
THE EVOLUTION OF FUNDAMENTAL NEURAL CIRCUITS FOR COGNITION IN SILICO

By

Ali Tehrani-Saleh

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Doctor of Philosophy

2021



ABSTRACT

THE EVOLUTION OF FUNDAMENTAL NEURAL CIRCUITS FOR COGNITION IN SILICO

By

Ali Tehrani-Saleh

Despite decades of research on intelligence and fundamental components of cognition, we still

know very little about the structure and functionality of nervous systems. Questions in cognition

and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience,

psychology, and computer science. Yet, it is difficult to reverse-engineer observed sophisticated

intelligent behaviors in animals and even more difficult to understand their underlying mecha-

nisms. In this dissertation, I use a recently-developed neuroevolution platform–called Markov

brain networks–in which Darwinian selection is used to evolve both structure and functionality of

digital brains. I use this platform to study some of themost fundamental cognitive neural circuits: 1)

visual motion detection, 2) collision-avoidance based on visual motion cues, 3) sound localization,

and 4) time perception. In particular, I investigate both the selective pressures and environmental

conditions in the evolution of these cognitive components, as well as the circuitry and computations

behind them. This dissertation lays the groundwork for an evolutionary agent-based method to

study the neural circuits for cognition in silico.
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CHAPTER 1

INTRODUCTION

1.1 In search of building blocks of intelligence and cognition in light of
artificial life

Scientists have long been studying animal behavior and brain function in search of components

contributing to intelligent behavior, and how cognitive processes enable such behaviors that are

essential to organism survival. These studies have taken a wide variety of approaches ranging from

studying behaviors of animals in the wild to trained animals in the lab, and utilizing tools such as

fMRI (Functional Magnetic Resonance Imaging) to genetic engineering in order to modify neural

structure, and to building computational models to unravel mysteries of intelligence.

General intelligence has long been the holy grail of AI (Artificial Intelligence) and scientists

have always been fascinated by the question: “can machines think?” [196]. But after decades

of work and in spite of an exponential increase in computational power throughout this period,

we still do not have a definitive answer. Researchers in the field of AI have constantly been

speculating about possible routes that should be taken in order to advance toward or perhaps

achieve general intelligence, yet controversies remain. It seems essential to me that our approach

toward understanding intelligence, and perhaps building cognitive machines, must be through

creating its building blocks first. I believe a bottom-up approach can take us closer to intelligence,

by building up simpler and more fundamental cognitive widgets first and then attempt to join them

together. As such, the main theme of this thesis is to build and study some of the simple yet

fundamental neural circuits for cognition using neuroevolution. This approach enables us to study

the components of cognition from an evolutionary standpoint where, I investigate the selective

pressures and fitness landscape structures, as well as how they impact the evolved brains and

their evolutionary history. This approach also allows us to analyze these cognitive components at

different levels by investigating their behavioral characteristics, circuitry structure, and algorithms
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and computations.

1.1.1 Why use computational evolution?

Ever since Charles Darwin publishedOn the Origin of Species, his evolutionary theory has become

the foundation of modern biology. In the Descent of Man he writes that the “mental faculties”,

similar to any other trait, vary in populations and are heritable, and as a result are subject to

natural and sexual selection [40] (also see [18]). Thus, it seems inevitable to study intelligence

and its building blocks in the light of evolution. Studying intelligence through computational

evolutionary biology has been one of several active fields of research to shed light on intelligence

alongside evolutionary psychology, evolutionary neuroscience, evolutionary behavioral ecology,

etc. The advantage of using evolutionary methods in training artificial neural networks has started

to attract more attention and is emphasized especially in recent years (see for example [208]).

Scientists are slowly beginning to take advantage of neuroevolution because they are realizing

that in order to build a simulated version of an intelligent organism it is only reasonable to

follow the natural process by which intelligence has emerged in the first place, i.e., evolution.

It should come as no surprise that we cannot reverse-engineer extremely complex biological

brains, nor can we design machines with the same degree of complexity and performance. For

example, Nguyen et al. used evolutionary computation to build images with random patterns

that fooled CNNs (Convolutional Neural Networks) to classify them as actual images with high

confidence [133]. It is noteworthy that image recognition is one of the leading areas in AI and

scientists has been more successful in image processing compared to other areas such as natural

language processing, social intelligence, or knowledge representation. This example and many

similar findings [131, 80, 46, 178] underscores how far away a biological visual cortex is from our

sophisticated designed image processing machines. This is perhaps an indication that we need to

approach the problem from a higher level, for example by designing the substrate or components

rather than designing the entire apparatus. Using evolutionary approaches enables us to avoid

engineering the networks and let the evolutionary process take its course to build both the structure
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and function of the network [49, 48, 51]. Furthermore, from an evolutionary perspective it may

be more important to discover what selective pressures and environmental conditions might have

resulted in the evolution of a particular intelligent behavior rather than understanding the behavior

or the network. In other words, in an evolutionary process all we need is to build the right fitness

landscape that leads to the evolution of the desired behavior. Ultimately, the problem of building

general intelligence can be reduced to building the set of fitness landscapes within which we can

evolve “thinking machines.” Needless to say, building such fitness landscapes and evolving the

agents within a proper substrate is still a very difficult problem and perhaps might as well be equally

difficult as designing thinking machines from scratch.

Computational evolution has become of utmost interest to many scientists especially due to

the rise of modern computers and the unprecedented increase in computational power. Compu-

tational evolution, and computational methods as a whole, are essential components of studying

intelligence. Computational methods allow us to run “experiments” in silico, and easily change ex-

perimental parameters and explore conditions that have not been (or could not be) tested empirically.

The computational models use different levels of abstraction to build the processing component,

i.e. the brain, ranging from very detailed simulations of individual neurons, their networks, and

their interactions with their environment such as neocortical column modeling [31] (NEURON

platform) or Project Blue Brain [112], to less intricate models that partly capture the behavior of

biological neurons such as common ANNs (Artificial Neural Networks) which are more efficient

in computation and can achieve high performance in particular tasks such as pattern recognition.

1.1.2 Why Markov Brains?

Markov Brain Networks are a class of evolvable artificial brains in which populations of agents

embedding digital brains undergo Darwinian evolution, through natural selection of inherited

variations that increase an individual’s ability to compete, survive, and reproduce. These digital

brains have the Markov property, i.e., the future state of the network is influenced only by its

present state. This property inspired the nameMarkov Network Brains, or Markov Brains for short.
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More specifically, Markov Brains are neural networks in which neurons are binary variables that

are connected via probabilistic or deterministic logic gates that represent synaptic excitatory or

inhibitory connections. The connectivity and structure of the network, and the functionality of

logic gates are determined by an evolutionary process. The aforementioned properties of Markov

Brains makes them significantly distinct from other common artificial brain models such as ANNs.

Some of these key differences are 1) evolvability of the network structure, 2) high variety in types

of logic gates, 3) possibility of analysis of computations and algorithms of the evolved networks.

In the following, I briefly describe these differences and their benefits and drawbacks and argue

why using Markov Brains, of all artificial brain models, makes them suitable for the purpose of this

thesis.

1. Evolvability of the network structure.

Evolvability of the network structure is one of the key features that distinguishes Markov

Brains from common ANNs. It is noteworthy that there are variations of ANNs that use

evolution to train the network [205] and models such as NEAT (Neuroevolution of Augment-

ing Topologies) that enable the network structure to change during training [176]. However,

researchers rarely use an evolutionary process or GA (Genetic Algorithm) to train ANNs

and the evolutionary process is unnecessarily costly for ANNs because 1) ANNs are usually

fully-connected networks that use real-valued numbers and as a result, require a lot of com-

putation for each individual in the population, and 2) when training ANNs the structure of

the network is almost always fixed, therefore, using a population of identical networks that

are only different in their weights implies a lot of redundancy and is not computationally

reasonable.

On the other hand, Markov Brains are inherently sparse networks, which makes the compu-

tations required for the agents much cheaper, especially at the beginning of evolution. As the

evolutionary process proceeds, the size of the networks grows, and their structure shapes to

fit into the task, which is contrary to the conventional approach in training ANNs or CNNs
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where researchers hand design the entire structure of the network while only the weights are

subject to training. As mentioned before, one of the advantages of a top-down approach is

that we do not inject our own biases into the engineering design of the network. Another

advantage of this approach is that evolution provides us with a variety of network structures

and functions (for example by evolving several populations) that perform the task (for ex-

ample, see [34, 184, 185]) which then enables us to study the similarities and differences

of a population of networks. It also has been shown that using an evolutionary approach in

Markov Brains results in more sparse networks as opposed to ANNs that are fully connected

networks [70]. This sparsity in connections has been shown to enable us to better detect and

follow information in Markov Brains compared to ANNs [114]. For example, Marstaller et

al. introduced an information-theoretic measure of “representation” and showed that Markov

Brains evolved to perform an active categorical perception task have higher values of repre-

sentation compared to ANNs evolved to perform the same task [116]. This is not to say that

Markov Brains can evolve to have internal representation of the environment while ANNs

cannot (note that any given Markov Brain can be recreated by a network of perceptrons that

has the exact same computations and functions). Rather, the main differences in structure,

connections, and functionality makes detecting and storing representations easier [70, 116].

2. High variety in types of logic gates.

Markov Brains are networks of binary variables (neurons) that are connected via logic gates.

These logic gates can take any number of inputs and based on their logic computation (logic

table that is also subject to evolution) return a number of outputs. For example, a logic gate

that takes two inputs and returns one output can have 16 different Boolean logic functions and

as the number of inputs to a logic gate increase, the number of possible functions increases

exponentially. This flexibility in functionality of logic gates in Markov Brains makes them

more suitable especially for the purposes of this thesis. For example, it is well-known that

single-layer perceptrons cannot perform anXOR (exclusiveOR) operation [43] since theXOR

operation is linearly inseparable. Thus, it is required to do the XOR operation in multiple
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layers and with induction, as the non-linearity in the operation increases the required number

of layers to perform it increases. On the contrary, Markov Brains handle such non-linearity

in the operations in a more efficient way and as a result, they can evolve to be more sparse

with higher information density.

Here I should mention that a recent method called Xnor-net has employed binary operations

in convolution and filtering components of CNNs, and achieved state-of-art performance

on the ImageNet dataset [158]. I should also acknowledge that an exponentially increased

number of functions introduces an exponentially larger search space for optimization, but

note that a set of smaller logic gates can always replace a larger set, and a smooth fitness

landscape in which partially-optimized functions are rewarded is guaranteed to result in the

optimum solution.

The more significant advantage of logic gates that connect neurons in Markov Brains is

that they can mimic a more complex wiring in biological brains, with high density in

synaptic or dendritic connections. For example, it has been shown that the non-linearity of

dendritic connections makes them operate as computational subunits that take place before

the summation at the synapse, which further facilitates pattern recognition in pyramidal

neurons [150, 151]. Furthermore, Hawkins et al. show that a neuron with several thousand

synapses segregated on active dendrites is capable of classifying several independent patterns

and they can perform this task with large amounts of noise and variation introduced in those

patterns [66]. Obviously, I am not suggesting that the logic tables of Markov Brains is an

equivalent to more complex layered computations in dendritic and synaptic connections, but

the more complex and non-linear computations of these logic tables and the accessibility of

exponentially more complex functions is certainly in this respect, a closer model of biological

neurons’ connections compared to ANNs.

3. Possibility of analysis of computations and algorithms of the evolved networks.

Understanding the mechanisms and algorithms at work in evolved networks is crucially
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important for two main reasons. First, it seems necessary to understand the apparatus if we

would want to correct its errors, prevent unexpected behavior, and improve its performance

in the future. The second reason, which is more central to my thesis, is that we are attempting

to recreate (evolve) biological-like brains in a machine with the purpose of discovering their

structure and functionality, and then use this knowledge to better understand biological brains.

This is also central to the entire field of Artificial Life, where the ultimate goal is to simulate

living things in silico in order to discover out-of-reach mysteries, and to gain insight that

helps us move forward in this journey.

As discussed earlier, while deep neural networks have been shown to be a powerful tool in

AI, it is usually very difficult to understand the algorithms and computations behind their

performance [206, 102, 80]. In other words, fpr the most part we have no clue as to how

these huge networks that consist of components that perform sophisticated computations

perform the desired task. It also seems impossible to translate their computations and

algorithms to biological nervous systems and as a result, they cannot advance the task of

understanding how an organism performs this specific task. In Markov Brains, on the other

hand, there are methods that can reveal the mechanisms or algorithms that the agent utilizes

in order to perform a particular task. Obviously it is not always very easy or straight-

forward to discover these computations, and it has been shown before that the evolved

Markov Brain networks can be “epistemologically opaque” [116]. Yet, there are techniques

that have been proposed and implemented that can unravel much about a Markov Brain’s

underlying mechanisms. For example, in chapters 2 and 4 I present an analysis of the types

of computational components and their frequency distributions that are used in visual motion

detection and sound localization tasks (also see [184, 182]). I also used knockout assays

to measure how critical these computational components are in these evolved networks. In

chapter 4, I performed transfer entropy measurements that can show the flow of information

between neurons of the network. Furthermore, in chapter 5 I propose and use a technique

based on the analysis of state-space transitions in Markov Brains when performing an event
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duration judgment task (also see [185]). While the use of such techniques is still in its infancy,

their ability to demonstrate important characteristics of the network and their algorithms was

shown to be promising and points to their capacity to be enhanced in the future.

All said, theMarkov Brains platform is a prominent substrate to study the evolution of intelligent

behavior especially for the purpose of projects studied in this thesis. Furthermore, theMarkov brains

platform is recognized as one the recent specialized techniques in the neuroevolution community.

For example, in a review on Evolutionary Algorithms, the authors categorize Markov brains as

an innovation in the field of neuroevolution [173]. They write: “[Markov Brains] are showing

some early promise especially in unsupervised learning” and attribute the success of the Markov

brains to “being a more flexible substrate than ANNs, they could also lead to a more general

understanding of the role recurrence plays in learning.” The Markov Brains platform was used in

numerous studies before and has been shown to be a powerful tool for the study of evolution of

intelligence, such as evolution of predator-prey interactions [139, 140, 141, 137], active categorical

perception [116, 142], image classification [34, 142], the evolution of neural plasticity [169, 170],

the evolution of cognitive representations [45, 116, 89, 90, 91], the evolution of decision making

strategies [97], and the dynamic interplay between ecology and brain structure [30, 141].

1.1.3 Cognitive Widgets: Fundamental Neural Circuits

The nervous system is undoubtedly the most complex organ/system in animals. For example,

the human brain (which is a part of the central nervous system) consists of around 100 billion

neurons (with about 20 billion in the neocortex alone) that differ in their anatomy, physiology, and

functionality, with approximately 100 trillion connections. Our knowledge of the brain is still in

its infancy, with numerous open questions and unknowns, given that the study of nervous systems,

i.e., neuroscience, only dates back to Santiago Ramon y Cajal’s seminal work in the 1890s. In

fact, we still do not have a complete understanding of even much simpler central nervous systems

like, for instance, an insect’s brain, with only a few hundred thousand neurons. While there has

been substantial research in neuroscience and its related fields, we have only come to understand
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neural circuits and their functions for significantly simpler tasks. In particular, as we learn more

about these systems, the more we realize the necessity of engaging experts from other disciplines

and employing more specialized techniques for specific problems. Here, I focus on the following

neural circuits and attempt to answer questions regarding their structure, functionality, and their

evolutionary origins:

1. Visual motion detection.

Visual motion detection is one of the fundamental components of visual perception and

the computations take place at a low level (close to sensory neurons) in nervous system.

Perceiving moving objects in the environment is crucial to an animal from an evolutionary

point of view since it can be critical for survival; for example, detecting predators, prey,

or falling objects [143]. One of the standard motion detection models was proposed by

Werner Reichardt and Bernhard Hassenstein in the 1950s, based on a delay-and-compare

scheme [65]. In addition to the Reichardt detector, researchers have proposed other types

of motion detection models, such as edge-based models [113] and spatial-frequency-based

models [6]. However, most computational motion detection models are based on the delay-

and-compare scheme [143]. While motion detection in mammals and in particular humans

is more complicated in structure and function, it is expected to have significant similarities

to the basic Reichardt detector circuitry [22], and thus the Reichardt detector “module” is a

key component of all motion detection circuits.

In chapter 2 of this thesis, I study visual motion detection circuits and the underlying neuronal

architectures. In particular, I study the distribution of different types of logic gates used to

perform motion detection, the size of the network (the number of neurons contributing to

the computation), and the presence of redundant logic gates, and their total complexity (i.e.,

number of logic gates). Furthermore, I investigate the evolutionary significance in complexity

variation between circuits by seeding the population with a handwritten Reichardt detector

circuit as the ancestor. I then ask whether an increase or decrease in their circuit complexity
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is observed even though the performance of these circuits could not improve. If we observe

a decrease in circuit complexity, it would suggest that the hand-written Reichardt detector

could be further optimized, and therefore, we may be able to find simpler neuronal circuits

in biological neuronal circuits. On the contrary, if we observe an increase in the complexity

of the circuits, it would imply that other factors such as historical contingency or mutational

robustness may be important factors in the evolution of visual motion detection circuits.

2. Intraspecific collision avoidance strategy based on apparent motion cues.

The visual system is a significant perceptual component of an animal’s cognitive system

and provides it with information about its environment, for example when foraging for food,

detecting predators or prey, and when searching for potential mates. Motion detection is one

of the primary dimensions of visual systems [20] and plays a key role in decision making for

most animals. In chapter 3 of this thesis, I study a specific type of behavior in Drosophila

melanogaster (the common fruit fly), which is proposed as a collision-avoidance strategy

based on visual motion cues. More precisely, I investigate the selective (i.e., evolutionary)

pressures that might have given rise to this behavior.

Fruit flies show an interesting behavior when perceiving two different types of optical flow

in their retina, i.e., back-to-front and front-to-back motions. In a study published in 2009

by Branson et al., researchers investigated the walking trajectories of groups of fruit flies

in a planar covered arena (so that they could only walk, not fly) using high-throughput

recorded data to study the flies’ behavior [25]. One of the results of their analysis showed that

female fruit flies stop walking when they see another fly moving from back-to-front in their

visual field (an optical flow referred to as “regressive motion”) whereas they keep walking

when they perceive conspecifics’ motion from front-to-back in their visual field (referred to

as “progressive motion”). Later, in a study published in 2012, Zabala et al. [207] further

studied this behavior and tested a hypothesis that suggested that flies stop walking when

perceiving regressive motion, and coined the term “regressive motion saliency”. They used
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a controllable fly-sized robot that interacted with a real fly in a planar arena. They used a

robot instead of an actual fly in order to exclude other sensory cues such as image expansion

(“looming,” see [163]) and pheromones. Their results provided rigorous support for the

regressive motion saliency hypothesis.

Subsequently, Chalupka et al. showed that a moving object (for example, another fly) that

produces regressive motion in a fly’s retina will reach the intersection point first whereas the

fly that reaches the intersection first always perceives progressive motion on its retina [33].

They suggested a hypothesis called “generalized regressive motion” that suggests this behav-

ior is a strategy to avoid collisions similar to the rules that ship captains use when moving

on intersecting paths (see, e.g., [110]). However, it is not evident a priori which selective

pressures or environmental circumstances could give rise to this behavior. For example,

it is unclear whether collision avoidance alone could be a significant enough evolutionary

factor for this behavior. In chapter 3, I test whether collision avoidance can be a sufficient

selective pressure for the evolution of this behavior. I also investigate the environmental

conditions, such as the varying costs and benefits involved, in the evolution of the described

behavior. I also explore how the interplay (and trade-offs) between the necessity to move and

the avoidance of collisions can result in the evolution of regressive motion saliency in digital

flies.

3. Sound localization.

Sound localization is another one of the fundamental cognitive neural circuits that has been

widely studied [130, 149]. Sound localization mechanisms in mammalian auditory systems

function based on various cues such as interaural time difference, interaural level difference,

etc. [128]. Interaural time difference (which is the main cue behind the sound localization

mechanism) is the difference between the times at which sound reaches the two ears. One

of the most prominent sound localization models was proposed by Jeffress [79], in which

sound reaches the right ear and left ear at two possibly different times. These stimuli are then
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processed in a sequence of delay components and reach an array of detector neurons. Each

detector fires only if the two signals from different pathways, the left ear pathway and the

right ear pathway, arrive at that neuron simultaneously.

I used sound localization circuits as a benchmark to study how well transfer entropy analy-

sis [165] can capture the information flow in neural circuits. Markov Brains have been shown

to be a suitable platform to study the information-theoretic correlates of fitness and network

structure in neural networks [45, 8, 164, 114, 85]. The Markov Brains platform enables us to

analyze structure, function, and circuitry of hundreds of evolved neural circuits. As a result, I

can perform statistical analysis on these evolved circuits (as opposed to studying only a single

evolutionary outcome), for example, investigate the frequency of different types of relations,

and further assess how crucial different operators are for each evolved task, by performing

knockout experiments in order to measure an operator’s contribution to the task.

4. Time perception.

Time perception refers to the subjective experience of time that can bemeasured by someone’s

own perception of the duration of events. Time perception is a key component in our ability to

deduce causation, to predict, infer, and forecast. As a result, time perception plays a key role in

the survival of an organism by predicting and deciphering events in the world [134, 160]. The

event duration perception is not objective, rather, we perceive temporal signals subjectively,

and our perception is influenced by various factors such as attention [193, 37, 32, 108, 188].

A central hypothesis in time perception posits that the more attention devoted to the temporal

characteristics of an event, the longer it is perceived [193, 37, 32, 108, 188]. There are

several competing models of time perception. In models such as Scalar Expectancy Theory

(SET) [54], it is assumed that event duration perception is performed with computations

similar to that of an internal clock [53, 54, 191]. Models like SET also assume that in

such an internal clock, the amount of attention allocated to the stimulus is adjusted based

on the amount of attention, and that the attention is uniformly distributed in time. On the
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contrary, in models such as Dynamic Attending Theory (DAT) [81, 82, 101] the attention is

not distributed uniformly in time, rather, the temporal structure of the stimulus may increase

or decrease levels of attention in time. In particular, rhythmic stimuli entrain the brain and

lead to periodic peaks and troughs of attention.

Interval timing models such as DAT and SET and their computational counterparts usually

take a top-down approach, meaning they are designed based on a set of rules so that they

can describe behavioral/psychophysical data in duration perception [53, 81, 82, 44, 117]. In

chapter 5 of this thesis, I take a bottom-up approach where I evolve a population of artificial

brains consisting of lower-level components. In particular, I use Darwinian evolution to

create artificial digital brains that are able to perform duration judgments in auditory oddball

paradigms, similar to experiments performed by Fromboluti and McAuley [121]. I then

study the evolved brains as though they are participants in a psychophysical experiment.

For example, I investigate psychometric parameters of the evolved brains, such as their

discrimination thresholds. I also can test these brains when exposed to stimuli patterns

that they have not experienced during evolution such as arrhythmic stimuli. Furthermore, I

can investigate the algorithms and computations involved in duration judgment, and analyze

how these algorithms allocate attention to different parts of the stimuli. This analysis can

demonstrate the similarities and differences of the evolved duration perception mechanisms

and the underlying mechanisms of SET and DAT models.

In this thesis, I studied only a few cognitive circuits, while there are many other well-studied

visual and auditory neural circuits as well as cognitive components. In the future, it is imperative

that we also investigate other modes of sensation such as olfaction and touch.

1.2 Outline

In the following chapters, I address various questions concerning neuronal circuits and present

my findings. In Chapter 2 I show how the evolution of motion detection circuits in Markov brains

can lead to a diversity of circuits with a variety of structures in gate compositions and with different
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levels of complexity. I also show that the complexity variation in evolved brains circuitry is due to

selection for mutational robustness. These results suggest that different species may evolve different

circuits for similar neuronal functions. In Chapter 3 I present the evolution of collision avoidance

in digital flies, test the “generalized regressive motion” hypothesis, and discuss the environmental

conditions and selective pressures that could give rise to this behavior. In Chapter 4 I investigate

whether transfer entropy measurements can infer the information flow in two different neuronal

circuits: visual motion detection and sound localization. In Chapter 5 I present the evolution of

Markov brains that solve the event duration judgment task, and how the analysis of the underlying

algorithms performed by digital brains can challenge existingmodels of time perception. In Chapter

6 I present a summary of my findings in completed projects and then I propose possible directions

for future research. My proposal is the evolution ofMarkov Brains that perform image classification

via saccadic eye movements.

In the remainder of this section, I briefly explain the findings from my finished projects that are

presented in more detail in Chapters 2-5.

1.2.1 Visual motion detection

A central goal of evolutionary biology is to explain the origins and distribution of diversity across

life. Beyond species or genetic diversity, we also observe diversity in the circuits (genetic or

otherwise) underlying complex functional traits. However, while the theory behind the origins and

maintenance of genetic and species diversity has been studied for decades, theory concerning the

origin of diverse functional circuits is still in its infancy. It is not known how many different circuit

structures can implement any given function, which evolutionary factors lead to different circuits,

and whether the evolution of a particular circuit was due to adaptive or non-adaptive processes.

Here, I use digital experimental evolution to study the diversity of neural circuits that encode

motion detection in digital (artificial) brains. I find that evolution leads to an enormous diversity

of potential neural architectures encoding motion detection circuits, even for circuits encoding the

exact same function. Evolved circuits vary in both redundancy and complexity (as previously found

14



in genetic circuits) suggesting that similar evolutionary principles underlie circuit formation using

any substrate. I also show that a simple (designed)motion detection circuit that is optimally-adapted

gains in complexity when evolved further, and that selection for mutational robustness led this gain

in complexity.

1.2.2 Collision avoidance mechanisms in Drosophila melanogaster

Flies that walk in a covered planar arena on straight paths avoid colliding with each other, but which

of the two flies stops is not random. High-throughput video observations, coupled with dedicated

experiments with controlled robot flies have revealed that flies utilize the type of optic flow on

their retina as a determinant of who should stop, a strategy also used by ship captains to determine

which of two ships on a collision course should throw engines in reverse. I use digital evolution to

test whether this strategy evolves when collision avoidance is the sole selective pressure. I find that

the strategy does indeed evolve in a narrow range of cost/benefit ratios, for experiments in which

the “regressive motion” cue is error free. I speculate that these stringent conditions may not be

sufficient to evolve the strategy in real flies, pointing perhaps to auxiliary costs and benefits not

modeled in our study.

1.2.3 Information flow in evolved in silico motion detection and sound localization circuits

How cognitive neural systems process information is largely unknown, in part because of how

difficult it is to accurately follow the flow of information from sensors via neurons to actuators.

