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ABSTRACT

ADAPTIVE AND AUTOMATED DEEP RECOMMENDER SYSTEMS

By

Xiangyu Zhao

Recommender systems are intelligent information retrieval applications, and have been

leveraged in numerous domains such as e-commerce, movies, music, books, and point-of-

interests. They play a crucial role in the users’ information-seeking process, and overcome

the information overload issue by recommending personalized items (products, services, or

information) that best match users’ needs and preferences. Driven by the recent advances in

machine learning theories and the prevalence of deep learning techniques, there have been

tremendous interests in developing deep learning based recommender systems. They have

unprecedentedly advanced effectiveness of mining the non-linear user-item relationships and

learning the feature representations from massive datasets, which produce great vitality and

improvements in recommendations from both academic and industry communities.

Despite above prominence of existing deep recommender systems, their adaptiveness and

automation still remain under-explored. Thus, in this dissertation, we study the problem

of adaptive and automated deep recommender systems. Specifically, we present our efforts

devoted to building adaptive deep recommender systems to continuously update recom-

mendation strategies according to the dynamic nature of user preference, which maximizes

the cumulative reward from users in the practical streaming recommendation scenarios. In

addition, we propose a group of automated and systematic approaches that design deep

recommender system frameworks effectively and efficiently from a data-driven manner. More

importantly, we apply our proposed models to a variety of real-world recommendation

platforms and have achieved promising enhancements of social and economic benefits.



Copyright by
XIANGYU ZHAO
2021



To my parents for their love and support.

iv



ACKNOWLEDGMENTS

This dissertation would have never been completed without the help, support, and guidance

from many great people through my Ph.D. study at Michigan State University in the past

four and a half years.

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Jiliang

Tang for his best mentorship, encouragement, and support during my Ph.D. study. As an

advisor, he has worked tirelessly to provide help, advice, guidance, and inspiration to me,

which led me to grow into an independent scholar. Besides research, he is also my role model

for life, and has taught me the value of kindness, optimism, ambition and responsibility

through his words and actions. I could not have imagined having a better advisor and mentor

for my Ph.D. study. I would also like to thank my committee members Prof. Pang-Ning

Tan, Dr. Jiayu Zhou, Dr. Mi Zhang, and Dr. Dawei Yin, for their continuous advice and

insightful comments.

In addition, I am thankful to all of my awesome lab-mates from the Data Science and

Engineering (DSE) lab at Michigan State University: Tyler Derr, Zhiwei Wang, Yao Ma,

Hamid Karimi, Wenqi Fan, Xiaorui Liu, Haochen Liu, Han Xu, Xiaoyang Wang, Jamell

Dacon, Wentao Wang, Wei Jin, Yaxin Li, Yiqi Wang, Juanhui Li, Harry Shomer, Jie Ren,

Jiayuan Ding, Haoyu Han, Hongzhi Wen, Yuxuan Wan, Hua Liu, and Norah Alfadhli. I

enjoyed all stimulating discussions, exchange of ideas, and staying awake until the last moment

of the paper deadlines. During my time in the DSE Lab I have learned so much from you all.

I am also thankful for the collaboration and help from outside the DSE Lab: Prof. Jiquan

Chen, Prof. Yi Chang, Dr. Charu Aggarwal, Dr. Taiquan Peng, Dr. Weinan Zhang, Dr.

Ruiming Tang, Prof. Heng Huang, Dr. Hui Liu, Dr. Li Zhao, Dr. Grace Hui Yang, Dr. Alex

v



Beutel, Dr. Rui Chen, Dr. Jason Gauci, Dr. Minmin Chen, Dr. Shauki Jain, Dr. Yongfeng

Zhang, Dr. Fei Sun, Prof. Jimmy Xiangji Huang, and Yingqiang Ge.

Moreover, I appreciate the experience of working with the extraordinary collaborators I

met during internships. They are Dr. Dawei Yin, Dr. Long Xia, Dr. Lixin Zou, Dr. Liang

Zhang, Dr. Zhaochun Ren, and Zhuoye Ding at JD.com; Dr. Xiwang Yang, Xiaobing Liu, Dr.

Chong Wang, Changsheng Gu, Ming Chen, Xudong Zheng, Haoshenglun Zhang, Dr. Taiqing

Wang, and Dr. Aonan Zhang at Bytedance; Dr. Bo Long, Dr. Bee-chung Chen, Dr. Huiji

Gao, Dr. Weiwei Guo, Dr. Jun Shi and Sida Wang at LinkedIn. Without their precious

support it would not be possible to conduct this research.

Lastly, I would again like to thank my parents, entire family and girlfriend for their love

and support. This dissertation is dedicated to them.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Page-wise Recommendations . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Real-time Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Page-wise Recommendations . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Architecture of Actor Framework . . . . . . . . . . . . . . . . . . . . 14

2.2.2.1 Encoder for Initial State Generation Process . . . . . . . . . 15
2.2.2.2 Encoder for Real-time State Generation Process . . . . . . . 16
2.2.2.3 Decoder for Action Generation Process . . . . . . . . . . . . 20

2.2.3 The Architecture of Critic Framework . . . . . . . . . . . . . . . . . 20
2.3 Training and Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1.1 Online Training Procedure . . . . . . . . . . . . . . . . . . . 23
2.3.1.2 Offline Training Procedure . . . . . . . . . . . . . . . . . . . 24
2.3.1.3 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 The Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2.1 Online Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2.2 Offline Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Performance Comparison for Offline Test . . . . . . . . . . . . . . . . 31
2.4.3 Performance Comparison for Online Test . . . . . . . . . . . . . . . . 33
2.4.4 Effectiveness of Components . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3 Jointly Recommend and Advertise . . . . . . . . . . . . . . . . . 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



3.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Deep Q-network for Recommendations . . . . . . . . . . . . . . . . . 44

3.3.1.1 The Processing of State and Action Features for RS . . . . . 45
3.3.1.2 The Cascading DQN for RS . . . . . . . . . . . . . . . . . . 46
3.3.1.3 The estimation of Cascading Q-functions . . . . . . . . . . . 47

3.3.2 Deep Q-network for Online Advertising . . . . . . . . . . . . . . . . . 48
3.3.2.1 The Processing of State and Action Features for AS . . . . . 48
3.3.2.2 The Proposed DQN Architecture . . . . . . . . . . . . . . . 49
3.3.2.3 The Action Selection in RTB setting . . . . . . . . . . . . . 51

3.3.3 The Optimization Task . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Off-policy Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.5 Online Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 Architecture Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.4 Overall Performance Comparison . . . . . . . . . . . . . . . . . . . . 59
3.4.5 Component Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.6 Parameter Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4 User Simulation for Recommendations . . . . . . . . . . . . . . . 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 The Proposed Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 The Generator Architecture . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2.1 The Encoder Component . . . . . . . . . . . . . . . . . . . 71
4.2.2.2 The Decoder Component . . . . . . . . . . . . . . . . . . . 72

4.2.3 The Discriminator Architecture . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 The Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3 RL-based Recommender Training . . . . . . . . . . . . . . . . . . . . 83
4.3.4 Effectiveness of Generator . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.5 Component Anslysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.6 Parametric Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 88

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 5 Automated Embedding Size Search . . . . . . . . . . . . . . . . . 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Dimensionality Search . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1.1 Embedding Lookup . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.1.2 Unifying Various Dimensions . . . . . . . . . . . . . . . . . 96

viii



5.2.1.3 Dimension Selection . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.3 Parameter Re-Training . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3.1 Deriving Discrete Dimensions . . . . . . . . . . . . . . . . . 102
5.2.3.2 Model Re-training . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Implement Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.4 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.5 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.6 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.7 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 6 Automated Loss Function Search . . . . . . . . . . . . . . . . . . 114
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 The Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.1 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Deep Recommender System Network . . . . . . . . . . . . . . . . . . 119

6.2.2.1 Embedding Layer . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.2.2 Interaction Layer . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2.3 MLP Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.2.4 Output Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.3 Loss Function Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.4 Controller Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.5 An Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.4 Overall Performance Comparison . . . . . . . . . . . . . . . . . . . . 130
6.3.5 Transferability Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.6 Impact of Model Components . . . . . . . . . . . . . . . . . . . . . . 133
6.3.7 Efficiency Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

ix



LIST OF TABLES

Table 2.1: Performance comparison of different components. . . . . . . . . . . . . . . 36

Table 3.1: Statistics of the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 3.2: Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.1: Statistics of the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 4.2: Generator effectiveness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.1: Performance comparison of different embedding search methods. . . . . . 107

Table 5.2: Embedding dimensions for Movielens-1m. . . . . . . . . . . . . . . . . . . 111

Table 6.1: Statistics of the datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table 6.2: Performance comparison of different loss function search methods. . . . . 131

Table 6.3: Impact of model components. . . . . . . . . . . . . . . . . . . . . . . . . . 134

x



LIST OF FIGURES

Figure 2.1: An example of interactions between recommender systems and users. . . 8

Figure 2.2: Framework architecture selection. . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.3: Encoder to generate initial state sini. . . . . . . . . . . . . . . . . . . . . 15

Figure 2.4: Encoder to generate current state scur. . . . . . . . . . . . . . . . . . . . 17

Figure 2.5: An illustration of the proposed framework. . . . . . . . . . . . . . . . . . 22

Figure 2.6: Overall performance comparison in offline test. . . . . . . . . . . . . . . . 32

Figure 2.7: Overall performance comparison in online test. . . . . . . . . . . . . . . . 34

Figure 3.1: An example of rec-ads mixed display for one user request. . . . . . . . . 41

Figure 3.2: The agent-user interactions in MDP. . . . . . . . . . . . . . . . . . . . . 44

Figure 3.3: The architecture of cascading DQN for RS. . . . . . . . . . . . . . . . . 47

Figure 3.4: (a)(b) Two conventional DQNs. (c) Overview of the proposed DQN. . . 49

Figure 3.5: The architecture of the proposed DQN for AS. . . . . . . . . . . . . . . . 51

Figure 3.6: Performance comparison of different variants. . . . . . . . . . . . . . . . 62

Figure 3.7: Parameter sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.1: An example of system-user interactions. . . . . . . . . . . . . . . . . . . 67

Figure 4.2: The generator with Encoder-Decoder architecture. . . . . . . . . . . . . . 71

Figure 4.3: The discriminator architecture. . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.4: The results of overall performance comparison. . . . . . . . . . . . . . . . 81

Figure 4.5: The training process of RL-based recommenders. . . . . . . . . . . . . . 83

Figure 4.6: The results of component analysis. . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.7: The results of parametric analysis. . . . . . . . . . . . . . . . . . . . . . 88

xi



Figure 5.1: The typically DLRS architecture. . . . . . . . . . . . . . . . . . . . . . . 92

Figure 5.2: Overview of the proposed AutoDim framework. . . . . . . . . . . . . . . 95

Figure 5.3: Embedding lookup method. . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.4: Linear transformation method to unify various dimensions. . . . . . . . . 97

Figure 5.5: Efficiency analysis of DeepFM on Criteo dataset. . . . . . . . . . . . . . 108

Figure 5.6: Parameter analysis on Movielens-1m dataset. . . . . . . . . . . . . . . . 110

Figure 6.1: Overview of the AutoLoss framework. . . . . . . . . . . . . . . . . . . . 118

Figure 6.2: Architectures of DeepFM and IPNN. . . . . . . . . . . . . . . . . . . . . 119

Figure 6.3: Transferability study results. . . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 6.4: Efficiency study results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



LIST OF ALGORITHMS

Algorithm 2.1 Mapping Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Algorithm 2.2 Parameters Online Training for DeepPage with DDPG. . . . . . . 27

Algorithm 2.3 Online Test for DeepPage. . . . . . . . . . . . . . . . . . . . . . . . 28

Algorithm 2.4 Offline Test of DeepPage Framework. . . . . . . . . . . . . . . . . . 29

Algorithm 3.1 Off-policy Training of the RAM Framework. . . . . . . . . . . . . . 56

Algorithm 3.2 Online Test of the RAM Framework. . . . . . . . . . . . . . . . . . 57

Algorithm 4.1 Training Algorithm for the Simulator. . . . . . . . . . . . . . . . . 77

Algorithm 5.1 DARTS based Optimization for AutoDim. . . . . . . . . . . . . . . 101

Algorithm 5.2 The Optimization of DLRS Re-training Process. . . . . . . . . . . 103

Algorithm 6.1 An Optimization Algorithm for AutoLoss via DARTS. . . . . . . . 127

xiii



Chapter 1

Introduction

1.1 Motivation and Challenges

Recommender systems are intelligent information retrieval applications. They assist users in

their information-seeking tasks by suggesting items (products, services, or information) that

best fit their needs and preferences. Recommender systems have become increasingly popular

in recent years, and have been utilized in a variety of domains, including movies, music,

books, search queries, and social tags [107, 108]. Typically, a recommendation procedure

can be modeled as interactions between users and recommender agent (RA). It consists of

two phases: 1) user model construction and 2) recommendation generation [90]. During the

interaction, the recommender agent builds a user model to learn users’ preferences based on

users’ personal information or historical behaviors. Then, the recommender agent generates

a list of items that best match users’ preferences.

Driven by the recent advances in deep learning, there have been increasing interests in

developing deep learning based recommender systems (DLRSs) [154, 97, 142]. Architectures

of DLRS often mainly consist of three key components: (i) embedding layers that map

raw user/items features in a high dimensional space to dense vectors in a low dimensional

embedding space, (ii) hidden layers that perform nonlinear transformations to transform the

input features, and (iii) output layers that make predictions for specific recommendation
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tasks (e.g. regression and classification) based on the representations from hidden layers.

DLRSs have boosted the recommendation performance because of their capacity of effectively

catching the non-linear user-item relationships, and learning the complex abstractions as

data representations [154].

Most existing recommender systems are static and hand-crafted in (i) learning recom-

mendation policy and (ii) designing DLRS framework. First, recommendation policy is the

strategy that a recommender system suggests items to users, such as collaborative filtering

methods recommend similar items to users of similar tastes [77]. To learn recommendation

policy, there are two overarching issues:

• Most recommender systems consider the recommendation procedure as a static process

and make recommendations following a fixed greedy strategy, which may fail given the

dynamic nature of the users’ preferences;

• Existing recommendation policies are designed to maximize the immediate reward of

recommendations, i.e., to make users purchase the recommended items, while completely

overlooking whether these items will lead to more profitable rewards in the long run.

Second, DLRS framework consists of all the key components of building a deep recom-

mender system, such as data processing (e.g., data cleaning and feature engineering), model

selection (e.g., W&D [24] v.s. DeepFM [51]), neural architecture (e.g., embedding, hidden

and output layers), optimization (e.g., loss function, optimizer and learning rate) and model

evaluation. To design DLRS framework, we face three inherent challenges:

• The majority of existing DLRSs are developed based on hand-crafted components, which

requires ample expert knowledge of machine learning and recommender systems;
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• Human error and bias can lead to suboptimal components, which reduces the recommen-

dation effectiveness;

• Non-trivial time and engineering efforts are usually required to design the task-specific

components in different recommendation scenarios.

In this dissertation, we propose to design adaptive and automated deep recommender

systems to address challenges in the two aforementioned perspectives, i.e., recommendation

policy and DLRS framework.

To learn adaptive recommendation policy, we will consider the recommendation procedure

as sequential interactions between users and recommender agents; and leverage Reinforcement

Learning (RL) to automatically learn an optimal recommendation strategy (policy) that

maximizes cumulative rewards from users without any specific instructions. Recommender

systems based on reinforcement learning have two advantages. First, they are able to

continuously update their trial-and-error strategies during the interactions, until the system

converges to the optimal strategy that generates recommendations best fitting their users’

dynamic preferences. Second, the models in the system are trained via estimating the present

value with delayed rewards under current states and actions. The optimal strategy is made

by maximizing the expected long-term cumulative reward from users. Therefore, the system

could identify items with small immediate rewards but making considerable contributions to

the rewards for future recommendations.

To design automated DLRS framework, the recent development of automated machine

learning (AutoML), easing the usage of machine learning tools and designing task-dependent

learning models, has become an important and popular area with both practical needs and

research values [81]. It has changed the convention of model design from manual to automatic,

3



provides unprecedented opportunities to design deep model components. Inspired by AutoML

techniques, we will propose a set of unified and systematic approaches, which design the DLRS

framework in an automated and data-driven manner [157, 158, 81, 100]. AutoML allows

non-experts to build DLRS without requiring them to become experts in machine learning

and recommender systems, excludes the possible human error and bias, and significantly

reduces the computational and temporal cost.

1.2 Dissertation Contributions

The major contribution of this proposal are summarized as follows:

• We conduct pioneering research to develop adaptive and automated deep recommender

systems from two perspectives: (i) recommendation policy and (ii) DLRS framework, which

could dynamically and adaptively enhance the recommendation performance in the long

run, and reduce the requirement of expert knowledge and human efforts to design the

sophisticated DLRS frameworks;

• As users are typically recommended a page of items in real-world recommender systems, we

propose a novel page-wise recommendation framework, which leverages deep reinforcement

learning to automatically learn the optimal recommendation strategies and optimize a page

of items simultaneously;

• Most platforms optimize recommending and advertising strategies by different teams

separately via different techniques. We propose a two-level deep reinforcement learning

framework with novel deep Q-network architectures to jointly optimize the user experience

and advertising revenue in online recommender systems;
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• Directly training and evaluating a new RL-based recommendation algorithm needs to

collect users’ feedback in real systems, which is time/effort consuming and could downgrade

users’ experiences. We propose to build a user simulator for RL-based recommendations,

which can model real users’ behaviors and can be used to pre-train and evaluate new

recommendation algorithms before launching them online.

• Most recommender systems allocate a unified embedding dimension to all feature fields,

which is memory inefficient. We propose a novel AutoML-based framework to automatically

assign different embedding dimensions to different feature fields, which can achieve better

recommendation performance with much fewer embedding parameters.

• Existing recommender systems often leverage a predefined and fixed loss function that

could lead to suboptimal recommendation quality and training efficiency. We propose an

AutoML-based framework to automatically select the appropriate loss function for different

data examples according to their varied convergence behaviors, improving recommendation

performance and training efficiency with excellent transferability.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce an

RL-based framework DeepPage for capturing users’ dynamic preferences and learning the item

display strategy within a page. Chapter 3 presents a two-level RL framework RAM, where

the first level acts as the recommender system to select a subset of items from the large item

space, and the second level serves as the advertising system to assign the right advertisement

to the right user on the right place. In Chapter 4, we develop a user simulator UserSim

based on a Generative Adversarial Network, where the generator captures the underlying
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distribution of users’ historical logs and generates realistic logs, while the discriminator not

only distinguishes real and fake logs but also predicts users’ behaviors. Chapter 5 presents

our work on automatically allocating different embedding dimensions to different feature

fields according to their contributions in recommendation. In Chapter 6, we introduce an

AutoLoss framework to select proper loss function for each data example automatically,

where we develop a novel controller network to dynamically adjust the loss probabilities in a

differentiable manner. Finally, Chapter 7 concludes the dissertation and presents promising

future research directions.
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Chapter 2

Page-wise Recommendations

Abstract

Recommender systems can mitigate the information overload problem by suggesting users’

personalized items. In real-world recommendations such as e-commerce, a typical interaction

between the system and its users is – users are recommended a page of items and provide

feedback; and then the system recommends a new page of items. To effectively capture such

interaction for recommendations, we need to solve two key problems – (1) how to update

recommending strategy according to user’s real-time feedback, and (2) how to generate a page

of items with proper display, which pose tremendous challenges to traditional recommender

systems. In this chapter, we study the problem of page-wise recommendations aiming to

address aforementioned two challenges simultaneously. In particular, we propose a principled

approach to jointly generate a set of complementary items and the corresponding strategy

to display them in a 2-D page; and propose a novel page-wise recommendation framework

based on deep reinforcement learning, DeepPage, which can optimize a page of items with

proper display based on real-time feedback from users. The experimental results based on a

real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.
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Figure 2.1: An example of interactions between recommender systems and users.

2.1 Introduction

Recommender systems play an essential role in the information-seeking process and over-

come information overload by facilitating the interactions between business platforms and

users. Figure 2.1 illustrates a typical example of the interactions between an e-commerce

recommender system and a user – each time the system recommends a page of items to the

user; next, the user browses these items and provides real-time feedback and then the system

recommends a new page of items. This example suggests two key challenges to effectively take

advantage of these interactions for e-commerce recommender systems – 1) how to efficiently

capture user’s dynamic preference and update recommending strategy according to user’s

real-time feedback; and 2) how to generate a page of items with proper display based on

user’s preferences.

2.1.1 Real-time Feedback

Most existing recommender systems consider the recommendation procedure as a static

process and make recommendations following a fixed greedy strategy. However, these

8



approaches may fail to capture the dynamic nature of the users’ preferences, and they become

infeasible to efficiently and continuously update their recommending strategies according to

user’s real-time feedback. Thus, in this work, we consider the recommendation procedure as

sequential interactions between users and the recommender agent; and leverage Reinforcement

Learning (RL) to automatically learn the optimal recommendation strategies. Recommender

systems based on reinforcement learning have two major advantages. First, they are able to

continuously update their strategies based on user’s real-time feedback during the interactions,

until the system converges to the optimal strategy that generates recommendations best

fitting users’ dynamic preferences. Second, the optimal strategy is made by maximizing

the expected long-term cumulative reward from users; while the majority of traditional

recommender systems are designed to maximize the immediate (short-term) reward of

recommendations [116]. Therefore, the system can identify items with small immediate

rewards but making significant contributions to the rewards for future recommendations.

2.1.2 Page-wise Recommendations

As mentioned in the example, users are typically recommended a page of items. To achieve

this goal, we introduce a page-wise recommender system, which is able to jointly (1) generate

a set of diverse and complementary items and (2) form an item display strategy to arrange

the items in a 2-D page that can lead to maximal reward. Conventional RL methods could

recommend a set of items each time. For instance, DQN can recommend a set of items

with the highest Q-values according to the current state[93]. However, these approaches

recommend items based on the same state, which leads to the recommended items being

similar. In practice, a bundling of complementary items may receive higher rewards than

recommending all similar items. For instance, in real-time news feed recommendations, a user

9



may want to read diverse topics of interest[153]. In addition, page-wise recommendations

need to properly display a set of generated items in a 2-D page. Traditional approaches treat

it as a ranking problem, i.e., ranking items into a 1-D list according to the importance of

items. In other words, user’s most preferred item is posited at the top of list. However, in

e-commerce recommender systems, a recommendation page is a 2-D grid rather than a 1-D

list. Also, eye-tracking studies [121] show that rather than linearly scanning a page, users

do page chunking, i.e., they partition the 2-D page into chunks, and browse the chunk they

prefer more. In addition, the set of items and the display strategy are generated separately;

hence they may not be optimal to each other. Therefore, page-wise recommendations need

principled approaches to simultaneously generate a set of complementary items and the

corresponding display strategy in a 2-D page.

2.1.3 Contributions

In this chapter, we tackle the two aforementioned challenges simultaneously by introducing a

novel page-wise recommender system based on deep reinforcement learning. We summarize

our major contributions as follows:

• We introduce a principled approach to generate a set of complementary items and properly

display them in one 2-D recommendation page simultaneously;

• We propose a page-wise recommendation framework DeepPage, which can jointly optimize

a page of items by incorporating real-time feedback from users;

• We demonstrate the effectiveness of the proposed framework in a real-world e-commerce

dataset and validate the effectiveness of the components in DeepPage for accurate recom-

mendations.
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2.2 The Proposed Framework

In this section, we first give an overview of the proposed Actor-Critic based reinforcement

learning recommendation framework with notations. Then we present the technical details of

components in Actor and Critic, respectively.

2.2.1 Framework Overview

As mentioned in Section 2.1.1, we model the recommendation task as a Markov Decision

Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal

recommendation strategies, which can continuously update recommendation strategies during

the interactions and the optimal strategy is made by maximizing the expected long-term

cumulative reward from users. In practice, conventional RL methods like POMDP[116] and

Q-learning[125] become infeasible with the increasing number of items for recommendations.

Thus, we leverage Deep Reinforcement Learning[75] with (adapted) artificial neural networks

as the non-linear approximators to estimate the action-value function in RL. This model-free

reinforcement learning method does not estimate the transition probability and store the

Q-value table. Hence it can support a huge amount of items in recommender systems.

There are two major challenges when we apply deep reinforcement learning to the studied

problem – (a) the large (or even continuous) and dynamic action space (item space), and (b)

the computational cost to select an optimal action (a set of items). In practice, using only

discrete indices to denote items is insufficient since we cannot know the relations between

different items only from indices. One common way is to use extra information to represent

items with continuous embeddings[69]. Besides, the action space of recommender systems is

dynamic as items arriving and leaving. Moreover, computing the Q-value for all state-action
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pairs is a time-consuming task because of the enormous state and action spaces.

