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ABSTRACT 

DETECTION AND ASSESSMENT OF FOOD, ENERGY, AND WATER IMPACTS OF SOLAR 

PHOTOVOLTAIC CO-LOCATION IN THE CALIFORNIA’S CENTRAL VALLEY 

 

By 

Jacob Tyler Stid 

Since Industrialization, the United States and many other countries around the world have 

realized the significant negative impacts of fossil fuel consumption and associated carbon 

emissions which are altering Earth’s climate. To mitigate this change, there have been significant 

transitions from fossil fuels to renewable energy, with one viable option being mass deployment 

of solar arrays. Thus, large plots of land in regions such as California’s Central Valley have 

begun to convert land, much of it agricultural, into solar arrays. Here, I work to understand the 

current solar installation practices and the impacts on food, energy, water, carbon, and the 

farmers who have decided to convert their land. I provide this information to encourage best 

installation practices and promote long term positive impact deployment. 

In Chapter 1, I develop a comprehensive remotely-sensed dataset commercial-scale 

crystalline silicon solar installations in the Central Valley detailing precise panel locations, 

orientations, and time of installations. These attributes allowed for the assessment of current 

practices including frame technologies, panel packing, spatial field placement, and crop 

preferences. I then link those practices to federal and state policies and quantify sub-optimal 

installation practices. In Chapter 2, I deploy this new dataset in an Impact Analysis to project 

future food, energy, water, carbon, and economic implications of these installed arrays through a 

25-year predicted lifespan. This new data leads to a better understanding of to-date solar 

installation practices and provides the information needed to improve future infrastructure as we 

move towards sustainability.  
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CHAPTER 1:  
SPATIOTEMPORAL IDENTIFICATION AND CHARACTERIZATION OF 

AGRICULTURALLY CO-LOCATED SOLAR PHOTOVOLTAIC ARRAYS IN 

CALIFORNIA’S CENTRAL VALLEY 

Abstract 

Understanding agriculturally co-located solar photovoltaic (PV) installation capacity, practices, 

and preferences is imperative to foster a future where solar power and agriculture co-exist with 

limited reduction in food production. Crops and solar panels are often co-located as they have 

similar ideal conditions for maximum yield. The recent boom in solar photovoltaics is thus 

replacing more cropland. Current literature on agriculturally co-located solar PV array 

installations lacks important spatiotemporal details that could help inform future array 

installations and improve associated policies and incentive programs. This study used the 

National Agriculture Imagery Program 0.6 meter imagery for object-based analysis (eCognition 

Developer), and Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI 30 meter imagery for 

temporal analysis (LandTrendr) to identify, classify, and characterize commercial-scale ground-

mounted solar PV arrays in California’s Central Valley installed between 2008 and 2018. This 

dataset provides spatiotemporal characterization of 210,368 individual panels grouped into 1006 

PV arrays (69% of which are agriculturally co-located) by type of frame and year of installation. 

Fixed-axis arrays dominate the number of installed arrays and tend to be small (0.32 MW), while 

single-axis tracking arrays tend to make up less installations, but individual arrays have nearly 

four times the capacity (1.19 MW). These 1006 arrays account for 3.55 GW of capacity and have 

generated a cumulative of 36,531 GWh within the Central Valley. For the 694 agriculturally co-

located arrays, significant sub-optimal installation practices were observed in the spacing and 

spatial field placement of the arrays. There was a dichotomy of crop conversion preferences with 

low value pastureland and high value orchards dominating the number of solar installations on 
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cropland. In addition, federal Solar Investment Tax Credit requirements and extensions were 

reflected in peak installation numbers in 2012 and 2016, suggesting another peak installation 

year in 2020 will be forthcoming. This study provides insights into dynamics of the commercial-

scale ground-mounted solar PV array installation year, sub-optimal installation practices, crop 

preferences, and the electricity production over time for the installed arrays. 

1. Introduction 

Ground-mounted solar photovoltaic (PV) capacity in the Contiguous United States 

(CONUS) is projected to nearly triple from 32 GW (Energy Information Administration 2015) to 

92 GW over the next decade (U.S. Energy Information Agency 2019) with current and future 

installations occupying less than 0.1% of contiguous land (Hartmann, H.M., Grippo, M.A., 

Heath, G., Macknick, J., Smith, K., Sullivan, R., Walston, L., Wescott 2016). In addition to the 

environmental benefits and economic incentives for California farmers, there are food, energy, 

and water benefits to co-locate medium sized PV arrays adjacent to cropland for both the 

farmers, and the asset owners (Barron-Gafford et al. 2019; Macknick 2019, 2020). Cropland is 

strategically located in regions of high solar irradiation for optimal crop yield, which is also the 

optimal location for PV arrays to attain peak generation (Adeh et al. 2019). Co-location has been 

shown to improve PV efficiencies due to cooler crop enhanced microclimates (9℃ cooler) with 

1-3% increase in generation (Barron-Gafford et al. 2019); a 5-15% increase in soil moisture 

retention (Barron-Gafford et al. 2019); and 200-300% yield increases for certain crops when co-

located directly beneath panels (Barron-Gafford et al. 2019).  

In addition to the many benefits, co-location creates local land use competition resulting 

in displacement of cropland by solar arrays. Innovative Site Preparations and Impact Reductions 

on the Environment, a coalition of federal institutions, universities, local governments and 
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groups, and industry partners, has provided the Low-Impact Solar Development Strategies 

Guidebook to promote best practices for low-impact co-location (NREL 2020). In addition, The 

University of Massachusetts Amherst Clean Energy Extension, which refers to co-location as 

“dual-use”, outlines several optimal co-location practices that allow local system owners to 

qualify for a financial incentive under the Solar Massachusetts Renewable Target program 

(Clean Energy Extension 2019). Although these programs outline optimal practices, they are 

missing information on how to tailor co-location practices regionally where placement 

optimization is not mandated.  

Many existing planning and installation practices for commercial-scale ground-mounted 

arrays commonly do not fully consider the agricultural land use component of co-located 

efficiencies (Brooks and Dunlop 2013; Doyle et al. 2015). Unlike rooftop arrays, most ground-

mounted arrays are not as space constrained. Therefore, typical ground-mounted array 

installations are optimized for cost of installation and electricity production by maximizing 

ground coverage and minimizing the cost of support structures, the impact of shading, and 

distance to access roads, and accounting for optimal orientation and wind loading (Brooks and 

Dunlop 2013; Doyle et al. 2015). Previous studies have noted the challenge of minimizing 

mutual shading by increasing interrow spacing, which also requires increased crop displacement 

(Awan et al. 2020).  

Prior research in identifying solar PV arrays from satellite imagery has commonly 

focused on urban studies. Malof et al. (2019) and Malof et al. (2017) used a convolutional neural 

network to identify individual household PV installations in several cities across California. For 

training, these studies used a manually annotated dataset of over 19,000 individual rooftop 

systems collected in the cities of Fresno, Stockton, Modesto and Oxnard (Bradbury et al. 2016). 
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Their developed models detected urban rooftop PV arrays with a precision of 76% and a recall of 

77% for the three cities. So et al. (2017) demonstrated a method to estimate solar PV capacity for 

these residential arrays using very high resolution color imagery (0.3 m) using a capacity-per-

unit-area methodology. M. Wang et al. (2018) performed a panel detection analysis deploying 

template matching and object-based detection in the eCognition Developer software (Definiens 

2000) to classify individual modules of a single commercial array with a 91% overall accuracy.  

Hernandez et al. (2014) developed a dataset of 200 PV and concentrating solar power, utility-

scale solar energy installations in California by synthesizing county documents, Bureau of Land 

Management records, and environmental impact reports and statements. This was a pivotal study 

in terms of aquired characteristics (capacity, land footprint, technology type, location, and land 

ownership), and Hernandez et al. (2015) also assessed National Land Cover Database (NCLD) 

landcover types. However, these studies only looked at utility scale operations (20 – 1000 MW) 

which likely have differing landowner preferences and were still missing valuable information 

about installation practices. 

Existing PV locations and characteristics for the Central Valley are available from a 

variety of academic, state, and industry sources (Barbose et al. 2020; Nyberg 2020; Solar Energy 

Industries Association 2015). However, this information is limited spatially (zip codes and 

counties), temporally (date of application approval, not completion of installation), and in 

completeness (e.g., missing permit applications, permit re-applications, and capacity thresholds). 

The cropland and energy effects of co-locating PV arrays and agriculture depend on the 

year of installation and the area of converted land. In addition, electricity production from each 

array decreases over time due to module degradation (Jordan et al. 2016). Therefore, analyzing 

the effects of co-location on food and electricity production requires detection of the installation 
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years and the total converted area. This is a difficult process to automate across a large study area 

that has diverse land cover changes (such as the Central Valley). Quantifying PV array attributes 

and their changes through time requires frequent high-resolution data, with a long enough record 

to detect intra-annual installations back to the mid 2000’s when PV installations became 

widespread. 

The common paradigm of image classification has been centered around training 

machine learning algorithms that use strictly pixel based classification. However, previous 

studies have shown that at resolutions finer than the extent of the object of interest (i.e. many 

pixels making up a single PV panel), the statistical analysis of single pixels becomes less 

important than the spatial objects that they create (Baatz and Schape 2000; Blaschke and Strobl 

2001). As resolution increases, the increase of within-class spectral variability decreases the 

potential accuracy of a purely pixel-based approach to classification (Blaschke et al. 2014) and     

favors using both spectral and object based features instead of simply spectral features. This is 

commonly referred to as ‘The H-Resolution problem’ (Hay, Niemann, and McLean 1996). One 

possible solution is an object-based analysis that includes morphological object features to 

improve spectral classification.  

Due to the H-Resolution Problem, it becomes easier to differentiate more detailed land 

cover classes using both spectral and object based features as change becomes more 

heterogeneous. Detection capabilities at Landsat (includes 5, 7, and 8), Sentinel-2, and recent 

National Agriculture Imagery Program (NAIP) imagery scales, were impervious surfaces, rough 

PV arrays, and differentiated PV array panels/technologies respectively. With the evolution of 

higher resolution data, rulesets and assumptions about spectral indices and shape features must 

also evolve. eCognition can separately classify PV array technologies, panel area, and 
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orientations at multiple scales using a single developed ruleset.  

 Several previous studies have integrated temporal and object-based segmentation 

algorithms (Bueno et al. 2019; Cai, Lin, and Zhang 2019; Csillik et al. 2019; Hao et al. 2020; 

Nitze et al. 2017; Yu et al. 2020), and a few studies have integrated Landsat-based Detection of 

Trends in Disturbance and Recovery algorithms (LandTrendr) with eCognition (Bomber and 

Portelli 2020; Yin et al. 2018). Previously defined spectral impervious surface indices such as the 

normalized difference built-up index (NDBI), the modified normalized difference impervious 

surface index (MNDISI), the combinational biophysical composition index (CBCI), and the 

enhanced normalized difference index for impervious surface index (ENDISI), are usually 

complex and/or require a range of spectral wavelengths (often thermal infrared or short-wave 

infrared bands) that fall outside most high resolution (0.6-3 meter) aerial and space-borne remote 

sensing programs (Chen et al. 2019; Sun et al. 2017; Zha, Gao, and Ni 2003; S. Zhang et al. 

2018) including NAIP. In this work, we develop new visible and NIR indices to assess PV land 

cover change. 

We examined the geospatial coordinates, area (both panel and total), frame technology 

(orientation), and the year of completed installation. Characteristics derived from the identified 

panels were the packing factor, capacity, generation, foregone crop type and area removed, 

latitudinal and global horizontal irradiance (GHI) preferences, and the spatial relative land 

productivity of the area converted. Therefore, the detection framework demonstrated here will 

likely be useful for both spatial and temporal classification of land cover changes using temporal 

segmentation and object-based analysis in LandTrendr and eCogntion respectively 

Policy makers need to know the location and quantity of installed arrays, along with other 

array characteristics to understand and make informed decisions on energy, crops, water, and 
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economic policies. Research to date has not provided detailed estimates of commercial-scale 

ground-mounted PV arrays along with estimates of agricultural land use conversion to PV arrays. 

Such information is needed to better inform future installation practices based on efficiency of 

past practices. In addition, more studies are needed on proximally co-located arrays, where crops 

are grown around the arrays, as opposed to agrivoltaic co-located systems where crops are grown 

directly beneath the panels and frames. 

Here, we provide an up to date (through 2018) novel dataset of regional PV array 

locations and unique attributes determined through a remote sensing algorithm framework that 

combines object-based and temporal segmentation. Solar co-location involves agricultural, 

livestock, or pollinator habitat land use directly underneath or adjacent to a ground-mounted 

solar array (Office of Energy Efficiency & Renewable Energy n.d.). We extend previous 

research by using this dataset to assess regional solar power implications and the agricultural 

implications of arrays adjacently co-located with active agricutlure in California’s Central 

Valley. Implications depend significantly on the size, technology, spatial placement and packing, 

type of land cover removed, and installation year, as implications pertaining to these factors vary 

temporally. The end goal was to develop information that can be used to inform array installation 

policies based on past practices to promote low-impact co-location of ground-mounted PV arrays 

with agriculture.  

2. Methods 

2.1 Study area 

The massive increase in projected future installations is largely driven by the expected 

decreasing cost to manufacturer and install solar cells (Fu, Feldman, and Margolis 2018), 

increasing module efficiency (Figure A1.1, Barbose et al. 2020), and the continuation of federal 
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legislation supporting the U.S. solar industry. The federal Solar Investment Tax Credit (ITC) 

rebates 26% (though 2020, 30% prior to 2016) of the cost of residential and commercial solar 

systems installed in that tax year (Solar Energy Industries Association 2019, 2021; U.S. 

Department of Energy 2021). Since its conception in 2005 (Office 2005) and implementation in 

2006, the U.S. solar industry has grown by more than 10,000% (Solar Energy Industries 

Association 2021). In addition to the Solar ITC, the Emergency Economic Stabilization Act of 

2008 (Shah 2009) and the American Recovery and Reinvestment Act (Schoeffler 2009), along 

with more recent continued extensions, provided extensions on the ITCs also included a financial 

package to help encourage deployment of solar systems (Efficiency 2010). California’s Central 

Valley (Figure 1.1) was chosen to be the study area because of these significant policy 

implementations for agriculturally co-located PV arrays, because its the state’s most prolific 

agricutlural region. The Central Valley domain was provided by Faunt (2012). 
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Figure 1.1. Agriculture in the Central Valley, California. 1.1A is the Central Valley alluvial 

boundary (modified from (Faunt 2012)) simplified and overlaid with the USDA 2018 Cropland 

Data Layer reclassified by the California Department of Water Resources (DWR) crop classes 

for simplicity (Kimmelshue 2021). The red point corresponds to the location of Figure 1.1C and 

1.1D submaps, and the array described in Figure 1.4. 1.1C is a US scale map with state 

boundaries for spatial reference of the Central Valley California. Figure 1.1C shows 2014 NAIP 

imagery over an almond field near Fairmead, California with the red box corresponding to the 

same in 1.1D and outlining the foregone almond crop for the PV installation. Figure 1.1D shows 

2016 NAIP imagery over the same almond field, now with the newly installed solar PV array 

converting some of the cropland outlined by the red box.  

2.2 Data 

To assess spatial attributes of PV arrays including packing factor, individual solar panels 

must be differentiated from each other and the surrounding landscape. To differentiate at this 

scale, imagery resolution of at least three meters was required as previous studies have predicted 

ground-mounted modules to have a width between 1 and 2.48 m (Awan et al. 2020; Jubayer, 
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Siddiqui, and Hangan 2016) respectively. Therefore, the freely available NAIP aerial imagery, 

which is collected roughly every two years at 0.6 meter resolution as of 2016 in many regions 

with red, blue, green, and near-infrared (NIR) wavelengths (USDA 2016). At the NAIP 

resolution (0.6 meter) it is possible to delineate individual module systems (panels), which was 

the basis to assess accuracy of this framework. NAIP imagery was accessed through the 

California Department of Fish and Wildlife ArcGIS portal (California Department of Fish and 

Wildlife 2020).  

To assess the installation year, imagery with high temporal resolution and historical 

imagery back to 2007 (startYear of collection in Appendix Table A1.1) was required. Landsat 5 

TM, Landsat 7 ETM+ and Landsat 8 OLI 30 meter imageries were optimal for this purpose and 

were already implemented in Google Earth Engine’s (GEE) version of LandTrendr. Arrays 

without years of completed installation were manually interpreted and annotated using 

LandTrendr pixel time-series plots, Landsat 7 ETM+ and Sentinel-2 November-December 

imagery, NAIP imagery, and Google Earth Historical imagery for available years. Landsat 7 

ETM+ imagery was also used to in creating growing season (June 1st – September 30th) NDVI 

maps needed for the relative land productivity (RLP) metric. Also required for this metric and for 

the crop analysis was the USDA’s Cropland Data Layer (CDL), and the USDA’s Farm and 

Ranch Survey (USDA 2013). 

