ESSAYS IN INDUSTRIAL ORGANIZATION
By

Jaemin Ryu

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Economics — Doctor of Philosophy

2021



ABSTRACT
ESSAYS IN INDUSTRIAL ORGANIZATION
By

Jaemin Ryu
Chapter 1. Measurement and Decomposition of Cost Inefficiency Using Copulas:
An Application to the U.S. Banking Industry
This paper proposes a model and an estimation strategy using copulas in order to measure
and decompose technical and allocative inefficiency in the translog cost system. This study
adapts the stochastic cost frontier model from Kumbhakar (1997) and employs the APS
copulas developed by Amsler et al. (2021) to capture the dependence between technical and
allocative inefficiency. The joint density of the system is derived by the probability integral
transform and the copula-based version of the Rosenblatt transformation, leading to the
method of simulated likelihood estimation. This study also proposes a strategy to estimate
individual inefficiency using density deconvolution and conditional distributions. The new
methods are then applied to the U.S. banking industry. The results suggest that U.S. bank
costs increased by approximately 20% in 2019 and 2020 due to inefficiency, where technical
and allocative inefficiency represented 16~18% and 2.5%, respectively. In addition, ignoring
the dependence between technical and allocative inefficiency would produce less plausible
results.
Chapter 2. Measurement and Decomposition of Cost Inefficiency Using Copulas:
Evidence from Monte Carlo Simulations
The purpose of this paper is to provide methods for copula-based simulations and to demon-
strate the performance of the estimation strategy that can measure and decompose cost
inefficiency. First, a method to draw random numbers using the APS-3-A copula, which cor-
responds to the three-input case, is presented. Specifically, copula arguments can be obtained
from random numbers distributed independently and uniformly over [0, 1] by applying the

inverse Rosenblatt transformation, which needs to derive conditional distributions of cop-



ulas. Then, dependent random numbers can be generated by the inverse transformation
method. Second, quasi-Monte Carlo simulations are conducted given the data generating
process. Simulation results suggest that the parameters of the translog cost system that
accommodates technical and allocative inefficiency can be reliably estimated when the APS
copulas are employed. It would also yield biased estimates when the disturbances in the cost
function and the cost share equations of the system are regarded as independent.

Chapter 3. Demand Estimation of Deposits: A Case of the Korean Financial
Industry

This paper estimates a structural demand model for deposits in the Korean financial sector
in order to measure the effects of deregulation in payment and settlement systems in 2009,
which caused cash management accounts (CMAs) of securities companies to become close
substitutes for traditional deposit services provided by banks. Following the discrete choice
literature, depositors choose among differentiated financial institutions, considering their of-
fered interest rates and other attributes. Although it is also assumed that market discipline
in banking exists, it depends on the financial stability situation. The results show that con-
sumers respond favorably to deposit rates, the branch staffing, and the number of branches
of depository institutions in tranquil times. On the other hand, they consider the financial
institution’s capital adequacy ratio more important than interest rates during the financial
turmoil. This is similar to the phenomenon referred to as the flight to quality in other finan-
cial markets. Therefore, although CMAs have the benefit of higher interest rates compared
to traditional deposit services, their market share has remained at low levels due to the pro-
longed financial stress since the global financial crisis, which results in marginal increases in
consumer welfare from the deregulation. This implies that the deregulation would not have

successfully achieved the purpose of improving consumer welfare by promoting competition.
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CHAPTER 1

MEASUREMENT AND DECOMPOSITION OF
COST INEFFICIENCY USING COPULAS:
AN APPLICATION TO THE U.S. BANKING INDUSTRY

1.1 Introduction

Stochastic frontier models (SFMs) developed by Aigner et al. (1977) and Meeusen and van
Den Broeck (1977) have been widely used for efficiency analysis. There are two approaches
to measure efficiency in the SFMs. The first one is an output-oriented approach, which
is used to estimate the production frontier and to measure technical (in)efficiency. The
second one is an input-oriented approach, which can be used to estimate the cost frontier
and to measure cost (in)efficiency. As Kumbhakar and Lovell (2000) note, there are several
differences between these two approaches, an important difference of which is that cost
efficiency can be decomposed into input-oriented technical efficiency and input allocative
efficiency, whereas output-oriented technical efficiency cannot be decomposed.t

Farrell (1957) defines technical and allocative inefficiency as follows. Technical inefficiency
occurs when a producer fails to produce the maximum output from a given input bundle.
Allocative inefficiency occurs when a producer uses inputs in the wrong proportions, given
input prices. As inefficiency can arise by these different causes, it is important to measure
and decompose cost inefficiency in order to evaluate the performance of firms.

Schmidt and Lovell (1979) show how to measure both technical and allocative inefficiency,
assuming the Cobb-Douglas production technology. Nevertheless, it would be necessary to
apply flexible functional forms, such as a translog function?, when measuring cost inefficiency.
Since Christensen et al. (1971) and Christensen and Greene (1976), the translog functional

form has played an important role in cost studies, owing to several virtues that overcome the

'Hereafter, technical (in)efficiency means input-oriented technical (in)efficiency.
2For more details about the translog function, please refer to Kumbhakar and Lovell (2000) and Sickles
and Zelenyuk (2019).



limitations of the Cobb-Douglas function. As mentioned in Kumbhakar and Lovell (2000),
for example, the translog cost function can accommodate multiple outputs without violating
the requisite curvature conditions in output space, while the Cobb-Douglas functional form
cannot. In addition, the translog function can provide a second-order approximation to any
well-behaved underlying cost frontier, whereas the Cobb-Douglas representation would lead
to biased estimates of inefficiency; this is because unmodeled technology complexity could
appear in the error term, which contains information about inefficiency, due to its simplicity.

In contrast, as first noted by Greene (1980)3, econometric issues arise when employing
the translog functional form. The problem is characterized as follows. Given the definition
in Farrell (1957), the cost system that allows for technical and allocative inefficiency can be

written as

InC; = InC(y,, w;) + €
= lnC(yi, wl) +v; + Uy
= InCy;, wi) +v; + uf +uf!

sij = $i(Yiwi) tey, j=2,--,J, (1.1.1)

where C; is the actual cost of producer i, C(y,, w;) is the deterministic kernel of the stochastic
cost frontier, y, € Rf is a vector of M outputs produced by producer 7, w; € R;]H is a vector
of input prices faced by producer i, v; € R is a random disturbance, u! € R, represents a
cost increase due to technical inefficiency, u € R, represents a cost increase due to allocative
inefficiency, u; = u! +uf, ¢ = v; +u;, s;; € [0,1] is the producer i’s actual cost share of
input j, s;(y;, w;) € [0,1] is the optimum cost share of input j derived from Shephard’s
lemma, and e;; € R is the disturbance due to allocative inefficiency of producer 7 and noise.

The important question is how to model w; in the cost function and e;; in the cost
share equations. As long as e;; represents allocative inefficiency, it cannot be independently

distributed of u; that captures both technical and allocative inefficiency. If it is assumed

3Tt is known as “the Greene Problem.” Please refer to Bauer (1990) and Kumbhakar and Lovell (2000)
for detailed discussion.



that u; and e;; are independent, it would lead to inconsistent parameter estimates, and it
is impossible to decompose cost inefficiency into two sources (Kumbhakar and Lovell, 2000,
p.156).

So far, three types of solutions to “the Greene Problem” have been proposed. The first
solution is finding the analytic relationship between u! and e; = (e;2, -+ ,€;7) (Schmidt and
Lovell (1979) and Kumbhakar (1989, 1997)). The second solution is approximating u:' as
a function of e;, such as in Schmidt (1984), Melfi (1984), Bauer (1985), and Kumbhakar
(1991). The third solution proposed by Greene (1980) is ignoring the relation between
them and assuming that ¢; and e; are independent. However, as discussed in Bauer (1990),
all of these existing solutions are not ideal. The first one can be used when restrictive
functional forms, such as a Cobb-Douglas functional form, and/or restrictive assumptions
are imposed. The second solution is valid only when the approximation function captures
the true relationship between u:* and e;. The third approach might fail to use all available
information for estimation.

The main contribution of this paper is to propose a translog cost system, which is rig-
orously developed based on economic theory, providing a solution to “the Greene Problem”
that overcomes the limitations of previous studies. In other words, technical and allocative
inefficiency can be precisely measured and decomposed by using the proposed model with a
flexible functional form. In addition to the main contribution, a novel estimation strategy
is proposed that is consistent with the theory behind the stochastic cost frontier model as
well as computationally easy. Lastly, this study suggests a method to estimate individual
inefficiency when additive noise terms are allowed in the cost share equations.

A stochastic cost frontier model taking a translog cost functional form is constructed
based on Kumbhakar (1997) in order to derive the exact relationship between the error
terms representing allocative inefficiency in the cost function and the cost share equations.
However, as in Schmidt and Lovell (1980), dependence between technical and allocative

inefficiency is assumed. This is modeled by the APS copulas developed by Amsler et al.



(2021). Several assumptions are imposed to capture the dependence and to make the model
more realistic and estimable. The method of simulated likelihood is applied to estimate the
model, where the joint density of the model is derived by the probability integral transform
and the copula-based version of the Rosenblatt transformation.

Additionally, given that the model can estimate only average inefficiency of firms, this
study also proposes a strategy to measure and decompose individual inefficiency. Jondrow
et al. (1982) and Battese and Coelli (1988) propose ways to estimate firm-level inefficiency in
production using the conditional distribution f(u!|e;), where u! is output-oriented technical
inefficiency, ¢; = v; — u!, and v; is a random disturbance. This method could be adapted
to the stochastic cost frontier analysis. However, due to the different environment, we must
employ density deconvolution to error terms in the cost share equations of (1.2.1).

The new model and strategies are applied to U.S. depository institutions. Numerous
studies on bank efficiency exist for various themes.* For instance, innovations in technology,
such as telecommunication technologies and information processing, have been intensively
adopted in the banking industry (see Feng and Serletis, 2009). In addition, especially in the
United States, regulatory changes, such as branching deregulation and enhanced regulatory
capital requirements, have affected operation strategies of banks. Since these factors have
an impact on technical and allocative inefficiency of banks, respectively, it is necessary to
measure and decompose cost inefficiency of banks in order to identify each factor’s effect on
the performance of banks. Furthermore, it is possible that technical and allocative ineffi-
ciency of banks has changed due to outbreak of COVID-19, since the pandemic has affected
financial markets and resource allocation of depository institutions.

The remainder of the chapter is organized as follows. Section 1.2 develops the econometric
model. Section 1.3 presents the estimation strategy. Section 1.4 develops the strategy to

estimate firm-level inefficiency. Section 1.5 presents empirical results applied to the U.S.

banking industry. Section 1.6 concludes the chapter.

4Please refer to Berger and Humphrey (1997) and Bhatia et al. (2018) for more details.



1.2 Model

1.2.1 Translog Cost System of Kumbhakar (1997) Revisited

Kumbhakar (1997) establishes an exact relationship between the terms representing alloca-
tive inefficiency in the cost function and the cost share equations of the stochastic cost

frontier model. This subsection summarizes its setup and results.

1.2.1.1 Setup

Let P(y;, ;e ) = 0 be a production possibility frontier®, where x; € R is a vector of
J inputs used by producer ¢. Recall that y, € Rf is a vector of M outputs, and u! €
R, represents technical inefficiency. P(:) is assumed to be differentiable. Then, the cost

minimization problem of producer ¢ who is only technically inefficient can be written as

min wix; s.t. Py, ze ") = 0.

Ty

Note that it yields the same solution to the following problem such that

min w;x; s.t. Py, x;) =0,

T;

T "
where 7 = x;e™" . Its first-order conditions are

Pﬂ(y—“’):ﬂ =2, ],
Py, x;)  wa

*
%

where Pj(y;,x;), j = 1,---,J, denotes the partial derivative of P(y,, ;) with respect to

xy;. Given this result, the first-order conditions of producer ¢ who is both technically and

allocatively inefficient can be written as

J(ylamfk):w]egj’j:2’...’J’

SKumbhakar (1997) uses a production function to derive the translog cost system, which means he
considers a single-output case. However, as noted by Parmeter and Kumbhakar (2014), the derivation and
the result of the translog cost system for a multiple-output case are similar to the single-output case.



where §; € R, j = 2,---,J, represents producers’ allocative inefficiency for the input pair
(4,1). Note that & = 0 by construction. If {; = 0 for j = 2,---,J, the input pair (j,1) is

perfectly allocatively efficient.

1.2.1.2 Results

The stochastic cost frontier model can be written as

InC; = InC(y;, w;) + v; +uj +u

Sij = S](ywwz)+’r]w7 ]: 27 7‘]7

where 7;; € R is the deviation from the optimum cost share of input j due to only allocative
inefficiency of producer ¢, which does not contain noise. Recall that C; is the actual cost
of producer i, C(y,, w;) is the deterministic kernel of the stochastic cost frontier, v; € R
is a random disturbance, u{! € R, represents a cost increase due to allocative inefficiency,
si; € [0,1] is the actual cost share of input j, and s;(y;, w;) € [0,1] is the optimum cost
share of input j.

Assume that the deterministic kernel of the stochastic cost frontier takes a translog
functional form. Then, deterministic components of the system, InC'(y,, w;) and s;(y;, w;),

can be written as

M M
1
1nC(yi7 wz BO + Z By lnyzm + 5 Z Z lnyzm 1nyzn)
m=1 n=1
12
+ Z B (Inw;;) + 5 Z Z Y (Inw;; ) (Inwgy,)
j=1 j=1 k=1
+ Z Z o (InYi ) (Inw;)
m= ].j 1
Sj(yivwl Bw+z 1nwzk’ +Z lnyzm ] :27 aJ'
Note that s;(y;, w;) = CQE];]%) = C(;U,"iu,)acgg’@) = alngﬁ?f;,’?”i). The second equality holds
i Wi i Wq i ij

because of Shephard’s lemma. Also, the terms representing allocative inefficiency can be



written as

Zﬁwmzz " (Inwqg)&, + 5 ZZ "€

7j=1 k=1 ]Ikl
J

+ Z Z S (Inyim )& + In Z(Sfj/egj)

m=1 j=1 j=1

$j(y;, wi)[1 — {Zk L (85/€%%) Fe] +Zk 1 BiiE
{Zk (87, /€8x) et

where sj; = s;(y,;, w;) + Zi:l B3k, j =2, ,J, is the shadow cost share of input j for

771]: j:27"'7‘]7

producer ¢ who is assumed to be only allocatively inefficient.

To satisfy the properties of the cost function, restrictions on parameters are required
such that Y%, = B4, Vm # n and BRY = B Vj # k for symmetry, Z;}:l By =1
Zk 1 = 0 Vj, and Z = 0 Vm for linear homogeneity in w;. Because of these

restrictions, ijl si(y;, w;) =1 and Z}']:1 n:i; = 0 Vi are guaranteed.®

1.2.2 Modified Model

As noted by Kumbhakar and Lovell (2000), Kumbhakar (1997)’s model treats allocative
inefficiency of the translog cost system in a theoretically and econometrically consistent
manner and provides a solution to “the Greene Problem.” Nevertheless, there is still room
for improvement. In Section 1.2.2.1, several limitations of Kumbhakar (1997) are discussed
and assumptions of his model are modified. In Section 1.2.2.2, the modified model and

distributional assumptions are presented.

1.2.2.1 Assumptions

First, Kumbhakar (1997)’s model does not capture the relationship between the one-sided

term representing technical inefficiency, u;, and the two-sided terms representing alloca-

7, ?

tive inefficiency, {;s. It implies that they can be assumed to be independent; this means

6Please see to Appendix 1.A.1 for the proof.



technically efficient producers can be allocatively inefficient and vice versa. Rather than
imposing such an assumption, it would be more reasonable to assume that they are depen-
dent, which means that technically efficient producers tend to be allocatively efficient, and
technically inefficient producers are likely to be allocatively inefficient. However, as Figure

1.2.1 illustrates, the degree of allocative inefficiency does not depend on the value of ; itself

T

but the size of its absolute value instead. Since the degree of technical inefficiency, u; , is
non-negative, it is difficult to model the relation between u! and &;. To the best of my
knowledge, only two studies, namely Schmidt and Lovell (1980) and Amsler et al. (2021),
have modeled the aforementioned relationship between technical and allocative inefficiency.”
However, both studies consider the single-output cost system assuming Cobb-Douglas pro-
duction technology, rather than the translog cost system (as in Kumbhakar (1997)) that is

most widely used for empirical cost studies and that accommodates multiple-output cases.

Figure 1.2.1: Degree of Technical and Allocative Inefficiency
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(a) Technical Inefficiency (u]) (b) Allocative Inefficiency (&;)

Note: In both figures, the x-axis is the value of uZT or §;, and the y-axis is its density value.

Second, Kumbhakar (1997)’s model imposes a restrictive assumption that the magnitudes
of allocative inefficiency, ;s, are invariant across producers. This implies that it only con-

siders systematic tendency for over- or under-utilization of any input relative to any other

"Following the notations in this paper, they assume that u! is positively correlated with 1, =

(ni2, - -+ ,miy) since terms like &;s in Kumbhakar (1997) are not introduced to their model. Given that
there are two terms that can be interpreted as allocative inefficiency in the cost share equations, ;s and n;,
the latter part of this section examines which term will be linked to u .
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1 7

inputs. Despite the assumption on §;s, their impacts on cost, u;', and on input shares, n;,
are different across producers, as they are influenced by outputs, ¥, and input prices, w;;,
by construction. As stated in Kumbhakar and Lovell (2000), the model becomes extremely
difficult to estimate without this assumption. To be specific, if the magnitudes of allocative
inefficiency are assumed to be random, denoted by &, = (&g, -+, &), it is hard to derive
the distribution of m; from the distribution of &,. This is because, although they can be
one-to-one in the narrow domain, n, is a nounlinear function of &; that is not globally invert-
ible. For example, Figure 1.2.2 shows the relationship between & and 7;2 given parameter
values when a firm produces one output using two inputs.® Therefore, the change of vari-
ables theorem cannot be directly applied. However, this assumption needs to be relaxed
to incorporate idiosyncratic deviations from the cost minimizing input ratios. In addition,
relaxing this assumption enables researchers to rigorously model the relationship between

the terms representing technical and allocative inefficiency.

Figure 1.2.2: Relationship between & and 79
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Lastly, stochastic components are not included in the cost share equations. Kumbhakar
(1997) analytically derives the optimum cost share, s;(y;, w;), and 7, from the use of Shep-

hard’s lemma, thereby 7, represents pure allocative inefficiency’ stemmed from the opti-

8 Although Kumbhakar (1997) does not provide the result, uf‘ and 7;; can be simplified when no additive
error terms in the cost share equations is assumed. Please refer to Appendix 1.A.2 for the proof. Figures
are drawn by the simplified formula when s,5 = 0.55, 555" = 0.05.

9The simplified formula for n; derived in Appendix 1.A.2 clearly shows that =, is a function of ;s given
the actual cost shares and parameters.



mization error. Moreover, n;, is derived based on the assumption that ;s do not vary across
producers, so it would be unnatural to interpret m,; as a stochastic component of the cost
share equations. If the assumption about ;s is relaxed as described in the previous para-
graph, the term representing allocative inefficiency in the cost share equations can be seen
as a stochastic component. However, as Reiss and Wolak (2007) point out!'®, there are other
sources of random components in the cost share equations besides failure in cost minimiza-
tion. Furthermore, as noted by Brown and Walker (1995), one can easily make distributional
assumptions of the system and apply usual estimators by using additive noise terms for the
share equations.

The second and third points are related to the issue on the stochastic specification in the
models of producers’ demand, cost, and production systems. There are contradictory views
on how to formulate a stochastic specification for the cost system. The conventional practice
is to append additive noise terms to the nonstochastic cost share equations. For example,
Christensen and Greene (1976) state that “since the cost share equations are derived by
differentiation, they do not contain the disturbance term from the cost function” (p.662),
so they add stochastic noise terms following multivariate normal distribution to the cost
share equations in an ad hoc fashion. Subsequent research criticizes that such an approach
is inconsistent with economic theory and derives stochastic components in the cost share
equations in the optimization framework. These studies include Chavas and Segerson (1987),
McElroy (1987), Brown and Walker (1995), and Kumbhakar and Tsionas (2011). Note that
although they provide theoretical justifications for the stochastic specification of the cost
share equations, the sources of stochastic components in the cost share equations vary across
studies, such as random environments, measurement errors, and optimization errors.

In order to deal with these issues, I modify the following assumptions to Kumbhakar

(1997)’s model.

