.9173 0.0860
v(5 5 5 5; 3) −0.8478 −1.5969 −1.5745 −1.2752 −1.6701 −1.6343 0.0766
v(5 5 5 3; 3) 2.1769 2.2564 2.2574 2.0175 2.1962 2.1934 0.1175
v(5 5 5 1; 3) −1.4992 −1.1785 −1.1770 −2.1032 −1.1734 −1.1821 0.0652
v(5 5 3 3; 3) 0.8466 1.3317 1.3410 0.2661 1.1406 1.1452 0.1928
v(5 3 5 3; 3) −1.0712 −1.2549 −1.2850 −1.2610 −1.5308 −1.5592 0.1455
v(5 3 5 1; 3) 1.0367 1.2484 1.2324 1.5017 1.2434 1.2349 0.1455
v(5 3 3 3; 3) 2.1625 1.1584 1.1576 2.3693 1.2987 1.2928 0.1462
v(5 1 5 1; 3) −3.6000 −4.1134 −4.1194 −3.9772 −4.1631 −4.1546 0.0650
v(5 1 3 3; 3) 0.1668 0.1126 0.1224 0.0608 −0.1896 −0.1566 0.2127
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Aswas done for the previousUSD-typeHamiltonians, the SPE are taken to bemass independent.

The ab initio ISMRG interactions are nucleus dependent and can have different zero-body terms

(the binding energy of the core) and some apparent mass dependence for the SPE. We performed

fits allowing a variable zero-body term, and with mass dependent SPE using the IMSRG for the ab

initio Hamiltonian. These resulted in no improvement or a decrease in fit quality. Therefore, we

keep a constant zero-body term and SPE for the fits. This does not have a significant effect on the

rms deviations as changes in the TBME can compensate.

The TBME have a mass scaling of the form

VJT (ab; cd)(A) =
(
18
A

) p

VJT (ab; cd)(A = 18). (2.12)

For the matrix elements in H0 and HINC , we take p = 0.3 as described in [15, 28]. The Coulomb

TBME scale analytically with p = 1/6 as previously shown.

The poorly determined linear combinations of the TBME and SPE were first constrained either

with the renormalized G matrix Hamiltonian SDBA, or an average of the N = Z sd-shell IMSRG

interactions with the Coulomb matrix elements subtracted out to extract the strong component

of the TBME. There exist other ab initio interactions that could be used to develop an effective

interaction, such as those derived from chiral effective field theory in [42], but we would not expect

much better agreement with experiment. Using SDBA as the constraining interaction resulted

in the USDC Hamiltonian, and replacing SDBA with IMSRG resulted in the USDI Hamiltonian.

Variants of USDC and USDI will also be introduced.

In this first stage of the fit there are a total of 69 parameters: the 63 groupings of the isospin-

conserving matrix elements, the 3 SPE due to the strong interaction, and the 3 SPE due to the

Coulomb interaction. The Coulomb TBME were held constant up to the mass scaling, and the

isotensor strength was set initially to 2%.

For the first iteration, the USDB matrix elements in pn formalism were used for the strong

interaction. Starting at n = 5 linear combinations being allowed to vary and the remaining poorly

determined linear combinations being replaced with the ab initio values, we increased n every three

iterations until we reached 56 varying linear combinations as used in the derivation of USDB. This
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Figure 2.7: The rms deviations as a function of varied linear combinations for the strong interaction.
In black filled circles are the results for USDC, with the blue open circles showing the results for
USDI. The solid lines show the energy rms deviation between experimental and theoretical sd-shell
energies. The dashed lines show the rms deviation for the interaction parameters between the
resulting Hamiltonians and the ab initio interactions on which they are based.

Table 2.3: Comparison of fitted strong interaction SPE. The orbits are labeled by 1 = 1s1/2, 3 =
0d3/2, and 5 = 0d5/2. All numbers in MeV.

Interaction ε5 ε3 ε1
USDB -3.923 2.112 -3.208
USDC -3.952(20) 1.894(113) -3.158(55)
USDCm -3.896(19) 1.889(113) -3.139(54)
USDI -3.936(20) 1.857(112) -3.127(55)
USDIm -3.878(19) 1.852(112) -3.111(54)
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was done to allow for a slow evolution of the Hamiltonians through parameter space and allow the

two different ab initio backgrounds to search for different minima in the parameter space. We then

iterated until the Hamiltonian parameters converged to the level of about 10 keV. Results of this

SVD fit can be seen in Fig. 2.7, showing the drop in energy rms deviation as the number of linear

combinations allowed to vary is increased, along with an increase in the parameter rms deviation

between the ab initio Hamiltonian used and the resulting fitted Hamiltonians.

The rms deviation between experimental and theoretical energies,

rms =

√√√
1
N

N∑
k=1
(E k

exp − E k
th)

2, (2.13)

for USDC and USDI are 139 keV and 140 keV, respectively. USDC and SDBA have a similar rms

deviation between their TBME to that of USDB and SDBA, about 390 keV.

The rms deviation between the USDI and IMSRG TBME is somewhat higher, at 560 keV. As

the IMSRG Hamiltonian is an average of several nuclei-specific IMSRG Hamiltonians it is not

too surprising that the fit diverges more so than it did for SDBA. It’s notable that even though the

USDC and USDI were allowed to slowly converge from different starting values, they have an rms

deviation for their TBME of 150 keV. The TBME and SPE, and their statistical uncertainties, of

these Hamiltonians as well as two others to be discussed can be found in Tables 2.1, 2.2, and 2.3.

We now have two new Hamiltonians based on two different ab initio models: USDC from SDBA,

and USDI from IMSRG. However, we still have the isospin-breaking interactions to consider.

The deviations between experiment and theory for the ground state and excited state energies

are shown in Fig. 2.8 for USDB-CD and Fig. 2.9 for USDC. Included in the figure are eight points

that are not used in the fit. These are the six island of inversion ground states and the ground states

of 27,28F. The figure shows the results for USDC as at this scale there is no significant differences

between USDI and USDC. For each element, the states in neutron deficient isotopes are to the left

in the figure and those states in neutron-rich isotopes are to the right.

The ground states of the six nuclei in the island of inversion (29,30Ne, 30,31Na, and 31,32Mg) that

were not included in the fit, are under-bound compared to experiment by 1-2 MeV as shown in the
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Figure 2.8: Deviations between experimental and theoretical energies for USDB-CD. The ground
state binding energy deviations are plotted on the top, with the excited state energy deviations
plotted on the bottom. The crosses show the deviations for the “island of inversion" nuclei. The
fluorine isotopes with large deviations for their ground state binding energies are discussed in the
text.

figures. Deviations this large demonstrate the need to expand into the p f model space in order to

account for their binding energies [38].

For the new Hamiltonians the neutron-rich Fluorine isotopes (A = 25,26) used in the fit show a

clear pattern of the theory being over-bound when compared to experiment. The ground states of
27,28F are significantly over-bound as well, but due to their larger experimental errors of 0.39 MeV

they have no impact in the χ2 minimization. Can we reproduce the energies of these fluorine

isotopes without damaging agreement elsewhere? The fit was rerun with artificially suppressed

errors for these fluorine isotopes to test this. The result was that these isotopes could not be
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Figure 2.9: Same as Fig. 2.8 but for USDC.

forced to these values without significantly harming the fit. We suggest then that the reported

binding energies of these isotopes is incorrect. The need for further more precise experimental

measurements of the neutron-rich Fluorine isotopes is clear.

2.5 The USDCm and USDIm interactions

The largest source of isospin symmetry breaking in the nucleus is from the electromagnetic inter-

action between the protons. We investigated the effects of three distinct sets of Coulomb TBME.

The IMSRG Coulomb interaction resulted in a b-coefficient rms deviation of 72 keV for our set of

mirror states. It was found that for the analytic potential, both the Skyrme energy density functional

basis and the simple harmonic oscillator basis resulted in only minor variations of the TBME and

produced rms deviations of around 67 keV. Based on these results and to aid in reproducibility, the
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Table 2.4: Comparison of fitted Coulomb interaction SPE. The orbits are labeled by 1 = 1s1/2, 3 =
0d3/2, and 5 = 0d5/2. These are for proton orbits only.

Interaction ε5 ε3 ε1
CD 3.575 3.526 3.484
w/ SRC 3.628(14) 3.451(18) 3.324(43)
Fitted 3.512(46) 3.464(270) 3.314(84)

simple harmonic oscillator basis was chosen as the source for the two-body Coulomb interaction.

Two corrections to theCoulomb potential were then analyzed to try and improve the b-coefficient

rms deviation. The first is to include the short range correlations (SRC) of Miller and Spencer [43]

through the form factor

FSRC(r) = 1 − e−αr2
(1 − βr2), (2.14)

with α = 1.1 fm−2 and β = 0.68 fm−2. The finite size of the proton (FSP) can be accounted for

using the form factor from R. B. Wiringa [44],

FFSP(r) = 1 − e−x(1 − (1 +
11
16

x +
3

16
x2 +

1
48

x3)), (2.15)

with x = br where b = 4.27 fm−1. Interestingly, both of these modifications to the underlying

analytic potential produce remarkably similar TBME when applied separately. When applied

together, the TBME decrease noticeably.

With these three options (SRC, FSP, and SRC+FSP) we can once again check the b rms

deviations. Each produces a moderate improvement of a few keV to the rms deviation. Given

this and for simplicity, we chose to include only the Miller-Spencer short range correlations to the

potential. This Coulomb potential with SRC in the simple harmonic oscillator basis was used to

produce the Coulomb TBME used in USDC and USDI, and will be referred to as Coulomb w/

SRC.

With a Coulomb interaction chosen and two new effective interactions generated from our

two ab initio interactions, we now examine whether further modifying the interaction through a

secondary SVD fit can improve our results. As before, states with large TES that are near proton

separation energy are excluded from this fit and discussed and are instead discussed in Chapter
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Table 2.5: Comparison of Coulomb TBME. All orbits are for protons, with 1 = 1s1/2, 3 = 0d3/2,
and 5 = 0d5/2.

Matrix element CD w/ SRC Fitted
v(5 5 5 5; 0) 0.4386 0.467 0.4830
v(3 3 3 3; 0) 0.4243 0.4525 0.4872
v(1 1 1 1; 0) 0.4068 0.4335 0.4469
v(5 3 5 3; 1) 0.3958 0.4234 0.4196
v(3 1 3 1; 1) 0.3645 0.3901 0.3315
v(5 5 5 5; 2) 0.3852 0.4117 0.4732
v(3 3 3 3; 2) 0.3615 0.3866 0.3432
v(5 3 5 3; 2) 0.3807 0.4071 0.4271
v(5 1 5 1; 2) 0.3885 0.4153 0.4747
v(3 1 3 1; 2) 0.3805 0.4069 0.3322
v(5 3 5 3; 3) 0.3512 0.3758 0.4043
v(5 1 5 1; 3) 0.3645 0.3901 0.3902
v(5 5 5 5; 4) 0.3612 0.3863 0.3969
v(5 3 5 3; 4) 0.3913 0.4178 0.4601
v(5 5 3 3; 0) 0.035 0.0355 0.0908
v(5 5 1 1; 0) 0.0346 0.0363 0.1019
v(3 3 1 1; 0) 0.0283 0.0296 0.1177
v(5 3 3 1; 1) 0 0 0.0005
v(5 5 5 3; 2) −0.0112 −0.0123 −0.0209
v(5 5 5 1; 2) 0.0238 0.0251 0.1032
v(5 5 3 3; 2) 0.0042 0.0041 0.0154
v(5 5 3 1; 2) −0.0194 −0.0205 −0.0482
v(5 3 5 1; 2) 0.0168 0.0177 −0.0115
v(5 3 3 3; 2) 0.0145 0.0152 0.0162
v(5 3 3 1; 2) −0.0137 −0.0145 −0.0005
v(5 1 3 3; 2) 0.0182 0.0192 0.0252
v(5 1 3 1; 2) −0.0196 −0.0205 −0.0123
v(3 3 3 1; 2) −0.0148 −0.0156 −0.0564
v(5 3 5 1; 3) 0 0 0.0008
v(5 5 5 3; 4) 0.0201 0.021 −0.0326

49



0


25


50


75


100


0
 5
 10
 15
 20
 25
 30


 r
m

s
 d

e
v
ia

ti
o
n
 (

k
e
V

)

varied linear combinations

b rms

TBME rms

Figure 2.10: Results of the SVD fit for the Coulomb interaction. The solid line shows the rms
deviation between experiment and theory of the IMME b-coefficients. The dashed line shows the
interaction rms deviation. The vertical black line at 9 varied linear combinations shows our chosen
“modified" Coulomb interaction.

3. A “residual" TES that is present throughout the shell could be accounted for with a modified

Coulomb interaction. Such a modification could also be needed due to changes in radii for nuclei

in excited sates. Since the Coulomb energy goes as 1/R, a 1% increase in the radius would reduce

the binding energy by about 110 keV. Any model space truncations would also be captured.

The results of the secondary SVD fit can be seen in Fig. 2.10 showing the rms deviation of the

b-coefficients and Coulomb Hamiltonian parameters as a function of the number of varied linear

combinations. A “modified" Coulomb interaction was chosen by allowing 9 linear combinations

to vary in the fit. This was motivated by a drop in the rms deviation and the first significant change
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Figure 2.11: The ∆b = bexp − bth deviations for the A = 27, T = 1/2 isobaric pair plotted against
the experimental excitation energy of 27Si.

in the TBME and SPE occurring at this point.

The additional data for the A = 27, T = 1/2 isobaric pair provided by Gavin Lotay [37] allows

us to compare our modified Coulomb interaction to experiment. It was found that the deviation from

experimental b-coefficients increased as a function of excitation energy for this mirror pair, with

an overall rms deviation of 104 keV. After refitting the Coulomb interaction with these additional

data points, this problem was reduced with a new rms deviation for the A = 27 data of 48 keV. This

improvement can be seen in Fig. 2.11.

The TBMEof this new fitted Coulomb are compared to the Coulombw/ SRCTBME in Table 2.5

and Fig. 2.12. Similarly, the SPE are compared in Table 2.4. The fitted Coulomb TBME and SPE

are used in USDCm and USDIm, and referred to as the modified Coulomb interaction. These
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Figure 2.12: Comparison of the Coulomb w/ SRC TBME and the Fitted Coulomb TBME. The
Fitted Coulomb was taken as the Coulomb interaction resulting from 9 varied linear combinations
in Fig. 2.10. Values for the TBME are shown in Table 2.5.

additional Hamiltonians produce similar plots to Fig. 2.9 at that scale.

With the modified Coulomb in place, the isospin conserving strong TBME in H0 were refit for

USDCm and USDIm. All that is left to constrain now is HINC , with some surprising results.

For each of our four new Hamiltonians, we adjusted the isotensor strength increase αT from

0-4% to find the value that produced the lowest c-coefficient rms deviation for 26 isobaric multiplets

in the data set. The set of multiplets were composed of 11 triplets (T = 1), 10 quartets (T = 3/2),

and 5 quintets (T = 2). All multiplets used involved the ground states of the |TZ | = T nuclei.

This search determined that the ideal αT is 2.2% for USDC and USDI which use Coulomb

w/ SRC, which agrees well with our initial setting of 2% based on nucleon-nucleon scattering

experiments and is consistent with previous theory. For USDCm and USDIm which use the fitted
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Figure 2.14: Comparisons of the fitted and ab initio TBME. Only the isospin-conserving TBME
in isospin formalism are shown. These are representative of the 63 strong TBME groups.

Coulomb we find that the minimizing αT is 0.8%. This lower isotensor strength increase indicates

that the fitting of the Coulomb parameters is attempting to capture some of the effects of the

isotensor component of the interaction.

Fig. 2.13 shows the theoretical and experimental c-coefficients used to constrain αT . It is clear

from the figure that USDI better reproduces the c-coefficients with an rms deviation of 8 keV

compared to the rms deviation for USDIm of 21 keV. Similar results are seen with USDC compared

to USDCm.

With the Coulomb and isotensor components of the new Hamiltonians fit or chosen, we once

again fit the isospin-conserving strong interaction. Only one or two iterations were needed for

each interaction to converge, and their final values are shown in Tabs. 2.1, 2.2, and 2.3. Visual
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comparisons to the ab initio Hamiltonians are shown in Fig. 2.14.

To recap, the four new interactions we’ve introduced are:

• USDC: a constrained G-Matrix interaction, an analytic Coulomb term, and a 2.2% increase

in the T = 1 pn matrix elements.

• USDCm: a constrained G-Matrix interaction, a constrained Coulomb term, and a 0.8%

increase in the T = 1 pn matrix elements.

• USDI: a constrained IMSRG interaction, an analytic Coulomb term, and a 2.2% increase in

the T = 1 pn matrix elements.

• USDIm: a constrained IMSRG interaction, a constrained Coulomb term, and a 0.8% increase

in the T = 1 pn matrix elements.

2.6 Comparing the new Hamiltonians

The average, or monopole, interaction energy between two orbits a and b is defined as:

V̄ab,T =

∑
J
(2J + 1)VJT (ab; ab)∑

J
(2J + 1)

. (2.16)

These monopole interaction energies combine with the SPE to create effective SPE with Z and

N dependence. The monopole interactions for our new Hamiltonians are compared in Fig. 2.15 (a

similar figure appearing in [15] is known to show incorrect values). They are split into three groups,

the T = 0 and T = 1 isospin-conserving monopoles, and the Coulomb only T = 1 monopoles that

involve only pp TBME. The isospin-conserving monopole interactions for USDC, USDCm, USDI,

and USDIm are all very similar with the largest deviation being around 100 keV.

The terms with the largest variance among the new Hamiltonians, d5/2 − d3/2,T = 0 and

s1/2 − s1/2,T = 0, are also the terms that differ from USDB the most. The IMSRG and SDBA

monopole strengths differ by up to 600 keV in some cases, but have a similar pattern.

55



-6


-4


-2


0


m
o
n
o
p

o
le

 i
n
te

ra
c
ti
o
n
 (

M
e
V

)

T= 0

T= 1

11 31 33 51 53 55

11 31 33 51 53 552j 2j’ =

SDBA
IMSRG
USDB
USDC

Coul w/ SRC
Fitted Coul

pp only
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The six T = 1 monopole terms for our fitted Coulomb are shown to be in good agreement with

the Coulomb w/ SRC, with most being within 5%. The pd3/2 − ps1/2 term has the largest shift,

with a decrease of 64 keV or 17% of the unfitted value.

Looking at the differences between energy level predictions using our new Hamiltonians can

serve to help understand the theoretical uncertainties in those predictions. In Fig. 2.16 the residuals

between USDC and USDI are shown for both the ground states and excited states, having rms

deviations of 24 keV and 70 keV for each group, respectively. The rms deviation for all of the data

is 30 keV, but is is clear that the spread is larger in the middle of the shell for the excited states.

This tells us that the choice of ab initio interaction from which we build our Hamiltonians has a
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Figure 2.16: Ground state binding energy and excitation energy differences between USDC and
USDI. Excited states are shown in the top panel, with ground states in the bottom. The crosses
indicate the ground states for the island of inversion nuclei.

larger effect on the excited state energies than it does on the ground state binding energies.

We can also examine the effect of modifying the Coulomb interaction and isotensor strength

by looking at the residuals between USDC and USDCm in Fig. 2.17. There is a larger change in

calculated ground state binding energies between these two Hamiltonians, with an rms deviation

of 70 keV. The excited state energy residuals are smaller than those between USDC and USDI with

an rms of 24 keV. The rms deviation for all of the data is 30 keV.

In the next Chapter, we will cover several applications of these new interactions in the sd-shell.
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Figure 2.17: Ground state binding energy and excitation energy differences between USDC and
USDCm. Excited states are shown in the top panel, with ground states in the bottom. The crosses
indicate the ground states for the island of inversion nuclei.
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CHAPTER 3

APPLICATIONS IN THE SD-SHELL

It is all well and good to develop these effective interactions that can reproduce experimental

binding and excitation energies for a large number of isotopes. However, the reader may object that

of course they agree with experiment! They were made to do so after all.

This is not an unfair critique, and so in this chapter we will explore applications of these new

interactions for things beyond just calculating individual energies for an isotope. The benefit of

having a full shell model interaction when compared to say the LDM is the ability to generate

realistic quantum mechanical wavefunctions. These wavefunctions can then be used to calculate

any property of the state you desire.

We are now able to extract spectroscopic factors for tackling the Thomas-Ehrman Shift (TES),

calculate separation energies for determining the drip lines, and determine the strength of isospin

level mixing and its effect on decay schemes. Portions of this chapter were published in [14] while

others are connected to collaborations with experimental groups both within NSCL/FRIB and at

other research institutions.

3.1 Modeling the Thomas-Ehrman Shift (TES)

When we renormalize an interaction to a model space, we are attempting to decouple the relevant

orbits from orbits outside of the model space. This is a very effective and powerful technique, but

there are some effects that the Nuclear Shell Model is unable to capture in this process. The TES

is such an effect.

The TES is described as a drop in energy of a state with a valence proton in the s1/2 orbit at or

near its separation energy. This is due to an increased radial extent of the proton’s wavefunction

due to the lack of a centrifugal barrier for l = 0 [40, 41]. An end result is that some excited states

in proton-rich nuclei that would otherwise be unbound remain bound to proton-emission. To an

extent, there is a weaker TES between the 0d3/2 and 0d5/2 orbit as well.
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Figure 3.1: The expected single-particle TES as function of proton separation energy, fit to
calculations using a Skyrme interaction.

Initial work on modeling this effect as a correction to the shell model calculations can be found

in [45]. This section will cover the development of a single-particle model of the TES.

A definition of the TES is given by looking at the difference in proton and neutron single particle

energies for the 0s1/2 and 0d5/2 orbits,

TESsp = [ε(πd5/2) − ε(πs1/2)] − [ε(νd5/2) − ε(νs1/2)]. (3.1)

Using this we can extract a single-particle TES strength if we can calculate the energies of these

four orbits. What we mean by single-particle is that this value would apply to a pure single particle

state.

Using the Skyrme interaction from [46] with an 16O core, we adjust the depth of the valence
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s1/2 proton orbit while holding the other orbits constant in order to model the single particle TES.

This enables us to calculate the expected TES for any given proton separation energy for the orbit.

Doing this at many different separation energies shows that a logarithmic curve fit can be used to

predict the TES as a function of proton separation energy. This was then done for a 28Si core and

it was found that the single-particle TES curve generated was very similar to the curve of the 16O

core. This allows us to use a single curve to model the single-particle TES, of the form:

TESsp = −0.4582 + 0.2154 × ln
(
Sp + 1.1818

)
, (3.2)

where TESsp is the single-particle TES in MeV, and Sp is the valence proton separation energy in

MeV. This function is plotted in 3.1.

In reality, the valence proton is not in a pure s1/2 state, and so only some fraction of the state

experiences a TES. This fraction corresponds to the spectroscopic factors of the state to the proton

s1/2 orbit. We can write the total TES for a nucleus AZ , using the appropriate spectroscopic factors

to states in the A−1Z − 1 nucleus, as

TEtotal =
∑

Ex<4MeV
TEsp(S′p) × C2S(Ex), (3.3)

where Ex is the excitation energy of the A−1Z−1 nucleus, and S′p = Sp(
AZ)+Ex(

A−1Z−1)−Ex(
AZ)

is the separation energy specific to the state we are examining.

