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ABSTRACT 

RELIABLE TRANSPORTATION NETWORKS UTILIZING EMERGING TECHNOLOGIES 

AND PRICING STRATEGIES 

By 

Seyede Fatemeh Fakhrmoosavi 

Travel time reliability plays a pivotal role in the system efficiency and level of service of 

transportation networks. Transportation network users are heterogeneous, and they may value 

travel time reliability differently. The importance level of travel time reliability for different 

travelers depends upon many factors including the user’s risk acceptance level and trip purpose 

and departure time. Thus, travelers tend to maximize travel time reliability, in addition to 

minimizing their travel times.  

One of the main challenges in transportation planning is the high computational time of 

traffic simulation tools that consider heterogeneous users and their responses to travel time 

reliability. Path finding problem constitutes an essential problem in these traffic simulation tools. 

Therefore, this study presents two heuristic algorithms to improve the computational time of 

reliable path finding algorithms by reducing the network size of each specific origin and 

destination pair in stochastic time-dependent networks. The network contraction algorithms, 

presented in this study, are based on the comparison of optimistic and pessimistic solutions 

resulting from minimum and maximum travel time realizations of a Monte-Carlo simulation-based 

approach. The major contribution of the proposed approach is to improve computational efficiency 

of the stochastic path finding problem, considering travel time correlations and travelers’ 

heterogeneity, in large-scale applications. Comparing the performance and accuracy of the 

approach with those of the approach without any network contraction for two large-scale networks 

demonstrates significant computational improvements and a high accuracy level. 



 

 

Different traffic and demand management strategies have also been used to improve 

reliability of transportation networks. These strategies, including congestion pricing, have great 

impacts on users’ reliable path choices. Considering a reliability measure in the travelers’ path 

choices naturally impacts the congestion pattern, which in turn, affects the outcomes of pricing 

strategies. Furthermore, congestion pricing alters link travel time distributions in stochastic 

transportation networks. Therefore, this study finds an equitable pricing scheme that minimizes 

the total travel time of auto users in a general bimodal network considering heterogeneous users 

with different values of time and reliability. The main contribution of this proposed approach is 

accounting for travel time reliability in finding an equitable pricing scheme. This approach is 

successfully applied to a modified Sioux Falls network to explore the impacts of subsidization 

strategy, congestion level, and considering travel time reliability on the pricing strategy and its 

effectiveness. 

Finally, emerging technologies, such as connected and autonomous vehicle technologies, 

have attracted the attention of transportation system planners in recent years, as an alternative to 

improve mobility and reliability of transportation networks. Having a traffic simulation tool that 

considers the presence of these technologies is essential to estimate their impacts on traffic 

congestion and travel time reliability. Therefore, this study presents a mesoscopic simulation tool 

to account for the presence of connected and autonomous vehicles at the network level by 

incorporating adaptive fundamental diagrams due to the non-uniform distribution of different 

vehicle types with heterogeneous drivers. This tool is then used to investigate the impacts of a 

mixed traffic of connected, autonomous, and human-driven vehicles on traffic flow and travel time 

reliability at the network level. The results show the superiority of connected and autonomous 

vehicles over regular vehicles in mitigating traffic congestion and improving travel time reliability. 
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CHAPTER 1 Introduction 

1-1- Research Motivation 

The performance of transportation systems is of significant importance in the growth of all 

nations. In addition, traffic congestion in urban areas has imposed many direct and indirect 

expenses on roadway users with a growing pattern. Transportation planners incorporate multiple 

strategies and technologies to improve mobility and safety and reduce emission across 

transportation systems. However, population growth and lack of available resources to develop a 

new transportation system or expand current road networks continue to cause serious challenges 

in mobility and safety, especially in large cities. Therefore, there have been extensive efforts in 

recent decades to take advantage of different strategies and technologies to improve mobility and 

safety to the highest level possible. To do so, the impacts of these strategies and technologies on 

transportation systems need to be investigated in order to make better plans for the future. 

Travel time reliability is a critical measure indicating the performance level of 

transportation systems in addition to average travel time that has been used extensively as the main 

measure of service for transportation systems. Therefore, transportation analysts need to 

incorporate the travel time variability in addition to the average travel time in their models. Travel 

time uncertainty in transportation networks comes from either the demand side, e.g., special events 

or daily demand fluctuations, or the supply side, e.g., traffic incidents, natural hazards, work zones, 

and poor weather conditions (1). Consequently, different users tend to minimize not only their 

travel times but also the travel time variability caused by such uncertainties (2). In addition, 

different travelers have distinct decisions in response to travel time uncertainties that may vary by 

their preferences and risk tolerance levels. Therefore, travel time reliability and users’ 
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heterogeneity are critical factors that should be considered in improving the mobility of 

transportation systems. 

The path finding problem constitutes an extremely essential problem with numerous 

applications in different fields. This problem is the core element of many other problems in the 

transportation area and should be solved repeatedly to simulate traffic in transportation systems. 

Deterministic shortest paths, either dynamic or static, may lead users toward risky paths due to the 

uncertain nature of travel times in transportation networks. Consequently, different users tend to 

minimize not only their travel times but also the travel time variability caused by such uncertainties 

(2). In addition, as mentioned earlier, different travelers have distinct decisions in response to 

travel time uncertainties that may vary by their preferences and risk tolerance. The same traveler 

might frequently choose different paths for similar trips based on their departure time and purpose. 

Therefore, travelers’ preferences are expected to be considered in the path selection procedure to 

find reliable routes for users, called stochastic or reliable path finding problem (3,4). As stochastic 

path finding problem should be solved multiple times for traffic simulations, it is significantly 

important to develop algorithms to solve this problem in a computationally reasonable time. In 

addition, the computational efficiency of stochastic path finding algorithms plays a critical role in 

predicting the performance of transportation systems under different situations to find the best 

strategies to improve mobility and safety. 

In recent decades, transportation planners and policymakers have become increasingly 

interested in congestion pricing as a possible mechanism to mitigate traffic congestion in urban 

areas. Without congestion pricing, traffic is distributed between different routes in the network 

such that a user-equilibrium (UE) traffic route assignment pattern is obtained. This undesirable UE 

route assignment pattern results in an inefficient use of the network capacity and excessive delays. 
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However, pricing strategies shift the UE pattern towards a system optimal (SO) pattern, as a 

portion of the travelers modify their routes to avoid paying the tolls. Despite technological 

advancements in implementing pricing strategies, some serious impediments hinder the 

application of these strategies in practice. For instance, without a careful redistribution scheme of 

collected tolls, congestion pricing can inequitably affect travelers (providing benefit for some 

travelers and loss for others). Therefore, a comprehensive congestion pricing strategy is required 

not only to alleviate congestion, but also to neutralize equity issues.  

In addition, given the growing utilization of congestion pricing strategies in recent years, 

it is crucial to account for the monetary cost of the tolls levied on users in addition to the travel 

time in stochastic path choice models. Doing so, heterogeneous users choose their path based on 

the least generalized cost path, which is the sum of out-of-pocket cost and the weighted value of 

travel time. The later value is mostly identified as the multiplication of users’ Value of Time (VOT) 

by the paths average travel time in the literature. However, transportation policymakers need to 

incorporate the travel time variability in addition to the average travel time. Furthermore, 

considering a reliability measure in the travelers’ path choice would naturally impact the 

congestion pattern in the network that in turn, affects the outcomes of pricing strategies. This calls 

for incorporating reliability measures in congestion pricing schemes and their resulting impacts on 

users’ optimal paths. A few studies in the literature have considered applications of the variable 

travel time in congestion pricing strategies (5–9). Most of these studies either assumed simplified 

assumptions for travel time reliability or considered certain scenarios of pricing. Due to inevitable 

impacts of travel time variability on transportation networks, there is still the need to account for 

this realistic feature of travelers in congestion pricing schemes, which in turn impacts users’ 

optimal path choice. 
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Connected and automated vehicle technologies are also expected to significantly contribute 

to improving mobility and safety. As connected and autonomous vehicles have not been used in 

practice at large-scale, there are still some uncertainties regarding their applications. Therefore, 

researchers utilize traffic simulation tools to model the presence of these vehicles. There are 

several studies on the impacts of vehicle connectivity and automation at the segment level. 

However, only a few studies have investigated these impacts on traffic flow at the network level. 

Most of these studies consider a uniform distribution of connected or autonomous vehicles over 

the network. They also fail to consider the interactions between heterogeneous drivers, with and 

without connectivity, and autonomous vehicles at the network level. Therefore, the impacts of such 

technologies on travel time reliability in large-scale networks should be investigated. 

All in all, there is a gap in the body of literature to consider travel time reliability and its 

impacts on users’ decisions and on improving or declining traffic mobility. Therefore, this research 

considers travel time uncertainty in different stages of traffic simulation and studies the impacts of 

different strategies and technologies on travel time reliability. 

1-2- Problem Statement 

This study is concerned with three aspects of considering travel time reliability in 

transportation studies; first, optimal path finding problem and its computational efficiency; second, 

considering travel time uncertainty and users’ heterogeneity in demand control strategies, such as 

congestion pricing; and third, the impacts of different emerging technologies, such as connected 

and autonomous vehicle technologies, on travel time reliability. In stochastic networks, 

deterministic shortest path finding algorithms and heuristics are not applicable due to the non-

additivity of link travel times over paths and the non-linear relation between link travel times and 

path travel times. On the other hand, proposed solution algorithms for this problem do not yield 
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optimal results within a computationally reasonable time, especially when the network size grows. 

Overcoming this computational burden requires developing innovative solution approaches, 

especially for large-scale applications. 

The second challenge is to consider travel time reliability in pricing strategies, which in 

turn affects the paths choices of users. Roadway pricing and subsidizing public transit are common 

strategies that are used in practice to tackle the congestion problem. However, there are equity 

concerns associated with pricing strategies and financing issues for public transit subsidies. To 

overcome these concerns and issues, a self-funded and Pareto-improving pricing scheme should 

be explored incorporating heterogeneous users with multiple classes of VOT and Value of 

Reliability (VOR). For a pricing scheme to be self-funded in a bimodal network, the collected tolls 

from highway users should be distributed among transit users to increase the public transit utility, 

which is defined as transit-based strategy in this study. Also, the collected tolls can be used to 

distribute credits among all users (both highway network and transit users) in the network to 

compensate for any travel time loss, which is defined as credit-based toll distribution strategy. On 

the other hand, the utility of all network users should be improved after implementation of the 

pricing scheme to satisfy the Pareto-improving condition. In this study, the utility function of 

travelers, which determines the path assignment, is defined as a function of the mean travel time, 

monetary cost of travel (maintenance and fuel cost, fare, toll, etc), and travel time variability 

capturing the reliability valuation of heterogeneous users. Finding such pricing schemes is 

important to minimize the total travel time of the auto users, considering heterogeneous users with 

different VOT and VOR classes in a general bimodal network.  

Finally, emerging technologies, such as connected and autonomous vehicle technologies, 

are expected to increase travel time reliability. The main challenge in quantifying the impacts of 
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these technologies on traffic congestion and travel time reliability is to have a traffic simulation 

tool that considers the presence of connected and autonomous vehicles in addition to conventional 

vehicles. There are several studies on the impacts of vehicle connectivity and automation at the 

segment level. However, it is challenging to consider the presence of these vehicles in large-scale 

networks. In addition, network level studies consider a uniform distribution of connected or 

autonomous vehicles over the network. They also fail to consider the interactions between 

heterogeneous drivers, with and without connectivity, and autonomous vehicles at the network 

level. Therefore, another main challenge studied in this manuscript is to consider a non-uniform 

distribution of connected or autonomous vehicles over the network and the interactions between 

heterogeneous drivers in a traffic simulation tool. 

1-3- Research Objectives and Contributions 

The main objective of this study is to consider travel time reliability in traffic simulation 

and its components, such as optimal path finding problem, to investigate the impacts of different 

strategies and technologies on travel time reliability and propose reliable strategies to improve 

mobility in large metropolitan areas. To this end, this study focuses on three different problems: 

improving computational efficiency of path finding problem in stochastic time-varying networks, 

incorporating travel time reliability and variability in proposing a reliable pricing strategy for large 

metropolitan areas, and investigating the impacts of emerging technologies, including connected 

and autonomous vehicle technologies, on travel time reliability of large-scale networks. The main 

contributions of this study are as follows:  
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1-3-1- Path Finding Problem Considering Heterogeneous Users 

 Improving computational efficiency of the stochastic shortest path finding problem, 

considering spatial and temporal travel time correlations and travelers’ 

heterogeneity 

 Facilitating the use of stochastic path finding algorithms in cases of route guidance, 

especially in large-scale applications, by adopting an algorithm which is more 

adaptive to cases where only a specific Origin-Destination (OD) pair is of interest 

 Developing a learning-based network contraction approach to reduce the network 

size throughout the iterations of the Monte-Carlo simulation-based (MCS) 

approach for optimal path finding 

1-3-2- Travel Time Reliability and Congestion Pricing 

 Introducing an algorithm to solve stochastic path finding problems considering the 

pricing strategies in addition to link travel time correlations for users with different 

values of time and reliability 

 Accounting for the travel time reliability in finding an equitable pricing scheme 

 Considering heterogeneity of users in response to travel time uncertainty using 

multiple classes for users’ VOR defined based on the VOT distribution   

 Incorporating link travel time correlations in the reliability-based user equilibrium 

problem for congestion pricing 

 Exploring the impacts of different types of relations (i.e. linear, concave) between 

mean and standard deviation of link travel time on self–funded and Pareto-

improving pricing schemes 
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1-3-3- Impacts of Connected and Autonomous Vehicles on Travel Time Reliability 

Developing and incorporating a simulation model that captures the impacts of Connected 

Vehicles (CVs) and connected Autonomous Vehicles (AVs) on traffic flow and travel time 

reliability with the following unique features: 

 Considering a mixed traffic of Regular Vehicles (HDVs), CVs, and AVs for large-

scale applications 

 Considering heterogeneous drivers for HDVs and CVs in terms of acceleration 

behavior 

 Considering spatially and temporally varying distributions of HDVs, CVs, and AVs 

over the network 

 Considering capacity variations at intersections in the presence of different shares 

of CVs and AVs 

 Adjusting traffic flow models in arterials due to the presence of CVs and AVs 

 Considering CVs and AVs as en-route or adaptive travelers 

1-4- Research Approach 

The path finding problem is an essential sub-problem of many other transportation 

problems including the reliability-based user equilibrium problem. A Monte Carlo Simulation-

based approach, developed by Zockaie et al. (4,10,11) is used in this study to find the optimal paths 

for heterogeneous users in stochastic time-dependent networks with spatial and temporal travel 

time correlations. This approach consists of two stages; the first stage generates a set of candidate 

paths by applying a dynamic deterministic shortest path algorithm for different realizations of link 

travel times. This stage consists of a pre-specified number of iterations. In each iteration, 

realizations of link travel time are made by drawing random numbers from a joint link travel time 
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distribution. Based on these realizations, a candidate path is found, using a dynamic deterministic 

shortest path finding algorithm, and then added to the candidate paths set. After this iteration 

repeats for a certain number of times, the set of candidate paths can be used as the input for the 

second stage. For each iteration of this stage, a set of link travel time realizations is used to generate 

the set of candidate paths travel time distributions by summing the realized travel times of the links 

that exist in that path. Two approaches are proposed in this study to lower the computational time 

of the reliable path finding problem. The first approach improves the computational efficiency of 

the stochastic path finding algorithm by conservatively assigning minimum and maximum travel 

times to all network links and finding pessimistic and optimistic solutions for path travel times. 

The second approach takes advantage of the generated information during the travel time 

realizations to find optimistic and pessimistic travel times for each OD pair of interest and extracts 

a sub-network from the original large-scale network to lower the computational time regarding 

path finding problem. 

In addition, a Particle Swarm Optimization (PSO) algorithm is developed to determine an 

equitable pricing scheme that minimizes the total travel time of auto users in a general bimodal 

network considering heterogeneous users with different values of time and reliability. A pricing 

scheme is considered equitable if it is self-funded and Pareto-improving. A Pareto-improving 

pricing scheme is developed such that it does not make any traveler worse off (relative to no pricing 

base case), and makes at least one traveler better off in terms of generalized costs. For self-funded 

congestion pricing schemes, revenues generated from the collected tolls could be utilized to 

improve public transportation services, subsidize the users of these services and/or compensate 

travelers who experience an increase in their generalized travel cost. A reliability-based user 

equilibrium (RBUE) algorithm is embedded into the PSO algorithm to assign travelers to the 
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equilibrated paths for different user classes given toll values. Users’ heterogeneity in response to 

the reliability measures, their response to different toll values and toll distribution strategies, and 

link travel time correlations are considered in this RBUE algorithm. 

Finally, this study develops a mesoscopic traffic simulation tool that considers a mixed 

fleet of vehicles, consists of HDVs, CVs, and AVs. To this end, this study incorporates different 

microscopic modeling frameworks for various vehicle types (i.e., HDV, CV, AV) and captures the 

collective effects of the interactions between them on traffic flow dynamics. The stochastic 

acceleration model of Hamdar et al. (12), which avoids (most) crashes by a perceived probability, 

is used to model the car-following behavior of HDVs. The acceleration behavior of CVs is modeled 

based on the Intelligent Driver Model (13), which is a deterministic model. Furthermore, the model 

of Talebpour and Mahmassani (14) is utilized for the car-following behavior of AVs. In order to 

translate traffic flow dynamics from a micro-scale to a meso-scale, the relationship between 

spacing and speed for each vehicle type is derived and used as an input to the mesoscopic model. 

The proportion of each vehicle type and driver class (if there is any) on each link is tracked in the 

traffic propagation process at each time interval. Using this proportion, a non-linear equation is 

solved to obtain the current speed of the link, satisfying the spacing values of all vehicles traversing 

it. This tool is then used to investigate the impacts of these emerging technologies on traffic flow 

and travel time reliability at the network level. To explore the network-wide impacts of CVs and 

AVs on traffic flow, the network-wide fundamental diagrams (NFDs) are generated and compared 

for different Market Penetration Rates (MPR) of these vehicles with heterogeneous drivers of 

HDVs and CVs. In addition, the hysteresis loop areas are compared in various scenarios to explore 

the stability of the system during unloading period. Furthermore, standard deviation of link travel 

times is used as the reliability measure to compare scenarios with HDVs and AVs in the network. 
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To produce link travel time variations, 86 scenarios that are different in traffic demand, weather 

conditions, number of crashes, and percentage of adaptive drivers are used. 

1-5- Study Outline 

This study is organized as follows. CHAPTER 2 presents a background review on travel 

time reliability measures, path finding problem, congestion pricing, and the impacts of connected 

and autonomous vehicles on traffic congestion and travel time reliability. CHAPTER 3 provides 

an algorithm to extract a sub-network from large-scale networks to lower the computation time of 

optimal path finding problems in stochastic time-dependent networks. CHAPTER 4 discusses a 

similar problem to CHAPTER 3 and proposes an iterative learning approach for network 

contraction. CHAPTER 5 presents an algorithm to determine self-funded and Pareto-improving 

pricing values minimizing the total travel time of auto users in a general bimodal network 

considering heterogeneous users with different values of time and reliability. This chapter also 

investigates the impacts of travel time reliability on toll values given different toll distribution 

strategies. CHAPTER 6 presents the mesoscopic traffic simulation tool of this study considering 

the presence of connected and autonomous vehicles on large-scale network. This traffic simulation 

tool is then used to investigate the impacts of connected and autonomous vehicles on traffic flow 

and travel time reliability. Finally, CHAPTER 7 summarizes the key findings of this study 

following by future steps. 
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CHAPTER 2 - Background Review  

2-1- Overview 

In this chapter, a comprehensive review of the previous studies on travel time reliability 

and its applications in different stages of traffic simulation is presented. First, travel time reliability 

is defined and different measures used in previous studies for this purpose are presented. Then, 

different reliability rules are presented with applications in the reliable path finding problem. 

Afterwards, studies on congestion pricing are reviewed with the focus on travel time reliability. 

Finally, the last sub-section presents multiple studies on the impacts of connected and autonomous 

vehicles on traffic flow. 

2-2- Travel Time Reliability 

Travel time uncertainty in transportation networks comes from either the demand side (e.g. 

special events, fluctuations in demand) or from the supply side (e.g. traffic incidents, work zones, 

weather conditions) (15). Different users have different responses to this uncertainty based on their 

personal preferences or risk acceptance levels. Therefore, travel time uncertainty affects the 

decisions of heterogeneous travelers in the network. In addition, our definition of travel time 

reliability significantly affects the complexity of the problem and the outcomes. According to 

Zockaie et al. (15), travel time reliability in transportation studies refers to two concepts; first, 

network reliability when there is a failure probability for each link of the network. The second one, 

which is the focus of the current study, is related to travel time uncertainty. In the later definition, 

link travel time follows a given probability distribution. There is no agreement on the measure of 

travel time variability in transportation networks (16). Standard deviation of travel time (17–19), 

the difference between the 90th and 10th percentile of travel time (20), the coefficient of variation 
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of travel time (21), and probability of being lower than a threshold (22) are common definitions 

used in the literature for travel time variability. 

2-3- Reliable Path Finding Problem 

A common way of considering travel time reliability in routing problem is to add a buffer 

index, representing the uncertainty, to the mean travel time (23,24). Mean and variance are the 

most important attributes of all random variables. Thus, this model can be considered as a typical 

mean-variance or a mean-standard deviation model. The mean-variance problem is easier to solve 

than the mean-standard deviation problem (25). However, both terms have the same units in a 

mean-standard deviation model; thus, standard deviation is a more intuitive measure of 

unreliability than variance (26). On the other hand, the standard deviation part is non-linear and 

non-additive in the path finding problem violating the Bellman’s principle of optimality (24). This 

violation makes the reliable path finding problem difficult to solve especially for large-scale 

applications. 

Many reliability rules are applied in the literature to generate optimal paths to be used for 

the reliable route guidance. While all reliability rules are consistent in their principal of reducing 

travel time variability, their optimality conditions may differ from one to another. One of these 

reliability rules is the Shortest Path problem with On Time Arrival Reliability (SPOTAR), which 

finds the optimal path with a minimum travel time budget that ensures arriving at the destination 

on-time with a desired probability. In this problem, for each feasible path and for any travel time 

budget, there is an associated arrival probability at the destination (11,27–32). Another reliability 

rule that has been used frequently in the literature is the Minimum Travel Time Budget Path 

problem (MTTBP), which finds the optimal path with a minimum travel time budget that consists 

of the mean path travel time and a scaled standard deviation of travel time (24,25,33–39). Several 
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studies are conducted in the literature to develop algorithms for solving SPOTAR and MTTBP 

problems (2–4,10,27,28,31,33,36). For example, an MCS approach is presented in (10,11) to 

approximately solve these path finding problems for static stochastic networks. Zockaie et al. (4) 

extended this approach to solve both problems for stochastic time-varying networks. The main 

advantage of this approach is its ability to deal with network-wide correlated link travel times 

through replications of joint link travel time distributions (10,24,38,39). 

2-4- Congestion Pricing Considering Travel Time Reliability 

Although road pricing brings about considerable benefits for the government while 

rectifying congestion externalities, this strategy still has acceptance issues among individual users 

who would change their route, departure time, or transportation mode due to toll implementation 

on their desired routes (40). Therefore, equity concerns are the main impediments in the way of 

road pricing. It is shown in previous studies that marginal cost pricing does not lead to equitable 

pricing values (41–43). Therefore, to make pricing favorable to the public, transportation 

researchers introduced equitable congestion pricing schemes that are not only system optimal, but 

also Pareto-improving (44). In 2010, Lawphongpanich and Yin (44) introduced an anonymous and 

Pareto-improving toll scheme for a general network. Lawphongpanich and Yin (44) also proved 

that such schemes may not always exist. A common way of achieving a Pareto-improving scheme 

is revenue redistribution in a way that offsets the losses of individuals. Therefore, Nie and Liu (43) 

derived conditions for the existence of a Pareto-improving and self-funded pricing scheme in a 

bimodal network. In the scheme used by Nie and Liu (43), the toll revenues are evenly distributed 

among transit users. Nie and Liu (43) also showed that this scheme exists when the users’ VOT 

distribution function is concave. Guo and Yang (45) presented an OD-based Pareto-improving and 

revenue refunding congestion pricing scheme for a network with multi-class users (discrete 
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VOTs). However, in reality, OD trip information is not easy to collect. Also, Wu et al. (40) 

presented a Pareto-improving and revenue-neutral pricing scheme for a multi-modal network. Xiao 

and Zhang (46) implemented a link-based pricing scheme on a one-origin network which is Pareto-

improving and Revenue-neutral. Many studies have also dedicated credits to all travelers. This 

credit can be used as transit fare, toll payment, or compensation for travel time increases (47–51). 

The outcome of pricing implementation varies significantly depending on the toll distribution 

strategy. Therefore, the current study compares different distribution strategies in terms of 

rectifying the equity issues as well as meeting the market goals. 

While most of the studies in the literature on congestion pricing consider homogeneous 

users or discrete/continuous classes of VOT (41,49,52,53), Van den Berg and Verhoef (54) 

claimed that the distributional impacts of congestion pricing are controlled by something more 

than VOT classes. Van den Berg and Verhoef (54) considered a distribution of VOT and a value 

of schedule delay in a bottleneck model and stated that these two important factors should be 

considered in congestion pricing assessment studies. Therefore, in addition to value of time, the 

reliability valuation of users is a critical factor in indicating the welfare losses and gains of 

heterogeneous users due to congestion pricing. Carrion and Levinson (55) defined the reliability 

as an amount of money that individuals are willing to pay to reduce the variability of travel time. 

