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ABSTRACT

A FRAMEWORK FOR BIOLOGICAL DATA INTEGRATION AND FEATURE
SELECTION IN LARGE DATA SETS

By
Agustin Gonzalez-Reymundez
The increasing volume of high-dimensional biological data (omics) has intensified the
discovery of thousands of biomarkers across the different fundamental components of
the cell (e.g., genome, transcriptome, proteome, epigenome) and allowed the
characterization of complex phenotypes (e.g., metabolome, imaginome, phenome).
However, the ability to integrate omics into informative results is constantly challenged by
a seemingly ever-increasing volume of data. Furthermore, huge data sizes impose a
tradeoff between how complex an omic integration algorithm can be and how much data
it can handle (e.g., how fast can the algorithm be scaled to integrate large data sizes). In
this dissertation, we explore statistical frameworks to face the challenges of modern omic
data, including the integration of high-dimensional data of large sample sizes. We have
developed a novel framework of competitive analytical performance compared with
existing methods but suitable for omic data reaching biobank scales (i.e., hundreds of
thousands of samples and variables). We implemented this method as an R package and
showed its application on two traits of a complex molecular basis: cancer and regulation
of energy intake and expenditure. In chapter one, we review the technologies and
methods used to generate and integrate omic data. Chapter two describes our novel
method and software of omic integration, shows examples in synthetic data, and
evaluates its computational and analytical performance. Chapter three presents an

application of our method to reveal a novel pan-cancer classification of tumors beyond



the tissue of origin, regulated by distinct sets of molecular signatures. In chapter four, we
present an application of our method to integrate phenomics data and identify patterns of
energy balance regulated by genomic variation. Finally, in chapter five, we offer general

conclusions to the entire thesis.
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CHAPTER 1

INTRODUCTION

The word “omic” is nowadays used as a generic term to represent collections of biological
data obtained with high-throughput technologies (e.g., tandem mass spectrometry, array
and sequencing technologies, agriculture imaging, metagenomics). These collections
have emerged as a way of describing complex biological systems as a whole [1]. In
section “1.1 Where do omics come from?” we review the types of systems that omics
characterize and the technologies used to generate omic data. Once omics are
measured, their information can be integrated to discover novel biomarkers or understand
the interaction between multiple phenotypes [2]. A review of omic integration methods is
presented in section “1.2 How is omic data integrated and analyzed?”.

1.1  WHERE DO OMICS COME FROM?

Perhaps the first application of the suffix —ome (a mass or totality of something) in
genetics was in the word genome. The term is attributed to the German botanist H.
Winkler, who chose it to represent an organism's haploid set of chromosomes and the
genes it contains [3]. It has been suggested that the suffix —ome could have been chosen
by Winkler as an analogy to broadly used botanical terms, such as microbiome, biome,
and rhizome, each one representing an entire collection of biological entities of a certain
kind [4].

The word genome gained broader popularity during the context of the apparent C-value

paradox (the discrepancy between the amounts of DNA of an organism and the amount



needed to encode proteins). After discovering non-coding DNA in the 1940s and the
solution of the paradox, the word genome started to be used as a synonym for the entire
coding and non-coding DNA [5]. With the advent of Sanger’s sequencing method in 1977
(based on the production of all possible DNA fragments from a template, relying on chain
termination by modified nucleotides and separation by electrophoresis) [6], it soon
became possible to obtain complete genome sequences of microbes. This achievement
inspired the creation of genomics as a new scientific discipline. The first generation of
sequencing methods, together with the development of the polymerase chain reaction
(PCR) [7] and recombinant DNA technology [8] during the 1980s and early 1990s [9],
became instrumental tools for carrying out the Human Genome Project.

During the early 2000s, the first draft of the reference human genome catalyzed the
creation of the HapMap [10] and the Encyclopedia of DNA Elements (ENCODE) [11]. The
formed aimed to study the common genetic variation between individuals while the latter
aimed to annotate all functional elements within the human genome, such as genes and
regulatory sequences. Both projects were fundamental for developing genotyping
microarray technologies and the first genome-wide studies (GWAS - i.e., the inference
of associations between thousands of genomic polymorphisms in a diverse population
and a phenotype using linkage disequilibrium). Then, the word genome became a
synonym for all the possible DNA sequences of a cell and their variants across
populations.

In the late 2000s, massively parallel sequencing technologies (the so-called second or
next-generation — e.g., 454 Life Sciences, lllumina Genome Analyzer, ABI Solid) were

developed. These novel technologies allowed lower reactions costs and longer



sequencing reads, enabling the sequencing of whole genomes in large cohorts of
participants [12]. Some of these cohorts, like the 1K Genomes in 2008 and the UK
Biobank (sequencing 50 thousand individuals) in 2010, have contributed to detecting rare
and very rare variants, usually associated with significant health and behavioral traits
[13,14]. Thus, the genome was conceived as the entire collection of DNA sequences plus
their common and rare variation across populations.

The close relationship between the evolving concept of the term genome, together with
the development of high-throughput technologies, greatly influenced the creation of a
plethora of analogous fields in biology. Each of this fields aimed to study the genome
complement of a particular set of functional elements. The term transcriptome, for
example, was first proposed by Victor Velculescu, who defined it in 1995 as the entire
collection of RNA molecules of an organism [15]. The same year, Velculescu and
collaborators introduced Serial Analysis of Gene Expression (SAGE), a revolutionary
method to compare samples by taking a snapshot of the population of messenger RNA
[16]. Previously, parallel gene expression analysis primarily relied on clonal DNA
microarrays (i.e., cDNA samples hybridized against oligonucleotides matching known
genes) [17]. By contrast, SAGE addressed transcript presence of known and unknown
genes in a more accurate way than microarrays (which accuracy can suffer due to
artifacts from background noise). With the advent of RNA-seq in 2008, the discovery of
novel genes and the assessment of expression levels continued to improve by achieving
higher coverage and depths than SAGE [18].

On the other hand, the term proteome is attributed to Marc Wilkins, who first used it in the

early 1990s to represent the genomic complement of proteins [19]. The study of the



proteome was enhanced by more precise separation techniques (like capillary
electrophoresis, liquid and gas electrophoresis), advances in mass spectrometry (for
example, the creation of “soft” ionization approaches, such as electrospray ionization —
ESI- and matrix-assisted laser desorption ionization —MALDI-) and the introduction of
microarray technologies for protein analysis (e.g., immunoassays, functional microarrays,
and reverse-phase array) [20]. These methods have vastly improved the ability to identify
and quantify novel proteins and their interactions. Furthermore, due to its crucial role in
phenotype expression, the proteome is composed of a much broader set of entities than
the genome or transcriptome, including all possible peptides, context-dependent
functions, and post-translational modifications.

Another example is the term epigenome, popularized in the 1990s as a merge between
epigenetics (a term attributed to Conrad Waddington, who proposed it in the 1940s to
describe inheritable traits in response to environmental stimuli) and the suffix ome. As in
the previous omics, epigenome refers to the genomic complement of epigenetic marks.
Therefore, the epigenome represents a broader category, composed of elements from all
the previous molecular types discussed: DNA (e.g., patterns of DNA methylation), RNA
(non-coding regulatory RNAs), and proteins (e.g., histone modification and chromatin
remodelers). This diversity of elements imposed the need for a broader set of methods to
characterize the epigenome [21]. To study the genome-wide patterns of DNA methylation,
for example, methods like DNA restriction endonuclease assay (to compare the relative
size of restriction fragments between individuals, depending on the sensibility of the
restriction enzymes to methylated residues), and chromatin immunoprecipitation (Chip,

using methylation-specific antibodies to isolate methylation fragments) followed by



microarray genotyping or sequencing, were proposed. Another method is the treatment
of DNA with bisulfite reaction (i.e., applying sodium bisulfite to turn methylated cytosines
into uracil) coupled with array hybridization or next-generation sequencing. Similar Chip
methods have also been applied to study RNA-protein interaction (RIP, which removes
DNA from samples and captures RNA with specific antibodies). Mass spectrometry has
also been widely used to detect histone modification and isoforms.

The explosion of omic data in the last few years has also inspired the utilization of the -
ome suffix to describe a much broader set of biological entities, derived from high-
throughput methods, of high-dimensional nature, or alluding to the totality of items on a
system. The term phenome, for example, was first proposed by Michael Soulé in 1967 as
the collection of all possible phenotypes of an organism. However, with the advent of
high-throughput phenotyping, the term is now applied to the set of all high-dimensional
phenotypes acquired at an organism-wide scale [22]. Due to advances in phenotyping
techniques, many projects have been able to produce extensive phenomic records for
different organisms, including humans (e.g., UK Biobank [14]), mice (Euro Phenome [23]),
and plants (International Plant Phenotyping for plants [24]). Technological advances that
made extensive phenotyping possible include neuroimaging via structural MRI to study
neuronal and cognitive functions [25], automated data loggers to record behavioral data
[26], and spectroscopic imaging of crop plants to measure thousands of agroeconomic
traits [27].

Soon it became clear that single-layer analyses could not truly capture the synergies
between molecular factors across omics (e.g., how the expression of a gene is non-

linearly affected by mutations and epigenetic alterations). Therefore, an integrative omic



approach has emerged [28]. The purpose of this approach is to represent multiple omics
in a rational and unified way, highlighting the variability across subjects while minimizing
the redundant signal from groups of related features (e.g., genes in the same ontology or
pathway, linkage blocks) [29,30]. Several computational and statistical methods have
been proposed to conduct this task. Next, we review some of the most popular algorithms
and models available for omic integration.

1.2. HOW IS OMIC DATA INTEGRATED AND ANALYZED?

Omic integration refers to a vast group of techniques, all conceived to explore the
combined effects and synergies across different high-throughput types of biological data.
Here, we review some of the most popular methods currently available for omic
integration, organizing them as 1) matrix decomposition based, 2) graph-based, 3)
correlation-based, and 4) regression-based. The first group will include methods that
distill an extended matrix of omics X (binding omics blocks by column) into a factor
representing variability across subjects and a factor representing the contribution of each
omic feature to that structure. The second group will include dimension reduction
techniques, considered under the paradigm of graph embedding [31]. The third group
comprises methods that explore associations among features within and across omics by
explicitly exploiting the correlations between variables. The last group will include
methods based on regression, where the response is an entire omic block.

1.2.1 Matrix decomposition-based methods

This group includes techniques that work on an extended omic matrix X =

[X1 .. X.](with X;_; ; being a matrix representing the I-th omic block attached by

columns) and attempt a decomposition of it into two factors. The first factor collapses the



redundancies within and between omics -by creating orthogonal columns representing
the independent signals across omic features (that we will call Z)-. The second factor
represents the contribution of each omic feature to this combined effect (we will call this
factor W). Many methods assume a linear relationship between the two factors of the
form X = ZW. Standard Singular Value Decomposition (SVD), Principal Component
Analysis (PCA), and sparse versions fall under this category. Methods such as the
Integrated Non-negative Matrix Factorization (iNMF [32]) assume a common Z among
omics and minimizes ||X; — ZW,||4 (Where W, are the weights of the I[-th omic). Other
methods such as Integrative Clustering (iCluster [33]) and Joint and Integrated Variation
Explained (JIVE [34]) assume a latent variable model instead. iCluster defines a model
X = ZW + ¢ that imposes a LASSO penalty on the elements of Z and W. JIVE on the
other hand, assumes a model X = ZW + I + ¢, where [ is an extra term that represents
the individual variation within omics. In all these cases, Z and W (or W;) are estimated by
iterative procedures, such as expectation maximization algorithm (EM). Other methods
use a Bayesian approach to find clusters of subjects while identifying regulatory modules
across omics. These methods assume that X comes from a finite mixture. The
components of the mixtures can be taken as clusters, inferred via Markov Chain Monte
Carlo (MCMC) methods. The Joint Bayes Factor (JBF [35]) method, for example,
assumes a model of the form X; = Z,(W + W}) + &;, and imposes sparsity on the elements
of W, and W via a Bernoulli process. The method uses a Gibbs sampler to iteratively find
w,, W, and Z;. Methods like Multiple Dataset Integration (MDI [36]) and Bayesian
Consensus Clustering (BCC [37]), on the other hand, assume a Dirichlet process, where

the clusters are represented by an indicator matrix, sampled from a multinomial



distribution. MDI assumes W, is an indicator matrix of cluster membership for each omic.
The contribution of each feature to each cluster is estimated by means of an “assignment
probability”, assumed to have a Beta prior distribution. BCC extends this idea, but by
explicitly modeling adherence to a global cluster.

1.2.2 Network-based methods

Methods in this category can be conceived under the paradigm of graph embedding [31].
Under this framework, data points in a high dimensional space are represented by a
graph. The graph’s connections represent similarities between points. The goal is then to
map points onto a space of smaller dimensions while preserving similarity. This mapping
can be represented by Z = f(X, A), where f is a function (which can be linear, non-linear,
explicit, or implicit), X is the extended omics matrix, as before, and A is a matrix
representing similarities between subjects. This framework includes methods such as
Laplacian Eigenmap [38], ISOMAP [39], and Local Linear Embedding [40], together with
linear counterparts, such as SVD. For instance, when f is linear, Z'Z =1, A = XX', and
the features are standardized, Z becomes the principal components of X. The graph
embedding framework can also be extended to include non-linear mappings employing
the “kernel trick”. The intuition behind this is to map X onto a higher dimensional Hilbert
space (we can think of f(X) as a new matrix with row vectors in the new feature space),
and then performing the linear algorithm in this new feature space (e.g., SVD on f(X)).
Then, the problem is solved by taking Z as the principal components of f(X). A large body
of literature frame this problem under reproducible kernel Hilbert spaces [41]. For
example, a kernel matrix K (e.g., K = (XX’ + ¢)!) can be used to define f implicitly, taking

Atobeequalto K = f(X)f(X)". Then, Z is obtained by computing the eigenvectors of K



(the so called “Kernel PCA”) [42]. Depending on the dimensions of the problem, one can
define a separated kernel by layers of information (K;) and average them during the
estimation of Z. Methods like Similarity Network Fusion (SNF [43]) define A as a scaled
exponential kernel of the distance between samples. Others, such as regularized Multiple
Kernel Learning for Dimension Reduction (rMKL-DR [44]), do so by adding constraints in
the contribution of each kernel to Z. The theory also allows to reformulate some
supervised methods, such as linear discriminant analysis and support vector machines.
For these, A can be rendered to represent the similitudes within and between classes of
subjects. Examples of these in omic integration are smooth t-statistics Support Vector
Machines (stSVM [45]) and Features Selection Multiple Kernel Learning (FSMKL [46]).
1.2.3 Correlation-based methods

The methods we describe in this section directly exploit the correlations between features
and can be considered variations of the traditional canonical correlation analysis (CCV)
and patrtial least squares (PLS). In all cases, each omic block can be modeled as before:
X, = Z;W; + g. The problem now is formulated by turning the omic blocks into vectors and
multiplying them by the row vectors a; and q; (L #1'), so that f(q;Z,W;,apZ W) =
f (bW, by W) is maximized. Here, f is the correlation function for CCV and a covariance
function for PLS. In both cases, b and W are estimated. Variations of the problem include
sparsity constraints during the estimation of W (sCCV [47]), and embedded structure of
groups of features (ssCCV [48], sgCCV [49]). In PLS, the problem can also be generalized
to multiple blocks (MBPLS [50]), with f(b,W,, g(Zy 2 by W, ,8)), where g is a function of

the linear combination of multiple sets of information, and 8 is a vector of extra



parameters. Sparse version of this (sSMBPLS [51]) add an iteration procedure and LASSO
penaltieson b , W, and 6.

1.2.4 Regression-based methods

Methods in this section treat the problem of omic integration as one of regression: Y =
f(X,6) + €, where the response is an omic block Y, X is one or more omic blocks, and &
is a matrix of coefficients. To exploit the true multivariate nature of the problem, methods
such as the Reduced Rank Regression (RRR [52]) assume a linear f and impose
restrictions in the rank of §. This rank condition implies the existence of linear constraints
due to dependencies within each omic block, and between them. Therefore, by estimating
&, we can address which features are associated within and between omic blocks.
Variations of the method provide sparse solution with biologically more interpretable
results (sSRRR [53]). In the Bayesian context (BSRRR [54]), a different prior distribution
can be assumed separately for each omic block and their effects: Y = f(3; X; 8));
X, ~p(X;|0); 6;~p(6;|w) (where 8 and w are hyper-parameters estimated from the data or
assumed to have a distribution themselves). This approach has the effect of handling
different scales by omic (e.g., discrete for SNP, counts for RNA-seq data) and considers
different penalties for dealing with high dimensionality.

The methods reviewed offer a general analytical framework to integrate different layers
of data effectively. However, the computational performance of many of these methods
suffers when data size becomes substantial [55,56]. The following chapters describe our
method and R package for omic integration and present applications in two complex

molecular basis traits: cancer and energy balance regulation.
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CHAPTER 2

MULTI-OMIC INTEGRATION WITH SPARSE SINGULAR VALUE DECOMPOSITION

This chapter was prepared alongside Alexander Grueneberg, Guangi Lu, Felipe Couto

Alves, Gonzalo Rincon, and Ana I. Vazquez.

2.1. ABSTRACT

The availability of multi-layer omics data has drastically increased in the past years.
Several methods have been developed to integrate these types of data effectively.
However, our ability to integrate increasing volumes of omic data remains limited. This
article presents multi-omic integration with Sparse Singular Value Decomposition
(MOSS), a free and open-source R package to integrate multiple and large omics
datasets. This package is computationally efficient and offers biological insight through
cluster analysis and identification of biologically relevant omic features. Source code is

freely available at CRAN.
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https://cran.r-project.org/web/packages/MOSS/index.html

2.2. INTRODUCTION

Omic data is characterized by many parameters per sample (usually a much larger
number of parameters than the sample size, the so-called p>>n). Thus, traditional
methods (e.g., ordinal least squares) are insufficient to obtain significant insights from this
multi-layer, high-dimensional data. To effectively integrate high-dimensional sets of data,
novel methods have been developed [33,34,57—61]. These methods typically combine
some form of projection onto a lower-dimensional space (e.g., to reveal structure among
samples and features) with some form of feature engineering (e.g., to determine what
genes or other molecular entities are most informative at explaining the differences and
similarities between omics). These methods have profoundly contributed to our
understanding of variation in complex traits across diverse levels of regulation (e.g.,
mutations in coding genes and epigenetic regulation) [62,63].

Thanks to ongoing biobank efforts, omic data also increases the number of available
samples, providing higher prediction ability and statistical power [64]. However, more
extensive data sizes make computations progressively lengthier or impossible to perform
[65]. Moreover, extensive data sizes also compromise parallelizing complex algorithms
(e.g., convolutional neural networks) [66].