10«The four principal ways in which a researcher can introduce stochastic components into a deterministic
economic model are: 1. researcher uncertainty about the economic environment; 2. agent uncertainty about
the economic environment; 3. optimization errors on the part of economic agents; and 4. measurement errors
in observed variables.” (p.4305)
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Assumption 1. The magnitudes of allocative inefficiency vary across producers and are

denoted by g, -+ , &g

Assumption 2. u! is uncorrelated with &, - , &5 but positively correlated with ||, -+ -,
il
Assumption 3. Additive noise terms, denoted by v; = (v, -+ ,v4y), are allowed in the cost

share equations.

As mentioned, Assumptions 1 and 2 are made to introduce the idiosyncratic disturbance
due to optimization errors, as well as to precisely model dependence between technical and
allocative inefficiency. Kumbhakar (1997)’s model includes several terms induced by alloca-
tive inefficiency, including ;s and 7;. Thus, instead of modifying the assumption on the
magnitudes of allocative inefficiency, we can assume that v} is uncorrelated with 9, - -+ , 1,7
but positively correlated with |nl,--- ,[n,s]. In this case, {;s are not used for estimation.
This approach is similar to Schmidt and Lovell (1980) and Amsler et al. (2021), but there
are mainly two reasons for imposing Assumption 1 other than &; or §; being the origin of
allocative inefficiency in the model.

First of all, the alternative method does not provide a solution to “the Greene Problem.”
The specification of the two previous studies, Schmidt and Lovell (1980) and Amsler et al.
(2021), follows Schmidt and Lovell (1979) as

yi=a+xB+v —ul

Brw;
Tyl — Ty = 111( J

5jwi1

) +eij7 j: 27"'a‘]a

where y; is the natural log of output of producer i, x; is a vector of natural log of inputs,
v; € R is a random distrubance, u! € R, represents technical inefficiency, w;; € Ry, is
the price of input j, and e;; € R is a two-sided term capturing allocative inefficiency and
noise. This model does not include an additional term representing allocative inefficiency

in the production frontier, therefore issues like “the Greene Problem,” which occur in the
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translog cost system, are not raised. However, an analytic solution, which is proposed by
Kumbhakar (1997) and Kumbhakar and Tsionas (2005a,b) that introduce ;s and make a
distributional assumption on them, is not applicable if ¢;s are not used when estimating

the translog cost system. In addition, even though both u! and n, are functions of ¢;s, no

A

closed-form expression for u;" in terms of 7, exists in the translog cost system. In other

words, u* cannot be specified as a function of n,. Thus, a method similar to approximation

A

solutions proposed by Schmidt (1984) that specify a functional relationship as u;* = €Ae;,
where A is a positive semi-definite matrix, cannot be applied as well.

Secondly, it should be noted that m, might not correctly measure each firm’s degree of
allocative inefficiency in the model, although it arises from the fact that a producer uses
inputs in an incorrect proportion. Figure 1.2.2(b) shows that the absolute value of the error
term in the cost share equation, ||, can decrease as the size of |&| increases. This indicates
that a producer using inputs fairly inefficiently can have the same cost shares to a producer
that allocates inputs efficiently. In addition, it is not guaranteed that §; = 0 implies 7;; = 0
by construction, which implies that the input j’s actual share deviates from its optimum
share even if the input pair (j,1) is efficiently allocated. For instance, suppose that J = 3,
& = 0, but & # 0. Then, although the input pair (2,1) is efficiently allocated, n;2 # 0
because of the presence of inefficiency among the input pair (3,1).

Consequently, the magnitudes of allocative inefficiency are allowed to vary and linked to
ul, which represents the magnitudes of technical inefficiency, in order to refine Kumbhakar
(1997)’s model and to provide a solution to “the Greene Problem.” T further discuss As-
sumption 2, which is about how to model the dependence between u] and &;s. Since the
terms representing technical and allocative inefficiency are introduced to the model without
any theoretical linkages, u! is assumed to be uncorrelated with &, -+, & ;. However, as

illustrated in Figure 1.2.1, a producer becomes technically inefficient as the size of u!, which

is non-negative, increases and becomes allocatively inefficient as the size of |¢;;| increases.

T

Hence, u; is assumed to be positively correlated with £, -, [&is]-

12



Assumption 3 is imposed for two purposes. The first purpose is to capture not only opti-
mization errors stemmed from &;;s in the model but also sources of randomness that are not
explicitly modeled. For example, Kumbhakar and Tsionas (2005a) use the same specifica-
tion to take account of measurement errors, and agent and/or researcher uncertainty.!* The
second purpose is to facilitate estimation. As pointed out, it is difficult to derive the distri-
bution of m; from &;;s. Moreover, although the assumption on the magnitudes of allocative
inefficency is modified from Kumbhakar (1997)’s model, the cost share equations can be seen
as deterministic because 7;; is a function of §;;s. By appending additive noise, the system is
converted to a stochastic model so that one can readily obtain a joint density for estimation.
The first and second purposes are related. Reiss and Wolak (2007), for instance, state that
one can simply transform a deterministic economic model into an econometric model and

justify applying usual estimators by introducing measurement errors.

1.2.2.2 Modified Model and Distributional Assumptions

Because of Assumptions 1 and 3, the stochastic cost frontier model needs to be modified.
Although the assumption about the magnitudes of allocative inefficiency has changed from
Kumbhakar (1997)’s model, the formula for each component of the system can be identically
derived. However, since ijl si(y;, w;) =1 and Z}]:1 ni; = 0 Vi, an additional restriction
on the sum of v;; is required so that Z}]:1 si; = 1 Vi is guaranteed.

The modified model can be written as

lIlOZ' = th(yl, ’lUl) + €
= 1110(’!./1, ’lUZ) =+ v; + u;
= InC(y;, w;) + v +uf +uf

= InC(y;, w;) +v; +ul + g(§&,)

HeThese error terms represent measurement error and/or factors that are not under the control of the
firm, so they are not modeled explicitly, unlike the £’s. Alternatively, these errors might not be relevant for
the producer (in the sense that they are known to the producer), but nonetheless must be taken into account
by the researcher (who does not know them).” (p.739)

13



Sij = Sy (Y w;) + Cij
= 5;(y;, w;) + nij + vy

= sj(y;, wi) + hi(&) + vy, G=2,---,J. (1.2.1)

Recall that C; is the actual cost of producer i, C(y,, w;) is the deterministic kernel of
the stochastic cost frontier, y; € RY is a vector of M outputs, w; € R], is a vector
of input prices, v; € R is a random disturbance, u] € R, represents a cost increase due to
technical inefficiency, u! = g(¢,) € R, represents a cost increase due to allocative inefficiency,
& = (&2, &), &, 7=2,---,J, represents allocative inefliciency for the input pair (j, 1),
w; = ul +ud, ¢ = v; +w;, s;; € [0,1] is the actual cost share of input j, s;(y;, w;) € [0,1]
is the optimum cost share of input j, n;; = h;(§;) € R is the disturbance due to allocative

inefficiency, v;; € R is additive noise, and e;; = n;; + v;; is the disturbance due to both

allocative inefficiency and noise. Each component of the system can be written as

M M M
lno(yiv wz) = 50 + Z /33{1(111%771 Z Z lnyzm lnyzn>
; m=1 1 ; m=1 n=1
+ ]Zl 5;} (hlwz] 5 Z — lnwm)(lnwm)
M J
+ 30> B (Ingm) (Inwyy)
m=1 j—l
Sj(yiv wz Bw + Z hlwzk: + Z lnyzm = 27 ) J
J J
Z B;'&is + Z Z Y (Inwgg)&ar + ! Z Z Bl &ij&in
7=1 k=1 j=1 k=1
+ Z Z B (Wi )& + In Z( /e
m=1 j=1

5j(Yi, wi)[1 — {Zk:1<sik/e&k)}€§ij] + it B j=2,--
{ZZ:1<S:]€/€&IC)}€&J' ’ 5

where s§; = s;(y;, w;) + Z,‘izl B3k, j=2,-+-,J, is the shadow cost share of input j for

nig = h;(&) = o, (1.2.2)

producer ¢ who is assumed to be only allocatively inefficient. In addition, z;le vij = 0 Vi
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is required to guarantee Z;le si; = 1 Vi. Restrictions on parameters are also necessary
in order to satisfy the properties of the cost function such that Y = pg¥ Vm # n and

= Bt Vi # k for symmetry, ijl By =1, Zizl i =0V, and Z}‘le by = 0 Ym
for linear homogeneity in w;.

Regarding the distributional assumptions on the stochastic components of the system, I
follow a standard practice, such as in Christensen and Greene (1976), Schmidt and Lovell
(1979), and Kumbhakar and Tsionas (2005a,b). Assume that v; is distributed as N (0, 02), u}
is distributed as |[N(0,0%.)|, €, is distributed as N(0,X¢), and v; is distributed as N (0, X,).

For j =2,---,J, assume that u! and &; are distributed independently of v; and v;;, and v;

and v;; are mutually independent.

1.3 Estimation Strategy

1.3.1 Relationship between u! and ¢,: APS Copulas

In Section 1.2.2.1, Assumption 2, which is about the dependence between u! and &, is
imposed in order to have the desirable attributes between technical and allocative inefficiency.
Based on this assumption, it is required to derive the joint density of u! and €, to estimate the
model. One way to obtain the joint distribution of dependent random variables is applying
copulas; that is, given specific marginal distributions of u! and &;s, the joint distribution of
them can be obtained by employing copulas that capture the dependence.

Sklar’s theorem states that for every joint cumulative distribution function of random
variables X1, -+, X; with margins Fy(-), -+, F;(-), which are marginal cumulative distribu-
tion functions of Xy, -+, X, there exists a copula C : [0,1]7 — [0, 1], which is a cumulative

distribution function, such that
F(mlf o ,-7:]) = C<F1($l)7' T 7FJ($J>)

forall z; e R, i =1,---,J, where F() is a joint cumulative distribution function.
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Let w; = Fi(ul), wo = Fy(&), -+, wy = F(&7), where ul| &, -+ &y are dummy argu-

ments. In order to have the desired properties between technical and allocative inefficiency,

it is required that wy is linked to wo, - - - ,wy, for which wy is uncorrelated with wo, --- ,w; but
correlated with |wy — 0.5],--- ,|ws — 0.5]. To be specific, wy is uncorrelated with wo, -+ ,wy
so that u! is uncorrelated with &y, -+ ,&;. However, as Figure 1.3.1 shows, if we assume

that ¢;; is distributed symmetric around zero, like &;; ~ N(0, 0¢,), a producer becomes al-
locatively inefficient when w;, j = 2,--- ,J, moves away from 0.5. Therefore, w; needs to be
positively correlated with |wy — 0.5, - | |w; — 0.5].

Figure 1.3.1: PDF and CDF of §;
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Amsler et al. (2021) propose a new family of copulas (hereafter the APS copulas) that
can induce the desired attributes between technical and allocative inefficiency. For example,
suppose that two inputs are used for production (J = 2). Then, the APS-2 copulas can be
applied to capture dependence between u! and &;. The APS-2 copula densities are defined
as follows (Amsler et al., 2021, p.4):

APS-2-A : cp(wr,wy) = 14 O19(1 — 2w ){1 — 12(wy — 0.5)%)}, |612] < 0.5

APS-2-B : C]_Q(CU]_,CUQ) =1+ 912(1 — 20)1)(1 — 4|(JJ2 — 05‘), |912| S 1,

where c¢15(wy,ws) is the APS-2 copula density, and 65 is the association parameter. Then,
cov(wy,ws) = 0, corr(wy, (we—0.5)?) = \/%0 for the APS-2-A copula, and corr(wy, |we—0.5]) =

%9 for the APS-2-B copula (Amsler et al., 2021, p.3-4); that is w; is uncorrelated with ws, but
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it can be correlated with |wy — 0.5]. Given this, u} and & can have the desired properties.
Figure 1.3.2 illustrates the sample correlation between wy, wo, and (wq — 0.5)2 when 015 = 0.4
derived from simulations'? using the APS-2-A copula. It shows that corr(w;,ws) ~ 0 and
corr(wy, (wy — 0.5)?) & 0.2066 as the theoretical results.

Figure 1.3.2: Sample Correlations (The APS-2-A Copula)
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Amsler et al. (2021) also develop a method that the APS-2 copulas can be extended to
more dimensions, which is necessary when more than two inputs are used for production. If
J = 3, for instance, the APS-3 copulas can be applied to capture dependence between u?
&0, and ;3. To be specific, wy and ws are allowed to follow any standard bivariate copula
but need to be linked to w; as in the APS-2 copulas. Assume that ws and ws follow the
bivariate Gaussian copula. Then, the APS-3 copula densities are defined as follows (Amsler

et al., 2021, p.6):
APS—3—A . Clgg(wl,WQ,u.J3) =1 + (012 — 1) -+ (Clg — 1) -+ (C23 — 1),
where

Ci12 = 012((,«)1,(,02> =1 + 912(1 — 2&)1){1 — 12((,4)2 — O5)2)}, |912| S 05

C13 = Clg(wl,w:g) =1 + 913(1 — 2&)1){1 - 12(&)3 - O5)2)}, |913| S 0.5
( ) 1 |: 102@71(("}2)2 — 2pq)71(w2)q)71(w3) + p2®1(w3>2:|
Co3 = C23(Wo,W3) = —————=€X — .
23 23 2 3 ﬂ p 2(1 _ p2)

12The number of replications is 1,000, where the sample size is 1,000 for each replication.
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APS—S—B . 0123(u}1,w2,w3) = 1 + (612 — 1) + (013 — ].) + (023 — 1),
where

Cio = Clg(wl,WQ) =1 + 012(1 - 2W1)(1 - 4|w2 - 05|)7 |012| S 1

C13 = Clg(wl,w;?,) = ]. -+ 913(1 — 2&)1)(1 — 4|w3 — 05|), |913| S ]_
( ) 1 [ PO Hwa)? = 2p0 " (wp) P! (wg) + qu)_l(w?,)Q]
Co3 = Co3(W2o,W3) = —————=€X - 9
23 23 W2, W3 Tz 2 b 21— p?)

where ¢93(w1, wo, ws) is the APS-3 copula density, ¢12(wq,ws) and ¢13(wy, ws) are the APS-2

copula densities, co3(ws,ws) is the bivariate Gaussian copula density, 612 and 6,3 are the
association parameters, ®(-) is the cumulative distribution function of the standard normal
distribution, and p € (—1,1) is the correlation parameter. By applying the APS-3 copulas,
one can capture dependence such that w; is uncorrelated with ws and w3 but correlated
with |wy — 0.5] and |ws — 0.5] as in the case of J = 2. Hence, u] and &;s, j = 2 and 3,
can have the desired properties. Figure 1.B.1 illustrates the sample correlations between
w1, wa, (wy — 0.5)% ws, and (w3 — 0.5)? when 615 = 613 = 0.2 and p = —0.5' obtained by
simulations'* based on the APS-3-A copula. It shows that corr(w;,ws) and corr(wy,ws) are

approximately zero when J = 2, but corr(wy, |we — 0.5]) and corr(wy, |ws — 0.5|) are positive.

1.3.2 Derivation of the Joint Density

By employing the APS copulas, we can derive the joint density of the translog cost system
that captures the dependence between technical and allocative inefficiency. For notational
convenience, rewrite X = ¢ = v; +ul +ul = Xy + Z1 +9(Z2), Y = (Yo, ,Y,) =
(eiz, -+ s€ig) = (Mia + vig, -+, nig + vig) = (ha(Za) + Wa, -+ hy(Zy) + Wy), and Z =

(Z1,Zy) = (ul &9, ,&7). Let @ = (01,0,,03) be a vector of parameters, where 6; =

13 Amsler et al. (2021) show that the allowable range of 012 and 613 depends on p. To be specific, if wo
and ws are strongly correlated, the range of |012| + |013] decreases. Please refer to Result 10 of Amsler et al.
(2021, p.6) in detail.

14The number of replications is 1,000, where the sample size is 1,000 for each replication.
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(60718y718yy7/3w”3ww’ﬁyw70_12)7 E,/), 92 — (OAPS’ OGauSS)7 and 93 — (0.%’ Eg).lg) OAPS and eGauss
denote vectors of association or correlation parameters of the APS and Gaussian copulas,

respectively.'® Then, the translog cost system can be rewritten as

InC; = InC(y,, w;) + X
= lnC’(yZ, wz) + X1 + Z1 -+ g(Z2>
Sij = Sj(yiu wi) +Y;

= $j(Ys wi) + hj(Za) + Wy, j=2,---,J. (1.3.1)

It is required to derive the joint density of X =¢; and Y = (Y3,--- | Y)) = (€50, -+ , €i5)
in order to form a likelihood function of the translog cost system. First, the joint density of

X,Y,and Z can be written as

Ixy.,z(x,9y,2:0) = fxyz(x,y|2;0) - fz(z;02,05)

= Ixv,z(x|y, 2:0) - fy1z(y|2;0) - fz(z;62,05).

Then, the joint density of X and Y can be obtained by integrating out Z such that

Ixy(z,y;0) = / Ixyz(x,y,2;0)dz

R+ xRJ—1

- /R - fxiv.z(z|y, 2;0) - fyiz(y|z;0) - fz(2;05,03)dz. (1.3.2)

Suppose that the distribution of Z is known and simple. Then, the joint density of
X and Y (1.3.2) can be approximated by drawing random numbers from the density of Z.

However, 85 = (QAPS’ OGausS)

, which governs the joint distribution of Z, should be estimated.
This implies that we need to transform the random vector Z to another random vector in
order to estimate @5. In addition, a transformed random vector needs to be simple to make

the process of drawing random numbers easy.'”

5Notation in bold represents row vectors whose elements are corresponding parameters of the system.
For instance, 3% = (8Y,3Y,---) and BYY = (B¢, BYY,--- , B3Y, B4Y,---).

16For example, if J = 3, 025 = (01,6013) and 892 = p,

174Tf the researcher wants to take a draw from a standard normal density (that is, a normal with zero
mean and unit variance) or a standard uniform density (uniform between 0 and 1), the process from a
programming perspective is very easy.”(Train, 2009, p.205-206)
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As pointed out in Section 1.2.2.1, it is difficult to apply the change of variables theorem
into the Kumbhakar (1997)’s model when the magnitudes of allocative inefficiency are as-
sumed to be random. However, the theorem can be used to derive the joint density of the
translog cost system under the assumptions made in Section 1.2.2.1 by the following proce-
dure. Tt is established on the probability integral transform and the copula-based version of
Rosenblatt transformation (see Rosenblatt, 1952) that are monotone.

Rosenblatt (1952) proposes a method using conditional cumulative distribution func-
tions for transforming a dependent random vector to the independent random vector whose
components are uniformly distributed on [0, 1]. Appendix 1.A.3 provides detailed explana-
tions for the Rosenblatt transformation. Based on the both transformations, Z that has
dependent components can be replaced with functions of the independent ramdom vector
¢ = (G, ,¢y), where (; ~ U[0,1], j = 1,---,J are uniformly and independently dis-
tributed over [0,1]. The procedure for a change of variables using the probability integral

transform and the Rosenblatt transformation is illustrated in Figure 1.3.3.

Figure 1.3.3: Procedure for a Change of Variables

Step 1: Probability Integral Transform |
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Step 2: Rosenblatt Transformation

The first step is to replace Z with functions of w using the probability integral transform.