Measuring the flow of information is different from measuring correlations between firing neurons,

for which several measures are available, foremost among them the Shannon information, which

is an undirected measure. Several information-theoretic notions of “directed information” have

been used to successfully detect the flow of information in some systems, in particular in the

neuroscience community. However, recent work has shown that directed information measures

such as transfer entropy can sometimes inadequately estimate information flow, or even fail to

identify manifest directed influences, especially if neurons contribute in a cryptographic manner
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to influence the effector neuron. Because it is unclear how often such cryptic influences emerge

in cognitive systems, the usefulness of transfer entropy measures to reconstruct information flow

is unknown. Here, I test how often cryptographic logic emerges in an evolutionary process that

generates artificial neural circuits for two fundamental cognitive tasks (motion detection and sound

localization). Besides counting the frequency of problematic logic gates, I also test whether transfer

entropy applied to an activity time-series recorded frombehaving digital brains can infer information

flow, compared to a ground-truthmodel of direct influence constructed from connectivity and circuit

logic. These findings suggest that transfer entropy will sometimes fail to infer directed information

when it exists, and sometimes suggest a causal connection when there is none. However, the extent

of incorrect inference strongly depends on the cognitive task considered. These results emphasize

the importance of understanding the fundamental logic processes that contribute to information

flow in cognitive processing, and quantifying their relevance in any given nervous system.

1.2.4 Evolution of event duration perception and implications on attentional entrainment

While cognitive theory has advanced several candidate frameworks to explain attentional entrain-

ment, the neural basis for the temporal allocation of attention is unknown. Here I present a new

model of attentional entrainment guided by empirical evidence obtained using a cohort of 50 ar-

tificial brains. These brains were evolved in silico to perform a duration judgment task similar to

one where human subjects perform duration judgments in auditory oddball paradigms. I found that

the artificial brains display psychometric characteristics remarkably similar to those of human lis-

teners, and exhibit similar patterns of distortions of perception when presented with out-of-rhythm

oddballs. A detailed analysis of mechanisms behind the duration distortion suggests that attention

peaks at the end of the tone, which is inconsistent with previous attentional entrainment models.

Instead, the suggested model of entrainment emphasizes increased attention to those aspects of the

stimulus that the brain expects to be highly informative.
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CHAPTER 2

EVOLUTION LEADS TO A DIVERSITY OF MOTION-DETECTION NEURONAL
CIRCUITS

One of the most astonishing aspects of life is the overwhelming amount of diversity that has

existed throughout life’s history. Ever since Charles Darwin published On the Origin of Species,

evolutionary biologists have tried to understand the processes that lead to biological diversity [41].

On the micro scale, the question of how genetic diversity is maintained within a population has been

of interest to population geneticists [89, 105, 180, 12] for decades; work on this topic still continues

to this day [58]. In a similar fashion, ecologists have long been interested in the ecological and

evolutionary processes that lead to the origins [156, 135] and maintenance [162, 35] of species

diversity. The rise of cheap sequencing technologies in recent years has led to the recognition of

another characteristic of biological diversity, molecular diversity [187], or diversity in the sense

that multiple genotypes can lead to the same phenotype [57]. In other words, evolution can lead to

a diversity of genetic circuits across species [194].

The evolutionary principles that lead to molecular diversity in genetic systems has been well-

explored. The relationship between genotype and phenotype must be many-to-one to allow for

the existence of neutral evolutionary trajectories between genotypes. Computational studies of

metabolic networks, gene regulatory networks, and RNA-structure networks [reviewed in [200]] all

show evidence of neutral paths that conserve phenotypes between different genotypes. Many-to-one

genotype-phenotype mappings are even present in artificial digital evolution systems [e.g., [100,

50, 99]] and evolutionary simulations of digital logic circuits [157]. Empirical studies of bio-

logical systems suggest the existence of multiple genotypes encoding similar phenotypes, either

through genetic analysis [195, 181], comparative genomics [39], or experimental evolution [106,

73]. However, the evolutionary reasons why populations evolve one genotype instead of another

genotype, or which evolutionary processes lead to the evolution of different genotypes, are largely

unexplored in biological systems due to the difficulty of deciphering every possible evolutionary
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trajectory and process, and the waiting time required for many of these evolutionary events to occur

[but see [106]]. This difficulty presents a prime opportunity for artificial life and digital evolution

studies to perform “digital genetics" and test hypotheses for why some populations, but not others,

evolve certain genotypic characteristics [1].

Genetic circuits are not the only biological network shaped by evolution. Neuronal circuits are

also shaped by selective pressures, and much work has been devoted to understand those. Much of

the literature, however, has focused on whether evolution optimizes the wiring patterns of a brain,

or the efficiency of the circuitry [see, e.g., the discussion in chapter 7 of [175]]. For example, it

is clear that the wiring pattern of the neuronal circuitry of the roundworm Caenorhabditis elegans

is not optimal [7]. At the same time, there appear to be certain network motifs that are strongly

favored in the worm brain [154], suggesting that evolution has a hand in optimizing computational

efficiency. However, very little is known about the wiring diversity underlying circuits with the

same function. According to the principles of evolvability and robustness discussed above, such

diversity could be key for the adaptability of brains. In fact, both modeling [152] and empirical [56]

studies have shown that neuronal circuits can vary in their internal parameters but lead to the same

functional output [111]. Andwhile many of these studies examine variation within one species [56],

similar results have also been found between species, suggesting evolutionary mechanisms can also

cause these differences [171]. This outcome is not surprising, as evolution and natural selection

is expected to primarily act on the function, not the circuit encoding said function [171]. These

results motivate the question as to how and why evolution leads to neuronal circuits with different

characteristics for the same function.

Here we use digital evolution to study the evolution of neuronal circuits for visual motion

detection. Perception of moving objects in the environment is of utmost significance from an

evolutionary standpoint since it can be critical to survival of animals (including humans); detecting

predators, prey, or falling objects can pose a live or die question [143]. In the 1950s, Werner

Reichardt along with Bernhard Hassenstein proposed a simple computational model [now known

as the Reichardt detector], that is based on a delay-and-compare scheme [65]. The main idea behind
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this model is that a moving object stimulates two adjacent receptors (or regions) in the retina at

two different time points. In Fig. 2.1(A), an object (a star) is moving from left to right stimulating

two adjacent receptors n1 and n2, at time points C and C + ΔC. In the neural circuit illustrated in

Fig. 2.1(A), which is a portion of the entire Reichardt detector circuit, g functions as a temporal

filter that delays the received stimulus from receptor n1. This delayed signal will then be multiplied

(in the × neuron) with the stimulus received in n2 at C + ΔC. This multiplication result, therefore,

detects motion from left to right. However, this half-circuit only detects motion in one direction. In

the full Reichardt detector circuit shown in Fig. 2.1(B), the outcome of the multiplication from two

similar computations, but in opposite directions, are subtracted. Thus, the result will be a positive

value for left to right motion (also called preferred direction, PD), and negative for right to left

motion, (termed the null direction, ND).

Figure 2.1: (A) A half Reichardt detector circuit. An object (star) moving from left to right
stimulating two adjacent receptors, n1 and n2, at time points C and C + ΔC. (B) A full Reichardt
detector circuit. In full Reichardt detector circuits, the results of the multiplications from each half
circuit are subtracted.

Beyond the Reichardt detector, other types of motion detection models were also proposed, e.g.

edge-based models [113] and spatial-frequency-based models [6]. However, most computational

motion detection models are based on the delay-and-compare scheme [143]. For example, the

Barlow-Levick (BL) motion detection model [13] is similar to the Reichardt model in that it also
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employs asymmetric temporal filtering of signals that are then fed to a non-linearity component, but

they differ in the location of the filter and type of non-linearity component. While motion detection

in mammals and in particular humans is expected to be far more complex, there are significant

similarities to the basic Reichardt detector logic [22], and thus the Reichardt detector “module" of

motion detection is likely a key component of all motion detection circuits.

Using digital experimental evolution methods, we found that motion detection circuits can be

encoded by a wide diversity of neuronal architectures. Evolved brains differ in the logic gates used

to perform motion detection, in the wiring between these logic gates, in the presence of redundant

logic gates, and in their total complexity (i.e., number of logic gates). We explored the evolutionary

significance in complexity variation between brains by evolving brains using a handwritten optimal

motion detection circuit as the ancestor. These brains also increased in complexity although no

improvement in the performance of their circuit could occur. Instead, these brains evolved greater

complexity due to selection for mutational robustness. These results suggest that different species

may evolve different circuits for similar neuronal functions.

2.1 Methods

In this study, we use an agent-based model to study evolution of computational visual motion

detection circuits. In this model, agents embody neural networks known as “Markov brains"

(MB) [69]. Markov brains have three different types of neurons that help the agent interact with the

outside world: 1) sensory neurons, that receive the information from the environment, 2) hidden

neurons that assimilate the agent’s processing unit, and 3) decision (“motor") neurons that function

as the actuators of the agent. In other words, sensory neurons are written to by the surrounding

environment, hidden neurons process the received information, and the decision neurons specify

the actions of the agent in its environment.

Markov brains are evolvable networks of neurons in which the neurons are connected via

probabilistic/deterministic logic gates. In the experimental setup used in this study, a logic neuron
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is a binary variable whose state is either 0 or 1 (it is quiescent or it fires1). The states of the neurons

are updated in aMarkov fashion, i.e., the probability distribution of states of the neurons at time step

C + 1 depends only on the states of neurons at time step C as shown in Fig. 2.2(A). That figure shows

a Markov brain with 11 neurons and two hidden Markov gates (HMG) at two consecutive time

steps C and C + 1. Hidden Markov gates determine how the states of the neurons at time step t+1 are

updated given the states of the neurons at time C. For example in Fig. 2.2(B), gate 1 takes the states

of neurons 0, 2, and 6 as inputs and writes updated states to output neurons 6 and 7. Each hidden

Markov gate has a probabilistic logic table that specifies the probability of every possible output

given the states of the input (Fig. 2.2(C)). That figure shows the probability table of gate 1 with

8 rows for all possible input states, and 4 columns for each possible output states (note that there

are 23 = 8 possible input states for 3 binary inputs, and similarly, 22 = 4 for outputs). Each entry

in the table represents the probability of a specific output, given a particular input. For instance,

?53 represents the probability of getting output states 〈1, 1〉, with decimal representation 3, given

the input states 〈1, 0, 1〉, with decimal representation 5. As a result, the sum of the probabilities of

each row should be equal to 1. In this work, we constrain hidden Markov gates to be deterministic,

therefore, the output states will always be the same given a particular input (probabilities in the

table are either 0 or 1 and only one entry in each row of the table can be equal to 1). Markov brains

can evolve to perform a variety of tasks such as active categorical perception [115], swarming

in predator-prey interactions [139], collision avoidance strategies using optical flow classification

in fruit flies [186], and decision making strategies in humans [97]. In the evolutionary process,

the connections of the networks and the underlying logic of the connected gates change (evolve),

and therefore, the agents adapt to their environment. More specifically, the number of gates, how

each gate is connected to its inputs/outputs neurons, and the logic table of the gates are subject

to evolution. However, the total number of neurons, the number of each type of neurons (i.e.,

sensory neurons, hidden neurons, and decision neurons), does not change during evolution. In our

experimental setup for instance, we use MBs with 16 neurons in which two neurons (neurons 1

1These logic neurons are thought to represent the state of groups of biological neurons.
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Figure 2.2: (A) A Markov brain with 11 neurons and 2 gates shown at two time steps C and C + 1.
The states of neurons at time t and the logic operations of gates determine the states of neurons at
time C + 1. (B) One of the gates of the MB whose inputs are neurons 0, 2, and 6 and its outputs are
neurons 6 and 7. (C) Probabilistic logic table of gate 1.

and 2) are designated as sensory neurons, and two neurons (neurons 15 and 16) are assigned as

decision neurons, while the remaining 12 neurons are hidden neurons. In order to evolve MBs, we

Figure 2.3: A Markov brain is encoded in a sequence of bytes that serves as the agent’s genome.

apply a Genetic Algorithm (GA) to a population of MBs in which each MB is encoded in a genome

as shown in Fig. 2.3. The genome of each MB is a sequence of numbers in the range [0,255] (a

sequence of bytes) that encodes hidden Markov gates (HMGs), their connections, and their logic.

The arbitrary pair 〈42, 213〉 is chosen as the start codon for each gate. The next two bytes following
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the start codon encode the number of inputs and the number of outputs of the HMG, respectively. In

our experimental setup, we constrained MBs to always have 2 inputs and 1 output, therefore, these

two bytes are ignored in transcription. The subsequent (downstream) loci in the genome encode

which neurons are connected to this HMG as input, which neuron is connected to the output, and

finally the logic table of the HMG.

In our experimental setup, we initialized the populations with 100 genomes with 5,000 random

bytes. We sprinkled those random bytes with four start codons in each genome to speed up initial

evolution. Thus, all genomes in the initial population have at least four random HMGs. As

mentioned before, all HMGs in our setup are deterministic and have 2 inputs and 1 output. As a

result, HMGs can only have 16 possible logic tables. We ran 100 replicates of this experiment for

10,000 generations with mutations, roulette wheel selection, and 5% elitism. The GA configuration

is presented in more detail in Table 5.2.

Table 2.1: Genetic Algorithm configuration. We evolved 100 populations of 100 MBs for 10,000
generations with point mutations, deletions, and insertion. We used roulette wheel selection, with
5% elitism, and with no cross-over or immigration.

Population size 100
Generations 2000

Initial genome length 5,000
Initial start codons 4
Point mutation rate 0.5%
Gene deletion rate 2%

Gene duplication rate 5%
Elitism 5%

Crossover None
Immigration None

The fitness function is designed in order to evolveMBs that function as a visual motion detection

circuit. In doing so, two sets of stimuli are presented to the agent in two consecutive time steps and

the agent classifies the input as either: motion in preferred direction (PD), stationary, or motion

in null direction (ND). Neurons 1 and 2 (the sensory neurons) represent two adjacent receptors

separated by a fixed distance that can sense the presence or the absence of a visual stimulus.

The binary value of the sensory neuron becomes 1 when a stimulus is present, and it becomes
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(or remains) 0 otherwise (see Fig. 2.4). Thus, there are 16 possible sensory patterns that can be

presented to the agent (2 binary neurons at 2 time steps). Among these 16 input patterns, 3 input

patterns are PD, 3 are ND, and the other 10 are stationary patterns. Agents classify the sensory

pattern with 2 decision neurons, neurons 15 and 16. We assigned the sum of the values of the

decision neurons to represent the category of the sensory pattern: when both decision neurons

fire (sum=2), the sensory pattern is classified as PD, when only one of the decision neurons fires

(sum=1), the sensory pattern is classified as stationary, and when neither fire the sensory pattern is

classified as ND (sum=0). We chose this encoding for three classes of input pattern to facilitate the

evolution of motion detection circuits. In preliminary experiments, we tried three different methods

of encoding input pattern classes and found this one to evolve the fastest. In those preliminary

experiments, we tried the following alternative encodings: assigning one neuron to each class (i.e.

three decision neurons), assigning the decimal value of the pair of decision neurons to each class,

i.e., 00 → ND, 01 → stationary, 10 → PD, and ignore 11, and finally assigning the sum of the

values of decision neurons to each class. For the last two encoding methods, we tried all possible

permutations of encodings and the one we chose consistently leads to the best results.

Figure 2.4: Schematic examples of three types of input patterns received by the two sensory neurons
at two consecutive time steps. Grey squares show presence of the stimuli in those neurons. (A)
Preferred direction (PD). (B) Stationary stimulus. (C) Null direction (ND).

All agents of the population are evaluated in all 16 possible sensory patterns and gain a reward

for correct classification (no reward or penalty for incorrect classifications). The reward values for

correct classifications of each class is inversely proportional to their frequency: the reward for PD

and ND patterns are 10, and the reward value for correct classification of stationary patterns are
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3. However, in the results presented in the next section, all fitness values are normalized to take a

maximum value of 100.

2.2 Results

After evolving 100 populations for 10,000 generations, we isolated one of the genotypes with

the highest score from each population and analyzed its ability to perform the same function as a

motion detection circuit. Seventy-five of the one hundred brains evolved a perfect motion detection

circuit (correct classification of all 16 patterns); we used those brains for the rest of our analysis.

A preliminary analysis of our evolved brains suggested that evolution led to a wide diversity of

neuronal circuit architectures. Amongst our population of 75 brains, we found both relatively

simple neuronal circuits (Fig. 2.5(A)) and more complex neuronal circuits (Fig. 2.5(B)), suggesting

that not only does evolution lead to a large number of different motion detectors, but they also all

vary in complexity (defined here as the number of gates composing a circuit).

(b)

(a)

Figure 2.5: Markov brains evolve alternative circuits to encode amotion detection circuit (duplicated
logic gateswith same inputs and outputs are omitted). (A) Example simple evolvedmotion detection
circuit. (B) Example complex evolved motion detection circuit. Gate symbols are US Standard.

To gain a better understanding of the diversity of neuronal circuits evolved in this study, we

performed gate-knockout assays on all 75 brains. We sequentially eliminated each logic gate and
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re-measured the mutant brain’s fitness, thus allowing us to estimate which gates were essential to

the motion detection function (if mutant fitness decreased) and which gates were redundant to the

motion detection function (if mutant fitness was equal to the ancestral fitness). There was a wide

distribution in the number of essential logic gates, ranging from two logic gates to ten logic gates,

with a mean of 4.82 gates (Fig. 2.6(A)). This result supports the idea that there is a wide diversity

of possible motion detection circuits available to evolution. We also measured the number of

redundant logic gates and found our evolved brains possessed an even greater number of gates that

had no apparent contribution to the circuit’s function (Fig. 2.6(B)), suggesting that either a large

portion of the complexity of these motion detection circuits evolved neutrally, or that selection for

redundancy and mutational robustness is involved.

(a)

(b)

Figure 2.6: Evolved motion detection circuits vary greatly in complexity. (A) Histogram of the
number of essential gates (i.e., gates that resulted in a fitness loss when removed) for each evolved
motion detection circuit. (B) Histogram of the number of redundant gates (i.e., gates that resulted
in no fitness loss when removed) for each evolved circuit.

We also examined the types of logic gates that were either essential or redundant to each brain by

26



recording the average number each gate was found within each evolved brain. We found surprising

similarities in the distribution of the average presence of each logic gate between both essential

gates (Fig. 2.7(A)) and redundant gates (Fig. 2.7(B)). The six most-abundant logic gates in both the

essential and the redundant gate distribution were NOR, OR-NOT, AND-NOT, NOT, COPY, and

EQU. These results suggest either that evolved motion detection circuits may incorporate whichever

gates are most easily-evolved (in the sense that they interact with other gates without fitness trade-

offs) or that they may have evolved the same redundant gates as their essential gates in order to

encode robustness against mutations.

(a)

(b)

Figure 2.7: Distribution of specific gates used in evolved motion detectors. (A) Average number
of essential logic gates of each type of logic gate per evolved brain. Error bars represent 95%
confidence intervals. (B) Average number of redundant logic gates of each type of logic gate per
evolved brain. Error bars represent 95% confidence intervals.

Multiple pieces of evidence suggest that the complexity of our evolved brains did not evolve

solely to perform themotion-detection function. Our evolved brains aremore complex than required

to encode a motion detection circuit (Fig. 2.6). The large abundance of redundant gates suggests

that either these brains are neutrally evolving increased complexity or are evolving mutational

robustness due to high mutation rates. The similarities in the distribution of both essential and

redundant logic gates suggests either that certain gates arise due to their intrinsic abundance in
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the fitness landscape, or because they can compensate for mutations to otherwise essential gates.

Therefore, to test for the reason behind our evolved brains’ complexity, we hand-wrote a simple

Reichardt detector with optimal individual fitness (Fig. 2.8(A)), evolved 100 populations under

the same protocol as before, and repeated our knockout analysis. If the evolution of complexity

was either non-adaptive or due to selection for increased redundancy and robustness, we would

expect these simple brains to increase in complexity upon further evolution. However, if the motion

detector circuit’s evolved complexity is due to difficult-to-break historical contingency, we would

expect little change in the brains evolved from hand-written Reichardt detectors.

(a)

(b)

(c)

Figure 2.8: Evolution of a simple Reichardt detector leads to greater complexity. (A) Diagram of
a hand-written Markov Brain encoding a simple Reichardt detector (B) Distribution of the number
of essential gates for brains evolved from a hand-written ancestor. (C) Mutational sensitivity of
evolved motion detectors.

The results from the knockout analysis demonstrated that the brains evolved from a hand-written
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Reichardt detector increased in complexity when evolved further (Fig. 2.8(B)), suggesting that the

increased complexity seen in Fig. 6 was not due to historical contingency, but to other evolutionary

factors. To test if these evolved brains were shaped by selection for mutational robustness, we

measured the mutational sensitivity of each brain by calculating the average fitness loss from

removing one logic gate and multiplying this loss by the total number of gates in each brain. Those

evolved brains were less mutationally-sensitive (or more mutationally-robust) than their hand-

written ancestor (Fig. 2.8(C)), suggesting that the additional gates evolved in order to increase the

brain’s robustness to mutations. However, we should also note that some brains did evolve a greater

mutational sensitivity, suggesting that either robustness was evolved beyond single-step mutations

or that there is some role for non-adaptive evolutionary processes in driving circuit architecture.

2.3 Discussion

We tested if a computational model could evolve a wide diversity of neuronal architectures,

and studied evolutionary trends in the evolution of these neuronal architectures. We found that

selection for motion detection does lead to a wide diversity of neuronal circuits even though each

has the same overall function. Most brains are more complex than the standard model for motion

detection: the Reichardt detector. Each brain uses many different logic-gate components, although

some gates are more common than others. A large portion of the evolved complexity in these brains

results from the evolution of redundant gates. We also showed that even hand-written Reichardt

detectors increase in complexity when evolved further, suggesting that the large complexity is

due to either non-adaptive evolution or selection for functional redundancy. Measurements of the

evolved brains’ mutational sensitivity suggested they had indeed evolved mutational robustness,

illustrating one additional selective pressure beyond basic functionality on the neuronal architecture

of motion-detection circuits.

We undertook this study to see if some of the trends detected in the evolution of genetic circuits

occurred in the evolution of Markov brains [194]. As found in many other functional systems,

including those based on biochemistry [200] and those based on various digital substrates [157, 50,
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30], there is a wide variety of diverse neuronal architectures that can encode a motion-detection

circuit that is logically equivalent to that of a Reichardt detector. Our results are in accordance with

previous results that showed neuronal circuits with the same functional output could vary between

species [171]. These results suggest that a diversity of neuronal architectures may exist for species

across life. Our results also suggest that any system with interacting individual components that,

when combined, lead to a functioning circuit may possess a diversity of circuits that provide the

same function.

While it is perhaps not surprising that our evolved digital brains are different from the default

Reichardt detector encoding, we did not expect them to be much more complex. Thus, it is worth

discussing how some of our experimental design decisions could have influenced these differences.

One likely difference between our evolved brains and real brains is the lack of any fitness cost for

larger brains in our model. If each neuron or logic gate was associated with a fitness cost, then one

would intuitively expect the evolved brains to be simpler than what we found them to be. On the

other hand, neuro-anatomical evidence has suggested that wiring length and connection cost do not

appear to be minimized in brains [see also [68]].

Another difference between digital and biological brains is that we only selected on one trait

here. The evolution of neuronal circuits is likely constrained by pleiotropic interactions with other

functional circuits, as with genetic systems [174]. Finally, compared to biological systems, Markov

brains evolved under of a very high mutation rate, something that is known to alter the evolution

of genetic architecture towards mutational robustness [203]. It is likely that Markov brains would

have evolved less-complex circuits with a decreased mutation rate, although the magnitude of this

effect is not known.

We envision the results we presented here as a first step in establishing Markov brains as a

model system to study the potential neuronal architectures evolved by Darwinian natural selection.

Some of the limitations discussed above present fruitful avenues for future work that may lead to

further insights into the evolutionary potential of biological brains. Although we did not attempt a

more-precise classification of our evolved circuits beyond their complexity and their specific logic
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gates, we see this as a possible endeavor. If the addition of further selection pressures results in the

evolution of simpler brains than those evolved here, this task should be achievable. Such studies

should lead to a more predictable theory of the diversity of neuronal circuits.
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CHAPTER 3

FLIES AS SHIP CAPTAINS? DIGITAL EVOLUTION UNRAVELS SELECTIVE
PRESSURES TO AVOID COLLISION IN DROSOPHILA

3.1 Introduction

How animals make decisions has always been an interesting, yet controversial, question to

scientists [125] and philosophers alike. Animals obtain various types of sensory information from

the environment and then process these information streams so as to take actions that benefit them

in survival and reproduction. The visual system plays an important role in providing animals

information about their environment, for example when foraging for food, detecting predators or

prey, and when searching for potential mates. One of the primary components of visual information

is motion detection. Motion is a fundamental perceptual dimension of visual systems [20] and is

a key component in decision making in most animals. Here, we study a very particular type of

motion detection and concomitant behavior (collision avoidance) in Drosophila melanogaster (the

common fruit fly), and attempt to unravel the selective (i.e., evolutionary) pressures that might have

given rise to this behavior.

D. melanogaster shows a striking difference in behavior when exposed to two different types

of optical flow. [25] recorded the interaction of groups of fruit flies in a planar covered arena (so

that they could only walk, not fly) and used computer vision algorithms to analyze the walking

trajectories in order to study fly behavior. Their analysis revealed that female fruit flies stop

walking when they perceive another fly’s motion from back-to-front in their visual field (an optical

flow referred to as “regressive motion”) whereas they keep walking when perceiving conspecifics

moving from front-to-back in their visual field (referred to as “progressive motion,” see Figure 3.1).

[207] further investigated this behavior and tested the “regressive motion saliency” hypothesis,

suggesting that flies stop walking when perceiving regressive motion. They used a programmable

fly-sized robot interacting with a real fly to exclude other sensory cues such as image expansion
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Figure 3.1: An illustration of regressive (back-to-front, left) and progressive (front-to-back, right)
optic flows in a fly’s retina.

(“looming,” see [163]) and pheromones. Their results provide rigorous support for the regressive

motion saliency hypothesis.

Subsequently, [33] coined the term “generalized regressive motion” for optic flows in which

images move clockwise on the left eye and conversely, counterclockwise on the right eye (see

Figure 3.1). They presented a geometric analysis for two flies moving on straight, intersecting

trajectories with constant velocities and showed that the fly that reaches the intersection first always

perceives progressive motion on its retina, whereas the one that reaches the intersection later

perceives regressive motion at all times before the other fly reaches the intersection. They went on

to suggest that this behavior is a strategy to avoid collisions during locomotion similar to the rules

that ship captains use when moving on intersecting paths (see, e.g., [110]).

