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ABSTRACT

OPTIMIZATION OF LARGE SCALE ITERATIVE EIGENSOLVERS

By

Md Afibuzzaman

Sparse matrix computations, in the form of solvers for systems of linear equations, eigenvalue

problem or matrix factorizations constitute the main kernel in problems from fields as di-

verse as computational fluid dynamics, quantum many body problems, machine learning and

graph analytics. Iterative eigensolvers have been preferred over the regular method because

the regular method not being feasible with industrial sized matrices. Although dense linear

algebra libraries like BLAS, LAPACK, SCALAPACK are well established and some vendor

optimized implementation like mkl from Intel or Cray Libsci exist, it is not the same case for

sparse linear algebra which is lagging far behind. The main reason behind slow progress in

the standardization of sparse linear algebra or library development is the different forms and

properties depending on the application area. It is worsened for deep memory hierarchies

of modern architectures due to low arithmetic intensities and memory bound computations.

Minimization of data movement and fast access to the matrix are critical in this case. Since

the current technology is driven by deep memory architectures where we get the increased

capacity at the expense of increased latency and decreased bandwidth when we go further

from the processors. The key to achieve high performance in sparse matrix computations

in deep memory hierarchy is to minimize data movement across layers of the memory and

overlap data movement with computations. My thesis work contributes towards addressing

the algorithmic challenges and developing a computational infrastructure to achieve high

performance in scientific applications for both shared memory and distributed memory ar-

chitectures. For this purpose, I started working on optimizing a blocked eigensolver and



optimized specific computational kernels which uses a new storage format. Using this opti-

mization as a building block, we introduce a shared memory task parallel framework focusing

on optimizing the entire solvers rather than a specific kernel. Before extending this shared

memory implementation to a distributed memory architecture, I simulated the communi-

cation pattern and overheads of a large scale distributed memory application and then I

introduce the communication tasks in the framework to overlap communication and com-

putation. Additionally, I also tried to find a custom scheduler for the tasks using a graph

partitioner. To get acquainted with high performance computing and parallel libraries, I

started my PhD journey with optimizing a DFT code named Sky3D where I used dense

matrix libraries. Despite there might not be any single solution for this problem, I tried to

find an optimized solution. Though the large distributed memory application MFDn is kind

of the driver project of the thesis, but the framework we developed is not confined to MFDn

only, rather it can be used for other scientific applications too. The output of this thesis

is the task parallel HPC infrastructure that we envisioned for both shared and distributed

memory architectures.
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Chapter 1

INTRODUCTION AND

MOTIVATION

1.1 Background And Related Work

Eigenvalue calculation is one of the most important parts in application of numerical linear

algebra. Almost all kinds of scientific research whether it is nuclear astrophysics or molecular

dynamics, whether this is applied machine learning or life science, calculating eigenvalues

often becomes one of the primary requirements theoretically. Also with the emerging of

Artificial Intelligence and Machine learning in the current computing world, eigenvalue cal-

culations plays a big part. The naive way to find the eigenvalues of a matrix is to find all

the roots of the characteristic polynomial of the matrix. But in large scale analysis where

the matrix dimensions are in thousands or millions, this is fairly impractical to find the

eigenvalues in such a way. Hence a number of iterative algorithms have been developed over

the years. These methods work by repeatedly refining approximations to the eigenvectors or

eigenvalues, and can be terminated whenever the approximations reach a suitable degree of

accuracy. Iterative methods form the basis of much of modern day eigenvalue computation.

Since a graph represented in an adjacency matrix format is essentially a sparse matrix,

graph algorithms can also be expressed in the language of sparse linear algebra. In fact, recent

studies have shown that graph algorithms expressed in this way achieve significantly better
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performance than alternative abstractions [6]. To simplify the presentation, we use a unified

nomenclature for both, and use the term sparse matrix to also refer to the network structure

in a graph. The term nonzeros will refer to the nonzero matrix elements in sparse matrices

or edge meta-data (e.g., weights) in graphs. Finally, we overload the term vector in sparse

matrix computations to also refer to the array of vertex properties in graph computations.

Most fundamental operation in sparse linear algebra is thought to be the multiplication of a

sparse matrix with a vector (SpMV), as it forms the main computational kernel for several

applications (e.g., the solution of partial differential equations (PDE) [7] and the Schrodinger

Equation [8] in scientific computing, spectral clustering [9] and dimensionality reduction [10]

in machine learning, and the Page Rank algorithm [11] in graph analytics). The Roofine

model by Williams et al. [12] suggests that the performance of SpMV kernel is ultimately

bounded by the memory bandwidth. Consequently, performance optimizations to increase

cache utilization and reduce data access latencies for SpMV has drawn significant interest

[13, 14, 15, 16, 17, 18, 19, 20, 21], which is a rather incomplete list of related work on this

topic.

A closely related kernel is the multiplication of a sparse matrix with multiple vectors

(SpMM) which constitutes the main operation in block solvers, e.g., the block Krylov sub-

space methods and block Jacobi-Davidson method. SpMM has much higher arithmetic

intensity than SpMV and can effciently leverage wide vector execution units. As a re-

sult, SpMM-based solvers has recently drawn significant interest in scientific computing

[22, 23, 24, 25, 26]. SpMM also finds applications naturally in machine learning where sev-

eral features (or eigenvectors) of sparse matrices are needed [10, 9]. Although SpMM has a

significantly higher arithmetic intensity than SpMM, the extended Roofline model that we

recently proposed suggests that cache bandwidth, rather than the memory bandwidth, can
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still be an important performance limiting factor for SpMM [22]. Multiplication of sparse

matrices (SpGEMM) and sparse matrix times sparse vector (SpMSV) operation also find

applications in important problems. SpGEMM is the main kernel in the algebraic multi-grid

method [27], and the Markov Clustering algorithm, while SpMSV is the main building block

for breadth-first search, bipartite graph matching, and maximal independent set algorithms.

1.2 Emergence Of Deep Memory Hierarchies

Given the widening gap between memory system and processor performance [28], irregular

data access patterns and low arithmetic intensities of sparse matrix computations have ef-

fectively made them "memory-bound" computations. Furthermore, the downward trend in

memory space and bandwidth per core in high performance computing (HPC) systems [29]

has paved the way for a deepening memory hierarchy. For example, many-core processors

(i.e., GPUs and Xeon Phis) have their own high-bandwidth (but limted size) device memories

(HBM). NVRAM storages have recently emerged to alleviate issues (such as cost, capacity,

energy consumption and resiliency) associated with the DRAM technology. Consequently,

ash memory and 3D-XPoint memory have already found wide adoption as a storage-class

cache between DRAM and disk systems, and they are being adopted as memory-class stor-

ages complementing DRAM in modern HPC systems .

In Fig. 1.1, we give an abstract view of the assumed underlying memory hierarchy, along

with some hardware specifications based on current technology. Our target architectures are

many-core processors such as GPUs and Xeon Phis, which are essentially the cornerstones

of big data analytics and scientific computing. While exact specifications and number of

layers change as architectures evolves, the underlying principle of memory hierarachy stays
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Figure 1.1: Memory hierarchy in deep memory architectures

the same: Going further away from the processor, memory capacity increases at the expense

of increased latency and reduced bandwidth. Thus, minimizing data movement across layers

of the memory and overlapping data movement with computations are keys to achieving

high performance in sparse matrix computations. While we mainly focus on parallelism and

performance on a single node, developed techniques and software will be complementary to

those aimed at enabling distributed memory parallelism for sparse matrix computations and

graphs (such as Par-METIS, Xtra- PuLP, etc.), or manual partitionings specified by a user.

Hence, the footprint of applications that can benefit from this project will be significant.

In data analytics and scientific computing, total available memory is often a limiting

factor. Hence, data management is an important due to both the size of the data involved

and the complexity of the program ow. As an example, in Fig. 3, we give the pseudocode for

the locally optimal block preconditioned conjugate gradient algorithm (LOBPCG), a widely

used block eigensolver [30]. SpMM of the sparse matrix H and block vector , despite being an

expensive step, is only one part of the computation in line 4. In terms of memory, while the

H matrix takes up considerable space, when a large number of eigenpairs are needed (e.g.

dimensionality reduction, spectral clustering or quantum many-body problems), memory

needed for block vector can be comparable to or even greater than that of H . In addition,

other block vectors (residual R, preconditioned residual W, previous direction P), block
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vectors from the previous iteration and the preconditioning matrix T (if available) must be

stored, and accessed at each iteration. Clearly, orchestrating the data movement in a deep

memory hierarchy to attain an efficient implementation can become a daunting task for a

domain scientist.

In fact, considering the complete range of solvers that sparse matrix computations arise

in, LOBPCG algorithm is a relatively simple case. For instance, when performing Singular

Value Decompositions (SVD), each node would need to perform operations pertaining also

to the transpose MT (or complex conjugate M) matrix of the sparse partition that they

own [38], which must be applied on the result of the application of M over the source

vector. The interior eigenvalue problem is another example illustrating complexities in a

real application. An effective way to accelerate convergence to eigenpairs in a desired range

is to build polynomial filters [65] (e.g., [a3M3 + a2M2 + a1M]x is a 3rd order matrix

polynomial), which require several applications of a sparse matrix over the source vector in

each iteration. Finally, an SpGEMM kernel or sparse LU factorization represent significantly

more complex computations, as computations associated with nonzeros form a complex

dependency graph in these cases. We propose a comprehensive framework that can effciently

handle complex and irregular (due to sparsity) task depedencies arising in a wide variety

of applications. In addition to conventional applications involving static sparse matrices,

we envision our framework to be generic enough to support incremental algorithms used

to to tackle streaming (or online) problems [34, 69, 93]. Such applications are common in

data analytics, e.g., to analyze dynamic web graphs or social networks, or incrementally

incorporate user feedback.

For our work first we target an application called Sky3d which works on a dense matrix.

Then we shift our interest to sparse matrix iterative eigensolvers. We start with the Sky3d
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application which is a density functional theory approach to study different kinds of nuclear

shapes. After a successful exploration of dense matrix linear algebra libraries we worked on

a sparse matrix iterative eigensolver code named MFDn. In that project we optimized the

sparse matrix multiple vector kernels using a new storage format for sparse matrices. Taking

that experience, we developed a shared memory framework for iterative eigensolvers using

task parallelism. At first we used a default scheduler from OpenMP libraries but we also

wanted to have our own schedule for tasks. We studied some graph partitioners and created

custom partitions and task orders for execution. We wanted to extend the framework for a

distributed solver like MFDn. Hence we first studied the communication behavior of MFDn

using a simulator called SST. Looking at the observations, we introduced communication

tasks in our framework which overlaps the communication and computations. Now I will

present some motivations, background studies for all the projects.

1.3 Optimizing Sky3D

Compact objects in space such as neutron stars are great test laboratories for nuclear physics

as they contain all kinds of exotic nuclear matter which are not accessible in experiments

on earth [31, 32]. Among interesting kinds of astromaterial is the so called nuclear "pasta"

phase [33, 34] which consists of neutrons and protons embedded in an electron gas. The

naming arises from the shapes, e.g. rods and slabs, which resemble the shapes of the Italian

pasta (spaghetti and lasagna).

Nuclear pasta is expected in the inner crust of neutron stars in a layer of about 100m at

a radius of about 10 km, at sub-nuclear densities. Since the typical length scale of a neutron

or a proton is on the order of 1 fm, it is impossible to simulate the entire system. The usual
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strategy is to simulate a small part of the system in a finite box with periodic boundary

conditions. While it is feasible to perform large simulations with semi-classical methods

such as Molecular Dynamics (MD) [35, 36, 37, 38, 39, 40, 41] involving 50,000 or even more

particles or the Thomas-Fermi approximation [42, 43, 44, 45], quantum mechanical (QM)

methods which can yield high fidelity results have been limited to about 1000 nucleons due

to their immense computational costs [46, 47, 48, 49, 50, 51, 52, 53].

The side effects of using small boxes in QM methods are twofold: First, the finite size

of the box causes finite-volume effects, which have an observable influence on the results of

a calculation. Those effects have been studied and can be suppressed by introducing the

twist-averaged boundary conditions [51]. More importantly though, finite boxes limit the

possible resulting shapes of the nuclear pasta because the unit cell of certain shapes might be

larger than the maximum box size. For instance, in MD simulations [54], slabs with certain

defects have been discovered. Those have not been observed in QM simulations because

they only manifest themselves in large boxes. To observe such defects, we estimate that it is

necessary to increase the number of simulated particles (and the corresponding simulation

box volume) by about an order of magnitude.

In this work, we focus on the microscopic nuclear density functional theory (DFT) ap-

proach to study nuclear pasta formations. The nuclear DFT approach is a particularly good

choice for nuclear pasta. The most attractive property is the reliability of its answers over

the whole nuclear chart [55, 56], and yet it is computationally feasible for applications involv-

ing the heaviest nuclei and even nuclear pasta matter, because the interaction is expressed

through one-body densities and the explicit n-body interactions do not have to be evaluated.

In contrast to finite nuclei that are usually calculated employing a harmonic oscillator

finite-range basis [57, 58] using mostly complete diagonalization of the basis functions to solve
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the self-consistent equations, nuclear pasta matter calculations have to be performed in a

suitable basis with an infinite range. We use the DFT code Sky3D [59], which represents all

functions on an equidistant grid and employs the damped gradient iteration steps, where fast

Fourier transforms (FFTs) are used for derivatives, to reach a self-consistent solution. This

code is relatively fast compared to its alternatives and incorporates all features necessary

to perform DFT calculations with modern functionals, such as the Skyrme functionals (as

used here). Since Sky3D can be used to study static and time-dependent systems in 3d

without any symmetry restrictions, it can be applied to a wide range of problems. In the

static domain it has been used to describe a highly excited torus configuration of 40Ca [60]

and also finite nuclei in a strong magnetic field as present in neutron stars [61]. In the

time-dependent context, it was used for calculations on nuclear giant resonances [62, 63],

and on the spin excitation in nuclear reactions [64]. The Wigner function, a 6 dimensional

distribution function, and numerical conservation properties in the time-dependent domain

have also been studied using Sky3D [65, 66].

For the case of time-dependent problems, the Sky3D code has already been parallelized

using MPI. The time-dependent iterations are simpler to parallelize, because the treatment

of the single particles are independent of each other and can be distributed among the

nodes. Only the mean field has to be communicated among the computational nodes. On

the other hand, accurate computation of nuclear ground states, which we are interested in,

requires a careful problem decomposition strategy and organization of the communication

and computation operations as discussed below. However, only a shared memory parallel

version of Sky3D (using OpenMP) exists to this date. In this work, we present algorithms

and techniques to achieve scalable distributed memory parallelism in Sky3D using MPI.
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1.4 Optimization Of Blocked Eigensolver For Sparse

Matrix

We found out that for dense matrices there are some very optimized numerical libraries for

distributed memory. Being a relatively well studied area, these libraries have been serving

the scientific community for quite a while. In our work we observed strong scaling using

the highly optimized ScLAPACK library. But we also noticed that for sparse matrices there

are a lot of room for improvement. The choice of numerical algorithms and how efficiently

they can be implemented on high performance computer (HPC) systems critically affect the

time-to-solution for large-scale scientific applications. Several new numerical techniques or

adaptations of existing ones that can better leverage the massive parallelism available on

modern systems have been developed over the years. Although these algorithms may have

slower convergence rates, their high degree of parallelism may lead to better time-to-solution

on modern hardware [24]. In the next work, we consider the solution of the quantum many-

body problem using the configuration interaction (CI) formulation. We present algorithms

and techniques to significantly speed up eigenvalue computations in CI by using a block

eigensolver and optimizing the key computational kernels involved.

The quantum many-body problem transcends several areas of physics and chemistry. The

CI method enables computing the wave functions associated with discrete energy levels of

these many-body systems with high accuracy. Since only a small number of low energy states

are typically needed to compute the physical observables of interest, a partial diagonalization

of the large CI many-body Hamiltonian is sufficient.

More formally, we are interested in finding a small number of extreme eigenpairs of a
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large, sparse, symmetric matrix:

xi = λxi, i = 1, . . . ,m, m� N. (1.1)

Iterative methods such as the Lanczos and Jacobi–Davidson [67] algorithms, as well as

their variants [68, 69, 70], can be used for this purpose. The key kernels for these meth-

ods can be crudely summarized as (repeated) sparse matrix–vector multiplications (SpMV)

and orthonormalization of vectors (level-1 BLAS). As alternatives, block versions of these

algorithms have been developed [71, 72, 73] which improves the arithmetic intensity of com-

putations at the cost of a reduced convergence rate and increased total number of matrix–

vector operations [74]. In block methods, SpMV becomes a sparse matrix multiple vector

multiplication (SpMM) and vector operations become level-3 BLAS operations.

Performance of SpMV is ultimately bounded by memory bandwidth [75]. The widening

gap between processor performance and memory bandwidth significantly limits the achiev-

able performance in several important applications. On the other hand, in SpMM, one can

make use of the increased data locality in the vector block and attain much higher FLOP

rates on modern architectures. Gropp et al. was the first to exploit this idea by using mul-

tiple right hand sides for SpMV in a computational fluid dynamics application [23]. SpMM

is one of the core operations supported by the auto-tuned sequential sparse matrix library

OSKI [20]. OSKI’s shared memory parallel successor, pOSKI, currently does not support

SpMM [76]. More recently, Liu et al. [24] investigated strategies to improve the performance

of SpMM 1 using SIMD (AVX/SSE) instructions on modern multicore CPUs. Their driv-
1Liu et al. actually uses the name GSpMV for “generalized” SpMV. We refrain from doing so because

the same name has been used in conflicting contexts such as SpMV for graph algorithms where the scalar
operations can be arbitrarily overloaded.
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ing application is the motion simulation of biological macromolecules in solvent using the

Stokesian dynamics method. Röhrig-Zöllner et al. [25] discuss performance optimization

techniques for the block Jacobi–Davidson method to compute a few eigenpairs of large-scale

sparse matrices, and report reduced time-to-solution using block methods instead of single

vector counterparts, particularly for problems in quantum mechanics and PDEs.

Our work differs from previous efforts substantially, in part due to the immense size of the

sparse matrices involved. We exploit symmetry to reduce the overall memory footprint, and

offer an efficient solution to perform SpMM on a sparse matrix and its transpose (SpMMT )

with roughly the same performance [22]. This is achieved through a novel thread parallel

SpMM implementation, CSB/OpenMP, which is based on the compressed sparse block (CSB)

framework [77] (Sect. 3.3). We demonstrate the efficiency of CSB/OpenMP on a series of

CI matrices where we obtain 3–4× speedup over the commonly used compressed sparse

row (CSR) format. To estimate the performance characteristics and better understand the

bottlenecks of the SpMM kernel, we propose an extended Roofline model to account for

cache bandwidth limitations (Sect. 3.3).

In this work, we extend a previous work (presented in [22]) by considering an end-to-

end optimization of a block eigensolver implementation. As will be discussed in Sect. 3.7,

the performance of the tall-skinny matrix operations in block eigensolvers is critical for an

excellent overall performance. We observe that the implementations of these level-3 BLAS

operations in optimized math libraries perform significantly below expectations for typical

matrix sizes encountered in block eigensolvers. We propose a highly efficient thread parallel

implementation for inner product and linear combination operations that involve tall-skinny

matrices and analyze the resulting performance.

To demonstrate the merits of the proposed techniques, we incorporate the CSB/OpenMP
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implementation of SpMM and optimized tall-skinny matrix kernels into a LOBPCG [73]

based solver in MFDn, an advanced nuclear CI code [2, 78, 3]. We demonstrate through

experiments with real-world problems that the resulting block eigensolver can outperform

the widely used Lanczos algorithm (based on single vector iterations) with modern multicore

architectures (Sect. 3.8.8). We also analyze the performance of our techniques on an Intel

Xeon Phi Knights Corner (KNC) processor to assess the feasibility of our implementations

for future architectures.

While we focus on nuclear CI computations, the impact of optimizing the performance of

key kernels in block iterative solvers is broader. For example, spectral clustering, one of the

most promising clustering techniques, uses eigenvectors associated with the smallest eigen-

values of the Laplacian of the data similarity matrix to cluster vertices in large symmetric

graphs [79, 80]. Due to the size of the graphs, it is desirable to exploit the symmetry, and

for a k-way clustering problem, k eigenvectors are needed, where typically 10 ≤ k ≤ 100,

an ideal range for block eigensolvers. Block methods are also used in solving large-scale

sparse singular value decomposition (SVD) problems [81], with most popular methods being

the subspace iteration and block Lanzcos. SVDs are critical for dimensionality reduction

in applications like latent semantic indexing [82]. In SVD, singular values are obtained by

solving the associated symmetric eigenproblem that requires subsequent SpMM and SpMMT

computations in each iteration [83]. Thus, our techniques are expected to have a positive

impact on the adoption of block solvers in closely related applications.
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1.5 Inrtroducing the DeepSparse Framework

Sparse matrix computations, in the form of solvers for systems of equations, eigenvalue prob-

lems or matrix factorizations, constitute the main kernel in fields as diverse as computational

fluid dynamics (CFD), quantum many-body problems, machine learning and graph analyt-

ics. The scale of problems in these scientific applications typically necessitates execution on

massively parallel architectures. Moreover, sparse matrices come in very different forms and

properties depending on application area. However, due to the irregular data access patterns

and low arithmetic intensities of sparse matrix computations, achieving high performance

and scalability is very difficult. These challenges are further exacerbated by the increasingly

complex deep memory hierarchies of the modern architectures as they typically integrate

several layers of memory storage. While exact specifications and number of layers change as

architectures evolve, the underlying principle of memory hierarchy stays the same: Going far-

ther away from the processor, memory capacity increases at the expense of increased latency

and reduced bandwidth. As such, minimizing data movement across layers of the memory

and overlapping data movement with computations are keys to achieving high performance

in sparse matrix computations.

Unlike its dense matrix analogue, the state of the art for sparse matrix computations is

lagging far behind. The widening gap between the memory system and processor perfor-

mance, irregular data access patterns and low arithmetic intensities of sparse matrix com-

putations have effectively made them “memory-bound” computations. Furthermore, the

downward trend in memory space and bandwidth per core in high performance computing

(HPC) systems [29] has paved the way for a deepening memory hierarchy. Thus, there is a

dire need for new approaches both at the algorithmic and runtime system levels for sparse
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matrix computations.

In this work, we propose a novel sparse linear algebra framework, named DeepSparse,

which aims to accelerate sparse solver codes on modern architectures with deep memory

hierarchies. Our proposed framework differs from existing work in two ways. First, we

propose a holistic approach that targets all computational steps in a sparse solver rather than

narrowing the problem into a single kernel, e.g., sparse matrix vector multiplication (SpMV)

or sparse matrix multiple vector multiplication (SpMM). Second, we adopt a fully integrated

task-parallel approach while utilizing commonly used sparse matrix storage schemes.

In a nutshell, DeepSparse provides a GraphBLAS plus BLAS/LAPACK-like frontend for

domain scientists to express their algorithms without having to worry about the architec-

tural details (e.g., memory hierarchy) and parallelization considerations (i.e., determining

the individual tasks and their scheduling) [84, 85, 86]. DeepSparse automatically gener-

ates and expresses the entire computation as a task dependency graph (TDG) where each

node corresponds to a specific part of a computational kernel and edges denote control and

data dependencies between computational tasks. We chose to build DeepSparse on top of

OpenMP [87] because OpenMP is the most commonly used shared memory programming

model, but more importantly it supports task-based data-flow programming abstraction. As

such, DeepSparse relies on OpenMP for parallel execution of the TDG.

We anticipate two main advantages of DeepSparse over a conventional bulk synchronous

parallel (BSP) approach where each kernel relies on loop parallelization and is optimized

independently. First, DeepSparse would be able to expose better parallelism as it creates

a global task graph for the entire sparse solver code. Second, since the OpenMP runtime

system has explicit knowledge about the TDG, it may be possible to leverage a pipelined

execution of tasks that have data dependencies, thereby leading to better utilization of the
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hardware cache.

1.6 Exploring Custom Schedule For Tasks Using Graph

Partition

In the DeepSparse framework we generate a global task graph. In our executor we use

appropriate OpenMP task dependencies with proper memory offsets and sizes to make the

task parallel implementation coherent across the entire iteration. OpenMP looks at the

in-out dependencies and generates a direct acyclic graph underneath after solving those

dependencies. In case of a dependency of a task gets resolved, that task is(or can be) pulled

from the task pool by OpenMP engine.

Although we saw that OpenMP does a great job with memory utilization over all level of

memories, it is still beyond our control. OpenMP is generating the DAG itself and resolving

themselves. Whenever the data dependencies of a task is resolved and it is not dependent

on any other task for its execution , it can be immediately pulled and executed. But this

might not be optimal scenario if we think from memory usage perspective. A task which

does not have any relation with the tasks that are active at the moment can be immediately

executed once a thread gets free regardless of its memory input and outputs. Hence there is

a possibility of a task which would improve the memory usage with the input already being

in the lower level of the memory and having cache hits reduces. The probability of cache

misses increases with this kind of scheduling.

This motivated us to use a novel graph partition based schedulers that use the global data

flow graphs generated by the PCU to minimize data movements in a deep memory hierarchy.

Graph partitioners have been extensively studied but existing approaches do not meet our
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needs as they typically handle DAGs by converting them to undirected graphs. However,

the directed nature of the task graph must be respected in our case. In this regard, acyclic

partitioning heuristics for DAGs, recently introduced by Dr. Catalyurek’s group, provided

a great starting point.

Our sparse solver DAGs contain a fair number of vertices with high fan-in/fan-out" de-

grees due to operations such as SpMVs, SpMMs, inner products and vector reductions.

There are two immediate issues that call for an alternative scheme. First, the presence of

such vertices requires an excessive number of coarsening iterations (which rely on the edge

matching" technique), and slows down partitioning to the extent of making it unusable for

large graphs. Second, during refinement, the high degree fan-in/fan-out vertices effectively

yield 1D partitionings, because they drag their incoming/outgoing vertices into the same

partition as them. We wanted to develop a novel scheduler through the following tasks: We

will adopt problem-specific coarsening/refinement techniques where vertex matchings are

identified by recursively doubling the CSB block (in 2D) or blockrow (in 1D) dimensions.

This would allow to preserve the original DAG structure at the coarsest level, while enabling

the partitioning of extremely large DAGs.

Like other graph partitioners, the objective function for the acyclic heuristics of [44] is

minimization of the edge cut (defined as the sum of all edges crossing partitions). However,

for our purposes, each partition is an execution phase" denoting the set of tasks that must

be brought together to the higher level memory. In fact, maximizing the edge cut between

successive execution phases would be desirable in this context, because edge cuts would

correspond to sharing of input data between successive stages or reuse of output from one

stage as input in the subsequent stage. In our heuristics, the objective function will take

into account the ordering among partitions (which is not a consideration at all for regular
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graph partitioners) and try to maximize the (cumulative) size of input/output data overlaps

between successive phases (so that the overall data movement is reduced).

Constraints in graph partitioners are generally geared towards ensuring load balance

among partitions. However, in our case, the constraint would be the storage limit of the

fast memory which the Scheduler will impose by estimating the maximum active memory

size" during the execution of a phase. This is different from, but in the worst case equal

to, the sum of edge weights in a partition. We anticipate that such memory constraints

in conjunction with the above described objective functions will enable our Scheduler to

discover better partitionings than those we can find with the techniques of (for instance,

2D-shaped partitionings are known to yield better data locality compared to the 1D-like

partitionings.

To facilitate execution in a deep memory architecture, we designed the Scheduler to be

hierarchical. This can, for example, be achieved by recursively applying our partitioning

algorithms.

To support incremental algorithms for streaming/online problems, the Scheduler will be

dynamic, i.e., it will be able to make real-time decisions regarding the placement of new tasks

for incoming data and removal of tasks for deleted data. This can simply be achieved by

greedily placing new tasks or deleting old ones to ensure real-time response, and periodically

recreating the entire schedule to avoid suboptimal performance that may be caused by several

greedy decisions made consecutively.

Note that during execution of a given phase, depending on the available fast memory

space, it is possible to start loading the input data for the subsequent phase. This way,

the Scheduler can overlap the (already minimized) data movement with computations for

improved performance.
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The DAG structure of our data- flow execution model greatly facilitates the scheduling of

independent tasks to available cores on a node. In fact, scheduling heuristics can readily be

used for determining the assignment of tasks to individual cores to maximize cache locality.

1.7 Simulating Communication Behavior Of A Real

World Distributed Application

Large-scale real-world scientific applications typically need high-performance computing (HPC)

platforms to perform their simulations, not only because of the necessary compute-power for

large-scale calculations, but also because of the aggregate memory needed for the simula-

tions. Often, one needs to store large amounts of data in main memory, which requires the

use of a large number of nodes; with communication between the nodes over high-speed

interconnection networks. Typically, the amount of data as well as the number of nodes

increases as the size of the simulations increases. Communication between nodes can, and

often will, become a bottleneck, in particular for iterative sparse eigensolvers due to their

low arithmetic intensities.

When preparing and optimizing scientific applications for specific HPC platforms one

therefore has to take into consideration the potential communication overhead. However,

it is far from trivial to estimate the actual communication overhead based on HPC design

specifications such as peak bisection bandwidth, network topology, individual node and link

bandwidths, latencies, among others. On existing HPC platforms, one can in principle

run a skeleton of the scientific application code, simulating only the communication, and

thus empirically measure the communication overhead. Unfortunately, this tends to be

computationally expensive, and only possible if one has access to the specific HPC platforms.
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For a future machine, one would have to wait until it is deployed and one has gained access

to the system, before being able to realistically measure the actual communication overhead.

Ideally, one would like to gain insight in the communication overhead without actually

performing such a skeleton run of just the communication.

In this work we use the Ember library, which is part of the Structural Simulation Toolkit

(SST) [88], to model the communication costs of a large-scale nuclear physics application

[89, 90, 4, 91] on a current (for validation) and a future HPC platform (for prediction).

This application uses iterative distributed eigensolvers (specifically, the Lanczos [92] and

LOBPCG [4, 93] algorithms) to obtain the lowest eigenvalues and eigenvectors of a large

sparse symmetric matrix, and runs on tens of thousands of nodes. It is known that for large-

scale runs, the communication can indeed become a bottleneck; most of the communication

cost however can be hidden behind local computation. We first compare our SST motif with

timings from communication skeleton runs of our application on up to a thousand nodes

on Cori-KNL, which is a Knights Landing based cluster at the National Energy Research

Scientific Computing Center (NERSC), followed by simulations aimed at Perlmutter, which

is a new machine to be installed at the same facility later this fall.

