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ABSTRACT 

A FRAMEWORK FOR BIOLOGICAL DATA INTEGRATION AND FEATURE 
SELECTION IN LARGE DATA SETS 

 
By 

Agustin Gonzalez-Reymundez 

The increasing volume of high-dimensional biological data (omics) has intensified the 

discovery of thousands of biomarkers across the different fundamental components of 

the cell (e.g., genome, transcriptome, proteome, epigenome) and allowed the 

characterization of complex phenotypes (e.g., metabolome, imaginome, phenome). 

However, the ability to integrate omics into informative results is constantly challenged by 

a seemingly ever-increasing volume of data. Furthermore, huge data sizes impose a 

tradeoff between how complex an omic integration algorithm can be and how much data 

it can handle (e.g., how fast can the algorithm be scaled to integrate large data sizes). In 

this dissertation, we explore statistical frameworks to face the challenges of modern omic 

data, including the integration of high-dimensional data of large sample sizes. We have 

developed a novel framework of competitive analytical performance compared with 

existing methods but suitable for omic data reaching biobank scales (i.e., hundreds of 

thousands of samples and variables). We implemented this method as an R package and 

showed its application on two traits of a complex molecular basis: cancer and regulation 

of energy intake and expenditure. In chapter one, we review the technologies and 

methods used to generate and integrate omic data. Chapter two describes our novel 

method and software of omic integration, shows examples in synthetic data, and 

evaluates its computational and analytical performance. Chapter three presents an 

application of our method to reveal a novel pan-cancer classification of tumors beyond



 the tissue of origin, regulated by distinct sets of molecular signatures. In chapter four, we 

present an application of our method to integrate phenomics data and identify patterns of 

energy balance regulated by genomic variation. Finally, in chapter five, we offer general 

conclusions to the entire thesis. 
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CHAPTER 1  

 

INTRODUCTION 

 

The word “omic” is nowadays used as a generic term to represent collections of biological 

data obtained with high-throughput technologies (e.g., tandem mass spectrometry, array 

and sequencing technologies, agriculture imaging, metagenomics). These collections 

have emerged as a way of describing complex biological systems as a whole [1]. In 

section “1.1 Where do omics come from?” we review the types of systems that omics 

characterize and the technologies used to generate omic data. Once omics are 

measured, their information can be integrated to discover novel biomarkers or understand 

the interaction between multiple phenotypes [2]. A review of omic integration methods is 

presented in section “1.2 How is omic data integrated and analyzed?”. 

1.1 WHERE DO OMICS COME FROM? 

Perhaps the first application of the suffix –ome (a mass or totality of something) in 

genetics was in the word genome. The term is attributed to the German botanist H. 

Winkler, who chose it to represent an organism's haploid set of chromosomes and the 

genes it contains [3]. It has been suggested that the suffix –ome could have been chosen 

by Winkler as an analogy to broadly used botanical terms, such as microbiome, biome, 

and rhizome, each one representing an entire collection of biological entities of a certain 

kind [4]. 

The word genome gained broader popularity during the context of the apparent C-value 

paradox (the discrepancy between the amounts of DNA of an organism and the amount 
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needed to encode proteins). After discovering non-coding DNA in the 1940s and the 

solution of the paradox, the word genome started to be used as a synonym for the entire 

coding and non-coding DNA [5]. With the advent of Sanger’s sequencing method in 1977 

(based on the production of all possible DNA fragments from a template, relying on chain 

termination by modified nucleotides and separation by electrophoresis) [6], it soon 

became possible to obtain complete genome sequences of microbes. This achievement 

inspired the creation of genomics as a new scientific discipline. The first generation of 

sequencing methods, together with the development of the polymerase chain reaction 

(PCR) [7] and recombinant DNA technology [8] during the 1980s and early 1990s [9], 

became instrumental tools for carrying out the Human Genome Project.  

During the early 2000s, the first draft of the reference human genome catalyzed the 

creation of the HapMap [10] and the Encyclopedia of DNA Elements (ENCODE) [11]. The 

formed aimed to study the common genetic variation between individuals while the latter 

aimed to annotate all functional elements within the human genome, such as genes and 

regulatory sequences. Both projects were fundamental for developing genotyping 

microarray technologies and the first genome-wide studies (GWAS – i.e., the inference 

of associations between thousands of genomic polymorphisms in a diverse population 

and a phenotype using linkage disequilibrium). Then, the word genome became a 

synonym for all the possible DNA sequences of a cell and their variants across 

populations. 

In the late 2000s, massively parallel sequencing technologies (the so-called second or 

next-generation – e.g., 454 Life Sciences, Illumina Genome Analyzer, ABI Solid) were 

developed. These novel technologies allowed lower reactions costs and longer 
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sequencing reads, enabling the sequencing of whole genomes in large cohorts of 

participants [12]. Some of these cohorts, like the 1K Genomes in 2008 and the UK 

Biobank (sequencing 50 thousand individuals) in 2010, have contributed to detecting rare 

and very rare variants, usually associated with significant health and behavioral traits 

[13,14]. Thus, the genome was conceived as the entire collection of DNA sequences plus 

their common and rare variation across populations. 

The close relationship between the evolving concept of the term genome, together with 

the development of high-throughput technologies, greatly influenced the creation of a 

plethora of analogous fields in biology. Each of this fields aimed to study the genome 

complement of a particular set of functional elements. The term transcriptome, for 

example, was first proposed by Victor Velculescu, who defined it in 1995 as the entire 

collection of RNA molecules of an organism [15]. The same year, Velculescu and 

collaborators introduced Serial Analysis of Gene Expression (SAGE), a revolutionary 

method to compare samples by taking a snapshot of the population of messenger RNA 

[16]. Previously, parallel gene expression analysis primarily relied on clonal DNA 

microarrays (i.e., cDNA samples hybridized against oligonucleotides matching known 

genes) [17]. By contrast, SAGE addressed transcript presence of known and unknown 

genes in a more accurate way than microarrays (which accuracy can suffer due to 

artifacts from background noise). With the advent of RNA-seq in 2008, the discovery of 

novel genes and the assessment of expression levels continued to improve by achieving 

higher coverage and depths than SAGE [18]. 

On the other hand, the term proteome is attributed to Marc Wilkins, who first used it in the 

early 1990s to represent the genomic complement of proteins [19]. The study of the 
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proteome was enhanced by more precise separation techniques (like capillary 

electrophoresis, liquid and gas electrophoresis), advances in mass spectrometry (for 

example, the creation of “soft” ionization approaches, such as electrospray ionization –

ESI- and matrix-assisted laser desorption ionization –MALDI-) and the introduction of 

microarray technologies for protein analysis (e.g., immunoassays, functional microarrays, 

and reverse-phase array) [20]. These methods have vastly improved the ability to identify 

and quantify novel proteins and their interactions. Furthermore, due to its crucial role in 

phenotype expression, the proteome is composed of a much broader set of entities than 

the genome or transcriptome, including all possible peptides, context-dependent 

functions, and post-translational modifications. 

Another example is the term epigenome, popularized in the 1990s as a merge between 

epigenetics (a term attributed to Conrad Waddington, who proposed it in the 1940s to 

describe inheritable traits in response to environmental stimuli) and the suffix ome. As in 

the previous omics, epigenome refers to the genomic complement of epigenetic marks. 

Therefore, the epigenome represents a broader category, composed of elements from all 

the previous molecular types discussed: DNA (e.g., patterns of DNA methylation), RNA 

(non-coding regulatory RNAs), and proteins (e.g., histone modification and chromatin 

remodelers). This diversity of elements imposed the need for a broader set of methods to 

characterize the epigenome [21]. To study the genome-wide patterns of DNA methylation, 

for example, methods like DNA restriction endonuclease assay (to compare the relative 

size of restriction fragments between individuals, depending on the sensibility of the 

restriction enzymes to methylated residues), and chromatin immunoprecipitation (Chip, 

using methylation-specific antibodies to isolate methylation fragments) followed by 



5 
 

microarray genotyping or sequencing, were proposed. Another method is the treatment 

of DNA with bisulfite reaction (i.e., applying sodium bisulfite to turn methylated cytosines 

into uracil) coupled with array hybridization or next-generation sequencing. Similar Chip 

methods have also been applied to study RNA-protein interaction (RIP, which removes 

DNA from samples and captures RNA with specific antibodies). Mass spectrometry has 

also been widely used to detect histone modification and isoforms. 

The explosion of omic data in the last few years has also inspired the utilization of the -

ome suffix to describe a much broader set of biological entities, derived from high-

throughput methods, of high-dimensional nature, or alluding to the totality of items on a 

system. The term phenome, for example, was first proposed by Michael Soulé in 1967 as 

the collection of all possible phenotypes of an organism. However, with the advent of 

high-throughput phenotyping, the term is now applied to the set of all high-dimensional 

phenotypes acquired at an organism-wide scale [22]. Due to advances in phenotyping 

techniques, many projects have been able to produce extensive phenomic records for 

different organisms, including humans (e.g., UK Biobank [14]), mice (Euro Phenome [23]), 

and plants (International Plant Phenotyping for plants [24]). Technological advances that 

made extensive phenotyping possible include neuroimaging via structural MRI to study 

neuronal and cognitive functions [25], automated data loggers to record behavioral data 

[26], and spectroscopic imaging of crop plants to measure thousands of agroeconomic 

traits [27]. 

Soon it became clear that single-layer analyses could not truly capture the synergies 

between molecular factors across omics (e.g., how the expression of a gene is non-

linearly affected by mutations and epigenetic alterations). Therefore, an integrative omic 
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approach has emerged [28]. The purpose of this approach is to represent multiple omics 

in a rational and unified way, highlighting the variability across subjects while minimizing 

the redundant signal from groups of related features (e.g., genes in the same ontology or 

pathway, linkage blocks) [29,30]. Several computational and statistical methods have 

been proposed to conduct this task. Next, we review some of the most popular algorithms 

and models available for omic integration. 

1.2. HOW IS OMIC DATA INTEGRATED AND ANALYZED? 

Omic integration refers to a vast group of techniques, all conceived to explore the 

combined effects and synergies across different high-throughput types of biological data. 

Here, we review some of the most popular methods currently available for omic 

integration, organizing them as 1) matrix decomposition based, 2) graph-based, 3) 

correlation-based, and 4) regression-based. The first group will include methods that 

distill an extended matrix of omics 𝑋 (binding omics blocks by column) into a factor 

representing variability across subjects and a factor representing the contribution of each 

omic feature to that structure. The second group will include dimension reduction 

techniques, considered under the paradigm of graph embedding [31]. The third group 

comprises methods that explore associations among features within and across omics by 

explicitly exploiting the correlations between variables. The last group will include 

methods based on regression, where the response is an entire omic block. 

1.2.1 Matrix decomposition-based methods 

This group includes techniques that work on an extended omic matrix 𝑋 =

[𝑋1 … 𝑋𝐿] (with 𝑋𝑙=1,…,𝐿  being a matrix representing the 𝑙-th omic block attached by 

columns) and attempt a decomposition of it into two factors. The first factor collapses the 
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redundancies within and between omics -by creating orthogonal columns representing 

the independent signals across omic features (that we will call 𝑍)-. The second factor 

represents the contribution of each omic feature to this combined effect (we will call this 

factor 𝑊). Many methods assume a linear relationship between the two factors of the 

form 𝑋 ≈ 𝑍𝑊. Standard Singular Value Decomposition (SVD), Principal Component 

Analysis (PCA), and sparse versions fall under this category. Methods such as the 

Integrated Non-negative Matrix Factorization (iNMF [32]) assume a common 𝑍 among 

omics and minimizes ‖𝑋𝑙 − 𝑍𝑊𝑙‖𝐹
2  (Where 𝑊𝑙 are the weights of the 𝑙-th omic). Other 

methods such as Integrative Clustering (iCluster [33]) and Joint and Integrated Variation 

Explained (JIVE [34]) assume a latent variable model instead. iCluster defines a model 

𝑋 = 𝑍𝑊 + 𝜀 that imposes a LASSO penalty on the elements of 𝑍 and 𝑊. JIVE on the 

other hand, assumes a model 𝑋 = 𝑍𝑊 + 𝐼 + 𝜀, where 𝐼 is an extra term that represents 

the individual variation within omics. In all these cases, 𝑍 and 𝑊 (or 𝑊𝑙) are estimated by 

iterative procedures, such as expectation maximization algorithm (EM). Other methods 

use a Bayesian approach to find clusters of subjects while identifying regulatory modules 

across omics. These methods assume that 𝑋 comes from a finite mixture. The 

components of the mixtures can be taken as clusters, inferred via Markov Chain Monte 

Carlo (MCMC) methods. The Joint Bayes Factor (JBF [35]) method, for example, 

assumes a model of the form 𝑋𝑙 = 𝑍𝑙(𝑊 +𝑊𝑙) + 𝜀𝑙, and imposes sparsity on the elements 

of 𝑊𝑙 and 𝑊 via a Bernoulli process. The method uses a Gibbs sampler to iteratively find 

𝑊𝑙, 𝑊, and 𝑍𝑙. Methods like Multiple Dataset Integration (MDI [36]) and Bayesian 

Consensus Clustering (BCC [37]), on the other hand, assume a Dirichlet process, where 

the clusters are represented by an indicator matrix, sampled from a multinomial 
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distribution. MDI assumes 𝑊𝑙 is an indicator matrix of cluster membership for each omic. 

The contribution of each feature to each cluster is estimated by means of an “assignment 

probability”, assumed to have a Beta prior distribution. BCC extends this idea, but by 

explicitly modeling adherence to a global cluster. 

1.2.2 Network-based methods 

Methods in this category can be conceived under the paradigm of graph embedding [31]. 

Under this framework, data points in a high dimensional space are represented by a 

graph. The graph’s connections represent similarities between points. The goal is then to 

map points onto a space of smaller dimensions while preserving similarity. This mapping 

can be represented by 𝑍 = 𝑓(𝑋, 𝐴), where 𝑓 is a function (which can be linear, non-linear, 

explicit, or implicit), 𝑋 is the extended omics matrix, as before, and 𝐴 is a matrix 

representing similarities between subjects. This framework includes methods such as 

Laplacian Eigenmap [38], ISOMAP [39], and Local Linear Embedding [40], together with 

linear counterparts, such as SVD. For instance, when 𝑓 is linear, 𝑍′𝑍 = 𝐼, 𝐴 = 𝑋𝑋′, and 

the features are standardized, 𝑍 becomes the principal components of 𝑋. The graph 

embedding framework can also be extended to include non-linear mappings employing 

the “kernel trick”. The intuition behind this is to map 𝑋 onto a higher dimensional Hilbert 

space (we can think of 𝑓(𝑋) as a new matrix with row vectors in the new feature space), 

and then performing the linear algorithm in this new feature space (e.g., SVD on 𝑓(𝑋)). 

Then, the problem is solved by taking 𝑍 as the principal components of 𝑓(𝑋). A large body 

of literature frame this problem under reproducible kernel Hilbert spaces [41]. For 

example, a kernel matrix 𝐾 (e.g., 𝐾 = (𝑋𝑋′ + 𝑐)𝑡)  can be used to define 𝑓 implicitly, taking 

𝐴 to be equal to 𝐾 = 𝑓(𝑋)𝑓(𝑋)′. Then, 𝑍 is obtained by computing the eigenvectors of 𝐾 
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(the so called “Kernel PCA”) [42]. Depending on the dimensions of the problem, one can 

define a separated kernel by layers of information (𝐾𝑙) and average them during the 

estimation of 𝑍. Methods like Similarity Network Fusion (SNF [43]) define 𝐴 as a scaled 

exponential kernel of the distance between samples. Others, such as regularized Multiple 

Kernel Learning for Dimension Reduction (rMKL-DR [44]), do so by adding constraints in 

the contribution of each kernel to 𝑍. The theory also allows to reformulate some 

supervised methods, such as linear discriminant analysis and support vector machines. 

For these, 𝐴 can be rendered to represent the similitudes within and between classes of 

subjects. Examples of these in omic integration are smooth t-statistics Support Vector 

Machines (stSVM [45]) and  Features Selection Multiple Kernel Learning (FSMKL [46]). 

1.2.3 Correlation-based methods 

The methods we describe in this section directly exploit the correlations between features 

and can be considered variations of the traditional canonical correlation analysis (CCV) 

and partial least squares (PLS). In all cases, each omic block can be modeled as before: 

𝑋𝑙 = 𝑍𝑙𝑊𝑙 + 𝜀𝑙. The problem now is formulated by turning the omic blocks into vectors and 

multiplying them by the row vectors 𝑎𝑙  and 𝑎𝑙′ (𝑙 ≠ 𝑙′), so that 𝑓(𝑎𝑙𝑍𝑙𝑊𝑙 , 𝑎𝑙′𝑍𝑙′𝑊𝑙′) =

𝑓(𝑏𝑙𝑊𝑙 , 𝑏𝑙′𝑊𝑙′) is maximized. Here, 𝑓 is the correlation function for CCV and a covariance 

function for PLS. In both cases, 𝑏. and 𝑊.  are estimated. Variations of the problem include 

sparsity constraints during the estimation of 𝑊.  (sCCV [47]), and embedded structure of 

groups of features (ssCCV [48], sgCCV [49]). In PLS, the problem can also be generalized 

to multiple blocks (MBPLS [50]), with 𝑓(𝑏𝑙𝑊𝑙 , 𝑔(∑ 𝑏𝑙′𝑊𝑙′𝑙′≠𝑙 , 𝜃)), where 𝑔 is a function of 

the linear combination of multiple sets of information, and 𝜃 is a vector of extra 
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parameters. Sparse version of this (sMBPLS [51]) add an iteration procedure and LASSO 

penalties on 𝑏. , 𝑊. , and 𝜃. 

1.2.4 Regression-based methods 

Methods in this section treat the problem of omic integration as one of regression: 𝑌 =

𝑓(𝑋, 𝛿) + 𝜀, where the response is an omic block 𝑌, 𝑋 is one or more omic blocks, and 𝛿 

is a matrix of coefficients. To exploit the true multivariate nature of the problem, methods 

such as the Reduced Rank Regression (RRR [52]) assume a linear 𝑓 and impose 

restrictions in the rank of 𝛿.  This rank condition implies the existence of linear constraints 

due to dependencies within each omic block, and between them. Therefore, by estimating 

𝛿, we can address which features are associated within and between omic blocks. 

Variations of the method provide sparse solution with biologically more interpretable 

results (sRRR  [53]). In the Bayesian context (BsRRR [54]), a different prior distribution 

can be assumed separately for each omic block and their effects: 𝑌 = 𝑓(∑ 𝑋𝑙𝑙 𝛿𝑙); 

𝑋𝑙~𝑝(𝑋𝑙|𝜃); 𝛿𝑙~𝑝(𝛿𝑙|𝜔) (where 𝜃 and 𝜔 are hyper-parameters estimated from the data or 

assumed to have a distribution themselves). This approach has the effect of handling 

different scales by omic (e.g., discrete for SNP, counts for RNA-seq data) and considers 

different penalties for dealing with high dimensionality. 

The methods reviewed offer a general analytical framework to integrate different layers 

of data effectively. However, the computational performance of many of these methods 

suffers when data size becomes substantial [55,56]. The following chapters describe our 

method and R package for omic integration and present applications in two complex 

molecular basis traits: cancer and energy balance regulation. 
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CHAPTER 2  

 

MULTI-OMIC INTEGRATION WITH SPARSE SINGULAR VALUE DECOMPOSITION 

 

This chapter was prepared alongside Alexander Grueneberg, Guanqi Lu, Felipe Couto 

Alves, Gonzalo Rincon, and Ana I. Vazquez. 

 

2.1. ABSTRACT 

The availability of multi-layer omics data has drastically increased in the past years. 

Several methods have been developed to integrate these types of data effectively. 

However, our ability to integrate increasing volumes of omic data remains limited. This 

article presents multi-omic integration with Sparse Singular Value Decomposition 

(MOSS), a free and open-source R package to integrate multiple and large omics 

datasets. This package is computationally efficient and offers biological insight through 

cluster analysis and identification of biologically relevant omic features. Source code is 

freely available at CRAN.  

https://cran.r-project.org/web/packages/MOSS/index.html
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2.2. INTRODUCTION 

Omic data is characterized by many parameters per sample (usually a much larger 

number of parameters than the sample size, the so-called p>>n). Thus, traditional 

methods (e.g., ordinal least squares) are insufficient to obtain significant insights from this 

multi-layer, high-dimensional data. To effectively integrate high-dimensional sets of data, 

novel methods have been developed [33,34,57–61]. These methods typically combine 

some form of projection onto a lower-dimensional space (e.g., to reveal structure among 

samples and features) with some form of feature engineering (e.g., to determine what 

genes or other molecular entities are most informative at explaining the differences and 

similarities between omics). These methods have profoundly contributed to our 

understanding of variation in complex traits across diverse levels of regulation (e.g., 

mutations in coding genes and epigenetic regulation) [62,63]. 

Thanks to ongoing biobank efforts, omic data also increases the number of available 

samples, providing higher prediction ability and statistical power [64]. However, more 

extensive data sizes make computations progressively lengthier or impossible to perform 

[65]. Moreover, extensive data sizes also compromise parallelizing complex algorithms 

(e.g., convolutional neural networks) [66]. 

To handle these limitations, we developed Multi-omic integration with Sparse Singular 

Value Decomposition (MOSS). MOSS is a free and open-source R package that performs 

data integration and feature selection on large data sets. It combines the flexibility of 

sparse singular value decomposition (sSVD) with parallel and in-disk computations to 

accommodate data sizes reaching biobank dimensions. In this article, we describe the 

package’s main capabilities and its mathematical and computational foundations. We 
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evaluate MOSS analytical performance using a realistic simulation of multi-omic data and 

benchmark it against state-of-the-art methods of omic integration. Instructions on how to 

download and install MOSS can be found at CRAN, as well as the package’s manual, 

vignette, and additional examples. 

  

https://cran.r-project.org/web/packages/MOSS/index.html
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2.3. MATERIAL AND METHODS 

2.3.1. Statistical background and algorithms 

Omic integration models: MOSS fits a partial least squares (PLS) [67] model, 𝐐 = 𝐖𝚺 +

 𝛆, to find elements maximizing the associations between orthogonal projections of an 

omic working as response (represented by the matrix 𝐘 = (𝑦𝑖𝑙)𝑖=1,…,𝑛
𝑙=1,…,𝑚 

) and omics working 

as predictors (represented by the matrix 𝐙 = (𝑧𝑖𝑗)𝑖=1,…,𝑛
𝑗=1,…,𝑝

) omics. These projections are 

represented by matrices 𝐐 = 𝐘𝐔 and 𝐖 = 𝐙𝐕, where 𝐔 = (𝑢𝑙𝑘)𝑙=1,…,𝑚
𝑘=1,…,𝑞

 and 𝐕 = (𝑣𝑗𝑘)𝑗=1,…,𝑝
𝑘=1,…,𝑞

 

are orthonormal columns of loadings. The matrix 𝛆 =  (𝜀𝑖𝑙)𝑖=1,…,𝑛
𝑙=1,…,𝑚

 represents uncorrelated 

residuals, with 𝜀𝑖𝑙~(0, 𝜎𝜀
2), not following any particular distribution. The PLS is iteratively 

solved by least squares to find 𝐐 ,𝐖, and 𝚺. The rows of 𝐘 and 𝐙 are assumed to represent 

the same individuals or samples, while their columns are assumed to have zero means 

and unit variances. Data integration enters the model through 𝐙, as a set of normalized 

omic blocks appended column-wise, such as 

𝐙 = [
1

||𝐙1||2
2𝐙1 … 1

||𝐙𝑡||2
2𝐙𝑡 ] 

where 𝑡 is an arbitrary integer representing the number of omic blocks, and ||. ||2
2 is the 

square of the Frobenius norm of a matrix. 

Models with covariates: To remove the effects of covariates, we use the model 𝐐 = 𝐗𝛅 +

𝐖𝚺 +  𝛆, where the columns of matrix  𝐗 = (𝑥𝑖𝑔)𝑖=1,…,𝑛
𝑔=1,…,𝑠

 represent a set of 𝑠 covariates and 

𝛅 = (𝛿𝑔𝑘)𝑔=1,…,𝑠
𝑘=1,…,𝑞

 represent the effects of covariates on 𝐐. MOSS removes the effects of 

these covariates by pre-multiplying each term of the above equation by 𝐀 =

𝐈𝑛  −  𝐗(𝐗
𝑻𝐗)−𝐗𝑻, where 𝐈𝑛 = 𝐝𝐢𝐚𝐠( 1,… ,1⏟  

𝑛−𝑡𝑖𝑚𝑒𝑠

). 
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Estimation of parameters: To estimate 𝐔, 𝐕, and 𝚺, MOSS minimizes the following loss 

function: 

𝐿 = ‖𝐘𝐔 −  𝐙𝐕𝚺‖2
2 + 𝜆𝑈( 𝛼𝑈‖𝐔‖1 + (1 −  𝛼𝑈)‖𝐔‖2

2) + 𝜆𝑉( 𝛼𝑉‖𝐕‖1 + (1 − 𝛼𝑉)‖𝐕‖2
2) 

[Eq.2-1] 

where 𝐘 and 𝐙 are either the original or covariates-adjusted omics. The first term in the 

above sum is the L2 norm of approximation of 𝐐 by 𝐖𝚺, subject to 𝚺 = 𝐝𝐢𝐚𝐠(𝜎1, … , 𝜎𝑞), 

𝜎1 > ⋯ > 𝜎𝑞 > 0, and 𝐔𝑇𝐔 = 𝐕𝑇𝐕 = 𝐈𝑞. The second and third terms are Elastic Net (EN) 

[68] penalties on the elements of 𝐔 and 𝐕. The EN penalty balances well-established 

techniques of variable selection (zeroing out the noise and redundant signal between 

omic features) and shrinkage (to account for the high number of omic features that often 

exceed the number of samples). The expression ||. ||1 corresponds to the L1 norm. Here 

𝜆. = 𝑞(𝜈.), is considered as a monotonically decreasing function of 𝜈. (the number of 

desired elements different from zero) onto positive real numbers 𝜆., and 𝛼. is any number 

between zero and one. The value of 𝛼. balances shrinking and variable selection. 

When sparsity is not imposed (i.e., 𝜆. = 0), solutions for [Eq.2-1] are obtained by taking 

partial derivatives on 𝐔, 𝐕, and 𝚺, and setting them to zero. Considering 𝐁 = 𝐙𝑇𝐘, 

solutions for 𝐔, 𝐕, and 𝚺 can be obtained from the partial singular value decomposition of 

𝐁 of rank 𝑞 ({𝐔̃, 𝐕̃, 𝚺̃} = 𝑆𝑉𝐷(𝐁, 𝑞)). When 𝜆. > 0, solutions are obtained iteratively from 

the following set of equations: 

{
𝐔∗ =

𝐔̃−
1

2
𝜆𝑈𝛼𝑈𝐬𝐢𝐠𝐧(𝐔

∗))

1+𝜆𝑈(1−𝛼𝑈)

𝐕∗ =
𝐕̃−
1

2
𝜆𝑉𝛼𝑉𝐬𝐢𝐠𝐧(𝐕

∗))

1+𝜆𝑉(1−𝛼𝑉)

          [Eq.2-2] 
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Equations in [Eq.2-2] are solved using the algorithm in [69] extended to include the EN 

parameter 𝛼., where 𝐔∗ = 𝐔𝚺 and 𝐕∗ = 𝚺𝐕. To ensure that 𝐔 and 𝐕 are orthonormal in 

each iteration, the QR decomposition of 𝐔∗ and 𝐕∗ (𝐔∗ = 𝐋(𝑈)𝐑(𝑈) and 𝐕∗ = 𝐋(𝑉)𝐑(𝑉)) is 

used. In each iteration, 𝐔 is recovered as 𝐔 = 𝐋(𝑈)𝐃(𝑈), where 𝐃(𝑈) = 𝐝𝐢𝐚𝐠(𝑑1, 𝑑2, . . . , 𝑑𝑞), 

and 𝑑𝑘 = 1/||𝐋𝑘
(𝑈)
||2 (the inverse of the norm of each column of 𝐋(𝑈)). The same steps are 

used to recover 𝐕. After a fixed number of iterations, or at convergence, the final values 

of 𝐔 and 𝐕 are used to recover 𝚺 (𝚺 = 𝐔𝑇𝐁𝐕𝑇). 

Tuning hyperparameters: The value 𝜆. is tuned following [69], modified to tune 𝜆𝑈, 𝜆𝑉, or 

both. Briefly, 𝜆. is chosen as the 𝜈.-th order statistic of 𝐔, or 𝐕, where 𝜈𝑈 and 𝜈𝑉 are fixed 

numbers representing the desired number of samples and features loadings different from 

zero (i.e., the degrees of sparsity), respectively. Then, the proportion of variance 

explained (PEV) by each one of a grid of values of 𝜈𝑈 and 𝜈𝑉 is calculated. The trajectory 

of PEV across values of 𝜈𝑈 and 𝜈𝑉 is then used to select an “optimal” 𝜆. value to solve 

[Eq.2-2]. This selection is made automatically via two alternative methods. The first 

method uses the first empirical partial derivative of PEV (
𝜕𝑃𝐸𝑉

𝜕𝜈.
) to choose the value of 𝜈. 

at which the change in PEV is maximum (“liberal” method). The second method choses 

the value of 𝜈. at which the change in PEV stabilizes (“conservative” method). Similarly, 

MOSS displays a classic plot of 𝜎1, … , 𝜎𝑞 (Scree plot), to visualize the change in variance 

explained by each latent dimension. The number of latent dimensions 𝑞 is not tuned by 

MOSS internally. However, automatic suggestions are provided based on the above 

tuning methods, where the trajectory of 𝜎1, … , 𝜎𝑞 is used instead of the PEV one. 

Cluster analysis: MOSS can use the columns 𝐐 to detect clusters of samples via Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) [70]. DBSCAN is one of 
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the most potent clustering techniques to delimit clusters of irregular shapes. Essentially, 

DBSCAN identifies groups of densely packed points without specifying the number of 

clusters a priori. In MOSS, neighborhoods of nearby points can then be tuned by 

evaluating different cluster partitions over a grid of values of e, a hyperparameter 

controlling the neighborhood. MOSS chooses the number of “optimal” clusters that 

maximizes the Silhouette score [71] over a grid of possible e values, as in [72]. 

Visualization of clusters: Additionally, MOSS can use t - Stochastic Neighbor Embedding 

(tSNE) to project a group of columns of 𝐐 onto a two-dimensional display [72]. Essentially, 

tSNE projects multiple dimensions onto a lower-dimensional display while conserving 

local neighborhoods (eventually representing data clusters) [73]. tSNE is an effective 

technique to reveal clusters [74]. The algorithm has two fundamental parameters: 

perplexity (which accounts for the adequate number of local neighbors) and cost (related 

to the difference between the neighborhood’s distribution in the higher and lower 

dimensional spaces). Since low costs are more likely to reveal clusters, MOSS tunes the 

tSNE projection by choosing the map of minimum cost among multiple random starts of 

the algorithm. 

2.3.2. Syntaxis of the main function moss 

The package's primary function is called moss. This function works along with other 

auxiliary functions to integrate data sets, pre-process, integrate them, and generate plots. 

The details of each function can be obtained from the package help pages. Following, we 

describe the inputs and outputs of moss. 

Input: The input data must be passed through data.blocks as a list of omic blocks. Each 

row must represent a subject or sample, and each column an omic feature or variable. 
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MOSS allows each block to be of the class matrix, array, or filed-backed big matrix (FBM) 

[75].  Objects of class FBM can be passed to moss whenever data sets are too big to be 

handled in RAM. For this, the only requirement is for package bigstatsr [75] to be installed. 

Alternatively, omic blocks passed to moss as ‘matrix’ or ‘array’ can be internally turned 

into FBM by setting the argument use.fbm = TRUE. In our experience, this can speed up 

computations when matrices are small enough to fit in memory but still too large to be 

handled in a reasonable time. If covariates adjust omic blocks, these can be passed as a 

matrix, vector, or data frame, through argument covs. 

Standardization, normalization, and imputation: Arguments scale.arg and norm.arg 

control, respectively, the standardization of each column within an omic block (i.e., 

centering to zero mean and scaling to unit variance), and normalization. Omics within 

data.blocks are expected to have named rows. A warning message is displayed if at least 

one omic is missing row names, or the row names are inconsistent across blocks. In the 

presence of missing data, a simple imputation by the mean of each column is provided. 

Nevertheless, before calling moss, the user is recommended to run standard quality 

controls (such as calculating the proportion of missing data across rows and columns, 

zero variance features, and minor allele frequency). 

Methods: Without additional constraints, MOSS treats [Eq.2-1] as a partial least squares 

model (PLS, method=”pls”). To specify which omic will be used as responses 𝐘, a number 

from 1 to t (the number of omic blocks) must be passed to resp.block. By imposing 

additional constraints, more multivariate techniques can be performed. For example, 

when 𝐘 is assumed to be the identity matrix, MOSS treats [Eq.1-1] as a principal 

components analysis (PCA) (method=”pca”). Alternatively, if 𝐘 is a column matrix with 
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values representing different categories, [Eq.2-1] is treated as a linear discriminant 

analysis (LDA; [76]) (method=”lda”). 

Cluster analysis and visualization: If argument cluster=TRUE, package dbscan [77] is 

used to find clusters on Q. By default, this is done on all Q columns. However, a different 

set of columns can be passed as a vector of indexes through argument axes.pos. By 

default, the number of clusters is tuned on a grid of 100 values of e (eps_res), evenly 

spaced between 0 and 4 (eps_range). With this setting, clusters with less than two 

samples are discarded. Same options are obtained by setting cluster=list(eps_res=100, 

eps_range=c(0,4), min_clus_size=2). This option allows for alternative values of eps_res, 

eps_range, and min_clus_size. 

To obtain the two-dimensional embedding of Q (or a subset of columns indicated by 

axes.pos), users can do tSNE=TRUE, or tSNE=list(perp=50, n.iter=1e3, n.samples=1), 

where perp, n.iter, and n.samples are the perplexity parameter of tSNE, number of 

iterations, and number of random initial conditions, respectively. 

Sparsity constraints: Within MOSS, 𝜈. is specified by arguments nu.u (vector of integers 

between one and the total number of samples) and nu.v (vector of integers between one 

and the total number of features). If the values of nu.u and nu.v is not specified, only a 

standard (i.e., dense) SVD is computed. The values of 𝛼. are specified through arguments 

alpha.u and alpha.v. Argument exact.dg tells moss to chose 𝑓: 𝜈.  → 𝜆., such as the 

number of elements different from zero in each column of U and V is exactly 𝜈.. Argument 

lib.thresh=TRUE (default) tells moss to select the value of 𝜈. at which the change in PEV 

is maximum. If lib.thresh=FALSE, the value of 𝜈. at which PEV reaches a plateau is 

chosen. 
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Parallel computing: By default, the process of tuning the degree of sparsity is done in 

series. However, this can be changed by setting argument nu.parallel=TRUE. This option 

uses package future.apply, to allow for simple parallel distribution of tasks on a local 

machine or computer cluster [78]. 

Plots: If argument plot=TRUE, several high-level plots will be produced (see Results). 

This argument requires package ggplot2 [79] to be installed. 

Outputs: Function moss returns a named list with the results of the data integration plus 

additional analyses. The list includes matrices B and Q, along with two lists containing 

the results of the dense and sparse SVDs. The output list also has the plots with 

embedding, cluster analysis, selected items by omic, and signatures of features by a 

cluster of samples. 

Data: Analytical performance was evaluated on data generated with the R package 

MOSim [80]. MOSim uses existing omic data to sample pairs of genes and regulators 

from which differential expression is simulated for a given experimental design. We used 

MOSim’s accompanying mouse omic data from the STATegra project [81] to seed all 

omics. In all scenarios, three omics representing gene expression (RNA-seq count data), 

micro-RNA seq (miRNA-seq), and ATAC-seq data of DNAase I activity (DNase-seq) were 

simulated. Signal effects were imposed by assigning different proportions of miRNA-seq 

and DNase-seq features (5% and 20% of total features) to regulate the expression of 

15% of total genes across three clusters of samples. A first simulation scenario with a 

small number of samples (100) and features (1,000) illustrated MOSS main capabilities. 

Then, simulations for an increasing number of samples and features were used to 

evaluate MOSS’ performance at recovering signals (i.e., groups of differentially 
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expressed genes and corresponding regulatory features) in more realistic scenarios. Due 

to a restriction of MOSim to simulate massive data sizes (hundreds of thousands of rows 

and millions of features), we benchmarked MOSS on representing rank-one bi-clusters, 

embedded in three synthetic omic blocks with Gaussian noise, and for increasing 

numbers of samples and features (see the help page for function simulate_data()). 