As intriguing as this hypothesis may seem, it is not clear a priori which selective pressures or

environmental circumstances could give rise to this behavior. For example, it is unclear whether

collision avoidance provides a significant enough fitness benefit. As a consequence, it is possible

that the behavior has its origin in a completely different cognitive constraint that is fundamentally

unrelated to collision avoidance, or to the rules that ship captains use to navigate the seas. While

such questions are difficult to answer using traditional behavioral biology methods, Artificial Life

offers unique opportunities to test these hypotheses directly.

In this study, we tested whether collision avoidance can be a sufficient selective pressure for

33



the described behavior to evolve. We also investigated the environmental conditions under which

this behavior could have evolved, in terms of the varying costs and benefits involved. By using an

agent-based computational model (described in more detail below), we studied how the interplay

(and trade-offs) between the necessity to move and the avoidance of collisions can result in the

evolution of regressive motion saliency in digital flies.

Digital evolution is currently the only technique that can study hypotheses concerning the selec-

tive pressures necessary (or even sufficient) for the emergence of animal behaviors, as experimental

evolution with animal lines of thousands of generations is impractical. In digital evolution, we

can study the interplay between multiple factors such as selective pressures, environmental condi-

tions, population size and structure, etc. For example, Olson et al. ([140]) used digital evolution

to show that predator confusion is a sufficient condition to evolve swarming behavior, but they

also found that collective vigilance can give rise to gregarious foraging behavior in group-living

organisms [137]. In principle, any one hypothesis favoring the emergence of behavior can be tested

in isolation, or in conjunction [137].

3.2 Methods

3.2.1 Markov Networks

We use an agent-based model to simulate the interaction of walking flies with moving objects (here,

potentially conspecifics) in a two-dimensional virtual world. Agents have sensors to perceive their

surrounding world (details below) and have actuators that enable them to move in the environment.

Agent brains in our experiment have altogether twelve sensors, three internal processing nodes,

and one output node (the actuator). The brain controlling the agent is a “Markov network brain”

(MNB), which is a probabilistic controller that makes decisions based on sensory inputs and internal

nodes [45]. Each node in the network (i.e., sensors, internal nodes, and actuators) can be thought

of as a digital (binary) neuron that either fires (value=1), or is quiescent (value=0). Nodes of

the network are connected via Hidden Markov Gates (HMGs) that function as probabilistic logic

gates. Each HMG is specified by its inputs, outputs, and a state transition table that specifies the
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Figure 3.2: Probabilistic logic gates in Markov network brains with three inputs and two outputs.
One of the outputs writes into one of the inputs of this gate, so its output is “hidden.” Because
after firing all Markov neurons automatically return to the quiescent state, values can only be kept
in memory by actively maintaining them. Probability table shows the probability of each output
given input values.

probability of each output state based on input states (Figure 3.2). For example, in the transition

table of Figure 3.2 (a three-input, two-output gate), the probability ?73 controls the likelihood that

the output state is 3 (the decimal equivalent of the binary pattern 11, that is, both output neurons

fire) given that the input happened to be state 7 (the decimal translation of 111, i.e., all inputs are

active). MNBs can consist of any number of HMGs with any possible connection arrangement,

given certain constrains (see for example [45]).

Figure 3.3: An illustration of a portion of genome containing two genes that encode two HMGs.
The first two loci represent start codon (red blocks), followed by two loci that determine the number
of inputs and outputs respectively (green blocks). The next four loci specify which nodes are
inputs of this gate (blue blocks) and the following four specify output nodes (yellow blocks). The
remaining loci encode the probabilities of HMG’s logic table (cyan blocks).

The number of gates, their connections, and how they work is subject to evolution and changes

across individuals and through generations. For this purpose, the agent’s brains are encoded in a
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genome, which is an ordered sequence of integers, each in the range [0,255], i.e., one byte. Each

integer (or byte) is a locus in the genome and specific sequences of loci construct genes, where

each gene codes for one HMG. The “start codon” for a gene (i.e., the sequence that determines the

beginning of the gene) in our encoding is the pair (42,213) (these numbers are arbitrary). Each gene

encodes exactly one HMG, for example as shown in Figure 3.3. The gene specifies the number of

inputs/outputs in each HMG, which nodes it reads from and writes to (the connectivity) and the

probability table that determines the gates’ function. As shown in Figure 3.3, the first two bytes

are the start codon, followed by one byte that specifies the number of inputs and one byte for the

number of outputs. The bytes are modulated so as to encode the number of inputs and outputs

unambiguously. For example, the bytes encoding the number of inputs is an integer in [0,255]

whereas a HMG can take a maximum of four inputs, thus we use a mapping function that generates

a number ∈ [1,4] from the value of this byte. The next four bytes specify the inputs of the HMG,

followed by another four bytes specifying where it writes to. The remaining bytes of the gene

are mapped to construct the probabilistic logic gate table. MNBs have been used extensively in

the last five years to study the evolution of navigation [45, 84], the evolution of active categorical

perception [116, 9], the evolution of swarming behavior as noted earlier, as well as how visual

cortices [34] and hierarchical groups [71] form. In this work, we force the gates to be deterministic

rather than probabilistic (all values in the logic table are 0 or 1), which turns our HMGs into

classical logic gates.

3.2.2 Experimental Configurations

We construct an initial population of 100 agents (digital flies), each with a genome initialized

with 5,000 random integers containing four start codons (to jump-start evolution). Agents (and

by proxy the genomes that determine them) are scored based on how they perform in their living

environment. The population of genomes is updated via a standard Genetic Algorithm (GA)

for 50,000 generations, where the next generation of genomes is constructed via roulette wheel

selection combined with mutations (detailed GA specifications are listed in Table 3.1). To control
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for the effects of reproduction and similar effects, there is no crossover or immigration in our GA

implementation.

Each digital fly is put in a virtual world for 25,000 time steps, during which time its fitness

score is evaluated. During each time step in the simulation, the agent perceives its surrounding

environment, processes the information with its MNB, and makes movement decisions according

to the MNB outputs. The sensory system of a digital fly is designed such that it can see surrounding

objects within a limited distance of 250 units, in a 280◦ pixelated retina shown in Figure 3.4. The

state of each sensor node is 0 (inactive) when it does not sense anything within the radius, and

turns to 1 (active) if an object is projected at that position in the retina. Agents in this experiment

have one actuator node that enables them to move ahead or stop, for active (firing) and non-active

(quiescent) states respectively.

Table 3.1: Configurations for GA and Environmental setup

GA Parameters Environment Parameters
Population size 100 Vision range 250
Generations 50,000 Field of vision 280◦
Point mutation rate 0.5% Collision range 60
Gene deletion rate 2% Agent velocity 15
Gene duplication rate 5% Event time steps 250
Initial genome length 5,000 No. of events 100
Initial start codons 4 Moving reward 0.004
Crossover None Collis. penalty 1,2,3,5,10
Immigration None Replicates 20

In our experiment, the digital flies exist in an environmentwhere they shouldmove to gain fitness,

representing the fact that organisms should forage for resources, mates, and avoiding predators.

Thus, the fitness function is set so that agents are rewarded for moving ahead at each update of the

world, and are penalized for colliding with objects. The amount of fitness they gain for moving (the

benefit) is characteristic of the environment, and we change it in different treatments. The penalty

for collisions represents the importance of collision avoidance for their survival and reproduction,

and we vary this cost also. Each digital fly sees 100 moving objects (one at a time) during its

lifetime, and we say that it experiences 100 “events.” The penalty-reward ratio (PR) determines
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Figure 3.4: The digital fly and its visual field in the model. Flies have a 12 pixel retina that is
able to sense surrounding objects in 280◦ within a limited distance (250 units). The red circle is
an external object that can be detected by the agent within its vision field. Activated sensors are
shown in red, while inactive sensors are blue. In (A) the object activates two sensors, in (B) the
object is detected in one sensor, and in (C) the object is outside the range.

the amount of penalty of collision divided by the reward for moving during the entirety of an event.

So for example, PR=1 means the agent loses all the rewards it gained by walking during the whole

event if it collides with the object in that event:

fitness =
∑

events
(reward − %' × collision) , (3.1)

where reward ∈ [0, 1] reflects how many time steps the agent moved during the event. Our

experiments are constructed such that all objects that produce regressive motion in the digital retina

will collide with the fly if it keeps moving. The reason for biasing our experiments in this manner

is explained in the following section.

3.2.3 Collision Probability in Events with Regressive Optic Flow

Asmentioned earlier, Chalupka et al. ([33]) showed that for two fliesmoving on straight, intersecting

trajectories with constant velocities, the fly that reaches the intersection first always perceives

progressive motion on its retina while the counterpart that reaches the intersection later perceives

regressive motion at all times before the first fly reaches the intersection. However, this does not

imply that all objects that produce a regressive motion on a fly’s retina will necessarily collide with
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Figure 3.5: An illustration of a moving fly at the onset of the event.

it. In this section we present a mathematical analysis to discover how often objects that produce

regressive motion in the fly’s retina will eventually collide with the fly if it continues walking.

Suppose a fly moves on a straight line with constant velocity \fly and an object is also moving

on a straight line with constant velocity \obj (Figure 3.5(A)). The fly is able to perceive objects

within distance 'v8B, its vision range (Figure 3.5(A)). The object is assumed to be a point in the

plane and the distance between this point and the center of the visual field of the fly is defined to

be the distance between them. We define “the onset of the event” as the first time the object is

detected by the fly. At the onset of the event, the object is at the distance 'vis of the fly at relative

azimuthal angle U ∈ [0, c2 ] (Figure 3.5(A)).We assume that the object can be at any relative position

Xvis = ('vis, U)1 with equal probabilities (the probability distribution of U is uniform around the

fly). The velocity of the object can be represented as \obj = (+obj, \) where \ ∈ [−c2 ,
c
2 ] (note that

\obj is constant). We also assume that the velocity of the object can point in all directions with

equal probabilities (the probability distribution of \ is uniform). The relative velocity of the object

with respect to the fly is \rel = \obj −\fly (Figure 3.5). Since both \obj and \fly are constant, \rel

is also a constant vector.
1Here and below, we represent vectors either in boldface or by the parameters that determine

them within a planar polar coordinate system. Thus the vector X is represented by ( |X |, q), where
'G = ' cos q and 'H = ' sin q.
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3.2.3.1 Proposition 1.

A moving object produces regressive motion on a fly’s retina if:

\ > −U + arcsin(
+fly
+obj

cosU) . (3.2)

3.2.3.2 Proof.

In order for the object to produce regressive motion on the retina, the relative velocity should

be pointed above the center point O. The relative velocity direction W can be found awith \rel =

(+rel, W), as

W = arctan

(
+relH
+relG

)
= arctan

(
+obj sin \ −+fly
+obj cos \

)
. (3.3)

The angle W should be greater than the central angle (Figure 3.5(B)), that is, W > −U. Replacing W

and simplifying, we obtain:

\ > −U + arcsin(a cosU), a =
+fly
+obj

. (3.4)

For smaller values of \, the object produces progressive optic flow. We thus define \min =

−U + arcsin(a cos(U)) as the minimum angle \ that produces regressive motion on the retina.

3.2.3.3 Definition 1.

The object remains “observable” to the fly after the onset of the event if its relative velocity is

directed toward the inside of the fly’s vision field (to the left of the tangent line X1 in Figure 3.5(B)).

3.2.3.4 Proposition 2.

The object remains observable to the fly if:

\ < arccos(−
+fly
+obj

sinU) − U . (3.5)
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3.2.3.5 Proof.

According to the definition the sufficient condition for observability is that W should be less than

the tangent line X1 angle: W < −U + c2 . Replacing W and simplifying we obtain

\ < arccos(−a sinU) − U . (3.6)

For greater values of \, the object will be out of vision range of the fly. Thus the maximum value

that \ can take on is:

\max = arccos(−a sinU) − U . (3.7)

In order for the object to produce regressive motion on fly’s retina and also remain observable to

the fly, relative velocity should be within the arc k (Figure 3.5(B)).

3.2.3.6 Definition 2.

The object collides with the fly if its distance with the fly is less than “collision range” 'coll

(Figure 3.5(B)).

3.2.3.7 Proposition 3.

An object that creates regressive optic flow on the fly’s retina and remains observable will collide

with it if:

\ < q + arcsin(a cos q), q = arcsin('coll
'vis
) − U . (3.8)

3.2.3.8 Proof.

The relative velocity of such object is within arc k. This object will collide with the fly if its relative

velocity is within the arc spanned by the angle V, i.e. lower than tangent line to collision circle

(Figure 3.5(B)). This condition holds true if:

W < V − U, V = arcsin('coll
'vis
) . (3.9)
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Let d = 'coll
'vis

and q = V − U. Replacing W and rearranging gives:

\ < q + arcsin(a cos q) . (3.10)

For greater values of \, the object produces regressive motion on the fly’s retina but does not collide

with it. So the threshold collision angle is given by:

\col = q + arcsin(a cos q) . (3.11)

As mentioned, we assume that the probability distribution of the direction of the object velocity, \

is uniform.

3.2.3.9 Definition 3.

For an object at initial position U, the probabilityΠcoll is the range of velocity directions \ such that

the object collides with the fly divided by the range of directions with which it creates regressive

optic flow on fly’s retina (see Figure 3.5(B)):

Πcoll(U, a, d) =
\col − \min
\max − \min

. (3.12)

Integrating this function over the range of possible initial relative positions, the probability that an

event results in a collision given that the object produces regressive motion on an fly’s retina can

be found as:

Πcoll(a, d) =
Umax∫
Umin

Πcoll(U, a, d)3U , (3.13)

where Umin is either 0 or the minimum value of U for which there exists a \ with which the object

can produce a regressive motion on fly’s retina, and Umin is either 90 or maximum value of U for

which there exists a \ with which the object remains observable to the fly.

We calculated the integral (3.13) numerically and show the results in Figure 3.6 for different

values of fly-object velocity ratios a and different collision range-vision range ratios d. As can

be seen from Figure 3.6, for 'vis=60 mm [207] and 'coll=15 mm (our assumption), the collision
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Figure 3.6: Probability of collision Πcoll(a, d) with an object that creates regressive motion on the
retina as a function of the ratio of vision radius to collision radius d, for different fly-object velocity
ratios a.

probability is around 0.2-0.3. This implies that if encounters are created randomly, regressive

motion on the retina is not predictive of collision, and as a consequence it is unreasonable to expect

that digital evolution will produce collision avoidance in response, as only 1 in 5 to 1 in 3 regressive

motions actually lead to collisions. This was borne out in experiments, and we thus decided to bias

the events in such a manner that all events that leave a regressive motion signature in the retina

will lead to collision. Note that this is not necessarily an unrealistic assumption, as we have not

analyzed a distribution of realistic “events” (such as is available in the data set of [25]). It could

very well be that the way real flies approach each other differs from the uniform distributions that

went into the mathematical analysis presented here.

3.3 Results

We conducted experiments with five different fitness functions representing different environ-

ments. Environments differ in the amount of fitness individuals gain when moving and in the

penalty incurred by a collision. Evolved agents use various strategies to avoid collisions and maxi-

mize the travelled distance, but one of the most successful strategies they use is indeed to categorize

visual cues into regressive and progressive optic flows. We find that agents categorize these visual

cues only in some regions of the retina: the regions in which collisions take place more frequently.
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They then use this information to cast a movement decision: they keep moving when seeing an

object creating progressive optic flow on their retina, and stop when the object creates regressive

optic flow on their retina. However, they do not stop for the entire duration of the event, i.e., the

whole time they perceive regressive optic flow. Rather they stop during only a portion of the event,

which helps the agent to avoid a collision with the object while maximizing their walking duration

and hence gaining higher fitness.

The strategy of using regressive motion as a cue for collision [33], similar to the observed behav-

ior in fruit flies [207] evolves in our experimental setup under some environmental circumstances

(discussed below). We refer to this strategy as regressive-collision-cue (RCC) and we define it in

our experimental setup as follows:

1) The moving object produces regressive motion on the agent’s retina during an event and the

agent stops at least for some time during that event, or

2) The moving object produces progressive motion on the agent’s retina during an event and the

agent does not stop during that event. The number of events (out of 100) in which the agent uses

this strategy is termed the “RCC value.”

We now discuss the results of an experiment in which the RCC strategy has evolved. We take

the most successful agent at the end of that experiment and analyze its behavior. This agent evolved

in an environment with penalty-reward ratio of 2, meaning the penalty of each collision equals

twice the maximum reward the agent can gain in 2 events. Figure 3.7 shows whether the agent

stopped during an event, stop probability (blue triangles), as a function of the angular velocity of

the image on the agent’s retina for 100 events. In that figure, the angular velocity of the image on

agent’s retina is negative for regressive optic flow and positive for progressive events. Simulation

units are converted to plotted values (in deg/s and mm/s) by equalizing dimensionless values a,

and d in simulation and actual values: 'vis=60 mm [207], +fly=20 mm/s [207], 'coll=15 mm (our

assumption). We can see from the figure that out of all 100 events, the agent did not stop during one

event with regressive motion while for two progressive events, it stopped. In the remaining events

the agent accurately uses the RCC strategy (resulting in an RCC value=97). The average velocity of
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Figure 3.7: The stop probability of the evolved agent vs. the angular velocity of the image on
its retina for 100 events. Positive values of angular velocity show progressive motion events and
negative angular velocities stand for regressive motion events. The average velocity of the agent is
also shown during each event.

the agent during each event is also shown (solid orange circles), which reflects the number of time

steps the agent moves during that event (and thus indirectly how often it stops). For progressive

motions, the stop probability is zero (the agent continues to move during the event) and thus the

velocity of the agent is maximal during that event. For regressive optic flow (negative angular

velocities), the average velocity during each event is less than maximum and for extreme angular

velocities, as it only needs to stop for shorter durations to avoid collisions.

In order to quantitatively analyze how using regressive motion as a collision cue benefits

agents to gain more fitness, we traced this particular agent’s evolutionary line of descent (LOD)

by following its lineage backwards for 50,000 generations mutation by mutation until we reached

the random agent that we used to seed the initial population (see [104] for more details on how to

construct evolutionary lines of descent for digital organisms). Figure 3.8 shows the fitness and the

RCC value vs. generation for this agent’s LOD. It is evident from these results that evolving this

strategy benefits agents in gaining fitness compared to the rest of the population in this environment

as high peaks of fitness occur at high RCC values and conversely, the fitness drops as the RCC value

decreases. Nevertheless, this strategy does not evolve all the time. Figure 3.9 shows the fitness and

RCC for all 20 replicates in the environment with penalty-reward ratio of 2. We can see that the
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Figure 3.8: Fitness and regressive-collision-cue (RCC) value on the line of descent for an agent
that evolved RCC as a strategy to avoid collisions. Only the first 20,000 generations are shown, for
every 500 generations.

mean fitness of all 20 replicates is around 20% less than the fitness of the agent that evolved the

RCC strategy. The mean RCC value for all 20 replicates is also ≈ 20% less than that of an agent

that evolved the RCC strategy.

The difficulty to evolve the RCC strategy is not limited to the number of runs in which this

behavior evolved out of all replicates in some environment (we also tried running the experiment

for longer evolutionary times but the results do not change significantly). Environmental conditions

also play a key role in the evolution of this behavior. Figure 3.10 shows the RCC value distribution

for 20 replicates in five different environments. In order to calculate the RCC value in each

replicate, we took the average of the RCC value in the last 1,000 generations on the line of descent

to compensate for fluctuations. We observe that the RCC strategy only evolves in a narrow range

of penalty-reward ratio, namely for PR=2 and PR=3. According to Figure 3.10, higher values

of penalty on the one hand discourage the agents from walking in the environment (they simply

choose to remain stationary), and therefore prevent them from exploring the fitness landscape.

Lower values for the penalty, on the other hand, result in indifference to collisions and thus, the

optimal strategy (probably the local optimum) in these environments is to keep walking and ignore

all collisions. For lower values of the penalty, the RCC value is ≈ 55%, which means they evolve
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Figure 3.9: Mean values of fitness and regressive-collision-cue (RCC) over all 20 replicates vs.
evolutionary time in the line of descent in the environment with penalty-reward ratio of 2. Standard
error lines are shown with shaded areas around mean values. Only the first 20,000 generations are
shown, for every 500 generations.

to stop in obvious cases that end up in collision (if they keep moving, the RCC value should be 50).

3.4 Discussion

We used an agent-based model of flies equipped with MNBs that evolve via a GA to study

the selective pressures and environmental conditions that can lead to the evolution of collision

avoidance strategies based on visual information. We specifically tested cognitive models that

invoke “regressive motion saliency” and “regressive motion as a cue for collision” to understand

how flies avoid colliding with each other in two-dimensional walks. We showed that it is possible

to configure the experiment in such a manner that “regressive-collision-cue” (RCC) evolves as a

strategy to avoid collisions. However, the conditions under which the RCC strategy evolved in our

experiments are limited: the strategy only evolved in a narrow range of environmental conditions

and even in those environments, it does not evolve all the time. In addition, we showed that from

general principles, only a small percentage of events in which an agent perceives regressive optical

flow eventually leads to a collision, so that RCC as a sole strategy is expected to have a large false

positive rate, leading to unnecessary stops.

As discussed in the Methods section, our experimental implementation is biased in such a way
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that all regressive motion events lead to a collision if the agent does not stop during that event. If the

moving object’s velocity direction is distributed uniformly randomly in all directions, the probability

that a regressive event ends up in a collision is rather low (≈ 20% in our implementations). Because

the false positive rate of using regressive optical flow as the only predictor of collisions is liable to

thwart the evolution of an RCC strategy, we biased our setup in such a way that the false-positive

rate is zero, a bias that does not significantly influence the outcome of our experiments. Consider

an environment in which only a percentage of events with regressive motion end up in collision.

This is similar to an environment with a lower penalty for collisions (as long as the strategy evolves

at all) since the agent’s fitness is scored at the end of its lifetime (all 100 events) not during each

event.

However, there is a difference between a lower percentage of collisions in regressive events and

lower penalty for collisions, namely a lower probability of collision in regressive motion events

is equivalent to a higher amount of noise in the cue that the agent takes from the environment,

compared to the case of lower penalties for collision. In other words, if 100% of all regressive

motion events lead to collisions, the agent associates regressive motion events with collisions with

certainty. Thus, implementing the experiments with 100% collisions in regressive motion events

is tantamount to eliminating the noise in sensory information, which generally aids evolution.

Compensating for noise in sensory information could also be achieved if we scored agents in every

single event, and informed them about their performance in that event (feedback learning). We did

not use feedback learning here, but plan to do so in future experiments.

We conclude that the evolution of “regressive motion saliency” is unlikely to have happened

only due to collision avoidance as the selective pressure. It is important to remember that walking

is not the most frequent activity in fruit flies. Further, flies do not usually live in high density

colonies and therefore do not find themselves on collision courses very often. It may be the case

that components of this strategy (namely categorizing the optic flow as regressive or progressive)

have evolved under different selective pressures entirely unrelated to the present test situation,

and was further evolved to enhance collision avoidance with conspecifics while moving (a type
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Figure 3.10: RCC value distribution in environments with different penalty-reward ratios. Each
box-plot shows the RCC value averaged over the last 1000 generations on the line of descent for 20
replicates.

of exaptation). For example, detecting predators is a strong selective pressure in the evolution of

visual motion detection, including the categorization of that cue so as to take appropriate actions.

It may be interesting to study the behavior of flies interacting with animals or objects that are not

perceived as conspecifics.
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CHAPTER 4

CAN TRANSFER ENTROPY INFER INFORMATION FLOW IN NEURONAL
CIRCUITS FOR COGNITIVE PROCESSING?

4.1 Introduction

When searching for common foundations of cortical computation, more and more emphasis is

being placed on information-theoretic descriptions of cognitive processing [148, 161, 3, 136, 201].

One of the core tasks in the analysis of cognitive processing is to follow the flow of information

within the nervous system, by finding cause-effect components. Indeed, understanding causal

relationships is considered to be fundamental to all natural sciences [27]. However, inferring causal

relationships and separating them from mere correlations is difficult, and the subject of ongoing

research [60, 145, 146, 179, 10]. The concept of Granger causality is an established statistical

measure that aims to determine directed (causal) functional interactions among components or

processes of a system. Schreiber [165] described Granger causality in terms of information theory

by introducing the concept of transfer entropy (TE). The main idea is that if a process - is

influencing process . , then an observer can predict the future state of . more accurately given the

history of both - and . (written as - (:)C and . (ℓ)C , where : and ℓ determine how many states from

the past of - and . are taken into account) compared to only knowing the history of . . According

to Schreiber, the transfer entropy TE-→. quantifies the flow of information from process - to . :

TE-→. = � (.C+1 : - (:)C | .
(ℓ)
C ) = � (.C+1 | .

(ℓ)
C ) − � (.C+1 |.

(ℓ)
C , -
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. (4.1)

Here as before, - (:)C and . (ℓ)C refer to the history of the processes - and . , while .C+1 refers to the

variable at C + 1 only. Further, ?(HC+1, G
(:)
C , H

(ℓ)
C ) is the joint probability of .C+1 and the histories

-
(:)
C and . (ℓ)C , while ?(HC+1 |G

(:)
C , H

(ℓ)
C ) and ?(HC+1 |H

(ℓ)
C ) are conditional probabilities.

The transfer entropy (4.1) is a conditional mutual entropy, and quantifies what the process .
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at time C + 1 knows about the process - up to time C, given the history of . up to time C (see [23]

for a thorough introduction to the subject). Specifically, TE-→. measures “how much uncertainty

about the future course of . can be reduced by the past of - , given . ’s own past.” Transfer entropy

reduces to Granger causality for so-called “auto-regressive processes” [14] (which encompasses

most biological dynamics), and has become one of the most widely used directed information

measures, especially in neuroscience (see [199, 202, 201, 23] and references cited therein).

While transfer entropy is sometimes used to infer causal influences between susbsystems, it

is important to point out that inferring causal relationships is different from inferring information

flow [107]. In complex systems (for example, in computations that a brain performs to choose

the correct action given a particular sensory experience) events in the sensory past can causally

influence decisions significantly distant in time, and to capture such influences using the transfer

entropy concept requires a careful analysis in which not only the history lengths : and ℓ used in

Equation (4.1) must be optimized, but false influences due to linear mixing of signals (which can

mimic causal influences) must also be corrected for [199, 23]. In some sense, inferring information

flow is a much simpler task than finding all causal influences, as we need only to identify (and

quantify) the sources of information transferred to a particular variable. More precisely, for this

application the pairwise transfer entropy is used to find candidate sources (in the immediate past)

that account for the entropy of a particular neuron.

X

Y
Z Z

Y

A B

Figure 4.1: (A) A network where processes - and . influence future state of / , /C+1 = 5 (-C , .C).
(B) A feedback network in which processes . and / influence future state / , /C+1 = 5 (.C , /C).

