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ABSTRACT

INTEGRATED ANALYSIS OF GENETIC MARKER, MIRNA, AND MRNA DATA TO

UNRAVEL MECHANISMS CONTROLLING GROWTH AND MEAT QUALITY TRAITS IN
PIGS
By
Kaitlyn R. Daza
Determining mechanisms regulating complex traits in pigs is essential to improve the

production efficiency of this globally important protein source. MicroRNAs (miRNAs) are a
class of non-coding RNAs known to post-transcriptionally regulate gene expression affecting
numerous tissues and phenotypes, including those important to the pig industry. However,
further research is needed to characterize the miRNAs expressed in pig skeletal muscle and
assess their impact on the regulation of growth, carcass composition, and meat quality traits.
Additionally, little is known about the genetic architecture controlling miRNA expression in
pigs, which can be elucidated by combining high-density genotypic data with miRNA expression
profiles from the same animals in the mapping of miRNA expression quantitative trait loci (miR-
eQTL). This analysis reveals associations between genomic regions harboring single nucleotide
polymorphisms (SNPs) and variation in the expression of miRNAs. By integrating mRNA
expression profiles and phenotypic data from the same individuals, putative regulatory
relationships can be revealed underlying variation in phenotypes relevant to pig production. In
this study, our objectives were to profile and characterize the small RNA population present in
longissimus dorsi (LD) skeletal muscle samples from a F2 Duroc x Pietrain resource population,
and to conduct an integrated miR-eQTL analysis to identify regulators of miRNA expression and

candidate genes regulating phenotypic traits in adult pig skeletal muscle.



MicroRNA expression profiling was performed on total RNA extracted from (LD)
muscle samples from 174 F, pigs. The composition of small RNA classes present in this dataset
was characterized through a series of homology searches against human, mouse, and pig
databases. MicroRNA quantification and novel miRNA prediction was conducted, profiling the
abundance of 295 known mature pig miRNAs and producing 27 unique candidate novel miRNA
precursors. The 295 miRNA expression profiles were subsequently used as response variables in
a GBLUP-based GWA analysis. Results for associating these miRNAs with 36,292 SNPs
identified 315 significant miRNA-SNP associations (FDR < 0.05), comprising 23 significant
eQTL peaks associated with 17 unique miRNAs. Five of the 23 miR-eQTL peaks were defined
as local-acting, meaning the genomic positions of the significantly associated SNPs comprising
the miR-eQTL peak overlapped that of the miRNA precursor transcript. We then investigated the
potential effects of these miRNAs through miRNA target prediction, correlation, and
colocalization analyses. Notably, one miR-eQTL miRNA exhibiting a strong /ocal-acting miR-
eQTL, miR-874, had predicted target genes colocalizing with previously identified phenotypic
QTL for 12 production traits including backfat thickness, dressing percentage, muscle pH at 24 h
post-mortem, and cook yield.

The results of this study revealed putative pig-novel miRNAs for further study and
validation, contributing to our understanding of the miRNA landscape present in adult pig
skeletal muscle. Additionally, we identified genomic regions underlying variation in miRNA
expression, and candidate miRNAs and genes for future investigation of their regulatory effects

on growth, carcass composition, and meat quality traits of importance to the global pig industry.
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CHAPTER ONE

INTRODUCTION

1.1 Advancements in genetic selection of pigs: Quantitative Trait Loci

The United States pork industry produced over $19.1 billion in gross income in 2020,
making it a key contributor to the prosperity of the American agricultural economy (USDA —
NASS 2021). The incorporation of genomic selection techniques has stimulated significant
improvement in livestock production, including in traits of importance to pork producers and
processors such as meat quality and carcass characteristics (Meuwissen et al. 2016). However,
historical selection for increased carcass leanness has adversely affected meat quality
phenotypes, increasing the incidence of inferior eating-quality pork and decreasing consumer
satisfaction (Barbut et al. 2008; Schwab and Baas 2008; Ciobanu et al. 2011). Increased demand
for high-quality products has placed growing emphasis on improving meat quality and
consistency while reducing the presence of inferior quality pork (Barbut et al. 2008). Thus,
understanding the complex genetic regulation of economically important production traits

continues to be a priority for food animal producers.

Genetic improvement of livestock has historically been achieved using traditional animal
breeding techniques, combining phenotypic data with pedigree information to estimate animals’
individual breeding values. While these methods have been successful in achieving genetic gain,
advancements in molecular genetic technologies facilitated the identification of quantitative trait
loci (QTL); polymorphic loci or “markers” along the genome significantly associated with
variation in quantitative traits. These methods integrate molecular genetics approaches into

traditional animal breeding, accelerating improvement through the targeted selection of



genetically superior breeding stock. Many QTL studies have been conducted in the decades since
the first identified pig QTL in 1994 (Andersson et al.), with the goal of understanding genetic
mechanisms controlling variation in complex, economically important pig phenotypes. There are

currently 33,143 QTL reported in the PigQTLdb database from nearly 733 publications, with

over 17,000 QTL representing meat and carcass traits (http://www.animalgenome.org/cgi-

bin/QTLdb/SS/index; release 44, April 26, 2021). Despite the success of QTL identification in

pigs, due to most QTL having small effect on their associated traits, causative variants associated

with known genes have been validated for relatively few of these QTL.

1.2 Expression QTL: uncovering the genetic architecture of gene expression

The availability of high-density single nucleotide polymorphism (SNP) panels and
advancements in RNA sequencing technologies enable the mapping of expression quantitative
trait loci (eQTL) in segregating populations (Jansen and Nap 2001; Schadt et al. 2003). In an
eQTL analysis, gene expression profiles are used as response variables in genome-wide
association models. By investigating variations in gene expression between individuals,
significantly associated genomic loci — here, SNP markers — can be identified. These SNPs can
then be mapped to the genome and identified as affecting gene expression locally, near the gene-
of-origin, or distantly, far from the gene-of-origin (Jansen and Nap, 2001; Kadarmideen et al.
2006). This method may also provide insight into the genetic architecture of phenotypic variation

through the integration of phenotypic QTL (pQTL) from the same population.

Many eQTL studies have been conducted in pigs, profiling tissues including skeletal
muscle (Ponsuksili et al. 2008, 2010, 2012, 2014; Liaubet et al. 2011; Steibel et al. 2011;

Cénovas et al. 2012, Velez-Irizarry et al. 2019). Ponsuksili and collaborators (2008) utilized



microarrays to profile gene expression in longissimus dorsi (LD) samples from 74 F2 pigs,
identifying 104 eQTL overlapping pQTL associated with water holding capacity (Ponsuksili et
al. 2008). Additionally, Steibel et al. (2011) utilized a whole-genome expression microarray to
conduct an eQTL analysis in an F2 pig resource population, identifying 59 eQTL (FDR < 10%)
aligned to known genomic positions. Upon co-localizing these eQTL with previously identified
pQTL, the eQTL were found to regulate genes associated with lipid metabolism, DNA
replication, and cell cycle regulation (Steibel et al. 2011). Ponsuksili and colleagues (2014)
integrated eQTL data from LD tissue of two pig populations to further define results from a QTL
scan of the same animals, identifying candidate genes influencing multiple meat quality

phenotypes.

Our group has utilized the Michigan State University Pig Resource Population
(MSUPRP), a F» Duroc x Pietrain pig population, for over a decade to identify pQTL (Edwards
et al. 2008a, 2008b; Choi et al. 2010, 2011; Gualdron-Duarte et al. 2016; Casiro et al. 2017) and
eQTL (Steibel et al. 2011; Velez-Irizarry et al. 2019) associated with important production traits.
These two pig breeds are utilized in commercial systems worldwide, differing in growth rate,
carcass leanness and meat quality traits (Edwards et al. 2006). Most recently in 2019, Velez-
Irizarry et al. (2019) identified 339 eQTL in LD tissue of 168 F2 pigs, revealing 16 genes co-
localizing with 21 pQTL for meat quality, carcass composition, and growth traits. These studies
demonstrate the successful identification of genomic regions harboring variants associated with
gene expression variation and downstream phenotypes of economic importance to the pig

production industry.



1.3 MicroRNAs: Discovery, biology, and implications in pig skeletal muscle

One mechanism of genetic regulation potentially governing complex pig phenotypes is
the post-transcriptional silencing of genes via microRNAs (miRNAs). MicroRNAs are a class of
single-stranded, small non-coding RNAs known to regulate various biological processes through
complementarity of the miRNA “seed” sequence with target mRNA sequences. The first
miRNAs were identified in the /in-4 gene in C. elegans in 1993, wherein two small transcripts
were found containing sequences complementary to the 3° UTR of /in-/4 mRNA. These
transcripts were discovered to suppress the expression of the /in-74 gene, and were later termed
microRNAs (Lee et al. 1993). MicroRNAs have since been shown to regulate a multitude of
biological processes through recognition of target genes via sequence complementarity and are

expressed in a spatiotemporal manner, indicating that they have specific regulatory functions.

The biogenesis of miRNAs is well understood (for review see Liu et al. 2010; Ha and
Kim 2014). In animals, a long (> 1 kb) primary miRNA transcript (pri-miRNA) is initially
transcribed in the nucleus by RNA polymerase II. The pri-miRNA is processed by the
Microprocessor complex of Drosha, an RNase III family endonuclease, and DGCRS proteins,
producing a ~70-nt hairpin pre-miRNA (Lee et al. 2003). The pre-miRNA is then exported from
the nucleus by the protein exportin 5 (EXPS5; Yi et al. 2003), and is cleaved by Dicer proteins in
the cytoplasm to form a 19 — 24 nt duplex containing the mature miRNA “guide” and its
complementary “star” strand (Ketting et al. 2001; Soifer et al. 2008). The mature miRNA is
preferentially loaded onto argonaute proteins, and the RNA-Induced Silencing Complex (RISC)
is assembled (Hammond et al. 2001). The RISC complex, coupled with guide miRNA, then

targets mRNA(s) exhibiting complementary sequence to the 6 — 8 nt miRNA “seed” sequence,



typically located in the 3 UTR of the mRNA (for review, see Carthew and Sontheimer 2009).
Post-transcriptional suppression of target mRNA expression then occurs through multiple
mechanisms, including transcript degradation through mRNA cleavage or destabilization, and

repression of ribosomal translation (Behm-Ansmant et al. 2006; Mohr and Mott 2015).

Research efforts began with miRNA discovery and profiling in multiple tissues. Primary
miRNA discovery methods involved homology searches of known miRNA in other species,
typically in combination with microarray expression data. In vertebrates, miRNAs have been
most extensively studied in human and mouse. The official miRNA database, miRBase,

currently contains 2,654 mature human miRNAs (Release 22.1, October 2018;

http://www.mirbase.org/index.shtml; Griffiths-Jones 2006; Kozomara et al. 2019). More
recently, the focus of human miRNA research has turned to their utilization as potential
biomarkers and targeted treatments for cancers and other diseases (Mollaei et al. 2018).
Discovery of miRNAs in livestock and their roles in animal agriculture are also currently being
studied. The miRBase database currently contains 457 mature pig miRNAs (Release 22.1,

October 2018; http://www.mirbase.org/index.shtml; Griffiths-Jones 2006; Kozomara et al.

2019). The first pig miRNA (mirl17-92) was identified in 2005 by Sawera and colleagues using
homology searching of human miRNAs and northern blot analysis of five porcine tissues.
Wernersson et al. (2005) utilized sequence similarity searching of approximately 3.8 million
shotgun sequences of the pig genome to identify 51 mature pig miRNAs, observing that miRNA
sequences are strongly evolutionarily conserved between pig, human, and mouse species. Kim et
al. (2006) also utilized homology of human and mouse sequences to identify 58 additional pig

miRNAs in five pig tissues.



As expression profiling technologies advanced, larger numbers of pig miRNAs were
discovered. Huang et al. (2008) found over 700 candidate pig miRNAs, 296 of which were
validated in fetal porcine skeletal muscle tissue via mammalian miRNA microarrays. Xie et al.
(2011) performed next-generation sequencing of a total RNA library pooled from 16 pig tissues,
identifying 437 conserved and 86 candidate novel miRNAs (Xie et al. 2011). Eight candidate
novel miRNAs were subsequently validated using stem-loop RT-PCR (Xie et al. 2011).
Additionally, Li et al. (2012) utilized small RNA sequencing and miRNA microarrays to isolate
184 known and 521 candidate miRNAs from pooled libraries of pig skeletal muscle and adipose
tissues. More recently, machine learning approaches have been developed to predict novel
miRNAs in the pig genome. By adopting a semi-supervised transductive learning approach, the
eMIRNA pipeline utilizes positive, negative, and unlabeled training datasets to overcome
limitations of miRNA precursor prediction caused by the lack of miRNA annotation in the pig

genome (https://github.com/emarmolsanchez/eMIRNA/; Marmol-Sénchez et al. 2020). Twenty

novel expressed miRNAs were identified using this pipeline from small RNA sequencing data
obtained from gluteus medius muscle samples of 48 Duroc gilts (Marmol-Sanchez et al. 2020).
Advancements in miRNA prediction techniques and improved genome annotation offer

possibility for the continued identification of pig-novel miRNAs.