2.3.3. Performance evaluation 

We evaluated the performance of MOSS in terms of its ability to detect differentially 

expressed genes and their regulatory features. To do that, we used MOSim with ten 

different random starts. We simulated the three omics described above for all 

combinations of 100, 1,000, and 10,000 samples across three clusters for 1,000 and 

10,000 features in each random start. We used 5% and 20% of miRNA-seq and DNAse-

seq as regulatory elements for all data sizes. In all scenarios, 15% of total genes were 

set as differentially expressed (DE). In each scenario, we calculated true positives (TP) 

as the number of signal features (DE genes and regulatory features) detected by moss, 

true negatives (TN), as noisy features (not DE genes or regulatory elements) not detected 

by moss, false positives (TP) as noisy features detected by moss, and false negatives, 

as signal features not detected by moss. These quantities were used to calculate the 

accuracy (
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
), sensitivity (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
), specificity (

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
), and precision 

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
). 

To evaluate MOSS computational time in the context of other methods of omic integration, 

we used iCluster [33], NMF [82], SNFtool [43], mixOmics [58], and OmicsPLS [83] R 

packages to run in the same scenarios. The scenarios consisted of simulations for 

different combinations of 100, 1,000, 10,000 and 100,000 samples, and 1,000, 10,000, 
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100,000, and 1,000,000 features. We allowed all methods to have enough available 

memory (100 Gb) to produce results in hours rather than days. 
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2.4. RESULTS 

2.4.1. Example of unsupervised omic integration with MOSS 

The following example shows how to perform omic integration with MOSS on a simulated 

data set with three omics and three clusters of samples. The method was a sparse PCA 

assuming ten latent dimensions. EN was used to tune the degree of sparsity of features. 

tSNE was used to embed the first three columns of Q onto two dimensions. DBSCAN 

was used to delimit clusters. 

Figure 2.1-A shows the PCA’s scree plot (out_moss$scree_plot). A clear jump in the 

singular values occurs between the first and the second dimension. Nevertheless, the 

scree plot trajectory reaches a plateau after the fourth dimension. Figure 2.2-A shows the 

trajectory for PEV and derivatives for varying degrees of sparsity for features. 

(out_moss$tun_dgSpar_plot). A degree of sparsity of 300 is suggested according to the 

conservative tuning method. 
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Figure 2.1: Scree plot, PEV trajectory, and partial derivatives. A) The left-most panel 
shows the singular values corresponding to the first 10 SVD dimensions (scree plot). The 
following two panels correspond to the first and second empirical partial derivatives of the 
scree plot. B) Similarly, the left-most panel shows the PEV trajectory on a grid of degrees 
of sparsity, with the center and right-most panels representing its first and second 
empirical partial derivatives, respectively. 
 
Figure 2.2 shows the results of the feature selection across omics. The first two latent 

dimensions had the largest number of features selected. Most of these features were 

DNA-seq, followed by gene expression. 

Conversely, the features selected in the third dimension were mainly miRNA-seq, 

followed by DNA-seq features. The highest absolute loading values were obtained for the 

first and third latent dimensions (out_moss$selected_items). 
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Figure 2.2: Omic contribution to selected features. The numbers of features selected 
by latent factors are shown in a log2 scale. The pie charts slides represent the relative 
contribution of each omic (RNA-seq, miRNA-seq, and DNase-seq) to the features 
selected by dimension (PC index). The pie charts ratio represents the quotient between 
the squared loadings of the selected features by dimension and their standard deviation. 

 
The tSNE map and cluster analysis are presented in Figure 2.3 (out_moss$clus_plot). 

The three simulated clusters are detected. From Figure 2.4, we can see that the first and 

third dimensions are the more relevant for cluster formation. 
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Figure 2.3: Cluster analysis. The three first SVD latent factors of the integrated omics 
were embedded onto two dimensions via tSNE. Clusters (labeled 1, 2, and 3) were 
delimited via DBSCAN. 
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Figure 2.4: Association between clusters and SVD dimensions. The plot shows the 
results of Kruskal-Wallis association tests between clusters and the first ten SVD 
dimensions (PC index). A different point shape and color represent each cluster. 
 
Lastly, to determine what selected features dominated each cluster, the user can look at 

signatures within out_moss$feat_signatures. If the number of features is too large to 

visualize correctly, the function moss_signatures can be called (Table A.1). 

Figure 2.5 shows the top 5% of candidate features. The percentage is based on the 

squared means of features values within the respective omic. Candidates are defined as 

features with standard error intervals excluding zero. 



28 
 

 

Figure 2.5: Signature of features for two clusters. The plot shows the top features (y-
axis) selected by latent factor and omic block. Points correspond to the average feature 
values plus and minus one standard error. For clarity, only the top 1% of selected features 
and the first two clusters are shown. 
 
2.4.2. Example of supervised omic integration with MOSS 

Setting method = “pls” and resp.block = 1 tells moss to run a PLS using gene expression 

as a multivariate response and the remaining omic blocks as multivariate predictors. The 

following example shows how to run a sparse PLS, where the degree of sparsity is 

separately tuned for both responses and predictors (code provided in Table A.1). 

The trajectory of PEV and derivatives for both responses and predictors are displayed in 

Figure 2.6 (out_moss$tun_dgSpar_plot). In this example, we have set lib.thresh = TRUE 

to use the liberal method of features selection. Figure 2.6 suggests that the liberal method 

would select less than ten genes and approximately 50 regulatory features. As before, 
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the contribution of each omic to the selected items, clusters, and features signatures can 

be obtained from out_moss. In addition, the accompanying function moss_heatmap can 

retrieve a heatmap of the covariance matrix between selected responses, and predictors 

can be retrieved using the accompanying function moss_heatmap. This function uses the 

ComplexHeatmaps R package [84] (Table A.1). 

 

 

Figure 2.6: PEV trajectory plot and partial derivatives for a PLS analysis. The top 
three panels represent the PEV trajectory on a grid of degrees of sparsity for predictor 
features and its first and second empirical partial derivatives, respectively. The bottom 
three panels show this information for responses. Here, responses and predictors were 
gene expression and regulatory omics, respectively. 
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Figure 2.7: Output of the function moss_heatmap. Rows and columns represent 
genes and regulatory features selected by a given combination of latent factors. In the 
example, the first and third dimensions of the sparse SVD of the covariance between 
gene expression and remaining omics were used. Features names are omitted for clarity. 
 
2.4.3. Evaluation of MOSS analytical performance 

Results of performance evaluation are shown in Figure 2.8. The accuracy of MOSS to 

detect signal features was in the order of ~0.9 for all scenarios, except for the largest 

number of features and lowest signal intensity. Sensitivity was high for all scenarios of 

high signal intensity, dropping to ~0.6 for more than 100 features. When signal intensity 

was low, sensitivity dropped in all scenarios, especially for the largest number of features. 

However, increasing sample sizes corresponding with higher sensitivities. Specificity was 

highest for scenarios of low signal intensity and moderated to a high number of features. 

Higher signal intensities corresponded to lower specificities, but this difference was 

almost negligible for the number of features. Precision was high in all scenarios. However, 

it dropped for the lowest signal intensity values and the number of features. 
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Figure 2.8: Performance of feature detection with MOSS. Performance at detecting 
features was evaluated on simulated data with different combinations of numbers of 
samples (n) and features (p) for two alternative signal intensities (0.05 and 0.2), defined 
as the proportion of features with regulatory effect. The performance metrics were 
accuracy (ACC), sensitivity (SEN), specificity (SPE), and precision (PRE). Rectangles 
and bars represent metric values averages and average plus-minus standard errors 
across the simulations’ random starts, respectively. Adjacent columns by n tick mark 
represent alternative signal intensities. 
 
2.4.4. Benchmarking 

Figure 2.9 shows the computational time taken by MOSS and other omic integration 

methods for different combinations of samples (n) and the number of features (p). In all 

cases, three omic blocks were simulated. We allowed all methods to have enough 

available memory (100 Gb) to produce results in hours rather than days. Nevertheless, 

for scenarios approaching bio-bank dimensions (i.e., hundreds of thousands of samples 

and omic features), all methods either crashed or could not finish before 24 hours. The 

exception to this pattern was the use of moss MOSS with use_fbm =TRUE. For a 
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relatively low number of samples (e.g., n <1x103), all methods, except iCluster, NMF, and 

mixOmics, produced results in less than one hour. In iCluster, p =1x105 causes the 

program to run for more than a day, and with p=1x106, to crash. NMF and mixOmics took 

approximately 3 and 10 hours, respectively, when n=1,000 and p=1e6. Finally, the 

method with the most substantial influence of sample size was SNFtool, with better 

performances for smaller sample sizes, with the opposite being true for larger sample 

sizes. 
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Figure 2.9:Benchmarking of omic integration methods. The plot shows the 
computation time taken by MOSS and five other omic integration methods (iCluster, NMF, 
SNFtool, mixOmics, and OmicsPLS) to integrate three omic blocks and perform feature 
selection in different simulated scenarios. Scenarios corresponded to a different 
combination of numbers of samples and features in simulated data. Column panels (n) 
represent the number of samples, and row panels (p) represent the number of features. 
Each rectangle corresponds to a different omic integration method. The rectangle's height 
represents computing time in hours. The symbols “*” and “†” represent a method running 
for more than a day or crashing, respectively. MOSS was used with regular matrices or 
filed-backed big matrices (FBM). 
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2.5. DISCUSSION 

Omic integration emerged as a group of techniques for analyzing multiple omic data 

layers collectively and retrieving helpful information of shared processes within the cell 

[63]. However, the computational and statistical tools used to carry out these tasks are 

constantly challenged by the vast amount of generated data [29,85]. As an essential step 

in understanding the biology of complex traits, omic integration methods should retrieve 

informative results in a reasonable amount of time. For that purpose, we have developed 

MOSS, a free and user-friendly tool that rapidly retrieves information about the principal 

axes of variation across omic data, identifies features of possible biological roles, detects 

clusters of individuals, and represents them in terms of features of potentially functional 

role. 

We evaluated MOSS in terms of several metrics representing the performance of feature 

selection. In terms of both accuracy (i.e., ability to collectively detect signal and miss 

noise) and precision (ability to detect true from the false signal), MOSS best performance 

occurred in scenarios where the proportion of the number of features (p) to the number 

of samples (n) was low to moderate. The lower accuracy and precision in the scenarios 

with large p/n and low proportion of regulatory features could have been a consequence 

of the heuristic used to select features. Like related least squares-based algorithms, this 

performance could improve if the value of n is increased [86]. However, lower 

performance in high p/n and low signal-high noise scenarios is an unsolved challenge 

among omic integration methods [56]. Knowing if MOSS’s decrease in performance for 

this setting is smaller than for competitive methods would require further simulation 

studies.  
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The evaluation of the analytical performance of competitive methods was out of the scope 

of this paper and can be found elsewhere (e.g., [56,65]). Nevertheless, to support the 

standalone performance of MOSS, we have included the results of a small simulation in 

Figure A.1. 

Since the proportion of differentially expressed genes remained the same across 

scenarios, increasing p/n could also increase the number of false positives. Hence, lower 

signals could imply that some regulatory features are missed, reducing true positives. 

Similarly, increasing false positives can explain the drop in sensitivity (i.e., the ability to 

detect signal correctly) in the high p/n scenario. Likewise, specificity (i.e., ability to 

correctly miss noisy features) increased with fewer regulatory features, increasing true 

negatives, regardless of the higher false positives expected in the high p/n scenario. 

A thorough evaluation of performance across alternative tuning methods for feature 

selection is outside the scope of this paper. Nevertheless, we acknowledge that 

performance on the feature selection approach, and an alternative tuning method could 

improve MOSS performance. However, heuristics based on training sets can improve 

computational times compared to traditional cross-validation [87]. 

We have shown the ability of MOSS to retrieve biologically meaningful results in different 

simulated scenarios, ranging from a few numbers of samples and features to data 

volumes approaching biobank scales. Although trying to create synthetic but realistic data 

via the MOSim package, as in any other simulation approach, we acknowledge that only 

a finite combination of scenarios was explored. Nevertheless, in an earlier publication, we 

have shown that MOSS can also retrieve biologically meaningful results on real data. For 

example, in [88], we have used MOSS to effectively integrate information from ~60,000 
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features from gene expression, DNA methylation, and copy numbers across ~5,000 

tumors from different cancer diagnoses. In that work, we showed MOSS's ability to detect 

clusters of tumors beyond original diagnoses, which shared molecular features of 

potential therapeutic use. 

One of MOSS's essential capabilities is the handling of data sizes reaching biobank 

dimensions. However, even when regular R matrices are used, MOSS can perform in a 

short amount of time compared to other methods of omic integration and feature 

selection. In addition, package bigstatsr allows MOSS to perform a dense-partial SVD in 

data sets as big as the UK Biobank [75]. In addition, MOSS includes a convenient parallel 

computing scheme, as provided by the future.apply R package. Although this implies that 

the user loses some control on how parallel jobs are administered, since future.apply 

works in multiple platforms, this option reduces the guesswork and the dependency of the 

parallel computing strategy on operating systems used. 

MOSS is a flexible, fast, and robust tool to perform data integration. It shares capabilities 

with popular methods, including estimation of latent data dimensions, feature selection, 

and convenient graphical displays. Nevertheless, unlike these methods, MOSS integrates 

datasets too large to handle in RAM, requiring shorter amounts of time. 
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CHAPTER 3  

 

MULTI-OMIC SIGNATURES IDENTIFY PAN-CANCER CLASSES OF TUMORS 

BEYOND TISSUE OF ORIGIN 

 

This chapter has been adapted from the article published in the open-access journal, 

Scientific Reports (DOI: 10.1038/s41598-020-65119-5). 

 

3.1. ABSTRACT 

Despite recent advances in treatment, cancer continues to be one of the most lethal 

human maladies. One of the challenges of cancer treatment is the diversity among similar 

tumors that exhibit different clinical outcomes. Most of this variability comes from 

widespread molecular alterations that can be summarized by omic integration. We have 

identified eight novel tumor groups (C1-8) via omic integration, characterized by unique 

cancer signatures and clinical characteristics. C3 had the best clinical outcomes, while 

C2 and C5 had the poorest outcomes. C1, C7, and C8 were upregulated for cellular and 

mitochondrial translation and low proliferation. C6 and C4 were also downregulated for 

cellular and mitochondrial translation and had high proliferation rates. C4 was 

represented by copy losses on chromosome 6 and had the highest number of metastatic 

samples. Copy losses on chromosome 11 characterized C8, also having the lowest 

lymphocytic infiltration rate. C6 had the lowest natural killer infiltration rate and was 

represented by copy gains of genes in chromosome 11. C7 was represented by copy 

gains on chromosome 6 and had the highest upregulation in mitochondrial translation. 
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We believe that, since molecularly alike tumors could respond similarly to treatment, our 

results could inform therapeutic action.  
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3.2. INTRODUCTION 

Despite recent advances that have improved cancer treatment, it reigns as one of the 

most lethal human diseases. Cancer can be considered a highly heterogeneous set of 

diseases: while some tumors may have a good prognosis and are treatable, others are 

quite aggressive, lethal, or may not have a standard of care [89–91]. Cancer can also 

defy standard classification: a well-classified tumor may not respond to standard therapy, 

as expected, and may behave as a different cancer type [92–94].  Fortunately, with the 

advances of sequencing technologies, data has become available for research as never 

before. The Cancer Genome Atlas (TCGA), for instance, offers clinical and omic (e.g., 

genomic, transcriptomic, and epigenomic data) information from thousands of tumors 

across 33 different cancer types [95]. Much of this omic data can enable us to classify 

tumors and explain the striking variation observed in clinical phenotypes [96–99]. 

Omic integration has been successfully applied in previous classification efforts [72,100–

102]. These classifications have highlighted how molecular groups of tumors highly agree 

with human cell types. Alternatively, we hypothesize internal subtypes hidden by cell type 

and tissue characteristics influencing cell behavior. These subtypes could be 

distinguished by molecular alterations unlocking cancerous cell-transformation events. To 

test this hypothesis, we have developed a statistical framework that summarizes omic 

patterns in main axes of variation, describing the molecular variability among tumors. Key 

features characterizing each axis (i.e., features contributing the most to inter-tumor 

variability) are retained, while irrelevant ones are filtered. Retained features are then used 

to cluster tumors by molecular similarities and find specific molecular features 

representing each group. 
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Here we show that, after removing all tissue-specific effects, the cancer signal 

immediately emerges. The new molecular aggrupation, emphasizing shared tumor 

biology, can supply new insights into cancer phenotypes. We expect this novel 

classification to aid in developing therapeutic alternatives for tumors without a current 

standard of care.  
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3.3. MATERIAL AND METHODS 

3.3.1. Pan-cancer data 

The TCGA offers a demographically diverse sample with comprehensive and modern 

multi-omic data. We retrieved data from 5,408 from 33 cancer types made available by 

the Genome Data Commons (GDC) repository [103] via the TCG-Assembler R package 

[104]. Omic data consisted of curated level-three data of genome-wide gene expression 

(GE), DNA methylation (METH), and copy number variants (CNV) profiles by tumor 

sample. GE profiles by sample corresponded with the logarithm of RNA-Seq counts by 

gene (Illumina HiSeq RNA V2 platform). METH profiles corresponded with CpG sites B-

values from the Illumina HM450 platform, summarized at the CpG island level, using the 

maximum connectivity approach from the WGCNA R package [105], and further 

transformed into M-values (M=β/(1-β);[106]). CNV profiles corresponded to gene-level 

copy number intensity derived from Affymetrix SNP Array 6.0 platform, using human 

genome V19 as reference. The quality-control filtering process included excluding 

features with all zeros or coefficient of variation less than 1%. Samples or features 

disproportionally missing data (>20%) and single-sample batches were also excluded. 

Within the remaining samples, missing values were imputed by k-near neighbors, with k 

= 3. Finally, each omic block was adjusted by batch effects using ComBat [107]. The final 

sample size after retaining subjects with information for all three omics was n=5,408. 

Demographic information included gender, self-reported race and ethnicity, and patient's 

age at diagnosis (Table 3.1). Clinical information consisted of overall survival time and 

vital status at the final follow-up, sample type (from the primary tumor, metastases, or 

normal tissue), tumor-free fraction. We also used previous information from “The Immune 
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Landscape of Cancer” [108] and calculated significant differences between clusters using 

the Kruskal-Wallis tests [109]. These covariates included: intra-tumor heterogeneity 

fraction (as sub-clonal genome fraction), and rates of non-silent mutations, aneuploidy, 

homologous recombination defects (all three derived as deviations from the normal 

genome), proliferation (normalized difference between the number of dividing and non-

dividing cells), and information from immune infiltrations (including scores for CD4+ cells, 

macrophages, lymphocytes, and natural killers) (See supplementary material in [108] for 

a detailed description of the scores’ calculation). Briefly, immune infiltration fractions were 

derived by CIBERSORT [110], assigned to different cell classes, and multiplied by the 

leukocyte fraction derived from methylation data [108].  

3.3.2. Omic integration, clustering, and features selection. 

The following four steps can conceptually describe our method. 

Step 1) Identification of major axes of variation and features selection. Integrative 

methods should capture combined effects across omic sites that could either span across 

omic layers (e.g., epigenetics, gene expression) or extend genome-wide (e.g., 

considering concomitantly contiguous CpG sites or even separated away sites). Let, 

𝐗 = [𝐗𝟏, … , 𝐗𝐋]  

where 𝐗𝑙 𝑙:{1,…, L} is a matrix representing the 𝑙-th omic, which row ith contains information 

representing a sample on one subject, and column jth represents an omic feature (e.g., a 

feature could be the expression of a specific gene or the methylation level for a given 

CpG site). Each group of features coming from a different omic block is centered, 

standardized, and divided by √𝑝𝑙, where 𝑝𝑙 is the number of features from the 𝑙-th omic 

block. Normalization is done so larger groups of features do not dominate the data 
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integration step. Next, we conduct a sparse Singular Value Decomposition (sSVD) of 𝐗 

to generate one factor that collapses the redundancies in the omics (by creating 

independent columns representing the independent signals across features) and one 

factor that collapses redundancies across samples, grouping subjects with similar 

signaling. This linear factorization can be represented as 𝐗 = 𝐙𝐖, where 𝐙 represents 

(linearly) independent axes of variability across subjects (i.e., a lower rank 

approximation), while 𝐖 represents loadings representing the contribution of each omic 

feature to this variability. This representation is familiar to many unsupervised omic 

integration methods but is independent of distributional assumptions on each element. In 

this formulation, 𝐙 and 𝐖 can be obtained by minimizing: 

                   ‖𝐗 − 𝐙𝐖‖2
2 + 𝑃𝜆,𝛼(𝐖)                           [Eq.3-1] 

To the left of the plus sign is the Frobenius norm (a matrix analogous of Euclidean 

distance) of the difference between 𝐗 and the product of 𝐙 and 𝐖. To the right of the plus 

sign is a penalty on the elements of W to impose sparsity. The purpose of this penalty is 

to zero-out those features with minor contributions to the columns of Z. To remove the 

effect of tissues, or other covariates that can influence the selection of features, we pre-

multiplied X by I – Q(QTQ)-1QT, where I is a diagonal matrix of ones, and Q is an indicator 

matrix to represent the membership to a given organ or tissue. 

Step 2) Identify omic features (expression of genes, methylation intensities, copy 

gains/losses) influencing the axes. The linear decomposition achieved by SVD is an 

intuitive and straightforward way of integrating omics. However, the variability across 

omics can be governed by just a few features (i.e., highly sparse data) or by groups of 

interdependent features (i.e., very redundant data). To handle these limitations, we chose 
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𝑃𝜆,𝛼(𝐖) to be the Elastic Net penalty [68], 𝜆(𝛼‖𝐖‖1 + (1 − 𝛼)‖𝐖‖2
2), where 𝛼 balances 

the regularization between LASSO and ridge regression types of regularization, and 𝜆 is 

associated with the degree of sparsity (i.e., how many features enter in the model?). 

Unlike LASSO, EN can select groups of correlated features, while zeroing out the 

irrelevant ones [111]. Equation Eq.3-1 is solved by obtaining z1w1 (where z1 is the first 

column of Z and w1  is the first row of W) with coordinate descent for given values of 𝜆 

and 𝛼, following the algorithm of [69], as implemented in [112], but with the following 

thresholding operator: sign(w1)| |w1| - 𝜆𝛼 |+ / 𝜆 (1 − 𝛼) (where |x|+ represents the positive 

part x). Consecutive layers are then obtained by subtracting the previous ones from X 

and repeating the same procedure, as many times as the number of desired axes of 

variation. The optimal value for 𝜆 was empirically determined, as suggested by [69]. We 

start by 1) calculating W over a dense grid of values for 𝜆 (lower 𝜆 yields less sparsity), 

2) calculating the proportion of variance of X explained by ZW (PVX) for each 𝜆, and 3) 

choosing the 𝜆 at which PVX has its minimum second derivative. Since PVX decreases 

monotonically with 𝜆, this point represents a drastic drop on PVX, suggesting that the 

most relevant features accounting for the data variability are already incorporated [69]. 

The value 𝛼 was fixed to 0.5 to have an equal contribution of LASSO and Ridge penalties.  

Once a subset of features was selected, we mapped them onto genes using annotation 

data of genomic position downloaded from the USCE web browser tool (GRCh38  [113]). 

The enrichment of functional classes (ontologies, pathways, complexes) among these 

genes was tested using the Enrichr package[114]. 

Step 3) Mapping major axes of variation via tSNE and cluster definition by DBSCAN. 

Additionally, SVD can be coupled with non-linear embedding methods to deal with highly 
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heterogeneous data. Here, we applied t - Stochastic Neighbor Embedding (tSNE) on 𝐙 

[72]. tSNE is a technique that efficiently takes on local neighborhoods present in high 

dimensions (eventually representing clusters of data) and conserves them while 

projecting onto a lower-dimensional display [73]. Hence, tSNE becomes a powerful 

technique to reveal clusters, even in very heterogeneous and convoluted data settings 

[74]. The algorithm has two fundamental parameters: perplexity (which accounts for the 

effective number of local neighbors) and cost (related to the difference between the 

neighborhood’s distribution in the higher and lower dimensional spaces). Since low cost 

indicates displays more likely to reveal clusters, we selected the maps corresponding with 

the lowest costs among perplexities of 50 and 100, using 100 thousand iterations to 

ensure convergence. We applied Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN [77]) to identify clusters. DBSCAN is one of the most powerful clustering 

techniques to delimit clusters of irregular shape, such as the ones tSNE produces [74]. 

Essentially, DBSCAN identifies densely packed groups without specifying the number of 

clusters prior [77]. Neighborhoods of nearby points can then be tuned by evaluating 

different cluster partitions over a grid of possible neighborhood sizes. We tuned this 

parameter by maximizing the Silhouette score, as in [72]. 

Step 4) Molecular and clinical characterization of clusters. The association between 

clusters and scores representing genes and the selected functional classes was studied 

to define each cluster's signatures. Scores were calculated by tacking the columns of X 

mapping onto a gene, or functional class, and post-multiplying it by the corresponding 

elements of W’. Using the scores of each gene and functional class as a response and 

the clusters as explanatory variables, we conducted a series of ANOVA tests to determine 
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what genes or functional classes were significant in at least one cluster. All pairwise 

comparisons between significant genes and functional classes were studied via Tukey 

tests. Gene signatures were defined based on those genes significantly deregulated in a 

single cluster. For both types of tests, we used a Bonferroni multiple-test correction with 

P(type I –error) = 0.05 / {#selected genes and functional classes}.  

We used the STRING database of protein-protein interactions to discuss the possibility 

of physical or functional relationships between the genes in each signature [115]. We 

considered an interaction biologically meaningful when backed up by empirical data, such 

as immune precipitation, microarrays, and curated databases. Interactions suggested by 

text-mining (two genes reported in the same scientific publication) were not considered, 

except in the cases when a publication’s results gave evidence of interaction (e.g., genes 

co-expressing, co-locating). 

The association between clusters and phenotypes (e.g., clinical, demographic, and 

immunologic covariates) was evaluated via the Kruskal-Wallis test [109] (non-parametric 

analogous of ANOVA). The Dunn test further evaluated all significant results [116] for 

pairwise differences (non-parametric analogous of Tukey tests). All steps of our method 

were implemented in the R programming language [117], using irlba [112], dbscan [77], 

and Rtsne [118] packages. 

3.4. RESULTS 

Signals coming from tissue and cell type strongly influence a naïve initial classification of 

tumors across cancer types. We performed omic integration based on sparse singular 

value decomposition, removed tissue effects, and sought to re-classify tumors based on 

subtler omic patterns. Our method can be illustrated in four steps (Figure 3.1, Materials 
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and Methods). Step 1 applies sparse Singular Value Decomposition (sSVD) to an 

extended omic matrix X, obtained from concatenating a series of scaled and normalized 

omic blocks for the same subjects. Briefly, the principal axes of variation across tumors 

(i.e., left principal components or scores) and X's matching features ‘activities’ (i.e., the 

right principal components or loadings) are found. Sparsity is then imposed on the activity 

values, so features with minor influence over the tumors' variability are removed. Step 2 

consists of identifying what features (expression of genes, methylation intensities, copy 

gains/losses) influence these axes the most (i.e., features not removed by sSVD) and 

mapping them onto genes and functional classes (e.g., pathways, ontologies, targets of 

micro-RNA). Step 3 involves the identification of local clusters of tumors, following [72]. 

Step 4 involves characterizing clusters in molecular (e.g., genes, pathways, complexes) 

and clinical (e.g., survival probability, immune infiltration) information, distinguishing each 

cluster from the rest. 
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Figure 3.1: Omic integration and features selection method. Step 1) Singular value 
decomposition of a concatenated list of omic blocks and identification of major axes of 
variation. Step 2) Identification of omic features (expression of genes, methylation 
intensities, copy gains/losses) influencing the axes and mapping them onto genes and 
functional classes (e.g., pathways, ontologies, targets of micro-RNA). Step 3) Mapping 
major axes of variation via tSNE and cluster definition by DBSCAN. Step 4) Phenotypic 
characterization of each cluster of subjects. 
 
Using samples from 33 different cancer types provided by The Cancer Genome Atlas 

(TCGA) and accompanying information from whole-genome profiles of gene expression 

(GE), DNA methylation (METH), and copy number variant alterations (CNV), we re-

classified tumors based on molecular similarities between the three omics. 

3.4.1. Data description 

The data, including information of sample size and type of sample (i.e., from normal, 

metastatic, or primary tissue), demographics (age, sex, and ethnicity) and survival 



49 
 

information (overall survival status and times), are summarized in Table 3.1. In addition, 

omic data included information for gene expression (GE, as the standardized log of 

RNAseq data for 20,319 genes), methylation (METH, as standardized M-values 

summarized at the level of 28,241 CpG islands), and copy number variants (CNV, as the 

standardized log of copy/gain intensity, summarized at the level of 11,552 genes). 
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Table 3.1: Data description by cancer type after quality controls. Samples are 
described by cancer type (TCGA code and cancer name), in terms of relative sample size 
(n), percent of females (F%), ethnicities (percent of non-Hispanic Whites, Afro-
descendants, and Asians), Age (at the moment of diagnosis, in years), type of sample 
(TS%, as a percent of normal –N- and metastatic –M- samples), and survival (Surv, as 
expected time to 50% survival, in years). Age and Surv are represented by median 
values, with first and third quartiles as measurements of dispersion. 
 

Code Type n F%  AD W A    Age N M      Surv 

ACC Adrenocor
tical  

23 61 0 100 0 48 (35-
57) 

0 0 6.6 (2.5-
6.6) 

BLCA Bladder 
urothelial 

carcinoma 

271 99 13 80 7 58 (49-
66) 

1 0 3.0 (1.2-
3.0) 

BRCA Breast 
invasive  

639 69 18 75 7 58 (46-
71) 

7 0 10.2 (6.5-
10.2) 

CESC Cervical 
squamous 

cell  

234 25 8 78 14 60 (53-
69) 

1 1 11.2 (3.1-
11.2) 

CHOL Cholangio
carcinoma 

12 36 0 100 0 55 (46-
67) 

75 0 1.7 (0.7-
5.3) 

COAD Colon 
adenocarc

inoma 

264 36 12 79 9 58 (41-
66) 

7 0 8.3 (3.6-
8.3) 

DLBC Lymphom
a 

26 54 19 81 0 60 (54-
63) 

0 0        17.6 
(17.6-
17.6) ESCA Esophage

al  
134 60 12 88 0 68 (59-

73) 
2 0 2.3 (1.1-

4.4) 

GBM Glioblasto
ma 

multiforme 

49 23 12 78 10 66 (60-
73) 

0 0 0.9 (0.4-
1.2) 

HNSC Head and 
Neck 

squamous  

89 48 8 91 1 61 (59-
71) 

1 0 5.9 (1.2-
5.9) 

KICH Kidney 
chromoph

obe 

2 0 0 100 0 52 (50-
54) 

0 0   --** 

KIRC Kidney 
renal clear 

cell  

43 51 2 91 7 67 (62-
75) 

0 0 7.5 (7.5-
7.5) 

           



51 
 

Table 3.1 (cont’d) 

KIRP Kidney 
renal 

papillary 
cell  

37 62 20 80 0 65 (59-
72) 

0 0 -- 

LAML Acute 
myeloid 

leukemia 

28 0 0 94 6 60 (57-
67) 

0 0 -- 

LGG Brain 
lower 
grade 
glioma 

93 42 11 88 1 70 (62-
75) 

0 0 9.5(3.1-
12.2) 

LIHC Liver 
hepatocell

ular  

62 25 8 92 0 69 (61-
74) 

13 0 4.6 (1.6-
8.6) 

LUAD Lung 
adenocarc

inoma 

381 29 6 90 5 66 (59-
72) 

4 0 4.2 (2.1-
9.2) 

LUSC Lung 
squamous 

cell  

289 28 9 89 2 57 (46-
64) 

0 0 4.7 (1.8-
10.5) 

MESO Mesotheli-
oma 

68 0 7 93 0 60 (53-
66) 

0 0 1.6 (0.9-
2.4) 

OV Ovarian 
serous  

5 0 0 100 0 60 (55-
61) 

0 0 2.9 (2.9-
2.9) 

PAAD Pancreatic 
adenocarc

inoma 

151 24 4 76 20 67 (60-
74) 

3 0 1.6 (1.0-
4.1) 

PCPG Pheochro-
mocytoma 

and 
paragangli

oma 

144 0 0 100 0 61 (56-
65) 

0 1 -- 

PRAD Prostate 
adenocar-

cinoma 

490 36 5 94 1 62 (54-
70) 

6 0 9.6 (9.6-
9.6) 

READ Rectum 
adenocar-

cinoma 

83 42 0 85 15 63 (54-
73) 

2 0 3.9 (3.9-
3.9) 

SARC Sarcoma 181 41 0 100 0 58 (46-
69) 

0 1 6.7 (3.1-
6.7) 
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Table 3.1 (cont’d) 

SKCM Skin 
melanoma 

378 85 15 83 2 61 (50-
70) 

0 75 7.4 (2.6-
20.1) 

STAD Stomach 
adenocar-

cinoma 

263 37 4 70 25 67 (58-
73) 

0 0 4.6 (1.3-
4.6) 

TGCT Testicular 
germ 

134 0 4 92 4 31 (26-
37) 

0 0 -- 

THCA Thyroid  501 73 6 80 13 46 (35-
58) 

8 1 -- 

THYM Thymoma 106 45 6 85 9 58 (48-
68) 

1 0 9.6 (9.6-
9.6) 

UCEC Uterine 
corpus  

146 100 43 57 0 65 (57-
72) 

14 0 9.2 (3.6-
9.2) 

UCS Uterine 
carcinosa-

rcoma 

4 100 0 75 25 63 (54-
74) 

0 0 1.4 (0.3-
2.2) 

UVM Uveal 
melanoma 

78 45 0 100 0 62 (51-
74) 

0 0 3.8 (2.4-
3.8) 

 

 

 

*: Only the three most abundant ethnicities in the data set were considered to calculate 
the percent. **: Survival quantiles for cancer types with less than five death events were not 
calculated.   

The first 50 main axes of variations of the extended omics matrix were selected using an 

apparent bend in the scree plot of Eigen-values (Material and Methods). The projection 

of the 50 axes onto two dimensions is shown in Figure B.1. As expected, cell-of-origin 

effects dominate the clustering of tumors at a pan-cancer level, with clusters enriched by 

previously reported pan-cancer clusters (e.g., collection of gastric cancer, gliomas, 

kidney, and squamous tumors), types, and subtypes (e.g., Luminal and Basal breast 

tumors), and single cancer types (e.g., Thyroid carcinoma, Prostate adenocarcinoma). 
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3.4.2. Classification of pan-cancer tumors after removing tissue-specific signals 

Once the tissue signal was identified, it was removed from the extended omic matrix. 

Next, sparsity constraints were imposed on the omic features to zero out those with 

irrelevant contributions to axes of variation and cluster formation. The selected features 

(i.e., with non-zero effects) across the three omics corresponded with the 18th, 25th, 33rd, 

and 38th axes (sorted from more to minor variance explained) and mapped onto a total of 

1200 genes. The cluster identification and projection onto two dimensions revealed eight 

classes (Figure 3.2). Because of removing the effects of tissue localization, all clusters 

were formed by samples from multiple cancer types. Some clusters differed statistically 

from their cancer types composition (Table 3.2). However, all cancer types overlapped 

with more than one cluster (Figure 3.2; Table 3.2, bottom). Furthermore, this overlap was 

not influenced by previously reported subtypes (Figure B.2). 
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Figure 3:2: Pan-cancer clustering of tumor samples after adjusting for tissue 
effects. Tumor clusters were obtained by sequential application of tSNE and DBSCAN 
algorithm for 5,408 samples across 33 cancer types. The contours reflect cluster 
membership, and the points’ colors and shapes represent similar anatomical sites and 
cancer types, respectively. The two-dimensional tSNE projection was obtained from the 
four deep principal axes of the extended omic matrix projected outside the tissue-specific 
effects after sSVD and removing the first two axes. After re-classifying tumors, the few 
samples from Kidney chromophobe tumors (KICH) did not map in any of the eight clusters 
obtained. 
 
3.4.3. Clinical and demographical characterization of tumor clusters 

Clusters differed statistically in terms of patient age (with Cluster 3 and 8 containing 

samples from slightly younger patients) and sex (with Clusters 2 and 7 having significantly 

more females than Cluster 8, due to their slightly higher composition of gynecological 

cancers) (Table 3.2). However, none of the clusters were significantly associated with 

ethnicity (Table 3.2).  
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Table 3.2: Clusters characterization after removing tissue effects. The clusters 
produced by the integration of whole-genome profiles of gene expression (GE), copy 
number variants (CNV), and DNA methylation (METH) were characterized in terms of 
clinical, demographic, immune, and molecular information. The table shows those 
variables with significant differences in at least one cluster. For each variable, different 
letters represent significant differences between clusters. 
  

