
MODEL ASSISTED ITERATIVE CALIBRATION OF INTERNAL COMBUSTION ENGINES

By

Anuj Pal

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mechanical Engineering – Doctor of Philosophy

2021



ABSTRACT

MODEL ASSISTED ITERATIVE CALIBRATION OF INTERNAL COMBUSTION ENGINES

By

Anuj Pal

Recent automotive technological advancements mainly focus on improving fuel economy with

satisfactory emission levels, leading to a significant increment of engine system complexity, espe-

cially diesel engines. This increases the number of engine control parameters, making the engine

calibration process challenging and time-consuming using the conventional map-based approach.

Note that engine calibration is a crucial step in achieving optimal engine performance with satis-

factory emissions, and it is an expensive process in general. With the advancement and widespread

adoption of machine learning methods for control applications, it is now possible to use a black-box

model with intelligence to efficiently calibrate nonlinear systems without detailed knowledge of

system dynamics. The surrogate-assisted optimization approach is an attractive way to reduce the

total computational budget for obtaining optimal solutions. This makes it special for its application

to practical optimization problems requiring a large number of expensive evaluations.

The current research work focuses on the problem of performing engine calibration using the

surrogate-assisted optimization approach. The objective is to find the trade-off curve between

engine efficiency in terms of brake specific fuel consumption (BSFC) and its 𝑁𝑂𝑥 emissions by

efficiently optimizing various control parameters. The complete study is divided into three parts.

The first part deals with modifying the original algorithm for efficiently handling the practical system

with measurement noise. A new constrained handling algorithm is proposed for lower confidence

bound (LCB) criteria that showed good performance for both deterministic and stochastic systems.

Furthermore, two extensions based on the expected improvement (EI) criterion are proposed for

handling stochastic multi-objective problems.

After the methodology development for handling stochastic systems, the second part validates

their efficacy for performing the engine calibration in a simulation setting. All three algorithms are



compared to identify the best approach for its implementation on the actual engine experimental

setup. Three control parameters, namely variable geometry turbocharger (VGT) vane position,

exhaust-gas-recirculating (EGR) valve position, and the start of injection (SOI), are calibrated to

obtain the trade-off between engine fuel efficiency performance (BSFC) and 𝑁𝑂𝑥 emissions within

the constrained design space. The simulation study identifies the lower confidence bound (LCB)

criteria with the proposed constraint handling approach to work well in the stochastic setting,

compared with the other two extensions. Therefore, this approach is used for the experimental

evaluation of the proposed surrogate-assisted optimization for engine calibration.

Finally, the third part is the experimental validation. It is the first step towards automating the

entire engine calibration process. Experimental evaluations are performed on a 6.7L Ford diesel

engine to validate the algorithm’s efficacy. Problems with different complexity are formulated and

evaluated using the proposed approach. Initially, a simpler problem with two control variables

is formulated to get the confidence to perform the experiments using the proposed algorithm.

Two variables: EGR valve position and VGT vane positions, are calibrated to obtain a trade-

off between engine efficiency (BSFC) and 𝑁𝑂𝑥 emissions. After observing promising results, the

study is concluded with a more complicated three control variable problem. An external electrically

assisted boosting device (eBoost) is added to the engine system to perform calibration. Results

showed improved engine performance using the eBoost with a significant reduction in calibration

effort in terms of the number of experimental evaluations. The study successfully demonstrated

the application of the surrogate-assisted optimization approach to a practical engine system and

opened the door to automate the engine calibration process with reduced calibration efforts.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Internal combustion (IC) engines have been used for transportation since their inception. It still

dominates the current world market, despite the availability of electric vehicles, and it is projected

to have a significant market share in the future [31]. The major disadvantage of IC engines is their

greenhouse emissions. Due to its large market share, this also contributes a high amount of harmful

emissions, thus causing the adverse effects on climate change [29]. With the rising awareness,

stricter emission norms have been imposed to maintain the emission levels below specific standard

values, and these norms are getting stringent with time.

Several technical enhancements have been made to original engine systems to meet the emis-

sion standards with maintained or enhanced engine performance. This is motivated by the push

to make vehicles cleaner with reduced greenhouse emissions. Several technological enhancements

have been proposed and used for both Diesel and Gasoline engines to meet the desired require-

ments. It includes engine downsizing using boosting mechanism [11, 59], exhaust gas recirculation

(EGR) for reducing 𝑁𝑂𝑥 emissions [25], electronic throttle for accurate torque control of Gaso-

line engines [76], and multiple fuel injections for Diesel engines [27, 23] for reducing 𝑁𝑂𝑥 and

𝐶𝑂2 emissions. Advanced combustion techniques are also adopted, such as turbulent jet ignition

(TJI) [66], and partial premixed combustion (PPC) [73]. All these technological modifications to

meet the demand for enhanced fuel economy with satisfactory emissions are making the engine

system complicated. These technological enhancements work well in achieving the desired engine

performance but lead to a significant increment in the number of control parameters with non-linear

interactions.

Engine calibration is defined as a process of optimizing the control parameters to achieve

optimal performance. The process is divided into Static calibration and Transient calibration.
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This research work only deals with static engine calibration, where the calibration is done at a fixed

speed-load point, called the engine operating point. These operating points, used to perform engine

calibration, are extracted from a given driving cycle based on the information of time duration spent

near these cluster points, as shown in Figure 1.1.

Extraction of Speed-Load 
points

Figure 1.1: Extraction of Speed-Load points from the drive cycle

For each operating point, a set of control variables are calibrated to achieve optimal engine per-

formance in terms of fuel economy and emissions. The calibration process or control optimization

is straightforward if the system is simple with one or two control variables. However, with the

increased system complexity of up to ten calibration parameters, the control optimization process

becomes challenging in multi-dimensional parameter space to achieve optimal engine performance.

This research work proposes a method to reduce the engine calibration cost (total experimental

evaluations) needed to perform the control parameter calibration (optimization) using the machine

learning based approach.

1.2 Existing Approaches for Engine Calibration

The engine control calibration problem has a long history, motivated by the desire to enhance

the engine performance output with reduced emissions. Over time, engine systems became very

complicated due to many enhancements to improve their efficiency with reduced harmful emissions.

These enhancements lead to a significant increment in the number of control parameters, making

the system complicated to calibrate. This section provides details of various approaches being

used over time for performing engine control calibration. The automotive research community has
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implemented several innovative strategies to expedite the overall engine calibration process.

1.2.1 Full Factorial DOE Method for Engine Calibration

The classical approach to perform the engine calibration is using the space-filling full-factorial

design of experiments (DOE) method to generate a set of control inputs, which are then implemented

to the engine experimental system to obtain the corresponding outputs. The design of experiments

(DOE) is a way to systematically develop test points for finding the optimal solutions. In the

full-factorial method, each control parameter is divided into multiple points distributed uniformly

over the variation range. If there are total ′𝑝′ control parameters and each control parameter is

divided into ′𝑛′ points, the total number of design points (𝑁) with the full-factorial design is given

by

𝑁 = 𝑛𝑝 (1.1)

This method is simple to implement and works well when the number of control parameters

to calibrate is small (e.g., one or two). The major drawback is with a system that has a large

number of control parameters (e.g., ten). This method becomes intractable as the number of

control variables increases. Also, for precise optimal values, the total number of split 𝑛 needed to

be increased, leading to a significant increment of total test points 𝑁 . This approach has been shown

to require a large number of function evaluations for performing the diesel engine calibration [42].

Unfortunately, engine calibration is an expensive evaluation process and normally does not afford

the required exhaustive search budget to obtain optimal calibration values due to both cost and time.

1.2.2 Model-Based Approach for Control Calibration

The availability of high-performing computers has revolutionized the field of engineering. It

became possible to replicate the behavior of an actual physical system using a sophisticated (high

fidelity) system model, which decreases the complete dependency on using a physical system to

test the developed control strategy. This also helped the automotive industries shift the engine
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Figure 1.2: Control calibration strategy with physics-based model

calibration work to use a combination of model-based and experiment-based methods to perform

engine calibration and curb the experimental cost.

With the availability of engine modeling software, the existing calibration approach in the

automotive industry is to use a physics-based engine model to simulate the engine behavior without

actually performing engine experiments. GT-SUITE𝑇𝑀 based one-dimensional engine model is

widely used in assisting the engine calibration process. It works well in mimicking the engine

behavior. One critical aspect of getting superior performance out of the GT-SUITE𝑇𝑀 model

is using the modeled combustion dynamics to predict engine behavior. A simple engine model

lacks in capturing the detailed combustion mechanism, which predominantly affects the control

parameter calibration. A GT-SUITE𝑇𝑀 DI-PULSE model was developed by Gamma Technologies

to capture the combustion phenomenon to bridge this gap and is shown to work well in capturing

the combustion phenomenon under different engine speeds and load conditions [54]. Recent

work [36, 45, 65] also discusses the application of a reaction-based combustion model to predict

engine performance. Performance from all these methods is dependent on how well the model

is calibrated using experimental data. One of the disadvantages of GT-SUITE𝑇𝑀 models is their

complexity with relatively high computational load, slowing down the model-based calibration

process.
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Figure 1.3: Control calibration strategy with data-driven model

Figure 1.2 shows the overall structure of the engine calibration process using a physics-based

model. The process works by using the model to estimate the optimal control parameters and

then evaluating it on the actual experimental setup. It is challenging to make the model predict

engine performance accurately under all engine speed and load conditions. Therefore, the results

from the model are validated on the physical system to identify the modeling error, and the model

can be improved iteratively. To obtain the optimized parameters from the engine model, the full-

factorial DOE method explained above is used. The entire process gets repeated until a satisfactory

performance is achieved. Even though the calibration is performed on the model, further reduction

in time to obtain the optimized parameters can be achieved using the evolutionary optimization

approach, which has shown to reduce the computational time significantly [69, 22, 55]. A practical

engine calibration using the mentioned model-assisted approach could take roughly one year

for a diesel engine with more than ten parameters even with all the advanced methodologies.

It is becoming crucial to optimize or calibrate the engine system quickly without exhausting

experimental evaluations in a world with rapidly changing technology. This allows making changes

to the system without worrying about its high calibration cost and time.

Recently, there is a rise in using machine learning-based approaches for control applications. In

place of a physics-based model, a data-driven model, called the black-box model, is generated and
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used. The model uses input-output data sampled from the actual system to model the interaction

between inputs and outputs without worrying about the physics behind these interactions. Figure 1.3

shows the overall process of machine learning, where the physics-based model previously used is

replaced by the data-driven model. One key difference here is the model update. If the data-driven

model represents the physical system well, there is no need to update the model. However, suppose

the model, to begin with, is formed with limited input-output data points. In that case, the initial

model will not represent the system well, and the model can be improved iteratively based on new

test data.

Various approaches are presented in the Machine Learning literature for model development:

1) Polynomial Regression; 2) Neural Network; 3) Kriging (also known as Gaussian Process Re-

gression); 4) Support Vector Machine etc. The approach of using a data-driven model in the

context of engine calibration has been demonstrated before. The work in [7, 70, 20] uses the Neural

Network-based models for engine calibration. Berger et al. [3] did a comparative study of using

Gaussian Process models for engine modeling. Gutjahr et al. [19] performed engine calibration

using a Gaussian process model formed based on 500 data points. Dellino et al. [10] performed de-

sign optimization of a CNG (compressed natural gas) injection system using Kriging meta-models.

They evaluated 11 different model management strategies with a focus on model accuracy and

computational efficiency. They showed that all 11 methods were able to provide accurate optimal

predictions, but not all the schemes were computationally efficient.

1.2.3 Model-Free Approach for Control Calibration

The subsection above discussed the existing model-based control calibration strategy, which requires

model development before devising the control calibration. Calibration of the control parameter

depends on how well the model represents the actual system. As mentioned before, the developed

model, both physics-based and data-driven, requires experimental data for model calibration, which

is an essential step to improve these models but costs the experimental budget. Because this project

aims to reduce the experimental evaluations, a model-free control calibration approach is proposed,
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Figure 1.4: Structure for model-free control calibration strategy

which does not explicitly require system model development. Figure 1.4 shows the architecture of

the proposed process.

In the Model-Free strategy, the control strategy inherently uses the black-box model to perform

the optimal control calibration. The approach is motivated because of the need to fill the gap

of performing engine calibration with a reduced number of total function evaluations without

developing high-fidelity models. The current work explores the option of implementing the model-

free control calibration, known as Surrogate-Assisted Optimization. This approach has been proven

to reduce the total evaluation budget when the system is complex, expensive, or time-consuming to

evaluate.

Various researchers have implemented this approach to optimize system performance. Zhou

et al. [77] tried calibrating parameters for groundwater reactive transport models. They were

able to reduce the computational burden from 45000 evaluations to 500 evaluations using the

surrogate-assisted method. Another application was sizing optimization of analog /RF circuits

by Lyu et al. [41]. For surrogate-assisted optimization, they proposed to use lower confidence

bound (LCB) criteria that do not require any information from the previously evaluated points

(explained in Chapter 2). However, in their work, they did not consider constraints in their

optimization problem. Also, they did a comparative study between existing methods (namely,

MOEA/D [38] and GPMOOG [37] algorithm) and found that their method works well compared

with the existing surrogate-based optimization techniques. Liu et al. [39] optimized actuator design
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using this approach with a newly proposed optimization technique, called PAGHO (Parallel adjoint

sensitivity and Gaussian process assisted hybrid optimization technique), based on the gradient

information to achieve convergence. This algorithm was proposed for parallel computing using

multiple processors, significantly reducing required computational time and obtaining optimized

points efficiently. Another exciting application was optimizing chemical reactor design [52] by

Park et al. They were able to get the Pareto solution within 100 high-fidelity evaluations. Ali et

al. [1] performed optimization of a natural gas liquefaction plant.

1.3 Research Overview

After finalizing the proposed approach, the goal is to identify and develop the proposed algorithm

capable of handling generic engine calibration problems well and is implementable to an actual

engine experimental setup. The ultimate goal of this study is to demonstrate the approach on

an actual Ford diesel engine installed on a dynamometer, available at the Energy and Automotive

Research Lab of the Michigan State University. The proposed research work is therefore progressed

in three different stages, as explained next.

1.3.1 Selecting the Algorithm for Experimental Evaluation

As will be explained in the next chapter (Chapter 2), the surrogate-assisted optimization approach

requires forming an acquisition function for efficient exploration and exploitation in the design

space. Various approaches are available in the literature. Expected Improvement (EI) and Lower

Confidence Bound (LCB) are two widely used acquisition functions to perform this operation. EI

criteria work well without external user input but extending it to a multi-objective or many-objective

problem is not straightforward. LCB is much simpler to formulate in such scenarios. However,

there is no efficient constraint handling method available for LCB. Note that a practical engine

calibration problem is a multi-objective problem with constraints, and therefore, it becomes crucial

to address the issue of handling constraints with LCB.

To bridge the gap of handling constraints with the Lower Confidence Bound (LCB) based al-
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gorithm, a new constraint handling method was proposed, which works well in different scenarios.

Details of the proposed algorithm will be discussed in Chapter 2. The proposed approach with its

application to the engine calibration problem was published in the IEEE/ASME Transactions on

Mechatronics [49]. In that paper, the proposed method was first evaluated on several numerical test

problems before implementing it for the engine calibration study. For the performance comparison,

the modified algorithm was compared with the state-of-the-art expected improvement (EI) algo-

rithms. The entire analysis was done in a deterministic setting without considering measurement

noise. However, for a practical system, this is never true. The actual system is always corrupted

with measurement noise. For practical implementation, an algorithm should be able to handle

the measurement noise without hampering its performance. This is a natural step next towards

algorithm development for practical applications, that is, development for its stochastic extension.

1.3.2 Stochastic Extensions of Proposed Algorithm for Practical Systems

The engine calibration problem is usually a problem of optimizing various control parameters to

obtain the best possible objectives with satisfactory constraints. There could be multiple objectives

to handle with several constraints. Taking practicality into consideration, the goal of the proposed

algorithm should be to solve a multi- or many-objective constrained problem with measurement

noise. There were gaps in the literature for performing surrogate-assisted optimization in the

stochastic environment. The extension of the surrogate-assisted optimization algorithm to handle

problems with measurement noise is available in numerous literature, but most of them are for

single-objective problems. For solving our multi-objective problem, two important things were

considered: 1) the algorithm should be able to work for constrained multi-objective problems,

and 2) it should be able to handle non-uniform (Heteroscedastic) noise. It is highly unlikely for

a practical system to have uniform noise. Because the end goal of this study is to develop an

algorithm for a practical system, these steps become crucial before moving towards experimental

validation.

All the applications discussed in Section 1.2.3 were simulation-based studies. A new set of
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literature was explored to get motivated for the stochastic extension of the proposed algorithm.

Various extensions of the proposed surrogate-assisted optimization algorithm were available in the

literature. Reference [57] summarizes the extensions for single-objective unconstrained problems

with homoscedastic (uniform) noise variance. The work by Jalali et al. [26] compared a few different

stochastic methods with heteroscedastic noise variance. Most of the work available extended the

original approach for handling single objective problems with only a few taking into account the

multi-objective constrained problems [18, 75].

This gap is bridged in this research by proposing three different extensions of the available al-

gorithms. Two of the proposed algorithms are based on Expected Improvement (EI) criteria, while

the third one is using the Lower Confidence Bound (LCB) along with our proposed constrained

handling algorithm. In order to identify the best possible algorithm to be implemented for perform-

ing the experimental study, a comparative study is done using the engine simulation model. To

make the model mimic the actual engine behavior, external noise is added to each measured output.

A preliminary version of the work was presented at the 2020 American Control Conference [51],

and the work showing the detailed results with a comparative study among all three methods at

different noise levels was published in ASME Journal of Dynamic Systems, Measurement, and

Control [50]. The detailed explanations and results of the developed algorithms will be discussed

in Chapters 2 and 3.

1.3.3 Algorithm Implementation to Engine Dynamometer Setup

The final hurdle is the implementation of the developed algorithm into an engine dynamometer

setup. The engine calibration process involves a manual intervention to detect if the parameter

optimization process is performing well. It needs various checks to ensure the safe operation of

the engine dynamometer. To the best of our knowledge, this is the first time implementing the

stochastic surrogate-assisted optimization algorithm for performing the engine calibration on an

actual experimental test bench. Since the approach automates the calibration process and there is no

manual interference, the challenge is to ensure the safe operation of the developed algorithm with
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all possible checks. Usually, the actual test setup is a highly complex system, with several systems

communicating with each other to run the engine at the desired condition. The challenge is to

develop a system that will replace human control with a host PC running the developed algorithm

and ensuring a safe operating range while simultaneously evaluating the developed algorithm’s

performance.

The experimental setup is developed with all the safety considerations, where the host PC com-

municates among different systems to capture the desired measurements. The developed algorithm

is implemented in the host PC. Based on the obtained measurements, a new set of control inputs are

pushed to the engine control module (ECM) to change the control parameters. Chapter 4 discusses

the entire experimental setup in detail, with some exciting results observed after implementing this

approach. We initially formulated a simple problem to get the confidence of running the algorithm

on the dynamometer. After obtaining reasonable results, different problem formulations are tried

to see the potential of the developed algorithm. Finally, we demonstrated the calibration of a com-

plex system with an electrical boosting mechanism (eBoost). Problem formulation contained three

control parameters to calibrate with two objectives and seven constraints. Results demonstrated the

advantage of using eBoost for obtaining the best engine efficiency possible while maintaining the

emissions below the acceptable limit. Details of all the experimental results will be discussed in

Chapter 4 and Chapter 5.

It is the first and important step in demonstrating the practicality of the proposed approach

in reducing the manual interference and the model dependence from the calibration process. The

entire engine calibration process is automated and showed a significant reduction in the experimental

evaluations for obtaining the optimized control parameters. A comparison of the total number of

experimental evaluations required between the DOE-based approach and the proposed algorithm

is shown in Figure 1.5. This result is observed based on actual experimental tests. As can be

seen, increasing the number of control variables causes an exponential increment in the number of

experimental evaluations required for performing the engine calibration using the existing method.

However, this does not get reciprocated in the proposed surrogate-assisted optimization approach.
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Figure 1.5: Comparison of experimental evaluations between existing and proposed approaches

There is a significant difference in the experimental evaluation with just three control parameters.

This difference might increase as the number of control parameters increases, which is usually the

case with engine calibration problems.

1.4 Research Contributions

The main contribution of this research work resides in the development and implementation

of the surrogate-assisted optimization approach for performing the engine calibration. The major

contributions of this dissertation can be summarized as below:

1. A new constraint handling method is proposed for Lower Confidence Bound (LCB) based

acquisition function. This method only requires information of model mean and uncertainty

estimation at unknown points. The proposed method has been shown to work well for various

constrained optimization test problems and engine calibration problems.
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2. Three different extensions are made to perform stochastic surrogate-assisted optimization in

the presence of heteroscedastic (non-uniform) measurement noise to implement the algorithm

on practical systems. These algorithms are evaluated by different multi-objective constrained

optimization problems to show the efficacy of these proposed extensions. The results are

promising from the Lower Confidence Bound-based constrained optimization. Because of

its ease of implementation, the constrained lower confidence bound (CLCB) method is used

to perform the experimental study.

3. Experimental studies have been done to validate the efficacy of this approach. Initial ex-

perimental work is performed with only two variables to understand the approach. Lower

confidence bound with proposed constraint handling is shown to work well in identifying the

near-optimal front. A comparative study is done between the stochastic and deterministic

surrogate-assisted optimization approaches. The stochastic approach is shown to work better

than the deterministic approach. The latter one would get caught up exploring unwanted areas

due to the creation of multiple local bins. This is attributed to the overfitting of the input-

output data during model development. Later, the calibration results of a complex engine

calibration problem with three control parameters are shown. The entire engine calibration

process is automated and showed a significant reduction in the experimental evaluations for

obtaining the optimized control parameters. This is the first and important step in demon-

strating the practicality of the proposed approach in reducing manual interference and model

dependence during the calibration process.