Research efforts continue to focus on understanding miRNA biology in various tissues
and developmental or physiological stages. Multiple studies have investigated miRNA
expression in pig skeletal muscle. Huang et al. (2008) identified 140 differentially expressed
(DE) miRNAs between two fetal time points and adult tissue in LD muscle tissue, validating five
through real-time PCR. McDaneld et al. (2009) profiled miRNAs in skeletal muscle satellite

cells derived from 8-wk-old pigs, biceps femoris (BF) and LD from fetuses at 60-, 90- and 105-d



of gestation, and BF of neonate and adult pigs, identifying several muscle-specific and
ubiquitous miRNAs and 12 potentially novel miRNAs. Yang and colleagues (2014)
characterized the dynamic expression of miR-127 during pre- and postnatal skeletal muscle
development, profiling miRNA expression in LD tissue at 26 developmental stages and eight
adult tissues with stem-loop quantitative real-time PCR. Cai and colleagues (2014) discovered
seven DE miRNAs in skeletal muscle between castrated and intact male pigs (fold change > 2).
Subsequent target prediction and integrated network analysis revealed miRNA-mRNA pairs
regulating skeletal muscle contractile function and lipid synthesis, further elucidating the genetic

effect of castration on skeletal muscle growth (Cai et al. 2014).

While evidence demonstrates that miRNA regulation effects multiple developmental and
biological processes, further research is needed to fully understand the impacts of miRNA
regulation on traits important to the pig industry. In Chapter 2 of this dissertation, we
characterized the small RNA populations present in LD tissue of 176 F» MSUPRP pigs using
RNA-sequencing. We successfully identified different classes of small RNA, profiled known pig
miRNAs, and predicted putative novel miRNAs in these samples, improving our knowledge of

these important regulatory RNAs in skeletal muscle of pig.

1.4 Integrated analysis of genetic variation, mRNA, and miRNA

A logical progression of research following miRNA discovery and profiling is to consider
the expression of miRNA and mRNA together in disease, metabolic, and developmental states.
Many studies compare miRNA-mRNA expression profiles between normal and disease states in
human and mouse tissues (Boren et al. 2008; Dong et al. 2010; Lawless et al. 2013; Quitadamo

et al. 2015). Kara and colleagues (2015) utilized high-throughput real-time PCR to compare



expression profiles of mRNA and select miRNAs targeting colorectal cancer-associated genes
between case and control samples, identifying five genes and 18 miRNAs significantly DE
between the two states. Co-expression approaches have also been used to identify regulatory
pathways in immune response (Lukowski et al. 2015), evaluate drug candidates (for review, see
Schmidt 2014; Gmeiner et al. 2010), and to study the regulation of mesenchymal stem cells in

humans and pigs (Giraud-Triboult et al. 2011; Eirin et al. 2014).

Co-expression profiling has also been conducted in skeletal muscle of various species.
Johnston et al. (2009) used microarrays to determine global changes in miRNA and mRNA
expression associated with the transition from hyperplasic to hypertrophic muscle growth in
zebrafish. Additionally, Gallagher et al. (2010) used microarrays in clinical trials comparing
mRNA and miRNA profiles in vastus lateralis muscle of insulin-resistant type 2 diabetic and
control patients, identifying 62 miRNAs with altered expression but no differences in the mRNA
transcriptome. Szeto et al. (2014) utilized next-generation sequencing to profile mRNA and
miRNA expression in two cell lines and one xenograft associated with human nasopharyngeal
carcinoma. Subsequent analysis identified 533 mRNA-miRNA pairs inversely regulated in all
three model systems compared to a negative control, aiding in the development of a more

complete characterization of the genetic regulation of this cancer (Szeto et al. 2014).

Integrating mRNA and miRNA profiles with genetic marker data provides further insight
into the mechanisms underlying complex trait phenotypes, enhancing results obtained from
eQTL studies. Allelic variation in miRNA target sites or at miRNA loci have been demonstrated
to contribute to phenotypic differences in both human and livestock traits (for review see Liu et

al. 2010). Clop and colleagues (2006) investigated a SNP in the myostatin gene of sheep



creating illegitimate miRNA target sites for miR-1 and miR-206 and contributing to the muscular
hypertrophy of the Texel breed. More recently, Lei et al. (2010) identified a SNP at the miR-27a
locus significantly associated with litter size in a Meishan pig population. In humans, variations
in longevity phenotypes were associated with SNPs located in the 3°’UTRs of two genes; SIRT2,
whose functions involve cellular metabolism and differentiation, and DRD2, whose signaling
regulates multiple physiological processes including locomotion and behavior. Individuals
expressing the minor allele for either of these 3° UTR SNPs observed a decreased probability of
becoming long-lived, indicating that miRNA targeting may affect the human aging process

(Crocco et al. 2015).

Due to the analytical complexity of studies involving integration of genetic marker,
mRNA and miRNA data, fewer studies of this nature have been reported. Dong et al. (2010)
used this approach to construct co-expression networks from glioblastoma patient data,
identifying a large number of cis- and trans-acting eQTL. Saba et al. (2010) built upon their
previous eQTL studies examining quantitative variations in animal alcohol consumption by
comparing eQTL, mRNA expression, and protein expression of candidate genes in breeds of
high or low alcohol-consuming inbred mice strains, subsequently investigating miRNA
regulation of the candidate gene, GnbI. Quitadamo and colleagues (2015) combined multiple
types of data including miRNA eQTL, miRNA-target interactions, protein-protein interactions,
and correlations between miRNA and gene expression to develop an integrated network
elucidating the effect of miRNA expression on ovarian cancer phenotypes. More recently,
Ponsuksili and colleagues (2017) identified 221 miRNA-eQTL associated with 108 miRNAs in
liver samples from 209 German Landrace pigs. Putative miRNA-mediated regulatory

mechanisms affecting biomedical and hematological traits of interest to human medicine (e. g.



blood urea nitrogen, total cholesterol, white blood cell count, etc.) were revealed by integration
of mRNA and phenotypic data from the same individuals (Ponsuksili et al. 2017). The same
group later conducted integrated miRNA-eQTL analyses in ileal epithelium samples of 482
Japanese Quail, identifying 34 miRNA-eQTL miRNAs and 62 mRNA-eQTL mRNAs.
Integration of microbiome data revealed networks of genes and miRNAs affecting phosphorus
utilization and microbiome composition, with the potential to minimize environmental impacts
of poultry production (Ponsuksili et al. 2021). These integrated studies aid in elucidating
regulatory interactions underlying complex phenotypes. However, prior to this dissertation
research no studies had been published regarding the global integration of genetic marker,

miRNA, mRNA, and phenotype data in traits relevant to food production.

The goal of this dissertation research was to improve our understanding of molecular
mechanisms controlling phenotypic variation in growth, carcass composition, and meat quality
traits in pigs. To accomplish this, we integrated high-density SNP genotype data, miRNA and
mRNA RNA-seq data, and phenotype data from 176 F» MSUPRP pigs. Through this integration
we identified genomic regions underlying variation in miRNA expression, and candidate
miRNAs and genes for further assessment of their regulatory effects on traits important to the pig

industry.

Specifically, our aims included:

1. Profile and characterize the small RNA population present in LD skeletal muscle samples

of 176 F> Duroc x Pietrain pigs.

10



2. Conduct an integrated miRNA-eQTL analysis utilizing small RNA sequencing data to
identify regulators of miRNA expression and candidate genes regulating phenotypic traits

in LD skeletal muscle samples of 176 F» Duroc x Pietrain pigs.

In Chapter 2 of this dissertation, we characterized the composition of small RNA classes
present in adult pig skeletal muscle through a series of homology searches against human,
mouse, and pig databases. MicroRNA quantification and novel miRNA prediction were also
conducted using the miRDeep2 software package (Friedldnder et al. 2012), profiling the
abundance of 295 known mature pig miRNAs and producing 27 unique candidate novel miRNA

precursors.

In Chapter 3 of this work, we identified genomic regions underlying variation in miRNA
expression by using 295 miRNA expression profiles as response variables in a genomic best
linear unbiased prediction (GBLUP) -based genome-wide association (GWA) analysis. We
identified 315 significant miRNA-SNP associations (FDR < 0.05), comprising 23 significant
eQTL peaks associated with 17 unique miRNAs. and revealed candidate miRNAs and genes for
future validation and assessment of their regulatory effects on traits of importance to the global

pig industry.
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CHAPTER TWO
PROFILING AND CHARACTERIZATION OF A LONGISSIMUS DORSI MUSCLE
MICRORNA DATASET FROM AN F; DUROC X PIETRAIN PIG RESOURCE
POPULATION
This chapter has been published previously (Daza et al. 2017). The manuscript was prepared
alongside co-authors Juan P. Steibel, Deborah Velez-Irizarry, Nancy E. Raney, Ronald O. Bates,

and Catherine W. Ernst

2.1 Abstract

To elucidate the effects of microRNA (miRNA) regulation in skeletal muscle of adult
pigs, miRNA expression profiling was performed with RNA extracted from longissimus dorsi
(LD) muscle samples from 174 F2 pigs (~5.5 months of age) from a Duroc x Pietrain resource
population. Total RNA was extracted from LD samples, and libraries were sequenced on an
Ilumina HiSeq 2500 platform in 1 x 50 bp format. After processing, 232,826,977 total reads
were aligned to the Sus scrofa reference genome (v10.2.79), with 74.8% of total reads mapping
successfully. The miRDeep?2 software package (v0.0.5) was utilized to quantify annotated Sus
scrofa mature miRNAs from miRBase (Release 21) and to predict candidate novel miRNA
precursors. Among the retained 295 normalized mature miRNA expression profiles sscmiR1,
sscmiR133a3p, sscmiR378, sscmiR206, and sscmiR10b were the most abundant, all of which
have previously been shown to be expressed in pig skeletal muscle. Additionally, 27 unique
candidate novel miRNA precursors were identified exhibiting homologous sequence to annotated
human miRNAs. The composition of classes of small RNA present in this dataset was also char-
acterized; while the majority of unique expressed sequence tags were not annotated in any of the
queried da- tabases, the most abundantly expressed class of small RNA in this dataset was

miRNAs. This data provides a resource to evaluate miRNA regulation of gene expression and
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effects on complex trait phenotypes in adult pig skeletal muscle. The raw sequencing data were

deposited in the Sequence Read Archive, BioProject PRINA363073.

2.2 Direct link to deposited data

The deposited sequencing data can be found here:

https://www.ncbi.nlm.nih.gov/bioproject/PRINA363073

2.3 Experimental design, materials and methods

2.3.1 Sample collection, RNA isolation and sequencing

A subset of 176 F; pigs from 44 litters (two males and two females per litter) of the
Michigan State University Duroc x Pietrain Pig Resource Population (MSUPRP) were selected
for transcriptional profiling (Edwards et al. 2008a, 2008b; Steibel et al. 2011). Samples
of longissimus dorsi (LD) tissue were collected from each animal at slaughter and frozen at
— 80 °C. Animal care and experimental protocols were approved by the Michigan State
University All University Committee on Animal Use and Care (AUF# 09/03-114-00). Total
RNA was isolated from LD samples using the miRNeasy Mini Kit (QIAGEN, California, USA),
and small RNA library construction and sequencing was performed at the MSU Research
Technology Support Facility. Samples were prepared for sequencing utilizing the Bioo Scientific
NEXTFlex™ Small RNA Sequencing Kit (v2; Bioo Scientific, Austin, TX, USA). Libraries
were barcoded and multiplexed for sequencing on the Illumina HiSeq 2500 platform (Illumina,
Inc.; California, USA) in 50 bp, single-end format. Two libraries failed to produce acceptable
sequencing output and were removed from further analysis, yielding 174 files of 50 nt short read

sequences in fastq format (86 males, 88 females).
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2.3.2 Analysis of sequencing data

The 3" adaptor sequences were trimmed from raw short reads using cutadapt
(cutadapt/1.4.1; Martin 2011), and trimmed reads of length 2638 nt were filtered for quality

using FASTX toolkit (FASTX/0.0.14; http://hannonlab.cshl.edu/fastx_toolkit), removing any

reads in which > 50% of the nucleotides had Phred score < 30. The selected sequence length
retained an additional 4 nt on both the 5" and 3’ ends of each read to accommodate the
randomized adaptors ligated during library preparation, which allowed the identification of PCR
duplicates. Distribution of sequence read lengths was assessed, and trimmed, filtered reads were

collapsed using FASTX toolkit (FASTX/0.0.14; http://hannonlab.cshl.edu/fastx_toolkit) into

unique expressed sequence tags containing a sequence identifier and the numerical count of each
read (read count). PCR duplicates and random adaptor sequences were removed using the

ShortRead package of R prior to genome alignment and quantification (Morgan et al. 2009).

2.3.3 Characterization of small RNAs

To characterize classes of small RNA present in the dataset, unique expressed sequence
tags underwent multiple queries utilizing BLAST + (v2.2.30) prior to read alignment and
quantification of known miRNAs. Unique sequences expressed at least two times were included
in this analysis. Sequences were sequentially queried against: the Sus scrofa mature miRNA
miRBase database (Release 21; Griffiths-Jones et al. 2008), the Ensembl Sus scrofa ncRNA
database (Release 84), and the Sus scrofa, Homo sapiens, and Mus musculus Rfam databases
(version 11) using blastn. The blastn-short parameter was implemented as it is optimal for
queries of sequences < 50 nt, and an e-value threshold of 1 x 10~ > was used to declare a

significant hit. Results of each query were filtered as follows to retain unique sequence read hits:
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hits were retained that obtained 100% sequence identity, followed by at least 96% sequence
identity, and finally hits with the maximum bitscore were retained. If multiple BLAST + hits
remained for a given sequence, the hits most identical to the sequence were retained (based on
percent identity). If multiple significant hits persisted with equal sequence identity, a single hit
was retained for each sequence. This yielded the composition of classes of small RNA present in
the small RNA sequencing dataset, based on both the unique expressed sequence tags and total

read counts.

