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ABSTRACT 
 

INTEGRATED ANALYSIS OF GENETIC MARKER, MIRNA, AND MRNA DATA TO 
UNRAVEL MECHANISMS CONTROLLING GROWTH AND MEAT QUALITY TRAITS IN 

PIGS 
 

By 
 

Kaitlyn R. Daza 
 

Determining mechanisms regulating complex traits in pigs is essential to improve the 

production efficiency of this globally important protein source. MicroRNAs (miRNAs) are a 

class of non-coding RNAs known to post-transcriptionally regulate gene expression affecting 

numerous tissues and phenotypes, including those important to the pig industry. However, 

further research is needed to characterize the miRNAs expressed in pig skeletal muscle and 

assess their impact on the regulation of growth, carcass composition, and meat quality traits. 

Additionally, little is known about the genetic architecture controlling miRNA expression in 

pigs, which can be elucidated by combining high-density genotypic data with miRNA expression 

profiles from the same animals in the mapping of miRNA expression quantitative trait loci (miR-

eQTL). This analysis reveals associations between genomic regions harboring single nucleotide 

polymorphisms (SNPs) and variation in the expression of miRNAs. By integrating mRNA 

expression profiles and phenotypic data from the same individuals, putative regulatory 

relationships can be revealed underlying variation in phenotypes relevant to pig production. In 

this study, our objectives were to profile and characterize the small RNA population present in 

longissimus dorsi (LD) skeletal muscle samples from a F2 Duroc x Pietrain resource population, 

and to conduct an integrated miR-eQTL analysis to identify regulators of miRNA expression and 

candidate genes regulating phenotypic traits in adult pig skeletal muscle. 



  

MicroRNA expression profiling was performed on total RNA extracted from (LD) 

muscle samples from 174 F2 pigs. The composition of small RNA classes present in this dataset 

was characterized through a series of homology searches against human, mouse, and pig 

databases. MicroRNA quantification and novel miRNA prediction was conducted, profiling the 

abundance of 295 known mature pig miRNAs and producing 27 unique candidate novel miRNA 

precursors. The 295 miRNA expression profiles were subsequently used as response variables in 

a GBLUP-based GWA analysis. Results for associating these miRNAs with 36,292 SNPs 

identified 315 significant miRNA-SNP associations (FDR < 0.05), comprising 23 significant 

eQTL peaks associated with 17 unique miRNAs. Five of the 23 miR-eQTL peaks were defined 

as local-acting, meaning the genomic positions of the significantly associated SNPs comprising 

the miR-eQTL peak overlapped that of the miRNA precursor transcript. We then investigated the 

potential effects of these miRNAs through miRNA target prediction, correlation, and 

colocalization analyses. Notably, one miR-eQTL miRNA exhibiting a strong local-acting miR-

eQTL, miR-874, had predicted target genes colocalizing with previously identified phenotypic 

QTL for 12 production traits including backfat thickness, dressing percentage, muscle pH at 24 h 

post-mortem, and cook yield.  

The results of this study revealed putative pig-novel miRNAs for further study and 

validation, contributing to our understanding of the miRNA landscape present in adult pig 

skeletal muscle. Additionally, we identified genomic regions underlying variation in miRNA 

expression, and candidate miRNAs and genes for future investigation of their regulatory effects 

on growth, carcass composition, and meat quality traits of importance to the global pig industry. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Advancements in genetic selection of pigs: Quantitative Trait Loci 

The United States pork industry produced over $19.1 billion in gross income in 2020, 

making it a key contributor to the prosperity of the American agricultural economy (USDA – 

NASS 2021). The incorporation of genomic selection techniques has stimulated significant 

improvement in livestock production, including in traits of importance to pork producers and 

processors such as meat quality and carcass characteristics (Meuwissen et al. 2016). However, 

historical selection for increased carcass leanness has adversely affected meat quality 

phenotypes, increasing the incidence of inferior eating-quality pork and decreasing consumer 

satisfaction (Barbut et al. 2008; Schwab and Baas 2008; Ciobanu et al. 2011). Increased demand 

for high-quality products has placed growing emphasis on improving meat quality and 

consistency while reducing the presence of inferior quality pork (Barbut et al. 2008). Thus, 

understanding the complex genetic regulation of economically important production traits 

continues to be a priority for food animal producers. 

Genetic improvement of livestock has historically been achieved using traditional animal 

breeding techniques, combining phenotypic data with pedigree information to estimate animals’ 

individual breeding values. While these methods have been successful in achieving genetic gain, 

advancements in molecular genetic technologies facilitated the identification of quantitative trait 

loci (QTL); polymorphic loci or “markers” along the genome significantly associated with 

variation in quantitative traits. These methods integrate molecular genetics approaches into 

traditional animal breeding, accelerating improvement through the targeted selection of 
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genetically superior breeding stock. Many QTL studies have been conducted in the decades since 

the first identified pig QTL in 1994 (Andersson et al.), with the goal of understanding genetic 

mechanisms controlling variation in complex, economically important pig phenotypes. There are 

currently 33,143 QTL reported in the PigQTLdb database from nearly 733 publications, with 

over 17,000 QTL representing meat and carcass traits (http://www.animalgenome.org/cgi-

bin/QTLdb/SS/index; release 44, April 26, 2021). Despite the success of QTL identification in 

pigs, due to most QTL having small effect on their associated traits, causative variants associated 

with known genes have been validated for relatively few of these QTL.  

1.2 Expression QTL: uncovering the genetic architecture of gene expression 

The availability of high-density single nucleotide polymorphism (SNP) panels and 

advancements in RNA sequencing technologies enable the mapping of expression quantitative 

trait loci (eQTL) in segregating populations (Jansen and Nap 2001; Schadt et al. 2003). In an 

eQTL analysis, gene expression profiles are used as response variables in genome-wide 

association models. By investigating variations in gene expression between individuals, 

significantly associated genomic loci – here, SNP markers – can be identified. These SNPs can 

then be mapped to the genome and identified as affecting gene expression locally, near the gene-

of-origin, or distantly, far from the gene-of-origin (Jansen and Nap, 2001; Kadarmideen et al. 

2006). This method may also provide insight into the genetic architecture of phenotypic variation 

through the integration of phenotypic QTL (pQTL) from the same population. 

Many eQTL studies have been conducted in pigs, profiling tissues including skeletal 

muscle (Ponsuksili et al. 2008, 2010, 2012, 2014; Liaubet et al. 2011; Steibel et al. 2011; 

Cánovas et al. 2012, Velez-Irizarry et al. 2019). Ponsuksili and collaborators (2008) utilized 
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microarrays to profile gene expression in longissimus dorsi (LD) samples from 74 F2 pigs, 

identifying 104 eQTL overlapping pQTL associated with water holding capacity (Ponsuksili et 

al. 2008). Additionally, Steibel et al. (2011) utilized a whole-genome expression microarray to 

conduct an eQTL analysis in an F2 pig resource population, identifying 59 eQTL (FDR < 10%) 

aligned to known genomic positions. Upon co-localizing these eQTL with previously identified 

pQTL, the eQTL were found to regulate genes associated with lipid metabolism, DNA 

replication, and cell cycle regulation (Steibel et al. 2011). Ponsuksili and colleagues (2014) 

integrated eQTL data from LD tissue of two pig populations to further define results from a QTL 

scan of the same animals, identifying candidate genes influencing multiple meat quality 

phenotypes.  

Our group has utilized the Michigan State University Pig Resource Population 

(MSUPRP), a F2 Duroc x Pietrain pig population, for over a decade to identify pQTL (Edwards 

et al. 2008a, 2008b; Choi et al. 2010, 2011; Gualdrón-Duarte et al. 2016; Casiró et al. 2017) and 

eQTL (Steibel et al. 2011; Velez-Irizarry et al. 2019) associated with important production traits. 

These two pig breeds are utilized in commercial systems worldwide, differing in growth rate, 

carcass leanness and meat quality traits (Edwards et al. 2006). Most recently in 2019, Velez-

Irizarry et al. (2019) identified 339 eQTL in LD tissue of 168 F2 pigs, revealing 16 genes co-

localizing with 21 pQTL for meat quality, carcass composition, and growth traits. These studies 

demonstrate the successful identification of genomic regions harboring variants associated with 

gene expression variation and downstream phenotypes of economic importance to the pig 

production industry. 
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1.3 MicroRNAs: Discovery, biology, and implications in pig skeletal muscle 

One mechanism of genetic regulation potentially governing complex pig phenotypes is 

the post-transcriptional silencing of genes via microRNAs (miRNAs). MicroRNAs are a class of 

single-stranded, small non-coding RNAs known to regulate various biological processes through 

complementarity of the miRNA “seed” sequence with target mRNA sequences. The first 

miRNAs were identified in the lin-4 gene in C. elegans in 1993, wherein two small transcripts 

were found containing sequences complementary to the 3’ UTR of lin-14 mRNA. These 

transcripts were discovered to suppress the expression of the lin-14 gene, and were later termed 

microRNAs (Lee et al. 1993). MicroRNAs have since been shown to regulate a multitude of 

biological processes through recognition of target genes via sequence complementarity and are 

expressed in a spatiotemporal manner, indicating that they have specific regulatory functions. 

The biogenesis of miRNAs is well understood (for review see Liu et al. 2010; Ha and 

Kim 2014). In animals, a long (> 1 kb) primary miRNA transcript (pri-miRNA) is initially 

transcribed in the nucleus by RNA polymerase II. The pri-miRNA is processed by the 

Microprocessor complex of Drosha, an RNase III family endonuclease, and DGCR8 proteins, 

producing a ~70-nt hairpin pre-miRNA (Lee et al. 2003). The pre-miRNA is then exported from 

the nucleus by the protein exportin 5 (EXP5; Yi et al. 2003), and is cleaved by Dicer proteins in 

the cytoplasm to form a 19 – 24 nt duplex containing the mature miRNA “guide” and its 

complementary “star” strand (Ketting et al. 2001; Soifer et al. 2008). The mature miRNA is 

preferentially loaded onto argonaute proteins, and the RNA-Induced Silencing Complex (RISC) 

is assembled (Hammond et al. 2001). The RISC complex, coupled with guide miRNA, then 

targets mRNA(s) exhibiting complementary sequence to the 6 – 8 nt miRNA “seed” sequence, 
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typically located in the 3’ UTR of the mRNA (for review, see Carthew and Sontheimer 2009). 

Post-transcriptional suppression of target mRNA expression then occurs through multiple 

mechanisms, including transcript degradation through mRNA cleavage or destabilization, and 

repression of ribosomal translation (Behm-Ansmant et al. 2006; Mohr and Mott 2015).  

Research efforts began with miRNA discovery and profiling in multiple tissues. Primary 

miRNA discovery methods involved homology searches of known miRNA in other species, 

typically in combination with microarray expression data. In vertebrates, miRNAs have been 

most extensively studied in human and mouse. The official miRNA database, miRBase, 

currently contains 2,654 mature human miRNAs (Release 22.1, October 2018; 

http://www.mirbase.org/index.shtml; Griffiths-Jones 2006; Kozomara et al. 2019). More 

recently, the focus of human miRNA research has turned to their utilization as potential 

biomarkers and targeted treatments for cancers and other diseases (Mollaei et al. 2018). 

Discovery of miRNAs in livestock and their roles in animal agriculture are also currently being 

studied. The miRBase database currently contains 457 mature pig miRNAs (Release 22.1, 

October 2018; http://www.mirbase.org/index.shtml; Griffiths-Jones 2006; Kozomara et al. 

2019). The first pig miRNA (mir17-92) was identified in 2005 by Sawera and colleagues using 

homology searching of human miRNAs and northern blot analysis of five porcine tissues. 

Wernersson et al. (2005) utilized sequence similarity searching of approximately 3.8 million 

shotgun sequences of the pig genome to identify 51 mature pig miRNAs, observing that miRNA 

sequences are strongly evolutionarily conserved between pig, human, and mouse species. Kim et 

al. (2006) also utilized homology of human and mouse sequences to identify 58 additional pig 

miRNAs in five pig tissues.  
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As expression profiling technologies advanced, larger numbers of pig miRNAs were 

discovered. Huang et al. (2008) found over 700 candidate pig miRNAs, 296 of which were 

validated in fetal porcine skeletal muscle tissue via mammalian miRNA microarrays. Xie et al. 

(2011) performed next-generation sequencing of a total RNA library pooled from 16 pig tissues, 

identifying 437 conserved and 86 candidate novel miRNAs (Xie et al. 2011). Eight candidate 

novel miRNAs were subsequently validated using stem-loop RT-PCR (Xie et al. 2011). 

Additionally, Li et al. (2012) utilized small RNA sequencing and miRNA microarrays to isolate 

184 known and 521 candidate miRNAs from pooled libraries of pig skeletal muscle and adipose 

tissues. More recently, machine learning approaches have been developed to predict novel 

miRNAs in the pig genome. By adopting a semi-supervised transductive learning approach, the 

eMIRNA pipeline utilizes positive, negative, and unlabeled training datasets to overcome 

limitations of miRNA precursor prediction caused by the lack of miRNA annotation in the pig 

genome (https://github.com/emarmolsanchez/eMIRNA/; Mármol-Sánchez et al. 2020). Twenty 

novel expressed miRNAs were identified using this pipeline from small RNA sequencing data 

obtained from gluteus medius muscle samples of 48 Duroc gilts (Mármol-Sánchez et al. 2020). 

Advancements in miRNA prediction techniques and improved genome annotation offer 

possibility for the continued identification of pig-novel miRNAs. 

Research efforts continue to focus on understanding miRNA biology in various tissues 

and developmental or physiological stages. Multiple studies have investigated miRNA 

expression in pig skeletal muscle. Huang et al. (2008) identified 140 differentially expressed 

(DE) miRNAs between two fetal time points and adult tissue in LD muscle tissue, validating five 

through real-time PCR. McDaneld et al. (2009) profiled miRNAs in skeletal muscle satellite 

cells derived from 8-wk-old pigs, biceps femoris (BF) and LD from fetuses at 60-, 90- and 105-d 
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of gestation, and BF of neonate and adult pigs, identifying several muscle-specific and 

ubiquitous miRNAs and 12 potentially novel miRNAs. Yang and colleagues (2014) 

characterized the dynamic expression of miR-127 during pre- and postnatal skeletal muscle 

development, profiling miRNA expression in LD tissue at 26 developmental stages and eight 

adult tissues with stem-loop quantitative real-time PCR. Cai and colleagues (2014) discovered 

seven DE miRNAs in skeletal muscle between castrated and intact male pigs (fold change ≥ 2). 

Subsequent target prediction and integrated network analysis revealed miRNA-mRNA pairs 

regulating skeletal muscle contractile function and lipid synthesis, further elucidating the genetic 

effect of castration on skeletal muscle growth (Cai et al. 2014).  

While evidence demonstrates that miRNA regulation effects multiple developmental and 

biological processes, further research is needed to fully understand the impacts of miRNA 

regulation on traits important to the pig industry. In Chapter 2 of this dissertation, we 

characterized the small RNA populations present in LD tissue of 176 F2 MSUPRP pigs using 

RNA-sequencing. We successfully identified different classes of small RNA, profiled known pig 

miRNAs, and predicted putative novel miRNAs in these samples, improving our knowledge of 

these important regulatory RNAs in skeletal muscle of pig.  

1.4 Integrated analysis of genetic variation, mRNA, and miRNA 

A logical progression of research following miRNA discovery and profiling is to consider 

the expression of miRNA and mRNA together in disease, metabolic, and developmental states. 

Many studies compare miRNA-mRNA expression profiles between normal and disease states in 

human and mouse tissues (Boren et al. 2008; Dong et al. 2010; Lawless et al. 2013; Quitadamo 

et al. 2015). Kara and colleagues (2015) utilized high-throughput real-time PCR to compare 
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expression profiles of mRNA and select miRNAs targeting colorectal cancer-associated genes 

between case and control samples, identifying five genes and 18 miRNAs significantly DE 

between the two states. Co-expression approaches have also been used to identify regulatory 

pathways in immune response (Lukowski et al. 2015), evaluate drug candidates (for review, see 

Schmidt 2014; Gmeiner et al. 2010), and to study the regulation of mesenchymal stem cells in 

humans and pigs (Giraud-Triboult et al. 2011; Eirin et al. 2014).  