To handle these limitations, we developed Multi-omic integration with Sparse Singular
Value Decomposition (MOSS). MOSS is a free and open-source R package that performs
data integration and feature selection on large data sets. It combines the flexibility of
sparse singular value decomposition (sSVD) with parallel and in-disk computations to
accommodate data sizes reaching biobank dimensions. In this article, we describe the

package’s main capabilities and its mathematical and computational foundations. We

12



evaluate MOSS analytical performance using a realistic simulation of multi-omic data and
benchmark it against state-of-the-art methods of omic integration. Instructions on how to
download and install MOSS can be found at CRAN, as well as the package’s manual,

vignette, and additional examples.
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2.3. MATERIAL AND METHODS
2.3.1. Statistical background and algorithms

Omic integration models: MOSS fits a partial least squares (PLS) [67] model, Q = WX +

g, to find elements maximizing the associations between orthogonal projections of an

=1,..m
i=1,..,n

omic working as response (represented by the matrix Y = (y;;) ) and omics working

as predictors (represented by the matrix Z = (zij)j:""'::) omics. These projections are

. = k=1,..,
represented by matrices Q = YU and W = ZV, where U = (uy;,)="? and V = (vjk)]_=11 Z

1=1,..m
are orthonormal columns of loadings. The matrix € = (g;)!=1™" represents uncorrelated

residuals, with &;~(0, 62), not following any particular distribution. The PLS is iteratively
solved by least squares to find Q ,W, and X. The rows of Y and Z are assumed to represent
the same individuals or samples, while their columns are assumed to have zero means
and unit variances. Data integration enters the model through Z, as a set of normalized
omic blocks appended column-wise, such as

1 1

721 izeg Lt ]

Z= [uzlnz
where t is an arbitrary integer representing the number of omic blocks, and ||. || is the

square of the Frobenius norm of a matrix.

Models with covariates: To remove the effects of covariates, we use the model Q = X8 +

. =1,...8 .
WX + g, where the columns of matrix X = (xig)f_l _ Tepresent a set of s covariates and

k=1,.., .
8 =(641) - represent the effects of covariates on Q. MOSS removes the effects of
gr)g=1,..s

these covariates by pre-multiplying each term of the above equation by A=

I, — XXTX)~XT, where I,, = diag(1,...,1).

n—times
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Estimation of parameters: To estimate U, V, and £, MOSS minimizes the following loss

function:
L= YU = ZVE[3 + 2y CayllUll; + 1 — ap)lUlI3) + Ay Cay VI, + (1 — a)lIVIIZ)
[Eq.2-1]

where Y and Z are either the original or covariates-adjusted omics. The first term in the
above sum is the L2 norm of approximation of Q by WX, subject to X = diag(ay, ..., 7).
oy > >0, >0,and U'U = V'V = 1,. The second and third terms are Elastic Net (EN)
[68] penalties on the elements of U and V. The EN penalty balances well-established
techniques of variable selection (zeroing out the noise and redundant signal between
omic features) and shrinkage (to account for the high number of omic features that often
exceed the number of samples). The expression ||. ||, corresponds to the L1 norm. Here
A =q(v), is considered as a monotonically decreasing function of v (the number of
desired elements different from zero) onto positive real numbers A, and « is any number
between zero and one. The value of « balances shrinking and variable selection.

When sparsity is not imposed (i.e., 4 = 0), solutions for [EQ.2-1] are obtained by taking
partial derivatives on U, V, and X, and setting them to zero. Considering B = Z7Y,
solutions for U, V, and X can be obtained from the partial singular value decomposition of
B of rank q ({U,V,Z} = SVD(B, q)). When 1 > 0, solutions are obtained iteratively from
the following set of equations:

0> Ayaysign(U*))

1+Ay(1—ay)

V—%/’lyavsign(v*))
1+Ay(1—ay)

U* =

[Eq.2-2]
V=
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Equations in [EqQ.2-2] are solved using the algorithm in [69] extended to include the EN
parameter a, where U* = UX and V* = XV. To ensure that U and V are orthonormal in
each iteration, the QR decomposition of U* and V* (U* = LWRW® and V* = LVWRM) is
used. In each iteration, U is recovered as U = LWDW), where DY) = diag(d,, d,,...,d,),
and d;, = 1/||L(kU)||2 (the inverse of the norm of each column of L(¥)). The same steps are
used to recover V. After a fixed number of iterations, or at convergence, the final values

of U and V are used to recover X (£ = UTBVT).

Tuning hyperparameters: The value A is tuned following [69], modified to tune Ay, Ay, or

both. Briefly, 1 is chosen as the v -th order statistic of U, or V, where v, and v,, are fixed
numbers representing the desired number of samples and features loadings different from
zero (i.e., the degrees of sparsity), respectively. Then, the proportion of variance
explained (PEV) by each one of a grid of values of v; and vy, is calculated. The trajectory
of PEV across values of v, and vy is then used to select an “optimal” A value to solve

[Eq.2-2]. This selection is made automatically via two alternative methods. The first

method uses the first empirical partial derivative of PEV (a;%) to choose the value of v

at which the change in PEV is maximum (“liberal” method). The second method choses
the value of v at which the change in PEV stabilizes (“conservative” method). Similarly,
MOSS displays a classic plot of 4, ..., o, (Scree plot), to visualize the change in variance
explained by each latent dimension. The number of latent dimensions ¢ is not tuned by
MOSS internally. However, automatic suggestions are provided based on the above
tuning methods, where the trajectory of a4, ..., g, is used instead of the PEV one.

Cluster analysis: MOSS can use the columns Q to detect clusters of samples via Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) [70]. DBSCAN is one of
16



the most potent clustering techniques to delimit clusters of irregular shapes. Essentially,
DBSCAN identifies groups of densely packed points without specifying the number of
clusters a priori. In MOSS, neighborhoods of nearby points can then be tuned by
evaluating different cluster partitions over a grid of values of e, a hyperparameter
controlling the neighborhood. MOSS chooses the number of “optimal” clusters that
maximizes the Silhouette score [71] over a grid of possible e values, as in [72].

Visualization of clusters: Additionally, MOSS can use t - Stochastic Neighbor Embedding

(tSNE) to project a group of columns of Q onto a two-dimensional display [72]. Essentially,
tSNE projects multiple dimensions onto a lower-dimensional display while conserving
local neighborhoods (eventually representing data clusters) [73]. tSNE is an effective
technique to reveal clusters [74]. The algorithm has two fundamental parameters:
perplexity (which accounts for the adequate number of local neighbors) and cost (related
to the difference between the neighborhood’s distribution in the higher and lower
dimensional spaces). Since low costs are more likely to reveal clusters, MOSS tunes the
tSNE projection by choosing the map of minimum cost among multiple random starts of
the algorithm.

2.3.2. Syntaxis of the main function moss

The package's primary function is called moss. This function works along with other
auxiliary functions to integrate data sets, pre-process, integrate them, and generate plots.
The details of each function can be obtained from the package help pages. Following, we
describe the inputs and outputs of moss.

Input: The input data must be passed through data.blocks as a list of omic blocks. Each

row must represent a subject or sample, and each column an omic feature or variable.
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MOSS allows each block to be of the class matrix, array, or filed-backed big matrix (FBM)
[75]. Objects of class FBM can be passed to moss whenever data sets are too big to be
handled in RAM. For this, the only requirement is for package bigstatsr [75] to be installed.
Alternatively, omic blocks passed to moss as ‘matrix’ or ‘array’ can be internally turned
into FBM by setting the argument use.fom = TRUE. In our experience, this can speed up
computations when matrices are small enough to fit in memory but still too large to be
handled in a reasonable time. If covariates adjust omic blocks, these can be passed as a
matrix, vector, or data frame, through argument covs.

Standardization, normalization, and imputation: Arguments scale.arg and norm.arg

control, respectively, the standardization of each column within an omic block (i.e.,
centering to zero mean and scaling to unit variance), and normalization. Omics within
data.blocks are expected to have named rows. A warning message is displayed if at least
one omic is missing row names, or the row names are inconsistent across blocks. In the
presence of missing data, a simple imputation by the mean of each column is provided.
Nevertheless, before calling moss, the user is recommended to run standard quality
controls (such as calculating the proportion of missing data across rows and columns,
zero variance features, and minor allele frequency).

Methods: Without additional constraints, MOSS treats [Eq.2-1] as a patrtial least squares
model (PLS, method="pls”). To specify which omic will be used as responses Y, a number
from 1 to t (the number of omic blocks) must be passed to resp.block. By imposing
additional constraints, more multivariate techniques can be performed. For example,
when Y is assumed to be the identity matrix, MOSS treats [Eq.1-1] as a principal

components analysis (PCA) (method="pca”). Alternatively, if Y is a column matrix with
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values representing different categories, [EQ.2-1] is treated as a linear discriminant
analysis (LDA,; [76]) (method="Ida”).

Cluster analysis and visualization: If argument cluster=TRUE, package dbscan [77] is

used to find clusters on Q. By default, this is done on all Q columns. However, a different
set of columns can be passed as a vector of indexes through argument axes.pos. By
default, the number of clusters is tuned on a grid of 100 values of e (eps_res), evenly
spaced between 0 and 4 (eps_range). With this setting, clusters with less than two
samples are discarded. Same options are obtained by setting cluster=list(eps_res=100,
eps_range=c(0,4), min_clus_size=2). This option allows for alternative values of eps_res,
eps_range, and min_clus_size.

To obtain the two-dimensional embedding of Q (or a subset of columns indicated by
axes.pos), users can do tSNE=TRUE, or tSNE-=list(perp=50, n.iter=1e3, n.samples=1),
where perp, n.iter, and n.samples are the perplexity parameter of tSNE, number of

iterations, and number of random initial conditions, respectively.

Sparsity constraints: Within MOSS, v is specified by arguments nu.u (vector of integers
between one and the total number of samples) and nu.v (vector of integers between one
and the total number of features). If the values of nu.u and nu.v is not specified, only a
standard (i.e., dense) SVD is computed. The values of a are specified through arguments
alpha.u and alpha.v. Argument exact.dg tells moss to chose f:v — A, such as the
number of elements different from zero in each column of U and V is exactly v. Argument
lib.thresh=TRUE (default) tells moss to select the value of v at which the change in PEV
is maximum. If lib.thresh=FALSE, the value of v at which PEV reaches a plateau is

chosen.
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Parallel computing: By default, the process of tuning the degree of sparsity is done in

series. However, this can be changed by setting argument nu.parallel=TRUE. This option
uses package future.apply, to allow for simple parallel distribution of tasks on a local
machine or computer cluster [78].

Plots: If argument plot=TRUE, several high-level plots will be produced (see Results).
This argument requires package ggplot2 [79] to be installed.

Outputs: Function moss returns a named list with the results of the data integration plus
additional analyses. The list includes matrices B and Q, along with two lists containing
the results of the dense and sparse SVDs. The output list also has the plots with
embedding, cluster analysis, selected items by omic, and signatures of features by a
cluster of samples.

Data: Analytical performance was evaluated on data generated with the R package
MOSim [80]. MOSim uses existing omic data to sample pairs of genes and regulators
from which differential expression is simulated for a given experimental design. We used
MOSim’s accompanying mouse omic data from the STATegra project [81] to seed all
omics. In all scenarios, three omics representing gene expression (RNA-seq count data),
micro-RNA seq (miRNA-seq), and ATAC-seq data of DNAase | activity (DNase-seq) were
simulated. Signal effects were imposed by assigning different proportions of miRNA-seq
and DNase-seq features (5% and 20% of total features) to regulate the expression of
15% of total genes across three clusters of samples. A first simulation scenario with a
small number of samples (100) and features (1,000) illustrated MOSS main capabilities.
Then, simulations for an increasing number of samples and features were used to

evaluate MOSS’ performance at recovering signals (i.e., groups of differentially
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expressed genes and corresponding regulatory features) in more realistic scenarios. Due
to a restriction of MOSim to simulate massive data sizes (hundreds of thousands of rows
and millions of features), we benchmarked MOSS on representing rank-one bi-clusters,
embedded in three synthetic omic blocks with Gaussian noise, and for increasing
numbers of samples and features (see the help page for function simulate_data()).
2.3.3. Performance evaluation

We evaluated the performance of MOSS in terms of its ability to detect differentially
expressed genes and their regulatory features. To do that, we used MOSim with ten
different random starts. We simulated the three omics described above for all
combinations of 100, 1,000, and 10,000 samples across three clusters for 1,000 and
10,000 features in each random start. We used 5% and 20% of miRNA-seq and DNAse-
seq as regulatory elements for all data sizes. In all scenarios, 15% of total genes were
set as differentially expressed (DE). In each scenario, we calculated true positives (TP)
as the number of signal features (DE genes and regulatory features) detected by moss,
true negatives (TN), as noisy features (not DE genes or regulatory elements) not detected
by moss, false positives (TP) as noisy features detected by moss, and false negatives,

as signal features not detected by moss. These quantities were used to calculate the

TP+ TN
TP+TN+FP+FN

accuracy (

(ver)
TP +FP /"

To evaluate MOSS computational time in the context of other methods of omic integration,

), sensitivity (TP+FN), specificity (TN+FP), and precision

we used iCluster [33], NMF [82], SNFtool [43], mixOmics [58], and OmicsPLS [83] R
packages to run in the same scenarios. The scenarios consisted of simulations for

different combinations of 100, 1,000, 10,000 and 100,000 samples, and 1,000, 10,000,
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100,000, and 1,000,000 features. We allowed all methods to have enough available

memory (100 Gb) to produce results in hours rather than days.
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2.4. RESULTS

2.4.1. Example of unsupervised omic integration with MOSS

The following example shows how to perform omic integration with MOSS on a simulated
data set with three omics and three clusters of samples. The method was a sparse PCA
assuming ten latent dimensions. EN was used to tune the degree of sparsity of features.
tSNE was used to embed the first three columns of Q onto two dimensions. DBSCAN
was used to delimit clusters.

Figure 2.1-A shows the PCA’s scree plot (out_moss$scree_plot). A clear jump in the
singular values occurs between the first and the second dimension. Nevertheless, the
scree plot trajectory reaches a plateau after the fourth dimension. Figure 2.2-A shows the
trajectory for PEV and derivatives for varying degrees of sparsity for features.
(out_moss$tun_dgSpar_plot). A degree of sparsity of 300 is suggested according to the

conservative tuning method.
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Figure 2.1: Scree plot, PEV trajectory, and partial derivatives. A) The left-most panel
shows the singular values corresponding to the first 10 SVD dimensions (scree plot). The
following two panels correspond to the first and second empirical partial derivatives of the
scree plot. B) Similarly, the left-most panel shows the PEV trajectory on a grid of degrees
of sparsity, with the center and right-most panels representing its first and second
empirical partial derivatives, respectively.

Figure 2.2 shows the results of the feature selection across omics. The first two latent
dimensions had the largest number of features selected. Most of these features were
DNA-seq, followed by gene expression.

Conversely, the features selected in the third dimension were mainly miRNA-seq,
followed by DNA-seq features. The highest absolute loading values were obtained for the

first and third latent dimensions (out_moss$selected_items).
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Figure 2.2: Omic contribution to selected features. The numbers of features selected
by latent factors are shown in a log2 scale. The pie charts slides represent the relative
contribution of each omic (RNA-seq, miRNA-seq, and DNase-seq) to the features
selected by dimension (PC index). The pie charts ratio represents the quotient between
the squared loadings of the selected features by dimension and their standard deviation.
The tSNE map and cluster analysis are presented in Figure 2.3 (out_moss$clus_plot).
The three simulated clusters are detected. From Figure 2.4, we can see that the first and

third dimensions are the more relevant for cluster formation.
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Figure 2.3: Cluster analysis. The three first SVD latent factors of the integrated omics
were embedded onto two dimensions via tSNE. Clusters (labeled 1, 2, and 3) were
delimited via DBSCAN.
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Figure 2.4: Association between clusters and SVD dimensions. The plot shows the
results of Kruskal-Wallis association tests between clusters and the first ten SVD
dimensions (PC index). A different point shape and color represent each cluster.

Lastly, to determine what selected features dominated each cluster, the user can look at
signatures within out_moss$feat_signatures. If the number of features is too large to
visualize correctly, the function moss_signatures can be called (Table A.1).

Figure 2.5 shows the top 5% of candidate features. The percentage is based on the

squared means of features values within the respective omic. Candidates are defined as

features with standard error intervals excluding zero.
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Figure 2.5: Signature of features for two clusters. The plot shows the top features (y-
axis) selected by latent factor and omic block. Points correspond to the average feature
values plus and minus one standard error. For clarity, only the top 1% of selected features
and the first two clusters are shown.

2.4.2. Example of supervised omic integration with MOSS

Setting method = “pls” and resp.block = 1 tells moss to run a PLS using gene expression
as a multivariate response and the remaining omic blocks as multivariate predictors. The
following example shows how to run a sparse PLS, where the degree of sparsity is
separately tuned for both responses and predictors (code provided in Table A.1).

The trajectory of PEV and derivatives for both responses and predictors are displayed in
Figure 2.6 (out_moss$tun_dgSpar_plot). In this example, we have set lib.thresh = TRUE

to use the liberal method of features selection. Figure 2.6 suggests that the liberal method

would select less than ten genes and approximately 50 regulatory features. As before,
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the contribution of each omic to the selected items, clusters, and features signatures can
be obtained from out_moss. In addition, the accompanying function moss_heatmap can
retrieve a heatmap of the covariance matrix between selected responses, and predictors
can be retrieved using the accompanying function moss_heatmap. This function uses the

ComplexHeatmaps R package [84] (Table A.1).
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Figure 2.6: PEV trajectory plot and partial derivatives for a PLS analysis. The top
three panels represent the PEV trajectory on a grid of degrees of sparsity for predictor
features and its first and second empirical partial derivatives, respectively. The bottom
three panels show this information for responses. Here, responses and predictors were
gene expression and regulatory omics, respectively.
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miRNA-seq & DNAse-seq

RNA-seq

Figure 2.7: Output of the function moss_heatmap. Rows and columns represent
genes and regulatory features selected by a given combination of latent factors. In the
example, the first and third dimensions of the sparse SVD of the covariance between
gene expression and remaining omics were used. Features names are omitted for clarity.
2.4.3. Evaluation of MOSS analytical performance

Results of performance evaluation are shown in Figure 2.8. The accuracy of MOSS to
detect signal features was in the order of ~0.9 for all scenarios, except for the largest
number of features and lowest signal intensity. Sensitivity was high for all scenarios of
high signal intensity, dropping to ~0.6 for more than 100 features. When signal intensity
was low, sensitivity dropped in all scenarios, especially for the largest number of features.
However, increasing sample sizes corresponding with higher sensitivities. Specificity was
highest for scenarios of low signal intensity and moderated to a high number of features.
Higher signal intensities corresponded to lower specificities, but this difference was

almost negligible for the number of features. Precision was high in all scenarios. However,

it dropped for the lowest signal intensity values and the number of features.
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Figure 2.8: Performance of feature detection with MOSS. Performance at detecting
features was evaluated on simulated data with different combinations of numbers of
samples (n) and features (p) for two alternative signal intensities (0.05 and 0.2), defined
as the proportion of features with regulatory effect. The performance metrics were
accuracy (ACC), sensitivity (SEN), specificity (SPE), and precision (PRE). Rectangles
and bars represent metric values averages and average plus-minus standard errors
across the simulations’ random starts, respectively. Adjacent columns by n tick mark
represent alternative signal intensities.