Using transfer entropy to search for and detect directed information was shown to lead to

inaccurate assessments in simple case studies [76, 77]. For instance, James et al. [76] presented

two examples in which TE underestimates the flow of information from inputs to output in one
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example, and overestimates it in the other. In the first example, they define a simple system with

three binary variables - ,. , and / where /C+1 = -C ⊕.C (⊕ is the exclusive OR logic operation) and

variables - and . take states 0 or 1 with equal probabilities, i.e., %(- = 0) = %(- = 1) = %(. =

0) = %(. = 1) = 0.5 (this 2-to-1 relation is schematically shown in Figure 4.1A). In this network,

TE-→/ = TE-→/ = 0 whereas the entropy of the process / , � (/) = 1 bit, and variables - and .

certainly influence the future state of / . In this example, the entropy of / can be reduced by 1 bit

but the TE does not attribute this entropy to either variables - or . and as a consequence the TE

underestimates the flow of information from - and. to / . In another example, they define a system

with two binary variables . and / , where /C+1 = .C ⊕ /C and similar to the previous example,

%(. = 0) = %(. = 1) = %(/ = 0) = %(/ = 1) = 0.5 (this feedback loop relation is schematically

shown in Figure 4.1B). In this scenario, TE.→/ = 1 bit, which implies that the entire 1 bit of

entropy in / is coming from process . . However, this is not correct since both . and / are equally

contributing to determine the future state of / . In this example, TE overestimates the information

flow from process . to / . It is also noteworthy that in this example the processed information

(defined as � (/C : /C+1)) vanishes, which again does not correctly detect the other source, /C ,

from which the information is coming. As acknowledged by the authors in [76], expecting that

the entropy of the output � (/C+1) is given simply by the sum of the transfer entropy from each of

the inputs independently is a naive interpretation of information flow. Indeed, this is generally not

the case, even if the two sources are uncorrelated. Consider for example the first system described

above in which /C+1 = 5 (-C , .C). Suppose 5 is a deterministic function of -C and .C , in which case

the conditional entropy � (/C+1 |-C , .C) = 0. Then, the entropy � (/C+1) decomposes into the sum

of an unconditional and a conditional transfer entropy

� (/C+1) = TE.→/ + TE-→/ |.C , (4.2)

where the conditional transfer entropy is defined as (see [23], section 4.2.3)

TE.→/ |-C = � (.C : /C+1 |/C , -C) . (4.3)
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Using this definition, it is easy to show that

TE.→/ = TE.→/ |-C + � (-C : .C : /C+1 |/C) , (4.4)

and Equation (4.2) can be rewritten in terms of transfer entropies only, or else conditional transfer

entropies only, as

� (/C+1) = TE.→/ |-C + TE-→/ |.C + � (-C :.C :/C+1 |/C) = TE.→/ + TE-→/ − � (-C :.C :/C+1 |/C) .(4.5)

In light of Equation (4.5), it then becomes clear that the naive sum of the transfer entropies TE-→/

and TE.→/ (or naive sum of conditional transfer entropies) must fail to account for the entropy of

/ whenever the term � (-C :.C : /C+1 |/C) is non-zero, and therefore will fail to fully and accurately

quantify information transferred from sources - and . . Therefore, the error in information flow

estimate when using transfer entropy is simply given by the absolute value of � (-C :.C : /C+1 |/C)

(same when using conditional transfer entropies).

Now consider the second example system with a feedback loop in which /C+1 = 5 (.C , /C), and

again suppose 5 is a deterministic function which implies � (/C+1 |.C , /C) = 0. In this case, there is

a similar information decomposition that now involves a shared entropy � (.C :/C :/C+1)

� (.C :/C+1) = TE.→/ + � (.C :/C :/C+1) . (4.6)

Here, the entropy � (/C+1) can be written in terms of transfer entropy and processed information

(recall that � (/C+1 |/C , .C) = 0)

� (/C+1) = TE.→/ + � (/C :/C+1) . (4.7)

While Equation (4.7) shows that the sum of transfer entropy TE.→/ and processed information

� (/C : /C+1) account for all the entropy /C+1, these two terms do not always individually identify

the sources of information flow correctly. For instance, we have seen that in the second example

(where /C+1 = .C⊕/C) the processed information � (/C :/C+1) vanishes even though variable /C most

definitely influences the state of variable /C+1. As discussed earlier, all the information transferred
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to /C+1 in that case is attributed to variable .C . Note that the processed information can be written

as

� (/C :/C+1) = � (/C :/C+1 |.C) + � (/C+1 :/C :.C) (4.8)

where � (/C :/C+1 |.C) = 1 and � (/C+1 :/C :.C) = −1.

Note that for the most general case where function 5 can be non-deterministic and the network

with or without feedback loop, the full entropy decomposition can be written as

� (/C+1) = TE.→/ |-C + TE-→/ |.C + � (-C :.C :/C+1 |/C) + � (/C+1 :/C) + � (/C+1 |-C , .C , /C) . (4.9)

There is also another key factor in the examples described above that results in misestimating

information flow when using transfer entropy. In both examples, the input to output relation is

implemented by an XOR function. For instance, in the first example (/C+1 = -C ⊕ .C), the transfer

entropy TE-→/ considers - in isolation and independent of variable . . We should make it

clear that it is not the formulation of TE that is at the origin of mis-attributing the sources of the

transferred information. Rather, by definition Shannon’s mutual information, � (- :. ) = � (-) +

� (. ) − � (-,. ) is dyadic, and cannot capture polyadic correlations where more than one variable

influences another. Consider for example a similar but time-independent process between binary

variables - ,. , and / where / = -⊕. . As is well-known, themutual information between - and / ,

and also between. and / vanishes: � (- : /) = � (. : /) = 0 (this corresponds to the one-time pad,

or Vernam cipher [168], a common method of encryption that takes advantage of the fact that � (- :

. :/) = −1). Thus, while the TE formulation aims to capture a directed dependency of information,

Shannon information measures the undirected (correlational) dependency of two variables only. As

a consequence, problemswith TEmeasurements in detecting directed dependencies are unavoidable

when using Shannon information, and do not stem from the formulation of transfer entropy [165]

or similar measures such causation entropy [179] to capture causal relations. Note that methods

such as partial information decomposition have been proposed to take into account the synergistic

influence of a set of variables on the others [204]. However, such higher-order calculations are
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more costly (possibly exponentially so) and require significantly more data in order to perform

accurate measurements.

Given the observed error inmeasuring information flow using TE due to logic gates that encrypt,

we now set out to examine how well TE measurements capture information flow when the function

is implemented with Boolean functions other than XOR. In particular, we examine every first-order

Markov process /C+1 = 5 (-C , .C) where function 5 is implemented by all 16 possible 2-to-1 binary

relations (Figure 4.1A) and quantify the error in information transfer estimate for each of them.

Similar to previous examples, the state of variable / is independent of its past, and inputs - and .

take states 0 and 1 with equal probabilities, i.e., %(- = 0) = %(- = 1) = %(. = 0) = %(. = 1) =

0.5.

Table 4.1 shows the results of transfer entropy measurements for all possible 2-to-1 logic

gates and the error that would occur if TE measures are used to quantify the information flow

from inputs to outputs. This error is the sum of misestimations in information flow quantified by

pairwise transfer entropies TE-→/ and TE.→/ . As we discussed before, for the XOR relation the

transfer entropies TE-→/ = TE.→/ = 0, and � (/C+1) = 1 which means that TE misestimates

the information flow from inputs - and . by 1 bit (the XNOR is exactly the same). We find

that in all other polyadic relations where both - and . influence the future state of / , TE-→/

and TE.→/ capture part of the information flow from inputs to outputs, but TE-→/ + TE.→/ is

less than the entropy of the output / by 0.19 bits (TE-→/ + TE.→/ = 0.62, � (/) = 0.81). In

the remaining six relations where only one of the inputs or neither of them influences the output,

the transfer entropies correctly capture the information flow. The difference between the sum of

transfer entropies, TE-→/ + TE.→/ , and the entropy of the output � (/) in XOR and XNOR

relations, stems from the fact that � (- :. : /) = −1, the tell-tale sign of encryption. Furthermore,

while other polyadic gates do not implement perfect encryption, they still encrypt partially as

� (- :. :/) = −0.19, which we call obfuscation. It is this obfuscation that is at the heart of the TE

error shown in Table 4.1.

We repeated similar calculations for the case of a feedback loop network where /C+1 = 5 (.C , /C)

55



(Figure 4.1B) and function 5 can be any one of the 16 logic relations shown in Table 4.1. These

simple calculations show that in 16 relations including XOR and XNOR, the sum of the transfer

entropies, TE.→/ + � (/C+1 : /C) (the formulation for transfer entropy of a variable to itself reduces

to processed information � (/C+1 : /C)) is equal to the entropy of the output /C+1 as was shown in

Equation (4.7). However, in XOR and XNOR relations transfer entropy incorrectly attributes all the

information to one of the input variables and no influence is attributed to the other. Furthermore, in

the polyadic relations other than XOR and XNOR, the transfer entropies TE.→/ and � (/C+1 : /C)

differ in value while variables - and . equally influence the state of the output / , which is why the

TE error in these relations is 0.19 bits.

Table 4.1: Transfer entropies and information in all possible 2-to-1 binary logic gateswith orwithout
feedback. The logic of the gate is determined by the value /C+1 (second column) as a function of the
input -C.C=(00,01,10,11). � (/C+1) is the Shannon entropy of the output assuming equal probability
inputs, )�-→/ is the transfer entropy from - to / . In 2-to-1 gates without feedback, transfer
entropies TE-→/ and TE.→/ reduce to � (-C : /C+1), and � (.C : /C+1), respectively. Similarly,
transfer entropy of a process to itself is simply � (/C : /C+1) which is the information processed by
/ .

2-to-1 network, / = 5 (-,. ) 2-to-1 feedback loop, / = 5 (., /)
gate /C+1 � (/C+1) TE-→/ TE.→/ TE error TE.→/ � (/C : /C+1) TE error
ZERO (0,0,0,0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AND (0,0,0,1) 0.81 0.31 0.31 0.19 0.5 0.31 0.19

AND-NOT (0,0,1,0) 0.81 0.31 0.31 0.19 0.5 0.31 0.19
AND-NOT (0,1,0,0) 0.81 0.31 0.31 0.19 0.5 0.31 0.19

NOR (1,0,0,0) 0.81 0.31 0.31 0.19 0.5 0.31 0.19
COPY (0,0,1,1) 1.0 1.0 0.0 0.0 1.0 0.0 0.0
COPY (0,1,0,1) 1.0 0.0 1.0 0.0 0.0 1.0 0.0
XOR (0,1,1,0) 1.0 0.0 0.0 1.0 1.0 0.0 1.0
XNOR (1,0,0,1) 1.0 0.0 0.0 1.0 1.0 0.0 1.0
NOT (1,0,1,0) 1.0 0.0 1.0 0.0 0.0 1.0 0.0
NOT (1,1,0,0) 1.0 1.0 0.0 0.0 1.0 0.0 0.0
OR (0,1,1,1) 0.81 0.31 0.31 0.19 0.5 0.31 0.19

OR-NOT (1,0,1,1) 0.81 0.31 0.31 0.19 0.5 0.31 0.19
OR-NOT (1,1,0,1) 0.81 0.31 0.31 0.19 0.5 0.31 0.19
NAND (1,1,1,0) 0.81 0.31 0.31 0.19 0.5 0.31 0.19
ONE (1,1,1,1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Given that pairwise TEmeasurements (not taking into account higher-order conditional transfer
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entropies) only fail to correctly identify the sources of information flow in cryptographic gates and

demonstrate partial errors in quantifying information flow in polyadic relations, we now set out to

determine how often these relations appear in networks that implement basic cognitive tasks, and

how much error is introduced when measuring information flow using transfer entropy. If the total

error in transfer entropy measurements of information flow in cognitive networks is significant,

an analysis of pairwise directed information among neural components (neurons, voxels, cortical

columns, etc.) using this concept is bound to be problematical. If, however, these errors are

reasonably low within biological control structures because cryptographic logic is rarely used, then

treatments using the TE concept can largely be trusted.

To answer this question, we use a new tool in computational cognitive neuroscience, namely

computational models of cognitive processing that can explain task-performance in terms of plau-

sible dynamic components [93]. In particular, we use Darwinian evolution to evolve artificial

digital brains (also known as Markov Brains or MBs [69]) that can receive sensory stimuli from

the environment, process this information, and take actions in response. (In the following we refer

to digital brains as “Brains”, while biological brains remain “brains”.). We evolve Markov Brains

that perform two different cognitive tasks whose circuitry is thoroughly studied in neuroscience:

visual motion detection [21], as well as sound localization [130, 149]. Markov Brains have been

shown to be a powerful platform that can unravel the information-theoretic correlates of fitness and

network structure in neural networks [45, 8, 164, 114, 85]. This computational platform enables us

to analyze structure, function, and circuitry of hundreds of evolved digital Brains. As a result, we

can obtain statistics on the frequency of different types of relations in evolved circuits (as opposed

to studying only a single evolutionary outcome), and further assess how crucial different operators

are for each evolved task, by performing knockout experiments in order to measure an operator’s

contribution to the task. In particular, we first investigate the composition of different types of logic

gates in networks evolved for the two cognitive tasks, and then theoretically estimate how accurate

transfer entropy measures could be when applied to quantify the pairwise information flow from

one neuron to another in such simple cognitive networks. We then use transfer entropy measures as
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a statistic to identify information flow between neurons of evolved circuits using the time series of

neural recordings obtained from behaving Brains engaged in their task, and evaluate how successful

transfer entropy is in detecting this flow. While artificial evolution of control structures (“artificial

Brains”) is not a substitute for the analysis of information flow in biological brains, this investigation

should provide some insights on how accurate (or inaccurate) transfer entropy measures could be.

4.2 Materials and Methods

4.2.1 Markov Brains

Markov Brains (MB) are evolvable networks of binary neurons (they take value 0 for a quiescent

neuron, or 1 for a firing neuron) in which neurons are connected via probabilistic or deterministic

logic gates (in this work, we constrain MBs to only use 2-to-1 deterministic logic gates). The states

of the neurons are updated in a first order Markov process, i.e., the probability distribution of states

of the neurons at time step C + 1 depends only on the states of neurons at time step C. This does

not imply that Markov Brains are memoryless, because the state of one neuron can be stored by

repeatedly writing into its own (or another) neuron’s state variable [45, 114, 69]. The connectivity

and the underlying logic of the MB’s neuronal network is encoded in a genome. Thus, we can

evolve populations of MBs using a Genetic Algorithm (GA) [127] to perform a variety of cognitive

tasks (for a more detailed description of Markov Brain function and implementation see [69]). In

the following sections, we describe two fitness functions designed to evolve motion detection and

sound localization circuits in MBs.

4.2.2 Motion Detection

The first fitness function is designed in order to evolveMBs that function as a visualmotion detection

circuit. Reichardt and Hassenstein proposed a circuit model of motion detection that is based on

a delay-and-compare scheme [65]. The main idea behind this model is that a moving object is

sensed by two adjacent receptors on the retina, at two different time points. Figure 4.2 shows the

schematic of a Reichardt detector in which the g components delay the stimulus and × components
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multiply the signals, i.e., fires if the signal from the receptor and delay component arrive at the

same time. The result of the multiplication units for two different directions is then subtracted so

that high values denote motion in one direction (the “preferred direction”, PD), low values denote

the opposite direction (null direction, ND), and intermediate values encode a stationary stimulus.

A B

Figure 4.2: (A) A Reichardt detector circuit. In this circuit, the results of the multiplications from
each pathway are subtracted to generate the response. The circuit’s outcome for PD is +1, ND is -1,
and for stationary patterns is 0. (B) Schematic examples of three types of input patterns received by
the two sensory neurons at two consecutive time steps. Grey squares show presence of the stimuli
in those neurons. The sensory pattern shown here for PD is 10 at time C and 01 at time C + 1,
which we write as: 10→ 01. Patterns 11→ 01 and 00→ 10 also represent PD. Similarly, pattern
01 → 10 is shown as an example of ND but patterns 11 → 10 and 01 → 11 are also instances of
ND.

The experimental setup for the evolution of motion detection circuits is similar to the setup

previously used in [184]. In that setup, two sets of inputs are presented to a MB at two consecutive

times and the Brain classifies the input as preferred direction (PD), stationary, or null direction

(ND). After the first set of inputs, i.e., at time C in Figure 4.2B, a Markov Brain is updated once,

and after the second set of inputs (at C + 1) it is updated two times, which simulates two operations

performed after delaying one of the inputs, namely multiplication and subtraction. The value

of the sensory neuron becomes 1 when a stimulus is present, and it becomes 0 otherwise (see

Figure 4.2B). Thus, 16 possible sensory patterns can be presented to the MB to classify, among

which 3 input patterns are PD, 3 are ND, and the other 10 are stationary patterns. Two neurons

are assigned as output neurons of the motion detection circuit. The sum of binary values of these

neurons represents the output of the motion detection circuit, 0: ND, 1: stationary stimulus , 2:

PD, while in the Reichardt detector circuit shown in Figure 4.2A, the output corresponding to ND

is -1, stationary is 0, and PD is +1.
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4.2.3 Sound Localization

The second fitness function is designed to evolve MBs that function as a sound localization circuit.

Sound localization mechanisms in mammalian auditory systems function based on several cues

such as interaural time difference, interaural level difference, etc. [128]. Interaural time difference

(which is the main cue behind the sound localization mechanism) is the difference between the

times at which sound reaches the two ears. Figure 4.3A shows a simple schematic of a sound

localization model proposed by Jeffress [79] in which sound reaches the right ear and left ear at

two possibly different times. These stimuli are then delayed in an array of delay components and

travel to an array of detector neurons (marked with different colors in Figure 4.3A). Each detector

only fires if the two signals from different pathways, the left ear pathway (shown at the bottom) and

the right ear pathway (shown at top), reach that neuron simultaneously.

A B N11

N12

N13

N14

N15
Left ear

Right ear

RightLeft

N0
N1

N0
N1

N0
N1

N0
N1

N0
N1

Figure 4.3: (A) Schematic of 5 sound sources at different angles with respect to a listener (top
view) and Jeffress model of sound localization. (B) Schematic examples of 5 time sequences of
input patterns received by the two sensory neurons (receptors of two ears) at three consecutive time
steps. Black squares show presence of the stimuli in those neurons.

In our experimental setup, two sequences of stimuli are presented to two different sensory

neurons (neurons #0 and #1) that represent the receptors in the two ears. The stimulus in two

sequences are lagged or advanced with respect to one another (as shown in Figure 4.3B). The agent

receives these sequences and should identify 5 different angles from where that sound is coming.

The binary value of the sensory neuron becomes 1 when a stimulus is present, shown as black

blocks in Figure 4.3B, and it becomes 0 otherwise, shown as white blocks in Figure 4.3B. Markov

Brains are updated once after each time step in the experiment. Similar to the schema shown
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in Figure 4.3A, Markov Brains have five designated output neurons (#11-#15) and each neuron

corresponds to one of the sound sources placed at a specific angle. Colors of detector neurons

(#11-#15) in Figure 4.3B match the angle of each sound source in Figure 4.3A.

4.3 Results

For the motion detection (MD) and sound localization (SL) tasks, we evolved 100 populations

each for 10,000 generations, allowing all possible 2-to-1 (deterministic) logic gates as primitives.

At the end of each evolutionary run, we isolated one of the genotypes with the highest score from

each population to generate a representative circuit.

4.3.1 Gate Composition of Evolved Circuits

Out of 100 populations evolved in motion detection task, 98 led to circuits that perform motion

detection with perfect fitness. The number of gates in evolved Brains varies tremendously, with a

minimum of four and maximum of 17 (mean=7.92, SD=2.48). The frequency distribution of types

of logic gates per each individual Brain is shown for these 98 perfect circuits in Figure 4.4A (in

this figure, AND-NOT is an asymmetric AND operation where one of the variables is negated,

for example -′ · . . Similarly, OR-NOT is an asymmetric OR operation, e.g., - + . ′). To gain a

better understanding of the distribution of logic gates and how they compose the evolved motion

detection circuits, we performed gate-knockout assays on all 98 Brains. We sequentially eliminated

each logic gate, (along with all the input and output connections of that gate) and re-measured

the mutant Brain’s fitness, thus allowing us to estimate which gates were essential to the motion

detection function (if there is a drop in mutant Brain’s fitness) and which gates were redundant to the

motion detection function (if a mutant Brain’s fitness remains perfect). The frequency distribution

of each type of logic gate per individual Brain for essential gates is shown for the 98 perfect Brains

in Figure 4.4B.

For the sound localization task, 71 evolution experiments out of 100 resulted in Markov Brains

with perfect fitness. The minimum number of gates was six, with a maximum of 15 (mean=9.14,
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SD=1.77). Figure 4.4A shows the frequency distribution of types of logic gates per Brain for these

71 perfect Brains. We also performed a knockout analysis on all 71 evolved sound localization

Brains. The frequency distribution of each type of logic gate per individual Brain for essential

gates is shown for the 71 perfect Brains in Figure 4.4B. These results demonstrate that the gate

type compositions and circuit structures in evolved Brains for motion detection (MD) and sound

localization (SL) tasks are significantly different. The total number of logic gates (ignoring

duplicates) in the SL task (9.14 gates per Brain, SD=1.77) is greater than the total number of gates

in the MD task (7.92 gates per Brain, SD=2.48). Moreover, the number of essential gates in SL

(7.13 gates per Brain, SD=1.24) is also greater than the number of essential gates in MD (5.23 gates

per Brain, SD=1.31).

B

A

Figure 4.4: Frequency distribution of all, as well as essential, gates in evolved Markov Brains that
perform the motion detection or sound localization task perfectly. (A) All gates. (B) Essential
gates.
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4.3.2 Transfer Entropy Misestimates Caused by Encryption or Polyadicity

As discussed earlier, transfer entropy measures may misestimate the information flow from input to

output andmay fail to correctly identify the source of information. Table 4.1 gave a detailed analysis

of transfer entropy measurements and their misestimates that are rooted either in the polyadic or

encrypting nature of the gate, for all possible 2-to-1 logic gates. Given the gate distributions of

evolved circuits for motion detection and sound localization tasks along with the misestimate values

calculated in Table 4.1, we can estimate the error that would occur when using transfer entropy to

quantify the pairwise information flow from source neurons (i.e., input neurons to gates) to receiver

neurons (i.e., output neurons of gates). We can similarly estimate what fraction of the information

flow from inputs to outputs would be correctly quantified by the transfer entropy in the evolved

circuits. Recall that in the results presented in Table 4.1, calculations were performed assuming

that the input bits take values 0 or 1 with equal probability 0.5. Of course, we cannot generally

assume this for the input bits of every logic gate in an evolved network. As a consequence, this

analysis only approximates the information flow misestimates of the full network.

In our analysis, we only evaluated the contribution of gates deemed essential via the knockout

test. For these essential gates, we summed the pairwise information flow misestimates as well as

the correct information flow attributions in each evolved Brain. The mean values of calculated

misestimates of information flow as well as correct measurements with their 95% confidence

intervals for 98 evolved circuits that perform motion detection task, and for 71 evolved sound

localization Brains are shown in Figure 4.5A. In Figure 4.5B, we normalized misestimates and

correct measurements by dividing by the number of essential gates in each Brain, and averaged

them across Brains. It is worth noting that the calculated information flow misestimates shown in

these plots only reflect the misestimates that originated from the polyadicity or encrypting nature

of the gates, since they are only based on the network structure and the gate composition of each

Brain as well as the analytical results presented in Table 4.1, and do not take into account the

errors that could occur as a result of factors such as sampling errors in the dataset or structural

complexities in the network, such as recurrent or transitive relations [11, 179, 10]. Along the same
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line of reasoning, calculated values of correct measurements represent correct information flows

that could be measured by transfer entropy in the absence of the aforementioned sources of errors.

These results further reveal that the circuit structures and gate type compositions in the two

tasks are significantly different, and that this structural difference leads to different outcomes when

transfer entropy measures are used to detect pairwise information flows. Transfer entropy can

potentially capture 3.31 bits (SE = 0.10) of information flow correctly in evolved motion detection

circuits (0.64 bits per gate, SE = 0.014), and 3.95 (averaged across 71 Brains, SE = 0.14) bits

in evolved sound localization circuits (0.55 bits per gate, SE = 0.014). However, the information

flow misestimates when using transfer entropy in evolved sound localization circuits is 2.39 bits

(averaged across 71 Brains, SE = 0.12) which is significantly higher than the misestimates in

evolved motion detection circuits, which is 1.33 bit (averaged across 98 Brains, SE = 0.085). The

information flow misestimate in evolved motion detection circuits is 0.25 bits per gate (SE = 0.014)

whereas it is 0.34 bits (SE = 0.016) per gate in evolved sound localization circuits. These findings

show that the accuracy of transfer entropy measurements for detecting information flow in digital

neural networks can vary significantly from one task to another.

A B

Figure 4.5: Transfer entropy measures, exact measures and misestimates by transfer entropy, on
essential gates of perfect circuits for motion detection, and sound localization task. Columns show
mean values and 95% confidence interval of misestimates and exact measures (A) per Brain, and
(B) per gate.
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4.3.3 Transfer Entropy Measurements from Recordings of Evolved Brains

In the previous section we estimated errors in information flow attribution using the error that each

particular logic gate in Table 4.1 entails, and then calculated the total error using the gate type

distribution for each cognitive task. However as mentioned earlier, this approach only gives a crude

estimate of flow because in the evolved cognitive circuits the neurons (and therefore the logic gates)

are not independent, and their input is not in general maximum entropy.

Here we use a different approach to assess transfer entropy measurement accuracy in identifying

inter-neuronal relations of evolved Markov Brains: we record the neural activities of an evolved

Brainwhen performing a particular cognitive task, similar to the neural recording (“brainmapping”)

performed on behaving animals. We collect the recordings in all possible trials for each cognitive

task and create a dataset for each evolved Brain for that cognitive task. More precisely, for Brains

that evolved to perform the motion detection task we record neural firing patterns in 16 different

trials. At the beginning of each trial, the Brain is in a state in which all neurons are quiescent. Then,

the Brain is updated three times, so we record the Brain’s neural activity in 4 consecutive time steps

(including the initial state). As a result, the recordings dataset of a Brain that performs motion

detection consists of 64 snapshots of the Brain, i.e., the binary state of each neuron. Similarly,

a Brain that performs sound localization is recorded during five different trials, and during each

trial the Brain is recorded in four consecutive time steps. This results in a recording dataset of

size 20 for each evolved Brain. Note that these evolved Brains are deterministic, thus, if a Brain

is recorded in the same trial multiple times, its behavior and neural activities remain exactly the

same and therefore, recording a Brain once in each trial is sufficient. We then use these recordings

to measure transfer entropy for every pair of neurons TE#8→# 9 in the network. These transfer

entropy measures can be used as a statistic to test whether a neuron #8 causally influences another

neuron # 9 . Figure 4.6A shows the result of TE calculations performed on neural recording for a

Markov Brain evolved in the sound localization task.