To tackle these challenges, in this chapter, our recommending policy builds upon the

Actor-Critic framework [124], shown in Figure 2.2 (c). The Actor-Critic architecture is

preferred from the studied problem since it is suitable for large and dynamic action space, and

can also reduce redundant computation simultaneously compared to alternative architectures

as shown in Figures 2.2 (a) and (b). The conventional Deep Q-learning architectures shown

in Figure 2.2 (a) inputs only the state space and outputs Q-values of all actions. This

architecture is suitable for the scenario with high state space and small/fixed action space

like Atari[93], but cannot handle large and dynamic action space scenarios, like recommender

systems. Also, we cannot leverage the second conventional deep Q-learning architecture

as shown in Figure 2.2(b) because of its temporal complexity. This architecture inputs a

state-action pair and outputs the Q-value correspondingly, and makes use of the optimal

action-value function Q∗(s, a). It is the maximum expected return achievable by the optimal

policy, and should follow the Bellman equation [6] as:

Q∗(s, a) = Es′
[
r + γmax

a′
Q∗(s′, a′)|s, a

]
(2.1)
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In practice, selecting an optimal a′, |A| evaluations is necessary for the inner operation

“maxa′”. In other words, this architecture computes Q-value for all a′ ∈ A separately, and

then selects the maximal one. This prevents Eq. (2.1) from being adopted in practical

recommender systems.

In the Actor-Critic framework, the Actor architecture inputs the current state s and aims

to output a deterministic action (or recommending a deterministic page of M items), i.e.,

s→ a = {a1, · · · , aM}. The Critic inputs only this state-action pair rather than all potential

state-action pairs, which avoids the aforementioned computational cost as follows:

Q(s, a) = Es′
[
r + γQ(s′, a′)|s, a

]
(2.2)

where the Q-value function Q(s, a) is a judgment of whether the selected action matches the

current state, i.e., whether the recommendations match user’s preference. Finally, according

to the judgment from Critic, the Actor updates its’ parameters in a direction of boosting

recommendation performance so as to output proper actions in the next iteration. With the

above design intuitions, we formally define the tuple of five elements (S,A,P ,R, γ) of MDP

as follows:

• State space S: A state s ∈ S is defined as user’s current preference, which is generated

based on user’s browsing history, i.e., the items that a user browsed and her corresponding

feedback.

• Action space A: An action a = {a1, · · · , aM} ∈ A is to recommend a page of M items

to a user based on current state s.

• Reward R: After the RA takes an action a at the state s, i.e., recommending a page
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of items to a user, the user browses these items and provides her feedback. She can skip

(not click), click, or order these items, and the agent receives immediate reward r(s, a)

according to the user’s feedback.

• Transition P : Transition p(s′|s, a) defines the state transition from s to s′ when RA takes

action a.

• Discount factor γ: γ ∈ [0, 1] defines the discount factor when we measure the present

value of future reward. In particular, when γ = 0, RA only considers the immediate reward.

In other words, when γ = 1, all future rewards can be counted fully into that of the current

action.

Specifically, we model the recommendation task as an MDP in which a recommender

agent (RA) interacts with environment E (or users) over a sequence of time steps. At each

time step, the RA takes an action a ∈ A according to E ’s state s ∈ S, and receives a reward

r(s, a) ( or the RA recommends a page of items according to user’s current preference, and

receives user’s feedback). As the consequence of action a, the environment E updates its state

to s′ with transition p(s′|s, a). The goal of reinforcement learning is to find a recommendation

policy π : S → A, which can maximize the cumulative reward for the recommender system.

Next, we will elaborate on the Actor and Critic architectures for the proposed framework.

2.2.2 Architecture of Actor Framework

The Actor is designed to generate a page of recommendations according to user’s preference,

which needs to tackle three challenges – 1) setting an initial preference at the beginning of

a new recommendation session, 2) learning the real-time preference in the current session,

which should capture the dynamic nature of user’s preference in current session and spatial
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item display patterns in a page, and 3) jointly generating a set of recommendations and

displaying them in a 2-D page. To address these challenges, we propose an Actor framework

with the Encoder-Decoder architecture.

2.2.2.1 Encoder for Initial State Generation Process

Figure 2.3 illustrates the model for generating initial preference. We introduce a RNN

with Gated Recurrent Units (GRU) to capture users’ sequential behaviors as user’s initial

preference. The inputs of GRU are user’s last clicked/ordered items {e1, · · · , eN} (sorted

in chronological order) before the current session, while the output is the representation of

users’ initial preference by a vector. The input {e1, · · · , eN} is dense and low-dimensional

vector representations of items 1. We add an item-embedding layer to transform ei into

a low-dimensional dense vector via Ei = tanh(WEei + bE) ∈ R|E| where we use “tanh”

activate function since ei ∈ (−1,+1).

We leverage GRU rather than Long Short-Term Memory (LSTM) because that GRU

outperforms LSTM for capturing users’ sequential preference in recommendation task [55].

1These item representations are pre-trained using users’ browsing history by a company, i.e. each item is
treated as a word and the clicked items in one recommendation session as a sentence, and item representations
are trained via word embedding[69]. The effectiveness of these item representations is validated by their
business such as searching, ranking, bidding and recommendations.
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Unlike LSTM using input gate it and forget gate ft to generate a new state, GRU utilizes an

update gate zt:

zt = σ(W zEt +Uzht−1) (2.3)

GRU leverages a reset gate rt to control the input of the former state ht−1:

rt = σ(W rEt +U rht−1) (2.4)

Then the activation of GRU is a linear interpolation between the previous activation ht−1

and the candidate activation ĥt:

ht = (1− zt)ht−1 + ztĥt (2.5)

where candidate activation function ĥt is computed as:

ĥt = tanh[WEt +U(rt · ht−1)] (2.6)

We use the final hidden state ht as the representation of the user’s initial state sini at the

beginning of current recommendation session as:

sini = ht. (2.7)

2.2.2.2 Encoder for Real-time State Generation Process

Figure 2.4 illustrates the model to generate real-time preference in current session. In the

page-wise recommender system, the inputs {x1, · · · ,xM} for each recommendation page are
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the representations of the items in the page and user’s corresponding feedback, where M is

the size of a recommendation page and xi is a tuple as:

xi = (ei, ci,f i), (2.8)

where ei is the aforementioned item representation. To assist the RA in capturing user’s pref-

erence among different categories of items and generating complementary recommendations,

we incorporate item’s category ci. The item’s category ci is an one-hot indicator vector where

ci(i) = 1 if this item belongs to the ith category and other entities are zero. The one-hot

indicator vector is extremely sparse and high-dimensional; hence we add a category-embedding

layer transforming ci into a low-dimensional dense vector Ci = tanh(WCci + bC) ∈ R|C|.

In addition to information from items, ei and ci, we also want to capture user’s interests

or feedback in current recommendation page. Thus, we introduce user’s feedback vector f i,

which is a one-hot vector to indicate user’s feedback for item i, i.e., skip/click/order. Similarly,
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we transform f i into a dense vector F i = tanh(WF f i + bF ) ∈ R|F | via the embedding

layer. Finally, we get a low-dimensional dense vector Xi ∈ R|X| (|X| = |E|+ |C|+ |F |) by

concatenating Ei, Ci and F i as:

Xi = concat(Ei,Ci,F i)

= concat
(

tanh(WEei + bE ,WCci + bC ,WF f i + bF )
) (2.9)

Note that all item-embedding layers share the same parameters WE and bE , which reduces

the number of parameters and achieves better generalization. We apply the same constraints

for category and feedback embeddings.

Then, we reshape the transformed item representations {X1, · · · ,XM} as the original

arrangement in the page. In other words, we arrange the item representations in one page

P t as 2D grids similar to one image. For instance, if one recommendation page has h rows

and w columns (M = h × w), we will get a h × w|X| matrix P t. To learn item spatial

display strategy in one page that leads to maximal reward, we introduce Convolutional Neural

Network (CNN). CNN is a successful architecture in computer vision applications because of

its capability to apply various learnable kernel filters on images to discover complex spatial

correlations [67]. Hence, we utilize 2D-CNN followed by fully connected layers to learn the

optimal item display strategy as:

pt = conv2d(P t), (2.10)

where pt is a low-dimensional dense vector representing the information from the items and

user’s feedback in page P t as well as the spatial patterns of the item display strategy of page

P t.
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Next, we feed {p1, · · · ,pT } into another RNN with Gated Recurrent Units (GRU) to

capture user’s real-time preference in the current session. The architecture of this GRU is

similar to the one in Section 2.2.2.1, but we utilize the final hidden state sini in Section 2.2.2.1

as the initial state in current GRU. Furthermore, to capture the user’s real-time preference in

the current session, we employ attention mechanism [3], which allows the RA to adaptively

focus on and linearly combine different parts of the input sequence:

scur =
T∑
t=1

αtht (2.11)

where the weighted factors αt determine which parts of the input sequence should be

emphasized or ignored when making predictions. Here we leverage location-based attention

mechanism [89] where the weighted factors are computed from the target hidden state ht as

follows:

αt =
exp(Wαht + bα)∑
j exp(Wαhj + bα)

(2.12)

This GRU with attention mechanism is able to dynamically select more important input,

which is helpful to capture the user’s real-time preference in the current session. Note that

- 1) the length of this GRU is flexible according to that of the current recommendation

session. After each user-agent interaction, i.e., the user browses one page of generated

recommendations and give feedback to RA, we can add one more GRU unit, and use this

page of items, corresponding categories and feedback as the input of the new GRU unit;

2) in fact, the two RNNs in Section 2.2.2.1 and Section 2.2.2.2 can be integrated into one

RNN, we describe them separately to clearly illustrate their architecture, and validate their

effectiveness in Section 2.4.4.
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2.2.2.3 Decoder for Action Generation Process

In this subsection, we will propose the action acur generation process, which generates

(recommends) a new page of items to users. In other words, given user’s current preference

scur, we aim to recommend a page of items and display them properly to maximize the reward.

It is the inverse process of what the convolutional layer does. Hence, we use Deconvolution

Neural Network (DeCNN) [147] to restore one page from the low-dimensional representation

scur. It provides a sophisticated and automatic way to generate a page of recommendations

with the corresponding display as:

acur = deconv2d(scur). (2.13)

Note that - 1) the size of acur and P are different, since acur only contains item-embedding

Ei, while P also contains item’s category embedding Ci and feedback-embedding F i. For

instance, if one recommendation page has h rows and w columns (M = h × w), P is a

h×w|X| matrix, while acur is a h×w|E| matrix; and 2) the generated item embeddings in

acur may be not in the real item embedding set, thus we need to map them to valid item

embeddings, which will be provided in later sections.

2.2.3 The Architecture of Critic Framework

The Critic is designed to leverage an approximator to learn an action-value function Q(s, a),

which is a judgment of whether the action (or a recommendation page) a generated by Actor

matches the current state s. Note that we use “s” as scur in the last subsection for simplicity.

Then, according to Q(s, a), the Actor updates its’ parameters in the direction of improving

performance to generate proper actions (or recommendations) in the following iterations.
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Thus we need to feed user’s current state s and action a (or a recommendation page)

into the critic. To generate user’s current state s, The RA follows the same strategy from

Eq. (2.3) to Eq. (2.11), which uses embedding layers, 2D-CNN and GRU with attention

mechanism to capture user’s current preference. For action a, because acur generated in

Eq. (2.13) is a 2D matrix similar to an image, we utilize the same strategy in Eq. (2.10), a

2D-CNN, to degrade acur into a low-dimensional dense vector a as:

a = conv2d(acur). (2.14)

Then the RA concatenates current state s and action a, and feeds them into a Q-value

function Q(s, a). In real recommender systems, the state and action spaces are enormous,

thus estimating the action-value function Q(s, a) for each state-action pair is infeasible. In

addition, many state-action pairs may not appear in the real trace such that it is hard to

update their values. Therefore, it is more flexible and practical to use an approximator

function to estimate the action-value function. In practice, the action-value function is usually

highly non-linear. Thus we choose Deep neural networks as approximators. In this work, we

refer to a neural network approximator as a deep Q-value function (DQN).

2.3 Training and Test Procedure

In this section, we discuss the training and test procedures. We propose two policies, i.e.,

online-policy and off-policy, to train and test the proposed framework based on online

environment and offline historical data, respectively. Off-policy is necessary because the

proposed framework should be pre-trained offline and be evaluated before launching them
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online to ensure the quality of the recommendations and mitigate possible negative impacts

on user experience. After the offline stage, we can apply the framework online, and then the

framework can continuously improve its strategies during the interactions with users.

2.3.1 The Training Procedure

As aforementioned in Section 2.2.2, we map user’s preference scur to a new page of rec-

ommendations (acur). In a page of M items, acur contains item-embeddings of M items,

i.e., {e1, · · · , eM}. However, acur is a proto-action, because the generated item embedding

ei ∈ acur may be not in the existing item-embedding space I. Therefore, we need to map

from proto-action acurpro to valid-action acurval where we have {ei ∈ I|∀{ei ∈ acurval }. With

this modification, an illustration of the proposed Actor-Critic recommending framework is

demonstrated in Figure 2.5 where we omit Encoders for state generation part.
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2.3.1.1 Online Training Procedure

When we train the proposed framework in online environment, RA can interact with users by

sequentially choosing recommendation items over a sequence of time steps. Thus, in online

environment, the RA is able to receive real-time feedback for the recommended items from

users. In this setting, for each ei in acurpro, we select the most similar ei ∈ I as the valid

item-embedding in acurval . In this work, we select cosine similarity as:

ei = arg max
e∈I

e>i · e
‖ei‖‖e‖

= arg max
e∈I

e>i ·
e

‖e‖

(2.15)

To decrease the computational cost of Eq. (2.15), we pre-compute e
‖e‖ for all e ∈ I and

adopt item recalling mechanism to reduce the number of relevant items 2 .

Algorithm 2.1: Mapping Algorithm.
Input: User’s browsing history sh, item-embedding space I, the size of
recommendation page M .
Output: Valid recommendation page acurval .
1: Generate proto-action acurpro according Eq. (2.3) to Eq. (2.11)
2: for m = 1,M do
3: Select the most similar item as em according to Eq. (2.15)
4: Add item em into acurval (at the same location as em in acurpro)
5: Remove item em from I
6: end for
7: return acurval

We present the mapping algorithm in Algorithm 2.1. The Actor first generates proto-

action acurpro (line 1). For each em in acurpro, the RA selects the most similar item in terms of

2 In general, user’s preference in current session should be related to user’s last clicked/ordered items
before the current session(say L). Thus for each item in L, we collect a number of most similar items in terms
of cosine similarity from the whole item space, and combine all collected items as the initial item-embedding
space I of current recommendation session. During the current session, when a user clicks or orders an item,
we will also add a number of most similar items into the item-embedding space I.
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cosine similarity (line 3), and then adds this item into acurval at the same position as em in

acurpro (line 4). Finally, the RA removes this item from the item-embedding space (line 5),

which prevents recommending the same item repeatedly in one recommendation page.

Then the RA recommends the new recommendation page acurval to user, and receives the

immediate feedback (reward) from user. The reward r is the summation of rewards of all

items in this page:

r =
M∑
m=1

reward(em) (2.16)

2.3.1.2 Offline Training Procedure

When we use user’s historical browsing data to train the proposed Actor-Critic framework,

user’s browsing history, the new recommendation page acurval and user’s corresponding feedback

(reward) r are given in the data. Thus, there is a gap between acurpro and acurval , i.e., no matter

what proto-action acurpro outputted by the Actor, the valid-action acurval is fixed. This will

disconnect the Actor and the Critic.

From existing work [75, 32] and Section 2.3.1.1, we learn that acurpro and acurval should be

similar, which is the prerequisite to connect the Actor and the Critic for training. Thus, we

choose to minimize the difference between acurpro and acurval :

min
θπ

B∑
b=1

(
‖acurpro − acurval ‖2F

)
(2.17)

where B is the batch size of samples in each iteration of SGD. Eq. (2.17) updates Actor’s

parameters in the direction of pushing acurpro and acurval to be similar. In each iteration, given

user’s browsing history, the new recommendation page acurval , the RA generates proto-action

acurpro and then minimizes the difference between acurpro and acurval , which can connect the Actor
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and the Critic. Next, we can follow conventional methods to update the parameters of Actor

and Critic. The reward r is the summation of rewards of all items in page acurval .

2.3.1.3 Training Algorithm

In this work, we utilize DDPG [75] algorithm to train the parameters of the proposed Actor-

Critic framework. The Critic can be trained by minimizing a sequence of loss functions L(θµ)

as:

L(θµ) = Es,a,r,s′
[(
r + γQ

θµ
′ (s′, f

θπ
′ (s′))−Qθµ(s, a)

)2] (2.18)

where θµ represents all parameters in Critic. The critic is trained from samples stored in a

replay buffer [94]. Actions stored in the replay buffer are generated by valid-action acurval , i.e.,

a = conv2d(acurval ). This allows the learning algorithm to leverage the information of which

action was actually executed to train the critic [32].

The first term y = r + γQ
θµ
′ (s′, f

θπ
′ (s′)) in Eq. (2.18) is the target for the current

iteration. The parameters from the previous iteration θµ
′
are fixed when optimizing the

loss function L(θµ). In practice, it is often computationally efficient to optimize the loss

function by stochastic gradient descent, rather than computing the full expectations in the

above gradient. The derivatives of loss function L(θµ) with respective to parameters θµ are

presented as follows:

∇θµL(θµ) = Es,a,r,s′
[
(r + γQ

θµ
′ (s′, f

θπ
′ (s′))−Qθµ(s, a))∇θµQθµ(s, a)

] (2.19)

We update the Actor using the policy gradient:

∇θπfθπ ≈ Es
[
∇âQθµ(s, â)∇θπfθπ(s)

]
(2.20)
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where â = fθπ(s), i.e., â is generated by proto-action acurpro (â = conv2d(acurpro)). Note that

proto-action acurpro is the actual action outputted by Actor. This guarantees that policy

gradient is taken at the actual output of policy fθπ [32].

The online training algorithm for the proposed framework DeepPage is presented in

Algorithm 2.2. In each iteration, there are two stages, i.e., 1) transition generating stage

(lines 7-10), and 2) parameter updating stage (lines 11-16). For transition generating stage

(line 7): given the current state st, the RA first recommends a page of items at according

to Algorithm 2.1 (line 8); then the RA observes the reward rt and updates the state to

st+1 (lines 9); and finally the RA stores transitions (st, at, rt, st+1) into the replay buffer D

(line 10). For parameter updating stage (line 11): the RA samples mini-batch of transitions

(s, a, r, s′) from D (line 12), and then updates parameters of Actor and Critic (lines 13-16)

following a standard DDPG procedure [75].

The offline training procedure is similar with Algorithm 2.2. The two differences are: 1)

in line 8, offline training follows off-policy b(st), and 2) before line 13, offline training first

minimizes the difference between acurpro and acurval according to Eq. (2.17).

In the algorithm, we introduce widely used techniques to train our framework. For

example, we utilize a technique known as experience replay [76] (lines 12), and introduce

separated evaluation and target networks [93] (lines 2,16), which can help smooth the learning

and avoid the divergence of parameters. For the soft updates of target networks (lines 16),

we used τ = 0.01. Moreover, we leverage prioritized sampling strategy [96] to assist the

framework learning from the most important historical transitions.
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Algorithm 2.2: Parameters Online Training for DeepPage with DDPG.
1: Initialize actor network fθπ and critic network Qθµ with random weights
2: Initialize target network f

θπ
′ and Q

θµ
′ with weights θπ

′ ← θπ, θµ
′ ← θµ

3: Initialize the capacity of replay buffer D
4: for session = 1, G do
5: Receive initial observation state s1
6: for t = 1, T do
7: Stage 1: Transition Generating Stage
8: Select an action at according to Alg. 2.1 (policy fθπ)
9: Execute action at and observe the reward rt according to Eq. (2.16) and new

state st+1 according to Section 2.2.2.2
10: Store transition (st, at, rt, st+1) in D
11: Stage 2: Parameter Updating Stage
12: Sample minibatch of N transitions (s, a, r, s′) from D
13: Set y = r + γQ

θµ
′ (s′, f

θπ
′ (s′))

14: Update Critic by minimizing 1
N
∑
n

(
y −Qθµ(s, a)

)2 according to Eq. (2.19)
15: Update Actor using the sampled policy gradient according to Eq. (2.20)
16: Update the target networks:

θµ
′ ← τθµ + (1− τ)θµ

′

θπ
′ ← τθπ + (1− τ)θπ

′

17: end for
18: end for
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Algorithm 2.3: Online Test for DeepPage.
1: Initialize Actor with the trained parameters Θπ

2: Receive initial observation state s1
3: for t = 1, T do
4: Execute an action at according to Alg. 2.1 (policy fΘπ)
5: Observe the reward rt from user according to Eq. (2.16)
6: Observe new state st+1 according to Section 2.2.2.2
7: end for

2.3.2 The Test Procedure

After the training stage, the proposed framework learns parameters Θπ and Θµ. Now we

formally present the test procedure of the proposed framework DeepPage. We design two test

methods, i.e., 1) Online test: to test DeepPage in online environment where RA interacts

with users and receives real-time feedback for the recommended items from users, and 2)

Offline test: to test DeepPage based on user’s historical browsing data.

2.3.2.1 Online Test

The online test algorithm in one recommendation session is presented in Algorithm 2.3. The

online test procedure is similar to the transition generating stage in Algorithm 2.2. In each

iteration of the recommendation session, given the current state st, the RA recommends a

page of recommendations at to user following policy fΘπ (line 4). Then the RA observes the

reward rt from user (line 5) and updates the state to st+1 (line 6).

2.3.2.2 Offline Test

The intuition of our offline test method is that, for a given recommendation session (offline

data), the RA reranks the items in this session. If the proposed framework works well, this

session’s clicked/ordered items will be ranked at the top of the new list. The reason why RA
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Algorithm 2.4: Offline Test of DeepPage Framework.
Input: Item set I = {e1, · · · , eN} and corresponding reward set R = {r1, · · · , rN} of
a session.
Output:Recommendation list L with new order
1: Initialize Actor with well-trained parameters Θπ

2: Receive initial observation state s1
3: while |I| > 0 do
4: Select an action at according to Alg. 2.1 (policy fΘπ)
5: for ei ∈ at do
6: Add ei into the end of L
7: Record reward ri from user’s historical browsing data
8: end for
9: Compute the overall reward rt of at according to Eq. (2.16)
10: Execute action at and observe new state st+1 according to Section 2.2.2.2
11: Remove all ei ∈ at from I
12: end while

only reranks items in this session rather than items in the whole item space is that for the

offline dataset, we only have the ground truth rewards of the existing items in this session.

The offline test algorithm in one recommendation session is presented in Algorithm 2.4. In

each iteration of an offline test recommendation session, given the state st (line 2), the RA

recommends a page of recommendations at following policy fΘπ (lines 4). For each item ei

in at, we add it into new recommendation list L (line 6), and record ei’s reward ri from

user’s historical browsing data (line 7). Then we can compute the overall reward rt of at

(line 9) and update the state to st+1 (line 10). Finally, we remove all items ei in at from the

item set I of the current session (line 11).

2.4 Experiments

In this section, we conduct extensive experiments with a dataset from a real e-commerce

company to evaluate the effectiveness of the proposed framework. We mainly focus on two

questions: (1) how the proposed framework performs compared to representative baselines;

29



and (2) how the components in Actor and Critic contribute to the performance. We first

introduce experimental settings. Then we seek answers to the above two questions. Finally,

we study the impact of important parameters on the performance of the proposed framework.

2.4.1 Experimental Settings

We evaluate our method on a dataset of September, 2017 from a real e-commerce company.

We randomly collect 1,000,000 recommendation sessions (9,136,976 items) in temporal order,

and use the first 70% sessions as the training/validation set and the later 30% sessions as the

test set. For a new session, the initial state is collected from the previous sessions of the user.

In this work, we leverage N = 10 previously clicked/ordered items to generate the initial

state. Each time the RA recommends a page of M = 10 items (5 rows and 2 columns) to

users 3. The reward r of one skipped/clicked/ordered item is empirically set as 0, 1, and 5,

respectively. The dimensions of item-embedding/ category-embedding/ feedback-embedding

are |E| = 50, |C| = 35, and |F | = 15. We set the discounted factor γ = 0.95, and the rate

for soft updates of target networks τ = 0.01. For the parameters of the proposed framework

such as γ, we select them via cross-validation. Correspondingly, we also do parameter-tuning

for baselines for a fair comparison. We will discuss more details about parameter selection

for the proposed framework in the following subsections.

For online test, we leverage the summation of all rewards in one recommendation session

as the metric. For offline test, we select Precision@20, Recall@20, F1-score@20 [48],

NDCG@20 [59] and MAP [131], as the metrics to measure the performance. Our difference

from traditional Learn-to-Rank methods is that we rank both clicked and ordered items
3This is based on offline historical data collected from mobile Apps, i.e., to fit the screen size of mobile

phones, one page has only 5 rows and 2 columns.
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together and set them by different rewards, rather than only rank clicked items as that in

the Learn-to-Rank setting.