Given that w; = F(z;;03) for j = 1,---,J, let Jz be the Jacobian matrix whose (i, )"
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9z OF ! (wy;03)

element is 22 = 5. Then, by applying the change of variables theorem, the joint
J J

density of X and Y can be written as

fxy(7,y;0)
= Jou fxiy.z(zly, 2(w); 0) - fyiz(y|z(w);0) - fz(z(w); 02, 03) - |Jz|dw
0,1]/
J
— o fX|Y,Z(I|y,Z(w);9) -leZ(y|z(w);0) ce(wy, -, wy) Hfj(zj(wj)) g |dw
: o

= fxiy.z(z|y, 2(w); 0) - fy1z(y|z(w);0) - c(wi, - ,wy)dw,

[0,1)7
where w = (wy, -+ ,wy). The second equality holds as a joint density of dependent ran-
dom variables equals the product of the copula density c¢(wy, -+ ,ws) and marginal densities

fi (zj (wj)), j=2,---,J for each random variable. The third equality holds as

Oz O ., Oz 1 0 . 0

Owi  Ows Ow s f1(21;03)

Oz Oz .., Oz 0 1 ... 0

T, — dwi  Ows dwy | f2(22;03)
Z — - R )

0

0zy 0z; .. 0Oz 0 0 N S

Ow1 Owa owy fi1(25:03)

—1
thUS ‘le = [Hj:l f](Z],ej)] .
The second step is to replace w with functions of ¢ employing the Rosenblatt trans-

formation. Considering that a copula C is also a cumulative distribution function, let

Tg : [0,1]7 — [0,1]7 be the Rosenblatt transformation given by

Gl = Ol\Q,---,J(w1|W27 T >WJ)

Cr—2 = CJ72\.]71,J(WJ72’WJ71, wJ)
Cj1= CJ—l\J(WJflle)
¢ =Crwy).
For example, the conditional APS-2-A copula function Cyjp(w1|ws) is

Chjz(wilws) = w1 + gawi (1 — wy),
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where go = 615{1—12(w>—0.5)?}. The conditional APS-3-A copula functions C'jz3(w1|wa, w3)

and Cyj3(ws|ws) are

1
Chjos(wi|wa, ws) = C—{h(wl — w}) + cozwn }

p O~ (wy) — Pq’_l(w:f;))’

C2|3<W2|w3) = q>( m

where o3 = co3(ws,ws) is the bivariate Gaussian copula density, h = g, + g3, where g =

012{1 — 12(wy — 0.5)?} and g3 = 013{1 — 12(w3 — 0.5)?}, @ is the cumulative distribution
function of the standard normal distribution, and ¢ is the probability density function of the
standard normal distribution.!®

Let T be the inverse function of Tg, and Jr denotes the Jacobian matrix whose (i, )%

Qi

element is o Then, by applying the change of variables theorem once more, the joint
J

density of X and Y can be written as

fX,Y(x7y; 0)

— | vz (o|y. 2(7€):0) - friz(y]=(T(€):0) - e(Ta(Q). -+  T5(C): 02) | Irld

[0,1]7

= | ravz (2] 2(1(0):6) - friz(y]=(1(0);0) d¢

[071](7

where T;({) =w;, j =1,---,J. The second equality holds as

Owi  Owy Owy. 1 1 1
8(1 8{2 BC] Cl|2,m \J 801‘27“‘ 7(]/(90.0_1 BCHQW 7(]/8(41»]
Jr =

Owy1  Owj Owy 0 1 1
G 2 oG crayg 0Cy_1)1 /0wy
Owr  Owr 9wy 0 0 1
oG ¢ oG ¢

where cya... s, -+ , ¢y are conditional copula densities. Therefore, |Jp| = [cijg... .7 X -+ X

-1 _ ~119
crapg X )7 = [e(wr, 0 wg)] T

18Gections 2.A.1 and 2.2 provide derivation of these conditional copula functions.
19 Arguments are occasionally dropped for brevity.
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Note that
fX\Y,Z (x’y,Z(T(C)); 0)
= fx|v,z (371 + 2 (T(C)) + g(zg(T(C)))
= fx. (o= 2(7€) = o (=a(110)) Ji6),

ta(22(T(©))o-++ o (22(100)) ) 2(7(€) 0

where z = InC' — InC(y, w), and
fY\Z(y’z(T(C))QO)
= fv|z <h2<z2(T(C))> + v, 7hJ(Z2(T(C))> + vy z(T(C));O)
— fy(eg — h2<z2(T(§'))>7 ey — hj<z2(T(C))>;9),

where e; = s; — s;(y,w), j=2,---,J.

Therefore, the joint density of X and Y can be simplified as

fX,Y(xay; 0)

= fX|Y,Z (3?

[0,1]7

- [ e a0) - a(m0)o)
o(e2 = (T )+ e = i (2a(1€)) ) )¢
=[x, (1= 2.(10) - s =a(71) )
fs ( ~hy(22(T(Q)) )+ ves = b (Zz(T(C)));f))] , (13.3)

y,2(T(Q)); 9) - friz (y\Z(T(C)); 9) ¢

where f¢(¢) is the joint probability density function of ¢, and E represents the expectation
with respect to the distribution of (. The second equality holds as ¢ is the independent
random vector such that each component follows a uniform distribution over [0, 1], which

implies f¢(¢) = 1.
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1.3.3 Maximum Simulated Likelihood Estimator

Since the joint density of X and Y involves an intractable integral, simulation-based methods
are necessary to compute the joint density. The direct or crude frequency simulator for the

joint density fx y(z,y;0) can be written as
Fxx(x,y:0)
R
=52 (2T ~o(rie ) o)
oy (62 — hy <Z2 (T(C(T)))), sy — hJ<Z2<T(C(T)))> ) 9> }a

where ¢ = (¢, -+ ¢! is the independent 7" draw of R draws from multivariate stan-
A MSL
dard uniform distribution. The maximum simulated likelihood estimator 0 maximizes

the following simulated log likelihood function:

InL(8)

anY z,Y; )

[ Z {fxl ( = 2(T(C") = g(z(TC)): 0)
2L (62 —hy (22(T<C’(7’)))), ey — hJ(zz(T(¢<T>))> : 0) H . (1.34)

1.4 Firm-level Inefficiency

Researchers can measure and decompose the average inefficiency by estimating the model
proposed in previous sections. However, as Jondrow et al. (1982) point out, it is also desirable
to estimate inefficiency for each observation to compare (in)efficiency levels across firms,
which is the original motivation of Farrell (1957). However, the error term in the cost share
equations, e;;, is assumed to contain both the disturbance from the optimal share and the
additive noise. Therefore, methods that use conditional distributions to derive firm-level

inefficiency developed in previous studies, such as Jondrow et al. (1982) and Battese and
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Coelli (1988), cannot be directly employed. In this section, I propose a strategy to measure
and decompose firm-level technical and allocative inefficiency for (1.2.1).

The process unfolds in four steps as summarized in Figure 1.4.1. The first step is de-
composing the error term in the cost share equations, e;;, into 1;; and v;; to calculate 7);.
As a point estimate of 7;;, we can use the mode of the conditional distribution fme(77|€)
as Jondrow et al. (1982), which can be obtained by deconvolution density estimation. The
second step is solving for &, given 7;;. As J—1 cost share equations 7;; = h;(§;), j =2, J,
include J — 1 unknowns, we can find the solution to the system of equations, él The third
step is calculating u:! using éz following (1.2.2). The last step is estimating the conditional
expectation of u! given 4 and ¢;, where 4] = E[ul|v; + ul] = E[ul |¢; — uf}] that is in line
with Jondrow et al. (1982).

Figure 1.4.1: Process to Measure and Decompose Individual Inefficiency

Step 1: Decompose 7;; and v;;

Step 2: Solve for §; given 7);;

Step 3: Calculate u# using él

A

i

Step 4: Estimate u! given

Details on Step 1 and 4 are as follows. First, since the two terms representing allocative
inefficiency, 7;; and uf!, are functions of &, it is required to estimate &; to measure individual
allocative inefficiency, which can be obtained from the system of equations n;; = h;(§;), j =
2,---,J. However, because the error term in the cost share equations, e;;, which can be
obtained after estimating the model, contains additive noise, v;;, it is essential to decompose

n;; and v;; that are unobservable. Density deconvolution methods can be used to recover
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an unknown probability density function that is noise-free, which implies we can recover the
density function of 7;;. The setup of the density deconvolution problem is as follows. Suppose
that one can only observe samples Y7,--- Y, given by Y; = X;+U;, 1 =1,--- ,n, where U, is
noise from a known distribution and independent of X;. The problem is how to estimate the
density function of X, fx(x), and the conditional density of X given Y, fxy(x|y), based on
the observations Yy, - -, Y,,. For more details about density deconvolution to estimate fx(z),
please refer to Carroll and Hall (1988), Stefanski and Carroll (1990), and Fan (1991). Wang
and Ye (2015) propose re-weighted deconvolution kernel methods to estimate the conditional
density function fxy(z|y) in an additive error model. Their estimator, which is applied to

estimate f,.(nle), is

n

Fxy (@ly) = 7o(zly) Z Ky (z = Yj),
j=1
where 7y (z|y) = %, Ly(-) = L(-/b)/b, L(-) is a real non-negative kernel function, b

is the bandwidth that associates with the kernel density estimate of fy, Kj(-) = K*(-/h)/h,

K*(z) = 5= [ d)‘gf((t(/t;) dt is the deconvoluting kernel, h € R, is a smoothing parameter,
¢y is the characteristic function of U, and ¢k (t) = [ XK (x)dy is the Fourier transform of
K(x). Then, n;; can be estimated from the estimates of f;.(n]e).

Second, upon solving for &; given 7);; (Step 2) and calculating u* given &, by (1.2.2) (Step
3), one can obtain v; + u! from the cost function. Then, an approach like Jondrow et al.
(1982) and Battese and Coelli (1988), which use the conditional expectation, can be applied

to estimate technical inefficiency. As it is assumed that v; ~ N(0,02), ul ~ |N(0,02)],

conditional expectation of u] given v; + u! is

+

P(2&) A
E[uf |v; +ul] = o. [‘I’(;@) gez}

where 02 = 020%./0%, 0% = 02+ 0% , A\ = o7 + 0, ¢ is the probability density function of the
standard normal distribution, ® is the cumulative density function of the standard normal

distribution, and ¢; = v; + u! (Kumbhakar and Lovell, 2000, p.141).
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1.5 Application: U.S. Banking Industry

1.5.1 Data

The new model and strategies are applied to the U.S. banking industry. The dataset for this
empirical study is based on the Reports of Condition and Income (Call Reports) for all FDIC
insured U.S. banks. These are retrieved from FDIC’s Statistics on Depository Institutions
(https://wwwT7.fdic.gov/sdi). Although the sample includes all U.S. depository institutions
in the Call Report for the end of 2019 and 2020, it is filtered for the following reasons. First,
the observations are dropped if key variables in the model are missing. Second, banks that
enter or exit the market during the corresponding year are excluded, as their reported cost
does not represent the total yearly cost. To the end, the number of banks in the dataset
is 5,105 in 2019 and 4,937 in 2020, whereas the number of reported institutions is 5,177 in
2019 and 5,002 in 2020, respectively.

There is a long-standing disagreement over the input and output of banks.? T follow the
asset (or intermediation) approach (see Sealey and Lindley, 1977) that banks are regarded
as firms that transform various financial and physical resources, such as deposits and labor,
into loans and investments. Similar to Altunbas et al. (2007) and Ding and Sickles (2019),
it is assumed that banks produce two outputs using three inputs. The output variables are
loans (y;1) and other earning assets (y;2), such as securities and trading assets. The input
variables are funds that the bank owes (z;;), such as deposits and debentures, the number of
full-time employees (z;2), and fixed assets (x;3). Given this definition of inputs, input prices
are defined as w;; = interest expenses (C;;)/funds that the bank owes (z;1), w;z = salaries
(Cj2) /the number of full-time employees (x;2), and w;3 = fixed assets expenses (Cj3)/fixed
assets (z;3). The total cost (C;) is defined as the sum of interest expenses (Cj;), salaries
(Cy2), and fixed assets expenses (Cj3).

Tables 1.B.1 and 1.B.2 summarize descriptive statistics of key variables in 2019 and 2020,

20For more details, please refer to Berger and Humphrey (1992) and Guarda et al. (2013).
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respectively. While other variables are not changed significantly during the sample period,
there are notable changes in two key variables as shown in Table 1.5.1. First, interest
expenses decrease significantly in 2020. Although they had had an increasing trend since
2016, they decreased from $158.7 billion in 2019 to $77.1 billion in 2020 for all depository
institutions. Second, other earning assets have increased substantially during the pandemic.
To be specific, their balance has slightly increased from 2016 to 2019 but increased from
$6.9 trillion in 2019 to $9.8 trillion in 2020. It implies that the composition of banks’ costs
and outputs has considerably changed since the outbreak of COVID-19. This might lead the

changes in the cost frontier of the U.S. banking industry between 2019 and 2020.

Table 1.5.1: Interest Expenses and Other Earning Assets of the U.S. Banks

Year 2016 2017 2018 2019 2020
Interest Expenses ($ billion) 54.4 73.3 119.8 158.7 771
Other Earning Assets ($ billion) 6,321.8 6,547.6 6,611.1 6,870.8 9,829.8

Source: FDIC

1.5.2 Average Inefficiency

The main purpose of this subsection is to check whether the average cost inefficiency of the
U.S. banking industry has varied before and after the pandemic. In addition, the estimation
results are compared to those following Greene (1980) to show that more plausible results
can be obtained from the model proposed in this paper.

Greene (1980)’s assumptions can be summarized as follows. Given the translog cost

system

InC; = InC(y,;, w;) + €
= InC(y;, w;) +v; +u;
Sij = S](yzawz) + eij7 ] = 2737

ii.d

it is assumed that ¢; is independent of e; = (ej, e53), v < N(0,02), u; %' |N(0,02)|, and

€; Sy N(0,3.). Maximum likelihood estimation can be applied to estimate parameters of
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the model, where the joint density of €;, e;2, €;3 is simply fc ., c,(€, €2,e3) = fc(€) - fe(e), as
¢; and e; are independent. Note that the probability density function of ¢;, which is the sum
of two random variables following the normal distribution and the half normal distribution,
respectively, is

ra=2o(3) o(3),

o o

where 0 = 02 + 02, A = 0,/0,, and ¢ and @ are density and distribution functions of the
standard normal distribution.?! Even though technical and allocative inefficiency cannot be
decomposed, overall inefficiency u; can be estimated using Greene (1980)’s assumptions.
Tables 1.5.2 and 1.5.3 show the estimation results for 2019 and 2020, respectively, where
Models I and II stand for the model of this paper and the model following the independence
assumption stated by Greene (1980). To estimate the model of this paper (Model I), R =

10,000 sets of random numbers are drawn.

Table 1.5.2: Estimation Results for 2019

Model I Model 11 Model I Model 11 Model I Model 11
5o 0.5176 0.5529 e 0.1465 0.1488 Ouy/0e,  0.0625 0.0755
(0.1466)  (0.1484) (0.0023)  (0.0011) (0.0008)  (0.0006)
By 0.5130 0.5099 5’ -0.1370  -0.1358 Ouy/0es  0.0218 0.0431
(0.0178)  (0.0187) (0.0020)  (0.0010) (0.0010)  (0.0004)
BY 0.4879 0.4883 59" 0.1365 0.1325 Pv/ Pe 0.5233 0.0314
(0.0231)  (0.0231) (0.0020)  (0.0014) (0.0279)  (0.0133)
Y9 0.1180 0.1147 Y7 0.0088 0.0044 012 0.3229 -
(0.0026)  (0.0027) (0.0016)  (0.0018) (0.1566)
"fé/ -0.1102  -0.1069 %” -0.0060  -0.0025 013 0.0000 -
(0.0031)  (0.0030) (0.0012)  (0.0014) (0.1506)
?2’%' 0.1005 0.0972 ?2/;” 0.0156 0.0187 0o 0.8137 -
(0.0039)  (0.0039) (0.0014)  (0.0016) (0.0165)
By 0.3704 0.3896 g;” -0.0172  -0.0199 or/ou 0.2242 0.2239
(0.0138)  (0.0182) (0.0012)  (0.0013) (0.0175)  (0.0128)
By 0.5368 0.5254 Oy 0.2868 0.2922 O¢, 0.5941 -
(0.0111)  (0.0142) (0.0061)  (0.0049) (0.0240)
O¢, 0.6447 -
(0.0228)

Note: BHHH standard errors are in parentheses.

21 Please refer to Appendix 1.A.4 for the derivation.
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Table 1.5.3: Estimation Results for 2020

Model I Model 11 Model I Model 11 Model I Model 11
5o 0.8529 0.9687 e 0.1265 0.1276 Ouy/0ey,  0.0553 0.0724
(0.1514)  (0.1539) (0.0021)  (0.0010) (0.0008)  (0.0006)
By 0.3599 0.3549 B’ -0.1224  -0.1202 Ous/0es  0.0201 0.0467
(0.0195)  (0.0179) (0.0018)  (0.0010) (0.0009)  (0.0004)
BY 0.5805 0.5748 5. 0.1272 0.1222 Pv/ Pe 0.3968 -0.1413
(0.0242)  (0.0238) (0.0018)  (0.0013) (0.0411)  (0.0122)
¥Y0.1050 0.1053 77 0.0086 0.0033 012 0.3191 -
(0.0030)  (0.0030) (0.0012)  (0.0016) (0.2036)
3{% -0.0841 -0.0846 %” -0.0039 0.0012 013 0.0000 -
(0.0034)  (0.0030) (0.0011)  (0.0013) (0.1428)
?2’%' 0.0647 0.0661 gf’ 0.0118 0.0159 o)) 0.8162 -
(0.0040)  (0.0036) (0.0012)  (0.0015) (0.0132)
By 0.3633 0.3800 gé” -0.0180  -0.0219 or /oy 0.2060 0.1690
(0.0103)  (0.0147) (0.0011)  (0.0013) (0.0269)  (0.0227)
By 0.5569 0.5429 Oy 0.3193 0.3325 O¢, 0.6299 -
(0.0088) (0.0117) (0.0069)  (0.0058) (0.0227)
O¢, 0.7005 -
(0.0180)

Note: BHHH standard errors are in parentheses.

There are three points to be noted. First, the results indicate a dependence between

T

technical and allocative inefficiency, although 6,3, which captures dependence between u;
and &;3, is close to zero in both periods. Second, reflecting large increase in other earning
assets (y;2), 0] decreased and () increased in 2020 relative to 2019. Lastly, both o of Model T
and o, of model II decreased, implying that technical or overall inefficiency decreased during
the pandemic. This might be due to the fact that interest expenses decreased in 2020.

However, the magnitude of decreases is much higher for Model II than for Model I.

Table 1.5.4 shows the estimation results of average inefficiency. In both models, the

A

mean of ul, uft, or u; cannot be directly estimated; only their standard deviations and the
standard deviation of {;;s can be estimated. However, since the mean of a random variable
that follows the half normal distribution is a function of its standard deviation??, the mean of
ul for Model I and w; for Model II, which are assumed to follow the half normal distribution,

can be calculated. The average us* of Model I is calculated using the estimation results for

2I X ~ [N(0,0%)], E[X] = 252,
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firm-level inefficiency in the next subsection. For Model I, the average u; is computed as the

sum of the mean of both v and uZ.

Table 1.5.4: Average Inefficiency

2019 2020
U; uZT ufl U, uZT uf‘
Model I 0.2040 0.1789 0.0251 0.1887 0.1643 0.0244
Model 1 0.1786 - - 0.1349 - -

The results suggest that costs of U.S. banks increased by around 16~18% and 2.5%
during the sample period due to technical and allocative inefficiency, respectively. There
are two main findings from the results. The first one is that overall inefficiency in 2020
decreased compared to 2019. The effect can be also decomposed. Cost increases due to
allocative inefficiency do not differ between 2019 and 2020 (2.5% — 2.4%), whereas changes
in technical inefficiency are non-trivial (17.9% — 16.4%). The second main finding is that
assuming independence between ¢; and e; would produce unrealistic results. Particularly,
the overall inefficiency levels are generally underestimated by 3 ~ 5% when compared to
Model I. Furthermore, overall inefficiency decreased to a great extend in 2020 in spite of the

pandemic (17.9% — 13.5%), which is seemingly less plausible.

1.5.3 Firm-level Inefficiency

As the first step to estimate firm-level inefficiency, it is suggested in Section 1.4 that the
mode of the conditional distribution fme(n\e) is used. Figures 1.5.1 and 1.5.2 show density
estimates of e, f.(e), and conditional density estimates of 7 given e, fme(me), for 2019
obtained by kernel density estimation and density deconvolution. Although both f62(62) and
fes(e3) are skewed, fme(nle) is fairly symmetric and centered around its mode for various
values of e. Along with Figures 1.B.2 and 1.B.3, which illustrate density estimates of e and
conditional density estimates of 1 given e for 2020, it supports the validity of using the mode

as the estimate of 7.
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Table 1.5.5 shows the standard deviations of {;» and &;3, 0¢, and d¢,, using the estimation
results of the second step; recall that £;» and ;5 represent the degree of allocative inefficiency
for the input pair (j,1), j = 2,3. Compared to the model estimates, the standard deviations
of estimates for individual firm’s allocative inefficiency tend to be rather large but not too
different. In addition, as the estimates of firm-level allocative inefficiency, él-z and 51'3, can be
obtained, the results can be compared by the bank’s classification, such as the banks’ size
and the charter class?®. The results show that the degree of allocative inefficiency of larger
banks, such as banks with assets greater than $1 billion or nationally chartered commercial

banks, and of thrifts is more dispersed than that of other banks.