3.2 Estimating TES in sd-shell nuclei

The data used in the creation of themodified Coulomb interaction had sixmirror state pairs removed

from the fit. These were removed due to large TE-shifts in the proton-rich member of the pair. In

this section we will examine these and select other cases with large TES in the sd-shell.

Table 3.1 shows the analysis of the cases excluded from the b-coefficient SVD fit. The TES of

ground states of these nuclei were calculated and found to be negligible, and so the shift for the

excited levels are all that are shown. The TEsp for these cases were taken from the curve in Fig. 3.1.

The 3+ state in 20Na reported in the table at 2645 keV was originally reported as a 1+ in [47], guided
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by the spin sequence of the mirror nucleus 20F. Indeed, the NNDC database still lists this state as

(1+). It was later argued to be a 3+ in [48–52] by process of elimination of possible mirror states.

For each case in the table, the calculated TEtotal is in better agreement with the experimentally

measured shift than is the shift calculated using USDC alone. The shift that is built-in to USDC

ranges from 30% to 75% of the calculated TEtotal , with the average being about 50%. This can be

seen in Fig. 3.2, where the TEtotal calculation is labeled as Skyrme. Also shown in this figure are

the TES built into USDCm, which are similar in magnitude to those in USDC.

This analysis can also be applied to ground states with large s1/2 spectroscopic factors, however

we can not simply add the calculated shift to the mirror energy to compare with experiment.

With USDC, 26P is calculated to have Sp = −146 keV. Estimates for the unmeasured Sp for 26P

include 140(200) keV [36], 0(90) keV [53], 85(30) keV [54], and −119(16) keV [55]. Using this

range of values and the method outlined above, we calculate an expected TEStotal of −255(14) keV.

If we assume that USDC again has 30-75% of the shift built into it, we can revise the separation

energy to include the additional shift from this analysis. The predicted USDC+TES one-proton

separation energy is then −12(65) keV, the central value of −12 keV corresponding to a proton

emission half-life of 7.6 × 1020 years.

We model the one-proton decay as a proton in a single-particle s1/2 orbit with a 25Si core,

and then calculate the width of the unbound state at various values of Sp. With this method,

we calculate a half-life of 0.046 ms for our most unbound separation energy prediction within

uncertainty, Sp = −77 keV. A typical beta-decay half-life of 100 ms corresponds to Sp = 57.5 keV

in this approximation. The beta-decay half-life of 26P has been measured as 43.7(6) ms [53]. We

conclude that lifetime is likely dominated by the beta-decay,
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Table 3.1: Calculated TES for selected nuclei using USDC and the single-particle TES model. Spectroscopic factors are to the s1/2 orbit
and calculated with USDC. The C2S, S’p, and Jπf (spin-parity of the state in the A−1Z − 1 nucleus) for the dominant term of the sum in
Eq. 19 are shown. Eexp

mirr+TE is the experimental energy for the neutron-rich state in the mirror pair plus the calculated TEtotal .

Jπ C2S Jπf S′p TEsp Mir Eexp
mirr Eexp

mirr+TE Eexp TEth TEtotal TEexp

(keV) (keV) (keV) (keV) (keV) (keV) (keV) (keV)
17F 1/2+ 1.000 0+ 105 -404 17O 870 466 495 -304 -404 -375
19Na 1/2+ 0.789 0+ -1068 -926 19O 1472 741 745(12) -225 -731 -727(12)
20Na 3+ 0.406 5/2+ -580 -568 20F 2966 2736 2645(2) -156 -230 -321(6)

1+ 0.413 1/2+ -811 -672 3448 3168 3001(6) -122 -281 -447(2)
0+ 0.559 1/2+ -896 -728 3526 3098 3086(2) -247 -407 -440(2)

23Al 1/2+ 0.704 0+ -409 -514 23Ne 1017 655 550(20) -146 -362 -467(20)
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Figure 3.2: Comparison of TES found in Table 3.1.

3.3 Improved predictions for Driplines and Separation Energies

One motivation for the development of isospin-breaking USD-type Hamiltonians comes from the

relatively poor predictions for ground state binding energies with USDB-CD. Its residuals when

compared to experiment for the sd-shell nuclei included in our updated data set for constraining

USDC/USDI are shown in Fig. 3.3. Theory is under-bound at the bottom of the shell and becomes

over-bound as you move up the shell (that is as you increase the mass number), causing calculated

separation energies to be systematically larger than experiment at the top of the shell. Also present

are the large deviations for the neutron-rich fluorine isotopes and island of inversion nuclei discussed

in the previous chapter for the new Hamiltonians.

The binding energy residuals for USDC are shown in Fig. 3.4. The results for USDCm, USDI,
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Figure 3.3: Differences between the experimental and USDB-CD ground state binding energies.
Positive values indicate that experiment is more bound than theory.

and USDIm are similar at this scale. The problem of over-binding towards the top of the shell is

solved, allowing for better predictions of separation energies. As expected though we still see the

disagreement for the island of inversion and fluorine isotopes. Fig. 3.5 shows the USDC two-proton

and two-neutron separation energies for sd-shell nuclei with Z ≥ 10 and N ≥ 10, respectively. The

patterns for two-proton separation energies along isotopic chains and for two-neutron separation

energies along isotonic chains are similar in shape, with a shift up in energy due to the Coulomb

interaction.

The proton-dripline can be defined as the point in an isotonic chain at which adding an additional

proton to the nucleus results in a negative one- or two-proton separation energy. At this point the
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Figure 3.4: Differences between the experimental and USDC ground state binding energies. Posi-
tive values indicate that experiment is more bound than theory. There are no significant differences
at this scale for calculations using USDI, USDCm, or USDIm. The dark green/blue Fluorine
isotopes are discussed in the text.

nucleus would undergo decay via proton emission rather than β-decay. With this definition, our

prediction of the 26P one-proton separation energy of −12(65) keV puts the nucleus outside of the

dripline (ignoring uncertainty). However, up until a negative Sp of about 100 keV the nucleus is

still able to undergo beta-decay. The point at which proton emission dominates over β-decay is

another definition of the proton-dripline.

USDC predicts the one- and two-proton separation energies for 26S to be -217 keV and

−1820 keV, respectively. For 30Ar, it predicts one- and two-proton separation energies of −199 keV
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Figure 3.5: Isotonic chains of S2p (left) and isotopic chains of S2n (right) calculated with USDI.
There are no discernible differences at this scale for calculations using USDC, USDCm, or USDIm.

and −2976 keV. These nuclei are then good candidates to consider as two-proton emitters, as a large

enough TES could cause them to be bound to one-proton emission while leaving the two-proton

channel open. However, the daughter nuclei from one-proton decay (29Cl and 25P) also have ground

states with large s1/2 spectroscopic factors. This has the effect of keeping the 26S and 30Ar unbound

to single proton emission by a few hundred keV.

Single proton and neutron separation energies were also calculated, allowing us to define the

entire proton and neutron driplines. Consistent with experiment, the oxygen isotopes with A > 24

are unbound. 26,28O are single neutron bound, but have negative two-neutron separation energies.

Fig. 3.6 shows the predictions for the proton dripline and proton separation energies using USDI.

For the purposes of this figure, the proton-dripline is defined as the point at which proton-emission

dominates the decay scheme. The dripline location is the same for the other new interactions
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Figure 3.6: Predicted proton dripline and separation energies for proton-rich nuclei in the sd-shell.
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Figure 3.7: Predicted neutron dripline and separation energies for neutron-rich nuclei in the sd-shell.
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with small changes to the separation energies between them. Fig. 3.7 shows the neutron dripline

calculated with USDI, which contains larger disagreement with experiment due to the island of

inversion.

One interesting possibility raised by the new interactions comes in examining the stability of
26O to various decays. While USDB-CD predicts the isotope to be unbound to two-neutron decay

by a few hundred keV, there is disagreement between USDC and USDI on the possibility of two-

neutron decay, with USDC predicting a slightly more negative separation energy than reported by

the NNDC, andUSDI predicting the nucleus to be bound to two-neutron emission. The two-neutron

separation energies for 26O are shown in Fig. 3.8. The interactions agree on the status of 28O as

two-neutron bound but neutron unbound.

There is only one isotope in the sd-shell that is predicted to be bound to proton emission but

unbound to two-proton emission, 34Ca. It has a two-proton separation energy of −2.011 MeV for

USDC, −1.991 MeV for USDCm, −2.027 MeV for USDI, and −1.976 MeV for USDIm. These are

significantly more negative than the extrapolated mass evaluation value of −1.46(31) MeV [56].

This is shown in Fig. 3.9. These predictions were included in an FRIB PAC1 proposal to study the

neutron-deficient calcium isotopes.

All four new Hamiltonians predict that 26P is proton unbound by about 150 keV. However, as

discussed in the TES section eariler in the chapter, a large TES brings the proton separation energy

to −12(65) keV, allowing the nucleus to predominately undergo β-decay rather than emit a proton.

For further discussion on 26P and its neighboring isotopes see [45].

Recently, the two-proton separation energy for 31Ar was measured as 6(34) keV [57]. Fig. 3.10

shows the theory predictions for USDB-CD and the new interactions compared to this experimental

value. The decrease in the separation energy for the new Hamiltonians against USDB-CD is

expected, and they are in better agreement with experiment. We see that the USDCm and USDIm

predictions even fall within the reported experimental uncertainty. Further measurement is needed

to determine the decay properties of 31Ar.

A notably large deviation between experiment and theory is found for the proton separation
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Figure 3.8: Experimental and predicted two-neutron separation energies for 26O. The gray band
shows experiment and its uncertainty.

energy of 29Cl. Experiment places the ground state at 1.8(2) MeV above the proton threshold and

assigns it as a 1/2+ state [58], with an excited 3/2+ state at 0.5 MeV. Our configuration-interaction

calculations all agree on a ground state at 2.7 MeV above the proton threshold, but with a 3/2+

assignment. The first excited state is then the 1/2+ at 0.08 MeV. As discussed in the TES section

of this chapter, the 1/2+ state has a large proton s1/2 spectroscopic factor. A TES of −0.389 MeV

is calculated for the 1/2+ which causes the inversion of the level scheme as seen in experiment.
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Figure 3.9: Experimental and predicted two-proton separation energies for 34Ca. The gray band
shows experiment and its uncertainty.

3.4 Examining the large IAS mixing in 31,32S

It is tempting to view the different states in a nucleus as being states with a particular configuration

and set properties. But of course we know that the rules of quantum mechanics don’t allow this.

There is a mixing up of the basis states to create eigenstates of the Hamiltonian with definite

energy eigenvalues. But these eigenstates can be a superposition of many different pure states with

different isospin.

During a beta-decay, level-mixing of the IAS in the daughter nucleus with similar Jπ states can

cause the level to shift in energy and greatly affect the rate of the decay and the decay strength to
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Figure 3.10: Experimental and predicted two-proton separation energies for 31Ar. The gray band
shows experiment and its uncertainty.

final states in the daughter. Using a two-level mixing framework, as in Ref. [59], we define the

strength of this mixing between the IAS and a single level n as,

< v >=
< IAS|T2 |n >

< IAS|T2 |IAS > − < n|T2 |n >
∆E, (3.4)

where ∆E is the difference in energy between the two states. The resulting shift in energy from the

expected energy of the IAS is then,

∆EIAS =
< v >2

∆E
. (3.5)

It is clear that if there is a large off diagonal element if the T2 matrix between the IAS and a

nearby non-IAS level, the shift in energy can be significant. With our new isospin-breaking effective

interactions, we can examine this isospin level mixing and extract the mixing matrix elements in

order to compare to experiment.
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Table 3.2: Isospin-mixing matrix elements between the 6th and 8th 3
2
+ sd-shell levels in 31S, and

the 2nd and 3rd 1+ sd-shell levels in 32S.

Interaction v(31S) v(32S)
USDB-CD 28 16
USDC 36 23
USDCm 51 42
USDI 38 22
USDIm 56 40
Experiment 41(1) 26(3)

Two examples of known large isospin mixing can be found in 31S [59] and 32S [60, 61]. The

3/2+ levels at 6279 keV (IAS) and 6390 keV in 31S have a deduced empirical isospin mixing matrix

element, v, of 41(1) keV. Study of the super-allowed β transition for 32Cl provided an experimental

branching ratio to the 7190 keV state in 31S [61]. Treating this as a two-level mixing problem with

the IAS at 7001 keV the branching ratio was used to deduce M2 = 0.0625(42). Using our new

interactions, we calculate a theoretical B(GT) value of 0.0147(17) (this includes the quenching

factor of 0.6). Given that

M2 = B(F) +
(
gA

gV

)2
B(GT), (3.6)

where (gA/gV )
2 = 1.588, we arrive at a Fermi decay strength of B(F) = 0.039(5). For more on

these decays see Section 3.5. This then translates to an isospin mixing matrix element for the two

states of v = 26(3) keV .

Our results for the four new interactions and USDB-CD are compared to these two experimental

mixing matrix elements in Table 3.2. In both cases, we see better agreement with experiment for the

new USD-type Hamiltonians compared to USDB-CD. Amongst the new interactions, USDC and

USDI and in better agreement with both v(31S) and v(31S) compared to USDCm andUSDIm. There

is an overestimation of the mixing strength in the interactions containing the modified Coulomb

interaction. In Chapter 4 we will revisit these.
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Table 3.3: Examining the decay strengths to low laying levels in 19Ne from the ground state of
20Mg via a β delayed proton emission using USDB-CD. The two branching ratio columns use
experimental data from [63] for BR1 and [64] for BR2 to normalize to the theoretical value for
5/2+. Calculated C2S for this decay are small, and so are reported in the table in units of 10−6.

Jπf Ex C2S Q BR1 (exp) BR2 (exp) Γp,sp Γp Γp [*]
(MeV) (MeV) (%) (%) (MeV) (eV) (eV)

1/2+ 0 36 4.3 0.97(9) 1.8 5 (guess) 180 320
5/2+ 0.238 149 4.06 0.3(2) 0.59 0.7 104 104
1/2- 0.275 ? 4.06 0.31(7) 0.32 1 (guess) 56
5/2- 1.508 0 0.4(2) 0.07 12
3/2+ 1.536 35 2.76 0.47(7) 0.51 0.17 6 90
3/2- 1.616 ?
Σ 2.45 3.3 580

3.5 β-delayed proton emission and the superallowed β-decay of 20Mg

As discussed in Chapter 1, there are two main types of β-decay, Fermi and Gamow-Teller. The

Fermi decay operates as simply the isospin ladder operator which can connect states between

isotopes that differ only in Tz. The special case of connecting IAS is known as superallowed Fermi

β-decay. Gamow-Teller decay allows for a change of angular momentum l during the decay.

Superallowed 0+ → 0+ β decays can serve as precise tests of the Standard Model’s description

of the electro-weak force. Recently, Glassman et al [62] performed an experiment in which 20Mg

was implanted in a plastic scintillator inside an array of high-purity germanium detectors. When

the sample underwent β decay, the resulting γ ray spectrum was captured in high-resolution and

analyzed. From this, they were able to report a highly precise value of the β-delayed γ branching

ratio through the IAS in 20Na and the associated QEC . Initial shell-model calculations were

carried out with USDB-CD, the isospin-breaking extension to the USDB interaction, as this project

coincided with the development of USDC.

The experimentalists were able to measure the intensities Iβγ and Iβp for the two decay paths.

We have two problems when trying to compare these measurements to our calculations. First,

several unnatural parity states are involved in the decay process for which sd-shell interactions are
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Table 3.4: Results for γ- and p-decay widths using three USD-type interactions, with comparisons
made to the experimental decay width ratio and branching ratio. Calculated C2S values for this
decay are small, and so are reported in the table in units of 10−6. The reported spectroscopic factors
are to the 5/2+ level in 19Ne.

Interaction E I AS
x (MeV) Γγ (eV) Γp (eV) Γγ/Γp C2S β BR

USDB-CD 6.840 7.52 580 0.0129 149 0.0306
USDC 6.722 6.76 1026 0.0066 263 0.0330
USDI 6.729 6.92 1058 0.0065 271 0.0317
Exp. 6.498 - - 0.0063(9) - 0.0254(17)

unable to provide results. These are intruder states that involve nuclear orbits outside of the sd-shell

model space. To counter this, we normalize to the experimental results in [64] using the theoretical

value for the 5/2+ state at 238 keV. Second, our calculations produce decay widths rather than

intensities. However, the ratio Iβγ/Iβp is equal to the ratio Γγ/Γp where Γγ and Γp are the partial

widths for γ and proton emission from the IAS in 20Na, respectively. So we instead calculate the

associated widths for those decays to determine the same ratio.

With reasonable values for the single particle decay widths, we can calculate the full decay

width by multiplying the widths by their associated spectroscopic factors. These decay widths are

then scaled to the experimental branching ratios to produce Γ∗p, and these individual decay widths

can then be summed to get the decay’s full Γp of 580 eV with USDB-CD. Lastly we take the ratio

of this width to the calculated Γγ of 7.5 eV, to get a β − γ branching ratio of 0.032%. This is a

factor of 2 difference with the experimentally measured ratio of 0.016%.

Shell-model calculations were also carried out with two new USD-type interactions, USDC and

USDI. The new interactions predict the excitation energy of the IAS to be 6.722 MeV (USDC) and

6.729 MeV (USDI), placing them about 0.1 MeV closer to experiment than USDB-CD. The C2S

for the first excited state in 19Ne is higher in these interactions than it is in USDB-CD, which results

in a Γp of 1026 eV (USDC) and 1058 eV (USDI) when the same scaling to experimental branching

ratios is used. Along with a small decrease in Γγ, the Γγ/Γp ratios are .0066 (USDC) and .0065

(USDI) which are in remarkable agreement with the experimentally determined ratio of 0.0063(9).

These results are summarized in Table 3.4, and show the marked improvement over USDB-CD
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in describing this decay.

3.6 Explaining the Cubic IMME for the A=32, T=2 Isospin Quintet

The A = 32, T = 2 isobaric multiplet consists of states in five nuclei. This multiplet has been long

known to have a breakdown of the IMME’s quadratic nature [65]. The source of this breakdown

has been elusive, and recent work has attempted to explain the energies of this multiplet.

Isospin admixtures with non-analog Jπ = 0+ states cause a shift in the energy of the IAS in
32Cl, 32S, and 32P. Shell model calculations reveal that this mixing is due primarily to a single

T = 1 state that sits a few hundred keV below the IAS in the three interior nuclei of the multiplet.

It primarily effects the energy of the IAS in 32Cl, but also influences the other two states. We study

the mixing using the new USDC and USDI interactions [14], as well as the USDB-CD interaction.

The energy differences between this important T = 1 state and the IAS are displayed in Table. 3.5,

along with the calculated isospin mixing matrix element v between these states, for the three nuclei

in Fig. 3.11.

The previous section in this chapter discusses two other cases of large isospin-mixing affecting

Fermi decays, found in 31S [59] and 32S [60, 61]. We will use a similar method to examine possible

mixing in this multiplet.

A comparison of v for this important T = 1 state is shown in Fig. 3.11 for 32Cl, 32S, and 32P.

The largest mixing is found in the Tz = −1 member of the multiplet 32Cl, with a drop off in mixing

as you move up in isospin projection. The USDC and USDI interactions again predict larger v than

that predicted by USDB-CD. The experimental value from this work for the mixing in chlorine is

39.0 ± 2.4 keV, which is consistent with the USDC and USDI values.

The energy shift in the IAS depends on both the isospin mixing matrix element and the energy

difference between the two states. The USD-type interactions have an energy rms deviation on the

order of 150 keV, which can be relevant for the present discussion. So we examine the effect of

shifting the energy difference between the T = 1 and T = 2 states to the experimental values. This

is accomplished by adding an isospin-dependent term to the Hamiltonian resulting in a shift of all
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Figure 3.11: Isospin mixing matrix elements between the important T=1 state and the IAS in 32Cl,
32S, and 32P.

Table 3.5: Energy differences between the Jπ = 0+, T = 2 IAS and the nearby Jπ = 0+,T = 1 state
in 32Cl, 32S, and 32P, along with the isospin mixing matrix element in 32Cl. All values in keV.

∆E v

Interaction 32Cl 32S 32P 32Cl
USDC -226 -186 -237 40
USDI -308 -266 -326 41
USDCm -324 -239 -293 46
USDIm -405 -321 -383 47
USDB-CD -440 -378 -427 22
Exp. -596 – -452 39.0(2.4)
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Figure 3.12: Cubic and quartic corrections (d and e) for the A = 32, Jπ = 0+, T = 2 isobaric
multiplet. See text for descriptions of the shift procedure.
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T = 2 states relative to the T = 1 and T = 0 states without changing the isospin-mixing matrix

elements.

This results in mild changes to the e-coefficient due to changes in the mixing of the T = 2 state

in 32S, but a fairly universal decrease in the d-coefficient, in the case of the new interactions by

around 50%. Fig. 3.12 shows the change in d- and e-coefficients for the five interactions, first for

the unshifted shell model calculations, and then again when the T = 2 states have been shifted.

We can examine the contribution to the d- and e- coefficients caused by mixing of non isobaric

analog states in the three interior nuclei of the multiplet. First we can look at the exact solution for

the d- and e- coefficients in a T = 2 multiplet with energies ETZ ,

d =
1

12
(E2 − 2E1 + 0E0 + 2E−1 − E−2)

e =
1

24
(E2 − 4E1 + 6E0 − 4E−1 + E−2) .

(3.7)

Then, treating the isospinmixing as a two-level problem between the IAS and nearby non-analog

states, we can calculate the shift in the IAS due to that mixing in each nucleus as

s = −
v2

∆E
. (3.8)

This allows us to rewrite the d- and e- coefficients as a sum of single state contributions di and

ei from the T = 0 and T = 1 levels. These take the form,

di = −
1
6

sP +
1
6

sCl

ei = −
1
6

sP +
1
4

sS −
1
6

sCl .

(3.9)

It is then clear that mixing in 32S can not impact the d-coefficient.

We can then remove the contribution to the IMME corrections coming from mixing with the

important T = 1 state, and this is shown as the "removed" set of data in the figure. When the

mixing for the T = 1 state is turned off, we see very small d- and e-coefficients that are near zero.

What is left is the cumulative effect of the other non-analog Jπ = 0+ states, and in the case of the

large negative e-coefficient in USDI the mixing is found in a nearby T = 0, 0+ state in 32S. This

T = 0 mixing in 32S can not be used to explain the large experimental d-coefficient, and there are

no other states with large enough mixing to explain it.
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It is therefore our conclusion that isospin-mixing alone can not explain this experimental

multiplet, as the known sources of mixing can not be shown to explain the experimentally measured

multiplet masses. This leads us to suggest that one of the experimental masses is incorrect, and is

the source of this discrepancy.

Results from this section are included in Ref. [66] and in a manuscript prepared by Smarajit

Triambak set to be submitted for publication.