The to-date capacity analysis required the capacity equation and optimal packing factor 

constants from Martín-Chivelet (2016), along with efficiency data from Barbose et al. (2020). To 

determine electricity generation, the same efficiency data was required along with weather files 

from the National Solar Radiation Database (NREL 2015), hourly incident irradiance calculated 

from pvlib python modules developed by SANDIA National Laboratory (F. Holmgren, W. 
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Hansen, and A. Mikofski 2018), single-axis tracking daily rotation from Schneider (2012), PV 

efficiency degradation from Jordan et al. (2016), and soiling estimates from National Renewable 

Energy Laboratory (2017). 

2.3 Integration of spatiotemporal segmentation to detect land cover change 

Multiple PV technologies are being installed in California and elsewhere around the 

world. Technology differences include material (crystalline silicon, cadmium telluride, copper-

indium-gallium-diselenide, silicon thin film, perovskite), structure (bifacial, concentrating solar 

power), frame technology (fixed, single-axis tracking, and 2-axis tracking), and orientation (N/S, 

E/W, or non-normal orientation) (Brooks and Dunlop 2013; Chu 2011). Optimal array 

orientation should correspond with frame technology due to the need to track the angle of direct 

solar irradiance in the E/W orientation, and the constant angle of direct solar irradiance in the 

N/W orientation depending on hemisphere. The application of the differing technologies can 

give information as to the intention of the array's electricity production, when peak power will be 

reached, the prominent technology of the installation period, cost effectiveness, and efficiency of 

installation practices (Chu 2011).  

PV array panels are spectrally and geometrically distinct from most land covers and are 

therefore able to be identified using remote sensing. Crystalline silicon (C-Si) fixed axis and 

single-axis tracking arrays were the focus of this study because of their similar linear geometries 

and spectral signatures, and because they represent a majority of commercial scale PV modules 

(Brooks and Dunlop 2013; Chu 2011; Doyle et al. 2015). To develop this spatial dataset, we 

employed eCognition Developer. 

Once the panels were identified, we assumed that spectrally, the year of greatest land use 

change within those panels was the year of completed installation. This year gives insight into 
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the removed crop type (accounting for crop rotation) that was forgone due to the installation, 

total electricity generation, efficiency, and installation practices of the period. To help fill this 

gap in understanding and analysis, we employ LandTrendr to estimate the year of each 

completed array. Our analysis produced a novel spatiotemporal dataset of regional PV array 

geospatial coordinates, along with information on array sizes, panel areas, orientations, and 

technologies, which can provide important information about regional solar power and its 

effects. 

 

Figure 1.2. PV Identification Framework. The developed framework to integrate temporal and 

object-based segmentation for regional land cover change detection regarding PV array 

technologies. The parallelograms denote the input imagery, rectangles denote processes, and 

diamonds denote derived PV array attributes. The oval denotes the final dataset.  

2.4 New indices: NDPVI and NDB 

Silicon PV panels tend to have moderate to high blue reflectance largely due to their 

silicon composition and a low NIR reflectance due to the anti-reflective coating that improves 

spectral absorption and improves efficiency (Karin and Jain 2020). Thus, the normalized 

difference between the blue band and the NIR band seems a promising means of delineating PV 
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panels. We refer to this index as the Normalized Difference Photovoltaic Index (NDPVI) shown 

by equation 1.  

𝑁𝐷𝑃𝑉𝐼 =
𝛼∗𝐵𝑙𝑢𝑒−𝑁𝐼𝑅

𝛼∗𝐵𝑙𝑢𝑒+𝑁𝐼𝑅
          (1) 

Based on preliminary testing, other land covers with a similar spectral signature are 

impervious surfaces, water, shadows, and some bare soils. To reduce spectral overlap between 

these land covers and PV arrays, we added a weighting coefficient. Gitelson (2004) showed that 

the addition of a weighting coefficient (α) in the normalized difference vegetation index (NDVI) 

increased sensitivity at higher NDVI values due to the dampening the effect of variations in NIR 

reflectance and emphasizing the normalized difference. Inspired by this, a weighting coefficient 

was added to NDPVI to enhance the sensitivity to the difference between the blue and NIR and 

reduce sensitivity to the variation in the blue reflectance of PV panels, which varies drastically at 

the NAIP scale by scene. While many alpha coefficients were tested, an alpha of 0.5 was used in 

this analysis due to observed increase in NDPVI disturbance sensitivity and increased panel 

identification accuracy in test plots. More experimentation could improve the alpha and the index 

accuracy overall. Figure 1.4 portrays the usefulness of using NDPVI in the LandTrendr temporal 

breakpoint analysis. 

In addition to NDPVI, we developed an index we refer to as the Normalized Blue 

Deviation (NBD). NBD was developed because even with the alpha weighting coefficient, 

NDPVI retained some shadows, water, and bare soil. The brightness threshold accounted for 

water, but also retained shadows, and some bare soil. NBD re-emphasizes the importance of C-Si  

blue reflectance, but in relation to the red and green bands instead of the NIR band. NDB was 

defined as shown in equation 2. 

𝑁𝐵𝐷 =
𝐵𝑙𝑢𝑒− 

𝑅𝑒𝑑+𝐺𝑟𝑒𝑒𝑛

2

𝐵𝑙𝑢𝑒+ 
𝑅𝑒𝑑+𝐺𝑟𝑒𝑒𝑛

2

         (2) 
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2.5 Identifying geometrically linear and parallel panel systems 

eCognition developer is an image analysis software tool that provides a geographic object 

based image analysis platform (Definiens 2000). The application provides access to algorithms 

for segmentation and classification and the ability to create a systematic ruleset whose 

parameters are determined through expert knowledge along with machine learning. It was 

therefore important to know spatial PV panel attributes (shape, size, spectral signature, spacing, 

and technology preferences). 

The workflow and thresholds shown in Figure 1.3 were developed through preliminary 

testing of 176 arrays identified across the Central Valley using preliminary methods described in 

Appendix Text A1.2.3. The newly derived spectral indices (NDPVI and NBD) and brightness 

were used in a multi-threshold segmentation. The goal of this segmentation was to differentiate 

panels from surrounding landscapes and minimize differences in scene values due to atmospheric 

effects (e.g., clouds), time of day, and other scene differencing effects. Segmented objects were 

filtered by multiple geometric thresholds including number of pixels, length to width ratio, and a 

border index (rectangular fit index) that resembles the object-based methodology that M. Wang 

et al. (2018) used to generate linear PV panel-like objects. Templates (30x30 meter) were then 

generated in eCogntion pulling NDPVI textures from five arrays of differing panel width and 

packing shown in the third column of Figure 1.3. These templates were then processed in R to 

rotate templates in both the S oriented and E/W oriented directions, at multiple packing factors 

and panel widths. The template matching algorithm was applied to generate a raster of each 

pixel’s surrounding fit to the template. If the linear panel-like objects were within 100 meters of 

a pixel with a 50% match to the template (based on template training in eCognition), then the 

object was considered a PV panel. The assumption was made that S-oriented panels were most 
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likely fixed angle mounted due to the fact that the optimal tilt angle for maximum solar 

irradiation is constant (fixed) for S-oriented arrays (Martín-Chivelet 2016). An additional 

assumption was made that any E/W panels were single axis mounted arrays for the similar 

reason that the optimal angle for maximum solar irradiation varies over the course of the day in 

the E/W direction (Martín-Chivelet 2016). Therefore, panels were further classified into 

orientations based on a derived orientation object feature and were separated into their final 

classes of C-Si single-axis tracking arrays and C-Si fixed axis arrays.  

 

Figure 1.3. Object-Based Panel Identification Workflow. The spectral and object-based 

ruleset used to delineate solar PV panels from surrounding landscape and by frame mount across 

the Central Valley. Here, the parallelogram indicates input imagery, rectangles indicate 

thresholds, and ovals indicate preliminary (orange) and final (green) shapefile outputs. The 

images composed of black rectangles were the ten PV templates of varying panel width and 

packing used in the template matching process.  

 We developed a ruleset to classify panels using spectral segmentation and object 
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geometries. The full mosaiced 2018 NAIP image was parsed into eight segments which were 

each further tiled into 46,000 x 46,000 pixel images (maximum extent of eCognition, at NAIP 

resolution this is roughly 745 km2), and each of the 140 images was processed individually using 

the developed ruleset shown in Figure 1.3.  

The eCognition segmentation and classification yielded a shapefile denoting individual 

PV panel locations, mounting technologies (orientation), and panel areas (number of pixels and 

NAIP resolution).  

2.6 Identifying installation year 

LandTrendr software is based on spectral-temporal segmentation algorithms that are 

useful for change detection in a time-series of moderate resolution satellite imagery (Landsat) 

and to generate trajectory-based spectral time-series data with minimal inter-annual signal noise 

(Kennedy, Yang, and Cohen 2010). LandTrendr takes the annual medoid composite pixel values, 

the band value closest to the median value of all corresponding pixels among each year 

considered (Kennedy et al. 2018), and uses user specified change and segmentation parameters 

to differentiate spectral epochs of a band of interest (in this case, NDPVI). The annual values 

were then fitted to a temporal vertex of the spectral segments as shown in Figure 1.4.  

 

 



 

 

17 

 

Figure 1.4. NDPVI Breakpoint Timeseries. The LandTrendr adjusted annual medoid NDPVI 

values (dotted line) with the Fit to Vertex (FTV) NDPVI time-series path (solid line and points) 

identified by LandTrendr of the array near Fairmead, California described in Figure 1.1. This 

figure shows the vertices (red) and segments after the FTV algorithms have been applied 

(adapted from (Kennedy et al. 2018)). This array was installed in 2016.  

The geometry of these spectral segments and their vertices can be used to determine years 

of change, magnitude and duration of change, as well as magnitude and duration of recovery. 

Here, we used three spectral epochs, and because the arrays are permanent once completed, there 

was no recovery back to prior land cover. This helped reduce noise as other changes in NDPVI 

(such as removal of a crop for rotation) have recovery periods.  

There are several pre-coded spectral indices that are implemented in LandTrendr for 

temporal change detection (Kennedy et al. 2018). Most prior studies that applied LandTrendr 

have examined large-scale forest disturbances, burn severity maps, cropland changes, and other 

coarse landscape changes (Cohen et al. 2018; FRAGAL, SILVA, and NOVO 2016; Reilly et al. 

2017; Runge and Grosse 2020; Schneibel et al. 2017; Schwantes, Swenson, and Jackson 2016; 

Shen, Li, and Wei 2017; X. Wang et al. 2016; Yang et al. 2018). Some studies have used 

LandTrendr to quantify urban (impervious surface) development using indices and pixel based 

classification methods (Liu et al. 2019; B. Wang et al. 2019; Xu et al. 2019). However, few if 

any studies have used LandTrendr for high-resolution applications such as land cover changes 

due to installation of agriculturally influenced PV arrays. 
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LandTrendr has recently been implemented in GEE for use with its open source remote 

sensing repository (Kennedy et al. 2018). The GEE LandTrendr pre-processing and control 

scrips were downloaded from their public repository called eMapR by Oregon State University 

and the NDPVI was added to the list of change indices. The start year of installation detection 

were assigned as 2008 as this was the earliest year with a CDL product and was the culmination 

of major solar federal and technology incentives (Efficiency 2010; Schoeffler 2009; Shah 2009; 

Solar Energy Industries Association 2019); 2018 was selected as the end year as it was the most 

recent NAIP imagery available for the region at the time of the study. Therefore, only arrays 

installed by late summer 2018 (end of NAIP imaging period) were identified. Collection, 

running, and change parameters which dealt with specifics of the temporal segmentation 

regarding spectral recovery, number of segments, magnitude of change, duration of change, 

amongst others (Kennedy et al. 2018) are shown in Table A1.1. The characteristic time-series 

pattern that these parameters are looking to delineate is shown in Figure 1.4. 

The red points in Figure 1.4 show the spectral epoch vertices identified by LandTrendr. 

The first vertex is the start year of detection, the second vertex is the year prior to change, the 

third vertex is the year of detection (YOD), and the fourth vertex is the end year of detection. 

The third vertex is the year of greatest spectral change (breakpoint) and was thus assumed to be 

the year of completed installation. 

The result of the LandTrendr algorithm was a raster stack of variables pertaining to 

temporal change. One of the raster layers was the Year of Detection (YOD) layer. The 

eCognition shapefile, along with manually digitized omitted panels (Appendix Text A1.1.1 and 

A1.1.2) was used to clip the YOD image to acquire the assumed year of completed installation 

and remove other changes in impervious surfaces. All available imagery was analyzed and the 
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first year of apparent completed solar PV installation was recorded, regardless of when landcover 

was cleared, or what month the installation was completed. 

One final detail in creating the dataset of remotely sensed ground-mounted solar PV 

arrays was the definition of an “array”. Here, we define arrays by a three-step process. First, 

identified panels were buffered by five meters and combined with nearby panels of the same 

orientation (class) to create a “sub-array”. The LandTrendr output was extracted from each sub-

array resulting in an installation year. Finally, sub-arrays within 50 meters were combined with 

nearby sub-arrays of the same orientation (class) and year of installation to create an “array”. 

To estimate year of installation accuracy, random samples were selected from 10% of the 

completed dataset, not including the 63 arrays where the year of installation was already 

manually interpreted, and the year of installation was manually interpreted using the same 

methodology described above. Therefore, 95 arrays were assessed in the validation.  

2.7 Determining to-date capacity, generation, and installation practices 

Once the dataset of PV locations and attributes was developed, the energy and crop 

implications of the array installation practices were assessed. Here we describe installed PV 

capacity, generation, and derived metrics of installation practices for each array. 

Packing factor (𝑃𝐹) was defined as the ratio of the panel area to the total ground cover 

area encompassed by the array panels and the interrow space between panels (Ong et al, 2013). 

According to Martín-Chivelet (Martín-Chivelet 2016), an optimal packing factor based on 

latitude would minimize land use change and retain maximum irradiation given shading and 

orientation. 𝑃𝐹𝑜𝑝𝑡 is calculated according to: 

𝑃𝐹𝑜𝑝𝑡 = 𝑃𝐹0 − 𝐴𝜑2 − 𝐵𝜑         (3) 

where 𝑃𝐹0 is the packing factor at 0 degree latitude which is 91.5% for a single-axis tracking 
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E/W facing array, and 100% for a fixed axis S facing array, 𝜑 represents the latitude of each 

array centroid , and 𝐴 and 𝐵 are fit parameter coefficients (Martín-Chivelet 2016). This optimum 

packing factor minimizes the loss of electricity yield from the shadow effect while also 

minimizing land use change, and thus crop loss. If the installations are not following the 

optimum packing factor based on latitude, there was additional unneeded cropland 

transformation, and therefore crop loss from the system installation. To account for single-axis 

tracking array potential, tilt between 10 am and 2 pm, the NAIP imagery acquisition timing, 

panel areas were corrected for a maximum total panel area deviation where each panel was 

assumed to be tilted by 21.92 degrees given the NAIP best practices (Bunis and Mootz 2007), 

assumed maximum single-axis tracking tilt angles of 45 degrees in either direction (Schneider 

2012), and the solar inclination timing for the Central Valley average latitude (NOAA 2016).  

Martín-Chivelet (Martín-Chivelet 2016) also provides a methodology for calculating 

Technical PV Potential or 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (kW). The equation for calculating capacity is defined by: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑃𝐹 ∗  𝜂 ∗  𝐺𝑆𝑇𝐶 ∗ 𝐴𝑆        (4) 

where 𝑃𝐹 is packing factor derived from the identified panels, 𝜂 is the efficiency of the average 

commercial system at the year of installation from (Barbose et al. 2020), 𝐺𝑆𝑇𝐶 is the irradiance at 

standard test conditions and is assumed to be 1 kW/m2 (Martín-Chivelet 2016), and 𝐴𝑆 is the 

total area of the system. For simplicity, because this study focused on commercial-scale ground-

mounted arrays, we assumed that the 𝜂 of each array was the average efficiency of commercial 

systems during the same year.  

