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ABSTRACT

A GLOBAL MODEL FRAMEWORK WITH SELF-CONSISTENT ELECTRON
ENERGY DISTRIBUTION FOR REACTION KINETICS IN LOW-TEMPERATURE

PLASMAS

By

Janez Krek

Fundamental interactions in plasmas are very well defined and researched, but the sheer

number of possible interactions between particles and materials makes plasma research very

complicated. Processes in plasma occur over many orders of magnitude in time and spatial

scale, requiring careful selection of physical and mathematical models for describing included

processes. Geometry simplification and reduction of spatial complexity are made to include

more detailed and complicated reaction kinetics (reaction sets). Global models (volume-

averaged or 0D model), well known for their fast evaluation times, are often employed where

spatial dependence of plasma parameters is not significant and more complicated chemistry

is required.

The electron energy distribution function (EEDF) profoundly affects reaction kinetics as

many reactions depend on the electron energy. The Maxwellian EEDF is often assumed,

leading to overestimated electron impact reaction rates and time evolution of species den-

sities. A self-consistent EEDF evaluation is incorporated in the global model framework

to capture the temporal evolution of the EEDF and further increase the fidelity of the re-

sults. The EEDF evaluation frequency is user-definable and affects both simulation accuracy

and run times. The Kinetic Global Model framework (KGMf), coupled with self-consistently

evaluated EEDFs, has been used to study complex reaction chains in pulsed low-temperature

plasmas across a range of pressures with good comparison to theoretical, computational, and

experimental results from the literature.

Many input parameters in plasma simulations, i.e., impact cross-sections and the reaction

rate coefficients, are derived from experiments and approximate theories, and they contain



uncertainties. Additionally, experimentally measured values from different experiments can

deviate significantly. Sensitivity analysis can quantify the effect of input parameter uncer-

tainties on plasma behavior for a given system. The reaction rate coefficients were selected

as input parameters for global sensitivity analysis (GSA), and a high-dimensional input pa-

rameter space was reduced with Saltelli’s sampling. The effects of reaction rate coefficient

uncertainties on species densities in a nanosecond pulse discharge in an H2-O2-Ar gas mixture

were explored and quantified using sensitivity indices.

Large reaction sets are prohibitively expensive in spatially dependent simulations, lim-

iting detailed chemistry in fluid and PIC simulations. Reactions and species have different

contributions to the selected plasma quantities of interest, e.g., species density or temper-

ature. Defining the importance of reactions and species for a given system can reduce the

reaction set with known effects on the selected quantity of interest. The reduced reaction

set has lower computational complexity and is suitable for global sensitivity analysis or spa-

tially dependent simulations. The directed relation graph (DRG) method is presented and

deployed in a nanosecond pulse discharge in an H2-O2-Ar gas mixture, reducing the reaction

set while preserving the H and H+ densities. The reduction steps were compared in terms

of the size of the reduced reaction set and the simulation run time reduction.
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CHAPTER 1

INTRODUCTION

Plasma, sometimes called the fourth state of matter, exists in many places (99 % of visible

matter) in either natural or manufactured form. In nature, the most recognizable forms of

plasma are lightning, stars, and galaxies. Artificially created plasma is used in many terres-

trial applications, from material processing (welding, cutting, etching, deposition, fabrication

of integrated circuits), light sources (fluorescent lamps), disinfection and wound treatment

in health care, and treatment of fresh fruits to withstand mold [1, 2].

Plasma is a gas with charged particles that give plasmas unique properties when put under

the influence of an electromagnetic field. Charged particles with different charge polarities,

positive (ions), negative (electrons, ions), and neutrals (atoms, molecules), react differently

to applied electric and magnetic fields. This property leads to interesting phenomena in

plasmas, such as transport, creation, and destruction of particles [3]. Phenomena in LTPs,

due to the complicated reaction kinetics, may vary across a wide range of time scales, from

∼ns time scale for ionization wave propagation to ∼ms time scale for multi-phase chemical

reactions and ignition delays.

Low-temperature plasmas (LTP) are composed of many species, including neutral atoms

and molecules, excited state particles, radicals, ions, and electrons. They are weakly ionized

(usually from a fraction of a percent up to tens of percent) and far from thermal equilibrium.

The electron temperature (Te) is much higher than temperatures of heavy charged particles

(Ti) and the background gas (Tg): Te >> Ti ' Tg. The characteristic electron temperature

is a few eV to 10 eV (1eV = 11905 K), and temperatures of both heavy particles and the

background gas are usually up to 1000 K. Energetic electrons have enough energy to initiate

reactions that can create radicals, charged and excited state particles, and photons, making

LTPs a very chemically rich environment even at room temperatures. This property makes
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LTPs a good fit for processing media in many fields, from the fabrication of microprocessors

to plasma medicine and nanomaterial synthesis. The versatility of the LTPs is driving its

research and keeps the field of research very active, but many fundamental questions remain

unresolved [1].

1.1 Modelling of Low-temperature Plasmas

Fundamental interactions in plasmas are very well defined and researched. However, the sheer

number of possible interactions between charged particles, background gas, and materials

makes plasma research very complicated. Analytical description of fundamental processes in

plasmas is possible but very complicated and cumbersome for engineering use. Introduction

of models, a simplified description of the physical system, is needed to describe plasma at

the engineering level. The model has to adequately describe the main characteristics of the

system by capturing the time evolutions of system processes and parameters, e.g., how the

system reacts to an applied external electric field, the time evolution of species density, or

change in pressure due to increased temperature. Therefore, selecting a suitable model for

the physics system is essential. It is possible to have multiple models describing certain

phenomena, depending on the focus of the simulation, e.g., modeling of a welding arc can

have a model for simulating the temperature of the arc (needed for a weld to be formed)

or a model for the chemical composition of the arc (mixture of material from welding wire,

protective gas, and base material).

Various mathematical and numerical techniques can be used to describe models, and they

present a tool to materialize those models in the form of algorithms and simulation codes.

Algorithms and their implementations as simulation codes inherently include assumptions

and uncertainties that might render the model inappropriate for a selected system. Different

models can be developed for describing the same phenomena, and models can have different

implementations into the simulation code, i.e., using different algorithms or numerical imple-
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mentation. With all that said, it is imperative to assess the discrepancy in results between

the model and simulation codes (verification) as well as between the model and the exper-

iments (validation). The results from experiments are considered correct, although they

can natively include various uncertainties, e.g., measurements or inappropriate experiment

setup. The assessment is done in two steps [4, 5]:

• Verification is where implementation of the model is tested against the theory; here,

the check is focused on whether the code returns the same result as the theory predicts.

• Validation is comparison of the simulation results to experimental results.

Verification and validation are equally important as they assess different parts of the

model implementation, and to develop high-fidelity simulation codes, both have to be per-

formed. Another type of test is benchmarking, where the same input parameters are used

in two or more different simulation codes, and the results from codes are compared.

Phenomena in plasmas can vary by many orders of magnitude in time and space scales,

and this requires different models to capture important processes in the simulated system

(Fig. 1.1). It is necessary to choose an appropriate model (and the simulation code im-

plementing the selected model) to capture the physics of the phenomena while reasonably

limiting the simulation time. Models accurately describe key phenomena at selected time

and spatial scales and utilize approximations and assumptions to evaluate the neglected or

missing quantities, i.e., quantities on other time and spatial scales.

Simulation codes use independent spatial and temporal variables, combined with models,

to compute variables of interest, e.g., pressures, temperatures, and velocities in the modeled

system. They can are classified according to the number of spatial coordinates they support

- 0D (global models), 1D, 2D, and 3D codes. A higher number of spatial dimensions gen-

erally means higher code complexity due to the complexity of underlying equations in the

model. Reduction of dimensionality (from 3D to 2D or 1D) is often possible because the sys-

tem of interest is symmetric, or changes of system parameters are (almost) negligible in one
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Figure 1.1 Schematic representation of multi-scale modeling in terms of time and space
scales.

(or two) dimensions. The reduction of dimensionality is often desirable because it reduces

the complexity of the simulation and results in a shorter simulation time. The reduction

of dimensionality also enables including additional aspects of the system into the model.

For example, the lower-dimensional model allows computing more complicated domain ge-

ometries (e.g., free-shape domains or additional geometrical features, like protrusions), more

complicated velocity distributions for particle species, and more complicated or detailed

reaction sets (e.g., a higher number of species and more reactions). Multi-scale kinetic

modeling of plasma chemistry in LTPs is computationally expensive, and global (volume-

averaged) models are commonly employed to understand the reactions and limit the scope of

multi-dimensional models [6, 7]. Reaction kinetics of the LTPs are crucial for many plasma

applications, such as material processing [8] and plasma medicine [9, 10]. The versatility of

LTPs drives its research to resolve many fundamental questions [11]. Global models can be

used when the spatial variation of system variables is small or negligible and when seeking

general trends of a target system parameter (e.g., absorbed power and gas pressure).

4



1.1.1 Kinetic Models

The main focus of kinetic models is describing the movement of particles in the system

as a response to the electric and magnetic fields, collisions between particles, and interac-

tions with boundaries (e.g., reflections and scattering). This can be achieved by solving

the Vlasov-Maxwell (or Vlasov-Poisson for electrostatic case) system of equations, where

particle distribution function f(~r,~v, t) defines the number of particles at spatial location ~r,

having a velocity ~v at time t, and the numerical solution to the equations have very few

approximations [12].

Depending on time and spatial scales, kinetic modeling encompasses different methods.

Molecular dynamics (MD) focuses on interactions between individual particles, including

forces from various potentials and collision models. MD models are grid-less methods, and

the forces between particles are computed directly. Direct computation of forces on particles

results in O(N2) computational complexity for long-range interactions, limiting the number

of particles and the size of the simulated system. The Tree-code method, introduced by

Barnes and Hut [13] in 1986 for computing forces in stellar dynamic applications, excels in

systems with nonuniform particle density. The forces between particles are computed either

directly particle-to-particle or particle-to-cluster, where the clusters are dynamically created

to present the effect of many particles. The next step in grouping particles into clusters is

the particle-in-cell (PIC) method. Individual particles with similar properties, i.e., position,

mass, and velocity, are grouped into super-particles (also called computer particles) and

treated as single particles in the simulation. The method was formalized in the 1970s by

Birdsall and Langdon [14] and Hockney and Eastwood [15]. It is widely used for modeling

processes on µs and µm spatial and time scales. Forces between particles are computed via

the potential on a grid and currents between grid points if the magnetic field is considered.

Figure 1.2 presents the main loop in a PIC code. The particle charges are mapped to grid

points, where the Poisson equation for the electric field is solved, and forces on particles are
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computed from the electric field. The particle’s velocity and positions are computed from the

force acting on the particle due to electric and magnetic fields. The collisions are included in

the equations via Monte Carlo collisions, i.e., random collisions between particles based on

probabilities of particle interactions, and are considered in the force acting on each particle

(~Fi in Eq. (1.1)).

Figure 1.2 Main loop of Particle-in-cell (PIC) method with included collisions.

The computational complexity of the tree-code and the PIC methods is O(N logN),

enabling modeling of larger systems in terms of the number of "real" particles and spatial

dimensions. Each super-particle can represent between 105 − 109 real particles, and the

ratio of real to super-particles can vary during the simulation. The tree-code and the PIC

governing equations describe particles’ position and velocity in time and can be written using

the leap-frog method:

~vi(t+ ∆t/2) = ~vi(t−∆t/2) +
~Fi(t)

m

~ri(t+ ∆t) = ~ri(t) +
~vi(t+ ∆t/2)

∆t

(1.1)

where i is the particle index running over all particles in the system, ~ri is the position of

the particle, ~vi is the velocity of particles, ~Fi is the sum of all forces on the particle, and
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∆t is the time step. Thus, the particle positions and velocities are computed at different

times, the positions are computed at integer time steps (t), and velocities are computed at

half-time steps (t+ ∆t/2). This time splitting results in second-order method [14, 16].

The PIC method is based on first principles and does not include many approxima-

tions but has limitations in terms of spatial and temporal steps to keep the method stable.

The grid steps ∆x and time steps ∆t have to be smaller than the smallest characteristic

value to adequately describe processes in the system, e.g., sheath length or Debye length

for ∆x and plasma or collision frequency for ∆t. An additional limitation is a necessary

condition for convergence of the numerical method used to solve PDEs, imposed by the

Courant–Friedrichs–Lewy condition: c∆t < ∆x, where c is the speed of light in vacuum.

Knowing particle positions and velocities enables computing various plasma parameters,

such as particle densities, density and energy fluxes in space and time, and energy distribu-

tion functions (EDFs), with high fidelity. The electron energy distribution function (EEDF)

can be obtained from PIC methods. It can be used in other simulation methods, e.g., fluid

or volume-averaged (0D or global) models that depend on the EEDF. The non-equilibrium

properties of the simulated systems can be described accurately. While the computational

complexity of the method increases with the number of particles, the PIC method is suitable

for low-temperature plasmas. The main properties can often be captured with a smaller

number of particles.

The usability of the PIC method can be observed in the abundance of available PIC

codes, ranging from open-source to commercial codes. The minimal setup for the PIC

method is relatively simple; adding various boundary conditions, complex geometries, and

collision operators increase the code’s complexity. The Plasma Theory and Simulation Group

(PTSG) developed a suite of PIC codes in C/C++ languages for 1D and 2D systems in all

types of coordinate systems (Cartesian, cylindrical, and spherical): XES1, XPDP1, XPDP2,

XPDC1, XPDC2, XPDS1, oopd1, XOOPIC [14, 17]. The oopd1 and XOOPIC codes are

object-oriented codes that abstract the parts of simulation (plasma device, boundaries, fields,
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reactions) to increase the flexibility of adding new functionality and physics models. A

wide variety of other PIC codes are available, such as the open-source codes ALaDyn [18]

and WarpX [19, 20], and the commercial codes VSim [21], Comsol [22], MAGIC [23], and

ICEPIC [24].

1.1.2 Fluid Models

Fluid models take the opposite approach to the kinetic models and focus on defining an

Eulerian distribution of plasma in the system. The particles in the system are described

through their collective effects, employing the transport of quantities in the systems to

describe their motion, i.e., transport of density, momentum, and energy in the systems. The

trajectories and velocities of individual particles are not known and cannot be recovered

using fluid models. By focusing on the collective effects of particles by treating them as

fluids, the simulations can describe systems with larger time and spatial scales [12]. Fluid

models have more similarities with experiments than kinetic models. Their input parameters

and results are often quantities measured in experiments, i.e., the energy deposited to the

system, the temperature of the outflow gas mixture, and pressure.

A Boltzmann transport equation (BE) is one of the most general descriptions of non-

equilibrium fluid, defining the probability of a typical particle to be at a given small volume

and have a given velocity [25]:

B =
∂f

∂t
+ ~v · ∇f + ~a · ∇vf =

(
δf

δt

)
coll

(1.2)

where f = f(t, ~x,~v) is the particle distribution function for species, ~v is the velocity and

~a is the acceleration of the fluid element, ∇ and ∇v are del operators acting in position

and velocity space, respectively. The term on the right hand side of the equation,
(
δf
δt

)
coll

,

presents the time rate of change in distribution function f due to the collisions.

Relevant macroscopic quantities, such as continuity and energy transport equations, can

be derived from Eq. (1.2) in the form of spatial and temporal differential equations. For
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example, the continuity equation for each species in the system is derived by taking the

zeroth velocity moment of Boltzmann equation,
∫
v(B) d3v, and is the following:

∂n

∂t
+∇ · (n~u) =

Sm
m

=

∫
v

(
δf

δt

)
coll

d3v (1.3)

where n is the particle density, ~u = 1
n

∫
~vf(v) d3v is the average velocity, and Sm is the source

term for particles. The source term includes volumetric and surface processes involving

species, e.g., creation and destruction of particles due to collisions with other species, and

surface recombination.

The moment transport equation is derived from Boltzmann transport equation by mul-

tiplying it by particle mass m~v and integrating over velocity space, m
∫
v(~v B) d3v, yielding

the following equation [25]:

n
∂~u

∂t
+ n(~u · ∇)~u+

1

m
∇ · ~~P − nq

m
( ~E + ~u× ~B) =

~Sp
m

=

∫
v
(~v − ~u)

(
δf

δt

)
coll

d3v (1.4)

where ~~P is the pressure tensor, and ~E and ~B are the electric and magnetic fields, respectively.

The pressure tensor ~~P takes into account scalar pressure and tangential shear forces (viscus

forces). In a system with weak or zero magnetic field, when viscus forces can be neglected [25],

the nondiagonal terms in ~~P are zero, and ∇ · ~~P can be written as ∇ · ~~P = ∇p, where p is

the static pressure.

The fluid equations present a non-closed set of equations, i.e., the equation set cannot be

solved self-consistently. If the first two levels are considered, i.e., species continuity and mo-

mentum transfer, then the pressure tensor ~~P has to be specified or computed from the third

moment of the Boltzmann equation. The third velocity moment of the Boltzmann equation

is the heat transfer equation that brings another unknown into the system of equations. To

stop this circle of a not self-consistent system of equations, the missing terms on a selected

level are either approximated for the individual system or derived from kinetic models, i.e.,

electron energy distribution functions, average velocities, energy transfers.

There are an abundance of fluid simulation codes available under open-source and com-

mercial licenses. Open-source codes are BOUT++ [26, 27] for particle and heat fluxes in
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Edge Localised Modes (ELMs) in tokamaks, and SOMAFOAM [28], an OpenFOAM based

framework for performing continuum simulations of low-temperature plasma. The com-

mercial software packages include TechX’s USim [29], COMSOL Multiphysics [22], ESI’s

CFD-ACE+ Suite [30], and Plasma Matters’ PLASIMO [31].

1.1.3 Hybrid Models

Hybrid models combine the advantages of kinetic and fluid models: taking advantage of

the fidelity of the kinetic model and combining it with the computational speed of the fluid

model. Each part of the hybrid code, i.e., kinetic and fluid part, is focusing on capturing

the physics at different time and spatial scales in the system [11, 12]. One common use of

hybrid codes is to use the kinetic model for capturing the motion and interaction of electron

particles due to their fast nature and the fluid model for capturing other species that are

usually heavier and slower. Since both models focus on different time and spatial scales, the

communication and exchange of computed values between models are of the essence.

It may look like using two different models will increase the complexity of the simulations

to the point of making them intractable, but hybrid simulation codes are widely used. PIC-

hybrid codes are treating electrons are particles and other species as fluid [32]. Hybrid codes

also enable users to treat important species (i.e., species of interest) as particles to capture

their evolution in detail and the rest of species as fluids [33]. Hybrid codes are utilized in

various simulations, e.g., HPEM [11] for low-temperature plasma reactors, and Pegasus [34]

for astrophysical plasma dynamics.

1.1.4 Global Models

Global (0D or volume-averaged) models are used to focus the research on describing the

volume-averaged parameters in plasma systems and to explore complicated plasma chem-

istry and reaction kinetics [35]. Global models do not provide nor request any information
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about the spatial distribution of system variables. All variables, either independent (input)

or dependent (output), are spatially invariant, but they can include spatial (non-local) ef-

fects (e.g. effective temperature, Eq. (1.5)). Reduced dimensional complexity of underlying

equations enables the expansion of the model by including more complex chemistry, reaction

kinetics and dynamics, and different energy sinks or sources. Global models can be used

when the spatial variation of system variables is small or negligible in the interest of finding

a general trend of a target system parameter (e.g., temperature, pressure). Global models

are also a great tool to learn the general behavior of the system for a certain set of input

parameters and validate or predict experimental measurements. Considering their short run

times and usually small memory footprint, doing parameter sweeps with multiple runs in

parallel is possible on a desktop computer.

The electron temperature can be computed from the energy equation as part of the ODE

system in the global model or from supplied or evaluated EEDF using the following equation:

Teff =
2

3
〈ε〉 =

2

3

∫ ∞
0

εf0(ε)dε (1.5)

where Teff in the effective electron energy in eV, 〈ε〉 is the mean electron energy in eV, and

f0(ε) is the normalized EEDF. The EEDF is required in global models and can be predefined,

either in form of tables for different values of reduced electric field E/N or as an analytical

expression of a shape factor x (Eq. (2.13) in Section 2.3.1), or is computed by evaluating the

Boltzmann equation.

Global models are great tools for learning the general behavior of the system for a given

set of input parameters and to validate or predict experimental measurements, e.g., plasma-

assisted combustion [36], high-power microwave breakdown [37, 38], jet flames [39], coupled

reaction chains [40], and the validity of LTP scaling laws [41, 42]. Many global model

simulation codes are available, either as commercial codes that can run as global models

(COMSOL [22]) or as dedicated global models (GlobalKin [43]), or as open-source codes such

as ZDPlasKin [44], PumpKin [45] and the Kinetic Global Model framework (KGMf) [46, 47].
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Reaction sets with reaction rate coefficients are incorporated to identify the key reaction

pathways and predict discharge behaviors in global models. Reaction rate coefficients can

be defined either as look-up tables of a reduced electric field, as analytical functions of

electron temperature computed by convolution of the EEDF and cross-sections. Analytical

functions are usually created by fitting the experimental results and writing the reaction rate

coefficients as Arrhenius formulas that can be scaled using an energy equation. When defined

with cross-sections, which can be obtained from experiments (e.g., swarm [48–51] or beam [52]

experiments) or from modeling, the reaction rate coefficients are computed by convolution of

a cross section and electron energy distribution function (EEDF). The choice of the EEDF

has a direct impact on reaction kinetics and the commonly used assumption of a Maxwellian

EEDF can lead to a large deviation from the physical distribution [37, 38, 53–55], resulting

in incorrectly computed reaction rate coefficients. Conveniently, the EEDF can be defined as

a time-independent analytical function of a shape parameter x [56], defined by fitting results

from Particle-in-Cell (PIC) [14, 15, 57] or Monte-Carlo [58, 59] simulations. Monte-Carlo

simulation tools include BetaBoltz [60], METHIS [61], ELENDIF [62] and MagBoltz [63].

Boltzmann equation (BE) solvers employ approximations of the Boltzmann equation and

can be divided into two-term approximation solvers (BOLSIG+ [64], BOLOS [65] and LoKI-

B [66]) and multi-term approximation solvers (MultiBolt [67]). The two-term approximation

solvers are widely used both for global models and fluid simulations on low-temperature

plasmas [53, 68–70].

1.2 The Motivation

1.2.1 Coupling of Self-Consistent Evaluation of the EEDF with a Global Model

Global models are a subgroup of fluid models, where the spatial dependence of input pa-

rameters and variables in the system is not considered. Instead, computed average values

are beneficial for defining the simulated system’s general properties (behavior). With spatial
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dependencies neglected and complicated chemistry included in the modeling, global models’

focus is redirected to the collisional term of the continuity equation. The collisional term in-

cludes volumetric and surface processes in the system, e.g., creating and destroying particles

due to collisions with other species and surface recombination.

The electron energy distribution function (EEDF) has a profound effect on electron re-

action rates in the system. In high-power microwave discharges, Kim and Verboncoeur [71]

showed that the EEDF shape depends on background gas species and pressure. Nam and

Verboncoeur [37, 38, 42] showed the effect of microwave frequency and background gas on

the EEDF and consequently on breakdown time in oxygen, xenon, and argon systems in

various pressures. Zhao et al. [72] benchmarked the validity of the two-term Boltzmann ap-

proximation in high-power microwave discharges and showed a large deviation of evaluated

EEDF from the Maxwellian EEDF. Comparison of Maxwellian and non-Maxwellian EEDF

in He+air system was performed by Sun et al. [55] and showed an overestimation of electron

probabilities for energies above 22 eV by the Maxwellian EEDF. Including self-consistent

evaluation of the EEDF in the global model has obvious advantages but comes with a sub-

stantial computational cost [73]. Due to the fast marching in time in global models, the time

required to evaluate EEDFs greatly affects the total computation time. Therefore, reducing

the EEDF evaluation time or the number of EEDF evaluations is required to successfully

integrate the self-consistent evaluation of EEDF into the global model.

1.2.2 Sensitivity Analysis and Global Models

Global models in plasma simulations are known for their fast simulation times, often on

the order of minutes, and larger reaction sets can be considered compared to the spatially

dependent models. On the other hand, short simulation times gave rise to global models for

performing sensitivity analyses which require many model evaluations. Reaction rate coef-

ficients are based on experimental results and have uncertainties attached to their values.

Performing the sensitivity analysis with reaction rate coefficients as input parameters can
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result in a vast input parameter space. The dimensionality of the input parameter space is

equal to the number of reactions in the reaction set and can be several thousand. To fully

explore input parameter space, various techniques were developed. Iman and Conover [74]

presented a Latin Hypercube Sampling technique with its application to computer mod-

els. Morris [75] presented sampling plans to capture elementary and combined effects of

uncertainties in computational simulations for models that were too complicated for classi-

cal mathematical analysis. Saltelli [76–78] proposed efficient sampling for input parameter

space that reduced the number of model evaluations from O(pN ) to O(pN), where N is the

number of parameters and p in the number of values for each parameter. Turner [79, 80]

investigated complex helium-oxygen chemistry with an assumed Maxwellian EEDF and con-

cluded that these models could be significantly reduced, i.e., 85% reduction in the number

of reactions. He classified the 373 reactions of the helium-oxygen chemistry model into three

categories according to the level of the reaction’s uncertainty, which was defined based on

the source of the rate coefficient (i.e., defined and confirmed by experiments or defined from

the theoretical formula).

Sensitivity analysis is a powerful tool for investigating the properties of complex chemistry

models. Combining it with global models enables capturing the time-dependent sensitivity

of investigated models. The time aspect could be essential in pulse-driven systems, where

reaction rates change by many orders of magnitude due to complicated relations between

species.

1.2.3 Prioritizing Reaction and Species

Reaction sets can have a large number of species and reactions, Koelman et al. [81] pre-

sented a chemical model for the splitting of CO2 with 72 species and 5732 reactions, and

Lu & Law [82] presented an iso-octane reaction set with 857 species and 3606 reactions.

Reactions and species have different importance in different systems and simulating regimes

on the selected quantity of interest (QoI), e.g., species’ density, ignition time, and electron
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temperature. With the known importance of reactions and species in a given system, less

important reactions can be neglected, reducing the size of the reaction set and consequently

reducing the computational complexity of the model.

Prioritizing reactions and species needed for reducing the reaction sets can be reaction-

based or species-based. The easiest method to define the importance of individual species is

to eliminate species with low densities (Turner [79]) or by finding the short-lived species and

generate reaction pathways (Lehmann in 2002 [83] and 2004 [84]). Ding and Lieberman [35,

85] used a global model in connection with PumpKin to define the dominant reaction path-

ways for He/H2O discharges. The reaction-based methods are based on many different

conditions [86]. A directed relation graph (DRG) method focuses on reactions’ contribution

to species’ density. DRG methods are localized in time, and the reduced reaction set is valid

only at a given time. Lu & Law [87] used the DRG method on a detailed ethylene oxidation

mechanism with 70 species and 463 reactions. They were able to reduce the reaction set to

33 species and 205 reactions, which can mimic the performance of the detailed mechanism

with high fidelity in homogeneous systems of perfectly stirred reactors and diffusive systems

of laminar flame propagation. A global skeletal mechanism is generated by combining re-

duced reaction mechanisms at each time of interest. Lu & Law [88] investigated how reaction

sets reduced by the DRG method can recover fast and slow processes, and capturing slow

processes required reaction set reduction at multiple time steps.

The importance of individual reactions can be defined according to their relative contri-

bution to species’ density based on the reaction rate (in either creation or destruction of the

species) or the reaction’s contribution to the energy balance of the system, as was demon-

strated by Koelman et al. [89] using precomputed EEDFs. The reaction rate coefficients are

widely accessible through reaction set databases, e.g., LXCat [90] and GRI-MECH 3.0 [91]

and the relative contribution to species’ density is usually used for defining the importance

of reactions. The DRG method can evaluate reaction sets and define the importance of re-

actions and species on selected species’ density. Furthermore, by coupling the DRG method
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with a global model to evaluate the importance at different times during the simulation,

the resulting reduced reaction set is valid on a broader time interval, which is important in

pulse-driven or transient systems. Finally, combining a globally reduced reaction set with

self-consistently evaluated EEDF could raise the fidelity of the reduced reaction sets, which

could be used in spatially enabled simulations.

1.3 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, the foundations of the Kinetic Global Model

framework (KGMf) are introduced, followed by a description of the electron energy distri-

bution function (EEDF) and Boltzmann equation (BE) solvers to self-consistently evaluate

the EEDF for use in global models. Benchmarks of the KGMf with coupled BE solver are

presented for plasma discharges and high power microwave breakdown. Chapter 3 intro-

duces the sensitivity analysis and selection of input parameters in low-temperature plasma

discharges. The global sensitivity analysis (GSA) is applied to pulsed plasma discharges,

and the reaction importance using sensitivity indices is presented in argon and H2-O2-Ar

gas mixtures. Chapter 4 presents methods for prioritizing species and reactions to reduce

reaction sets with the goal of reducing computational cost while maintaining fidelity. The

directed relation graph (DRG) method is presented in detail, applied to reducing the reaction

set in H2-O2-Ar plasma discharges with Maxwellian EEDFs and EEDFs from the BE solver.

Chapter 5 concludes the material presented in the thesis and presents possible future work.

Important work that does not fit into the main text is presented in the appendices.

Appendix A is dedicated to the theoretical models added to the KGMf. Computational

additions to the KGMf are presented in Appendix B, which includes testing suit, details

about sensitivity analysis runs, and a description of various input and results file formats.