1.8 Introducing Communication for DeepSparse

In this work we implemented two different algorithms Lanczos and LOBPCG algorithms

used executed them using our DeepSparse framework. The implementation is based on task

parallelism and was an on node optimization. We observed that DeepSparse achieves 2× -

16× fewer cache misses across different cache layers (L1, L2 and L3) over implementations

of the same solvers based on optimized library function calls. We also achieve 2× - 3.9×

19



improvement in execution time when using DeepSparse over the same library versions.

As we discussed in the previous Chapter 6 about the communication pattern in MFDn

while doing the distributed matrix multiplication. We noticed that we have an allgather,

a broadcast, a reduction and a reduce scatter operation in the MFDn code. The detailed

explanation is given in Section 6.2 in Chapter 6. In practice, it is seen that for MFDn, when

run in an architecture like knl, the communication usually takes over the computation for a

very large simulation consisting of a very high number of mpi ranks involved from a lot of

compute nodes. We simulated the performance of the communication patterns and tried to

find out a possible cause using a simulator named SST.

We observed that, the broadcast operation takes a much longer time in real life because

of possible network congestion and the messages being very large in size also fuels into this

behavior. Since our deepsparse framework is a task based parallel framework where each

task performs a particular matrix or vector operation on a matrix or a vector block, we were

motivated to use blocked communication tasks.

Our motivation was to introduce custom communication tasks where each communication

tasks will communicate with other nodes and only transmit a block of the matrix or a vector

between themselves. This will help us in multiple ways. Being blocked communication will

reduce the size of the messages during the communication much less than the actual code

which we expected will help in case of network congestion. The other motivation was to

overlap the communication with the computations in the matrix multiplication. Whenever

a particular block is is received or ready to compute, the other kernels waiting for this

particular block of matrix or a vector can start immediately rather than waiting for the

entire matrix or vector to be transmitted and then

In the shared memory implementation of DeepSparse we observed a nice pipelined execu-
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tion of different kinds of kernels. The matrix multiplication SpMM and the vector operations

like vector vector multiplication or vector vector transpose multiplication. in Figure 4.8 we

can see a pipelined execution of an actual iteration of LOBPCG where the tasks are different

kernels but they use the same datastructure and ultimately improves the performance. This

test was done in a haswell architecture.

We also did similar tests on Broadwell machines with a different matrix to validate the

framework and the pipelined execution. In Figure 7.1 we show this pipelined execution for the

nlpkkt240 matrix in a broadwell architecture. Here the SpMM is represented using orange

color, XY operation is Maroon and XTY is using green color palette. We can clearly observe

that the matrix and vector operations are well pipelined. Another interesting observation was

that the ration of time spent on the SpMM and vector operations are somewhat in the similar

range. We observed that since the matrix and vector operations are taking similar amount

of time during an iteration, a well pipelined execution of these kernels will improve the cache

performance which it did and we saw the execution time is actually improved in a shared

memory architecture. We were motivated to extend this idea for a distributed application

like MFDn which also has similar matrix and vector operations. With the introduction of

communication tasks, we were motivated to use the idea from shared memory to distributed

memory.
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Chapter 2

OPTIMIZATION IN LARGE SCALE

DISTRIBUTED DENSE MATRICES

2.1 Nuclear Density Functional Theory With Skyrme

Interaction

Unlike in classical calculations where a point particle is defined by its position and its mo-

mentum, quantum particles are represented as complex wave functions. The square modulus

of the wave function in real space is interpreted as a probability amplitude to find a particle

at a certain point. Wave functions in the real space and the momentum space are related via

the Fourier transform. In the Hartree-Fock approximation used in nuclear DFT calculations,

the nuclear N-body wave function is restricted to a single Slater determinant consisting of

N orthonormalized one-body wave functions ψα, α = 1..N . Each of these one-body wave

functions have to fulfill the one-body Schrödinger’s Equation

ĥqψα = εαψα, (2.1)

when convergence is reached, i.e., when
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∆ε =

√√√√∑α〈ψα | ĥ2 | ψα〉 − 〈ψα | ĥ | ψα〉2∑
α 1 (2.2)

is small.

In nuclear DFT, the interaction between nucleons (i.e., neutrons and protons) is expressed

through a mean field. In this work, we utilize the Skyrme mean field [56]:

ESk =
∑
q=n,p

(
Cρq (ρ0)ρ2

q + C∆ρ
q ρq∆ρq

+ Cτq ρqτq + C∇
~J

q ρq∇ ~Jq
)
, (2.3)

where the parameters Ciq have to be fitted to experimental observables. The mean field is

determined by nucleon densities and their derivatives:

ρq(~r) =
∑
α∈q

∑
s
v2
α | ψα(~r, s) |2 (2.4a)

~Jq(~r) = −i
∑
α∈q

∑
ss′

v2
αψ
∗
α(~r, s)∇×~σss′ψα(~r, s′) (2.4b)

τq(~r) =
∑
α∈q

∑
s
v2
α | ∇ψα(~r, s) |2 , (2.4c)

where ρq is the number density, ~Jq is the spin-orbit density and τq(~r) is the kinetic den-

sity for q ∈ (protons,neutrons), which are calculated from the wave functions. We assume a

time-reversal symmetric state in the equations. The interaction is explicitly isospin depen-

dent. The parameters v2
α are either 0 for non-occupied states or 1 for occupied states for

calculations without the pairing force. With those occupation probabilities, the calculation

can also be performed using more wave functions than the number of particles. The sum
∑
α v

2
α determines the particle number. A detailed description of the Skyrme energy density
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functional can be found in references [94, 95].

In DFT, the ground states associated with a many-body system is found in a self-

consistent way, i.e., iteratively. The self-consistent solution can be approached through

the direct diagonalization method or, in this case we use the damped gradient iteration

method which is described below. While stable finite nuclei as present on earth typically

do not contain more than a total of 300 nucleons, nuclear pasta matter in neutron stars

is quasi-infinite on the scales of quantum simulations. Therefore it is desirable to simulate

as large volumes as possible to explore varieties of nuclear pasta matter. Furthermore, in

contrast to finite nuclei which are approximately spherical, pasta matter covers a large range

of shapes and deformations and thus many more iterations are needed to reach convergence.

Since larger volumes and consequently more nucleons require very intensive calculations, a

high performance implementation of nuclear DFT codes is desirable.

DFT is also widely used for electronic structure calculations in computational chemistry.

While DFT approaches used in computational chemistry can efficiently diagonalize matrices

associated with a large number of basis sets, we need to rely on different iteration techniques

in nuclear DFT. The most important reason for this is that in computational chemistry,

electrons are present in a strong external potential. Therefore, iterations can converge rela-

tively quickly in this case. However, in nuclear DFT, the problem must be solved in a purely

self-consistent manner because nuclei are self-bound. As a result, the mean field can change

drastically from one iteration to the next, since no fixed outer potential is present. Especially

for nuclear pasta spanning a wide range of shapes, a few thousand iterations are necessary

for the solver to converge. Therefore, nuclear DFT iterations have to be performed relatively

quickly, making it infeasible to employ the electronic DFT methods which are expensive for

a single iteration.

24



2.2 Sky3D Software

Sky3D is a nuclear DFT solver, which has frequently been used for finite nuclei, as well

as for nuclear pasta (for both static and time-dependent) simulations. The time-dependent

version of Sky3D is relatively simpler to parallelize compared to the static version, because

properties like orthornomality of the wave functions are implicitly conserved due to the fact

that the time-evolution operator is unitary. Therefore the calculation of a single nucleon is

independent of the others. The only interaction between nucleons takes place through the

mean field. Thus only the nuclear densities using which the mean field is constructed has

to be communicated. In the static case, however, orthonormality has to be ensured and the

Hamiltonian matrix must be diagonalized to obtain the eigenvalues and eigenvectors of the

system at each iteration. In this paper, we describe parallelization of the more challenging

static version (which previously was only shared memory parallel).

Sky3D operates on a three dimensional equidistant grid in coordinate space. Since nuclear

DFT is a self-consistent method requiring an iterative solver, the calculation has to be

initialized with an initial configuration. In Sky3D, the wave functions are initialized with a

trial state, using either the harmonic oscillator wave functions for finite nuclei or plane waves

for periodic systems. The initial densities and the mean field are calculated from those trial

wave functions.

After initialization, iterations are performed using the damped gradient iteration scheme

[96]

ψ
(n+1)
α = O

{
ψ

(n)
α − δ

T̂ + E0

(
ĥ(n) − 〈ψ(n)

α | ĥ(n) | ψ(n)
α 〉

)
ψ

(n)
α

}
, (2.5)

where O denotes the orthonormalization of the wave functions, T̂ denotes the kinetic

energy operator, ψ(n)
α and ĥ(n) denote the single-particle wave function and the Hamiltonian
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at step n, respectively, and δ and E0 are constants that need to be tuned for fast conver-

gence. The Hamiltonian consists mainly of the kinetic energy, the mean field contribution

(Eq.2.3) and the Coulomb contribution. We use FFTs to compute the derivatives of the

wave functions. The Coulomb problem is solved in the momentum space, also employing

FFTs.

The basic flow chart of the static Sky3D code is shown in Fig 2.1. Since the damped

gradient iterations of Eq. 2.5 does not conserve the diagonality of the wave functions with

respect to the Hamiltonian, i.e. 〈ψα | ĥ | ψβ〉 = δαβ , they have to be diagonalized after

each step to obtain the eigenfunctions. Subsequently, single-particle properties, e.g. single-

particle energies, are determined. If the convergence criterion (Eq.(2.2)) is fulfilled at the

end of the current iteration, properties of the states and the wave functions are written into

a file and the calculation is terminated.

2.3 Distributed Memory Parallelization With MPI

There are basically two approaches for distributed memory parallelization of the Sky3D code.

The first approach would employ a spatial decomposition where the three dimensional space

is partitioned and corresponding grid points are distributed over different MPI ranks. How-

ever, computations like the calculation of the density gradients ∇ρq(~r) are global operations

that require 3D FFTs, which are known to have poor scaling due to their dependence on

all-to-all interprocess communications [97]. Hence, this approach would not scale well. The

second approach would be to distribute the single particle wave functions among processes.

While communications are unavoidable, by carefully partitioning the data at each step, it

is possible to significantly reduce the communication overheads in this scheme. In what
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1: Initialize ψ(0) and mean field

2: damped gradient
step ψ(n)

α → ϕ
(n+1)
α

and calculate ĥ|ϕα〉

3a: Calculate matrices:
Iαβ = 〈ϕα|ϕβ〉, Hαβ = 〈ϕα|ĥ|ϕβ〉

3b: Diagonal-
ization of Hαβ

3c: Orthogonalization

3d: combine othonomalization
and diagonalization matrices

3e: build orthonormalized
and diagonalized w.f.

4a: calculate densities

4b: calculate mean field V (n+1)

5: calculate s.p. properties

converged?

6: Finalizing the calculation
yes

no

Figure 2.1: Flowchart of the parallelized Sky3D code. Parts in the 1d distribution are marked in
green, parts in full 2d distribution are marked in blue, parts in divided 2d distribution are marked
in yellow and collective non-parallelized parts are marked in red. ψ

(n)
α denotes the orthonormal

and diagonal wave function at step n with index α, |ϕα〉 = ϕ
(n+1)
α denotes the non-diagonal and

non-orthonormal wave function at step n+1. ĥ is the one-body Hamiltonian.
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follows, we present our parallel implementation of Sky3D using this second approach.

The iterative steps following the initialization phase constitute the computationally ex-

pensive part of Sky3D. Hence, our discussion will focus on the implementation of steps 2

through 5 of Fig. 2.1. Computations in these steps can be classified into two groups, i)

those that work with matrices (and require 2D distributions to obtain good scaling), and ii)

those that work on the wave functions themselves (and utilize 1D distributions as it is more

convenient in this case to have wave functions to be fully present on a node). Our paral-

lel implementation progresses by switching between these 2D partitioned steps (marked in

violet and yellow in Fig. 2.1) and 1D partitioned steps (marked in green) in each iteration.

Steps marked in red are not parallelized.

As discussed in more detail below, an important aspect of our implementation is that we

make use of optimized scientific computing libraries such as ScaLAPACK [98] and FFTW[99]

wherever possible. Since ScaLAPACK and FFTW are widely used and well optimized across

HPC systems, this approach allows us to achieve high performance on a wide variety of

architectures without the added burden of fine-tuning Sky3D. This may even extend to

future architectures with decreased memory space per core and possibly multiple levels in

the memory hierarchy. As implementations of ScaLAPACK and FFTW libraries evolve for

such systems, we anticipate that it will be relatively easy to adapt our implementation to

such changes in HPC systems.

2.3.1 The 1D and 2D partitionings

The decisions regarding 1D and 2D decompositions are made around the wave functions

which represent the main data structure in Sky3D and are involved in all the key compu-

tational steps. We represent the wave functions using a two dimensional array psi(V,A),
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where V = nx × ny × nz × 2 includes the spatial degrees of freedom and the spin degree of

freedom with nx, ny and nz being the grid sizes in x, y and z directions, respectively, and the

factor 2 originating from the two components of the spinor. In the case of 1D distribution,

full wave functions are distributed among processes in a block cyclic way. The block size Nψ

determines how many consecutive wave functions are given to each process in each round.

In round one, the first Nψ wave functions are given to the first process P0, then the second

process P1 gets the second batch and so on. When all processes are assigned a batch of

wave functions in a round, the distribution resumes with P0 in the subsequent round until

all wave functions are exhausted.

In the 2D partitioning case, single particle wave functions as well as the matrices con-

structed using them (see Sect. 2.3.3.1) are divided among processes using a 2D block cyclic

distribution. In Fig. 2.2, we provide a visual example of a square matrix distributed in a

2D block cyclic fashion where processes are organized into a 3×2 grid topology, and the row

block size NB and the column block size MB have been set equal to 2. The small rectangu-

lar boxes in the matrix show the arrangement of processes in the 3×2 grid topology – the

number of rows are in general not equal to the number of columns in the process grid. For

symmetric or Hermitian matrices only the (blue marked) lower triangular part is needed as

it defines the matrix fully. In this particular case, P0 is assigned the matrix elements in

rows 1, 2, 7, 8, 13 and 14 in the first column, as well as those in rows 2, 7, 8, 13 and 14 in

the second column; P1 is assigned the matrix elements in rows 7, 8, 13 and 14 in columns

3 and 4, and so on. Single particle wave functions, which are stored as rectangular (non-

symmetric) matrices with significantly more number of rows than the number of columnd

(due to the large grid sizes needed), are also distributed using the same strategy. The 2D

block cyclic distribution provides very good load balance in computations associated with
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Figure 2.2: 2D block cyclic partitioning example with 14 wave functions using a 3×2 processor
topology. Row and column block sizes are set as NB=MB=2. The blue shaded area marks the lower
triangular part.

the single particle wave functions and the matrices formed using them, as all processes are

assigned approximately the same number of elements.

2.3.2 Parallelization across Neutron and Proton groups

An important observation for parallelization of Sky3D is that neutrons and protons interact

only through the mean field. Therefore, the only communication needed between these two

species takes place within step 4b. To achieve better scalability, we leverage this fact and
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separate computations associated with neutrons and protons to different processor groups,

while trying to preserve the load balance between them as explained in detail below.

Suppose A = N + Z is the total number of wave functions, such that N is the number

of neutron wave functions and Z is the number of proton wave functions. To distribute

the array psi, we split the available processors into two groups; one group of size PN for

neutrons, and another group of size PP for protons. We note that in practical simulations, the

number of neutrons are often larger than the number of protons (for example, simulations

of neutron star matter are naturally neutron rich). The partitioning of processors into

neutron and proton groups must account for this situation to ensure good load balance

between the two groups. As will be discussed in Section 2.3.3, Sky3D execution time is

mainly determined by the time spent on 2D partitioned steps which is primarily dominated

by the construction of the overlap and Hamiltonian matrices step, and to a lesser degree by

eigenvalue computations associated with these matrices. Since the computational cost of the

matrix construction step is proportional to the square of the number of particles in a group

(see Section 2.3.3.1), we choose to split processors into two groups by quadratically weighing

the number of particles in each species. More precisely, if the total processor count is given

by C, then PN = N2
N2+Z2C and PP = Z2

N2+Z2C according to this scheme. It is well-known

that 2D partitioning is optimal for scalable matrix-matrix multiplications [100]. Therefore,

once the number of processors within neutron and proton groups is set, we determine the

number of rows and columns for the 2D process topologies of each of these groups through

MPI’s MPI_DIMS_CREATE function. This function ensures that the number of rows and

columns is as close as possible to the square root of PN and PP for neutron and proton

groups, respectively, thus yielding a good 2D process layout.

As will be demonstrated through numerical experiments, the scheme described above
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typically delivers computations with good load balances, but it has a caveat. Under certain

circumstances, this division might yield a 2D process grid with a tall & skinny layout, which

essentially is more similar to a 1D partitioning and have led to significant performance

degradations for our 2D partitioned computations. For instance, in a system with 5000

neutrons and 1000 protons, when we use 256 processors, according to our scheme PN will

be 246, and PP will be 10. For PN = 246, the corresponding process grid is (41 ∗ 6) which

is much closer to a 1D layout than a 2D layout. To prevent such circumstances, we require

the number of processors within each group to be a multiple of certain powers of 2 (i.e., 2,

4, 8, 16 or 32 depending on the total core count). For the above example, by requiring the

number of cores within each group to be a multiple of 16, we determine PN to be 240 and

PP to be 16. This results in a process grid of size 16 × 15 for neutrons which is almost a

square shaped grid, and a perfect square grid of size 4× 4 for protons.

2.3.3 Calculations with 2D distributions

As a result of the split, neutron and proton processor groups asynchronously advance through

steps that require 2D partitionings, i.e., steps 3a to 3e. Main computational tasks here are the

construction of the overlap and Hamiltonian matrices (using 1D distributed wave functions)

and eigendecompositions of these matrices. These tasks are essentially accomplished by

calling suitable ScaLAPACK routines. The choice of a 2D block cyclic distribution maximizes

the load balancing with ScaLAPACK for the steps 3a through 3e.
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2.3.3.1 Matrix construction (step 3a)

Construction of the overlap matrix I and the Hamiltonian matrix H

Iαβ = 〈ϕα | ϕβ〉, and (2.6)

Hαβ = 〈ϕα | ĥ | ϕβ〉, (2.7)

where | ϕα〉 marks the non-orthonormalized and non-diagonal wave functions, constitutes

the most expensive part of the iterations in Sky3D, because the cost of these operations scales

quadratically with the number of particles. More precisely, calculating these matrices costs

O(I2V ), where I ∈ {N,Z} is the number of wave functions. Since these two operations are

simply inner products, we use ScaLAPACK’s complex matrix matrix multiplication routine

PZGEMM for constructing these two matrices.

One sublety here is that prior to the start of steps with 2D partitionings, wave functions

are distributed in a 1D scheme. To achieve good performance and scaling with PZGEMM, we

first switch both wave functions | ϕα〉 (psi) and ĥ | ϕα〉 (hampsi) into a 2D cyclic layout

which uses the same process grid created through the MPI_DIMS_CREATE function. The

PZGEMM call then operates on these two matrices and the complex conjugate of (psi). The

resulting matrices I and H are distributed over the same 2D process grid as well.

Since I and H are square matrices, we set the row and column block sizes, NB and MB,

respectively, to be equal (i.e., NB = MB). Normally, in a 2D matrix computation, one

would expect a trade-off in choosing the exact value for NB and MB, as small blocks lead

to a favorable load balance, but large blocks reduce communication overheads. However, for

typical problems that we are interested in, i.e., more than 1000 particles using at least a

few hundred cores, our experiments with different NB and MB values such as 2, 4, 8, 32, 64
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have shown negligible performance differences. Therefore, we have empirically determined

the choice for NB = MB to be 32 for large computations.

2.3.3.2 Diagonalization and Orthonormalization (steps 3b & c)

After the matrix H is constructed according to Eq. (2.7), its eigenvalue decomposition is

computed to find the eigenstates of the Hamiltonian. Since H is a hermitian matrix, we use

the complex Hermitian eigenvalue decomposition routine PZHEEVR in ScaLAPACK, which

first reduces the input matrix to tridiagonal form, and then computes the eigenspectrum

using the Multiple Relatively Robust Representations (MRRR) algorithm [101]. The local

matrices produced by the 2D block cyclic distribution of the matrix construction step can

readily be used as input to the PZHEEVR routine. After the eigenvectors of H are obtained,

the diagonal set of wave functions ψα can be obtained through the following matrix-vector

multiplication

ψα =
∑
β

ZHαβϕβ (2.8)

for all ϕβ where Z is the matrix containing the eigenvectors of H.

Orthonormalization is commonly accomplished through the modified Gram-Schmidt (mGS)

method, a numerically more stable version of the classical Gram-Schmidt method. Unlike

the original version of Sky3D, we did not opt for mGS for a number of reasons. First, mGS

is an inherently sequential process where the orthonormalization of wave function n+ 1 can

start only after the first n vectors are orthonormalized. Second, the main computational

kernel in this method is a dot product which is a Level-1 BLAS operation and has low arith-

metic intensity. Finally, a parallel mGS with a block cyclic distribution of wave functions

| ϕα〉 as used by matrix construction and diagonalization steps would incur significant syn-
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chronization overheads, especially due to the small blocking factors needed to load balance

the matrix construction step.

An alternative approach to orthonormalize the wave functions is the Löwdin method

[102], which can be stated for our purposes as:

C = I−1/2 (2.9a)

ψα =
∑
β

Cβαϕβ . (2.9b)

The Löwdin orthonormalization is well known in quantum chemistry and has the property

that the orthornormalized wave functions are those that are closest to the non-orthonormalized

wave functions in a least-squares sense. Note that since I is a Hermitian matrix, it can be

factorized as I = XΛXT , where columns of X are its eigenvectors and Λ is a diagonal matrix

composed of I’s eigenvalues. Consequently, I−1/2 in Eq.2.9a can be computed simply by

taking the inverses of the square roots of I’s eigenvalues, i.e., C = I−1/2 = XΛ−1/2XT .

Applying the Löwdin method in our problem is equivalent to computing an eigendecom-

position of the overlap matrix I, which can also be implemented by using the PZHEEVR

routine in ScaLAPACK. Note that exactly the same distribution of wave functions and

blocking factors as in the matrix construction step can be used for this step, too.

Detailed performance analyses reveal that the eigendecomposition routine PZHEEVR does

not scale well for large P with the usual number of wave functions in nuclear pasta calcula-

tions. However, the eigendecompositions of the I and H matrices (within both the neutron

and proton groups) are independent of each other and their construction is also similar with

respect to each other. Therefore, to gain additional performance, we perform steps 3b and

3c in parallel using half the number of MPI ranks available in a group, i.e., PN/2 and PP /2,
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respectively for neutrons and protons.

2.3.3.3 Post-processing (steps 3d & e)

The post-processing operations in the diagonalization and orthonormalization steps are

matrix-vector multiplications acting on the current set of wave functions ϕj . As opposed to

applying these operations one after the other, i.e., CT (ZH{ϕ}), we combine diagonalization

and orthonormalization by performing (CTZH){ϕ}, where {ϕ} = (ϕ1, ϕ2, .., ϕn)T denotes

a vector containing the single-particle wave functions. While both sequences of operations

are arithmetically equivalent, the latter has a benefit in terms of the computational cost,

as it reduces the number of multiply-adds from 2I2V to I3 + I2V . This is almost half the

cost of using the first sequence of operations, since we have I << V for both neutrons and

protons, because the number of wave functions has to be significantly smaller than the size

of the basis to prevent any bias due to the choice of the basis. We describe this optimization

in the form of a pseudocode in Fig. ??. By computing the overlap matrix I together with

the Hamiltonian matrix H, and performing their eigendecompositions, we can combine the

update and orthonormalization of wave functions. Lines shown in red in Fig. ?? mark those

affected by this optimization. Consequently, the matrix-matrix multiplication CTZH can

be performed prior to the matrix-vector multiplication involving the wave functions {ϕ(~rν)}.

As a result, the overall computational cost is significantly reduced, and efficient level-3 BLAS

routines can be leveraged.

The CTZH operation is carried out in parallel using ScaLAPACK’s PZGEMM routine (step

3d). Then the resulting matrix is multiplied with the vector of wave functions for all spatial

and spin degrees of freedom in step 3e using another PZGEMM call.

It should be noted that with this method, we introduce small errors during iterations,
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because the matrix CT is calculated from non-orthogonalized wave functions. However,

since we take small gradient steps, these errors disappear as we reach convergence and we

ultimately arrive at the same results as an implementation which computes the matrix CT

from orthogonalized wave functions.

2.3.4 Calculations with a 1D distribution

Steps 2, 4 and 5 use the 1D distribution, because for a given wave function ψα, computations

in these steps are independent of all other wave functions. Within the neutron and proton

processor groups, we distribute wave functions using a 1D block cyclic distribution with

block size NBψ. Such a distribution further ensures good load balance and facilitates the

communication between 1D and 2D distributions. The damped gradient step (as shown in

the curled brackets in Eq. 2.5) is performed in step 2. Here, the operator T̂ shown in Eq. 2.5

is calculated using the FFTW library. Since the Hamiltonian has to be applied to the wave

functions in this step, ĥ | ψα〉 is saved in the array hampsi, distributed in the same way as

psi and will be reused in step 3a. In step 4a, the partial densities as given in Eqs. (2.4a)-

(2.4c) are calculated on each node for the local wave functions separately and subsequently

summed up with the MPI routine MPI_ALLREDUCE. We use FFTs to compute derivatives of

wave functions as needed in Eqs. (2.4a)-(2.4c). The determination of the mean field in step

4b does not depend on the number of particles, and is generally not expensive. Consequently,

this computation is performed redundantly by each MPI rank to avoid synchronizations. Also

the check for convergence is performed on each MPI rank separately. Both are marked in

red in Fig. 2.1. Finally, in step 5, single-particle properties are calculated and partial results

for single-particle properties are aggregated on all MPI ranks using an MPI_ALLREDUCE.
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2.3.5 Switching between different data distributions

As described above, our parallel Sky3D implementation uses 3 different distributions: The

1D distribution which is defined separately for neutrons and protons and used in green

marked steps of Fig 2.1, the 2d distribution which is again defined separately for neutrons

and protons and used in blue marked steps, and the 2d distribution for diagonalization

and orthogonalization (used in steps marked in yellow) within subgroups of size PN/2 and

PP /2, respectively for neutrons and protons. For calculation of overlap and Hamiltonian

matrices, wave functions psi and hampsi need to be switched from the 1D distribution into

the 2D distribution after step 2. After step 3a, matrices I and H must be transfered to the

subgroups. After eigendecompositions in steps 3b and 3c are completed, the matrices Z and

C, which contain the eigenvectors, need to be redistributed back to the full 2D groups. After

step 3e, only the updated array psi has to be switched back to the 1D distribution from the

2D distributions.

While these operations require complicated interprocess communications, they are easily

carried out with the ScaLAPACK routine PZGEMR2D which can transfer distributed matrices

from one processor grid to another, even if the involved grids are totally different in their

shapes and formations. As we will demonstrate in the performance evaluation section, the

time required by PZGEMR2D is insignificant, including in large scale calculations.

2.3.6 Memory considerations

Beyond performance optimizations, memory utilization is of great importance for large-scale

nuclear pasta calculations. Data structures that require major memory space in Sky3D

are the wave functions stored in matrices psi and hampsi. The latter matrix was not
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needed in the original Sky3D code as H was calculated on the fly, but this is not an option

for a distributed memory implementation. As such, the total memory need increases by

roughly a factor of 2. Furthermore, we store both arrays in both 1D and 2D distributions,

which contributes another factor of 2. Besides the wavefunctions, another major memory

requirement is storage of the matrices such as H and I. These data structures are much

smaller because the total matrix size grows only as N2 for neutrons and Z2 for protons. In

our implementation, we store these matrices twice for the 2D distribution and twice for the

2D distributions within subgroups.

To give an example as to the actual memory utilization, largest calculations we conducted

in this work are nuclear pasta calculations with a cubic lattice of 48 points and 6000 wave

functions. In this case, the aggregate size of a single matrix to store wave functions in double

precision complex format is 483 × 2 × 6000 × 16 ≈ 21GB, and all four arrays required in

our parallelization would amount to about 84GBs of memory. The Hamiltonian and overlap

matrices occupy a much smaller footprint, roughly 144 MBs per matrix. As this example

shows, it is still feasible to carry out large scale nuclear pasta formations using the developed

parallel Sky3D code. Even if we choose a bigger grid, e.g., of size 643, with typical compute

nodes in today’s HPC systems having ≥ 64 GB of memory and the memory need per MPI

rank decreasing linearly with the total number of MPI ranks in a calculation (there is little to

no duplication of data structures across MPI ranks), such calculations would still be feasible

using our implementation.
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2.4 Shared Memory Parallelization with OpenMP

In addition to MPI parallelization, we also implemented a hybrid MPI/OpenMP parallel

version of Sky3D. The rational behind a hybrid parallel implementation is that it would

map more naturally to today’s multi-core architectures, and it may also reduce the amount

of inter-node communication using MPI.

For the 1D distribution calculations, similar to the MPI implementation, we distribute the

wave functions over threads by parallelizing loops using OpenMP. Since no communication

is needed for step 2, we do not expect a gain in performance as a result of the shared memory

implementation in this step. Step 4a, however, involves major communications, as the partial

sums of the densities have to be reduced across all threads. The OpenMP implementation

reduces the number of MPI ranks when the total core count P is kept constant. This reduces

the amount of inter-node communication. Similarly, step 5 involves the communication of

single particle properties. Since these quantities are mainly scalars or small sized vectors

though, inter-node communications are not as expensive.

The steps with a 2D distribution, i.e., steps 3a-3e, largely rely on ScaLAPACK routines.

In this part, shared memory parallelization is introduced implicitly via the usage of multi-

threaded ScaLAPACK routines. Consequently, note that we rely mostly on the ScaLAPACK

implementation and its thread optimizations for the steps with 2D data distributions.
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2.5 Performance Evaluation

2.5.1 Experimental setup

We conducted our computational experiments on Cori - Phase I, a Cray XC40 supercom-

puting platform at NERSC, which contains two 16-core Xeon E5-2698 v3 Haswell CPUs

per node (see Table 7.1). Each of the 16 cores runs at 2.3GHz and is capable of executing

one fused multiply-add (FMA) AVX (4×64-bit SIMD) operation per cycle. Each core has

a 64KB L1 cache (32KB instruction and 32KB data cache) and a 256KB L2 cache, both

of which are private to each core. In addition, each CPU has a 40MB shared L3 cache.