Tirachini et al. (16) used a mean-variance model to find the optimal pricing considering travel time 

variability in a bimodal network with transit and personal cars. The study by Tirachini et al. (16) 

formulates a mode choice model and optimizes the social welfare over the network. However, the 

study does not consider the user equilibrium as a part of the problem. Zheng et al. (56,57) proposed 

an adaptive dynamic pricing scheme utilizing the network-wide fundamental diagram to estimate 

the congestion level. Although predictable travel time variability is considered in the studies by 
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Zheng et al. (56,57), users are identified only by two VOT classes. Brent and Gross (58) 

investigated the response of heterogeneous users to high occupancy toll lanes. The study by Brent 

and Gross (58) highlights the importance of considering VOR in addition to VOT in studying 

welfare impacts of congestion pricing. Liu et al. (8) investigated the morning peak hour problem 

considering risk-averse and risk-prone users. Zhu et al. (59) found optimal pricing considering 

travel time reliability using values of schedule delay for different users. The study by Zhu et al. 

(59) utilizes the bottleneck in one link to find the optimal pricing incorporating VOR of travelers. 

All abovementioned studies have simplifying assumptions regarding heterogeneous users. There 

is also no study that integrates an RBUE, an equitable congestion pricing model, and a system 

optimal model in one modeling framework. Given the significant importance of travel time 

variability and reliability measures in the design of an equitable and efficient pricing scheme, there 

is still a need to account for VOR distributions and travel time variability, in addition to VOT and 

expected travel times, to fill the gap in the literature. 

2-5- Traffic Impacts of Connected and Autonomous Vehicles 

The studies on AVs are traced back to the late 20th century when the concept of Automated 

Highway System (AHS) was introduced. The AHS builds upon the assumption of a fully AV 

environment on a set of designated lanes (60). This concept was eventually extended to driver 

assistance systems, such as Adaptive Cruise Control (ACC) (61,62). Development of Vehicle-to-

Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication systems facilitated 

improvements of the driver assistance systems. Therefore, later versions of these systems, such as 

Cooperative Adaptive Cruise Control (CACC), were introduced by incorporating communication 

technologies. Van Arem et al. (63) were the first who modeled the car-following behavior of 

CACCs. Several other models are also presented to model the acceleration behavior of AVs and 
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analyze their impacts on traffic flow at the segment level (64,65). The effects of CV technology 

on network stability and throughput are also widely studied in the literature (66,67).  

While these studies focus on the connectivity and automation of vehicles in a fully 

connected or automated environment, the transition period from HDVs towards completely 

connected and automated systems is gaining attention. This period is challenging since HDVs 

share road space with CVs and AVs, which affects the performance of these vehicles. Therefore, 

some studies considered the interactions between different types of vehicles in terms of 

connectivity and automation (68,69). To gain further insights into the future of transportation 

systems containing these new technologies, large-scale impacts of connectivity and automation at 

the network level should also be investigated. In one of the most recent studies, Mittal et al. (70) 

used a mesoscopic simulation approach to investigate flow-density relationship at different MPRs 

of CVs (traffic mixes with HDVs and only CVs). Mittal et al. (70) used a microsimulation 

framework developed in (71) to generate speed-density curves for different MPRs of CVs. Using 

the calibrated speed-density curves as the input of the mesoscopic simulation tool, they 

investigated the impacts of CV technology on travel time reliability and network throughput at the 

network level. In this study, Mittal et al. (70) assumed a uniform distribution of CVs throughout 

the network at any given link and time-interval. However, in reality, these vehicles are not 

distributed uniformly over all links of the network. In addition, this study does not consider the 

impacts of CVs on the capacity of intersections or traffic flow models of arterials. Furthermore, 

the presence of AVs are not considered in the study by Mittal et al. (70). 

More recently, Chen et al. (72) conducted a theoretical study on the macroscopic capacity 

of equilibrated traffic in a mixed traffic condition, with the presence of both AVs and HDVs. In 

this study, Chen et al. (72) assumed fixed penetration rates of AVs throughout the system. This 
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assumption might be reasonable in free-flow traffic, while it will be violated when different links 

face various traffic regimes. Furthermore, Levin and Boyles (73) presented a cell transmission 

model for shared autonomous and human-driven vehicles that incorporates variations of capacity 

and backwards wave speed as well as the reaction times of different vehicle types. In this study, 

Levin and Boyles (73) investigated the impacts of different MPRs of AVs on intersection delay 

using a modified Dynamic Traffic Assignment (DTA) model. They used a conflict region 

algorithm to model the intersection movement in the presence of HDVs and AVs (74). While the 

study by Levin and Boyles (73) provides useful insights into the shared road networks, there is 

still the need to study a mixed traffic environment that incorporates the interactions between 

HDVs, CVs, and AVs, with heterogeneous drivers at the network level using real vehicle 

trajectories and calibrated microsimulation models. In addition, there is no study in the literature 

that investigates the impacts of CVs and AVs on travel time reliability for large-scale applications, 

which is one of the objectives of the current study. 
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CHAPTER 3 - Network Contraction for the Path Finding Problem in 

Stochastic Networks Considering Heterogeneous Users 

3-1- Overview 

The path finding problem constitutes an extremely essential problem because of its 

numerous applications in different fields. Deterministic shortest paths, either dynamic or static, 

may lead users toward risky paths due to the uncertain nature of travel times in transportation 

networks. This uncertainty can be caused by several reasons, including but not limited to traffic 

incidents, natural hazards, work zones, demand fluctuations, and inadequate base capacity (1). 

Consequently, different users tend to minimize not only their travel times, but also the travel time 

variability caused by such uncertainties (2). In addition, different travelers have distinct decisions 

in response to travel time uncertainties that may vary by their preferences and risk tolerance. The 

same traveler might frequently choose different paths for similar trips based on their departure 

time and purpose. Therefore, travelers’ preferences are expected to be considered in the path 

selection procedure through different reliability rules (3,4). 

Many reliability rules are applied in the literature to generate optimal paths to be used for 

reliable route guidance. While all reliability rules are consistent in their principal of reducing travel 

time variability, their optimality conditions may differ from one to another. Of particular interests 

to this study are two optimality conditions; the first is the SPOTAR, which finds the optimal path 

with a minimum travel time budget that ensures arriving at the destination on time with a desired 

probability. The second is the MTTBP, which finds the optimal path with a minimum travel time 

budget that consists of the mean path travel time and a scaled standard deviation of travel time. 

The primary objective of both mentioned reliability-based optimal path finding problems is to 

minimize the risk of arriving late, as well as the travel time budget for different classes of users. 
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In the SPOTAR problem, for each feasible path and for any travel time budget, there is an 

associated arrival probability at the destination (11,27–32). Thus, a user’s preference leads to an 

optimal selection of a path and a required travel time budget that certify on-time arrival probability. 

In the MTTBP problem, the travel time budget for each path includes two main characteristics of 

that path’s travel time distributions: the mean and the standard deviation of travel time. Users could 

weigh these two components differently, incorporating them into the travel time budget depending 

on their reliability valuation (24,25,33–39). 

Several studies are conducted in the literature to develop algorithms for solving SPOTAR 

and MTTBP problems (2–4,10,27,28,31,33–36). For example, an MCS approach is presented in 

(11) and (10) to approximately solve these path finding problems for static stochastic networks. 

Zockaie et al. (4) extended this approach to solve both problems for stochastic time varying 

networks. The main advantage of this approach is its ability to deal with network-wide correlated 

link travel times through replications of joint link travel time distributions. The simulation-based 

approach, presented in (4), to solve the path finding problem for dynamic stochastic networks, 

with correlation for multiple classes of users, is considered in this chapter to be improved. The 

main idea in this approach is to draw a sample from a joint link travel time distribution and store 

the deterministic shortest path in a candidate set for each realization. Candidate paths are processed 

further to obtain their travel time distributions, from which the solution to the SPOTAR and 

MTTBP problems can be determined. The approach consists of two stages that include several 

realizations of link travel times. The computational burden of this approach is proportional to the 

sample size, which can be calibrated to achieve a desired solution quality. The major computational 

time of solving the dynamic path finding problem is attributed to the deterministic shortest path 

search in the first stage, where the set of candidate paths is found for different samples from the 
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joint link travel time distribution. Therefore, lowering the execution time of this stage reduces the 

computational effort of the dynamic stochastic path finding problem significantly. It also makes 

the algorithm more flexible, allowing the use of more sample sizes in both stages, so as to bring 

about a desired level of solution quality.  

Many studies in the literature are focused on increasing the computational efficiency of the 

Shortest Path Problems (SPP). Ziliaskopoulos et al. (75) stated the computational efficiency of 

nTϱ1.4 for all-to-one shortest path problem in actual transportation networks, where n is the number 

of nodes in the network, T is the number of time intervals, and ϱ is the average in-degree of a node. 

An important extension of the basic shortest path problem is the All-pairs Shortest Paths Problem 

(APSPP). One of the most prevalent algorithms to solve the APSPP is the insertion point method, 

which is extended by (76,77) to aid programming loops by using non-existent links. The repeated 

single-source approach is another alternative method (75,78). Such an approach could be easily 

configured for parallel implementation where the computation for each origin/destination could be 

performed independently. Theoretically, sequential algorithms have a time bound value of O(n3) 

for networks with general topologies, where the number of incoming links to each node, in-degree 

of a node, is significantly high (79).  

Despite many decomposition schemes that are devised to solve the all-pairs and all-to-one 

shortest path problems in parallel (79–83), there is still the need to have a decomposition approach 

that can be applied to the optimal path finding problem in stochastic networks, especially when 

the path finding problem needs to be solved only for specific OD pairs. For instance, in the route 

guidance applications considering the reliability in large-scale networks, computational efficiency 

plays a critical role. Following the approach proposed in (79), this chapter presents a novel 

algorithm for network decomposition for each relevant OD pair in stochastic networks. This 
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approach can also benefit from running shortest path algorithms for different OD pairs of interest 

in parallel. Taking advantage of the approach in (4) that considers a minimum and maximum value 

for each link travel time realization, a minimum and maximum bound can be considered for each 

OD pair travel time distribution, known as the optimistic and pessimistic solutions. To solve the 

stochastic optimal path finding problem, the novel methodology of this chapter incorporates these 

bounds to reduce the network size in order to improve computational efficiency. Hence, a sub-

network can be extracted for each OD pair by comparing the optimistic and pessimistic solutions. 

Given that the computational efficiency of the stochastic shortest path algorithms is directly related 

to the number of nodes in the network (75), the proposed algorithm in this chapter significantly 

improves the efficiency of these algorithms, especially in large-scale networks. The content of this 

chapter is published by the author in (84). 

3-2- Problem Formulation 

A directed and connected network G(N,A,P) is considered, where N is the set of nodes, A 

is the set of links, and P is the set of probability distributions for links that describes the statistics 

of link travel times (in case of correlated link travel time distributions, a joint link probability 

distribution should be considered in the set P). The travel times on the links (denoted as cat) are 

assumed to be random variables, each of which has a marginal probability density function pat(·). 

The travel time on path kodt (which connects node o and destination d at departure time t) is denoted 

as ck
odt. All paths that connect r and s at departure time t form the path set Kodt. Also, assume M as 

the set of different classes of users in terms of reliability valuation. Equations (3-1) to (3-4) 

formulate the SPOTAR problem as a mathematical optimization: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [ ∑ ∑ ∑ 𝑥
𝑘𝑜𝑑
𝜏𝑚 𝑏

𝑘𝑜𝑑
𝜏𝑚

∀𝜏∈𝑇∀𝑚∈𝑀∀𝑘𝑜𝑑∈𝐾𝑜𝑑

] 
(3-1) 
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                   𝑃𝑟(𝑐
𝑘𝑜𝑑
𝜏 ≤ 𝑏

𝑘𝑜𝑑
𝜏𝑚 ) ≥ 𝛼𝑚                          ∀𝑘𝑜𝑑 ∈ 𝐾𝑜𝑑  , ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ 𝑇  

(3-2) 

                    ∑ 𝑥
𝑘𝑜𝑑
𝜏𝑚

∀𝑘𝑜𝑑∈𝐾𝑜𝑑

= 1                                    ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ 𝑇  
(3-3) 

        𝑥
𝑘𝑜𝑑
𝜏𝑚 = 0 𝑜𝑟 1                                         ∀𝑘𝑜𝑑 ∈ 𝐾𝑜𝑑  , ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ 𝑇     

(3-4) 

where 𝛼𝑚 is the required level of reliability for class m, 𝑐
𝑘𝑜𝑑
𝜏  is the path travel time random 

variable following a specific distribution (considering known link distributions), 𝑏
𝑘𝑜𝑑
𝜏𝑚  is the 

minimum required budget for path 𝑘𝑜𝑑 to ensure a reliability level of 𝛼𝑚 at departure time interval 

τ, and 𝑥
𝑘𝑜𝑑
𝜏𝑚  is a binary variable to select the optimal path among existing paths in the main path set 

(𝐾𝑜𝑑) for user class m at departure time interval τ. 

The objective function of MTTBP problem in path-based variables is also as follows. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [ ∑ ∑ ∑ (𝑐
𝑘𝑜𝑑
𝜏 + 𝜆𝑚 𝜎

𝑘𝑜𝑑
𝜏  )𝑥

𝑘𝑜𝑑
𝜏𝑚

∀𝜏∈𝑇∀𝑚∈𝑀∀𝑘𝑜𝑑∈𝐾𝑜𝑑

] (3-5) 

                    ∑ 𝑥
𝑘𝑜𝑑
𝜏𝑚

∀𝑘𝑜𝑑∈𝐾𝑜𝑑

= 1                                     ∀𝑚 ∈ 𝑀, ∀  𝜏 ∈ 𝑇  (3-6) 

                     𝑥
𝑘𝑜𝑑
𝜏𝑚 = 0 𝑜𝑟 1                                         ∀𝑘𝑜𝑑 ∈ 𝐾𝑜𝑑 , ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ 𝑇     (3-7) 

where, 𝜆𝑚 is the weight of the standard deviation of travel time in the objective function 

for user class m. More details about the SPOTAR and MTTBP problems can be found in (4). This 

chapter aims to develop a decomposition methodology applicable to the dynamic path finding 

problem in stochastic networks that solves these two problems with the same accuracy and less 

execution time for specific OD pairs. 
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3-3- Methodology 

In this sub-section, a decomposition approach is presented to extract a sub-network for 

each specific OD pair. This algorithm also benefits from executing the shortest path algorithm for 

different OD pairs in parallel. The modified MCS based approach of (4) for time-dependent 

stochastic networks with multiple classes of users is utilized in this chapter to solve the SPOTAR 

and MTTBP problems. The new algorithm takes advantage of the structure of this approach to find 

optimistic and pessimistic travel times for each OD pair of interest. For a certain OD pair, the 

minimum link travel time is considered for all network links and the travel times of both backward 

star and forward star shortest path problems are solved resulting in optimistic travel times from 

the origin to the destination passing through any node in the network. Next, all network link travel 

times are set to their maximum values, and the pessimistic travel time is calculated from the origin 

to the destination using the deterministic static shortest path algorithm. Comparing the optimistic 

travel time through any node to the pessimistic travel time for the OD pair specifies if the node 

should be retained in the sub-network or not. Then, realizations of link travel times are made by 

drawing random numbers from joint link travel time distributions for different iterations of the 

first stage. The deterministic dynamic shortest path algorithm finds a candidate path based on the 

realized link travel times for the sub-network. An all-to-one dynamic shortest path algorithm (75), 

which is based on the Bellman’s principle of optimality, is used to solve the dynamic SPP in this 

stage. By repeating these iterations, the set of candidate paths can be prepared as the input for the 

second stage. The second stage also consists of a pre-specified number of iterations, including link 

travel time realizations, to generate path travel time distributions for the candidate paths. The steps 

of the algorithm are as follows. 
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3-3-1- Solution Algorithm 

Step 1 Initialization 

Form the joint time-dependent link travel time distribution, considering temporal and spatial 

correlations, and obtain the OD pair of interest as the main input. 

Step 2 Find optimistic and pessimistic travel times  

Step 2-1 Solve the forward star static shortest path problem from the origin to all other 

nodes using the minimum link travel times and store travel times as the optimistic travel 

times from the origin to all other nodes. 

Step 2-2 Solve the backward star static shortest path problem from all nodes to the 

destination node using the minimum link travel times and store the optimistic travel time 

from all nodes to the destination. 

Step 2-3 Solve the backward star static shortest path problem from all nodes (including the 

origin) to the destination using the maximum link travel times and store the pessimistic 

travel time from the origin to the destination. 

Step 3 Extract a sub-network for the OD pair of interest by checking the condition in Step 3-2 for 

each network node 

Step 3-1 Add the optimistic travel time from the origin to the node (from Step 2-1) to the 

optimistic travel time from the node to the destination (from Step 2-2), and store it as the 

optimistic travel time from the origin to the destination. 

Step 3-2 If the optimistic travel time of the OD pair, (from Step 3-1) is larger than the 

pessimistic value (from Step 2-3) remove the node from the sub-network. 

Step 4 Stage one of stochastic path finding 
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Draw a random sample of size L1 from the joint time-dependent link travel time distribution. Set 

the current sample index as l1=1. 

Step 4-1 Set the link travel time on link a at time t as 𝑐𝑎𝑡
𝑙1  , which is the random number in 

the l1
th sample corresponding to link a at time interval t. 

Step 4-2 Find the dynamic deterministic shortest paths from all nodes in the sub-network 

(Step 3) including the origin to the destination for all departure time intervals. 

Step 4-3 For all departure time intervals, add the newly found path to the set of candidate 

paths of that departure time interval (𝐾𝑜𝑑𝜏) if it has not been found previously. 

Step 4-4 Set l1 as l1+1. If l1≤L1, then go to Step 4-1; else go to Step 5. 

Step 5 Stage two of stochastic path finding 

Draw a random sample of size L2 from the joint time-dependent link travel time distribution. Set 

the current sample index as l2=1. 

Step 5-1 Set the link travel time on link a at time t as 𝑐𝑎𝑡
𝑙2  , which is the random number in 

the l2
th sample corresponding to link a at time interval t. 

Step 5-2 For all departure time intervals such as τ, and all paths in the set of candidate 

paths of that departure time interval such as 𝑘𝑜𝑑𝜏 ∈ 𝐾𝑜𝑑𝜏, find 𝛱𝑘𝑜𝑑𝜏 =  ∑ 𝑐𝑎𝑡
𝑙2

𝑎∈𝑘𝑜𝑑𝜏  as the 

path travel time, where t is the arrival time of link a based on the travel time of the previous 

link in the path 𝑘𝑜𝑑𝜏. Set 𝛱𝑘𝑜𝑑𝜏 as D(𝑘𝑜𝑑𝜏, l2). 

Step 5-3 Set l2 as l2+1. If l2 ≤ L2, then go to Step 5-1; else go to Step 6. 

Step 6 Finding the optimal path for SPOTAR (for MTTBP go to Step 7) 

Step 6-1 Sort D for each 𝑘𝑜𝑑𝜏 in an increasing order and save the sorted set as 𝐹𝑘𝑜𝑑𝜏 , which 

is an estimation of the inverse of the cumulative distribution function and set i=1. 

Step 6-2 For all departure time intervals τ, set 
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𝛱𝑜𝑑𝜏
∗ (𝑖) = 𝑚𝑖𝑛𝑘𝑜𝑑𝜏 ∈ 𝐾𝑜𝑑𝜏𝐹𝑘𝑜𝑑𝜏(𝑖) and 𝑘𝑜𝑑𝜏

∗ (𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑜𝑑𝜏 ∈ 𝐾𝑜𝑑𝜏𝐹𝑘𝑜𝑑𝜏(𝑖) 

Step 6-3 Set i as i+1. If i≤ L2, then go to Step 6-1; else go to Step 6-4. 

Step 6-4 Report 𝛱𝑜𝑑𝜏
∗  and 𝑘𝑜𝑑𝜏

∗  as the optimal path travel time and Pareto frontier path. 

Step 6-5 For all user classes m, find the 𝑚∗ based on the on-time arrival probability and 

store 𝑈𝜏𝑐
∗𝑜𝑑 = 𝛱𝑜𝑑𝜏

∗ (𝑚∗) and 𝑝𝜏𝑐
∗𝑜𝑑 = 𝑘𝑜𝑑𝜏

∗ (𝑚∗). 

Step 7 Finding the optimal path for MTTBP 

For all departure time intervals such as τ do the following steps. 

Step 7-1 Retrieve the first non-selected path 𝑘𝑜𝑑𝜏 from 𝐾𝑜𝑑𝜏 and remove it from that set. 

Step 7-2 Calculate the path mean travel time as 𝐶(𝑘𝑜𝑑𝜏) = ∑ 𝐷(𝑘𝑜𝑑𝜏, 𝑖)
𝐿2
𝑖=1 𝐿2⁄ .  

Step 7-3 Calculate the path standard deviation of travel time as 

𝑆𝑡𝑑(𝑘𝑜𝑑𝜏) = √∑ [𝐶(𝑘𝑜𝑑𝜏) − 𝐷(𝑘𝑜𝑑𝜏, 𝑖)]2𝐿2
𝑖=1 𝐿2⁄ . 

Step 7-4 Calculate the objective function of the path for all user classes such as m with 

reliability valuation of λ(𝑚) as follows: 

𝛱𝜏𝑚
𝑜𝑑 = 𝐶(𝑘𝑜𝑑𝜏) + 𝜆(𝑚) × 𝑆𝑡𝑑(𝑘𝑜𝑑𝜏); If  𝛱𝜏𝑚

𝑜𝑑 < 𝑈𝜏𝑚
∗𝑜𝑑, set 𝑈𝜏𝑚

∗𝑜𝑑 equal to 𝛱𝜏𝑚
𝑜𝑑  and 𝑝𝜏𝑚

∗𝑜𝑑 =

𝑘𝑜𝑑𝜏. 

Step 7-5 If 𝐾𝑜𝑑𝜏 is empty, report 𝑝𝜏𝑚
∗𝑜𝑑 and 𝑈𝜏𝑚

∗𝑜𝑑 as the optimal solution and go back to 

Step 1; else go to Step 7-1. 

In the next sub-section, this approach is implemented for the Chicago downtown network 

using a realistic joint time-dependent travel time distribution for the SPOTAR and MTTBP 

problems. If all OD pairs are of interest, step 1 through step 7 can be processed in parallel for 

different OD pairs. However, for only one OD pair, the approach is implemented without 

parallelization. 
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3-4- Numerical Experiments 

A set of experiments is presented here to validate the accuracy and examine the 

computational performance of the algorithm developed in this chapter. The performance of the 

algorithm is compared with that of the algorithm presented in (4), which finds all-to-one shortest 

path trees for multiple destinations in each realization of the first stage without network 

contraction. An Intel® Xeon® CPU E5-2643 processor is used for all runs presented in this chapter, 

which includes 12 threads of 3.4 GHz and 128 GB of shared RAM. A maximum of ten threads are 

allocated for executing the algorithm. 

3-4-1- Case Study Specifications 

The Chicago downtown network, which is bound from West and East by O’Hare airport 

and Lake Michigan, respectively, is considered as the case study area of this chapter. This network 

includes downtown Chicago and some Western and Northern suburban cities of Chicago, and 

contains 1,578 nodes, 4,805 links, and 218 zones. To generate link travel time distributions and 

correlations of the AM peak period (5:00 AM to 10:00 AM), the network is simulated for different 

scenarios using the mesoscopic simulator of DYNASMART-P (85). This network is calibrated 

using the OD-estimation techniques presented in (86).  

Based on real-world observations (i.e., total observed demand by loop detectors, weather 

conditions, and incidents), 86 scenarios are created and simulated in (15,87). Five hours of the 

simulation horizon are divided into 20-minute time intervals to create link travel time distributions 

for 15 departure time intervals. Aggregating travel time observations over one minute results into 

1720 observations (86 scenarios and 20 time intervals) for each link and departure time interval. 

The mean and variance of travel time for each link are considered as the representatives of the link 

travel time distribution. Figure 3-1 depicts the configuration of the Chicago network. Figure 3-2 
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illustrates the link travel time distributions at the first, fifth, tenth, and last 20-minute time intervals. 

Each dot in Figure 3-2a through Figure 3-2d represents the mean and variance of travel time on 

one of the network links. Comparison of different sections of this figure demonstrates temporal 

variations of link travel time distributions and shows the importance of the time-varying path 

finding algorithms. The generated distributions and spatial and temporal correlations in (15) are 

used as the inputs of the path finding algorithms in the dynamic stochastic network of CHAPTER 

3 and CHAPTER 4.  

 

Figure 3-1- Configuration of the Chicago downtown network 
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(a) (b) 

  
(c) (d) 

Figure 3-2- Mean vs. variance of travel time for different links of the network at different time 

intervals of the a) first, b) fifth, c) tenth, and d) fifteenth (last) 20-minute time interval (15) 

3-4-2- Numerical Results 

In order to benchmark the applicability of the proposed contraction method in this chapter 

for the stochastic path finding calculations, the algorithm is first applied to specific OD pairs. 

Different ranges for the upper bound (pessimistic value) and lower bound (optimistic value) of 

link travel times are considered. Then, the validity of the results is tested by comparing travel time 

distributions of the optimal paths using the proposed method with that of the algorithm in (4). The 

results show that optimal paths and their travel time distributions are exactly similar to those of 

the regular approach without contraction. 

Figure 3-3 shows the travel time distributions for two random OD pairs, one with a small 

distance (Figure 3-3a), and one with a longer distance (Figure 3-3b), for the SPOTAR problem. 