1.5 Dissertation outline

The complete dissertation is organized as follows. Chapter 2 provides a detailed discussion

about the surrogate-assisted optimization approach for both deterministic and stochastic systems. It

describes the model development process and necessary modifications for handling measurement

noise, discussion of various acquisition functions and their modifications to handle multi-objective

constrained optimization problems, and the test point selection for further evaluations. Validation
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of the proposed algorithms and their extensions are shown in Chapter 3. The entire chapter is

dedicated to the study of the Engine calibration problem in a simulation environment. The engine

calibration problem in Chapter 3 is performed using a high-fidelity GT-SUITE𝑇𝑀 model. After

observing the satisfactory results from the simulation study, Chapter 4 addresses the initial engine

calibration results by implementing the algorithm onto an actual engine test bench. The chapter

initially discusses the modifications made to the original setup to implement the proposed algorithm,

followed by the initial experimental results. Chapter 5 discusses a more complicated problem of

performing engine calibration with an external boosting device (eBoost). Chapter 6 concludes the

study with recommendations for future work.
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CHAPTER 2

SURROGATE ASSISTED OPTIMIZATION FOR PRACTICAL SYSTEMS

Surrogate-assisted optimization is a process of finding the global optimal region with the help of

data-driven models, also known as surrogates. The approach performs an efficient search operation

without evaluating the entire model. The algorithm intelligently processes the information available

from the model to direct the search towards the global optimal region. This, in turn, reduces the

evaluation budget needed to find the global optima since evaluations away from the optima are

not required. Note that the main goal of this study is to reduce the experimental evaluations for

performing the engine control calibration. This chapter provides a detailed explanation of the

approach in the context of dealing with an expensive multi-objective constrained optimization

problem with measurement noise. Most of the existing work on implementing this approach

to practical systems is simulation-based, without considering noise in the system measurements.

Because the goal here is to develop an algorithm applicable to practical systems, extensions are

made to the algorithm to handle stochastic measurements. This chapter discusses each step involved

in the proposed algorithm and modifications made to make it applicable to practical systems.

The first step in the engine calibration study is the problem formulation. It is an important step

that defines the objectives we are trying to optimize and the control variables we are interested

in changing. The actual algorithms start after problem definition. The next section discusses the

problem formulation, followed by a detailed explanation of the proposed algorithm.

2.1 Problem Formulation

Modifications to the engine system architecture are driven by the goal of enhancing its perfor-

mance. The two major performance indices for any engine calibration problem are maximizing the

engine efficiency while maintaining the emissions below the desired threshold value. Engine effi-

ciency can be measured in terms of brake-specific fuel consumption (BSFC), indicating the amount

of fuel consumed by the engine to generate one kilowatt power output. Note that the smaller the

15



brake-specific fuel consumption is, the higher the engine operating efficiency. The second and

the most crucial parameter is engine output missions. Several harmful emissions are observed for

both Gasoline and Diesel engines, namely Nitrous oxide (𝑁𝑂𝑥), Hydrocarbon (HC), soot (PM),

carbon monoxide (CO), and carbon dioxide (𝐶𝑂2) [63]. All these emissions are harmful to the

environment, and human health [68, 43] and are required to meet regulative emission standards.

For the current work, engine efficiency in terms of brake-specific fuel consumption (BSFC) and

the 𝑁𝑂𝑥 emissions are considered as the desired system outputs to optimize.

It is well known that optimizing the in-cylinder combustion process leads to improved engine

efficiency. This, in turn, adversely affects the 𝑁𝑂𝑥 emissions. The high in-cylinder combustion

temperature causes the nitrogen and air in the combustion mixture to turn to nitrous oxide, thus

increasing the emission level, especially for the optimized combustion process. On the contrary,

reducing the𝑁𝑂𝑥 emissions adversely affects the combustion efficiency. Both objectives considered

here are inversely related to each other. Therefore, a multi-objective optimization problem could

be formulated to perform the engine calibration.

2.1.1 Constrained Multi-Objective Optimization Problem

A general constrained multiple objective optimization problem can be described as follows.

Minimize 𝑦1(x), 𝑦2(x), ..., 𝑦𝑚 (x)

subject to 𝑔1(x), 𝑔2(x), ..., 𝑔𝑛 (x) ≥ 0

x = [𝑥1, 𝑥2, ..., 𝑥𝑝]𝑇 ∈ R𝑝

𝑦𝑖 ∈ R, 𝑖 = 1, 2, ..., 𝑚

𝑔 𝑗 ∈ R, 𝑗 = 1, 2, ..., 𝑛

(2.1)

where 𝑦𝑖 (𝑖 = 1, 2, ..., 𝑚) are objective functions and 𝑚 is total number of objective functions; 𝑔 𝑗

( 𝑗 = 1, 2, ..., 𝑛) are inequality constraint functions and 𝑛 is total number of constraints; and x is a

variable vector representing all control parameters.

As discussed above, the current study only deals with two objectives. Constraints are added

to make the operation run within the desired boundary. An upper limit on the emissions could be
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added to maintain the emission level below the required threshold value. Another constraint on

boosting pressure can be added to run the engine in a safe operating region. Constraints even on

the control variable range can be imposed to avoid engine running in the infeasible region, thus

maintaining the safe operation. Additional constraints can be added to the problem, depending on

the situation and requirements.

Note that x is a vector of control parameters, and space spanned by the control variable is called

Design Space. As mentioned at the beginning, modern combustion engines consist of multiple

control parameters. Therefore, depending on the problem, variable vector x can be adjusted. With

this problem formulation in mind, we will devise the strategy for performing the calibration.

2.2 Overall Algorithm

Figure 2.1 shows a complete architecture of the optimization process. It starts by creating the

initial model for the learning algorithm. Based on this initial model, the algorithm tries to look

for the possible optimal region and tells the actual system to perform the high-fidelity evaluation.

Therefore, it becomes crucial to get a good initial model representing the model well in the entire

design space.

For the model development, we need a set of input-output data. Design of experiments (DOE) is

a way to generate a set of input points that span the design space well. Design space here is defined

as the control parameter variation region. Latin Hypercube Sampling (LHS) is a widely used

DOE method for creating uniformly distributed points throughout the design space. If the control

variables have constraints, constrained Latin Hypercube Sampling (cLHS) [53] could be used.

Initial points are then evaluated using a high fidelity system (through physical tests or simulations)

to get a set of data points for initial surrogate model development. Now, one can use many points

to generate a better initial model, but that will take a significant part of the total evaluation budget.

The advantage is that the surrogate-assisted optimization algorithm will get a better initial model

to work with, but this will give less chance to the learning algorithm to update the model near the

optimal region. On the contrary, using a smaller number of points for initial model development
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Figure 2.1: Overall architecture of the surrogate-assisted optimization process

would not cover the design space well. Therefore, it could mislead the learning algorithm to look

for points in the not-so-good region. This affects the convergence rate and could lead to the learning

algorithm wander a lot before convergence. This is the trade-off, and it is recommended in [30] to

use minimum initial points of 10𝑝, where 𝑝 is the total number of control parameters, to develop

the initial surrogate model.

With the set of input-output data, the next step is model development. This is an important

step as it assists the algorithm in searching for possible optimal regions. For the surrogate-assisted

optimization algorithm, Kriging is the most popular method used for model development. It not

only provides mean value at any unknown point like other models but also provides the uncertainty

bounds. Any unknown test point is associated with mean and uncertainty estimates from the model.

This information is crucial in searching the design space efficiently, as explained later (Section 2.4).

Since the developed model would not accurately represent the actual surface, performing direct
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optimization on the response surface model could mislead the search direction. An acquisition

function is an intelligent way to combine the model estimates to direct the search towards a possible

optimal location in the design space. It is developed to balance the exploration and exploitation

of design space intelligently while searching for the possible global optimal region. Acquisition

function is developed for objective functions. If the constraints are also expensive to evaluate, it

becomes imperative to devise a strategy to perform the exploration and exploitation of the constraint

functions intelligently. Therefore, the complete problem formulation involves acquisition function

development with a constraint handling mechanism.

The final step involves optimizing the acquisition function to get points in the possible global

optimal region. These points could further be selected for high fidelity evaluations. With these

points selected from the selection pool, the high-fidelity function is evaluated next to get the set of

input-output data points. The new input-output data set is then archived with the old data, which

helps to update the belief of the model for the next iteration. This iterative loop keeps going until

the evaluation budget is exhausted or the desired accuracy is achieved.

This is the general discussion of the overall algorithm, and different steps can be modified as per

problem requirements. The following sections will discuss each step in detail. Each section will

explain the original approach followed by the modifications made to handle the current problem.

2.3 Model Development

Various methods are available in the existing literature for surrogate model development, namely,

polynomial regression, Kriging, radial basis function (RBF), support vector machines (SVM),

neural network, etc. [48, 62]. All these models can be characterized as parametric and non-

parametric models. For the parametric models, the structure for model development is defined

beforehand. Therefore, these approaches work well if the system structure is known beforehand.

Non-parametric models work without considering any structure, which is more beneficial for our

application because the structure of the engine system is unknown.

Out of all the methods available, Kriging, also known as Gaussian Process Regression (GPR), is
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the most popular method used for performing surrogate-assisted optimization. It is a non-parametric

model. Therefore it does not assume the structure of the model beforehand and keeps updating

the structure as more points are added to the data set. One of the important characteristics of the

Kriging model is that it estimates both mean and uncertainty values at any unknown point. These

values are helpful in efficiently exploring and exploiting the search for the optimal region in the

design space, as will be explained in Section 2.4. This section will provide the mathematical details

of the model development for both deterministic and stochastic Kriging models.

2.3.1 Kriging Model

Kriging is a probabilistic modeling method to fit the data points. It starts by assuming a prior

mean function and a stochastic function, and their posterior distribution is calculated based on

the observed data points to represent the model structure. The mean function is used to capture

the behavior of system dynamics, whereas the stochastic function helps to fit the model better.

The original Kriging model does not consider measurement noise during the modeling process.

Therefore, it performs the interpolation rather than regression, meaning the model passes through

all the known points.

The following is an explanation of the entire Kriging model development process. The expres-

sion for a scalar output measurement 𝑦(x) at any input vector x with no measurement noise can be

represented by

𝑦(x) = f𝑇 (x)𝜷 + 𝑧(x) (2.2)

where x ∈ R𝑝 is the input vector of dimension 𝑝, 𝜷 ∈ R𝑞 is a vector of regression coefficients,

f ∈ R𝑞 is a regression function vector, and 𝑦(x) is a scalar output. The first part represents the

regression term. It is added to capture the trend of the system under consideration. It could be

constant (f(x) = 1) or a general polynomial function (f(x) ∈ R𝑞). Considering a second order

function f(x) with the input vector dimension 𝑝 = 2. The regression term will become:

f𝑇 (x)𝜷 = (1) · 𝛽1 + (𝑥1) · 𝛽2 + (𝑥2) · 𝛽3 + (𝑥2
1) · 𝛽4 + (𝑥2

2) · 𝛽5 + (𝑥1𝑥2) · 𝛽6
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Therefore, in this case, f(x) = [1, 𝑥1, 𝑥2, 𝑥
2
1, 𝑥

2
2, 𝑥1𝑥2]𝑇 and 𝑞 equals to 6.

The second term is a stochastic term, also known as extrinsic uncertainty. It is added to fit the

model better. It makes the model pass through all the points, thus making Kriging an interpolation

model. It is usually modeled as a zero-mean function with a covariance function defined between

points in the design space. Here, 𝑧(x) can be thought of as a sample mapping from R𝑝 to R. The

expression for the covariance function between any two points (x𝑖 and x 𝑗 ) in the design space can

be expressed as

𝐶𝑜𝑣 [x𝑖, x 𝑗 ] = 𝑘 (x𝑖, x 𝑗 ) = 𝜎2Corr[x𝑖, x 𝑗 ] (2.3)

where 𝜎2 in equation (2.3) represents process variance with correlation function Corr. Various

correlation functions are available in reference [61]. For this work, Gaussian correlation function

is used for model development and it is defined by

Corr[x𝑖, x 𝑗 ] = 𝑒𝑥𝑝
(
−

𝑝∑︁
𝑙=1

𝜃𝑙 |𝑥𝑖𝑙 − 𝑥
𝑗

𝑙
|2)

)
(2.4)

where 𝜃𝑙 , 𝑥𝑖𝑙 and 𝑥 𝑗
𝑙

are the 𝑙𝑡ℎ element of Gaussian distribution width vector 𝜽 , design space vectors

x𝑖 and x 𝑗 , respectively.

With all these, the model has three unknown parameters 𝜎, 𝜷, and 𝜽 , also known as hyperpa-

rameters. Based on all the observed points (total N points), the values of these hyperparameters are

optimized to obtain the posterior distribution of the model. Their optimal values are determined by

maximizing the marginal likelihood function (𝐿) below. The expression for the likelihood function

after taking natural logarithm becomes

ℎ(𝜎, 𝜷, 𝜽) = 𝑙𝑛(𝐿) = −1
2

[
𝑁𝑙𝑛(2𝜋) + 𝑙𝑛(𝑑𝑒𝑡 (K)) + (𝒚 − F𝜷)𝑇K−1(𝒚 − F𝜷)

]
(2.5)

where ℎ represents the log-likelihood function, x𝑖 ∈ R𝑝 (𝑖 = 1, 2, ..., 𝑁) are 𝑁 observed points and

𝒚 = [𝑦(x1), 𝑦(x2), ..., 𝑦(x𝑁 )]𝑇 ∈ R𝑁

𝜷 = [𝛽1, 𝛽2, ..., 𝛽𝑞]𝑇 ∈ R𝑞

F = [f(x1), f(x2), ..., f(x𝑁 )]𝑇 ∈ R𝑞×𝑁

K = Covariance Matrix = [𝑘 (x𝑖, x 𝑗 )1≤𝑖, 𝑗≤𝑁 ] ∈ R𝑁×𝑁
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Using K = 𝜎2R, where R is a correlation matrix, and rearranging terms in equation (2.5) yields

ℎ(𝜎, 𝜷, 𝜽) = 𝑙𝑛(𝐿) = −1
2

[
𝑁𝑙𝑛(2𝜋𝜎2) + 𝑙𝑛(𝑑𝑒𝑡 (R)) + (𝒚 − F𝜷)𝑇R−1(𝒚 − F𝜷)/𝜎2

]
(2.6)

Note that equation (2.6) depends on three parameters (𝜎, 𝜷, 𝜽) and their optimum values can

be obtained by simultaneously solving following three equations:

𝜕𝑙 (𝜎, 𝜷, 𝜽)
𝜕𝜎

= 0
𝜕𝑙 (𝜎, 𝜷, 𝜽)

𝜕𝜷
= 0

𝜕𝑙 (𝜎, 𝜷, 𝜽)
𝜕𝜽

= 0 (2.7)

Using the first two conditions from equation (2.7), optimal values of 𝜎 and 𝜷 can be obtain as

follows.

𝜎 =
1
𝑁
(𝒚 − F𝜷)𝑇R−1(𝒚 − F𝜷) (2.8)

𝜷 = (F𝑇𝑅−1F)−1F𝑇𝑅−1𝒚 (2.9)

After substituting equations (2.8) and (2.9) into equation (2.6) and using the last expression in

equation (2.7), we can obtain the optimal 𝜽 . Using these optimal values of the hyperparameters, the

expressions for scalar output mean (𝜇(x)) and variance (𝑠2(x)) at any test point x can be estimated

as
Mean

𝜇(x) = f𝑇 (x)𝜷 + 𝑟𝑇 (x)R−1(𝒚 − F𝜷)

Uncertainty

𝑠2(x) = 𝜎2 [1 + 𝑢𝑇 (x) (F𝑇R−1F)−1𝑢(𝑥) − 𝑟𝑇 (x)R−1𝑟 (x)]

(2.10)

where 𝑢(x) = f(x) − F𝑇R−1𝑟 (x) and 𝑟𝑇 (x) = [𝑅(x, x1), ..., 𝑅(x, x𝑁 )].

The detailed mathematical derivation can be found in [15, 61]. For the current work, Design

and Analysis of Computer Experiments (DACE) MATLAB toolbox [46] by Nielsen et al. is used

for model development.

2.3.2 Stochastic Kriging Model

The original Kriging model needs modification to handle stochastic measurements with measure-

ment noises as explained in [2]. If the output measurement is noisy, the expression for equation
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(2.2) becomes

𝑦(x) = f𝑇 (x)𝜷 + 𝑧(x) + 𝜖 (x) (2.11)

where 𝜖 (x) represents the measurement noise of output 𝑦 at x. At any input point x, the noise struc-

ture is assumed to be zero mean Gaussian with non-uniform variance 𝜏2(x) (𝜖 (x) = N(0, 𝜏2(x))).

The distribution changes with input point x. The Gaussian assumption of the measurement noise

makes the calculation easy. Any non-Gaussian distribution can easily be transformed to Gaussian

distribution. If the noise is considered homoscedastic (uniform), the expression for 𝜏2(x) becomes

𝜏2(x) = 𝜎2
𝜖 , where 𝜎2

𝜖 is the uniform noise variance present in the measurements. For this work,

we are considering non-uniform noise variance, but the setup could easily be adjusted for uniform

noise variance.

With this additional term in the expression, the expression for the log-likelihood function can

be written as before:

ℎ(𝜎, 𝜷, 𝜽) = 𝑙𝑛(𝐿) = −1
2

[
𝑁𝑙𝑛(2𝜋) + 𝑙𝑛(𝑑𝑒𝑡 (K + T)) + (𝒚 − F𝜷)𝑇 (K + T)−1(𝒚 − F𝜷)

]
(2.12)

where T = 𝑑𝑖𝑎𝑔[𝜏2
1 , 𝜏

2
2 , ..., 𝜏

2
𝑁
] is the noise covariance matrix for 𝑁 observed points. Like

the deterministic case, partial derivatives in (2.7) can be used to obtained the optimal unknown

hyperparameters (𝜎, 𝜷, 𝜽). Unfortunately, due to the addition of noise term (T) in the expression, the

closed form expressions for 𝜎, 𝜷, 𝜽 are not possible. To get the optimized hyperparameter values,

pattern search algorithm is used. With the observed hyperparameter values, the expressions for

mean (𝜇(x)) and uncertainty (𝑠(x)) estimations at any test point x can be given as

Mean

𝜇(x) = f𝑇 (x)𝜷 + k𝑇 (x)K−1
𝑛 (𝒚 − F𝜷)

Uncertainty

𝑠2(x) = 𝜎2 + 𝑢𝑇 (x) (F𝑇K−1
𝑛 F)−1𝑢(𝑥) − k𝑇 (x)K−1

𝑛 k(x)

(2.13)

where K𝑛 = K + T, 𝑢(x) = f(x) − F𝑇K−1
𝑛 k(x), and k𝑇 (x) = [𝑘 (x, x1), ..., 𝑘 (x, x𝑁 )]

Literature [2, 26] can be referred for detailed mathematical discussions on stochastic Kriging

modeling.
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2.3.3 Deterministic vs. Stochastic Kriging Models

As mentioned before, Kriging is an interpolation-based model. It passes through all the points used

for model development. If the system is deterministic, the model will try to go through the input

points to predict the best mean and uncertainty estimates. However, the interpolation property will

tend to overfit the model if the output from the system has measurement noise. In order to show

the possible issue, a simple test problem with a few input points can be used. The test problem

considered here is given by

𝑦 = 5 + (6𝑥 − 2)2𝑠𝑖𝑛(12𝑥 − 4) (2.14)
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Figure 2.2: Model fitting using deterministic Kriging model for a function without measurement
noise

Figure 2.2 shows the plot for this simple test problem without measurement noise. It shows

that the mean estimation from the model matches very well with the actual curve with only a few

input points. Now, certain measurement noise is added to these test points to make them stochastic.

Figure 2.3 shows the comparison of mean estimates from both deterministic and stochastic Kriging

models, where the red curve shows the output from the deterministic model, and the blue curve
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Figure 2.3: Model fitting using both deterministic and stochastic Kriging models for a function
with measurement noise

shows the stochastic one. An interesting observation from the plot is that multiple optimal regions

are created by fitting the deterministic model using the stochastic test data. A stochastic model

performs regression rather than doing the interpolation. Therefore it is much smoother. This

shows that with high dimensional complex practical problems with measurement noise, using the

deterministic Kriging model might lead to exploration of unnecessary locations, thus wasting the

evaluation budget in exploring regions other than possible global optimal regions.

2.4 Acquisition function

Using the model alone cannot efficiently guide the algorithm to look for the possible global

optimal region. Because the Kriging model provides both mean and uncertainty estimates at an

unknown point, it can be suitably utilized for search purposes. Acquisition function is a way to

intelligently combine mean and uncertainty estimates from the model to direct the search towards a

possible optimal location in the design space. It helps balance exploration (high uncertainty region)
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and exploitation (best region found by so far) in the design space to identify the possible optimal

region. When the problem is expensive to evaluate constraints, it is another challenge, and the

acquisition function is modified accordingly (to be discussed later). Efficient constraint handling

helps identify the feasible region to restrict the search in a smaller domain.

Several methods are available in the literature to form the acquisition function, namely: Prob-

ability of Improvement (PI), Expected Improvement (EI), Upper Confidence Bound (UCB), and

Lower Confidence Bound (LCB) [72, 28]. Expected Improvement (EI) [30] is the most common

method used because it does not require any user input and efficiently balances the exploration and

exploitation. Extension of the EI-based acquisition function to handle constraints is also essential

and addressed in the literature ([17, 16, 14]). Expected Improvement is simple to implement for a

single objective problem, but it becomes computationally challenging when implementing it in a

multi-objective scenario. Lower Confidence Bound (LCB) is another approach requiring external

user input. However, it is straightforward to extend to multi-objective problems as it does not

require information of previous best values.

This work uses both acquisition functions, Expected Improvement (EI) and Lower confidence

bound (LCB), to explore the possible option of their implementation for a practical engine cali-

bration problem. Because we have to deal with stochastic measurements, extensions have been

proposed to handle multi-objective constrained optimization problems. Further sections will first

provide details of these methods and then their extension to stochastic measurements.

2.4.1 Expected Improvement

Considering a single objective problem, the expression for output estimate 𝑦(x) from the Kriging

model at any unknown point x can be written as:

𝑦(x) = N(𝜇(x), 𝑠2(x)) (2.15)

where 𝜇(x) and 𝑠(x) corresponds to the mean and uncertainty estimation from the model at the

unknown point x, respectively. Considering the minimization problem, the improvement function
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is defined as:

𝐼 (x) = 𝑚𝑎𝑥(𝑦𝑚𝑖𝑛 − 𝑦(x), 0) (2.16)

where 𝑦𝑚𝑖𝑛 is the current best objective value obtained from the set of observed data. The

improvement function is defined to identify the point that will give the maximum improvement

based on the model estimates. Equation (2.16) will be maximized at the location where 𝑦(x) will

be minimum. This is what we want since the optimization problem considered is a minimization

problem. Therefore, this expression needs to be maximized to find point x. Taking the expectation

of the improvement function and performing mathematical computation, the closed-form expression

for the Expected Improvement can be written as below.

𝐸𝐼 (x) = (𝑦𝑚𝑖𝑛 − 𝜇(x))Φ
( 𝑦𝑚𝑖𝑛 − 𝜇(x)

𝑠(x)

)
+ 𝑠(x)𝜙

( 𝑦𝑚𝑖𝑛 − 𝜇(x)
𝑠(x)

)
(2.17)

The goal is to maximize the expression of expected improvement to get the possible global

optimal solution. It can be observed from equation (2.17) that the first term is mean value dominant,

and the second term depends more on the uncertainty estimation from the model. This means that

the first term is responsible for performing the exploitation in the design space, meaning that it

will push the algorithm to look for regions with minimum mean value estimation from the model;

while the second term will try to find the region with the highest uncertainty estimates, meaning

that it will explore the design space. This expression creates a balance between exploration and

exploitation of the design space without requiring any external user input. This is why it is a widely

used approach.