   Clusters 1 2 3 4 5 6 7 8 

C
li
n

ic
a
l 
 

in
fo

rm
a
ti

o
n

 

Cancer type# bc c d ab ab ab bc a 

Metastasis (%) 5c 4de 3e 17ab 5de 7cd 12bc 21a 

Survival time 
(years)*  

2a 2a 3b 2a 2ab 2ab 2ab 2a 

Stage [119] IVab IVbc IIIc IVab IIIabc IIIab IIIabc IVab 

Tumor-free 
fraction (%) 

60a 70a 80b 60a 60a 60a 60a 60a 

Intratumor 
heterogenity 
(%) 

13ab 14ab 4d 10c 15a 12abc 14ab 9bc 

Proliferation  0.4a 0.3a -0.4b 0.3a 0.3a 0.4a 0.4a 0.5a 

D
e
m

o
g

ra
p

h
ic

 

in
fo

rm
a
ti

o
n

 

Age (years) 61a 62a 57b 60ab 60ab 61ab 62a 57b 

Sex (% of 
females) 

52ab 54a 50ab 50ab 53ab 46b 58a 41b 

G
e
n

o
m

e
 

in
s
ta

b
il

it
y
 

 

Non-silent 
mutation 

2bc 2bc 1d 3a 2abc 2c 3ab 2bc 

Aneuploidy 12a 12a 3b 10a 14a 11a 12a 10a 

Homologous 
recomb 
defects 

22ab 16c 8d 23ab 22abc 25a 27a 19bc 

Im
m

u
n

e
  

in
fi

lt
ra

ti
o

n
 

Th1 CD4+ 
cells (x102) 

-6b -6b -3a -7b -8b -7b -6b -6b 

Th2 CD4+ 
cells (x102) 

3c 2c 2c 4ab 5abc 5ab 5ab 6a 

Th17 CD4+ 
cells (x102) 

-8b -8b 6a -15c -5b -5b -9b -9b 

Activated 
natural killer 
cells (x10-1) 

2bc 2bc 3a 3ab 2bc 1c 2bc 2bc 

Lymphocytes 
(x10-2) 

5bc 6b 4a 4bc 5bc 3bc 5bc 3c 

Tumor-
infiltrating 
lymphocytes 

1.7b 1.7b 1.9a 1.7b 1.8ab 1.6b 1.8b 1.6b 
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Table 3.2 (cont’d) 
F

u
n

c
ti

o
n

a
l 

c
la

s
s
e
s

 *
*  

DNA 
replication&¶,(1) 

(x10-1) 

-6d 6a -1bc 6a 4ab 7a -3c -2bc 

Mitochondrial 
translation&¶,(2) 

0.4d -0.3b 0.0c -0.9a 0.3cd -1.1a 1.9e 0.5d 

mir-has-615b 
targetsꝉ ,(3) 

-1.1c 0.7a -0.1b 0.7a -0.2b 0.8a -1.1c -0.1b 

S phase and 
DNA 
synthesis¶,(4) 

-1.5f 1.0b -0.1d 0.5c 0.3c 1.3a -0.4e -0.4e 

#Cancer types by cluster (%). 

C1 COAD (14.2), LUAD (11.7), BRCA (10.7), SKCM (8.1), SARC (7.1), 
READ (6.4), PRAD (4.8), ESCA (4.6), CESC (4.1), LUSC (4.1), STAD 
(4.1), BLCA (3.8), PAAD (3.6), TGCT (2.5), ACC (2.3), MESO (2), LIHC 
(1.5), UCEC (1.5), PCPG (1), HNSC (0.8), KIRC (0.3), LGG (0.3), OV 
(0.3), and UVM (0.3). 

C2 BRCA (11.1), COAD (11.1), STAD (9.6), LUSC (7.4), LUAD (7.1), SKCM 
(6.1), CESC (5.6), BLCA (5.4), SARC (5.4), READ (4), ESCA (3.1), KIRP 
(2.5), PAAD (2.5), PRAD (2.5), PCPG (2.2), HNSC (1.7), LIHC (1.5), 
UVM (1.5), MESO (1.4), UCEC (1.4), ACC (1.3), KIRC (1.1), GBM (1), 
THYM (1), LGG (0.8), THCA (0.7), TGCT (0.6), DLBC (0.1), and LAML 
(0.1). 

C3 THCA (16.1), PRAD (13.2), BRCA (9.3), LUAD (6.3), SKCM (4.4), BLCA 
(4.3), LUSC (3.9), STAD (3.8), COAD (3.4), TGCT (3.4), UCEC (3.4), 
PAAD (3.3), CESC (3.2), THYM (3.2), PCPG (3.1), LGG (2.5), SARC 
(1.7), UVM (1.6), HNSC (1.3), LIHC (1.2), KIRC (1.1), MESO (1.1), 
ESCA (1), GBM (1), LAML (0.9), DLBC (0.7), READ (0.5), KIRP (0.4), 
CHOL (0.4), UCS (0.1), ACC (0.1), and OV (0.1). 

C4 SKCM (21.7), BLCA (13), CESC (9.6), LUAD (9.6), LUSC (8.7), BRCA 
(7.8), ESCA (4.3), UVM (4.3), MESO (3.5), HNSC (2.6), SARC (2.6), 
GBM (1.7), LIHC (1.7), STAD (1.7), UCEC (1.7), COAD (0.9), KIRP 
(0.9), PRAD (0.9), READ (0.9), TGCT (0.9), and THYM (0.9). 

C5 BLCA (18.4), LUAD (15.8), CESC (10.5), SKCM (10.5), PRAD (7.9), 
BRCA (5.3), ESCA (5.3), STAD (5.3), COAD (2.6), GBM (2.6), HNSC 
(2.6), LIHC (2.6), LUSC (2.6), PAAD (2.6), PCPG (2.6), and TGCT (2.6). 

C6 BRCA (31.5), LUSC (9.7), ESCA (8.6), SKCM (8.6), BLCA (8.2), STAD 
(6.5), LUAD (5.7), PRAD (5.7), HNSC (3.9), CESC (2.5), SARC (2.2), 
PAAD (1.8), GBM (0.7), LGG (0.7), UCEC (0.7), UVM (0.7), CHOL (0.4), 
DLBC (0.4), MESO (0.4), PCPG (0.4), READ (0.4), and TGCT (0.4). 

C7 SKCM (14.7), BRCA (11.5), LUSC (11), ESCA (8.4), STAD (7.3), SARC 
(6.8), CESC (5.8), LUAD (5.8), UVM (4.7), BLCA (4.2), PAAD (3.1), 
HNSC (2.6), COAD (2.1), PRAD (2.1), LIHC (1.6), MESO (1.6), READ 
(1.6), UCEC (1.6), TGCT (1), DLBC (0.5), GBM (0.5), LGG (0.5), OV 
(0.5), and THCA (0.5). 
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Table 3.2 (cont’d) 

C8 SKCM (24.8), BRCA (23.9), CESC (12.8), PCPG (6.8), BLCA (5.1), 
SARC (5.1), LUSC (4.3), HNSC (3.4), UCEC (2.6), COAD (1.7), ESCA 
(1.7), MESO (1.7), READ (1.7), TGCT (1.7), LUAD (0.9), OV (0.9), and 
UVM (0.9). 

*Values represent median survival times by cluster. Letters represent significant 
differences under the log-rank test to compare the entire survival curves of each 
cluster. 
**Databases: GO Biological process (&), miRTabrBase (ꝉ), Reactome (¶). Functional 
classes significant at FDR adj. p-value < 0.05. 
Overlap between a selected group of genes and databases: 
(1): GINS1, POLD3, PRIM2, POLD4, PCNA, MCM8, and MCM3. 
(2): MRPS26, MRPL2, MRPL51, MRPS35, MRPL16, MRPS18A, MRPS10, MRPL14, 
MRPL48, MRPL21 and MRPL11. 
(3): PANK2, SF3B2, PCNA, HSP90AB1, NOP2, ATN1, CHD4, HOXC13, PRICKLE4, 
DPP3, C12ORF57, LDHB, CCND3, CCND2, STK35, RAB23, PPP6R3, IDH3B, 
RPS3, SIRPA, PSMF1, DNM1L, NKX2-5, PRNP, UVRAG, PPIL1, TPI1, DST, 
CSNK2A1, SMOX, YIPF3, DDX11, ENTPD6, MAD2L1BP, PPP2R5D, MUT, FBXL14, 
MRPL21, KLHL42, WNK1, RPL7L1, NCAPD2, FKBP4 and GAPDH. 
(4): GINS1, POLD3, PRIM2, POLD4, PCNA, CDKN1B, CCND1, MCM8, MCM3, 
PSMF1 and CDC25B. 

 

The most notorious distinctions between clusters were their differences in prognosis and 

severity traits (Figure B.3). Cluster 3 (the largest cluster in Figure 3.2) was distinguished 

by better prognosis/less severity cancers than the remaining clusters, followed by 

Clusters 2, 5, 6, and 7. In general, clusters 4 and 8 had the worst prognosis and more 

aggressive tumors (Table 3.2). Cluster 3 was also the one with the fewest metastatic 

samples (Figure B.4), higher survival rates, highest tumor-free fraction, lowest stage, 

lowest intra-tumor heterogeneity (ITH, that estimates the fraction of sub-clonal and clonal 

genomes in each sample[108]), and lowest proliferation (Table 3.2, Figure B.3). By 

comparison, Clusters 4 and 8 had significantly more metastatic samples than Cluster 3. 

Cluster 8 also had higher ITH rates than Cluster 3. The highest ITH rates were found in 

Cluster 5. 
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Cluster 3 also had the lowest rates of non-silent mutations, aneuploidies, and homologous 

recombination dysfunction (HRD). The remaining clusters were very similar in terms of 

genome instability indicators, except for Cluster 2. This cluster had significantly higher 

rates of HRD than Cluster 3 but significantly lower rates than every other cluster (Table 

3.2). Cluster 3 was characterized by the highest rates of tumor-suppressive immune cells 

and tumor-infiltrating lymphocytes (Table 3.2). In addition, Cluster 6 had the lowest 

infiltration of activated natural killer (ANK) cells. Cluster 8 also had the lowest lymphocytic 

and highest Th2 CD4+ infiltrations, respectively (Table 3.2). 

3.4.4. Gene signatures characterizing tumor clusters. 

The clusters were also characterized by distinct sets of omic features, significantly 

enriched for functions involved in the cell cycle (DNA replication, DNA synthesis, and 

targets of hsa-mir-615-b, a micro-RNA involved in cell proliferation) and mitochondrial 

translation (initiation, elongation, and termination) (Table 3.2). To study the pairwise 

differences across clusters, these gene sets were projected onto scores for each gene, 

as linear combinations between the features’ values mapping onto the gene (i.e., its 

expression, methylation, and copy number values) and their related activities (i.e., the 

feature's effects arising from the sparsity constraints) (see Materials and Methods 

section). In general, Cluster 3 was characterized by intermediate values of these scores, 

while the remaining clusters were characterized by higher (i.e., gene set with higher 

expression than Cluster 3) or lower (gene sets with lower expression than in Cluster 3) 

gene set scores. Clusters 2, 4, and 6 had significantly higher scores for cell proliferation 

and significantly lower for mitochondrial translation. On the other hand, clusters 1, 7, and 

8 had significantly lower scores of proliferation and higher for mitochondrial translation. 
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Sparse factorization of the extended omic matrix resulted in the selection of features 

mapping onto 1200 genes. From this list, 441 genes were significantly different in at least 

one cluster. These results were obtained by a series of analyses of variance (ANOVAs), 

using the scores of each gene as response variables and clusters as explanatory 

variables. This list included 34 validated cancer genes, including oncogenes (ERC1, 

HSP90AB1, NUMA1, PPFIBP1, ZNF384, CHD4, KRAS, HIST1H3B, CCND1, CCND2, 

PIM1, CCND3, HMGA1, HOXC11, HOXC13, KDM5A, SRSF3, TFEB), tumor suppressors 

(FANCE, CDKN1B, ASXL1, ETNK1) and fusion-proteins (ERC1, HSP90AB1, NUMA1, 

PPFIBP1, ZNF384). Many genes also mapped onto known transcription factors (including 

KDM5A, RELA, SRF, CTBP2, FOXA2, NONOG, FOLSL1, TEAD4, and FOXM1) and 

some of their targets (Figure B.5). However, the expressions of TFs and their targets were 

not significantly correlated within or between clusters (Figure B.5), suggesting 

mechanisms of control of the gene expression other than TFs regulation. 

We then interrogated all pair-wise comparisons between the scores of the 441 significant 

genes using Tukey tests (Table B.1). We identified a subgroup of 123 significant genes 

that distinguished each cluster from the rest (for example, POLH had significantly higher 

scores in Cluster 4 than in every other cluster). The genes characterizing each cluster 

were then used to define signatures. With this criterion, only Clusters 1, 4, 6, 7, and 8 

were characterized by distinct signatures of 57, 4, 23, 24, and 15 genes each, 

respectively. Since the gene scores are combinations of omic features, we looked at the 

gene expression in each signature and the potential role of copy numbers and methylation 

in regulating it (Figures 3.3-4). 
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Cluster 1's signature was composed of genes mapped on chromosome 20. A group of 56 

of the 57 genes exhibited significant copy losses in Cluster 1. Of this group, 50 genes 

(ATRN, AP5S1, TMEM230, MGME1, NDUFAF5, CENPB, CRLS1, CRNKL1, CSNK2A1, 

DDRGK1, DSTN, DTD1, ESF1, FAM110A, FASTKD5, FKBP1A, IDH3B, ITPA, SMIM26, 

MAVS, MCM8, MKKS, MRPS26, NAA20, NOP56, NRSN2, NSFL1C, PANK2, PCNA, 

POLR3F, PSMF1, PTPRA, RBBP9, RBCK1, RRBP1, SIRPA, SMOX, SNPH, SNRPB2, 

SNRPB, SNX5, SOX12, STK35, TBC1D20, TRMT6, UBOX5, VPS16, ZCCHC3, ZNF133 

and ZNF343) were also downregulated. The genes with significant copy-losses and basal 

expression values (TGM6, SOX13, PROKR2, PRND, OXT, LRRN4, and FERMT1), 

LRRN4, and FERMT1 were also significantly hyper- and hypo-methylated, respectively 

(Figure 3.3). 

Cluster 4's signature was composed of four genes mapping onto chromosome 6: TDRD6, 

POLH, PAQR8, and GUCA1A. All these genes exhibited significant copy losses in Cluster 

4, and all of them except GUCA1A were also downregulated. Additionally, POLH was 

hypo-methylated, while PAQR8 was hyper-methylated (Figure 3.3). 
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Figure 3.3: Gene signatures for Clusters 1 and 4. The genes significantly de-regulated 
exclusive of Clusters 1 and 4 were used to define signatures (y-axis). The features values 
(x-axis) of each gene are separated in gene expression (GE, first column of panels), copy 
number variants (CNV, second column of panels), and DNA methylation (METH, third 
column of panels), and summarized by Bonferroni confidence intervals (adjusting for all 
the 441 significant genes in at least one cluster). Dots represent the average of features 
values across samples. 
 
Cluster 6's signature was composed of 23 genes mapping onto chromosome 11: 

ALDH3B1, ANKRD13D, ANO1, AQP11, ARRB1, EMSY, CCND1, CTTN, KRTAP5-10, 

LRP5, LRRC32, TESMIN, MYO7A, NUMA1, PAK1, PPFIA1, RBM4, RPS6KB2, RSF1, 
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SHANK2, TMEM134, TPCN2, and USP35. These genes exhibited significant copy gains, 

and all of them were also significantly upregulated, except for three genes with basal 

expression in Cluster 6: MYO7A, LRRC32, and ALDH3B1. In addition, genes USP35, 

SHANK2, MYO7A, LRRC32, CTTN, CCND1, ARRB1, and ALDH3B1 were additionally 

hypo-methylated, while genes RSF1 and PPFIA1 were hyper-methylated (Figure 3.4).  

Cluster 7's signature was composed of 24 genes mapping onto chromosome 6. All of 

these genes (BTBD9, RRP36, CCND3, CNPY3, CUL7, FRS3, GUCA1A, BICRAL, KLC4, 

KLHDC3, LRFN2, MEA1, MED20, MRPL2, MRPS10, PEX6, PPP2R5D, RPL7L1, SRF, 

TAF8, TBCC, TOMM6, TRERF1, and UBR2) exhibited significant copy gains. In addition, 

all of them were significantly up-regulated, except by LRFN2, GUCA1A, BTBD9, which 

had basal levels in Cluster 7. Genes TRERF1, LRFN2, and FRS3 were additionally hypo-

methylated, while GUCA1A was hyper-methylated (Figure 3.4). 

Cluster 8's signature was composed of 15 genes mapping onto chromosome 11. These 

genes (ALDH3B1, ANO1, CCND1, CPT1A, CTTN, LRP5, MRPL21, NADSYN1, PPFIA1, 

RNF121, RSF1, SHANK2, TPCN2, UNC93B1, and USP35) exhibited significant copy 

losses. All of them except ANO1 (with basal levels in cluster 7) were significantly 

downregulated. In addition, genes USP35 and NADSYN1 were significantly 

hypermethylated, while UNC93B1, RSF1, MRPL21, and ANO1 were hypo-methylated 

(Figure 3.4). 
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Figure 3.4: Gene signatures for Clusters 6, 7, and 8. The genes significantly de-
regulated exclusively in Clusters 6, 7, and 8 were used to define signatures (y-axis). The 
features values (x-axis) of each gene are separated in gene expression (GE, first column 
of panels), copy number variants (CNV, second column of panels), and DNA methylation 
(METH, third column of panels), and summarized by Bonferroni confidence intervals 
(adjusting for all the 441 significant genes in at least one cluster). Dots represent the 
average of features values across samples. 
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3.5. DISCUSSION 

Most pan-cancer classifications rely on molecular alterations that discriminate between 

the tissue of origin [72,100–102,120]. However, as soon as tissue effects were removed, 

we have found that the cancer signal immediately emerged. Distinct cancer classes were 

formed, containing tumors from different cancer types. Particular functional groups of 

omic features also characterized these classes. An SVD of the extended omics matrix 

can result in a multitude of axes of variation. Such axes have the potential to explain 

different patterns of variability across subjects. In this study, we preceded our cluster 

analysis by selecting axes of variation (i.e., basis vectors spanning the features space of 

the concatenated omics) having features loadings different from zero (each axis of 

variation has an accompanying vector of loadings representing features activities). We 

have obtained the cluster display in Figure 3.2 as a result of this selection criterion. 

Furthermore, most of the variability between clusters of tumors associates with the 

canonical relationship between gene expression and copy number. According to this, the 

primary source of co-variability among features seemed to be dominated by positive 

covariation of expression and copy number (i.e., copy losses match with lower expression 

levels, and vice versa, Figure B.5). The expression of regulatory elements within the 

group of selected features (including transcription factors and the micro-RNA hsa-mir-

615b) was, on the other hand, not associated with the expression of their predicted 

targets. These observations support the role of copy numbers as a significant force 

affecting tumor progression [121–123]. Experimental evidence has shown large effects 

of methylation at characterizing both normal and tumor tissues [124–127]. Contrarily, 

epigenetics has an essential role during tissue differentiation, as well as in cancer. 
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However, our analysis might suggest a minor role in leading the cancer cluster 

differences. We believe that this minor role could be the result of an intense correction for 

tissue-specific effects. Other possible explanations include artifacts of data processing, 

such as summarizing methylation at the CpG island level. Although the map at the CGI 

level covered both genic and non-genic regions and facilitated computations, this 

summary could have come at the cost of washing out CpG site-specific effects on cancer. 

A third possibility is that the abnormal methylation patterns are essential but shared by 

two or more cancer clusters. Our features highlighted are the ones that differentiate 

between clusters. Regardless, we observed abnormal methylation patterns that might 

suggest a role in the expression of some genes characterizing tumor classes (e.g., 

expression of LRN4 and GUCA1A negatively correlated with average methylation of 

promoters’ CpG islands).  

The tumor clusters C1, C4, C6, C7, and C8, had exclusive signatures (i.e., different from 

every other cluster). Interestingly, the clusters without distinct individual signatures had 

more favorable outcomes (C3, C2, and C5). One possible explanation for this is the 

frequent correspondence between more dramatic molecular alterations and worse clinical 

outcomes [128,129]. To gain insights about possible biological interactions within each 

signature, we used the accompanying bibliographic results provided by the STRING 

database [115] (see Material and Methods section). The literature suggests a broad 

overlap between signatures in terms of gene functions (cell growth, division, small RNA 

metabolism, protein synthesis, maturation and transport, and mitochondrial dysfunction). 

In the case of signature C1 (most genes down-regulated), the literature suggested NOP56 

(a core component of the small nucleolar ribonucleic protein) as a central element in the 
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signature; interacting with MKKS, NAA20, and PTPRA (genes with roles on mitotic 

division); ESF1, SNRPB, SNRPB2, POLR3F and CRNKL1 (involved in small RNA 

processing), PCNA and ITPA (involved in DNA replication and repair), UBOX5, RRBP1, 

RBCK1 and NRSN2 (protein synthesis, maturation, and antigen presentation), RBBPP9 

(resistance to growth inhibition of TGF); SIRPA and DSTN (cell adhesion)[130–133]. In 

the signature C1, NOP56 could be a candidate for future therapeutic intervention. Tumor 

suppressors NRSN2 and RBCK1 could also be considered. 

The three downregulated genes from signature C4 were involved in small RNA maturation 

(TDRD6, micro-RNA expression, and maturation), cell proliferation (PAQR8, plasma 

membrane progesterone receptor), and DNA repair (POLH, DNA polymerase involved in 

DNA repair). From these genes, PAQR8 and TDRD6 could represent potential targets of 

therapy. Although neither of them has been directly related to cancer, other members of 

the PAQR family of progesterone receptors are known tumor suppressors, while TDRD6 

has been reported as frequently down-regulated in breast cancer, suggesting its potential 

use as a biomarker [134]. In the case of signature C6 (most genes upregulated), the 

literature suggests CTTN as interacting with two groups of genes within the signature, 

either by co-expression or co-localization in amplicons. One group consisted of invasion 

and anti-apoptotic related genes (e.g., SHANK, PAK1, PPFIA1) and ion transport (ANO1 

and TPCN2) [135,136]. The other group consisted of CCND1 (cell cycle checkpoints), 

LRPS (protein synthesis), RSF1 (chromatin remodeling), and USP35 (protein turnover; 

through amplicon-mediated overexpression in breast and gynecological cancers) 

[137,138]. Thus, patients with signature C6 could perhaps benefit from ANO1 inhibitory 

therapy [136].  
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Signature C7 was characterized by multiple genes co-expressing with KLHDC3 (involved 

in homologous recombination): MEA1 (spermatogenesis), CNPY3 (protein folding, 

antigen presentation), PPP2R5D (direct catalytic activity), RRP36 (small RNA synthesis), 

CCND3 (cyclin, cell cycle checks points), and MED20 (transcription). KLHDC3 also 

belongs to the protein turnover and antigen presentation pathway, together with CUL7 

and UBR2. The literature also suggests another group of co-expressing genes within 

signature C7, consisting of RPL7L (ribosome), MRPL2, and MRPS10 (mitochondrial 

ribosome). These genes have also been found to interact in cell culture [140,141] 

physically. Signature C8 genes remarkably overlapped with signature C6 genes but 

exhibited opposite regulation (i.e., down- instead of up-regulated). Additionally, the 

literature suggests the interaction between CCND1, NADSYN1, and MRPL20 in signature 

C8 [139,140]. NADSYN1 has been proposed as a target of inhibitory therapy in cancer  

[141], while MRPL20 has been suggested as a biomarker for gastric cancers [142,143]. 

The molecular classification of tumors generated clusters with clear differences in 

prognosis and severity, with C3 exhibiting better outcomes than the remaining clusters. 

C3 also resembled a previously reported “inflammatory” type in terms of immune 

infiltration and cancer type composition (enriched for prostate adenocarcinoma, thyroid, 

and pancreatic carcinomas and having elevated values of markers for CD4+ Th17 and 

Th1 cells and low genomic instability) [108]. Although the remaining clusters were clearly 

distinguished in terms of altered molecular processes, they were highly similar clinical 

and demographic characteristics. C3 also differed from the remaining clusters by lacking 

large CNV. In C3, we do not observe drastic genome alterations being systematically 

linked with worse cancer outcomes, either by causing loss of tumor-suppressing activities 
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(e.g., mitotic checkpoints, DNA instability sensing, pro-apoptotic activity), or gain of 

oncogenic function (e.g., duplication of mitotic factors). In either case, large CNV have 

been associated with worsened clinical outcomes, in contrast with those characterizing 

C3. This observation is somewhat supported by less aggressive cancers in C3 (e.g., a 

high frequency of prostate and thyroid cancers), co-located with low severity cases of 

more aggressive tumor types. Another example of less aggressive tumors in  C3 are 

Her2+ breast cancer and proximal inflammatory lung adenocarcinomas, tumors of less 

severe outcomes than their luminal/basal and proximal proliferative subtypes, 

respectively [144][145]. Since similar signaling deregulation can arise in different cancers 

(e.g., dysregulated PI3K/AKT/mTOR pathway in gynecologic cancer) [146], further 

research on the link between shared molecular signatures within tumors in the same 

cluster could shed light on the development of novel therapies, or the repurpose and 

combination of existing ones. Given their small molecular weights, targeting oncogenes 

with common monoclonal antibodies and small-molecule tyrosine kinase inhibitors could 

aid in the treatment of tumors with overexpressed oncogenes [147]. For instance, tumors 

with signature C6 could benefit from combined therapy with indirubin and Ani1, inhibitors 

of CCND1 and ANO1  [148,149]. On the other side of the spectrum, targeting tumor 

suppressors on signatures of downregulated genes also presents exciting opportunities. 

For instance, tumors with signature C1 could benefit from target therapy for tumor 

suppressors NRSN2 and RBCK1. Classic approaches for targeting tumor suppressor 

genes include re-activation by either re-introducing a functional copy (e.g., gene therapy) 

or diminishing the repressive action of other players through small-molecule inhibition 

[150]. 
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Nevertheless, given the technical challenges of targeting loss of tumor-suppressing 

function, signatures exhibiting up-regulation could have more pharmacological potential. 

Similarly, signatures could also rapidly address differences in tumor heterogeneity (e.g., 

C8 and C5 were notoriously more heterogeneous than the rest). Finally, differences in 

immune infiltration (C6 with the lowest activated natural killers’ infiltration and C8 with the 

lowest lymphocytic one) could also imply the potential use of signatures to aid 

immunotherapeutic decisions. 

Our results included genes frequently duplicated in cancer (e.g., KRAS, CCND1). 

However, other frequently duplicated genes, like ERBB2, MYC, and FGFR1, were not 

present in our selected set of features. One possibility for this unexpected result could be 

a limitation of the EN penalty as a feature selection criterion. For example, an EN 

parameter of 0.5 could have been too stringent, and groups of correlated and relevant 

features could have been left out during the selection process. Another possibility is that 

the effects of these frequent duplication were washed out by the tissue correction. While 

removing the tissue "environment” evident in the omics, treating tissue as a systematic 

effect in a linear model, a different way of having defined tissue effects would have been 

to use tumor histology markers (e.g., mesenchymal, epithelial). Additionally, while 

removing dominant differences on tissues that may be unrelated to cancer, it could also 

eliminate differences that may allow certain cancers to progress in that specific tissue. 

The third possibility is that the effects of these events were not essential for the cluster 

partition. 

Given the possibility of unveiling different biological channels altered in tumors of similar 

clinical and molecular characteristics, we believe this novel pan-cancer classification 
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could aid in identifying therapies for cancers without a standard of care. However, 

extrapolation of results herein should be exerted with the following caution. Although our 

data included information from multiple studies, sexes, ages, and ethnicity, our results 

could be strongly influenced by factors such as the country of origin of each study and 

biased on demographic characteristics. Further application of our methods to tumors from 

patients from diverse populations and ages would be essential for an effective 

generalization of our results. 
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CHAPTER 4  

 

PHENOMIC DATA INTEGRATION IN THE UK BIOBANK REVEALS GENETIC 

VARIANTS INVOLVED IN ENERGY BALANCE 

 

4.1. ABSTRACT 

Excessive calorie intake and low physical activity contribute to a positive energy balance 

(EB), leading to obesity. Although EB is affected by several environmental and 

socioeconomic factors, a sizable part of its variation is still due to genetics. The study of 

EB as a target phenotype is challenging, as EB combines several layers of data, including 

whole-body size and composition, food selection and amount ingested engagement in 

physical activity, and metabolic profiles. Many genes (e.g., FTO, MCR4, ANKRD33, 

FIGNL2) have been identified as contributing to the variation observed in different 

components of EB. However, a complete set of genes is still missing. We integrated 

several phenotypes from the UK Biobank related to EB to increase our knowledge on 

EB's genetic and molecular basis. We have used sparse factor analysis to define patterns 

of energy balance (PEB) and determined genomic regions of interest with potential causal 

effects in EB. 
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4.2. INTRODUCTION 

Obesity is affected by multiple environmental and socioeconomic factors [151]. However, 

it is also considered a heritable condition [152,153]. As such, obesity has been linked to 

the variation of many genes affecting energy balance (EB, the difference between energy 

intake and energy expenditure), including FTO, MCR4, ANKRD33, FIGNL2 [154,155]. 

Nevertheless, due to the multiple phenotypes involved in EB, the complete set of genes 

affecting EB is still not available [156,157]. 

EB is determined by multiple variables affecting the thermic effects of feeding (e.g., 

frequency and quantity of different food items), resting metabolic rate (e.g., body size and 

composition), and physical activity (PA, e.g., intensity, frequency, and duration) [157]. 

Factor analysis methods can capture the complex covariation among all these different 

types of variables [158,159]. Under this framework, multiple phenotypes can be 

summarized by a few factors representing patterns of EB. For example, [160,161] have 

used sparse latent factor models to estimate dietary patterns and variations across an 

exercise intervention. On the other hand, [162] used principal functional components to 

estimate the temporal variation of PA, while [163] used reduced rank regression to 

combine metabolite and dietary patterns and their link with type I diabetes. Once factors 

related to EB are derived, they can be used as responses in genome-wide association 

studies (GWAS) [154,164]. Advantages of factors as GWAS responses include lower type 

I errors, increased power, and faster computations [165–167]. 

Several studies support the association between EB components and genomic variation 

[154,155]. For instance, selection experiments in mice have demonstrated strain variation 

in the predisposition to engage in physical activity of different intensity [168–170] and 
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preference of certain foods over others [171,172]. In addition, human studies on the 

genetics of PA have reported heritability values as high as 63% [173–176]. Furthermore, 

association studies have shown the putative roles of many genes involved in food 

preference and adherence to physical activity [164,177–179]. Moreover, specific genes 

(like the fat mass and obesity-associated protein, FTO) have also been shown to have 

pleiotropic effects on diet, physical activity, body size, and obesity risk [180–183]. 

In this work, we have used extensive phenomics and genomic information from the UK 

Biobank cohort to derive patterns of EB (PEB). These PEB captured distinct and relevant 

aspects of food preference, body size and composition types, physical activity tendencies, 

and metabolic profiles. Furthermore, the association between PEB and genomic variation 

has revealed novel genes affecting multiple components of EB. 
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4.3. MATERIAL AND METHODS 

4.3.1. Cohort 

This study used data from a subset of 219,049 participants from The UK Biobank (UKB) 

cohort [14] to derive energy intake and expenditure patterns and study their associations 

with genotypic information. Edition and quality control criteria for the phenotypic variables 

criteria included the exclusion of participants of non-Caucasian/European ancestry, 

exclusion of related individuals (KING's kinship value lower than 0.03 to exclude 1st, 2nd, 

and 3rd degrees of relationship) [184], exclusion of participants with abnormal biomarker 

levels, and exclusion of participants reporting unrealistic values of food intake and energy 

expenditure (Figure 4.1). 

Phenotypes: We used 28 phenotypic variables with possible roles at affecting an 

individual's energy requirements and expenditure, split into four groups: 1) blood 

biomarkers, including glucose, creatinine, triglycerides, and cholesterol levels, 2) body 

composition, including body weight, standing height, waist circumference, fat mass and 

lean mass, 3) diet, recorded with the ACE touch screen questionnaire on frequency of 

consumed items in the last year, including cooked and raw vegetables, fresh fruit, oily 

and non-oily fish, poultry, beef, pork, lamb or lamb, and processed meats; cheese, bread, 

cereal, tea, coffee, water, and alcohol (see detail in [185], and 4) physical activity (as 

intensity, frequency, and duration). 

To correct the effects of drugs affecting blood biomarkers, we followed [186]. First, we 

used self-reported data on medication taken for cholesterol, blood pressure, diabetes, or 

exogenous hormones (data field 6153, ACE Touchscreen). Next, drug effects were 

estimated using the subset of participants that reported taking medicine after the first 
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recorded instance. For these participants, a drug effect correction factor was calculated 

as the mean difference between biomarker levels before and after taking the drug. The 

correction factor was then used to multiply the biomarker levels of those participants 

taking medicine at the time of recruitment. After the adjustment, any remaining values 

outside three absolute median deviations (MADs) were considered outliers and excluded 

from the study. 

Diet variables were either numerical (representing the number of servings by a period) or 

categorical (representing consumption or not of a specific item). The numerical variables 

were cooked and raw vegetable intake, fresh fruit, bread, cereal, tea, coffee, and water. 

The categorical variables corresponded to intakes of poultry, cheese, oily and non-oily 

fish, beef, pork, mutton/lamb, and alcohol. If frequencies for the numerical diet variables 

were outside 3 MADs, the participant was excluded. If any class within each categorical 

dietary variable was underrepresented after quality controls, we fused it with the previous 

ones until all classes had more than one percent of the total sample size. We fused the 

last three categories into oily fish, non-oily fish, beef, lamb/mutton, and pork intakes. For 

poultry and processed meat intakes, we only fuse the last two categories into one.  

An estimate of energy intake is present within the UKB for a subset of participants that 

answered a web-based 24-hour dietary recall in addition to the ACE touchscreen 

questionnaire (data field 100002). We used this subset of individuals to fit a linear model 

using this energy estimate as response and ACE's derived food items consumption as 

predictors. Finally, we estimated the total energy intake in the remaining participants 

missing calory intake estimations. Individuals with an estimated caloric intake larger than 

3 MADs were excluded. 
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We additionally estimated the number of calories expended during PA data derived from 

IPAQ following [187]. We obtained these values by dividing the product between PA 

intensity and duration by PA frequency, dividing by 24 to get energy values within the 

calories/day range. Participants with PA energy expenditure higher than 3 MADs were 

excluded from our study. 

We have used a set of covariables to account for possible confounders of the associations 

between phenotypes and SNPs. The list included participants sex (31, reported by 

individual), age (21022, age of the participant on the day they attended an Initial 

Assessment Centre, truncated to whole year), age2 (the square of the participant age), 

the interaction between sex and age, the UKB assessment center (54, center at which 

individuals consented to participate in the UKB study), the first five principal components 

of the genotypic matrix, Townsend Deprivation Index (189, calculated immediately before 

participant joining UK Biobank,  based on the primary national census output areas, and 

assigned depending on the output area in which the participant postal code is located), 

as a measurement of socioeconomic status, and type of genotyping array used. 

Genotypic data: Details on the genotypic data and quality controls provided by the UKB 

project can be found in [14]. Briefly, genotyping was done using two closely related arrays: 

UK BiLEVE (~50,000 participants) and the UK Biobank Axiom arrays (~450,000 

participants). The UKB Axiom array had over 820,000 SNPs and indel markers, and the 

UK BiLEVE array was very similar with over 95% shared content.  Quality control controls 

included: excluding low-quality SNPs (missing call rates, low DNA concentration), multi-

allelic SNPs (SNP with more than two allelic variants), SNPs departing from Hardy-

Weinberg expected frequencies, with sex effects., the array, and batch effects (all test 
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based on a rejection threshold on the p-values equal to 10-12). SNP genotypes were 

arranged in a BGData R object [188], where each cell with observed data coded as 0, 1, 

or 2, indicating the number of copies of the reference allele for each locus at each 

individual. 

4.3.2. Statistical analysis 

Derivation of PEB latent variables: Since our set of phenotypes consisted of several 

continuous and categorical variables, we derived PEB variables by first using Factor 

Analysis of Mixed Data (FAMD; [189]) and imposed sparsity on the contribution of each 

phenotype to each PEB using sparse singular value decomposition (sSVD [69]). 

