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ABSTRACT

ESSAYS IN INDUSTRIAL ORGANIZATION

By

Jaemin Ryu

Chapter 1. Measurement and Decomposition of Cost Ine�ciency Using Copulas:

An Application to the U.S. Banking Industry

This paper proposes a model and an estimation strategy using copulas in order to measure

and decompose technical and allocative ine�ciency in the translog cost system. This study

adapts the stochastic cost frontier model from Kumbhakar (1997) and employs the APS

copulas developed by Amsler et al. (2021) to capture the dependence between technical and

allocative ine�ciency. The joint density of the system is derived by the probability integral

transform and the copula-based version of the Rosenblatt transformation, leading to the

method of simulated likelihood estimation. This study also proposes a strategy to estimate

individual ine�ciency using density deconvolution and conditional distributions. The new

methods are then applied to the U.S. banking industry. The results suggest that U.S. bank

costs increased by approximately 20% in 2019 and 2020 due to ine�ciency, where technical

and allocative ine�ciency represented 16∼18% and 2.5%, respectively. In addition, ignoring

the dependence between technical and allocative ine�ciency would produce less plausible

results.

Chapter 2. Measurement and Decomposition of Cost Ine�ciency Using Copulas:

Evidence from Monte Carlo Simulations

The purpose of this paper is to provide methods for copula-based simulations and to demon-

strate the performance of the estimation strategy that can measure and decompose cost

ine�ciency. First, a method to draw random numbers using the APS-3-A copula, which cor-

responds to the three-input case, is presented. Speci�cally, copula arguments can be obtained

from random numbers distributed independently and uniformly over [0, 1] by applying the

inverse Rosenblatt transformation, which needs to derive conditional distributions of cop-



ulas. Then, dependent random numbers can be generated by the inverse transformation

method. Second, quasi-Monte Carlo simulations are conducted given the data generating

process. Simulation results suggest that the parameters of the translog cost system that

accommodates technical and allocative ine�ciency can be reliably estimated when the APS

copulas are employed. It would also yield biased estimates when the disturbances in the cost

function and the cost share equations of the system are regarded as independent.

Chapter 3. Demand Estimation of Deposits: A Case of the Korean Financial

Industry

This paper estimates a structural demand model for deposits in the Korean �nancial sector

in order to measure the e�ects of deregulation in payment and settlement systems in 2009,

which caused cash management accounts (CMAs) of securities companies to become close

substitutes for traditional deposit services provided by banks. Following the discrete choice

literature, depositors choose among di�erentiated �nancial institutions, considering their of-

fered interest rates and other attributes. Although it is also assumed that market discipline

in banking exists, it depends on the �nancial stability situation. The results show that con-

sumers respond favorably to deposit rates, the branch sta�ng, and the number of branches

of depository institutions in tranquil times. On the other hand, they consider the �nancial

institution's capital adequacy ratio more important than interest rates during the �nancial

turmoil. This is similar to the phenomenon referred to as the �ight to quality in other �nan-

cial markets. Therefore, although CMAs have the bene�t of higher interest rates compared

to traditional deposit services, their market share has remained at low levels due to the pro-

longed �nancial stress since the global �nancial crisis, which results in marginal increases in

consumer welfare from the deregulation. This implies that the deregulation would not have

successfully achieved the purpose of improving consumer welfare by promoting competition.
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i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 1.5.7: Average of ûT
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CHAPTER 1

MEASUREMENT AND DECOMPOSITION OF
COST INEFFICIENCY USING COPULAS:

AN APPLICATION TO THE U.S. BANKING INDUSTRY

1.1 Introduction

Stochastic frontier models (SFMs) developed by Aigner et al. (1977) and Meeusen and van

Den Broeck (1977) have been widely used for e�ciency analysis. There are two approaches

to measure e�ciency in the SFMs. The �rst one is an output-oriented approach, which

is used to estimate the production frontier and to measure technical (in)e�ciency. The

second one is an input-oriented approach, which can be used to estimate the cost frontier

and to measure cost (in)e�ciency. As Kumbhakar and Lovell (2000) note, there are several

di�erences between these two approaches, an important di�erence of which is that cost

e�ciency can be decomposed into input-oriented technical e�ciency and input allocative

e�ciency, whereas output-oriented technical e�ciency cannot be decomposed.1

Farrell (1957) de�nes technical and allocative ine�ciency as follows. Technical ine�ciency

occurs when a producer fails to produce the maximum output from a given input bundle.

Allocative ine�ciency occurs when a producer uses inputs in the wrong proportions, given

input prices. As ine�ciency can arise by these di�erent causes, it is important to measure

and decompose cost ine�ciency in order to evaluate the performance of �rms.

Schmidt and Lovell (1979) show how to measure both technical and allocative ine�ciency,

assuming the Cobb-Douglas production technology. Nevertheless, it would be necessary to

apply �exible functional forms, such as a translog function2, when measuring cost ine�ciency.

Since Christensen et al. (1971) and Christensen and Greene (1976), the translog functional

form has played an important role in cost studies, owing to several virtues that overcome the

1Hereafter, technical (in)e�ciency means input-oriented technical (in)e�ciency.
2For more details about the translog function, please refer to Kumbhakar and Lovell (2000) and Sickles

and Zelenyuk (2019).

1



limitations of the Cobb-Douglas function. As mentioned in Kumbhakar and Lovell (2000),

for example, the translog cost function can accommodate multiple outputs without violating

the requisite curvature conditions in output space, while the Cobb-Douglas functional form

cannot. In addition, the translog function can provide a second-order approximation to any

well-behaved underlying cost frontier, whereas the Cobb-Douglas representation would lead

to biased estimates of ine�ciency; this is because unmodeled technology complexity could

appear in the error term, which contains information about ine�ciency, due to its simplicity.

In contrast, as �rst noted by Greene (1980)3, econometric issues arise when employing

the translog functional form. The problem is characterized as follows. Given the de�nition

in Farrell (1957), the cost system that allows for technical and allocative ine�ciency can be

written as

lnCi = lnC(yi,wi) + ϵi

= lnC(yi,wi) + vi + ui

= lnC(yi,wi) + vi + uT
i + uA

i

sij = sj(yi,wi) + eij, j = 2, · · · , J, (1.1.1)

where Ci is the actual cost of producer i, C(yi,wi) is the deterministic kernel of the stochastic

cost frontier, yi ∈ RM
+ is a vector ofM outputs produced by producer i, wi ∈ RJ

++ is a vector

of input prices faced by producer i, vi ∈ R is a random disturbance, uT
i ∈ R+ represents a

cost increase due to technical ine�ciency, uA
i ∈ R+ represents a cost increase due to allocative

ine�ciency, ui = uT
i + uA

i , ϵi = vi + ui, sij ∈ [0, 1] is the producer i's actual cost share of

input j, sj(yi,wi) ∈ [0, 1] is the optimum cost share of input j derived from Shephard's

lemma, and eij ∈ R is the disturbance due to allocative ine�ciency of producer i and noise.

The important question is how to model ui in the cost function and eij in the cost

share equations. As long as eij represents allocative ine�ciency, it cannot be independently

distributed of ui that captures both technical and allocative ine�ciency. If it is assumed

3It is known as �the Greene Problem.� Please refer to Bauer (1990) and Kumbhakar and Lovell (2000)
for detailed discussion.
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that ui and eij are independent, it would lead to inconsistent parameter estimates, and it

is impossible to decompose cost ine�ciency into two sources (Kumbhakar and Lovell, 2000,

p.156).

So far, three types of solutions to �the Greene Problem� have been proposed. The �rst

solution is �nding the analytic relationship between uA
i and ei = (ei2, · · · , eiJ) (Schmidt and

Lovell (1979) and Kumbhakar (1989, 1997)). The second solution is approximating uA
i as

a function of ei, such as in Schmidt (1984), Mel� (1984), Bauer (1985), and Kumbhakar

(1991). The third solution proposed by Greene (1980) is ignoring the relation between

them and assuming that ϵi and ei are independent. However, as discussed in Bauer (1990),

all of these existing solutions are not ideal. The �rst one can be used when restrictive

functional forms, such as a Cobb-Douglas functional form, and/or restrictive assumptions

are imposed. The second solution is valid only when the approximation function captures

the true relationship between uA
i and ei. The third approach might fail to use all available

information for estimation.

The main contribution of this paper is to propose a translog cost system, which is rig-

orously developed based on economic theory, providing a solution to �the Greene Problem�

that overcomes the limitations of previous studies. In other words, technical and allocative

ine�ciency can be precisely measured and decomposed by using the proposed model with a

�exible functional form. In addition to the main contribution, a novel estimation strategy

is proposed that is consistent with the theory behind the stochastic cost frontier model as

well as computationally easy. Lastly, this study suggests a method to estimate individual

ine�ciency when additive noise terms are allowed in the cost share equations.

A stochastic cost frontier model taking a translog cost functional form is constructed

based on Kumbhakar (1997) in order to derive the exact relationship between the error

terms representing allocative ine�ciency in the cost function and the cost share equations.

However, as in Schmidt and Lovell (1980), dependence between technical and allocative

ine�ciency is assumed. This is modeled by the APS copulas developed by Amsler et al.

3



(2021). Several assumptions are imposed to capture the dependence and to make the model

more realistic and estimable. The method of simulated likelihood is applied to estimate the

model, where the joint density of the model is derived by the probability integral transform

and the copula-based version of the Rosenblatt transformation.

Additionally, given that the model can estimate only average ine�ciency of �rms, this

study also proposes a strategy to measure and decompose individual ine�ciency. Jondrow

et al. (1982) and Battese and Coelli (1988) propose ways to estimate �rm-level ine�ciency in

production using the conditional distribution f(uT
i |ϵi), where uT

i is output-oriented technical

ine�ciency, ϵi = vi − uT
i , and vi is a random disturbance. This method could be adapted

to the stochastic cost frontier analysis. However, due to the di�erent environment, we must

employ density deconvolution to error terms in the cost share equations of (1.2.1).

The new model and strategies are applied to U.S. depository institutions. Numerous

studies on bank e�ciency exist for various themes.4 For instance, innovations in technology,

such as telecommunication technologies and information processing, have been intensively

adopted in the banking industry (see Feng and Serletis, 2009). In addition, especially in the

United States, regulatory changes, such as branching deregulation and enhanced regulatory

capital requirements, have a�ected operation strategies of banks. Since these factors have

an impact on technical and allocative ine�ciency of banks, respectively, it is necessary to

measure and decompose cost ine�ciency of banks in order to identify each factor's e�ect on

the performance of banks. Furthermore, it is possible that technical and allocative ine�-

ciency of banks has changed due to outbreak of COVID-19, since the pandemic has a�ected

�nancial markets and resource allocation of depository institutions.

The remainder of the chapter is organized as follows. Section 1.2 develops the econometric

model. Section 1.3 presents the estimation strategy. Section 1.4 develops the strategy to

estimate �rm-level ine�ciency. Section 1.5 presents empirical results applied to the U.S.

banking industry. Section 1.6 concludes the chapter.

4Please refer to Berger and Humphrey (1997) and Bhatia et al. (2018) for more details.
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1.2 Model

1.2.1 Translog Cost System of Kumbhakar (1997) Revisited

Kumbhakar (1997) establishes an exact relationship between the terms representing alloca-

tive ine�ciency in the cost function and the cost share equations of the stochastic cost

frontier model. This subsection summarizes its setup and results.

1.2.1.1 Setup

Let P (yi,xie
−uT

i ) = 0 be a production possibility frontier5, where xi ∈ RJ
+ is a vector of

J inputs used by producer i. Recall that yi ∈ RM
+ is a vector of M outputs, and uT

i ∈

R+ represents technical ine�ciency. P (·) is assumed to be di�erentiable. Then, the cost

minimization problem of producer i who is only technically ine�cient can be written as

min
xi

w′
ixi s.t. P (yi,xie

−uT
i ) = 0.

Note that it yields the same solution to the following problem such that

min
x∗
i

w′
ix

∗
i s.t. P (yi,x

∗
i ) = 0,

where x∗
i = xie

−uT
i . Its �rst-order conditions are

Pj(yi,x
∗
i )

P1(yi,x
∗
i )

=
wij

wi1

, j = 2, · · · , J,

where Pj(yi,x
∗
i ), j = 1, · · · , J, denotes the partial derivative of P (yi,x

∗
i ) with respect to

x∗
ij. Given this result, the �rst-order conditions of producer i who is both technically and

allocatively ine�cient can be written as

Pj(yi,x
∗
i )

P1(yi,x
∗
i )

=
wij

wi1

eξj , j = 2, · · · , J,

5Kumbhakar (1997) uses a production function to derive the translog cost system, which means he
considers a single-output case. However, as noted by Parmeter and Kumbhakar (2014), the derivation and
the result of the translog cost system for a multiple-output case are similar to the single-output case.
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where ξj ∈ R, j = 2, · · · , J, represents producers' allocative ine�ciency for the input pair

(j, 1). Note that ξ1 = 0 by construction. If ξj = 0 for j = 2, · · · , J , the input pair (j, 1) is

perfectly allocatively e�cient.

1.2.1.2 Results

The stochastic cost frontier model can be written as

lnCi = lnC(yi,wi) + vi + uT
i + uA

i

sij = sj(yi,wi) + ηij, j = 2, · · · , J,

where ηij ∈ R is the deviation from the optimum cost share of input j due to only allocative

ine�ciency of producer i, which does not contain noise. Recall that Ci is the actual cost

of producer i, C(yi,wi) is the deterministic kernel of the stochastic cost frontier, vi ∈ R

is a random disturbance, uA
i ∈ R+ represents a cost increase due to allocative ine�ciency,

sij ∈ [0, 1] is the actual cost share of input j, and sj(yi,wi) ∈ [0, 1] is the optimum cost

share of input j.

Assume that the deterministic kernel of the stochastic cost frontier takes a translog

functional form. Then, deterministic components of the system, lnC(yi,wi) and sj(yi,wi),

can be written as

lnC(yi,wi) = β0 +
M∑

m=1

βy
m(lnyim) +

1

2

M∑
m=1

M∑
n=1

βyy
mn(lnyim)(lnyin)

+
J∑

j=1

βw
j (lnwij) +

1

2

J∑
j=1

J∑
k=1

βww
jk (lnwij)(lnwik)

+
M∑

m=1

J∑
j=1

βyw
mj(lnyim)(lnwij)

sj(yi,wi) = βw
j +

J∑
k=1

βww
jk (lnwik) +

M∑
m=1

βyw
mj(lnyim), j = 2, · · · , J.

Note that sj(yi,wi) =
wijxij

C(yi,wi)
=

wij

C(yi,wi)
∂C(yi,wi)

∂wij
= ∂lnC(yi,wi)

∂lnwij
. The second equality holds

because of Shephard's lemma. Also, the terms representing allocative ine�ciency can be

6



written as

uA
i =

J∑
j=1

βw
j ξj +

J∑
j=1

J∑
k=1

βww
jk (lnwij)ξk +

1

2

J∑
j=1

J∑
k=1

βww
jk ξjξk

+
M∑

m=1

J∑
j=1

βyw
mj(lnyim)ξj + ln

J∑
j=1

(s∗ij/e
ξj)

ηij =
sj(yi,wi)[1− {

∑J
k=1(s

∗
ik/e

ξk)}eξj ] +
∑J

k=1 β
ww
jk ξk

{
∑J

k=1(s
∗
ik/e

ξk)}eξj
, j = 2, · · · , J,

where s∗ij = sj(yi,wi) +
∑J

k=1 β
ww
jk ξk, j = 2, · · · , J, is the shadow cost share of input j for

producer i who is assumed to be only allocatively ine�cient.

To satisfy the properties of the cost function, restrictions on parameters are required

such that βyy
mn = βyy

nm ∀m ̸= n and βww
jk = βww

kj ∀j ̸= k for symmetry,
∑J

j=1 β
w
j = 1,∑J

k=1 β
ww
jk = 0 ∀j, and

∑J
j=1 β

yw
mj = 0 ∀m for linear homogeneity in wi. Because of these

restrictions,
∑J

j=1 sj(yi,wi) = 1 and
∑J

j=1 ηij = 0 ∀i are guaranteed.6

1.2.2 Modi�ed Model

As noted by Kumbhakar and Lovell (2000), Kumbhakar (1997)'s model treats allocative

ine�ciency of the translog cost system in a theoretically and econometrically consistent

manner and provides a solution to �the Greene Problem.� Nevertheless, there is still room

for improvement. In Section 1.2.2.1, several limitations of Kumbhakar (1997) are discussed

and assumptions of his model are modi�ed. In Section 1.2.2.2, the modi�ed model and

distributional assumptions are presented.

1.2.2.1 Assumptions

First, Kumbhakar (1997)'s model does not capture the relationship between the one-sided

term representing technical ine�ciency, uT
i , and the two-sided terms representing alloca-

tive ine�ciency, ξjs. It implies that they can be assumed to be independent; this means

6Please see to Appendix 1.A.1 for the proof.
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technically e�cient producers can be allocatively ine�cient and vice versa. Rather than

imposing such an assumption, it would be more reasonable to assume that they are depen-

dent, which means that technically e�cient producers tend to be allocatively e�cient, and

technically ine�cient producers are likely to be allocatively ine�cient. However, as Figure

1.2.1 illustrates, the degree of allocative ine�ciency does not depend on the value of ξj itself

but the size of its absolute value instead. Since the degree of technical ine�ciency, uT
i , is

non-negative, it is di�cult to model the relation between uT
i and ξj. To the best of my

knowledge, only two studies, namely Schmidt and Lovell (1980) and Amsler et al. (2021),

have modeled the aforementioned relationship between technical and allocative ine�ciency.7

However, both studies consider the single-output cost system assuming Cobb-Douglas pro-

duction technology, rather than the translog cost system (as in Kumbhakar (1997)) that is

most widely used for empirical cost studies and that accommodates multiple-output cases.

Figure 1.2.1: Degree of Technical and Allocative Ine�ciency

(a) Technical Ine�ciency (uT
i ) (b) Allocative Ine�ciency (ξj)

Note: In both �gures, the x-axis is the value of uTi or ξj , and the y-axis is its density value.

Second, Kumbhakar (1997)'s model imposes a restrictive assumption that the magnitudes

of allocative ine�ciency, ξjs, are invariant across producers. This implies that it only con-

siders systematic tendency for over- or under-utilization of any input relative to any other

7Following the notations in this paper, they assume that uT
i is positively correlated with ηi =

(ηi2, · · · , ηiJ) since terms like ξjs in Kumbhakar (1997) are not introduced to their model. Given that
there are two terms that can be interpreted as allocative ine�ciency in the cost share equations, ξjs and ηi,
the latter part of this section examines which term will be linked to uT

i .
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inputs. Despite the assumption on ξjs, their impacts on cost, uA
i , and on input shares, ηi,

are di�erent across producers, as they are in�uenced by outputs, yim, and input prices, wij,

by construction. As stated in Kumbhakar and Lovell (2000), the model becomes extremely

di�cult to estimate without this assumption. To be speci�c, if the magnitudes of allocative

ine�ciency are assumed to be random, denoted by ξi = (ξi2, · · · , ξiJ), it is hard to derive

the distribution of ηi from the distribution of ξi. This is because, although they can be

one-to-one in the narrow domain, ηi is a nonlinear function of ξi that is not globally invert-

ible. For example, Figure 1.2.2 shows the relationship between ξ2 and ηi2 given parameter

values when a �rm produces one output using two inputs.8 Therefore, the change of vari-

ables theorem cannot be directly applied. However, this assumption needs to be relaxed

to incorporate idiosyncratic deviations from the cost minimizing input ratios. In addition,

relaxing this assumption enables researchers to rigorously model the relationship between

the terms representing technical and allocative ine�ciency.

Figure 1.2.2: Relationship between ξ2 and ηi2

(a) ξ2 ∈ [−1, 1] (b) ξ2 ∈ [−10, 10]

Lastly, stochastic components are not included in the cost share equations. Kumbhakar

(1997) analytically derives the optimum cost share, sj(yi,wi), and ηi from the use of Shep-

hard's lemma, thereby ηi represents pure allocative ine�ciency9 stemmed from the opti-

8Although Kumbhakar (1997) does not provide the result, uA
i and ηij can be simpli�ed when no additive

error terms in the cost share equations is assumed. Please refer to Appendix 1.A.2 for the proof. Figures
are drawn by the simpli�ed formula when si2 = 0.55, βww

22 = 0.05.
9The simpli�ed formula for ηi derived in Appendix 1.A.2 clearly shows that ηi is a function of ξjs given

the actual cost shares and parameters.
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mization error. Moreover, ηi is derived based on the assumption that ξjs do not vary across

producers, so it would be unnatural to interpret ηi as a stochastic component of the cost

share equations. If the assumption about ξjs is relaxed as described in the previous para-

graph, the term representing allocative ine�ciency in the cost share equations can be seen

as a stochastic component. However, as Reiss and Wolak (2007) point out10, there are other

sources of random components in the cost share equations besides failure in cost minimiza-

tion. Furthermore, as noted by Brown and Walker (1995), one can easily make distributional

assumptions of the system and apply usual estimators by using additive noise terms for the

share equations.

The second and third points are related to the issue on the stochastic speci�cation in the

models of producers' demand, cost, and production systems. There are contradictory views

on how to formulate a stochastic speci�cation for the cost system. The conventional practice

is to append additive noise terms to the nonstochastic cost share equations. For example,

Christensen and Greene (1976) state that �since the cost share equations are derived by

di�erentiation, they do not contain the disturbance term from the cost function� (p.662),

so they add stochastic noise terms following multivariate normal distribution to the cost

share equations in an ad hoc fashion. Subsequent research criticizes that such an approach

is inconsistent with economic theory and derives stochastic components in the cost share

equations in the optimization framework. These studies include Chavas and Segerson (1987),

McElroy (1987), Brown and Walker (1995), and Kumbhakar and Tsionas (2011). Note that

although they provide theoretical justi�cations for the stochastic speci�cation of the cost

share equations, the sources of stochastic components in the cost share equations vary across

studies, such as random environments, measurement errors, and optimization errors.

In order to deal with these issues, I modify the following assumptions to Kumbhakar

(1997)'s model.

10�The four principal ways in which a researcher can introduce stochastic components into a deterministic
economic model are: 1. researcher uncertainty about the economic environment; 2. agent uncertainty about
the economic environment; 3. optimization errors on the part of economic agents; and 4. measurement errors
in observed variables.� (p.4305)
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Assumption 1. The magnitudes of allocative ine�ciency vary across producers and are

denoted by ξi2, · · · , ξiJ .

Assumption 2. uT
i is uncorrelated with ξi2, · · · , ξiJ but positively correlated with |ξi2|, · · · ,

|ξiJ |.

Assumption 3. Additive noise terms, denoted by νi = (νi2, · · · , νiJ), are allowed in the cost

share equations.

As mentioned, Assumptions 1 and 2 are made to introduce the idiosyncratic disturbance

due to optimization errors, as well as to precisely model dependence between technical and

allocative ine�ciency. Kumbhakar (1997)'s model includes several terms induced by alloca-

tive ine�ciency, including ξjs and ηi. Thus, instead of modifying the assumption on the

magnitudes of allocative ine�ciency, we can assume that uT
i is uncorrelated with ηi2, · · · , ηiJ

but positively correlated with |ηi2|, · · · , |ηiJ |. In this case, ξjs are not used for estimation.