2.4.2 Performance Comparison for Offline Test

To answer the first question, we compare the proposed framework with the following repre-

sentative baseline methods:

• CF [10]: Collaborative filtering is a method of making automatic predictions about the

interests of a user by collecting preference information from many users, which is based on

the hypothesis that people often get the best recommendations from someone with similar

tastes to themselves.

• FM [106]: Factorization Machines combine the advantages of support vector machines

with factorization models. Compared with matrix factorization, higher order interactions

can be modeled using the dimensionality parameter.

• GRU [55] : This baseline utilizes the Gated Recurrent Units (GRU) to predict what user

will click/order next based on the browsing histories. To make a fair comparison, it also

keeps previous N = 10 clicked/ordered items as initial states.

• DQN [93]: We use a Deep Q-network with five fully-connected layers in this baseline. The

input is the concatenation of embeddings of users’ historical clicked/ordered items (state)

and a page of recommendations (action), and train this baseline by Eq. (2.1).

• DDPG [32]: In this baseline, we use conventional Deep Deterministic Policy Gradient

with five fully connected layers in both Actor and Critic. The input for Actor is the

concatenation of embeddings of users’ historical clicked/ordered items (state). The input
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Figure 2.6: Overall performance comparison in offline test.

for Critic is the concatenation of embeddings of state and a page of recommendations

(action).

We leverage offline training strategy to train DDPG and DeepPage as mentioned in

Section 2.3.1.1. The results are shown in Figure 2.6. We make following observations:

• Figure 2.6 (a) illustrates the training process of DeepPage. We can observe that the

framework approaches convergence when the model is trained by 500,000 offline sessions.

• CF and FM perform worse than other baselines. These two baselines ignore the temporal

sequence of the users’ browsing history, while GRU can capture the temporal sequence,

and DQN, DDPG and DeepPage are able to continuously update their strategies during

the interactions.

• DQN and DDPG outperform GRU. We design GRU to maximize the immediate reward

for recommendations, while DQN and DDPG are designed to achieve the trade-off between

32



short-term and long-term rewards. This result suggests that introducing reinforcement

learning can improve the performance of recommendations.

• DeepPage performs better than conventional DDPG. Compared to DDPG, DeepPage

jointly optimizes a page of items and uses GRU to learn user’s real-time preferences.

More details about the impact of mode components on DeepPage will be discussed in the

following subsection.

2.4.3 Performance Comparison for Online Test

Following [32], we build a simulated online environment (adapted to our case) for online test.

We compare DeepPage with GRU, DQN and DDPG. Note that we do not include CF and

FM baselines since CF and FM are not applicable to the online environment. To answer the

second question, we systematically eliminate the corresponding components of the simulator

by defining following variants of RecSimu:

Here we utilize online training strategy to train DDPG and DeepPage (both Actor-Critic

framework) as mentioned in Section 2.3.1.2. Baselines are also applicable to be trained via

the rewards generated by simulated online environment. Note that we use data different from

the training set to build the simulated online environment.

As the test stage is based on the simulator, we can artificially control the length of

recommendation sessions to study the performance in short and long sessions. We define

short sessions with 10 recommendation pages, while long sessions with 50 recommendation

pages. The results are shown in Figure 2.7. It can be observed:

• DDPG performs similar to DQN, but the training speed of DDPG is much faster than

DQN, as shown in Figure 2.7 (a). DQN computes Q-value for all potential actions, while
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DDPG can reduce this redundant computation. This result indicates that Actor-Critic

framework is suitable for practical recommender systems with enormous action space.

• In short recommendation sessions, GRU, DQN and DDPG achieve comparable performance.

In other words, GRU model and reinforcement learning models like DQN and DDPG can

recommend proper items matching users’ short-term interests.

• In long recommendation sessions, DQN and DDPG outperform GRU significantly. GRU

is designed to maximize the immediate reward for recommendations, while reinforcement

learning models like DQN and DDPG are designed to achieve the trade-off between short-

term and long-term rewards. This result suggests that introducing reinforcement learning

can improve the performance of recommendations.

• DeepPage performs better than conventional DQN and DDPG. DeepPage can learn

user’s real-time preferences and optimizes a page of items. We detail the effect of model

components of DeepPage in the following subsection.
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2.4.4 Effectiveness of Components

To validate the effectiveness of each component, we systematically eliminate the corresponding

model components by defining following variants of DeepPage:

• DeepPage-1: This variant is to evaluate the performance of the embedding layer. We

remove the embedding layer for items, categories and feedback.

• DeepPage-2: In this variant, we evaluate the contribution of category and feedback

information, hence, this variant does not contain one-hot indicator vectors of category and

feedback.

• DeepPage-3: This variant is to evaluate the effectiveness of GRU to generate initial state,

so we eliminate the GRU in Figure 2.3.

• DeepPage-4: In this variant, we evaluate the contribution of CNNs as shown in Figure

2.4, thus we remove CNNs and directly feed the outputs of embedding layers (concatenate

embeddings of all items as one vector) into GRU units.

• DeepPage-5: This variant is to evaluate the effectiveness of attention mechanism in Figure

2.4. Therefore, we eliminate attention layer and use the hidden state of last GRU unit as

the input of DeCNN.

• DeepPage-6: In this variant, we evaluate the GRU to generate local state; thereby, we

remove this GRU in Figure 2.4 and concatenate outputs of all CNNs as a vector, and feed

it into DeCNN.

• DeepPage-7: This variant is to evaluate the performance of DeCNN to generate a new page

of items; hence, we replace it with fully-connected layers, which output a concatenated
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Table 2.1: Performance comparison of different components.

Methods Precision Recall F1score NDCG MAP
@20 @20 @20 @20

DeepPage-1 0.0479 0.3351 0.0779 0.1753 0.1276
DeepPage-2 0.0475 0.3308 0.0772 0.1737 0.1265
DeepPage-3 0.0351 0.2627 0.0578 0.1393 0.1071
DeepPage-4 0.0452 0.3136 0.0729 0.1679 0.1216
DeepPage-5 0.0476 0.3342 0.0775 0.1716 0.1243
DeepPage-6 0.0318 0.2433 0.0528 0.1316 0.1039
DeepPage-7 0.0459 0.3179 0.0736 0.1698 0.1233
DeepPage 0.0491 0.3576 0.0805 0.1872 0.1378

vector of M item-embeddings.

The offline results are shown in Table 2.1 (we omit similar online observations because of

the space limitation). We make following observations:

• DeepPage-1 and DeepPage-2 validate that incorporating category/feedback information

and the embedding layer can boost recommendation performance.

• DeepPage-3 and DeepPage-6 perform worse, which suggests that setting user’s initial

preference at the beginning of a new recommendation session, and capturing user’s real-

time preference in current session is helpful for accurate recommendations.

• DeepPage-5 proves that incorporating attention mechanism can better capture user’s

real-time preference than only GRU.

• DeepPage outperforms DeepPage-4 and DeepPage-7, which indicates that item display

strategy can influence the decision-making process of users.

In a nutshell, DeepPage outperforms all its variants, demonstrating each component’s effec-

tiveness for recommendations.
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2.5 Related Work

In this section, we briefly review research related to our study. In general, the related work

can be mainly grouped into the following categories.

The first category related to this chapter is traditional recommendation techniques. Rec-

ommender systems assist users by supplying a page of items that might interest users. Efforts

have been made to offer meaningful recommendations to users. Collaborative filtering[77] is

the most successful and the most widely used technique, which is based on the hypothesis that

people often get the best recommendations from someone with similar tastes to themselves[10].

Another common approach is content-based filtering [95], which tries to recommend items

with similar properties to those that a user ordered in the past. Knowledge-based systems[1]

recommend items based on specific domain knowledge about how certain item features meet

users’ needs and preferences and how the item is useful for the user. Hybrid recommender sys-

tems are based on the combination of the above-mentioned two or more types of techniques[12].

The other topic closely related to this category is deep learning based recommender system,

which is able to effectively capture the non-linear and non-trivial user-item relationships,

and enables the codification of more complex abstractions as data representations in the

higher layers[154]. For instance, Nguyen et al.[97] proposed a personalized tag recommender

system based on CNN. It utilizes a constitutional and max-pooling layer to get visual features

from patches of images. Wu et al.[142] designed a session-based recommendation model for

real-world e-commerce website. It utilizes the basic RNN to predict what users will buy next

based on the click histories.

The second category is about reinforcement learning for recommendations and person-

alization, which is different from the traditional item recommendations. In this work, we
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consider the recommending procedure as sequential interactions between users and the recom-

mender agent; and leverage deep reinforcement learning to automatically learn the optimal

recommendation strategies. Indeed, reinforcement learning has been widely examined in

the recommendation field. The MDP-Based CF model in Shani et al.[116] can be viewed as

approximating a partial observable MDP (POMDP) by using a finite rather than unbounded

window of past history to define the current state. Furthermore, Mahmood et al.[91] adopted

the reinforcement learning technique to observe the responses of users in a conversational

recommender, intending to maximize a numerical cumulative reward function modeling the

benefit that users get from each recommendation session. Taghipour et al.[126, 125] modeled

web page recommendation as a Q-Learning problem and learned to make recommendations

from web usage data as the actions rather than discovering explicit patterns from the data.

The system inherits the intrinsic characteristic of reinforcement learning, which is in a

constant learning process. Sunehag et al.[122] introduced agents that successfully address

sequential decision problems with high-dimensional combinatorial slate-action spaces. Zheng

et al.[167] proposed a reinforcement learning framework to make online personalized news

recommendation, which can effectively model the dynamic news features and user preferences,

and plan for future explicitly, in order to achieve higher reward (e.g., CTR) in the long run.

Feng et al.[38] presented a multi-agent reinforcement learning model, MA-RDPG, which can

optimize ranking strategies collaboratively for multi-scenario ranking problems. Cai et al.[14]

employed a reinforcement mechanism design framework for solving the impression allocation

problem of large e-commerce websites, while taking the rationality of sellers into account.
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Chapter 3

Jointly Recommend and Advertise

Abstract

Online recommendation and advertising are two major income channels for online recommen-

dation platforms (e.g., e-commerce and news feed site). However, most platforms optimize

recommending and advertising strategies by different teams separately via different tech-

niques, leading to suboptimal overall performances. To this end, in this chapter, we propose

a novel two-level reinforcement learning framework to jointly optimize the recommending and

advertising strategies, where the first level generates a list of recommendations to optimize

user experience in the long run; then the second level inserts ads into the recommendation

list that can balance the immediate advertising revenue from advertisers and the negative

influence of ads on long-term user experience. To be specific, the first level tackles high

combinatorial action space problem that selects a subset of items from the large item space;

while the second level determines three internally related tasks, i.e., (i) whether to insert an

ad, and if yes, (ii) the optimal ad and (iii) the optimal location to insert. The experimental

results based on real-world data demonstrate the effectiveness of the proposed framework.
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3.1 Introduction

Practical e-commerce or news-feed platforms generally expose a hybrid list of recommended

and advertised items (e.g., products, services, or information) to users, where recommending

and advertising algorithms are typically optimized by different metrics [38]. The recommender

systems (RS) capture users’ implicit preferences from historical behaviors (e.g., clicks, rating

and review) and generate a set of items that best match users’ preferences. Thus, RS aims at

optimizing the user experience or engagement. While advertising systems (AS) assign the right

ad to the right user on the right ad slots to maximize the revenue, click-through rate (CTR) or

return on investment (ROI) from advertisers. Thus, optimizing recommending and advertising

algorithms independently may lead to suboptimal overall performance since exposing more

ads to increase advertising revenue negatively influences user experience, and vice versa.

Therefore, there is an increasing demand for developing a uniform framework that jointly

optimizes recommending and advertising, so as to optimize the overall performance [156].

Efforts have been made to display recommended and advertised items together. They

consider ads as recommendations, and rank all items in a hybrid list to optimize the overall

ranking score [134]. However, this approach has two major drawbacks. First, solely maximizing

the overall ranking score may result in suboptimal advertising revenue. Second, in the real-

time bidding (RTB) environment, the vickrey-clarke-groves (VCG) mechanism is necessary to

calculate the bid of each ad in the list, which suffers from many practical severe problems [112].

Therefore, it calls for methods where we can optimize not only the metrics for RS and AS

separately, but also the overall performance. Moreover, more practical mechanisms such as

generalized-second-price (GSP) should be considered to compute the bid of each ad.

To achieve the goal, we propose to study a two-level framework for rec-ads mixed display.
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Figure 3.1: An example of rec-ads mixed display for one user request.

Figure 3.1 illustrates the high-level idea about how the framework works. Upon a user’s

request, the first level (i.e., RS) generates a list of recommendations (rec-list) according to the

user’s historical behaviors, aiming to optimize the long-term user experience or engagement.

The main challenge to build the first level is the high computational complexity of the

combinatorial action space, i.e., selecting a subset of items from the large item space. Then

the second level (i.e., AS) inserts ads into the rec-list generated from the first level, and it

needs to make three decisions, i.e., whether to insert an ad into the given rec-list; and if

yes, the AS also needs to decide which ad and where to insert. For example, in Figure 3.1,

the AS decides to insert an belt ad ad9 between T-shirt rec2 and pants rec3 of the rec-list.

The optimal ad should jointly maximize the immediate advertising revenue from advertisers

in the RTB environment and minimize the negative influence of ads on user experience in

the long run. Finally, the target user browses the mixed rec-ads list and provides her/his

feedback. According to the feedback, the RS and AS update their policies and generate the

mixed rec-ads list for the next iteration.

Most existing supervised learning based recommending and advertising methods are

designed to maximize the immediate (short-term) reward and suggest items following fixed
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greedy strategies. They overlook the long-term user experience and revenue. Thus, we

build a two-level reinforcement learning framework for Rec/Ads Mixed display (RAM),

which can continuously update their recommending and advertising strategies during the

interactions with users, and the optimal strategy is designed to maximize the expected

long-term cumulative reward from users [159, 155]. Meanwhile, to effectively leverage users’

historical behaviors from other policies, we design an off-policy training approach, which can

pre-train the framework before launching it online, so as to reduce the bad user experience in

the initial online stage when new algorithms have not been well learned [161, 162, 175]. We

summarize our major contributions as follows:

• We provide a two-stage generation process for the mixed display of recommended and

advertised items in a hybrid list;

• We propose a two-level deep reinforcement learning based framework RAM, where the first

level can generate a list of recommendations, while the second level can determine whether

to insert an ad, and the corresponding optimal ad and location to insert;

• We conduct experiments with real-world data to demonstrate the effectiveness of the

proposed framework.

3.2 Problem Statement

As aforementioned in Section 3.1, we consider the rec/ads mixed display task as a two-level

reinforcement learning problem, and model it as a Markov Decision Process (MDP) where

the RS and AS sequentially interact with users (environment E) by generating a sequence

of rec-ads hybrid-list over time, so as to maximize the cumulative reward from E . Next, we
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define the five elements (S,A,P ,R, γ) of the MDP.

• State space S: A state st ∈ S includes a user’s recommendation and advertisement

browsing history before time t and the contextual information of current request at time t.

The generated rec-list from RS is also considered as a part of the state for the AS.

• Action space A: at = (arst , a
as
t ) ∈ A is the action of RS and AS, where arst of RS is to

generate a rec-list, and aast of AS is to determine three internally related decisions, i.e.,

whether to insert an ad in current rec-list; and if yes, the AS needs to choose a specific ad

and insert it into the optimal location of the rec-list. We denote Arst and Aast as the rec

and ad candidate sets for time t, respectively. Without the loss of generality, we assume

that the length of any rec-list is fixed and the AS can insert at most one ad into a rec-list.

• Reward R: After an action at is executed at the state st, a user browses the mixed

rec-ads list and provides her feedback. The RS and AS will receive the immediate reward

rt(st, a
rs
t ) and rt(st, aast ) based on user’s feedback. We will discuss more details about the

reward in following sections.

• Transition probability P: P (st+1|st, at) is the state transition probability from st to

st+1 after executing action at. The MDP is assumed to satisfy P (st+1|st, at, ..., s1, a1) =

P (st+1|st, at).

• Discount factor γ: Discount factor γ ∈ [0, 1] balances between current and future rewards

– (1) γ = 1: all future rewards are fully considered into current action; and (2) γ = 0: only

the immediate reward is counted.

Figure 3.2 illustrates the user-agent interactions in MDP. With the above definitions, the

problem can be formally defined as follows: Given the historical MDP, i.e., (S,A,P ,R, γ),
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Figure 3.2: The agent-user interactions in MDP.

the goal is to find a two-level rec/ads policy π = {πrs, πas} : S → A, which can maximize the

cumulative reward from users, i.e., simultaneously optimizing the user experience and the

advertising revenue.

3.3 Framework

In this section, we will discuss the two-level deep reinforcement learning framework for rec/ads

mixed display. We will first introduce the first-level deep Q-network (i.e., RS) to generate a

list of recommendations (rec-list) according to user’s historical behaviors, then we propose a

novel DQN architecture as the second-level (i.e., AS) to insert ads into the rec-list generated

from RS. Finally, we discuss how to train the framework via offline data.

3.3.1 Deep Q-network for Recommendations

Given a user request, RS will return a list of items according to user’s historical behaviors,

which have two major challenges: (i) the high computational complexity of the combinatorial

action space
(|Arst |

k

)
, i.e., selecting k items from the large item space Arst , and (ii) how

to approximate the action-value function (Q-function) for a list of items in the two-level
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reinforcement learning framework. In this subsection, we introduce and enhance a cascading

version of Deep Q-network to tackle the above challenges. Next, we first introduce the

processing of state and action features, and then we illustrate the cascading Deep Q-network

with an optimization algorithm.

3.3.1.1 The Processing of State and Action Features for RS

As mentioned in Section 3.2, a state st includes a user’s rec/ads browsing history, and the

contextual information of the current request. The browsing history contains a sequence of

recommended items and a sequence of advertised items the user has browsed. Two RNNs with

GRU (gated recurrent unit) are utilized to capture users’ preferences of recommendations

and advertisements, separately. The final hidden state of RNN is used to represent user’s

preference of recommended items prect (or ads padt ). The contextual information ct of current

user request includes app version, operation system (e.g., ios and android) and feed type

(swiping up/down the screen), etc. The state st is the concatenation prect , padt and ct as:

st = concat(prect , padt , ct) (3.1)

For the transition from st to st+1, the browsed recommended and advertised items at

time t will be inserted into the bottom of prst and past and we have prst+1 and past+1, respectively.

For the action arst = {arst (1), · · · , arst (k)} is the embedding of the list of k items that will be

displayed in current request. Next, we will detail the cascading Deep Q-network.
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3.3.1.2 The Cascading DQN for RS

Recommending a list of k items from the large item space Arst is challenging because (i) the

combinatorial action space
(|Arst |

k

)
has high computational complexity, and (ii) the order of

items in the list also matters [160]. For example, a user may have different feedback to the

same item if it is placed in different positions of the list. To resolve the above challenges, we

leverage a cascading version of DQN which generates a list by sequentially selecting items in

a cascading manner [23]. Given state st, the optimal action is denoted as:

ars∗t = {ars∗t (1), · · · , ars∗t (k)} = arg max
arst

Q∗(st, arst ) (3.2)

The key idea of the cascading DQN is inspired by the fact that:

max
arst (1:k)

Q∗ (st, a
rs
t (1:k)) = max

arst (1)

(
max

arst (2:k)
Q∗ (st, a

rs
t (1:k))

)
(3.3)

which implies a cascade of mutually consistent as:

ars∗t (1) = arg max
arst (1)

{
Q1∗ (st, a

rs
t (1)) := max

arst (2:k)
Q∗ (st, a

rs
t (1:k))

}
ars∗t (2) = arg max

arst (2)

{
Q2∗ (st,a

rs∗
t (1),arst (2)) := max

arst (3:k)
Q∗ (st,a

rs
t (1:k))

}
· · ·

ars∗t (k) = arg max
arst (k)

{
Qk∗ (st,a

rs∗
t (1:k−1),arst (k)) :=Q∗ (st,a

rs
t (1:k))

}
(3.4)

By applying above functions in a cascading fashion, we can reduce the computational

complexity of obtaining the optimal action from O
(|Arst |

k

)
to O(k|Arst |). Then the RS can

sequentially select items following above equations. Note that the items already recommended
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Figure 3.3: The architecture of cascading DQN for RS.

in the recommendation session will be removed from being recommended again. Next, we

will detail how to estimate {Qj∗|j ∈ [1, k]}.

3.3.1.3 The estimation of Cascading Q-functions

Figure 3.3 illustrates the architecture of the cascading DQN, where i1, · · · ,iN and j1, · · · ,jN

are uses’ rec and ads browsing histories. The original model in [23] uses k layers to process k

items separately without efficient weights sharing, which is crucial in handling large action

size [118]. To address this challenge, we replace the k separate layers by RNN with GRU,

where the input of jth RNN unit is the feature of the jth item in the list, and the final hidden

state of RNN is considered as the representation of the list. Since all RNN units share the

same parameters, the framework is flexible to any action size k.

To ensure that the cascading DQN selects the optimal action, i.e., a sequence of k optimal

sub-actions, {Qj∗|j ∈ [1, k]} functions should satisfy a set of constraints as follows:

Qj∗ (st, a
rs∗
t (1 : j)) = Q∗ (st, a

rs∗
t (1 : k)) , ∀j ∈ [1, k] (3.5)
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i.e., the optimal value of Qj∗ should be equivalent to Q∗ for all j. The cascading DQN

enforces the above constraints in a soft and approximate way, where the loss functions are

defined as follows:

(
yrst −Qj (st, a

rs
t (1 : j))

)2
, where

yrst = rt (st, a
rs
t (1 : k)) + γQ∗

(
st+1, a

rs∗
t+1(1 : k)

)
,∀j ∈ [1, k]

(3.6)

i.e., all Qj functions fit against the same target yrst . Then we update the parameters of

the cascading DQN by performing gradient steps over the above loss. We will detail the

reward function rt
(
st, a

rs
t (1 : k)

)
in the following subsections. Next, we will introduce the

second-level DQN for advertising.

3.3.2 Deep Q-network for Online Advertising

As mentioned in Section 3.1, the advertising system (AS) is challenging. First, AS needs to

make three decisions, i.e., whether, which and where to insert. Second, these three decisions

are dependent and traditional DQN architectures cannot be directly applied. For example,

only when the AS decides to insert an ad, AS also needs to determine the candidate ads and

locations. Third, the AS needs to not only maximize the income of ads but also minimize

the negative influence on user experience. To tackle these challenges, next we detail a novel

Deep Q-network architecture.

3.3.2.1 The Processing of State and Action Features for AS

We leverage the same architecture as that in Section 3.3.1.1 to obtain the state st. Furthermore,

since the task of AS is to insert ad into a given rec-list, the output of the first-level DQN, i.e.,
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Figure 3.4: (a)(b) Two conventional DQNs. (c) Overview of the proposed DQN.

the current rec-list arst = {arst (1), · · · , arst (k)}, is also considered as a part of the state for

AS. For the action aast = (aadt , a
loc
t ) of AS, aadt is the embedding of a candidate ad. Given

the rec-list of k items, there exist k + 1 possible locations. Thus, we use a one hot vector

aloct ∈ Rk+1 to indicate the location to insert the selected ad.

3.3.2.2 The Proposed DQN Architecture

Given state st and rec-list arst , the action of AS aast contains three sub-actions, i.e., (i)

whether to insert an ad into rec-list arst ; if yes, (ii) which is the best ad and (iii) where is

the optimal location. Note that in this work we suppose that the AS can insert an ad into

a given rec-list at most. Next, we discuss the limitations if we directly apply two classic

Deep Q-network (DQN) architectures as shown in Figures 3.4(a) and (b) to the task. The

architecture in Figure 3.4(a) inputs only the state (st and arst ) and outputs Q-values of all

k + 1 possible locations. This DQN can select the optimal location, while it cannot choose

the optimal ad to insert. The architecture in Figure 3.4(b) takes a pair of state-action and

outputs the Q-value for a specific ad. This DQN can determine the optimal ad but cannot
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determine where to insert the ad. One solution is to input the location information (e.g.,

one-hot vector). However, it needs O(k|Aast |) evaluations (forward propagation) to find the

optimal Q-value, which is not practical in real-world advertising systems. Note that neither

two classic DQNs can decide whether to insert an ad into a given rec-list.

To address above challenges, we propose a novel DQN architecture for online advertising

in a given rec-list arst , as shown in Figure 3.4(c). It is built based on the two classic DQN

architectures. The proposed DQN takes state st (including arst ) and a candidate ad aadt as

input, and outputs the Q-values for all k + 1 locations. This DQN architecture inherits the

advantages of both two classic DQNs. It can evaluate the Q-values of the combination of

two internally related types of sub-actions at the same time. In this chapter, we evaluate the

Q-values of all possible locations for an ad simultaneously. To determine whether to insert

an ad (the first sub-action), we extend the output layer from k + 1 to k + 2 units, where the

Q(st, a
ad
t )0 unit corresponds to the Q-value of not inserting an ad into rec-list arst . Therefore,

our proposed DQN can simultaneously determine three aforementioned sub-actions according

to the Q-value of ad-location combinations (aadt , a
loc
t ), and the evaluation times are reduced

from O(k|Aast |) to O(|Aast |); when Q(st,0)0 leads to the maximal Q-value, the AS will insert

no ad into rec-list arst , where we use a zero-vector 0 to represent inserting no ad.