Essentially, FAMD can be seen as an application of standard singular value 

decomposition (SVD) on a transformed version of the data that assures the variance of 

categorical variables does not artificially dominate the construction of latent factors. The 

transformation involves standardization of each numerical variable (i.e., center to zero 

means and scale to unit variance) and redefinition of each categorical variable as a set 

of modified dummy variables. In these dummy variables, ones and zeros are replaced by 

1 – 
𝑛𝑐𝑎𝑡

𝑛
 and −

𝑛𝑐𝑎𝑡

𝑛
, respectively, were 𝑛𝑐𝑎𝑡 is the total number of samples in each category, 

while 𝑛 is the total samples size. The transformed phenotypes were adjusted by 

covariables as described in [190]. We used the following model to derive PEB as latent 

factors of the transformed phenotypes: 

𝐐 = 𝐘𝐔𝚺 + 𝐞     [Eq.4-1] 

To estimate the elements of 𝐐, 𝐔, and 𝚺, we minimized the following loss function: 

𝐿 = ‖𝐐 −  𝐘𝐔𝚺‖2
2 + 𝜆𝑈( 𝛼𝑈‖𝐔‖1 + (1 −  𝛼𝑈)‖𝐔‖2

2)     [Eq.4-2] 
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Where 𝐐𝑛x𝑞 represents the PEB variables as a set of factors obtained as linear projections 

of the matrix 𝐘𝑛x𝑠 (with rows representing participants and columns representing the pre-

adjusted and transformed phenotypes). The columns of the matrix  𝐔𝑠x𝑞 contain the 

loadings of each phenotype onto the columns of 𝐐  (i.e., values representing the 

contribution of each phenotypic variable to the construction of each factor), and 𝚺𝑞x𝑞 =

𝒅𝒊𝒂𝒈{𝜎1⋯𝜎𝑞}, where 𝜎𝑘 is the 𝑘-th singular value, such as a 𝜎1 > ⋯ > 𝜎𝑞 > 0. The the 

matrix 𝐞𝑛x𝑞 contains the projection errors that depended on the selected number of latent 

factors (the value of 𝑞). The second term at the right-hand side of [Eq.4-2] is an Elastic 

Net (EN) penalty on the elements of 𝐔. The EN penalty balances well-established 

techniques to select variables (zeroing out the noise and redundant signal between omic 

features) and shrinkage (to account for the high number of omic features that often 

exceed the number of samples). The expressions ||. ||2 and ||. ||1 correspond to the L2 

and L1 norms, respectively. The parameter 𝜆𝑈 is a real positive number controlling the 

amount of sparsity in elements of 𝐔, while 𝛼𝑈 is any number between zero and one. The 

value of 𝛼𝑈 balances shrinking and variable selection [68]. 

Heuristic methods typically select the value of 𝑞 for which the trajectory of 𝜎1⋯𝜎𝑞 explains 

a relatively large amount of variance, or at which the trajectory of 𝜎1⋯𝜎𝑞 bends drastically 

(e.g., elbow rule). We complemented these heuristics by fitting the model [Eq.4-1] 100 

thousand times via bootstrap resampling to avoid distributional assumptions. We then 

used the bootstrap distribution of 𝜎1⋯𝜎𝑞 to estimate 95 % confidence intervals for 𝑞. 

Once the value of q was estimated, the remaining missing data after quality controls was 

imputed following [191], as implemented in the function imputeFAMD from R package 

missMDA [192]. The values of the hyperparameter 𝜆𝑈 was estimated using the heuristic 
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proposed in [190], whilst the value of 𝛼𝑈 was set to 0.5. The bootstrap distribution for 

[Eq.4-1] also yield 95% confidence intervals for the sparse solution of 𝐔 to determine what 

phenotyeps exactly contributed to the formation of each PEB. 

Association studies: We conducted two types of genome-wide associations studies 

(GWAS) in two types of variables. The first one involved the PEB variables (columns of 

matrix 𝐐) as responses, while the second used transformed and covariates-adjusted 

original phenotypes (columns of 𝐘). Since normality was not assured, we applied the 

Rank-Based Inverse Normal Transformation (RIN) to both for 𝐘 and 𝐐. Considering the 

columns of the matrix 𝐗𝑛x𝑝 represent the genotypes of 𝑝 SNPs across the 𝑛 participants; 

the following models were adjusted, one marker and variable at a time: 

𝑓(𝐐𝑘) = 𝐱𝑗γ𝑗𝑘 + 𝛜𝑘𝑗     [Eq.4-3] 

and 

𝑓(𝐘𝑟) = 𝐱𝑗β𝑗𝑟 + 𝐞𝑟𝑗     [Eq.4-4] 

Where 𝑓 represent the RIN transformation, 𝐱𝑗 is the 𝑗 -th column of 𝐗 representing the 𝑗 -

th SNP (𝑗 =1, …, 𝑝), γ𝑗𝑘 and β𝑗𝑟 are the effects of the 𝑗 -th SNP on the 𝑘-th PEB and the 

𝑟-th phenotype, respectively; and  𝛜𝑘𝑗 and 𝐞𝑟𝑗 are vectors of models residuals. We called 

models [Eq.4-3] and [Eq.4-4] PEB-GWAS and ORIG-GWAS, respectively. Estimates of  

γ𝑗𝑘 and β𝑗𝑟 Moreover, p-values were obtained via the omnibus RNI omnibus test 

implemented in the R Package RNOmni [193]. In addition to the PEB-GWAS and ORIG-

GWAS analyses, we studied the pleiotropic effect of each SNP on the original phenotypes 

contributing to each PEB, that is, those variables with loadings different from zero after 

imposing sparsity on the element of 𝐔.  For this, we used the fast sequential test of 

pleiotropy proposed in [194]. We called the analysis PEB-PLEIO. 
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Summary of GWAS results: A standard threshold of 1x10-8 was used to define an SNP 

as significant. GWAS results were also summarized in "peaks", defined based on SNP's 

p-values and linkage disequilibrium (LD) among them. LD decay was calculated as the 

coefficient of determination 𝑅2 between significant and adjacent SNP within half 

megabase. GWAS peaks were defined imposing by imposing a threshold of 𝑅2 ≥ 0.01. 

The SNP with the lowest p-value within a peak was chosen as "lead". Peaks were 

annotated using functional information from the G37 genome assembly annotation 

provided by the UKB project and complemented by ENCODE annotation obtained via 

Bioconductor package biomaRt [195,196]. Additionally, R package LDlink [197] was used 

to retrieve information of the overlap between peaks and significant expression-QTL 

(eQTL) from the Genotype-Tissue Expression (GTEx; [198]). Enrichr [202] and Ingenuity 

Pathway Analysis (IPA; QIAGEN Inc) were used to determine the overlap between genes 

and pre-existing gene sets. 

Cluster analysis: To determine if the PEB would induce a separation of participants in 

biologically meaningful groups, we first embedded the columns of 𝐐 onto two dimensions 

using Uniform Manifold Approximation and Projection (UMAP; [199]). UMAP is a non-

linear embedding technique suitable for large data sets, producing convenient two-

dimensional representations of clusters existing in higher dimensions. UMAP creates a 

graph in multiple dimensions and projects it onto a lower number of dimensions 

attempting to conserver its structure. For this, the number of neighbors and the minimum 

distance among them defining a local neighborhood must be tuned. Tuning was done for 

5, 10, and 20 neighbors, and minimum distances of 0.1%, 1%, and 10% of the average 

Euclidean distances between rows of 𝐐. UMAP was fitted using the R package umap 
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[199]. The map rendering the best clusters separation was considered the optimal one. 

Cluster delineation was done following [190]. To determine if clusters had biological 

meaning, we fitted the following linear models: 

𝑓(𝐘𝑟) = 𝐙𝛕𝑟 + 𝜻𝑟  

where 𝐙 is an indicator matrix representing the membership of a participant to a specific 

cluster, 𝛕𝑟 is the vector of effects of cluster membership on 𝑓(𝐘𝑟) such as ∑ 𝜏𝑐𝑟
#𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠
𝑐=1  =

 0, and 𝜻𝑟 is the vector of model residuals. Normality of 𝜻𝑟 was assumed by employing 

transformation 𝑓. Analysis of variance (ANOVA) was used to test for significant 

differences among clusters. Tukey test was used to test for significant pairwise 

differences between clusters means, using a significant level of 0.05

(
#𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠

2
)
 [200]. 
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4.4. RESULTS 

The primary purpose of this study was to identify genetic elements influencing energy 

balance. For this, we integrated variables potentially affecting the body's energy 

requirements, including physical activity, diet, body size and composition, and blood 

metabolites. Hence, we analyzed these data layers with a sparse latent factor. The 

derived factors exhibited commonalities between the layers. Finally, we studied genetic 

polymorphisms associated with these latent factors. Figure 4.1 shows the processing 

steps and resulting sample size of this study.   

 

Figure 4.1: Inclusion criteria and sample size. Sample size (n) after each of the 
inclusion criteria. MAD = median absolute deviation. 
 
4.4.1. PEB variables were associated with specific groups of phenotypes. 

Summary statistics by phenotypic variables are presented in Table 4.1. In the following 

description of results, we will refer to these as "original" variables to distinguish them from 
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the PEB variables (i.e., the derived or latent variables). The variables considered were 

food consumption patterns from the touchscreen questionnaire, blood biomarkers 

(glucose, triglycerides, cholesterol, and creatinine blood levels), body size (weight, height, 

waist circumference), body composition (fat mass and lean mass), and physical activity 

measuring intensity (intensity of walking, moderate, and vigorous exercise) and 

periodicity of exercise (frequency and duration of exercise). Diet variables included low-

caloric (water, vegetables, fresh fruit intakes), fish and meats (beef, pork, lamb, poultry, 

oily, and non-oily fish), low processed foods (coffee and tea intakes), moderately 

processed foods (bread and alcohol intakes), and highly processed foods (cereal, 

cheese, and processed meats intakes). 
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Table 4.1: Descriptive statistics of phenotypical variables. Numerical variables are 
summarized based on the median and median absolute deviation (MAD) on their original 
scales (units). Categorical variables are summarized by the percentage of samples within 
each category (%). For all categorical variables, except alcohol intake, the following 
coding was used to represent intake frequency: 0= Never, 1=Less that once a week, 
2=Once a week, 3=Two or three times a week, 4=Five or six times a week, 5=Once or 
more daily. For alcohol, the following code was used:  1=Daily or almost daily, 2=Three 
or four times a week, 3=Once or twice a week, 4=One to three times a month, 5=Special 
occasions only, 6=Never. Missing data for all variables are expressed as a percentage of 
the total sample size. PA: physical activity. 
 

Numerical variables Median (MAD) Missing 

data 
Glucose (mmol/L) 4.9 (0.49) 18.0 
Cholesterol (mmol/L) 5.8 (1.1) 5.5 

Creatinine (umol/L) 70 (14) 6.0 

Triglycerides (mmol/L) 1.5 (0.72) 9.6 

Weight (Kg) 77 (16) 0.4 

Height (cm) 170 (10) 0.3 

Waist circumference (cm) 91 (13) 0.2 

Fat mass (Kg) 51 (13) 1.9 

Lean mass (Kg) 24 (8.5) 2.1 

Cooked vegetable 

(tablespoons/day) 

2 (1.5) 4.9 

Salad/raw vegetable 

(tablespoons/day) 

2 (1.5) 8.5 

Fresh fruit (pieces/day) 2 (1.5) 4.6 

Bread (slices/week) 10 (5.9) 9.5 

Cereal (bowls/week) 5 (3) 5.0 

Tea (cups/day) 3 (3) 4.5 

Coffee (cups/day) 2 (1.5) 10.0 

Water (glasses/day) 2 (1.5) 12.0 

Intensity of moderate PA 

(METmin/week) 

240 (360) 28.0 

Intensity of vigorous PA 

(METmin/week) 

0 (0) 26.0 

Intensity of walking 

(METmin/week) 

690 (680) 25.0 

Intensity of all PA 

(METmin/week) 

1200 (1200) 26.0 

Frequency of PA (days) 9 (4.4) 22.0 

Duration of PA (min) 80 (67) 25.0 

Categorical variables Category: % Missing 

data 
Oily fish (serv) 0:11, 1:34, 2:38, 3:17 6.0 
Non-oily fish (serv) 0:04, 1:29, 2:50, 3:17 4.0 

Processed meat (serv) 0:08, 1:30, 2:30, 3:28, 4:04 17.0 
Poultry (serv) 0:04, 1:11, 2:37, 3:46, 4:02 21.0 
Beef (serv) 0:09, 1:46, 2:33, 3:12 4.2 
Lamb mutton (serv) 0:17, 1:57, 2:22, 3:04 6.6 
Pork (serv) 0:15, 1:59, 2:23, 3:03 6.2 
Cheese (serv) 0:03, 1:16, 2:21, 3:45, 4:09, 5:06 2.4 
Alcohol (g) 1:21, 2:23, 3:26, 4:11, 5:11, 6:08 1.0 
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PEB variables were derived from the first ten latent dimensions from the sparse FAMD. 

Since there was not a precise inflection point in the singular values to define a cutoff (see 

Figure C.1-A), we based the selection of latent variables on the threshold at which the 

rate of change in singular values, and therefore the size of phenotypic variances 

explained by each PEB, reached a plateau (Figure C.1 panel C and D). This value 

represented 20% of the total interindividual phenotypic variability (Fig C.1, panel B). 

Although differing at being derived from a smaller group of phenotypes, these PEB latent 

variables were highly correlated with their dense counterpart (i.e., latent factors from a 

FAMD without sparsity) and explained a similar proportion of variance (Figure C.2). 

The latent variables were constructed, imposing sparsity on the loadings of the FAMD. 

Thus, values near zero were excluded, limiting the possible number of phenotypes 

contributing to each PEB. The relationship between PEB and original phenotypes was 

studied using non-zero FAMD loadings and marginal correlations (Figure 4.2). Since only 

the first five PEB variables were related to phenotypes representing multiple components 

of EB, we retained them for further analysis. We indexed these PEB variables from one 

to five, with PEB 1 and 5 representing the highest and lowest amounts of variance 

explained, respectively.  
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Figure 4.2: Relationship between PEB variables and original phenotypes. A) 
Squared phenotype loadings. The contribution of each of the original phenotypes was 
obtained from bootstrap repetitions of the sparse factor analysis. Each panel shows the 
original phenotypes that contribute to each PEB variable. B) Marginal correlation 
between PEB and phenotypes. Similarly, the Bootstrap correlations and CI are shown 
for each pair of PEB and phenotypes. 
 

Higher values of PEB 1 represented active individuals of small body sizes and low blood 

triglycerides. The opposite was true for lower values of PEB 1. Lower PEB 1 values 

represented sedentary individuals of larger body sizes and higher values of blood 

triglyceride. Similarly, higher PEB 2 represented subjects with small body sizes and active 

diets, including red meats and vegetables. Higher PEB 3 represented subjects of large 
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body size, physically active, and with high levels of blood triglycerides and blood glucose. 

Higher values of PEB 4 represented individuals of average body size, predominantly 

meat-eaters. Finally, higher values of PEB 5 represented active individuals largely 

vegetarian. 

Table 4.2: Labels for PEB variables based on correlation with original phenotypes. 
 

     Correlation with original phenotypes  

PEB   Label  Positive  Negative 

PEB 1  

Active, small 
body size, low 
blood 
triglycerides 

 
Physical activity 
(PA) 

 
Body size and 
mass// Blood 
triglycerides 

PEB 2  

Active, small 
body size, meat, 
and veggies 
intake 

 
PA // meat and 
vegetable 
consumption 

 
Waist 
circumference, 
lean body mass 

PEB 3  

Active, large 
body size, high 
blood 
triglycerides, 
and glucose 

 

Bodyweight and 
mass, waist 
circumference// 
PA//Blood 
triglycerides and 
glucose  

 -- 

PEB 4  
Average body 
size, meat 
intake  

 
Meat 
consumption 

 -- 

PEB 5  
Active, largely 
vegetarian 

 

Vegetables, fruit, 
water, cereal, and 
oily fish 
consumption // 
PA. 

 
Processed meat 
consumption 

 

4.4.2. PEB-induced aggrupation of phenotypically distinct participants.  

The PEB variables can also induce a separation of individuals into phenotypically distinct 

groups. Figure 4.3 shows clusters of participants (Figure 4.3-A) and the association 

between clusters and original phenotypic variables (Figure 4.3-B). This representation 

was done by embedding the latent PEB variables to two dimensions using Uniform 
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Manifold Approximation and Projection (UMAP)[199]. There were seven distinct clusters 

of participants. The cluster with the highest degree of separation from the rest was Cluster 

1. This cluster was dominated by participants exhibiting low body fat, blood biomarkers, 

meat consumption, poultry, and processed foods. Participants within this cluster also had 

high levels of physical activity and consumption of low caloric foods. Contrastingly, 

Cluster 5 was characterized by higher body fat levels, blood biomarkers, and alcohol, 

while Cluster 4 was characterized by higher consumption of meats and processed foods 

and relatively low physical activity. The remaining clusters had fewer striking differences. 

Cluster 2 followed a pattern like Cluster 1, but less marked, particularly having less 

consumption of low-calorie food. Cluster 3 followed Cluster 1 and 2, but even less 

markedly, characterized by more processed food consumption. Finally, clusters 6 and 7 

represented average values across all contrasts, differing only at the consumption of 

alcohol, processed food (higher in Cluster 6), and low-calorie food (higher in Cluster 7). 
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Figure 4.3: PEB-based cluster analysis. A) UMAP projection of PEB variables. A 
two-dimensional UMAP projection of PEB was obtained from Factor Analysis of Mixed 
Data on the original set of phenotypic variables involved in energy balance and resulted 
in seven clusters. B) Contrasts between phenotypes and clusters. Each panel 
represents a statistical contrast between phenotypes and clusters. The colored rectangles 
and points represent the means of each contrast. The vertical bars represent plus and 
minus one standard deviation of each contrast. Abbreviations: Alcohol (consumption of 
alcohol), BodyFat (body fat, waist circumference, weight, and blood triglycerides), 
CoffeTea (consumption of tea or coffee), fish (consumption of oily or non-oily fish), 
GluChoCre (level of glucose, cholesterol, or creatinine in the blood), Meat (consumption 
of meat), PhysAct (levels of physical activity), poultry (consumption of poultry), ProcFood 
(consumption of processed food), and WaterVegFruit (consumption of water, vegetable, 
or fruit). 
 
4.4.3. Genomic variants associated with PEB. 

We conducted three analyses to determine the relationship between PEB variables and 

the original phenotypes with genetic markers. Firstly, we conducted separated GWAS on 

the PEB variables (PEB-GWAS). Secondly, we studied the overlap between PEB-GWAS 

results and separated GWAS on the original variables (ORIG-GWAS). Lastly, we used 
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the information from PEB-GWAS to study pleiotropic effects on the groups of phenotypes 

contributing to each PEB (PEB-PLEIO). 

The PEB-GWAS resulted in significant associations for all PEB variables. The significant 

hits (using a threshold of 5x10-8) were 2113, 116, 12348, 324, and 354. These significant 

hits were further grouped into 50, 3, 185, 4, and 67 peaks defined by markers in linkage 

disequilibrium. Annotated Manhattan plots for PEB-GWAS analyses are presented in 

Figures C.3-7. 

Most of the PEB-GWAS peaks (15, 3, 60, 3, 3, and 7) were not present on ORIG-GWAS, 

demonstrating that combining correlated phenotypes increased the power to find these 

regions (Figure 4.4). Figure 4.4 shows the annotation information for PEB-GWAS, ORIG-

GWAS, and PEB-PLEIO analyses, emphasizing the overlap with genic regions. Identified 

genes were enriched for five different gene sets: obesity, metabolic disease, 

cardiovascular disease, connective tissue development and function, and carbohydrates 

metabolisms (FDR p-value < 0.01) (Figure 4.4, see Materials and Methods). 

The gene associated with the highest number of PEB latent variables (PEB 1, PEB 3, and 

PEB 5) was the Fat Mass and Obesity-Associated Protein (FTO) (Figure 4.4).  This peak 

for FTO was present in the ORIG-GWAS for weight, height, waist circumference, lean 

and fat mass. In addition, FTO had three leading SNPs (defined here as the SNP with the 

lowest p-value within an LD block): rs56094641, rs1421085, and rs11642015, 

respectively. All these SNPs were present in the PEB-PLEIO for weight and body mass. 

A group of genes mapped for both PEB 1 "Active, small body size, low blood triglycerides" 

and PEB 3 "Active, large body size, high blood triglycerides, and glucose". This group 

consisted of Protein lin-7 Homolog C (LIN7C), Centrosomal Protein POC5 (POC5), 
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INO80 complex subunit E (INO80E), Protein Lifeguard 2 (FAIM2), and G1/S-specific 

Cyclin-D2 (CCND2). Gene LIN7C had a peak present in the ORIG-GWAS of all body 

measurement variables. The leading PEB-GWAS SNPs at this peak were rs962369 and 

rs2049045, respectively. These peaks were also present ORIG-GWAS and PEB-PLEIO 

for all body measurement variables. The same peak was also present in the individual 

ORIG-GWAS for the intensity of moderate physical activity. Gene POC5 also had a peak 

(leading PEB-GWAS SNPs rs2307111 and rs67570751, respectively) present in the 

ORIG-GWAS for all body measurement variables.  Gene INO80E had a peak present in 

all body measurements ORIG-GWAS, except for height. The leading PEB-GWAS SNPs 

in this peak were rs7190185 and rs35105141, respectively. This peak was present in the 

PEB-PLEIO of weight, waist circumference, and body mass. Gene CCND2 had a peak 

with rs76895963 as the leading SNP. This peak was present in the ORIG-GWAS of 

weight, fat mass, and lamb consumption. Also, the peak was present in the PEB-PLEIO 

for weight and fat mass. 

Several genes had PEB-GWAS peaks mapping exclusively for "Active, large body size, 

high blood triglycerides, and glucose". We focus the description on peaks that were 

present in the ORIG-GWAS and PEB-PLEIO analyses. Golgin A6 Family Like 5 - 

Pseudogene (GOLGA6L5P) had a PEB-GWAS peak with rs11259919 as lead SNP. This 

peak was also present in the PEB-PLEIO of body measurement variables, lamb, and pork 

consumption. The peak was also present in the ORIG-GWAS of weight, fat mass, and 

waist circumference but absent for height, lamb, and pork consumption. The peak at 

Leiomodin 1 (LMOD1, leading SNP rs2820322) followed the same behavior as 

GOLGA6L5P, except that lamb consumption was not part of the PEB-PLEIO results. The 



92 
 

peaks at Glutathione S-Transferase Mu 4 (GSTM4, leading SNP rs7550711) and 

Vacuolar Protein Sorting-Associated Protein 29 (VPS29, with a non-reference leading 

SNP at chromosome 12 and 110852370 bp) were both presents in the ORIG-GWAS of 

weight, height, and fat mass. This peak was present in the PEB-PLEIO of weight, height, 

fat mass, and intensity of moderate physical activity, while the lead SNP at VPS29 was 

present in the PEB-PLEIO of weight, height, fat mass, and physical activity from walking. 

The peak at Hedgehog Interacting Protein (HHIP, leading SNP rs4240326) was present 

in the ORIG-GWAS of weight, waist circumference, body mass, and lamb consumption. 

This peak was also present in the PEB-PLEIO of weight, waist circumference, and body 

mass. 

Some genes had peaks collectively present in the ORIG-GWAS and PEB-PLEIO of all 

body measurements and variables, including Hydroxycarboxylic Acid Receptor 1 

(HCAR1, leading SNP rs7133768), BTB/POZ Domain-Containing Protein 7 (BTBD7, 

leading SNP rs4381522), Hydroxysteroid 17-Beta Dehydrogenase 12 (HSD17B12, 

leading SNP rs1061810), SCM Polycomb Group Protein Homolog 1 (SCMH1, lead SNP 

rs61780439), Family 5 Member 11 (SLC5A11, leading SNP rs12923476), Regulatory 

Associated Protein of MTOR Complex 1 (RPTOR, leading SNP rs11150745), and tRNA 

Splicing Endonuclease Subunit 15 (TSEN15, leading SNP rs74767794). A peak at 

SUMO2 Pseudogene 17 (SUMO2P17, leading SNP rs8082345) was exclusively present 

in the ORIG-GWAS and PEB-PLEIO of weight, waist circumference, and fat mass. Peaks 

at Axis Inhibition Protein 2 (AXIN2, leading SNP rs757558), Centrosomal Protein 120 

(CEP120, leading SNP rs34732995), and p53 Tumor Suppressor Protein (TP53, leading 

SNP rs78378222) were present in the individual ORIG-GWAS and PEB-PLEIO of weight, 
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height, and fat mass. A peak at Protein Disulfide Isomerase Family A Member 2 (PDIA2, 

lead SNP rs12926311) was present in ORIG-GWAS of weight, height, and fat mass, and 

PEB-PLEIO of weight and fat mass. A peak at RAD9 Checkpoint Clamp Component A 

(RAD9A, leading SNP rs34560402) was present in ORIG-GWAS of waist circumference. 

Finally, peaks at Mitogen-Activated Protein Kinase 5 (MAP2K5, leading SNP rs12050481) 

and Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 4 (KCNE4, 

leading SNP rs1607246) were present in the ORIG-GWAS of height. Finally, a group of 

genes had peaks exclusively for PEB-GWAS of "Active, small body size, low blood 

triglycerides". Peaks at Cytochrome P450 Family 3 Subfamily A Member 5 (CYP3A5 lead 

SNP rs13311457) and UHRF1 Binding Protein 1 (UHRF1BP1 lead SNP rs2744977) were 

present for the PEB-GWAS and PEB-PLEIO of weight, waist circumference, and fat 

mass. Peaks at SUMO1 Activating Enzyme Subunit 1 (SAE1 lead SNP rs3810291) and 

Neurexin 2 (NRXN2 lead SNP rs12273892) were present in PEB-GWAS and PEB-PLEIO 

of weight, waist circumference, and lean mass. Three peaks were present at putative-

uncharacterized proteins. A peak at RP11-866E20.3 (lead SNP rs12967135) was present 

for PEB-PLEIO of waist circumference, the intensity of moderate physical activity and 

walking, and ORIG-GWAS for the last two variables only. A peak at RP11-251G23.2 (lead 

SNP rs73190105) was present in ORIG-GWAS of weight, fat mass, and intensity of 

vigorous activity and present in PEB-PLEIO of the first two variables. A peak at RP4-

635E18.7 (lead SNP rs5019466) was present in the ORIG-GWAS of weight, waist 

circumference, fat mass, and PEB-PLEIO of weight and waist circumference. Another 

gene was Zinc Finger and BTB Domain Containing Protein 38 (ZBTB38). Gene ZBTB38 
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had a significant peak in PEB-GWAS for "Active, small body size, low blood triglycerides" 

(lead SNP rs6785012).  

 

Figure 4.4: Summary of GWAS loci within genic regions. The panels above 
summarize the overlap between linkage disequilibrium blocks containing significant SNP 
from GWAS between PEB latent variable and genic regions. The panels represent, in 
order, the overlap between significant peaks from PEB-GWAS and genic region, overlap 
between ORIG-GWAS and PEB-PLEIO analyses, and overlap with gene sets and 
regulatory regions. 
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As illustrated in Figure 4.4, pleiotropy was most abundant for body size and composition 

variables, followed by components of PA and dietary intake variables. Regarding 

enrichment results, most genes with significant peaks were involved in connective tissue 

development and function, followed by obesity and metabolic disease. The most 

significant peaks were also located in intronic regions of the gene. 
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4.5. DISCUSSION 

Excessive calorie intake and low physical activity generate a positive EB that results in 

obesity. We integrated several phenotypes from the UK Biobank related to EB. We used 

this information to get novel insights into the physiological reasons that lead to a positive 

EB. Sparse factor analysis of mixed data (sFAMD) and bootstrap inference was used to 

define patterns of energy balance (PEB) and to determine associations with common 

SNP. From these associations, a set of genes with possible links to EB patterns were 

identified. 

Previous studies have applied similar phenotypes-integration techniques to determine 

individuals' diet or physical activity patterns [160–163]. In contrast, our study focused on 

all aspects of EB, solving the challenges of including random variables of different 

phenotypic scales (e.g., numerical biomarkers values and body measurements versus 

categorical food frequencies) by combining conventional FAMD [189] with sparse SVD 

[201]. The application of sparse FAMD (sFAMD), followed by bootstrap, clearly 

determined what phenotypes contributed to each PEB. This analysis generated PEB as 

factors that capture data characteristics beyond the ones expected by naïve integration 

(e.g., averaging subjectively defined groups of phenotypes) and effectively captured 

different aspects of EB. 

Besides capturing variability due to EB's multiple components, PEBs were also 

associated with variability at the genomic level. For example, some PEB-GWAS peaks 

mapped on genes previously reported affecting obesity and metabolic diseases, such as 

FTO, ZBTB38, and POC5. For instance, the SNP rs56094641at FTO had effects on PEB 

1 "Active, small body size, low blood triglycerides", PEB 3 "Active, large body size, high 
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blood triglycerides and glucose" and PEB 5 "Active, largely vegetarian". This SNP has 

also been previously reported as a cis-QTL in muscle (Fig C.8), as well as being present 

in GWAS of childhood obesity [202], body fat [203], and metabolic disease [204]. 

Additionally, the lead SNP rs6785012 at ZBTB38, mapping on PEB 1, has been 

associated with eczema and red blood count [205] and has also been reported as cis-

eQTL in many tissues, including testis, adipose tissue, whole blood, spleen, pituitary, and 

thyroid glands  (Figure C.8). Moreover, rs6785012 had pleiotropic effects on body 

measurements found here agree with a previously reported association of ZBTB38 with 

BMI and waist circumference [206]. Lastly, the SNP rs2307111 at POC5, mapping on 

PEB 1 and 3, had pleiotropic effects on body measurement variables. This finding can be 

supported by the presence of this SNP in previous GWAS studies on body measurements 

[205,207]. However, previously reported associations between this SNP and cholesterol 

were not confirmed in PLEIO-GWAS or OIRG-GWAS analyses. 

Some genes had pleiotropic effects on both body measurements and physical activity 

variables. For example, a non-synonym SNP at chromosome 12 and 110852370 bp 

mapping on VPS29 was associated with height, weight, fat mass, and duration of physical 

activity. Variations in VPS29 and other genes in the retrosome (part of the retrograde 

transport from the endosome to the Golgi apparatus) are typically linked with 

neurodegenerative disorders [208]. However, in mice models, variation in the retrosome 

components has been indirectly linked with normal growth and mammal development and 

muscle response to exercise and training through the Wnt and β-Catenin pathway 

[209,210]. The potential role of the variability of this SNP on muscle growth and response 

to exercise can be explained by the significant association with the expression of VPS29 
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in muscle (GTeX data presented in Figure C.8). Similarly, a peak on GSTM4 with 

rs7550711 as lead SNP had a pleiotropic effect on weight, height, fat mass, and walking 

intensity. This SNP has been previously associated with BMI in physically active adults 

[206] and phospholipid fatty acids in plasma [211]. 

A group of PEB-GWAS peaks was located in genes involved in carbohydrate metabolism 

and cell cycle, a general category with known effects on body composition [212] and 

physical activity performance [213]. One of these genes, SIX3, had a PEB-GWAS peak 

for PEB5 "Active, healthy diet" variable, with rs4953152 as lead SNP. This SNP had 

pleiotropic effects on cooked vegetables and water consumption. These associations 

have not been previously registered for either cooked vegetables or water consumption. 

However, evidence of an association between variations in rs4953152 and cognitive 

processes has been observed [214,215]. In addition, rs4953152 has been reported as a 

cis-eQTL of SIX3-As1 in the brain (Figure C.8). Lastly, there was a peak at TP53 (lead 

SNP rs78378222), with pleiotropic effects on weight, height, fat mass. Variations in TP53 

are primarily linked to multiple cancer types [122]. 

Nevertheless, rs78378222 has also been reported as associated with fat mass [216,217] 

and cis-eQTL of TP53 adipose tissue (Figure C.8). Another SNP with pleiotropic effects 

on different groups of variables was rs11259919 at LMOD1. This SNP was associated 

with weight, fat mass, and consumption of pork. Variations in rs11259919 have been 

linked with the expression of LMOD1 in many tissues, including the digestive tract, nerve, 

muscle, brain, adrenal gland, thyroid, artery, and heart (Figure C.8) well as with 

appendicular fat [217]. Although a previous link with food consumption has not been 

reported, variations in LMOD1 expression in skeletal muscle have been linked with 
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differential susceptibility to cardiovascular disease in response to high-fat diets [218] and 

body composition [219]. 

Many of the putative QTL detected in this study have previous associations with 

phenotypes contributing to energy balance. For a relatively small number of phenotypes, 

like the ones used here, studying all possible combinations of pleiotropic effects could 

have been a possibility (i.e., studying all possible pleiotropic groups among variables). 

However, at the scale of the UK Biobank, this renders computationally prohibitive. For 

that reason, the alternative of sparse FMD used here offered a way to a) inform what 

groups of variables are most likely to collaborate to form the PEB variables and b) inform 

the study of pleiotropic effects in a more manageable number of phenotypes. Although 

most SNP had relatively minor effects on each PEB, the large sample size of this study 

was instrumental in detecting them.  

One limitation of this study is the lack of functional validation, especially for novel genes 

associated with EB. Although we have used data from GTeX to confirm the association 

between the change of allele and gene expression, an association between gene 

expression and phenotypes related to EB was not confirmed (e.g., VPS29 variant causing 

differential fat mobilization within the adipocyte). 

The results generated here contribute to understanding the complex biology of energy 

balance and the interrelation between its related traits [220,221]. 
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CHAPTER 5  

 

CONCLUSIONS 

 

Increasing sizes and data density become a constant computational and statistical 

challenge for existing data integration methods [56,66]. To face these challenges, we 

introduced a new method of data integration, Multi-Omic Integration via Sparse Singular 

Value Decomposition (MOSS). MOSS exploits the benefits of large data sizes (i.e., many 

samples to increase power and many features to discover biologically relevant signals) 

while maximizing computational performance. We have written MOSS as an R package 

that can be freely available Comprehensive R Archive Network (CRAN). We review the 

capabilities and limitations of the MOSS package in chapter 2. However, three caveats of 

MOSS remain to be discussed, as they arise depending on the application. 

The first caveat involved convergency properties. MOSS relies on the NIPALS algorithm 

to extract SVD solutions, and therefore, convergence in supervised problems (e.g., PLS) 

is not always assured [222]. Although empirical results suggest that convergence is 

reached in most practical situations [222], future research on the analytical properties of 

MOSS should include a thorough analysis of its convergency properties. 

The second caveat involves the lack of statistical inference for the results of the features 

selection process (i.e., basing feature selection in, for example, confidence intervals). By 

considering the elements of SVD as random variables, both factors and loadings can be 

thought of as drawn from probabilistic distributions (examples of this are [223] [224] and 

https://cran.r-project.org/package=MOSS
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[225]). Future work in MOSS could benefit from considering the data integration model as 

a probabilistic one to evaluate the significance of its solutions. 

Finally, the third caveat comes from using elastic net (EN) penalty as a feature selection 

process. Fundamentally, EN zeroes out the noisy features while retaining correlated 

“signal” [68]. The intention is to find an optimal set of features representing biologically 

relevant groups (e.g., genes in pathways, food items in dietary patterns). Unfortunately, 

the performance of EN strongly depends on the tuning of the hyperparameter “α” [111]. 

In its current version, MOSS uses the fast heuristics in [69] to tune the degree of sparsity, 

but not α. Future versions of MOSS would require an alternative to tune all 

hyperparameters without compromising computational efficiency. 

Cancer research is one of the primary disciplines where the performance of omic 

integration tools will continue to be challenged. Thanks to progress in sequencing 

techniques, cancer genomics has advanced at an extraordinary pace. This pace has been 

evident ever since the early days of cancer genomics, where microarray experiments 

were rapidly complemented by new generation sequencing techniques in less than a 

decade [226]. These techniques have been essential at creating several large 

international repositories of cancer multi-omic data, like The Cancer Genome Atlas 

(TCGA) [95], the International Cancer Genome Consortium (ICGC) [227], and the Cancer 

Cell Line Encyclopedia (CCLE) [228]. Cancer research has benefited from these data in 

many applications, most notoriously the enhancement of risk predictions models [14–16] 

and improving tumor classification with molecular subtypes [72,102,108]. 