The Xeon E5-2698 v3 CPU supports hyperthreading which would essentially allow the use

of 64 processes or threads per Cori-Phase I node. Our experiments with hyperthreading

have led to performance degradation for both the MPI and MPI/OpenMP hybrid parallel

implementations. As such, we have disabled hyperthreading in our performance tests.

For performance analysis, we choose a physically relevant setup. In practice, the grid

spacing is about ∆x = ∆y = ∆z ∼ 1 fm. This grid spacing gives results with desired accuracy

[53]. For nuclear pasta matter, very high mean number densities (0.02 fm−3 − 0.14 fm−3)

have to be reached. We choose two different cubic boxes of L = 32 fm and L = 48 fm and a

fixed number of nucleons N + Z = 6000. This results in mean densities of 0.122 fm−3 and

0.036 fm−3, respectively.

To eliminate any load balancing effects, we begin with our performance and scalability

tests using a symmetric system with 3000 neutrons and 3000 protons. As the systems for

neutron star applications are neutron rich, we also test systems with 4000 neutron and 2000

protons and also 5000 neutrons and 1000 protons.
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Platform Cray XC40

Processor Xeon E5-2698 v3

Core Haswell

Clock (GHz) 2.3

Data Cache (KB) 64(32+32)+256

Memory-Parallelism HW-prefetch

Cores/Processor 16

Last-level L3 Cache 40 MB

SP TFlop/s 1.2

DP TFlop/s 0.6

STREAM BW3 120GB/s

Available Memory/node 128GB

Interconnect Cray Aries (Dragonfly)

Global BW 5.625 TB/s

MPI Library MPICHv2

Compiler Intel/17.0.2.174

Table 2.1: Hardware specifications for a single socket on Cori, a Cray XC40 supercomputer at
NERSC. Each node consists of two sockets.

2.5.2 Scalability

First, we consider a system with 3000 neutrons and 3000 protons with two different grid

sizes, L = 32 fm and L = 48 fm. On Cori, each “Haswell" node contains 32 cores on two

sockets. For both grid sizes, we ran simulations on 1, 2, 4, 8, 16, 32 and 48 nodes using

32, 64, 128, 256, 1024 and 1536 MPI ranks, respectively. In all our tests, all nodes are fully

packed, i.e., one MPI rank is assigned to each core, exerting full load on the memory/cache

system.

Performance results for L = 32 fm and L = 48 fm cases are shown in Fig. 2.3 and Fig. 2.4,

respectively. In both figures, total execution time per iteration is broken down into the

time spent for individual steps of Fig. 2.1. In addition, “communication" represents the time
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Figure 2.3: Scalability of MPI-only version of Sky3D for the 3000 neutron and 3000 proton system
using the L = 32 fm grid.

needed by ScaLAPACK’s PZGEMR2D routine for data movement during switches between

different distributions (i.e., 1D, 2D, and 2D subgroups). For each step, we use a single line

to report the time for neutron and proton computations by taking their maximum.

As seen in Fig. 2.3, calculation of the matrices (step 3a) is the most expensive step. An-

other expensive step is step 3e where diagonalized and orthonormalized wave functions are

built. Diagonalization of the Hamiltonian H and the Löwdin orthonormalization procedures

(steps 3b-3c, which are combined into a single step as they are performed in parallel) also

takes significant amount of time. It can be seen that step 4a does not scale well, because it

consists mainly of communication of the densities. We also note that step 4b is not paral-

lelized, it is rather performed redundantly on each process because it takes an insignificant

amount of time.

The damped gradient step (step 2) and computation of single particle properties (step 5)
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Table 2.2: Scalability of MPI-only version of Sky3D for the L = 32 fm grid. Time is given in
seconds, and efficiency (eff) is given in percentages.

calc. matrix recombine diag+Löwdin Total

cores time eff time eff time eff time eff

32 23.8 100 12.2 100 7.4 100 59.8 100
64 11.8 101.5 6.0 102.0 2.9 128.7 28.4 105.1
128 6.3 94.8 3.2 96.8 2.0 93.6 16.0 93.5
256 3.2 92.2 1.5 99.4 1.6 58.4 9.2 81.4
512 1.9 79.8 0.9 82.4 0.8 61.6 5.3 70.5
1024 1.0 73.0 0.5 79.1 0.6 36.8 3.4 55.0
1536 0.8 63.6 0.4 64.4 0.8 18.6 3.5 36.1

scale almost perfectly. Steps 3a and 3e, which are compute intensive kernels, also exhibit good

scaling. While ScaLAPACK’s eigensolver routine PZHEEVR performs well for smaller number

of cores, it does not scale to a high number of cores. In fact, the internal communications in

this routine becomes a significant bottleneck to the extent that steps 3b and 3c become the

most expensive part of the calculation on 1536 cores. In Table 2.2, we give strong scaling

efficiencies for the most important parts of the iterations for the L = 32 fm grid. Overall,

we observe good scaling up to 512 cores, where we achieve 70.5% efficiency. However, this

number drops to 36.1% on 1536 cores and steps 3b-3c are the main reason for this drop.

In Fig. 2.4, strong scaling results for the L = 48 fm grid is shown. In this case, the

number of neutrons and protons are the same, but the size of wave functions is larger than

the previous case. As a result, the computation intensive steps 3a, 3e and 4b which directly

work on these wave functions are significantly more expensive than the corresponding runs

for the L = 32 fm case. As it is clearly visible in this figure, on small number of nodes,

the overall iteration time is dominated by these compute-intensive kernels. This changes in

larger scale runs, where the times spent in diagonalization and Löwdin orthonormalization
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Figure 2.4: Scalability of MPI-only version of Sky3D for the 3000 neutron and 3000 proton system
using the L = 48 fm grid.

(steps 3b-3c) along with communication operations also become significant.

The increased size of wave functions and increased computational intensity actually re-

sults in better scalability. As shown in Table 2.3, we observe 93.1% efficiency during matrix

construction and 95.5% efficiency for the recombine step on 1024 cores. We note that the cal-

culate matrix step’s efficiency can actually be greater than 100% owing to the perfect square

core counts like 64 and 256 cores. However, like in the previous case, the diagonalization

and orthonormalization steps do not scale well for larger number of cores.

Overall, Sky3D shows good scalability for small to moderate number of nodes, but this

decreases slightly with increased core counts. This decrease in efficiency is mainly due to the

poor scaling of ScaLAPACK’s eigensolver used in the diagonalization and orthonormalization

steps, and partially due to the cost of having to communicate large wave functions at each

Sky3D iteration.
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Table 2.3: Scalability of MPI-only version of Sky3D for the L = 48 fm grid. Time is given in
seconds, and efficiency (eff) is given in percentages.

calc. matrix recombine diag+Löwdin Total

cores time eff time eff time eff time eff

32 87.3 100 42.1 100 7.4 100 192 100
64 43.1 101.2 21 100.3 2.9 127 95.1 100.9
128 24.7 88.5 11 95.9 2.0 92.6 53.6 89.6
256 10.6 102 4.9 107.2 1.2 80.3 25.51 94.1
512 5.8 94 2.8 95.2 0.9 48.9 15 80.2
1024 2.9 93.1 1.4 95.5 0.6 35.3 8.4 71.3
1536 2.5 71.7 1.2 70.5 0.8 19.1 7.54 53

2.5.3 Comparison between MPI-only and MPI/OpenMP hybrid

parallelization

On Cori, "Haswell" compute nodes contain two sockets with 16 cores each. To prevent any

performance degradations due to non-uniform memory accesses (NUMA), we performed our

tests using 2 MPI ranks per node with each MPI rank having 16 OpenMP threads executed

on a single socket. Since we are grouping the available cores into neutron and proton groups

which are further divided in half for running diagonalization and orthonormalization tasks

in parallel, we need a minimum of 4 MPI ranks in each test. In Figures 2.5 and 2.7, we show

strong scalability test results similar to the MPI-only implementation discussed earlier. In

this case, the legends along the x-axis denotes the total core counts. For example, 128 means

that we are running this test on 4 nodes with 8 MPI ranks and 16 OpenMP threads per rank.

For the L = 32 fm grid, we have tested the MPI/OpenMP hybrid parallel version with 4, 8,

16, 32, 64, 96 MPI ranks. For the L = 48 fm grid, we have a larger number of wave functions

for which ScaLAPACK’s data redistribution routine PZGEMR2D runs out of memory on low

node counts. Hence, we tested this case with 16, 32, 64 and 96 MPI ranks only.
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Figure 2.5: Scalability of MPI/OpenMP parallel version of Sky3D for the 3000 neutron and 3000
proton system using the L = 32 fm grid.
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Table 2.4: Scalability of MPI/OpenMP parallel version of Sky3D for the L = 32 fm grid. Time is
given in seconds, and efficiency (eff) is given in percentages.

calc. matrix recombine diag+lowedin Total

cores time eff time eff time eff time eff

64 14.2 100 10.1 100 7.8 100 50.7 100
128 8.2 86.8 3.34 151.2 6.2 62.3 30.7 82.6
256 3.8 94.2 1.7 146.8 3.4 56.8 16 79.4
512 2.2 80 1.1 110.1 2.2 43.5 9.6 66
1024 1.2 76.4 0.6 106.3 2.4 20.5 6.8 46.7
1536 1 61 0.4 99.7 1.1 29.8 4.4 48.2

In Fig. 2.5, we show the strong scaling results for the L = 32 fm case, along with detailed

efficiency numbers for the computationally expensive steps in Table 2.4. Similar to the

MPI-only case, the compute-intensive matrix construction and recombine phases show good

scalability, but the diagonalization and Löwdin orthonormalization part does not perform as

well as these two parts. While the strong scaling efficiency numbers in this case look better

than the MPI-only case (see Table 2.2), we note that this is due to the inferior performance

of the MPI/OpenMP parallel version for its base case of 64 cores. In fact, the recombine

part performs so poor on 64 cores that its strong scaling efficiency is constantly over 100%

almost all the way up to 1536 cores. But comparing the total execution times, we see that

the MPI-only code takes 28.4 seconds on average per iteration, while the MPI/OpenMP

parallel version takes 50.7 seconds for this same problem on 64 cores.

This performance issue in the MPI/OpenMP version persists through all test cases

as shown in Figure 2.6. In particular, for smaller number of cores, the performance of

MPI/OpenMP version is poor compared to the MPI-only version. With increasing core

counts, the performance difference lessens slightly, but the MPI-only version still performs

better. In general, we observe that the MPI-only version outperforms the MPI/OpenMP
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Figure 2.6: Comparison of the execution times for the MPI-only and MPI/OpenMP parallel versions
of Sky3D for the 3000 neutron and 3000 proton system using the L = 32 fm grid.

version by a factor of about 1.5x to 2x. The main reason behind this is that the thread par-

allel ScaLAPACK routines used in the MPI/OpenMP implementation perform worse than

the MPI-only ScaLAPACK routines, which is contrary to what one might naively expect,

given that our tests are performed on a multi-core architecture.

In Fig. 2.7 and Table 2.5, we show the strong scaling results for the L = 48 fm grid. Again,

in this case parts directly working with the wave functions, i.e., calculation of matrices (step

3a) and building of orthonormalized and diagonalized wave functions (step 3e), become sig-

nificantly more expensive compared to the diagonalization and Löwdin orthonormalizations

(steps 3b & 3c). Of particular note here is the more pronounced communication times during

switches between different data distributions which is mainly due to the larger size of the

wave functions. Overall, we obtain 64.5% strong scaling efficiency using up to 96 MPI ranks

with 16 threads per rank (1536 cores in total). In terms of total execution times though,

MPI/OpenMP parallel version still underperforms compared to the MPI-only version (see

Fig. 2.8).
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Figure 2.7: Scalability of MPI/OpenMP parallel version of Sky3D for the 3000 neutron and 3000
proton system using the L = 48 fm grid.

Table 2.5: Scalability of MPI/OpenMP parallel version of Sky3D for the L = 48 fm grid. Time is
given in seconds, and efficiency (eff) is given in percentages.

calc. matrix recombine diag+Löwdin Total

cores time eff time eff time eff time eff

256 17.3 100 5.6 100 3.4 100 43.7 100
512 12.5 69.3 3.9 72.5 2.2 77.3 28.1 77.9
1024 6.2 69.6 1.9 72.5 1.4 60.5 16.2 67.4
1536 3.5 82.5 1.5 63.6 1.1 50.5 11.3 64.5
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Figure 2.8: Comparison of the execution times for the MPI-only and MPI/OpenMP parallel versions
of Sky3D for the 3000 neutron and 3000 proton system using the L = 32 fm grid.

2.5.4 Load balancing

In this section, we analyze the performance of our load balancing approach which divides

the available cores into neutron and proton groups for parallel execution. For better pre-

sentation, we break down the execution time into three major components: Calculations in

steps using a 2D data distribution, calculations using a 1D distribution of wave functions

and communication times. In Fig. 2.9(a), we show the time taken by the cores in the neu-

tron and proton groups for the 3000 neutron and 3000 proton system using the L = 48 fm

grid - which is essentially the same plot as in the previous section, but it gives the timings

for neutrons and protons separately. As this system has an equal number of neutrons and

protons, available cores are divided equally into two groups. As can be seen in Fig. 2.9(a),

the time needed for different steps in this case is almost exactly identical for neutrons and

protons.

In Figure 2.9(b), we present the results for a system with 4000 neutrons and 2000 protons.
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Figure 2.9: Times per iteration for neutron and proton processor groups, illustrating the load balance
for the 3000 neutrons and 3000 protons (a), 4000 neutrons and 2000 protons (b), and 5000 neutrons
and 1000 protons (c) systems using the L = 48 fm grid. Due to memory constraints the latter two
cases cannot be calculated using 32 CPU.
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In this case, according to our load balancing scheme, the number of cores in the neutron

group will be roughly 4x larger than the number of cores in the proton group because we

distribute the cores based on the ratio of the square of the number of particles in each group.

We observe that all three major parts are almost equally balanced for up to 1024 cores,

but 2D calculations for neutrons is slightly more expensive on 1536 cores. A more detailed

examination reveals that this difference is due to the eigendecomposition times in steps 3b-3c.

However, it is relatively minor compared to the total execution time per iteration.

Note that the times for the steps with 1d distribution show some variation for the system

with 4000 neutrons and 2000 protons. This is due to the fact that we split the available

cores into neutron and proton groups based on the cost of steps with 2D data distributions.

Consequently, 1D distributed steps take more time on the proton processor group, but this

difference is negligible in comparison to the cost of 2D distributed steps.

In Figure 2.9(c) results for a more challenging case with 5000 neutrons and 1000 protons

are presented. In this case the majority of the available cores are assigned to the neutron

group - more precisely, the ratio between the sizes of the two groups is roughly 25. We

observe that 1D calculations take significantly more time for protons in this case, but any

potential load imbalances are compensated by the reduced 2D calculation times for protons.

A further inspection of the execution time of each step for the 5000 neutron and 1000

proton system is given in Figure 2.10. This inspection reveals that time needed for neutrons

and protons mainly differ for step 3b-3c and step 3d due to the large difference between

neutron and proton counts. But these difference are not significant compared to the other

computationally heavy steps which are well load balanced. As shown in Table 2.6, our

implementation still achieves about 50% strong scaling efficiency on 1536 cores for this

challanging case with 5000 neutrons and 1000 protons.
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Figure 2.10: A detailed breakdown of per iteration times for neutron and proton processor groups,
illustrating the load balance for the 5000 neutrons and 1000 protons system.

Table 2.6: Scalability of MPI-only version of Sky3D for the 5000 neutrons and 1000 protons system
using the L = 48 fm grid. Time is given in seconds, and efficiency (eff) is given in percentages.

calc. matrix recombine diag+Löwdin Total

cores time eff time eff time eff time eff

64 72.9 100 38.6 100 2.3 100 170 100
128 37.1 98.1 18.6 103.4 1.35 85 87 97.6
256 15.7 115.8 7.1 136.9 2.75 20.82 35.9 118.3
512 10 91.3 4.6 105.7 2.1 13.6 23.5 90.3
1024 5.4 83.9 2.4 99.2 2.7 5.3 16.3 65.2
1536 3.6 84 1.7 96.7 2.5 3.8 12.4 57.2
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2.5.5 Conclusion of this work

In this work, we described efficient and scalable techniques used to parallelize Sky3D, a

nuclear DFT solver that operates on an equidistant grid in a pure MPI framework as well

as a hybrid MPI/OpenMP framework. By carefully analyzing the computational motifs

in each step and data dependencies between different steps, we used a 2D decomposition

scheme for Sky3D kernels working with matrices, while using a 1D scheme for those per-

forming computations on wave functions. We presented load balancing techniques which

can efficiently leverage high degrees of parallelism by splitting available processors into neu-

tron and proton groups. We also presented algorithmic techniques that reduce the total

execution time by overlapping diagonalization and orthogonalization steps using subgroups

within each processor group. Detailed performance analysis on a multi-core architecture

(Cori at NERSC) reveal that parallel Sky3D can achieve good scaling to a moderately large

number of cores. Contrary to what one might naively expect, the MPI-only implementa-

tion outperforms the hybrid MPI/OpenMP implementation, mainly because ScaLAPACK’s

eigedecomposition routines perform worse in the hybrid parallel case. For larger core counts,

the disparity between the two implementations seems to be less pronounced. As a result of

detailed performance evaluations, we have observed that 256 to 1024 processors are reason-

ably efficient for nuclear pasta simulations and we consider these core counts for production

runs, depending on the exact calculation.

Using the new MPI parallel Sky3D code, we expect that pasta phases can be calculated

for over 10,000 nucleons in a fairly large box using a quantum mechanical treatment. As a

result, we expect to reach an important milestone in this field. We plan to calculate properties

of more complicated pasta shapes and investigate defects in pasta structures which occur in
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large systems.

This work motivated us to work with large scale sparse matrices in the newer architec-

tures. We first started with a blocked eigensolver and tried to optimize its performance. I

discuss this in more detail in the next chapter.

56



Chapter 3

OPTIMIZATION IN LARGE SCALE

DISTRIBUTED SPARSE

MATRICES

3.1 Eigenvalue Problem in CI Calculations

Nuclear physics faces the multiple hurdles of a very strong interaction, three-nucleon interac-

tions, and complicated collective motion dynamics. The eigenvalue problem arises in nuclear

structure calculations because the nuclear wave functions Ψ are solutions of the many-body

Schrödinger’s equation expressed as a Hamiltonian matrix eigenvalue problem, HΨ = EΨ .

In the CI approach, both the wave functions Ψ and the Hamiltonian H are expressed

in a finite basis of Slater determinants (anti-symmetrized product of single-particle states,

typically based on harmonic oscillator wave functions). Each element of this basis is referred

to as a many-body basis state. The representation of H within an A-body basis space, using

up to k-body interactions with kA, results in a sparse symmetric matrix Ĥ Thus, in CI

calculations, Schrödinger’s equation becomes an eigenvalue problem, where one is interested

in the lowest eigenvalues (energies) and their associated eigenvectors (wave functions). A

specific many-body basis state corresponds to a specific row and column of the Hamiltonian
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matrix. A nonzero in the Hamiltonian matrix indicates the presence of an interaction between

either the same or different many-body basis states. Both the total number of many-body

states N (the dimension of Ĥ) and the total number of nonzero matrix elements in Ĥ are

controlled by the number of nuclear particles, the truncation parameter Nmax, which is the

maximum number of HO quanta above the minimum for a given nucleus (see Fig. 3.1), and by

the maximum number of particles allowed to interact simultaneously in the Hamiltonian in

Eq, (3). Higher Nmax values yield more accurate results, but at the expense of an exponential

growth in problem size. Many nuclear applications seek to reach at least an Nmax of 10 in

order to establish a sequence of values of observables as a function of Nmax in order to

estimate exact answers through extrapolations to infinite Nmax.

3.2 Motivation and CI Implementation

As the load balancing issue and communication overheads on distributed memory systems

have been addressed in our previous work [78, 103, 104], here we mainly focus on the per-

formance of the thread-parallel computations within a single MPI rank. Conventionally,

in MFDn as well as in other CI codes, the Lanczos algorithm is used due to its excellent

convergence properties. However, locally optimal block preconditioned conjugate gradient

(LOBPCG) [30], a block eigensolver, is an attractive alternative for a number of reasons.

First, the LOBPCG algorithm allows effective use of many-body wave functions from closely

related model spaces (e.g. smaller basis, or different single-particle wave functions) to be

used as good initial guesses. Second, the LOBPCG algorithm can easily incorporate an effec-

tive preconditioner which can often be constructed based on physics insights to significantly

improve convergence. Third and most relevant to our focus in this paper, the LOBPCG
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Figure 3.1: The dimension and the number of non-zero matrix elements of the various nuclear
Hamiltonian matrices as a function of the truncation parameter Nmax. While the bottom panel is
specific to 16O, it is also representative of a wider set of nuclei [2, 3].
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algorithm naturally leads to an implementation with a high arithmetic density, as the main

computational kernels involved are the multiplication of a sparse matrix with multiple vec-

tors, and level-3 BLAS on dense vector blocks, as opposed to the SpMVs and level-1 BLAS

operations that are the building blocks in Lanczos. Finally, although not studied here, we

note that the potential benefits of a block eigensolver can be even more significant for CI

implementations based on on-the-fly computation of the Hamiltonian.

Alg. 3 gives the pseudocode for a simplified version of the LOBPCG algorithm without

preconditioning. LOBPCG is a subspace iteration method that starts with an initial guess

of the eigenvectors (Ψ0) and refines its approximation at each iteration (Ψi). Ri denotes

the residual associated with each eigenvector and Pi contains the direction information from

the previous step. Hence, in Alg. 3, Ψi, Ri and Pi correspond to dense blocks of vectors. To

ensure good convergence, the dimension of the initial subspace, m, is typically set to 1.5 to 2

times the number of desired eigenpairs nev. For numerical stability, the converged eigenpairs

are locked, i.e., m gets smaller as the algorithm progresses.

In the rest of this paper, we present our techniques to improve the efficiency of sparse

matrix computations, and dense vector block operations that constitute the key kernels

for LOBPCG. We then evaluate the impact of our techniques in real-world problems and

compare the performance of our optimized LOBPCG implementation with a Lanczos-based

solver.

The CI method is implemented in MFDn [2, 3]. A major challenge in CI is the massive

size of the matrix Ĥ ∈ RN×N , where N can be in the range of several billions and the

total number of nonzeros can easily exceed trillions. Since only the low-lying eigenpairs are

of interest, iterative eigensolvers are used to tame the computational cost [103, 104]. As

the identification of nonzeros in Ĥ and calculation of their values is very expensive, MFDn
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constructs the sparse matrix only once and preserves it throughout the computation. To

accelerate matrix construction and reduce the memory footprint, only half of the symmetric

Ĥ matrix is stored in the distributed memory available. A unique 2D triangular processor

grid is then used to carry out the computations in parallel [103, 104]. In this scheme, a

“diagonal" processor stores only the lower triangular part of a sub-matrix along the diagonal

of Ĥ. Each “non-diagonal" processor, a processor that owns a sub-matrix from either the

lower or the upper half of Ĥ, is assigned the operations related to the transpose of that sub-

matrix. A well-balanced distribution of the nonzeros among processors is ensured through

efficient heuristics [78]. Exploiting symmetry in MFDn demands SpMVT (SpMMT ) in addi-

tion to the SpMV (SpMM) operations, and thus data structures that efficiently implement

both operations. The accuracy from single-precision arithmetic is in general sufficient to

calculate the physical observables. Hence, in MFDn, the Hamiltonian matrix is stored in

single-precision to further reduce the memory footprint.

3.3 Multiplication of the Sparse Matrix with Multiple

Vectors (SpMM)

To exploit symmetry in a block eigensolver, each process must perform a conventional SpMM

(Y = AX), as well as a transpose operation SpMMT (Y = ATX), where A corresponds to

the local partition of Ĥ, X to a row partition of Ψi. Y is the output vector block in each

case. The number of rows and columns of A are typically very close to each other, therefore,

for simplicity, we take A to be a square matrix of size n × n. Both X and Y are dense

vector blocks of dimensions n×m. As SpMM and SpMMT are performed in separate phases

of the MPI parallel algorithm [104], we use the same input/output vectors to simplify the
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presentation.

Naively, one can realize SpMM by storing the vector blocks in column-major order and

applying one SpMV to each column of X. However, to exploit spatial locality, a row-

major layout should be preferred for vector blocks X and Y . This format also ensures good

data locality for the tall-skinny matrix operations of LOBPCG. Thus, the simplest SpMM

implementation can be implemented as an extension of SpMV where the operation on scalar

elements yi = ∑
Ai,jxj becomes an operation on m-element vectors Yi = ∑

Ai,jXj . The

input and output vectors can be aligned to 32-byte boundaries for efficient vectorization of

the m-element loops. This operation can be implemented by looping over each nonzero Ai,j .

3.4 Matrix Storage Formats

The most common sparse matrix storage format is compressed sparse rows (CSR) in which

the nonzeros of each matrix row are stored consecutively as a list in memory. One maintains

an array of pointers (which are simply integer offsets) into the list of nonzeros in order to

mark the beginning of each row. An additional index array is used to keep the column indices

of each nonzero. Nonzero values and column indices are stored in separate arrays of length

nnz , and the row pointers array is of length n+1. For single-precision sparse matrices whose

local row and column indices can be addressed with 32-bit integers (i.e., n ≤ 232 − 1), the

storage cost for the CSR format is 8nnz + 4n + 1. One may reuse matrices stored in the

CSR format for the SpMMT operation by reinterpreting row pointers and column indices as

column pointers and row indices, respectively. Such an interpretation would correspond to

a compressed sparse column (CSC) representation in which one operates on columns rather

than rows to implement the SpMMT operation.
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Large vector blocks (with 4 ≤ m ≤ 50, and n > 106) can potentially prevent a CSR

based SpMM implementation from taking full advantage of the locality in vector blocks

depending on the matrix sparsity structure. After a few rows, it is likely that vector data

will have been evicted from the L2 cache, while after a few hundred rows, it is very likely

that data will have been evicted from even the last level L3 cache. Moreover, in a thread-

parallel SpMMT , CSC’s scatter operation on thread-private output vectors (necessary to

prevent race conditions) coupled with the reduction required for partial thread results can

significantly impede performance [2]. Thus, it is imperative that we adopt a data structure

that can attain good locality for the vector blocks and does not suffer from the performance

penalties associated with the CSR and CSC implementations.

Our data structure for storing sparse matrices is a variant of the compressed sparse blocks

(CSB) format [77]. For a given block size parameter β, CSB nominally partitions the n× n

local matrices into β × β blocks. When β is on the order of
√
n, we can address nonzeros

within each block by using half the bits needed to index into the rows and columns of the full

matrix (16 bits instead of 32 bits). Therefore, for β =
√
n, the storage cost of CSB matches

the storage cost of traditional formats such as CSR. In addition, CSB automatically enables

cache blocking [105]. In CSB format, each β×β block is independently addressable through

a 2D array of pointers. SpMM operation can then be performed by processing this 2D array

by rows, while SpMMT can simply be realized by processing it via columns.

The formal CSB definition does not specify how the nonzeros are stored within a block.

An existing implementation of CSB for sparse matrix–vector (SpMV) and transpose sparse

matrix–vector (SpMVT ) multiplication stores nonzeros within each block using a space filling

curve to exploit data locality and enable efficient parallelization of the blocks themselves [77].
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3.5 Methodology and Optimization

CSR/OpenMP: Our baseline SpMM implementation uses the CSR format. SpMM oper-

ation was threaded using an OpenMP parallel for loop with dynamic scheduling over the

matrix rows. SpMMT operation was threaded over columns (which are simply reinterpreta-

tions of CSR rows for the transpose) where each thread uses a private copy of the output

vector block to prevent race conditions. Private copies are then reduced (using thread par-

allelism) to complete the SpMMT operation.

Rowpart/OpenMP: On multi-core CPUs with several cores, the CSR implementation

above is certainly not suitable for performing SpMMT on large sparse matrices. Thread

private copies of the output vector requires an additional O(nmP ) storage, where P denotes

the number of threads. In fact, more storage space than the sparse matrix itself could be

needed for even small values of m for matrices with only tens of nonzeros per row. In terms

of performance, thread private output vectors may adversely effect data reuse in the last

level of cache, and requires an expensive post-processing step. Therefore we implemented

the Rowpart algorithm. It is identical to our baseline CSR implementation for SpMM, but for

a memory efficient and load balanced SpMMT , it preprocesses the columns of the transpose

matrix and determines row indices for each thread such that row partitions assigned to

threads contain (roughly) equal number of nonzeros. Each thread then maintains a starting

and ending index of its row partition boundaries per column. Extra storage space cost of

Rowpart is only O(nP ) and the preprocessing overheads are insignificant when used in an

iterative solver.

CSB/OpenMP:Our new parametrized implementation for SpMM and SpMMT , CSB/OpenMP,

is based on the CSB format. As the other implementations, CSB/OpenMP is written in For-
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Figure 3.2: Overview of the SpMM operation with P = 4 threads. The operation proceeds by
performing all Pβ× β local SpMM operations Y=AX+Y one blocked row at a time. The operation
ATX is realized by permuting the blocking (β × Pβ blocks).
tran using OpenMP. As shown in Fig. 3.2, the matrix is partitioned into β × β blocks that

are stored in coordinate format (COO) with 16-bit indices and 32-bit single-precision val-

ues. SpMM is threaded over individual rows of blocks (corresponding to β × n slices of the

matrix), which creates block rows of size Pβ × n. In SpMMT , threads sweep through block

columns of size n×Pβ and use the COO’s row indices as column indices and vice versa. We

tune for the optimal value of β for each value of m for a given matrix.

CSB/Cilk: For comparisons with the original Cilk-based CSB, we extended the fully parallel

SpMV and SpMVT algorithms [77] in CSB to operate on multiple vectors. We used a vector

of std::array’s, a compile-time fixed-sized variant of the built-in arrays for storing X

and Y . This effectively creates tall-skinny matrices in row major order. CSB heuristically

determines the block parameter β, considering the parallel slackness, size of the L2 cache,
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and the addressability by 16-bit indices. The parameter β chosen for the single vector cases

presented in Sect. 3.8 was 16,384 or 8,192 (depending on the matrix), and it got progressively

smaller all to way to β = 1024 as m increases (due to increased L2 working set limitations).