The discussion here is for applying the EI to a single-objective optimization problem. The

following section extends this approach to handle multi-objective problems.

2.4.2 Expected Improvement for multi-objective problem

It is typical for a practical system to have multiple objectives to be optimized. In such scenarios,

it becomes essential to define the formulation of Expected Improvement (EI) based acquisition
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function in the context of multi-objective problems. Its extension can be categorized into two

different categories, as explained next.

2.4.2.1 Using Achievement Scalarization Function

For performing surrogate-assisted optimization of multi-objective problems, the classical way is

to combine objective functions using different weight vectors [34] and makes it multiple single-

objective optimization problems. This is a well-known way to perform multi-objective optimization.

There are various approaches available to combine the objective functions. For this work, the very

similar approach proposed in [9], named M3-1, is used. Rather than using the weighted Tchebycheff

method as shown in [34], M3-1 uses the augmented achievement scalarization function (AASF).

The expression for AASF at input x is given by

𝐴𝐴𝑆𝐹 (x) = max
𝑖=1,2,...,𝑚

( 𝑦𝑖 (x) − 𝑟𝑖
𝑤𝑖

)
+ 𝜌

𝑚∑︁
𝑖=1

( 𝑦𝑖 (x) − 𝑟𝑖
𝑤𝑖

)
(2.18)

where 𝑟𝑖 and 𝑤𝑖 are the 𝑖𝑡ℎ elements of reference and weight vector (r and w), respectively, 𝑦𝑖

is the 𝑖𝑡ℎ element of objective function vector y (see equation (5.1)), and 𝑚 is the total number

of objectives. A set of reference vector r is generated using the method proposed by Das and

Dennis in [6] with reference direction w making an equal angle to all objective axes. For each

reference vector r, the AASF function is evaluated and then used to form the surrogate model and

perform the optimization. For each surrogate model formulated using the AASF function, expected

improvement, as explained before, is used for optimization.

2.4.2.2 Using Multi-Objective Improvement Function

Rather than using the classical way to perform multi-objective optimization using expected im-

provement, one can even define the improvement function in higher dimensions. Three different

multi-objective improvement functions have been proposed in the literature: Euclidean distance,

Maximin, and Hypervolume-based approaches. Rather than using the current best point (𝑦𝑚𝑖𝑛),

these improvement functions use the current Pareto front (𝑃) obtained from the observed points.

28



The Pareto front is the optimal trade-off curve between different objectives 𝑦𝑖 (𝑖 = 1, 2, ..., 𝑚).

Assuming that the total number of points in the Pareto front is 𝑘 , the improvement function in terms

of Euclidean distance [33] can be written as

𝐼𝑒 (x) = min
𝑗=1,2,...,𝑘

√√√ 𝑚∑︁
𝑖=1

(𝑃 𝑗
𝑖
− 𝑦𝑖 (x)) (2.19)

where 𝑃 𝑗
𝑖

is the 𝑖𝑡ℎ objective value of the 𝑗 𝑡ℎ point in the Pareto front P. This expression is trying

to find a point x with minimum euclidean distance from the Pareto front in the objective space.

Improvement function based on Maximin approach [67] is given by

𝐼𝑀 (x) = − max
𝑗=1,2,...,𝑘

[
min

𝑖=1,2,...,𝑚
(𝑦𝑖 (x) − 𝑃 𝑗𝑖 )

]
(2.20)

Rather than using the euclidean-based distance, this approach uses axis-wise distance to calculate

the improvement function value. Finally, using Hypervolume criteria [12]. Hypervolume indicator

𝐻 (𝑃) calculates the volume of the region obtained by Pareto front P bounded by reference point

𝑟∗𝑧 . The reference point is user-defined and dominated by all the points in the Pareto front. The

expression for Hypervolume indicator is

𝐻 (𝑃) = 𝑉𝑜𝑙𝑢𝑚𝑒
{
y ∈ R𝑚 | 𝑃 < y < 𝑟∗𝑧

}
(2.21)

The improvement function using the Hypervolume indicator can be written as:

𝐼ℎ (x) = 𝐻 (𝑃 ∪ x𝑛𝑒𝑤) − 𝐻 (𝑃) (2.22)

where x𝑛𝑒𝑤 is a new point added to the current Pareto front. This expression is trying to find the

improvement after adding a new point to the Pareto front.

Based on these improvement functions, the multi-objective expected improvement value can be

calculated in any non-dominating region 𝐷 using the following expression:

𝐸𝐼 (x) =
∫
𝑦∈𝐷

𝐼 (x)
𝑚∏
𝑖=1

1
𝑠𝑖
𝜙

(
𝑦𝑖 − 𝜇𝑖
𝑠𝑖

)
𝑑𝑦𝑖 (2.23)

For this work, a hypervolume-based expected improvement approach is used for performing

multi-objective optimization. The only drawback with this approach is its difficulty in computing
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the expectation value. Zhan et al. [74] proposed a matrix-based fast method to approximately

calculate the expected improvement for the multi-objective problem for all three above approaches.

The closed-form expression for hypervolume based multi-objective EI is proposed as

𝐸𝐼𝑀ℎ (x) = min
𝑗=1,2,...,𝑘

[ 𝑚∏
𝑖=1

(𝑟∗𝑧 (𝑖) + 𝐸𝐼
𝑗

𝑖
(x) − 𝑃 𝑗

𝑖
) −

𝑚∏
𝑖=1

(𝑟∗𝑧 (𝑖) − 𝑃
𝑗

𝑖
)
]

(2.24)

where 𝑟∗𝑧 (𝑖) is the 𝑖𝑡ℎ element of reference point vector r∗𝑧 , and 𝑘 is the total number of points in

the Pareto front.

The above discussions are all about finding the best point in the objective space. However, if

the optimization problem is expensive to evaluate constraints, it becomes challenging to explore

the design space efficiently. Without the efficient constraint handling mechanism, the algorithm

will keep looking for optimal points in infeasible regions, thus wasting the evaluation budget. This

will, in turn, use more evaluation budget than what ideally should. To deal with such a situation,

the following subsection talks about constraint handling specifically for expected improvement.

2.4.3 Constraint handling in Expected Improvement

Any constraint function 𝑔(𝑥) is given to be either greater than (≥) or less than (≤) a certain threshold

value (𝑔𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). It can easily be normalized to �̄�(𝑥) ≥ 0 to be used in the algorithm. After

normalization, a feasible and infeasible constraint can be defined as follows:

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 =


Feasible, if �̄�(x) ≥ 0

Infeasible, otherwise

The normalized constrained function can then be used to form the response surface model. To

handle constraints for the Expected Improvement (EI) based function, logic proposed by [16, 21]

is used by defining the probability of feasibility as below

P𝑐 (x) =
𝑛∏
𝑖=1

Φ( 𝜇𝑖 (x) − 0
𝑠𝑖 (x)

) (2.25)

where 𝑛 is the total number of constraint functions. This expression is then multiplied with the

acquisition function, and the constrained optimization problem is converted into an unconstrained
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one. The final expression becomes

𝐸𝐼𝑐 (x) = 𝐸𝐼 (x) × P𝑐 (x) (2.26)

and for multi-objective expected improvement matrix, the expression becomes

𝐸𝐼𝑀𝑐 (x) = 𝐸𝐼𝑀 (x) × P𝑐 (x) (2.27)

Note that for these points violating constraints (i.e., �̄�(x) < 0), the value of the expression P𝑐 will

be small. And after multiplying it with the expression of expected improvement, it will make the

overall expression small. During the maximization process, the smaller values of 𝐸𝐼𝑐 or 𝐸𝐼𝑀𝑐

will eventually get eliminated. Thus these points violating constraint boundary will get handled

efficiently.

Everything discussed above regarding the expected improvement is for the deterministic system.

Implementing the approach for a stochastic system needs some modification, as explained next.

2.4.4 Expected Improvement in Stochastic environment

Both model development method and problem formulation discussed above are developed for

problems with deterministic output measurements. To apply it to real systems, it is necessary

to incorporate a noise handling mechanism in the system. Apart from modifying the model

(discussed in Section 2.3.2), the acquisition function also needs modifications. Several extensions

for the acquisition function have been proposed in [47, 24, 56, 57] for handling measurement noises.

The concept of extending the Expected Improvement approach for the stochastic environment

is adapted from the work by Huang et al. . The proposed approach is called Augmented Expected

Improvement (AEI), explained next. As can be seen from equation (2.17), this method tries to find

the solution better than the current best value 𝑦𝑚𝑖𝑛. However, under the stochastic environment, the

exact value of 𝑓𝑚𝑖𝑛 is unknown. To deal with this situation, it is suggested to use mean value 𝜇(x**)

from the model in place of 𝑦𝑚𝑖𝑛, where x** is known as the "effective best solution" determined by

x** = 𝑎𝑟𝑔𝑚𝑎𝑥 [−𝜇(x) − 𝑐𝑠(x)] (2.28)
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where 𝑐 = 1 is proposed in [24]. This expression depends only on the model estimates. Therefore,

to avoid additional computational effort, equation (2.28) is evaluated at points that are already

evaluated. After including all the modifications, a new expression for Expected Improvement for

stochastic system becomes

𝐸𝐼𝑛 (x) = (𝜇(x**) − 𝜇(x))Φ
( 𝜇(x**) − 𝜇(x)

𝑠(x)

)
+ 𝑠(x)𝜙

( 𝜇(x**) − 𝜇(x)
𝑠(x)

)
(2.29)

Because this is a stochastic process, repetition of function evaluation at the same point is

allowed. This will enhance the model prediction at that point. However, with high noise variances,

the algorithm can get stuck in a local optimum without searching for other regions. To counter this

issue, reference [24] suggested a multiplication factor, which discourages the repetition of points

after several function evaluations. With the multiplication factor, the final expression for Expected

Improvement, known as Augmented Expected Improvement, can be written as

𝐴𝐸𝐼 (x) = 𝐸𝐼𝑛 (x).(1 − 𝜏(x)√︁
𝑠2(x) + 𝜏2(x)

) (2.30)

Here, the second term in the expression is the multiplication term, where 𝜏2(x) is the estimation

of noise variance at any unknown test point x and s(x) is the model uncertainty estimate from the

Kriging model. As repetition at a particular test point increases,

𝑠2(x) ↓ =⇒ multiplying factor ↓ =⇒ 𝐴𝐸𝐼 (x) ↓

Since we are trying to maximize the augmented expected improvement (AEI) function, selection

of the same point will get discouraged while performing optimization. Augmented Expected

Improvement based approach was proposed for single-objective problems. But it can easily be

extended for constrained multi-objective problems. Based on this analysis, two extensions are

discussed in the next section.

Before moving further, one crucial thing to note here is the use of noise variance in evaluating

the expression for AEI(x). A system with a uniform noise variance all over the objective space

will not have an issue implementing this strategy. Evaluating few points will give the value of

noise variance, which can easily be implemented into the overall stochastic optimization approach.
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However, in general, any practical system will have non-uniform (heteroscedastic) noise variance

all over the design space, and getting the information at any unknown points is difficult. A way

to overcome this hurdle is to develop a noise model separately and use that to estimate the noise

variance at unknown points as explained in [2]. The intent to highlight this point is to discuss

that for implementing the surrogate-assisted optimization approach to a practical problem, it is

important to look for options where the information about noise variance is not needed beforehand

so that the algorithm can efficiently deal with the practical system.

2.4.5 Multi-objective extensions for stochastic environment

Most of the work about extending the approach to handle stochastic systems is done for single

objective unconstrained problems. Only a handful of work is done to perform multi-objective

constrained optimization. The current work proposes two different extensions, motivated by the

extension of expected improvement (EI) criterion for handling the multi-objective problem, as

explained in Section 2.4.2.

2.4.5.1 Constrained Augmented Expected Improvement (CAEI)

As explained before, an intuitive way to extend the classical multi-objective expected improvement

approach for stochastic measurements is to convert them to ’a’ single-objective problems and then

use the Augmented Expected Improvement (AEI) approach to solve the problem.

𝑀𝑢𝑙𝑡𝑖 −𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =⇒ ′𝑎′ 𝑆𝑖𝑛𝑔𝑙𝑒 𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒

In this dissertation, the approach of using augmented achievement scalarization function

(AASF) for combining the objective functions is used. After converting the problem, the ob-

tained single objective problem is then solved using Augmented Expected Improvement (AEI)

method discussed above.

The stochastic Kriging model considers the noise information while fitting the model and

accordingly estimates the mean and uncertainty values at unknown points. Looking at the expression

33



for P𝑐, it contains both mean and uncertainty estimates from the model. These estimates will contain

the noise information. Therefore, for handing expensive constraint function, we do not need to

change the expression of the probability of feasibility P𝑐 (equation 2.25). The expression of AEI(x)

with constraint handling becomes:

𝐶𝐴𝐸𝐼 (x) = 𝐴𝐸𝐼 (x) × P𝑐 (x) (2.31)

This expression handles constraints as well. Using this expression and evaluating the best point

for each reference vector, the overall multi-objective problem is solved.

For stochastic problems, a similar approach is proposed in [18], where authors have used

augmented Tchebycheff. In [75], an 𝜖-constrained method was implemented. Our early work

[51] has extended this approach for the stochastic case but in the uniform (homoscedastic) noise

environment.

2.4.5.2 Augmented Expected Improvement Matrix (AEIM)

As for the second approach mentioned before, the hypervolume-based improvement function is

selected for performing multi-objective expected improvement. For efficiently computing the

multi-objective expected improvement function, the matrix method proposed in [74] is used. The

authors have suggested the matrix form for three different approaches: Euclidean, maximin, and

hypervolume-based. This work extends the hypervolume-based Expected Improvement Matrix

(EIM) approach for handling the stochastic system with an AEI function. A similar extension could

be made for the other two methods. The original expression for EIM is given below.

𝐸𝐼𝑀ℎ (x) =
𝑘

min
𝑗=1

[ 𝑚∏
𝑖=1

(𝑟∗𝑧 (𝑖) + 𝐸𝐼
𝑗

𝑖
(x) − 𝑃 𝑗

𝑖
) −

𝑚∏
𝑖=1

(𝑟∗𝑧 (𝑖) − 𝑃
𝑗

𝑖
)
]

(2.32)

The proposed extension for handling the stochastic system with Augmented Expected Improve-

ment (AEI) is given by

𝐴𝐸𝐼𝑀ℎ (x) =
𝑘

min
𝑗=1

[ 𝑚∏
𝑖=1

(𝑟∗𝑧 (𝑖) + 𝐴𝐸𝐼
𝑗

𝑖
(x) − 𝜇 𝑗

𝑖
(x∗∗)) −

𝑚∏
𝑖=1

(𝑟∗𝑧 (𝑖) − 𝜇
𝑗

𝑖
(x∗∗))

]
(2.33)
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where r∗𝑧 is the user defined reference point and 𝑘 is the total number of points in the Pareto front.

It is well known that

𝐴𝐸𝐼 (x) ≥ 0 =⇒ 𝐴𝐸𝐼𝑀ℎ (x) ≥ 0

When the algorithm gets stuck at local optimal point x,

𝐴𝐸𝐼
𝑗

𝑖
(x) → 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 =⇒ 𝐴𝐸𝐼𝑀ℎ (x) → 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠

Thus, repetition of the same point would get discouraged during the optimization process to

escape the local optimal region. For constraint handling, a similar approach is used as before. The

expression is multiplied with the probability of feasibility (equation (2.25)), and the final expression

can be written as below.

𝐶𝐴𝐸𝐼𝑀ℎ (x) = 𝐴𝐸𝐼𝑀ℎ (x) × P𝑐 (x) (2.34)

This concludes our discussion on extending the Expected Improvement-based approaches to

deal with expensive constrained multi-objective optimization problems in both deterministic and

stochastic environments. The next subsection discusses another acquisition function called Lower

Confidence Bound (LCB) and its advantages/disadvantages in implementing it for solving practical

problems.

2.4.6 Lower Confidence Bound

Current research work focuses on extending Lower Confidence Bound (LCB), which is driven by

its easiness of extending the algorithm to handle multi-objective optimization problems. The LCB

at any test point x can be expressed as:

𝐿𝐶𝐵(x) = 𝜇(x) − 𝑐 × 𝑠(x) (2.35)

where 𝜇(x) and 𝑠(x) represent the mean and standard deviation estimates from the model, respec-

tively, and 𝑐 is a constant. The mean value here is used to perform exploitation in the search space,

whereas the standard deviation is used for exploration purposes. An effort on exploration is decided
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by the constant value 𝑐 in the equation. The higher its value is, the more the acquisition function

will try to explore. Since the LCB does not require the previous best value for performing search

operation, it could be easily extended to handle multi-objective optimization problems. However,

an important aspect here is constraint handling. It is crucial to identify the feasibility boundary

to direct the search towards the optimal region in the feasible region. Otherwise, the algorithm

would consume a significant search budget in infeasible regions for optimal solutions. An efficient

constraint handling method is proposed for the LCB approach, as discussed next.

2.4.6.1 Proposed Constraint handling logic for LCB

Not much research is conducted in defining constraint handling functions for LCB based acquisition

function. Since LCB could easily be extended for a multi-objective problem, defining an efficient

constraint handling function would make the algorithm appealing for practical problems. For this

research, a new constraint handling approach is proposed for optimization with the LCB function.

As explained before, the constraints 𝑔𝑖 (x) (𝑖 = 1, 2, ..., 𝑛) are normalized to �̄�𝑖 (x) (𝑖 = 1, 2, ..., 𝑛)

before modeling, and any positive value is considered feasible and vice-versa. Since the constraint

function is also modeled using Kriging, it provides uncertainty estimations. One can intelligently

design a mechanism to explore the design space well and try to identify the feasible region as the

algorithm progresses efficiently. Since the model is updated continuously as the algorithm proceeds,

getting few infeasible points at the beginning could help developing constraint boundaries quickly.

Therefore, by considering the exploration for the constraint space, a new constraint handling

mechanism has been devised for this work.

Figure 2.4 explains the constraint handling logic. A one-dimensional test problem is plotted in

Figure 2.4 to make it easy to understand, where horizontal 𝑥-axis represents input variation (design

variable) and vertical 𝑦-axis represents the corresponding output (constraint) value. In the plot,

blue curve represents mean value (𝜇(x)) for the model and red curve for 𝜇(x) + 𝑠(x). If only the

mean value were used for determining the infeasible region, these would be the regions marked

with 𝑎 and 𝑏. Note that this will be the case where standard deviation information available from
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Figure 2.4: Explaination of constraint handling logic using test problem

constraint models is not utilized. If the standard deviation information is used, the region with

𝜇(x) + 𝑠(x) ≥ 0 should be explored. This will expand the design space available for searching

optimal solution, and the revised infeasible region becomes 𝑎𝑜 and 𝑏𝑜. This is the logic used for

constraint handling in this study. Note that for exploration, current work uses only one standard

deviation (𝑠(x)) value. It can be modified based on the evaluation budget available.

For writing the proposed method mathematically, the logic used for handling constraints in

Expected Improvement (EI) is used. As discussed in the literature, constraints are handled by

defining feasibility function as

𝐹 (x) = 𝑃𝑐 (�̄�𝑖 (x) ≥ 0) = Φ( 𝜇𝑖 (x) − 0
𝑠𝑖 (x)

) (2.36)

where Φ is the standard normal cumulative distribution function. Since constraint models are

assumed to be independent, the net probability for 𝑛 constraint functions can be written as

P𝑐 (x) =
𝑛∏
𝑖=1

Φ( 𝜇𝑖 (x) − 0
𝑠𝑖 (x)

) (2.37)

37



The expression of P𝑐 is always greater than zero. Therefore, to differentiate the feasible and infeasi-

ble zones, one needs to subtract it with a fixed or adaptively varying quantity. Otherwise, all points

will become feasible. The logic for choosing that quantity is explained as follows. Considering the

case of 𝑛 = 1, Figure 2.5 shows three different regions for P𝑐.
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Figure 2.5: Identification of different region for P𝑐

Region I: 𝜇(x) ≥ 0, 𝑠(x) ≥ 0 and 𝜇(x) + 𝑠(x) > 0

In this region, the constraint is always inside the feasible boundary since the mean value is positive.

Region II: 𝜇(x) < 0, 𝑠(x) ≥ 0 and 𝜇(x) + 𝑠(x) ≥ 0

This is the region of exploration, where the mean value is negative, but adding uncertainty to the

mean could make this expression positive, meaning that if this point is explored, there is a chance

of getting this point into the feasible region. Now the worst-case scenario would be 𝜇(x) + 𝑠(x) = 0

and in this case, expression for P𝑐 equals to Φ(−1). Overall, the value of P𝑐 is always greater than

or equal to Φ(−1).
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Region III: 𝜇(x) < 0, 𝑠(x) ≥ 0 and 𝜇(x) + 𝑠(x) < 0

In this region, even utilizing the variance estimation could not make the given point feasible. This

is clearly the case of point in the infeasible region. P𝑐 obtained in this case is less than Φ(−1).

The above discussions show that Regions I and II are feasible for the optimization algorithm,

and Region III is not. After analyzing the complete system case-by-case, one can find the threshold

value between feasible and infeasible regions equal to Φ(−1). After subtracting the threshold

value from equation (2.37), the model for constraint handling with provision for exploration can be

established. The final expression for the constraint function becomes

g𝑐 (x) =
𝑛∏
𝑖=1

Φ( 𝜇𝑖 (x)
𝑠𝑖 (x)

) − (Φ(−1))𝑛 (2.38)

Note the difference in handling the constraints for both expected improvement (EI) and lower

confidence bound (LCB) criteria. For EI, the constrained problem becomes an unconstrained

problem after multiplying the probability of feasibility function with the acquisition function, while

for LCB, the constraints are handled separately. The problem stays as a constrained optimization

problem.

2.4.7 Expected Improvement (EI) vs Lower Confidence Bound (LCB)

Because of the easiness of the Expected Improvement-based approach and no required user input for

performing the exploration and exploitation, it became a popular approach in literature. However,

it is myopic in nature, meaning it tends to perform the greedy search. Reference [60] has shown

that the order of points in the sub-optimal region allocated by the expected improvement approach

is of the order of O(log 𝑛), where 𝑛 is the number of observations. This means that 𝑛 should

be sufficiently large to have points from the sub-optimal region, which is important for exploring

design space.

In order to demonstrate this phenomenon, the same test problem defined before (2.14) is used

but with different initial test points. Figure 2.6 shows the model developed using the initial test

points, and it also shows the expected improvement curve (at the bottom), calculated throughout
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the design space to select the next evaluation point. Based on the expected improvement criteria,

the algorithm will pick a point ∈ [0.1 0.2], as it has the maximum expected improvement value.