3.7 Quenching of the Gamow-Teller Decay Strength Function

In the introductory chapter, the two types of β-decay (Fermi and Gamow-Teller) were discussed.

And earlier in this chapter oblique references to a quenching of the Gamow-Teller decay strength

were made. This quenching is widely used and is necessary to accurately reproduce experimental

results. But what does it mean to quench the Gamow-Teller decay in calculations?

A sum rule for each of the two types of decays can be derived in the "free" nucleon model. The

Fermi sum rule is ∑
f

[
Bi, f (F−) − Bi, f (F+)

]
= ±(Ni − Zi), (3.10)

where the sign in positive for neutron-rich nuclei and negative for proton-rich nuclei. The Gamow-

Teller sum rule is ∑
f

[
Bi, f (GT−) − Bi, f (GT+)

]
= 3(Ni − Zi). (3.11)

In theoretical models of complex nuclei the sum rule for the Fermi decay generally matches

up well to experiment, but that is not the case for the Gamow-Teller sum rule. There are many

potential reasons for this disagreement. The first is that the true nuclear wave functions are

more complicated than the theoretical ones we compute in the valence configuration-interaction

approach. The shell-model can only account for the valence nucleons behavior and does not account

for degrees of freedom from missing nuclear correlations and contributions from meson-exchange

currents. There have been many theoretical explorations for the cause of this discrepancy.

The method of accounting for this in shell model calculations is to implement an “effective"

operator for the Gamow-Teller matrix elements. This can be thought of as a "quenching" of the
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Figure 3.13: The ratios of the experimentally measured β−-decay half-lives to those calculated
with USDC using q = 0.6..

transition strength. The quenching factor has generally been set to q = 0.6 [67–71] in the sd-shell.

But can this be refined to provide an even greater agreement with experiment?

An advantage of the development of the USDC interaction is that previous interactions were not

reliable throughout the shell for accurate Q values for nuclear decays, and β-decays of particular

interest here. The improvement of predictions for the ground state binding energy of sd-shell

nuclei allows for a purely theoretical description of the beta-decay process that does not rely on

experimental Q values.

With this, we calculate the expected half lives for all well-known β− decays in the sd-shell using

USDC and plot the ratio to the experimental half lives against mass number in the top panel of Fig.

3.13. Apart from a few notable outliers which we will discuss, there is a consistent underestimation

of the decay half-lives for nuclei at the top of the shell and a consistent overestimation of those

β-decays that are primarily GT at the bottom of the shell.

In this section, we attempt to transition away from a single parameter fit of the GT quenching
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Figure 3.14: Scatter plot of the ratios of the β−-decay half-lives calculated using USDC with no
quenching (q = 1.0) to those calculated with the typical quenching factor (q = 0.6).

for the sd-shell. That is, we seek a linear relationship dependent on the mass of a nucleus for the

quenching factor q(A). If we connect those points with similar Tz in Fig. 3.13 we can see the need

for this change. We see that those nuclei that are further from zero total isospin projection (that is

the same number of protons and neutrons), the stronger this linear relationship with mass is.

To investigate the cause of this, we can examine the effect of removing this quenching factor on

the predicted USDC half-lives by setting q = 1.0 which leaves the GT operator unchanged. The

ratios of these calculations compared to the standard calculations with q = 0.6 are plotted against

mass number in Fig. 3.14 with the isospin groups still shown.

In this figure, if a decay was purely a Fermi decay with no Gamow-Teller transitions then we

would expect this ratio to be exactly equal to one as we do not quench the Fermi operator. On the

other hand, if there were no Fermi decay then we would expect this ratio to be 0.6 as any decay

would be entirely Gamow-Teller in nature so the entire decay is quenched. In the case of β-decay

in nuclei with Tz = 1/2,1 we see ratios that approach 1.0 but it is not consistent for all cases.

Wewant to avoid including those decays in which a large fraction of the decay is Fermiwhile still
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Figure 3.15: The same ratios plotted in Fig. 3.14 plotted against their theoretical Q value instead
of mass number. The vertical line separates the two groupings of the data.

retaining as much good data as possible. It is therefore necessary that we implement a consistent

standard to include or exclude a decay in the fitting of the quenching factor. To this end, it is

helpful to plot the same half-life ratios found in Fig. 3.14 against the USDC Q value rather than

against mass number, as shown in Fig. 3.15. We see an immediate separation into two groups: (1)

those β-decays in nuclei with a low Q value (<8 MeV) that have a large spread across the range

of possible ratios, and those β-decays in nuclei with large Q values and low half life ratios. For

nuclei with small Q values, the possible levels in the daughter nucleus open to the decay will be

energetically limited. If the IAS is one of those few available levels to decay to, then the Fermi

decay can dominate and interfere in the fitting of the quenching factor. It is therefore necessary to

use the second group, with large Q values, to determine the mass scaling quenching factor.

A standard least squares fit to this data with a linear model results in the following relationship,

q(A) = 0.95 − 0.025(A − 16), (3.12)

which has been written in terms of A − 16 to quickly show the strength at either end of the shell.
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(a) Constant quenching factor.

(b) Mass dependent quenching factor.

Figure 3.16: (a) Same data as in Fig. 3.13 using the typical quenching, with lines connecting
similar Tz nuclei that were included in the fit. (b) Same as above but using the new mass dependent
quenching developed in this section. The black circles show the results for the excluded decays
with low Q values.
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This now runs from a quenching of 0.95 for A = 16 to 0.35 for A = 40.

When we recalculate the β-decay half lives using this new mass dependent quenching factor

q(A) we see an improvement in agreement with experiment across the shell for those nuclei with a

sufficiently high Q value (and therefore small half life). This is shown in Fig. 3.16, with the top

panel again showing the results from Fig. 3.13. This new mass dependent relationship allows for

more realistic calculations of β-decay properties for sd-shell nuclei in future work.

To further improve this mass dependence of the quenching factor, one could look at partial

half-lives. That is to say, we could remove the portion of the half-life coming from the Fermi decay

and examine the contribution from the GT decay separately. This could then allow us to incorporate

those decays excluded from the fit in this work to achieve a better result overall.
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CHAPTER 4

FURTHER REFINEMENT OF THE USDC INTERACTION

During the development of the USDC/USDI interactions, we explored the possibility of adding in

an isovector term to account for the expected small deviation between the nn and pp interaction

strengths in the nuclear strong force. This term was included in the charge-dependent extension to

USD, USD-CD [31, 32] which is often used in conjunction with USDB as USDB-CD. However,

due to a lack of sufficiently constraining data for this term, it was excluded. In this chapter, we will

revisit this decision and search for a way to precisely determine the isovector strength of the strong

force in a renormalized sd-shell interaction.

The work contained in this chapter serves as the foundation of a larger scale project that is

ongoing with the goal of improving the USDC interaction and studying isospin breaking in the

sd-shell.

4.1 Sources of Isospin Breaking in the Nuclear Hamiltonian

We begin with the assumption that the nuclear strong force is symmetric with respect to isospin.

Setting aside the electric charge of the proton, the concept of isospin was introduced to describe

the similarity in behavior under the strong force for the proton and neutron. This description has

resulted in many useful tools and models to understand the behavior of nuclei. However, under the

Standard Model we can determine the limits of isospin symmetry in nuclear physics.

In nuclear structure physics, the nucleons are often treated as fundamental particles. This is

because, for the energies we are considering, it is essentially true. In actuality, the nucleon is made

up of three quarks being held together by gluons to achieve a neutral color charge. A detailed

description of this process is outside of the scope of this dissertation, but the interested reader

can find more in any Quantum Chromodynamics textbook. The difference between a proton and

neutron comes in the types of quarks that compose them, as described in Section 1.5.

The strong force for protons and neutrons is therefore able to be described as a sum of three
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terms,

Hstrong = H0 + HIV + HIT (4.1)

in which the strong force has been decomposed into a scalar, vector, and tensor term. The

isospin-conserving interaction H0 accounts for the majority of the strength of the interaction and

is independent of the isospin projection of the interacting nucleons. The remaining terms are

the isovector and isotensor components of the interaction which result in the breaking of isospin

symmetry in different ways.

The isotensor interaction can be understood as a breaking of the charge-independence (CIB)

of the strong force. This breaking manifests in our interactions as a small percentage increase in

the strength of the pn T = 1 TBME relative to the corresponding nn and pp TBME. From the

standard model, we also expect charge-symmetry breaking (CSB) of the nuclear strong force [72].

This manifests as a subtle splitting of the pp and nn strong TBME, the strength of which has been

difficult to determine precisely through experiment. While the source of CIB is rather complex, the

source of CSB in the strong force can be explained by the difference in masses between the proton

and neutron. The neutron is slightly more massive than the proton, which results in differences in

their kinetic energies. These differences then influence the overall effect of the nuclear strong force

on the nucleons.

The strength of these corrections compared to H0 is on the order of a couple percent, and

so do not effect overall binding energies or excitation energies significantly (except in cases of

increased isospin level mixing as explored in Chapter 3). The effects of these terms are best found

when looking at the energy differences found in isobaric multiplets. Recreating the experimental

coefficients of the IMME with an interaction is a strong indicator of a reasonable modeling of

isospin breaking effects. Effective interactions are generally able to reproduce these well when

constrained appropriately, while ab initio methods are generally lacking in this area.

In a recently accepted, but not yet published, article in Physical Review C, Martin et al.

[73] presented the first steps in bench marking isospin-breaking in ab initio nuclear theory for

superallowed Fermi β-decay. Isobaric multiplets from A = 10 to A = 74 were examined. They
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Figure 4.1: Visualizing the T = 1/2 doublets as proton/neutron hole and particle states around
even-even Tz = 0 nuclei.

are able to achieve an agreement in the overall scale of the b- and c-coefficients on the order of

250 keV, but fail to reproduce the oscillatory pattern for the c-coefficients found in experiment and

replicated by USDC/USDI.

4.2 Isolating the effects of Charge-Symmetry Breaking

Isospin non-conservation in the nucleus comes frommultiple sources, two ofwhichwere considered

in Chapter 2 covering the USDC/USDI interactions. Those were the Coulomb force felt by the

protons, and an isotensor interaction that broke the charge-independence of the strong force for
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proton/neutron pairs. The isotensor interaction was modeled as a percent increase in the T = 1

pn TBME over their nn and pp counterparts. These were able to be constrained as they are

primarily responsible for specific energy differences between isobaric multiplets, namely the linear

and quadratic coefficients of the IMME. The dependence of the c-coefficients is shown in the top

panel of Fig. 4.2, and discussed in depth in Chapter 2.

As noted in [14] and earlier in this work the determination of an isovector interaction was

excluded due to the lack of constraining information. Previous works in the sd-shell have included

an isovector interaction constrained alongside an isotensor interaction using the b- and c-coefficients

of the IMME as constraints. However, we saw no improvement in rms deviations of these quantities

with an isovector interaction so instead we explored the modification of the Coulomb interaction to

achieve better agreement with experiment.

Lacking an isovector term, the fits resulted in an isotensor strength of 2.2% for the USDC and

USDI interactions, but a reduced isotensor strength of 0.8% for theUSDCmandUSDIm interactions

containing the modified Coulomb. This reduction in isotensor strength can be interpreted as the

SVDfit of the CoulombTBME attempting to compensate for non-Coulomb isospin-breaking effects

in the nucleus. This is less than ideal due to the different mass dependencies in the Coulomb TBME

and in the strong TBME. This resulted in sub-optimal performance of the modified Coulomb in

Chapter 3.

To isolate the effects of the isovector component of the nuclear strong force in a measurable

way, we will dive deeper into the mirror energy differences of the T = 1/2 multiplets (doublets).

Fig. 4.1 shows the relevant doublets in the sd-shell separated into two groups. A doublet can be

viewed as either a "particle" or "hole" pair, based on whether the member nuclei can be modeled as

a single particle or single hole around an even-even Tz = 0 core nucleus. For example, the A = 17,

T = 1/2 doublet consists of the ground states of 17O and 17F which can be modeled simply as a

core 16O nucleus with a valence neutron/proton. It is clear then that the A = 19 doublet can be

modeled as a neutron/proton hole in 20Ne.

An important note, for this section we will be examining the isobaric doublets that have Jπ
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Figure 4.2: The c-coefficients of the lowest lying T = 1 triplets and the ∆MED for the T = 1/2
doublets. We see visually that the isotensor interaction is primarily responsible for reproducing
the c-coefficients, and independently the isovector strength is responsible for the oscillations in the
double energy difference of the mirror pairs. The LDM predictions are shown in grey as a sanity
check.
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assignments determined by the quantum numbers of the highest energy orbit the valence nucleons

would be occupying in a standard Fermi filling order. In practice this means looking at excited

states rather than the true ground state for some pairs.

The mirror energy difference in these doublets are due primarily to the Coulomb interaction,

which has a much larger effect than either the isotensor or isovector terms. Motivated by [72] we

then define a new quantity by taking the difference between two calculatedmirror energy differences

(MED) for A = 17 and A = 19,

∆MED(A = 19) = MED(A = 19,T = 1/2) −MED(A = 17,T = 1/2). (4.2)

This is defined for every odd A pair up to A = 39. For T = 1/2 pairs, the mirror energy difference is

equal to the b-coefficient of the IMME. The experimental ∆MED are shown in the bottom panel of

Fig. 4.2wherewe see a similar oscillation about the LDMpredicted value in gray. The contributions

to ∆MED from the various components of our isospin-breaking shell model interaction are also

included in the figure. The dotted black line represents an INC interaction consisting only of

Coulomb and isotensor with no isovector term. This tells us that the ∆MED is independent of the

isotensor interaction.

We see then that the isovector interaction of the nuclear strong force is the source of the

oscillatory pattern of this double energy difference. Just as we know the oscillations of the c-

coefficients are caused by the isotensor interaction, which can be seen in the top panel Fig. 4.2.

We used that observation to constrain the strength of the charge-independence breaking, and now

we can use the experimental ∆MED to extract the strength of the charge-symmetry breaking .

4.3 Results for the new Refined USDC interaction

With our constraining data set given in the previous section, we are able to use 11 ∆MED in the

sd-shell in the determination of the isovector strength. Table 4.1 lists these 11 cases and includes the

results for the USDB-CD, USDC, and USDCm interaction compared to the experimental values.

We can see the USDB-CD, which also includes an isovector strength, has the lowest rms deviation

among the previously discussed interactions at 49 keV. The USDC interaction is unable to provide
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Table 4.1: Comparison of calculated and experimental ∆MED for sd-shell T = 1/2 doublets,
labeled by the mass and spin of the higher mass pair. All positive parity. All values in MeV

A J USDB-CD USDC USDCm New Exp. error
19 5/2 0.491 0.392 0.519 0.5049 0.520 0.001
21 5/2 0.270 0.387 0.321 0.2998 0.249 0.002
23 5/2 0.454 0.388 0.441 0.4655 0.539 0.001
25 5/2 0.196 0.286 0.267 0.1974 0.210 0.001
27 5/2 0.459 0.364 0.463 0.45 0.535 0.000
29 1/2 0.194 0.195 0.123 0.1005 0.129 0.000
31 1/2 0.436 0.369 0.515 0.4324 0.456 0.000
33 3/2 0.249 0.336 0.174 0.2539 0.185 0.000
35 3/2 0.421 0.381 0.438 0.4427 0.384 0.001
37 3/2 0.166 0.238 0.106 0.1627 0.181 0.001
39 3/2 0.411 0.372 0.421 0.4361 0.377 0.001

rms: 0.049 0.109 0.058 0.051

such good agreement, and in fact does not follow the oscillation pattern found in experiment very

well as shown in Fig. 4.3. However, the modified Coulomb interaction in USDCm does an excellent

job of improving agreement with experiment by construction when compared to USDC, dropping

the rms deviation to 58 keV. Our aim then, is to lower the USDC interaction’s ∆MED rms deviation

through the addition of an isovector term while keeping the overall agreement with experiment in

other areas (energy levels, MED, c-coefficients) as shown in Chapters 2 and 3.

To provide a facsimile of the modified Coulomb fitting procedure, we further include the full

energy level data set as well as any MED contained in the data set as inputs for the constraining

of the isovector strength. We then include the following terms in the fitting procedure: an overall

strength for the Coulomb TBME, the three Coulomb SPE, and the isovector strength. The isovector

strength is modeled as a percentage increase (decrease) of the nn (pp) T = 1 TBME. We split the

effect of the isovector term between the nn and pp TBME to avoid any influence on the isotensor

strength, which is dependent on the average of the nn and pp TBME.

Doing so results in the following changes from the Coulomb in the USDC interaction. First,

the Coulomb TBME are increased very modestly by 0.26%. Second the Coulomb SPE are left

essentially unaltered at 3.451 MeV, 3.628 MeV, and 3.324 MeV for the 0d3/2, 0d5/2, and 1s1/2

orbits. These can be compared to the other interactions by looking at Table 2.4.
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Figure 4.3: A comparison of predictions for the ∆MED using the new interaction and
USDC/USDCm, with experiment shown in black circles. The liquid drop model predictions
are shown in grey.

Lastly we now have a fitted isovector interaction strength of 1.4%. This new version of the

USDC interaction has a similar energy rms deviation of around 150 keV, and a similar MED rms

deviation of around 75 keV. The newly gained benefit is an rms deviation for the ∆MED of 51 keV

which is an improvement over even USDCm. The rms for the new interaction is also on par with

the USDB-CD interaction.

This new interaction would ideally follow the fitting procedure laid out in Chapter 2, in which

with the INC interactions determined a refitting of the isospin-conserving TBME in the strong

interaction is completed. This is an area of ongoing research.

4.4 Improvement in the calculated 27Si spectra

One of the motivations in Chapter 2 for exploring a secondary SVD fit for the Coulomb TBME

was a desire to better describe the exhaustively measured mirror pairs in 27Si and 27Al. The new

data provided by Gavin Lotay [37] consists of 45 mirror states with well known energies and spin
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Figure 4.4: Deviations from experiment in the calculated MED for mirror pairs in 27Si and 27Al
for the new interaction compared to USDC and USDCm.

assignments. When these mirror energy differences are calculated with our new interaction and

compared to the experimental results, we see several pairs at high energy with poor agreement.

However, the new interaction results in a mixing of the level order at high excitation energies

(above 5 MeV) that would need to be resolved more carefully, so these deviations are due to a

mixing up of the mirror pairs rather than any real deficiency in the theory. So when comparing to

the previous USDC and USDCm interactions we will discuss the rms deviation for the low lying

levels.

For those mirror pairs with Ex < 5 MeV, the USDC and USDCm interactions have rms

deviations of 82 keV and 51 keV, respectively. The new interaction with an added isovector

interaction term manages to reduce this rms deviation to 61 keV, a marked improvement over

USDC, but it is still unable to fully replicate the agreement found in USDCm. This issue may be

resolved with a refitting of the isospin-conserving strong interaction with the newly determined

INC interactions strengths.
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4.5 New IAS mixing calculations in 31,32S

In Chapter 3, we examined two cases of known large isospin level-mixing in two sulfur isotopes

discovered by studying the β-decay of chlorine isotopes. Level-mixing of the IAS in the daughter

nuclei with similar Jπ will cause the level to shift in energy, and so the study of isospin level mixing

is important to understand β-decay.

The USDC interactions all showed improved agreement with the extracted experimental mix-

ing matrix elements when compared to USDB-CD. However, with USDCm and USDIm which

contained the old modified Coulomb interaction, we saw an overestimation of the mixing strength.

Can our new interaction improve upon these results or at the least maintain reasonable agreement

with experiment?

As before, we assume two level mixing and small isospin mixing with the states |1〉 and |2〉

where |1〉 is the IAS and |2〉 is the state it is mixing with so that,

|1〉 = |T1〉 + α |T2〉 (4.3)

where α = 〈VINC〉 / (E1 − E2) is small. We can then solve for the isospin mixing matrix element as

〈VINC〉 = 〈2| T2 |1〉 (E1 − E2)/〈2| T2 |2〉 (4.4)

This simple equation can be used when primarily one level is the cause of the large isospin mixing.

The new interaction results in 33.5 keV and 28.5 keV for the strong mixing found in 31S and
32S, respectively. The results for the previous USD-type interactions are shown in Table 3.2 and

are compared to the experimental results of 41(1) keV and 26(3) keV for the two mixing cases. The

issue in the modified Coulomb interactions of overestimating the isospin mixing strength in these

sulfur isotopes seems to have been resolved. We can see that our new interaction is able to have

agreement with experiment on par with USDC and USDI for these mixing matrix elements, along

with the improved agreement in describing mirror energy differences shown earlier.

This new interaction has not yet been named and is still in the process of being improved, but

the preliminary results presented in this work are a positive sign that this strategy to improve the

USDC interaction is effective.
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CHAPTER 5

MODELING THE NEUTRON-RICH CALCIUM ISOTOPES

Next generation experiments performed at newly built rare-isotope facilities will provide a greatly

expanded view of the nuclear landscape. While qualitative predictions are available, quantitative

predictions for those soon-to-be-discovered nuclei are needed to guide and motivate these exper-

iments. In this chapter we present a process to quantitatively describe the calcium isotopes out

to 60Ca, probably the last doubly-magic nucleus to be discovered by the new radioactive-beam

facilities.

We show that a data-drivenmethod for improving theHamiltonian provides an excellent descrip-

tion of the known binding energies and spectra for the calcium isotopes within the fp model space.

A new universal fp interaction for calcium (UFP-CA) is presented. Configuration-Interaction cal-

culations with UFP-CA together with comparisons to results from energy-density functional (EDF)

models leads us to conclude that 60Ca is doubly-magic at a level that is similar to that observed in
68Ni.

The work contained in this Chapter serves as a jumping off point for a larger project. The goal

is to generate interactions for the sd − p f model space below the calcium isotopes as well as the fp

and fpg model space above calcium.

5.1 The Calcium Data Set

The data set used for this work contains the absolute binding energies for 46−57Ca, with the available

experimental values from the 2016 Atomic Mass Evaluation [56] used for A < 55. Recently the

first mass measurements of 55−57Ca were published [74], and these are adopted here for the fit.

Additionally, 23 well-known fp excited states are included in the fit as they contain important

information for constraining the matrix elements involving the high lying 0 f5/2 and 1p1/2 orbits.

Along with the 12 ground state binding energies, our data set consists of 35 energy levels for

these fp-shell calcium isotopes. Energies for A < 46 were excluded to avoid the influence of low
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lying intruder states on the 0 f7/2 parameters in the interaction. The excited states included in the fit

are shown as green points at their experimental excitation energies in Fig. 5.1 along with a broad

look at the energy spectra calculated with UFP-CA for the calcium isotopes with A > 45. Each line

corresponds to a predicted energy level with the length and color representing the spin and parity

of the level. We will show that we can confidently predict that the levels shown in Fig. 5.1 exist

and their energies are correct within around 200 keV.

5.2 Modifying the SVD Procedure for Small Data Sets

The fit begins by formulating the problem as a χ2 minimization of Np parameters p j on a data set

of size Nd .