Appendix C contains the complete reaction set used in global sensitivity analyses (Chapter 3)

and reaction set reduction simulations (Chapter 4).
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CHAPTER 2

THE KINETIC GLOBAL MODEL FRAMEWORK (KGMF)

This chapter contains figures and excerpts from a paper by Krek et al. [92], published in

Computer Physics Communications, volume 260, 2021, presenting a benchmark of the KGMf

with a coupled Boltzmann equation solver.

2.1 Introduction

The Kinetic Global Model framework (KGMf) [46] is an open-source general-purpose global

model simulation code written in Python. The motivation for developing the KGMf was

to create a turnkey global model simulation code and as a framework that allows users

to modify or add features to fit their modeling needs better. The latter is an important

feature that makes the KGMf a powerful educational tool. The ability to add or modify

features is important as global models inherently have many approximations. They may

vary greatly depending on the physics of the modeled system, e.g., modeling of the sheath

at low or high pressure, energy or particle flux losses to the walls, and power absorption.

The KGMf can compare reaction data (cross sections and rates coefficients) from different

sources in a user-defined model, such as user-defined experimental results and data from other

simulation codes and sources (e.g., LXCat [90], ChemKin [93], GRI-Mech [91, 94]). Even

more important, the KGMf can compute a system of reaction chains in which the balance of

reaction rates and species densities plays an integral role, allowing a better understanding

of the connected, holistic system in which limiting steps within reaction chains can be more

important than the isolated reaction rates. By converting the ODE system to C code during

the simulation initialization and compiling it into a library of callable objects, the simulation

time is reduced, and the flexibility of Python is preserved. The compiled object is called

from the SciPy integrator during the ODE integration. The object code is created for both
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the ODE system matrix and the Jacobian matrix.

The KGMf can be utilized in many ways, from single simulations to sensitivity analyses

and reaction set reductions. Since the KGMf is distributed as a source code, internal de-

sign and implementation are accessible to the developer. Furthermore, many of the internal

methods and objects are accessible to users through an API and can be used when writing

a custom Python script for utilizing the KGMf. Every KGMf simulation requires two input

files: the simulation file and the reaction file. The simulation file defines the system used

in the simulation, background gas pressure, electron and gas temperatures, system volume,

absorbed power, electron energy distribution function (EEDF), and initial species densities.

The reaction input file defines reactions and their reaction rate coefficients used in the sim-

ulation. A reaction rate can be described by a constant, a function of system variables (e.g.,

electron or gas temperature), or defined with a cross-section. In case the reaction rate is

defined with a cross-section, the reaction rate coefficient is computed using equation 2.8.

2.2 The Main Governing Equations

The KGMf is a volume-averaged (0D or global model) simulation code, and all simulation

variables and parameters have no spatial information but are time-dependent. The main

governing equations in the KGMf are species balance equations, which describe the change

of species densities, and the energy balance equation that governs the energy exchange in

the system. The species balance equations for each species in the system, k, is defined as:

ṅk =
dnk
dt

=
∑
i

vki Ki
∏
j

nj + (G− L)k (2.1)

where i is the index of reactions involving species k, Ki is the reaction rate coefficient for

reaction i, and j is the product index over all reactant species in reaction i, vki is the integer

growth or loss factor for species k from reaction i. The term (G − L)k is the gain or loss

of species k that is independent of reactions, e.g., inflow or outflow of species or surface

processes (recombination, secondary emission).

18



The energy balance equation describes the energy flow between species, species states

(e.g., ground, excited, vibrational, rotations, ionized), and the rest of the system (e.g., wall

and sheath). The electron energy conservation equation describes the conservation of energy

for the electron species and is defined as:

d

dt

[
3

2
neTe

]
=
Pabs

V
− ne

∑
i

niKi∆Ei + Q̇e (2.2)

where Te is the electron temperature (or effective temperature for non-Maxwellian EEDF),

ne is the electron density, Pabs is the power absorbed by electrons from the electric field, V

is the system volume, ∆Ei is the energy threshold of reaction i, and Q̇e is the energy loss

due to electron convection (e.g., sheath losses or losses of electrons to the wall). Each term

in Eq. (2.2) can be time-dependent, and the energy transport between different computa-

tional species (e.g., ground or excited state atoms, ions, and electrons) is given by reactions

composing the reaction set.

Power can be delivered into the system through various mechanisms and is absorbed

by a change of species state (e.g., ionization, excitation) or by increasing species energy

(electrons). In global models, it is often assumed that all power is deposited to electrons, and

power deposition to other species is neglected. Ohm’s law can be used in cases when we can

assume that power added to the system is deposited into electrons based on their interaction

with the applied electric field. The transfer of the energy (power) from the applied electric

field to the electrons is possible because the electrons are resisting the movement enforced

on them by the electric field. The energy deposited to ions is neglected because heavier ions

(mi/me ≈ 1836) do not respond to the applied electric field due to their large mass and are

only affected by the DC component of the electric field. This means that ions are (almost)

stationary, and no energy from the applied electric field is deposited to ions. The relation

between absorbed power and the electric field is plasma conductivity σ, which is defined by

Ohm’s law as:

P̃abs = σ E2 (2.3)
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where P̃abs is the absorbed power density, σ is the plasma conductivity, and E is the electric

field. The plasma conductivity can be computed with the following equation:

σ = ne e µe (2.4)

where µe is the electron mobility, usually found in tables for steady-state (e.g., Table 2.1

in Ref. [95]) from approximated experimental results, ne is the electron density, and e is

the elementary charge. When electron mobility is not constant, it can be computed from

effective collision frequency νm as follows:

µe =
ng e

me νm
(2.5)

where ng is the background gas density, me is the electron mass, and νm is the effective

collision frequency computed from the current electron energy distribution function (EEDF)

in the system. The EEDF can be defined either with an analytical function or computed

by a coupled Boltzmann equation solver. Using Ohm’s law for computing deposited power

to electrons in simulations involving Boltzmann equation solvers, electron mobility (µe) is

computed from EEDF and is usually time-dependent.

2.3 Boltzmann Equation and Electron Energy Distribution Func-
tion (EEDF)

Boltzmann equation (BE) is one of the most general descriptions of plasma, providing the

statistical description of the system’s state. For particles driven by an electric field, the

Boltzmann equation is [96]:

∂f

∂t
+ ~v · ∇f − q ~E

m
· ∇vf =

(
∂f

∂t

)
coll

(2.6)

where f = f(t, ~x,~v) is the spatial-temporal velocity distribution function (VDF) of the

species, q is the particle charge, m is the electron mass, ~E = ~E(t, ~x) is the electric field, and

∇v is the convective gradient of f . The
(
∂f
∂t

)
coll

term represents the time rate of change in
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f due to the collisions and has the same dependencies. The collision term in the BE includes

both elastic and inelastic collisions.

Although solving the BE provides a self-consistently computed electron energy distri-

bution function (EEDF) that captures its time evolution, drastic simplifications of the BE

are required for computational efficiency. One approach of simplifying the BE is to write

the velocity in spherical coordinates with the main velocity oriented in the direction of the

applied electric field. With this assumption, any velocity can be approximated using Leg-

endre polynomials with an arbitrary number of terms. For the classical two-term spherical

approximation [66, 96] that uses two terms of polynomial approximation and with velocity

~v written in spherical coordinates, the BE becomes:

f(t, z, v, cos θ) = f0(t, z, v) + f1(t, z, v) cos θ, (2.7)

where t is time, v is the velocity, z is the spatial coordinate along the electric field, θ is the

angle between velocity and the z-axis, f0 is the isotropic, and f1 is the anisotropic part of

the distribution function. The known EEDF and reaction cross-section are used to compute

the reaction rate coefficient using the following equation [37]:

Ki(t) =

∫ ∞
0

√
2eε

me
σi(ε)f(ε, t)dε (2.8)

where σi(ε) is the energy-dependent cross section for reaction i, ε is the electron energy,

f(ε, t) is the time-dependent EEDF computed from the BE, and e and m are the electron

charge and mass, respectively. Cross sections for various species and from different sources

(e.g., Biagi, Hayashi, IST-Lisbon, Itikawa, and Morgan) are available via LXCat [90] website.

The validity of the two-term spherical approximation depends on the working gas and

the reduced electric field E/N. Phelps and Pitchford [97] investigated anisotropic scattering

and its effect on electron transport, which includes the study of the multi-term expansion

of Boltzmann equation for higher values of E/N. For electric fields between 10 and 500 Td

(1 Td = 10−17 V·cm2), the usual two-term approximation does not produce huge errors
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and is considered acceptable compared to the six-term approximation. For electric fields

between 500 and 1500 Td, the difference between two-term and six-term approximation is

about 10 %. For higher values of E/N, the difference in diffusion coefficients becomes larger

(> 25 %). The two-term approximation is valid in cases where the ratio between inelastic

and elastic collisions is not significant. In the case of a high ratio between inelastic and elastic

collisions, including more Legendre terms is necessary (using three up to six terms). They

presented a solution of the BE where they preserve an arbitrary number of terms showing

the difference to the solution when many terms were removed from the solution, and the

difference was between 1 % and 35 %.

The two-term spherical approximation of the BE also assumes a quasi-stationary system.

The electric field is assumed to be constant on the time scale of electron collisions, i.e.,

electron collision frequency is higher than the driving frequency of the electric field. The

pressure where the two-term approximation in high-voltage argon pulse discharge is valid

can be defined in terms of electron collision frequency as:

νe = v̄e ng σ > ω (2.9)

where σ is the collision cross section, the average electron velocity, v̄e, is defined as [98]:

v̄e = 6.7× 105
√
Te (2.10)

and the background gas density, ng, computed with ideal gas law as:

ng = 133
p

kB Tg
(2.11)

with p being the background pressure in Torr, Te is the electron temperature in eV, kb is

the Boltzmann constant, and Tg is the background temperature in K. Plugging Eqs. (2.10)

and (2.11) into Eq. (2.9) and solving for pressure, the minimum pressure for the two-term

approximation to be valid in argon discharge is defined as:

p =
kb Tg ω

133 σ 6.7 · 105
√
Te

> 0.232 Torr (2.12)
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where the electric field frequency ω = 5 · 107 Hz (pulse raise and fall time τ = 20 ns), the

average electron energy Te = 1 eV, the gas temperature Tg = 300 K, and the collision cross

section for argon is σ = 10−20 m2.

2.3.1 Shape Factor x for Analytical Rate Coefficients Ki

Computing the EEDF using the Boltzmann equation presents a computational challenge

despite all assumptions and simplifications mentioned in the previous section. An ability to

describe the EEDF analytically would significantly reduce the required computational time.

The EEDF can be defined as an analytical function of the shape factor x [56]:

f(ε) =
x(

3
2Teff

)3/2

[
Γ
(

5
2x

)]3/2
[
Γ
(

3
2x

)]5/2 ε1/2 exp

−
Γ
(

5
2x

)
Γ
(

3
2x

) ε
3
2Teff

x (2.13)

where x is the shape factor, Γ is the Gamma function (Γ(z) =
∫∞

0 yz−1e−y dy), and ε is the

electron energy (in eV). The shape factor x is not limited to certain values, can be a real

or integer number and can be used to describe common distribution functions: x = 1 for

Maxwellian and x = 2 for Druyvesteyn EEDF (Fig. 2.1).

Equation (2.13) provides a simplified way to capture the impact of EEDFs on plasma dis-

charge characteristics and to predict the truncated EEDFs through a unified equation with

only two parameters (a shape factor x and an effective electron energy Teff). The approx-

imation has limited use in systems showing bi-Maxwellian or bump-on-tail (beam-plasma

systems) EEDFs, as some EEDF shapes cannot be fully captured with this approximation.

The validity of the EEDF approximation by Eq. (2.13) strongly depends on the simulated

system. In Ref. [38], the value of the shape factor x showed a weak dependence on pres-

sure and strong dependence on species (working gas). In the case of high-power microwave

breakdown, the dependence on the driving frequency of the electric field can be observed.

The two critical conditions for validity of the shape factor approximation are:
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Figure 2.1 Plots of different EEDF shapes: from simulations (EEPF from BE) and from
Eq. (2.13) with different shape factors x.

1. the EEDF is well represented by a single shape factor x, e.g., single temperature

EEDFs,

2. the EEDF must remain relatively constant in time unless a time-dependent shape

factor x = x(t) is used.

When these conditions are violated, a more complicated representation may be needed, up

to the use of a dynamic Boltzmann solver. The current implementation in the KGMf does

not support the time-dependent shape factor x(t) and the EEDFs defined by shape factor x

cannot be time dependant.

2.3.2 Boltzmann Equation Solvers

The solution of the Boltzmann equation (BE) for electrons is the electron energy distribution

function (EEDF), which is an important input parameter for global models. The EEDF is

used to compute reaction rate coefficients from cross-sections using Eq. (2.8). Many differ-

ent BE solvers are accessible under open-source or free-software licenses. They use either
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a spherical approximation of the Boltzmann equation or use the Monte-Carlo method to

track electrons to compute the EEDF for non-magnetized low-temperature plasmas. The

BE solvers using spherical approximation can use either two-term approximation (e.g., BOL-

SIG+[96], BOLOS [65], and LoKI-B [66]), or multi-term approximation (e.g., MultiBolt [67]).

Solvers that use the Monte-Carlo method include BetaBoltz [60], METHIS [61], and Mag-

Boltz [63]. When solving the Boltzmann equation assuming local equilibrium, the main input

parameters for most BE solvers are the reduced electric field (E/N), reaction cross-sections,

and species density ratios. Cross-sections are required in tabular or equation form for every

species and reaction (e.g., moment transfer, ionization, excitation, and de-excitation) in the

system. The LXCat [90] website provides access to cross-section data for a large number of

species and from many different sources.

2.4 Coupling the KGMf with Boltzmann Equation Solvers

The Boltzmann equation (BE) solver is coupled to the KGMf via EEDFsolver class that

wraps the actual implementation of the BE solver and acts as a layer between the KGMf

and BE solver, as shown on Fig. 2.2. Adding a wrapper around BE solvers enables the KGMf

to compare coupled BE solvers (e.g., BOLOS and MultiBolt) and enables future upgrades,

such as coupling with LoKI-B or BOLSIG+. This flexibility enables users to select the BE

solver that best fits their needs in terms of accuracy and computational complexity (two- or

multi- terms). The coupled BE solver is used during the simulation only when selected in

the simulation input file.

The communication between the KGMf and the BE solver is done at the simulation

initialization and every time step during the simulation. At the simulation initialization

(KGMf init on Fig. 2.2) the EEDFsolver class and the underlying solver are initialized. The

initialization involves extracting electron impact reactions (i.e., reactions with electrons as

reactants) defined with cross-sections, loading required cross-sections, and creating a list
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Figure 2.2 Flowchart of the KGMf and BE solver coupling via EEDFsolver class. The
EEDFsolver class is initialized according to selected simulation parameters. In the time
advancement of the ODE system, parameters are set in the EEDFsolver class, and the
decision is made whether to call the selected BE solver to evaluate the EEDF or use the
previously computed EEDF to compute reaction rate coefficients.

of non-electron species in those reactions. The species list in the BE solver is a subset of

the species list in the KGMf, as it only contains non-electron species acting as reactants in

electron impacted reactions. Depending on the selected BE solver, the number of terms for

the approximation is defined. After the initialization, the BE solver is run for the first time

to compute the initial EEDF.
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In every time step in the simulation, the EEDFsolver class is called from within the ODE

integrator (Evaluate ODE system on Fig. 2.2). According to the selected EEDF evaluation

frequency, the decision is made in the EEDFsolver class to either compute rate coefficients

using the existing EEDF or to compute the new EEDF, and new rate coefficients are com-

puted using the new EEDF. The EEDF evaluation frequency parameters are defined in the

input file. In either case, the reaction rate coefficients are returned to the ODE evaluation

routine. If the EEDF needs to be evaluated, the species density ratios, reduced electric field,

and the EEDF energy grid are sent to the BE solver. The BE solver returns the new EEDF

on a given energy grid. When the value of the EEDF at 0.8εmax is below 10−13, where εmax

is the upper limit of the currently defined energy grid, the energy grid is adjusted, and the

EEDF is re-evaluated using the new energy grid. The grid can be defined either as a linear

grid in the whole energy range (with a fixed number of grid points) or as a multi-interval

linear grid, where the whole energy range is divided into linear grid intervals (with a fixed

number of grid points in each interval). In the former case, the energy mapping of the EEDF

will increase the accuracy of the EEDF evaluation at lower energies by reducing the grid step

size. In the latter case, the mapping will reduce the computational load when computing

reaction rate coefficients by reducing the total number of grid points.

The implementation of the EEDFsolver class was verified for EEDF calculation and its

evaluation frequency. For given values of species density ratios and reduced electric field,

the EEDF was evaluated and compared to the EEDF evaluated by BOLSIG+ for the same

input parameters. The second check was the EEDF evaluation frequency, where conditions

for invoking the EEDF evaluation were checked to ensure the EEDF was evaluated at the

correct relative change of selected system parameter, e.g., reduced electric field or electron

density. Evaluation frequency conditions, the parameter used, and its threshold value is

defined in the simulation input file.
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2.4.1 EEDF Evaluation Frequency

Evaluating the EEDF with coupled BE solver increases the fidelity of results and increases

the simulation’s total run time. There are times when the EEDF does not change signifi-

cantly during the individual time steps, and the already computed EEDF from the previous

time step could be used in the current time step. This indicates that the EEDF could be

self-consistently evaluated at different frequencies and not necessary every time step. The

frequency for EEDF evaluation depends on a simulated system. The apparent parameters

on which to base the evaluation frequency would be input parameters to the BE solvers

or result from BE solvers, such as reduced electric field (E/N), electron density (ne), elec-

tron temperature (Te), and gas mixture ratio. According to the available documentation,

BOLSIG+ [96] uses caching mechanism, based on reduced electric field E/N, to reduce the

number of necessary evaluations. BOLSIG+ uses a geometric grid of reduced electron field

E/N values to create a history of evaluated EEDFs and to decide whether to evaluate the

EEDF for a given E/N or reuse the previously evaluated EEDF.

In the KGMf, evaluation frequency is implemented based on the number of steps (evalu-

ate every given number of steps) or on relative changes of plasma parameters in the system:

reduced electric field (E/N), electron density (ne), or electron temperature (Te). The pa-

rameter and its threshold value for defining the EEDF evaluation frequency are user-defined

in the KGMf input files. When EEDF evaluation is requested, the value of the selected

parameter is compared to the value at the last EEDF evaluation. If the relative difference

between two values is bigger than the threshold value, the EEDF is evaluated; otherwise,

the previously evaluated EEDF is used. For example, the evaluation condition for electron

temperature is defined as:
|Te − Te,eval|

Te,eval
> ∆Te,thr (2.14)

where Te is the electron temperature at current evaluation, Te,eval is the electron temper-

ature at the last evaluation and ∆Te,thr is the electron temperature threshold given as an
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input parameter (e.g., 0.1 for 10%, 0.4 for 40%). When the condition is satisfied, the EEDF

is evaluated using a coupled BE solver, and the updated EEDF is used until the next EEDF

evaluation. Currently, only one threshold parameter can be specified as an evaluation fre-

quency condition. The effect of EEDF evaluation frequency on results’ accuracy and total

simulation run time in benchmark cases of the KGMf and ZDPlasKin, is presented in Sec-

tion 2.5.2.

2.4.2 Coupled BE Solvers

The KGMf is currently coupled with two BE solvers: BOLOS (two-term BE solver) and

MultiBolt (multi-term BE solver). BOLOS was benchmarked against ZDPlasKin and is more

extensively used, tested, and verified. Users can select the BE solver for their simulations

with the setting in the simulation input file.

BOLOS [65] is an open-source and freely accessible implementation of a two-term BE

solver that is similar to BOLSIG+. BOLOS is written in Python and can be included

as a module to any Python-based script. Before coupling BOLOS with the KGMf, some

modifications to BOLOS were necessary, mainly in places where BOLOS interacts with the

KGMf: transferring parameters to BOLOS (e.g., cross-sections and species densities) and

gathering the results from BOLOS (e.g., EEDF, electron temperature, and electron mobility).

MultiBolt [67] is a multi-term spherical approximation BE solver that is supporting

from two and up to 10-term Boltzmann equation approximations. It is implemented in

MatLab and is freely distributed as a source code. The main parameters for MultiBolt

are the reduced electric field, reaction cross-sections, and species density ratios. Coupling

of MultiBolt with the KGMf required significantly more modifications than BOLOS since

it involved preparing MultiBolt to run inside Octave (MatLab-like environment in Linux).

Once MultiBolt successfully ran in Octave, the KGMf was able to run it through the oct2py

module. Modifications to the original code were made to accommodate the different setup

of input parameters from the KGMf and returning computed results to the KGMf.
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2.5 Benchmark of the KGMf with Coupled Boltzmann Equation
Solver

The KGMf coupled with BOLOS was benchmarked with ZDPlasKin with coupled BOLSIG+

to verify the implementation and coupling of the BE solver. ZDPlasKin requires the user to

define the main loop, initial values of species densities, and the time evolution of independent

parameters. The simulation reaction set from the input file is converted into FORTRAN

source code and compiled with the rest of the source files into an executable file, which

results in highly optimized and fast simulation code. ZDPlasKin does not include the electron

energy balance equation, and the effective electron temperature is computed using the EEDF

from BOLSIG+ with the following equation: Te = 2
3

∫∞
0 εf(ε)dε. To be able to compare the

results from both codes, the capability to compute Te from a coupled BE solver was added

to the KGMf.

The benchmarking was done for high pressure low-temperature argon plasma discharge

cases without considering the sheath and neglecting all species or energy losses to the wall

and particle-field energy exchange in the sheath. These assumptions have a negligible effect

for plasmas in which the bulk region is much larger than the sheath region but fail when the

size, and particularly the energetics of the sheath/wall regions, become comparable to that

of the bulk region. The reaction set used for benchmark included ionization, single-state

excitation, recombination, and step-wise ionization and is presented in Table 2.1. Reaction

rate coefficients for reactions R1-R3 are defined as cross-sections and as Arrhenius form

as functions of electron temperature Te for reactions R4-R9. The species considered in the

reaction set include ground state atoms (Ar), electrons (e), excited state atoms (Ar∗), atomic

ions (Ar+), and molecular ions (Ar+2 ). Initial densities for electrons (ne) and atomic ions

(nAr+) were 107 cm−3, densities for molecular ions (n
Ar+2

) and excited atoms (nAr∗) were

102 cm−3.
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Table 2.1 The reaction set for the benchmark case. The reaction set considers the following
species: ground state atoms (Ar), electrons (e), excited state atoms (Ar∗), atomic ions
(Ar+), and molecular ions (Ar+2 ). Notes: Te in eV and Tgas in K.

Reaction Rate coefficient, unit ∆Ei [eV] Refs.

R1: Ar + e → Ar+ + 2e cross section 15.76 [99]
R2: Ar + e → Ar∗ + e cross section 11.50 [99]
R3: Ar∗ + e → Ar+ + 2e cross section 4.30 [99]
R4: Ar+2 + e → Ar∗ + Ar 8.5× 10−7(11600 Te/300.0)−0.67, cm3/s 1.5 Te [44]
R5: Ar+2 + Ar → Ar+ + 2Ar 6.06× 10−6/Tgas exp

(
−15130.0/Tgas

)
, cm3/s [44]

R6: Ar∗ + Ar∗ → Ar+2 + e 6× 10−10, cm3/s −1.5 Te [44]
R7: Ar+ + 2e → Ar + e 8.75× 10−27 T−4.5

e , cm6/s 1.5 Te [44]
R8: Ar∗ + 2Ar → Ar + 2Ar 1.4× 10−32, cm6/s [44]
R9: Ar+ + 2Ar → Ar+2 + Ar 2.25× 10−31(Tgas/300.0)−0.4, cm6/s [44]

For this benchmark, constant absorbed electron power density (P̃abs = 50 W·cm−3),

system volume (V = 1 cm3), and ion temperature (Ti) were assumed. There was no inflow

or outflow of species (closed system), and all losses to the wall were neglected. The absorbed

power was deposited only to electrons via Ohmic heating (P̃abs = e µe ne E
2). With high

collision frequency in DC discharges at high pressure for weakly ionized plasmas, Ohmic

heating is the dominant heating mechanism [95, 98]. Coupled BE solvers (BOLOS and

BOLSIG+) were used to compute electron mobility (µe) and to evaluate the dynamic EEDF

self-consistently.

The reduced electric field E/N is the main input parameter for many BE solvers. With

assumed Ohmic heating and constant absorbed power density, the E/N is computed as:

(
E

N

)
=

1

N

(
P̃abs

ne e µe

)1/2

(2.15)

where Ohmic heating is defined as P̃abs = e µe ne E
2, N is the background gas density,

P̃abs = Pabs/V is the absorbed power density, ne is the electron density, e is the elementary

charge, and µe is the electron mobility.

The EEDF is computed by coupled BE solvers self-consistently, BOLOS in the KGMf,

and BOLSIG+ in ZDPlasKin. Both BE solvers use the two-term approximation for solving

the Boltzmann equation, which is not valid for every value of the reduced electric field and
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could lead to errors in the computed EEDF. The KGMf enables the use of different EEDF

evaluation frequencies of coupled BE solvers to reduce the computational cost and reduce

the total run time, possibly impacting computed plasma parameters. The EEDF evaluation

frequency is defined based on changes in system parameters. Generally, a larger change in

system parameters between EEDF evaluations would reduce the fidelity of the EEDF during

discharge evolution.

2.5.1 Temporal Evolution of Plasma Parameters

The temporal evolution of the reduced electric field E/N and electron temperature are bench-

marked first since they are the key to most of the other discharge parameters. Figure 2.3

shows the reduced electric field E/N and the effective electron temperature Te as a function

of time, from an initial towards a steady state. Due to the constant absorbed power density

and Ohmic heating, the reduced electric field decreases with time as the electron density

(ne) increases until it reaches the steady-state. The electron temperature is decreasing with

time from the initial value of 10 eV to 3.5 eV in the steady-state. The main drop of elec-

tron temperatures is between 10−12 and 10−9 s that corresponds to a large change of the

Figure 2.3 Temporal evolution of the reduced electric field E/N and the effective electron
temperature Te. Pressure p = 760 Torr in argon and absorbed power density
P̃abs = 50 W·cm−3.
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EEDF shape during the same time interval. The steady-state time is case dependent, and

in our case, the system reached the steady-state at t = 10−4 s, from where the main plasma

parameter values (e.g., E/N, Te, and species densities) stay constant with time. The relative

differences at the steady-state for electron temperature (Te) and reduced electric field (E/N)

were 0.06% and 0.4%, respectively.

Figure 2.4 shows the temporal evolution of EEDFs, where the first two series of curves

present EEDFs computed by BE solvers, and the third series of curves is from Maxwellian

EEDFs. The EEDFs from the KGMf and ZDPlasKin show good temporal agreement, con-

firming the effective electron temperature agreement. The drastic changes in the EEDF

shapes between 10−12 and 10−9 s correspond to considerable changes in the respective elec-

tron temperatures, as can be observed in Fig. 2.3. The Maxwellian EEDFs are plotted using

the effective electron temperature from the EEDF at each plotted time. The shape of the

Maxwellian EEDF deviates drastically from the EEDF computed from BE solvers and shows

Figure 2.4 Temporal evolution of the EEDFs from BOLOS (KGMf), BOLSIG+
(ZDPlasKin) and analytical Maxwellian EEDF (KGMf) for the same effective electron
temperature (Te) and at the same times. Maxwellian EEDFs (dotted lines) show higher
probability of electrons with energies above ∼ 20 eV compared to EEDFs from BOLOS and
BOLSIG+ at each presented time. The pressure p = 760 Torr and the absorbed power
density P̃abs = 50 W·cm−3.
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a considerable error in energy distribution for times after 10−11 s and energies above 20 eV.

The results also suggest a much different treatment of inelastic collisions, which affects the

EEDF tail and explains why the Maxwellian EEDF overpredicts the electron impact reac-

tions and the steady-state electron densities.

Figure 2.5 shows temporal evolutions of densities of electrons, ions, and excited species.

With a constant absorbed power deposited in the system, the species densities change until

the generation and the destruction of species balance out at a steady state. The species

density evolution shows a good agreement in the transient and at the steady-state. The

relative differences in species densities at steady state (from t=10−4 to 10−3 s) are shown

in Table 2.2. The ionization degree at steady state is χ = 1.05× 10−8. Figure 2.5 shows the

conversion of the dominant ions, changing from the atomic ions at the earlier stage to the

molecular ions towards the steady-state, which is consistent with the results in Ref. [41].

Figure 2.5 Time dependence of species densities: (a) electron and excited species, (b) the
atomic and molecular ion densities. Steady-state background gas density
ng = 2.44× 1019 cm−3 and the ionization degree χ = 1.05× 10−8. The pressure is
p = 760 Torr and the absorbed power density is P̃abs = 50 W·cm−3.

The temporal evolution of reaction rates from the KGMf and ZDPlasKin are compared

in Fig. 2.6 and show good agreement between codes in the whole time interval. The gen-

eral trend of reaction rates shows they stabilize with time and eventually reach a steady

state. Figure 2.6(a) shows reaction rates for rate coefficients defined with cross-sections and
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Table 2.2 The impact of different changes of the reduced electric field E/N (used to define
the EEDF evaluation frequency in the KGMf) on total computational times and
steady-state densities. Total running times for the KGMf (tK) and ZDPlasKin (tZ) are
given in seconds. The percent difference between the KGMf and ZDPlasKin is given for the
following species densities: electrons (e), excited state atoms (Ar∗), atomic ions (Ar+), and
molecular ions (Ar+2 ).