The black dashed line represents the next evaluation point observed by maximizing the expected

improvement acquisition function. It can be seen that the actual optimal region lies between input

∈ [0.6 0.9] but based on the expected improvement calculation, the algorithm is not suggesting the

next evaluation point in that region. After evaluating the point suggested by expected improvement

and updating the model, Figure 2.7 shows both the function plot and the expected improvement

calculation for choosing the next point. The 2nd plot suggests selecting a point very close to the

point from the previous iteration. This shows the greedy nature of the approach with less focus on

exploration.

Therefore, to have a better exploration in the design space, the Lower Confidence Bound (LCB)

approach is used to form the acquisition function, which is a non-myopic approach. It, however,

requires external user input for setting the exploration constant (explained in Subsection 2.4.6).

Figures 2.8 and 2.9 shows the points selected and model improvement using lower confidence

bound acquisition function. Figure 2.8 shows the same initial model as before, but at this time,

the next evaluation point suggested by the acquisition function is in the optimal region. This is

the exploration part of the algorithm. Figure 2.9 shows the model after adding the observation

suggested by LCB. As can be seen, the estimated model is converging towards the actual curve, and

the black dashed line, showing the next evaluation point, is converging towards the optimal region.

The greedy nature of the expected improvement criterion is exposed due to the poor initial

model generated. Referring back to the figure, it can be seen that the initial model did not have

points between 𝑥 ∈ [0.4, 1]. Therefore, the model could not capture the system behavior between

these points, and the greedy nature of the expected improvement criteria did not suggest exploring

the unknown region. However, we try to generate points uniformly throughout the design space for

the overall surrogate-assisted optimization algorithm. This, therefore, helps to capture the model

characteristics well in the entire design space. Therefore, for the deterministic system, expected

improvement criteria have shown their capability in identifying the optimal region. However,
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Figure 2.6: 1𝑠𝑡 Iteration with Expected Improvement acquisition function

with the stochastic system, the initial model could get affected due to noise, which might mislead

the search for the optimal region. Therefore, for practical systems, it becomes crucial for the

optimization algorithm to perform a non-myopic search to avoid local convergence.
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Figure 2.7: 2𝑛𝑑 Iteration with Expected Improvement acquisition function

Another major advantage of LCB based approach is noise handling. It does not explicitly

require noise information feedback. This makes it attractive for its implementation for practical

systems as the noise information is usually unknown beforehand. The EI-based criteria, on the
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Figure 2.8: 1𝑠𝑡 Iteration with Lower Confidence Bound acquisition function
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Figure 2.9: 2𝑛𝑑 Iteration with Lower Confidence Bound acquisition function
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other hand, required noise information beforehand for an effective search in the optimal region.

If the system has uniform noise variance, it is easy to find out the noise level using few initial

experiments, but this is generally not true. This study has performed an exhausting comparative

study between lower confidence bound and expected improvement-based criteria for obtaining the

optimal region of stochastic systems, which is to be discussed in the next chapter.

2.5 Optimization and selection of points for further evaluations

After formulating the acquisition function with a constraint handling mechanism, the next task

is to perform its optimization to find a set of optimal points, which will be used for performing

high-fidelity evaluations. Various methods are available to perform the optimization, from classical

gradient-based approaches to evolutionary approaches.

Gradient descent is the most commonly used algorithm for performing optimization because

of its ease of implementation. However, it depends on the steps size and starting point. It has

the probability of getting stuck at the local optima. The evolutionary optimization approach has

been shown to work well in identifying the global optimal solution. Several algorithms come

under the umbrella of evolutionary optimization. The most popular ones are Genetic Algorithm

(GA), Particle Swarm Optimization (PSO), and evolutionary programming (EP). For this work, the

Genetic Algorithm is used for performing the optimization of the acquisition function.

2.5.1 Genetic Algorithm

A Genetic Algorithm (GA) is a population-based approach, which starts with a set of data points

called population. The algorithm then progresses with performing selection, crossover, and muta-

tion operations at each iteration based on the function evaluations to keep the best possible solution

while simultaneously exploring the design space. The approach is shown to work well in identifying

the global solution for both convex and non-convex problems with fast convergence.

For both expected improvement-based approaches, constrained multi-objective problem is con-

verted to an unconstrained single objective problem (unified acquisition function is developed).
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Therefore, a real parameter Genetic Algorithm RGA [35] is used for performing the optimization.

With the lower confidence bound, the acquisition function is developed for each objective. Since

the current work deals with a two-objective problem, a non-dominated sorting algorithm (NSGA-II)

[32] is used for performing its optimization.

With RGA, every iteration for optimization gives one final solution at the end, which can then

be evaluated on the high-fidelity system (either actual experimental setup or simulation). However,

with multi-objective optimization (case with LCB), the NSGA-II algorithm generates a set of

optimal solutions, called Pareto front. It is a trade-off curve among different objectives, the size

of which depends on the population size of the optimization algorithm. All points from the Pareto

front can be evaluated using a high-fidelity system, but doing so will exhaust the total evaluation

budget and reduce the iterations for the learning algorithm. Using fewer points will not update the

model well and might delay the convergence. One of the possible ways to deal with this trade-off

situation is to perform clustering and select the centroid of each cluster for further evaluations to

improve the model accuracy. Various methods are available for cluster formation, namely divided

into supervised and unsupervised categories. For this work, two specific methods are implemented

as discussed, namely, k-means clustering and dbscan.

2.5.2 K-Means Clustering

K-Means clustering algorithm divides the total number of points into ’K’ different clusters, based

on the euclidean distance between the centroid of clusters and observation points [40]. The only

user input required for implementing this approach is the number of clusters ’K’. This approach

has both advantages and disadvantages. It is easy to implement but struggles in the presence of

outliers. It also requires the total cluster number beforehand, which is usually not known.

For this work, this approach is implemented in the objective space to identify a few points from

the Pareto front observed after performing optimization of the acquisition function. The uniform

spread of points from the Pareto front will ensure the distribution of the optimal solution.
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2.5.3 DBSCAN

Density-based spatial clustering of application with noise or, in short, DBSCAN is a density-based

clustering approach [13]. As the name suggests, it forms different clusters based on the density

of the spread of points. This approach does not require defining the total number of clusters

beforehand. It, however, requires other user inputs such as maximum distance between two points

(𝑟𝑚𝑎𝑥) to be considered as neighbors and Minimum Number of Points (MNP) required to form

a dense region. 𝑟𝑚𝑎𝑥 is a crucial parameter to identify the cluster numbers correctly. For the

current work, an adaptive strategy is designed to calculate the value of 𝑟𝑚𝑎𝑥 for each iteration of

the learning algorithm.

For the minimum number of points (MNP), it is recommended that the value should be ≥ 𝑁 +1,

where 𝑁 is the total number of input variables. Another advantage of DBSCAN is handling the

outliers, and it provides a set of points termed noise, which can be excluded for further evaluation.

2.6 Chapter Summary

This chapter explained the entire surrogate-assisted optimization approach for solving the engine

calibration problem along with modifications required to implement it on to the practical systems.

The following conclusions can be made out of this chapter:

1) Different steps involved in performing the surrogate-assisted optimization approach are ex-

plained with the emphasis on the steps required to modify for its practical implementation.

2) Both deterministic and stochastic Kriging models are discussed and showed the advantage of

using stochastic Kriging model for a system with measurement noise.

3) The current work uses two widely used acquisition functions: Expected Improvement (EI)

and Lower Confidence Bound (LCB), for performing the surrogate-assisted optimization.

This chapter also briefly discussed a possible greedy nature of the EI-based approach and

how it could affect the convergence if implemented to a system with measurement noise.

46



4) Since the lower confidence bound (LCB) approach did not have an efficient constraint handling

mechanism, a new constrained handling algorithm is proposed.

5) In order to implement the approach for performing optimization of a practical system, three

different approaches are proposed for handling constrained multi-objective problems with

measurement noise. Specifically, non-uniform (Heteroscedastic) noise addition is considered

to make the approach implementable for any practical system.
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CHAPTER 3

SIMULATION VALIDATION OF PROPOSED ALGORITHMS

Based on all the methods discussed in the previous chapter for handling the constrained multi-

objective problem both in deterministic and stochastic environments, this chapter validates these

results for the engine calibration problem. Before moving to the actual experimental study, the first

necessary step is to validate the proposed approaches in the simulation environment. Therefore, a

high-fidelity engine model developed using GT-SUITE𝑇𝑀 is used to perform the engine calibration

study. Based on the results obtained from this chapter, the experimental work is planned and will

be discussed in detail in the next two chapters.

This chapter is divided into two major sections. The first section discusses the validation of

the constraint handling algorithm for the Lower Confidence Bound (LCB) criterion. Because the

Expected Improvement criterion with constrained handling has already been validated extensively

in the literature, it is not discussed here. After the constrained handling validation, the proposed

algorithm extensions for stochastic systems are validated with different noise levels. For this

part, both multi-objective Expected Improvement and Lower confidence bound-based criteria are

demonstrated. Algorithm validation is first performed on the standard numerical test problems,

where the Pareto front is well known. This is done to check the algorithm’s efficacy in detecting the

points in the global optimal region. Later, it is implemented for the engine calibration problem. For

each section mentioned before, validation on both multiple numerical test problems and the actual

engine calibration problem is shown for comprehensive testing of the proposed algorithm. Before

showing the results, this chapter will explain the problem setup used for performing surrogate-

assisted optimization.

3.1 Problems for Validating the Algorithms

Any practical problem, in general, contains various objectives to be optimized. Moreover, with

the increased system complexity, there are multiple control parameters needed to be calibrated. The
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Table 3.1: Numerical test problems

Problem No. of Objectives No. of Constraints No. of Design Variables

ZDT1 2 0 8
ZDT2 2 0 8
ZDT3 2 0 8
BNH 2 2 2
SRN 2 2 2
TNK 2 2 2
OSY 2 6 6

current work is, therefore, validated on several constrained multi-objective optimization problems.

Initially, the algorithms are tested on several constrained and unconstrained multi-objective nu-

merical test problems explicitly defined for validating the efficacy of newly developed algorithms.

Later, a constrained multi-objective engine calibration problem is formulated.

3.1.1 Numerical Test Problems

Several standard multi-objective numerical test problems, both unconstrained and constrained,

with different types of optimal Pareto fronts, are available in evolutionary optimization-related

literature [8]. The advantage of using these standard test problems is that the actual optimal

solution is known, which could be used to check if the proposed algorithm converges to the global

optima within a reasonable number of iterations.

Out of the entire set, seven different problems, shown in Table 3.1, are used for the validation

purpose. The first three problems in Table 3.1 are unconstrained multi-objective optimization

problems. These problems are not useful for validating the constraint handling approach. However,

they are useful to detect the convergence for unconstrained problems using the stochastic extension

of the multi-objective approach. The last four problems in the table are multi-objective problems

with constraints. These problems are useful for validating both the proposed constraint handling

approach and the algorithms with stochastic extension.
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After implementing the algorithm for these test problems, it is important to assess its perfor-

mance of converging to the true Pareto front. For multi-objective problems, the performance is

measured in terms of how close the identified optimal curve is to the true front (Convergence) and

how good is the spread of points covering the actual Pareto front. Several performance assessments

are available in literature [8] including Generational Distance (GD) [71], Inverted Generational

Distance (IGD) [5], Hypervolume [78], to name a few. IGD is the most commonly used assessment

criterion as it not only identifies the closeness of obtained optimal front from the actual Pareto front

but also shows the distribution over the actual Pareto front.

Calculation of IGD is the same as that of GD , but with a reversed role of the actual Pareto front

and the near optimal front obtained by the proposed algorithm. With 𝑃 and 𝑄 defining the actual

Pareto front and the obtained optimal curve, respectively, the expression for IGD is defined by

𝐼𝐺𝐷 (𝑃,𝑄) = 1
|𝑃 |

( |𝑃 |∑︁
𝑖=1

𝑑𝑎𝑖

)1/𝑎
(3.1)

where 𝑑𝑖 is the minimum distance between the 𝑖𝑡ℎ point in the actual Pareto front and the front

obtained by the algorithm (𝑄). Using 𝑎 = 2, distance 𝑑𝑖 is euclidean distance that can be calculated

by

𝑑𝑖 = 𝑚𝑖𝑛
|𝑄 |
𝑘=1

√√√ 𝑚∑︁
𝑗=1

((𝑦∗)𝑖
𝑗
− (𝑦)𝑘

𝑗
)2

where 𝑚 is the dimension of objective function, (𝑦∗)𝑖
𝑗

is the 𝑗 𝑡ℎ objective function value of the 𝑖𝑡ℎ

point from the actual Pareto front P and (𝑦)𝑘
𝑗

is the 𝑗 𝑡ℎ objective function value of the 𝑘 𝑡ℎ point

from the obtained optimal curve (𝑄) for calculating the distance.

3.1.2 Engine Calibration Problem

Fuel economy and emissions are two major criteria for analyzing key engine performances. The

goal is always to maximize the performance while simultaneously achieving satisfactory emissions.

A generic engine calibration problem could have multiple objectives and constraints with several

control parameters for calibration. Therefore, with the target of optimizing both the engine fuel
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economy and emissions, a multi-objective engine calibration problem is formulated as below.

Minimize 𝑦1(x) = 𝐵𝑆𝐹𝐶 (x), 𝑦2(x) = 𝑁𝑂𝑥 (x)

subject to 𝑔1(x) = 𝐵𝑜𝑜𝑠𝑡 (x) ≤ 2 𝑏𝑎𝑟,

𝑔2(x) = 𝐿𝑜𝑎𝑑 (x) ≥ 9.95 𝑁𝑚,

Control Variables x = [𝑉𝐺𝑇, 𝐸𝐺𝑅, 𝑆𝑂𝐼]𝑇

𝑥1 = 𝑉𝐺𝑇 ∈ [0 1] %,

𝑥2 = 𝐸𝐺𝑅 ∈ [0 1] degree,

𝑥3 = 𝑆𝑂𝐼 ∈ [0 1] 𝑏𝑇𝐷𝐶

The main objective of the engine calibration problem is to find the optimal trade-off between

Brake Specific Fuel Consumption (BSFC) and 𝑁𝑂𝑥 emissions, which provides a typical curve

between engine efficiency and its emissions. Therefore, this is a two-objective optimization problem

(𝑚 = 2) with 𝑦1(𝑥) = 𝐵𝑆𝐹𝐶 and 𝑦2(𝑥) = 𝑁𝑂𝑥 . Reducing fuel consumption (i.e., improving engine

efficiency) is known to increase 𝑁𝑂𝑋 emissions and vice-versa. Therefore, the optimal setting

for these two objective functions provides a trade-off relationship known as the Pareto front. For

performing engine calibration, some constraints are applied to the engine boost pressure (𝑔1(𝑥))

and load (𝑔2(𝑥)) to operate the engine within the desired boundary. Hence, 𝑛 = 2 here. Three

control parameters are selected to perform calibration, namely VGT vane position (𝑥1), EGR valve

position (𝑥2), and fuel injection timing (SOI) (𝑥3). Therefore, with 𝑝 = 3 and x is a three-element

vector. The problem formulation shows the normalized variation range for these control parameters.

All three control parameters affect the combustion characteristics, which, in turn, affect both BSFC

and 𝑁𝑂𝑥 emissions. Increasing the EGR amount reduces 𝑁𝑂𝑥 emissions but adversely increases

the BSFC. Optimizing engine boost by regulating VGT vane position for improved BSFC could

lead to increased 𝑁𝑂𝑥 emissions. Injection timing also alters both combustion efficiency and 𝑁𝑂𝑥

emissions. This work is to find the optimal combination of all three control parameters.

This study uses a simulation model of Ford 6.7L 8-cylinder turbocharged Scorpion diesel

engine to perform the calibration study. For the diesel engine, a high fidelity GT-SUITE𝑇𝑀 model

integrated with a Simulink-based emission model provided by Ford Motor Company is used. The
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GT-SUITE𝑇𝑀 model could run either at a constant speed or load mode. For this study, the model

is run at a constant speed mode. For the current work, the steady-state optimization is performed at

a fixed engine speed of 2000 RPM and a load of 10 bar. Changing the control variables affects the

engine performance. Therefore, a constraint is added to ensure that the load condition is satisfied.

Since the original constraint is an equality, the limit is relaxed by 0.5%, that is, BMEP (Brake

Mean Effective Pressure) constraint is greater than or equal to 9.95 bar for a target at 10 bar. The

closed-loop control strategy in the high fidelity GT-SUITE𝑇𝑀 model guarantees that the BMEP

should always be less than 10 bar.

3.1.2.1 Model Validation and its Implementation

The engine behavior modeled by the GT-SUITE𝑇𝑀 model is assumed to be accurate, i.e., there is

no discrepancy between the experimental and simulation results at the desired engine operational

condition. To validate this hypothesis, steady-state model validation is performed at the desired

engine speed of 2000 rpm. Figure 3.1 shows these plots for BSFC and 𝑁𝑂𝑥 emissions. As can be

seen from Figure 3.1, both GT-SUITE𝑇𝑀 and the emission model shows a good correlation with

the experimental data at low load (BMEP ≤ 10 bar). The difference becomes significant at high

engine load conditions. Therefore, the current work considers the 10 bar load condition.

The surrogate-assisted optimization algorithm is programmed in MATLAB. Therefore, the

engine model is integrated with the MATLAB interface to perform the simulation study. Figure 3.2

shows the implementation of the proposed optimization strategy for the engine calibration problem

in a simulation environment. Because we are using the model here, no measurement noise is

present. Here, the control block runs the proposed optimization strategy and provides a set of

possible calibration variables to be evaluated next. These are then passed on to the plant model, a

combination of the GT-SUITE𝑇𝑀 and Simulink model, to get all desired measurement variables.

Before performing the optimization, all the desired variables are set in the control strategy block

according to the problem formulation discussed before.
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3.1.2.2 Baseline Engine Calibration Result using GT-SUITE𝑇𝑀 Model

The optimal solutions for the numerical test problems are well defined beforehand. However, for the

current engine calibration problem, the actual optimal solution is not known. It is required to have

the knowledge of the Pareto front to compare the performance of different algorithms. Therefore,

a baseline study is done using the available engine model, where the high-fidelity model is directly

integrated with any optimization approach to get the near-optimal Pareto front.
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Figure 3.3: Trade-off curve between BSFC and 𝑁𝑂𝑥 from the baseline study

For the baseline study, the engine model (GT-SUITE𝑇𝑀 for performance and Simulink model

for emission measurement) was integrated with the evolutionary optimization approach (NSGA-

II) for performing the calibration. Parameter values used for the NSGA-II algorithm are 40 for

the population size, 100 for the total generation number, 0.9 for the crossover probability, 1/3

for the mutation probability, 15 for the distribution index used for the SBX operator, and 20 for

polynomial mutation. A total of 4000 high fidelity evaluations were performed in order to obtain

the near-optimal Pareto front. Figure 3.3 shows the near-optimal Pareto front from the high fidelity

GT-SUITE𝑇𝑀 model evaluation. This result is used as a reference optimal Pareto front to check

the goodness of proposed algorithms.
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Figure 3.4: Optimal control parameter values from the baseline study
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As expected, there is a trade-off relationship between engine performance (BSFC) and 𝑁𝑂𝑥

emissions. The optimization results in terms of the Pareto front provide important information. As

shown in Figure 3.3, the Pareto front is divided into three different regions; blue region (Region 1)

for small change in BSFC, black region (Region 3) for small change in 𝑁𝑂𝑥 , and red region (Region

2) provides significant trade-off. Both blue and black regions are highly sensitive. A small change

in BSFC causes a significant change in 𝑁𝑂𝑥 emissions and vice versa. This indicates a narrow

zone for calibration parameters to obtain the optimal solution. The rest of the Pareto front (red

region) is not very sensitive. The corresponding points in the design space are shown in Figure 3.4.

The surrogate-assisted optimization approach works by directing the search algorithm to look

for optimal solutions based on the developed model. It is difficult to have a good model with limited

data points. Thus, these narrower optimal regions could not get enough attention as the focus is

mainly on balancing exploration and exploitation. Based on this hypothesis, it is expected that

the proposed algorithm would most likely find multiple optimal solutions in the red region, and

getting solutions in the other two regions would be difficult. The convergence might get even worse

when testing the stochastic algorithms, where the measurement noise will be added externally to

the model outputs to simulate the actual engine behavior.

3.2 Validation of Constraint Handling Algorithm

This section focuses on validating the constraint handling algorithm. Initially, the algorithm is

validated on numerical test problems to check its efficacy and later in the simulation environment

for the engine calibration problem.

3.2.1 Validation on numerical problems

For the numerical test problems, NSGA-II was used to optimize the acquisition function with

a population size of 100 and 200 generations. Crossover probability equals to 0.9 and mutation

probability equals to 1/𝑁 , where 𝑁 is total number of variables. The distribution index for crossover

(SBX) operator equals to 15; polynomial mutation equals to 20, and 𝑘 = 10 clusters were used for
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the k-mean clustering algorithm. Inverted generational distance (IGD) is computed for comparing

the actual Pareto set with the optimal solution obtained from surrogate-assisted optimization. 20

points from the true Pareto set is used to calculate IGD for both test problem and actual engine

calibration problem.

All the test problems, shown in Table 3.1, are used to validate the proposed constrained handling

approach for Lower Confidence Bound (LCB). LCB was used as an acquisition function for every

test problem with a constant value of 𝑐 = 2 for all objectives. Kriging models were initially

developed using 100 data points with a second-order polynomial as a regression function. For each

test problem, the total high fidelity computational budget was fixed at 300. Each problem was

run 30 times to validate the repeatability of the proposed algorithm. All these parameters were

the same for both constrained and unconstrained test problems. With these algorithm parameters,

surrogate-assisted optimization was performed.

3.2.1.1 Unconstrained Problems

In order to perform tests on unconstrained problems, three standard unconstrained test problems

were selected, namely ZDT1, ZDT2, and ZDT3. Original problems have a total of 30 design

variables. Since the Kriging model suffers from the curse of dimensionality, the design variables

for all unconstrained test problems were reduced from 30 to 8.

Optimization results for the three problems are shown in Figure 3.5. It can be seen that

within 300 high fidelity evaluations, the proposed algorithm is able to find multiple points near

the actual Pareto optimal set. Note that a conventional evolutionary optimization algorithm would

take thousands of iterations to find the optimal solution. Also, the proposed algorithm is not

dependent on the type of Pareto set. Even though the Pareto set for ZDT3 is discontinuous and

Pareto sets for ZDT1 and ZDT2 are convex and concave, respectively, the algorithm was able to

get the near-optimal solution within a limited budget. Table 3.2 shows both means and standard

deviations of the IGD values indicating a convergent optimization process. It can be observed from

Table 3.2 that the standard deviations of all unconstrained problems are small, indicating good
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Figure 3.5: Results of the lower confidence bound (LCB) based optimization algorithm on uncon-
strained test problems

convergence. Since these are unconstrained problems, it was expected to achieve similar results

since the acquisition function used here is pretty standard. The key is to test the proposed algorithm

for constrained problems discussed next.