This approach is similar to Schmidt and Lovell (1980) and Amsler et al. (2021), but there

are mainly two reasons for imposing Assumption 1 other than ξj or ξij being the origin of

allocative ine�ciency in the model.

First of all, the alternative method does not provide a solution to �the Greene Problem.�

The speci�cation of the two previous studies, Schmidt and Lovell (1980) and Amsler et al.

(2021), follows Schmidt and Lovell (1979) as

yi = α + x′
iβ + vi − uT

i

xi1 − xij = ln

(
β1wij

βjwi1

)
+ eij, j = 2, ..., J,

where yi is the natural log of output of producer i, xi is a vector of natural log of inputs,

vi ∈ R is a random distrubance, uT
i ∈ R+ represents technical ine�ciency, wij ∈ R++ is

the price of input j, and eij ∈ R is a two-sided term capturing allocative ine�ciency and

noise. This model does not include an additional term representing allocative ine�ciency

in the production frontier, therefore issues like �the Greene Problem,� which occur in the
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translog cost system, are not raised. However, an analytic solution, which is proposed by

Kumbhakar (1997) and Kumbhakar and Tsionas (2005a,b) that introduce ξjs and make a

distributional assumption on them, is not applicable if ξjs are not used when estimating

the translog cost system. In addition, even though both uA
i and ηi are functions of ξjs, no

closed-form expression for uA
i in terms of ηi exists in the translog cost system. In other

words, uA
i cannot be speci�ed as a function of ηi. Thus, a method similar to approximation

solutions proposed by Schmidt (1984) that specify a functional relationship as uA
i = e′

iAei,

where A is a positive semi-de�nite matrix, cannot be applied as well.

Secondly, it should be noted that ηi might not correctly measure each �rm's degree of

allocative ine�ciency in the model, although it arises from the fact that a producer uses

inputs in an incorrect proportion. Figure 1.2.2(b) shows that the absolute value of the error

term in the cost share equation, |ηi2|, can decrease as the size of |ξ2| increases. This indicates

that a producer using inputs fairly ine�ciently can have the same cost shares to a producer

that allocates inputs e�ciently. In addition, it is not guaranteed that ξj = 0 implies ηij = 0

by construction, which implies that the input j's actual share deviates from its optimum

share even if the input pair (j, 1) is e�ciently allocated. For instance, suppose that J = 3,

ξ2 = 0, but ξ3 ̸= 0. Then, although the input pair (2,1) is e�ciently allocated, ηi2 ̸= 0

because of the presence of ine�ciency among the input pair (3,1).

Consequently, the magnitudes of allocative ine�ciency are allowed to vary and linked to

uT
i , which represents the magnitudes of technical ine�ciency, in order to re�ne Kumbhakar

(1997)'s model and to provide a solution to �the Greene Problem.� I further discuss As-

sumption 2, which is about how to model the dependence between uT
i and ξijs. Since the

terms representing technical and allocative ine�ciency are introduced to the model without

any theoretical linkages, uT
i is assumed to be uncorrelated with ξi2, · · · , ξiJ . However, as

illustrated in Figure 1.2.1, a producer becomes technically ine�cient as the size of uT
i , which

is non-negative, increases and becomes allocatively ine�cient as the size of |ξij| increases.

Hence, uT
i is assumed to be positively correlated with |ξi2|, · · · , |ξiJ |.
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Assumption 3 is imposed for two purposes. The �rst purpose is to capture not only opti-

mization errors stemmed from ξijs in the model but also sources of randomness that are not

explicitly modeled. For example, Kumbhakar and Tsionas (2005a) use the same speci�ca-

tion to take account of measurement errors, and agent and/or researcher uncertainty.11 The

second purpose is to facilitate estimation. As pointed out, it is di�cult to derive the distri-

bution of ηi from ξijs. Moreover, although the assumption on the magnitudes of allocative

ine�cency is modi�ed from Kumbhakar (1997)'s model, the cost share equations can be seen

as deterministic because ηij is a function of ξijs. By appending additive noise, the system is

converted to a stochastic model so that one can readily obtain a joint density for estimation.

The �rst and second purposes are related. Reiss and Wolak (2007), for instance, state that

one can simply transform a deterministic economic model into an econometric model and

justify applying usual estimators by introducing measurement errors.

1.2.2.2 Modi�ed Model and Distributional Assumptions

Because of Assumptions 1 and 3, the stochastic cost frontier model needs to be modi�ed.

Although the assumption about the magnitudes of allocative ine�ciency has changed from

Kumbhakar (1997)'s model, the formula for each component of the system can be identically

derived. However, since
∑J

j=1 sj(yi,wi) = 1 and
∑J

j=1 ηij = 0 ∀i, an additional restriction

on the sum of νij is required so that
∑J

j=1 sij = 1 ∀i is guaranteed.

The modi�ed model can be written as

lnCi = lnC(yi,wi) + ϵi

= lnC(yi,wi) + vi + ui

= lnC(yi,wi) + vi + uT
i + uA

i

= lnC(yi,wi) + vi + uT
i + g(ξi)

11�These error terms represent measurement error and/or factors that are not under the control of the
�rm, so they are not modeled explicitly, unlike the ξ's. Alternatively, these errors might not be relevant for
the producer (in the sense that they are known to the producer), but nonetheless must be taken into account
by the researcher (who does not know them).� (p.739)
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sij = sj(yi,wi) + eij

= sj(yi,wi) + ηij + νij

= sj(yi,wi) + hj(ξi) + νij, j = 2, · · · , J. (1.2.1)

Recall that Ci is the actual cost of producer i, C(yi,wi) is the deterministic kernel of

the stochastic cost frontier, yi ∈ RM
+ is a vector of M outputs, wi ∈ RJ

++ is a vector

of input prices, vi ∈ R is a random disturbance, uT
i ∈ R+ represents a cost increase due to

technical ine�ciency, uA
i = g(ξi) ∈ R+ represents a cost increase due to allocative ine�ciency,

ξi = (ξi2, · · · , ξiJ), ξij, j = 2, · · · , J, represents allocative ine�ciency for the input pair (j, 1),

ui = uT
i + uA

i , ϵi = vi + ui, sij ∈ [0, 1] is the actual cost share of input j, sj(yi,wi) ∈ [0, 1]

is the optimum cost share of input j, ηij = hj(ξi) ∈ R is the disturbance due to allocative

ine�ciency, νij ∈ R is additive noise, and eij = ηij + νij is the disturbance due to both

allocative ine�ciency and noise. Each component of the system can be written as

lnC(yi,wi) = β0 +
M∑

m=1

βy
m(lnyim) +

1

2

M∑
m=1

M∑
n=1

βyy
mn(lnyim)(lnyin)

+
J∑

j=1

βw
j (lnwij) +

1

2

J∑
j=1

J∑
k=1

βww
jk (lnwij)(lnwik)

+
M∑

m=1

J∑
j=1

βyw
mj(lnyim)(lnwij)

sj(yi,wi) = βw
j +

J∑
k=1

βww
jk (lnwik) +

M∑
m=1

βyw
mj(lnyim), j = 2, · · · , J

uA
i = g(ξi) =

J∑
j=1

βw
j ξij +

J∑
j=1

J∑
k=1

βww
jk (lnwij)ξik +

1

2

J∑
j=1

J∑
k=1

βww
jk ξijξik

+
M∑

m=1

J∑
j=1

βyw
mj(lnyim)ξij + ln

J∑
j=1

(s∗ij/e
ξij)

ηij = hj(ξi) =
sj(yi,wi)[1− {

∑J
k=1(s

∗
ik/e

ξik)}eξij ] +
∑J

k=1 β
ww
jk ξik

{
∑J

k=1(s
∗
ik/e

ξik)}eξij
, j = 2, · · · , J, (1.2.2)

where s∗ij = sj(yi,wi) +
∑J

k=1 β
ww
jk ξik, j = 2, · · · , J, is the shadow cost share of input j for

producer i who is assumed to be only allocatively ine�cient. In addition,
∑J

j=1 νij = 0 ∀i
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is required to guarantee
∑J

j=1 sij = 1 ∀i. Restrictions on parameters are also necessary

in order to satisfy the properties of the cost function such that βyy
mn = βyy

nm ∀m ̸= n and

βww
jk = βww

kj ∀j ̸= k for symmetry,
∑J

j=1 β
w
j = 1,

∑J
k=1 β

ww
jk = 0 ∀j, and

∑J
j=1 β

yw
mj = 0 ∀m

for linear homogeneity in wi.

Regarding the distributional assumptions on the stochastic components of the system, I

follow a standard practice, such as in Christensen and Greene (1976), Schmidt and Lovell

(1979), and Kumbhakar and Tsionas (2005a,b). Assume that vi is distributed as N(0, σ2
v), u

T
i

is distributed as |N(0, σ2
T )|, ξi is distributed as N(0,Σξ), and νi is distributed as N(0,Σν).

For j = 2, · · · , J , assume that uT
i and ξij are distributed independently of vi and νij, and vi

and νij are mutually independent.

1.3 Estimation Strategy

1.3.1 Relationship between uT
i and ξi: APS Copulas

In Section 1.2.2.1, Assumption 2, which is about the dependence between uT
i and ξi, is

imposed in order to have the desirable attributes between technical and allocative ine�ciency.

Based on this assumption, it is required to derive the joint density of uT
i and ξi to estimate the

model. One way to obtain the joint distribution of dependent random variables is applying

copulas; that is, given speci�c marginal distributions of uT
i and ξijs, the joint distribution of

them can be obtained by employing copulas that capture the dependence.

Sklar's theorem states that for every joint cumulative distribution function of random

variables X1, · · · , XJ with margins F1(·), · · · , FJ(·), which are marginal cumulative distribu-

tion functions of X1, · · · , XJ , there exists a copula C : [0, 1]J → [0, 1], which is a cumulative

distribution function, such that

F (x1, · · · , xJ) = C
(
F1(x1), · · · , FJ(xJ)

)
for all xi ∈ R, i = 1, · · · , J , where F (·) is a joint cumulative distribution function.
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Let ω1 = F1(u
T ), ω2 = F2(ξ2), · · · , ωJ = FJ(ξJ), where uT , ξ2, · · · , ξJ are dummy argu-

ments. In order to have the desired properties between technical and allocative ine�ciency,

it is required that ω1 is linked to ω2, · · · , ωJ , for which ω1 is uncorrelated with ω2, · · · , ωJ but

correlated with |ω2 − 0.5|, · · · , |ωJ − 0.5|. To be speci�c, ω1 is uncorrelated with ω2, · · · , ωJ

so that uT
i is uncorrelated with ξi2, · · · , ξiJ . However, as Figure 1.3.1 shows, if we assume

that ξij is distributed symmetric around zero, like ξij ∼ N(0, σξj), a producer becomes al-

locatively ine�cient when ωj, j = 2, · · · , J , moves away from 0.5. Therefore, ω1 needs to be

positively correlated with |ω2 − 0.5|, · · · , |ωJ − 0.5|.

Figure 1.3.1: PDF and CDF of ξij

(a) PDF of ξij (b) CDF of ξij

Amsler et al. (2021) propose a new family of copulas (hereafter the APS copulas) that

can induce the desired attributes between technical and allocative ine�ciency. For example,

suppose that two inputs are used for production (J = 2). Then, the APS-2 copulas can be

applied to capture dependence between uT
i and ξi2. The APS-2 copula densities are de�ned

as follows (Amsler et al., 2021, p.4):

APS-2-A : c12(ω1, ω2) = 1 + θ12(1− 2ω1){1− 12(ω2 − 0.5)2)}, |θ12| ≤ 0.5

APS-2-B : c12(ω1, ω2) = 1 + θ12(1− 2ω1)(1− 4|ω2 − 0.5|), |θ12| ≤ 1,

where c12(ω1, ω2) is the APS-2 copula density, and θ12 is the association parameter. Then,

cov(ω1, ω2) = 0, corr(ω1, (ω2−0.5)2) = 2√
15
θ for the APS-2-A copula, and corr(ω1, |ω2−0.5|) =

1
3
θ for the APS-2-B copula (Amsler et al., 2021, p.3-4); that is ω1 is uncorrelated with ω2, but
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it can be correlated with |ω2 − 0.5|. Given this, uT
i and ξi2 can have the desired properties.

Figure 1.3.2 illustrates the sample correlation between ω1, ω2, and (ω2−0.5)2 when θ12 = 0.4

derived from simulations12 using the APS-2-A copula. It shows that corr(ω1, ω2) ≈ 0 and

corr(ω1, (ω2 − 0.5)2) ≈ 0.2066 as the theoretical results.

Figure 1.3.2: Sample Correlations (The APS-2-A Copula)

(a) corr(ω1, ω2) (b) corr(ω1, (ω2 − 0.5)2)

Amsler et al. (2021) also develop a method that the APS-2 copulas can be extended to

more dimensions, which is necessary when more than two inputs are used for production. If

J = 3, for instance, the APS-3 copulas can be applied to capture dependence between uT
i ,

ξi2, and ξi3. To be speci�c, ω2 and ω3 are allowed to follow any standard bivariate copula

but need to be linked to ω1 as in the APS-2 copulas. Assume that ω2 and ω3 follow the

bivariate Gaussian copula. Then, the APS-3 copula densities are de�ned as follows (Amsler

et al., 2021, p.6):

APS-3-A : c123(ω1, ω2, ω3) = 1 + (c12 − 1) + (c13 − 1) + (c23 − 1),

where

c12 = c12(ω1, ω2) = 1 + θ12(1− 2ω1){1− 12(ω2 − 0.5)2)}, |θ12| ≤ 0.5

c13 = c13(ω1, ω3) = 1 + θ13(1− 2ω1){1− 12(ω3 − 0.5)2)}, |θ13| ≤ 0.5

c23 = c23(ω2, ω3) =
1√

1− ρ2
exp

[
− ρ2Φ−1(ω2)

2 − 2ρΦ−1(ω2)Φ
−1(ω3) + ρ2Φ−1(ω3)

2

2(1− ρ2)

]
.

12The number of replications is 1,000, where the sample size is 1,000 for each replication.

17



APS-3-B : c123(ω1, ω2, ω3) = 1 + (c12 − 1) + (c13 − 1) + (c23 − 1),

where

c12 = c12(ω1, ω2) = 1 + θ12(1− 2ω1)(1− 4|ω2 − 0.5|), |θ12| ≤ 1

c13 = c13(ω1, ω3) = 1 + θ13(1− 2ω1)(1− 4|ω3 − 0.5|), |θ13| ≤ 1

c23 = c23(ω2, ω3) =
1√

1− ρ2
exp

[
− ρ2Φ−1(ω2)

2 − 2ρΦ−1(ω2)Φ
−1(ω3) + ρ2Φ−1(ω3)

2

2(1− ρ2)

]
,

where c123(ω1, ω2, ω3) is the APS-3 copula density, c12(ω1, ω2) and c13(ω1, ω3) are the APS-2

copula densities, c23(ω2, ω3) is the bivariate Gaussian copula density, θ12 and θ13 are the

association parameters, Φ(·) is the cumulative distribution function of the standard normal

distribution, and ρ ∈ (−1, 1) is the correlation parameter. By applying the APS-3 copulas,

one can capture dependence such that ω1 is uncorrelated with ω2 and ω3 but correlated

with |ω2 − 0.5| and |ω3 − 0.5| as in the case of J = 2. Hence, uT
i and ξijs, j = 2 and 3,

can have the desired properties. Figure 1.B.1 illustrates the sample correlations between

ω1, ω2, (ω2 − 0.5)2, ω3, and (ω3 − 0.5)2 when θ12 = θ13 = 0.2 and ρ = −0.513 obtained by

simulations14 based on the APS-3-A copula. It shows that corr(ω1, ω2) and corr(ω1, ω3) are

approximately zero when J = 2, but corr(ω1, |ω2 − 0.5|) and corr(ω1, |ω3 − 0.5|) are positive.

1.3.2 Derivation of the Joint Density

By employing the APS copulas, we can derive the joint density of the translog cost system

that captures the dependence between technical and allocative ine�ciency. For notational

convenience, rewrite X = ϵi = vi + uT
i + uA

i = X1 + Z1 + g(Z2), Y = (Y2, · · · , YJ) =

(ei2, · · · , eiJ) = (ηi2 + νi2, · · · , ηiJ + νiJ) = (h2(Z2) + W2, · · · , hJ(Z2) + WJ), and Z =

(Z1,Z2) = (uT
i , ξi2, · · · , ξiJ). Let θ = (θ1,θ2,θ3) be a vector of parameters, where θ1 =

13Amsler et al. (2021) show that the allowable range of θ12 and θ13 depends on ρ. To be speci�c, if ω2

and ω3 are strongly correlated, the range of |θ12|+ |θ13| decreases. Please refer to Result 10 of Amsler et al.
(2021, p.6) in detail.

14The number of replications is 1,000, where the sample size is 1,000 for each replication.
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(β0,β
y,βyy,βw,βww,βyw, σ2

v ,Σν), θ2 = (θAPS,θGauss), and θ3 = (σ2
T ,Σξ).

15 θAPS and θGauss

denote vectors of association or correlation parameters of the APS and Gaussian copulas,

respectively.16 Then, the translog cost system can be rewritten as

lnCi = lnC(yi,wi) +X

= lnC(yi,wi) +X1 + Z1 + g(Z2)

sij = sj(yi,wi) + Yj

= sj(yi,wi) + hj(Z2) +Wj, j = 2, · · · , J. (1.3.1)

It is required to derive the joint density of X = ϵi and Y = (Y2, · · · , YJ) = (ei2, · · · , eiJ)

in order to form a likelihood function of the translog cost system. First, the joint density of

X, Y , and Z can be written as

fX,Y ,Z(x,y, z;θ) = fX,Y |Z(x,y|z;θ) · fZ(z;θ2,θ3)

= fX|Y ,Z(x|y, z;θ) · fY |Z(y|z;θ) · fZ(z;θ2,θ3).

Then, the joint density of X and Y can be obtained by integrating out Z such that

fX,Y (x,y;θ) =

∫
R+×RJ−1

fX,Y ,Z(x,y, z;θ)dz

=

∫
R+×RJ−1

fX|Y ,Z(x|y, z;θ) · fY |Z(y|z;θ) · fZ(z;θ2,θ3)dz. (1.3.2)

Suppose that the distribution of Z is known and simple. Then, the joint density of

X and Y (1.3.2) can be approximated by drawing random numbers from the density of Z.

However, θ2 = (θAPS,θGauss), which governs the joint distribution of Z, should be estimated.

This implies that we need to transform the random vector Z to another random vector in

order to estimate θ2. In addition, a transformed random vector needs to be simple to make

the process of drawing random numbers easy.17

15Notation in bold represents row vectors whose elements are corresponding parameters of the system.
For instance, βy = (βy

1 , β
y
2 , · · · ) and βyy = (βyy

11 , β
yy
12 , · · · , β

yy
21 , β

yy
22 , · · · ).

16For example, if J = 3, θAPS = (θ12, θ13) and θGauss = ρ.
17�If the researcher wants to take a draw from a standard normal density (that is, a normal with zero

mean and unit variance) or a standard uniform density (uniform between 0 and 1), the process from a
programming perspective is very easy.�(Train, 2009, p.205-206)

19



As pointed out in Section 1.2.2.1, it is di�cult to apply the change of variables theorem

into the Kumbhakar (1997)'s model when the magnitudes of allocative ine�ciency are as-

sumed to be random. However, the theorem can be used to derive the joint density of the

translog cost system under the assumptions made in Section 1.2.2.1 by the following proce-

dure. It is established on the probability integral transform and the copula-based version of

Rosenblatt transformation (see Rosenblatt, 1952) that are monotone.

Rosenblatt (1952) proposes a method using conditional cumulative distribution func-

tions for transforming a dependent random vector to the independent random vector whose

components are uniformly distributed on [0, 1]. Appendix 1.A.3 provides detailed explana-

tions for the Rosenblatt transformation. Based on the both transformations, Z that has

dependent components can be replaced with functions of the independent ramdom vector

ζ = (ζ1, · · · , ζJ), where ζj ∼ U [0, 1], j = 1, · · · , J are uniformly and independently dis-

tributed over [0, 1]. The procedure for a change of variables using the probability integral

transform and the Rosenblatt transformation is illustrated in Figure 1.3.3.

Figure 1.3.3: Procedure for a Change of Variables

The �rst step is to replace Z with functions of ω using the probability integral transform.

Given that ωj = F (zj;θ3) for j = 1, · · · , J , let JZ be the Jacobian matrix whose (i, j)th
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element is ∂zi
∂ωj

=
∂F−1

i (ωi;θ3)

∂ωj
. Then, by applying the change of variables theorem, the joint

density of X and Y can be written as

fX,Y (x,y;θ)

=

∫
[0,1]J

fX|Y ,Z

(
x|y, z(ω);θ

)
· fY |Z(y|z

(
ω);θ

)
· fZ

(
z(ω);θ2,θ3

)
· |JZ |dω

=

∫
[0,1]J

fX|Y ,Z

(
x|y, z(ω);θ

)
· fY |Z

(
y|z(ω);θ

)
· c(ω1, · · · , ωJ) ·

J∏
j=1

fj
(
zj(ωj)

)
· |JZ |dω

=

∫
[0,1]J

fX|Y ,Z

(
x|y, z(ω);θ

)
· fY |Z

(
y|z(ω);θ

)
· c(ω1, · · · , ωJ)dω,

where ω = (ω1, · · · , ωJ). The second equality holds as a joint density of dependent ran-

dom variables equals the product of the copula density c(ω1, · · · , ωJ) and marginal densities

fj
(
zj(ωj)

)
, j = 2, · · · , J, for each random variable. The third equality holds as

JZ =



∂z1
∂ω1

∂z1
∂ω2

· · · ∂z1
∂ωJ

∂z2
∂ω1

∂z2
∂ω2

· · · ∂z2
∂ωJ

...
...

. . .
...

∂zJ
∂ω1

∂zJ
∂ω2

· · · ∂zJ
∂ωJ


=



1
f1(z1;θ3)

0 · · · 0

0 1
f2(z2;θ3)

· · · 0

...
...

. . . 0

0 0 · · · 1
fJ (zJ ;θ3)


,

thus |JZ | =
[∏J

j=1 fj
(
zj;θ3

)]−1

.

The second step is to replace ω with functions of ζ employing the Rosenblatt trans-

formation. Considering that a copula C is also a cumulative distribution function, let

TR : [0, 1]J → [0, 1]J be the Rosenblatt transformation given by

ζ1 = C1|2,··· ,J(ω1|ω2, · · · , ωJ)

...

ζJ−2 = CJ−2|J−1,J(ωJ−2|ωJ−1, ωJ)

ζJ−1 = CJ−1|J(ωJ−1|ωJ)

ζJ = CJ(ωJ).