To test the accuracy of the TE prediction, we construct an influence map for each neuron of the

MarkovBrain that showswhich other neurons are influenced by a particular neuron. Such amapping
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also determines the receptive field of each neuron, which specifies which other neurons influence a

particular neuron. Markov Brains evolve complex networks in which multiple logic gates can write

to the same neuron and as a result, it is not straightforward to deduce input-output relations among

neurons. Indeed, it was previously argued that even armed with complete knowledge of a given

system, finding the causal relation among the components of the system may be a very difficult

task [145, 144, 63].

To create our “ground truth” model of direct influence relations, we take into consideration two

different components of a Brain’s network. First, we take into account the input neurons of a gate

and its output neuron, while we also take into consideration the type of the logic gate. For example,

in the case of a ’ZERO’ gate where the output is always 0 we do not interpret this connection

to reflect information flow (as there is no entropy in the output). Second, we analytically extract

the binary state of each neuron as a Boolean function of all other neurons using a logic table of

the entire Brain (logic table of size 216, for 16 neurons). This helps us rule out neurons that are

connected as inputs to a logic gate while not actually contributing to the output neuron of that gate.

Note that this procedure is specifically helpful in cases where more than one logic gate writes into

a neuron (when more than one gate writes into a neuron the ultimate result is the bitwise OR of all

incoming signals since if either one of them is a non-zero signal it would make the neuron fire, i.e.,

its state becomes 1). Figure 4.6B shows an example of “ground truth” influence map of neurons

for a Brain evolved for sound localization. Each row of this plot shows the influence map of the

corresponding neuron and each column represents the receptive field of that neuron. Note that

in this plot values are binary, i.e., they are either 0 or 1 which specifies whether a source neuron

influences a destination neuron, whereas TE measurements vary in the range [0, 1] bits. Keep in

mind that this influence map is only an estimate of information flow gathered from gate logic and

connectivity shown in Figure 4.6C.
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Figure 4.6: (A) Transfer entropy measures from neural recordings of a Markov Brain evolved for
sound localization. (B) Influence map (also receptive field) of neurons derived from a combination
of the logic gates connections and the Boolean logic functions for the same evolved Markov Brain,
shown in (C). (C) The logic circuit of the same evolved Markov Brain; neurons #0 and #1 are
sensory neurons, and neurons #11 − #15 are actuator (or decision) neurons.

In order to compare TE measurements with influence maps, we first assume that any non-zero

value of the TE#8→# 9 implies that there is some flow of information from neuron #8 to # 9 .

We then evaluate how well TE measurements detect the information flow among neurons based

on this assumption. In particular, for each evolved Brain we count 1) the number of existing

pairwise information flows between neurons that is correctly detected by TE (hit), 2) the number

of relations that are present in the influence map but were not detected by TE (miss), and 3) the

number of existing pairwise information flow between the neurons detected by TE measurements

that according to the influence map were incorrectly detected (false-alarm). Figures 4.7A and B

show the performance results of TE measurements in detecting information flow in Brains evolved

in motion detection and sound localization, respectively (averaged across best performing Brains

and 95% confidence interval). We observe that the number of false-alarms in motion detection
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(mean = 19.0, SE = 0.86) is greater the number of hits (mean = 6.8, SE = 0.20). Similarly, in sound

localization the number of false-alarms (mean = 45.1, SE = 1.63) is also greater than the number of

hits (mean = 10.1, SE = 0.31), but significantly more so. This again underscores that the accuracy

of transfer entropy measures strongly depends on the characteristics of the task that is being solved.

In the results shown in Figure 4.7 we assumed that any value of transfer entropy greater

than 0 implies information flow. This assumption can be relaxed such that only transfer entropy

values that are greater than a particular threshold imply information flow. We calculated TE

measurement performance for a variety of threshold values in the range [0, 1]. The results are

presented as receiver operating characteristic (ROC) curves that show hit rates as a function

of false-alarm rates as well as their 95% confidence intervals in Figs. 4.7C and D for motion

detection and sound localization, respectively [109]. In these plots, the dashed line shows a fitted

ROC curve assuming a Gaussian distribution for the ?(TE| information flow is present) and

?(TE| information flow is not present). The resultingROC function is 5 (G) = 1
24A 5 2(

`1−`2√
2f2
+

f1
f2
4A 5 2−1(2G)), where 4A 5 2 is the “error function” complement and 4A 5 2−1 is the inverse of the

error function complement.

In the ROC plots, the datapoint with the highest hit rate (right-most data point) is the normalized

result shown in Figure 4.7A, B, that is, the analysis with a vanishing threshold. Note also that

the data in Figure 4.7 represent hit rates against false-alarm rate for thresholds spanning the entire

range [0,1], implying that hit rates cannot be increased any further unless we assume there is an

information flow between every pair of neurons (hit rate=false-alarm rate=1). The false-alarm rates

in the ROC curves are actually fairly low in spite of the significant number of false alarms we see in

Figure 4.7A, B. This is due to the fact that the number of existing pairwise information flows in a

Brain network is much smaller than the number of non-existing flows between any pair of neurons

(the influence map matrices are sparse). Thus, when dividing the number of false-alarms by the

total number of non-existing information flows, the false-alarm rate is low.
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Figure 4.7: Transfer entropy performance in detecting relations among neurons of evolved (A)
motion detection circuits, (B) sound localization circuits. Presented values are averaged across best
performing Brains along with 95% confidence intervals. Receiver operating characteristic (ROC)
curve representing TE performance with different thresholds to detect neurons relations in evolved
(C) motion detection, (D) sound localization circuits.

4.4 Discussion

We used an agent-based evolutionary platform to create digital Brains so as to quantitatively

evaluate the accuracy of transfer entropy measurements as a proxy for measuring information flow.

To this end, we measured the frequency and significance of cryptographic and polyadic 2-to-1

logic gates in evolved digital Brains that perform two fundamental and well-studied cognitive

tasks: visual motion detection and sound localization. We evolved 100 populations for each of

the cognitive tasks and analyzed the Brain with the highest fitness at the end of each run. Markov

Brains evolved a variety of neural architectures that vary in number of neurons and the number of

logic gates, as well as the type of logic gates to perform each of the cognitive tasks. In fact, both

modeling [152] and empirical [56] studies have shown that a wide variety of internal parameters

in neural circuits can result in the same functionality [111]. Thus, it would be informative and
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perhaps necessary to examine a variety of circuits that perform the same cognitive task [184].

An analysis of the evolved Brains suggests that selecting for different cognitive tasks leads

to significantly different gate-type distributions. Using the error estimate for each particular gate

due to encryption or polyadicity, we used the gate-type distributions for each cognitive task to

estimate the total error in information flow stemming from using transfer entropy as a statistic. The

transfer entropy misestimate was 1.33 bits (SE = 0.08) per Brain on average for Brains evolved for

motion detection, whereas in evolved Brains performing sound localization the misestimate was

significantly higher: 2.39 bits (SE = 0.12) per Brain on average. More importantly, the inherent

differences between the two tasks result in different levels of accuracy when using transfer entropy

measures to identify information flow between neurons. It is important to note that in calculating

these misestimates, we only accounted for the misestimates that result from TE measurements

in polyadic or cryptographic gates. However, we commonly face several other challenges when

applying the transfer entropy concept to components of nervous systems (neurons, voxels, etc.).

These challenges range from intrinsic noise in neurons to inaccessibility of recording data for larger

populations of neurons, which we discuss in more detail later.

We also tested how well transfer entropy can identify the existence of information flow between

any pair of neurons using the statistics of neural recordings at two subsequent time points only.

Because a perfect model for the “ground truth” of information flow is difficult (if not impossible) to

establish, we use an approximate ground truth that uses the connectivity of the network, along with

information from the (simplified) logic function to provide a comparison. We find that TE captures

many of the connections established by the ground truth model, with a true positive rate (hit rate)

of 73.1% for motion detection and 78.7% for sound localization (assuming any non-zero value

of transfer entropy implies information flow). The TE measurements miss some relations from

the established ground truth while also providing demonstrably false positives, with a false-alarm

rate of 7.7% in motion detection and 18.5% for sound localization. For example, some of the

information flow estimates in Figure 4.6 manifestly reverse the actual information flow, suggesting

a backwards flow that is causally impossible. Such erroneous backwards influence is possible,
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for example, when the signal has a periodicity that creates accidental correlations with significant

frequency. Besides these false positives, the false negatives (missed inferences) are due to the use

of information-hiding (cryptographic or obfuscating) relations, as discussed earlier.

It is noteworthy that in the transfer entropy measurements we performed, we benefited from

multiple factors that are commonly great challenges in TE analysis of biological neural recordings.

First, our TE measurement results were obtained using error-free recordings of noise-free neurons,

while biological neurons are intrinsically noisy. We were also able to use the recordings from

every neuron in the network, which presumably results in more accurate estimates. In contrast, in

biological networks we only have the capacity to record from a finite number of neurons which, in

turn, constrains our understanding of how information flows in the network.

Furthermore, by focusing only on information flow from one time step to the next we can

evade the complex issues posed by estimating causal influence, which requires finding optimal

time delays in transfer entropies. For example, while a signal may influence a neuron’s firing three

time steps after it was perceived by a sensory neuron, it must be possible to follow this influence

step-by-step in a first-order Markov process, as causal signals must be relayed physically (no action-

at-a-distance). As a consequence, when using transfer entropy to detect and follow information

flow, we can restrict ourselves to history lengths of 1 (: = ℓ = 1), which significantly simplifies

the analysis [107]. Furthermore, complications arising from discretizing continuous signals [199]

do not arise, nor is there a choice in embedding the signal as all our neurons have discrete states.

In principle, extending the history lengths (from : = ℓ = 1 to higher) may be used to reduce false

positives in entropy estimates (even for a first-order Markov process), for the simple reason that

the higher dimensionality of state space reduces accidental correlations, given a finite sample set.

However, such an increase in dimensionality has a drawback: it makes the detection of true positives

more difficult (it increases the rate of false negatives) unless the dataset size is also increased. In

many dynamical systems such an increase in data size is not an issue, but it may be very difficult (if

not impossible) for smaller systems such as the simple cognitive circuits that we evolve. For those,

the number of different “sensory experiences” is extremely limited, and increasing the dataset size
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does not solve the problem because it would simply repeat the same data. In other words, unlike for

large probabilistic systems where generating longer time series will almost invariably exhaustively

sample the probability space, this is not the case for motion detection and sound localization. For

such “small” systems, increasing the history lengths reduces false positives, but increases false

negatives at the same time.

Finally, in order to precisely calculate transfer entropy from Equation (4.1), the summation

should be performed over all possible states of variables -C , .C , .C+1. Using only a subset of those

states when calculating the entropy estimate may result in false positives, as well as false negatives.

This is another common source of inaccuracy in TE measurements of neural recordings. Here we

were able to generate neural recording data for all possible sensory input patterns and included

them in our dataset, yet we still observe the described shortcomings in our results. This brings up

another important point to notice, namely, even if we introduce every possible sensory pattern to

the network, we do not necessarily observe every possible neural firing pattern in the network, and

as a result, we do not necessarily sample the entire set of variable states (.C+1, .C , -C).

4.5 Conclusions

Our results imply that using pairwise transfer entropy has its limitations in accurately estimating

the information flow, and its accuracy may depend on the type of network or cognitive task it is

applied to, as well as the type of data that is used to construct the measure. Higher-order conditional

transfer entropies or more sophisticated measures such as partial information decomposition [204]

may be able to alleviate those errors, at the expense of significant computational investments. We

also find that simple networks that respond to a low-dimensional set of stimuli (such as the two

example tasks investigated here) lead to problems in inferring information flow simply because

transfer entropy estimates will be prone to sampling errors.

These findings highlight the importance of understanding the frequency and types of funda-

mental processes and relations in biological nervous systems. For example, one approach would be

to examine transfer entropy in known systems, especially in simple biological neural networks in
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order to shed light on the strengths and deficiencies of current methods. Performing an information

flow analysis on brains in vivo will remain a daunting task for the foreseeable future, but advances

in the evolution of digital cognitive systems may allow us a glimpse of the circuits in biological

brains, and perhaps guide the development of other measures of information flow.
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CHAPTER 5

MECHANISM OF DURATION PERCEPTION IN ARTIFICIAL BRAINS SUGGESTS
NEWMODEL OF ATTENTIONAL ENTRAINMENT

5.1 Introduction

Our ability to deduce causation, to predict, infer, and forecast, are all linked to our perception of

time. This activity of the brain refers to an inductive process that integrates information about the

past and present to calculate the most likely future event [29]. Without a doubt, this ability is key to

an organism equippedwith such a brain to survive and prosper, by predicting and deciphering events

in the world [134, 160]—as well as the actions of other such organisms. A typical experimental

procedure in the study of time perception is comparative duration judgement, in which subjects

are asked to compare and judge the duration of events. Generally, duration judgements display the

scalar property, which implies that the probability distribution of judgements is scale invariant [53].

However, we do not perceive time objectively. Rather, the experience of temporal signals is highly

subjective, and is influenced by non-temporal perception, attention, as well as memory [26, 118].

An example of non-temporal perception is the saliency of a stimulus (how it stands out over a

background), which may affect how it is perceived.

Attention is another variable that can shape time perception [193, 37, 32, 108, 188]. Because our

cognitive bandwidth is limited, we cannot pay attention to all sources of information equally [132].

Rather, a sophisticated mechanism selects which stimuli are attended to, and how much attention

is allocated to them. A central hypothesis is that the more attention is devoted to the duration of an

event, the longer it is perceived to last [193, 37, 32, 108, 188]. Proposed models of time perception

such as Scalar Expectancy Theory (SET) [54] that support this hypothesis usually assume that

duration perception is performed with some sort of internal clock [53, 54, 191]. In that model,

the onset of an event triggers a switch that starts measuring the accumulation of pulses generated

by a pacemaker, and triggers the stop switch at the end of the event. The effective rate of pulse
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accumulation, in turn, is modulated by the attention given to the stimulus.

In SET, the amount of attention allocated to the stimulus is uniformly distributed in time.

By contrast, in models such as Dynamic Attending Theory (DAT) [81, 82, 101] the temporal

structure of the signal within which the stimulus is embedded may increase or decrease levels

of attention in time. In particular, rhythmic backgrounds can entrain the brain so that it expects

stimuli to occur periodically, and leads to peaks and troughs of attention. Consequently, models of

attentional entrainment based onDAT posit that attentional rhythms that are internal to the cognitive

architecture are synchronised by external rhythms, so that the external stimuli can then lead to an

enhanced processing of events that occur precisely when they are expected to occur [120, 122, 123].

Previous studies have provided support for DAT and related entrainment models, for example by

showing that events that occur at rhythmically expected time points can be discriminated more

easily than those that occur unexpectedly [101, 122, 83, 124, 129]. In a recent study, McAuley

and Fromboluti provided additional support for DAT and related entrainment models by studying

the role of attentional entrainment on event duration perception [121]. In that work, they used an

auditory oddball paradigm in which a deviant tone (oddball) is embedded within a sequence of

otherwise identical rhythmic tones (standard tones). Their results demonstrated that manipulations

of oddball tone onset can lead to distortions in oddball tone duration perception. In particular, they

observed a systematic underestimation of the duration of oddball tones that came early with respect

to the rhythm of the sequence, and an overestimation of oddball duration in trials where oddballs

arrived late with respect the rhythm of the sequence.

Interval timingmodels such asDAT and SET and their computational counterparts usually take a

top-down approach by engineering networks of high-level computational components that describe

behavioural/psychophysical data in duration perception [53, 81, 82, 44, 117] (see also references

in [5, 64, 61]). Some studies have employed more elaborate models that consist of neuron-scale

components [28, 86]. Here, we take a bottom-up approach where evolution leads to a population

of diverse computational networks (artificial brains) consisting of lower-level components. These

brains may differ in their components and possibly in their behaviours (higher level computations).
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These modern computational methods have opened a new path towards understanding perception:

the recreation, in silico, of neural circuitry that implements behaviour similar to human performance.

While this capacity is still in its infancy and therefore can only emulate humans on fairly simple

tasks (such as attentional entrainment), the usefulness of this tool for a future “experimental robotic

psychology” [19, 2] is evident.

In this study, we use Darwinian evolution to create artificial digital brains, (also known as

Markov Brains [69], see Methods), that are able to perform duration judgements in auditory

oddball paradigms1. Markov Brains are networks of variables with discrete states that undergo

transitions evoked by sensory, behavioural, or internal states, and capable of stochastic decisions.

As such, they are abstract representations of micro-circuit cortical models [62], except that their

dynamics is not programmed.

We run 50 replicates of the evolutionary experiment (i.e., 50 different populations) and from

each pick the best-performing Brain. These evolved Brains display behavioural characteristics that

are similar to human subjects: for example, their discrimination thresholds satisfy Weber’s law. In

fact, these 50 Brains can be thought of as participants in a cognitive experiment. We then test these

Brains against auditory oddball paradigms that they have never experienced before, in which the

oddball tone may come early or late with respect to the rhythm of the sequence (similar to the first

series of experiments in Ref. [121]). The evolved Brains show distortions in perception of early/late

tones similar to what was reported in human subjects [121]. We then analyse the algorithms and

computations involved in duration judgement in order to discover how these algorithms result in

systematic distortions in perception of early/late oddballs.

Our findings demonstrate that the computations involved in duration judgements and distortions

is quite different from existing time perception theories such as scalar expectancy theory (SET)

or dynamic attending theory (DAT), and suggest a new theory of perception in which attention to

uncertain parts of the stimuli plays the central role, whereas predictable parts require less attention

(i.e., less processing) because they are expected [78]. This is consistent with recent findings that
1Here and below, to avoid confusion we use “Brain” with a capital B to denote artificial brains,

while biological brains remain just “brains”.
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predictability of stimuli results in more rapid recognition [119]. We close with speculations that

suggest a broader view in which all cognitive processing can be understood in terms of context-

dependent prediction algorithms that pay attention only to those parts of the signal that are predicted

to have the highest uncertainty, and are therefore likely to be informative.

5.2 Results

We evolve Markov Brains that are capable of duration judgements of an oddball tone placed in a

rhythmic sequence of identical tones (standard tones) with a variety of standard tone durations and

inter-onset-intervals (IOI) (Fig. 5.1 shows a schematic of the auditory oddball paradigm). We ran

50 replicates of the evolution experiment for 2,000 generations and from each population picked

the Brain with the highest performance at the end of each run. The best performing Brains in all

50 populations gain 98.0% fitness on average (see Fig. 5.10).

time

oddballstandard tones

Inter-onset-interval

Figure 5.1: A schematic of the auditory oddball paradigm in which an oddball tone is placed within
a rhythmic sequence of tones, i.e., standard tones. Standard tones are shown as grey blocks and
the oddball tone is shown as a red block. Oddball tone duration may be longer or shorter than the
standard tones.

5.2.1 Discrimination thresholds of evolved Markov Brains comply with Weber’s law

We used average responses of the evolved Brains to generate psychometric curves as follows.

For each (IOI, standard tone) we averaged the decision responses of 50 evolved Brains. Using

these averaged responses, we generated psychometric curves corresponding to each standard tone

as prescribed by [109] and calculated the point of subjective equality (PSE) and just noticeable

difference (JND). The PSE measures the duration for which Markov Brains respond longer (or
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shorter) 50% of the time which, in essence, marks the duration of the oddball that is perceived

to be equal to the standard tone. The JND measures the sensitivity of the discrimination, or

discrimination threshold, for a standard tone. In other words, the JND represents the slope of

the psychometric curve, where steeper slopes show higher discrimination sensitivity or lower

discrimination threshold. The PSE reflects the accuracy of the perception while the JND indicates

its precision. The values of PSE, JND, and their standard deviations are presented for all inter-

onset-intervals and standard tones in Table 5.1.

Table 5.1: This table contains point of subjective equality (PSE), just noticeable difference (JND),
and their standard deviations (SD), as well as relative JNDs, and constant error (CE) of on-time
oddballs for all inter-onset-intervals, standard tones. Responses are averaged across all 50 Brains
to generate psychometric curves.

IOI, std tone PSE PSE SD JND JND SD relative JND CE
(10, 5) 4.89 0.073 0.335 0.050 0.067 -0.109
(11, 5) 5.09 0.068 0.292 0.039 0.058 0.092
(12, 6) 5.92 0.083 0.458 0.051 0.076 -0.077
(13, 6) 6.27 0.072 0.339 0.050 0.057 0.265
(14, 7) 6.80 0.080 0.404 0.050 0.058 -0.204
(15, 7) 7.05 0.072 0.416 0.041 0.059 0.049
(16, 8) 7.76 0.067 0.380 0.037 0.047 -0.242
(17, 8) 8.05 0.064 0.402 0.038 0.050 0.051
(18, 9) 8.58 0.072 0.372 0.049 0.041 -0.417
(19, 9) 9.01 0.081 0.469 0.048 0.052 0.012
(20, 10) 9.76 0.078 0.403 0.052 0.040 -0.240
(21, 10) 10.45 0.093 0.442 0.045 0.044 0.448
(22, 11) 11.19 0.109 0.655 0.085 0.060 0.192
(23, 11) 11.99 0.116 0.756 0.075 0.069 0.993
(24, 12) 13.04 0.119 0.829 0.071 0.069 1.036
(25, 12) 13.82 0.128 0.900 0.079 0.075 1.819

According toWeber’s law [47], the discrimination threshold (e.g., the JND) varies in proportion

to the standard stimulus; therefore, the values of relative JND, defined as JND
std tone , should remain

constant. Getty showed that empirical results of duration perception in the range of 80 msec

to 2 seconds is explained very well with Weber’s law [52]. Fig. 5.2A shows the psychometric

curves generated from the averaged responses of all 50 Brains for every (IOI, standard tone). In

this figure, durations are normalised by standard tone. Psychometric curves for different standard
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Figure 5.2: (A) Psychometric curves generated from averaged responses of 50 evolved Brains
for every inter-onset-interval, standard tone. Oddball durations on the G-axis are normalised by
standard tone to lie in the range (-1, 1). (B) Relative JND values and their 95% confidence interval
as a function of inter-onset-interval, standard tone. Dashed line shows the average value of relative
JNDs. (C) Constant errors, the difference between PSE and standard tone, and their 95% confidence
interval as a function of inter-onset-interval, standard tone. Dashed line shows CE=0.

tones overlap, which shows that relative JNDs in all these trials are similar and confirms that they

are in accordance with Weber’s law. Fig. 5.2B shows relative JNDs as a function of standard

tones. All relative JNDs are in the range between 0.04 and 0.07 with mean=0.06 and standard
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deviation=0.01, similar to the values found in [52]. The difference between PSE and the standard

tone, also known as the constant error (CE), shows the deviation of perceived duration of tone from

its actual duration. The values of CE are shown for every (IOI, standard tone) in Fig. 5.2C and we

observe that for longer IOIs, CE values start to deviate slightly from zero. This deviation in PSE

values for longer tone durations is also observed in human subjects [52]. However, this deviation

of CEs for longer tones in Markov Brains was different from human subjects in that CE values in

human subjects start decreasing for longer durations (they are negative) whereas in Markov Brains

CE values increase (they are positive). This difference can be attributed to the fact that in the

experiments described in Ref. [52] subjects do not receive any feedback about their performance

duration judgements whereas Darwinian evolution provides feedback implicitly via selection. The

mechanisms behind the distortion in duration perception in longer IOIs are explained in more detail

in Additional Experiments and Analysis.

5.2.2 Evolved Brains show systematic duration perception distortion patterns similar to
human subjects

In the next step, we tested evolved Markov Brains with stimuli that they had never experienced

during evolution, namely oddballs that arrive early or late with respect to the rhythm of the sequence

of tones (termed “test trials”). In trials used during evolution (“training trials”), oddballs always

occurred in sync with the rhythmic tone (on-time oddballs). These test trials included all possible

oddball durations but also all possible oddball onsets, meaning oddballs were delayed or advanced

as many time steps as possible as long as they did not interfere with the following or preceding tone.

Then, we used the average response of 50 Brains to generate psychometric curves for early/late

oddballs, and to calculate PSE values.

We used PSE values to calculate the duration distortion factor (DDF), defined as the ratio

of the point of objective equality (the standard tone) and the point of subjective equality (PSE).

Fig. 5.3 shows the DDF as a function of the onset of the oddball for all IOIs. In this plot, negative

onset values stand for early oddballs and positive values of onset represent late oddballs. A DDF
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Figure 5.3: Duration distortion factors (DDF) and their 95% confidence interval as a function of
the onset of the oddball for all IOI, standard tones. Negative onset values represent early oddballs
and positive values of onset represent late oddballs. A DDF greater than 1 shows an overestimation
of the duration of the oddball and DDF less than unity shows an underestimation of the duration of
the oddball. The dashed line indicates DDF=1 and the dotted line shows DDF for on-time oddball
tone.

greater than one shows an overestimation of the duration of the oddball whereas a value less than

unity reflects an underestimation of the duration of the oddball. Just as was observed with human

subjects [121], the late oddballs are perceived as longer and the early oddballs are perceived as

shorter compared to the standard tone. In addition, the more delayed (early) the oddball tone, the

more its duration is overestimated (underestimated) compared to the standard tone, which is again

consistent with results presented in experiment 2 of Ref. [121].
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5.2.3 Algorithmic analysis of duration judgement task in Markov Brains

The logic circuits of evolved Markov Brains are complicated and defy analysis in terms of causal

logic. As observed before, these networks turn out to be “epistemologically opaque” [116], in the

sense that their evolved logic does not easily fit into the common logical narratives we are familiar

with. Rather than focus on the Boolean logic of Markov Brains, we here focus on their state

space [55, 166]. In particular, we investigate the state transitions and how these transitions unfold

in time, in order to discover the computations that are at the basis of the observed behaviour [16].

5.2.3.1 Temporal information about stimuli is encoded in sequences of Markov Brain states

Evolved Brains display periodic neural activation patterns in response to rhythmic auditory signals

(this is, by definition, entrainment). These periodic neural firing patterns translate to loops in state

transition diagrams (see Methods for more details on state transitions in Markov Brains). In each

trial, the first few tones an evolved Brain listens to typically shift the Brain’s activation pattern

towards a region in state space that is associated with this rhythm. More precisely, the opening

tones transition the Brain to a sequence of states that form a loop in the state-to-state diagram, and

the Brain remains in that loop as long as the stimulus is repeated. Fig. 5.4A shows an instance of a

Markov Brain state transition diagram when listening to rhythmic tones with IOI=10 and standard

tone=5 in the absence of an oddball. The state of the Brain is calculated from equation (5.2).