The miRDeep2 software package (v0.0.5) was used to align high-quality reads to the Sus
scrofa reference genome (v10.2.79; Ensembl), and to quantify Sus scrofa mature microRNAs
(miRNAs) obtained from miRBase (Release 21; Griffiths-Jones et al. 2008; Friedldnder et al.
2012). The average abundance of each mature pig miRNA was adjusted for differences in
sequencing depth between libraries by converting the read counts to counts per million (cpm)
with the edgeR package of R, incorporating TMM normalization factors (Robinson et al. 2010).
miRNAs expressed at < 1 cpm in > 44 libraries were removed from the dataset prior to

calculation of the normalization factors.

miRDeep2 (Friedldnder et al. 2012) was also utilized to predict candidate novel miRNAs.
The software was provided the known Sus scrofa mature and precursor miRNA sequences, and
the known Homo sapiens mature miRNA sequences from miRBase (Release 21; Griffiths-Jones
et al. 2008) to search for sequence homology for novel miRNA prediction. The resulting
candidate novel precursors were filtered based on: the miRDeep2 score output by the algorithm
(> 10), the estimated probability of the novel miRNA being a true positive (> 91 £ 2%), a

significant Randfold p-value, and a minimum read count of 10 reads for both mature and star
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(complementary) sequences. Retained sequences were converted to DNA alphabet and FASTA
format (ShortRead (R); Morgan et al. 2009). BLAST + (v2.2.30) was utilized to further
characterize the candidate novel miRNA precursors by searching for sequence homology to the
database of known human precursor and mature miRNAs in miRBase (Release 21; Griffiths-
Jones et al. 2008), utilizing a stringent e-value threshold of 1 x 10~ resulting in high-confidence

homologous sequences.

All code used to analyze this dataset is publicly available and can be found at

https://github.com/perrykai.

2.4 Data description

Determining underlying mechanisms controlling complex trait phenotypes such as
growth, carcass composition and meat quality in pigs is important for achieving continued
genetic improvement. One genetic mechanism involved in regulating these traits is the silencing
of gene expression via miRNAs. Previous studies report that miRNAs exhibit dynamic
expression in pig skeletal muscle across developmental stages, physiological states, and
breeds (Huang et al. 2008; McDaneld et al. 2009; Nielsen et al. 2009; Xie et al. 2011; Qin et al.
2013; Siengdee et al. 2013; Cai et al. 2014). Moreover, the signaling pathways enriched for
genes that these miRNAs target are shown to be involved in myogenesis and muscle
regeneration (Nielsen et al. 2009). Due to the influential role of miRNAs on economically-
important complex traits, it is necessary to continue characterizing miRNAs in pig skeletal
muscle. Thus, the objective of this work was to profile and characterize the expression of
miRNAs in LD muscle of market-age (approximately 5.5 months of age) F» pigs from the

MSUPRP (Edwards et al. 2008a, 2008b).
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Assessment of sequence read length distribution revealed 63.8% of the total reads to be
22 nt long, which is the common length of mature miRNAs. This indicates the success of small
RNA sequencing at isolating miRNAs (Fig. 2.1a), and concurs with results in Xie et al. (2011)
where 43.7% of total small RNA sequencing reads were 22 nt in length. In total, 232,826,977
high-quality reads (mean 1,338,086 reads per library) were aligned to the Sus scrofa reference
genome (v10.2.79; Ensembl), with 74.8% of reads successfully mapping. Moreover, 158,672,792

reads were quantified as miRNAs from the 174 samples, corresponding to 91.2% of the mapped

reads.
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Figure 2.1 Characterization of small RNA sequencing data. a) Sequence read length distribution;
composition of small RNA classes present in the small RNA sequencing dataset based on b)
unique sequences, and c) total read counts.
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After filtering for abundance across libraries, 295 miRNA expression profiles were
obtained (Table 2.S1). The five most abundant miRNAs represented 47.9% of the total cpm in
the dataset including ssc-miR-1, ssc-miR-133a3p, sscmiR-378, ssc-miR-206, and ssc-miR-10b.
These miRNAs have previously been identified in pig skeletal muscle, including Nielsen et
al. (2009), where ssc-miR-1 and ssc-miR-206 were the two most highly abundant miRNAs
identified from sequencing LD samples from seven 1.5-2-year-old Danish Landrace/Y orkshire
crossbred pigs. MiR-1, miR-206, and miR-133a are also considered the “myomiRs”, and have
been well-characterized for their roles in mammalian skeletal muscle myogenesis and

regeneration (for review, see Horak et al. 2016).

Results of the small RNA characterization analysis are shown in Fig. 2.1b, considering
unique expressed sequence tags, and Fig. 2.1c, considering the total read count of each sequence.
Most of the unique expressed sequence tags were not annotated in any of the five databases
queried (“unknown”, 77.8%; Fig. 2.1b). Additionally, 11.1% of the unique expressed sequence
tags (where each unique sequence was counted one time) were classified as miRNAs, and 6.1%
of the unique expressed sequence tags consisted of other non-coding RNAs (Fig. 2.1b). When
considering the sequences based on total read count, 74.1% of the sequences were identified as
miRNAs, while 18.3% of the total reads were not annotated (Fig. 2.1c). These results show that
miRNAs are the most abundant small RNA expressed in this dataset, and are consistent with
results obtained in Xie et al. (2011), where miRNAs were the most abundant class of small

RNAs found in a pooled RNA sample from 16 pig tissues.

There were 132 candidate novel miRNAs predicted from miRDeep2 that passed filtering

steps. After BLAST + query, there were 27 unique candidate novel miRNA precursors
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homologous to a human miRNA precursor (Table 2.1; additional annotation information in Table
2.S2). Eight candidate novel precursors had more than one homologous human miRNA
precursor, ranging from 2 to 6 hits per candidate novel sequence. The consensus secondary
structures for the 27 unique candidate novel precursors predicted by miRDeep2 can be found

in Fig. 2.S1.

In summary, 295 known Sus scrofa mature miRNA expression profiles were obtained
from next-generation sequencing of LD RNA from 174 F> Duroc % Pietrain pigs of the
MSUPRP. Twenty-seven unique candidate novel pig miRNA precursors were predicted, and the
composition of classes of small RNA present in the dataset were characterized to reveal that
miRNAs were the most abundant small RNA class expressed in the skeletal muscle of these pigs.
This work contributes to the further characterization of microRNAs in pig skeletal muscle, which
will lead to a more complete picture of the genetic regulation of complex economically-

important pig production traits.
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Table 2.1. Candidate novel miRNA precursors predicted from miRDeep2 and characterized with BLAST+.

miRDeep2 BLAST+
miRDeep2 Read Predicted Mature Seq predicted Matched % E Precursor
Sequence ID? Score Count Sequence? Length miRbase miRNA? precursor” Identical®  value® Coordinate®

GL892871.2:56019..

GL892871.2 43622  572746.3 1123410  uucaaguaauucaggauagguu 22 hsa-miR-26a-5p hsa-mir-26b 100.0 2.00E-23  56076:+
X:48640826..

X 39130 136780.7 268282 uacccauugcauaucggaguug 22 hsa-miR-660-5p hsa-mir-660 97.7 2.00E-17  48640884:+
3:11024999..

3 7507 57547.6 112871 uaauuuuauguauaagcuagu 21 hsa-miR-590-3p hsa-mir-590 96.0 1.00E-06  11025060:+
13:24885255..

13 28851 40621.2 79667 uucaaguaacccaggauaggcu 22 hsa-miR-26a-5p hsa-mir-26a-1 96.1 7.00E-20  24885316:-
13:24885255..

13 28851 40621.2 79667 uucaaguaacccaggauaggcu 22 hsa-miR-26a-5p hsa-mir-26a-2 95.8 4.00E-06  24885316:-
GL894231.1:23071..

GL894231.1 44092  12387.7 24290 auaauacaugguuaaccucuuu 22 hsa-miR-655-3p hsa-mir-655 100.0 7.00E-17  23131:-
GL894231.1:16616..

GL894231.1 44082 6189.5 12132 gucauacacggeucuccucucu 22 hsa-miR-485-3p hsa-mir-485 100.0 3.00E-25 16675:-
GL894231.1:10061..

GL894231.1_44074  6021.2 11802 aucacacaaaggcaacuuuugu 22 hsa-miR-377-3p hsa-mir-377 98.2 5.00E-24  10121:-
12:4273970..

12 25369 4096.6 8028 aucauguaugauacugcaaaca 22 hsa-miR-6516-3p hsa-mir-6516 98.0 5.00E-21  4274033:+
GL894231.1:31685..

GL894231.1 44108 3936.2 7714 aucauagaggaaaauccacau 21 hsa-miR-376a-3p hsa-mir-376a-2  95.8 4.00E-18  31743:-
GL894231.1:31685..

GL894231.1_44108  3936.2 7714 aucauagaggaaaauccacau 21 hsa-miR-376a-3p hsa-mir-376a-1 85.2 2.00E-07 31743:-
1:179916350..

11168 3418.9 6698 uuuagugugauaauggeguuug 22 hsa-miR-3591-5p hsa-mir-3591 98.0 3.00E-22  179916408:+
1:179916350..

11168 3418.9 6698 uuuagugugauaauggeguuug 22 hsa-miR-3591-5p hsa-mir-122 97.9 2.00E-20  179916408:+
X:48632394..

X 39122 3415.6 6691 caucccuugeaugguggagggu 22 hsa-miR-188-5p hsa-mir-188 100.0 1.00E-21 48632453+
X:67530381..

X 39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374a 96.1 6.00E-20  67530433:+
X:6753038]1..

X 39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374a 90.5 8.00E-10  67530433:+
X:67530381..

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374c 88.9 3.00E-09  67530433:+
X:6753038]1..

X 39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374c 86.4 3.00E-06  67530433:+
X:67530381..

X 39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374b 88.9 3.00E-09  67530433:+
X:6753038]1..

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374b 86.4 3.00E-06  67530433:+
7:81043856..

7 18912 1362.7 2664 auaagacgagcaaaaagcuugu 22 hsa-miR-208a-3p hsa-mir-208a 100.0 3.00E-25 81043913:-
13:115915962..

13 28053 986.0 1925 gcgacccauacuugguuucaga 22 hsa-miR-551a hsa-mir-551b 94.9 1.00E-12  115916023:+
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Table 2.1 (cont’d)

6_14565
JH118928.1 41756
GL894231.1 44094
17_36762
17_36762
17_36762

13654

14 31131

14 31131
X_40048

1.851

X_39264

1226433
1226433
GL894231.1 44088
1_1860

1_1860

1_1860

25120

642.0
527.0
365.0
298.5
298.5
298.5
2443
225.4
225.4
137.0
130.1
117.7
111.2
111.2
80.7

61.0

61.0

61.0

243

1250
1036
715
583
583
583
470
433
433
266
248
224
209
209
150
111
111
111
39

uaauacugccugguaaugauga
ucauucuccuucuuugaccaga
ucuuguuaaaaggeagauucu
ccggguacugageuggeccgag
ccggguacugageuggeccgag
ccggguacugageuggeccgag
cauuauuacucacgguacgagu
ccaaaccaguugugecuguag
ccaaaccaguugugccuguag
uucccugeccucuuccuccagg
uggaaacacuucugcacaaacu
uguaaacaauuccuagguaaugu
ucaacaaaaucacugaugcugga
ucaacaaaaucacugaugcugga
aaucauacagggacauccaguu
agauguccagccacaauucucg
agauguccagccacaauucucg
agauguccagccacaauucucg

acugacaggagagcauuuuaau

*Results obtained from miRDeep2 algorithm

bResults obtained from BLAST+ query against Homo sapiens miRBase database.

22
22
21
22
22
22
22

21
22
22
23
23
23
22
22
22
22
22
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hsa-miR-200b-3p

hsa-miR-126-5p
hsa-miR-6715a-3p
hsa-miR-6715a-3p
hsa-miR-4261
hsa-miR-30a-5p
hsa-miR-3065-5p
hsa-miR-3065-5p
hsa-miR-154-3p
hsa-miR-219b-5p
hsa-miR-219b-5p
hsa-miR-219b-5p
hsa-miR-3660

hsa-mir-200b
hsa-mir-6758
hsa-mir-544a
hsa-mir-486-1
hsa-mir-486-2
hsa-mir-486-2
hsa-mir-126
hsa-mir-6715b
hsa-mir-6715a
hsa-mir-6894
hsa-mir-147b
hsa-mir-384
hsa-mir-338
hsa-mir-3065
hsa-mir-487a
hsa-mir-219b
hsa-mir-219a-2
hsa-mir-219a-1
hsa-mir-3660

95.0
94.4
97.6
91.2
91.1
100.0
100.0
95.4
93.5
89.6
95.9
88.4
94.7
94.1
90.0
100.0
100.0
100.0
94.8

2.00E-13
6.00E-11
6.00E-17
7.00E-14
3.00E-13
3.00E-07
7.00E-23
4.00E-15
2.00E-14
8.00E-11
1.00E-18
6.00E-08
5.00E-21
2.00E-17
1.00E-08
3.00E-22
2.00E-20
3.00E-07
1.00E-12

6:58064309..
58064367+
JH118928.1:123819
..123880:-
GL894231.1:24222..
24280:-
17:12191239..
12191302:+
17:12191239..
12191302:+
17:12191239..
12191302:+
1:313734674..
313734733:-
14:133619338..
133619395:+
14:133619338..
133619395:+
X:51475450..
51475523:-
1:140919000..
140919059:+
X:69515840..
69515903:+
12:1507090..
1507153:-
12:1507090..
1507153:-
GL894231.1:20450..
20508:-
1:302806862..
302806927:+
1:302806862..
302806927:+
1:302806862..
302806927:+
2:100272647..
100272707:+
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APPENDIX

Supplementary materials are available at: http://dx.doi.org/10.1016/j.gdata.2017.07.006

Table 2.S1. Sus scrofa mature miRNA average abundance (cpm) in the 174 F» Duroc x Pietrain
Michigan State University resource population pigs.