Note that the distributions are found and compared both for correlated and independent (non-
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correlated) link travel times. Moreover, for the temporal correlations, only consecutive time 

intervals are assumed to be correlated, and for the spatial correlations, the neighborhood order is 

defined as two. The neighborhood order of two means that each link is correlated to all other links 

that can be reached from that link by traversing at most two links. Given that the travel time 

distributions are the same for both proposed approach with contraction and the one without 

contraction, only one distribution is shown for each OD-time interval set and type of link travel 

time correlation in Figure 3-3. Medium reliability valuation (0.7 as the on-time arrival probability 

for SPOTAR) is considered for the distributions of Figure 3-3. As it can be seen from Figure 3-3a 

and Figure 3-3b, both the mean and standard deviation of the optimal path travel time are 

increasing during the simulation. This increase means that the network-wide traffic congestion 

evolves through the network during the simulation horizon. Furthermore, the travel time 

distributions of origin 196 to destination one at all departure times contain wider ranges of travel 

times than those of origin 36 to destination one, which is expected due to the longer distance 

between origin 196 and destination one than origin 36. It implies that the variability of travel times 

is more for longer distances during the AM peak hours. This trend is more obvious for the 9:00 

AM departure time. Note that ignoring the link travel time correlations results in different optimal 

path distributions, which shows the importance of capturing this factor in the path finding 

algorithms. 
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(a) 

 
(b) 

 

Figure 3-3- Optimal path travel time distributions at different departure times with correlated and 

independent distributions and for both with and without network contraction (on top of each 

other) a) from origin 36 to destination 1; b) from origin 196 to destination 1 (Pessimistic and 

optimistic limits of 5 and 0.8, 100 stage 1 iterations, and 1000 stage 2 iterations) 
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The accuracy of the proposed method in terms of the optimal path travel time distributions 

is discussed above. Here, the computational performance of the proposed algorithm is compared 

with the developed approach in (4). The execution times of the stochastic dynamic path finding 

algorithm with contraction for SPOTAR and MTTBP problems are depicted in Figure 3-4a for 

different OD pairs and all departure time intervals. Note that the destination is fixed to node 1 in 

all of these OD pairs. An increasing trend can be observed as the OD pair has a longer distance 

since the sub-network size would be larger. The maximum value of the execution time for origin 

179 is 162.31 seconds for the SPOTAR problem and 151.28 seconds for the MTTBP problem, 

which are considerably lower than the execution times observed in the regular method. The 

execution time of the stochastic path finding algorithm for all origin nodes to destination one, using 

the approach developed in (4) without considering network contraction, is equal to 5,049 seconds 

and 1,540 seconds for SPOTAR and MTTBP problems, respectively. This significant difference 

is due to the fact that the approach in (4) needs to find optimal stochastic paths for all origins, 

while the proposed method in this chapter only requires the calculation for one origin. It can also 

be observed in Figure 3-4a that the execution time of the nearest origin to the destination (origin 

2) is approximately a quarter of the furthest origin (origin 179) in both problems (i.e., SPOTAR, 

MTTBP) after network contraction.  

Figure 3-4b illustrates the average execution times for the deterministic shortest path 

calculation over stage one iterations for the same OD pairs as Figure 3-4a. The number of stage 

one iterations is set to 100 for all runs in this figure. The deterministic shortest path finding 

algorithm should be executed to the number of iterations assigned to stage one; hence, the 

execution time for this step is a proper measure in understanding the impacts of network 

contraction on the overall performance. The same increasing trend of Figure 3-4a can be observed 
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in this figure. However, the network contraction seems to have greater impacts on the dynamic 

deterministic shortest path finding, since the deterministic path finding algorithm is applied to the 

extracted sub-network at this stage. On average, the full network application of the approach 

developed in (4) requires 0.85 seconds of execution time for the deterministic shortest path 

algorithm. As can be seen in Figure 3-4b, the network contraction reduces this execution time for 

the nearest origin (node 2) to 0.01 seconds. 

Optimistic (Opt) and pessimistic (Pess) bounds are critical factors in the performance of 

the proposed algorithm as they affect the number of nodes remaining in the sub-network. 

Therefore, different ranges of optimistic/pessimistic coefficients are tested in this chapter and the 

results are shown in Figure 3-4c. These coefficients should be multiplied by free flow travel times 

of OD pairs to generate the upper and lower bounds for the network contraction thresholds. Note 

that if the same thresholds are used as the minimum and maximum link travel times, the accuracy 

of the solution relative to the solution without contraction is guaranteed. However, smaller ranges 

might affect the accuracy of the algorithm while improving execution times. Figure 3-4c shows 

the impacts of the OD pair distance and pessimistic/optimistic coefficients on the size of the sub-

network. The shorter distance and the smaller range of pessimistic/optimistic thresholds lead to a 

smaller sub-network size, which saves more execution time by implementing the proposed 

methodology. Note that the accuracy of the proposed method is not affected by reducing the 

pessimistic/optimistic bound.  

Figure 3-5 shows sub-networks for two random OD pairs. The sub-networks contain a large 

number of nodes when the optimistic/pessimistic coefficients are 0.8 and 5 (same factors for 

minimum and maximum link travel times). The sub-network includes far fewer nodes when the 

distance between the OD pair is small or the optimistic/pessimistic coefficients are 1 and 2.5. It 
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can also be seen in Figure 3-5a that freeway nodes are included in the sub-network due to their 

lower travel times despite the greater distances. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-4- Computational performance for different origins to zone 1 a) execution times of the 

stochastic path finding algorithm with contraction; b) dynamic deterministic shortest path 

execution times; c) contraction ratio for different optimistic/pessimistic limits 
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(a) 

 
(b) 

Figure 3-5- Sub-network configurations for different optimistic/pessimistic coefficients a) Origin 

zone 100 to destination 87; b) Origin zone 20 to destination one 

In addition to the improvement in the execution time associated with the network 

contraction, the decomposition of the path finding problems at the OD pair level facilitates 

parallelization and using multiple processors to gain execution time savings. To evaluate the 

performance of the proposed algorithm, the algorithm is applied for all origins to destination one 

in parallel. Comparing the nodes and travel time distributions of optimal paths for different OD 

pairs, departure times, value of reliability of different user classes, and various 

optimistic/pessimistic limits validates that the algorithm performs with a great accuracy even when 

smaller pessimistic/optimistic bounds are used. Comparing the execution times of the stochastic 
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dynamic path finding calculation for all origins to destination one shows that the execution time 

required for stochastic path finding of the proposed algorithm in this chapter is lower than that of 

the regular method for all optimistic/pessimistic limits. This improvement is much more significant 

for the ratio of 2.5.  

In Figure 3-6, the number of iterations considered for stages one and two in all runs is set 

to 100 and 1000, respectively. Given that more link travel time realizations improve the accuracy 

of results, different numbers of stage one iterations are also proposed. In this figure, the results of 

the stochastic path finding algorithm implemented with contraction and parallelization are 

compared with the ones resulted from the proposed method in (4). Figure 3-6a illustrates the 

execution times of both methods for different iterations of stage one. As shown in this figure, the 

difference between execution times of both methods increases with an increase in the number of 

iterations of the first stage. The SPOTAR time budget, calculated in both the literature and 

proposed method, is also presented. The errors of the proposed algorithm in comparison with the 

literature method are almost zero over all OD pairs (with a fixed destination). In Figure 3-6b, it is 

assumed that the base condition is the run with 1000 stage one iterations. The cumulative relative 

differences of calculated time budgets in comparison with the base condition, for 218 origins to 

destination one at 15 time intervals and three different VOR user classes, are demonstrated in 

Figure 3-6b. Based on the results of this figure, large differences can be observed in time budgets 

of lower numbers of stage one iterations. Taking advantage of the computational improvements of 

the proposed method, illustrated in Figure 3-6a, a higher number of iterations can be used to 

improve the error term while keeping the execution time at the same level. 
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(a) 

 
(b) 

Figure 3-6- SPOTAR a) execution time and b) cumulative difference of objective function values 

relative to the stage one iterations of 1000 for the proposed method with contraction and 

parallelization and regular method without contraction (Destination one and 

optimistic/pessimistic coefficients of 0.8 and 5) 

3-5- Summary 

This chapter focused on improving the computational efficiency of the dynamic path 

finding algorithm in stochastic networks using a network contraction approach. Given that link 

travel time distributions have an upper and a lower bound, a pessimistic/optimistic range can be 
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defined for each OD pair. If the optimistic travel time for a specific OD pair is lower than the 

pessimistic value, the tested node remains in the sub-network; otherwise, it will be eliminated. 

Using this approach, the network is contracted for each OD pair of interest. Then, stage one and 

stage two of the MCS approach, presented in this chapter, are solved for the selected OD pair. 

Furthermore, stochastic path finding algorithms can be processed in parallel for different OD pairs 

in case all origins are of interest. 

The proposed algorithm is applied to the real-world large-scale network of Chicago to 

evaluate its performance and analyze the sensitivity to different factors, such as distance and 

pessimistic/optimistic bounds. The results show that optimal paths and their travel time 

distributions are exactly similar to those of the approach without contraction. The computational 

gain of the algorithm has an inverse relation with the distance and range of the 

optimistic/pessimistic bounds. Smaller bounds relative to the minimum and maximum link travel 

times cannot guarantee the same accuracy. However, the results show that smaller bounds do not 

affect the accuracy and improve the execution time significantly. Finally, the proposed algorithm 

in this chapter leads to great improvements in execution times of dynamic stochastic path finding 

algorithms, especially when the algorithm should be applied to specific OD pairs. Even when all 

OD pairs are of interest, the proposed approach can be applied for different OD pairs in parallel 

and considerable gains are achieved. Hence, deterministic shortest path finding algorithm can be 

applied for more realizations of travel times in stage one of the dynamic stochastic path finding 

algorithm by utilizing the network contraction approach. A higher number of realizations leads to 

a more accurate and time-efficient stochastic path finding algorithm.   
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CHAPTER 4 - An Iterative Learning Approach for Network Contraction 

4-1- Overview 

Due to the recent developments of Intelligent Transportation Systems (ITS), introducing 

an efficient optimal path finding algorithm has attracted the attention of researchers and service 

providers. Finding optimal paths in a limited time is indeed a common requirement of these 

applications such as in-vehicle routing guidance systems and vehicle routing problems. As 

mentioned in the previous chapter, the computational burden of the path finding algorithms has a 

polynomial growth order with respect to the network size (number of nodes and link), which limits 

real-time applications of these algorithms in large-scale networks. This computational burden has 

led to conducting many studies to improve the efficiency of path finding algorithms using heuristic 

approaches based on artificial intelligence techniques (88,89). These approaches take advantage 

of available prior knowledge to reduce the search effort, which makes them superior to non-

informative labeling algorithms. For example, traditional approaches search all intermediate nodes 

between origin and destination, regardless of their probability to be in the resulting optimal path. 

However, heuristic approaches use the probability of a node existing in the optimal path as prior 

information to limit the examined nodes in the search list. 

There are multiple categories of heuristic shortest path finding algorithms in the literature. 

A* search, in which the scan eligible list order is prioritized, is used in many heuristic path finding 

algorithms (90,91). These algorithms estimate the probability of being in the shortest path by 

defining an evaluation function for each node. Alongside the algorithmic estimation, a merit is 

assigned to each node of the network, with current evaluated travel time from origin plus the 

estimated travel time to the destination (mostly approximated based on the Euclidean distance). 

The efficiency of these algorithms depends extremely on the quality of the estimation. The branch 
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pruning approach is another method to limit the search area for the shortest path calculation 

(92,93). The approach is quite similar to the A* algorithm with the difference being the low priority 

nodes in this method are pruned from the search list and will never be scanned. A major limitation 

of this approach is the potential for termination without finding the optimal path. Furthermore, 

several decomposition-based algorithms are suggested, in which large-scale networks are 

decomposed into several small sub-networks considering the polynomial order of the shortest path 

algorithms (79–81,94).  

Despite the computational improvements associated with these heuristics, they are limited 

to deterministic problems, which ignore the uncertain nature of travel times in transportation 

networks. That in mind, the motivation of this chapter is to propose an approach readily applicable 

to stochastic time-dependent networks with a reasonable computational time. Given that the time 

required to solve the optimal path finding problem increases with the increase in the network size, 

the primary contribution of this chapter is to find an efficient sub-network for any given OD pair, 

extracted from the original network, in order to improve computational efficiency of the stochastic 

path finding problem. This chapter intends to use the existing information of stochastic dynamic 

path travel times to extract a sub-network for each OD pair without imposing extra computational 

costs. To this end, we incorporate the specifications of link travel time distributions to find such 

sub-networks based on the comparison of pessimistic and optimistic solutions. The condition for 

keeping a node in the sub-network is that the optimistic travel times through the node should be 

lower than the pessimistic travel time for the OD pair. The pessimistic and optimistic solutions for 

paths travel times can be obtained conservatively by assigning minimum and maximum travel 

times to all network links, which is explained in the previous chapter (84). Be that as it may, the 

assumption of all links in the network being at their worst/best operational state becomes less 
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probable and too conservative, especially as the distance between origin and destination increases. 

Hence, effort is motivated to deriving realistic and efficient bounds for the pessimistic and 

optimistic solutions that determine the sub-network size.  

The proposed approach estimates the upper and lower bounds for the pessimistic and 

optimistic solutions used to determine if a node could be considered in the sub-network. These 

bounds are updated as more information on the travel time distributions becomes available with 

more iterations. Once these bounds are determined, they are strictly applied as nodes, with labels 

falling within these boundaries considered to be part of the obtained sub-network. It is worth 

mentioning that, even though these bounds are strictly applied in the solution algorithm, they are 

only heuristic estimates to improve computational efficiency. 

In this context, this chapter presents a learning approach that incorporates link travel time 

realizations within initial iterations of the simulation-based procedures to find efficient optimistic 

and pessimistic bounds. At each iteration, link travel time realizations lead to a label realization 

for each node. The distributions of the realized labels can be used to estimate the efficient bounds 

that reduce the network size for deterministic shortest path calculations in the later iterations of 

the same procedure. The learning approach is developed and calibrated using realistic travel time 

distributions obtained for the large-scale network of the extended downtown area of Chicago. The 

transferability of the approach to other networks then comes under consideration using another 

large-scale network representing the roadway network of Salt-Lake City. The Chicago network 

contains approximately 1,600 nodes and 5,000 links; the Salt-Lake City network includes around 

3,600 nodes and 8,300 links. The optimal path objective functions and the number of nodes in the 

obtained sub-network, as an indicator of the required execution time, are compared for the cases 
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with and without network contraction. The content of this chapter is published by the author in 

(95). 

4-2- Problem Statement 

In stochastic networks, deterministic shortest path finding algorithms and heuristics are not 

applicable due to the non-additivity of link travel times over paths and the non-linear relation 

between link travel times and path travel times. On the other hand, proposed solution algorithms 

for this problem do not yield optimal results within a computationally reasonable time, especially 

when the network size grows. In the path finding problems, only a part of the entire network is 

relevant to the optimal path between a certain origin and destination. Thus, this chapter aims to 

develop a network contraction approach to reduce the network size throughout the iterations of 

MCS approaches. The methodology aims to be applicable to dynamic path finding problems in 

stochastic networks considering spatial and temporal travel time correlations for heterogeneous 

travelers in terms of reliability valuation.  

Similar to the previous chapter, this chapter considers a directed and connected network 

𝐺(𝑁, 𝐴, 𝑃), where 𝑁 is the set of nodes, 𝐴 is the set of links, and 𝑃 is the set of probability 

distributions for links that describe the statistics of link travel times. 𝑐𝑎𝑡 is the travel time on link 

a at arrival time interval t, which is assumed to be a random variable. All paths that connect 𝑜 and 

𝑑 at departure time 𝜏 form the paths set 𝐾𝑜𝑑𝜏. The travel time on path 𝑘𝑜𝑑𝜏 (which connects node 

o and destination 𝑑 at departure time 𝜏) is denoted as 𝑐
𝑘𝑜𝑑
𝜏 . Each origin and destination pair, od, 

has a maximum travel time 𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑, which is the maximum travel time of all candidate paths up to 

the current point of simulation connecting origin 𝑜 and destination 𝑑. 𝐶𝑜𝑝𝑡
𝑜→𝑖 and 𝐶𝑜𝑝𝑡

𝑖→𝑑 are also 

minimum travel times of all paths from origin, 𝑜, to any node, 𝑖, and any node, 𝑖, to destination, 𝑑. 

Furthermore, let 𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑 be the optimistic travel time from origin 𝑜, to destination 𝑑 through node 
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𝑖. Each internal node has also a free flow travel time (FFTT) from origin, 𝐹𝐹𝑇𝑇𝑜→𝑖, and a free flow 

travel time to the destination, 𝐹𝐹𝑇𝑇𝑖→𝑑. Also, assume 𝑀 as the set of different classes of users in 

terms of reliability valuation.  

4-3- Methodology Development 

Given that in reliable path finding problems, each path has a minimum travel time and a 

maximum travel time, comparing the optimistic travel time through any node to the destination, 

with the pessimistic travel time for the OD pair specifies if the node should be retained in the sub-

network or not. Figure 4-1 illustrates the schematic view of this optimistic/pessimistic travel time 

comparison. The optimistic travel time from the origin to the destination passing through any node 

can be calculated by considering the minimum travel time for each link in the network. To this 

end, both one-to-all and all-to-one deterministic static shortest path trees are found for all network 

nodes. Then for each node, the optimistic travel time can be measured as the sum of the travel time 

from the origin of interest to the node, and the travel time from the node to the desired destination. 

Next, all network link travel times are set to their maximum values, and the pessimistic travel time 

is calculated from the origin to the destination using the deterministic static shortest path algorithm. 

These two optimistic and pessimistic travel times are then compared to make a decision about each 

network node (84). However, the probability of all network links being at their maximum or 

minimum travel time at the same time is low, especially when there are many links in the optimal 

path. Furthermore, there is no other network contraction approach developed in the literature to be 

implemented efficiently on any general network, with different configurations and characteristics, 

for solving optimal path finding algorithm in stochastic dynamic networks. Therefore, this chapter 

presents a learning approach to derive efficient optimistic and pessimistic bounds. The learning 

approach makes use of the generated information within the initial iterations of the simulation-
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based approach, as previously proposed in the literature (e.g., Zockaie et al. (4)) to solve the path 

finding problem in stochastic networks. The main purpose of the MCS approach is to produce a 

set of candidate paths by solving a dynamic deterministic shortest path problem. To ensure 

obtaining a comprehensive set of candidate paths, the process repeats for a pre-specified number 

of iterations, where each iteration uses a realization of travel time obtained from the joint link 

travel time distribution. To speed up this step, the approach of this chapter aims at reducing the 

network size in the later iterations based on information learned from the completed iterations. The 

generated labels for each node from the previous iterations are used to define new optimistic and 

pessimistic bounds that reduce the network size for later iterations.  

 

𝐶𝑜𝑝𝑡
𝑜→𝑖 + 𝐶𝑜𝑝𝑡

𝑖→𝑑 > 𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑 ⇒ Eliminate node 𝑖 

 
Node 1 should be eliminated 

Node 2 should remain in the sub-network 

Figure 4-1- A schematic illustration of network contraction for the reliable path finding problem 
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4-3-1- Data Intuition 

The Chicago downtown network, shown in Figure 3-1, is used in this chapter to infer a 

relationship between optimistic/pessimistic bounds and free flow travel times. To generate link 

travel time distributions and correlations for the AM peak period (5:00 AM to 10:00 AM), the 

network is simulated for different scenarios using the mesoscopic simulator of DYNASMART-P 

(85). An Intel® Xeon® CPU E5-2643 processor is used for all runs presented in this chapter, which 

includes 12 threads of 3.4 GHz and 128 GB of shared RAM. 

Although the assumption of setting all link travel times to minimum/maximum possible 

values is expected to yield the same results as using the full network without any network 

contraction, it restricts the computational benefit of the network contraction approach. This 

assumption is highly conservative as the distance between origin and destination increases. Hence, 

the objective of this section is to study the realizations of link travel times and find a relation 

between minimum/maximum labels and FFTTs in order to propose realistic optimistic/pessimistic 

bounds for network contraction. The MCS approach presented by Zockaie et al. (4) for solving the 

SPOTAR and MTTBP problems is used in this chapter as the benchmark. The first stage of the 

stochastic path finding problem, including solving a deterministic shortest path problem at each 

iteration (with a link time realization), is executed for 100 iterations for a randomly selected 

destination in the time-dependent Chicago downtown network (destination 84). Note that a 

sensitivity analysis on the number of iterations was conducted in (96) and the number of iterations 

is set to 100 for the first stage as a value with satisfactory results in comparison to other approaches 

in the literature (38). However, any number of iterations more than 100 can be used without 

restricting the application of the learning algorithms. The computational efficiency of the learning 

approaches relative to the full network application improves further considering larger number of 
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iterations. The travel time labels from each node to the destination for different departure time 

intervals and iterations bring about the required insight towards the optimistic/pessimistic bounds. 

Thus, the minimum of realized time-dependent labels of each node over the 100 iterations is used 

to estimate the optimistic travel time from origin through that node to the destination. Also, the 

maximum realized time-dependent labels over the 100 iterations of each origin node is used to 

estimate the pessimistic travel time from that origin to the destination.  

Figure 4-2 demonstrates the maximum and minimum of time-dependent labels over the 

100 realizations obtained for any node located at a certain FFTT of the destination, divided by its 

FFTT. Each dot in Figure 4-2a and Figure 4-2b represents a node in the network. The horizontal 

axis represents the FFTT from each node to the destination, while the vertical axis represents the 

ratio of the minimum/maximum label to the FFTT. It can be observed from these figures that the 

ratio of optimistic bounds to FFTTs increases with the growing order of the FFTT from each node 

to the destination. Whereas, with the increase of the FFTT from nodes to the destination, the ratio 

of pessimistic bounds to their corresponding free flow travel time decreases. Thus, expectedly, one 

can devise a relationship between optimistic/pessimistic bounds and FFTTs. This relationship 

provides an intuition for obtaining efficient network contraction strategy. Using the observations 

of Figure 4-2 and according to the elimination condition presented in Figure 4-1, the probability 

of elimination from the sub-network would be larger for nodes that are located at further free flow 

travel times with respect to the origin and destination of interest. Therefore, adopting realistic 

optimistic/pessimistic bounds in lieu of fixed bounds helps improving the results through 

eliminating farther nodes to the destination, which have lower probability to be in the optimal path. 

Additionally, these realistic bounds result in smaller sub-networks for OD pairs with higher 

FFTTs. Once there are more links connecting an origin to a destination (OD pairs with higher 



48 

FFTTs), the possibility of having all links at their minimum or maximum bound at the same time 

would be less. Note that the FFTT is a better representative of how far the origin is located relative 

to the destination, than merely considering the distance between the origin and destination, since 

it considers the difference between various link types such as freeways and arterials. 

 

 

Figure 4-2- a) Maximum b) Minimum time-dependent labels over 100 realizations from each 

node to destination 84 of the Chicago network, divided by FFTT, versus the FFTT from each 

node to the same destination 

Although considering the maximum and minimum realized labels results into improved 

optimistic/pessimistic bounds, there is still some potential to incorporate more aggressive bounds 

that may lead to smaller sub-networks. Thus, a data mining approach is used to estimate a factor 

that can be multiplied into the realized labels resulting in tighter bounds and smaller sub-networks. 

While there is an expectation that using tighter bounds improves the computational efficiency, this 

approach may result in sub-optimal solutions due to eliminating some nodes of the optimal path to 

form the sub-network. Therefore, each network requires calibrating the data mining factor.  
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The optimistic/pessimistic labels of destination 84 are used in order to conduct a sensitivity 

analysis on different data mining factors. The results are also compared with the conservative 

approach of CHAPTER 3 with a fixed pessimistic bound of 5 and a fixed optimistic bound of 0.8 

(assumed maximum and minimum link travel times relative to link FFTTs). For the purpose of 

this sensitivity analysis, the maximum labels from all origins to the destination are first determined 

through optimal path calculations over 100 realizations. Different data mining factors are then 

multiplied by the minimum labels from any origin through the node to the destination. As 

mentioned earlier, comparing the resulting optimistic bound for each node and the pessimistic 

bound for each origin determines removal of the node from the associated sub-network to that 

origin. Reporting of the remaining number of nodes in the sub-network associated with each origin 

is a measure of computational efficiency. 

Analyzing the results in Figure 4-3 and Table 4-1, one can derive tighter bounds by 

multiplying the minimum bound for each node by the data mining factor that a) achieves the 

highest reduction in the sub-network size and b) minimizes the chances for path calculation errors. 

In this illustrative example, a data mining factor of 1.3 reasonably satisfies these two conditions. 