More details of the proposed DQN architecture are illustrated in Figure 3.5. First, whether

to insert an ad into a given rec-list is affected by st and arst (especially the quality of the

rec-list). For example, if a user is satisfied with a rec-list, the AS may prefer to insert an

ad into the rec-list; conversely, if a user is unsatisfied with a rec-list and is likely to leave,

then the AS won’t insert an ad. Second, the reward for an ad-location pair is related to all

information. Thus, we divide the Q-function into a value function V (st), related to st and

arst , and an advantage function A(st, a
ad
t ), decided by st, arst and aadt [138].
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Figure 3.5: The architecture of the proposed DQN for AS.

3.3.2.3 The Action Selection in RTB setting

In the real-time bidding environment, each ad slot is bid by advertisers in real-time when

an impression is just generated from a consumer visit [13]. In other words, given an ad slot,

the specific ad to display is determined by the bids from advertisers, i.e., the bidding system

(BS), rather than the platform, which aims to maximize the immediate advertising revenue

of each ad slot from advertisers. In this chapter, as mentioned in Section 3.1, the optimal

ad selection policy should not only maximize the immediate advertising revenue (controlled

by the BS), but also minimize the negative influence of ads on user experience in the long

run (controlled by the AS). To achieve this goal, the AS will first calculate the Q-values for

all candidate ads and all possible locations, referred as to Q(st,Aast ), which captures the

long-term influence of ads on user experience; and then the BS will select the ad that achieves

the trade-off between the immediate advertising revenue and the long-term Q-values:

aast = BS (Q(st,Aast )) (3.7)
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where the operation Q(st,Aast ) goes through all candidate ads {aadt } (input layer) and all

locations {aloct } (output layer), including the location that represents not inserting an ad. To

be more specific, we design two AS+BS approaches as follows:

• RAM-l: the optimal ad-location pair aast = (aadt , a
loc
t ) directly optimizes the linear

summation of immediate advertising revenue and long-term user experience:

aast = arg max
aast ∈A

as
t

(
Q(st, a

as
t ) + α · revt(aast )

)
(3.8)

where α controls the second term, and revt(aast ) is the immediate advertising revenue if

inserting an ad, otherwise 0;

• RAM-n: this is a nonlinear approach that the AS first selects a subset of ad-location pairs

{aast } (the size is N) that corresponds to optimal long-term user experience Q(st, a
as
t ),

then the BS chooses one aast that has the maximal immediate advertising revenue revt(aast )

from the subset.

It is noteworthy that we maximize immediate advertising revenue rather than long-term

advertising revenue because: (i) as aforementioned, advertisers determine the ad to insert

rather than the platform (the agent does not generate action); and (ii) in the generalized-

second-price (GSP) setting, the highest bidder pays the price (immediate advertising revenue)

bid by the second-highest bidder, if we use immediate advertising revenue as rt(st, aast ), then

we cannot select an ad according to its Q(st, a
as
t ) that represents the long-term advertising

revenue.
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3.3.3 The Optimization Task

Given a user request and state st, the RS and AS sequentially generate actions arst and aast ,

i.e., a rec-ads hybrid list, and then the target user will browse the list and provide her/his

feedback. The two-level framework aims to (i) optimize the long-term user experience or

engagement of recommended items (RS), (ii) maximize the immediate advertising revenue

from advertisers in RTB environment (BS), and (iii) minimize the negative influence of

ads on user long-term experience (AS), where the second goal is automatically achieved by

the bidding system, i.e., the advertiser with highest bid price will win the ad slot auction.

Therefore, we next design proper reward functions to assist the RL components in the

framework to achieve the first and third goals.

The framework is quite general for the rec-ads mixed display applications in e-commerce,

news feed and video platforms. Thus, for different types of platforms, we design different

reward functions. For the first level DQN (RS), to evaluate the user experience, we have

rt(st, a
rs
t ) =


income e−commerce

dwell time news/videos

(3.9)

where user experience is measured by the income of the recommended items in the hybrid

list in e-commerce platforms, and the dwelling time of the recommendations in news/video

platforms. Based on the reward function rt(st, arst ), we can update the parameters of the

cascading DQN (RS) by performing gradient steps over the loss in Eq. (3.6). We introduce

separated evaluation and target networks [93] to help smooth the learning and avoid the

divergence of parameters, where θrs represents all parameters of the evaluation network, and

the parameters of the target network θrsT are fixed when optimizing the loss function. The
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derivatives of loss function L(θrs) with respective to parameters θrs are presented as follows:

∇θrsL(θrs) =
(
yrst −Qj (st,a

rs
t (1:j);θrs)

)
∇θrsQj (st,a

rs
t (1:j);θrs) (3.10)

where the target yrst = rt
(
st,a

rs
t (1:k)

)
+ γQ∗

(
st+1,a

rs∗
t+1(1:k);θrsT

)
,∀j ∈ [1, k].

For the second level DQN (AS), since leaving the platforms is the major risk of inserting

ads improperly or too frequently, we evaluate user experience by whether user will leave the

platform after browsing current rec-ads hybrid list, and we have:

rt(st, a
as
t ) =


1 continue

0 leave

(3.11)

in other words, the AS will receive a positive reward (e.g. 1) if the user continues to browse

the next list, otherwise 0 reward. Then the optimal Q∗(st, aast ), i.e., the maximum expected

return achieved by the optimal policy, follows the Bellman equation [6] as:

Q∗(st, aast ) = rt(st, a
as
t ) + γQ∗

(
st+1, BS

(
Q∗(st+1,Aast+1)

) )
(3.12)

then the second level DQN can be optimized by minimizing the loss function as:

(
yast −Q(st, a

as
t )
)2
, where

yast = rt(st, a
as
t ) + γQ∗

(
st+1, BS

(
Q∗(st+1,Aast+1)

)) (3.13)

where yast is the target of the current iteration. We also introduce separated evaluation and

target networks [93] with parameters θas and θasT for the second level DQN (AS), and θasT is

fixed when optimizing the loss function in Eq. (3.13) (i.e. L(θas)). The derivatives of loss
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function L(θas) w.r.t. parameters θas can be presented as:

∇θasL(θas) =
(
yast −Q(st, a

as
t ; θas)

)
∇θasQ(st, a

as
t ; θas) (3.14)

where yast = rt(st, a
as
t )+γQ∗

(
st+1, BS

(
Q∗(st+1,Aast+1; θasT )

)
; θasT

)
. The operation Q(st,Aast )

looks through the candidate ad set {aadt+1} and all locations {aloct+1} (including the location of

inserting no ad).

3.3.4 Off-policy Training

Training the two-level reinforcement learning framework requires a large amount of user-

system interaction data, which may result in bad user experience in the initial online stage

when new algorithms have not been well trained. To address this challenge, we propose an

off-policy training approach that effectively utilizes users’ historical behavior log from other

policies. The users’ offline log records the interaction history between behavior policy b(st)

(the current recommendation and advertising strategies) and users’ feedback. Our RS and

AS take the actions based on the off-policy b(st) and obtain feedback from the offline log.

We present our off-policy training algorithm in detail shown in Algorithm 3.1.

There are two phases in each iteration of a training session. For the transition generation

phase: for the state st (line 6), the RS and AS sequentially act arst and aast based on the be-

havior policy b(st) (line 7) according to a standard off-policy way [30]; then RS and AS receive

the reward rt(st, arst ) and rt(st, aast ) from the offline log (line 8) and update the state to st+1

(line 9); and finally the RS and AS store transition (st, a
rs
t , a

as
t , rt(st, a

rs
t ), rt(st, a

as
t ), st+1)

into the replay buffer D (line 10). For the model training phase: the proposed framework

first samples minibatch of transitions from D (line 11), then generates actions ars
′
and
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Algorithm 3.1: Off-policy Training of the RAM Framework.
Input: historical offline logs, replay buffer D
Output: well-trained recommending policy π∗rs and advertising policy π∗as
1: Initialize the capacity of replay buffer D
2: Randomly initialize action-value functions Qrs and Qas
3: for session = 1,M do
4: Initialize state s0
5: for t = 1, T do
6: Observe state st = concat(prect , pasdt , ct)
7: Execute actions arst and aast according to off-policy b(st)
8: Get rewards rt(st, arst ) and rt(st, aast ) from offline log
9: Update the state from st to st+1
10: Store (st, a

rs
t , a

as
t , rt(st, a

rs
t ), rt(st, a

as
t ), st+1) transition into the D

11: Sample minibatch of (s, ars, aas, r(s, ars), r(s, aas), s′) transitions from the D
12: Generate RS’s next action ars

′
according to Eq. (3.4)

13: Generate AS’s next action aas
′
according to Eq. (3.7)

14: yrs =

{
r(s, ars) terminal s′

r(s, ars) + γQrs(s
′, ars

′
) non− terminal s′

15: Update θrs of Qrs by minimizing
(
yrs −Qjrs (s, ars(1 : j))

)2 via Eq. (3.10)

16: yas =

{
r(s, aas) terminal s′

r(s, aas) + γQas(s
′, aas

′
) non− terminal s′

17: Update θas of Qas by minimizing
(
yas −Qas(s, aas)

)2 according to Eq. (3.14)
18: end for
19: end for

aas
′
of next iteration according to Eqs.(3.4) and (3.7) (lines 12-13), and finally updates

parameters of Qrs and Qas by minimizing Eqs.(3.6) and .(3.13) (lines 14-17). To help avoid

the divergence of parameters and smooth the training, we introduce separated evaluation

and target Q-networks [93] . Note that when b(st) decides not to insert an ad (line 7), we

denote aadt as an all-zero vector.

3.3.5 Online Test

We present the online test procedure in Algorithm 3.2. The process is similar to the transition

generation stage of Algorithm 3.1. Next, we detail each iteration of test session as shown
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Algorithm 3.2: Online Test of the RAM Framework.
1: Initialize action-value functions Qrs and Qas with well-trained weights
2: for session = 1,M do
3: Initialize state s0
4: for t = 1, T do
5: Observe state st = concat(prect , pasdt , ct)
6: Generate action arst according to Eq. (3.4)
7: Generate action aast according to Eq. (3.7)
8: Execute actions arst and aast
9: Observe rewards rt(st, arst ) and rt(st, aast ) from user
10: Update the state from st to st+1
11: end for
12: end for

in Algorithm 3.2. First, the well-trained RS generates a rec-list by π∗rs (line 6) according to

the current state st (line 5). Second, the well-trained AS, collaboratively working with BS,

decides to insert an ad into the rec-list (or not) by π∗as (line 7). Third, the reward is observed

from the target user to the hybrid list of recommended and advertised items (lines 8 and 9).

Finally we transit the state to st+1 (line 10).

3.4 Experiment

In this section, we will conduct extensive experiments using data from a short video site to

assess the effectiveness of the proposed RAM framework. We first introduce the experimental

settings, then compare the RAM framework with state-of-the-art baselines, and finally conduct

component and parameter analysis on RAM.

3.4.1 Experimental Settings

Since there are no public datasets consist of both recommended and advertised items, we

collected a dataset from a short video site, TikTok, in March 2019. In total, we collect
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Table 3.1: Statistics of the dataset.

session user normal video ad video
1,000,000 188,409 17,820,066 10,806,778

session dwell time session length session ad revenue rec-list with ad

17.980 min 55.032 videos 0.667 55.23%

1,000,000 sessions in chronological order, where the first 70% is used as training/validation set

and the later 30% is test set. For more statistics of the dataset, please see Table 3.1. There

are two types of videos in the dataset: regular videos (recommended items) as well as ad

videos (advertised items). The features for a normal video contain: id, like score, finish score,

comment score, follow score and group score, where the scores are predicted by the platform.

The features for an ad video consist of: id, image size, bid-price, hidden-cost, predicted-ctr

and predicted-recall, where the platform predicts the last four. It is worth noting that (i)

the effectiveness of the calculated features have been validated in the businesses of the short

video site, (ii) we discretize each numeric feature into a one-hot vector, and (iii) baselines are

based on the same features for a fair comparison.

3.4.2 Evaluation Metrics

The reward rt(st, a
rs
t ) to evaluate user experience of a list of regular videos is the dwell

time (min), and the reward rt(st, aast ) of ad videos is 0 if users leave the site and 1 if users

continue to browse. We use the session dwell time Rrs =
∑T

1 rt(st, a
rs
t ), session length

Ras =
∑T

1 rt(st, a
as
t ), and session ad revenue Rrev =

∑T
1 revt(a

as
t ) as metrics to measure

the performance of a test session.
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3.4.3 Architecture Details

Next, we detail the architecture of RAM to ease reproductivity. The number of candidate

regular/ad videos (selected by external recall systems) for a request is 15 and 5 respectively,

and the size of regular/ad video representation is 60. There are k = 6 regular videos in a

rec-list. The initial state s0 of a session is collected from its first three requests, and the

dimensions of prect , padt , ct, a
rs
t , a

ad
t are 64, 64, 13, 360, 60, respectively. For the second level

DQN (AS), two separate 2-layer neural networks are respectively used to generate V (st)

and A(st, a
ad
t ), where the output layer has k + 2 = 8 units, i.e., 8 possible ad locations

including not to insert an ad. We empirically set the size of replay buffer 10,000, and the

discounted factor of MDP γ = 0.95. We select important hyper-parameters such as α and

N via cross-validation, and we do parameter-tuning for baselines for a fair comparison. In

the following subsections, we will present more details of parameter sensitivity for the RAM

framework.

3.4.4 Overall Performance Comparison

The experiment is based on a simulated online environment, which can provide the rt(st, arst ),

rt(st, a
as
t ) and revt(a

as
t ) according to a mixed rec-ads list. The simulator shares similar

architecture to Figure 3.5, while the output layer predicts the dwell time, whether user will

leave and the ad revenue of current mixed rec-ads list. We compare the proposed framework

with the following representative baseline methods:

• W&D [24]: This baseline jointly trains a wide linear model with feature transformations

and a deep feedforward neural network with embeddings for general recommender systems

with sparse inputs. One W&D estimates the recommending scores of regular videos and
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Table 3.2: Performance comparison.

Metrics Values Algorithms
W&D DFM GRU DRQN RAM-l RAM-n

Rrs
value 17.61 17.95 18.56 18.99 19.61 19.49

improv.(%) 11.35 9.25 5.66 3.26 - 0.61
p-value 0.000 0.000 0.000 0.000 - 0.006

Ras
value 8.79 8.90 9.29 9.37 9.76 9.68

improv.(%) 11.03 9.66 5.06 4.16 - 0.83
p-value 0.000 0.000 0.000 0.000 - 0.009

Rrev
value 1.07 1.13 1.23 1.34 1.49 1.56

improv.(%) 45.81 38.05 26.83 16.42 4.70 -
p-value 0.000 0.000 0.000 0.000 0.001 -

each time we recommend k videos with highest scores, while another W&D predicts whether

to insert an ad and estimates the CTR of ads.

• DFM [51]: DeepFM is a deep model that incorporates W&D model with factorization-

machine (FM). It models high-order feature interactions like W&D and low-order interac-

tions like FM.

• GRU [55]: GRU4Rec is an RNN with GRU to predict what user will click next according

to her/his behavior histories.

• DRQN [53]: Deep Recurrent Q-Networks addresses the partial observation problem

by considering the previous context with a recurrent structure. DRQN uses an RNN

architecture to encode previous observations before the current time.

Note that we also develop two separate DFMs, GRUs, DRQNs for RS and AS, respectively.

The results are shown in Table 3.2. We make the following observations:

• GRU performs better than W&D and DFM, since W&D and DFM neglect users’ sequential

behaviors of one session, while GRU can capture the sequential patterns.
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• DRQN outperforms GRU, since DRQN aims to maximize the long-term rewards of a

session, while GRU targets maximizing the immediate reward of each request. This result

demonstrates the advantage of introducing RL for online recommendation and advertising.

• RAM-l and RAM-n achieve better performance than DRQN, which validates the effec-

tiveness of the proposed two-level DQN framework, where the RS generates a rec-list of

recommendations and the AS decides how to insert ads.

• RAM-n outperforms RAM-l in session ad revenue, since the second step of RAM-n will

select the ad-location pair with maximal immediate advertising revenue, which has a higher

probability of inserting ads.

To sum up, RAM outperforms representative baselines, which demonstrates its effectiveness

in online recommendation and advertising.

3.4.5 Component Study

To understand the impact of model components of RAM, we systematically eliminate the

corresponding components of RAM by defining the following variants:

• RAM-1: This variant has the same neural network architectures with the RAM framework,

while we train it in the supervised learning way;

• RAM-2: In this variant, we evaluate the contribution of recurrent neural networks, so we

replace RNNs with fully-connected layers. Specifically, we concatenate recommendations

or ads into one vector and then feed it into fully-connected layers;

• RAM-3: In this variant, we use the original cascading DQN architecture in [23] as RS;

61



R A M - 1
R A M - 2

R A M - 3
R A M - 4

R A M - 5R A M - l
R A M - n1 8

1 9

2 0 ( c )  R r e v( b )  R a s( a )  R r s

R A M - 1
R A M - 2

R A M - 3
R A M - 4

R A M - 5R A M - l
R A M - n9 . 0

9 . 5

1 0 . 0

R A M - 1
R A M - 2

R A M - 3
R A M - 4

R A M - 5R A M - l
R A M - n1 . 0

1 . 5

2 . 0

Figure 3.6: Performance comparison of different variants.

• RAM-4: For this variant, we do not divide the Q-function of AS into the value function

V (s) and the advantage function A(s, a);

• RAM-5: This variant leverages an additional input to represents the location, and uses

the DQN in Figure 3.4(b) for AS.

The results are shown in Figure 3.6. By comparing RAM and its variants, we make the

following observations:

• RAM-1 demonstrates the advantage of reinforcement learning over supervised learning for

jointly optimizing recommendation and online advertising;

• RAM-2 validates that capturing user’s sequential behaviors can enhance the performance;

• RAM-3 proves the effectiveness of RNN over k separate layers for larger action space;

• RAM-4 suggests that dividing Q(st, at) into V (st) and A(st, at) can boost the performance;

• RAM-5 validates the advantage of the proposed AS architecture (over classic DQN archi-

tectures) that inputs a candidate ad aadt and outputs the Q-value for all possible locations

{aloct }.
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Figure 3.7: Parameter sensitivity analysis.

In summary, leveraging suitable RL policy and proper neural network components can

improve the overall performance.

3.4.6 Parameter Sensitivity Analysis

Our method has two key hyper-parameters, i.e., (i) the parameter α of RAM-l, and (ii) the

parameter N of RAM-n. To study their sensitivities, we fix other parameters, and investigate

how the RAM framework performs with the changes of α or N .

• Figure 3.7(a) illustrates the sensitivity of α. We observe that when α increases, the metric

Rrev improves, while the metric Ras decreases. This observation is reasonable because

when we decrease the importance of the second term of Eq. (3.8), the AS will insert more

ads or choose the ads likely to have more revenue, while ignoring their negative impact on

regular recommendations.

• Figure 3.7(b) shows the sensitivity of N . With the increase of N , we can observe that
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the metric Rrev improves and the metric Ras decreases. With smaller N , the first step of

RAM-n prefers to selecting most ad-location pairs that do not insert an ad, which results

in lower Rrev and larger Ras; on the contrary, with larger N , the first step returns more

pairs with non-zero ad revenue, then the second step leads to higher Rrev.

In a nutshell, both above results demonstrate that recommended and advertised items are

mutually influenced: inserting more ads can lead to more ad revenue while worse user

experience, vice versa. Therefore, online platforms should carefully select these hyper-

parameters according to their business demands.

3.5 Related Work

In this section, we will briefly summarize the related works of our study, which can be mainly

grouped into the following categories.

The first category related to this chapter is reinforcement learning-based recommender

systems. A DDPG algorithm is used to mitigate the large action space problem in real-

world RL-based RS [32]. A tree-structured policy gradient is presented in [18] to avoid

the inconsistency of DDPG-based RS. Biclustering is also used to model RS as grid-world

games to reduce action space [26]. A Double DQN-based approximate regretted reward

technique is presented to address the issue of unstable reward distribution in dynamic RS

environment [21]. A pairwise RL-based RS framework is proposed to capture users’ positive

and negative feedback to improve recommendation performance [164]. A page-wise RS is

proposed to simultaneously recommend a set of items and display them in a 2-dimensional

page [160, 165]. A DQN based framework is proposed to address the issues in the news feed

scenario, like only optimizing current reward, not considering labels, and diversity issue [167].
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An RL-based explainable RS is presented to explain recommendations and can flexibly control

the explanation quality according to the scenarios [136]. A policy gradient-based RS for

YouTube is proposed to address the biases in logged data by introducing a simulated historical

policy and a novel top-K off-policy correction [20].

The second category related to this chapter is RL-based online advertising techniques,

which belong to two groups. The first group is guaranteed delivery (GD), where ads are

charged according to a pay-per-campaign pre-specified number of deliveries [113]. A multi-

agent RL method is presented to control cooperative policies for the publishers to optimize

their targets in a dynamic environment [140]. The second group is real-time bidding (RTB),

which allows an advertiser to bid each ad impression in a very short time slot. Ad selection task

is typically modeled as multi-armed bandit problem supposing that arms are iid, feedback is

immediate and environments are stationary [98, 41, 129, 148, 152, 114]. The problem of online

advertising with budget constraints and variable costs is studied in MAB setting [31], where

pulling the arms of bandit results in random rewards and spends random costs. However, the

MAB setting considers the bid decision as a static optimization problem, and the bidding for

a given ad campaign would repeatedly happen until the budget runs out. To address these

challenges, the MDP setting has also been studied for RTB [13, 134, 160, 109, 141, 61]. A

model-based RL framework is proposed to learn bid strategies in RTB setting [13], where

state value is approximated by a neural network to better handle the large scale auction

volume problem and limited budget. A model-free RL method is also designed to solve the

constrained budget bidding problem, where a RewardNet is presented to generate rewards

for reward design trap [141]. A multi-agent RL framework is presented to consider other

advertisers’ bidding as the state, and a clustering method is leveraged to handle a large

amount of advertisers issue [61].
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Chapter 4

User Simulation for Recommendations

Abstract

With the recent advances in Reinforcement Learning (RL), there have been tremendous

interests in employing RL for recommender systems. However, directly training and evaluating

a new RL-based recommendation algorithm needs to collect users’ real-time feedback in the

real system, which is time/effort consuming and could negatively impact users’ experiences.

Thus, it calls for a user simulator that can mimic real users’ behaviors to pre-train and

evaluate new recommendation algorithms. Simulating users’ behaviors in a dynamic system

faces immense challenges – (i) the underlying item distribution is complex, and (ii) historical

logs for each user are limited. In this chapter, we develop a user simulator based on a

Generative Adversarial Network (GAN). To be specific, the generator captures the underlying

distribution of users’ historical logs and generates realistic logs that can be considered as

augmentations of real logs; while the discriminator not only distinguishes real and fake logs

but also predicts users’ behaviors. The experimental results based on benchmark datasets

demonstrate the effectiveness of the proposed simulator.
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Figure 4.1: An example of system-user interactions.

4.1 Introduction

With the recent tremendous development in Reinforcement Learning (RL), there have been

increasing interests in adapting RL for recommendations [20]. RL-based recommender

systems treat the recommendation procedures as sequential interactions between users and

a recommender agent (RA) as shown in Figure 4.1. In each iteration, the recommender

system suggests a set of items to the user; then, the user browses the recommended items and

provides her/his real-time feedback; next, the system will update its recommendation strategy

according to user’s feedback. RL-based recommender systems aim to automatically learn an

optimal recommendation strategy (policy) that maximizes cumulative rewards from users

without any specific instructions. They can achieve two key advantages: (i) the recommender

agent can learn their recommendation strategies based on users’ real-time feedback during

the user-agent interactions continuously; and (ii) the optimal strategy targets at maximizing

the long-term reward from users (e.g., the overall revenue of a recommendation session).

Given the advantages of reinforcement learning, very recently, it allures tremendous interest

in developing RL-based recommender systems. [32, 160, 167].
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RL-based recommendation algorithms are desired to be trained and evaluated based on

users’ real-time feedback (reward function). The most practical and precise way is online

A/B test [151, 66], where a new recommendation algorithm is trained based on the feedback

from real users and the performance is compared against that of the previous algorithm

via randomized experiments. However, online A/B tests are inefficient and expensive: (i)

online A/B tests usually take several weeks to collect sufficient data for the sake of statistical

sufficiency, and (ii) numerous engineering efforts are typically required to deploy the new

algorithm in the real system [150, 43, 73]. Furthermore, online A/B tests often lead to bad

user experience in the initial stage when the new recommendation algorithms have not been

well trained [72]. These reasons prevent us from quickly training and testing new RL-based

recommendation algorithms. The common practice to handle these challenges in the RL

community is to build a simulator to approximate the environment (e.g., OpenAI Gym for

video games), and then use it to train and evaluate the RL algorithms [39]. Thus, following

the best routine, we aim to build a user simulator based on users’ historical logs in this

work, which can be utilized to pre-train and evaluate new recommendation algorithms before

launching them online.