For example, the conditional APS-2-A copula function C1|2(ω1|ω2) is

C1|2(ω1|ω2) = ω1 + g2ω1(1− ω1),
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where g2 = θ12{1−12(ω2−0.5)2}. The conditional APS-3-A copula functions C1|23(ω1|ω2, ω3)

and C2|3(ω2|ω3) are

C1|23(ω1|ω2, ω3) =
1

c23
{h(ω1 − ω2

1) + c23ω1}

C2|3(ω2|ω3) = Φ
(Φ−1(ω2)− ρΦ−1(ω3)√

1− ρ2

)
,

where c23 = c23(ω2, ω3) is the bivariate Gaussian copula density, h = g2 + g3, where g2 =

θ12{1 − 12(ω2 − 0.5)2} and g3 = θ13{1 − 12(ω3 − 0.5)2}, Φ is the cumulative distribution

function of the standard normal distribution, and ϕ is the probability density function of the

standard normal distribution.18

Let T be the inverse function of TR, and JT denotes the Jacobian matrix whose (i, j)th

element is ∂ωi

∂ζj
. Then, by applying the change of variables theorem once more, the joint

density of X and Y can be written as

fX,Y (x,y;θ)

=

∫
[0,1]J

fX|Y ,Z

(
x
∣∣∣y, z(T (ζ));θ) · fY |Z

(
y
∣∣z(T (ζ));θ) · c

(
T1(ζ), · · · , TJ(ζ);θ2

)
|JT |dζ

=

∫
[0,1]J

fX|Y ,Z

(
x
∣∣∣y, z(T (ζ));θ) · fY |Z

(
y
∣∣z(T (ζ));θ)dζ

where Tj(ζ) = ωj, j = 1, · · · , J . The second equality holds as

JT =



∂ω1

∂ζ1

∂ω1

∂ζ2
· · · ∂ω1

∂ζJ

...
...

. . .
...

∂ωJ−1
∂ζ1

∂ωJ−1
∂ζ2

· · · ∂ωJ−1
∂ζJ

∂ωJ
∂ζ1

∂ωJ
∂ζ2

· · · ∂ωJ
∂ζJ


=



1
c1|2,··· ,J

· · · 1
∂C1|2,··· ,J/∂ωJ−1

1
∂C1|2,··· ,J/∂ωJ

...
. . .

...
...

0 · · · 1
cJ−1|J

1
∂CJ−1|J/∂ωJ

0 · · · 0 1
cJ


,

where c1|2,··· ,J , · · · , cJ−1|J are conditional copula densities. Therefore, |JT | = [c1|2,··· ,J × · · · ×

cJ−1|J × cJ ]
−1 = [c(ω1, · · · , ωJ)]

−1.19

18Sections 2.A.1 and 2.2 provide derivation of these conditional copula functions.
19Arguments are occasionally dropped for brevity.
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Note that

fX|Y ,Z

(
x
∣∣∣y, z(T (ζ));θ)

= fX|Y ,Z

(
x1 + z1

(
T (ζ)

)
+ g

(
z2

(
T (ζ)

))∣∣∣∣h2

(
z2

(
T (ζ)

))
, · · · , hJ

(
z2

(
T (ζ)

))
, z

(
T (ζ)

)
;θ

)
= fX1

(
x− z1

(
T (ζ)

)
− g

(
z2

(
T (ζ)

))
;θ

)
,

where x = lnC − lnC(y,w), and

fY |Z

(
y
∣∣∣z(T (ζ));θ)

= fY |Z

(
h2

(
z2

(
T (ζ)

))
+ ν2, · · · , hJ

(
z2

(
T (ζ)

))
+ νJ

∣∣∣∣z(T (ζ));θ)
= fν

(
e2 − h2

(
z2

(
T (ζ)

))
, · · · , eJ − hJ

(
z2

(
T (ζ)

))
;θ

)
,

where ej = sj − sj(y,w), j = 2, · · · , J .

Therefore, the joint density of X and Y can be simpli�ed as

fX,Y (x,y;θ)

=

∫
[0,1]J

fX|Y ,Z

(
x
∣∣∣y, z(T (ζ));θ) · fY |Z

(
y
∣∣z(T (ζ));θ)dζ

=

∫
[0,1]J

fX1

(
x− z1

(
T (ζ)

)
− g

(
z2

(
T (ζ)

))
;θ

)
· fν

(
e2 − h2

(
z2

(
T (ζ)

))
, · · · , eJ − hJ

(
z2

(
T (ζ)

))
fζ(ζ)dζ

= Eζ

[
fX1

(
x− z1

(
T (ζ)

)
− g

(
z2

(
T (ζ)

))
;θ

)
· fν

(
e2 − h2

(
z2

(
T (ζ)

))
, · · · , eJ − hJ

(
z2

(
T (ζ)

))
;θ

)]
, (1.3.3)

where fζ(ζ) is the joint probability density function of ζ, and Eζ represents the expectation

with respect to the distribution of ζ. The second equality holds as ζ is the independent

random vector such that each component follows a uniform distribution over [0, 1], which

implies fζ(ζ) = 1.
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1.3.3 Maximum Simulated Likelihood Estimator

Since the joint density ofX and Y involves an intractable integral, simulation-based methods

are necessary to compute the joint density. The direct or crude frequency simulator for the

joint density fX,Y (x,y;θ) can be written as

f̂X,Y (x,y;θ)

=
1

R

R∑
r=1

{
fX1

(
x− z1

(
T (ζ(r))

)
− g

(
z2

(
T (ζ(r))

))
;θ

)
· fν

(
e2 − h2

(
z2

(
T (ζ(r))

))
, · · · , eJ − hJ

(
z2

(
T (ζ(r))

))
;θ

)}
,

where ζ(r) = (ζ
(r)
1 , · · · , ζ(r)1 ) is the independent rth draw of R draws from multivariate stan-

dard uniform distribution. The maximum simulated likelihood estimator θ̂
MSL

maximizes

the following simulated log likelihood function:

lnL̂(θ)

=
N∑
i=1

lnf̂X,Y (x,y;θ)

=
N∑
i=1

ln

[
1

R

R∑
r=1

{
fX1

(
x− z1

(
T (ζ(r))

)
− g

(
z2

(
T (ζ(r))

))
;θ

)
· fν

(
e2 − h2

(
z2

(
T (ζ(r))

))
, · · · , eJ − hJ

(
z2

(
T (ζ(r))

))
;θ

)}]
. (1.3.4)

1.4 Firm-level Ine�ciency

Researchers can measure and decompose the average ine�ciency by estimating the model

proposed in previous sections. However, as Jondrow et al. (1982) point out, it is also desirable

to estimate ine�ciency for each observation to compare (in)e�ciency levels across �rms,

which is the original motivation of Farrell (1957). However, the error term in the cost share

equations, eij, is assumed to contain both the disturbance from the optimal share and the

additive noise. Therefore, methods that use conditional distributions to derive �rm-level

ine�ciency developed in previous studies, such as Jondrow et al. (1982) and Battese and
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Coelli (1988), cannot be directly employed. In this section, I propose a strategy to measure

and decompose �rm-level technical and allocative ine�ciency for (1.2.1).

The process unfolds in four steps as summarized in Figure 1.4.1. The �rst step is de-

composing the error term in the cost share equations, eij, into ηij and νij to calculate η̂ij.

As a point estimate of η̂ij, we can use the mode of the conditional distribution f̂η|e(η|e)

as Jondrow et al. (1982), which can be obtained by deconvolution density estimation. The

second step is solving for ξi given η̂ij. As J−1 cost share equations ηij = hj(ξi), j = 2, · · · J ,

include J − 1 unknowns, we can �nd the solution to the system of equations, ξ̂i. The third

step is calculating uA
i using ξ̂i following (1.2.2). The last step is estimating the conditional

expectation of uT
i given ûA

i and ϵ̂i, where ûT
i = E[uT

i |vi + uT
i ] = E[uT

i |ϵi − uA
i ] that is in line

with Jondrow et al. (1982).

Figure 1.4.1: Process to Measure and Decompose Individual Ine�ciency

Step 1: Decompose ηij and νij

Step 2: Solve for ξi given η̂ij

Step 3: Calculate uA
i using ξ̂i

Step 4: Estimate uT
i given ûA

i

Details on Step 1 and 4 are as follows. First, since the two terms representing allocative

ine�ciency, ηij and uA
i , are functions of ξi, it is required to estimate ξi to measure individual

allocative ine�ciency, which can be obtained from the system of equations ηij = hj(ξi), j =

2, · · · , J . However, because the error term in the cost share equations, eij, which can be

obtained after estimating the model, contains additive noise, νij, it is essential to decompose

ηij and νij that are unobservable. Density deconvolution methods can be used to recover

25



an unknown probability density function that is noise-free, which implies we can recover the

density function of ηij. The setup of the density deconvolution problem is as follows. Suppose

that one can only observe samples Y1, · · · , Yn given by Yi = Xi+Ui, i = 1, · · · , n, where Ui is

noise from a known distribution and independent of Xi. The problem is how to estimate the

density function of X, fX(x), and the conditional density of X given Y , fX|Y (x|y), based on

the observations Y1, · · · , Yn. For more details about density deconvolution to estimate fX(x),

please refer to Carroll and Hall (1988), Stefanski and Carroll (1990), and Fan (1991). Wang

and Ye (2015) propose re-weighted deconvolution kernel methods to estimate the conditional

density function fX|Y (x|y) in an additive error model. Their estimator, which is applied to

estimate fη|e(η|e), is

f̂X|Y (x|y) = τ̂0(x|y)
n∑

j=1

K∗
h(x− Yj),

where τ̂0(x|y) = fU (y−x)∑n
j=1 Lb(y−Yj)

, Lb(·) = L(·/b)/b, L(·) is a real non-negative kernel function, b

is the bandwidth that associates with the kernel density estimate of fY , K
∗
h(·) = K∗(·/h)/h,

K∗(z) = 1
2π

∫
e−itz ϕK(t)

ϕU (t/h)
dt is the deconvoluting kernel, h ∈ R++ is a smoothing parameter,

ϕU is the characteristic function of U , and ϕK(t) =
∫
eitχK(χ)dχ is the Fourier transform of

K(χ). Then, ηij can be estimated from the estimates of fη|e(η|e).

Second, upon solving for ξi given η̂ij (Step 2) and calculating uA
i given ξ̂i by (1.2.2) (Step

3), one can obtain vi + uT
i from the cost function. Then, an approach like Jondrow et al.

(1982) and Battese and Coelli (1988), which use the conditional expectation, can be applied

to estimate technical ine�ciency. As it is assumed that vi ∼ N(0, σ2
v), u

T
i ∼ |N(0, σ2

T )|,

conditional expectation of uT
i given vi + uT

i is

E[uT
i |vi + uT

i ] = σ∗

[
ϕ(λ

σ
ϵ̃i)

Φ(λ
σ
ϵ̃i)

+
λ

σ
ϵ̃i

]
where σ2

∗ = σ2
vσ

2
T/σ

2, σ2 = σ2
v +σ2

T , λ = σT +σv, ϕ is the probability density function of the

standard normal distribution, Φ is the cumulative density function of the standard normal

distribution, and ϵ̃i = vi + uT
i (Kumbhakar and Lovell, 2000, p.141).
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1.5 Application: U.S. Banking Industry

1.5.1 Data

The new model and strategies are applied to the U.S. banking industry. The dataset for this

empirical study is based on the Reports of Condition and Income (Call Reports) for all FDIC

insured U.S. banks. These are retrieved from FDIC's Statistics on Depository Institutions

(https://www7.fdic.gov/sdi). Although the sample includes all U.S. depository institutions

in the Call Report for the end of 2019 and 2020, it is �ltered for the following reasons. First,

the observations are dropped if key variables in the model are missing. Second, banks that

enter or exit the market during the corresponding year are excluded, as their reported cost

does not represent the total yearly cost. To the end, the number of banks in the dataset

is 5,105 in 2019 and 4,937 in 2020, whereas the number of reported institutions is 5,177 in

2019 and 5,002 in 2020, respectively.

There is a long-standing disagreement over the input and output of banks.20 I follow the

asset (or intermediation) approach (see Sealey and Lindley, 1977) that banks are regarded

as �rms that transform various �nancial and physical resources, such as deposits and labor,

into loans and investments. Similar to Altunbas et al. (2007) and Ding and Sickles (2019),

it is assumed that banks produce two outputs using three inputs. The output variables are

loans (yi1) and other earning assets (yi2), such as securities and trading assets. The input

variables are funds that the bank owes (xi1), such as deposits and debentures, the number of

full-time employees (xi2), and �xed assets (xi3). Given this de�nition of inputs, input prices

are de�ned as wi1 = interest expenses (Ci1)/funds that the bank owes (xi1), wi2 = salaries

(Ci2)/the number of full-time employees (xi2), and wi3 = �xed assets expenses (Ci3)/�xed

assets (xi3). The total cost (Ci) is de�ned as the sum of interest expenses (Ci1), salaries

(Ci2), and �xed assets expenses (Ci3).

Tables 1.B.1 and 1.B.2 summarize descriptive statistics of key variables in 2019 and 2020,

20For more details, please refer to Berger and Humphrey (1992) and Guarda et al. (2013).
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respectively. While other variables are not changed signi�cantly during the sample period,

there are notable changes in two key variables as shown in Table 1.5.1. First, interest

expenses decrease signi�cantly in 2020. Although they had had an increasing trend since

2016, they decreased from $158.7 billion in 2019 to $77.1 billion in 2020 for all depository

institutions. Second, other earning assets have increased substantially during the pandemic.

To be speci�c, their balance has slightly increased from 2016 to 2019 but increased from

$6.9 trillion in 2019 to $9.8 trillion in 2020. It implies that the composition of banks' costs

and outputs has considerably changed since the outbreak of COVID-19. This might lead the

changes in the cost frontier of the U.S. banking industry between 2019 and 2020.

Table 1.5.1: Interest Expenses and Other Earning Assets of the U.S. Banks

Year 2016 2017 2018 2019 2020

Interest Expenses ($ billion) 54.4 73.3 119.8 158.7 77.1
Other Earning Assets ($ billion) 6,321.8 6,547.6 6,611.1 6,870.8 9,829.8

Source: FDIC

1.5.2 Average Ine�ciency

The main purpose of this subsection is to check whether the average cost ine�ciency of the

U.S. banking industry has varied before and after the pandemic. In addition, the estimation

results are compared to those following Greene (1980) to show that more plausible results

can be obtained from the model proposed in this paper.

Greene (1980)'s assumptions can be summarized as follows. Given the translog cost

system

lnCi = lnC(yi,wi) + ϵi

= lnC(yi,wi) + vi + ui

sij = sj(yi,wi) + eij, j = 2, 3,

it is assumed that ϵi is independent of ei = (ei2, ei3), vi
i.i.d∼ N(0, σ2

v), ui
i.i.d∼ |N(0, σ2

u)|, and

ei
i.i.d∼ N(0,Σe). Maximum likelihood estimation can be applied to estimate parameters of
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the model, where the joint density of ϵi, ei2, ei3 is simply fϵ,e2,e3(ϵ, e2, e3) = fϵ(ϵ) · fe(e), as

ϵi and ei are independent. Note that the probability density function of ϵi, which is the sum

of two random variables following the normal distribution and the half normal distribution,

respectively, is

fϵ(ϵ) =
2

σ
· ϕ

( ϵ

σ

)
· Φ

(ϵλ
σ

)
,

where σ2 = σ2
v + σ2

u, λ = σu/σv, and ϕ and Φ are density and distribution functions of the

standard normal distribution.21 Even though technical and allocative ine�ciency cannot be

decomposed, overall ine�ciency ui can be estimated using Greene (1980)'s assumptions.

Tables 1.5.2 and 1.5.3 show the estimation results for 2019 and 2020, respectively, where

Models I and II stand for the model of this paper and the model following the independence

assumption stated by Greene (1980). To estimate the model of this paper (Model I), R =

10, 000 sets of random numbers are drawn.

Table 1.5.2: Estimation Results for 2019

Model I Model II Model I Model II Model I Model II

β0 0.5176 0.5529 βww
11 0.1465 0.1488 σν2/σe2 0.0625 0.0755

(0.1466) (0.1484) (0.0023) (0.0011) (0.0008) (0.0006)
βy
1 0.5130 0.5099 βww

12 -0.1370 -0.1358 σν3/σe3 0.0218 0.0431
(0.0178) (0.0187) (0.0020) (0.0010) (0.0010) (0.0004)

βy
2 0.4879 0.4883 βww

22 0.1365 0.1325 ρν/ρe 0.5233 0.0314
(0.0231) (0.0231) (0.0020) (0.0014) (0.0279) (0.0133)

βyy
11 0.1180 0.1147 βyw

11 0.0088 0.0044 θ12 0.3229 -
(0.0026) (0.0027) (0.0016) (0.0018) (0.1566)

βyy
12 -0.1102 -0.1069 βyw

12 -0.0060 -0.0025 θ13 0.0000 -
(0.0031) (0.0030) (0.0012) (0.0014) (0.1506)

βyy
22 0.1005 0.0972 βyw

21 0.0156 0.0187 ρθ 0.8137 -
(0.0039) (0.0039) (0.0014) (0.0016) (0.0165)

βw
1 0.3704 0.3896 βyw

22 -0.0172 -0.0199 σT /σu 0.2242 0.2239
(0.0138) (0.0182) (0.0012) (0.0013) (0.0175) (0.0128)

βw
2 0.5368 0.5254 σv 0.2868 0.2922 σξ2 0.5941 -

(0.0111) (0.0142) (0.0061) (0.0049) (0.0240)
σξ3 0.6447 -

(0.0228)

Note: BHHH standard errors are in parentheses.

21Please refer to Appendix 1.A.4 for the derivation.
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Table 1.5.3: Estimation Results for 2020

Model I Model II Model I Model II Model I Model II

β0 0.8529 0.9687 βww
11 0.1265 0.1276 σν2/σe2 0.0553 0.0724

(0.1514) (0.1539) (0.0021) (0.0010) (0.0008) (0.0006)
βy
1 0.3599 0.3549 βww

12 -0.1224 -0.1202 σν3/σe3 0.0201 0.0467
(0.0195) (0.0179) (0.0018) (0.0010) (0.0009) (0.0004)

βy
2 0.5805 0.5748 βww

22 0.1272 0.1222 ρν/ρe 0.3968 -0.1413
(0.0242) (0.0238) (0.0018) (0.0013) (0.0411) (0.0122)

βyy
11 0.1050 0.1053 βyw

11 0.0086 0.0033 θ12 0.3191 -
(0.0030) (0.0030) (0.0012) (0.0016) (0.2036)

βyy
12 -0.0841 -0.0846 βyw

12 -0.0039 0.0012 θ13 0.0000 -
(0.0034) (0.0030) (0.0011) (0.0013) (0.1428)

βyy
22 0.0647 0.0661 βyw

21 0.0118 0.0159 ρθ 0.8162 -
(0.0040) (0.0036) (0.0012) (0.0015) (0.0132)

βw
1 0.3633 0.3800 βyw

22 -0.0180 -0.0219 σT /σu 0.2060 0.1690
(0.0103) (0.0147) (0.0011) (0.0013) (0.0269) (0.0227)

βw
2 0.5569 0.5429 σv 0.3193 0.3325 σξ2 0.6299 -

(0.0088) (0.0117) (0.0069) (0.0058) (0.0227)
σξ3 0.7005 -

(0.0180)

Note: BHHH standard errors are in parentheses.

There are three points to be noted. First, the results indicate a dependence between

technical and allocative ine�ciency, although θ13, which captures dependence between uT
i

and ξi3, is close to zero in both periods. Second, re�ecting large increase in other earning

assets (yi2), β
y
1 decreased and βy

2 increased in 2020 relative to 2019. Lastly, both σT of Model I

and σu of model II decreased, implying that technical or overall ine�ciency decreased during

the pandemic. This might be due to the fact that interest expenses decreased in 2020.

However, the magnitude of decreases is much higher for Model II than for Model I.

Table 1.5.4 shows the estimation results of average ine�ciency. In both models, the

mean of uT
i , u

A
i , or ui cannot be directly estimated; only their standard deviations and the

standard deviation of ξijs can be estimated. However, since the mean of a random variable

that follows the half normal distribution is a function of its standard deviation22, the mean of

uT
i for Model I and ui for Model II, which are assumed to follow the half normal distribution,

can be calculated. The average uA
i of Model I is calculated using the estimation results for

22If X ∼ |N(0, σ2
X)|, E[X] = σX

√
2√

π
.
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�rm-level ine�ciency in the next subsection. For Model I, the average ui is computed as the

sum of the mean of both uT
i and uA

i .

Table 1.5.4: Average Ine�ciency

2019 2020

ui uTi uAi ui uTi uAi
Model I 0.2040 0.1789 0.0251 0.1887 0.1643 0.0244
Model II 0.1786 - - 0.1349 - -

The results suggest that costs of U.S. banks increased by around 16∼18% and 2.5%

during the sample period due to technical and allocative ine�ciency, respectively. There

are two main �ndings from the results. The �rst one is that overall ine�ciency in 2020

decreased compared to 2019. The e�ect can be also decomposed. Cost increases due to

allocative ine�ciency do not di�er between 2019 and 2020 (2.5% → 2.4%), whereas changes

in technical ine�ciency are non-trivial (17.9% → 16.4%). The second main �nding is that

assuming independence between ϵi and ei would produce unrealistic results. Particularly,

the overall ine�ciency levels are generally underestimated by 3 ∼ 5% when compared to

Model I. Furthermore, overall ine�ciency decreased to a great extend in 2020 in spite of the

pandemic (17.9% → 13.5%), which is seemingly less plausible.

1.5.3 Firm-level Ine�ciency

As the �rst step to estimate �rm-level ine�ciency, it is suggested in Section 1.4 that the

mode of the conditional distribution f̂η|e(η|e) is used. Figures 1.5.1 and 1.5.2 show density

estimates of e, f̂e(e), and conditional density estimates of η given e, f̂η|e(η|e), for 2019

obtained by kernel density estimation and density deconvolution. Although both f̂e2(e2) and

f̂e3(e3) are skewed, f̂η|e(η|e) is fairly symmetric and centered around its mode for various

values of e. Along with Figures 1.B.2 and 1.B.3, which illustrate density estimates of e and

conditional density estimates of η given e for 2020, it supports the validity of using the mode

as the estimate of η.
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Figure 1.5.1: f̂e2(e2) and f̂η2|e2(η2|e2) for 2019

Figure 1.5.2: f̂e3(e3) and f̂η3|e3(η3|e3) for 2019
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Table 1.5.5 shows the standard deviations of ξi2 and ξi3, σ̂ξ2 and σ̂ξ3 , using the estimation

results of the second step; recall that ξi2 and ξi3 represent the degree of allocative ine�ciency

for the input pair (j, 1), j = 2, 3. Compared to the model estimates, the standard deviations

of estimates for individual �rm's allocative ine�ciency tend to be rather large but not too

di�erent. In addition, as the estimates of �rm-level allocative ine�ciency, ξ̂i2 and ξ̂i3, can be

obtained, the results can be compared by the bank's classi�cation, such as the banks' size

and the charter class23. The results show that the degree of allocative ine�ciency of larger

banks, such as banks with assets greater than $1 billion or nationally chartered commercial

banks, and of thrifts is more dispersed than that of other banks.

