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ABSTRACT

TWO ENABLING DEVELOPMENTS FOR COMPUTATIONAL CONTACT MECHANICS

By

Gaurav Chauda

Two approaches for computational contact mechanics are explored to provide an accurate and robust

numerical simulation of frictional contact. First, a novel quasi-static contact algorithm (Method of

First Violation) is developed, which provides a solution over the load history that is admissible in

the sense that all equality and inequality constraints are satisfied at each load step and every point

between load steps. The central idea of this algorithm is to calculate each load increment to be

exactly which is necessary to cause the first nodal inequality constraint to be violated. At the end of

that load increment, the status of the associated node is switched to a different status (such as from

contact to non-contact) where the inequality constraint is replaced with an equality constraint, and

a new inequality constraint is introduced. Importantly, the constraints of the previous and the new

node status are simultaneously satisfied at that point in the loading cycle.

The Method of First Violation (MFV) algorithm is illustrated using a compliance formulation

for degrees of freedom on the surface of a half-plane loaded by a rigid indenter with friction. The

compliance formulation permits considering only the degrees of freedom in the vicinity of contact,

therefore extremely fine surface discretization is possible using only a modest number of degrees

of freedom. Because this contact problem has been well studied using analytic techniques and

because of the extremely fine mesh resolution, it is possible to perform a critical comparison with

analytical solutions.

An added benefit of this algorithm is its greatly improved robustness. This indenter/half-plane

discretization was also used to test MFV where friction was represented by a two-parameter (static

and kinematic) model. Though such problems are notoriously ill-conditioned, the MFV remained

robust. It was also used to explore a problem involving the Dahl friction model.

Second, a compliance matrix formulation is derived for a two-dimensional elastic disk and

for a hole in an infinite elastic plane. The circular disk/hole surface is discretized finely with a



uniform distribution of nodes and a set of basis functions for traction are defined so that each basis

function has a value of 1 in the vicinity of the corresponding node and a value of zero elsewhere.

The surface displacement field associated with each traction basis function is obtained through a

laborious derivation involving Fourier series and terms of the Michell’s Airy stress function. The

compliance matrix is constructed using the calculated displacement fields evaluated at each node.

Fortunately, one may restrict attention to only the tractions and displacements in the vicinity of

contact because all surface tractions outside that region are zero so the resulting compliance matrix

is of tractable size. This semi-analytical formulation provides a direct construction of a compliance

matrix with an extremely fine surface discretization, easy implementation of friction models, and

accommodation of elastic coupling.

The Method of First Violation and the compliance formulation of two-dimensional circular

bodies are implemented together to numerically simulate multiple contact problems. Five different

geometries are designed using cylinders, holes, and half-plane, where two contacting bodies are

pressed against each other and then sheared cyclically for four cycles. Surface tractions, stick ratios,

steady-state dissipation, and error in surface tractions are calculated usingGoodman decoupling and

full decoupling approximations. The results are compared with calculations employing full elastic

coupling to assess the qualitative and quantitative ramifications of the decoupling assumptions.

The surface tractions calculated using Goodman decoupling show qualitative similarity with those

of full elastic coupling but showed some severe errors in predicting the dissipation. The full decou-

pling approximation simulations predictions are significantly different from the predictions of full

coupling calculations. However, they are no worse than the Goodman decoupling approximations

in predicting dissipation.

This ability to introduce extremely fine mesh resolution in a contact region with a robust contact

algorithm allows us to explore many contact characteristics through numerical simulation, which

were previously intractable.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Two approaches for computational contact mechanics are explored to provide an accurate and robust

numerical simulation of frictional contact. First, a novel contact algorithm - the Method of First

Violation (MFV) - is developed and verified with available analytical solutions. The algorithm is

compared with a more conventional algorithm on standard Coulomb friction indenter problems and

then tested on problems involving two other friction models. Second, because of the computational

advantages of compliance matrices in contact analysis, a compliance matrix formulation is derived

for two-dimensional elastic disks and for circular holes in an infinite elastic plane.

1.2 Motivation

Structures involving bolted, riveted, and other types of joints for which frictional interfaces are

fundamental, are ubiquitous in our industrial environment and the dynamics of such structures are

greatly complicated by their interfaces, where these contacting surfaces suffer wear and tear and

dissipate energy [2, 14, 61, 33, 73]. These contacting effects are good or bad depending on the

structure’s requirements, such as linearity, energy conservation, or higher damping near resonance.

It is not easy to understand the actual dynamics due to the inaccessibility of the interfaces during the

dynamic loading. Researchers have worked on the contact problems analytically and numerically in

several ways, such as considering or ignoring friction, 2D or 3D elastic contact, and with full elastic

coupling or with various decoupling approximations. To be tractable, these problem formulations

still require substantial idealization.

The simplest problem that contains the interface mechanics associated with joint structures is

the 2D contact between two co-axial elastic cylinders pressed together or a rigid cylinder pressing

on an elastic half-plane. The frictionless case of such problems is commonly known as a 2D
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Hertzian problem. Introducing Coulomb friction to the problem brings complications because of

the inequality conditions for stick or slip constraints and an elastic coupling between normal and

shear tractions due to Poisson’s effects. Though coupling is not necessarily an issue with numerical

solutions, it makes analytical analysis difficult and is usually mitigated using various decoupling

approximations. The most common decoupling approximation is attributed to Goodman [31] as-

serting that “normal displacements resulting from lateral traction that are negligible in comparison

to normal displacements resulting from normal traction." This decoupling approximation has been

exploited regularly by researchers such as Mindlin [52], and Spence [63, 64] to provide analytical

expressions for the width of the contact patch, stick-slip regions in the contact patch, lateral trac-

tion, displacement distributions, and relations between the lateral force and stick-slip ratio in terms

of applied loads or displacements. Another, more severe, decoupling approximation ignores any

elastic coupling between normal and lateral loads so that “normal and lateral displacements result

only from normal force and lateral force respectively" [30, 69]. This decoupling approximation

(complete decoupling) reduces the complexity of the problem significantly and results in faster

though not-so-accurate predictions for contact parameters. It is mostly implemented to understand

cyclic loading and uneven contact.

A serious limitation of most contact analyses is that only Coulomb friction is considered. However,

Coulomb friction is the I4A>Cℎ order approximation of frictional contact, and it performs poorly in

cases involving the calculation of partial slip, such as is the case in structures with joint [67]. In

order to develop better predictive joints models, it is necessary to explore other friction models,

particularly with respect to their performance in partial slip. The underlying goal of this research

effort is to develop a test-bed for the exploration of various friction models (such as identified by

[11] ) that, when used in contact models, will yield predictions that can be compared to experiments

reported for mechanical joints [67]. These friction models bring their own complexity due to the

introduction of multiple friction parameters and possibly more inequality constraints that must be

incorporated in the implementation.
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There is a very long history of calculating interface mechanics in the context of classical

elasticity, but the intrinsic difficulty of the problem has restricted the number and nature of analytic

solutions available, as well as the robustness and fidelity of numerical simulations. The numerical

contact algorithms that have been developed over the decades appear to addressmost of the problems

of practical importance, but they still suffer from issues of robustness and fidelity to the underlying

equations. These limitations must be overcome to provide a test-bed for the study of the interface

mechanics of joints.

A traditional complaint about numerical contact algorithms is that they often do not adequately

take into account or correctly reproduce the path dependence found in analytic solutions [12, 47, 45].

The core notionmotivating the new approach is that a valid numerical contact algorithmmust satisfy

all elasticity equations and all equality and inequality constraints of contact not only at the beginning

and end of each load or displacement increment, but at all points in between. In this study, contact

histories that conform to the above conditions are referred to as admissible. An algorithm, referred

to as the Method of First Violation, developed to achieve admissible contact histories, appears to

provide more physically reasonable predictions – particularly with respect to path dependence –

than standard contact algorithms as well as greater robustness.

In order to get insight into interface mechanics through computation, an extraordinary fine mesh

on the interface is required. The more prominent methods of surface discretization are: assembly

of stiffness matrices obtained from finite elements, obtaining mixed system matrices from the

boundary integral method, and, where possible, the development of a compliance matrix via semi-

analytic methods. The stiffness matrix of the finite element formulation for contact problems tends

to be very large because accuracy requires not only many nodes on the surface, but at least a gradual

transition of element sizes away from the surface. A process of static reduction [23] is then used

to replace the (often huge) stiffness matrix with one that involves only surface degrees of freedom.

This process of resolving out internal degrees of freedom is routinely done, but is computationally

challenging [25, 69].

The boundary integral method involves only nodes on the surface and requires a gradual
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transition of element size away from the contact patch. The results is two system matrices much

smaller than those obtained via finite element method: one acting on a column of surface tractions

and the other acting on a column of displacements [48]. These two matrices are resolved to yield a

stiffness or compliance matrix, but a compliance matrix is preferable for the reasons discussed next.

There are a few geometries (such as the surface of a half plane) where it is possible to construct a

compliance matrix using semi-analytic methods. The only rows and columns of such a compliance

matrix that need to be considered are those associated with nodes in the vicinity of the contact

patch, all surfaces outside that contact region are traction-free. This facilitates the creation of an

extremely fine mesh without necessarily requiring the solution of an unreasonably large system of

equations.

For numerical experiments on contact algorithms, compliance matrix for the half-plane is

constructed using analytic expressions for the displacement field resulting from uniform tractions

over finite intervals on the surface [35, 53]. The advantage of constructing a compliance matrix

is that it avoids having to resolve down the system of equations resulting from finite element or

boundary integralmethod. Additionally, the compliance formulation accommodates the complexity

of frictional contact with various levels of elastic coupling, which can be turned on and off on

demand. In order to have these same advantages in contact calculations of curved 2D elastic

bodies, a method for direct calculation of compliance matrices for planar elastic disks and holes in

an infinite elastic plane was developed.

1.3 Literature Review

Solving a contact problem depends on a robust and efficient algorithm (static, dynamic, friction,

or no-friction). There are multiple kinds of algorithms in literature such as contact detection algo-

rithms, mortar-based algorithms, Lagrangian-based contact algorithms with or without Coulomb

friction, contact optimization algorithms, mesh-based and meshless contact algorithms, and Quasi-

static contact algorithms [13]. In this paper, we focus on the Quasi-static contact algorithms for

elastic contact and discuss the various algorithms to capture the quasi-static contact process with
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and without friction.

1.3.1 Friction-Free Contact Algorithms

Conry and Seireg[22], andKalker and vanRanden[43] are among the earlier examples of algorithms

for friction-free contact analysis. Conry and Seiberg [22] used a simplex algorithm for solving

the contact problem through linear complementarity conditions. On the other hand, Kalker and

van Randen [43] solved the normal contact between two dissimilar elastic materials by employing

two energy functions (contact elastic energy and contact enthalpy). Minimization of these energy

functions was used to estimate the pressure distribution between two contacting surfaces through

a quadratic programming approach because of their convex behavior. This approach became the

baseline for developing new contact methods and approaches with advancement in computational

capability. Polonski and Keer [54] used the conjugate gradient method (CGM) to minimize the

contact energy functions to find the pressure distributions on a coarser mesh and then used the

multi-level multi-summation (MLMS) technique to get the results for a finer mesh in a normal

contact analysis. This approach resulted in a faster estimation of results in a very finely discretized

domain.

Johnson [38] used the Fourier representation of pressure and displacement to develop a rela-

tionship for estimating normal pressure distribution through surface displacements and vice-versa.

Ju and Farris [39] further investigated this convolution and developed an error estimation method.

They observed that the loss/error of high-frequency content in pressure FFT does not cause large

errors in displacement and load, while the loss/error in the low frequency does lead to large errors

in displacement and load. Therefore the contact length needs to be significantly small compared

to the length of the FFT window. They also suggested various other ways to reduce errors for

generalized two surface contact. Liu and Wang [50] further explained this convolution domain for

an elastic punch on a rigid half-plane. Because of the implicit periodicity associated with the use of

Fourier methods, there can be artifacts of interference between tractions fields in adjacent periods

and Liu and Wang showed how this is mitigated if the spatial periods are chosen to be large relative
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to the contact patch. They further introduced a Discrete Convolution Fast Fourier Transformation

(DC-FFT) technique, where influence coefficients from finite element analysis were mapped onto

the spatial frequency domain. They explored five different approaches to reduce the numerical

errors when solving the discretized normal contact problem. They identified DC-FFT as the fastest

method to solve the line contact problem. Stanely and Kato [66] used the FFT relations provided

by Johnson [38] with minimization of total complementary energy to solve for the contact between

two surfaces, demonstrating fast convergence for two-dimensional normal contact.

Allwood [3] provided a brief survey on contemporary (2005) methods of tackling the contact

problem. He employed Kalker’s approach of obtaining a stiffness matrix through FEM analysis and

then used that stiffness matrix to compare three different contact algorithms. In the first technique

he examined, a reduced stiffness matrix is developed using Duncan/Gunyan [25] reduction, and

that reduced matrix is solved subject to the constraints associated with the currently assumed status

of the nodes. An iterative process is established where one node status is changed at a time, and

the elasticity problem is resolved. The second method was based on Kalker’s [43] approach of first

formulating the energy function and later minimizing it with the conjugate gradient method. After

minimization, if any contact nodes do not satisfy their inequality constraints, then their status is

updated, and the minimization is done again. This iterative procedure is continued until all nodes

satisfy all contact constraints and inequalities. This method is slower than the other two because

the energy function must be minimized in each iteration. Polonsky and Keer’s [54] approach of

FFT-based MLMS to calculate the contact was the third method explored by Allwood. This last

method is the fastest but least accurate of the three methods.

Allwood and Ciftci [4] provided a new algorithm based on incremental load again using a

reduced stiffness matrix. The normal load is increased slowly to solve for the contact area and

pressure iteratively until the required load is reached. In the case of any inequality condition that

is not satisfied, a new load increment gets selected through a linear correlation such that the gap

or penetration reduces to zero. This incremental approach resulted in a faster solution with a low

number of iterations. This method by Allwood and Ciftci can be seen as an antecedent to the
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Method of First Violation algorithm.

1.3.2 Contact Algorithms with Friction

Friction brings complexity to the contact problem due to nonlinear interaction between shear

loads and normal loads at each contacting point, requiring a solution for lateral traction fields and

satisfaction of stick or slip inequalities. Kalker [40, 41] performed analysis on elastic cylinders

in rolling using dry Coulomb friction. He used known Hertzian analytic expressions for the

normal pressure and then calculated the lateral traction. He posed the traction problem as one of

minimization subject to linear inequality constraints that could be solved using a simplex algorithm.

He later derived a more general approach [42] by separately solving normal and lateral contact as

a convex minimization problem. He devised algorithms NORM, TANG, and PANA to solve only

normal contact, lateral contact, and coupled normal and lateral contact, respectively. In PANA,

TANG and NORM were solved in turn one by one, where the result of one was input of the next.

This process of sequential solving was repeated until the solution converged. Klarbring et al. [46]

provided another approach for the quasi-static contact problemwith dry friction and linear elasticity

using variational inequalities. They observed that small increments in the loads could result in

faster convergence. In other work, Klarbring et al. [45] discussed the non-uniqueness and non-

existence of contact solutions for single node contact in several cases, when the friction coefficient

is larger than the ratio of stiffness for normal contact ((# ) to stiffness coupling between normal

displacement and tangential load ((#) ), i.e. ` > (#/(#) . Cho and Barber [20] extended this by

incorporating inertia of contacting interfaces to consider the dynamic effects of the problem. This

non-uniqueness is also shown for a two node system by Andersson et al. [5] which can extend to

multi-node systems. Cho and Barber [21] also addressed the issue of stability in three-dimensional

contact as defining the direction of slip and friction force is difficult and can result in an inconsistent

solution.

Ahn and Barber [1] devised a contact algorithm for two-dimensional cyclic frictional contact

that can distinguish the stick-slip boundary and capture the contact history. They solved normal
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and lateral contact simultaneously, and used a reduced-order stiffness matrix with a Guass-Seidel

procedure while updating each node to satisfy all the contact inequalities within some tolerance.

Note that, this is a relaxation scheme requiring iteration at each load increment. All the contact

equality and inequality constraints are satisfied at the end of each load step, but multiple node

statuses are permitted to change in a single iteration. Chen and Wang [19] extended the FFT-

based normal contact analysis of Liu and wang [50] to lateral contact analysis with Coulomb

friction. They created discrete influence coefficients to obtain explicit relations between pressures

and displacement distributions. They also solved normal and lateral contact separately using CGM

and later combined those to satisfy the contact inequalities. Moreover, they changed constraints

status in each iteration and verified the results with an analytical expression provided by Hills et al.

[35].

Spinu [65] presented an approach based on Allwood’s method [4], first solving the normal

contact and lateral contact separately and later coupling them to approximate a better contact

solution. The method appears to provide fast convergence to solutions in three-dimensional elastic

contact.

1.3.3 Path Dependence in Contact Algorithms

Several authors [12, 45, 46, 49, 59] discuss the path dependence of contact problems with friction.

Klarbring [46] demonstrated that the dissipative nature of friction leads to path dependence, so

“the final configuration depends on the way loads reach their final state, not only on the state. For

an incremental problem to capture exactly this phenomenon, the increments must be infinitesimal,

which is impossible from the point of view of practical numerical calculations. Within one

increment the path dependence is neglected, although when more increments are considered the

path dependence is preserved". It is generally presumed – that for the discretized problem – the time

steps may be finite, but they must be sufficiently small in a manner determined by the discretization.

Bertocchi [12] showed that for a problem involving a single node, convergence is achieved, and

path dependence is respected when the load increments are chosen precisely to bring the node to its
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next status change. In this way, he addressed the change in node status resulting from increments

in normal or lateral load or increments in both. He described the geometric nature of admissible

status for various loading conditions, which can be used for multiple nodes wherein only one node

changes its status at a time.

As mentioned above, Klarbring et al. [45, 46] discussed the issue of existence and uniqueness

of solutions of frictional contact problems and the role of load history with respect to the current

traction/displacement state. Another view of the observation of Klarbring et al. [45, 46] is that

two different load histories resulting in the same net force can have different interface traction

distributions, differing by some self-equilibrating shear traction distribution. Or equivalently, the

load history is captured in the traction distribution at the interface. A concern with methods that

involve iterating through solutions without consistent states and status (non-physical configurations)

is that they scramble the histories stored as interface traction. The above is not an issue with friction-

free problems, where the solution is independent of history and can be solved by minimization of

energy functions.

1.4 Thesis Synopsis

This thesis presented here is divided into three parts. Each part is detailed and provides a proper

explanation on its own. The reader may skip a part without loosing the thread of the discussion.

In the first part, the development of a new contact algorithm (Method of First Violation)

is described. To understand the need and motivation, a conventional contact algorithm is also

discussed before delving into the Method of First Violation. Both contact algorithms are employed

in a contact problem – a rigid cylinder pressing against an elastic half-plane – using a compliance

matrix formulation. Both algorithms are initially verified with analytical expressions available in

the literature and later compared with each other. Multiple friction models are employed to ensure

the robustness of the Method of First Violation (MFV). The MFV contact algorithm also appears

to capture path dependence associated with contact mechanics with good fidelity.

In the second part, an extremely fine discretization method is engineered to create a compliance
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matrix for the two-dimensional circular elastic cylinders, disks, and holes in an infinite elastic

plane. The Michell’s Airy stress function is used with the Fourier series expansion to derive a

displacement basis. These displacement bases are assembled together to form a compliance matrix.

The compliance matrices for elastic cylinders and holes are verified with analytical expressions

where available. The test-bed of compliance matrix and Method of First Violation is tested for a

contact problem of two identical elastic cylinders pressed together and sheared. This compliance

formulation can analyze the contacting interface using a very fine mesh in the surface requiring the

minimum number of degrees of freedom.

In the third part, Goodman decoupling and full decoupling approximations are compared with

full elastic coupling using five contact problem geometries. Contact problems, where contacting

bodies are pressed against each other under a cyclic shear loading, are numerically simulated using

the compliance matrix formulation and the MFV contact algorithm. Contact parameters such as

surface tractions, stick ratios, dissipation, and L1 error in surface tractions are measured over a

range of friction coefficients and lateral force ratios. Both qualitative and quantitative differences

are identified and discussed.

Lastly, a summary of the work undertaken in this dissertation is reported, highlighting the

final conclusions and remarks. A few recommendations are provided for the continuation of this

research.
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PART I

The Method of First Violation (Contact Algorithm)
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CHAPTER 2

CONTACT ALGORITHMS

Though the algorithm - Method of First Violation - can be employed for the contact of surfaces

of two curved (and not necessarily convex) elastic bodies, for simplicity this method is illustrated

here for the case of contact of a rigid indenter on an elastic half-plane. Further, though there is

no barrier to employing this new algorithm on problems where discretization is developed in a

stiffness formulation (as is most common in finite element method) or in a mixed formulation (such

as usually results from boundary integral method), or as illustrated below where the discretization

results in a compliance formulation.

2.1 Compliance Formulation

In contact calculations discussed below, discretization is achieved using the equations for displace-

ment resulting from a uniform normal or shear traction on a finite interval of a half-plane ([35, 72]).

Each column of the compliance matrix is the collection of displacements due to the traction on a

corresponding interval evaluated at the centers of the array of intervals.

Because there are arbitrary horizontal and vertical displacements in the elasticity equations for

an elastic half-plane, these arbitrary displacements are absorbed in rigid body displacements,C>C

and*C>C in the compliance formulation of Eq. 2.1.
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(2.1)
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where ?= is the uniform pressure applied in interval =; g= is the uniform shear traction applied

in interval =; F= is the downward motion at the center of the interval =; D= is the horizontal

displacement at the center of the interval =; % is the net downward force applied by the indenter;

and& is the net horizontal force applied by the indenter. The full mathematical formulation details

are presented in appendix A.

In this equation, the compliance matrix itself is divided into four parts (�F?,�Fg,�D?, and�Dg),

where�F? correlates normal displacements to normal pressure,�Dg correlates lateral displacement

to lateral traction,�D? correlates lateral displacement to normal pressure, and�Fg correlates normal

displacement to lateral traction. Also matrices �F? and �Dg are identical, i.e. �F? = �Dg, and

matrices �D? = −�Fg. The Goodman decoupling approximation is achieved by setting �Fg = 0.

The numerical efficiency of the surface compliance discretization approach shown here is worth

discussing. Not only are there no nodes internal to the half-plane, but one needs to discretize only

the interval of interest (−', ') containing the anticipated contact. Admittedly, this particular

compliance formulation applies only to the half-plane, but this provides an excellent test-bed for

preliminary investigation of the contact algorithm discussed in this chapter.

The sort of discretization shown here, is discussed in [35] and more recently in [72], where the

compliance matrix is presented as a step to obtaining a stiffness matrix used in deducing tractions

associated with an imposed indentation. Sayles discusses this approach to discretization broadly in

[60]. Webster and Sayles [71] employed this approach to address rough surface contact. The first to

have used this approach (using chapeau functions) appears to have been Bentall and Johnson [10].

2.1.1 Taxonomy of Contact Status

With reference to figure 2.1, we observe that when one considers all possible node statuses in the

context of Coulomb friction (and several other models for friction), nodes may be 1) Not in Contact,

2) In Contact and Stuck, 3) In Contact and Slipping Left, or 4) In Contact and Slipping Right.

These four node statuses and the corresponding equality constraints and inequality constraints

for Coulomb friction are shown in Table 2.1. (In this table, for Coulomb friction 5 (?) = ` ?.)
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Nodal Statuses

Contact Non-Contact

Stick Slip

Left Slip Right Slip

Figure 2.1: Taxonomy of nodal status. The node status types encountered in contact analysis are
indicated by thick borders.