χ2 =

Nd∑
i

wi(E( ®p) − Eexp
i ), (5.1)

where the weights are set to wi = (σi)
−2 with the adopted errors σi for the data set being a

combination of the recorded experimental errors and a theoretical error. To normalize theminimized

χ2 to the degrees of freedom (Nd − Np), we set σth =75 keV. The adopted errors are taken as the

theoretical and experimental errors added in quadrature. The χ2 is minimized when ®p = ®p0, which

can be found using standard methods. However, the chosen parameters are highly correlated and

the states included in this fit will be more dependent on some LC of pi than others. This motivates

us to truncate the parameter space using a SVD as and explained in depth in Ref. [15] and Section

1.6, and produces a family of solutions ®p0(n), where n is the number of LC allowed to vary in the

fit.

The parameter variance-covariance matrix S can be determined for each ®p0(n) by inverting the

SVD of the data matrix G, with the i > n diagonal terms of the D matrix set to zero in order to

capture only the statistical uncertainties from the regression. With S(n), parameter uncertainties

can be taken as ∆pi(n) =
√

S(n)ii. This defines a “reasonable domain of model parameters" [27]

around the minimum that provides interactions of similar quality to ®p0.
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Figure 5.1: Calculated level schemes for 46−60Ca calculated using the newly constrained UFP-CA. The experimental levels (green)
included in the fit show good agreement with the theory predictions. Positive parity states are shown in red, and negative parity states
are shown in blue. The one- and two-neutron separation energies are shown as the purple and black lines, respectively.
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Naturally then, the model calculated observables O will then have an acceptable range of values

in this parameter domain. The observables variance-covariance matrix is defined as

Sd(n) = JS(n)JT, (5.2)

with the Jacobian Jji = ∂pi E j .

Using this we can generate the statistical uncertainty introduced to the calculated observables at

each n. At n = 0 the calculated ∆Ostat will be zero, and tend to grow with n. The full uncertainty is

a combination of the statistical uncertainty with the model uncertainty of around 100-200 keV for

these effective interactions. The SVD truncation of the parameter space allows us to incorporate

physics from the ab initio interaction where our data is least able to determine the parameters.

Therefore, we can minimize the statistical uncertainty and parameter rms deviation while only

moderately increasing the resulting energy rms deviation of the interaction.

5.3 Results of the UFP-CA Interaction

A reasonable starting interaction is needed for this procedure in order to effectively navigate the

parameter space and maintain a physically grounded interaction. The calcium fp-shell data set

allows us to think of our nuclei as a core of 40Ca in its ground state, interacting with valence

neutrons in the fp orbits. We construct a Hamiltonian for this system using a zero-body term (H0),

a one-body term (H1), and a two-body term (H2). Higher order terms are effectively folded into

H1,2 by the fitting procedure.

H = H0 + H1 + H2. (5.3)

H0 is a fixed zero-body energy term set equal to the experimental energy of 40Ca (-342.052 MeV).

H1 is accounted for through single-particle energies, εα, for each neutron fp orbit α. We set these

initially to the values found in the GPFX1A interaction and then allow them to vary.

H2 describes the interactions among the valence neutrons, and contains theTBME, vJT (α, β; γ, δ),

to be constrained. The TBME have a mass scaling of the form,

vJT (ab; cd)(A) =
(
42
A

) p

vJT (ab; cd)(A = 42). (5.4)
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Figure 5.2: The rms deviations plotted against varied LC. The black circles show the energy rms
deviation between theory and experiment. The black crosses show the parameter rms deviation
from the starting interaction. The average and maximum ∆p are denoted by the purple triangles
and points. The singular values are plotted on a log scale in an inset figure. The red, blue, and
green vertical lines are described in the text.

The two-body nuclear strong interaction terms contained in H2 scale with p = 0.3 consistent with

Refs. [14, 15, 28]. Higher order effects are then folded into H1,2 by the fitting procedure. For this

work, the TBME are set initially to values taken from a VS-IMSRG calculation [75]. Beginning

with the EM1.8/2.0 NN+3N interaction [76] in an oscillator basis of frequency ~ω = 16 MeV and

2n + ` ≤ emax = 14, we normal order with respect to the Hartree-Fock ground state of 48Ca and

decouple the neutron fp valence space.

The limited size of our data set prevents us from fitting every TBME as the SVD of the full

parameter data matrix fails. We limit our parameters to only the diagonal TBME and the εα for

each fp orbit, the terms most impacted by three-body interactions and coupling to the continuum

[77]. This gives us a total of 30 parameters pi with which to perform the modified χ2 minimization

as done in Ref. [14]. This family of solutions can be compared by examining their energy rms

deviations from the data set and the parameter rms deviations from the initial parameters. These
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Figure 5.3: A comparison of the TBME between UFP-CA and the initial IMSRG interaction is
shown in (a). The ESPE discussed in the text are shown for GPFX1A (b), UFP-CA (c), and a
representative Skyrme interaction (d). The red crosses show the IMSRG values at N=28. The 0 f5/2
(C) and 0g9/2 (B) are shown for the SKM* (green) and UNEDF0 (blue) EDF functionals.
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results are shown in Fig. 5.2.

At n = 4 (green) there is a sharp drop in the energy rms deviation to around 180 keV which

indicates that the four εα are the most important parameters to achieve good agreement with

experiment. The energy rms deviation continues to decline to around 30 keV, however themaximum

statistical uncertainty among the interaction parameters increases rapidly after n = 20, suggesting

that the data is unable to constrain the interaction sufficiently after this point. To avoid this, we

stop at n = 18 (red). The parameter rms deviation grows smoothly from around 60 keV at n = 4

to around 150 keV at n = 18. Results for the whole range of solutions from n = 4 to n = 18 are

similar and beyond n = 11 (blue) the improvements are very small.

As it is representative of our results we choose the n = 11 solution as UFP-CA, a universal fp

shell interaction for the calcium isotopes. Fig. 5.3 contains a scatter plot comparing the TBME

in UFP-CA against the initial IMSRG interaction, and the diagonal TBME are shown in Table 5.1.

The (0 f7/2)2 J = 0 term is shifted the most by the fit, which is the result of the ground state of 46Ca

mixing with two-proton excited states from the sd-shell [78]. The off diagonal TBME that are not

changed by the fit are shown in Table 5.2.

The UFP-CA energy spectra for 46−60Ca are shown in Fig. 5.1 along with the one- and two-

neutron separation energies. While the σstat for the absolute ground state binding energies can

be large (up to 0.5 MeV), σstat for the one and two-neutron separation energies are small when

correlations are taken into account. In addition to these states, unnatural-parity intruder states

involving the 1s − 0d orbits start at an excitation energy of 4 MeV near A = 48, and, as we will

show in a weak-coupling model, intruder states involving the 2s − 1d − 0g orbits will come as low

as 1.4 MeV near A = 60.

There are several experimentally observed states with no definite spin assignment in this region

that were not included in the fit. In 49Ca, the NNDC reports the level at 3.354 MeV as (9/2+) but

has recently been corrected to 7/2− [79]. We predict a 7/2− state at approximately this energy along

with a second nearby 7/2− state. Apart from this, there are 9 levels with unknown spin in 49−55Ca

that fall within 150 keV of our predictions. There are no known levels up to 5 MeV that are contrary
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Table 5.1: Comparison of v(a, b; J) between the starting IMSRG interaction and the fitted inter-
action UFP-CA. Here, v(a, b; J) = v(ab,ab; J) are the diagonal TBME allowed to vary. All values
are in units of MeV.

ME IMSRG UFP-CA ∆v

v(7, 7; 0) −1.5605 −1.9757 0.4152
v(7, 7; 2) −0.7426 −0.6860 −0.0566
v(7, 7; 4) −0.1782 −0.1314 −0.0468
v(7, 7; 6) 0.0899 0.0737 0.0162
v(7, 5; 1) 0.2081 0.2445 −0.0364
v(7, 5; 2) 0.1099 0.1483 −0.0384
v(7, 5; 3) 0.0250 0.0837 −0.0587
v(7, 5; 4) 0.1850 0.2552 −0.0702
v(7, 5; 5) 0.1528 0.2409 −0.0881
v(7, 5; 6) −0.6799 −0.5713 −0.1086
v(7, 3; 2) −0.6317 −0.6173 −0.0144
v(7, 3; 3) 0.0654 0.1454 −0.0800
v(7, 3; 4) −0.1704 −0.2633 0.0929
v(7, 3; 5) 0.3339 0.5740 −0.2401
v(7, 1; 3) 0.1099 0.2748 −0.1649
v(7, 1; 4) −0.1941 0.0077 −0.2018
v(5, 5; 0) −0.6549 −0.6802 0.0253
v(5, 5; 2) −0.3665 −0.365 −0.0015
v(5, 5; 4) −0.0746 −0.0733 −0.0013
v(5, 3; 1) −0.0660 −0.0697 0.0037
v(5, 3; 2) 0.0853 0.0783 0.0070
v(5, 3; 3) −0.0842 −0.0764 −0.0078
v(5, 3; 4) −0.2935 −0.2570 −0.0365
v(5, 1; 2) −0.3052 −0.3182 0.0130
v(5, 1; 3) 0.0324 0.0314 0.0010
v(3, 3; 0) −0.9154 −0.9741 0.0587
v(3, 3; 2) −0.2538 −0.1551 −0.0987
v(3, 1; 1) 0.1358 0.1782 −0.0424
v(3, 1; 2) −0.3935 −0.3397 −0.0538
v(1, 1; 0) −0.2372 −0.2243 −0.0129

to our predictions, except for the unnatural parity states and three states in 51Ca only observed in

one three-nucleon transfer reaction [80].

The calculated S2n for UFP-CA are compared to experiment in the top panel of Fig. 5.4. We

see excellent agreement with experiment across the shell. We see the expected minor deviation for
46Ca as well as for 40Ca for the aforementioned reasons. The bottom panel of Fig. 5.4 highlights
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Table 5.2: IMSRG values for the off-diagonal matrix elements, v(a, b; cd; J). These remain
unchanged during the fit and are included in UFP-CA. Reported in two columns to fit on a single
page. All values are in units of MeV.

ME IMSRG ME IMSRG
v(7 7; 5 5: 0 1) −3.0868 v(5 3; 3 3: 2 1) 0.1321
v(7 7; 3 3: 0 1) −0.9991 v(5 3; 3 1: 2 1) 0.2673
v(7 7; 1 1: 0 1) −0.8050 v(5 1; 3 3: 2 1) −0.1709
v(5 5; 3 3: 0 1) −0.9847 v(5 1; 3 1: 2 1) −0.3533
v(5 5; 1 1: 0 1) −0.5217 v(3 3; 3 1: 2 1) −0.4883
v(3 3; 1 1: 0 1) −1.1357 v(7 5; 7 3: 3 1) −0.1674
v(7 5; 5 3: 1 1) 0.0314 v(7 5; 7 1: 3 1) 0.1202
v(7 5; 3 1: 1 1) −0.0643 v(7 5; 5 3: 3 1) −0.1267
v(5 3; 3 1: 1 1) −0.0102 v(7 5; 5 1: 3 1) 0.0941
v(7 7; 7 5: 2 1) 0.1068 v(7 3; 7 1: 3 1) −0.0893
v(7 7; 7 3: 2 1) −0.6079 v(7 3; 5 3: 3 1) −0.0031
v(7 7; 5 5: 2 1) −0.5954 v(7 3; 5 1: 3 1) −0.0584
v(7 7; 5 3: 2 1) 0.4105 v(7 1; 5 3: 3 1) 0.1007
v(7 7; 5 1: 2 1) −0.6550 v(7 1; 5 1: 3 1) −0.0320
v(7 7; 3 3: 2 1) −0.3280 v(5 3; 5 1: 3 1) 0.0535
v(7 7; 3 1: 2 1) −0.3165 v(7 7; 7 5: 4 1) −0.4281
v(7 5; 7 3: 2 1) 0.3068 v(7 7; 7 3: 4 1) −0.3661
v(7 5; 5 5: 2 1) −0.5007 v(7 7; 7 1: 4 1) −0.3392
v(7 5; 5 3: 2 1) 0.3198 v(7 7; 5 5: 4 1) −0.4583
v(7 5; 5 1: 2 1) −0.3613 v(7 7; 5 3: 4 1) 0.4789
v(7 5; 3 3: 2 1) −0.0048 v(7 5; 7 3: 4 1) −0.0494
v(7 5; 3 1: 2 1) −0.1150 v(7 5; 7 1: 4 1) 0.1202
v(7 3; 5 5: 2 1) −0.3762 v(7 5; 5 5: 4 1) −0.4002
v(7 3; 5 3: 2 1) 0.4002 v(7 5; 5 3: 4 1) 0.5818
v(7 3; 5 1: 2 1) −0.9654 v(7 3; 7 1: 4 1) −0.4273
v(7 3; 3 3: 2 1) −0.4297 v(7 3; 5 5: 4 1) −0.1542
v(7 3; 3 1: 2 1) −0.4953 v(7 3; 5 3: 4 1) 0.6300
v(5 5; 5 3: 2 1) 0.0167 v(7 1; 5 5: 4 1) −0.2313
v(5 5; 5 1: 2 1) −0.1721 v(7 1; 5 3: 4 1) 0.5625
v(5 5; 3 3: 2 1) −0.1723 v(5 5; 5 3: 4 1) 0.1453
v(5 5; 3 1: 2 1) −0.3228 v(7 5; 7 3: 5 1) −0.1078
v(5 3; 5 1: 2 1) 0.2458 v(7 7; 7 5: 6 1) −0.9000
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Figure 5.4: Experimental and calculated S2n for the calcium isotopes. The bottom panel highlights
the deviations from the UFP-CA predictions for experiment and several interactions: see the text
for details. These theories all predict significantly lower two-neutron separation energies at the top
of the f5/2 shell.

the deviations from the UFP-CA predictions for experiment and several interactions: the GPFX1A

interaction [16–18], results from Ref. [81] both with and without three-body correlations, and

from using nucleus-specific IMSRG interactions [75]. These theories all predict significantly lower

two-neutron separation energies at the top of the f5/2 shell.

Our results show that the calcium isotopes are stable to neutron decay out to 60Ca as observed

experimentally [82]. This suggests many experiments that can be done to observe the predicted

levels in these exotic calcium isotopes. Coulomb excitation could reveal the low lying 2+ and 4+

levels in 56,58Ca. The structure of these levels are related to the 0 f5/2 orbit and will be the most
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sensitive indicator for the need to include the 0g9/2 orbit in the model space. Indeed the properties

of all A > 56 calcium isotopes are dependent on the gap in energies between these orbits. Neutron

decay experiments are key for further investigation of this 0 f5/2 region.

5.4 On the Closed-Shell Status of 60Ca

The consistency of the fit for all known data indicates that a renormalized Hamiltonian in the

f p model space can be obtained and applied all the way to 60Ca. The renormalization of the

f p Hamiltonian implicitly contains the effects from sdg admixtures. This means that the shell

gap between f p and sdg orbitals at Z = 28 and N = 40 is large enough to prevent the 2p − 2h

configurations from becoming ground states as they do in the islands of inversion [83]. The known

regions of islands of inversion involve deformations driven by the proton-neutron interaction. Thus,
54Cr and 56Fe are known to be inside the N = 40 island of inversion. Is there an island of inversion

for 60Ca? A signature would be if 58−60Ca are more bound than we predict. Low-lying excited

states not described by our predictions will also give direct information on the location of the 0g9/2,

1d5/2 and 2s1/2 orbitals.

An important goal of this work is to help determine whether 60Ca can indeed be treated as a

closed shell nucleus. This designation is dependent on the magnitude of the energy gap between

the 0 f5/2 orbit and the 0g9/2 orbit. As our model space does not include this orbit, we must

extrapolate through comparisons to energy-density functional (EDF) calculations. To allow inter-

model comparisons, we introduce the “effective" single particle energies (ESPE) that evolve with

the nuclear mass. These are a combination of the TBME and εα for the one-particle and one-hole

configurations around a closed shell at N = 28, 34, and 40. The four ESPE calculated with

GPFX1A and UFP-CA are plotted in Fig. 5.3 (b) and (c).

The shell gap can be inferred from EDF calculations based on a closed-shell configuration for
60Ca. The EDF can be tested against the ESPE we obtain from the binding energy differences of
60Ca and 59Ca with one hole in f p. As an example, the results with the Skx functional are shown

in Fig. 5.3 (d). The Skx results are reasonable agreement with UFP-CA at a level that is similar to
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those obtained for other doubly-magic nuclei [84]. In the Mass Explorer [85], binding energies of
61,60,59Ca are given for the SKM* [86] and UNEDF0 [87] models. The results implied for the 0d5/2

and 0g9/2 ESPE are shown on the right-hand side of Fig. 5.3 (d). The gap of about 3 MeV between

0f5/2 and 0g9/2 is similar to that observed in 68Ni. Therefore, we expect the properties around 60Ca

to be comparable to those around 68Ni.

For 68Ni one can use the weak-coupling model to give energies of particle-hole states in terms

of one and two neutron separation energies. For 68Ni the results (compared to experiment) are 1.22

(1.01) MeV for the (1p−2h) 9/2+ excited state in 67Ni, 3.21 (2.89) MeV for the (1p−1h) 5− excited

state in 68Ni. and 1.71 (1.77) MeV for the (2p − 2h) 0+ excited state in 68Ni.

We can apply this to the 60Ca region with three sources of uncertainty: (1) an overall model

error that we take from the 68Ni results, (2) the uncertainties on the S1n,2n derived in this chapter,

and (3) the e9 supplied from the Skyrme interaction. The results are 1.37 - e9 MeV for the (1p−2h)

9/2+ state in 59Ca, 2.90 - e9 MeV for the (1p − 1h) 2− − 7− multiplet in 60Ca, and 4.27 − 2e9 − V0

for (2p − 2h) 0+ excited state in 60Ca. With e9 = 0 and V0 = -2.72 (taken from the results for 68Ni)

this gives 1.55 MeV for the energy of the 2p − 2h 0+ state in 60Ca. This is below the S2n value of

4.27 MeV. Thus, like in 68Ni, the first excited state in 60Ca is predicted to be a bound 0+ that would

be observed via its two electron E0 transition.

For 61Ca, S1n = e9 where e9 is the single-particle energy of the 0g9/2 orbital. With Skx, e9 is

near zero energy, and 61Ca may or may not be bound. For 62Ca S2n = 2e9 + V0 where V0 is the

effective TBME for 0g2
9/2, J = 0 which is on the order of 2 MeV. Thus 62Ca is likely to be inside

the neutron drip line. These conclusions are in line with the Bayesian Model Averaging results of

Neufcourt et al. [88] which predict a bound 60Ca with S2n = 5(1) MeV and report an existence

probability of 46% for 61Ca. They further conclude that even-even calcium isotopes out to A = 70

are likely to exist.

However, Lenzi et al. [89] have extrapolated the neutron effective single-particle energies from

Z=28 down to Z=20 based on their LNPS Hamiltonian. Their 0 f5/2 − 0g9/2 ESPE gap for 60Ca is

close to zero (see Fig. 1 in Ref. [89]) in contrast to the EDF gaps of about 3 MeV. As shown in
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[90], the ESPE of the 0g9/2 has a strong influence on the structure of 56−60Ca that can be tested by

experiment. Other previous theoretical work on the neutron-rich calcium isotopes using ab initio

methods include [91–95].

5.5 Examining Sc and Ti isotopes using UFP-CA and Looking Forward

We now have a T = 1 interaction for the fp-shell model space, so let us try to extend our results

into a full fp-shell model space. We can take the T = 0 interaction from GX1A and add on an ab

initio Coulomb interaction to create a full pn formalism interaction.

The Coulomb interaction is chosen to be the analytical solution in a Harmonic Oscillator basis

with short range correlations, as in USDC and USDI, but for the fp-shell rather than the sd-shell.

Using this, we calculate the two-neutron separation energies for the scandium and titanium isotopes.

This is motivated by the recent first direct mass measurements of the neutron-rich scandium and

titanium isotopes around the neutron number 40 at the RIKEN RI Beam Factory [96]. Other

recent experiments that have measured the scandium isotopes include [97, 98]. There is some

disagreement in the mass excess of 57Sc which causes changes in the S2n in that region by around

1 MeV.

Given the appropriate choice of single particle energies for the protons, we would expect rea-

sonable agreement with experiment for the scandium isotopes, with some breakdown in agreement

for the titanium isotope due to pairing effects not captured in our interaction.

Fig. 5.5 shows these results, and they come out about as expected. The agreement with the

results from [96] for the scandium (Z = 21) separation energies is within the experimental error

out to N = 39, the heaviest measured isotope. The large gap between the calcium and scandium

curves at N = 35,36 is due to a spreading of the band of states that comes from coupling the π0 f7/2

(proton) with a ν0p1/2 (neutron). The centroid of this band of states may very well follow the

same pattern as in calcium, but the ground state is lower than expected. We see a flattening of the

separation energies at the top of the shell.

In titanium (Z = 22) the disagreements with experiment begin at N = 35 when the 0p1/2 orbit
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Figure 5.5: Experimental and calculated S2n for the fp-shell Ca, Sc, and Ti isotopes.

becomes involved in the ground state configurations. This could be due to a measurement error.

At the top of the shell, experiment is more heavily bound than our predictions. This is a typical

signature of an "island of inversion" at N = 40 which we expect to occur in this region.

With sufficient computation power, this new full interaction for the fp-shell can also be refined

in the same manner as USDC in Chapter 2. This large scale project is an exciting opportunity for

future work in this area.

To further refine a shell model view of this isotopic chain, more experimental data involving the

0 f5/2 and the 0g9/2 orbits is needed. This data will help to determine the validity of the closed shell

approach for 60Ca that we employed, and will lead the way into developing a phenomenological

interaction in the f p j4 (fp for the protons and j j44 for the neutrons) model space that can produce

dripline predictions out to 70Ca.

This change relies on the assumption that the filled neutron 0 f7/2 creates a good closed shell.

This then allows us to include the 0g9/2 orbit whose energy difference to the 0 f5/2 orbit in neutrons

will greatly effect the structure of nuclei around 60Ca. Using the FINCH (Fitting Isospin Non-
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Conserving Hamiltonian) python code whose user manual is included in Appendix B, preliminary

work has begun on this project.
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CHAPTER 6

SUMMARIES

6.1 Chapter 1

This opening chapter serves as a foundation of knowledge from which the rest of this document

builds. Starting with constructing the Nuclear Chart and giving a basic description of the nucleus,

gradually more and more complex models are introduced and discussed. The Liquid Drop Model

treats the nucleus as a liquid drop and uses five simple clear terms to describe the binding energies

of nuclei across the entire nuclear chart. Predictions from this model are useful as a “sanity" check

when looking at new results in later chapters.

A broad overview of the fundamentals of the Nuclear Shell Model is given. A realistic model

of the nuclear potential is developed and used to recover the nuclear “magic" numbers observed in

experiment. From here the sd model space is defined and discussed in preparation for Chapters 2-4

of this Thesis. As we will be discussing isobaric multiplets throughout the document, a primer on

the Isobaric Multiplet Mass Equation is given. The final section of this chapter serves as a detailed

description of the statistical methods, namely the Singular Value Decomposition method and its

associated uncertainty quantification, used in the development of effective interactions.