∆E/N tK tZ tK/tZ e Ar+2 Ar+ Ar∗
[%] [s] [s] [-] [%] [%] [%] [%]
0.5 73.52 9.18 8.01 12.06 12.06 22.16 11.84
1 39.40 9.18 4.29 11.54 11.54 21.03 11.31
2 11.68 9.18 1.27 13.98 13.98 25.94 13.27

Figure 2.6 Time evolution of reaction rates for (a) reactions defined by cross sections and
(b)-(d) reactions defined in Arrhenius form. Reaction labels are from Table 2.1. The
pressure is p = 760 Torr and the absorbed power density is P̃abs = 50 W·cm−3.
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computed using the EEDF from BE solvers. The ionization rate R1 decreases with time

because the EEDF shape is becoming steeper, with fewer high energy electrons (losing the

high energy tail, see Fig. 2.4), although the electron density increases. The excitation rate,

defined by reaction R2, is the main pathway for the creation of excited state species (Ar∗)

and shows small changes in time until it is balanced out by reaction rate R8 at a steady

state. The stepwise ionization from a single excited state (all excited argon levels combined

into a single aggregate excited level), defined by reaction R3, increases with time mainly due

to the increasing excited species density and lower threshold energy compared to ionization

and excitation. Figures 2.6(b)-(d) show reaction rates for analytically defined reaction rate

coefficients. From Table 2.1, we know the reaction rate R4 (destruction of Ar+2 ) and rates

R6 and R9 (creation of the Ar+2 ) are the main reactions driving the density of Ar+2 . The

reaction rate R9 is a conversion of atomic (Ar+) to molecular (Ar+2 ) ion. The background

gas density is constant, and the change of the reaction rate R9 depends only on Ar+ density.

Before reaching the steady-state, the reaction rate R9 is much higher than that of reactions

R4 and R6 combined, which indicates that three-body collisions are the key pathway of

converting Ar+ to Ar+2 . In Fig. 2.6(c), it can be observed that the reaction R5 (conversion

of Ar+2 to Ar+) is less important as its rate is many orders of magnitude smaller compared

to reaction rates of reactions R4 and R9. The same trend can be observed by comparing the

trend of Ar+ density and reaction rate R9 as they both first increase until about 10−8 s and

then start decreasing until reaching the steady-state. This is also consistent with the density

evolution of Ar+ and Ar+2 shown in Fig. 2.5(b). Figure 2.6(d) shows the reaction rate R8

(destruction of Ar∗) is increasing in time until it balances the reaction rate R2 (creation of

Ar∗) at a steady state.

2.5.2 Computational Implication of Including a BE Solver

Capturing the temporal evolution of the EEDF using a BE solver comes at the cost of longer

run times. The EEDF evaluation frequency can be defined in terms of changes of plasma
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parameters, such as reduced electric field and species densities, to lower the computational

intensity of the coupled BE solver. The EEDF evaluation frequency has an impact on

simulation run time and error in computed parameters.

For the presented benchmark case with pressure p = 760 Torr and absorbed power density

P̃abs = 50 W·cm−3, the EEDFs in the KGMf were evaluated at 1% change of the reduced

electric field E/N. This resulted in 847 EEDF evaluations in 10899 time steps, evaluating

the EEDF, on average, in 7.7% of time steps. The total run times were 39.4 s for the

KGMf and 9.18 s for ZDPlasKin (with EEDF caching enabled in BOLSIG+), making the

KGMf 4.3 times slower than ZDPlasKin. ZDPlasKin does not enable the setting of EEDF

evaluation frequency but instead relies on the EEDF caching mechanism in BOLSIG+ to

increase the computational efficiency (i.e., reducing the overall computational time). The

run time of the benchmark case in ZDPlasKin with EEDF caching disabled in BOLSIG+

was 116.8 s, which makes ZDPlasKin 2.9 times slower compared to the KGMf.

More detailed profiling of both codes reveals that the KGMf spends 65% of the total run

time in BOLOS, while ZDPlasKin spends 90% of the total run time in BOLSIG+. While

both codes spend most of the computation time in BE solvers, the difference in overhead is

significant, particularly at high BE evolution frequency. Large overhead in the KGMf could

be attributed to the fact that the KGMf has a more feature-rich API than ZDPlasKin’s

minimalistic approach in which the user controls the code. Part of the overhead is also due

to different underlying languages, Python for the KGMf and FORTRAN for ZDPlasKin, as

each offers different optimization capabilities. Reducing the overhead and optimizing the

code will be one of the future extensions of the KGMf.

2.5.3 Steady-state Densities

Time evolution of species densities for given absorbed power density and atmospheric pres-

sure shows good agreement between codes. The steady-state occurred around time t = 10−4s

when densities became constant. The steady-state densities were compared for two series of
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runs, the first run with a fixed absorbed power density P̃abs = 50 W·cm−3 and pressure p in

a range from 100 to 1000 Torr, and the second run with a fixed pressure p = 760 Torr and

absorbed power density P̃abs in range from 50 to 1000 W·cm−3.

Figure 2.7 shows steady-state densities for a fixed power and varying pressure. The

reduced background gas density at lower pressure reduces the collision frequency, increasing

the energy gain between collisions, resulting in more high-energy electrons. High-energy

electrons increase the possibility of ionization and cause higher steady-state densities of ions

and electrons. The pressure 100 Torr still presents a high-pressure regime as the molecular

ions are the dominant ions. However, the tendency of densities suggests that below some

pressure, the atomic ions will be the dominant ions [41].

Figure 2.7 The steady-state results for fixed deposited power density (P̃abs = 50 W·cm−3)
and a range of gas pressures (p = 50− 1000 Torr).

Figure 2.8 shows the dependence of the steady-state densities on the absorbed power den-

sity at 760 Torr. The steady-state densities of all species increase with increasing absorbed

power density due to the ionization rate increasing from Eq. (2.8). The molecular ions are the

dominant ions for this high-pressure regime, and the electron densities are almost the same

as molecular ion densities due to observed quasi-neutrality. The Ar+2 densities are 104− 105

times higher than Ar+ densities, which is mainly caused by the three-body collisions (R9

reaction) converting atomic ions to molecular ions.
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Figure 2.8 The steady-state results for fixed pressure (p = 760 Torr) and a range of
deposited power densities (P̃abs = 10− 1000 W·cm−3).

The KGMf and ZDPlasKin, both coupled with BE solvers, show good agreement in the

temporal evolution of plasma parameters, such as the species densities, reduced electric field,

and effective electron temperature, in high pressure low-temperature argon plasmas. The

agreement of the densities at a steady-state with a fixed power density and a fixed pres-

sure is additionally confirmed. The temporal evolution of EEDFs, computed from BOLOS

and BOLSIG+, also agrees well with each other, showing highly truncated non-Maxwellian

EEDFs towards the steady-state.

2.5.4 High Power Microwave Breakdown

Gas breakdown characteristics are of great interest for predicting plasma formation under

various conditions, which are primarily affected by the surface emission and bulk ioniza-

tion [100–102]. In high power microwave (HPM) systems, the electron impact collisions with

background gas are the key ionization mechanism during the breakdown process, which can

be predicted based on the global model [42]. The Maxwellian EEDF, usually assumed in

global models, leads to shorter breakdown times at high pressure due to the high energy tail

of the EEDF. The KGMf with coupled BE solver can evaluate the EEDF self-consistently

and predict breakdown times with higher fidelity; capturing the truncated EEDF yields more
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accurate electron impact rate coefficients and electron densities, which is significant for mod-

eling diagnostics. The breakdown times in the KGMf and ZDPlasKin were defined, following

the literature [37, 38, 42, 103], as the time required for the electron density to increase by

108 times the initial electron density, which was 107 cm−3 in this case. The reaction set from

Ref. [37] (momentum transfer, ionization, and excitation) was used to benchmark the KGMf

and ZDPlasKin with results from PIC simulation. BE solvers in both codes computed the

reaction rate coefficients for all three reactions. It should be noted that it is not necessary to

consider molecular ions since, at the early stage of the breakdown, the atomic ions are still

dominant, and the three-body conversion of Ar+ to Ar+2 would occur after the breakdown.

With microwave field as an input parameter, the effective microwave field was computed

with [42]:

Eeff =
E0√

2

νm√
ν2
m + ω2

(2.16)

where E0 is the amplitude and ω is the angular frequency of microwave field, and νm is the

momentum transfer collision frequency computed by BE solvers (BOLOS and BOLSIG+).

The reduced electric field needed by BE solvers was computed assuming Ohmic heating

of electrons and the absorbed power computed using the following equation [42]:

Pabs =

∫ ∞
0

e2ne
meνm

E2
efff(ε)dε (2.17)

where e is the electron charge, ne is the electron density, me is the electron mass, f(ε) is the

EEDF from coupled BE solvers, and ε is the electron energy.

In Ref. [37], it was suggested that the breakdown time dependence on pressure could

be divided into two pressure ranges: below 10 Torr (low pressure) and above 10 Torr (high

pressure). In the low-pressure range, where the reduced electric field is high (above 7000 Td

and increasing with decreasing pressure), the EEDF has a high energy tail similar to the

Maxwellian distribution. In the high-pressure range, where E/N decreases with increasing

pressure, the EEDF gets truncated and deviates from a Maxwellian distribution. This be-

havior can be observed in Fig. 2.9, where the breakdown times predicted by Maxwellian
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EEDF (KGMf x = 1) and self-consistent EEDF (KGMf with BOLOS) start deviating at

pressures above 100 Torr.

The KGMf with the prescribed shape of EEDF (x = 6.5) correctly captured the proper

tendency of the breakdown times. The results in Fig. 2.9 suggest that BE solvers can be

cost-effective only for pressures above 10 Torr, as below 10 Torr, the breakdown times are

the same as with assumed Maxwellian EEDF. Both PIC and global model (the KGMf and

ZDPlasKin with coupled BE solver) results in Fig. 2.9 show the same tendency of breakdown

time at different pressures. The difference in predicted breakdown times could be attributed

to spatial dependence of plasma parameters in PIC simulations, mainly electron density

used to define the breakdown time. EEDFs used in global models neglect non-local effects,

which are inherently included in the PIC simulations, e.g., surface processes and processes

in the sheath. At pressures above 20 Torr, the electron density in the PIC simulation is not

spatially uniform, and locally higher electron density could cause shorter breakdown times

than the breakdown time based on a globally averaged electron density used in the KGMf

and ZDPlasKin.

Figure 2.9 Comparison of breakdown times in high power microwave argon discharges for
PIC simulation and global models with EEDF defined analytically (x = 1 and x = 6.5) and
BE solvers (BOLOS and BOLSIG+). Analytically defined EEDFs were constant in time,
while EEDFs evaluated by the BE solvers were time-dependent. The electric field
amplitude E0 = 2.82 MV/m and the angular frequency ω = 2.85 GHz. The PIC results
were taken from Ref. [37].
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CHAPTER 3

GLOBAL SENSITIVITY ANALYSIS

3.1 Uncertainty Quantification and Sensitivity Analysis

The objective of uncertainty quantification is to quantify the effect of model uncertainties

on model outputs. Model uncertainties arise from different sources: model errors, input

uncertainties, and numerical implementation of the model [104]. The model is a simpli-

fied representation of a physical system and utilizes various approximations to describe the

processes in the physical system. Model errors arise from assumed approximations and sim-

plifications of the physical system: input parameter space has intervals in which models are

valid, intervals where the fidelity of models is significantly reduced, and intervals in which the

models fail. Parameter uncertainties arise because the model’s input parameters are often

derived from other models or experiments. The values of parameters can vary significantly,

either in intervals of validity or in uncertainties of their values, and those changes have a

profound effect on the model’s output. Numerical errors are the third possible source of

uncertainties in models. All models that involve executing simulation code during the model

evaluation have additional uncertainties that arise from number round-off, discretization,

coding errors, and hardware errors [104, 105].

Sensitivity analysis is focusing on quantifying the model’s output dependence on input

parameter uncertainties. There are many reasons to perform a sensitivity analysis, such as

defining the robustness of a model to a variance of input parameters or various values of the

parameters, optimizing a model output by varying parameter values, defining insensitive pa-

rameters that could be fixed in some cases [78, 104, 106]. The model’s robustness is essential

when the significant variance of input parameters is expected, and the model’s response to

those values needs to be verified. Changes in input parameters could be deterministic (the
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model was designed to be valid for multiple values of input parameters) or could be caused

by uncertainties in input parameters, e.g., errors in measurements from experiments or dif-

ferent values from different simulations. Defining the significant and insignificant parameters

can help design experiments by focusing on parameters that greatly influence the model’s

output. Significant parameters are also a good choice for further investigations. Input pa-

rameters for sensitivity analysis are a subset of all parameters for uncertainty quantification

and are direct inputs to the model investigated in the sensitivity analysis. The selection

of the model’s inputs and outputs depends on the model under the investigation. In the

plasma discharge model, input parameters for sensitivity analysis can be: the initial values

(e.g., species’ densities, electron temperature, gas pressure and temperature, gas mixtures),

driving electric field amplitude, frequency and pulse shape, specified reaction rates (inde-

pendent of other parameters), or reaction rate coefficients. Observed output results from

an investigated model depend on the goal of the model - is the primary purpose to define

the dependence of time evolution or the steady-state of species’ densities, electron or gas

temperature, or rate of increase/decrease of selected density?

Sensitivity analysis also helps clarify the importance of individual parameters or groups

of parameters in the investigated model. Parameters can be classified (ranked) into two

main groups according to their importance (influence) on model output: influential and

non-influential parameters. Two classification errors are possible from this classification:

type I error is where the non-influential parameter is defined as important, and type II error

is when the important parameter is classified as non-influential. Saltelli [78] also lists a third

error, type III error, where modeling produces the correct answer for the wrong question,

and the sensitivity analysis methods cannot protect against those errors. For example, type

III errors are the ones when incorrect input parameter intervals (or values) are used, and the

sensitivity analysis returns parameter importance for those wrong parameter values.

Depending on the analysis and methods used, the sensitivity analysis can typically be

defined either as local or global. The local sensitivity analysis (LSA) focuses on defining
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the variability of system responses (Yj) on variation (perturbation) of input parameters

values (xi) around the predefined nominal value. Using the definition of the derivative, the

mathematical formulation of the local sensitivity is
∂Yj
∂xi

[104]. The LSA can separate input

parameters into sensitive and insensitive parameters, i.e., with large and small derivatives,

respectively. The derivative approach is very computationally efficient, requiring only a few

evaluations of the computational model. However, it requires some changes to the existing

computational model, which are not always simple to implement. Another disadvantage of

the approach is that the method does not differentiate when the response is small because

of insensitive parameters or non-linearity in the model itself. In other words, derivatives are

descriptive around the values where they are computed and may not represent the whole

input parameter space.

On the other hand, global sensitivity analysis (GSA) defines model output uncertainties

to input parameter uncertainties in the whole parameter space. This approach offers the

ability to explore the model’s response without knowing parameter base (nominal) values

and gives a more comprehensive description of the model’s response. Compared to LSA,

the GSA does not require any changes in a model being explored (e.g., simulation code).

In general, it requires a larger number of model evaluations to explore the whole input

parameter space. Using a naïve approach to the exploration of parameter space, where

each parameter would take k values from the parameter interval, the total number of model

evaluations grows with the number of parameters, p. With models with many parameters or

relatively long evaluation time, this becomes prohibitively computationally expensive, and

other approaches are required.

3.2 The Elementary Effects Method

The elementary effects (screening) method is a simple yet effective method to capture the

independent effect of each parameter to the model’s output, neglecting any combined effect
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from multiple parameters. The elementary effects method belongs to the class of One-factor-

At-a-Time (OAT) [107] methods that are designed to measure the importance of individual

parameters by varying them individually and independently one at a time. The result of the

method is the relative importance (or rank) of each parameter to the selected model output.

The fundamental idea of introducing two sensitivity measures, µ and σ, to classify model

parameters according to their importance was introduced by Morris [75] in 1991. In general,

a model is defined as:

y = f(~x) = f(x1, x2, . . . , xp) (3.1)

where xi is the i-th input parameter of the model and p is the number of parameters. The

whole input parameter space is a p-dimensional cube that is divided into k grid points (levels)

in each dimension. Figure 3.1 shows an example of parameter grid for k = 4 grid points and

for p = 2 parameters.

Figure 3.1 Representation of 2D grid with two parameters (p = 2), four grid points (k = 4),
and parameter change ∆ = 2/3, used for defining parameter values for the elementary
effects method. Each arrow presents points needed to compute one elementary effect:
horizontal arrow to identify elementary effect for x1, vertical arrow for x2.

The elementary effect for the i-th parameter is defined as [78]:

EEi =
f(x1, x2, . . . , xi + ∆, . . . , xp)− f(x1, . . . , xp)

∆
(3.2)
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where ∆ is a value from the interval {1/(k − 1), . . . , 1− 1/(k − 1)}. When elementary effect,

EEi, is computed for each parameter at r different grid points defined by values of ∆, the

two sensitivity measures are computed as [78]:

µi =
1

r

r∑
j=1

EE
j
i

µ∗i =
1

r

r∑
j=1

|EEji |

σ2
i =

1

r − 1

r∑
j=1

(
EE

j
i − µ

)2

(3.3)

Each parameter’s importance and influence on the model’s output can be estimated from

computed values of sensitivity measures µi, µ∗i , and σ, but the meaning of their absolute

values depend on the model. In general, µi, µ∗i present the average effect of the parameter

to the model’s output. When both µi and µ∗i have high values, the parameter i shows a

substantial effect to output, and the effect is the same (i.e., positive) in the whole parameter

space. If µi is small (or negative) and µ∗i is high, the parameter i has varying effects on

the model’s output, depending on the sampling points. The value of standard deviation σi

indicates how sampling points affect the importance of the parameter i: the higher the σ,

the more important is the choice of sampling points.

3.3 Variance-based Methods

Variance-based methods are designed to define a collective effect of input parameter un-

certainties on the model’s output. The parameter variance is defined by the distribution

of possible values of each parameter. The distribution is selected according to the nature

of the parameter. The distribution of parameter values should capture possible values and

probabilities of occurrence of each value, e.g., symmetrical normal distributed values, only

positive values, or uniformly distributed values in a given interval.
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Variance-based methods treat the investigated model as a black box and do not rely on

any model’s property. When used in connection with computer simulations, variance-based

models are the easiest to implement as no changes to the simulation code are required. The

uncertainties in input parameters are taken into account by generating values of input pa-

rameters according to their probability distributions. Generated values of input parameters

compose a list of independent simulation cases, one case for one set of input parameters,

that can be run independently and will result in an ensemble of solutions from which sta-

tistical information of the model’s outputs can be extracted. The whole parameter space is

a p-dimensional cube, where p is the number of input parameters. Each model evaluation

requires one p-dimensional point and a large number of p-dimensional points are required to

explore the whole parameter space. In the case of many parameters, a large number of eval-

uations, or long model evaluation times, finding efficient sampling techniques is imperative

to avoid excessive work required for executing variance-based methods.

3.3.1 Sensitivity Indices

Computing sensitivity indices can measure the sensitivity of model outputs due to variation

of input parameters. Saltelli [78] presented sensitivity indices that enable ranking a model’s

parameters according to the variance of each parameter to the variance of the model’s out-

put. Using the model definition from Eq. (3.1), let the variance of outputs from all model

realizations, i.e., realizations that include all values of all parameters, be labeled as V (y).

Let the variance of outputs from model realizations without a variance from parameter i,

i.e., keeping parameter i fixed at value x∗i , be labeled as Vxi(y|xi = x∗i ), e.g., outputs along

vertical dashed lines for selected value of factor Fu in Fig. 3.2. The computed variance shows

the relation between variances at one selected value of parameter i and not for the whole

interval of values. To compute the influence of parameter i to outputs in the whole interval

of values of parameter i, the average of outputs for each value of parameter i is computed,

labeled as Exi(y|xi = x∗i ). The average value of model outputs is computed along vertical
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dashed lines in Fig. 3.2, one average value for each vertical dashed line. The variance of

computed average values define the influence of parameter i on the model outputs, labeled

as V [E(y|xi)].
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Figure 3.2 Scatter plot of model realizations (model output values) depending on values of
one parameter, a multiplication factor Fu for reaction R110. Points along vertical lines
have the same value for factor Fu, but different values for other factors. The use of factor
Fu is defined in section 3.4.1.

The first-order indices quantify each parameter’s particular importance, i.e., the impor-

tance without interaction with other parameters, and is defined for parameter i as [78]:

Si =
V [E(y|xi)]
V (y)

(3.4)

The second and higher order indices define the level of interaction between parameters. The

second-order indices Sij , defining interaction between parameters i and j (i 6= j), are defined

following the same decudion as for the first order index Si. The variance of model realizations

are averaged on a plane defined by xi = x∗i and xj = x∗j and are labeled as V
[
E(y|xi, xj)

]
.

The second order sensitivity index for interaction between parameters i and j is defined as:

Sij =
V
[
E(y|xi, xj)

]
V (y)

(3.5)
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The variance of model realizations when three parameters (i, j, and k) are considered is de-

fined as V
[
E(y|xi, xj , xk)

]
and third-order sensitivity index is defined as Sijk =

V
[
E(y|xi,xj,xk)

]
V (y)

.

The total effects sensitivity index for parameter i can be computed as [78]:

STi = 1− V [E(y|x∼i)]
V (y)

(3.6)

where V [E(y|x∼i)] = V
[
E(y|x1, x2, ..., xi−1, xi+1, ..., xp)

]
is the variance of model’s outputs

without parameter i.

The sensitivity indices Si and STi have values between 0 and 1, where smaller values

indicate the parameter i is non-influential and larger values of indices indicate a more influ-

ential parameter. They define the relative importance (influence) of input parameters and

give some general properties of each parameter:

• Index Si gives the individual effect of the parameter on the model’s output (i.e., only

the i-th parameter without interaction with other parameters), and index STi gives

the total effect, including interaction with other parameters.

• The difference between the total and the individual effect index, STi − Si gives the

measure of how much interaction is between i-th parameter and other parameters.

• If STi << 1 or STi = 0, the i-th parameter is non-influential and can be excluded from

any sensitivity analysis as it has a small or negligible effect on the variance of outputs.

3.3.2 Computing Sensitivity Indices

The main task in computing sensitivity indices is an estimation of conditional variances

V [E(y|xi)] as they involve computing multidimensional integrals in p-dimensional param-

eter space. The brute-force approach for computing sensitivity indices for one parameter

would require O(M2) model evaluations, where M is the number of discrete values for each

parameter. Saltelli [76] developed a method of computing sensitivity indices based solely on

model evaluations, e.g., computer simulations, where the required number of computations
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is significantly lower than O(pM2). With M being the number of discrete values for each

parameter and p being the number of parameters, the total number of model evaluations is

M(p+ 2) << O(pM2). The steps for computing sensitivity indices are the following [78]:

• generate M × 2p random parameter values from the interval of interest and split them

into matrices A and B in a way that each matrix takes half of the values. The matrix A

takes columns 1 . . . p and the matrix B takes columns p+1 . . . 2p, as shown in Eqs. (3.7)

and (3.8):

A =



x
(1)
1 x

(1)
2 . . . x

(1)
i . . . x

(1)
p

x
(2)
1 x

(2)
2 . . . x

(2)
i . . . x

(2)
p

. . . . . . . . . . . .

x
(M−1)
1 x

(M−1)
2 . . . x

(M−1)
i . . . x

(M−1)
p

x
(M)
1 x

(M)
2 . . . x

(M)
i . . . x

(M)
p


(3.7)

B =



x
(1)
p+1 x

(1)
p+2 . . . x

(1)
p+i . . . x

(1)
2p

x
(2)
p+1 x

(2)
p+2 . . . x

(2)
p+i . . . x

(2)
2p

. . . . . . . . . . . .

x
(M−1)
p+1 x

(M−1)
p+2 . . . x

(M−1)
p+i . . . x

(M−1)
2p

x
(M)
p+1 x

(M)
p+2 . . . x

(M)
p+i . . . x

(M)
2p


(3.8)

• create matrices Ci that have all elements from the matrix B, except values in i-th

column are taken from the matrix A:

Ci =



x
(1)
p+1 x

(1)
p+2 . . . x

(1)
i . . . x

(1)
2p

x
(2)
p+1 x

(2)
p+2 . . . x

(2)
i . . . x

(2)
2p

. . . . . . . . . . . .

x
(M−1)
p+1 x

(M−1)
p+2 . . . x

(M−1)
i . . . x

(M−1)
2p

x
(M)
p+1 x

(M)
p+2 . . . x

(M)
i . . . x

(M)
2p


(3.9)
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• evaluate model for all parameter values in matrices A, B and Ci and store results from

evaluations into column vectors of dimension M × 1:

yA = f(A) yB = f(B) yCi = f(Ci) (3.10)

Using parameter values defined in matrices A, B, and Ci and model evaluations collected

in vectors yA, yB , and yCi , the first-order sensitivity indices are estimated as follows:

Si =

1
M

∑M
j=1 y

(j)
A y

(j)
Ci
− f2

0

1
M

∑M
j=1

(
y

(j)
A

)2
− f2

0

(3.11)

where superscript (j) defines the row from vector of results (yA, yB , and yC) and f0 is the

mean computed as:

f0 =

 1

M

M∑
j=1

y
(j)
A

2

(3.12)

The total effects sensitivity index is always greater or equal to Si and is estimated as:

STi = 1−
1
M

∑M
j=1 y

(j)
B y

(j)
Ci
− f2

0

1
M

∑M
j=1

(
y

(j)
A

)2
− f2

0

(3.13)

3.4 Global Sensitivity Analysis in Plasma Discharges

Global sensitivity analysis (GSA) can be used to define the system’s sensitivity to uncer-

tainty in input parameters, i.e., how changes in input parameters will affect the simulation

results. Regardless of the source of the uncertainties, the parameter distribution is required

to perform the GSA. GSA in a non-intrusive method utilizing the simulation code as a "black

box" and performs a required number of simulation runs to define the effect of the input

parameter uncertainty on quantities of interest (QoI), e.g., species densities, temperatures.

The reaction rate coefficients were selected as input parameters with specified uncertainties

for all global sensitivity analyses in this chapter. The variation of the reaction rate coef-

ficients was taken into account by multiplying each reaction rate coefficient by a selected
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factor (Fu) before using it in the simulation. Multiplication factors (Fu) were defined from

a selected distribution. To define the base case, i.e., the case used to measure changes of

output values from simulation, the multiplication factor Fu = 1.0 was used for all reaction

rate coefficients. Using the value 1.0 also ensured that unchanged reaction rate coefficients

from the reaction input file were used for a base case.

With a large number of reactions and the number of samples needed to describe the

distribution of reaction rate coefficients, the total number of simulation runs using naïve ap-

proach is prohibitively large. Saltelli sequencing (an improvement of Sobol’s sequencing [76])

was used to define multiplication factors for rate coefficient and to reduce the total number

of simulation runs. Using Saltelli sequencing, the total number of simulation cases is reduced

from O(pN ) to O(Np), where N is the number of samples (factors for rate coefficients) we

select to describe the rate distribution and p is the number of reaction rate coefficients (re-

actions in the system). In case of p = 27 and N = 100, the naïve approach would require

Np+ 1 ∼ 10027 cases, but Saltelli sequencing requires only N · (p+ 2) + 1 = 2901 simulation

runs. Generated simulation cases are independent and were run in parallel.

3.4.1 Uncertainties of Reaction Rate Coefficients

For estimating the species density distributions, two simulation input parameters have to

be defined: the distribution of the input parameters and the parameters of the selected

distribution (e.g., median, variance). A normal (Gaussian) distribution is usually assumed

without any knowledge of the reaction rate coefficient distribution. In our case, the normal

distribution is not very convenient since factors defined by the distribution must be posi-

tive numbers, and a log-normal distribution was assumed for input parameter distribution.

The second assumption was made regarding the parameters for the log-normal distribution

(Fig. 3.3). Since the multiplication factors (Fu) were used to define uncertainties in the

reaction rate coefficients, factor Fu = 1.0 corresponds to the reaction rate coefficient used

in simulations without considering uncertainties. The value Fu = 1.0 was selected as the
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Figure 3.3 The comparison of distributions for sampling factors for reaction rate coefficient
factors: log-normal distribution samples and the distribution (bar charts and solid line,
respectively), and normal distribution (dotted line) with mode (the most probably value)
of 1.0 and standard deviation σ = 0.2. The interval that encloses 99% of the probability of
log-normal distribution is labeled with its low (0.64) and high (1.71) boundary. The most
probable value of the coefficient is shown as vertical dashed line.

mode of the distribution, i.e., the most probable value returned by the distribution. The

variance of the distribution was selected after gathering the uncertainties reported in the

literature. When reaction rate coefficients were defined with cross-sections, the uncertainties

reported in the literature were from 6% for O2 ionization [108] to 20% for other processes.

The only exception was H2 excitation, where the uncertainty reported was 37% [109]. When

reaction rate coefficients were defined using the Arrhenius form (Eq. 3.14 with Fu = 1.0),

only uncertainties for the factor A were reported [80]. The uncertainties for A were given

as a ∆A/A ratio, where ∆A is the change in A. Reported ratios for ∆A/A were between

0.05 and 5.0, but most ratios were in the range 0.3− 0.5 (multiplication factor Fu between

1.3 and 1.5). Considering a log-normal distribution and enclosing 99% of samples from the

distribution (interval inside ±3σ for normal distribution), selecting σ = 0.2 gives the upper
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limit for ∆A/A at 0.71 (Fu = 1.71, value 1.71 in Fig.3.3). The standard deviation σ = 0.2

encloses the majority of the factors reported in Ref. [80], and it was used in all simulations

presented in this chapter.