SpMM and SpMMT implemented using CSB/Cilk employ three levels of parallelism. For

SpMM (the transpose case is symmetric), it first parallelizes across rows of blocks, then

within dense rows of block using temporary vectors, and finally within sufficiently dense

blocks if needed. Additional parallelization costs of second and third levels are amortized

by performing them on sufficiently dense rows of block and individual blocks that threaten

load balance. Such blocks and rows of blocks can be shown to have enough work to amortize

the parallelization overheads. Our CSB/OpenMP implementation differs from the CSB/Cilk

implementation in that CSB/OpenMP does not parallelize within individual rows/columns

of blocks or within dense blocks. Rather, CSB/OpenMP partitions the sparse matrix into a

sufficiently large number of rows/columns of blocks by choosing an appropriate β. Dynamic

scheduling is leveraged to ensure load balance among threads.

In all implementations (CSR, Rowpart, CSB/OpenMP, CSB/Cilk), innermost loops

(Yi = ∑
Ai,jXj for SpMM and Yj = ∑

Ai,jXi for SpMMT ) were manually unrolled for

each m value. In Fortran !$dir simd directives and in C #pragma simd always prag-

mas were used for vectorization. We inspected the assembly code to ensure that packed

SIMD/AVX instructions were generated for best performance. To minimize TLB misses, we

used large pages during compilation and runtime.
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3.6 An Extended Roofline Model for CSB

Conventional wisdom suggests that SpMV performance is a function of STREAM band-

width and data movement from compulsory misses on matrix elements. Then the simplified

Roofline model [75] provides a lower bound to SpMV time by 8 · nnz/BWstream for single-

precision CSR matrices [106]. This simple analysis may lead one to conclude that performing

SpMV’s on multiple right-hand sides (SpMM) is essentially no more expensive than perform-

ing one SpMV. Unfortunately, this is premised on three assumptions — (i) compulsory misses

for vectors are small compared to the matrix, (ii) there are few capacity misses associated

with the vectors, and (iii) cache bandwidth does not limit performance. The first premise is

certainly invalidated once the number of right-hand sides reaches half the average number

of nonzeros per row (assuming an 8-byte total space for single-precision nonzeros, 4-byte

single-precision vector elements, and a write-allocate cache). The second would be true for

low-bandwidth matrices with working sets smaller than the last level cache. The final as-

sumption is highly dependent on microarchitecture, matrix sparsity structure, and the value

of m. We observe that for MFDn matrices and moderate values of m, this conventional

wisdom fails to provide a good performance bound.

In this paper, we construct an extended Roofline performance model that captures how

cache locality and bandwidth interact to tighten the performance bound for CSB-like sparse

kernels. Let us consider three progressively more restrictive cases: vector locality in the L2,

vector locality in the L3, and vector locality in DRAM. As it is highly unlikely a β×β block

acting on multiple vectors attains good vector locality in the tiny L1 caches, we will ignore

this case. Although potentially an optimistic assumption, we assume we may always hit

peak L2, L3, or DRAM bandwidth with the caveat that, on average, we overfetch 16 bytes.
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First, if we see poor L1 locality for the block of vectors but good L2 locality, then for

each nonzero, CSB must read 8 bytes of nonzero data, 4m bytes of the source vector, and

4m bytes of the destination vector. It may then perform 2m flops and write back 4m bytes

of destination data. Thus we perform 2m flops and must move 8 + 12m bytes ideally at the

peak L2 bandwidth. Ultimately, this would limit SpMM performance to 6.6 GFlop/s per

core, or about 80 GFlop/s per chip on Edison which has an L2 cache bandwidth of 40 GB/s

per core (see Sect. 3.8.1). One should observe that we have assumed high locality in L2. As

this is unlikely, this bound is rather loose.

Unfortunately, static analysis of sparse matrix operations has its limits. In order to

understand how locality in the L3 and L3 bandwidth constrain performance we implemented

a simplified L2 cache simulator to calculate the number of capacity misses associated with

accessing X and Y . For each β × β block the simulator tries to estimate the size of the L2

working set based on the average number of nonzeros per column. When the average number

of nonzeros per column is less than one, then the working set is bounded by (8m+ 32) · nnz

bytes — each nonzero requires a block of the source vector and a block of the destination

vector plus overfetch. When the average number of nonzeros per column reaches one, we

saturate the working set at 8mβ bytes — full blocks of source and destination vectors. If

the working set is less than the L2 cache capacity we must move 8 · nnz + 4mβ bytes when

the number of nonzeros per column is equal to or greater than 1 and (8 + 4m + 16) · nnz

bytes (but never more than 8 · nnz + 4mβ bytes) when the number of nonzeros per column

is less than 1 (miss on the nonzero and the source vector). If the working set exceeds the

cache capacity, then we forgo any assumptions on reuse of X or Y in the L2 and incur

(8 + 4m + 16) · nnz + 8mβ bytes of data movement. So, this bound on data movement

depends on both m and the input matrix.
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Finally, let us consider the bound due to a lack of locality in L3 and finite DRAM

bandwidth. As shown in Fig. 3.2, CSB matrices are partitioned into blocks of size β × β,

and P threads stream through block rows (or block columns for SpMMT ) performing local

SpMM operations on blocks of size Pβ × β. If one thread (a β × β block) gets ahead of

the others, then it will likely run slower as it is reading X from DRAM while the others are

reading X from the last level cache. Thus, we created a second simplified cache simulator to

track DRAM data movement which tracks how a chip processes each Pβ × β block, rather

than tracking how individual cores process their β × β blocks. Our model streams through

the block rows of a matrix (like in Fig. 3.4) and for each nonzero Pβ × β block examines

its cache to determine whether the corresponding block of X is present. If it misses, then

it fetches the entire block and increments the data movement tally. If the requisite cache

working set exceeds the cache capacity, then we evict a block (LRU policy). Finally, we add

the nonzero data movement and the read-modify-write data movement associated with the

output vector block Y (8nm bytes).

Ultimately, the combined estimates for DRAM, L2, and L3 data movement provide us a

narrow range of expected SpMM performance as a function ofm. For low arithmetic intensity

(small m), the Roofline suggests we would be DRAM-bound, but the Roofline plateaus, it

is likely to do so because of either L2 or L3 bandwidth, rather than the peak FLOP rate. In

the future, we plan to use this lightweight simulator as a model-based replacement for the

expensive empirical tuning of β.
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3.7 Kernels with Tall and Skinny Matrices

Besides sparse matrix operations, all block methods require operations on the dense blocks of

vectors themselves, which we denote as tall-skinny matrix computations owing to the shape

of the multiple vector structures involved. The LOBPCG algorithm mainly involves inner

product and linear combination operations. Performance in these kernels are critical for

the overall eigensolver performance for three reasons. First, an optimized SpMM algorithm

incurs a significantly reduced cost on a per SpMV basis. Second, while the per iteration

cost of vector operations is O(N) for Lanczos-like solvers, in block methods these operations

cost O(Nm2) which grows quickly with m. Finally, and most importantly, the LOBPCG

algorithm involves several of these operations in each iteration. For example, computing Ei

and updating the residual Ri before the Rayleigh–Ritz procedure in Alg. 3 requires an inner

product and a linear combination, respectively. The Rayleigh–Ritz procedure itself requires

computing the overlap matrix between each pair of the current Ψi, Ri, Pi vectors themselves,

as well as their overlap with the vector blocks from the previous iteration, leading to a

total of 18 inner product operations. Following the Rayleigh–Ritz procedure is the updates

to the Ψi, Ri, Pi blocks of vectors for the next iteration, which require computing linear

combinations. There are a total of 10 such linear combination operations per Rayleigh–Ritz

procedure.

Note that the Hamiltonian matrix in MFDn is partitioned into a 2D triangular grid,

and during parallel SpMM the X and Y vector blocks are shared/aggregated among the

processes in the row/column groups of this triangular grid [103, 104]. Efficient parallelization

of LOBPCG operations requires further partitioning X and Y among processes in the same

row groups, resulting in smaller local blocks of vectors of size l × m (l = n/prow, where
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prow is the number of process in a row of the triangular grid). In fact, as shown in Alg. 3,

each process has to keep several matrices of size l × m due to the need for storing the

residual R and previous direction P information locally. Since we are mainly interested in

the performance of the kernels, we will generically denote the local l ×m blocks of vectors

as V and W . We observe that achieving numerical stability with LOBPCG requires using

double-precision arithmetic for most MFDn calculations. Therefore, we convert the result of

the sparse matrix operations into double-precision before starting LOBPCG computations.

We denote the inner product of two blocks of vectors V and W as V TW , and the linear

combination of the vectors in a block by a small square coefficient matrix C as V C. Both

V TW and V C have high arithmetic intensities. Specifically, for both kernels the number of

flops is O(lm2) and the total data movement is O(lm), yielding an arithmetic intensity of

O(m). These kernels can be implemented as level-3 BLAS operations using optimized math

libraries such as Intel’s MKL or Cray’s LibSci. While one would expect to achieve a high

percentage of the peak performance (especially for large m), as demonstrated in Sect. 3.8.7,

both MKL and LibSci perform poorly for these kernels. This is most likely due to the unusual

shape of the matrices involved (typically l� m for large-scale computations).

To eliminate the performance bottlenecks with the V TW and V C computations, we

developed custom thread-parallel implementations for them. Fig. 3.3 gives an overview of

our V TW implementation. We store V and W in row-major order, consistent with the

storage of the vector blocks in sparse matrix computations. We partition V and W into

small row blocks of size s × m, and compute the inner product V TW by aggregating the

results of (vendor tuned) dgemm operations between a row block in V and the corresponding

one in W . The loop over s×m blocks is thread parallelized using OpenMP. To achieve load

balance with minimal scheduling overheads, we use the guided scheduling option. Race

71



VTW

t1

t2

tp

l

m t1 t2 tpVT t1 t2
t1
t2

tp

W

t1
t2

m

Figure 3.3: Performance in GFlop/s for vector block inner product, V TW , and vector block scaling,
V X kernels using Intel MKL and Cray libsci libraries on a Cray XC30 system (Edison @ NERSC).

conditions in the output matrix are resolved by keeping a thread-private buffer matrix of

size m×m. We perform a reduction, which is also thread-parallel, over the buffer matrices

to compute the final overlap matrix.

Our custom V C kernel is implemented similarly by partitioning V into row blocks. In

this case, C is a square matrix of size m×m which is read-shared by all threads. Again, the

loop over the s ×m blocks of V is thread parallelized with guided scheduling. To prevent

race conditions, we let each thread perform the computation using the full C matrix, i.e., a

dgemm between matrices of size s×m and m×m. Each thread then uniquely produces the

corresponding set of s output rows.

3.8 Performance Evaluation

We now present a comprehensive evaluation of our methods for sparse and tall-skinny matrix

computations.
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3.8.1 Experimental setup

We use a series of computations with MFDn. As the overall execution time is dominated

by on-node computations, we begin with single-socket performance evaluations of SpMM

(Sect. 3.8.2) and LOBPCG computations (Sect. 3.8.7). In Sect. 3.8.8, we inspect the resulting

solver’s performance in a distributed memory setting.

MFDn matrices: We identified three test cases, “Nm6”, “Nm7” and “Nm8”, which are

matrices corresponding to the 10B Hamiltonian at Nmax = 6, 7, and 8 truncation levels,

respectively. The actual Hamiltonian matrices are very large and therefore are nominally

distributed across several processes in the actual calculations. For a given nucleus, the

sparsity of Ĥ is determined by (i) the underlying interaction potential, and (ii) the Nmax

parameter. We used a 2-body interaction potential; a 3-body or a higher order interaction

potential would result in denser matrices presenting more favorable conditions for achiev-

ing computational efficiency. For a given nucleus and interaction potential, increasing the

Nmax value reduces the density of nonzeros in each row, thereby allowing us to evaluate the

effectiveness of our techniques on a range of matrix sparsities.

Each process on a distributed memory execution receives a different sub-matrix of the

Hamiltonian, but these sub-matrices have similar sparsity structures. For simplicity and

consistency, we use the first off-diagonal processor’s sub-matrix as our input for single-

socket evaluations. Table 3.1 enumerates the test matrices used in this paper. Note that

the test matrices have millions of rows and hundreds of millions of nonzeros. As discussed

in Sect. 3.3, we use the compressed sparse block (CSB) format [77] in our optimized SpMM

implementation. Therefore a sparse matrix is stored in blocks of size β × β. When blocked

with β = 6000, we observe that both the number of block rows and the average number of
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Figure 3.4: Sparsity structure of the local Nm6 matrix at process 1 in an MFDn run with 15
processes. A block size of β = 6000 is used. Each dot corresponds to a block with nonzero matrix
elements in it. Darker colors indicate denser nonzero blocks.

Matrix Nm6 Nm7 Nm8
Rows 2,412,566 4,985,944 7,583,735

Columns 2,412,569 4,985,944 7,583,938
Nonzeros (nnz) 429,895,762 648,890,590 592,325,005
Blocked Rows 403 831 1264

Blocked Columns 403 831 1264
Average nnz per Block 7991 4191 2311

Table 3.1: MFDn matrices (per-process sub-matrix) used in our evaluations. For the statistics in
this table, all matrices were cache blocked using β = 6000.

nonzeros per nonzero block remain high. Fig. 3.4 gives a sparsity plot of the Nm6 matrix at

the block level, where each nonzero block is marked by a dot whose intensity represents the

density of nonzeros in the corresponding block. For our test matrices, 41–64% of these blocks

are nonzero. We observe a high variance on the number of nonzeros per nonzero block.
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Vector block sizes: In nuclear physics applications, up to 20–25 eigenvalues are needed,

and 5–15 eigenpairs will be sufficient. In LOBPCG, to ensure a rich representation of the

subspace and ensure good convergence, the number of basis vectorsm needs to be set to 1.5 to

2 times the number of desired eigenvectors nev, As the algorithm proceeds and eigenvectors

converge, converged eigenpairs are deflated (or locked) and the subspace shrinks. Therefore,

we examine the performance of our optimized kernels for values of m in the range 1 to 48.

Computing platforms: We primarily use high-end multi-core processors (Intel Xeon) for

performance studies. However, the energy efficiency requirements of HPC systems point

to an outlook where many-core processors will play a prominent role. To guide our future

efforts in this area, we conduct performance evaluations on an Intel Xeon Phi processor as

well.

Our multi-core results come from the Cray XC30 MPP at NERSC (Edison) which con-

tains more than 10 thousand, 12-core Xeon E5 CPUs. Each of the 12 cores runs at 2.4GHz

and is capable of executing one AVX (8×32-bit SIMD) multiply and one AVX add per cycle

and includes both a private 32KB L1 data cache and a 256KB L2 cache. Although the

per-core L1 bandwidth exceeds 75GB/s, the per-core L2 bandwidth is less than 40GB/s.

There are two 128-bit DDR3-1866 memory controllers that provide a sustained STREAM

bandwidth of 52GB/s per processor. The cores, the 30MB last level L3 cache and mem-

ory controllers are interconnected with a complex ring network-on-chip which can sustain a

bandwidth of about 23GB/s per core.

Our many-core results have been obtained at the Babbage testbed at NERSC. Intel Xeon

Phi (MIC) cards are connected to the host processor through the PCIe bus and contain 60

cores running at 1GHz, with 4 hardware threads per core. Each MIC card has an on-device

8GB of high bandwidth memory (320GB/s). Cores are interconnected by a high-speed
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Processor Xeon E5-2695 v2 Xeon Phi 5110P
Core Ivy Bridge Pentium P54c

Clock (GHz) 2.4 1.05
Data Cache (KB) 32+256 32 + 512

Memory-Parallelism HW-prefetch SW-prefetch + MT
Cores/Processor 12 60

Threads/Processor 241 4
Last-level L3 Cache 30 MB –

SP GFlop/s 460.8 2,022
DP GFlop/s 230.4 1,011

Aggregate L2 BW 480GB/s 960GB/s2

Aggregate L3 BW 276GB/s –
STREAM BW3 52GB/s 320GB/s

Available Memory 32GB 8GB

Table 3.2: Overview of Evaluated Platforms. 1 With hyper threading, but only 12 threads were used
in our computations. 2 Based on the saxpy1 benchmark in [1]. 3 Memory bandwidth is measured
using the STREAM copy benchmark.

bidirectional ring. Each core has a 32KB L1 data cache and 512KB L2 cache locally with

high speed access to all other L2 caches to implement a fully coherent cache. Note that

there is not a shared last level L3 cache on the MIC cards. Each core supports 512-bit wide

AVX-512 vector ISA that can execute 8 double-precision (or 16 single-precision or integer)

operations per cycle. With Fused Multiply-Add (FMA), this amounts to 16 DP or 32 SP

FLOPS/cycle. Peak performance for each MIC card is 1 TFlop/s (in DP). The characteristics

of both processors are summarized in Table 7.1.

We use the Intel Fortran compiler with flags -fast -openmp. For comparison with the

original CSB using Intel Cilk Plus, we use the Intel C++ compiler with flags -O2 -no-ipo -parallel -restrict -xAVX.

As Intel Cilk Plus uses dynamically loaded libraries not natively supported by the Cray oper-

ating system, we use Cray’s cluster compatibility mode that causes only a small performance

degradation. The Xeon Phi’s performance was evaluated in the native mode, enabled through

the -mmic flag in Intel compilers.
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Figure 3.5: Optimization benefits on Edison using the Nm6 matrix for SpMM (top) and SpMMT

(bottom) as a function of m (the number of vectors).

3.8.2 Performance of SpMM and SpMMT

We first present the SpMM and SpMMT performance results for our optimized implementa-

tions. We report the average performance over five iterations where the number of requisite

floating-point operations is 2 · nnz ·m.
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3.8.3 Improvement with using CSB

Fig. 3.5 presents SpMM (Y = AX) and SpMMT (Y = ATX) performance for the Nm6

matrix as a function of m (the number of vectors). For m = 1, a conventional CSR SpMV

implementation does about as well as can be expected. However, as m increases, the benefit

of CSB variants’ blocking on cache locality is manifested. The CSB/OpenMP version delivers

noticeably better performance than the CSB/Cilk implementation. This may be due in part

to performance issues associated with Cray’s cluster compatibility mode, but most likely

due to additional parallelization overheads of the Cilk version that uses temporary vectors

to introduce parallelism at the levels of block rows and blocks. This additional level of

parallelism is eliminated in CSB/OpenMP by noting that the work associated with each

nonzero is significantly increased as m increases, and we leverage the large dimensionality of

input vectors for load balancing among threads. Ultimately, we observe that CSB/OpenMP’s

performance saturates at around 65GFlop/s for m > 16. This represents a roughly 45%

increase in performance over CSR, and 20% increase over CSB/Cilk.

CSB truly shines when performing SpMMT . The ability to efficiently thread the compu-

tation coupled with improvements in locality allows CSB/OpenMP to realize a 35% speedup

for SpMV over CSR and nearly a 4× improvement in SpMM for m ≥ 16. The row partition-

ing scheme has only a minor benefit and only at very largem. Moreover, CSB ensures SpMM

and SpMMT performance are now comparable (67GFlop/s vs 62GFlop/s with OpenMP)

— a clear requirement as both computations are required for MFDn.

As an important note, we point out that the increase in arithmetic intensity introduced

by SpMM allows for more than 5× increase in performance over SpMV. This should be

an inspiration to explore algorithms that transform numerical methods from being memory
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bandwidth-bound (SpMV) to compute-bound (SpMM).

3.8.4 Tuning for the Optimal Value of β

As discussed previously, we wish to maintain a working set for the X and Y vector blocks

as close to the processor as possible in the memory hierarchy. Each β × β block demands

a working set of size βm in the L2 for X and Y . Thus, as m increases, we are motivated

to decrease β. Fig. 3.6 plots performance of the combined SpMM and SpMMT operation

using CSB/OpenMP on the Nm8 matrix as a function of m for varying β. For small m,

there is either sufficient cache capacity to maintain locality on the block of vectors, or other

performance bottlenecks are pronounced enough to mask any capacity misses. However, for

large m (shown up to m = 96 for illustrative purposes), we clearly see that progressively

smaller β are the superior choice as they ensure a constrained resource (e.g., L3 bandwidth)

is not flooded with cache capacity miss traffic. Still, note in Fig. 3.6 that no matter what

β value is used, the maximum performance obtained for m > 48 is lower than the peak of

45Gflops/s achieved for lower values of m. This suggests that for large values of m, it may

be better to perform SpMM and SpMMT as batches of tasks with narrow vector blocks. In

the following sections, we always use the best value of β for a given m.

3.8.5 Combined SpMM/SpMMT performance

Our ultimate goal is to include the LOBPCG algorithm as an alternative eigensolver in

MFDn. As discussed earlier, the computation of both SpMM and SpMMT is needed for

this purpose. We are therefore interested in the performance benefit for the larger (and pre-

sumably more challenging) MFDn matrices. Fig. 3.7 presents the combined performance of

SpMM and SpMMT as a function of m for our three test matrices. Clearly, the CSB variants
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Figure 3.6: Performance benefit on the combined SpMM and SpMMT operation from tuning the
value of β for the Nm8 matrix.

deliver extremely good performance for the combined operation with the CSB/OpenMP de-

livering the best performance. We observe that as one increases the number of vectors m,

performance increases to a point at which it saturates. A naive understanding of locality

would suggest that regardless of matrix size, the ultimate SpMM performance should be

the same. However, as one moves to the larger and sparser matrices, performance satu-

rates at lower values. Understanding these effects and providing possible remedies requires

introspection using our performance model.

3.8.6 Performance analysis

Given the complex memory hierarchies of varying capacities and bandwidths in highly par-

allel processors, the ultimate bottlenecks to performance can be extremely non-intuitive and

require performance modeling. In Fig. 3.7, we provide three Roofline performance bounds

based on DRAM, L3, and L2 data movements and bandwidth limits as described in Sect. 3.6.

In all cases, we use the empirically determined optimal value of β for each m as a parameter
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in our performance model. The L2 and L3 bounds take the place of the traditional in-core

(peak flop/s) performance bounds. Bounding data movement for smallm (where compulsory

data movement dominates) is trivial and thus accurate. However, as m increases, capacity

and conflict misses start dominating. In this space, quantifying the volume of data move-

ment in a deep cache hierarchy with an unknown replacement policy and unknown reuse

pattern is non-trivial. As Fig. 3.4 clearly demonstrates, the matrices in question are not

random (worst case), but exhibit a structure. We note that these Roofline curves for large

m are not strict performance bounds but rather guidelines.

Clearly, for small m performance is highly-correlated with DRAM bandwidth. As we

proceed to larger m, we see an inversion for the sparser matrices where L3 bandwidth can

surpass DRAM bandwidth as the preeminent bottleneck. We observe that for the denser Nm6

matrix, performance is close to our optimistic L2 bound. Nevertheless, the model suggests

that the L3 bandwidth is the true bottleneck while DRAM bandwidth does not constrain

performance for m ≥ 8. Conversely, the sparser Nm8’s performance is well correlated with

the DRAM bandwidth bound for m ≤ 16 at which point the L3 and DRAM bottlenecks

reach parity.

Ultimately, our Roofline model tracks the performance trends well and highlights poten-

tial bottlenecks — DRAM, L3, and L2 bandwidths and capacities — as one transitions to

larger m or larger and sparser matrices.

3.8.7 Performance of tall-skinny matrix operations

In Fig. 3.8, we analyze the performance of our custom inner product (V TW ) and linear

combination (V C) operations proposed as alternatives to the BLAS library calls for tall-

skinny matrices. As mentioned in Sect. 3.7, our custom implementations still rely on the
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Figure 3.7: SpMM and SpMMT combined performance results on Edison using the Nm6, Nm7 and
Nm8 matrices (from top to bottom) as a function of m (the number of vectors). We identify 3
Rooflines (one per level of memory) as per our extended roofline model for CSB.

library dgemm calls to perform multiplications between small matrix blocks. Hence, we

report the performance of two different versions, Custom/MKL based on MKL dgemm, and

Custom/LibSci based on the LibSci dgemm.

As shown in Fig. 3.8, we obtain significant speedups over MKL and LibSci in computing

V TW . Both of our custom V TW kernels exhibit a similar performance profile and outper-

form their library counterparts significantly. The speedups we obtain range from about 1.7×

(for larger values of m) up to 10× (for m ≈ 16). As small m values are common in an

application like MFDn, this represents a significant performance improvement for LOBPCG

over using the library dgemm. However, for the V C kernel, we do not observe speedups

from our custom implementations (Fig. 3.8) – they closely track the performance of their

library counterparts. In fact, for larger values of m, the Custom/MKL implementation is

outperformed slightly by MKL. While l was fixed at 1M for these tests, we observed similar
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results in other cases (l=10K, 100K, and 500K).

A key observation based on Fig. 3.8 is that the overall performance of both kernels are

significantly higher for larger m values. Since LOBPCG algorithm contains operations with

multiple blocks of vectors, i.e., Ψi, Ri, Pi, one potential optimization is to combine these three

blocks of vectors into a single l × 3m matrix. In this case, the 18 inner product operations

with l×m matrices would be turned into 2 separate inner products with l×3m matrices. As

the Custom bundled curve shows in Fig. 3.8, the additional performance gains are significant

for V TW , achieving up to 15× speedup compared to the library counterparts. However,

the linear combination operation V C does not benefit from bundling as much as the inner

product does. For V C, the improvements we observe are limited to a factor of 1.5 for values

of m ranging from 12 to 48. The main reason behind the limited performance gains in this

case is that the tall-skinny matrix products can be converted into dgemm’s of dimensions

l× 3m and 3m×m, as opposed to being extended to 3m in all shorter dimensions as in the

case of V TW .

3.8.8 Performance summary

We now demonstrate the benefits of an architecture-aware eigensolver implementation in

actual CI problems. MFDn’s existing solver uses the Lanczos algorithm with full orthog-

onalization (Lanczos/FO) for numerical stability and good convergence. We implemented

the LOBPCG algorithm in MFDn using the optimized SpMM and tall-skinny matrix kernels

described above. The distributed memory implementations for both solvers are similar and

use the 2D partitioning scheme described in Sect. 3.2 and in more detail in [104].

Beyond optimizing the kernels, there are a number of key issues that need to be considered

to leverage the full benefits of LOBPCG. These include the choice of initial eigenvector
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Figure 3.8: Performance in GFlop/s for inner product V TW (top), and linear combination V C
(bottom) operations, using Intel MKL and Cray LibSci libraries, as well as our custom implemen-
tations on Edison. Tall-skinny matrix sizes are l ×m, where l = 1M.
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guesses, the design of a preconditioner to accelerate convergence, and suitable data structures

for combining the optimized SpMM and tall-skinny kernels. Full details and analyses of initial

guesses and preconditioning techniques used are beyond the scope of this paper and will be

discussed in a subsequent publication—we describe these techniques briefly below:

Initial Guesses: CI models with truncations smaller than the target Nmax result in signifi-

cantly smaller problem sizes. Roughly speaking, reducing Nmax by 2 (subsequent trunca-

tions must be evenly separated) gives an order of magnitude reduction in matrix dimensions.

We observe that eigenvectors computed with smaller Nmax values provide good approxima-

tions to the eigenvectors in the target model space, so we solve the eigenvalue problem of

the smaller Nmax first and use these results as initial guesses to our target problem. This

idea can be applied recursively for additional performance benefits.

Preconditioning: Preconditioners transform a given problem into a form that is more favor-

able for iterative solvers, often by reducing the condition number of the input matrix. To

be effective in large-scale computations, a preconditioner must be easily parallelizable and

computationally inexpensive to compute and apply, while still providing a favorable trans-

formation. We build such a preconditioner in MFDn by computing crude approximations

to the inverses of the diagonal blocks of the Hamiltonian (easy to parallelize). The diagonal

blocks in CI typically contain very large nonzeros (important for a quality transformation).

Bundling Blocks of Vectors: While bundling all three blocks of vectors into a single, but

thicker tall-skinny matrix is favorable for LOBPCG (see Sect. 3.7), this would harm the

performance of the SpMM and SpMMT operations as the locality between consecutive

rows of input and output vectors would be lost. A work around to this problem is to copy

the input vectors Ψi from the vector bundle into a separate block of vectors at the end of
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LOBPCG (in preparation for SpMM), and then copy HΨi back into the vector bundle after

SpMMT (in preparation for LOBPCG). Our experiments show that overheads associated

with such copies are small compared to the gains obtained from bundled V TW and V C

operations, hence we opt to bundle the blocks of vectors in LOBPCG into a single one in

our implementation.

Alignment/Padding: If vector rows are not aligned with the 32-bit word boundaries, the

overall performance of the solver is significantly reduced due to the presence of unpacked

vector instructions. Hence we set the initial basis dimension m for LOBPCG such that

m is a multiple of 4 to ensure vectorization at least with SSE instructions. When m is

a multiple of 8, AVX instructions are automatically used, but forcing m to always be a

multiple of 8 introduces computational overheads not compensated by AVX vectorization.

As the converged eigenvectors need to be locked, the basis size would slowly shrink during

LOBPCG iterations. To maintain good performance throughout, we shrink the basis only

when the number of active vectors decreases to a smaller multiple of 4, and replace the

converged vectors with 0 vectors in the meantime.

Our testcases to compare the eigensolvers are the full 10B problems with Nmax trun-

cations of 6, 7 and 8, seeking 8 eigenpairs in all cases. Table 3.3 gives more details for

the testcases and the distributed memory runs. We executed the MPI/OpenMP paral-

lel solvers using 6 threads/rank (despite having 12 cores/socket), because Intel’s MPI li-

brary currently supports only serialized MPI communications by multiple threads (i.e.,

MPI_THREAD_SERIALIZED mode). Using 12 threads per rank resulted in not being able

to fully saturate the network injection bandwidth, and therefore increased communication

overheads in both cases.

86



Problem 10B, Nm6 10B, Nm7 10B, Nm8
Dimension (in millions) 12.06 44.87 144.06
Nonzeros (in billions) 5.48 26.77 108.53
nev (m for LOBPCG) 8 (12) 8 (12) 8 (12)

residual tolerance 1e-6 1e-6 1e-6
MPI ranks (w/6 omp threads) 15 66 231

Lanczos Iterations 240 320 240
SpMVs 240 320 240

Inner Products 28,800 51,200 28,800
LOBPCG Iterations 28 48 38

SpMVs 324 548 428
Inner Products 72,656 121,296 93,936

Table 3.3: Statistics for the full MFDn matrices used in distributed memory parallel Lanczos/FO
and LOBPCG executions.
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Figure 3.9: Comparison and detailed breakdown of the time-to-solution using the new LOBPCG
implementation vs. the existing Lanczos/FO solver. Nm6, Nm7 and Nm8 testcases executed on 15,
66, and 231 MPI ranks (6 OpenMP threads per rank), respectively, on Edison.