Table 1.5.5: Standard Deviations of é@'2 and él'g

2019 2020
652 &53 6&2 653
Model Estimates 0.5941 0.6447 0.6299 0.7005
Full Sample 0.7693 0.7495 0.7313 0.7286

Asset Size
- Large Banks 0.8805 0.7667 0.8416 0.7617
- Small Banks 0.7476 0.7459 0.7016 0.7176
Charter Class

-N 0.8024 0.7422 0.7614 0.7185
- NM 0.7571 0.7461 0.7102  0.7232
- SM 0.7354 0.7060 0.7137 0.6975
-SB 0.7732  0.7475 0.7319 0.7040
- SA 0.8287 (0.8488 0.8434 0.8465

23Banks are classified by its asset size and classification codes assigned by the FDIC, which indicate
an institution’s charter type, an institution’s charter type, its Federal Reserve membership status, and its
primary federal regulator. Please refer to Table 1.B.3 for more details.
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Figure 1.5.3 shows the distribution of estimates for cost increases due to allocative inef-

A

ficiency, /", of individual banks, which is obtained from the third step of the process. The
distribution shape is fairly similar to the results in Kumbhakar and Tsionas (2005b) in that it
is highly skewed to the right. However, magnitudes are smaller seemingly owing to different
definitions of inputs and outputs, sample periods, and the assumption about the variation
of the term representing allocative inefficiency, &,. Even though a small number of estimates
are negative, contrary to the definition of u:!, their magnitudes are not considerable.

Figure 1.5.3: Distribution of 4
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Table 1.5.6 shows the average cost increases due to allocative inefficiency by the banks’
classification. The estimates of larger banks, such as banks with assets greater than $1 billion
or nationally chartered commercial banks, and of thrifts are higher than those of other banks.
In addition, the average cost increases due to allocative inefficiency has not been changed
significantly between 2019 and 2020 by banks’ asset sizes and the charter classes.

Table 1.5.6: Average of 4!

2019 2020
Full Sample 0.0251 0.0244
Asset Size
- Large Banks 0.0327 0.0332
- Small Banks 0.0237 0.0223
Charter Class

-N 0.0288 0.0282
- NM 0.0240 0.0229
- SM 0.0239 0.0242
- SB 0.0225 0.0210
- SA 0.0316 0.0326
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Figure 1.5.4 shows the distribution of estimates for cost increases due to technical in-

T

efficiency, u; , of individual banks, which is obtained from the last step of the process. As
opposed to the distribution of 4, it is slightly skewed to the right. In addition, the estimates
for cost increases due to technical inefficiency are less dispersed in 2020 compared to those of
the previous year. Its standard deviation is decreased from 0.0567 in 2019 to 0.0452 in 2020;

this implies that banks became somewhat homogeneous in terms of technical inefficiency.

Figure 1.5.4: Distribution of 4}
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Table 1.5.7 shows the average cost increases due to technical inefficiency by the banks’
classification. The estimates are fairly similar to those of u? obtained from the model. Also,
unlike the results of the third step, the estimates of the large banks are slightly smaller than
those of the small banks. By the banks’ charter class, nationally chartered commercial banks

seem to be technically less efficient than others, but the gap between them decreased in 2020.

Table 1.5.7: Average of 47

2019 2020
Model Estimates 0.1789 0.1643
Full Sample 0.1748 0.1620

Asset Size
- Large Banks 0.1737 0.1619
- Small Banks 0.1750 0.1621
Charter Class

-N 0.1819 0.1666
- NM 0.1743 0.1610
- SM 0.1751 0.1634
- SB 0.1641 0.1569
- SA 0.1710 0.1626
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Table 1.5.8 summarizes the estimation results of individual technical and allocative in-

A has

efficiency. To sum up, first, the ratio of cost increase due to allocative inefficiency, u/",
not changed between 2019 and 2020. However, the ratio of cost increase due to technical
inefficiency, u!, has decreased. It suggests the possibility of changes in the cost frontier
during the pandemic, while banks try to maintain resource allocation. Second, cost increase

due to inefficiency is generally higher for larger banks. It is in line with previous studies,

such as Altunbas et al. (2007) and Ding and Sickles (2019).

Table 1.5.8: Average of 4] and 4!

2019 2020

AT nA T ~NA

(3
Full Sample 0.1748 0.0251 0.1620 0.0244
Asset Size
- Large Banks 0.1737 0.0327 0.1619 0.0332
- Small Banks 0.1750 0.0237 0.1621 0.0223
Charter Class

-N 0.1819 0.0288 0.1666 0.0282
- NM 0.1743  0.0240 0.1610 0.0229
- SM 0.1751 0.0239 0.1634 0.0242
- SB 0.1641 0.0225 0.1569 0.0210
- SA 0.1710 0.0316 0.1626 0.0326

1.6 Conclusion

Cost efficiency analysis has the virtue that it enables researchers to decompose inefficiency
into two main sources; input-oriented technical inefficiency, and resource misallocation. How-
ever, there is no satisfactory method to measure and decompose both types of inefficiency
when flexible functional forms are allowed for.

In this paper, a model and an estimation strategy for the translog cost system are devel-
oped to overcome limitations of previous stochastic cost frontier studies. By employing APS
copulas, one can model the dependence between technical and allocative inefficiency as well
as provide a solution to “the Greene Problem.” The model can be estimated by the method

of simulated likelihood. The proposed estimation strategy is developed upon economic in-
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tuition behind the stochastic frontier model. It is also uncomplicated, as random numbers
can be drawn from the simple density, the standard uniform density. In addition, a strategy
to estimate individual inefficiency is proposed, which uses not only conditional distributions
as in previous studies, but also density deconvolution.

An empirical exercise for the U.S. banking industry in 2019 and 2020 shows that the costs
of U.S. banks increased by around 20% during the sample period due to inefficiency, where
technical and allocative inefficiency account for around 16~18% and 2.5%, respectively.
During the pandemic, banks’ technical inefficiency has slightly decreased seemingly due to
changes in the composition of costs and output, while the degree of allocative inefficiency
has not changed significantly. Lastly, the results suggest that it would produce less plausible

results when ignoring the dependence between technical and allocative inefficiency.
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APPENDIX A
Additional Details

1.A.1 Proof of ijl sij(y;, w;) = 1 and ijl ni; =0

LALL Y7 s(wiy,) =1

7=1
J
— Z {510 + Z ww lnwlk + Z [5’ ]nylm }
]jl clj:l J J M
- Z B + Z Z ﬁfw(lnwik) + Z Z ﬁg;;)(lnyzm)
J=1 Jj=1 k=1 j=1m=1
J J J M J
=Y a3 arenwg) + 303 B (nyi)
j=1 k=1 j=1 m=1 j=1
J J J M J
= Z By + Z(lnwik) Z e T Z(lny,m) Z 5%
J=1 k=1 J=1 m=1 j=1

The last equality holds because of the restrictions on the parameters, such as Z}']:1 By =1,

S B = T e — 0] or Wk, and Y7, % = 0 V.

LAL2 Y7 ;=0

Since 2}121 s;j = 1 and Z}]:1 sij(y;, w;) =1, Z}]=1 ni; = 0 is guaranteed. For J = 2 and 3,

it can be also shown using the formula of n;;.
i) J=2

Ni1 + M2
_ s1(ys,wi)[1 — {sy + (si/e%2)}] + Bi5°Ein
{sh + (sip/e52)}
sa(y;, wi)[1 — {85, + (sy/€52) Je2] + B"Esn
{851 + (sia/€%2) pebiz
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sl w21 — {7y + (s5afe5) ] + BEEact
{si1 + (s5y/eb2) petiz
so(ys, w;)[L — {8}, + (s5,/€57) Yeb2] + B o
—"_ * * ; .
{71 + (87y/€e5i2) pebiz
sy, wi)et + so(y;, wy)
{71 + (87y/€5i2) petiz
(s1(y;, w;) + s2(y;, w;) ) {shy + (85/€52) Fe52 + B0 Enes + B35 &
{sh + (sfp/es2) petiz
(51(ys wi) — 8§y + Bi5 &) €52 + (sa(y;, wy) — s}y + B33 Ein)
{sh + (sfp/e82) pesz

=0.

The fourth equality holds as s;(y;, w;) + s2(y;, w;) = 1, and the last equality holds by the

definition of s;;.
(ii) J =3

M1+ M2 + i3

_ s wi)[1 — {sy + (shh/e2) + (sis/e*) H + Bi5" G + Bi5°Cis
{85 + (sp/€2) + (sf3/es) }
sa(y;, wi)[1 — {85, + (55/€%?) + (s3/€52) }eti2] + 555 Eir + P33 Cis
{sii + (sip/€52) + (sj3/eb) el
s3(y;, wi)[1 = {51 + (s55/€52) + (s53/€52) }e*] 4 B35 Eia + P33
{85 + (sfp/€%2) + (s]3/€tis) pebis
si(yy, wi)et2etB[1 — sy + (s5,/€52) + (s53/€5°)}]
ST (ot ) + (sl Jehaets
N 5102”»”&.26512 esis + 6%10&36&2 esis
5+ (50669 + (siy/ek)Jebacks
sa(y;, wi) e [1 = {8} + (sp/e52) + (sf3/e5®) et
{s51 + (sip/€82) + (s]3/€%3) pedizetin
ﬁéléw&ge&s + ﬁé%wgif}efi?)
(o (st 2] + (s ek
(1 P51 — {55+ (55/65%) + (55659}
(o0 (i 57) + (5 59) o
B Eine’2 + PR Eizes?
o (st e52) + (st Jekrcss

+

+
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Sl(yia wi)eﬁmeﬁis + 82<yia wi)e&g + S3 (yi> wi)egﬁ
ot T (50/8%) + sty et) s
(51(y wi) + s2(y;, wi) + s3(y;, w;))es2esa {7 + (s /e52) + (s;/€5%)}
s (i 57) + (5 /59) ek
Bl gigetizetis 4+ B, ebiz gbis
o5+ (o5 60) + (styfeto) Jebacks
Béléwgﬂeéis + 65%10&.36&3
o (i e52) + (st Jekacks
n W0 Eine’? + PRI Eizes?
o (st e57) + (st Jebncss
_ 5255 (51 (y;, w;) — s§y 4 156 + P15 i)
T+ (527 57) + (53 /c50) ek
€55 (s(y, wi) — sk + 5576 + B55"Eis)
o+ (50/69) + (st 0 Jeacko
€52 (s3(y,, wi) — 53y + Bz Ein + B i)
{851 + (sip/€82) + (s]3/€3) pebizetin

=0.

The fourth equality holds as s1(y;, w;) + s2(y;, w;) + s3(y;, w;) = 1, and the last equality

holds by the definition of s;;.

1.A.2 Simplifying u{' and 7;

Assume that there is no additive noise term in the cost share equations. Let Gy = 37 (5%, /ef*).

Then,

sy wi)(1 - GaeY) + 35, B
Mij = Gifigj

J
= Gimie¥ = s;(y;, wi) (1 — Gie%) + > Bie,
=1

J
= Gi(s;(yowi) +miy)e¥ = s;(y, wi) + Y Bty
k=1

J
= Gisz’jegj = $;(y; wi) + Z ik Sk
k=1
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J
+ Xl = st + )
= _J k=1
-3

J J
=S GZ% (g wi) + > BhE

= 7j=1 k=1

1
R i s
Z] 19 €~

The last equality holds because E;.Izl s;(y;, w;) = 1 and ijl Eizl Bin’& = 0 by the

symmetry and the linear homogeneity conditions of the cost function. Also, note that

J
GiSijegj = 5j<yi7 wz) + Z ﬁﬁwgk

k=1
J

= Gisie = sij — i + Z Bik &k
J

oy = si(1— Gie%) + Z Bl
k=1

Therefore, u* and 1ni; can be simplified as

J J J
u? = Z 5;“5] + Z Z lnwz] gk + - Z Z fjfk + Z Z lnyzm

J=1 =1 k=1 ]lk;l m=1 j=1

i = Sii 1 — > ww
T]] S]( zk 1SZk€€k Z/Bjk é'k

1.A.3 Rosenblatt Transformation

This subsection is written based on Rosenblatt (1952), Chapter 6.9.1 of Joe (2014), and

Appendix B of Melchers and Beck (2018). Rosenblatt (1952) shows that a dependent random

vector X = (X1, -+, Xj) may be transformed to the random vector Z = (Zy,- - , Zy), where
Z; S Ul0,1] Vi = 1,--- , k. This subsection summarizes the procedure for generating a

dependent random vector X from the independent random vector.
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Let Fi.x(x1, -+ ,xx) be a multivariate distribution of X with marginal distributions
Fy,--- | F), where the corresponding random variables Xi,---, X} can be continuous, dis-
crete, or mixed. Rosenblatt (1952) proposes the transformation T such that ¢ = (i, - -+, (k)

- TR(XI; e 7Xk)7 where

G =PX: <x1)=Fi(x1)
G =P(Xs < x2| X1 = x1) = Fap(xalx1)

G5 = P(X5 < x3| X1 = x1, X2 = x2) = Fyj2(xs|x1, x2)

G =P(Xk < xel X1 = x5 s Xom1 = Xoom1) = Frpe oot (XeIX05 -+ 5 Xaem1)-

With all the conditional distributions Fi, Fyp, -+, Fy1,... x—1 and their inverse functions, one
can successively obtain dependent random numbers (x1, -+, xx) from independent uniform
random numbers ((;,- -+ ,x) on [0, 1]¥ such that

x1=Fr(¢)

X2 = Fyy (Glx1)

X3 = Fya(Glxa, xz)

Xk = FI€_|117..A,]€_1(C]€|X17 e 7Xk—1>-
To sum up, the consecutive process to generate (x1,- -+, Xx) is as follows:
(i) Derive conditional distributions Fyj1, Fapa, -, Fipt e k-1

(ii) Draw ¢; from UJ[0,1] and obtain x; from x; = F; '(¢;) or by solving

Fl(Xl) -G =0

(iii) Given xi, draw (» from UJ0,1] and obtain s from x, = FQ_ul(C2|X1) or by solving

Fyi(x2lx1) = ¢ =0
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(iv) Given y; and x5 , draw (3 from U|0, 1] and obtain x3 from y3 = F31112(C3|X1, X2) or by

solving F312(x3[X1, x2) — (3 = 0, and so on.

Note that a permutation of the order 1,--- , k is possible, so one would choose a permu-
tation in practice where the computations are simplest. For example, one can choose the
reverse order to obtain dependent random numbers (xi, - , xx) from independent uniform

random numbers (1, -+, ;) on [0,1]* such that

X1 = Ffpl,..,k(CﬂXQ, S Xk)

Xk—2 = F;;lz‘k,l,k(fk—Q\Xk—la Xk)
Xk-1 = Fk_,ll‘k(Ckfl‘Xk)-

e = Fi N (¢

1.A.4 Density of ¢, = v; + u;

Let €; = v;+u;, where v; ~ N(0,02), u; ~ |N(0,02)|, and v; and u; are independent. Aigner
et al. (1977) derive the density of a random variable & = v; — u] as 2 - ¢<§) : [1 - @(%)},
where 02 = 0% + 0%, A\ = 0,/0,, and ¢ and ® are density and distribution functions of

the standard normal distribution.?* Similarly, the density of ¢; = v; + u; can be derived as

follows. Note that the marginal densities of v; and u; are

2

1 v
w(v) = expl —=—=), veR
f( ) gv\/2ﬂ' p( 20'12))
2 u?

expl —=—=), veR,.
gu\/2ﬂ' p( 20'3) +

Since v; and u; are independent, the joint density of them is

Juu =

1 2 2 2
fou(v,u) = exp( vo_v
20

OuV 2T OV 27 - 207 .

1 2 { 1 <v2 LU )}

= expy — = — + —= | ¢,
TV 2T o\ 21 b 2\02 o2

24Please refer to Ch.11.7.3 of Sickles and Zelenyuk (2019) for more details.

2
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and the joint density of ¢; and u; becomes

fewle,u) = fou(e —u,u)

1 2 { 1 ((e —u)? N ) }
= ex —_ = .
OV 2T oV 2T P 2 op
N—— (. ~ _
@ ©)
(D and (2) can be transformed as follows:

@ \/m 2
0,0,V21 \f02 + 02/ 2r

2

N

ﬁqw| S

e —2eu+u: u
@' 2 )

Oy Oy

€0y +0u) _ Qeu/V/oy +0i)(Voi +04/0v0n) | u(oy +o3)

2(~2 2 2 252
Uv (Uv + Uu) O'v/(O'UO'u) O-vo-u
2 2 2 2 2 2
€ o 2eu \Jo:+ oo o, +o
_ (1 + u) _ v uCu + u2 v u

T 52 2 2 252
o;+ o lops Voi+o2 0,04 Oy 050

Let 02 =02+ 02, A =0,/0,, and 6> = (62 + 02)/(020?2). Then,

o 2 l7e2 N €u .
feu(e,u) = \/—Q_FU\/%QXP{ 2( +?—2 N+ u 6)}

G S CR)

As the support of u is [0, 00), the density of ¢; is

/ feu(e,u)d
€A

== 27Te p 202 / \/_exp{ - 5(; - ud) }du.

Let’y— — ud. Then, if u =0, ’y—%,andﬁ'u—)oo v — ooAlsoﬁ

du = —gd’y. Therefore,

fE(E) =

2
:%-qs g)-{—fb(v)i
7 :
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APPENDIX B

Tables and Figures

Table 1.B.1: Descriptive Statistics of Key Variables for 2019

Mean Std. Dev Min Max
Total Cost (Cj, $ million) 82.7 1,211.5 0.1 91,615.0
Interest Expenses (Cj1, $ million) 30.3 434.2 0.0 17,008.0
Salaries (Cj2, $ million) 43.5 662.2 0.1 28,538.0
Fixed Assets Expenses (C;3, $ million) 8.9 140.6 0.0 6,069.0
Loans (y;1, $ million) 1,995.6 26,598.9 0.0 969,383.0
Other Earning Assets (y;2, $ million) 1,274.8 24,618.5 0.3 1,174,359.0
Funds that Bank owes (x;1, $ million) 3,054.9 47,236.1 0.5 1,980,733.1
Number of Full-time Employees (z;2) 402 5,552 2 232,982
Fixed Assets (z;3, $ million) 36.6 504.6 0.0 22,432.0
wi1 = Cin/xi 0.0090 0.0045 0.0000 0.0381
wiz = Cia/ x40 0.0839 0.0283 0.0056 0.3706
wiz = Ci3/xi3 0.4039 0.8936 0.0075 22.7273

Table 1.B.2: Descriptive Statistics of Key Variables for 2020

Mean Std. Dev Min Max
Total Cost (C;, $ million) 73.0 1,000.1 0.0 40,331.0
Interest Expenses (Cj1, $ million) 15.3 172.6 0.0 7,459.0
Salaries (Cj2, $ million) 47.9 706.8 0.0 28,982.0
Fixed Assets Expenses (C;3, $ million) 9.8 151.8 0.0 6,362.0
Loans (y;1, $ million) 2,111.3 26.425.0 0.0 995,415.0
Other Earning Assets (12, $ million) 1,872.9 36,520.7 0.3 1,801,495.0
Funds that Bank owes (x;1, $ million) 3,737.5 58,393.4 0.5 2,626,377.0
Number of Full-time Employees (z;2) 417 5,689 2 233,403
Fixed Assets (3, $ million) 38.1 523.5 0.0 23,184.0
wip = Ci1/xi 0.0062 0.0035 0.0000 0.0285
wiz = Cia/ x40 0.0889 0.0306 0.0000 0.3616
wig = Ciz/xi3 0.4005 0.7763 0.0025 13.0000

Table 1.B.3: Classification of Banks

Asset Size
- Large Banks Banks with assets greater than $1 billion
- Small Banks Banks with assets less than $1 billion
Charter Class

-N Commercial banks, federal charter, fed member

- NM Commercial banks, state charter, fed non-member

- SM Commercial or savings banks, state charter, fed member
- SB Savings banks, state charter

- SA Thrifts, federal or state charter
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Figure 1.B.1: Sample Correlations (The APS-3-A Copula)
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CHAPTER 2

MEASUREMENT AND DECOMPOSITION OF
COST INEFFICIENCY USING COPULAS:
EVIDENCE FROM MONTE CARLO SIMULATIONS

2.1 Introduction

This paper provides methods for copula-based simulations and demonstrates the performance
of the estimation strategy proposed by Ryu (2021). First, a method to generate pseudo data
using the APS copulas developed by Amsler et al. (2021) is presented; it applies the inverse
Rosenblatt transformation and the inverse transformation method. Second, given the data
generating process, quasi-Monte Carlo simulations are conducted in order to confirm the
validity of the estimation strategy in Ryu (2021) that can measure and decompose technical
and allocative inefficiency.