2.4.4. Benchmarking

Figure 2.9 shows the computational time taken by MOSS and other omic integration
methods for different combinations of samples (n) and the number of features (p). In all
cases, three omic blocks were simulated. We allowed all methods to have enough
available memory (100 Gb) to produce results in hours rather than days. Nevertheless,
for scenarios approaching bio-bank dimensions (i.e., hundreds of thousands of samples

and omic features), all methods either crashed or could not finish before 24 hours. The

exception to this pattern was the use of moss MOSS with use fom =TRUE. For a
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relatively low number of samples (e.g., n <1x103), all methods, except iCluster, NMF, and
mixOmics, produced results in less than one hour. In iCluster, p =1x10° causes the
program to run for more than a day, and with p=1x108, to crash. NMF and mixOmics took
approximately 3 and 10 hours, respectively, when n=1,000 and p=1e6. Finally, the
method with the most substantial influence of sample size was SNFtool, with better
performances for smaller sample sizes, with the opposite being true for larger sample

sizes.
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Figure 2.9:Benchmarking of omic integration methods. The plot shows the
computation time taken by MOSS and five other omic integration methods (iCluster, NMF,
SNFtool, mixOmics, and OmicsPLS) to integrate three omic blocks and perform feature
selection in different simulated scenarios. Scenarios corresponded to a different
combination of numbers of samples and features in simulated data. Column panels (n)
represent the number of samples, and row panels (p) represent the number of features.
Each rectangle corresponds to a different omic integration method. The rectangle's height
represents computing time in hours. The symbols “*” and “t” represent a method running
for more than a day or crashing, respectively. MOSS was used with regular matrices or
filed-backed big matrices (FBM).



2.5. DISCUSSION

Omic integration emerged as a group of techniques for analyzing multiple omic data
layers collectively and retrieving helpful information of shared processes within the cell
[63]. However, the computational and statistical tools used to carry out these tasks are
constantly challenged by the vast amount of generated data [29,85]. As an essential step
in understanding the biology of complex traits, omic integration methods should retrieve
informative results in a reasonable amount of time. For that purpose, we have developed
MOSS, a free and user-friendly tool that rapidly retrieves information about the principal
axes of variation across omic data, identifies features of possible biological roles, detects
clusters of individuals, and represents them in terms of features of potentially functional
role.

We evaluated MOSS in terms of several metrics representing the performance of feature
selection. In terms of both accuracy (i.e., ability to collectively detect signal and miss
noise) and precision (ability to detect true from the false signal), MOSS best performance
occurred in scenarios where the proportion of the number of features (p) to the number
of samples (n) was low to moderate. The lower accuracy and precision in the scenarios
with large p/n and low proportion of regulatory features could have been a consequence
of the heuristic used to select features. Like related least squares-based algorithms, this
performance could improve if the value of n is increased [86]. However, lower
performance in high p/n and low signal-high noise scenarios is an unsolved challenge
among omic integration methods [56]. Knowing if MOSS’s decrease in performance for
this setting is smaller than for competitive methods would require further simulation

studies.
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The evaluation of the analytical performance of competitive methods was out of the scope
of this paper and can be found elsewhere (e.g., [56,65]). Nevertheless, to support the
standalone performance of MOSS, we have included the results of a small simulation in
Figure A.1.

Since the proportion of differentially expressed genes remained the same across
scenarios, increasing p/n could also increase the number of false positives. Hence, lower
signals could imply that some regulatory features are missed, reducing true positives.
Similarly, increasing false positives can explain the drop in sensitivity (i.e., the ability to
detect signal correctly) in the high p/n scenario. Likewise, specificity (i.e., ability to
correctly miss noisy features) increased with fewer regulatory features, increasing true
negatives, regardless of the higher false positives expected in the high p/n scenario.

A thorough evaluation of performance across alternative tuning methods for feature
selection is outside the scope of this paper. Nevertheless, we acknowledge that
performance on the feature selection approach, and an alternative tuning method could
improve MOSS performance. However, heuristics based on training sets can improve
computational times compared to traditional cross-validation [87].

We have shown the ability of MOSS to retrieve biologically meaningful results in different
simulated scenarios, ranging from a few numbers of samples and features to data
volumes approaching biobank scales. Although trying to create synthetic but realistic data
via the MOSim package, as in any other simulation approach, we acknowledge that only
a finite combination of scenarios was explored. Nevertheless, in an earlier publication, we
have shown that MOSS can also retrieve biologically meaningful results on real data. For

example, in [88], we have used MOSS to effectively integrate information from ~60,000
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features from gene expression, DNA methylation, and copy numbers across ~5,000
tumors from different cancer diagnoses. In that work, we showed MOSS's ability to detect
clusters of tumors beyond original diagnoses, which shared molecular features of
potential therapeutic use.

One of MOSS's essential capabilities is the handling of data sizes reaching biobank
dimensions. However, even when regular R matrices are used, MOSS can perform in a
short amount of time compared to other methods of omic integration and feature
selection. In addition, package bigstatsr allows MOSS to perform a dense-partial SVD in
data sets as big as the UK Biobank [75]. In addition, MOSS includes a convenient parallel
computing scheme, as provided by the future.apply R package. Although this implies that
the user loses some control on how parallel jobs are administered, since future.apply
works in multiple platforms, this option reduces the guesswork and the dependency of the
parallel computing strategy on operating systems used.

MOSS is a flexible, fast, and robust tool to perform data integration. It shares capabilities
with popular methods, including estimation of latent data dimensions, feature selection,
and convenient graphical displays. Nevertheless, unlike these methods, MOSS integrates

datasets too large to handle in RAM, requiring shorter amounts of time.
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CHAPTER 3

MULTI-OMIC SIGNATURES IDENTIFY PAN-CANCER CLASSES OF TUMORS

BEYOND TISSUE OF ORIGIN

This chapter has been adapted from the article published in the open-access journal,

Scientific Reports (DOI: 10.1038/s41598-020-65119-5).

3.1. ABSTRACT

Despite recent advances in treatment, cancer continues to be one of the most lethal
human maladies. One of the challenges of cancer treatment is the diversity among similar
tumors that exhibit different clinical outcomes. Most of this variability comes from
widespread molecular alterations that can be summarized by omic integration. We have
identified eight novel tumor groups (C1-8) via omic integration, characterized by unique
cancer signatures and clinical characteristics. C3 had the best clinical outcomes, while
C2 and C5 had the poorest outcomes. C1, C7, and C8 were upregulated for cellular and
mitochondrial translation and low proliferation. C6 and C4 were also downregulated for
cellular and mitochondrial translation and had high proliferation rates. C4 was
represented by copy losses on chromosome 6 and had the highest number of metastatic
samples. Copy losses on chromosome 11 characterized C8, also having the lowest
lymphocytic infiltration rate. C6 had the lowest natural killer infiltration rate and was
represented by copy gains of genes in chromosome 11. C7 was represented by copy

gains on chromosome 6 and had the highest upregulation in mitochondrial translation.
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We believe that, since molecularly alike tumors could respond similarly to treatment, our

results could inform therapeutic action.
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3.2. INTRODUCTION

Despite recent advances that have improved cancer treatment, it reigns as one of the
most lethal human diseases. Cancer can be considered a highly heterogeneous set of
diseases: while some tumors may have a good prognosis and are treatable, others are
quite aggressive, lethal, or may not have a standard of care [89-91]. Cancer can also
defy standard classification: a well-classified tumor may not respond to standard therapy,
as expected, and may behave as a different cancer type [92-94]. Fortunately, with the
advances of sequencing technologies, data has become available for research as never
before. The Cancer Genome Atlas (TCGA), for instance, offers clinical and omic (e.g.,
genomic, transcriptomic, and epigenomic data) information from thousands of tumors
across 33 different cancer types [95]. Much of this omic data can enable us to classify
tumors and explain the striking variation observed in clinical phenotypes [96—-99].

Omic integration has been successfully applied in previous classification efforts [72,100—
102]. These classifications have highlighted how molecular groups of tumors highly agree
with human cell types. Alternatively, we hypothesize internal subtypes hidden by cell type
and tissue characteristics influencing cell behavior. These subtypes could be
distinguished by molecular alterations unlocking cancerous cell-transformation events. To
test this hypothesis, we have developed a statistical framework that summarizes omic
patterns in main axes of variation, describing the molecular variability among tumors. Key
features characterizing each axis (i.e., features contributing the most to inter-tumor
variability) are retained, while irrelevant ones are filtered. Retained features are then used
to cluster tumors by molecular similarities and find specific molecular features

representing each group.
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Here we show that, after removing all tissue-specific effects, the cancer signal
immediately emerges. The new molecular aggrupation, emphasizing shared tumor
biology, can supply new insights into cancer phenotypes. We expect this novel
classification to aid in developing therapeutic alternatives for tumors without a current

standard of care.
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3.3. MATERIAL AND METHODS

3.3.1. Pan-cancer data

The TCGA offers a demographically diverse sample with comprehensive and modern
multi-omic data. We retrieved data from 5,408 from 33 cancer types made available by
the Genome Data Commons (GDC) repository [103] via the TCG-Assembler R package
[104]. Omic data consisted of curated level-three data of genome-wide gene expression
(GE), DNA methylation (METH), and copy number variants (CNV) profiles by tumor
sample. GE profiles by sample corresponded with the logarithm of RNA-Seq counts by
gene (lllumina HiSeq RNA V2 platform). METH profiles corresponded with CpG sites B-
values from the lllumina HM450 platform, summarized at the CpG island level, using the
maximum connectivity approach from the WGCNA R package [105], and further
transformed into M-values (M=p/(1-8);[106]). CNV profiles corresponded to gene-level
copy number intensity derived from Affymetrix SNP Array 6.0 platform, using human
genome V19 as reference. The quality-control filtering process included excluding
features with all zeros or coefficient of variation less than 1%. Samples or features
disproportionally missing data (>20%) and single-sample batches were also excluded.
Within the remaining samples, missing values were imputed by k-near neighbors, with k
= 3. Finally, each omic block was adjusted by batch effects using ComBat [107]. The final
sample size after retaining subjects with information for all three omics was n=>5,408.
Demographic information included gender, self-reported race and ethnicity, and patient's
age at diagnosis (Table 3.1). Clinical information consisted of overall survival time and
vital status at the final follow-up, sample type (from the primary tumor, metastases, or

normal tissue), tumor-free fraction. We also used previous information from “The Immune
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Landscape of Cancer” [108] and calculated significant differences between clusters using
the Kruskal-Wallis tests [109]. These covariates included: intra-tumor heterogeneity
fraction (as sub-clonal genome fraction), and rates of non-silent mutations, aneuploidy,
homologous recombination defects (all three derived as deviations from the normal
genome), proliferation (normalized difference between the number of dividing and non-
dividing cells), and information from immune infiltrations (including scores for CD4+ cells,
macrophages, lymphocytes, and natural killers) (See supplementary material in [108] for
a detailed description of the scores’ calculation). Briefly, immune infiltration fractions were
derived by CIBERSORT [110], assigned to different cell classes, and multiplied by the
leukocyte fraction derived from methylation data [108].

3.3.2. Omic integration, clustering, and features selection.

The following four steps can conceptually describe our method.

Step 1) Identification of major axes of variation and features selection. Integrative

methods should capture combined effects across omic sites that could either span across
omic layers (e.g., epigenetics, gene expression) or extend genome-wide (e.g.,
considering concomitantly contiguous CpG sites or even separated away sites). Let,
X=[Xy, o Xi]

where X, 1:{1,..., L} is a matrix representing the [-" omic, which row i" contains information
representing a sample on one subject, and column j" represents an omic feature (e.g., a
feature could be the expression of a specific gene or the methylation level for a given
CpG site). Each group of features coming from a different omic block is centered,
standardized, and divided by \/p_ where p; is the number of features from the [-th omic

block. Normalization is done so larger groups of features do not dominate the data
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integration step. Next, we conduct a sparse Singular Value Decomposition (sSVD) of X
to generate one factor that collapses the redundancies in the omics (by creating
independent columns representing the independent signals across features) and one
factor that collapses redundancies across samples, grouping subjects with similar
signaling. This linear factorization can be represented as X = ZW, where Z represents
(linearly) independent axes of variability across subjects (i.e., a lower rank
approximation), while W represents loadings representing the contribution of each omic
feature to this variability. This representation is familiar to many unsupervised omic
integration methods but is independent of distributional assumptions on each element. In
this formulation, Z and W can be obtained by minimizing:
IX — ZWI|3 + Pyo (W) [Eq.3-1]

To the left of the plus sign is the Frobenius norm (a matrix analogous of Euclidean
distance) of the difference between X and the product of Z and W. To the right of the plus
sign is a penalty on the elements of W to impose sparsity. The purpose of this penalty is
to zero-out those features with minor contributions to the columns of Z. To remove the
effect of tissues, or other covariates that can influence the selection of features, we pre-
multiplied X by | - Q(QTQ)*QT, where | is a diagonal matrix of ones, and Q is an indicator
matrix to represent the membership to a given organ or tissue.

Step 2) ldentify omic features (expression of genes, methylation intensities, copy

gains/losses) influencing the axes. The linear decomposition achieved by SVD is an

intuitive and straightforward way of integrating omics. However, the variability across
omics can be governed by just a few features (i.e., highly sparse data) or by groups of

interdependent features (i.e., very redundant data). To handle these limitations, we chose
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P, ,(W) to be the Elastic Net penalty [68], A(a||W]l; + (1 — a)||W||3), where a balances
the regularization between LASSO and ridge regression types of regularization, and A is
associated with the degree of sparsity (i.e., how many features enter in the model?).
Unlike LASSO, EN can select groups of correlated features, while zeroing out the
irrelevant ones [111]. Equation Eq.3-1 is solved by obtaining zawi (where z; is the first
column of Z and w; is the first row of W) with coordinate descent for given values of 1
and «, following the algorithm of [69], as implemented in [112], but with the following
thresholding operator: sign(w1)| [wi| - Aa |+ / A (1 — a) (where |x|+ represents the positive
part x). Consecutive layers are then obtained by subtracting the previous ones from X
and repeating the same procedure, as many times as the number of desired axes of
variation. The optimal value for 1 was empirically determined, as suggested by [69]. We
start by 1) calculating W over a dense grid of values for A (lower A yields less sparsity),
2) calculating the proportion of variance of X explained by ZW (PVX) for each A, and 3)
choosing the A at which PVX has its minimum second derivative. Since PVX decreases
monotonically with A, this point represents a drastic drop on PVX, suggesting that the
most relevant features accounting for the data variability are already incorporated [69].
The value a was fixed to 0.5 to have an equal contribution of LASSO and Ridge penalties.
Once a subset of features was selected, we mapped them onto genes using annotation
data of genomic position downloaded from the USCE web browser tool (GRCh38 [113]).
The enrichment of functional classes (ontologies, pathways, complexes) among these
genes was tested using the Enrichr package[114].

Step 3) Mapping major axes of variation via tSNE and cluster definition by DBSCAN.

Additionally, SVD can be coupled with non-linear embedding methods to deal with highly
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heterogeneous data. Here, we applied t - Stochastic Neighbor Embedding (tSNE) on Z
[72]. tSNE is a technique that efficiently takes on local neighborhoods present in high
dimensions (eventually representing clusters of data) and conserves them while
projecting onto a lower-dimensional display [73]. Hence, tSNE becomes a powerful
technique to reveal clusters, even in very heterogeneous and convoluted data settings
[74]. The algorithm has two fundamental parameters: perplexity (which accounts for the
effective number of local neighbors) and cost (related to the difference between the
neighborhood’s distribution in the higher and lower dimensional spaces). Since low cost
indicates displays more likely to reveal clusters, we selected the maps corresponding with
the lowest costs among perplexities of 50 and 100, using 100 thousand iterations to
ensure convergence. We applied Density-Based Spatial Clustering of Applications with
Noise (DBSCAN [77]) to identify clusters. DBSCAN is one of the most powerful clustering
techniques to delimit clusters of irregular shape, such as the ones tSNE produces [74].
Essentially, DBSCAN identifies densely packed groups without specifying the number of
clusters prior [77]. Neighborhoods of nearby points can then be tuned by evaluating
different cluster partitions over a grid of possible neighborhood sizes. We tuned this
parameter by maximizing the Silhouette score, as in [72].

Step 4) Molecular and clinical characterization of clusters. The association between

clusters and scores representing genes and the selected functional classes was studied
to define each cluster's signatures. Scores were calculated by tacking the columns of X
mapping onto a gene, or functional class, and post-multiplying it by the corresponding
elements of W’. Using the scores of each gene and functional class as a response and

the clusters as explanatory variables, we conducted a series of ANOVA tests to determine
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what genes or functional classes were significant in at least one cluster. All pairwise
comparisons between significant genes and functional classes were studied via Tukey
tests. Gene signatures were defined based on those genes significantly deregulated in a
single cluster. For both types of tests, we used a Bonferroni multiple-test correction with
P(type | —error) = 0.05 / {#selected genes and functional classes}.

We used the STRING database of protein-protein interactions to discuss the possibility
of physical or functional relationships between the genes in each signature [115]. We
considered an interaction biologically meaningful when backed up by empirical data, such
as immune precipitation, microarrays, and curated databases. Interactions suggested by
text-mining (two genes reported in the same scientific publication) were not considered,
except in the cases when a publication’s results gave evidence of interaction (e.g., genes
co-expressing, co-locating).

The association between clusters and phenotypes (e.g., clinical, demographic, and
immunologic covariates) was evaluated via the Kruskal-Wallis test [109] (hon-parametric
analogous of ANOVA). The Dunn test further evaluated all significant results [116] for
pairwise differences (non-parametric analogous of Tukey tests). All steps of our method
were implemented in the R programming language [117], using irlba [112], dbscan [77],
and Rtsne [118] packages.

3.4. RESULTS

Signals coming from tissue and cell type strongly influence a naive initial classification of
tumors across cancer types. We performed omic integration based on sparse singular
value decomposition, removed tissue effects, and sought to re-classify tumors based on

subtler omic patterns. Our method can be illustrated in four steps (Figure 3.1, Materials
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and Methods). Step 1 applies sparse Singular Value Decomposition (sSVD) to an
extended omic matrix X, obtained from concatenating a series of scaled and normalized
omic blocks for the same subjects. Briefly, the principal axes of variation across tumors
(i.e., left principal components or scores) and X's matching features ‘activities’ (i.e., the
right principal components or loadings) are found. Sparsity is then imposed on the activity
values, so features with minor influence over the tumors' variability are removed. Step 2
consists of identifying what features (expression of genes, methylation intensities, copy
gains/losses) influence these axes the most (i.e., features not removed by sSVD) and
mapping them onto genes and functional classes (e.g., pathways, ontologies, targets of
micro-RNA). Step 3 involves the identification of local clusters of tumors, following [72].
Step 4 involves characterizing clusters in molecular (e.g., genes, pathways, complexes)
and clinical (e.qg., survival probability, immune infiltration) information, distinguishing each

cluster from the rest.
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Figure 3.1: Omic integration and features selection method. Step 1) Singular value
decomposition of a concatenated list of omic blocks and identification of major axes of
variation. Step 2) ldentification of omic features (expression of genes, methylation
intensities, copy gains/losses) influencing the axes and mapping them onto genes and
functional classes (e.g., pathways, ontologies, targets of micro-RNA). Step 3) Mapping
major axes of variation via tSNE and cluster definition by DBSCAN. Step 4) Phenotypic
characterization of each cluster of subjects.