Table 3.2: IGD values for both unconstrained and constrained test problems

ZDT1 ZDT2 ZDT3 BNH SRN TNK OSY

Average 0.0121 0.0091 0.0184 0.4599 1.0486 0.0311 0.8962

SD 0.0019 0.0014 0.0038 0.0719 0.229 0.0169 0.1476
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3.2.1.2 Constrained Problems

One of the main contributions of this work is the proposed constraint handling method. Four dif-

ferent test problems were selected, namely BNH, SRN, TNK, and OSY, to study the effectiveness

of the proposed algorithm. True Pareto fronts of these problems are either continuous or discon-

tinuous. Total high fidelity evaluations are kept the same as before at 300. Figure 3.6 shows the

optimization results. Figure 3.6 shows that with only 300 true evaluations, the proposed constraint

handling method was able to find multiple points near the true Pareto optimal front.
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Figure 3.6: Results of the lower confidence bound (LCB) based optimization algorithm with
proposed constraint handling approach on constrained test problems

Table 3.2 shows the IGD values for these problems. As can be seen, the average values are pretty

low with small standard deviations, showing good repeatability. With the promising results obtained
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from the proposed algorithm for test problems, the next section discusses its implementation for

the engine calibration problem.

3.2.2 Validation on Engine Calibration Problem

To develop the initial model for performing the surrogate-assisted optimization, 100 data points

are generated in the design space using the latin hypercube sampling (LHS) based DOE (Design of

Experiment) approach. A total of 500 high fidelity evaluations are set as the computational budget.

In the LCB acquisition function, a constant of 𝑐 = 2 is used, and the revised constraint function

is developed according to the proposed constraint handling method. Figure 3.7 compares results

between baseline Pareto front and approximate Pareto front obtained from the proposed algorithm.

To perform a comparative study with the existing state-of-the-art methods in the literature, the

proposed method is compared with two other methods: Multi-objective Expected improvement

approach using expected improvement matrix (EIM) and M3-1 approach. Figures 3.8 and 3.9

shows the results from EIM and M3-1, respectively.

From Figures 3.7, 3.8 and 3.9, one can observe that all three surrogate-assisted optimization

algorithms work well with a proper distribution of optimal points near the actual optimal Pareto

front. With a limited budget, all three algorithms improve performance with more than 85%

reduction in the computational budget compared with the evaluation needed to perform the baseline

study. In order to study the spread of points, IGD values are calculated and presented in Table 3.3.

For the repeatability study, all three algorithms were run six times, and Table 3.3 shows the mean

and standard deviation of IGD values from these simulations.

Table 3.3: IGD values for LCB, EIM, and M3-1

LCB EIM M3-1

Average 5.11 3.66 6.95

SD 1.23 0.85 0.88
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Figure 3.7: Engine calibration optimization using proposed algorithm

With a total of 500 evaluations, all three methods performed well with M3-1, the worst one

based on the IGD values shown. The multi-objective expected improvement (EIM) approach

seems to be the best, with a good distribution of points throughout the Pareto front. Our proposed

method (LCB) also demonstrates a good distribution of points over the Pareto front. An interesting

observation from Figures 3.7 and 3.8 and 3.9 is the spread of Pareto front points. As can be seen,

the majority of these points lie in Region II, with very few in Regions I and III, which justifies

the hypothesis mentioned before. For all three algorithms, the majority of points lie in Region

II. The overall spread of optimal points is better for LCB and EIM and the worst for M3-1. Our

proposed constrained LCB algorithm has a tuning parameter (Φ(−1)) in the constraint handling

function, which controls the exploration in design space. Exploring the design space to identify

a few infeasible points helps in defining the feasible boundary. However, towards the end of the

evaluation budget, exploration is unnecessary, and we could set the limit of tuning parameters to
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Figure 3.8: Engine calibration optimization using EIM method

be more conservative in identifying new points. An adaptive constraint handling mechanism could

be developed for enhanced convergence, but the current study does not consider it.

A good spread of points throughout the Pareto front is vital to obtain rough estimates of the

calibration parameter range, which will give optimal engine performance. It gives the flexibility to

choose the particular parameter setting, depending on optimization priority, to reduce either BSFC

or 𝑁𝑂𝑥 emissions at any operating condition. This is particularly important in the engine calibration

problem requiring minimal BSFC with satisfactory 𝑁𝑂𝑥 emission constraint. The primary moti-

vation of this section is to validate the hypothesis that the proposed algorithm (Constrained LCB)

is able to obtain the global optimal solution for the engine calibration problem with reduced cost in

terms of computational effort. As can be observed, with the proposed algorithm, it is possible to get

the near-optimal solutions with just 500 function evaluations. Compared with 4000 high-fidelity

evaluations using an evolutionary optimization approach, this reduces the computational cost by

62



0 0.2 0.4 0.6 0.8 1
Obj1: BSFC(g/kW-h)

0

0.2

0.4

0.6

0.8

1
O

b
j2

: 
N

O
x(p

p
m

)
M3-1

Baseline
Surrogate

Figure 3.9: Engine calibration optimization using M3-1 method

more than 85%.

The main advantage of the proposed optimization approach (with constrained Lower Confidence

Bound) is the ease of extending the algorithm for handling multiple objective values with reduced

computational effort. Also, for implementing the algorithm in a stochastic environment, the current

method does not require any modification as it only works by using the model information, making

it less sensitive to the stochastic environment. Because the EI approach uses the current best value

for search, it needs to be modified to perform optimization with measurement noise (discussed in

Chapter 2). This next section addresses the stochastic results.

3.3 Validation of Stochastic Multi-Objective Extensions

This section initially demonstrates the performance of proposed algorithms for test problems,

and the second part discusses its application to the engine calibration problem to demonstrate its
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applicability for practical systems. The problem formulation for EI-based approaches converts

constrained multi-objective optimization problems to unconstrained single-objective problems.

Therefore, to optimize the acquisition function, a real variable genetic algorithm (rGA) is used.

For LCB based approach, NSGA-II is used. For both optimization methods (rGA and NSGA-II),

the population size of 100 and a total of 200 generations are used for both test problems and the

engine calibration problem. Other parameters of the algorithm: crossover probability, mutation

probability, distribution index for crossover (SBX) operator, and polynomial mutation are also fixed

at 0.9, 1
𝑁

(𝑁 = total number of variables), 15, and 20, respectively. For the NSGA-II approach

(used in CLCB), k-mean clustering algorithm with 𝑘 = 10 is used to select points for further high

fidelity evaluations.

All three algorithms are run until the total evaluation budget is exhausted. After that, non-

dominated sorting is performed on all high fidelity evaluated points. For comparing the performance

of these final solutions obtained, the IGD value is calculated using 20 points from the actual Pareto

front.

The output generated from the simulation model is deterministic. Therefore, it is required to

add external noise to the measurement to simulate the behavior of a practical system. The stochastic

Kriging model explained in Chapter 2 assumes Gaussian noise addition to make the calculation

simpler. Note that any distribution can be transformed to a Gaussian distribution if its structure is

known. Because this approach is extended for the engine calibration problem, the experiments are

performed to identify the noise distribution for the measurement signals. Figure 3.10 shows the

distribution plots of BSFC and 𝑁𝑂𝑥 measurements using 200 data points. As can be seen from the

figure, both distributions are Gaussian. Therefore, a Gaussian noise can be added for the engine

model to make it stochastic to represent the actual engine measurements.

3.3.1 Heteroscedastic noise addition to the simulation

In general, at fixed control input values, the engine output always fluctuates within a range depending

on the engine operating condition. The further the engine runs from its optimal zone, the higher
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Figure 3.10: Distribution of BSFC and 𝑁𝑂𝑥 measurements

the combustion instability and the measurement variances. Engine performance becomes very

stable near its optimal region. With this behavior in mind, total function variation at any point is
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considered to be linearly dependent as:

𝑛 = 𝑎 × 𝑓 (𝑥) + 𝑏 (3.2)

where 𝑎 and 𝑏 are constants selected based on the problem, and 𝑓 (𝑥) is the function mean value.

In the optimal region, 𝑓 (𝑥) will be minimum and thus with low fluctuations, and vice-versa for

other regions. Considering that the output variation follows Gaussian distribution with ± 3𝜎 from

its mean value 𝑓 (𝑥), the standard deviation of noise becomes

𝜏 =
𝑛

6
(3.3)

For the current application, 𝑏 = 0 and 𝑎 = 5%, 10%, 20%, and 40% for different noise levels. Note

that under any actual engine operational condition, it is almost impossible to have variations in

𝐵𝑆𝐹𝐶 and 𝑁𝑂𝑥 beyond 20%, and therefore, 40% noise level is only considered for performance

assessment of proposed algorithms on numerical test problems, shown in Table 3.1. This is done

to check the algorithm’s applicability to handle problems with similar structures but higher noise

levels.

Usually, for stochastic problems, it is required to perform multiple function evaluations at a

given point to get both mean and noise variance. However, with an engine operated at a given

condition, the measurement variable fluctuates each engine cycle. Therefore, a batch of data could

be collected to get mean and variance estimations in a single function evaluation. To create a

similar scenario, the output value at any location is first corrupted with external noise, and a total of

100 samples are generated. Using these 100 random samples under that operating point, the mean

and standard deviation values are calculated. This eliminates the need to perform replication step

discussed in the literature of stochastic optimization.

3.3.2 Validation on Numerical Problems

This section deals with different numerical test problems to check the efficacy of proposed algo-

rithms. Both unconstrained and constrained problems with continuous and discontinuous Pareto
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front are selected. For all three algorithms, the Kriging metamodel was initially developed using

a 100-point training data set. The total evaluation budget is kept fixed at 500 for all the problems.

For EI-based approaches (CAEI and AEIM), external user input is not required, but for CLCB,

𝑐 = 2 is used in the expression of the acquisition function. Each problem is run 10 times to test

the repeatability of algorithms. All these parameters were kept the same for both constrained and

unconstrained test problems.

3.3.2.1 Unconstrained Test Problems

As mentioned previously, the total number of design variables for all three problems (ZDT1, ZDT2,

and ZDT3) are reduced from 30 down to 8. For all three algorithms, simulations are performed at

four different noise levels: 5%, 10%, 20%, and 40%. Figures 3.11 and 3.12 only show the results

at 10% noise level, where Table 3.4 presents algorithm convergence property in terms of IGD at all

noise levels. Results at all other noise levels are shown in Appendix A.

Both Figures 3.11 and 3.12 show plots for the best results out of all the evaluations for each

problem. For all the problems, the CLCB algorithm is able to get a well-distributed solution near

the actual Pareto front. This can also be observed from Table 3.4. For ZDT1, all three algorithms

performed well, with LCB outperforming the other two by a small margin. This gap becomes

prominent for the other two problems, ZDT2 and ZDT3. These algorithm performances show

similar trends at all noise levels. One can also observe the robustness of algorithms from Table 3.4

with a smaller deviation for all noise levels.
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Figure 3.11: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM and c)
CLCB on ZDT1 and ZDT2 with 10% noise
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Figure 3.12: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM and c)
CLCB on ZDT3 with 10% noise
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Table 3.4: IGD values for all test problems using algorithms #1 : 𝐶𝐴𝐸𝐼, #2 : 𝐴𝐸𝐼𝑀 and #3 : 𝐶𝐿𝐶𝐵

𝑁𝑜𝑖𝑠𝑒 = 5% 𝑁𝑜𝑖𝑠𝑒 = 10% 𝑁𝑜𝑖𝑠𝑒 = 20% 𝑁𝑜𝑖𝑠𝑒 = 40%

Algorithm # 1 # 2 # 3 # 1 # 2 # 3 # 1 # 2 # 3 # 1 # 2 # 3

Unconstrained

𝑍𝐷𝑇1
0.0259 0.0215 0.0126 0.0249 0.0201 0.0104 0.0265 0.0238 0.0127 0.0299 0.0206 0.0126 mean

0.0049 0.0040 0.0034 0.0027 0.0039 0.0023 0.0044 0.0088 0.0043 0.0042 0.0072 0.0041 std.

𝑍𝐷𝑇2
0.0328 0.0430 0.0119 0.0318 0.0343 0.0127 0.0253 0.0519 0.0132 0.0611 0.0483 0.0162 mean

0.0069 0.0095 0.0018 0.0037 0.0102 0.0018 0.0042 0.0117 0.0032 0.0103 0.0051 0.0039 std.

𝑍𝐷𝑇3
0.0618 0.0467 0.0166 0.0746 0.0284 0.0144 0.0789 0.0207 0.0187 0.0791 0.0185 0.0182 mean

0.0077 0.0068 0.0043 0.0125 0.0035 0.0022 0.0085 0.0043 0.0029 0.0082 0.0065 0.0022 std.

Constrained

𝐵𝑁𝐻
1.5227 0.1439 0.3647 1.4495 0.1850 0.4189 1.3365 0.2436 0.4831 1.1818 0.3450 0.5486 mean

0.2141 0.0358 0.0901 0.0912 0.0769 0.0799 0.2123 0.1217 0.1219 0.2062 0.1161 0.1453 std.

𝑂𝑆𝑌
10.0901 14.1855 18.1762 11.8761 22.0622 19.0537 12.5085 20.3393 19.8792 15.1228 23.0618 22.7355 mean

1.5400 17.3693 1.5659 2.8290 20.1817 1.1517 2.7517 13.2482 1.5108 2.9568 11.6228 2.0024 std.

𝑆𝑅𝑁
7.8818 1.7984 0.7541 9.3570 2.8186 0.8199 8.0319 2.4688 0.8988 9.3222 3.1552 1.1973 mean

1.6377 1.9449 0.1006 1.6972 2.4666 0.1854 1.1338 2.4228 0.1711 1.3132 3.2074 0.2122 std.

𝑇𝑁𝐾
0.0754 0.0137 0.0403 0.1089 0.0155 0.0477 0.1219 0.0620 0.0536 0.1477 0.0718 0.0589 mean

0.0184 0.0029 0.0074 0.0184 0.0051 0.0079 0.0291 0.0067 0.0089 0.0325 0.0113 0.0103 std.
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As evident from the simulation results, EI-based algorithms performed worse than LCB based

ones. It is well known that the search from EI based approach is myopic in nature [58, 64, 60].

LCB based acquisition function, however, focuses more on exploration and performs a non-myopic

search.

The myopic nature of the EI-based algorithms is not an issue with the deterministic system as the

model development could represent the actual response surface well. However, in the presence of

measurement noise, the response surface generated by the stochastic Kriging method could mislead

the search. Therefore, the exploratory nature of the algorithm helps explore the design space better

and, thus, captures the response surface well. This makes the LCB based algorithm perform better

exploration over the entire design space, therefore, causing to look for optimal points within a fixed

number of evaluations compared with EI based approach. For a fixed evaluation budget, good

exploration might lead to better convergence for complex problems. This phenomenon can be

clearly seen from Table 3.4 at any fixed noise level.

To improve the convergence of EI-based algorithms, either the exploration ability of the algo-

rithm needs to be improved, or the total evaluation budget needs to be increased. Exploration can be

enhanced by increasing the uncertainty estimation of the physical system. Note that the stochastic

model incorporates the noise level in it. Therefore, high noise levels would lead to large uncertainty

estimates, thus improving the exploration of EI-based algorithms at the high noise level. However,

with a high noise level, the stochastic model will suffer in accurately capturing the behavior of

the response surface. This could mislead the search, even with the high exploration capabilities.

Therefore, if the developed model initially captures the system behavior well, the high noise level

could have better convergence. If the initial surface is not good, the high noise level could easily

mislead the search for the optimal region. This ambiguous behavior can be justified from the results

in Table 3.4. As the noise level increases from 5% to 40%, the algorithm performance suffers most

of the time, but few instances show better average IGD values. For unconstrained problems, this

behavior could be observed more frequently. It does not matter where the algorithm is searching

for optimal points, as the entire design space is feasible. High exploration, combined with a good

71



initial model, could help in identifying the better optimal region. However, it might lead to a higher

number of infeasible points for constrained problems, thus leading to slow convergence, as shown

next.

3.3.2.2 Constrained Test Problems

Four different test problems were selected, namely BNH, SRN, TNK, and OSY, to test the algorithm

performance. True Pareto fronts of these problems are either continuous or discontinuous. BNH

is a relatively easy problem among all. Therefore, for BNH, the total evaluation budget is kept at

300, while for the rest of the three problems, it is increased to 500 to achieve convergence in a

limited budget. Figures 3.13 and 3.14 show plots for the best result out of all evaluations from all

three algorithms for these four constrained problems at a 10% noise level, and Table 3.4 contains

the results at all noise levels. Results at all other noise levels are shown in Appendix A.

Because BNH is the easiest problem, all three methods performed well to get the solution

near-optimal Pareto front, with CAEI being slightly worst among them. For TNK, Algorithms 2

(AEIM) performed well at low noise levels, while algorithm 3 (CLCB) showed better performance

at high noise levels. In the case of SRN, both AEIM and CLCB performed well in identifying the

distribution of points near the actual Pareto front, whereas the CAEI approach suffered. OSY is a

relatively complicated problem to solve. The results from all three approaches suffered, with AEIM

and CAEI performing relatively better compared with CLCB. It is clear from both Figures 3.13 and

3.14 that for all the problems, CLCB can find the near-optimal solution with good distribution over

the actual Pareto front. Only the distribution of optimal solutions in OSY is not good compared to

the AEIM method. This could be due to the constant exploration term (Φ(−1)) in the constraint

handling function, controlling the exploration part. It is kept fixed for all the problems with all

noise levels. It could be optimized to get a better distribution of points, which is not the goal here.

The intent of this dissertation is to demonstrate the feasibility of these algorithms for stochastic

multi-objective problems.

As can be seen from Table 3.4, the convergence of all the algorithms decreases with an increase
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Figure 3.13: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM and c)
CLCB on BNH and SRN with 10% noise

in both noise level and the problem complexity. It makes sense because, with complex constrained

problems, it becomes difficult to get into the feasible zone within a limited search. And with added

noises, it becomes more challenging. As explained before, a high noise level makes the algorithm
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Figure 3.14: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM and c)
CLCB on TNK and OSY with 10% noise

explore more, thus making it difficult to converge for constrained problems. It is difficult to converge

as a high noise level would make these algorithms focus on a search operation over the entire design

space rather than only on the feasible region. The higher noise level also makes it difficult for the
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model to capture the original response surface better, adversely affecting the convergence of the

proposed algorithms. This hypothesis is supported by results in Table 3.4. The effect of noises

could be seen for all three algorithms. With the increase in noise level, the performance of all three

approaches deteriorates.

3.3.3 Validation on Engine Calibration Problems

Because these models are deterministic, external noises are added to their outputs to make the

process stochastic. Figure 3.15 shows the structure implemented to perform the engine calibration

study with external noises added to the system measurements. For this work, the Gaussian noises

are considered with zero means and linearly varying standard deviations (explained before).

+

Plant Model

Control Strategy

Calibration Variables

Measurement Variables

Noise Addition:  Ɲ(0,τ)

Figure 3.15: Algorithm implementation for engine calibration

For all three proposed methods, the Kriging model is developed initially using 100 points. Pa-

rameters used for optimization algorithms (both RGA and NSGA-II) are mentioned at the beginning

of this section. The total evaluation budget is fixed at 500 for all three methodologies. Figures 3.16,

3.17, and 3.18 show the calibration results for all three proposed algorithms at 10% noise level,

and Table 3.5 shows complete results with the IGD values at all noise levels. Appendix B shows

the results at other noise levels.
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Figure 3.16: Performance of constrained Augmented Expected Improvement (CAEI) algorithm on
engine calibration problem at 10% noise level
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Figure 3.17: Performance of Augmented Expected Improvement Matrix (AEIM) algorithm on
engine calibration problem at 10% noise level
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Figure 3.18: Performance of constrained Lower Confidence Algorithm (CLCB) on engine calibra-
tion problem at 10% noise level
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Table 3.5: IGD values for engine calibration problem

Noise # 1: CAEI # 2: AEIM # 3: CLCB

5%
13.53 11.83 12.93 Mean

4.62 4.37 6.51 Std.

10%
15.19 14.72 13.64 Mean

3.04 2.88 2.33 Std.

20%
19.66 91.09 16.49 Mean

7.87 60.75 0.85 Std.

Figures 3.16, 3.17, and 3.18 shows both Pareto fronts and their corresponding points in the

design space, which are actual positions of different calibration parameters. Blue dots show the data

from the baseline study, while the red ones show the points obtained from the proposed surrogate-

assisted methodologies. Comparing all three methods, CLCB performs the best while performances

of CAEI and AEIM are very close. This can also be seen from the subplots representing actuator

positions, and this trend can be observed at all noise levels in Table 3.5. For all three methods, as

the noise level increases, their performance for identifying the optimal region also suffers. This is

attributed to the difficulty in capturing the response surface behavior properly with the addition of

high noise levels to the system. This, in turn, misleads the optimization algorithm to search for

sub-optimal regions and thus, affecting the convergence within the limited evaluation budget.

From the design space results, it can be observed that all three algorithms are able to find points

in the center zone, where finding the optimal actuator position is the easiest. For the other two

zones that are narrow and difficult to achieve, all three methods cannot get the solution there. This

could also be seen on the Pareto front as it lacks the spread of points over the actual front. The

distribution of points for the CLCB method could be further improved by adaptively adjusting the

exploration part of the constraint handling algorithm. The constant value used in the acquisition

function could also be changed.

Comparing the results with these from the baseline study, all the proposed stochastic surrogate-

assisted methods are able to get the near-optimal solutions with more than 85% reduction in the
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computational budget. This is a significant cost reduction for performing optimization. Out of all

three approaches, constraint lower confidence bound (CLCB) performs the best. This approach does

not explicitly require noise variance input to perform the optimization, while EI-based approaches

(AEIM and CAEI) do. This makes the CLCB algorithm suitable for practical problems when the

noise structure is not known beforehand. Also, it is easy to extend this approach to high-dimensional

multi-objective problems with multiple constraints.

Generally, the information of system noises is not known beforehand. Therefore, for performing

the engine calibration, the algorithm should automatically incorporate all the system characteristics.

The drawback of expected improvement-based approaches shown here is that they require noise

information beforehand to work. One way to deal with the situation is making a separate noise

model to estimate noise variance at any unknown test point, but this could not be accurate. Also,

EI suffers from the myopic nature of the search process. The LCB-based approach has shown good

performance on both numerical and engine calibration problems. It is also easy to implement as it

does not require any information about the system. The only downside of this approach is that it has

few user-defined inputs that need adjustments to have fast convergence. These user-defined inputs

can be easily determined through offline study similar to what has been done to a GT-SUITE𝑇𝑀

model. Moving forward, for performing the experimental study, the CLCB-based surrogate-assisted

optimization algorithm is used.