6.2 Chapter 2

Here we cover the history of universal interactions in the sd-shell, and the development of isospin-

breaking universal sd-shell Hamiltonians in proton-neutron formalism is detailed for the first time.

The available experimental data now includes levels from proton-rich nuclei, greatly increasing

the data set for constraining these interactions. The fitting procedure is broken down into three

stages based on different levels of sensitivity for constraining the nuclear strong interaction with an

isotensor term, and the Coulomb interaction. The isotensor strength can be determined precisely

by fitting it to the c-coefficients of the IMME, and is modeled as a percent increase in the strength
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of the pn T = 1 two-body matrix elements.

Four new “USD" type interactions are presented. These were developed by taking linear

combinations of ab initio interaction parameters that define the natural basis of the parameter space

and constraining them with the increased data set. The first of which is USDC based on the same

renormalized G matrix sd-shell interaction (SDBA) [33]. Additionally, we derive USDI which is

based on a set of In-Medium Similarity Renormalization Group (IMSRG) Hamiltonians [34, 35]

that are nucleus-specific. USDC and USDI use a reasonable Coulomb interaction with no fitting of

the Coulomb TBME, and result in an isotensor strength increase of 2.2% over the nn and pp T = 1

matrix elements.

USDCm and USDIm are modifications to these interactions that have had their Coulomb

interaction constrained by a SVD fit to better reproduce the b-coefficients of the IMME. An

apparent trade-off for this further fitting is a decrease in accuracy for calculating the c-coefficients

of the IMME, as well as a decreased isotensor strenght of 0.8%. We therefore suggest the use of

USDC and USDI for precise predictions of isospin mixing in low-lying states, and USDCm and

USDIm for mirror energy differences. The update to the USDC interaction in Chapter 4 serves as

functional replacement of the modified Coulomb interactions.

6.3 Chapter 3

The opening of this chapter introduces the concept of a Thomas-Ehrman Shift (TES) experienced

by poorly bound valence protons. This effect is not fully incorporated into configuration-interaction

theory, so a single-particle model based on a Skyrme interaction to determine the strength of this

effect is developed and used in tandemwith the new interactions. We see much improved agreement

with several sd-shell states that have experimentally known large TES.

All four new interactions improve predictions for separation energies throughout the shell,

eliminating the systematic over-estimation present in calculations using USDB-CD. This increases

the utility of these new interactions, as for the first time reasonable decay Q values can be taken

directly from theory and used in calculations. However, the calculated binding energies for the
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neutron-rich Fluorine (N = 16 − 19) isotopes are significantly higher than the experimental values

found in the 2016 Atomic Mass Evaluation. We suggest more precise experiments to lower the

uncertainties on these measurements, and to correct or reaffirm the current experimental energies.

The development of these new “USD” Hamiltonians opens up new avenues to examine isospin

mixing and other isospin symmetry breaking effects in the sd-shell. In this Chapter we also examine

several cases of large isospin mixing in sulfur isotopes and in isobaric multiplets. Work in these

areas has resulted in several publications in collaboration with experimental groups.

6.4 Chapter 4

During the development of the USDC interaction, the addition of an isovector term that would

subtly split the nuclear strong force interaction strength in nn and pp pairs was explored. However,

due to a lack of sufficiently constraining data this addition was not included in the final product.

Instead, a secondary SVD of the Coulomb TBME was done to create modified interactions that

better explained mirror energy differences in the shell.

Recently, a refinement to the USDC interaction was begun that would use “double" differences

of mirror energies to attempt to extract the experimental strength of this isovector splitting. As was

noticed in the c-coefficients, there is an oscillation of these double differences that is dependent

primarily upon the charge-symmetry breaking of the nuclear strong force. Using this, we are able

to extract a strength of 1.4% for the isovector term modeled as an increase in the nn interaction

and a decrease in the pp interaction strengths. This results in an improved USDC interaction that

replicates the advantages of the modified Coulomb interaction without its detriments.

6.5 Chapter 5

Following the many successful implementations of effective universal configuration-interaction

Hamiltonians, we endeavored to produce a universal fp shell interaction tailored for the calcium

isotopeswhichwe call UFP-CA. Starting froma state-of-the-art IMSRG interaction, linear combina-

tions of Hamiltonian parameters that define the natural basis of the parameter space are constrained
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by the latest experimental data for the neutron-rich calcium isotopes. We show that this data-driven

method for improving the Hamiltonian provides an excellent description of the known binding

energies and spectra for the calcium isotopes within the fp model space.

We have presented UFP-CA, a new interaction tailored to the fp shell calcium isotopes, based

on the best available experimental data. Using this we have provided extrapolated predictions out

the 60Ca and compared those results to experiment and other theoretical works. Our extrapolation

along with comparisons to EDF calculations lead us to believe that 60Ca is doubly-magic at a level

similar to 68Ni. Several predictions are presented for unobserved low lying excited states in 55−59Ca

that will be accessible to future experiments.
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APPENDIX A

USDC LEVELS

Table A1: A table showing the experimental energy levels used to constrain the USDC interactions

along with the USDC predictions. All energies in MeV.

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
17O 1

2
5
2
+ 1 -131.762 0.000 -131.555 0.207

17O 1
2

1
2
+ 1 0.870 0.001 0.810 -0.060

17O 1
2

3
2
+ 1 5.083 0.500 5.790 0.707

18O 1 0+ 1 -139.808 0.000 -139.613 0.195
18O 1 2+ 1 1.982 0.001 2.048 0.066
18O 1 4+ 1 3.555 0.001 3.563 0.008
18O 1 3+ 1 5.378 0.001 5.541 0.163
19O 3

2
5
2
+ 1 -143.763 0.003 -143.626 0.137

19O 3
2

3
2
+ 1 0.096 0.001 0.165 0.069

19O 3
2

1
2
+ 1 1.472 0.001 1.585 0.113

19O 3
2

9
2
+ 1 2.372 0.001 2.394 0.022

19O 3
2

7
2
+ 1 2.779 0.001 2.927 0.148

19O 3
2

5
2
+ 2 3.154 0.001 3.340 0.186

19O 3
2

3
2
+ 3 5.455 0.001 5.858 0.403

20O 2 0+ 1 -151.371 0.001 -151.329 0.042
20O 2 2+ 1 1.674 0.001 1.796 0.122
20O 2 4+ 1 3.570 0.007 3.657 0.087
20O 2 2+ 2 4.072 0.004 4.206 0.134
20O 2 0+ 2 5.387 0.001 5.494 0.107
21O 5

2
5
2
+ 1 -155.177 0.012 -155.070 0.107

21O 5
2

1
2
+ 1 1.220 0.001 1.358 0.138

21O 5
2

3
2
+ 1 2.133 0.001 2.029 -0.104

21O 5
2

5
2
+ 2 3.026 0.001 3.092 0.066

21O 5
2

7
2
+ 1 3.073 0.001 2.939 -0.134

21O 5
2

9
2
+ 1 4.927 0.001 4.819 -0.108

22O 3 0+ 1 -162.027 0.057 -162.178 -0.151
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
22O 3 2+ 1 3.199 0.001 3.146 -0.053
22O 3 3+ 1 4.584 0.001 4.807 0.223
22O 3 0+ 2 4.909 0.001 4.796 -0.113
22O 3 2+ 2 6.509 0.001 6.351 -0.158
22O 3 4+ 1 6.936 0.001 6.752 -0.184
23O 7

2
1
2
+ 1 -164.760 0.122 -164.760 0.000

23O 7
2

5
2
+ 1 2.800 0.100 2.571 -0.229

24O 4 0+ 1 -168.952 0.165 -168.964 -0.012
24O 4 2+ 1 4.790 0.110 4.867 0.077
25O 9

2
3
2
+ 1 -168.195 0.000 -167.844 0.351

26O 5 0+ 1 -168.934 0.000 -169.042 -0.108
17F −1

2
5
2
+ 1 -128.220 0.000 -127.927 0.293

18F 0 1+ 1 -137.369 0.001 -137.422 -0.053
18F 0 3+ 1 0.937 0.001 0.950 0.013
18F 0 0+ 1 1.042 0.001 1.270 0.228
18F 0 5+ 1 1.121 0.001 1.197 0.076
18F 0 2+ 1 3.062 0.001 3.359 0.297
18F 0 1+ 2 3.724 0.001 3.673 -0.051
18F 0 4+ 1 4.652 0.001 4.974 0.322
19F 1

2
1
2
+ 1 -147.801 0.000 -147.930 -0.129

19F 1
2

5
2
+ 1 0.197 0.001 0.049 -0.148

19F 1
2

3
2
+ 1 1.554 0.001 1.748 0.194

19F 1
2

9
2
+ 1 2.779 0.001 2.603 -0.176

19F 1
2

13
2
+ 1 4.647 0.001 4.590 -0.057

19F 1
2

5
2
+ 2 5.106 0.001 4.972 -0.134

19F 1
2

1
2
+ 2 6.255 0.001 6.291 0.036

19F 1
2

11
2
+ 1 6.500 0.001 6.684 0.184

19F 1
2

11
2
+ 2 7.937 0.001 7.939 0.002

19F 1
2

13
2
+ 2 10.411 0.001 10.219 -0.192

20F 1 2+ 1 -154.403 0.000 -154.587 -0.184
20F 1 3+ 1 0.656 0.001 0.619 -0.037
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
20F 1 4+ 1 0.822 0.001 0.823 0.001
20F 1 1+ 1 1.057 0.001 1.135 0.078
20F 1 5+ 1 1.823 0.001 1.782 -0.041
20F 1 2+ 2 2.044 0.001 2.273 0.229
20F 1 3+ 2 2.194 0.001 2.402 0.208
20F 1 3+ 3 2.966 0.001 2.886 -0.080
20F 1 1+ 2 3.488 0.001 3.485 -0.003
20F 1 0+ 2 6.512 0.005 6.753 0.241
21F 3

2
5
2
+ 1 -162.504 0.002 -162.660 -0.156

21F 3
2

1
2
+ 1 0.280 0.001 0.323 0.043

21F 3
2

3
2
+ 1 1.730 0.001 1.821 0.091

21F 3
2

9
2
+ 1 1.755 0.001 1.784 0.029

22F 2 4+ 1 -167.734 0.012 -167.797 -0.063
22F 2 3+ 1 0.072 0.001 0.186 0.114
22F 2 2+ 1 0.710 0.001 0.785 0.075
22F 2 5+ 1 1.414 0.001 1.385 -0.029
22F 2 1+ 1 1.625 0.001 1.519 -0.106
22F 2 2+ 2 2.006 0.001 2.008 0.002
22F 2 1+ 2 2.572 0.001 2.433 -0.139
23F 5

2
5
2
+ 1 -175.314 0.033 -175.354 -0.040

23F 5
2

7
2
+ 1 2.920 0.001 2.773 -0.147

24F 3 3+ 1 -179.126 0.098 -179.005 0.121
24F 3 2+ 1 0.521 0.001 0.577 0.056
24F 3 1+ 1 1.831 0.001 1.405 -0.426
25F 7

2
5
2
+ 1 -183.408 0.096 -183.755 -0.347

25F 7
2

9
2
+ 1 3.916 0.001 3.672 -0.244

26F 4 1+ 1 -184.164 0.111 -184.614 -0.450
26F 4 4+ 1 0.643 0.001 0.354 -0.289
26F 4 2+ 1 0.657 0.007 0.615 -0.042
27F 9

2
5
2
+ 1 -185.434 0.390 -186.722 -1.288

28F 5 3+ 1 -185.214 0.393 -185.968 -0.754
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
29F 11

2
5
2
+ 1 -186.877 0.525 -187.032 -0.155

18Ne -1 0+ 1 -132.143 0.000 -131.982 0.161
18Ne -1 2+ 1 1.887 0.001 1.991 0.104
18Ne -1 4+ 1 3.376 0.001 3.575 0.199
19Ne −1

2
1
2
+ 1 -143.780 0.000 -143.945 -0.165

19Ne −1
2

5
2
+ 1 0.238 0.001 0.082 -0.156

19Ne −1
2

3
2
+ 1 1.536 0.001 1.823 0.287

19Ne −1
2

9
2
+ 1 2.795 0.001 2.598 -0.197

19Ne −1
2

13
2
+ 1 4.635 0.001 4.609 -0.026

19Ne −1
2

5
2
+ 2 5.092 0.006 4.981 -0.111

20Ne 0 0+ 1 -160.645 0.000 -160.576 0.069
20Ne 0 2+ 1 1.634 0.001 1.731 0.097
20Ne 0 4+ 1 4.248 0.001 4.154 -0.094
20Ne 0 0+ 2 6.724 0.001 6.748 0.024
20Ne 0 2+ 2 7.422 0.001 7.537 0.115
20Ne 0 2+ 3 10.273 0.001 10.014 -0.259
20Ne 0 6+ 1 8.777 0.001 8.496 -0.281
20Ne 0 3+ 1 9.873 0.001 10.414 0.541
20Ne 0 3+ 2 10.884 0.001 10.588 -0.296
20Ne 0 8+ 1 11.951 0.001 11.521 -0.430
20Ne 0 6+ 2 12.585 0.001 12.777 0.192
20Ne 0 8+ 2 15.874 0.001 15.970 0.096
21Ne 1

2
3
2
+ 1 -167.406 0.000 -167.377 0.029

21Ne 1
2

5
2
+ 1 0.351 0.001 0.283 -0.068

21Ne 1
2

7
2
+ 1 1.746 0.001 1.776 0.030

21Ne 1
2

1
2
+ 1 2.796 0.001 2.913 0.117

21Ne 1
2

9
2
+ 1 2.866 0.001 2.836 -0.030

21Ne 1
2

5
2
+ 2 3.734 0.001 3.739 0.005

21Ne 1
2

11
2
+ 1 4.432 0.001 4.394 -0.038

21Ne 1
2

5
2
+ 3 4.524 0.001 4.646 0.122

21Ne 1
2

3
2
+ 2 4.684 0.001 4.945 0.261
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
21Ne 1

2
7
2
+ 2 5.430 0.001 5.405 -0.025

21Ne 1
2

3
2
+ 3 5.549 0.001 5.563 0.014

21Ne 1
2

9
2
+ 2 6.265 0.001 6.138 -0.127

21Ne 1
2

13
2
+ 1 6.447 0.001 6.212 -0.235

21Ne 1
2

1
2
+ 3 7.212 0.001 7.106 -0.106

22Ne 1 0+ 1 -177.770 0.000 -177.733 0.037
22Ne 1 2+ 1 1.275 0.001 1.357 0.082
22Ne 1 4+ 1 3.357 0.001 3.353 -0.004
22Ne 1 2+ 2 4.457 0.001 4.298 -0.159
22Ne 1 1+ 1 5.329 0.001 5.384 0.055
22Ne 1 2+ 3 5.365 0.001 5.116 -0.249
22Ne 1 4+ 2 5.523 0.001 5.408 -0.115
22Ne 1 3+ 1 5.641 0.001 5.492 -0.149
22Ne 1 2+ 4 6.119 0.001 6.189 0.070
22Ne 1 0+ 2 6.237 0.001 6.216 -0.021
22Ne 1 6+ 1 6.311 0.001 6.267 -0.044
22Ne 1 4+ 3 6.345 0.001 6.320 -0.025
22Ne 1 2+ 5 6.817 0.001 6.602 -0.215
22Ne 1 1+ 2 6.854 0.001 6.546 -0.308
22Ne 1 0+ 3 7.341 0.001 7.460 0.119
23Ne 3

2
5
2
+ 1 -182.971 0.000 -182.918 0.053

23Ne 3
2

1
2
+ 1 1.017 0.001 1.035 0.018

23Ne 3
2

7
2
+ 1 1.701 0.001 1.788 0.087

23Ne 3
2

3
2
+ 1 1.822 0.001 1.845 0.023

23Ne 3
2

5
2
+ 2 2.315 0.001 2.284 -0.031

23Ne 3
2

9
2
+ 1 2.517 0.001 2.449 -0.068

23Ne 3
2

3
2
+ 2 3.432 0.001 3.241 -0.191

24Ne 2 0+ 1 -191.840 0.001 -191.860 -0.020
24Ne 2 2+ 1 1.981 0.001 2.094 0.113
24Ne 2 2+ 2 3.871 0.001 3.688 -0.183
24Ne 2 4+ 1 3.962 0.001 3.933 -0.029
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
24Ne 2 0+ 2 4.765 0.001 4.893 0.128
24Ne 2 3+ 1 4.886 0.001 4.787 -0.099
25Ne 5

2
1
2
+ 1 -195.995 0.029 -195.961 0.034

26Ne 3 0+ 1 -201.550 0.018 -201.787 -0.237
26Ne 3 2+ 1 2.018 0.001 2.011 -0.007
27Ne 7

2
3
2
+ 1 -203.051 0.091 -203.135 -0.084

28Ne 4 0+ 1 -206.874 0.126 -206.869 0.005
19Na −3

2
5
2
+ 1 -131.820 0.011 -131.570 0.250

19Na −3
2

3
2
+ 1 0.120 0.010 0.136 0.016

20Na -1 2+ 1 -145.970 0.001 -146.124 -0.154
20Na -1 3+ 1 0.596 0.008 0.559 -0.037
20Na -1 4+ 1 0.802 0.007 0.779 -0.023
20Na -1 1+ 1 0.984 0.001 1.127 0.143
20Na -1 3+ 2 2.057 0.012 2.329 0.272
20Na -1 3+ 3 2.645 0.006 2.730 0.085
20Na -1 0+ 2 6.534 0.013 6.727 0.193
21Na −1

2
3
2
+ 1 -163.076 0.000 -162.952 0.124

21Na −1
2

5
2
+ 1 0.332 0.000 0.265 -0.067

21Na −1
2

7
2
+ 1 1.716 0.000 1.758 0.042

21Na −1
2

1
2
+ 1 2.424 0.000 2.666 0.242

21Na −1
2

9
2
+ 1 2.829 0.000 2.774 -0.055

21Na −1
2

5
2
+ 2 3.544 0.000 3.617 0.073

21Na −1
2

5
2
+ 3 4.294 0.000 4.516 0.222

21Na −1
2

11
2
+ 1 4.419 0.002 4.348 -0.071

21Na −1
2

3
2
+ 2 4.468 0.000 4.847 0.379

22Na 0 3+ 1 -174.145 0.000 -174.168 -0.023
22Na 0 1+ 1 0.583 0.001 0.315 -0.268
22Na 0 0+ 1 0.657 0.001 0.741 0.084
22Na 0 4+ 1 0.891 0.001 0.930 0.039
22Na 0 5+ 1 1.528 0.001 1.501 -0.027
22Na 0 1+ 2 1.937 0.001 2.101 0.164
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
22Na 0 2+ 1 1.952 0.001 2.128 0.176
22Na 0 3+ 2 1.984 0.001 1.856 -0.128
22Na 0 3+ 3 2.969 0.001 2.950 -0.019
22Na 0 2+ 2 3.060 0.001 3.229 0.169
22Na 0 6+ 1 3.707 0.001 3.773 0.066
22Na 0 1+ 3 3.944 0.001 4.095 0.151
22Na 0 4+ 2 4.071 0.001 4.153 0.082
22Na 0 2+ 3 4.360 0.001 3.977 -0.383
22Na 0 7+ 1 4.524 0.001 4.478 -0.046
22Na 0 5+ 2 4.710 0.001 4.564 -0.146
22Na 0 3+ 4 4.771 0.001 4.630 -0.141
22Na 0 4+ 3 5.101 0.001 5.084 -0.017
23Na 1

2
3
2
+ 1 -186.564 0.000 -186.573 -0.009

23Na 1
2

5
2
+ 1 0.439 0.001 0.407 -0.032

23Na 1
2

7
2
+ 1 2.076 0.001 2.175 0.099

23Na 1
2

1
2
+ 1 2.390 0.001 2.191 -0.199

23Na 1
2

9
2
+ 1 2.703 0.001 2.771 0.068

23Na 1
2

3
2
+ 2 2.982 0.001 2.778 -0.204

23Na 1
2

5
2
+ 2 3.914 0.001 3.747 -0.167

23Na 1
2

1
2
+ 2 4.429 0.001 4.395 -0.034

23Na 1
2

7
2
+ 2 4.774 0.001 4.731 -0.043

23Na 1
2

5
2
+ 3 5.378 0.001 5.320 -0.058

23Na 1
2

11
2
+ 1 5.534 0.001 5.564 0.030

23Na 1
2

5
2
+ 4 5.741 0.001 5.753 0.012

23Na 1
2

3
2
+ 3 5.766 0.001 5.834 0.068

23Na 1
2

1
2
+ 3 6.307 0.001 6.307 0.000

24Na 1 4+ 1 -193.524 0.000 -193.515 0.009
24Na 1 1+ 1 0.472 0.001 0.549 0.077
24Na 1 2+ 1 0.563 0.001 0.645 0.082
24Na 1 2+ 2 1.341 0.001 1.051 -0.290
24Na 1 3+ 1 1.344 0.001 1.372 0.028
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
24Na 1 1+ 2 1.346 0.001 1.300 -0.046
24Na 1 5+ 1 1.512 0.001 1.552 0.040
24Na 1 2+ 3 1.846 0.001 1.790 -0.056
24Na 1 3+ 2 1.885 0.001 1.778 -0.107
24Na 1 3+ 3 2.513 0.001 2.288 -0.225
24Na 1 3+ 4 2.904 0.001 2.653 -0.251
24Na 1 1+ 3 3.413 0.001 3.331 -0.082
24Na 1 1+ 4 3.589 0.001 3.619 0.030
24Na 1 3+ 5 3.628 0.001 3.469 -0.159
24Na 1 0+ 1 3.682 0.001 3.515 -0.167
25Na 3

2
5
2
+ 1 -202.535 0.001 -202.542 -0.007

25Na 3
2

3
2
+ 1 0.089 0.001 0.115 0.026

25Na 3
2

1
2
+ 1 1.069 0.001 0.958 -0.111

25Na 3
2

3
2
+ 2 2.202 0.001 1.980 -0.222

26Na 2 3+ 1 -208.109 0.004 -208.046 0.063
26Na 2 1+ 1 0.082 0.001 0.014 -0.068
26Na 2 2+ 1 0.233 0.001 0.084 -0.149
27Na 5

2
5
2
+ 1 -214.838 0.004 -215.078 -0.240

27Na 5
2

3
2
+ 1 0.062 0.001 0.007 -0.055

27Na 5
2

1
2
+ 1 1.728 0.001 1.574 -0.154

27Na 5
2

7
2
+ 1 2.191 0.001 2.302 0.111

27Na 5
2

9
2
+ 1 2.224 0.001 2.198 -0.026

27Na 5
2

5
2
+ 2 2.799 0.001 2.939 0.140

27Na 5
2

3
2
+ 2 3.019 0.001 3.193 0.174

28Na 3 1+ 1 -218.379 0.010 -218.384 -0.005
28Na 3 2+ 1 0.055 0.001 -0.091 -0.146
28Na 3 1+ 2 2.118 0.001 1.932 -0.186
28Na 3 1+ 3 2.714 0.001 2.439 -0.275
29Na 7