Supplementary Movie 1 shows the state-to-state transitions as the Brain listens to a sequence

of standard tones. This sequence of Brain states encodes the contextual information about the

stimuli, that is, the sequence forms an internal representation of the rhythm and the standard tone.

More importantly, this sequence produces an expectation of future inputs that enables the Brain

to compare the input it has sensed with future inputs. In particular, when the Brain receives the

oddball, it usually transitions out of this loop to follow a different trajectory in state space (see for

example Fig. 5.4B) to judge the oddball duration, which is a comparison mechanism between the

standard tone (what is expected) and the oddball. Fig. 5.5 shows that in most of the trials (77.6%

of the trials) Brains evolve loops of the same size as the period of the rhythmic tones (the IOI), but

82



01 1 1 0 011 0 0 00 01 1 111 0 0 01 1 1 0 011 0 0standard

shorter

longer 000 0101 1 1 0 011 0 0 01 1 1 0 011 0 01 1 111

1 1 0 0 01 1 1 0 011 0 00111 0 0 0 00 0 0 01 111

1

1

0

0

839359

186228820 29191510 997 485
1 11

0

1

867

1

0
3911961

2914

L

1

1 0

01 1 1 0 011 0 0 00 01 1 111 0 0 01 1 1 0 011 0 0standard

1

1

2884869

0

0

839359

186228820 29191510 997 485 0
1

0

0

11

0

2918

1

867

1

833

0
0

1

3911961

2914
0

S0

L

0

0

1

0

1 1

1

1

1

0

1

2912

865

3046

3044

2886

3014

357

967
1

0 1

1

A

B

Figure 5.4: State-to-state transition diagram of a Markov Brain for IOI=10, and standard tone=5,
with oddball tones of duration 5, 6 shown in (A) and 4 shown in (B). Before the stimulus starts, all
neurons in the Brain are quiescent so the initial state of the Brain is 0. The stimulus presented to
the Brain is a sequence of ones (representing the tone) followed by a sequence of zeros (denoting
the intermediate silence). The stimulus at each time step is shown as the label of the transition
arrow in the directed graph. The input sequence is shown for the standard and oddball sequences at
the bottom of the state-to-state diagrams. (A) State-to-state transition diagram of a Markov Brain
when exposed to a standard tone of length 5, as well as a longer oddball tone of length 6. This
Brain judges an oddball tone of duration 6 by following the same sequence of states as the original
loop, because the transition from state 485 to 1862 occurs irrespective of the sensory input value,
0 or 1. This Brain correctly issues the judgement “longer” from state 3911, indicated by the red
triangle at the end of the time interval (see Supplementary Movie 1 and Supplementary Movie 2 for
standard tone and longer oddball tone, respectively). (B) The state-to-state transition diagram of
the same Brain when presented with a shorter oddball tone of length 4. The decision state is marked
with a down-pointing blue triangle. Once the Brain is entrained to the rhythm of the stimulus, the
shorter oddball throws the Brain out of this loop. The exit from the loop transitions this Brain into
a different path. After four ones the Brain transitions to state 359 (instead of continuing to 485),
and then continues along a path where it correctly judges the stimulus to be “shorter” in state 2884
(see also Supplementary Movie 3).
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some Brains have loops that are multiples of the IOI. In this figure, the size of the each marker is

proportional to the number of Brains that evolve a particular loop length in each IOI. Also, further

analysis shows that in 93.6% of trials, evolved Brains transition out of these loops at the exact time

point where there is a mismatch in oddball and standard tone.
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Figure 5.5: The distribution of loop sizes of 50 evolved Brain for each inter-onset-interval (IOI).
The size of the markers is proportional to the number of Brains (out of 50) that evolve a particular
loop length in each IOI. The dashed line shows the identity function.

5.2.4 Algorithmic analysis of distortions induration judgements: Experience andperception
during misjudgements of early/late oddballs

The similarity of behavioural characteristics in the perception of event duration between Markov

Brains and human subjects appears to imply a fundamental similarity between the underlying

computations and algorithms. In the following, we present brief definitions of concepts such

as attention, experience, and perception in terms of state transitions in deterministic finite-state

machines that are later used in our analysis (in Methods we present more formal definitions of these

concepts and the reasoning behind them).

1) Attention to a stimulus: When a Brain is in state (C and transitions to state (C+1 regardless

of the stimulus (zero or one), we say the Brain does not pay attention to the input stimulus. More

generally, a Brain pays less attention to an input stimulus or a sequence of stimuli if that input does

not affect the state of the Brain later in the future state, (C+: .
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2) Perception of a trial: The state of the Brain at the end of the oddball tone interval (when it

issues the longer/shorter decision) is the Brain’s perception of the tone sequence.

3) Experience of the stimuli: The temporal sequence of Brain states when exposed to a sequence

of input stimuli constitutes the Brain’s experience.

We first hypothesised that early or late oddball tones drive the Brain into states that they had

never visited before (as these Brains had never previously experienced early or late oddball tones)

and that these new states are responsible for misjudgements of early or late oddballs. When

exposed to late or early oddballs, Brains visited on average 22.26 (SE=4.33) new states across 50

evolved Brains, approximately 32% of the number of states they visited during trials with on-time

oddballs, which is 69.80 states on average (SE=5.07). We then tested how often these new states

are decision states for the misjudgements of out-of-time oddball tones. Our tests show that in

such misjudgements, the Brain state at decision time point is almost never a new state that has not

appeared before (it happened in one test trial for one Brain out of 56,250 different test trials in all

50 Brains).

Given that during misjudgements of out-of-rhythm oddballs the decision state is a state that

had previously occurred during evolution, we test whether there is any connection between Brain

states during these misjudgements and Brain states in training trials. In other words, we investigate

how the experience during a misjudgement relates to experiences the Brain had in its evolutionary

history. In the next two sections, we address these questions by separately focusing on perception

and experience of Markov Brains during misjudgements of out-of-rhythm oddball tones.

5.2.4.1 The onset of the tone does not alter a Brain’s perception of the tone

Our null hypothesis is that the perception of an out-of-rhythm oddball tone may be any one of

the states that the Brain has traversed in training trials with equal probability. In any of these

Brain states, the decision neuron will be either quiescent or firing, so we call the set of states

with quiescent decision neuron “shorter-judging states” denoted as (Sh, and the set of states with

firing decision neuron “longer-judging states” denoted as (Lo. Thus, the probability that a Brain at
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decision time is in any of the shorter-judging states, for example, is calculated by

Prob((decision ∈ ((ℎ) =
1
|(Sh |

, (5.1)

where |(Sh | is the cardinality of the set of shorter-judging states, and similarly, Prob((decision ∈

(!>) = 1
|(Lo |

.

We develop our alternative hypothesis that captures possible associations between experience

and perception during misjudgement of out-of-rhythm oddballs and experiences and perceptions

they had in training trials. In order to discover such possible associations, for any given mis-

judgement of early or late oddball we limit our search domain to training trials with the same

inter-onset-interval and standard tone as the misjudgement trial. In the next step, we search for

correlations between the perception and various oddball tone properties such as its 1) onset (time

step at which the oddball begins, )init), 2) duration (Δ)), and 3) ending time point (time point

at which the oddball ends, ) 5 8=). To this end, we calculated the information shared between the

perception and oddball tone properties (see Methods for a detailed explanation of information com-

putation procedures). Fig. 5.6A shows the information shared between the perception (decision

state (decision) of the Brains and 1) oddball ending time (shown in grey), 2) oddball onset (shown

in blue), and 3) oddball duration for each inter-onset-interval and standard tone. These results

show that the oddball ending time point is a better predictor of the perception than the oddball tone

onset or its duration. Note also that the information shared between the perception and the oddball

ending time point remains consistent across all IOI and standard tones, whereas shared information

between perception and oddball duration, and perception and onset decrease monotonically as

IOI and standard tones increase. Building on these results, we propose the following alternative

hypothesis: during misjudgement of an early or late oddball, a Brain goes through a state sequence

that is reminiscent of experiences it had during trials with the same IOI and standard tone, and with

on-time oddballs that end at the same time point as the early or late oddball (an example scenario

is shown Fig. 5.6B).

In order to test this alternative hypothesis, we perform another test to measure how often

perception in misjudgement of early or late oddballs is identical to perceptions in similar training
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Figure 5.6: (A) The mutual information between perception, i.e., the decision state of the Brain,
and 1) the oddball tone ending time step (shown in black), 2) the oddball tone duration (shown in
red), 3) the oddball tone onset (shown in blue), and their 95% confidence intervals. (B) Sequence
of inputs for a standard tone, an on-time longer oddball tone that is correctly judged as longer, and
a shorter late oddball tone that is misjudged as longer. Sequence of inputs for a standard tone, an
on-time shorter oddball tone that is correctly judged as shorter, and a longer early oddball tone that
is misjudged as shorter. Sequences of Brain states along with input sequences for on-time longer
oddballs and shorter late oddballs.(C) The fraction of misperceived out-of-time oddball tones that
resulted from having the same perception in on-time and out-of-time stimuli with the same oddball
end points (left data point), compared to the null hypothesis; likelihood that Brains misjudgements
were to be issued from any one of states from set of “shorter-judging” or “longer-judging” states
(middle and right data point, respectively).

trials. Consider for example a trial with IOI=10, standard tone=5 with a late oddball tone (onset=2)

that is shorter than the standard tone (duration=4) as shown in Fig. 5.6B. When a Brain misjudges

this oddball as “longer” (with (decision = 3911 as shown in Fig. 5.6B), we search for instances

in the set of training trials (with on-time oddball) with IOI=10 and standard tone=5, where that

Brain issued a correct “longer” decision for an oddball that ended at the same time point as the

late shorter oddball (as shown in Fig. 5.6B). The same analysis can be performed for misjudgement

of early oddballs that are longer than the standard tone (Fig. 5.6B). We count the number of such

instances for each Brain and divide the result by the total number of its misjudgements of out-

of-rhythm oddball tones. Fig. 5.6C (left data point) shows the result of this analysis for all 50
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Brains. This result shows that in the vast majority of the cases (with median of 69.5% of the

cases), the misjudged out-of-rhythm oddball and on-time oddballs that end at the same time point

are perceived the same. In other words, the misjudgement is due to Brains paying less attention

to the onset of the tone, meaning the onset of the oddball does not affect the ultimate state from

which the decision is issued. The middle and left data points show the probabilities calculated

from equation 5.1 described in the null hypothesis, that measure how likely it is for a Brain to,

by chance, end up in any of the “shorter-judging” or “longer-judging” state at decision time. Our

statistical analysis shows that having the same decision state in out-of-rhythm oddball and on-time

oddballs (with constraints explained above) are significantly more likely than being in “shorter-

judging” (median=0.695 vs. median=0.069, Mann Whitney* = 2494.0, = = 50, ? = 5.03× 10−18

one-tailed) or “longer-judging” state at decision time (median=0.695 vs. median=0.023, Mann

Whitney* = 2500.0, = = 50, ? = 3.51× 10−18 one-tailed), therefore, we reject the null hypothesis

in favour of the alternative hypothesis.

Based on these findings, we conclude that during misjudgements of early or late oddball tones,

Markov Brains pay more attention to the end point of the oddball and less attention to the oddball

duration, or it onset. This is presumably because during evolution tones are always rhythmic and

Brains that entrain to the rhythm expect the oddball to be on-time. As a result, Brains pay more

attention to when the oddball ends which is a more informative component of the stimuli than its

onset which, during evolution, had no variation and hence, no uncertainty.

5.2.4.2 Experience of early or late oddball is similar to adapting entrainment to phase change

Here we investigate the entire sequence of Brain states (Brain experiences of the stimuli) for those

instances we found in previous section, in which the perception of the Brain in misjudgement of

early/late oddballs was the same as perception of shorter/longer on-time tones with the same end

point as an out-of-time oddball. In order to compare two experiences, we use two different measures

(experience comparison is a form of representational similarity analysis, see for example [96, 95]).

First, we find the longest common sub-sequence that includes the decision state. In other words, we
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start from the decision state in on-time and out-of-time sequences (note that the decision state is the

same in both sequences), trace back the transitions in sequences and count the number of states that

are identical in both sequences until the first mismatch occurs. The length of the identical portion

of the two sequences is then normalised by the total length of one sequence (recall that the length

of both sequences are the same) to lie in the range (0,1], we term this normalized length of the

identical portion of experiences the similarity depth, since it measures how deeply the on-time and

out-of-time oddball experiences are identical. We note that because the perception of the tone is

the same in these trials, the similarity depth must be greater than zero. Second, we use the Jaccard

index, that measures the overall similarity of sequences by comparing states at same positions in

the two sequences.

Fig. 5.7A shows the distributions of similarity depth and total similarity of experiences.

Fig. 5.7B shows the distribution of the difference between the similarity depth and total simi-

larity. The difference between the two measures is zero in 91.5% of the cases which implies that

the experiences are almost always entirely different up to the point where they become identical.

We observe a wide variety in these similarity measures which shows that Brains do not traverse

the exact same trajectory they did during an on-time trial; rather the early or late oddball initially

throws the Brain out of this trajectory but later the Brain returns to states it experienced during an

on-time oddball with the same end point. In other words, the onset of the out-of-time oddball is

noticed, however, since the Brains are entrained to the rhythm and expect the oddball to be on-time

their computations of duration relies more on their expectation than the actual start point of the

oddball. This mechanism is reminiscent of adapting to phase changes in entrainment to rhythmic

stimuli.

5.3 Discussion

This study was aimed at elucidating the neural (mechanistic) underpinnings of perception, by

evolving digital Brains that perform duration judgements of tones that were presented in a rhythmic

sequence, and that were later subjected to out-of-rhythm oddball tones to quantify distortions in

89



A B

Figure 5.7: (A) Distribution of similarity depth of experiences (sequences of states) of on-time
and early/late oddball tones in trials in which onset does not change the perception of the tone in
Markov Brains. Similarity depth one implies that the experiences are identical throughout the tone
perception. (B) The distribution of the difference between the total similarity and similarity depth
in each trial.

duration judgement that occur as a response to the onset manipulation. We found that evolved

Markov Brains display a capacity to discriminate tone length that is remarkably similar to people’s

ability to distinguish changes (quantified by Weber’s Law) to the extent that the observed relative

JND of Markov Brains was in the same range (6-10%) as in some of the experiments in [52, 121].

Furthermore, evolved Markov Brains exhibit a systematic distortion in perceived event duration

of out-of-rhythm oddball tones that is also similar to what was observed in a human subjects

study previously conducted by one of the authors. But while the conclusion of [121] was that the

experiments supported the dynamic attending theory (DAT) of attentional entrainment (which, we

recall, posits that entrainment creates peaks of attention that coincide with the start of each tone)

we here find instead that Markov Brains pay attention to the end of the signal, and pay less attention

to the onset.

From the point of view of Bayesian inference [92], a model of cognition that focuses attention on

those parts of the signal that carry most of the uncertainty (the end of the stimulus) makes eminent

sense. After all, Brains that have experienced only on-time stimuli should take the rhythmic nature

of stimuli for granted: there is no need to pay attention to predictable stimuli. In fact, this view of

cognition is fully consistent with the Hierarchical Temporal Memory (HTM) model of neo-cortical

computation [67], which is based on the idea that brains are prediction machines. This model

of attention differs from common models of visual processing and attention such as visual and
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auditory saliency [74, 87], because in those models only the contrast of the stimulus with the

background is considered for saliency, not the value of the information it contains. The model is

consistent, however, with neurophysical models in which temporal anticipation improves perception

but does not affect the spontaneous firing rate [78, 119], which is associated with attention in visual

processing [192].

The present work suggests a model of cognition where the stimulus not only entrains the

cognitive apparatus, but conditions the brain to expect only a small subset of possible future states.

From this point of view, any temporal history of stimuli leads to predictions that, for the most time,

will come to pass unless the environment has changed in a way that necessitates further attention.

In particular, our findings suggest that both DAT and SET are incomplete models of time perception

where DAT unduly emphasises attention peaks at the beginning of each tone in the sequence, while

SET uses the onset and the end of the tone to start and stop a clock, contrary to our (admittedly

digital) evidence.

The results presented here open up a number of different questions and avenues for future

exploration. Can the theory of dynamical entrainment we present here be meaningfully tested in

human experiments, by focusing on those predictions that distinguish it from established theories

such as SET and DAT? Does this theory also explain observations in different sensory modalities

such as vision? A program in which empirical studies using human subjects coupled with so-

phisticated digital experimentation might provide an answer, and open up avenues for a detailed

mechanistic understanding of the complexities of perception. Ultimately, this opens up the possi-

bility of explaining phenomenological concepts such as attention, perception, and memory in terms

of state-space dynamics of cortical networks.

5.4 Methods

The use of mathematical and computational methods for the study of behaviour is growing,

especially due to the unprecedented increase in our computational power [94]. Computational

methods in particular enable us to perform a large number of “experiments” in silico, with param-
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eters varying in a wide range, in a reasonably short time. Such experiments allow us to explore

parameter space more broadly and to make predictions about conditions that have not been tested

before and, more importantly, are currently beyond the reach of our empirical power. Naturally, for

such computational experiments to have any explanatory power, they must be validated thoroughly

with behavioural data.

In this work, we use an agent-based model in which agents are controlled by artificial neural

networks (ANNs) that differ in many important aspects from the more common ANN method.

Because the logic of these networks is determined by logic gates with the Markov property we refer

to these neural networks as Markov Brains [45]. Below, we describe the structure, function, and

encoding of Markov Brains, but see [69] for a full description of their properties and how they are

implemented. Markov Brains have been shown to be well-suited for modelling different types of

behaviour observed in nature, from simple elements of cognition such as motion detection [184]

and active categorical perception [116, 186], to swarming in predator-prey interactions [140],

foraging [138], and decision-making strategies in humans [98].

5.4.1 Markov Brains

Markov Brains are networks of variables connected via probabilistic or deterministic logic gates

with the Markov property. While we often term these variables “neurons”, the state of the variable

is more akin to a binary firing rate, that is, each neuron is a binary random variable (i.e., a bit) that

may take two values: 0 for quiescent and 1 for firing. Fig. 5.8A shows a schematic of a simple

Brain consisting of 12 neurons (labeled as 0-11) at two subsequent time points C and C + 1. The

state of neurons in this example are updated via two logic gates. Fig. 5.8B shows a gate that takes

inputs from neurons 0, 2, and 6 and writes the output into neurons 6 and 7. This logic gate produces

output states of neurons 6 and 7 at time C + 1 given input states at time C. Each gate is defined

by a probabilistic logic table in which the probability of each output pattern for a given input is

specified. For example, in the probability table shown in Fig. 5.8C, ?52 specifies the probability of

obtaining output state (#6, #7) = (1, 0) (a state with decimal representation ‘2’) given input states

92



(#0, #2, #6) = (1, 0, 1) (decimal translation ‘5’), that is,

?52 = %(#0, #2, #6 = 1, 0, 1→ #6, #7 = 1, 0).

Since this gate takes 3 inputs, 23 possible inputs can occur, which are shown in eight rows. Similarly,

this probabilistic table has four columns, one for each of the 22 possible outputs. The sum of the

probabilities in each row must equal 1:
∑
9 ?8 9 = 1. When using deterministic logic gates (such

as in this study), all the conditional probabilities ?8 9 are zeros or ones. In general, Markov Brains

can contain an arbitrary number of gates, with any possible connection patterns, and arbitrary

probability values in logic tables [69]. As is clear from this example, we do not implement the

update of the Brain state using probabilities that are conditional on the environmental state ®�C ;

rather, we update the joint state ( ®�C , ®(C).

B

C D

A

Figure 5.8: (A) A simple Markov Brain with 12 neurons and two logic gates at two consecutive
time steps C and C + 1. (B) Gate 1 of (A) with 3 input neurons and 2 output neurons. (C) Underlying
probabilistic logic table of gate 1. (D) Markov Network Brains are encoded using sequences of
numbers (bytes) that serve as agent’s genome. This example shows two genes that specify the logic
gates shown in (A), so that, for example, the byte value ’194’ that specifies the number of inputs
#in to gate 1 translates to ’3’ (the number of inputs for that gate).

In Markov Brains, a subset of the neurons is designated as sensory neurons that receive inputs

from the environment. Similarly, another subset of neurons serves as actuator neurons (or decision

neurons) that enable agents to take actions in their environment. In principle, an optimal Brain is

designed in such a manner that a particular sequence of inputs (a time series of environmental states

®ΣC = ®f1, ®f2, ..., ®fC) leads to a Brain state ®(C that triggers the optimal response in that environment.
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Rather than using an optimisation procedure that maximises an agent’s performance over the

probabilities %( ®(C → ®(C+1 | ®�C), we use an evolutionary process in which a Brain’s entire network

is encoded in a genome [208] and optimisation occurs through the evolution of a population of

such genomes using a “Genetic Algorithm” (GA, see for example [127]). In particular, each gene

specifies a gate’s connectivity and its underlying logic as shown in Fig. 5.8D. This evolutionary

approach is explained in more detail in the following section.

5.4.2 Evolution of Markov Brains

Markov Brains can evolve to perform a variety of tasks representing different types of behaviours

observed in nature. Selecting for any desirable task leads to the evolution of network connections

and logic-gate properties that enable the agents to succeed in their environment. Each genome is

a sequence of numbers ranging between 0-255 (bytes) that represent a set of genes that encode

the logic and connectivity of the network. The arbitrary pair of bytes 〈42, 213〉 represents the

"start codon" for each gate (Fig. 5.8D), while the downstream loci instruct the compiler how to

construct the network, by encoding how many inputs and outputs define each logic gate, where the

inputs come from (that is, which neuron or neurons), and where it writes to. In this manner, by

"expressing" each gene, the network is fully determined via the connections between neurons and

the logic those connections entail. Once a Brain is constructed, it is implanted in an agent whose

performance is evaluated in an artificial environment that selects for the task. Those agents that

perform best are rewarded with a differential fitness advantage. As these genomes are subject to

mutation, heritability, and selection, they evolve in a purely Darwinian fashion (albeit asexually).

The Genetic Algorithm specification details are shown in Table 5.2.

The population of Markov Brains evolves to judge the duration of an oddball tone (“longer”

or “shorter”) in multiple trials with different IOIs and oddball durations. The full set of all (IOI,

standard tone), possible oddball tone durations, and the total number of trials for each pair of

(IOI, standard tone) used in the evolution is shown in table 5.3. All told, there are 1,472 possible

trials. However, agents are only evaluated on a subset of trials in every generation. This sampling
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Table 5.2: Genetic Algorithm configuration. We evolved 50 populations ofMarkov Brains for 2,000
generations with point mutations, deletions, and insertions. We used roulette wheel selection, with
5% elitism, and with no cross-over or immigration.

Population size 100
Generations 2000

Initial genome length 5,000
Point mutation rate 0.5%
Gene deletion rate 2%

Gene duplication rate 5%
Elitism 5%

increases the evolution efficiency [24], and helps to avoid overfitting and enhances generalisation

of learning [209]. In each generation, we randomly pick 22 trials from each (IOI, standard tone)

pair (each row in Table 5.3) to form the evaluation subset: 11 trials with a longer oddball, and 11

trials with a shorter oddball, so as to prevent biasing Brains toward one response or the other. All

agents of the population are then evaluated in that same subset of trials, which is 352 trials.

5.4.3 Experimental Setup

The Brains we evolve can have up to 16 neurons, of which one serves as the sensory neuron,

and one delivers the decision (the “actuator” neuron). The remaining 14 neurons can be used

for computation and signal transduction, but how many of them are actually used is determined

by evolution. The population of Markov Brains evolves to judge the duration of a deviant tone

(oddball) within a rhythmic sequence of otherwise identical tones, similar to experiments in [121]

(see Fig. 5.9). In each trial, agents listen to a sequence of nine tones with a constant inter-onset-

interval (IOI). An oddball is embedded within this sequence that is either shorter or longer in

duration compared to the other eight tones (standard tones). Markov Brains sense the stimulus

in one of their neurons (here, neuron 0, see Fig. 5.9). Agents must decide whether the oddball

stimulus is longer or shorter than the standard tones. The agent is rewarded for correct duration

judgements and does not gain any reward or incur a penalty for incorrect judgements. One neuron

(neuron 15) in the Markov Brain is designated for delivering the decision (“longer” or “shorter”).
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Figure 5.9: (A) A schematic of auditory oddball paradigm in which an oddball tone is placed within
a rhythmic sequence of tones, i.e., standard tones. Standard tones are shown as grey blocks and
the oddball tone is shown as a red block. (B) The oddball auditory paradigm, which is converted
to a sequence of binary values, shown as sensed by the input neuron of a Markov Brain. When a
stimulus is present, a sequence of ‘1’s (shown by black blocks) is supplied to the sensory neuron
while during silence, a sequence of ‘0’ is fed to the sensory neuron. Each block shows one time
step of the sequence experienced by the Brain.

For the purpose of fitness evaluation, agents are evaluated in several trials with different inter-

onset-intervals (IOIs), different standard tones, a wide range of oddball durations, and with oddballs

placed in different positions in the sequence. Standard tones range from 5 time steps to 12 time

steps. The IOI is approximately twice the standard tone, and ranges from 10 to 25. Oddball

durations can take any value from the shortest possible duration (1 time step) all the way to IOI

minus 1 to avoid interfering with the next tone. During evolution, agents are not evaluated with

oddball tones with the same duration as the standard tone since it is not shorter or longer than the

standard tone. Oddballs can occur in either 5th, 6th, 7th, or 8th position, exactly as in the protocol

of [121]. Our standard tones would be comparable in duration to those used in [121] if a digital

time step is represented by a physical signal with about 70msec duration.
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The set of all IOIs, standard tones, possible oddball-tone durations, and the total number of trials

for each pair of (IOI, tone) is given in Table 5.3. All agents of the population are then evaluated

in that same subset of trials, half of which with a longer oddball and the other half with shorter

oddball, to avoid creating a bias in the agents’ judgements. This subset of randomly picked trials

consists of 512 trials (out of a total 2,852 trials): 22 trials for each (inter-onset-interval, standard

tone) (see Table 5.3).

5.4.4 Discrete time in Markov Brains

The logic of Markov Brains is implemented by probabilistic or deterministic logic gates that

update the Brain states from time C to time C + 1, which implies that time is discretised not only

for Brain updates, but for the environment as well. Whether or not the brain perceives time

discretely or continuously is a hotly debated topic [197], but for common visual tasks such as

motion perception [198] discrete sampling of visual scenes can be assumed. For Markov Brains,

the discreteness of time is a computational necessity. Because no other states (besides the neurons

at time C) influence a Brain’s state at time C + 1, the gates possess the Markov property (hence the

name of the networks). Note that even though the Markov property is usually referred to as the

“memoryless” property of stochastic systems, this does not imply that Markov Brains cannot have

memory. Rather, memory can be explicitly implemented by gates whose outputs are written into

the inputs of other gates, or even the same gates, i.e., to itself [45, 116].