Nodal Statuses Equality Constr. Inequality Constr.
Contact and Stick ¤D = 0, F = 6 |g | ≤ 5 , ? ≥ 0
Contact and Slip Right g = − 5 (?) , F = 6 ¤D ≥ 0, ? ≥ 0
Contact and Slip Left g = 5 (?) , F = 6 ¤D ≤ 0, ? ≥ 0
Not-in-Contact ? = 0, g = 0 F ≤ 6

Table 2.1: Equality and inequality constraints for each node status type.
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(2.2)

2.1.2 Compliance Matrix with Contact Constraints

Say at an instant, we know the correct status of each node. Then our inequality constraints are all

satisfied and equality constraints are incorporated as additional linear equations. The larger matrix
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is shown in Eq. (2.2), where the upper part of the matrix captures elasticity equations and the lower

part captures the contact equality constraints through !?, !D, !g?, !g and !D. Normal pressure

constraint matrix !? fixes the pressure of non-contact nodes to be zero by setting constraint pressure

?2 = 0 and its corresponding value in matrix !?2 = 1. Geometric constraint matrix !F fixes normal

displacements of nodes in-contact by setting normal displacement F2 = 6= and its corresponding

value in matrix !F2 = 1. Similarly, stick constraint matrix !D sets the lateral displacements of

the stick status node through D2 = D= and !D2 = 1. For the case of slip constraints, we use a

relation between lateral and normal pressure |g= | = ` ?= for the Coulomb friction model through

matrices !g? and !g. (The sign of g= depends on the direction of travel and is reflected in !g?.)

We set !g2 = 1 and !g?2 = −` to the corresponding slip status node. The other four rows in

the matrix allow us to fix the imposed load conditions through normal % and lateral & force or

normal ,C>C and lateral *C>C displacement constants. With contact status and imposed boundary

conditions, the matrix (2.2) is used to solve for new displacements and pressure resulting from

increments in load, which are then compared with the inequality contact constraints to identify any

violations. Changing the contact status of nodes requires a robust contact algorithm to perform all

these comparisons and provide solutions. We will discuss this in the next sections. This approach

– implementing equality constraint equations in the elasticity matrix to solve and later verifying the

inequality constraints – is similar to the linear complementarity problem (LCP) formulation.

The size of the matrix (2.2) would appear to be large, but its dimension grows roughly as four

times the number of nodes in the contact patch, so the computational requirements are still modest.

One may either employ a fixed number of nodes and their degrees of freedom which are sufficient

to capture the contact mechanics for the calculation of interest, or one may continuously change the

set of nodes under consideration to include all those currently in the contact plus one more node

on the either side. The resulting overall matrix size becomes (4= + 12) × (4= + 12) for = nodes in

contact. Almost 70% of the matrix elements are zero, facilitating the use of sparse matrix solvers.

When the number of nodes in contact is O(=), the time to solve the elasticity matrix will be O(=2).

The purpose of introducing the surface compliance formulation above is solely to define the
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discretization on which the Method of First Violation is illustrated below. This contact algorithm

is not restricted to such discretizations.

2.2 Algorithm I

The new algorithm -Method of First Violation - is amajor improvement on conventional algorithms.

First, a conventional algorithm is presented for comparison. Contact algorithms are complex and

have multiple parameters, so before delving into specific algorithms, let us assign a term “nodal

parameters (�)", which contains these four contact surface parameters normal pressure, lateral

traction, normal displacement, and lateral displacement (?, g, F, D). We also refer to the four

kinds of contact status associated with nodes provided in the Tab. 2.1. Each node will have

only one contact status and corresponding equality and inequality constraints ((). The collection

of node statuses and nodal parameters ((, �) defines the contact configuration. An equilibrium

configuration is one for which the parameters for each node satisfy the equality and inequality

constraints of each node’s assigned status, and the collection of displacements and tractions on each

side of the interface are consistent with the elasticity equations for the corresponding body.

The first contact algorithm presented here is very similar to that of Ahn and Barber [1]. It

differs from [1] in that to make the process more robust, at the beginning of each new load step all

the nodes that were in contact at the end of the previous load step are assumed to be stuck. On each

iteration, the contact inequality constraints are checked and just one node status change is allowed

at each iteration until a converged solution is found for the given load increment.

This contact algorithm is briefly explained with a flow chart shown in Fig 2.2. The algorithm

starts with an initial equilibrium contact configuration (�0 & (0) and total final imposed load (!C>C),

such as total normal force or displacement. To reach the final imposed load (!C>C), a load step (X!0)

is selected according to the number of steps anticipated to be needed to cover the contact history.

Even a single load (X!0 = !C>C − !0) step may be enough to reach the final state, but a small load

step enhances the chances of convergence. After choosing a load step, matrix (Eq. 2.2) is solved

with all contact nodes status to stick. The resulting new contact parameters (?=, g=, F=, D=) are
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Initial Equilibrium Configur-
tion (�0 = (?, g, F, D) and
(0 = Only contact node status)

is !0 ≤ !)>C Quit

Set X! = X!0,
Set all contact

nodes to stick status

Solving elasticity matrix

Check contact
inequalities in the
preference order of
violation correction

No contact violation Change one node
status at a time

no

Yes

Yes

Figure 2.2: Algorithm I: A contact algorithm similar to Ahn & Barber flow chart

compared to their respective inequality constraints to check for the contact violation. Only one

violation gets fixed at a time in the preference order of “geometric inter-penetration", “negative

normal pressure", and “slipping". An elasticity matrix (Eq. 2.2) is solved again using the new

contact status. Multiple iterations may be needed to get a converged contact solution without any

contact violation. This converged solution is used for finding a new solution with a new load step,

where it again starts with all contact nodes to stick status.

This algorithm usually works well with the Coulomb friction, showing a few issues, especially
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in an elastically fully coupled case. For instance, there are situations where the algorithm identifies

a violation at the end of a time step, changes node status to avoid that violation, but then finds a

different violation at the end of the time step. This can be an unending cycle. This issue can be

resolved by changing the multiple statuses manually or with a small load step, or implementing

both simultaneously.

This algorithm can also have issues with other friction models such as the two-parameter

friction model (`B and `: ) and the Dahl friction model where the constraint inequality (g ≤ `B?)

is different from the slipping traction (g = `: ?). This problem can arise even with extremely small

time steps. To resolve these issues, we developed a new algorithm with an adaptive load step that

shows substantially more robustness.

2.3 Algorithm II: Method of First Violation

As discussed at the end of section 1.3.3, a concern with methods that involve iterating through

solutions without consistent nodal parameters and nodal statuses (non-physical states) is that they

scramble the contact histories stored as interface traction. The contact algorithmmethod that follows

is designed to avoid iterating through non-physical configurations, so as to preserve consistent

evolution of traction distribution with load history, and to provide unique and consistent solutions.

The second algorithm is a modification of the more standard algorithms, such as Algorithm I,

and follows the linear complementarity problem (LCP) approach. It is best understood through the

following observations:

1. the contact problem is piece-wise linear. Consider the following thought experiment.

• Say at some instant the status of every node is known and reflected in Eq. 2.2. The

horizontal load at that time is &.

• Say that the horizontal load is incremented by X! and that all of the inequality conditions

consistent with the initial node statuses remain satisfied.

• Say that instead of using load increment X!, we used UX! where 0 ≤ U ≤ 1. Because
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(�0 = (?, g, F, D) and (0 = all

node status (contact, slip and stick) )
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Solving elasticity matrix
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+∗= (X!)

no
yes

(0, X!

Figure 2.3: Algorithm II: The Method of First Violation contact algorithm with adaptive load step
flow chart
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matrix of Eq. 2.2 remains unchanged and the right hand side of Eq. 2.2 changes only

through the value of & + UX !, then all the changes in the contact parameters ?=, g=,

F=, and D= will be linear in U.

• Examination of the inequalities of Table 2.1, shows that they all remain satisfied for all

0 ≤ U ≤ 1.

We conclude that if all the node statuses at the beginning of the load step also prevail at

the end of the load step, then the nodes will not change status at the loads in between. The

version of the compliance matrix (Eq. 2.2) that reflects the node status at the beginning of

the load step will consistently reflect the contact values and status throughout the load step,

and consequently the discretized contact problem is piece-wise linear.

2. Except for the case of macro-slip, there exists a minimum load increment that will cause

any violation of inequality constraints associated with the current node status. This greatest

lower bound is a consequence of the completeness of the real number line [55](p.7). We can

define X! such that ! + X! is that greatest lower bound.

3. The value of X! can be calculated through a finite number of steps as follows:

a) Choose a load increment X!0 sufficient to cause one or more violations. Let us call this

set of violations +0.

b) Select one of those violated inequalities of+0 and calculate the load increment X!1 that

exactly turns that inequality constraint into an equality constraint.

c) Substitute ! + X!1 for & in Eq. 2.2 to solve for all tractions and displacements. Test

those states against the inequality conditions to see if any violations remain. If there

are no other violations, then define X! = X!1.

d) If there are remaining violations, note that because of the linearity of Eq. 2.2, they are a

subset of+0. Choose one and find the corresponding X!2. By construction, X!2 ≤ X!1.
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Also, note that each recalculation of X!= reduces the number or remaining inequality

violations by at least one.

e) Continue this process until inequalities of +0 are resolved, and X! is obtained.

Note that the above process involves a maximum number of steps if one were at every

opportunity tomake an incorrect choice ofwhich violation to fix. In fact, there are strategies to

make good choices, such as identifying all violations within each class – say interpenetrations

– and starting with the worst of these violations.

4. At the end of that load step X!, the inequalities of the beginning of the load step are still

satisfied. Immediately beyond that load increment, some node status will change, and by

definition, the new inequality and equality constraints will also be satisfied at the special X!.

The distinction between the conventional approach and the Method of First Violation is il-

lustrated in figure 2.4. The conventional algorithm (Algorithm-I) solves the contact violation by

iterating on the same load step X!0. In the case of a large load-step X!0, solving multiple con-

tact violations through an iterative approach may lead to a non-converging or a wrong solution.

Conversely, the Method of First Violation (Algorithm-II) finds the new X!1 (independent of initial

load-step X!0) satisfying all contact equality and inequality constraints.

2.3.1 Admissible Contact Histories

The issue of convergence of conventional numerical contact algorithms has been a continuing issue.

A reasonable hypothesis is that iterative processes to find consistent tractions and displacements

at the end of each load step may wipe out the information on the interface contact/slip history - as

recorded in self-equilibrating traction fields. This loss of information is suggested by occasional

node-to-node discontinuities in traction or jumps in nodal traction from one load step to the next,

even during monotonic loading, when conventional contact algorithms are employed.

The algorithm outlined in Steps 3a through 3e above is presented as flow chart in figure 2.3.

By construction, all equality and inequality constraints associated with the node statuses of each
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Iteration-3

Method of first Violation

P = L

P = L+ δL1

Adding nodes
with zero Pressure

P = L+ δL1 + δL2
Adding nodes

with zero Pressure

Figure 2.4: Comparison between a conventional contact algorithm and theMethod of First Violation
contact algorithm. With conventional contact algorithms, a load step is selected and an iterative
procedure is used to find an admissible set of loads and displacements consistent with that load
step. With the Method of First Violation, the load step is computed to be exactly that necessary to
bring the first node to change status (contact, non-contact, stick, and slip)

load step are satisfied at the beginning of the load step, and the end of the load step, and at all

loads in between. When one considers one load step after another, one sees that these calculations

result in a consistent set of loads and interface tractions and displacements that satisfy all elasticity

equations, all equality constraints, and all inequality constraints thorough-out the loading history.

In this way, at any point in the loading history, all node statuses, all tractions, and all displacements

are consistent with all that has happened prior to that point. One would hope that this fidelity of

contact history would eliminate – or at least mitigate – the issues of tractions oscillating from one

node to the next, as well as the problems with mesh convergence.

Finally, though the above explication used increments in shear load & for the purpose of

discussion, one could easily employ increments in normal load %, increments in lateral displacement

*C>C , or increments in normal displacement,C>C . Of course, any desired history of imposed loading

or imposed displacements could be constructed from the sequential incremental imposition of these
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four quantities.

2.3.2 Contact Status Violations

Finding a Contact Status Violation (CSV) and resolving it is key to solving contact problems

through this new algorithm (2.3). We define four kinds of CSV: 1) Geometric Violation, 2) Normal

Pressure Violation, 3) Slip Violation, and 4) Stick Violation. As indicated above, in the case of

multiple CSVs, we can choose any of them to start with to calculate the new X!. If there remain

other CSVs at this load increment, they will be used to calculate new and smaller X!s. We continue

to shrink X! in this process until we have the load increment that is just enough to trigger just one

CSV. The calculation of the new X! associated with a violation depends on the type of violation,

as discussed below.

2.3.2.1 Geometric Violation

A geometric violation occurs when the contact configuration suggests an interpenetration between

two contacting surfaces. Say a node is assumed to be non-contacting, the corresponding geometric

condition is F= ≤ 6= [39] (where 6= is the indenter node displacement), and if it transpires that a

load increment X!0 results in nodal displacement F= > 6=, then inter-penetration has taken place.

In this case, a new X! is calculated to bring the interpenetrated node exactly to the contacting

surface (F= = 6=) through Eq. (2.3), where F∗, F0, and 6 are the current violating/penetrating

displacement, previous equilibrium displacement, and indenter displacement.

X!F

X!0
=
6 − F0
F∗ − F0

(2.3)

2.3.2.2 Normal Pressure Violation

A normal pressure violation occurs when load increment X!0 causes a node that is nominally in

contact to have negative normal pressure. The new load step X! is calculated to make the normal

pressure exactly zero:
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X!?

X!0
=

?0
?0 − ?∗

(2.4)

where ?∗ and ?0 are the normal pressure associated with X!0 and the normal pressure of previous

equilibrium state, respectively.

2.3.2.3 Violation in Stick Constraints

Violation in a stick constraint occurs when the load step X!0 causes a node with that contact status

to have a new lateral traction sufficient to overcome the friction force (|g | ≥ 5 ). The load step that

resolves this violation is the one which is just enough to bring the shear traction just to the limit of

slip (|g | = 5 ), i.e.
X!g

X!0
=

( |g0 | − `?0)
( |g0 | − `?0) − (|g∗ | − `?∗)

(2.5)

2.3.2.4 Violation in Slip Constraints

Violation in a slip constraint occurs when a node that nominally slips in one direction, is slipping

in the opposite direction, or has stopped slipping. If it were known, the rate of change in the lateral

displacement speed would be used to find the X! which was just enough to change the node state,

but because of the quasi-static nature of the constitutive model and the algorithm, this information

is unavailable. Instead, if a violation of the slipping state occurs in the load step X!0, that load step

is repeatedly bisected to find a smaller interval in which resides the X! that is just enough to cause

that violation. It occasionally happens – such on a load reversal – that more than one sliding node

becomes stuck at the same time. On such occasions, all of those sliding nodes that have a direction

reversal are set to stick.

2.3.3 Single-Node Illustrations of Computing X!

At this stage it is helpful to walk through the calculation of X! for an individual node for a couple

of types of node status:
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Figure 2.5: Single node illustration for contact and non-contact violations. The thick (blue)
solid dashed lines represent admissible configurations and the thin (orange) solid and dashed lines
represent inadmisible configurations. For instance if a node begins not-in-contact (thick dashed
line on the left), as the load step X! increases, the gap closes linearly until contact occurs at X!F,
as the load further increases the gap stays at zero and the contact pressure increases linearly (thick
solid line on the right.)
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Figure 2.6: Single node illustration for stick and slip violations. The dark (blue) solid and thick
lines represent admissible configurations and the lighter (orange) solid and dashed lines represent
inadmissible configurations. For an initially stuck node (dashed thick (blue) line), calculation of
shear traction exploits linearity of that traction to obtain the new X!g of stick violation. For an
initially slipping node (solid thick (blue) line), calculation of change in B6=( ¤D) will require the
method of bisection to obtain X! ¤D of slip violation.
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1. Non-contact and Contact Problems:

In Fig 2.5, at load ! a node has not-in-contact status but at load ! = ! + X!0, there would be

interpenetration. Because of the linearity of the problem, we can calculate a load increment

X!F such that at load ! + X!F the node just touches the surface (F − 6 ≈ 0) with zero

nodal traction (? ≈ 0). At this point, the node status is switched from non-contact to being

in contact. Note that at load ! + X!F, the nodal constraints associated with non-contact

(6 − F ≥ 0) and with in-contact (? ≥ 0) are satisfied simultaneously. On adding a node in

contact, it can have three possible contact status stick, left slip, or right slip. There are two

possible approaches to identify the contact status.

• First stick status is assigned to the new contact node. Then, the elasticitymatrix is solved

with a tiny load step. Then, calculated shear traction is used to decide the direction of

the slip. After deciding the contact status, the elasticity matrix is solved again with a

nominal load step.

• A slip status is assigned to the new contact node, where slip direction is assigned based

on the previous motion of the node. For example, if a non-contacting node moves

toward the left, then on coming into the contact, its contact status would be contact left

slip.

Both approaches provide the same solution. We have used the second approach which is a

little quicker than the first one.

Conversely, if the load is initially !, where there is contact and the value of load is reduced to

!, there would be a pressure violation (? < 0) at !, so an incremental load of X!? (negative)

is found so that at ! + X!?, ? = 0 and F − 6 = 0. Again, this is a state where the constraints

of both the status at the beginning of the load step and the status that holds just after that

load step are satisfied. Also, note that even though these are linear calculations, the values of

load at which node status transition takes will not be exactly identical in the two calculations
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discussed above, there will be some numerical error, and computational tests against zero

must accommodate that numerical uncertainty.

2. Sticking and Slipping Problems:

If initially the load ! corresponds to a node sliding in one direction (which we choose as

positive for the sake of discussion), constraints being

g = −`? and sgn( ¤D) = 1

and then the load is changed to ! corresponding to

g = `? and sgn( ¤D) = −1

then ¤D must go through zero for some !∗ = ! + X! ¤D for some X! ¤D. At that load, causing

the velocity to be approximately zero, the node becomes stuck and the node status must be

changed appropriately (See Fig. 2.6.) Since the constraint on sgn( ¤D) is nonlinear, there is no

linear equation to solve for X! ¤D; instead X! ¤D must be found through a method of bisections.

When that load is found, the constraints holding at the previous step ( ¤D ≥ 0 and |g | = `?) as

well as the constraints for the new state ( ¤D = 0 and |g | ≤ `?) are satisfied simultaneously.

If initially under load ! on the body, a node is stuck, with that node status the nodal constraints

are ¤D = 0 and |g | ≤ `?. Say that the load is changed to ! and at that load, Eq. 2.2 yields

|g | > `?, violating a constraint of the previous node status (for the sake of discussion, let us

assume that g > 0). There exists a load ! − X!g between ! and ! at which |g | = `? (see Fig.

2.6). From Equation 2.2 where the constraints are those of the initial node status, the change

in node traction changes linearly with change in applied load. We obtain a linear equation for

X!g (Eq. 2.5) satisfying |g | = `?. Note that at load ! − X!g, the stick conditions ( ¤D = 0 and

|g | ≤ `?) are satisfied as are the slip conditions at inception of slip ( ¤D ≥ 0 and |g | = `?).

The algorithms discussed here are not fixed to particular mesh construction techniques such as

finite element method, boundary integral method, or compliance matrix method. They work with

almost all discretization techniques if contact surface nodes should follow the proper equality and

inequality constraints from Eq. 2.1.
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CHAPTER 3

VERIFICATION OF CONTACT ALGORITHMS

The coupled and complex nature of contact problems makes them difficult to solve analytically and

usually requires simplifying assumptions – most often the Goodman decoupling approximation

[31] – to reduce the complexity of the problem. In this chapter, we implemented and compared

algorithms of the previous chapter with available analytical results; imposing the Goodman ap-

proximation in those problems where it is invoked in the corresponding analytic solution. The

contact length, stick ratio, normal pressure, and lateral traction distributions are the most natural

choices for comparing numerical and analytical solutions for a rigid cylindrical indenter pressing

against an elastic half-plane. The closed-form expressions invoked here can be found in [6, 35].

We also compared the numerical solutions using both algorithms and explained the significant

improvements through multiple examples.

3.1 Frictionless Normal Contact

3.1.1 Rigid Cylinder Pressed against an Elastic Half-plane

For the case of two identical elastic cylinders pressing against each other, we have analytic expres-

sions for the length of the contact patch and pressure distribution [6] which can be mapped onto

the problem of a rigid cylinder pressing against a frictionless elastic half-plane:

0 =

√
%(^ + 1)'

2c�
, (3.1)

?(G) = 2%
√
02 − G2

c02 (3.2)

where 20 is the contact length, % is the total normal force, R is the radius of the rigid cylinder, � is

the shear modulus of the half-plane, ^ = 3−4a (for plane strain), and a is the Poisson’s ratio. In the

calculations that follow, � = 1 and a = 0.3, ' = 0.25, and % = 0.015 are used. The contact length
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Figure 3.1: Verifying the half-plane compliance matrix formulation with the analytical solution.
The two numerical algorithms yielded identical solutions. The ∗ and � represent numerically
calculated traction at the centers of intervals. The continuous curves are analytic

(with 21 nodes in-contact) calculated using Eq. 3.1 is used for calculating the pressure distribution

using Eq. 3.2. Figure 3.1 shows the numerical pressure distribution calculated from the compliance

formulation, which matches almost identically with analytical results for a given total normal force

(%).

3.1.2 Rigid Flat Indenter Pressed against an Elastic Half-plane

Furthermore, another analytical solution is available for a rigid flat indenter pressing against the

elastic half-plane. In this case, the contact length between the indenter and half-plane remains

unchanged and is equal to the rigid indenter’s length. The pressure distribution for a normal force
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Figure 3.2: Verifying the half-plane compliance matrix formulation with the analytical solution.
The two numerical algorithms yielded identical solutions. The ∗ and � represent numerically
calculated traction at the centers of intervals. The continuous curves are analytic

% is shown in the Eq. 3.3.

?(G) = %

c
√
02 − G2

. (3.3)

The numerical expression for pressure distribution is calculated using the same material properties

of elastic half-plane with normal force % = 0.001. The contact region has 103 nodes in-contact

for the contact length of 0.8, equivalent to the length of the flat rigid punch. Figure 3.2 compares

the analytical and numerical pressure distributions for the rigid flat indenter, which are the same

in most of the contact region. There are minor discrepancies at both endpoints due to the singular

nature of the pressure distribution at the ends for the flat rigid indenter.

30



−0.01 −0.005 0 0.005 0.01
−2

0

2

4

6

8
·10−2

Contact Length(2a)

Stick Length(2b)

Contact Region (x)

N
o
rm

a
l/
L
a
te
ra
l
T
ra
ct
io
n

Normal Press. Num. Normal Press. Ana.
Lateral Trac. Num. Lateral Trac. Ana.

Figure 3.3: Verifying numerical normal and lateral traction distribution with analytical expression
for rigid cylinder pressing against an elastic half-plane with coefficient of friction (`B = 0.3).

3.2 Normal Contact with the Coulomb Friction

Next, the simplest friction model, Coulomb friction, is employed with contact algorithm-II. The

rigid cylinder is pressed against an elastic half-plane with normal force (% = 0.001), friction

coefficient (`B = 0.3), and contact problem has same material and geometric properties from

previous section 3.1. Figure 3.3 shows the normal and lateral traction distribution due to the

normal pressing of the cylinder. Lateral traction is anti-symmetric with respect to the center of the

contact and divides the contact length(20) into following three regions;

1. slipping to the left at the left end of the contact.

2. stick region with length (21) in the center.

3. slipping to the right at the right end of the contact.
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Figure 3.4: Verifying numerical normal and lateral traction distribution with analytical expression
for rigid flat indenter pressing against an elastic half-plane with coefficient of friction (`B = 0.3).

Figure 3.4 shows similar characteristics such as anti-symmetric lateral traction and stick-slip

region for the rigid flat indenter.

3.2.1 Comparison with Spence (1973) Stick Ratio Results

The stick ratio is one of the relevant contact parameters for the comparison and verification during

the frictional contact. Spence [63] derived analytical solutions for a rigid indenters normally

pressed against a rough elastic half-planes. Relying on the Goodman approximation, he developed

the expression for the stick ratio as shown in Eq. (3.4).