In Fig. 3.9, we break down the overall timing into the following parts: sparse matrix

computations (SpMV/SpMM), application of the preconditioner (Precond), orthonormaliza-

tion for Lanczos and Rayleigh–Ritz procedure for LOBPCG (Ortho/RR), communications

among column groups of the 2D processor grid (Tcol−comm)—row communications are fully

overlapped with (SpMV/SpMM) [104], and finally MPI_Allreduce calls needed for reduc-

tions during Ortho/RR step (Tallreduce). The solve times for smaller Nmax truncations to

obtain the initial LOBPCG guesses are included in the execution times in Fig. 3.9. We
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observe that our LOBPCG implementation consistently outperforms the existing Lanczos

solver by a factor of 1.7×, 1.8×, and 1.4× for the Nm6, Nm7 and Nm8 cases, respectively.

Although LOBPCG requires more SpMVs overall for convergence (see Table 3.3), the main

reason for the improved time-to-solution is the high performance SpMM and SpMMT ker-

nels we presented. Since two threads in a socket (one per MPI rank) are used to overlap

communications with SpMM computations, the peak SpMM flop rate during the eigensolver

iterations is slightly lower than those in Fig. 3.7. For LOBPCG computations though, we

observe that V TW and V C kernels execute at rates in line with those in Fig. 3.8. We note

that without the preconditioner and initial guess techniques we adopted, LOBPCG’s slow

convergence rate leads to similar or worse solution times compared to Lanczos/FO, wip-

ing out the gains from replacing SpMVs with SpMMs. In this regard, inexpensive solves

with smaller Nmax truncations and low cost preconditioners are crucial for the performance

benefits obtained with LOBPCG.

In Table 3.3, we also show the total number of inner products required by both solvers.

The LOBPCG algorithm relies heavily on vector operations as discussed in Sect. 3.7 and

evidenced by the total number of inner products reported here. So despite the use of Lanczos

with full orthogonalization, LOBPCG requires more inner products overall. In addition, a

smaller but still significant number of linear combination operations, as well as solutions

of small eigenvalue problems are required for LOBPCG. Cumulatively, these factors lead

to a computationally expensive Ortho/RR part for the LOBPCG solver. So despite using

highly optimized BLAS 3 based kernels in LOBPCG, we observe that the time spent in

Ortho/RR part is comparable for Lanczos/FO and LOBPCG. Finally, in the larger runs,

i.e., Nm7 and Nm8, we observe that Lanczos/FO solver incurs significant Tallreduce times,

possibly due to slight load imbalances exacerbated by frequent synchronizations. On the
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other hand, Tallreduce times are much lower for LOBPCG (an expected consequence of the

fewer iteration counts), but LOBPCG’s Tcol−comm are significantly higher due to the larger

volume of communication required in this part.

3.9 Evaluation on Xeon Phi Knights Corner (KNC)

Our performance evaluation on Xeon Phi is limited to the isolated SpMM and tall-skinny

matrix kernels due to MFDn’s large memory requirements and the limited device memory

available on the KNC (which was used in the native mode as a proxy for the upcoming

Knights Landing architecture). We used the same testcases as before, and experimented

with 30, 60, 120, 180, and 240 threads to determine the ideal thread count. We obtained

the best performance with 120 threads for both SpMM and tall-skinny matrix kernels and

report those results.

Comparing the average SpMM Gflop rates on KNC (given in Fig. 3.10) with the Ivy

Bridge (IB) Xeon, we see that the peak performance on KNC is much lower (as much as

3× for Nm6, m = 12, for instance) than that on IB for all cases. This is likely due to

the significantly smaller cache space available per KNC thread. In any case, we can clearly

see that the CSB/OpenMP implementation delivers significantly better performance than

traditional CSR and Rowpart implementations, as it did on IB. On KNC, we also observe

the pattern of increased performance with increasing values of m values. But unlike IB

where the use of SSE vs AVX vectorization did not make a significant difference (see the

similar GFlop rates for m = 12 and m = 16 in Fig. 3.7), on KNC utilizing packed AVX-512

vectorization is crucial as indicated by the sharp performance drop in going from m = 16 to

m = 24. We utilize the same extended Roofline model as before, but KNC does not offer
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Figure 3.10: SpMM and SpMMT combined performance results on Babbage using the Nm6, Nm7
and Nm8 matrices (from top to bottom) as a function of m (the number of vectors).

a shared L3 cache, as such the L3 Roofline of Fig. 3.7 is replaced with the device memory

to L2 bandwidth limit, i.e., Roofline L2-DRAM. With KNC’s high bandwidth memory and

limited cache space, original DRAM Roofline gives a very loose bound, and so does the plain

L2 Roofline. But L2-DRAM Roofline provides a tight envelope.

For the tall-skinny matrix operations, we only present results using the MKL library as

LibSci was not available on KNC. In Fig. 3.11, we observe that our custom V TW kernel sig-

nificantly outperforms MKL’s dgemm (up to 25×). Custom/Bundled implementation gives

important performance gains for 8 < m < 48. For the V C kernel however, our custom imple-

mentations provide only slight improvements over MKL. Overall, the performance achieved
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Figure 3.11: Performance of V TW (top) and V C (bottom) kernels, using the MKL library, as well
as our custom implementations on an Intel Xeon Phi processor. Local vector blocks are l×m, where
l = 1M.

for both kernels is very low compared to the peak performance predicted by the Roofline

model.

The poor performance observed for SpMM and tall-skinny matrix operations on KNC

suggests that further optimizations are necessary to achieve good eigensolver performance

on future systems.
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3.9.1 Conclusions of this work

In this work we observed block eigensolvers are favorable alternatives to SpMV-based it-

erative eigensolvers for modern architectures with a widening gap between processor and

memory system performance. In this study, we focused on the sparse matrix multiple vec-

tors (SpMM, SpMMT ) and tall-skinny matrix operations (V TW , V C) that constitute the

key kernels of a block eigensolver. Using many-body nuclear Hamiltonian test matrices ex-

tracted from MFDn, we demonstrated that the use of compressed sparse blocks (CSB) format

in conjunction with manual unrolling for vectorization and tuning can improve SpMM and

SpMMT performance by up to 1.5× and 4×, respectively, on modern multi-core processors.

As block eigensolvers are sufficiently compute-intensive, the DRAM bandwidth may be rel-

egated to a secondary bottleneck. We presented an extended Roofline model that captures

the effects of L2 and L3 bandwidth limits in addition to the original DRAM bandwidth limit.

This extended model highlighted how the performance bottleneck transitions from DRAM

to the L3 bandwidth for large m values or sparser matrices.

Contrary to the common wisdom, we observe that simply calling dgemm in optimized

math libraries does not suffice to attain high flop rates for tall-skinny matrix operations in

block eigensolvers. Through custom thread-parallel implementations for inner product and

linear combination operations and bundling separate vector blocks into a single large block,

we have obtained 1.2× to 15× speedup (depending on m and the type of operation) over

MKL and LibSci libraries.

Taking the ideas from this work we wanted to extend this approach to an entire solver

rather than focusing only on a single kernel. Hence we started working on a task parallel

framework which we discuss next in detail.
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Chapter 4

ON NODE TASK PARALLEL

OPTIMIZATION

This work has been published in IEEE HiPC 2019[107]. This work is a collaborative effort

from Md Afibuzzaman and Fazlay Rabbi. Both contributed equally in this work.

The most fundamental operation in sparse linear algebra is arguably the multiplication

of a sparse matrix with a vector (SpMV), as it forms the main computational kernel for

several applications, such as, the solution of partial differential equations (PDE) [7] and the

Schrödinger Equation [8] in scientific computing, spectral clustering [9] and dimensionality

reduction [108] in machine learning, the Page Rank algorithm [11] in graph analytics, and

many others. The Roofline model by Williams et al. [12] suggests that the performance of

SpMV kernel is ultimately bounded by the memory bandwidth. Consequently, performance

optimizations to increase cache utilization and reduce data access latencies for SpMV has

drawn significant interest, e.g., [13, 14, 15, 16].

A closely related kernel is the multiplication of a sparse matrix with multiple vectors

(SpMM) which constitutes the main operation in block solvers, e.g., the block Krylov sub-

space methods [109, 7] and block Jacobi-Davidson method. SpMM has much higher arith-

metic intensity than SpMV and can efficiently leverage wide vector execution units. As

a result, SpMM-based solvers has recently drawn significant interest in scientific comput-
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ing [22, 23, 24, 26, 25, 110, 111, 112]. SpMM also finds applications naturally in machine

learning where several features (or eigenvectors) of sparse matrices are needed [108, 9]. Al-

though SpMM has a significantly higher arithmetic intensity than SpMV, the extended

Roofline model that we recently proposed suggests that cache bandwidth, rather than the

memory bandwidth, can still be an important performance limiting factor for SpMM [22].

LAPACK [85] is a linear algebra library for solving systems of simultaneous linear equa-

tions, least-squares solutions of linear systems of equations, eigenvalue problems, and sin-

gular value problems. LAPACK routines mostly exploit Basic Linear Algebra Subprograms

(BLAS) to solve these problems. PLASMA aims to overcome the shortcomings of the LA-

PACK library in efficiently solving the problems in dense linear algebra on multicore pro-

cessors [113, 114]. PLASMA can solve dense general systems of linear equations, symmetric

positive definite systems of linear equations and linear least squares problems, using LU,

Cholesky, QR and LQ factorizations and supports both single precision and double preci-

sion arithmetic. However, PLASMA does not support general sparse matrices and does not

solve sparse eigenvalue or singular value problems. PLASMA supports only shared-memory

machines.

MAGMA is a dense linear algebra library (like LAPACK) for heterogeneous systems, i.e.,

systems with GPUs [115, 116, 117], to fully exploit the computational power that each of

the heterogeneous components would offer. MAGMA provides very similar functionality like

LAPACK and makes it easier for the user to port their code from LAPACK to MAGMA.

MAGMA supports both CPU and GPU interfaces. The users do not have to know details

of GPU programming to use MAGMA.

Barrera et. al. [118] use computational dependencies and dynamic graph partitioning

method to minimize NUMA effect on shared memory architectures. StarPU [119] is a runtime
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system that facilitates the execution of parallel tasks on heterogeneous computing platforms,

and incorporates multiple scheduling policies. However, the application developer has to

create the computational tasks by themselves in order to use StarPU.

While the concept of task parallelism based on data flow dependencies is not new, explo-

ration of the benefits of this idea in the context of sparse solvers constitutes a novel aspect

of this work. Additionally, to the best of our knowledge, related work on task parallelism

has not explored its impact on cache utilization compared to the BSP model as we do in

this work.

4.1 DeepSparse Overview

Figure 4.1 illustrates the architectural overview of DeepSparse. As shown, DeepSparse con-

sists of two major components: i) Primitive Conversion Unit (PCU) which provides a front-

end to domain scientists to express their application at a high-level; and ii) Task Executor

which creates the actual tasks based on the abstract task graph generated by PCU and hands

them over to the OpenMP runtime for execution.

As sparse matrix related computations represent the most expensive calculations in many

large-scale scientific computing, we define tasks in our framework based on the decomposition

of the input sparse matrices. For most sparse matrix operations, both 1D (block row) and

2D (sparse block) partitioning are suitable options. A 2D partitioning is ideal for exposing

high degrees of parallelism and reducing data movement across memory layers [120], as such

2D partitioning is the default scheme in DeepSparse. For a 2D decomposition, DeepSparse

defines tasks based on the Compressed Sparse Block (CSB) [14] representation of the sparse

matrix, which is analogous to tiles that are commonly used in task parallel implementation
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Figure 4.1: Schematic overview of DeepSparse.

of dense linear algebra libraries. However, CSB utilizes much larger block dimensions (on

the order of thousands) due to sparsity [22, 27, 14]. Consequently, DeepSparse starts out

by decomposing the sparse matrix (or matrices) for a given code into CSB blocks (which

eventually corresponds to the tasks during execution with each kernel producing a large

number of tasks). Note that the decomposition of a sparse matrix dictates partitioning

of the input and output vectors (or vector blocks) in the computation as well, effectively

inducing decomposition of all data structures used in the solver code.

DeepSparse creates and maintains fine-grained dependency information across different

kernels of a given solver code based on the result of the above decomposition scheme. As

such, instead of simply converting each kernel into its own task graph representation and

concatenating them, DeepSparse generates a global task graph, allowing for more optimal

data access and task scheduling decisions based on global information. Since the global task

graph depends on the specific algorithm and input sparse matrix, DeepSparse will explicitly

generate the corresponding task dependency graph. While this incurs some computational

and memory overheads, such overheads are negligible. The main reason for computational
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overheads to be negligible is that sparse solvers are typically iterative, and the same task

dependency graph is used for several iterations. The reason why memory overheads is neg-

ligible is that each vertex in the task graph corresponds to a large set of data in the original

problem. After this brief overview, we explain the technical details in DeepSparse.

4.1.1 Primitive Conversion Unit (PCU)

PCU is composed of two parts: i) Task Identifier, and ii) Local Task Dependency Graph

(TDG) Generator.

4.1.1.1 Task Identifier (TI)

The application programming interface (API) for DeepSparse is a combination of the recently

proposed GraphBLAS interface [84] (for sparse matrix related operations) and BLAS/LA-

PACK [85, 86] (for vector and occasional dense matrix related computations). This allows

application developer to express their algorithms at a high-level without having to worry

about architectural details (e.g., memory hierarchy) or parallelization considerations (e.g.,

determining the individual tasks and their scheduling). Task identifier parses a code ex-

pressed using the DeepSparse API to identify the specific BLAS/LAPACK and GraphBLAS

calls, as well as the input/output of each call. It then passes this information to the local

task dependency graph generator.

TI builds two major data structures:

ParserMap: ParserMap is an unordered map that holds the parsed data information

in the form of (Key, Value) pairs. As TI starts reading and processing the DeepSparse

code, it builds a ParserMap from the function calls. To uniquely identify each call
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in the code, Key class is made up of three components: opCode which is specific to

each type of operation used in the code, id which keeps track of the order of the same

function call in the code (e.g., if there are two matrix addition operations, then the first

call will have id = 1 and the second one will have id = 2), and timestamp which stores

the line number of the call in the code and is used to detect the input dependencies of

this call to the ones upstream. For each key, the corresponding Value object stores the

input and output variable information. It also stores the dimensions of the matrices

involved in the function call.

Keyword & idTracker : Keyword is a vector of strings that holds the unique function

names (i.e., cblas_dgemm, dsygv, mkl_dcrmm, etc.) that have been found in the

given code, and the idTracker keeps track of the number of times that function

(Keyword) has been called so far. Keyword and idTracker vectors are synchronized

with each other. When TI finds a function call, it searches for the function name

in the Keyword vector. If found, the corresponding idTracker index is incremented.

Otherwise, the Keyword vector is expanded with a corresponding initial idTracker

value of 1.

4.1.1.2 Task Dependency Graph Generator (TDGG)

The output of Task Identifier (TI) is a dependency graph at a very coarse-level, i.e., at the

function call level. For an efficient parallel execution and tight control over data movement,

tasks must be generated at a much finer granularity. This is accomplished by the Task

Dependency Graph (TDGG), which goes over the input/output data information generated

by TI for each function call and starts decomposing these data structures. As noted above,

the decomposition into finer granularity tasks starts with the first function call involving
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the sparse matrix (or matrices) in the solver code which is typically an SpMV, SpMM or

SpGEMM operation. After tasks for this function call are identified by examining the non-

zero pattern of the sparse matrix, tasks for prior and subsequent function calls are generated

accordingly. As part of task dependency graph generation procedure, TDGG also gener-

ates the dependencies between individual fine-granularity tasks by examining the function

call dependencies determined by TI. Note that the dependencies generated by TDGG may

(and often do) span function boundaries and this is an important property of DeepSparse

that separates it from a bulk synchronous parallel (BSP) program which effectively imposes

barriers at the end of each function call.

The resulting task dependency graph generated by TDGG is essentially a directed acyclic

graph (DAG) representing the data flow in the solver code where vertices denote compu-

tational tasks, incoming edges represent the input data and outgoing edges represent the

output data for each task. TDGG also labels the vertices in the task dependency graph with

the estimated computational cost of each task, and the directed edges with the name and

size of the corresponding data, respectively. During execution, such information can be used

for load balancing among threads and/or ensuring that active tasks fit in the available cache

space. In this initial version of DeepSparse though, such information is not yet used because

we rely on OpenMP’s default task execution algorithms, as explained next.

4.1.2 Task Executor

To represent a vertex in the task graph, TDGG uses an instance of the TaskInfo structure

[listing 4.1] which provides all the necessary information for the Task executor to properly

spawn the corresponding OpenMP task. The task executor receives an array of TaskInfo

structures [listing 4.1] from the PCU that represents the full computational dependency
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Listing 4.1: TaskInfo Structure
struct TaskInfo
{
int opCode; //type of operation
int numParamsCount;
int *numParamsList; //tile id, dimensions etc.
int strParamsCount;
char **strParamsList; //i.e. buffer name
int taskID; //analogous to id of Key Class

}

graph, picks each node from this array one by one and extracts the corresponding task

information. DeepSparse implements OpenMP task based functions for all computational

kernels (represented by opCode) it supports. Based on the opCode, partition id of the

input/output data structures and other required parameters (given by numParamsList and

strParamsList) found in the TaskInfo structure at hand, Task Executor calls the necessary

computational function found in the DeepSparse library, effectively spawning an OpenMP

task.

In DeepSparse, the master thread spawns all OpenMP tasks one after the other, and re-

lies on OpenMP’s default task scheduling algorithms for execution of these tasks. OpenMP’s

Runtine Environment then determines which tasks are ready to be executed based on the

provided task dependency information. When ready, those tasks are executed by any avail-

able member of the current thread pool (including the master thread). Note that OpenMP

supports task parallel exeuction with named dependencies, and better yet these dependen-

cies can be specified as variables. This feature is fundamental for DeepSparse to be able

to generate TDGs based on different problem sizes and matrix sparsity patterns. This is

exemplified in Algorithm 1, where SpMM tasks for the compressed sparse block at row i and

j is simply invoked by providing the X[i, j] sparse matrix block along with Y [j] input vector
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Algorithm 1: SpMM Kernel
Input: X[i,j] (β × β, Sparse CSB block), Y[j] (β × b)
Output: Z[i] (Dense vector block, β × b)

1 #pragma omp task depend(in: X[i, j], Y [j], Z[i]) depend(out: Z[i])
2 {
3 foreach val ∈ X[i, j].nnz do
4 r = X[i,j].row_loc[val]
5 c = X[i,j].col_loc[val]
6 for k = 0 to b do
7 Z[r × b+ k] = Z[r × b+ k] + val × Y[c× b+ k]

8 }

block and Z[i] output vector block in the depend clause.

An important issue in a task parallel program is the data race conditions involving the

output data that is being generated. Fortunately, the task-parallel execution specifications

of OpenMP requires only one thread to be active among threads writing into the same

output data location. While this ensures a race-condition free exeuction, it might hinder

performance due to a lack of parallelism. Therefore, for data flowing into tasks with a high

incoming degree, DeepSparse allocates temporary output data buffers based on the number

of threads and the available memory space. Note that this also requires the creation of an

additional task to reduce the data in temporary buffer space before it is fed into the originally

intended target task.

4.1.3 Illustrative Example

We provide an example to demonstrate the operation of DeepSparse using the simple code

snippet provided in Listing 4.2. As TI parses the sample solver code, it discovers that the

first cblas_dgemm in the solver corresponds to a linear combination operation (see Fig. 4.2),

the second line is a sparse matrix vector block multiplication (SpMM, see Fig. 4.3) and
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the second cblas_dgemm at the end is an inner product of two vector blocks (see Fig. 4.4).

These function calls, their parameters as well as dependencies are captured in the ParserMap,

Keyword, and idTracker data structures as shown in Table 4.1.

Listing 4.2: An example pseudocode

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, 1.0, A, k, B, n

, 0, C, n);

SpMM(X, C, D, m, n);

cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans, n, n, m, 1.0, D, n, C, n,

0, E, n);

Task Dependency Graph (TDG) generator receives the necessary information from TI

and determines the tasks corresponding to partitionings of operand data structures of each
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Figure 4.5: Task graph for the psudocode in listing 4.2.

operation, as well as their origins (whether the necessary data are coming from another

task or from a variable). TDGG then builds the DAG of each computational kernel and

appends it to the global DAG with proper edge connectivity (i.e., dependencies). While

generating the DAG, the TDGG also encodes the value of the TaskInfo structure instance

that represent each of the vertices into the vertex name. The vertex naming convention

is <opCode, numParamsCount, numParamsList, strParamsCount, strParamsList, taskID>.

Figure 4.5 shows the task dependency graph of the solver code in Listing 4.2 (assuming m

= 100, k = 8, n = 8, CSBtile/blocksize = 50, so each input matrix is partitioned into 2

chunks).

The task executor receives an array of TaskInfo structures that contains the node infor-

mation as shown in Figure 4.5. The task executor goes over each of the tasks in the array of

TaskInfo structure. At first, it reads the nodes (<5,1,0,0,1>, <5,1,1,0,1>) of the first oper-

ation and spawns two matrix multiplication (xY) tasks with proper input output matrices.

The task executor then reads all the task information for all SpMM tasks {<2,2,0,0,0,1>,
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Data Structure Content

ParserMap <{XY, 1, 1},{<A, B>, <C>, <m, n, k>}>
<{SpMM, 1, 2},{<X, C>, <D>, <m, m, n>}>
<{XTY, 1, 3},{<D, C>, <E>, <m, n, n>}>

keyword <XY, SpMM, XTY>
idTracker <1, 1, 1>

Table 4.1: Major data structures after parsing third line.

<2,2,0,1,0,1>, <2,2,1,0,0,1>, <2,2,1,1,0,1>} and spawns four SpMM tasks with proper

input/output matrix blocks. Finally, the task executor reads <3,2,0,0,0,1>, <3,2,1,1,0,1>

and <4,1,0,1,EBUF,-1> and spawns two inner product (XTY) tasks and one partial output

buffer reduction task for the inner product operation.

4.1.4 Limitations of the Task Executor

Despite the advantages of an asynchronous task-parallel execution, the Task Executor has

the following limitations:

Synchronization at the end of an iteration: Most computations involving sparse

matrices are based on iterative techniques. As such, the TDG generated for a single

iteration can be reused over several steps (until the algorithm reaches convergence).

However, it is necessary to introduce a #pragma omp taskwait at the end of each

solver iteration and force all tasks of the current iteration to be completed to ensure

computational consistency among different iterations of the solver. For relatively simple

solvers, the taskwait clause adds some overhead to the total execution time due to

threads idling at taskwaits.

Limited number of temporary buffers: While OpenMP allows the use of program
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variables in the dependency clauses, it does not allow dynamically changing the variable

lists of the depend clauses. As such, the number of buffer lists in the partial output

reduction tasks need to be fixed to overcome this issue. Depending on the available

memory, there are at most nbuf number of partial output buffers for a reduction

operation. If nbuf is less than the total number of threads, then there might be

frequent read after write (RAW ) contentions on partial output buffers. This could be

have been potentially avoided, if the list of variables in the depend clause could have

been dynamically changed.

4.2 Benchmark Applications

We demonstrate the performance of the DeepSparse framework on two important eigensolvers

widely used in large-scale scientific computing applications: Lanczos eigensolver [121] and

Locally Optimal Block Preconditioned Conjugate Gradient algorithm (LOBPCG) [122].

4.2.1 Lanczos

Lanczos algorithm finds eigenvalues of a symmetric matrix by building a matrix Qk =

[q1, . . . , qk] of orthogonal Lanczos vectors [123]. The eigenvalues of the sparse matrix A is

then approximated by the Ritz values. As shown in Algorithm 2, it is a relatively simple

algorithm consisting of an Sparse Matrix Vector Multiplication (SpMV) along with some

vector inner products for orthonormalization.
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Algorithm 2: Lanczos Algorithm in Exact Arithmetic
1 q_1 = b/ ‖ b ‖2, β0 = 0, q0 = 0 for j = 1 to k do
2 z = Aqj
3 αj = qj

T z

4 z = z − αjqj − βj−1qj−1
5 βj =‖ z ‖z
6 ifβj = 0, quit
7 qj+1 = z/βj
8 Compute eigenvalues, eigenvectors, and error bounds of Tk

4.2.2 LOBPCG

LOBPCG is a commonly used block eigensolver based on the SpMM kernel [122], see Figure 3

for a pseudocode. Compared to Lanczos, LOBPCG comprises high arithmetic intensity

operations (SpMM and Level-3 BLAS). In terms of memory, while the Ĥ matrix takes

up considerable space, when a large number of eigenpairs are needed (e.g. dimensionality

reduction, spectral clustering or quantum many-body problems), memory needed for block

vector Ψ can be comparable to or even greater than that of Ĥ. In addition, other block

vectors (residual R, preconditioned residual W, previous direction P), block vectors from the

previous iteration and the preconditioning matrix T must be stored, and accessed at each

iteration. Figure 4.6 shows a sample task graph for LOBPCG generated by TDGG using a

very small matrix. Clearly, orchestrating the data movement in a deep memory hierarchy to

obtain an efficient LOBPCG implementation is non-trivial.
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Figure 4.6: A sample task graph for the LOBPCG algorithm using a small sparse matrix.

4.3 Performance Evaluation

4.3.1 Experimental setup

We conducted all our experiments on Cori Phase I, a Cray XC40 supercomputer at NERSC,

mainly using the GNU compiler. Each Cori Phase I node has two sockets with a 16-core

Intel Xeon Processor E5-2698 v3 Haswell CPUs. Each core has a 64KB private L1 cache

(32KB instruction and 32KB data cache) and a 256KB private L2 cache. Each CPU has

a 40MB shared L3 cache (LLC). We use thread affinity to bind threads to cores and use a

maximum of 16 threads to avoid NUMA issues. We test DeepSparse using five matrices with

different size, sparsity patterns and domains (see Table 4.2). The first 4 matrices are from

The SuitSparse Matrix Collection and the Nm7 matrix is from nuclear no-core shell model

code MFDn.

We compare the performance of DeepSparse with two other library implementations: i)

libcsr is implementation of the benchmark solvers using thread-parallel Intel MKL Library
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Algorithm 3: LOBPCG Algorithm (for simplicity, without a preconditioner) used
to solve ĤΨ = EΨ

Input: Ĥ, matrix of dimensions N ×N
Input: Ψ0, a block of vectors of dimensions of N ×m
Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small, and ΨTΨ = Im

1 Orthonormalize the columns of Ψ0
2 P0 ← 0
3 for i = 0, 1, . . . , until convergence do
4 Ei = ΨTi ĤΨi
5 Ri ← ĤΨi − ΨiEi
6 Apply the Rayleigh–Ritz procedure on span{Ψi, Ri, Pi}
7 Ψi+1 ← argmin

S∈span{Ψi.Ri,Pi}, ST S=Im
trace(ST ĤS)

8 Pi+1 ← Ψi+1 − Ψi
9 Check convergence

calls (including SpMV/SpMM) with CSR storage of the sparse matrix, ii) libcsb is an

implementation again using Intel MKL calls, but with the matrix being stored in the CSB

format. Performance data for LOBPCG is averaged over 10 iterations, while the number of

iterations is set to 50 for Lanczos runs. Our performance comparison criteria are L1, L2,

LLC misses and execution times for both solvers. All cache miss data was obtained using

the Intel VTune software.

Performance of the DeepSparse and libcsb implementations depends on the CSB block

sizes used. Choosing a small block size creates a large number of small tasks. While this is

preferable on a highly parallel architecture, the large number of tasks may lead to significant

task execution overheads, in terms of both cache misses and execution times. Increasing the

block size reduces such overheads, but this may then lead to increased thread idle times and

load imbalances. Therefore, the CSB block size is a parameter to be optimized based on the

specific problem. Different block sizes we experimented with have been 1K, 2K, 4K, 8K and

16K.

108



Table 4.2: Matrices used in our evaluation.

Matrix Rows Columns Nonzeros
inline1 503,712 503,712 36,816,170

dielFilterV3real 1,102,824 1,102,824 89,306,020
HV15R 2,017,169 2,017,169 283,073,458

Queen4147 4,147,110 4,147,110 316,548,962
Nm7 4,985,422 4,985,422 647,663,919

4.3.2 LOBPCG evaluation

In Fig. 4.7, we show the number of cache misses at all three levels (L1, L2 and L3) and

execution time comparison between all three versions of the LOBPCG algorithm compiled

using the GNU compiler. LOBPCG is a complex algorithm with a number of different kernel

types; its task graph results in millions of tasks for a single iteration. As shown in Fig. 4.7,

except for the Nm7 matrix, libcsb and libcsr versions achieve similar number of cache misses;

for Nm7, libcsb has important cache miss reductions over the libcsr version. On the other

hand, DeepSparse achieves 2.5× - 10.7× fewer L1 misses, 6.5× - 16.2× fewer L2 misses and

2× - 7× fewer L3 cache misses compared to the libcsr version. As the last row of Fig. 4.7

shows, even with the implicit task graph creation and execution overheads of DeepSparse, the

significant reduction in cache misses leads to 1.2× - 3.9× speedup over the execution times of

libcsr. Given the highly complex DAG of LOBPCG and abundant data re-use opportunities

available, we attribute these improvements to the pipelined execution of tasks which belong

to different computational kernels (see Fig. 4.8) but use the same data structures. We note

that the Task Executor in DeepSparse solely relies on the default scheduling algorithm used

in the OpenMP runtime environment. By making use of the availability of the entire global

task graph and labeling information on vertices/edges, it might be possible to improve the

performance of DeepSparse even further.
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Figure 4.7: Comparison of L1, L2, LLC misses and execution times between Deepsparse, libcsb and
libcsr for the LOBPCG solver.

Figure 4.8: LOBPCG single iteration execution flow graph of dielFilterV3real.
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Figure 4.9: Comparison of L1, L2, LLC misses and execution times between Deepsparse, libcsb and
libcsr for the Lanczos solver.