Using samples from 33 different cancer types provided by The Cancer Genome Atlas
(TCGA) and accompanying information from whole-genome profiles of gene expression
(GE), DNA methylation (METH), and copy number variant alterations (CNV), we re-
classified tumors based on molecular similarities between the three omics.

3.4.1. Data description

The data, including information of sample size and type of sample (i.e., from normal,

metastatic, or primary tissue), demographics (age, sex, and ethnicity) and survival

48



information (overall survival status and times), are summarized in Table 3.1. In addition,
omic data included information for gene expression (GE, as the standardized log of
RNAseq data for 20,319 genes), methylation (METH, as standardized M-values
summarized at the level of 28,241 CpG islands), and copy number variants (CNV, as the

standardized log of copy/gain intensity, summarized at the level of 11,552 genes).
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Table 3.1: Data description by cancer type after quality controls. Samples are
described by cancer type (TCGA code and cancer name), in terms of relative sample size
(n), percent of females (F%), ethnicities (percent of non-Hispanic Whites, Afro-
descendants, and Asians), Age (at the moment of diagnosis, in years), type of sample
(TS%, as a percent of normal —N- and metastatic —-M- samples), and survival (Surv, as
expected time to 50% survival, in years). Age and Surv are represented by median
values, with first and third quartiles as measurements of dispersion.

Code Type n F% AD W A Age N M Surv
ACC Adrenocor 23 61 0 100 O 48 (35- 0 6.6 (2.5-
tical 57) 6.6)
BLCA Bladder 271 99 13 80 7 58(49- 1 0 3.0 (1.2-
urothelial 66) 3.0)
BRCA Breast 639 69 18 75 7 58 (46- 7 0 10.2 (6.5-
invasive 71) 10.2)
CESC Cervical 234 25 8 78 14 60 (53- 1 1 11.2(3.1-
squamous 69) 11.2)
cell
CHOL Cholangio 12 36 0O 100 O 55(46- 75 0 1.7 (0.7-
carcinoma 67) 5.3)
COAD Colon 264 36 12 79 9 58(41- 7 0 8.3 (3.6-
adenocarc 66) 8.3)
inoma
DLBC Lymphom 26 54 19 81 0 60 (54- 0 0 17.6
a 63) (17.6-
ESCA Esophage 134 60 12 88 0 68(59- 2 0 2.3(1.1-
al 73) 4.4)
GBM Glioblasto 49 23 12 78 10 66 (60- 0 0 0.9 (0.4-
ma 73) 1.2)
multiforme
HNSC Headand 89 48 8 91 1 6159 1 0 5.9 (1.2-
Neck 71) 5.9)
squamous
KICH Kidney 2 0 0 100 O 52 (50- 0 0
chromoph 54)
obe
KIRC Kidney 43 51 2 91 7 67 (62- 0 0 7.5 (7.5-
renal clear 75) 7.5)
cell
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Table 3.1 (cont’d)

KIRP Kidney
renal
papillary
cell
LAML Acute
myeloid
leukemia
LGG Brain
lower
grade
glioma
LIHC Liver
hepatocell
ular

LUAD Lung
adenocarc
inoma

LUSC Lung
squamous
cell

Mesotheli-
oma

oV Ovarian
serous

Pancreatic
adenocarc
inoma

Pheochro-
mocytoma
and
paragangli
oma
Prostate
adenocar-
cinoma

Rectum
adenocar-
cinoma

Sarcoma

MESO

PAAD

PCPG

PRAD

READ

SARC

37

28

93

62

381

289

68

151

144

490

83

181

62

42

25

29

28

24

36

42

41

20

11

80

94

88

92

90

89

93

100

76

100

94

85

100

51

20

15

65 (59-
72)

60 (57-
67)

70 (62-
75)

69 (61-
74)

66 (59-
72)

57 (46-
64)

60 (53-
66)
60 (55-
61)
67 (60-
74)

61 (56-
65)

62 (54-
70)

63 (54-
73)

58 (46-
69)

13

4.6 (1.6-

4.2 (2.1-
9.2)

4.7 (1.8-
10.5)

1.6 (0.9-
2.4)

2.9 (2.9-
2.9)

1.6 (1.0-
4.1)

9.6 (9.6-
9.6)

3.9 (3.9-
3.9)

6.7 (3.1-
6.7)



Table 3.1 (cont’d)

SKCM

STAD

TGCT

THCA

THYM

UCEC

UCS

UvM

Skin
melanoma
Stomach
adenocar-
cinoma
Testicular
germ

Thyroid

Thymoma

Uterine
corpus

Uterine
carcinosa-
rcoma

Uveal
melanoma

378

263

134

501

106

146

78

85

37

73

45

100

100

45

15

43

0

83

70

92

80

85

57

75

100

25

13

25

0

61 (50-
70)
67 (58-
73)

31 (26-
37)
46 (35-
58)
58 (48-
68)

65 (57-
72)

63 (54-
74)

62 (51-
74)

14

75

o

7.4 (2.6-
20.1)

4.6 (1.3-

9.6 (9.6-
9.6)

9.2 (3.6-
9.2)

1.4 (0.3
2.2)

3.8 (2.4-
3.8)

*. Only the three most abundant ethnicities in the data set were considered to calculate
**. Survival quantiles for cancer types with less than five death events were not

The first 50 main axes of variations of the extended omics matrix were selected using an

apparent bend in the scree plot of Eigen-values (Material and Methods). The projection

of the 50 axes onto two dimensions is shown in Figure B.1. As expected, cell-of-origin

effects dominate the clustering of tumors at a pan-cancer level, with clusters enriched by

previously reported pan-cancer clusters (e.g., collection of gastric cancer, gliomas,

kidney, and squamous tumors), types, and subtypes (e.g., Luminal and Basal breast

tumors), and single cancer types (e.g., Thyroid carcinoma, Prostate adenocarcinoma).
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3.4.2. Classification of pan-cancer tumors after removing tissue-specific signals

Once the tissue signal was identified, it was removed from the extended omic matrix.
Next, sparsity constraints were imposed on the omic features to zero out those with
irrelevant contributions to axes of variation and cluster formation. The selected features
(i.e., with non-zero effects) across the three omics corresponded with the 18, 25t 331,
and 38" axes (sorted from more to minor variance explained) and mapped onto a total of
1200 genes. The cluster identification and projection onto two dimensions revealed eight
classes (Figure 3.2). Because of removing the effects of tissue localization, all clusters
were formed by samples from multiple cancer types. Some clusters differed statistically
from their cancer types composition (Table 3.2). However, all cancer types overlapped
with more than one cluster (Figure 3.2; Table 3.2, bottom). Furthermore, this overlap was

not influenced by previously reported subtypes (Figure B.2).
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Figure 3:2: Pan-cancer clustering of tumor samples after adjusting for tissue
effects. Tumor clusters were obtained by sequential application of tSNE and DBSCAN
algorithm for 5,408 samples across 33 cancer types. The contours reflect cluster
membership, and the points’ colors and shapes represent similar anatomical sites and
cancer types, respectively. The two-dimensional tSNE projection was obtained from the
four deep principal axes of the extended omic matrix projected outside the tissue-specific
effects after sSVD and removing the first two axes. After re-classifying tumors, the few
samples from Kidney chromophobe tumors (KICH) did not map in any of the eight clusters
obtained.

3.4.3. Clinical and demographical characterization of tumor clusters

Clusters differed statistically in terms of patient age (with Cluster 3 and 8 containing
samples from slightly younger patients) and sex (with Clusters 2 and 7 having significantly
more females than Cluster 8, due to their slightly higher composition of gynecological
cancers) (Table 3.2). However, none of the clusters were significantly associated with

ethnicity (Table 3.2).
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Table 3.2: Clusters characterization after removing tissue effects. The clusters
produced by the integration of whole-genome profiles of gene expression (GE), copy
number variants (CNV), and DNA methylation (METH) were characterized in terms of
clinical, demographic, immune, and molecular information. The table shows those
variables with significant differences in at least one cluster. For each variable, different
letters represent significant differences between clusters.

Clusters 1 2 3 4 5 6 7 8
Cancer type* bc c d ab ab ab bc a
Metastasis (%) 5¢c 4de 3e 17ab 5de 7cd 12bc 2la

Survival time 22 2a 3b 2a 2ab 2ab  2ab 2a

_ 5§ (years)*
S % Stage [119] IVab IVbc llic Ivab lllabc lllab Illabc IVab
c € Tumor-free
6§ fraction (%) 60a 70a 80b 60a 60a 60a 60a 60a
£ Intratumor
heterogenity 13ab 14ab 4d  10c 15a 12abc 1l4ab  9bc
(%)
Proliferation 04a 03a -04b 03a 03a 04a 04a 0.5a
E S Age (years) 6la 62a 57b 60ab 60ab 6lab 62a 57b
g7
= % of
gg Sex(o 52ab  54a 50ab 50ab 53ab  46b 58a  4lb
o= females)
- Non-silent 2bc  2bc 1d 3a 2abc 2c 3ab  2bc
© & mutation
%5 Aneuploidy 12a 12a 3b 10a 14a 1la 12a 10a
$ £ Homologous
O c  recomb 22ab  16¢c 8d 23ab 22abc 25a 27a 19bc
defects
Thl CD4+
cells (x102) -6b -6b -3a -7b -8b -7b -6b -6b
Ulr2 CD4J; 3c 2c 2c 4ab 5abc 5ab  5ab 6a
cells (x109)
Th1l7 CD4+
8.5 cells (x102) -8b -8b 6a -15c -5b -5b -9b -9b
=R Activated
EE natural killer 2bc  2bc 3a 3ab 2bc lc  2bc 2bc
= 'c cells (x107)
Lymphocytes 5. 6p  4a  4bc  S5bc  3bc Sbc  3c
(x10%)
Tumor-
infiltrating 1.7b 1.7b 19a 1.7b 1.8ab 16b 1.8b 1.6b
lymphocytes
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Table 3.2 (cont’d)

*%

Functional
classes

DNA -6d 6a -lbc 6a 4ab 7a -3¢ -2bc
replication&".()

(x107)

Mitochondrial 0.4d -0.3b 0.0c -09a 0.3cd -1.1a 19 0.5d
translation&1®

mir-has-615b -1.1¢ 0.7a -0.1b 0.7a -0.2b 0.8a -1.1c -0.1b
targets’-(®

S phase and -1.5f 1.0b -0.1d 0.5c 0.3c 1.3a -0.4e -0.4e
DNA

synthesis'®*)

#Cancer types by cluster (%).

C1

C2

C3

C4

C5

C6

C7

COAD (14.2), LUAD (11.7), BRCA (10.7), SKCM (8.1), SARC (7.1),
READ (6.4), PRAD (4.8), ESCA (4.6), CESC (4.1), LUSC (4.1), STAD
(4.1), BLCA (3.8), PAAD (3.6), TGCT (2.5), ACC (2.3), MESO (2), LIHC
(1.5), UCEC (1.5), PCPG (1), HNSC (0.8), KIRC (0.3), LGG (0.3), OV
(0.3), and UVM (0.3).

BRCA (11.1), COAD (11.1), STAD (9.6), LUSC (7.4), LUAD (7.1), SKCM
(6.1), CESC (5.6), BLCA (5.4), SARC (5.4), READ (4), ESCA (3.1), KIRP
(2.5), PAAD (2.5), PRAD (2.5), PCPG (2.2), HNSC (1.7), LIHC (1.5),
UVM (1.5), MESO (1.4), UCEC (1.4), ACC (1.3), KIRC (1.1), GBM (1),
THYM (1), LGG (0.8), THCA (0.7), TGCT (0.6), DLBC (0.1), and LAML
(0.1).

THCA (16.1), PRAD (13.2), BRCA (9.3), LUAD (6.3), SKCM (4.4), BLCA
(4.3), LUSC (3.9), STAD (3.8), COAD (3.4), TGCT (3.4), UCEC (3.4),
PAAD (3.3), CESC (3.2), THYM (3.2), PCPG (3.1), LGG (2.5), SARC
(1.7), UVM (1.6), HNSC (1.3), LIHC (1.2), KIRC (1.1), MESO (1.1),
ESCA (1), GBM (1), LAML (0.9), DLBC (0.7), READ (0.5), KIRP (0.4),
CHOL (0.4), UCS (0.1), ACC (0.1), and OV (0.1).

SKCM (21.7), BLCA (13), CESC (9.6), LUAD (9.6), LUSC (8.7), BRCA
(7.8), ESCA (4.3), UVM (4.3), MESO (3.5), HNSC (2.6), SARC (2.6),
GBM (1.7), LIHC (1.7), STAD (1.7), UCEC (1.7), COAD (0.9), KIRP
(0.9), PRAD (0.9), READ (0.9), TGCT (0.9), and THYM (0.9).

BLCA (18.4), LUAD (15.8), CESC (10.5), SKCM (10.5), PRAD (7.9),
BRCA (5.3), ESCA (5.3), STAD (5.3), COAD (2.6), GBM (2.6), HNSC
(2.6), LIHC (2.6), LUSC (2.6), PAAD (2.6), PCPG (2.6), and TGCT (2.6).
BRCA (31.5), LUSC (9.7), ESCA (8.6), SKCM (8.6), BLCA (8.2), STAD
(6.5), LUAD (5.7), PRAD (5.7), HNSC (3.9), CESC (2.5), SARC (2.2),
PAAD (1.8), GBM (0.7), LGG (0.7), UCEC (0.7), UVM (0.7), CHOL (0.4),
DLBC (0.4), MESO (0.4), PCPG (0.4), READ (0.4), and TGCT (0.4).
SKCM (14.7), BRCA (11.5), LUSC (11), ESCA (8.4), STAD (7.3), SARC
(6.8), CESC (5.8), LUAD (5.8), UVM (4.7), BLCA (4.2), PAAD (3.1),
HNSC (2.6), COAD (2.1), PRAD (2.1), LIHC (1.6), MESO (1.6), READ
(1.6), UCEC (1.6), TGCT (1), DLBC (0.5), GBM (0.5), LGG (0.5), OV
(0.5), and THCA (0.5).
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Table 3.2 (cont’d)

C8 SKCM (24.8), BRCA (23.9), CESC (12.8), PCPG (6.8), BLCA (5.1),
SARC (5.1), LUSC (4.3), HNSC (3.4), UCEC (2.6), COAD (1.7), ESCA
(1.7), MESO (1.7), READ (1.7), TGCT (1.7), LUAD (0.9), OV (0.9), and
UVM (0.9).

*Values represent median survival times by cluster. Letters represent significant
differences under the log-rank test to compare the entire survival curves of each
cluster.

**Databases: GO Biological process (%), miRTabrBase ('), Reactome (). Functional
classes significant at FDR adj. p-value < 0.05.

Overlap between a selected group of genes and databases:

(1): GINS1, POLD3, PRIM2, POLD4, PCNA, MCMS8, and MCM3.

@: MRPS26, MRPL2, MRPL51, MRPS35, MRPL16, MRPS18A, MRPS10, MRPL14,
MRPL48, MRPL21 and MRPL11.

©®): PANK2, SF3B2, PCNA, HSP90AB1, NOP2, ATN1, CHD4, HOXC13, PRICKLE4,
DPP3, C120RF57, LDHB, CCND3, CCND2, STK35, RAB23, PPP6R3, IDH3B,
RPS3, SIRPA, PSMF1, DNM1L, NKX2-5, PRNP, UVRAG, PPIL1, TPI1, DST,
CSNK2A1, SMOX, YIPF3, DDX11, ENTPD6, MAD2L1BP, PPP2R5D, MUT, FBXL14,
MRPL21, KLHL42, WNK1, RPL7L1, NCAPD2, FKBP4 and GAPDH.

) GINS1, POLD3, PRIM2, POLD4, PCNA, CDKN1B, CCND1, MCM8, MCM3,
PSMF1 and CDC25B.

The most notorious distinctions between clusters were their differences in prognosis and
severity traits (Figure B.3). Cluster 3 (the largest cluster in Figure 3.2) was distinguished
by better prognosis/less severity cancers than the remaining clusters, followed by
Clusters 2, 5, 6, and 7. In general, clusters 4 and 8 had the worst prognosis and more
aggressive tumors (Table 3.2). Cluster 3 was also the one with the fewest metastatic
samples (Figure B.4), higher survival rates, highest tumor-free fraction, lowest stage,
lowest intra-tumor heterogeneity (ITH, that estimates the fraction of sub-clonal and clonal
genomes in each sample[108]), and lowest proliferation (Table 3.2, Figure B.3). By
comparison, Clusters 4 and 8 had significantly more metastatic samples than Cluster 3.
Cluster 8 also had higher ITH rates than Cluster 3. The highest ITH rates were found in

Cluster 5.
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Cluster 3 also had the lowest rates of non-silent mutations, aneuploidies, and homologous
recombination dysfunction (HRD). The remaining clusters were very similar in terms of
genome instability indicators, except for Cluster 2. This cluster had significantly higher
rates of HRD than Cluster 3 but significantly lower rates than every other cluster (Table
3.2). Cluster 3 was characterized by the highest rates of tumor-suppressive immune cells
and tumor-infiltrating lymphocytes (Table 3.2). In addition, Cluster 6 had the lowest
infiltration of activated natural killer (ANK) cells. Cluster 8 also had the lowest lymphocytic
and highest Th2 CD4+ infiltrations, respectively (Table 3.2).

3.4.4. Gene signatures characterizing tumor clusters.

The clusters were also characterized by distinct sets of omic features, significantly
enriched for functions involved in the cell cycle (DNA replication, DNA synthesis, and
targets of hsa-mir-615-b, a micro-RNA involved in cell proliferation) and mitochondrial
translation (initiation, elongation, and termination) (Table 3.2). To study the pairwise
differences across clusters, these gene sets were projected onto scores for each gene,
as linear combinations between the features’ values mapping onto the gene (i.e., its
expression, methylation, and copy number values) and their related activities (i.e., the
feature's effects arising from the sparsity constraints) (see Materials and Methods
section). In general, Cluster 3 was characterized by intermediate values of these scores,
while the remaining clusters were characterized by higher (i.e., gene set with higher
expression than Cluster 3) or lower (gene sets with lower expression than in Cluster 3)
gene set scores. Clusters 2, 4, and 6 had significantly higher scores for cell proliferation
and significantly lower for mitochondrial translation. On the other hand, clusters 1, 7, and

8 had significantly lower scores of proliferation and higher for mitochondrial translation.
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Sparse factorization of the extended omic matrix resulted in the selection of features
mapping onto 1200 genes. From this list, 441 genes were significantly different in at least
one cluster. These results were obtained by a series of analyses of variance (ANOVAS),
using the scores of each gene as response variables and clusters as explanatory
variables. This list included 34 validated cancer genes, including oncogenes (ERC1,
HSP90AB1, NUMAL, PPFIBP1, ZNF384, CHD4, KRAS, HIST1H3B, CCND1, CCND2,
PIM1, CCND3, HMGA1, HOXC11, HOXC13, KDM5A, SRSF3, TFEB), tumor suppressors
(FANCE, CDKN1B, ASXL1, ETNK1) and fusion-proteins (ERC1, HSP90AB1, NUMA1,
PPFIBP1, ZNF384). Many genes also mapped onto known transcription factors (including
KDM5A, RELA, SRF, CTBP2, FOXA2, NONOG, FOLSL1, TEAD4, and FOXM1) and
some of their targets (Figure B.5). However, the expressions of TFs and their targets were
not significantly correlated within or between clusters (Figure B.5), suggesting
mechanisms of control of the gene expression other than TFs regulation.