V (2) = ` ′(2) (3.4)

where V is the Dundur’s parameter (V = (1 − 2a)/(2 − 2a))[26], a is the Possion’s ratio, 2 = 1/0

is the stick ratio,  (2) is the complete elliptic integral of the first kind and  ′(2) =  
(√
(1 − 22)

)
.
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Figure 3.5: Stick ratio for cylindrical indenter with and without decoupling assumption
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Figure 3.6: Stick ratio for flat indenter with and without decoupling assumption

Remarkably, this relationship holds for both flat and round indenters.

Figures. 3.5 and 3.6 show that numerical results obtained by setting �Fg = 0 are in good

agreement with the analytical results for both cylindrical and flat indenters. At a higher value of

V/`, there is a little discrepancy between analytical and numerical results due to discretization in
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Figure 3.7: Stick ratio vs friction with full elastic coupling for cylindrical indenter
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Figure 3.8: Stick ratio vs friction with full elastic coupling for flat indenter

the contact region. If stick length is less than the discretization length, then the discretization length

is taken as the stick length resulting in a higher value of slip ratio. Also shown in these figures are

contact algorithm results where the Goodman approximation was not performed. The predictions

of the coupled calculations lie slightly below those associated with the uncoupled system.
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Spence [63] further solved cases of coupled systems for rigid indenters pressing against rough

elastic half-planes. He solved the system of coupled integral equations numerically. Figures 3.7

and 3.8 show stick-slip ratios for both Spence’s numerical results and those of the contact algorithm.

For the case of the cylindrical indenter, the agreement between the predictions of the contact

algorithm and the analytic results are again extremely good. In the case of a flat punch, the contact

solutions predict slightly higher stick ratios, but the discrepancy is likely due to the singularity of

the tractions at the edges of the indenter, and it is difficult to get accurate solutions.

3.2.2 Verification of Numerical Lateral Traction with an Analytical Expression

Using Spence’s [63] results for stick ratio, an analytical expression (Eq. 3.5) was developed [35]

for the lateral traction distribution for frictional cylindrical contact. Using a similar approach, an

analytical expression (Eq. 3.6) for the lateral traction distribution for the frictional contact of the

rigid flat indenter was developed.

@2H; (G) =
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[√
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21 ln
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}]
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where sin(q) = G/1 andΨ(q, 2) is an incomplete integral of the first kind, and  (2) is the complete

integral of first kind.

Figures 3.3 and 3.4 show that the lateral traction distribution calculated numerically are in line

with analytical expression for both cylinder indenter and flat indenter contact.

3.2.3 Verification of Stick-Ratio in the Mindlin Problem.

The frictionless Hertz problem is equivalent to pressing two identical rough cylinders against each

other. In that case, the full contact path results in stick status. Next, if the cylinders are each subject

to equal and opposite lateral forces, then the slip will occur on the contact patch’s outer edges. This
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Figure 3.9: Mapping of two elastic cylinder contact to the rigid cylinder over the half-plane

contact problem – Mindlin Problem [52] – can be solved with use of the Goodman decoupling

approximations (see Fig. ??). Analytical equations for stick-slip ratio (c) vs lateral tractions (@(G))

are shown in Eqn. (3.7) and (3.8) [56].
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(3.8)

The above two-cylinder Mindlin problem can be mapped to a similar problem of a rigid

cylindrical indenter pressed against an elastic half-plane (see Fig. ??) in the following manner:

• In the absence of friction, the indenter is pressed against with force % over an elastic half-

plane.

• Friction is turned on, but by construction, there is no shear traction on the interface, and there

is no slip.

• A lateral force & is introduced to the indenter.

(See Eqs. from 2.20 to 2.33 of ref [35] for the mapping). Also, this strategy of turning friction on

and off in a calculation has a precedent [15].
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Figure 3.10: Verifying numerical stick ratio with analytical expression for Mindlin solution.

As the force & is increased, slipping on each edge of the contact path will evolve. When the

contact algorithm is employed with Goodman decoupling approximation (�DF = 0), the resulting

predicted stick-slip ratios are in good agreement with those of the Mindlin solution (see fig. 3.10).

3.3 Coulomb Friction Model in Mindlin Problem

We implemented the Coulomb friction model (`B) with both contact algorithms. We used the

well-known Mindlin solution for comparison. Note the Mindlin solution is employing Goodman

decoupling approximation. The mapping of the Mindlin problem to the rigid cylinder over an

elastic half-plane is shown in section 5.

In the following analysis, the geometric and material properties of the problem from Section

3.1 are used again (radius of cylinder ' = 0.25, shear modulus G=1, and Poisson’s ratio a = 0.3).

The elastic half-plane is more finely discretized in this problem than the previous, and 87 nodes are

found to be in-contact with the normal load (% = 0.001). This finer mesh was chosen to obtain an

adequate resolution of the stick-slip boundary and the shear stress at that boundary for comparison

with the analytic solutions. The lateral load is set at & = 2.8 × 10−4.

Figure 3.11 compares the normal pressure and lateral traction distributions of the analytic
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Figure 3.11: Comparing numerical tractions from Algorithm-I, Algorithm-II, and analytical ex-
pression for one-parameter friction model (` = 0.7) after application of lateral force: normal
pressure distribution (left) and lateral traction distribution (right)

expression and of the two numerical algorithms. All three seem to be in line with each other for

a one-parameter Coulomb friction model with friction coefficient ` = 0.7. For the problem with

these parameters, we are well within the limit calculated by Klarbring for existence and uniqueness

of a single node (or rigid body) contact.

Both Algorithm-I and Algorithm-II are verified with the given analytical expressions. These

verification established that the numerical results using the contact algorithms are in-line with

the analytical results. In the upcoming sections, we illustrated the issues with Algorithm-I and

improvements due to Algorithm-II.

3.4 Two-parameter Coulomb Friction Model in Mindlin Problem

Next, We demonstrate the robustness of the Method of First Violation (Algorithm-II) on a more

complicated friction model – the two-parameter friction model – involving a coefficient of static

friction, `B, and a coefficient of kinetic friction, `: . In this numerical problem `B = 0.7, `: = 0.42,

but the loading sequence and geometry of the previous problem are employed again. For the sake

of consistency, the Goodman decoupling approximation is used in this analysis as well. Figure 3.12
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Figure 3.12: Comparing numerical tractions from Algorithm-I and Algorithm-II for two-parameter
friction model (`B = 0.7, `: = 0.42) after application of lateral force: normal pressure distribution
(left) and lateral traction distribution (right). For Algorithm-I, the region of stick is indicated by a
solid black line, and the region of slip is indicated by a black line connecting solid green circles
(•). For Algorithm-II, the region of stick is indicated by a dashed blue line, and the region of slip
is indicated by a dashed blue line connecting red dots(•).

shows the normal pressure and lateral traction predictions of the two algorithms. (An analytical

expression is not available in the literature). As expected, the two algorithms yield identical normal

traction fields. However, there are serious discrepancies between the lateral tractions predicted by

the two algorithms. Algorithm-II (MFV) predicts a smooth and symmetric distribution of shear

traction with a clear separation between stick and slip boundaries (Fig. 3.12b). Algorithm-I shows

a much wider stick region than does Algorithm-II. Most significantly, the stick region is not smooth;

this is an artifact of nodes fluctuating back and forth between stick and slip status in the iterative

process. In contrast, Algorithm-II assures that all constraints are satisfied at the beginning and end

of each load step, and all points in between. It should be noted that in order to get convergence of

Algorithm-I in this problem, it is necessary to set all nodes to stuck status after each load increment

and then to release nodes according to howmuch they violate the constraining inequality (g ≤ `B?).

The above example demonstrates a situation where the more conventional contact algorithm
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(Algorithm I) has difficulty converging to a unique solution; the two-parameter friction model is

notorious for causing convergence problems [44]. Yet the Method of First Violation appears to

address this problem with little difficulty.

Amajor source of interest in elastic frictional contact is predicting and understanding the contact

mechanics associated with cyclic loading. Some preliminary results with the cyclic loading are

presented in the later this chapter.

3.5 High-Coefficient of Friction with Full Elastic Coupling

We implemented both algorithms with a high coefficient of friction (`B = 3.0) and a full elastic

coupling. In this instance, the rigid cylinder is first pressed against a frictional elastic half-plane

with normal load(% = 10−3), and later pressed with a lateral load(& = 2 × 10−4). The geometric

and material properties of the rigid cylinder and elastic half-plane remain unchanged.

The Klarbring’s results [45] apply to bodies in contact at a single point. His formula is

suggestive that higher coefficients of friction might cause issues of existence, uniqueness, and

numerical stability to manifest even in problems of distributed contact. Consequently, one should

not be surprised that distributed contact problems become more challenging as the coefficient of

friction increases.

Figure 3.13 shows that the lateral traction distribution predicted by Algorithm-I jumps alter-

nately between positive and negative from node to node in the slip region and is irregular in stick

region. Also, the discontinuous direction of friction in the slip regions obscures the boundary

between stick and slip regions. Because of the full elastic coupling of this calculation, the jumps

in lateral traction also influence the normal pressure, which also oscillates from node to node in

the vicinity of the slip region. On the other hand, the lateral traction distribution predicted using

Algorithm-II is smooth with a proper boundary between the slip and the stick regions. It should be

pointed out that Algorithm-I often fails to converge for high values of friction coefficient and very

fine meshes, yet this does not seem to be an issue with Algorithm-II.

A quick exploration of mesh convergence using Algorithm-II is summarized in Figure 3.14. In

40



−0.01 −0.005 0 0.005 0.01
−3

0

3

6

·10−2

Contact Region (x)

N
o
rm

a
l
a
n
d
L
a
te
ra
l
T
ra
ct
io
n
s

Normal Press. A-II Lateral Trac. A-II
Normal Press. A-I Lateral Trac. A-I

Figure 3.13: Normal and lateral traction distribution after a normal and lateral pressing of the
cylinder against an elastic half-plane with coefficient of friction `B = 3. Comparing the Algorithm-
I and Algorithm-II with 85 contact nodes in both cases.

the figure, the Algorithm-II calculations of 3.13 are re-plotted and labeled as FM, corresponding

to the fine mesh of 85 nodes in the contact patch. Also shown in that figure are the predictions

of Algorithm-II when a coarser mesh (CM) having only 42 nodes is employed. The two sets of

traction predictions align closely except near the edges of the slip zones, where the coarse mesh is

incapable of capturing fine detail. Though not definitive, this calculation is at least consistent with

mesh convergence of Algorithm-II. Of course, the finer meshes will be associated with smaller load

steps to reach the first violations.

3.6 Implementation of Dahl Friction Model

The Method of First Violation (Algorithm-II) was also tested on a problem involving the Dahl

friction model [24]. The Dahl model is a rate-independent, quasi-static continuous slip model,
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based on an idea of bristle stiffness (Eq. 3.9).

35

3D
= f

����1 − 5

52
sgn( ¤D)

����W sgn
(
1 − 5

52
sgn( ¤D)

)
(3.9)

where, 5 , 52, and D are the friction force, maximum/cut-off friction force and the lateral displacement

of contacting node respectively. f and W are the contact stiffness and exponents (Dahl parameters),

respectively. In this model, lateral displacement of a node changes even while the friction force

is less than cut-off friction ( 5 ≤ 52) - unlike Coulomb friction. But, as friction force reaches

the maximum force ( 52) the Dahl model behaves similar to Coulomb friction at macro-slip. This

similarity with Coulomb friction is exploited in the numerical implementation of this friction

model, which is briefly explained in the appendix B.

A contact problem is considered where the rigid indenter of the previous illustrations is pressed

42



−2

0

2

4

6

8
·10−2

P
re
ss
u
re

−0.01 −0.005 0 0.005 0.01

0

2

4

6
·10−4

Contact Length(2a)

Contact Region (x)

D
is
p
la
ce
m
en
t

Normal Press. Lateral Trac.
Normal Disp. Lateral Disp.

Figure 3.15: Implementing of theMethod of First Violation algorithmwith the Dahl friction model:
(f = 1000, W = 1, `B = 0.3). Algorithm-I would not converge to a solution for Dahl friction model.

with a normal force (% = 0.001) against an elastic half-plane where the frictional interface is

represented by a Dahl model having parameters f = 1000 and W = 1, and the geometric and

material properties are those of the from the previous problems. The maximum friction force

at each node is ( 52= = `?=) with ` = 0.3. Figure 3.15 shows the predicted normal and lateral

traction and displacement distributions when the MFV algorithm is employed. Those predicted

tractions and displacements are smooth with clear boundaries between stick and slip regions. This

demonstrates that the MFV algorithm can provide stable results in problems beyond Coulomb

friction. The authors attempted to apply Algorithm-I to this problems, but could not obtain a

convergent solution.
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Figure 3.16: Normal and lateral traction distribution calculated for two-parameter friction (`B = 0.7,
`: = 0.49) through Algorithm-I and Algorithm-II after a rigid cylinder is pressed against an elastic
half-plane with a normal force (% = 0.001).

3.7 Two-parameter Coulomb Friction for a Cylinder Pressed against an
Elastic Half-plane

A two-parameter Coulomb frictionmodel is used between the indenter and the half-plane with static

coefficient `B = 0.7 and dynamic coefficient `: = 0.49. To be able to compare numerical results

with analytic ones, the Goodman decoupling approximation [31] is imposed by setting �D? = 0.

Initially, the rigid cylinder is pressed against the elastic half-planewith a normal force % = 0.001,

bringing 43 nodes in the contact region. This results in symmetric normal pressure distribution

and anti-symmetric lateral traction between two surfaces. In this case, the predictions calculated

through Algorithm-I and Algorithm-II are identical, both shown on the left-hand side of Figure

3.16. Because of the imposition of the Goodman decoupling approximation, the normal pressure

field is independent of the shear tractions and identical to the analytical expression, provided by

Mindlin [52, 56]. There is no analytical expression available for lateral traction distribution for

two-parameter Coulomb friction models.
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Figure 3.17: Normal and lateral traction distribution calculated for two-parameter friction (`B = 0.7,
`: = 0.49) through Algorithm-I and Algorithm-II after a rigid cylinder is pressed against an elastic
half-plane with a normal and lateral forces (% = 0.001, & = 0.000185). Slipping nodes are
represented through ’red o’ and ’Green *’ for A-I and A-II respectively.

Next, a lateral load of & = 0.000185 is applied gradually on the indenter in the x-direction.

The plot on the right-hand side of Fig 3.17 shows the normal and lateral traction distribution as

calculated by Algorithms I and II. The normal pressure distribution remains unchanged because

of Goodman’s decoupling approximation; however, the lateral traction distributions calculated by

the two methods show a fair difference. It is worth noting that the right-hand side of the shear

traction field predicted by Algorithm-I follows a similar pattern to that predicted with Algorithm-II

but shows significant spatial oscillation between stick and slip states. This is an indication of a

failure of the algorithm to converge to a valid solution. Algorithm-II shows a proper separation

between the stick and the slip regions. Both Algorithms involve small load increments, both are

converged to the same loads, and the sums of the lateral tractions are also equal. Because the stress

and displacement fields evolve from those of the previous load step, this small discrepancy can

grow into large error as the load also evolves.
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3.7.1 Cyclic Shear Loading with Two-Parameter Coulomb Friction

Having provided evidence that this formulation using themethod of first violation appears to provide

a proper solution with the two-parameter Coulomb friction, it seems reasonable to explore the path

dependence of traction fields during cyclic loading [16].

We consider the same configuration as before (see 3.7), impose a vertical compressive load of

% = 0.001, and then apply a cyclic lateral loading with amplitude&max = 0.000185. The resulting

lateral traction fields at multiple steps in the process are shown in Fig. 3.18. The following

discussion is with reference to that figure.

Sub-figure(1) has the same traction distribution as of Fig. 3.17: that which exists immediately

after the imposition of the vertical load. As soon as a rightward lateral load is applied, the left

side node that had been slipping leftward switches to being stuck. Sub-figure(2) with lateral load

0.3&max shows a continuous slipping region on the right resulting from the rightward load adding

to the initially rightward tractions from the previous load step.

Sub-figure(3) with lateral load 0.7&max shows a growth in the slipping region on the right and

the beginning of slip on the left, where the rightward load has become sufficient to overcome the

initial leftward traction and to bring that node into sliding to the right. Sub-figure(4) with lateral

load &max shows further growth in slipping regions on both ends. There is a clear separation

between sticking and slipping regions. This traction distribution provides a pattern for the residual

stresses in cyclic loading that we see below.

Sub-figure (5) shows the traction distribution just after the change in the direction of lateral

load. All the nodes that had been slipping towards the right, now suddenly stick because the traction

at each point has been reduced from that necessary for slip to just below that. These nodes remain

stuck in sub-figure(6); the reduced load is again accommodated by a redistribution of traction

among the stuck nodes without any actual sliding. In sub-figure (7), we see that as the applied load

continues to decrease, the residual stress due to previous rightward sliding requires two nodes to

start slipping leftward to maintain the force balance. Sub-figures (8) and (9) are in the same state

and repeated to preserve periodicity. There is zero lateral load, but again some node must go into
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Figure 3.18: Evolution of lateral traction with lateral cyclic loading (Arrow shows the direction of
lateral loading.) All tractions shown are physical traction normalized by �. [16]

47



slip in order for the integrated traction to be zero. Sub-figures (10), (11), and (12) show that the

increase in load leftward increases the extent of the slip regions. Sub-figure (12) with lateral load

−&max shows a new negative peak of traction, which separates the stick and slip regions. The

region between these two peaks will remain stuck throughout the cycling process.

The traction fields of sub-figures 13-20 show the similar pattern of evolution as discussed for

sub-figures 1-12, but the important observation is that steady-state has been reached by sub-figure

20: sub-figures 12 and 20 are right-left/up-down reflections of each other.

These traction fields illustrated in Fig. 3.18 provide an insight on how the traction distribution

evolves, how slip zones form, grow, and disappear, and generally how each traction field unfolds

from that of the previous load. This logical progression argues that the correct path dependence

has been adequately captured by the "Method of First Violation" algorithm.

3.8 Algorithm Computational Efficiency

The relative efficiencies of the two algorithmic approaches is explored on our paradigm problem. A

rigid cylinder is pressed normally over the elastic half-plane (same geometry andmaterial properties

from section 3.1 ) with normal load (% = 0.004) and friction (` = 0.3) for multiple load steps

(X!0). The efficiency of algorithms can be compared by counting the number (#8C4) of linear solves

of Eq. 2.2, the most time-consuming part of the procedure. Figure 3.19 shows that the number of

iterations using Algorithm-1 reduces with an increase in load step and that the number of iterations

increases with an increase in contact nodes (mesh density). Though the increasing load step results

in a faster solution, eventually the converged solution manifests visible anomalies. Red marks in

Fig. 3.19 indicate non-physical solutions due to the attempt to resolve multiple contact violations

associated with large load steps(X!0). The optimal load step for this algorithm would appear to

be a bit smaller than those which cause visible anomalies in the solution; this is suggested by the

dashed blue line.

Figure 3.20 shows a concave up relation between the number of iterations on increasing the

load step using Algorithm-II(MFV). On each curve in Fig. 3.20, all points represent an identical
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Figure 3.19: Number of iterations (#8C4) vs load-step (X!0) using Algorithm-I for coarse to fine
contact mesh (red marks shows the bad converged solution). Optimal load increments for this
method on this problem are suggested by the dashed blue curve.

solution; the choice of nominal load step impacts only the compute time to achieve that solution.

These solutions capture the same load history and are admissible solutions throughout that history.

The black star in each curve in Fig. 3.20, indicates the optimal load step size for maximum

efficiency (faster convergence). The blue curve of optimal load increments associated with Figure

3.19 is reproduced in Figure 3.20 showing that both methods have about the same optimal load

steps and the compute times when those optimal load steps are employed.

3.9 Summary of the Algorithm Verification and Comparison

The contact algorithm - Method of First Violation (MFV) - based on the principle of first contact

status violation is presented and its predictions are compared to those of a more conventional

algorithm and with analytic expressions when available. The important role of contact history is

emphasized and the capability of the MFV to capture and to accommodate that history dependence
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Figure 3.20: Number of iterations (#8C4) vs load-step (X!0) using Algorithm-II(MFV) for coarse to
fine contact mesh (Black marks shows the optimal load-step for faster and accurate solution). The
blue dashed line is copied from Figure 3.19.

is discussed. The fidelity to load-displacement history derives from this algorithm providing node

states that are consistent with all contact constraints at the beginning and end of every load step as

well as all points in between.

TheMFValgorithmpredictions comparedwellwith analytic solutionswhere theywere available

and alsowell with the predictions of a conventional algorithmwhen then that conventional algorithm

provided numerically stable results.

The robustness of the Method of First Violation was also tested on three categories of contact

problem know to be numerically challenging

1. A contact problem involving two-parameter friction. Here the MFV provided robust and

physically plausible solutions while the conventional algorithm anomalies at the stick-slip

interfaces.
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2. A contact problem of Coulomb but with full coupling and a high coefficient of friction. The

analogy with Klarbring’s results for single point contact would suggest numerical difficulties

for problems of coupled contact of elastic bodies with high coefficient of friction. Indeed the

conventional algorithm resulted in very discontinuous shear tractions in the vicinity of the

slip zone and corresponding jaggedness in the normal traction. The predictions of the MFV

shows none of these difficulties.

3. The MFV was applied to contact involving an entirely different form of contact model, the

Dahl equation. Here the MFV again performs robustly and makes plausible predictions of

traction and displacement fields, though there do not appear to be alternate estimates to

compare to. The authors were unable to get the conventional algorithm to converge on this

problem.

4. The MFV is shown to be stable when used with the two-parameter friction model and to

provide a reasonable evolution of the traction fields from each load step to the next.

5. In the problems studied, when the Method of First Violation is used with optimal nominal

load steps, its efficiency is comparable to that of the conventional algorithm.
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PART II

An Extremely Fine Mesh Strategy Using Compliance Matrices
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CHAPTER 4

COMPLIANCE FORMULATION FOR AN ELASTIC DISK AND FOR A HOLE IN AN
INFINITE ELASTIC PLANE

The fundamental mechanics of contact problems is often elusive because of the intrinsic experimen-

tal difficulties (the physics takes place exactly where it cannot be seen). This intrinsic experimental

difficulty is matched by similarly difficult computational impediments [37, 51] that requires a very

fine mesh near the contacting interfaces. The finite element method is the most general approach

to create very fine mesh/discretization on the interfaces. However, with a large number of the

nodes on the interface also creates many more nodes inside the body, which means more degrees

of freedom to solve with a big stiffness matrix, making the contact problem hard to analyze. The

reduction methods are fairly common to reduce the stiffness matrix to only contacting nodes, but

they are challenging due to the required inversion of the big matrix.

4.1 Computational Issues

The scope of the problem to be addressed is suggested in Figure 4.1. On the left is a problem of

multiple contacts on an elastic disk; there are shear and normal tractions applied at the contact

patches. It is only in the regions of the three contact patches that tractions and displacements are

&
%

&
%%

(a) Contact problem expected to
have 33 nodes in contact among the
three contact regions.

(b) Boundary mesh of the
disk with 147 nodes on the
boundary.

(c) A coarse finite element
meshwith 1903 nodes inside
the elastic disk

Figure 4.1: A contact problem with normal (%) and lateral (&) forces are applied pressing an elastic
disk against a rigid surface with 33 boundary nodes in contact (11 nodes in each 4> contact region).
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essential to the problem in the sense that if the tractions in the contact patch were known, that would

be sufficient to calculate stresses and displacements throughout the body.