As shown in Figure 4-3, it significantly reduces the sub-network size. In addition, based on the 

results in Table 4-1, the number of instances with more than 1% error in the objective function 

relative to the one reported by Zockaie et al. (4) is equal to zero. While increasing the learning 

factor to 1.35 is expected to reduce the sub-network size, this factor is associated with an instance 

with an error larger than 5%, which is relatively high. While we selected to only adjust the 

minimum bounds, the same sub-network could be obtained by tightening the maximum bounds, 

or tightening the minimum and maximum bounds simultaneously. However, one should expect 

different values for the tightening factors used in these cases.  
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Figure 4-3- Average number of nodes in sub-networks using different data mining factors in the 

network contraction approach for all origins to the destination 84 of Chicago downtown network 

in 2-minute intervals of FFTTs 

Table 4-1- The number of instances for different relative errors that the network contraction 

approach, using different data mining factors, has a worse objective function value than the full 

network of Zockaie et al. (4) for destination 84 using SPOTAR reliability rule 

Data mining factors 0%< E*≤1% 1%< E*≤5% 5%< E*≤10% 10%< E* Total* 

1.10 0 0 0 0 0 

1.20 0 0 0 0 0 

1.25 0 0 0 0 0 

1.30 
5 

(0.05%) 
0 0 0 

5 

(0.05%) 

1.35 
12 

(0.12%) 

9 

(0.09%) 

1 

(0.01%) 
0 

22 

(0.22%) 

1.40 
59 

(0.6%) 

54 

(0.55%) 

23 

(0.23%) 

4 

(0.04%) 

140 

(1.43%) 
*The number of error cases are out of 9810 cases which is for 218 origin zone, 15 time intervals, and 3 

user classes 

4-3-2- Solution Algorithm 

This sub-section presents a learning approach to extract a sub-network for each specific 

OD pair, which is applicable to reliable path finding problems. A modified MCS approach for 

time-dependent stochastic networks with multiple classes of users is utilized in this study to solve 

the SPOTAR and MTTBP problems (4). However, utilizing any other MCS approach works for 

this purpose. As stated in the previous chapter, this approach consists of two stages; the first stage 
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generates a set of candidate paths by applying a dynamic deterministic shortest path algorithm for 

different realizations of link travel times. This stage consists of a pre-specified number of 

iterations. In each iteration, realizations of link travel time are made by drawing random numbers 

from a joint link travel time distribution. Based on these realizations, a candidate path is found, 

using a dynamic deterministic shortest path finding algorithm, and then added to the candidate 

paths set. After this iteration repeats for a certain number of times, the set of candidate paths can 

be used as the input for the second stage. Similar to the first stage, the second stage consists of a 

pre-specified number of iterations, which is greater than that used in the first stage. For each 

iteration, a set of link travel time realizations is used to generate the set of candidate paths travel 

time distributions by summing the realized travel times of the links that exist in that path. 

The algorithm proposed in this chapter takes advantage of the produced information during 

the travel time realizations to find optimistic and pessimistic travel times for each OD pair of 

interest. For a certain OD pair, the minimum link travel time is first assigned to all network links 

and the travel times of both one-to-all and all-to-one deterministic static shortest path problems 

are solved, resulting in conservative optimistic travel times from origin to the destination passing 

through any node in the network. Next, all network link travel times are set to their maximum 

values, and the conservative pessimistic travel time is calculated from the origin to the destination 

using the deterministic static shortest path algorithm. Comparing the optimistic travel time through 

any node to the pessimistic travel time for the OD pair specifies if the node remains in the sub-

network or not. 

Next, realizations of link travel times are made by drawing random numbers from the joint 

link travel time distribution for the first 𝑛 iterations of the first stage. An all-to-one dynamic 

shortest path algorithm (75) is used to solve the dynamic shortest path problem in this stage. 
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Performing these 𝑛 iterations obtains a set of candidate paths and the realized maximum and 

minimum path travel time labels from each node to the destination. These maximum and minimum 

travel times can be used as realistic estimates of the pessimistic and optimistic bounds. Given that 

a destination-based algorithm is considered to solve the deterministic shortest path in the first 

stage, the optimistic bound from any node in the network is used as an estimate of the bound for 

the other part from the origin to the node. Utilizing optimistic/pessimistic bounds further contracts 

the sub-network to a smaller one. Repeatedly, all steps after extracting a new sub-network are 

executed for the next 𝑛 iterations till reaching the maximum number of iterations considered for 

the first stage. Once the first stage is completed, the second stage then finds path travel time 

distributions. Here, 𝑛 is defined as the updating phase of optimistic/pessimistic bounds. 

Seeking the right balance between accuracy and efficiency, a learning factor is used to 

make the bounds smaller at each 𝑛 iterations of the first stage. This factor is multiplied by the 

minimum path travel times in order to compensate for the conservative nature of the bounds. Two 

approaches are also proposed, called fixed learning and adaptive learning, for iterative network 

contraction. The former applies a fixed data mining factor, as described in the data intuition 

section, to the minimum realized label after the first n iterations. The latter starts with a small 

learning multiplier applied to the minimum realized labels after the first n iterations. Then, every 

n iteration, it increases the learning multiplier up to the point that it is less than or equal to the data 

mining factor. Since the minimum travel time labels decrease over the iterations and the maximum 

ones increase, the learning factors make the optimistic/pessimistic bounds less conservative. The 

fixed learning approach is more aggressive in reducing the network size as it starts with a relatively 

large data mining factor. However, the adaptive learning approach starts with a smaller learning 
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factor and ultimately reaches to a more informative data mining factor. Figure 4-4 provides an 

overview of the algorithm. A pseudo-code describing the steps of the algorithm is as follows. 

Step 1 Initialization 

 Form the joint time-dependent link travel time distribution considering temporal 

and spatial correlations  

 Define the OD pair of interest 

 Define the data mining factor (as described in Section 4-3-1)  

 Define the number of stage one and stage two iterations (S1 and S2) and number of 

iterations for updating phases of optimistic/pessimistic bounds, 𝑛. 

Step 2 Find conservative optimistic and pessimistic travel times by setting all links to their 

minimum and maximum possible values. 

Step 2-1 Solve the one-to-all static shortest path problem from the origin to all other nodes 

using the minimum link travel times, and store travel times as the optimistic travel times 

from the origin to all other nodes (𝐶𝑜𝑝𝑡
𝑜→𝑖). 

Step 2-2 Solve the all-to-one static shortest path problem from all nodes to the destination 

using the minimum link travel times, and store the optimistic travel time from all nodes to 

the destination (𝐶𝑜𝑝𝑡
𝑖→𝑑). 

Step 2-3 Solve the all-to-one static shortest path problem from all nodes (including the 

origin) to the destination using the maximum link travel times and store the pessimistic 

travel time from the origin to the destination (𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑). 

Step 3 Extract a sub-network for the OD pair of interest by checking the following condition for 

each node, 𝑖. 
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Step 3-1 Add the optimistic travel time from the origin to the node, 𝐶𝑜𝑝𝑡
𝑜→𝑖, (from step 2-1) 

to the optimistic travel time from the node to the destination, 𝐶𝑜𝑝𝑡
𝑖→𝑑, (from step 2-2), and 

store it as the optimistic travel time from the origin to the destination, 𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑. 

Step 3-2 If the optimistic travel time of the OD pair, (from step 3-1) is smaller than the 

pessimistic value, 𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑, (from step 2-3), keep the node in the sub-network; Otherwise, 

remove it. 

Step 4 Draw a random sample of size 𝑆1 for the sub-network from the joint time-dependent link 

travel time distribution. Set the current sample index as 𝑠1 = 1. 

Step 4-1 Set the link travel time on link 𝑎 at time 𝑡 as 𝑐𝑎𝑡
𝑠1, which is the random number in 

the 𝑠1
th sample corresponding to link 𝑎 at time interval 𝑡. 

Step 4-2 Find the dynamic deterministic shortest paths from all nodes in the current sub-

network including the origin to the destination for all departure time intervals. 

Step 4-3 For all departure time intervals, add the newly found path to the set of candidate 

paths of that departure time interval (𝐾𝑜𝑑𝜏) if it has not been found previously. 

Step 4-4 Set 𝑠1 as 𝑠1 + 1. If 𝑠1 ≥ 𝑆1  go to Step 7; else if 𝑠1 = 𝑗 × 𝑛, where 𝑗 is any integer 

lower than 
𝑆1

𝑛
, go to Step 5; else go to Step 4-1. 

Step 5 Determine intuitive optimistic/pessimistic travel times 

Step 5-1 Determine the pessimistic travel time from all nodes (including the origin) to the 

destination from the candidate paths travel times of previous 𝑗 × 𝑛 iterations and update 

𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑 

Step 5-2 Determine the minimum travel times of all candidate paths from all nodes to the 

destination, 𝐶𝑜𝑝𝑡
𝑖→𝑑.  
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In the adaptive learning approach, update the optimistic travel times from all nodes to the 

destination by multiplying the minimum travel times by a learning factor L. This factor is 

less than or equal to the data mining factor defined in the Section 4-3-1. Update 𝐶𝑜𝑝𝑡
𝑖→𝑑 with 

the resulting value. 

𝐶𝑜𝑝𝑡
𝑖→𝑑 =  𝐶𝑜𝑝𝑡

𝑖→𝑑 ∙ 𝐿, where 

𝑙 = Learning multiplier(𝑗−1) 

L = {
𝑙                                      ,   𝑙 < Data mining factor
Data mining factor   ,   𝑙 ≥ Data mining factor

 

Therefore, the learning multiplier is constant over the iterations while learning factor (𝐿) 

converges to the calibrated data mining factor. 

In the fixed learning approach, the minimum travel times are multiplied by a fixed 

learning factor equal to the data mining factor after the first 𝑛 iterations. 

Store the 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 𝑏𝑜𝑢𝑛𝑑 =
𝐶𝑜𝑝𝑡

𝑖→𝑑

𝐹𝐹𝑇𝑇𝑖→𝑑
, where 𝐹𝐹𝑇𝑇𝑖→𝑑 is the free flow travel time from 

𝑖 to 𝑑. 

Step 5-3 Using the optimistic bound of Step 5-2, update the optimistic travel time from the 

origin to the destination, 𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑, as 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 𝑏𝑜𝑢𝑛𝑑 × (𝐹𝐹𝑇𝑇𝑜→𝑖 + 𝐹𝐹𝑇𝑇𝑖→𝑑). 

Step 6 Extract a new sub-network from the current sub-network using the information of the 

previous 𝑗 × 𝑛 iterations for the OD pair of interest. 

If the optimistic travel time of the OD pair (from step 5-3), 𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑, is smaller than the pessimistic 

value (from step 5-1), 𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑, keep the node in the sub-network; Otherwise, remove it. Go to Step 

4-1. 

Step 7 Draw a random sample of size 𝑆2 from the joint time-dependent link travel time distribution. 

Set the current sample index as 𝑠2 = 1. 
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Step 7-1 Set the link travel time on link 𝑎 at time 𝑡 as 𝑐𝑎𝑡
𝑠2, which is the random number in 

the 𝑠2
th sample corresponding to link 𝑎 at time interval 𝑡. 

Step 7-2 For all departure time intervals such as 𝜏, and all paths in the set of candidate 

paths of that departure time interval such as 𝑘𝑜𝑑𝜏 ∈ 𝐾𝑜𝑑𝜏, find 𝛱𝑘𝑜𝑑𝜏 =  ∑ 𝑐𝑎𝑡
𝑠2

𝑎∈𝑘𝑜𝑑𝜏  as the 

path travel time, where 𝑡 is the arrival time of link 𝑎 based on the travel time of the previous 

link in the path 𝑘𝑜𝑑𝜏. 

Step 7-3 Set 𝑠2 as 𝑠2 + 1. If 𝑠2 ≤ 𝑆2 , then go to Step 7-1; else go to Step 8. 

Step 8 Apply the reliability rule of interest to find the optimal path. Here, path travel time 

distributions are available for all candidate paths. Therefore, any reliability rule can be applied to 

find the optimal path. 

 Initialization

 Form the joint link travel time distribution

 Number of stage 1 & 2 iterations (S1 and S2) and 

updating phases of learning (n)

 Set s1 and s2 to 1

 OD pair (org and des)

Yes

Add the node to the sub-
network for the OD pair

No

Remove the node from 
sub-network

Find the deterministic shortest paths 
from all nodes in the sub-network to 
the destination, k, and add it to the 

set of candidate paths, K

s1 < Max No. of 
stage one iterations

No

Yes

Draw a link travel time 
realization for all sub-network 
links and calculate path travel 
time for each candidate path

s2< Max No. of 
stage two iterations

No

s2=s2+1

Yes

Generate path travel time 
distributions

Apply path finding rule to the 
candidate paths travel time 

distributions

No

Draw link travel time realizations for 
all sub-network links

Find the conservative optimistic labels from origin to 

destination through any node i                  and pessimistic 

labels from origin to destination                by assigning all 

links of the network to the min/max travel times

s1 is a multiplication
 of n iterations

No

s1=s1+1

Yes

Find intuitive optimistic and 
pessimistic travel times from origin 

to destination through node i                  
                    using fixed learning 

or adaptive learning approach 

Get the next node i in the network/sub-

network that is not investigated

Is there any node i in 
the network/sub-network that is not 

investigated

Yes

 

Figure 4-4- A brief illustration of the learning approach for efficiently solving reliable path 

finding problem  

𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑 < 𝐶𝑝𝑒𝑠𝑠

𝑜→𝑑   

(𝐶𝑝𝑒𝑠𝑠
𝑜→𝑑)  

(𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑) 

(𝐶𝑜𝑝𝑡
𝑜→𝑖→𝑑, 𝐶𝑝𝑒𝑠𝑠

𝑜→𝑑)  
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4-4- Numerical Experiments 

In this sub-section, a set of experiments is presented to examine the computational 

performance and accuracy of the fixed learning and the adaptive learning approaches against those 

of the optimal path finding algorithm presented by Zockaie et al. (4). The algorithm presented by 

Zockaie et al. (4) considers a full original network in all iterations of the MCS approach. The 

approach of the mentioned study is considered as the benchmark in this chapter, since it accounts 

for link travel correlations and heterogeneous users in terms of reliability valuation. The optimality 

and solution time of the benchmark approach are already compared and validated (11,96) by 

comparing the solutions with the results of an outer approximation algorithm, which considers link 

travel time correlations (38), and a label correcting algorithm to solve SPOTAR problem (28). All 

approaches are implemented for the Chicago downtown network using a realistic joint time-

dependent travel time distribution for the SPOTAR and MTTBP problems. Here, the algorithm is 

first applied to the same destination for which the data mining factor is calibrated (destination 84). 

Then, both learning approaches are applied to two randomly-selected destinations located at other 

parts of the network with different node and link configurations. 

The number of iterations is assumed to be 100 for the stage one and 1000 for the stage two 

of the MCS approach. The number of iterations for the MCS approaches significantly affects the 

solution time and the accuracy of results. Thus, many studies in the literature provide different 

relations to estimate the optimum number (97,98). The desired margin of error, desired confidence 

level, and standard deviation of the sample are mentioned as effective parameters in the estimation 

of the optimum number of iterations (97). The study by Zockaie et al. (96) conducts a sensitivity 

analysis on the impacts of the number iterations in the first and second stages of the MCS approach 

of this study on the objective function value and the solution time. The study shows that 100 and 



58 

1000 as the number of iterations for the first and second stages of the MCS approach for the optimal 

path finding problem produce acceptable results with a significantly lower solution time relative 

to the outer approximation method, which directly solves the MTTBP problem. Thus, these two 

values are adopted as the number of iteration in the numerical experiments of this study. 

As the execution time is usually sensitive to the computer configuration and could have 

fluctuations in multiple runs, the number of nodes is used in this study as a representative of the 

computational time. Nonetheless, to show the relation between the computational time and number 

of nodes, the total execution time and the time required for stage one of the algorithm are recorded 

with respect to the number of nodes, as demonstrated in Figure 4-5. In this figure, the 

computational time to solve the path finding problem from any given origin in the network to 

destination 84 is presented. The path finding problems are solved using the fixed learning 

approach, with a learning factor of 1.3. In this figure, the number of nodes in the sub-network 

associated with each origin are combined in 100-node intervals and the average execution time 

value is reported for each interval. In addition, the average execution time of five different runs 

are reported to avoid the fluctuations in the reported time of multiple executions. The results show 

that the major computational time of the current approach is devoted to executing the dynamic 

deterministic path finding algorithm for different realizations of link travel times in stage one. 

Improving the execution time of this stage, which grows approximately with the second order 

polynomial degree of the number of nodes, results in a significant reduction of the total execution 

time. A polynomial curve with the degree of two is also drawn for the total execution time of the 

fixed learning approach, which is shown to properly approximate the total execution times with 

respect to number of nodes. Finally, the execution time of the approach of Zockaie et al. (4) with 
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the full network is given in the Figure 4-5, which is significantly larger than the execution time for 

all of the OD pairs using the fixed learning approach. 

 

Figure 4-5- The relationship between the execution times and the number of nodes for the fixed 

learning approach (learning factor =1.3) to find the optimal path from different origins to 

destination 84 

As the number of nodes in the sub-network of each OD pair varies over the iterations in 

the learning approaches, the average value of the number nodes in the sub-networks is used as an 

indicator of the algorithm computational requirement. Figure 4-6 compares the performance of the 

fixed learning approach with the adaptive learning approach considering two different learning 

multipliers. The figure also compares the performance of these two approaches with those of the 

pre-knowledge approach described in section 4-3-1 and the conservative approach of CHAPTER 

3. In the fixed learning approach, the information of the first 10 iterations is used for network 

contraction. In the adaptive learning approach, the number of iterations used to update the 

optimistic/pessimistic bounds, n, is assumed to be 10. The updating phase should be small enough 

relative to the total number of iterations (100) to provide meaningful computational efficiency and 

large enough to include meaningful path travel time information to be used. Therefore, the value 

of 10 is assumed in this study. In Figure 4-6, the horizontal axis represents the FFTT from origin 

to destination 84. The origins are sorted based on the FFTTs between the origins and destination. 

The origins are then categorized based on their FFTTs to the destination in 2-minute intervals. The 
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average number of nodes in the sub-networks over all iterations of each OD pair is first calculated, 

and then the average number of remaining nodes in the sub-network for different origins of each 

2-minute category is reported in the vertical axis.  

Table 4-2 compares the accuracy of the mentioned scenarios in terms of the SPOTAR 

objective function against that of Zockaie et al. (4) in which the full network with constantly 1,578 

nodes are used. The results of Table 4-2 and Figure 4-6 demonstrate that the adaptive learning 

approach with a learning multiplier of 1.05 has approximately the same performance and accuracy 

as the pre-knowledge approach with the data mining factor of 1.3. For instance, for an origin with 

the FFTT of 8 to 10 minutes, the fixed learning approach with the learning multiplier of 1.05 results 

in sub-networks with an average of 608 nodes during the iterations of the path finding algorithm, 

which is comparable to the conservative approach with an average of 481 nodes. Based on the 

results of Table 4-2, the probability of having error in the objective function is 0.06% for the 

adaptive learning approach in which the multiplier is equal to 1.05. Whereas, the fixed learning 

approach with a learning factor of 1.3 is prone to more errors in the objective function. The total 

number of errors in the objective function is recorded to be 126 cases (out of 9810 cases) for this 

approach (1.28%), which is still acceptable considering the savings in the execution time. For 

example, for an origin with FFTT of 8 to 10 minutes to the destination, sub-networks with an 

average of 360 nodes are obtained, which require an execution time of around 11.5 seconds. 

However, the full network and the conservative approach use 1,578 nodes for the same OD pairs, 

which require an execution time of 64.1 seconds. 

Figure 4-7 compares the execution time of the fixed learning approach with the learning 

factor of 1.3 and the adaptive learning approach with the learning multiplier of 1.05 with the 

conservative approach of CHAPTER 3. This figure demonstrates significant computational gains 
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achieved by using the learning approaches relative to the conservative approach. Note that the 

execution time for the approach of Zockaie et al. (4) is 64.1 seconds for all FFTTs, which is 

significantly higher than the execution time for all OD pairs incorporating the learning approaches. 

Comparing the results of Figure 4-6 and Figure 4-7 suggests the number of nodes as a good 

indicator of the execution time. Therefore, hereafter, the results are presented for the number of 

nodes remaining in the sub-network to avoid fluctuations in the computational time for different 

executions of the algorithms.  

 

Figure 4-6- Number of nodes in the sub-network for all origins to the destination 84 in 2-minute 

intervals of FFTT for different network contraction approaches 
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Table 4-2- The number of instances for different relative errors that network contraction 

approaches have a worse objective function value than the full network approach of Zockaie et 

al. (4) for destination 84 using SPOTAR reliability rule 

Scenarios 0%< E ≤1%* 1%< E ≤5%* 5%< E ≤10%* 10%< E* Total* 

Pre-knowledge data  

(Data mining factor=1.3) 
5 (0.05%) 0 0 0 

5 

(0.05%) 

Fixed bounds (0.8 and 5) 0 0 0 0 0 

Fixed learning approach 

(Learning factor=1.3) 
67 (0.68%) 44 (0.45%) 10 (0.10%) 5 (0.05%) 

126 

(1.28%) 

Adaptive learning approach 

(Learning multiplier=1.1) 
8 (0.08%) 5 (0.05%) 0 0 

13 

(0.13%) 

Adaptive learning approach 

(Learning multiplier=1.05) 
4 (0.04%) 2 (0.02%) 0 0 

6 

(0.06%) 
*The number of error cases out of 9810 cases 

 

Figure 4-7- The comparison of execution time for all origins to the destination 84 in 2-minute 

intervals of FFTT for different network contraction approaches 

The great improvements in the results of the two learning approaches relative to the 

conservative approach certify the application of the new network contraction algorithm in terms 

of the computational efficiency. A major limitation of MCS approaches is that they may lead to 

different results in multiple executions of the algorithm. However, increasing the number of 

realizations (iterations) solves this problem. Thus, the algorithm is executed five times for all 

origins of destination 84 in the Chicago network with the full network approach to study the 
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discrepancy of the results and verify if the selected number of iterations is adequate. The average 

relative difference between the objective functions of each two executions is 0.31%, which implies 

that the number of iterations is a proper setting. In addition, the adaptive learning approach of this 

chapter with a learning multiplier of 1.05 is applied for the same destination in 5 executions. The 

average relative difference between the objective functions of each two executions is 0.29%. Given 

the results of Figure 4-6 and Table 4-2, a learning multiplier of 1.05 has a comparable result with 

the pre-knowledge approach. Therefore, the fixed learning approach with a factor of 1.3 and the 

adaptive learning approach with a data mining factor of 1.3 and learning multiplier of 1.05 are 

selected to test the performance of the approach for other destinations. However, any other learning 

multiplier lower than the calibrated data mining factor can be used based on the desired trade-off 

between accuracy and efficiency. It is worth mentioning that the same updating phase (10) and the 

total number of iterations (100) should be used along with other calibrated factors.  

Given that destination 84 is located in the northern part of the Chicago network, one 

destination is selected from the southern part with a dense topology of short links (destination 1) 

in addition to another random destination (destination 57). Application of the learning contraction 

algorithm to these two destinations verifies the accuracy and evaluates the performance of the 

approaches. Figure 4-8 and Figure 4-9, respectively, illustrate the computational benefits of both 

learning approaches in terms of the average number of nodes in the sub-networks for different OD 

pairs of destination 1 and destination 57. As shown in the figures, for both destinations, the learning 

approaches result in much smaller number of nodes in the sub-networks compared to that of the 

conservative approach and the full network. In addition, the results show that the fixed learning 

approach is superior to the adaptive learning approach in terms of the network size reduction for 

both destinations. 
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Figure 4-8- The comparison of number of nodes in the sub-network for all origins to the 

destination 1 in 2-minute intervals of FFTT for different network contraction approaches  

 

Figure 4-9- The comparison of number of nodes in the sub-network for all origins to the 

destination 57 in 2-minute intervals of FFTT for different network contraction approaches 
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Table 4-3 compares the performance of the learning approaches for the same destinations 

in terms of the accuracy of the estimated objective function for two different reliability rules: 

SPOTAR and MTTBP. The number of cases with different levels of error, with respect to the 

equivalent objective functions of Zockaie et al. (4), are presented in this table. For both reliability 

rules, the learning approaches have acceptable level in terms of number of errors. However, the 

adaptive learning approach with learning multiplier of 1.05 and data mining factor of 1.3 is 

superior to the fixed learning approach with the learning factor of 1.3 in terms of the objective 

function accuracy. Considering the results shown in Figure 4-8, Figure 4-9, and Figure 4-10, a 

trade-off between the desired accuracy level and the computational efficiency is important while 

selecting the proper learning approach. Overall, the adaptive learning approach shows satisfactory 

improvements in terms of computational efficiency with the same accuracy as that of the approach 

without any network contraction. 