Co-expression profiling has also been conducted in skeletal muscle of various species.  

Johnston et al. (2009) used microarrays to determine global changes in miRNA and mRNA 

expression associated with the transition from hyperplasic to hypertrophic muscle growth in 

zebrafish. Additionally, Gallagher et al. (2010) used microarrays in clinical trials comparing 

mRNA and miRNA profiles in vastus lateralis muscle of insulin-resistant type 2 diabetic and 

control patients, identifying 62 miRNAs with altered expression but no differences in the mRNA 

transcriptome. Szeto et al. (2014) utilized next-generation sequencing to profile mRNA and 

miRNA expression in two cell lines and one xenograft associated with human nasopharyngeal 

carcinoma. Subsequent analysis identified 533 mRNA-miRNA pairs inversely regulated in all 

three model systems compared to a negative control, aiding in the development of a more 

complete characterization of the genetic regulation of this cancer (Szeto et al. 2014). 

Integrating mRNA and miRNA profiles with genetic marker data provides further insight 

into the mechanisms underlying complex trait phenotypes, enhancing results obtained from 

eQTL studies. Allelic variation in miRNA target sites or at miRNA loci have been demonstrated 

to contribute to phenotypic differences in both human and livestock traits (for review see Liu et 

al. 2010).  Clop and colleagues (2006) investigated a SNP in the myostatin gene of sheep 
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creating illegitimate miRNA target sites for miR-1 and miR-206 and contributing to the muscular 

hypertrophy of the Texel breed. More recently, Lei et al. (2010) identified a SNP at the miR-27a 

locus significantly associated with litter size in a Meishan pig population. In humans, variations 

in longevity phenotypes were associated with SNPs located in the 3’UTRs of two genes; SIRT2, 

whose functions involve cellular metabolism and differentiation, and DRD2, whose signaling 

regulates multiple physiological processes including locomotion and behavior. Individuals 

expressing the minor allele for either of these 3’ UTR SNPs observed a decreased probability of 

becoming long-lived, indicating that miRNA targeting may affect the human aging process 

(Crocco et al. 2015). 

Due to the analytical complexity of studies involving integration of genetic marker, 

mRNA and miRNA data, fewer studies of this nature have been reported. Dong et al. (2010) 

used this approach to construct co-expression networks from glioblastoma patient data, 

identifying a large number of cis- and trans-acting eQTL. Saba et al. (2010) built upon their 

previous eQTL studies examining quantitative variations in animal alcohol consumption by 

comparing eQTL, mRNA expression, and protein expression of candidate genes in breeds of 

high or low alcohol-consuming inbred mice strains, subsequently investigating miRNA 

regulation of the candidate gene, Gnb1. Quitadamo and colleagues (2015) combined multiple 

types of data including miRNA eQTL, miRNA-target interactions, protein-protein interactions, 

and correlations between miRNA and gene expression to develop an integrated network 

elucidating the effect of miRNA expression on ovarian cancer phenotypes. More recently, 

Ponsuksili and colleagues (2017) identified 221 miRNA-eQTL associated with 108 miRNAs in 

liver samples from 209 German Landrace pigs. Putative miRNA-mediated regulatory 

mechanisms affecting biomedical and hematological traits of interest to human medicine (e. g. 
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blood urea nitrogen, total cholesterol, white blood cell count, etc.) were revealed by integration 

of mRNA and phenotypic data from the same individuals (Ponsuksili et al. 2017). The same 

group later conducted integrated miRNA-eQTL analyses in ileal epithelium samples of 482 

Japanese Quail, identifying 34 miRNA-eQTL miRNAs and 62 mRNA-eQTL mRNAs. 

Integration of microbiome data revealed networks of genes and miRNAs affecting phosphorus 

utilization and microbiome composition, with the potential to minimize environmental impacts 

of poultry production (Ponsuksili et al. 2021). These integrated studies aid in elucidating 

regulatory interactions underlying complex phenotypes. However, prior to this dissertation 

research no studies had been published regarding the global integration of genetic marker, 

miRNA, mRNA, and phenotype data in traits relevant to food production.  

The goal of this dissertation research was to improve our understanding of molecular 

mechanisms controlling phenotypic variation in growth, carcass composition, and meat quality 

traits in pigs. To accomplish this, we integrated high-density SNP genotype data, miRNA and 

mRNA RNA-seq data, and phenotype data from 176 F2 MSUPRP pigs. Through this integration 

we identified genomic regions underlying variation in miRNA expression, and candidate 

miRNAs and genes for further assessment of their regulatory effects on traits important to the pig 

industry.  

Specifically, our aims included: 

1. Profile and characterize the small RNA population present in LD skeletal muscle samples 

of 176 F2 Duroc x Pietrain pigs. 
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2. Conduct an integrated miRNA-eQTL analysis utilizing small RNA sequencing data to 

identify regulators of miRNA expression and candidate genes regulating phenotypic traits 

in LD skeletal muscle samples of 176 F2 Duroc x Pietrain pigs. 

In Chapter 2 of this dissertation, we characterized the composition of small RNA classes 

present in adult pig skeletal muscle through a series of homology searches against human, 

mouse, and pig databases. MicroRNA quantification and novel miRNA prediction were also 

conducted using the miRDeep2 software package (Friedländer et al. 2012), profiling the 

abundance of 295 known mature pig miRNAs and producing 27 unique candidate novel miRNA 

precursors.  

In Chapter 3 of this work, we identified genomic regions underlying variation in miRNA 

expression by using 295 miRNA expression profiles as response variables in a genomic best 

linear unbiased prediction (GBLUP) -based genome-wide association (GWA) analysis. We 

identified 315 significant miRNA-SNP associations (FDR < 0.05), comprising 23 significant 

eQTL peaks associated with 17 unique miRNAs. and revealed candidate miRNAs and genes for 

future validation and assessment of their regulatory effects on traits of importance to the global 

pig industry. 

 

  



 12 
 

REFERENCES



 13 
 

REFERENCES 

 

1. Andersson, L., Haley, C. S., Ellegren, H., Knott, S. a, Johansson, M., Andersson, K., et al. 
(1994). Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263, 
1771–4. 
 

2. Barbut, S., Sosnicki, A. A., Lonergan, S. M., Knapp, T., Ciobanu, D. C., Gatcliffe, L. J., et al. 
(2008). Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry 
meat. Meat Sci. 79, 46–63. 
 

3. Behm-Ansmant, I., Rehwinkel, J., and Izaurralde, E. (2006). MicroRNAs silence gene 
expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring 
Harb. Symp. Quant. Biol. 71, 523–530. 
  

4. Boren, T., Xiong, Y., Hakam, A., Wenham, R., Apte, S., Wei, Z., et al. (2008). MicroRNAs 
and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol. 
Oncol. 110, 206–215.  
 

5. Cai, Z., Zhang, L., Jiang, X., Sheng, Y., and Xu, N. (2014). Differential miRNA expression 
profiles in the longissimus dorsi muscle between intact and castrated male pigs. Res. Vet. Sci. 
99, 99–104. 
 

6. Cánovas, A., Pena, R. N., Gallardo, D., Ramı, O., and Amills, M. (2012). Segregation of 
Regulatory Polymorphisms with Effects on the Gluteus Medius Transcriptome in a Purebred 
Pig Population. PLoS One 7, 1–12. 
 

7. Casiró, S., Velez-Irizarry, D., Ernst, C. W., Raney, N. E., Bates, R. O., Charles, M. G., et al. 
(2017). Genome-wide association study in an F2 Duroc x Pietrain resource population for 
economically important meat quality and carcass traits1. J. Anim. Sci. 95, 545–558.  
 

8. Choi, I., Steibel, J. P., Bates, R. O., Raney, N. E., Rumph, J. M., and Ernst, C. W. (2011). 
Identification of Carcass and Meat Quality QTL in an F(2) Duroc × Pietrain Pig Resource 
Population Using Different Least-Squares Analysis Models. Front. Genet. 2, 18.  
 

9. Choi, I., Steibel, J. P., Bates, R. O., Raney, N. E., Rumph, J. M., and Ernst, C. W. (2010). 
Application of alternative models to identify QTL for growth traits in an F2 Duroc x Pietrain 
pig resource population. BMC Genet. 11, 97. 
 

10. Ciobanu, D. C., Lonergan, S. M., and Huff-Lonergan, E. J. (2011). “Genetics of meat quality 
and carcass traits,” in The Genetics of the Pig, eds M. F. Rothschild and A. Ruvinsky (New 
York, NY: CAB International), 355. 
 
 
 



 14 
 

11. Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibé, B., et al. (2006). A mutation 
creating a potential illegitimate microRNA target site in the myostatin gene affects 
muscularity in sheep. Nat. Genet. 38, 813–818. 
 

12. Crocco, P., Montesanto, a., Passarino, G., and Rose, G. (2015). Polymorphisms Falling 
Within Putative miRNA Target Sites in the 3’UTR Region of SIRT2 and DRD2 Genes Are 
Correlated With Human Longevity. Journals Gerontol. Ser. A Biol. Sci. Med. Sci., 1–7. 
 

13. Dong, H., Luo, L., Hong, S., Siu, H., Xiao, Y., Jin, L., et al. (2010). Integrated analysis of 
mutations, miRNA and mRNA expression in glioblastoma. BMC Syst. Biol. 4, 163. 
 

14. Edwards, D. B., Ernst, C. W., Raney, N. E., Doumit, M. E., Hoge, M. D., and Bates, R. O. 
(2008). Quantitative trait locus mapping in an F2 Duroc × Pietrain resource population: II. 
Carcass and meat quality traits1. J. Anim. Sci. 86, 254–266. 
 

15. Edwards, D. B., Ernst, C. W., Tempelman, R. J., Rosa, G. J. M., Raney, N. E., Hoge, M. D., 
et al. (2008). Quantitative trait loci mapping in an F2 Duroc x Pietrain resource population: I. 
Growth traits. J. Anim. Sci. 86, 241–253. 
 

16. Edwards, D. B., Tempelman, R. J., and Bates, R. O. (2006). Evaluation of Duroc- vs. 
Pietrain-sired pigs for growth and composition1. J. Anim. Sci. 84, 266–275.  
 

17. Eirin, A., Riester, S. M., Zhu, X.-Y., Tang, H., Evans, J. M., O’Brien, D., et al. (2014). 
MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived 
mesenchymal stem cells. Gene 551, 55–64. 
 

18. Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. (2012). 
miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven 
animal clades. Nucleic Acids Res. 40, 37–52. 
 

19. Gallagher, I. J., Scheele, C., Keller, P., Nielsen, A. R., Remenyi, J., Fischer, C. P., et al. 
(2010). Integration of microRNA changes in vivo identifies novel molecular features of 
muscle insulin resistance in type 2 diabetes. Genome Med. 2, 9. 
 

20. Giraud-Triboult, K., Rochon-Beaucourt, C., Nissan, X., Champon, B., Aubert, S., and Piétu, 
G. (2011). Combined mRNA and microRNA profiling reveals that miR-148a and miR-20b 
control human mesenchymal stem cell phenotype via EPAS1. Physiol. Genomics 43, 77–86. 
 

21. Gmeiner, W. H., Reinhold, W. C., and Pommier, Y. (2010). Genome-Wide mRNA and 
miRNA Profiling of the NCI 60 Cell Line Screen and Comparison of FdUMP[10] with 
fluorouracil, floxuridine, and Top1 Poisons. 9, 3105–3114. 
 

22. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., and Enright, A. J. (2006). 
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, 
D140-4. 
 



 15 
 

23. Gualdrón Duarte, J. L., Cantet, R. J. C., Bernal Rubio, Y. L., Bates, R. O., Ernst, C. W., 
Raney, N. E., et al. (2016). Refining genomewide association for growth and fat deposition 
traits in an F2 pig population. J. Anim. Sci. 94, 1387–1397. 
 

24. Ha, M., and Kim, V. N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell 
Biol. 15, 509–524. 
 

25. Hammond, S. M., Boettcher, S., Caudy, a a, Kobayashi, R., and Hannon, G. J. (2001). 
Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–
1150. 
 

26. Huang, T. H., Zhu, M. J., Li, X. Y., and Zhao, S. H. (2008). Discovery of porcine 
microRNAs and profiling from skeletal muscle tissues during development. PLoS One 3, 
e3225. 
 

27. Jansen, R. C., and Nap, J. P. (2001). Genetical genomics: The added value from segregation. 
Trends Genet. 17, 388–391. 
 

28. Johnston, I. a, Lee, H.-T., Macqueen, D. J., Paranthaman, K., Kawashima, C., Anwar, A., et 
al. (2009). Embryonic temperature affects muscle fibre recruitment in adult zebrafish: 
genome-wide changes in gene and microRNA expression associated with the transition from 
hyperplastic to hypertrophic growth phenotypes. J. Exp. Biol. 212, 1781–1793. 
 

29. Kadarmideen, H. N., Von Rohr, P., and Janss, L. L. G. (2006). From genetical genomics to 
systems genetics: Potential applications in quantitative genomics and animal breeding. 
Mamm. Genome 17, 548–564. 
 

30. Kara, M., Yumrutas, O., Ozcan, O., Celik, O. I., Bozgeyik, E., Bozgeyik, I., et al. (2015). 
Differential expressions of cancer-associated genes and their regulatory miRNAs in 
colorectal carcinoma. Gene 567, 81–86. 
 

31. Ketting, R. F., Fischer, S. E. J., Bernstein, E., Sijen, T., Sijen, T., Hannon, G. J., et al. (2001). 
Dicer functions in RNA interference and in synthesis of small RNA involved in 
developmental timing of C. elegans. Genes Dev., 2654–2659. 
 

32. Kim, H.-J., Cui, X.-S., Kim, E.-J., Kim, W.-J., and Kim, N.-H. (2006). New porcine 
microRNA genes found by homology search. Genome 49, 1283–1286.  
 

33. Knol, E. F., Nielsen, B., and Knap, P. W. (2016). Genomic selection in commercial pig 
breeding. Anim. Front. 6, 15–22. 
 

34. Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). MiRBase: From microRNA 
sequences to function. Nucleic Acids Res. 47, D155–D162. 
 

35. Lawless, N., Foroushani, A. B. K., McCabe, M. S., O’Farrelly, C., and Lynn, D. J. (2013). 
Next Generation Sequencing Reveals the Expression of a Unique miRNA Profile in 



 16 
 

Response to a Gram-Positive Bacterial Infection. PLoS One 8, e57543. 
 

36. Lee, R. C. (1993). The C . elegans Heterochronic Gene lin-4 Encodes Small RNAs with 
Antisense Complementarity to & II-14. Cell 75, 843–854. 
 

37. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III 
Drosha initiates microRNA processing. Nature 425, 415–419. 

38. Lei, B., Gao, S., Luo, L. F., Xia, X. Y., Jiang, S. W., Deng, C. Y., et al. (2010). A SNP in the 
miR-27a gene is associated with litter size in pigs. Mol. Biol. Rep. 38, 3725–3729. 
 

39. Li, H.-Y., Xi, Q.-Y., Xiong, Y.-Y., Liu, X.-L., Cheng, X., Shu, G., et al. (2012). 
Identification and comparison of microRNAs from skeletal muscle and adipose tissues from 
two porcine breeds. Anim. Genet. 43, 704–13. 
 

40. Liaubet, L., Lobjois, V., Faraut, T., Tircazes, A., Benne, F., Iannuccelli, N., et al. (2011). 
Genetic variability of transcript abundance in pig peri-mortem skeletal muscle: eQTL 
localized genes involved in stress response, cell death, muscle disorders and metabolism. 
BMC Genomics 12, 548. 
 

41. Liu, H. C., Hicks, J. a., Trakooljul, N., and Zhao, S. H. (2010). Current knowledge of 
microRNA characterization in agricultural animals. Anim. Genet. 41, 225–231. 
 