Chapter 3 has also benefited from these repositories. We have used data from TCGA 

consisting of approximately six thousand tumor samples and sixty thousand features 
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representing genome-wide gene expression, copy number variants, and DNA methylation 

values. In chapter 3, we used MOSS to detect shared molecular features acting across 

clusters of tumors. These clusters formed beyond the restrictions of the site of origin and 

exhibited similar clinical and immunologic characteristics, supporting the role of common 

molecular signatures across cancer types [88,229].  

Despite these exciting findings, future applications of our method in cancer data would 

require a more robust estimation of tissue effects, for example, by using markers of tumor 

histology (e.g., mesenchymal, epithelial). In addition, newer classification efforts must 

emphasize validation avenues, such as knock-out and gene-drug interaction models.  

Another area of fast-growing pace is phenomics. Once deemed prohibitively expensive 

and time-consuming, gathering phenomic data is now a reality [22]. Advances in imaging 

techniques [25], mass spectrometry [230], and automated data loggers [26] in the last 

years have been instrumental in the creation of large-scale phenotyping projects. One of 

the most extensive ongoing efforts is the UK Biobank (UKB), with data across several 

phenomic layers and genotypic information for more than five hundred thousand 

individuals. Integration of UKB’s phenomic and genomic data has been conducted for 

multiple complex traits, including neurodegenerative disorders [231], and cardiovascular 

disease [232], and dietary habits [233]. 

Similarly, we focused our chapter 4 on integrating the UKB phenome to infer variation 

associated with different aspects of energy balance (EB) (e.g., the tendency of lean body 

types to engage in regular physical and healthy diets). We studied the association 

between this variation and genetics. We found known genes involved with EB (e.g., FTO, 

POC5, ZBTB38, INO80E) and novel ones (e.g., VPS29, SIX3, LMOD1) not present in the 
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GWAS of separated phenotypes. This work is the first to integrate all EB components 

from a phenomic point of view to the extent of our knowledge. 

Regardless of these compelling results, chapter 3 used only a small set of the phenomic 

data in the UKB. Although only information from a few blood metabolites is currently 

present in the UKB, ongoing efforts to produce detailed metabolic profiles for a large 

sample of individuals are on their way [234]. Moreover, further incorporation of 

metabolomic profiles in our set of phenotypes could profoundly impact our definition of 

EB factors and associated genes since metabolomics has been shown to efficiently 

complement and improve the assessment of dietary patterns [235]. 

Following, we propose some avenues for future research on omic integration.  

We have stated that MOSS does not rely on distributional assumptions and how this limits 

the possibility of statistical inference. One possibility for incorporating inference within 

MOSS is the adoption of Bayesian methods. Bayesian alternatives to SVD [223,225] 

could be extended to incorporate FBM to deal with large data sets. Additionally, adopting 

Bayesian methods would allow the incorporation of different prior distributions on the 

features’ loadings coming from different omic layers. The study of the choice of prior 

distribution on the overall performance could aid researchers in deciding what set of 

assumptions better describes their data.  

Another possible line of research is the study of alternative forms of sparsity on the 

performance of omic integration. Omic integration might not be as robust in biological 

scenarios where specific molecular events are not as drastic as in cancer. Therefore, the 

evaluation of sparsity (e.g., on pre-defined groups of features) and their impact on 
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performance could help decide what methods are best for problems where the signal-to-

noise ratio is low. 

Alternatively, since cancer is dominated by extreme, sometimes widespread, molecular 

events, we foresee omic integration to continue being useful for cancer research. An 

exciting line of research can focus on evaluating methods’ performance and the proposal 

of new algorithmic shortcuts to handle huge data sets (e.g., recently generated data from 

the Pan-Cancer Analysis of Whole Genomes) [236].  
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APPENDIX A  

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

 

Table A.1: Code templates to replicate examples. 
 

# Install and load MOSS. 
install.packages("MOSS") 
 
library("MOSS") 
# Example of unsupervised omic integration with MOSS 
out_sig <- moss_signatures(out_sim,out_moss$selected_items, 
                           clus_lab = out_moss$clus_plot$dbscan.res$cluster, 
                           only.candidates = TRUE, 
                           plot=TRUE, 
                           th=0.05) 
# Example of supervised omic integration with MOSS 
set.seed(345) 
out_moss <- moss(data.blocks = out_sim, 
                 method = "pls", 
                 resp.block = 1, 
                 scale.arg = T, 
                 norm.arg = T, 
                 K.X=10, 
                 nu.v = seq(1,500,by=2), 
                 nu.u = seq(1,100,by=2), 
                 alpha.v = 0.5, 
                 axes.pos = 1:2, 
                 alpha.u=0.5, 
                 exact.dg = TRUE, 
                 use.fbm = TRUE, 
                 nu.parallel = TRUE, 
                 tSNE=list("perp"=30, 
                           "n.iter"=1e3, 
                           "n.samples"=1), 
                 cluster = list(eps_range=c(0,1), 
                                eps_res=10, 
                                min_clus_size=2), 
                 plot=TRUE, 
                 lib.thresh = TRUE) 
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Table A.1 (cont’d) 

# Extract heatmap. 
moss_heatmap(out_moss$B, 
            SVD = out_moss$sparse, 
             axes.pos = c(1,3), 
             col.lab = "miRNA-seq & ", 
             row.lab = "RNA-seq") 
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Figure A.1: Analytical performance of several omic integration methods. Each panel 
corresponds to the accuracy (top-left), precision (top-right), sensitivity (bottom-left), 
and specificity (bottom-right) of each omic-integration method at detecting informative 
features (i.e., features with signal across and between omic blocks). Methods compare 
were FactoMineR (function MFA), iCluster (function tune.iCluster2), mixOmics 
(function tune.splsda) and MOSS (function moss with method=”pca” and method=”lrr”, 
respectively). Results were obtained across 10,000 random simulations.  
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APPENDIX B  

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

 

Table B.1: List of genes significantly deregulated in at least one pan-cancer cluster. 
All the genes significantly different in at least one cluster are sorted by chromosome and 
genomic position. ANOVA’s p-values, adjusted for multiple comparisons, are displayed 
on the last column of the table (p-value). 
  

Average enrichment scores by cluster 
 

Gene C1 C2 C3 C4 C5 C6 C7 C8 p-value 

C1orf159  0.02 
b 

 0.10 
ab 

-0.07 
b 

 0.15 
ab 

 0.21 
ab 

 0.41 
a 

 0.00 
b 

-0.09 
b 

6.36E-13 

WASH2P -0.29 
b 

 0.21 
a 

 0.00 
b 

 0.05 
ab 

 0.17 
ab 

-0.16 
b 

-0.04 
b 

 0.05 
ab 

9.78E-14 

RAB6C  0.08 
ab 

-0.04 
bc 

-0.01 
b 

-0.09 
bc 

-0.42 
bc 

 0.43 
a 

-0.12 
bc 

-0.48 
c 

4.47E-17 

ITM2C  0.07 
ab 

 0.01 
b 

-0.06 
b 

 0.15 
ab 

 0.02 
ab 

 0.41 
a 

 0.07 
ab 

-0.07 
b 

4.94E-11 

HSP90A
B2P 

-0.19 
ab 

 0.02 
ab 

 0.05 
ab 

 0.28  
a 

 0.12 
ab 

-0.03 
ab 

-0.51 
b 

-0.16 
ab 

2.62E-15 

MCC -0.11 
c 

-0.03 
bc 

-0.08 
c 

 0.42 
ab 

 0.22 
abc 

 0.60 
a 

 0.26 
abc 

 0.29 
abc 

1.35E-33 

STK38 -0.23 
ab 

-0.14 
ab 

 0.09 
a 

-0.26 
ab 

-0.14 
ab 

 0.12 
a 

-0.38 
b 

-0.01 
ab 

1.92E-18 

PPIL1 -0.11 
ab 

-0.10 
ab 

 0.09 
a 

-0.23 
ab 

-0.27 
ab 

-0.04 
ab 

-0.44 
b 

-0.12 
ab 

3.22E-15 

C6orf89  0.07 
ab 

 0.10 
a 

-0.03 
ab 

 0.05 
ab 

 0.19 
a 

 0.05 
ab 

-0.33 
ab 

 0.14 
a 

5.86E-06 

MTCH1 -0.09 
ab 

 0.08 
a 

 0.00 
ab 

 0.12 
a 

 0.06 
ab 

 0.11 
a 

-0.45 
b 

 0.08 
ab 

5.02E-09 

TBC1D2
2B 

-0.03 
a 

 0.06 
a 

 0.03 
a 

-0.05 
ab 

-0.15 
ab 

-0.03 
a 

-0.50 
b 

 0.07 
a 

2.49E-09 

RNF8 -0.15 
ab 

 0.00 
a 

 0.05 
a 

-0.19 
ab 

-0.14 
ab 

 0.13 
a 

-0.46 
b 

-0.01 
ab 

1.05E-11 

CMTR1 -0.03 
ab 

-0.02 
a 

 0.05 
a 

-0.04 
ab 

-0.10 
ab 

-0.06 
ab 

-0.46 
b 

-0.02 
ab 

1.40E-08 

ZFAND3 -0.04 
ab 

 0.06 
a 

 0.02 
ab 

 0.05 
ab 

 0.14 
a 

-0.09 
ab 

-0.43 
ab 

-0.03 
ab 

1.92E-07 

          



110 
 

Table B.1 (cont’d) 

BTBD9 -0.03 
a 

 0.13 
a 

 0.03 
a 

 0.29 
 a 

-0.10 
a 

 0.05 
a 

-1.19 
b 

 0.03  
a 

1.04E-61 

GLO1 -0.21 
ab 

 0.07 
a 

 0.05 
a 

 0.00 
ab 

 0.02 
ab 

-0.08 
ab 

-0.50 
b 

-0.09 
ab 

1.67E-14 

SAYSD1 -0.17 
ab 

 0.01 
a 

 0.04 
a 

 0.17  
a 

 0.21 
a 

-0.02 
a 

-0.48 
ab 

 0.18  
a 

1.60E-12 

LRFN2 -0.02 
b 

 0.12 
ab 

 0.05 
b 

 0.49 
a 

-0.14 
b 

 0.05 
b 

-1.60 
c 

 0.05 
b 

1.10E-
118 

UNC5CL  0.02 
ab 

-0.05 
ab 

 0.01 
ab 

 0.00 
ab 

 0.02 
ab 

 0.18 
a 

-0.36 
b 

 0.10 
ab 

5.13E-06 

OARD1  0.18 
a 

 0.13 
a 

-0.03 
a 

 0.19 
a 

 0.21 
a 

 0.17 
a 

-0.87 
b 

 0.01 
a 

1.16E-37 

NFYA -0.09 
a 

 0.09 
a 

 0.04 
a 

 0.06 
a 

-0.14 
ab 

-0.04 
a 

-0.77 
b 

 0.05 
a 

4.39E-25 

FOXP4  0.02 
a 

 0.07 
a 

 0.01 
a 

 0.27 
a 

 0.27 
a 

-0.04 
a 

-0.67 
b 

 0.10 
a 

1.26E-19 

TFEB  0.16 
ab 

 0.09 
ab 

-0.07 
ab 

 0.34 
a 

 0.31 
ab 

 0.31 
ab 

-0.31 
b 

 0.15 
ab 

2.71E-18 

FRS3 -0.01 
b 

 0.16 
b 

 0.05 
b 

 0.76 
a 

 0.02 
b 

 0.06 
b 

-2.04 
c 

 0.13 
b 

9.81E-
207 

PRICKL
E4 

 0.13 
a 

 0.06 
a 

-0.03 
a 

 0.02 
a 

-0.07 
a 

 0.13 
a 

-0.29 
a 

 0.13 
a 

1.07E-05 

TOMM6 -0.11 
a 

 0.03 
a 

 0.08 
a 

 0.32 
a 

-0.13 
a 

 0.02 
a 

-1.24 
b 

-0.03 
a 

7.35E-70 

USP49 -0.01 
a 

 0.03 
a 

 0.04 
a 

 0.00 
a 

-0.05 
ab 

-0.11 
ab 

-0.65 
b 

 0.06 
a 

2.95E-17 

MED20 -0.05 
a 

 0.02 
a 

 0.09 
a 

 0.15 
a 

-0.06 
a 

-0.08 
a 

-1.28 
b 

-0.06 
a 

2.09E-72 

BYSL -0.17 
a 

-0.03 
a 

 0.10 
a 

 0.19 
a 

-0.28 
ab 

 0.00 
a 

-1.09 
b 

-0.18 
a 

3.39E-58 

CCND3 -0.01 
a 

 0.14 
a 

-0.02 
a 

 0.40 
a 

 0.12 
a 

 0.16 
a 

-0.77 
b 

 0.09 
a 

1.24E-30 

TAF8  0.08 
a 

 0.12 
a 

 0.00 
a 

 0.29 
a 

 0.02 
a 

 0.10 
a 

-1.06 
b 

 0.16 
a 

2.53E-50 

GUCA1A -0.03 
b 

 0.15 
b 

 0.06 
b 

 0.91 
a 

 0.00 
b 

 0.05 
b 

-2.16 
c 

 0.04 
b 

5.46E-
242 

GUCA1B  0.06 
ab 

 0.10 
ab 

-0.04 
ab 

 0.36 
a 

-0.12 
ab 

 0.06 
ab 

-0.29 
b 

 0.13 
ab 

3.81E-08 

MRPS10 -0.11 
a 

 0.03 
a 

 0.08 
a 

 0.14 
a 

-0.18 
a 

 0.02 
a 

-1.22 
b 

-0.15 
a 

5.96E-67 

TRERF1 -0.01 
b 

 0.15 
b 

 0.05 
b 

 0.92 
a 

-0.03 
b 

 0.10 
b 

-2.05 
c 

 0.09 
b 

6.77E-
218 
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Table B.1 (cont’d) 

UBR2  0.03 
a 

 0.11 
a 

 0.03 
a 

 0.22 
a 

 0.11 
a 

-0.11 
a 

-0.94 
b 

 0.06 
a 

4.27E-38 

TBCC -0.08 
a 

 0.06 
a 

 0.04 
a 

 0.40 
a 

-0.05 
a 

 0.09 
a 

-1.01 
b 

 0.04 
a 

2.47E-46 

BICRAL  0.10 
a 

 0.13 
a 

-0.02 
a 

 0.28 
a 

 0.32 
a 

-0.10 
a 

-0.60 
b 

 0.16 
a 

9.26E-20 

RPL7L1 -0.10 
a 

 0.09 
a 

 0.04 
a 

 0.29 
a 

 0.08 
a 

-0.01 
a 

-1.01 
b 

 0.04 
a 

2.92E-45 

C6orf226  0.07 
a 

 0.04 
a 

 0.00 
a 

 0.29 
a 

-0.02 
ab 

 0.07 
a 

-0.68 
b 

 0.22 
a 

2.97E-20 

CNPY3  0.06 
ab 

 0.09 
ab 

-0.01 
b 

 0.54 
a 

 0.28 
ab 

 0.12 
ab 

-0.96 
c 

 0.05 
ab 

3.29E-46 

GNMT  0.09 
abc 

 0.26 
ab 

-0.10 
c 

 0.48 
a 

 0.18 
abc 

 0.02 
abc 

-0.09 
bc 

 0.21 
abc 

3.01E-22 

PEX6  0.03 
a 

 0.15 
a 

-0.02 
a 

 0.34 
a 

-0.04 
ab 

 0.06 
a 

-0.64 
b 

 0.07 
a 

1.66E-21 

PPP2R5
D 

-0.08 
a 

 0.09 
a 

 0.05 
a 

 0.32 
a 

-0.03 
a 

 0.00 
a 

-1.18 
b 

-0.05 
a 

2.00E-61 

MEA1 -0.08 
a 

 0.05 
a 

 0.06 
a 

 0.36 
a 

-0.08 
a 

-0.01 
a 

-1.22 
b 

 0.00 
a 

3.13E-66 

KLHDC3 -0.02 
a 

 0.12 
a 

 0.02 
a 

 0.43 
a 

-0.10 
a 

 0.17 
a 

-1.14 
b 

-0.04 
a 

3.64E-60 

RRP36 -0.07 
a 

 0.06 
a 

 0.06 
a 

 0.30 
a 

 0.02 
a 

 0.02 
a 

-1.18 
b 

-0.03 
a 

2.84E-61 

CUL7 -0.01 
a 

 0.05 
a 

 0.04 
a 

 0.25 
a 

 0.05 
a 

-0.12 
a 

-0.92 
b 

 0.20 
a 

6.30E-37 

KLC4 -0.02 
a 

 0.06 
a 

 0.00 
a 

 0.39 
a 

 0.28 
a 

 0.25 
a 

-0.86 
b 

 0.15 
a 

3.94E-37 

MRPL2 -0.08 
a 

-0.01 
a 

 0.06 
a 

 0.39 
a 

-0.29 
a 

 0.17 
a 

-1.15 
b 

-0.03 
a 

2.73E-61 

PTK7  0.00 
a 

 0.01 
a 

 0.02 
a 

 0.18 
a 

-0.28 
ab 

 0.09 
a 

-0.56 
b 

 0.05 
a 

1.39E-12 

SRF  0.11 
a 

 0.09 
a 

-0.02 
a 

 0.30 
a 

 0.26 
a 

 0.15 
a 

-0.75 
b 

 0.06 
a 

6.28E-27 

CUL9  0.09 
a 

 0.08 
a 

 0.01 
a 

 0.33 
a 

-0.03 
a 

-0.01 
a 

-0.89 
b 

 0.07 
a 

1.75E-34 

DNPH1  0.02 
a 

-0.05 
a 

 0.02 
a 

 0.33 
a 

-0.12 
ab 

 0.21 
a 

-0.74 
b 

 0.28 
a 

1.48E-27 

CRIP3  0.16 
ab 

 0.07 
ab 

-0.08 
ab 

 0.30 
a 

 0.25 
ab 

 0.29 
a 

-0.12 
ab 

 0.34 
a 

2.50E-16 

ZNF318  0.00 
a 

 0.08 
a 

 0.04 
a 

 0.16 
a 

 0.08 
a 

-0.11 
a 

-0.85 
b 

 0.02 
a 

3.81E-30 

ABCC10 -0.13 
a 

-0.02 
a 

 0.07 
a 

 0.25 
a 

 0.00 
a 

-0.02 
a 

-0.90 
b 

 0.05 
a 

4.20E-37 

          



112 
 

          

Table B.1 (cont’d) 

TJAP1 -0.07 
a 

 0.12 
a 

 0.05 
a 

 0.36 
a 

-0.26 
a 

-0.04 
a 

-1.15 
b 

-0.04 
a 

1.10E-60 

LRRC73  0.09 
ab 

 0.02 
ab 

-0.01 
ab 

 0.38 
a 

 0.22 
ab 

-0.11 
ab 

-0.35 
b 

 0.11 
ab 

1.32E-08 

POLR1C -0.12 
a 

 0.00 
a 

 0.06 
a 

 0.37 
a 

-0.02 
a 

 0.09 
a 

-1.15 
b 

 0.09 
a 

3.73E-60 

YIPF3 -0.01 
b 

 0.11 
ab 

 0.02 
b 

 0.47 
a 

 0.21 
ab 

 0.04 
ab 

-1.09 
c 

 0.06 
ab 

9.49E-55 

XPO5 -0.17 
a 

-0.07 
a 

 0.12 
a 

 0.18 
a 

-0.11 
a 

-0.14 
a 

-1.15 
b 

-0.08 
a 

9.67E-68 

POLH -0.01 
b 

 0.16 
b 

 0.06 
b 

 0.94 
a 

-0.02 
b 

 0.04 
b 

-2.14 
c 

 0.06 
b 

4.63E-
239 

GTPBP2 -0.16 
b 

-0.01 
ab 

 0.10 
a 

 0.06 
ab 

-0.35 
bc 

-0.02 
ab 

-1.00 
c 

-0.11 
ab 

4.93E-48 

MAD2L1
BP 

-0.09 
a 

 0.09 
a 

 0.05 
a 

 0.32 
a 

 0.02 
a 

 0.10 
a 

-1.11 
b 

-0.15 
a 

1.38E-55 

MRPS18
A 

 0.02 
a 

 0.01 
a 

 0.04 
a 

 0.46 
a 

-0.07 
a 

 0.11 
a 

-1.14 
b 

-0.04 
a 

3.73E-59 

VEGFA -0.16 
ab 

 0.00 
ab 

 0.04 
ab 

 0.14 
a 

 0.07 
ab 

 0.05 
ab 

-0.50 
b 

-0.03 
ab 

6.75E-12 

MRPL14 -0.16 
b 

 0.04 
ab 

 0.05 
ab 

 0.37 
a 

-0.25 
bc 

 0.16 
ab 

-0.98 
c 

 0.00 
ab 

8.68E-47 

TMEM63
B 

-0.04 
a 

 0.06 
a 

 0.07 
a 

 0.20 
a 

-0.35 
ab 

-0.16 
a 

-1.01 
b 

-0.21 
a 

1.97E-48 

CAPN11  0.13 
ab 

 0.15 
ab 

-0.07 
b 

 0.42 
a 

-0.07 
ab 

 0.03 
ab 

-0.09 
b 

 0.25 
ab 

3.67E-12 

SLC29A
1 

 0.00 
a 

-0.02 
a 

 0.06 
a 

 0.14 
a 

-0.30 
ab 

-0.10 
a 

-0.74 
b 

 0.08 
a 

6.62E-24 

HSP90A
B1 

-0.19 
a 

 0.03 
a 

 0.10 
a 

 0.30 
a 

-0.18 
a 

-0.15 
a 

-1.13 
b 

-0.19 
a 

1.20E-65 

SLC35B
2 

-0.09 
a 

 0.01 
a 

 0.05 
a 

 0.33 
a 

-0.06 
a 

 0.09 
a 

-1.12 
b 

 0.15 
a 

7.46E-56 

NFKBIE -0.06 
ab 

 0.00 
a 

 0.01 
a 

 0.25 
a 

-0.04 
ab 

 0.21 
a 

-0.64 
b 

 0.22 
a 

5.80E-20 

AARS2 -0.06 
a 

 0.02 
a 

 0.05 
a 

 0.33 
a 

-0.25 
ab 

 0.07 
a 

-1.04 
b 

-0.02 
a 

8.22E-48 

CDC5L -0.07 
a 

 0.08 
a 

 0.04 
a 

 0.25 
a 

 0.03 
a 

 0.04 
a 

-1.06 
b 

-0.06 
a 

1.54E-48 

SUPT3H  0.12 
a 

 0.04 
a 

 0.00 
a 

 0.22 
a 

 0.20 
a 

 0.06 
a 

-0.70 
b 

 0.04 
a 

7.20E-21 

SLC25A
27 

-0.05 
b 

 0.00 
b 

-0.03 
b 

 0.23 
ab 

 0.23 
ab 

 0.34 
a 

-0.11 
b 

 0.11 
ab 

1.55E-08 
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Table B.1 (cont’d) 

TDRD6 -0.02 
b 

 0.09 
b 

 0.05 
b 

 1.29 
a 

-0.12 
b 

-0.06 
b 

-1.72 
c 

-0.06 
b 

1.46E-
176 

CD2AP -0.05 
ab 

 0.04 
a 

 0.03 
a 

 0.23 
a 

 0.02 
ab 

-0.04 
ab 

-0.68 
b 

 0.11 
a 

3.75E-19 

MUT -0.03 
ab 

 0.08 
a 

 0.01 
a 

 0.39 
a 

-0.01 
ab 

 0.01 
a 

-0.57 
b 

-0.01 
ab 

1.43E-15 

CENPQ -0.21 
a 

-0.05 
a 

 0.10 
a 

 0.10 
a 

-0.21 
ab 

-0.06 
a 

-0.69 
b 

-0.26 
ab 

1.37E-29 

MCM3 -0.16 
a 

-0.05 
a 

 0.10 
a 

 0.21 
a 

-0.20 
ab 

-0.07 
a 

-0.81 
b 

-0.28 
ab 

3.84E-36 

PAQR8 -0.08 
b 

 0.16 
b 

 0.02 
b 

 1.52 
a 

-0.11 
b 

 0.06 
b 

-1.79 
c 

 0.02 
b 

1.29E-
209 

EFHC1  0.05 
ab 

 0.04 
ab 

-0.01 
ab 

 0.35 
a 

 0.29 
ab 

 0.02 
ab 

-0.52 
b 

 0.16 
ab 

2.00E-13 

TRAM2  0.05 
abc 

 0.10 
ab 

-0.01 
bc 

 0.45 
a 

 0.08 
abc 

-0.07 
bc 

-0.56 
c 

 0.08 
abc 

1.72E-17 

TMEM14
A 

-0.08 
ab 

-0.03 
ab 

 0.09 
a 

 0.28 
a 

-0.14 
abc 

-0.15 
abc 

-0.79 
c 

-0.36 
bc 

1.78E-35 

GSTA4  0.11 
ab 

 0.08 
ab 

-0.02 
ab 

 0.30 
a 

 0.34 
a 

-0.11 
ab 

-0.42 
ab 

 0.11 
ab 

1.99E-11 

ICK -0.02 
ab 

 0.10 
ab 

 0.02 
ab 

 0.44 
a 

 0.23 
ab 

-0.25 
bc 

-0.66 
c 

 0.04 
ab 

4.90E-26 

FBXO9  0.02 
bc 

 0.10 
bc 

-0.02 
bc 

 0.61 
a 

 0.13 
abc 

-0.06 
bc 

-0.55 
c 

 0.13 
ab 

1.42E-21 

GCM1 -0.12 
a 

-0.06 
a 

 0.03 
a 

 0.35 
a 

-0.06 
a 

-0.10 
a 

-0.17 
a 

 0.11 
a 

1.37E-05 

ELOVL5  0.04 
ab 

 0.11 
ab 

-0.02 
b 

 0.51 
a 

 0.28 
ab 

-0.20 
b 

-0.28 
b 

 0.03 
ab 

1.81E-12 

GCLC  0.02 
ab 

-0.01 
ab 

 0.06 
ab 

 0.21 
a 

 0.06 
ab 

-0.26 
ab 

-0.70 
b 

-0.12 
ab 

1.37E-25 

KLHL31 -0.03 
ab 

 0.01 
ab 

 0.02 
ab 

 0.32 
a 

-0.02 
ab 

-0.14 
ab 

-0.36 
b 

 0.13 
ab 

5.98E-08 

LRRC1 -0.03 
a 

 0.02 
a 

 0.05 
a 

 0.14 
a 

-0.13 
ab 

-0.24 
ab 

-0.59 
b 

 0.08 
a 

2.03E-17 

DST  0.09 
a 

 0.06 
a 

 0.02 
ab 

 0.03 
ab 

-0.10 
ab 

-0.13 
ab 

-0.40 
b 

-0.18 
ab 

4.53E-08 

KIAA158
6 

-0.06 
ab 

 0.08 
ab 

 0.01 
ab 

 0.19 
a 

 0.12 
ab 

 0.00 
ab 

-0.58 
b 

 0.16 
a 

2.59E-14 

ZNF451 -0.04 
a 

 0.10 
a 

 0.01 
a 

 0.36 
a 

-0.12 
ab 

-0.03 
a 

-0.55 
b 

 0.07 
a 

6.26E-15 

BAG2  0.06 
ab 

 0.11 
ab 

-0.06 
b 

 0.17 
ab 

 0.08 
ab 

 0.24 
a 

-0.16 
b 

 0.13 
ab 

4.47E-08 

PRIM2 -0.18 
ab 

 0.05 
a 

 0.05 
a 

 0.21 
a 

-0.05 
ab 

-0.05 
ab 

-0.53 
b 

-0.16 
ab 

1.93E-15 
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GUSBP4 -0.03 
a 

 0.02 
a 

 0.03 
a 

 0.27 
a 

-0.07 
ab 

-0.03 
a 

-0.57 
b 

 0.00 
a 

1.83E-13 

PHF3  0.01 
a 

 0.13 
a 

-0.02 
a 

 0.01 
a 

 0.35 
a 

-0.06 
a 

-0.24 
a 

 0.14 
a 

2.09E-05 

THSD7A  0.04 
ab 

 0.20 
a 

-0.13 
ab 

 0.42 
a 

 0.55 
a 

 0.35 
a 

 0.20 
ab 

 0.18 
ab 

1.35E-31 

INTS4P2  0.00 
b 

 0.00 
b 

-0.05 
b 

 0.13 
ab 

-0.15 
b 

 0.58 
a 

-0.01 
b 

-0.23 
b 

6.07E-21 

ARHGEF
10 

-0.17 
a 

 0.06 
a 

-0.03 
a 

 0.14 
a 

 0.38 
a 

 0.20 
a 

 0.15 
a 

 0.03 
a 

1.05E-06 

HTRA4 -0.17 
b 

-0.07 
ab 

 0.03 
ab 

-0.10 
ab 

-0.09 
ab 

 0.23 
a 

-0.11 
ab 

-0.14 
ab 

2.05E-06 

DIP2C  0.02 
ab 

-0.01 
b 

-0.02 
b 

-0.12 
b 

-0.01 
b 

 0.35 
a 

-0.04 
b 

-0.13 
b 

1.46E-06 

DNA2  0.02 
b 

 0.00 
b 

-0.06 
b 

 0.00 
b 

 0.06 
ab 

 0.55 
a 

 0.06 
b 

 0.03 
b 

7.72E-18 

HKDC1 -0.06 
b 

-0.07 
b 

-0.04 
b 

 0.06 
ab 

 0.03 
ab 

 0.55 
a 

 0.11 
ab 

 0.23 
ab 

4.08E-20 

CTBP2  0.10 
b 

 0.08 
b 

-0.10 
b 

 0.13 
ab 

 0.08 
b 

 0.51 
a 

 0.17 
ab 

 0.09 
b 

5.97E-23 

FAM196
A 

-0.04 
b 

-0.10 
b 

 0.02 
b 

-0.09 
b 

 0.04 
ab 

 0.39 
a 

-0.21 
b 

-0.33 
b 

9.00E-14 

CSNK2A
3 

-0.51 
c 

 0.38 
a 

-0.08 
bc 

 0.23 
ab 

 0.18 
abc 

 0.22 
ab 

 0.20 
ab 

 0.21 
ab 

8.41E-53 

FOLH1  0.06 
a 

 0.14 
a 

-0.06 
a 

 0.31 
a 

 0.28 
a 

 0.10 
a 

-0.13 
a 

 0.10 
a 

6.03E-08 

MRPL16 -0.12 
b 

-0.13 
b 

 0.00 
b 

-0.13 
b 

 0.01 
ab 

 0.50 
a 

 0.00 
b 

 0.09 
ab 

8.72E-17 

EIF1AD  0.23 
ab 

 0.07 
ab 

-0.09 
b 

 0.27 
ab 

 0.02 
ab 

 0.28 
a 

 0.18 
ab 

-0.21 
b 

5.57E-17 

SF3B2  0.11 
a 

-0.03 
a 

-0.03 
a 

 0.21 
a 

-0.20 
a 

 0.21 
a 

 0.07 
a 

-0.27 
a 

4.31E-06 

PACS1 -0.11 
b 

-0.07 
b 

 0.01 
b 

 0.06 
ab 

-0.15 
b 

 0.32 
a 

 0.02 
ab 

-0.26 
b 

4.39E-08 

KLC2  0.11 
b 

-0.03 
b 

-0.06 
b 

 0.15 
ab 

-0.06 
b 

 0.58 
a 

 0.05 
b 

-0.18 
b 

1.75E-22 

RAB1B  0.04 
b 

-0.08 
b 

 0.00 
b 

 0.06 
ab 

-0.29 
b 

 0.42 
a 

-0.06 
b 

-0.40 
b 

5.73E-14 

YIF1A  0.17 
ab 

 0.07 
ab 

-0.05 
bc 

 0.00 
abc 

-0.03 
abc 

 0.31 
a 

 0.04 
abc 

-0.42 
c 

3.28E-13 

BRMS1  0.15 
ab 

 0.05 
ab 

-0.07 
b 

 0.16 
ab 

 0.03 
ab 

 0.38 
a 

 0.06 
ab 

-0.22 
b 

1.47E-13 

MRPL11  0.16 
ab 

 0.10 
ab 

-0.07 
b 

 0.19 
ab 

 0.00 
ab 

 0.28 
a 

 0.06 
ab 

-0.16 
b 

4.33E-11 
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Table B.1 (cont’d) 

PELI3 -0.02 
b 

-0.06 
b 

-0.03 
b 

 0.06 
b 

-0.23 
b 

 0.60 
a 

 0.06 
b 

-0.34 
b 

1.59E-23 

DPP3  0.17 
b 

 0.09 
b 

-0.10 
b 

 0.19 
ab 

-0.19 
b 

 0.54 
a 

 0.06 
b 

-0.17 
b 

2.36E-27 

BBS1 -0.12 
b 

-0.09 
b 

 0.04 
ab 

 0.06 
ab 

-0.51 
b 

 0.28 
a 

-0.07 
ab 

-0.43 
b 

1.69E-12 

ZDHHC2
4 

 0.08 
b 

 0.04 
b 

-0.05 
bc 

-0.03 
bc 

-0.23 
bc 

 0.63 
a 

-0.04 
bc 

-0.52 
c 

1.25E-30 

CCDC87 -0.02 
b 

-0.04 
b 

-0.01 
b 

 0.00 
ab 

-0.27 
b 

 0.40 
a 

 0.07 
ab 

-0.29 
b 

1.31E-10 

CCS  0.04 
ab 

-0.08 
bc 

 0.01 
ab 

-0.01 
abc 

-0.13 
bc 

 0.31 
a 

-0.11 
bc 

-0.50 
c 

2.67E-11 

RBM4 -0.01 
b 

-0.09 
b 

 0.00 
b 

 0.07 
ab 

-0.30 
b 

 0.40 
a 

-0.01 
b 

-0.29 
b 

2.04E-11 

C11orf80  0.12 
b 

 0.06 
b 

-0.06 
b 

 0.12 
ab 

 0.14 
ab 

 0.49 
a 

-0.07 
b 

-0.31 
b 

2.06E-19 

RCE1  0.09 
b 

 0.10 
b 

-0.11 
b 

 0.31 
ab 

 0.07 
b 

 0.69 
a 

 0.10 
b 

-0.22 
b 

4.34E-40 

PC  0.06 
ab 

-0.12 
b 

-0.02 
b 

 0.03 
ab 

-0.07 
b 

 0.43 
a 

 0.05 
ab 

-0.12 
b 

5.98E-12 

LRFN4  0.19 
ab 

 0.09 
b 

-0.09 
b 

 0.01 
b 

 0.21 
ab 

 0.47 
a 

-0.01 
b 

-0.11 
b 

8.26E-21 

RHOD -0.04 
b 

-0.01 
ab 

-0.01 
b 

 0.13 
ab 

 0.10 
ab 

 0.30 
a 

-0.03 
b 

-0.28 
b 

2.78E-06 

KDM2A  0.03 
b 

-0.02 
b 

-0.06 
b 

 0.20 
b 

-0.15 
b 

 0.82 
a 

 0.02 
b 

-0.40 
b 

6.02E-46 

GRK2  0.09 
b 

-0.05 
b 

-0.03 
b 

-0.11 
b 

-0.23 
b 

 0.56 
a 

-0.11 
b 

-0.26 
b 

1.20E-20 

ANKRD1
3D 

 0.11 
b 

 0.01 
b 

-0.08 
b 

 0.17 
b 

 0.11 
b 

 0.75 
a 

-0.06 
b 

-0.29 
b 

1.54E-39 

SSH3  0.09 
b 

 0.04 
b 

-0.07 
b 

 0.21 
ab 

 0.13 
ab 

 0.63 
a 

-0.10 
b 

-0.34 
b 

1.02E-29 

RAD9A  0.18 
b 

 0.04 
bc 

-0.09 
bc 

 0.19 
b 

 0.10 
bc 

 0.76 
a 

-0.02 
bc 

-0.45 
c 

1.33E-47 

POLD4 -0.02 
bc 

-0.06 
bc 

 0.00 
b 

-0.17 
bc 

-0.37 
bc 

 0.56 
a 

-0.13 
bc 

-0.49 
c 

1.67E-25 

PPP1CA  0.12 
b 

-0.01 
bc 

-0.06 
bc 

 0.06 
bc 

-0.13 
bc 

 0.75 
a 

-0.05 
bc 

-0.41 
c 

1.86E-39 

RPS6KB
2 

 0.13 
b 

-0.01 
b 

-0.06 
b 

 0.08 
b 

 0.13 
ab 

 0.61 
a 

 0.04 
b 

-0.49 
b 

7.68E-30 

CORO1B  0.07 
b 

-0.08 
bc 

-0.02 
bc 

-0.03 
bc 

-0.42 
bc 

 0.66 
a 

 0.00 
bc 

-0.53 
c 

1.20E-33 

CABP4 -0.04 
b 

-0.10 
b 

-0.07 
b 

-0.04 
b 

-0.40 
bc 

 1.64 
a 

-0.15 
b 

-1.06 
c 

7.53E-
214 
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Table B.1 (cont’d) 