The figure in the center is a surface discretization such as could be used for a boundary integral

element [9] analysis of the problem; note that extraordinarily fine meshes are required in the regions

of contact in order to have enough nodes to solve the contact problem with any fidelity. A gradual

mesh transition away from contact reduces the number of degrees of freedom of the corresponding

numerical problem. However, the surface mesh must be fine enough overall to achieve accuracy

[68, 34, 70]. One would like to have several tens of nodes over each contact patch. Contact patches

are usually substantially less than 2> of the osculating circle; for visibility, the surfacemesh shown in

Fig. 4.1b has 11 nodes over each contact patch of 4> and the mesh transition is relatively aggressive

(15%). In reality, one would expect each contact patch to be on the order of 1> of the radius for the

stresses to remain below yield, to have on the order of 50− 200 nodes per contact patch to obtain a

reasonable resolution of the traction field, and several thousand nodes around the surface. Further,

the nature of the boundary element method is such that the corresponding matrices are dense (not

sparse), and the systems of equations that must be solved at each iteration of the contact algorithm

becomes onerous. One can use the analytic expressions [35, 57] for deformation of frictionless

contact for a cylinder pressed against a rigid surface (or of two identical cylinders pressed against

each other) to evaluate the width of the contact patch and the maximum von Mises stress, each as

functions of geometry, elastic constants, and net compression load. Table 4.1 provides the contact

angle achieved just as the peak stress within the cylinder reaches yield stress for each of six common

metals. Note that most of the metals exceed their elastic limit within a degree of contact arc. In the

case of friction and applied lateral loads, the contact angles would be yet smaller. To understand

the interface physics and to have a conclusive test model, extremely fine discretizations are needed

for each contact region.

The right-most mesh (Fig. 4.1c) is such as might be used for a finite element calculation,

though for visibility the surface mesh is the same as the crude mesh of the center figure and the

mesh transition away from the surface is also aggressive. Even so, there are approximately 1903
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Metals Elasticity’s Modu-
lus (GPa)

Yield Strength
(MPa)

Poisson’s
Ratio

Contact arc an-
gle (von-Mises)

Copper 117 70 0.36 0.223>
Brass 102 117 0.35 0.428>
Mild Steel ASTM 302 200 250 0.3 0.4670

Aluminum 69 95 0.33 0.514>
Stainless Steel AISI 302 180 502 0.3 1.041>
Titanium 105 730 0.34 2.595>

Table 4.1: Maximum contact arc for compressing an elastic disk onto a flat rigid surface above
which the disk material exceeds its elastic limit.

nodes in the system shown in Fig. 4.1c. In an actual contact problem, one would expect to have

to employ several tens of thousands of nodes. The corresponding equations – though banded

– are still formidable and must be solved, either directly or indirectly, with the help of a static

condensation, with each iteration of the contact algorithm. In general, solving contact problems

with high resolution often becomes intractable.

A strategy that can mitigate the difficulty of computational contact analysis greatly is to pose

the problem using compliance matrices. For the sake of discussion, consider a frictionless contact

problem such that each node has one normal displacement, one tangential displacement, and poten-

tially one normal pressure. Because the problem is frictionless, it is only the normal displacement

(F: ) and normal pressure (?: ) that are necessary to address elastic contact. The usual finite element

formulation where elasticity is expressed in terms of a stiffness matrix appears as:



?1

?2
...

?#


= [ ]



F1

F2
...

F#


(4.1)

In this formulation, as the tractions change on just a few nodes in contact, the whole large system

of equations must be solved. If we can formulate the elasticity in terms of a compliance matrix:
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F1

F2
...

F#


= [�]



?1

?2
...

?#


(4.2)

then we observe that all the nodes not in contact are subject to zero pressure, and we can dispense

with all the columns in � corresponding to those nodes. Further, the displacements outside the

contact regions are not necessary to solve the contact problem, so the corresponding rows of � can

also be deleted. The resulting system can be orders of magnitude smaller than the original.

A compliance representation of the elasticity is highly favorable to a solution of contact prob-

lems, but it does not naturally come out of boundary integral methods or stiffness-based finite

element implementations. In fact, there are only a few shapes that lend themselves to a compliance

formulation. One is the an elastic half-plane [35, 72]. A compliance formulation for the surface of

a disk or for a hole in an elastic plane is developed in the body of this chapter.

Though the methods discussed below are restricted to narrow categories of two-dimensional

geometries, they should provide the foundation for a computational test-bed sufficient to address

some of the outstanding questions on interface mechanics, such as the significance of different

frictional constitutive models in resulting contact stress distributions or elastic coupling between

shear and normal displacement in conformal and non-conformal contact.
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4.2 2D-Cylinder Airy Stress Function (Michell Solution)

The Michell solution is an expansion of the Airy stress function in polar coordinates and is often

used in studying the elasticity of two-dimensional circular bodies [6, 56, 62].

Φ0(A, \) =�01A
2 + �02A

2 ln(A) + �03 ln(A) + �04\

+
(
�11A

3 + �12A ln(A) + �14A
−1

)
cos \ + �13A\ sin \

+
(
�11A

3 + �12A ln(A) + �14A
−1

)
sin \ + �13A\ cos \

+
∞∑
==2

(
�=1A

=+2 + �=2A−=+2 + �=3A= + �=4A−=
)

cos(=\)

+
∞∑
==2

(
�=1A

=+2 + �=2A−=+2 + �=3A= + �=4A−=
)

sin(=\)

(4.3)

where the �<= and �<= are unknown coefficients. By definition, an Airy stress function satisfies

the biharmonic equation (∇4Φ0 = 0)), and indeed every term of theMichell expansion does so. The

stress and displacement fields associated with an Airy stress function can all be expressed in terms

of partial derivatives of Φ, and those fields for the Michell expansion have been tabulated in many

texts, but are combined in Appendix Table ?? and E.2 in consistent notation for the convenience of

the reader.

The Michell expansion has been used to find analytic expressions for traction and displacement

distributions for many problems involving two-dimensional elastic disks or holes in an infinite

elastic plane. The following is used in a somewhat different manner; it will be used to discretize the

surfaces of disks or holes and to obtain a very efficient compliance formulation for elastic, frictional

contact analysis.

Which terms in Equation 4.3 are actually employed depends on the geometry of the problem.

Terms that generate non-integrable singular stress fields as A → 0 are not used in problems involving

a solid disk. Terms associated with stress fields that grow without bound as A →∞ are not used in

problems involving unbounded boundaries. Some terms generate multi-valued displacement fields

(secular terms not periodic in \), and these must be combined to yield displacement fields that are

periodic in \.
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4.2.1 General Discretization Strategy

A set of evenly spaced nodes are defined on the free surface(s) of the body of interest. This may

be a very fine mesh because only the nodes in the vicinity of contact will contribute to the size of

the numeric problem to be solved. A compliance matrix associated with that mesh is constructed

using the strategy indicated Fig. 4.2.

Deduce Michell
Coefficients

Fourier Se-
ries of Π=

Michell Traction
Fourier Series

Traction basis
function Π= (\)
centered at \=

Michell expansion,
unknown coef.

Displacements DAA ,
DA\ at each node

Column of
compliance matrix

Figure 4.2: Flow chart using Michell expansion to create a compliance matrix.

The strategy of exploiting the Michell expansion to construct a compliance matrix is outlined

in Figure 4.2.

1. A set of 2# basis functions Π= for traction (one for each of radial traction and shear traction

at each node) on the surface(s) of the region of interest is defined. This set of basis functions

must be a partition of unity, have only local support, and must achieve their maximum

amplitude at their associated node. The simplest such functions are the rectangular or box

function

q= (G) = � (G − (G= − ΔG/2)) − � (G − (G= + ΔG/2)) (4.4)
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which has a value of 1.0 between (G= −ΔG/2) and (G= +ΔG/2) and is zero elsewhere and the

chapeau function

�= (G) = q= (G) (G= − |G |) /(ΔG/2) (4.5)

which has a triangular shape, taking the value of 1.0 at G=, zero at G=±ΔG/2, and zero outside

of (G= −ΔG/2, G= +ΔG/2) [10]. These basis functions are each decomposed into their Fourier

components.

2. The contributions of each term of the Michell expansion to surface tractions are all trigono-

metric functions. Coefficients of each trig function are grouped.

3. Matching terms of both Fourier series yields a linear system of simultaneous equations for

coefficients of the Michell expansion. In the problems considered below, these equations can

be decoupled.

4. Given the Michell expansion coefficients, the radial and tangential displacements on the

surface are evaluated at every node.

5. These displacements become the =th column of the compliance matrix.

4.2.2 A Solid Elastic Disk

For an elastic disk with no holes (Fig. 4.3), all terms of the Michell expansion associated with non-

integrable stress singularities at A = 0 are discarded ({�02, �03, �14, �14, �=2, �=4, �=2, �=4, �04} =

0). Similarly, terms associated with multi-values of displacement should also be removed to

provide a meaningful solution ({�12, �12, �13, �13} = 0). These restrictions result in a single

valued displacement stress function expression with non-secular terms (Eq. 4.6) at each value of

(A, \).
Φ0(A, \) = �01A

2 + �11A
3 cos(\) + �11A

3 sin(\)

+
∞∑
==2

[
(�=1A=+2 + �=3A=) cos(=\) + (�=1A=+2 + �=3A=) sin(=\)

] (4.6)
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The expression (4.6) is suitable for solid disks with no net forces or moments. When there are net

forces and moments, some of the discarded terms can be brought in with the assurance that all

singularities are integrable and that all displacements are single-valued.

The Φ0 term �04\ has stresses values as fAA = 0,f\\ = 0 and, fA\ = 1/A2 (see the table ??).

The fA\ = 1/A2 has a singularity at r=0, but this is an integrable singularity at the center of the

disk, corresponding to a finite torque.

If one wishes to incorporate non-self equilibrating tractions to the boundary of a disk, one must

balance themwith some internal traction that will oppose the net forces andmoments for the external

distribution. Such terms are available from the Michell solution, but the cost is accommodating

singularities at the center of the disk since our focus is on the surface of the disk, singularities in

stress or displacement are acceptable.

TheΦ0 terms (�12A ln(A) cos(\), �13A\ sin(\), �12A ln(A) sin(\), and �13A\ cos(\)) havemulti-

valued displacement terms and contain displacement elements that are proportional to \. This issue

can be resolved by taking linear combinations of these terms for which the multi-valued secular

terms disappear (see Eq. 4.7).

�13 = −�12
^ + 1
^ − 1

and �13 = �12
^ + 1
^ − 1

(4.7)

where, ^ is a Kolosov’s constant (Eq. 3.20 of [6]):

^ =


3 − 4a for plane strain
3 − a
1 + a for plane stress

(4.8)

As these terms are non-secular now and represent the net forces and moments. The new stress

function will be the following:

Φ0(A, \) = �01A
2 + �04\

+ �11A
3 cos(\) + �12

[
A log(A) cos(\) − ^ + 1

^ − 1
A\ sin(\)

]
+ �11A

3 sin(\) + �12

[
A log(A) sin(\) + ^ + 1

^ − 1
A\ cos(\)

]
+
∞∑
==2

[
(�=1A=+2 + �=3A=) cos(=\) + (�=1A=+2 + �=3A=) sin(=\)

]
(4.9)
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Figure 4.3: A solid disk with discretizaton from −c to c

Stresses and displacements were calculated for the above stress function, which are shown in

Appendix C.1.

4.2.2.1 Creating the Surface Displacement Field in an Elastic Disk

A very fine discretization is created on the elastic disk shown in Fig. 4.3 to formulate a numerical

solution. The circular disk discretized into # intervals with the equal length of Δ\ = 2c/# from

−c to c as shown in Fig. 4.3. Unit tractions (normal and then shear) are imposed, one at a time in

each interval, and the corresponding displacement field is evaluated at nodes placed at the centers

of that and of every other interval. For instance, unit pressure load q0(\) is applied radially on the

disk at \ = 0; taking a value of one in the region of (−Δ\/2,Δ\/2), and zero in at any other region

of (−c, c). The coefficients of the Fourier expansion for q0(\) can be calculated in closed form,

as shown in Eq. 4.10 and those coefficients are used to deduce the coefficients of the terms of the

Michell solution for that traction field and in turn the corresponding displacement at each node.

(This process is outlined in C.2. )
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Figure 4.4: The displacement field resulting from the unit pressure over Δ\ centered at \ = 0 is
obtained by summing a Fourier series. Though therewould beGibbs phenomena if the pressure field
were recovered from Fourier series, there is no Gibbs phenomena associated with the displacement
field.

q0(\) =
Δ\

2c
+ 2
c

�0A<∑
:=1

1
:

cos(:\) sin(:Δ\) (4.10)

The displacement field corresponding to basis traction q0(\) is also expressed in the Fourier

series. It should be noted that though there would be a Gibbs phenomenon if it were necessary to

construct q0(\) from its Fourier series, there are no Gibbs phenomena in the construction of the

corresponding displacement field (Fig. 4.4). The convergence of the displacement field with the

number of harmonics (�0A<) depends on the width of Δ\ and as one sees from Fig. 4.4 it is more

than sufficient to use �0A< = 4 2c
Δ\
= 4# harmonics.

The Michell terms (A’s and B’s) for unit normal and shear tractions over Δ\ centered at \ = 0

for the solid elastic disk are listed in the Tab. 4.2. These A’s and B’s values are substituted in

formulae (Eqs.C.6) and the corresponding radial and tangential displacements are evaluated. Eqs.
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Terms Radial Traction Tangential Traction
�01 Δ\/(4c) 0
�04 0 Δ\'2/(2c)

�11
(^ − 1) sin(Δ\2 )

2(1 + ^)c' 0

�12
(1 − ^)' sin(Δ\2 )
(1 + ^)c 0

�11 0
−(^ + 3) sin(Δ\2 )

2(1 + ^)'c

�12 0
−(^ − 1)' sin(Δ\2 )
(1 + ^)c

�=1
'−= sin( =Δ\2 )
=(= + 1)c 0

�=3
'2−= sin( =Δ\2 )
=(= − 1)c 0

�=1 0
'−= sin( =Δ\2 )
=(1 + =)c

�=3 0
'2−= (= − 2) sin( =Δ\2 )

=2(= − 1)c

Table 4.2: Michell coefficients for applied radial and tangential unit tractions over Δ\ centered at
\ = 0 and A = ' on the elastic solid disk

4.11 are displacements due to unit radial pressure, Equations 4.12 are displacements due to unit

tangential tractions, and the subscript (� refers to ’Solid Disk’.

FA0(� (\) =
'(^ − 1)Δ\

8c`
+ (^ − 3 + 4 ln('))^' sin(Δ\/2) cos(\)

4c`(^ + 1)

+ '(1 + ^(= − 1) + =) sin(=Δ\/2) cos(=\)
2=(=2 − 1)c`

DA0(� (\) =
(^2 + ^ − 4 + 4^ ln('))' sin(Δ\/2) sin(\)

4c`(^ + 1)

+ '(^(= − 1) − 1 − =) sin(=Δ\/2) sin(=\)
2=(=2 − 1)c`

(4.11)

F\0(� (\) = −
(^2 + ^ − 4 − 4^ ln('))' sin(Δ\/2) sin(\)

4c`(^ + 1)

+ '(1 − ^(= − 1) + =) sin(=Δ\/2) sin(=\)
2=(=2 − 1)c`

D\0(� (\) =
'Δ\

4c`
+ (^

2 + 5^ + 8 + 4^ ln('))' sin(Δ\/2) cos(\)
4c`(^ + 1)

+ '(^(= − 1) + 1 + =) sin(=Δ\/2) cos(=\)
2=(=2 − 1)c`

(4.12)
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We used these displacement fields (FA0(� (\), D
A
0(� (\), F

\
0(� (\), and D

\
0(� (\)) to construct a

compliance matrix in the later section 4.3.

4.2.3 A Hole in an Infinite Elastic Plane

Next consider another 2D circular geometry – a hole in an elastic infinite plane (see Fig. 4.5). Its

stress and displacement fields can also be expressed in terms of the Michell Airy stress function

(Eq. 4.3). Terms that are unbounded for large A (especially at A → ∞) (those associated with

{�01,�03,�11, �11,�=1,�=3,�=1, �=3})must be dropped. Terms that aremulti-valuemust be dropped

or combined so as to remove that feature (Eq.4.7). This results in the following stress function:

Φ0(A, \) = �01A
2 + �03 ln(A) + �04\ + �23A

2 cos(\) + �23A
2 sin(\)

+ �12

[
A log(A) cos(\) − ^ + 1

^ − 1
A\ sin(\)

]
+ �13A\ cos(\)

+ �12

[
A log(A) sin(\) + ^ + 1

^ − 1
A\ cos(\)

]
+ �13A\ sin(\)

+
∞∑
==2

[
(�=2A2−= + �=4A−=) cos(=\) + (�=2A2−= + �=4A−=) sin(=\)

]
(4.13)

Stresses and displacements were calculated for this stress function using Michell tables ?? and E.2

are shown in the D.1.

4.2.3.1 Creating Surface Displacement Field for a Hole in an Infinite Plane

The hole of radius R in the infinite plane is very finely discretized from −c to c with # small nodes,

as shown in the Fig. 4.5. A unit pressure q0(\) (Eq. 4.10) is applied over an interval Δ\ centered

at \ = 0. This pressure distribution is expanded in Fourier series (Eq. 4.10) and coefficients are

matched to the trigonometric polynomials of stresses (Eqs. D.2), yielding Michell coefficients

(Appendix D.2). A similar process is performed with respect to a unit shear traction over Δ\. The

Michell terms (A’s and B’s) are listed in Tab. 4.3 for both unit radial and tangential tractions. These

A and B values are substituted in the displacement (Eqs. D.7) and yield corresponding radial and
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Figure 4.5: An infinite plane with a hole discretized from −c to c

Terms Radial Traction Tangential Traction
�03

Δ\'2

2c 0
�04 0 Δ\'2

2c

�12
−(^ − 1)' sin(Δ\2 )
(1 + ^)c 0

�14
−(^ − 1)'3 sin(Δ\2 )

2(1 + ^)c 0

�12 0
(^ − 1)' sin(Δ\2 )
(1 + ^)c

�14 0
(^ + 3)'3 sin(Δ\2 )

2(1 + ^)c

�=2 −
'= sin( =Δ\2 )
=(= − 1)c 0

�=4
'=+2 sin( =Δ\2 ))
=(= + 1)c 0

�=2 0 −
'= sin( =Δ\2 )
=(= − 1)c

�=4 0
'=+2(2 + =) sin( =Δ\2 )

=2(= + 1)c

Table 4.3: Michell coefficients for applied radial and tangential tractions over Δ\ centered at \ = 0
and A = ' for the hole in the elastic plane.

65



tangential displacement fields (Eqs. 4.14 and 4.15). Equations 4.14 are the displacements due

to application of unit radial pressure and equations 4.15 are displacements due to unit tangential

traction.

FA0�>;4 (\) =
'Δ\

4c`
− (^ + 1 − 4^ ln('))' sin(Δ\/2) cos(\)

4c`(^ + 1)

− '(1 + ^(= + 1) + =) sin(=Δ\/2) cos(=\)
2=(=2 − 1)c`

DA0�>;4 (\) = −
(^ + 1 + 4^ ln('))' sin(Δ\/2) sin(\)

4c`(^ + 1)

+ '(^(= + 1) + 1 − =) sin(=Δ\/2) sin(=\)
2=(=2 − 1)c`

(4.14)

F\0�>;4 (\) =
(^ + 1 + 4^ ln('))' sin(Δ\/2) sin(\)

4c`(^ + 1)

− '(1 + ^(= + 1) − =) sin(=Δ\/2) sin(=\)
2=(=2 − 1)c`

D\0�>;4 (\) = −
'Δ\

4c`
− (^ + 1 − 4^ ln('))' sin(Δ\/2) cos(\)

4c`(^ + 1)

− '(^(= − 1) − 1 + =) sin(=Δ\/2) cos(=\)
2=(=2 − 1)c`

(4.15)

These displacement fields (FA0�>;4 (\), D
A
0�>;4 (\), F

\
0�>;4 (\), and D

\
0�>;4 (\)) are the displacements

on the surface of a hole in an infinite elastic plane for an unit radial and tangential force. These

displacement fields can be used to construct a compliance matrix.

4.3 Creating a Compliance Matrix

In previous sections, the pressure-displacement relationships for a solid elastic disk and for a hole

in an infinite elastic plane were developed for cases of unit tractions over intervals Δ\ centered at

\ = 0. In the following, these results are expanded to construct the full compliance matrix.

As before, the surface of the elastic disk is discretized with N nodes evenly distributed over the

surface (Fig. 4.3). The inter-nodal distance is Δ\ = 2c/# . Each node corresponds to radial and

tangential displacements to their tractions centered on them. Applied traction fields are represented
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using 2# basis functions is shown in Eq. 4.16.

?A (\) =
"−1∑
:=−"

?A:k
: (\) ?\ (\) =

"−1∑
:=−"

?\:k
: (\) (4.16)

where " is half the number of Nodes # , ?A
:
and ?\

:
are the radial and tangential tractions at the

corresponding \: = :Δ\, and k: (\) is a basis function centered at \: .

At this stage, the basis functions are assumed to form a partition of unity and by symmetry,

each basis function is assumed to be obtained from the previous one by a shift of Δ\. It would be

natural here to use either box functions (Eq 4.4) or chapeau functions (4.5); box functions were

chosen because of the simpler expressions that result, but chapeau functions would be only slightly

more difficult to implement. The box function k: is defined by

k: (\) = q0(\ − \: ) (4.17)

Similarly, the radial and tangential displacement fields can be expressed

FA (\) =
:="−1∑
:=−"

FA: (\) ?
A
: +

:="−1∑
:=−"

F\: (\) ?
\
: +,

A
C>C

D\ (\) =
:="−1∑
:=−"

DA: (\) ?
A
: +

:="−1∑
:=−"

D\: (\) ?
\
: +*

\
C>C

(4.18)

where ,A
C>C and *\

C>C are unknown rigid body constant for radial and tangential displacements,

respectively; and

FA: (\) = F
A
0(� (\ − \: ), DA: (\) = D

A
0(� (\ − \: ),

F\: (\) = F
\
0(� (\ − \: ), D\: (G) = D

\
0(� (\ − \: )

(4.19)

These relationships are illustrated for k: (\) and FA: (\) for the : = −1, 0, 1 in Fig. 4.6. The

displacement corresponding to the pressure distribution would be calculated through Eq. 4.18.

These linear equations can be employed directly to create a compliance matrix in polar coordinate

involving radial and tangential components of tractions and displacements as shown in Eq. 4.21.

Furthermore, the net forces and moments applied to the cylinder must equilibrate the tractions

of the contact region as shown in Fig. 4.7. These are introduced in the compliance matrix through

the Eq. 4.20.
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% =

:="−1∑
:=−"

(−?A: cos \: + ?\: sin \: )'Δ\,

& =

:="−1∑
:=−"

(?A: sin \: + ?\: cos \: )'Δ\,

and " =

:="−1∑
:=−"

?\:'
2Δ\

(4.20)

The external forces and moments applied to the disk can be imposed either through Michel compo-

nents that are singular at the center of the disk (such as A ln(A) cos(\)) or more smoothly by tractions

imposed on the disk surface. If one is interested only in the traction and displacement fields near

contact, St. Venant’s principle permits one to use either approach. In fact, if one wants to analyze

the stress and displacement fields arising from forces conveyed through a rod going through the

center of the disk, the singular forces and moment applied at the center might be more appropriate.
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(4.21)

where ,C>C , *C>C and \C>C are the rigid body displacements in normal, horizontal and angular

directions. %, &, and " are normal force, lateral force, and moment applied on the disk. The four

different parts of compliance matrix �AA , �\A , �A\ , and �\\ correlate radial displacement to radial

traction, tangential displacement to radial traction, radial displacement to tangential traction, and

tangential displacement to tangential traction, respectively. Together, these compliance matrices

comprise to form the compliance matrix �Polar in polar coordinate. The Goodman decoupling

approximation [31] can be implemented by setting �\A = 0.

However, in most of the contact analyses, we are dealing with problems expressed in terms

of rectangular coordinates. This is accommodated by transforming each nodal traction and nodal

displacement from polar to rectangular coordinates in the usual manner. Eq. 4.22 shows a single

node transform at \: .

?
H

:
= −?A: cos(\: ) + ?\: sin(\: ), ?G: = ?