Figure 4-10 demonstrates the resulting sub-networks for a random-selected origin (i.e., 

node 141) to destination 1 using various learning approaches. As shown in the figure, the area of 

the retained nodes in the sub-network is significantly smaller in both learning approaches relative 

to the full network and that obtained using the conservative approach. This figure demonstrates 

the superiority of the learning approaches developed in this chapter relative to the approach of 

CHAPTER 3 and the existing approach in the literature. The full network, with 1,578 nodes, 

demonstrates the network used in the approach of Zockaie et al. (4) or any other algorithm that 

does not consider network contraction. The second network which includes 1,305 nodes is the sub-

network resulted from applying the algorithm of CHAPTER 3. The other two networks, with 675 

and 428 nodes, are the sub-networks resulted from the network contraction algorithm of this 

chapter.  
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Table 4-3- The number of instances that different learning approaches have a worse objective 

function, relative to the full network approach of Zockaie et al. (4), for different relative errors 

and destinations using a) MTTBP reliability rule; b) SPOTAR reliability rule 

a) 

Destination Approach 
0%< E 

≤1%* 

1%< E 

≤5%* 

5%< E 

≤10%* 

10%< 

E* Total* 

84 Pre-knowledge  
5 

(0.05%) 
0 0 0 

5 

(0.05%) 

1 
Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

1 
Adaptive learning 

(Learning Multiplier=1.05) 
0 0 0 0 0 

1 
Fixed learning 

(Learning Factor = 1.3)  

37 

(0.38) 

86 

(0.87%) 

42 

(0.43%) 

7 

(0.07%) 

172 

(1.75%) 

57 
Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

57 
Adaptive learning 

(Learning Multiplier=1.05) 

4 

(0.04%) 
0 0 

12 

(0.12%) 

16 

(0.16%) 

57 
Fixed learning 

(Learning Factor = 1.3) 

104 

(1.06%) 

77 

(0.78%) 

1 

(0.01%) 

12 

(0.12%) 

194 

(1.98%) 

b)       

84 Pre-knowledge  
6 

(0.06%) 
0  0 0  

 6 

(0.06%) 

1 
Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

1 
Adaptive learning 

(Learning multiplier=1.05) 
0 0 0 0 0 

1 
Fixed learning 

(Learning Factor = 1.3) 

44 

(0.45%) 

79 

(0.81%) 

45 

(0.46%) 

15 

(0.15%) 

181 

(1.84%) 

57 
Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

57 
Adaptive learning 

(Learning Multiplier = 1.05) 

3 

(0.03%) 
0 0 0 

3 

(0.03%) 

57 
Fixed learning 

(Learning Factor = 1.3) 

98 

(0.99%) 

88 

(0.89%) 

3 

(0.03%) 

46 

(0.47%) 

235 

(2.39%) 
*The number of error cases are out of 9810 cases 
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Full network Conservative approach with 

optimistic/pessimistic 

bounds of 0.8 and 5 

Adaptive learning 

approach, learning 

multiplier=1.05, data 

mining Factor=1.3 

Fixed learning 

approach, learning 

factor=1.3 

# of nodes: 1578 # of nodes: 1305 # of nodes: 675 # of nodes: 428 

 

Figure 4-10- Sub-network configurations for the two learning approaches and the conservative 

approach from origin 141 to the destination 1 in the Chicago downtown network 

4-5- Model Transferability 

In the previous sub-section, the learning factor obtained based on the analysis conducted 

for destination 84 in the Chicago downtown network is used for two other destinations in that 

network. The level of time efficiency and accuracy of the network contraction approach depends 

on the network structure and link travel time distributions. Therefore, in this sub-section, the 

calibrated parameters using the Chicago downtown network are applied to another network with a 

different configuration, in order to check the transferability of the approach to other networks. To 

this end, the learning approaches are implemented for the Salt Lake City network bounded by the 

intersection of I-15 and State Route 89 on the North side and State Route 145 (Pioneer Crossing) 

on the South side (99). The network contains 3,626 nodes, 8,321 links, and 1,287 zones. To 

generate link travel time distributions and correlations, the network is simulated using 

DYNASMART-P for the AM peak period between 6 AM to 10 AM. This simulation horizon is 

divided into 13 time intervals to generate link travel time distributions based on the analytical 

approach of Zockaie et al. (100) to relate the mean and the variance of link travel times. In the 
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correlation structure, there is an assumption that the correlation exists spatially between adjacent 

links and temporally between the subsequent time intervals. 

Five destinations are selected randomly in the Salt Lake City network to show the 

transferability of the learning approaches to different networks, using the calibrated factors for the 

Chicago downtown network. Three of the destinations are picked from three different parts of the 

network; a destination in the northern dense portion of the network (destination 27), a destination 

in the central part (destination 80), and a destination in the southern portion (destination 145). The 

other two are randomly selected over the entire network. The two learning approaches in addition 

to the conservative approach of CHAPTER 3 are applied for the network contraction of these 

destinations. Demonstration of the average number of nodes remaining in the sub-networks for the 

different origins to the selected destinations is available in Figure 4-11. As shown in this figure, 

the fixed learning approach and the adaptive learning approach provide significant improvements 

in terms of the average number of nodes in the sub-networks. For instance, for origins with the 

free flow travel time of 8 to 10 minutes to destination 27, the average numbers of nodes in the sub-

networks during all iterations of the adaptive and fixed learning approaches are 2,350 and 1,517, 

respectively. However, the approach of Zockaie et al. (4) uses the full original network with 

constantly 3,626 nodes over all iterations and the conservative approach results in a sub-network 

with an average of 3,500 nodes. The improvements are even more noticeable for the destinations 

80 and 145. 
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Figure 4-11- Number of nodes in the sub-network in 2-minute intervals of FFTT for different 

network contraction approaches (calibrated based on the Chicago network) from all origins to 

destination a) 27, b) 80, c) 145, d) 55, and e) 113 of the Salt Lake City network 

Results related to the accuracy of the estimated objective functions are also obtained for 

the Salt Lake City network. Given the similar trend for both SPOTAR and MTTBP problems, the 
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results presented here are only for the MTTBP problem. The objective functions of the MTTBP 

problem for the considered OD pairs obtained using the conservative approach (fixed bounds of 

0.8 and 5.0), the fixed learning approach, and the adaptive learning approach are compared with 

the objective functions obtained using the approach adopted by Zockaie et al. (4) in which no 

network contraction is considered (3,626 nodes for all iterations). These results are summarized in 

Table 4-4, which presents the different levels of error in the objective function relative to the 

approach of Zockaie et al. (4) for the three approaches. As expected, the conservative approach 

does not have any error. The adaptive learning approach has less than one percent error for all 

destinations (mostly less than 5% difference in the objective function values with and without 

network contraction). The fixed learning approach has variable accuracy for different destinations 

with errors that range from 1% to 10%. Thus, the adaptive learning approach has acceptable results 

in terms of both the average number of nodes in the sub-networks and the number of errors in the 

objective function. However, the fixed learning approach has a better computational efficiency at 

the cost of accuracy. Overall, both learning approaches calibrated based on the Chicago network 

produce good results for the Salt Lake City network, resulting in huge computational efficiency 

benefits with acceptable approximation in the objective function evaluation. 

Finally, similar to the Chicago case study, the configuration of the Salt Lake City network 

in addition to the number of remaining nodes in the sub-networks of a selected OD pair (origin 

1,187 to destination 145) using different network contraction approaches are available in Figure 

4-12. Using the stochastic dynamic path finding algorithm of Zockaie et al. (4), all nodes in the 

network should be searched. However, applying the reliability rule and other steps of the stochastic 

path finding algorithm is necessary for much smaller sub-networks using the network contraction 

approaches. 
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Table 4-4- The number of instances that different learning approaches have a worse objective 

function, relative to the full network approach of Zockaie et al. (4), for different relative errors, 

destinations, and MTTBP problem in the Salt Lake City network 

Destination Approaches 
0%< E 

≤1%* 

1%< E 

≤5%* 

5%< E 

≤10%* 10%< E* Total* 

27 

Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

Adaptive 

learning 

136 

(0.27%) 

60 

(0.12%) 
0 

81 

(0.16%) 

275 

(0.55%) 

Fixed learning 
1128 

(2.25%) 

1206 

(2.40%) 

548 

(1.09%) 

2411 

(4.8%) 

5293 

(10.54%) 

80 

Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

Adaptive 

learning 

154 

(0.31%) 

84 

(0.17%) 

11 

(0.02%) 

72 

(0.14%) 

321 

(0.64%) 

Fixed learning 
1087 

(2.17%) 

667 

(1.33%) 

741 

(1.48%) 

424 

(0.84%) 

2919 

(5.81%) 

145 

Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

Adaptive 

learning 

209 

(0.42) 

130 

(0.26%) 

9 

(0.02%) 

57 

(0.11%) 

405 

(0.81%) 

Fixed learning 
644 

(1.28) 

492 

(0.92%) 

46 

(0.09%) 

291 

(0.58%) 

1143 

(2.87%) 

55 

Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

Adaptive 

learning 

126 

(0.25%) 

41 

(0.08%) 
0 0 

167 

(0.33%) 

Fixed learning 
290 

(0.58%) 

179 

(0.36%) 

59 

(0.12%) 

1723 

(3.43%) 

2251 

(4.48%) 

113 

Fixed bounds 

(0.8 and 5) 
0 0 0 0 0 

Adaptive 

learning 

118 

(0.23%) 

23 

(0.05%) 
0 0 

141 

(0.28%) 

Fixed learning 
121 

(0.24%) 

61 

(0.12%) 

17 

(0.03%) 

145 

(0.29%) 

344 

(0.68%) 
*The number of error cases are out of 50,193 cases 
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Conservative approach 

with bounds of 0.8 and 5 

 # of nodes: 742 

Full network 

 # of nodes: 3626 

Fixed learning approach 

Learning factor=1.3 

# of nodes: 149 

 
Adaptive learning approach 

Learning multiplier=1.05 

Data mining factor=1.3 

# of nodes: 223 
 

Figure 4-12- Sub-network configurations for the two approaches and the conservative approach 

from origin 1,178 to the destination 145 for the MTTBP problem applied to the Salt Lake City 

4-6- Summary 

The focus of this chapter was to develop a learning approach to decrease the network size 

for each specific OD pair within the initial iterations of the MCS approaches. The algorithm 

presented in this chapter takes advantage of the produced information during the travel time 

realizations of the initial iterations to find optimistic and pessimistic travel times for each OD pair 

of interest. First, conservative optimistic and pessimistic travel times for a certain OD pair are 

found. Comparing the optimistic travel time through any node to the pessimistic travel time for the 

OD pair specifies if the node should remain in the sub-network or not. Then, link travel time 

realizations are made by drawing random numbers from joint link travel time distributions for the 
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first 𝑛 iterations of the first stage and the realized maximum and minimum path travel time labels 

from each node to the destination are defined. Use of the optimistic and pessimistic bounds further 

contract the sub-network. Seeking the right balance between accuracy and efficiency, two 

approaches, namely the fixed learning and the adaptive learning, are presented. The learning 

approaches are calibrated through the Chicago downtown network. The transferability of the 

approach to other networks is then checked using the network of Salt Lake City. The numerical 

results of the two large-scale applications lead to the following findings: 

 The calibrated learning approaches for a particular large-scale network is used 

successfully for another large-scale application with a different structure of nodes 

and links. Although the errors in objective function values are larger in the Salt 

Lake City network relative to the calibration network, the level and amount of 

errors are still satisfactory. 

 Significant reductions in the network size are observed using both learning 

approaches relative to the approach without any network contraction and the 

conservative approach. 

 The learning approaches have an acceptable level and number of errors in terms of 

SPOTAR and MTTBP objective function estimations.  

 The adaptive learning approach is superior to the fixed learning approach in terms 

of the accuracy of the objective function estimation, while the fixed learning 

approach is more aggressive in the network contraction. Therefore, a trade-off 

between a certain desired accuracy level and the computational efficiency is needed 

to select the proper learning approach. 
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CHAPTER 5 - Travel Time Reliability and Congestion Pricing 

5-1- Overview 

To make road pricing appealing to the public, many studies propose strategies for the 

distribution of toll revenues considering travelers’ benefits and losses after pricing strategy 

implementation. Among the first in the line of research are Daganzo and Garcia (101) and 

Lawphongpanich and Yin (44) who proposed the Pareto-improving pricing strategy. Pareto-

improving pricing refers to a scheme that does not make any traveler worse off, and makes at least 

one traveler better off in terms of generalized costs. Following this concept, several other studies 

propose Pareto-improving second-best pricing schemes for unimodal and bimodal networks 

(41,46). Redistributing toll revenues among travelers is also considered to avoid inequity problems 

associated with congestion pricing (43). In addition, in order to consider the variable impacts of 

congestion pricing on travelers with different socio-economic characteristics, trip purposes, and 

preferences, congestion pricing models that account for the variability of travelers’ VOT have been 

developed. For example, Liu et al. (102) introduced a Pareto-improving pricing scheme, which is 

revenue-neutral for a bimodal network (i.e., transit and highway as different transportation modes). 

Their proposed scheme increases utility for all users and resolves the equity issue for travelers 

assuming a uniform VOT distribution. Nie and Liu (43) explored Pareto-improving schemes for 

different distributions of VOT and demonstrated that such a scheme always exists for concave 

VOT distributions. However, this is not the case for the realistic log-normal distribution. The 

impacts of congestion pricing on different traveler classes are also highly affected by the reliability 

valuation of network users. However, most studies have considered only different VOT classes, 

neglecting variations in the VOR. 
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As mentioned in the earlier chapters, travelers respond differently to travel time 

uncertainty, reflecting heterogeneity in their preferences and risk attitudes. Considering a 

reliability measure in travelers’ path choice decisions would naturally impact the modeled 

congestion pattern in the network, which in turn, affects the outcomes of pricing strategies. Hence, 

incorporating measures regarding travel time reliability into congestion pricing schemes enhances 

the consistency of the schemes with travelers’ route choice behavior. A few studies in the literature 

have considered applications of variable travel time in congestion pricing (7,8). For example, Li 

et al. (103) presented a bi-level reliability-based optimal toll design model in which travel time 

reliability is a network objective at a higher level. However, travel time reliability should also be 

considered as users’ objective in route choice and traffic assignment. Boyles et al. (104) proposed 

an algorithm to find first-best pricing values for static transportation networks under daily capacity 

variations. They also defined the problem with travel time reliability and link travel time 

correlations. However, no solution algorithm was presented for this problem. In addition, the 

solution methodology considered only one single user class in terms of VOT and VOR. As such, 

two main limitations could be identified in existing models for equitable roadway pricing. First, 

most studies on congestion pricing either completely ignore travel time reliability or use simplified 

assumptions for its representation. Second, to our knowledge, there is no study that considers the 

RBUE in finding an equitable road pricing strategy for heterogeneous users with multiple VOT 

and VOR classes, which affects the fidelity of the traffic route assignment pattern in the network 

and hence the accuracy of the generated pricing schemes.  

In this context, this chapter is motivated by the need to develop a modeling framework and 

efficient solution methodology for self-funded and Pareto-improving congestion pricing schemes. 

The framework ensures that all travelers are experiencing an improvement in their generalized 



76 

travel cost (utility) after deploying the pricing scheme. The framework explicitly captures the 

effect of travel time reliability on travelers’ mode-route choice, considering heterogeneous 

travelers with multiple classes of VOT and VOR. In addition, for self-funded congestion pricing, 

revenues generated from the collected tolls could be utilized to improve public transportation 

services, subsidize the users of these services and/or compensate travelers who experience an 

increase in their generalized travel cost. However, there are concerns regarding the equity of the 

mechanism developed for toll revenues distribution. To overcome these concerns, the framework 

developed in this chapter is extended to address the self-funded congestion pricing problem.  Two 

revenue distribution strategies are considered for self-funded pricing schemes in a bimodal 

network, namely the transit-based strategy and the credit-based strategy (43,48). For the transit-

based strategy, the collected tolls from highway users are distributed only among transit users, 

reducing their travel cost and enhancing their regional accessibility. For the credit-based strategy, 

the collected tolls are distributed in the form of credits for all travelers (both private cars and transit 

users) to compensate for any increase in the travel cost. 

 The modeling framework developed in this chapter extends the second-best pricing 

optimization problem by integrating an RBUE algorithm. From the societal perspective, the 

objective of the pricing algorithm is to minimize total travel time of highway users given a revenue-

neutral and Pareto-improving pricing scheme. Users’ heterogeneity in response to the reliability 

measures, their response to different toll values and toll distribution strategies, and link travel time 

correlations are considered in the RBUE problem. A PSO algorithm is developed to determine the 

optimum toll values given the objectives of the current study and toll distribution strategies (e.g. 

credit-based, transit subsidy). The algorithm is applied to a modified Sioux Falls network with an 

area-based pricing strategy. The content of this chapter is published by the author in (105). 
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5-2- Problem Formulation 

Consider a general bi-modal network, 𝐺(𝑁, ζ), with a node set of 𝑁, a link set of ζ , and an 

OD set, 𝑟𝑠. There is a fixed demand of 𝑞𝑟𝑠 for each OD pair, who opt their route among a set of 

highway paths, 𝑝𝑟𝑠, and an alternative transit line, 𝑇𝑟𝑠. Therefore, each origin, 𝑟, is connected to 

the destination, 𝑠, via multiple highway paths and a transit line which represents a slower but a 

more reliable path relative to other paths available for driving in uncongested traffic conditions. 

The travel time distribution of each highway link, 𝑖𝑗, connecting node 𝑖 to node 𝑗, is represented 

by the expected value of travel time, 𝐸(𝑡𝑖𝑗), and the standard deviation of travel time, σ(𝑡𝑖𝑗). Let 

𝐸(𝑡𝑟𝑠
𝑇 ) and σ(𝑡𝑟𝑠

𝑇 ) denote the mean travel time and the standard deviation of travel time for transit 

line connecting origin, 𝑟, to destination, 𝑠. It is noted in the literature that transit travel time is 

affected by trip distance, the number of passengers, boarding and alighting procedures, and 

intersections with traffic signals (106,107). Thus, a smaller variation than the highway travel time 

variability is assumed for transit lines. Heterogeneous users are defined by 𝑚 different VOT 

classes extracted from a VOT distribution. Each VOT class consists of 𝑘 VOR classes that are 

selected from a VOT-dependent VOR distribution. 𝛼𝑚 represents VOT of user class 𝑚, and 𝛽𝑚𝑘 

represents VOR of the 𝑘𝑡ℎ class within the user class 𝑚 with VOT of 𝛼𝑚. All notations and 

variables are summarized in the nomenclature table (Table 5-1). 
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Table 5-1- Definitions of parameters and variables 

Sets 

𝐺(𝑁, ζ) A general bi-modal network with a node set of 𝑁, a link set of ζ 

(𝑖, 𝑗) ∈ ζ Highway link with upstream node 𝑖 and downstream node 𝑗 

Parameters 

𝐶𝑜 Operational cost of auto per mile 

CA Fixed cost of auto 

𝜆 Pareto-improvement violation factor 

𝜂 A large constant 

General Variables 

𝑝𝑟𝑠 Set of highway paths from origin 𝑟 to destination 𝑠 

𝑇𝑟𝑠 Transit line from origin 𝑟 to destination 𝑠 

𝛼𝑚 Value of time of the user class 𝑚 

𝛽𝑚𝑘 Value of reliability of the kth VOR class with VOT of 𝛼𝑚 

𝛿𝑖𝑗
𝑝𝑟𝑠 A binary variable holding 1 if path 𝑝𝑟𝑠 passes link 𝑖𝑗, and 0 otherwise 

𝐸(𝑡𝑖𝑗) Mean travel time of highway link 𝑖𝑗 

𝑥𝑖𝑗
𝐴  Traffic flow on highway link 𝑖𝑗 

σ(𝑡𝑖𝑗) Standard deviation of travel time for highway link 𝑖𝑗 

𝜏𝑝𝑟𝑠
 Charged toll on highway path 𝑝𝑟𝑠 

𝐷𝑖𝑗 Length of link 𝑖𝑗 

𝜒𝑟𝑠 Credit distributed among users of each OD pair, 𝑟𝑠 

𝜇𝑟𝑠
𝑚𝑘 

Minimum travel cost from origin 𝑟 to destination 𝑠 for VOT class 𝑚 and VOR class 𝑘 at 

the user equilibrium state 

𝑓𝑝𝑟𝑠
𝑚𝑘 

Total number of users in VOT class 𝑚 and VOR class 𝑘 using highway path 𝑝𝑟𝑠 

departing from origin 𝑟 to destination 𝑠 

𝐸(𝑡𝑟𝑠
𝑇 ) Mean travel time of transit line between origin, 𝑟, and destination, 𝑠 

σ(𝑡𝑟𝑠
𝑇 ) Standard deviation of travel time for transit line between origin, 𝑟, and destination, 𝑠 

𝐶𝑇𝑟𝑠
 Out of pocket cost of transit mode for the OD pair 𝑟𝑠 

𝑓𝑇𝑟𝑠

𝑚𝑘 Total number of users in VOT class 𝑚 and VOR class 𝑘 using transit 

𝑞𝑟𝑠 Demand of all users between origin, 𝑟, and destination 𝑠 

𝛥𝐺𝑚𝑘 
The change in generalized costs of a user in VOT class m and VOR class k before and 

after toll (after toll implementation minus before toll implementation) 

𝐻(𝛥𝐺𝑚𝑘) 
Heaviside step function of the generalized cost difference which holds 1 if 𝛥𝐺𝑚𝑘 > 0 and 

0 otherwise 

Δ𝑖𝑗
𝑧  A binary variable holding 1 if link 𝑖𝑗 is in zone 𝑧 

𝑢𝑖𝑗
𝑝𝑟𝑠 

A binary variable holding one for the link ij with the maximum toll along path prs and 

zero for other links 

Decision Variables 

𝜏𝑖𝑗
𝐴  Charged toll on highway link 𝑖𝑗 

𝜏𝑧 Charged toll for zone 𝑧 

𝜏𝑟𝑠
𝑇  Distributed subsidy among transit users of origin, 𝑟, and destination, 𝑠 

 

Given these notations, the bimodal self-funded and Pareto-improving pricing problem 

considering travel time reliability for heterogeneous users is formulated as follows. 
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𝑚𝑖𝑛
 

∑ 𝑥𝑖𝑗
𝐴𝐸(𝑡𝑖𝑗)

(𝑖,𝑗)∈𝜁

 (5-1) 

 
Subject to 
 

 

∑ 𝛼𝑚𝐸(𝑡𝑖𝑗)𝛿𝑖𝑗
𝑝𝑟𝑠

(𝑖,𝑗)∈𝜁

+
√

∑ ((𝛽𝑚𝑘)2𝜎2(𝑡𝑖𝑗)𝛿𝑖𝑗
𝑝𝑟𝑠)

(𝑖,𝑗)∈𝜁

+ ∑ ∑ ((𝛽𝑚𝑘)2𝜎(𝑡𝑖𝑗, 𝑡𝑙𝑘)𝛿𝑖𝑗
𝑝𝑟𝑠)

(𝑙,𝑘)∈𝜁
𝑖𝑗≠𝑙𝑘

(𝑖,𝑗)∈𝜁

+ ∑ 𝐶𝑜𝐷𝑖𝑗𝛿𝑖𝑗
𝑝𝑟𝑠 +

(𝑖,𝑗)∈𝜁

𝜏𝑝𝑟𝑠
+ 𝐶𝐴 + 𝜒𝑟𝑠 = 𝜇𝑟𝑠

𝑚𝑘   𝑖𝑓 𝑓𝑝𝑟𝑠
𝑚𝑘 > 0, ∀𝑚, 𝑘, 𝑝𝑟𝑠 

 

(5-1-1) 

∑ 𝛼𝑚𝐸(𝑡𝑖𝑗)𝛿𝑖𝑗
𝑝𝑟𝑠

(𝑖,𝑗)∈𝜁

+
√

∑ ((𝛽𝑚𝑘)2𝜎2(𝑡𝑖𝑗)𝛿𝑖𝑗
𝑝𝑟𝑠)

(𝑖,𝑗)∈𝜁

+ ∑ ∑ ((𝛽𝑚𝑘)2𝜎(𝑡𝑖𝑗, 𝑡𝑙𝑘)𝛿𝑖𝑗
𝑝𝑟𝑠)

(𝑙,𝑘)∈𝜁
𝑖𝑗≠𝑙𝑘

(𝑖,𝑗)∈𝜁

+ ∑ 𝐶𝑜𝐷𝑖𝑗𝛿𝑖𝑗
𝑝𝑟𝑠 +

(𝑖,𝑗)∈𝜁

𝜏𝑝𝑟𝑠
+ 𝐶𝐴 + 𝜒𝑟𝑠 ≥ 𝜇𝑟𝑠

𝑚𝑘   𝑖𝑓 𝑓𝑝𝑟𝑠
𝑚𝑘 = 0, ∀𝑚, 𝑘, 𝑝𝑟𝑠 

 

(5-1-2) 

𝛼𝑚𝐸(𝑡𝑟𝑠
𝑇 ) + 𝛽𝑚𝑘𝜎(𝑡𝑟𝑠

𝑇 ) + 𝜏𝑟𝑠
𝑇 + 𝐶𝑇𝑟𝑠

+ 𝜒𝑟𝑠 = 𝜇𝑟𝑠
𝑚𝑘                    𝑖𝑓 𝑓𝑇𝑟𝑠

𝑚𝑘 > 0, ∀𝑚, 𝑘 (5-1-3) 

𝛼𝑚𝐸(𝑡𝑟𝑠
𝑇 ) + 𝛽𝑚𝑘𝜎(𝑡𝑟𝑠

𝑇 ) + 𝜏𝑟𝑠
𝑇 + 𝐶𝑇𝑟𝑠

+ 𝜒𝑟𝑠 ≥  𝜇𝑟𝑠
𝑚𝑘                   𝑖𝑓 𝑓𝑇𝑟𝑠

𝑚𝑘 = 0, ∀𝑚, 𝑘 (5-1-4) 

∑ ∑ 𝑓𝑝𝑟𝑠
𝑚𝑘

𝑚,𝑘𝑝𝑟𝑠

+ ∑ 𝑓𝑇𝑟𝑠

𝑚𝑘

𝑚,𝑘

= 𝑞𝑟𝑠                                                            ∀𝑟𝑠 (5-1-5) 

∑ ∑ ∑ 𝑓𝑝𝑟𝑠
𝑚𝑘𝜏𝑝𝑟𝑠

𝑚,𝑘𝑝𝑟𝑠(𝑟,𝑠)

+ ∑ 𝑓𝑇𝑟𝑠

𝑚𝑘𝜏𝑟𝑠
𝑇

𝑚,𝑘

+ ∑ 𝑞𝑟𝑠𝜒𝑟𝑠

(𝑟,𝑠)

≥ 0 (5-1-6) 

𝑥𝑖𝑗
𝐴 = ∑ ∑ ∑ 𝑓𝑝𝑟𝑠

𝑚𝑘𝛿𝑖𝑗
𝑝𝑟𝑠

𝑚,𝑘𝑝𝑟𝑠(𝑟,𝑠)

 (5-1-7) 

𝛥𝐺𝑚𝑘 ≤ 0                                                                                                  ∀𝑚, 𝑘 (5-1-8) 

 𝜏𝑝𝑟𝑠
≥ 0                                ∀𝑟𝑠   &  𝑓𝑝𝑟𝑠

𝑚𝑘, 𝑓𝑇𝑟𝑠

𝑚𝑘 ≥ 0                            ∀𝑚, 𝑘, 𝑟𝑠  (5-1-9) 

{
𝜏𝑟𝑠

𝑇 = 0, 𝜒𝑟𝑠 ≤ 0    𝐶𝑟𝑒𝑑𝑖𝑡 − 𝑏𝑎𝑠𝑒𝑑 𝑡𝑜𝑙𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

𝜏𝑟𝑠
𝑇 ≤ 0, 𝜒𝑟𝑠 = 0    𝑇𝑟𝑎𝑛𝑠𝑖𝑡 − 𝑏𝑎𝑠𝑒𝑑 𝑡𝑜𝑙𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦

          ∀𝑟𝑠 (5-1-10) 

The objective function, defined in Equation (5-1), minimizes the total travel time of 

highway users. This function is subject to the user equilibrium constraints, Constraints (5-1-1) to 
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(5-1-4), ensuring travelers choose the path with the least generalized cost. Constraints (5-1-1) and 

(5-1-2) describe the route assignment pattern for the private car users. Similarly, Constraints (5-1-

3) and (5-1-4) describe the route assignment pattern for the transit users. The second term in 

Constraints (5-1-1) and (5-1-2) considers the correlation between the subsequent roadway links in 

the paths. As mentioned earlier, two approaches are considered in terms of subsidy distribution: 

transit-based and credit-based. In the transit-based strategy, the collected tolls from highway users 

are distributed only among transit users, 𝜏𝑟𝑠
𝑇 . In the credit-based strategy, a credit, 𝜒𝑟𝑠, is assigned 

to all users in the network. Constraint (5-1-5) expresses flow conservation in the network. 