We then interrogated all pair-wise comparisons between the scores of the 441 significant
genes using Tukey tests (Table B.1). We identified a subgroup of 123 significant genes
that distinguished each cluster from the rest (for example, POLH had significantly higher
scores in Cluster 4 than in every other cluster). The genes characterizing each cluster
were then used to define signatures. With this criterion, only Clusters 1, 4, 6, 7, and 8
were characterized by distinct signatures of 57, 4, 23, 24, and 15 genes each,
respectively. Since the gene scores are combinations of omic features, we looked at the
gene expression in each signature and the potential role of copy numbers and methylation

in regulating it (Figures 3.3-4).

59



Cluster 1's signature was composed of genes mapped on chromosome 20. A group of 56
of the 57 genes exhibited significant copy losses in Cluster 1. Of this group, 50 genes
(ATRN, AP5S1, TMEM230, MGME1, NDUFAF5, CENPB, CRLS1, CRNKL1, CSNK2A1,
DDRGK1, DSTN, DTD1, ESF1, FAM110A, FASTKDS5, FKBP1A, IDH3B, ITPA, SMIM26,
MAVS, MCMS8, MKKS, MRPS26, NAA20, NOP56, NRSN2, NSFL1C, PANK2, PCNA,
POLR3F, PSMF1, PTPRA, RBBP9, RBCK1, RRBP1, SIRPA, SMOX, SNPH, SNRPB2,
SNRPB, SNX5, SOX12, STK35, TBC1D20, TRMT6, UBOX5, VPS16, ZCCHC3, ZNF133
and ZNF343) were also downregulated. The genes with significant copy-losses and basal
expression values (TGM6, SOX13, PROKR2, PRND, OXT, LRRN4, and FERMT1),
LRRN4, and FERMTL1 were also significantly hyper- and hypo-methylated, respectively
(Figure 3.3).

Cluster 4's signature was composed of four genes mapping onto chromosome 6: TDRD6,
POLH, PAQRS, and GUCA1A. All these genes exhibited significant copy losses in Cluster
4, and all of them except GUCALA were also downregulated. Additionally, POLH was

hypo-methylated, while PAQR8 was hyper-methylated (Figure 3.3).
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Figure 3.3: Gene signatures for Clusters 1 and 4. The genes significantly de-regulated
exclusive of Clusters 1 and 4 were used to define signatures (y-axis). The features values
(x-axis) of each gene are separated in gene expression (GE, first column of panels), copy
number variants (CNV, second column of panels), and DNA methylation (METH, third
column of panels), and summarized by Bonferroni confidence intervals (adjusting for all
the 441 significant genes in at least one cluster). Dots represent the average of features
values across samples.

Cluster 6's signature was composed of 23 genes mapping onto chromosome 11:
ALDH3B1, ANKRD13D, ANO1, AQP11, ARRB1, EMSY, CCND1, CTTN, KRTAP5-10,
LRP5, LRRC32, TESMIN, MYO7A, NUMA1, PAK1, PPFIAl, RBM4, RPS6KB2, RSF1,
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SHANK2, TMEM134, TPCN2, and USP35. These genes exhibited significant copy gains,
and all of them were also significantly upregulated, except for three genes with basal
expression in Cluster 6: MYO7A, LRRC32, and ALDH3BL1. In addition, genes USP35,
SHANK2, MYOT7A, LRRC32, CTTN, CCND1, ARRB1, and ALDH3B1 were additionally
hypo-methylated, while genes RSF1 and PPFIAL1 were hyper-methylated (Figure 3.4).
Cluster 7's signature was composed of 24 genes mapping onto chromosome 6. All of
these genes (BTBD9, RRP36, CCND3, CNPY3, CUL7, FRS3, GUCA1A, BICRAL, KLC4,
KLHDC3, LRFN2, MEA1, MED20, MRPL2, MRPS10, PEX6, PPP2R5D, RPL7L1, SRF,
TAF8, TBCC, TOMMG6, TRERF1, and UBR2) exhibited significant copy gains. In addition,
all of them were significantly up-regulated, except by LRFN2, GUCA1A, BTBD9, which
had basal levels in Cluster 7. Genes TRERF1, LRFN2, and FRS3 were additionally hypo-
methylated, while GUCA1A was hyper-methylated (Figure 3.4).

Cluster 8's signature was composed of 15 genes mapping onto chromosome 11. These
genes (ALDH3B1, ANO1, CCND1, CPT1A, CTTN, LRP5, MRPL21, NADSYN1, PPFIA1,
RNF121, RSF1, SHANK2, TPCN2, UNC93B1, and USP35) exhibited significant copy
losses. All of them except ANO1 (with basal levels in cluster 7) were significantly
downregulated. In addition, genes USP35 and NADSYN1 were significantly
hypermethylated, while UNC93B1, RSF1, MRPL21, and ANO1 were hypo-methylated

(Figure 3.4).
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Figure 3.4: Gene signatures for Clusters 6, 7, and 8. The genes significantly de-
regulated exclusively in Clusters 6, 7, and 8 were used to define signatures (y-axis). The
features values (x-axis) of each gene are separated in gene expression (GE, first column
of panels), copy number variants (CNV, second column of panels), and DNA methylation
(METH, third column of panels), and summarized by Bonferroni confidence intervals
(adjusting for all the 441 significant genes in at least one cluster). Dots represent the
average of features values across samples.
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3.5. DISCUSSION

Most pan-cancer classifications rely on molecular alterations that discriminate between
the tissue of origin [72,100-102,120]. However, as soon as tissue effects were removed,
we have found that the cancer signal immediately emerged. Distinct cancer classes were
formed, containing tumors from different cancer types. Particular functional groups of
omic features also characterized these classes. An SVD of the extended omics matrix
can result in a multitude of axes of variation. Such axes have the potential to explain
different patterns of variability across subjects. In this study, we preceded our cluster
analysis by selecting axes of variation (i.e., basis vectors spanning the features space of
the concatenated omics) having features loadings different from zero (each axis of
variation has an accompanying vector of loadings representing features activities). We
have obtained the cluster display in Figure 3.2 as a result of this selection criterion.
Furthermore, most of the variability between clusters of tumors associates with the
canonical relationship between gene expression and copy number. According to this, the
primary source of co-variability among features seemed to be dominated by positive
covariation of expression and copy number (i.e., copy losses match with lower expression
levels, and vice versa, Figure B.5). The expression of regulatory elements within the
group of selected features (including transcription factors and the micro-RNA hsa-mir-
615b) was, on the other hand, not associated with the expression of their predicted
targets. These observations support the role of copy numbers as a significant force
affecting tumor progression [121-123]. Experimental evidence has shown large effects
of methylation at characterizing both normal and tumor tissues [124-127]. Contrarily,

epigenetics has an essential role during tissue differentiation, as well as in cancer.
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However, our analysis might suggest a minor role in leading the cancer cluster
differences. We believe that this minor role could be the result of an intense correction for
tissue-specific effects. Other possible explanations include artifacts of data processing,
such as summarizing methylation at the CpG island level. Although the map at the CGI
level covered both genic and non-genic regions and facilitated computations, this
summary could have come at the cost of washing out CpG site-specific effects on cancer.
A third possibility is that the abnormal methylation patterns are essential but shared by
two or more cancer clusters. Our features highlighted are the ones that differentiate
between clusters. Regardless, we observed abnormal methylation patterns that might
suggest a role in the expression of some genes characterizing tumor classes (e.g.,
expression of LRN4 and GUCALA negatively correlated with average methylation of
promoters’ CpG islands).

The tumor clusters C1, C4, C6, C7, and C8, had exclusive signatures (i.e., different from
every other cluster). Interestingly, the clusters without distinct individual signatures had
more favorable outcomes (C3, C2, and C5). One possible explanation for this is the
frequent correspondence between more dramatic molecular alterations and worse clinical
outcomes [128,129]. To gain insights about possible biological interactions within each
signature, we used the accompanying bibliographic results provided by the STRING
database [115] (see Material and Methods section). The literature suggests a broad
overlap between signatures in terms of gene functions (cell growth, division, small RNA
metabolism, protein synthesis, maturation and transport, and mitochondrial dysfunction).
In the case of signature C1 (most genes down-regulated), the literature suggested NOP56

(a core component of the small nucleolar ribonucleic protein) as a central element in the
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signature; interacting with MKKS, NAA20, and PTPRA (genes with roles on mitotic
division); ESF1, SNRPB, SNRPB2, POLR3F and CRNKL1 (involved in small RNA
processing), PCNA and ITPA (involved in DNA replication and repair), UBOX5, RRBP1,
RBCK1 and NRSN2 (protein synthesis, maturation, and antigen presentation), RBBPP9
(resistance to growth inhibition of TGF); SIRPA and DSTN (cell adhesion)[130-133]. In
the signature C1, NOP56 could be a candidate for future therapeutic intervention. Tumor
suppressors NRSN2 and RBCK1 could also be considered.

The three downregulated genes from signature C4 were involved in small RNA maturation
(TDRD6, micro-RNA expression, and maturation), cell proliferation (PAQRS, plasma
membrane progesterone receptor), and DNA repair (POLH, DNA polymerase involved in
DNA repair). From these genes, PAQRS8 and TDRD6 could represent potential targets of
therapy. Although neither of them has been directly related to cancer, other members of
the PAQR family of progesterone receptors are known tumor suppressors, while TDRD6
has been reported as frequently down-regulated in breast cancer, suggesting its potential
use as a biomarker [134]. In the case of signature C6 (most genes upregulated), the
literature suggests CTTN as interacting with two groups of genes within the signature,
either by co-expression or co-localization in amplicons. One group consisted of invasion
and anti-apoptotic related genes (e.g., SHANK, PAK1, PPFIAl) and ion transport (ANO1
and TPCNZ2) [135,136]. The other group consisted of CCND1 (cell cycle checkpoints),
LRPS (protein synthesis), RSF1 (chromatin remodeling), and USP35 (protein turnover;
through amplicon-mediated overexpression in breast and gynecological cancers)
[137,138]. Thus, patients with signature C6 could perhaps benefit from ANOL1 inhibitory

therapy [136].
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Signature C7 was characterized by multiple genes co-expressing with KLHDC3 (involved
in homologous recombination): MEA1l (spermatogenesis), CNPY3 (protein folding,
antigen presentation), PPP2R5D (direct catalytic activity), RRP36 (small RNA synthesis),
CCND3 (cyclin, cell cycle checks points), and MED20 (transcription). KLHDC3 also
belongs to the protein turnover and antigen presentation pathway, together with CUL7
and UBR2. The literature also suggests another group of co-expressing genes within
signature C7, consisting of RPL7L (ribosome), MRPL2, and MRPS10 (mitochondrial
ribosome). These genes have also been found to interact in cell culture [140,141]
physically. Signature C8 genes remarkably overlapped with signature C6 genes but
exhibited opposite regulation (i.e., down- instead of up-regulated). Additionally, the
literature suggests the interaction between CCND1, NADSYN1, and MRPL20 in signature
C8 [139,140]. NADSYN1 has been proposed as a target of inhibitory therapy in cancer
[141], while MRPL20 has been suggested as a biomarker for gastric cancers [142,143].

The molecular classification of tumors generated clusters with clear differences in
prognosis and severity, with C3 exhibiting better outcomes than the remaining clusters.
C3 also resembled a previously reported “inflammatory” type in terms of immune
infiltration and cancer type composition (enriched for prostate adenocarcinoma, thyroid,
and pancreatic carcinomas and having elevated values of markers for CD4+ Th17 and
Th1 cells and low genomic instability) [108]. Although the remaining clusters were clearly
distinguished in terms of altered molecular processes, they were highly similar clinical
and demographic characteristics. C3 also differed from the remaining clusters by lacking
large CNV. In C3, we do not observe drastic genome alterations being systematically

linked with worse cancer outcomes, either by causing loss of tumor-suppressing activities
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(e.g., mitotic checkpoints, DNA instability sensing, pro-apoptotic activity), or gain of
oncogenic function (e.g., duplication of mitotic factors). In either case, large CNV have
been associated with worsened clinical outcomes, in contrast with those characterizing
C3. This observation is somewhat supported by less aggressive cancers in C3 (e.g., a
high frequency of prostate and thyroid cancers), co-located with low severity cases of
more aggressive tumor types. Another example of less aggressive tumors in C3 are
Her2+ breast cancer and proximal inflammatory lung adenocarcinomas, tumors of less
severe outcomes than their luminal/basal and proximal proliferative subtypes,
respectively [144][145]. Since similar signaling deregulation can arise in different cancers
(e.g., dysregulated PISK/AKT/mTOR pathway in gynecologic cancer) [146], further
research on the link between shared molecular signatures within tumors in the same
cluster could shed light on the development of novel therapies, or the repurpose and
combination of existing ones. Given their small molecular weights, targeting oncogenes
with common monoclonal antibodies and small-molecule tyrosine kinase inhibitors could
aid in the treatment of tumors with overexpressed oncogenes [147]. For instance, tumors
with signature C6 could benefit from combined therapy with indirubin and Anil, inhibitors
of CCND1 and ANO1 [148,149]. On the other side of the spectrum, targeting tumor
suppressors on signatures of downregulated genes also presents exciting opportunities.
For instance, tumors with signature C1 could benefit from target therapy for tumor
suppressors NRSN2 and RBCK1. Classic approaches for targeting tumor suppressor
genes include re-activation by either re-introducing a functional copy (e.g., gene therapy)
or diminishing the repressive action of other players through small-molecule inhibition

[150].
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Nevertheless, given the technical challenges of targeting loss of tumor-suppressing
function, signatures exhibiting up-regulation could have more pharmacological potential.
Similarly, signatures could also rapidly address differences in tumor heterogeneity (e.g.,
C8 and C5 were notoriously more heterogeneous than the rest). Finally, differences in
immune infiltration (C6 with the lowest activated natural killers’ infiltration and C8 with the
lowest lymphocytic one) could also imply the potential use of signatures to aid
immunotherapeutic decisions.

Our results included genes frequently duplicated in cancer (e.g., KRAS, CCNDL1).
However, other frequently duplicated genes, like ERBB2, MYC, and FGFR1, were not
present in our selected set of features. One possibility for this unexpected result could be
a limitation of the EN penalty as a feature selection criterion. For example, an EN
parameter of 0.5 could have been too stringent, and groups of correlated and relevant
features could have been left out during the selection process. Another possibility is that
the effects of these frequent duplication were washed out by the tissue correction. While
removing the tissue "environment” evident in the omics, treating tissue as a systematic
effect in a linear model, a different way of having defined tissue effects would have been
to use tumor histology markers (e.g., mesenchymal, epithelial). Additionally, while
removing dominant differences on tissues that may be unrelated to cancer, it could also
eliminate differences that may allow certain cancers to progress in that specific tissue.
The third possibility is that the effects of these events were not essential for the cluster
partition.

Given the possibility of unveiling different biological channels altered in tumors of similar

clinical and molecular characteristics, we believe this novel pan-cancer classification
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could aid in identifying therapies for cancers without a standard of care. However,
extrapolation of results herein should be exerted with the following caution. Although our
data included information from multiple studies, sexes, ages, and ethnicity, our results
could be strongly influenced by factors such as the country of origin of each study and
biased on demographic characteristics. Further application of our methods to tumors from
patients from diverse populations and ages would be essential for an effective

generalization of our results.
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CHAPTER 4

PHENOMIC DATA INTEGRATION IN THE UK BIOBANK REVEALS GENETIC

VARIANTS INVOLVED IN ENERGY BALANCE

4.1. ABSTRACT

Excessive calorie intake and low physical activity contribute to a positive energy balance
(EB), leading to obesity. Although EB is affected by several environmental and
socioeconomic factors, a sizable part of its variation is still due to genetics. The study of
EB as a target phenotype is challenging, as EB combines several layers of data, including
whole-body size and composition, food selection and amount ingested engagement in
physical activity, and metabolic profiles. Many genes (e.g., FTO, MCR4, ANKRD33,
FIGNL2) have been identified as contributing to the variation observed in different
components of EB. However, a complete set of genes is still missing. We integrated
several phenotypes from the UK Biobank related to EB to increase our knowledge on
EB's genetic and molecular basis. We have used sparse factor analysis to define patterns
of energy balance (PEB) and determined genomic regions of interest with potential causal

effects in EB.
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4.2. INTRODUCTION

Obesity is affected by multiple environmental and socioeconomic factors [151]. However,
it is also considered a heritable condition [152,153]. As such, obesity has been linked to
the variation of many genes affecting energy balance (EB, the difference between energy
intake and energy expenditure), including FTO, MCR4, ANKRD33, FIGNL2 [154,155].
Nevertheless, due to the multiple phenotypes involved in EB, the complete set of genes
affecting EB is still not available [156,157].

EB is determined by multiple variables affecting the thermic effects of feeding (e.g.,
frequency and quantity of different food items), resting metabolic rate (e.g., body size and
composition), and physical activity (PA, e.g., intensity, frequency, and duration) [157].
Factor analysis methods can capture the complex covariation among all these different
types of variables [158,159]. Under this framework, multiple phenotypes can be
summarized by a few factors representing patterns of EB. For example, [160,161] have
used sparse latent factor models to estimate dietary patterns and variations across an
exercise intervention. On the other hand, [162] used principal functional components to
estimate the temporal variation of PA, while [163] used reduced rank regression to
combine metabolite and dietary patterns and their link with type | diabetes. Once factors
related to EB are derived, they can be used as responses in genome-wide association
studies (GWAS) [154,164]. Advantages of factors as GWAS responses include lower type
| errors, increased power, and faster computations [165-167].

Several studies support the association between EB components and genomic variation
[154,155]. For instance, selection experiments in mice have demonstrated strain variation

in the predisposition to engage in physical activity of different intensity [168-170] and
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preference of certain foods over others [171,172]. In addition, human studies on the
genetics of PA have reported heritability values as high as 63% [173-176]. Furthermore,
association studies have shown the putative roles of many genes involved in food
preference and adherence to physical activity [164,177-179]. Moreover, specific genes
(like the fat mass and obesity-associated protein, FTO) have also been shown to have
pleiotropic effects on diet, physical activity, body size, and obesity risk [180-183].