A
: sin(\) + ?\: cos(\),

F: = −FA: cos(\: ) + D\: sin(\: ), D: = F
A
: sin(\) + D\: cos(\),

(4.22)

Formally,

�Rect = )
)
F�Polar)? (4.23)

where ))F and )? are the rotational transformation matrices for the displacement and pressure, �polar

and �Rect are the compliance matrices in polar and rectilinear coordinates. Because �Rect involve
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only nodes in the contact region, it is a fairly small matrix, and the above matrix multiplications

would not be onerous; in practice, the transformations are done analytically as the compliance

matrix in the rectangular frame is assembled. The final compliance matrix for a solid disk is shown

in Eq. 4.24.
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�GH �GG 0 1 cos(\=)
...
...

...

'Δ\ . . . 0 0 0 0

0 . . . 'Δ\ 0 0 0
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(4.24)

where ?H= and ?G= are nodal normal and horizontal tractions; F= and D= are nodal normal and
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horizontal displacements. The four different parts of compliance matrix �GH, �HG , �GH, and �GG

correlate normal displacement to normal pressure, normal displacement to horizontal traction,

horizontal displacement to normal pressure, and horizontal displacement to horizontal traction,

respectively. Together these four matrices comprise the compliance matrix in rectilinear coordinate

�Rect. A similar procedure, but using Eqs. 4.14 and 4.15, can be used to calculate as a compliance

matrix for the surface of a hole in an infinite plane.

Further, to actually perform analysis of contact between two surfaces, one needs both the

discretization of elasticity and a contact algorithm. There are multiple contact algorithms available,

such as [1, 4, 18] that could be employed, and the Method of First Violation of [18] was selected

because of its robustness. In the next chapter, compliance matrix formulation is employed with

the MFV contact algorithm, where it is first verified with available analytical expressions and later

used for simulating other contact problems.

4.4 Summary of Compliance Matrix Formulation

An extremely fine discretization strategy for two-dimensional circular surfaces such as disks, long

cylinders, and holes in an infinite plane is described in detail. The closed-form analytical expressions

of displacement basis are provided to create a compliance matrix. The discretization strategy has

several visible benefits with respect to contact analysis.

1. Only degrees of freedomon the surface are involved, resulting in a smaller system of equations

than is the case with finite element analysis.

2. The process generates a compliance rather than stiffness matrix, permitting the retention of

only the degrees associated with the contact region and associated equations.

3. The strategy facilitates extremely fine meshing over the contact patch, as is necessary to

obtain clear resolution of interface tractions and displacments.
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CHAPTER 5

VERIFICATION OF COMPLIANCE FORMULATION AND OTHER CONTACT
PROBLEMS

Contact problems are notoriously difficult, and most do not have analytical solutions, these that

do usually have solutions obtained by virtue of some simplifying assumptions. A particularly

important analytical solution is the two-dimensional Mindlin problem of two identical elastic

cylinders pressed together by a normal force % and then subject to a shear force & [52] which is

discussed in the previous chapter . These expressions for contact length(20) and normal pressure

distribution (?(G)) can be used for the preliminary comparisons and verification, and they are

available in [6, 56]. Figure 5.1 shows two frictionless concentric disks/cylinders pressed against

each other, and Figure 5.2 shows a cylinder pressed against the inside of a hole in a plane. If both

bodies are elastic, it is necessary to create commensurate meshes on each body in the vicinity of

contact. For a small contact region, analytic expressions for contact length and pressure distribution

are shown in Eq. 5.1.

0 =

√
2%�
c 

, ?(G) = −2%
√
02 − G2

c02

where, � =
^1 + 1
�1

+ ^2 + 1
�2

,  =
1
'1
+ 1
'2

(5.1)

where, ^1, �1, and '1 are the Kolosov’s Constant, shear modulus, and radius of the first cylinder.

Similarly, ^2, �2, and '2 are properties of the second cylinder. % is the total force applied through

the center of the cylinder. By varying these geometric and material properties, we can formulate

multiple contact problems and use these expressions to verify the above compliance formulation.

Numerical and analytical results are compared below. Because analytical solutions are usually

expressed in terms of normal pressure ? and shear traction g, results are reconciled by observing

that for the configurations shown, ? = ?H and g = ?G . Expressions are normalized and non-

dimensionalized using Eq. 5.2. ?̃ and g̃ are the dimensionless normal and lateral tractions. F̃ and

D̃ are the dimensionless normal and lateral displacements. G̃ is the dimensionless coordinate along
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P

∆θ1
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Elastic Cylinder-2

P

∆θ2

R2

Figure 5.1: Two concentric elastic cylinders pressed against each other

the contact region. %̃ and &̃ are dimensionless normal and lateral forces.

?̃ = ?�, g̃ = g�, F̃ = F , D̃ = D 

G̃ =
\1'1 

4c
=
\2'2 

4c
%̃ = 4c%� , &̃ = 4c&� 

(5.2)

5.1 Verification Problems

5.1.1 An Elastic Cylinder Pressed against a Rigid Half-plane

The contact problem of an elastic cylinder pressed against a rigid half-plane, can be obtained from

the two-dimensional Mindlin solution by setting the radius of the second cylinder '2 to infinity

and setting its shear modulus to infinity as well (consider Fig. 5.1). For this verification case,

the geometric and material properties for the first elastic cylinder are radius '1 = 2<, Poisson
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Hole in an infinite elastic plane
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Figure 5.2: A rigid cylinder pressed inside a hole in an elastic half-plane

ratio a1 = 0.3, and shear modulus �1 = 77�%0, causing Eq. 5.1 to yield contact parameters

� = 9.1 × 10−12<2/%0 and  = 0.5<−1. The first cylinder is nominally discretized with 2049

nodes on it’s surface from −c to c with Δ\ = 0.18◦, but in fact only a very small compliance matrix

is constructed – involving only degrees of freedom of nodes anticipated to be in the vicinity of

contact. The cylinder is pressed with a normal force % = 1.09 × 109#/< against the rigid surface,

resulting in a contact arc of 6.67◦ and a contact length of 20 = 0.2332< (Eq. 5.1). Figure 5.3 shows

that the normalized analytical and numerical pressure fields appear identical. In this calculation,

there are 37 nodes in the contact patch, and each load step involved solving an elasticity problem

of roughly double that number of equations and degrees of freedom.

The same contact problem is again analyzed using an extremely fine discretization in the

anticipated contact region. The cylinder is discretized with 513 nodes from −5◦ to 5◦ with

Δ\ = 0.0195◦. The normal force % is again 1.09×109#/< is resulting in 331 nodes (6.47◦ contact

angle) in contact as shown in the fig 5.3b.
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(a) Elastic cylinder pressed against the rigid half-plane: coarse mesh
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Figure 5.3: Comparison of analytical and numerical normal pressure distribution for a elastic
cylinder pressed against a rigid half-plane with a coarse mesh (on top) and with a fine mesh (on
bottom).
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5.1.2 Rigid Cylinder Pressed inside of a Hole in an Infinite Elastic Plane

A rigid cylinder pressed against the inside of a hole in an infinite elastic plane can be constructed

by making the first cylinder rigid (�1 = ∞) and changing the radius of the second cylinder to a

negative value (as shown in Fig. 5.2). The first cylinder has radius '1 = 1< and the hole has radius

'2 = −4<, Poisson’s ratio a = 0.3 and shear modulus�2 = 77�%0. The hole is discretized to have

513 nodes in the estimated contact region from −1.5◦ to 1.5◦, providing an extremely fine mesh for

analysis with Δ\2 = 0.0058◦. The rigid cylinder is subject to a normal force % = 0.104 resulting in

the contact length of 20 = 0.502< and contact angle of 0.5◦ on the hole. In the numerical solution,

81 nodes on the surface of the hole are in contact with the indenter. Figure 5.4 shows that analytical

and numerical pressure distributions appear to be identical.
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Figure 5.4: Rigid cylinder indenter pressed against a hole inside an infinite elastic plane.
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5.1.3 Normal Contact with Friction for an Elastic Cylinder Pressed against a Rigid Half-
plane

Consider the case of an elastic cylinder pressed against a frictional rigid half-plane. In this case,

the elastic cylinder is discretized with 1025 nodes in the anticipated contact region from −1.5◦ to

1.5◦. The cylinder has the same material and geometric properties as those employed in previous

Section 5.1.1. The numerical solution for stick ratio is compared with the same Spence expression

discussed in chapter 3 section 3.2.1.

Figure 5.5 shows that the stick ratio from the Spence expression appears identical to the stick

ratio calculated from numerical simulation with Goodman decoupling is also imposed. The stick

ratio curve with full elastic coupling is only slightly different due to a small Dundur coupling

parameter [26, 35].
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Figure 5.5: Elastic cylinder pressed against a rigid half-plane with friction. The stick ratios for
multiple friction coefficients are compared with the analytical expression provided by Spence.

Another contact problem – that of two identical cylinders pressed against each other with normal

and lateral forces (the two-dimensional Mindlin problem) – is mapped to the problem of an elastic

cylinder pressed against a rigid half-plane in the same manner as the problem of a rigid cylinder

pressed on an elastic half-plane, which is discussed in the chapter 3 section 5 with corresponding
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Figure 5.6: Mindlin contact mapping is created using elastic cylinder pressing on a rigid half-plane
with friction. Stick ratio for multiple friction coefficients are compared with analytical expression
provided by Mindlin.

analytical expressions.

In this verification problem, the elastic cylinder is pressed against the rigid half-plane with

normal force % = 2.2 × 107#/< and then subjected to lateral force & = 4.4 × 106#/<. The

stick ratios are calculated using multiple friction coefficients and compared with analytical results:

Fig. 5.6. The distributed lateral tractions fields g̃(G̃) are calculated numerically for four friction

coefficients (1, 0.8,0.6, 0.2) and compared with analytical values as shown in Fig. 5.7. In each of

these figures, the numerical results appear to be almost indistinguishable from the analytic values.

5.1.4 von-Mises Stress Distribution in an Elastic Cylinder in Contact

In previous sections, very fine meshes made possible by the compliance formulation introduced

here were employed to perform contact calculations with very high resolution of displacements and

tractions in the contact patch. Observing that knowing the traction distribution over the surface of

a cylinder is sufficient to uniquely determine the Michell coefficients (Tab. 4.2), one may use those

coefficients to construct the stress distribution throughout the cylinder explicitly (Eqs. C.2.1). This
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Figure 5.7: The Mindlin two-cylinder contact problem is mapped into that of an elastic cylinder
pressed against a rigid half-plane with friction. The numerically calculated lateral traction distribu-
tion (connected lines) for multiple friction coefficients are compared with analytical values (dashed
lines).

is true also for the case of a hole in the elastic plane (Tab. 4.3 & Eqs. D.2.1).

This construction of the stress field from the results of contact analysis is illustrated on the

following problem. An elastic cylinder with the same geometric and material properties as in

Section 5.1.1 is pressed against the friction-free rigid plane with normal force % = 1.09 × 108,

resulting in 33 nodes in contact. Normal and lateral tractions are calculated during the contact

analysis that is used with Eqs. C.9 and C.10 to calculate stresses (fAA , fA\ , and f\\) throughout

the interior of the body and these are used to evaluate von-Mises stress. The von-Mises stress

is normalized by ?0 and plotted in Fig. 5.8 where the circumferential and radial coordinates are

normalized by 0, the half-width of the contact patch. The maximum von-Misses stress does not

occur on the surface but at a point (0, 0.710) inside the cylinder. This stress contour plot is almost

identical to Figure 3.5(a) of [56].
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Figure 5.8: Contour plot for normalized von-Misses stress inside the elastic disk on pressing against
rigid plane on friction free surface with contact angle 0.64◦. The positions are non-dimensionalize
with the contact length parameter (0).

5.2 Two Identical Elastic Cylinders Pressed and Sheared

Two identical concentric cylinders are pressed against each other with equal and opposite normal

forces % = 8.24 × 106# . Each cylinder has radius ' = 3<, modulus of elasticity � = 200�%0,

and Poisson’s ratio a = 0.3. Normal compression of cylinders results in the contact length of

20 = 2.42< and contact angle of 0.47◦ with 79 nodes in contact. After the normal force has been

applied, equal and opposite lateral forces & = 2.74 × 106# are applied on the two cylinders. In

these numerical experiments, two friction models were employed: the simple Coulomb friction

model (`B = 0.7), and the two-parameter Coulomb friction model (`B = 0.7, `: = 0.49).

Three load cases of contact between identical cylinders are considered:

1. The cylinders are pressed together by a normal force %.

2. Normal force % and then lateral force& are applied; friction is represented by a one-parameter

Coulomb friction model.

3. Normal force % and then lateral force& are applied; friction is represented by a two-parameter
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Coulomb friction model.

The surface tractions and displacements of each of the three cases are shown in Fig. 5.9, and the

stress fields near the surface are shown in 5.10.

5.2.1 Comparing Surface Tractions and Displacement

The numerical tractions and stresses are normalized using ?0 =
2%
c0

, and the horizontal and vertical

coordinates are each normalized by contact length 0. The cases are presented column-wise: the first

column is associated with normal loading and, by symmetry, all shear tractions on the interface are

zero; the center column shows the effect of a lateral force applied after the normal force and where

friction is modeled by the one-parameter Coulomb model; and the right column shows the effect

of a lateral force applied after the normal force and where friction is modeled by a two-parameter

Coulomb friction model (static and dynamic friction).

In the first column of Fig. 5.9, the normal pressure distribution from numerical simulation

agrees almost exactly with the analytical expressions. The surfaces of the two cylinders are flat

in the contact patch. By symmetry, there is no slipping in the contact patch, independent of the

friction model. There is an equal lateral displacement on each interface, towards the interface.

In the second column of Fig. 5.9, applied lateral force & results in lateral traction that is

indistinguishable from the analytical distribution. The contact region divides into two slip regions

near the edges, with 22 nodes slipping, and a stuck region in the middle with 57 nodes sticking.

Lateral displacement differs between the two bodies in the regions of slip.

In the third column of Fig. 5.9, the same lateral force & is applied, but a two-parameter

Coulomb friction model (`B = 0.7 and `: = 0.49) employed. Due to the complexity of the friction

model, there are no available analytic expressions to compare against these numerical solutions.

The discontinuous nature of lateral traction clearly shows the boundary between the stick region

and the slip regions, with 30 nodes slipping and 49 nodes sticking. The stick region reduces by

0.20, and relative lateral displacement in the slip region increases compared to the one-parameter
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Figure 5.9: Surface traction and displacement distributions for three cases: normal force %, only
(left); Shear force, & applied after normal force % and employing a Coulomb friction model
(center); Shear force& applied after normal force % and employing a two-parameter friction model
(right).[17]
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Coulomb friction case. The normal pressure and normal displacement remain unchanged in all

three cases because of the Goodman decoupling approximation.

5.2.2 Comparing Stress Distributions inside the Cylinders

The numerical contact analysis provides the surface tractions at the contact path and those are used,

via the Michell expansion, to calculate stresses inside the cylinder. A region from −20 to 20 on the

surface and extending a distance of 20 into the cylinder is chosen to illustrate the stress contours.

Stresses due to normal compression of the disks are shown in the first column of Fig. 5.10. Radial

stress (fAA), circumferential stress (f\\), and von-Mises stress (fE") are symmetric with respect to

y-axis, but shear stress fA\ is anti-symmetric and is zero on the surface. The maximum von-Mises

stress occurs on the y axis at a distance of 0.70 from the contact plane, and is consistent with values

calculated from the analytic solutions [56, 58].

The application of the lateral force& leaves radial stress fAA contours almost unchanged. Small

changes are seen in thef\\ as its symmetry breaks down and it slightly increases near the contacting

interface. Both friction models provide almost the same fAA and f\\ . The tangential stresses fA\

and von-Mises stress fE" differ dramatically from the case of & = 0 due to the non-zero surface

shear stresses fA\ .

When the one-parameter Coulomb friction model is employed, the maximum von-Mises stress

fE" occurs either on the contact patch within the slip region or slightly above that, depending on

the friction coefficient [58]. In the problem shown, the maximum von-Mises stress occurs near the

trailing edge of the contact surface at 0.820.

When the two-parameter Coulomb friction model is used, the maximum von-Mises stress fE"

occurs exactly at the stick-slip boundary (0.620).

The stresses fields inside the body are not significantly affected by the choice of using the simple

Coulomb friction model or using the two-parameter Coulomb friction model. The differences are

visible near the contact interface, and those differences might have significance with respect

to material fatigue and failure. The maximum von-Mises stress associated with one-parameter
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Figure 5.10: Stress distributions for three cases: normal force, %, only (left); Shear force,& applied
after normal force and employing a Coulomb friction model (center); shear force, & applied
after normal force and employing a two-parameter friction model (right). Horizontal and vertical
coordinates are normalized by 0. [17]
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Coulomb friction is located in the trailing slip region, but for the case of two-parameter Coulomb

friction, that maximum is located at the trailing boundary of the stick-slip region.

5.3 Summary of the 2D Compliance Verification

The compliance matrix formulation is verified with available analytical expressions for normal

pressure, normal displacements, contact length, lateral tractions, and stick ratio. Numerical calcu-

lations agree extremely well with analytic results. The compliance formulation has been shown to

increase the discretization resolution possible in elastic, frictional contact mechanics.

The contact analysis of two identical cylinders pressed against each other with normal and lateral

forces provides a similar distribution of stress fields inside the cylinders for the one-parameter and

the two-parameter Coulomb friction models. On the other hand, the tractions and displacements on

the contact patch differ between the two frictionmodels, and this differencemight have ramifications

with respect to friction and failure.
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PART III

Comparison of Decoupling Approximations and their Ramifications
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CHAPTER 6

ELASTIC DECOUPLING APPROXIMATIONS

Frictional contact is a major part of the tribology universe, yet analytical and numerical tools to

provide detailed insight have been elusive. What analytic solutions exist are generally reliant on

simplifying assumptions – such as the Goodman decoupling assumption – and where tribological

analysis and design is based on those solutions, the decoupling assumptions have to be taken on

faith. It has been difficult to assess the validity of these assumptions numerically because of the

very fine spatial resolution required in the contact regime and the resulting huge system of equations

to be solved at each contact iteration. This numerical limitation has been mitigated recently by the

development of a compliance formulation for the case of contact among two dimensional round

surfaces such as disks or holes and the validity of the decoupling assumptions has been investigated

in the context of such geometries.

6.1 Decoupling Approximations in Elastic Contact

Solving contact problems analytically is extremely complex and only possible for a small number

of surface geometries, usually with some level of elastic decoupling approximation. The most

common decoupling is the Goodman decoupling (GD) approximation [31] asserting that “normal

displacements resulting from lateral traction are negligible compared to the normal displacements

resulting from normal traction." This decoupling approximation has been exploited regularly by

researchers such as Mindlin [52] and Spence [63, 64] to provide analytical expressions for the

width of the contact patch, stick-slip regions in the contact patch, lateral traction, displacement

distributions, and relations between the lateral force and stick-slip ratio in terms of the applied loads

or displacements. Another, more severe, decoupling approximation ignores any elastic coupling

between normal and lateral loads so that “normal displacement and lateral displacement result only

from normal force and lateral force respectively." [30, 69]. This full decoupling (FD) approximation

reduces the complexity of the problem significantly and results in faster though generally not as
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accurate predictions. It is most often implemented for understanding cyclic loading and uneven

contact where the contact calculations of a coupled system over a very large number of steps would

be prohibitive.

Researchers [7, 8, 29, 30] have explored the impact of elastic coupling to understand the process

of frictional shakedown behavior (frictional shakedown happens as initial residual tractions and

displacements reduces the amount of partial slip during the steady state). The elastic coupling

is required to have a shakedown in the contact problem [29, 69]. Because of this, we narrowed

our focus to understand the impact of decoupling approximations on contact parameters. Flicek et

al. [30] explored the impact of elastic coupling on the contact problem with cyclic shear loading.

They measured level of coupling by a norm of matrices and analyzed the effect of initial transient

conditions on steady state contact parameters over the range of geometries, material combinations,

and friction coefficients. They showed that the coupling effects are higher for the material mismatch

than geometric mismatch for a contact problem.

The Goodman approximation is helpful in deriving analytic contact solutions, but it’s assistance

in numerical contact calculations is minimal. On the other hand, complete decoupling facilitates

both development of approximate analytic solutions and substantially speeds up numerical calcu-

lations - presumably at the cost of accuracy. In this study, effects of Goodman decoupling and full

decoupling are assessed by comparison to similar calculations done with full coupling; examining

contact parameters such as surface traction distributions, stick ratios, and steady-state dissipation.

This numerical investigation is now tractable because of a recently derived compliance formula-

tion for elastic two-dimensional circular bodies, dropping degrees of freedom outside the contact

regions from the system of equations to be solved and making extremely fine meshes at the contact

tractable. For this study, five different contact configurations are formulated using circular elastic

cylinders and holes. Multiple simulations are conducted by varying the lateral load and friction

coefficient for each contact problem.
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6.2 Analytical Expressions

Most of the analytical expressions have been discussed in the verification process in previous

chapters. Some of these expressions represents the level of elastic coupling through material

properties and geometries. For a quick refresher, we have reintroduced them here.

� =
^1 + 1
�1

+ ^2 + 1
�2

, V =

^1−1
�1
− ^2−1

�2
^1+1
�1
+ ^2+1

�2

and  =
1
'1
+ 1
'2

(6.1)

A is the measure of the mutual compliance of the two bodies, V is a material mismatch parameter

also known as Dundur’s parameter, and K is the mean curvature of the contacting bodies. G

represents the shear modulus, R denotes the radius of curvature of the body, and ^ is the Kolosov’s

constant (Eq. 3.20 of [6]); with subscripts 1 and 2 refer to each of the two cylinders,

^ =


3 − 4a for plane strain,
3 − a
1 + a for plane stress

(6.2)

where a is the Poisson’s ratio. Parameter V captures the elastic mismatch between the two bodies

and is strongly associated with elastic coupling seen in compliance or stiffness matrices.

If the material properties (G and a) are the same for both elastic bodies (V = 0) that results

in equal amount of transverse yielding in lateral displacement. This corresponds to entire contact

region with zero traction for a normal force which is same as employing a full decoupling approxi-

mation [17, 69]. If one of the materials is rigid and other one is isotropic elastic, then this choice of

materials brings the maximum level of elastic coupling for the analysis [35] because the material

mismatch parameter V becomes maximum and is independent of shear modulus.

V =
^1 − 1
^2 + 1

and � =
^1 + 1
�1

(6.3)

Energy dissipation due to frictional work is one of the contact parameters of interest during

cyclic shear loading. It connects vibration-damping analysis with the contact mechanics. During

a cyclic shear loading, two contacting surfaces move relative to each other in the slip region. The
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friction force in the slip region generates non-conservative and dissipative work which can be

calculated numerically by first summing up the frictional work at each interval for a load step and

later summing up load steps for a cyclic interval. The analytical expressions for the dissipation

due to cyclic shear loading are limited. For two-identical cylinders pressed together and cyclically

sheared, Fleury et al. [27, 28] extended the Mindlin solution to provide a closed-form integral

expression for the dissipation per unit length:

� =

∫ 0

−0
20�`2?2

0

√
1 −

( G
0

)2

( G
0

) √( G
0

)2
−

(
1

0

)
−

(
1

0

)2
log

(
G

1
+

√( G
1
)2 − 1

)) 3G (6.4)

The dimensionless dissipation per cycle is defined

D =
�

%2�

8`2

c2

∫ 0

−0

√
1 − (B)2

[
B
√
B2 − 2 − 22 log

(
B

2
+

√( B
2

)2
− 1

)]
3B

=
8`2

c2 G(2)

(6.5)

where, B = G
0
and 2 = 1

0
is a stick ratio during cyclic shear loading at maximum shear force.

Note that because the above expression is for identical cylinders pressed together, therefore

V = 0, and it does not provide insight into coupling, but it will be shown to be a useful nondimen-

sionalization.