TMEM13
4 

-0.05 
b 

-0.10 
b 

-0.01 
b 

 0.07 
b 

-0.35 
b 

 0.70 
a 

-0.07 
b 

-0.43 
b 

2.53E-34 

AIP  0.06 
b 

-0.04 
bc 

-0.02 
b 

-0.03 
bc 

-0.08 
bc 

 0.54 
a 

-0.09 
bc 

-0.56 
c 

2.70E-24 

PITPNM
1 

-0.08 
b 

-0.10 
b 

-0.05 
b 

-0.02 
b 

-0.32 
bc 

 1.51 
a 

-0.14 
b 

-1.03 
c 

6.17E-
181 

CDK2AP
2 

 0.02 
b 

 0.01 
b 

-0.03 
bc 

 0.00 
bc 

-0.18 
bc 

 0.57 
a 

-0.03 
bc 

-0.58 
c 

5.03E-26 

NDUFV1  0.06 
b 

 0.00 
b 

-0.03 
b 

-0.04 
bc 

-0.06 
bc 

 0.58 
a 

-0.08 
bc 

-0.54 
c 

3.38E-26 

NUDT8 -0.14 
b 

-0.06 
ab 

 0.02 
ab 

 0.10 
ab 

 0.02 
ab 

 0.27 
a 

-0.01 
ab 

-0.33 
b 

1.31E-07 

ALDH3B
2 

 0.01 
b 

-0.01 
b 

-0.05 
b 

 0.25 
ab 

 0.12 
ab 

 0.54 
a 

-0.03 
b 

-0.08 
b 

2.38E-18 

UNC93B
1 

 0.01 
b 

-0.08 
b 

-0.07 
b 

-0.02 
b 

-0.40 
b 

 1.66 
a 

-0.15 
b 

-1.22 
c 

6.81E-
230 

ALDH3B
1 

-0.01 
b 

-0.09 
b 

-0.07 
b 

-0.02 
b 

-0.37 
b 

 1.72 
a 

-0.16 
b 

-1.28 
c 

6.74E-
250 

NDUFS8  0.05 
b 

 0.00 
b 

-0.04 
bc 

-0.03 
bc 

-0.02 
bc 

 0.70 
a 

-0.06 
bc 

-0.60 
c 

1.45E-37 

TCIRG1  0.00 
b 

-0.10 
b 

 0.01 
b 

-0.07 
b 

 0.03 
ab 

 0.40 
a 

-0.17 
b 

-0.37 
b 

1.32E-13 

CHKA  0.07 
ab 

 0.00 
b 

-0.02 
b 

-0.21 
bc 

-0.16 
bc 

 0.41 
a 

 0.06 
ab 

-0.66 
c 

1.82E-20 

KMT5B -0.01 
b 

-0.11 
b 

-0.01 
b 

 0.15 
b 

-0.41 
bc 

 0.74 
a 

 0.00 
b 

-0.73 
c 

9.19E-48 

C11orf24  0.01 
bc 

-0.02 
bc 

-0.06 
bc 

 0.07 
bc 

-0.02 
bc 

 0.78 
a 

 0.13 
b 

-0.54 
c 

1.21E-44 

LRP5 -0.05 
b 

-0.12 
b 

-0.05 
b 

-0.08 
b 

-0.36 
b 

 1.64 
a 

-0.11 
b 

-1.35 
c 

1.47E-
233 

PPP6R3  0.04 
b 

-0.06 
b 

-0.05 
b 

 0.16 
b 

-0.23 
bc 

 0.89 
a 

 0.02 
b 

-0.68 
c 

2.65E-61 

TESMIN  0.07 
b 

 0.01 
b 

-0.07 
b 

-0.05 
b 

-0.33 
b 

 0.82 
a 

-0.01 
b 

-0.38 
b 

3.03E-45 

CPT1A -0.03 
b 

-0.14 
b 

-0.09 
b 

-0.08 
b 

-0.03 
b 

 1.85 
a 

-0.04 
b 

-1.04 
c 

3.87E-
270 

MRPL21  0.02 
b 

-0.10 
b 

-0.11 
b 

 0.01 
b 

-0.19 
b 

 1.95 
a 

-0.06 
b 

-1.03 
c 

2.94E-
303 

IGHMBP
2 

-0.03 
b 

-0.11 
b 

-0.09 
b 

 0.01 
b 

-0.15 
bc 

 1.76 
a 

-0.12 
b 

-0.91 
c 

1.02E-
236 

MRGPR
D 

-0.02 
ab 

-0.11 
ab 

-0.01 
ab 

 0.36 
a 

-0.10 
ab 

 0.35 
a 

-0.08 
ab 

 0.05 
ab 

1.44E-10 
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Table B.1 (cont’d) 

TPCN2 -0.04 
b 

-0.12 
b 

-0.10 
b 

 0.08 
b 

-0.18 
b 

 1.97 
a 

-0.06 
b 

-1.05 
c 

0 

CCND1  0.01 
b 

-0.15 
b 

-0.12 
b 

-0.11 
b 

-0.20 
bc 

 2.14 
a 

-0.12 
b 

-0.86 
c 

0 

ORAOV1 -0.01 
b 

-0.12 
bc 

-0.12 
bc 

-0.08 
bc 

-0.06 
bc 

 2.00 
a 

-0.11 
bc 

-0.76 
c 

2.27E-
302 

ANO1 -0.08 
b 

-0.14 
b 

-0.12 
b 

 0.05 
b 

-0.02 
b 

 2.12 
a 

-0.02 
b 

-0.82 
c 

0 

FADD  0.07 
b 

-0.05 
bc 

-0.11 
bc 

 0.18 
b 

-0.04 
bc 

 1.43 
a 

 0.01 
b 

-0.59 
c 

1.82E-
147 

PPFIA1  0.01 
b 

-0.11 
b 

-0.14 
b 

 0.17 
b 

-0.10 
b 

 2.10 
a 

 0.03 
b 

-0.86 
c 

0 

CTTN  0.02 
b 

-0.13 
b 

-0.13 
b 

 0.08 
b 

-0.02 
b 

 2.02 
a 

 0.00 
b 

-0.86 
c 

0 

SHANK2 -0.10 
b 

-0.09 
b 

-0.11 
b 

 0.25 
b 

 0.17 
b 

 1.78 
a 

 0.07 
b 

-0.84 
c 

3.59E-
244 

DHCR7  0.13 
b 

 0.08 
b 

-0.09 
bc 

 0.00 
bc 

-0.21 
bc 

 0.73 
a 

 0.14 
b 

-0.41 
c 

5.83E-43 

NADSYN
1 

-0.09 
b 

-0.13 
b 

-0.06 
b 

 0.08 
b 

-0.03 
b 

 1.67 
a 

-0.09 
b 

-1.25 
c 

1.60E-
233 

KRTAP5
-7 

-0.01 
b 

-0.04 
b 

-0.04 
b 

 0.08 
ab 

-0.10 
b 

 0.59 
a 

 0.02 
b 

-0.13 
b 

2.17E-20 

KRTAP5
-8 

-0.06 
b 

-0.03 
b 

-0.03 
b 

 0.07 
ab 

 0.02 
ab 

 0.50 
a 

-0.01 
b 

-0.03 
b 

4.14E-14 

KRTAP5
-9 

-0.09 
b 

-0.04 
b 

-0.01 
b 

 0.06 
ab 

-0.09 
b 

 0.45 
a 

-0.05 
b 

-0.22 
b 

4.90E-12 

KRTAP5
-10 

-0.01 
b 

-0.04 
b 

-0.01 
b 

-0.10 
b 

-0.05 
b 

 0.44 
a 

-0.06 
b 

-0.26 
b 

1.00E-11 

FAM86C
1 

-0.02 
b 

 0.04 
b 

-0.07 
b 

 0.15 
b 

-0.25 
bc 

 0.93 
a 

 0.07 
b 

-0.75 
c 

3.71E-70 

RNF121 -0.05 
b 

-0.03 
b 

-0.03 
b 

 0.18 
b 

-0.22 
bc 

 0.79 
a 

-0.02 
b 

-0.94 
c 

6.34E-60 

NUMA1 -0.11 
b 

-0.14 
b 

-0.02 
b 

-0.01 
b 

-0.45 
b 

 1.55 
a 

-0.10 
b 

-1.71 
c 

1.49E-
246 

LRTOMT -0.12 
b 

-0.08 
b 

 0.02 
b 

 0.02 
b 

-0.40 
bc 

 0.61 
a 

-0.11 
b 

-0.81 
c 

4.42E-40 

LAMTOR
1 

-0.10 
b 

-0.06 
b 

-0.01 
b 

 0.08 
b 

-0.36 
bc 

 0.75 
a 

 0.01 
b 

-0.94 
c 

1.23E-56 

ANAPC1
5 

-0.11 
b 

-0.03 
b 

 0.02 
b 

 0.02 
b 

-0.19 
bc 

 0.46 
a 

-0.13 
b 

-0.72 
c 

3.16E-25 

INPPL1  0.16 
b 

-0.06 
b 

-0.05 
b 

 0.01 
b 

-0.13 
bc 

 0.76 
a 

 0.01 
b 

-0.75 
c 

5.98E-51 

CLPB  0.10 
bc 

 0.14 
b 

-0.10 
cd 

 0.14 
bc 

 0.01 
bcd 

 0.74 
a 

 0.09 
bc 

-0.57 
d 

2.31E-50 
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Table B.1 (cont’d) 

ARAP1 -0.08 
bc 

-0.06 
bc 

 0.01 
b 

-0.11 
bc 

-0.04 
bc 

 0.59 
a 

-0.15 
bc 

-0.78 
c 

7.45E-36 

STARD1
0 

 0.03 
b 

-0.05 
b 

-0.01 
b 

-0.09 
bc 

-0.23 
bc 

 0.66 
a 

-0.09 
bc 

-0.67 
c 

8.25E-37 

ATG16L
2 

-0.06 
b 

-0.03 
b 

 0.02 
b 

-0.01 
b 

 0.11 
ab 

 0.34 
a 

-0.28 
b 

-0.52 
b 

1.68E-15 

FCHSD2 -0.14 
bc 

-0.08 
b 

 0.03 
b 

 0.02 
b 

-0.09 
bc 

 0.48 
a 

-0.17 
bc 

-0.72 
c 

3.54E-28 

ARHGEF
17 

-0.16 
bc 

-0.10 
bc 

 0.05 
ab 

-0.11 
bc 

-0.14 
bc 

 0.31 
a 

-0.08 
abc 

-0.48 
c 

4.06E-15 

RELT  0.03 
b 

 0.05 
b 

-0.05 
b 

 0.11 
ab 

 0.10 
ab 

 0.41 
a 

-0.01 
b 

-0.25 
b 

1.60E-11 

RAB6A  0.07 
b 

 0.00 
b 

-0.06 
b 

 0.15 
b 

-0.30 
bc 

 0.73 
a 

 0.14 
b 

-0.68 
c 

5.61E-46 

MRPL48  0.06 
b 

 0.06 
b 

-0.05 
b 

 0.04 
b 

-0.18 
bc 

 0.55 
a 

 0.16 
ab 

-0.78 
c 

5.02E-35 

COA4  0.07 
b 

 0.03 
b 

-0.05 
b 

 0.03 
b 

-0.24 
bc 

 0.68 
a 

 0.11 
b 

-0.94 
c 

9.29E-51 

PAAF1  0.01 
b 

 0.07 
b 

-0.03 
b 

-0.08 
b 

-0.16 
bc 

 0.54 
a 

 0.00 
b 

-0.89 
c 

3.25E-36 

UCP3 -0.16 
b 

 0.00 
ab 

 0.01 
ab 

 0.03 
ab 

-0.15 
ab 

 0.30 
a 

-0.01 
ab 

-0.46 
b 

8.15E-11 

C2CD3 -0.07 
b 

-0.02 
b 

-0.04 
b 

 0.15 
b 

-0.32 
bc 

 0.74 
a 

 0.14 
b 

-0.69 
c 

8.74E-47 

PPME1  0.07 
b 

 0.05 
b 

-0.09 
b 

 0.12 
b 

-0.25 
bc 

 0.88 
a 

 0.19 
b 

-0.66 
c 

4.14E-64 

LIPT2 -0.02 
b 

 0.03 
b 

-0.04 
b 

 0.01 
b 

-0.45 
bc 

 0.52 
a 

 0.21 
ab 

-0.65 
c 

1.00E-28 

POLD3 -0.03 
b 

 0.02 
b 

-0.06 
b 

 0.32 
ab 

-0.12 
bc 

 0.56 
a 

 0.22 
ab 

-0.56 
c 

5.18E-31 

RNF169 -0.06 
bc 

-0.05 
bc 

-0.03 
bc 

 0.25 
ab 

-0.26 
bc 

 0.63 
a 

 0.11 
b 

-0.46 
c 

1.43E-30 

XRRA1 -0.01 
b 

-0.08 
b 

 0.00 
b 

 0.01 
b 

-0.42 
bc 

 0.66 
a 

 0.05 
b 

-0.91 
c 

3.25E-47 

SPCS2  0.04 
b 

-0.01 
b 

-0.01 
b 

 0.02 
b 

-0.24 
bc 

 0.55 
a 

-0.06 
b 

-1.04 
c 

4.36E-44 

NEU3  0.01 
b 

-0.02 
b 

-0.02 
b 

 0.04 
ab 

-0.20 
b 

 0.45 
a 

 0.03 
ab 

-0.43 
b 

4.20E-15 

ARRB1 -0.08 
b 

-0.06 
b 

-0.02 
b 

-0.11 
b 

-0.42 
b 

 1.31 
a 

-0.02 
b 

-1.77 
c 

9.70E-
200 

RPS3 -0.05 
b 

-0.03 
b 

 0.02 
b 

-0.08 
b 

-0.39 
bc 

 0.41 
a 

-0.05 
b 

-0.91 
c 

3.08E-30 

UVRAG -0.10 
b 

 0.02 
b 

-0.04 
b 

 0.24 
ab 

-0.48 
bc 

 0.69 
a 

 0.11 
b 

-0.72 
c 

1.14E-44 
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Table B.1 (cont’d) 

THAP12  0.01 
b 

-0.02 
b 

-0.02 
b 

 0.04 
b 

-0.44 
bc 

 0.60 
a 

 0.13 
b 

-0.83 
c 

4.51E-39 

EMSY -0.06 
bc 

-0.07 
bc 

-0.03 
b 

 0.15 
b 

-0.31 
bc 

 0.69 
a 

 0.08 
b 

-0.53 
c 

4.76E-36 

LRRC32 -0.06 
b 

-0.05 
b 

-0.04 
b 

-0.05 
b 

-0.45 
b 

 1.34 
a 

-0.03 
b 

-1.51 
c 

4.02E-
180 

TSKU -0.11 
bc 

-0.12 
bc 

 0.02 
bc 

 0.02 
abc 

-0.06 
bc 

 0.46 
a 

 0.09 
ab 

-0.53 
c 

6.54E-21 

ACER3 -0.06 
bc 

 0.00 
b 

-0.04 
b 

 0.14 
b 

-0.15 
bc 

 0.66 
a 

 0.11 
b 

-0.55 
c 

8.76E-34 

MYO7A -0.05 
b 

-0.05 
b 

-0.05 
b 

-0.03 
b 

-0.39 
b 

 1.44 
a 

-0.03 
b 

-1.40 
c 

3.28E-
189 

PAK1  0.00 
b 

-0.02 
b 

-0.04 
b 

 0.13 
b 

-0.55 
c 

 0.70 
a 

 0.06 
b 

-0.55 
c 

2.36E-38 

CLNS1A  0.08 
b 

 0.04 
b 

-0.08 
b 

 0.14 
b 

-0.42 
bc 

 0.82 
a 

 0.14 
b 

-0.76 
c 

7.70E-61 

AQP11 -0.01 
b 

-0.03 
b 

 0.00 
b 

-0.16 
b 

-0.36 
b 

 0.40 
a 

-0.02 
b 

-0.45 
b 

7.05E-14 

RSF1 -0.05 
b 

-0.06 
b 

-0.05 
b 

-0.02 
b 

-0.43 
b 

 1.40 
a 

 0.02 
b 

-1.26 
c 

1.19E-
171 

AAMDC -0.06 
b 

-0.03 
b 

 0.00 
b 

-0.07 
bc 

-0.27 
bc 

 0.51 
a 

-0.07 
bc 

-0.68 
c 

5.25E-26 

INTS4 -0.05 
b 

-0.01 
b 

-0.05 
b 

 0.14 
b 

-0.36 
bc 

 0.99 
a 

 0.06 
b 

-0.85 
c 

1.20E-79 

NDUFC2  0.03 
b 

-0.05 
b 

-0.04 
b 

-0.07 
b 

-0.33 
bc 

 0.87 
a 

 0.01 
b 

-0.83 
c 

5.68E-64 

ALG8  0.06 
b 

 0.07 
b 

-0.09 
b 

 0.02 
b 

-0.24 
bc 

 1.05 
a 

 0.05 
b 

-0.84 
c 

1.48E-91 

KCTD21  0.04 
b 

-0.08 
b 

-0.03 
b 

 0.07 
b 

-0.20 
bc 

 0.80 
a 

-0.03 
b 

-0.74 
c 

2.07E-52 

USP35  0.03 
b 

-0.04 
b 

-0.05 
b 

-0.11 
b 

-0.31 
b 

 1.34 
a 

-0.07 
b 

-1.33 
c 

1.49E-
165 

NARS2  0.04 
b 

 0.02 
b 

-0.03 
b 

 0.09 
ab 

-0.48 
bc 

 0.60 
a 

 0.04 
b 

-0.75 
c 

4.23E-36 

CCDC77  0.11 
a 

 0.03 
a 

-0.05 
a 

 0.34 
a 

-0.24 
a 

 0.01 
a 

 0.10 
a 

 0.22 
a 

1.02E-05 

WNK1  0.09 
ab 

-0.01 
ab 

-0.05 
b 

 0.15 
ab 

-0.34 
b 

 0.28 
a 

 0.08 
ab 

 0.11 
ab 

1.27E-06 

ADIPOR
2 

 0.12 
ab 

 0.00 
ab 

-0.06 
b 

 0.24 
ab 

-0.40 
b 

 0.31 
a 

 0.12 
ab 

 0.14 
ab 

8.02E-11 

DCP1B -0.10 
a 

-0.03 
a 

 0.05 
a 

 0.00 
a 

-0.64 
a 

-0.08 
a 

-0.14 
a 

-0.08 
a 

1.78E-05 

FKBP4  0.21 
ab 

-0.01 
bc 

-0.08 
c 

 0.14 
abc 

-0.38 
c 

 0.38 
a 

 0.12 
abc 

 0.37 
ab 

3.77E-20 
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Table B.1 (cont’d) 

RHNO1  0.22 
a 

 0.02 
ab 

-0.07 
ab 

 0.24 
a 

-0.46 
ab 

 0.21 
ab 

 0.13 
ab 

 0.05 
ab 

4.58E-11 

TULP3  0.14 
a 

 0.01 
a 

-0.05 
a 

 0.30 
a 

-0.26 
a 

 0.15 
a 

 0.10 
a 

 0.05 
a 

4.54E-06 

TSPAN9 -0.08 
a 

-0.10 
a 

 0.06 
a 

-0.07 
a 

-0.36 
a 

-0.01 
a 

-0.28 
a 

-0.06 
a 

4.44E-07 

PARP11 -0.09 
a 

-0.06 
a 

 0.05 
a 

-0.19 
a 

-0.68 
a 

 0.02 
a 

-0.14 
a 

-0.11 
a 

1.08E-06 

CCND2 -0.09 
ab 

 0.00 
a 

 0.08 
a 

-0.31 
ab 

-0.28 
ab 

-0.38 
b 

-0.22 
ab 

-0.20 
ab 

5.54E-17 

RAD51A
P1 

 0.25 
ab 

 0.13 
ab 

-0.13 
b 

 0.41 
a 

 0.08 
ab 

 0.25 
ab 

 0.24 
ab 

 0.26 
ab 

1.09E-27 

DYRK4 -0.16 
a 

-0.03 
a 

 0.06 
a 

-0.16 
a 

-0.48 
a 

-0.10 
a 

-0.15 
a 

-0.19 
a 

8.96E-08 

AKAP3 -0.15 
ab 

-0.11 
ab 

 0.09 
a 

-0.20 
ab 

-0.34 
b 

-0.24 
b 

-0.10 
ab 

 0.01 
ab 

4.76E-12 

TNFRSF
1A 

-0.02 
a 

-0.02 
a 

 0.00 
a 

 0.03 
a 

-0.86 
b 

 0.22 
a 

-0.05 
ab 

 0.06 
a 

2.66E-07 

LTBR  0.14 
a 

 0.07 
a 

-0.06 
a 

 0.25 
a 

-0.25 
a 

 0.21 
a 

 0.08 
a 

-0.02 
a 

6.41E-08 

NCAPD2  0.11 
ab 

 0.10 
ab 

-0.10 
ab 

 0.35 
a 

-0.16 
ab 

 0.24 
a 

 0.24 
a 

 0.24 
a 

1.92E-16 

GAPDH  0.16 
a 

 0.11 
a 

-0.07 
a 

 0.20 
a 

-0.14 
a 

 0.07 
a 

 0.08 
a 

 0.24 
a 

1.14E-08 

NOP2  0.15 
ab 

 0.13 
ab 

-0.09 
b 

 0.17 
ab 

-0.19 
b 

 0.24 
a 

 0.19 
ab 

 0.12 
ab 

1.03E-13 

ING4 -0.04 
a 

-0.06 
a 

 0.04 
a 

 0.25 
a 

-0.52 
a 

-0.18 
a 

-0.02 
a 

-0.04 
a 

2.19E-05 

ZNF384  0.01 
a 

 0.05 
a 

-0.05 
a 

 0.22 
a 

-0.46 
a 

 0.25 
a 

 0.14 
a 

-0.02 
a 

3.32E-07 

COPS7A  0.00 
a 

 0.04 
a 

-0.04 
a 

 0.21 
a 

-0.52 
a 

 0.17 
a 

 0.06 
a 

 0.22 
a 

7.81E-06 

MLF2  0.09 
a 

 0.02 
a 

-0.04 
a 

 0.06 
a 

-0.45 
a 

 0.23 
a 

 0.10 
a 

 0.10 
a 

9.65E-06 

CDCA3  0.27 
a 

 0.17 
ab 

-0.14 
b 

 0.31 
a 

 0.23 
ab 

 0.27 
a 

 0.25 
a 

 0.31 
a 

1.25E-33 

USP5  0.06 
a 

 0.09 
a 

-0.06 
a 

 0.17 
a 

-0.36 
a 

 0.15 
a 

 0.13 
a 

 0.27 
a 

9.67E-08 

TPI1  0.17 
a 

 0.13 
a 

-0.08 
ab 

 0.25 
a 

-0.23 
ab 

 0.00 
ab 

 0.12 
ab 

 0.25 
a 

1.25E-10 

ATN1  0.03 
a 

-0.03 
a 

-0.02 
a 

 0.08 
a 

-0.53 
a 

 0.25 
a 

 0.04 
a 

 0.10 
a 

3.65E-05 

C12orf57 -0.31 
b 

-0.22 
b 

 0.11 
a 

-0.12 
ab 

-0.56 
b 

 0.02 
ab 

-0.09 
ab 

-0.07 
ab 

4.00E-24 
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Table B.1 (cont’d) 

SCARNA
12 

 0.14 
a 

 0.12 
a 

-0.07 
a 

 0.18 
a 

-0.13 
a 

 0.15 
a 

 0.06 
a 

 0.01 
a 

1.25E-07 

EMG1  0.18 
a 

 0.11 
a 

-0.06 
a 

 0.09 
a 

-0.19 
a 

 0.08 
a 

 0.08 
a 

-0.01 
a 

1.05E-06 

LPCAT3 -0.07 
b 

 0.05 
ab 

-0.04 
b 

 0.13 
ab 

-0.37 
b 

 0.31 
a 

 0.12 
ab 

-0.03 
ab 

1.34E-07 

NECAP1  0.11 
ab 

-0.05 
ab 

-0.01 
ab 

 0.00 
ab 

-0.67 
b 

 0.16 
a 

-0.02 
ab 

 0.11 
ab 

2.30E-05 

CLEC4A  0.01 
ab 

 0.01 
ab 

-0.01 
ab 

-0.03 
ab 

-0.79 
b 

 0.21 
a 

-0.04 
ab 

 0.07 
ab 

4.06E-06 

DDX12P  0.17 
a 

 0.09 
ab 

-0.10 
ab 

 0.33 
a 

 0.10 
ab 

 0.26 
a 

 0.13 
ab 

 0.14 
ab 

4.89E-15 

GABAR
APL1 

-0.11 
a 

-0.08 
a 

 0.05 
a 

-0.02 
a 

-0.65 
a 

-0.13 
a 

 0.11 
a 

 0.00 
a 

1.48E-06 

MAGOH
B 

 0.19 
a 

 0.16 
a 

-0.10 
ab 

 0.12 
ab 

-0.16 
ab 

 0.20 
a 

 0.06 
ab 

 0.26 
a 

1.96E-15 

LOH12C
R2 

-0.13 
a 

-0.03 
a 

 0.05 
a 

 0.13 
a 

-0.59 
a 

-0.12 
a 

-0.03 
a 

-0.22 
a 

1.54E-06 

BORCS5 -0.01 
a 

 0.04 
a 

-0.04 
a 

 0.21 
a 

-0.61 
a 

 0.13 
a 

 0.16 
a 

 0.20 
a 

2.00E-06 

CREBL2 -0.10 
a 

-0.11 
a 

 0.06 
a 

-0.06 
a 

-0.70 
a 

 0.08 
a 

-0.12 
a 

-0.17 
a 

1.86E-08 

GPR19  0.14 
ab 

 0.14 
ab 

-0.11 
b 

 0.13 
ab 

 0.21 
ab 

 0.23 
a 

 0.21 
ab 

 0.37 
a 

5.50E-19 

DDX47  0.05 
a 

 0.02 
a 

-0.04 
a 

 0.22 
a 

-0.54 
a 

 0.12 
a 

 0.20 
a 

 0.16 
a 

3.30E-06 

FAM234
B 

-0.04 
b 

 0.01 
b 

-0.05 
b 

 0.12 
ab 

-0.11 
b 

 0.41 
a 

 0.07 
ab 

 0.13 
ab 

2.99E-10 

WBP11  0.12 
ab 

 0.01 
ab 

-0.05 
ab 

 0.15 
ab 

-0.60 
b 

 0.23 
a 

 0.10 
ab 

 0.19 
ab 

1.13E-08 

STRAP  0.15 
a 

 0.08 
a 

-0.06 
a 

 0.15 
a 

-0.51 
a 

 0.10 
a 

 0.17 
a 

 0.17 
a 

1.35E-08 

DERA  0.01 
a 

 0.05 
a 

-0.03 
a 

 0.37 
a 

-0.29 
a 

-0.04 
a 

 0.22 
a 

-0.01 
a 

2.47E-05 

RECQL  0.11 
a 

 0.04 
a 

-0.05 
a 

 0.30 
a 

-0.18 
a 

 0.09 
a 

 0.15 
a 

 0.12 
a 

1.33E-05 

GOLT1B  0.18 
a 

 0.04 
ab 

-0.07 
ab 

 0.32 
a 

-0.16 
ab 

 0.13 
ab 

 0.18 
ab 

 0.14 
ab 

6.73E-10 

CMAS  0.27 
a 

 0.06 
ab 

-0.07 
b 

 0.23 
ab 

-0.45 
b 

 0.03 
ab 

 0.07 
ab 

 0.19 
ab 

1.98E-11 

ETFRF1 -0.09 
a 

-0.10 
a 

 0.07 
a 

 0.17 
a 

-0.55 
a 

-0.12 
a 

-0.20 
a 

-0.12 
a 

6.68E-09 

KRAS  0.12 
a 

 0.02 
a 

-0.06 
a 

 0.31 
a 

-0.26 
a 

 0.15 
a 

 0.21 
a 

 0.15 
a 

3.64E-08 
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Table B.1 (cont’d) 

INTS13  0.12 
a 

 0.12 
a 

-0.07 
a 

 0.31 
a 

-0.21 
a 

 0.01 
a 

 0.18 
a 

 0.06 
a 

3.16E-08 

MED21  0.04 
a 

 0.02 
a 

-0.03 
a 

 0.36 
a 

-0.51 
a 

 0.05 
a 

 0.13 
a 

 0.07 
a 

2.47E-05 

DDX11  0.08 
a 

 0.09 
a 

-0.07 
a 

 0.36 
a 

-0.15 
a 

 0.17 
a 

 0.11 
a 

 0.17 
a 

2.73E-09 

H3F3C  0.09 
ab 

 0.00 
ab 

-0.03 
ab 

 0.07 
ab 

-0.71 
b 

 0.20 
a 

 0.04 
ab 

 0.05 
ab 

4.35E-06 

DNM1L  0.13 
a 

 0.03 
a 

-0.07 
a 

 0.38 
a 

-0.34 
a 

 0.19 
a 

 0.16 
a 

 0.11 
a 

3.68E-10 

YARS2  0.16 
a 

 0.09 
a 

-0.06 
a 

 0.27 
a 

-0.22 
a 

 0.05 
a 

 0.06 
a 

 0.07 
a 

2.30E-06 

ALG10  0.01 
ab 

 0.02 
ab 

-0.05 
ab 

 0.36 
a 

-0.25 
ab 

 0.26 
a 

 0.16 
ab 

 0.05 
ab 

1.38E-08 

HOXC13  0.04 
ab 

 0.22 
ab 

-0.14 
b 

 0.43 
a 

 0.38 
ab 

 0.38 
ab 

 0.17 
ab 

 0.39 
a 

7.99E-37 

HOXC11 -0.05 
ab 

 0.21 
a 

-0.10 
ab 

 0.33 
a 

-0.14 
ab 

 0.28 
a 

 0.19 
ab 

 0.21 
ab 

1.84E-21 

HOXC8 -0.03 
ab 

 0.22 
ab 

-0.10 
b 

 0.26 
ab 

-0.06 
ab 

 0.31 
a 

 0.06 
ab 

 0.15 
ab 

3.51E-19 

GPR132 -0.22 
ab 

 0.09 
ab 

-0.04 
ab 

 0.19 
a 

 0.35 
a 

 0.18 
a 

 0.18 
ab 

 0.17 
ab 

4.84E-10 

WASH3P -0.25 
ab 

 0.22 
a 

-0.04 
ab 

 0.24 
a 

 0.36 
a 

-0.02 
ab 

 0.01 
ab 

 0.07 
ab 

4.07E-14 

MYO1C -0.15 
b 

 0.12 
ab 

-0.03 
ab 

-0.06 
ab 

-0.27 
b 

 0.26 
a 

 0.06 
ab 

-0.04 
ab 

9.07E-08 

NTN1  0.02 
ab 

 0.05 
a 

 0.03 
a 

-0.09 
ab 

-0.24 
ab 

-0.18 
ab 

-0.37 
b 

-0.06 
ab 

1.54E-07 

TRIM16L -0.21 
b 

 0.08 
ab 

-0.05 
b 

 0.15 
ab 

 0.26 
ab 

 0.29 
a 

 0.43 
a 

-0.04 
ab 

1.67E-17 

ANKRD1
3B 

 0.06 
ab 

 0.25 
a 

-0.12 
ab 

 0.27 
a 

 0.31 
a 

 0.20 
a 

 0.10 
ab 

 0.27 
a 

3.07E-23 

SPACA3 -0.38 
b 

-0.01 
ab 

 0.02 
ab 

 0.12 
ab 

-0.08 
ab 

 0.18 
a 

 0.12 
a 

 0.05 
ab 

4.45E-13 

SCARNA
17 

-0.27 
ab 

 0.12 
a 

 0.01 
ab 

 0.05 
ab 

 0.14 
a 

-0.03 
ab 

 0.04 
ab 

-0.22 
ab 

6.98E-08 

ABCA7  0.02 
ab 

 0.19 
a 

-0.08 
ab 

 0.21 
a 

 0.15 
ab 

 0.21 
a 

 0.06 
ab 

 0.00 
ab 

8.46E-12 

EPS15L1 -0.16 
bc 

-0.20 
c 

 0.05 
b 

 0.01 
bc 

-0.47 
c 

 0.35 
a 

 0.02 
bc 

-0.28 
c 

6.44E-19 

CEACA
M8 

-0.32 
ab 

 0.02 
ab 

 0.01 
ab 

 0.09 
ab 

 0.33 
a 

 0.13 
a 

 0.19 
a 

-0.02 
ab 

5.35E-10 

JOSD2 -0.01 
b 

 0.00 
b 

-0.04 
b 

 0.13 
ab 

-0.09 
b 

 0.41 
a 

-0.01 
b 

-0.04 
b 

2.56E-09 
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Table B.1 (cont’d) 

FKBP1A
P1 

-0.28 
ab 

 0.19 
a 

-0.02 
ab 

 0.05 
ab 

 0.29 
a 

 0.07 
ab 

 0.03 
ab 

-0.08 
ab 

3.41E-11 

DEFB12
6 

-0.10 
ab 

 0.10 
ab 

-0.07 
ab 

 0.34 
a 

 0.13 
ab 

 0.31 
a 

 0.19 
ab 

 0.05 
ab 

7.72E-13 

C20orf96 -0.58 
b 

 0.36 
a 

 0.00 
b 

 0.02 
ab 

 0.08 
ab 

-0.08 
b 

-0.07 
b 

-0.12 
b 

2.44E-47 

ZCCHC3 -0.86 
c 

 0.52 
a 

-0.04 
b 

 0.18 
ab 

 0.36 
ab 

-0.03 
b 

 0.20 
ab 

 0.09 
ab 

1.21E-
111 

SOX12 -0.53 
c 

 0.35 
a 

-0.07 
b 

 0.09 
ab 

 0.35 
ab 

 0.24 
ab 

 0.24 
ab 

 0.17 
ab 

5.60E-51 

NRSN2 -0.54 
c 

 0.28 
a 

-0.03 
b 

 0.05 
ab 

 0.26 
ab 

 0.12 
ab 

 0.17 
ab 

 0.17 
ab 

1.29E-38 

TRIB3 -0.14 
ab 

 0.33 
a 

-0.10 
ab 

-0.12 
ab 

 0.44 
a 

 0.16 
ab 

 0.26 
a 

 0.25 
ab 

4.92E-31 

RBCK1 -0.80 
c 

 0.62 
a 

-0.06 
b 

 0.05 
b 

 0.36 
ab 

-0.01 
b 

 0.13 
b 

 0.09 
b 

1.42E-
122 

TBC1D2
0 

-0.91 
c 

 0.51 
a 

-0.04 
b 

 0.11 
b 

 0.21 
ab 

 0.14 
b 

 0.17 
ab 

 0.09 
b 

6.61E-
117 

CSNK2A
1 

-0.77 
d 

 0.58 
a 

-0.10 
c 

 0.24 
abc 

 0.26 
abc 

 0.21 
bc 

 0.28 
ab 

 0.27 
abc 

1.93E-
121 

SRXN1 -0.44 
b 

 0.39 
a 

-0.10 
b 

 0.08 
ab 

 0.31 
ab 

 0.25 
ab 

 0.42 
a 

 0.21 
ab 

5.15E-57 

SLC52A
3 

-0.24 
c 

 0.22 
a 

-0.04 
bc 

 0.06 
abc 

 0.16 
abc 

 0.17 
ab 

 0.07 
abc 

-0.14 
bc 

1.34E-13 

FAM110
A 

-0.51 
b 

 0.39 
a 

-0.07 
a 

 0.13 
a 

 0.49 
a 

 0.22 
a 

 0.10 
a 

 0.23 
a 

3.39E-53 

PSMF1 -1.05 
c 

 0.67 
a 

-0.07 
b 

 0.11 
b 

 0.44 
ab 

 0.20 
b 

 0.27 
b 

 0.11 
b 

3.66E-
186 

TMEM74
B 

-0.12 
ab 

 0.29 
a 

-0.05 
ab 

 0.07 
ab 

 0.32 
a 

-0.08 
ab 

 0.06 
ab 

-0.10 
ab 

2.59E-15 

C20orf20
2 

-0.18 
ab 

 0.21 
a 

-0.02 
ab 

-0.20 
ab 

 0.21 
a 

-0.05 
ab 

 0.08 
ab 

-0.05 
ab 

5.42E-09 

SNPH -1.77 
e 

 1.12 
a 

-0.09 
d 

 0.04 
cd 

 0.78 
ab 

 0.21 
bc 

 0.24 
bc 

 0.26 
bc 

0 

SDCBP2 -0.33 
b 

 0.17 
a 

 0.00 
ab 

 0.15 
ab 

 0.14 
ab 

-0.10 
ab 

 0.10 
ab 

 0.01 
ab 

3.23E-13 

FKBP1A -0.76 
b 

 0.44 
a 

-0.03 
a 

 0.05 
a 

 0.48 
a 

 0.03 
a 

 0.22 
a 

 0.11 
a 

1.65E-83 

NSFL1C -1.02 
c 

 0.64 
a 

-0.08 
b 

 0.27 
ab 

 0.56 
ab 

 0.15 
b 

 0.22 
b 

 0.28 
ab 

1.93E-
175 

SIRPA -0.25 
b 

 0.13 
a 

 0.00 
ab 

 0.12 
ab 

 0.02 
ab 

-0.04 
ab 

-0.01 
ab 

-0.11 
ab 

8.68E-07 
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Table B.1 (cont’d) 