Table 1.5.5: Standard Deviations of ξ̂i2 and ξ̂i3

2019 2020

σ̂ξ2 σ̂ξ3 σ̂ξ2 σ̂ξ3
Model Estimates 0.5941 0.6447 0.6299 0.7005
Full Sample 0.7693 0.7495 0.7313 0.7286

Asset Size
- Large Banks 0.8805 0.7667 0.8416 0.7617
- Small Banks 0.7476 0.7459 0.7016 0.7176

Charter Class
- N 0.8024 0.7422 0.7614 0.7185
- NM 0.7571 0.7461 0.7102 0.7232
- SM 0.7354 0.7060 0.7137 0.6975
- SB 0.7732 0.7475 0.7319 0.7040
- SA 0.8287 0.8488 0.8434 0.8465

23Banks are classi�ed by its asset size and classi�cation codes assigned by the FDIC, which indicate
an institution's charter type, an institution's charter type, its Federal Reserve membership status, and its
primary federal regulator. Please refer to Table 1.B.3 for more details.
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Figure 1.5.3 shows the distribution of estimates for cost increases due to allocative inef-

�ciency, uA
i , of individual banks, which is obtained from the third step of the process. The

distribution shape is fairly similar to the results in Kumbhakar and Tsionas (2005b) in that it

is highly skewed to the right. However, magnitudes are smaller seemingly owing to di�erent

de�nitions of inputs and outputs, sample periods, and the assumption about the variation

of the term representing allocative ine�ciency, ξi. Even though a small number of estimates

are negative, contrary to the de�nition of uA
i , their magnitudes are not considerable.

Figure 1.5.3: Distribution of ûA
i

(a) 2019 (b) 2020

Table 1.5.6 shows the average cost increases due to allocative ine�ciency by the banks'

classi�cation. The estimates of larger banks, such as banks with assets greater than $1 billion

or nationally chartered commercial banks, and of thrifts are higher than those of other banks.

In addition, the average cost increases due to allocative ine�ciency has not been changed

signi�cantly between 2019 and 2020 by banks' asset sizes and the charter classes.

Table 1.5.6: Average of ûA
i

2019 2020

Full Sample 0.0251 0.0244

Asset Size
- Large Banks 0.0327 0.0332
- Small Banks 0.0237 0.0223

Charter Class
- N 0.0288 0.0282
- NM 0.0240 0.0229
- SM 0.0239 0.0242
- SB 0.0225 0.0210
- SA 0.0316 0.0326
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Figure 1.5.4 shows the distribution of estimates for cost increases due to technical in-

e�ciency, uT
i , of individual banks, which is obtained from the last step of the process. As

opposed to the distribution of ûA
i , it is slightly skewed to the right. In addition, the estimates

for cost increases due to technical ine�ciency are less dispersed in 2020 compared to those of

the previous year. Its standard deviation is decreased from 0.0567 in 2019 to 0.0452 in 2020;

this implies that banks became somewhat homogeneous in terms of technical ine�ciency.

Figure 1.5.4: Distribution of ûT
i

(a) 2019 (b) 2020

Table 1.5.7 shows the average cost increases due to technical ine�ciency by the banks'

classi�cation. The estimates are fairly similar to those of uT
i obtained from the model. Also,

unlike the results of the third step, the estimates of the large banks are slightly smaller than

those of the small banks. By the banks' charter class, nationally chartered commercial banks

seem to be technically less e�cient than others, but the gap between them decreased in 2020.

Table 1.5.7: Average of ûT
i

2019 2020

Model Estimates 0.1789 0.1643
Full Sample 0.1748 0.1620

Asset Size
- Large Banks 0.1737 0.1619
- Small Banks 0.1750 0.1621

Charter Class
- N 0.1819 0.1666
- NM 0.1743 0.1610
- SM 0.1751 0.1634
- SB 0.1641 0.1569
- SA 0.1710 0.1626
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Table 1.5.8 summarizes the estimation results of individual technical and allocative in-

e�ciency. To sum up, �rst, the ratio of cost increase due to allocative ine�ciency, uA
i , has

not changed between 2019 and 2020. However, the ratio of cost increase due to technical

ine�ciency, uT
i , has decreased. It suggests the possibility of changes in the cost frontier

during the pandemic, while banks try to maintain resource allocation. Second, cost increase

due to ine�ciency is generally higher for larger banks. It is in line with previous studies,

such as Altunbas et al. (2007) and Ding and Sickles (2019).

Table 1.5.8: Average of ûT
i and ûA

i

2019 2020

ûTi ûAi ûTi ûAi
Full Sample 0.1748 0.0251 0.1620 0.0244

Asset Size
- Large Banks 0.1737 0.0327 0.1619 0.0332
- Small Banks 0.1750 0.0237 0.1621 0.0223

Charter Class
- N 0.1819 0.0288 0.1666 0.0282
- NM 0.1743 0.0240 0.1610 0.0229
- SM 0.1751 0.0239 0.1634 0.0242
- SB 0.1641 0.0225 0.1569 0.0210
- SA 0.1710 0.0316 0.1626 0.0326

1.6 Conclusion

Cost e�ciency analysis has the virtue that it enables researchers to decompose ine�ciency

into two main sources; input-oriented technical ine�ciency, and resource misallocation. How-

ever, there is no satisfactory method to measure and decompose both types of ine�ciency

when �exible functional forms are allowed for.

In this paper, a model and an estimation strategy for the translog cost system are devel-

oped to overcome limitations of previous stochastic cost frontier studies. By employing APS

copulas, one can model the dependence between technical and allocative ine�ciency as well

as provide a solution to �the Greene Problem.� The model can be estimated by the method

of simulated likelihood. The proposed estimation strategy is developed upon economic in-
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tuition behind the stochastic frontier model. It is also uncomplicated, as random numbers

can be drawn from the simple density, the standard uniform density. In addition, a strategy

to estimate individual ine�ciency is proposed, which uses not only conditional distributions

as in previous studies, but also density deconvolution.

An empirical exercise for the U.S. banking industry in 2019 and 2020 shows that the costs

of U.S. banks increased by around 20% during the sample period due to ine�ciency, where

technical and allocative ine�ciency account for around 16∼18% and 2.5%, respectively.

During the pandemic, banks' technical ine�ciency has slightly decreased seemingly due to

changes in the composition of costs and output, while the degree of allocative ine�ciency

has not changed signi�cantly. Lastly, the results suggest that it would produce less plausible

results when ignoring the dependence between technical and allocative ine�ciency.
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APPENDIX A

Additional Details

1.A.1 Proof of
∑J

j=1 sij(yi,wi) = 1 and
∑J

j=1 ηij = 0

1.A.1.1
∑J

j=1 sij(wi,yi) = 1

J∑
j=1

sj(yi,wi)

=
J∑

j=1

[
βw
j +

J∑
k=1

βww
jk (lnwik) +

M∑
m=1

βyw
mj(lnyim)

]

=
J∑

j=1

βw
j +

J∑
j=1

J∑
k=1

βww
jk (lnwik) +

J∑
j=1

M∑
m=1

βyw
mj(lnyim)

=
J∑

j=1

βw
j +

J∑
k=1

J∑
j=1

βww
jk (lnwik) +

M∑
m=1

J∑
j=1

βyw
mj(lnyim)

=
J∑

j=1

βw
j +

J∑
k=1

(lnwik)
J∑

j=1

βww
jk +

M∑
m=1

(lnyim)
J∑

j=1

βyw
mj

= 1.

The last equality holds because of the restrictions on the parameters, such as
∑J

j=1 β
w
j = 1,∑J

k=1 β
ww
jk =

∑J
j=1 β

ww
jk = 0 ∀j or ∀k, and

∑J
j=1 β

yw
mj = 0 ∀m.

1.A.1.2
∑J

j=1 ηij = 0

Since
∑J

j=1 sij = 1 and
∑J

j=1 sij(yi,wi) = 1,
∑J

j=1 ηij = 0 is guaranteed. For J = 2 and 3,

it can be also shown using the formula of ηij.

(i) J = 2

ηi1 + ηi2

=
s1(yi,wi)[1− {s∗i1 + (s∗i2/e

ξi2)}] + βww
12 ξi2

{s∗i1 + (s∗i2/e
ξi2)}

+
s2(yi,wi)[1− {s∗i1 + (s∗i2/e

ξi2)}eξi2 ] + βww
22 ξi2

{s∗i1 + (s∗i2/e
ξi2)}eξi2
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=
s1(yi,wi)e

ξi2 [1− {s∗i1 + (s∗i2/e
ξi2)}] + βww

12 ξi2e
ξi2

{s∗i1 + (s∗i2/e
ξi2)}eξi2

+
s2(yi,wi)[1− {s∗i1 + (s∗i2/e

ξi2)}eξi2 ] + βww
22 ξi2

{s∗i1 + (s∗i2/e
ξi2)}eξi2

=
s1(yi,wi)e

ξi2 + s2(yi,wi)

{s∗i1 + (s∗i2/e
ξi2)}eξi2

−
(
s1(yi,wi) + s2(yi,wi)

)
{s∗i1 + (s∗i2/e

ξi2)}eξi2 + βww
12 ξi2e

ξi2 + βww
22 ξi2

{s∗i1 + (s∗i2/e
ξi2)}eξi2

=

(
s1(yi,wi)− s∗i1 + βww

12 ξi2
)
eξi2 +

(
s2(yi,wi)− s∗i2 + βww

22 ξi2
)

{s∗i1 + (s∗i2/e
ξi2)}eξi2

= 0.

The fourth equality holds as s1(yi,wi) + s2(yi,wi) = 1, and the last equality holds by the

de�nition of sij.

(ii) J = 3

ηi1 + ηi2 + ηi3

=
s1(yi,wi)[1− {s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}] + βww

12 ξi2 + βww
13 ξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}

+
s2(yi,wi)[1− {s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2 ] + βww

22 ξi2 + βww
23 ξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2

+
s3(yi,wi)[1− {s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi3 ] + βww

32 ξi2 + βww
33 ξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi3

=
s1(yi,wi)e

ξi2eξi3 [1− {s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}]
{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2eξi3

+
βww
12 ξi2e

ξi2eξi3 + βww
13 ξi3e

ξi2eξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

+
s2(yi,wi)e

ξi3 [1− {s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2 ]
{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2eξi3

+
βww
22 ξi2e

ξi3 + βww
23 ξi3e

ξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

+
s3(yi,wi)e

ξi2 [1− {s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi3 ]
{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2eξi3

+
βww
32 ξi2e

ξi2 + βww
33 ξi3e

ξi2

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3
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=
s1(yi,wi)e

ξi2eξi3 + s2(yi,wi)e
ξi3 + s3(yi,wi)e

ξi2

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

−
(
s1(yi,wi) + s2(yi,wi) + s3(yi,wi)

)
eξi2eξi3{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

+
βww
12 ξi2e

ξi2eξi3 + βww
13 ξi3e

ξi2eξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

+
βww
22 ξi2e

ξi3 + βww
23 ξi3e

ξi3

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

+
βww
32 ξi2e

ξi2 + βww
33 ξi3e

ξi2

{s∗i1 + (s∗i2/e
ξi2) + (s∗i3/e

ξi3)}eξi2eξi3

=
eξi2eξi3

(
s1(yi,wi)− s∗i1 + βww

12 ξi2 + βww
13 ξi3

)
{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2eξi3

+
eξi3

(
s2(yi,wi)− s∗i2 + βww

22 ξi2 + βww
23 ξi3

)
{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2eξi3

+
eξi2

(
s3(yi,wi)− s∗i3 + βww

32 ξi2 + βww
33 ξi3

)
{s∗i1 + (s∗i2/e

ξi2) + (s∗i3/e
ξi3)}eξi2eξi3

= 0.

The fourth equality holds as s1(yi,wi) + s2(yi,wi) + s3(yi,wi) = 1, and the last equality

holds by the de�nition of sij.

1.A.2 Simplifying uA
i and ηij

Assume that there is no additive noise term in the cost share equations. LetGi =
∑J

k=1(s
∗
ik/e

ξk).

Then,

ηij =
sj(yi,wi)(1−Gie

ξj) +
∑J

k=1 β
ww
jk ξk

Gieξj

⇒ Giηije
ξj = sj(yi,wi)(1−Gie

ξj) +
J∑

k=1

βww
jk ξk

⇒ Gi

(
sj(yi,wi) + ηij

)
eξj = sj(yi,wi) +

J∑
k=1

βww
jk ξk

⇒ Gisije
ξj = sj(yi,wi) +

J∑
k=1

βww
jk ξk
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⇒
J∑

j=1

Gisije
ξj =

J∑
j=1

(
sj(yi,wi) +

J∑
k=1

βww
jk ξk

)
⇒ Gi

J∑
j=1

sije
ξj =

J∑
j=1

sj(yi,wi) +
J∑

j=1

J∑
k=1

βww
jk ξk

∴ Gi =
1∑J

j=1 sije
ξj

The last equality holds because
∑J

j=1 sj(yi,wi) = 1 and
∑J

j=1

∑J
k=1 β

ww
jk ξk = 0 by the

symmetry and the linear homogeneity conditions of the cost function. Also, note that

Gisije
ξj = sj(yi,wi) +

J∑
k=1

βww
jk ξk

⇒ Gisije
ξj = sij − ηij +

J∑
k=1

βww
jk ξk

∴ ηij = sij(1−Gie
ξj) +

J∑
k=1

βww
jk ξk

Therefore, uA
i and ηij can be simpli�ed as

uA
i =

J∑
j=1

βw
j ξj +

J∑
j=1

J∑
k=1

βww
jk (lnwij)ξk +

1

2

J∑
j=1

J∑
k=1

βww
jk ξjξk +

M∑
m=1

J∑
j=1

βyw
mj(lnyim)ξj

− ln
( J∑

j=1

sije
ξj
)

ηij = sij

(
1− eξj∑J

k=1 sike
ξk

)
+

J∑
k=1

βww
jk ξk.

1.A.3 Rosenblatt Transformation

This subsection is written based on Rosenblatt (1952), Chapter 6.9.1 of Joe (2014), and

Appendix B of Melchers and Beck (2018). Rosenblatt (1952) shows that a dependent random

vectorX = (X1, · · · , Xk)may be transformed to the random vectorZ = (Z1, · · · , Zk), where

Zi
i.i.d∼ U [0, 1] ∀ i = 1, · · · , k. This subsection summarizes the procedure for generating a

dependent random vector X from the independent random vector.
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Let F1:k(χ1, · · · , χk) be a multivariate distribution of X with marginal distributions

F1, · · · , Fk, where the corresponding random variables X1, · · · , Xk can be continuous, dis-

crete, or mixed. Rosenblatt (1952) proposes the transformation TR such that ζ = (ζ1, · · · , ζk)

= TR(χ1, · · · , χk), where

ζ1 = P(X1 ≤ χ1) = F1(χ1)

ζ2 = P(X2 ≤ χ2|X1 = χ1) = F2|1(χ2|χ1)

ζ3 = P(X3 ≤ χ3|X1 = χ1, X2 = χ2) = F3|12(χ3|χ1, χ2)

...

ζk = P(Xk ≤ χk|X1 = χ1, · · · , Xk−1 = χk−1) = Fk|1,··· ,k−1(χk|χ1, · · · , χk−1).

With all the conditional distributions F1, F2|1, · · · , Fk|1,··· ,k−1 and their inverse functions, one

can successively obtain dependent random numbers (χ1, · · · , χk) from independent uniform

random numbers (ζ1, · · · , ζk) on [0, 1]k such that

χ1 = F−1
1 (ζ1)

χ2 = F−1
2|1 (ζ2|χ1)

χ3 = F−1
3|12(ζ3|χ1, χ2)

...

χk = F−1
k|1,··· ,k−1(ζk|χ1, · · · , χk−1).

To sum up, the consecutive process to generate (χ1, · · · , χk) is as follows:

(i) Derive conditional distributions F2|1, F3|12, · · · , Fk|1,··· ,k−1

(ii) Draw ζ1 from U [0, 1] and obtain χ1 from χ1 = F−1
1 (ζ1) or by solving

F1(χ1)− ζ1 = 0

(iii) Given χ1, draw ζ2 from U [0, 1] and obtain χ2 from χ2 = F−1
2|1 (ζ2|χ1) or by solving

F2|1(χ2|χ1)− ζ2 = 0
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(iv) Given χ1 and χ2 , draw ζ3 from U [0, 1] and obtain χ3 from χ3 = F−1
3|12(ζ3|χ1, χ2) or by

solving F3|12(χ3|χ1, χ2)− ζ3 = 0, and so on.

Note that a permutation of the order 1, · · · , k is possible, so one would choose a permu-

tation in practice where the computations are simplest. For example, one can choose the

reverse order to obtain dependent random numbers (χ1, · · · , χk) from independent uniform

random numbers (ζ1, · · · , ζk) on [0, 1]k such that

χ1 = F−1
1|2,··· ,k(ζ1|χ2, · · · , χk)

...

χk−2 = F−1
k−2|k−1,k(ζk−2|χk−1, χk)

χk−1 = F−1
k−1|k(ζk−1|χk).

χk = F−1
k (ζk)

1.A.4 Density of ϵi = vi + ui

Let ϵi = vi+ui, where vi ∼ N(0, σ2
v), ui ∼ |N(0, σ2

u)|, and vi and ui are independent. Aigner

et al. (1977) derive the density of a random variable ϵ̃i = vi − uT
i as 2

σ
· ϕ

(
ϵ̃
σ

)
·
[
1−Φ

(
ϵ̃λ
σ

)]
,

where σ2 = σ2
v + σ2

u, λ = σu/σv, and ϕ and Φ are density and distribution functions of

the standard normal distribution.24 Similarly, the density of ϵi = vi + ui can be derived as

follows. Note that the marginal densities of vi and ui are

fv(v) =
1

σv

√
2π

exp
(
− v2

2σ2
v

)
, v ∈ R

fuu =
2

σu

√
2π

exp
(
− u2

2σ2
u

)
, v ∈ R+.

Since vi and ui are independent, the joint density of them is

fv,u(v, u) =
1

σv

√
2π

2

σu

√
2π

exp
(
− v2

2σ2
v

− u2

2σ2
u

)
=

1

σv

√
2π

2

σu

√
2π

exp
{
− 1

2

(v2
σ2
v

+
u2

σ2
u

)}
,

24Please refer to Ch.11.7.3 of Sickles and Zelenyuk (2019) for more details.
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and the joint density of ϵi and ui becomes

fϵ,u(ϵ, u) = fv,u(ϵ− u, u)

=
1

σv

√
2π

2

σu

√
2π︸ ︷︷ ︸

1O

exp
{
− 1

2

((ϵ− u)2

σ2
v

+
u2

σ2
u

)
︸ ︷︷ ︸

2O

}
.

1O and 2O can be transformed as follows:

1O :

√
σ2
v + σ2

u

σvσu

√
2π

2√
σ2
v + σ2

u

√
2π

2O :
ϵ2 − 2ϵu+ u2

σ2
v

+
u2

σ2
u

=
ϵ2(σ2

v + σ2
u)

σ2
v(σ

2
v + σ2

u)
−

(2ϵu/
√

σ2
v + σ2

u)(
√
σ2
v + σ2

u/σvσu)

σ2
v/(σvσu)

+
u2(σ2

v + σ2
u)

σ2
vσ

2
u

=
ϵ2

σ2
v + σ2

u

(
1 +

σ2
u

σ2
v

)
− 2ϵu√

σ2
v + σ2

u

√
σ2
v + σ2

u

σvσu

σu

σv

+ u2σ
2
v + σ2

u

σ2
vσ

2
u

.

Let σ2 = σ2
v + σ2

u, λ = σu/σv, and δ2 = (σ2
v + σ2

u)/(σ
2
vσ

2
u). Then,

fϵ,u(ϵ, u) =
δ√
2π

2

σ
√
2π

exp
{
− 1

2

( ϵ2

σ2
+

ϵ2λ2

σ2
− 2

ϵu

σ
δλ+ u2δ2

)}
=

2

σ
√
2π

exp
(
− ϵ2

2σ2

) δ√
2π

exp
{
− 1

2

(ϵλ
σ

− uδ
)2}

.

As the support of u is [0,∞), the density of ϵi is

fϵ(ϵ) =

∫ ∞

0

fϵ,u(ϵ, u)du

=
2

σ
√
2π

exp
(
− ϵ2

2σ2

)∫ ∞

0

δ√
2π

exp
{
− 1

2

(ϵλ
σ

− uδ
)2}

du.

Let γ = ϵλ
σ
− uδ. Then, if u = 0, γ = ϵλ

σ
, and if u → ∞, γ → −∞. Also, dγ

du
= −δ, that is

du = −1
δ
dγ. Therefore,

fϵ(ϵ) =
2

σ

1√
2π

exp
{
− 1

2

( ϵ

σ

)2}∫ −∞

ϵλ
σ

δ√
2π

exp
(
− 1

2
γ2
)
− 1

δ
dγ

=
2

σ
· ϕ

( ϵ

σ

)
·
{
− Φ(γ)

∣∣∣−∞

ϵλ
σ

}
=

2

σ
· ϕ

( ϵ

σ

)
· Φ

(ϵλ
σ

)
.
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APPENDIX B

Tables and Figures

Table 1.B.1: Descriptive Statistics of Key Variables for 2019

Mean Std. Dev Min Max

Total Cost (Ci, $ million) 82.7 1,211.5 0.1 51,615.0
Interest Expenses (Ci1, $ million) 30.3 434.2 0.0 17,008.0
Salaries (Ci2, $ million) 43.5 662.2 0.1 28,538.0
Fixed Assets Expenses (Ci3, $ million) 8.9 140.6 0.0 6,069.0
Loans (yi1, $ million) 1,995.6 26,598.9 0.0 969,383.0
Other Earning Assets (yi2, $ million) 1,274.8 24,618.5 0.3 1,174,359.0
Funds that Bank owes (xi1, $ million) 3,054.9 47,236.1 0.5 1,980,733.1
Number of Full-time Employees (xi2) 402 5,552 2 232,982
Fixed Assets (xi3, $ million) 36.6 504.6 0.0 22,432.0
wi1 = Ci1/xi1 0.0090 0.0045 0.0000 0.0381
wi2 = Ci2/xi2 0.0839 0.0283 0.0056 0.3706
wi3 = Ci3/xi3 0.4039 0.8936 0.0075 22.7273

Table 1.B.2: Descriptive Statistics of Key Variables for 2020

Mean Std. Dev Min Max

Total Cost (Ci, $ million) 73.0 1,000.1 0.0 40,331.0
Interest Expenses (Ci1, $ million) 15.3 172.6 0.0 7,459.0
Salaries (Ci2, $ million) 47.9 706.8 0.0 28,982.0
Fixed Assets Expenses (Ci3, $ million) 9.8 151.8 0.0 6,362.0
Loans (yi1, $ million) 2,111.3 26,425.0 0.0 995,415.0
Other Earning Assets (yi2, $ million) 1,872.9 36,520.7 0.3 1,801,495.0
Funds that Bank owes (xi1, $ million) 3,737.5 58,393.4 0.5 2,626,377.0
Number of Full-time Employees (xi2) 417 5,689 2 233,403
Fixed Assets (xi3, $ million) 38.1 523.5 0.0 23,184.0
wi1 = Ci1/xi1 0.0062 0.0035 0.0000 0.0285
wi2 = Ci2/xi2 0.0889 0.0306 0.0000 0.3616
wi3 = Ci3/xi3 0.4005 0.7763 0.0025 13.0000

Table 1.B.3: Classi�cation of Banks

Asset Size
- Large Banks Banks with assets greater than $1 billion
- Small Banks Banks with assets less than $1 billion

Charter Class
- N Commercial banks, federal charter, fed member
- NM Commercial banks, state charter, fed non-member
- SM Commercial or savings banks, state charter, fed member
- SB Savings banks, state charter
- SA Thrifts, federal or state charter
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Figure 1.B.1: Sample Correlations (The APS-3-A Copula)

(a) corr(ω1, ω2) (b) corr(ω1, (ω2 − 0.5)2)

(c) corr(ω1, ω3) (d) corr(ω1, (ω3 − 0.5)2)
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Figure 1.B.2: f̂e2(e2) and f̂η2|e2(η2|e2) for 2020

Figure 1.B.3: f̂e3(e3) and f̂η3|e3(η3|e3) for 2020
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CHAPTER 2

MEASUREMENT AND DECOMPOSITION OF
COST INEFFICIENCY USING COPULAS:

EVIDENCE FROM MONTE CARLO SIMULATIONS

2.1 Introduction

This paper provides methods for copula-based simulations and demonstrates the performance

of the estimation strategy proposed by Ryu (2021). First, a method to generate pseudo data

using the APS copulas developed by Amsler et al. (2021) is presented; it applies the inverse

Rosenblatt transformation and the inverse transformation method. Second, given the data

generating process, quasi-Monte Carlo simulations are conducted in order to con�rm the

validity of the estimation strategy in Ryu (2021) that can measure and decompose technical

and allocative ine�ciency.