Constraint (5-1-6) guarantees the self-funded (revenue neutrality) condition. Constraint (5-1-7) 

finds the highway link flows from paths flows. Constraint (5-1-8) ensures that all users are better 

off after toll implementation (Pareto-improving condition). Constraint (5-1-9) confirms that the 

variables associated with toll values, and path flows are non-negative continuous values. Finally, 

Constraint (5-1-10) defines the toll distribution strategy. Considering a transit-based toll 

distribution strategy, 𝜒𝑟𝑠 is equal to zero. In case of a credit-based toll distribution strategy, 𝜏𝑟𝑠
𝑇  is 

equal to zero.  

To satisfy Constraint (5-1-8), a scaled value of the rectified linear unit (ReLU) function of 

𝛥𝐺𝑚𝑘 is added with a large factor to the objective function as below. 

𝑚𝑖𝑛
 

∑ 𝑥𝑖𝑗
𝐴𝐸(𝑡𝑖𝑗)

(𝑖,𝑗)∈𝜁

+ 𝜆 ∑ ∑ ∑
𝛥𝐺𝑚𝑘𝐻(𝛥𝐺𝑚𝑘)

𝛼𝑚

𝑚,𝑘𝑝𝑟𝑠(𝑟,𝑠)

 (5-2) 

 
The second term in Equation (5-2) minimizes the users’ loss due to toll implementation. In 

this equation, each user class’s ReLU function of 𝛥𝐺𝑚𝑘 is divided by the VOT value of the user 

class to make the units of the objective function terms consistent. The decision variables in this 

formulation are path toll, and transit user’s subsidy or user’s credit. Nonetheless, the proposed 
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formulation (and the solution methodology presented hereafter) is in general form and can be 

applied to any pricing strategy, such as link-based, corridor-based, cordon-based, and so on. For 

instance, in case a link-based pricing strategy is considered, the path toll is defined as follows. 

𝜏𝑝𝑟𝑠
= ∑ 𝜏𝑖𝑗

𝐴 𝛿𝑖𝑗
𝑝𝑟𝑠

(𝑖,𝑗)∈𝜁

 (5-3) 

In the numerical experiment section of this chapter, a zone-based pricing strategy is 

considered. To this end, the network is divided into multiple zones, 𝑧, and users are charged with 

the maximum toll value of the zones they pass. Therefore, the decision variable changes to the 

tolls on the links of each zone, 𝜏𝑧. Given a zone-based toll implementation strategy, the following 

constraints should be considered to the mathematical program presented in (5-1).  

𝜏𝑝𝑟𝑠
≥ ∑ 𝜏𝑧𝛥𝑖𝑗

𝑧

𝑧

𝛿𝑖𝑗
𝑝𝑟𝑠 (5-4-1) 

𝜏𝑝𝑟𝑠
≤ ∑ ∑ 𝜏𝑧𝛥𝑖𝑗

𝑧 𝛿𝑖𝑗
𝑝𝑟𝑠 + 𝜂(1 − 𝑢𝑖𝑗

𝑝𝑟𝑠)

𝑧(𝑖,𝑗)∈𝜁

 (5-4-2) 

∑ 𝛿𝑖𝑗
𝑝𝑟𝑠𝑢𝑖𝑗

𝑝𝑟𝑠

(𝑖,𝑗)∈𝜁

= 1 (5-4-3) 

5-3- Methodology 

The problem presented above is a non-convex mathematical problem with user equilibrium 

constraints, which is a class of problems difficult to solve, especially for large-scale networks. The 

objective function is not convex considering the ReLU function included to ensure the Pareto-

improving condition of the selected pricing scheme. In addition, in this chapter a concave relation 

between the mean and standard deviation of the travel time is considered for each link to estimate 

its travel time variability. This problem is computationally demanding and its solution could be 

time-consuming without a proper approach, as the RBUE algorithm should be called multiple 
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times to find the optimal toll values. As gradient descent type algorithms are unable to solve this 

problem due to the non-convexity, we propose to use a metaheuristic algorithm based on PSO 

(108). Different metaheuristic algorithms are used in the literature to solve non-convex problems 

in transportation studies (109,110). Considering the distributed multi-agent search structure of the 

problem in this study, PSO has proved to be successful in a variety of problem domains, which 

motivated its use in this study. Different variants of the PSO algorithm are used for optimizing 

complex transportation problems (110–112). PSO is a population-based search algorithm and uses 

a swarm of particles to optimize the problem. Each particle has two features that identify its 

movements: position and velocity. The particle position represents a feasible solution for the 

problem’s decision variables (i.e., toll values). The particle velocity defines the step size as the 

particles move within the feasible region in each iteration. This feasible region typically belongs 

to a multi-dimensional search space, where the particles move towards the best positions of 

individual particles (local best values) and the position of the entire swarm (global best value) 

(111,113). Several techniques are developed in the literature to represent the particles movement 

(114). In this study, we use the Clerc and Kennedy PSO approach to move particles within the 

search area (113). 

For each particle, j, a position is first initialized (an initial solution) with a uniformly 

distributed random vector (𝑃𝑗  ~𝑈(𝑏𝑙𝑜𝑤, 𝑏𝑢𝑝)). The particle’s best-known position is initialized to 

its initial position (𝑙𝑗: = 𝑃𝑗). The swarm’s best-known position is also updated with the particle’s 

position that have the lowest objective function value among all particles (g). While the maximum 

number of main iterations (𝐼𝑚𝑎𝑥) is not reached, the velocity and position of each particle in each 

iteration, I, are updated using the following formulations. 
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𝑣𝑗 ← 𝜔 𝑣𝑗 + 𝜑𝑙𝑟𝑙 (𝑙𝑗 − 𝑝𝑗) + 𝜑𝑔𝑟𝑔(𝑔 − 𝑝𝑗) (5-5) 

𝑃𝑗 ← 𝑃𝑗 + 𝑣𝑗  (5-6) 

  

The first term in Equation (5-5) is the velocity of the particle in previous iteration (𝑣𝑗), 

which is multiplied by an inertia weight factor, ω, to balance between the local and global 

positions. The second term moves the particle towards the local best position of the particle with 

the acceleration coefficient, 𝜑𝑙, along with a random variate between zero and one, 𝑟𝑙, which 

prevents trapping in local optima. The last term moves the particle towards the global best position 

with the acceleration coefficient, 𝜑𝑔, and random variate, 𝑟𝑔. In Clerc and Kennedy PSO approach, 

the acceleration coefficients are defined as follows. 

𝜑𝑙 = 𝜓𝜙1 , 𝜑𝑔 = 𝜓𝜙2 (5-7) 

where 

𝜓 =
2𝜅

|2 − (𝜙1 + 𝜙2) − √(𝜙1 + 𝜙2)2 − 4(𝜙1 + 𝜙2)|
 (5-8) 

 
Here, 𝜅, 𝜙1, and 𝜙2 are constants to be defined. Once the position of the particle is updated 

using the velocity value and the previous position (Equation 5-6), the particle’s local best position 

(𝑙𝑗) and the swarm’s best-known position (global best or 𝑔) are updated in case of finding an 

improved objective function value. The definitions of particle swarm optimization algorithm 

parameters and variables are summarized in Table 5-2. 

An RBUE algorithm is embedded in the PSO algorithm to find the objective function value 

pertaining to each toll value (particle). The proposed path-based formulation cannot be applied to 

large-scale networks, since the number of paths increases exponentially with the network size. To 

address this issue a column generation approach is implemented to generate the set of used paths 
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by travelers. The details of the algorithm to solve the RBUE problem is described hereafter. To 

satisfy the self-funded condition, Constraint (5-1-6), the collected tolls are distributed among 

transit users or all users. As the current study can be applied to any toll distribution strategy, it 

should be specified as part of the input of the PSO algorithm. If a credit-based toll distribution 

strategy is selected, the credits are distributed among users at each iteration of the PSO algorithm. 

This credit can be used by users to pay toll or compensate the travel time loss. In the non-credit 

based or transit-based approach, the collected tolls are distributed at each iteration of the RBUE 

algorithm to ensure the self-funding condition. An illustration of the PSO algorithm to find the 

optimal toll values considering reliability and equity is shown in Figure 5-1. 

Table 5-2- Particle Swarm Optimization Algorithm Parameters and Variables 

Parameter 

/Variable 

Definition 

𝑃𝑗 Position of particle 𝑗 in the particle swarm optimization algorithm 

𝑏𝑙𝑜𝑤, 𝑏𝑢𝑝 Lower/Upper bound of toll values 

𝑙𝑗 Best-known position of particle 𝑗 

𝑔 Swarm’s best-known position 

𝐼, 𝐼𝑚𝑎𝑥 Iteration/Maximum iteration number in the particle swarm optimization algorithm 

𝑣𝑗 Velocity of particle 𝑗 in each iteration of the particle swarm optimization algorithm 

𝜑𝑙 , 𝜑𝑔 Acceleration coefficients of the particle and swarm 

𝑟𝑙 , 𝑟𝑔 Random variates between zero and one 

𝜙1, 𝜙2 Constants equal to 2.05 in Clerc and Kennedy approach 

𝛫 A constant in the particle swarm optimization algorithm 

ω Inertia weight factor 

𝑛, 𝑛𝑚𝑎𝑥 
Iteration/Maximum iteration number in the reliability-based user equilibrium 

algorithm 

𝑓(𝑛) Step size at iteration 𝑛 

𝐺𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑟𝑠,𝑚𝑘

 
Generalized cost of the current path holding by VOT class m and VOR class k for 

each OD pair rs at each iteration of RBUE algorithm 

𝐺𝐶𝑏𝑒𝑠𝑡
𝑟𝑠,𝑚𝑘

 
Minimum generalized cost for VOT class m and VOR class k for each OD pair rs at 

each iteration of RBUE algorithm 

𝛤𝑚𝑘(𝑝𝑟𝑠) The gap between the generalized costs of the current path, 𝜌𝑟𝑠, and the best path 

𝛤𝑡𝑜𝑡𝑎𝑙
𝑛  

The total gap of all user classes in the reliability-based user equilibrium algorithm at 

each iteration, n 

𝜖 
A small number that ensure convergence of the reliability-based user equilibrium 

algorithm 
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Figure 5-1- Particle swarm optimization algorithm to find optimal toll values minimizing 

highway travel time and violation of Pareto-improving condition considering reliability 
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As illustrated in Figure 5-1, the RBUE problem is solved for each particle’s position (set 

of toll values) at each iteration of the PSO algorithm. The output of the RBUE algorithm includes 

the link flows, the collected tolls from highway users and the distributed subsidy among transit/all 

users. The output also includes the generalized costs of all users in the network, which are used to 

check the Pareto-improvement criterion. In this chapter, a heuristic approach is used to solve the 

RBUE problem in which each user class finds its least generalized cost path. The approach consists 

of three main components (1) a reliability-based optimal path finding procedure that can reflect 

heterogeneous users’ preferences; (2) a column generation approach to generate the set of superior 

paths for each traveler; and (3) an algorithmic iterative process for redistributing user choice 

outcomes to achieve the desired equilibrium state.  

For the path finding sub-problem, a Monte-Carlo simulation-based approach, adopted from 

the literature (86,115), is used. The uniqueness of this approach is to consider link travel time 

correlations and heterogeneous travelers in terms of reliability preferences. The methodology 

generates path travel time distributions for a set of candidate paths in a stochastic network based 

on a joint link travel time distribution at the network level. The optimal route choice of each user 

class is found using the least generalized cost path among the set of candidate paths. Furthermore, 

a variant of the method of successive averages (MSA) is used to redirect flow to the optimum path 

at each iteration of the RBUE algorithm (116). The likelihood of re-assigning a portion of user 

class from its current path to the optimal path, found for that user class in each iteration, depends 

on the iteration number in RBUE. Therefore, as the algorithm proceeds, a smaller portion of each 

user class is moved to the newly generated least generalized cost path. The algorithm converges 

when a pre-defined gap measure is smaller than a small threshold. The algorithm used for solving 

the RBUE problem is illustrated in Figure 5-2. 
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Figure 5-2- The reliability-based user equilibrium algorithm considering toll values and 

heterogeneous users 
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5-4- Numerical Experiments 

The solution methodology described above is applied to a modified version of the Sioux 

Falls network, which consists of 24 nodes, 76 links, and 528 OD pairs (117). The network is 

modified in several ways. First, a transit line is assumed to exist between every OD pair in the 

original network to be able to examine the impact of implementing the pricing scheme on users’ 

mode choices in a bimodal network. Second, considering the new bimodal network, the demand 

level for each OD pair is doubled to maintain a moderate level of congestion close to that in the 

original network (called “modified network” hereafter). In addition, a network scenario is 

considered with a higher demand level for highway links to investigate the impacts of the 

congestion level on pricing strategies. We refer to this network in the remaining of the chapter as 

the “congested network”. Finally, two toll zones are assumed, where a specific toll value is applied 

to all links in the same zone. If a vehicle passes through both zones, the maximum toll between 

the two zones is charged. The schematic view of the modified Sioux Falls network, the new ratios 

of flow to capacity for each link in the non-tolled equilibrium state, and the two defined zones for 

applying tolls are shown in Figure 5-3a. To consider travel time variability, the standard deviation 

of the travel time is considered for each link, in addition to the mean travel time. There is no 

consensus in the literature on the relation between standard deviation of link travel time and its 

mean travel time. Mahmassani et al. (18) presented a linear relationship for this purpose. This 

linear relationship is more appropriate at the network level, and at the link level it is scattered. The 

proposed linear relation for the link level in their study is as follows. 

𝜎(𝑡𝑖𝑗)

𝐷𝑖𝑗
= 0.99 (

𝐸(𝑡𝑖𝑗)

𝐷𝑖𝑗
) − 0.47 (5-9) 

In addition, many studies claim that standard deviation of travel time increases up to a 

certain point of mean travel time and then decreases with a concave relation (19). Adopting this 
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line of thoughts, the relationship between the standard deviation and the mean travel time values 

is obtained by fitting a second order polynomial function as given below using simulated travel 

time data for Chicago downtown network during 5-10 AM  (15).  

𝜎(𝑡𝑖𝑗)

𝑡𝑓
= −0.16 (

𝐸(𝑡𝑖𝑗)

𝑡𝑓
)

2

+ 2.31 (
𝐸(𝑡𝑖𝑗)

𝑡𝑓
) − 2.15 (5-10) 

where 𝑡𝑓 is the free flow link travel time. The fitted curve to the simulation data with the 

R-square value of 0.93 is illustrated in Figure 5-3b. The algorithm of the current study is 

implemented using both relations to estimate standard deviation of travel time based on the 

estimated mean travel time (Equation (5-9) and Equation (5-10)), which itself is a function of link 

flow. The mean travel times of a transit line is arbitrarily assumed to be equal to four times of the 

deterministic path travel times between their relevant OD pairs assigning free flow travel times to 

all links. Due to lack of literature on the travel time variability of transit lines, they are assumed to 

be half of their mean travel time. In addition, a fixed travel time of six minutes, which is equivalent 

to the average walking distance of 0.25 mi, is considered for all transit users to consider extra time 

needed for walking to the station and getting on/off the transit line. A fixed fare of $1 is assumed 

for all transit lines. The private car operation cost is assumed to be $0.6 per mile (48).  

As illustrated in Figure 5-4, the VOT distribution among travelers for each OD pair follows 

a log-normal distribution. This log-normal distribution is assumed to have an average value of 

$21/hr., and a standard deviation of $10.5/hr (5). The VOT distribution is discretized into ten 

classes from $4/hr to $60/hr as given in Figure 5-4b. Furthermore, each VOT class contains a 

uniform distribution of VOR ranging from 0.69 times to 1.12 times of the VOT (55). Four VOR 

classes are extracted for each VOT as illustrated in the figure. 
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(a) (b) 

Figure 5-3- (a) Selected toll zones on the modified Sioux Falls network (x represents link flow 

and c denotes the capacity of the link) (b) the fitted concave function between standard deviation 

and mean travel time normalized to free flow travel time  

  

(a) (b) 

Figure 5-4- Value of time (VOT) and value of reliability (VOR) (a) distributions and (b) classes 

Four toll distribution strategies are considered in this chapter: CAll, COD, TAll, and TOD, 

which are defined in Table 5-3. Implementing the OD-based strategies is challenging, since it is 

not easy to differentiate travelers based on their OD pairs. However, the subsidy can be spent more 

efficiently on increasing transit utility for specific OD pairs or cluster travelers based on their 

home/work locations. Previous studies also have shown that finding a self-funded and Pareto-
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improving pricing scheme that distributes tolls evenly among all network/transit users is not 

always achievable (48,49). The PSO algorithm is applied to the modified Sioux Falls network 

considering the two demand levels (i.e., modified network, congested network defined earlier) and 

the toll distribution strategies defined above. In the current implementation, the parameters 𝜅, 

𝜙1/𝜙2, ω, 𝐼𝑚𝑎𝑥, and 𝜂 of the PSO algorithm are set at 1, 2.05, 0.99, 15, and 30, respectively. In 

addition, the maximum gap in the RBUE algorithm is assumed to be 0.0001.  The lower and upper 

bounds of toll values (𝑏𝑙𝑜𝑤/𝑏𝑢𝑝) are also considered to be zero and five dollars, respectively.  

 Figure 5-5 shows the search area and the objective function values (Equation (5-2)) for a 

scenario in which the credit-based strategy is adopted for the high demand case. This figure 

certifies that the algorithm searches the entire feasible space and moves efficiently towards the 

optimum toll values for zone 1 and zone 2 ($3.44 and $1.18). The figure also illustrates the non-

convexity of the objective function, which precludes the application of gradient-based search 

algorithms to adequately solve this problem. 

Table 5-3- Toll Distribution Strategies 

Toll 

Distribution 

Strategy 

Definition 

CAll Toll distribution strategy, which allocates uniform credit to the entire network users  

COD 
Toll distribution strategy, which allocates OD specific credits with uniform distribution 

among users of each OD pair  

TAll 
Toll distribution strategy, which collects toll from highway users of all OD pairs and 

distributes evenly among all transit users 

TOD 
Toll distribution strategy, which collects toll from highway users of each OD pair and 

distributes evenly among transit users of the same OD pair 
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(a) (b) (c) 

Figure 5-5- The search area for the credit-based toll distributed among the same OD pairs of the 

congested Sioux Falls network 

Table 5-4 summarizes the results of applying the self-funded and Pareto-improving pricing 

scheme for the different toll distribution strategies using both linear and concave relationships 

between the standard deviation and mean of the links’ travel times. The results are given for the 

congested and the modified networks. Several measures of performance are recorded for each case 

including the optimum tolls, the improvement in travel time, total generalized cost of users, and 

the average loss in the users’ generalized cost. As illustrated in table, there is no self-funded and 

Pareto-improving toll value for the congested and modified networks, once the collected tolls are 

distributed evenly among all network/transit users. However, if collected tolls are distributed 

among travelers of the same OD pair, almost all scenarios find self-funded and Pareto-improving 

pricing values that can be applied to zone 1 (inner zone) and zone 2 (outer zone), respectively. In 

addition, credit-based toll distribution strategies impose higher tolls on links relative to that of the 

transit-based strategies. Accordingly, more improvements in the private car users’ total travel time 

and all travelers’ total generalized cost, considering their VOT and reliability valuation, is recorded 

for the credit-based strategy compared to the transit-based one. Furthermore, one can also observe 

the successful application of the penalty factor incorporated into the objective function to provide 
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Pareto-improving pricing schemes. The average loss in the travelers’ generalized cost due to toll 

implementation is insignificant (less than 1 cent) and can be neglected. 

Table 5-4- Optimum tolls and the resulting system and users’ costs for different network 

scenarios and toll distribution strategies for different reliability relations 

Network 

Scenario 
 Congested Network Modified Network 

Toll Distribution 

Strategy 

Reliability 

Relation 
COD CAll TOD TAll COD CAll TOD TAll 

Toll values 

(Inner 

zone/Outer 

zone) ($) 

Linear 
2.37/ 

1.38 
0/0 

2.29/ 

0.41 
0/0 

1.56/ 

0.70 
0/0 

0.11/ 

0 
0/0 

Concave 
3.44/ 

1.18 
0/0 

3.04 

/0.26 
0/0 

1.54/ 

0.17 
0/0 0/0 0/0 

Total collected 

toll ($) 

Linear 570 0 358 0 340 0 18 0 

Concave 662 0 410 0 270 0 0 0 

Users violating 

Pareto-

improving 

condition (%) 

Linear 0.90 0 2.23 0 0.23 0 0 0 

Concave 2.37 0 1.69 0 0.62 0 0 0 

Average loss in 

the users’ 

generalized cost 

($) 

Linear 0.003 0 0.008 0 
<0.00

1 
0 0 0 

Concave 0.002 0 0.003 0 0.001 0 0 0 

Total 

generalized cost 

before pricing 

($) 

Linear 16,422 16,422 16,422 16,422 9,105 9,105 9,105 9,105 

Concave 16,343 16,343 16,343 16,343 8,968 8,968 8,968 8,968 

Total 

generalized cost 

after pricing ($) 

Linear 15,749 16,422 15,644 16,422 8,762 9,105 9,012 9,105 

Concave 15,546 16,343 15,469 16,343 8,656 8,968 8,968 8,968 

Total travel time 

of highway 

users before 

pricing (hr.) 

Linear 96.00 96.00 96.00 96.00 68.69 68.69 68.69 68.69 

Concave 89.78 89.78 89.78 89.78 69.15 69.15 69.15 69.15 

Total travel time 

of highway 

users after 

pricing (hr.) 

Linear 80.75 96.00 75.55 96.00 60.68 68.69 66.61 68.69 

Concave 76.51 89.78 73.52 89.78 64.03 69.15 69.15 69.15 

 

To highlight the importance of considering travel time reliability for developing self-

funded Pareto-improving pricing strategy, the tolls are estimated without considering travel time 
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variability (fourth column of Table 5-5) for the scenario in which the credit-based toll distribution 

strategy is implemented for the congested network. The resulting tolls are then substituted into the 

network with travel time reliability (fifth column of Table 5-5). Note that for the results in the 

fourth column, no optimization is executed and the toll values are just used to run the RBUE 

algorithm. These results are then compared with the optimum results that consider travel time 

reliability (third column of Table 5-5). Although the tolls resulted from the scenario without 

considering travel time reliability are close to be Pareto-improving and self-funded, the results 

show that the optimum points with and without considering travel time reliability are significantly 

different. Furthermore, not considering travel time reliability overestimates the expected benefits. 

For example, using the concave relationship while ignoring travel time reliability, it is estimated 

to collect $679 and have 20.86% improvement in travel time of private car users. However, 

substituting the toll values of this scenario into the realistic scenario, in which travel time reliability 

is considered, results in a total toll revenue of $511 and 12.97% reduction in the total travel time. 

Therefore, it is important to consider travel time reliability in the design of the pricing scheme to 

obtain more accurate estimation of collected tolls and the improvement in the overall network 

performance.   
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Table 5-5- Comparison of the results with and without considering travel time reliability for the 

congested network and the credit-based toll distribution strategy among the same OD pair 

Performance Measure 
Reliability 

relation 

With 

considering 

travel time 

reliability 

Without 

considering 

travel time 

reliability 

Substituting the 

results of without 

reliability in the 

realistic scenario 

Toll values (Inner 

zone/Outer zone) ($) 

Linear 2.37/1.38 0/2.43 0/2.43 

Concave 3.44/1.18 0/2.43 0/2.43 

Total collected toll ($) 
Linear 570 679 492 

Concave 662 679 511 

Users violating Pareto-

improving condition (%) 

Linear 0.90 3.15 3.97 

Concave 2.37 3.15 5.80 

Average loss in the users’ 

generalized cost ($)  

Linear 0.003 0.011 0.015 

Concave 0.002 0.011 0.013 

Improvement in 

generalized cost by toll 

implementation (%) 

Linear 4.10 7.36 3.82 

Concave 4.88 7.36 3.86 

Improvement in travel time 

of highway users by toll 

implementation (%) 

Linear 15.88 20.86 16.76 

Concave 14.78 20.86 12.97 

5-5- Summary 

This chapter presented a modeling framework and solution methodology for finding 

revenue-neutral and Pareto-improving congestion pricing values considering travel time 

variability for heterogeneous users with different VOTs and VORs in a bi-modal network 

consisting of transit and personal cars. The framework extends the second-best pricing 

optimization problem by integrating an RBUE algorithm. The objective of the pricing algorithm 

minimizes the total travel time of highway users given a revenue-neutral and Pareto-improving 

pricing set. Users’ heterogeneity in response to the reliability measures, their response to different 

toll values and toll distribution strategies, and link travel time correlations are considered in the 
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RBUE problem. A PSO algorithm is developed to determine the optimum toll values considering 

different toll distribution strategies (e.g. credit-based, transit subsidy).  