The uncertainty of reaction rate coefficients was taken into account through multiplication

factor Fu in two different ways, depending on how the reaction rate coefficient was defined:

• as an analytical function, e.g., as the Arrhenius form:

K(T ) = Fu · A · TB · exp

(
−C
T

)
(3.14)

where T is the temperature of the incident species (either electron or gas temperature),

and A, B, and C are the unchanged coefficients for given reaction rate

• as a cross section for electron impact reactions:

K(σ, f) =

∫ ∞
0

√
2eε

me
Fuσ(ε)f(ε)dε (3.15)

where e is the elementary charge, me is the electron mass, σi(ε) is the reaction cross

section, f(ε) is the electron energy distribution function (EEDF) and ε is the electron

energy.

The factor Fu was drawn from a log-normal distribution to incorporate the uncertainties

in reaction rate coefficients. The uncertainties for all reaction rate coefficients, either defined

with a cross-section or analytical function, were the same and had a standard deviation

σ = 0.2. The mode of the distribution, i.e., the most probable value according to the selected

log-normal distribution, was selected to be 1.0, corresponding to reaction rate coefficients

defined in simulations without considering the uncertainties.

3.4.2 Plasma Discharge in Argon

The Global Sensitivity Analysis (GSA) was performed in a pure argon plasma discharge

with constant absorbed power. Argon was selected as a background gas because the reaction
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rate coefficients for the ground state, ionization, and first excited state are well known and

investigated. A cylindrical system with radius R = 0.5641 cm and length L = 1 cm (volume

V = 1 cm3) was used, background gas pressure p = 760 Torr and temperature Tg = 300 K

were both kept constant. The initial effective electron temperature Te = 2 eV and was

computed with coupled Boltzmann equation (BE) solver. The deposited power, Pabs = 50 W,

was kept constant during the simulation. The electron energy distribution functions (EEDFs)

were evaluated with a coupled BE solver on a 1% change of the reduced electric field. The

simulation was run up to 1 ms when the system reached the steady-state. Quasi-neutrality

was not enforced, and electrons were treated as a separate species. Species in the system were

electrons (e), ground state argon atoms (Ar), atomic argon ions (Ar+), molecular argon ions

(Ar+2 ), excited argon atoms were lumped into a single excited state (Ar∗). The vibrational

and rotational states of molecular argon ions (Ar2) were neglected. The reaction set was

composed of ten reactions, and they are listed in Table 3.1. Reaction rate coefficients for

reactions R1-R4 were defined as cross-sections, and the other rate coefficients were defined

as analytical functions.

Table 3.1 Reactions used in the plasma discharge in argon with their reaction rate
coefficients and threshold energies. Note: Te in eV, Tg in K.

Reaction Rate coefficient, unit ∆Ei [eV] Refs.
R1: Ar + e ⇒ Ar + e cross section [90]
R2: e + Ar ⇒ 2e + Ar+ cross section 15.76 [90]
R3: e + Ar ⇒ Ar∗ + e cross section 11.50 [90]
R4: e + Ar∗ ⇒ Ar+ + 2e cross section 4.30 [90]
R5: Ar+2 + e ⇒ Ar∗ + Ar 8.5× 10−13(11600 Te/300.0)−0.67, m3/s 1.5 Te [44]
R6: Ar+2 + Ar ⇒ Ar+ + 2Ar 6.06× 10−12/Tg exp

(
−15130.0/Tg

)
, m3/s [44]

R7: Ar∗ + Ar∗ ⇒ Ar+2 + e 6.0× 10−16, m3/s −1.5 Te [44]
R8: Ar+ + 2e ⇒ Ar + e 8.75× 10−39T−4.5

e , m3/s 1.5 Te [44]
R9: Ar∗ + 2Ar ⇒ Ar + 2Ar 1.4× 10−44, m3/s [44]
R10: Ar+ + 2Ar ⇒ Ar+2 + Ar 2.25× 10−43(Tg/300.0)−0.4, m6/s [44]
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3.4.2.1 GSA Parameters

The input parameters for GSA were multiplication factors for reaction rate coefficients or

cross-sections, distributed according to the log-normal distribution. All input parameters

were independently sampled from the same distribution: the distribution mean was 1.0, the

standard deviation σ = 0.2, and 100 samples were drawn for each parameter. Plots and

histograms in Fig. 3.4 show the initial distribution (dashed line) and the distribution of

samples (histogram) for two reactions: (a) elastic scattering reaction R1, and (b) ionization

reaction R2. Quantities of interest (QoI) were densities of all species, except ground state

argon.
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Figure 3.4 The initial distributions of reaction rate coefficient factors for (a) elastic
scattering (reaction R1) and (b) ionization (reaction R2) with N = 100 samples. The
dashed line shows the log-normal distribution, and the histogram shows the distribution of
samples. The vertical dash-dotted line shows the distribution mode (the most probable
value of the distribution).

3.4.2.2 GSA Results

Output values from the simulation were species’ densities collected in the last 200 time steps

when the system was already in a steady state. Figure 3.5 shows the time evolution of

species densities, electron temperature, and the time interval used for GSA (shaded area).

The general sensitivity of the system can be investigated by comparing the distributions
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Figure 3.5 Time evolution of densities (a) and electron temperature (b) in the simulation
case (base case) without uncertainties in the reaction rate coefficients. Results acquired in
the last 200 time steps of the simulation (shaded area on the plot) were used in a global
sensitivity analysis.
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Figure 3.6 Comparison of density mode and intervals that are enclosing 99% of all densities
of given species. Reaction rate coefficient distributions had mode 1.0, σ = 0.2, and were
sampled with N = 100 samples.

of input parameters and simulation results. As mentioned before, reaction rate coefficients

(input parameters) had deviation σ = 0.2. Figure 3.6 shows the 99% probability intervals

for all species in the system. The probability intervals were computed from species’ densities

(simulation results) by assuming the log-normal distribution and fitting its parameters to

the simulation results. The results show that argon ions are the most sensitive to the input
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uncertainties. Special care needs to be given to selecting rate coefficients if the quantity of

interest is the density of atomic ions. On the contrary, input parameter uncertainties have

almost no effect on ground state argon density. Results also show that molecular ions and

electrons have the same sensitivity to input uncertainties.

The distributions of selected species are presented as histograms in Fig. 3.7. The compar-

ison of log-normal distributions and histograms shows good agreement and confirms that a

log-normal distribution was a reasonable assumption for describing the distribution of output

densities. The log-normal parameters were acquired from fitting the log-normal distribution

to the simulation results, and 99% probability intervals for all densities were computed.
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Figure 3.7 The distribution of species densities (results of the simulation) of selected
species: (a) molecular ions Ar+2 , (b) electrons, (c) atomic ions Ar+, and (d) excited species
Ar∗. Densities from results are shown as histograms. The distributions fitted to results and
the input distributions are shown as dashed lines. The vertical dotted line marks the most
probable values from each distribution.
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The results in Fig. 3.7 show that the most probable species density (vertical dotted line)

varies slightly between input and output distributions. The output distributions have, in

most cases, larger deviation compared to the input distributions, except for ground state

argon (see Fig. 3.6) where the density is not sensitive to input uncertainties. Shaded ar-

eas below each distribution curve mark the 99% probability interval for input and output

distributions. The numbers next to the distribution curves show upper and lower limits of

probability interval for each density.

Figures 3.8 and 3.9 show a relative importance of individual reactions on species densities

using the first-order (Si) and the total (STi) sensitivity indices. It is important to keep in

mind that GSA indices are showing a relative importance of the reaction rate coefficient

uncertainty on the output density and not the importance of the reaction itself. The reaction

importance can be defined through reaction set reduction (e.g., using the directed relation

graph (DRG) method). The individual reaction could be unimportant, but the variance on

the reaction rate coefficient could have a significant relative effect on output densities.

Figure 3.8(a) shows reaction importance on Ar+2 density. Both sensitivity indices rank the

same reactions as important: R1, R4, R9, R5, and R7. Other reactions are not important,

having sensitivity indices equal to zero. The difference between STi and Si is the slight

interaction of reactions R1 (elastic scattering) and R4 (step-wise ionization) with other

reactions. The reactions R9, R5, and R7 do not interact with other reactions since their

indices STi and Si are practically the same. Figure 3.8(b) shows reaction importance on

electron density. Comparing reaction importance for Ar+2 and electron density shows that

the order of reaction importance is the same for both species, which is not surprising because

the densities used in the GSA for computing reaction importance are taken from the steady-

state system when densities of both species are the same (see Fig. 3.5).

Figure 3.9(a) shows reaction importance on Ar+ density, showing similar reaction order

(ranking) as for Ar+2 and electrons. Elastic scattering (R1) and step-wise ionizations (R4)

are the most important reactions, followed by argon de-excitation (R9) and atom-assisted

59



0.0

0.2

0.4

0.6

re
la

tiv
e

im
po

rta
nc

e 
in

de
x

R1

R4
R9

R5
R7 R3 R10 R2 R8 R6

Reaction rate importance indices for Ar2+

1 2 3 4 5 6 7 8 9 10
reaction order

0.0

0.1

0.2

0.3

0.4

re
la

tiv
e

im
po

rta
nc

e 
in

de
x R1

R9

R4
R5

R7 R3 R6 R10 R8 R2

N=100, n=0.20
STi Si

(a)

0.0

0.2

0.4

0.6

re
la

tiv
e

im
po

rta
nc

e 
in

de
x

R1

R4
R9

R5
R7 R3 R10 R2 R8 R6

Reaction rate importance indices for e

1 2 3 4 5 6 7 8 9 10
reaction order

0.0

0.1

0.2

0.3

0.4

re
la

tiv
e

im
po

rta
nc

e 
in

de
x R1

R9

R4
R5

R7 R3 R6 R10 R8 R2

N=100, n=0.20
STi Si

(b)

Figure 3.8 Relative importance of reactions on species’ densities for (a) molecular ions Ar+2
and (b) electrons. The relative importance was defined according to the sensitivity indices
STi and Si.
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Figure 3.9 The relative importance of reactions on species’ densities for (a) atomic ions
Ar+ and (b) excited species Ar∗. The relative importance was defined according to
sensitivity indices STi and Si.
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association (R10). Reaction importance on excited argon (Ar∗) is presented in Figures 3.9(b),

showing similar order of reactions as for the other species. Reactions with small threshold

energies, i.e., reactions R1, R4, and R9, dominate at high pressure.

3.4.2.3 Conclusion

Global sensitivity analysis (GSA) of plasma discharges in pure argon at atmospheric pressure

was performed in a reaction set with a single excited state species, atomic and molecular

ions, ground state argon, and electrons. The results from the GSA can be interpreted from

two different viewpoints: prioritizing reaction sensitivity based on the effect they have on

species’ densities and which species is the most sensitive to the uncertainties in the reaction

rate coefficients.

Sensitivity indices STi and Si show that uncertainties in reaction rate coefficients for

elastic scattering (reaction R1), step-wise ionization (reaction R4), and de-excitation (reac-

tion R9) reactions have the largest effect on species’ densities at the steady-state in high

pressure (p = 760 Torr). The elastic scattering (R1) has a strong role in shaping the EEDF

at high pressure, and its role as the dominant reaction in high pressure is also shown by

sensitivity indices STi and Si. Uncertainties in reaction rate coefficients for reactions R2

(ionization), R6 (dissociation by atom impact), R8 (recombination), and R10 (atom assisted

association) show a minor influence on densities at the steady-state. The output densities

show that log-normal distribution can be assumed for the output densities (Fig. 3.7). The

distributions of input parameters and output densities can be compared using distribution

mode and standard deviation. The Ar+ density is the most sensitive to the uncertainties in

reaction rate coefficients, with the distribution mode=0.85 (input distribution mode=1.0)

and deviation σ = 0.64 (input σ = 0.2). The high sensitivity of Ar+ density can be observed

in Fig. 3.6, where ratios of output densities are presented. The 99% probability interval for

Ar+ density is much wider, 0.2− 4.12, compared to the input distribution probability inter-

val, 0.64−1.71. The 99% probability intervals for Ar+2 , Ar∗, and electron densities, all inside
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0.42 − 1.8 and are very similar to the input probability interval (0.64 − 1.71). The density

of ground state argon shows no sensitivity to uncertainties in the reaction rate coefficients,

which can be attributed to the partially ionized (∼ 10−4) discharge.

3.4.3 Plasma Discharge in H2-O2-Ar Mixture

The global sensitivity analysis of plasma discharges was performed in a flow reactor with

volume V = 5 cm3, gas mixture with 1% H2 - 0.15% O2 - 98.85% Ar, and inflow and outflow

velocities v = 8.5m/s. Pressure and gas temperature were kept constant at p = 300 Torr

and Tg = 500 K, respectively. The electron temperature Te was computed using the electron

energy balance equation. Sheath and losses to the wall were neglected. Quasi-neutrality was

not enforced (electrons were treated as a separate species), and the electron energy distribu-

tion function (EEDF) was assumed to be Maxwellian but electron temperature dependent.

The reaction set was composed of 55 species (Tab. 3.2) and 146 reactions (Tab. C.1 in Section

C).

Table 3.2 Species used in the reaction set for 250 ns plasma discharge in H2-O2-Ar gas
mixture with 1% H2, 0.15% O2, and 98.85% Ar. The reaction set is presented in Tab. C.1
(section C).

ground state excited charged
Ar Are=1,2 Ar+, Ar+2

H, H2, H2O
He=1,2, H2,r=1,2,

H2,v=1−3, H2,e=1−10
H+, H+

2

HO2, H2O2 H2Ov=1,2 H2O+

O, OH, O2, O3

O(1S), O(1D),
O2,r=1, O2,v=1−4,
O2(a1∆), O2(b1Σ),

O2,e=3−7

O+, O−,
O+

2 , O−2 , O+
3
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The power was deposited using pulse with duration 250 ns and the repetition frequency

ν = 20 kHz (time between pulses τ = 5×10−5 s) and with shape presented in Fig. 3.10. The

shape of the pulse follows the experimentally measured power profile in Ref. [110], but taking

only the positive part of the pulse and depositing the same amount of energy in every pulse

as in experiments (2.6mJ/pulse). The simulations were run for two pulses with an end time

t = 100µs. The results for performing the global sensitivity analysis (GSA) were collected

during two time intervals during the simulation: the peak of the second pulse (between 50.24

and 50.5µs) and the end of the second pulse (between 98 and 100µs), also marked in Fig. 3.12

with vertical gray areas.
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Figure 3.10 The shape of the deposited power in pulse discharge in 1% H2, 0.15% O2, and
98.85% Ar gas mixture. The pulse was taken from experiments shown in Ref. [110] with
the repetition frequency ν = 20kHz (τ = 50µs) and pulse duration 250 ns. The shape of
the pulse follows an experimentally measured power profile, but taking only the positive
part of the pulse and depositing the same amount of energy in every pulse as in the
experiment (2.6mJ/pulse).

3.4.3.1 GSA Parameters

The input uncertainties were applied to reaction rates by selecting multiplication factor Fu

for reaction rate coefficient (Eq. (3.14)) and cross sections (Eq. (3.15)). The values for

factors Fu where independently drawn from a log-normal distribution with the distribu-

tion mode=1.0 (the most probable outcome of the distribution) and the standard deviation
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σ = 0.2. Figure 3.11 shows the distribution of multiplication factor Fu for reaction R110, a

histogram depicting the values drawn for Fu with dashed line presenting defined log-normal

distribution. The 99% probability interval is presented with the lower (0.63) and the upper

(1.71) boundaries.

To perform the global sensitivity analysis using Saltelli’s sampling, M = 100 samples

were drawn from log-normal distribution for each factor Fu. With number of reactions

p = 146 and M = 100 samples drawn for each factor, the total number of simulations run

was M(p+ 2) + 1 = 100(146 + 2) + 1) = 14801.
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Figure 3.11 The histogram of N = 100 samples drawn from the log-normal distribution
with the dashed line showing the initial log-normal distribution. The figure shows the
multiplication factor distribution for reaction 110: Ar+ + H2 → Ar + H+

2 .

3.4.3.2 GSA Results - output distributions

One aspect of global sensitivity analysis is defining the effect of uncertainties in input pa-

rameters on output distributions. During the discharge, the simulation results for GSA were

collected at two time intervals: (a) at the peak of the second pulse (time between 50.24 and

50.5µs), (b) at the end of the second pulse (time between 98 and 100µs). Figure 3.12 shows
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the time evolution of selected species’ densities and times intervals for collecting values. The

intervals for collecting results were selected to capture the effect of reaction uncertainties

at the peak of the deposited power and at the end of the relaxation time before the next

pulse. The average value of collected results in each interval was computed and used in the

sensitivity analysis to eliminate small fluctuations in collected values.
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Figure 3.12 Time evolution of selected species in 250 ns pulse discharge in H2-O2-Ar gas
mixture. The light gray shaded areas mark the time intervals at which values for GSA were
recorded. The GSA was made at two time intervals: (a) at the peak of the pulse (time
between 50.24 and 50.5µs), and (b) at the plateau before the next pulse (between 98 and
100µs).

The results from all GSA simulation cases (14801 in total) were collected, and histograms

were generated. The output distribution parameters were computed from generated his-

tograms of collected results by fitting the log-normal distribution parameters to the collected

results (i.e., densities or temperature). The 99% probability intervals were computed from

fitted distributions for selected results at both time intervals: Fig. 3.13(a) at the pulse peak,

and Fig. 3.13(b) at the end of the relaxation time before the next pulse. The species density

and temperature responses to input uncertainties are very different at both collected time

intervals.
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Figure 3.13 Comparison of density distribution mode and intervals that are enclosing 99%
of all density values for selected species at (a) the peak of the pulse (time between 50.24
and 50.5µs), and (b) the plateau before the next pulse (between 98 and 100µs). All
reaction rate coefficient distributions had mode=1.0 and σ = 0.2.

The plots in Fig. 3.13 show an overview of probability intervals of selected species in

both time intervals. The probability intervals were computed from log-normal distributions

fitted to resulting species’ densities. The probability intervals for argon (charged and excited

species) and hydrogen (charged) species are larger at the relaxation time (time between 98

and 100µs in Fig. 3.13(b)) compared to the probability intervals at the peak of the pulse.

The feedstock ground gas species (i.e., Ar, H2, and O2) and electron temperature (Te ) show

no sensitivity to the reaction rate uncertainties at either time of interest.
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Figure 3.14 The distributions of species densities (results of the simulation) of selected
species: (a) at pulse peak and (b) at relaxation time for the atomic ions Ar+2 , and (c) at
pulse peak and (d) at the relaxation time for the molecular hydrogen ions H+

2 . The species
densities are shown as histograms, the log-normal distributions fitted to the results, and
the input distributions are shown as dashed lines.

The individual species’ density distributions reveal very different sensitivity to the input

uncertainties at each time interval. Atomic argon ion (Ar+) and molecular hydrogen ion

(H2+) distributions show smaller sensitivity to uncertainties at the pulse peak (at the first

time interval) compared to the time of relaxation (the second time interval), as shown in

Fig. 3.14. The interval increases 2.8 times for argon ions (from [0.6− 1.35] to [0.34− 2.49])

and 1.9 times for hydrogen molecule ions (from [0.35 − 1.65] to [0.23 − 2.73]). The mode

of Ar+ and H2+ density distributions is also shifted towards smaller values at the plateau,

indicating that the uncertainties will generally cause lower species’ densities but also more

extreme densities in certain cases. Additional analysis of sensitivity results is necessary
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to find the reaction rate coefficients and their values that result in up to 2.5 times higher

density of Ar+ and 2.73 times higher density of H+
2 . These phenomena are expected since

the deposited power at the pulse peak causes electrons to have fewer collisions and have a

reduced diffusion rate, resulting in a narrow electron density distribution at the peak of the

pulse and wider at the plateau before the next pulse.

Similar behavior of simulation result distributions, i.e., preserving log-normal distribution

and having a smaller deviation at the pulse leaks than deviation at the plateau before the

next pulse, can be observed for electron density and electron temperature. The electron

density at the pulse peak (Fig. 3.15(a)) shows smaller sensitivity on input uncertainties, the

upper limit of 99% probability interval at pulse peak being 1.25 compared to 1.71 in the

input distribution. The sensitivity after the pulse (Fig. 3.15(b)) increases, and the upper

limit of 99% probability interval increases slightly, to 1.36.
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Figure 3.15 The distribution of electrons density at (a) the peak of the pulse (time between
50.24 and 50.5µs), and (b) the plateau before the next pulse (between 98 and 100µs). The
density values are shown as histograms and the distributions as dashed lines.

The electron temperature shows minimal sensitivity to input uncertainties, as shown in

Figs. 3.16(a) and (b). All values are inside the -7% and +11% interval of the Te without

considering the uncertainties. Smaller dependence of Te on input uncertainties can be ex-

plained by looking at the reactions affecting the electron temperature. Only reactions with

defined threshold energies add terms to the energy equation and directly contribute to the
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Figure 3.16 The distribution of electron temperature Te at (a) the peak of the pulse (time
between 50.24 and 50.5µs), and (b) the plateau before the next pulse (between 98 and
100µs). The temperature values are shown as histograms and log-normal distributions as
dashed lines.

uncertainty of electron temperature through uncertainties in their reaction rate coefficients.

In the reaction set used for the sensitivity analysis, 59 reactions out of 146 have the threshold

energy defined. Not all species and reactions have the same contribution, and the second

term in Eq. (2.2) can be separated into the contribution from different species, namely, from

the feedstock gas species and other species:

d

dt

[
3

2
neTe

]
= P̃abs − ne

∑
i

niKi∆Ei − ne
∑
j

njKj∆Ej (3.16)

where P̃abs = Pabs/V is the absorbed power density, i is the index going over all feedstock

gases (i.e., Ar, H2, and O2), and j is the index going over all other species. The deposited

power density (P̃abs) doesn’t have any uncertainty and is considered as fixed from the sen-

sitivity point of view.

The densities of feedstock gases in the second term (ni) are much higher, by an approxi-

mate factor of 104, compared to the densities of other species gathered in the third term. The

second term is the dominant term for computing uncertainties in the electron temperature,

and the third term can be neglected. Argon is the dominant species considering densities

and reaction rate coefficients for Ar, H2, and O2 species. When computing the contribution

from individual species and reactions, argon reactions contribute around 99% to the second
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term and temperature changes. The deposited power (P̃abs) term and the reaction term

(term 2) are defining the value of Te , and only uncertainties in reactions with ground argon

as a reactant affect the uncertainties in electron temperature.

3.4.3.3 GSA Results - reaction importance

The second aspect of global sensitivity analysis is to define the reaction importance on

selected species’ density. Figure 3.17 shows the relative importance of individual reactions

on H+
2 density at both selected time intervals. The reaction importance was defined by

the first-order (Si) and the total (STi) sensitivity indices. The sensitivity indices show a

relative importance of the reaction rate coefficient uncertainty on the output density and

not the importance of the reaction itself. Reactions R110 and R111 are the most influential

ones, but at the same time, they are the opposite reactions: product species of one reaction

are reactant species of the other. With the reaction rate coefficients being constant and

K110 ∼ 1.85 × K111, the ratio of reactant’s densities defines the dominant reaction. The

ratio of densities of reactants is about the same (ground state Ar to H2 and Ar+ to H+
2 ),

and the reaction R110 is the dominant reaction. Other reactions are non-influential and are
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Figure 3.17 The relative importance of reactions on H+
2 density at (a) the peak of the pulse

(time between 50.24 and 50.5µs), and (b) the plateau before the next pulse (between 98
and 100µs). The relative importance was defined with sensitivity indices STi and Si.
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only affecting the H+
2 density through proxy species.

The reaction importance in terms of electron density at the pulse peak (t1 = 50.24 −

50.5µs) is presented in Fig. 3.18 and reactions are listed in Table. 3.3. The sensitivity index

Si (individual importance) shows that argon ionization (reaction R4) is the most important

reaction (bottom plot in Fig. 3.18). This is expected since the reaction produces electrons,

and argon density is about 100 times larger than the O2 and H2 densities, acting as reactants

in other reactions.
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Figure 3.18 The relative importance of reactions on electron density at the pulse peak
(time between 50.24 and 50.5µs). The relative importance was defined with sensitivity
indices STi and Si.

The top plot in Fig. 3.18 shows group of reactions (Table. 3.3) have equal importance

to electron density, and that reaction R4 is the only one that modifies the electron density

directly. Other reactions affect electron density indirectly via changing energy profiles. An-

other interesting fact is that reactions R119 and R129 ranked as third and fourth in Tab. 3.3,

are reactions that do not involve electrons at all. They indirectly affect the electron density,

showing that assuming the reaction importance based on species and reaction rate coefficients

can lead to wrong conclusions.
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Table 3.3 The most important reactions for electron density at the pulse peak (time
between 50.24 and 50.5µs) according to the total sensitivity index STi .

Rank Reaction
1 R4 Ar + e ⇒ Ar+ + 2e
2 R63 H2 + e ⇔ H2,e=7 + e
3 R119 O(1D) + H2 ⇒ H + OH
4 R129 O2(a1∆) + O3 ⇒ O2 + O2 + O
5 R3 Ar + e ⇔ Ar3∗ + e
6 R60 H2 + e ⇔ H2,e=5 + e
7 R56 H2 + e ⇔ H2,e=1 + e
8 R11 O(1D)  O
9 R16 O2 + e ⇔ O2,r=1 + e
10 R23 O2 + e ⇔ O2(a1∆) + e
11 R17 O2 + e ⇔ O2,v=1 + e
12 R22 O2 + e ⇔ O2,v=4 + e
13 R108 Ar+ + 2Ar ⇒ Ar2+ + Ar

3.4.3.4 Conclusion

Global sensitivity analysis (GSA) of pulse discharge in 1% H2, 0.15% O2, and 98.85% Ar gas

mixture was performed in a complicated reaction set containing 55 species and 146 reactions.

The input parameters were reaction rate coefficients varied around initial values according

to a prescribed log-normal distribution. The log-normal distribution was selected because

it preserves the positive nature of reaction rate coefficients. For the presented simulated

system, i.e., flow reactor, pulse power deposition, and H2-O2-Ar gas mixture, the histograms

of output values indicate they follow the log-normal distribution, but with different mode

and deviation of the distribution. The 99% probability intervals for all species’ densities and

Te were computed from their distributions.

The output values, species’ densities, and electron temperature were collected at two time

intervals during the simulation: around the peak of the second pulse (time between 50.24 and

50.5µs) and plateau before the end of the second pulse (time between 98 and 100µs). Values

of densities and temperatures used in the analysis were averaged values of collected values -

one value for each time interval. The ground state species composing the feedstock gas, i.e.,
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Ar, H2, and O2, showed no sensitivity to uncertainties in the reaction rate coefficients, which

is most likely due to the gas inflow that completely replenishes feedstock gas species during

the pulse and low ionization fraction (∼ 10−4). Hydrogen and argon species show smaller

sensitivity to input uncertainties at the peak of the pulse compared to sensitivity at the

end of the pulse, as shown in Fig. 3.13. Meanwhile, oxygen species show approximately the

same sensitivity in both time intervals. The results of sensitivity of electron density on the

uncertainty of input parameters show that individual sensitivity index (Si) is not always an

accurate indicator of how important the reaction is, and the combined effect of reactions is

required, which is provided by the total sensitivity index STi . The most influential reaction

according to sensitivity index Si is ranked 10th according to the total sensitivity index STi .

The top nine influential reactions according to STi (Table. 3.3) do not directly produce or

consume electrons, and indirectly affect the electron density. This indicates a complicated

reaction set, and assuming the reaction importance based on the participating species and

reaction rate coefficients can lead to an incorrect conclusion of the reaction’s importance.

3.5 Conclusion

The global sensitivity analysis (GSA) can give insight into the sensitivity of the simulation

results on input uncertainties. Two different methods for conducting GSA were presented:

one-at-the-time (OAT) and variance-based method. The OAT method is the simpler of

the two methods and is focusing on capturing the individual effect of changes in input

parameters on quantities of interest (QoI) of the simulated system. The OAT analysis would

also show if the parameter has a positive or negative effect on results: will the increase in

the input parameter increase or decrease the QoI? The most straightforward OAT analysis

would involve only two additional values for each input parameter, one with positive and

negative parameter change from the initial value, e.g., ±20% change. With two samples for

each input parameter, the analysis would require 2p + 1 independent model evaluations to
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define whether the input parameter positively or negatively affects the QoI. Knowing the

input parameter quantitative effect and mapping their positive/negative effect on results is

especially important when output distributions are not symmetrical. The goal of the GSA

is to assess the deviation of the quantities of interest (QoI).

In addition to the OAT, the variable-based method can give the combined effect of changes

in input parameters on QoI. By employing a naïve method, acquiring the combined effect

would require sampling each parameter with a given number of samples. That would result

in many model evaluations, which is not practical for models beyond a few input parameters

(p). Different sampling methods were developed to reduce the number of required parame-

ters, and Saltelli sampling was used in this chapter. Saltelli presented a method of computing

individual (Si) and total sensitivity (STi) indices to define a relative importance of each reac-

tion in a reaction set to selected QoI. The individual sensitivity index defines the individual

importance of reactions, and the total sensitivity index also includes the interactions between

reactions.

The distribution based on simulation results computes the probability intervals of output

values, e.g., densities and temperatures. The histograms of output values were consistent

with the log-normal distribution for the presented simulated system, i.e., flow reactor, pulse

power deposition, and presented H2-O2-Ar reaction set. By computing the parameters for the

log-normal distribution and plotting it on top of histograms, it was confirmed that the species

densities follow the log-normal distribution but with different modes and deviations of the

distribution. Output probability intervals for selected species were presented and discussed.