5.4.5 Markov Brains as finite state machines

Because the Brains we evolve are deterministic, they effectively represent a deterministic finite-

state automaton (DFA). There is considerable literature covering the mathematics of DFAs (see, for

example [72]), but very little is applicable to the automata we evolve here. For example, realistic

evolved automata are unlikely to have absorbing states, their stationary distributions are irrelevant,

and they may be both cyclic and acyclic.
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Table 5.3: Complete set of all inter-onset-intervals, standard tones, and oddball durations used
for the evolution of duration judgement. Oddballs can occur in either of the 5th, 6th, 7th, or 8th
position in the rhythmic sequence. Also, oddball durations are always either shorter or longer than
the standard tone. The total number of trials for each pair 〈ioi, tone〉 is four times the IOI minus 2
(excluding oddball duration=standard tone, oddball duration=IOI), because the oddball can appear
in four different positions within the rhythmic sequence.

(Inter-onset-interval, Stan-
dard tone)

Oddball tone durations Total number
of possible tri-
als

Number of
evaluation
trials

(10, 5) {1, 2, 3, 4} , {6, 7, 8, 9} 32 22
(11, 5) {1, 2, · · · , 4} , {6, · · · ,

10}
36 22

(12, 6) {1, 2, · · · , 5} , {7, · · · ,
11}

40 22

(13, 6) {1, 2, · · · , 5} , {7, · · · ,
12}

44 22

(14, 7) {1, 2, · · · , 6} , {8, · · · ,
13}

48 22

(15, 7) {1, 2, · · · , 6} , {8, · · · ,
14}

52 22

(16, 8) {1, 2, · · · , 7} , {9, · · · ,
15}

56 22

(17, 8) {1, 2, · · · , 7} , {9, · · · ,
16}

60 22

(18, 9) {1, 2, · · · , 8} , {10, · · · ,
17}

64 22

(19, 9) {1, 2, · · · , 8} , {10, · · · ,
18}

68 22

(20, 10) {1, 2, · · · , 9} , {11, · · · ,
19}

72 22

(21, 10) {1, 2, · · · , 9} , {11, · · · ,
20}

76 22

(22, 11) {1, 2, · · · , 10} , {12, · · · ,
21}

80 22

(23, 11) {1, 2, · · · , 10} , {12, · · · ,
22}

84 22

(24, 12) {1, 2, · · · , 11} , {13, · · · ,
23}

88 22

(25, 12) {1, 2, · · · , 11} , {13, · · · ,
24}

92 22
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We define the state of a Markov Brain as the vector of states of all neurons except the sensory

ones [166, 62, 159]: ®(C = (#? , #?+1, ..., #=−1), where #8 is the state of the 8Cℎ neuron, ? is

the number of sensory (or peripheral) neurons, (#0, #1, ..., #?−1) is the state vector of sensory

neurons, and = is the total number of neurons. We abbreviate the Brain-state using the decimal

translation of the state vector as:

(C =

=−1∑
8=?

#8 (C) × 28 . (5.2)

The Brain state can be thought of as a snapshot of the entire Brain that contains information about

the activity (firing rate) of all neurons at that particular point in time. Markov Brains go through

discrete states as the agent it controls behaves, reminiscent of what has been observed in monkeys

performing a localisation task [166]. In our experimental setup, Markov Brains have 16 neurons

in total, so = = 15. One of the neurons senses the stimulus, i.e. ? = 1, so equation [5.2] can be

written as (C =
∑15
8=1 #8 (C) × 28 which means the Brain can be in at most 215 = 32, 768 different

states. We also denote the sensory input at time C as ®fC , and define the sequence of sensory inputs

from time C0 to C1, ®Σ(C0 : C1) = (®fC0 , ®fC0+1, ..., ®fC1).

The initial Brain state is always 0 since all neurons are quiescent at the outset. State-to-state

transitions of an evolved Brain can be represented (or explained) as a mapping of the state of the

Brain and the sensory input to the future state of the Brain. Formally, the set of all transitions of the

Brain over all visited states in trials (states that Brains have taken on in those trials) can be viewed

as a function T that takes the current state of the Brain (C as well as the sensory input ®fC (in our

experimental setup it is just one bit) as the input, and returns the future state of the Brain as the

output, (C+1:

T : (C , ®fC ↦→ (C+1, or (C+1 = T ((C , ®fC), (5.3)

We restrict the domain of variable (C to those Brain states that actually occur during training (i.e.,

evolution) or test trials (early/late oddball tones). This function can be illustrated as a directed

graph in which Brain states are represented by nodes (labelled by the decimal translation of the

Brain state, see Eq. [5.2]) and edges represent transitions that are labelled with the stimulus that

drives those transitions, ®f (see [69] for a more detailed exposition of state-to-state diagrams).
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5.4.6 Attention, experience, and perception in Markov Brains

We describe Markov Brains in terms of functions that take ((C , ®fC) as the input and return (C+1 as

the output.

Definition 1. If the Brain transitions from a particular state (C to the same state (C+1 for all

possible values of ®fC we say: the Brain does not pay attention to sensory input ®fC in state (C .

Note that it is possible that the Brain does not pay attention to parts of the sensory input ®fC

when the transition from (C to (C+1 occurs independently of specific components of vector ®fC . We

emphasise that when the Brain does not pay attention to a sensory input in one transition, it does not

imply that the stimulus is not sensed. Rather, it implies that even though sensed, the value does not

affect the Brain’s computation when in state (C . It is crucial here that this definition of attention to

a stimulus depends not only on the stimulus itself but also on the context in which it is sensed—this

context is represented by the state (C the Brain has reached. Because the Brain has reached the state

(C as a consequence of the temporal sequence of states traversed, this context is in fact historical.

Also, note that the Brain state encompasses the actuator neuron (decision neuron), therefore, “not

paying attention” is reflected in an agent’s behaviour as well as the Brain’s computations on sensory

information. In a sense, the definition implies that an event that the Brain does not pay attention to

should not alter its experience of the world, a concept that we will now define.

Definition 2. We define the Brain’s experience of the environment (which is sensed as a

sequence of sensory inputs ®Σ(0 : C)) as the sequence of Brain states it traverses, i.e., as ®j(0 : C) =

( ®(0, ®(1, ®(2, ..., ®(C).

This definition implies that the experiences of different individual Brains can be different

when encountering the exact same sensory sequence, hence, experience is subjective [190, 189].

Furthermore, an agent may have experiences in which it does not take any actions on its environment

(does not make any physical changes to itself or the world). Thus, dreaming or thinking are

instances of such experiences in humans [172, 190, 189]. However, if the agent takes any actions

in its environment, those actions become part of the experience by definition. For example, in our

experimental setup Brains can only “take an action” in one particular time step of the trials. As a
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result, a sequence of states that excludes that time step is still an experience, but does not involve

any actions from the agent. It is also crucial to understand that the experience of the environment

that is represented within Brain states is not just a naive projection of the world on the Brain, but

rather contains integrated information about the relevant aspects of the environment (cues), while

ignoring unimportant details (noise). In a very real sense, a Brain separates signal from noise;

information from entropy [177].

In general, two different input sequences ®Σ1(0 : C) and ®Σ2(0 : C) will result in the Brain having

two different experiences ®j1(0 : C) and ®j2(0 : C), but not necessarily. If experiences ®j1(0 : C) and

®j2(0 : C) are exactly the same, it means that (according to Definitions 1 and 2) the Brain does not

pay attention to inputs during those transitions in which ®Σ1 and ®Σ2 are different. While in Definition

1 we only considered the Brain’s transition at one time step, we can also look at the sequence of

future Brain states, to discover how sensory inputs affect the Brain’s computations and transitions

multiple time steps after the input is sensed. Now, consider two input sequences ®Σ1(0 : C) and

®Σ2(0 : C) that differ in time steps (0 : C′), where C′ < C. Also, suppose ®Σ1(0 : C) and ®Σ2(0 : C) result

in two different experiences ®j1(0 : C) and ®j2(0 : C). The effect of sub-sequence ®Σ(0 : C′) can be

gauged by how different experiences ®j1(0 : C) and ®j2(0 : C) are as a result. For example, if two

input sequences ®Σ1(0 : C′) and ®Σ2(0 : C′) (during time interval 0 : C′ where they are different) throw

the Brain into two different regions in state space and therefore give rise to completely different

experiences, then those inputs disturb experiences substantially. If, by contrast, ®Σ1(0 : C′) and

®Σ2(0 : C′) only result in different experiences temporarily (for example, during 0 : C′) while ®j1 and

®j2 become similar or identical later, then the differences in inputs is less disruptive to the Brain’s

experience. In particular, if the experiences have identical states at decision time C3 (assuming

that C3 ∈ [0 : C]), the differences in sensory inputs impact experiences ®j1 and ®j2 even less. We

emphasise that the Brain state at the point of decision is key, because at this time point in the trial,

the state of the Brain specifies the Brain’s judgement, and more importantly, represents the path

traversed in state space to reach this state. Consequently, we use the Brain state at decision time to

define what it means to “perceive” a sensory input sequence.
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Definition 3. If a Brain encounters two different input sequences ®Σ1(0 : C) and ®Σ2(0 : C), yet

ends up in the same state (C at decision time C in both cases, we say that the Brain had the same

perception of sensory sequences ®Σ1(0 : C) and ®Σ2(0 : C).

By this definition, “having the same perception” is a superset of “having the exact same

experience” when encountering two different sensory sequences. As discussed earlier, if the Brain

has the exact same experience when exposed to two different input sequences, it clearly does not

pay attention to the sub-sequence of the inputs that is not common between the two input sequences.

In the same vein, how similar the experiences are for two different input sequences correlates with

how little the Brain pays attention to those parts of input sequences that are not the same. This

correlation captures the idea that there are different levels of “not paying attention” to a phenomenon

in the environment. At the same time, it becomes clear that events that evoke the same perception

(and thus similar experiences) must overlap in the significant parts of the sensory input. In this

manner, the state of the Brain—being specific to the path in state space that leads to it—can encode

“involuntary memory”, in the same way asMarcel Proust’s memories of the past [153] are triggered

by the taste of a Madeleine dipped in Linden tea.

5.4.7 Information shared between perception and the oddball tone

Here we describe the procedures used to calculate the information shared between perception, (the

Brain state at decision time-step), and the different oddball tone properties such as its duration,

onset, and ending time-step. Markov Brains are tested against oddball tones varying in durations

as well as different onsets with respect to the rhythm of the sequence. For each individual Brain

we create an ensemble of trials with the same inter-onset-interval and standard tone, in which

oddball tones differ in duration, onset, or both. We can calculate the information shared between

the perception of each individual Brain and oddball properties for a given inter-onset-interval and

standard tone using the standard Shannon information [38]

� ((3 : )>1) =
∑
B3,C>1

?(B3 , C>1) log( ?(B3 , C>1)
?(B3)?(C>1)

, (5.4)

102



where (3 denotes the Brain state at decision time (which we defined as perception) and )>1

denotes oddball properties, for example the oddball duration. The shared information between

the perception and the oddball properties (duration, onset, and ending time-step) captures the

correlation between the perception of the Brain and each of the oddball properties. It is noteworthy

that perception occurs after the oddball tone has arrived and terminated. Thus, the information

Eq. (5.4) measures howwell each of the oddball tone properties can predict how the Brain perceives

the tone.

5.5 Additional Experiments and Analysis

A B

Figure 5.10: (A) Mean fitness across all 50 lineages and 95% confidence interval as a function
of generation shown every 20 generations. (B) Mean fitness (and 95% intervals) of best agents
picked from each of the 50 populations after 2000 generations as a function of inter-onset-interval,
standard tone.

103



1

1

2884869

0
0
839

359

186228820 28191510 997 485

0

1

0

0

0

11 0

2918

1
867

1

833

0

0

1

3911961

2914

0

S0

L

0

0

1

0

1 1

1

1

1

0

1

2912

865

3046

3044

2886

3014

357

1862

1

01 1 1 0 011 0 0 00 01 1 111 0 0 01 1 1 0 011 0 0

shorter

standard

longer

late

early

000 0101 1 1 0 011 0 0 01 1 1 0 011 0 01 1 111

1 1 0 0 01 1 1 0 011 0 00111 0 0 0 00 0 0 01 111
0 0 0 0 001 1 1 0 011 0 0 0 01 1 1 0 011 0 01 111

00 001 1 1 0 011 00 0 01 1 1 0 011 0 01 1 111 1

487

1

0 1

967

1
0 1

1

Figure 5.11: State-to-state transition diagram of a Markov Brain for IOI=10, standard tone=5,
oddball tones=4 and 6, and onset of oddball tones can be 2 time steps early and 2 time step late.
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5.5.1 Fitness landscape structure and historical contingencies result inMarkov Brains using
smaller regions of state space in trials with longer IOIs

In the main text we described that the judgement accuracy deteriorates as the IOI (and therefore

tone lengths) increases. More specifically, even though the relative JND values remain in the

same range for different IOI and standard tones (see Fig. 2B in the main text), PSE values start

to deviate from the standard tone leading to higher values of “constant errors” (CE) that is, the

difference between PSE and POE (see Fig. 2C in the main text). Here, we show that 1) deviations

of PSEs in longer IOIs result from the fitness landscape structure and historical contingencies (see

for example [59, 17]), and 2) the mechanistic basis of these deviations is associated with the size

of the state-space Markov Brains use to encode stimuli characteristics.

As discussed before, Markov Brains display periodic firing patterns in response to rhythmic

stimuli. These periodic patterns result in the formation of loops in their state transitions. This

is the dominant mechanism by which Brains evolve to entrain to rhythmic stimuli, and encode

temporal characteristics of the stimuli (i.e., rhythm and standard tone’s duration). The distribution

of the period of these periodic firing patterns, that is, the lengths of the loops in state transition

diagrams is shown here again in Fig. 5.12A. Since the first four standard tones are provided so

that Brains entrain to the rhythm, we measured the period of state transitions after the first four

intervals, without an oddball tone. We also measured the number of distinct states each Brain visits

during these periodic state transitions. Fig. 5.12B shows the distribution of number of distinct

states in traversing loops during entrainment for 50 evolved Brains for each IOI. Note that these

data represent number of distinct states in multiple loops, therefore, it is possible for a Brain to visit

more states than the IOI. Note also that in traversing the loop once (in one period of the sequence) it

is possible to visit some Brain states more than once. For example, the sequence: 6,3,1,1,6,3,1,1,...

has a period of 4, but only three distinct states are visited. These results indicate that the number

of distinct states visited by evolved Brains, i.e., the size of the state space used to encode temporal

information, starts to plateau for longer IOIs.

The duration judgement task in trials with longer IOIs and standard tones is inherently more
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A B

Figure 5.12: (A) The distribution of loop sizes of 50 evolved brain for each inter-onset-interval
(IOI). The size of the markers is proportional to the number of Brains (out of 50) that evolve a
particular loop lengths in each IOI. (B) The distribution of number of distinct states in loops visited
by Markov Brains in a sequence of rhythmic standard tones, as a function of IOI. The dashed line
shows the identity function line.

difficult (see Fig. 5.10B) for two reasons. First, longer rhythms and durations require more memory

and computations to encode temporal information, and second, the number of possible oddball

tones (in range [1, �$� − 1]) is greater in longer IOIs compared to the number of possible oddball

tones in shorter IOIs. As a result, Markov Brains need to use progressively larger regions of their

state-space to encode the temporal information and moreover, they need more evoltionary time to

learn a larger number of patterns; however, state-space size does not grow linearly with IOI but

rather begins to plateau (Fig. 5.12B) which, in turn, leads to less accurate performance in duration

judgements in trials with longer rhythms and a systematic increase in PSE and CE values. This

plateau in utilisation of state-space occurs not because of limitations in Markov Brains capacity

but due to historical contingencies in the evolution. More specifically, the fitness landscape is

structured in such a way that Markov Brains evolve to perform the duration judgement task for

shorter IOIs earlier during the evolutionary course. As a consequence, algorithms that emerge

later in evolution that perform the task in longer IOIs are built upon those algorithms evolved

earlier. In order to provide further support for the claims we made here, we conducted a series of

additional experiments. In the following sections we present results for the evolution of Markov

Brains performing duration judgement for various experimental setups that differ slightly from the

original experimental setup used in the main text.
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5.5.1.1 Longer evolutionary time does not resolve systematic behavioural distortions in
longer rhythms/standard tones

In the first set of additional experiment, we continued running the experiments presented inmain text

(which were run for 2,000 generations) for longer evolutionary time, namely 10,000 generations.

Fig. 5.13 shows the fitness values of the best performing agents averaged across 50 runs as a

function of IOI and colour-coded at different evolutionary times. We observe that the average

fitness values increase in all IOI and standard tones with evolution, however, we still observe the

same pattern that the performance drops as IOI increases. Fig. 5.14 shows CE values as a function

of (IOI, standard tone) at different evolutionary time points. These results show that constant errors

in longer IOIs decrease with evolutionary time, however, this decrease slows down considerably

and more importantly, a similar trend in CE values vs. (IOI, standard tone) is observed in all

generations.
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Figure 5.13: (A) Mean fitness across all 50 lineages and 95% confidence interval color-coded at
different evolutionary times as a function of inter-onset-interval, standard tone.

Fig. 5.15 shows the number of distinct states used to encode temporal information corresponding

to each IOI at different evolutionary time points. After 100 generations, the distributions of state-

space size in shorter rhythms (IOIs 10-14) peak at the IOI (the identity function shown with dashed

line) but as the IOI increases the peak of the distribution start to deviate from the identity line

and begin to spread more widely. As evolution progresses, the distribution of distinct states in a

larger number of IOIs peaks at the identity function but in all the plots shown in Fig. 5.15 (after

different number of generations), the distributions that deviate from the identity line correspond to
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the longest IOIs. For example, after 2,000 generations the distributions for IOIs 23-25 are further

from the identity line, and after 10,000 elapsed generations this occurs for IOIs 24, and 25. Recall

that we observed a similar pattern in CE values, where at the beginning of evolution CEs for shorter

IOIs are around 0 but begin to deviate from 0 for longer IOIs, and as populations evolve further CEs

for larger and larger number of IOIs approach 0. Note that the size of the state-space corresponding

to each rhythm is indicative of how accurately the representation of that rhythm is encoded in the

Brain. And clearly, in longer IOIs Markov Brains do not use as accurate an encoding and therefore,

their performance drops for longer IOIs and CE values start to increase systematically.

Here we investigate in more depth the correlation between CE values and the size of state-space

used by Markov Brains to encode temporal information. As discussed before, the optimum number

of distinct states used to encode stimuli characteristics is the length of the rhythm, i.e., IOI. When

the number of distinct states used to encode the rhythm length is smaller than IOI, it means that

different time points during that interval have the same representation in the Brain because the

Brain must visit some state(s) more than once (at different time points). For example, consider a

Brain that is entrained to a rhythm and is traversing a loop in state-space. An oddball tone results

in the Brain exiting that loop (we showed such an example in the main text). In this case, if the

exit from the loop occurs from a repeated state in that loop, the Brain’s experiences of oddballs that

end at different time points would be exactly the same. Alternatively, when the number of distinct

states visited when traversing the loops is greater than IOI, it means that the period of that loop

is not IOI but a multiple of the IOI. This may also result in less accurate performance in duration

judgement task, for example in the judgement of oddballs with the same duration that occur in

different positions (recall that oddball tones can occur at 5Cℎ, 6Cℎ, 7Cℎ, or 8Cℎ position).

In Fig. 5.12B, we observed that the distribution of number of distinct states in loops peaks at

IOI for shorter IOIs at the outset of evolution and increasingly more distributions move towards the

IOI and accumulate around IOI. Let ®�IOI = (31
IOI, 3

2
IOI, 3

3
IOI, . . . , 3

#
IOI), where 3

8
IOI represents the

number of distinct states the 8Cℎ Brain uses in its loops for a particular IOI, and # = 50 since we

have 50 evolved Brains. Thus, each distribution in Fig 5.15 can be represented by a vector ®�. We
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Figure 5.14: Constant errors and their 95% confidence interval for 50 best performing Brains as a
function of inter-onset-interval, standard tone at different evolutionary times. Dashed line shows
zero constant error.
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duration, i.e., the number of distinct states in each loop, as a function of inter-onset-interval at
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now calculate the distance of each distribution to the IOI by:

XIOI = ‖38 − IOI‖0 = lim
?→0

(∑
8

(38 − IOI)?
) 1
?

, (5.5)

in which ‖‖0 denotes the ℓ0-norm of vector (31
IOI − IOI, 32

IOI − IOI, . . . , 3#IOI − IOI). In fact, XIOI

simply reflects how many of the 50 Brains do not use exactly IOI distinct states in their loops. We

calculated XIOI for each IOI and at different points in evolutionary time. We then normalised these

XIOI by the maximum XIOI value. Fig 5.16 shows absolute CE values as a function of normalised

XIOI. Each data point shown in grey represents XIOI calculated in a distribution at a specific

evolutionary time and a particular IOI in Fig. 5.15).

We used a non-linear regression analysis [15] to find the correlation between the CE and XIOI.

Since a large number of data points fall around CE=0 and in the lower range of XIOI (which

is not surprising since most trials result in CEs that are not significantly different from 0), we

applied binning with constant bin size to this data. Mean values of binned data and their standard

deviations as well as the fitted function are also shown in Fig. 5.16. We tested three different kernel

functions for regression analysis: 1) quadratic function, 2) ramp function, 3) softplus function

( 5 (G) = ;>6(1 + 4G), which is a differentiable approximation of ramp function). Table 5.4 shows

the regression analysis results for three different kernel functions. We compare these three models

using Bayesian information criterion (BIC) [155]. These results show that the softplus function

describes the pattern in the data better than quadratic and ramp function. This pattern can be

interpreted as: there is no significant change in CE values for a range of small XIOIs, however, by

further increasing XIOI, at some threshold CEs start to increase linearly with XIOI.

5.5.1.2 Training Markov Brains equally in all IOIs and standard tones has a minor effect
on behavioural deviations in longer rhythms

In this experimental setup, we used the same set of inter-onset-intervals, standard tones, and oddball

tones as used in original experimental setup. The only difference is that the number of evaluations

for each (IOI, standard tone) is not constant anymore (in the original setup we evaluate Brains in 22

111



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
δIOI

0

1

2

3

4

| c
on

st
an

t e
rro

r |

Figure 5.16: Absolute constant errors (CE) shown in grey as a function of XIOI, as well as the
binned data and the fitted softplus curve.

Table 5.4: Non-linear regression analysis used to explain the correlation between the constant
errors (CE) and XIOI which is a function of the distinct number of states used in encoding stimuli.
Residuals sum of squares (RSS), and the Bayesian information criterion. A BIC difference > 10
provide very strong support for one model over the other [155].

function RSS BIC ΔBIC with
quadratic

ΔBIC with
ramp

ΔBIC with soft-
plus

quadratic 6.49 -48.29 0 - -
ramp 2.41 -83.02 34.73 0 -
softplus 1.9 -91.39 43.10 8.37 0

trials for each IOI, standard tone) but in this modified setup it increases with IOI linearly. Table 5.5

shows the number of evaluation trials as well as IOI, standard tone, and total number of trials for

each (IOI, standard tone). Note that we tried to keep the total number of evaluations in this setup,

368 (37.1% of all possible trials), as close as possible to that of the original setup 352 (35.5% of

all possible trials). Note also that the number of evaluations in each (IOI, standard tone) is chosen

proportionate to the number of oddball tones in that (IOI, standard tone).

Fig. 5.17 shows CE values for this experimental setup as a function of (IOI, standard tone)

at different evolutionary time points in the experiments. It is evident that the same trend in CE

values that was observed in the original setup can be seen in these experiments too. In particular,

after 2,000 generations CEs for (IOI, standard tone)={(23, 11), (24,12), (25,12)} are significantly
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Table 5.5: Complete set of all inter-onset-intervals, standard tones, and oddball durations used for
evolution of duration judgement task. Oddballs can occur in either of 5th, 6th, 7th, or 8th position
in the rhythmic sequence. Also, oddball durations are always either shorter or longer than the
standard tone.

Inter-onset-
interval

Standard
tone dura-
tion

Oddball tone duration Total number
of possible tri-
als

number of eval-
uation trials

10 5 {1, 2, 3, 4} , {6, 7, 8, 9} 32 8
11 5 {1, 2, · · · , 4} , {6, · · · ,

10}
36 10

12 6 {1, 2, · · · , 5} , {7, · · · ,
11}

40 12

13 6 {1, 2, · · · , 5} , {7, · · · ,
12}

44 14

14 7 {1, 2, · · · , 6} , {8, · · · ,
13}

48 16

15 7 {1, 2, · · · , 6} , {8, · · · ,
14}

52 18

16 8 {1, 2, · · · , 7} , {9, · · · ,
15}

56 20

17 8 {1, 2, · · · , 7} , {9, · · · ,
16}

60 22

18 9 {1, 2, · · · , 8} , {10, · · · ,
17}

64 24

19 9 {1, 2, · · · , 8} , {10, · · · ,
18}

68 26

20 10 {1, 2, · · · , 9} , {11, · · · ,
19}

72 28

21 10 {1, 2, · · · , 9} , {11, · · · ,
20}

76 30

22 11 {1, 2, · · · , 10} , {12, · · · ,
21}

80 32

23 11 {1, 2, · · · , 10} , {12, · · · ,
22}

84 34

24 12 {1, 2, · · · , 11} , {13, · · · ,
23}

88 36

25 12 {1, 2, · · · , 11} , {13, · · · ,
24}

92 38
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Table 5.6: Non-linear regression analysis used to explain the correlation between the constant
errors (CE) and XIOI which is a function of the distinct number of states used in encoding stimuli.
Residuals sum of squares (RSS), and the Bayesian information criterion.

function RSS BIC ΔBIC with
quadratic

ΔBIC with
ramp

ΔBIC with soft-
plus

quadratic 5.36 -66.42 0 - -
ramp 1.59 -113.77 47.35 0 -
softplus 1.4 -118.65 52.23 4.88 0

different from 0 and similarly, after 10,000 generations the CE for (25, 12) is significantly different

from 0. Fig. 5.18 shows state-space sizes as a function of IOI at different evolutionary time points.

Similar to trends observed in the original setup, state-space sizes plateau as IOIs increase and again,

their distributions are slightly closer to the identity function (dashed line) but not significantly so.

Thus, we conclude that having the same training set size for all IOIs has little to do with distorted

behaviours in longer rhythms. Fig. 5.19 shows the binned CE values as a function of XIOI as well

as the fitted softplus function. We performed the non-linear regression analysis described before

for this experiment and the results are presented in Table 5.6. Similar to previous experiment, the

softplus function describes the pattern in CE values and XIOI better than the other two models.