The actual electricity generation (MWh) is dependent on weather, incident irradiance, tilt, 

efficiency, efficiency degradation, and soiling losses, and therefore must be modeled given these 

observations and assumptions. Each PV location’s hourly global horizontal irradiance, direct 
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normal irradiance, direct horizontal irradiance, dry bulb temperature, and wind speed are taken 

from National Solar Radiation Database weather files (NREL 2015). The hourly incident 

irradiance on both fixed and tracker modules is calculated using the pvlib python modules 

developed by SANDIA National Laboratory (F. Holmgren, W. Hansen, and A. Mikofski 2018). 

The single-axis tracker panels are assumed to rotate up to 45° in east and west directions 

(Schneider 2012). As opposed to the technical PV potential, the actual hourly electricity 

generated from each panel is calculated using the simple efficiency model developed by National 

Renewable Energy Laboratory (Gilman 2015). The PV efficiency degradation is assumed to be 

0.6%/year for pre-2010 installations and 0.3%/year for post-2010 installations based on Jordan et 

al. (Jordan et al. 2016). The soiling losses for PV electricity generation are taken as 3% for 

California (National Renewable Energy Laboratory 2017). Accounting for these factors, the 

annual timeseries of energy generation for each array was calculated.  

Farmland contains gradients of crop productivity due to changes in geology, soil, and 

topography. Low yield land is often called marginal land, which can be in some cases resource 

expensive and low yielding that it gives farmers a negative cost margin on crops grown 

(Martinez-Feria and Basso 2020). Comparing productivity of the surrounding land of the same 

ownership, practices, and crop type as the cleared land gives insight into the level of informed 

placement decisions.  

Metrics for determining the suitability of agricultural land to be converted to an array do 

not exist, so we developed a relative land productivity (𝑅𝐿𝑃) metric, which is a calculation of the 

productivity of the land transformed relative to the productivity of the surrounding land of the 

same crop type and ownership. Here, NDVI is used as a proxy for crop productivity as it 

commonly has been used in the past (Benedetti and Rossini 1993; Bolton and Friedl 2013; Funk 



 

 

22 

and Budde 2009; Maselli et al. 1992; Mkhabela et al. 2011; Pettorelli et al. 2005; Rasmussen 

1992; C. J. Tucker et al. 1985; Compton J. Tucker 1979). This metric provides insight about 

whether or not farmers and asset owners are installing PV arrays on plots of land that have been 

historically less productive compared to the rest of their fields. The framework for calculating 

relative land productivity is shown by: 

𝑅𝐿𝑃 =  
𝛴

𝑃𝑉 𝑁𝐷𝑉𝐼1
𝑄𝑠𝑒𝑐 𝑁𝐷𝑉𝐼1

+
𝑃𝑉 𝑁𝐷𝑉𝐼2

𝑄𝑠𝑒𝑐 𝑁𝐷𝑉𝐼2
+⋯

𝑃𝑉 𝑁𝐷𝑉𝐼𝑛
𝑄𝑠𝑒𝑐 𝑁𝐷𝑉𝐼𝑛

 

𝑛
       (6) 

Where 𝑛 is the number of years prior to the installation year to be considered, 𝑃𝑉 𝑁𝐷𝑉𝐼1 is the 

growing season (June - September) mean normalized difference vegetation index (NDVI) of the 

cropland area and crop type cleared for the array one year prior to installation. This is repeated 

through 𝑛 years prior for the same crop type as one year prior. This allows variations in NDVI 

due to crop rotations to be considered. Where 𝑄𝑠𝑒𝑐  𝑁𝐷𝑉𝐼1 is the growing season mean NDVI of 

the cropland area and same crop type as that cleared for the array falling within the Public Land 

Survey System (PLSS) quarter (Q) section denomination through n years prior. The average farm 

size in California was 348 acres as of 2019 (Brown 2020) and the Q-section area is 160 acres, 

which was thus a good approximation of farmers locally owned fields as many large commercial 

farms drastically increased the mean farm size. The section delineation is 640 acres, and thus 

would encompass more than one farmer's field area on average and would not be representative 

of a single farmer's decisions. All arrays converting rice were removed from the relative land 

productivity analysis due to the difficulty in using NDVI as a proxy for crop productivity 

regarding multiple phenological phase crops and flood irrigated areas (Nguyen et al. 2012). 

The eCognition panel shapefile was used to clip Landsat-derived growing season NDVI 

maps needed for the RLP metric. Because this is a relative metric, it is less important to 

determine what relationship NDVI has to each crop's quantitative productivity, and more 
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important to find regions of lower productivity compared to the surrounding field. Assuming 

fields contain these gradients of productivity, RLP values less than 1 indicate that the PV array 

was installed in an area of lower productivity cropland within a field (optimal placement 

decision), values equal to 1 indicate that the installed region of land was of equal productivity to 

the Q-section average (sub-optimal placement decision), and values of more than 1 indicate that 

the array was installed in a region of higher productivity (sub-optimal placement decision).  

To evaluate t-test validity for both packing factor and relative land productivty, 1000 

Monte-Carlo Kolmorgorov-Smirnov (KS) normality tests were performed for each technology 

and each year of installation. If the KS test suggested a normal distribution, subsequent two-

sided T-test were performed.  

The eCognition shapefile was also used to clip the CDL yearly images to determine what 

type of crops are preferentially being converted to solar arrays. For the purpose of future work 

regarding historical irrigation data, CDL crop types were grouped into and reported as Farm and 

Ranch Survey (USDA 2013) crop types. Cumulative area was calculated by multiplying the area 

of converted cropland for each array by the difference in the installation year and the end year of 

the study (2018). The cumulative area converted also accounts for crop rotation by taking the 

crop distribution of the previous five years and projecting the proportion of each crop forward 

for the area of crop converted for each array. This metric emphasizes the importance of overall 

temporal tendencies in which crops and what area of crops are worth converting for the lifespan 

of typical solar arrays. 

3. Results and Discussion 

3.1 Performance of the NDPVI and NBD indices in classification 

The NDPVI, NBD, and brightness spectral indices were able to spatially differentiate PV 
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arrays at NAIP scale, and NDPVI was able to temporally determine PV years of installation at 

Landsat scale as shown in Appendix Figure A1.3. C-Si PV panels tend to have high blue 

reflectance, high brightness compared to shadows, and a low to moderate NIR reflectance. 

Therefore, panels tend to have a NAIP derived NDPVI value > -0.25, a Brightness value > 50, 

and an NBD value > 0 (highly conservative values) at NAIP wavelengths. In addition, the 

change in this NDPVI was observed to be greater than the change in NDVI for converting 

agricultural land cover, and other land covers to a PV array. Remaining commissions were 

mostly removed via morphological and proximity features in eCognition, especially for tree row 

crops, and furrow irrigation which are both are spectrally similar to PV arrays and portray linear 

morphologies similar to PV panels. NDPVI was robust for differentiating the moderate-high blue 

reflectance and low NIR reflectance of PV arrays from surrounding land cover, and for detecting 

temporal disturbance in the LandTrendr algorithms. 

3.2 Spatiotemporal identification of large-scale commercial PV arrays 

 Figure 1.5 shows the identified array centroid geospatial coordinates, year of completed 

installation, and the frame technology of the 1006 commercial scale ground-mounted solar PV 

arrays detected in the Central Valley. We identified 644 fixed axis arrays (64% of total) 

composing 15% of installed capacity and 362 single-axis tracking arrays (36% of total) 

composing 85% of installed capacity. Of the 1006 identified arrays, 694 were agriculturally co-

located (active cropland the year prior to installation). The remaining 312 arrays co-located with 

fallow/idle cropland (189 arrays -- inactive agricutlure), developed land (107 arrays), and other 

land cover classes (11 arrays). The definition of an array used in this study allowed for adjacent 

arrays installed in different years to be differentiated.  
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Figure 1.5. Solar PV Arrays in the Central Valley. Geospatial coordinates and year of 

installation for detected solar PV arrays in California’s Central Valley determined using the 

integrated object-based and temporal segmentation framework (LandTrendr + eCognition). 

Upper Right Inset) Annual distribution of array installations for each frame technology along 

with the average array size for each technology over time on the right axis. Note that single-axis 

tracking arrays (orange) and fixed axis arrays (grey) are delineated by color in both figures.  
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This dataset was derived using the integrated object-based and temporal segmentation 

framework through eCognition and LandTrendr respectively. The object-based ruleset developed 

in eCognition identified 181,593 unique panel shapes across the Central Valley. Of the identified 

unique panels, 5,502 panel shapes were manually removed using manual annotation of 2018 

NAIP imagery resulting in 176,091 validated panel shapes (16,557,764 m2 panel area) and a 

commission accuracy of 97.0% (commission error = 3.0%). Commissions were mostly of 

developed land, tree crop shadows, fallow or idle cropland, alfalfa, and other crop types. Manual 

digitization of omitted panels resulted in an additional 98,952 panel shapes, although 77,139 

digitized panel shapes overlapped automated panel shapes in large part due to the use of template 

copying (see Appendix Text A1.1.1) and were merged with overlapped automated panels. In 

total, 210,368 individual panel shapes (22,227,832 m2 panel area) were identified by merging the 

automated detection and the manual digitization. By area, the omission accuracy was 74.5% 

(omission error = 25.5%). Of the identified panel shapes, 6.9% were fixed axis (S oriented: 

3,441,255 m2 of panel area) and 93.1% of which were single axis (E/W oriented: 18,786,577 m2 

of panel area).  

Of the 1006 arrays identified from those panel shapes, 63 (omission error = 6.26%) 

required manual interpretation of the year of completed installation (from 2008 to 2018) through 

interpretation of LandTrendr pixel time-series plots alongside historical imagery. Validation of 

installation year showed that 53 of 95 arrays (56%) had the same interpreted year of installation 

as the LandTrendr medoid prediction with an additional 22 arrays (23%) being within one year. 

Two arrays in the validation dataset were installed in 1998, which was outside of the timespan of 

LandTrendr, resulted in a year of installation of the final year of the study period, 2018. This 

should be noted as a limitation of LandTrendr, that any arrays installed prior to the beginning of 
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the study period will result in either a year of installation of the final year of the study period, or 

none at all. Including the two statistical outliers (20 year deviation, 2.86 standard deviations from 

the mean), the standard deviation of the year difference was 3.5 years. Further analysis is needed 

to determine how much impact this limitation had on boundary year installations (2008 and 

2018). For many of the arrays where the LandTrendr year of installation was predicted one year 

later than the manually interpreted year of installation, the array was observed in the latter 

months of the manually interpreted year. So, although the “year of installation” was technically a 

year prior, the array likely generated very little electricity during the partial year (e.g., 

November-December 2013 vs 2014). Because LandTrendr by default returns a spectral annual 

medoid value, the year of installation will inherently be the year where the array was installed for 

a long enough portion of the year to drastically change the spectral trajectory of the annual 

medoid value and likely generate energy for a majority of the year. 

3.3 Current commercial solar electricity production and observed policy responses 

Figure 1.6 shows the installed capacity and generation of all arrays identified by this 

study. The cumulative capacity of the identified arrays was 3.55 GW. The cumulative generation 

of all identified arrays up to 2018 was 36,531 GWh, 7,798 GWh of which was generated in 2018 

alone. The average annual electricity generation for single-axis tracking arrays in 2018 was 

18.69 GWh and for fixed axis arrays was 1.60 GWh per array. Note annual installed capacity 

peaks at 2012, 2016, and 2018 for single-axis tracking arrays, and 2011 for fixed axis arrays.
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Figure 1.6. Installed Capacity and Annual Generation of Identified Arrays. The total 

installed capacity (top) and annual generation (bottom) for the identified arrays. Values are not 

cumulative, and only represent the contribution of arrays installed in the respective year of 

installation. Note that the colors in the installed generation plot delineate the relative contribution 

of arrays installed in respective years to total annual generation.  

The California Energy Statistics and Data portal reports that as of 2018, 731 solar PV 

arrays were connected to the grid in all of California accounting for 10.64 GW of capacity and a 

generation of 24,981 GWh or 12.8% of California’s in-state generation in the same year (Nyberg 

2020). Note that this excludes the solar thermal arrays (1.2 GW and 2,545 GWh reported in 

2018) which were not the focus of this study because they are primarily located in the Mojave 

Desert outside of the Central Valley and thus are likely not co-located with agriculture. 
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Therefore, the 7,798 GWh and the 3.55 GW from the 1006 identified Central Valley arrays 

accounted for 31.2% of reported solar electricity generation and 33.36% of reported solar 

capacity respectively, and 3.99% of California’s total in-state electricity production in 2018 

(Nyberg 2020).  

Module degradation was primarily responsible for the decreasing trend in electricity 

generation (Figure 1.6) in each year’s respective contribution. Annual changes in local solar 

irradiance included in the generation model also impact the annual value, but did not show an 

annually decreasing trend. Note that 2013 and 2016 were years of high irradiance, which 

explains the installed generation increases of all arrays present in those years. 

Notable peak years in the total number of installed arrays (Figure 1.5) were 2012 and 

2016. The Emergency Economic Stabilization Act of 2008 (Shah 2009) included an eight year 

extension on the Solar ITC and eliminated the monetary cap of the credit (Solar Energy 

Industries Association 2019). However, a stipulation to be eligible for the ITC was that projects 

had to be in service no later than four calendar years after the calendar year in which 

construction began (U.S. Department of Energy 2021). It is likely that applications for the credit 

are concentrated at the end and beginning of each renewal in case the credit is not renewed. 

Therefore, if there was a surge in applications for the credit and “construction commencement” 

in the year of the original extension (2008), then the surge in the number of observed 

installations in 2012 and 2016 was likely indicative of this four year ITC eligibility requirement 

repeating itself, and the potential expiration of the extension in 2016. In addition, the ITC has 

been set to expire every four years since 2016 pending the Congressionally decided extension of 

the program (U.S. Department of Energy 2021). The ITC extension along with the end of the 

four year construction period requirement (since 2016) would suggest that another peak in the 
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number of solar installations would occur in 2020. Peak installations in also 2016 was perhaps 

also related to the California Public Utilities Commission (CPUC) adoption of the current Net 

Energy Metering (NEM) 2.0 program early in the 2016, which is available to customers in the 

major utility service providers in the Central Valley (PG&E, SCE, and SDG&E); this program 

provides full retail rate credit for overproduced energy exported to the grid (CAPUC 2016).  

It must be noted, however, that the most recent ITC extension projects have decreasing 

tax incentives over the next four years. Projects starting construction between January 1st, 2020, 

and December 31st, 2022, will have a 26% tax credit, between January 1st, 2023 and December 

31st, 2023 will have a 22% tax credit, between December 31st, 2023 and December 31st, 2025 

will have a 10% tax credit (U.S. Department of Energy 2021). The decreasing credit incentives 

could drive up early installations over the next four years, with potentially fewer installations at 

the end of the extension period unless the program incentives change. However, this is also 

dependent on energy prices (typically increasing), other incentives, and general changes in the 

cost to install solar.  

The distribution of frame technologies shows that fixed axis array installations vastly 

outnumber single-axis tracking installations over the last decade and tend to be smaller. Despite 

the lower proportion of installations compared to fixed axis, single-axis tracking arrays have 

contributed 84.86% of installed capacity over the study period. This was mostly due to the 

median size of single-axis tracking arrays (1.19 MW or 2.04 ha) which was more than ten times 

the median size of fixed arrays (0.32 MW or 0.39 ha). A possible reason is that fixed axis arrays 

are cheaper to install, and thus small scale farmers who are installing smaller capacity arrays are 

more likely to install fixed axis arrays. This may also suggests a difference in the purpose of the 

installation between the two frame technologies born out of cost.  
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Appendix Figure A1.2 shows the northward latitudinal deviation for fixed axis 

installations in 2008 and single-axis tracking installations in 2010 and the corresponding 

decrease in annual average Global Horizontal Irradiance (GHI). Note that only 31 arrays and 33 

arrays were installed in 2008 and 2010 respectively, thus a few northward arrays draw the 

distribution towards lower GHI. However, a potential explanation for a northward trend in 

installations in both years is the Federal Depreciation Modified Accelerated Cost-Recovery 

System (MACRS) enacted in 2008, which was accelerated in 2010 by the Tax Relief, 

Unemployment Insurance Reauthorization, and Job Creation Act of 2010, where installers could 

claim a federal 50-100% (2008 vs. 2010) depreciation deduction on qualifying capital equipment 

purchased and placed in service by December 31, 2011 (N.C. Clean Energy Technology 2016). 