It needs to be pointed out that the output values may not have the same distribution as

the input parameters. Current GSA analysis treats the reversible reactions as one reaction.

It does not define the importance of the forward and backward reactions separately by

computing two sensitivity indices: one set for forward and one set for backward reaction.

The reverse reactions would need to be separated into two independent reactions, each with

its reaction rate coefficient and uncertainties, to define the importance of each reaction.
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CHAPTER 4

PRIORITIZING REACTIONS AND SPECIES

4.1 Introduction

The computational implication of including a Boltzmann equation (BE) solver into the KGMf

is huge but increases the fidelity of the results. Prioritizing methods provide means to define

the importance of reactions and species in a given reaction set, enabling the reduction of

reaction sets reduction while preserving the target species’ density. Incorporating a self-

consistently evaluated EEDF from Boltzmann equation (BE) solver in prioritizing reactions

and species will better capture the importance of the EEDF on the reduction process, es-

pecially when preserving the charges species density. It is expected that charged species

will follow the electron density more closely and depend on the electron energy. This de-

pendence is better described with an EEDF evaluated by a BE solver, rather than using

pre-calculated values of the EEDF [89, 110] or assuming a Maxwellian EEDF [86]. When

using pre-calculated EEDFs, two assumptions have to be made: the reduced electric field

(E/N) range and the ratio of species densities in the gas mixture. The latter assumption

is more challenging since the gas mixture changes during the reduction process as the ratio

depends on species included in the reaction set. Combining the reaction set reduction with

a self-consistently evaluated EEDF would offer insight into the dependence of the EEDF on

the reduction process. The effect of using a self-consistently evaluated EEDF instead of a

Maxwellian EEDF will be explored and results compared.

Finding dominant species and reactions involves investigating the importance of indi-

vidual reactions in the reaction set, intending to classify or rank the species and reactions

according to their influence on the selected species density (i.e., target species). The list of

reactions ranked by importance can be used in sensitivity analysis since a smaller reaction
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set enables either better sensitivity analysis or enables an analysis that would otherwise not

be computationally feasible. Reaction sets can include reactions acting on different time

scales, making interactions between species challenging to understand. Reactions acting on

a short time scale can be linked into reaction chains, where the second reaction consumes

species produced by the first reaction. By eliminating fast species, i.e., species produced

and consumed on a much shorter time scale than the simulation’s focus, the reaction set is

reduced, and interaction between long-lived species can be observed.

Clarke [111] proposed an algorithm for determining the steady-state concentrations in a

chemical system by computing the null space of the stoichiometric matrix. In that algorithm,

the elements of the stoichiometric matrix were reaction rates (or reaction rate coefficients)

that defined the transitions between species densities. Schilling et al. [112] investigated a

cellular metabolic reaction network defined by enzymatic reactions and transport processes

and focused on the steady-state of a given enzyme. The work concentrated on utilizing linear

algebra and optimizations to find a unique set of pathways.

Lehmann [83] presented an algorithm to determine the dominant pathways in a chemical

system and its application to the production/destruction of ozone in the stratosphere. The

algorithm is based on linear optimization to eliminate the insignificant reactions based on

species concentration and the reaction rates. The reactions with a small relative contribution

to species concentration were removed from the reaction set. He modeled the species and the

reaction set as a circuit, where the main objective was to find the minimal resistance of flow

through the circuit. The path offering the least resistance is also the pathway that is the

most dominant. In addition to finding the most dominant pathway, the algorithm can find

alternative pathways and pathways that lead to the destruction of species. Lehmann [84]

presented an algorithm with the following improvements: no assumption of a steady-state,

pathways with rates lower than the threshold are neglected to reduce the number of re-

actions, and better treatment of sub-pathways. The last improvement means that if the

newly generated pathway includes sub-pathways, i.e., part of the current pathway exists in
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some other pathway, the pathway is split into shorter pathways, and reaction probability is

computed for each sub-pathway. Reaction probabilities are computed from reaction rates.

4.2 Methods for Ranking Species and Reactions

The reaction set is defined by species, reactions between species, and reaction rate coef-

ficients of reactions. The reaction set in low-temperature plasmas can have many species

and reactions. The main idea behind reducing the reaction set is to reduce computational

requirements and still capture the time evolution of selected species within a specified er-

ror range. Finding important species and reactions is beneficial as the number of species

and reactions directly influences the computational complexity of simulations in two main

directions: reduction of the size and reduction of the stiffness of generated ODE system.

Reducing the number of species reduces the size and complexity of the ODE system, which

enables simulation of a more complex reaction set on the same hardware and within the

same time scale. The reduction of the number of reactions can reduce the stiffness of the

ODE system and enable the use of larger time steps in the integrators, thus reducing the

required time to perform the simulation [82, 87].

Reaction set reduction methods can be divided into three categories [86]: lumping, time

scale analysis, and skeleton-based methods. Lumping methods are based on grouping indi-

vidual species into clusters and treating species clusters as one species, effectively reducing

the reaction set by reducing the number of species and reactions. Grouping species into

clusters can be done based on species threshold energies, e.g., grouping all excited species

from the same ground species with similar excitation energies into one excited state species.

Time scale analysis methods are based on finding short-lived species and joining the reaction

rates into reaction pathways. The reaction chain has a combined reaction rate computed

from individual reaction rates [45, 84]. Short-lived species are treated like they are in quasi-

steady-state (QSS) most of the time, and the coupled reaction rates can be replaced with an
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analytical function. Skeleton-based methods are based on the idea that a skeleton (or graph)

can be created for a given reaction set (Fig. 4.2). When a graphical representation of the

reaction set is generated, general graph methods can be used to find non-influential species

and reactions that can be removed from the graph. Skeleton-based methods can be species-

oriented or reaction-oriented. The former focuses on removing species from the reaction set

and then removing all reactions containing removed species. The latter focuses on ranking

and removing reactions and then removing all species included in removed reactions.

From the perspective of computational complexity, species-oriented methods of reducing

the reaction set are arguably better as they directly reduce the size of the ODE system.

The easiest method to define the importance of individual species is to eliminate species

with low densities [79]. This method is straightforward but could lead to eliminating species

with low densities that are intermediate species between two high-density species and are

required to describe both high-density species adequately. The principal component analysis

(PCA) [113] focuses on reducing the number of variables in the simulation by computing

the principal components (input variables) in the simulation. The PCA does not reduce the

number of species in the reactions set but defines a reduced number of principal components

that are a linear combination of densities of the original species. The simulation error

minimization connectivity method (SEM-CM) [114] generates many reduced reactions sets

based on normalized Jacobian, then performs the simulation and computes the error for every

reduced reaction set and finds the optimum reduced reaction set. The method produces a

smaller reaction set compared to other methods but requires more CPU time. The directed

relation graph (DRG) method [82, 87, 88] is based on presenting the reaction set as a graph

and removing the reactions with a small relative contribution to the species densities. The

DRG-aided sensitivity analysis (DRGSA) extends the original DRG method by additionally

removing non-important species after the reaction set is reduced by the DRG method. The

DRG with error propagation (DRGEP) [115, 116] evaluates species importance based on

how error caused by removing the species is propagating through the reaction chain from the
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removed species to the target species. The reaction chain could have many other intermediate

species between removed species and target species. The revised DRG (RDRG) method [82]

is an enhanced DRG method where the skeleton mechanism is limited by the number of

species instead of relative net contribution ε.

Finding the optimal reduced reaction set for selected species of interest is an interactive

process that involves an initial simulation with a detailed reaction set and many simulations

with reduced reaction sets. Many evaluations performed during the reduction process make

volume-averaged 0D (global) models a perfect candidate for simulations. They offer a good

balance between the complexity of the model and the running time of the simulations. Global

models also offer great flexibility in defining the complexity level of the model used in the

simulations, e.g., which surface processes or sheath approximations to include. Reduced

reaction sets developed via global models that include only important species and reactions

are suitable for use in more computationally intensive spatially-dependent simulations.

It is important to remember that the reduced reaction set is only valid at or around

conditions that were used to perform the reduction of the reaction set, i.e., for selected target

species and simulation conditions, e.g., system volume, partial pressures, temperatures, and

power (energy) deposition. A reduced reaction set based on one set of simulation conditions

can adequately describe quantities of interest in that regime but can completely fail to do

so in a different parameter regime.

The main parameter for ranking species and reactions is a threshold (ε) that separates

short and long-lived species in the reaction pathway method or less and more important

reactions according to their relative contribution in the DRG method. There is generally

no direct and linear dependence between the value of the threshold and the error in target

species density, which prevents users from defining the threshold parameter according to the

accepted target species density error of the reduced reaction set.
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4.2.1 Reaction Pathways

Creating reaction pathways and ranking generated reaction chains according to their impor-

tance is a species-oriented group of methods that focus on finding short-lived species and

removing them from the reaction set. When species are removed from the ODE system

(and reaction set), they are treated as species in a quasi-steady-state (QSS), or an analytical

function replaces their reaction.

Lehmann [83] first developed and later improved [84] the algorithm for finding reaction

pathways and ranking them according to their contribution to the density of selected species.

The reaction rates are used to compute the relative importance of individual reactions to

given species’ density. Short-lived species are consumed on a time scale of interest, i.e.,

species produced in one reaction are consumed in another reaction. Both reactions are

joined into a reaction pathway (reaction chain), and a new reaction rate is computed to

preserve the time evolution of other species participating in both reactions.

Based on Lehmann’s algorithm presented in Ref. [84], Markosyan et al. [45] developed

an open-source simulation code PumpKin. PumpKin creates reaction pathways by finding

short-lived species consumed when two reactions are joined into a reaction pathway - some

product species from one reaction are used as reactants for the following reaction in the

reaction pathway. When the reaction pathway is created, the chain reaction rate is computed

from the reaction rates of underlying reactions. PumpKin is distributed as source code and

can be easily linked with other simulation codes or used as an external reaction pathway

finder based on parameters prepared in input files. Ding and Lieberman [35, 85] used a

global model in connection with PimpKin to define the dominant reaction pathways for a

He/H2O discharge.

PumpKin can only process unidirectional reactions, either forward or backward. Reverse

reactions, i.e., reactions where the backward reaction rate is computed from defined forward

reaction rate using detailed balancing, have to be separated into two reactions before using
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them in PumpKin. Input parameters for PumpKin are a list of species and reactions (sep-

arated into forward and backward reactions), the time evolution of species’ densities, the

time evolution of reaction rates (not rate coefficients), a list of time values, and the stoichio-

metric matrix. The output from PumpKin is a list of reaction pathways (or single reactions

if pathways cannot be composed) and the relative contribution of each reaction/pathway to

the density of selected species.

4.2.2 Directed Relation Graph (DRG)

The directed relation graph (DRG) method presents a different approach to defining the

dominant reactions. As with reaction pathways, dominant reactions are defined according

to their effect on selected (target) species’ density. The dominant reactions and species that

compose a skeleton mechanism are always defined for selected (target) species and selected

times-of-interest. The DRG method is a localized in time reaction set reduction method as

the reduction is valid only for specific conditions and should not be used to develop a global

skeletal mechanism that would be valid over changing conditions [87]. A global skeletal

mechanism is generated by combining reduced reaction mechanisms at each time of interest.

The combined reaction set will recover the target species at all times of interest but will

be more complicated and detailed than individual reaction sets at each time. Combining

reduced reaction sets at a large number of times could result in the detailed reaction set,

i.e., the initial reaction set used as a starting point for the reduction.

The use of the DRG method in reducing reaction sets was demonstrated by Lu & Law [87]

on a detailed ethylene oxidation mechanism with 70 species and 463 reactions, where the re-

action set was reduced to a skeletal mechanism with 33 species and 205 elementary reactions.

The reduced reaction set was validated in high-temperature chemistry in a perfectly stirred

reactor (PSR) and low- to moderately high-temperature chemistry in a range of pressures

and showed good agreement with a detailed reaction set. The same authors, Lu & Law [82],

reduced two large reaction sets: n-heptane with 561 species and 2000 elementary reactions
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was reduced to 188 species, and iso-octane with 857 species and 3606 reactions was reduced

to 233 species. For both reaction sets, reduced reaction sets recovered the auto-ignition

and PSR over wide parameter ranges. Lu & Law [88] tested the DRG method in various

systems to investigate how reduced reaction sets can recover fast and slow processes. The

DRG method successfully reduced the mechanism in systems with quasi-steady-state (QSS)

species and partial equilibrium (PE) reactions. In systems with slow processes, it failed to

capture slow processes using a single point in time, requiring multiple times to capture those

slow processes.

The main parameter for the DRG method is a threshold of a relative reaction contribu-

tion to the target species’ density. The threshold is a significant parameter in reducing the

reaction set. However, there is no direct or linear relationship between the threshold value

and the error computed from detailed and reduced reaction set simulations. Plotting the

number of species and reactions depending on threshold values can give a first insight into

the behavior of the reaction set for different thresholds (Fig. 4.1). Using the time evolution of
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Figure 4.1 The number of species and reactions in the reduced reaction set depending on
the relative reaction contribution threshold (ε) on the atomic hydrogen density (H). The
relative contributions were computed at multiple times-of-interest (see Fig. 4.3).
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reaction rates from simulation with a detailed reaction set, generating the number of species

and reactions for a range of threshold values is done without running any additional simula-

tion and usually takes a fraction of the time compared to the simulation time. Observing the

plot in Fig. 4.1, there are some threshold values where the number of species changes signif-

icantly with a small change of threshold, which indicates that clusters of strongly connected

species are removed from the reaction set when the threshold changes slightly. Threshold

values before (or after) the significant jump (or drop) are good starting points for the initial

threshold and to further evaluate the contribution of that cluster of species to the target

species’ density.

The threshold value has a strong effect on creating a reduced reaction set, and selecting

the correct value is of great importance. The plot presented in Fig. 4.1 can serve as a good

starting point for selecting the threshold, or the reduction can be made from the initially

selected threshold and changing the threshold in every reduction step. The threshold in each

reduction step can be defined using different plans: selecting individual thresholds based on

graph in Fig. 4.1, using bisection method with defined threshold interval, or multiplying the

threshold in a current step to get the threshold for the next step.

Koelman et al. [89] introduced an additional threshold when defining the importance of

reactions to conserve better the completeness of the reaction set: electron power density. The

reaction’s relative contribution to the species density and the reaction’s effect on the electron

power density is computed for every reaction in the reaction set, and reactions having both

contributions above thresholds are defined as significant. The thresholds for relative density

and energy contributions have different values and are defined by the user. Although the

method with added net contributions of reactions to electron power density, as presented

in Koelman [89], has increased ability to capture the properties of detailed reaction set, all

reaction set reductions presented in this section were made without considering the reaction’s

energy contributions to species densities.
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4.2.2.1 Creating Graph and Skeleton Mechanism

The core component of the DRG method is a graph that presents a reaction set (Fig. 4.2)

in a species-centered way. Species are assigned to nodes, and directional edges (connection

with a direction between nodes) represent reactions, where the reaction rate is used as an

edge weight. The direction of the edge defines the direction of the reaction from the reactant

to the product species. The graph does not change during the simulation, and only edge

Figure 4.2 Example of a graph presenting a detailed reaction set for an H2-O2-Ar gas
mixture (55 species and 215 reactions, detailed reaction set in Table C.1). The target
species, H (node labeled as "H_g"), is positioned in the center of the graph. Species in the
reaction set are nodes, and reactions are edges (connections). The number on each edge is
the reaction number. Forward and backward reactions are separated and have unique
numbers.
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weights (reaction rates) change in time. When the reverse reaction is added to the graph,

two edges are added: one for the forward and one for the backward reaction, each with its

reaction rate as its edge weight.

The process of creating the skeleton mechanism, i.e., the reduced reaction set, is the following:

• add all species from detailed reaction set into the graph as nodes

• add edges for all reactions in the reaction set (e.g., A+B → C +D):

– add an edge A→ C from species A (reactant) to species C (product) and assign

the reaction rate RAC to the edge

– add edges for all reactant (A,B) and product (C,D) species combinations, if the

species A and C are different; adding edges for A→ D, B → C, and B → D

• for all nodes in the graph, compute relative net contribution rAC of each reaction

to the species’ density; the equation for computing rAC can depend on reactions

that contribute and consume species in each node: some examples are presented in

Eqs. (4.1)-(4.3)

• remove all edges from the graph that have rAC < ε (removing non-influential reactions)

• remove all unconnected nodes, i.e., nodes not connected to any other node (removing

species from skeleton mechanism)

The main parameter to separate influential from non-influential reactions is the reaction’s

relative contribution to the density of the species in node A, and can be computed using the

following equation (adapted from [88]):

rj =
|νjRA,j |∑

i=1,NA
|νiRA,i|

(4.1)

where j is the j-th reaction in node A, NA is the number of reactions in node A, and νi

and νj are the net stoichiometric coefficients of species A in reactions i and j, respectively.
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When the sum of forward and backward reactions in the node is approximately the same,

i.e., |
∑
i νiRf,i −

∑
i νiRb,i| ≈ 0, the denominator in Eq. (4.1) is small, causing the relative

reaction contributions to be large and not representative of the true importance of individual

reaction. One way to prevent this is to separate the sum of reaction rates in the denominator

into a sum of forward and a sum of backward reactions by rearranging the equation into:

rj =
|νjRA,j |∑

i=1,Nf,A
|νiRf,A,i|+

∑
i=1,Nb,A

|νiRb,A,i|
(4.2)

where NA,f and NA,b are the number of forward and backwards reactions in the node A,

respectively. Another approach is to completely separate relative contributions from forward

and backward reactions:

rf,j =
|νjRf,A,j |∑

i=1,Nf,A
|νiRf,A,i|

rb,j =
|νjRb,A,j |∑

i=1,Nb,A
|νiRb,A,i|

(4.3)

where subscript f indicates the forward reaction index and subscript b indicates the backward

reaction.

In reaction sets without backward reactions, all proposed methods of computing rj assign

the same importance to reactions. The difference in definitions for rj becomes evident when

the reaction set includes reverse reactions (i.e., reactions with both a forward and backward

reaction) with a mixture of fast reaction rates and reactions where forward and backward

reaction rates are almost the same. When reaction rates of forward and backward reactions

are approximately the same, the selected equation may not assign accurate importance to

the individual reaction. It might instead underestimate important reactions or overestimate

unimportant ones. When using net contributions given by Eqs. (4.3), one needs to take into

account that the same value of net contribution threshold ε has different effect to the ranking

of reactions compared to Eqs. (4.1) and (4.2).

Authors Lu & Law discussed in Ref. [88] the applicability of each equation to different

types of combustion systems, where reactions are defined in Arrhenius form (Eq. (3.14)):

quasi-steady-state (QSS) and partial equilibrium (PE) systems. In the QSS system, the
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species are quickly consumed, and they can be treated as being in steady-state. In the PE

system, some fast reverse reactions have much higher reaction rates than other reactions,

and fast reactions can lead to erroneous results. These fast reverse reactions can be found

in reaction sets that include externally driven reactions (e.g., laser irradiation). The authors

suggest using reaction net contribution computed by Eq. (4.1) in the general case, more so,

if reaction rates are defined in Arrhenius form.

Lu & Law [82] presented two-stage reaction set reduction because the relative contribution

of reactions in each node changes after removing less important reactions from the reaction

set. After the initial reduction of the detailed reaction set, the authors proposed to compute

the new net contribution of reactions in each node and again remove the reactions with

the net contribution below the given threshold. Their investigation showed that creating a

skeleton mechanism is a fast operation and performing the same operation twice presents

a small addition to the overall time, including time to perform the simulation using the

skeleton mechanism.

4.2.3 Error Between Detailed and Reduced Reaction Sets

The last step in the reaction set reduction is to evaluate if the reduced reaction set can

adequately capture the selected quantity of interest (QoI), i.e., if the error between detailed

and reduced reaction set simulations are inside the prescribed maximal error δmax. The

method of computing the error depends on the goal of the reduction: does the reduced

reaction set need to capture the values in a steady-state, or it needs to capture the time

evolution of selected QoI (e.g., species’ density or temperature). For capturing the steady-

state values, values from detailed and reduced reaction sets can be compared using the

following equation:

δ =
|Ared
i (tj)− Adet

i (tj)|
Adet
i (tj)

(4.4)
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where index i runs over all quantities of interest (QoI), Ai is the value of QoI (e.g., density or

temperature), tj is the time at which the error is computed, superscript det and red define the

system with detailed and reduced reaction set, respectively. The value of QoI, Ai, can also

be the average value computed over time interval at steady state to eliminate any fluctuation

of values due to numerical uncertainties in the simulation, as presented in Fig. 3.5.

When one of the goals during the reaction set reduction is to preserve the time evolution

of selected QoI, the error caused by the reaction set reduction process should be computed at

multiple times of interest during the simulation (Fig. 4.3). Selecting multiple times of interest

for computing error is important in simulations where reaction rates and species densities

fluctuate over many orders of magnitude and can profoundly affect reaction kinetics, e.g., in

pulse-driven discharges. Nagy and Turányi [114] suggested the following equation to compute
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Figure 4.3 Time evolution of species densities (electrons, H, and H+
2 ) and selected times of

interest. The error in quantities of interest (QoI) from a detailed and reduced reaction set
is computed at selected times of interest, marked with red vertical dashed lines. Multiple
times of interest add to the complexity of the reduction process but decrease the error from
reduced reaction set simulations in cases when selected QoI changes in time.
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the error that is used to compare with the given maximum accepted error (δmax):

δ = max
i,j

2
|Ared
i (tj)− Adet

i (tj)|
Adet
i (tj) + maxj A

det
i (tj)

(4.5)

where index j runs over the set of pre-selected times of interest tj .

4.2.4 Reaction Set Reduction Process

The main goal of reducing the reaction set is to lower the computational requirements while

still capturing the time evolution of selected species within selected acceptable error. Due to

its lower computational requirement, a reduced reaction set can be used in simulations that

consider the spatial dependence of the main plasma parameters. The reaction set reduction

is always performed for a selected (target) species. The goal of the reduction is to preserve

the density of target species in a given time interval. After successful reaction set reduction,

simulations with a reduced reaction set will preserve the selected species’ density. However,

it might not capture the time evolution of other densities or computed parameters (e.g.,

ignition times) that could deviate more than maximum error, δmax, from values in detailed

simulation.

Reducing the reaction set is an iterative process, where the error in results from simula-

tions using detailed and reduced reaction sets is computed. When the error (δ), computed

from Eq. (4.4) or (4.5) between two results, is larger than an acceptable error (δmax), the

reduction of the reaction set is performed again with a smaller reaction rate threshold ε. The

reduction process is terminated when one of the following conditions is reached: the error is

acceptable, the reaction set is not changing, or the maximum number of attempts is reached.

When the error between reduced and detailed reaction set, δ, is below a user-defined accept-

able error δmax, the reduction process is stopped. The reduction process is also stopped when

reaction sets from two consecutive reduction steps have the same species and reactions. The

further reduction will most likely generate the same reaction sets, and a further reduction

will not be beneficial. The last possible condition for terminating the reduction process is
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when the number of reductions reached the maximum number of attempts. It serves as a

last resource in preventing the indefinite reduction process. The procedure of reducing the

reaction set using the KGMf and the DRG method is as follows (Fig. 4.4):

1. the KGMf simulation with detailed reaction set is run and data needed for reaction set

reduction is saved into files: time evolution of species’ densities, the time evolution of

reaction rates, stoichiometric matrix, and lists of species and reactions

2. initial relative reaction threshold, ε, and the maximum allowed error, δmax, are defined

3. reduction of the reaction set for current threshold is performed; additional checks of

the final reaction set are performed to make sure all necessary species are included

(e.g., species defined as inflow and outflow species)

4. simulation with reduced reaction set is run

5. error, δ, between detailed and reduced reaction set simulations is computed

6. if δ > δmax, a new threshold ε is selected, and the next loop of reduction is made

starting with step 3; otherwise, the reduced reaction set is accepted

The process of finding the minimal reduced reaction set recovering target species’ density

can be described by the main reduction parameters in each reduction step: reaction net

contribution threshold ε, the number of species and reactions, and error between detailed

and reduced reaction set. Table 4.1 shows an example of reaction set reduction steps, and

other reaction set parameters.
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Figure 4.4 A flowchart of reaction set reduction with the KGMf. In the top row are input
parameters for reaction set reduction, and the center part shows the loop required to
reduce the reaction set until the given maximum error threshold is reached. Note: ’RS’
stands for ’reaction set’.

4.3 Plasma Discharge in H2-O2-Ar Gas Mixture

The reaction set reduction presented in this section was performed in simulations with H2-

O2-Ar gas mixtures and with two different target species (species of interest): ground atomic

hydrogen (H) and molecular hydrogen ions (H+
2 ). Densities of selected species show different

time evolutions in Fig. 4.3 regarding applied pulses. The ground atomic hydrogen (H) is

reactive species, participating in 30 reactions in the reaction set and only slightly responds

to applied pulses, showing a steady monotonic increase in time with small jumps at the be-

ginning of each pulse. In contrast, the molecular hydrogen ions (H+
2 ) show large fluctuations

due to applied pulses, and preserving its density would present a more challenging task.

Reaction set reduction was performed using the same system (geometry and simulation pa-
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rameters), and the same reaction set was used in the global sensitivity analysis in Chapter 3.

The main simulation parameters were:

• rectangular flow reactor with dimensions (L ×W × H): 6.5×1.5×0.5 cm (V = 5 cm3)

• gas mixture of 0.15%O2 - 1%H2 - Ar, constant pressure p = 300 Torr, and constant

gas temperature Tg = 500 K

• electron temperature Te was computed depending on used EEDF: when Maxwellian

EEDF was assumed, the Te was computed using the electron energy balance equation,

when EEDF was defined by the BE solver, the Te was computed from EEDF

• sheath losses and losses to the wall were neglected

The main reaction set reduction parameters were:

• initial reaction net contribution threshold ε0 = 0.1 (10%)

• reaction threshold in each reduction step was computed as: εi = 10−i, where i is the

reduction step (1, 2, ....., N)

• the accepted error computed by DRG method, δmax, was 10−4

• the reduction process was completed when the error from DRG method was below

δmax or when two consecutive reductions resulted in reaction set containing the same

species and the same reactions

The detailed reaction set was composed of 55 species (Tab. 3.2 in Section 3.4.3) and 146

reactions (Tab. C.1 in Section C). For reaction set reduction, reversible reactions were split

into forward and backward reactions, treated separately by the DRG method. With forward

and backward reactions treated separately, the total number of reactions was 215.
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4.3.1 Capturing H density

The first reaction set reduction was made to preserve the time evolution of atomic hydrogen

(H) density. Before running the reduction steps involving the KGMf simulations, the reaction

set analysis with the DRG method was run using the time evolution of reaction rates and

densities from the detailed reaction set simulation. The purpose of the analysis is to compute

the dependence of the reduced reaction sets size (the number of species and reactions) on the

reaction contribution threshold. The analysis is run without running the underlying KGMf

simulations in each reduction step; just the DRG method is run to compute the reduced

reaction set. The analysis will not give any information of expected error in species densities

in each reduction step. Large jumps in the number of species can indicate the existence

of clusters of species removed from the reaction set at the same time at specific threshold

values. Further comparison of reaction sets is necessary to determine which species were

removed from the reaction set at each threshold value. The plot in Fig. 4.5 can be used to

define the initial value of the reaction threshold ε to reduce the required time to perform the

reaction set reduction. For the presented reaction set, the analysis for one species and eight

(8) times-of-interest took around 12 seconds using an average desktop computer.

10 7 10 5 10 3 10 1

relative reaction contribution threshold ( )
0

40

80

120

160

200

Nu
m

be
r o

f r
ea

ct
io

ns

0

10

20

30

40

50

Nu
m

be
r o

f s
pe

cie
s

Number of reactions and species
(reduction species: H; EEDF: Maxwellian)

# species (DRG)
# reactions (DRG)

(a)

10 7 10 5 10 3 10 1

relative reaction contribution threshold ( )
0

40

80

120

160

200

Nu
m

be
r o

f r
ea

ct
io

ns

0

10

20

30

40

50

Nu
m

be
r o

f s
pe

cie
s

Number of reactions and species
(reduction species: H; EEDF: BE solver)

# species (DRG)
# reactions (DRG)

(b)

Figure 4.5 The number of species and reactions vs. relative net contribution of reactions
(ε) on H density with Maxwellian EEDF (a) and EEDF from coupled Boltzmann equation
solver (b). Note: For reaction set reductions, forward and backward reactions are counted
separately, making the total number of reactions 215, while the KGMf reaction set has 146
reactions.

93



Table 4.1 Reaction rate threshold, number of species and reactions, and error in H density
from DRG method in each reduction step for two types of EEDFs: Maxwellian EEDF (top)
and EEDF from BS solver (bottom). The error was computed between simulation results
from detailed and reduced reaction set for the time intervals shown in Fig. 4.3. The last
column presents simulation time reduction in the KGMf with a given reaction set
compared to simulations with a detailed reaction set. ∗Note: For reaction set reductions,
forward and backward reactions were treated separately, thus making the total number of
reactions 215, the KGMf reaction set has 146 reactions.