Amsler et al. (2021) conduct Monte Carlo simulations to show that the stochastic pro-
duction frontier model employing the APS-2-A copula can be reliably estimated. The model

used for their simulations can be written as

Yi =+ frxa + Poxio + v — UZT

Ti1 — Tjo = ln(ﬁlwﬂ) -+ €i2, (211)

B2wi1

where y; is the natural log of output of producer 7, x;; and x;5 are the natural log of inputs,
v; € R is a random disturbance, u! € R, represents technical inefficiency, w;; € Ry, j =
1,2, are the price of input j, and e;5 € R is a two-sided term capturing allocative inefficiency
and noise. They assume that a firm produces one output given two inputs, and u! and e;, are
linked by the APS-2 copulas such that u! is uncorrelated with e; but positively correlated
with |ej|. Since their model uses the method of simulated likelihood for estimation, it
requires to draw a N x 1 vector of random numbers, where N is the number of producers,

from the distribution of u?, such as the half normal distribution. This is because the joint

7
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density of their model is

fc,eg (67 62) = f€2 (62) : EuT [C(wla w?) : fv(e + uT)]a

where ¢ = v — u”, E,r represents the expectation with respect to the distribution of !,
wi = Fi(ul), wy = Fy(ey), and Fi(u’) and Fy(ey) are marginal cumulative distribution
functions of u! and e;y, respectively. Furthermore, if a firm produces one output using three

inputs, we can extend the above model, and the joint density in this case becomes

fE,BQ,eg(Ey €2, 63) = feg (62) . fe;;(e?)) . EuT [C(wla W2, WS) : fv(e + UT)]a

where w3 = F3(e3), and Fj(e3) is a marginal cumulative distribution function of e;3 (Amsler
et al., 2021, p.6). It implies that it requires to draw a N x 1 vector of random numbers as
well even if the number of inputs increases.

However, numerous studies on efficiency analysis have assumed that producers use more
than two inputs. Furthermore, we need to confirm whether an estimation strategy employing
copulas would produce reliable estimates in more complex settings. For example, consider a
translog cost system that can measure and decompose technical and allocative inefficiency,

which can be written as

InC; = InC(y;, w;) + v; +u! + g(&;)

Sij = 8i(Ypwi) + hy(&;) +vij, =2, ., (2.1.2)

where C; is the actual cost of producer i, C(y;, w;) is the deterministic kernel of the stochastic
cost frontier, y, € Ri‘f is a vector of M outputs, w; € R;{Jr is a vector of input prices, v; € R
is a random disturbance, u! € R, represents a cost increase due to technical inefficiency,
g(&;) € R, represents a cost increase due to allocative inefficiency, §; = (&2, , &), &;j
represents producers’ allocative inefficiency for the input pair (j,1), s;; € [0,1] is the actual
cost share of input j, s;(y;, w;) € [0,1] is the optimum cost share of input j, h;(§;) € R is

the disturbance due to allocative inefficiency, and v;; € R is additive noise. We can assume
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that ul and €, are linked by the APS copulas such that u! is uncorrelated with &y, -+, &

but positively correlated with |, - -+, |£s|. Then, the joint density of this model is
Faslew) = e |1 = 2(1(0) - o(22(7(0))) )
“fu <€2 — hy (ZQ(T(C)))a T,y — hJ<Z2(T(C)))30)} )

where E. represents the expectation with respect to the distribution of ¢ = ((1,---,(y),
G ~ Ul0,1], e = v+ u” + g(€), z1 and 2z, are functions that transform CDF values to
random numbers, 7" is the inverse function of the Rosenblatt transformation, and 0 is the
parameters. Contrary to Amsler et al. (2021), it requires to draw N x J uniform random
numbers ¢, where J represents the number of inputs, that each columns are uncorrelated.
Hence, it is necessary to conduct another set of simulations that allows more inputs in order
to check the validity of the economic model applying the APS copulas. In addition, methods
of data generating process need to be provided in order to conduct simulations.

Lastly, the plausibility of the assumption in Greene (1980) can be examined by conducting
simulations. As discussed in Bauer (1990) and Kumbhakar and Lovell (2000), an econometric
issue occurs in a cost system that employs flexible functional forms, such as a translog
function. The key question is how to model the relationship between u; = ul + g(&;) and
eij = hj(&;)+v; of (2.1.2). Greene (1980) proposes a solution to this problem, which assumes
that the disturbance in the cost function, ¢, = v; + u;, and the disturbance in the cost share
equations, e;;, are independent. By conducting simulations using a pseudo-data set that
assumes technical and allocative inefficiency are linked by the APS copulas, we can verify
the validity of the assumption in Greene (1980).

The remainder of the chapter is organized as follows. Section 2.2 illustrates how to draw
observations from the APS-3-A copula that corresponds to a three-input case.! Section 2.3
shows the data generating process. Section 2.4 presents the Monte Carlo simulation results.

Section 2.5 concludes the chapter.

LAmsler et al. (2021) provide the procedure to draw observations from the APS-2-A copula. It is
summarized in Appendix A.
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2.2 Simulating from the APS-3-A Copula

Since a copula itself is a cumulative distribution function whose marginal distributions follow
U|0, 1], one needs to find the conditional copula in order to employ the Rosenblatt transfor-
mation. Copula arguments can then be obtained by applying the process described in this

section that focuses on the APS-3-A copula.

2.2.1 Derivation of Conditional Distributions

Let c1a3(wi, wo,w3) be a copula density, where (wy,ws,ws3) € [0,1]® are copula arguments. It
is assumed that w; is uncorrelated with wy and ws but correlated with |wy —0.5| and |ws—0.5].
In addition, the dependence between ws and w3 is captured by any bivariate copula.

For computational ease, w3, wy, and w; are generated sequentially; this the use of the
conditional copulas Cijosz(wi|ws, ws) and Cyz(wa|ws) for the Rosenblatt transformation. In
this subsection, the conditional copulas, Cyja3(wi|ws,ws) and Cyz(wa|ws), are derived, then

methods to obtain the copula arguments, ws, wy, and wq, are presented.

2.2.1.1 Conditional Copula Cjj3(w:|ws, ws)

Assume that ws and ws follow the bivariate normal copula such that

Cos(wa, w3) = o (P (w2), P~ (w3); p)

o2

C23 (wz, w3) = Dryds Cas (w2, ws)
0Py (w2), DN (ws); p) 0P (w2) 0P (ws)
N 8¢*1(w2)8¢*1(w3) 8w2 (%13

_ 02(2 M wa), @ (ws); p)
(P~ (w2))p(P~H(w3))

1 O (w2)? =29 (w2) P (w3)+ P (w3)?
. 2m/ 1—p? eXp( 2(1—p?) )
Ewen (I E

1 PP (wy)? — 2pP " (wa) P (w3) + PQ@I(WS)Q]

- ﬂ‘”‘p[_ 21— ?)
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where ® is the cumulative distribution function of the standard normal distribution, ¢ is
the probability density function of the standard normal distribution, ®, is the cumulative
distribution function of the standardized bivariate normal distribution, ¢, is the probability
density function of the standardized bivariate normal distribution, and p is the correlation
parameter.

Given that Cijos(wi|wa, w3) = [ c1p2s(t1|wse, ws)dty, it is required to obtain the conditional
density cijp3(wr|w2,ws), which is
C123(w1, Wo, w3)

f23(wa, w3)
C123 (wh w2, Ws)

Co3(F2(w2), F3(ws)) fo(w2) f3(w3)

0123(W1, wa, W3)

C23 (w2, w3)

Cl|23(wl|w27w3) =

The second inequality holds because

Fxy(z,y) = Cxy (Fx (), Fy (y))
82ny(:c,y)
0xdy
_ PCxy (Fx(x), Fy (y))
0xdy
_ *Cxy (Fx(x), Fy(y)) OFx(x) OFy (y)
OFx (x)0Fy (y) dr 0Oy

= cxy (Fx (), Fy (y)) fx(2) fy (v)

= fxv(z,y) =

and the third equality holds as wo, w3 ~ U[0, 1]. Note that

c123(wr, wa,w3) = 14 [1 + 012(1 — 2w ){1 — 12(wy — 0.5)*)} — 1]
+ [T+ 013(1 — 2w1){1 — 12(wz — 0.5)*)} — 1] + {coz(wa, w3) — 1}
= g2(1 — 2wy) + g3(1 — 2w) + ca3(w2, w3)

= h(l — 2w1) + 023(‘«027“13)7

where g2 = 012{1 — 12(&)2 — O5)2}7 gs = ng{l — 12(&)3 — 05)2}, and h = go + gs.
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Hence, the conditional copula Cij3(w:|ws, ws) is

w1
0123(601’002,603):/ c1)23(t1|wa, w3)dty
0

_ /w1 h(l — 2t1) -+ CQg(WQ,Wg) dtl
0

C23(W2,W3)
1 o
= [———{h(t, - ‘
[023(w2,w3){ ( 1 1) +023(wQ,w3) 1}] ,
1

023(w27w3>{ (wl Wl) +023(w2,w3)w1}

2.2.1.2 Conditional Copula Cy3(ws|ws)

Given that Cojz(walws) = [ cops(te|ws)dis, it is required to obtain the conditional density

C9)3(wa|ws), which is

C23 (W2 ) w3)

f3(w3)

c2|3(w2\w3) = = C23(w27w3)-

The second equality holds because ws ~ U[0, 1].

Hence, the conditional copula Cy3(wa|ws) is

w2
Cs(wslus) = / o (balos) b
0
/“’2 1 [ pPO7 (t2)? — 2p2 7 (£2) 2 (ws) + P07 (ws)°
= —_— Xp —_
0 /11— p? 2(1 = p?)

Let yo = @7 !(¢3) and y3 = ® ' (w3). Note that dty = ¢(y2)dys. Then, integrate by substitu-

dty

tion such as

~L(w2) 2,2 2.2
PY5 — 2pY2y3 + pY3
C [ ] d
2|3 w2’w3 / exp 2(1 — pQ) ¢(?/2) Y2
o rexp[ i |
= / N " O (y2)dys
e |~ 4]
1(w2 ( _ 2
Y2 — pys)
= exp[ — —} dys
/ V1-p? 2(1 — p?)
<I>< (w2) — P‘I’_l(w:a))
1—p?



2.2.2 Obtain Copula Arguments

2.2.2.1 Obtain ws

As wy ~ UJ0,1], (3 = F3(w3) = ws. Therefore, draw (3 from U|0, 1] and define w3 = (5.

2.2.2.2 Obtain ws

First, draw ¢, from U[0, 1]. Then, one can obtain w, by solving the equation Cy3(wa|ws)—(2 =

0. Tt yields

2.2.2.3 Obtain w;

First, draw ¢; from U[0, 1]. Then, one can obtain wy by solving the equation Cjos(ws |wa, w3)—

(1 = 0. It yields,

1
—{(h(w1 —wi) +caswn} =G =0
Ca3
= h(w1 — wf) + Cogwi — CQgCl =0

= hw% — (h + 023)(,01 + CQ3C1 =0

(h + 023) :|: \/(h + 023)2 — 4h623C1
2h ’

= W1 =

where co3 = coj3(wa|ws).
It is necessary to check whether the square roots are real numbers. Given that (ws,ws) €
[0,1]% and (012, 6013) € [—0.5,0.5)%, one can find the upper and lower bounds of go, g3. If

r € (0,1, 1 — 12(x — 0.5)® € [-2,1]. Therefore, (go,93) € [~1,1]> and h € [-2,2]. Since
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co3 > 0 and Cl € [O, ]_]7 (h + 023)2 — 4hCQ3Cl > 0 when h € [—2,0) AISO7 for h € [O, 2]7
(h + c3)? — 4hcosCy = (h — ca3)? + 4hcoz(1 — () > 0. Hence, the solutions are real numbers
unless h = 0.

The remained question is which solution to take. Rewrite the solutions as

(b ca) £ /(4 c23)? — 4heas(y
wre 2h
 {(h+ cas) £ /(B + ca3)? — AheasCG (b + ca) F /(7 + c23)% — dheasCy }
2h{(h + c23) F \/(h + c23)% — dheas(r }
 (h4e3)? — (h 4 co3)® + dheasG
N 2h{(h + c23) F \/(h + c23)> — 4hcas(i}
2¢93(1
(h+ co3) F \/(h + c93)? — 4hC23C1.

. . h h+ca3)2—4h
Consider the first solution w; = rteas) (;LCZS) Bma ZEES . Then,
(h+023)*\/(h+023)2*4h623C1

the denominator (h + co3) — \/(h + ¢93)% — 4hco3(y < 0 for h € [—2,0), which violates the

(h+ca3)—+/ (h+c23)?2—4hcasCe -
2h -

condition that w; € [0,1]. Now, consider the second solution w; =

2c23(1 : .. .
RSOy [wery T Given that ce3 > 0 and (; € [0,1], it is required to show that

wy € [0,1]. Tt can be shown as follows:

(i) wp >0

As c93 > 0 and (; € [0, 1], the numerator is positive. So it suffices to show that the

denominator is strictly positive. Since \/(h + ¢23)% — 4hce3(y > 0, the denominator is
guaranteed to be strictly positive for h € (—ca3, 2]; that is, if co3 > 2, the denominator

is strictly positive. If co3 € (0,2] and h € [—2, —co3), one needs to compare the values

of |h + co3] and \\/(h + ¢93)? — 4hcos(y|, which is equivalent to compare their squares.
Note that {(h+023)2 — 4]’L623C1} - (]'L + 023)2 = —4h623C1 > 0 unless Cl = 0.2 Hence the

denominator is strictly positive except the special case.

(i) w; <1
To find the maximum value of w; given the arguments in the numerator, it is nec-

essary to find the minimum value of the denominator. TLet A(h) = (h + co3) +

2As Z; ~U[0,1], P(Z; = 0) = 0.
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\/(h + 023)2 — 4h023€1. Then,

{(h+ c23)? — 4heasC Y 7 {2(h + ca3) — deasy }

(h =+ ca3) — 2c23C1
\/(h -+ C23)2 — 4h623<1

)
>
N | —

If (h + 623) — 262361 > 0, % > (0. For (h + 623) — 2623C1 < 0, compare the values

of |[(h =+ c23) — 2¢23¢1| and [/ (h + c23)2 — 4hcas(y|, which is equivalent to compare the

values of {(h + co3) — 2¢93¢1 }? and (h + c93)* — 4hees(y. Note that

{(h + 023) — 2C23<l}2 — (h =+ C23)2 — 4h023<1
= (h + c3)* — 4cozCi (R + c23) — (B + c23)* + 4hcas(y

= —4023{1{(h + C23) - h}

= _4033C1 S 07
which implies \/EZJ;ZZ));EZB‘;Q < -1, 8( ) > 0. Therefore, given co3 and (i, A(h)
—c A/ (—2+c23)%2+8¢
has the smallest value when h = —2. For h = —2, w; = @ea)t i+ 20)7 480230 Nt

that

(2 — 023) -+ \/(—2 -+ 623)2 + 8623C1
4

=4 \/ -2+ 023 24+ 8023(1 < 24 co3

w1 = Sl

= (—2 + 023)2 + 8C23C1 < (2 + 023)2
S 4 —4degs + 033 + 8023C1 <44 4dcos + 033

= 8623(1 — Cl) > 0.
The last inequality holds because of cy3 > 0 and ¢; € [0, 1.1

Let A= h+ co3 and B = c3(1, where cp3 = c93(w2|ws). Then the solution is

2B

T AL 1hB
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2.3 Generating Pseudo Data

Consider the following stochastic cost frontier model such that
InC; = InC(y,, wi) + vi +u;” + g(&,)
Sij = 8i(Ys wi) + hi (&) +vij, 7=2,--+,J.

Each component of the system defined in Section 2.1 can be written as

M
1H0(yi, wz) - BO + Z B?n(lnyzm Z Z B lnyzm hlyzn)
m=1

mlnl

J J
1
+ E B} (Inwi;) + 5 g Y (Inw;; ) (Inw;g)

+ Z Z o (InYim ) (Inw;;)

mljl

si(y;, w;) = ﬁw + Z Y (lnw;,) + Z lnyzm j=2,---,J

J J oJ
- DA+ ZZ (I )+ 5 D0 D A6
Jj=1 j=1 j=1 k=
- k=1 } k=1
Z Z (i )&y + In Z(sfj/e&?’)
m=1 j=1 7j=1
55(Ys wi) [1— {350 (55 /€5 ) besor] + D750 Bl

7"'7Ja

{Zk:1<5ik/e§m)}€£”
where s}; = s;(y;, w;) + Zgzl Bk, J = 2,-++,J, is the shadow cost share of input j for
producer ¢ who is assumed to be only allocatively inefficient.

Four types of pseudo-data sets are generated by the pair of the numbers of inputs (.J)
and outputs (M): two inputs - one output, two inputs - two outputs, three inputs - one
output, and three inputs - two outputs, where each set includes 1000 producers (N = 1000).
In order to construct pseudo-data sets, it is necessary to draw three types of variables:
(i) variables consisting of deterministic kernels of the translog cost system, y, and w;; (ii)
random components of the model not linked by the APS copulas, v; and v;; and (iii) random

components of the model linked by the APS copulas, u] and €,. The dependent variables
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of the translog cost system, C; and s;9,--- , s;7, can be calculated using those variables and
parameters.

The first and second types of variables are generated as follows. Note that the underlying
production technology of the translog cost function is unknown, as the translog cost function
has neither a closed-form dual production nor a transformation function (Kumbhakar and
Lovell, 2000, p.154). Hence, outputs, Iny;; and Iny,s, are drawn from T'(2,2) and T'(3,2)
with a correlation coefficient of 0.8. Input prices, Inw;, Inw;s, and Inw;s, are independently
drawn from N(1,0.1?), N(2,0.1%), and N(3,0.1?) distributions, respectively. Stochastic noise
terms, v; and v;, are generated from N(0,02) and N(0,X,). The third type of variables are
generated in the reverse order of the procedure for a change of variables that is used to
derive the joint density in Ryu (2021). Figure 2.3.1 illustrates the procedure to simulate
Z = (ul &, &)

Figure 2.3.1: Procedure to Simulate Z = (u!, &9, , &)

~ Step 1: Draw of ( Step 3: Inverse Transformation Method

[ 1 [ 1

C2|1,--- Fl,..
O, O,
G G Gy W ) 4ii 4
L ) L ) L )
| | |
i.id. U[0,1] CDF values Random Numbers

L )

Step 2: Inverse Rosenblatt Transformation

To be specific, random components of the model linked by the APS copulas are simu-

lated by the following procedure. First, draw independent random numbers, ¢, from the

uniform distribution over [0, 1]. Second, produce CDF values, w, given 65 and the inverse of
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conditional APS copula functions employing the inverse Rosenblatt transformation®. Third,
generate Z = (71, Zy) = (ul, &s, -+ - , &) given O3 and the inverse of cumulative distribution
functions by the inverse transformation method.

There is a practical issue in the first step. In order to apply the inverse Rosenblatt
transformation, it is essential to draw an N x J array of uniformly distributed random
numbers in which columns are uncorrelated in order to correctly estimate 65. Because of the
practical difficulties to use truly random variables in the Monte Carlo methods?*, two methods
for generating random numbers are generally used in applications: (i) pseudo-random number
generators (PRNGs); and (ii) quasi-random number generators (QRNGs). Two functions
provided by MATLAB are considered to draw (3,---,(;: (i) rand that generates uniformly
distributed pseudo-random numbers; and (ii) haltonset that produces Halton sequences
that make up the representative example of quasi-random number sequences.

For illustrative purposes, Figure 2.B.1 shows sample correlations between two uniform
random variables, (; and (5 to compare the performance of the two functions. The number
of replications is 1000, where three sample sizes N € {100, 1000, 10000} are considered for
each replication. Figures 2.B.1(a), 2.B.1(c), and 2.B.1(e) are obtained by the function rand.
Figures 2.B.1(b), 2.B.1(d), and 2.B.1(f) are obtained by the function haltonset, where
several methods are applied to address the inherent issue that the points of a quasi-random
sequence are correlated.’

As shown in Figure 2.B.1, although the columns of the arrays produced by rand are
theoretically uncorrelated, some pairs of (; and (5 are highly correlated, especially when the
number of draws are not sufficiently large. Also, even if N = 10000, some pairs of (; and (,

seems to be significantly correlated. By contrast, correlations between (; and (, generated

3It is known as “conditional distribution method.” Please refer to Embrechts et al. (2003) and Cambou
et al. (2017) for more details.

4Please see Ch.8 of Judd (1998) for more details.