However, simulating users’ behaviors in a dynamic recommendation environment is very

challenging. First, the underlying distribution of recommended item sequences is extremely

complex in historical logs since there are millions of items in practical recommender systems.

Second, learning a robust simulator typically requires large-scale historical logs as training

data from each user. Though massive historical logs are often available, data available to

each user is rather limited. Recent efforts have demonstrated that Generative Adversarial

Network (GAN) and its variants are able to generate fake but realistic images [45, 46], which

implies their potential in modeling complex distributions. Furthermore, the generated images
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can be considered as augmentations of real images to enlarge the data space. Driven by

these advantages, we propose to build a GAN-based user simulator (UserSim) for RL-based

recommenders, which can capture the complex distribution of users’ browsing logs and

generate realistic logs to enrich the training dataset. We summarize our major contributions

as follows:

• We introduce a principled approach to capture the underlying distribution of recommended

item sequences in historical logs, and generate realistic item sequences;

• We propose a user behavior simulator UserSim, which can be utilized to simulate environ-

ments with limited training data to pre-train and evaluate RL based recommender systems;

and

• We conduct experiments based on real-world data to demonstrate the effectiveness of the

proposed simulator and validate the contributions of its components.

4.2 The Proposed Simulator

This section will propose a simulator framework that imitates users’ feedback (behavior) on

a recommended item according to the user’s current preference learned from her browsing

history.

4.2.1 Problem Statement

RL-based recommender systems treat the recommendation task as sequential interactions

between a recommender system (agent) and users (environment E), and use a Markov Decision

Process (MDP) to model them, which consist of a sequence of states, actions and rewards:
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• We define the state s = {i1, · · · , iN} as a sequence of N items that a user browsed and

user’s corresponding feedback for each item. The items in s are chronologically sorted;

• An action a from the recommender system perspective is defined as recommending a set of

items to the user. Without loss of generality, we suppose that each time the recommender

system suggests one item to the user, but it is straightforward to extend this setting to

recommending more items;

• When the system takes an action a based on the state s, the user will browse the recom-

mended item and provide her feedback on the item, such as skip, click, or purchase the

item. The recommender system will then receive a reward r(s, a) solely according to the

type of feedback.

With the aforementioned definitions and notations, the goal of a simulator can be formally

defined as follows: Given a state-action pair (s, a), the goal is to imitate user’s feedback

(behavior) on a recommended item according to user’s preference learned from the user’s

browsing history.

4.2.2 The Generator Architecture

The goal of the generator is to learn the data distribution and then generate indistinguishable

logs (action) based on users’ browsing history (state), i.e., to imitate the recommendation

policy of the recommender system that generates the historical logs. Figure 4.2 illustrates

the generator with the Encoder-Decoder architecture.
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Figure 4.2: The generator with Encoder-Decoder architecture.

4.2.2.1 The Encoder Component

The Encoder component aims to learn user’s preference according to the items browsed

by the user and the user’s feedback. The input is the state s = {i1, · · · , iN} that is

observed in the historical logs, i.e., the sequence of N items that a user browsed and user’s

corresponding feedback for each item. The output is a low-dimensional representation of user’s

current preference, referred to as pE . Each item in ∈ s involves two types of information:

in = (en,fn), where en is a low-dimensional and dense item-embedding of the recommended

item, and fn is an embedding to denote user’s feedback on the recommended item1. The

intuition of selecting these two types of information is that, we not only want to learn the

information of each item in the sequence, but also want to capture user’s interests (feedback)

on each item. Then, we concatenate en and fn, and get a low-dimensional and dense vector:

In = concat(en,fn).

We introduce a Recurrent Neural Network (RNN) with Gated Recurrent Units (GRU)

to capture the sequential patterns of items in the logs. We consider the RNN’s final hidden

1These embeddings are jointly trained with neural networks in an end-to-end manner.
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state hN as the output of Encoder component, i.e., the lower dimensional representation of

user’s current preference: pE = hN .

4.2.2.2 The Decoder Component

The goal of the Decoder component is to predict the item that will be recommended according

to the user’s current preference. Therefore, the input is user’s preference representation pE ,

while the output is the item-embedding of the item that is predicted to appear at next position

in the log, referred to as Gθ(s). We leverage a MLP component with several fully-connected

layers as the Decoder to directly transform pE to Gθ(s). So far, we have delineated the

architecture of the Generator, which aims to imitate the recommendation policy of the

existing recommender system, and generate realistic logs to augment the historical data. In

addition, we add a supervised component to encourage the generator to yield items that

are close to the ground truth items, which will be discussed in Section 4.2.4. Next, we will

discuss the architecture of discriminator.

4.2.3 The Discriminator Architecture

The discriminator aims to not only distinguish real historical logs and generated logs, but

also predict the class of user’s feedback on a recommended item according to her browsing

history. Thus we consider the problem as a classification problem with 2×K classes, i.e.,

K classes of real feedback for the recommended items observed from historical logs, and K

classes of fake feedback for the recommended items yielded by the generator.

Figure 4.3 illustrates the architecture of the discriminator. Similar with the generator,

we introduce an RNN with GRU to capture user’s dynamic preference. Note that the

architecture is the same as the RNN in generator, but they have separate parameters.
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Figure 4.3: The discriminator architecture.

The input of the RNN is the state s = {i1, · · · , iN} observed in the historical logs, where

in = (en,fn), and the output is the dense representation of the user’s current preference,

referred to as pD. Meanwhile, we feed the item-embedding of the recommended item (real

a or fake Gθ(s)) into fully-connected layers, which encode the recommended items to low-

dimensional representations, referred to as eD. Then we concatenate pD and eD, and feed

the concatenation (pD, eD) into fully-connected layers, whose goals are (1) to judge whether

the recommended items are real or fake, and (2) to predict users’ feedback on these items.

Therefore, the final fully-connected layer outputs a 2×K dimensional vector of logits, which

represent K classes of real feedback and K classes of fake feedback respectively:

output = [lR1, · · · , lRK , lF1, · · · , lFK ] (4.1)

where we include K classes of fake feedback in output layer rather than only one fake class,

since fine-grained distinction on fake samples can increase the power of discriminator (more
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details in following subsections). These logits can be transformed to class probabilities

through a softmax layer, and the probability corresponding to the jth class is:

pmodel(lj |s, a) =
exp(lj)∑2×K
k=1 exp(lk)

(4.2)

The objective function is based on these class probabilities. In addition, a supervised

component is introduced to enhance the user’s feedback prediction and more details about

this component will be discussed in Section 4.2.4.

4.2.4 The Objective Function

In this subsection, we will introduce the objective functions of the proposed simulator. The

discriminator has two goals: (1) distinguishing real-world historical logs and generated logs,

and (2) predicting the class of user’s feedback on a recommended item according to the

browsing history. The first goal corresponds to an unsupervised problem just like standard

GAN that distinguishes real and fake images, while the second goal is a supervised problem

that minimizes the class difference between users’ ground truth feedback and the predicted

feedback. Therefore, the loss function LD of discriminator consists of two components.

For the unsupervised component that distinguishes real-world historical logs and generated

logs, we need to calculate the probability that a state-action pair is real or fake. From Eq.

(4.2), we know the probability that a state-action pair observed from historical logs is classified

as real, referred to as Dφ(s, a), is the summation of the probabilities of K real feedback:

Dφ(s, a) =
K∑
k=1

pmodel(lk|s, a) (4.3)
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while the probability of a fake state-action pair where Gθ(s) action is produced by the

generator, say Dφ(s,Gθ(s)), is the summation of the probabilities of K fake feedback:

Dφ(s,Gθ(s)) =
2×K∑

k=K+1

pmodel(lk|s,Gθ(s)) (4.4)

Then, the unsupervised component of the loss function LD is defined as follows:

L
unsup
D = −{Es,a∼pdata logDφ(s, a) + Es∼pdata logDφ(s,Gθ(s))} (4.5)

where both s and a are sampled from historical logs distribution pdata in the first term; in

the second term, only s is sampled from historical logs distribution pdata, while the action

Gθ(s) is yielded by generator policy Gθ.

The supervised component aims to predict the class of user’s feedback, which is formulated

as a supervised problem to minimize the class difference (i.e., the cross-entropy loss) between

users’ ground truth feedback and the predicted feedback. Thus it also has two terms – the

first term is the cross-entropy loss between ground truth class lk and predicted class for a

real state-action pair sampled from real historical data distribution pdata; while the second

term is the cross-entropy loss between ground truth class lk and the predicted class for a fake

state-action pair, where the action Gθ(s) is yielded by the generator. Thus, the supervised

component of the loss function LD is defined as follows:

L
sup
D = −{Es,a,r∼pdata [log pmodel(lk|s, a, k≤K)]

+ λ · Es,r∼pdata [log pmodel(lk|s,Gθ(s), K<k≤2K}
(4.6)

where λ controls the contribution of the second term. The first term is a standard cross
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entropy loss of a supervised problem. The intuition we introduce the second term of Eq. (4.6)

is – in order to tackle the data limitation challenge mentioned in Section 4.1, we consider fake

state-action pairs as augmentations of real state-action pairs. Then fine-grained distinction

on fake state-action pairs will increase the power of discriminator, which also in turn forces

the generator to output more indistinguishable actions. In other words, user will provide the

same feedback if the generated item is sufficiently similar to the real one. The overall loss

function of the discriminator LD is defined as follows:

LD = L
unsup
D + α · LsupD (4.7)

where parameter α is introduced to control the contribution of the supervised component.

The target of the generator is to output realistic recommended items Gθ(s) that can

fool the discriminator, which tackles the complex data distribution problem as mentioned in

Section 4.1. To achieve this goal, we design two components for the loss function LG of the

generator. The first component aims to maximize LunsupD in Eq. (4.5) with respect to Gθ. In

other words, the first component minimizes that probabilities that fake state-action pairs are

classified as fake, thus we have:

L
unsup
G = Es∼pdata [logDφ(s,Gθ(s))] (4.8)

where s is sampled from real historical logs distribution pdata and the action Gθ(s) is yielded

by generator policy Gθ. Inspired by a supervised version of GAN [86], we introduce a

supervised loss LsupG as the second component of LG, which is the `2 distance between the
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Algorithm 4.1: Training Algorithm for the Simulator.
1: Initialize the generator Gθ and discriminator Dφ with random weights θ and φ
2: Sample a pre-training dataset of s, a ∼ pdata
3: Pre-train Gθ by minimizing LsupG in Eq. (4.9)
4: Generate fake-actions Gθ(s) ∼ Gθ for training Dφ
5: Pre-train Dφ by minimizing LsupD in Eq. (4.6)
6: repeat
7: for d-steps do
8: Sample minibatch of s, a ∼ pdata
9: Use current Gθ to generate minibatch of Gθ(s) ∼ Gθ
10: Update the Dφ by minimizing LD in Eq. (4.7)
11: end for
12: for g-steps do
13: Sample minibatch of s, a ∼ pdata
14: Update the Gθ by minimizing LG in Eq. (4.10)
15: end for
16: until simulator converges

ground truth item a and the generated item Gθ(s):

L
sup
G = Es,a∼pdata‖a−Gθ(s)‖

2
2

(4.9)

where s and a are sampled from historical logs distribution pdata. This supervised component

encourages the generator to yield items that are close to the ground truth items. The overall

loss function of the generator LG is defined as follows:

LG = L
unsup
G + β · LsupG (4.10)

where β controls the contribution of the second component.

We detail our simulator training algorithm in Algorithm 4.1. At the beginning of the

training stage, we use standard supervised methods to pre-train the generator (line 3) and

discriminator (line 5). After the pre-training stage, discriminator (lines 7-11) and generator
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Table 4.1: Statistics of the datasets.

Dataset user (session) item interaction ave. length

JD.com 283,228 1,355,255 97,713,660 345

(lines 12-15) are trained alternatively. For training the discriminator, state s and real action

a are sampled from real historical logs, while fake actions Gθ(s) are generated through the

generator. To keep balance in each d-step, we generate fake actions Gθ(s) with the same

number of real actions a.

4.3 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness of the proposed

simulator on real-world datasets.

4.3.1 Experimental Settings

We evaluate our method on public JD.com dataset2. The statistics are shown in Table 4.1.

We consider the whole sequence of item-feedback pairs of each user as a session, and consider

click as positive and skip as negative. For each session, we use first N = 20 items and

corresponding feedback as the initial state, the N + 1th item as the first action, then we could

collect a sequence of (state,action,reward) tuples following the MDP defined in Section 4.2.1.

We collect the last 30% (state,action,reward) tuples from each session as the test set, while

using the previous 70% tuples as the training/validation set.

In our experiments, we leverage N = 20 items that a user browsed and user’s corresponding

feedback for each item as state s. The dimension of the item-embedding en is |E| = 35,

2https://datascience.jd.com/page/opendataset.html
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and the dimension of feedback-embedding fn is |F | = 15. The output of discriminator is a

4 (i.e.,K = 2) dimensional vector of logits, and each logit represents real-positive, real-negative,

fake-positive and fake-negative respectively:

output = [lrp, lrn, lfp, lfn] (4.11)

where real denotes that the recommended item is observed from historical logs; fake denotes

that the recommended item is yielded by the generator; positive denotes the positive feedback

such as a user clicks/purchases the recommended item; and negative denotes the negative

feedback such as a user skips the recommended item. Note that though we only simulate

two types of behaviors of users (i.e., positive and negative), it is straightforward to extend

the simulators with more types of behaviors (e.g., purchase and leave). AdamOptimizer is

used for optimization, and the learning rate for both Generator and Discriminator is 0.001,

and batch-size is 500. The hidden size of RNN is 128. For the hyper-parameters of we use

in the proposed framework such as N = 20, λ = 0.3, α = 0.7 and β = 0.7, we select them

via cross-validation. Correspondingly, we also do parameter-tuning for baselines for a fair

comparison.

In the test stage, given a state-action pair, the simulator will predict the classes of

user’s feedback for the action (recommended item), and then compare the prediction with

ground truth feedback observed from the historical log. For this classification task, we

select the commonly used F1-score [101] as the metric, which is a measure that combines

precision and recall, namely the harmonic mean of precision and recall. Moreover, we

leverage pmodel(lrp|s, a) (i.e. the probability that user will provide positive feedback to a real

recommended item) as the score, and use AUC (Area under the ROC Curve) [27] as the
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metric to evaluate the performance.

4.3.2 Overall Performance

We compare the proposed model with the following state-of-the-art baseline methods:

• LR: Logistic Regression [92] uses a logistic function to model a binary dependent variable

through minimizing the loss E1
2(hθ(x)− y)2, where hθ(x) = 1

1+e−wT x
; we concatenate all

in = (en, fn) as the feature vector for the i-th item, and set ground truth y = 1 if feedback

is positive, otherwise y = 0.

• UserSim-d: This baseline has a similar architecture with the proposed discriminator. The

differences are: we feed real recommended items as input action rather than both real and

fake items; and in output layer, we predict the class of user’s feedback to this real item

without considering the fake feedback.

• RecSim: RecSim [56] is a configurable platform for authoring simulation environments

for recommender systems via a dynamic Bayesian network that defines a probability

distribution over trajectories of items, choices, and observations.

• RecoGym: RecoGym [109] a bandit-based recommender system simulation environment

that combine organic navigation with intermittent recommendation (or ads).

• VT: Virtual-taobao [117] is a user estimation model that generates virtual interactions

through multi-agent adversarial imitation learning. It has two independent GANs: one for

generating customer features and the other for generating interactions.

• GAN-PW: GAN user model with position weight [23] imitates users’ sequential choices

by imitation learning, which formulates a unified mini-max optimization to learn user
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Figure 4.4: The results of overall performance comparison.

behavior model and reward function simultaneously based on sample trajectories.

• IRecGAN: the user model in [4] interacts with recommender agent to generate recommen-

dation sequences that are close to the true data distribution via a generative adversarial

network.

The overall performances of UserSim (discriminator) and baselines are shown in Figure 4.4.

We make the following observations:

• UserSim-d and RecSim outperform LR, since LR neglects the temporal sequence within

users’ browsing history, while UserSim-d and RecSim can capture the temporal patterns

within the item sequences and users’ feedback for each item. This result demonstrates that

it is important to capture the sequential patterns of users’ browsing history when learning

users’ preferences.

• RecoGym achieves worse performance than VT and UserSim, since RecoGym is a bandit-

based model that does not allow user state transitions. Furthermore, VT and UserSim

are GAN-based models that are efficient at capturing the underlying distribution of item

sequences.
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• UserSim outperforms UserSim-d, which shares a similar architecture with the proposed

discriminator, but lacks the generator component. This observation validates that the

generated logs can actually lead to improvements in feedback predictions.

• UserSim performs better than VT, because VT is built upon two independent GANs

trained separately, while UserSim jointly learns the sequence generation and user feedback

prediction into one unified GAN framework. Also, UserSim takes advantage of both the

unsupervised and supervised components, while VT consists of only unsupervised ones.

• UserSim gets better than performance GAN-PW, the reasons involve: (i) UserSim leverages

RNN with GRU to capture user’s preference from browsing history, while GAN-PW uses

positional weight separately without efficient weight sharing [118]; (ii) UserSim’s supervision

signal enhances its performance.

• UserSim outperforms IRecGAN, where the user model and next fake item producer are

both involved in IRecGAN’s generator, and its discriminator only distinguishes real and

fake items. This design breaks the naturally adversarial relationship between user model

and next fake item producer (i.e., the producer aims to generate near-real items to fool

user model, while user model targets distinguishing real and fake items), which leads to

suboptimal performance.

To sum up, the proposed framework outperforms the state-of-the-art baselines with signifi-

cant margin, which validates its effectiveness in simulating users’ behaviors in recommendation

tasks.
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Figure 4.5: The training process of RL-based recommenders.

4.3.3 RL-based Recommender Training

In this subsection, we evaluate the effectiveness of the proposed simulator on training

reinforcement learning based recommender systems. Since real online environment is not

available, we train a recommender based on a deep Q-network (DQN) framework. This

off-policy reinforcement learning method can train on historical offline user behavior logs.

We compare the training process of three recommenders with the same architecture, where

the first is directly trained based on historical offline logs, the second is trained based on

IRecGAN (the best baseline in Section 4.3.2), and the third is trained based on UserSim. Note

that both IRecGAN and UserSim are learned upon the same historical offline logs. We use

the averaged rewards on the test set (say avg_reward) as metric to evaluate the performance

of recommenders. Figure 4.5 illustrates the training process of the recommenders. We can

observe that:

• In the initial training stage, the avg_reward of all recommenders grow rapidly, then their

growth speed gradually becomes slower with more interaction data.
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• When the recommenders achieve convergence, the recommender trained upon UserSim

converges to the similar avg_reward value with the one trained upon offline logs, while

IRecGAN’s recommender converges to a distinctly different avg_reward.

• The recommender trained upon UserSim performs much more stably than the one trained

based upon IRecGAN.

To sum up, the above observations demonstrate that UserSim can effectively mimic user

behaviors in real-world recommender systems. Therefore, it has the potential to take the

place of real users to train RL-based recommender systems. Note that some on-policy

RL algorithms such as SARSA [124] cannot be directly trained on historical logs. Thus a

simulator is necessary to train these RL algorithms before launching them online.

4.3.4 Effectiveness of Generator

Our proposed generator aims to generate indistinguishable logs (action) based on users’

browsing history (state). In other words, it mimics the recommendation policy of the

recommender system that generates the historical logs. The aforementioned comparison

(UserSim v.s. UserSim-d) proves that the generated logs can enhance feedback predictions.

Here, we investigate whether the proposed generator can generate indistinguishable logs. We

train several representative recommendation algorithms based on the historical logs, then use

them to generate a sequence of recommendations (with the same length of real logs), then

compare the sequence similarity of real logs and generated logs. We compare the generator

of the proposed generator with the following representative recommender methods:

• FM: Factorization Machines [106] combine the advantages of SVMs with factorization

models. Compared with matrix factorization, higher-order interactions can be modeled
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using the dimensionality parameter.

• W&D [24]: This baseline is a wide & deep model for jointly training feed-forward neural

networks with embeddings and linear model with feature transformations for generic

recommender systems.

• Autorec [115]: Autorec learns an autoencoder that encodes each item or user into lower-

dimensional space and then decodes to make predictions.

• GRU4Rec [55]: GRU4Rec utilizes RNN with GRU units to predict what user will

click/order next based on the clicking/ordering histories.

• RRN [139]: Recurrent RA Networks predict future behavioral trajectories by endowing

both users and movies with a Long Short-Term Memory (LSTM) autoregressive model

that captures dynamics.

• IRGAN [132]: IRGAN provides a flexible and principled training environment that

combines generative and discriminative models for web search, item recommendation, and

question answering.

• SSRM [52]: propose an MF-based attention model to capture the main intention of a

user from her/his historical interactions, and furthermore propose a hybrid session-based

recommender to model both a user’s long and short-term preferences.

To evaluate the sequence similarity of real and generated logs, we select widely used

metrics in NLP community ROUGE [37], where ROUGE-N measures the overlap ratio

of N-grams between the real and generated sentences. The results are shown in Table 4.2.

Compared with baselines, it can observe that the generator of UserSim could generate the

85



Table 4.2: Generator effectiveness.

Method ROUGE-1 diff. ROUGE-2 diff.
FM 0.312 -34.5% 0.143 -35.2%
W&D 0.336 -29.3% 0.159 -27.7%
Autorec 0.361 -24.2% 0.165 -24.9%
GRU4Rec 0.380 -20.1% 0.175 -21.2%

RRN 0.415 -13.2% 0.191 -13.6%
IRGAN 0.437 -8.19% 0.202 -8.59%
SSRM 0.452 -5.05% 0.208 -5.88%
UserSim 0.476 - 0.221 -

most similar sequence with real-world logs. This result validates that the competition between

the generator and discriminator and the proposed supervised components can enhance the

generator to capture the complex item distribution in historical logs.

4.3.5 Component Anslysis

To study how the components in the generator and discriminator contribute to the performance,

we systematically eliminate the corresponding components of the simulator by defining

UserSim’s following variants:

• UserSim-1: This variant is a simplified version of the simulator who has the same

architecture except that the output of the discriminator is a 3-dimensional vector output =

[lrp, lrn, lf ], where each logit represents real-positive, real-negative and fake respectively,

i.e., it will not distinguish the generated positive and negative items.

• UserSim-2: In this variant, we evaluate the contribution of the supervised component

L
sup
G , so we eliminate the impact of LsupG by setting β = 0.

• UserSim-3: This variant is to evaluate the adversarial training; hence, we remove LunsupG

and LunsupD from loss function.
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Figure 4.6: The results of component analysis.

The results are shown in Figure 4.6. It can be observed:

• UserSim performs better than UserSim-1, which demonstrates that distinguishing the

generated positive and negative items can enhance the performance. This also validates

that the generator’s output can be considered as augmentations of real-world data, which

resolves the data limitation challenge.

• UserSim-2 performs worse than UserSim, which suggests that the supervised component

helps the generator to produce more indistinguishable items.

• UserSim-3 first trains a generator, then uses real data and generated data to train the

discriminator; while UserSim updates the generator and discriminator iteratively. UserSim

outperforms UserSim-3, which indicates that the adversarial training can enhance both the

generator (to capture complex data distribution) and the discriminator (to classify real

and fake samples).
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Figure 4.7: The results of parametric analysis.

4.3.6 Parametric Sensitivity Analysis

Our method has several key parameters, i.e., (1) N that controls the length of state; (2) λ that

controls the contribution of the second term in Eq. (4.6), which classifies the generated items

into positive or negative class; (3) α that adjusts the importance of supervised component in

discriminator; and (4) β that calibrates the supervised component in generator. To study

the impact of these parameters, we investigate how the proposed framework UserSim works

with the changes of one parameter, while fixing other parameters. The results are shown in

Figure 4.7. We have following observations:

• Figure 4.7 (a) demonstrates the parameter sensitivity of N . We find that with the increase

of N , the performance improves. To be specific, the performance improves significantly first

and then becomes relatively stable. This result indicates that introducing longer browsing

history can enhance performance.

• Figure 4.7 (b) shows the sensitivity of λ. The performance for the simulator achieves the

peak when λ = 0.3. In other words, the second term in Eq. (4.6) indeed improves the

performance of the simulator; however, the performance mainly depends on the first term

in Eq. (4.6), which classifies the real items into positive and negative classes.

• Figure 4.7 (c) - (d) illustrate the model performance with respect to α and β. We can
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observe that the simulator achieves its optimal performance when α = 0.7 and β = 0.7,

while a lower/higher value of both parameters will lead to a lower F1. These observations

validate that the supervised components can enhance the performance.

4.4 Related Work

In this section, we briefly review works related to our study. In general, the related work can

be grouped into the following categories.