In this work, we have used extensive phenomics and genomic information from the UK
Biobank cohort to derive patterns of EB (PEB). These PEB captured distinct and relevant
aspects of food preference, body size and composition types, physical activity tendencies,
and metabolic profiles. Furthermore, the association between PEB and genomic variation

has revealed novel genes affecting multiple components of EB.
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4.3. MATERIAL AND METHODS

4.3.1. Cohort

This study used data from a subset of 219,049 participants from The UK Biobank (UKB)
cohort [14] to derive energy intake and expenditure patterns and study their associations
with genotypic information. Edition and quality control criteria for the phenotypic variables
criteria included the exclusion of participants of non-Caucasian/European ancestry,
exclusion of related individuals (KING's kinship value lower than 0.03 to exclude 15t, 2",
and 3 degrees of relationship) [184], exclusion of participants with abnormal biomarker
levels, and exclusion of participants reporting unrealistic values of food intake and energy
expenditure (Figure 4.1).

Phenotypes: We used 28 phenotypic variables with possible roles at affecting an
individual's energy requirements and expenditure, split into four groups: 1) blood
biomarkers, including glucose, creatinine, triglycerides, and cholesterol levels, 2) body
composition, including body weight, standing height, waist circumference, fat mass and
lean mass, 3) diet, recorded with the ACE touch screen questionnaire on frequency of
consumed items in the last year, including cooked and raw vegetables, fresh fruit, oily
and non-oily fish, poultry, beef, pork, lamb or lamb, and processed meats; cheese, bread,
cereal, tea, coffee, water, and alcohol (see detail in [185], and 4) physical activity (as
intensity, frequency, and duration).

To correct the effects of drugs affecting blood biomarkers, we followed [186]. First, we
used self-reported data on medication taken for cholesterol, blood pressure, diabetes, or
exogenous hormones (data field 6153, ACE Touchscreen). Next, drug effects were

estimated using the subset of participants that reported taking medicine after the first
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recorded instance. For these participants, a drug effect correction factor was calculated
as the mean difference between biomarker levels before and after taking the drug. The
correction factor was then used to multiply the biomarker levels of those participants
taking medicine at the time of recruitment. After the adjustment, any remaining values
outside three absolute median deviations (MADs) were considered outliers and excluded
from the study.

Diet variables were either numerical (representing the number of servings by a period) or
categorical (representing consumption or not of a specific item). The numerical variables
were cooked and raw vegetable intake, fresh fruit, bread, cereal, tea, coffee, and water.
The categorical variables corresponded to intakes of poultry, cheese, oily and non-oily
fish, beef, pork, mutton/lamb, and alcohol. If frequencies for the numerical diet variables
were outside 3 MADs, the participant was excluded. If any class within each categorical
dietary variable was underrepresented after quality controls, we fused it with the previous
ones until all classes had more than one percent of the total sample size. We fused the
last three categories into oily fish, non-oily fish, beef, lamb/mutton, and pork intakes. For
poultry and processed meat intakes, we only fuse the last two categories into one.

An estimate of energy intake is present within the UKB for a subset of participants that
answered a web-based 24-hour dietary recall in addition to the ACE touchscreen
guestionnaire (data field 100002). We used this subset of individuals to fit a linear model
using this energy estimate as response and ACE's derived food items consumption as
predictors. Finally, we estimated the total energy intake in the remaining participants
missing calory intake estimations. Individuals with an estimated caloric intake larger than

3 MADs were excluded.
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We additionally estimated the number of calories expended during PA data derived from
IPAQ following [187]. We obtained these values by dividing the product between PA
intensity and duration by PA frequency, dividing by 24 to get energy values within the
calories/day range. Participants with PA energy expenditure higher than 3 MADs were
excluded from our study.

We have used a set of covariables to account for possible confounders of the associations
between phenotypes and SNPs. The list included participants sex (31, reported by
individual), age (21022, age of the participant on the day they attended an Initial
Assessment Centre, truncated to whole year), age? (the square of the participant age),
the interaction between sex and age, the UKB assessment center (54, center at which
individuals consented to participate in the UKB study), the first five principal components
of the genotypic matrix, Townsend Deprivation Index (189, calculated immediately before
participant joining UK Biobank, based on the primary national census output areas, and
assigned depending on the output area in which the participant postal code is located),
as a measurement of socioeconomic status, and type of genotyping array used.

Genotypic data: Details on the genotypic data and quality controls provided by the UKB

project can be found in [14]. Briefly, genotyping was done using two closely related arrays:
UK BILEVE (~50,000 participants) and the UK Biobank Axiom arrays (~450,000
participants). The UKB Axiom array had over 820,000 SNPs and indel markers, and the
UK BILEVE array was very similar with over 95% shared content. Quality control controls
included: excluding low-quality SNPs (missing call rates, low DNA concentration), multi-
allelic SNPs (SNP with more than two allelic variants), SNPs departing from Hardy-

Weinberg expected frequencies, with sex effects., the array, and batch effects (all test
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based on a rejection threshold on the p-values equal to 10'?). SNP genotypes were
arranged in a BGData R object [188], where each cell with observed data coded as 0, 1,
or 2, indicating the number of copies of the reference allele for each locus at each
individual.

4.3.2. Statistical analysis

Derivation of PEB latent variables: Since our set of phenotypes consisted of several

continuous and categorical variables, we derived PEB variables by first using Factor
Analysis of Mixed Data (FAMD; [189]) and imposed sparsity on the contribution of each
phenotype to each PEB using sparse singular value decomposition (sSVD [69]).
Essentially, FAMD can be seen as an application of standard singular value
decomposition (SVD) on a transformed version of the data that assures the variance of
categorical variables does not artificially dominate the construction of latent factors. The
transformation involves standardization of each numerical variable (i.e., center to zero
means and scale to unit variance) and redefinition of each categorical variable as a set
of modified dummy variables. In these dummy variables, ones and zeros are replaced by
1- % and — % respectively, were n.,; is the total number of samples in each category,
while n is the total samples size. The transformed phenotypes were adjusted by
covariables as described in [190]. We used the following model to derive PEB as latent
factors of the transformed phenotypes:
Q=YUZ+e [Eq.4-1]
To estimate the elements of Q, U, and X, we minimized the following loss function:

L=11Q — YUZ|IZ + 2y (ayllUll, + 1 — ap)lIUlI3)  [Eq.4-2]

I



Where Qx4 represents the PEB variables as a set of factors obtained as linear projections
of the matrix Y, (with rows representing participants and columns representing the pre-
adjusted and transformed phenotypes). The columns of the matrix Uy, contain the
loadings of each phenotype onto the columns of Q (i.e., values representing the
contribution of each phenotypic variable to the construction of each factor), and Z,, =
diag{o, --- 0.}, where g is the k-th singular value, such as a g; > --- > g, > 0. The the
matrix e,, contains the projection errors that depended on the selected number of latent
factors (the value of g). The second term at the right-hand side of [Eq.4-2] is an Elastic
Net (EN) penalty on the elements of U. The EN penalty balances well-established
techniques to select variables (zeroing out the noise and redundant signal between omic
features) and shrinkage (to account for the high number of omic features that often
exceed the number of samples). The expressions ||.||, and ||.||; correspond to the L2
and L1 norms, respectively. The parameter 1, is a real positive number controlling the
amount of sparsity in elements of U, while a is any number between zero and one. The

value of a; balances shrinking and variable selection [68].

Heuristic methods typically select the value of q for which the trajectory of g, --- o, explains
arelatively large amount of variance, or at which the trajectory of o, --- o, bends drastically
(e.g., elbow rule). We complemented these heuristics by fitting the model [Eqg.4-1] 100
thousand times via bootstrap resampling to avoid distributional assumptions. We then
used the bootstrap distribution of o, --- g, to estimate 95 % confidence intervals for q.
Once the value of g was estimated, the remaining missing data after quality controls was
imputed following [191], as implemented in the function imputeFAMD from R package

missMDA [192]. The values of the hyperparameter 1, was estimated using the heuristic
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proposed in [190], whilst the value of a; was set to 0.5. The bootstrap distribution for
[Eq.4-1] also yield 95% confidence intervals for the sparse solution of U to determine what
phenotyeps exactly contributed to the formation of each PEB.

Association _studies: We conducted two types of genome-wide associations studies

(GWAS) in two types of variables. The first one involved the PEB variables (columns of
matrix Q) as responses, while the second used transformed and covariates-adjusted
original phenotypes (columns of Y). Since normality was not assured, we applied the
Rank-Based Inverse Normal Transformation (RIN) to both for Y and Q. Considering the
columns of the matrix X, represent the genotypes of p SNPs across the n participants;
the following models were adjusted, one marker and variable at a time:

f(Qx) =Xy + €; [Eq.4-3]

and

f(Y,) =x;Bj + e, [Eq.4-4]
Where f represent the RIN transformation, x; is the j -th column of X representing the j -
th SNP (j =1, ..., p), Yjx and B, are the effects of the j -th SNP on the k-th PEB and the
r-th phenotype, respectively; and €,; and e,; are vectors of models residuals. We called
models [Eq.4-3] and [Eqg.4-4] PEB-GWAS and ORIG-GWAS, respectively. Estimates of
Yjx and B;. Moreover, p-values were obtained via the omnibus RNI omnibus test
implemented in the R Package RNOmni [193]. In addition to the PEB-GWAS and ORIG-
GWAS analyses, we studied the pleiotropic effect of each SNP on the original phenotypes
contributing to each PEB, that is, those variables with loadings different from zero after
imposing sparsity on the element of U. For this, we used the fast sequential test of

pleiotropy proposed in [194]. We called the analysis PEB-PLEIO.
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Summary of GWAS results: A standard threshold of 1x10® was used to define an SNP

as significant. GWAS results were also summarized in "peaks”, defined based on SNP's
p-values and linkage disequilibrium (LD) among them. LD decay was calculated as the
coefficient of determination R? between significant and adjacent SNP within half
megabase. GWAS peaks were defined imposing by imposing a threshold of R? > 0.01.
The SNP with the lowest p-value within a peak was chosen as "lead". Peaks were
annotated using functional information from the G37 genome assembly annotation
provided by the UKB project and complemented by ENCODE annotation obtained via
Bioconductor package biomaRt [195,196]. Additionally, R package LDIlink [197] was used
to retrieve information of the overlap between peaks and significant expression-QTL
(eQTL) from the Genotype-Tissue Expression (GTEX; [198]). Enrichr [202] and Ingenuity
Pathway Analysis (IPA; QIAGEN Inc) were used to determine the overlap between genes
and pre-existing gene sets.

Cluster analysis: To determine if the PEB would induce a separation of participants in

biologically meaningful groups, we first embedded the columns of Q onto two dimensions
using Uniform Manifold Approximation and Projection (UMAP; [199]). UMAP is a non-
linear embedding technique suitable for large data sets, producing convenient two-
dimensional representations of clusters existing in higher dimensions. UMAP creates a
graph in multiple dimensions and projects it onto a lower number of dimensions
attempting to conserver its structure. For this, the number of neighbors and the minimum
distance among them defining a local neighborhood must be tuned. Tuning was done for
5, 10, and 20 neighbors, and minimum distances of 0.1%, 1%, and 10% of the average

Euclidean distances between rows of Q. UMAP was fitted using the R package umap
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[199]. The map rendering the best clusters separation was considered the optimal one.
Cluster delineation was done following [190]. To determine if clusters had biological
meaning, we fitted the following linear models:
f(Y) =7t + G,

where Z is an indicator matrix representing the membership of a participant to a specific
cluster, T, is the vector of effects of cluster membership on f(Y,) such as Y#clusters ¢ = =
0, and ¢, is the vector of model residuals. Normality of {,, was assumed by employing
transformation f. Analysis of variance (ANOVA) was used to test for significant
differences among clusters. Tukey test was used to test for significant pairwise

differences between clusters means, using a significant level of (##‘;fm) [200].

2
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4.4. RESULTS

The primary purpose of this study was to identify genetic elements influencing energy
balance. For this, we integrated variables potentially affecting the body's energy
requirements, including physical activity, diet, body size and composition, and blood
metabolites. Hence, we analyzed these data layers with a sparse latent factor. The
derived factors exhibited commonalities between the layers. Finally, we studied genetic
polymorphisms associated with these latent factors. Figure 4.1 shows the processing

steps and resulting sample size of this study.

White unrelated individuals
(n=316411)

'

Energy intake within 3 MAD
(n = 288806)

'

Energy expenditure from physical activity within 3 MAD
(n=219918)

Biomarker levels within 3 MAD
(n=219820)

l

Anthropometrics within 3 MAD
(n =219049)

Figure 4.1: Inclusion criteria and sample size. Sample size (n) after each of the
inclusion criteria. MAD = median absolute deviation.

4.4.1. PEB variables were associated with specific groups of phenotypes.
Summary statistics by phenotypic variables are presented in Table 4.1. In the following

description of results, we will refer to these as "original” variables to distinguish them from
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the PEB variables (i.e., the derived or latent variables). The variables considered were
food consumption patterns from the touchscreen questionnaire, blood biomarkers
(glucose, triglycerides, cholesterol, and creatinine blood levels), body size (weight, height,
waist circumference), body composition (fat mass and lean mass), and physical activity
measuring intensity (intensity of walking, moderate, and vigorous exercise) and
periodicity of exercise (frequency and duration of exercise). Diet variables included low-
caloric (water, vegetables, fresh fruit intakes), fish and meats (beef, pork, lamb, poultry,
oily, and non-oily fish), low processed foods (coffee and tea intakes), moderately
processed foods (bread and alcohol intakes), and highly processed foods (cereal,

cheese, and processed meats intakes).
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Table 4.1: Descriptive statistics of phenotypical variables. Numerical variables are
summarized based on the median and median absolute deviation (MAD) on their original
scales (units). Categorical variables are summarized by the percentage of samples within
each category (%). For all categorical variables, except alcohol intake, the following
coding was used to represent intake frequency: 0= Never, 1=Less that once a week,
2=0Once a week, 3=Two or three times a week, 4=Five or six times a week, 5=Once or
more daily. For alcohol, the following code was used: 1=Daily or almost daily, 2=Three
or four times a week, 3=Once or twice a week, 4=0ne to three times a month, 5=Special
occasions only, 6=Never. Missing data for all variables are expressed as a percentage of
the total sample size. PA: physical activity.

Numerical variables Median (MAD) Missing
Glucose (mmol/L) 4.9 (0.49) 18.0
Cholesterol (mmol/L) 5.8 (1.1) 5.5
Creatinine (umol/L) 70 (14) 6.0
Triglycerides (mmol/L) 1.5(0.72) 9.6
Weight (Kg) 77 (16) 0.4
Height (cm) 170 (10) 0.3
Waist circumference (cm) 91 (13) 0.2
Fat mass (Kg) 51 (13) 1.9
Lean mass (Kg) 24 (8.5) 2.1
Cooked vegetable 2 (1.5) 4.9
Salad/raw vegetable 2 (1.5) 8.5
Fresh fruit (pieces/day) 2 (1.5) 4.6
Bread (slices/week) 10 (5.9) 9.5
Cereal (bowls/week) 5(3) 5.0
Tea (cups/day) 3 (3) 4.5
Coffee (cups/day) 2 (1.5) 10.0
Water (glasses/day) 2 (1.5) 12.0
Intensity of moderate PA 240 (360) 28.0
Intensity of vigorous PA 0 (0) 26.0
Intensity of walking 690 (680) 25.0
Intensity of all PA 1200 (1200) 26.0
Frequency of PA (days) 9 (4.4) 22.0
Duration of PA (min) 80 (67) 25.0

Categorical variables Category: % Missing
Oily fish (serv) 0:11, 1:34, 2:38, 3:17 6.0
Non-oily fish (serv) 0:04, 1:29, 2:50, 3:17 4.0
Processed meat (serv) 0:08, 1:30, 2:30, 3:28, 4:04 17.0
Poultry (serv) 0:04, 1:11, 2:37, 3:46, 4:02 21.0
Beef (serv) 0:09, 1:46, 2:33, 3:12 4.2
Lamb mutton (serv) 0:17, 1:57, 2:22, 3:04 6.6
Pork (serv) 0:15, 1:59, 2:23, 3:03 6.2
Cheese (serv) 0:03, 1:16, 2:21, 3:45, 4:09, 5:06 2.4
Alcohol (g) 1:21, 2:23, 3:26, 4:11, 5:11, 6:08 1.0
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PEB variables were derived from the first ten latent dimensions from the sparse FAMD.
Since there was not a precise inflection point in the singular values to define a cutoff (see
Figure C.1-A), we based the selection of latent variables on the threshold at which the
rate of change in singular values, and therefore the size of phenotypic variances
explained by each PEB, reached a plateau (Figure C.1 panel C and D). This value
represented 20% of the total interindividual phenotypic variability (Fig C.1, panel B).
Although differing at being derived from a smaller group of phenotypes, these PEB latent
variables were highly correlated with their dense counterpart (i.e., latent factors from a
FAMD without sparsity) and explained a similar proportion of variance (Figure C.2).

The latent variables were constructed, imposing sparsity on the loadings of the FAMD.
Thus, values near zero were excluded, limiting the possible number of phenotypes
contributing to each PEB. The relationship between PEB and original phenotypes was
studied using non-zero FAMD loadings and marginal correlations (Figure 4.2). Since only
the first five PEB variables were related to phenotypes representing multiple components
of EB, we retained them for further analysis. We indexed these PEB variables from one
to five, with PEB 1 and 5 representing the highest and lowest amounts of variance

explained, respectively.
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Figure 4.2: Relationship between PEB variables and original phenotypes. A)
Squared phenotype loadings. The contribution of each of the original phenotypes was
obtained from bootstrap repetitions of the sparse factor analysis. Each panel shows the
original phenotypes that contribute to each PEB variable. B) Marginal correlation
between PEB and phenotypes. Similarly, the Bootstrap correlations and Cl are shown
for each pair of PEB and phenotypes.

Higher values of PEB 1 represented active individuals of small body sizes and low blood

triglycerides. The opposite was true for lower values of PEB 1. Lower PEB 1 values

represented sedentary individuals of larger body sizes and higher values of blood

triglyceride. Similarly, higher PEB 2 represented subjects with small body sizes and active

diets, including red meats and vegetables. Higher PEB 3 represented subjects of large
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body size, physically active, and with high levels of blood triglycerides and blood glucose.

Higher values of PEB 4 represented individuals of average body size, predominantly

meat-eaters. Finally, higher values of PEB 5 represented active individuals largely

vegetarian.

Table 4.2: Labels for PEB variables based on correlation with original phenotypes.