2
3
2
+ 1 -222.782 0.007 -222.931 -0.149

29Na 7
2

5
2
+ 1 0.072 0.001 -0.074 -0.146

20Mg -2 0+ 1 -134.560 0.002 -134.454 0.106
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
20Mg -2 2+ 1 1.598 0.010 1.756 0.158
21Mg −3

2
5
2
+ 1 -149.206 0.001 -149.416 -0.210

21Mg −3
2

1
2
+ 1 0.201 0.004 0.346 0.145

21Mg −3
2

3
2
+ 1 1.651 0.004 1.802 0.151

22Mg -1 0+ 1 -168.581 0.000 -168.520 0.061
22Mg -1 2+ 1 1.247 0.000 1.355 0.108
22Mg -1 4+ 1 3.308 0.000 3.338 0.030
22Mg -1 2+ 2 4.402 0.000 4.220 -0.182
22Mg -1 2+ 3 5.035 0.001 4.986 -0.049
22Mg -1 1+ 1 5.089 0.001 5.351 0.262
22Mg -1 3+ 1 5.452 0.000 5.353 -0.099
22Mg -1 6+ 1 6.254 0.001 6.178 -0.076
22Mg -1 4+ 3 6.313 0.005 6.183 -0.130
23Mg −1

2
3
2
+ 1 -181.726 0.000 -181.768 -0.042

23Mg −1
2

5
2
+ 1 0.451 0.000 0.395 -0.056

23Mg −1
2

7
2
+ 1 2.052 0.000 2.157 0.105

23Mg −1
2

1
2
+ 1 2.359 0.001 2.163 -0.196

23Mg −1
2

9
2
+ 1 2.715 0.001 2.731 0.016

23Mg −1
2

3
2
+ 2 2.908 0.002 2.771 -0.137

23Mg −1
2

5
2
+ 2 3.864 0.005 3.737 -0.127

23Mg −1
2

1
2
+ 2 4.353 0.006 4.404 0.051

23Mg −1
2

13
2
+ 1 6.191 0.006 6.170 -0.021

24Mg 0 0+ 1 -198.257 0.000 -198.221 0.036
24Mg 0 2+ 1 1.369 0.001 1.496 0.127
24Mg 0 4+ 1 4.123 0.001 4.372 0.249
24Mg 0 2+ 2 4.238 0.001 4.082 -0.156
24Mg 0 3+ 1 5.236 0.001 5.042 -0.194
24Mg 0 4+ 2 6.010 0.001 5.892 -0.118
24Mg 0 2+ 3 7.348 0.001 7.512 0.164
24Mg 0 1+ 1 7.747 0.001 7.780 0.033
24Mg 0 5+ 1 7.812 0.001 7.809 -0.003
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
24Mg 0 6+ 1 8.113 0.001 8.267 0.154
24Mg 0 4+ 3 8.437 0.001 8.356 -0.081
24Mg 0 4+ 4 9.298 0.001 9.451 0.153
24Mg 0 6+ 2 9.528 0.001 9.560 0.032
24Mg 0 1+ 2 9.827 0.001 9.764 -0.063
24Mg 0 5+ 2 10.575 0.001 10.494 -0.081
24Mg 0 8+ 1 11.860 0.001 11.787 -0.073
24Mg 0 6+ 3 12.000 0.001 11.681 -0.319
24Mg 0 8+ 2 13.210 0.001 13.217 0.007
24Mg 0 8+ 3 14.152 0.001 14.071 -0.081
24Mg 0 10+ 1 19.200 0.100 18.846 -0.354
25Mg 1

2
5
2
+ 1 -205.588 0.000 -205.519 0.069

25Mg 1
2

1
2
+ 1 0.585 0.001 0.616 0.031

25Mg 1
2

3
2
+ 1 0.975 0.001 1.069 0.094

25Mg 1
2

7
2
+ 1 1.611 0.001 1.707 0.096

25Mg 1
2

5
2
+ 2 1.964 0.001 2.019 0.055

25Mg 1
2

1
2
+ 2 2.564 0.001 2.641 0.077

25Mg 1
2

7
2
+ 2 2.737 0.001 2.875 0.138

25Mg 1
2

3
2
+ 2 2.801 0.001 2.856 0.055

25Mg 1
2

9
2
+ 1 3.405 0.001 3.439 0.034

25Mg 1
2

5
2
+ 3 3.907 0.001 3.992 0.085

25Mg 1
2

9
2
+ 2 4.059 0.001 3.871 -0.188

25Mg 1
2

3
2
+ 3 4.359 0.001 4.334 -0.025

25Mg 1
2

9
2
+ 3 4.711 0.001 4.730 0.019

25Mg 1
2

7
2
+ 3 5.012 0.001 4.932 -0.080

25Mg 1
2

11
2
+ 1 5.251 0.001 5.106 -0.145

25Mg 1
2

13
2
+ 1 5.460 0.001 5.402 -0.058

25Mg 1
2

1
2
+ 3 5.475 0.001 5.288 -0.187

26Mg 1 0+ 1 -216.681 0.000 -216.655 0.026
26Mg 1 2+ 1 1.808 0.001 1.871 0.063
26Mg 1 2+ 2 2.938 0.001 2.998 0.060
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
26Mg 1 0+ 2 3.588 0.001 3.562 -0.026
26Mg 1 3+ 1 3.941 0.001 3.944 0.003
26Mg 1 4+ 1 4.318 0.001 4.342 0.024
26Mg 1 2+ 3 4.332 0.001 4.389 0.057
26Mg 1 3+ 2 4.350 0.001 4.285 -0.065
26Mg 1 2+ 4 4.835 0.001 4.825 -0.010
26Mg 1 4+ 2 4.901 0.001 4.902 0.001
26Mg 1 0+ 3 4.972 0.001 4.985 0.013
26Mg 1 2+ 5 5.291 0.001 5.479 0.188
26Mg 1 4+ 3 5.476 0.001 5.513 0.037
26Mg 1 1+ 1 5.691 0.001 5.699 0.008
26Mg 1 4+ 4 5.715 0.001 5.849 0.134
26Mg 1 3+ 3 6.125 0.001 6.194 0.069
26Mg 1 0+ 4 6.256 0.001 6.162 -0.094
26Mg 1 4+ 5 6.622 0.001 6.672 0.050
26Mg 1 5+ 1 6.978 0.001 7.054 0.076
26Mg 1 2+ 7 7.099 0.001 6.870 -0.229
26Mg 1 5+ 2 7.395 0.001 7.340 -0.055
26Mg 1 6+ 1 8.201 0.001 8.085 -0.116
26Mg 1 6+ 2 8.472 0.001 8.407 -0.065
27Mg 3

2
1
2
+ 1 -223.124 0.000 -222.992 0.132

27Mg 3
2

3
2
+ 1 0.985 0.001 0.988 0.003

27Mg 3
2

5
2
+ 1 1.698 0.001 1.645 -0.053

27Mg 3
2

5
2
+ 2 1.940 0.001 1.884 -0.056

27Mg 3
2

7
2
+ 1 3.109 0.001 3.027 -0.082

27Mg 3
2

1
2
+ 2 3.476 0.001 3.443 -0.033

27Mg 3
2

9
2
+ 1 3.884 0.001 3.930 0.046

27Mg 3
2

1
2
+ 3 5.028 0.001 4.946 -0.082

28Mg 2 0+ 1 -231.628 0.002 -231.612 0.016
28Mg 2 2+ 1 1.473 0.001 1.509 0.036
28Mg 2 0+ 2 3.863 0.001 3.988 0.125
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
28Mg 2 4+ 1 4.020 0.001 4.131 0.111
28Mg 2 2+ 2 4.557 0.001 4.515 -0.042
28Mg 2 1+ 1 4.560 0.001 4.677 0.117
28Mg 2 2+ 3 4.878 0.001 4.752 -0.126
29Mg 5

2
3
2
+ 1 -235.283 0.011 -235.173 0.110

29Mg 5
2

1
2
+ 1 0.054 0.001 0.014 -0.040

29Mg 5
2

5
2
+ 1 1.638 0.001 1.511 -0.127

29Mg 5
2

3
2
+ 2 2.500 0.001 2.222 -0.278

29Mg 5
2

1
2
+ 2 2.615 0.001 2.599 -0.016

29Mg 5
2

3
2
+ 3 3.224 0.001 3.486 0.262

30Mg 3 0+ 1 -241.635 0.003 -241.591 0.044
30Mg 3 2+ 1 1.482 0.001 1.554 0.072
23Al −3

2
5
2
+ 1 -168.722 0.000 -168.637 0.085

23Al −3
2

3
2
+ 1 1.773 0.035 1.712 -0.061

24Al -1 4+ 1 -183.590 0.000 -183.634 -0.044
24Al -1 1+ 1 0.426 0.000 0.549 0.123
24Al -1 2+ 1 0.511 0.004 0.587 0.076
25Al −1

2
5
2
+ 1 -200.528 0.000 -200.439 0.089

25Al −1
2

1
2
+ 1 0.452 0.001 0.502 0.050

25Al −1
2

3
2
+ 1 0.945 0.001 1.014 0.069

25Al −1
2

7
2
+ 1 1.613 0.001 1.722 0.109

25Al −1
2

5
2
+ 2 1.790 0.001 1.889 0.099

25Al −1
2

1
2
+ 2 2.485 0.001 2.562 0.077

25Al −1
2

3
2
+ 2 2.673 0.001 2.763 0.090

25Al −1
2

7
2
+ 2 2.720 0.001 2.825 0.105

25Al −1
2

9
2
+ 1 3.424 0.001 3.446 0.022

25Al −1
2

5
2
+ 3 3.859 0.001 3.958 0.099

25Al −1
2

9
2
+ 2 4.026 0.002 3.900 -0.126

25Al −1
2

3
2
+ 3 4.192 0.004 4.257 0.065

25Al −1
2

9
2
+ 3 4.516 0.005 4.586 0.070

25Al −1
2

5
2
+ 4 4.582 0.002 4.667 0.085
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
25Al −1

2
7
2
+ 3 4.906 0.004 4.860 -0.046

26Al 0 5+ 1 -211.894 0.000 -211.846 0.048
26Al 0 0+ 1 0.228 0.000 0.140 -0.088
26Al 0 3+ 1 0.416 0.001 0.523 0.107
26Al 0 1+ 1 1.058 0.001 1.140 0.082
26Al 0 2+ 1 1.759 0.001 1.609 -0.150
26Al 0 1+ 2 1.850 0.001 1.752 -0.098
26Al 0 4+ 1 2.068 0.001 2.109 0.041
26Al 0 2+ 2 2.069 0.001 2.050 -0.019
26Al 0 1+ 3 2.072 0.001 2.046 -0.026
26Al 0 3+ 2 2.365 0.001 2.232 -0.133
26Al 0 3+ 3 2.545 0.001 2.431 -0.114
26Al 0 2+ 3 2.660 0.001 2.510 -0.150
26Al 0 1+ 4 2.739 0.001 2.789 0.050
26Al 0 2+ 4 2.913 0.001 2.915 0.002
26Al 0 3+ 4 3.073 0.001 3.093 0.020
26Al 0 2+ 5 3.160 0.001 3.174 0.014
26Al 0 5+ 2 3.403 0.001 3.410 0.007
26Al 0 6+ 1 3.507 0.001 3.423 -0.084
26Al 0 3+ 5 3.596 0.001 3.509 -0.087
26Al 0 4+ 2 3.674 0.001 3.543 -0.131
26Al 0 3+ 6 3.680 0.001 3.614 -0.066
26Al 0 1+ 5 3.723 0.001 3.595 -0.128
26Al 0 2+ 6 3.750 0.001 3.820 0.070
26Al 0 0+ 2 3.754 0.001 3.722 -0.032
26Al 0 4+ 3 4.205 0.001 4.024 -0.181
26Al 0 4+ 4 4.773 0.001 4.613 -0.160
26Al 0 5+ 3 4.940 0.001 4.765 -0.175
26Al 0 1+ 6 5.010 0.001 4.948 -0.062
27Al 1

2
5
2
+ 1 -224.952 0.000 -224.986 -0.034

27Al 1
2

1
2
+ 1 0.844 0.001 0.876 0.032
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
27Al 1

2
3
2
+ 1 1.014 0.001 1.075 0.061

27Al 1
2

7
2
+ 1 2.211 0.001 2.290 0.079

27Al 1
2

5
2
+ 2 2.735 0.001 2.681 -0.054

27Al 1
2

3
2
+ 2 2.982 0.001 2.829 -0.153

27Al 1
2

9
2
+ 1 3.004 0.001 3.007 0.003

27Al 1
2

1
2
+ 2 3.680 0.001 3.750 0.070

27Al 1
2

3
2
+ 3 3.957 0.001 3.922 -0.035

27Al 1
2

5
2
+ 3 4.410 0.001 4.388 -0.022

27Al 1
2

11
2
+ 1 4.510 0.001 4.535 0.025

27Al 1
2

7
2
+ 2 4.580 0.001 4.688 0.108

27Al 1
2

5
2
+ 4 4.811 0.001 4.751 -0.060

27Al 1
2

5
2
+ 5 5.248 0.001 5.287 0.039

27Al 1
2

9
2
+ 2 5.419 0.001 5.324 -0.095

27Al 1
2

11
2
+ 2 5.499 0.001 5.458 -0.041

27Al 1
2

9
2
+ 3 5.667 0.001 5.907 0.240

27Al 1
2

1
2
+ 3 5.752 0.001 5.821 0.069

27Al 1
2

1
2
+ 4 7.071 0.001 6.897 -0.174

27Al 1
2

11
2
+ 3 7.400 0.001 7.187 -0.213

28Al 1 3+ 1 -232.677 0.000 -232.553 0.124
28Al 1 2+ 1 0.030 0.001 0.000 -0.030
28Al 1 0+ 1 0.972 0.001 0.986 0.014
28Al 1 3+ 2 1.013 0.001 1.044 0.031
28Al 1 1+ 1 1.372 0.001 1.169 -0.203
28Al 1 1+ 2 1.620 0.001 1.441 -0.179
28Al 1 2+ 2 1.622 0.001 1.478 -0.144
28Al 1 2+ 3 2.138 0.001 1.999 -0.139
28Al 1 1+ 3 2.201 0.001 2.098 -0.103
28Al 1 4+ 1 2.486 0.001 2.176 -0.310
28Al 1 5+ 1 2.582 0.001 2.485 -0.097
28Al 1 4+ 2 2.656 0.001 2.499 -0.157
28Al 1 0+ 2 3.012 0.001 2.643 -0.369
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
28Al 1 0+ 3 3.760 0.001 3.531 -0.229
29Al 3

2
5
2
+ 1 -242.105 0.000 -242.040 0.065

29Al 3
2

1
2
+ 1 1.398 0.001 1.161 -0.237

29Al 3
2

7
2
+ 1 1.754 0.001 1.846 0.092

29Al 3
2

3
2
+ 1 2.222 0.001 1.978 -0.244

29Al 3
2

3
2
+ 2 2.866 0.001 2.656 -0.210

29Al 3
2

5
2
+ 2 3.062 0.001 2.912 -0.150

29Al 3
2

5
2
+ 3 3.184 0.001 3.043 -0.141

29Al 3
2

1
2
+ 2 3.433 0.001 3.346 -0.087

30Al 2 3+ 1 -247.834 0.003 -247.622 0.212
30Al 2 2+ 1 0.243 0.001 0.072 -0.171
30Al 2 1+ 1 0.687 0.001 0.437 -0.250
31Al 5

2
5
2
+ 1 -254.991 0.002 -255.138 -0.147

31Al 5
2

1
2
+ 1 0.946 0.001 0.883 -0.063

31Al 5
2

3
2
+ 1 1.612 0.001 1.707 0.095

32Al 3 1+ 1 -259.211 0.007 -259.155 0.056
33Al 7

2
5
2
+ 1 -264.680 0.007 -264.651 0.029

24Si -2 0+ 1 -172.014 0.019 -172.154 -0.140
24Si -2 2+ 1 1.879 0.011 2.061 0.182
25Si −3

2
5
2
+ 1 -187.003 0.010 -187.239 -0.236

25Si −3
2

3
2
+ 1 0.040 0.005 0.116 0.076

25Si −3
2

1
2
+ 1 0.815 0.015 0.975 0.160

25Si −3
2

3
2
+ 2 1.963 0.015 1.936 -0.027

26Si -1 0+ 1 -206.042 0.000 -206.144 -0.102
26Si -1 2+ 1 1.797 0.000 1.880 0.083
26Si -1 2+ 2 2.787 0.000 2.950 0.163
26Si -1 0+ 2 3.336 0.000 3.450 0.114
26Si -1 3+ 1 3.758 0.000 3.863 0.105
26Si -1 4+ 1 4.446 0.001 4.386 -0.060
26Si -1 2+ 3 4.139 0.000 4.287 0.148
26Si -1 3+ 2 4.188 0.000 4.249 0.061
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
27Si −1

2
5
2
+ 1 -219.357 0.000 -219.543 -0.186

27Si −1
2

1
2
+ 1 0.781 0.000 0.847 0.066

27Si −1
2

3
2
+ 1 0.957 0.000 1.129 0.172

27Si −1
2

7
2
+ 1 2.164 0.000 2.347 0.183

27Si −1
2

5
2
+ 2 2.648 0.000 2.721 0.073

27Si −1
2

3
2
+ 2 2.866 0.000 2.821 -0.045

27Si −1
2

9
2
+ 1 2.910 0.000 2.919 0.009

27Si −1
2

1
2
+ 2 3.540 0.001 3.721 0.181

27Si −1
2

3
2
+ 3 3.804 0.001 3.892 0.088

27Si −1
2

5
2
+ 3 4.289 0.001 4.451 0.162

27Si −1
2

11
2
+ 1 4.447 0.001 4.497 0.050

27Si −1
2

7
2
+ 2 4.475 0.001 4.700 0.225

27Si −1
2

5
2
+ 4 4.704 0.001 4.728 0.024

28Si 0 0+ 1 -236.537 0.000 -236.644 -0.107
28Si 0 2+ 1 1.779 0.001 1.933 0.154
28Si 0 4+ 1 4.618 0.001 4.618 0.000
28Si 0 0+ 2 4.979 0.001 4.965 -0.014
28Si 0 3+ 1 6.276 0.001 6.324 0.048
28Si 0 4+ 2 6.888 0.001 7.029 0.141
28Si 0 3+ 2 7.799 0.001 7.993 0.194
28Si 0 1+ 1 8.328 0.001 8.176 -0.152
28Si 0 6+ 1 8.543 0.001 8.462 -0.081
28Si 0 3+ 3 8.589 0.001 8.906 0.317
28Si 0 5+ 1 8.945 0.001 9.261 0.316
28Si 0 4+ 3 9.164 0.001 9.404 0.240
28Si 0 1+ 2 9.496 0.001 9.690 0.194
28Si 0 3+ 4 9.316 0.001 9.452 0.136
28Si 0 3+ 5 10.209 0.001 10.475 0.266
28Si 0 5+ 2 10.418 0.001 10.231 -0.187
28Si 0 6+ 2 11.100 0.001 11.014 -0.086
28Si 0 6+ 3 11.331 0.001 11.511 0.180
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
28Si 0 6+ 4 11.510 0.001 11.847 0.337
28Si 0 5+ 4 11.778 0.001 11.963 0.185
29Si 1

2
1
2
+ 1 -245.010 0.000 -244.949 0.061

29Si 1
2

3
2
+ 1 1.273 0.001 1.268 -0.005

29Si 1
2

5
2
+ 1 2.028 0.001 2.050 0.022

29Si 1
2

3
2
+ 2 2.426 0.001 2.514 0.088

29Si 1
2

5
2
+ 2 3.067 0.001 3.282 0.215

29Si 1
2

7
2
+ 1 4.080 0.001 4.186 0.106

29Si 1
2

9
2
+ 1 4.741 0.001 4.653 -0.088

29Si 1
2

1
2
+ 2 4.840 0.001 4.741 -0.099

29Si 1
2

5
2
+ 3 4.895 0.001 4.824 -0.071

29Si 1
2

7
2
+ 2 5.285 0.001 5.134 -0.151

29Si 1
2

9
2
+ 2 5.652 0.001 5.600 -0.052

29Si 1
2

7
2
+ 3 5.812 0.001 5.830 0.018

29Si 1
2

3
2
+ 3 5.949 0.001 6.050 0.101

29Si 1
2

9
2
+ 3 6.616 0.001 6.755 0.139

29Si 1
2

11
2
+ 1 7.139 0.001 7.077 -0.062

29Si 1
2

11
2
+ 2 8.173 0.001 7.904 -0.269

29Si 1
2

13
2
+ 1 8.641 0.001 8.578 -0.063

30Si 1 0+ 1 -255.620 0.000 -255.504 0.116
30Si 1 2+ 1 2.235 0.001 2.240 0.005
30Si 1 2+ 2 3.499 0.001 3.446 -0.053
30Si 1 1+ 1 3.770 0.001 4.038 0.268
30Si 1 0+ 2 3.788 0.001 3.915 0.127
30Si 1 2+ 3 4.810 0.001 4.862 0.052
30Si 1 3+ 1 4.831 0.001 4.796 -0.035
30Si 1 3+ 2 5.232 0.001 5.080 -0.152
30Si 1 4+ 1 5.280 0.001 5.317 0.037
30Si 1 0+ 3 5.372 0.001 5.408 0.036
30Si 1 2+ 4 5.614 0.001 5.878 0.264
30Si 1 4+ 2 5.950 0.001 5.830 -0.120
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
30Si 1 2+ 5 6.537 0.001 6.576 0.039
30Si 1 0+ 4 6.641 0.001 6.672 0.031
30Si 1 3+ 3 6.865 0.001 6.799 -0.066
30Si 1 2+ 6 6.913 0.001 6.823 -0.090
30Si 1 5+ 1 7.001 0.001 7.030 0.029
30Si 1 3+ 4 7.079 0.001 7.147 0.068
30Si 1 4+ 3 7.223 0.001 6.967 -0.256
30Si 1 0+ 5 7.443 0.001 7.604 0.161
30Si 1 1+ 2 7.623 0.001 7.433 -0.190
30Si 1 6+ 1 9.371 0.001 9.185 -0.186
31Si 3

2
3
2
+ 1 -262.207 0.000 -261.941 0.266

31Si 3
2

1
2
+ 1 0.752 0.001 0.720 -0.032

31Si 3
2

5
2
+ 1 1.695 0.001 1.559 -0.136

31Si 3
2

3
2
+ 2 2.317 0.001 2.340 0.023

32Si 2 0+ 1 -271.407 0.000 -271.276 0.131
32Si 2 2+ 1 1.941 0.001 2.034 0.093
32Si 2 2+ 2 4.232 0.001 4.228 -0.004
32Si 2 0+ 2 4.983 0.001 4.926 -0.057
33Si 5