The proposed algorithm is applied into a modified Sioux Falls network with different levels 

of congestion. In addition, two credit-based toll distribution strategies (i.e. OD-based versus 

among all users) and two transit-based toll distribution strategies are compared in the numerical 

experiments. This chapter also explored the impacts of different types of relationships (i.e. linear, 

concave) between mean and standard deviation of link travel time. The results show the importance 

of considering travel time reliability by comparing the optimum toll values, the changes in system 

cost, and the total travel time with and without considering travel time reliability. In addition, the 

results demonstrate that the PSO algorithm successfully searches the feasible region and efficiently 

finds the optimum toll values. Comparing the results of different toll distribution strategies also 

confirms that there is no self-funded and Pareto-improving pricing for the networks of this chapter, 

once the collected tolls are distributed evenly among all network/transit users. However, if the 

collected tolls from travelers of each OD pair are used to subsidize only travelers of the same OD 

pair, such pricing values are successfully found. This subsidization can be done through 

investments on the transit lines or other infrastructure of the OD pairs to avoid violating equity.  
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CHAPTER 6 - Impacts of Connected and Autonomous Vehicles on the 

Network Travel Time Reliability 

6-1- Overview 

Drivers’ behavior plays a pivotal role in the development of new transportation 

technologies, such as connected and automated vehicle technology, and planning for future 

transportation systems. By the advent of CV technology, driver-vehicle behavior is expected to 

change significantly, since these vehicles can communicate with each other and also traffic 

management centers on a real-time basis. Travelers’ short-term decisions would change 

remarkably through V2V communications. Moreover, V2I communications may affect the long-

term decisions made by traffic management systems (69). In addition, the driving logic of an AV 

is different from the human-driven vehicles, as humans have higher reaction times compared to 

robots. Despite the fact that increasing levels of connectivity and automation of vehicles is 

expected to improve mobility and safety in transportation systems, there is a growing concern 

about the long-term impacts of these technologies on transportation planning due to the possible 

induced demand. As such systems have not been deployed in practice at large-scale, a traffic 

simulation tool that considers the impacts of connected and automated vehicle technology on 

travelers’ behavior, transportation planning, and travel forecasting is the only available tool for 

transportation authorities. Therefore, from the modeling standpoint, the presence of connected and 

autonomous vehicles needs to be incorporated into traffic simulations. 

Simulation-based DTA tools utilize mesoscopic traffic simulation to capture traffic 

dynamics at the network level. DTA frameworks incorporate drivers’ response to different sources 

of information, so as to model traffic flows over a planning horizon in a transportation network. 

Time-dependent travel times provided by DTA models can be utilized in travel choice modeling 
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practices, and as a result, generate proactive strategies for systems based on predicted traffic 

conditions (118,119). Given that simulation-based DTA tools can be used as effective analysis 

tools to evaluate a broad range of operational and strategic improvements to transportation 

networks, having simulation models that are sensitive to the interactions between regular (human-

driven vehicles without connectivity), connected (human-driven vehicles with connectivity), and 

autonomous vehicles plays a pivotal role in predicting future traffic dynamics under emerging 

vehicle technologies. 

The effects of connectivity and automation of vehicles and their applications on reducing 

congestion and improving stability and throughput have been widely studied at the segment level 

(14,63,65,67). A complementary approach to gain further insights into the future of transportation 

systems is to investigate large-scale impacts of connectivity and automation at the network level. 

Most of the studies in this area assume a uniform distribution of CVs or AVs throughout the 

network. However, in reality, these vehicles are not distributed uniformly over all network links. 

For instance, the presence of en-route (adaptive) users results in various distribution of traffic flow 

in the network. These users are aware of the current traffic conditions at different regions of the 

network via access to real-time information. Thus, they may use alternate routes in the case of 

congestion or gridlock on initially selected routes (120,121). CVs and AVs are expected to have 

access to this real-time information through V2I information. Therefore, a portion of CVs and AVs 

that are assigned to the network, might use alternate paths, instead of their initial choice of route. 

In addition to the en-route users, drivers of CVs and HDV are heterogeneous and have different 

acceleration behavior depending on their level of risk acceptance and information availability. 

Therefore, different driving patterns can be considered even for a same vehicle type to account for 

the impacts of heterogeneous drivers in the traffic simulation model. This is mainly neglected in 
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most of the mesoscopic simulation tools for large-scale networks. Furthermore, there are only a 

few studies in the literature that consider the impacts of a mixed traffic condition on the capacity 

of intersections (at the network level, and not at a single intersection level), which is an important 

factor affecting the traffic flow of the network. Finally, it is established that traffic flow models 

are different in freeways and arterials at a macroscopic level. However, there is not much data 

available to fit microscopic models for arterials. 

In this study, HDV refers to human-driven vehicles that may have access to en-route 

information via GPS or similar applications. CVs are human-driven vehicles that are connected to 

each other and have access to the information of their surrounding vehicles. Finally, AV refers to 

a self-driving vehicle, which is connected to other vehicles. In light of these definitions, this 

chapter aims to realistically observe the impacts of CV and AV technologies on traffic flow and 

travel time reliability at the network level. The simulation-based DTA tool of DYNASMART-P 

is updated and used as the base tool to simulate traffic dynamics at the network level (85). This 

chapter also incorporates different microscopic modeling frameworks for various vehicle types 

(i.e., HDV, CV, AV) and captures the collective effects of the interactions between them on traffic 

flow dynamics. The stochastic acceleration model of Hamdar et al. (12), which avoids (most) 

crashes by a perceived probability, is used to model the car-following behavior of HDVs. The 

acceleration behavior of CVs is modeled based on the Intelligent Driver Model (IDM) (13), which 

is a deterministic model. Furthermore, the model of Talebpour and Mahmassani (14) is utilized for 

the car-following behavior of AVs. In order to translate traffic flow dynamics from a micro-scale 

to a meso-scale, the relationship between spacing and speed for each vehicle type is derived and 

used as an input to the mesoscopic model. The proportion of each vehicle type and driver class (if 

there is any) on each link is tracked in the traffic propagation process at each time interval. Using 
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this proportion, a non-linear equation is solved to obtain the current speed of the link, satisfying 

the spacing values of all vehicles traversing it. Note that NGSIM data is used to establish different 

sets of parameters for the microscopic models of heterogeneous drivers (122) for HDVs and CVs. 

The content of this chapter is published by the author in (123). 

6-2- Microscopic Simulation Framework 

This study uses state-of-the-art microscopic simulation frameworks to model the 

acceleration behavior of different vehicle types with various levels of connectivity and automation. 

The details of these microscopic models for vehicles with no communication capability, CVs, and 

AVs are explained in the following sub-sections. 

6-2-1- Vehicles with No Communication Capability 

The stochastic acceleration model of Hamdar et al. (12) is used in this chapter to model the 

car following behavior of human-driven vehicles without any communication capability (HDVs). 

This model considers the acceleration decision of drivers based on the evaluation of potential gains 

and losses, from the acceleration and deceleration decisions with a perceived probability of being 

involved in a crash. This model is an extension of the sequential risk-taking model of Hamdar et 

al. (124) that generally avoids crashes by considering the behavioral mechanisms of the prospect 

theory (PT) (125). Accordingly, Hamdar et al. (12) introduced a value function for the subjective 

utilities of accelerations (i.e. gain in travel times), 𝑈𝑃𝑇, as below. 

𝑈𝑃𝑇(𝑎𝑛) =
[𝑤𝑚 + (1 − 𝑤𝑚) (tanh (

𝑎𝑛

𝑎0
) + 1)]

2
(

𝑎𝑛

(1 + 𝑎𝑛)
𝛾−1

2
 
) (6-1) 

where 𝛾 > 0 and 𝑤𝑚 are parameters to be estimated,  𝑎𝑛 is the acceleration of vehicle 𝑛, 

and 𝑎0 is used to normalize the acceleration. Users obtain the utility value defined in Equation (6-

1) if they opt acceleration, 𝑎𝑛 and do not get involved in a crash. To consider the probability of a 
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crash in the model, total utility of a given acceleration is estimated by considering the disutility of 

a crash occurrence with a given crash probability. 

𝑈(𝑎𝑛) = (1 − 𝑝𝑛,𝑖)𝑈𝑃𝑇(𝑎𝑛) − 𝑝𝑛,𝑖𝑤𝑐𝑘(𝑣, Δ𝑣) (6-2) 

where 𝑝𝑛,𝑖, 𝑤𝑐, and 𝑘(𝑣, Δ𝑣) are the crash probability, crash weighting factor, and crash 

seriousness term, respectively. Finally, the logistic functional form, introduced by Hamdar et al. 

(124), is used to incorporate the stochastic response of drivers as below. 

𝑓(𝑎𝑛) = {

𝑒𝛽𝑃𝑇𝑈(𝑎𝑛)

∫ 𝑒𝛽𝑃𝑇𝑈(𝑎′)𝑎𝑚𝑎𝑥

𝑎𝑚𝑖𝑛 
𝑑𝑎′

, 𝑎𝑚𝑖𝑛 < 𝑎𝑛 < 𝑎𝑚𝑎𝑥

0                           ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6-3) 

where 𝛽𝑃𝑇 denotes the sensitivity of a choice to the utility, which has higher values for 

experienced drivers.  

6-2-2- Vehicles with Active Vehicle-To-Vehicle Communications 

This chapter employs the IDM to replicate the acceleration behavior of CVs. As these 

vehicles have information of surroundings, including traffic conditions, crashes, and weather 

conditions, deterministic models, such as IDM, can properly model the car-following behavior of 

CV drivers. IDM identifies acceleration of the following vehicle based on its current speed (𝑣𝑛), 

the ratio of current spacing (𝑠𝑛) to the desired spacing (𝑠∗), and its relative speed to the leading 

vehicle (Δ𝑣𝑛).  

𝑎𝐼𝐷𝑀
𝑛 (𝑠𝑛, 𝑣𝑛, Δ𝑣𝑛) = 𝑎𝑛 [1 − (

𝑣𝑛

𝑣0
𝑛)

𝛿𝑛

− (
𝑠∗(𝑣𝑛, Δ𝑣𝑛)

𝑠𝑛
)

2

] (6-4-a) 

𝑠∗(𝑣𝑛, Δ𝑣𝑛) = 𝑠0
𝑛 + 𝑇𝑛𝑣𝑛 +

𝑣𝑛Δ𝑣𝑛

2√𝑎𝑛𝑏𝑛

 (6-4-b) 

where 𝑎𝐼𝐷𝑀
𝑛  is the acceleration of the following vehicle. In addition, 𝑣0

𝑛, 𝑇𝑛, 𝑠0
𝑛, 𝑎𝑛, 𝑏𝑛, and 

𝛿𝑛 are parameters to be calibrated. 
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6-2-3- Autonomous Vehicles  

Given that AVs are fully aware of their surrounding environment and are certain about 

other drivers’ behaviors, deterministic acceleration models can properly work for these vehicles. 

The current study adopts the acceleration model presented by Talebpour et al. (14) to model the 

behavior of AVs. This model is superior to similar models in that it considers sensor characteristics 

in the modeling process and creating data for the acceleration model. The main assumption of the 

model presented by Talebpour et al. (14) is that the speed of an AV should be low enough to fully 

stop when there is a vehicle right out of its detection zone, which cannot be spotted by the sensors. 

Hence, the model assumes the maximum possible deceleration for the AV and its leader, and 

defines the maximum safe speed, 𝑣𝑚𝑎𝑥, as below. 

Δ𝑥𝑛 = (𝑥𝑛−1 − 𝑥𝑛 − 𝑙𝑛−1) + 𝑣𝑛𝜏 +
𝑣𝑛−1

2

2𝑎𝑛−1
𝑑𝑒𝑐𝑐 (6-5) 

Δ𝑥 = min{𝑆𝑒𝑛𝑠𝑜𝑟 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒, Δ𝑥𝑛} (6-6) 

𝑣𝑚𝑎𝑥 = √−2𝑎𝑛
𝑑𝑒𝑐𝑐Δ𝑥 (6-7) 

where 𝑛 and 𝑛 − 1 are subscripts for the AV and its leader, respectively. 𝑥𝑛, 𝑙𝑛, 𝑣𝑛, and 𝜏 

are the location, length, speed, and reaction time of vehicle 𝑛. 𝑎𝑛−1
𝑑𝑒𝑐𝑐 is the maximum deceleration 

of vehicle 𝑛 − 1. In addition to the safety constraint, Talebpour et al. (14) adopted the acceleration 

model of Van Arem et al. (63) to model the movement of AVs. 

𝑎𝑛
𝑑 = 𝑘𝑎𝑎𝑛−1(𝑡 − 𝜏) + 𝑘𝑣(𝑣𝑛−1(𝑡 − 𝜏) − 𝑣𝑛(𝑡 − 𝜏)) + 𝑘𝑑(𝑠𝑛(𝑡 − 𝜏) − 𝑠𝑟𝑒𝑓) (6-8) 

where 𝑎𝑛
𝑑 and 𝑠𝑛 are the acceleration and spacing of the AV, 𝑛, and 𝑘𝑎, 𝑘𝑣, 𝑘𝑑 are model 

parameters. 𝑠𝑟𝑒𝑓 is the maximum of three values; the minimum distance, which is assumed to be 

2.0 meters in this study, the safe distance (𝑠𝑠𝑎𝑓𝑒), and the following distance based on the reaction 

time (𝑠𝑠𝑦𝑠𝑡𝑒𝑚). 𝑠𝑠𝑎𝑓𝑒 and 𝑠𝑠𝑦𝑠𝑡𝑒𝑚 are defined as below. 
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𝑠𝑠𝑎𝑓𝑒 =
𝑣𝑛−1

2

2
(

1

𝑎𝑛
𝑑𝑒𝑐𝑐 −

1

𝑎𝑛−1
𝑑𝑒𝑐𝑐) (6-9) 

𝑠𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑣𝑛𝜏 (6-10) 

Finally, one can estimate the acceleration of the AV by finding the minimum of 𝑎𝑛
𝑑 and 

𝑘(𝑣𝑚𝑎𝑥 − 𝑣𝑛(𝑡)) where 𝑘 is a model parameter.  

6-3- Macroscopic Relations at the Facility Level 

In order to obtain the equilibrium relation between velocity, 𝑣, and spatial gap (spacing), 

𝑠, all vehicles should acquire the same (Δ𝑣 = 0) and constant (�̇� = 0) speed over each time 

interval. In addition, there is no variability in the behavior of each specific driver at the equilibrium 

state (126). Given the equilibrium conditions and the acceleration models presented in section 6-

2, the spacing of each vehicle type (i.e., HDV, CV, AV) with its leading vehicle is estimated as 

below.  

𝑠𝑅𝑉(𝑣) = 𝑠0 + √2𝛼𝑣𝜏√ln (
𝜏

𝑣
) + ln (

𝑤𝑐

√2𝜋𝛼
) (6-11) 

𝑠𝐶𝑉(𝑣) =
(𝑠0 + 𝑇𝑛𝑣)

√1 − (
𝑣
𝑣0

)
𝛿𝑛

 

(6-12) 

𝑠𝐴𝑉(𝑣) = 𝑣𝜏 (6-13) 

where 𝑠𝑅𝑉, 𝑠𝐶𝑉, and 𝑠𝐴𝑉 are the spacing values of HDVs, CVs, and AVs, respectively. In 

addition, 𝜏, 𝑤𝑐, 𝛼, and 𝑠0 are parameters to be estimated. To derive Equation (6-11), the gradient 

of crash disutility with zero acceleration is obtained from the study by Hamdar et al. (12). Using 

the relation between spacing and density, the congested part of the macroscopic fundamental 

diagram can be obtained by the following relations. 
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𝑘 =
1

∑ ∑ 𝑝𝑖𝑗(𝑙𝑣𝑒ℎ + 𝑠𝑖𝑗(𝑣))𝑗𝑖

 (6-14) 

𝑞 = 𝑘𝑣 (6-15) 

where 𝑘 is the density, 𝑙𝑣𝑒ℎ is the length of vehicle, and 𝑠𝑖𝑗 is the spatial gap of the vehicle 

type 𝑖 (i.e., HDV, CV, AV) with driver class 𝑗 with its leading vehicle. As AVs are driverless, 𝑗 is 

considered 1 for this vehicle type. In addition, 𝑝𝑖𝑗 denotes the proportion of vehicles with type 𝑖 

and driver class 𝑗 on the segment. 𝑞 and 𝑣 are also flow and speed values at the segment. Note that 

the speed of the uncongested part of the fundamental diagram is bounded by free-flow speed. 

Therefore, the maximum flow, which occurs when all vehicles are moving with the free-flow 

speed, 𝑣𝑓, is calculated by the following equation. 

𝑞𝑚𝑎𝑥 =
𝑣𝑓

∑ ∑ 𝑝𝑖𝑗(𝑙𝑣𝑒ℎ + 𝑠𝑖𝑗(𝑣𝑓))𝑗𝑖

 (6-16) 

In this study, we calibrated the acceleration model of different vehicle types using Next 

Generation Simulation (NGSIM) data. The data includes trajectories of almost 6,000 vehicles 

collected as a part of the NGSIM project for Federal Highway Administration (FHWA) (122). In 

this chapter, we differentiate CVs and HDVs based on their different microscopic models. 

Therefore, the NGSIM data is used to calibrate the model presented in Equation (6-1) to Equation 

(6-3) for HDVs. In addition, this data is used to calibrate the IDM model presented in Equation (6-

4) for CVs. The dataset is used to provide a realistic representation of vehicular movements along 

a highway segment and calibrate a set of parameters for HDVs and CVs. CV and HDV models 

were calibrated for a portion of NGSIM data and the parameters were clustered into different sets 

(driver class) for each vehicle type (i.e. HDV and CV). Therefore, each set of parameters represents 

the behavior of drivers who have the same car-following behavior (fall into one cluster). The 

acceleration model of HDVs is calibrated for the total of 10 HDV drivers. In addition, the 
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acceleration model of CVs is calibrated for 6 drivers. Each set of parameters shows the car-

following behavior of one driver, which results in keeping a specific amount of spacing with the 

leading vehicle at the equilibrium conditions. A genetic algorithm calibration approach (127) is 

adopted to calibrate parameters of the models. 

With an assumption that all vehicles on a segment are from the same vehicle type and are 

driven by one specific driver class (if there is any), the fundamental diagrams for a segment with 

different driver behaviors, calibrated for this study, are demonstrated in Figure 6-1. However, in 

reality, each vehicle type consists of different driver classes. In numerical examples of this chapter, 

it is assumed that driver classes, with fundamental diagrams shown in Figure 6-1, are uniformly 

distributed for each vehicle type. In this figure, following assumptions are considered: free-flow 

speed as 70 mi/hr, vehicle length as 20ft, and reaction time of AVs as one second. 

 

Figure 6-1- a) Flow-density and b) speed-density calibrated relationships at the equilibrium state 

for a segment occupied only with certain driver classes of HDVs, CVs, or AVs 

6-4- Mesoscopic Simulation Framework 

In this chapter, DYNASMART-P is used as the base mesoscopic simulation tool to 

simulate traffic dynamics at the network level. This tool considers en-route users, which is a 

specification of CVs and AVs. En-route users are aware of the current traffic conditions at different 
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regions of the network via real-time information. This information would influence drivers’ route 

choice while traveling and may result in switching their paths. Given the unique features of this 

simulation tool, it is utilized as the base simulation tool for this study. In this research, this tool is 

updated to investigate the impacts of CVs with heterogeneous drivers and AVs on traffic flow and 

hysteresis phenomenon at the network level. To do so, realistic microsimulation frameworks for 

different vehicle types (i.e., HDV, CV, AV), presented in earlier sections, and the driving behavior 

of real vehicles are incorporated to develop adaptive macroscopic models at the facility level to be 

used in this mesoscopic tool. Note that the proposed approach is generic, and its application is not 

limited to this specific mesoscopic simulation tool. The process of updating DYNASMART-P is 

discussed as follows. 

To perceive traffic flow dynamics in CV and AV environments from the micro-scale to the 

meso-scale, the spacing-density relationship presented in Equations 6-14 is used. For each link, 

𝑚, in the network, the counts of different vehicle types such as i (e.g. HDV, CV, AV) with specific 

drivers such as j, 𝑁𝑖𝑗
𝑚,𝑡

 are estimated at each time interval 𝑡. Using the proportion of this count for 

each driver and vehicle type to the total number of drivers on the link, 𝑁𝑚,𝑡, a nonlinear equation 

is solved to find a link speed that results into an average spacing between different vehicles (this 

average spacing is associated with the spacing values of all vehicles on the link). For each vehicle 

type and driver class, a desired spacing can be estimated based on the link speed and Equation (6-

11) to Equation (6-13). We incorporate the golden section method to solve this nonlinear equation 

(128). Figure 6-2 provides a brief illustration of different steps to update speed values, 𝑣𝑚,𝑡, based 

on the spatial and temporal varying distributions of mixed vehicle types. In this figure, 𝑙𝑚 is the 

length of the link, 𝑉𝑢 and 𝑉𝑑 are the maximum and minimum speeds from which the search to find 

the speed of the link starts, and 𝑉1/𝑉2, 𝐾1/𝐾2, and �̅�1/�̅�2 are the intermediary speed, density, and 
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average spacing values that are used to reach the speed associated with the current density of 

vehicles at each link. In addition, 𝜖 is the stopping criteria for the golden section algorithm, 

demonstrating the accuracy of the algorithm. 

 

Figure 6-2- Illustration of the proposed approach to update link speeds given a specific density 

distribution of different vehicle types with heterogeneous drivers 

As mentioned earlier, the dataset used in this chapter represents vehicular movements along 

a highway segment. Hence, the calibrated models are only used for freeway links. To account for 

the presence of a shared road network with heterogeneous drivers on all links of the network, 

including arterials, an adjustment factor is derived for each vehicle type in order to relate traffic 

models of CVs and AVs to HDVs. Note that there is no study on calibrating these models 

specifically for arterials to the authors’ knowledge. Thus, this study assumes that CVs and AVs 

have the same impact on the traffic flow in freeways and arterials. Therefore, vehicles of each type 
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with different driver behaviors, calibrated by NGSIM data, are distributed uniformly across a 

segment with a unit length. The speed values relative to different density levels are then estimated 

for each vehicle type. The adjustment arterial factors are calculated for each density value as 

below. 

𝑓𝑖(𝑘) =
𝑣𝑖(𝑘)

𝑣𝑅𝑉(𝑘)
 (6-17) 

where 𝑣𝑖(𝑘) and 𝑣𝑅𝑉(𝑘) are the speed values when the density is equal to 𝑘 and the 

segment is occupied by vehicles of type 𝑖 (CV or AV) and HDVs, respectively. 𝑓𝑖(𝑘) is the 

adjustment factor, which is applied to the current fundamental diagram of arterials in 

DYNASMART, when CVs or AVs occupy a portion of arterial links. 

In addition to the spacing-speed relationship, CVs and AVs influence the movement 

capacity at intersections. The number of vehicles, 𝑁, moving from link 𝑖 to link 𝑗 from a signalized 

intersection is bounded to three values. 

𝑁𝑖,𝑗 = 𝑚𝑖𝑛{𝜅𝑗 , 𝑂𝑖,𝑗, 𝜁𝑖} (6-18) 

where 𝜅𝑗 is the remained capacity of link 𝑗. 𝑂𝑖,𝑗 represents the number of vehicles that are 

ready to move into link 𝑗 from link 𝑖, and 𝜁𝑖 is the maximum number of vehicles that can exit link 

𝑖 during simulation interval, Δ𝑡, according to its assigned green time, which is estimated as below. 

𝜁𝑖 = Θ𝑖 (
𝑔

𝐶
) Δ𝑡 (6-19) 

where 𝑔 is the green time phase for the movement of interest. In addition, Θ𝑖 and 𝐶 are 

saturation flow rate and cycle length, respectively. Given that different drivers and vehicle types 

do not have the same headways, the saturation flow rate at each intersection varies depending on 

the proportions of each vehicle type and driver class that pass the intersection. Therefore, the 

current study modifies the mesoscopic simulation tool to account for variable maximum flow rates 
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at intersections depending on the share of passing vehicles and their driver classes. Hence, an 

adjustment factor is proposed to increase or decrease the original capacity of movement based on 

the type of vehicles that cross the intersection and their drivers’ acceleration behavior. 