Amsler et al. (2021) conduct Monte Carlo simulations to show that the stochastic pro-

duction frontier model employing the APS-2-A copula can be reliably estimated. The model

used for their simulations can be written as

yi = α + β1xi1 + β2xi2 + vi − uT
i

xi1 − xi2 = ln

(
β1wi2

β2wi1

)
+ ei2, (2.1.1)

where yi is the natural log of output of producer i, xi1 and xi2 are the natural log of inputs,

vi ∈ R is a random disturbance, uT
i ∈ R+ represents technical ine�ciency, wij ∈ R++, j =

1, 2, are the price of input j, and ei2 ∈ R is a two-sided term capturing allocative ine�ciency

and noise. They assume that a �rm produces one output given two inputs, and uT
i and ei2 are

linked by the APS-2 copulas such that uT
i is uncorrelated with ei2 but positively correlated

with |ei2|. Since their model uses the method of simulated likelihood for estimation, it

requires to draw a N × 1 vector of random numbers, where N is the number of producers,

from the distribution of uT
i , such as the half normal distribution. This is because the joint
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density of their model is

fϵ,e2(ϵ, e2) = fe2(e2) · EuT [c(ω1, ω2) · fv(ϵ+ uT )],

where ϵ = v − uT , EuT represents the expectation with respect to the distribution of uT
i ,

ω1 = F1(u
T ), ω2 = F2(e2), and F1(u

T ) and F2(e2) are marginal cumulative distribution

functions of uT
i and ei2, respectively. Furthermore, if a �rm produces one output using three

inputs, we can extend the above model, and the joint density in this case becomes

fϵ,e2,e3(ϵ, e2, e3) = fe2(e2) · fe3(e3) · EuT [c(ω1, ω2, ω3) · fv(ϵ+ uT )],

where ω3 = F3(e3), and F3(e3) is a marginal cumulative distribution function of ei3 (Amsler

et al., 2021, p.6). It implies that it requires to draw a N × 1 vector of random numbers as

well even if the number of inputs increases.

However, numerous studies on e�ciency analysis have assumed that producers use more

than two inputs. Furthermore, we need to con�rm whether an estimation strategy employing

copulas would produce reliable estimates in more complex settings. For example, consider a

translog cost system that can measure and decompose technical and allocative ine�ciency,

which can be written as

lnCi = lnC(yi,wi) + vi + uT
i + g(ξi)

sij = sj(yi,wi) + hj(ξi) + νij, j = 2, · · · , J, (2.1.2)

where Ci is the actual cost of producer i, C(yi,wi) is the deterministic kernel of the stochastic

cost frontier, yi ∈ RM
+ is a vector of M outputs, wi ∈ RJ

++ is a vector of input prices, vi ∈ R

is a random disturbance, uT
i ∈ R+ represents a cost increase due to technical ine�ciency,

g(ξi) ∈ R+ represents a cost increase due to allocative ine�ciency, ξi = (ξi2, · · · , ξiJ), ξij

represents producers' allocative ine�ciency for the input pair (j, 1), sij ∈ [0, 1] is the actual

cost share of input j, sj(yi,wi) ∈ [0, 1] is the optimum cost share of input j, hj(ξi) ∈ R is

the disturbance due to allocative ine�ciency, and νij ∈ R is additive noise. We can assume
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that uT
i and ξi are linked by the APS copulas such that uT

i is uncorrelated with ξi2, · · · , ξiJ

but positively correlated with |ξi2|, · · · , |ξiJ |. Then, the joint density of this model is

fϵ,ν(ϵ,ν) = Eζ

[
fv

(
ϵ− z1

(
T (ζ)

)
− g

(
z2

(
T (ζ)

))
;θ

)
· fν

(
e2 − h2

(
z2

(
T (ζ)

))
, · · · , eJ − hJ

(
z2

(
T (ζ)

))
;θ

)]
,

where Eζ represents the expectation with respect to the distribution of ζ = (ζ1, · · · , ζJ),

ζj ∼ U [0, 1], ϵ = v + uT + g(ξ), z1 and z2 are functions that transform CDF values to

random numbers, T is the inverse function of the Rosenblatt transformation, and θ is the

parameters. Contrary to Amsler et al. (2021), it requires to draw N × J uniform random

numbers ζ, where J represents the number of inputs, that each columns are uncorrelated.

Hence, it is necessary to conduct another set of simulations that allows more inputs in order

to check the validity of the economic model applying the APS copulas. In addition, methods

of data generating process need to be provided in order to conduct simulations.

Lastly, the plausibility of the assumption in Greene (1980) can be examined by conducting

simulations. As discussed in Bauer (1990) and Kumbhakar and Lovell (2000), an econometric

issue occurs in a cost system that employs �exible functional forms, such as a translog

function. The key question is how to model the relationship between ui = uT
i + g(ξi) and

eij = hj(ξi)+νij of (2.1.2). Greene (1980) proposes a solution to this problem, which assumes

that the disturbance in the cost function, ϵi = vi + ui, and the disturbance in the cost share

equations, eij, are independent. By conducting simulations using a pseudo-data set that

assumes technical and allocative ine�ciency are linked by the APS copulas, we can verify

the validity of the assumption in Greene (1980).

The remainder of the chapter is organized as follows. Section 2.2 illustrates how to draw

observations from the APS-3-A copula that corresponds to a three-input case.1 Section 2.3

shows the data generating process. Section 2.4 presents the Monte Carlo simulation results.

Section 2.5 concludes the chapter.

1Amsler et al. (2021) provide the procedure to draw observations from the APS-2-A copula. It is
summarized in Appendix A.
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2.2 Simulating from the APS-3-A Copula

Since a copula itself is a cumulative distribution function whose marginal distributions follow

U [0, 1], one needs to �nd the conditional copula in order to employ the Rosenblatt transfor-

mation. Copula arguments can then be obtained by applying the process described in this

section that focuses on the APS-3-A copula.

2.2.1 Derivation of Conditional Distributions

Let c123(ω1, ω2, ω3) be a copula density, where (ω1, ω2, ω3) ∈ [0, 1]3 are copula arguments. It

is assumed that ω1 is uncorrelated with ω2 and ω3 but correlated with |ω2−0.5| and |ω3−0.5|.

In addition, the dependence between ω2 and ω3 is captured by any bivariate copula.

For computational ease, ω3, ω2, and ω1 are generated sequentially; this the use of the

conditional copulas C1|23(ω1|ω2, ω3) and C2|3(ω2|ω3) for the Rosenblatt transformation. In

this subsection, the conditional copulas, C1|23(ω1|ω2, ω3) and C2|3(ω2|ω3), are derived, then

methods to obtain the copula arguments, ω3, ω2, and ω1, are presented.

2.2.1.1 Conditional Copula C1|23(ω1|ω2, ω3)

Assume that ω2 and ω3 follow the bivariate normal copula such that

C23(ω2, ω3) = Φ2(Φ
−1(ω2),Φ

−1(ω3); ρ)

c23(ω2, ω3) =
∂2

∂ω2∂ω3

C23(ω2, ω3)

=
∂2Φ2(Φ

−1(ω2),Φ
−1(ω3); ρ)

∂Φ−1(ω2)∂Φ−1(ω3)

∂Φ−1(ω2)

∂ω2

∂Φ−1(ω3)

∂ω3

=
ϕ2(Φ

−1(ω2),Φ
−1(ω3); ρ)

ϕ(Φ−1(ω2))ϕ(Φ−1(ω3))

=

1

2π
√

1−ρ2
exp

(
− Φ−1(ω2)2−2ρΦ−1(ω2)Φ−1(ω3)+Φ−1(ω3)2

2(1−ρ2)

)
1√
2π
exp

(
− Φ−1(ω2)2

2

)
1√
2π
exp

(
− Φ−1(ω3)2

2

)
=

1√
1− ρ2

exp
[
− ρ2Φ−1(ω2)

2 − 2ρΦ−1(ω2)Φ
−1(ω3) + ρ2Φ−1(ω3)

2

2(1− ρ2)

]
,

52



where Φ is the cumulative distribution function of the standard normal distribution, ϕ is

the probability density function of the standard normal distribution, Φ2 is the cumulative

distribution function of the standardized bivariate normal distribution, ϕ2 is the probability

density function of the standardized bivariate normal distribution, and ρ is the correlation

parameter.

Given that C1|23(ω1|ω2, ω3) =
∫
c1|23(t1|ω2, ω3)dt1, it is required to obtain the conditional

density c1|23(ω1|ω2, ω3), which is

c1|23(ω1|ω2, ω3) =
c123(ω1, ω2, ω3)

f23(ω2, ω3)

=
c123(ω1, ω2, ω3)

c23(F2(ω2), F3(ω3))f2(ω2)f3(ω3)

=
c123(ω1, ω2, ω3)

c23(ω2, ω3)
.

The second inequality holds because

FXY (x, y) = CXY

(
FX(x), FY (y)

)
⇒ fXY (x, y) =

∂2FXY (x, y)

∂x∂y

=
∂2CXY

(
FX(x), FY (y)

)
∂x∂y

=
∂2CXY

(
FX(x), FY (y)

)
∂FX(x)∂FY (y)

∂FX(x)

∂x

∂FY (y)

∂y

= cXY

(
FX(x), FY (y)

)
fX(x)fY (y)

and the third equality holds as ω2, ω3 ∼ U [0, 1]. Note that

c123(ω1, ω2, ω3) = 1 + [1 + θ12(1− 2ω1){1− 12(ω2 − 0.5)2)} − 1]

+ [1 + θ13(1− 2ω1){1− 12(ω3 − 0.5)2)} − 1] + {c23(ω2, ω3)− 1}

= g2(1− 2ω1) + g3(1− 2ω1) + c23(ω2, ω3)

= h(1− 2ω1) + c23(ω2, ω3),

where g2 = θ12{1− 12(ω2 − 0.5)2}, g3 = θ13{1− 12(ω3 − 0.5)2}, and h = g2 + g3.
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Hence, the conditional copula C1|23(ω1|ω2, ω3) is

C1|23(ω1|ω2, ω3) =

∫ ω1

0

c1|23(t1|ω2, ω3)dt1

=

∫ ω1

0

h(1− 2t1) + c23(ω2, ω3)

c23(ω2, ω3)
dt1

= [
1

c23(ω2, ω3)
{h(t1 − t21) + c23(ω2, ω3)t1}]

∣∣∣ω1

0

=
1

c23(ω2, ω3)
{h(ω1 − ω2

1) + c23(ω2, ω3)ω1}.

2.2.1.2 Conditional Copula C2|3(ω2|ω3)

Given that C2|3(ω2|ω3) =
∫
c2|3(t2|ω3)dt2, it is required to obtain the conditional density

c2|3(ω2|ω3), which is

c2|3(ω2|ω3) =
c23(ω2, ω3)

f3(ω3)
= c23(ω2, ω3).

The second equality holds because ω3 ∼ U [0, 1].

Hence, the conditional copula C2|3(ω2|ω3) is

C2|3(ω2|ω3) =

∫ ω2

0

c2|3(t2|ω3)dt2

=

∫ ω2

0

1√
1− ρ2

exp
[
− ρ2Φ−1(t2)

2 − 2ρΦ−1(t2)Φ
−1(ω3) + ρ2Φ−1(ω3)

2

2(1− ρ2)

]
dt2

Let y2 = Φ−1(t2) and y3 = Φ−1(ω3). Note that dt2 = ϕ(y2)dy2. Then, integrate by substitu-

tion such as

C2|3(ω2|ω3) =

∫ Φ−1(ω2)

−∞

1√
1− ρ2

exp
[
− ρ2y22 − 2ρy2y3 + ρ2y23

2(1− ρ2)

]
ϕ(y2)dy2

=

∫ Φ−1(ω2)

−∞

1√
1− ρ2

1√
2π
exp

[
− y22−2ρy2y3+ρ2y23

2(1−ρ2)

]
1√
2π
exp

[
− y22

2

] ϕ(y2)dy2

=

∫ Φ−1(ω2)

−∞

1
√
2π

√
1− ρ2

exp
[
− (y2 − ρy3)

2

2(1− ρ2)

]
dy2

= Φ
(Φ−1(ω2)− ρΦ−1(ω3)√

1− ρ2

)
.
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2.2.2 Obtain Copula Arguments

2.2.2.1 Obtain ω3

As ω3 ∼ U [0, 1], ζ3 = F3(ω3) = ω3. Therefore, draw ζ3 from U [0, 1] and de�ne ω3 = ζ3.

2.2.2.2 Obtain ω2

First, draw ζ2 from U [0, 1]. Then, one can obtain ω2 by solving the equation C2|3(ω2|ω3)−ζ2 =

0. It yields

Φ
(Φ−1(ω2)− ρΦ−1(ω3)√

1− ρ2

)
− ζ2 = 0

⇒ Φ−1(ω2)− ρΦ−1(ω3)√
1− ρ2

= Φ−1(ζ2)

⇒ Φ−1(ω2) = ρΦ−1(ω3) +
√

1− ρ2Φ−1(ζ2)

⇒ ω2 = Φ
(
ρΦ−1(ω3) +

√
1− ρ2Φ−1(ζ2)

)

2.2.2.3 Obtain ω1

First, draw ζ1 from U [0, 1]. Then, one can obtain ω1 by solving the equation C1|23(ω1|ω2, ω3)−

ζ1 = 0. It yields,

1

c23
{(h(ω1 − ω2

1) + c23ω1} − ζ1 = 0

⇒ h(ω1 − ω2
1) + c23ω1 − c23ζ1 = 0

⇒ hω2
1 − (h+ c23)ω1 + c23ζ1 = 0

⇒ ω1 =
(h+ c23)±

√
(h+ c23)2 − 4hc23ζ1
2h

,

where c23 = c2|3(ω2|ω3).

It is necessary to check whether the square roots are real numbers. Given that (ω2, ω3) ∈

[0, 1]2 and (θ12, θ13) ∈ [−0.5, 0.5]2, one can �nd the upper and lower bounds of g2, g3. If

x ∈ [0, 1], 1 − 12(x − 0.5)2 ∈ [−2, 1]. Therefore, (g2, g3) ∈ [−1, 1]2 and h ∈ [−2, 2]. Since
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c23 > 0 and ζ1 ∈ [0, 1], (h + c23)
2 − 4hc23ζ1 ≥ 0 when h ∈ [−2, 0). Also, for h ∈ [0, 2],

(h+ c23)
2 − 4hc23ζ1 = (h− c23)

2 + 4hc23(1− ζ1) ≥ 0. Hence, the solutions are real numbers

unless h = 0.

The remained question is which solution to take. Rewrite the solutions as

ω1 =
(h+ c23)±

√
(h+ c23)2 − 4hc23ζ1
2h

=
{(h+ c23)±

√
(h+ c23)2 − 4hc23ζ1}{(h+ c23)∓

√
(h+ c23)2 − 4hc23ζ1}

2h{(h+ c23)∓
√

(h+ c23)2 − 4hc23ζ1}

=
(h+ c23)

2 − (h+ c23)
2 + 4hc23ζ1

2h{(h+ c23)∓
√

(h+ c23)2 − 4hc23ζ1}

=
2c23ζ1

(h+ c23)∓
√

(h+ c23)2 − 4hc23ζ1
.

Consider the �rst solution ω1 =
(h+c23)+

√
(h+c23)2−4hc23ζ1

2h
= 2c23ζ1

(h+c23)−
√

(h+c23)2−4hc23ζ1
. Then,

the denominator (h + c23) −
√
(h+ c23)2 − 4hc23ζ1 < 0 for h ∈ [−2, 0), which violates the

condition that ω1 ∈ [0, 1]. Now, consider the second solution ω1 =
(h+c23)−

√
(h+c23)2−4hc23ζ1

2h
=

2c23ζ1

(h+c23)+
√

(h+c23)2−4hc23ζ1
. Given that c23 > 0 and ζ1 ∈ [0, 1], it is required to show that

ω1 ∈ [0, 1]. It can be shown as follows:

(i) ω1 ≥ 0

As c23 > 0 and ζ1 ∈ [0, 1], the numerator is positive. So it su�ces to show that the

denominator is strictly positive. Since
√
(h+ c23)2 − 4hc23ζ1 ≥ 0, the denominator is

guaranteed to be strictly positive for h ∈ (−c23, 2]; that is, if c23 > 2, the denominator

is strictly positive. If c23 ∈ (0, 2] and h ∈ [−2,−c23), one needs to compare the values

of |h+ c23| and |
√

(h+ c23)2 − 4hc23ζ1|, which is equivalent to compare their squares.

Note that {(h+ c23)
2− 4hc23ζ1}− (h+ c23)

2 = −4hc23ζ1 > 0 unless ζ1 = 0.2 Hence the

denominator is strictly positive except the special case.

(ii) ω1 ≤ 1

To �nd the maximum value of ω1 given the arguments in the numerator, it is nec-

essary to �nd the minimum value of the denominator. Let λ(h) = (h + c23) +

2As Z1 ∼ U [0, 1], P(Z1 = 0) = 0.
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√
(h+ c23)2 − 4hc23ζ1. Then,

∂λ(h)

∂h
= 1 +

1

2
{(h+ c23)

2 − 4hc23ζ1}−
1
2{2(h+ c23)− 4c23ζ1}

= 1 +
(h+ c23)− 2c23ζ1√
(h+ c23)2 − 4hc23ζ1

If (h + c23) − 2c23ζ1 ≥ 0, ∂λ(h)
∂h

> 0. For (h + c23) − 2c23ζ1 < 0, compare the values

of |(h+ c23)− 2c23ζ1| and |
√
(h+ c23)2 − 4hc23ζ1|, which is equivalent to compare the

values of {(h+ c23)− 2c23ζ1}2 and (h+ c23)
2 − 4hc23ζ1. Note that

{(h+ c23)− 2c23ζ1}2 − (h+ c23)
2 − 4hc23ζ1

= (h+ c23)
2 − 4c23ζ1(h+ c23)− (h+ c23)

2 + 4hc23ζ1

= −4c23ζ1{(h+ c23)− h}

= −4c223ζ1 ≤ 0,

which implies (h+c23)−2c23ζ1√
(h+c23)2−4hc23ζ1

≤ −1, so ∂λ(h)
∂h

≥ 0. Therefore, given c23 and ζ1, λ(h)

has the smallest value when h = −2. For h = −2, ω1 =
(2−c23)+

√
(−2+c23)2+8c23ζ1

4
. Note

that

ω1 =
(2− c23) +

√
(−2 + c23)2 + 8c23ζ1

4
≤ 1

⇔
√

(−2 + c23)2 + 8c23ζ1 ≤ 2 + c23

⇔ (−2 + c23)
2 + 8c23ζ1 ≤ (2 + c23)

2

⇔ 4− 4c23 + c223 + 8c23ζ1 ≤ 4 + 4c23 + c223

⇔ 8c23(1− ζ1) ≥ 0.

The last inequality holds because of c23 > 0 and ζ1 ∈ [0, 1].■

Let A = h+ c23 and B = c23ζ1, where c23 = c2|3(ω2|ω3). Then the solution is

ω1 =
2B

A+
√
A2 − 4hB

.
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2.3 Generating Pseudo Data

Consider the following stochastic cost frontier model such that

lnCi = lnC(yi,wi) + vi + uT
i + g(ξi)

sij = sj(yi,wi) + hj(ξi) + νij, j = 2, · · · , J.

Each component of the system de�ned in Section 2.1 can be written as

lnC(yi,wi) = β0 +
M∑

m=1

βy
m(lnyim) +

1

2

M∑
m=1

M∑
n=1

βyy
mn(lnyim)(lnyin)

+
J∑

j=1

βw
j (lnwij) +

1

2

J∑
j=1

J∑
k=1

βww
jk (lnwij)(lnwik)

+
M∑

m=1

J∑
j=1

βyw
mj(lnyim)(lnwij)

sj(yi,wi) = βw
j +

J∑
k=1

βww
jk (lnwik) +

M∑
m=1

βyw
mj(lnyim), j = 2, · · · , J

g(ξi) =
J∑

j=1

βw
j ξij +

J∑
j=1

J∑
k=1

βww
jk (lnwij)ξik +

1

2

J∑
j=1

J∑
k=1

βww
jk ξijξik

+
M∑

m=1

J∑
j=1

βyw
mj(lnyim)ξij + ln

J∑
j=1

(s∗ij/e
ξij)

hj(ξi) =
sj(yi,wi)[1− {

∑J
k=1(s

∗
ik/e

ξik)}eξij ] +
∑J

k=1 β
ww
jk ξik

{
∑J

k=1(s
∗
ik/e

ξik)}eξij
, j = 2, · · · , J,

where s∗ij = sj(yi,wi) +
∑J

k=1 β
ww
jk ξik, j = 2, · · · , J, is the shadow cost share of input j for

producer i who is assumed to be only allocatively ine�cient.

Four types of pseudo-data sets are generated by the pair of the numbers of inputs (J)

and outputs (M): two inputs - one output, two inputs - two outputs, three inputs - one

output, and three inputs - two outputs, where each set includes 1000 producers (N = 1000).

In order to construct pseudo-data sets, it is necessary to draw three types of variables:

(i) variables consisting of deterministic kernels of the translog cost system, yi and wi; (ii)

random components of the model not linked by the APS copulas, vi and νi; and (iii) random

components of the model linked by the APS copulas, uT
i and ξi. The dependent variables
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of the translog cost system, Ci and si2, · · · , siJ , can be calculated using those variables and

parameters.

The �rst and second types of variables are generated as follows. Note that the underlying

production technology of the translog cost function is unknown, as the translog cost function

has neither a closed-form dual production nor a transformation function (Kumbhakar and

Lovell, 2000, p.154). Hence, outputs, lnyi1 and lnyi2, are drawn from Γ(2, 2) and Γ(3, 2)

with a correlation coe�cient of 0.8. Input prices, lnwi1, lnwi2, and lnwi3, are independently

drawn from N(1, 0.12), N(2, 0.12), and N(3, 0.12) distributions, respectively. Stochastic noise

terms, vi and νi, are generated from N(0, σ2
v) and N(0,Σν). The third type of variables are

generated in the reverse order of the procedure for a change of variables that is used to

derive the joint density in Ryu (2021). Figure 2.3.1 illustrates the procedure to simulate

Z = (uT
i , ξi2, · · · , ξiJ).