42. Lukowski, S. W., Fish, R. J., Martin-Levilain, J., Gonelle-Gispert, C., Bühler, L. H., 
Maechler, P., et al. (2015). Integrated analysis of mRNA and miRNA expression in response 
to interleukin-6 in hepatocytes. Genomics, 1–9. 
 

43. Mármol-Sánchez, E., Cirera, S., Quintanilla, R., Pla, A., and Amills, M. (2020). Discovery 
and annotation of novel microRNAs in the porcine genome by using a semi-supervised 
transductive learning approach. Genomics 112, 2107–2118. 
 

44. McDaneld, T. G., Smith, T. P., Doumit, M. E., Miles, J. R., Coutinho, L. L., Sonstegard, T. 
S., et al. (2009). MicroRNA transcriptome profiles during swine skeletal muscle 
development. BMC Genomics 10, 77. 
 

45. Meuwissen, T., Hayes, B., and Goddard, M. (2016). Genomic selection: A paradigm shift in 
animal breeding. Anim. Front. 6, 6–14. 
 

46. Mohr, A. M., and Mott, J. L. (2015). Overview of microRNA biology. Semin. Liver Dis. 35, 
3–11. 
 

47. Mollaei, H., Safaralizadeh, R., and Rostami, Z. (2019). MicroRNA replacement therapy in 
cancer. J. Cell. Physiol. 234, 12369–12384. 
 

48. Ponsuksili, S., Du, Y., Murani, E., Schwerin, M., and Wimmers, K. (2012). Elucidating 
molecular networks that either affect or respond to plasma cortisol concentration in target 



 17 
 

tissues of liver and muscle. Genetics 192, 1109–1122. 
 

49. Ponsuksili, S., Jonas, E., Murani, E., Phatsara, C., Srikanchai, T., Walz, C., et al. (2008). 
Trait correlated expression combined with expression QTL analysis reveals biological 
pathways and candidate genes affecting water holding capacity of muscle. BMC Genomics 9, 
367. 
 

50. Ponsuksili, S., Murani, E., Schwerin, M., Schellander, K., and Wimmers, K. (2010). 
Identification of expression QTL (eQTL) of genes expressed in porcine M. longissimus dorsi 
and associated with meat quality traits. BMC Genomics 11, 572. 
 

51. Ponsuksili, S., Murani, E., Trakooljul, N., Schwerin, M., and Wimmers, K. (2014). 
Discovery of candidate genes for muscle traits based on GWAS supported by eQTL-analysis. 
Int. J. Biol. Sci. 10, 327–37. 
 

52. Ponsuksili, S., Oster, M., Reyer, H., Hadlich, F., Trakooljul, N., Rodehutscord, M., et al. 
(2021). Genetic regulation and heritability of miRNA and mRNA expression link to 
phosphorus utilization and gut microbiome. Open Biol. 11. 
 

53. Ponsuksili, S., Trakooljul, N., Hadlich, F., Haack, F., Murani, E., and Wimmers, K. (2017). 
Genetic architecture and regulatory impact on hepatic microRNA expression linked to 
immune and metabolic traits. Open Biol. 7. 
 

54. Quitadamo, A., Tian, L., Hall, B., and Shi, X. (2015). An integrated network of microRNA 
and gene expression in ovarian cancer. BMC Bioinformatics 16, S5. 
 

55. Saba, L. M., Bennett, B., Hoffman, P. L., Barcomb, K., Ishii, T., Kechris, K., et al. (2010). A 
systems genetic analysis of alcohol drinking by mice, rats and men: Influence of brain 
GABAergic transmission. Neuropharmacology 60, 1269–1280. 
 

56. Schadt, E. E., Monks, S. a, Drake, T. a, Lusis, A. J., Che, N., Colinayo, V., et al. (2003). 
Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302. 
 

57. Schmidt, M. F. (2014). Drug target miRNAs: chances and challenges. Trends Biotechnol. 32, 
578–585. 
 

58. Schwab, C. R., and Baas, T. J. (2008). Direct and Correlated Responses to Selection for 
Intramuscular Fat in Duroc Swine Fat in Duroc Swine. 654. 
 

59. Soifer, H. S., Sano, M., Sakurai, K., Chomchan, P., Sætrom, P., Sherman, M. a., et al. (2008). 
A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin 
RNAs. Nucleic Acids Res. 36, 6511–6522. 
 

60. Sontheimer, E. J., and Carthew, R. W. (2005). Silence from within: Endogenous siRNAs and 
miRNAs. Cell 122, 9–12. 
 



 18 
 

61. Steibel, J. P., Bates, R. O., Rosa, G. J. M., Tempelman, R. J., Rilington, V. D., Ragavendran, 
A., et al. (2011). Genome-Wide Linkage Analysis of Global Gene Expression in Loin Muscle 
Tissue Identifies Candidate Genes in Pigs. PLoS One 6, e16766. 
 

62. Szeto, C. Y. Y., Lin, C. H., Choi, S. C., Yip, T. T. C., Ngan, R. K. C., Tsao, G. S. W., et al. 
(2014). Integrated mRNA and microRNA transcriptome sequencing characterizes sequence 
variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model 
systems. FEBS Open Bio 4, 128–140. 
 

63. United States Department of Agriculture (2021). United States Department of Agriculture 
National Agricultural Statistics Service Meat Animals Production, Disposition, and Income. 
 

64. Velez-Irizarry, D., Casiro, S., Daza, K. R., Bates, R. O., Raney, N. E., Steibel, J. P., et al. 
(2019). Genetic control of longissimus dorsi muscle gene expression variation and joint 
analysis with phenotypic quantitative trait loci in pigs. BMC Genomics 20, 1–19. 
 

65. Wernersson, R., Schierup, M. H., Jørgensen, F. G., Gorodkin, J., Panitz, F., Staerfeldt, H.-H., 
et al. (2005). Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun 
sequencing. BMC Genomics 6, 70. 
 

66. Xie, S.-S., Li, X.-Y., Liu, T., Cao, J.-H., Zhong, Q., and Zhao, S.-H. (2011). Discovery of 
Porcine microRNAs in Multiple Tissues by a Solexa Deep Sequencing Approach. PLoS One 
6, e16235. 
 

67. Yang, Y., Li, Y., Liang, R., Zhou, R., Ao, H., Mu, Y., et al. (2014). Dynamic Expression of 
MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development. J. 
Integr. Agric. 13, 1331–1339. 
 

68. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003). Exportin-5 mediates the nuclear 
export of pre-microRNAs and short hairpin RNAs Exportin-5 mediates the nuclear export of 
pre-microRNAs and short hairpin RNAs. 3011–3016. 

  



 19 
 

CHAPTER TWO 

PROFILING AND CHARACTERIZATION OF A LONGISSIMUS DORSI MUSCLE 
MICRORNA DATASET FROM AN F2 DUROC X PIETRAIN PIG RESOURCE 

POPULATION 
 

This chapter has been published previously (Daza et al. 2017). The manuscript was prepared 

alongside co-authors Juan P. Steibel, Deborah Velez-Irizarry, Nancy E. Raney, Ronald O. Bates, 

and Catherine W. Ernst 

2.1 Abstract 

 To elucidate the effects of microRNA (miRNA) regulation in skeletal muscle of adult 

pigs, miRNA expression profiling was performed with RNA extracted from longissimus dorsi 

(LD) muscle samples from 174 F2 pigs (~5.5 months of age) from a Duroc × Pietrain resource 

population. Total RNA was extracted from LD samples, and libraries were sequenced on an 

Illumina HiSeq 2500 platform in 1 × 50 bp format. After processing, 232,826,977 total reads 

were aligned to the Sus scrofa reference genome (v10.2.79), with 74.8% of total reads mapping 

successfully. The miRDeep2 software package (v0.0.5) was utilized to quantify annotated Sus 

scrofa mature miRNAs from miRBase (Release 21) and to predict candidate novel miRNA 

precursors. Among the retained 295 normalized mature miRNA expression profiles sscmiR1, 

sscmiR133a3p, sscmiR378, sscmiR206, and sscmiR10b were the most abundant, all of which 

have previously been shown to be expressed in pig skeletal muscle. Additionally, 27 unique 

candidate novel miRNA precursors were identified exhibiting homologous sequence to annotated 

human miRNAs. The composition of classes of small RNA present in this dataset was also char- 

acterized; while the majority of unique expressed sequence tags were not annotated in any of the 

queried da- tabases, the most abundantly expressed class of small RNA in this dataset was 

miRNAs. This data provides a resource to evaluate miRNA regulation of gene expression and 
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effects on complex trait phenotypes in adult pig skeletal muscle. The raw sequencing data were 

deposited in the Sequence Read Archive, BioProject PRJNA363073. 

2.2 Direct link to deposited data 

The deposited sequencing data can be found here: 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA363073  

2.3 Experimental design, materials and methods 

2.3.1 Sample collection, RNA isolation and sequencing 

A subset of 176 F2 pigs from 44 litters (two males and two females per litter) of the 

Michigan State University Duroc × Pietrain Pig Resource Population (MSUPRP) were selected 

for transcriptional profiling (Edwards et al. 2008a, 2008b; Steibel et al. 2011). Samples 

of longissimus dorsi (LD) tissue were collected from each animal at slaughter and frozen at 

− 80 °C. Animal care and experimental protocols were approved by the Michigan State 

University All University Committee on Animal Use and Care (AUF# 09/03-114-00). Total 

RNA was isolated from LD samples using the miRNeasy Mini Kit (QIAGEN, California, USA), 

and small RNA library construction and sequencing was performed at the MSU Research 

Technology Support Facility. Samples were prepared for sequencing utilizing the Bioo Scientific 

NEXTFlex™ Small RNA Sequencing Kit (v2; Bioo Scientific, Austin, TX, USA). Libraries 

were barcoded and multiplexed for sequencing on the Illumina HiSeq 2500 platform (Illumina, 

Inc.; California, USA) in 50 bp, single-end format. Two libraries failed to produce acceptable 

sequencing output and were removed from further analysis, yielding 174 files of 50 nt short read 

sequences in fastq format (86 males, 88 females). 
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2.3.2 Analysis of sequencing data 

The 3′ adaptor sequences were trimmed from raw short reads using cutadapt 

(cutadapt/1.4.1; Martin 2011), and trimmed reads of length 26–38 nt were filtered for quality 

using FASTX toolkit (FASTX/0.0.14; http://hannonlab.cshl.edu/fastx_toolkit), removing any 

reads in which > 50% of the nucleotides had Phred score < 30. The selected sequence length 

retained an additional 4 nt on both the 5′ and 3′ ends of each read to accommodate the 

randomized adaptors ligated during library preparation, which allowed the identification of PCR 

duplicates. Distribution of sequence read lengths was assessed, and trimmed, filtered reads were 

collapsed using FASTX toolkit (FASTX/0.0.14; http://hannonlab.cshl.edu/fastx_toolkit) into 

unique expressed sequence tags containing a sequence identifier and the numerical count of each 

read (read count). PCR duplicates and random adaptor sequences were removed using the 

ShortRead package of R prior to genome alignment and quantification (Morgan et al. 2009).  

2.3.3 Characterization of small RNAs 

To characterize classes of small RNA present in the dataset, unique expressed sequence 

tags underwent multiple queries utilizing BLAST + (v2.2.30) prior to read alignment and 

quantification of known miRNAs. Unique sequences expressed at least two times were included 

in this analysis. Sequences were sequentially queried against: the Sus scrofa mature miRNA 

miRBase database (Release 21; Griffiths-Jones et al. 2008), the Ensembl Sus scrofa ncRNA 

database (Release 84), and the Sus scrofa, Homo sapiens, and Mus musculus Rfam databases 

(version 11) using blastn. The blastn-short parameter was implemented as it is optimal for 

queries of sequences < 50 nt, and an e-value threshold of 1 × 10− 5 was used to declare a 

significant hit. Results of each query were filtered as follows to retain unique sequence read hits: 
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hits were retained that obtained 100% sequence identity, followed by at least 96% sequence 

identity, and finally hits with the maximum bitscore were retained. If multiple BLAST + hits 

remained for a given sequence, the hits most identical to the sequence were retained (based on 

percent identity). If multiple significant hits persisted with equal sequence identity, a single hit 

was retained for each sequence. This yielded the composition of classes of small RNA present in 

the small RNA sequencing dataset, based on both the unique expressed sequence tags and total 

read counts. 

The miRDeep2 software package (v0.0.5) was used to align high-quality reads to the Sus 

scrofa reference genome (v10.2.79; Ensembl), and to quantify Sus scrofa mature microRNAs 

(miRNAs) obtained from miRBase (Release 21; Griffiths-Jones et al. 2008; Friedländer et al. 

2012). The average abundance of each mature pig miRNA was adjusted for differences in 

sequencing depth between libraries by converting the read counts to counts per million (cpm) 

with the edgeR package of R, incorporating TMM normalization factors (Robinson et al. 2010). 

miRNAs expressed at < 1 cpm in ≥ 44 libraries were removed from the dataset prior to 

calculation of the normalization factors. 

miRDeep2 (Friedländer et al. 2012) was also utilized to predict candidate novel miRNAs. 

The software was provided the known Sus scrofa mature and precursor miRNA sequences, and 

the known Homo sapiens mature miRNA sequences from miRBase (Release 21; Griffiths-Jones 

et al. 2008) to search for sequence homology for novel miRNA prediction. The resulting 

candidate novel precursors were filtered based on: the miRDeep2 score output by the algorithm 

(≥ 10), the estimated probability of the novel miRNA being a true positive (≥ 91 ± 2%), a 

significant Randfold p-value, and a minimum read count of 10 reads for both mature and star 
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(complementary) sequences. Retained sequences were converted to DNA alphabet and FASTA 

format (ShortRead (R); Morgan et al. 2009). BLAST + (v2.2.30) was utilized to further 

characterize the candidate novel miRNA precursors by searching for sequence homology to the 

database of known human precursor and mature miRNAs in miRBase (Release 21; Griffiths-

Jones et al. 2008), utilizing a stringent e-value threshold of 1 × 10− 5 resulting in high-confidence 

homologous sequences. 

All code used to analyze this dataset is publicly available and can be found at 

https://github.com/perrykai.  

2.4 Data description 

Determining underlying mechanisms controlling complex trait phenotypes such as 

growth, carcass composition and meat quality in pigs is important for achieving continued 

genetic improvement. One genetic mechanism involved in regulating these traits is the silencing 

of gene expression via miRNAs. Previous studies report that miRNAs exhibit dynamic 

expression in pig skeletal muscle across developmental stages, physiological states, and 

breeds (Huang et al. 2008; McDaneld et al. 2009; Nielsen et al. 2009; Xie et al. 2011; Qin et al. 

2013; Siengdee et al. 2013; Cai et al. 2014). Moreover, the signaling pathways enriched for 

genes that these miRNAs target are shown to be involved in myogenesis and muscle 

regeneration (Nielsen et al. 2009). Due to the influential role of miRNAs on economically-

important complex traits, it is necessary to continue characterizing miRNAs in pig skeletal 

muscle. Thus, the objective of this work was to profile and characterize the expression of 

miRNAs in LD muscle of market-age (approximately 5.5 months of age) F2 pigs from the 

MSUPRP (Edwards et al. 2008a, 2008b). 
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Assessment of sequence read length distribution revealed 63.8% of the total reads to be 

22 nt long, which is the common length of mature miRNAs. This indicates the success of small 

RNA sequencing at isolating miRNAs (Fig. 2.1a), and concurs with results in Xie et al. (2011) 

where 43.7% of total small RNA sequencing reads were 22 nt in length. In total, 232,826,977 

high-quality reads (mean 1,338,086 reads per library) were aligned to the Sus scrofa reference 

genome (v10.2.79; Ensembl), with 74.8% of reads successfully mapping. Moreover, 158,672,792 

reads were quantified as miRNAs from the 174 samples, corresponding to 91.2% of the mapped 

reads. 

 

Figure 2.1 Characterization of small RNA sequencing data. a) Sequence read length distribution; 
composition of small RNA classes present in the small RNA sequencing dataset based on b) 
unique sequences, and c) total read counts. 
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After filtering for abundance across libraries, 295 miRNA expression profiles were 

obtained (Table 2.S1). The five most abundant miRNAs represented 47.9% of the total cpm in 

the dataset including ssc-miR-1, ssc-miR-133a3p, sscmiR-378, ssc-miR-206, and ssc-miR-10b. 