Correlation with original phenotypes

PEB Label Positive Negative
Active, small Body size and
PEB 1 body size, low Physical activity mass// Blood
blood (PA) triglycerides
triglycerides gy
ACt'Ve’. small PA // meat and Waist
body size, meat, )
PEB 2 ; vegetable circumference,
and veggies .
) consumption lean body mass
intake
Active, large Bodywelg_ht and
. . mass, waist
body size, high : f //
PEB 3 blood circumference B
: . PA//Blood
triglycerides, . :
triglycerides and
and glucose
glucose
Average body
PEB 4 size, meat sl . --
: consumption
intake
Vegetables, fruit,
. water, cereal, and
PEB 5 Active, largely oily fish Processed meat

vegetarian

consumption //
PA.

consumption

4.4.2. PEB-induced aggrupation of phenotypically distinct participants.

The PEB variables can also induce a separation of individuals into phenotypically distinct

groups. Figure 4.3 shows clusters of participants (Figure 4.3-A) and the association

between clusters and original phenotypic variables (Figure 4.3-B). This representation

was done by embedding the latent PEB variables to two dimensions using Uniform
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Manifold Approximation and Projection (UMAP)[199]. There were seven distinct clusters
of participants. The cluster with the highest degree of separation from the rest was Cluster
1. This cluster was dominated by participants exhibiting low body fat, blood biomarkers,
meat consumption, poultry, and processed foods. Participants within this cluster also had
high levels of physical activity and consumption of low caloric foods. Contrastingly,
Cluster 5 was characterized by higher body fat levels, blood biomarkers, and alcohol,
while Cluster 4 was characterized by higher consumption of meats and processed foods
and relatively low physical activity. The remaining clusters had fewer striking differences.
Cluster 2 followed a pattern like Cluster 1, but less marked, particularly having less
consumption of low-calorie food. Cluster 3 followed Cluster 1 and 2, but even less
markedly, characterized by more processed food consumption. Finally, clusters 6 and 7
represented average values across all contrasts, differing only at the consumption of

alcohol, processed food (higher in Cluster 6), and low-calorie food (higher in Cluster 7).
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Figure 4.3: PEB-based cluster analysis. A) UMAP projection of PEB variables. A
two-dimensional UMAP projection of PEB was obtained from Factor Analysis of Mixed
Data on the original set of phenotypic variables involved in energy balance and resulted
in seven clusters. B) Contrasts between phenotypes and clusters. Each panel
represents a statistical contrast between phenotypes and clusters. The colored rectangles
and points represent the means of each contrast. The vertical bars represent plus and
minus one standard deviation of each contrast. Abbreviations: Alcohol (consumption of
alcohol), BodyFat (body fat, waist circumference, weight, and blood triglycerides),
CoffeTea (consumption of tea or coffee), fish (consumption of oily or non-oily fish),
GluChoCre (level of glucose, cholesterol, or creatinine in the blood), Meat (consumption
of meat), PhysAct (levels of physical activity), poultry (consumption of poultry), ProcFood
(consumption of processed food), and WaterVegFruit (consumption of water, vegetable,
or fruit).

4.4.3. Genomic variants associated with PEB.

We conducted three analyses to determine the relationship between PEB variables and
the original phenotypes with genetic markers. Firstly, we conducted separated GWAS on
the PEB variables (PEB-GWAS). Secondly, we studied the overlap between PEB-GWAS

results and separated GWAS on the original variables (ORIG-GWAS). Lastly, we used
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the information from PEB-GWAS to study pleiotropic effects on the groups of phenotypes
contributing to each PEB (PEB-PLEIO).

The PEB-GWAS resulted in significant associations for all PEB variables. The significant
hits (using a threshold of 5x108) were 2113, 116, 12348, 324, and 354. These significant
hits were further grouped into 50, 3, 185, 4, and 67 peaks defined by markers in linkage
disequilibrium. Annotated Manhattan plots for PEB-GWAS analyses are presented in
Figures C.3-7.

Most of the PEB-GWAS peaks (15, 3, 60, 3, 3, and 7) were not present on ORIG-GWAS,
demonstrating that combining correlated phenotypes increased the power to find these
regions (Figure 4.4). Figure 4.4 shows the annotation information for PEB-GWAS, ORIG-
GWAS, and PEB-PLEIO analyses, emphasizing the overlap with genic regions. ldentified
genes were enriched for five different gene sets: obesity, metabolic disease,
cardiovascular disease, connective tissue development and function, and carbohydrates
metabolisms (FDR p-value < 0.01) (Figure 4.4, see Materials and Methods).

The gene associated with the highest number of PEB latent variables (PEB 1, PEB 3, and
PEB 5) was the Fat Mass and Obesity-Associated Protein (FTO) (Figure 4.4). This peak
for FTO was present in the ORIG-GWAS for weight, height, waist circumference, lean
and fat mass. In addition, FTO had three leading SNPs (defined here as the SNP with the
lowest p-value within an LD block): rs56094641, rs1421085, and rs11642015,
respectively. All these SNPs were present in the PEB-PLEIO for weight and body mass.
A group of genes mapped for both PEB 1 "Active, small body size, low blood triglycerides"
and PEB 3 "Active, large body size, high blood triglycerides, and glucose". This group

consisted of Protein lin-7 Homolog C (LIN7C), Centrosomal Protein POC5 (POC5),
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INO80 complex subunit E (INO8OE), Protein Lifeguard 2 (FAIM2), and G1/S-specific
Cyclin-D2 (CCND2). Gene LIN7C had a peak present in the ORIG-GWAS of all body
measurement variables. The leading PEB-GWAS SNPs at this peak were rs962369 and
rs2049045, respectively. These peaks were also present ORIG-GWAS and PEB-PLEIO
for all body measurement variables. The same peak was also present in the individual
ORIG-GWAS for the intensity of moderate physical activity. Gene POCS5 also had a peak
(leading PEB-GWAS SNPs rs2307111 and rs67570751, respectively) present in the
ORIG-GWAS for all body measurement variables. Gene INO8OE had a peak present in
all body measurements ORIG-GWAS, except for height. The leading PEB-GWAS SNPs
in this peak were rs7190185 and rs35105141, respectively. This peak was present in the
PEB-PLEIO of weight, waist circumference, and body mass. Gene CCND2 had a peak
with rs76895963 as the leading SNP. This peak was present in the ORIG-GWAS of
weight, fat mass, and lamb consumption. Also, the peak was present in the PEB-PLEIO
for weight and fat mass.

Several genes had PEB-GWAS peaks mapping exclusively for "Active, large body size,
high blood triglycerides, and glucose". We focus the description on peaks that were
present in the ORIG-GWAS and PEB-PLEIO analyses. Golgin A6 Family Like 5 -
Pseudogene (GOLGAGL5P) had a PEB-GWAS peak with rs11259919 as lead SNP. This
peak was also present in the PEB-PLEIO of body measurement variables, lamb, and pork
consumption. The peak was also present in the ORIG-GWAS of weight, fat mass, and
waist circumference but absent for height, lamb, and pork consumption. The peak at
Leiomodin 1 (LMOD1, leading SNP rs2820322) followed the same behavior as

GOLGAGLS5P, except that lamb consumption was not part of the PEB-PLEIO results. The
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peaks at Glutathione S-Transferase Mu 4 (GSTM4, leading SNP rs7550711) and
Vacuolar Protein Sorting-Associated Protein 29 (VPS29, with a non-reference leading
SNP at chromosome 12 and 110852370 bp) were both presents in the ORIG-GWAS of
weight, height, and fat mass. This peak was present in the PEB-PLEIO of weight, height,
fat mass, and intensity of moderate physical activity, while the lead SNP at VPS29 was
present in the PEB-PLEIO of weight, height, fat mass, and physical activity from walking.
The peak at Hedgehog Interacting Protein (HHIP, leading SNP rs4240326) was present
in the ORIG-GWAS of weight, waist circumference, body mass, and lamb consumption.
This peak was also present in the PEB-PLEIO of weight, waist circumference, and body
mass.

Some genes had peaks collectively present in the ORIG-GWAS and PEB-PLEIO of all
body measurements and variables, including Hydroxycarboxylic Acid Receptor 1
(HCAR1, leading SNP rs7133768), BTB/POZ Domain-Containing Protein 7 (BTBD?7,
leading SNP rs4381522), Hydroxysteroid 17-Beta Dehydrogenase 12 (HSD17B12,
leading SNP rs1061810), SCM Polycomb Group Protein Homolog 1 (SCMH1, lead SNP
rs61780439), Family 5 Member 11 (SLC5A11, leading SNP rs12923476), Regulatory
Associated Protein of MTOR Complex 1 (RPTOR, leading SNP rs11150745), and tRNA
Splicing Endonuclease Subunit 15 (TSEN15, leading SNP rs74767794). A peak at
SUMOZ2 Pseudogene 17 (SUMO2P17, leading SNP rs8082345) was exclusively present
in the ORIG-GWAS and PEB-PLEIO of weight, waist circumference, and fat mass. Peaks
at Axis Inhibition Protein 2 (AXIN2, leading SNP rs757558), Centrosomal Protein 120
(CEP120, leading SNP rs34732995), and p53 Tumor Suppressor Protein (TP53, leading

SNP rs78378222) were present in the individual ORIG-GWAS and PEB-PLEIO of weight,
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height, and fat mass. A peak at Protein Disulfide Isomerase Family A Member 2 (PDIAZ2,
lead SNP rs12926311) was present in ORIG-GWAS of weight, height, and fat mass, and
PEB-PLEIO of weight and fat mass. A peak at RAD9 Checkpoint Clamp Component A
(RAD9A, leading SNP rs34560402) was present in ORIG-GWAS of waist circumference.
Finally, peaks at Mitogen-Activated Protein Kinase 5 (MAP2K5, leading SNP rs12050481)
and Potassium Voltage-Gated Channel Subfamily E Regulatory Subunit 4 (KCNE4,
leading SNP rs1607246) were present in the ORIG-GWAS of height. Finally, a group of
genes had peaks exclusively for PEB-GWAS of "Active, small body size, low blood
triglycerides". Peaks at Cytochrome P450 Family 3 Subfamily A Member 5 (CYP3AS5 lead
SNP rs13311457) and UHRFL1 Binding Protein 1 (UHRF1BP1 lead SNP rs2744977) were
present for the PEB-GWAS and PEB-PLEIO of weight, waist circumference, and fat
mass. Peaks at SUMO1 Activating Enzyme Subunit 1 (SAE1 lead SNP rs3810291) and
Neurexin 2 (NRXN2 lead SNP rs12273892) were present in PEB-GWAS and PEB-PLEIO
of weight, waist circumference, and lean mass. Three peaks were present at putative-
uncharacterized proteins. A peak at RP11-866E20.3 (lead SNP rs12967135) was present
for PEB-PLEIO of waist circumference, the intensity of moderate physical activity and
walking, and ORIG-GWAS for the last two variables only. A peak at RP11-251G23.2 (lead
SNP rs73190105) was present in ORIG-GWAS of weight, fat mass, and intensity of
vigorous activity and present in PEB-PLEIO of the first two variables. A peak at RP4-
635E18.7 (lead SNP rs5019466) was present in the ORIG-GWAS of weight, waist
circumference, fat mass, and PEB-PLEIO of weight and waist circumference. Another

gene was Zinc Finger and BTB Domain Containing Protein 38 (ZBTB38). Gene ZBTB38
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had a significant peak in PEB-GWAS for "Active, small body size, low blood triglycerides"

(lead SNP rs6785012).
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Figure 4.4: Summary of GWAS loci within genic regions. The panels above
summarize the overlap between linkage disequilibrium blocks containing significant SNP
from GWAS between PEB latent variable and genic regions. The panels represent, in
order, the overlap between significant peaks from PEB-GWAS and genic region, overlap
between ORIG-GWAS and PEB-PLEIO analyses, and overlap with gene sets and
regulatory regions.
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As illustrated in Figure 4.4, pleiotropy was most abundant for body size and composition
variables, followed by components of PA and dietary intake variables. Regarding
enrichment results, most genes with significant peaks were involved in connective tissue
development and function, followed by obesity and metabolic disease. The most

significant peaks were also located in intronic regions of the gene.
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4.5. DISCUSSION

Excessive calorie intake and low physical activity generate a positive EB that results in
obesity. We integrated several phenotypes from the UK Biobank related to EB. We used
this information to get novel insights into the physiological reasons that lead to a positive
EB. Sparse factor analysis of mixed data (SFAMD) and bootstrap inference was used to
define patterns of energy balance (PEB) and to determine associations with common
SNP. From these associations, a set of genes with possible links to EB patterns were
identified.

Previous studies have applied similar phenotypes-integration techniques to determine
individuals' diet or physical activity patterns [160-163]. In contrast, our study focused on
all aspects of EB, solving the challenges of including random variables of different
phenotypic scales (e.g., numerical biomarkers values and body measurements versus
categorical food frequencies) by combining conventional FAMD [189] with sparse SVD
[201]. The application of sparse FAMD (sFAMD), followed by bootstrap, clearly
determined what phenotypes contributed to each PEB. This analysis generated PEB as
factors that capture data characteristics beyond the ones expected by naive integration
(e.g., averaging subjectively defined groups of phenotypes) and effectively captured
different aspects of EB.

Besides capturing variability due to EB's multiple components, PEBs were also
associated with variability at the genomic level. For example, some PEB-GWAS peaks
mapped on genes previously reported affecting obesity and metabolic diseases, such as
FTO, ZBTB38, and POCS. For instance, the SNP rs56094641at FTO had effects on PEB

1 "Active, small body size, low blood triglycerides"”, PEB 3 "Active, large body size, high
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blood triglycerides and glucose" and PEB 5 "Active, largely vegetarian". This SNP has
also been previously reported as a cis-QTL in muscle (Fig C.8), as well as being present
in GWAS of childhood obesity [202], body fat [203], and metabolic disease [204].
Additionally, the lead SNP rs6785012 at ZBTB38, mapping on PEB 1, has been
associated with eczema and red blood count [205] and has also been reported as cis-
eQTL in many tissues, including testis, adipose tissue, whole blood, spleen, pituitary, and
thyroid glands (Figure C.8). Moreover, rs6785012 had pleiotropic effects on body
measurements found here agree with a previously reported association of ZBTB38 with
BMI and waist circumference [206]. Lastly, the SNP rs2307111 at POC5, mapping on
PEB 1 and 3, had pleiotropic effects on body measurement variables. This finding can be
supported by the presence of this SNP in previous GWAS studies on body measurements
[205,207]. However, previously reported associations between this SNP and cholesterol
were not confirmed in PLEIO-GWAS or OIRG-GWAS analyses.

Some genes had pleiotropic effects on both body measurements and physical activity
variables. For example, a non-synonym SNP at chromosome 12 and 110852370 bp
mapping on VPS29 was associated with height, weight, fat mass, and duration of physical
activity. Variations in VPS29 and other genes in the retrosome (part of the retrograde
transport from the endosome to the Golgi apparatus) are typically linked with
neurodegenerative disorders [208]. However, in mice models, variation in the retrosome
components has been indirectly linked with normal growth and mammal development and
muscle response to exercise and training through the Wnt and g-Catenin pathway
[209,210]. The potential role of the variability of this SNP on muscle growth and response

to exercise can be explained by the significant association with the expression of VPS29

97



in muscle (GTeX data presented in Figure C.8). Similarly, a peak on GSTM4 with
rs7550711 as lead SNP had a pleiotropic effect on weight, height, fat mass, and walking
intensity. This SNP has been previously associated with BMI in physically active adults
[206] and phospholipid fatty acids in plasma [211].

A group of PEB-GWAS peaks was located in genes involved in carbohydrate metabolism
and cell cycle, a general category with known effects on body composition [212] and
physical activity performance [213]. One of these genes, SIX3, had a PEB-GWAS peak
for PEB5 "Active, healthy diet" variable, with rs4953152 as lead SNP. This SNP had
pleiotropic effects on cooked vegetables and water consumption. These associations
have not been previously registered for either cooked vegetables or water consumption.
However, evidence of an association between variations in rs4953152 and cognitive
processes has been observed [214,215]. In addition, rs4953152 has been reported as a
cis-eQTL of SIX3-Asl in the brain (Figure C.8). Lastly, there was a peak at TP53 (lead
SNP rs78378222), with pleiotropic effects on weight, height, fat mass. Variations in TP53
are primarily linked to multiple cancer types [122].

Nevertheless, rs78378222 has also been reported as associated with fat mass [216,217]
and cis-eQTL of TP53 adipose tissue (Figure C.8). Another SNP with pleiotropic effects
on different groups of variables was rs11259919 at LMODL1. This SNP was associated
with weight, fat mass, and consumption of pork. Variations in rs11259919 have been
linked with the expression of LMOD1 in many tissues, including the digestive tract, nerve,
muscle, brain, adrenal gland, thyroid, artery, and heart (Figure C.8) well as with
appendicular fat [217]. Although a previous link with food consumption has not been

reported, variations in LMOD1 expression in skeletal muscle have been linked with
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differential susceptibility to cardiovascular disease in response to high-fat diets [218] and
body composition [219].

Many of the putative QTL detected in this study have previous associations with
phenotypes contributing to energy balance. For a relatively small number of phenotypes,
like the ones used here, studying all possible combinations of pleiotropic effects could
have been a possibility (i.e., studying all possible pleiotropic groups among variables).
However, at the scale of the UK Biobank, this renders computationally prohibitive. For
that reason, the alternative of sparse FMD used here offered a way to a) inform what
groups of variables are most likely to collaborate to form the PEB variables and b) inform
the study of pleiotropic effects in a more manageable number of phenotypes. Although
most SNP had relatively minor effects on each PEB, the large sample size of this study
was instrumental in detecting them.

One limitation of this study is the lack of functional validation, especially for novel genes
associated with EB. Although we have used data from GTeX to confirm the association
between the change of allele and gene expression, an association between gene
expression and phenotypes related to EB was not confirmed (e.g., VPS29 variant causing
differential fat mobilization within the adipocyte).

The results generated here contribute to understanding the complex biology of energy

balance and the interrelation between its related traits [220,221].
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CHAPTER 5

CONCLUSIONS

Increasing sizes and data density become a constant computational and statistical
challenge for existing data integration methods [56,66]. To face these challenges, we
introduced a new method of data integration, Multi-Omic Integration via Sparse Singular
Value Decomposition (MOSS). MOSS exploits the benefits of large data sizes (i.e., many
samples to increase power and many features to discover biologically relevant signals)
while maximizing computational performance. We have written MOSS as an R package
that can be freely available Comprehensive R Archive Network (CRAN). We review the
capabilities and limitations of the MOSS package in chapter 2. However, three caveats of
MOSS remain to be discussed, as they arise depending on the application.

The first caveat involved convergency properties. MOSS relies on the NIPALS algorithm
to extract SVD solutions, and therefore, convergence in supervised problems (e.g., PLS)
is not always assured [222]. Although empirical results suggest that convergence is
reached in most practical situations [222], future research on the analytical properties of
MOSS should include a thorough analysis of its convergency properties.

The second caveat involves the lack of statistical inference for the results of the features
selection process (i.e., basing feature selection in, for example, confidence intervals). By
considering the elements of SVD as random variables, both factors and loadings can be

thought of as drawn from probabilistic distributions (examples of this are [223] [224] and
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[225]). Future work in MOSS could benefit from considering the data integration model as
a probabilistic one to evaluate the significance of its solutions.