The first category related to this chapter is reinforcement learning based recommender

systems, which typically consider the recommendation task as a Markov Decision Process

(MDP), and model the recommendation procedure as sequential interactions between users

and recommender system[159, 155]. A Deep Deterministic Policy Gradient (DDPG) algorithm

is introduced to mitigate the large action space issue in practical RL-based recommender

systems [32], where an Actor produces the optimal action based on current state, and a Critic

outputs the action-value (Q-value) for this state-action pair. Users’ positive and negative

feedback are jointly considered in one framework to boost recommendations [164]. A page-wise

framework is proposed to jointly recommend a page of items and display them within a 2-D

page [165, 160]. A multi-agent reinforcement learning based approach (DeepChain) is proposed

to jointly optimize multiple recommendation strategies among sequential scenarios [161]. A

unified framework is proposed to jointly optimize user experience of recommendations and

revenue of advertisements [156, 166]. In news feed scenario, a DQN based framework is

proposed to handle the challenges of conventional models [167]. Other applications includes

sellers’ impression allocation [14], cold-start problem [175], long-term engagement [172] and

fairness [42], top-N recommendation [173], attacking black-box recommendations [35] and
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spatial recommendation [137].

The second category related to this chapter is behavior simulation. Reinforcement learning

and supervised learning algorithms typically learn experts’ behavior with the guidance of the

rewards, feedback or labels from real-world environment. However, deploying algorithms in

real environment cost money and time, which calls for estimation of environment to train

the algorithms to learn experts’ behavior based on the simulation of the environment, before

launching the algorithms online [117, 56, 4, 23]. One of the most effective approaches is

Learning from Demonstration (LfD), which estimates implicit reward function from expert’s

behavior state to action mappings. Successful LfD applications include autonomous helicopter

maneuvers [111], self-driving car [8], playing table tennis [15], object manipulation [99] and

making coffee [123]. For example, Ross et al. [111] develop a method that autonomously

navigates a small helicopter at low altitude in a natural forest environment. Bojarski et al. [8]

train a CNN to directly map the raw pixels of a single front-facing camera to the steering

commands. Calinon et al. [15] propose a probabilistic method to train robust models of human

motion by imitating, e.g., playing table tennis. Sung et al. [123] proposed a manipulation

planning approach according to the assumption that many household items share similar

operational components. [174] propose a customer simulator, referred to as the World Model,

which is designed to simulate the environment and handle the selection bias of logged data.
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Chapter 5

Automated Embedding Size Search

Abstract

Practical large-scale recommender systems usually contain thousands of feature fields from

users, items, contextual information, and their interactions. Most of them empirically allocate

a unified dimension to all feature fields, which is memory inefficient. Thus it is highly

desired to assign various embedding dimensions to different feature fields according to their

importance and predictability. Due to the large amounts of feature fields and the nuanced

relationship between embedding dimensions with feature distributions and neural network

architectures, manually allocating embedding dimensions in practical recommender systems

can be challenging. To this end, we propose an AutoML-based framework (AutoDim) in this

chapter, which can automatically select dimensions for different feature fields in a data-driven

fashion. Specifically, we first proposed an end-to-end differentiable framework that can

calculate the weights over various dimensions in a soft and continuous manner for feature

fields, and an AutoML-based optimization algorithm; then, we derive a hard and discrete

embedding component architecture according to the maximal weights and retrain the whole

recommender framework. We conduct extensive experiments on benchmark datasets to

validate the effectiveness of AutoDim.
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Figure 5.1: The typically DLRS architecture.

5.1 Introduction

Real-world deep learning based recommender systems (DLRSs) typically involve a massive

amount of categorical feature fields from users (e.g., occupation and userID), items (e.g.,

category and itemID), contextual information (e.g., time and location), and their interactions

(e.g., user’s purchase history of items). DLRSs first map these categorical features into

real-valued dense vectors via an embedding-component [103, 168], i.e., the embedding-lookup

process, which leads to huge amounts of embedding parameters. For instance, the YouTube

recommender system consists of 1 million unique videoIDs, and assigns each videoID with a

specific 256-dimensional embedding vector; in other words, the videoID feature field alone

occupies 256 million parameters [28]. Then, the DLRSs nonlinearly transform the input

embeddings from all feature fields and generate the outputs (predictions) via the MLP-

component (Multi-Layer Perceptron), which usually involves only several fully-connected
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layers in practice. Therefore, compared to the MLP-component, the embedding-component

dominates the number of parameters in practical DLRSs, which naturally plays a tremendously

impactful role in the recommendations.

The majority of existing recommender systems assign a fixed and unified embedding

dimension for all feature fields, such as the famous Wide&Deep model [24], which may lead to

memory inefficiency. First, the embedding dimension often determines the capacity to encode

information. Thus, allocating the same dimension to all feature fields may lose the information

of highly predictive features while wasting memory on non-predictive features. Therefore,

we should assign a large dimension to the highly informative and predictive features, for

instance, the “location” feature in location-based recommender systems [5]. Second, different

feature fields have different cardinalities (i.e., the number of unique values). For example,

the gender feature has only two (i.e., male and female), while the itemID feature usually

involves millions of unique values. Intuitively, we should allocate larger dimensions to the

feature fields with more unique feature values to encode their complex relationships with other

features, and assign smaller dimensions to feature fields with smaller cardinality to avoid

the overfitting problem due to the over-parameterization [44, 63]. According to the above

reasons, it is highly desired to assign different embedding dimensions to different feature

fields in a memory-efficient manner.

In this chapter, we aim to enable different embedding dimensions for different feature

fields for recommendations. We face several tremendous challenges. First, the relationship

among embedding dimensions, feature distributions and neural network architectures is highly

intricate, which makes it hard to manually assign embedding dimensions to each feature

field [44]. Second, real-world recommender systems often involve hundreds and thousands of

feature fields. It is difficult, if possible, to artificially select different dimensions for all feature
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fields, due to the expensive computation cost from the incredibly huge (NM , with N the

number of candidate dimensions for each feature field, and M the number of feature fields)

search space. Our attempt to address these challenges results in an end-to-end differentiable

AutoML-based framework (AutoDim), which can efficiently allocate embedding dimensions

to different feature fields in an automated and data-driven manner. Our experiments on

benchmark datasets demonstrate the effectiveness of the proposed framework. We summarize

our major contributions as:

• we identify the phenomenon that assigning various embedding dimensions to different

feature fields can enhance recommendation performance;

• we propose an end-to-end AutoML-based framework AutoDim, which can automatically

select various embedding dimensions to different feature fields; and

• we demonstrate the effectiveness of the proposed framework on real-world benchmark

datasets.

5.2 Framework

In this section, we propose an AutoML-based framework, which effectively achieves the

automated allocation of varying embedding dimensions to different feature fields. We

illustrate the overall framework in Figure 5.2, which contains dimensionality search stage and

parameter re-training stage.
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Figure 5.2: Overview of the proposed AutoDim framework.

5.2.1 Dimensionality Search

As the aforementioned challenges in Section 5.1, it is difficult to manually select embedding

dimensions via conventional dimension reduction methods. An intuitive solution to tackle

this challenge is to assign several embedding spaces with various dimensions to feature fields,

and then the DLRS automatically selects the optimal embedding dimension for each feature

field.

5.2.1.1 Embedding Lookup

Suppose for each user-item interaction instance, we have M input features (x1, · · · , xM ),

and each feature xm belongs to a specific feature field, such as gender and age, etc. For the

mth feature field, we assign N candidate embedding spaces {X1
m, · · · ,XN

m}. The dimension

of an embedding in each space is d1, · · · , dN , where d1 < · · · < dN ; and the cardinality

of these embedding spaces are the number of unique feature values in this feature field.

Correspondingly, we define {x1
m, · · · ,xNm} as the set of candidate embeddings for a given
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Figure 5.3: Embedding lookup method.

feature xm from all embedding spaces, as shown in Figure 5.3. Therefore, the total space

assigned to the feature xm is
∑N
n=1 dn. Note that we assign the same candidate dimensions

to all feature fields for simplicity, but it is straightforward to introduce different candidate

sets.

5.2.1.2 Unifying Various Dimensions

Since the input dimension of the first MLP layer in existing DLRSs is often fixed, it is difficult

for them to handle various candidate dimensions. Thus we need to unify the embeddings

{x1
m, · · · ,xNm} into same dimension.

Figure 5.4 illustrates the linear transformation method to handle the various embedding

dimensions. We introduce N fully-connected layers, which transform embedding vectors

{x1
m, · · · ,xNm} into the same dimension dN :

x̃nm ←W>
nx

n
m + bn ∀n ∈ [1, N ] (5.1)

where W n ∈ Rdn×dN is weight matrice and bn ∈ RdN is bias vector. For each field, all

candidate embeddings with the same dimension share the same weight matrice and bias

vector, which can reduce the amount of model parameters. With the linear transforma-
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Figure 5.4: Linear transformation method to unify various dimensions.

tions, we map the original embedding vectors {x1
m, · · · ,xNm} into the same dimensional

space, i.e., {x̃1
m, · · · , x̃Nm} ∈ RdN . In practice, we can observe that the magnitude of the

transformed embeddings {x̃1
m, · · · , x̃Nm} varies significantly, which makes them become incom-

parable. To tackle this challenge, we conduct BatchNorm [57] on the transformed embeddings

{x̃1
m, · · · , x̃Nm} as:

x̂nm ←
x̃nm−µnB√
(σnB)2+ε

∀n ∈ [1, N ] (5.2)

where µnB is the mini-batch mean and (σnB)2 is the mini-batch variance for ∀n ∈ [1, N ]. ε

is a small constant added to the mini-batch variance for numerical stability when (σnB)2 is

very small. After BatchNorm, the linearly transformed embeddings {x̃1
m, · · · , x̃Nm} become

to magnitude-comparable embedding vectors {x̂1
m, · · · , x̂Nm} with the same dimension dN .

Next, we will introduce embedding dimension selection process.

5.2.1.3 Dimension Selection

We aim to select the optimal embedding dimension for each feature field in an automated and

data-driven manner. This is a hard (categorical) selection on the candidate embedding spaces,

which will make the whole framework not end-to-end differentiable. To tackle this challenge,
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in this work, we approximate the hard selection over different dimensions via introducing

the Gumbel-softmax operation [58], which simulates the non-differentiable sampling from a

categorical distribution by a differentiable sampling from the Gumbel-softmax distribution.

To be specific, suppose weights {α1
m, · · · , αNm} are the class probabilities over different

dimensions. Then a hard selection z can be drawn via the the gumbel-max trick [47] as:

z = one_hot

(
arg max

n∈[1,N ]
[logαnm + gn]

)

where gn = − log (− log (un))

un ∼ Uniform(0, 1)

(5.3)

The gumbel noises {gi, · · · , gN} are i.i.d samples, which perturb {logαnm} terms and make

the arg max operation that is equivalent to drawing a sample by {α1
m, · · · , αNm} weights.

However, this trick is non-differentiable due to the arg max operation. To deal with this

problem, we use the softmax function as a continuous, differentiable approximation to arg max

operation, i.e., straight-through gumbel-softmax [58]:

pnm =
exp

(
log(αnm)+gn

τ

)
∑N
i=1 exp

(
log
(
αim

)
+gi

τ

) (5.4)

where τ is the temperature parameter, which controls the smoothness of the output of

gumbel-softmax operation. When τ approaches zero, the output of the gumbel-softmax

becomes closer to a one-hot vector. Then pnm is the probability of selecting the nth candidate

embedding dimension for the feature xm, and its embedding xm can be formulated as the
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weighted sum of {x̂1
m, · · · , x̂Nm}:

xm =
∑N
n=1 p

n
m · x̂nm ∀m ∈ [1,M ] (5.5)

We illustrate the weighted sum operations in Figure 5.4. With gumbel-softmax operation, the

hard-like dimensionality search process is end-to-end differentiable. The discrete embedding

dimension selection conducted based on the weights {αnm} will be detailed in the following

subsections.

Then, we concatenate the embeddings h0 = [x1, · · · ,xM ] and feed h0 input into L

multilayer perceptron layers:

hl = σ
(
W>

l hl−1 + bl

)
∀l ∈ [1, L] (5.6)

whereW l and bl are the weight matrix and the bias vector for the lth MLP layer. σ(·) is the

activation function such as ReLU and Tanh. Finally, the output layer that is subsequent to

the last MLP layer, produces the prediction of the current user-item interaction instance as:

ŷ = σ
(
W>

o hL + bo

)
(5.7)

where W o and bo are the weight matrix and bias vector for the output layer. Activation

function σ(·) is selected based on different recommendation tasks, such as Sigmoid for

regression [24], and Softmax for multi-class classification [128]. Correspondingly, the objective

function L(ŷ, y) between prediction ŷ and ground truth label y also varies. In this work, we
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leverage negative log-likelihood function:

L(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ) (5.8)

where y is the ground truth (1 for like or click, 0 for dislike or non-click). By minimizing the

objective function L(ŷ, y), the dimensionality search framework updates the parameters of

all embeddings, hidden layers, and weights {αnm} through back-propagation. The high-level

idea of the dimensionality search is illustrated in Figure 5.2 (a), where we omit some details

of embedding-lookup, transformations and gumbel-softmax for the sake of simplicity.

5.2.2 Optimization

In this subsection, we will detail the optimization method of the proposed AutoDim frame-

work. In AutoDim, we formulate the selection over different embedding dimensions as an

architectural optimization problem and make it end-to-end differentiable by leveraging the

Gumbel-softmax technique. The parameters to be optimized in AutoDim are two-fold, i.e.,

(i) W : the parameters of the DLRS, including the embedding-component and the MLP-

component; (ii) α: the architectural weights {αnm} on different embedding spaces ({pnm} are

calculated based on {αnm} as in Eq. (5.4)). DLRS parameters W and architectural weights

α can not be optimized simultaneously on the training dataset as with the conventional

supervised attention mechanism since theie optimization are highly dependent on each other.

In other words, optimization on the training dataset simultaneously may result in the model

overfitting on the examples from the training dataset.

Inspired by the differentiable architecture search (DARTS) techniques [80], W and α are

alternately optimized through gradient descent. Specifically, we alternately update W by
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Algorithm 5.1: DARTS based Optimization for AutoDim.
Input: the features (x1, · · · , xM ) of user-item interactions and the corresponding
ground-truth labels y
Output: the well-learned DLRS parameters W ∗; the well-learned weights on various
embedding spaces α∗
1: while not converged do
2: Sample a mini-batch of user-item interactions from validation data
3: Update α by descending ∇α Lval

(
W ∗(α),α

)
4: Collect a mini-batch of training data
5: Generate predictions ŷ via DLRS with current W and architectural weights α
6: Update W by descending ∇WLtrain(W ,α)
7: end while

optimizing the loss Ltrain on the training data and update α by optimizing the loss Lval on

the validation data:

min
α
Lval

(
W ∗(α),α

)
s.t.W ∗(α) = arg min

W
Ltrain(W ,α∗)

(5.9)

this optimization forms a bilevel optimization problem [100], where architectural weights α

and DLRS parameters W are identified as the upper-level variable and lower-level variable.

Since the inner optimization of W is computationally expensive, directly optimizing α via

Eq. (5.9) is intractable. To address this challenge, we take advantage of the approximation

scheme of DARTS:

arg min
W
Ltrain(W ,α∗) ≈W − ξ∇WLtrain(W ,α) (5.10)

where ξ is the learning rate. In the approximation scheme, when updating α via Eq. (5.10),

we estimate W ∗(α) by descending the gradient ∇WLtrain(W ,α) for only one step, rather

than to optimize W (α) thoroughly to obtain W ∗(α) = arg minW Ltrain(W ,α∗).

The DARTS based optimization algorithm for AutoDim is detailed in Algorithm 5.1.

Specifically, in each iteration, we first sample a batch of user-item interaction data from
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the validation set (line 2); next, we update the architectural weights α upon it (line 3);

afterward, the DLRS make the predictions ŷ on the batch of training data with current

DLRS parametersW and architectural weights α (line 4-5); eventually, we update the DLRS

parameters W by descending ∇WLtrain(W ,α) (line 6).

5.2.3 Parameter Re-Training

Since the suboptimal embedding dimensions in the dimensionality search stage also influence

the model training, a retraining stage is desired to train the model with only optimal

dimensions, eliminating these suboptimal influences. This subsection will introduce how to

select the optimal embedding dimension for each feature field and the details of retraining

the recommender system with the selected embedding dimensions.

5.2.3.1 Deriving Discrete Dimensions

During re-training, the gumbel-softmax operation is no longer used, which means that

the optimal embedding space (dimension) are selected for each feature field as the one

corresponding to the largest weight, based on the well-learned α. It is formally defined as:

Xm = Xk
m, where k = arg maxn∈[1,N ] α

n
m ∀m ∈ [1,M ] (5.11)

Figure 5.2 (a) illustrates the architecture of AutoDim framework with a toy example about the

optimal dimension selections based on two candidate dimensions, where the largest weights

corresponding to the 1st, mth and M th feature fields are 0.7, 0.8 and 0.6, then the embedding

space X1
1, X

2
m and X1

M are selected for these feature fields. The dimension of an embedding

vector in these embedding spaces is d1, d2 and d1, respectively.

102



Algorithm 5.2: The Optimization of DLRS Re-training Process.
Input: the features (x1, · · · , xM ) of user-item interactions and the corresponding
ground-truth labels y
Output: the well-learned DLRS parameters W ∗
1: while not converged do
2: Sample a mini-batch of training data
3: Generate predictions ŷ via DLRS with current W
4: Update W by descending ∇WLtrain(W )
5: end while

5.2.3.2 Model Re-training

As shown in Figure 5.2 (b), given the selected embedding spaces, we can obtain unique

embedding vectors (x1, · · · ,xM ) for features (x1, · · · , xM ). Then we concatenate these

embeddings and feeds them into hidden layers. Next, the prediction ŷ is generated by the

output layer. Finally, all the parameters of the DLRS, including embeddings and MLPs, will

be updated via minimizing the supervised loss function L(ŷ, y) through back-propagation.

The model retraining algorithm is detailed in Algorithm 5.2. The retraining process is based

on the same training data as Algorithm 5.1.

Note that the majority of existing deep recommender algorithms (such as FM [106],

DeepFM [51], xDeepFM [74]) capture the interactions between feature fields via interaction

operations, such as inner product. These interaction operations require the embedding

vectors from all fields to have the same dimensions. Therefore, the embeddings selected

in Section 5.2.3.1 are still mapped into the same dimension as in Section 5.2.1.2. In the

retraining stage, the BatchNorm operation is no longer in use, since there are no competitions

between candidate embeddings in each field.
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5.3 Experiments

In this section, we first introduce experimental settings. Then we conduct extensive experi-

ments to evaluate the effectiveness of the proposed AutoDim framework.

5.3.1 Dataset

We evaluate our model on benchmark Criteo dataset1: This is a benchmark industry dataset

to evaluate ad click-through rate prediction models. It consists of 45 million users’ click records

on displayed ads over one month. For each data example, it contains 13 numerical feature

fields and 26 categorical feature fields. We normalize numerical features by transforming a

value v →
⌊
log(v)2

⌋
if v > 2 as proposed by the Criteo Competition winner2, and then convert

it into categorical features through bucketing. All M = 39 feature fields are anonymous. We

use 90% user-item interactions as the training/validation set (8:1), and the rest 10% as the

test set.

5.3.2 Implement Details

Next, we detail the AutoDim architectures. For the DLRS, (i) embedding component: (ii)

MLP component: we have two hidden layers with the size |h0| × 128 and 128× 128, where

|h0| is the input size of first hidden layer, |h0| = 32×M with M = 39 the number of feature

fields for Criteo dataset, and we use batch normalization, dropout (rate = 0.2) and ReLU

activation for both hidden layers. The output layer is 128× 1 with Sigmoid activation.

For architectural weights α: α1
m, · · · , αNm of the mth feature field are produced by a

Softmax activation upon a trainable vector of length N . We use an annealing temperature

1https://www.kaggle.com/c/criteo-display-ad-challenge/
2https://www.csie.ntu.edu.tw/ r01922136/kaggle-2014-criteo.pdf
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τ = max(0.01, 1− 0.00005 · t) for Gumbel-softmax, where t is the training step.

The learning rate for updating DLRS and weights are 0.001 and 0.001, and the batch-size

is set as 2000. Our model can be applied to any deep recommender systems with

embedding layers. In this chapter, we show the performances of applying AutoDim on the

well-known FM [106], W&D [24] and DeepFM [51].

5.3.3 Evaluation Metrics

The performance is evaluated by AUC, Logloss and Params, where a higher AUC or a

lower Logloss indicates a better recommendation performance. A lower Params means fewer

embedding parameters. A slightly higher AUC or lower Logloss at 0.001-level is regarded as

significant for the CTR prediction task [24, 51]. For an embedding dimension search model,

the “Params” metric is the optimal number of embedding parameters selected by this model

for the recommender system. We omit the number of MLP parameters, which only occupy

a small part of the total model parameters, e.g., ∼ 0.5% in W&D and DeepFM on Criteo

dataset. FM model has no MLP component.

5.3.4 Overall Performance

We compare the proposed framework with following embedding dimension search methods:

• FDE (Full Dimension Embedding): In this baseline, we assign the maximal candidate

dimension to all feature fields, i.e., 32. For each feature field, the embedding dimension is

set as the candidate set’s maximal size

• MDE (Mixed Dimension Embedding) [44]: This is a heuristic method that assigns highly-

frequent feature values with larger embedding dimensions, vice versa. We enumerate its 16
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groups of suggested hyperparameters settings and report the best one.

• DPQ (Differentiable Product Quantization) [22]: This baseline introduces differentiable

quantization techniques from network compression community to compact embeddings.

• NIS (Neural Input Search) [62]: This baseline applies reinforcement learning to learn to

allocate larger embedding sizes to active feature values, and smaller sizes to inactive ones.

• MGQE (Multi-granular quantized embeddings) [63]: This baseline is based on DPQ, and

further cuts down the embeddings space by using fewer centroids for non-frequent feature

values.

• AEmb (Automated Embedding Dimensionality Search) [158]: This baseline is based on

DARTS [80], and assigns embedding dimensions according to the frequencies of feature

values.

• RaS (Random Search): Random search is strong baseline in neural network search [80].

We apply the same candidate embedding dimensions, randomly allocate dimensions to

feature fields in each experiment time, and report the best performance.

• AD-s: This baseline shares the same architecture with AutoDim, while we update the

DLRS parameters and architectural weights simultaneously on the same training batch in

an end-to-end backpropagation fashion.

The overall results are shown in Table 5.1. We can observe:

• FDE achieves the worst recommendation performance and largest Params, where FDE is

assigned the maximal embedding dimension 32 to all feature fields. This result demonstrates

that allocating the same dimension to all feature fields is not only memory inefficient, but

introduces numerous noises into the model.
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Table 5.1: Performance comparison of different embedding search methods.

Model Metrics Search Methods

FDE MDE DPQ NIS MGQE AEmb RaS AD-s AutoDim

FM
AUC 0.8020 0.8027 0.8035 0.8042 0.8046 0.8049 0.8056 0.8063 0.8078*
Logloss 0.4487 0.4481 0.4472 0.4467 0.4462 0.4460 0.4457 0.4452 0.4438*
Params 34.778 15.520 20.078 13.636 12.564 13.399 16.236 31.039 11.632*

W&D
AUC 0.8045 0.8051 0.8058 0.8067 0.8070 0.8072 0.8076 0.8081 0.8098*
Logloss 0.4468 0.4464 0.4457 0.4452 0.4446 0.4445 0.4443 0.4439 0.4419*
Params 34.778 18.562 22.628 14.728 15.741 15.987 18.233 30.330 12.455*

DeepFM
AUC 0.8056 0.8060 0.8067 0.8076 0.8080 0.8082 0.8085 0.8089 0.8101*
Logloss 0.4457 0.4456 0.4449 0.4442 0.4439 0.4438 0.4436 0.4432 0.4416*
Params 34.778 17.272 25.737 12.955 13.059 13.437 17.816 31.770 11.457*

“*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best
baseline. (Params/Million)

• RaS, AD-s, AutoDim performs better than MDE, DPQ, NIS, MGQE, AEmb. The major

differences between these two groups of methods are: (i) the first group aims to assign

different embedding dimensions to different feature fields, while embeddings in the same

feature field share the same dimension; (ii) the second group attempts to assign different

embedding sizes to different feature values within the same feature fields, which are based

on the frequencies of feature values. The second group of methods surfer from several

challenges: (ii-a) there are numerous unique values in each feature field, e.g., 2.7 × 104

values for each feature field on average in the Criteo dataset. This leads to a huge search

space (even after bucketing) in each feature field, which makes it difficult to find the

optimal solution, while the search space for each feature field is N = 5 in AutoDim; (ii-b)

allocating dimensions solely based on feature frequencies (i.e., how many times a feature

value appears in the training set) may lose other important characteristics of the feature;

and (ii-c) the feature values frequencies are usually dynamic and not pre-known in real-time

recommender systems, e.g., the cold-start users/items.