2
3
2
+ 1 -275.915 0.001 -275.682 0.233

33Si 5
2

1
2
+ 1 1.010 0.016 0.779 -0.231

33Si 5
2

5
2
+ 1 4.290 0.016 4.489 0.199

34Si 3 0+ 1 -283.429 0.014 -283.451 -0.022
27P −3

2
1
2
+ 1 -206.913 0.026 -206.811 0.102

27P −3
2

3
2
+ 1 1.120 0.001 1.062 -0.058

28P -1 3+ 1 -221.409 0.001 -221.472 -0.063
28P -1 2+ 1 0.106 0.001 0.031 -0.075
28P -1 3+ 2 1.134 0.001 1.130 -0.004
28P -1 1+ 1 1.313 0.002 1.242 -0.071
28P -1 2+ 2 1.516 0.002 1.589 0.073
28P -1 1+ 2 1.567 0.003 1.544 -0.023
28P -1 2+ 3 2.104 0.001 2.064 -0.040
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
28P -1 1+ 3 2.143 0.005 2.217 0.074
29P −1

2
1
2
+ 1 -239.286 0.000 -239.311 -0.025

29P −1
2

3
2
+ 1 1.384 0.000 1.347 -0.037

29P −1
2

5
2
+ 1 1.954 0.000 2.064 0.110

29P −1
2

3
2
+ 2 2.423 0.000 2.590 0.167

29P −1
2

5
2
+ 2 3.106 0.000 3.356 0.250

29P −1
2

7
2
+ 1 4.081 0.001 4.226 0.145

29P −1
2

9
2
+ 1 4.642 0.001 4.642 0.000

29P −1
2

1
2
+ 2 4.759 0.003 4.743 -0.016

29P −1
2

5
2
+ 3 4.954 0.000 4.922 -0.032

30P 0 1+ 1 -250.605 0.000 -250.571 0.034
30P 0 0+ 1 0.677 0.001 0.630 -0.047
30P 0 1+ 2 0.709 0.001 0.661 -0.048
30P 0 2+ 1 1.454 0.001 1.557 0.103
30P 0 3+ 1 1.974 0.001 1.973 -0.001
30P 0 3+ 2 2.539 0.001 2.433 -0.106
30P 0 2+ 2 2.723 0.001 2.620 -0.103
30P 0 3+ 3 2.840 0.001 2.956 0.116
30P 0 2+ 3 2.937 0.001 2.933 -0.004
30P 0 1+ 3 3.019 0.001 3.217 0.198
30P 0 1+ 4 3.731 0.001 3.750 0.019
30P 0 2+ 4 3.834 0.001 3.823 -0.011
30P 0 3+ 4 3.928 0.001 4.077 0.149
30P 0 2+ 5 4.183 0.001 4.166 -0.017
30P 0 4+ 1 4.298 0.001 4.316 0.018
30P 0 5+ 1 4.343 0.001 4.308 -0.035
30P 0 2+ 6 4.424 0.001 4.351 -0.073
30P 0 0+ 2 4.468 0.001 4.620 0.152
30P 0 1+ 5 4.502 0.001 4.729 0.227
30P 0 3+ 5 4.735 0.001 4.674 -0.061
30P 0 1+ 6 4.945 0.001 4.787 -0.158

135



Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
30P 0 3+ 6 5.206 0.001 5.296 0.090
30P 0 2+ 7 5.576 0.001 5.612 0.036
30P 0 1+ 7 5.701 0.001 5.670 -0.031
31P 1

2
1
2
+ 1 -262.916 0.000 -262.876 0.040

31P 1
2

3
2
+ 1 1.266 0.001 1.193 -0.073

31P 1
2

5
2
+ 1 2.234 0.001 2.268 0.034

31P 1
2

1
2
+ 2 3.134 0.001 3.277 0.143

31P 1
2

5
2
+ 2 3.295 0.001 3.258 -0.037

31P 1
2

7
2
+ 1 3.415 0.001 3.463 0.048

31P 1
2

3
2
+ 2 3.506 0.001 3.663 0.157

31P 1
2

5
2
+ 3 4.190 0.001 4.213 0.023

31P 1
2

3
2
+ 3 4.261 0.001 4.363 0.102

31P 1
2

3
2
+ 4 4.594 0.001 4.691 0.097

31P 1
2

7
2
+ 2 4.634 0.001 4.700 0.066

31P 1
2

5
2
+ 4 4.783 0.001 4.807 0.024

31P 1
2

5
2
+ 5 5.115 0.001 5.197 0.082

31P 1
2

9
2
+ 1 5.343 0.001 5.417 0.074

31P 1
2

9
2
+ 2 5.892 0.001 5.881 -0.011

31P 1
2

9
2
+ 3 6.080 0.001 6.037 -0.043

31P 1
2

1
2
+ 5 6.337 0.001 6.374 0.037

31P 1
2

11
2
+ 1 6.453 0.001 6.601 0.148

31P 1
2

11
2
+ 2 7.441 0.001 7.664 0.223

32P 1 1+ 1 -270.852 0.000 -270.746 0.106
32P 1 2+ 1 0.078 0.001 0.126 0.048
32P 1 0+ 1 0.513 0.001 0.483 -0.030
32P 1 1+ 2 1.150 0.001 1.109 -0.041
32P 1 2+ 2 1.323 0.001 1.234 -0.089
32P 1 3+ 1 1.754 0.001 1.704 -0.050
32P 1 3+ 2 2.178 0.001 2.196 0.018
32P 1 2+ 3 2.219 0.001 2.292 0.073
32P 1 1+ 3 2.230 0.001 2.051 -0.179

136



Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
32P 1 2+ 4 2.658 0.001 2.590 -0.068
32P 1 1+ 4 2.740 0.001 2.848 0.108
32P 1 3+ 3 3.005 0.001 2.952 -0.053
32P 1 4+ 1 3.149 0.001 3.143 -0.006
32P 1 2+ 5 3.445 0.001 3.494 0.049
32P 1 1+ 5 3.796 0.001 3.808 0.012
32P 1 3+ 4 3.989 0.001 3.811 -0.178
32P 1 4+ 2 4.035 0.001 3.811 -0.224
32P 1 1+ 6 4.203 0.001 4.078 -0.125
32P 1 3+ 5 4.312 0.001 4.074 -0.238
32P 1 1+ 7 4.548 0.001 4.752 0.204
32P 1 2+ 7 4.554 0.001 4.644 0.090
32P 1 3+ 6 4.611 0.001 4.367 -0.244
32P 1 5+ 1 4.743 0.001 4.849 0.106
33P 3

2
1
2
+ 1 -280.956 0.001 -281.007 -0.051

33P 3
2

3
2
+ 1 1.432 0.001 1.467 0.035

33P 3
2

5
2
+ 1 1.848 0.001 1.962 0.114

33P 3
2

3
2
+ 2 2.539 0.001 2.581 0.042

33P 3
2

3
2
+ 3 3.275 0.001 3.400 0.125

33P 3
2

5
2
+ 2 3.490 0.001 3.577 0.087

33P 3
2

7
2
+ 1 3.628 0.001 3.820 0.192

33P 3
2

5
2
+ 3 4.048 0.001 4.037 -0.011

33P 3
2

3
2
+ 4 4.856 0.001 5.130 0.274

34P 2 1+ 1 -287.238 0.001 -287.246 -0.008
34P 2 2+ 1 0.429 0.001 0.464 0.035
34P 2 1+ 2 1.608 0.001 1.539 -0.069
35P 5

2
1
2
+ 1 -295.619 0.002 -295.808 -0.189

35P 5
2

3
2
+ 1 2.386 0.001 2.587 0.201

28S -2 0+ 1 -209.406 0.160 -209.374 0.032
28S -2 2+ 1 1.507 0.007 1.544 0.037
29S −3

2
5
2
+ 1 -224.707 0.050 -224.907 -0.200
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
29S −3

2
1
2
+ 1 1.222 0.020 1.265 0.043

29S −3
2

7
2
+ 1 1.727 0.037 1.896 0.169

29S −3
2

5
2
+ 2 2.887 0.040 2.975 0.088

30S -1 0+ 1 -243.681 0.000 -243.832 -0.151
30S -1 2+ 1 2.211 0.001 2.288 0.077
30S -1 2+ 2 3.402 0.001 3.533 0.131
30S -1 0+ 2 3.668 0.001 3.932 0.264
30S -1 1+ 1 3.676 0.003 4.038 0.362
30S -1 3+ 1 4.704 0.005 4.858 0.154
30S -1 3+ 2 5.136 0.002 5.216 0.080
30S -1 4+ 1 5.168 0.006 5.322 0.154
31S −1

2
1
2
+ 1 -256.736 0.000 -256.870 -0.134

31S −1
2

3
2
+ 1 1.249 0.000 1.201 -0.048

31S −1
2

5
2
+ 1 2.234 0.000 2.373 0.139

31S −1
2

1
2
+ 2 3.077 0.000 3.289 0.212

31S −1
2

5
2
+ 2 3.285 0.000 3.354 0.069

31S −1
2

7
2
+ 1 3.351 0.000 3.467 0.116

31S −1
2

3
2
+ 2 3.436 0.000 3.709 0.273

31S −1
2

9
2
+ 1 5.301 0.000 5.446 0.145

31S −1
2

11
2
+ 1 6.394 0.000 6.691 0.297

32S 0 0+ 1 -271.780 0.000 -271.625 0.155
32S 0 2+ 1 2.230 0.001 2.201 -0.029
32S 0 0+ 2 3.778 0.001 3.493 -0.285
32S 0 2+ 2 4.282 0.001 4.395 0.113
32S 0 4+ 1 4.459 0.001 4.662 0.203
32S 0 1+ 1 4.695 0.001 4.815 0.120
32S 0 3+ 1 5.413 0.001 5.397 -0.016
32S 0 2+ 3 5.549 0.001 5.430 -0.119
32S 0 4+ 2 6.411 0.001 6.207 -0.204
32S 0 2+ 4 6.666 0.001 6.707 0.041
32S 0 4+ 3 6.852 0.001 6.873 0.021
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
32S 0 1+ 2 7.001 0.001 6.859 -0.142
32S 0 1+ 3 7.189 0.001 7.227 0.038
32S 0 3+ 2 7.350 0.001 7.403 0.053
32S 0 2+ 5 7.115 0.001 7.017 -0.098
32S 0 2+ 6 7.484 0.001 7.488 0.004
32S 0 5+ 1 7.566 0.001 7.586 0.020
32S 0 4+ 4 7.882 0.001 7.995 0.113
33S 1

2
3
2
+ 1 -280.422 0.000 -280.257 0.165

33S 1
2

1
2
+ 1 0.841 0.001 0.873 0.032

33S 1
2

5
2
+ 1 1.966 0.001 1.957 -0.009

33S 1
2

3
2
+ 2 2.312 0.001 2.322 0.010

33S 1
2

5
2
+ 2 2.867 0.001 2.950 0.083

33S 1
2

7
2
+ 1 2.968 0.001 2.952 -0.016

33S 1
2

5
2
+ 3 3.831 0.001 3.830 -0.001

33S 1
2

3
2
+ 3 3.934 0.001 3.591 -0.343

33S 1
2

9
2
+ 1 4.047 0.001 4.179 0.132

33S 1
2

1
2
+ 2 4.055 0.001 3.899 -0.156

33S 1
2

7
2
+ 2 4.094 0.001 4.180 0.086

33S 1
2

1
2
+ 3 4.375 0.001 4.266 -0.109

33S 1
2

5
2
+ 4 4.746 0.001 4.572 -0.174

34S 1 0+ 1 -291.839 0.000 -291.692 0.147
34S 1 2+ 1 2.127 0.001 2.157 0.030
34S 1 2+ 2 3.304 0.001 3.092 -0.212
34S 1 0+ 2 3.916 0.001 3.712 -0.204
34S 1 1+ 1 4.074 0.001 3.713 -0.361
34S 1 2+ 3 4.114 0.001 4.107 -0.007
34S 1 4+ 1 4.689 0.001 4.826 0.137
34S 1 3+ 1 4.876 0.001 4.681 -0.195
34S 1 2+ 4 4.889 0.001 4.568 -0.321
34S 1 0+ 3 5.228 0.001 5.194 -0.034
34S 1 1+ 2 5.380 0.001 5.571 0.191
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
34S 1 2+ 5 5.998 0.001 5.955 -0.043
35S 3

2
3
2
+ 1 -298.825 0.000 -298.701 0.124

35S 3
2

1
2
+ 1 1.572 0.001 1.685 0.113

35S 3
2

5
2
+ 1 2.717 0.001 2.683 -0.034

35S 3
2

3
2
+ 2 2.939 0.001 2.739 -0.200

35S 3
2

5
2
+ 2 3.421 0.001 3.339 -0.082

36S 2 0+ 1 -308.714 0.000 -308.706 0.008
36S 2 2+ 1 3.291 0.001 3.365 0.074
36S 2 1+ 1 4.523 0.001 4.160 -0.363

31Cl −3
2

3
2
+ 1 -243.945 0.003 -243.948 -0.003

31Cl −3
2

5
2
+ 1 1.746 0.005 1.638 -0.108

31Cl −3
2

3
2
+ 2 2.436 0.005 2.469 0.033

32Cl -1 1+ 1 -258.317 0.001 -258.406 -0.089
32Cl -1 2+ 1 0.090 0.000 0.134 0.044
32Cl -1 0+ 1 0.461 0.000 0.492 0.031
32Cl -1 1+ 2 1.169 0.000 1.185 0.016
32Cl -1 2+ 2 1.331 0.001 1.264 -0.067
32Cl -1 3+ 1 1.737 0.001 1.731 -0.006
32Cl -1 3+ 2 2.131 0.000 2.253 0.122
32Cl -1 1+ 3 2.210 0.001 2.083 -0.127
32Cl -1 2+ 3 2.284 0.001 2.392 0.108
32Cl -1 1+ 4 2.611 0.005 2.863 0.252
32Cl -1 2+ 4 2.675 0.005 2.616 -0.059
33Cl −1

2
3
2
+ 1 -274.057 0.000 -273.911 0.146

33Cl −1
2

1
2
+ 1 0.811 0.000 0.880 0.069

33Cl −1
2

5
2
+ 1 1.986 0.000 1.964 -0.022

33Cl −1
2

3
2
+ 2 2.352 0.000 2.340 -0.012

33Cl −1
2

5
2
+ 2 2.839 0.000 2.948 0.109

33Cl −1
2

7
2
+ 1 2.975 0.000 2.912 -0.063

33Cl −1
2

5
2
+ 3 3.816 0.000 3.811 -0.005

33Cl −1
2

3
2
+ 3 3.971 0.000 3.569 -0.402
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
34Cl 0 0+ 1 -285.565 0.000 -285.426 0.139
34Cl 0 3+ 1 0.146 0.000 0.012 -0.134
34Cl 0 1+ 1 0.461 0.001 0.366 -0.095
34Cl 0 1+ 2 0.666 0.001 0.619 -0.047
34Cl 0 2+ 1 1.230 0.001 1.058 -0.172
34Cl 0 2+ 2 1.887 0.001 1.769 -0.118
34Cl 0 2+ 3 2.158 0.000 2.185 0.027
34Cl 0 3+ 2 2.181 0.001 2.166 -0.015
34Cl 0 4+ 1 2.377 0.001 2.312 -0.065
34Cl 0 1+ 3 2.580 0.001 2.433 -0.147
34Cl 0 3+ 3 2.611 0.001 2.452 -0.159
34Cl 0 1+ 4 3.129 0.001 3.172 0.043
34Cl 0 3+ 4 3.334 0.001 3.408 0.074
34Cl 0 5+ 1 3.646 0.001 3.741 0.095
34Cl 0 4+ 2 3.964 0.001 3.998 0.034
35Cl 1

2
3
2
+ 1 -298.210 0.000 -298.259 -0.049

35Cl 1
2

1
2
+ 1 1.219 0.001 1.225 0.006

35Cl 1
2

5
2
+ 1 1.763 0.001 1.723 -0.040

35Cl 1
2

7
2
+ 1 2.645 0.001 2.734 0.089

35Cl 1
2

3
2
+ 2 2.694 0.001 2.666 -0.028

35Cl 1
2

5
2
+ 2 3.003 0.001 3.057 0.054

35Cl 1
2

3
2
+ 3 3.918 0.001 3.941 0.023

35Cl 1
2

9
2
+ 1 3.943 0.001 4.171 0.228

35Cl 1
2

1
2
+ 2 3.967 0.014 3.984 0.017

35Cl 1
2

3
2
+ 4 4.624 0.001 4.667 0.043

35Cl 1
2

1
2
+ 3 4.720 0.001 5.036 0.316

36Cl 1 2+ 1 -306.790 0.000 -306.846 -0.056
36Cl 1 3+ 1 0.788 0.001 0.828 0.040
36Cl 1 1+ 1 1.165 0.001 1.184 0.019
36Cl 1 1+ 2 1.601 0.001 1.681 0.080
36Cl 1 2+ 2 1.959 0.001 1.979 0.020
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
36Cl 1 2+ 3 2.492 0.001 2.469 -0.023
36Cl 1 3+ 2 2.864 0.001 3.095 0.231
36Cl 1 1+ 3 2.676 0.001 2.585 -0.091
36Cl 1 0+ 1 3.120 0.001 3.209 0.089
36Cl 1 1+ 4 3.469 0.001 3.408 -0.061
36Cl 1 4+ 1 3.830 0.001 3.668 -0.162
37Cl 3

2
3
2
+ 1 -317.100 0.000 -317.284 -0.184

37Cl 3
2

1
2
+ 1 1.726 0.001 1.887 0.161

37Cl 3
2

5
2
+ 1 3.087 0.001 3.182 0.095

37Cl 3
2

3
2
+ 2 4.016 0.001 4.061 0.045

32Ar -2 0+ 1 -246.400 0.002 -246.559 -0.159
32Ar -2 2+ 1 1.867 0.008 2.066 0.199
33Ar −3

2
1
2
+ 1 -261.656 0.000 -261.931 -0.275

33Ar −3
2

3
2
+ 1 1.359 0.002 1.420 0.061

33Ar −3
2

5
2
+ 1 1.798 0.002 1.997 0.199

33Ar −3
2

3
2
+ 2 2.439 0.003 2.536 0.097

33Ar −3
2

3
2
+ 3 3.154 0.009 3.343 0.189

33Ar −3
2

5
2
+ 2 3.361 0.005 3.565 0.204

33Ar −3
2

7
2
+ 1 3.456 0.006 3.788 0.332

33Ar −3
2

5
2
+ 3 3.819 0.003 4.040 0.221

34Ar -1 0+ 1 -278.721 0.000 -278.615 0.106
34Ar -1 2+ 1 2.091 0.000 2.124 0.033
34Ar -1 2+ 2 3.288 0.001 3.043 -0.245
34Ar -1 0+ 2 3.873 0.003 3.615 -0.258
35Ar −1

2
3
2
+ 1 -291.461 0.001 -291.533 -0.072

35Ar −1
2

1
2
+ 1 1.184 0.001 1.131 -0.053

35Ar −1
2

5
2
+ 1 1.751 0.000 1.704 -0.047

35Ar −1
2

7
2
+ 1 2.603 0.000 2.699 0.096

35Ar −1
2

3
2
+ 2 2.638 0.000 2.577 -0.061

35Ar −1
2

5
2
+ 2 2.983 0.000 3.029 0.046

35Ar −1
2

1
2
+ 2 3.884 0.010 3.927 0.043

142



Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
36Ar 0 0+ 1 -306.717 0.000 -306.581 0.136
36Ar 0 2+ 1 1.970 0.014 1.828 -0.142
36Ar 0 0+ 2 4.329 0.001 4.480 0.151
36Ar 0 2+ 2 4.440 0.001 4.177 -0.263
36Ar 0 4+ 1 4.414 0.001 4.481 0.067
36Ar 0 4+ 2 6.356 0.001 6.230 -0.126
36Ar 0 2+ 3 6.611 0.001 6.443 -0.168
36Ar 0 3+ 1 7.140 0.001 7.051 -0.089
37Ar 1

2
3
2
+ 1 -315.504 0.000 -315.459 0.045

37Ar 1
2

1
2
+ 1 1.410 0.001 1.412 0.002

37Ar 1
2

7
2
+ 1 2.217 0.001 2.111 -0.106

37Ar 1
2

5
2
+ 1 2.796 0.001 2.751 -0.045

37Ar 1
2

5
2
+ 2 3.171 0.001 3.166 -0.005

37Ar 1
2

3
2
+ 2 3.602 0.001 3.542 -0.060

37Ar 1
2

7
2
+ 2 4.624 0.001 4.506 -0.118

38Ar 1 0+ 1 -327.343 0.000 -327.246 0.097
38Ar 1 2+ 1 2.168 0.001 1.823 -0.345
35K −3

2
3
2
+ 1 -278.804 0.001 -278.651 0.153

36K -1 2+ 1 -293.120 0.000 -293.148 -0.028
36K -1 3+ 1 0.810 0.000 0.829 0.019
36K -1 1+ 1 1.112 0.000 1.136 0.024
36K -1 1+ 2 1.619 0.001 1.629 0.010
36K -1 2+ 2 1.918 0.001 1.897 -0.021
36K -1 2+ 3 2.282 0.001 2.428 0.146
37K −1

2
3
2
+ 1 -308.574 0.000 -308.494 0.080

37K −1
2

1
2
+ 1 1.371 0.000 1.410 0.039

37K −1
2

7
2
+ 1 2.285 0.000 2.158 -0.127

37K −1
2

5
2
+ 1 2.750 0.000 2.788 0.038

37K −1
2

5
2
+ 2 3.240 0.000 3.191 -0.049

37K −1
2

3
2
+ 2 3.623 0.002 3.612 -0.011

37K −1
2

7
2
+ 2 4.413 0.000 4.477 0.064
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Table A1: (cont’d)

Nucleus Tz Jπ Jπi Exp. Error USDC ∆E
38K 0 3+ 1 -320.646 0.000 -320.717 -0.071
38K 0 0+ 1 0.130 0.001 0.349 0.219
38K 0 1+ 1 0.459 0.001 0.560 0.101
38K 0 1+ 2 1.698 0.001 1.528 -0.170
38K 0 2+ 1 2.401 0.001 2.284 -0.117
38K 0 2+ 2 3.431 0.001 3.245 -0.186
38K 0 1+ 3 3.857 0.001 4.272 0.415
39K 1

2
3
2
+ 1 -333.724 0.000 -333.958 -0.234

39K 1
2

1
2
+ 1 2.522 0.001 2.639 0.117

39K 1
2

5
2
+ 1 6.479 0.500 7.673 1.194

36Ca -2 0+ 1 -281.372 0.040 -281.308 0.064
36Ca -2 2+ 1 3.045 0.002 3.259 0.214
37Ca −3

2
3
2
+ 1 -296.128 0.001 -296.247 -0.119

37Ca −3
2

1
2
+ 1 1.606 0.001 1.735 0.129

37Ca −3
2

5
2
+ 1 2.939 0.002 3.081 0.142

38Ca -1 0+ 1 -313.122 0.000 -312.956 0.166
38Ca -1 2+ 1 2.213 0.000 1.886 -0.327
39Ca −1

2
3
2
+ 1 -326.417 0.001 -326.623 -0.206

39Ca −1
2

1
2
+ 1 2.465 0.001 2.531 0.066
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APPENDIX B

FINCH DOCUMENTATION

Over the course of the past four years, I have developed from the ground up a Python application

to constrain configuration-interaction Hamiltonians for use with NuShellX and similar programs.