SMATLAB provides three methods: (i) omit initial points in the sequence; (ii) set interval between
points; and (iii) scramble the sequence. In the simulation, the first 100,000 values of the Halton point set are
omitted, the every 100,001st point are retained, and then the Halton point set is scrambled by a reverse-radix
operation.
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by haltonset are mostly negligible. Hence, a QRNG, haltonset of MATLAB, is used to

generate (i, -+ ,(J.
In the second step, wy, - -+ ,wy are generated through a consecutive process based on the

Rosenblatt transformation by solving equations such that

G = FJ(WJ)
Cr1= FJ71|J<WJ71|WJ)

Cr—2 = FJ—2|J—1,J(WJ72 \wal, wJ)

G = F1|2,~~~,J(W1’W27 T 7WJ)-

As derived in Appendix A, w; and w, for the APS-2-A copula are generated as follows:

w2 = (2
_ 2G
A4 A2 —4(A-1)¢

w1

where A = 1+ g5 and gy = 012{1 — 12(wy — 0.5)?}. For the association parameter of the
APS-2-A copula, three values of 015 € {0,0.2,0.4} are considered. Also, Section 2.2 shows

that wq, wy, and ws for the APS-3-A copula are generated as follows:

w3 = (3

wp = @(p@~ (wy) + /1 — p*@7(())
2B

w1

T A+ /A2 —1hB’

where p is the correlation parameter of the bivariate Gaussian copula, A = h + co3(ws, w3),
h = gatgs, g2 = 012{1-12(w2—0.5)*}, g5 = 013{1—-12(w3—0.5)*}, and B = cy3(wy, w3)¢y. For
the association parameter of the APS-3-A copula, two pairs of (615, 613) € {(0,0),(0.2,0.2)}
are considered to generate data sets, and the correlation parameter of the bivariate Gaussian

copula p is set to —0.5.
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2.4 Results of Monte Carlo Simulations

Here, two sets of simulations are conducted. The first set of simulations (Simulation I) is
conducted to confirm the validity of the estimation strategy in Ryu (2021). The purpose of
the second set of simulations (Simulation II) is to examine the plausibility of the assump-
tion in Greene (1980) when technical and allocative inefficiency are indeed dependent. The

number of replications is 1,000 for both sets of simulations.

2.4.1 Simulation I

A set of quasi-Monte Carlo simulations based on quasi-random sequences is conducted. Hal-
ton sequences are also used for the simulations as the data generating process but for different
reasons. The joint density of X and Y involves a multidimensional integral, in which a quasi-
Monte Carlo integration is generally superior to standard Monte Carlo methods in terms of
integration error and its convergence rate.5 For example, Morokoff and Caflisch (1995) show
that a quasi-Monte Carlo method using a Halton sequence has the lowest integration error
and the fastest convergence rate up to around six dimensions among (quasi-)Monte Carlo
methods using Halton, Sobol, Faure, and pseudo-random sequences. For copula sampling,
in addition, Cambou et al. (2017) show that replacing PRNGs with QRNGs for integration
also improves performance, reducing the variance of the obtained estimators and improving
the convergence rate of the variance.

Tables 2.4.1 to 2.4.4 report the results of quasi-Monte Carlo simulations for 65 = 0.4 for
two-input cases or 15 = 013 = 0.2 for three-input cases. Other results are reported in Tables
2.B.1 to 2.B.6 of Appendix B. R sets of N x J Halton sequences are drawn for estimation,
where R = 10,000, N = 1,000, and J = 2 or 3. Although the standard deviations of the
association parameters 615 and 6,3 are somewhat large, the results suggest that the stochastic
cost frontier model in Ryu (2021) can be also reliably estimated like the stochastic production

frontier model as in Amsler et al. (2021). That is, the modified translog cost system based on

6Please refer to Caflisch (1998) for more details.
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Kumbhakar (1997) and the APS copulas is estimable by the maximum simulated likelihood
estimator established on the probability integral transformation and the copula-based version

of the Rosenblatt transformation.

Table 2.4.1: Result of Simulation I (J =2, M =1, 615 = 0.4)

0 g'True éMSL 0 gTrue éMSL 9 g'True éMSL
Bo  10.0000  9.9999 By 0.6000  0.6006 o, 0.3162 0.3154
(0.0306) (0.0127) (0.0071)

ﬁ?f 0.8250 0.8249 %Y 0.0500  0.0507 ou, 0.0100 0.0062
(0.0111) (0.0129) (0.0085)

¥ 0.0500 0.0500 Y7 0.0100  0.0100 012 0.4000 0.3765
(0.0018) (0.0010) (0.1219)

or 0.2236 0.2239
(0.0170)

e, 03162 0.3183
(0.0246)

Note: Standard deviations are in parentheses.

Table 2.4.2: Result of Simulation I (J =2, M =2, 615 =0.4)

0 gTrue éMSL 0 g'True éMSL 0 gTrue éMSL
Bo  10.0000 9.9984 gg 0.0400 0.0402 o, 0.3162 0.3146
(0.0353) (0.0031) (0.0072)

Bi/ 0.4000 0.4002 By 0.6000 0.6000 oy, 0.0100  0.0099
(0.0140) (0.0057) (0.0104)

Bg 0.3000 0.2995 1Y 0.0500 0.0500 A2 0.4000 0.4014
(0.0130) (0.0032) (0.1113)

%j 0.0500 0.0502 Zﬁu 0.0100 0.0100 or 0.2236  0.2261
(0.0036) (0.0017) (0.0173)

Yo 00100 -0.0102 YU 0.0150 -0.0150 o, 03162 03112
(0.0032) (0.0010) (0.0162)

Note: Standard deviations are in parentheses.
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Table 2.4.3: Result of Simulation I (J =3, M =1, 615 =613 =0.2)

0 gTrue éMSL 0 gTrue éMSL 0 g True éMSL
Bo  10.0000  9.9993 550 0.0250  0.0250 012 0.2000  0.1741
(0.0310) (0.0041) (0.1110)
By 0.8250  0.8247 77 0.0100  0.0100 615 0.2000  0.1780
(0.0113) (0.0004) (0.1109)
¥/ 0.0500  0.0500 75 -0.0050  -0.0051 po  -0.5000 -0.4996
(0.0019) (0.0009) (0.0176)
B 0.2500  0.2495 oy 0.3162  0.3155 or 0.2236  0.2252
(0.0027) (0.0072) (0.0171)
By 0.4000  0.4006 oy, 0.0100  0.0095 oe, 0.3162  0.3170
(0.0048) (0.0025) (0.0121)
1Y 0.0350  0.0347 oy 0.0100  0.0100 e, 0.3162  0.3167
(0.0014) (0.0008) (0.0047)
5’ -0.0150 -0.0148 py  0.0000 -0.0409
(0.0019) (0.0796)
Note: Standard deviations are in parentheses.

Table 2.4.4: Result of Simulation I (J =3, M =2, 015 = 613 =0.2)

0 gTrue éMSL 0 gTrue éMSL 9 gTrue éMSL
Bo  10.0000 10.0000 %Y 0.0350 0.0348 oy, 0.0100  0.0095
(0.0348) (0.0015) (0.0024)
By 0.4000 0.3994 1% -0.0150  -0.0149 0w, 0.0100  0.0100
(0.0139) (0.0019) (0.0005)
By 0.3000 0.3001 55 0.0250  0.0250 pr 0.0000  -0.0665
(0.0129) (0.0033) (0.1010)
¥ 0.0500 0.0501 Y7 0.0100  0.0100 f12  0.2000 0.1791
(0.0038) (0.0007) (0.1108)
7 -0.0100 -0.0100 ¥y -0.0050  -0.0050 f13  0.2000  0.1788
(0.0033) (0.0011) (0.1095)
5y 0.0400 0.0400 50 0.0150  0.0150 po -0.5000 -0.5000
(0.0032) (0.0004) (0.0127)
B 0.2500 0.2496 % -0.0050  -0.0050 or 0.2236  0.2243
(0.0026) (0.0007) (0.0173)
By’ 0.4000 0.4000 o, 0.3162  0.3151 og, 03162 0.3164
(0.0032) (0.0071) (0.0078)
og; 03162 0.3165
(0.0041)

Note: Standard deviations are in parentheses.
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2.4.2 Simulation II

[ conduct another set of simulations using the pseudo-data set described in Section 2.3,
which assumes that technical and allocative inefficiency are linked by the APS copulas. The
objective of this simulation is to check the validity of the assumption in Greene (1980)
when technical and allocative inefficiency are actually dependent. Consider a stochastic cost

frontier model such as

InC; = InCl(y,;, w;) + ¢
=InC(y;, w;) +v; +u;

Sij = Si(Yp, w;) +e€ij, =2, ,J. (2.4.1)
Greene (1980) assumes that ¢; is independent of e; = (e;2, €;3). I assume that v; A N(0,02),
u; A |IN(0,02%)|, and e; ES) N(0,3,). Maximum likelihood estimation can be applied to esti-
mate parameters of the model, where the joint density of €;, €;2, €;3 is SIMply fe c, ¢4 (€, €2, €3) =

fo(e) - fe(e), as ¢; and e; are assumed to be independent.’
Tables 2.4.5 to 2.4.8 show the result of simulations when 6, = 0.4 for J = 2 and
015 = 012 = 0.2 for J = 3. The key finding is as follows. As u; = u! + g(¢;), we do not know
the true standard deviations of u;.® However, as both u! and g(§,) are positive, the value

of u; is higher than that of . It implies that the standard deviation of w;, o, should be

T

u?

higher than the standard deviation of u!, o, as the mean of a random variable from the
half normal distribution is an increasing function in its standard deviation. However, the
estimates of o, for all cases are less than the true value of o = 0.2236. It suggests that

if one ignores the relationship between technical and allocative inefficiency when they are

indeed dependent, estimates of a cost increase due to inefficiency would be biased.

"Given the assumption about the distribution of v; and u;, the probability density function of ¢; is

0= 2-of2) of2).

where 0% = 02 + 02, A = 0, /0, and ¢ and ® are density and distribution functions of the standard normal
distribution.
8In addition, as e;; = h;(€;) + vij, j = 2,3, we do not know the true standard deviations of e;;.
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Table 2.4.5: Result of Simulation 1T (J =2, M =1, 6,5 = 0.4)

0 gTrue éML 0 g True éML 0 gTrue éML
Bo 10.0000 10.0213 By 0.6000 0.5984 oy 0.3162 0.3164
(0.0971) (0.0076) (0.0249)
B 0.8250  0.8288 e 0.0500  0.0491 Oy - 0.1924
(0.0112) (0.0098) (0.1122)
W 0.0500  0.0496 77 0.0100  0.0099 Oe, - 0.0604
(0.0019) (0.0010) (0.0004)
Note: Standard deviations are in parentheses.
Table 2.4.6: Result of Simulation II (J =2, M =2, 615 = 0.4)
0 g True éML 0 gTrue éML 0 gTrue éML
Bo  10.0000 10.0096 %y 0.0400  0.0395 oy 0.3162  0.3143
(0.1045) (0.0034) (0.0300)
BY 0.4000  0.4004 By 0.6000  0.5987 Oy - 0.2030
(0.0147) (0.0050) (0.1161)
By 0.3000  0.3048 1Y 0.0500  0.0494 Oey - 0.0624
(0.0156) (0.0026) (0.0012)
¥ 0.0500  0.0496 Y7 0.0100  0.0099
(0.0039) (0.0016)
¥¥-0.0100 -0.0099 51 -0.0150 -0.0148
(0.0034) (0.0008)

Note: Standard deviations are in parentheses.

Table 2.4.7: Result of Simulation IT (J =3, M =1, 612 = 613 = 0.2)

0 gTrue éML 0 gTrue éML 0 gTrue éML
Bo  10.0000 10.0755 %Y 0.0350  0.0335 oy, 03162 0.3342
(0.0543) (0.0015) (0.0114)
By 0.8250 0.8286 1% -0.0150  -0.0148 Oy - 0.1338
(0.0113) (0.0016) (0.0588)
¥ 0.0500 0.0499 55 0.0250  0.0238 Oey - 0.0931
(0.0019) (0.0032) (0.0004)
By 0.2500 0.2425 Y7 0.0100  0.0101 Ocs - 0.0914
(0.0029) (0.0004) (0.0004)
By 0.4000 0.3965 ¥y -0.0050 -0.0038 Pe - -0.5559
(0.0043) (0.0009) (0.0014)

Note: Standard deviations are in parentheses.
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Table 2.4.8: Result of Simulation II (J =3, M =2, 65 = 643 = 0.2)

0 gTrue éMSL 0 gTrue éMSL 9 gTrue éMSL
Bo 10.0000 10.0712 By 0.4000  0.4008 5 -0.0050 -0.0041
(0.0545) (0.0044) (0.0007)
By 0.4000 0.3963 7Y 0.0350  0.0330 o, 03162  0.3328
(0.0140) (0.0016) (0.0111)
By 0.3000 0.3070 197 -0.0150  -0.0149 Oy - 0.1369
(0.0130) (0.0018) (0.0551)
¥ 0.0500 0.0495 557 0.0250  0.0224 Oey - 0.0842
(0.0038) (0.0035) (0.0004)
%Qy -0.0100  -0.0097 ¥70.0100 0.0097 Oey - 0.0796
(0.0033) (0.0008) (0.0004)
Y 0.0400  0.0391 YO _0.0050  -0.0064  pe - -0.5208
(0.0032) (0.0013) (0.0023)
BY0.2500  0.2418 Y0 0.0150  0.0150
(0.0035) (0.0004)

Note: Standard deviations are in parentheses.

2.5 Conclusion

The estimation strategy proposed in Ryu (2021) involves multidimensional integral and two-
step transformations. Therefore, it would be necessary to conduct a set of Monte Carlo
simulations to confirm their validity. Like Amsler et al. (2021), the simulation results sug-
gest that the parameters of the model in which APS copulas are employed can be reliably
estimated in complex settings. In addition, I conduct another set of simulations to check the
plausibility of assumptions in Greene (1980). Simulation results imply that it would lead

biased estimates of inefficiency to ignore the relationship between technical and allocative

inefficiency when they are indeed dependent.
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APPENDIX A

Simulating from the APS-2-A Copula

This section is written based on the supplemental material for Amsler et al. (2021). Let
c12(wr,ws) be a copula density, where (w,ws) € [0,1]? are copula arguments that are uncor-
related, but w; is correlated with |wy — 0.5].

For computational ease, w, and w; are generated sequentially, which requires Chjo(w1|ws)
is used for the Rosenblatt transformation. In this section, Cijo(wi|ws) is derived, then meth-

ods to obtain w, and w; are presented.

2.A.1 Derivation of the Conditional Distribution

Given that Cip(wi|ws) = [ cip(ti|we)dty, it is required to obtain the conditional density
01‘2(w1|w2), which is

Cra(w, wa)
Ja(ws)
The second equality holds because wy ~ U[0, 1].

C1|2(W1‘w2) = = 012(0017002)-

Hence, the conditional copula Cyj2(w;|ws) is
w1
Cj2(wi|wsz) = / cijz(ti|ws)dt
0
_ / 14 011 — 26){1 — 12(ws — 0.5))}]dts
0
w1

= [t; + 012(t; — t3){1 — 12(wy — 0.5)*)}] .

=wp + 9120}1(1 — wl){l — 12((.4}2 — 05)2)}
= wy + gwi (1 —w),

where g = 015{1 — 12(w, — 0.5)?}.

2.A.2 Obtain Copula Arguments

2.A.2.1 Obtain wy

As wy ~ UJ0,1], (3 = Fo(w2) = we. Therefore, draw ¢, from U|0, 1] and define wy = (s.
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2.A.2.2 Obtain w;

First, draw ¢; from U[0, 1]. Then, one can obtain w; by solving the equation Cyja(wq|we)—C1 =

0. Tt yields
wy +Fgwi(l—w)—¢ =0
= gwi — (L +g)wr +¢ =0
L = L) E \/(21g+9)2 —49G
Due to the upper and lower bounds of wq, the solution w; = Ate)ty/(119)* 496 is ruled out

29

(Amsler et al., 2021). Let A =1+ g. Then,

A=A —4(A-T1)G
YL 2(A 1)
(A= VA IA-1)G)(A + VA —A(A 1))
20A - 1)(A+ /A2 —4(A - 1))
A2 — A2+ 4(A - 1)
204 - 1)(A+ A2 —4(A- 1))
B 2
A+ A AA-G
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APPENDIX B

Tables and Figures

Figure 2.B.1: Sample Correlations between (; and (5

(a) PRNG - rand of MATLAB
(N = 100)

(c) PRNG - rand of MATLAB
(N = 1000)

(e) PRNG - rand of MATLAB
(N = 10000)
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Table 2.B.1: Result of Simulation I (J =2, M =1, 6,5 =0)

2 QTrue éMSL 0 QTrue éMSL [ eTrue éMSL
Bo 10.0000  9.9993 By 0.6000  0.6002 o, 0.3162 0.3153
(0.0305) (0.0130) (0.0071)

gy 0.8250  0.8250 1Y 0.0500  0.0505 oy, 0.0100 0.0074
(0.0111) (0.0133) (0.0109)

¥ 0.0500  0.0500 77 0.0100 0.0101 012 0.0000  0.0052
(0.0018) (0.0010) (0.1679)

or 0.2236  0.2243

(0.0170)

o, 0.3162  0.3146

(0.0329)

Note: Standard deviations are in parentheses.

Table 2.B.2: Result of Simulation I (J =2, M =1, 65, =0.2)

2] eTrue éMSL 0 eTrue éMSL ) eTrue éMSL
Bo  10.0000  9.9996 By 0.6000  0.6008 o, 03162 0.3153
(0.0304) (0.0127) (0.0071)

By 0.8250  0.8250 ¢ 0.0500  0.0510 oy, 0.0100 0.0074
(0.0110) (0.0129) (0.0103)

¥ 0.0500  0.0500 77 0.0100 0.0101 012 0.2000  0.2056
(0.0018) (0.0010) (0.1596)

or 0.2236  0.2243

(0.0170)

e, 03162 0.3167

(0.0294)

Note: Standard deviations are in parentheses.
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Table 2.B.3: Result of Simulation I (J =2, M =2, 6,5 =0)

9 eTrue éMSL (9 QTrue éMSL (9 eTrue éMSL
Bo  10.0000  9.9989 5y 0.0400  0.0401 o, 03162 0.3145
(0.0352) (0.0031) (0.0072)
By 0.4000  0.4002 By 0.6000  0.5998 o, 0.0100 0.0160
(0.0140) (0.0056) (0.0164)
gy 0.3000  0.2996 1Y 0.0500  0.0499 A2 0.0000 0.0610
(0.0130) (0.0030) (0.2049)
77 0.0500  0.0501 77 0.0100  0.0100 or 0.2236 0.2263
(0.0036) (0.0017) (0.0173)
¥ -0.0100 -0.0101 27 -0.0150  -0.0150 og, 0.3162  0.2934
(0.0032) (0.0008) (0.0475)
Note: Standard deviations are in parentheses.
Table 2.B.4: Result of Simulation I (J =2, M =2, 65, =0.2)
9 HTrue éMSL 9 QTrue éMSL 6 eTrue éMSL
Bo  10.0000  9.9983 % 0.0400  0.0402 o, 03162 0.3144
(0.0352) (0.0031) (0.0072)
By 0.4000  0.4002 gy 0.6000  0.5999 o, 0.0100 0.0132
(0.0140) (0.0057) (0.0138)
By 0.3000  0.2996 17 0.0500  0.05000 012 0.2000 0.2525
(0.0130) (0.0031) (0.1654)
¥ 0.0500  0.0501 77 0.0100  0.0100 or 0.2236  0.2266
(0.0036) (0.0017) (0.0174)
7Y -0.0100 -0.0101 57 -0.0150  -0.0150 og, 0.3162  0.3144
(0.0032) (0.0008) (0.0072)

Note: Standard deviations are in parentheses.
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Table 2.B.5: Result of Simulation I (J =3, M =1, 615 =613 =0)

‘9 eTrue éMSL 9 9True éMSL 0 0True éMSL
Bo  10.0000  9.9990 5" 0.0250  0.0251 015 0.0000 -0.0049
(0.0310) (0.0044) (0.1237)
By 0.8250  0.8247 v 0.0100  0.0100 613 0.0000 -0.0002
(0.0113) (0.0004) (0.1186)
7 0.0500  0.0500 ¥y -0.0050 -0.0050 p -0.5000 -0.4971
(0.0019) (0.0010) (0.0339)
¥ 0.2500  0.2495 o, 0.3162  0.3154 or 0.2236  0.2252
(0.0029) (0.0072) (0.0171)
By 0.4000  0.4005 o,, 0.0100  0.0094 og, 0.3162  0.3177
(0.0060) (0.0027) (0.0199)
1Y 0.0350  0.0347 oy, 0.0100  0.0100 og,  0.3162  0.3166
(0.0017) (0.0009) (0.0056)
90 -0.0150  -0.0149 pr 0.0000 -0.0509
(0.0023) (0.1088)
Note: Standard deviations are in parentheses.
Table 2.B.6: Result of Simulation I (J =3, M =2, 015 = 613 =0)
0 (True éMSL 0 g True éMSL 0 (' True éMSL
By 10.0000  9.9999 1Y 0.0350  0.0348 o, 0.0100  0.0095
(0.0348) (0.0015) (0.0024)
By 0.4000  0.3994 120 -0.0150  -0.0149 oy, 0.0100  0.0100
(0.0139) (0.0019) (0.0005)
By 0.3000  0.3001 5 0.0250  0.0250 pp 0.0000 -0.0445
(0.0129) (0.0032) (0.0992)
¥ 0.0500  0.0500 77 0.0100  0.0100 fo 0.0000  0.0005
(0.0038) (0.0007) (0.1171)
Y¥-0.0100 -0.0100 ¥y -0.0050 -0.0050 A5 0.0000 -0.0009
(0.0033) (0.0011) (0.1200)
% 0.0400  0.0400 57 0.0150  0.0150 p  -0.5000 -0.4996
(0.0032) (0.0004) (0.0116)
By 0.2500  0.2496 5 -0.0050 -0.0050 or 0.2236  0.2243
(0.0026) (0.0007) (0.0172)
gy 0.4000  0.4003 o, 0.3162  0.3150 og, 0.3162  0.3163
(0.0034) (0.0071) (0.0073)
g, 0.3162 0.3165
(0.0040)

Note: Standard deviations are in parentheses.
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CHAPTER 3

DEMAND ESTIMATION OF DEPOSITS:
A CASE OF THE KOREAN FINANCIAL INDUSTRY

3.1 Introduction

During the last several decades, tools in structural economic modeling have developed re-
markably, especially in the field of industrial organization. These techniques and tools were
recently applied in finance to some extent, presenting many promising directions.! For ex-
ample, Hortagsu et al. (2018) estimate a structural model of the uniform price auctions of
U.S. Treasury bills and notes in order to analyze market power across the three different
bidder groups: primary dealers,; direct bidders, and indirect bidders. Bonaldi et al. (2015)
propose a framework for estimating spillover effects between individual banks’ short-term
funding costs and measure systemic risk using data from the main refinancing operations of
the European Central Bank.