4.3.3 Lanczos evaluation

In Fig. 4.9, cache misses and execution time comparisons for different Lanczos versions are

shown. Lanczos algorithm is much simpler than LOBPCG, it has much fewer types and

numbers of tasks than LOBPCG (basically, one SpMV and one inner product kernel at each

iteration). As such, there are not many opportunities for data re-use. In fact, we observe that

DeepSparse sometimes leads to increases in cache misses for smaller matrices. However, for

the Nm7 and HV15R matrices, which are the largest matrices among our benchmark set, we

observe an improvement in cache misses, achieving up to 2.4× fewer L1 cache misses, 3.1×

fewer L2 misses and 4.5× fewer L3 misses than libcsr. But most importantly, DeepSparse

achieves up to 1.8× improvement in terms of execution time. We attribute the execution

time improvement observed across the board to the increased degrees of parallelism exposed

by the global task graph of DeepSparse, which is in fact highly critical for smaller matrices.
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4.3.4 Compiler comparison

For all of our experiments, we use OpenMP as our backend. To explore the impact of different

task scheduling approaches in different OpenMP implementations, we have experimented

with three compilers: Intel, GNU and Clang/LLVM compilers. In Figure 4.10, we show the

comparison in execution time among different compilers for the three implementations. We

see that the execution time for the Clang/LLVM compiler is significantly higher compared to

GNU and Intel compilers for all matrices. However, cache misses stay pretty much the same

when one moves to a different compiler. We show the cache miss comparison between the

three compilers in Figure 4.11 for one matrix, HV15R. All other matrices follow a similar

cache miss pattern like HV15R. Here, we can clearly see that regardless of the compiler,

DeepSparse achieves fewer cache misses over libcsb and libcsr implementations. We can see

that Clang/LLVM shows fewer cache misses for DeepSparse as well, but it eventually has a

poor running time. We believe that this is because Clang/LLVM is not able to schedule tasks

as efficiently as GNU and Intel. Compared to Intel compiler, GNU compiler sometimes shows

more L1 and L2 misses. But the execution time is higher in Intel. This may be due to the

scheduling strategy and and the implementation of task scheduling points in the compilers.

Overall, GNU does best with running times among the three compilers, and Intel compilers

do not do well with the library based solver implementations.

4.3.5 Conclusions of this work

This work introduces a novel task-parallel sparse solver framework which targets all com-

putational steps in sparse solvers. We show that our approach achieves significantly fewer

cache misses across different cache layers and also improves the execution time over the li-
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brary versions. Future works will be in the direction of further reducing the cache misses and

execution time over the current versions by experimenting with more advanced partitioning

and scheduling algorithms compared to the default schemes in OpenMP. In this work we

used the scheduler provided by OpenMP but we also wanted to partition the tasks using

a memory heuristics to generate a custom scheduler. We discuss this in detail in the next

chapter.
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Chapter 5

SCHEDULING TASKS WITH A

GRAPH PARTITIONER

In the DeepSparse framework, we saw that OpenMP does a great job with memory utilization

over all memory levels. But it is still beyond our control. OpenMP is generating the DAG

itself and resolving themselves. Whenever the data dependencies of a task is resolved and

it is not dependent on any other task for its execution , it can be immediately pulled and

executed. But this might not be optimal scenario if we think from memory usage perspective.

A task which does not have any relation with the tasks that are active at the moment can

be immediately executed once a thread gets free regardless of its memory input and outputs.

Hence there is a possibility of a task which would improve the memory usage with the input

already being in the lower level of the memory and having cache hits reduces. The probability

of cache misses increases with this kind of scheduling.

This motivated us to use a novel graph partition based scheduler that use the global data

flow graphs generated by the PCU to minimize data movements in a deep memory hierarchy.

Graph partitioners have been extensively studied but existing approaches do not meet our

needs as they typically handle DAGs by converting them to undirected graphs. However,

the directed nature of the task graph must be respected in our case.

Our sparse solver DAGs contain a fair number of vertices with high fan-in/fan-out" de-
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grees due to operations such as SpMVs, SpMMs, inner products and vector reductions.

In this work we take the graph generated by the task generator, create appropriate data

structures for the graph with accordance to the partitioner code and then partition the graph

using the following algorithm steps.

5.1 Coarsening

Experimental DAGs are usually very large in size. Often they have millions or tens of

millions of nodes. The partitioning algorithms they use have different complexities, the

worst being O(n2) in the kernighan algorithm where n is the number of vertices. This makes

the partitioning phase really slow and impractical if we want to use this partitioner as a

supporting tool. This is why the original graph is coarsened to a smaller coarsened graph

until a minimum size is reached.

In the original code we received, they coarsen the graph using a matching algorithm. At

each coarsening step, they compute how many vertices can be matched. They consider all

the edges one by one and put them in the matching if they respect the acyclicity property.

Let us see how the matching is actually done in their implementation with a simple graph

which has almost all kinds of cases that might arise in our lobpcg DAG in graph 5.1.

Here we can see a graph with 15 vertices. There is vertex 5 which has multiple incoming

edges and multiple outgoing edges. The algorithm first creates a topological order of the

nodes visited in dfs traversal. Then it goes through each of the vertices and checks the

constraints for acyclicity. Node 15 will be visited first according to the topological order.

A sorted neighbor algorithm is run to find the outgoing edge with the least cost. In this

case, node 4 is chosen rather than 3. So, node 15 and 4 are matched. Node 3 is then visited
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according to the topological order. Likewise, node 5 is its only outgoing node and thus node

3 and node 5 are selected for the next matching. Likewise, nodes 14,2 and 1,12 are matched.

In the end nodes 9 and 11 are matched.

After these nodes are matched, a new graph is generated with the matched nodes. If

(u, v) is matched then u becomes the leader of v. That is how 14 is the leader of 2, 3 is the

leader of 5. Then they are numbered consecutively to form the new coarse graph. We can

see that the acyclicity is preserved in the new graph. Node numbering has been changed.

Once 2,5 is matched in this graph, no other nodes 3,4,5,7 will be looked for. Eventually this

algorithm will run into cases like the last graph where each time only one matching will be

selected.

The problem that we faced with this matching algorithm was that the graph was even-

tually going to the last graph stage where each time we were getting a very few matching,

making the entire matching process really slow. There is a threshold value for stopping the

matching process but after initial coarsening, the whole graph becomes a big graph with

small parts just like this last graph here.

To get rid of this issue, we added an extra pre-processing step before the actual matching.

As we saw in the previous case that a lot of these kinds of nodes which has a lot og incoming

edges and outgoing edges, most likely the topological levels of the nodes that are the sources

of these high degree nodes will be same. Also, most likely the children of these high degree

nodes will also have the same topological level. That is why during the pre-processing phase,

we do an additional coarsening of the graph. We coarse every 3 nodes in the same topological

level into one node. As they already maintain the topological order in a DAG, this coarsening

does not lead to a cycle. The motivation for this change is to minimize the incoming and

outgoing nodes for the high degree nodes. Let us see with a simple lobpcg DAG and its pre-
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processed version. In Figure 5.2 we can see an actual lobpcg DAG generated by the DAG

generator code. This DAG is for a matrix which is divided into 3*3 CSB blocks. Straightway

we can see the high degree nodes in this graphs. Even in such a simple graph, there are

multiple high degree graphs which might lead us to the issue we previously discussed. In

graph 5.3 we see the preprocessed graph. Here we can see that every 3 nodes in the same

topological level are coarsened into one single node. Although the edges are shown as they

were in the previous graph, my opinion is we can merge them onto a single edge adding their

costs to form a new cost.

5.2 Initial Partitioning

After the coarse graph is generated, it is fed to the initial partitioning function. They have

a bunch of partitioning algorithms from where we can chose one. Although we initially had

kernighan algorithm as the partitioning algorithm, we figured out that it takes a lot of time

for kernighan algorithm because it traverses through all the nodes.

In there paper they discuss about a greedy approach where they define free vertices

and eligible vertices where free vertices are those vertices which are not put in a part yet.

Eligible vertices are those vertices whose predecessors are all not free. Gain is computed

for eligible vertices to see in which part they can be moved. The gain is computed according

to their algorithm in the paper and the objective function is edge cost. That means the

minimization of the edge cut.In the end all the vertices are divided into two parts.

There was another approach named BFSGrowing which was actually a DFS traversal

of nodes and from that traversal each time one vertex is being selected and it is added to

the current filling part. The weight of that vertex is then adjusted accordingly. But this
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algorithm does not compute any gains on the edgecut. It only fills the part as long as there

is space in this part with the upper bound. We modified the DFS to BFS traversal but it

did not have a major influence on the results.

It is only natural that the algorithms like kernighan DFS, Greedy Graph Growing which

computes the gain and takes the edge cuts into account might not have an even partition.

Hence, a forced balancing function is called afterwards to make them balanced according to

the upperbounds. We did not modify anything in the forced balancing function.

5.3 Uncoarsening/Refinement

After the partitioning algorithm returns the coarsed graph with two partitions, this graph is

uncoarsened and refined. Previously we stated that while coarsening, in each step the new

node number in the new coarse graph is mapped with an old node number in the previous

graph before coarsening. In each coarsening step, these records are kept. Also the leader

information is kept in each coarsening step. The uncoarsening step is mainly a project back

from a later graph to an older graph. The partitioning will return two partitions of the coarse

graph with some vertices will be in part 0 and some will be in part 1. While projecting back,

in each coarsening step, the matched node is assigned the part of its leader. For example,

let us assume that in a coarsening step, (u, v) was matched and u became the leader of v

and node u was renumbered in the next step. Suppose u is partitioned using partitioning

algorithm and assigned in part 1. While projecting back, v is assigned in the same part as its

leader which is 1. This is how the entire graph will be projected back to a previous coarsened

version. In Figure 5.4 we can see a simplified example of how the projectback function assigns

the part numbers accordingly. The third graph is the most coarsened graph and is fed to the
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Figure 5.4: Coarsed graph Partition assignment example, blue is part 0 and green is part 1
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partitioning algorithms. The algorithms returns a partitioning where {1, 6, 7} in part 0 and

{2, 3, 4, 5} in part 1. While projecting back, the nodes which were matched in the previous

coarsened step are assigned to the same part as the part of the leader node. Eventually in

the end we can see that, among 15 nodes, only 4 will go into part 1 and node 11 will be

assigned to part 0.

After this uncoarsening phase, a refinement step is called. We can clearly see that even

in our small example, one part gets 11 nodes whereas the other part gets 4 nodes only. Ac-

cording to the vertex weight scheme, there is an imbalance here. That is why the refinement

step is called. The refinement step moves some nodes from one part to the other part in a

way that does not violate the acyclicity constraint.

First they compute where can each nodes be moved. As in actual code, only two partitions

are generated, they check whether a node can be moved from this part to the other part.

A list of boundary vertices are created and their gain are computed accordingly. A heap is

maintained to extract the node with highest gain. This entire moving of nodes are continued

until one part is greater than the upper bound. After the refinement phase, some nodes are

moved to the other part.

5.4 Partitioned Graphs

For analyzing the quality of partitioning we are getting from this partitioner, we concentrated

on the csb blocks that are accessed during a task. The sparse matrix is only accessed during

the SPMM task and it is the dominating attribute that will occupy the majority of the

memory. We wanted to see how are the matrix blocks are traversed in a part, or if there is

any specific pattern present in their accessing order.
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Let us see the csb block accessing order in different partitions. In Figure 5.5 we show the

block access pattern for a sparse matrix with dimensions of 500,000*500,000 having 1000000

nonzeros. This is a sparse matrix generated by ParMAT library. In this case we assume each

csb block to have 512*512 dimensions. That makes the entire sparse matrix a block matrix

having 977*977 blocks. We ran a Lobpcg algorithm on this sparse matrix and generated a

DAG, then fed this DAG to get a partition with 32 parts. For convenience, we color only

part 1, 2 and 3 in this graph.

Straightway we start seeing a pattern here. The accessing of sparse blocks are in a column

order in a part. Almost all the column blocks of a particular column falls in the same part.

Another interesting thing is not necessarily all the adjacent columns will fall into the same

part. For example, blocks in column 897,709,699 and 479 falls in the same part(Part 1).

Also let us see the partitioning result for our pre processed graph for a 61*61 sparse

block matrix in Figure 5.6. Here we show the block access pattern for part 20,21 and 22.

In this figure we can see that the sparse blocks are accessed in the same column order way.

Although its more scattered now for some parts. As we are coarsening every 3 nodes in the

same topological level without any relation among themselves, the access pattern becomes

a bit more scattered.

The reason behind this kinds of pattern leads us to the kind of graph that we have. As

we already have mentioned that we will have some nodes with high degrees. Let us see a

small part of the DAG that is actually generated. Also we will see how the actual matching

takes place.

In this Figure 5.7 we can see that from INV,RBR node, there will be a lot of outgoing

edges. To be precise, if the block dimension is nblocks ∗ nblocks, then there will be nblocks

number of outgoing edges. Also, from each DLACPY node there will be nblocks number of
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Figure 5.5: Sparse matrix block access patterns in different parts with matching
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Figure 5.6: Sparse matrix block access patterns in different parts with pre-processing before matching
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Figure 5.7: A Small part of the Original DAG that is generated. The matched edges are shown in
green color
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outgoing edges to all the SPMM tasks where the column blocks of the sparse matrix will

be accessed. Also we can see there are nblocks number of SPMMRED nodes which have

incoming edges from nblock SPMM nodes.

As we previously assumed, with higher degree nodes, what happens is that once these

high degree nodes are matched, all the other edges incident with that node are not considered

at all. This results in a lot of nodes to be left out from consideration. Hence, in the coarsened

graph, the number of nodes are not reduced that much and gets kind of saturated and the

matching process becomes slow.

Another very important phenomena is that, while matching the edge (u, v), u becomes

the leader of v in the coarsened graph. In this graph we show the matched edges in the first

coarsened level with thick green arrows. We can see that, CHOL,RBR node will become

the leader of INV,RBR node. All the XY nodes will become the leaders of their subsequent

DLACPY nodes. Since all the DLACPY nodes are matched now, all of the edges from

DLACPY to SPMM nodes will not be considered. Rather, only the nblock number of edges

from SPMM to SPMMRED will be added to matching set.

In the next coarsening level, shown in 5.8 we start seeing a pattern where clustered

XY nodes (combined with XY and DLACPY) have outgoing edges to SPMM nodes and

some of those edges are included in the matching set. For example the edge from XY,2,3

to SPMM,0,2 is added to the matching set making XY,2,3 the leader of SPMM,0,2 and

resulting in not considering any other edges incident with XY,2,3.

In subsequent Figures 5.9, 5.10 and 5.11 we show the later coarsening stages. Here we

start seeing that pattern where the edge from XY,2,3 to SPMM,1,2 and then SPMM,2,2

and then SPMM,3,2 are matched in consecutive coarsening levels. Making all the SPMM

tasks along the same column clustered in the same XY node. This also happens with other
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Figure 5.8: step 2 of the matching
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Figure 5.9: step 3 of the matching
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Figure 5.10: step 4 of the matching

XY nodes where all the SPMM tasks along the same column becomes clustered in the same

node. Moreover, a large cluster forms with CHOL,RBR as the leader. This continues to

happen until we reach to our step size.

5.5 Coarsening A Block of SPMM Nodes Into One

Block

Since the SPMM tasks along the same column gets clustered in the same node, all the column

blocks gets into the same partition. So we tried a different proprocessing approach. Rather

than coarsening nodes in the same topological level, we concentrated only on tasks which

access the main sparse matrix blocks. Before sending the graph to the regular matching
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Figure 5.11: step 5 of the matching
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Figure 5.12: blocking of csb blocks to coarse multiple nodes into one node

algorithm, we coarsen the nodes which are accessing to the csb blocks which form a small

block. Assuming we will coarse bxb nodes into one node, we divide the entire block matrix

into (nblocks/b) ∗ (nblocks/b) small blocks. This will be the maximum number of nodes

after coarsening. The block number for each SPMM node is calculated and the first visited

SPMM node in a row-major traversal from that block is set as the leader. If there are some

some blocks with no nonzeros, that means that SPMM node will not be present in the DAG.

That node will not be considered anyway. Let us see our method in this Figure 5.12

Here let us assume we have a sparse block matrix with 8*8 csb blocks. x denotes that

there is at least one non zero in this block. We take b = 2 for this example. That means there

will be 4*4 small blocks. The blue block will have SPMM (0,0), SPMM(0,1), SPMM(1,0)

and SPMM(1,1) nodes. In row major order, SPMM(0,0) will be the first node visited from

this block. Hence we make the SPMM(0,0) the leader of the other nodes in this block.

There will be some small blocks where some csb blocks will have no non zeros. In the

figure, the orange block only has two csb blocks with non zeros. For this kind of cases, first

node traversed from this block(SPMM(4,5)) becomes the leader of the other node. In this

case only 2 nodes will be coarsened.

The motivation behind trying this scheme was to find out if we can actually see any
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difference in the 1d partitioning results because this time we are coarsening a small block

into one node. In figure 5.13 we see the results for a similar matrix from figure 5.14. Here

we have b = 5 that means we coarsen 5*5 nodes into one single node. We see that the

thickness of the csb blocks accessed has somewhat increased. But overall it is still a 1d kind

of partitioning. This makes sense as now some adjacent columns will also be included in

the same part thats why the thickness increases. But those DLACPY nodes will still have

outgoing edges to (nblocks/b) nodes which will behave same.

5.6 Issues with the Partitioner

5.6.1 Upperboounds

issue is that they rely on the upperbounds and lower bounds while partitioning. These

partitioning bounds are first decided based on the vertex weights. There initial examples

had vertex weight of one. For example, if we have 100 vertices, and we want to create 4

parts using the partitioner, each part will have an upperbound of ∼ 27. BFSGrowing fills

one part until it is under this upper bound, regardless of the gains.

5.6.2 Refinement

In my opinion this is an important issue that is making the csb block accessing pattern

more scattered. When we project back, each node is assigned the part number of its leader.

Because of regular matching algorithm and also the pre processing that we tried, obviously

one part becomes larger than the other part. In this case the refinement function calls a

forced balance function. In refinement step, boundary vertices are selected and the gain for
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Figure 5.13: Sparse matrix block access patterns in different parts
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Figure 5.14: Sparse matrix block access patterns in different parts
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their move to the other parts are calculated. Currently nodes from the big part are moved

to the small part only. Hence some nodes gets moved to the other part anyway. At each

uncoarsening step, after each project back call the refinement is called. As we have seen

that SPMM column nodes are clustered into one node DLACPY most of the time, different

DLCPY nodes fall into same part in a coarsened graph. While projecting back, the SPMM

nodes associated with them gets into that same part making the non adjacent columns in the

same part. Moreover, the refinement process moves some nodes to the smaller part making

the accessing more scattered.

5.6.3 Graph structure

Obviously our graph structure leads us to different kinds of issues. What happens with a

node with high indegree or high outdegree. The matching becomes slower because of this

kinds of nodes. If we want to avoid this saturation in matching, then we need to increase

the coarse graph size which might increase the time for partitioning. Also, because of this

regular matching, the column blocks are getting clustered into one node which leads us to a

1d partitioning. 1d partitioning will not be the best for memory usage. We can think this

graph as a hypergraph somehow. The codebase will need a huge change then. But may be

with hypergraphs we can come up with some agglomerative approaches for matching.

5.6.4 Edgecut

EdgeCut is calculated on the entire graph in different stages of the algorithm. Weights

of every edge which has its endpoints in different parts are added to the edgecut. While

generating partitioning, the gains are considered. At this moment, the minimum of edgecuts
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are considered. But for our purpose, the more the edgecut is, the more data reuse between

the parts.

5.7 PowerLaw Graph Partitioning Attempts

There are two main issues that we faced with the DAGs we were working with. As we have

already seen the structure follows a specific pattern where some nodes have a lot of outgoing

edges and some nodes have a lot of incoming edges. This graph maintains a power law graph

shape. We know from power law graphs that it follows a power law relation.

Abou-Rjeili and Karypis discusses a multilevel partitioner approach for the irregular

graphs which follows power law distribution. They discuss similar problems that we face

with our graph structure and matching. Once the nodes with higher degrees get matched,

we can not hide a lot of edges and thus it makes the whole matching process slow. Hence,

the coarsening steps become more and more slow resulting in increase of memory required

to store these intermediate coarsened graphs. In our current method, we do not consider a

vertex at all once it gets matched. But they propose a scheme where a vertex will still be

considered for including in the matching set even if it is matched.

They have two edge visiting strategies - globaly greedy strategy (GG) and globally random

locally greedy strategy(GRLG). In GG they order the edges according to some pieces of infor-

mation and then take those edges in a greedy approach. In GRLG method, they randomly

choses some vertices and then greedyly considers the edges incident to those vertices. As our

graphs are directed, GG strategy will not for us because we need to maintain the acyclicity

though out our approach. Hence we tried with GRLG approach.

We selected a random order for visiting the vertices. Then we ordered the edges incident
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to that vertex with the edge weights. The highest weighted edge with that vertex gets

the most priority. The purpose is to cluster the nodes which have a high data movement

between them to be in the same cluster so that we can gain some data reuse. But this

approach although worked for some random orderings, did not work for all the random

orderes. It generated a cycle after some matching step. Here we present an example of this

kind of case.

In this figure 5.15 we show a possible cycle generation using the above mentioned ap-

proach. We show an actual part of our graph which follows that kind of structure of one

node having a lot of outgoing edges. For ease of explanation we are naming them as node

numbers. Here, we see that in the first graph when node 8 is chosen, all of its adjacent edges

are selected for matching. In the earlier case, only one of these edges would be chosen and

all of them would be replicated in the coarsened graph hiding all those similar edges. But in

this case, all the similar kind of edges incident to node 8, 10, 12 and 14 are matched. This

was one of the main motivations behind the aforementioned paper. In the next graph we

can see the coarsened graph after the first stage with updated vertex number. In the next

graph similarly with a random order some vertices and their adjacent edges are matched.

But this time it creates a problem. Since the vertex numbers are updated accordingly to the

leader of the matched edge, in the third graph we can see that there is an edge from node

1 to node 9 and also from node 9 to node 1. This is a cycle so this approach will not work

for us. With undirected graphs, these schemes work pretty well as they have showed but for

our case unfortunately we cannot implement these ideas as they were stated.
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Figure 5.15: A cycle is created using GRLG approach
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5.7.1 Lowest Common Ancestor

To get rid of this cycle issue, we came up with a different method. We calculated the lowest

common ancestor of two nodes in the graph. Then while the matching process, we check

whether the other parents of a children of a node we are considering for matching shares a

lowest common ancestor. If they have a common ancestor, that means it might be possible

that it creates a cycle. Because in some later coarsening steps, the vertex we are considering

might be matched the common ancestor and resulting an edge from the other sibling to have

an edge to the common ancestor and thus creating a cycle. Hence, if the other parents of

this children have a lowest common ancestor with the vertex we are considering, we do not

match this edge. We do it for all the vertices.

For example in figure 5.15 second graph, when we are considering node 7, its children is

node 8 whose other parents 9, 11 and 13 all have a lowest common ancestor 2 which is also

an ancestor of node 7. This means, if node 7 is matched in some coarsening step with node

2, then it will create a cycle. So in this case we do not match node 7 and 8.

Although this scheme never creates a cycle in the coarsened graph, but unfortunately it

stops the coarsening process too early. The main reason is that our graph structure has a lot

of nodes who share a common ancestor at a very high level of the graph even though those

nodes are in the down level of the graph and actually might never be matched together. In

the earlier coarsening steps we see some matching being done but after some steps, all the

nodes have some common ancestors with some nodes resulting in no matching thus stopping

the matching process. This scenario does not serve our purpose. Also, another important

motivation for us is to match in such a way so that the matrix can be traversed in a blocked

shape. That purpose is also not served.
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5.7.2 Hierarchical partitioning attempts

We have already discussed that our graph maintains a certain structure which leads to a

specific pattern of accessing along the columns of the large matrix in a partition. This kind

of 1d partitioning will not be ideal for cache utilization since the entire output block vector

needs to be kept in the memory for all the columns and so for almost all the partitions.

We would like to access the matrix in a 2D kind of shape so that we can improve the cache

utilization. Keeping this thing in mind, we have tried another approach which hierarchically

breaks down a large tasks into small tasks.

We start our partitioning with tasks having a large matrix block size eg. 64K, 32K etc.

With large block size, the number of nodes in the DAG will be relatively small. Hence

our regular partitioning algorithms which struggled with partitioning large number of nodes

can partition this graph with relatively small nodes with ease. Hence we will generate a

partitioning using a large block size. The problem with large block size is that it will incur

a large number of unnecessary calculations. For example in a 64K ∗ 64K block, there might

only be a few nonzeros but eventually we will be needing to apply all the operations into

these blocks where almost all the values are zero. In figure 5.16 we show the partitioning

achieved in the Z5 graph. We can clearly see that there are less number of blocks and they

have mostly that 1D pattern.

But for efficient computation, we would like to have small blocks of the matrix. The

main reason is that we can skip so many unnecessary calculations we were doing with large

blocks. Also the cache utilization will increase with small block sizes. Hence we divide each

large block into small blocks. We create a completely new graph with these small blocks.

All the tasks which executes on a block whether a matrix block or a vector block will be
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Figure 5.16: Partitioning of Z5 matrix with 64K block size

replicated into newly constructed task nodes with small blocks with appropriate incoming

and outgoing edges.

In figure 5.17 we show an example of how the hierarchical blocking is actually done. Here

we have a matrix which is divided into 4*4 blocks. We will use this graph for partitioning.

After we get the partitioning, we will refine this graph into a different graph with small block

size. Each of the blocks in the large blocks are divided into further small 4*4 blocks. Hence,

for each large matrix blocks, we will have 4*4 = 16 new nodes and they will be renamed

appropriately. Note that, when we refine the large blocks into small blocks, a lot of small

blocks will have no nonzeros in them. We will consciously skip those nodes from our refined

graph since those nodes will not incur any valid computation. Hence the original spmm, 0, 0

node will be divided into 16 new spmm tasks starting from spmm, 0, 0 to spmm, 3, 3. All

the vector blocks will also be divided into small blocks. That means a dgemm, 0 task will be
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Figure 5.17: Hierarchical blocking scheme

divided into 4 dgemm tasks starting from dgemm, 0 to dgemm, 3 and so on. All the edges

in the original graph will be converted to appropriate number of edges to appropriate nodes

accordingly.

As we already know that the partitioner assigns a partition number to each task. Hence,

the part number of the tasks in the original graph will be replicated to the part number of

the tasks in the refined graph with small block size. Since each node in the original graph

is divided into small blocks, we expect to see some 2D kind of shape in the refined graph.

In figure 5.18 we have the refined graph where each block from the original graph has been

divided into 64 ∗ 64 blocks of 1k size. We can see how the matrix is accessed in the refined

graph. We still see a slight column based access but in this case there is a blocked shape in

this case which should increase the data reuse that we are looking for.

5.8 Memory Bound Implementation

One of the most important aspects of our partitioner is that it ensures a constraint is strictly

maintained in all partitions. In our case, the constraint is the fast memory. All our partitions
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Figure 5.18: Partitioning of Z5 matrix with 1K block size

follow this memory bound. We have two important phenomena to consider while managing

this constraint over all the partitions.

We should correctly identify all the active memories that will be needed during the

execution of this part. As we design our partitioner in such a way that we assume all

the tasks in this partition will be executed in a single node, that means all the active

memory parts that will be needed, allocated for both input and output of individual

tasks should contribute in the active memory calculation. Not only input and output

memories which will be read or written, but also the amount of internal memories allo-

cated for executing that task (Such as temporary memories allocated in heap through

malloc which will have a scope on that task only) should be considered while active

memory calculations.

Another important and motivating aspect behind our partitioner is to catch the data
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reuse between the tasks whenever possible. The DAG generated has some dependencies

between the tasks where the edge represents the data flow from one task to another.

Note that the memory needed by a task as inputs are already written as output memory

by another tasks. Hence, we can safely say that memory chunk needed for writing will

be present in the fast memory and when a task that needs that memory chunk as an

input memory for execution, it will find it in the fast memory. This memory chunk is

active and it should not be counted multiple times.

Let us give an example of these two considerations. In figure 5.19 we can assume a

partition consisting of some tasks named A,B,C,D,E and F which are represented as

nodes and the edges here represent the memory chunk these tasks need as input and the

memory generated by these tasks as output which goes to other tasks as input. For example,

task D has incoming edges from task A and B and outgoing edge to task E. Task D receives

the memory chunks a and b as input from tasks A and B respectively. It generates an output

d which is then forwarded to the task E as its input.

While the tasks are being executed, we can see here that task B and C uses a common

memory chunk p2 as input. If task B is executed first, memory p2 will be loaded in the fast

memory. Hence, when C will be executed, p2 is already in the fast memory. Hence while

calculating active memory, we should not include p2 again in our calculation. We will keep

adding all the active memory needed for each of the tasks unless they are already in the

active memory. When task E needs to be executed, the input memories it needs are d, b and

x(from some other part). Since both d and b are already in the fast memory the values of

these memory chunks will not be added to the active memory calculation. But since x has

not been yet included in the active memory, it will be included in the calculation.
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Figure 5.19: Memory Management in partitions

We will also include all the temporary memory allocated in each tasks which only has a

scope on that task only but since they are allocated, those memories are also part of active

memory in this part.

After all the active memory calculations, we can measure if the total active memory

needed in this partition is under our fast memory amount. If it is less than the fast memory

amount then we can easily go ahead with the execution of these tasks in this part as it will

fit in the fast memory. If the amount of active memory is more than the amount of fast

memory, that means we need to further partition this part.
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5.9 Experimental Results

5.9.1 Experiment setup

We conducted all our experiments on Cori Phase I, a Cray XC40 supercomputer at NERSC,

mainly using the GNU compiler. Each Cori Phase I node has two sockets with a 16-core

Intel Xeon Processor E5-2698 v3 Haswell CPUs. Each core has a 64KB private L1 cache

(32KB instruction and 32KB data cache) and a 256KB private L2 cache. Each CPU has

a 40MB shared L3 cache (LLC). We use thread affinity to bind threads to cores and use a

maximum of 16 threads to avoid NUMA issues. We test DeepSparse using five matrices with

different size, sparsity patterns and domains (see Table 4.2). The first 4 matrices are from

The SuitSparse Matrix Collection and the Nm7 matrix is from nuclear no-core shell model

code MFDn.

We compare the performance of partitioned schedule with two other library implemen-

tations: i) libcsr is implementation of the benchmark solvers using thread-parallel Intel

MKL Library calls (including SpMV/SpMM) with CSR storage of the sparse matrix, ii)

libcsb is an implementation again using Intel MKL calls, but with the matrix being stored

in the CSB format and our DeepSparse implementation. Performance data for LOBPCG

is averaged over 10 iterations, while the number of iterations is set to 50 for Lanczos runs.