3.4 Packing factor and relative land productivity 

This study specifically looks at adjacent co-location where active cropland was replaced 

by solar arrays, and where surrounding cropland remains. Although, with the methods described 

here, there was no way to determine if some form of agricultural or pollinator habitat remained 

directly beneath the arrays.  

Current optimal installation practices which emphasize the cost of installation and 

electricity production could lead to sub-optimal impacts falling on the agricultural stakeholder. 

Potential sub-optimal practices include a disregard for the productivity of farmers’ fields and 

unnecessary spacing between parallel module arrays. Faults in placement and spacing of arrays 

might lead to significant and unintended losses in crop yield. 

To assess co-location practices, the arrays that were both larger than one panel (non-

array) and were within the CDL and Farm and Ranch Survey definition of cropland, were 

extracted from the 1006 identified arrays. Filtering by active cropland the year prior resulted in 
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694 arrays (69% of the dataset) for the agricultural co-location analysis.  

Figure 1.7 shows the pacing factor (PF) deviation from optimum and the relative land 

productivty (RLP) distribution for the dominant frame technologies in the Central Valley. As 

evidence by the different distributions, fixed axis and tacking arrays have somewhat different 

installation practices. All distributions were sufficiently normal (minimum KS score of 0.51), 

thus a two-sided t-test was sufficient for further analysis.  

 Packing factor distributions for both technologies fell significantly below optimum in the 

Central Valley. Fixed axis packing factor was an average of 3.54% below optimum (p<2e-16) 

while single-axis tracking packing factor was an average of 10.92% below optimum (p<2e-16). 

When accounting for maximum potential panel tilt due to timing of NAIP imagery, single-axis 

tracking packing factor was an average of 8.58% below optimum (p<2e-16). Relative Land 

Productivity distributions for fixed axis arrays fell significantly below an RLP of 1 (p =1e-12), 

while single-axis tracking array distributions were not significantly different from 1 (p = 0.66). 
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Figure 1.7. Packing Factor Deviation and Relative Land Productivity of frame 

technologies. (Left) Observed PF - Optimum PF of installations offsetting all crops across all 

years of installation for the two dominant technologies. The dotted blue line depicts the region 

where the actual packing factor is optimal. (Right) Relative Land Productivity across all crops 

for both dominant technologies. The blue line shows a RLP value of 1 indicating that the offset 

crop land perfectly represents the productivity of the surrounding cropland of the same crop type. 

Boxplots denote quartiles, and standard significance is denoted by the asterisks and the ‘ns’ for 

non-significant. The colored arrows to the right of each plot denote impact on cropland (C) and 

electricity production (E). Green, yellow, red, and black indicate positive, neutral, negative, and 

not effects respectively. 

 To assess temporal changes in packing factor and relative land productivity (Appendix 

Figure A1.4), these metrics were aggregated across arrays installed each year for each 

technology. For both packing factor and relative land productivty, all distributions were 

sufficiently normal (minimum KS score of 0.49 for both), thus a two-sided t-test was sufficient 

for further analysis. 

 Temporal packing factor distributions for both technologies fell significantly below 

optimum in the Central Valley. Packing factor p-values ranged from 0.0034 for 2010 to 7.1e-12 

for 2015. Temporal relative land productivity p-values were non-significantly different from 1 

until 2014. Relative land Productivity p-values ranged from 0.96 for 2011 to 7.2e-5 for 2017. 

Figure 1.7 and Appendix Figure A1.4 show that packing factor deviations fell 
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significantly below optimal for both frame technologies, and in each year of the study period. 

This suggests that current practices place panels too far apart, resulting in unnecessary 

conversion of cropland, which has not improved through time. The main impact here was crop 

loss. Single-axis tracking arrays do need increased spacing compared to fixed axis arrays due to 

the shading factor of the angled modules (Martín-Chivelet 2016) which was accounted for in the 

𝑃𝐹0 factor, however, this extra spacing was overcompensated. The large deviation in single-axis 

tracking array packing factor likely results from the perceived need for greater spacing to allow 

the passage of maintance vehicles. In addition, single-axis tracking frames are more expensive to 

install, thus installers may preferentially forgo more cropland than was necessary to ensure that 

there is no shading. Single-axis tracking arrays were also ten times larger on average and often 

converted low value cropland (wheat and pastureland). For large and expensive arrays 

converting low value cropland which also require spacing for easy maintenance, there is no 

current incentive for the utility installer to minimize crop loss. This dataset suggests the need for 

a required standard for ground-mounted PV array packing distance which would reduce the 

unnecessary crop loss for both fixed axis and more so for single-axis tracking PV arrays while 

retaining maximum utility electricity generation.  

Fixed axis arrays tended to be placed on marginal lands, while 1-axis tracking arrays 

showed no RLP preference. High RLP values suggests that a more effective placement decision 

could have been made to reduce loss agricutlural production while low values suggest marginal 

land was used for the installation optimizing land use. For fixed axis arrays, RLP was 

significantly below field average while single-axis tracking arrays were not significantly 

different from the field average. Temporally, RLP was not significantly different from the field 

average until 2014 and 2016 when RLP was significantly lower and likely more effective spatial 
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placement began occurring. This suggests the field spatial productivity was not a consideration 

for either technology until 2014 where it became a consideration for fixed axis arrays. One factor 

that RLP does not account for is proximity to roads, which is a major factor in determining 

within field placement.  

A potential economic explanation for single-axis tracking arrays not converting marginal 

land was that more expensive installations outcompete the opportunity cost for converting 

marginal land when converting larger arrays. Single-axis tracking arrays are more expensive than 

fixed arrays, therefore the opportunity cost of installing on lower productive land was too great 

in value to make marginal land decisions, especially when installing on larger proportions of a 

farmer’s cropland. However, farmers installing single-axis arrays converted larger portions of 

their fields or entire fields (single-axis average total area: 35 acres, fixed axis average total area: 

3 acres). Relative land productivty would not represent spatial field placement if an entire crop 

field was converted.  

3.5 Trends in installation practices 

Appendix Figure A1.2 the technology latitudinal and GHI poleward deviations in 2008 

(fixed axis) and 2010 (single axis) where there was a significant shift poleward towards lower 

GHI values in these two years. The average latitude of all other study years was 37 degrees 

North with installations in all years of the study reaching into the northern Central Valley. 

Because GHI decreases with poleward installation, this tendency for installations to average in 

the mid-central valley, and the 2008 and 2010 northward tendency further indicate sub-optimal 

decisions for regional installation. Optimally, arrays would be installed toward the southern 

Central Valley for peak GHI and thus peak electricity generation (34-35 degrees north). Packing 

factor deviation, relative land productivity, and spatial GHI preference results demonstrate that 
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inefficiencies in installation practices have negatively impacted solar capacity in the Central 

Valley.  

Overall, trends in installation practices were related to frame technology, and most likely 

resulted from differences in cost and purpose of the array. Fixed axis arrays tend to be cheaper to 

install, and smaller in size suggesting that these arrays are installed for local small scale farmer 

purposes (irrigation and farm operation) and therefore, more considerations are made in 

reference to crop loss (lower packing factor deviation than single-axis tracking arrays, and RLP 

that suggests the use of marginal land) to make solar PV a financially viable option for these 

smaller scale farmers and regular operation. Single-axis tracking arrays converted large plots of 

land for large solar electricity production. Therefore, there is little incentive to make decisions 

based on crop loss (large packing factor deviation, and RLP that suggests no consideration of 

spatial field productivity) when the value and cost of the solar installation is so high. However, 

despite the value and cost of single-axis tracking array installations, the observed deviation from 

best practices for installation have a negative impact on cropland. 

3.6 Total estimated crop loss and crop preferences 

Figure 1.8 shows the total area converted per crop and the array installation distribution 

per crop in the Central Valley from 2008 to 2018. In total, 33.8 km2 of cropland was foregone for 

the installation of solar arrays in the Central Valley between 2008 and 2018. Three commodity 

crops, pastureland, wheat, and hay and haylage, accounted for 59% (20.0 km2) of total converted 

area. The opportunity cost of converting large plots of low value crops such as these to solar is 

lower than for specialty crops, and thus these crops are more cost effective to convert to solar. 

The other side of the dichotomy is that converted high value crops were mostly orchards. The 

total converted area was moderate to low in comparison to low value crops, however the total 
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number of arrays installed in almond, pistachio, and other orchard fields was second only to 

pastureland. This preference for co-locating smaller sized arrays (majority fixed axis) arrays with 

orchards and larger arrays with pastureland suggests that the high value crops such as orchards 

warrant small scale PV deployment (most likely for irrigation purposes) while pastureland 

warrants low opportunity cost to installing large PV arrays. Moderate value crops such as 

vegetables, corn, and many double crops, are high enough in value to not warrant installation, 

but low enough in value to not make the PV investment pay off in a reasonable amount of time. 

 

Figure 1.9. Installed Solar Crop Preferences. Farm and Ranch Survey crop groups (grouped 

from CDL crop type) involved in the co-location of 694 installed PV arrays in the Central 

Valley. Includes crops foregone in crop rotation of foregone cropland. (TOP) Cumulative crop 

loss area based on the total area of the array and the year of installation (cumulative up to 2018). 

(BOTTOM) Number of arrays installed by the most recent crop type and technology. Note that 

crops with “+” separating two crop types are double crops. 
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4. Conclusions 

This new dataset provides information on individual installation practices as well as 

regional trends of solar array installation in space and time. The dataset provides a robust and 

unbiased prediction of actual installed capacity and generation of commercial scale solar 

electricity in the California’s Central Valley. An overall assessment of to-date installation 

practices suggests that practices have been sub-optimal and have resulted in significantly more 

crop loss than was necessary and significantly less electricity production than what optimal 

practices would provide. The sub-optimal installation practices described here can influence 

future incentives for the agricultural switch to solar in California and ensure the utility and the 

farmer’s interests are both considered. With the projected 60 GW increase in ground-mounted 

PV array capacity over the next ten years (Energy Information Administration 2015; U.S. Energy 

Information Agency 2019), is it imperative to institute policy to manage future installations and 

prevent unnecessary cropland losses while preserving energy and financial incentives for 

enhancing solar production. 

Installing a PV array and removing a certain area of crops creates impacts across the 

food, energy, water nexus. Some aspect of the food and energy portion of the nexus were 

explored here, however, a full LCA of the foregone food production, foregone water 

consumption from both irrigation and prior energy source, foregone energy consumption, and 

associated carbon footprint would yield important data on the total effects of the large scale 

switch to solar. In addition to a FEW-LCA, this information has economic implications. At the 

FEW-LCA and economic level, efficiency of installation practices becomes a much more 

important factor in determining if PV array installation is at the moment beneficial with current 

practices. Therefore, future work will produce a FEW-LCA with an associated economic 
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cost/benefit analysis of the regional conversion to solar energy (Joshi et al. 2014).  

As stated, C-Si linear arrays are the most common commercial installation of PV arrays. 

However, as more technologies are developed for cost and efficiency purposes, the classification 

ruleset described here will have to be expanded. Future work could include the application of this 

framework with additional technologies (Cadmium Telluride, diagonally oriented arrays, 2-axis 

arrays, concentrating solar power arrays, and bifacial arrays), which would simply require more 

installations and thus, more training locations as they become available to incorporate variability. 

In addition, NAIP 2020 imagery has recently been released for California, and will warrant 

evaluation using the new imagery. This new dataset also provides training data for machine 

learning algorithms such as a convolutional neural network to train and apply over all future 

imagery without the significant person-time investment described here. A streamlined workflow 

applying deep learning could be applied at the CONUS level to characterize solar electricity 

generation and installation practices. Other potential benefits of solar PV installation are 

enhanced recharge and reduced evaporation resulting in more positive hydrological budgets 

which would need to be modeled to quantify. 
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APPENDIX 

 

 

 

 

 

 

 

 

 

 

 



 

 

42 

Text A1.1 Solar PV Detection and Characterization Methodologies 

The following sections contain additional methodology for the detection and characterization of 

ground mounted solar PV arrays in the Central Valley.  

Text A1.1.1 Manual Digitization of Omitted Panels and Systems 

 After the eCognition ruleset was executed across the entire study area, it was noted that 

many of the arrays contained omitted panels. It was conjectured that drawing results from 

incomplete arrays may result in misrepresentation of packing factor, capacity and generation, 

number of arrays, and year of detection, and also would not provide a sufficient dataset for future 

detection training frameworks. Therefore, the decision was made that to accurately depict current 

installation practices and create a usable dataset, all omitted panels must be manually digitized.  

Likely explanations for the omissions were as follows but not limited to: boundary panels 

omitted where eCognition texture threshold was not met because of few boundary panels in the 

training dataset, boundary panels of different lengths/shapes/sizes from rest of array, boundary 

panels where the minimum requirement of two proximal panels was not met, soiling (dusty) of 

panels where a portion of the array has been cleaned and a portion has not, vertically tilted panels 

that were conjectured to be out of commission, unfinished arrays where frames were installed but 

PV modules had not been installed yet, Poor contrast with underlying ground (usually, 

impervious surfaces), high variability of the underlying ground surface (grass, soil, impervious, 

etc.), arrays with panels overlapping NAIP exported scene boundaries, NAIP Stitching errors 

resulting in non (example near San Joaquin). 

Text A1.1.2 Data and Digitization Workflow 

Manual digitization occurred in ArcGIS Pro (Esri Inc. 2021). Prior to digitization, the 

panel, sub-array, and array grouping described in Methods 2.6. in the main paper was performed 
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to generate centroids for each potential array and simplify the search process. NAIP 2018 was 

imported into ArcGIS Pro from the California Department of Fish and Wildlife ArcGIS portal 

(California Department of Fish and Wildlife 2020). Identified panel shapes (grouped from each 

eCognition tile run) and potential array centroids were imported into ArcGIS Pro. Potential 

Array centroids were ordered by latitude (for progress record keeping purposes) and each was 

individually zoomed to and centered for analysis. For each centroid, eCognition identified panels 

were displayed and omitted panels were digitized using the “Draw Polygon” tool to best 

represent each linear module array within the larger array. For panels with partial identification, 

the panel was only completed if the new shape represents the orientation of the actual panel (ie: 

for south oriented panels, only complete portions of the panel which have an E/W length greater 

than the N/S length). Special care was taken to not include maintenance buildings (often similar 

size, but proximal and occasionally spectrally and qualitatively similar to panels). A general rule 

for digitization was to always keep the eCognition algorithm shape file and try to best represent 

the omitted panels with the identified shapes provided by the algorithm. 
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Collection Param NDPVI Setting 

startYear 2005 

endYear 2019 

startDay 1-Jan 

endDay 31-Dec 

index NDPVI 

maskThese cloud, shadow, snow, water 

Run Param NDPVI Setting 

maxSegments 6 

spikeThreshold 0.5 

vertexCountOvershoot 3 

preventOneYearRecvoery TRUE 

recoveryThreshold 0.0909 

pvalThreshold 0.05 

bestModelProportion 0.75 

minObservationsNeeded 6 

Change Param NDPVI Setting 

delta loss 

sort fastest 

year 2008 - 2018 

mag > 50 

mmu 3 

Table A1.1. LandTrendr GEE Parameters. Parameters set within the LandTrendr GEE control 

scripts defining the NDPVI year of detection acquisition.  
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Text A1.2 Results and Discussion  

The following sections contain results and discussion points of the methodology and sub-optimal 

practices.  

Text A1.2.1 eCognition Computation Time 

eCognition does have a server add on which can automatically tile and process large 

amounts of imagery, however that license was not obtained and eCognition runs had to be 

performed manually. eCognition ruleset runs were performed on two different computers. The 

primary computer contained an Intel 8 Core Xeon E5-2637 CPU at 3.50 GHz with 256 GB of 

RAM and secondary computer used an Intel Xeon E7-4860 at 2.27 GHz with 512 GB of RAM. 

Total eCognition computation time for the 137 NAIP tiles was 130 hours, 16 minutes, and 46 

seconds with 81% (by number of images processed) of the processing occurring on the primary 

computer. The secondary computer was used mostly to run the smaller edge tile images of the 

dataset. However, this computation time does not account for tiling and NAIP imagery 

preparation which would add 80 – 120 hours to the processing. 