Table 2.S2. Candidate novel miRNA annotation information.

Figure 2.S1. Secondary structures of candidate novel miRNAs. Sequences are color-coded as
follows: red, mature sequence; yellow, loop sequence; purple, star strand sequence observed in
small RNA sequencing data; light blue, expected star sequence based on Dicer/Drosha

processing (Friedldnder et al. 2012).
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CHAPTER THREE
INTEGRATED GENOME-WIDE ANALYSIS OF MICRORNA EXPRESSION
QUANTITATIVE TRAIT LOCI IN PIG LONGISSIMUS DORSI MUSCLE
This chapter has been published previously (Daza et al. 2021). The manuscript was prepared
alongside co-authors Deborah Velez-Irizarry, Sebastian Casiro, Juan P. Steibel, Nancy E. Raney,
Ronald O. Bates, and Catherine W. Ernst

3.1 Abstract

Determining mechanisms regulating complex traits in pigs is essential to improve the
production efficiency of this globally important protein source. MicroRNAs (miRNAs) are a
class of non-coding RNAs known to post-transcriptionally regulate gene expression affecting
numerous phenotypes, including those important to the pig industry. To facilitate a more
comprehensive understanding of the regulatory mechanisms controlling growth, carcass
composition, and meat quality phenotypes in pigs, we integrated miRNA and gene expression
data from longissimus dorsi muscle samples with genotypic and phenotypic data from the same
animals. We identified 23 miRNA expression Quantitative Trait Loci (miR-eQTL) at the
genome-wide level and examined their potential effects on these important production
phenotypes through miRNA target prediction, correlation, and colocalization analyses. One miR-
eQTL miRNA, miR-874, has target genes that colocalize with phenotypic QTL for 12 production
traits across the genome including backfat thickness, dressing percentage, muscle pH at 24 h
post-mortem, and cook yield. The results of our study reveal genomic regions underlying
variation in miRNA expression and identify miRNAs and genes for future validation of their

regulatory effects on traits of economic importance to the global pig industry.
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3.2 Introduction

Pork is the meat of choice worldwide, and global meat consumption is projected to
continue to increase over the next decade. To fulfill consumer expectations, pork producers will
need to continue to improve the quality and consistency of pork products in order to enhance the
prosperity of this global industry (USDA, 2020). However, industry focus on increasing carcass
leanness has historically neglected meat quality characteristics, increasing the incidence of
inferior eating-quality pork and decreasing consumer satisfaction (Barbut et al. 2008; Schwab
and Baas 2008; Ciobanu et al. 2011). Improvements in animal production have been gained
through the incorporation of genomic selection techniques (Meuwissen et al. 2016). However,
many economically relevant production traits are controlled by complex interactions of gene and
protein expression and regulation. While genomic selection has facilitated increased progress on
those traits, a better understanding of the genetic architecture controlling phenotypic expression
cannot only improve selection in the long term but also enhance management interventions.
Improving understanding of the complex regulation of important pork production traits including
meat quality, carcass composition, and growth will continue to be a priority for scientists and
livestock producers alike.

One genetic mechanism that has been investigated for its role in regulating these
economically important traits is the silencing of gene expression via microRNAs [miRNA(s) or
miR], a class of single-stranded, non-coding small RNA that post-transcriptionally regulate gene
expression through sequence complementarity of an approximately 7 nt “seed” sequence with
target mRNA sequences. They are known to target genes throughout the genome, influencing a
multitude of biological processes. Furthermore, a single miRNA can potentially target hundreds

of genes, and multiple miRNAs have the ability to target the same mRNA, acting as “fine tuners”
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of gene expression and adding rich complexity to the regulation of polygenic traits. Several
miRNAs expressed specifically in muscle tissue have been termed the “myomiRs” (miR-1, miR-
133a, miR-133b, miR-206, and others), which play critical roles in the proliferation,
differentiation, and regeneration of skeletal muscle (for review, see Horak et al. 2016). Previous
studies demonstrate miRNA involvement in skeletal muscle development and function in pigs,
spanning various developmental time points, physiological states, and breeds (Qin et al.

2013; Siengdee et al. 2013; Cai et al. 2015; Jing et al. 2015; Mai et al. 2016; Xi et al.

2018; Méarmol-Sanchez et al. 2020). While many studies have examined effects of miRNAs on
diverse phenotypes in pigs, less has been done to elucidate mechanisms regulating the expression
of miRNAs themselves, and their effects on downstream phenotypes.

By combining high-density genotypic data with miRNA expression profiles, associations
between regions of the genome harboring single nucleotide polymorphisms (SNPs) and the
expression of a miRNA can be revealed. These associated genomic regions are termed “miRNA
expression Quantitative Trait Loci” (miR-eQTL) and add another layer to our understanding of
the regulation of complex phenotypes on the molecular level. Studies identifying miR-eQTL
have been reported, but their objectives primarily focus on human biomedical applications,
particularly using miRNAs as biomarkers or therapeutics in disease phenotypes (Dong et al.
2010; Gamazon et al. 2013; Huan et al. 2015; Wohlers et al. 2018). These studies reinforce the
importance of elucidating the genetic architecture of miRNA expression and its effects on traits
of interest to the pig industry.

Understanding both the influence of miRNA regulation on pig production phenotypes
and factors affecting the expression of miRNAs themselves will increase our understanding of

skeletal muscle tissue at the molecular level, ultimately leading to improvements in pork quality
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and consistency. Therefore, the purpose of this study was to investigate the regulatory role of
miRNAs in growth, carcass composition, and meat quality traits through genome-wide miR-
eQTL analyses utilizing small RNA sequencing data from longissimus dorsi (LD) muscle
samples from an F> Duroc x Pietrain resource population and to integrate gene expression and
phenotypic data from the same animals to elucidate regulatory mechanisms controlling these
complex traits.
3.3 Materials and methods
3.3.1 Data collection and sequencing

Animal housing and care protocols were evaluated and approved by the Michigan State
University All University Committee on Animal Use and Care (AUF # 09/03-114-00). The 176
animals used in this study were a subset of F> pigs selected from the Duroc x Pietrain Michigan
State University Pig Resource Population expressing extremes for loin muscle area or back fat
thickness phenotypes (MSUPRP; Edwards et al. 2008a, 2008b; Steibel et al. 2011). These
animals were phenotyped for over 60 traits encompassing meat quality, carcass composition, and
growth traits. Genotyping was performed by Neogen Corporation—GeneSeek Operations
(Lincoln NE) using Illumina PorcineSNP60 BeadChips (Ramos et al. 2009) and was previously
reported by our group (Casir¢ et al. 2017; Velez-Irizarry et al. 2019). Resulting genotypes were
filtered for markers with extreme allele frequencies calculated from the entire F> population of
940 animals (MAF <0.10), removal of non-informative markers, and markers located on sex
chromosomes. A total of 36,292 SNPs were included in subsequent analyses. Genotype data for
the animals used in this analysis are publicly available and can be found

at https://www.github.com/steibelj/gwaR.
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Samples of LD tissue were collected from each animal at slaughter, frozen in liquid
nitrogen, and stored at —80°C for later use. Total RNA was isolated from LD samples using the
miRNeasy Mini Kit (QIAGEN, California, United States). Samples were prepared for
sequencing utilizing the Bioo Scientific NEXTFlex™ Small RNA Sequencing Kit (v2; Bioo
Scientific, Austin, TX, United States) and were sequenced on the Illumina HiSeq 2500 platform
(Illumina, Inc.; California, United States) in 50 bp, single-end format at the Michigan State
University Research Technology Support Facility (East Lansing, Michigan, United States).
Sample libraries were sequenced on two flow cells (38 libraries/lane on four lanes of one flow
cell; 27 libraries/lane (including 24 new libraries and three repeated libraries) on one lane of a
second flow cell), and sequencing of the same library pools was repeated on two additional flow
cells to increase sequencing depth. Raw counts of sequence output was merged and compiled
into a single file for each sample library prior to analysis. Two libraries failed to produce
acceptable sequencing output and were removed from further analysis, yielding 174 files of 50 nt
short-read sequences in fastq format (86 male, 88 female). The small RNA sequencing dataset
generated for this study can be found in the NCBI Sequence Read Archive under BioProject
PRINA363073.

3.3.2 Bioinformatics analysis

After adaptor trimming, read quality filtering, and removal of PCR duplicate reads (Daza
et al. 2017), the miRDeep2 software package (v0.0.5; Friedlander et al. 2012) was used with
default parameters to align high-quality reads to the Sus scrofa reference genome (v11.1;
Ensembl), and to quantify Sus scrofa mature miRNAs obtained from miRBase! (Release
21; Griffiths-Jones et al. 2008; Friedldnder et al. 2012). The average abundance of each mature

pig miRNA was adjusted for differences in sequencing depth between libraries by converting the
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read counts to counts per million (cpm) with the edgeR package (v3.12.1) of R (R Core Team
2018), incorporating trimmed mean of M (TMM) normalization factors (Robinson and Oshlack,
2010). TMM normalization has been shown to reduce the technical bias of sequencing and
control the rate of false-positive associations (Dillies et al. 2013). miRNAs expressed at < 1 cpm
in > 44 libraries were removed from the dataset prior to calculation of the normalization factors.
3.3.3 MicroRNA eQTL analysis

The 295 mature miRNA expression profiles retained from quality control and expression
filtering were normalized using the voom function of the /imma R package (v3.26.9), which
accounts for the mean-variance relationship of the miRNA expression profiles across samples
(Law et al. 2014). The resulting log-counts per million were treated as response variables in a
genomic best linear unbiased prediction (GBLUP)-based genome-wide association (GWA)
analysis utilizing the gwaR package developed by our group? in the R statistical environment® (R
Core Team, 2018). The GBLUP model is described in model (1):

y=Xp+a+e,(l)
a~N(0,Go?)
G=27
e ~ N(0,02 diag(1/w))

where y is the vector of normalized read log-count per million (log-cpm) associated with a
mature miRNA; X is the incidence matrix relating the observed phenotypes to the coefficients of
fixed effects P including the population mean, sex, and “growth group,” which is a factor broken
into four classifications corresponding to phenotypic extremes for the selected traits of loin
muscle area or 10th rib backfat thickness (Cardoso et al. 2008). Effect a is the random effect of

breeding value, whose variance incorporated the genomic relationship matrix G=ZZ/, where Z is
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the matrix of standardized SNP marker effects for each animal (VanRaden, 2008; Gualdron
Duarte et al. 2014). The error term e included a variance inversely proportional to the precision
weights produced by the voom function, accounting for the heterogeneous variance between
miRNAs with differing expression.

The narrow-sense heritability (4?) of the miRNA expression profiles was estimated by
obtaining the ratio of the additive genetic variance and total phenotypic variance parameters

resulting from the GBLUP model as shown in equation (2):

h? =25 2
(2)

A2, ~29
ogt0,

A likelihood ratio test (LRT) was utilized to assess the significance of the heritability,
comparing the likelihood of model (1) with the null model assuming 4> = 0. False-discovery rate
(FDR) was implemented for multiple test correction (FDR < 0.05; Storey and Tibshirani, 2003).
All miRNAs were included in the subsequent GWA analysis, regardless of heritability.

The SNP effects and their variances from model (1) were estimated from a linear transformation
of the d matrix of estimated breeding values, as described by Gualdron Duarte et al. (2014):
g=7Z'G'a, (3)
var(g) = Z'G " var(@)G1Z’
Individual SNP effects were standardized by dividing a SNP effect by the square root of

its variance, producing the GWA test statistic of the jth SNP with a miRNA:

t=—2— (4)

var(gj)

The p-values associated with each significance test were assessed as described

in Gualdron Duarte et al. (2014), and FDR was utilized for multiple test correction (FDR < 0.05).
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The miRNA eQTL (miR-eQTL) were then mapped by plotting the genomic position of each
miRNA precursor sequence against the associated SNP marker position(s). miR-eQTL were
defined as “local” regulators of miRNA expression if the miR-eQTL peak overlapped the
genomic position of the miRNA precursor transcript. Peaks not meeting this criterion were
defined as “distant” regulators. This definition of local versus distant miR-eQTL is more
conservative than that used in traditional mRNA GWA analyses, which generally defines a
genomic region surrounding the transcription start site of the associated mRNA (in the range of
kilobases) as a “cis-acting” eQTL. This conservative definition of local regulators was chosen
with the understanding that genomic variation in the region of the miRNA precursor transcript
could potentially affect miRNA biogenesis or targeting.

After completing the GBLUP-based GWA analysis using model (1), the significant miR-
eQTL peaks were characterized by estimating the proportion of variance accounted for by the
peak miR-eQTL SNP (selected based on minimum p-value). This was accomplished by
conducting a conditional GBLUP-based GWA analysis (Casir6 et al. 2017). The association
analysis was repeated for each miR-eQTL utilizing Equation (1) and including in the model the
genotypes of the most significantly associated peak SNP (determined by p-value) as fixed
effects. Estimating the proportion of variance explained by the peak miR-eQTL SNP was
conducted using equations (5) and (6), as described in Casir6 et al. 2017.