Our performance comparison criteria are L1, L2, LLC misses and execution times for both

solvers. All cache miss data was obtained using the Intel VTune software.

5.9.2 Performance of the partitioner

We ran our custom scheduler in both Haswell and Knl nodes and measured the L1, L2

and last level of memory(in this case MCDRAM) misses using VTune in similar way to our
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Figure 5.20: Performance comparisons between different cache levels and execution time of Nm7
matrix in Haswell nodes

previous project.

In Figure 5.20 we show the cache miss and execution time results for Nm7 matrix in

Haswell nodes for different block sizes for our execution. For L1, we do not see much

improvement for our custom scheduler. But for L2 and L3 caches, we see the custom scheduler

achieves better cache performance over libcsr version. But the improvement over DeepSparse

was not consistent and often it could not beat the DeepSparse performance. Also we noticed

that the execution time is actually not as we expected for the custom scheduler.

In Figure 5.21 we show the cache miss and execution time results for Nm7 matrix in KNL

nodes for different block sizes for our execution. We see similar traits here and additionally

we get better L1 cache optimization in this case. But likewise, we could not outperform the

DeepSparse for KNL nodes too.
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Figure 5.21: Performance comparisons between different cache levels and execution time of Nm7
matrix in knl nodes
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5.10 Future work on the partitioner

We tested the performance of the custom scheduler in other matrices for both Haswell and knl

machines. We saw some similar traits in all of our experiments. We achieve an improvement

over the library versions as we expected. But we can not out perform the DeepSparse

performance for all matrices with all the block sizes. That means the OpenMP default

scheduler is doing a pretty great job as well as our custom scheduler is not performing as

we expected. One important aspect is having to use a taskwait after each part is holding us

back a little bit. Because if we do not use this taskwait between each partition, since we are

still using OpenMP for executing all the tasks of a partition together, some other tasks from

a different part can be scheduled before a task from this partitioner if its in out dependencies

have been resolved, which will hinder our performance.

Hence we thought we will be needing some other heuristics if we want to use the par-

titioner with a better scheduler. An idea might be to use hypergraphs and partition the

hypergraph. But converting the graphs to hypergraphs and converting every data structure

to hypergraphs would be a cumbersome work. We still hope to continue trying to improve

the partitioner. At this point we wanted to move on with the existing scheduler served by

OpenMP and try and implement the distributed MFDn. Before that we wanted to see the

communication pattern and their behavior in MFDn. We use a simulator called SST to

simulate the networking topology in MFDn which we discuss in detail in the next chapter.
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Chapter 6

SIMULATING THE

COMMUNICATION PATTERNS IN

A LARGE SCALE DISTRIBUTED

APPLICATION

Our target application, MFDn [89, 90, 4] is used for ab initio calculations of the structure

of atomic nuclei. The structure of an atomic nucleus with A nucleons can be described by

solutions of the many-body Schrödinger equation

Ĥ Ψ(~r1, . . . , ~rA) = EΨ(~r1, . . . , ~rA) (6.1)

where Ĥ is the nuclear Hamiltonian acting on the A-body wavefunction Ψ(~r1, . . . , ~rA), ~rj

the single-nucleon coordinates, and E the energy. For stable nuclei, the low-lying spectrum

is discrete. The solution associated with the algebraically smallest eigenvalue is the ground

state. The nuclear Hamiltonian Ĥ contains the kinetic energy operator K̂, and the potential

term V̂ which describes the strong interactions between nucleons as well as the Coulomb

repulsion between protons. Solving for nuclear properties with realistic nucleon–nucleon

(NN) potentials, supplemented by three-nucleon forces (3NF) as needed, for more than a
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few nucleons is recognized to be computationally hard [124].

Obtaining highly accurate predictions for properties of light nuclei using the No-Core

Configuration Interaction (NCCI) approach requires computing the lowest eigenvalues and

associated eigenvectors of a very large sparse symmetric many-body Hamiltonian matrix Ĥ.

If A is the number of nucleons in a nucleus, this matrix is the projection of the nuclear

many-body Hamiltonian operator into a subspace (configuration space) spanned by Slater

determinants of the form

Φa(~r1, . . . , ~rA) = 1√
A!

det



φa1(~r1) . . . φaA(~r1)

... . . . ...

φa1(~rA) . . . φaA(~rA)


, (6.2)

where φa are orthonormal single-particle wavefunctions indexed by a generic label a. The

dimension of the subspace or basis spanned by these many-body wavefunctions Φa depends

on (1) the number of nucleons A; (2) the number of single-particle states; and (3) the

(optional) many-body truncation.

In the NCCI approach, one typically works in a basis of harmonic oscillator single-particle

states where the number of single-particle states is implicitly determined by the many-body

truncation Nmax, which imposes a limit on the sum of the single-particle energies (oscillator

quanta) included in each Slater determinant of A nucleons. In the limit of a complete (but

infinite-dimensional) basis, this approach would give the exact bound state wave functions;

in practice, increasingly accurate approximations to both the ground state and the narrow

(low-lying) excited states of a given nucleus often require increasingly large values of Nmax.

The dimension D of Ĥ increases rapidly both with the number of nucleons, A, and with
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the truncation parameter, Nmax. The sparsity of the matrix Ĥ (and hence the memory

requirements and computational load) depend on the nuclear potential. With NN-only

potentials this matrix is extremely sparse, whereas with 3NFs there are significantly more

nonzero matrix elements in the matrix, and with a (hypothetical) A-nucleon force one would

get a dense matrix [91].

Many-Fermion Dynamics—nuclear, or MFDn, is a NCCI code for nuclear structure calcu-

lations using realistic NN and 3NFs forces [125, 126, 127, 128, 129] written in Fortran 90 using

a hybrid OpenMP/MPI programming model. A typical calculation consists of constructing

the many-body Hamiltonian matrix in chosen basis, obtaining the lowest eigenpairs, and

calculating a set of observables from those eigenpairs. Efficiently utilizing the aggregate

memory available in a cluster is essential because a typical basis dimension is several billion

- corresponding to a very sparse matrix with tens of trillions of nonzero elements.

The lowest few eigenvalues and eigenvectors of the very large real sparse symmetric

Hamiltonian matrix are found with iterative solvers - using either the Lanczos [92] or the

LOBPCG [93] algorithms. The key kernels in iterative eigensolvers are Sparse Matrix–

Vector (SpMV) and Sparse transposed Matrix–Vector (SpMVT ) products, as only half of

the symmetric matrix is stored in order to reduce the memory footprint. The sparse matrix

is stored in a CSB_COO format [22], which allows for efficient linear algebra operations on

very sparse matrices, improved cache reuse on multicore architectures and thread scaling

even when the same structure is used for both SpMV and SpMVT (as is the case in this

application).
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6.1 MFDn Communication Motif

On a distributed-memory system, we would like to distribute the matrix among different

processing units in such a way that each processing unit will perform roughly the same

number of operations in parallel sparse matrix computations. To achieve this, we split the

sparse matrix into nd × nd approximately square submatrices, each of approximately the

same dimension and with the same number of nonzero matrix elements, for both CPU time

and memory load-balancing purposes. As mentioned above, since the matrix Ĥ is symmetric

and the number of nonzero elements in Ĥ increases rapidly for increasing problem sizes, we

store only half of the symmetric matrix. This results in np = nd(nd + 1)/2 submatrices for

e.g. the lower-triangle part of the Hamiltonian. One can then distribute these submatrices

over np different processing units, perform local SpMV and SpMVT operations with these

local submatrices, and synchronize after every iteration along both the columns and the

rows of this grid of nd × nd submatrices. However, in addition to CPU and memory load-

balancing, we also have to consider communication load-balancing, and the naive distribution

of just the lower triangle (or equivalently, just the upper triangle) leads to highly imbalanced

communication patterns [90]; in particular, because the number of processing units per

column (row) ranges from 1 to nd for different columns (rows).

6.2 Simulation of a Distributed communication

To create a more efficient mapping for load-balanced communication, one can start from

the nd × nd square grid of submatrices, and, taking into account that Ĥ is symmetric,

require that each column (row) in the nd × nd grid has the same number of submatrices

(specifically (nd+1)/2) assigned to one of the np = nd(nd+1)/2 processing units. There are
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Figure 6.1: Processor topology with 15 processors numbered from 0-15. Distributed in an efficient
manner where each row and column has the same number of processors.

many different ways to achieve this – the implementation that is used in MFDn [22, 90], is

illustrated in the top panel of Fig. 6.2 for 15 processing units on a 5× 5 grid of submatrices.

After each local SpMV and SpMVT , we have to perform two reductions: One along the

processing units in the same column, and one along the processing units in the same row,

as as indicated by the lower panels of Fig. 6.2. With the mapping of Fig. 6.2, all column-

and row-communicator groups contain (nd + 1)/2) processing units per communicator, and

have essentially the same communication volume as well. Thus, with this distribution the

communication load associated with the SpMV or SpMM in the iterative solver is almost

the same for all processing units and communicator groups, both in message sizes, and in

number of processing units in each communicator, provided that the dimensions of each

submatrix are approximately the same.
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Figure 6.2: Processor distribution in MFDn: MPI_COMM_WORLD (top) and custom column
(left) and row (right) communicator groups.

The additional steps in the iterative solvers, namely orthogonalization of (blocks of)

vectors, preparation of the input vector (block) for the next iteration, and in the case of

LOBPCG applying the pre-conditioner, are all distributed evenly over all np processors. For

this purpose, we further divide each of the nd (blocks of) vectors into (nd + 1)/2 segments,

and distribute these evenly over the column-communicator groups. Thus each processing

unit deals with a (block of) vectors of length D/(nd(nd + 1)/2) for the orthogonalization

and preparation of the input for the next iteration, where D is the dimension of the Hamil-

tonian. These steps also involve additional communication, mainly reduce or all_reduce on

all processing units, but the message sizes are small and the communication overhead during

this step is negligible compared to the communication overhead during the SpMV/SpMM

phase.

Schematically, the communication pattern for the SpMV/SpMM phase at each iteration

is given in Fig. 6.3:

First, the (block of) vector segments of length D/(nd(nd + 1)/2) are gathered on the

’diagonal’ processing units within each column-communicator;
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Figure 6.3: Communication pattern for distributed SpMV (Lanczos) or SpMM (LOBPCG) during
iterative solver. In our actual implementation, we have replaced the initial Gather + Broadcast
along the columns by a single call to AllGatherV, and similarly, the final Reduce + Scatter along
the columns by a single call to ReduceScatter. Also, the Broadcast and Reduce along the rows is
overlapping with the local SpMV and SpMVT. (Figure adapted from Ref. [4]
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Next, the diagonal processors broadcast their (block of) sub-vectors of length D/nd

both along the column-communicators and along the row-communicators;

Each processing unit performs a local SpMV/SpMM and SpMVT /SpMMT ;

The outputs of both the local SpMV/SpMM and SpMVT /SpMMT are reduced along

the column and row communicators, respectively, onto the diagonal processors;

Finally, each diagonal processor scatters the final result among the (nd + 1)/2) pro-

cessing units within its column-communicator, for further processing in preparation

for the next iteration.

In practice, we perform the initial gathering of the vector segments onto the diagonals fol-

lowed by the broadcast along the column-communicators in a single collective MPI call,

namely MPI_AllGatherV. Similarly, the reduction along the column-communicators fol-

lowed by the final scatter of the vector segments at the end can also be done in a sin-

gle collective MPI call, namely MPI_ReduceScatter. Thus the entire SpMV/SpMM re-

quires only four collective MPI routines: MPI_AllGatherV, MPI_Bcast, MPI_Reduce, and

MPI_ReduceScatter.

It has been shown that this distribution of the data and implementation of the communi-

cation performs efficiently on current HPC platforms; furthermore, on multicore processors

it allows us to hide the broadcast and reduction along the row-communicators during the

SpMV/SpMM phase behind computation [22], depending on the local CPU performance,

the actual network performance, and the problem size. However, for large-scale production

runs, using thousands of processing units, and with a vector dimension in the tens of billions,

the communication overhead does become a major factor, surpassing the time required for

the local sparse matrix computations. For an application scientist preparing for the next
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generation of HPC platforms, it is therefore very useful to be able to simulate just the com-

munication overhead before the system becomes available so that any algorithm changes or

optimizations can be worked out in advance.

6.3 Simulation Framework and Implementation

To evaluate the communication pattern we utilize the Structural Simulation Toolkit [88].

SST is a flexible simulation framework designed to explore trade-offs in the parallel and

distributed system design space. SST is widely used within the academic, national labora-

tory and vendor communities [130, 131, 132]. Components included in SST represent the

different subsystems of a supercomputer, including, CPUs, accelerators, memory, networks

and software. These components are connected together by the core SST framework which

can then simulate discrete events in parallel across multiple nodes using MPI. In this work,

we utilize three existing modules within SST, namely Ember, Firefly and Merlin. These

represent the workload/communication pattern, communication software stack (e.g., MPI)

and the network fabric (routers, cables, topology, etc.), respectively.

6.3.1 Ember

Ember is one of the components of the SST libraries. This is a state-machine based event

engine. This event engine replicates communication patterns in a scientific application at

a simulation endpoint. Sets of application communication patterns are called motifs. A

collection of motifs can be created within each point to create a complex workflow.

A sequence of events containing primitive communications and also collective commu-

nications, computations, timings, barriers are created in a motif. A queue is maintained
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where these events are pushed and executed one by one until the queue is empty. Motifs are

prompted to refill the queue with additional events once emptied.

The communication events are sent to the Firefly layer. A communication event is coded

in Ember but converted into actual operations by Firefly component which keeps track of

the parameters associated with the encoded Ember communication motif code. Ember uses

short sprints of events. Ember component can scale to very large simulated node counts

regardless of any constraints on the amount of memory or simulation related processing.

6.3.2 FireFly

Firefily is another component in SST which implements a state machine based data move-

ment stack. It is the "MPI" equivalent in SST. The main purpose of Firefly is to help testing

different network topologies at a larger scale than actual simulations would be allowed to run

on by a network stack. Firefly can not be run stand alone. It requires a network component

which in this case is Merlin and a driver component which in our case is Zodiac.

This component provides library supports for point-to-point communications like send,

receive, wait etc. It also provides support for the collectives like alltoall, reduce etc opera-

tions. It follows an eager/rendezvous protocol model. The state machine functionality moves

the data between hosts over a bus. The motifs are written in Ember component and sent to

Firefly component where the network parameters along with the message sizes, bandwidth,

latencies are processed.
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6.3.3 Merlin

Merlin is a combination of low level networking components that be used to simulate high

speed networks or on chip networks. Merline comprises of a range of different network

topologies. Merlin also provides a set of tunable parameters like buffer size, latencies, routing

models which can be used to create a new architecture that is not yet released. Merlin library

currently supports DragonFly topology which we have used in our simulation, Torus, Fat

Tree topologies. All topologies use deterministic routing.

6.4 Implementation

For comparisons with SST simulations, we implemented a communication only version of

MFDn, which we call communications-skeleton code, because for very large matrices where

large numbers of compute nodes are needed, communication overheads dominate the exe-

cution time of the MFDn eigensolver. Hence, our SST/MFDN motif does not simulate any

computations either.

We implemented MFDn’s communication motif (without any computations) using SST.

We show the pseudocode in Algorithm4. MPI communication routines implemented in

SST/Ember have the following common syntax: enQ_ < MPI_communication_routine_name >.

We tried to replicate the actual application code with only communication routines in our

MFDn motif, but we could not use the exact Ember/SST equivalent of the MPI routines in

a few cases where they lacked support as detailed below.

MFDn uses MPI_Comm_Split for creating its row and column communication groups.

However, the corresponding enQ_Comm_Split function was not producing the correct com-

munication groups for our motif, therefore we used the enQ_Comm_Create function which
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Algorithm 4: Ember pseudocode for the MFDn communication motif.
1 enQ_Comm_Create(. . . , Comm_world,. . . , Col_Comm);
2 enQ_Comm_Create(. . . , Comm_world,. . . , Row_Comm);
3 for iter = 1 to maxIteration do
4 enQ_Allgather(. . . ,vector_segments,. . . ,Col_comm);
5 enQ_bcast(. . . ,sub_vector,. . . ,Row_comm);
6 enQ_reduce(. . . ,SpMM_output,. . . ,Row_comm);
7 enQ_reduce(. . . ,final_result,. . . ,Col_comm);
8 enQ_scatter(. . . ,final_result,. . . ,Col_comm);

creates a custom communicator for given a set of MPI ranks.

MFDn uses MPI_Reduce_Scatter along the column communicator in the final phase as

pointed out in Figure 6.3 because MPI_Reduce_Scatter significantly reduces the execution

time over using an MPI_Reduce followed by an MPI_Scatter. Unfortunately, SST currently

does not have an equivalent enQ_Reduce_Scatter function. Hence, we used an enQ_Reduce

followed by an enQ_Scatter in the MFDn motif. We added the simulation time for the

reduction and the scatter operations together in all results in the following section where

we compare the timings from the SST simulation and the real application. We acknowledge

that this will not entirely capture the effect of MPI_Reduce_Scatter in the real runs.

Another important difference between MPI and Ember/SST is that unlike the MPI_Reduce

operation, no local aggregations are applied in the enQ_Reduce function. In MFDn, re-

ductions are actually performed in two different ways. One uses the default MPI_SUM

aggregation, but this default MPI_SUM option does not make use of all available cores in

a hybrid parallel MPI-OpenMP code. Since the dimensions of vectors in MFDn are very

large, local aggregations during reductions are potentially very time consuming. Therefore,

MFDn uses a customized reduction that uses OMP multithreading for aggregation; we refer

to this version as OMP_SUM. For most moderates size problems, the OMP_SUM version

outperforms the default MPI_SUM, but for very large number of ranks or if we use 16 or
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more ranks per node (leaving only 4 or fewer threads for OMP parallelization), there is al-

most no difference or the default MPI_SUM is slightly more efficient. This illustrates that

the actual reduction operation takes a non-negligible amount of time for the message sizes

in MFDn. Since there are no actual summations involved in the Ember/SST reduction, we

expect there will be a considerable performance difference between the real application runs

and the SST simulation results for reduction operations.

6.4.1 Random Distribution of Processes

During a production run, when we try to allocate nodes from a system using batch scripts,

getting nodes in close proximity is generally not guaranteed (unless if one uses the entire

machine). In a large supercomputer, typically hundreds of jobs are running, starting and

completing at different times. Resources are allocated according to various queuing policies.

A set of nodes are created from the available nodes and those are allocated for the next

eligible job. Hence, medium to large jobs are generally fragmented in a random manner

across the set of available nodes.

In the MFDn code, the process distribution assumes that MPI ranks are in the range

from 0 to np as discussed in Section 6.1. When we run the exact process distribution using

SST, it assumes that the first np cores/nodes will be used for the simulation and the custom

communicators are created accordingly, thus deviating from the random node allocation

scheme. Therefore, we have introduced a similar random node selection in the SST simulation

code for MFDn.

In Figure 6.4, we show a small example where we need 6 nodes with one MPI ranks

per node for our simulation. We assume the machine has 32 nodes in total. When we ask

for 6 nodes, a random set of 6 nodes are given. Then in the SST simulations, the custom
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Figure 6.4: Random selection of the ranks.

communicators will be generated accordingly as shown in Figure 6.4. If all MPI ranks in

the SST simulation are consecutive and start from 0, then it does not portray a real world

scenario and it is possible that it does not catch the actual communication bottlenecks.

Introducing this randomness helps us making the SST simulation close to the real world

simulations.

Note that when we use more than one MPI rank per node, some of the MPI ranks will

be bundled under the same node. We have created the random set keeping this practical

issue in mind. Whenever we need more MPI ranks per node for our simulation, first a set of

random nodes will be selected. Then the set of MPI ranks will be created using those nodes

and the number of MPI ranks bundled together.

6.5 Evaluation and Results

For our experiments, we chose two different clusters. We used the Cori-KNL cluster as

an existing machine for validation and another machine similar to the upcoming NERSC

Perlmutter system for prediction. Although the detailed configuration information for this
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system is not yet public, we use a reasonable approximation.

6.5.1 Hardware and Software

We conducted all our validation experiments on Cori Phase II (Cori-KNL), a Cray XC40

supercomputer at NERSC. Each Cori-KNL node is a single-socket Intel Xeon Phi Processor

7250 ("Knights Landing") processor with 68 cores per node @ 1.4 GHz. Each node has 96

GB DDR4 2400 MHz memory with 102 GiB/s peak bandwidth and also a 16 GB MCDRAM

(multi-channel DRAM).

Although not all details of the Perlmutter system are released yet, it is scheduled to be

delivered in two phases. Phase 1 will have 12 GPU-accelerated cabinets and 35 PB of all-

Flash storage and Phase 2 will have 12 CPU cabinets. Each of Phase 1’s GPU-accelerated

nodes will have 4 NVIDIA A100 Tensor Core GPUs based on the NVIDIA Ampere GPU

architecture, along with 256GB of memory for a total of over 6000 GPUs. In addition, the

Phase 1 nodes will each have a single AMD Milan CPU. Each of Phase 2’s CPU nodes will

have 2 AMD Milan CPUs with 512 GB of memory per node. The system will contain over

3000 CPU-only nodes. For simulating a Perlmutter like machine, we adjusted our parameters

accordingly since it will have larger memory.

We use SST_9.1.0 version for all our simulations. While installing SST, we used Open-

MPI_4.0.2 version as a supporting flag. For compiling SST, we use NERSC’s default pro-

gramming environment modules, namely PrgEnv-Intel/6.0.5.
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Table 6.1: Matrices used in this study, the dimensions and number of nonzero matrix elements of
each matrix.

Nucleus Dimension Number of Nonzeros
11Be, Nm= 8 196,861,465 146,137,030,364
10Be, Nm= 9 430,062,264 409,045,051,874
10Be, Nm=10 1,343,536,728 1,600,272,603,633

6.5.2 Benchmark problems

For normal production runs of MFDn, the dimension of the matrices ranges from a few

hundred to tens of billions; the largest runs to date, on nearly the full Cori-KNL machine,

have a dimension of about 35 billion. For practical reasons, we restrict ourselves here to three

problem sizes, as listed in Table 6.1. We also list the number of nonzero matrix elements in

half of the symmetric matrix – this is what dominates the computational load.

It has been reported already that the wall time to simulate the motifs using SST varies

depending on different factors. These factors include congestion, adaptive routing, number

of events and distribution of cores across physical nodes. Simple motifs take small wall times.

But complicated motifs require a large amount of wall time across a large number of nodes

due to limited memory. For example, for the dimension 430,062,264 it took more than 33

hours to finish 2 iterations of our motif using 16 Cori-KNL nodes having 68 cores each. For

comparison, a communication skeleton run on MFDn, performing only the communication

during the eigensolver, took less than half an hour on 71 nodes for 5 runs on different number

of MPI ranks, and 20 iterations per run. That is, an aggregate of about 30 node-hours for the

communication skeleton run, compared to 512 node-hours for the SST simulation. Of course,

the advantage of the SST simulation is that one can simulate the performance of machines

that do not (yet) exist. Because of this issue, we could not compare the cases with larger

dimension requiring larger number of nodes. We believe that our motif being complicated
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Figure 6.5: Illustration of a general Dragonfly topology with a single group shown on the left and
the optical all-to-all connections of each group in a system shown on the right. Per the original
definition of a dragonfly [5], the design within a group is not strictly specified.

with different communicators increased the SST walltime compared to more simpler motifs.

6.5.3 SST parameters for Cori-KNL simulations

In SST, there are a number of network topologies that we can use to simulate our motifs.

Since both Cori-KNL and Perlmutter are based on the Dragonfly topology [5], we use the

Dragonfly option in SST. Dragonfly networks combine high radix routers and create virtual

routers called a group which are fully connected to other groups by optical links. Local

ports connect a router to a compute node or NIC. Group ports connect routers within

the same group together. Global ports facilitate inter-group traffic and use optical links

so that they may reach larger distance than is practical for electrical cables. For a visual

reference the reader may refer to Fig 6.5. As mentioned before, because of our interest in

communication overheads, we have elected to utilize communication-only skeleton code and

its SST implementation. Specifically, we utilize SST to accurately represent the packet-level

routing, buffering, and internal switch characteristics of the Dragonfly network, as well as
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the MPI semantics and message matching.

Below, we specify the Merlin and Firefly parameters we use to simulate Cori-KNL inter-

connect:

Network Topology: For simulating Cori-KNL System, we use a network having 12056

Nodes. In SST, we need to provide the shape of the network that we want to use as a

parameter. We use 4 local ports and 96 as the group port value. To replicate the same

peak bisection bandwidth as Cori-KNL, we use 10 global optical links among groups.

Note that we limit our runs to the minimum number of “switches" required. There

are (4 ∗ 96) = 384 nodes in each Cori-KNL switch. Hence, for example a simulation

needing 1000 nodes, we use 3 groups for the corresponding SST simulation.

Router and NIC Parameters: In Table 6.2, we present the router and NIC parameters

we used for simulating the Cori-KNL cluster. Each links has a bandwidth of 8 GB/s.

The port input, output latency values are taken from the Cray documentation[133],

where possible or otherwise estimated (as is the case with input and output buffer

sizes).

In practice, there are subtle differences in the real system simulated that Merlin does not

currently capture. For example in a real Cray Aries router, traffic from a single 8GBps NIC

is divided across 48 router tiles. Depending on whether it is an optical tile or electrical tile,

the bandwidth may vary between 4.7 and 5.25GBps. Though these architectural subtleties

are more complex than can be simulated by Merlin currently, SST is widely used within

industry to simulate the performance of large systems and we use parameters that provide

as close an approximation as possible to the NERSC Cori network.

NERSC uses SLURM for job scheduling. With the "–switches" flag in SLURM, we can
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Table 6.2: Router and NIC Parameters used for Simulating Cori-KNL

Parameter Name Value
flitSize 6 Byte

port input latency 150ns
port output latency 150ns

link latency 150ns
packetSize 64Byte
link BW 8 GB/s

input buffer size 16KB
output buffer size 16KB

limit our runs to a certain number of Dragonfly groups when we need small number of nodes.

This significantly reduces the communication time, as the global optical links are not used in

these cases. We used the appropriate parameters in SST simulations in accordance with this.

We have also implemented the random distribution of processes in SST in such a way that

addresses this phenomena and the random set is created in the same range as the production

runs. The matrices considered in this study all fit within a switch of 384 KNL nodes.

6.5.4 Simulation results in Cori-KNL

We run the simulations with 3 matrices from Table 6.1. In Cori-KNL the total memory per

node is 96GB. To use half the memory of of cori KNL(48 GB) with the sparse matrix, we

try to keep the number of nonzeros around 6 billion per node. We use different number of

MPI ranks per node (1,2,4,8,16) for both the communication skeleton runs of MFDn and the

SST simulations. So in our simulations, for each of the matrices, the nodes required remains

similar but with the increased MPI ranks per node, total MPI rank increases, see Table

6.3. The communication volume between ranks also decreases for all MPI communication

routines. We show the number of MPI ranks (np), the number of diagonal processors (nd)
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Table 6.3: MPI ranks, number of diagonals, number of ranks per custom communicators, Message
Size during Broadcast and Reduce and Message Size during Allgather and Reduce_Scatter.

Dimension = 196,861,465
np nd nd+1

2 Bcast & Reduce AllGather&ReduceScatter
28 7 4 112 MB 28 MB
45 9 5 88 MB 18 MB
91 13 7 60 MB 8.7 MB
190 19 10 40 MB 4.2 MB
378 27 14 29 MB 2.1 MB

Dimension = 430,062,264
np nd nd+1

2 Bcast & Reduce AllGather&ReduceScatter
66 11 6 144 MB 26 MB
120 15 8 116 MB 14 MB
276 23 12 76 MB 6.2 MB
496 31 16 56 MB 3.5 MB
1128 47 24 36 MB 1.5 MB

Dimension = 1,343,536,728
np nd nd+1

2 Bcast & Reduce AllGather&ReduceScatter
276 23 12 232 MB 20 MB
496 31 16 172 MB 11 MB
1128 47 24 116 MB 4.8 MB
2016 63 32 84 MB 2.7 MB
4560 95 48 56 MB 1.2 MB

which represents how many column or row communicators will we have, number of processors

in each custom communicator ((nd + 1)/2) in Table 6.3 as well (see also Figs. 6.2 and 6.3

for the different custom communicators and the communication pattern).

In Fig. 6.6, we show the execution times per iteration for the communication skeleton

of our application with default MPI_SUM and custom OMP_SUM, and also with the SST

simulation. We can see that there is a difference between the real application result and the

simulation results. We attribute this difference to a combination of (a) the non-negligible

reduction operation which is not present in SST simulation but is included in the commu-
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Figure 6.6: Total Execution time per iteration in Cori-KNL for real application using default
MPI_SUM, custom OMP_SUM and SST Simulation

Figure 6.7: Ratio of different MPI communication routines between SST simulation and communi-
cation skeleton runs with MPI_SUM. i.e. SST_time

Real_run_time
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nication skeleton; (b) the lack of an MPI_Reduce_scatter equivalent in the SST implemen-

tation; and (c) possible network congestion in the communication skeleton runs due to the

communication pattern of the workload.

In Fig. 6.7, we show the ratio of SST simulation results with real application runs for all

communication routines in MFDn. As mentioned before, we add the times of the Reduce and

the Scatter calls in SST and compare it with the Reduce_Scatter time of the communication-

skeleton runs. We can see in all cases that broadcasts in SST are predicted to be much

faster than the real runs. Our hypothesis is that this is a result of how the Aries network

manages congestion compared to SST Merlin. It has been pointed out in recent work that

congestion on the Aries system can severely degrade performance in ways that the Merlin

does not capture. For example in a real system if congestion reaches threshold network

quiesce operations may occur that are not captured in SST simulations. In the severe cases

the slowdowns on real Cray XC systems have resulted in a 99% reduction in bandwidth

[134].

Network congestion on real systems vs simulation: The message sizes and communication

patterns of our motif mean that the motif is largely bisection bandwidth bound. To better

understand the differences between simulated and real network congestion, we created a

simple benchmark to communicate across the bisection bandwidth of the real Cori network

and compare the congested vs peak performance. This benchmark divides the network into

two partitions and then creates pairs of nodes between pairs of groups, such that no node-

pair share a group or partition. Each pair of nodes then measures achievable bandwidth. We

ran this across the entire Haswell and KNL partition of Cori during a maintenance window

and observed the following: Peak bandwidth between any set of nodes was 3893 MBps,

while average bandwidth was 621 MBps showing a roughly 6X difference in bandwidth.
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This suggest router ports on NERSC Cori were spending approximately 84% of time stalled

on average for the evaluation. The factor of slowdown due to congestion is very similar to

what we observe in the difference between SST simulated and real broadcast operations in

Figure 6.8.