These miRNAs have previously been identified in pig skeletal muscle, including Nielsen et 

al. (2009), where ssc-miR-1 and ssc-miR-206 were the two most highly abundant miRNAs 

identified from sequencing LD samples from seven 1.5–2-year-old Danish Landrace/Yorkshire 

crossbred pigs. MiR-1, miR-206, and miR-133a are also considered the “myomiRs”, and have 

been well-characterized for their roles in mammalian skeletal muscle myogenesis and 

regeneration (for review, see Horak et al. 2016). 

Results of the small RNA characterization analysis are shown in Fig. 2.1b, considering 

unique expressed sequence tags, and Fig. 2.1c, considering the total read count of each sequence. 

Most of the unique expressed sequence tags were not annotated in any of the five databases 

queried (“unknown”, 77.8%; Fig. 2.1b). Additionally, 11.1% of the unique expressed sequence 

tags (where each unique sequence was counted one time) were classified as miRNAs, and 6.1% 

of the unique expressed sequence tags consisted of other non-coding RNAs (Fig. 2.1b). When 

considering the sequences based on total read count, 74.1% of the sequences were identified as 

miRNAs, while 18.3% of the total reads were not annotated (Fig. 2.1c). These results show that 

miRNAs are the most abundant small RNA expressed in this dataset, and are consistent with 

results obtained in Xie et al. (2011), where miRNAs were the most abundant class of small 

RNAs found in a pooled RNA sample from 16 pig tissues. 

There were 132 candidate novel miRNAs predicted from miRDeep2 that passed filtering 

steps. After BLAST + query, there were 27 unique candidate novel miRNA precursors 
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homologous to a human miRNA precursor (Table 2.1; additional annotation information in Table 

2.S2). Eight candidate novel precursors had more than one homologous human miRNA 

precursor, ranging from 2 to 6 hits per candidate novel sequence. The consensus secondary 

structures for the 27 unique candidate novel precursors predicted by miRDeep2 can be found 

in Fig. 2.S1. 

In summary, 295 known Sus scrofa mature miRNA expression profiles were obtained 

from next-generation sequencing of LD RNA from 174 F2 Duroc × Pietrain pigs of the 

MSUPRP. Twenty-seven unique candidate novel pig miRNA precursors were predicted, and the 

composition of classes of small RNA present in the dataset were characterized to reveal that 

miRNAs were the most abundant small RNA class expressed in the skeletal muscle of these pigs. 

This work contributes to the further characterization of microRNAs in pig skeletal muscle, which 

will lead to a more complete picture of the genetic regulation of complex economically-

important pig production traits. 
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Table 2.1. Candidate novel miRNA precursors predicted from miRDeep2 and characterized with BLAST+. 

Sequence IDa 
miRDeep2 

Score 
Read 
Count 

Predicted Mature 
Sequencea 

Seq 
Length 

miRDeep2 
predicted  

miRbase miRNAa 

BLAST+ 
Matched 

precursorb 
% 

Identicalb 
E 

valueb 
Precursor 

Coordinatea 

GL892871.2_43622 572746.3 1123410 uucaaguaauucaggauagguu 22 hsa-miR-26a-5p hsa-mir-26b 100.0 2.00E-23 
GL892871.2:56019.. 
56076:+ 

X_39130 136780.7 268282 uacccauugcauaucggaguug 22 hsa-miR-660-5p hsa-mir-660 97.7 2.00E-17 
X:48640826.. 
48640884:+ 

3_7507 57547.6 112871 uaauuuuauguauaagcuagu 21 hsa-miR-590-3p hsa-mir-590 96.0 1.00E-06 
3:11024999.. 
11025060:+ 

13_28851 40621.2 79667 uucaaguaacccaggauaggcu 22 hsa-miR-26a-5p hsa-mir-26a-1 96.1 7.00E-20 
13:24885255.. 
24885316:- 

13_28851 40621.2 79667 uucaaguaacccaggauaggcu 22 hsa-miR-26a-5p hsa-mir-26a-2 95.8 4.00E-06 
13:24885255.. 
24885316:- 

GL894231.1_44092 12387.7 24290 auaauacaugguuaaccucuuu 22 hsa-miR-655-3p hsa-mir-655 100.0 7.00E-17 
GL894231.1:23071.. 
23131:- 

GL894231.1_44082 6189.5 12132 gucauacacggcucuccucucu 22 hsa-miR-485-3p hsa-mir-485 100.0 3.00E-25 
GL894231.1:16616.. 
16675:- 

GL894231.1_44074 6021.2 11802 aucacacaaaggcaacuuuugu 22 hsa-miR-377-3p hsa-mir-377 98.2 5.00E-24 
GL894231.1:10061.. 
10121:- 

12_25369 4096.6 8028 aucauguaugauacugcaaaca 22 hsa-miR-6516-3p hsa-mir-6516 98.0 5.00E-21 
12:4273970.. 
4274033:+ 

GL894231.1_44108 3936.2 7714 aucauagaggaaaauccacau 21 hsa-miR-376a-3p hsa-mir-376a-2 95.8 4.00E-18 
GL894231.1:31685.. 
31743:- 

GL894231.1_44108 3936.2 7714 aucauagaggaaaauccacau 21 hsa-miR-376a-3p hsa-mir-376a-1 85.2 2.00E-07 
GL894231.1:31685.. 
31743:- 

1_1168 3418.9 6698 uuuagugugauaauggcguuug 22 hsa-miR-3591-5p hsa-mir-3591 98.0 3.00E-22 
1:179916350.. 
179916408:+ 

1_1168 3418.9 6698 uuuagugugauaauggcguuug 22 hsa-miR-3591-5p hsa-mir-122 97.9 2.00E-20 
1:179916350.. 
179916408:+ 

X_39122 3415.6 6691 caucccuugcaugguggagggu 22 hsa-miR-188-5p hsa-mir-188 100.0 1.00E-21 
X:48632394.. 
48632453:+ 

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374a 96.1 6.00E-20 
X:67530381.. 
67530433:+ 

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374a 90.5 8.00E-10 
X:67530381.. 
67530433:+ 

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374c 88.9 3.00E-09 
X:67530381.. 
67530433:+ 

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374c 86.4 3.00E-06 
X:67530381.. 
67530433:+ 

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374b 88.9 3.00E-09 
X:67530381.. 
67530433:+ 

X_39256 1851.7 3631 uuacaauacaaccugauaagugc 23 - hsa-mir-374b 86.4 3.00E-06 
X:67530381.. 
67530433:+ 

7_18912 1362.7 2664 auaagacgagcaaaaagcuugu 22 hsa-miR-208a-3p hsa-mir-208a 100.0 3.00E-25 
7:81043856.. 
81043913:- 

13_28053 986.0 1925 gcgacccauacuugguuucaga 22 hsa-miR-551a hsa-mir-551b 94.9 1.00E-12 
13:115915962.. 
115916023:+ 
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Table 2.1 (cont’d) 
6_14565 642.0 1250 uaauacugccugguaaugauga 22 hsa-miR-200b-3p hsa-mir-200b 95.0 2.00E-13 

6:58064309.. 
58064367:+ 

JH118928.1_41756 527.0 1036 ucauucuccuucuuugaccaga 22 - hsa-mir-6758 94.4 6.00E-11 
JH118928.1:123819 
..123880:- 

GL894231.1_44094 365.0 715 ucuuguuaaaaggcagauucu 21 - hsa-mir-544a 97.6 6.00E-17 
GL894231.1:24222.. 
24280:- 

17_36762 298.5 583 ccggguacugagcuggcccgag 22 - hsa-mir-486-1 91.2 7.00E-14 
17:12191239.. 
12191302:+ 

17_36762 298.5 583 ccggguacugagcuggcccgag 22 - hsa-mir-486-2 91.1 3.00E-13 
17:12191239.. 
12191302:+ 

17_36762 298.5 583 ccggguacugagcuggcccgag 22 - hsa-mir-486-2 100.0 3.00E-07 
17:12191239.. 
12191302:+ 

1_3654 244.3 470 cauuauuacucacgguacgagu 22 hsa-miR-126-5p hsa-mir-126 100.0 7.00E-23 
1:313734674.. 
313734733:- 

14_31131 225.4 433 ccaaaccaguugugccuguag 21 hsa-miR-6715a-3p hsa-mir-6715b 95.4 4.00E-15 
14:133619338.. 
133619395:+ 

14_31131 225.4 433 ccaaaccaguugugccuguag 21 hsa-miR-6715a-3p hsa-mir-6715a 93.5 2.00E-14 
14:133619338.. 
133619395:+ 

X_40048 137.0 266 uucccugcccucuuccuccagg 22 - hsa-mir-6894 89.6 8.00E-11 
X:51475450.. 
51475523:- 

1_851 130.1 248 uggaaacacuucugcacaaacu 22 hsa-miR-4261 hsa-mir-147b 95.9 1.00E-18 
1:140919000.. 
140919059:+ 

X_39264 117.7 224 uguaaacaauuccuagguaaugu 23 hsa-miR-30a-5p hsa-mir-384 88.4 6.00E-08 
X:69515840.. 
69515903:+ 

12_26433 111.2 209 ucaacaaaaucacugaugcugga 23 hsa-miR-3065-5p hsa-mir-338 94.7 5.00E-21 
12:1507090.. 
1507153:- 

12_26433 111.2 209 ucaacaaaaucacugaugcugga 23 hsa-miR-3065-5p hsa-mir-3065 94.1 2.00E-17 
12:1507090.. 
1507153:- 

GL894231.1_44088 80.7 150 aaucauacagggacauccaguu 22 hsa-miR-154-3p hsa-mir-487a 90.0 1.00E-08 
GL894231.1:20450.. 
20508:- 

1_1860 61.0 111 agauguccagccacaauucucg 22 hsa-miR-219b-5p hsa-mir-219b 100.0 3.00E-22 
1:302806862.. 
302806927:+ 

1_1860 61.0 111 agauguccagccacaauucucg 22 hsa-miR-219b-5p hsa-mir-219a-2 100.0 2.00E-20 
1:302806862.. 
302806927:+ 

1_1860 61.0 111 agauguccagccacaauucucg 22 hsa-miR-219b-5p hsa-mir-219a-1 100.0 3.00E-07 
1:302806862.. 
302806927:+ 

2_5120 24.3 39 acugacaggagagcauuuuaau 22 hsa-miR-3660 hsa-mir-3660 94.8 1.00E-12 
2:100272647.. 
100272707:+ 

a Results obtained from miRDeep2 algorithm 
b Results obtained from BLAST+ query against Homo sapiens miRBase database. 
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APPENDIX 
 
 
Supplementary materials are available at: http://dx.doi.org/10.1016/j.gdata.2017.07.006 

Table 2.S1. Sus scrofa mature miRNA average abundance (cpm) in the 174 F2 Duroc x Pietrain 

Michigan State University resource population pigs. 

Table 2.S2. Candidate novel miRNA annotation information. 

Figure 2.S1. Secondary structures of candidate novel miRNAs. Sequences are color-coded as 

follows: red, mature sequence; yellow, loop sequence; purple, star strand sequence observed in 

small RNA sequencing data; light blue, expected star sequence based on Dicer/Drosha 

processing (Friedländer et al. 2012). 
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CHAPTER THREE 
 

INTEGRATED GENOME-WIDE ANALYSIS OF MICRORNA EXPRESSION 
QUANTITATIVE TRAIT LOCI IN PIG LONGISSIMUS DORSI MUSCLE 

 

This chapter has been published previously (Daza et al. 2021). The manuscript was prepared 

alongside co-authors Deborah Velez-Irizarry, Sebastian Casiró, Juan P. Steibel, Nancy E. Raney, 

Ronald O. Bates, and Catherine W. Ernst 

3.1 Abstract 

Determining mechanisms regulating complex traits in pigs is essential to improve the 

production efficiency of this globally important protein source. MicroRNAs (miRNAs) are a 

class of non-coding RNAs known to post-transcriptionally regulate gene expression affecting 

numerous phenotypes, including those important to the pig industry. To facilitate a more 

comprehensive understanding of the regulatory mechanisms controlling growth, carcass 

composition, and meat quality phenotypes in pigs, we integrated miRNA and gene expression 

data from longissimus dorsi muscle samples with genotypic and phenotypic data from the same 

animals. We identified 23 miRNA expression Quantitative Trait Loci (miR-eQTL) at the 

genome-wide level and examined their potential effects on these important production 

phenotypes through miRNA target prediction, correlation, and colocalization analyses. One miR-

eQTL miRNA, miR-874, has target genes that colocalize with phenotypic QTL for 12 production 

traits across the genome including backfat thickness, dressing percentage, muscle pH at 24 h 

post-mortem, and cook yield. The results of our study reveal genomic regions underlying 

variation in miRNA expression and identify miRNAs and genes for future validation of their 

regulatory effects on traits of economic importance to the global pig industry. 
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3.2 Introduction 

Pork is the meat of choice worldwide, and global meat consumption is projected to 

continue to increase over the next decade. To fulfill consumer expectations, pork producers will 

need to continue to improve the quality and consistency of pork products in order to enhance the 

prosperity of this global industry (USDA, 2020). However, industry focus on increasing carcass 

leanness has historically neglected meat quality characteristics, increasing the incidence of 

inferior eating-quality pork and decreasing consumer satisfaction (Barbut et al. 2008; Schwab 

and Baas 2008; Ciobanu et al. 2011). Improvements in animal production have been gained 

through the incorporation of genomic selection techniques (Meuwissen et al. 2016). However, 

many economically relevant production traits are controlled by complex interactions of gene and 

protein expression and regulation. While genomic selection has facilitated increased progress on 

those traits, a better understanding of the genetic architecture controlling phenotypic expression 

cannot only improve selection in the long term but also enhance management interventions. 

Improving understanding of the complex regulation of important pork production traits including 

meat quality, carcass composition, and growth will continue to be a priority for scientists and 

livestock producers alike. 

One genetic mechanism that has been investigated for its role in regulating these 

economically important traits is the silencing of gene expression via microRNAs [miRNA(s) or 

miR], a class of single-stranded, non-coding small RNA that post-transcriptionally regulate gene 

expression through sequence complementarity of an approximately 7 nt “seed” sequence with 

target mRNA sequences. They are known to target genes throughout the genome, influencing a 

multitude of biological processes. Furthermore, a single miRNA can potentially target hundreds 

of genes, and multiple miRNAs have the ability to target the same mRNA, acting as “fine tuners” 
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of gene expression and adding rich complexity to the regulation of polygenic traits. Several 

miRNAs expressed specifically in muscle tissue have been termed the “myomiRs” (miR-1, miR-

133a, miR-133b, miR-206, and others), which play critical roles in the proliferation, 

differentiation, and regeneration of skeletal muscle (for review, see Horak et al. 2016). Previous 

studies demonstrate miRNA involvement in skeletal muscle development and function in pigs, 

spanning various developmental time points, physiological states, and breeds (Qin et al. 

2013; Siengdee et al. 2013; Cai et al. 2015; Jing et al. 2015; Mai et al. 2016; Xi et al. 

2018; Mármol-Sánchez et al. 2020). While many studies have examined effects of miRNAs on 

diverse phenotypes in pigs, less has been done to elucidate mechanisms regulating the expression 

of miRNAs themselves, and their effects on downstream phenotypes. 

By combining high-density genotypic data with miRNA expression profiles, associations 

between regions of the genome harboring single nucleotide polymorphisms (SNPs) and the 

expression of a miRNA can be revealed. These associated genomic regions are termed “miRNA 

expression Quantitative Trait Loci” (miR-eQTL) and add another layer to our understanding of 

the regulation of complex phenotypes on the molecular level. Studies identifying miR-eQTL 

have been reported, but their objectives primarily focus on human biomedical applications, 

particularly using miRNAs as biomarkers or therapeutics in disease phenotypes (Dong et al. 