Var(q) = b* xvar(Zpeax). (5)
where Var(q) is the estimated variance explained by the SNP effect, b is the estimated effect of
the SNP, and Z,cux is the genotype of the most significant SNP. The proportion of variance
explained by the peak SNP is then estimated by dividing the estimated variance of the SNP effect

by the total phenotypic variance components as follows:
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var(q)
62+62+var(q)

(6)

If all other SNP in the region failed to reach significance after fixing the peak SNP for a
given miR-eQTL, this indicated the miR-eQTL effect could be explained by a SNP(s) acting in
that region. Additionally, if fixing a peak SNP for a peak in one region of the genome caused a
SNP association to be eliminated in another genomic region, this indicated that that single SNP
was not in linkage disequilibrium with neighboring SNP but was highly correlated with SNP
elsewhere in the genome (Casiro et al. 2017). Finally, if significant SNP associations remain
after fixing a peak SNP, the associated miRNA expression could be controlled by multiple
genomic loci acting independently of one another, with a proportion of variance in miRNA
expression being explained by the given genomic region. In summary, this conditional analysis
enabled the estimation of the proportion of variance in miRNA abundance explained by the peak
miR-eQTL SNP for each miR-eQTL and facilitated the potential discovery of multiple genomic
regions significantly associated with variation in miRNA abundance that, due to the effects of
linkage disequilibrium, may have originally presented as a single miR-eQTL peak.

3.3.4 Colocalization of miR-eQTL and pQTL

Previously estimated phenotypic QTL (pQTL; genomic regions significantly associated
with variation in a phenotype of interest) from the MSUPRP (Velez-Irizarry et al. 2019) were
colocalized with miR-eQTL peaks to identify regions of the genome affecting variation in both
miRNA expression and economically important phenotypes. Using the genomic position of miR-
eQTL and pQTL peaks, defined as the range between the minimum and maximum significantly
associated SNP genomic positions for a given miRNA expression profile or phenotype, multiple
types of colocalization events were identified: miR-eQTL peaks completely enveloped by pQTL

peaks, pQTL peaks completely enveloped by miR-eQTL peaks, and pQTL peaks overlapping
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miR-eQTL peaks either upstream or downstream. Once colocalization was identified based on
genomic position, the genotypes of the peak SNP of the pQTL were added as a fixed effect in a
replication GWA for the miR-eQTL similar to Equation (1), utilizing FDR for multiple test
correction (FDR < 0.05). If the previously significant SNP associations of a miR-eQTL were
eliminated by adjusting for the peak SNP of the pQTL, it indicated a region of the genome
affecting both variation in miRNA expression and phenotypic expression, further supporting a
regulatory relationship between the miRNA and phenotype.
3.3.5 Genomic colocalization of miR-eQTL-correlated target mRNAs and pQTL

To investigate the regulatory mechanisms affecting carcass composition, meat quality,
and growth phenotypes in this population, the expression profiles of 15 miRNAs with miR-eQTL
were correlated with each miRNA’s target genes’ expression. Prediction of miRNA target genes
was conducted with TargetScan using human homologs of pig miRNAs and genes, and the
resulting gene lists were filtered to retain genes containing the two most preferentially conserved
and effective target site classes (8mer and 7mer-m8; Agarwal et al. 2015). Gene expression
profiles were obtained from next-generation sequencing of mRNA from RNA extracted from a
subset of the 174 LD samples, yielding 166 individuals with both miRNA and mRNA
expression; for detailed methods, see Velez-Irizarry et al. (2019). Expression profiles for miRNA
and mRNA datasets (6,628 unique transcripts) were separately adjusted for the same fixed and
random effects used in the linear model described in Equation (1). The corrected miRNA and
gene expression values output from the GBLUP model were utilized in a two-sided Kendall’s
rank correlation analysis in which each miR-eQTL miRNA was correlated with its target
mRNAs expressed in this population, and FDR was utilized to correct for multiple tests (FDR <

0.05). Thus, the genomic position of the target mRNAs exhibiting significant negative
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correlation (the assumed relationship between a miRNA and its targets) were compared with
pQTL regions associated with meat quality, carcass composition, and growth phenotypes
previously identified in the same population (Gualdrén Duarte et al. 2016; Casiro et al.

2017; Velez-Irizarry et al. 2019). Corrected colocalized target gene expression was also
correlated through Pearson’s correlation to the corrected expression of colocalized phenotypes.
Covariates included in linear models obtaining corrected phenotypic expression varied by
phenotype, following the methods of Velez-Irizarry et al. (2019). An overlap in the genomic
positions of a miR-eQTL miRNA’s target mRNAs and a pQTL, in addition to a correlation
between the datasets may reveal novel regulatory relationships of miRNAs and mRNAs
underlying economically important pig production traits. All scripts utilized in these analyses are

publicly available and can be found at https://github.com/perrykai.

3.4 Results
3.4.1 MicroRNA eQTL analysis
3.4.1.1 Local and distant microRNA eQTL

Results of the miR-eQTL analysis are shown in Table 3.1. In total, 295 miRNA
expression profiles were included as response variables in the GBLUP-based GWA analysis, and
results for associating these miRNAs with 36,292 SNPs identified 315 significant miRNA-SNP
associations (FDR < 0.05), comprising 23 significant miR-eQTL peaks. These miR-eQTL were
associated with 17 unique miRNAs and mapped to 10 different chromosomes. The genomic
positions of the miR-eQTL SNPs and their associated miRNA can be found in Supplementary
Table 3.1. The complete map of genomic positions of miRNA transcripts compared with miR-
eQTL peak SNPs is shown in Figure 3.1, with local-acting miR-eQTL in white and located along

the blue diagonal line. Five of the miR-eQTL peaks were identified as local regulators,
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associated with miR-184 (DIAS0000025), miR-190b (ALGA0026452), miR-429
(ALGA0106326), miR-7135-3p (ALGA0124095), and miR-874 (ALGA0016550) as seen

in Figures 3.2A—E, while 16 miR-eQTL were determined to be distant regulators of miRNA
expression. None of the significantly associated miR-eQTL SNPs overlapped with mature
miRNA sequences. For miR-7135-3p, the significantly associated SNP in closest proximity to
the mature miRNA sequence was the peak miR-eQTL SNP (ALGA0124095), lying 16.2 kb
away from the mature miRNA sequence. Additionally, while miR-140-5p abundance was
associated with two SNPs on chromosome 6 (the same chromosome as the miR-140-5p
precursor), the significantly associated SNPs lie approximately 104.5 kb from the miRNA
precursor transcript, deeming this association a distant-acting miR-eQTL. This is demonstrated

in Figure 3.1 as the green point lying close to the blue diagonal line.
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Figure 3.1. Global plot of genomic position of miRNA transcript (Mb) versus genomic position
of SNP (Mb) for miR-eQTL. Significant microRNA eQTL were identified using GBLUP-based
GWA models (FDR < 0.05). miR-eQTL were defined as “local” regulators of miRNA
expression if the miR-eQTL peak overlapped the genomic position of the miRNA precursor
transcript. Peaks not meeting this criterion were defined as “distant” regulators. The x-axis
denotes the absolute position of the peak miR-eQTL SNP (Mb), while the y-axis denotes the
absolute position of the miRNA precursor transcript. White points along the blue line

represent /ocal-acting miR-eQTL, while green points represent distant-acting miR-eQTL.
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miR-eQTL peaks associated with two miRNAs (miR-6782-3p and miR-9785-5p) could
not be classified as local or distant acting; these miRNAs are mapped to unplaced scaffolds in the
current genome assembly (v11.1; Ensembl), making this distinction and their inclusion on the
global miR-eQTL map in Figure 3.1 impossible. One SNP, MARC0093624 (SSC15: 122.22
Mb), was associated with five different miRNAs (let-7d-5p, let-7g, miR-1468, miR-95, and miR-
9843-3p). This genomic region was found in mRNA eQTL analyses to contain a putative
regulatory hotspot (Velez-Irizarry et al. 2019), indicating its potential regulatory role over
multiple transcripts. In situations where a miRNA was regulated by both local- and distant-acting
miR-eQTL, genomic segments surrounding local-acting miR-eQTL peaks accounted for a larger

proportion of variance in its respective miRNA’s expression than distant-acting peak segments.
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Figure 3.2 Manhattan plots of the five local-acting miR-eQTL. Manhattan plots depicting the five local-acting miR-eQTL identified through
GBLUP-based GWA models. For these miR-eQTL [ssc-miR-184 (A), ssc-miR-190b (B), ssc-miR-429 (C), ssc-miR-874 (D), ssc-miR-7135-

3p (E)], the position of the miR-eQTL peak overlapped the genomic position of the miRNA precursor transcript (denoted by the red arrow). Each
blue point represents one miRNA-SNP association, with chromosomes differentiated by shades of blue. The x-axis denotes the absolute SNP
position (Mb), while the y-axis represents the significance of the miRNA-SNP association [-logio(g value)]. The red line designates the threshold
of significance, declared at FDR < 0.05.
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Table 3.1 Summary of miRNA expression Quantitative Trait Loci

Prop. Var.

miRNA SNP Pos. Peak Range SNPsin  Peak SNP Explained

miRNA Chr. miRNA h? (SE) Peak SNP ID SNP Chr. (Mb) (Mb) Peak g-value Peak SNP*
miR-874 2 0.30 (0.15) ALGA0016550% 2 139.74 21.71 115 2.87E-09 0.36
miR-184 7 0.63 (0.17)F DBWU0000430 3 9.46 0.00 1 4.14E-02 0.11
miR-184 7 0.63 (0.17)F ASGA0016793 3 126.51 0.00 1 4.16E-02 0.11
miR-7135-3p 3 6.28E-8 (0.08)  ALGAO0124095* 3 28.39 0.70 14 1.17E-02 0.13
miR-874 2 0.30 (0.15)F ALGAO0122273 3 61.02 0.00 1 2.06E-02 0.10
miR-9785-5p NA 0.24 (0.14) ALGAO0121561 3 7.32 27.07 17 3.69E-02 0.14
miR-128 13,15 0.24 (0.14) ALGA0023517 4 15.33 0.00 1 4.37E-02 0.17
miR-140-5p 6 0.35(0.16) ASGA0017748 4 7.19 0.00 1 1.39E-02 0.15
miR-190b 4 0.50 (0.17)F ALGA0026452} 4 87.03 14.43 4 1.70E-02 0.19
miR-9810-3p 4 0.16 (0.13) MARC0021620 5 16.31 0.08 2 3.27E-02 0.15
miR-140-5p 6 0.35(0.16) ALGAO0117081 6 16.97 0.39 2 4.30E-04 0.26
miR-184 7 0.63 (0.17)F MI1GA0026172 6 169.93 0.00 1 1.43E-02 0.10
miR-429 6 0.34 (0.16) ALGA0106326% 6 64.41 23.59 90 5.35E-06 0.28
miR-184 7 0.63 (0.17)F DIAS0000025* 7 51.03 43.23 46 2.00E-07 0.34
miR-429 6 0.34 (0.16) ALGA0046283 8 7.17 0.00 1 3.10E-02 0.11
miR-6782-3p NA 0.52 (0.17)F ASGA0094215 10 24.87 9.75 4 1.55E-04 0.26
miR-1306-3p 14 0.03 (0.09) H3GA0034702 12 52.40 0.00 1 6.13E-03 0.17
let-7d-5p 3 0.11 (0.12) MARCO0093624 15 122.22 0.35 2 1.12E-02 0.18
let-7g 13 0.10 (0.11) MARCO0093624 15 122.22 0.35 2 5.96E-03 0.18
miR-1468 X 0.19 (0.13)F MARCO0093624 15 122.22 0.00 1 2.02E-02 0.19
miR-345-3p 7 0.41 (0.16) H3GA0052416 15 121.81 0.07 2 3.59E-02 0.18
miR-95 8 0.42 (0.16) MARCO0093624 15 122.22 0.41 3 4.65E-02 0.17
miR-9843-3p 8 0.31 (0.15)F MARCO0093624 15 122.22 0.41 3 3.23E-03 022

 Proportion of variance explained by the peak miR-eQTL SNP (minimum p-value) when included as a fixed effect in linear models.
T Designates miRNAs exhibiting significant narrow-sense heritability (FDR < 0.05).