Figure 2.3.1: Procedure to Simulate Z = (uT
i , ξi2, · · · , ξiJ)

To be speci�c, random components of the model linked by the APS copulas are simu-

lated by the following procedure. First, draw independent random numbers, ζ, from the

uniform distribution over [0, 1]. Second, produce CDF values, ω, given θ2 and the inverse of
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conditional APS copula functions employing the inverse Rosenblatt transformation3. Third,

generate Z = (Z1,Z2) = (uT
i , ξi2, · · · , ξiJ) given θ3 and the inverse of cumulative distribution

functions by the inverse transformation method.

There is a practical issue in the �rst step. In order to apply the inverse Rosenblatt

transformation, it is essential to draw an N × J array of uniformly distributed random

numbers in which columns are uncorrelated in order to correctly estimate θ2. Because of the

practical di�culties to use truly random variables in the Monte Carlo methods4, two methods

for generating random numbers are generally used in applications: (i) pseudo-random number

generators (PRNGs); and (ii) quasi-random number generators (QRNGs). Two functions

provided by Matlab are considered to draw ζ1, · · · , ζJ : (i) rand that generates uniformly

distributed pseudo-random numbers; and (ii) haltonset that produces Halton sequences

that make up the representative example of quasi-random number sequences.

For illustrative purposes, Figure 2.B.1 shows sample correlations between two uniform

random variables, ζ1 and ζ2 to compare the performance of the two functions. The number

of replications is 1000, where three sample sizes N ∈ {100, 1000, 10000} are considered for

each replication. Figures 2.B.1(a), 2.B.1(c), and 2.B.1(e) are obtained by the function rand.

Figures 2.B.1(b), 2.B.1(d), and 2.B.1(f) are obtained by the function haltonset, where

several methods are applied to address the inherent issue that the points of a quasi-random

sequence are correlated.5

As shown in Figure 2.B.1, although the columns of the arrays produced by rand are

theoretically uncorrelated, some pairs of ζ1 and ζ2 are highly correlated, especially when the

number of draws are not su�ciently large. Also, even if N = 10000, some pairs of ζ1 and ζ2

seems to be signi�cantly correlated. By contrast, correlations between ζ1 and ζ2 generated

3It is known as �conditional distribution method.� Please refer to Embrechts et al. (2003) and Cambou
et al. (2017) for more details.

4Please see Ch.8 of Judd (1998) for more details.
5
Matlab provides three methods: (i) omit initial points in the sequence; (ii) set interval between

points; and (iii) scramble the sequence. In the simulation, the �rst 100,000 values of the Halton point set are
omitted, the every 100,001st point are retained, and then the Halton point set is scrambled by a reverse-radix
operation.
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by haltonset are mostly negligible. Hence, a QRNG, haltonset of Matlab, is used to

generate ζ1, · · · , ζJ .

In the second step, ω1, · · · , ωJ are generated through a consecutive process based on the

Rosenblatt transformation by solving equations such that

ζJ = FJ(ωJ)

ζJ−1 = FJ−1|J(ωJ−1|ωJ)

ζJ−2 = FJ−2|J−1,J(ωJ−2|ωJ−1, ωJ)

...

ζ1 = F1|2,··· ,J(ω1|ω2, · · · , ωJ).

As derived in Appendix A, ω1 and ω2 for the APS-2-A copula are generated as follows:

ω2 = ζ2

ω1 =
2ζ1

A+
√

A2 − 4(A− 1)ζ1
,

where A = 1 + g2 and g2 = θ12{1 − 12(ω2 − 0.5)2}. For the association parameter of the

APS-2-A copula, three values of θ12 ∈ {0, 0.2, 0.4} are considered. Also, Section 2.2 shows

that ω1, ω2, and ω3 for the APS-3-A copula are generated as follows:

ω3 = ζ3

ω2 = Φ
(
ρΦ−1(ω3) +

√
1− ρ2Φ−1(ζ2)

)
ω1 =

2B

A+
√
A2 − 4hB

,

where ρ is the correlation parameter of the bivariate Gaussian copula, A = h + c23(ω2, ω3),

h = g2+g3, g2 = θ12{1−12(ω2−0.5)2}, g3 = θ13{1−12(ω3−0.5)2}, and B = c23(ω2, ω3)ζ1. For

the association parameter of the APS-3-A copula, two pairs of (θ12, θ13) ∈ {(0, 0), (0.2, 0.2)}

are considered to generate data sets, and the correlation parameter of the bivariate Gaussian

copula ρ is set to −0.5.
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2.4 Results of Monte Carlo Simulations

Here, two sets of simulations are conducted. The �rst set of simulations (Simulation I) is

conducted to con�rm the validity of the estimation strategy in Ryu (2021). The purpose of

the second set of simulations (Simulation II) is to examine the plausibility of the assump-

tion in Greene (1980) when technical and allocative ine�ciency are indeed dependent. The

number of replications is 1,000 for both sets of simulations.

2.4.1 Simulation I

A set of quasi-Monte Carlo simulations based on quasi-random sequences is conducted. Hal-

ton sequences are also used for the simulations as the data generating process but for di�erent

reasons. The joint density of X and Y involves a multidimensional integral, in which a quasi-

Monte Carlo integration is generally superior to standard Monte Carlo methods in terms of

integration error and its convergence rate.6 For example, Moroko� and Ca�isch (1995) show

that a quasi-Monte Carlo method using a Halton sequence has the lowest integration error

and the fastest convergence rate up to around six dimensions among (quasi-)Monte Carlo

methods using Halton, Sobol, Faure, and pseudo-random sequences. For copula sampling,

in addition, Cambou et al. (2017) show that replacing PRNGs with QRNGs for integration

also improves performance, reducing the variance of the obtained estimators and improving

the convergence rate of the variance.

Tables 2.4.1 to 2.4.4 report the results of quasi-Monte Carlo simulations for θ12 = 0.4 for

two-input cases or θ12 = θ13 = 0.2 for three-input cases. Other results are reported in Tables

2.B.1 to 2.B.6 of Appendix B. R sets of N × J Halton sequences are drawn for estimation,

where R = 10, 000, N = 1, 000, and J = 2 or 3. Although the standard deviations of the

association parameters θ12 and θ13 are somewhat large, the results suggest that the stochastic

cost frontier model in Ryu (2021) can be also reliably estimated like the stochastic production

frontier model as in Amsler et al. (2021). That is, the modi�ed translog cost system based on

6Please refer to Ca�isch (1998) for more details.
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Kumbhakar (1997) and the APS copulas is estimable by the maximum simulated likelihood

estimator established on the probability integral transformation and the copula-based version

of the Rosenblatt transformation.

Table 2.4.1: Result of Simulation I (J = 2, M = 1, θ12 = 0.4)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9999 βw
1 0.6000 0.6006 σv 0.3162 0.3154

(0.0306) (0.0127) (0.0071)
βy
1 0.8250 0.8249 βww

11 0.0500 0.0507 σν2 0.0100 0.0062
(0.0111) (0.0129) (0.0085)

βyy
11 0.0500 0.0500 βyw

11 0.0100 0.0100 θ12 0.4000 0.3765
(0.0018) (0.0010) (0.1219)

σT 0.2236 0.2239
(0.0170)

σξ2 0.3162 0.3183
(0.0246)

Note: Standard deviations are in parentheses.

Table 2.4.2: Result of Simulation I (J = 2, M = 2, θ12 = 0.4)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9984 βyy
22 0.0400 0.0402 σv 0.3162 0.3146

(0.0353) (0.0031) (0.0072)
βy
1 0.4000 0.4002 βw

1 0.6000 0.6000 σν2 0.0100 0.0099
(0.0140) (0.0057) (0.0104)

βy
2 0.3000 0.2995 βww

11 0.0500 0.0500 θ12 0.4000 0.4014
(0.0130) (0.0032) (0.1113)

βyy
11 0.0500 0.0502 βyw

11 0.0100 0.0100 σT 0.2236 0.2261
(0.0036) (0.0017) (0.0173)

βyy
12 -0.0100 -0.0102 βyw

21 -0.0150 -0.0150 σξ2 0.3162 0.3112
(0.0032) (0.0010) (0.0162)

Note: Standard deviations are in parentheses.
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Table 2.4.3: Result of Simulation I (J = 3, M = 1, θ12 = θ13 = 0.2)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9993 βww
22 0.0250 0.0250 θ12 0.2000 0.1741

(0.0310) (0.0041) (0.1110)
βy
1 0.8250 0.8247 βyw

11 0.0100 0.0100 θ13 0.2000 0.1780
(0.0113) (0.0004) (0.1109)

βyy
11 0.0500 0.0500 βyw

12 -0.0050 -0.0051 ρθ -0.5000 -0.4996
(0.0019) (0.0009) (0.0176)

βw
1 0.2500 0.2495 σv 0.3162 0.3155 σT 0.2236 0.2252

(0.0027) (0.0072) (0.0171)
βw
2 0.4000 0.4006 σν2 0.0100 0.0095 σξ2 0.3162 0.3170

(0.0048) (0.0025) (0.0121)
βww
11 0.0350 0.0347 σν3 0.0100 0.0100 σξ3 0.3162 0.3167

(0.0014) (0.0008) (0.0047)
βww
12 -0.0150 -0.0148 ρν 0.0000 -0.0409

(0.0019) (0.0796)

Note: Standard deviations are in parentheses.

Table 2.4.4: Result of Simulation I (J = 3, M = 2, θ12 = θ13 = 0.2)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 10.0000 βww
11 0.0350 0.0348 σν2 0.0100 0.0095

(0.0348) (0.0015) (0.0024)
βy
1 0.4000 0.3994 βww

12 -0.0150 -0.0149 σν3 0.0100 0.0100
(0.0139) (0.0019) (0.0005)

βy
2 0.3000 0.3001 βww

22 0.0250 0.0250 ρν 0.0000 -0.0665
(0.0129) (0.0033) (0.1010)

βyy
11 0.0500 0.0501 βyw

11 0.0100 0.0100 θ12 0.2000 0.1791
(0.0038) (0.0007) (0.1108)

βyy
12 -0.0100 -0.0100 βyw

12 -0.0050 -0.0050 θ13 0.2000 0.1788
(0.0033) (0.0011) (0.1095)

βyy
22 0.0400 0.0400 βyw

21 0.0150 0.0150 ρθ -0.5000 -0.5000
(0.0032) (0.0004) (0.0127)

βw
1 0.2500 0.2496 βyw

22 -0.0050 -0.0050 σT 0.2236 0.2243
(0.0026) (0.0007) (0.0173)

βw
2 0.4000 0.4000 σv 0.3162 0.3151 σξ2 0.3162 0.3164

(0.0032) (0.0071) (0.0078)
σξ3 0.3162 0.3165

(0.0041)

Note: Standard deviations are in parentheses.
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2.4.2 Simulation II

I conduct another set of simulations using the pseudo-data set described in Section 2.3,

which assumes that technical and allocative ine�ciency are linked by the APS copulas. The

objective of this simulation is to check the validity of the assumption in Greene (1980)

when technical and allocative ine�ciency are actually dependent. Consider a stochastic cost

frontier model such as

lnCi = lnC(yi,wi) + ϵi

= lnC(yi,wi) + vi + ui

sij = sj(yi,wi) + eij, j = 2, · · · , J. (2.4.1)

Greene (1980) assumes that ϵi is independent of ei = (ei2, ei3). I assume that vi
i.i.d∼ N(0, σ2

v),

ui
i.i.d∼ |N(0, σ2

u)|, and ei
i.i.d∼ N(0,Σe). Maximum likelihood estimation can be applied to esti-

mate parameters of the model, where the joint density of ϵi, ei2, ei3 is simply fϵ,e2,e3(ϵ, e2, e3) =

fϵ(ϵ) · fe(e), as ϵi and ei are assumed to be independent.7

Tables 2.4.5 to 2.4.8 show the result of simulations when θ12 = 0.4 for J = 2 and

θ12 = θ12 = 0.2 for J = 3. The key �nding is as follows. As ui = uT
i + g(ξi), we do not know

the true standard deviations of ui.
8 However, as both uT

i and g(ξi) are positive, the value

of ui is higher than that of uT
i . It implies that the standard deviation of ui, σu, should be

higher than the standard deviation of uT
i , σ

T
u , as the mean of a random variable from the

half normal distribution is an increasing function in its standard deviation. However, the

estimates of σu for all cases are less than the true value of σT = 0.2236. It suggests that

if one ignores the relationship between technical and allocative ine�ciency when they are

indeed dependent, estimates of a cost increase due to ine�ciency would be biased.

7Given the assumption about the distribution of vi and ui, the probability density function of ϵi is

fϵ(ϵ) =
2

σ
· ϕ

( ϵ

σ

)
· Φ

(ϵλ
σ

)
,

where σ2 = σ2
v + σ2

u, λ = σu/σv, and ϕ and Φ are density and distribution functions of the standard normal
distribution.

8In addition, as eij = hj(ξi) + νij , j = 2, 3, we do not know the true standard deviations of eij .
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Table 2.4.5: Result of Simulation II (J = 2, M = 1, θ12 = 0.4)

θ θTrue
¯̂
θML θ θTrue

¯̂
θML θ θTrue

¯̂
θML

β0 10.0000 10.0213 βw
1 0.6000 0.5984 σv 0.3162 0.3164

(0.0971) (0.0076) (0.0249)
βy
1 0.8250 0.8288 βww

11 0.0500 0.0491 σu - 0.1924
(0.0112) (0.0098) (0.1122)

βyy
11 0.0500 0.0496 βyw

11 0.0100 0.0099 σe2 - 0.0604
(0.0019) (0.0010) (0.0004)

Note: Standard deviations are in parentheses.

Table 2.4.6: Result of Simulation II (J = 2, M = 2, θ12 = 0.4)

θ θTrue
¯̂
θML θ θTrue

¯̂
θML θ θTrue

¯̂
θML

β0 10.0000 10.0096 βyy
22 0.0400 0.0395 σv 0.3162 0.3143

(0.1045) (0.0034) (0.0300)
βy
1 0.4000 0.4004 βw

1 0.6000 0.5987 σu - 0.2030
(0.0147) (0.0050) (0.1161)

βy
2 0.3000 0.3048 βww

11 0.0500 0.0494 σe2 - 0.0624
(0.0156) (0.0026) (0.0012)

βyy
11 0.0500 0.0496 βyw

11 0.0100 0.0099
(0.0039) (0.0016)

βyy
12 -0.0100 -0.0099 βyw

21 -0.0150 -0.0148
(0.0034) (0.0008)

Note: Standard deviations are in parentheses.

Table 2.4.7: Result of Simulation II (J = 3, M = 1, θ12 = θ13 = 0.2)

θ θTrue
¯̂
θML θ θTrue

¯̂
θML θ θTrue

¯̂
θML

β0 10.0000 10.0755 βww
11 0.0350 0.0335 σv 0.3162 0.3342

(0.0543) (0.0015) (0.0114)
βy
1 0.8250 0.8286 βww

12 -0.0150 -0.0148 σu - 0.1338
(0.0113) (0.0016) (0.0588)

βyy
11 0.0500 0.0499 βww

22 0.0250 0.0238 σe2 - 0.0931
(0.0019) (0.0032) (0.0004)

βw
1 0.2500 0.2425 βyw

11 0.0100 0.0101 σe3 - 0.0914
(0.0029) (0.0004) (0.0004)

βw
2 0.4000 0.3965 βyw

12 -0.0050 -0.0038 ρe - -0.5559
(0.0043) (0.0009) (0.0014)

Note: Standard deviations are in parentheses.
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Table 2.4.8: Result of Simulation II (J = 3, M = 2, θ12 = θ13 = 0.2)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 10.0712 βw
2 0.4000 0.4008 βyw

22 -0.0050 -0.0041
(0.0545) (0.0044) (0.0007)

βy
1 0.4000 0.3963 βww

11 0.0350 0.0330 σv 0.3162 0.3328
(0.0140) (0.0016) (0.0111)

βy
2 0.3000 0.3070 βww

12 -0.0150 -0.0149 σu - 0.1369
(0.0130) (0.0018) (0.0551)

βyy
11 0.0500 0.0495 βww

22 0.0250 0.0224 σe2 - 0.0842
(0.0038) (0.0035) (0.0004)

βyy
12 -0.0100 -0.0097 βyw

11 0.0100 0.0097 σe2 - 0.0796
(0.0033) (0.0008) (0.0004)

βyy
22 0.0400 0.0391 βyw

12 -0.0050 -0.0064 ρe - -0.5208
(0.0032) (0.0013) (0.0023)

βw
1 0.2500 0.2418 βyw

21 0.0150 0.0150
(0.0035) (0.0004)

Note: Standard deviations are in parentheses.

2.5 Conclusion

The estimation strategy proposed in Ryu (2021) involves multidimensional integral and two-

step transformations. Therefore, it would be necessary to conduct a set of Monte Carlo

simulations to con�rm their validity. Like Amsler et al. (2021), the simulation results sug-

gest that the parameters of the model in which APS copulas are employed can be reliably

estimated in complex settings. In addition, I conduct another set of simulations to check the

plausibility of assumptions in Greene (1980). Simulation results imply that it would lead

biased estimates of ine�ciency to ignore the relationship between technical and allocative

ine�ciency when they are indeed dependent.
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APPENDIX A

Simulating from the APS-2-A Copula

This section is written based on the supplemental material for Amsler et al. (2021). Let

c12(ω1, ω2) be a copula density, where (ω1, ω2) ∈ [0, 1]2 are copula arguments that are uncor-

related, but ω1 is correlated with |ω2 − 0.5|.

For computational ease, ω2 and ω1 are generated sequentially, which requires C1|2(ω1|ω2)

is used for the Rosenblatt transformation. In this section, C1|2(ω1|ω2) is derived, then meth-

ods to obtain ω2 and ω1 are presented.

2.A.1 Derivation of the Conditional Distribution

Given that C1|2(ω1|ω2) =
∫
c1|2(t1|ω2)dt1, it is required to obtain the conditional density

c1|2(ω1|ω2), which is

c1|2(ω1|ω2) =
c12(ω1, ω2)

f2(ω2)
= c12(ω1, ω2).

The second equality holds because ω2 ∼ U [0, 1].

Hence, the conditional copula C1|2(ω1|ω2) is

C1|2(ω1|ω2) =

∫ ω1

0

c1|2(t1|ω2)dt1

=

∫ ω1

0

[1 + θ12(1− 2t1){1− 12(ω2 − 0.5)2)}]dt1

= [t1 + θ12(t1 − t21){1− 12(ω2 − 0.5)2)}]
∣∣∣ω1

0

= ω1 + θ12ω1(1− ω1){1− 12(ω2 − 0.5)2)}

= ω1 + gω1(1− ω1),

where g = θ12{1− 12(ω2 − 0.5)2}.

2.A.2 Obtain Copula Arguments

2.A.2.1 Obtain ω2

As ω2 ∼ U [0, 1], ζ2 = F2(ω2) = ω2. Therefore, draw ζ2 from U [0, 1] and de�ne ω2 = ζ2.
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2.A.2.2 Obtain ω1

First, draw ζ1 from U [0, 1]. Then, one can obtain ω1 by solving the equation C1|2(ω1|ω2)−ζ1 =

0. It yields

ω1 + gω1(1− ω1)− ζ1 = 0

⇒ gω2
1 − (1 + g)ω1 + ζ1 = 0

⇒ ω1 =
(1 + g)±

√
(1 + g)2 − 4gζ1
2g

.

Due to the upper and lower bounds of ω1, the solution ω1 =
(1+g)+

√
(1+g)2−4gζ1

2g
is ruled out

(Amsler et al., 2021). Let A = 1 + g. Then,

ω1 =
A−

√
A2 − 4(A− 1)ζ1
2(A− 1)

=
(A−

√
A2 − 4(A− 1)ζ1)(A+

√
A2 − 4(A− 1)ζ1)

2(A− 1)(A+
√

A2 − 4(A− 1)ζ1)

=
A2 − A2 + 4(A− 1)ζ1

2(A− 1)(A+
√
A2 − 4(A− 1)ζ1)

=
2ζ1

A+
√

A2 − 4(A− 1)ζ1
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APPENDIX B

Tables and Figures

Figure 2.B.1: Sample Correlations between ζ1 and ζ2

(a) PRNG - rand of Matlab
(N = 100)

(b) QRNG - haltonset of Matlab
(N = 100)

(c) PRNG - rand of Matlab
(N = 1000)

(d) QRNG - haltonset of Matlab
(N = 1000)

(e) PRNG - rand of Matlab
(N = 10000)

(f) QRNG - haltonset of Matlab
(N = 10000)
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Table 2.B.1: Result of Simulation I (J = 2, M = 1, θ12 = 0)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9993 βw
1 0.6000 0.6002 σv 0.3162 0.3153

(0.0305) (0.0130) (0.0071)
βy
1 0.8250 0.8250 βww

11 0.0500 0.0505 σν2 0.0100 0.0074
(0.0111) (0.0133) (0.0109)

βyy
11 0.0500 0.0500 βyw

11 0.0100 0.0101 θ12 0.0000 0.0052
(0.0018) (0.0010) (0.1679)

σT 0.2236 0.2243
(0.0170)

σξ2 0.3162 0.3146
(0.0329)

Note: Standard deviations are in parentheses.

Table 2.B.2: Result of Simulation I (J = 2, M = 1, θ12 = 0.2)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9996 βw
1 0.6000 0.6008 σv 0.3162 0.3153

(0.0304) (0.0127) (0.0071)
βy
1 0.8250 0.8250 βww

11 0.0500 0.0510 σν2 0.0100 0.0074
(0.0110) (0.0129) (0.0103)

βyy
11 0.0500 0.0500 βyw

11 0.0100 0.0101 θ12 0.2000 0.2056
(0.0018) (0.0010) (0.1596)

σT 0.2236 0.2243
(0.0170)

σξ2 0.3162 0.3167
(0.0294)

Note: Standard deviations are in parentheses.
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Table 2.B.3: Result of Simulation I (J = 2, M = 2, θ12 = 0)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9989 βyy
22 0.0400 0.0401 σv 0.3162 0.3145

(0.0352) (0.0031) (0.0072)
βy
1 0.4000 0.4002 βw

1 0.6000 0.5998 σν2 0.0100 0.0160
(0.0140) (0.0056) (0.0164)

βy
2 0.3000 0.2996 βww

11 0.0500 0.0499 θ12 0.0000 0.0610
(0.0130) (0.0030) (0.2049)

βyy
11 0.0500 0.0501 βyw

11 0.0100 0.0100 σT 0.2236 0.2263
(0.0036) (0.0017) (0.0173)

βyy
12 -0.0100 -0.0101 βyw

21 -0.0150 -0.0150 σξ2 0.3162 0.2934
(0.0032) (0.0008) (0.0475)

Note: Standard deviations are in parentheses.