3.4 Chapter Summary

This chapter demonstrates the performance for these algorithms proposed in Chapter 2 that

are first tested in a simulation environment before finalizing their implementation for the actual

experimental setup. Following are the conclusions of this chapter.

1) An engine calibration problem is formulated to validate the proposed algorithm. For val-

idation purposes, a high-fidelity GT-SUITE𝑇𝑀 model is used. Experimental validation is

planned based on the results observed from this study.

2) The proposed constraint handling algorithm for lower confidence bound (LCB) is first val-
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idated on numerical test problems and engine calibration problems without considering

measurement noise. The proposed approach demonstrated good performance compared with

the existing state-of-the-art methods available in the literature.

3) The entire simulation setup is modified, and noises are added externally to these measurement

outputs to match these from practical engine systems. Measurements are corrupted with

different noise levels to check the efficacy of all three proposed multi-objective algorithms.

4) With measurement noises presented, the constraint lower confidence bound (CLCB) based

algorithm showed better performance than expected improvement-based approaches. Com-

paring the results from proposed stochastic algorithms, CLCB is more practically imple-

mentable. The approach does not require the knowledge of the system noise information

beforehand and shows better performance compared with the other two proposed extensions.
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CHAPTER 4

INITIAL ENGINE CALIBRATION RESULTS ON EXPERIMENTAL SETUP

Motivated by the positive results obtained from the proposed stochastic algorithms in a simulation

environment, the next step is its implementation onto an actual experimental setup. As discussed in

Chapter 3, the constrained lower confidence bound (CLCB) based approach is feasible to implement

onto a practical system as it does not require any system noise level information beforehand.

Therefore, for the experimental work, only the CLCB based algorithm is implemented. The engine

system available at the Energy and Automotive Research Lab at the Michigan State University is

modified to perform the experimental study, which will be discussed in detail in this chapter.

This chapter discusses the overall experimental setup and the system modifications required

to implement the algorithm, followed by the experimental results on problems with different

complexity.

4.1 Overall Experimental Setup

To perform the experimental study, an 8-cylinder diesel engine provided by Ford Motor Com-

pany is used. The engine is installed on a dynamometer located at the Energy and Automotive

Research Lab of the Michigan State University. Figure 4.1 shows the actual experimental setup with

Figure 4.2 showing the communication between different instruments involved in the experimental

setup.

As can be seen from both figures, several systems interact with the engine system to obtain

the desired measurements. All the measurement hardware is installed in the engine test cell with

the measurement instruments in the control room, as shown in Figure 4.2. Details of each system

involved are explained next, followed by the procedure for performing the experiments.
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Figure 4.1: Complete experimental setup for performing surrogate-assisted optimization process
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Figure 4.2: Complete experimental setup for performing surrogate-assisted optimization process
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4.1.1 Systems Involved in the Experimental Setup

The main component of the entire setup is the Ford 6.7L turbocharged diesel engine, whose

specifications are mentioned in Table 4.1. Several additional sensors and actuators are installed on

the existing engine to perform the experimental study. To spin the engine, the test setup uses an

alternating current (AC) dynamometer (dyno), coupled with the engine crankshaft through a 1:2.75

gearbox and an inline Himmelstein torque sensor. It is used to maintain the desired engine speed

by providing load or spinning torque to the engine. The AC dyno installed is capable of holding

the engine speed up to 3200 RPM.

Table 4.1: Diesel engine specifications

Item Value

Engine Type 4-Stroke Diesel with variable geometry turbo

Configuration V8

Displacement 6.7 L

Bore 99 mm

Stroke 108 mm

Compression Ratio 15.7:1

Fuel System High Pressure Common Rail Direct Injection

On the measurement side, cylinder pressures are measured by 8 piezo-electric pressure trans-

ducers installed in each cylinder head. The charge signals generated by the transducers are amplified

by two AVL charge amplifiers and then fed to an A&D Combustion Analysis System (CAS) for data

visualization and recording. Regular pressure signals such as manifold absolute pressure (MAP),

compressor inlet pressure, turbine outlet pressure, etc., are measured by Druck pressure sensors and

are also fed into CAS. All the temperature signals, such as ambient temperature, intake manifold

temperature, coolant temperature, exhaust temperature, etc., are measured by thermocouples, and

the amplified signals are recorded by the dyno NI Data Acquisition (DAQ) system. Two additional

sensors for measuring brake torque and 𝑁𝑂𝑥 emissions are installed in the system. For brake torque
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measurement, a Himmelstein wireless digital torque meter with a stator-rotor assembly is installed.

The rotor is installed on the driveshaft with the stator placed closed to the rotor to record the torque

measurement. For the 𝑁𝑂𝑥 emission measurement, a separate 𝑁𝑂𝑥 sensor, provided by the Ford

Motor Company, is installed in the exhaust pipe. The sensor is then connected to the Ford engine

control module (ECM), which directly samples and broadcast the 𝑁𝑂𝑥 measurement.

The engine is controlled by a production Ford engine control module (ECM) using a preinstalled

calibration map. The control and measurement variables available in the Ford ECM are accessed

from the host computer running the ETAS-INCA software through the ES600.1 interface. In

addition to the ECM, an open engine control unit (ECU), MotoTron, is used for sending the control

signals to peripheral devices, such as a cooling tower, fuel pump, and bypass valve. MotoTron

module is also responsible for sending the commanded pedal position signal to the ECM to set the

desired engine load. CAN (controller area network) communication is used to communicate among

Ford ECM, ETAS-INCA software, MotoTron, and NI Data Acquisition system. The communication

is used to sync and record the data across multiple devices. In this way, data can be shared on the

CAN bus, and INCA software can be used for data recording. Using this communication, desired

control parameters, such as fuel injection quantity, injection timing, variable geometry turbocharger

(VGT) vane position, exhaust gas recirculation (EGR) valve position, etc., can be commanded to

the engine ECM through the INCA software.

The torque sensor also broadcasts the brake torque measurement through CAN, which is then

communicated to the host computer (running ETAS-INCA software) to perform the learning

algorithm. An exhaust valve is also installed to maintain the desired backpressure at the exhaust

side of the engine to simulate the backpressure caused by the engine aftertreatment system. A

closed-loop feedback control strategy is developed that adjusts the valve position to maintain the

commended backpressure. Each operating condition requires a reference backpressure value to

run the engine at its optimal condition. This reference value is commanded through the MotoTron

according to the table provided by Ford Motor Company.
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4.1.2 INCA-MATLAB communication

This is a crucial step in defining the supervisory control system for running the engine. As mentioned

before, ETAS-INCA software can access all the measurement and calibration variables from the

engine ECM. A set of these measurement and calibration variables are needed by the surrogate-

assisted optimization approach to perform the calibration operation. Since the entire algorithm is

coded in MATLAB, therefore, in the computer running the ETAS-INCA software, communication

between MATLAB and the INCA software must be established to transfer the desired parameters

between the optimization algorithm and engine ECM. In this case, the ETAS-INCA software acts

as an interface that will capture the measurement signals for the algorithm and then pass the desired

control parameters from the algorithm to the engine ECM. To establish the communication between

these two software packages, the INCA-SIP add-on software from ETAS is used. Implementing the

communication provides flexibility to control the calibration variables in the INCA directly from

MATLAB. As can be seen from Figure 4.2, the MATLAB script communicates only to the ETAS

INCA software for control parameter tuning.

After establishing the communication with INCA, the MATLAB script defines all the measure-

ment and calibration variables in the INCA window. The measurement window is used to measure

the desired objective functions, and the calibration window is used to change these variables to

desired values. After defining the problem settings, the program overrides the calibration values in

INCA software and measures the desired objective functions. These measurements are done when

the engine system is stabilized at a new test point. A stopping criterion is generally put in the code

to determine when to terminate the calibration algorithm. It could either be the maximum experi-

mental budget available or any other convergence criterion. For the current work, no convergence

criterion is set in place. The complete calibration process takes place until the maximum evaluation

budget gets exhausted. Convergence criterion could be put in place to do early stoppage and save

some evaluation budget.
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4.2 Performing Experiments

The entire experimental setup installed at the Energy and Automotive Research lab at the

Michigan State University has many operating constraints. The system could be run at several

operating conditions, but precise control of all external parameters affecting the engine performance

is challenging compared with a professional test bench. Running the engine on different days at

a fixed point could give different output values due to changing environmental conditions, such

as air humidity, ambient pressure, etc. One way to overcome this situation is to run the entire

test within the same day. The assumption here is that the test cell condition would not change

throughout the day. It is a valid assumption as the environmental condition would not significantly

differ from morning till evening. With this assumption, the first step is the problem formulation

with an intention to finish the complete experiments within a day. This limitation is due to the

test cell capabilities, not with the algorithm. In an industrial test cell, where the environmental

conditions could be monitored and controlled precisely, the test could be split into multiple days,

but we do not have this flexibility.

Another issue with the current engine setup is the identification of non-operational points. The

process for calibration involves exploring the unknown region in the design space of the control

variables to detect the best possible objective functions. Not all the points in the design space

are feasible, and even some are a little risky to run the engine as it may damage the engine, for

example, due to engine knock or irregular combustion. Early detection of the non-operational

point is crucial to avoid engine damage. It can easily be detected in industrial settings even before

running the engine at that operating point completely. This, however, is not possible for our test

setup. Therefore, after formulating the problem, the first step in performing the experiments is to

identify a feasible region in the design space by manually checking the feasibility range for each

design variable, as described in later sections.
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4.2.1 Problem Formulation

The optimization problem formulated for the experimental work is slightly different from the one

used for performing the simulation study. The main reason behind this is safety consideration and

the limitation of our experimental setup, as mentioned before. Because this is the first practical

implementation of this approach for engine calibration, the experimental work started with a

simple multi-objective constrained problem. The intent here is to demonstrate the feasibility of

implementing this algorithm to an actual test setup. After building the confidence of running

the algorithm on the experimental setup, we will increase the problem complexity. The problem

could be well extended to higher-dimensional complex problems in an industrial setting that would

require multiple days to run the calibration test using the proposed approach.

This initial setup considers only two calibration variables. Increasing the number of control

variables, objectives, and/or constraints will be decided based on this initial outcome. The following

problem is formulated to begin the experimental validation of the calibration approach.

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 𝑁𝑂𝑥 𝑙𝑖𝑚𝑖𝑡

Control vars. x = [𝑉𝐺𝑇, 𝐸𝐺𝑅]𝑇 ∈ R2

The objective is to find an optimum trade-off between engine efficiency in terms of brake

specific fuel consumption (BSFC) (𝑦1) and engine 𝑁𝑂𝑥 emissions (𝑦2) by varying two control

variables: Exhaust Gas Recirculation (EGR) valve and Variable Geometry Turbocharger (VGT)

vane positions. A change in the EGR valve position changes the amount of EGR going to the

combustion chamber, which helps reduce the 𝑁𝑂𝑥 emissions but adversely affects the combustion

characteristics of the engine, hampering its efficiency. VGT vane position controls the engine

boosting. Closing the VGT vane causes an increase in the engine boost pressure, thus causing

changes in the engine performance and emissions. In addition to these objectives, an additional

constraint on 𝑁𝑂𝑥 emissions (𝑔1) is put to find the optimal operational region with 𝑁𝑂𝑥 levels
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below a certain threshold value (𝑁𝑂𝑥 𝑙𝑖𝑚𝑖𝑡).

4.2.2 Finding out the Feasible Operationol Range in Design Space

Before running the optimization algorithm, it is desired to give the ranges of variations for the

control variables to the learning algorithm. The current engine configuration cannot reject infeasible

points. Therefore, to make the engine operate within a safe envelope, the safe operating ranges for

the control variables are identified manually. Both control variables are changed so that the feasible

VGT position should not choke the turbo, and the feasible EGR valve position should maintain

engine combustion stability. A parameter called the coefficient of variation (COV) of in-cylinder

pressure is used to measure combustion stability and is an indication of signal fluctuations. Usually,

the COV is calculated for the pressure traces obtained directly from the engine. We calculated the

COV of the indicated mean effective pressure (IMEP) directly from the in-cylinder pressure traces

for this work. To ensure combustion stability, the COV value limit shall be maintained below the

desired number. We have set the limit to be 1.5%, which is a reasonable limit for diesel engines.

For finding the safe range of operation, the engine is first run at the desired speed and load

condition, and the actual values of the VGT and EGR observed from the engine ECM are taken

as the baseline values. A sweep test is then performed around the baseline values to check the

feasibility of these selected ranges for these calibration parameters. All these manual changes

have been made directly using the ETAS-INCA software. A conservative range selection is made

to maintain the safe engine operating region. Aggressive selection could be made in the future,

depending on the results of the current operation. The set of these activities are repeated for all the

operating points.

4.2.3 Automated Engine Operation

Figure 4.3 shows the entire setup for performing the experiments. The first block shows the steps

needed to establish the setup for running the learning algorithm, while the second block shows the
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overall automated engine calibration process. As shown here, the entire system runs automatically

to perform engine calibration in real-time.

Problem formulation
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Run the engine

Run the algorithm

Record the data
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Figure 4.3: Setup for automating the engine calibration process

The overall experimental process starts with problem formulation, including the identification

of a safe operating region. It is followed by establishing communication between MATLAB and

INCA software, which creates a set of measurement and calibration variable windows for the

variables, measurements, and calibrations declared in the MATLAB script. The engine is then

run and stabilized at the desired operating condition (speed-load point) before performing the

optimization process. With the finalized range of variation for the control parameters, the code is

executed, generating a set of input points for evaluation. The algorithm overwrites the commanded
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VGT and ERG positions and waits for the system to stabilize before performing measurements.

From the experimental work, it was observed that small changes of EGR and VGT positions do

not drastically change system characteristics, and letting the system run for 3 minutes is enough

to achieve a steady state. Once the system achieves steady-state, the algorithm checks the coolant

temperature and the charge air cooler (CAC) temperature to ensure that they are within 88-92◦C

and 43-47◦C, respectively, before recording the data.

Before recording the data, the script clears the ring buffer, which is used to store data from INCA

and lets it add the newest data set. The script then takes the last 100 data points and calculates the

associated mean and standard deviation values to be used by the optimization algorithm. Until the

next evaluation point is generated based on the new measurements, the engine remains operational

at the previous evaluation point. The whole process keeps repeating until the evaluation budget

is exhausted. All these operations happen in real-time while the engine runs with no or minimal

manual interference to implement this calibration strategy.

4.3 Two - Variable Calibration Results

With the initial problem setup mentioned above, the experimental evaluation of the surrogate-

assisted optimization approach is made at five different operating conditions as shown in Figure 4.4.

We will discuss the results from these experiments performed at the engine operating condition of

1400 RPM and 390 Nm load in detail. For other operating conditions, only the final results are

shown.

For this particular operating condition (1400 RPM - 390 Nm), the constraint on 𝑁𝑂𝑥 emissions

is set to 𝑁𝑂𝑥 𝑙𝑖𝑚𝑖𝑡 = 0.6. Due to confidentiality, we cannot show the actual BSFC and NOx

measurements and their corresponding EGR and VGT valve positions. Therefore, we scaled both

objective and design space parameters, where EGR valve and VGT vane positions are scaled to

be between [0 1]. For the EGR valve, 0 represents the closing position with minimum EGR flow

and 1 the EGR valve position with maximum EGR flow; for the VGT position, 0 represents the

maximum allowed open position for the VGT vane and 1 the maximum allowed closing position.
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Figure 4.4: Operating points for performing experiments

The final optimization problem setup for running the engine is shown below. With the scaled

control variables and constraints, the formulated optimization problem becomes

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to, 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 0.6

Control vars. 𝑥1 = 𝑉𝐺𝑇 ∈ [0 1], 𝑥2 = 𝐸𝐺𝑅 ∈ [0 1]

Because this is a two-variable problem, the total number of points for initial model development

is fixed at 25 with a total evaluation budget of 45. As mentioned at the beginning of this chapter,

the entire experimental evaluations are done using the Lower Confidence Bound (LCB) criterion.

Therefore, the NSGA-II algorithm is used to optimize the acquisition function with a population

size of 60 and 100 generations. Crossover probability is set to 0.9, and mutation probability

equals 1/𝑁 , where 𝑁 is total number of variables. The distribution index for crossover (SBX)

operator = 15, and polynomial mutation = 20. As mentioned before, lower confidence bound

(LCB) is used for acquisition function development with constant 𝑐 = 2. For clustering, dbscan
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Table 4.2: Different iterations using DBSCAN for Deterministic and Stochastic

Type Total Iterations Points Addition

Deterministic 4 algorithm iteration (5,7,5,10)

Stochastic 7 algorithm iteration (5.1,4,1,5,3,1)

command from MATLAB is used with minpoints of 5. This work initially performs a case study

using both deterministic and stochastic surrogate-assisted optimization approaches for performing

engine calibration on an actual test bench. Based on the results, the approach for the rest of the

experimental work is decided.

4.3.1 Results from Deterministic Approach

Firstly, the original algorithm with the deterministic Kriging model is implemented to the engine

for evaluating its advantages and issues. The mean values obtained from the measurements are used

in the algorithm for response surface development. Figure 4.5 shows the optimal trade-off curves

obtained at different iterations with corresponding optimal points in the design space. Two different

points are plotted. The actual points (red) are obtained from the actual experimental setup. The

blue curve is obtained from the surrogate model formulated using the experimental points. Plots

on the left-hand side show the trade-off curve obtained between the BSFC and 𝑁𝑂𝑥 emissions,

whereas the right-hand side plots show the corresponding control parameter values. Iteration 0

corresponds to the model developed with 25 initial points, and further iterations correspond to the

points added for model improvement. For this approach, all the evaluation budget gets exhausted

after four iterations. The first row of Table 4.2 shows the total iterations and points added in each

iteration during the model development.

As can be observed from Figure 4.5, the near-optimal curve obtained from the surrogate model

is discontinuous and not smooth. Also, the design space shows optimal control configurations in

multiple groups. This behavior could be well explained from the response surface developed from

the surrogate model for both BSFC and 𝑁𝑂𝑥 emissions. Based on the observation, BSFC and 𝑁𝑂𝑥
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Figure 4.5: Pareto front in objective and design spaces using deterministic Kriging model

surface is expected to have multiple optimal locations. This observation is validated by plotting the

response surface model obtained after fitting the original Kriging model.

Figure 4.6 shows the response surface model obtained at different iterations. As can be

observed, with additional points for model enhancement, the response surface is becoming even

95



1

VGT

0.5

Deterministic BSFC surface: Iteration 0

0
1 0.8

EGR

0.5

0.6

B
S

F
C

0.4 00.2 0

1

1

VGT

0.50
1

0.8

EGR

0.6
0.4

0.2 0

Deterministic NOx surface: Iteration 0

0

0.5

N
O

x

1

1

VGT

0.5

Deterministic BSFC surface: Iteration 2

0
1 0.8

EGR

0.5

0.6

B
S

F
C

0.4 00.2 0

1

1

VGT

0.50
1

0.8

EGR

0.6
0.4

0.2 0

Deterministic NOx surface: Iteration 2

0

0.5

N
O

x
1

1

VGT

0.5

Deterministic BSFC surface: Iteration 4

0
1 0.8

EGR

0.5

0.6

B
S

F
C

0.4 00.2 0

1

1

VGT

0.50
1

0.8

EGR

0.6
0.4

0.2 0

Deterministic NOx surface: Iteration 4

0

0.5

N
O

x

1

Figure 4.6: Response surface model for BSFC and NOx using deterministic Kriging model

more complex with multiple local optimal regions. This could be attributed to both measurement

noises and interpolating nature of Kriging modeling. The Kriging model tries to pass through all the

points while fitting the model because of its interpolation nature. In the presence of measurement
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noises, the surface would not be smooth, eventually leading to model overfitting. This is the main

reason of developing several optimal regions, thus pushing the algorithm to look for evaluation

points in the undesired region and affect algorithm convergence.

The hypothesis of convergence deterioration in the presence of measurement noises is further

validated using a numerical test problem BNH. It is a two-objective and two-constraint problem

with two design parameters. Figure 4.7 shows the convergence of the optimization algorithm under

different conditions after the fixed initial 25 points and the total evaluation budget of 50. Figure 4.7

shows three different configurations, where Configuration 1 only has the measurement noises on

objectives; Configuration 2 adds measurement noise on constraint 1, and Configuration 3 has

measurement noises on both objectives and constraints. From Figure 4.7, it can be observed that

for the deterministic Kriging model case, Configuration 1 (line with dot marker) converges faster

than Configurations 2 (line with asterisk marker) and 3 (line with triangle marker). It is intuitive

to understand the trend. With additional measurement noises on constraints and the deterministic

Kriging model, the algorithm has difficulty finding the feasible region and converging towards
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the optimal zone. Therefore, within the limited evaluation budget, the algorithm will suffer from

convergence. However, the convergence is fast using the stochastic Kriging model with Scenario 3

(line with square marker). This is because of the smooth model generated during the process. Thus,

the algorithm gets a chance to properly explore the design space and choose the points accordingly

for further evaluation, saving the evaluation budget to explore in good regions. This provides good

motivation to evaluate the stochastic surrogate-assisted optimization approach for the experimental

work.

4.3.2 Results from Stochastic Approach

With the drawback in evaluating the deterministic approach on the experimental setup, the next step

is to evaluate the same problem using the stochastic approach. Here, both the mean and standard

deviation observed from the measurements are used for model development. After performing the

experiments on the same problem setup as before, Figure 4.8 shows the progression of response

surface of brake specific fuel consumption (BSFC) and 𝑁𝑂𝑥 emissions developed using a stochastic

model. Table 4.2 (the 2𝑛𝑑 row) shows the total iteration number required to exhaust the evaluation

budget with points added to improve the model in each iteration. A total of seven iterations were

performed to exhaust the budget.

As can be observed from the figure, the response surface obtained using the stochastic model is

pretty smooth throughout the iteration process. Getting a smooth surface is essential in implement-

ing an efficient exploration and exploitation strategy. The whole logic of the proposed approach is

to explore areas with possible optimal regions based on the response surface. If the response surface

has multiple local bins, the algorithm would require a higher number of iterations to converge to

the actual optimal region. Comparing it with the response surface shown in Figure 4.6, it can be

inferred that the optimization process would converge faster without wasting the evaluation budget

on unwanted regions.