EEDF: Maxvellian

Step #
Reaction net
contribution
threshold

# species # reactions∗ Error Simulation time

1 10−1 25 70 – (failed to converge)
2 10−2 33 101 4.49 · 10−2 119 s (-68.8 %)
3 10−3 36 123 1.59 · 10−2 138 s (-63.8 %)
4 10−4 44 160 1.73 · 10−3 177 s (-53.7 %)
5 10−5 48 175 – (failed to converge)
6 10−6 51 188 9.17 · 10−5 285 s (-25.3 %)

detailed 55 215 – 382 s (100 %)

EEDF: from the BE solver

Step #
Reaction net
contribution
threshold

# species # reactions∗ Error Simulation time

1 10−1 24 65 – (failed to converge)
2 10−2 33 98 5.20 · 10−2 1447 s (-27.6 %)
3 10−3 42 142 8.10 · 10−2 1735 s (-13.2 %)
4 10−4 46 164 3.54 · 10−2 1632 s (-18.3 %)
5 10−5 47 175 5.74 · 10−3 1762 s (-11.8 %)
6 10−6 51 189 3.84 · 10−2 1925 s (-3.7 %)
7 10−7 53 196 1.72 · 10−2 1839 s (-8.0 %)
8 10−8 55 204 1.56 · 10−2 1873 s (-6.3 %)
9 10−9 55 208 1.40 · 10−2 2063 s (3.2 %)
10 10−10 55 209 – (failed to converge)
11 10−11 55 210 4.76 · 10−3 2025 s (1.3 %)

detailed 55 215 – 1999 s (100.0 %)

The reaction set reduction is an iterative process, where species and reactions are removed

from the reaction set in each interaction. The simulation is performed with a reduced reaction

set in each iteration. The reduction was made using the maximum acceptable error ε = 10−4

of H density, and Table 4.1 shows reaction rate threshold and error between results from

detailed and reduced simulations in each reduction step. The reduction process in both
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cases (with Maxwellian EEDF and EEDF from the BE solver) was stopped when reaction

sets in consecutive reduction steps yield were the same. The lower computational intensity of

simulations with Maxwellian EEDF is noticeable when comparing runtimes with simulation

with EEDF from the BE solver. When reducing the reaction set with assumed Maxwellian

EEDF, the simulations show quicker convergence in error and the number of species and

reactions, requiring only six (6) reduction steps to reach the minimum reaction set. For H

density error below 2 %, only three (3) reduction steps are required. On the other hand,

the simulation with an EEDF from the BE solver showed slow convergence of reduction

step, requiring eleven (11) steps to reach the minimum reaction set. On top of much longer

simulation steps, the error from reduced reaction sets converges slower than the Maxwellian

EEDF case and requires five (5) steps to reach an error below 2 %.

Figure 4.6 shown the time evolution of H density from simulations using different EEDFs,

showing a good match between evolutions and suggesting that selection of EEDF does not

play a huge role in the evolution of H density. The maximum difference between densities is

up 32 %, which could be sufficient for some applications.
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Figure 4.6 Time evolution of H density from simulations with Maxwellian EEDF and
EEDF from the BE solver. The assumption of Maxwellian EEDF causes up to 32 % error
in H density, which could be acceptable for some applications. Vertical red dashed lines
mark the start of each pulse.
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Figure 4.7 shows the time evolution of atomic hydrogen density from detailed and reduced

reaction sets for both types of EEDF. The H density changes at the start of every pulse,

following a considerable spike in electron density, but show a constant value between pulses

and otherwise does not follow the electron density evolution and indicates that electron

density does not directly influence H density. This indicates that the H density is indirectly

dependent on electron density. Simulation results from all reduced reduction steps captured

the time evolution of H density, except in reduction step 1, where the simulation failed to

converge due to an incomplete reaction set.
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Figure 4.7 Time evolution of H density from detailed and reduced reaction sets using
Maxwellian EEDF (a) and EEDF from the BE solver (b). Vertical red dashed lines mark
the start of each pulse.

Figure 4.8 presents the relative errors between density from detailed and reduced reaction

sets. The plot for Maxwellian EEDF (Fig. 4.8(a)) shows a clear correlation between reaction

relative contribution threshold ε and relative error in H densities: a smaller threshold value

results in a smaller error introduced by the reduced reaction set. On the contrary, Fig. 4.8(b)

for an EEDF from the BE solver, this correlation is not noticeable, especially in the time

after the first pulse, when the density increases the most. The error computed by the

DRG method, also included in Table 4.1 in column 5, is displayed in the figure legend for

each reduction step. For reduction with Maxwellian EEDF, the error computed by the

DRG method is very similar to the relative error in H densities after the first pulse. Good

correlation between error computed by DRG method and relative error from simulations
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additionally simplifies the reduction process because the maximum acceptable error δmax in

the DRG method can be set to the value of acceptable density error from a reduced reaction

set. The reductions with EEDF from the BE solver show a different behavior, where error

from densities in reduced steps does not follow assigned relative reaction contribution. At

the end of the fourth pulse (t = 2.0 ·10−4 s), errors are all grouped in the error interval from

5.7 · 10−3 to 8.1 · 10−2. This indicates the limits for the accuracy of H density from reduced

reaction sets and suggests that reduction steps beyond step 5 have only a small added value.
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Figure 4.8 Time evolution of relative error in H densities introduced by reduced reaction
sets with Maxwellian EEDF (a) and EEDF from BE solver (b). Relative errors introduced
by reduced reaction sets are smaller with each additional reduction run. Hydrogen atom
density at times-of-interest (Fig. 4.3) were used to compute errors in the DRG method (δ).
The error in the DRG method is added to the legend for each reduction step and is very
close to the relative error in H species densities in the left figure.

4.3.2 Capturing H+
2 density

The second example of reaction set reduction was focusing on capturing the time evolution

of charged species density (H+
2 ), which shows large fluctuations throughout each pulse cycle

(Fig. 4.3). Figure 4.9 shows the results from reaction set analysis, plotting the number of

species and reactions in the reduced reaction set at each threshold value. The dependence of

the number of species and reactions is similar to the one calculated for H density (Fig. 4.5).

Detailed investigation shows that the number of species and reactions are the same for both

species (H and H+
2 ) for reaction threshold values ε ≤ 3 · 10−2.
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Figure 4.9 Dependence of the number of species and reactions on the relative net
contribution of reactions on H+

2 density using Maxwellian EEDF (a) and EEDF from the
BE solver (b). Note: For reaction set reductions, forward and backward reactions are
counted separately, making the total number of reactions 215, while the KGMf reaction set
has 146 reactions.

The process of finding reduced reaction sets and their relative errors in time evolution of

H+
2 density started with the initial reaction contribution threshold ε = 0.1 and acceptable

error δmax = 10−4. The threshold for each reduction set was computed as 10% of the

threshold from a previous step. The reduction process for reductions with the Maxwellian

EDDF concluded with the sixth step because the following reaction set reduction generated

the same reaction set as the reaction set in the last reduction step. For the same reason,

reduction with EEDF from the BE solver concluded in the eleventh step. Individual reduction

steps, including the number of species and reactions, error from the DRG method, and

the KGMf simulation time with each reduced reaction set, are gathered in Tab. 4.2. Two

significant differences can be observed from the results presented in Tab. 4.2: the Maxwellian

EEDF reduction shows a more significant reduction in time and lower errors from reduced

reaction set compared to reductions with EEDF from BE solver.
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Table 4.2 Reaction rate threshold, number of species and reactions, and error in H+
2

density from the DRG method in each reduction step for reductions with Maxwellian
EEDF and EEDF from the BE solver. The error was computed between simulation results
from detailed and reduced reaction sets in time intervals shown in Fig. 4.3. The last
column presents simulation time reduction in the KGMf with a given reaction set
compared to simulations with a detailed reaction set. ∗Note: For reaction set reductions,
forward and backward reactions were treated separately, thus making the total number of
reactions 215, while the KGMf reaction set has 146 reactions.

EEDF: Maxwellian

Step #
Reaction net
contribution
threshold

# species # reactions∗ Error Simulation time

1 10−1 22 60 – (failed to converge)
2 10−2 33 101 3.86 · 10−2 120 s (-68.7 %)
3 10−3 36 123 1.53 · 10−2 138 s (-63.9 %)
4 10−4 44 160 1.69 · 10−3 179 s (-53.2 %)
5 10−5 48 175 – (failed to converge)
6 10−6 51 188 7.65 · 10−5 288 s (-24.7 %)

detailed 55 215 – 382 s (100.0 %)

EEDF: from the BE solver

Step #
Reaction net
contribution
threshold

# species # reactions∗ Error Simulation time

1 10−1 21 53 – (failed to converge)
2 10−2 33 98 9.01 · 10−2 1441 s (-27.9 %)
3 10−3 42 142 6.14 · 10−2 1725 s (-13.7 %)
4 10−4 46 164 1.20 · 10−2 1631 s (-18.4 %)
5 10−5 47 175 1.08 · 10−2 1767 s (-11.6 %)
6 10−6 51 189 1.34 · 10−2 1943 s (-2.8 %)
7 10−5 53 196 3.91 · 10−3 1831 s (-8.4 %)
8 10−4 55 204 6.24 · 10−3 1887 s (-5.6 %)
9 10−5 55 208 7.05 · 10−3 2061 s (3.1 %)
10 10−6 55 209 – (failed to converge)
11 10−5 55 210 8.57 · 10−3 2020 s (1.1 %)

detailed 55 215 – 1999 s (100.0 %)

Figure 4.10 shown the time evolution of H+
2 density from simulations using different

EEDFs, showing higher values of H+
2 density from simulation with Maxwellian EEDF in each

pulse as well as in time between pulses. This confirms that Maxwellian EEDF overestimates

the high energy electrons that give rise to electron impact reactions, directly impacting H+
2

density. Maxwellian EEDF causes H+
2 density to respond more to pulses, rising higher and

dropping lower after the pulse and having a higher plateau between pulses.
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Figure 4.10 Time evolution of H+
2 density from simulations with Maxwellian EEDF and

EEDF from the BE solver. The assumption of Maxwellian EEDF causes up to 8 times
higher densities (green dashed line). Vertical red dashed lines mark the start of each pulse.

Figure 4.11(a) shows good agreement of time evolution of H+
2 density from simulations

with Maxwellian EEDF with detailed and reduced reaction sets for reduction steps 3, 4,

and 6. Reaction set in the reduction steps one and six could not capture the H+
2 density, and

the simulation failed to converge. The simulation in the reduction step 2 captured density

fluctuations on the rising side of the pulse but failed to completely capture density drop after

the pulse, causing the H+
2 density to start raising sooner and kept it high between pulses.
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Figure 4.11 Time evolution of H+
2 density from detailed and reduced reaction sets using

Maxwellian EEDF (a) and EEDF from the BE solver (b). The H+
2 density follows the

electron density during a single pulse. For readability reasons, only selected reduction steps
are shown. Vertical red dashed lines mark the start of each pulse.
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The H+
2 density rises with rising Ar+ density due to the reaction R110 (Ar+ + H2 ⇒ Ar +

H2
+). The Ar+ density rises sooner in step 2 compared to the other steps due to the EEDF

having a higher energy tail causing a higher probability of ionization of argon (reaction R4:

Ar + e ⇒ Ar+ + 2e). The time evolution of H+
2 density from reduction step 2 is closer to

density from detailed reaction set with EEDF from the BE solver, raising quicker after the

pulse. Figure 4.11(b) shows the time evolution of H+
2 density from simulations with EEDF

from the BE solver with detailed and selected reduced reaction sets. The densities agree

well when the electron density is constant and shows huge differences when electron density

changes. The H+
2 density from reduced reaction sets cannot correctly recover the density

raise after the pulse, underestimating the density for a factor up to 108 (reduction step 6).

The error in the reduction step 2 of the reduction with Maxwellian EEDF is even more

profound in Fig. 4.12(a), where relative errors of H+
2 density for all reduction steps are

plotted. A huge error for density from reduction step 2 is misleading in Fig. 4.12(a), as it in-

dicates that the amplitude of density is different, but in reality, the cause of this considerable
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Figure 4.12 Time evolution of relative error in H+
2 densities introduced by reduced reaction

sets with Maxwellian EEDF (a) and EEDF from the BE solver (b). The H+
2 density follows

the electron density during a single pulse. Errors computed in the DRG method (δ) are
displayed in the legend for each reduction step. The plot of relative errors (b) shows that
errors introduced by reduced reaction sets could be orders of magnitude different from the
supplied reaction threshold ε, meaning there is no direct connection between the two
values. For readability reasons, only selected reduction steps are shown. Vertical red
dashed lines mark the start of each pulse.
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error is a time shift of the reduced reaction set density. Relative errors from reduction steps

3, 4, and 6 show a tendency to be smaller for smaller reaction contribution threshold ε, but

are all around 10−2 between pulses when electron density is constant. Figure 4.12(b) shows

errors in the reduction steps with EEDF from BE solver, showing huge errors after the first

pulse (t ∼ 10−5 s) and maximum errors around 10−2 for times when electron density is not

changing. Error plots in Fig. 4.12 show there is no direct correlation between the reaction’s

relative contribution and error in species density, making it difficult to specify the relative

contribution of reaction to reduce the reaction sets.

4.3.3 Conclusion

The species and reaction importance was investigated in pulse plasma discharges in an H2-

O2-Ar gas mixture for two different species, atomic hydrogen (H) and molecular hydrogen

ions (H+
2 ), and two different electron energy distribution functions (EEDFs), Maxwellian

EEDF and EEDF from Boltzman equation (BE) solver. The main difference between ob-

served species densities is their time evolution in the pulsed discharge. The H density is

monotonically rising in time (Fig. 4.7) with small stairs-like jumps at the beginning of each

pulse due to the increase in density of excited argon (Ar∗). The most important reactions

for atomic hydrogen (H) density at pulse peak, determined with a global sensitivity analysis

(not shown here), are argon excitation reaction R2 (Ar + e ⇔ Ar∗ + e) and conversion

of molecular hydrogen into two atomic hydrogen due to collision with excited argon de-

fined with reaction R112 (Ar∗ + H2 ⇒ Ar + H + H). On the other hand, the H+
2 density

(Fig. 4.11) follows the electron density changes more closely and changes many orders of

magnitude during a single pulse. Different natures of density changes in time can also be

observed in errors from reduced reaction sets. A relative error in H density is strongly linked

to the supplied maximum acceptable error δmax and reaction net contribution threshold ε.

On the other hand, a relative error in H+
2 density shows no connection to both supplied

error values (δmax and ε). Relative density errors in reductions with Maxwellian EEDF and

102



EEDF from the BE solver are connected to electron density changes. If the electron density

is constant, errors stay constant for both species (H and H+
2 ). Changing electron density

is causing raising errors in densities from reduced reaction sets, but without huge difference

between species ((H and H+
2 ) or EEDF used in simulations (Maxwellian EEDF and EEDF

from BE solver).

The main reason for huge relative errors in H+
2 density evolution in reduction with

Maxwellian EEDF, especially in reduction step 2, is the time shift of the density and not the

amplitude of the density. As presented in Fig. 4.11(a), the density from the 2nd reduction

step does not capture the density drop after the pulse and starts rising sooner than the cor-

responding density in the detailed reaction set. That creates a huge error between densities

(at the time around ∼ 0.75 ·10−4 s), which appears in Fig. 4.12(a) as a huge spike in relative

error. The early rise of the density after the pulse also results in higher density between

pulses. Reaction sets from consecutive reduction steps (i.e., steps number 3, 4, and 6) can

capture H+
2 density in the entire pulse, and relative errors are all around 10−2. Similar

results can be observed in reduction with EEDF from the BE solver. The biggest error is

recorded in reduction step 8 (Fig. 4.12(b)) and is caused by the time shift of the rise of the

H+
2 density and not by the higher value of the density (Fig. 4.11(b)). Errors from other

reduction steps are much smaller and are all around 10−2 in times between pulses.

In all reaction set reductions, the reduction process finished before errors from the reduced

reaction set simulations would be below given acceptable error δmax = 10−4. Further reaction

set reduction could reduce the error even more but would increase the size of the reaction set,

eventually resulting in the detailed reaction set. That would defeat the purpose of reducing

the reaction set in the first place.
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4.4 Conclusion

Prioritizing species and reactions was presented to reduce the reaction set while preserv-

ing the time evolution of selected species densities. Two different EEDFs were considered:

Maxwellian EEDF with temperature obtained from an energy equation and an EEDF from

a coupled Boltzmann equation (BE) solver. To better capture the behavior of species densi-

ties during the simulation due to the pulse-driven discharge, the error in densities between

detailed and reduced reaction sets was computed at different times during the simulation,

at the pulse peaks and the plateau at the end of the pulse (Fig. 4.3).

From the presented results, we conclude that the user-specified reaction threshold ε is

in most cases not correlated to a relative error in densities between detailed and reduced

reaction sets. The maximum relative errors in densities between pulses have a constant value

around 10−2 but show huge spikes during pulses. The spikes in relative errors of H+
2 density

Fig. 4.12) at pulse edges are related to the time shift of density evolution and not to the

amplitude of density, indicating the reduced reaction sets cannot capture the time evolution

of density. For species with highly fluctuating density, regardless of the EEDF used, when

the density changes over many orders of magnitude, the user-supplied reaction threshold ε

still affects the simulation error: a smaller acceptable error will result in a smaller relative

error from a simulation. As can be observed in Fig. 4.12(b), it is not possible to predict

the relative error from a simulation based on the supplied relative reaction contribution

threshold ε and the maximum error from a simulation can be several orders of magnitude

different from ε.

The presented results in pulsed plasma discharges in H2-O2-Ar gas mixture suggest that

the best approach to the reaction set reduction is gradually reducing the relative reaction

contribution threshold until the computed error is below the acceptable value. The reduction

process requires many simulation runs, one run for each reduced reaction set. Depending on

the run time of the simulation, even when the reduction process is done in connection with a
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global model, the total required time for reaction set reduction can be long but still shorter

compared to the fluid or PIC simulations with the detailed reaction sets.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE WORK

Before extending the KGMf with the latest features, the KGMf offered many features for

modeling systems that could be represented with global models - from gas-phase combustion

systems to low and high-pressure plasma discharges with various predefined electron energy

distribution functions (EEDF). One main focus of the research presented in this dissertation

was to extend the functionality of the KGMf by adding the ability to self-consistently evaluate

the electron energy distribution function (EEDF) from the system state and to rank the

importance of species and reactions in a given reaction set. The former serves to increase

the fidelity of the results from the KGMf. The latter was needed for the KGMf to conduct

the sensitivity analysis and reaction set reduction. A great deal of effort was put into making

the KGMf more user-friendly, either making warning or error messages more descriptive or

simplifying the user interaction with the KGMf. For users that want to customize the KGMf

to fit their needs, the testing subsystem was added to the KGMf to ensure known solutions

can be reproduced.

The ability to self-consistently evaluate the EEDF was implemented by coupling the

KGMf with two existing Boltzmann equation (BE) solvers. The integration of BE solvers

was designed to enable future extensions and the addition of new solvers. The flexibil-

ity of implementation was demonstrated by coupling the KGMf with two different solvers;

they are different in their implementation languages (Python vs. MatLab) and underlying

mathematical representation of the EEDF (two- versus up to 10-term approximation). The

implementation of BE solvers was verified with two different tests: benchmark with ZD-

PlasKin and application in high power microwave (HPM) breakdown. The benchmark of

the KGMf with ZDPlasKin, both coupled with a different BE solver using a two-term spher-

ical approximation of the Boltzmann equation, included comparing the temporal evolution
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of species densities, reaction rates, and EEDFs. The steady-state densities were compared

in two cases: first, for a given absorbed power density with a range of pressures; and second,

for a given pressure with a range of absorbed power densities. In both cases, the steady-state

densities of electrons, excited species, and ions from the KGMf and ZDPlasKin show good

agreement. In applying the global model to high power microwave (HPM) breakdown, the

results from the KGMf and ZDPlasKin were compared to results from PIC simulations. The

breakdown times from the KGMf and ZDPlasKin with self-consistently computed EEDFs

show good agreement with the breakdown time trend from PIC simulation results. The

KGMf with coupled BE solver can increase the fidelity of the results and shows a relatively

significant impact on the total simulation run time.

The second group of added functionalities was uncertainty quantification and reaction

set reduction, both dealing with the importance of individual species, reactions, and chains

of reactions in a given reaction set. Sensitivity analysis (SA) was added to the KGMf by

building on the existing functionality of the KGMf. SA parameters are defined in a separate

input file. The results from individual cases are stored in the same format as in a standalone

simulation run, enabling reusing all existing post-processing tools. Parameters selection and

value definition for SA runs are all made in the SA input file as changing single parameters,

groups of parameters, or defining the parameters’ values according to selected distribution.

The same goes for collecting results from all individual simulations: quantities of interest

(QoI) and time intervals for result collecting are all defined in the input file. Collected

results from SA runs are stored in a single file. The reaction set reduction is aimed to

allow users to reduce the given reaction set for a given target variable (species density or

temperature). Using either PumpKin as an external utility or an internal directed relations

graph (DRG) method, the KGMf can read and process reaction sets and generate reduced

reaction sets according to given relative reaction contribution thresholds. Both SA and

DRG methods were implemented with great care to avoid any obvious bugs or errors, but

additional verification is required.
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The full set of added models enables high fidelity self-consistent calculation of tran-

sient plasma evolution with time-changing EEDF for complicated collisionality in multi-

component gas mixtures. Ranking of species and reaction chains can be used as input to

fluid and PIC codes to provide a tractable reduces species and reaction set that maintains

a user-definable level of fidelity with reduced computational cost. The minimal cost of the

KGMf allows highly parameterized studies across parameter ranges which can be used as

the course component for mapping behavior in conjunction with a small number of refined

fluid or PIC simulations.

5.1 Future Work

There are many possible avenues for future work that will extend the application of the

KGMf either by increasing the fidelity of the results or by addressing the shortcomings of

the current models. Some possible avenues of future work are presented below.

5.1.1 The KGMf and EEDF Solvers

The KGMf was coupled with Boltzmann equation (BE) solvers to improve the fidelity of the

results, which came at the cost of a slower simulation speed. The computational increase

when simulating with coupled BE solver is not negligible, and we implemented an evaluation

frequency to mitigate the effect of the coupled BE solver on overall run time. The fidelity

of results would improve by adding the possibility to evaluate EEDFs based on multiple

concurrent threshold parameters (multiple species density, temperature), either fulfilling one

of the defined threshold values (’or’ condition) or all of them (’and’ condition). Possible

improvements regarding coupled BE solvers could be put in two groups: optimizing the

evaluation frequency of the BE solver and coupling with a faster BE solver. The two groups

of improvements are independent and can independently contribute to the faster overall

simulation speed of the KGMf.
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One possible short-term improvement would be adding the possibility to read pre-calculated

EEDFs based on selected plasma parameters, e.g., EEDF evaluated by BOLSIG+ or BOLOS

for a list of reduced electric fields or electron temperatures. The KGMf would interpolate

EEDFs between pre-calculated points when needed. This would allow users to transition to

the KGMf by reusing already generated EEDFs and building confidence that KGMf can be

used for their research. The pre-calculated EEDFs could be read from a supplied file or by

connecting to a local or remote database.

In terms of coupling the KGMf with a faster BE solver, especially if one limits themselves

to the two-term BE solvers, three possible choices are:

• BOLSIG+ [96]: probably the most known and used two-term BE solver. One of the

great properties of the solver is grid caching - to speed up the evaluation of the EEDF,

a previously computed EEDF is returned in cases when the E/N value is ’close’ to

what was previously used. The exact speedup of the KGMf+BOLSIG+ is difficult to

predict, especially when BOLSIG+ is written in Fortran, and coupling with Python

would add some overhead.

• MCIG: Monte Carlo based Boltzmann equation solver to provide high-order EEDF

evaluations

• LoKI-B (LisbOn KInetics Boltzmann) [66]: is an open-source simulation tool for

non-magnetized non-equilibrium low-temperature plasmas excited with DC or high-

frequency electric fields.

5.1.2 Chemistry (Reaction) Kinetic Engine

The KGMf focuses on chemistry kinetics in global models. One of the least utilized aspects

of the KGMf is to use it as a chemistry engine for other simulation codes, e.g., for fluid or

other 1D simulation codes (e.g., PIC codes). With a simulation time 0.084 s for a single

evaluation with the EEDF from a coupled BE solver, the KGMf can be used inside those
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codes to recompute species densities from chemical reactions at regular intervals. Using the

KGMf as a chemistry engine in other codes, reducing reaction sets in the original simulation

code might not be necessary as the KGMf could be used to resolve the reaction kinetics on

pre-selected spatial locations. A possible weakness of this setup is in systems with strong

gradients of plasma parameters as the non-local effects are not considered, but they affect

the EEDF.

The other aspect of the KGMf being utilized as a chemistry engine is to reduce the

reaction set on the fly. The KGMf can be utilized as a "stateless" service, where the calling

code defines the whole simulation case in the KGMf at every call. That makes it perfect for

the KGMf to be utilized as a reaction set reducing engine, reducing the number of species

and reactions. With fewer species, the underlying ODE systems are usually smaller, and the

whole simulation is faster.

From an implementation viewpoint, coupling with other simulation codes should be an

achievable task. With Python being ubiquitous and widely used in the scientific community,

coupling with codes in other languages should not be a problem, except in terms of the

difficulty of transferring necessary data. One possibility is to run KGMf as a service (Software

as a Service, SaaS), which is started at the beginning of the simulation. The simulation

code then exchanges the necessary information, i.e., sending parameters to the KGMf and

retrieving results from the KGMf, when needed. This setup would reduce the overhead of

running the KGMf every time by using more memory in the name of lower overhead.

5.1.3 Interconnected KGMf Codes

The opposite approach to the one described in the previous section is to connect independent

global models. Each global model, represented as one KGMf instance, is an independent flow

reactor that depends on the output of the previous KGMf instance and provides input for

the next KGMF instance. This setup of connected KGMf instances would enable simulation

of a multi-reaction (chamber) system, where plasma flows through multiple reactors and is
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treated independently in each of them.

Combining the custom transport code and the KGMf would require minor changes in

the current KGMf code - one of the main features should be to enable the KGMf to keep

"the state of the system" between calls. With this addition, the KGMf would perform a

single-time step advance at every call, and the overhead of setting up the ODE system and

initializing the system would be removed. The Software as a Service (SaaS) approach is

also possible, especially if the KGMf would be an internal service, internal inside the whole

transport+KGMf code, and not visible to the operating system.

5.1.4 Energy Dependence in Reaction Set Reduction

Reaction set reduction is an exciting field of investigation. It focuses on describing the

chemical kinetics of the given system with a reduced number of species and reactions. Re-

ducing the number of species and reactions can be beneficial in many ways. For example,

a smaller number of species directly reduces the size of the ODE system, and a smaller

number of reactions make the ODE system less stiff, enabling the use of larger time steps in

integration.

Using a smaller ODE system leads directly to the ability to deal with larger reaction

sets on the existing hardware and in the same time frame. Reducing the reaction set is

vital in plasma-assisted combustion (PAC) systems or systems involving CO2, where a few

hundred species is not unusual, and the number of reactions can be on the order of a few

thousand. Reducing the number of reactions affects the stiffness of the ODE system, where

integrators can use larger time steps when integrating a less stiff ODE system, leading to

shorter integration times.

The main avenue in reaction set reduction is integrating the energy dependence of species

and reactions into the reduction workflow. The current reduction method only focuses on

defining the importance of species and reactions based on their relative contribution to a

specified species’ density. The energy aspect of importance is not considered but could be
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vital as it could capture the energy transfer between various species states and not only den-

sity conversion. Energy-based prioritization could change the order of importance resulting

in either a smaller reduced reaction set or just a different reduced reaction set capable of

better capturing the behavior of the original reaction set.

5.1.5 Machine Learning for Defining Input Parameters in Sensitivity Analysis

All input parameters for sensitivity analysis presented in this work were defined based on

either literature or experiments. In systems with complicated chemistry, many species and

reactions present a significant challenge in reducing the number of input parameters for sen-

sitivity analysis. Using machine learning (ML) could help define the importance of individual

parameters and define their initial values to best suit the current model.

One possible approach is to use the Gaussian process and Analysis of variance (ANOVA)

model to rank input parameters, including reaction rate coefficients and system and regime

parameters, such as initial species densities, system volume, power deposition, and initial

temperature.
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APPENDIX A

MODELS ADDED TO THE KGMF

High-voltage Collisional Sheath Model in the KGMf

The high-voltage collisional sheath models were added to the KGMf to support approximat-

ing the effects of the sheath in nanosecond pulse discharges. Pulsed nanosecond discharges

can exhibit very high instantaneous deposited powers, causing the (reduced) electric field to

be high as well and making low-voltage sheath models invalid. The sheath model equations

were derived from equations in Leiberman and Lichtenberg [98] and adapted to the global

model and geometries supported in the KGMf.

In all equations below, V is the volume of the system, and Awall is the area of the wall

(electrodes or walls) where the particle and energy losses are computed. When defining

the area A for losses, the correct system geometry (rectangular or cylindrical system) is

considered.

Equations presented in this section are not tested, and more testing needs to be per-

formed. Preferably, an additional set of tests for testing high-voltage sheath should be

added to the KGMf to enable testing high-voltage sheath models to perform correctly at

future upgrades.

Charged particles: energy and particle loss

The sheath potential drop (Vs) and Bohm velocity (uB) both depend on whether the wall

is floating or driven/grounded and are computed as:

• floating sheath: Vs = 0.5Te ln
(
M

2me

)
, uB =

(
q Te
M

)1/2

• grounded/driven: Vs ≈ 0.78V0, uB =
(

1 +
πλDs
2λi

)−1/2 (q Te
M

)1/2
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where m and M are the electron and the ion mass, respectively, Te is the electron temper-

ature, λDs =
(
ε0 Te
e ne

)1/2
is the Debye length in the sheath, λi = (σing)

−1 is the ion mean

free path, and V0 is the amplitude of the voltage source across the gap.