6.2.1 Contact Problems

Simulations are performed for fully coupled, partly coupled (Goodman), and fully decoupled

analyses for multiple load combinations and following five different geometries:

1. A rigid indenter of radius 0.97' is pressed inside a elastic circular hole of radius ' ( ' =

0.03).

2. A rigid indenter of radius 0.5' is pressed inside a elastic circular hole of radius ' ( ' = 1).

3. A elastic cylinder of radius ' is pressed over a rigid half-plane ( ' = 1).
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4. A elastic cylinder of radius ' is pressed over a rigid cylinder of radius 0.5' ( ' = 3/2).

5. A elastic cylinder of radius ' is pressed over a rigid cylinder of radius ' ( ' = 2).

Note that the radius ' is the larger of the radii of each configuration and the dimensionless

quantity  ' could range from zero to infinity, but in these analyses the range of  ' is from 0.03

to 2.0 (In the numerical calculations performed for this study ' had a value of 4.0 meters, but the

particular value of ' becomes irrelevant after normalization and non-dimensionalization). In all

calculations, shear modulus of the larger cylinder (or hole) � = 77 GPa, Poisson’s ratio a = 0.3 and

coefficient of friction ` = 0.7 is assumed. In each case, the larger cylinder (or hole) is elastic and

the smaller one is rigid.

6.3 Surface Tractions for a Cyclic Lateral Force

In this case, a rigid cylinder is pressed against the inside of an elastic hole of twice its radius. The

indenter is pressed with sufficient force % = 8.0×107# to cause a contact area of 20 = 0.022'; this

corresponds to 1.26◦ of the surface of the hole. After the normal load is imposed, a cyclic lateral

force & = 0.65`% is applied to the rigid cylinder. The numerical experiments are conducted with

three levels of elastic coupling: full elastic coupling (FC), Goodman decoupling (GD), full elastic

decoupling (FD). The resulting surface tractions are shown in figure 6.1. There are three columns:

the first column with FC, the second with GD, and the third is associated with the FD.

In the first row of Fig. 6.1, the indenter is pressed against the hole with normal force %. The

resulting normal traction is symmetric about the y-axis, but the contact patch and the pressure

distribution are a little narrower for the fully coupled case than for the GD and FD cases because

of the retarding effects of surface shear traction. The lateral traction is self-equilibrating and anti-

symmetric about the y-axis for FC and GD. For the full decoupling case, there is no lateral traction

caused by the application of the normal load.

The second row of Figure 6.1 corresponds to a lateral force & applied while the indenter

remains pressed against the surface of the hole. For the GD and FD analyses, the normal pressure

distribution remains unchanged from that calculated in the previous step (recall that for GD and FD
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Figure 6.1: Surface traction distributions for three cases: fully coupled (FC) (in left); Goodman
decoupled approximation (GD) (in center); fully decoupled approximation (FD) (in right).
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Figure 6.1 (cont’d):
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analyses the shear tractions do not influence normal displacement). However, for the FC analysis,

normal traction does change slightly from the previous case as symmetry is lost due to coupling

with the shear traction. Also, the contact region is shifted to the left by 0.10. The lateral traction

distributions for the FC and GD cases are similar and both distributions loose symmetry on the

application of the lateral force. In the case of FD, lateral traction is symmetric.

In the third row of Fig. 6.1, the applied lateral force is slowly reversed to −&. The normal

traction for FC is changed again; the shape is altered to have one more inflection and the contact

region shifts toward the right by 0.20. One can identify the stick and slip region boundaries through

the inflections in normal traction distribution. The lateral traction reflects the shift in the contact

patch as well. For the GD case, the normal traction distribution is unchanged and the shear traction

is similar to, though distinguishable, from that of the FC case. For the FD analysis, the lateral

traction distribution is reflected vertically.

The fourth row of the Fig. 6.1 reflects the applied lateral force slowly reverting to& to complete

a cycle. For the FC case, the normal traction continues to evolve and acquires another inflection

and the lateral traction also changes, acquiring one more local maximum. For the GD analysis, the

lateral traction distribution continues to show qualitative similarity to that of the FC case. For the

FD case, the lateral traction is the same as that of step 2 where & had the same value.

The fifth row of the Fig. 6.1 has to do with reversing the shear force again to −&. Of course,

the tractions in FD case are identical to those of step three when the shear and normal forces were
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Figure 6.2: Normalized dissipation hysteresis and non-linear part of hysteresis: fully coupled (in
left); Goodman decoupled (in center); fully decoupled (in right). Non-linear part is generated by
removing the linear

the same. Particularly interesting are the tractions of the FC and GD analyses, where the normal

and shear tractions appear to have reverted to what they were in Step 3. From this point on, the

traction distributions at the end of each shear loading are exactly what they were in the previous step

having that shear load. The same surface traction behavior is observed for the other four contact

geometries.

From the above, one can observe that though the normal traction distribution associated with

the GD analysis can be remarkably different from that of the FC analysis, but the shear tractions

are quantitatively very similar. The FD analyses show extremely different shear tractions profiles

than either the FC or GD cases.

Frictional dissipation is associated with wear and is also important as a source of vibration

damping, but in addition it provides some insight into frictional contact. The contact formulation
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employed here provides net force on each body and net relative displacement at each point in

the cycle. These histories are used to construct the hysteresis curves shown in Fig. 6.2a. Once

the curves become closed, a steady-state has been achieved and the area within the curve is the

dissipation per cycle. Because these frictional contact are almost elastic, these curves result in

almost linear and difficult to differentiate. This limitation is addressed by subtracting its linear

part from each curve (figure 6.2b). For the FC and the GD, the first three-quarters of the first

cycle reflects the effect of the initial shear traction distribution. Once a steady-state is achieved,

the dissipation per cycle is the area enclosed by the loop. For the FD case, the steady-state curve

results after a quarter cycle. If scaled in the same way (removing the same linear part), steady-state

curves for GD and FD are nearly identical and result in the same dissipation.

6.4 Variation with Lateral Force

The five contact geometries discussed in the section 6.2.1 are simulated over a range of shear load

amplitudes. For each case, four load cycles are simulated resulting in at least three steady-state

cycles. Dissipation and stick ratio for all three coupling choices are calculated and compared. Also,

the !1 norm in each case is calculated for the differences between the FC tractions and those of

the GD and FD approximations. In each case the larger-diameter body is treated as elastic with

the parameters employed in Section 6.3 and the other body is treated as rigid. The applied normal

force % is adjusted for geometry such that the contact patch will have a width of 0.088m with a

contact angle of 1.26◦ relative to the larger diameter body. The elastic parameters � and V are the

same for all geometries though the curvature  (defined Eq. 6.1) will differ for each geometry.

For each contact geometry, steady-state dissipation is calculated and plotted against the normal-

ized lateral force ratio (&̃ = &/`%) for FC as shown in Fig 6.3a. As expected, dissipation increases

with increase in lateral load. Each contact geometry ( ') is associated with a different dissipation

curve. On the other hand, when properly normalized and nondimensionalized, all the dissipation

curves converge to a single curve (Fig. 6.3b ) – this is anticipated from the nondimensionalization

of the relevant integral equations. The log-log plot of dimensionless dissipation vs dimensionless
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Figure 6.3: For the five contact geometries, contact parameters such as Dissipation, Stick ratio,
and errors in surface tractions are plotted against over a range of lateral force (&̃). All calculation
involved ` = 0.7 friction coefficient.
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Figure 6.3 (cont’d):

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Lateral Force (&̃ = &/`%)

St
ic
k
R
at
io

(F
or
w
ar
d
Lo

ad
)

FC
GD
FD

(e) Stick ratio after a forward lateral load with ` = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Lateral Force (&̃ = &/`%)

St
ic
k
R
at
io

(B
ac
kw

ar
d
Lo

ad
)

FC
GD
FD

(f) Stick ratio after a backward lateral load with ` = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

Normalized Lateral Force (&̃ = &/`%)

?
4
A
A
>
A

 ' = 0.03  ' = 1
 ' = 1  ' = 1.5
 ' = 2

(g) Errors in Normal traction ?4AA>A with ` = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

Normalized Lateral Force (&̃ = &/`%)

g 4
A
A
>
A

GD FD
 ' = 0.03  ' = 1
 ' = 1  ' = 1.5
 ' = 2

(h) Errors in Lateral traction g4AA>A with ` = 0.7

97



shear force is nearly linear over the range of loads applied. At low values of load, the slope of

the curve for this FC problem is roughly 3.15. For each decoupling approximation, dissipation

is calculated with varying lateral force as shown in figure 6.3c. When plotted on a log-log graph

(not shown here), the slope is close to 3.0 – as suggested in [32]. Dissipation values are nearly

equal for GD and FD, which are higher than those of the FC analysis at each level of lateral force.

The dissipation values for GD are divided by dissipation values of FC, and the resulting values are

plotted in Fig. 6.3d. This plot indicates that the decoupling approximations over-predict dissipation

by 20% to 50% as compared to the full coupling solution. These ratios are independent to the mean

curvature (K).

Figure 6.3e and 6.3f show the stick ratios for forward shear load and the reverse direction load

respectively. The stick-ratios for all three couplings are independent of the mean curvature (K). In

the case of backward lateral loading (−&), stick ratios are nearly the same for all three coupling

cases. It is in application of the initial shearing load that the cases differ. Stick ratios are lowest for

FC contact, highest for FD contact, and intermediate for the GD case. For the case of FD contact,

the stick ratios are the same for both loading and unloading.

Errors in the surface tractions due to the GD and FD approximations are calculated with aid of

the !1 norm using the following relation:

?error =

∫
|?(G) − ?(G)FC |3G∫
|?(G)FC |3G

=

∑#
8=1 |?8 − ?FC8 |ΔG∑#
8=1 |?FC8 |ΔG

,

gerror =

∫
| (g(G) − g(G)FC) |3G∫
|g(G)FC |3G

=

∑#
8=1 |g8 − gFC8 |ΔG∑#
8=1 |gFC8 |ΔG

,

(6.6)

where ?8, and g8 are nodal normal and lateral tractions respectively, while superscript �� represents

the tractions for full elastic coupling; # is the total number of nodes in the contact region and ΔG

is the length of the interval.

By assumption, the normal traction distributions for GD and FD do not change with change in

the lateral load though those of the FC cases do, so it is sufficient to show the error in normal traction

calculated for GD as shown in Fig. 6.3f. The error increases from 0% to 23% with increase in the

lateral force. Error in lateral traction is calculated for both GD and FD and shown in Fig. 6.3g. For
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the GD case, error in lateral traction first increases to a maximum of 35% and later reduces to 20%

with increase in lateral force. For the FD case, error in lateral traction reduces with an increase in

lateral force from 100% to 20%. For small lateral load, the lateral traction distribution is similar

for GD and FC. This is understood by observing that at zero lateral load the shear traction of the

FD case is zero – representing 100% error with respect to the FC case.

At very high lateral load, nearly all of the the contacting region starts to slip, resulting in 20%

error for GD and FD because the contact region shifts by 0.10 for FC.

6.5 Variation with Coefficients of Friction

Again, the same five contact geometries are simulated over the range of friction coefficients (from

0.05 to 1) , but with a fixed lateral force ratio (&̃ = &/`% = 0.99). The applied normal forces (%)

and the elastic properties (� and V) are the same as in the previous case such that the contact patch

has a width of 0.088m for all five geometries. Steady-state dissipation and errors in the surface

tractions are compared for the five contact geometries as shown in Fig. 6.4. Numerical simulations

(not shown here) indicate that in either forward or reverse loading, so long as the force ratio &̃ is

constant, there is little dependence on coefficient of friction `.

The steady-state dissipation is calculated and plotted against the friction coefficients. The

dissipation increases with the increase in friction coefficient and also with the increase in  ', as

shown in Fig. 6.4a. Again on non-dimesionalizing the dissipation, all dissipation curves converge

to a single curve, as shown in Fig. 6.4b and become independent of mean curvature values, also

expected by the dissipation Eq. 6.5. The log-log plot of dissipation against friction coefficients is

linear in nature. The slope of the curve is 2 for all three cases (FC, GD, and FD), which represents

a quadratic relation also anticipated from the dimensionaless dissipation equation 6.5. Errors in

surface traction are calculated over the range of coefficients of friction using Eq. 6.6 that result

independent of the mean curvature value  . Figure 6.4 shows that both errors in normal and

lateral traction increase with the increase in the coefficient of friction and are independent of the

decoupling approximation due to tiny stick region at high lateral force ratio (&̃ = 0.99). The

99



10−1 100
10−14

10−9

10−4

Friction Coefficient (`)

D
is
si
pa
tio

n
�

 ' = 0.03  ' = 1
 ' = 1  ' = 1.5
 ' = 2

(a) Dissipation with full elastic coupling and &̃ = 0.99

10−1 10010−3

10−2

10−1

100

Friction Coefficient (`)

N
or
m
al
iz
ed

D
is
si
pa
tio

n
D

 ' = 0.03  ' = 1
 ' = 1  ' = 1.5
 ' = 2

(b) Non-dimensional dissipation values with full elastic coupling and &̃ = 0.99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Friction Coefficient (`)

?
4
A
A
>
A

 ' = 0.03  ' = 1
 ' = 1  ' = 1.5
 ' = 2

(c) Errors in Normal traction ?4AA>A with &̃ = 0.99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Friction Coefficient (`)

g 4
A
A
>
A

GD FD
 ' = 0.03  ' = 1
 ' = 1  ' = 1.5
 ' = 2

(d) Error in Lateral traction g4AA>A with &̃ = 0.99

Figure 6.4: For the five contact geometries, contact parameters such as Dissipation, Stick ratio, and
errors in surface tractions are plotted against over a range of friction coefficients (`). All calculation
involved &̃ = &/(`%) = 0.99 lateral force.
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Figure 6.5: For a rigid cylinder pressed inside a circular hole of twice radius, contact parameters
such as Dissipation, Stick ratio, and errors in surface tractions are plotted against over a range of
friction coefficients (`) and five different lateral ratio &̃.
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non-dimensionalized contact parameters are independent of the mean curvature even with variation

in friction coefficients.

Next, a contact problem – a rigid cylinder pressed inside the elastic hole twice its radius –

is simulated with five different lateral load ratios (&̃) over a range of friction coefficients. The

dissipation value for GD is divided by dissipation value for FC to calculate a dissipation ratio. The

ratio is plotted against the friction coefficients as shown in Fig. 6.5. The dissipation ratio increases

with increasing friction coefficients for high lateral load (&̃ = 0.99, 0.93). But this ratio results in a

concave up curve for low lateral load, as shown in Fig. 6.5. The dissipation ratio varies from 1.14

to 1.30 for the five lateral forces, concluding at least a 14% overestimation of dissipation calculated

with decoupled approximation.

Errors in normal tractions increasewith increasing friction coefficients and lateral load, as shown

in Fig. 6.5b. Errors in lateral traction depend significantly on the decoupling approximations. For

the GD case, error increases with increase in the coefficient of friction. The maximum value of

error observed is 35%. But for the FD case, error in lateral tractions reduces for lower lateral ratios

and increases for higher lateral ratios, as shown in Fig. 6.5c.

6.6 Discussion

Both qualitative and quantitative ramifications of the decoupling assumptions can be assessed on

the basis of the simulations reported here. Shear tractions and stick ratios calculated using the

Goodman decoupling approximation are consistently in good qualitative agreement with the fully

coupled (correct) traction distributions. Dissipations and normal tractions remain the same for

the Goodman decoupling and full decoupling approximations. As expected, the shear traction

distributions associated with full decoupling bear little resemblance to the traction distributions

predicted by the full coupling model or the Goodman decoupling model. The fully coupled analysis

shows the contact patch shifting from side to side as lateral forces are applied. By construction,

neither the Goodman’s model or fully-decoupled analyses show any motion of the contact patch.

As expected fromanalyses of the underlying integral equations, the appropriately nondimension-

102



alized energy dissipation plots are independent of the geometrical parameter  '. The decoupling

approximations almost always lead to over-predicting the dissipation. For the cases of Goodman

decoupling and full decoupling, the log-log plots of dissipation vs shear load show slopes close

to 3.0, consistent with Goodman’s observation [32]. On the other hand, the fully coupled model

yields slightly higher slopes, close to 3.15. For all three coupling treatments, the dissipation in-

creases proportionally to the square of friction coefficient. Other nondimensional parameters such

as stick-ratios, errors in the surface tractions also happen to be independent of  '.

The normalized normal traction is the same for GD and FD, but visibly distinguishable from FC.

The errors in surface traction are sensitive to lateral force ratio and friction coefficients. Because

increase in lateral force ratio or the friction coefficients causes high lateral traction in the contact

region, the impact of the normal tractions for the fully coupled system and results in the higher

normal traction error.

The errors in lateral traction are significantly different for Goodman decoupling and full de-

coupling. For the Goodman decoupling, errors in lateral traction increase with increase in lateral

traction due to its qualitative similarity with fully coupled case. For full decoupling, small lateral

force leads to small lateral traction which is different than lateral traction calculated for the fully

coupled case. In some cases, this difference results in almost 100% error.

6.7 Summary of Effects of Elastic Decoupling Approximations

The research presented here assess the seriousness of compromises in accuracy that results from

exploitation of the simplifying approximations of Goodman and of full decoupling. A few notable

points are:

• Goodman decoupling approximation showed surprisingly good results in capturing the shape

of lateral tractions and stick ratio. However, Goodman decoupling shows some serious errors

in measuring dissipation and surface tractions. The Goodman decoupling does not predict

the shift of contact region which is important for tribological analysis.

• Full decoupling approximation did not predict a proper lateral traction. However, it is no
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worse than Goodman decoupling in estimating the dissipation and normal traction. It shows

serious errors both quantitatively and qualitatively compared to the fully coupled case.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

In this chapter, a brief summary of the dissertation is presented, highlighting themain achievements.

Brief concluding remarks are provided with directions to continue this research work in the future.

7.1 Summary

The aim of this research was to develop a numerical test-bed to solve and analyze contact problems.

A robust contact algorithm and an extremely fine discretization method are required to create

numerical test-bed.

Contact Algorithm: To address this, a contact problem – a rigid indenter pressed against

an elastic half-plane is analyzed where an elastic half-plane is discretized to create a compliance

matrix. Applying the conventional algorithm showed issues with convergence, so a new contact

algorithm – the Method of First Violation (MFV) is developed that showed robustness and fidelity

with contact path. The conventional algorithm andMFV are compared and verified using analytical

expressions for surface tractions, stick-ratio, and displacements.

TheMFV’s robustness was shown by employing a two-parameter Coulomb frictionmodel, Dahl

friction, and one-parameter Coulomb friction with a high coefficient of friction. For the same cases,

a conventional algorithm would not converge or provide correct solutions. The path-dependent

integrity of the MFV is shown through surface traction evolution during cyclic shear loading when

the two-parameter friction model is employed. The computational efficiency of MFV is of the

similar order to the conventional algorithm if optimal nominal load step is used.

FineMesh Strategy: A compliance matrix formulation is derived for two-dimensional circular

elastic cylinders, disks, and holes in an infinite plane. Michell’s Airy stress function is used with the

Fourier series to calculate stresses and displacements inside and on the surface of an elastic body.

First, radial and tangential displacements over the contacting surface are calculated by applying a

unit radial and tangential force on a discretized interval for a circular disk or hole. This calculated
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displacement basis is used as a column of compliance matrix, and other columns are assembled by

the circular shifting of the displacement basis. The resulting polar compliance matrix is converted

to Cartesian form through rotational transformations.

Contact problems of an elastic cylinder pressed against a rigid half-plane and a rigid cylinder

pressed inside a circular hole are analyzed using compliance matrices. These compliance matrices

with the MFV contact algorithm are verified with available analytical expressions of surface

traction, stick ratio, stresses, and surface displacements. Another contact problem – Two identical

elastic cylinders pressed against each other and sheared – is analyzed for two friction models

(one-parameter Coulomb and two-parameter Coulomb) while employing Goodman decoupling

approximation. Contact parameters such as surface traction, surface displacements, and stresses

in and over the contacting surfaces are compared. The change in friction model caused a slight

change in stress fields inside the contacting surfaces, and most of the differences are noticed in

surface tractions, slip, and the location of maximum von-Mises stress.

Comparing Decoupling Approximations: Multiple contact problems are numerically simu-

lated usingMFV and the compliancematrix strategy. Five different contact geometries are designed

using elastic cylinders, holes, and half-plane, where Goodman decoupling approximation and full

decoupling approximations are employed along with full elastic coupling in contact problems.

Numerical simulations are conducted over a range of lateral force ratios and friction coefficients.

Contact parameters calculated from decoupling approximations are compared with corresponding

full elastic coupling. Both qualitative and quantitative ramifications of the decoupling approxima-

tions are assessed, showing some serious differences between contact parameters.

7.2 Concluding Remarks

The frictional contact problems are notoriously complex and require a robust contact algorithmwith

an extremely fine discretization in the contact region for its analysis. These concerns are addressed

by developing a robust contact algorithm – Method of first Violation – and deriving a compliance

formulation for the two-dimensional disks, cylinders, and holes. These two developments provide
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a robust test-bed to analyze the contact problems. This test-bed is used to compare the Goodman

and full decoupling approximations with full coupling and to assess the level of accuracy and

compromises due to these decoupling approximations. Now, this test-bed offers opportunities to

explore other complex contact problems that were previously difficult or intractable.

7.3 Future Research

In the future, this research can be expanded in multiple directions. Some of these have been planned

to be explored in the near future.

• Develop a similar compliance matrix formulation for other geometries such as annular disks

and cams. A compliance formulation for annular disks or cylinders may require a similar

approach with a little more complicated math.

• Employ other frictionmodels on this test-bed and compare and correlate the numerical results

with the experimental results of joints.

• Develop a formulation that can connect the finite element approach with compliance formu-

lation of elastic bodies with circular contact profiles such as cams and gears. One would

hope to explore the contact analysis through compliance formulation and predict the other

important parameters outside the contact region through finite element analysis.

• Implement this extremely fine mesh for elastohydrodynamic lubricant contact and conduct

contact analysis for contact problems such as rotating shafts and roller bearings.
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APPENDIX A

COMPLIANCE MATRIX FORMULATION FOR ELASTIC HALF-PLANE

Consider a rigid cylinder pressing an elastic half-plane with consequent normal pressure ?(G) and

a lateral traction g(G) as shown in Fig A.1. These distributed tractions result in the normal and

lateral displacements F(G) and D(G) respectively, which can be calculated using Eqns. (A.1) and

(A.2) [6, 35]. These expressions involve singular kernels and constants �1 and �2 representing

arbitrary rigid body displacements.

𝑥𝑥
𝑦𝑦

τ
𝑝𝑝 𝑤𝑤

𝑢𝑢

Figure A.1: Coordinates G, H; tractions ?, g; and displacements D, F on the surface of an elastic
half-plane

F(G) = −
∫

?(Z) (^ + 1) log |G − Z |
4c`

3Z −
∫

g(Z) (^ − 1)sgn(G − Z)
8`

3Z + �1 (A.1)

D(G) = −
∫

g(Z) (^ + 1) log |G − Z |
4c`

3Z +
∫

?(Z) (^ − 1)sgn(G − Z)
8`

3Z + �2 (A.2)

These equations are the basis for creating the discretization method discussed below.

A.1 Discretization

In order to use numerical simulation to obtain insight into the mechanics taking place in a contact

patch, it is necessary to have a very fine mesh in that region. In most general applications, this is

done using finite element analysis where a fine mesh in the contact region requires meshing the

full substrate structure with a grid that gradually increases in coarseness away from the contact

patch. This involves a huge number of degrees of freedom that must be solved at each iteration of

each load step. Though there are various flavors of efficiencies available, such as static reduction
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of the degrees of freedom not in the region of the contact patch [23, 36], implementation of those

efficiencies also involve tremendous computer resources and substantial compute time.

In the particular case where the elastic component is a half-plane, it is possible to formulate the

problem so that the only degrees of freedom are the displacement and tractions on the surface of

the half-plane in the vicinity of the region of contact.