Using the data set obtained from implementing the stochastic optimization approach, both

stochastic and deterministic models are developed, and their Pareto fronts are observed and shown
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Figure 4.8: Response surface model for BSFC and NOx using stochastic Kriging model

in Figure 4.9. Iteration 0 corresponds to the initial data set and additional points as added as

per Table 4.2 (2𝑛𝑑 row). The Pareto front observed from the stochastic model is continuous and

smooth compared with the one obtained from the deterministic model. The observation becomes
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Figure 4.9: Pareto front in objective space and design space using deterministic and stochastic
Kriging models

interesting in the design space. With the stochastic approach, the algorithm quickly converges to

the possible optimal region, which is at the boundary for this operating condition. However, even

after iteration 4 (addition of 10 points for model improvement), the deterministic model is still
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creating clusters in other regions. This validates our hypothesis of convergence deterioration using

the deterministic approach for problems with measurement noises.

4.3.3 Results at Other Operating Conditions

After identifying the appropriate approach for experimental evaluations, this section shows results

observed by performing the stochastic surrogate-assisted optimization at the remaining four operat-

ing conditions. Different operating conditions are selected based on the combinations of speed-load

points. Three different engine speeds are picked to represent low-speed: 1000 RPM, mid-speed:

1400, and high-speed: 1800 RPM case. Different loads are selected at these engine speeds.

Unlike the previous operating condition, the surrogate-assisted optimization algorithm is im-

plemented for each operating condition with 20 initial points and a 45 evaluation budget. The rest

of the parameters used for running the algorithms remain the same as before. Similar steps are

followed for performing these experiments at each operating condition. Because each test condition

will generate different results, a different problem is formulated for each operating condition, with

the feasible operating range identified manually.

4.3.3.1 Operating Point: 1400 RPM - 500 Nm

A different problem is formulated for running the engine at this operating point as below.

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 =: 𝑁𝑂𝑥 (x)

Control vars. 𝑥1 = 𝑉𝐺𝑇 ∈ [0 1], 𝑥2 = 𝐸𝐺𝑅 ∈ [0 1]

Note that the problem does not limit the normalized 𝑁𝑂𝑥 value to get the entire optimal front. This

gives the end-user freedom to choose the control parameter specific to the requirements. Figure 4.10

shows the optimal curve along with the response surface obtained from the surrogate model at the

end of the evaluation. The optimal solution obtained lies at the boundary of the VGT vane position.

The optimal location could change depending on the range of variation of control variables, which

is manually defined for each problem to maintain safe operation.
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Figure 4.10: Engine calibration results at 1400 RPM - 500 Nm

4.3.3.2 Operating Point: 1400 RPM - 175 Nm

This is a low load condition. It is selected to validate the performance of the learning algorithm

when the response surfaces are relatively flat. Problem formulation for this operating point is shown

below.

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to, 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 0.6

Control vars. 𝑥1 = 𝑉𝐺𝑇 ∈ [0 1], 𝑥2 = 𝐸𝐺𝑅 ∈ [0 1]

Figure 4.11 shows the optimal results at this test point, which lies at the EGR boundary. The

behavior of the result is very similar to the one observed for the 1400 RPM-390 Nm condition.

Variation of the EGR valve could be enhanced to obtain the optimal solution within the design
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space.
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Figure 4.11: Engine calibration results at 1400 RPM - 175 Nm

4.3.3.3 Operating Point: 1800 RPM - 400 Nm

The problem formulated at this operating condition is as below.

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to, 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 0.8

Control vars. 𝑥1 = 𝑉𝐺𝑇 ∈ [0 1], 𝑥2 = 𝐸𝐺𝑅 ∈ [0 1]

Optimal results at this point are shown in Figure 4.12. This is a high-speed point with a moderate

load, where changing the VGT and EGR positions could significantly affect engine behavior.
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Therefore, after the initial DOE, the learning algorithm only focused on the optimal region, which

is with low EGR values. That is why the response surface for BSFC is not smooth. More points

are necessary for the unexplored region to get a good surface, which is not the goal here.
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Figure 4.12: Engine calibration results at 1800 RPM - 400 Nm

4.3.3.4 Operating Point: 1000 RPM - 325 Nm

The following problem is formulated at the current operating point.

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to, 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 0.5

Control vars. 𝑥1 = 𝑉𝐺𝑇 ∈ [0 1], 𝑥2 = 𝐸𝐺𝑅 ∈ [0 1]

104



Figure 4.13 shows the optimal solution obtained at this low-speed mid-load operating condition.

Again, the optimal solution lies at the boundary of design space.
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Figure 4.13: Engine calibration results at 1000 RPM - 325 Nm

From the experimental results of all these operating conditions, it can be concluded that

the proposed learning algorithm worked well in performing the engine calibration study under

different engine speed-load conditions. For each operating condition, the parameter variation range

is decided manually, which is not the ideal scenario but is limited to safety reasons. This can be

further improved in a controlled environment.

One of the key observations from the majority of optimization results shown here is that the

optimal solution obtained at the end of the algorithm lies at the boundary of the design space. Due to

the limitations of performing engine tests under safe engine operational conditions, a conservative

range for both VGT vane position and EGR valve opening was initially used. With the confidence
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of successfully running the engine using the proposed calibration strategy, the obvious next step is

to relax the limit and re-run the engine.

To perform the extension, the operating point 1400 RPM - 390 Nm is again used. Using this

point, the next section will discuss the revised problem formulation and its results.

4.3.4 Problem Formulation with Increased EGR Levels

It is essential to realize the interaction between the EGR level and desired objectives in this study.

Higher EGR levels help to reduce the engine 𝑁𝑂𝑥 emissions. However, an increment of EGR

level in the combustion chamber affects the combustion characteristics for a given fuel-air mixture,

leading to a higher coefficient of variation (COV) of indicated mean effective pressure (IMEP), a

measure of combustion stability. Usually, the higher the COV value, the worse the combustion

stability. Therefore, an additional constraint on the COV value is added to ensure increment in EGR

will not significantly affect the combustion stability. The revised problem formulation now relaxes

the EGR variation range with an additional COV constraint. The rest of the problem formulation

remains the same. The revised problem for performing the surrogate-assisted optimization now

becomes

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to, 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 0.6,

𝑔2 : 𝐶𝑂𝑉𝐼𝑀𝐸𝑃 (x) ≤ 1.2%

Control vars. x = 𝑉𝐺𝑇 ∈ [0 1], 𝐸𝐺𝑅 ∈ [0 1.625]

where the 𝐶𝑂𝑉𝐼𝑀𝐸𝑃 is calculated using the following expression.

𝐶𝑂𝑉𝐼𝑀𝐸𝑃 (%) =
(𝑆𝑎𝑡𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛

)
𝐼𝑀𝐸𝑃

× 100 (4.1)

The above problem formulation also shows an increased EGR valve range compared with the

previously evaluated problem. The total evaluation budget is kept at 45, but the total number of
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points required to construct the initial model is reduced to 20. This increases the number of search

points for a given total budget. It gives the algorithm a chance to perform more exploration to

now a complex problem. The rest of the optimization algorithm structure remains unchanged. The

parameters for the NSGA-II algorithm for performing the optimization remain the same as before.

4.3.5 Results for Revised Problem

Based on the revised problem formulated, experiments are performed and corresponding optimal

results are observed; see Figure 4.14.

Figure 4.14 shows the Pareto front of BSFC and 𝑁𝑂𝑥 (the 1𝑠𝑡 column) emissions and corre-

sponding design space variables, EGR and VGT positions (in the 2𝑛𝑑 column). It is well known

that the addition of EGR in the combustion chamber helps reduce the overall heat coefficient of

the charger-air mixture. This, in turn, lowers the in-cylinder temperature and thus helps reduce the

𝑁𝑂𝑥 emissions in the engine exhaust. However, the addition of EGR displaces fresh air going to

the combustion chamber. This adversely affects the engine efficiency and, therefore, increases the

BSFC value from the engine operation. With less engine boosting (low VGT value), high EGR

levels will inadvertently deteriorate engine efficiency. Therefore, the points on the Pareto front

do not have a region with a low VGT vane and high EGR valve position. A better picture of the

feasible design space can be observed from the COV plot shown in Figure 4.15.

Figure 4.15 is obtained from interpolating the COV data based on 45 experimental points to

show feasible points (dot marker) and infeasible points (square marker). It indicates that increasing

the VGT closing percentage leads to lower COV values due to increased engine boosting and vice

versa. From the Pareto front and its variables in the design space, it can be seen that with enlarged

design space and an extra constraint on the COV, the near-optimal trade-off curve can be found

without saturating the EGR valve position.
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Figure 4.14: Pareto fronts in objective (the 1𝑠𝑡 row) and design (the 2𝑛𝑑 row) spaces using
deterministic and stochastic Kriging model

4.4 Chapter Summary

For this work, we initially performed a case study of implementing both the deterministic and

stochastic surrogate-assisted optimization approaches for performing the engine calibration. It is
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Figure 4.15: COV variation in the design space

well known that the deterministic Kriging modeling is an interpolation process. If the system

has measurement noises, the model will try to go through all the points in a process, leading to

overfitting and causing possible multiple local optimal solutions. In contrast, stochastic Kriging

modeling is a regression process, and it will not try to get through all the points, leading to a better fit

for the overall data set using both mean and variance values. After performing the experiments, it is

observed that the algorithm quickly identifies the optimal region for the stochastic case, comparing

it with the deterministic case. Therefore, for all further experimental work, the stochastic approach

is implemented.

The initial experimental results for performing a simple engine calibration problem showed that

the optimal solution lies at the boundary of the feasible EGR valve range. Therefore, a revised

two-objective problem is formulated with an increased EGR valve feasible range and an additional
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constraint on the COV to ensure engine combustion stability. The algorithm was able to handle

the additional constraint well and showed improved performance in identifying the feasible optimal

region within the design space. Based on the promising results, the next chapter discusses a more

complicated engine calibration problem with the addition of an electric-assisted boosting system

(eBoost).
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CHAPTER 5

CONTROL CALIBRATION FOR THE SYSTEM WITH EBOOST

The current diesel engine system is equipped with a variable geometry turbocharger to enhance its

performance. A turbocharger is a device that utilized the waste energy from the engine exhaust

to boost the intake air pressure, which helps enhance the engine power output with improved

efficiency. However, the turbocharger suffers from the issue of turbo-lag, a delay in engine power

output response when the demand is input to the engine system. This is especially predominant

when a large step power demand is required since the turbocharger takes a certain time to speed up

to the target speed. Turbo-lag mainly affects the transient response of the system. To handle the gap,

an external electric-assisted boosting system (eBoost) can be used in addition to the turbocharger.

eBoost uses external electrical power to operate, which can be controlled independently to the

engine operational condition. An eBoost has been shown to be able to enhance the transient engine

performance [44]. However, since it requires external energy, the power consumed by the eBoost

needs to be considered while calculating BSFC, which adversely affects the engine BSFC.

An interesting observation using the eBoost can be found in [44]. The author showed that low

to moderate eBoost speed range helps to improve the engine efficiency in terms of BSFC up to a

particular level under certain operating conditions, especially at low engine speed. Upon further

increasing the eBoost speed, the BSFC benefit gets overpowered by the amount of energy needed

to spin the eBoost. This behavior can be explained by studying the system schematics shown in

Figure 5.1 first.

Figure 5.1 shows the configuration of the air handling system used in the experimental setup at

our lab, with turbocharger and eBoost connected in series, where eBoost is installed upstream of the

turbocharger compressor. Air enters the system from the left and goes through two paths: bypass

valve and eBoost compressor. The bypass valve is used to adjust the effect of eBoost on the system.

Fully opening the valve will nullify the eBoost effect, and fully closing will make the system run

through eBoost only. A feedback control logic is developed using a PI-controller for adjusting the
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Figure 5.1: Schematic of the eBoost configuration

opening and closing of the bypass valve. For active eBoost operation, the bypass valve remains at

the fully closed position to gain the maximum benefit. The charge air goes through the eBoost to

the inlet of the compressor driven by turbo, which further performs the boosting operating based

on the VGT vane position. The boosted air is then mixed with the exhaust gas downstream of the

turbocharger, controlled by the EGR valve. Air goes into the combustion chamber, and the engine

exhaust gas is then used to run the turbo. Some of the exhaust gas from the exhaust manifold is used

for diluting the air charge going into the combustion chamber, where the EGR is cooled using an

EGR cooler. The exhaust gas is then pushed out of the system after spinning the turbocharger. This

explains the interaction between different components in the air-management system. However,

How the addition of eBoost affects the BSFC is explained next.

As mentioned, the Bypass valve at the inlet side is fully closed while performing the eBoost

experiments. At a particular operating point, the engine ECM adjusts the control parameter to

maintain the boost pressure and the EGR flow rate to the engine. Increasing the eBoost speed

increases the air pressure at the inlet of the turbocharger compressor. To maintain the same boost

pressure at the intake manifold, the turbo speed needs to be reduced. This is achieved by opening

the VGT vanes. Opening the VGT vane position, in turn, decreases the pressure in the exhaust

manifold. The reduced exhaust pressure helps reduce the pumping losses, which contributes to
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improved engine efficiency. Apart from the engine efficiency, with the reduced exhaust pressure,

the EGR flow to the intake manifold after going through the EGR cooler will decrease. Therefore,

to maintain the desired EGR flow to the combustion chamber, the EGR valve opens more. These

observations were experimentally validated in Ph.D. dissertation [44]. The addition of eBoost to

the system provides another parameter contributing to the performance enhancement, which needs

to be calibrated to achieve better performance than that of the original system configuration.

This chapter discusses the experimental results obtained by calibrating the three engine control

parameters: VGT vane position, EGR valve position, and eBoost speed. First, the optimization

problem is formulated considering the dependency of two other control parameters (VGT and EGR)

on the eBoost speed. Proper design parameter ranges are defined to operate the engine safely. It is

followed by a quick discussion on performing the experiments with eBoost, and finally, a discussion

on the observed experimental results.

5.1 Problem Formulation

A crucial step in formulating the problem is defining safe operating ranges for parameters in the

design space. As discusses above, both VGT vane and EGR valve positions depend on the eBoost

speed. This behavior is quantified experimentally; see Figure 5.2. The normalized values of VGT

vane closing, EGR valve opening, and eBoost speed are plotted.

As expected, increasing the eBoost speed opens the VGT vane more (decrease in the VGT vane

closing) to maintain the boost pressure and also increases the EGR valve opening. Looking at the

EGR valve opening plot, beyond a certain eBoost speed, the EGR valve position is saturated at the

maximum level, indicating that it is impossible to maintain the EGR % at the desired level beyond

that eBoost speed.

5.1.1 Defining Parameter Ranges

Considering the behavior of both VGT vane and EGR valve positions, upper and lower bounds

are determined for both control parameters, which change as a function of eBoost speed. The
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Figure 5.2: Variation of VGT vane and EGR valve positions with eBoost speed
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constrained design space is shown in Figure 5.3. To ensure that the search point should lie between

the two bounds, additional constraints on VGT vane and EGR valve positions are imposed in the

problem formulation.

Figure 5.3 also shows a dashed vertical line. It splits the entire design space into two parts:

eBoost inactive and eBoost active regions. The region to the left is assumed to be the eBoost

inactive case, and the right side is the eBoost active case. As mentioned before, for performing

the experiments, the bypass valve remains closed all the time. Therefore, eBoost spins all the time

with the lowest speed that develops ambient pressure (0.99 bar) at the air inlet. A small eBoost

speed variation is allowed in the eBoost inactive region. Within the allowed variation, the eBoost

does not affect the boost level.

The rest of the problem formulation remains the same as before. The objectives are the same,

that is, to obtain the trade-off curve between engine efficiency in terms of effective brake specific

fuel consumption (𝑦1 = 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 ) and engine emissions (𝑦2 = 𝑁𝑂𝑥). The current setup involves

three control parameters: VGT vane position, EGR valve position, and eBoost speed. Like before,

there are constraints on 𝑁𝑂𝑥 and COV values. An additional constraint is added for the power

consumption used by eBoost. It is recommended that the power drawn by the eBoost should be

less than or equal to its power limit of 6 𝑘𝑊 . With the setup described, the optimization problem
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Figure 5.3: Control parameter variations for three-parameter calibration problem
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can be mathematically written as below.

Minimize 𝑦1 = 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 (x), 𝑦2 = 𝑁𝑂𝑥 (x)

subject to, 𝑔1 = 𝑁𝑂𝑥 (x) ≤ 0.83,

𝑔2 = 𝐶𝑂𝑉 (x) ≤ 1.2%,

𝑔3 = 𝑒𝑃𝑜𝑤𝑒𝑟 (x) ≤ 6 𝑘𝑊,

𝑔4 = −𝑉𝐺𝑇 (x) ≤ −𝑉𝐺𝑇𝑙𝑜𝑤 and 𝑔5 = 𝑉𝐺𝑇 (x) ≤ 𝑉𝐺𝑇ℎ𝑖𝑔ℎ,

𝑔6 = −𝐸𝐺𝑅(x) ≤ −𝐸𝐺𝑅𝑙𝑜𝑤 and 𝑔7 = 𝐸𝐺𝑅(x) ≤ 𝐸𝐺𝑅ℎ𝑖𝑔ℎ

Control Vars x = [𝑉𝐺𝑇, 𝐸𝐺𝑅, 𝑒𝑆𝑝𝑒𝑒𝑑]𝑇 ∈ [0, 1]3

(5.1)

Because eBoost uses the external electrical energy to operate, that is accounted for during

calculating the effective brake specific fuel consumption (𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 ). The expression for effective

BSFC (𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 ) is defined below.

𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 =
𝐵𝑆𝐹𝐶 × ¤𝑊𝑏
¤𝑊𝑏 − 1

𝜂𝑚𝜂𝑒
¤𝑊𝑚

(5.2)

where 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 is the effective 𝐵𝑆𝐹𝐶 value; ¤𝑊𝑏 is the brake power; 𝜂𝑚 is the motor characteristic

efficiency; 𝜂𝑒 is the battery energy conversion efficiency. For this work, we assumed 𝜂𝑒𝜂𝑚 = 0.9,

which is a reasonable assumption.

Because four of the constraints are on control variables, they are not expensive to evaluate.

Therefore, the optimization algorithm uses the NSGA-II method directly to handle these constraints.

5.2 Performing eBoost Experiments

For performing the eBoost experiments, the bypass valve is fully closed to avoid air leakage

from the intake side. Therefore, after closing the bypass valve, the eBoost needs to run at all

times to maintain the conventional compressor inlet pressure at close to ambient pressure to avoid

engine damage. The minimum eBoost speed should be able to generate inlet pressure equal to the
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ambient pressure, which is usually around 0.99 bar. A threshold value is set for the eBoost speed

(𝑒𝑆𝑝𝑒𝑒𝑑𝑇ℎ). Anything above this speed is considered as eBoost active case, and anything below

that is eBoost inactive case. This threshold limit is set at 500 RPM more than the minimum eBoost

speed required to maintain the desired ambient pressure.

The current experimental work with eBoost is performed only at low engine speed due to

the possible efficiency improvement benefit. The threshold eBoost speed required to maintain

the desired ambient pressure varies mainly with engine speed. High engine speed requires high

eBoost speed, which, in turn, uses more power from the battery, leading to the early discharge of

the battery bank. The current experimental setup has two sets of battery banks to maintain the

desired minimum 48V to operate the eBoost, and only one bank is used at a time. Both banks are

charged using a 56V DC supply. However, simultaneous engine operation while charging the bank

is avoided due to the electrical noise from the DC power supply to the engine setup. Therefore,

the way we operated the eboost is that we first drain both battery banks while performing desired

experiments. Once a set of experiments are done, the algorithm is paused, and both battery banks

are charged. Once the banks are fully charged, they are again used to continue performing tests.

The rest of the experimental procedure remains the same, as explained in Chapter 4. After

the problem formulation, the connection is established between INCA-MATLAB to create the

measurement and calibration window in the ETAS-INCA. After the diesel engine gets stabilized

at the desired operating condition, eBoost is run before closing the bypass valve to avoid any

chance of engine choking. The learning algorithm is then implemented to perform the engine

calibration. All the measurements from the eBoost are communicated through the MotoTron

via CAN communication, which can be visualized through NI-Veristand in a separate computer.

Therefore, the eBoost parameters are manually entered in the main algorithm, running in the ETAS-

INCA laptop. These variables can be communicated to the INCA via CAN communication to make

this process fully automated.
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5.3 Experimental Results with eBoost

Experiments were performed at a fixed engine operating condition of 1000 RPM and 325 Nm.

Total 35 points are taken for the initial model development, and the evaluation budget is fixed at

70 points. NSGA-II is used for optimizing the acquisition function with a population size of 100

and a total of 200 generations. Other parameters for NSGA-II include crossover probability of 0.9,

mutation probability of 1/3 (where 3 is for the total number of variables), the distribution index for

crossover (SBX) operator of 15, and polynomial mutation of 20. Lower confidence bound (LCB)

is used for acquisition function development with constant 𝑐 = 2. For clustering, dbscan command

from MATLAB is used.

5.3.1 Baseline Result

It is important to identify baseline results from the engine at 1000 RPM and 325 Nm load condition.

The baseline result is obtained by performing the experiments without running the eBoost, where

the control parameters take the optimal values predefined in the engine ECM. Figure 5.4 shows the

normalized BSFC and 𝑁𝑂𝑥 values at this operating condition.

The baseline result will be used as a reference to decide if the surrogate-assisted optimization

approach is able to identify a better region of operation with the eBoost or not. Another point

to mention here is the 𝑁𝑂𝑥 limit. For the learning algorithm, the constraint limit on the 𝑁𝑂𝑥

emissions is relaxed to obtain the entire optimal front with regions of improved BSFC without

worrying about the 𝑁𝑂𝑥 emissions. However, in general, the limit on 𝑁𝑂𝑥 emissions is decided

based on the drive-cycle constraints and other emission levels since the addition of EGR to the

combustion chamber affects hydrocarbon and soot emissions as well. Therefore, we will initially

show the entire optimal curve to demonstrate the efficacy of the proposed algorithm but will

eventually be interested in the settings for obtaining the 𝑁𝑂𝑥 emissions close to the threshold limit.
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Figure 5.4: Nominal BSFC and 𝑁𝑂𝑥 values

5.3.2 Results using Proposed Approach

Before implementing the learning algorithm, the first step is creating the initial set of points for

model development. As mentioned before, both VGT vane and EGR valve positions are constrained.

Therefore, to create points within the defined bounds, the constrained Latin Hypercube Sampling

(CLHS) toolbox [4] is used. A total of 35 points are used to generate the initial model to better

capture the behavior of the response surface. Figure 5.5 shows the initial DOE test points, and

Figure 5.6 shows the corresponding output values in the objective space.

The red points in both figures are when the eBoost is active, and the blue ones are when the

eBoost is inactive. As can be observed from Figure 5.6, most of the DOE points are with high

𝑁𝑂𝑥 values with few points showing improvement in 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and/or 𝑁𝑂𝑥 . We can expect the

learning algorithm to push the search in the design space for improved 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and 𝑁𝑂𝑥 values.