! Designates local-acting miR-eQTL
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3.4.1.2 Heritability of miRNA expression in pig longissimus dorsi

Results of the GBLUP analysis indicated the average A? of miRNA expression profiles to
be 0.12, while the average A? of the 46 miRNAs exhibiting significantly heritable expression
after the LRT was 0.34 (FDR < 0.05). The relationship between heritability of a miRNA
expression profile and its significance in the LRT [—logio(p value)] is shown in Supplementary
Figure 3.S1. The overall trend of this figure (increasing heritability associated with increased
significance) indicates that the additive genetic effect is playing a significant role in the
expression of these miRNAs in these samples. Heritability of a miRNA expression profile was
not used as a filter for inclusion in the GWA analysis; as shown in Table 3.1, some miRNAs
exhibiting non-significant heritability did have miR-eQTL, indicating that a significant
association between genomic loci and variation in miRNA expression can exist regardless of the
heritability of that miRNA.
3.4.2 Peak miR-eQTL SNP conditional analysis

Results of the conditional analysis (repeating the GWA analysis including the peak SNP
for each miR-eQTL as a fixed effect) are shown in Table 3.2. Strong linkage disequilibrium
between the peak SNP and other SNPs comprising the miR-eQTL peak caused the analysis to
fail for three miR-eQTL associated with miR-184, miR-7135-3p, and miR-9810-3p
(Supplementary Figure 3.S2). For 12 miR-eQTL peaks (representing 12 unique miRNAs),
accounting for the peak SNP resulted in complete loss of significant associations. For six of these
cases (let-7d-5p, let-7g, miR-128, miR-1306-3p, miR-1468, and miR-345-3p), there was initially
only one to two statistically significant SNP association(s) and all were distant-acting. Most
intriguing was the local-acting peak associated with miR-874, whose miR-eQTL peaks initially

contained 115 significant SNPs (Figure 3.3A); fixing the peak significant SNP (ALGA0016550)
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resulted in a complete loss of association for the local- and distant-acting signals. Similarly, for
miR-429, accounting for the local-acting peak SNP (ALGA0106326) eliminated the miR-eQTL
peak previously consisting of 90 SNPs (FDR < 0.05; Figure 3.3B). Variation in miRNA
expression between segregating peak SNP genotypes for miR-874 and miR-429 are shown

in Figures 3.3C, D, respectively. For the eight remaining miR-eQTL peaks, fixing the peak SNP
did not eliminate all SNP associations: these consisted of distant-miR-eQTL associated with
miR-140-5p (two peaks), miR-184 (three peaks), miR-429, and miR-874. Additionally,
accounting for the miR-6782-3p peak SNP (ASGA0094215; SSC10) revealed significant SNP
associations on SSC5 and SSC10 (peaks contain 11 and 6 SNPs, respectively), however, this
miRNA lacks annotation data, making the distinction of the resulting eQTL peaks as local- or
distant-acting impossible. Interestingly for miR-874, whose expression associated with both a
local-acting miR-eQTL on chromosome 2 and a distant-acting SNP on chromosome 3,
accounting for the distant-acting miR-eQTL peak SNP in the GWA analysis did not eliminate the
local-acting signal but yielded a stronger local signal containing 126 significantly associated
SNPs with ALGA0016550 remaining the peak SNP (Figure 3.3A). A similar result was seen
with miR-429, where the local-acting signal remained after conditioning on the distant-acting

miR-eQTL peak SNP (Figure 3.3B).
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Figure 3.3 Conditional Analyses of miR-eQTL peak SNPs. Manhattan plots (A,B) depicting the results of the conditional analyses of miR-874 and miR-
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429, which included the genotype of the most significantly associated peak SNP (determined by p-value) in the GBLUP-based GWA model as a fixed

effect for each miR-eQTL. (C,D) Variations of each miRNA’s expression between segregating genotypes. For each Manhattan plot, the y-axis designates
the -logio(g value) and the x-axis indicates the absolute SNP position (Mb). Chromosomes are differentiated by shades of blue. Significance was declared
at FDR < 0.05. (A) Conditional analysis of miR-874 miR-eQTL peak SNPs ALGA0122273 (SSC3) and ALGA0016550 (SSC2). (B) Conditional analysis

of miR-429 miR-eQTL peak SNPs ALGA0046283 (SSC8) and ALGA0106326 (SSC6). Left, Manhattan plot of miR-eQTL peaks. Middle, Manhattan

plot of miR-eQTL peaks after conditional analysis of distant-acting peak miR-eQTL SNP. Note that the distant-acting peak in each case is eliminated, but
the local-acting peak remains. Right, Manhattan plot of miR-eQTL peaks, after conditional analysis of local-acting peak miR-eQTL SNP. (C) Variation
in miR-874 expression between segregating SNP ALGA0016550 genotypes. The black line in each column represents the median expression of miR-874

for the respective genotype. (D) Variation in miR-429 expression between segregating SNP ALGA0106326 genotypes. The black line in each column
represents the median expression of miR-429 for the respective genotype.
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Table 3.2 Summary of miR-eQTL peak SNP conditional analysis results

SNPs in
. . . SNP SNPs in Peak(s) Remaining Remaining Peak(s)
miRNA~ miRNA Chr.  Fixed SNPID (- Peak® Remaining® ¥ ¢aK() Peak(s) SNP SNP Chr.
Remaining
miR-874 ALGA0016550% 2 115 0 - - -
miR-184 DBWU0000430 3 1 2 1,63 M1GA0026172, 6,7
ALGA0041952
miR-184 7 ASGA0016793 3 1 2 1,62 M1GA0026172, 6,7
ALGA0041993
miR-7135-3p 3 ALGAO0124095% 3 14 NA - - -
miR-874 2 ALGA0122273 3 1 1 126 ASGA0012467 2
miR-9785-5p NA ALGAO0121561 3 17 0 - - -
miR-128 13,15 ALGA0023517 4 1 0 - - -
miR-140-5p 6 ASGA0017748 4 1 1 17 ALGAO0117081 6
miR-190b 4 ALGA0026452} 4 4 0 - - -
miR-9810-3p 4 MARC0021620 5 2 NA - - -
miR-140-5p 6 ALGAO0117081 6 2 1 1 ALGA0022682 4
miR-184 7 M1GA0026172 6 1 2 1,25 H3GAO0011011, 3,7
ALGA0041952
miR-429 6 ALGA0106326% 6 90 0 - - -
miR-184 7 DIAS0000025* 7 46 NA - - -
miR-429 6 ALGA0046283 8 1 1 91 H3GA0053081 6
miR-6782-3p NA ASGA0094215 10 4 2 11,6 H3GA0016379, 5,10
DIAS0000707
miR-1306-3p 14 H3GA0034702 12 1 0 - - -
let-7d-5p 3 MARC0093624 15 2 0 - - -
let-7g 13 MARC0093624 15 2 0 - - -
miR-1468 X MARCO0093624 15 1 0 - - -
miR-345-3p 7 H3GA0052416 15 2 0 - - -
miR-95 8 MARC0093624 15 3 0 - - -
miR-9843-3p 8 MARCO0093624 15 3 0 - - -

® Number of significantly-associated SNPs in miR-eQTL peak prior to conditional analysis
® Number of miR-eQTL peaks remaining after conditional analysis of peak miR-eQTL SNP
! Designates local-acting miR-eQTL



3.4.3 Colocalization of miR-eQTL and pQTL

Colocalization of miR-eQTL and pQTL based on genomic position of the miR-eQTL and
pQTL peak SNPs yielded eight miR-eQTL overlapping 10 pQTL across four chromosomes
(Supplementary Table 3.S2). Six distant-acting miR-eQTL for miRNAs let-7d-5p, let-7g, miR-
95, miR-345-3p, miR-1468, and miR-9843-3p overlapped in genomic position with a large
pQTL peak on SSC15 associated with seven meat quality phenotypes including sensory panel
juiciness, sensory panel tenderness, and overall tenderness, Warner-Bratzler shear force (WBS),
protein content, pH at 24 h post-mortem, driploss, and cook yield. All but one of these six miR-
eQTL peaks were associated with SNP MARC0093624 (122.22 Mb); the miR-eQTL for miR-
345-3p was associated with H3GA0052416, located nearby on the same chromosome (121.81
Mb; r =—0.89). Two local-acting miR-eQTL peaks for miR-190b (ALGA0026452: SSC4: 87.03
Mb) and miR-184 (DIAS0000025: SSC7: 51.03 Mb) colocalized with pQTL for last lumbar
vertebrae backfat thickness (SSC4) and number of ribs (SSC7), respectively. The remaining 15
miR-eQTL peaks did not overlap in genomic position with any pQTL peaks.

For each miR-eQTL colocalizing with a pQTL, the pQTL SNP with the minimum p-
value was identified and included as a fixed effect in a GBLUP-based GWA conditional analysis
to assess the impact of the pQTL peak SNP on the associated miRNA’s expression. Results of
this analysis can be found in Supplementary Table 3.S3. For the local-miR-eQTL for miR-184
on SSC7, accounting for the peak pQTL SNP for number of ribs reduced the number of
significantly associated SNPs. The number of ribs pQTL SNP ALGA0043983 explained 8.80%
of the variance in miR-184 expression, leaving 34 SNP significantly associated with miR-184

(FDR < 0.05; Supplementary Table 3.S3). This means a variant in the locus containing the peak
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SNP for the number of ribs pQTL is likely also having an effect on the expression of miR-184,
further suggesting a regulatory relationship between the miRNA and the phenotype. For the
remaining seven colocalized miR-eQTL, including the peak pQTL SNP as a fixed effect in the
GBLUP-based GWA eliminated all associations for that miRNA. Interestingly, for miR-190b,
which colocalized with last lumbar backfat thickness (SSC4), accounting for SNP
ASGA0092651 in the linear model explained 15.67% of the variance in miRNA expression. For
the five miR-eQTLs colocalizing with pQTL on SSC15, the peak pQTL SNPs for all seven traits
were either H3GA 0052416 or MARC0093624 (Supplementary Table 3.S3). As noted above
in Table 3.1, these are the same peak SNPs for the colocalized miR-eQTL, and the two SNPs are
highly correlated with one another due to their close proximity in the genome (» = —0.89).
Conducting conditional analyses on these peak SNPs left no significantly associated SNPs and
explained between 13.11 and 21.96% of the variance for a given miRNA (Supplementary Table
3.S3). For the majority of miR-eQTL colocalizing with pQTL peaks, there were only one to four
significant SNPs in the original miR-eQTL analysis, so these results are not surprising.
3.4.4 Genomic colocalization of miR-eQTL target mRNAs and pQTL

Significant negative correlated target genes were colocalized based on genomic position
with pQTL identified in the same population to identify potential novel mechanisms regulating
growth, carcass composition, and meat quality traits. Significant miRNA-target correlations
ranged from -0.09 to -0.18 (FDR < 0.05). MiR-874 negatively correlated with 29 target genes
overlapping with pQTL for 12 phenotypes across six chromosomes (Supplementary Tables
3.54, 3.S5 and Figure 3.4). These phenotypes include carcass 10th rib backfat thickness, loin

muscle area at 16 weeks old, number of ribs, sensory panel tenderness and overall tenderness,
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WBS, dressing percentage, protein content, pH at 24 h post-mortem, cook yield, driploss, and

juiciness.
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Figure 3.4. Manhattan plot of genomic co-localization events of miR-874 target genes with pQTL. This Manhattan plot compiles the results of the
miR-eQTL, previously-identified mRNA eQTL (Velez-Irizarry et al. 2019), previously-identified pQTL (Gualdron Duarte et al. 2016, Casiro et al.
2017, Velez-Irizarry et al. 2019), miR-874 target prediction, and correlation analyses to identify potential novel mechanisms regulating growth,
carcass composition, and meat quality traits in pigs. In total, 29 unique target genes co-localized with pQTL across 6 chromosomes. Nine target
genes (PLEKHB2, WDR33, NIF3L1, IGFBP5, UGGTI, PRPF40A4, METTLS, PTPRN, and KLHL30) overlap the pQTL peak on SSC15 associated
with meat quality traits. The y-axis denotes the significance of the association (-logio(g-value)) and the x-axis indicates the absolute SNP position
(Mb). Chromosomes are differentiated by shades of blue. Blue points represent miRNA-SNP associations for miR-874. The red arrow indicates
the genomic position of the miR-874 precursor transcript. Orange circles represent the genomic position of pQTL. Gray points represent the
genomic position of significantly negatively correlated target genes for miR-874. Black points represent the genomic position of significantly
negatively correlated target genes for miR-874 whose genomic position overlaps that of a pQTL peak. Text in the upper left-hand side of plot
describes the genomic position of the miR-eQTL peaks (Mb). Text in close proximity to pQTL peaks co-localizing with target genes describe the
chromosome on which the pQTL resides, and which phenotypes the associated pQTL represent (car_bf10 = carcass 10" rib backfat thickness;
cook yield = cook yield; dress ptg = dressing percentage; driploss = driploss; juiciness = sensory panel juiciness; Ima 16wk = loin muscle area at
16 weeks of age; num_ribs = number of ribs; overtend = sensory panel overall tenderness; ph_24h = pH measured at 24 h post-mortem; protein =
protein percentage; tenderness = sensory panel tenderness; WBS = Warner Bratzler Shear Force).
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Correlation analysis between retained target genes and the colocalized phenotype yielded 11
potential targets of interest (Table 3.3). These genes were negatively correlated with miR-874
corrected expression (FDR < 0.05) in addition to either the corrected gene or corrected miR-874
expression being correlated with the colocalized phenotype (p < 0.05). These genes serve as
potential subjects to further investigate the role of miRNAs in the regulation of traits important

to the swine industry.

Table 3.3 Correlations of miR-874, target genes, and co-localized phenotypes

T Co- R R
Gene (Chr) miR-874: localized Gene: p-value!  miR-874: p-valuef
Gene® Phenotype®  Phenotype® Phenotype®

GPR157 (6) -0.160 Ima_l6wk -0.217 0.005" 0.242 0.002"
CDKNI1A (7) -0.088 dress_ptg -0.157 0.044" 0.165 0.034"
ETV7 (7) -0.126 dress_ptg -0.116 0.135 0.165 0.034"
LEMD?2 (7) -0.148 dress_ptg -0.126 0.106 0.165 0.034"
NUDTS3 (7) -0.132 dress_ptg -0.147 0.059 0.165 0.034"
PFDNG6 (7) -0.151 dress_ptg -0.156 0.045" 0.165 0.034"
ZNF451 (7) -0.176 dress_ptg -0.129 0.098 0.165 0.034"
ATP8A2 (11) -0.174 dress_ptg -0.115 0.141 0.165 0.034"
IGFBPS5 (15) -0.116 ph_24h -0.113 0.171 0.169 0.039"
cook yield -0.029 0.716 0.187 0.016"

PLEKHB?2 (15) -0.119 protein -0.250 0.001" 0.100 0.202
PTPRN (15) -0.123 ph_24h -0.231 0.005" 0.169 0.039"
cook yield 0.020 0.801 0.187 0.016"

WBS 0.223 0.004" -0.009 0.905

* Kendall’s rank correlation of miR-874 to target gene (FDR < 0.05)

® Abbreviated phenotype name: Ima_16wk = loin muscle area at 16 weeks; dress_ptg = dressing
percentage; ph_24h = pH measured at 24 h post-mortem; cook_yield = cook yield; protein =
protein percentage; WBS = Warner Bratzler Shear Force.