With reference to Equations A.1 and A.2, we consider some set of # basis functions q: (G) such

as those used in one-dimensional finite element analysis so that in the interval (−', ') containing

the region of contact, we express our tractions in terms of those basis functions.

?(G) =
:="∑
:=−"

q: (G) ?: and g(G) =
:="∑
:=−"

q: (G) g: (A.3)

where ?: and g: are the values of pressure and shear stress at at location G: , respectively. In the

development that follows, the shape functions used are disjoint step-functions constructed so as

to serve as a partition of unity in (−', '). Implicit in the above definition is an assignment of

# = 2" + 1 nodal locations:

G: = 2 0 : where 0 = '/# (A.4)

The step basis functions q: (G) are now defined as

q: (G) =


0 if G ≤ G: − 0

1 if G: − 0 < G < G: + 0

0 if G ≥ G: + 0

(A.5)

The displacements F?
:
(G), D?

:
(G), Fg

:
(G), and D?

:
(G) associated with these pressure basis func-

tions are provided in [35] for the case of : = 0 and are presented in the below A.3. The remaining

basis functions expressed in terms of F?0 (G), D
?

0 (G), F
g
0 (G), and D

?

0 (G):

F
?

:
(G) = F?0 (G − G: ), D

?

:
(G) = D?0 (G − G: ),

Fg: (G) = F
g
0 (G − G: ), Dg: (G) = D

g
0 (G − G: )

(A.6)

These relationships are illustrated for q: (G) and F?: (G) for : = −1, 0, 1 in Figure A.2, where normal

displacement distribution also shifted by +ΔG or −ΔG on shifting the normal unit pressure.
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Figure A.2: Unit normal pressure and corresponding displacement on shifting by −ΔG and ΔG

The displacements corresponding to Equation A.3 are

F(G) =
:="∑
:=−"

F
?

:
(G) ?: +

:="∑
:=−"

Fg: (G) g: +,C>C

D(G) =
:="∑
:=−"

D
?

:
(G) ?: +

:="∑
:=−"

Dg: (G) g: +*C>C

(A.7)

and,C>C and*C>C are yet unknown rigid body vertical and horizontal displacements, respectively.

A.2 Compliance Matrix

Evaluating Equation A.6 at the nodal locations ({G: }) yields a compliance matrix for displacements

in terms of tractions. In order to accommodate the unknown rigid body displacements ,C>C and

*C>C , it is necessary to add two force equilibrium equations

�# =

:="∑
:=−"

?:ΔG and �! =

:="∑
:=−"

g:ΔG (A.8)

where ΔG = 20 and �# and �! are the net normal and lateral forces imposed on the half plane,

respectively. All these relationships are shown in Equation A.9. It is assumed that at every step

two of,C>C ,*C>C , �# , and �! are known.
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(A.9)

A.3 Displacements Associated with Unit Normal Pressure and Unit Shear
Traction Functions for : = 0

The displacements associated with the traction basis functions for pressure and shear are provided

in [35]. The normal displacement due to unit normal pressure in (−0, 0) is

F
?

0 (G) =
−�
2c

[
(0 + G) ln

(0 + G
0

)2
+ (0 − G) ln

(0 − G
0

)2
]

(A.10)

for G ∈ (−∞,∞)

The lateral displacement due to unit pressure in (−0, 0) is1 .

D
?

0 (G) =

−�VG for G ∈ (−0, 0)

−�V0 sgn (G) otherwise
(A.11)

The lateral displacement due to unit shear traction in the interval (−0, 0) is:

Dg0 (G) =
�

2c

[
(0 + G) ln

(0 + G
0

)2
+ (0 − G) ln

(0 − G
0

)2
]

(A.12)

for G ∈ (−∞,∞)

The normal displacement due to unit shear traction in (−0, 0) is1.

Fg0 (G) =

−�VG for G ∈ (−0, 0)

−�V0 sgn (G) otherwise
(A.13)

1 Equations of lateral displacement due to normal pressure A.11 and normal displacement due to lateral traction
A.13, differ by factor of two from the corresponding equations in "Mechanics of Elastic Contacts" [35] in chapter 14
at page 427. However, substituting these traction and displacement expressions into the integral equations of Chapter
2 of that book and of Chapter 12 of [6] indicate that the expressions used here are correct.
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Above,

� = 2
1 − a2

�
and V =

1 − 2E
2(1 − E) (A.14)

For plane strain ^ = 3 − 4a, and � = 2� (1 + a)

�V =
(^ − 1)

4�
(A.15)
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APPENDIX B

IMPLEMENTAION OF DAHL FRICTION MODELWITH ALGORITHM-II (METHOD
OF FIRST VIOLATION)

The rate-independent Dahl model can be compared to Coulomb friction model and has similarities

to it as shown in the Fig. B.1. TheDahlmodel and Coulomb friction differ in the regimewhere force

is less than 52, the force necessary to cause sliding. In that regime the Dahl model provides a force

evolution equation (Eq. 3.9) while Coulomb friction imposes a no-slip condition. The parameter f

is a contact stiffness associated with interface mechanics before slip. This differential relationship

can be implemented numerically using a finite difference method with explicit integration. In the

partial slip regime ( 5 < 52) the Dahl model becomes (Eq. B.1), which can be expressed in the

simpler form of Eq. B.2.

5 − 50
D − D0

= f

����1 − 50
`?0

sgn( ¤D0)
����W sgn

(
1 − 5

`?0
sgn( ¤D0)

)
using,  = f

����1 − 50
`?0

sgn( ¤D0)
����W sgn

(
1 − 5

`?0
sgn( ¤D0)

) (B.1)

5 −  D = 50 −  D0 (B.2)

where, 50, D0 and ?0 are the known friction force, lateral displacements, and normal pressure values

of the last equilibrium configuration. f and W are the Dahl parameters. Quantities 5 and D are the

fc = µp

−fc

Coulomb Friction

slope=σ1

slope=σ2

Dahl Model

U

f

Figure B.1: Comparing Dahl friction model with Coulomb friction model.
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friction force and lateral displacement, to be calculated for the end of the load step.

Nodal Statuses Equality Constr. Inequality Constr.
Contact and Partial slip g −  D = g0 −  D0, F = 6 |g | ≤ 5 , ? ≥ 0
Contact and Slip Right g = 5 , F = 6 ¤D ≥ 0, ? ≥ 0
Contact and Slip Left g = − 5 , F = 6 ¤D ≤ 0, ? ≥ 0
Not-in-Contact ? = 0, g = 0 F ≤ 6

Table B.1: Equality and inequality constraints for Dahl friction model.

The equality and inequality constraints are similar to those of Coulomb friction except in the

region of partial slip (which corresponds to the stick region for Coulomb friction). The equality

constraints for each node (B.1) can be incorporated into a system matrix similar to Eq. 2.2 and

Algorithm-II can be applied with few other changes. Among those changes is resetting the shear

traction of sliding nodes when normal traction decreases, also, because of the explicit formulation of

the constitutive equation, accuracy and stability require use of small times steps as well calculation

of those that cause transition of node status.
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APPENDIX C

MICHELL COEFFICIENTS FOR A SOLID ELASTIC DISK WITH NO HOLES

The Michell Airy stress function for a solid elastic disk after discarding the secular and multi-value

terms is following:

Φ0(A, \) = �01A
2 + �04\ + �11A

3 cos(\) + �12

[
A log(A) cos(\) − ^ + 1

^ − 1
A\ sin(\)

]
+ �11A

3 sin(\) + �12

[
A log(A) sin(\) + ^ + 1

^ − 1
A\ cos(\)

]
+
∞∑
==2

[
(�=1A=+2 + �=3A=) cos(=\) + (�=1A=+2 + �=3A=) sin(=\)

] (C.1)

C.1 Stresses and Displacements

The stresses and displacements are calculated for the stress function Eq. C.1 using Michell Table

??. Radial stress fAA and tangential stress fA\ at A = ' results in the radial and tangential tractions

applied on the surface of the disk and are sufficient to formulate a compliance matrix. Thus,

circumferential stress f\\ is not required for calculation.

fAA = 2�01 +
[
2A�11 + �12

(
1
A
− (^ + 1)
(^ − 1)

2
A

)]
cos(\) +

[
2A�11 + �12

(
1
A
+ (^ + 1)
(^ − 1)

(−2)
A

)]
sin(\)

+
∞∑
==2

[
(�=1(−(= + 1) (= − 2)A=) + �=3(−=(= − 1)A=−2))

]
cos(=\)

+
∞∑
==2

[
(�=1(−(= + 1) (= − 2)A=) + �=3(−=(= − 1)A=−2))

]
sin(=\)

fA\ =
�04

A2 +
[
2A�11 + �12

1
A

]
sin(\) +

[
2A�11 + �12

1
A

]
cos(\)

+
∞∑
==2

[
(�=1(=(= + 1)A=) + �=3(=(= − 1)A=−2))

]
sin(=\)

+
∞∑
==2

[
(�=1(−=(= + 1)A=) + �=3(−=(= − 1)A=−2))

]
cos(=\)

(C.2)
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Figure C.1: Stress distribution on the solid disk is equlibrated with forces and moment near the
center.

Stresses distributed on the surface of the disk due to contact should be equilibrated by applying

the forces on the disk away from the contact or by applying the forces and moment near the center

of the disk as shown in Fig. C.1.

A normal force per unit length (%) is equilibrated with components of radial (fAA) and tangential

(fA\) stress as shown in Eq. C.3. Expressions of stresses from Eq. C.2 are substituted in Eq. C.3

and solved. The expression results with only Michell coefficient (�12) to equilibrate the normal

force (%).
% =

∫ c

−c
(fAA cos \ − fA\ sin \)'3\

% =

[
2'2�11 + �12

(
1 − (^ + 1)2
(^ − 1)

)]
c −

[
2'2�11 + �12

]
c

% = −2�12c

(
(^ + 1)
(^ − 1)

) (C.3)

Similarly, lateral force per unit length (&) is equilibrated with components of radial and tangential

stress as shown in C.4. The expression results with only Michell coefficient (�12) to equilibrate the

lateral force (&).

& =

∫ c

−c
(fAA sin \ + fA\ cos \)'3\

& =

[
2'2�11 + �12

(
1 − (^ + 1)2
(^ − 1)

)]
c +

[
2'2�11 + �12

]
c

& = −2�12c

(
(^ + 1)
(^ − 1)

) (C.4)
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A moment at the center of disk results because of the tangential stress (fA\) at the contact surface

which is equilibrated using Eq. C.5. The moment expression results with Michell coefficient (�04).

" =

∫ c

−c
(fA\)'23\

" = 2c�04

(C.5)

Three Michelle coefficients �12,�12, and �04 are sufficient to equilibrate the forces and moment

applied on an elastic circular disk.

To calculate displacement at the surface, first strains at the contact surface are calculated using

Hook’s law and stresses shown in Eq. C.2. Later, strains are integrated over the length of the contact

surface that results in displacements and some constant of integration. The procedure is explained

in Chapter 9 (especially section 9.2) of Elasticity book [6]. As pointed out in the procedure, three

constants of integration result from derivation. Two constants represent the rigid body translation

and one constant represents rigid body rotation. Displacements expressions (Eq. C.6) are without

these rigid body constants. One would need to consider the rigid body displacements during the

calculation as shown in the section 4.3.
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2`*A = �01(^ − 1)A

+
[
�11(^ − 2)A2 + �12

1
2

(
((^ − 1) ln(A) − 1) − (^ + 1)

(^ − 1) ((^ + 1) ln(A) − 1)
)]

cos(\)

+
[
�11(^ − 2)A2 + �12

1
2

(
((^ − 1) ln(A) − 1) + (^ + 1)

(^ − 1) (1 − (^ + 1) ln(A))
)]

sin(\)

+
∞∑
==2

[
(�=1((^ − = − 1)A=+1) + �=3((−=)A=−1))

]
cos(=\)

+
∞∑
==2

[
(�=1((^ − = − 1)A=+1) + �=3((−=)A=−1))

]
sin(=\)

2`*\ = −�04
1
A

+
[
�11(^ + 2)A2 + �12

1
2

(
(−1 + (^ + 1) ln(A)) − (^ + 1)

(^ − 1) (−1 − (^ + 1) ln(A))
)]

sin(\)

+
[
−�11(^ + 2)A2 + �12

1
2

(
(1 + (^ − 1) ln(A)) + (^ + 1)

(^ − 1) (−1 − (^ + 1) ln(A))
)]

cos(\)

+
∞∑
==2

[
(�=1((^ + = + 1)A=+1) + �=3(=A=−1))

]
sin(=\)

+
∞∑
==2

[
(�=1(−(^ + = + 1)A=+1) + �=3(−=A=−1))

]
cos(=\)

(C.6)

C.2 Michell Terms for Unit Radial/Tangential Load

The unit pressure q0 is applied radially in the interval centered at node \ = 0 generating a non-zero

radial stress and a zero tangential stress. Trigonometric terms from the Eqs.C.2 and 4.10 are

equated and result in the linear equations in A’s and B’s shown in C.7.
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fAA = q0(\) fA\ = 0

2�01 =
Δ\

2c
�04/A2 = 0

2A�11 + �12
(1
A
− (^ + 1)
(^ − 1)

2
A

)
=

2
c

sin(Δ\
2
) 2A�11 + �12

1
A
= 0

2A�11 + �12
(1
A
− (^ + 1)
(^ − 1)

2
A

)
= 0 2A�11 + �12

1
A
= 0

(�=1(−(= + 1) (= − 2)A=) − �=3(=(= − 1)A=−2) =
2
=c

sin(=Δ\
2
)

(�=1(=(= + 1)A=) + �=3(=(= −

1)A=−2)) = 0

(�=1(−(=+1) (=−2)A=)−�=3(=(=−1)A=−2) = 0 (�=1(−=(= + 1)A=) − �=3(=(= −

1)A=−2)) = 0

(C.7)

Similarly, the unit traction q0 is applied tangentially at same interval creating a non-zero

tangential stress and a zero radial stress. This results in the linear equations shown in C.8.

fAA = 0 fA\ = q0(\)

2�01 = 0 �04/A2 =
Δ\

2c
2A�11 + �12

(1
A
− (^ + 1)
(^ − 1)

2
A

)
= 0 2A�11 + �12

1
A
= 0

2A�11 + �12
(1
A
− (^ + 1)
(^ − 1)

2
A

)
= 0 2A�11 + �12

1
A
=

2
c

sin(Δ\
2
)

(�=1(−(= + 1) (= − 2)A=) − �=3(=(= −

1)A=−2) = 0

(�=1(=(= + 1)A=) + �=3(=(=− 1)A=−2)) = 0

(�=1(−(= + 1) (= − 2)A=) − �=3(=(= −

1)A=−2) = 0

(�=1(−=(= + 1)A=) − �=3(=(= − 1)A=−2)) =
2
=c

sin(=Δ\
2
)

(C.8)

These linear Eqs. C.7 and C.8 are solved separately for �’s and �’s terms of radial and tangential

load respectively (at the surface A = '), and the resulting values of �’s and �’s are shown in the

Tab. 4.2.
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C.2.1 Stresses and Displacements inside the Circular Disk

For a unit radial stress on the interval about \ = 0, stresses and displacement inside the disk are the

following:

fAA (A, \) =
Δ\

2c
+ (^ − 1)A2 + (^ + 3)'2

c(^ + 1)'A sin(Δ\/2) cos(\)

+
�0A<∑
==1

A=−2(='2 + 2A2 − =A2)
c='=

sin(=Δ\/2) cos(=\)

f\\ (A, \) =
Δ\

2c
+ (^ − 1) (3A2 − '2)

c(^ + 1)'A sin(Δ\/2) cos(\)

+
�0A<∑
==1

A=−2((= + 2)A2 − ='2)
c='=

sin(=Δ\/2) cos(=\)

fA\ (A, \) =
(^ − 1) (A2 − '2)
c(^ + 1)'A sin(Δ\/2) sin(\)

+
�0A<∑
==1

A=−2(A2 − '2)
c'=

sin(=Δ\/2) sin(=\)

2`*A (A, \) =
A (^ − 1)Δ\

4c
+ ((^

2 − 3^ + 2)A2 + 4^'2 ln(A))
2c(^ + 1)' sin(Δ\

2
) cos(\)

+
�0A<∑
==1

A=−1((^ − = − 1) (= − 1)A2 + (=2 + =)'2)
=(=2 − 1)c'=

sin(=Δ\
2
) cos(=\)

2`*\ (A, \) =
(^2 + ^ − 2)A2 − 4(1 + ^ ln('))'2

2c(^ + 1)' sin(Δ\
2
) sin(\)

+
�0A<∑
==1

A=−1((^ + = + 1) (= − 1)A2 − (=2 + =)'2)
=(=2 − 1)c'=

sin(=Δ\
2
) sin(=\)

(C.9)
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For unit tangential stress at \ = 0, stresses and displacements inside the disk are the following:

fAA (A, \) = −
(^ + 3) (A2 − '2)
c(^ + 1)'A sin(Δ\/2) sin(\)

+
�0A<∑
==1

A=−2(= − 2) (A2 − '2)
c='=

sin(=Δ\/2) sin(=\)

f\\ (A, \) = −
(3(^ + 3)A2 + (: − 1)'2)

c(^ + 1)'A sin(Δ\/2) sin(\)

+
�0A<∑
==1

A=−2((= − 2)'2 − (= + 2)A2)
c='=

sin(=Δ\/2) sin(=\)

fA\ (A, \) =
Δ\

2c
+ (^ + 3)A2 + (^ − 1)'2)

c(^ + 1)'A sin(Δ\/2) cos(\)

+
�0A<∑
==1

A=−2(=A2 + 2'2 − ='2)
c='=

sin(=Δ\/2) cos(=\)

2`*A (A, \) =
((^2 − ^ + 6)A2 + 4^'2 ln(A))

2c(^ + 1)' sin(Δ\
2
) sin(\)

+
�0A<∑
==1

A=−1((=2 + ^ − =^ − 1)A2 + (2 + = − =2)'2)
=(=2 − 1)c'=

sin(=Δ\
2
) sin(=\)

2`*\ (A, \) =
AΔ\

2c
+ (^

2 + 5^ + 6)A2 + 4(1 + ^ ln('))'2

2c(^ + 1)' sin(Δ\
2
) cos(\)

+
�0A<∑
==1

A=−1((^ + = + 1) (= − 1)A2 + (2 − =2 + =)'2)
=(=2 − 1)c'=

sin(=Δ\
2
) cos(=\)

(C.10)

Due to the elastic nature of the problem, the stress calculated using each contacting node can

be summed to get the final stresses or displacements.
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APPENDIX D

MICHELL COEFFICIENTS FOR AN INFINITE ELASTIC PLANEWITH A
CIRCULAR HOLE

The Michell Airy stress function for a hole in an infinite elastic plane after discarding the secular

and multi-value terms is following:

Φ0(A, \) = �01A
2 + �03 ln(A) + �04\ + �23A

2 cos(\) + �23A
2 sin(\)

+ �12

[
A log(A) cos(\) − ^ + 1

^ − 1
A\ sin(\)

]
+ �13A\ cos(\)

+ �12

[
A log(A) sin(\) + ^ + 1

^ − 1
A\ cos(\)

]
+ �13A\ sin(\)

+
∞∑
==2

[
(�=2A2−= + �=4A−=) cos(=\) + (�=2A2−= + �=4A−=) sin(=\)

]
(D.1)

D.1 Stresses and Displacements

The stresses and displacements are calculated for the stress function Eq. D.1 using Table ??.

fAA = 2�01 +
�03

'2 +
[
�12

(
1
A
− (^ + 1)
(^ − 1)

2
A

)
+ �14

−2
A3

]
cos(\) +

[
�12

(
1
A
+ (^ + 1)
(^ − 1)

−2
A

)
+ �14

−2
A3

]
sin(\)

+ �23(−2) cos(2\) +
∞∑
==2

[
(�=2(−(= − 1) (= + 2)A−=) + �=4(−=(= + 1)A−=−2))

]
cos(=\)

+ �23(−2) sin(2\) +
∞∑
==2

[
(�=2(−(= − 1) (= + 2)A−=) + �=4(−=(= + 1)A−=−2))

]
sin(=\)

fA\ =
�04

A2 +
[
�12

1
A
+ �14

−2
A3

]
sin(\) +

[
�12

1
A
+ �14

−2
A3

]
cos(\)

+ �232 sin(2\) +
∞∑
==2

[
(�=2(−=(= − 1)A−=) + �=4(−=(= + 1)A−=−2))

]
sin(=\)

+ �23(−2) cos(2\) +
∞∑
==2

[
(�=2(=(= − 1)A−=) + �=3(=(= + 1)A=−2))

]
cos(=\)

(D.2)
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From the above Eq. D.2, stresses can be non-zero at A = ∞ and can have some initial stresses

in the elastic infinite plane (see Eq. D.3). For the known values of initial stress at A = ∞, �01,�23

and �23 can be calculated through Eq. D.3 and used for further calculation. For this case, no

initial stress in infinite plane is assumed which results in ({�01, �23�23} = 0). There is no loss of

generality in setting stress to zero at infinity. As any displacements and stresses in the infinite plane

can be superposed with the solution due to the elastic nature of the infinite plane.

fAA (∞, \) = 2�01 − 2�23 cos(\) − 2�23 sin(\)

fA\ (∞, \) = 2�23 sin(\) − 2�23 cos(\)

f\\ (∞, \) = 2�01 + 2�23 cos(\) + 2�23 sin(\)

(D.3)

c

−c

−c/2 c/2

0 \

fAA

fA \

&

%

"

Infinite Elastic Plane

Figure D.1: Stress distribution on the hole should be equilibrated with forces and moment applied
on the indenter.

Stresses distributed on the surface of the hole due to contact (shown in Fig. D.1) should be

equilibrated by the forces and moment applied on the indenter that is pressing inside the hole.

A normal force per unit length (%) is equilibrated with components of radial (fAA) and tangential

(fA\) stress as shown in Eq. D.4. The expression results with only Michell coefficient (�12) to

equilibrate the normal force (%).
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% =

∫ c

−c
(fAA cos \ − fA\ sin \)'3\

% =

[
−2�14

1
'2 + �12

(
1 − (^ + 1)2
(^ − 1)

)]
c −

[
−2�14

1
'2 + �12

]
c

% = −2�12c

(
(^ + 1)
(^ − 1)

) (D.4)

Similarly, lateral force per unit length (&) is equilibrated with components of radial and tangential

stress as shown in D.5. The expression results with only Michell coefficient (�12) to equilibrate the

lateral force (&).

& =

∫ c

−c
(fAA sin \ + fA\ cos \)'3\

& =

[
2�14

1
'2 + �12

(
1 − (^ + 1)2
(^ − 1)

)]
c +

[
2�14

1
'2 + �12

]
c

& = −2�12c

(
(^ + 1)
(^ − 1)

) (D.5)

Amoment at the center of the indenter results due to the tangential stress (fA\) at the contact surface

which is equilibrated using Eq. D.6. The moment expression results with Michell coefficient (�04).

" =

∫ c

−c
(fA\)'23\

" = 2c�04

(D.6)

Three Michelle coefficients �12,�12, and �04 are sufficient to equilibrate the contact stresses

on the circular hole similar to the case of solid elastic disk. Note that these Michelle coefficients

are common coefficients both for a solid elastic disk and for a circular hole in an infinite elastic

plane. Other Michell coefficients do not affect the forces and moment applied on the rigid or elastic

indenter body.