5.5.1.3 Constant errors in longest rhythms are greater than zero regardless of trial size

In order to show that the deviations of PSE (from the point of objective equality, i.e., standard

tone) in longer IOI, and standard tones is not specific to a particular value of IOI or standard tone,

we used two experimental setups where one has a smaller set of (IOI, standard tone) with shorter

IOIs and standard tone durations, and one that has a larger set of (IOI, standard tone) with longer

rhythms, standard tones. The first training set is similar to the original experimental setup but we

excluded trials with the following inter-onset-intervals and standard tones from the original setup:

{(23, 11), (24, 12), (25, 12)}. Similar to the original setup, oddball tones can vary from 1 to IOI-1.

In this experimental setup, there are 728 possible trials and all agents are evaluated in 20 trials from

each IOI and standard tone (10 with longer and 10 with shorter oddball tones) which is 35.7% of

all possible trials (in the original setup evaluation trials set was 35.5% of all possible trials).
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Figure 5.17: Constant errors and their 95% confidence interval for 50 best performing Brains as a
function of inter-onset-interval, standard tone at different evolutionary times. Dashed line shows
zero constant error.
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Figure 5.18: The distribution of number of distinct states used to encode rhythm and standard tone
duration, i.e., the number of distinct states in each loop, as a function of inter-onset-interval at
different evolutionary times. The dashed line shows the identity function.

Fig. 5.20 shows mean constant errors as a function of standard tones at different evolutionary

times for this experimental setup. The increase in CEs is again observed for longer IOIs and

noticeably, after 2000 generations in trials with (IOI, standard tone)={(10, 5), (11,5)}, all 50 Brains

perform the duration judgement task perfectly (100% performance for all oddball tones in those

rhythms) and we observe Brains perform the duration judgement task perfectly in more IOIs, and

standard tone in later generations, for example after 10,000 generations Brains perform perfectly

in (IOI, standard tone)={(10, 5), (11, 5), (12, 6), (14,7)}. Cognitive scientists and psychophysicists
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Figure 5.19: Absolute constant errors (CE) shown in grey as a function of XIOI, as well as the
binned data and the fitted softplus curve.

are not in general interested in “trivial” experiments in which all the subjects answer 100% of

questions correctly; therefore, we did not design our experimental setup such that Brains evolve

to achieve 100% fitness either. Fig. 5.21 shows state-space size distributions as a function of IOI

for different evolutionary time points. It is again evident that the state-space sizes start to plateau

for longer IOIs but of course, not as drastically as in the original setup. The CE values, as well as

binned means and their standard deviations, are shown as a function of XIOI are shown in Fig. 5.22.

In Fig. 5.22, the blue dashed line shows the fitted softplus function. The results of the non-linear

regression analysis are shown in Table 5.7. We again observe that the softplus function describes

the pattern in CE values and XIOI better than the other two functions.

The second experimental setup has all the trials from the original and we also added the

following inter-onset-intervals and standard tones: {(26, 13), (27, 13), (28, 14), (29, 14)}. In this

experimental setup, there are 1400 possible trials and all agents are evaluated in 24 trials from

each IOI and standard tone (12 with longer and 12 with shorter oddball tones) which is 34.3% of

all possible trials to maintain the same ratio of evaluation trials to all possible trials. Fig. 5.23

shows mean constant errors as a function of standard tones at different evolutionary times for this

experimental setup. These results show a similar pattern in CE values and more importantly, we

observe that the CEs for the inter-onset-interval and standard tones {(23, 11), (24, 12), (25, 12)}

are not significantly different from 0 whereas in the original experiment, CEs were significantly
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Table 5.7: Non-linear regression analysis used to explain the correlation between the constant
errors (CE) and XIOI which is a function of the distinct number of states used in encoding stimuli.
Residuals sum of squares (RSS), and the Bayesian information criterion.

function RSS BIC ΔBIC with
quadratic

ΔBIC with
ramp

ΔBIC with soft-
plus

quadratic 2.91 -76.33 0 - -
ramp 1.48 -99.97 23.64 0 -
softplus 0.98 -114.51 38.18 14.54 0

Table 5.8: Non-linear regression analysis used to explain the correlation between the constant
errors (CE) and XIOI which is a function of the distinct number of states used in encoding stimuli.
Residuals sum of squares (RSS), and the Bayesian information criterion.

function RSS BIC ΔBIC with
quadratic

ΔBIC with
ramp

ΔBIC with soft-
plus

quadratic 7.03 -53.20 0 - -
ramp 1.03 -126.34 73.14 0 -
softplus 0.89 -131.92 78.72 5.58 0

different from 0 in the same trials, i.e., {(23, 11), (24, 12), (25, 12)}. Fig. 5.24 shows state-space

size distributions as a function of inter-onset-intervals for different evolutionary time points. We

again observe that the state-space sizes start to plateau for longer IOIs but of course, but not as

drastically as in the original setup. We performed the non-linear regression analysis on these data

as well and the results are shown in Table 5.8. As observed in previous results, the softplus function

describes the pattern in CE values and XIOI better than the other two models. The CE values, the

binned data mean and standard deviations, and the fitted softplus function is shown in Fig. 5.25.

These results reaffirm that the entrainment and duration judgement task become much more

difficult for longer (IOIs, standard tone) and with greater set of trials, and that furthermore, Markov

Brains do have the capacity to use greater regions of the state-space and perform more accurately in

longer IOIs. However, the historical contingencies in such fitness landscapes lead to less accurate

strategies in duration judgements in longer IOIs which results from using smaller regions in state-

space.
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Figure 5.20: Constant errors and their 95% confidence interval for 50 best performing Brains as
a function of inter-onset-interval, standard tone at different evolutionary times. There are some
missing data points in these plots which is due to the fact that in those trials the performances of
all 50 Brains are 100%, as a result, PSE would be exactly equal to the standard tone and the slope
of the psychometric function would be infinity. Dashed line shows zero constant error.
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Figure 5.21: The distribution of number of distinct states used to encode rhythm and standard tone
duration, i.e., the number of distinct states in each loop, as a function of inter-onset-interval at
different evolutionary times. The dashed line shows the identity function.
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Figure 5.22: Absolute constant errors (CE) shown in grey as a function of XIOI, as well as the
binned data and the fitted softplus curve.
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Figure 5.23: Constant errors and their 95% confidence interval for 50 best performing Brains as
a function of inter-onset-interval, standard tone at different evolutionary times. There are some
missing data points in these plots which is due to the fact that in those trials the performances of
all 50 Brains are 100%, as a result, PSE would be exactly equal to the standard tone and the slope
of the psychometric function would be infinity. Dashed line shows zero constant error.
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Figure 5.24: The distribution of number of distinct states used to encode rhythm and standard tone
duration, i.e., the number of distinct states in each loop, as a function of inter-onset-interval at
different evolutionary times. The dashed line shows the identity function.
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Figure 5.25: Absolute constant errors (CE) shown in grey as a function of XIOI, as well as the
binned data and the fitted softplus curve.
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CHAPTER 6

CONCLUSION

In this thesis, I used neuroevolution to study the evolution of some of the most fundamental

neural circuits such as 1) visual motion detection, 2) intraspecific collision avoidance using visual

motion cues, 3) sound localization, and 4) event duration perception in rhythmic auditory stimuli.

In particular, I used the Markov Brains platform that uses in silico Darwinian evolution, via a

genetic algorithm (GA), to train neural networks that consist of binary neurons and are connected

via logic gates. As explained in depth earlier, the circuit network, structure, and computation

are all subject to evolution, which is an attempt to simulate how these neural circuits evolved in

nature in the first place. This bottom-up approach is in contrast with more common methods

used in computational neuroscience and artificial intelligence where researchers design rule-based

systems, network structure, and its components. The evolutionary process and specific properties

of the Markov Brains platform makes it a more plausible model of neural circuits in many respects.

The Markov Brains platform provides the possibility to explore the structure, complexity, and

functionality of evolved neural circuits. For example, in chapters 2 and 4 I used a gate-knockout

analysis to investigate the type of logic gates that are essential in evolved motion detection and

sound localization circuits and I demonstrated the distribution of different types of logic gates

that contribute to these neural circuits. In addition to analyzing the network structure and its

components, it is also possible to test and analyze evolved agents in environments that are completely

different from environments in which they evolved. This approach is particularly useful to isolate

environmental factors that could play a role in the evolved behavior. In chapter 3 for example, I

used a behavioral analysis in which the environmental factor under investigation was the apparent

motion of the moving object (robot) in an agent’s vision, namely regressive or progressive motion.

Similarly in chapter 5, I evolved brains that can judge the duration of an auditory stimulus in a

rhythmic sequence and then tested these evolved brains when exposed to out-of-rhythm oddball

tones. Last but not least, the algorithms and computations of Markov Brains can be described in
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terms of their state-space transitions. In chapter 5, for the first time I implemented a new technique

that records a Markov Brain’s neural activity as a sequence of transitions from one discrete state

to another. In this type of analysis, a Markov Brain is represented as a finite state machine (FSM)

which allows us to explore its state-space and analyze the brain’s trajectories in the state-space when

experiencing different stimuli in the environment, in order to discover algorithms and mechanisms

behind its behavior.

In summary, I was able to utilize this powerful approach to address different questions and

hypotheses regarding the fundamental neural circuits, the so called “widgets of intelligence”. In

what follows I briefly recapitulate some of these findings and also discuss the lessons I learned along

the way in each project, and how they helped me make improvements in designing and conducting

future research projects.

6.1 Visual Motion Detection

In chapter 2 I studied visual motion detection and found that evolution leads to a wide diversity

of neuronal circuits even though each has the same function. I also observed that most circuits are

more complex than one of the standard motion detection circuit models, the Reichardt detector,

and showed that this increase in complexity is due to redundancy in the evolved circuits’ structure.

Measurements of mutational sensitivity showed that the evolved circuits were subject to additional

selective pressures other than the basic functionality. But perhaps the most significant discovery

in this project was that the wide diversity I observed in the evolution of Markov Brains performing

motion detection was in accordance with patterns previously shown in the evolution of genetic

circuits [194], functional systems based on biochemistry [200], as well as modeling and empirical

studies of neuronal circuits with fixed wiring structure [152, 56]. This observation was the first

stepping stone in establishing Markov Brains as a model system for the study of neural circuits

evolved by Darwinian natural selection.

This study was also insightful for me in terms of experimental design decisions and research

conduct. One of the examples of such design decisions concerned how to read the output neurons
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for motion detection circuits. Initially, I tried a few common implementations: 1) assign three

output neurons to each class, 2) assign two input neurons as outputs and read it as a two-bit binary

value with possible outputs 00, 01, 10, 11. In the course of running the experiments I found that

the aforementioned options have low evolvability especially because one of the classes (stationary

object) is more common than the others (preferred direction and null direction). So I came up

with a solution in which I assigned two different output patterns (01 and 10) to stationary objects.

The reasoning behind this decision was that I considered the sum of the output values as the firing

rate of the output neuron. Indeed, in the biological motion detection circuits of fruit flies, the

motion state is encoded in terms of a neuron’s firing rate. The other design decision was how

to evaluate Markov Brains when seeing the visual input patterns. There were 16 possible input

patterns and they fall into 3 different categories. Furthermore, their frequency distributions are not

uniform; 10 of those patterns correspond to stationary objects, 3 of them are preferred motion and

3 are null direction. I tried two different approaches. First, I evaluated Markov brains with a fixed

number of input patterns (for example 20) in which the probability distribution of different classes

are uniform. Obviously, in this approach there are a lot of repetitions in evaluations of preferred

direction (PD) and null direction (ND) classes. So I came up with a second solution in which I

eliminated all the repetitions in evaluations, meaning I evaluate each agent with all possible 16

input patterns once, but I assigned different reward values to patterns that are more abundant. In

other words, I constructed a non-uniform fitness function based on the non-uniform frequency of

the three output classes. These two different approaches led to two different evolutionary outcomes

but their differences were not significant for the results presented in [184]. These were all valuable

lessons that shaped the experimental design in sound localization and time perception projects.

6.2 Intraspecific Collision-Avoidance Strategy based on Apparent Motion
Cues

In chapter 3, I studied the intra-specific collision avoidance strategy based on apparent motion

cues that was observed in Drosophila melanogaster [207, 33]. High-throughput data along with
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mathematical analysis provided evidence for a strategy in which the apparent back-to-front motion

(regressive motion) in a fly’s retina is a cue to avoid collisions. I investigated possible selective

pressures and environmental conditions for the evolution of this strategy. I showed that even though

it is possible to evolve collision avoidance behavior in Markov Brains that uses regressive motion

as the cue, it is highly unlikely that collision avoidance was the selective pressure behind the

evolution of the observed behavior. The results of my evolutionary experiments clearly showed

that the described behavior only evolves in a narrow range of experimental setups. Furthermore,

I performed a mathematical analysis in which I calculated the probability of collisions in cases

that generate an apparent regressive motion in a fly’s retina. This analysis showed that in the

experimental setup used in [207] only 20% of such events end up in collisions.

As discussed before, I managed to evolve Markov Brains that show a behavior similar to those

observed in fruit flies. But it is worth mentioning that I tried a few different experimental setups and

the explained behavior did not evolve in the beginning. First, I used a setup in which a group of flies

were positioned in a two-dimensional arena and gained rewards for walking and incurred penalty

for colliding with other flies (the fitness function described here is same as the one described in

chapter 3). I also tested agents with and without the ability to make turns to avoid collisions. The

observed behavior did not evolve in any of these setups. In particular, in the setup where agents had

the ability to turn, agents evolved to circle around in a small space individually to avoid collisions

while walking constantly (which was not surprising in hindsight). In a different setup, I put two

flies in an arena without the ability to turn. The desired behavior did not evolve in this setup

either. The optimal strategy that evolved here was that agents stopped once they sensed another fly

regardless of the direction of the apparent motion. As a result, I recreated an experimental setup

very similar to that used by [207] with a moving object that created a progressive or regressive

motion in the agent’s visual field. This setup also made me perform an analysis to calculate what

percentage of the events that create a regressive motion in the retina result in collision. I believe

the most valuable lesson learned for me in this project was to analyze and benefit from negative

results, and also to start with simpler building blocks and make sure they work before proceeding
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to a more complicated task. The latter lesson, i.e., building simpler components of a bigger system,

was in fact the incentive behind the visual motion detection project.

6.3 Information Flow in Motion Detection and Sound Localization Circuits

In chapter 4, I studied whether transfer entropy (TE) measurement can accurately infer the

flow of information in neural circuits, in particular, in motion detection and sound localization

circuits. I addressed the question using different approaches. First, I calculated the accuracy of

TE measurements in different types of logic gates and used their frequencies in neural circuits.

Then, I used a different method in which I used TE as a proxy to infer information flow. In this

approach, non-zero values of TE are equivalent to the existence of a causal relation between two

neurons. I then generated the receiver operating characteristic (ROC) curves for each circuit. I also

created the receptive fields and influence maps of each network using the connections and the logic

used in the network in order to have a “ground-truth” model for information flow in the networks.

These various approaches and analysis methods showed that the accuracy of TE measurements can

be very sensitive to the type of circuit (the task it is performing), its connectivity structure, and

its size. Furthermore, I showed that creating a ground-truth model can be a very hard task even

if all the information about the network and its functionality is accessible. Finally, I showed that

even in the absence of empirical limitations, inferring causation and information flow can be very

challenging. For example, in our analysis we used neural recordings in the absence of any noise

and we were able to record from every neuron in a neural circuit. Furthermore, we had access to the

recordings of the brain for all possible sensory patterns. This just reminds us again that causality

and identifying causal relations in a system is a very hard problem, as acknowledged before (see for

example [145]). This problem becomes even harder when the subject matter is the nervous system,

which arguably is the most complex system known to us. It also emphasized the fact that perhaps

one of the missing components in the study of the brain is information theory, and probably one

of the future breakthroughs in the field would follow the discovery of a new information-theoretic

method that addresses causality.
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6.4 Event Duration Perception in Rhythmic Auditory Stimuli

In chapter 5, I studied attentional entrainment as a model of event duration perception in

rhythmic auditory stimuli. In particular, I tested two competing models of time perception in

relation to attention, Scalar Expectancy Theory (SET) and Dynamic Attending Theory (DAT). In

this project, I evolved Markov Brains that are able to perform duration judgment task in a rhythmic

sequence of tones. These evolved brains can be considered as participants in a psychophysical

experiment. We also performed psychometric tests that showed that these evolved brains have the

same perceptual characteristics as human subjects [183]. For example, the discrimination threshold

of evolved Markov Brains complies with Weber’s law and furthermore, their point of subjective

equality reveals similar trends to that of human subjects. I then tested the evolved brains against

out-of-rhythm tones that they have not experienced during evolution. The psychometric results of

these tests showed duration misperceptions that are similar to those experienced by human subjects.

In this project, I used a new method to analyze the computations and algorithms that Markov

Brains used. I used the state-space transitions of Markov Brains that can reveal their computations,

as well as how these brains pay attention to parts of the sensory input and do not pay attention

to other parts. The results of this analysis showed that unlike what SET posits, the attention

distributions in Markov Brains are not uniform in time at all. Furthermore, I observed that the

attention distributions during the trials were also not in accordance with DAT, which predicts that

attention peaks at the beginning of the rhythmic tones. Rather, evolved Markov Brains paid less

attention to the beginning of the tones and their attention peaks coincided with the end point of

the tone. These results suggest a new model of dynamic attending or attentional entrainment,

where attention reaches its highest point when the stimulus is potentially the most informative, and

attention drops when the stimulus is predictable. This new model can also be generalized to other

modes of sensation such as visual attention. The generalized model would suggest that –similar

to auditory attention in which attention peaks at specific time points– visual attention would be

focused on those parts of the visual field that is predicted to be more informative. It would be

interesting to design experiments that can test this newmodel of attention with human subjects, with
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both auditory and visual sensory patterns. Aside from the proposed model of attention, the more

important conclusion is the fact that we can test existing models of cognition using computational

evolutionary methods and then we are able to suggest modification and even come up with new

models. These new models make predictions that can be tested in biological brains.

To wrap up, I would like to suggest a possible future project that is in line with the research

I did in this thesis, and in particular is inspired by the idea discussed before, namely that visual

attention is focused on the most informative parts of an image. For this work, I propose to evolve

Markov Brains that perform an image classification task via visual saccades that are driven by the

information content (Shannon information [167]) of the image rather than the image saliency. The

proposed project seems promising to me based on my experience in the field of computational

cognitive science and using Markov Brains as the platform.

6.5 Information-Driven Image Classification via Saccadic Eye Movements

Here, I propose a project as a possible direction to pursue in the future, which involves

“information-driven visual attention in image classification”. This proposal is in part inspired

by the work done by Olson et al. [142]. They conducted a series of experiments to evolve

Markov brains that performed active image recognition of hand-written numerals in the MNIST

dataset [103]. Unlike most widely used image recognition methods in which the classifier networks

view the entire image and do not actively change the temporal or spatial structure of the data they

receive, Olson et al. evolved classifiers that could view only a subset of the pixels in the image (a

3×3 sub-image) and could navigate which part of the image to view. As a result, the agents viewed a

temporal sequence of sub-images rather than seeing the entire image at once. They were evolved to

perform the image classification task by navigating and scanning the sub-images in a finite number

of time steps. They ran 30 replicates of the evolutionary experiment, namely 30 populations, for

nearly 250k generations and used only 1000 images from the MNIST training dataset (the original

dataset consists of 60,000 images). They presented the results of their most successful run in which

the agent with the highest performance only achieved 76% accuracy on testing dataset. The accu-
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racy they achieved in their experiments is significantly lower than that of other machine learning

methods such as K-nearest neighbors [88], support vector machines (SVM) [42], ANNs [126], and

CNNs [36] which can be attributed to multiple factors I discuss here.

1. According to the data presented in their own paper [142], using a smaller portion of the dataset

can result in lower accuracy. They presented results of training a decision tree model [147]

on the smaller dataset, which only achieved 88.5% accuracy.

2. One of the configuration decisions they made in setting up the system was to put the agent

in a random position in the image, which made the task much more difficult than it needed

to be. The evidence for this speculation is the fact that in the early stages of the evolution

the agent with the highest performance evolves to find the center point at the top edge of the

image and uses it as a reference point in order to start its navigation through the image.

3. Another configuration factor that may have prevented the final performance from reaching

higher levels is that the saccadic movements were limited to translating from a given position

in the image to its neighboring points whereas biological saccadic eye movements enable

transitioning from a point in the visual field to any other point.

Here, I propose modifications to the experimental setup for the evolution of image classification

task via saccadic eye movements that addresses some of the issues discussed in [142]. I also

suggest a different approach that attempts to improve performance results in the MNIST dataset.

As mentioned before, the idea behind this approach relies mainly on navigating the visual attention

or saccades based on the information content of the images. This captures how, for example, humans

navigate their attention via saccades through salient regions of an image to recognize faces [75].

First, I investigate the entropy content of each pixel of the images in the MNIST dataset. The

entropy for each pixel is calculated as:

� (-) = −
∑
8

−?(G8) log(?(G8)), (6.1)
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where G8 are the possible states a pixel can take on and the summation is over images of the dataset.

Figure 6.1(A) shows the entropy content of pixels (in bits) for the images in the MNIST dataset. I

used the same dataset used in [142], in which images were converted from greyscale to black and

white; therefore, the possible states of a pixel are either 0 or 1.

Similarly, I can explore the entropy of variable �, which denotes the class to which an image

belongs. In the MNIST dataset, variable � can take on values 0-9, i.e., 28=0-9). Each class in

the MNIST dataset has an equal number of images in the dataset, meaning there are 6000 images

for each digit (there are 60,000 image in the MNIST dataset). As a consequence, the probability

distribution of 28 is uniform, thus the entropy � (�) = log(10). Now we can link the entropy � (�)

to the entropy content of images and their pixels. For example, we can calculate how much entropy

is reduced by looking at the value of a particular pixel. So we first calculate the conditional entropy

� (� |-) that shows the uncertainty in class variable � given the value of a particular pixel X:

� (� |-) = −
∑
8, 9

?(28, G 9 ) log(?(28 |G 9 )), (6.2)

Then, we can calculate how much the entropy of � can be reduced given the state of a particular

pixel -:

� (� : -) = � (�) − � (� |-), (6.3)

or the information shared between class variable � and a particular pixel - . Figure 6.1(B) shows

the information � (� : -) (in bits) shared between image classes and each pixel. For a uniform

probability distribution the entropy is always maximal (the uncertainty is the highest) but as the

entropy decreases, for example by subtracting a conditional entropy, the probability distribution

becomes non-uniform (see [4]). In other words, � (� : -) values in figure 6.1(B) show how the

probability distribution of� can be distorted from a uniform distribution given the value of a single

pixel. Figure 6.1(C) shows two different probability distributions of class variable � given the

value of the pixel in the center (the pixel with the highest information in figure 6.1(B)) is either

0 or 1. Similarly, the entropy of � can be reduced further given the values of other pixels in the

image, namely viewing one pixel of the image at a time. Furthermore, these results suggest that it
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would be more efficient to first scan the pixels that reduce entropy the most, rather than scanning

pixels in a random order. So we can design an experiment such that the agents saccade through the

sequence of pixels with the highest information contents. Furthermore, in the proposed design the

agents will see a group of adjacent pixels, for example a 2×2 sub-image at every time step instead

of seeing one pixel at a time.

(A) (B)H(X)
<latexit sha1_base64="nPn90FllffRBST4PH8z/JlcZqp4=">AAAB63icbVBNSwMxEJ31s9avqkcvoUWoCGW3HvRY9NJjBfsB7VKyabYNTbJLkhWW0r/gRUERr/4hb/03ZtsetPXBwOO9GWbmBTFn2rjuzNnY3Nre2c3t5fcPDo+OCyenLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8X3mt5+o0iySjyaNqS/wULKQEWwyqV7uXPYLJbfizoHWibckpVqxd/U6q6WNfuG7N4hIIqg0hGOtu54bG3+ClWGE02m+l2gaYzLGQ9q1VGJBtT+Z3zpFF1YZoDBStqRBc/X3xAQLrVMR2E6BzUivepn4n9dNTHjrT5iME0MlWSwKE45MhLLH0YApSgxPLcFEMXsrIiOsMDE2nrwNwVt9eZ20qhXvulJ9sGncwQI5OIcilMGDG6hBHRrQBAIjeIY3eHeE8+J8OJ+L1g1nOXMGf+B8/QAp5JCi</latexit>
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(C)

Figure 6.1: The images in the dataset are 28×28 pixels. (A) The entropy content (in bits) of MNIST
dataset images per pixel, � (-). (B) The information shared between each pixel and the class of
the image, � (� : -). (C) The probability distributions of class variable � given the pixel in the
center is 0 or 1.

6.6 Experimental Setup

I evolve Markov Brains that see parts of an image through a 2×2 or 3×3 window at each

time step and classify the image at the end of the sequence of saccades. The experimental setup

proposed here is very similar to the experiments by [142] except that the saccade positions are

predetermined by the results generated based on information content of the images in the dataset.

More specifically, the agents will sense the sub-images at each position specified in the based on

the information content and deliver their classification decision at the end.

6.6.1 Proof of concept

I also investigated whether the proposed approach can potentially improve the image classification

performance for the MNIST dataset. To this end, I trained ANNs (multi-layered perceptrons, MLP)
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that perform image classification on the MNIST dataset in which images that are fed to the network

are partially masked. Masking of the images was performed based on two different criteria: 1)

I masked images based on the entropy content of the pixels/sub-images across the dataset (see

figure 6.1(A)), meaning the network only sees the sub-images with the high entropy contents, and

2) images are masked based on the entropy reduction in � given a sub-image (see figure 6.1(B)),

where the network sees sub-images with high � (� : -). Figure 6.2(A) and (B) shows the accuracy

of the trained ANNs on masked images based on entropy of sub-images and the information shared

between class � and sub-images, respectively. In these plots, the G-axis shows the thresholds by

which the sub-images were masked, for example, the values of 0.2 on G-axis in figure 6.2(A) shows

runs in which all the sub-images with � (-) less than 0.2 were masked in the dataset. The H-axis

on the left shows the accuracy of the network on the testing dataset and the H-axis on the right

shows what percentage of the image was visible to the network. We observe that the network can

still achieve an 80% accuracy on the testing dataset when only around 20% of the image is visible

to the network when masking images based on entropy of sub-images, and they can achieve around

80% accuracy when only 15% of the image is visible based on � (� : -). These results show that

this approach has the potential to significantly improve experimental design and consequently the

final results.

(A) (B)

Figure 6.2: The performance of ANNs trained on masked images. Maskings were based on (A)
the entropy content of sub-images in the dataset, and (B) the information shared between � and the
sub-images.
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