Text A1.2.2 Net Energy Metering (NEM) Dataset 

The numerically large number of permits in the Central Valley (compared to the 1006 

identified arrays within this dataset) within the NEM dataset is most likely due to several 

common practices in PV permitting. A new permit must be filed every time a change is made, 

removal and replacement of panels requires a permit, and multiple permits can exist for a single 

array depending on how many connections the array has to the grid. Often, an approved PV 

system is not installed in the same year of application approval. Especially for larger arrays, this 

temporal gap in approval and completed installation can be up to several years. However, utility 

managers are required to use the panel models from the application approval year, and thus use 
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temporally inefficient panels for the actual installation. This study assumed that the average 

panel efficiency (derived from the NEM dataset itself) was the average efficiency for the year of 

installation. If optimal panel efficiency is not being deployed on an annual basis, potential 

electricity production has been hindered. Another source of error is the lack of completion of this 

dataset based on the absence of a requirement for the permitting companies themselves to 

acquire a permit to install PV arrays. The increase in capacity assuming complete 

monoscrystalline solar modules for the created dataset accentuates the gap in capacity and 

demonstrates that inefficiencies in installation practices have negatively impacted solar capacity 

in the Central Valley. 

Text A1.2.3 First Classification Attempts: Random Forest 

The application of machine learning algorithms has seen an immense increase because of 

user interfaces such as Google Earth Engine expediting the learning curve (Kennedy et al. 2018). 

One of the more basic forms of machine learning regarding classification is the random forest 

classifier which is easily executable with GEE documentation. Following some methodology of 

Malof et al. (2016) the first attempt at creating this data set involved using a supervised 

classification random forest algorithm with both Landsat resolution (30m) and NAIP 2016 

resolution (1m) with several thousand training data points and several indices including the 

newly developed NDPVI. An “agricultural” mask was applied to the entirety of the images using 

the CDL classification for “cultivated” to remove urban areas before classifying. The result of 

the mask and the random forest classifier incorporating NDPVI was impervious surfaces in 

agricultural areas. When applied over small regions (50km2) the random forest classifier for both 

image resolutions resulted in minimum omissions and inclusions and had overall accuracies in 

the 85-99 percentile.  
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 If one assumes that NLCD is accurate, sub-setting changing impervious surfaces in 

agricultural settings yields the greatest potential for identifying the installation of PV arrays. This 

attempt was made and produced a preliminary dataset of 176 PV array locations and extents. 

However, after further analysis, it was noted than many arrays, specifically smaller array of less 

than around 0.8 hectares were simply missed by NLCD. This did, however, provide an initial 

training dataset of 176 PV array locations across the Central Valley that was pivotal in further 

classification.  

 A second attempt was made with multiresolution anomaly detection with random forest 

classifiers. This methodology was developed to emulate a single neuron of a neural network. A 

random forest classifier was run at Landsat 30m resolution with associated training data as an 

impervious surface “anomaly” detector. This detected large scale impervious surfaces for which 

higher resolution the NAIP 2016 1m image were subset to decrease computation time. The 

second random forest was run at NAIP scale only for locations associated with the Landsat scale 

anomaly. This did increase computational efficiency vs running a random forest at NAIP scale 

over the entire Central Valley, however, yielded too many omissions and inclusions to satisfy the 

needs of this study.  

 Inclusions for this technique numbered in the thousands, as well as many omissions. 

These misclassifications were most likely due to differences in spectral value of scenes due to 

different atmospheric weather conditions of the date of retrieval for each scene and low 

resolutions leading to more homogenous pixel values at the regional scale. Although this 

methodology was unsuccessful at the regional scale because of standard issues with remote 

sensing big data, this method of multiresolution anomaly detection using a series of random 

forests may be useful at finer scales to increase computational efficiency. 
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Text A1.2.4 Improvements in Remote Sensing Methods for Land Use Change Analysis 

Standard pixel based classification algorithms work by taking in a user defined training 

dataset and developing threshold ranges and relationships to whatever input bands or data are 

given. When training these machine learning algorithms, the user inherently includes their own 

training selection bias. This bias is unavoidable. These trained algorithms then often only 

encompass the variability of the training dataset and potentially omit scenes with higher 

variability and different context (Blaschke et al. 2014; Blaschke and Strobl 2001; Hay, Niemann, 

and McLean 1996). This becomes even more of a problem when the scale of the desired 

classification is variable (Baatz and Schape 2000). However, by selecting conservative spectral 

and morphological thresholds as a trained user in as many dimensions as possible, the user 

encompasses the potentially higher variability of datasets than the training data, and thus creates 

a robust user-defined hyperspace for a land cover class to exist in. This is a different method for 

minimizing training bias as the conservative thresholds should allow for more variability than 

what is observed in the training dataset. 

With enough research and experience, a user becomes an “expert” and is the best 

qualified “machine” for identifying the object-based attributes that make up a theoretical 

hyperspace that a solar panel object exists in. Therefore, these user set thresholds contain the 

intrinsic value of the user’s entire knowledge base. This is a common debate between OBIA and 

machine learning users. When training machine learning algorithms, the user inherently includes 

their own training selection bias. Using an expert knowledge base simplest the algorithms and 

increases computational efficiency while retaining accuracy and potentially increasing it. 

As the world population grows (and thus, urbanization), there grows a need to accurately 

classify this urbanization and quantify its effect on natural resources (Patela et al. 2015). Earlier 
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studies have looked to temporally classify urbanization (Liu et al. 2019; B. Wang et al. 2019; Xu 

et al. 2019) and this paper provides yet another method for quantification. The newly developed 

NDPVI is a simple two band index for identifying change in impervious surface (urban 

sprawl/development) over long already recorded time scales at high resolution. This new index 

could be used to validate previously made land use datasets with higher resolution images from 

the same time period that were previously unable to provide impervious surface information 

(Chen et al. 2019; Sun et al. 2017; Zha, Gao, and Ni 2003; S. Zhang et al. 2018). Other change 

indices like NDVI as values are extremely dependent on the crop type. NDVPI showed the 

greatest potential for identifying land use change to impervious surfaces across many crop types.  

There are big data implications for the combining of this dataset and methodology with 

that being developed by Jordan Malof and those in the Duke Energy Initiative on urban PV 

installations (Bradbury et al. 2016; Malof et al. 2015). Filling the gaps in both datasets and 

methodologies would provide information on total energy grid implications of the move towards 

solar energy. The combined methodologies could then be applied across CONUS to observe a 

nationwide switch to solar and the associated implications both good and bad. 
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Figure A1.1 PV Module Efficiency and Monocrystalline Share Through Time. Reported 

solar PV module efficiency and monocrystalline share through time (Barbose et al. 2020). Figure 

A2.1 extrapolates mono and polycrystalline efficiency from a multiple linear regression using 

this data. 
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Figure A1.2 Identified PV Array Latitude and GHI Distributions. Latitude data was the 

centroid latitude of each array. Average GHI for each array was extracted from the array shape 

file. The GHI raster was downloaded from The World Bank (Alexandratos, Nikos & Bruinsma 

2012) and are available at: solargis.com/maps-and-gis-data/download/world. Note that the 

plotting method used here uses as constant area plot method (non-normalized). Therefore, within 

year distributions are accurate, but can be misleading when comparing year to year distributions 

due to differing numbers of arrays in each distribution. 
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Text A1.2.5 Year of Detection Limitations 

LandTrendr by nature searches the spectral history of a pixel for the single year of 

greatest spectral change for an index (NDPVI). Change in NDPVI from crops to PV arrays at 

Landsat resolution is significant enough to activate the LandTrendr breakpoint segmentation. 

However, the clearing of land from crops (usually low blue reflectance and high NIR reflectance, 

and therefore, low NDPVI) to bare soil, is often just a great change as the installation and even 

sometimes greater in magnitude. Therefore, it is likely that many of the years of detection are 

detecting the year of land use change and the completed installation may occur during the same 

year, or later. Ideally, the morpho-spectral segmentation rule set would be run on sub-meter 

resolution imagery every year over the entire Central Valley which would identify arrays 

installed in each year of the imagery. Therefore, only years of completed installation due to the 

spectral and morphological requirements of the segmentation ruleset. However, imagery of this 

resolution and return speed does not exist, and the computation to run such a dataset would be 

immense. Here we assumed that all YOD’s were both the year of land use change and the year of 

completed installation. 

Text A1.2.6 Detected Array and Technology Limitations 

 In addition, newer and less prevalent technologies like bifacial arrays and concentrating 

solar power arrays are not yet prevalent enough to produce a good dataset for differentiating 

characteristics at the regional scale. Crystalline Silicon linear arrays are the easiest to detect 

because although they do slightly vary in characteristics through time, in general their spectral 

and geometric information have remained constant. However, some crystalline silicon arrays did 

not fit the generated templates and were non-normally oriented, or panels with a width of more 

than 4-5 modules. Once these new technologies get a foothold in the PV industry and begin to 
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become more numerous, characteristics will homogenize, and regional detection will become 

possible. 

Text A1.2.7 Limitations of Relative Land Productivity 

RP is limited by the resolution (30m) and could be drastically improved with higher resolution 

data due to the fact that for certain crops, productivity might only be detectable at finer scales. However, 

for RP to make an estimate monthly imagery is required (minimum) over the entire study area and over a 

year range that is desired for comparison. Landsat is currently the best fit for those conditions. In addition, 

therein lies bias with using PLSS Q-sections as assumptions for a single farmer's proximally owned 

farmland. If the actual farm size falls below 160 acres, then we are biasing results by multiply owned 

farms and potentially different practices. If the actual farm size falls above 160 acres, then we are only 

analyzing a larger sample of a farmer’s total field which may not represent the farmers total spatial 

productivity. 
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Figure A1.3 Landsat NDPVI Timeseries Across Differing Landcovers. Median annual 

NDPVI study period timeseries for four points near Fairmead, California. The photovoltaic 

timeseries is for the same array depicted in Figure 1.4. The agricultural example was a nearby 

almond field, the impervious surface example was a nearby parking lot, and the water example 

was a nearby agricultureal pond. Note that LandTrendr was parameterized to look for a sudden 

increase in NDPVI which remains after the breakpoint as shown in the photovoltaic panel. Also 

note that the photovoltaic NDPVI values shown here differ from the NAIP reported values in 

Section 3.1 because these values were derived from Landsat Imagery which differs from NAIP 

in resolution and in spectral bandwidth. 
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Figure A1.4. Temporal Trends in Packing Factor Deviation and Relative Land 

Productivity. (Top) Observed - Optimum PF for all installation years. The blue line represents 

the optimum packing factor. (Bottom) Relative Land Productivity across all crops for each 

installation year. The dotted blue line shows a RLP value of 1 where the offset crop land would 

perfectly represent the productivity of the surrounding cropland of the same crop type. Boxplots 

denote quartiles, and standard significance intervals are denoted by the asterisks and the ‘ns’ for 

non-significant.  
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CHAPTER 2:  
IMPLICATIONS OF CO-LOCATED SOLAR PV INSTALLATIONS ON THE FEW NEXUS 

IN THE CENTRAL VALLEY 

Abstract 

Crops and solar panels have recently had significant land use competition as they have 

similar ideal conditions for maximum yield. Understanding agriculturally co-located solar 

photovoltaic (PV) installation practices and preferences is important to foster a future where 

solar power and agriculture co-exist with limited impact on food production. The recent boom in 

solar photovoltaics is replacing cropland at an increasing rate, yet there is a gap in the literature 

with spatiotemporal details that would help inform and improve future array installations. To fill 

this gap, we investigated the impact of solar co-location through initial resource and economic 

values which promote best installation practices. We recently reported a novel dataset of 

commercial scale crystalline silicon fixed and single-axis tracking solar PV installations in the 

Central Valley which have been spatially and temporally delineated, 694 of which (2,052 MW) 

are adjacently co-located with active agriculture (Chapter 1). This study deployed that dataset to 

assess the broad food, energy, water (FEW) and carbon resource impacts and perform a simple 

economic budget of these co-located solar installations through the 25 year expected lifespan of 

each array. Major takeaways under our base case impact scenario (2008 – 2042) were the impact 

on food production (1.64x1012 forgone kcal), significantly higher forgone irrigation water use 

compared to lifetime O&M water use (factor of 5), and the significant reduction of CO2 

emissions when compared to natural gas for the study period (factor of 8). The lifespan (through 

2042) simple economic budget analysis from the cropland owner’s perspective yielded a net 

positive budget of $13 billion, an economic payback year of 2023, and showed the budgetary gap 

between the final net positive budget, and cropland cultivation (16 times more valuable to install 
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solar than to cultivate cropland). This suggests the need for policy that balances cropland 

preservation when installing solar, to avoid a major negative impact on U.S. agricultural 

production as solar becomes more prevalent. 

1. Introduction 

The current climate change trajectory induces vulnerabilities to our finite food, energy, 

and water (FEW) resources. As we attempt to mitigate this challenge by transitioning from fossil 

fuels to renewable energy, it will be imperative to optimize new infrastructure for the entire FEW 

nexus. One mechanism to move towards sustainability and reduce carbon dioxide (CO2) 

emissions is the broad-scale deployment of solar photovoltaic power which would drastically 

reduce future greenhouse gas emissions relative to typical fossil fuel consumption (Dolan et al. 

2012; Hsu et al. 2012; Whitaker et al. 2012). While recent research identifies the spatial and 

temporal extent of solar PV (Barbose et al. 2020; Bradbury et al. 2016; Hernandez et al. 2014; 

Malof et al. 2019; Malof et al. 2017; M. Wang et al. 2018, Chapter 1), few studies have assessed 

current regional practices and long term FEW impacts of agriculturally adjacent solar co-location 

(Barron-Gafford et al. 2019). It is imperative to perform such research as ground-mounted solar 

photovoltaic (PV) capacity in the United States is projected to triple over the next decade 

(Energy Information Administration 2015; U.S. Energy Information Agency 2019).  

Agricultural co-location has been proposed to have FEW benefits for both farmers, and 

the asset owners (Barron-Gafford et al. 2019; Macknick 2019, 2020), with some even proposing 

large scale dual-use deployment which is being called agletrics (Miskin et al. 2019). Solar 

electricity production and cropland share common optimal placement conditions in solar 

irradiation, topography, and climatic conditions (Adeh et al. 2019). These common conditions 

create local land use competition for cropland and electricity production. Specifically, the 
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Central Valley, California embodies some of the nation’s most valuable land (25% of United 

States national crop output, 5% of United States utility-scale net electricity generation [entire 

state], 20% of the Nation’s groundwater extraction, and 17% of the Nation’s irrigated land, 

occurs on less than 1% of the nation's farmland (Faunt et al. 2009; US Energy Information 

Administration 2021). This highly valuable land is also where agricultural adjacent solar co-

location has been widely incentivized and deployed resulting in California being the nation's top 

producer in electricity from solar (US Energy Information Administration 2021). 

Therefore, the decision to convert Central Valley cropland to solar must be calculated. 

One consideration is that Central Valley irrigation has high energy requirements and is highly 

regulated due to the regions water scarcity and deep groundwater (California Department of 

Water Resources n.d.; Dickinson 2016; Pavley 2014, 2016). Therefore, irrigated cropland in the 

region brings risk which is accentuated in drought years. Converting this land to solar may 

reduce overall risks to the farmer, especially during drought years (He et al. 2019).  

Additionally, the decision to convert land to solar could include solar financing 

incentives. With the aforementioned positive FEW and carbon impacts, these continued 

legislative efforts that improve the economic viability of co-location are The Solar Investment 

Tax Credit (ITC) from the Energy Policy Act (Office 2005; Solar Energy Industries Association 

2021; U.S. Department of Energy 2021), The Emergency Economic Stabilization Act of 2008 

(Shah 2009), The American Recovery and Reinvestment Act (Schoeffler 2009), the Sustainable 

Groundwater Management Act (SGMA) (California Department of Water Resources n.d.; 

Dickinson 2016; Pavley 2014, 2016) and The California Public Utilities Commission's (CPUC) 

Net Energy Metering (NEM) Tariff 2.0 (CAPUC 2016). These legislative efforts along with 

continuously decreasing costs to manufacture and install solar (Feldman et al. 2021; Fu, 
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Feldman, and Margolis 2018) make solar co-location an economically viable replacement for a 

large portion of fossil fuel electricity production by converting cropland.  

Although there is evidence that PV systems could last as long as 30-40 years (Congress 

2007; Dolan and Heath 2012; National Renewable Energy Laboratory et al. 2018) most current 

solar array system lifespans are assumed to be 25 years based on performance warranties, natural 

degradation (20% loss in efficiency after 25 years), and life cycle cost standards for electrical 

equipment (10 CFR 436 2017; Khan and Arsalan 2016; National Renewable Energy Laboratory 

et al. 2018). Once this period is met, asset owners have the options to: refurbish the system to 

extend its life; extend the term of the performance contract or power purchase agreement; sell the 

system at fair market value; or remove the system and return the site to the prior land use 

(National Renewable Energy Laboratory et al. 2018).  