Similar to the previous appendix C.1, the displacements are calculated by first calculating

strains from stresses and later integrating strains over the length of the contact surface that result

in displacements expression shown in Eq. D.7 and three constant of integration. The procedure is

explained in Chapter 9 (especially section 9.2) of Elasticity [6]. Two constants represent the rigid

body translation and one constant represents rigid body rotation. One should consider these rigid

body displacements during the calculations.
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2`*A = �03
−1
A
+
∞∑
==2

[
(�=2((^ + = − 1)A−=+1) + �=4((=)A−=−1))

]
cos(=\)

+
∞∑
==2

[
(�=2((^ + = − 1)A−=+1) + �=4((=)A−=−1))

]
sin(=\)

+
[
�14(1/A2) + �12

1
2

(
((^ − 1) ln(A) − 1) − (^ + 1)

(^ − 1) ((^ + 1) ln(A) − 1)
)]

cos(\)

+
[
�14(1/A2) + �12

1
2

(
((^ − 1) ln(A) − 1) + (^ + 1)

(^ − 1) (1 − (^ + 1) ln(A))
)]

sin(\)

2`*\ = −�04
1
A
+
∞∑
==2

[
(�=2(−(^ − = − 1)A−=+1) + �=4(=A−=−1))

]
sin(=\)

+
∞∑
==2

[
(�=2((^ − = + 1)A=+1) + �=4(−=A−=−1))

]
cos(=\)

+
[
�14(1/A2) + �12

1
2

(
(−1 + (^ + 1) ln(A)) − (^ + 1)

(^ − 1) (−1 − (^ + 1) ln(A))
)]

sin(\)

+
[
−�14(1/A2) + �12

1
2

(
(1 + (^ − 1) ln(A)) + (^ + 1)

(^ − 1) (−1 − (^ + 1) ln(A))
)]

cos(\)

(D.7)

D.2 Michell Terms for Unit Radial/Tangential load

The unit pressure q0 is applied radially on the interval centered at node \ = 0 generating non-zero

radial stress and zero tangential stress. Trigonometric terms from the Eqs.D.2 and 4.10 are equated

and result in the linear equations in A’s and B’s shown in D.8.

fAA = q0(\) fA\ = 0

�03
1
A2 = Δ\/(2c) �04

1
A2 = 0

�12

(
1
A
− (^ + 1)
(^ − 1)

2
A

)
− �14

2
A3 =

2
c

sin(Δ\
2
) �12

1
A
− �14

2
A3 = 0

�12

(
1
A
− (^ + 1)
(^ − 1)

2
A

)
+ �14

−2
A3 = 0 �12

1
A
− �14

2
A3 = 0

�=2(−(=−1) (=+2)A−=)+�=4(−=(=+1)A−=−2) =
2
=c

sin(=Δ\/2)

(�=2(−=(= − 1)A−=) + �=4(−=(= +

1)A−=−2)) = 0

�=2(−(=−1) (=+2)A−=)+�=4(−=(=+1)A−=−2) =

0

(�=2(=(= − 1)A−=) + �=4(=(= +

1)A=−2)) = 0

(D.8)
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Similarly, the unit traction q0 is applied tangentially on the interval about node \ = 0 creating

non-zero tangential stress and zero radial stress. This results in the linear equations shown in D.9.

fAA = 0 fA\ = q0(\)

�03
1
A2 = 0 �04

1
A2 = Δ\/(2c)

�12

(
1
A
− (^ + 1)
(^ − 1)

2
A

)
+ �14

−2
A3 = 0 �12

1
A
+ �14

−2
A3 = 0

�12

(
1
A
+ (^ + 1)
(^ − 1)

−2
A

)
+ �14

−2
A3 = 0 �12

1
A
+ �14

−2
A3 =

2
c

sin(Δ\/2)

�=2(−(= − 1) (= + 2)A−=) + �=4(−=(= +

1)A−=−2) = 0

(�=2(−=(= − 1)A−=) + �=4(−=(= +

1)A−=−2)) = 0

�=2(−(= − 1) (= + 2)A−=) + �=4(−=(= +

1)A−=−2) = 0

(�=2(=(= − 1)A−=) + �=4(=(= + 1)A=−2)) =
2
=c

sin(=Δ\/2)

(D.9)

These linear Eqs. D.8 and D.9 are solved separately for �’s and �’s terms of radial and tangential

load respectively (at the inner surface A = '), and the resulting values of �’s and �’s are shown in

the Tab. 4.3.
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D.2.1 Stresses and Displacements inside the Circular Hole

For a unit radial stress on \ = 0, stresses and displacement inside the infinite plane of the hole are

following:

fAA (A, \) =
Δ\

2c
+ '((^ + 3)A2 + (^ − 1)'2)

c(^ + 1)A3 sin(Δ\/2) cos(\)

+
�0A<∑
==1

'= (=A2 + 2A2 − ='2)
c=A=+2

sin(=Δ\/2) cos(=\)

f\\ (A, \) = −
Δ\

2c
− (^ − 1) (A2 + '2)'

c(^ + 1)A3 sin(Δ\/2) cos(\)

−
�0A<∑
==1

'= ((= − 2)A2 − ='2)
c=A=+2

sin(=Δ\/2) cos(=\)

fA\ (A, \) = −
(^ − 1) (A2 − '2)'

c(^ + 1)A3 sin(Δ\/2) sin(\)

+
�0A<∑
==1

'= (A2 − '2)
cA=+2

sin(=Δ\/2) sin(=\)

2`*A (A, \) = −
AΔ\

2c
− '(2A

2 + (^ − 1)'2 − 4^'2 ln(A))
2c(^ + 1)A2 sin(Δ\

2
) cos(\)

−
�0A<∑
==1

'= ((^ + = − 1) (= + 1)A2 − (=2 − =)'2)
=(=2 − 1)cA=+1

sin(=Δ\
2
) cos(=\)

2`*\ (A, \) = −
(^ − 1)'3 + 2(1 + 2^ ln('))'A2

2c(^ + 1)A2 sin(Δ\
2
) sin(\)

+
�0A<∑
==1

'= ((^ − = + 1) (= + 1)A2 + (=2 − =)'2)
=(=2 − 1)cA=+1

sin(=Δ\
2
) sin(=\)

(D.10)

For unit tangential stress at \ = 0, stresses and displacements inside the infinite plane of the
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hole are following:

fAA (A, \) =
(^ + 3) (A2 − '2)'

c(^ + 1)A3 sin(Δ\/2) sin(\)

+
�0A<∑
==1

'= (= + 2) (A2 − '2)
c=A=+2

sin(=Δ\/2) sin(=\)

f\\ (A, \) = −
'((^ − 1)A2 + (: + 3)'2)

c(^ + 1)A3 sin(Δ\/2) sin(\)

−
�0A<∑
==1

'= ((= − 2)A2 − (= + 2)'2)
c=A=+2

sin(=Δ\/2) sin(=\)

fA\ (A, \) =
Δ\

2c
+ '((^ − 1)A2 + (^ + 3)'2))

c(^ + 1)A3 sin(Δ\/2) cos(\)

+
�0A<∑
==1

'= (='2 + 2'2 − =A2)
cA=+2

sin(=Δ\/2) cos(=\)

2`*A (A, \) =
'((^ + 3)'2 − 2(1 − 2^ ln(A))A2)

2c(^ + 1)A2 sin(Δ\
2
) sin(\)

−
�0A<∑
==1

'= ((^ + = − 1) (= + 1)A2 − (=2 + = − 2)'2)
=(=2 − 1)cA=+1

sin(=Δ\
2
) sin(=\)

2`*\ (A, \) = −
AΔ\

2c
− '(2A

2 − (3 + ^)'24^A2 ln(A))
2c(^ + 1)A2 sin(Δ\

2
) cos(\)

−
�0A<∑
==1

'= ((^ − = + 1) (= + 1)A2 + (=2 + = − 2)'2)
=(=2 − 1)cA=+1

sin(=Δ\
2
) cos(=\)

(D.11)
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APPENDIX E

THE MICHELL SOLUTION- STRESS AND DISPLACEMENT COMPONENTS

^ is a Kolosov’s constant, can be defined as following:

^ =


3 − 4a for plane strain
3 − a
1 + a for plane stress

(E.1)
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Coef. q fAA fA\ f\\ 2`DA 2`D\
�01 A2 2 0 2 (^ − 1)A 0
�02 A2 ln(A) 2 ln(A) + 1 0 2 ln(A) + 3 (^ − 1)A ln(A) − A (^ + 1)A\
�03 ln(A) 1/A2 0 −1/A2 −1/A 0
�04 \ 0 1/A2 0 0 −1/A
�11 A3 cos \ 2A cos \ 2A sin \ 6A cos \ (^ − 2)A2 cos \ (^ + 2)A2 sin \

�12 A ln(A) cos \ cos \/A sin \/A cos \/A 1
2

(
(^ + 1)\ sin \ − cos \

+(^ − 1) ln(A) cos \
) 1

2

(
(^ + 1)\ cos \ − sin \

−(^ − 1) ln(A) sin \
)

�13 A\ sin \ 2 cos \/A 0 0
1
2

(
(^ − 1)\ sin \ − cos \

+(^ + 1) ln(A) cos \
) 1

2

(
(^ − 1)\ cos \ − sin \

−(^ + 1) ln(A) sin \
)

�14 cos \/A −2 cos \/A3 −2 sin \/A3 2 cos \/A3 cos \/A2 sin \/A2

�11 A3 sin \ 2A sin \ −2A cos \ 6A sin \ (^ − 2)A2 sin \ −(^ + 2)A2 cos \

�12 A ln(A) sin \ sin \/A − cos \/A sin \/A 1
2

(
−(^ + 1)\ cos \ − sin \

+(^ − 1) ln(A) sin \
) 1

2

(
(^ + 1)\ sin \ + cos \

+(^ − 1) ln(A) cos \
)

�13 A\ cos \ −2 sin \/A 0 0
1
2

(
(^ − 1)\ cos \ + sin \

−(^ + 1) ln(A) sin \
) 1

2

(
− (^ − 1)\ sin \ − cos \

−(^ + 1) ln(A) cos \
)

�14 sin \/A −2 sin \/A3 2 cos \/A3 2 sin \/A3 sin \/A2 − cos \/A2

Table E.1: The terms of Michell Solution (Airy Stress Function) and their corresponding stresses and displacements. Terms shown in
the cyan are the self-equilibrating part of the solid disk stress function, terms shown in white are the self-equilibrating part of the Hole
in a elastic plane, and terms shown in gray are modified secular terms removing their multi-value through linear combinations.
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Coef. q fAA fA\ f\\ 2`DA 2`D\
�=1 A=+2 cos =\ −(= + 1) (= − 2)

× A= cos =\
=(= + 1)

× A= sin =\
(= + 1) (= + 2)
× A= cos =\

(^ − = − 1)
× A=+1 cos =\

(^ + = + 1)
× A=+1 sin =\

�=2 A−=+2 cos =\ −(= + 2) (= − 1)
× A−= cos =\

−=(= − 1)
× A−= sin =\

(= − 1) (= − 2)
× A−= cos =\

(^ + = − 1)
× A−=+1 cos =\

−(^ − = + 1)
× A−=+1 sin =\

�=3 A= cos =\ −=(= − 1)
× A=−2 cos =\

=(= − 1)
× A=−2 sin =\

=(= − 1)
× A=−2 cos =\

−=A=−1 cos =\ =A=−1 sin =\

�=4 A−= cos =\ −=(= + 1)
× A−=−2 cos =\

−=(= + 1)
× A−=−2 sin =\

=(= + 1)
× A−=−2 cos =\

=A−=−1 cos =\ =A−=−1 sin =\

�=1 A=+2 sin =\ −(= + 1) (= − 2)
× A= sin =\

−=(= + 1)
× A= cos =\

(= + 1) (= + 2)
× A= sin =\

(^ − = − 1)
× A=+1 sin =\

−(^ + = + 1)
× A=+1 cos =\

�=2 A−=+2 sin =\ −(= + 2) (= − 1)
× A−= sin =\

=(= − 1)
× A−= cos =\

(= − 1) (= − 2)
× A−= sin =\

(^ + = − 1)
× A−=+1 sin =\

(^ − = + 1)
× A−=+1 cos =\

�=3 A= sin =\ −=(= − 1)
× A=−2 sin =\

−=(= − 1)
× A=−2 cos =\

=(= − 1)
× A=−2 sin =\

−=A=−1 sin =\ −=A=−1 cos =\

�=4 A−= sin =\ −=(= + 1)
× A−=−2 sin =\

=(= + 1)
× A−=−2 cos =\

=(= + 1)
× A−=−2 sin =\

=A−=−1 sin =\ −=A−=−1 cos =\

Table E.2: The terms of Michell Solution (Airy Stress Function) and their corresponding stresses and displacements. Terms shown in
the cyan are the self-equilibrating part of the solid disk stress function and terms shown in white are the self-equilibrating part of the
Hole in a elastic plane.

132



BIBLIOGRAPHY

133



BIBLIOGRAPHY

[1] Young Ju Ahn and J. R. Barber. Response of frictional receding contact problems to cyclic
loading. International Journal of Mechanical Sciences, 50(10-11):1519–1525, 2008.

[2] MatthewSAllen, Brandon JDeaner, andDaniel J Segalman. Modal iwanmodels for structures
with bolted joints. In The Mechanics of Jointed Structures, pages 255–278. Springer, 2018.

[3] Julian Allwood. Survey and performance assessment of solution methods for elastic rough
contact problems. Journal of Tribology, 127(1):10, 2005.

[4] Julian Allwood andHasan Ciftci. An incremental solutionmethod for rough contact problems.
Wear, 258(11-12):1601–1615, 2005.

[5] L. E. Andersson, J. R. Barber, andA. R S Ponter. Existence and uniqueness of attractors in fric-
tional systems with uncoupled tangential displacements and normal tractions. International
Journal of Solids and Structures, 51(21-22):3710–3714, 2014.

[6] James R Barber. Elasticity. Springer, 3rd edition, 2009.

[7] James R Barber, Anders Klarbring, and Michele Ciavarella. Shakedown in frictional contact
problems for the continuum. Comptes Rendus Mécanique, 336(1-2):34–41, 2008.

[8] JR Barber, M Davies, and DA Hills. Frictional elastic contact with periodic loading. Interna-
tional Journal of Solids and Structures, 48(13):2041–2047, 2011.

[9] Gernot Beer, Ian Smith, and Christian Duenser. The boundary element method with program-
ming: for engineers and scientists. Springer Science & Business Media, 2008.

[10] RH Bentall and KL Johnson. Slip in the rolling contact of two dissimilar elastic rollers.
International Journal of Mechanical Sciences, 9(6):389–404, 1967.

[11] E J Berger. Friction modeling for dynamic system simulation. Applied Mechanics Reviews,
55(6):535–577, 2002.

[12] Enrico Bertocchi. Selected topics on the plane elastic contact with friction elastic contact
with friction. Dissertation, 2009.

[13] N. G. Bourago and V. N. Kukudzhanov. A review of contact algorithms. Izv. RAN, 1(1):45–87,
2005.

[14] Matthew RW Brake. Constitutive modeling of contact for elastic-plastic materials engaged in
micro/macroslip. In The Mechanics of Jointed Structures, pages 279–329. Springer, 2018.

[15] Adam R Brink and D Dane Quinn. Shear effects on energy dissipation from an elastic beam
on a rigid foundation. Journal of Applied Mechanics, 83(1), 2016.

134



[16] Gaurav Chauda and Daniel J Segalman. Some exploration of the path-dependence in the
contact analysis. In ASME 2020 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference. American Society ofMechanical
Engineers Digital Collection, 2020.

[17] Gaurav Chauda and Daniel J Segalman. A Strategy for fine mesh resolution in contact
mechanics. In ASME 2021 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, pages —-. American Society of
Mechanical Engineers, 2021.

[18] Gaurav Chauda and Daniel J Segalman. A first violation contact algorithm that correctly
captures history dependence. International Journal of Mechanical Sciences, page 106375,
2021.

[19] W. Wayne Chen and Q. Jane Wang. A numerical model for the point contact of dissimilar
materials considering tangential tractions. Mechanics of Materials, 40(11):936–948, 2008.

[20] H. Cho and J. R. Barber. Dynamic behavior and stability of simple frictional systems.
Mathematical and Computer Modelling, 28(4-8):37–53, 1998.

[21] Hanbum Cho and J. R. Barber. Stability of the three-dimensional Coulomb friction law.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
455(1983):839–861, 1998.

[22] T. F. Conry and A. Seireg. A mathematical programming method for design of elastic bodies
in contact. Journal of Applied Mechanics, 38(2):387, 1971.

[23] Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J. Witt. Concepts and
Applictions of Finite Element Analysis. John Wiley & Sons Pvt., 2001.

[24] Philip R Dahl. Solid friction damping of mechanical vibrations. AIAA Journal, 14(12):1675–
1682, 1976.

[25] W.J. Duncan. Some devices for the solution of large sets of simultaneous linear equa-
tions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
35(249):660–670, 1944.

[26] J. Dundurs. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear
loading. Journal of Applied Mechanics, 36(3):650–652, 09 1969.

[27] RMN Fleury and D Nowell. Evaluating the influence of residual stresses and surface damage
on fatigue life of nickel superalloys. International Journal of Fatigue, 105:27–33, 2017.

[28] Rodolfo Miguel Nogueira Fleury. Investigation of fretting fatigue in turbine fir tree blade to
disc joints at high temperature. PhD thesis, University of Oxford, 2015.

[29] RC Flicek, DA Hills, JR Barber, and D Dini. Determination of the shakedown limit for large,
discrete frictional systems. European Journal of Mechanics-A/Solids, 49:242–250, 2015.

135



[30] Robert C Flicek, M R W Brake, and D A Hills. Predicting a contact’s sensitivity to initial
conditions using metrics of frictional coupling. Tribology International, 108:95–110, 2017.

[31] L E Goodman. Contact stress analysis of normally loaded rough spheres. Journal of Applied
Mechanics, 29(3):515–522, 1962.

[32] LE Goodman. A review of progress in analysis of interfacial slip damping. 1959.

[33] Hugh GD Goyder. Damping due to joints in built-up structures. In The Mechanics of Jointed
Structures, pages 135–147. Springer, 2018.

[34] Joachim Gwinner and Ernst Peter Stephan. Advanced boundary element methods. Springer
International Publishing AG,.

[35] DA Hills, D Nowell, and A Sackfield. Mechanics of elastic contacts. Butterworth, 1993.

[36] Thomas J.R. Hughes. The finite element method: linear static and dynamic finite element
analysis. Courier Corporation, 2012.

[37] Adnan Ibrahimbegovic and Edward LWilson. Unified computational model for static and dy-
namic frictional contact analysis. International journal for numerical methods in engineering,
34(1):233–247, 1992.

[38] Kenneth Langstreth Johnson. Contact mechanics. Cambridge University Press, 1987.

[39] Y. Ju and T. N. Farris. Spectral analysis of two-dimensional contact problems. Journal of
Tribology, 118(2):320–328, 1996.

[40] J. J. Kalker. A minimum principle for the law of dry friction part 2 : application to nonsteadily
rolling elastic cylinders. Journal of Applied Mechanics, pages 881–887, 1971.

[41] J. J. Kalker. A minimum principle for the law of dry friction with application to elastic
cylinders in rolling contact part 1 : fundamentals application to steady rolling. Journal of
Applied Mechanics, pages 875–880, 1971.

[42] J. J. Kalker. Contact mechanical algorithms. Communication in Applied Numerical Methods,
32:25–32, 1988.

[43] J. J. Kalker and Y. Van Randen. A minimum principle for frictionless elastic contact with ap-
plication to non-Hertzian half-space contact problems. Journal of Engineering Mathematics,
6(2):193–206, 1972.

[44] Noboru Kikuchi and John Tinsley Oden. Contact problems in elasticity: a study of variational
inequalities and finite element methods. SIAM, 1988.

[45] AKlarbring. Examples of non-uniqueness and non-existence of solutions to quasistatic contact
problems with friction. Ingenieur-Archiv, 60, 1990.

[46] A Klarbring, A Mikelić, and M Shillor. Frictional contact problems with normal compliance.
International Journal of Engineering Science, 26(8):811–832, 1988.

136



[47] Anders Klarbring and Gunnar Björkman. A mathematical programming approach to contact
problems with friction and varying contact surface. Computers and Structures, 30(5):1185–
1198, 1988.

[48] Tara Laforce. Boundary element method course notes. 2006.

[49] J Li and EJ Berger. A semi-analytical approach to three-dimensional normal contact problems
with friction. Computational Mechanics, 30(4):310–322, 2003.

[50] S. Liu, Q. Wang, and G. Liu. A versatile method of discrete convolution and FFT (DC-FFT)
for contact analyses. Wear, 243(1-2):101–111, 2000.

[51] TW McDevitt and TA Laursen. A mortar-finite element formulation for frictional contact
problems. International Journal for Numerical Methods in Engineering, 48(10):1525–1547,
2000.

[52] R D Mindlin. Compliance of elastic bodies in contact. Journal of Applied Mechanics,
16(3):259–268., 1949.

[53] D. Nowell, D.A. Hills, and A. Sackfield. Contact of dissimilar elastic cylinders under normal
and tangential loading. Journal of the Mechanics and Physics of Solids, 36(1):59–75, jan
1988.

[54] I. A. Polonsky and L. M. Keer. A numerical method for solving rough contact problems based
on the multi-level multi-summation and conjugate gradient techniques. Wear, 231(2):206–
219, 1999.

[55] Walter Rudin. Real and complex analysis, 3rd Ed. McGraw-Hill, Inc., USA, 1987.

[56] A Sackfield, D A Hills, and D Nowell. Mechanics of elastic contacts. Elsevier, 2013.

[57] A Sackfield and DA Hills. Some useful results in the classical hertz contact problem. The
Journal of Strain Analysis for Engineering Design, 18(2):101–105, 1983.

[58] A Sackfield and DA Hills. Some useful results in the tangentially loaded hertzian contact
problem. The Journal of Strain Analysis for Engineering Design, 18(2):107–110, 1983.

[59] Maryam Saeedvafa and J Dundurs. An example for load-path dependence in elasticity with
friction. Journal de mécanique théorique et appliquée, 7(2):211–226, 1988.

[60] RS Sayles. Basic principles of rough surface contact analysis using numerical methods.
Tribology International, 29(8):639–650, 1996.

[61] Daniel J. Segalman. A Four-parameter Iwan model for lap-type joints. Journal of Applied
Mechanics, 72(5):752–760, 02 2005.

[62] Robert William Soutas-Little. Elasticity. Courier Corporation, 2012.

[63] D A Spence. An eigenvalue problem for elastic contact with finite friction. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 73, pages 249–268. Cambridge
University Press, 1973.

137



[64] D. A. Spence. The hertz contact problem with finite friction. Journal of Elasticity, 5(3-
4):297–319, 1975.

[65] Sergiu Spinu and Amarandei Dumitru. Numerical simulation of slip-stick elastic contact.
Numerical Simulation-From Theory to Industry, 2012.

[66] H. M. Stanley and T. Kato. An FFT-based method for rough surface contact. Journal of
Tribology, 119(3):481, 2008.

[67] Michael J Starr and Daniel J Segalman. Assessment of Coulomb friction in modeling joint
mechanics via a parameter study of dissipation. In TheMechanics of Jointed Structures, pages
223–230. Springer, 2018.

[68] WSun andNGZamani. Adaptivemesh redistribution for the boundary element in elastostatics.
Computers & structures, 36(6):1081–1088, 1990.

[69] A. Thaitirarot, R. C. Flicek, D. A. Hills, and J. R. Barber. The use of static reduction in the
finite element solution of two-dimensional frictional contact problems. Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
228(9):1474–1487, 2014.

[70] Sandeep Vĳayakar. A combined surface integral and finite element solution for a three-
dimensional contact problem. International journal for numerical methods in engineering,
31(3):525–545, 1991.

[71] MN Webster and RS Sayles. A numerical model for the elastic frictionless contact of real
rough surfaces. Journal of Tribology, 108(3):314–320, 1986.

[72] John AWilliams and Rob S Dwyer-Joyce. Contact between solid surfaces. Modern Tribology
Handbook, 1:121–162, 2001.

[73] Iman Zare and Matt Allen. Adapting a contact-mechanics algorithm to predict damping in
bolted joints using quasi-static modal analysis. International Journal of Mechanical Sciences,
page 105982, 2020.

138