The ratio of particle densities in bulk plasma and the sheath depends on the geometry

of the system and can be computed as:

• parallel-plane geometry: hl ≈ 0.86

[
3 + L

2λi

(
0.86 L uB

πDa

)2
]−1/2

• cylindrical geometry: hr ≈ 0.8

[
4 + R

λi

(
0.8 R uB

χ01 J01(χ01) Da

)2
]−1/2

where Da ≈ Di (1 + Te/Ti) is the ambipolar diffusion with Di computed by Eq. (A.1),

χ01 = 2.405, and J01(χ01) is the Bessel function of the first kind of order 0.

Di =
π

8
λi v̄i (A.1)

where v̄i =
(

8eTi
πMi

)1/2
is the ion mean velocity.

With the particle flux to the wall defined as:

Γl,r = no hl,r uB (A.2)

where uB is the Bohm velocity, and n0 is the particle density at the center of the system,

the particle loss rate at the wall is computed by:

Rl,r = Γl,r
Awall
V

(A.3)

and the energy losses due to the loss of charged particles to the wall are computed by:

εl,r = Γl,r
Awall Vs

V
(A.4)

where Awall is the area of the wall, Vs is the voltage drop across the sheath, and hl and hr

are the density ratios in longitudinal and radial directions, respectively.
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Neutral particles: energy and particle loss

The energy and particle loss of neutral particles only considers diffusion losses and neglects all

surface processes. Surface processes are neglected, and it is assumed that particles reaching

the wall are absorbed according to the probability γ.

The flux of particles A to the wall due to the diffusion in particles B and their absorption

in the wall in the system with volume V and wall with area Awall are computed as:

ΓAB =
1

Awall

[
λ2

0

DAB
+

(2− γ)

γ v̄AB

V

2Awall

]−1

(A.5)

where Awall is the area of the wall, λ0 is the diffusion length given as λ0 = L/π for parallel-

plane wall and λ0 = R/2.405 for cylindrical wall, DAB is the diffusion of particle A in particle

B given by Eq.(A.6), γ is the probability factor of the loss to the wall, v̄AB =
(

8eT
πMR

)1/2
is

the average velocity, and MR =
MAMB
MA+MB

is the reduced mass.

The diffusion coefficient of particles A due to collisions with particles B is given by:

DAB =
π

8
λAB v̄AB (A.6)

where λAB = (σABnB)−1 is the mean free path between collisions of particle A with particle

B. Cross section σAB is typically in a range 2 − 6 × 10−15 cm2 and can be estimated from

σAB ≈ π(rA + rB)2 via a hard-sphere model, absent of measured cross sections.

The particle loss rate at the wall is computed by:

RAB = ΓAB
Awall
V

(A.7)

and the energy losses due to the loss of particles A at the wall are computed by:

εAB = ΓAB
Awall Vs

V
(A.8)

where ΓAB is the flux of particles absorbed by the wall, and Vs is the voltage drop across

the sheath.
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APPENDIX B

COMPUTATIONAL ADDITIONS TO THE KGMF

Testing Suite in the KGMf

Testing is an integral part of software development and regularly testing the program’s func-

tionality help keeping the program perform inside the designed specification. Actively devel-

oped programs can suffer from introducing new bugs with new code functionality or breaking

the existing (and tested) code. Testing can be performed manually or automatically, with

manual testing relying on programmers to run tests. Automatic testing can be performed

on every commit of the code to the repository, or selected branches in the repository are

tested at regular time intervals (overnight tests). Tests are usually designed while designing

the code’s functionality and focus on assuring the code behaves as designed, e.g., methods

should return designed values for known parameters, the correct responses of methods to

wrong input parameters, or correctly handling exceptions in the code. The testing suite is

composed of many tests, each usually focusing on a particular method or module. Each

test includes input parameters and expected values for the method or module. If the return

values from the code are the same as expected values, the code passed the test; otherwise,

the test is marked as failed.

The initial tests were implemented during the transition from Python2 to Python3 to

ensure that the KGMf will still perform as intended. Those tests focused on the main

differences between Python2 and Python3, such as different handling of dictionary keys,

reading input parameters from NPZ files, creating databases of models and reaction data,

and random number generators.

In general, tests are divided into two logical groups that focus on different aspects of

the KGMf: unit tests and model tests. While unit tests focus on testing small chunks of
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code or individual functions (methods), testing of models focuses on system level testing -

treating the KGMf as a black box. In both cases, tests are run, and computed values from

the test are compared to expected values stored inside each test directory. Depending on the

nature of the test, computed and expected values are compared differently. The computed

values need to be either exactly as expected or within the prescribed interval of values for a

test to pass. The difference in testing method comes from the nature of the test performed:

tested methods in unit tests are (usually) deterministic, and the computed values have to be

exact (e.g., loading reaction rates from a file). When running model tests or tests involving

iterations, the computed values have to be inside a specific range as some level of uncertainty

is present due to the statistical variances of the system.

The testing suite uses pytest for performing the tests, and all tests were designed accord-

ing to the recommendation in the pytest documentation. All testing scripts and required

files, e.g., input files, required data files, and files with expected results, are stored in the

subdirectory tests in the main KGMf directory. The structure of directories in the tests

directory reflects the internal structure of the KGMf to make adding and maintaining the

test suit as simple as possible. Running the tests is simplified, and all tests can be run with

one command: pytest -v tests. The argument -v causes verbose output, displaying indi-

vidual tests performed with current progress (see figure B.1). Other arguments are available

by using the switch -h (help).

Preparing Expected Values for a Selected Test

All tests are based on the idea that the results from current test runs will be compared to

expected values. These expected values are stored either in test scripts, when the number of

values is small or in a separate file when the number of testing values is large. When adding

a new test to the test suite or when expected test values need to be changed, e.g., due to a

bug fix or change in computing algorithm, expected values can be easily saved into a file for

later testing.

118



Figure B.1 Verbose output of running all tests.

All model tests are designed to use expected values that are stored in the external file

and they all use comparison class CheckComputedValues (in file tests/KGMmodel/check_-

values.py relative to main KGMf directory) to compare current results with expected values.

The class provides two main comparison methods: checkExact() to check for exact values,

and checkWithEpsilon() to check if current values deviate from expected valued less than

given relative difference ε.

Tests compare test results acquired with the current version of the KGMf with expected

values stored in separate files. Target test results are evolving in time due to the constant

development of the KGMf. New tests are added when adding new functionality to the

KGMf. In case the expected results of some tests have changed for various reasons (e.g., a

new method that replaced the old one, a bug was found and fixed), or a new test was added

to the test suit, the expected values can be easily saved into a file for later use. File with

expected values can be generated and saved only for an individual test. To save the results

of the selected test into a file as reference values, one needs to run the test script as a module

and supply the argument –save_reference (see example on listing B.1).
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Listing B.1 Running a test script and saving values as expected values.
1 python −m t e s t s .KGMmodels .PLAS_BIAGI_Ar. test_plasma_biagi_ar −−save_re ference

Before saving expected values for the test into a file, one needs to delete the existing

file. This extra step is necessary to prevent accidentally deleting reference values used in the

test. Error is displayed if the target file exists when selecting saving new values into the file,

together with the name of the file that should be deleted.

Unit Testing

Unit tests are designed to test individual functionalities of the KGMf, such as reading reaction

data, creating integration times, executing a coupled Boltzmann equation solver, and creating

an ODE system. Individual unit tests are arranged into subdirectories that follow the same

hierarchy as the KGMf source code, which simplifies debugging when one or more tests fail.

Unit tests currently in the KGMf testing suite are the following:

• KGM_core/EEDF_solver: The directory holds tests for testing necessary steps

that are involved in using the EEDF solver as a wrapper around the actual implemen-

tation of the Boltzmann equation (BE) solver. The individual tests are the following:

– loading the cross-section from a supplied file directly by coupled BE solver

– defining the BE solver and setting its parameters

– evaluatinh the EEDF and comparing its shape to the shape of the reference

EEDFs. All model parameters, cross-sections, and reduced electric field values

are defined programmatically in the KGMf and set in the BE solver.

– computing electron temperature and mobility by coupled BE solver based on gas

mixture and cross-sections defined within the KGMf.
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• KGM_exe/model_eval: The test is designed to test individual steps needed in

creating the model inside the KGMf. The individual steps are tested on a model with

pure argon, Maxwellian EEDF, and constant absorbed power. The last test is designed

to test the power shape defined by an external function. The individual tests are the

following:

– gathering reaction data from supplied reaction (model) files

– preparing general ODE system

– generating reaction rates that are defined as analytical functions

– preparing specific ODE system

– generating list of times for integration

– reading and using power shape (form) defined by an external function

• KGM_visualize/kgmf_viewer: The test is designed to test loading of results file

with EEDFs from coupled Boltzmann equation (BE) solver and one with analytically

defined EEDFs.

Testing of Models

Testing of models focuses on the overall functionality of the KGMf by testing whether results

from running the model with the current version of the KGMf still produce correct results.

These tests are not concerned with the internals of the KGMf and are treating the KGMf as

a black box: specifying the input parameters as input files (simulation and reaction files) and

testing the results saved into the NPZ file. The results from individual tests are compared

to the expected value - the relative difference should be smaller than ε = 10−4 for a test to

pass.

All models in the test directory are supplied with the KGMf. They are automatically

generated with the script quick_generate.py, which should be run before the first use of
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the KGMf. Model input files are stored in the directory data/KGMmodels/<name of the

model>. The list of models, together with their short description, is given in the list below:

• GP_GRI_Ar_CO2_CH4:a gas-phase simulation model with a mixture of argon,

CO2, and CH4, atmospheric pressure, gas temperature 1200K, 31 species, and 174

reactions

• GP_GRI_Ar_O2_H2: a gas-phase simulation model with a mixture of argon,

oxygen, and hydrogen, atmospheric pressure, gas temperature 1200K, nine species,

and 27 reactions

• MIXED_GRI_MORGAN_Ar_CO2_CH4: a plasma simulation model with

a mixture of argon, CO2 and CH4, atmospheric pressure, gas temperature 500K,

Maxwellian EEDF, and a constant absorbed power 10W. The model has 156 species

and 330 reactions.

• MIXED_GRI_MORGAN_Ar_O2_H2: a plasma simulation model with a mix-

ture of argon, oxygen, and hydrogen, atmospheric pressure, gas temperature 1200K,

Maxwellian EEDF, and a constant absorbed power 10W. The model has 60 species

and 104 reactions

• PLAS_ALL_paper_results: a pure argon gas-phase simulation model to test re-

sults from paper by Ashida, Lee and Lieberman[117]

• PLAS_BIAGI_Ar: This test includes three very similar plasma simulation models

with pure argon, Maxwellian EEDF, atmospheric pressure, and gas temperature of

500, 600, or 1200K. They have either constant or pulsed deposited power, up to 19

species, and up to 64 reactions.
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Values tested in model testing in the KGMf are the following:

• sorted list of reactions in the model

• shape (dimensions and sizes) of resulting densities

• values of species densities in the last 5% of simulated time

• times at which densities were computed

• sorted list of variables, which includes all species and temperatures

Sensitivity Analysis Runs with KGMf

Global models are often used to perform the sensitivity analysis of systems due to their

capability to capture the main system characteristics and rapidly perform many simulations

needed for sensitivity analysis. The KGMf supports performing the sensitivity analysis by

defining necessary parameters with a single configuration file and executing individual simu-

lations in parallel to maximize the resources during the sensitivity analysis. The sensitivity

analysis run is launched using run_model_sensitivity.py script and supplying the neces-

sary parameters with a config file. The sensitivity analysis run mode was motivated by the

desire to simplify the investigation of the sensitivity of selected plasma parameters (results)

to uncertainty in input parameters. Its functionality is built on top of a batch mode run,

using batch runs to run a series of different simulation cases with given parameters. The

batch mode can also be invoked independently from the sensitivity analysis run. It enables

users to define a set of different cases that are almost the same and differ in a small number

of parameters, e.g., different gas pressures or ratio mixtures. Using the batch mode mitigates

the possibility of introducing errors compared to manually creating input files and reduces

the simulation setup time. After all simulation cases in sensitivity run are performed, the

sensitivity analysis run collects the requested results from individual cases and stores them
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in a single HDF5 (Hierarchical Data Format 5) file for easy retrieval and post-processing

(e.g., plotting or analysis). The HDF5 file format is explained in detail in Section B.

All necessary batch and sensitivity analysis parameters are defined using a single YAML

(YAML Ain’t Markup Language) input file. The YAML file defines the base simulation and

reaction input files (input file templates), together with parameters and values used when

creating a list of individual simulation cases. The templates for simulation and reaction

input files are the same input files that are used for a single simulation case (usually run

with run_model.py). The simulation and reaction input files for each simulation case in

a batch run (and sensitivity run) are generated automatically. These individual simulation

cases are defined according to the settings in the YAML input file and specified simulation

and reaction input files (templates). The YAML input file details are presented in section B.

The results from individual simulation cases are stored in a separate numpy NPZ results file.

Input and results files from all individual runs are stored in separate sub-folders, input files

in batch_inputs_XXX (batch run) and sa_inputs_XXX (sensitivity analysis run), and result

files in batch_results_XXX (batch run) and sa_results_XXX. In all folder names, XXX is

replaced with the case number and tag defined in the input YAML file. The result files from

batch and sensitivity analysis runs have the same format as individual KGMf simulation

runs.

Defining Parameters and Their Values

Input files for individual simulation cases used in the sensitivity and batch runs are generated

from the same simulation and reaction files. They differ only in a small number of system

attributes (e.g., volume, pressure, sheath losses, gas mixture) or system parameters (e.g.,

initial temperature or density, reaction rate coefficients). With that functionality in mind,

the parameters in a YAML input file can be arranged into three groups: base input files

(templates) and result file, running parameters, and variable parameters and their values.

The base input files define simulation and reaction input files that serve as templates for
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all simulations in a batch run. All simulation parameters are first taken from base input

files and are changed according to the settings in the YAML file before they are written as

input files for a specific case. A unique sequential number (an ID) is assigned to every case

within a given batch run, and the simulation case’s parameters are saved into the HDF5 file,

providing a mapping between a simulation case ID and parameters used in the simulation

case. The results file parameter defines the name and the location of the HDF5 file used

to store all batch and sensitivity analysis run parameters. These parameters include names

and contents of both input files, list of simulation cases, their numbers and parameters used

for each case (value and indexes to values), case run status (prepared, input files generated,

finished successfully or with error), running time for each case, and the number of done cases.

The second group of parameters in the YAML file holds the running parameters, which

define options for running the batch case. They define run times (type and values similarly

as for the individual KGMf case), case tag (used in names of directories and files), and the

number of cases to run in parallel.

The last group of parameters in the YAML file defines parameters and their values that

are changed during the generation of individual simulation cases. The parameters in batch

and sensitivity runs can be varied in three different ways:

• keyword combine: create all possible combination of values and parameters

• keyword varysingle: vary one parameter at a time to utilize elementary method of

defining parameter importance(see 3.2)

• keyword global_sa: vary parameters according to the Salitelli [76] sampling method

to utilize a variance-based method of defining parameter importance (section 3.3)

When keywords combine and varysingle are present at the same time, the combination

of both is used in a way that parameters defined by varysingle parameters are repeated

for all cases in the combine group. The list is used to define values for each parameter
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in a group, and all values in the list are used during the creation of cases. The keyword

global_sa has to be used on its own and is not compatible with the other two parameter

groups.

A keyword combine can be used to define a group of parameters and their values, where

the created list of cases include all possible combinations of all parameters and and their

values. The example in listing B.2 defines three parameters to vary: PRESSURE (4 values),

T_E (3 values), and INIT_0 (2 values), each with their own list of values. The total number

of cases is 4× 3× 2 = 24 different cases.

Listing B.2 Example of combine keyword when defining parameters in batch run.
1 combine: # c r e a t e c a s e s w i t h all c o m b i n a t i o n of v a l u e s
2 PRESSURE: [ 1 9 0 , 3 8 0 , 7 6 0 , 1 0 0 0 ]
3 T_E: [ 1 . 5 , 2 . 0 , 2 . 5 ]
4 INIT_0: [ 1 e +8 , 1 e +9 ]

The use of combine group for defining input parameters can quickly lead to combinato-

rial explosion, where the number of cases to run increases exponentially with the number

of parameters and the number of values for each parameter. This is especially true in a

sensitivity analysis, where it is often desirable to know the combined effect of uncertainties

in reaction rate coefficients. For example, to check for combined effects of uncertainties in 10

reactions with ±20% uncertainty (defining three values: −20%, 0%, and +20% uncertainty),

it would result in running 310 = 59, 049 individual simulation cases.

A keyword varysingle can be used to define a group of parameters that are changed

one-at-the-time, presenting an ideal way to create a simulation set for sensitivity analysis

using Morris’ method [75], which is presented more in detail in section 3.1. The varysingle

parameters will create a list of cases that will enable studying the individual effect of un-

certainty in each parameter on the simulation results. Each parameter is defined with two

values: the list of values to use when creating cases and the index of the base value in the

list. The index is defined with a keyword base_index and is zero-based - the first value in

the list has index 0. The base_index defines a value in the list that is considered a ’base
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value’ and is used to defined a ’base case’ - the case with case number 0 - and with all pa-

rameters having values defined at ’base_index’ position. The example in listing B.3 defines

cases where reaction rate coefficients for reactions 1 through 4 will be changed according to

the given list with 11 values. The base value is value 1.0, as defined by base_index: 5

(line 3). This definition of sensitivity analysis would produce 4× (11−1)+1 = 41 individual

cases.

Listing B.3 Example of varysingle keyword for sensitivity analysis run.
1 va ry s i ng l e : # v a r y one r e a c t i o n c o e f f i c i e n t at the t i m e ;
2 ’ R1 - R4 , R10 ’: # R1 = r e a c t i o n 1; R1 - R4 - > R1 , R2 , R3 , R4 ; R10
3 base_index : 5 # i n d e x of the b a s e v a l u e in the l i s t b e l o w
4 va lues : [ 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 ]
5 ’ R6 , R8 , R9b ’: # R6 ( f o r w a r d and b a c k w a r d ) , R8 , R9 ( b a c k w a r d o n l y )
6 base_index : 5 # i n d e x of the b a s e v a l u e in the l i s t b e l o w
7 va lues : [ 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 ]
8 # c o m b i n a t i o n s are p o s s i b l e
9 ’ R11 - R20 , R22 , R30 - R34 ’:

10 base_index : 5 # i n d e x of the b a s e v a l u e in the l i s t b e l o w
11 va lues : [ 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 ]
12 ’ R41 - R 4 3 b ’: # ’ b ’ d e f i n e s b a c k w a r d r e a c t i o n s for R41 - > R43
13 base_index : 5 # i n d e x of the b a s e v a l u e in the l i s t b e l o w
14 va lues : [ 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 ]

A keyword global_sa can be used to define a group of parameters whose values are

changed according to the Saltelli [76, 104] sequencing to capture the combined effects of

uncertainties in input parameters to output results. The number of required cases using

Saltelli sampling is significantly smaller compared to the naïve approach offered by the

combine parameter definition. The sampling aims to achieve the best possible coverage

of input parameter space with fewer individual cases. The values for each parameter are

automatically generated according to the given distribution (e.g., normal, lognormal, gamma)

and given distribution parameters (e.g., mean, mode, variance, scale). The total number of

generated cases depends on the number of input parameters (p) and the number of samples

for each parameter (M) and is M(2p+2)+1. For example, the listing B.4 presents a setting

of sensitivity analysis parameters with p = 10 input parameters (reactions 1 through 10) and

M = 10 samples for each parameter (the second parameter for the lognormal distribution).

The total number of cases is 10(2 · 10 + 2) + 1 = 221, which is much smaller compared to
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1010 cases when using a naïve approach with testing all possible values of each parameter.

Listing B.4 Example of global_sa keyword for sensitivity analysis run.
1 global_sa : # p e r f o r m g l o b a l s e n s i t i v i t y a n a l y s i s
2 # log - n o r m a l d i s t r i b u t i o n : 10 samples , m o d e = 1 . 0 ( the v a l u e w i t h the
3 # m o s t p r o b a b i l i t y ) , s i g m a = 0 . 2
4 ’ R1 - R10 ’: l o g n o r m a l 10 1 . 0 0 . 2

Regardless of the type of parameter group used, there are two main differences when

defining reaction rate coefficients and other parameters:

• reaction definitions always start with an uppercase letter R, followed by the reaction

number, e.g., R999, where 999 is the reaction number (reaction numbers are 1-based -

the first reaction has number 1), while other parameters have to be defined with the

exact name as it is written in the input files.

• the values in the YAML file for reactions are specified as relative numbers that are

multiplied with reaction rate coefficients already defined in the reaction input file,

while absolute values have to be specified for all other parameters.

The main reason for using relative values for reaction rate coefficients is the flexibility

in defining the uncertainties of the reaction rate coefficients without knowing their original

(unmodified) values.

Collecting Results for Sensitivity Analysis

Sensitivity analysis runs consist of many individual simulation cases with input parameters

generated in a prescribed way. The input files for the individual case are automatically

generated, and results for each case are saved into individual results files. The results from

individual simulation cases are also collected into a single HDF5 file in the form of mul-

tidimensional numpy arrays for easy post-processing through a wide variety of available

tools. The shape of stored results, i.e., the number of dimensions and their sizes, depends

on the parameter definitions in the YAML input file (lines 2-10 in listing B.5). In the case
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of the combine group, each parameter adds one dimension to the array. In the case of the

varysingle group, the array will have two dimensions: the number of rows is defined by the

number of parameters, and the number of columns is defined by the length of the longest list

of parameters. In the case of the global_sa parameter group, two dimensions are created

in the array: the number of rows is defined by the number of created cases and the number

of columns by the number of reactions. The last dimension in the array is always defined by

the number of values collected in time (e.g., 20 values are defined on line 18 in listing B.5).

Listing B.5 Example of YAML file for collecting results.
1 parameters :
2 case1 : # n a m e of the c a s e ( u s e d b e l o w )
3 combine: # d e f i n e d f i r s t 2 d i m e n s i o n s of 3 x 2 e l e m e n t s
4 T_E: [ 1 . 5 , 2 . 0 , 2 . 5 ]
5 INIT_0: [ 1 e +8 , 1 e +9 ]
6 va ry s i ng l e : # d e f i n e n e x t two d i m e n s i o n s ..
7 ’ R1 - R4 ’: # .. w i t h s i z e 4 (4 r e a c t i o n s )
8 base_index : 3
9 # .. and s i z e 7 (7 v a l u e s in the l i s t )

10 va lues : [ 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 ]
11 c o l l e c t :
12 - case_name: c a s e 1 # f r o m w h i c h c a s e to c o l l e c t v a l u e s
13 hdf5group : l a s t _ 2 0 # the H D F 5 g r o u p n e e d s to be u n i q u e
14 v a r i a b l e s : # for w h i c h v a r i a b l e s to c o l l e c t the v a l u e s
15 - Electron
16 - Ar_pion_0
17 t ime_s l i c e : # the l a s t d i m e n s i o n is t i m e ..
18 l a s t : 20 # .. w i t h 20 e l e m e n t s (20 t i m e s s t e p s )

Listing B.5 shows a minimal configuration for sensitivity analysis with mixed parameter

definitions (combine and varysingle parameter groups) and collecting results of two vari-

ables (electron and Ar ion densities) computed in the last 20 time steps. The dataset of

every collected variable, i.e., Electron (electrons) and Ar_pion_0 (argon ions), would have

5 dimensions with the length of dimensions being 3, 2, 4, 7, and 20 elements and resulting

in 3× 2× 4× 7× 20 = 3360 elements for each variable (see Table B.1).

Each YAML input file can include definitions for collecting multiple results. Each def-

inition needs to have a unique name (line 13 in listing B.5) that is also used as an HDF5

group name. Using unique names enables different collections from the same results (e.g.,

defining different time intervals) or grouping the result values, e.g., neutral particles, charges

particles, and temperatures. The process of collecting the results can be done many times
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Table B.1 Dimensions and their sizes when storing collected results in sensitivity analysis
example presented in listing B.5.

Dimension Length Explanation
1 3 number of values for parameter T_E
2 2 number of values for parameter INIT_0
3 4 number of reactions: R1-R4
4 7 number of values for each reaction
5 20 number of values at different times

3360 total number of values stored

after the simulations are done by invoking the run_model_sensitivity.py script with the

additional argument c (collect results only). One can also modify the definition of results to

be collected in the YAML file or add new definitions of results to be collected and rerun the

result collecting.

Input File for Batch and Sensitivity Analysis Runs

Batch run and sensitivity runs in KGMf are defined with parameters from a supplied YAML

file. YAML input file defines all necessary parameters for conducting a batch run and

variables for collecting during the sensitivity analysis. As described before, the sensitivity

run is based on a batch run with the YAML file structure reflecting that, and the same

YAML file can be used for batch and sensitivity runs.

Listing B.6 shows an example for YAML file. The YAML file can be divided into two

logical parts: batch run parameters and parameters for sensitivity analysis collection. The

main parameters for the batch run are names of input files (lines 2-4), run times (line 7), case

name (line 13), and variables to vary and their values (lines 14-20). The main parameters

for sensitivity analysis collection are grouped under collect tag (line 21) and define one

or more HDF5 groups (line 23) into which collected results are stored. Each group has to

include: (a) a name of the case from which to get results (line 22), (b) a list of variables

for which to collect values (lines 25-27), and (c) times at which to collect values (line 29).
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The list of variables can hold only variables defined in the system (in the simulation or

reaction input files). A file can have multiple collect sections for one simulation case (case1

in the example), with unique hdf5group name (lines 23 and 31) and different time range or

variables to collect.

Listing B.6 Example of YAML file used for batch and sensitivity runs.
1 i n pu t_ f i l e s : # d e f i n e m a i n i n p u t f i l e s
2 s imu l a t i on_ f i l e : S I_ba s e . t x t
3 r e a c t i o n_ f i l e : RF_base . t x t
4 r e s u l t s F i l e : r e s u l t s_ s a_Ar_ba s e_y am l . h d f 5
5 tag : b a s e # o p t i o n a l : g e n e r a l tag ( u s e d in d i r e c t o r i e s )
6 run_times : # run t i m e s - t y p e 3 , dt =1 e -12 f r o m 0 t i l l 1 e -7 s
7 3: 1 e−7 1 e −12
8 # o p t i o n a l ; n u m b e r of C P U s to use , if not given , 1 is u s e d
9 numCPU: 10

10 # m a n d a t o r y ; p a r a m e t e r s for r u n n i n g
11 # t h i s are p a r a m t e r s to d e f i n e c a s e s
12 parameters :
13 case1 : # n a m e of the c a s e ( u s e d b e l o w )
14 combine: # c r e a t e c a s e s w i t h all c o m b i n a t i o n s of v a l u e s
15 T_E: [ 1 . 5 , 2 . 0 , 2 . 5 ]
16 INIT_0: [ 1 e +8 , 1 e +9 ]
17 va ry s i n g l e : # v a r y one r e a c t i o n c o e f f i c i e n t at the t i m e ;
18 ’ R1 - R4 ’: # R1 = r e a c t i o n 1; R1 - R4 - > R1 , R2 , R3 , R4
19 base_index : 5 # i n d e x of the b a s e v a l u e in the l i s t b e l o w
20 va lues : [ 0 . 7 5 , 0 . 8 , 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 ]
21 c o l l e c t :
22 - case_name: c a s e 1 # f r o m w h i c h c a s e to c o l l e c t v a l u e s
23 hdf5group : l a s t _ 2 0 # the H D F 5 g r o u p n e e d s to be u n i q u e
24 v a r i a b l e s : # for w h i c h v a r i a b l e s to c o l l e c t the v a l u e s
25 - Electron
26 - Ar_pion_0
27 - Ar2_pion_0
28 t ime_s l i c e : # for w h i c h t i m e s
29 l a s t : 20 # c o l l e c t v a l u e s for the l a s t 20 t i m e s t e p s
30
31 - case_name: c a s e 1 # f r o m w h i c h c a s e to c o l l e c t v a l u e s
32 hdf5group : e x c_ r a n g e # the H D F 5 g r o u p n e e d s to be u n i q u e
33 v a r i a b l e s : # for w h i c h v a r i a b l e s to c o l l e c t the v a l u e s
34 - Ar_exc_0
35 - H_exc_1
36 - H_vib_0
37 t ime_s l i c e : # for w h i c h t i m e s
38 range : 1 e−8 1 e−7 # c o l l e c t v a l u e s b e t w e e n g i v e n t i m e s

For the purpose of global sensitivity analysis with variance-base parameter values selec-

tion (section 3.3), there is also the third possibility to define parameter variations: global_-

sa (see listing B.7, line 14). The global_sa parameter definition is not compatible with

previous parameters groups. Parameters are defined in a similar way as before, the values for

each parameter are define as follows (line 16 on listing B.7): ’R1-R10’: lognormal 200

1.0 0.05, where 200 is the number of samples to drawn from the lognormal distribution
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with mode 1.0 (the most probable value from the distribution), and standard deviation 0.2.

The distribution mode and the standard deviation are parameters for the distribution of mul-

tiplication factors for reaction rate coefficients (or cross-sections) used to compute (define)

rates for each case. The base case will always have a multiplication factor of 1.0. Currently,

only normal and log-normal distributions are supported. The samples are generated (drawn)

using SALib library.