• AutoDim outperforms RaS and AD-s, where AutoDim updates the architectural weights
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Figure 5.5: Efficiency analysis of DeepFM on Criteo dataset.

α on the validation batch, which can enhance the generalization; AD-s updates the α

with DLRS on the same training batch simultaneously, which may lead to overfitting;

RaS randomly search the dimensions, which has a large search space. AD-s has much

larger Params than AutoDim, which indicates that larger dimensions are more efficient in

minimizing training loss.

To sum up, compared with the representative baselines, AutoDim achieves significantly

better recommendation performance, and saves 70% ∼ 80% embedding parameters. These

results prove the effectiveness of the AutoDim framework.

5.3.5 Efficiency Analysis

In addition to model effectiveness, training and inference efficiency are also essential metrics

for deploying a recommendation model into commercial recommender systems. This section

investigates the efficiency of applying search methods to DeepFM on the Criteo dataset (on

one Tesla K80 GPU). We illustrate the results in Figure 5.5:

• For the training time in Figure 5.5 (a), we can observe that AutoDim and AD-s have fast
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training speed. As discussed in Section 5.3.4, the reason is that they have a smaller search

space than other baselines. FDE’s training is fastest since we directly set its embedding

dimension as 32, i.e., no searching stage, while its recommendation performance is worst

among all methods in Section 5.3.4.

• For the inference time, which is more crucial when deploying a model in commercial

recommender systems, AutoDim achieves the least inference time, as shown in Figure 5.5

(b). This is because the final recommendation model selected by AutoDim has the least

embedding parameters, i.e., the Params metric. To summarize, AutoDim can efficiently

achieve better performance, making it easier to be launched in real-world recommender

systems.

5.3.6 Parameter Analysis

In this section, we investigate how essential hyper-parameters influence model performance.

Besides common hyper-parameters of deep recommender systems such as the number of

hidden layers (we omit them due to limited space), our model has one particular hyper-

parameter, i.e., the frequency to update architectural weights α, referred to as f . In

Algorithm 5.1, we alternately update DLRS’s parameters on the training data and update

α on the validation data. In practice, we find that updating α can be less frequently

than updating DLRS’s parameters, which apparently reduces lots of computations, and also

enhances the performance.

To study the impact of f , we investigate how DeepFM with AutoDim performs on Criteo

dataset with the changes of f , while fixing other parameters. Figure 5.6 shows the parameter

sensitivity results, where in x-axis, f = i means updating α once, then updating DLRS’s
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Figure 5.6: Parameter analysis on Movielens-1m dataset.

parameters i times. We can observe that:

• AutoDim achieves the optimal AUC/Logloss when f = 10. In other words, updating α

too frequently/infrequently results in suboptimal performance. Figure 5.6 (d) shows that

setting f = 10 can reduce ∼ 50% training time compared with setting f = 1.

• Figure 5.6 (c) shows that lower f leads to lower Params, vice versa. The reason is that

AutoDim updates α by minimizing validation loss, which improves the generalizability

of model [100, 80]. When updating α frequently (e.g., f = 1), AutoDim tends to select

a smaller embedding size that has better generalization, while may has an under-fitting

problem; while when updating α infrequently (e.g., f = 20), AutoDim prefers larger

embedding sizes that perform better on the training set, but may lead to an over-fitting

problem. f = 10 is a good trade-off between model performance on training and validation

sets.
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Table 5.2: Embedding dimensions for Movielens-1m.

feature field W&D (one field) AutoDim

AUC Logloss Dimension

movieId 0.7321 0.5947 8
year 0.5763 0.6705 2
genres 0.6312 0.6536 4
userId 0.6857 0.6272 8
gender 0.5079 0.6812 2
age 0.5245 0.6805 2

occupation 0.5264 0.6805 2
zip 0.6524 0.6443 4

5.3.7 Case Study

In this section, we investigate whether AutoDim can assign larger embedding dimensions to

more important features. Since feature fields are anonymous in Criteo, we apply W&D with

AutoDim on MovieLens-1m dataset3. There are M = 8 categorical feature fields: movieId,

year, genres, userId, gender, age, occupation, zip. Since MovieLens-1m is much smaller than

Criteo, we set the candidate embedding dimensions as {2, 4, 8, 16}.

To measure the contribution of a feature field to the final prediction, we build a W&D

model with only this field, train this model and evaluate it on the test set. A higher AUC

and a lower Logloss means this feature field is more predictive for the final prediction. Then,

we build a comprehensive W&D model incorporating all feature fields, and apply AutoDim

to select the dimensions. The results are shown in Table 5.2. It can be observed that:

• No feature fields are assigned 16-dimensional embedding space, which means candidate

embedding dimensions {2, 4, 8, 16} are sufficient to cover all possible choices.

• Compared to the AUC/Logloss of W&D with each feature field, we can find that AutoDim

assigns larger embedding dimensions to important (highly predictive) feature fields, such

3https://grouplens.org/datasets/movielens/1m/
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as movieId and userId, vice versa.

• We build a full dimension embedding (FDE) version of W&D, where all feature fields are

assigned as the maximal dimension 16. Its performances are AUC=0.8077, Logloss=0.5383,

while the performances of W&D with AutoDim are AUC=0.8113, Logloss=0.5242, and it

saves 57% embedding parameters.

In short, above observations validates that AutoDim can assign larger embedding dimensions

to more predictive feature fields.

5.4 Related Work

In this section, we will discuss the related works. We summarize the works related to

our research from two perspectives: deep recommender systems and AutoML for neural

architecture search.

Deep recommender systems have drawn increasing attention from both academia and

the industry thanks to their great advantages over traditional methods [154]. Various types

of deep learning approaches in recommendation are developed. Sedhain et al. [115] present

an AutoEncoder based model named AutoRec. Hidasi et al. [55] introduce an RNN based

recommender system named GRU4Rec. Cheng et al. [24] introduce a Wide&Deep framework

for both regression and classification tasks. Guo et al. [51] propose the DeepFM model. It

combines the factorization machine (FM) and MLP. Wang et al. [133] utilizes CNN to extract

visual features to help POI (Point-of-Interest) recommendations. Wang et al. [132] propose

a generative adversarial network (IRGAN) based information retrieval model. Zhao et al.

[35, 42, 155, 175] propose a series of deep reinforcement learning based recommendation

models.
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The research of AutoML for neural architecture search can be traced back to NAS [170],

which first utilizes an RNN based controller to design neural networks and proposes a

reinforcement learning algorithm to optimize the framework. After that, many endeavors

are conducted to reduce the high training cost of NAS. Pham et al. [100] propose ENAS,

where the controller learns to search a subgraph from a large computational graph to form an

optimal neural network architecture. Brock et al. [11] introduce a framework named SMASH,

in which a hyper-network is developed to generate weights for sampled networks. DARTS [80]

and SNAS [144] formulate the problem of network architecture search in a differentiable

manner and solve it using gradient descent. Luo et al. [87] investigate representing network

architectures as embeddings. Some works raise another way of thinking, which is to limit

the search space. Zoph et al. [171] propose a transfer learning framework called NASNet,

which trains convolution cells on smaller datasets and applies them on larger datasets. Tan

et al. [127] introduce MNAS. They propose to search hierarchical convolution cell blocks

independently, so that a deep network can be built based on them.
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Chapter 6

Automated Loss Function Search

Abstract

Designing an effective loss function plays a crucial role in training deep recommender systems.

Most existing works often leverage a predefined and fixed loss function that could lead

to suboptimal recommendation quality and training efficiency. Some recent efforts rely

on exhaustively or manually searched weights to fuse a group of candidate loss functions,

which is exceptionally costly in computation and time. They also neglect the various

convergence behaviors of different data examples. In this work, we propose an AutoLoss

framework that can automatically and adaptively search for the appropriate loss function

from a set of candidates. To be specific, we develop a novel controller network, which

can dynamically adjust the loss probabilities in a differentiable manner. Unlike existing

algorithms, the proposed controller can adaptively generate the loss probabilities for different

data examples according to their varied convergence behaviors. Such design improves the

model’s generalizability and transferability between deep recommender systems and datasets.

We evaluate the proposed framework on two benchmark datasets. The results show that

AutoLoss outperforms representative baselines. Further experiments have been conducted

to deepen our understandings of AutoLoss, including its transferability, components and

training efficiency.
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6.1 Introduction

In the era of information explosion, recommender systems play a pivotal role in alleviating

information overload, which vastly enhance user experiences in many commercial applications,

such as generating playlists in video and music services [156, 166], recommending products

in online stores [161, 175, 35, 160, 164], and suggesting locations for geo-social events [85,

163, 49]. With the recent growth of deep learning techniques, there have been increasing

interests in developing deep recommender systems (DRS) [97, 142]. DRS has improved the

recommendation quality since they can effectively learn feature representations and capture

the nonlinear relationships between users and items via deep architectures [154]. Aside from

developing sophisticated neural network architectures, well-designed loss functions have also

been demonstrated to be effective in improving the performance in different recommendation

tasks, such as item rating prediction (regression) [105], click-through rate prediction (binary

classification) [51, 42], user behavior prediction (multi-class classification) [162], and item

retrieval (clustering) [40].

To optimize DRS frameworks, most existing works are based on a predefined and fixed

loss function, such as mean-squared-error (MSE) or mean-absolute-error (MAE) loss for

regression tasks. Then DRS frameworks are optimized in a back-propagation manner, which

computes gradients effectively and efficiently to minimize the given loss on the training

dataset. During this process, the key step is to calculate gradients of network parameters for

minimizing loss functions. However, it is often unclear whether the gradients generated from

a given loss function are optimal. For example, in regression tasks, the MSE loss can ensure

that the trained model has no outlier predictions with huge errors, while MAE performs

better if we only want a well-rounded model that performs well on the majority [33, 17].
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Therefore, solely utilizing a predefined and fixed loss function for all data examples, i.e.,

user-item interactions, cannot guarantee the optimal gradients throughout, especially when

the interactions have varied convergence behaviors in the non-stationary environment of

online recommendation platforms. In addition, there is often a gap between model training

and evaluation performance in real-world recommender systems. For instance, we usually

train a predictive model by minimizing cross-entropy loss in online advertising, and evaluate

the model performance by click-through rate (CTR). Consequently, it naturally raises a

question - can we incorporate more loss functions in the training phase to enhance the model

performance?

Efforts have been made to develop strategies to fuse multiple loss functions, which

can take advantage of multiple loss functions in a weighted sum fashion. For example,

Panoptic FPN [65] leverages a grid search to find better loss weights; and UPSNet [145]

carefully investigates the weighting scheme of loss functions. However, these works rely on

exhaustively or manually search for loss weights from a large candidate space, which would

be an extremely costly execution in both computing power and time. Also, they aim to learn

a set of unified and static weights over the loss functions, which entirely overlook the different

convergence behaviors of data examples. Finally, retraining loss weights is always desired

when switching among different DRS frameworks or recommendation datasets, which reduces

their generalizability and transferability.

In order to obtain more accurate gradients to improve the recommendation performance

and the training efficiency, we propose an automated loss function search framework, Au-

toLoss, which can dynamically and adaptively select appropriate loss functions for training

DRS frameworks. Different from existing searching models with predefined and fixed loss

functions, or the loss weights exhaustively or manually searched, the optimal loss function in
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AutoLoss is automatically selected for each data example in a differentiable manner. The

experiments on two datasets demonstrate the effectiveness of the proposed framework. We

summarize our major contributions as follows:

• We propose an end-to-end framework, AutoLoss, which can automatically select the proper

loss functions for training DRS frameworks with better recommendation performance and

training efficiency;

• A novel controller network is developed to adaptively adjust the probabilities over multiple

loss functions according to different data examples’ dynamic convergence behaviors during

training, which enhances the model generalizability between different DRS frameworks and

datasets;

• We empirically demonstrate the effectiveness of the proposed framework on real-world

benchmark datasets. Extensive studies verify the importance of model components and

the transferability of AutoLoss.

6.2 The Proposed Framework

In this section, we will present an end-to-end framework, AutoLoss, which effectively tackles

the aforementioned challenges in Section 6.1 via automatically and adaptively searching

the optimal loss function from several candidates according to data examples’ convergence

behaviors. We will first provide an overview of the framework; next detail the architectures of

the main DRS network; then introduce the loss function search method with a novel controller

network; and finally provide an AutoML-based optimization algorithm.
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Figure 6.1: Overview of the AutoLoss framework.

6.2.1 An Overview

In this subsection, we will give an overview of the AutoLoss framework. AutoLoss aims to

automatically select appropriate loss functions from a set of candidates for different data

examples (i.e., user-item interactions). We demonstrate the framework in Figure 6.1. With

a DRS network, a controller network and a set of predefined candidate loss functions, the

learning process of AutoLoss mainly consists of two major steps.

The forward-propagation step. Given a mini-batch of data examples, the main DRS

network first generates predictions ŷ based on the input features x. Then, we can calculate

the losses {`i} for each candidate loss function according to the ground truth labels y and

predictions ŷ. Meanwhile, the controller network takes (y, ŷ) and outputs the probabilities

p over loss functions for each data example. Finally, the overall loss L can be calculated

according to the losses from {`i} and the probabilities p.

The backward-propagation step. We first fix the parameters of the controller network

and update the main DRS network parameters upon the training data examples. Then,

we fix the DRS parameters and optimize the controller network parameters based on a

mini-batch of validation data examples. This alternative updating approach enhances the
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(a) DeepFM Architecture (b) IPNN Architecture

0 0 ••• 1 0 1 ••• 0 1 0 ••• 0••• •••

••• •••

× × ×•••Interaction

Field 1 Field i Field m
Feature
Fields

0 0 ••• 1 0 1 ••• 0 1 0 ••• 0

Embeddings

••• •••

••• •••

Output

+ MLP× × ×••• Interaction

Feature
Fields

Embeddings

Field 1 Field i Field m

MLP

Output

Figure 6.2: Architectures of DeepFM and IPNN.

generalizability, and prevents AutoLoss from selecting probabilities that overfit the training

data examples [100, 80]. Next, we will introduce the details of AutoLoss.

6.2.2 Deep Recommender System Network

AutoLoss is quite general for most existing deep recommender system frameworks [106, 51,

74, 103]. As visualized in Figure 6.2, they typically have four components: embedding layer,

interaction layer, MLP layer and output layer. We now briefly introduce these components.

6.2.2.1 Embedding Layer

The raw input features of users and items are usually categorical or numeric, and in the

form of multiple fields. Most DRS works first transform the input features into binary

vectors, and then embed them into continuous vectors using a field-wise embedding. In this

way, a user-item interaction data example x = [x1,x2, · · · ,xm] can be represented as the

concatenation of binary vectors from all feature fields:

[0, 1, 0, 0, . . . , 0︸ ︷︷ ︸
x1: userid

][ 1, 0︸︷︷︸
x2: gender

][0, 1, 0, 0︸ ︷︷ ︸
x3: age

]

other fields︷ ︸︸ ︷· · · · · · [0, 1, 0, 1, . . . , 0]︸ ︷︷ ︸
xm: itemid
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where m is the number of feature fields and xi is the binary vector of the ith field. The

categorical data are transformed into binary vectors via one-hot encoding, e.g., [0, 1] for

gender = Female and [1, 0] for gender = Male. The numeric data are first partitioned into

buckets, and then we have a binary vector for each bucket, e.g., we can use [0, 0, 0, 1] for

child whose age∈[0,14], [0, 0, 1, 0] for youth whose age∈[15,24], [0, 1, 0, 0] for adult whose

age∈[25,64], and [1, 0, 0, 0] for seniors whose age≥65.

Since vector x is high-dimensional and very sparse, and different feature fields have various

lengths, DRS models usually introduce an embedding layer to transform each binary vector

xi into a low-dimensional continuous vector as:

ei = vixi (6.1)

where vi ∈ Rd×ui is the weight matrix with ui the number of unique feature values in the ith

feature field, and d is the pre-defined size of low-dimensional vectors1. Finally, the embedding

layer will output the concatenation of embedding vectors from all feature fields:

E = [e1, e2, . . . , em] (6.2)

6.2.2.2 Interaction Layer

After representing the input features as low-dimensional embeddings, DRS models usually

develop an interaction layer to explicitly capture the interactions among feature fields. The

most widely used method is factorization machine (FM) [106]. In addition to the linear

interactions among features, FM can explicitly model the pairwise (second-order) feature

1For multi-valued features (e.g.,“Interest=Movie, Sports”), the feature embedding is the sum or average
of multiple embeddings [28].
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interactions via the inner product of feature embeddings:

[〈e1, e2〉 , 〈e1, e3〉 , . . . , 〈em−1, em〉] (6.3)

where 〈·, ·〉 is the inner product of two embeddings, and the number of pairwise feature

interactions is C2
m. Then, the interaction layer will output:

lfm = 〈w,x〉+
m∑
i=1

m∑
j>i

〈
ei, ej

〉
(6.4)

Where w is the weight over the binary vector x of input features. The first term represents

the impact of first-order feature interactions, and the second term reflects the impact of

second-order feature interactions. FM can explicitly model even higher order interactions,

such as
∑m
i=1

∑m
j>i

∑m
t>j

〈
ei, ej , et

〉
for third-order, but this will add a lot of computation.

6.2.2.3 MLP Layer

MLP Layer combines and transforms the features, e.g., E and lfm, with several fully-connected

layers and activations. The output of each layer is:

hl+1 = relu (W lhl + bl) (6.5)

where W l is the weight matrix and bl is the bias vector for the lth hidden layer. h0 is the

input of first fully-connected layer, and we denote the final output of MLP layer as MLP(h0).
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6.2.2.4 Output Layer

Finally, the output layer, which is subsequent to the previous layers, will generate the

prediction ŷ of a user-item interaction data example. The input hout of output layer can

be different in different DRS models, e.g., hout = [lfm + MLP(E)] in DeepFM [51] and

hout = MLP(lfm,E) in IPNN [103], shown in Figure 6.2. The output layer will yield the

prediction ŷ of the user-item interaction as:

ŷ = σ (W ohout + bo) (6.6)

where W o and bo are the weight matrix and bias vector for the output layer. Activation

function σ(·) is selected based on different recommendation tasks, such as sigmoid for binary

classification [51], and softmax for multi-class classification [128]. Finally, given a set of

candidate loss functions, such as mean-squared-error, categorical hinge and cross-entropy, we

can compute the candidate losses LC :

LC = [`1(y, ŷ), `2(y, ŷ), · · · , `n(y, ŷ)] (6.7)

where y is the ground truth label and n is the number of candidate loss functions.

6.2.3 Loss Function Search

AutoLoss aims to adaptively and automatically search the optimal loss function, which

can enhance the prediction quality and training efficiency of the DRS network. This is

naturally challenging because of the complex relationship between the DRS parameters and

the probabilities over candidate loss functions. To address this challenge, many existing
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works have focused on developing the fusing strategies for multiple loss functions, which can

take advantage of multiple loss functions in a weighted sum manner:

L(y, ŷ;α) =
n∑
i=1

αi · `i(y, ŷ)

s.t.
n∑
i=1

αi = 1, αi > 0 ∀i ∈ [1, n]

(6.8)

where y is the ground truth, ŷ is the prediction from DRS network, and `i is the ith candidate

loss function. The continuous loss weights α = [α1, α2, · · · , αn] measure the candidates’

contributions in the final loss function L. However, this method relies on exhaustively or

manually search of loss weights from a large search space, which is extremely costly. Also,

this soft fusing strategy cannot completely eliminate the impact of suboptimal candidate loss

functions on the final loss function L, thus, a hard selection method is desired. However,

hard selection usually leads to the training framework not end-to-end differentiable.

Reinforcement learning (RL) is a potential solution to tackle the hard selection problem.

However, since the RL is generally built upon the Markov decision process, it utilizes

temporal-difference to make sequential actions. Consequently, the agent can only receive

the reward until the optimal loss function is selected and the DRS is evaluated. In other

words, the temporal-difference setting can suffer from delayed rewards. To address this issue,

we introduce the Gumbel-softmax operation to simulate the hard selection over candidate

loss functions, where the non-differentiable sampling is approximated from a categorical

distribution based on a differentiable sampling from the Gumbel-softmax distribution [58].

Given the continuous loss weights [α1, · · · , αn] over candidate loss functions, we can draw
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a hard selection z through the Gumbel-max trick [47] as:

z = one_hot

(
arg max

i∈[1,n]
[logαi + gi]

)
(6.9)

where gi = − log (− log (ui)) and ui ∼ Uniform(0, 1). The independent and identically

distributed (i.i.d) gumbel noises {gi} disturb the {logαi} terms. Also, they make the arg max

operation equivalent to drawing a sample from loss weights α1, · · · , αn. However, because of

the arg max operation, this sampling method is non-differentiable. We tackle this problem by

straight-through Gumbel-softmax [58], which leverages a softmax function as a differentiable

approximation to the arg max operation:

pi =
exp ((log (αi) + gi) /τ)∑n

j=1 exp
((

log
(
αj
)

+ gj
)
/τ
) , ∀i ∈ [1, n] (6.10)

where pi is the probability of selecting the ith candidate loss function. The temperature

parameter τ is introduced to manage the smoothness of the Gumbel-softmax operation’s

output. Specifically, the output approaches a one-hot vector if τ is closer to zero. Then the

final loss function L can be reformulated as:

L(y, ŷ;p) =
n∑
i=1

pi · `i(y, ŷ) (6.11)

In conclusion, the loss function search process becomes end-to-end differentiable by

introducing the Gumbel-softmax operation with a similar hard selection performance. Next,

we will discuss how to generate data example-level loss weights [α1, · · · , αn].
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6.2.4 Controller Network

As in Eq. (6.8), we suppose that [α1, · · · , αn] are the original (continuous) class probabilities

over n candidate loss functions before the Gumbel-softmax operation. This assumption aims

to learn a set of unified and static probabilities over the candidate loss functions. However,

the environment of real-world commercial recommendation platforms is always non-stationary,

and different user-item interaction examples have varying convergence behaviors. This cannot

be handled by unified and static probabilities, resulting in suboptimal model performance,

generalizability and transferability.

We propose a controller network to address this challenge, which learns to generate original

class probabilities for each data example. Motivated by curriculum learning [7, 60], the original

class probabilities should be generated according to the ground truth labels y and the output

of DRS network ŷ. Therefore, the input of the controller network is a mini-batch (y, ŷ),

followed by the MLP layer with several fully-connected layers like Eq. (6.5). Afterwards, the

controller’s output layer generates continuous class probabilities [αb1, · · · , αbn] ∀b ∈ [1, B] for

each data example in the mini-batch via a standard softmax activation, where B is the size

of mini-batch. In other word, each data example has individual probabilities. The controller

can enhance the recommendation quality, model generalizability and transferability, which is

validated by the extensive experiments.

6.2.5 An Optimization Method

In above subsections, we formulate the loss function search as an architectural optimiza-

tion problem and introduce the Gumbel-softmax that makes the framework end-to-end

differentiable. Now, we discuss the optimization for the AutoLoss framework.
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In AutoLoss, the parameters to be optimized are from two networks. We denote the main

DRS network’s parameters as W , and the controller network’s parameters as V . Note that

p are directly generated by the Gumbel-softmax operation based on the controller’s output

α as in Eq. (6.10). Inspired by automated machine learning techniques [100], W and V

should not be updated on the same training data batch like traditional supervised learning

methods. This is because the optimization of them is highly dependent on each other. As a

result, updating W and V on the same training batch can lead to the model over-fitting on

the training examples.

According to the end-to-end differentiable property of AutoLoss, we update W and

V through gradient descent utilizing the differentiable architecture search (DARTS) tech-

niques [80]. To be specific, W and V are alternately updated on training and validation

batches by minimizing the training loss Ltrain and validation loss Lval, respectively. This

forms a bi-level optimization problem [100], where controller parameters V and DRS param-

eters W are considered as the upper- and lower-level variables:

min
V
Lval

(
W ∗(V ),V

)
s.t.W ∗(V ) = arg min

W
Ltrain(W ,V ∗)

(6.12)

where directly optimizing V thoroughly via Eq. (6.12) is intractable since the inner opti-

mization of W is extremely costly. To tackle this issue, we use an approximation scheme for

the inner optimization:

W ∗(V ) ≈W − ξ∇WLtrain(W ,V ) (6.13)

where ξ is the predefined learning rate. This approximation scheme estimates W ∗(V ) by
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Algorithm 6.1: An Optimization Algorithm for AutoLoss via DARTS.
Input: features x and ground-truth labels y
Output: well-learned parameters W ∗ and V ∗
1: while not converged do
2: Sample a mini-batch of validation data examples
3: Estimate the approximation of W ∗(V ) via Eq. (6.13)
4: Update V by descending ∇V Lval

(
W ∗(V ),V

)
5: Sample a mini-batch of training data examples
6: Update W by descending ∇WLtrain(W ,V )
7: end while

descending only one step toward the gradient ∇WLtrain(W ,V ), rather than optimizing

W (V ) thoroughly. To further enhance the computation efficiency, we can set ξ = 0, i.e., the

first-order approximation.