Table 2.B.4: Result of Simulation I (J = 2, M = 2, θ12 = 0.2)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9983 βyy
22 0.0400 0.0402 σv 0.3162 0.3144

(0.0352) (0.0031) (0.0072)
βy
1 0.4000 0.4002 βw

1 0.6000 0.5999 σν2 0.0100 0.0132
(0.0140) (0.0057) (0.0138)

βy
2 0.3000 0.2996 βww

11 0.0500 0.05000 θ12 0.2000 0.2525
(0.0130) (0.0031) (0.1654)

βyy
11 0.0500 0.0501 βyw

11 0.0100 0.0100 σT 0.2236 0.2266
(0.0036) (0.0017) (0.0174)

βyy
12 -0.0100 -0.0101 βyw

21 -0.0150 -0.0150 σξ2 0.3162 0.3144
(0.0032) (0.0008) (0.0072)

Note: Standard deviations are in parentheses.
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Table 2.B.5: Result of Simulation I (J = 3, M = 1, θ12 = θ13 = 0)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9990 βww
22 0.0250 0.0251 θ12 0.0000 -0.0049

(0.0310) (0.0044) (0.1237)
βy
1 0.8250 0.8247 βyw

11 0.0100 0.0100 θ13 0.0000 -0.0002
(0.0113) (0.0004) (0.1186)

βyy
11 0.0500 0.0500 βyw

12 -0.0050 -0.0050 ρ -0.5000 -0.4971
(0.0019) (0.0010) (0.0339)

βw
1 0.2500 0.2495 σv 0.3162 0.3154 σT 0.2236 0.2252

(0.0029) (0.0072) (0.0171)
βw
2 0.4000 0.4005 σν2 0.0100 0.0094 σξ2 0.3162 0.3177

(0.0060) (0.0027) (0.0199)
βww
11 0.0350 0.0347 σν3 0.0100 0.0100 σξ3 0.3162 0.3166

(0.0017) (0.0009) (0.0056)
βww
12 -0.0150 -0.0149 ρν 0.0000 -0.0509

(0.0023) (0.1088)

Note: Standard deviations are in parentheses.

Table 2.B.6: Result of Simulation I (J = 3, M = 2, θ12 = θ13 = 0)

θ θTrue
¯̂
θMSL θ θTrue

¯̂
θMSL θ θTrue

¯̂
θMSL

β0 10.0000 9.9999 βww
11 0.0350 0.0348 σν2 0.0100 0.0095

(0.0348) (0.0015) (0.0024)
βy
1 0.4000 0.3994 βww

12 -0.0150 -0.0149 σν3 0.0100 0.0100
(0.0139) (0.0019) (0.0005)

βy
2 0.3000 0.3001 βww

22 0.0250 0.0250 ρν 0.0000 -0.0445
(0.0129) (0.0032) (0.0992)

βyy
11 0.0500 0.0500 βyw

11 0.0100 0.0100 θ12 0.0000 0.0005
(0.0038) (0.0007) (0.1171)

βyy
12 -0.0100 -0.0100 βyw

12 -0.0050 -0.0050 θ13 0.0000 -0.0009
(0.0033) (0.0011) (0.1200)

βyy
22 0.0400 0.0400 βyw

21 0.0150 0.0150 ρ -0.5000 -0.4996
(0.0032) (0.0004) (0.0116)

βw
1 0.2500 0.2496 βyw

22 -0.0050 -0.0050 σT 0.2236 0.2243
(0.0026) (0.0007) (0.0172)

βw
2 0.4000 0.4003 σv 0.3162 0.3150 σξ2 0.3162 0.3163

(0.0034) (0.0071) (0.0073)
σξ3 0.3162 0.3165

(0.0040)

Note: Standard deviations are in parentheses.
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CHAPTER 3

DEMAND ESTIMATION OF DEPOSITS:
A CASE OF THE KOREAN FINANCIAL INDUSTRY

3.1 Introduction

During the last several decades, tools in structural economic modeling have developed re-

markably, especially in the �eld of industrial organization. These techniques and tools were

recently applied in �nance to some extent, presenting many promising directions.1 For ex-

ample, Hortaçsu et al. (2018) estimate a structural model of the uniform price auctions of

U.S. Treasury bills and notes in order to analyze market power across the three di�erent

bidder groups: primary dealers, direct bidders, and indirect bidders. Bonaldi et al. (2015)

propose a framework for estimating spillover e�ects between individual banks' short-term

funding costs and measure systemic risk using data from the main re�nancing operations of

the European Central Bank.

The other intersecting �eld of �nance and industrial organization is estimating a demand

system for �nancial assets, which are viewed as di�erentiated products. There are two main

directions with respect to this �eld: the �rst one is based on a product-space demand model

like the one proposed by Deaton and Muellbauer (1980) that approximates the demand

function by a �exible functional form; and the second direction is based on a characteristics

space demand model such as Berry et al. (1995, hereafter BLP), where consumer choices are

based on products' characteristics rather than the products themselves.

The aim of this paper is to estimate a structural demand model for the �nancial instru-

ments of Korea in order to measure the e�ect of deregulation in the payment and settlement

systems. From 2009, securities companies were given access to participate in retail payment

systems, which were previously restricted to banks only. Consequently, cash management ac-

1Please refer to Kastl (2017) for more details.
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counts (hereafter CMAs) provided by securities companies, which were similar to traditional

deposits of banks but had limitations in transferring funds, became the close substitutes for

deposits in terms of services.

CMAs, which were introduced in Korea in the 1980s, have similarities to the checking

accounts of banks that consumers can deposit and withdraw funds from without limitations.

In addition, as securities companies generally invest funds from CMAs in government or

public corporations bonds with repurchase agreements2, they o�er interest rates of CMAs

around the policy interest rates, whereas the checking accounts usually provide almost zero

interest. That is, CMAs share the features of the checking accounts and the time deposits

of banks. However, securities companies are regarded as less safe than banks due to the

di�erences in the business model and the size of institutions, as well as regulatory gaps

between banks and securities companies. Also, most CMAs are not protected by deposit

insurance.3 Furthermore, as the retail payment systems were only accessible by banks,

CMAs were not used as a means of exchange.

Ever since the Capital Market and Financial Investment Business Act, enacted in August

2007, was enforced in February 2009, securities companies were allowed to participate in the

retail payment systems operated by the Korea Financial Telecommunications and Clearings

Institute (KFTC).4 Therefore, from the depositor's perspective, traditional deposits and

CMAs became indistinguishable in terms of services they provide. For instance, consumers

who have CMAs are able to transfer funds to bank accounts via internet or mobile banking

services and vice versa. Also, CMA holders can pay o� their credit card balances by deducting

from their CMAs. Re�ecting these changes, CMAs were included in M2 from July 2009.5

2As of Q4 2016, CMAs with RP agreement count for 59.0% of total CMAs, while those investing in MMF
and �duciarily managed by Korea Securities Finance Corporation count for 6.1% and 30.3%, respectively.

3CMAs of a securities company that also has the merchant bank license are protected by deposit insur-
ance. However, its share of CMAs is only 4.6% as of Q4 2016 since only two securities companies hold the
merchant bank license.

4Securities companies began to join the retail payment systems from July 2009.
5Although CMAs are transferable like the checking accounts included in M1, depositors in CMAs have

to sacri�ce interests if they use balance in CMAs for transaction. Therefore, CMAs are classi�ed into M2.
Please refer to International Monetary Fund (2016) for more details on the de�nitions of money aggregates.
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The enactment of the Capital Market and Financial Investment Business Act sparked a

�erce debate on securities companies' participation in the retail payment systems. People

who supported the deregulation claimed that consumer welfare would be improved by pro-

moting competition among �nancial institutions, and it would be necessary to promote the

�nancial investment businesses that were less developed than the banking industry. On the

other hand, people who were against the measure contended that it would be harmful to

the �nancial system as it would cause an increase in payment and settlement risks. Also,

receiving deposits is considered the banks' own business6 and only a few countries allowed

securities companies to participate in the retail payment systems.

As a result, the Capital Market and Financial Investment Business Act permitted securi-

ties companies to participate in the retail payment systems. However, although CMAs have

the advantages of interest rates and services compared to bank deposits, its total amount has

stabilized after a sharp increase between mid-2006 and mid-2008. In particular, its balance

had remained around forty trillion KRW for �ve years since the global �nancial crisis. This

suggests that depositors' choice may depend on the �nancial stability situation that would

a�ect their risk attitudes, referred to as the market discipline in banking. Based on this

phenomenon, this paper evaluates whether consumer welfare has signi�cantly increased with

the enforcement of the act when considering consumer's risk attitudes.

In order to measure the e�ect of deregulation, I develop a structural demand model

following the characteristic space approach. As in Petrin (2002), the researcher is able to

evaluate welfare gains for consumers from the introduction of new products by constructing

a structural model. Furthermore, as Nevo (2000) notes, the econometrician can reduce

the number of parameters that need to be estimated. To estimate the model, I apply the

random coe�cient discrete choice approach. This approach can estimate the model using

only market-level price and quantity data, deal with the price endogeneity, and allow for a

6For example, the U.S. Bank Holding Companies Act de�nes banks as an institution which both (i)
accepts demand deposits or deposits that the depositor may withdraw by check or similar means for payment
to third parties or others; and (ii) is engaged in the business of making commercial loans.
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Figure 3.1.1: Interest Rates and Total Amount of CMAs

(a) Interest Rates (b) Total Amount

Source: Bank of Korea, Korea Financial Investment Association

more realistic substitution pattern re�ecting the heterogeneity in consumer tastes.

The characteristics space approach model in the �nance literature relates to asset pricing

and portfolio choice. Markowitz (1952), the classical reference in �nance, views a portfolio

as bundles consisting of mean-variance characteristics. In addition to the mean and the vari-

ance of returns, other relevant characteristics of �nancial instruments may include maturity,

probability of default, asset covariance with the market return, etc. However, as Kastl (2017)

points out, although those might be the relevant characteristics that capture important parts

of variation in demand for portfolio, it might be hard to succinctly capture other important

ones.

Other than analyzing portfolio choice that considers whole �nancial markets, another

way of de�ning the relevant characteristics is by restricting the scope of the �nancial instru-

ments, such as deposits. This paper focuses on deposits instruments, which include checking,

savings, and time deposit accounts generally provided by commercial banks, and CMAs.7

The reasons are as follows: (i) the banking sector holds more than 50% of the �nancial

assets among Korean �nancial institutions8; (ii) deposits are the major source of Korean

7One can consider to separately construct models by products. However, as deposits cannot be disag-
gregated at the bank level as well as CMAs hold characteristics of both checking and time deposits, I focus
on whole deposit services.

8As of Q4 2016, the banking sector holds 50.8% of the �nancial assets among Korean �nancial institutions,
while insurance sector and securities sector hold 15.9% and 5.8%, respectively.
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banks' funding9, and (iii) CMAs, the interest of this paper, became the close substitute for

traditional deposits by the deregulation in payment and settlement systems.

Recently, some papers have applied a discrete choice model to estimate the demand for

deposits. For example, Dick (2008) estimates a structural demand model for commercial

bank deposit services in order to measure the e�ects on consumers, given changes in bank

services owing to the Riegle-Neal Interstate Banking and Branching E�ciency Act of 1994

that allowed for nationwide branching. Following the discrete choice literature, it assumes

that consumer decisions are based on prices and bank characteristics, such as deposit rates,

account fees, the age, size, and geographic diversi�cation.

Based on the demand estimation for deposits, some papers extended a structural model of

the banking sector to analyze the �nancial fragility. For example, Egan et al. (2017) develop

a structural empirical model of the U.S. banking sector that considers both demand and

supply sides. After estimating the demand and supply for deposit, the researchers evaluate

several proposed bank regulations. The results, for instance, suggest a capital requirement

below eighteen percent could lead to signi�cant instability in the U.S. banking system.

However, those papers do not explicitly take market discipline in banking into consid-

eration. Market discipline in banking, in its broad terms, is de�ned as the mechanism via

which market participants monitor and discipline excessive risk-taking behavior by banks

(Stephanou, 2010). It is often described as a situation where depositors face costs that are

positively related to bank risk and react on the basis of these costs (Berger, 1991). For

instance, given that the bank's fragility increases, depositors respond by withdrawing their

funds or by demanding higher interest rates on their deposits. Since it is known that mar-

ket discipline would lower the probability of individual bank's failures and the incidence of

banking crises by reducing the problems of moral hazard and asymmetric information in

banking, policymakers have increasingly recognized its role and have incorporated it in their

regulatory frameworks. One example of its codi�cation is Pillar 3 in the Basel III, which is

9As of Q4 2016, deposits consists of 83.6% of banks' funding.
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the global supervisory framework for internationally active banks.

Much work has been done on the existence of market discipline.10 Previous studies

provide evidence of market discipline in both developed countries and developing countries.

Most of these studies examine the existence of market discipline by analyzing either how

yields on uninsured deposits or the level or growth of uninsured deposits respond to measures

of bank risk. However, a number of papers have found that the typical test for existence of

market discipline might fail in some developing economies in non-crisis periods, as traditional

indicators of bank soundness tend to become less signi�cant and explain a smaller fraction

of the total variance of deposits and interest rates during �nancial turmoil than during

stable periods. The results imply that depositors behave di�erently by the �nancial stability

situation.

The remainder of the chapter is organized as follows. Section 3.2 outlines the model

speci�cations and estimation strategies. Section 3.3 describes the data and instruments.

Section 3.4 reports the estimation results. Section 3.5 concludes the chapter.

3.2 Empirical Framework

3.2.1 Assumptions

I assume that, following Dick (2008), consumers11 cluster their deposits within one primary

bank for acquiring banking services together. Based on this assumption, one can apply

the discrete choice model. It might be possible for consumers to demand multiple banking

services. However, if banks were to provide bene�ts to depositors who use the bank as

the primary one, which is common in Korea12, consumers would then have incentives to

10Please refer to Flannery (1998), Arena (2003), and Levy-Yeyati et al. (2010) for more details.
11Due to the limitation of data that it does not divide depositors into households and corporates by

�nancial institutions, I assume that two groups of depositors choose a depository institution in a similar
manner. Dick (2008) also assumes that their behavior is similar based on the consumer and business survey.

12For instance, banks o�er higher deposit interest rates and lower fees on transactions to depositors
depending on their class, which is decided by the amount of deposit, the records of direct deposit of salary,
the number of accounts, etc.
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consolidate their deposits in a single �nancial institution. In addition, according to the

Survey of Household Finances and Living Conditions13, the median amount of deposits per

household is thirty three million KRW as of the end of March 2017, which is lower than

the amount of deposits protected by deposit insurance (�fty million KRW). These suggest

that it is reasonable to assume that consumers choose a single bank for deposits. Given

that CMAs have become the close substitutes since the deregulation, securities companies

providing them are assumed to be treated as banks in the deposits market, albeit it seems

to be a strong assumption.

I de�ne market share based on the amount of deposits, and outside goods as deposits in

�nancial institutions other than banks14 and securities companies; these include merchant

banking corporations, mutual savings banks, credit cooperatives, and postal savings. This

implies, along with the �rst assumption, that depositors can have a number of accounts

as long as they cluster deposits into one bank. The de�nition of market share using the

amount of deposits, not the number of accounts, makes up for the shortcomings of the �rst

assumption, which enables to apply a discrete choice model within a multinomial choice

setting. For instance, even though consumers hold accounts in multiple banks, the problems

that stem from the �rst assumption could be mitigated as long as the amount of deposits

in banks other than the primary one is negligible. In addition, given that transferring funds

is easier to do than opening and closing accounts, it will reduce the �xed cost to change

one's primary bank if consumers have accounts in multiple banks. The de�nition of outside

goods has limitations as it might not capture the true market share since some people may

choose to invest funds in �nancial instruments other than deposits. However, the results

of the Survey of Household Finances and Living Conditions, which shows that households'

preference for �nancial instruments have remained stable, suggest that this study's de�nition

of outside goods would therefore be reasonable.

13The survey is annually conducted of twenty thousand households by the Statistics Korea, the Financial
Supervisory Service of Korea, and the Bank of Korea since 2012.

14I exclude KDB and KEXIM from the category of banks due to their heterogeneous business model.
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Table 3.2.1: Households' Preferences for Financial Instruments

Deposits Pension Stock Etc. Total
2012 89.9 1.7 5.9 2.5 100.0
2013 90.7 1.8 4.7 2.8 100.0
2014 91.6 2.2 3.4 2.8 100.0
2015 90.6 2.3 4.7 2.4 100.0
2016 91.6 1.9 4.0 2.5 100.0
2017 91.8 1.8 4.1 2.3 100.0

Source: Statistics Korea, Financial Supervisory Service of Korea, and Bank of Korea, �Survey of

Household Finances and Living Conditions�

3.2.2 Models

In the characteristics space demand model, the price of a product can be correlated with

an omitted product attribute, which is relevant but not observed by the econometrician. If

an omitted product attribute is positively correlated with the price, estimates of the price

sensitivity term will be biased toward zero and those of the price elasticities will be biased

as well.15 To deal with the potential price endogeneity problem, one can use instrumental

variables and/or apply a random coe�cient discrete choice model.

Thus, I construct the following models to estimate the demand for deposits: (i) the

simple conditional logit model that does not include an omitted product attribute (hereafter

Conditional Logit); (ii) the Berry (1994) type logit model that includes an omitted product

attribute (hereafter IV Logit); (iii) the simple random coe�cients logit model that does not

include an omitted product attribute (hereafter RC Logit); and (iv) the BLP (1995) type

random coe�cient logit model (hereafter BLP (1995) RC Logit).

3.2.2.1 Conditional Logit and IV Logit Models

Similar to most discrete choice models following the Random Utility Maximization (RUM)

hypothesis, I assume that individual agents i = 1, . . . , I (= ∞) at t = 1, . . . , T markets

make choices between j = 1, ..., J alternatives in order to maximize their indirect utility,

15Kim and Petrin (2015) provide a literature review about this problem.
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uijt, speci�ed as

uijt = x′
jtβ + αpjt + ξjt + ϵijt

= δjt + ϵijt,

where xjt = (xjt,1, . . . , xjt,K)
′ is a K×1 vector of observed characteristics for deposit product

j at the market t, pjt is the spread or interest rates paid by banks on j at t, ξjt is an unobserved

characteristic for j at t, and ϵijt is the error term. As Conditional Logit model does not take

account for unobserved heterogeneity, ξjt = 0 for all j and t. δjt = x′
jtβ + αpjt + ξjt is

referred to as the mean utility, which is common to all agents. The K+1 dimensional vector

θ = (β, α) represents the taste parameters.

Now, assume that ϵijt are identically and independently distributed according to the Type

I extreme-value distribution. Then, by integrating over ϵijt, the predicted market share for

j at t is derived such that

sjt(x, β, α, ξ) =
exp(x′

jtβ + αpjt + ξjt)∑J
r=1 exp(x

′
rtβ + αprt + ξrt)

. (3.2.1)

Berry (1994) assumes that at the true parameter values, β0 and α0, the following equality

must hold

sjt(x, β0, α0, ξ) = Sjt,

where Sjt is the true market share from the aggregated data. In other words, conditioning

on the true values of δ0, the model should exactly �t the data.

Berry (1994) uses the following transformation of equation (3.2.1) such that

log(sjt(x, β, α, ξ)) = et + x′
jtβ + αpjt + ξjt,

where et = −log(
∑J

r=1 exp(x
′
rtβ+αprt+ξrt)). By normalizing the mean utility of the outside

good, denoted as j = 0, to zero that implies

log(s0t(x, β, α, ξ)) = et,
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equation (3.2.2) is obtained such that

log(Sjt)− log(S0t) = δjt

= x′
jtβ + αpjt + ξjt, (3.2.2)

where S0t is the share of the outside good at t.

Given equation (3.2.2), one can estimate the Conditional Logit model with ordinary

least squares by regressing log(Sjt) − log(S0t) on (x′
jt, pjt), as well as IV Logit model with

instrumental variables estimation given the assumption E[ξjt|Zjt] = 0.

3.2.2.2 RC Logit and BLP (1995) RC Logit Models

For RC Logit and BLP (1995) RC Logit models, I specify the indirect utility similar to

Nevo (2000) that allows the price coe�cient to be random without taking the natural log.

Therefore, the indirect utility of an agent i from consuming j at the market t is speci�ed as

uijt = xjtβi + αipjt + ξjt + ϵijt,

where βi,k = βk+σkηi,k, αi = α+σpηi,p, ηi,k, ηi,p ∼ N(0, 1), ξjt is an unobserved characteristic

for j at t, and ϵijt is the error term.

Now, I decompose indirect utility by two parts: the mean utility, δjt, and the het-

eroskedastic error terms, νijt, that captures the e�ect of random tastes parameters such

that

uijt = δjt + νijt,

where δjt = xjtβ + αpjt + ξjt represents a mean level of utility and νijt = [
∑

k xjt,kσkηi,k] +

σpηi,ppjt + ϵijt represents a heteroskedastic error terms that captures the e�ect of random

tastes parameters.

In order to estimate the model, I de�ne the set of values of error terms, Ajt, that make

j maximizing utility at t given the J dimensional vector δt = (δ1t, . . . , δJt), such that

Ajt(δt) = {νit = (νijt) | δjt + νijt > δj′t + νij′t, ∀ j′ ̸= j}.
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Then, the market share for j at t is written as

sjt(δt(x, p, ξ), x, β, α, σ) =

∫
Ajt(δt)

f(ν)dν.

In order to estimate the models, I take the following steps. First, I compute the market

shares given δt and σ such that

sjt(δt, σ) =

∫
exp(δjt +

∑
k xjt,kσkηi,k + σpηi,ppjt)

1 +
∑J

r=1 exp(δrt +
∑

k xrt,kσkηi,k + σpηi,pprt)
df(ηi).

Second, given σ, I �nd δjt by contraction mapping. Third, given δjt, β, and α, obtain ξjt.

Last, choose β, α and σ to minimize the sample criterion function. For example, I use the

moment condition of E[ξjt(β0, α0, σ0)|Zjt] = 0 to estimate BLP (1995) RC Logit by GMM.

3.3 Data and Instruments

3.3.1 Data

The data mainly come from two sources: �nancial institution-level data from the Finan-

cial Statistics Information System (FISIS) of the Financial Supervisory Service of Korea

(http://�sis.fss.or.kr), and country-level aggregate data from the Economic Statistics System

(ECOS) of the Bank of Korea (http://ecos.bok.or.kr). The data on each �nancial institu-

tion's deposits and its attributes are obtained from the balance sheet, the income statement,

and other reporting forms uploaded on FISIS. The data on the total amount of deposits

from the Flow of Funds and the policy interest rates are taken from ECOS. The amount

of CMAs is obtained from the Korea Financial Investment Association Portal (FreeSIS,

http://freesis.ko�a.or.kr). The sample covers the period from Q1 2003 to Q2 2015 consid-

ering the completion of the restructuring Korean �nancial industry after the Asian �nancial

crisis (Q4 2002), the enforcement of Capital Market and Financial Investment Business Act

(Q2 2009), and the merger of Hana and KEB banks (Q3 2015).
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An observation is de�ned as a �nancial institution16- quarter combination in the estima-

tion exercises. I choose the attributes of �nancial institutions from available data, which

are important and easily observable by depositors. Table 3.B.4 shows summary statistics of

data.

I use spread, which is the di�erence between interest rates paid on deposits and the policy

interest rates, as the price variable. This is because deposit rates are decided in line with the

policy interest rates and the interest rates regime shifts before and after the global �nancial

crisis. The deposit rates are driven by dividing interest expense on deposits by the amount

of deposits from each institution's quarterly income statement and annualized.