¢ Pearson’s correlation of target gene corrected expression to co-localized corrected phenotype

4 Significance of Pearson’s correlation of target gene corrected expression to co-localized
corrected phenotype

¢ Pearson’s correlation of miR-874 corrected expression to co-localized corrected phenotype

" Significance of Pearson’s correlation of miR-874 corrected expression to co-localized corrected
phenotype
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3.5 Discussion

This study is the first to report miRNA-eQTL in a livestock species. The regulatory
effects of miRNAs in pig skeletal muscle are not yet fully understood. Even less explored is how
variation in miRNA expression affects complex traits important to the quality and consistency of
pork products and the efficiency of pig production. To elucidate these relationships, we
conducted a GBLUP-based GWA analysis of miRNA expression profiles in LD tissue from a
F2 Duroc X Pietrain pig population. The GBLUP model was used to estimate breeding values for
each miRNA expression profile, accounting for population stratification via the genomic
relationship matrix G composed of standardized marker effects for 36,292 SNPs. The GWA
analysis was then conducted by estimating SNP effects through a linear transformation of the
estimated breeding values and testing their association with a given miRNA expression profile.
This resulted in the identification of genomic regions associated with variation in miRNA
expression, or conversely, the identification of miRNAs experiencing variation in expression due
to additive genetic effects in this population. Results of the miR-eQTL analysis were
subsequently integrated with gene expression and phenotypic data from the same animals to
elucidate the effects of miRNA regulation on target genes and downstream phenotypes. We
identified 23 miR-eQTL peaks (FDR < 0.05) corresponding to 17 unique miRNAs acting both
locally and distantly to regulate miRNA expression. Nine of the 17 miR-eQTL miRNAs have
previously been linked to biological processes in skeletal muscle and adipose tissues (Shao et al.
2011; Jiang et al. 2013; Yan et al. 2013; Boudoukha et al. 2014; Jeanson-Leh et al. 2014; Shi et
al. 2015; Siengdee et al. 2015; Zhang et al. 2015; Dai et al. 2016; Peng et al. 2016; Li et al.
2017; Xie et al. 2018; Zhang et al. 2018; Yu et al. 2019); whereas, others are novel findings for

these tissues.
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MicroRNAs let-7d and let-7g each exhibited distant-acting miR-eQTL overlapping a
large pQTL peak for meat quality traits on SSC15. Members of the let-7 family of miRNAs have
been shown to be involved in diverse biological processes including glucose metabolism,
glycogen synthesis, adipogenesis, and myoblast motility in multiple species. Let-7d was
identified as a direct translational repressor of the anti-inflammatory cytokine /L3 gene,
indicating its role in glucose metabolism and glycogen synthesis in human skeletal muscle (Jiang
et al. 2013), while another let-7 family member, let-7g, was identified as a candidate regulator of
adipogenesis during fetal skeletal muscle development in sheep (Yan et al. 2013). MicroRNA
let-7¢g has also been shown to regulate mouse skeletal muscle myoblast motility (Boudoukha et
al. 2014). These reports indicate biological mechanisms through which variation in the
expression of these miRNAs could be affecting myogenesis and adipogenesis in pig skeletal
muscle, ultimately affecting traits important to pork quality.

Shi et al. (2015) demonstrated that miR-128 inhibited proliferation and promoted
differentiation in C2C12 myoblasts through targeted repression of MSTN, subsequently
promoting expression of the Smad2/3 signaling pathway genes MYF5, MYOG, and PAX 3/7,
indicating the critical role of this miRNA in regulating myogenesis. Similarly, Xie et al.

(2018) investigated myogenesis-associated miRNAs in C2C12 myoblasts and identified miR-128
as a promoter of differentiation, demonstrating its role in a multi-miRNA network repressing

the MYOD-inhibiting JNK/MAPK signaling pathway. MicroRNA-128 has also been shown to
regulate bovine skeletal muscle satellite cells by targeting SP1, as reported by Dai et al. (2016).
Upon transfection of cultured fetal hind limb muscle samples with miR-128 mimics, they
observed down-regulated SP1 protein levels at late differentiation stages. The inverse

relationship also held true when cells were transfected with miR-128 inhibitors, suggesting miR-
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128 inhibition could promote differentiation in bovine skeletal muscle satellite cells by
increasing SP1 protein levels, which promotes MYOD expression and the exit of cells from the
cell cycle. Additionally, in a study of C2C12 myoblasts, miR-345-3p was predicted to target two
genes involved in mitochondrial energy metabolism, suggesting its role in regulating ATP levels
during myoblast differentiation (Siengdee et al. 2015). Yu et al. (2019) demonstrated that miR-
190b expression decreased in skeletal muscle of rats after burn injury. This suppression of miR-
190b resulted in increased abundance of its identified target gene, PH domain, and leucine-rich
repeat protein phosphatase 1 (PHLPPI). Increased abundance of PHLPP1 protein, the
phosphatase of Akt, indirectly enhanced the expression of cell autophagy-related proteins and
promoted burn-induced skeletal muscle wasting in this study (Yu et al. 2019). MiR-95 was found
to be significantly upregulated in a study profiling miRNAs in serum of golden retriever dogs
with muscular dystrophy, which was validated in human patients with Duchenne muscular
dystrophy (Jeanson-Leh et al. 2014). This miRNA is located in an intron of the ABLIM?2 gene in
dogs and pigs, which encodes a muscle actin-binding protein. Furthermore, after observing
increased miR-95 abundance in LD muscle of loss-of-function MSTN-mutant Meishan pigs, Li et
al. (2017) utilized C2C12 myoblasts to identify its regulatory role in myogenesis. Aminoacyl-
tRNA synthase complex-interacting multifunctional protein 2 (4IMP2) was found to be a miR-
95 target gene, with overexpression of miR-95 inhibiting translation of the protein and promoting
myogenic differentiation (Li et al. 2017). While further examination into the function of
miRNAs —128, —345-3p, and —95 in pigs would be required, these studies all support possible
roles these miRNAs exhibiting eQTL in our study could play in regulating traits of importance to

the pig industry.
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Skeletal muscle tissue is intercalated with intramuscular adipocytes, so it is logical to also
investigate miRNAs affecting adipose tissue when studying skeletal muscle. Multiple miRNAs
have been shown to regulate adipogenesis and fat deposition across species including mouse,
chicken, pig, and human. MicroRNA 140-5p exhibited increased expression in adipose tissue
samples from obese compared with lean mice, and miR-140-5p overexpression in cultured
stromal cells promoted adipocyte formation and increased protein levels of adipogenic
transcription factors and marker genes. The authors proposed a regulatory model with increased
miR-140-5p expression promoting adipocyte differentiation through suppression of its target
gene, transforming growth factor B receptor 1 (TGFBRI; Zhang et al. 2015). Investigation into
the genetic regulation of meat quality traits in chicken breast muscle tissue revealed miR-140-5p
as a possible regulator of intramuscular adipogenesis. Overexpression of miR-145-5p in cultured
intramuscular preadipocytes resulted in increased lipid accumulation, and luciferase reporter
assays confirmed the targeting relationship between miR-145-5p and retinoid X receptor gamma
(RXRG; Zhang et al. 2018). Comparing sequences of bone morphogenic protein 5 (BMP5)
between Large White and Meishan pigs revealed a mutation in its 3’ UTR, located in miRNA
binding sites for let-7c and miR-184 and associated with fatness traits in a crossbred population
of the two breeds. Down-regulation of BMP5 after transfection of recombinant vectors of let-7¢
and miR-184 primary sequence into pig fibroblast cells further supported the role of these
miRNAs in regulating fat deposition in pigs (Shao et al. 2011). Another study of pig
adipogenesis identified miR-429 as a promoter of pre-adipocyte proliferation. Peng et al.

(2016) cultured both porcine subcutaneous and intramuscular pre-adipocytes and observed the
down-regulation of miR-429 throughout adipogenesis. Overexpression of the miRNA prior to

differentiation induction resulted in decreased lipid accumulation in both cell types, and
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decreased gene and protein expression of adipogenic markers, indicating its role in regulating
this process (Peng et al. 2016). MicroRNAs-184 and -429 each exhibited both local- and distant-
acting miR-eQTL in this study, while miR-140-5p showed distant-acting regulation. These
results indicate the complex regulation of these miRNAs that may, based on the evidence shown
here, eventually influence traits related to adipogenesis and fat deposition in pigs.

These studies all indicate ways in which variation in miRNA expression could affect
biological processes in skeletal muscle and potentially affect phenotypes of economic
importance to the swine industry. With this in mind, in addition to studying the genomic region
surrounding the miR-eQTL peaks, we identified the miRNA whose expression was being
affected by genomic variants and considered what the functional effects would be on their target
gene(s)’ expression and related phenotypes. Target genes were colocalized based on genomic
position with pQTL previously identified in the same population of pigs (Gualdron Duarte et al.
2016; Casir¢ et al. 2017; Velez-Irizarry et al. 2019), revealing miR-874 as a focus of interest.
The miR-874 primary transcript lies within an intron of the ubiquitously expressed KLHL3 gene
on the reverse strand, which is involved in innate immune system and antigen processing and
presentation pathways and is enriched for actin binding and structural molecule activity GO
terms (www.genecards.org; Stelzer et al. 2011). The peak SNP for the local-acting signal
explained 36% of the variance in miR-874 expression in conditional analyses, indicating the
strong likelihood of an influential variant residing in the region comprising this peak. While the
miR-eQTL peak encompasses the miRNA primary transcript, the peak SNP lies 81 kb 5’ of the
miRNA primary transcript on the reverse strand. There are no SNPs on the SNP60 BeadChip
residing between the positions of the peak SNP and the miRNA primary transcript. Thus, it is

likely that the peak miR-eQTL SNP is in high linkage disequilibrium with the true variant
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controlling variation in miR-874 expression. Further experiments are required to identify this
candidate marker and examine the impact of variation on miR-874 expression and downstream
phenotypes.

In this study, 29 unique negatively correlated miR-874 target genes colocalized with 12
pQTL across six chromosomes, including carcass backfat thickness measurements and meat
quality phenotypes such as tenderness and juiciness. Intriguingly, miR-874 was previously
shown to be involved in fat deposition in beef cattle. Guo et al. (2017) profiled miRNAs
differentially expressed between Wagyu versus Holstein cattle, two breeds differing in
intramuscular lipid content (marbling). Expression of miR-874 was lower in subcutaneous
adipose tissue in Wagyu compared with Holstein cattle. Target prediction revealed RXRA as a
likely miR-874 target, an important transcription factor in the peroxisome proliferator-activated
receptor (PPAR) signaling pathway involved in lipid and carbohydrate metabolism (Guo et al.
2017). Additionally, Gondret et al. (2016) identified decreased expression
of RXRA and PPARG (its heterodimeric partner) in perirenal and subcutaneous adipose tissues of
pigs fed a high-fiber, high-fat diet compared with those fed a low-fiber, low-fat diet, indicating
its role in regulating adipogenesis. RXRA was corroborated in our study as a miR-874 target and
colocalized with a carcass 10th rib backfat pQTL on chromosome 1, supporting the hypothesis
that miR-874 is involved in regulation of adipose tissue.

The cyclin-dependent kinase inhibitor 1A (CDKN1A) gene colocalized with dressing
percentage, a trait that is affected by the overall muscularity and adiposity of an
animal. CDKN1A functions as a regulator of cell cycle progression and is induced by myostatin
in proliferating myoblasts. The upregulation of CDKNIA4 inhibits the cyclin-dependent kinase 2

(CDK2) complex, resulting in hypo-phosphorylation of retinoblastoma protein and the ultimate
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arrest of myoblasts in the G1 phase of the cell cycle, promoting myoblast differentiation
(Thomas et al. 2000). Conversely, in animals lacking functional myostatin, the dysregulation
of CDKNIA and its associated genes promotes myoblast proliferation, maintaining hyperplasia
and resulting in increased muscularity. Thus, variation in CDKNI1A could contribute to the
overall muscularity of an individual (a trait for which the two parental breeds of this population
differ), affecting dressing percentage at harvest.

The LEM domain nuclear envelope protein 2 (LEMD?2) gene is expressed in the inner
nuclear membrane of the nuclear envelope, and in our study also colocalized with pQTL for
dressing percentage. After depletion of LEMD?2 and its paralog (LEMD3) through RNA
interference in C2C12 myoblasts, Huber et al. (2009) observed a significant reduction in
differentiation as measured by myogenic index (the percentage of nuclei found in MyHC-
positive myotubes). After recognizing that LEMD?2 depletion did not affect cell cycle
distributions, they utilized western blotting to discover that it instead increased activation of
Mitogen-Activated Protein Kinase 3 (MAPK3) a member of the MAPK signaling pathway,
thereby suppressing myoblast differentiation (Huber et al. 2009). In our study, the indication that
variation in LEMD?2 expression might affect muscle mass would relate to many economically
relevant traits in pigs, including dressing percentage.