Existing work has examined the impact of congestion in similar bisection bound motifs

(3DFFT and AllPingPong) for dragonfly topologies simulated in SST [130]. In that work the

peak percentage of time that router ports were stalled was approximately 20%. This analysis

suggest that there is a gap between how congestion is simulated in SST and production

systems. Improving models of congestion within SST would be valuable to future studies.

6.6 Simulation for A Future Network

We also used SST to simulate the communication motifs on the Perlmutter machine which

will be installed at NERSC later this year. Below, we specify the interconnect parameters

that we anticipate for this system.

Network Topology: Perlmutter will have a Dragonfly topology like Cori-KNL. However,

for this network, we assume the network to have 16 local ports and 32 group ports,

and we assume the number of global links among groups to be 4. As in the Cori-KNL

results, for the simulations requiring less than (16 ∗ 32) = 512 nodes, runs are limited

to one group and likewise.

Memory per node: We assume this new machine to have a much larger memory per

node value, likely 4 times the memory of Cori-KNL nodes. For the same simulations

that we used in Cori-KNL, we reduce the required nodes by 1/4th and increase the

MPI Ranks per core to 4 times the values we used in Cori.
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Figure 6.8: Communication time breakdown for a real run and SST simulation for dimension =
1,343,536,728
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Table 6.4: Router and NIC Parameter used for simulating Perlmutter’s predicted network.

Parameter Name Value
flitSize 6 Byte

port input latency 150ns
port output latency 150ns

link latency 150ns
packetSize 64Byte
link BW 25 GB/s

input buffer size 64KB
output buffer size 64KB

Figure 6.9: Timing comparison of the simulation of MFDn motif in Cori-KNL and the soon-to-be-
installed Perlmutter machine with our predicted parameters.

Router and NIC Parameters: In Table 6.4, we give the router and NIC parameters

we used for simulating Perlmutter using SST. We assume the network to have a link

bandwidth of 25GB/s. We assume the input/output buffer sizes for this new system to

be 4 times as those of Aries to account for the increase in the bandwidth-delay-product.

In Figure 6.9, we show the results that we obtained using the parameters we predict for

the soon-to-be-installed Perlmutter system and compare them with the SST simulations on

Cori-KNL. Since we assumed the bandwidth to be more in the new machine along with high

in node memory and increased buffer size, we predict that the execution time in the future

machine will bring communication overhead improvements over Cori-KNL in most cases.
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Expected impact of congestion in future systems: Network congestion has received greater

attention in the design of future networks such as the Cray Slingshot system. Existing work

has shown that the impact of congestion is significantly reduced on Slingshot networks com-

pared to the Cori Aries network. Because of this, we expect the SST simulated performance

of Perlmutter to be a closer match to the real performance than was observed in Figure 6.7.

6.6.1 Conclusions of this work

In this work, we introduced a new application motif which corresponds to the communication

operations in the distributed eigensolver algorithm used in the MFDn code. We compare

the simulations of the SST motif with actual runs of a skeleton code written only using

communication routines for an existing architecture for validation. We point out to the

differences between real runs and simulation results, and gave possible reasons behind those

differences. We also evaluated our motif in a future architecture and compare its results with

the existing architecture. We also discussed the features we used and some shortcomings of

SST. Moreover we also have contributed in introducing new ember motifs by the developers

in the SST open source community. With these observations we got a better idea on how

to go ahead and implement the distributed MFDn using communication tasks which we will

decide in the next chapter.
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Chapter 7

OPTIMIZING A DISTRIBUTED

MEMORY APPLICATION USING

DEEPSPARSE

7.1 Motivation

In the quest for a task parallel implementation of an iterative eigensolver, we first dived

into the shared memory architecture. We developed the framework DeepSparse which we

described in Chapter 4. In that work we implemented two different algorithms Lanczos and

LOBPCG algorithms used executed them using our DeepSparse framework. The implemen-

tation is based on task parallelism and was an on node optimization. We observed that

DeepSparse achieves 2× - 16× fewer cache misses across different cache layers (L1, L2 and

L3) over implementations of the same solvers based on optimized library function calls. We

also achieve 2× - 3.9× improvement in execution time when using DeepSparse over the same

library versions.

In the shared memory implementation of DeepSparse, we only have computational ker-

nels. In all the kernels we used, there was some kind of computation/assignment operations.

Looking at the success of the framework in a shared memory architecture, we were moti-

177



vated to extend the framework into a distributed memory architecture and extending the

framework into an actual scientific application. With the experience on working with MFDn

code which is a distributed memory CI code I decided to take this application to build a

distributed memory version for DeepSparse.

Our target application, MFDn [89, 90, 4] is used for ab initio calculations of the structure

of atomic nuclei. The structure of an atomic nucleus with A nucleons can be described by

solutions of the many-body Schrödinger equation

Ĥ Ψ(~r1, . . . , ~rA) = EΨ(~r1, . . . , ~rA) (7.1)

where Ĥ is the nuclear Hamiltonian acting on the A-body wavefunction Ψ(~r1, . . . , ~rA), ~rj the

single-nucleon coordinates, and E the energy. This code already consists of the LOBPCG

algorithm that we explored and the Sparse Matrix Multiple Vector Multiplication(SpMM)

being the main kernel which is also optimized by us in a prior project motivated us to use

this application.

7.1.1 Introducing communication tasks

As we discussed in the previous Chapter 6 about the communication pattern in MFDn

while doing the distributed matrix multiplication. We noticed that we have an allgather,

a broadcast, a reduction and a reduce scatter operation in the MFDn code. The detailed

explanation is given in Section 6.2 in Chapter 6. In practice, it is seen that for MFDn, when

run in an architecture like knl, the communication usually takes over the computation for a

very large simulation consisting of a very high number of mpi ranks involved from a lot of

compute nodes. We simulated the performance of the communication patterns and tried to
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find out a possible cause using a simulator named SST.

We observed that, the broadcast operation takes a much longer time in real life because

of possible network congestion and the messages being very large in size also fuels into this

behavior. Since our deepsparse framework is a task based parallel framework where each

task performs a particular matrix or vector operation on a matrix or a vector block, we were

motivated to use blocked communication tasks.

Our motivation was to introduce custom communication tasks where each communication

tasks will communicate with other nodes and only transmit a block of the matrix or a vector

between themselves. This will help us in multiple ways.

Reduced Message Size: Being blocked communication will reduce the size of the

messages during the communication much less than the actual code which we expected

will help in case of network congestion.

Overlapping Communication and Computation: The other motivation was

to overlap the communication with the computations in the matrix multiplication.

Whenever a particular block is is received or ready to compute, the other kernels

waiting for this particular block of matrix or a vector can start immediately rather

than waiting for the entire matrix or vector to be transmitted and then starting its

execution.

7.1.2 Better pipelining of matrix and vector operations

In the shared memory implementation of DeepSparse we observed a nice pipelined execution

of different kinds of kernels. The matrix multiplication SpMM and the vector operations like

vector vector multiplication or vector vector transpose multiplication. in figure 4.8 we can
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Figure 7.1: LOBPCG two iteration execution flow graph of nlpkkt240 matrix. SpMM is represented
using orange color, XY operation is Maroon and XTY is using green color palette

see a pipelined execution of an actual iteration of LOBPCG where the tasks are different

kernels but they use the same datastructure and ultimately improves the performance. This

test was done in a haswell architecture.

We also did similar tests on Broadwell machines with a different matrix to validate the

framework and the pipelined execution. In figure 7.1 we show this pipelined execution for the

nlpkkt240 matrix in a broadwell architecture. Here the SpMM is represented using orange

color, XY operation is Maroon and XTY is using green color palette. We can clearly observe
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that the matrix and vector operations are well pipelined. Another interesting observation was

that the ration of time spent on the SpMM and vector operations are somewhat in the similar

range. We observed that since the matrix and vector operations are taking similar amount

of time during an iteration, a well pipelined execution of these kernels will improve the cache

performance which it did and we saw the execution time is actually improved in a shared

memory architecture. We were motivated to extend this idea for a distributed application

like MFDn which also has similar matrix and vector operations. With the introduction of

communication tasks, we were motivated to use the idea from shared memory to distributed

memory.

7.2 Methodology

In our previous works we implemented our custom kernels for a task parallel implementation

of LOBPCG and Lanczos algorithms for a shared memory architecture. I also worked on

the actual MFDn code which is a distributed memory application. For this work the goal

was to add communication tasks since other kernels were already implemented.

Using MPI routines as OpenMP task is not a very common practice. There are a few

reasons behind this. This is a tricky task, as features of both languages might easily interact

in an unexpected way, resulting in dead-locks, incorrect results, fatal errors or performance

issues. IntertWine project from Barcelona supercomputing center have been trying to merge

MPI routines with their OmpSs programming model[135]. OmpSs uses a task based parallel

programming model which is thoroughly similar to OpenMP. They also report some pitfalls

of using MPI with OpenMP.

MPI programs start with a function call which initializes the message passing library.
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MPI standard defines two different functions for this purpose:

MPI_Init(), used when no multi-threading support is needed.

MPI_Init_thread(), specifies a desired level of multi-threading support.

These routines must be called by one thread only. That thread is called the main thread

and must be the thread that calls MPI_Finalize(). The programmer must provide a de-

sired level of multi-threading support to the MPI_Init_thread() which, in turn, may return

a value lower than requested. This is because different library implementations may be re-

stricted to different levels (e.g. absence of locking mechanisms for efficiency in single-threaded

programs).

We used MPI_Init_Thread with MPI_THREAD_MULTIPLE multithreaded level value

as multiple threads may call MPI, with no restrictions if we use this value.

7.2.1 Issue with blocking MPI calls

An important pitfall is using blocking MPI routines as OpenMP tasks.In figure 7.2 we show

a small example of this case. Figure 7.2 shows a case where a specific order of task scheduling

can produce the single thread execution to hang: all processes execute task C first, making

the thread wait for a message that is never sent. This thread enters the MPI routine and

cannot leave it until the communication is completed. Thus a deadlock is created.

Using non blocking MPI calls we can get rid of these kinds of scenario. In figure 7.3 we

show the kind of call that we will make inside an OpenMP task. To stop the thread still

waiting inside the task, we can suspend the execution of this task and allow other tasks using

the taskyield directive.
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Figure 7.2: Example code for a blocking mpi call as an OpenMP task

Figure 7.3: Example code for a non blocking mpi call

Although this way helps us to get rid of deadlocks but there is a caveat. In this technique

modification of every single MPI routine of an application is cumbersome. Also, tasks can be

resumed even though the requests they are waiting for have not been completed yet. Hence,

they are resumed to check the completion of the communication and this is not efficient

because there is chance that they may be suspended again.

7.2.2 Issue with absence of TAG fields in MPI collectives

Another known problem is the absence of TAG field in MPI Colletive routines. I tried to use

collectives like MPI_Ibcast and MPI_Ireduce inside OpenMP tasks but eventually deadlock

and segmentation fault occurred because the individual tasks need to know exactly which

message it is either sending or receiving with a specific tag. Hence I had to use point to
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point MPI routines like MPI_Isend and MPI_Irecv for communications.

Here we are working with blocks of the vectors. During a collective call either all the

processes sends some messages to a specific destination process or the root processor send

some messages to all other process. The blocks in our vectors are not uniform in size. One

thread might send a particular block to the destination and another thread might send

another block in separate tasks. In the destination process, the threads in that process are

waiting in receive tasks. Without a proper tag field, the destination will start receiving

the message but because of nonuniform size of the blocks, it creates a size mismatch and

eventually creates a segmentation fault.

This is where I had to use point to point sends and receives instead of collective routines.

In the point to point send and receive routines the TAG field is set as the starting offset of

the block. The receive routine also expects the message with this particular tag and size.

Hence the size and offset of the messages match and the operation completes as expected.

7.2.3 Distributed SpMM

We use an efficient mapping for load-balanced communication. For this, we start from

the nd × nd square grid of submatrices, and, taking into account that Ĥ is symmetric,

require that each column (row) in the nd × nd grid has the same number of submatrices

(specifically (nd+1)/2) assigned to one of the np = nd(nd+1)/2 processing units. There are

many different ways to achieve this – the implementation that is used in MFDn [22, 90], is

illustrated in the top panel of Fig. 7.4 for 15 processing units on a 5× 5 grid of submatrices.

After each local SpMV and SpMVT , we have to perform two reductions: One along the

processing units in the same column, and one along the processing units in the same row, as

as indicated by the lower panels of Fig. 6.2.
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With the mapping of Fig. 7.4, all column- and row-communicator groups contain (nd +

1)/2) processing units per communicator, and have essentially the same communication

volume as well. Thus, with this distribution the communication load associated with the

SpMV or SpMM in the iterative solver is almost the same for all processing units and

communicator groups, both in message sizes, and in number of processing units in each

communicator, provided that the dimensions of each submatrix are approximately the same.

The additional steps in the iterative solvers, namely orthogonalization of (blocks of)

vectors, preparation of the input vector (block) for the next iteration, and in the case of

LOBPCG applying the pre-conditioner, are all distributed evenly over all np processors. For

this purpose, we further divide each of the nd (blocks of) vectors into (nd + 1)/2 segments,

and distribute these evenly over the column-communicator groups. Thus each processing

unit deals with a (block of) vectors of length D/(nd(nd+1)/2) for the orthogonalization and

preparation of the input for the next iteration, where D is the dimension of the Hamiltonian.

These steps also involve additional communication, mainly reduce or all_reduce on all pro-

cessing units, but the message sizes are small and the communication overhead during this

step is negligible compared to the communication overhead during the SpMV/SpMM phase.

In the right side of figure 7.4 we show how the vectors are also divided into subvectors and

saved in each processors.

7.2.4 Blocked communication

In figure 6.3 we showed the nature of communication done during the SpMM and how

the local SpMM and the transpose version of it are executed and also how the results are

accumulated eventually. Our goal is to make these communications also blocked.

Since the SpMM and SpMMT both are executed according to the blocksize of the matrix
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Figure 7.4: Matrix and Vector distribution in MPI ranks and efficient processor topology
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blocks. The offsets of these blocks are kept as a metadata which is used during the multipli-

cations to calculate correct addresses. This block size is not uniform. Since our SpMM kernel

has a specific OpenMP input output dependencies based on these blockoffsets and custom

blocksizes, the same offsets and sizes need to be used when we introduce the communication

tasks.

In figure 7.5 we show how do we implement the blocked communication tasks. Since our

vectors are divided mpi ranks accross the column communicator, we need to do an allgather

accross the column communicator and gather the subvectors in the diagonal processor. Then

we do the Bcast along the row communicator. The offsets and sizes being exactly same among

the processors, I use the starting offset as the TAG field for the point to point communication

routine which helps us to get rid of any possible deadlock or message size mismatch which

might result in a segmentation fault.

In figure 7.5 we can see that whenever the communication is done for a particular block,

we can immediately execute a local SpMM or a local SpMMT on that block since we have

already received that block and now it is data safe to execute an SpMM kernel.

After the local SpMM is finished, it is safe to execute the reduction tasks. Hence, when-

ever an SpMM task is completed, the reduction task which is depending on the output of

this task is called(or expected to get called by OpenMP).

First I implemented a version where I used each individual blocks for a task. But after

our implementation, we noticed that a lot of communication tasks are generated and the

performance is poor. Hence, I implemented a hierarchical blocking of tasks. In figure 7.6 I

show how did we divide the entire matrix into a block of sparse matrix blocks. In this example

I show a sparse matrix with 16X16 blocks. We use a higher level block consisting of 4x4 blocks

of the original block and use this as our offsets and sizes for the kernel OpenMP dependencies.
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Figure 7.5: Blocked Communication along the processes in the same row communicator

Figure 7.6: Hierarchical blocked communication
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Figure 7.7: Blocked broadcast code

Doing this way reduced the high number of communication tasks and eventually improved

the overall performance. For our runs, a task block size of 8 or 16 is used because they

performed the best.

The blocked broadcast is shown in the code snippet 7.7. Since we only use MPI point

to point non blocking routines, the root process sends the block to all the processes serially.

All the other processes receive that message from the root process with the same TAG that

the message is sent with.

In the code snippet 7.8 the task dependencies are shown for the SpMM code. Here it

can be seen that we use the same kind of memory footprint for the OpenMP tasks. These

dependencies need to be exactly coherent among the tasks otherwise there will be deadlocks

or race conditions might not give us the correct result. For example, if a dependency for an
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Figure 7.8: Blocked SpMM code

MPI_Recv task is not coherent with its prior dependencies, this task will get pulled from

the task pool and OpenMP will try to execute that task regardless of an actual send has

been processed for the recv or not. This results in a deadlock. Resolving the dependencies

appropriately was one of the most important challenges during this implementation. An

example code snippet for reduction is shown in figure 7.9 and it can be clearly seen that

the same dependencies are kept coherent with the SpMM kernels. Although since it is a

reduction operation and the values need to be added with the values of the root processor,

a buffer needs to be kept to receive the results from other processors.

When all the OpenMP dependencies are resolved appropriately, the result matches and

the MFDn code converges. OpenMP looks at the dependencies of each individual tasks and

pulls the tasks whose dependencies have been resolved from a task pool and creates its own

DAG underneath and its own scheduler.

7.2.5 Custom reduction

After the SpMM and SpMMt have been executed, then their results are reduced and then

scattered in the individual processors for the next iteration. This is done using a MPI_Reduce_scatter

call in the actual MFDn code which results in a better performance. The displacements while
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Figure 7.9: Blocked Reduction code

doing the reduce-scatter is actually not uniform. During the reduce scatter we move from a

dimensions related to the offsets and sizes for the sparse matrix blocks to a local dimension

for the vectors in each individual. Since we need to have the memory chunk sizes coherent

for a successful and efficient task parallel implementation, implementing reduce scatter like

a reduce and a scatter would not be efficient.

For this reason, we implement a custom reduction. Rather than doing a reduction fol-

lowed by a scatter, only a reduction will be done in each process on specific blocks. Since

we have a displacement array for doing the scatter which keeps track of the vector blocks

being in a specific process, using this information, each individual block will determine which

process it belongs to. If a block belongs to a particular mpi rank, it will receive the locally

calculated results from other processors for this block and accumulate the result. If this
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Figure 7.10: Custom Reduction depending on the local vector distribution

block does not belong to this mpi rank but a different one, it sends the locally calculated

values for this block to that mpi rank which will eventually calculate the local value of its

own.

In figure 7.10 an example of this custom reduction is shown. In this example, the entire

subvector in the diagonal processor is divided into 4 blocks with a local distribution of 1, 2

and 1 blocks respectively. When the result of block 0 is calculated which belongs to the mpi

rank 0, it will receive the local results for that task from the other processors. For blocks

1 and 2, it will send the locally calculated results to mpi rank 1 and for the block 3, it will

send the result to process 3.
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Processor Xeon E5-2698 v3 Xeon Phi 7250
Core Haswell Knights Landing

Clock (GHz) 2.3 1.4
Data Cache (KB) 64(32+32)+256 64(32+32) + 512

Memory-Parallelism HW-prefetch HW-prefetch
Cores/Nodes 32 68

Threads/Nodes 64 272
Last-level Memory 40 MB L3 16GB MCDRAM

SP TFlop/s 1.2 3
DP TFlop/s 0.6 1.5

Available Memory 128GB 96GB
Interconnect Aries(Dragonfly) Aries (Dragonfly)
Global BW 120 GB/s 490 GB/s

Table 7.1: Overview of Evaluated Platforms. 1 With hyper threading, but only 12 threads were used
in our computations. 2 Based on the saxpy1 benchmark in [1]. 3 Memory bandwidth is measured
using the STREAM copy benchmark.

7.3 Experiments and Results

7.3.1 Experimental setup

We conducted all our experiments on Cori Phase I, a Cray XC40 supercomputer at NERSC,

mainly using the GNU compiler. Each Cori Phase I node has two sockets with a 16-core

Intel Xeon Processor E5-2698 v3 Haswell CPUs. Each core has a 64KB private L1 cache

(32KB instruction and 32KB data cache) and a 256KB private L2 cache. Each CPU has

a 40MB shared L3 cache (LLC). We use thread affinity to bind threads to cores and use a

maximum of 16 threads to avoid NUMA issues.

We also conducted all our validation experiments on Cori Phase II (Cori-KNL), a Cray

XC40 supercomputer at NERSC. Each Cori-KNL node is a single-socket Intel Xeon Phi

Processor 7250 ("Knights Landing") processor with 68 cores per node @ 1.4 GHz. Each node

has 96 GB DDR4 2400 MHz memory with 102 GiB/s peak bandwidth and also a 16 GB

MCDRAM (multi-channel DRAM).
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MPI ranks Dimension local dim nonzero
6 3354349 1677320 1063773871
15 3369600 1123336 1025614613
45 5771535 1154406 1044593229
66 6189415 1031593 958230159
120 8161289 1020212 968138528

Table 7.2: Matrices used in this experiment. Number of MPI ranks, dimensions and number of
nonzeroes per rank.

For our initial implementations, we received a standalone code consisting of the Lobpcg

algorithms, the preconditioning and the actual SpMM code from our collaborators. we did

our implementations in a C wrapper code and merged it with the existing FORTRAN code.

We received 5 different matrices from our collaborators which are different in sizes. The

matrices mainly varies in the MPI ranks they use and the number of diagonals. In table

7.2 we show the dimensions for SpMM multiplication, the average local dimensions of the

vectors in each mpi ranks and number of nonzeroes per node. We can see the the number

of nonzeroes are kept somewhat close to 1 billion per rank. Hence we expect a weak scaling

in our experiments.

Since we have 128 GB per haswell nodes and 96 GB per knl nodes, if we want to use

half the memory of the entire nodes for the matrix, we can have 8 MPI ranks per haswell

nodes(8*8 GB = 64 GB ). But empirically we have seen that the code performs best when

we use 2 mpi ranks per node. Hence for our matrices, we use 3, 8, 23, 33 and 60 Haswell

and Knl nodes and 2 mpi ranks per node. Since we have 32 cores in Haswell nodes and 68

cores in knl nodes, we can use 16 OpenMP threads and 32 OpenMP threads for Haswell and

knl runs repectively. Also we have used hyperthreading to use 32 and 64 OpenMP threads

respectively in Haswell and knl runs.
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Figure 7.11: Comparison of execution time per iteration in Haswell 16 threads between loop parallel,
task parallel and task parallel with custom reduce-scatter

7.3.2 Impact of blocked communications

In figures 7.11,7.12,7.13 and 7.14 we show the performance per LOBPCG iteration in MFDn

code. We compare the execution time between the loop parallel version and our task parallel

implementation. We show the results for both Haswell nodes and knl nodes with and without

hyperthreading. We observe that the task parallel implementation is slightly slower than the

loop parallel version for almost all the experiments. The huge number of tasks generated

and the dependencies being resolved regularly might be generating a tasking overhead which

results in a slightly slower performance.

7.3.3 Improvement with custom reduction

We also implemented the reduce-scatter with a custom reduction and measured the results

and show them in the same plots. For this case, the tasks in reduce scatter are also included in

the single omp loop thus there are more overlaps between computation and communication.

This is also evident in our results. In almost all the experiments, the version with custom

reduction is faster than the version without this custom implementation. But even this
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Figure 7.12: Comparison of execution time per iteration in Haswell 32 threads between loop parallel,
task parallel and task parallel with custom reduce-scatter

Figure 7.13: Comparison of execution time per iteration in knl 32 threads between loop parallel,
task parallel and task parallel with custom reduce-scatter
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Figure 7.14: Comparison of execution time per iteration in knl 64 threads between loop parallel,
task parallel and task parallel with custom reduce-scatter

improved task parallel implementation could not always beat the loop parallel times.

7.3.4 Breakdown of individual kernel performance

In MFDn we mainly have four expensive and important kernels. The bcast, the SpMM, the

reduction and the SpMMt. We broke down the time needed to execute these 4 kernels and

compared those between the loop parallel version and the task parallel version. We broke

down the timings for 6 MPI ranks and 45 MPI ranks cases. In the loop parallel version, the

communications are done by only one thread. And all the other threads take part in the

SpMM and SpMMt. Whereas our entire implementation is task parallel and every thread

takes part in all four kernels. In figures 7.15, 7.16, 7.17 and 7.18 we can see the comparison.

It is clear that the communication times improved in task parallel version over the loop

parallel version since more threads are taking part in the communication now.

Since the number of threads taking part in SpMM and SpMMt have been somewhat

balanced for task parallel version, their execution time increases slightly. Eventually with

this increase and also because of tasking overhead, the final execution time per iteration is
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Figure 7.15: Breakdown of communication and computation operations with 6 mpi ranks in Haswell
nodes

Figure 7.16: Breakdown of communication and computation operations with 6 mpi ranks in KNL
nodes
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Figure 7.17: Breakdown of communication and computation operations with 45 mpi ranks in haswell
nodes

Figure 7.18: Breakdown of communication and computation operations with 45 mpi ranks in knl
nodes

increased slightly.

7.3.5 Expensive matrix multiplication compared to vector opera-

tions

As mentioned earlier, one of our motivations behind this work is to overlap computation with

communication. Since we saw a better pipelined execution flow results in improvements in

performance for a shared node where the matrix and vector operations have a balance, we

thought this will lead to better performance in MFDn too.
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Figure 7.19: Change in SpMM dimension and local dimensions with the increase of mpi ranks

Figure 7.20: Ratio of LOBPCG compared to SpMM in Haswell nodes with 16 threads

As seen in table 7.2 and also pictorially shown in figure 7.19, we can see that with the

increase of MPI ranks, the local dimensions for the vector actually decreases. This means

the individual matrix dimensions actually increases and since the number of non zeros are

kept similar per mpi rank, the matrises are more and more sparser with the increase of mpi

ranks.

Also, with the decrease of the local vector dimensions, the vector operations become

smaller compared to the matrix multiplications.

We can see in the breakdown sections that with the increase in dimensions, the com-

munication also becomes expensive in SpMM making the SpMM more and more expensive

compared to the vector operations.
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Figure 7.21: Ratio of LOBPCG compared to SpMM in Haswell nodes with 32 threads

Figure 7.22: Ratio of LOBPCG compared to SpMM in knl nodes with 32 threads

In figures 7.20, 7.21, 7.22 and 7.23 we show the ratio between SpMM execution time and

LOBPCG execution time which consists of vector operations. Unlike out shared memory

version, the collective vector vector and vector transpose multiplication is almost 9 times

slower than SpMM which was not the case for shared memory. This was an interesting

observation for us and making the improvement not as expected as we thought it would be.

7.3.6 Conclusions of this work

To conclude this work, we introduced the communication tasks. While we faced several

issues with the merging OpenMP tasks with MPI routines, we eventually succeeded. The

MPI collective routines do not welcome the use of blocked tasks as we use in DeepSparse.
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Figure 7.23: Ratio of LOBPCG compared to SpMM in knl nodes with 64 threads

We had to use point to point MPI communication routines as a result. We also had to

introduce our custom reduce-scatter blocked routine. Eventually we observed that bulk

synchronous implementation performs well compared to the task parallel implementation.

A better adaptability in the newer MPI library would improve the implementation and also

using a relatively newer MPI+Threads might actually improve the performance compared

to the bulk synchronous process.
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Chapter 8

CONCLUSION AND FUTURE

WORK

In this thesis, we presented techniques and algorithms to optimize large scale iterative eigen-

solvers in deep memory architectures using task parallel approach. Although we started with

a dense matrix code, eventually our work focused towards sparse matrix iterative eigensolvers.

At first we worked with a dense matrix in the Sky3D code and optimized its performance

by setting up the 1d and 2d partitionings accordingly. With the help of an already rich

library ScaLAPACK we observed great scaling. We also observed the performance of a pure

MPI implementation and a MPI+OpenMP hybrid implementation. Dense matrices already

have a pretty impressive collection of optimized multithreaded libraries which are widely

used across different scientific fields.

But when it comes to sparse iterative solvers, we do not see a lot of optimized libraries

as for the dense matrices. There are a lot of scopes to optimize the sparse eigensolvers.

We discuss about such an approach that we implemented blocked version of sparse matrix

matrix multiplication where the matrices are stored in a novel way of blocks rather than

traditional compressed row or compressed columns. We discuss the implementation and the

benefit of using the blocked storage version. We also discuss about the roofline model and

the performance achieved by our implementation in Intel Xeon Phi architectures and Intel
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Ivy Bridge machines.

We only concentrated on a single kernel for this case but for our next work we targeted

an entire eigensolver and looked at all the steps in an eigensolvers rather than looking only a

single kernel. We introduced a novel task-parallel framework named DeepSparse which takes

all the steps of an eigensolver and distributes it into tasks on blocked matrices and executed

these tasks in parallel using OpenMP tasks. We observed a reduction in runtime and a huge

reduction of cache misses in all level of memory using our task parallel approach.

In this work we depended on the scheduler generated by OpenMP. We also wanted to

use our own custom scheduler. With this goal we used a graph partitioner to partition

graphs with a tight memory bound for active memories as inputs and outputs at a particular

phase. After creating those phases, we created partitions by sorting topologically. Although

we convincingly improved over the library implementations, we could not outperform the

openmp scheduler. We need to find a different heuristic to work on with the paritioner.

With the success of a single node implementation of DeepSparse, we targeted the dis-

tributed MFDn algorithm for DeepSparse with a view to optimize distributed iterative eigen-

solvers. Before diving straight into the implementations we wanted to simulate the behaviour

of communications in MFDn. We created a communication motif and simulated it using

Structural Simulation Toolkit(SST). In the process we found out a network congestion issue

present in the actual machines for large message sizes for communication routines. We plan

to introduce task based blocked communication routines and we expect it to improve the

performance of the distributed eigensolver.

Eventually we implemented a distributed memory version of DeepSparse and imple-

mented a task parallel SpMM in the MFDn code. For the distributed memory application,

communication plays a big role in SpMM being dominant over vector operations which was
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not the case for shared memory version. The vector operations still need to be executed in

the same openmp block with SpMM. Also at the moment the communication tasks are point

to point and the collective communications are done serially. A tree based communication

can be introduced for further improvement.

A more adaptable MPI library with OpenMP tasks might improve the performance of

distributed MFDn implementation. A recent approach of MPI+Threads might also make

the implementation faster and a more simplified implementation. We will keep looking for

better approaches to improve the custom scheduler using partitioning and also to improve

the distributed implementation of communication routines.
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