In addition to the price variable, four categories of observed characteristics are chosen: (i)

size, (ii) quality of service, (iii) quantity of service, and (iv) �nancial soundness. Similar to

Dick (2008), I classify �nancial institutions into �ve groups, considering their asset sizes and

other characteristics17, and use them to control for size rather than using the asset size itself.

The reason is that the asset size itself should increase as the �nancial institution receives

more deposits by the law of accounting.18 In addition, it would capture features associated

with the size of �nancial institutions, including larger infrastructures, product diversity, and

know-how. The quality and quantity of service are proxied by the number of employees per

branches19 and the number of branch20, respectively.

I include the �nancial soundness indicator and a dummy variable for the period of �-

nancial turmoil in order to test the existence of market discipline in the deposit market.

Egan et al. (2017) use the implied probability of default of banks from credit default swap

(CDS) spreads when estimating the demand for deposits. However, it is not easily available

16As the amount of CMAs of each securities �rm is not available in public, I assume them as a single
entity.

17For more details, please refer to Table 3.B.5.
18For the sample period, the correlation between dependent variable and asset size is 0.91.
19Dick (2008) argues that it can capture consumers' waiting time, the types of services speci�c to bank,

and the value of human interaction to consumers who are not able to use the online service.
20One can consider the number of ATMs as a proxy for the quantity of service. However, the data on the

banks' number of ATMs does not cover the whole sample period as well as these on securities companies are
not provided. Therefore, I do not include the number of branch although it seems to be relevant.
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to depositors, and its value might highly depend on the model and assumptions. Therefore,

I use the risk-based capital ratios, which are representative, well-known, and publicly dis-

closed indicators: the BIS ratio for banks and the net operating capital ratio for securities

companies. I assume the period from Q3 2008 to Q2 2013 as a time of �nancial instability21

re�ecting major �nancial events and �nancial stability indices.

3.3.2 Instruments

I use three categories of instrumental variables: (i) �nancial institutions' characteristics

themselves; (ii) mark-up shifters; and (iii) cost shifters. The set of mark-up shifters includes

BLP instruments, which are the sum of characteristics of other products in the market,

following the convention of the literature on discrete choice models. This is based on the

intuition from models of oligopoly that suggest the more isolated the �rm is in the product

space, the more likely it is to have a higher price relative to the cost22.

The set of cost shifters includes variables related to marginal costs, funding costs and

labor costs. I use the policy interest rates as a proxy for funding costs, as the interest rates of

funding sources other than deposits, such as bank debenture and call money, are also decided

based on it. Labor costs come from the average wage data of the �nancial business from

Statistics Korea. These two variables are chosen, although the income statement provides

data for each �nancial institution, because the �nancial institution's technology and qual-

ity are already controlled through other covariates. For example, if a �nancial institution

hires more skilled workers whose wages tend to be higher than those of low-skilled workers,

the actual salary data may contain the hidden quality components, therefore leading it to

violating the independent assumption.

21I exclude the credit card debacle in 2003, since the problem stemming from credit card companies might
not a�ect depositors' risk attitude as well as the debacle was recovered in the short time.

22Please refer to BLP (1995) for more details.
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3.4 Results

3.4.1 Model Estimation

Table 3.B.7 presents the estimation results, where column (1) corresponds to the Conditional

Logit model, columns (2) and (3) correspond to the IV Logit model, column (4) corresponds

to the RC Logit model, and columns (5) and (6) correspond to the BLP (1995) RC Logit

model. In columns (2) and (5), �nancial institution's characteristics themselves and mark-

up shifters are used as instrumental variables, whereas cost shifters are included as well in

columns (3) and (6). Coe�cients of RC Logit and BLP (1995) RC Logit are the mean values

of random coe�cients (β, α).

In order to test whether the existence of market discipline depends on the �nancial

stability situation, the �nancial turmoil dummy variable interacts with both the spread

and the risk-based capital ratios. In addition, since the risk-based capital ratios between

banks and securities companies are di�erent, an additional dummy variable that represents

securities companies interacts with them.

The results from the Conditional Logit model show that the coe�cients on spread in

both the stable period and the �nancially distressed period are signi�cantly negative, im-

plying that an unobserved attribute is correlated with spread; thus, it is biased toward zero.

Although the random coe�cient model is known to deal with the price endogeneity problem,

the result in column (4) shows that the coe�cient on spread is statistically insigni�cant in

the stable period while its sign is reversed to positive. However, the results from the IV Logit

and the BLP (1995) RC Logit models for which the price variable is instrumented show that

the spread coe�cients in the stable period have the expected sign and are statistically signif-

icant. Furthermore, the magnitude of coe�cient substantially increases in the BLP (1995)

RC Logit model compared to that in the IV Logit model. This is in line with the �nding

from related studies (e.g., BLP (1995), Petrin (2002)). Table 3.B.6 shows the distribution of

own-price elasticities for the tranquil times obtained from the IV Logit model and the BLP
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(1995) RC Logit model.

The coe�cients on spread as well as the risk-based capital ratio in �nancial turmoil sug-

gest that the market discipline in Korean banking sector has appeared di�erently depending

on the �nancial stability situation. In both the IV Logit model and the BLP (1995) RC Logit

model, the coe�cients on spread are not signi�cantly di�erent from zero during the period of

�nancial instability. Instead, the coe�cients on the banks' risk-based capital ratio23 become

signi�cantly positive, whereas those in the stable period are signi�cantly negative. That is,

regardless of the deposit rates, consumers prefer to deposit in a safer depository institution

when the �nancial system is unstable. This phenomenon is similar to the �ight to quality in

the bond and equity markets occurred during the �nancial crisis.

It is counter-intuitive that the coe�cients on the risk-based capital ratio are negative in

tranquil times. However, for instance, the BIS ratios of Korean banks have been maintained

over the minimum requirement during the sample period due to the experience of the Asian

�nancial crisis. Figure 3.4.1 represents the unweighted BIS ratios of Korean banks and the

minimum requirement. Therefore, it would be possible that depositors might regard them as

safe regardless of the level of the BIS ratio. In addition, if consumers with low credit scores

can use other services provided by a bank, such as loans, by depositing, it would lead to a

lower risk-based capital ratio of the bank.

The signs, magnitudes, and signi�cance of other coe�cients are in accord with expec-

tations. Depositors respond favorably to the size, the branch sta�ng, and the number of

branches of depository institutions. The result that the coe�cients on Group 2 �nancial

institutions are signi�cantly positive in the BLP (1995) RC Logit model re�ects the charac-

teristics of banks in the group: one is specialized in the transaction of foreign exchange, and

the other is established in order to support �nancing of small to medium enterprises. The

reasons for the negative coe�cients on Group 5 �nancial institutions, securities companies,

23The coe�cients on the securities companies' risk-based capital ratio are statistically insigni�cant in
�nancial turmoil. However, considering that those in the stable period are negative and depositors in CMAs
would have di�erent risk attitude from depositors in banks, one can interpret this that depositors, even who
are less risk-averse, become more risk-averse in the times of �nancial instability.
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Figure 3.4.1: BIS ratios of Korean Banks

Source: Financial Supervisory Service of Korea

seems to be (i) di�erences in institutional framework from banks, including deposit insurance

and regulation; and (ii) stigma e�ects from the collapse of Dongyang Securities whose CMAs

market share was one of the highest24 before the bankruptcy.

3.4.2 Consumer Welfare

In order to measure the e�ect of deregulation on consumer welfare, I calculate the equivalent

variation (EV ) following Small and Rosen (1981) in the context of the discrete choice model.

According to Dick (2008), the equivalent variation (EV ) can be calculated as

EV = St(p, x; θ)− St−1(p, x; θ), (3.4.1)

where S(p, x; θ) = ln[Σjexp(δj(pj, xj; θ))]/α, and δj = x′
jβ + αpj + ξj, θ = (β, α).25

However, the estimation results show that depositors do not respond to spread in the

times of �nancial turmoil. This implies that even though CMAs o�er higher interests than

banks26 that might induce banks to increase the deposit rates they o�er, the deregulation

24Although CMAs balance for each securities company is not disclosed, it was known that CMAs balance
of Dongyang Securities was around 10 trillion KRW in the peak.

25In this formula, α, the coe�cient on spread, represents the marginal utility of income.
26During the sample period, the average spread of securities �rms is 6.4 bps, whereas that of banks is

-41.9 bps.
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may not a�ect the consumer welfare at all in terms of a monetary unit. Furthermore, one

cannot exclude the possibility that it might have a negative e�ect on consumer welfare due

to the weakness of CMAs or securities companies illustrated in Section 3.1: (i) most CMAs

are not included in the scope of the �nancial instruments protected by the deposit insurance

and (ii) there exists a regulatory gap between banks and securities companies.

Therefore, I compare changes in welfare focusing on the stable period following equation

(3.4.1). Depositors experience a gain in welfare due to deregulation between tranquil times,

with a mean of KRW 0.0005-0.005 per consumer per year. This implies, for example, with

a welfare gain of KRW 0.002, a depositor carrying a median balance (33 million KRW as of

the end of March 2017) can gain 66 thousand KRW per year. However, it should be noted

that the welfare gain has been diluted due to the prolonged �nancial stress since the global

�nancial crisis.

3.5 Conclusion

This paper sought to apply structural econometric modeling in the �eld of industrial or-

ganization to �nance. The results suggest that unlike other products (e.g., automobiles,

Petrin (2002)), a new �nancial instrument does not necessarily improve consumer welfare

even if it seems competitive in terms of price; this �nding may be due to the existence of

market discipline within �nancial markets. This implies that in order to achieve the goal of

deregulation in the payment and settlement systems, it is necessary to devise an institutional

framework that can reduce the di�erence in risk between products and �nancial institutions,

which would foster a level playing �eld for �nancial institutions.

The model of the paper relies on simplifying assumptions. For instance, given that the

services provided by securities companies are di�erent from banks, the assumption of treating

securities companies that provide CMAs as banks might not re�ect the reality. Also, some

consumers might split a signi�cant amount of deposits in multiple banks. To manage the
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problem, one can consider applying multiple-discrete choice model (e.g., Hendel (1999)),

which may need micro-level data. It is important to note that the approach in this paper

uses only market-level data.

Having taken basic but important steps in estimating a demand system, this model has

the potential to lead to future research with improvements. For example, the model can

be used to measure the e�ect of changes in prudential regulation. Also, given that two

internet-only banks were newly established in Korea in 2017, the demand model for deposits

taking account of both price and service competition can be extended to measure the e�ect

of introducing internet-only banks.

92



APPENDICES

93



APPENDIX A

An Overview on the Korean Financial System

3.A.1 Financial Industry

The Korean �nancial system has been developed as bank-based, in that banks play a leading

role in mobilizing savings, allocating capital, overseeing the investment decisions of corporate

managers, and providing risk management vehicles.27 Table 3.A.1 shows the total assets of

the major �nancial institutions in Korea and their shares. Although banks' asset shares in

the �nancial system have decreased after the Asian �nancial crisis, they still account for the

largest portion with more than 50%.

Table 3.A.1: Total Assets of Major Financial Institutions in Korea

(Unit: Trillion KRW, %)

1990 1995 2000 2005 2010 2015

Banks
249.7 595.8 982.2 1,213.5 1,884.1 2,440.7
(63.3) (62.9) (63.4) (57.8) (54.8) (57.3)

Merchant Banking 23.7 45.9 21.3 13.2 24.2 11.1

Corporations1) (6.0) (4.8) (1.4) (0.6) (0.7) (0.3)

Mutual Savings Banks
11.5 32.6 24.2 44.9 91.3 43.9
(2.9) (3.4) (1.6) (2.1) (2.7) (1.0)

Credit Cooperatives
24.6 75.9 145.1 220.2 360.9 533.5
(6.2) (8.0) (9.4) (10.5) (10.5) (12.5)

Postal Savings
3.4 7.0 24.5 37.8 55.4 65.6

(0.9) (0.7) (1.6) (1.8) (1.6) (1.5)

Insurance Companies
34.6 86.6 163.6 308.6 507.5 816.0
(8.8) (9.1) (10.6) (14.7) (14.8) (19.2)

Securities Companies
16.6 27.8 42.0 62.7 189.4 344.5
(4.2) (2.9) (2.7) (3.0) (5.5) (8.1)

Collective Investment 30.6 76.0 146.7 198.4 325.3 4.8
Business Entities (7.8) (8.0) (9.5) (9.4) (9.5) (0.1)

Total
394.8 947.6 1,549.5 2,099.2 3,438.0 4,260.1

(100.0) (100.0) (100.0) (100.0) (100.0) (100.0)

Note: 1) Including consolidated �nancial accounts of banks and securities companies.
Source: Bank of Korea, Financial Supervisory Service of Korea

Since the 1980s, the Korean government had eased regulations on the �nancial market

entry in order to foster competition among �nancial institutions. As a result, the number

27Please refer to Demirgüç-Kunt and Levine (1999) for more details on bank-based and market-based
�nancial systems.
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of banks increased to thirty-three before the Asian �nancial crisis in 1997. However, as

the soundness of banks deteriorated during the crisis, insolvent �nancial institutions were

resolved through liquidation or mergers and acquisitions based upon judgements as to their

survivability. Therefore, as of Q4 2002 when restructuring due to the crisis was �nalized,

the number of banks decreased to nineteen. As of Q4 201628, there were seventeen banks,

including six nationwide banks, six local banks, and �ve specialized banks.29 Table 3.A.2

shows the list of banks in Korea.

Table 3.A.2: List of Banks in Korea (as of Q4 2016)

Nationalwide Banks Local Banks Specialized Banks

Kookmin Kyongnam Nonghyup
Shinhan Kwangju Suhyup
Woori Daegu IBK
KEB Hana Busan KDB
SC Korea Jeonbuk KEXIM
Citibank Korea Jeju

Source: Financial Supervisory Service of Korea

Deposits are major funding sources for Korean Banks. To be speci�c, as of Q4 2016,

deposits consisted of 83.6% of banks' funding. Therefore, banks have the largest portion,

68.4%, in the deposit market, and it is made up of deposits in depository institutions, such

as banks, merchant banking corporations, mutual savings banks, credit cooperatives, postal

savings, and CMAs.

3.A.2 Payment and Settlement Systems

The payment and settlement systems in Korea consist of a large-value payment system, retail

payment systems, securities settlement systems, and foreign exchange settlement systems.

While a large-value payment system is used for transactions between �nancial institutions,

28Shinhan and Chohung were merged in Q2 2006, and Hana and KEB were merged in Q3 2015.
29Specialized banks are established with speci�c purposes of bolstering �nancing in areas encountering

funding di�culties due to shortages of �nance, pro�tability and expertise. However, except Korea Develop-
ment Bank (KDB) and Export-Import Bank of Korea (KEXIM), their business model, such as the funding
structure, is similar to commercial banks.
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retail payment systems are used for those among individuals or corporations. By the en-

forcement of the Capital Market and Financial Investment Business Act, as of Q4 2016,

twenty-�ve securities companies30 are participating in six retail payment systems operated

by KFTC31. Thus, CMA holders became able to use them as a means of exchange.

However, retail payment systems are processed by net settlements that net obligations

arising from transactions in the retail payment systems are transferred between the current

accounts of the �nancial institutions involved at a designated time. Therefore, unlike the

real-time gross settlement system, �nancial institutions are exposed to settlement risks such

as credit risk when the counterpart fails to transfer fund.

3.A.3 Financial Stability Situation

In order to test the hypothesis that the existence of market discipline depends on the �nancial

stability condition, it is essential to identify a period of �nancial distress. However, as

Aspachs-Bracons et al. (2012) point out, it is hard to measure �nancial fragility, whereas

in�ation can be measured by a relatively simple and intuitive variable, the consumer price

index. After the global �nancial crisis, there has been a growth in literature concerning the

�eld of devising the �nancial stability index.32

Figure 3.A.1 shows the �nancial stability indices of Korea, where (a) represents a com-

posite �nancial stability index published in the Financial Stability Report of the Bank of

Korea, (b) represents CoVaR based on Adrian and Brunnermeier (2016), and (c) represents

Marginal Expected Shortfall (MES) based on Tarashev et al. (2010). It shows that these

indices all have similar trends re�ecting the major events in the Korean �nancial system.

Table 3.A.3 shows major �nancial events in Korea since 2000.

30Sixteen major securities companies joined the retail payment systems in Q3 2009.
31These include Electronic Banking System, Cash Management Service Network, Interbank Remittance

System, Giro System, CD Network, and Payment Gateway System. As of Q4 2016, those systems counts
for 89.2% of total transaction volume.

32Please refer to Silva et al. (2017) for more details.
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Figure 3.A.1: Financial Stability Indices of Korea

(a) Composite Index (b) CoVaR (c) MES

Source: Bank of Korea Financial Stability Report, Lee et al. (2013)

Table 3.A.3: Major Financial Events in Korea

Period Events

2003 Credit Card Debacle
2008- Global Financial Crisis
2010- European Debt Crisis
2011 Bankruptcy of Mutual Savings Banks
2013 Bankruptcy of Dongyang Securities
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APPENDIX B

Tables

Table 3.B.4: Summary Statistics

Mean Std. Dev. Max Min

Market Share 0.0412 0.0394 0.1604 0.0014
Spread -0.0041 0.0073 0.0238 -0.0218
- Stable Period -0.0076 0.0049 0.0042 -0.0218
- Financial Turmoil Period 0.0010 0.0072 0.0238 -0.0186

Deposit Interest Rates 0.0284 0.0070 0.0534 0.0107
Policy Interest Rates 0.0325 0.0096 0.0515 0.0170
Group 2 Financial Institutions 0.1214 0.3267 1 0
Group 3 Financial Institutions 0.1214 0.3267 1 0
Group 4 Financial Institutions 0.4248 0.4946 1 0
Group 5 Financial Institutions 0.0291 0.1683 1 0
Emplyees per Branch 12.6582 3.1767 28.0752 7.2697
Number of Branch 475.5334 411.8725 1,789 31
BIS Ratio 0.1288 0.0183 0.1825 0.0855
- Stable Period 0.1221 0.0172 0.1825 0.0855
- Financial Turmoil Period 0.1389 0.0151 0.1771 0.0940

Net Operating Capital Ratio 0.1654 0.0274 0.2221 0.1217
- Stable Period 0.1379 0.0113 0.1557 0.1217
- Financial Turmoil Period 0.1792 0.0220 0.2221 0.1469

Observations 824

Table 3.B.5: Classi�cation of Financial Institutions

Group Description

Group 1 Banks with assets over 100 Trillion KRW as of Q2 2015
and belonging to a holding company

Group 2 Banks with assets over 100 Trillion KRW as of Q2 2015
(excluding Group 1 banks)

Group 3 Banks with assets less than 100 Trillion KRW as of Q2 2015
and foreign owned

Group 4 Banks with assets less than 100 Trillion KRW as of Q2 2015
(excluding Group 3 banks)

Group 5 Securities Companies

Table 3.B.6: Distribution of Own Price Elasticities

10% 25% Median 75% 90%

IV Logit Model 0.0512 0.0992 0.1435 0.1950 0.2581
BLP (1995) RC Model 0.2175 0.3067 0.4539 0.6034 0.7599
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Table 3.B.7: Estimation Results

Conditional IV RC BLP (1995)
Logit Logit Logit RC Logit

(1) (2) (3) (4) (5) (6)
Spread
- Stable Period -11.9073∗∗∗ 18.8223∗∗ 17.4081∗∗ 3.5915 49.4622∗∗∗ 48.1135∗∗∗

(4.5920) (7.8120) (6.9278) (4.6821) (8.5157) (7.5949)
- Financial Turmoil Period -14.7139∗∗∗ 8.9737 4.6535 -19.2045∗∗∗ 6.0866 -1.3014

(3.4651) (6.6238) (5.6131) (3.6118) (7.5065) (6.0896)
Group 2 Financial Institutions -0.1335∗∗ 0.0946 0.0682 -0.0725 0.2203∗∗∗ 0.1748∗∗

(0.0640) (0.0773) (0.0709) (0.0876) (0.0848) (0.0758)
Group 3 Financial Institutions -0.2875∗∗∗ -0.1615∗∗ -0.1792∗∗ -0.3011∗∗∗ -0.1469∗ -0.1786∗∗

(0.0765) (0.0814) (0.0789) (0.0971) (0.0884) (0.0847)
Group 4 Financial Institutions -0.9126∗∗∗ -0.7756∗∗∗ -0.7925∗∗∗ -1.1262∗∗∗ -0.9514∗∗∗ -0.9753∗∗∗

(0.0996) (0.1088) (0.1053) (0.1124) (0.1159) (0.1110)
Group 5 Financial Institutions -2.9003∗∗∗ -2.6662∗∗∗ -2.6643∗∗∗ -5.4742∗∗∗ -5.1946∗∗∗ -5.2284∗∗∗

(0.3346) (0.3246) (0.3199) (0.9226) (0.3374) (0.3316)
Employees per Branch 0.0706∗∗∗ 0.0650∗∗∗ 0.0657∗∗∗ 0.0652∗∗∗ 0.0568∗∗∗ 0.0590∗∗∗

(0.0077) (0.0076) (0.0075) (0.0089) (0.0084) (0.0082)
Number of Branch 0.0019∗∗∗ 0.0021∗∗∗ 0.0020∗∗∗ 0.0019∗∗∗ 0.0022∗∗∗ 0.0021∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Risk-based Capital Ratio
- Banks -4.2529∗∗∗ -6.5529∗∗∗ -6.5063∗∗∗ -4.2852∗∗∗ -7.5974∗∗∗ -7.6293∗∗∗

× Stable Period (1.2916) (1.2830) (1.2536) (1.3371) (1.4098) (1.3793)
- Banks 3.4807∗∗ 2.7265∗∗ 3.2595∗∗ 5.9185∗∗∗ 5.0045∗∗∗ 5.7892∗∗∗

× Financial Turmoil Period (1.4694) (1.3635) (1.3145) (1.7733) (1.4116) (1.3614)
- Securities Companies -2.9404 -8.3174∗∗∗ -8.2239∗∗∗ -7.0095 -14.1804∗∗∗ -13.9986∗∗∗

× Stable Period (2.2782) (2.1462) (2.0458) (6.6984) (2.1963) (2.0748)
- Securities Companies 1.0803 -1.4192 -0.9217 2.8133 -0.1593 0.7458
× Financial Turmoil Period (1.3535) (1.3286) (1.2767) (4.9401) (1.4447) (1.3664)

Financial Turmoil -0.9872∗∗∗ -1.4363∗∗∗ -1.4870∗∗∗ -1.3268∗∗∗ -1.9962∗∗∗ -2.0884∗∗∗

(0.2588) (0.2442) (0.2313) (0.2971) (0.2594) (0.2473)
Constant -3.4206∗∗∗ -3.0279∗∗∗ -3.0279∗∗∗ -2.3475∗∗∗ -1.7301∗∗∗ -1.7213∗∗∗

(0.2171) (0.2082) (0.2041) (0.2147) (0.2290) (0.2238)

Note: ∗∗∗ Signi�cant at 1%, ∗∗ Signi�cant at 5%, ∗ Signi�cant at 10%. Standard errors are in the parentheses.
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