2010; Gamazon et al. 2013; Huan et al. 2015; Wohlers et al. 2018). These studies reinforce the 

importance of elucidating the genetic architecture of miRNA expression and its effects on traits 

of interest to the pig industry. 

Understanding both the influence of miRNA regulation on pig production phenotypes 

and factors affecting the expression of miRNAs themselves will increase our understanding of 

skeletal muscle tissue at the molecular level, ultimately leading to improvements in pork quality 
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and consistency. Therefore, the purpose of this study was to investigate the regulatory role of 

miRNAs in growth, carcass composition, and meat quality traits through genome-wide miR-

eQTL analyses utilizing small RNA sequencing data from longissimus dorsi (LD) muscle 

samples from an F2 Duroc × Pietrain resource population and to integrate gene expression and 

phenotypic data from the same animals to elucidate regulatory mechanisms controlling these 

complex traits. 

3.3 Materials and methods 

3.3.1 Data collection and sequencing 

Animal housing and care protocols were evaluated and approved by the Michigan State 

University All University Committee on Animal Use and Care (AUF # 09/03-114-00). The 176 

animals used in this study were a subset of F2 pigs selected from the Duroc × Pietrain Michigan 

State University Pig Resource Population expressing extremes for loin muscle area or back fat 

thickness phenotypes (MSUPRP; Edwards et al. 2008a, 2008b; Steibel et al. 2011). These 

animals were phenotyped for over 60 traits encompassing meat quality, carcass composition, and 

growth traits. Genotyping was performed by Neogen Corporation—GeneSeek Operations 

(Lincoln NE) using Illumina PorcineSNP60 BeadChips (Ramos et al. 2009) and was previously 

reported by our group (Casiró et al. 2017; Velez-Irizarry et al. 2019). Resulting genotypes were 

filtered for markers with extreme allele frequencies calculated from the entire F2 population of 

940 animals (MAF <0.10), removal of non-informative markers, and markers located on sex 

chromosomes. A total of 36,292 SNPs were included in subsequent analyses. Genotype data for 

the animals used in this analysis are publicly available and can be found 

at https://www.github.com/steibelj/gwaR. 
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Samples of LD tissue were collected from each animal at slaughter, frozen in liquid 

nitrogen, and stored at −80°C for later use. Total RNA was isolated from LD samples using the 

miRNeasy Mini Kit (QIAGEN, California, United States). Samples were prepared for 

sequencing utilizing the Bioo Scientific NEXTFlexTM Small RNA Sequencing Kit (v2; Bioo 

Scientific, Austin, TX, United States) and were sequenced on the Illumina HiSeq 2500 platform 

(Illumina, Inc.; California, United States) in 50 bp, single-end format at the Michigan State 

University Research Technology Support Facility (East Lansing, Michigan, United States). 

Sample libraries were sequenced on two flow cells (38 libraries/lane on four lanes of one flow 

cell; 27 libraries/lane (including 24 new libraries and three repeated libraries) on one lane of a 

second flow cell), and sequencing of the same library pools was repeated on two additional flow 

cells to increase sequencing depth. Raw counts of sequence output was merged and compiled 

into a single file for each sample library prior to analysis. Two libraries failed to produce 

acceptable sequencing output and were removed from further analysis, yielding 174 files of 50 nt 

short-read sequences in fastq format (86 male, 88 female). The small RNA sequencing dataset 

generated for this study can be found in the NCBI Sequence Read Archive under BioProject 

PRJNA363073. 

3.3.2 Bioinformatics analysis 

After adaptor trimming, read quality filtering, and removal of PCR duplicate reads (Daza 

et al. 2017), the miRDeep2 software package (v0.0.5; Friedländer et al. 2012) was used with 

default parameters to align high-quality reads to the Sus scrofa reference genome (v11.1; 

Ensembl), and to quantify Sus scrofa mature miRNAs obtained from miRBase1 (Release 

21; Griffiths-Jones et al. 2008; Friedländer et al. 2012). The average abundance of each mature 

pig miRNA was adjusted for differences in sequencing depth between libraries by converting the 
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read counts to counts per million (cpm) with the edgeR package (v3.12.1) of R (R Core Team 

2018), incorporating trimmed mean of M (TMM) normalization factors (Robinson and Oshlack, 

2010). TMM normalization has been shown to reduce the technical bias of sequencing and 

control the rate of false-positive associations (Dillies et al. 2013). miRNAs expressed at < 1 cpm 

in ≥ 44 libraries were removed from the dataset prior to calculation of the normalization factors. 

3.3.3 MicroRNA eQTL analysis 

The 295 mature miRNA expression profiles retained from quality control and expression 

filtering were normalized using the voom function of the limma R package (v3.26.9), which 

accounts for the mean-variance relationship of the miRNA expression profiles across samples 

(Law et al. 2014). The resulting log-counts per million were treated as response variables in a 

genomic best linear unbiased prediction (GBLUP)-based genome-wide association (GWA) 

analysis utilizing the gwaR package developed by our group2 in the R statistical environment3 (R 

Core Team, 2018). The GBLUP model is described in model (1): 

! = #$ + & + ', (1) 

&	~	*(0, ./!") 

. = 11′ 

'	~	*(0, /#"	3456(1 89⁄ )) 

where y is the vector of normalized read log-count per million (log-cpm) associated with a 

mature miRNA; X is the incidence matrix relating the observed phenotypes to the coefficients of 

fixed effects β including the population mean, sex, and “growth group,” which is a factor broken 

into four classifications corresponding to phenotypic extremes for the selected traits of loin 

muscle area or 10th rib backfat thickness (Cardoso et al. 2008). Effect a is the random effect of 

breeding value, whose variance incorporated the genomic relationship matrix G=ZZ′, where Z is 
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the matrix of standardized SNP marker effects for each animal (VanRaden, 2008; Gualdrón 

Duarte et al. 2014). The error term e included a variance inversely proportional to the precision 

weights produced by the voom function, accounting for the heterogeneous variance between 

miRNAs with differing expression. 

The narrow-sense heritability (h2) of the miRNA expression profiles was estimated by 

obtaining the ratio of the additive genetic variance and total phenotypic variance parameters 

resulting from the GBLUP model as shown in equation (2): 

ℎ" =	 $%!"
$%!"&$%#"

, (2) 

A likelihood ratio test (LRT) was utilized to assess the significance of the heritability, 

comparing the likelihood of model (1) with the null model assuming h2 = 0. False-discovery rate 

(FDR) was implemented for multiple test correction (FDR < 0.05; Storey and Tibshirani, 2003). 

All miRNAs were included in the subsequent GWA analysis, regardless of heritability. 

The SNP effects and their variances from model (1) were estimated from a linear transformation 

of the â matrix of estimated breeding values, as described by Gualdrón Duarte et al. (2014): 

<9 = 	1'.()&9,	(3)	

>5?(<9) = 1'.()>5?(&9).()1' 

Individual SNP effects were standardized by dividing a SNP effect by the square root of 

its variance, producing the GWA test statistic of the jth SNP with a miRNA: 

@* = +%
,-!.(+%$)

, (4) 

The p-values associated with each significance test were assessed as described 

in Gualdrón Duarte et al. (2014), and FDR was utilized for multiple test correction (FDR < 0.05). 
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The miRNA eQTL (miR-eQTL) were then mapped by plotting the genomic position of each 

miRNA precursor sequence against the associated SNP marker position(s). miR-eQTL were 

defined as “local” regulators of miRNA expression if the miR-eQTL peak overlapped the 

genomic position of the miRNA precursor transcript. Peaks not meeting this criterion were 

defined as “distant” regulators. This definition of local versus distant miR-eQTL is more 

conservative than that used in traditional mRNA GWA analyses, which generally defines a 

genomic region surrounding the transcription start site of the associated mRNA (in the range of 

kilobases) as a “cis-acting” eQTL. This conservative definition of local regulators was chosen 

with the understanding that genomic variation in the region of the miRNA precursor transcript 

could potentially affect miRNA biogenesis or targeting. 

After completing the GBLUP-based GWA analysis using model (1), the significant miR-

eQTL peaks were characterized by estimating the proportion of variance accounted for by the 

peak miR-eQTL SNP (selected based on minimum p-value). This was accomplished by 

conducting a conditional GBLUP-based GWA analysis (Casiró et al. 2017). The association 

analysis was repeated for each miR-eQTL utilizing Equation (1) and including in the model the 

genotypes of the most significantly associated peak SNP (determined by p-value) as fixed 

effects. Estimating the proportion of variance explained by the peak miR-eQTL SNP was 

conducted using equations (5) and (6), as described in Casiró et al. 2017. 

A5?(B)C =	D" ∗ >5?(F1#!2), (5) 

where A5?(B)C  is the estimated variance explained by the SNP effect, b is the estimated effect of 

the SNP, and Zpeak is the genotype of the most significant SNP. The proportion of variance 

explained by the peak SNP is then estimated by dividing the estimated variance of the SNP effect 

by the total phenotypic variance components as follows: 
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3!.(4)5
$%!"&$%#"&	3!.(4)5 , (6) 

If all other SNP in the region failed to reach significance after fixing the peak SNP for a 

given miR-eQTL, this indicated the miR-eQTL effect could be explained by a SNP(s) acting in 

that region. Additionally, if fixing a peak SNP for a peak in one region of the genome caused a 

SNP association to be eliminated in another genomic region, this indicated that that single SNP 

was not in linkage disequilibrium with neighboring SNP but was highly correlated with SNP 

elsewhere in the genome (Casiró et al. 2017). Finally, if significant SNP associations remain 

after fixing a peak SNP, the associated miRNA expression could be controlled by multiple 

genomic loci acting independently of one another, with a proportion of variance in miRNA 

expression being explained by the given genomic region. In summary, this conditional analysis 

enabled the estimation of the proportion of variance in miRNA abundance explained by the peak 

miR-eQTL SNP for each miR-eQTL and facilitated the potential discovery of multiple genomic 

regions significantly associated with variation in miRNA abundance that, due to the effects of 

linkage disequilibrium, may have originally presented as a single miR-eQTL peak. 

3.3.4 Colocalization of miR-eQTL and pQTL 

Previously estimated phenotypic QTL (pQTL; genomic regions significantly associated 

with variation in a phenotype of interest) from the MSUPRP (Velez-Irizarry et al. 2019) were 

colocalized with miR-eQTL peaks to identify regions of the genome affecting variation in both 

miRNA expression and economically important phenotypes. Using the genomic position of miR-

eQTL and pQTL peaks, defined as the range between the minimum and maximum significantly 

associated SNP genomic positions for a given miRNA expression profile or phenotype, multiple 

types of colocalization events were identified: miR-eQTL peaks completely enveloped by pQTL 

peaks, pQTL peaks completely enveloped by miR-eQTL peaks, and pQTL peaks overlapping 
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miR-eQTL peaks either upstream or downstream. Once colocalization was identified based on 

genomic position, the genotypes of the peak SNP of the pQTL were added as a fixed effect in a 

replication GWA for the miR-eQTL similar to Equation (1), utilizing FDR for multiple test 

correction (FDR < 0.05). If the previously significant SNP associations of a miR-eQTL were 

eliminated by adjusting for the peak SNP of the pQTL, it indicated a region of the genome 

affecting both variation in miRNA expression and phenotypic expression, further supporting a 

regulatory relationship between the miRNA and phenotype. 

3.3.5 Genomic colocalization of miR-eQTL-correlated target mRNAs and pQTL 

To investigate the regulatory mechanisms affecting carcass composition, meat quality, 

and growth phenotypes in this population, the expression profiles of 15 miRNAs with miR-eQTL 

were correlated with each miRNA’s target genes’ expression. Prediction of miRNA target genes 

was conducted with TargetScan using human homologs of pig miRNAs and genes, and the 

resulting gene lists were filtered to retain genes containing the two most preferentially conserved 

and effective target site classes (8mer and 7mer-m8; Agarwal et al. 2015). Gene expression 

profiles were obtained from next-generation sequencing of mRNA from RNA extracted from a 

subset of the 174 LD samples, yielding 166 individuals with both miRNA and mRNA 

expression; for detailed methods, see Velez-Irizarry et al. (2019). Expression profiles for miRNA 

and mRNA datasets (6,628 unique transcripts) were separately adjusted for the same fixed and 

random effects used in the linear model described in Equation (1). The corrected miRNA and 

gene expression values output from the GBLUP model were utilized in a two-sided Kendall’s 

rank correlation analysis in which each miR-eQTL miRNA was correlated with its target 

mRNAs expressed in this population, and FDR was utilized to correct for multiple tests (FDR < 

0.05). Thus, the genomic position of the target mRNAs exhibiting significant negative 
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correlation (the assumed relationship between a miRNA and its targets) were compared with 

pQTL regions associated with meat quality, carcass composition, and growth phenotypes 

previously identified in the same population (Gualdrón Duarte et al. 2016; Casiró et al. 

2017; Velez-Irizarry et al. 2019). Corrected colocalized target gene expression was also 

correlated through Pearson’s correlation to the corrected expression of colocalized phenotypes. 

Covariates included in linear models obtaining corrected phenotypic expression varied by 

phenotype, following the methods of Velez-Irizarry et al. (2019). An overlap in the genomic 

positions of a miR-eQTL miRNA’s target mRNAs and a pQTL, in addition to a correlation 

between the datasets may reveal novel regulatory relationships of miRNAs and mRNAs 

underlying economically important pig production traits. All scripts utilized in these analyses are 

publicly available and can be found at https://github.com/perrykai. 

3.4 Results 

3.4.1 MicroRNA eQTL analysis 

3.4.1.1 Local and distant microRNA eQTL 

Results of the miR-eQTL analysis are shown in Table 3.1. In total, 295 miRNA 

expression profiles were included as response variables in the GBLUP-based GWA analysis, and 

results for associating these miRNAs with 36,292 SNPs identified 315 significant miRNA-SNP 

associations (FDR < 0.05), comprising 23 significant miR-eQTL peaks. These miR-eQTL were 

associated with 17 unique miRNAs and mapped to 10 different chromosomes. The genomic 

positions of the miR-eQTL SNPs and their associated miRNA can be found in Supplementary 

Table 3.1. The complete map of genomic positions of miRNA transcripts compared with miR-

eQTL peak SNPs is shown in Figure 3.1, with local-acting miR-eQTL in white and located along 

the blue diagonal line. Five of the miR-eQTL peaks were identified as local regulators, 



 45 
 

associated with miR-184 (DIAS0000025), miR-190b (ALGA0026452), miR-429 

(ALGA0106326), miR-7135-3p (ALGA0124095), and miR-874 (ALGA0016550) as seen 

in Figures 3.2A–E, while 16 miR-eQTL were determined to be distant regulators of miRNA 

expression. None of the significantly associated miR-eQTL SNPs overlapped with mature 

miRNA sequences. For miR-7135-3p, the significantly associated SNP in closest proximity to 

the mature miRNA sequence was the peak miR-eQTL SNP (ALGA0124095), lying 16.2 kb 

away from the mature miRNA sequence. Additionally, while miR-140-5p abundance was 

associated with two SNPs on chromosome 6 (the same chromosome as the miR-140-5p 

precursor), the significantly associated SNPs lie approximately 104.5 kb from the miRNA 

precursor transcript, deeming this association a distant-acting miR-eQTL. This is demonstrated 

in Figure 3.1 as the green point lying close to the blue diagonal line. 