The other intersecting field of finance and industrial organization is estimating a demand
system for financial assets, which are viewed as differentiated products. There are two main
directions with respect to this field: the first one is based on a product-space demand model
like the one proposed by Deaton and Muellbauer (1980) that approximates the demand
function by a flexible functional form; and the second direction is based on a characteristics
space demand model such as Berry et al. (1995, hereafter BLP), where consumer choices are
based on products’ characteristics rather than the products themselves.

The aim of this paper is to estimate a structural demand model for the financial instru-
ments of Korea in order to measure the effect of deregulation in the payment and settlement
systems. From 2009, securities companies were given access to participate in retail payment

systems, which were previously restricted to banks only. Consequently, cash management ac-

!Please refer to Kastl (2017) for more details.
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counts (hereafter CMAs) provided by securities companies, which were similar to traditional
deposits of banks but had limitations in transferring funds, became the close substitutes for
deposits in terms of services.

CMAs, which were introduced in Korea in the 1980s, have similarities to the checking
accounts of banks that consumers can deposit and withdraw funds from without limitations.
In addition, as securities companies generally invest funds from CMAs in government or
public corporations bonds with repurchase agreements?, they offer interest rates of CMAs
around the policy interest rates, whereas the checking accounts usually provide almost zero
interest. That is, CMAs share the features of the checking accounts and the time deposits
of banks. However, securities companies are regarded as less safe than banks due to the
differences in the business model and the size of institutions, as well as regulatory gaps
between banks and securities companies. Also, most CMAs are not protected by deposit

3 Furthermore, as the retail payment systems were only accessible by banks,

insurance.
CMAs were not used as a means of exchange.

Ever since the Capital Market and Financial Investment Business Act, enacted in August
2007, was enforced in February 2009, securities companies were allowed to participate in the
retail payment systems operated by the Korea Financial Telecommunications and Clearings
Institute (KFTC).* Therefore, from the depositor’s perspective, traditional deposits and
CMAs became indistinguishable in terms of services they provide. For instance, consumers
who have CMAs are able to transfer funds to bank accounts via internet or mobile banking

services and vice versa. Also, CMA holders can pay off their credit card balances by deducting

from their CMAs. Reflecting these changes, CMAs were included in M2 from July 2009.°

2As of Q4 2016, CMAs with RP agreement count for 59.0% of total CMAs, while those investing in MMF
and fiduciarily managed by Korea Securities Finance Corporation count for 6.1% and 30.3%, respectively.

3CMAs of a securities company that also has the merchant bank license are protected by deposit insur-
ance. However, its share of CMAs is only 4.6% as of Q4 2016 since only two securities companies hold the
merchant bank license.

4Securities companies began to join the retail payment systems from July 2009.

5 Although CMAs are transferable like the checking accounts included in M1, depositors in CMAs have
to sacrifice interests if they use balance in CMAs for transaction. Therefore, CMAs are classified into M2.
Please refer to International Monetary Fund (2016) for more details on the definitions of money aggregates.
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The enactment of the Capital Market and Financial Investment Business Act sparked a
fierce debate on securities companies’ participation in the retail payment systems. People
who supported the deregulation claimed that consumer welfare would be improved by pro-
moting competition among financial institutions, and it would be necessary to promote the
financial investment businesses that were less developed than the banking industry. On the
other hand, people who were against the measure contended that it would be harmful to
the financial system as it would cause an increase in payment and settlement risks. Also,
receiving deposits is considered the banks’ own business® and only a few countries allowed
securities companies to participate in the retail payment systems.

As a result, the Capital Market and Financial Investment Business Act permitted securi-
ties companies to participate in the retail payment systems. However, although CMAs have
the advantages of interest rates and services compared to bank deposits, its total amount has
stabilized after a sharp increase between mid-2006 and mid-2008. In particular, its balance
had remained around forty trillion KRW for five years since the global financial crisis. This
suggests that depositors’ choice may depend on the financial stability situation that would
affect their risk attitudes, referred to as the market discipline in banking. Based on this
phenomenon, this paper evaluates whether consumer welfare has significantly increased with
the enforcement of the act when considering consumer’s risk attitudes.

In order to measure the effect of deregulation, I develop a structural demand model
following the characteristic space approach. As in Petrin (2002), the researcher is able to
evaluate welfare gains for consumers from the introduction of new products by constructing
a structural model. Furthermore, as Nevo (2000) notes, the econometrician can reduce
the number of parameters that need to be estimated. To estimate the model, T apply the
random coefficient discrete choice approach. This approach can estimate the model using

only market-level price and quantity data, deal with the price endogeneity, and allow for a

SFor example, the U.S. Bank Holding Companies Act defines banks as an institution which both (i)
accepts demand deposits or deposits that the depositor may withdraw by check or similar means for payment
to third parties or others; and (ii) is engaged in the business of making commercial loans.
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Figure 3.1.1: Interest Rates and Total Amount of CMAs
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more realistic substitution pattern reflecting the heterogeneity in consumer tastes.

The characteristics space approach model in the finance literature relates to asset pricing
and portfolio choice. Markowitz (1952), the classical reference in finance, views a portfolio
as bundles consisting of mean-variance characteristics. In addition to the mean and the vari-
ance of returns, other relevant characteristics of financial instruments may include maturity,
probability of default, asset covariance with the market return, etc. However, as Kastl (2017)
points out, although those might be the relevant characteristics that capture important parts
of variation in demand for portfolio, it might be hard to succinctly capture other important
ones.

Other than analyzing portfolio choice that considers whole financial markets, another
way of defining the relevant characteristics is by restricting the scope of the financial instru-
ments, such as deposits. This paper focuses on deposits instruments, which include checking,
savings, and time deposit accounts generally provided by commercial banks, and CMAs.”
The reasons are as follows: (i) the banking sector holds more than 50% of the financial

assets among Korean financial institutions®; (i) deposits are the major source of Korean

"One can consider to separately construct models by products. However, as deposits cannot be disag-
gregated at the bank level as well as CMAs hold characteristics of both checking and time deposits, I focus
on whole deposit services.

8 As of Q4 2016, the banking sector holds 50.8% of the financial assets among Korean financial institutions,
while insurance sector and securities sector hold 15.9% and 5.8%, respectively.
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banks’ funding®, and (iii) CMAs, the interest of this paper, became the close substitute for
traditional deposits by the deregulation in payment and settlement systems.

Recently, some papers have applied a discrete choice model to estimate the demand for
deposits. For example, Dick (2008) estimates a structural demand model for commercial
bank deposit services in order to measure the effects on consumers, given changes in bank
services owing to the Riegle-Neal Interstate Banking and Branching Efficiency Act of 1994
that allowed for nationwide branching. Following the discrete choice literature, it assumes
that consumer decisions are based on prices and bank characteristics, such as deposit rates,
account fees, the age, size, and geographic diversification.

Based on the demand estimation for deposits, some papers extended a structural model of
the banking sector to analyze the financial fragility. For example, Egan et al. (2017) develop
a structural empirical model of the U.S. banking sector that considers both demand and
supply sides. After estimating the demand and supply for deposit, the researchers evaluate
several proposed bank regulations. The results, for instance, suggest a capital requirement
below eighteen percent could lead to significant instability in the U.S. banking system.

However, those papers do not explicitly take market discipline in banking into consid-
eration. Market discipline in banking, in its broad terms, is defined as the mechanism via
which market participants monitor and discipline excessive risk-taking behavior by banks
(Stephanou, 2010). It is often described as a situation where depositors face costs that are
positively related to bank risk and react on the basis of these costs (Berger, 1991). For
instance, given that the bank’s fragility increases, depositors respond by withdrawing their
funds or by demanding higher interest rates on their deposits. Since it is known that mar-
ket discipline would lower the probability of individual bank’s failures and the incidence of
banking crises by reducing the problems of moral hazard and asymmetric information in
banking, policymakers have increasingly recognized its role and have incorporated it in their

regulatory frameworks. One example of its codification is Pillar 3 in the Basel III, which is

9As of Q4 2016, deposits consists of 83.6% of banks’ funding.
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the global supervisory framework for internationally active banks.

0 Previous studies

Much work has been done on the existence of market discipline.!
provide evidence of market discipline in both developed countries and developing countries.
Most of these studies examine the existence of market discipline by analyzing either how
yields on uninsured deposits or the level or growth of uninsured deposits respond to measures
of bank risk. However, a number of papers have found that the typical test for existence of
market discipline might fail in some developing economies in non-crisis periods, as traditional
indicators of bank soundness tend to become less significant and explain a smaller fraction
of the total variance of deposits and interest rates during financial turmoil than during
stable periods. The results imply that depositors behave differently by the financial stability
situation.

The remainder of the chapter is organized as follows. Section 3.2 outlines the model

specifications and estimation strategies. Section 3.3 describes the data and instruments.

Section 3.4 reports the estimation results. Section 3.5 concludes the chapter.

3.2 Empirical Framework

3.2.1 Assumptions

[ assume that, following Dick (2008), consumers!! cluster their deposits within one primary
bank for acquiring banking services together. Based on this assumption, one can apply
the discrete choice model. It might be possible for consumers to demand multiple banking
services. However, if banks were to provide benefits to depositors who use the bank as

the primary one, which is common in Korea'?, consumers would then have incentives to

10Please refer to Flannery (1998), Arena (2003), and Levy-Yeyati et al. (2010) for more details.

"Due to the limitation of data that it does not divide depositors into households and corporates by
financial institutions, I assume that two groups of depositors choose a depository institution in a similar
manner. Dick (2008) also assumes that their behavior is similar based on the consumer and business survey.

2For instance, banks offer higher deposit interest rates and lower fees on transactions to depositors
depending on their class, which is decided by the amount of deposit, the records of direct deposit of salary,
the number of accounts, etc.

80



consolidate their deposits in a single financial institution. In addition, according to the
Survey of Household Finances and Living Conditions'®, the median amount of deposits per
household is thirty three million KRW as of the end of March 2017, which is lower than
the amount of deposits protected by deposit insurance (fifty million KRW). These suggest
that it is reasonable to assume that consumers choose a single bank for deposits. Given
that CMAs have become the close substitutes since the deregulation, securities companies
providing them are assumed to be treated as banks in the deposits market, albeit it seems
to be a strong assumption.

I define market share based on the amount of deposits, and outside goods as deposits in
financial institutions other than banks!* and securities companies; these include merchant
banking corporations, mutual savings banks, credit cooperatives, and postal savings. This
implies, along with the first assumption, that depositors can have a number of accounts
as long as they cluster deposits into one bank. The definition of market share using the
amount of deposits, not the number of accounts, makes up for the shortcomings of the first
assumption, which enables to apply a discrete choice model within a multinomial choice
setting. For instance, even though consumers hold accounts in multiple banks, the problems
that stem from the first assumption could be mitigated as long as the amount of deposits
in banks other than the primary one is negligible. In addition, given that transferring funds
is easier to do than opening and closing accounts, it will reduce the fixed cost to change
one’s primary bank if consumers have accounts in multiple banks. The definition of outside
goods has limitations as it might not capture the true market share since some people may
choose to invest funds in financial instruments other than deposits. However, the results
of the Survey of Household Finances and Living Conditions, which shows that households’
preference for financial instruments have remained stable, suggest that this study’s definition

of outside goods would therefore be reasonable.

13The survey is annually conducted of twenty thousand households by the Statistics Korea, the Financial
Supervisory Service of Korea, and the Bank of Korea since 2012.
14T exclude KDB and KEXIM from the category of banks due to their heterogeneous business model.
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Table 3.2.1: Households’ Preferences for Financial Instruments

Deposits  Pension Stock FEtc. Total

2012 89.9 1.7 5.9 25 100.0
2013 90.7 1.8 4.7 2.8 100.0
2014 91.6 2.2 3.4 2.8 100.0
2015 90.6 2.3 4.7 2.4 100.0
2016 91.6 1.9 4.0 2.5 100.0
2017 91.8 1.8 4.1 2.3 100.0

Source: Statistics Korea, Financial Supervisory Service of Korea, and Bank of Korea, “Survey of
Household Finances and Living Conditions”

3.2.2 Models

In the characteristics space demand model, the price of a product can be correlated with
an omitted product attribute, which is relevant but not observed by the econometrician. If
an omitted product attribute is positively correlated with the price, estimates of the price
sensitivity term will be biased toward zero and those of the price elasticities will be biased
as well.'> To deal with the potential price endogeneity problem, one can use instrumental
variables and/or apply a random coefficient discrete choice model.

Thus, I construct the following models to estimate the demand for deposits: (i) the
simple conditional logit model that does not include an omitted product attribute (hereafter
Conditional Logit); (ii) the Berry (1994) type logit model that includes an omitted product
attribute (hereafter IV Logit); (iii) the simple random coefficients logit model that does not
include an omitted product attribute (hereafter RC Logit); and (iv) the BLP (1995) type

random coefficient logit model (hereafter BLP (1995) RC Logit).

3.2.2.1 Conditional Logit and IV Logit Models

Similar to most discrete choice models following the Random Utility Maximization (RUM)
hypothesis, T assume that individual agents ¢ = 1,...,1 (= o00) at t = 1,...,T markets

make choices between 7 = 1,...,J alternatives in order to maximize their indirect utility,

15Kim and Petrin (2015) provide a literature review about this problem.
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u;jt, specified as

Ujjp = 1331&5 + apji + &jr + €t

= 0jt + €ijt,

where xj; = (j11,..., 21 k)" is a K x 1 vector of observed characteristics for deposit product
J at the market ¢, pj; is the spread or interest rates paid by banks on j at ¢, §j; is an unobserved
characteristic for j at ¢, and ¢;j; is the error term. As Conditional Logit model does not take
account for unobserved heterogeneity, {;; = 0 for all j and t. 05 = 2,8 + apjr + &5 is
referred to as the mean utility, which is common to all agents. The K + 1 dimensional vector
0 = (B, ) represents the taste parameters.

Now, assume that ;;; are identically and independently distributed according to the Type
I extreme-value distribution. Then, by integrating over ¢;;, the predicted market share for

7 at t is derived such that

| _exp(@f + api + i)
il 08 = Ei:l exp(27,8 + apy + frt). (324)

Berry (1994) assumes that at the true parameter values, 5y and «g, the following equality

must hold

Sjt(x7 607 Qo, 5) = Sjt7

where Sj; is the true market share from the aggregated data. In other words, conditioning
on the true values of dy, the model should exactly fit the data.

Berry (1994) uses the following transformation of equation (3.2.1) such that

log(sji(z, B, a,§)) = ey + 25,8 + apje + &e,

where ¢, = —log(z;le exp(xl,B+ap+&+)). By normalizing the mean utility of the outside

good, denoted as j = 0, to zero that implies

log(sot(x, B, , &) = ey,
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equation (3.2.2) is obtained such that

log(Sji) —log(Sor) = 9t
= x;tﬁ + ozpjt + fjt, (322)

where Sy is the share of the outside good at t.
Given equation (3.2.2), one can estimate the Conditional Logit model with ordinary
least squares by regressing log(Sj;) — log(So:) on (2, pji), as well as IV Logit model with

instrumental variables estimation given the assumption E[£;;|Z;:] = 0.

3.2.2.2 RC Logit and BLP (1995) RC Logit Models

For RC Logit and BLP (1995) RC Logit models, I specify the indirect utility similar to
Nevo (2000) that allows the price coefficient to be random without taking the natural log.

Therefore, the indirect utility of an agent ¢ from consuming j at the market ¢ is specified as
Uije = T + uje + & + €t
where 5, , = Br+oinig, & = a+0pip, Nk Nip ~ N(0,1), &, is an unobserved characteristic
for j at ¢, and €;; is the error term.
Now, I decompose indirect utility by two parts: the mean utility, d;;, and the het-

eroskedastic error terms, v;j, that captures the effect of random tastes parameters such

that
Uije = Ot + Vije,

where 0;; = x5 + ap;; + §;; represents a mean level of utility and v;;; = [>_, Tjeroknik] +
opNipDjt 1 €ij¢ represents a heteroskedastic error terms that captures the effect of random
tastes parameters.

In order to estimate the model, I define the set of values of error terms, A;;, that make

J maximizing utility at ¢ given the J dimensional vector d; = (Jyy,...,d), such that

Aj(00) = {vi = (Wije) | Oje +vige > S + v, V5 # 7}
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Then, the market share for j at t is written as
(@ p. . fao) = [ fw)a
Aji(de)
In order to estimate the models, I take the following steps. First, I compute the market

shares given d; and o such that

5 B eXp(5jt + Zk Tt kOkMik + Upni,ppjt) d
Sjt( tug) = J f(Th)
L4+ 0 exp(0p + D p Tre kOkNie + OpipDrt)

Second, given o, I find d;; by contraction mapping. Third, given d;, 3, and «, obtain ;.
Last, choose 5, and ¢ to minimize the sample criterion function. For example, I use the

moment condition of E[¢;,(8o, o, 00)|Z;:] = 0 to estimate BLP (1995) RC Logit by GMM.

3.3 Data and Instruments

3.3.1 Data

The data mainly come from two sources: financial institution-level data from the Finan-
cial Statistics Information System (FISIS) of the Financial Supervisory Service of Korea
(http:/ /fisis.fss.or.kr), and country-level aggregate data from the Economic Statistics System
(ECOS) of the Bank of Korea (http://ecos.bok.or.kr). The data on each financial institu-
tion’s deposits and its attributes are obtained from the balance sheet, the income statement,
and other reporting forms uploaded on FISIS. The data on the total amount of deposits
from the Flow of Funds and the policy interest rates are taken from ECOS. The amount
of CMAs is obtained from the Korea Financial Investment Association Portal (FreeSIS,
http://freesis.kofia.or.kr). The sample covers the period from Q1 2003 to Q2 2015 consid-
ering the completion of the restructuring Korean financial industry after the Asian financial
crisis (Q4 2002), the enforcement of Capital Market and Financial Investment Business Act

(Q2 2009), and the merger of Hana and KEB banks (Q3 2015).
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An observation is defined as a financial institution'®- quarter combination in the estima-
tion exercises. I choose the attributes of financial institutions from available data, which
are important and easily observable by depositors. Table 3.B.4 shows summary statistics of
data.

I use spread, which is the difference between interest rates paid on deposits and the policy
interest rates, as the price variable. This is because deposit rates are decided in line with the
policy interest rates and the interest rates regime shifts before and after the global financial
crisis. The deposit rates are driven by dividing interest expense on deposits by the amount
of deposits from each institution’s quarterly income statement and annualized.

In addition to the price variable, four categories of observed characteristics are chosen: (i)
size, (ii) quality of service, (iii) quantity of service, and (iv) financial soundness. Similar to
Dick (2008), I classify financial institutions into five groups, considering their asset sizes and
other characteristics'”, and use them to control for size rather than using the asset size itself.
The reason is that the asset size itself should increase as the financial institution receives
more deposits by the law of accounting.'® In addition, it would capture features associated
with the size of financial institutions, including larger infrastructures, product diversity, and
know-how. The quality and quantity of service are proxied by the number of employees per
branches!® and the number of branch?’, respectively.

I include the financial soundness indicator and a dummy variable for the period of fi-
nancial turmoil in order to test the existence of market discipline in the deposit market.
Egan et al. (2017) use the implied probability of default of banks from credit default swap

(CDS) spreads when estimating the demand for deposits. However, it is not easily available

16 As the amount of CMAs of each securities firm is not available in public, I assume them as a single
entity.

"For more details, please refer to Table 3.B.5.