Insulin-like growth factor-binding protein 5 (/GFBPS5) colocalized with pH at 24 h post-
mortem in our analysis. This gene was identified in a GWAS study of Finnish Yorkshire boars as
a candidate gene for 24-h meat pH (Verardo et al. 2017). The authors also discovered an eQTL
peak on SSC15 encompassing /IGFBP5, and subsequent gene-transcription factor network
analysis indicated its potential for regulating this trait (Verardo et al. 2017). Offspring of

transgenic mice overexpressing /GFBP5 were shown to exhibit a reduction in skeletal muscle
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tissue mass of 31% and decreased muscle fiber hypertrophy, predicted to be due to inhibition of
IGF-IT activity (Salih et al. 2004). Additionally, Ren et al. (2008) knocked

down IGFBP5 expression in C2C12 mouse myoblasts and observed reduced MYOG expression
and inhibited myotube formation which was not rescuable with exogenous MYOG transfection in
the absence of IGFBPS. Finally, /GFBPS5 has been shown to be a target of miR-143 in two
studies, one assessing its effects on proliferation and differentiation of primary bovine muscle
satellite cells (Zhang et al. 2017) and the other investigating muscle regeneration in satellite cells
and primary myoblasts from mice and humans (Soriano-Arroquia et al. 2016). The above studies
demonstrate the role of /IGFBPS5 expression on skeletal muscle development and the potential
impacts of miRNA regulation on downstream phenotypes.

Many of the predicted miR-874 target genes identified in our study have not been
characterized for their roles in skeletal muscle. Further investigation into the effects of miR-874
and these target genes are needed to fully elucidate its role in pig production traits.

Due to the limited number of recombination events occurring in our F» population, long-range
persistence of linkage disequilibrium limited the resolution of the GWA analysis resulting in
large genomic segments being significantly associated with each miRNA expression profile. In
some cases, this limited our ability to conduct the conditional analysis on a peak SNP due to high
correlations between genotypic frequencies of SNPs in close proximity. However, we have
shown here the successful utilization of this dataset for identifying local- and distant-acting
regulators of miRNA expression despite the extent of linkage disequilibrium in this population.
The SNP MARC0093624 (SSC15: 122.22 Mb) was associated with five different miRNAs in
our GWA analysis, which may lead to the identification of this marker as a miR-eQTL hotspot.

While this genomic region did produce a putative regulatory hotspot in mRNA eQTL analyses
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(Velez-Irizarry et al. 2019), previous literature has reported eQTL-hotspot analyses being subject
to high false-positive rates (Breitling et al. 2008). Thus, further analysis is required to
confidently define MARC0093624 as a miR-eQTL hotspot. Additionally, while the recent
update to the Sus scrofa genome assembly (v11.1; Ensembl) is a vast improvement over the
previous reference genome, there still exists a lack of accurate genome assembly data for some
genomic regions, making classifying a miR-eQTL as local- versus distant-acting impossible in
some cases. For the majority of cases, however, we were successful in classifying the type of
regulatory relationship occurring between genomic regions harboring variants and miRNAs
exhibiting variation in expression.
3.6 Conclusion
No previous studies evaluating miRNA-eQTL in pigs have been reported. Our genome-wide
analysis of miRNA expression profiles successfully identified genomic regions affecting the
expression of 17 unique miRNAs, indicating that miRNA expression in this tissue does have a
genetic component. We then examined the potential effects miRNAs experiencing variation
could have on the phenotypes measured in this population, demonstrating some key miRNAs
colocalizing with growth, carcass composition, and meat quality traits. Some of these miRNAs
had previously been identified for their involvement in skeletal muscle and adipose tissues,
whereas others represented novel findings. While more research is needed to confirm the roles of
miRNA regulation in these traits, our work has contributed to the understanding of regulatory
mechanisms underlying complex trait phenotypes in pigs.
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The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fgene.2021.64409 1/full#supplementary-material

Figure 3.S1. Heritability of miRNA expression. Narrow-sense heritability (4%) of the 295
miRNA expression profiles was estimated by obtaining the ratio of the additive genetic variance
and total phenotypic variance parameters resulting from the GBLUP model. Significance of
heritability was assessed using LRTs, and FDR was implemented for multiple test correction.
The x-axis denotes narrow-sense heritability of the miRNA expression profiles; the y-axis
denotes the log-adjusted p-values of the LRTs. Highlighted in red are the 46 miRNAs exhibiting
significantly heritable expression in this dataset (FDR < 0.05).

Figure 3.S2. Visualization of correlation between SNPs in miR-eQTL peaks failing conditional
analysis. This figure shows the results of correlation analyses between SNPs in the miR-eQTL
peak for those miR-eQTL that failed the conditional analyses, repeating the GBLUP-based GWA
analysis incorporating the peak SNP for each miR-eQTL as a fixed effect. The significantly
associated SNPs comprising the miR-eQTL peak for (A) miR-184, (B) miR-7135-3p,

and (C) miR-9810-3p were included in each respective correlation analysis. Each square
represents the correlation between a pair of SNPs, identified above and on the diagonal in each
plot. The strength of each pair’s correlation is depicted by increasingly saturated color; blue
shades represent positive correlations and red shades represent negative correlations between two

SNPs.
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CHAPTER FOUR
CONCLUSIONS AND FUTURE DIRECTIONS
4.1 Conclusions

MicroRNAs, colloquially termed the “fine tuners” of gene expression, post-
transcriptionally regulate gene expression through sequence complementarity with target genes.
While it is understood that miRNAs regulate numerous biological processes, further
investigation is required to understand the impacts of miRNA regulation in pig skeletal muscle
and their potential effects on traits important to pig production. The purpose of this dissertation
research was to improve our understanding of regulatory interactions underlying complex meat
quality, carcass composition, and growth traits in pigs. Specifically, we strove to 1) Profile and
characterize the small RNA population expressed in longissimus dorsi (LD) skeletal muscle of
174 F Duroc x Pietrain pigs from the MSU Pig Resource Population (MSUPRP), and 2)
Conduct an integrated miR-eQTL analysis, to identify genomic regions underlying variation in
miRNA abundance in the same individuals and reveal candidate genes regulating complex traits
relevant to the pig production industry.

The composition of small RNA classes present in the skeletal muscle of selected F»
MSUPRP pigs were characterized through sequence homology searches with pig, human, and
mouse databases. We also quantified the expression of 295 known mature miRNAs and
predicted 27 unique candidate pig-novel miRNA precursors from small RNA sequencing data of
174 adult pig LD samples. Small RNA sequencing data were deposited in the Sequence Read
Archive, BioProject PRINA363073 (Daza et al. 2017), and the results of these analyses were

presented in Chapter 2 of this dissertation.
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The regulatory effects of miRNAs in pig skeletal muscle are not yet fully understood.
Even less explored is how variation in miRNA expression affects complex traits important to the
quality and consistency of pork products and the efficiency of pig production. In Chapter 3 of
this dissertation, we conducted a GBLUP-based GWA analysis of 295 miRNA expression
profiles in pig skeletal muscle to elucidate these relationships. We identified 23 miR-eQTL peaks
(FDR < 0.05) associated with variation in the expression of 17 unique miRNAs, acting both
locally and distantly (Daza et al. 2021). This indicates that additive genetic effects significantly
impact the expression of miRNAs in this population. The miR-eQTL results were then integrated
with gene expression and phenotypic data from the same individuals to reveal potential
regulatory relationships affecting traits encompassing animal growth, carcass composition, and
meat quality phenotypes. Notably, miR-184, miR-429, and miR-874 exhibited strong local-
acting miR-eQTL, meaning the positions of the SNPs comprising the miR-eQTL peak
overlapped the genomic position of the miRNA precursor transcript. Nine of the miR-eQTL
miRNAs had previously been linked to biological processes in skeletal muscle and adipose
tissues, while the roles of the remaining eight miRNAs were novel.

The miR-eQTL peaks were further characterized through colocalization analyses with
previously identified pQTL (Velez-Irizarry et al. 2019), and predicted miR-eQTL miRNA target
genes negatively correlated with miRNA abundance were co-localized based on genomic
position with pQTL. Notably, miR-874 exhibited negative correlation with 29 target genes
overlapping pQTL for 12 phenotypes across six chromosomes; 11 of these became genes of
interest by either miR-874 or gene expression being significantly correlated with the colocalized

phenotype (p < 0.05).
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This work produced putative novel pig miRNAs for further study and validation,
contributing to our understanding of the miRNA landscape in pig skeletal muscle. Additionally,
we generated a resource of known miRNA expression profiles to use in evaluating the genetic
architecture of miRNA expression and impacts of miRNA regulation of gene expression on
complex traits in adult pigs. The identification of the candidate miRNAs and predicted target
genes demonstrate the ability of this work to generate hypothesis-driven research elucidating the
roles of miRNA regulation on gene expression and phenotypes of interest to pig production.

4.2 Future directions

There are many avenues this research could pursue to further improve our understanding
of the genetic regulation of complex traits in pigs. For instance, further investigation into
genomic regions harboring SNPs associated with miRNA variation could yield valuable
information regarding local and distant genetic regulation of miRNA expression. Combining
proteomic data with miRNA and mRNA transcriptomic data from the same individuals could
also strengthen predicted regulatory relationships, as miRNA regulation is post-transcriptional in
nature and commonly affects protein abundance. Also, as mentioned previously, our GWAS
study revealed candidate miRNAs for further investigation into their regulatory functions in
skeletal muscle tissue.

Our group has begun to investigate the predicted miR-874 target gene, citron Rho-
interacting serine/threonine kinase (CIT; protein name CITK) and its effects on proliferation and
differentiation of C2C12 mouse myoblasts in culture. We were drawn to this gene for multiple
reasons. First, the CIT predicted target site was one of the most highly conserved types (7mer-
m8; nucleotides two through seven of the seed sequence are complementary, plus position 8).

Next, CIT exhibited a distant-acting eQTL in GWAS of the same animals conducted by Velez-
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Irizarry et al. (2019). This eQTL included a putative hotspot SNP on SSC15 (H3GA0052416),
which was also the peak pQTL SNP for meat quality and protein percentage traits in the same
dataset (Velez-Irizarry et al. 2019). Finally, expression profiling of genes in skeletal muscle of
Yorkshire x Landrace pig fetuses across gestational stages revealed CIT to be differentially
expressed, decreasing in abundance from 41 to 70 days gestation (unpublished data from R.
Corbett). These data indicate that CIT abundance is variable in fetal skeletal muscle development
and adult tissue and may be associated with traits of importance to pig production.

The CITK protein is known to act in the late stages of cell division, performing multiple
roles including binding proteins comprising the actomyosin contractile ring and central spindle
(e. g. anillin, myosin, and rhoA (Ras Homolog Family Member A), etc.) and maintaining the
organization of proteins at the midbody, the cellular structure contained in the intercellular
bridge that organizes the proteins regulating abscission (Fig 4.1). Additionally, CITK has been
shown to recruit casein kinase 2 alpha (CK2a), phosphorylating tubulin beta 3 (TUBB3) to
promote the stabilization of microtubules at the midbody. Regardless of mechanism,
dysregulation of CITK expression results in abscission failure (D’Avino 2017 (commentary);

Dema et al. 2018).

Early Telophase Late Telophase

f\é gtg\é

Central Spindle

Kinetochore Cleavage  Actomyosin Midbody Microtubules

Microtubules  Furrow Contractile Ring
Figure 4.1 Localization of CITK in early and late telophase. DNA/chromosomes are depicted in
blue, the actomyosin contractile ring in purple, and microtubules in black. The CITK protein
accumulates at the cleavage furrow in early telophase and forms a ring-like distribution
surrounding the midbody in late telophase, depicted here in red. Adapted from D’Avino 2017.
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Little research has been conducted to determine the roles of CIT in skeletal muscle. One
study reported decreased CITK expression in adult rat tibialis anterior muscle samples
transfected in vivo with the rhoGEF (rho-guanine nucleotide exchange factor) domain of
Obscurin, a protein involved in sarcomere development and function. This decrease was
proposed to be a result of increased rhoA activity, which dysregulated CITK expression and
altered its localization in the sarcomere (Ford-Speelman et al. 2009). Other studies defining the
functions of CIT were conducted in vitro in various cell lines (e. g. HeLa, HEK, COS7) (Di
Cunto et al. 1998; Gai et al. 2011; Horton et al. 2015; Dema et al. 2018).

Our goal is to investigate the role of CIT in skeletal muscle proliferation and
differentiation, using C2C12 mouse myoblasts as a model. We hypothesize that disruption of
CIT expression would inhibit the proliferation of skeletal muscle cells, possibly promoting their
differentiation. Abscission failure caused by disrupted CIT expression and subsequent
disorganization of midbody proteins could lead to the production of multinucleated cells,
potentially resulting in withdrawal from the cell cycle and the initiation of differentiation. To test
this hypothesis, we will conduct transfection experiments inhibiting CIT expression in C2C12
mouse myoblasts and assess its impacts on cellular proliferation, differentiation, and the
expression of CIT and other genes of interest.

Overall, this dissertation research has improved our understanding of the genetic
architecture of miRNA expression in skeletal muscle and created opportunities for further study
to elucidate downstream impacts of miRNA regulation on complex traits in pigs. We conducted
the first integrated miR-eQTL analysis in a livestock species concerning traits relevant to food
production, identifying genomic regions associated with variation in the expression of 17 unique

miRNAs. Many of these miRNAs had not previously been characterized for their roles in pig
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skeletal muscle. Through target prediction, correlation, and co-localization analyses, we
generated putative regulatory relationships between miRNAs, mRNAs, and phenotypes of
interest comprising growth, carcass composition, and meat quality traits in pigs (Daza et al.
2021). These candidate miRNAs and genes serve as potential subjects of further study, with the
overarching goals of improving our understanding of skeletal muscle tissue at the molecular

level and promoting improvement in the quality and consistency of pork products.
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