STK35 -0.63 
c 

 0.56 
a 

-0.13 
b 

 0.26 
ab 

 0.31 
ab 

 0.33 
a 

 0.26 
ab 

 0.39 
a 

4.34E-
109 

TGM6 -1.82 
e 

 1.13 
a 

-0.09 
d 

 0.02 
cd 

 0.76 
ab 

 0.26 
bc 

 0.25 
bc 

 0.28 
bc 

0 

SNRPB -0.61 
c 

 0.58 
a 

-0.12 
b 

 0.22 
ab 

 0.64 
a 

 0.25 
ab 

 0.24 
ab 

 0.30 
ab 

8.01E-
109 

ZNF343 -0.81 
c 

 0.57 
a 

-0.09 
b 

 0.21 
b 

 0.34 
ab 

 0.24 
b 

 0.21 
b 

 0.16 
b 

8.30E-
123 

TMC2 -0.30 
b 

 0.18 
a 

 0.00 
ab 

 0.00 
ab 

 0.10 
ab 

 0.03 
ab 

-0.10 
ab 

-0.02 
ab 

3.89E-11 

NOP56 -0.64 
c 

 0.55 
a 

-0.10 
b 

 0.08 
b 

 0.49 
ab 

 0.15 
b 

 0.22 
ab 

 0.29 
ab 

3.45E-96 

IDH3B -0.91 
c 

 0.62 
a 

-0.06 
b 

 0.18 
b 

 0.42 
ab 

 0.00 
b 

 0.19 
b 

 0.27 
ab 

1.62E-
143 

EBF4 -0.40 
b 

 0.08 
a 

 0.03 
a 

-0.13 
ab 

-0.20 
ab 

 0.07 
a 

-0.07 
ab 

 0.17 
a 

1.39E-14 

PCED1A -0.64 
b 

 0.46 
a 

-0.03 
a 

 0.00 
a 

 0.52 
a 

 0.03 
a 

 0.02 
a 

-0.15 
ab 

6.69E-69 

VPS16 -0.92 
c 

 0.61 
a 

-0.08 
b 

 0.16 
b 

 0.56 
ab 

 0.17 
b 

 0.20 
b 

 0.25 
ab 

2.78E-
148 

PTPRA -0.88 
c 

 0.52 
a 

-0.04 
b 

 0.10 
b 

 0.27 
ab 

 0.18 
b 

 0.11 
b 

 0.12 
b 

6.66E-
115 

MRPS26 -0.76 
c 

 0.57 
a 

-0.06 
b 

 0.05 
b 

 0.42 
ab 

 0.08 
b 

 0.15 
b 

 0.07 
b 

3.16E-
106 

OXT -1.81 
e 

 1.15 
a 

-0.10 
d 

 0.04 
cd 

 0.76 
ab 

 0.25 
bc 

 0.24 
bc 

 0.28 
bc 

0 

UBOX5 -0.90 
c 

 0.51 
a 

-0.03 
b 

-0.02 
b 

 0.31 
ab 

 0.22 
ab 

 0.11 
b 

-0.05 
b 

1.43E-
115 

FASTKD
5 

-0.78 
c 

 0.55 
a 

-0.07 
b 

 0.16 
ab 

 0.40 
ab 

 0.12 
b 

 0.20 
ab 

 0.14 
ab 

1.38E-
107 

DDRGK1 -0.84 
c 

 0.52 
a 

-0.01 
b 

-0.13 
b 

 0.14 
ab 

 0.02 
b 

-0.02 
b 

-0.02 
b 

3.47E-
104 

ITPA -0.76 
c 

 0.51 
a 

-0.05 
b 

 0.18 
ab 

 0.39 
ab 

 0.02 
b 

 0.17 
ab 

 0.09 
ab 

1.49E-94 

SLC4A1
1 

-0.37 
b 

 0.14 
a 

 0.02 
ab 

-0.09 
ab 

 0.04 
ab 

 0.03 
ab 

-0.02 
ab 

-0.13 
ab 

5.10E-13 

C20orf19
4 

-0.56 
ab 

 0.12 
a 

 0.02 
a 

 0.12 
a 

 0.16 
a 

 0.15 
a 

 0.06 
a 

-0.07 
ab 

2.36E-28 

ATRN -0.74 
c 

 0.36 
a 

-0.05 
b 

 0.17 
ab 

 0.17 
ab 

 0.32 
a 

 0.31 
a 

 0.13 
ab 

2.33E-78 

ADAM33 -1.83 
e 

 1.13 
a 

-0.09 
d 

 0.03 
cd 

 0.74 
ab 

 0.24 
bc 

 0.24 
bc 

 0.33 
bc 

0 

HSPA12
B 

-1.74 
d 

 1.11 
a 

-0.10 
c 

 0.08 
bc 

 0.73 
ab 

 0.22 
b 

 0.26 
b 

 0.37 
b 

0 
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Table B.1 (cont’d) 

C20orf27 -1.71 
e 

 1.13 
a 

-0.11 
d 

 0.07 
cd 

 0.81 
ab 

 0.23 
bc 

 0.25 
bc 

 0.32 
bc 

0 

SPEF1 -0.36 
b 

 0.23 
a 

 0.00 
b 

 0.03 
ab 

 0.11 
ab 

-0.04 
b 

-0.03 
b 

-0.05 
b 

1.58E-16 

CENPB -0.88 
c 

 0.57 
a 

-0.04 
b 

 0.07 
b 

 0.37 
ab 

 0.06 
b 

 0.06 
b 

 0.16 
ab 

2.18E-
121 

CDC25B -0.27 
ab 

 0.45 
a 

-0.10 
ab 

 0.18 
ab 

 0.49 
a 

 0.07 
ab 

 0.14 
ab 

 0.15 
ab 

4.42E-46 

AP5S1 -0.87 
c 

 0.60 
a 

-0.05 
b 

-0.01 
b 

 0.47 
ab 

 0.03 
b 

 0.10 
b 

 0.04 
b 

6.14E-
128 

MAVS -0.73 
d 

 0.52 
a 

-0.06 
c 

 0.00 
bc 

 0.17 
abc 

 0.24 
ab 

 0.17 
abc 

 0.02 
bc 

1.68E-95 

PANK2 -0.94 
c 

 0.49 
a 

-0.03 
b 

 0.19 
ab 

 0.38 
ab 

 0.01 
b 

 0.19 
ab 

 0.18 
ab 

1.77E-
118 

RNF24 -0.53 
b 

 0.30 
a 

-0.05 
b 

 0.15 
ab 

 0.24 
ab 

 0.21 
ab 

 0.22 
ab 

 0.06 
ab 

6.54E-42 

SMOX -1.79 
e 

 1.14 
a 

-0.10 
d 

-0.01 
cd 

 0.75 
ab 

 0.23 
bc 

 0.23 
bc 

 0.30 
bc 

0 

PRNP -0.46 
ab 

 0.17 
a 

 0.01 
ab 

 0.13 
a 

 0.31 
a 

-0.04 
ab 

 0.04 
a 

 0.01 
ab 

6.22E-21 

PRND -1.79 
e 

 1.13 
a 

-0.10 
d 

 0.04 
cd 

 0.77 
ab 

 0.27 
bc 

 0.21 
bc 

 0.33 
bc 

0 

SLC23A
2 

-0.54 
b 

 0.18 
a 

-0.01 
ab 

 0.16 
ab 

 0.16 
ab 

 0.22 
a 

 0.04 
ab 

 0.06 
ab 

2.17E-30 

TMEM23
0 

-0.87 
c 

 0.58 
a 

-0.05 
b 

 0.19 
ab 

 0.18 
ab 

 0.13 
b 

 0.07 
b 

 0.04 
b 

5.73E-
124 

PCNA -0.48 
b 

 0.50 
a 

-0.12 
a 

 0.31 
a 

 0.58 
a 

 0.17 
a 

 0.22 
a 

 0.35 
a 

3.74E-78 

CDS2 -0.82 
c 

 0.51 
a 

-0.06 
b 

 0.11 
b 

 0.42 
ab 

 0.28 
ab 

 0.12 
b 

 0.09 
b 

1.04E-
108 

PROKR2 -1.82 
e 

 1.15 
a 

-0.10 
d 

 0.05 
cd 

 0.76 
ab 

 0.27 
bc 

 0.22 
bc 

 0.27 
bc 

0 

GPCPD1 -0.48 
c 

 0.32 
a 

 0.00 
b 

 0.11 
ab 

-0.09 
bc 

-0.11 
bc 

-0.17 
bc 

 0.05 
ab 

2.83E-35 

C20orf19
6 

-0.63 
c 

 0.41 
a 

 0.01 
b 

-0.08 
b 

-0.09 
bc 

-0.15 
bc 

-0.13 
bc 

 0.02 
ab 

1.42E-59 

CHGB -0.24 
ab 

 0.04 
ab 

 0.05 
a 

-0.20 
ab 

-0.24 
ab 

-0.12 
ab 

-0.12 
ab 

 0.05 
a 

1.59E-07 

TRMT6 -0.65 
c 

 0.63 
a 

-0.13 
b 

 0.47 
a 

 0.66 
a 

 0.14 
ab 

 0.23 
a 

 0.37 
a 

2.67E-
127 

MCM8 -0.45 
b 

 0.48 
a 

-0.14 
a 

 0.39 
a 

 0.53 
a 

 0.29 
a 

 0.28 
a 

 0.33 
a 

3.12E-81 

CRLS1 -0.74 
c 

 0.56 
a 

-0.04 
b 

 0.09 
b 

 0.16 
ab 

-0.05 
b 

 0.13 
b 

-0.06 
b 

3.67E-99 
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Table B.1 (cont’d) 

LRRN4 -1.82 
e 

 1.13 
a 

-0.09 
d 

 0.02 
cd 

 0.73 
ab 

 0.25 
bc 

 0.21 
bc 

 0.25 
bc 

0 

FERMT1 -1.71 
d 

 1.08 
a 

-0.09 
c 

 0.08 
bc 

 0.70 
ab 

 0.22 
b 

 0.22 
b 

 0.21 
bc 

0 

BMP2 -0.31 
b 

 0.14 
a 

 0.03 
ab 

 0.10 
ab 

 0.07 
ab 

-0.23 
b 

-0.06 
ab 

-0.02 
ab 

6.35E-13 

TMX4 -0.61 
c 

 0.28 
a 

 0.02 
b 

 0.10 
ab 

-0.17 
bc 

-0.14 
b 

 0.02 
ab 

 0.03 
ab 

1.08E-42 

PLCB1 -0.37 
b 

 0.16 
a 

 0.00 
a 

 0.17 
a 

-0.16 
ab 

-0.01 
ab 

 0.08 
a 

-0.03 
ab 

3.30E-14 

PLCB4 -0.16 
a 

 0.10 
a 

 0.04 
a 

-0.06 
a 

-0.68 
a 

-0.22 
a 

-0.17 
a 

-0.09 
a 

6.38E-11 

ANKEF1 -0.48 
c 

 0.41 
a 

-0.08 
bc 

 0.28 
ab 

 0.17 
abc 

 0.30 
a 

 0.10 
abc 

 0.06 
abc 

3.15E-56 

SNAP25 -0.22 
ab 

 0.05 
a 

 0.04 
a 

 0.12 
a 

-0.04 
ab 

-0.08 
ab 

-0.21 
ab 

-0.07 
ab 

3.55E-06 

MKKS -0.92 
c 

 0.59 
a 

-0.06 
b 

 0.20 
ab 

 0.30 
ab 

 0.09 
b 

 0.19 
b 

 0.22 
ab 

3.32E-
139 

SLX4IP -0.43 
c 

 0.31 
a 

-0.07 
bc 

 0.29 
ab 

 0.22 
abc 

 0.32 
a 

 0.18 
abc 

 0.08 
abc 

4.54E-41 

JAG1 -0.42 
c 

 0.22 
a 

-0.02 
bc 

 0.19 
ab 

 0.16 
abc 

 0.13 
abc 

-0.07 
bc 

 0.13 
abc 

1.37E-22 

BTBD3 -0.58 
c 

 0.30 
a 

-0.02 
bc 

 0.28 
ab 

 0.14 
abc 

-0.03 
bc 

 0.16 
ab 

 0.12 
abc 

2.76E-44 

SPTLC3 -0.44 
b 

 0.10 
a 

 0.06 
a 

 0.16 
a 

-0.20 
ab 

-0.24 
ab 

-0.16 
ab 

-0.03 
ab 

4.76E-23 

TASP1 -0.75 
c 

 0.49 
a 

-0.05 
b 

 0.26 
ab 

 0.29 
ab 

 0.08 
b 

 0.11 
b 

 0.08 
b 

2.45E-89 

ESF1 -0.58 
c 

 0.49 
a 

-0.10 
b 

 0.32 
ab 

 0.45 
ab 

 0.20 
ab 

 0.18 
ab 

 0.21 
ab 

1.21E-80 

NDUFAF
5 

-0.81 
c 

 0.59 
a 

-0.06 
b 

 0.21 
ab 

 0.45 
ab 

 0.00 
b 

 0.08 
b 

 0.18 
ab 

2.31E-
117 

MACRO
D2 

-0.36 
b 

 0.10 
a 

 0.06 
ab 

 0.06 
ab 

-0.09 
ab 

-0.22 
ab 

-0.12 
ab 

-0.20 
ab 

4.52E-17 

FLRT3 -0.35 
b 

 0.15 
a 

 0.02 
ab 

 0.20 
a 

 0.06 
ab 

-0.11 
ab 

-0.15 
ab 

 0.14 
ab 

8.51E-15 

KIF16B -0.53 
c 

 0.39 
a 

-0.07 
bc 

 0.22 
ab 

 0.18 
abc 

 0.25 
a 

 0.13 
abc 

 0.18 
ab 

1.10E-55 

SNRPB2 -0.74 
c 

 0.67 
a 

-0.10 
b 

 0.26 
ab 

 0.62 
ab 

 0.00 
b 

 0.17 
b 

 0.24 
ab 

1.35E-
133 

BFSP1 -0.37 
ac 

 0.35 
a 

-0.07 
abc 

 0.26 
ab 

 0.40 
a 

-0.03 
abc 

 0.23 
ab 

 0.26 
ab 

3.55E-38 

DSTN -0.66 
c 

 0.36 
a 

-0.02 
b 

 0.13 
ab 

 0.18 
ab 

 0.04 
ab 

 0.12 
ab 

 0.08 
ab 

1.05E-57 
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Table B.1 (cont’d) 

RRBP1 -1.72 
e 

 1.09 
a 

-0.09 
d 

 0.07 
cd 

 0.78 
ab 

 0.22 
bc 

 0.20 
bc 

 0.26 
bc 

0 

SNX5 -0.79 
c 

 0.46 
a 

-0.02 
b 

 0.06 
b 

 0.30 
ab 

 0.07 
b 

 0.11 
ab 

-0.13 
b 

7.95E-87 

SNORD1
7 

-0.42 
b 

 0.25 
a 

-0.04 
ab 

 0.10 
a 

 0.41 
a 

 0.18 
a 

 0.18 
a 

 0.01 
ab 

1.50E-28 

MGME1 -0.68 
c 

 0.58 
a 

-0.13 
b 

 0.41 
a 

 0.71 
a 

 0.25 
ab 

 0.31 
a 

 0.25 
ab 

9.72E-
124 

ZNF133 -0.81 
c 

 0.55 
a 

-0.07 
b 

 0.22 
ab 

 0.53 
ab 

 0.11 
b 

 0.15 
b 

 0.15 
ab 

5.22E-
113 

DZANK1 -0.51 
c 

 0.42 
a 

-0.04 
bc 

 0.14 
ab 

 0.07 
abc 

 0.01 
bc 

-0.10 
bc 

 0.09 
ab 

5.46E-50 

POLR3F -0.75 
c 

 0.60 
a 

-0.09 
b 

 0.32 
ab 

 0.45 
ab 

 0.09 
b 

 0.15 
b 

 0.23 
ab 

1.19E-
117 

RBBP9 -0.74 
c 

 0.43 
a 

-0.02 
b 

 0.25 
ab 

 0.10 
ab 

-0.03 
b 

 0.02 
b 

 0.06 
ab 

2.23E-76 

SEC23B -0.63 
c 

 0.37 
a 

-0.03 
bc 

 0.06 
ab 

 0.02 
abc 

 0.14 
ab 

 0.08 
ab 

 0.08 
ab 

1.19E-55 

SMIM26 -0.90 
c 

 0.58 
a 

-0.03 
b 

 0.09 
b 

 0.26 
ab 

-0.02 
b 

 0.05 
b 

 0.01 
b 

5.27E-
126 

DTD1 -0.58 
c 

 0.46 
a 

-0.04 
b 

 0.12 
ab 

 0.26 
ab 

-0.18 
b 

 0.16 
ab 

 0.19 
ab 

1.65E-66 

LINC006
52 

-0.16 
b 

 0.30 
a 

-0.04 
b 

-0.04 
b 

-0.05 
b 

-0.07 
b 

-0.11 
b 

 0.07 
ab 

1.24E-15 

SLC24A
3 

-0.19 
ab 

 0.09 
a 

 0.03 
ab 

-0.04 
ab 

-0.02 
ab 

-0.01 
ab 

-0.30 
b 

-0.15 
ab 

2.92E-07 

RIN2 -0.46 
b 

 0.31 
a 

-0.04 
b 

 0.15 
ab 

 0.23 
ab 

 0.05 
ab 

 0.11 
ab 

 0.07 
ab 

1.21E-32 

NAA20 -0.61 
c 

 0.60 
a 

-0.13 
b 

 0.25 
b 

 0.53 
ab 

 0.27 
b 

 0.22 
b 

 0.22 
b 

3.61E-
110 

CRNKL1 -0.73 
c 

 0.50 
a 

-0.07 
b 

 0.23 
ab 

 0.15 
ab 

 0.20 
ab 

 0.15 
ab 

 0.15 
ab 

5.95E-93 

DEFB12
7 

-0.10 
ab 

 0.10 
ab 

-0.07 
ab 

 0.34 
a 

 0.13 
ab 

 0.31 
a 

 0.19 
ab 

 0.05 
ab 

-7.80E-
11 

C20orf97 -0.58 
b 

 0.36 
a 

 0.00 
b 

 0.02 
ab 

 0.08 
ab 

-0.08 
b 

-0.07 
b 

-0.12 
b 

-7.88E-
11 

ZCCHC4 -0.86 
c 

 0.52 
a 

-0.04 
b 

 0.18 
ab 

 0.36 
ab 

-0.03 
b 

 0.20 
ab 

 0.09 
ab 

-7.96E-
11 

SOX13 -0.53 
c 

 0.35 
a 

-0.07 
b 

 0.09 
ab 

 0.35 
ab 

 0.24 
ab 

 0.24 
ab 

 0.17 
ab 

-8.03E-
11 

NRSN3 -0.54 
c 

 0.28 
a 

-0.03 
b 

 0.05 
ab 

 0.26 
ab 

 0.12 
ab 

 0.17 
ab 

 0.17 
ab 

-8.11E-
11 

TRIB4 -0.14 
ab 

 0.33 
a 

-0.10 
ab 

-0.12 
ab 

 0.44 
a 

 0.16 
ab 

 0.26 
a 

 0.25 
ab 

-8.19E-
11 
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Table B.1 (cont’d) 

RBCK2 -0.80 
c 

 0.62 
a 

-0.06 
b 

 0.05 
b 

 0.36 
ab 

-0.01 
b 

 0.13 
b 

 0.09 
b 

-8.27E-
11 

TBC1D2
1 

-0.91 
c 

 0.51 
a 

-0.04 
b 

 0.11 
b 

 0.21 
ab 

 0.14 
b 

 0.17 
ab 

 0.09 
b 

-8.34E-
11 

CSNK2A
2 

-0.77 
d 

 0.58 
a 

-0.10 
c 

 0.24 
abc 

 0.26 
abc 

 0.21 
bc 

 0.28 
ab 

 0.27 
abc 

-8.42E-
11 

SRXN2 -0.44 
b 

 0.39 
a 

-0.10 
b 

 0.08 
ab 

 0.31 
ab 

 0.25 
ab 

 0.42 
a 

 0.21 
ab 

-8.50E-
11 

SLC52A
4 

-0.24 
c 

 0.22 
a 

-0.04 
bc 

 0.06 
abc 

 0.16 
abc 

 0.17 
ab 

 0.07 
abc 

-0.14 
bc 

-8.57E-
11 

FAM110
A 

-0.51 
b 

 0.39 
a 

-0.07 
a 

 0.13 
a 

 0.49 
a 

 0.22 
a 

 0.10 
a 

 0.23 
a 

-8.65E-
11 

PSMF2 -1.05 
c 

 0.67 
a 

-0.07 
b 

 0.11 
b 

 0.44 
ab 

 0.20 
b 

 0.27 
b 

 0.11 
b 

-8.73E-
11 

TMEM74
B 

-0.12 
ab 

 0.29 
a 

-0.05 
ab 

 0.07 
ab 

 0.32 
a 

-0.08 
ab 

 0.06 
ab 

-0.10 
ab 

-8.81E-
11 

C20orf20
3 

-0.18 
ab 

 0.21 
a 

-0.02 
ab 

-0.20 
ab 

 0.21 
a 

-0.05 
ab 

 0.08 
ab 

-0.05 
ab 

-8.88E-
11 

SNPH -1.77 
e 

 1.12 
a 

-0.09 
d 

 0.04 
cd 

 0.78 
ab 

 0.21 
bc 

 0.24 
bc 

 0.26 
bc 

-9E-11 

SDCBP3 -0.33 
b 

 0.17 
a 

 0.00 
ab 

 0.15 
ab 

 0.14 
ab 

-0.10 
ab 

 0.10 
ab 

 0.01 
ab 

-9.04E-
11 

FKBP1A -0.76 
b 

 0.44 
a 

-0.03 
a 

 0.05 
a 

 0.48 
a 

 0.03 
a 

 0.22 
a 

 0.11 
a 

-9.12E-
11 

NSFL1C -1.02 
c 

 0.64 
a 

-0.08 
b 

 0.27 
ab 

 0.56 
ab 

 0.15 
b 

 0.22 
b 

 0.28 
ab 

-9.19E-
11 

SIRPA -0.25 
b 

 0.13 
a 

 0.00 
ab 

 0.12 
ab 

 0.02 
ab 

-0.04 
ab 

-0.01 
ab 

-0.11 
ab 

-9.27E-
11 

MUC6 -0.11 
b 

 0.15 
ab 

-0.06 
b 

 0.43 
a 

 0.17 
ab 

 0.10 
ab 

-0.04 
ab 

 0.32 
ab 

1.99E-12 

KAT14 -0.83 
c 

 0.50 
a 

-0.03 
b 

 0.04 
b 

 0.20 
ab 

 0.08 
b 

 0.10 
b 

 0.14 
ab 

4.33E-
101 

LOC653
566 

-0.02 
b 

-0.03 
b 

-0.01 
b 

 0.05 
b 

-0.29 
bc 

 0.67 
a 

 0.03 
b 

-1.04 
c 

2.59E-53 

LOC100
270804 

-0.42 
b 

 0.37 
a 

-0.04 
b 

 0.13 
ab 

 0.28 
ab 

 0.03 
b 

-0.04 
b 

-0.05 
b 

2.85E-36 

LOC100
130987 

 0.01 
b 

-0.10 
b 

-0.01 
b 

 0.10 
ab 

-0.27 
b 

 0.54 
a 

-0.03 
b 

-0.49 
b 

2.12E-23 

ProSAPi
P1 

-0.35 
b 

 0.27 
a 

 0.00 
b 

 0.09 
ab 

-0.10 
b 

-0.16 
b 

 0.06 
ab 

-0.25 
b 

9.78E-23 

LOC645
332 

-0.11 
bc 

 0.00 
b 

 0.00 
b 

-0.08 
bc 

-0.40 
bc 

 0.50 
a 

-0.06 
bc 

-0.53 
c 

2.62E-22 

LOC100
289673 

-0.12 
ab 

 0.12 
ab 

-0.07 
ab 

 0.27 
a 

 0.50 
a 

 0.24 
a 

 0.16 
ab 

 0.23 
ab 

3.90E-14 

          



129 
 

Table B.1 (cont’d) 

LOC730
101 

-0.06 
ab 

-0.08 
ab 

 0.06 
ab 

 0.28 
a 

 0.23 
ab 

-0.10 
ab 

-0.47 
b 

-0.15 
ab 

4.63E-14 

ATPGD1 -0.04 
b 

 0.09 
ab 

-0.07 
b 

 0.32 
ab 

 0.27 
ab 

 0.36 
a 

 0.02 
ab 

 0.09 
ab 

1.63E-13 

WASH5P -0.25 
ab 

 0.21 
a 

-0.03 
ab 

 0.23 
a 

 0.17 
ab 

-0.04 
ab 

 0.01 
ab 

 0.04 
ab 

3.19E-12 

C20orf46 -0.06 
ab 

 0.17 
a 

-0.07 
ab 

 0.29 
a 

-0.04 
ab 

 0.19 
a 

 0.10 
ab 

 0.21 
a 

7.38E-12 

C19orf22 -0.08 
b 

 0.01 
b 

-0.04 
b 

 0.30 
ab 

-0.05 
b 

 0.38 
a 

 0.00 
b 

-0.07 
b 

2.20E-10 

SUV420
H1 

-0.13 
b 

-0.11 
b 

 0.04 
ab 

-0.06 
ab 

-0.39 
b 

 0.23 
a 

-0.01 
ab 

-0.38 
b 

2.32E-10 

LINC015
12 

-0.02 
ab 

-0.01 
ab 

 0.04 
a 

-0.02 
ab 

 0.02 
ab 

-0.02 
ab 

-0.53 
b 

 0.04 
a 

2.49E-10 

LOC149
837 

-0.22 
b 

 0.15 
a 

 0.02 
ab 

-0.16 
ab 

-0.14 
ab 

 0.00 
ab 

-0.14 
ab 

-0.16 
ab 

3.95E-08 

SINHCA
F 

 0.08 
a 

 0.09 
a 

-0.04 
a 

 0.40 
a 

-0.37 
a 

-0.11 
a 

 0.17 
a 

 0.05 
a 

6.33E-08 

LOC100
134868 

-0.21 
b 

 0.17 
a 

-0.01 
ab 

 0.13 
ab 

 0.10 
ab 

-0.10 
ab 

 0.01 
ab 

-0.02 
ab 

2.18E-07 

LOC642
846 

 0.11 
a 

 0.05 
a 

-0.07 
a 

 0.25 
a 

 0.10 
a 

 0.18 
a 

 0.11 
a 

 0.11 
a 

1.25E-06 

KIAA102
6 

 0.10 
a 

-0.03 
a 

 0.03 
a 

 0.09 
a 

-0.03 
a 

-0.22 
a 

-0.29 
a 

 0.01 
a 

2.81E-06 

LOC374
443 

-0.09 
b 

-0.07 
b 

 0.00 
b 

 0.05 
ab 

-0.28 
b 

 0.31 
a 

 0.00 
b 

-0.02 
b 

6.53E-06 
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Figure B.1: Clustering of tumor samples (no constraints). Tumor clusters were 
obtained by sequential application of tSNE and DBSCAN algorithm for 5,408 samples 
from 33 cancer types. The contours reflect cluster membership, and the points’ colors 
and shapes represent similar anatomical sites and cancer types, respectively. After 
removing the first two, the two-dimensional tSNE projection was obtained from the first 
50 principal axes of the extended omic matrix. Extended omic matrix contained appended 
values of gene expression, DNA methylation, and copy number variant intensity. Integers 
represent individual clusters. Clusters were also annotated in terms of their most enriched 
histological/molecular subtypes. 
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Figure B.2: Re-classification of tumors and previously reported molecular 
subtypes. 
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Figure B.3: Survival curves by pan-cancer tumor clusters. The figure shows Kaplan-
Meier curves highlighting the survival probability by time in years for each cluster. Log-
rank tests were performed to determined significant differences between curves. The 
legend shows the results of multiple comparisons between survival curves. Statistical 
differences are represented with different letters. 
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Figure B.4: Re-classification of tumors reveals differences in sample type. The 
relative position and number of primary, normal, and metastatic tissue samples are 
shown. The figure at the left shows the location of the samples by clusters. The figure at 
the right shows the relative proportion of sample types by cluster. 
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Figure B.5: Expression and copy numbers for transcription factors and targets. The 
expression and copy number variation by genes is shown by cluster (C1-8). The colors 
by gene name represent groups defined by different transcription factors and their targets 
(e.g., black represents the group of FOXM1 and its targets KRAS and SPTBN2). TFs 
names are shown with italic and larger font sizes. The number at the left of the 
dendrogram represents a grouping of genes based on k-means clustering. 
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APPENDIX C  

 

SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

 
Figure C.1: Plots of singular values trajectories. A) Scree plot by latent SVD 
dimension. B) Cumulative proportion of variance explained by latent dimension. C) First 
empirical partial derivative of singular values by latent dimension. D) Second empirical 
partial derivative of singular values by latent dimension. The points and bars in each 
panel represent average and standard deviations (SD) from 1x105 bootstrap repetitions 
of the sparse SVD applied to the matrix of phenotypic variables. 
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Figure C.2: Comparison between dense and sparse latent factors 

 

 

 
 

Figure C.3: Annotated Manhattan plot for PEB 1 
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Figure C.4: Annotated Manhattan plot for PEB 2 

 

 
Figure C.5: Annotated Manhattan plot for PEB 3 
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Figure C.6: Annotated Manhattan plot for PEB 4 

 

 
Figure C.7: Annotated Manhattan plot for PEB 5 
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Figure C.8: Summary of previously reported information for genes in Figure 4.4. 
Each row in the heatmap corresponds to gene mapping onto a significant peak from the 
GWAS on each PEB variable. The first sets of panels summarize the average effects of 
significant GWAS peaks with cis-eQTL in GTEx. The color of each cell represents the 
magnitude and sign of the cis-eQTL effect on the expression of that gene in each of a set 
of tissues. The order of the subpanels corresponds to a broader aggrupation of tissues in 
main organs and systems: digestive, reproductive-urinary, neuro-muscular; skin, and 
adipose tissues, circulatory and glandular. The following panels correspond to results 
from epigenomic experiments conducted in previous studies. The second panel shows 
where the peak was in a zone of positive DNase1 activity (as captured by ATAC-seq 
assays). The Third panel shows whether transcription factors were bound to the region 
(as captured by CHIP-seq assays. Each column represents a broad classification of 
transcription factors within families representing binding motifs. The last panel shows the 
presence of evidence for histone modifications (as captured by CHIP-seq). Each column 
represents a different histone mark. 



140 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BIBLIOGRAPHY 

  



141 
 

BIBLIOGRAPHY 

 

1.  Vailati-Riboni M, Palombo V, Loor JJ. What Are Omics Sciences? Periparturient 
Dis Dairy Cows A Syst Biol Approach. 2017; 1–7. 
 
2.  Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev 
Genet. 2018;19: 299–310.  
 
3.  Zelenin A V., Rodionov A V., Bolsheva NL, Badaeva ED, Muravenko O V. 
Genome: Origins and evolution of the term. Mol Biol. 2016;50: 542–550. 
 
4.  Yadav SP. The wholeness in suffix -omics, -omes, and the word om. J Biomol 
Tech. 2007;18: 277.  
 
5.  Eddy SR. The C-value paradox, junk DNA and ENCODE. Curr Biol. 2012;22: 
R898-9.  
 
6.  Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating 
inhibitors. Proc Natl Acad Sci U S A. 1977;74: 5463–7.  
 
7.  Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, et al. Primer-directed 
enzymatic amplification of DNA with a thermostable DNA polymerase. Science (80- ). 
1988;239: 487–491.  
 
8.  Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically 
functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70: 3240–4.  
 
9.  Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, et al. 
Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321: 674–
679.  
 
10.  Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu F, Zhang H, et al. The 
International HapMap Project. Nature. 2003;426: 789–796.  
 
11.  ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) 
Project. Science (80- ). 2004;306: 636–640.  
 
12.  Heather JM, Chain B. The sequence of sequencers: The history of sequencing 
DNA. Genomics. 2016;107: 1–8.  
 
13.  Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et 
al. A global reference for human genetic variation. Nature. 2015;526: 68–74.  
 



142 
 

14.  Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK 
Biobank resource with deep phenotyping and genomic data. Nature. 2018;562: 203–209.  
 
15.  Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene 
expression. Science. 1995;270: 484–7.  
 
16.  Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. 
PLOS Comput Biol. 2017;13: e1005457.  
 
17.  Eom EM, Lee JY, Park HS, Byun YJ, Ha-Lee YM, Lee DH. Comparison between 
SAGE and cDNA microarray for quantitative accuracy in transcript profiling analyses. J 
Plant Biol. 2006;49: 498–506.  
 
18.  Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. 
Nat Rev Genet. 2009;10: 57–63.  
 
19.  Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, et al. From 
Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional 
Electrophoresis and Arnino Acid Analysis. Nat Biotechnol. 1996;14: 61–65.  
 
20.  Tomizaki K, Usui K, Mihara H. Protein-protein interactions and selection: array-
based techniques for screening disease-associated biomarkers in predictive/early 
diagnosis. FEBS J. 2010;277: 1996–2005.  
 
21.  Tollefsbol TO. Advances in epigenetic technology. Methods Mol Biol. 2011;791: 
1–10.  
 
22.  Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev 
Genet 2010 1112. 2010;11: 855–866.  
 
23.  Morgan H, Beck T, Blake A, Gates H, Adams N, Debouzy G, et al. EuroPhenome: 
a repository for high-throughput mouse phenotyping data. Nucleic Acids Res. 2010;38: 
D577–D585.  
 
24.  Pieruschka R, Schurr U. Plant phenotyping: Past, present, and future. Plant 
Phenomics. 2019;2019.  
 
25.  Poldrack RA, Congdon E, Triplett W, Gorgolewski KJ, Karlsgodt KH, Mumford JA, 
et al. A phenome-wide examination of neural and cognitive function. Sci Data 2016 31. 
2016;3: 1–12.  
 
26.  Vyssotski AL, Serkov AN, Itskov PM, Dell’Omo G, Latanov A V., Wolfer DP, et al. 
Miniature neurologgers for flying pigeons: Multichannel EEG and action and field 
potentials in combination with GPS recording. J Neurophysiol. 2006;95: 1263–1273.  
 



143 
 

27.  Montes JM, Melchinger AE, Reif JC. Novel throughput phenotyping platforms in 
plant genetic studies. Trends Plant Sci. 2007;12: 433–436.  
 
28.  Yugi K, Kubota H, Hatano A, Kuroda S. Trans-Omics: How To Reconstruct 
Biochemical Networks Across Multiple ‘Omic’ Layers. Trends Biotechnol. 2016;34: 276–
290.  
 
29.  Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, 
Gisel A, et al. Data integration in the era of omics: current and future challenges. BMC 
Syst Biol. 2014;8 Suppl 2: I1.  
 
30.  Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, et al. Multi-omic data 
integration enables discovery of hidden biological regularities. Nat Commun. 2016;7: 
13091.  
 
31.  Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph Embedding and 
Extensions: A General Framework for Dimensionality Reduction. IEEE Trans Pattern Anal 
Mach Intell. 2007;29: 40–51.  
 
32.  Zhang S, Liu C-C, Li W, Shen H, Laird PW, Zhou XJ. Discovery of multi-
dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 
2012;40: 9379–9391.  
 
33.  Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data 
types using a joint latent variable model with application to breast and lung cancer subtype 
analysis. Bioinformatics. 2009;25: 2906–12.  
 
34.  Lock EF, Hoadley KA, Marron JS, Nobel AB. Joint and individual variation 
explained (JIVE) for integrated analysis of multiple data types. Ann Appl Stat. 2013;7: 
523–542.  
 
35.  Ray P, Zheng L, Lucas J, Carin L. Bayesian joint analysis of heterogeneous 
genomics data. Bioinformatics. 2014;30: 1370–1376.  
 