The recent boom in solar which began in 2008 because of the legislative efforts described 

above, decreasing costs to produce and install solar (Fu, Feldman, and Margolis 2018), and a 

more recent effort to combat climate change and finite fossil fuel sources with renewable 

energies (Abas et al. 2015), is still in its infancy (Walker et al. 2020). Walker et al. (2020) 

reports that roughly 90% of solar PV installations globally have begun operation in just the past 

7 years (as of 2020). Solar arrays installed in 2008, approximately when the national surge in 

solar installations began (Chapter 1 of this Thesis), will not reach their 25 year PV warranty and 

lifetime assumption maturity until 2032. Thus, we’ve yet to see major decommission from solar 

back to agriculture or assess long term impacts of large land use competition between solar and 

agriculture.  

Numerous studies have predicted the FEW nexus impacts of agrivoltaic solar 

installations, where field crops such as lettuce are grown directly beneath the shade of a solar 
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array installation (Amaducci et al. 2018; Aroca-Delgado et al. 2018; Barron-Gafford et al. 2019; 

Dinesh et al. 2016; Dupraz et al. 2011; Goetzberger et al. 1982; Macknick et al. 2014; Majumdar 

et al. 2018; Marrou et al. 2013; Ravi et al. 2016; Valle et al. 2017). In a recent study, Barron-

Gafford et al. (2019) performed an empirical examination of the positive impact on food (200-

300% increase in yield), water (5-15% increase in soil moisture retention), and energy (1-3% 

increase in generation) using a PV control, agricultural control, and agrivoltaic site in Biosphere 

2. Many of these studies such as this consider small scale in-situ arrays and do not include 

regional adjacent co-located installation predictions. They are also often limited to annual 

growing season analysis rather than full solar life-cycle projections.  

This study sought to assess the impact of co-located solar arrays in the Central Valley 

under the standard lifetime assumptions by forecasting food, energy, water, carbon, and 

economic implications through three “lifespan phases” of co-located solar arrays; the installation 

phase (2008-2018, given the dataset from Chapter 1) where arrays are being installed and 

operated, the operation phase (2019-2032) where there’s no new installations but all “current” 

installations are operating and maintained, and the decommission phase (2032-2042) where 

arrays which have been operating for 25 years are disconnected, deconstructed, recycled and 

disposed of, and follow the return to agriculture post-lifespan option the following year. We built 

our study scenario under the assumption that after 25 years of operation, land was returned to its 

prior use (in this case, agricultural production) to reduce assumptions regarding module 

replacement, resale, or continuation. Although, we acknowledge that actual practices will likely 

vary greatly across the available post-lifespan options, especially regarding specialty crops which 

can require multiple years of growth before viable yield. The three phases depicting the 25-year 

life cycle of an agriculturally adjacent solar co-located array are conceptually outlined in Figure 
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2.1. These three phases are similar to the upstream (installation), ongoing (operation), and 

downstream (decommission) life cycle stages used by Hsu et al. (2012).  

We present a lifespan impact analysis (under the scenario assumptions described above, 

stopping at the field edge) of the newly developed spatiotemporal ground mounted co-located 

PV installation (2008-2018) dataset from Chapter 1, of broad FEW and carbon impacts and a 

simple economic budget of to-date agriculturally adjacent solar co-location installations in the 

Central Valley. We performed this analysis through the 25 year expected lifespan of each array.

 

Figure 2.1. Solar PV Lifespan Conceptual Diagram. Graphical diagram of the 25-year life 

cycle of an agriculturally adjacent co-located solar array. For the purpose of this study, the 

Installation Phase was 2008 - 2018, the Operation Phase was 2019 - 2032, and the 

Decommission Phase was 2032 - 2042. The change in color of the solar panels depicts module 

degradation and therefore loss in efficiency over time. Note that the resources depicted in this 

figure are food production, electricity generation, water use, and economic budget from the 

perspective of the cropland owner. The direction of the arrows indicate whether a resource is 

increasing or decreasing during each phase, and its color indicates whether this change is a 

positive (green) or negative (red) impact.  
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2. Results 

2.1 Resource and Economic Impact Result Description 

The PV dataset provided by Chapter 1 contains 1006 solar PV arrays, 694 of which are 

co-located with agriculture. Both this study and Chapter 1 define co-location as solar PV 

installations which directly replace agricultural land and continue to have agricultural land 

adjacent to the array after placement. This study does not explicitly consider agrovoltaics, co-

location with crops directly beneath arrays. Although we acknowledge that with the available 

information, we do not know what practices are occurring directly beneath the arrays. This study 

focused on the 694 agriculturally adjacent PV installations which account for 2,052 MW 

identified in Chapter 1. The phases of installation, operation, and decommission were applied to 

a base case scenario and an alternative high resource case scenario and low resource case 

scenario (uncertainty scenarios), described below. Assumptions described in the methods section 

are essential for the interpretation of these results. Measures of uncertainty for each resource and 

its economic dollar value differ between resources and are also described in the methods section 

with detailed descriptions in supplementary table 1. Final cumulative resource and economic 

values are displayed in Figure 2.2 and reported in Table 2.1. 
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Figure 2.2. Cumulative Lifetime Food, Energy, Water, and Economic Impacts. 25-year 

lifespan impact analysis of solar co-location in the Central Valley, California for food (upper 

left), energy (upper right), water (lower left), with a simple economic budget from the cropland 

owner’s point of view (lower right). Note that the shaded regions for the installation, operation, 

and decommission phase shown in the upper left continue throughout the remainder of the 

figures. Shaded regions depict the uncertainty scenarios for each resource of the same color.  

2.2 Predicted impact on food production 

The dataset from Chapter 1 reports total area of the array which is assumed to be the total 

area of forgone cropland. The 694 agriculturally co-located arrays accounted for 33.8 km2 of 

cropland, or roughly 0.034% of total state farmland (Brown 2020). Cumulatively through the 25 

year lifespan of each array, the total area was 1,038.3 km2 of forgone cropland. Results from 

Chapter 1 reports crop type derived from an extraction of the Cropland Data Layer (CDL) from 

each array shape which accounts for crop rotation five years prior to placement. Crop specific 
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kilocalorie (kcal) output forgone between 2008 and 2042 was 1.64x1012 kcal for the base case 

scenario. The yield based uncertainty scenarios for forgone crop production ranged from 

1.55x1012 to 2.00x1012 kcal for the low and high case scenarios respectively. 

 

Figure 2.3. 2018 County Level Contribution to Forgone Kcal. Each counties contribution (%) 

to the total forgone kcal in 2018. Note that only counties which intersect the Central Valley 

Alluvial Boundary are shown.  

 Figure 2.3 gives spatial context to the forgone kcal. Note the increase in kcal contribution 

from Northern to Southern counties. Specifically, Kings, Kern, and Tulare counties account for 

62% of total forgone kcal in 2018.  
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2.3 Predicted impact on electricity production and forgone carbon emissions 

Total cumulative electricity generation of the 694 arrays by the year 2042 ranged from 

113 TWh for the polycrystalline scenario to 116 TWh for the monocrystalline scenario with the 

actual reported mono-share (base) scenario resulting in 114 TWh generated. Assuming the 

average efficiency of each array type Barbose et al. (2020) represents the distribution of 

monocrystalline and polycrystalline installations in the identified dataset, a potential of 2 TWh 

was forgone due polycrystalline installations over monocrystalline installations. In the low case 

scenario, where all installations were polycrystalline, 3 TWh was forgone.  

 In terms of utility service districts, Pacific Gas & Electric (PG&E) dominated the solar 

co-located installations containing 62% of total installations totaling 847 MW of installed 

capacity. The nine other utility service providers contained identified solar co-located arrays are 

shown in Appendix Table A2.3.  

 Energy saved by not irrigating converted land ranged from 36.68 to 38.82 GWh (low and 

high scenarios respectively) with a base scenario of 38.01 GWh. Note that this is five orders of 

magnitude less than the total electricity generation. 

 Total cumulative forgone CO2 emissions from switching to solar was 23.7 Mega-tonnes 

(Mt) and varied from 23.5 to 24.3 Mt given the monocrystalline vs. polycrystalline uncertainty 

scenarios. CO2 emissions forgone by not irrigating converted land ranged from 0.128 to 0.136 

Mt for the uncertainty scenarios, with a base scenario forgone emission of 0.133 Mt. CO2 

emissions due to the life cycle analysis (LCA) of C-Si solar PV installation, operation, and 

decommission ranged from 2.73 to 3.96 Mt for the uncertainty scenarios with a base scenario 

emission of 3.12 Mt. Temporal change in CO2 emissions through 2042 are shown in Figure 2.4.  
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Figure 2.4. Cumulative Change in CO2 Emissions from Installed Solar PV. Cumulative 

change in CO2 emissions due to lifespan solar co-location installations in the Central Valley. In 

black is forgone CO2 emissions from not using natural gas for energy generated, in blue is 

forgone CO2 emissions from not using natural gas energy required for irrigating converted 

cropland, and in red is the CO2 emissions from crystalline silicon ground mounted LCA through 

all three phases.  

2.4 Predicted impact on water use 

As of 2016 California Department of Water Resources irrigated maps, 63% (438) of the 

694 arrays were on previously irrigated land. Cumulative forgone irrigation for the study period 

was 0.36 km3 or roughly 300,000 acre-feet. Under the differing precipitation uncertainty 

scenarios, this ranged from 0.35 to 0.37 km3. This is water that we assumed would have been 

used for irrigating the cropland that was converted to solar. For reference, the State of California 

uses roughly 25,800,000 acre-feet/yr for agricultural irrigation (Cody et al., 2015). Therefore, on 

a lifespan annual average basis (25-years), these solar installations forgo roughly 11,400 acre-

feet/yr, or 0.044% of California's annual irrigation water use.  

 Operation and Maintenance (O&M) water use was cumulatively estimated to be between 

0.029 to 0.130 km3 with a base case scenario water use of 0.077 km3 or roughly 62,000 acre-feet. 

This suggests an overall decrease in water use due to the removal of irrigated area which was 4.7 

times the increase in water use due to operation and maintenance. 
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2.5 Predicted lifetime financial impact from the cropland owner’s perspective 

Our economic impact analysis was based on the discounted cash flow (DCF) model, 

predicting total future value of the array as compared to initial (and continuing) costs of 

installation, operation and maintance, and now, crop loss. During the first several years of 

installation phase, the installation cost dominates the PV budget. However, by 2027 (high 

scenario), 2023 (base scenario) and 2020 (low scenario) the Economic Payback Time was 

reached, and the total PV budget became positive. Table 2.1 reports cumulative scenario values, 

and base scenario values per MW and per lifespan year (25-years). To inform future installations, 

this data suggests that a farmer stands to net $254,000/MW/yr. 
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Resource 
Base 

Scenario 

High 

Scenario 

Low 

Scenario 

Per MW (2,052 

MW) 

Per Year 

(25 yr) 
Units 

Food 1.64 2.00 1.55 0.000799 0.0656 
Trillion 

kcal 

Energy 114 116 113 0.0556 4.56 TWh 

Irrig Energy 0.037 0.037 0.035 0.000018 0.0015 TWh 

Irrigation 0.36 0.37 0.35 0.00017 0.014 km3 

O&M 

Water Use 
0.077 0.125 0.029 0.0000375 0.00308 km3 

Carbon 23.7 24.3 23.5 0.0116 0.949 Mt 

Irrig Carbon 0.133 0.136 0.128 0.0000647 0.00531 Mt 

Inst Carbon 3.12 3.96 2.73 0.00152 0.125 Mt 

Food$ $830 $990 $780 $0.404 $33.2 
2018 Mil 

USD 

Energy$ $20,900 $21,300 $20,700 $10.2 $836 
2018 Mil 

USD 

Water$ $20.6 $21.0 $19.9 $0.0100 $0.823 
2018 Mil 

USD 

O&M$ $725 $1,280 $667 $0.353 $29.01 
2018 Mil 

USD 

InstCost$ $6,380 $8,650 $5,130 $3.1 $255 
2018 Mil 

USD 

Total 

Budget$ 
$13,000 $14,700 $9,800 $6.34 $520.00 

2018 Mil 

USD 

Table 2.1. Cumulative Resource and Economic Impact Values.  End of lifespan cumulative 

resource and economic values for all analysis of this study. Results are shown for the base case 

scenario, high resource case scenario, low resource case scenario, and the base case scenario 

divided by total capacity (2,052 MW) and total system lifespan (25 years, not 36 years which is 

the length of the study period). Note that “Irrig Energy” is the energy that would have been 

required to irrigate the converted land, “Irrig Carbon” is the forgone CO2 emissions from not 

using the energy required to irrigate coveted land, and “Inst Carbon” is a prediction of CO2 

emissions based on Hsu et al., 2012, of harmonized CO2 emissions due to the processes of 

production, transport, and installation.  

3. Discussion 

3.1 Food, energy, water, and carbon emission resource impacts 

This study was a simple one way impact analysis (C. Zhang et al. 2018) because of its 

unilateral relationships and lack of feedback loops. However, because this data does not exist 

elsewhere, a simple impact analysis can help promote further investigation and new data 

collection.   
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Chapter 1 reports that 59% of cropland area forgone by arrays was composed of 

pastureland, wheat, and hay and haylage, which amongst other crops do not directly contribute to 

human diets. Thus, over 1.64x1012 kcal removed from cropland production is not equivalent to 

removing this amount directly from human diets. However, with expected food needs increasing 

between 60-110% by 2050 (Alexandratos, Nikos & Bruinsma 2012; Molotoks et al. 2018; Ray et 

al. 2013; Tilman et al. 2011), any negative impact on global crop production should be 

minimized through best installation practices. Especially considering 1.64x1012 kcal is enough 

kcal removed from production to feed roughly 90,000 people (2,000 Calorie diet) per year of the solar 

lifespan. Chapter 1 also reported that fixed axis arrays tended to be installed on marginal land 

(less productive land). This suggests that our predictions here are likely an over prediction, due 

to the use of average yields, when much of the converted land was therefore likely lower than 

average in yield. The preference for converting marginal should become common practice to 

minimize impact to crop production. 

In 2019, the average U.S. residential utility customer consumed 10.6 MWh of electricity 

(EIA 2020). Using this assumption on a per year basis, the electricity generated from these 649 

arrays (4.6 TWh) could account for roughly 428,000 U.S. households. In addition to the sub-

optimal packing and spatial field placement (Relative Land Productivity and Global Horizontal 

Irradiance preferences) shown in Chapter 1, another source of sub-optimal installation practices 

shown here was the likely installation of polycrystalline modules rather than monocrystalline 

panels. Although monocrystalline modules are typically more efficient, they also have higher 

production costs (Luque and Hegedus 2011), and thus may be more attractive to the small-scale 

farmer. Under the low scenario, this resulted in a potential loss in cumulative electricity 

generation of 3 TWh, or enough electricity for 8,000 average U.S. homes for each year of the 

study period.  
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 In regard to water, studies assessing the life-cycle of solar arrays often only look at O&M 

water use and report this as a potential negative of solar installations (Klise et al. 2013). Solar PV 

does not require active cooling like concentrating solar power (CSP) arrays, and thus only 

require water for washing and potable usage for monitoring the site (Klise et al. 2013). Klise et 

al. (2013) does acknowledge that the construction phase for solar PV arrays uses significantly 

higher O&M water use than any other portion of the lifespan of the array. This study found that 

co-located arrays forgo 4.7 times as much as would be used for O&M over the operational 

lifespan of the array. Despite the large uncertainty (drought year or wet year), by 2042 

cumulative forgone irrigation was not highly variable under differing uncertainty scenarios. This 

suggests that forgone irrigation was largely driven by crop preferences, rather than year to year 

precipitation. Because the “value” of water is a difficult metric to measure and is not 

representative of the cropland owner's point of view (difference from the “cost” of water), we 

attempted to calculate a total cost for farmers to irrigate based on energy requirements and water 

right contracts. An assumption of this impact analysis was that water that would have been used 

for irrigation was truly forgone rather than redistributed. This is unlikely to be entirely the case 

due to an economics originating phenomenon known as Jevon's paradox in which improved 

access or efficiency of a resource does not necessarily result in the conservation of the resource, 

but instead results in increased consumption due to resource benefits (Alcott 2005; Jevons 1865). 

This is a question only solar-practicing farmers could answer and should be the focus of future 

surveys and policy to regulate water use.  