8For the sample period, the correlation between dependent variable and asset size is 0.91.

Dick (2008) argues that it can capture consumers’ waiting time, the types of services specific to bank,
and the value of human interaction to consumers who are not able to use the online service.

290me can consider the number of ATMs as a proxy for the quantity of service. However, the data on the
banks’ number of ATMs does not cover the whole sample period as well as these on securities companies are
not provided. Therefore, I do not include the number of branch although it seems to be relevant.

86



to depositors, and its value might highly depend on the model and assumptions. Therefore,
I use the risk-based capital ratios, which are representative, well-known, and publicly dis-
closed indicators: the BIS ratio for banks and the net operating capital ratio for securities
companies. I assume the period from Q3 2008 to Q2 2013 as a time of financial instability?!

reflecting major financial events and financial stability indices.

3.3.2 Instruments

[ use three categories of instrumental variables: (i) financial institutions’ characteristics
themselves; (ii) mark-up shifters; and (iii) cost shifters. The set of mark-up shifters includes
BLP instruments, which are the sum of characteristics of other products in the market,
following the convention of the literature on discrete choice models. This is based on the
intuition from models of oligopoly that suggest the more isolated the firm is in the product
space, the more likely it is to have a higher price relative to the cost?2.

The set of cost shifters includes variables related to marginal costs, funding costs and
labor costs. T use the policy interest rates as a proxy for funding costs, as the interest rates of
funding sources other than deposits, such as bank debenture and call money, are also decided
based on it. Labor costs come from the average wage data of the financial business from
Statistics Korea. These two variables are chosen, although the income statement provides
data for each financial institution, because the financial institution’s technology and qual-
ity are already controlled through other covariates. For example, if a financial institution
hires more skilled workers whose wages tend to be higher than those of low-skilled workers,
the actual salary data may contain the hidden quality components, therefore leading it to

violating the independent assumption.

21T exclude the credit card debacle in 2003, since the problem stemming from credit card companies might
not affect depositors’ risk attitude as well as the debacle was recovered in the short time.
22Please refer to BLP (1995) for more details.
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3.4 Results

3.4.1 Model Estimation

Table 3.B.7 presents the estimation results, where column (1) corresponds to the Conditional
Logit model, columns (2) and (3) correspond to the IV Logit model, column (4) corresponds
to the RC Logit model, and columns (5) and (6) correspond to the BLP (1995) RC Logit
model. In columns (2) and (5), financial institution’s characteristics themselves and mark-
up shifters are used as instrumental variables, whereas cost shifters are included as well in
columns (3) and (6). Coefficients of RC Logit and BLP (1995) RC Logit are the mean values
of random coefficients (53, cv).

In order to test whether the existence of market discipline depends on the financial
stability situation, the financial turmoil dummy variable interacts with both the spread
and the risk-based capital ratios. In addition, since the risk-based capital ratios between
banks and securities companies are different, an additional dummy variable that represents
securities companies interacts with them.

The results from the Conditional Logit model show that the coefficients on spread in
both the stable period and the financially distressed period are significantly negative, im-
plying that an unobserved attribute is correlated with spread; thus, it is biased toward zero.
Although the random coefficient model is known to deal with the price endogeneity problem,
the result in column (4) shows that the coefficient on spread is statistically insignificant in
the stable period while its sign is reversed to positive. However, the results from the IV Logit
and the BLP (1995) RC Logit models for which the price variable is instrumented show that
the spread coefficients in the stable period have the expected sign and are statistically signif-
icant. Furthermore, the magnitude of coefficient substantially increases in the BLP (1995)
RC Logit model compared to that in the IV Logit model. This is in line with the finding
from related studies (e.g., BLP (1995), Petrin (2002)). Table 3.B.6 shows the distribution of

own-price elasticities for the tranquil times obtained from the IV Logit model and the BLLP

88



(1995) RC Logit model.

The coefficients on spread as well as the risk-based capital ratio in financial turmoil sug-
gest that the market discipline in Korean banking sector has appeared differently depending
on the financial stability situation. In both the IV Logit model and the BLP (1995) RC Logit
model, the coefficients on spread are not significantly different from zero during the period of
financial instability. Instead, the coefficients on the banks’ risk-based capital ratio?® become
significantly positive, whereas those in the stable period are significantly negative. That is,
regardless of the deposit rates, consumers prefer to deposit in a safer depository institution
when the financial system is unstable. This phenomenon is similar to the flight to quality in
the bond and equity markets occurred during the financial crisis.

It is counter-intuitive that the coefficients on the risk-based capital ratio are negative in
tranquil times. However, for instance, the BIS ratios of Korean banks have been maintained
over the minimum requirement during the sample period due to the experience of the Asian
financial crisis. Figure 3.4.1 represents the unweighted BIS ratios of Korean banks and the
minimum requirement. Therefore, it would be possible that depositors might regard them as
safe regardless of the level of the BIS ratio. In addition, if consumers with low credit scores
can use other services provided by a bank, such as loans, by depositing, it would lead to a
lower risk-based capital ratio of the bank.

The signs, magnitudes, and significance of other coefficients are in accord with expec-
tations. Depositors respond favorably to the size, the branch staffing, and the number of
branches of depository institutions. The result that the coefficients on Group 2 financial
institutions are significantly positive in the BLP (1995) RC Logit model reflects the charac-
teristics of banks in the group: one is specialized in the transaction of foreign exchange, and
the other is established in order to support financing of small to medium enterprises. The

reasons for the negative coefficients on Group 5 financial institutions, securities companies,

23The coefficients on the securities companies’ risk-based capital ratio are statistically insignificant in
financial turmoil. However, considering that those in the stable period are negative and depositors in CMAs
would have different risk attitude from depositors in banks, one can interpret this that depositors, even who
are less risk-averse, become more risk-averse in the times of financial instability.
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Figure 3.4.1: BIS ratios of Korean Banks
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Source: Financial Supervisory Service of Korea

seems to be (i) differences in institutional framework from banks, including deposit insurance
and regulation; and (ii) stigma effects from the collapse of Dongyang Securities whose CMAs

t24

market share was one of the highest** before the bankruptcy.

3.4.2 Consumer Welfare

In order to measure the effect of deregulation on consumer welfare, I calculate the equivalent
variation (E'V') following Small and Rosen (1981) in the context of the discrete choice model.

According to Dick (2008), the equivalent variation (EV) can be calculated as
EV = S/(p,x;0) — Si_1(p, x; 0), (3.4.1)

where S(p, x;0) = In[Sjexp(d;(p;, vj;0))]/a, and d; = 28 + ap; + &5, 0 = (B, ).
However, the estimation results show that depositors do not respond to spread in the
times of financial turmoil. This implies that even though CMAs offer higher interests than

banks?® that might induce banks to increase the deposit rates they offer, the deregulation

24 Although CMAs balance for each securities company is not disclosed, it was known that CMAs balance
of Dongyang Securities was around 10 trillion KRW in the peak.

25In this formula, «, the coefficient on spread, represents the marginal utility of income.

26During the sample period, the average spread of securities firms is 6.4 bps, whereas that of banks is
-41.9 bps.
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may not affect the consumer welfare at all in terms of a monetary unit. Furthermore, one
cannot exclude the possibility that it might have a negative effect on consumer welfare due
to the weakness of CMAs or securities companies illustrated in Section 3.1: (i) most CMAs
are not included in the scope of the financial instruments protected by the deposit insurance
and (ii) there exists a regulatory gap between banks and securities companies.

Therefore, I compare changes in welfare focusing on the stable period following equation
(3.4.1). Depositors experience a gain in welfare due to deregulation between tranquil times,
with a mean of KRW 0.0005-0.005 per consumer per year. This implies, for example, with
a welfare gain of KRW 0.002, a depositor carrying a median balance (33 million KRW as of
the end of March 2017) can gain 66 thousand KRW per year. However, it should be noted
that the welfare gain has been diluted due to the prolonged financial stress since the global

financial crisis.

3.5 Conclusion

This paper sought to apply structural econometric modeling in the field of industrial or-
ganization to finance. The results suggest that unlike other products (e.g., automobiles,
Petrin (2002)), a new financial instrument does not necessarily improve consumer welfare
even if it seems competitive in terms of price; this finding may be due to the existence of
market discipline within financial markets. This implies that in order to achieve the goal of
deregulation in the payment and settlement systems, it is necessary to devise an institutional
framework that can reduce the difference in risk between products and financial institutions,
which would foster a level playing field for financial institutions.

The model of the paper relies on simplifying assumptions. For instance, given that the
services provided by securities companies are different from banks, the assumption of treating
securities companies that provide CMAs as banks might not reflect the reality. Also, some

consumers might split a significant amount of deposits in multiple banks. To manage the
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problem, one can consider applying multiple-discrete choice model (e.g., Hendel (1999)),
which may need micro-level data. It is important to note that the approach in this paper
uses only market-level data.

Having taken basic but important steps in estimating a demand system, this model has
the potential to lead to future research with improvements. For example, the model can
be used to measure the effect of changes in prudential regulation. Also, given that two
internet-only banks were newly established in Korea in 2017, the demand model for deposits
taking account of both price and service competition can be extended to measure the effect

of introducing internet-only banks.
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APPENDIX A

An Overview on the Korean Financial System

3.A.1 Financial Industry

The Korean financial system has been developed as bank-based, in that banks play a leading
role in mobilizing savings, allocating capital, overseeing the investment decisions of corporate
managers, and providing risk management vehicles.?” Table 3.A.1 shows the total assets of
the major financial institutions in Korea and their shares. Although banks’ asset shares in
the financial system have decreased after the Asian financial crisis, they still account for the
largest portion with more than 50%.

Table 3.A.1: Total Assets of Major Financial Institutions in Korea
(Unit: Trillion KRW, %)

1990 1995 2000 2005 2010 2015
Banke 249.7 5958 9822 12135 18841 2,440.7
(63.3)  (62.9) (63.4) (57.8)  (54.8) (57.3)
Merchant Banking 237 459 21.3 13.2 24.2 11.1
Corporations!) (6.0) (4.8  (14)  (0.6) (0.7 (0.3)
. 11.5 32.6 24.2 44.9 91.3 43.9
Mutual Savings Banks o gy 34 16) 1) @7 (1.0)
Credit Cooperatives 24.6 75.9 1451 2202 360.9 533.5
(6.2)  (8.0)  (94) (10.5)  (10.5) (12.5)
Postal Savings 3.4 7.0 24.5 37.8 55.4 65.6
(0.9  (0.7)  (16) (1.8) (1.6 (1.5)
Insurance Companics 34.6 86.6 1636  308.6 5075 816.0
(8.8)  (9.1) (106) (14.7) (14.8) (19.2)
Securities Companies 16.6 27.8 42.0 62.7  189.4 344.5
(4.2) (29 27 3.0  (5.5) (8.1)
Collective Investment 30.6 76.0 146.7 198.4 325.3 4.8
Business Entities (7.8) (8.0) (9.5) (9.4) (9.5) (0.1)
Total 3948  047.6 1,549.5 2,099.2 34380 4,260.1
(100.0)  (100.0) (100.0) (100.0) (100.0) (100.0)

Note: 1) Including consolidated financial accounts of banks and securities companies.
Source: Bank of Korea, Financial Supervisory Service of Korea

Since the 1980s, the Korean government had eased regulations on the financial market

entry in order to foster competition among financial institutions. As a result, the number

2TPlease refer to Demirgiic-Kunt and Levine (1999) for more details on bank-based and market-based
financial systems.
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of banks increased to thirty-three before the Asian financial crisis in 1997. However, as
the soundness of banks deteriorated during the crisis, insolvent financial institutions were
resolved through liquidation or mergers and acquisitions based upon judgements as to their
survivability. Therefore, as of Q4 2002 when restructuring due to the crisis was finalized,
the number of banks decreased to nineteen. As of Q4 20162, there were seventeen banks,
including six nationwide banks, six local banks, and five specialized banks.?® Table 3.A.2
shows the list of banks in Korea.

Table 3.A.2: List of Banks in Korea (as of Q4 2016)

Nationalwide Banks Local Banks Specialized Banks

Kookmin Kyongnam Nonghyup
Shinhan Kwangju Suhyup
Woori Daegu IBK

KEB Hana Busan KDB

SC Korea Jeonbuk KEXIM
Citibank Korea Jeju

Source: Financial Supervisory Service of Korea

Deposits are major funding sources for Korean Banks. To be specific, as of Q4 2016,
deposits consisted of 83.6% of banks’ funding. Therefore, banks have the largest portion,
68.4%, in the deposit market, and it is made up of deposits in depository institutions, such
as banks, merchant banking corporations, mutual savings banks, credit cooperatives, postal

savings, and CMAs.

3.A.2 Payment and Settlement Systems

The payment and settlement systems in Korea consist of a large-value payment system, retail
payment systems, securities settlement systems, and foreign exchange settlement systems.

While a large-value payment system is used for transactions between financial institutions,

Z8Shinhan and Chohung were merged in Q2 2006, and Hana and KEB were merged in Q3 2015.

29Gpecialized banks are established with specific purposes of bolstering financing in areas encountering
funding difficulties due to shortages of finance, profitability and expertise. However, except Korea Develop-
ment Bank (KDB) and Export-Import Bank of Korea (KEXIM), their business model, such as the funding
structure, is similar to commercial banks.
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retail payment systems are used for those among individuals or corporations. By the en-
forcement of the Capital Market and Financial Investment Business Act, as of Q4 2016,
twenty-five securities companies®® are participating in six retail payment systems operated
by KFTC3!. Thus, CMA holders became able to use them as a means of exchange.
However, retail payment systems are processed by net settlements that net obligations
arising from transactions in the retail payment systems are transferred between the current
accounts of the financial institutions involved at a designated time. Therefore, unlike the
real-time gross settlement system, financial institutions are exposed to settlement risks such

as credit risk when the counterpart fails to transfer fund.

3.A.3 Financial Stability Situation

In order to test the hypothesis that the existence of market discipline depends on the financial
stability condition, it is essential to identify a period of financial distress. However, as
Aspachs-Bracons et al. (2012) point out, it is hard to measure financial fragility, whereas
inflation can be measured by a relatively simple and intuitive variable, the consumer price
index. After the global financial crisis, there has been a growth in literature concerning the
field of devising the financial stability index.3?

Figure 3.A.1 shows the financial stability indices of Korea, where (a) represents a com-
posite financial stability index published in the Financial Stability Report of the Bank of
Korea, (b) represents CoVaR based on Adrian and Brunnermeier (2016), and (c) represents
Marginal Expected Shortfall (MES) based on Tarashev et al. (2010). It shows that these
indices all have similar trends reflecting the major events in the Korean financial system.

Table 3.A.3 shows major financial events in Korea since 2000.

30Gixteen major securities companies joined the retail payment systems in Q3 2009.

31These include Electronic Banking System, Cash Management Service Network, Interbank Remittance
System, Giro System, CD Network, and Payment Gateway System. As of Q4 2016, those systems counts
for 89.2% of total transaction volume.

32Please refer to Silva et al. (2017) for more details.
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Figure 3.A.1: Financial Stability Indices of Korea
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Table 3.A.3: Major Financial Events in Korea

Period Events

2003 Credit Card Debacle

2008- Global Financial Crisis

2010- European Debt Crisis

2011 Bankruptcy of Mutual Savings Banks
2013 Bankruptcy of Dongyang Securities
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APPENDIX B
Tables

Table 3.B.4: Summary Statistics

Mean Std. Dev. Max Min
Market Share 0.0412 0.0394 0.1604 0.0014
Spread -0.0041 0.0073 0.0238 -0.0218
- Stable Period -0.0076 0.0049 0.0042 -0.0218
- Financial Turmoil Period 0.0010 0.0072 0.0238 -0.0186
Deposit Interest Rates 0.0284 0.0070 0.0534 0.0107
Policy Interest Rates 0.0325 0.0096 0.0515 0.0170
Group 2 Financial Institutions 0.1214 0.3267 1 0
Group 3 Financial Institutions 0.1214 0.3267 1 0
Group 4 Financial Institutions 0.4248 0.4946 1 0
Group 5 Financial Institutions 0.0291 0.1683 1 0
Emplyees per Branch 12.6582 3.1767 28.0752 7.2697
Number of Branch 475.5334 411.8725 1,789 31
BIS Ratio 0.1288 0.0183 0.1825 0.0855
- Stable Period 0.1221 0.0172 0.1825 0.0855
- Financial Turmoil Period 0.1389 0.0151 0.1771 0.0940
Net Operating Capital Ratio 0.1654 0.0274 0.2221 0.1217
- Stable Period 0.1379 0.0113 0.1557 0.1217
- Financial Turmoil Period 0.1792 0.0220 0.2221 0.1469
Observations 824
Table 3.B.5: Classification of Financial Institutions
Group Description
Group 1 Banks with assets over 100 Trillion KRW as of Q2 2015
and belonging to a holding company
Group 2 Banks with assets over 100 Trillion KRW as of Q2 2015
(excluding Group 1 banks)
Group 3 Banks with assets less than 100 Trillion KRW as of Q2 2015
and foreign owned
Group 4 Banks with assets less than 100 Trillion KRW as of Q2 2015
(excluding Group 3 banks)
Group 5 Securities Companies
Table 3.B.6: Distribution of Own Price Elasticities
10% 25% Median 75% 90%
IV Logit Model 0.0512 0.0992 0.1435 0.1950 0.2581

BLP (1995) RC Model 0.2175 0.3067 0.4539 0.6034 0.7599
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Table 3.B.7: Estimation Results

Conditional v RC BLP (1995)
Logit Logit Logit RC Logit
(1) 2) (3) (4) (5) (6)
Spread
- Stable Period -11.9073*** 18.8223**  17.4081** 3.5915 49.4622***  48.1135***
(4.5920) (7.8120) (6.9278) (4.6821) (8.5157) (7.5949)
- Financial Turmoil Period -14.7139*** 8.9737 4.6535 -19.2045*** 6.0866 -1.3014
(3.4651) (6.6238) (5.6131) (3.6118) (7.5065) (6.0896)
Group 2 Financial Institutions -0.1335** 0.0946 0.0682 -0.0725 0.2203*** 0.1748**
(0.0640) (0.0773) (0.0709) (0.0876) (0.0848) (0.0758)
Group 3 Financial Institutions -0.2875*** -0.1615**  -0.1792** -0.3011%** -0.1469* -0.1786**
(0.0765) (0.0814) (0.0789) (0.0971) (0.0884) (0.0847)
Group 4 Financial Institutions -0.9126*** -0.7756***  -0.7925*** -1.1262*** -0.9514***  -0.9753***
(0.0996) (0.1088) (0.1053) (0.1124) (0.1159) (0.1110)
Group 5 Financial Institutions -2.9003*** -2.66627**  -2.6643*** -5.4742%** -5.1946***  -5.2284***
(0.3346) (0.3246) (0.3199) (0.9226) (0.3374) (0.3316)
Employees per Branch 0.0706*** 0.0650***  0.0657*** 0.0652*** 0.0568*** 0.0590***
(0.0077) (0.0076) (0.0075) (0.0089) (0.0084) (0.0082)
Number of Branch 0.0019*** 0.0021%**  0.0020*** 0.0019*** 0.0022*** 0.0021***
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Risk-based Capital Ratio
- Banks -4.2529*** -6.5529***  -6.5063*** -4.2852%** -7.5974***  -7.6293***
x Stable Period (1.2916) (1.2830) (1.2536) (1.3371) (1.4098) (1.3793)
- Banks 3.4807** 2.7265** 3.2595** 5.9185*** 5.0045*** 5.7892***
x Financial Turmoil Period (1.4694) (1.3635) (1.3145) (1.7733) (1.4116) (1.3614)
- Securities Companies -2.9404 -8.31747**  -8.2239*** -7.0095 -14.1804***  -13.9986***
x Stable Period (2.2782) (2.1462) (2.0458) (6.6984) (2.1963) (2.0748)
- Securities Companies 1.0803 -1.4192 -0.9217 2.8133 -0.1593 0.7458
x Financial Turmoil Period (1.3535) (1.3286)  (1.2767) (4.9401) (1.4447) (1.3664)
Financial Turmoil -0.9872*** -1.4363***  -1.4870*** -1.3268*** -1.9962***  -2.0884***
(0.2588) (0.2442) (0.2313) (0.2971) (0.2594) (0.2473)
Constant -3.4206*** -3.0279***  -3.0279*** -2.3475*** -1.7301***  -1.7213***
(0.2171) (0.2082)  (0.2041) (0.2147) (0.2290) (0.2238)

Note: *** Significant at 1%, ** Significant at 5%, * Significant at 10%. Standard errors are in the parentheses.
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