 

Figure 3.1. Global plot of genomic position of miRNA transcript (Mb) versus genomic position 
of SNP (Mb) for miR-eQTL. Significant microRNA eQTL were identified using GBLUP-based 
GWA models (FDR < 0.05). miR-eQTL were defined as “local” regulators of miRNA 
expression if the miR-eQTL peak overlapped the genomic position of the miRNA precursor 
transcript. Peaks not meeting this criterion were defined as “distant” regulators. The x-axis 
denotes the absolute position of the peak miR-eQTL SNP (Mb), while the y-axis denotes the 
absolute position of the miRNA precursor transcript. White points along the blue line 
represent local-acting miR-eQTL, while green points represent distant-acting miR-eQTL. 
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miR-eQTL peaks associated with two miRNAs (miR-6782-3p and miR-9785-5p) could 

not be classified as local or distant acting; these miRNAs are mapped to unplaced scaffolds in the 

current genome assembly (v11.1; Ensembl), making this distinction and their inclusion on the 

global miR-eQTL map in Figure 3.1 impossible. One SNP, MARC0093624 (SSC15: 122.22 

Mb), was associated with five different miRNAs (let-7d-5p, let-7g, miR-1468, miR-95, and miR-

9843-3p). This genomic region was found in mRNA eQTL analyses to contain a putative 

regulatory hotspot (Velez-Irizarry et al. 2019), indicating its potential regulatory role over 

multiple transcripts. In situations where a miRNA was regulated by both local- and distant-acting 

miR-eQTL, genomic segments surrounding local-acting miR-eQTL peaks accounted for a larger 

proportion of variance in its respective miRNA’s expression than distant-acting peak segments. 
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Figure 3.2 Manhattan plots of the five local-acting miR-eQTL. Manhattan plots depicting the five local-acting miR-eQTL identified through 
GBLUP-based GWA models. For these miR-eQTL [ssc-miR-184 (A), ssc-miR-190b (B), ssc-miR-429 (C), ssc-miR-874 (D), ssc-miR-7135-
3p (E)], the position of the miR-eQTL peak overlapped the genomic position of the miRNA precursor transcript (denoted by the red arrow). Each 
blue point represents one miRNA-SNP association, with chromosomes differentiated by shades of blue. The x-axis denotes the absolute SNP 
position (Mb), while the y-axis represents the significance of the miRNA-SNP association [-log10(q value)]. The red line designates the threshold 
of significance, declared at FDR < 0.05.  
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Table 3.1 Summary of miRNA expression Quantitative Trait Loci  

miRNA 

miRNA 
Chr. miRNA h2 (SE) Peak SNP ID SNP Chr. 

SNP Pos. 
(Mb) 

Peak Range 
(Mb) 

SNPs in 
Peak 

Peak SNP 
q-value 

Prop. Var. 
Explained 
Peak SNPa 

miR-874 2 0.30 (0.15) † ALGA0016550‡ 2 139.74 21.71 115 2.87E-09 0.36 

miR-184 7 0.63 (0.17) † DBWU0000430 3 9.46 0.00 1 4.14E-02 0.11 

miR-184 7 0.63 (0.17) † ASGA0016793 3 126.51 0.00 1 4.16E-02 0.11 

miR-7135-3p 3 6.28E-8 (0.08) ALGA0124095‡ 3 28.39 0.70 14 1.17E-02 0.13 

miR-874 2 0.30 (0.15) † ALGA0122273 3 61.02 0.00 1 2.06E-02 0.10 

miR-9785-5p NA 0.24 (0.14) ALGA0121561 3 7.32 27.07 17 3.69E-02 0.14 

miR-128 13, 15 0.24 (0.14) ALGA0023517 4 15.33 0.00 1 4.37E-02 0.17 

miR-140-5p 6 0.35 (0.16) † ASGA0017748 4 7.19 0.00 1 1.39E-02 0.15 

miR-190b 4 0.50 (0.17) † ALGA0026452‡ 4 87.03 14.43 4 1.70E-02 0.19 

miR-9810-3p 4 0.16 (0.13) MARC0021620 5 16.31 0.08 2 3.27E-02 0.15 

miR-140-5p 6 0.35 (0.16) † ALGA0117081 6 16.97 0.39 2 4.30E-04 0.26 

miR-184 7 0.63 (0.17) † M1GA0026172 6 169.93 0.00 1 1.43E-02 0.10 

miR-429 6 0.34 (0.16) † ALGA0106326‡ 6 64.41 23.59 90 5.35E-06 0.28 

miR-184 7 0.63 (0.17) † DIAS0000025‡ 7 51.03 43.23 46 2.00E-07 0.34 

miR-429 6 0.34 (0.16) † ALGA0046283 8 7.17 0.00 1 3.10E-02 0.11 

miR-6782-3p NA 0.52 (0.17) † ASGA0094215 10 24.87 9.75 4 1.55E-04 0.26 

miR-1306-3p 14 0.03 (0.09) H3GA0034702 12 52.40 0.00 1 6.13E-03 0.17 

let-7d-5p 3 0.11 (0.12) MARC0093624 15 122.22 0.35 2 1.12E-02 0.18 

let-7g 13 0.10 (0.11) MARC0093624 15 122.22 0.35 2 5.96E-03 0.18 

miR-1468 X 0.19 (0.13) † MARC0093624 15 122.22 0.00 1 2.02E-02 0.19 

miR-345-3p 7 0.41 (0.16) † H3GA0052416 15 121.81 0.07 2 3.59E-02 0.18 

miR-95 8 0.42 (0.16) † MARC0093624 15 122.22 0.41 3 4.65E-02 0.17 

miR-9843-3p 8 0.31 (0.15) † MARC0093624 15 122.22 0.41 3 3.23E-03 0.22 
a Proportion of variance explained by the peak miR-eQTL SNP (minimum p-value) when included as a fixed effect in linear models. 
† Designates miRNAs exhibiting significant narrow-sense heritability (FDR < 0.05). 
‡ Designates local-acting miR-eQTL 
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3.4.1.2 Heritability of miRNA expression in pig longissimus dorsi 

Results of the GBLUP analysis indicated the average h2 of miRNA expression profiles to 

be 0.12, while the average h2 of the 46 miRNAs exhibiting significantly heritable expression 

after the LRT was 0.34 (FDR < 0.05). The relationship between heritability of a miRNA 

expression profile and its significance in the LRT [−log10(p value)] is shown in Supplementary 

Figure 3.S1. The overall trend of this figure (increasing heritability associated with increased 

significance) indicates that the additive genetic effect is playing a significant role in the 

expression of these miRNAs in these samples. Heritability of a miRNA expression profile was 

not used as a filter for inclusion in the GWA analysis; as shown in Table 3.1, some miRNAs 

exhibiting non-significant heritability did have miR-eQTL, indicating that a significant 

association between genomic loci and variation in miRNA expression can exist regardless of the 

heritability of that miRNA. 

3.4.2 Peak miR-eQTL SNP conditional analysis 

Results of the conditional analysis (repeating the GWA analysis including the peak SNP 

for each miR-eQTL as a fixed effect) are shown in Table 3.2. Strong linkage disequilibrium 

between the peak SNP and other SNPs comprising the miR-eQTL peak caused the analysis to 

fail for three miR-eQTL associated with miR-184, miR-7135-3p, and miR-9810-3p 

(Supplementary Figure 3.S2). For 12 miR-eQTL peaks (representing 12 unique miRNAs), 

accounting for the peak SNP resulted in complete loss of significant associations. For six of these 

cases (let-7d-5p, let-7g, miR-128, miR-1306-3p, miR-1468, and miR-345-3p), there was initially 

only one to two statistically significant SNP association(s) and all were distant-acting. Most 

intriguing was the local-acting peak associated with miR-874, whose miR-eQTL peaks initially 

contained 115 significant SNPs (Figure 3.3A); fixing the peak significant SNP (ALGA0016550) 
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resulted in a complete loss of association for the local- and distant-acting signals. Similarly, for 

miR-429, accounting for the local-acting peak SNP (ALGA0106326) eliminated the miR-eQTL 

peak previously consisting of 90 SNPs (FDR < 0.05; Figure 3.3B). Variation in miRNA 

expression between segregating peak SNP genotypes for miR-874 and miR-429 are shown 

in Figures 3.3C, D, respectively. For the eight remaining miR-eQTL peaks, fixing the peak SNP 

did not eliminate all SNP associations: these consisted of distant-miR-eQTL associated with 

miR-140-5p (two peaks), miR-184 (three peaks), miR-429, and miR-874. Additionally, 

accounting for the miR-6782-3p peak SNP (ASGA0094215; SSC10) revealed significant SNP 

associations on SSC5 and SSC10 (peaks contain 11 and 6 SNPs, respectively), however, this 

miRNA lacks annotation data, making the distinction of the resulting eQTL peaks as local- or 

distant-acting impossible. Interestingly for miR-874, whose expression associated with both a 

local-acting miR-eQTL on chromosome 2 and a distant-acting SNP on chromosome 3, 

accounting for the distant-acting miR-eQTL peak SNP in the GWA analysis did not eliminate the 

local-acting signal but yielded a stronger local signal containing 126 significantly associated 

SNPs with ALGA0016550 remaining the peak SNP (Figure 3.3A). A similar result was seen 

with miR-429, where the local-acting signal remained after conditioning on the distant-acting 

miR-eQTL peak SNP (Figure 3.3B). 
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Figure 3.3 Conditional Analyses of miR-eQTL peak SNPs. Manhattan plots (A,B) depicting the results of the conditional analyses of miR-874 and miR-

429, which included the genotype of the most significantly associated peak SNP (determined by p-value) in the GBLUP-based GWA model as a fixed 

effect for each miR-eQTL. (C,D) Variations of each miRNA’s expression between segregating genotypes. For each Manhattan plot, the y-axis designates 

the -log10(q value) and the x-axis indicates the absolute SNP position (Mb). Chromosomes are differentiated by shades of blue. Significance was declared 

at FDR < 0.05. (A) Conditional analysis of miR-874 miR-eQTL peak SNPs ALGA0122273 (SSC3) and ALGA0016550 (SSC2). (B) Conditional analysis 

of miR-429 miR-eQTL peak SNPs ALGA0046283 (SSC8) and ALGA0106326 (SSC6). Left, Manhattan plot of miR-eQTL peaks. Middle, Manhattan 

plot of miR-eQTL peaks after conditional analysis of distant-acting peak miR-eQTL SNP. Note that the distant-acting peak in each case is eliminated, but 

the local-acting peak remains. Right, Manhattan plot of miR-eQTL peaks, after conditional analysis of local-acting peak miR-eQTL SNP. (C) Variation 

in miR-874 expression between segregating SNP ALGA0016550 genotypes. The black line in each column represents the median expression of miR-874 

for the respective genotype. (D) Variation in miR-429 expression between segregating SNP ALGA0106326 genotypes. The black line in each column 

represents the median expression of miR-429 for the respective genotype. 
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Table 3.2 Summary of miR-eQTL peak SNP conditional analysis results  

miRNA miRNA Chr. Fixed SNP ID SNP 
Chr. 

SNPs in 
Peaka 

Peak(s) 
Remainingb 

SNPs in 
Peak(s) 

Remaining 
Remaining 

Peak(s) SNP 
Remaining Peak(s) 

SNP Chr. 

miR-874 2 ALGA0016550‡ 2 115 0 - - - 

miR-184 7 DBWU0000430 3 1 2 1, 63 M1GA0026172, 
ALGA0041952 

6, 7 

miR-184 7 ASGA0016793 3 1 2 1, 62 M1GA0026172, 
ALGA0041993 

6, 7 

miR-7135-3p 3 ALGA0124095‡ 3 14 NA - - - 

miR-874 2 ALGA0122273 3 1 1 126 ASGA0012467 2 

miR-9785-5p NA ALGA0121561 3 17 0 - - - 

miR-128 13, 15 ALGA0023517 4 1 0 - - - 

miR-140-5p 6 ASGA0017748 4 1 1 17 ALGA0117081 6 

miR-190b 4 ALGA0026452‡ 4 4 0 - - - 

miR-9810-3p 4 MARC0021620 5 2 NA - - - 

miR-140-5p 6 ALGA0117081 6 2 1 1 ALGA0022682 4 

miR-184 7 M1GA0026172 6 1 2 1, 25 H3GA0011011, 
ALGA0041952 

3, 7 

miR-429 6 ALGA0106326‡ 6 90 0 - - - 

miR-184 7 DIAS0000025‡ 7 46 NA - - - 

miR-429 6 ALGA0046283 8 1 1 91 H3GA0053081 6 

miR-6782-3p NA ASGA0094215 10 4 2 11, 6 H3GA0016379, 
DIAS0000707 

5, 10 

miR-1306-3p 14 H3GA0034702 12 1 0 - - - 

let-7d-5p 3 MARC0093624 15 2 0 - - - 

let-7g 13 MARC0093624 15 2 0 - - - 

miR-1468 X MARC0093624 15 1 0 - - - 

miR-345-3p 7 H3GA0052416 15 2 0 - - - 

miR-95 8 MARC0093624 15 3 0 - - - 

miR-9843-3p 8 MARC0093624 15 3 0 - - - 
a Number of significantly-associated SNPs in miR-eQTL peak prior to conditional analysis 
b Number of miR-eQTL peaks remaining after conditional analysis of peak miR-eQTL SNP 
‡ Designates local-acting miR-eQTL 
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3.4.3 Colocalization of miR-eQTL and pQTL 

Colocalization of miR-eQTL and pQTL based on genomic position of the miR-eQTL and 

pQTL peak SNPs yielded eight miR-eQTL overlapping 10 pQTL across four chromosomes 

(Supplementary Table 3.S2). Six distant-acting miR-eQTL for miRNAs let-7d-5p, let-7g, miR-

95, miR-345-3p, miR-1468, and miR-9843-3p overlapped in genomic position with a large 

pQTL peak on SSC15 associated with seven meat quality phenotypes including sensory panel 

juiciness, sensory panel tenderness, and overall tenderness, Warner-Bratzler shear force (WBS), 

protein content, pH at 24 h post-mortem, driploss, and cook yield. All but one of these six miR-

eQTL peaks were associated with SNP MARC0093624 (122.22 Mb); the miR-eQTL for miR-

345-3p was associated with H3GA0052416, located nearby on the same chromosome (121.81 

Mb; r = −0.89). Two local-acting miR-eQTL peaks for miR-190b (ALGA0026452: SSC4: 87.03 

Mb) and miR-184 (DIAS0000025: SSC7: 51.03 Mb) colocalized with pQTL for last lumbar 

vertebrae backfat thickness (SSC4) and number of ribs (SSC7), respectively. The remaining 15 

miR-eQTL peaks did not overlap in genomic position with any pQTL peaks. 

For each miR-eQTL colocalizing with a pQTL, the pQTL SNP with the minimum p-

value was identified and included as a fixed effect in a GBLUP-based GWA conditional analysis 

to assess the impact of the pQTL peak SNP on the associated miRNA’s expression. Results of 

this analysis can be found in Supplementary Table 3.S3. For the local-miR-eQTL for miR-184 

on SSC7, accounting for the peak pQTL SNP for number of ribs reduced the number of 

significantly associated SNPs. The number of ribs pQTL SNP ALGA0043983 explained 8.80% 

of the variance in miR-184 expression, leaving 34 SNP significantly associated with miR-184 

(FDR < 0.05; Supplementary Table 3.S3). This means a variant in the locus containing the peak  
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SNP for the number of ribs pQTL is likely also having an effect on the expression of miR-184, 

further suggesting a regulatory relationship between the miRNA and the phenotype. For the 

remaining seven colocalized miR-eQTL, including the peak pQTL SNP as a fixed effect in the 

GBLUP-based GWA eliminated all associations for that miRNA. Interestingly, for miR-190b, 

which colocalized with last lumbar backfat thickness (SSC4), accounting for SNP 

ASGA0092651 in the linear model explained 15.67% of the variance in miRNA expression. For 

the five miR-eQTLs colocalizing with pQTL on SSC15, the peak pQTL SNPs for all seven traits 

were either H3GA0052416 or MARC0093624 (Supplementary Table 3.S3). As noted above 

in Table 3.1, these are the same peak SNPs for the colocalized miR-eQTL, and the two SNPs are 

highly correlated with one another due to their close proximity in the genome (r = −0.89). 

Conducting conditional analyses on these peak SNPs left no significantly associated SNPs and 

explained between 13.11 and 21.96% of the variance for a given miRNA (Supplementary Table 

3.S3). For the majority of miR-eQTL colocalizing with pQTL peaks, there were only one to four 

significant SNPs in the original miR-eQTL analysis, so these results are not surprising. 