36.  Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated 
clustering to integrate multiple datasets. Bioinformatics. 2012;28: 3290–3297.  
 
37.  Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. 2013;29: 
2610–2616.  
 
38.  Wang J. Laplacian Eigenmaps. Geometric Structure of High-Dimensional Data 
and Dimensionality Reduction. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. pp. 
235–247.  
 
39.  Bowen GJ. Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. Annu Rev 
Earth Planet Sci. 2010;38: 161–187.  



144 
 

40.  Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear 
embedding. Science. 2000;290: 2323–6.  
 
41.  Wahba G. An introduction to reproducing kernel hilbert spaces and why they are 
so useful. IFAC Proc Vol. 2003;36: 525–528.  
 
42.  Schölkopf B, Smola A, Müller KR. Kernel principal component analysis. Lecture 
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 
and Lecture Notes in Bioinformatics). 1997. pp. 583–588.  
 
43.  Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network 
fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11: 333–337.  
 
44.  Speicher NK, Pfeifer N. Integrating different data types by regularized 
unsupervised multiple kernel learning with application to cancer subtype discovery. 
Bioinformatics. 2015;31: i268-75.  
 
45.  Cun Y, Fröhlich H. Network and Data Integration for Biomarker Signature 
Discovery via Network Smoothed T-Statistics. Boccaletti S, editor. PLoS One. 2013;8: 
e73074. \ 
 
46.  Seoane JA, Day INM, Gaunt TR, Campbell C. A pathway-based data integration 
framework for prediction of disease progression. Bioinformatics. 2014;30: 838–845.  
 
47.  Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with 
applications to genomic data. Stat Appl Genet Mol Biol. 2009;8: Article28.  
 
48.  Chen X, Liu H. An Efficient Optimization Algorithm for Structured Sparse CCA, with 
Applications to eQTL Mapping. Stat Biosci. 2012;4: 3–26.  
 
49.  Lin D, Zhang J, Li J, Calhoun VD, Deng H-W, Wang Y-P. Group sparse canonical 
correlation analysis for genomic data integration. BMC Bioinformatics. 2013;14: 245.  
 
50.  Wangen LE, Kowalski BR. A multiblock partial least squares algorithm for 
investigating complex chemical systems. J Chemom. 1989;3: 3–20.  
 
51.  Li W, Zhang S, Liu C-C, Zhou XJ. Identifying multi-layer gene regulatory modules 
from multi-dimensional genomic data. Bioinformatics. 2012;28: 2458–2466.  
 
52.  Izenman AJ. Reduced-rank regression for the multivariate linear model. J Multivar 
Anal. 1975;5: 248–264.  
 
53.  Vounou M, Nichols TE, Montana G, Alzheimer’s Disease Neuroimaging Initiative  
the ADN. Discovering genetic associations with high-dimensional neuroimaging 
phenotypes: A sparse reduced-rank regression approach. Neuroimage. 2010;53: 1147–
59.  



145 
 

54.  Goh G, Dey DK, Chen K. Bayesian sparse reduced rank multivariate regression. 
J Multivar Anal. 2017;157: 14–28.  
 
55.  Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein M. Assessing the limits of genomic data 
integration for predicting protein networks. Genome Res. 2005;15: 945–53.  
 
56.  Tini G, Marchetti L, Priami C, Scott-Boyer M-P. Multi-omics integration—a 
comparison of unsupervised clustering methodologies. Brief Bioinform. 2017 [cited 13 
Feb 2019].  
 
57.  Chuanchao Zhang, Juan Liu, Qianqian Shi, Xiangtian Yu, Tao Zeng, Luonan Chen. 
Integration of multiple heterogeneous omics data. 2016 IEEE International Conference 
on Bioinformatics and Biomedicine (BIBM). IEEE; 2016. pp. 564–569.  
 
58.  Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: An R package for ‘omics 
feature selection and multiple data integration. Schneidman D, editor. PLOS Comput Biol. 
2017;13: e1005752.  
 
59.  González-Reymúndez A, De Los Campos G, Gutiérrez L, Lunt SY, Vazquez AI. 
Prediction of years of life after diagnosis of breast cancer using omics and omic-by-
treatment interactions. Eur J Hum Genet. 2017;25: 538–544.  
 
60.  Vazquez AI, Veturi Y, Behring M, Shrestha S, Kirst M, Resende MFR, et al. 
Increased proportion of variance explained and prediction accuracy of survival of breast 
cancer patients with use of whole-genome multiomic profiles. Genetics. 2016;203: 1425–
1438.  
 
61.  Vazquez A, Wiener H, Shrestha S, Tiwari H, de los Campos G. Integration of Multi-
Layer Omic Data for Prediction of Disease Risk in Humans. Proceedings, 10th World 
Congress of Genetics Applied to Livestock Production. 2014. p. 6.  
 
62.  Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating 
data to uncover genotype–phenotype interactions. Nat Rev Genet. 2015;16: 85–97.  
 
63.  Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biology. 
BioMed Central Ltd.; 2017. pp. 1–15.  
 
64.  Müller H, Dagher G, Loibner M, Stumptner C, Kungl P, Zatloukal K. Biobanks for 
life sciences and personalized medicine: importance of standardization, biosafety, 
biosecurity, and data management. Curr Opin Biotechnol. 2020;65: 45–51.  
 
65.  Mangul S, Martin LS, Hill BL, Lam AKM, Distler MG, Zelikovsky A, et al. Systematic 
benchmarking of omics computational tools. Nat Commun. 2019;10: 1–11.  
 



146 
 

66.  Chiroma H, Abdullahi UA, Abdulhamid SM, Abdulsalam Alarood A, Gabralla LA, 
Rana N, et al. Progress on Artificial Neural Networks for Big Data Analytics: A Survey. 
IEEE Access. 2019;7: 70535–70551.  
 
67.  Lorber A, Wangen LE, Kowalski BR. A theoretical foundation for the PLS algorithm. 
J Chemom. 1987;1: 19–31.  
 
68.  Zou H, Zou H, Hastie T. Regularization and variable selection via the Elastic Net. 
J R Stat Soc Ser B. 2005;67: 301–320.  
 
69.  Shen H, Huang JZ. Sparse principal component analysis via regularized low rank 
matrix approximation. J Multivar Anal. 2008;99: 1015–1034.  
 
70.  Ester M, Kriegel H-P, Sander J, Xu X. A Density-Based Algorithm for Discovering 
Clusters in Large Spatial Databases with Noise. Proceedings of the 2nd International 
Conference on Knowledge Discovery and Data Mining. 1996. pp. 226–231.  
 
71.  Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of 
cluster analysis. J Comput Appl Math. 1987;20: 53–65.  
 
72.  Taskesen E, Huisman SMH, Mahfouz A, Krijthe JH, de Ridder J, van de Stolpe A, 
et al. Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific 
combinations of molecular characteristics. Sci Rep. 2016;6: 24949.  
 
73.  van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 
2008;9: 2579–2605.  
 
74.  Linderman GC, Steinerberger S. Clustering with t-SNE, provably. arXiv.org. 2017 
[cited 28 Nov 2018].  
 
75.  Privé F, Aschard H, Ziyatdinov A, Blum MGB. Efficient analysis of large-scale 
genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics. 2018;34: 
2781–2787.  
 
76.  Fisher RA. The use of multipole measurements in taxonomic problems. Ann 
Eugen. 1936;7: 179–188.  
 
77.  Hahsler M, Piekenbrock M. dbscan: Density Based Clustering of Applications with 
Noise (DBSCAN) and Related Algorithms. CRAN; 2017.  
 
78.  Bengtsson H. A Unifying Framework for Parallel and Distributed Processing in R 
using Futures. 2020 [cited 27 May 2021].  
 
79.  Wickham H. Ggplot2 : elegant graphics for data analysis. Springer; 2009.  
 



147 
 

80.  Tarazona S, Martinez C. Bioconductor - MOSimMulti-Omics Simulation (MOSim). 
2021.  
 
81.  Gomez-Cabrero D, Tarazona S, Ferreirós-Vidal I, Ramirez RN, Company C, 
Schmidt A, et al. STATegra, a comprehensive multi-omics dataset of B-cell differentiation 
in mouse. Sci Data 2019 61. 2019;6: 1–15.  
 
82.  Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. 
BMC Bioinformatics. 2010;11: 367.  
 
83.  el Bouhaddani S, Uh HW, Jongbloed G, Hayward C, Klarić L, Kiełbasa SM, et al. 
Integrating omics datasets with the OmicsPLS package. BMC Bioinformatics. 2018;19: 
371.  
 
84.  Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in 
multidimensional genomic data. Bioinformatics. 2016;32: 2847–2849.  
 
85.  Conesa A, Beck S. Making multi-omics data accessible to researchers. Sci Data. 
2019;6: 1–4.  
 
86.  Zhang T. On the Consistency of Feature Selection using Greedy Least Squares 
Regression. J Mach Learn Res. 2009.  
 
87.  Zhang JM, Harman M, Guedj B, Barr ET, Shawe-Taylor J. Perturbation Validation: 
A New Heuristic to Validate Machine Learning Models. 2019 [cited 19 Jun 2021].  
 
88.  González-Reymúndez A, Vázquez AI. Multi-omic signatures identify pan-cancer 
classes of tumors beyond tissue of origin. Sci Rep. 2020;10: 8341.  
 
89.  Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C. Translational Implications of 
Tumor Heterogeneity. Clin Cancer Res. 2015;21: 1258–1266.  
 
90.  Lawrence MS, Stojanov P, Polak P, Kryukov G V., Cibulskis K, Sivachenko A, et 
al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. 
Nature. 2013;499: 214–218.  
 
91.  Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences 
of genetic heterogeneity in cancer evolution. Nature. 2013;501: 338–45.  
 
92.  Langlands FE, Horgan K, Dodwell DD, Smith L. Breast cancer subtypes: response 
to radiotherapy and potential radiosensitisation. Br J Radiol. 2013;86: 20120601.  
 
93.  McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, 
Present, and the Future. Cell. 2017;168: 613–628.  
 



148 
 

94.  Abdullah LN, Chow EK-H. Mechanisms of chemoresistance in cancer stem cells. 
Clin Transl Med. 2013;2: 3.  
 
95.  Chang K, Creighton CJ, Davis C, Donehower L, Drummond J, Wheeler D, et al. 
The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45: 1113–
1120.  
 
96.  Behring M, Shrestha S, Manne U, Cui X, Gonzalez-Reymundez A, Grueneberg A, 
et al. Integrated landscape of copy number variation and RNA expression associated with 
nodal metastasis in invasive ductal breast carcinoma. Oncotarget. 2018;9: 36836–36848.  
 
97.  Vazquez AI, Veturi Y, Behring M, Shrestha S, Kirst M, Resende MF, et al. 
Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast 
Cancer Patients with Use of Whole-Genome Multi-omic Profiles. Genetics. 2016; 
genetics–115.  
 
98.  Bernal Rubio YL, González Reymúndez A, Wu K-HH, Griguer CE, Steibel JP, de 
Los Campos G, et al. Whole-Genome Multi-omic Study of Survival in Patients with 
Glioblastoma Multiforme. G3 (Bethesda). 2018; g3.200391.2018.  
 
99.  González-Reymúndez A, de los Campos G, Gutiérrez L, Lunt SY, Vazquez AI. 
Prediction of years of life after diagnosis of breast cancer using omics and omic-by-
treatment interactions. Eur J Hum Genet. 2017 [cited 13 Mar 2017].  
 
100.  Sánchez-Vega F, Gotea V, Margolin G, Elnitski L. Pan-cancer stratification of solid 
human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific 
features of the CpG island methylator phenotype. Epigenetics Chromatin. 2015;8.  
 
101.  Hoadley KA, Yau C, Stuart JM, Benz CC, Correspondence PWL. Cell-of-Origin 
Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of 
Cancer. Cell. 2018;173: 291–304.  
 
102.  Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. 
Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and 
across Tissues of Origin. Cell. 2014;158: 929–944.  
 
103.  Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. 
Toward a Shared Vision for Cancer Genomic Data. N Engl J Med. 2016;375: 1109–1112. 
  
104.  Zhu Y, Qiu P, Ji Y. TCGA-Assembler: open-source software for retrieving and 
processing TCGA data. Nat Methods. 2014;11: 599–600.  
 
105.  Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinformatics. 2008;9: 559.  
 



149 
 

106.  Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-
value and M-value methods for quantifying methylation levels by microarray analysis. 
BMC Bioinformatics. 2010;11: 587.  
 
107.  Lazar C, Meganck S, Taminau J, Steenhoff D, Coletta A, Molter C, et al. Batch 
effect removal methods for microarray gene expression data integration: a survey. Brief 
Bioinform. 2013;14: 469–490.  
 
108.  Thorsson VV, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al. The 
Immune Landscape of Cancer. Immunity. 2018;48: 812-830.e14.  
 
109.  Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis. J Am 
Stat Assoc. 1952;47: 583–621.  
 
110.  Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor 
Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 2018;1711: 243–259.  
 
111.  Waldmann P, Mészáros G, Gredler B, Fuerst C, Sölkner J. Evaluation of the la 
sso and the elastic net in genome-wide association studies. Front Genet. 2013;4: 270.  
 
112.  Baglama J, Reichel L, Lewis BW. irlba: Fast Truncated Singular Value 
Decomposition and Principal Components Analysis for Large Dense and Sparse 
Matrices. CRAN R project; 2018.  
 
113.  Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The 
human genome browser at UCSC. Genome Res. 2002;12: 996–1006.  
 
114.  Jawaid W. enrichr: Gene enrichment using Enrichr in enrichR: Provides an R 
Interface to “Enrichr.” CRAN R project; 2017.  
 
115.  Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et 
al. STRING v10: protein-protein interaction networks, integrated over the tree of life. 
Nucleic Acids Res. 2015;43: D447–D452.  
 
116.  Dunn OJ. Multiple Comparisons Using Rank Sums. Technometrics. 1964;6: 241–
252.  
 
117.  R Core Team. R: A language and environment for statistical computing. Vienna, 
Austria: R Foundation for Statistical Computing; 2017.  
 
118.  Krijthe JH. Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-
Hut Implementation. CRAN R project; 2015.  
 
119.  Worrall SF. TNM Classification of Malignant Tumours. Br J Oral Maxillofac Surg. 
2000;38: 244.  
 



150 
 

120.  Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis 
reveals cancer common and specific patterns. Brief Bioinform. 2016; bbw063.  
 
121.  Mishra S, Whetstine JR. Different Facets of Copy Number Changes: Permanent, 
Transient, and Adaptive. Mol Cell Biol. 2016;36: 1050–63.  
 
122.  Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. 
Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013;45: 1134–1140.  
 
123.  Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and 
gene expression. Hum Mol Genet. 2009;18: R1-8.  
 
124.  Gao Y, Widschwendter M, Teschendorff AE. DNA Methylation Patterns in Normal 
Tissue Correlate more Strongly with Breast Cancer Status than Copy-Number Variants. 
EBioMedicine. 2018;31: 243–252.  
 
125.  Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of 
DNA methylation data. Nat Rev Genet. 2018;19: 129–147.  
 
126.  Maloney R, Budiman M, Korshunova Y, Monte J, Bacher B, Lakey N, et al. Tissue-
specific DNA methylation patterns are frequent targets of epigenetic change in multiple 
cancer types. Cancer Res. 2008;68: LB-256.  
 
127.  Witte T, Plass C, Gerhauser C. Pan-cancer patterns of DNA methylation. Genome 
Med. 2014;6: 66.  
 
128.  Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell. 
2011;144: 646–674.  
 
129.  Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive 
Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer 
Development. Cell. 2011;144: 27–40.  
 
130.  Shen AL, Moran SA, Glover EA, Drinkwater NR, Swearingen RE, Teixeira LB, et 
al. Association of a Chromosomal Rearrangement Event with Mouse Posterior 
Polymorphous Corneal Dystrophy and Alterations in Csrp2bp, Dzank1, and Ovol2 Gene 
Expression. Anderson MG, editor. PLoS One. 2016;11: e0157577.  
 
131.  Xu M-D, Liu S-L, Feng Y-Z, Liu Q, Shen M, Zhi Q, et al. Genomic characteristics 
of pancreatic squamous cell carcinoma, an investigation by using high throughput 
sequencing after in-solution hybrid capture. Oncotarget. 2017;8: 14620–14635.  
 
132.  Pei Y-F, Ren H-G, Liu L, Li X, Fang C, Huang Y, et al. Genomic variants at 20p11 
associated with body fat mass in the European population. Obesity. 2017;25: 757–764.  
 



151 
 

133.  Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. Large-scale mapping 
of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007;3: 89.  
 
134.  Shah MA, Denton EL, Arrowsmith CH, Lupien M, Schapira M. A global assessment 
of cancer genomic alterations in epigenetic mechanisms. Epigenetics Chromatin. 2014;7: 
29.  
 
135.  Wanitchakool P, Wolf L, Koehl GE, Sirianant L, Schreiber R, Kulkarni S, et al. Role 
of anoctamins in cancer and apoptosis. Philos Trans R Soc B Biol Sci. 2014;369: 
20130096.  
 
136.  Ayoub C, Wasylyk C, Li Y, Thomas E, Marisa L, Robé A, et al. ANO1 amplification 
and expression in HNSCC with a high propensity for future distant metastasis and its 
functions in HNSCC cell lines. Br J Cancer. 2010;103: 715–726.  
 
137.  Wang X, Sheu JJ-C, Lai M-T, Yin-Yi Chang C, Sheng X, Wei L, et al. RSF-1 
overexpression determines cancer progression and drug resistance in cervical cancer. 
BioMedicine. 2018;8: 4.  
 
138.  Sircoulomb F, Bekhouche I, Finetti P, Adélaïde J, Hamida A Ben, Bonansea J, et 
 al. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer. 2010;10: 539.  
 
139.  Peña-Chilet M, Blanquer-Maceiras M, Ibarrola-Villava M, Martinez-Cadenas C, 
Martin-Gonzalez M, Gomez-Fernandez C, et al. Genetic variants in PARP1 (rs3219090) 
and IRF4(rs12203592) genes associated with melanoma susceptibility in a Spanish 
population. BMC Cancer. 2013;13: 160.  
 
140.  Hao J-J, Shi Z-Z, Zhao Z-X, Zhang Y, Gong T, Li C-X, et al. Characterization of 
genetic rearrangements in esophageal squamous carcinoma cell lines by a combination 
of M-FISH and array-CGH: further confirmation of some split genomic regions in primary 
tumors. BMC Cancer. 2012;12: 367.  
 
141.  Chowdhry S, Zanca C, Rajkumar U, Koga T, Diao Y, Raviram R. NAD Metabolic 
Dependency Determines Therapeutic Sensitivity in Cancer. Cancer Discov. 2019;9: 
OF14–OF14.  
 
142.  Kim H-J, Maiti P, Barrientos A. Mitochondrial ribosomes in cancer. Semin Cancer 
Biol. 2017;47: 67–81.  
 
143.  Sotgia F, Lisanti MP, Sotgia F, Lisanti MP. Mitochondrial biomarkers predict tumor 
progression and poor overall survival in gastric cancers: Companion diagnostics for 
personalized medicine. Oncotarget. 2017;8: 67117–67128.  
 
144.  Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, Chmielecki J, et al. 
Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511: 543–550.  
 



152 
 

145.  Collisson EA, Campbell JD, Brooks AN, Berger AH, Lee W, Chmielecki J, et al. 
Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas 
research network. Nature. 2014;511: 543–550.  
 
146.  Janku F, Wheler JJ, Westin SN, Moulder SL, Naing A, Tsimberidou AM, et al. 
PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies 
harboring PIK3CA mutations. J Clin Oncol. 2012;30: 777–782.  
 
147.  Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: 
Successes, challenges and opportunities. Molecular Oncology. John Wiley and Sons Ltd; 
2012. pp. 155–176.  
 
148.  Bonelli P, Tuccillo FM, Borrelli A, Schiattarella A, Buonaguro FM. CDK/CCN and 
CDKI alterations for cancer prognosis and therapeutic predictivity. Biomed Res Int. 
2014;2014.  
 
149.  Seo M, Seo M, Goldschmidt-clermont PJ, West M. Of mice and men: Sparse 
statistical modelling in cardiovascular genomics. Ann Appl Stat. [cited 12 Feb 2018].  
 
150.  Guo X, Ngo B, Modrek A, Lee W-H. Targeting Tumor Suppressor Networks for 
Cancer Therapeutics. Curr Drug Targets. 2014;15: 2–16.  
 
151.  Bray GA, Kim KK, Wilding JPH. Obesity: a chronic relapsing progressive disease 
process. A position statement of the World Obesity Federation. Obes Rev. 2017;18: 715–
723.  
 
152.  Loos RJF. Recent progress in the genetics of common obesity. Br J Clin 
Pharmacol. 2009;68: 811–829.  
 
153.  MO G. Genetics of obesity: what genetic association studies have taught us about 
the biology of obesity and its complications. lancet Diabetes Endocrinol. 2018;6: 223–
236.  
 
154.  Jiang L, Penney KL, Giovannucci E, Kraft P, Wilson KM. A genome-wide 
association study of energy intake and expenditure. PLoS One. 2018;13.  
 
155.  Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M, et al. Energy 
balance and obesity: what are the main drivers? Cancer Causes Control. 2017;28: 247–
258.  
 
156.  Diels S, Berghe W Vanden, Hul W Van. Insights into the multifactorial causation of 
obesity by integrated genetic and epigenetic analysis. Obes Rev. 2020;21: e13019.  
 
157.  Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. 
Energy balance and its components: implications for body weight regulation. Am J Clin 
Nutr. 2012;95: 989–994.  



153 
 

158.  Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics 
Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol 
Syst Biol. 2018;14: e8124.  
 
159.  Ubbens J, Cieslak M, Prusinkiewicz P, Parkin I, Ebersbach J, Stavness I. Latent 
space phenotyping: Automatic image-based phenotyping for treatment studies. Plant 
Phenomics. 2020;2020.  
 
160.  Joo J, Williamson SA, Vazquez AI, Fernandez JR, Bray MS. Advanced Dietary 
Patterns Analysis Using Sparse Latent Factor Models in Young Adults. J Nutr. 2018;148: 
1984–1992.  
 
161.  Joo J, Williamson SA, Vazquez AI, Fernandez JR, Bray MS. The influence of 15-
week exercise training on dietary patterns among young adults. Int J Obes. 2019; 1.  
 
162.  Xu SY, Nelson S, Kerr J, Godbole S, Johnson E, Patterson RE, et al. Modeling 
temporal variation in physical activity using functional principal components analysis. Stat 
Biosci. 2019;11: 403–421.  
 
163.  Johnson RK, Vanderlinden L, DeFelice BC, Kechris K, Uusitalo U, Fiehn O, et al. 
Metabolite-related dietary patterns and the development of islet autoimmunity. Sci Rep. 
2019;9: 1–11.  
 
164.  Guénard F, Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl M-C. 
Genome-Wide Association Study of Dietary Pattern Scores. Nutrients. 2017;9: 649.  
165.  Tang CS, Ferreira MAR. A gene-based test of association using canonical 
correlation analysis. Bioinformatics. 2012;28: 845–850.  
 
166.  Basu S, Zhang Y, Ray D, Miller MB, Iacono WG, McGue M. A rapid gene-based 
genome-wide association test with multivariate traits. Hum Hered. 2014;76: 53–63.  
 
167.  Aschard H, Vilhjálmsson BJ, Greliche N, Morange PE, Trégouët DA, Kraft P. 
Maximizing the power of principal-component analysis of correlated phenotypes in 
genome-wide association studies. Am J Hum Genet. 2014;94: 662–676.  
 
168.  Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR. Genetic 
influence on daily wheel running activity level. Physiol Genomics. 2004;19: 270–276.  
 
169.  Koteja P, Garland T, Sax JK, Swallow JG, Carter PA. Behaviour of house mice 
artificially selected for high levels of voluntary wheel running. Anim Behav. 1999;58: 
1307–1318.  
 
170.  Lerman I, Harrison BC, Freeman K, Hewett TE, Allen DL, Robbins J, et al. Genetic 
variability in forced and voluntary endurance exercise performance in seven  inbred 
mouse strains. J Appl Physiol. 2002;92: 2245–2255.  
 



154 
 

171.  West DB, York B. Dietary fat, genetic predisposition, and obesity: lessons from 
animal models. Am J Clin Nutr. 1998;67: 505S-512S.  
 
172.  Ellacott KLJ, Morton GJ, Woods SC, Tso P, Schwartz MW. Assessment of feeding 
behavior in laboratory mice. Cell Metab. 2010;12: 10–17.  
 
173.  Barron R, Bermingham K, Brennan L, Gibney ER, Gibney MJ, Ryan MF, et al. Twin 
metabolomics: the key to unlocking complex phenotypes in nutrition research. Nutr Res. 
2016;36: 291–304.  
 
174.  Rintala M, Lyytikäinen A, Leskinen T, Alen M, Pietiläinen KH, Kaprio J, et al. 
Leisure-time physical activity and nutrition: a twin study. Public Health Nutr. 2011;14: 
846–852.  
 
175.  Beunen G, Thomis M. Genetic determinants of sports participation and daily 
physical activity. Int J Obes. 1999;23: S55–S63.  
 
176.  Maia JAR, Thomis M, Beunen G. Genetic factors in physical activity levels: a twin 
study. Am J Prev Med. 2002;23: 87–91.  
 
177.  Lightfoot JT. Current understanding of the genetic basis for physical activity. J Nutr. 
2011;141: 526–30.  
 
178.  Herring MP, Sailors MH, Bray MS. Genetic factors in exercise adoption, adherence 
and obesity. Obes Rev. 2014;15: 29–39.  
 
179.  Kwon SM, Cho H, Choi JH, Jee BA, Jo Y, Woo HG. Perspectives of integrative 
cancer genomics in next generation sequencing era. Genomics Inform. 2012;10: 69–73.  
 
180.  Rankinen T, Rice T, Teran-Garcia M, Rao DC, Bouchard C. FTO Genotype Is 
Associated With Exercise Training–induced Changes in Body Composition. Obesity. 
2010;18: 322–326.  
 
181.  Scott RA, Bailey MES, Moran CN, Wilson RH, Fuku N, Tanaka M, et al. FTO 
genotype and adiposity in children: Physical activity levels influence the effect of the risk 
genotype in adolescent males. Eur J Hum Genet. 2010;18: 1339–1343.  
 
182.  Park SL, Cheng I, Pendergrass SA, Kucharska-Newton AM, Lim U, Ambite JL, et 
al. Association of the FTO obesity risk variant rs8050136 with percentage of energy intake 
from fat in multiple racial/ethnic populations. Am J Epidemiol. 2013;178: 780–790.  
 
183.  Wardle J, Carnell S, Haworth CMA, Farooqi IS, O’Rahilly S, Plomin R. Obesity 
associated genetic variation in FTO is associated with diminished satiety. J Clin 
Endocrinol Metab. 2008;93: 3640–3643.  
 



155 
 

184.  Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust 
relationship inference in genome-wide association studies. Bioinformatics. 2010;26: 
2867–2873.  
 
185.  Bradbury KE, Young HJ, Guo W, Key TJ. Dietary assessment in UK Biobank: an 
evaluation of the performance of the touchscreen dietary questionnaire. J Nutr Sci. 
2018;7: 1–11.  
 
186.  Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars NJ, Aguirre M, Venkataraman 
GR, et al. Genetics of 38 blood and urine biomarkers in the UK Biobank. bioRxiv. bioRxiv; 
2019. p. 660506.  
 
187.  Maddison R, Ni Mhurchu C, Jiang Y, Vander Hoorn S, Rodgers A, Lawes CMM, 
et al. International physical activity questionnaire (IPAQ) and New Zealand physical 
activity questionnaire (NZPAQ): A doubly labelled water validation. Int J Behav Nutr Phys 
Act. 2007;4: 62.  
 
188.  Grueneberg A, de los Campos G. BGData - A suite of R packages for genomic 
analysis with big data. G3 Genes, Genomes, Genet. 2019;9: 1377–1383.  
 
189.  Roux B Le, Rouanet H. Geometric data analysis: From correspondence analysis 
to structured data analysis. Geometric Data Analysis: From Correspondence Analysis to 
Structured Data Analysis. Springer Netherlands; 2005.  
 
190.  Gonzalez-Reymundez A, Grueneberg A, Vazquez AI. MOSS: Multi-Omic 
Integration via Sparse Singular Value Decomposition. CRAN R-project. 2021 [cited 19 
Jan 2021].  
 
191.  Audigier V, Husson F, Josse J. A principal components method to impute missing 
values for mixed data. Adv Data Anal Classif. 2013;10: 5–26.  
 
192.  Josse J, Husson F. missMDA: A package for handling missing values in 
multivariate data analysis. J Stat Softw. 2016;70: 1–31.  
 
193.  McCaw Z. RNOmni: Rank Normal Transformation Omnibus Test. CRAN R-project. 
2020 [cited 1 Jul 2021].  
 
194.  Aguate FM, Vazquez AI, Merriman TR, de los Campos G. Mapping pleiotropic loci 
using a fast-sequential testing algorithm. Eur J Hum Genet. 2021; 1–12.  
 
195.  Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, et al. BioMart 
and Bioconductor: A powerful link between biological databases and microarray data 
analysis. Bioinformatics. 2005;21: 3439–3440.  
 



156 
 

196.  Durinck S, Spellman P, Birney E, Huber W. Mapping identifiers for the integration 
of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4: 
1184–1191.  
 
197.  Machiela MJ, Chanock SJ. LDlink: A web-based application for exploring 
population-specific haplotype structure and linking correlated alleles of possible functional 
variants. Bioinformatics. 2015;31: 3555–3557.  
 
198.  Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-
Tissue Expression (GTEx) project. Nature Genetics. NIH Public Access; 2013. pp. 580–
585.  
 
199.  McInnes L, Healy J, Melville J. UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. arXiv.org. 2018 [cited 14 Jun 2021].  
 
200.  Tukey JW. Comparing Individual Means in the Analysis of Variance. Biometrics. 
1949;5: 99.  
 
201.  Zou H, Hastie T, Tibshirani R. Sparse Principal Component Analysis. J Comput 
Graph Stat. 2006;15: 265–286.  
 
202.  Bradfield JP, Vogelezang S, Felix JF, Chesi A, Helgeland Ø, Horikoshi M, et al. A 
trans-ancestral meta-analysis of genome-wide association studies reveals loci associated 
with childhood obesity. Hum Mol Genet. 2019;28: 3327–3338.  
 
203.  Liu Y, Zhang X, Lee J, Smelser D, Cade B, Chen H, et al. Genome-wide 
association study of neck circumference identifies sex-specific loci independent of 
generalized adiposity. Int J Obes. 2021;45: 1532–1541.  
 
204.  Lind L. Genome-Wide Association Study of the Metabolic Syndrome in UK 
Biobank. Metab Syndr Relat Disord. 2019;17: 505–511.  
 
205.  Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging 
Polygenic Functional Enrichment to Improve GWAS Power. Am J Hum Genet. 2019;104: 
65–75.  
 
206.  Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, et al. Genome-
wide physical activity interactions in adiposity ― A meta-analysis of 200,452 adults. PLoS 
Genet. 2017;13: 130.  
 
207.  Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-
wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights 
into genetic architecture. Nat Genet. 2013;45: 501–512.  
 
208.  Trousdale C, Kim K. Retromer: Structure, function, and roles in mammalian 
disease. European Journal of Cell Biology. Elsevier GmbH; 2015. pp. 513–521.  



157 
 

209.  Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of 
myogenesis. Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory 
Press; 2012.  
 
210.  Newmire D, Willoughby DS. Wnt and β-Catenin Signaling and Skeletal Muscle 
Myogenesis in Response to Muscle Damage and Resistance Exercise and Training. Int 
J Kinesiol Sport Sci. 2015;3: 40–49.  
 
211.  Wu JHY, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M, et al. Genome-
wide association study identifies novel loci associated with concentrations of four plasma 
phospholipid fatty acids in the de novo lipogenesis pathway: Results from the Cohorts for 
Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ 
Cardiovasc Genet. 2013;6: 171–183.  
 
212.  Singla P. Metabolic effects of obesity: A review. World J Diabetes. 2010;1: 76.  
213.  Sherman WM. Metabolism of sugars and physical performance. Am J Clin Nutr. 
1995;62: 228S-241S.  
 
214.  Nagel M, Watanabe K, Stringer S, Posthuma D, Van Der Sluis S. Item-level 
analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9.  
 
215.  Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 
300,486 individuals identifies 148 independent genetic loci influencing general cognitive 
function. Nat Commun. 2018;9.  
 
216.  Hübel C, Gaspar HA, Coleman JRI, Finucane H, Purves KL, Hanscombe KB, et 
al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am 
J Med Genet Part B Neuropsychiatr Genet. 2019;180: 428–438.  
 
217.  Hernandez Cordero AI, Gonzales NM, Parker CC, Sokolof G, Vandenbergh DJ, 
Cheng R, et al. Genome-wide Associations Reveal Human-Mouse Genetic Convergence 
and Modifiers of Myogenesis, CPNE1 and STC2. Am J Hum Genet. 2019;105: 1222–
1236.  
 
218.  Nanda V, Wang T, Pjanic M, Liu B, Nguyen T, Matic LP, et al. Functional regulatory 
mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus. PLoS 
Genet. 2018;14: e1007755.  
 
219.  Ahmad RS, Imran A, Hussain MB. Nutritional Composition of Meat. Meat Science 
and Nutrition. InTech; 2018.  
 
220.  Goni L, Cuervo M, Milagro FI, Martínez JA. Future perspectives of personalized 
weight loss interventions based on nutrigenetic, epigenetic, and metagenomic data. J 
Nutr. 2016;146: 905S-912S.  
 



158 
 

221.  Ramos-Lopez O, Milton-Laskibar I, Martínez JA. Precision nutrition based on 
phenotypical traits and the (epi)genotype: nutrigenetic and nutrigenomic approaches for 
obesity care. Curr Opin Clin Nutr Metab Care. 2021;24: 315–325.  
 
222.  Henseler J. On the convergence of the partial least squares path modeling 
algorithm. Comput Stat 2009 251. 2009;25: 107–120.  
 
223.  Tipping ME, Bishop CM. Probabilistic Principal Component Analysis. J R Stat Soc 
Ser B (Statistical Methodol. 1999;61: 611–622.  
 
224.  Tarantino G, Monica S, Bergenti F. A probabilistic matrix factorization algorithm for 
approximation of sparse matrices in natural language processing. ICT Express. 2018;4: 
87–90.  
 
225.  Guan Y, Dy JG. Sparse probabilistic principal component analysis. J Mach Learn 
Res. 2009;5: 185–192.  
 
226.  Idris SF, Ahmad SS, Scott MA, Vassiliou GS, Hadfield J. The role of high-
throughput technologies in clinical cancer genomics. http://dx.doi.org/101586/erm131. 
2014;13: 167–181.  
 
227.  International Cancer Genome Consortium TICG, Hudson TJ, Anderson W, Artez 
A, Barker AD, Bell C, et al. International network of cancer genome projects. Nature. 
2010;464: 993–8.  
 
228.  Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. 
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug 
sensitivity. Nature. 2012;483: 603–7.  
 
229.  Heim D, Budczies J, Stenzinger A, Treue D, Hufnagl P, Denkert C, et al. Cancer 
beyond organ and tissue specificity: Next-generation-sequencing gene mutation data 
reveal complex genetic similarities across major cancers. Int J Cancer. 2014;135: 2362–
2369.  
 
230.  Yates III JR. A century of mass spectrometry: from atoms to proteomes. Nat 
Methods. 2011;8: 633–637.  
 
231.  Wu HM, Goate AM, O’Reilly PF. Heterogeneous effects of genetic risk for 
Alzheimer’s disease on the phenome. Transl Psychiatry 2021 111. 2021;11: 1–9.  
 
232.  Li X, Meng X, He Y, Spiliopoulou A, Timofeeva M, Wei W-Q, et al. Genetically 
determined serum urate levels and cardiovascular and other diseases in UK Biobank 
cohort: A phenome-wide mendelian randomization study. PLOS Med. 2019;16: 
e1002937.  
 



159 
 

233.  Cole JB, Florez JC, Hirschhorn JN. Comprehensive genomic analysis of dietary 
habits in UK Biobank identifies hundreds of genetic associations. Nat Commun. 2020;11: 
1467.  
 
234.  UK Biobank adds the first tranche of data from a study into circulating metabolomic 
biomarkers to its biomedical database. [cited 10 Aug 2021].  
235.  Guasch-Ferré M, Bhupathiraju SN, Hu FB. Use of Metabolomics in Improving 
Assessment of Dietary Intake. Clin Chem. 2018;64: 82.  
 
236.  The era of massive cancer sequencing projects has reached a turning point. 
Nature. 2020;578: 7–8.  
 