Listing B.7 Example of YAML file used for sensitivity runs (global_sa).
1 # d e f i n e m a i n i n p u t f i l e s
2 i n pu t_ f i l e s :
3 s imu l a t i on_ f i l e : S I . t x t
4 r e a c t i o n_ f i l e : RF . t x t
5 r e s u l t s F i l e : r e s u l t s _ s a _ 2 0 0 s a m p l e s . h d f 5
6 tag : 2 0 0 s a m p l e s # o p t i o n a l : g e n e r a l tag ( u s e d in d i r e c t o r i e s )
7 run_times : # run t i m e s ; r u n _ t y p e : t i m e s a r g u m e n t s
8 3: 1 e −15 1 e −17 1 e−4 −1e−3 1 e−3 1 e−6
9 # o p t i o n a l ; n u m b e r of C P U s to use , if not given , 1 is u s e d

10 numCPU: 12
11 # m a n d a t o r y ; p a r a m e t e r s for r u n n i n g
12 parameters :
13 base :
14 global_sa : # p e r f o r m g l o b a l s e n s i t i v i t y a n a l y s i s
15 # n o r m a l d i s t r i b u t i o n , 200 samples , m e a n =1.0 , std . dev = 0 . 2
16 ’ R1 - R10 ’: l o g n o r m a l 200 1 . 0 0 . 2
17 c o l l e c t :
18 - case_name: b a s e
19 hdf5group : 2 0 0 s a m p l e s
20 v a r i a b l e s : # o b s e r v e d v a r i a b l e ( s )
21 - Ar_g
22 - Ar_pion_0
23 - Ar2_pion_0
24 - Ar_exc_m
25 - Electron
26 t ime_s l i c e : # t i m e s to s t o r e
27 l a s t : 2 0 0

The KGMf Results File Format

The KGMf offers three different running modes that can save results in two different file

formats. In the case of running a single simulation case via a run_model.py script, the results

are stored in NPZ (compressed numpy ) file. In the case of running batch or sensitivity

analysis run via run_model_batch.py or run_model_sensitivity.py scripts, the results are

stored into HDF5 (Hierarchical Data Format 5) file format. The results stored in numpy
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NPZ files can be viewed using Python script view_results.py that is part of the KGMf.

There is no script (viewer) added to the KGMf that would offer to view the results from

batch and sensitivity analysis runs. A short Python script included in this document will

read the HDF5 file and print out the skeleton (hierarchy) of the HDF5 file, enabling users

to extract required data from HDF5 files.

numpy NPZ File Format

The numpy NPZ file format is used to store the results from a KGMf’s single case simulation

run. The file contains some results even if the simulation run fails. There are many sections

(variables) in the results file. Some are always present, and some are optional, depending

on either KGMf’s running parameters or the simulation type used to save the results. The

following list consists of sections that are always present in the NPZ file:

• t_vals [numpy array]: A list of times for which the results (densities and temperatures)

are stored in the results file. The order of time values correspond to rows in the densities

array.

• densities [numpy array]: A numpy array storing results from the simulation: rows

corresponds to one time value (order given by t_vals) and columns are variables (order

given by var_list).

• last_integration_time [float]: The last simulation time for which results are available

in the file. In most cases, this is the same time as the computational end time (last

value in t_vals) but could be different if the simulation failed to finish successfully.

• var_list [dictionary]: A list of variables whose results are available in densities ; the

order of variables defines the order of results in columns in the array densities.

• calls_to_integrator [integer]: The number of calls to the integrator; the list depends

on the integrator used in the simulation (e.g., ode or odeint). The value is informative
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and is not used in any calculation. It helps evaluate whether the EEDF evaluation

frequency was aligned with one selected in the input file.

• simfile [string]: file name of the simulation file

• reactfile [string]: file name of the reaction file

• runtime [float]: total (wall) simulation runtime

• helper_vals_history [dictionary]: History of values used to determine if the EEDF

needs to be evaluated or not. The field is only populated when the EEDF is computed

using coupled BE solver. The data stored is the following:

– column_names [numpy array]: The order of names of variables stored in cor-

responding column in values, such as t (time), EN (reduced electric field), E

(electron density), and Pabs (absorbed power density).

– values [numpy array]: The array of values of stored variables. Each row hold

holds values for one time step and columns are given by column_names. A time

values are stored in the first column.

• reaction_list [numpy array]: The list of reactions as they are defined in the KGMf;

unless something is wrong, this should be the same list as in the reaction input file.

• K_values [numpy array]: The time evolution (history) of computed reaction rate

coefficients; the values stored here are computed separately from the main simulation.

It is possible to run the simulation and have the history of different reaction rates

computed and stored in the array.

• K_values_symbols [numpy array]: Symbols for individual reaction rate coefficients

as they were used in symbolic representation of the ODE system.
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• power [numpy array]: The history of absorbed power density used in the simulation.

The absorbed power is often the input parameter for the simulation, and this array

holds absorbed power density values at times defined in t_vals.

• steadyState [dictionary]: Holds the information about the system reaching a steady

state. The steady state condition is computed based on values of electron temperature

(Te) and electron density (ne). The content of the dictionary is as follows:

– tol [float]: the tolerance used whether determine of the system reached the steady

state

– clusterSize [integer]: the number of values over which the steady state was checked

– T_e [dictionary]: was the steady state reached regarding electron temperature

(’achieved’: True/False) and the value of electron temperature (’value’)

– el [dictionary]: was the steady state reached regarding electron density (’achieved’:

True/False) and the value of electron density (’value’)

• version [string]: version of the results file

The following sections are saved into numpy NPZ file only if the EEDF information

should be saved into results:

• t_vals_eedf_keys [numpy array]: A list that connects the EEDF evaluations and

simulation times in the ODE integrator since EEDF evaluations could be done at

various times during the simulation. The length of this list is the same as the length

of eedf_data. The value in the list is the index of the time for which the EEDF was

used. The same index of time can be found multiple times in this list - this is the case

when the same EEDF was used on multiple occasions when no EEDF evaluation was

required.

• eedf_data [dictionary]: This Python dictionary stores detailed data of evaluated EEDFs

during the simulation. The number of calls to the integrator at the time of saving the
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data into the dictionary is used as a key in the dictionary. The data stored for each

evaluated EEDF depends on the underlying Boltzmann equation (BE) solver and is

the following:

– t [float]: time at which the EEDF was evaluated (computed)

– f [numpy array]: values of function on energy grid given by energy_grid_centers

– energy_grid_centers [numpy array]: cell centers of energy grid

– energy_grid_centers_odd [numpy array]: cell centers of odd energy grid [67];

This is currently only used by MultiBolt BE solver.

– num_iter [integer]: the number of iterations needed to compute the EEDF by

the underlying BE solver

– error [float]: the error in a computed EEDF as it is returned by the underlying

BE solver

– f_init [numpy array]: values of the EEDF that were used by BE solver as initial

values for computing the EEDF

– solution_converged [bool/integer]: did the solution of BE solver converged

– params [dictionary]: parameters sent to the BE solver to compute stored EEDF

– Te_from_BES [float]: electron temperature computed from stored EEDF

– mue_N [float]: value of electron mobility computed from stored EEDF

• eedf_eval_frequency_params [dictionary]: History of evaluation frequency parameters,

i.e., parameters used to decide if the EEDF needs to be re-evaluated or if the current

EEDF can be used. It is helpful during the debugging process and has very little use

to end-users.
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HDF5 File Format

Results from batch and sensitivity runs are saved into a single HDF5 file that enables easy

retrieval of results. Each batch and sensitivity run is composed of many independent simula-

tions runs, and the results of each simulation run are stored in a separate numpy NPZ file,

described in detail in section B. In general, the data stored into HDF5 file can be divided

into two parts, one saved by batch run and the other by sensitivity run, and the data saved

is as follows:

• batch run:

In a batch run, the HDF5 file holds the list of all cases run in this batch run, together

with the filename of the detailed result file (numpy NPZ file) and the values of all

parameters used in every case in a batch run. The list enables the connection between

chosen values of input parameters and batch run case numbers.

• sensitivity run:

The sensitivity run extends the functionality of a batch run. Along with data saved

in a batch run, the sensitivity run stores gathered data for each defined case: the list

of target parameters (e.g., temperature or species’ density) and the sensitivity of each

parameter to the values of input parameters. Values of target parameters are orga-

nized according to the input parameter values, enabling easy retrieval of parameter’s

sensitivity for postprocessing, e.g., plotting of sensitivity analysis.

The listing B.8 shows short Python code that reads and prints out the main hierarchy

of the HDF5 file. The script hdf5_info.py, located in the KGMf’s root directory, will take

the HDF5 file name as an argument and print the main skeleton (hierarchy) of the supplied

HDF5 file. Sections params and <case_name> are generated during the batch run, the

section collect is generated during the sensitivity analysis run.
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Listing B.8 Simple Python code to print the hierarchy of the HDF5 file.
1 r e s u l t F i l e = ’<r e s u l t_ f i l e >’
2 fp = h5py . F i l e ( r e s u l t F i l e , ’ r ’ )
3
4 i f ’ params ’ in fp . keys ( ) :
5 grp = fp [ ’ params ’ ]
6 c a s e s_ l i s t = grp . a t t r s . keys ( )
7
8 i f case_name in c a s e s_ l i s t :
9 f o r key , va l in grp . a t t r s . i tems ( ) :

10 va l = j son . l oads ( va l )
11 i f type ( va l ) == d i c t :
12 p r i n t ( pr int_dic t ( key , val , 0 ) )
13 e l s e :
14 p r i n t ( key , " : " , va l )
15
16 i f case_name in fp . keys ( ) :
17 grp = fp [ case_name ]
18 p r i n t ( " At t r ibute s : " )
19
20 f o r key , va l in grp . a t t r s . i tems ( ) :
21 i f key != ’ cargo ’ :
22 p r i n t ( " − {0} : {1}" . format ( key , va l ) )
23 e l s e :
24 va l s = j son . l oads ( va l )
25 p r i n t ( " − {0} : {1}" . format ( key , l i s t ( va l s . keys ( ) ) ) )
26
27 p r in t ( "Datasets : " )
28
29 f o r key , va l in grp . i tems ( ) :
30 p r i n t ( " − {0} : {1}" . format ( key , va l ) )
31
32 p r in t ( "Case numbers with base r e a c t i on c o e f f i c i e n t s : " )
33 f o r i , row in enumerate ( grp [ ’ c a s e s ’ ] ) :
34 i f not np . any ( row [ 1 : ] − 1 ) :
35 p r i n t ( " {0} : {1}" . format ( i , row ) )
36
37 fp . c l o s e ( )

The sections in the HDF5 results file are created either during the batch run (labeled with

[batch]) or during the sensitivity analysis run (labeled with [sa]) and are the following:

• params ([batch]): The HDF5 group holds parameters for all batch runs saved in the

file. The names of batch runs are stored in the attributes of the group. For each case

in the group, there are two possible subgroups (keys): varysingle and combine. Each

group holds the list of parameters and the list of their values used to create individual

simulation cases.

• <CaseName1> ([batch]): The <CaseName1> is a HDF5 group with the name of

the actual case defined in the YAML input file. The name has to be unique for
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a given HDF5 file. Data for each case is stored either in attributes (general case

information), datasets (array oriented input parameters with their values), andHDF5

group (collected results).

Attributes

Input parameters that define batch run are stored as attributes to each batch run case

and consist out of the following:

– cases_done: the number of simulation cases done (simulation has finished)

– cases_number : the number of simulation cases attempted in a batch run

– status : the description of possible status a case can have; the content of the field

is usually: ’0-init value, 10-input files created, 20-running, 90-done successfully,

91-error’

– vars_list : the list of variables that were used to create different cases in a batch

run; the value is created (expanded) from the input parameter definitions in

YAML file

– reaction_file_template_name: the name of reaction file template used to create

the reaction file for each case

– reaction_file_template_content : the content of the reaction file template

– simulation_file_template_name: the name of the simulation file template used

to create the simulation file for each case

– simulation_file_template_content : the content of the simulation file template

Datasets

Datasets are used to store parameter values for individual simulation cases, the status

of individual runs, and the final results file. Datasets are organized as arrays with

dimensions related to the number of individual simulation cases (labeled as M) and
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the number of parameters used in a given batch run (labeled as L). All datasets are

populated during the batch run, except dataset results, which is populated during the

sensitivity analysis run. Datasets defined for each case are the following:

– cases : a numpy array of a size M × L used to store values of input parameters

in each simulation case

– cases_params_indexes : a numpy array of a size M × L used to store indexes

to values (from list defined in YAML file) of input parameters in each simulation

case

– result_files : a list of size M that holds the filenames of results files for each

(individual) simulation case (numpy NPZ file)

– run_time: a list of size M that holds the total running time of each simulation

case

– status : a list of sizeM that holds the current status of individual simulation case;

this status is changing during the batch run and would show the last good status

of the simulation case

HDF5 group ([sa])

All collected results are stored in an HDF5 group named results with sub-groups

names as defined in the YAML file (see Section B for detailed explanation of how

collected results are specified). All results have the same structure; they only differ in

the shape (size) of the result datasets as the size of arrays depends on the number of

variables, selected parameters and their values, and the number of times values stored

in the collected results. The structure of the collected results is as follows:

– <GroupName1>: The name of the group as defined in the YAML file (line 23 in

listing B.6) and has to be unique for each YAML file. Datasets stored in groups are

named after variables whose values are stored in the datasets and have the same
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size (shape). The shape and size of results dataset depends how parameters are

combined (varysingle, combine, or global_sa) and the number of time values

stored in the dataset depends on parameter definition used. Parameter definition

type global_sa is not compatible with other two definitions. The result dataset

shape and size is computed in the following way:

∗ using either (or both) varysingle and combine: the number of parameters

in combine section defines the first number of dimensions of the dataset; then

two dimensions are added if varysingle parameters are defined, and the last

dimension is added to accommodate for time dependence of stored values.

The number of values in each dimension is defined by the number of different

parameter values in a given dimension. When reading results into Python,

datasets behave as numpy arrays, and array slicing can be used to extract

required values for post-processing.

∗ using global_sa: results have only two dimensions - the number of rows

corresponds to the number of cases (defined by varying parameters and ac-

cording to Saltelli’s sampling), and the number of columns is equal to the

number of values collected in time.

For example in listing B.9, the dataset of every collected variable would have

5 dimensions with length of dimensions being 3, 2, 4, 7, and 20 elements and

resulting in 3 × 2 × 4 × 7 × 20 = 3360 elements for each variable. Individual

dimensions and their sizes are defined as follows:

∗ due to the combine definition, two dimensions for parameters T_E and INIT_0

of sizes 3 and 2, respectively, are added

∗ then due to the varysingle definitions, two dimensions for reactions R1-R4

and values list of sizes 4 and 7, respectively, are added

∗ the last dimension of length 20 is added to store 20 values collected in time
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Listing B.9 Snipped of YAML input file (not complete).
1 . . .
2 combine: # d e f i n e d f i r s t 2 d i m e n s i o n s of 3 x 2 e l e m e n t s
3 T_E: [ 1 . 5 , 2 . 0 , 2 . 5 ]
4 INIT_0: [ 1 e +8 , 1 e +9 ]
5 va ry s i ng l e : # d e f i n e n e x t two d i m e n s i o n s ..
6 ’ R1 - R4 ’: # .. w i t h s i z e 4 (4 r e a c t i o n s )
7 base_index : 3 # .. and s i z e 7 (7 v a l u e s in the l i s t )
8 va lues : [ 0 . 8 5 , 0 . 9 , 0 . 9 5 , 1 . 0 , 1 . 0 5 , 1 . 1 , 1 . 1 5 ]
9 . . .

10 t ime_s l i c e : # the l a s t d i m e n s i o n is t i m e ..
11 l a s t : 20 # .. w i t h 20 e l e m e n t s (20 t i m e s s t e p s )

∗ <GroupName2>: the results group can hold multiple datasets with unique

names and their shapes and sizes according to selected parameters.

• <CaseName2> ([batch]): The HDF5 file can store multiple different cases defined

by the same YAML file. The structure of data for every case is the same as presented

above (under <CaseName1>).
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APPENDIX C

REACTION SET FOR GLOBAL SENSITIVITY ANALYSIS

Reaction Set for Plasma Discharge in H2-O2-Ar Gas Mixture

The following table shows the reaction set for plasma discharge in H2-O2-Ar gas mixture,

used in the global sensitivity analysis (section 3.4.3) and reaction set reduction (section 4.3).

The reaction set consists of 62 species and 146 reactions.

Table C.1 Reactions used in the plasma discharge in argon with their reaction rate
coefficients and threshold energies. Additional subscripts v, r, and e indicate vibrational,
rotational and excited states, respectively. Notes: Te is the electron temperature, in eV,
Tgas is the gas temperature, in K.

Reaction Rate coefficient [m3/s or m6/s] Refs.
R1 Ar + e ⇒ Ar + e cross section [90]
R2 Ar + e ⇔ Ar∗ + e cross section [90]
R3 Ar + e ⇔ Ar3∗ + e cross section [90]
R4 Ar + e ⇒ Ar+ + 2e cross section [90]
R5 O + e ⇒ O + e cross section [90]
R6 O + e ⇔ O(1D) + e cross section [90]
R7 O + e ⇔ O(1S) + e cross section [90]
R8 O + e ⇒ O+ + 2e cross section [90]
R13 O− + e ⇒ O− + e cross section [90]
R14 O− + e ⇒ O + 2e cross section [90]
R15 O2 + e ⇒ O2 + e cross section [90]
R16 O2 + e ⇔ O2,r=1 + e cross section [90]
R17 O2 + e ⇔ O2,v=1 + e cross section [90]
R18 O2 + e ⇔ O2,v=1 + e cross section [90]
R19 O2 + e ⇔ O2,v=2 + e cross section [90]
R20 O2 + e ⇔ O2,v=2 + e cross section [90]
R21 O2 + e ⇔ O2,v=3 + e cross section [90]
R22 O2 + e ⇔ O2,v=4 + e cross section [90]
R23 O2 + e ⇔ O2(a

1∆) + e cross section [90]
R24 O2 + e ⇔ O2(b

1Σ) + e cross section [90]
R25 O2 + e ⇔ O2,e=3 + e cross section [90]
R26 O2 + e ⇔ O2,e=4 + e cross section [90]
R27 O2 + e ⇔ O2,e=5 + e cross section [90]
R28 O2 + e ⇔ O2,e=6 + e cross section [90]
R29 O2 + e ⇔ O2,e=7 + e cross section [90]

continuing on the next page...
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... continued from the previous page
Reaction Rate coefficient [m3/s or m6/s] Refs.

R30 O2 + e ⇒ O2
+ + 2e cross section [90]

R31 O2 + e ⇒ O2
− cross section [90]

R32 O2(a
1∆) + e ⇒ O2(a

1∆) + e cross section [90]
R33 O2(a

1∆) + e ⇒ O + O(1D) + e cross section [90]
R34 O2(a

1∆) + e ⇒ O2
+ + 2e cross section [90]

R35 O2(a
1∆) + e ⇒ O + O− cross section [90]

R36 O2(b
1Σ) + e ⇒ O2(b

1Σ) + e cross section [90]
R37 O2(b

1Σ) + e ⇒ O + O + e cross section [90]
R38 O2(b

1Σ) + e ⇒ O2
+ + 2e cross section [90]

R39 O2(b
1Σ) + e ⇒ O + O− cross section [90]

R40 O3 + e ⇒ O3 + e cross section [90]
R41 O3 + e ⇒ O3

+ + 2e cross section [90]
R42 O3 + e ⇒ O2 + O− cross section [90]
R43 O3 + e ⇒ O + O2

− cross section [90]
R44 H + e ⇒ H + e cross section [90]
R45 H + e ⇔ He=2 + e cross section [90]
R46 H + e ⇔ He=3 + e cross section [90]
R47 H + e ⇒ H+ + 2e cross section [90]
R50 H2 + e ⇒ H2 + e cross section [90]
R51 H2 + e ⇔ H2,r=1 + e cross section [90]
R52 H2 + e ⇔ H2,r=2 + e cross section [90]
R53 H2 + e ⇔ H2,v=1 + e cross section [90]
R54 H2 + e ⇔ H2,v=2 + e cross section [90]
R55 H2 + e ⇔ H2,v=3 + e cross section [90]
R56 H2 + e ⇔ H2,e=1 + e cross section [90]
R57 H2 + e ⇔ H2,e=2 + e cross section [90]
R58 H2 + e ⇔ H2,e=3 + e cross section [90]
R59 H2 + e ⇔ H2,e=4 + e cross section [90]
R60 H2 + e ⇔ H2,e=5 + e cross section [90]
R61 H2 + e ⇔ H2,e=6 + e cross section [90]
R62 H2 + e ⇔ H2,e=7 + e cross section [90]
R63 H2 + e ⇔ H2,e=8 + e cross section [90]
R64 H2 + e ⇔ H2,e=9 + e cross section [90]
R65 H2 + e ⇔ H2,e=10 + e cross section [90]
R66 H2 + e ⇒ H2

+ + 2e cross section [90]
R67 H2,e=10 + e ⇒ H2,e=10 + e cross section [90]
R68 H2,e=10 + e ⇒ H + H+ + 2e cross section [90]
R69 H2,e=8 + e ⇒ H2,e=8 + e cross section [90]
R70 H2,e=8 + e ⇒ H + H+ + 2e cross section [90]
R71 H2O + e ⇒ H2O + e cross section [90]
R72 H2O + e ⇔ H2Ov=1 + e cross section [90]
R73 H2O + e ⇔ H2Ov=2 + e cross section [90]
R74 H2O + e ⇔ H2Ov=2 + e cross section [90]
R75 H2O + e ⇒ O(1D) + H2 + e cross section [90]

continuing on the next page...
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... continued from the previous page
Reaction Rate coefficient [m3/s or m6/s] Refs.

R76 H2O + e ⇒ H2O
+ + 2e cross section [90]

R77 H2O + e ⇒ H2 + O− cross section [90]

Ar, Ar+, Ar∗, Ar2+ reactions
R106 Ar2

+ + e ⇒ Ar + Ar 8× 10−13 [118]
R107 Ar+ + e + e ⇒ Ar + e 10−31 · (11605 Te/300)−4.5 [33]
R108 Ar+ + 2Ar ⇒ Ar2

+ + Ar 2.25× 1043 · (Tg/300.0)−0.4 [119]
R109 Ar∗ + 2Ar ⇒ Ar + 2Ar 1.4 · 10−44 [119]
R110 Ar+ + H2 ⇒ Ar + H2

+ 2.7× 10−16 [120]
R111 Ar + H2

+ ⇒ Ar+ + H2 1.461× 10−16 [120]
R112 Ar∗ + H2 ⇒ Ar + H + H 6.6× 10−17 [121]
R113 Ar∗ + O2 ⇒ Ar + O + O 2.1× 10−16 [33]
R146 Ar∗ + Ar ⇒ Ar + Ar 2.3× 10−21 [33]

H reactions
R83 H + O2 + M ⇔ HO2 + M 7.721× 10−42 T−0.86

g [91]
R84 H + 2O2 ⇔ O2 + HO2 5.735× 10−41 T−1.24

g [91]
R85 H + O2 + H2O ⇔ H2O + HO2 3.105× 10−41 T−0.76

g [91]
R86 H + O2 + AR ⇔ AR + HO2 1.930× 10−42 T−0.8

g [91]
R87 H + O2 ⇔ O + OH 4.400× 10−14 T−0.6707

g exp( − 8575/Tg) [91]
R88 2H + M ⇔ H2 + M 2.757× 10−42 T−1

g [91]
R89 2H + H2 ⇔ 2H2 2.482× 10−43 T−0.6

g [91]
R90 2H + H2O ⇔ H2 + H2O 1.654× 10−40 T−1.25

g [91]
R91 H + OH + M ⇔ H2O + M 6.066× 10−38 T−2.0

g [91]
R92 H + HO2 ⇔ O + H2O 6.592× 10−18 exp( − 338/Tg) [91]
R93 H + HO2 ⇔ O2 + H2 7.439× 10−17 exp( − 537/Tg) [91]
R94 H + HO2 ⇔ 2OH 1.395× 10−16 exp( − 320/Tg) [91]
R95 H + H2O2 ⇔ H2 + HO2 2.009× 10−23 T2

g exp( − 2617/Tg) [91]
R96 H + H2O2 ⇔ OH + H2O 1.661× 10−17 exp( − 1812/Tg) [91]
R48 He=2  H 6.26× 108 [90]
R49 He=1  H 2.50× 10−6 [90]

HO2 reactions
R103 2HO2 ⇔ O2 + H2O2 2.159× 10−19 exp(820/Tg) [91]
R104 2HO2 ⇔ O2 + H2O2 6.974× 10−16 exp( − 6039/Tg) [91]

continuing on the next page...
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Reaction Rate coefficient [m3/s or m6/s] Refs.

O reactions
R78 2O + M ⇔ O2 + M 3.309× 10−43 T−1

g [91]
R79 O + H + M ⇔ OH + M 1.379× 10−42 T−1

g [91]
R80 O + H2 ⇔ H + OH 6.426× 10−26 T2.7

g exp( − 3150/Tg) [91]
R81 O + HO2 ⇔ OH + O2 3.321× 10−17 [91]
R82 O + H2O2 ⇔ OH + HO2 1.599× 10−23 T2

g exp( − 2013/Tg) [91]
R143 O + O3 ⇔ O2 + O2 2× 10−17 · exp

(
−2300.0/Tg

)
[6]

R144 O + O + O2 ⇔ O2 + O2 2.45× 10−43 · T−0.63
g [6]

R145 O + O2 + O2 ⇔ O3 + O2 8.62× 10−43 · T−1.25
g [6]

OH reactions
R97 OH + H2 ⇔ H + H2O 3.587× 10−22 T1.51

g exp( − 1726/Tg) [91]
R98 2OH + M ⇔ H2O2 + M 2.040× 10−46 T−0.37

g [91]
R99 2OH ⇔ O + H2O 5.928× 10−26 T2.4

g exp(1062/Tg) [91]
R100 OH + HO2 ⇔ O2 + H2O 2.408× 10−17 exp(252/Tg) [91]
R101 OH + H2O2 ⇔ H2O + HO2 3.321× 10−18 exp( − 215/Tg) [91]
R102 OH + H2O2 ⇔ H2O + HO2 2.823× 10−12 exp( − 14800/Tg) [91]
R105 OH + HO2 ⇔ O2 + H2O 8.303× 10−15 exp( − 8721/Tg) [91]

O(1D) reactions
R11 O(1D)  O 0.00563 [90]
R12 O(1D)  O 2.11× 10−05 [90]
R114 O(1D) + O2 ⇒ O + O2(b

1Σ) 2.56× 10−17 · exp
(
+67/Tg

)
[33]

R115 O(1D) + O2 ⇒ O + O2 7× 10−18 · exp
(
+67/Tg

)
[33]

R116 O(1D) + O3 ⇒ O + O + O2 2.3× 10−16 [6]
R117 O(1D) + O3 ⇒ O2 + O2 1.2× 10−16 [6]
R118 O(1D) + Ar ⇒ O + Ar 5.0× 10−18 [33]
R119 O(1D) + H2 ⇒ H + OH 1.2× 10−16 [6]

continuing on the next page...
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Reaction Rate coefficient [m3/s or m6/s] Refs.

O(1S) reactions
R9 O(1S)  O 0.000242 [90]

R10 O(1S)  O(1D) 1.26 [90]
R120 O(1S) + O2 ⇒ O(1D) + O2 1.333× 10−18 · exp

(
−850/Tg

)
[6]

R121 O(1S) + O3 ⇒ O(1D) + O + O2 2.9× 10−16 [6]
R122 O(1S) + O3 ⇒ O2 + O2 2.9× 10−16 [6]
R123 O(1S) + O2(a

1∆) ⇒ O(1D) + O2(b
1Σ) 3.6× 10−17 [6]

R124 O(1S) + O2(a
1∆) ⇒ O + O + O 3.4× 10−17 [6]

R125 O(1S) + O2(a
1∆) ⇒ O + O2(a

1∆) 1.3× 10−16 [6]
R126 O(1S) + O ⇒ O(1D) + O 5× 10−17 · exp

(
−301/Tg

)
[6]

R127 O(1S) + H2 ⇒ O + H2 2.6× 10−22 [6]

O2(a
1∆) reactions

R128 O2(a
1∆) + O2 ⇒ O2 + O2 6× 10−22 [33]

R129 O2(a
1∆) + O3 ⇒ O2 + O2 + O 5.2× 10−17 · exp

(
−2840/Tg

)
[33]

R130 O2(a
1∆) + O ⇒ O2 + O 7× 10−22 [33]

R131 O2(a
1∆) + Ar ⇒ O2 + Ar 6× 10−22 [33]

R132 O2(a
1∆) + H2 ⇒ OH + OH 2.8× 10−15 · exp

(
−17906/Tg

)
[6]

R133 O2(a
1∆) + H2 ⇒ O2 + H2 2.6× 10−25 · T0.5

g [6]
R134 O2(a

1∆) + H ⇒ O + OH 1.3× 10−17 · exp
(
−2530/Tg

)
[6]

R135 O2(a
1∆) + H ⇒ O2 + H 5.2× 10−17 · exp

(
−2530/Tg

)
[6]

R136 O2(a
1∆) + HO2 ⇒ O2 + HO2 2× 10−17 [6]

O2(b
1Σ) reactions

R137 O2(b
1Σ) + O3 ⇒ O2 + O2 + O 1.8× 10−17 [6]

R138 O2(b
1Σ) + O2 ⇒ O2(a

1∆) + O2 4.3× 10−28 · T2.4
g · exp

(
−241/Tg

)
[6]

R139 O2(b
1Σ) + O ⇒ O2(a

1∆) + O 8× 10−20 [6]
R140 O2(b

1Σ) + O ⇒ O2 + O(1D) 6× 10−17 · T−0.1
g · exp

(
−4201/Tg

)
[6]

R141 O2(b
1Σ) + Ar ⇒ O2 + Ar 10−22 [33]

R142 O2(b
1Σ) + H2 ⇒ O2(a

1∆) + H2 10−18 [6]
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