This code requires an installation of NuShellX@MSU and Python 3 to run properly. The code is

called Fitting Isospin Non-Conserving Hamiltonians, or FINCH.

FINCH takes in an initial interaction to ensure the first iteration’s nuclear wavefunctions are real-

istic, and an ab initio interaction with which those poorly determined parameter linear combinations

will be replaced. FINCH also needs a data set for a given model space. The Singular-Value Decom-

position Fitting method is implemented. It comes preconfigured to slowly evolve the interaction

and generate a series of solutions for each number of allowed varied linear combinations.

B.1 How it Works

The initial interaction is broken into several groups of parameters by whichever method the user

chooses.

FINCH then calculates the wavefunctions and spectra for each nucleus included in the data set,

along with the contribution from each group of parameters and collects this data.

The experimental data and group contributions are then used to generate an error matrix and

error vector. The error matrix can then be decomposed into a diagonal matrix containing the

singular values of the error matrix, along with a rotation matrix that defines the natural basis of

the parameter space.

At this stage, we can replace the poorly determined linear combinations with those from the ab

initio interaction. A choice must be made here as to how many linear combinations to replace. A

new interaction can then be determined, and this process is iterated until convergence.

By default, the program will start with a small number of varied linear combinations (VLC) and

increase until a full chi-squared fit is completed, and then begin "back propagating" by decreasing
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the number of varied linear combinations until we simply recreate the ab initio interaction. This

slow evolution prevents us from wandering too far in the parameter space.

If you run into any error you don’t see an immediate cause for, try rerunning in a fresh folder.

This fixes 9/10 problems with NuShellX manipulations done by the code.

B.2 FINCH Answer File

The code is designed to need very little alteration for a new fit with a new model space, a new set of

parameter groups, or for the introduction of new data. To this end, the necessary declarations one

would want to change in the code are gathered in a single file format input.fans. This file is copied

over into fit-inputs.py and imported as a module in FINCH. The variables in the fans file are

• MODEL_SPACE: the name of the model space

• ZERO_BODY_TERM: the energy contribution from the core in the shell model

• A_MIN, A_MAX: the range of mass values in the model space

• PROTON_ORBITS, NEUTRON_ORBITS: the number of the orbits in order for the .mod

file, using the NushellX k labeling

• DATA_FILE_NAME: Name of input file containing level data (*.levels)

• AI and INITIAL interactions: Can be the same or can choose more realistic initial interaction

for the first iteration. Defined in parts by,

– _SPE: name of input file containing single-particle energies and orbit references (*.spe)

– _STRONG: name of input file containing the TBME for the strong interaction (*.tbme)

– _COUL: name of input file containing the TBME for the Coulomb interaction (if left

as ” then Coulomb is not included)

– _ISOV: input value for isovector strength (0.01 is 1%) (if left as ” then Coulomb is not

included)
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– _ISOT: input value for isotensor strength (0.01 is 1%) (if left as ” then Coulomb is not

included)

• DATA_FILE: the file containing the levels/nuclei in the fit. Columns show: element symbol,

A, Tz, T, 2J, P, jnum, Energy, and error followed by any relevant comments.

• NEW_RUN: True or False, allows you to rerun a fit in the same folder (by default the last

folder ran)

• SKIP_RUNS: how many iterations in the fit you wish to skip over as the calculations had

been done before

• PAUSE_BETWEEN: T or F, allows you to have the program pause between iterations to

allow debugging/testing.

• fit_to_energies: T or F, include energies in .levels file in the fit

• fit_to_MED: T or F, include mirror energy differences for pairs in .levels file in the fit

• fit_to_TED: T or F, include c coefficients for triplets found in .levels file in the fit

• fit_to_delMED: T or F, (meant for sd-shell only) include energies in .levels file in the fit

• STBME_CHOICE: A setting for choosing the grouping method use on the strong interaction

TBME

– 1 - all TBME in one group with one overall strength parameter

– 2 - all TBME in two groups based on isospin value (T=0,1)

– 3 - all TBME in three groups evolving separately: pp, nn, and pn

– 4 - TBME in isospin formalism groups so that pp,nn, and pn evolve together

– 5 - TBME in isospin formalism groups, but only the diagonal are fit

– 6 - All TBME in their own groups, each allowed to fit on their own

147



– 7 - Specific to the calcium fit in the fp shell UFP-CA

– 8 - Fit diagonal matrix elements except those involving excluded orbits

– 9 - Takes group numbers from ’custom.dat’ file (see sample input section)

• EXCLUDE_ORBIT_LIST: a list of integers corresponding to the absolute orbit reference for

excluding TBME involving these orbits to fit. Used in conjunction with STBME_CHOICE=8

• DO_NOT_FIT: a list of integers corresponding to the group numbers for the parameters you

wish to hold constant in the fit. See "fit_labels.dat"

• max_groups: by default the program will increase VLC until a full fit is reached. However,

if the data set is lacking or you wish to save time, you can set a maximum number of VLC

the program will iterate up to before "back propagating"

• CALCULATE_ALL: T or F, calculate the overlaps for excluded groups. Set to False for

faster iterations, but lose information you may want later.

• VLC_CHOICES: Default is an empty list for a full fit. Or include integers in list to converge

only at those VLC.

• FORWARD_ITER_MAX: The maximum number of iterations to spend on any VLC in the

forward phase before moving on. The fit may be oscillating between two minima and never

actually converge otherwise.

• FORWARD_ITER_MAX: The maximum number of iterations to spend on any VLC in the

backward phase before moving on. The fit may be oscillating between two minima and never

actually converge otherwise.

• MAX_GROUPS_CHOICE: The maximum number of VLC the fit will try to fit. If it is

known that a full SVD will wail, set a reduced number here. A default of 0 sets this to the

total number of groups in the fit.
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• STORE_EVERY_VLC: T or F, store a copy of each possible VLC choice at each iteration.

In cases with a large number of groups, this may cause significant delay between iterations.

B.3 Sample Inputs

Any new fit requires a handful of inputs. A list of levels to be included in the fit, the single-particle

energies, and the two-body matrix elements, and an FINCH answer file to define the Hamiltonian.

B.3.1 Level Data (*.levels)

The level data includes the ground states and excited states in ascending mass order. It is important

that the excited states of a nucleus be listed directly after the ground state.

The columns represent: The chemical symbol, the mass number A, 2Tz, 2T , 2J, P, the J

numbered ordering of the level, the experimental energy (important to note that the code assumes

a negative ground state energy), and the associated error of the experimental energy. Comments

can be added at the end of each line.

The experimental error is also used to include/exclude data from the fitting procedure. In some

cases, a user might want to track a level during the fit but there is no well known value for that

level, or you know the level will be wrong due to a breakdown of the model space. For this case

use an error that is greater than 4 MeV. The output energy rms will include only those levels with

less than a 0.3 MeV error, but this can be changed in the code around line 1000.

The below is a sample input for a fpj4 model space fit to the Calcium isotopes.

Ca 48 8 8 0 0 1 -416.0009 4.0001

Ca 49 9 9 3 1 1 -421.1474 0.0002

Ca 49 9 9 1 1 1 2.0232 0.0003

Ca 49 9 9 5 1 1 3.9910 0.0002

Ca 50 10 10 0 0 1 -427.5082 0.0016

Ca 50 10 10 4 0 1 1.0267 0.0001
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Ca 51 11 11 3 1 1 -432.3226 0.0005

Ca 51 11 11 1 1 1 1.7180 0.0010

Ca 51 11 11 5 1 1 2.3781 0.0002

Ca 51 11 11 3 1 2 2.9341 0.0010

Ca 51 11 11 7 1 1 3.4621 0.0002

Ca 51 11 11 5 1 2 3.4775 0.0023

Ca 51 11 11 9 1 1 4.3201 0.0004

Ca 52 12 12 0 0 1 -438.3278 0.0007

Ca 52 12 12 4 0 1 2.5630 0.0010

Ca 53 13 13 1 1 1 -441.5218 0.0424

Ca 53 13 13 5 1 1 1.7530 0.0150

Ca 53 13 13 3 1 1 2.2000 0.1000

Ca 54 14 14 0 0 1 -445.3650 0.0486

Ca 54 14 14 4 0 1 2.0430 0.0190

Ca 55 15 15 5 1 1 -446.9255 0.1600

Ca 56 16 16 0 0 1 -449.8568 0.2500

Ca 56 16 16 4 0 1 1.4560 0.0120

Ca 57 17 17 5 1 1 -451.7881 0.9900

Ca 58 18 18 0 0 1 -454.4447 0.0000

Ca 58 18 18 4 0 1 1.1150 0.0340

Ca 59 19 19 5 1 1 -455.8211 0.0000

Ca 59 19 19 9 0 1 1.3700 0.2501

Ca 60 20 20 0 0 1 -458.7272 0.0001

Ca 60 20 20 0 0 2 1.5500 0.2501
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B.3.2 Single-Particle Energies *.spe

For a fit in the fp-shell with no Coulomb interaction, we set up the following file. fp.spe has columns

indicating the SPE type (Coulomb ’c’, or strong ’s’, not important unless adding mass dependence),

the orbit label, and the SPE value.

s 5 -1.5615

s 6 -5.1465

s 7 -3.1233

s 8 2.6100

The lack of values for orbits k = 1 − 4 tells FINCH that it is only fitting neutron orbits.

B.3.3 Two-Body Matrix Elements *.tbme

This format is used for both the Coulomb and strong interaction TBME.

A two-body matrix element input is shown below with columns: k1, k2, k3, k4, J, T , and v with

the k-orbits being labeled as in NuShellX .int files.

5 5 5 5 0 1 -1.1858

5 5 5 5 2 1 -0.0139

5 5 5 5 4 1 0.3571

5 5 6 5 2 1 -0.2710

5 5 6 5 4 1 -0.6748

5 5 8 8 4 1 0.0652

This is also the format of the ’custom.dat’ file for use with STBME_CHOICE=9 for specifying

the strong TBME groups. The difference is instead of values in the seventh column, there is a group

name. A group name of ’0’ will result in the TBME not being fit, and then all other unique group

names form their own parameter group. For example, we can define three groups for the above

TBME as,
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5 5 5 5 0 1 1

5 5 5 5 2 1 2

5 5 5 5 4 1 3

5 5 6 5 2 1 0

5 5 6 5 4 1 0

5 5 8 8 4 1 0

which places each of the first three matrix elements in their own group and keeps the rest

unconstrained.

A copy of ’custom.dat’ with all zeros is generated and placed in the ’groups/’ folder each time

FINCH is run. To use this, simply place it in the main working directory.

B.4 Sample Outputs

B.4.1 Extracted overlap files *.xfit

A csv file containing the calculated energy of a level and then it’s overlaps corresponding to the

fitting groups in order, example for "Ca59-5-1-1.xfit" (Nucleus-2J-P-jnum.xfit).

-445.6423,-7.3953,-20.1276,-6.139,1.0112,-0.7308,-0.0398,1.8355,...

B.4.2 Output Energies

A list of levels showing the input experimental energy and error, along with the interactions

prediction for the level. NOTE: the output-energy.dat file in an iteration folder corresponds to the

hamil.int files created in the previous iteration.

Ca48-0-0-1 -416.0009 4.0001 -416.0009 0.0000

Ca49-3-1-1 -421.1474 0.0002 -421.1474 0.0000

Ca49-1-1-1 2.0232 0.0003 2.0232 0.0000

Ca49-5-1-1 3.9910 0.0002 3.5850 -0.4060
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Ca50-0-0-1 -427.5082 0.0016 -427.9231 -0.4149

Ca50-4-0-1 1.0267 0.0001 1.7820 0.7553

Ca51-3-1-1 -432.3226 0.0005 -431.4804 0.8422

Ca51-1-1-1 1.7180 0.0010 0.6319 -1.0861

Ca51-5-1-1 2.3781 0.0002 1.7708 -0.6073

Ca51-3-1-2 2.9341 0.0010 2.4860 -0.4481

Ca51-7-1-1 3.4621 0.0002 3.8833 0.4212

Ca51-5-1-2 3.4775 0.0023 2.1706 -1.3069

Ca51-9-1-1 4.3201 0.0004 3.5787 -0.7414

Ca52-0-0-1 -438.3278 0.0007 -436.7397 1.5881

Ca52-4-0-1 2.5630 0.0010 1.8999 -0.6631

Ca53-1-1-1 -441.5218 0.0424 -439.3412 2.1806

Ca53-5-1-1 1.7530 0.0150 1.2991 -0.4539

Ca53-3-1-1 2.2000 0.1000 1.5365 -0.6635

Ca54-0-0-1 -445.3650 0.0486 -442.6918 2.6732

Ca54-4-0-1 2.0430 0.0190 1.9621 -0.0809

Ca55-5-1-1 -446.9255 0.1600 -443.4941 3.4314

Ca56-0-0-1 -449.8568 0.2500 -445.7714 4.0854

Ca56-4-0-1 1.4560 0.0120 1.3203 -0.1357

Ca57-5-1-1 -451.7881 0.9900 -445.5049 6.2832

Ca58-0-0-1 -454.4447 0.0000 -446.9030 7.5417

Ca58-4-0-1 1.1150 0.0340 1.5160 0.4010

Ca59-5-1-1 -455.8211 0.0000 -445.6423 10.1788

Ca59-9-0-1 1.3700 0.2501 1.3755 0.0055

Ca60-0-0-1 -458.7272 0.0001 -446.2499 12.4773

Ca60-0-0-2 1.5500 0.2501 2.9802 1.4302
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rms deviation: 3.6262

28

The final row corresponds to the number of well known levels included in the rms deviation

calculation.

B.4.3 Output of Fit Scaling

At each iteration, a new interaction is made for every number of varied linear combinations up to

the total number of groups. The information for these are stored in ouput-mults.dat in the form of

multiplicative scaling factors that need to be applied to the current Hamiltonian to recover the full

interaction. This file is used mainly as a guide in determining which parameters are important at

different varied linear combination numbers.

Each row represents a single interaction for a varied linear combination number starting at 0

VLC or the ab initio interaction. The second half of the row represent the statistical uncertainty

introduced by the fit to each parameter group.

B.5 List of Functions

There are many small functions that are clear in their usage by their name and are short enough

to understand by simply reading them. The larger and more complex functions are listed here and

their usage is described (this list is still being expanded on).

B.5.1 General Functions

These functions are very straightforward, and serve to clean up the code by not having to repeat

simple (but lengthy) commands. swap_element_label(z, fixlength=False)

This function will exchange a proton number Z for the corresponding chemical element symbol,

and vice-versa. The option fixlength can require that all symbols are returned as two characters in

length by appending an underscore to one-letter symbols.
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cycle_lbl(x)

NuShellX uses a single character to express the number of protons or neutrons a nucleus has in the

model space. This requires using letters for those numbers greater than 9, which is accomplished

with this function.

os_path(path)

A simple command to ensure that text strings meant to be interpreted as paths in the file structure

are interpreted that way by Finch and NuShellX.

make_folder(path)

Check is a folder exits at path and if not, create one.

rms_from_lists(x, y)

Take the rms deviation between any two generic lists.

write_csv_file(fn, list)

Store list as a csv formatted file with name/path fn.

B.5.2 The Hamiltonian Class and its Companions

The Hamiltonian class is an object that stores the necessary information to describe an isospin-

nonconserving interaction. It contains a number of methods and has associated functions that allow

one to compare, change, and write interaction files that can be read by either Finch of NuShellX as

needed. To initiate an instance of this class a Finch answer file (*.fans) is needed. To see the form

of this input, see Section 5 on Sample Inputs.

__init__(self, ans_file, group_folder=’groups’)

The initialization of the class, which reads in the data in the answer file (ans_file). In here the

mass dependence can be set for the interaction, and the two-body terms are typed and grouped

according to conditions set in type_tbme and group_tbme. The groups are then stored by calling

make_files. Finally a group number is applied to the two-body terms using group_number to aid

in manipulation of the parameters in other functions.

strength_list(self)
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Returns a python list showing the representative strength of each fitting group in order, to allow

for normalization of the error matrix and vector found in perform_fit. If there is more than one

parameter in a group, the first parameter is taken as the representative strength, otherwise it is just

the strength of the single parameter. This can be changed however you like.

comparison_to_bg(self, bg_ham, name)

To better aid in comparisons between the fitted interactions and the original interaction bg_ham,

this function creates an *.int file showing the original SPE and TBME in comments. The file should

still work in NuShellX with these added comments.

make_files(self, a_min, a_max, group_folder)

Takes the total Hamiltonian and creates the necessary *.int files for calculation. These include a

hamil.int file that contains the full interaction at a specific mass A for masses between a_min and

a_max, and group*.int files that define the parameter groups at each mass. Additionally, a file is

created called parts.nux that lists the group*.int files so that NuShellX can calculate their overlaps

with the full wavefunctions.

full_tbme(self)

If the Hamiltonian includes more than one source of two-body terms (such as Coulomb, isotensor,

or isovector), than this method will combine them into a single interaction to be written into a file

for use in NuShellX.

full_spe(self)

If the Hamiltonian includes more than one source of single-particle energies (such as Coulomb,

isotensor, or isovector), than this method will combine them into a single interaction to be written

into a file for use in NuShellX.

normalize_scale(self, a)

Universal interactions can contain a mass dependence in the two-body (and in principle the one-

body) terms, and this method will normalize the interaction to a specific mass A.

int_at_mass(self, a, folder)

The interaction is collected and normalized to a mass A, and stored as an *.int file in folder.
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store(self, folder)

A function to store the interaction in *.fans format and in the NuShellX *.int format.

make_isotensor(self, alpha)

A method to create the isotensor interaction in a given strong interaction for a given isotensor

strength alpha. The isotensor strength is modeled as the scaled increase of the pn T = 1 two-body

terms over the average of the nn and pp terms.

make_isovector(self, alpha)

A method to create the isovector interaction in a given strong interaction for a given isovector

strength alpha. The isovector strength is modeled as a scaled increase/decrease of the nn/pp terms

so that their average remains the same to avoid interference with make_isotensor.

int_file(self, spe, tbme, name, replace_k=True)

The generic interaction file creation method, with options to allow other functions to effectively

utilize it in specific cases.

write_groups(self, folder)

This function performs the work described inmake_files for a given interaction normalized to some

mass. It also generates the ’fit_labels.dat’ file which contains a description of what is contained in

each two-body interaction group.

group_number(row)

Determines the numerical label for a given group name using ’fit_labels.dat’ and returns it.

group_tbme(row)

Using the rules defined in this function, a two-body matrix element is sorted into a group and a

label corresponding to that group is returned.

type_tbme(row)

Determines the type of two-body matrix element (pp, pn, nn).

read_tbme(name)

Reads in a set of two-body matrix elements in a file located at name.

read_spe(name)
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Reads in a set of single-particle energies in a file located at name.

update_hamiltonian(old_ham, bg_ham, mults)

A new Hamiltonian class instance is initialized, and using the scaling factors (mults) generated in

perform_fit are used to transform the old_ham into a new interaction. The background interaction

is also sent here so that the rms deviation between the new interaction and the ab initio can be

calculated.

order_tbme(df)

This function will reorder the two-body dataframe into the standardized ordering used byNuShellX.

This aids in readability and comparisons between interactions.

B.5.3 Running NuShellX and Extracting Results

This section of code is the main gateway to manipulating NuShellX and collecting and formatting

its results. The main time save is found here in the form of python multiprocessing, which allows

for many nuclei to be calculated at once on a multi-core machine.

setup_dataframe(file, ham)

The nuclear levels included in the data set are read in here and stored in a pandas dataframe. This

dataframe is then used to determine the needed calculations.

generate_ans(fit_loc, a, z, j, p, jnum, min_error)

The NuShellX answer file is generated here at fit_loc for a nucleus with the properties a, z, j, p.

The minimum error parameter refers to the minimum experimental error for a level in the nucleus

you are trying to calculate. To save time, nuclei with high errors don’t need to be fully calculated.

See comments in code for further detail.

This function also copies in the interaction to be used for calculation and the parts.nux file.

single_calc(x)

Called from run_multiproc, this runs in parallel to calculate all nuclei in the data set and retrieve

the results. The parameter x is unwrapped into df_nuc, group_count, and run_name which are the
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subset of the dataframe relevant to a single nucleus at a single spin, the number of groups/parameters

in the fit, and the folder in which to store the results.

A path is made for the nucleus to be calculated in, performs those calculations, and extracts the

list of overlaps (contributions) to the state energies corresponding to the groups/parameters you are

fitting. These are saved for use in the fitting procedure.

run_multiproc(df, r_name, group_count)

Takes in the pandas dataframe containing the nuclear level data, splits it into chunks and initiates

the calculations. Once all calculations are complete the code will continue.

read_lpt(location, lineskips=6, corner=False)

The main output file in NuShellX for energy levels has the extension *.lpt. This function reads in

these lpt files (check line skips length if this fails, different interactions require different numbers

of lines to be skipped), and stores them as a dataframe.

B.5.4 Performing the Fit

Here the data collected by run_multiproc is used to set up the data error matrix and vector, perform

the SVD, and update the Hamiltonian to allow a new iteration to begin. Along with binding and

excitation energy inputs as data, this function has the (off by default) ability to also include the

mirror energy differences, c-coefficients of the IMME, and double energy differences of mirror

pairs. This is useful to constrain the isospin non-conserving interactions.

avg_group_ratios(a, b)

Find the average ratio between parameters in the defined groups for two interactions a and b. This

is being phased out in favor of normalizing the error_matrix and error_vectors in perform_fit

accomplished using the class method strength_list.

setup_b_list(df)

Takes the levels dataframe and determines if anymirror pairs are included, and prepares the program

to fit on those mirror energy differences.

setup_c_list(df)
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Similar to the above, but checks for complete T = 1 triplets to allow for fitting on the c-coefficients.

setup_b_diff_list(df)

Similar to the above, but checks for specific differences between mirror pairs, meant for fitting the

isovector strength in the sd shell data.

subset_groups(group_list, hold, no_energy=False)

As the code allows for groups to be held constant, we need a way to extract a subset of a list that

corresponds to those groups that are actually fit.

superset_groups(group_list, hold, dimension, no_energy=False)

As the code allows for groups to be held constant, we need a way to build up a superset of a list that

corresponds to those groups that are actually fit.

perform_fit(level_data, folder, cur_ham, bg_ham, vlc, dim, held_groups)

This is the meat of the program, where the fit is actually performed on the data given the NuShellX

results. Check back for further documentation.

setup_fit(df, store_output, iterate_fit, multipliers, fit_type)

To allow for multiple data types to be included in a single fit, this sub function was created. It

generalizes the generation of the error matrix and error vector.

read_xfit(loc, nuc, k)

Creates a python list from the extracted overlaps for the fitting groups collected by single_calc.

b_ovl_list(nuc_1, nuc_2, num)

Creates an overlap list for a mirror pair found in the data.

tbme_plot(r_name, bg_ham, curr_ham, vlc_num)

A very bare-bones plotting function to give quick glances at the changes in the two-body matrix

elements during the fitting procedure.
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