Total forgone CO2 emissions from forgone energy consumption by non-irrigating land 

was 0.133 Mt which was two orders of magnitude less than forgone emissions from energy 

generated. This quantification emphasizes the importance of sustainable practices reported in 
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McCarthy et al. (2020) in moving forward with sustainable irrigation practices and advances in 

energy technology. In addition, CO2 emissions from the system LCA (3.12 Mt) were 

significantly less than forgone CO2 from the switch away from natural gas consumption by a 

factor of 8.  

Without focused sustainable management (e.g., conservation tillage rather than plow 

tillage) many agricultural lands are under a negative to neutral carbon budget (especially with 

tillage). Thus, carbon sequestration forgone due to the removal of crop was considered negligible 

and was left out of the quantified CO2 emissions (Follett, 2001). This is an assumption that 

should be evaluated and tested in future work. 

3.2 Economic analysis and the need for preserving cropland 

The benefits of solar are far reaching in both the environmental and the economic realms. 

Even under the low scenario, CO2 emissions are cut in half over the lifespan of solar arrays as 

compared to using a relatively “efficient” form of fossil fuel, natural gas. Economically for the 

farmer, the total net positive budget by 2042 was 16 times the value of crops forgone. The 

budget was largely dominated by energy generated from the solar installation. This suggests that 

from the farmers point of view, the most profitable practice by far is to convert cropland to solar. 

With no incentive to continue or return to cropland production, there will likely be a large-scale 

conversion of cropland to solar, challenging both national and global food security, and potential 

increasing prices of food. Unless the value of food increases ten-fold to the point where this gap 

in land value is closed, financially, a farmer should install solar. We should evaluate policies that 

prioritize cropland, despite this difference in value. 

Under the return to agriculture scenario, there was significant financial gain for the 

farmer, and crop loss was reduced as compared to a non-return to agriculture. In Chapter 1, we 
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found a dichotomy of crop conversion preferences with commodity crops (pastureland) dominating area 

converted and high value specialty crops (orchards) having a large number of solar installations on 

cropland with less area converted. Specialty perennial crops such as many orchards tend to be climatically 

constrained and can take years to go from planting to production (Lobell et al. 2006). Unregulated 

conversion of high value land could have impacts on future crop prices and availability. However, 

converting irrigated orchards rather than non-irrigated pastureland could reduce overall water 

consumption. Overall, solar co-location was shown to be highly profitable, and thus likely to continue to 

expand without regulation, this could have significant impacts on food production and water availability. 

Thus, our research suggests the need to account for location-specific food and water resources when co-

locating solar PV to reduce impacts on U.S. agricultural production and water as solar becomes more 

prevalent. In addition, localized social resistance is a primary opposition for broad scale 

implementation of solar (Pascaris et al. 2021), and regulation prioritizing cropland and local 

hydrology would likely improve social acceptance, and large implementation of solar. 

Regulation such as this would switch the solar co-location conversation from land use 

competition to complementary land use (Pascaris et al. 2021). 

3.3 Limitations 

 This one way impact analysis was intended to provide a starting point for more detailed 

research on FEW, carbon, and economic feedbacks of solar co-location. This study therefore has 

several areas that could be expanded in future work. In terms of assessing CO2 emissions, this 

study does not look at changes in carbon cycling from ground cover change under different 

ground cover conditions (bare soil, cover or pollinator crop, agrivoltaic cover crop, and gravel 

covered), changes in microbial respiration, or CO2 emissions from production of solar array. In 

addition, CO2 emission values are constant and based on life cycle averages.  

 This study also does not attempt to incorporate changes in property value, price of food, 
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or the water and energy consumed for the material acquisition, production, transport, installation, 

or recycling of the arrays. In general, there was minimal to no feedback between resources, and 

thus a complex multiple way impact analysis would better be able to assess scenario impacts on 

all the others. 

4. Methods 

4.1 Site description 

 The legislative incentives and changes in decision making were the motivation for the 

Central Valley study area. The area used to delineate the Central Valley was the alluvial 

boundary derived by Faunt 2012 (Faunt 2012). Chapter 1 reports the necessary spatiotemporal 

data of solar PV installations in the Central Valley for this analysis. The entirety of data required 

for this analysis are rarely included in other solar PV datasets, making it difficult to perform a 

similar regional analysis elsewhere. 

4.2 Projected Resource Assumptions 

For the base scenario of each resource, annual values were calculated for the installation 

phase based on reported total cropland area (food, water), energy generated (energy, carbon), 

growing season precipitation and USGS water use (water), historical installation costs (budget), 

and historical averages for O&M water use and cost. The value of the resource forgone or 

generated in 2018 was forecast forward through the operation and decommission phase assuming 

that the crop rotation pattern persists, resource impacts end after the 25th year of operation, other 

than forgone which returns one year post termination. More detailed descriptions of resource 

values used and scenarios can be found Appendix Table A2.1. 
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4.3 Forgone food 

Heller et al., 2013 suggests that one possible functional unit for assessing food related 

LCA questions in the production perspective is a single nutritional aspect such as energy (kcal) 

or protein (g) (Heller, Keoleian, and Willett 2013). For the purpose of this study, we chose kcal 

as our functional LCA unit. To estimate forgone kcal given a total forgone area for each crop 

type, we first calculated the Caloric density per square meter of 45 crop types (including double 

crops) forgone due to solar co-location. Kcal and historic yield data was gathered for each crop. 

Kilocalorie and yield food data sources were the USDA FoodData portal, Independent California 

Department Reports, nutritional food dietary websites, and assumptions based on similarity to 

other crop types depending on the availability of the data. Double crop forgone kcal were also 

assumed to simply be the kcal sum of the two comprising crop types. A table of sources can be 

found in Appendix Table A2.2, and is being actively updated to improve sources. The 

calculation of forgone kcal was calculated by: 

𝐹𝑜𝑜𝑑𝐹𝑜𝑟𝑔𝑜𝑛𝑒(𝑘𝑐𝑎𝑙) = 𝐶𝑎𝑙𝑜𝑟𝑖𝑐 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑘𝑐𝑎𝑙

𝑘𝑔
) ∗ 𝑌𝑖𝑒𝑙𝑑 (

𝑘𝑔

𝑚2) ∗ 𝐴𝑟𝑒𝑎 (𝑚2)  (7) 

The dollar value of food was calculated using the 2013 USDA Farm and Ranch Irrigation 

Survey (FRIS) and 2018 Irrigation and Water Management Survey (IWMS) (USDA 2013, 

2018). Missing crop types (including double crops) were assumed based on perceived similarity 

to other crop types which were present in the data. Again, double crop dollar value was assumed 

to be the sum of the two crop type dollar values. Depending on crop type, yield data was 

collected using differing mass units and thus unit conversions were performed to normalize crop 

masses to kilograms from pounds, tons, hundredweights, boxes, and bushels. Yield data was 

from the USDA’s National Agriculture Statistics Service Crop releases from 2018 through 2021. 

The dollar value of forgone food was calculated by: 
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𝐹𝑜𝑜𝑑𝐹𝑜𝑟𝑔𝑜𝑛𝑒($) = $𝑉𝑎𝑙𝑢𝑒 (
$

𝑘𝑔
) ∗ 𝑌𝑖𝑒𝑙𝑑 (

𝑘𝑔

𝑚2) ∗ 𝐴𝑟𝑒𝑎 (𝑚2)    (8) 

Yield forecasts are difficult and often highlight differing future trends depending largely 

on assumptions. A study from Ray et al., (Ray et al. 2013) found that although not enough to 

account for the predicted doubling in food needs by 2050, some of the world's key crops (maize, 

rice, wheat, soybean) will likely increase in yield over the next 30 years, while Lee et al (Lee, 

Gryze, and Six 2011) found overall decreases in yield for wheat over the same study period, but 

acknowledged potential increases with CO2 fertilization. Unlike annual crops, perennial crops 

are less adaptable and thus more susceptible to climate change and are more agreed upon to 

decrease in yield by 2050, especially with decreases in water availability in California (Lobell et 

al. 2006; Pathak et al. 2018).  

Because the primary crops forgone were both low value annual crops such as wheat and 

high value perennial crops such as almonds, we used a combination of scenarios (overall 

increase and decrease in yield, and consistent yield at 2018 predictions. The base case scenario 

for forgone food in kcal and the dollar value of forgone food was thus a continuation of 2018 

predicted yield. The uncertainty scenarios used were an overall (high) 0.82%/year increase in 

yield (United States mean wheat yield increase by 2050 from (Ray et al. 2013) supporting 

information Data S1.), and a (low) 0.24%/year decrease in yield (median decrease in almond 

yield of 12% from 2000 to 2050 assumed from Figure 3 of (Lobell et al. 2006)). 

4.4 Electricity production and carbon emissions 

Major assumptions regarding electricity production included: all arrays were connected to 

the grid during the time of operation, no arrays were installed before 2008 or after 2018, thus 

efficiencies for all three scenarios are based on 2008 - 2018 data, arrays are disconnected from 

the grid after 25 years of service (post installation year) meaning modules are not replaced or 
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connected for longer than their warranty, and after 25 years, the arrays no longer require 

maintenance and do not generate any energy.  

Electricity generation for the installation phase was taken from Chapter 1 where weather, 

incident irradiance, tilt, efficiency, efficiency degradation, and soiling losses were accounted for 

in a simple efficiency model developed by National Renewable Energy Laboratory (Gilman 

2015). Generation was projected during the operation phase with all arrays operating at 2018 

conditions including an annual 0.6% (pre-2010 installations) and 0.3% (post-2010 installations) 

efficiency degradation as described by Jordan et al. (Jordan et al. 2016). As stated, during the 

decommission phase, arrays that reach their 25 year limit for each respective year were removed 

from operation and thus did not generate energy post termination. This trend continued until 

2042, the final year of operation for arrays installed in 2018.  

Not only is there energy generated by the solar arrays, but also forgone energy 

consumption from not irrigating the array area. This assumes that irrigation was truly forgone 

and not redistributed, an assumption we discuss in the next methods section. County level energy 

requirements to irrigate were calculated from total energy use and total groundwater and surface 

water irrigated water use reported in (McCarthy et al. 2021). Resulting county level rates for 

irrigative energy use were given in GWh/m3. This was multiplied by the predicted change in 

water use (forgone irrigation - O&M water use) for the base, high, and low change in water use 

scenarios. Although this study did not consider energy requirements for the material acquisition, 

production, transportation, and installation of the solar arrays due to missing data sources, we do 

account for CO2 emissions from these processess.  

 For the Installation Phase historical energy prices, utility service districts which contained 

co-located solar arrays were either directly contacted (Modesto Irrigation District, Sacramento 
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Municipal Utility District), or their data was gathered via their utility websites (Power and Water 

Resource Pooling Authority, PG&E, Eastside Power Authority, Southern California Edison), or 

via openEI database (Lodi Electric Utility, Merced Irrigation District, Redding Electric Utility, 

Turlock Irrigation District).  

  To determine the utility provider region for each array, array centroids were intersected 

with the California Electric Utility Service Areas shape file from California Energy Commission, 

2019. Historical utility service provider specific energy cost data was used for the dollar value of 

energy generated and forgone energy consumption form not irrigating during the installation 

phase. This data was therefore sensitive to which utility provider the array was connected during 

operation. 

The EIA definition, agricultural production falls within the industrial sector (U.S. Energy 

Information Administration 2021). According to the EIA, nominal electricity prices will increase 

by 1.8% per year (compound annual growth rate) from 2020 to 2050 (U.S. Energy Information 

Administration 2015) for the industrial sector. This assumption was used to estimate the increase 

in the price of electricity during the operation and decommission phases (2019 - 2042). 

 Uncertainty scenarios for energy generated were based on two end member technologies: 

100% monocrystalline installations (high scenario) or 100% polycrystalline installations (low 

scenario). Lawrence Berkeley National Lab’s (LBNL) Tracking the Sun report database 

(Barbose et al. 2020) reports temporal average efficiency and % monocrystalline share of 

modules installed nationally. We performed a multiple linear regression explaining large non-

residential (>100 kW & <= 5000 kW) efficiency by monocrystalline share and installation year. 

We then set the monocrystalline share variable to 0 (100% polycrystalline) and to 1 (100% 

monocrystalline) to predict average temporal efficiencies of the two module compositions. 
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Figure A2.1 in the supplementary material shows the reported average efficiency and predicted 

monocrystalline and polycrystalline efficiencies through time. 

 Three sources of change in CO2 emission were assessed for this study; CO2 forgone from 

natural gas consumption by energy generated, CO2 emissions forgone from natural gas 

consumption by energy that would have been used for irrigation, and CO2 emissions generated 

from the PV system LCA (Leccisi et al. 2016). The PV system LCA from Leccisi et al. (2016) 

includes monocrystalline and polycrystalline CO2 emissions from ground mounted solar array 

material acquisition, manufacturing, transport, and installation (installation phase) for the three 

major PV producing regions (European Union, The United States, and China). To calcualte 

predicted emissions for our arrays, the high scenario assumed monocrystalline, the low scenario 

assumed polycrystalline, and the base scenario accounted for temporal monocrystalline share 

from Barbose et al. (2020). This does not include CO2 emission from the forgone need to irrigate 

which is why it was included separately in this study. 

4.5 Change in water use 

The presence of irrigation for an array area was inferred from the Chapter 1 PV array 

dataset and the most recent (2016) irrigated area raster from the California Department of Water 

Resources. If any part of the array shape was considered irrigated in the nearest year prior to 

installation, then the cropland area and all respective crops within the rotation were assumed to 

be irrigated. A major assumption here regarding irrigation was that irrigation was truly forgone 

and not redistributed to surrounding cropland. We acknowledge that this is likely not the case for 

many arrays but yields a potential benefit to solar in water scarce areas if redistribution is 

prohibited.  

Crop specific irrigated depths were taken from the 2013 USDA FRIS and 2018 IWMS 
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(USDA 2013, 2018). As was the case with forgone food, irrigated depths for double crops were 

assumed to be the sum of irrigated depths for each crop. Total irrigation needs are highly 

dependent on many factors, one of the most important being growing season precipitation (Hane, 

Pumphrey, and Station 1984; Narasimhan and Srinivasan 2005). 2013 was the driest year of the 

study, and 2018 was roughly average. Thus, reported irrigated depth varies greatly between these 

two surveys and would likely vary more during wet years. To extrapolate changes in irrigation 

dependent on growing season precipitation, we started by performing a county level linear 

regression between five-year USGS Water Use (USGS 2015) and respective gridMET growing 

season average precipitation (Abatzoglou 2013). This linear regression along with annual 

gridMET precipitation was used to predict water use during each installation phase year relative 

to water use in 2013 and in 2018 respectively, resulting in a scalar coefficient for each FRIS and 

IWMS year. Each crop specific irrigated depth was multiplied by these two scalar coefficients, 

the result of which was averaged to predict a crop specific irrigated depth in a given year 

dependent upon precipitation. The major assumption here was that changes in irrigation directly 

scale with changes in county level water use.  

The scenario delineation was based on potential future precipitation scenarios. The base 

case scenario assumed 2018 (average) precipitation and thus 2018 irrigative depth, while the 

high resource scenario assumed 2013 (lowest precipitation of installation phase, highest 

irrigation water use) precipitation and irrigation, and the low scenario assumed 2017 (wettest 

year of installation phase, lowest irrigation water use) precipitation and irrigation, all projected 

forward to 2042.  

To determine the “cost” of irrigation water to the farmer, we applied the same price 

estimation as total energy generated (utility specific), with the amount of forgone energy from 



 

 

80 

not irrigating as the assumed electricity generation. Therefore, the total dollar cost of the change 

in water use was the sum of the cost of energy required to irrigate converted land, A Central 

Valley wide average water right contract rate ($40 per acre-foot from Baldocchi 2018) and a 

subtraction of O&M predicted water use.  

Klise et al. (2013) reports O&M water use predictions on a capacity basis rather than 

generation basis of 7 acre-feet/MW for the installation phase of PV plants, and between 0.23 and 

2.16 acre-feet/MW/yr for dry cooled systems post-installation operational water use including 

cleaning and potable use. Thus, for the installation phase, 7 acre-feet/MW were distributed over 

the 11 years of the phase, and the dry cooled value range of 0.23 acre-feet/MW/yr (low scenario) 

and 2.16 acre-feet/MW/yr (high scenario) with a mean of 1.20 acre-feet/MW/yr (base scenario) 

were used for the three differing scenarios. 