We detail the AutoLoss optimization via DARTS in Algorithm 6.1. More specifically, in

each iteration, we first sample a mini-batch validation data examples of user-item interactions

(line 2); next, we estimate (but do not update) W ∗(V ) via the approximation scheme in

Eq. (6.13) (line 3); then, we update the controller parameters V by one step based on the

estimation (line 4); afterward, we sample a mini-batch training data examples (line 5); and

finally, we update the W via descending ∇WLtrain(W ,V ) by one step (line 6).

6.3 Experiment

This section will conduct extensive experiments using various datasets to evaluate the effective-

ness of AutoLoss. We first introduce the experimental settings, then compare AutoLoss with

representative baselines, and finally conduct model component and transferability analysis.
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Table 6.1: Statistics of the datasets.

Data Criteo ML-20m

# Interactions 45,840,617 20,000,263
# Feature Fields 39 2
# Feature Values 1,086,810 165,771

# Behavior click or not rating 1∼5

6.3.1 Datasets

We evaluate our model on two datasets, including Criteo and ML-20m. Below we introduce

these datasets and more statistics about them can be found in Table 6.1.

• Criteo2: It is a real-world commercial dataset to assess click-through rate prediction

models for online ads. It consists of 45 million data examples, i.e., users’ click records on

displayed ads. Each example contains m = 39 anonymous feature fields, where 13 fields are

numerical and 26 fields are categorical. 13 numerical fields are converted into categorical

features through bucketing.

• ML-20m3: This is a benchmark dataset to evaluate recommendation algorithms, which

contains 20 million users’ 5-star ratings on movies. The dataset includes 27,278 movies

and 138,493 users, i.e., m = 2 feature fields, where each user has at least 20 ratings.

6.3.2 Evaluation Metrics

AutoLoss is general for many recommendation tasks. To evaluate its effectiveness, we conduct

binary classification (i.e., click-through rate prediction) on Criteo, andmulti-class classification

(i.e., 5-star ratings) on ML-20m. The two classification experiments are evaluated by AUC4

2https://www.kaggle.com/c/criteo-display-ad-challenge/
3https://grouplens.org/datasets/movielens/20m/
4We evaluate the AUC for multiclass classification in a one-vs-rest manner.
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and Logloss, where higher AUC or lower Logloss mean better performance. It is worth

noting that slightly higher AUC and lower Logloss at 0.001-level are considered significant in

recommendations [51].

6.3.3 Implementation

We implement AutoLoss based on a public library5, which contains 16 representative recom-

mendation models. We develop AutoLoss as an independent class, so we can easily apply our

framework for all these models. In this chapter, we only show the results on DeepFM [51] and

IPNN [103] due to the page limitation. To be specific, AutoLoss framework mainly contains

two networks, i.e., the DRS network and the controller network.

For the DRS network, (a) Embedding layer : we set the embedding size as 16 following

the existing works [169]. (b) Interaction layer : we leverage factorization machine and inner

product network to capture the interactions among feature fields for DeepFM and IPNN,

respectively. (c) MLP layer : we have two fully-connected layers, and the layer size is 128.

We also employ batch normalization, dropout (rate = 0.2) and ReLU activation for both

layers. (d) Output layer : original DeepFM and IPNN are designed for click-through rate

prediction, which use sigmoid activation for negative log-likelihood function. To fit the 5-class

classification task on ML-20m, we modify the output layer correspondingly. i.e., the output

layer is 5-dimensional with softmax activation.

For the controller network, (a) Input layer : the inputs are the ground truth labels y and

the predictions ŷ from DRS network. (b) MLP layer : we also use two fully-connected layers

with the layer size 128, batch normalization, dropout (rate = 0.2) and ReLU activation. (3)

Output layer : the controller network will output continuous loss probabilities α with softmax

5https://github.com/rixwew/pytorch-fm
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activation, whose dimension equals to the number of candidate loss functions.

For other hyper-parameters, (a) Gumbel-softmax : we use an annealing scheme for tem-

perature τ = max(0.01, 1− 0.00005 · t), where t is the training step. (b) Optimization: we

set the learning rate as 0.001 for updating both DRS network and controller network with

Adam optimizer and batch-size 2000. (c) We select the hyper-parameters of the AutoLoss

framework via cross-validation, and we also do parameter-tuning for baselines correspondingly

for a fair comparison.

6.3.4 Overall Performance Comparison

AutoLoss is compared with the following loss function design and search methods:

• Fixed loss function: the first group of baselines leverages a predefined and fixed loss

function. We utilize Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss for

both classification tasks.

• Fixed weights over loss functions: this group of baselines aims to learn fixed weights

over the loss functions in the first group, without considering the difference among data

examples. In this group, we use the meta-learning method MeLU [68], as well as automated

machine learning methods BOHB [34] and DARTS [80].

• Data example-wise loss weights: this group learns to assign different loss weights for

different data examples according to their convergence behaviors. One existing work,

stochastic loss function (SLF) [82], belongs to this group.

The overall performance is shown in Table 6.2. It can be observed that:

• The first group of baselines achieves the worst recommendation performance in both

recommendation tasks. Their optimizations are based on predefined and fixed loss functions

130



Table 6.2: Performance comparison of different loss function search methods.

Dataset Model Metric Methods

Focal KL Hinge CE MeLU BOHB DARTS SLF AutoLoss

Criteo DeepFM AUC 0.8046 0.8042 0.8049 0.8056 0.8063 0.8065 0.8067 0.8081 0.8092*
Logloss 0.4466 0.4469 0.4463 0.4457 0.4436 0.4435 0.4433 0.4426 0.4416*

Criteo IPNN AUC 0.8077 0.8072 0.8079 0.8085 0.8090 0.8092 0.8093 0.8098 0.8108*
Logloss 0.4435 0.4437 0.4432 0.4428 0.4423 0.4422 0.4423 0.4418 0.4409*

ML-20m DeepFM AUC 0.7681 0.7682 0.7685 0.7692 0.7695 0.7695 0.7696 0.7705 0.7717*
Logloss 1.2320 1.2317 1.2316 1.2310 1.2307 1.2305 1.2305 1.2299 1.2288*

ML-20m IPNN AUC 0.7721 0.7722 0.7725 0.7733 0.7735 0.7734 0.7736 0.7745 0.7756*
Logloss 1.2270 1.2269 1.2266 1.2260 1.2256 1.2257 1.2255 1.2249 1.2236*

“*” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best
baseline.

during the training stage. This result demonstrates that leveraging a predefined and fixed

loss function throughout can downgrade the recommendation quality.

• The methods in the second group outperform those in the first group. These methods

try to learn weights over candidate loss functions according to their contributions to the

optimization, and then combine them in a weighted sum manner. This validates that

incorporating multiple loss functions in optimization can enhance the performance of deep

recommender systems.

• The second group performs worse than the SLF, since the weights they learned are unified

and static, which completely overlooks the various behaviors among different data examples.

Therefore, SLF performs better by taking this factor into account.

• The decision network of SLF is optimized on the same training batch with the main

DRS network via back-propagation, which can lead to over-fitting on the training batch.

AutoLoss updates the DRS network on the training batch while updating the controller

on the validation batch, which improves the model generalizability and results in better

recommendation performance.
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Figure 6.3: Transferability study results.

To summarize, AutoLoss achieves significantly better performance than state-of-the-art

baselines on both datasets and tasks, which demonstrates its effectiveness.

6.3.5 Transferability Study

In this subsection, we study the transferability of the controller. Specifically, we want to

investigate (i) whether the controller trained with one DRS model can be applied to other

DRS models; and (ii) whether the controller learned on one dataset can be directly used on

other datasets.

• To study the transferability across different DRS models, we leverage the controller trained

via DeepFM and AutoLoss on Criteo, fix its parameters and apply it to train NFM [54]

and AutoInt [120] on Criteo. The results are demonstrated in Figure 6.3 (a)-(d), where (i)

“CE” means that we directly train the new DRS model via minimizing the cross-entropy

(CE) loss, which is the best single and fixed loss function in Table 6.2; (ii) “SLF ” is that we
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use the controller upon DeepFM and SLF, which is the best baseline in Table 6.2; and (iii)

“AL” denotes that we use the controller based on DeepFM and AutoLoss. From the figures,

we can observe that SLF performs superior to CE, which indicates that a pre-trained

controller can improve other DRS models’ training performance. More importantly, AL

outperforms SLF , which validates AutoLoss’s better transferability across different DRS

models.

• To study the transferability between different datasets, we train a controller upon Criteo

dataset with DeepFM and AutoLoss, fix its parameters and apply it to train a new

DeepFM on the Avazu dataset6, i.e., “AL”. Also, we denote that (i) “CE”: DeepFM is

directly optimized by minimizing cross-entropy (CE) loss on Avazu dataset; and (ii) “SLF ”:

DeepFM is optimized on the new dataset with the assistance of a controller pre-trained

with DeepFM+SLF on Criteo. In Figure 6.3 (e)-(f), AL shows superior performance over

CE and SLF , which proves its better transferability between different datasets.

In summary, AutoLoss has better transferability across different DRS models and different

recommendation datasets, which improves its usability in real-world recommender systems.

6.3.6 Impact of Model Components

In this subsection, in order to understand the contributions of important model components

of AutoLoss, we systematically eliminate each component and define the following variants:

• AL-1: This variant aims to assess the contribution of the controller. Thus, we assign

equivalent weights on four candidate loss functions, i.e., [0.25, 0.25, 0.25, 0.25].

6Avazu is another benchmark dataset for CTR prediction, which contains 40 million user clicking behaviors
in 11 days with M = 22 categorical feature fields. https://www.kaggle.com/c/avazu-ctr-prediction/
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Table 6.3: Impact of model components.

Dataset Model Metric Methods

AL-1 AL-2 AutoLoss

Criteo DeepFM AUC ↑ 0.8052 0.8083 0.8092*
Logloss ↓ 0.4460 0.4422 0.4416*

Criteo IPNN AUC ↑ 0.8081 0.8102 0.8108*
Logloss ↓ 0.4431 0.4416 0.4409*

“*” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05)
over the best baseline. ↑: the higher the better; ↓: the lower the better.

• AL-2: In this variant, we eliminate the Gumbel-softmax operation, and directly use

the controller’s output, i.e., the continuous loss probabilities α from standard softmax

activation, which aims to evaluate the impact of Gumbel-softmax.

The results on the Criteo dataset are shown in Table 6.3:

• First, AL-1 has worse performance than AutoLoss, which validates the necessity to introduce

the controller network. It is noteworthy that, AL-1 performs worse than all loss function

search methods, and even the fixed cross-entropy (CE) loss in Table 6.2, which indicates

that equally incorporating all candidate loss functions cannot guarantee better performance.

• Second, AutoLoss outperforms AL-2. The main reason is that AL-2 always generates

gradients based on all the loss functions, which introduces some noisy gradients from

the suboptimal candidate loss functions. In contrast, AutoLoss can obtain appropriate

gradients by filtering out suboptimal loss functions via Gumbel-softmax, which enhances

the model robustness.
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Figure 6.4: Efficiency study results.

6.3.7 Efficiency Study

This section compares AutoLoss’s training efficiency with other loss function searching

methods, which is an important metric to deploy a DRS model in real-world applications.

Our experiments are based on one GeForce GTX 1060 GPU.

The results of DeepFM on Criteo dataset are illustrated in Figure 6.4 (a). We can observe

that AutoLoss achieves the fastest training speed. The reasons are two-fold.

• First, AutoLoss can generate the most appropriate gradients to update DRS, which increases

the optimization efficiency.

• Second, we update the controller once after every 7 times DRS is updated, i.e., the controller

updating frequency f = 7. This trick not only reduces the training time (∼ 60% in this

case) with fewer computations, but also enhances the performance. In Figure 6.4 (b)-(c)

where x-axis is f , we find that DeepFM performs the best when f = 7, while updating too

frequently/infrequently can lead to suboptimal AUC/Logloss.

To summarize, AutoLoss can efficiently achieve better performance, making it easier to

be launched in real-world recommender systems.
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6.4 Related Work

In this section, we briefly introduce the works related to our study. We first go over the latest

studies in loss function search and then review works about AutoML for recommendations.

Loss Function Search. The loss function plays an essential part in a deep learning

framework. The choice of the loss function significantly affects the performance of the learned

model. A lot of efforts have been made to design desirable loss functions for specific tasks. For

example, in the field of image processing, Rahman et al. [104] argued that the typical cross-

entropy loss for semantic segmentation shows great limitations in aligning with evaluation

metrics other than global accuracy. Ronneberger et. al [110, 143] designed loss functions by

taking class frequency into consideration to cater to the mIoU metric. Caliva et al. [16, 102]

designed losses with larger weights at boundary regions to improve the boundary F1 score.

Liu et al. [84] proposed to replace the traditional Softmax loss with large margin Softmax

(L-Softmax) loss to improve feature discrimination in classification tasks. Fan et al. [36]

used sphere Softmax loss for the person re-identification task and obtained state-of-the-art

results. The loss functions mentioned above are all designed manually, requiring ample expert

knowledge, non-trivial time, and many human efforts.

Recently, automated loss function search draws increasing interests of researchers from

various machine learning (ML) fields. Xu et al. [146] investigated how to automatically

schedule iterative and alternate optimization processes for ML models. A meta-learning

framework was proposed to adaptively determine which loss function to use and which

parameters to update at each optimization step. Liu et al. [82] proposed to optimize the

stochastic loss function (SLF), where the loss function of an ML model was dynamically

selected. The loss function selection is determined by loss parameters, including a selective
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binary code and a weighting coefficient. During training, model parameters and the loss

parameters are learned jointly. Li et al. [71] proposed automatically searching specific

surrogate losses to improve different evaluation metrics in the image semantic segmentation

task. Besides, Li et al. [70, 135] designed search spaces for a series of existing loss functions

and developed algorithms to search for the best parameters of the probability distribution for

sampling loss functions. However, their methods are designed exclusively for cross-entropy

loss and its variants, making their methods not applicable in our tasks.

AutoML for Recommendation. AutoML techniques are now widely used to automat-

ically design deep recommendation systems. Previous works mainly focused on the design of

the embedding layer and the selection of feature interaction patterns.

In terms of the embedding layer, Joglekar et al. [62, 157, 83] proposed novel methods to

automatically select the best embedding size for different feature fields in a recommendation

system. Zhao et al. [158, 81] proposed to dynamically search embedding sizes for users and

items based on their popularity in the streaming setting. Similarly, Ginart et al. [44] proposed

to use mixed dimension embeddings for users and items based on their query frequency. Kang

et al. [63] proposed a multi-granular quantized embeddings (MGQE) technique to learn

impact embeddings for infrequent items. Cheng et al. [25] proposed to perform embedding

dimension selection with a soft selection layer, making the dimension selection more flexible.

Guo et al. [50] focused on the embeddings of numerical features. They proposed AutoDis,

which automatically discretizes features in numerical fields and maps the resulting categorical

features into embeddings.

As for feature interaction, Luo et al. [88] proposed AutoCross that produces high-order

cross features by performing beam search in a tree-structure feature space. Song et. al

[119, 64, 78, 149] proposed to automatically discover feature interaction architectures for
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click-through rate (CTR) prediction. Tsang et al. [130] proposed a method to interpret

the feature interactions from a source recommendation model and apply them in a target

recommendation model.
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Chapter 7

Conclusions

7.1 Dissertation Summary

In this dissertation, we have described our efforts devoted to adaptive and automated

deep recommender systems. Particularly, we have discussed our proposed (i) adaptive

recommendation policies that continuously update recommendation strategies during the

interactions and maximize the expected long-term cumulative reward from users, and (ii)

effective approaches that design deep recommender system frameworks from an automated

and data-driven manner.

In chapter 2, we propose a novel page-wise recommendation framework DeepPage, which

leverages Deep Reinforcement Learning to automatically learn the optimal recommendation

strategies and optimizes a page of items simultaneously. Reinforcement learning based

recommender systems have two advantages: (1) they can continuously update strategies

during the interactions, and (2) they are able to learn a strategy that maximizes the long-

term cumulative reward from users. Unlike previous work, we propose a novel Actor-Critic

framework, which can be applied in scenarios with large and dynamic item space and reduce

redundant computation significantly. Furthermore, the proposed framework can capture the

real-time preference and optimize a page of items jointly, which can boost recommendation

performance. We evaluate our framework with extensive experiments based on data from a real
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e-commerce company. The results show that (1) DeepPage can improve the recommendation

performance; and (2) capturing users’ real-time preference and jointly optimizing a page is

helpful for accurate recommendation.

In chapter 3, we propose a two-level deep reinforcement learning framework RAM with

novel Deep Q-network architectures for the mixed display of recommendation and advertise-

ments in online recommender systems. Upon a user’s request, the RS (i.e., first level) first

recommends a list of items based on user’s historical behaviors, then the AS (i.e., second

level) inserts ads into the rec-list, which can make three decisions, i.e., whether to insert an

ad into the rec-list; and if yes, the AS will select the optimal ad and insert it into the optimal

location. The proposed two-level framework aims to simultaneously optimize the long-term

user experience and immediate advertising revenue. It is worth noting that the proposed AS

architecture can take advantage of two conventional DQN architectures, which can evaluate

the Q-value of two kinds of related actions simultaneously. We evaluate our framework with

extensive experiments based on data from a short video site TikTok. The results show that

our framework can jointly improve recommendation and advertising performance.

In chapter 4, we propose a novel user simulator, UserSim, based on Generative Adversarial

Network (GAN) framework, which models real users’ behaviors from users’ historical logs,

and tackle the two challenges: (i) the recommended item distribution is complex within users’

historical logs, and (ii) labeled training data from each user is limited. The GAN-based

user simulator can naturally resolve these two challenges and can be used to pre-train and

evaluate new recommendation algorithms before launching them online. To be specific, the

generator captures the underlying item distribution of users’ historical logs and generates

indistinguishable fake logs that can be used as augmentations of real logs. The discriminator

can predict users’ feedback of a recommended item based on users’ browsing logs, taking

140



advantage of both supervised and unsupervised learning techniques. In order to validate

the effectiveness of the proposed user simulator, we conduct extensive experiments based on

benchmark datasets. The results show that the proposed user simulator can improve the user

behavior prediction performance in recommendation tasks over representative baselines.

In chapter 5, we propose a novel framework AutoDim, which targets automatically

assigning different embedding dimensions to different feature fields in a data-driven manner.

In real-world recommender systems, due to the huge amounts of feature fields and the

highly complex relationships among embedding dimensions, feature distributions and neural

network architectures, it is difficult, if possible, to manually allocate different dimensions to

different feature fields. Thus, we proposed an AutoML based framework to automatically

select from different embedding dimensions. To be specific, we first provide an end-to-end

differentiable model, which computes the weights over different dimensions for different

feature fields simultaneously in a soft and continuous form, and we propose an AutoML-

based optimization algorithm; then according to the maximal weights, we derive a discrete

embedding architecture, and re-train the DLRS parameters. We evaluate the AutoDim

framework with extensive experiments based on widely used benchmark datasets. The results

show that our framework can maintain or achieve slightly better performance with much

fewer embedding space demands.

In chapter 6, we propose a novel end-to-end framework, AutoLoss, to enhance recom-

mendation performance and deep recommender systems’ training efficiency by selecting

appropriate loss functions in a data-driven manner. AutoLoss can automatically select the

proper loss function for each data example according to their varied convergence behaviors.

To be specific, we first develop a novel controller network, which generates continuous loss

weights based on the ground truth labels and the DRS’ predictions. Then, we introduce a
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Gumbel-softmax operation to simulate the hard selection over candidate loss functions, which

filters out the noisy gradients from suboptimal candidates. Finally, we can select the optimal

candidate according to the output from Gumbel-softmax. We conduct extensive experiments

to validate the effectiveness of AutoLoss on two widely used benchmark datasets. The results

show that our framework can improve recommendation performance and training efficiency

with excellent transferability.

7.2 Future Works

Given the promising achievements from our works, we believe more dedicated efforts should

be devoted to the policies and framework of deep recommender systems. With respect to

future work, we are interested in investigating the following directions:

• Off-policy or Offline RL in Recommendations: Due to the system architecture in

modern web services, it is almost impossible to perform online reinforcement learning in

real-world recommendations [79, 175, 172]. In practice, the ranking functions (or policies)

are trained periodically, e.g., daily or weekly, based on the recently collected log data. As

such, the ways of training of any DRL-based policies or value functions can only be off-policy

or offline. Due to the nature of RL, once the ranking policy is updated, the corresponding

data distribution, i.e., occupancy measure, will change, which will make the training biased.

In DRL, off-policy methods restrict the new policy around the data-collecting policy, while

offline RL methods usually constrain the learning policy to support the logged data. So

far, there is barely no established research addressing such a problem in recommendations.

• Formulating ranking as a decision-making task: Ranking is a process that takes

a query as input and outputs the ranking of candidate items. Different formulations of
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ranking lead to different inductive biases, which may fit different recommendation scenarios.

For example, sequentially decide to pick the next-slot item from the remaining candidates

fits more to the sequential recommendation tasks but may suffer from efficiency issue [19],

while learning a direct ranking function may fail to capture the user’s specific context when

browsing the ranked list [32, 61, 13]. To our knowledge, there has not yet been a deep

investigation of the effectiveness of formulating ranking as a decision-making task.

• Dynamics Simulation for RL Recommendations: As previously mentioned, a user’s

behavior when facing a ranked item list can be regarded as a dynamic process, which

can be formulated as a prediction or generation process called user click model [9, 29].

Learning such a user click model (i.e., the dynamics for RL-based ranking policies) is still

challenging since the logged data is always biased, e.g., position bias and selection bias.

Moreover, how well the learned user click model will guide the training of the RL-based

ranking policies is non-guaranteed, because the common problem of compounding error

of the learned dynamics model for simulation data generation [2]. Meanwhile, there is no

commonly recognized simulation benchmark for DRL-based ranking or recommendation

tasks, although some attempts have been performed, such as UserSim in Chapter 4.

• Sample Efficiency for RL Recommendations: Sample efficiency has been of key

problem for DRL since most DRL methods are model-free. Given sufficient training

data from the agent interacting with the environment, the paradigm of model-free RL is

suitable for training deep neural network based value functions or policies. However, most

recommender systems directly interact with the users and collect the training data, which

is normally insufficient to train the model-free RL solutions.

• Sparse & Biased Feedback Data: Feedback data is commonly biased. In RL view,

143



the experience data is sampled from the occupancy measure distribution of the policy-

environment interaction. Although off-policy training methods can still help improve the

policy based on biased data, the sample efficiency is seriously reduced. Moreover, in some

information retrieval scenarios such as online advertising, the positive reward is highly

sparse (e.g., 0.3% click-through rate for display ads), which results in very low efficiency or

failure of RL.

• Online Deployment of RL Solutions: From industry perspective, deploying DRL

solutions onto production recommender systems is challenging. The common model

pipelines in recommender systems center on relevance estimation models, e.g., relevance or

CTR estimation, while the DRL model pipelines center on the policy module. Bridging

gap between two generations of model pipelines should be positioned as high priority for

applied research teams in this field.

• Fairness in Recommendations: As recommender systems influence more and more

people in their daily life, the problem of fairness in recommendation is becoming more and

more important. Most of the prior approaches to fairness-aware recommendation have been

situated in a static or one-shot setting, where the protected groups of items are fixed, and

the model provides a one-time fairness solution based on fairness-constrained optimization.

This fails to consider the dynamic nature of the recommender systems, where attributes

such as item popularity may change over time due to the recommendation policy and

user engagement. For example, products that were once popular may become no longer

popular, and vice versa. As a result, the system that aims to maintain long-term fairness

on the item exposure in different popularity groups must accommodate this change in a

timely fashion. I plan to explore long-term fairness in recommendation and accomplish the
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problem through dynamic fairness learning.

• Feature Interaction in Recommendations: For recommendation tasks, explicit feature

interactions can significantly improve the performance of models. Factorization Models,

such as FM, DeepFM, have been proposed to explore the explicit feature interactions.

These factorization models, are widely used in various industrial recommender systems.

However, all these models are simply either enumerating all feature interactions or requiring

human efforts to identify important feature interactions. The former, enumerating all

feature interactions, always brings large memory and computation cost to the model and

is difficult to be extended into high-order interactions. Besides, useless interactions may

bring unnecessary noise and complicate the training process. The latter, human identify

important feature interactions, is of high labor cost and risks missing some counter-intuitive

(but important) interactions. I plan to conduct research on automating feature interaction.

• Full Automation in Recommendations: Most existing AutoML works in recommen-

dations focus on architecture search of their deep neural networks, such as embedding layer

[158, 81, 157, 83] and interaction layer [119, 64, 78, 149]. But actually, AutoML can be

incorporated to more tasks when we build a deep recommender system, such as the loss

function search framework AutoLoss in Chapter 6. In the future, we can study more such

applications, such as feature engineering, model selection, optimization and evaluation.

Eventually, we aim to provide an end-to-end automatic solution to build recommender

systems without human efforts.
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