3.4.4 Genomic colocalization of miR-eQTL target mRNAs and pQTL 

Significant negative correlated target genes were colocalized based on genomic position 

with pQTL identified in the same population to identify potential novel mechanisms regulating 

growth, carcass composition, and meat quality traits. Significant miRNA-target correlations 

ranged from -0.09 to -0.18 (FDR < 0.05). MiR-874 negatively correlated with 29 target genes 

overlapping with pQTL for 12 phenotypes across six chromosomes (Supplementary Tables 

3.S4, 3.S5 and Figure 3.4). These phenotypes include carcass 10th rib backfat thickness, loin 

muscle area at 16 weeks old, number of ribs, sensory panel tenderness and overall tenderness, 
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WBS, dressing percentage, protein content, pH at 24 h post-mortem, cook yield, driploss, and 

juiciness. 
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Figure 3.4. Manhattan plot of genomic co-localization events of miR-874 target genes with pQTL. This Manhattan plot compiles the results of the 
miR-eQTL, previously-identified mRNA eQTL (Velez-Irizarry et al. 2019), previously-identified pQTL (Gualdrón Duarte et al. 2016, Casiró et al. 
2017, Velez-Irizarry et al. 2019), miR-874 target prediction, and correlation analyses to identify potential novel mechanisms regulating growth, 
carcass composition, and meat quality traits in pigs. In total, 29 unique target genes co-localized with pQTL across 6 chromosomes. Nine target 
genes (PLEKHB2, WDR33, NIF3L1, IGFBP5, UGGT1, PRPF40A, METTL8, PTPRN, and KLHL30) overlap the pQTL peak on SSC15 associated 
with meat quality traits. The y-axis denotes the significance of the association (-log10(q-value)) and the x-axis indicates the absolute SNP position 
(Mb). Chromosomes are differentiated by shades of blue. Blue points represent miRNA-SNP associations for miR-874. The red arrow indicates 
the genomic position of the miR-874 precursor transcript. Orange circles represent the genomic position of pQTL. Gray points represent the 
genomic position of significantly negatively correlated target genes for miR-874. Black points represent the genomic position of significantly 
negatively correlated target genes for miR-874 whose genomic position overlaps that of a pQTL peak. Text in the upper left-hand side of plot 
describes the genomic position of the miR-eQTL peaks (Mb). Text in close proximity to pQTL peaks co-localizing with target genes describe the 
chromosome on which the pQTL resides, and which phenotypes the associated pQTL represent (car_bf10 = carcass 10th rib backfat thickness; 
cook_yield = cook yield; dress_ptg = dressing percentage; driploss = driploss; juiciness = sensory panel juiciness; lma_16wk = loin muscle area at 
16 weeks of age; num_ribs = number of ribs; overtend = sensory panel overall tenderness; ph_24h = pH measured at 24 h post-mortem; protein = 
protein percentage; tenderness = sensory panel tenderness; WBS = Warner Bratzler Shear Force). 
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Correlation analysis between retained target genes and the colocalized phenotype yielded 11 

potential targets of interest (Table 3.3). These genes were negatively correlated with miR-874 

corrected expression (FDR < 0.05) in addition to either the corrected gene or corrected miR-874 

expression being correlated with the colocalized phenotype (p < 0.05). These genes serve as 

potential subjects to further investigate the role of miRNAs in the regulation of traits important 

to the swine industry. 

 

Table 3.3 Correlations of miR-874, target genes, and co-localized phenotypes  

Gene (Chr) 
t 

miR-874: 
Genea 

Co-
localized 

Phenotypeb 

R 
Gene: 

Phenotypec 
p-valued 

R 
miR-874: 

Phenotypee 
p-valuef 

GPR157 (6) -0.160 lma_16wk -0.217 0.005* 0.242 0.002* 

CDKN1A (7) -0.088 dress_ptg -0.157 0.044* 0.165 0.034* 

ETV7 (7) -0.126 dress_ptg -0.116 0.135 0.165 0.034* 

LEMD2 (7) -0.148 dress_ptg -0.126 0.106 0.165 0.034* 

NUDT3 (7) -0.132 dress_ptg -0.147 0.059 0.165 0.034* 

PFDN6 (7) -0.151 dress_ptg -0.156 0.045* 0.165 0.034* 

ZNF451 (7) -0.176 dress_ptg -0.129 0.098 0.165 0.034* 

ATP8A2 (11) -0.174 dress_ptg -0.115 0.141 0.165 0.034* 

IGFBP5 (15) -0.116 ph_24h -0.113 0.171 0.169 0.039* 

  cook_yield -0.029 0.716 0.187 0.016* 

PLEKHB2 (15) -0.119 protein -0.250 0.001* 0.100 0.202 

PTPRN (15) -0.123 ph_24h -0.231 0.005* 0.169 0.039* 

  cook_yield 0.020 0.801 0.187 0.016* 

  WBS 0.223 0.004* -0.009 0.905 
a Kendall’s rank correlation of miR-874 to target gene (FDR < 0.05) 
b Abbreviated phenotype name: lma_16wk = loin muscle area at 16 weeks; dress_ptg = dressing 
percentage; ph_24h = pH measured at 24 h post-mortem; cook_yield = cook yield; protein = 
protein percentage; WBS = Warner Bratzler Shear Force. 
c Pearson’s correlation of target gene corrected expression to co-localized corrected phenotype 
d Significance of Pearson’s correlation of target gene corrected expression to co-localized 
corrected phenotype 
e Pearson’s correlation of miR-874 corrected expression to co-localized corrected phenotype 
f Significance of Pearson’s correlation of miR-874 corrected expression to co-localized corrected 
phenotype 
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3.5 Discussion 

This study is the first to report miRNA-eQTL in a livestock species. The regulatory 

effects of miRNAs in pig skeletal muscle are not yet fully understood. Even less explored is how 

variation in miRNA expression affects complex traits important to the quality and consistency of 

pork products and the efficiency of pig production. To elucidate these relationships, we 

conducted a GBLUP-based GWA analysis of miRNA expression profiles in LD tissue from a 

F2 Duroc × Pietrain pig population. The GBLUP model was used to estimate breeding values for 

each miRNA expression profile, accounting for population stratification via the genomic 

relationship matrix G composed of standardized marker effects for 36,292 SNPs. The GWA 

analysis was then conducted by estimating SNP effects through a linear transformation of the 

estimated breeding values and testing their association with a given miRNA expression profile. 

This resulted in the identification of genomic regions associated with variation in miRNA 

expression, or conversely, the identification of miRNAs experiencing variation in expression due 

to additive genetic effects in this population. Results of the miR-eQTL analysis were 

subsequently integrated with gene expression and phenotypic data from the same animals to 

elucidate the effects of miRNA regulation on target genes and downstream phenotypes. We 

identified 23 miR-eQTL peaks (FDR < 0.05) corresponding to 17 unique miRNAs acting both 

locally and distantly to regulate miRNA expression. Nine of the 17 miR-eQTL miRNAs have 

previously been linked to biological processes in skeletal muscle and adipose tissues (Shao et al. 

2011; Jiang et al. 2013; Yan et al. 2013; Boudoukha et al. 2014; Jeanson-Leh et al. 2014; Shi et 

al. 2015; Siengdee et al. 2015; Zhang et al. 2015; Dai et al. 2016; Peng et al. 2016; Li et al. 

2017; Xie et al. 2018; Zhang et al. 2018; Yu et al. 2019); whereas, others are novel findings for 

these tissues. 



 59 
 

MicroRNAs let-7d and let-7g each exhibited distant-acting miR-eQTL overlapping a 

large pQTL peak for meat quality traits on SSC15. Members of the let-7 family of miRNAs have 

been shown to be involved in diverse biological processes including glucose metabolism, 

glycogen synthesis, adipogenesis, and myoblast motility in multiple species. Let-7d was 

identified as a direct translational repressor of the anti-inflammatory cytokine IL13 gene, 

indicating its role in glucose metabolism and glycogen synthesis in human skeletal muscle (Jiang 

et al. 2013), while another let-7 family member, let-7g, was identified as a candidate regulator of 

adipogenesis during fetal skeletal muscle development in sheep (Yan et al. 2013). MicroRNA 

let-7g has also been shown to regulate mouse skeletal muscle myoblast motility (Boudoukha et 

al. 2014). These reports indicate biological mechanisms through which variation in the 

expression of these miRNAs could be affecting myogenesis and adipogenesis in pig skeletal 

muscle, ultimately affecting traits important to pork quality. 

Shi et al. (2015) demonstrated that miR-128 inhibited proliferation and promoted 

differentiation in C2C12 myoblasts through targeted repression of MSTN, subsequently 

promoting expression of the Smad2/3 signaling pathway genes MYF5, MYOG, and PAX 3/7, 

indicating the critical role of this miRNA in regulating myogenesis. Similarly, Xie et al. 

(2018) investigated myogenesis-associated miRNAs in C2C12 myoblasts and identified miR-128 

as a promoter of differentiation, demonstrating its role in a multi-miRNA network repressing 

the MYOD-inhibiting JNK/MAPK signaling pathway. MicroRNA-128 has also been shown to 

regulate bovine skeletal muscle satellite cells by targeting SP1, as reported by Dai et al. (2016). 

Upon transfection of cultured fetal hind limb muscle samples with miR-128 mimics, they 

observed down-regulated SP1 protein levels at late differentiation stages. The inverse 

relationship also held true when cells were transfected with miR-128 inhibitors, suggesting miR-
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128 inhibition could promote differentiation in bovine skeletal muscle satellite cells by 

increasing SP1 protein levels, which promotes MYOD expression and the exit of cells from the 

cell cycle. Additionally, in a study of C2C12 myoblasts, miR-345-3p was predicted to target two 

genes involved in mitochondrial energy metabolism, suggesting its role in regulating ATP levels 

during myoblast differentiation (Siengdee et al. 2015). Yu et al. (2019) demonstrated that miR-

190b expression decreased in skeletal muscle of rats after burn injury. This suppression of miR-

190b resulted in increased abundance of its identified target gene, PH domain, and leucine-rich 

repeat protein phosphatase 1 (PHLPP1). Increased abundance of PHLPP1 protein, the 

phosphatase of Akt, indirectly enhanced the expression of cell autophagy-related proteins and 

promoted burn-induced skeletal muscle wasting in this study (Yu et al. 2019). MiR-95 was found 

to be significantly upregulated in a study profiling miRNAs in serum of golden retriever dogs 

with muscular dystrophy, which was validated in human patients with Duchenne muscular 

dystrophy (Jeanson-Leh et al. 2014). This miRNA is located in an intron of the ABLIM2 gene in 

dogs and pigs, which encodes a muscle actin-binding protein. Furthermore, after observing 

increased miR-95 abundance in LD muscle of loss-of-function MSTN-mutant Meishan pigs, Li et 

al. (2017) utilized C2C12 myoblasts to identify its regulatory role in myogenesis. Aminoacyl-

tRNA synthase complex-interacting multifunctional protein 2 (AIMP2) was found to be a miR-

95 target gene, with overexpression of miR-95 inhibiting translation of the protein and promoting 

myogenic differentiation (Li et al. 2017). While further examination into the function of 

miRNAs −128, −345-3p, and −95 in pigs would be required, these studies all support possible 

roles these miRNAs exhibiting eQTL in our study could play in regulating traits of importance to 

the pig industry. 
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Skeletal muscle tissue is intercalated with intramuscular adipocytes, so it is logical to also 

investigate miRNAs affecting adipose tissue when studying skeletal muscle. Multiple miRNAs 

have been shown to regulate adipogenesis and fat deposition across species including mouse, 

chicken, pig, and human. MicroRNA 140-5p exhibited increased expression in adipose tissue 

samples from obese compared with lean mice, and miR-140-5p overexpression in cultured 

stromal cells promoted adipocyte formation and increased protein levels of adipogenic 

transcription factors and marker genes. The authors proposed a regulatory model with increased 

miR-140-5p expression promoting adipocyte differentiation through suppression of its target 

gene, transforming growth factor β receptor 1 (TGFBR1; Zhang et al. 2015). Investigation into 

the genetic regulation of meat quality traits in chicken breast muscle tissue revealed miR-140-5p 

as a possible regulator of intramuscular adipogenesis. Overexpression of miR-145-5p in cultured 

intramuscular preadipocytes resulted in increased lipid accumulation, and luciferase reporter 

assays confirmed the targeting relationship between miR-145-5p and retinoid X receptor gamma 

(RXRG; Zhang et al. 2018). Comparing sequences of bone morphogenic protein 5 (BMP5) 

between Large White and Meishan pigs revealed a mutation in its 3′ UTR, located in miRNA 

binding sites for let-7c and miR-184 and associated with fatness traits in a crossbred population 

of the two breeds. Down-regulation of BMP5 after transfection of recombinant vectors of let-7c 

and miR-184 primary sequence into pig fibroblast cells further supported the role of these 

miRNAs in regulating fat deposition in pigs (Shao et al. 2011). Another study of pig 

adipogenesis identified miR-429 as a promoter of pre-adipocyte proliferation. Peng et al. 

(2016) cultured both porcine subcutaneous and intramuscular pre-adipocytes and observed the 

down-regulation of miR-429 throughout adipogenesis. Overexpression of the miRNA prior to 

differentiation induction resulted in decreased lipid accumulation in both cell types, and 
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decreased gene and protein expression of adipogenic markers, indicating its role in regulating 

this process (Peng et al. 2016). MicroRNAs-184 and -429 each exhibited both local- and distant-

acting miR-eQTL in this study, while miR-140-5p showed distant-acting regulation. These 

results indicate the complex regulation of these miRNAs that may, based on the evidence shown 

here, eventually influence traits related to adipogenesis and fat deposition in pigs. 

These studies all indicate ways in which variation in miRNA expression could affect 

biological processes in skeletal muscle and potentially affect phenotypes of economic 

importance to the swine industry. With this in mind, in addition to studying the genomic region 

surrounding the miR-eQTL peaks, we identified the miRNA whose expression was being 

affected by genomic variants and considered what the functional effects would be on their target 

gene(s)’ expression and related phenotypes. Target genes were colocalized based on genomic 

position with pQTL previously identified in the same population of pigs (Gualdrón Duarte et al. 

2016; Casiró et al. 2017; Velez-Irizarry et al. 2019), revealing miR-874 as a focus of interest. 

The miR-874 primary transcript lies within an intron of the ubiquitously expressed KLHL3 gene 

on the reverse strand, which is involved in innate immune system and antigen processing and 

presentation pathways and is enriched for actin binding and structural molecule activity GO 

terms (www.genecards.org; Stelzer et al. 2011). The peak SNP for the local-acting signal 

explained 36% of the variance in miR-874 expression in conditional analyses, indicating the 

strong likelihood of an influential variant residing in the region comprising this peak. While the 

miR-eQTL peak encompasses the miRNA primary transcript, the peak SNP lies 81 kb 5′ of the 

miRNA primary transcript on the reverse strand. There are no SNPs on the SNP60 BeadChip 

residing between the positions of the peak SNP and the miRNA primary transcript. Thus, it is 

likely that the peak miR-eQTL SNP is in high linkage disequilibrium with the true variant 
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controlling variation in miR-874 expression. Further experiments are required to identify this 

candidate marker and examine the impact of variation on miR-874 expression and downstream 

phenotypes. 

In this study, 29 unique negatively correlated miR-874 target genes colocalized with 12 

pQTL across six chromosomes, including carcass backfat thickness measurements and meat 

quality phenotypes such as tenderness and juiciness. Intriguingly, miR-874 was previously 

shown to be involved in fat deposition in beef cattle. Guo et al. (2017) profiled miRNAs 

differentially expressed between Wagyu versus Holstein cattle, two breeds differing in 

intramuscular lipid content (marbling). Expression of miR-874 was lower in subcutaneous 

adipose tissue in Wagyu compared with Holstein cattle. Target prediction revealed RXRA as a 

likely miR-874 target, an important transcription factor in the peroxisome proliferator-activated 

receptor (PPAR) signaling pathway involved in lipid and carbohydrate metabolism (Guo et al. 

2017). Additionally, Gondret et al. (2016) identified decreased expression 

of RXRA and PPARG (its heterodimeric partner) in perirenal and subcutaneous adipose tissues of 

pigs fed a high-fiber, high-fat diet compared with those fed a low-fiber, low-fat diet, indicating 

its role in regulating adipogenesis. RXRA was corroborated in our study as a miR-874 target and 

colocalized with a carcass 10th rib backfat pQTL on chromosome 1, supporting the hypothesis 

that miR-874 is involved in regulation of adipose tissue. 