4.6 Simple economic budget from the cropland owner’s perspective 

One purpose of this study was to assess the economic effects of co-locating solar with 

agriculture from the standpoint of the stakeholder who owns the cropland. This point of view 

gives insight into future regional trends in co-location preferences. The economic dollar value of 

each resource was calculated individually given predicted increases or decreases and was 

adjusted for inflation relative to 2018 dollars using the U.S. Bureau of Labor Statistics Consumer 

Price Index (CPI) for All Urban Consumers (U.S. Bureau of Labor Statistics 2021). The total 

budget from the point of view of the cropland owner was calculated according to:  

𝐵𝑢𝑑𝑔𝑒𝑡 ($) = 𝐸𝑛𝑒𝑟𝑔𝑦$ +  𝑊𝑎𝑡𝑒𝑟$ −  𝐹𝑜𝑜𝑑$ −  𝑂&𝑀$ − 𝐼𝑛𝑠𝑡𝐶𝑜𝑠𝑡$    (9) 

Where, Energy$ is the dollar value of energy, Water$ is the dollar value of the cost of the change 

in water use and predicted water contract rates, Food$ is the dollar value of forgone food, O&M$ 

is dollar value of operations and maintenance, and InstCost$ is the total cost of installation 
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(which ceases in 2018 under our scenario).  

 The method for deducing the dollar value of Food$, Energy$, and Water$, is described 

above, and the uncertainty dollar value for each was based on the uncertainties of each respective 

resource. A temporal average of O&M costs does a good job estimating costs through time 

(Walker et al. 2020) and thus a temporally constant base case dollar value of O&M$ was taken 

from Walker et al, 2020 annualized unit O&M costs at $14.14/kW/yr (a similar value to the EIA, 

2021 reported fixed O&M cost of $15.33/kW/yr). This value was modeled for a 10 MW ground 

mounted tracking array with 10 inverters. Factors included in the O&M cost were vegetation 

management, snow removal, and cleaning requirements in reference to dirt and pollen. The 

uncertainty in O&M cost was based on Wiser et al. (Ryan H Wiser, Mark Bolinger 2020) which 

suggested that across 13 sources, the range in O&M expense was $13/kW/yr (high scenario) to 

$25/kW/yr (low scenario). Walker et al., 2020 suggests that uncertainty in O&M costs is due to 

system scale, configuration, climate, and site , which this study does not attempt to address. Note 

also that these values were assumed to include the O&M water requirements also assessed in this 

study.  

Installation costs were taken from the 2020 NREL Solar Cost Benchmark (Feldman et al. 

2021). This installed price included in this report accounts for permitting, inspection, 

interconnection (PII), land acquisition, transmission line, sales tax, overhead, profit, install labor, 

hardware balance of system (BOS), inverter, and module costs. The base scenario was the NREL 

installation cost benchmark for “Commercial Rooftop Arrays (200kW)” due to the similar 

median sizes of identified co-located arrays (fixed axis: 341 kW, single-axis tracking: 1,207 

kW). The high scenario was the NREL installation cost benchmark for “Residential PV (22 

Panel System)” and the low scenario was the average NREL installation cost benchmark for 
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“Utility Scale PV, Fixed-Tilt (100 MW)” and “Utility Scale PV, One-Axis Tracker (100 MW)”. 

Reported values calculated using NREL’s bottom-up cost model and are national averages using 

average values across all states. 
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Resource Base Description High Description Low Description 

Food 
2018 annual resource 

continuation 

0.82%/year increase in 

yield  (Deepak et al. 

2013) 

0.24%/year decrease in 

yield (Lobell et al. 

2011) 

Energy 

Reported efficiency 

generation (Barbose et 

al. 2020) 

Monocrystalline 

derived efficiency 

generation (Barbose et 

al. 2020) 

Multicrystalline derived 

efficiency generation 

(Barbose et al. 2020) 

Irrig Energy 

GWh/m3 derived from 

Mccarthy et al. (2021) 

for total forgone  

irrigation  

GWh/m3 derived from 

Mccarthy et al. (2021) 

for total forgone  

irrigation  

GWh/m3 derived from 

Mccarthy et al. (2021) 

for total forgone  

irrigation  

Irrigation 
2018 FRIS and IWMS 

irrigation continuation 

2013 Irrigation 

projected forward (low 

precip = high irrig) 

2017 Irrigation 

projected forward (high 

precip = low irrig) 

O&M Water Use 

Installation phase: 7 

af/MW, 1.20 af/MW/yr 

continuation (average 

of high and low 

scenarios 

Installation phase: 7 

af/MW, 2.16 af/MW/yr 

(Klise et al. 2013) 

Installation phase: 7 

af/MW, 0.23 af/MW/yr 

(Klise et al. 2013) 

Carbon 

PG&E natural gas 

emission rate (13.446 

lbs/therm) with 2018 

base scenario energy 

generation continuation 

PG&E natural gas 

emission rate (13.446 

lbs/therm) with 2018 

high energy generation 

continuation 

PG&E natural gas 

emission rate (13.446 

lbs/therm) with 2018 

low scenario energy 

generation continuation 

Irrig Carbon 

PG&E natural gas 

emission rate (13.446 

lbs/therm) with 2018 

base scenario forgone 

irrig energy 

continuation 

PG&E natural gas 

emission rate (13.446 

lbs/therm) with 2018 

high scenario forgone 

irrig energy 

continuation 

PG&E natural gas 

emission rate (13.446 

lbs/therm) with 2018 

low scenario forgone 

irrig energy 

continuation 

Inst Carbon 

Mono/Polycrystalline 

share emissions derived 

from Barbose et al. 

(2020) & Leccisi et al. 

(2016) 

Monocrystalline LCA 

emissions from Leccisi 

et al. (2016) 

Polycrystalline LCA 

emissions from Leccisi 

et al. (2017) 

Table A2.1. Base, Low, and High Scenario Assumptions and Sources.  Source and value 

descriptions for each of the three scenarios for every resource and economic value assessed in 

this study. 
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Table A2.1. (cont’d)  

Resource Base Description High Description Low Description 

Food$ 

USDA Crop Survey 

Yield data from 2018-

2021 with USDA FRIS 

and IWMS crop value 

data from 2005 to 2018 

for the base forgone 

food yield (2018 yield 

continuation) scenario 

USDA Crop Survey 

Yield data from 2018-

2021 with USDA FRIS 

and IWMS crop value 

data from 2005 to 2018 

for the high forgone 

food yield (0.82%/yr 

increase) scenario 

USDA Crop Survey 

Yield data from 2018-

2021 with USDA FRIS 

and IWMS crop value 

data from 2005 to 2018 

for the high forgone 

food yield (0.23%/yr 

decrease) scenario 

Energy$ 

Reported efficiency 

generation value + 

annual 1.8% compound 

increase (Barbose et al. 

2020) 

Multiple linear 

regression derived 

monocrystalline 

efficiency generation 

value + annual 1.8% 

compound increase, 

(Barbose et al. 2020) 

Multiple linear 

regression derived 

multicrystalline 

efficiency generation 

value + annual 1.8% 

compound increase, 

(Barbose et al. 2020) 

Water$ 

Same as base Energy$ 

for forgone irrigation 

energy + $40 average 

water right (Baldocci 

2018) - O&M water use 

energy 

$25/kW/yr (Wiser et al. 

2020) 

$13/kW/yr (Wiser et al. 

2020) 

O&M$ 
$14.14/kW/yr (Walker 

et al. 2020) 

$25/kW/yr (Wiser et al. 

2020) 

$13/kW/yr (Wiser et al. 

2020) 

InstCost$ 

Mono/Polycrystalline 

share emissions derived 

from Barbose et al. 

2020 & Leccisi et al. 

2016 

Monocrystalline LCA 

emissions from Leccisi 

et al. 2016 

Polycrystalline LCA 

emissions from Leccisi 

et al. 2017 

Total Budget$ 
Eq 9 for all base 

scenario values 

Eq 9 for all high (unless 

inverse in equation 9) 

scenario values 

Eq 9 for all low (unless 

inverse in equation 9) 

scenario values 
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Figure A2.1 Reported Temporal Module Efficiency and Extrapolated Monocrystalline and 

Polycrystalline Module Efficiencies.  The multiple linear model (Efficiency ~ Year + 

Monocrystalline Share) resulted in an R2 = 0.9903. Data used was from Barbose et al. (2020). To 

extrapolate differing crystalline efficiencies, the monocrystalline share coefficient was set to 0 

(entirely polycrystalline) and 1 (entirely monocrystalline). These efficiencies as shown were used 

as the three scenarios (high, base, and low respectively) for electricity generation. Figure A1.1 

shows the temporal trend in monocrystalline share as well. 
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Crop 
FRIS 

Crop 

Kcal/m2/

yr 
Caloric Density Source Yield Source 

corn Corn 1847 
www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

cotton Cotton 570.3 

www.fsa.usda.gov/Assets/USD

A-FSA-

Public/usdafiles/FactSheets/201

8/seed_cotton_base_acre_alloca

tion_fact_sheet_august_2018.p

df 

 www.calories.info/food/nuts-

seeds 

rice Rice 1482 
www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

sorghum Sorghum 529 
www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

sunflower 
Crops, 

other 
868 

www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

barley 
Hay & 

Haylage 
982 

www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

durum 

wheat 
Wheat 1083 

www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

winter 

wheat 
Wheat 1083 

www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

oats 
Small 

Grains 
871 

www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

safflower 
Crops, 

other 
475 

www.gardeningplaces.com/arti

cles/nutrition-per-hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

alfalfa 
Hay & 

Haylage 
4828.4 

www.dekalbasgrowdeltapine.co

m/en-us/agronomy/alfalfa-

yield-quality-management.html 

 

www.dayvillesupply.com/hay-

and-horse-feed/calorie-

needs.html 

other 
hay/non 

alfalfa 

Hay & 
Haylage 

4828.4 

www.dekalbasgrowdeltapine.c
om/en-us/agronomy/alfalfa-

yield-quality-management.html 

 
www.dayvillesupply.com/hay-

and-horse-feed/calorie-
needs.html 

Table A2.2. Food Kcal Sources and Assumptions. Table of caloric density (kcal/kg) sources, 

historic yield (kg/m2) sources, and resulting spatial caloric density (kcal/m2) for use in the 

forgone food impact analysis. Note the “compare” values means that values were duplicated 

from other crops with reported caloric density and yield values. Also note that double crop 

values were the sum of the two crops making up the double crop.  
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Table A2.2. (cont’d)  

Crop FRIS Crop 
Kcal/m2

/yr 
Caloric Density Source Yield Source 

dry beans Beans 229 

www.gardeningplaces.com/a

rticles/nutrition-per-

hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

potatoes Potatoes 1318 

www.gardeningplaces.com/a

rticles/nutrition-per-

hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

sweet 

potatoes 
Potatoes 1140 

www.gardeningplaces.com/a

rticles/nutrition-per-

hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

watermelons 
Crops, 

other 
1068.2 

www.agmrc.org/commoditie

s-

products/vegetables/waterme

lon 

www.myfitnesspal.com/food/c

alories/fruit-by-pound-

watermelon-515333007  

onions 
Vegetable 

totals 
1993.2 farm.bot/pages/yield farm.bot/pages/yield 

peas 
Vegetable 

totals 
510.5 

www.gardeningplaces.com/a

rticles/nutrition-per-

hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

tomatoes Tomatoes 255.85 farm.bot/pages/yield farm.bot/pages/yield 

clover/ 

wildflowers 
Pastureland 2138.6 

enlightenedequine.com/2020

/11/29/calories-101-part-3-

the-brown-brown-grass-of-

home/ 

www.nrcs.usda.gov/Internet/F

SE_DOCUMENTS/stelprdb11

67344.pdf 

cherries Orchards 763.31 USDA FoodData 

coststudyfiles.ucdavis.edu/upl

oads/cs_public/6f/9b/6f9b0a93

-163b-4060-ba94-

8a3fc689e97d/cherryvn2011.p

df 

peaches Orchards 1884.72 USDA FoodData 
anrcatalog.ucanr.edu/pdf/8276.

pdf 

apples Orchards 1171.22 USDA FoodData 
 ucanr.edu/datastoreFiles/391-

69.pdf 

grapes Berry totals 588.8 

srealproperty.com/ever-

wonder-how-many-bottles-

of-wine-are-made-from-1-

acre-of-vineyard/ 

www.weightlossresources.co.u

k/calories-in-food/grapes-red-

green-black-seedless-

seeded.htm 

citrus Orchards 1252.8 
Compare to Orchard 

Average 
Compare to Orchard Average 

almonds Orchards 1490.88 USDA FoodData 

 

californiaagnet.com/2021/05/1

2/larger-ca-almond-crop-

forecasted-this-year/ 
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Table A2.2. (cont’d)   

Crop FRIS Crop 
Kcal/m2/

yr 
Caloric Density Source Yield Source 

walnuts Orchards 3961.95 USDA FoodData 

coststudyfiles.ucdavis.edu/upl

oads/cs_public/de/5b/de5b047

e-efb5-4145-b618-

1c643240abe9/walnutsv2012.p

df 

grassland/ 

pasture 
Pastureland 2138.6 

enlightenedequine.com/2020

/11/29/calories-101-part-3-

the-brown-brown-grass-of-

home/ 

www.nrcs.usda.gov/Internet/F

SE_DOCUMENTS/stelprdb11

67344.pdf 

pistachios Orchards 1759.07 USDA FoodData 

 

www.farmfundr.com/blog/pist

achio-development-in-

california 

triticale 
Small 

Grains 
871 Compare to Oat Crop Compare to Oat Crop 

carrots 
Vegetable 

totals 
1591 farm.bot/pages/yield farm.bot/pages/yield 

garlic 
Vegetable 

totals 
828 farm.bot/pages/yield farm.bot/pages/yield 

cantaloupes 
Crops, 

other 
621 farm.bot/pages/yield farm.bot/pages/yield 

prunes Orchards 134.62 USDA FoodData 

www.nass.usda.gov/Statistics_

by_State/California/Publicatio

ns/Specialty_and_Other_Relea

ses/Dried_Plums/Forecast/201

906prunf.pdf 

olives Orchards 1760 

www.gardeningplaces.com/a

rticles/nutrition-per-

hectare1.htm 

www.gardeningplaces.com/art

icles/nutrition-per-

hectare1.htm 

oranges Orchards 1252.8 USDA FoodData 

coststudyfiles.ucdavis.edu/upl

oads/cs_public/19/d4/19d4f1b

b-408a-443e-a759-

36fd53a2948f/oranges_vs_201

5.pdf 

honeydew 

melons 

Crops, 

other 

621 farm.bot/pages/yield farm.bot/pages/yield 

broccoli Vegetable 

totals 

675 www.gardeningplaces.co

m/articles/nutrition-per-

hectare1.htm 

www.gardeningplaces.com/

articles/nutrition-per-

hectare1.htm 
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Table A2.2. (cont’d)   

Crop 
FRIS 

Crop 

Kcal/m2/

yr 
Caloric Density Source Yield Source 

pomegranates Orchards 1252.8 
Compare to Orchard 

Average 
Compare to Orchard Average 

nectarines Orchards 1252.8 
Compare to Orchard 

Average 
Compare to Orchard Average 

plums Orchards 134.62 
Compare to Orchard 

Average 
Compare to Orchard Average 

dbl crop 

winwht/corn 

Wheat & 

Corn 
1465 

Compare to Sum of Wheat 

and Corn Crop 

Compare to Sum of Wheat and 

Corn Crop 

dbl crop 

oats/corn 

Small 

Grains & 

Corn 

1359 
Compare to Sum of Small 

Grain and Corn Crop 

Compare to Sum of Small 

Grain and Corn Crop 

dbl crop 

winwht/ 

sorghum 

Wheat & 

Sorghum 
1188 

Compare to Sum of Wheat 

and Sorghum Crop 

Compare to Sum of Wheat and 

Sorghum Crop 

dbl crop 

winwht/cotton 

Wheat & 

Cotton 
826.65 

Compare to Sum of Wheat 

and Cotton Crop 

Compare to Sum of Wheat and 

Cotton Crop 
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Utility 
Num 

Install 

Capacity 

(MW) 

Power and Water Resource Pooling 

Authority 
82 669 

Pacific Gas & Electric Company 429 847 

Modesto Irrigation District 30 31 

Eastside Power Authority 49 129 

Southern California Edison 46 243 

Turlock Irrigation District 29 31 

Lodi Electric Utility 1 1 

Sacramento Municipal Utility District 15 91 

Merced Irrigation District 11 9 

Redding Electric Utility 2 1 

Table A2.3. Utility Service Provider Contribution to Co-Location. The ten utility service 

providers with identified co-located solar arrays in their districts.  
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