Figure 5.7 shows all the experimental points after complete these 73 tests. It also identifies
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Figure 5.5: Initial DOE points using constrained latin hypercube sampling (CLHS) in design space
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Figure 5.6: Output values corresponding to initial DOE inputs

the Pareto front obtained from the actual experiments with the hexagonal sign. Compared to the

points initially evaluated using the DOE (Figure 5.6), the learning algorithm is able to search for

points in the region with better 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and 𝑁𝑂𝑥 values than the initial ones. The constraint

on the 𝑁𝑂𝑥 emissions used for this problem is relaxed to get the entire optimal front. This gives

more flexibility to the end-users to decide the trade-off between two objectives at this operating

condition. The trade-off curve obtained has points for both eBoost active and inactive cases. With

certain configurations, the eBoost inactive case showed better BSFC but suffered from increased

𝑁𝑂𝑥 emissions at those points. There are also points with both improved 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and 𝑁𝑂𝑥

emissions compared with the baseline results.

If we strictly follow the 𝑁𝑂𝑥 limit from the baseline results, as shown by the dashed line in

Figure 5.7, we can observe that points obtained with the eBoost active case have both improved

𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and 𝑁𝑂𝑥 emission values. This confirms the benefit, measured by engine performance,

of using the eBoost. The improvement in the BSFC value using the same setup has been validated
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Figure 5.7: Total experimental evaluations in the Objective Space

in Ph.D. dessertation [44]. With the changes in both VGT and EGR positions upon increasing the

eBoost speed, the performance improves. This enhanced performance is observed after considering

the power drawn by the eBoost from the battery. With a further increase in the eBoost speed, the

power that is drawn by the eBoost increases, which reduces the 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 . There exists a sweet

spot for running the eBoost in order to get the optimal performance from the engine.

Figure 5.8 shows the experimental points in the design space. These points corresponding to the

trade-off curve are also shown in the figure. The optimum eBoost speed range to obtain improved

engine performance is between 0.2 and 0.4. Operating eBoost in this range uses less battery power.

The energy used by the eBoost is less than the benefit from the engine efficiency improvement. In

addition, the optimal solution lies around the boundaries of the design space.

With all the experimental evaluations performed, the final surrogate model is obtained. Based

on the developed model, the near-optimal front is identified by evaluating the unknown points in

the design space. Since the model is cheap to evaluate, a set of 20,000 points in the design space is
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Figure 5.8: Experimental evaluation points in the design space
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evaluated to obtain the near-optimal Pareto front. Figure 5.9 shows the Pareto front obtained from

the surrogate model, while Figure 5.10 shows these points in the design space. When evaluating

the Pareto front, the constraint on the 𝑁𝑂𝑥 is set to 0.4 (that was 0.83 before). This is done to

clearly represent the advantage of using eBoost to improve performance while maintaining the 𝑁𝑂𝑥

emissions to the desired level.
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Figure 5.9: Pareto front obtained from the surrogate model after all the evaluations

A generic diesel engine calibration problem accounts for optimizing multiple emission levels

such as 𝑁𝑂𝑥 , Hydrocarbon (𝐻𝐶), soot emissions. Since, for our study, we are only considering the

𝑁𝑂𝑥 emissions, we are setting the 𝑁𝑂𝑥 emission limit close to the one defined in the engine ECM

to make sure other emission levels are within a certain feasible range. To more accurately validate

this hypothesis, these emissions should be measured and controlled. This is not considered here,

but the problem could be implemented in a well-controlled engine test cell.
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Figure 5.10: Points corresponding to the Pareto front from the surrogate model in the design space
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These results correlate these observations using the actual experimental data, as discussed

above. Within the eBoost speed range of [0.2 - 0.4], the results obtained for 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and 𝑁𝑂𝑥

emissions are better than the baseline ones. There is also a region in the eBoost inactive case,

where the 𝑁𝑂𝑥 emissions are superior, but it suffers from a high 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 value.

In order to validate the accuracy of these estimates from the surrogate model, four different

points are identified from the achieved Pareto front of the surrogate model. All these points are

evaluated using the experiential setup to identify the corresponding actual values. Figure 5.11

shows the error between actual versus the estimated values from the surrogate model for both

𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 and 𝑁𝑂𝑥 emissions.
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Figure 5.11: Error (%) between actual data and estimates from the Surrogate Model

As can be observed, the error estimation for 𝐵𝑆𝐹𝐶𝑒 𝑓 𝑓 is less than 2%, which is acceptable for

the experimental setup. However, the 𝑁𝑂𝑥 emissions have a relatively high error percentage. We
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measured the 𝑁𝑂𝑥 emissions in ppm (parts per million) for the current work, and it is common to

have higher fluctuations in terms of ppm. For example, if the model estimates the 𝑁𝑂𝑥 emissions

to be 90 ppm and through the experiments, we obtain an average of 80 ppm, then the estimation

error is 12.5 %. The fluctuation itself is normal, but the error percentage makes it look worse in

error estimation. This concludes our experimental work with the addition of eBoost to the diesel

engine system.

5.4 Comparison of Experimental Evaluations

This section compares the total number of experimental evaluations required for performing

the engine calibration process using the conventional and proposed surrogate-assisted optimization

approaches. Industries currently use a high-fidelity GT-SUITE𝑇𝑀 model to identify the optimal

parameter range and then perform the full-factorial search. Assuming a total of 8 points for each

control variable for performing the full-factorial calibration, Figure 5.12 shows the comparison of

experimental evaluations corresponding to the number of control parameters using both approaches.

In Figure 5.12, x-axis shows the number of control variables, and y-axis shows the number

of experimental evaluations corresponding to these control variables on a log-scale. As can be

observed, the total number of evaluations using the full-factorial approach increases exponentially as

the number of design variables increases. For a more complex problem with more than 10 control

variables, this becomes intractable. Whereas, comparing the evaluations using the surrogate-

assisted optimization approach, the increase in the number of experimental evaluations is not

high.

Comparing the ratio of the experimental evaluations using these two approaches, for a two-

variable calibration problem, the ratio is 45
64 = 0.7. This ratio reduces significantly for a three-

variable calibration problem. With three control parameters, the ratio is 70
64 = 0.13, which is a

drastic reduction in the experimental evaluation. We expected this approach to show an even smaller

ratio for the optimization problem with more than three variables. The dashed line in Figure 5.12

is our expected total number of evaluations for the four variable control problems. This is observed

128



2 3 4
Number of Control Variables

101

102

103

104
N

u
m

b
er

 o
f 

E
xp

er
im

en
ta

l E
va

lu
at

io
n

Comparison of Experimental Evaluations
Full-Factorial Approach
Actual Evaluations
Expected Evaluations

Figure 5.12: Comparison of experimental evaluations using existing and proposed approaches

by assuming the total experimental evaluation budget of 140 for four variable calibration problems.

With this number, the estimated ratio would be 140
4096 = 0.035, which is even smaller. However,

this is only our hypothesis. We observed significant improvement in reducing the experimental

evaluations based on the two/three-variable calibration problems. It will be exciting to validate this

approach for performing engine calibration for engine calibration problems with dimensions higher

than three.

5.5 Chapter Summary

This chapter discusses the problem of performing engine calibration with three control variables.

An external boosting device (eBoost) is added to the diesel engine system to improve both engine

transient and steady-state performance, where this study focuses only on steady-state calibration.

Before performing the experiments, a revised problem is formulated for calibrating a complex
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engine architecture based on the interactions of VGT vane and EGR valve positions with the eBoost

speed. Based on obtained behavior, a three-variable control calibration problem is formulated

with two objectives and seven constraints. The calibration results demonstrated improved engine

performance in terms of both effective BSFC and 𝑁𝑂𝑥 emissions using the eBoost, compared with

the baseline results using only VGT and EGR. Also, significant savings in experimental evaluations

are observed compared to the traditional full-factorial approach. This study provides confidence

in implementing the proposed approach to solve a high-dimensional calibration problem with a

significant reduction in the experimental evaluations.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

This chapter presents the concluding remarks of the research work discussed in this dissertation and

provides future research directions to advance the data-driven approaches for performing engine

calibration.

6.1 Conclusions

This dissertation demonstrates the use of a surrogate-assisted optimization approach, through

both simulation and experimental studies, to efficiently perform the engine calibration with a goal

to reduce the experimental evaluations. This work is a first step towards automating the engine

calibration process with little to no manual interactions to the engine system. The research work

begins with extending the existing algorithms to make them applicable to practical physical systems.

The work only focuses on the two widely used approaches: Expected Improvement (EI) and

Lower Confidence Bound (LCB). The lower confidence bound (LCB) based optimization approach

extends well for solving multi-objective problems and is easy to implement onto any engine system.

However, there was no efficiency constraint handling algorithm available. Therefore, a simple

constraint handling approach is proposed for lower confidence bound (LCB). It is initially validated

on various constrained multi-objective numerical test problems and later implemented to perform

the engine calibration using a high fidelity GT-SUITE𝑇𝑀 engine model. Simulation studies aim at

calibrating the exhaust gas recirculation (EGR), variable geometry turbocharger (VGT) valve, and

Start of Injection (SOI) to achieve a trade-off between engine efficiency in terms of brake specific

fuel consumption (BSFC) and 𝑁𝑂𝑥 emissions. Constraints on engine load condition (brake mean

effective pressure) and boost pressure are used to make the engine operation feasible. The efficacy

of the proposed constrained lower confidence bound (CLCB) approach was compared with existing

state-of-the-art expected improvement (EI) based algorithms, and the performance is shown to be

on par.
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In order to implement this approach to a practical system, it is crucial to extend the algorithm

to handle the system with measurement noises. Heteroscedastic (non-uniform) noise variance is

assumed for the extension to make it more realistic for real-world implementation. Three different

extensions are proposed. Two of them are based on expected improvement (EI): Constrained Aug-

mented Expected Improvement (CAEI) and Augmented Expected Improvement Matrix (AEIM).

The third is the proposed constrained lower confidence bound (CLCB) approach, which does not

require any modifications to handle the measurement noise. All three extensions are validated using

the high-fidelity GT-SUITE𝑇𝑀 engine model corrupted with measurement noises at different noise

levels. Based on the results, the CLCB approach has shown to work well in a stochastic environment

compared with two other expected improvement-based extensions. One major disadvantage of the

expected improvement-based approach is that it requires noise information beforehand to handle

the stochastic system. However, the proposed CLCB approach does not require any modification.

Therefore, for the experimental evaluation, only the lower confidence bound-based approach is

implemented.

Finally, the algorithm is implemented onto an actual engine setup installed at the Energy and

Automotive Research Laboratory of the Michigan State University. The entire experimental setup

is modified, and an automated calibration strategy is devised to run the engine in a safe operating

region at all times. Initially, a simple problem is formulated to perform the control calibration of

two variables: variable geometry turbocharger (VGT) vane and exhaust gas recirculation (EGR)

valve positions. The goal is to obtain the optimal trade-off between brake specific fuel consumption

(BSFC) and 𝑁𝑂𝑥 emissions with a constraint on 𝑁𝑂𝑥 emissions. Both deterministic and stochastic

surrogate-assisted optimization approaches are implemented to check their efficacy on the actual

engine experimental setup. It is observed that the stochastic approach provides a better evolution

of the learning optimization algorithm, comparing with the deterministic one. This is due to the

regression-based modeling by stochastic approach compared with the interpolation one by deter-

ministic algorithm, that leads to overfitting of the response surface in the presence of measurement

noise. Therefore, the rest of the experiential work is performed using only the stochastic approach.
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After getting comfortable using the proposed approach for engine calibration, the original engine

system is expanded with an external electrically-assisted boosting device called eBoost, and a new

calibration problem is formulated for calibrating this new engine architecture. The revised prob-

lem becomes a three-parameter calibration problem (VGT, EGR, and eBoost) with the same two

objectives (BSFC and 𝑁𝑂𝑥 emissions) along with several constraints on both measurements and

control variables.

The overall experimental demonstration of the proposed approach leads to optimized engine

performance with a significant reduction in the number of experimental evaluations required for

performing the engine calibration. This study has opened the door to explore different challenges

in control calibration problems for practical systems. This work’s true potential can be observed

in a controlled environment, usually achievable in an industrial setting. Because the current work

is a part of the proof of concept, all the tests are performed in our dyno cell at the Michigan State

University. We do not have the resources to perform extensive tests with high-dimensional complex

problems. The following is a list summarizing conclusions from this study.

• This study successfully proposed a simple constraint handling method for Lower Confidence

Bound (LCB) based acquisition function. The proposed multi-objective constraint handling

approach is shown to work well for both numerical problems and engine calibration problems.

• To deal with the practical system, three extensions of the surrogate-assisted optimization

algorithm are proposed to handle the constrained multi-objective optimization problem with

measurement noises. Heteroscedastic (non-uniform) noises are considered to make the

approach more realistic for real-world applications.

• Lower confidence bound with the proposed constraint handling approach has shown to work

well in the stochastic environment compared with two other expected-improvement (EI) based

extensions. Also, since EI-based extensions require noise information beforehand to perform

the optimization in a stochastic system, which is not a viable option for their implementation

to the practical systems.
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• For initial experimental evaluation, two control variables, variable geometry turbocharger

(VGT) vane and exhaust gas recirculation (EGR) valve positions, are calibrated to identify

the optimal front between engine efficiency (BSFC) and 𝑁𝑂𝑥 emissions. The stochastic

surrogate-assisted optimization with the proposed constrained lower confidence bound ap-

proach provides better convergence compared with the deterministic approach. It is due to

the regression-based modeling approach over the interpolation one that causes overfitting

of the response surface model in the presence of measurement noises. Since the measure-

ments of practical systems are always polluted with noises, the stochastic surrogate-assisted

optimization approach is considered for the rest of the experimental work.

• The experimental evaluation started with a simple two-variable problem with one constraint.

Based on the positive results, the calibration problem is extended to a three-variable control

problem with multiple constraints. All the experiments are conducted by operating the engine

within a feasible operational region. A significant reduction in experimental evaluations is

observed compared with the existing approach used in the industries.

• The true advantage of the proposed algorithm would be evident for high-dimensional design

space problems. With the study on both two and three variable calibration problems, it

is projected that the proposed approach would significantly reduce the number of engine

evaluations required for the calibration process.

6.2 Future Work

For future work, one of the modifications that could enhance the algorithm’s convergence is to

make the exploration limit of the constraint handling function adaptive. A fixed exploration limit is

used throughout simulations and experimental studies. The exploration of constrained design space

is required initially to identify feasible boundaries. However, as we get close to exhausting the

evaluation budget, a more conservative approach could be implemented. A convergence analysis

shall be done in order to update the exploration limit effectively.
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Note that the demonstrated experimental work is for performing the static engine calibration.

However, the overall calibration process is a combination of both static and transient engine

calibrations. For transient engine calibration, a dynamic system model is required. Therefore,

one of the future works could be performing the transient engine calibration using the data-driven

approach. A data-driven system identification could be performed. It will be interesting to look for

an approach requiring fewer points to identify the system dynamics capturing all necessary system

modes for control strategy development. Another exciting direction is performing the dynamic

system identification. It is well known that system dynamics changes due to system aging, different

operational environments, and conditions. Therefore a strategy for dynamic update of the data-

driven model could be developed. This will help in updating the control strategy effectively without

putting extra effort into the system modeling.

One of the observations from the experimental results is the response surface behavior. For a

particular objective function, the behavior remains the same at different operating conditions, only

the function value changes. However, for each operating condition, the entire set of experiments

were repeated. The knowledge of the response surface behavior could be used to reduce the

experimental evaluations further. The concept of Transfer Learning can be implemented in such

scenarios, where at any new operating condition, the entire set of experiments is not needed to be

repeated. Only a few evaluations are required, and the response surface generated at the previous

operating condition can be updated to the new operating condition. Implementing this approach

will further reduce the number of experimental evaluations for performing the overall static engine

calibration.
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APPENDIX A

STOCHASTIC RESULTS ON NUMERICAL TEST PROBLEMS

This appendix shows the results observed on the numerical test problems using the proposed

stochastic extension for the surrogate-assisted optimization approach. All three extensions are

applied to both unconstrained and constrained multi-objective numerical test problems to evaluate

their efficacy.

As mentioned in Chapter 3, the following test problems are used for validation purposes, as

shown below.

Table A.1: Numerical test problems for stochastic evaluations

Problem No. of Objectives No. of Constraints No. of Design Variables

ZDT1 2 0 8
ZDT2 2 0 8
ZDT3 2 0 8
BNH 2 2 2
SRN 2 2 2
TNK 2 2 2
OSY 2 6 6

The outputs from these test problems are deterministic. Therefore, both objective and constraints

are corrupted with the noise of different variances. Four different noise levels: 5%, 10%, 20%, and

40%, are implemented to test the performance of the proposed algorithms. These results for 10%

noise level are shown in Chapter 3. This appendix shows these results at other noise levels.

A.1 5% Noise variance

The current section shows the results by adding 5% noise to both objectives and constraints.
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A.1.1 Unconstrained

This section shows the results for problems without constraints. Three different problems come

under this category from the list of all the test problems used.
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Figure A.1: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on ZDT1 and ZDT2 with 5% noise
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Figure A.2: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on ZDT3 with 5% noise

A.1.2 Constrained

This section is dedicated to problems with constraints. Problems with different complexity are

used. Since the noise level is small, we could expect better convergence from the algorithm within
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the limited evaluation budget.
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Figure A.3: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on BNH and SRN with 5% noise
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Figure A.4: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on TNK and OSY with 5% noise

A.2 20% Noise variance

The section here shows the results observed by corrupting the outputs of the test problems with

a 20% noise.
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A.2.1 Unconstrained

With a higher noise level, we expect convergence of the algorithms to suffer. The results showed

better performance with the lower confidence bound (LCB) based optimization approach.
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Figure A.5: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on ZDT1 and ZDT2 with 20% noise

142



0 0.2 0.4 0.6 0.8 1
Objective 1

-1

-0.5

0

0.5

1

1.5

O
b

je
ct

iv
e 

2

ZDT3 (CAEI)

Actual Pareto Front
Proposed Approach

0 0.2 0.4 0.6 0.8 1
Objective 1

-1

-0.5

0

0.5

1

1.5

O
b

je
ct

iv
e 

2

ZDT3 (AEIM)

Actual Pareto Front
Proposed Approach

0 0.2 0.4 0.6 0.8 1
Objective 1

-1

-0.5

0

0.5

1

1.5

O
b

je
ct

iv
e 

2

ZDT3 (CLCB)

Actual Pareto Front
Proposed Approach

Figure A.6: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on ZDT3 with 20% noise

A.2.2 Constrained

Because of the higher noise level, it becomes difficult for the algorithm to identify feasible bound-

aries and converge towards the optimal region. Compared to the low noise case, the results with
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higher noise are worse.
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Figure A.7: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on BNH and SRN with 20% noise
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Figure A.8: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on TNK and OSY with 20% noise

A.3 40% Noise variance

This section shows results with addition of 40% noise level. The 40% noise level is added to

test the efficacy of the algorithm in handling high noise level.
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A.3.1 Unconstrained

The subsection here shows the results for unconstrained problems.
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Figure A.9: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on ZDT1 and ZDT2 with 40% noise
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Figure A.10: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on ZDT3 with 40% noise

A.3.2 Constrained

For the constrained problems, it is a challenging task to identify feasible regions easily since the high

noise level affects the response surface behavior drastically. This subsection shows the convergence
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in such scenarios.
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Figure A.11: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on BNH and SRN with 40% noise
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Figure A.12: Stochastic surrogate-assisted optimization results using a) CAEI b) AEIM, and c)
CLCB on TNK and OSY with 40% noise
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APPENDIX B

STOCHASTIC RESULTS FOR ENGINE CALIBRATION

This appendix here shows the simulation results obtained after performing the stochastic-surrogate

assisted optimization for the engine calibration problem at 5% and 10% noise levels. Chapter 3

only shows the results for 10% noise level.

As mentioned before, the following problem is formulated for performing the engine calibration

using a high-fidelity GT-SUITE𝑇𝑀 engine model.

Minimize 𝑦1(x) = 𝐵𝑆𝐹𝐶 (x), 𝑦2(x) = 𝑁𝑂𝑥 (x)

subject to 𝑔1(x) = 𝐵𝑜𝑜𝑠𝑡 (x) ≤ 2 𝑏𝑎𝑟,

𝑔2(x) = 𝐿𝑜𝑎𝑑 (x) ≥ 9.95 𝑁𝑚,

Control Variables x = [𝑉𝐺𝑇, 𝐸𝐺𝑅, 𝑆𝑂𝐼]𝑇

𝑥1 = 𝑉𝐺𝑇 ∈ [0 1] %,

𝑥2 = 𝐸𝐺𝑅 ∈ [0 1] degree,

𝑥3 = 𝑆𝑂𝐼 ∈ [0 1] 𝑏𝑇𝐷𝐶

The goal here is to get the optimal trade-off between engine efficiency (BSFC) and its emission

(𝑁𝑂𝑥) by optimally controlling the engine control parameters: Variable Geometry Turbocharger

(VGT) vane position, Exhaust Gas Recirculation (EGR) valve position, and Start of Injection (SOI).

To make the process stochastic, the outputs from the simulations are corrupted with non-uniform

noise variance and then given to the learning algorithm.

B.1 5% noise level

The current section shows the results by corrupting the measurements with a 5% noise level.

The addition of system noises will change the response surface behavior. Since the noise level is

small, we could expect the results not to get affected much in terms of convergence to the baseline

Pareto front.
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Figure B.1: Performance of constrained Augmented Expected Improvement (CAEI) algorithm on
engine calibration problem at 5% noise level
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Figure B.2: Performance of Augmented Expected Improvement Matrix (AEIM) algorithm on
engine calibration problem at 5% noise level
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Figure B.3: Performance of constrained Lower Confidence Algorithm (CLCB) on engine calibration
problem at 5% noise level
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B.2 20% noise level

This section presents the case when the output measurements are corrupted with 20% noise.

Both objectives and constraints have 20% noise. The addition of high noise level will cause two

issues for the learning algorithm. It will first affect the constraint surfaces. This means that

the algorithm might have difficulty identifying the feasible region while performing the search

operation. The addition of a 20% noise level would also significantly affect the behavior of the

objective response surface. This, therefore, could lead to poor convergence performance from the

learning algorithm. In such a scenario, it becomes crucial to perform the exploration.

The results show good performance with the proposed constrained lower confidence bound

(CLCB) based optimization algorithm. As demonstrated before, the expected improvement (EI)

based approach could potentially lead to a greedy search on the design space. The addition of noise

could make it even worse.
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Figure B.4: Performance of constrained Augmented Expected Improvement (CAEI) algorithm on
engine calibration problem at 20% noise level
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Figure B.5: Performance of Augmented Expected Improvement Matrix (AEIM) algorithm on
engine calibration problem at 20% noise level
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Figure B.6: Performance of constrained Lower Confidence Algorithm (CLCB) on engine calibration
problem at 20% noise level
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