The cyclin-dependent kinase inhibitor 1A (CDKN1A) gene colocalized with dressing 

percentage, a trait that is affected by the overall muscularity and adiposity of an 

animal. CDKN1A functions as a regulator of cell cycle progression and is induced by myostatin 

in proliferating myoblasts. The upregulation of CDKN1A inhibits the cyclin-dependent kinase 2 

(CDK2) complex, resulting in hypo-phosphorylation of retinoblastoma protein and the ultimate 
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arrest of myoblasts in the G1 phase of the cell cycle, promoting myoblast differentiation 

(Thomas et al. 2000). Conversely, in animals lacking functional myostatin, the dysregulation 

of CDKN1A and its associated genes promotes myoblast proliferation, maintaining hyperplasia 

and resulting in increased muscularity. Thus, variation in CDKN1A could contribute to the 

overall muscularity of an individual (a trait for which the two parental breeds of this population 

differ), affecting dressing percentage at harvest. 

The LEM domain nuclear envelope protein 2 (LEMD2) gene is expressed in the inner 

nuclear membrane of the nuclear envelope, and in our study also colocalized with pQTL for 

dressing percentage. After depletion of LEMD2 and its paralog (LEMD3) through RNA 

interference in C2C12 myoblasts, Huber et al. (2009) observed a significant reduction in 

differentiation as measured by myogenic index (the percentage of nuclei found in MyHC-

positive myotubes). After recognizing that LEMD2 depletion did not affect cell cycle 

distributions, they utilized western blotting to discover that it instead increased activation of 

Mitogen-Activated Protein Kinase 3 (MAPK3) a member of the MAPK signaling pathway, 

thereby suppressing myoblast differentiation (Huber et al. 2009). In our study, the indication that 

variation in LEMD2 expression might affect muscle mass would relate to many economically 

relevant traits in pigs, including dressing percentage. 

Insulin-like growth factor-binding protein 5 (IGFBP5) colocalized with pH at 24 h post-

mortem in our analysis. This gene was identified in a GWAS study of Finnish Yorkshire boars as 

a candidate gene for 24-h meat pH (Verardo et al. 2017). The authors also discovered an eQTL 

peak on SSC15 encompassing IGFBP5, and subsequent gene-transcription factor network 

analysis indicated its potential for regulating this trait (Verardo et al. 2017). Offspring of 

transgenic mice overexpressing IGFBP5 were shown to exhibit a reduction in skeletal muscle 
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tissue mass of 31% and decreased muscle fiber hypertrophy, predicted to be due to inhibition of 

IGF-II activity (Salih et al. 2004). Additionally, Ren et al. (2008) knocked 

down IGFBP5 expression in C2C12 mouse myoblasts and observed reduced MYOG expression 

and inhibited myotube formation which was not rescuable with exogenous MYOG transfection in 

the absence of IGFBP5. Finally, IGFBP5 has been shown to be a target of miR-143 in two 

studies, one assessing its effects on proliferation and differentiation of primary bovine muscle 

satellite cells (Zhang et al. 2017) and the other investigating muscle regeneration in satellite cells 

and primary myoblasts from mice and humans (Soriano-Arroquia et al. 2016). The above studies 

demonstrate the role of IGFBP5 expression on skeletal muscle development and the potential 

impacts of miRNA regulation on downstream phenotypes. 

Many of the predicted miR-874 target genes identified in our study have not been 

characterized for their roles in skeletal muscle. Further investigation into the effects of miR-874 

and these target genes are needed to fully elucidate its role in pig production traits. 

Due to the limited number of recombination events occurring in our F2 population, long-range 

persistence of linkage disequilibrium limited the resolution of the GWA analysis resulting in 

large genomic segments being significantly associated with each miRNA expression profile. In 

some cases, this limited our ability to conduct the conditional analysis on a peak SNP due to high 

correlations between genotypic frequencies of SNPs in close proximity. However, we have 

shown here the successful utilization of this dataset for identifying local- and distant-acting 

regulators of miRNA expression despite the extent of linkage disequilibrium in this population. 

The SNP MARC0093624 (SSC15: 122.22 Mb) was associated with five different miRNAs in 

our GWA analysis, which may lead to the identification of this marker as a miR-eQTL hotspot. 

While this genomic region did produce a putative regulatory hotspot in mRNA eQTL analyses 
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(Velez-Irizarry et al. 2019), previous literature has reported eQTL-hotspot analyses being subject 

to high false-positive rates (Breitling et al. 2008). Thus, further analysis is required to 

confidently define MARC0093624 as a miR-eQTL hotspot. Additionally, while the recent 

update to the Sus scrofa genome assembly (v11.1; Ensembl) is a vast improvement over the 

previous reference genome, there still exists a lack of accurate genome assembly data for some 

genomic regions, making classifying a miR-eQTL as local- versus distant-acting impossible in 

some cases. For the majority of cases, however, we were successful in classifying the type of 

regulatory relationship occurring between genomic regions harboring variants and miRNAs 

exhibiting variation in expression. 

3.6 Conclusion 

No previous studies evaluating miRNA-eQTL in pigs have been reported. Our genome-wide 

analysis of miRNA expression profiles successfully identified genomic regions affecting the 

expression of 17 unique miRNAs, indicating that miRNA expression in this tissue does have a 

genetic component. We then examined the potential effects miRNAs experiencing variation 

could have on the phenotypes measured in this population, demonstrating some key miRNAs 

colocalizing with growth, carcass composition, and meat quality traits. Some of these miRNAs 

had previously been identified for their involvement in skeletal muscle and adipose tissues, 

whereas others represented novel findings. While more research is needed to confirm the roles of 

miRNA regulation in these traits, our work has contributed to the understanding of regulatory 

mechanisms underlying complex trait phenotypes in pigs.  
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The Supplementary Material for this article can be found online at: 

https://www.frontiersin.org/articles/10.3389/fgene.2021.644091/full#supplementary-material 

Figure 3.S1. Heritability of miRNA expression. Narrow-sense heritability (h2) of the 295 

miRNA expression profiles was estimated by obtaining the ratio of the additive genetic variance 

and total phenotypic variance parameters resulting from the GBLUP model. Significance of 

heritability was assessed using LRTs, and FDR was implemented for multiple test correction. 

The x-axis denotes narrow-sense heritability of the miRNA expression profiles; the y-axis 

denotes the log-adjusted p-values of the LRTs. Highlighted in red are the 46 miRNAs exhibiting 

significantly heritable expression in this dataset (FDR < 0.05). 

Figure 3.S2. Visualization of correlation between SNPs in miR-eQTL peaks failing conditional 

analysis. This figure shows the results of correlation analyses between SNPs in the miR-eQTL 

peak for those miR-eQTL that failed the conditional analyses, repeating the GBLUP-based GWA 

analysis incorporating the peak SNP for each miR-eQTL as a fixed effect. The significantly 

associated SNPs comprising the miR-eQTL peak for (A) miR-184, (B) miR-7135-3p, 

and (C) miR-9810-3p were included in each respective correlation analysis. Each square 

represents the correlation between a pair of SNPs, identified above and on the diagonal in each 

plot. The strength of each pair’s correlation is depicted by increasingly saturated color; blue 

shades represent positive correlations and red shades represent negative correlations between two 

SNPs. 
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CHAPTER FOUR 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

4.1 Conclusions 

MicroRNAs, colloquially termed the “fine tuners” of gene expression, post-

transcriptionally regulate gene expression through sequence complementarity with target genes. 

While it is understood that miRNAs regulate numerous biological processes, further 

investigation is required to understand the impacts of miRNA regulation in pig skeletal muscle 

and their potential effects on traits important to pig production. The purpose of this dissertation 

research was to improve our understanding of regulatory interactions underlying complex meat 

quality, carcass composition, and growth traits in pigs. Specifically, we strove to 1) Profile and 

characterize the small RNA population expressed in longissimus dorsi (LD) skeletal muscle of 

174 F2 Duroc x Pietrain pigs from the MSU Pig Resource Population (MSUPRP), and 2) 

Conduct an integrated miR-eQTL analysis, to identify genomic regions underlying variation in 

miRNA abundance in the same individuals and reveal candidate genes regulating complex traits 

relevant to the pig production industry.  

 The composition of small RNA classes present in the skeletal muscle of selected F2 

MSUPRP pigs were characterized through sequence homology searches with pig, human, and 

mouse databases. We also quantified the expression of 295 known mature miRNAs and 

predicted 27 unique candidate pig-novel miRNA precursors from small RNA sequencing data of 

174 adult pig LD samples. Small RNA sequencing data were deposited in the Sequence Read 

Archive, BioProject PRJNA363073 (Daza et al. 2017), and the results of these analyses were 

presented in Chapter 2 of this dissertation.  
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The regulatory effects of miRNAs in pig skeletal muscle are not yet fully understood. 

Even less explored is how variation in miRNA expression affects complex traits important to the 

quality and consistency of pork products and the efficiency of pig production. In Chapter 3 of 

this dissertation, we conducted a GBLUP-based GWA analysis of 295 miRNA expression 

profiles in pig skeletal muscle to elucidate these relationships. We identified 23 miR-eQTL peaks 

(FDR < 0.05) associated with variation in the expression of 17 unique miRNAs, acting both 

locally and distantly (Daza et al. 2021). This indicates that additive genetic effects significantly 

impact the expression of miRNAs in this population. The miR-eQTL results were then integrated 

with gene expression and phenotypic data from the same individuals to reveal potential 

regulatory relationships affecting traits encompassing animal growth, carcass composition, and 

meat quality phenotypes. Notably, miR-184, miR-429, and miR-874 exhibited strong local-

acting miR-eQTL, meaning the positions of the SNPs comprising the miR-eQTL peak 

overlapped the genomic position of the miRNA precursor transcript. Nine of the miR-eQTL 

miRNAs had previously been linked to biological processes in skeletal muscle and adipose 

tissues, while the roles of the remaining eight miRNAs were novel. 

The miR-eQTL peaks were further characterized through colocalization analyses with 

previously identified pQTL (Velez-Irizarry et al. 2019), and predicted miR-eQTL miRNA target 

genes negatively correlated with miRNA abundance were co-localized based on genomic 

position with pQTL. Notably, miR-874 exhibited negative correlation with 29 target genes 

overlapping pQTL for 12 phenotypes across six chromosomes; 11 of these became genes of 

interest by either miR-874 or gene expression being significantly correlated with the colocalized 

phenotype (p < 0.05).  
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This work produced putative novel pig miRNAs for further study and validation, 

contributing to our understanding of the miRNA landscape in pig skeletal muscle. Additionally, 

we generated a resource of known miRNA expression profiles to use in evaluating the genetic 

architecture of miRNA expression and impacts of miRNA regulation of gene expression on 

complex traits in adult pigs. The identification of the candidate miRNAs and predicted target 

genes demonstrate the ability of this work to generate hypothesis-driven research elucidating the 

roles of miRNA regulation on gene expression and phenotypes of interest to pig production.  

4.2 Future directions 

There are many avenues this research could pursue to further improve our understanding 

of the genetic regulation of complex traits in pigs. For instance, further investigation into 

genomic regions harboring SNPs associated with miRNA variation could yield valuable 

information regarding local and distant genetic regulation of miRNA expression. Combining 

proteomic data with miRNA and mRNA transcriptomic data from the same individuals could 

also strengthen predicted regulatory relationships, as miRNA regulation is post-transcriptional in 

nature and commonly affects protein abundance. Also, as mentioned previously, our GWAS 

study revealed candidate miRNAs for further investigation into their regulatory functions in 

skeletal muscle tissue.  

Our group has begun to investigate the predicted miR-874 target gene, citron Rho-

interacting serine/threonine kinase (CIT; protein name CITK) and its effects on proliferation and 

differentiation of C2C12 mouse myoblasts in culture. We were drawn to this gene for multiple 

reasons. First, the CIT predicted target site was one of the most highly conserved types (7mer-

m8; nucleotides two through seven of the seed sequence are complementary, plus position 8). 

Next, CIT exhibited a distant-acting eQTL in GWAS of the same animals conducted by Velez-
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Irizarry et al. (2019). This eQTL included a putative hotspot SNP on SSC15 (H3GA0052416), 

which was also the peak pQTL SNP for meat quality and protein percentage traits in the same 

dataset (Velez-Irizarry et al. 2019). Finally, expression profiling of genes in skeletal muscle of 

Yorkshire x Landrace pig fetuses across gestational stages revealed CIT to be differentially 

expressed, decreasing in abundance from 41 to 70 days gestation (unpublished data from R. 

Corbett). These data indicate that CIT abundance is variable in fetal skeletal muscle development 

and adult tissue and may be associated with traits of importance to pig production.  

 The CITK protein is known to act in the late stages of cell division, performing multiple 

roles including binding proteins comprising the actomyosin contractile ring and central spindle 

(e. g. anillin, myosin, and rhoA (Ras Homolog Family Member A), etc.) and maintaining the 

organization of proteins at the midbody, the cellular structure contained in the intercellular 

bridge that organizes the proteins regulating abscission (Fig 4.1). Additionally, CITK has been 

shown to recruit casein kinase 2 alpha (CK2a), phosphorylating tubulin beta 3 (TUBB3) to 

promote the stabilization of microtubules at the midbody. Regardless of mechanism, 

dysregulation of CITK expression results in abscission failure (D’Avino 2017 (commentary); 

Dema et al. 2018).  

 
Figure 4.1 Localization of CITK in early and late telophase. DNA/chromosomes are depicted in 
blue, the actomyosin contractile ring in purple, and microtubules in black. The CITK protein 
accumulates at the cleavage furrow in early telophase and forms a ring-like distribution 
surrounding the midbody in late telophase, depicted here in red. Adapted from D’Avino 2017. 
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Little research has been conducted to determine the roles of CIT in skeletal muscle. One 

study reported decreased CITK expression in adult rat tibialis anterior muscle samples 

transfected in vivo with the rhoGEF (rho-guanine nucleotide exchange factor) domain of  

Obscurin, a protein involved in sarcomere development and function. This decrease was 

proposed to be a result of increased rhoA activity, which dysregulated CITK expression and 

altered its localization in the sarcomere (Ford-Speelman et al. 2009). Other studies defining the 

functions of CIT were conducted in vitro in various cell lines (e. g. HeLa, HEK, COS7) (Di 

Cunto et al. 1998; Gai et al. 2011; Horton et al. 2015; Dema et al. 2018).  

Our goal is to investigate the role of CIT in skeletal muscle proliferation and 

differentiation, using C2C12 mouse myoblasts as a model. We hypothesize that disruption of 

CIT expression would inhibit the proliferation of skeletal muscle cells, possibly promoting their 

differentiation. Abscission failure caused by disrupted CIT expression and subsequent 

disorganization of midbody proteins could lead to the production of multinucleated cells, 

potentially resulting in withdrawal from the cell cycle and the initiation of differentiation. To test 

this hypothesis, we will conduct transfection experiments inhibiting CIT expression in C2C12 

mouse myoblasts and assess its impacts on cellular proliferation, differentiation, and the 

expression of CIT and other genes of interest.  

Overall, this dissertation research has improved our understanding of the genetic 

architecture of miRNA expression in skeletal muscle and created opportunities for further study 

to elucidate downstream impacts of miRNA regulation on complex traits in pigs. We conducted 

the first integrated miR-eQTL analysis in a livestock species concerning traits relevant to food 

production, identifying genomic regions associated with variation in the expression of 17 unique 

miRNAs. Many of these miRNAs had not previously been characterized for their roles in pig 
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skeletal muscle. Through target prediction, correlation, and co-localization analyses, we 

generated putative regulatory relationships between miRNAs, mRNAs, and phenotypes of 

interest comprising growth, carcass composition, and meat quality traits in pigs (Daza et al. 

2021). These candidate miRNAs and genes serve as potential subjects of further study, with the 

overarching goals of improving our understanding of skeletal muscle tissue at the molecular 

level and promoting improvement in the quality and consistency of pork products. 
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