𝑓𝑖𝑛𝑡
𝑖𝑗

=
𝑞max

𝑖𝑗

𝑞max
𝑏  (6-20) 

In this equation, 𝑞max
𝑖𝑗

 denotes the maximum flow rate, if all vehicles are type 𝑖 with drivers 

of class 𝑗, which is the peak values shown in Figure 6-1a. 𝑞max
𝑏  is the maximum flow rate of the 

base case, which is assumed to be the average of HDV drivers. Finally, 𝑓𝑖𝑛𝑡
𝑖𝑗

 is the adjustment factor 

for the capacity of intersections. In the updated version of DYNASMART-P for the purpose of 

this study, vehicle type proportions are not known priory and intersection capacity cannot be 

modified. Thus, the remaining capacity of the intersection at any given time is adjusted based on 

the calculated factor associated with each vehicle, while it crosses the intersection. 

6-4-1- Network Fundamental Diagram 

The NFD, also known as macroscopic fundamental diagram (MFD), represents the 

aggregated traffic flow-density relationship at the network level. Simulation-based and empirical 

studies in the literature confirm the existence of a consistent and well-defined NFD (129–132). A 

relationship between the network-wide weighted average of traffic flow and density is used to 

define the NFD. These variables are calculated as the space-mean weighted averages of the link 

flows and densities, with link weights equal to the product of link length and number of lanes 

(130,133). 

𝑄 =
∑ 𝑛𝑚𝑙𝑚𝑞𝑚

𝑀
𝑚=1

∑ 𝑛𝑚𝑙𝑚
𝑀
𝑚=1

                                                                     (6-21) 

𝐾 =
∑ 𝑛𝑚𝑙𝑚𝑘𝑚

𝑀
𝑚=1

∑ 𝑛𝑚𝑙𝑚
𝑀
𝑚=1

                                                                      (6-22) 
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Here, 𝑄 and 𝐾 are the weighted average flow and density values respectively, M is the 

number of links in the network, 𝑙 is the length of the link, and n is the number of lanes in each link. 

These equations yield ordered pairs of macroscopic flow and density at 5-minute time intervals 

that cumulatively form the simulation horizon. These values are plotted to represent NFD in this 

study. 

The heterogeneous spatiotemporal distribution of congestion across real networks often 

creates hysteresis in the NFD (134,135). Hysteresis is a loop (complete or incomplete) in the NFD 

diagram that shows the degree to which the system is unstable during the unloading period. In 

large-scale networks with high levels of congestion, gridlock is formed (121), and the system 

cannot efficiently recover itself during the unloading phase, which causes the formation of a 

hysteresis loop in the NFD graph. Thus, the area of the hysteresis loop (Equation 6-23) is a good 

representative of the system instability. 

𝐴𝐻𝑦𝑠 = ∮ 𝑄(𝑘)𝑑𝑘
 

𝐿

                                                                  
 

(6-23) 

where, 𝐴𝐻𝑦𝑠 is the area of a hysteresis loop in NFD, 𝐿 is the hysteresis closed curve in 

NFD, and 𝑄(𝑘) is the average network flow as a function of the average network density. 

6-5- Numerical Experiments 

In this section, the presented simulation frameworks in the earlier sections are applied to 

the Chicago downtown network, as a large-scale network, to investigate the potential impacts of a 

mixed traffic condition on traffic flow and travel time reliability at the network level. The Chicago 

downtown network, shown in Figure 3-1, is used to apply the traffic simulation tool. The 

simulation horizon is the AM peak period between 5:00 AM and 10:00 AM. The static hourly 

demand, provided by the Chicago Metropolitan Agency for Planning (CMAP), is transformed into 



111 

a time-dependent OD demand table with an OD estimation technique (86). The number of vehicles, 

simulated in the network during the AM peak period, is about 760,000. The demand profile is 

illustrated in Figure 6-3. Different MPRs of CVs and AVs are considered and the network is 

simulated with spatial and temporal varying distributions of different vehicle types with 

heterogeneous drivers over the network links. This study assumes that different driver classes, 

presented in Figure 6-1, are assigned uniformly among their vehicle types. While the vehicle 

trajectories in the network during the simulation horizon are available, the NFDs are plotted and 

the values associated with the area of hysteresis loops are estimated to analyze the impacts of 

connected and automated vehicle technology on traffic flow at the network level.  

 

Figure 6-3- AM peak simulation demand for the Chicago downtown network 

DYNASMART-P, which is used as the mesoscopic simulation tool of this study with 

modifications to incorporate a shared road network with heterogeneous drivers, is capable of 

considering en-route users. As it is mentioned earlier, en-route users can switch paths in the middle 

of their route due to congestion or gridlock. In the current study, all CVs and AVs are assumed to 

have this capability. In addition, to account for a realistic driving environment, 25% of the current 

vehicles on the road network, which are HDVs, are assumed to be en-route. Note that vehicles can 

have access to route information through GPS data even if they are not connected. In addition, it 
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should be mentioned that all AVs are assumed to have access to connected vehicle technology. In 

this study, the average vehicle length is assumed to be 20 ft. In addition, the reaction time of AVs 

is considered as one second. 

Figure 6-4 illustrates the NFD graphs (Figure 6-4a to Figure 6-4d), and values of maximum 

density, and hysteresis loop area (Figure 6-4e) for different proportions of HDVs, CVs, and AVs 

in the network. As can be seen in Figure 6-4c and Figure 6-4d, the network cannot recover from 

congestion at high proportions of HDVs (100% HDV and 75% HDV). However, the congestion 

is resolved by replacing a portion of traffic stream with CVs or AVs, or both (Figure 6-4a and 

Figure 6-4b). Therefore, connectivity and automation of vehicles facilitate the network recovery 

from congestion. In addition, the network faces a reduction in the maximum density and the area 

of hysteresis loop by an increase in MPR of CVs or AVs, or both (Figure 6-4a-e). Therefore, a 

higher stability in the recovery phase is observed for the scenarios with higher CV or AV 

proportions. Based on the results of Figure 6-4e, replacing only 25% of the traffic demand, which 

contains only HDVs, by CVs and AVs decreases the area of hysteresis loop by 31% and 37%, 

respectively. Increasing this value to 50% MPR of CVs and AVs shrinks the hysteresis loop by 

52% and 63%, respectively. This significant reduction in hysteresis loop area denotes that the 

gridlock dissipation and system recovery are accomplished faster for higher MPRs of CVs and 

AVs. In addition to the reduction of maximum density in higher MPRs of CVs and AVs, flow rates 

slightly increase at the same density values as the share of these vehicle types increases in the 

network. However, the variation of maximum observed throughput is not significant when we 

compare 100% CV scenario with 100% AV scenario (Figure 6-4d). This difference is small since 

in 100% AV scenario, network congestion recovers before reaching to its nominal capacity. The 

results of Figure 6-4 also show that the injection of AVs is more influential on traffic flow than 
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CVs, especially when the ratio of HDVs in the network is low. Figure 6-4b demonstrates a scenario 

with a mixed traffic consisting of all three vehicle types. As can be seen in this figure, the scenario 

with equal penetration rates of CVs and AVs (25%) falls between the two scenarios of 50% CV 

and 50% AV. This result highlights the superiority of CVs to the HDVs and AVs to the CVs in 

mitigating the traffic congestions in the network with a mixed traffic stream. Furthermore, it shows 

the applicability of the proposed methodology to consider a traffic mix including all three types of 

vehicles. 

Figure 6-5 illustrates the impacts of CVs and AVs on traffic flow considering different 

aspects, including the access to real-time traffic information (being an en-route user), adaptive 

fundamental diagrams based on different vehicle types with heterogeneous drivers for each 

freeway link, the adjustment factor for traffic flow models on arterial links, and intersection 

movement capacity variations in the presence of CVs and AVs. Figure 6-6 demonstrates the 

maximum density value and the area of the hysteresis loop, as the measures of stability, for the 

same scenarios as Figure 6-5. Figure 6-5a compares the scenarios with 100% HDV, 100% CV, 

and 100% AV considering only the impacts of adaptive drivers. Note that only 25% of HDVs are 

assumed to be en-route, while all CVs and AVs receive the real-time information of routes. As can 

be seen in Figure 6-5a and Figure 6-6, having access to the en-route information significantly 

reduces the maximum density and the area of hysteresis loop, which means much faster recovery 

of network with the presence of CVs and AVs than only HDVs. Note that in this case, since the 

traffic flow models are not updated relative to HDVs, 100% CV and 100% AV scenarios have the 

same results.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6-4- (a-d) NFD and (e) maximum density and area of hysteresis loop for different MPRs 

of CVs, and AVs 

Figure 6-5b represents the impacts of traffic flow models for freeway links in the presence 

of CVs and AVs with different driver classes in addition to the impacts of en-route users. Based 

on the results of Figure 6-5b and Figure 6-6, freeway traffic flow models slightly improve the 
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performance of the network in congestion. This is due to the fact that freeway links are only a 

small proportion of the entire network, with only 11 percent of the total lane length of the network. 

The results of Figure 6-5c, which includes the impact of adjustment factors for arterial traffic flow 

models in addition to the ones considered in Figure 6-5b, show a rather same improvement as 

freeway traffic flow models. As the acceleration behavior of drivers is heterogeneous and a portion 

of HDV drivers have even a smaller spacing with the leading vehicle than CV drivers, these small 

improvements in traffic congestion due to the presence of different vehicle types on freeway and 

arterial links are justifiable. Finally, considering the effect of intersection movement capacity 

variations in the presence of CVs and AVs (Figure 6-5d) shows a significant enhancement in the 

network dynamics. This significant improvement highlights the importance of incorporating the 

impacts of a mixed traffic stream on intersection capacity variations. 
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(a) (b) 

  
(c) (d) 

Figure 6-5- NFD results considering the impact of (a) only en-route users, (b) en-route users and 

adaptive traffic flow models on freeway links, (c) en-route users and freeway and arterial traffic 

flow models, and (d) en-route users, freeway and arterial traffic flow models, and adjusted 

intersection capacity 
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Figure 6-6- Values of maximum density and area of hysteresis loop considering the impacts of 

different factors on network dynamics 

 

As mentioned throughout the manuscript, travel time reliability is an important measure to 

effectively evaluate the performance of road networks. In addition, emerging technologies, 

including connected and autonomous vehicle technologies, are expected to have promising 

benefits for transportation networks by enhancing efficiency, throughput, and reliability. There are 

different reliability measures that can be used to explore the impacts of connected and autonomous 

vehicles on travel time reliability. The mean and standard deviation of a travel time distribution is 

one of these measures. This measure should be normalized by distance or free flow travel time to 

control the impacts of trip distance and speed variations. Therefore, in this study, the mean and 

standard deviation of travel time for each link are estimated per free flow travel time. This study 

uses the simulation tool, developed and presented earlier in this chapter, to generate vehicle 

trajectories in a network to explore the relationship between standard deviation of travel time and 

mean travel time for a fully AV and a fully HDV networks. This approach extracts the travel time 

and travel distance for each set of consecutive links that are traveled by a certain vehicle. For link 

travel time distributions, 400 minutes of the simulation (5:00 AM to 10:00 AM plus unloading 

period) are divided in 100-minute time intervals to create 4 distributions for each link. Simulation 
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results are aggregated in one-minute observations, providing each link travel time distribution with 

100*86=8600 observations.  

To generate link travel time variations, this study uses 86 scenarios defined by Zockaie et 

al. (15,87) based on real world observations. These scenarios are different in traffic demand, the 

percentage of adaptive drivers, weather conditions, and number of crashes. The scenarios are 

defined based on the data of the workdays in the first four months of 2010 for the Chicago 

downtown network. For different demand levels, the total throughput of all loop detectors across 

the network over AM peak period is found. Dividing this value for each scenario (i.e. one specific 

day) to an average of all scenarios results in a demand factor. The data of Automated Surface 

Observing System (ASOS) station at the Chicago Midway International Airport is also used to 

categorize different scenarios into clear weather, rainy day, and snowy day. Note that there is a 

weather adjustment factor in DYNASMART-P to consider weather conditions. In addition, 

Zockaie et al. (15) used the data provided by Illinois Department of Transportation to define crash 

locations, time, and the severity of crashes in terms of capacity drop in the location. Finally, a 

range between 40 to 50 percent en-route users are considered for HDVs in different scenarios. 

Note that this factor is constant for AVs as these vehicles have access to en-route information. 

Based on the above factors and real-world observations, 86 scenarios are simulated in 

DYNASMART-P for a fully AV and fully HDV networks. Using the simulation results, link travel 

time distributions are estimated and normalized standard deviation of travel time values are 

illustrated relative to the normalized mean travel time values in Figure 6-7 (fully HDV network) 

and Figure 6-8 (fully AV network). Each dot in these figures represents the normalized mean and 

standard deviation of travel time for one link in the Chicago downtown network that is simulated 

by 100% HDVs or 100% AVs. In addition, the results are categorized into different time intervals 
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and shown in Figure 6-7 and Figure 6-8. Figure 6-7a and Figure 6-8a illustrate the normalized 

standard deviation and mean travel times for the 1st 100-minute time intervals for the fully HDV 

and fully AV networks, respectively. Similarly, Figure 6-7b, Figure 6-7c, and Figure 6-7d plot the 

same performance measures for 2nd, 3rd, and 4th 100-minute time intervals. 

The comparison of standard deviation and mean travel times shows that expectedly, the 

mean travel times are generally lower in a fully AV network than a fully HDV network. As a result, 

the standard deviation of travel time is also lower in a fully AV network than a fully HDV one. In 

addition, the dispersion of normalized standard deviation values is generally low in a fully AV 

network. For example, in the fully HDV network, the results of last time interval reveal that the 

standard deviation of travel time is between 0.8 and 6 times of free flow travel time when the mean 

value is 5 times of free flow travel time. However, for the same ratio of mean to free flow travel 

time for a fully AV network, standard deviation values of different links are between 0.5 and 4 

times of the mean travel time, which indicates that deploying AV technologies increases the 

reliability of network. 

 



120 

 

Figure 6-7- Standard deviation vs mean travel time normalized to free flow travel time for 

different links in a fully HDV network for the a) first, b) second, c) third, and d) fourth 100-

minute time intervals 
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Figure 6-8- Standard deviation vs mean travel time normalized to free flow travel time for 

different links in a fully AV network for the a) first, b) second, c) third, and d) fourth 100-minute 

time intervals 

6-6- Summary 

This DTA simulation tool of DYNASMART-P was updated in this chapter to account for 

the presence of CVs and AVs at the network level by incorporating adaptive fundamental diagrams 

due to the spatial and temporal varying distribution of different vehicle types with heterogeneous 

drivers. The proposed approach is generic and can be applied to any mesoscopic simulation tool. 

DYNASMART-P is selected due to its availability to the authors, and its unique features to 

consider en-route users and signalized intersections in a mesoscopic simulation tool. 
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Microsimulation frameworks, presented in the literature, in addition to the trajectories of real 

vehicles are used to calibrate spacing-speed relationships for different vehicle types and 

heterogeneous drivers of HDVs and CVs. The relationships are then used in the mesoscopic 

simulation tool to update the speed of each link at any time interval in the presence of different 

distributions of vehicles and drivers. This chapter also considered the movement capacity variation 

at intersections due to a mixed fleet of CVs, AVs, and HDVs. In addition, adjustment factors were 

presented to modify the current fundamental diagram of arterials in DYNASMART-P, when CVs 

and AVs occupy a portion of arterial links. The proposed approach is also capable of considering 

a traffic mix of all three vehicle types (HDV, CV, and AV). The methodology of this study was 

applied to the Chicago downtown network. NFD and the area of hysteresis loop are used as 

representatives of the aggregated traffic flow-density relationship and the stability at the network 

level. In addition, standard deviation of travel time on different links normalized to the free flow 

travel time was used as a measure of travel time reliability. To generate travel time variation across 

the links, this study used 86 scenarios that are different in traffic demand, weather condition, traffic 

crashes, and number of adaptive drivers. The results confirmed the superiority of AVs and CVs in 

mitigating congestion and improving travel time reliability. 
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CHAPTER 7 - Conclusions and Future Work 

7-1- Summary and Concluding Remarks 

Travel time variability and reliability are primary determinants of travelers’ route choice 

behavior and any developed demand management strategy such as congestion pricing. Despite the 

growing interests in the development of different strategies and technologies to improve mobility, 

there is still a gap in the current body of the literature to consider the reliability measures in 

developing equitable strategies and to use emerging technologies to improve the reliability of 

transportation networks. The computational burden is the main challenge of traffic simulation tools 

that consider travel time uncertainty and the heterogeneity of travelers. Therefore, the main goals 

of this study were threefold: first, improving computational time of optimal path finding 

algorithms in stochastic time-dependent networks with heterogeneous users; second, considering 

travel time reliability in finding equitable congestion pricing schemes; and third, presenting a 

traffic simulation tool that considers the presence of connected and autonomous vehicles in order 

to quantify the impacts of these vehicles on traffic congestion and travel time reliability at the 

network level. 

In this study, two network contraction approaches are first developed to reduce the network 

size of each specific OD pair in stochastic time-dependent networks. The network contraction is 

based on the comparison of optimistic and pessimistic solutions resulting from minimum and 

maximum travel time realizations of an MCS approach. In this respect, the pessimistic and 

optimistic solutions for path travel times are first obtained conservatively by assigning minimum 

and maximum travel times to all network links in CHAPTER 3. This conservative assumption is 

then relaxed in CHAPTER 4 and two learning approaches are presented to utilize the information 

of the realizations in the initial iterations of the MCS approach. The learning approaches are 
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calibrated through the Chicago downtown network. The transferability of the approach to other 

networks is then checked using the network of Salt Lake City. The numerical results of the two 

large-scale applications lead to the following findings: 

 The calibrated learning approaches for a particular large-scale network is used successfully 

for another large-scale application with a different structure of nodes and links. Although 

the errors in objective function values are larger in the Salt Lake City network relative to 

the calibration network, the level and amount of errors are still satisfactory. 

 Significant reductions in the network size are observed using both learning approaches 

relative to the approach without any network contraction and the conservative approach. 

 The learning approaches have an acceptable level and number of errors in terms of 

SPOTAR/MTTBP objective function estimations.  

 The adaptive learning approach is superior to the fixed learning approach in terms of the 

accuracy of the objective function, while the fixed learning approach is more aggressive in 

the network contraction. Therefore, a trade-off between a certain desired accuracy level 

and the computational efficiency is needed to select the proper learning approach. 

Overall, the learning approaches developed for the network contraction in the reliable path-

finding problems are successfully applied to two large-scale applications with satisfactory 

approximations of the SPOTAR and the MTTBP objective functions and considerable reductions 

in networks sizes, using optimistic/pessimistic travel times as hints. As long as the network 

structure and link costs (distribution) are available, the methodology of this study for network 

contraction is applicable to any other MCS approach in different fields. However, more 

conservative, or less conservative approaches (different learning factors and multipliers) might be 

utilized depending on the application of interest. The networks used for calibrating and showing 
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the transferability of network contraction approach are both flat networks. In case of hierarchical 

networks, the presented algorithm can be applied to each layer (level) of the network with expected 

computational benefits due to the advantages of network contraction that is transferred from one 

layer to another. However, one might expect an error, in terms of finding the optimal path, in one 

layer to propagate to subsequent layers. Such error propagations across the layers call for setting 

parameters differently for each layer to certify accuracy of the solution algorithm. 

A modeling framework and solution methodology are also presented in this study for 

finding revenue-neutral and Pareto-improving congestion pricing values considering travel time 

variability for heterogeneous users with different VOTs and VORs in a bi-modal network 

consisting of transit and personal cars. The presented framework extends the second-best pricing 

optimization problem by integrating an RBUE algorithm. The objective function of the pricing 

algorithm minimizes the total travel time of highway users given a revenue-neutral and Pareto-

improving pricing set. Users’ heterogeneity in response to the reliability measures, their response 

to different toll values and toll distribution strategies, and link travel time correlations are 

considered in the RBUE problem. A PSO algorithm is also developed to determine the optimum 

toll values considering different toll distribution strategies (e.g. credit-based, transit subsidy). The 

proposed approach is successfully applied to a modified Sioux Falls network to explore the impacts 

of subsidization strategy, congestion level, and considering travel time reliability on the pricing 

strategy and its effectiveness. The results show the significant importance of considering travel 

time reliability by comparing the optimum toll values, the changes in system cost, and the total 

travel time with and without considering travel time reliability. 

Finally, the impacts of CV and AV technologies on traffic flow and travel time reliability 

were observed at the network level. For this purpose, the simulation-based DTA tool of 
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DYNASMART-P is updated to capture the collective effects of the interactions between different 

vehicle types (i.e., AVs, CVs, HDVs) on traffic flow dynamics. In order to translate traffic flow 

dynamics from a micro-scale to a meso-scale, the relationship between spacing and speed for each 

vehicle type is derived and used as an input to the mesoscopic model. The proportion of each 

vehicle type and driver class on each link is tracked in the traffic propagation process at each time 

interval. Using this proportion, a non-linear equation is solved to obtain the current speed of the 

link, satisfying the spacing values of all vehicles traversing it. The methodology of this study is 

applied to the Chicago downtown network. NFD and the area of hysteresis loop are used as 

representatives of the aggregated traffic flow-density relationship and the stability at the network 

level. The normalized values of standard deviation of travel time for different links in the network 

are also used as an indicator of travel time reliability. The numerical experiments of the large-scale 

application lead to the following findings: 

 With a constant proportion of HDVs in the network, higher MPRs of CVs and AVs lead to 

a lower maximum density and smaller hysteresis loop area, meaning a faster network 

recovery from congestion. In addition, higher proportions of CVs and AVs relative to 

HDVs result in a lower maximum density, slightly higher maximum flow, and a more 

stable network. 

 Being en-route is the most effective feature of CVs and AVs, which results in significant 

improvements in traffic flow and a much faster network recovery. In addition, the presence 

of CVs and AVs significantly improves the intersection capacity.  

 As the acceleration behavior of drivers is heterogeneous and a portion of HDV drivers have 

even a smaller spacing with the leading vehicle than CV drivers, the impacts of the presence 

of CVs and AVs on freeways and arterial links are small compared to the impacts of real-
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time route choice and intersection capacity. However, this effect is still significant and 

should be considered to differentiate the impacts of different vehicle types on traffic flow.  

 A mixed traffic condition with CVs, AVs, and HDVs has a different impact on NFD and 

hysteresis loop area from other scenarios with only two vehicle types. The results also 

indicate that the injection of AVs in the network is more effective on traffic flow conditions 

than CVs. Therefore, it is necessary to consider different shares of CVs and AVs in addition 

to HDVs to investigate a realistic impact of these vehicles with heterogeneous drivers on 

traffic flow at the network level. 

 AVs significantly improve the reliability of network relative to the scenario with only 

HDVs in the network. First, the standard deviation of link travel times generally decreases 

by replacing HDVs with AVs because of having much lower congestion and mean travel 

times in the network. In addition, the coefficient of variation is also decreased significantly 

by replacing HDVs with AVs. 

 It can also be concluded from above observations that despite the undoubtable impacts of 

automation on mobility, route choice and an even congestion distribution over the network 

have much more significant impacts on traffic flow at the network level than other effective 

factors. 

7-2- Future Research Directions 

The proposed methodologies in this study to improve the computational time of optimal 

path finding algorithms benefit from a significant reduction in computational times and negligible 

impacts on the accuracy. However, there are still some limitations to consider for future studies. 

For instance, the network reduction logic adopted in this study can be extended to allow the fusion 

of some extra information/hints, in addition to the optimistic/pessimistic travel times, in the 
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learning process to determine nodes eligible for elimination, such as a link or sub-path that is 

known to be part of the optimal paths from a certain set of origins to a given destination. 

Furthermore, the learning approaches for network contraction could extend to incorporate a 

reinforcement learning methodology that adjusts the learning factor in the successive iterations 

based on feedbacks received from previous iterations. 

Furthermore, the methodology of this study to consider travel time reliability in finding 

equitable pricing schemes provides important insights regarding the impacts of travel time 

variability and reliability on finding an efficient and equitable pricing strategy. However, in this 

study, users are not allowed to have multi-modal trips. In addition, all OD pairs are assumed to 

have alternative transit lines, which might not be the case in real-world transportation networks. 

Previous studies show that an alternative route to the tolled route is necessary in having an 

equitable pricing strategy. Therefore, it is suggested to update the algorithm of this study to 

consider multi-modal trips, consistent with the vision of integrated corridor management, for the 

future research. Also, a further step of this research is to consider travel time reliability in dynamic 

road pricing. Extending the research to a state-dependent congestion pricing, in which the toll 

values are updated based on the real-time monitoring of traffic conditions is another future research 

suggestion. Furthermore, using real-world data to define travel time uncertainty on highway links 

and transit lines would improve the fidelity of the obtained pricing schemes. 

Finally, this study provides useful insights into the impacts of CVs and AVs on traffic flow 

and travel time reliability at the network level. However, the tool, presented in this study to 

simulate traffic consisting of CVs, AVs, and HDVs, still has some limitations that should be 

addressed for future research. For instance, the signal timings used in this study are not optimized 

for a mixed traffic stream, consisting of HDVs, CVs, and AVs. Having an adaptive signal timing 
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may significantly influence the traffic flow of the network. In addition, more data collection efforts 

are needed to have a more realistic estimation of the adjustment factors for arterial traffic flow 

models and intersection capacity in the presence of CVs and AVs. In this study, we also assumed 

that the drivers of connected vehicles are certain about other drivers’ behavior due to the flow of 

information in a V2V/V2I communications network. Therefore, their behavior is more 

deterministic compared to human-driven vehicles. Utilizing a dataset containing the trajectories of 

connected vehicles to calibrate the traffic flow models could result in more realistic parameters for 

the acceleration models of connected vehicles. Finally, in this study, we investigated the impacts 

of CVs and AVs purely on traffic flow and travel time reliability at the network level. However, 

the secondary impacts of CVs and AVs on travel demand need to be considered as well.  
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