Finally, the third caveat comes from using elastic net (EN) penalty as a feature selection
process. Fundamentally, EN zeroes out the noisy features while retaining correlated
“signal” [68]. The intention is to find an optimal set of features representing biologically
relevant groups (e.g., genes in pathways, food items in dietary patterns). Unfortunately,
the performance of EN strongly depends on the tuning of the hyperparameter “a” [111].
In its current version, MOSS uses the fast heuristics in [69] to tune the degree of sparsity,
but not a. Future versions of MOSS would require an alternative to tune all
hyperparameters without compromising computational efficiency.

Cancer research is one of the primary disciplines where the performance of omic
integration tools will continue to be challenged. Thanks to progress in sequencing
techniques, cancer genomics has advanced at an extraordinary pace. This pace has been
evident ever since the early days of cancer genomics, where microarray experiments
were rapidly complemented by new generation sequencing techniques in less than a
decade [226]. These techniques have been essential at creating several large
international repositories of cancer multi-omic data, like The Cancer Genome Atlas
(TCGA) [95], the International Cancer Genome Consortium (ICGC) [227], and the Cancer
Cell Line Encyclopedia (CCLE) [228]. Cancer research has benefited from these data in
many applications, most notoriously the enhancement of risk predictions models [14-16]
and improving tumor classification with molecular subtypes [72,102,108].

Chapter 3 has also benefited from these repositories. We have used data from TCGA

consisting of approximately six thousand tumor samples and sixty thousand features

101



representing genome-wide gene expression, copy number variants, and DNA methylation
values. In chapter 3, we used MOSS to detect shared molecular features acting across
clusters of tumors. These clusters formed beyond the restrictions of the site of origin and
exhibited similar clinical and immunologic characteristics, supporting the role of common
molecular signatures across cancer types [88,229].

Despite these exciting findings, future applications of our method in cancer data would
require a more robust estimation of tissue effects, for example, by using markers of tumor
histology (e.g., mesenchymal, epithelial). In addition, newer classification efforts must
emphasize validation avenues, such as knock-out and gene-drug interaction models.
Another area of fast-growing pace is phenomics. Once deemed prohibitively expensive
and time-consuming, gathering phenomic data is now a reality [22]. Advances in imaging
techniques [25], mass spectrometry [230], and automated data loggers [26] in the last
years have been instrumental in the creation of large-scale phenotyping projects. One of
the most extensive ongoing efforts is the UK Biobank (UKB), with data across several
phenomic layers and genotypic information for more than five hundred thousand
individuals. Integration of UKB’s phenomic and genomic data has been conducted for
multiple complex traits, including neurodegenerative disorders [231], and cardiovascular
disease [232], and dietary habits [233].

Similarly, we focused our chapter 4 on integrating the UKB phenome to infer variation
associated with different aspects of energy balance (EB) (e.g., the tendency of lean body
types to engage in regular physical and healthy diets). We studied the association
between this variation and genetics. We found known genes involved with EB (e.g., FTO,

POCS5, ZBTB38, INO80E) and novel ones (e.g., VPS29, SIX3, LMOD1) not present in the
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GWAS of separated phenotypes. This work is the first to integrate all EB components
from a phenomic point of view to the extent of our knowledge.

Regardless of these compelling results, chapter 3 used only a small set of the phenomic
data in the UKB. Although only information from a few blood metabolites is currently
present in the UKB, ongoing efforts to produce detailed metabolic profiles for a large
sample of individuals are on their way [234]. Moreover, further incorporation of
metabolomic profiles in our set of phenotypes could profoundly impact our definition of
EB factors and associated genes since metabolomics has been shown to efficiently
complement and improve the assessment of dietary patterns [235].

Following, we propose some avenues for future research on omic integration.

We have stated that MOSS does not rely on distributional assumptions and how this limits
the possibility of statistical inference. One possibility for incorporating inference within
MOSS is the adoption of Bayesian methods. Bayesian alternatives to SVD [223,225]
could be extended to incorporate FBM to deal with large data sets. Additionally, adopting
Bayesian methods would allow the incorporation of different prior distributions on the
features’ loadings coming from different omic layers. The study of the choice of prior
distribution on the overall performance could aid researchers in deciding what set of
assumptions better describes their data.

Another possible line of research is the study of alternative forms of sparsity on the
performance of omic integration. Omic integration might not be as robust in biological
scenarios where specific molecular events are not as drastic as in cancer. Therefore, the

evaluation of sparsity (e.g., on pre-defined groups of features) and their impact on
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performance could help decide what methods are best for problems where the signal-to-
noise ratio is low.

Alternatively, since cancer is dominated by extreme, sometimes widespread, molecular
events, we foresee omic integration to continue being useful for cancer research. An
exciting line of research can focus on evaluating methods’ performance and the proposal
of new algorithmic shortcuts to handle huge data sets (e.g., recently generated data from

the Pan-Cancer Analysis of Whole Genomes) [236].
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

Table A.1: Code templates to replicate examples.

# Install and load MOSS.
install.packages("MOSS")

library("MOSS")
# Example of unsupervised omic integration with MOSS
out_sig <- moss_signatures(out_sim,out_moss$selected_items,
clus_lab = out_moss$clus_plot$dbscan.res$cluster,
only.candidates = TRUE,
plot=TRUE,
th=0.05)
# Example of supervised omic integration with MOSS
set.seed(345)
out_moss <- moss(data.blocks = out_sim,
method = "pls”,
resp.block =1,
scale.arg =T,
norm.arg =T,
K.X=10,
nu.v = seq(1,500,by=2),
nu.u = seq(1,100,by=2),
alpha.v = 0.5,
axes.pos = 1:2,
alpha.u=0.5,
exact.dg = TRUE,
use.fom = TRUE,
nu.parallel = TRUE,
tSNE=list("perp"=30,
"n.iter'=1e3,
"n.samples”=1),
cluster = list(eps_range=c(0,1),
eps_res=10,
min_clus_size=2),
plot=TRUE,
lib.thresh = TRUE)
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Table A.1 (cont’d)

# Extract heatmap.
moss_heatmap(out_moss$B,
SVD = out_moss$sparse,
axes.pos = c(1,3),
col.lab = "miRNA-seq & ",
row.lab = "RNA-seq")
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Figure A.1: Analytical performance of several omic integration methods. Each panel
corresponds to the accuracy (top-left), precision (top-right), sensitivity (bottom-left),
and specificity (bottom-right) of each omic-integration method at detecting informative
features (i.e., features with signal across and between omic blocks). Methods compare
were FactoMineR (function MFA), iCluster (function tune.iCluster2), mixOmics
(function tune.splsda) and MOSS (function moss with method="pca” and method="Irr",
respectively). Results were obtained across 10,000 random simulations.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

Table B.1: List of genes significantly deregulated in at least one pan-cancer cluster.
All the genes significantly different in at least one cluster are sorted by chromosome and
genomic position. ANOVA’s p-values, adjusted for multiple comparisons, are displayed
on the last column of the table (p-value).

Average enrichment scores by cluster
Gene C1 C2 C3 C4 C5 C6 C7 C8 p-value
Clorfl59 0.02 0.10 -0.07 015 021 041 0.00 -0.09 6.36E-13

b ab b ab ab a b b

WASH2P -0.29 0.21 0.00 0.05 0.17 -0.16 -0.04 0.05 9.78E-14
b a b ab ab b b ab

RAB6C 0.08 -0.04 -0.01 -0.09 -0.42 0.43 -0.12 -0.48 4.47E-17
ab bc b bc bc a bc C

ITM2C 0.07 0.01 -0.06 0.15 0.02 0.41 0.07 -0.07 4.94E-11
ab b b ab ab a ab b

HSP9OA -0.19 0.02 0.05 0.28 0.12 -0.03 -0.51 -0.16 2.62E-15
B2P ab ab ab a ab ab b ab

MCC -0.11 -0.03 -0.08 0.42 0.22 0.60 0.26 0.29 1.35E-33
C bc C ab abc a abc abc

STK38 -0.23 -0.14 0.09 -0.26 -0.14 0.12 -0.38 -0.01 1.92E-18
ab ab a ab ab a b ab

PPIL1 -0.11 -0.10 0.09 -0.23 -0.27 -0.04 -0.44 -0.12 3.22E-15
ab ab a ab ab ab b ab

C6orf89 0.07 0.10 -0.03 0.05 0.19 0.05 -0.33 0.14 5.86E-06
ab a ab ab a ab ab a

MTCH1 -0.09 0.08 0.00 0.12 0.06 0.11 -0.45 0.08 5.02E-09
ab a ab a ab a b ab

TBC1D2 -0.03 0.06 0.03 -0.05 -0.15 -0.03 -0.50 0.07 2.49E-09
2B a a a ab ab a b a

RNF8 -0.15 0.00 0.05 -0.19 -0.14 0.13 -0.46 -0.01 1.05E-11
ab a a ab ab a b ab

CMTR1 -0.03 -0.02 0.05 -0.04 -0.10 -0.06 -0.46 -0.02 1.40E-08
ab a a ab ab ab b ab

ZFAND3 -0.04 0.06 0.02 0.05 0.14 -0.09 -0.43 -0.03 1.92E-07
ab a ab ab a ab ab ab
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Table B.1 (cont’d)

BTBD9

GLO1

SAYSD1

LRFN2

UNC5CL

OARD1

NFYA

FOXP4

TFEB

FRS3

PRICKL

E4

TOMMG6

USP49

MED20

BYSL

CCND3

TAF8

GUCA1A

GUCA1B

MRPS10

TRERF1

-0.03
a
-0.21
ab
-0.17
ab
-0.02
b
0.02
ab
0.18
a
-0.09
a
0.02
a
0.16
ab
-0.01
b
0.13
a
-0.11
a
-0.01
a
-0.05
a
-0.17
a
-0.01
a
0.08
a
-0.03
b
0.06
ab
-0.11
a
-0.01
b

0.13
a
0.07
a
0.01
a
0.12
ab
-0.05
ab
0.13
a
0.09
a
0.07
a
0.09
ab
0.16
b
0.06
a
0.03
a
0.03
a
0.02
a
-0.03
a
0.14
a
0.12
a
0.15
b
0.10
ab
0.03
a
0.15
b

0.03
0.05
0.04
0.05
0.01
ab
-0.03
0.04
0.01
-0.07
ab
0.05
-0.03
0.08
0.04
0.09
0.10
-0.02
0.00
0.06
-0.04
ab
0.08

0.05
b

0.29
0.00
ab
0.17
0.49
0.00
ab
0.19
0.06
0.27
0.34
0.76
0.02
0.32
0.00
0.15
0.19
0.40
0.29
0.91
0.36
0.14

0.92
a

-0.10

0.02
ab
0.21

-0.14
0.02
ab
0.21
-0.14
ab
0.27
0.31
ab
0.02
-0.07
-0.13
-0.05
ab
-0.06
-0.28
ab
0.12
0.02
0.00
-0.12
ab
-0.18

-0.03
b
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0.05
-0.08
ab
-0.02
0.05
0.18
0.17
-0.04
-0.04
0.31
ab
0.06
0.13
0.02
-0.11
ab
-0.08
0.00
0.16
0.10
0.05
0.06
ab
0.02

0.10
b

-1.19
-0.50
-0.48
ab
-1.60
-0.36
-0.87
-0.77
-0.67
-0.31
-2.04
-0.29
-1.24
-0.65
-1.28
-1.09
-0.77
-1.06
-2.16
-0.29

-1.22

-2.05
C

0.03
-0.09
ab
0.18
0.05
0.10
ab
0.01
0.05
0.10
0.15
ab
0.13
0.13
-0.03
0.06
-0.06
-0.18
0.09
0.16
0.04
0.13
ab
-0.15

0.09
b

1.04E-61
1.67E-14
1.60E-12
1.10E-
118
5.13E-06
1.16E-37
4.39E-25
1.26E-19
2.71E-18
9.81E-
207
1.07E-05
{.35E-70
2.95E-17
2.09E-72
3.39E-58
1.24E-30
2.53E-50
5.46E-
242
3.81E-08
5.96E-67

6.77E-
218



Table B.1 (cont’d)

UBR2 0.03 0.11
a a

TBCC -0.08 0.06
a a

BICRAL 0.10 0.13
a a

RPL7L1 -0.10 0.09
a a

Co6orf226 0.07 0.04
a a

CNPY3 0.06 0.09
ab ab

GNMT 0.09 0.26
abc ab

PEX6 0.03 0.15
a a

PPP2R5 -0.08 0.09
D a a

MEA1 -0.08 0.05
a a

KLHDC3 -0.02 0.12
a a

RRP36 -0.07 0.06
a a

CUL7 -0.01 0.05
a a

KLC4 -0.02 0.06
a a

MRPL2 -0.08 -0.01
a a

PTK7 0.00 0.01
a a

SRF 0.11 0.09
a a

CUL9 0.09 0.08
a a

DNPH1 0.02 -0.05
a a

CRIP3 0.16 0.07
ab ab

ZNF318 0.00 0.08
a a

ABCC10 -0.13 -0.02
a a

0.03
0.04
-0.02
0.04
0.00
-0.01
-0.10
-0.02
0.05
0.06
0.02
0.06
0.04
0.00
0.06
0.02
-0.02
0.01
0.02
-0.08
ab
0.04

0.07
a

0.22

0.40

0.28

0.29

0.29

0.54

0.48

0.34

0.32

0.36

0.43

0.30

0.25

0.39

0.39

0.18

0.30

0.33

0.33

0.30

0.16

0.25
a

0.11
-0.05
0.32
0.08
-0.02
ab
0.28
ab
0.18
abc
-0.04
ab
-0.03
-0.08
-0.10
0.02
0.05
0.28
-0.29
-0.28
ab
0.26
-0.03
-0.12
ab
0.25
ab
0.08

0.00
a
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-0.11
0.09
-0.10
-0.01
0.07
0.12
ab
0.02
abc
0.06
0.00
-0.01
0.17
0.02
-0.12
0.25
0.17
0.09
0.15
-0.01
0.21
0.29

-0.11

-0.02
a

-0.94
-1.01
-0.60
-1.01
-0.68
-0.96
-0.09
bc
-0.64
-1.18
-1.22
-1.14
-1.18
-0.92
-0.86
-1.15
-0.56
-0.75
-0.89
-0.74
-0.12
ab

-0.85

-0.90
b

0.06
0.04
0.16
0.04
0.22
0.05
ab
0.21
abc
0.07
-0.05
0.00
-0.04
-0.03
0.20
0.15
-0.03
0.05
0.06
0.07
0.28
0.34

0.02

0.05
a

4.27E-38

2.47E-46

9.26E-20

2.92E-45

2.97E-20

3.29E-46

3.01E-22

1.66E-21

2.00E-61

3.13E-66

3.64E-60

2.84E-61

6.30E-37

3.94E-37

2.73E-61

1.39E-12

6.28E-27

1.75E-34

1.48E-27

2.50E-16

3.81E-30

4.20E-37



Table B.1 (cont’d)

TJAP1 -0.07 0.12

a a

LRRC73 0.09 0.02
ab ab

POLR1C -0.12 0.00
a a

YIPF3 -0.01 0.11
b ab

XPO5 -0.17 -0.07
a a

POLH -0.01 0.16
b b

GTPBP2 -0.16 -0.01
b ab

MAD2L1 -0.09 0.09
BP a a

MRPS18 0.02 0.01
A a a

VEGFA -0.16 0.00
ab ab

MRPL14 -0.16 0.04
b ab

TMEM63 -0.04 0.06
B a a

CAPN11 0.13 0.15
ab ab

SLC29A 0.00 -0.02
1 a a

HSP90OA -0.19 0.03
Bl a a

SLC35B -0.09 0.01
2 a a

NFKBIE -0.06 0.00
ab a

AARS2 -0.06 0.02
a a

CDC5L -0.07 0.08
a a

SUPT3H 0.12 0.04
a a

SLC25A -0.05 0.00
27 b b

0.05
-0.01
ab
0.06
0.02
0.12
0.06
0.10
0.05
0.04
0.04
ab
0.05
ab
0.07
-0.07
0.06
0.10
0.05
0.01
0.05
0.04
0.00

-0.03
b

0.36
0.38
0.37
0.47
0.18
0.94
0.06
ab
0.32
0.46
0.14
0.37
0.20
0.42
0.14
0.30
0.33
0.25
0.33
0.25

0.22

0.23
ab

-0.26

0.22
ab
-0.02

0.21
ab
-0.11

-0.02

-0.35
bc
0.02

-0.07

0.07
ab
-0.25
bc
-0.35

-0.07
ab
-0.30
ab
-0.18
-0.06
-0.04
ab
-0.25
0.03
0.20

0.23
ab
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-0.04
-0.11
ab
0.09
0.04
ab
-0.14
0.04
-0.02
ab
0.10
0.11
0.05
ab
0.16
ab
-0.16
0.03
ab
-0.10
-0.15
0.09
0.21
0.07
0.04
0.06

0.34
a

-1.15

-0.35

-1.15

-1.09

-1.15

-2.14

-1.00

-1.11

-1.14

-0.50

-0.98

-1.01

-0.09

-0.74

-1.13

-1.12

-0.64

-1.04

-1.06

-0.70

-0.11
b

-0.04
0.11
ab
0.09
0.06
ab
-0.08
0.06
-0.11
ab
-0.15
-0.04
-0.03
ab
0.00
ab
-0.21
0.25
ab
0.08
-0.19
0.15
0.22
-0.02
-0.06
0.04

0.11
ab

1.10E-60

1.32E-08

3.73E-60

9.49E-55

9.67E-68

4.63E-

239

4.93E-48

1.38E-55

3.73E-59

6.75E-12

8.68E-47

1.97E-48

3.67E-12

6.62E-24

1.20E-65

7.46E-56

5.80E-20

8.22E-48

1.54E-48

7.20E-21

1.55E-08



Table B.1 (cont’d)

TDRD6 -0.02 0.09 005 129 -0.12 -0.06 -1.72 -0.06 1.46E-

b b b a b b c b 176
CD2AP -0.05 0.04 0.03 0.23 0.02 -0.04 -0.68 0.11 3.75E-19
ab a a a ab ab b a
MUT -0.03 0.08 0.01 039 -0.01 0.01 -0.57 -0.01 1.43E-15
ab a a a ab a b ab
CENPQ -0.21 -0.05 0.10 0.10 -0.212 -0.06 -0.69 -0.26 1.37E-29
a a a a ab a b ab
MCM3 -0.16 -0.05 0.10 0.21 -0.20 -0.07 -0.81 -0.28 3.84E-36
a a a a ab a b ab
PAQR8 -0.08 0.16 0.02 152 -0.11 0.06 -1.79 0.02 1.29E-
b b b a b b c b 209
EFHC1 0.05 0.04 -0.01 0.35 0.29 0.02 -0.52 0.16 2.00E-13
ab ab ab a ab ab b ab
TRAM2 0.05 0.10 -0.01 0.45 0.08 -0.07 -0.56 0.08 1.72E-17
abc ab bc a abc bc C abc
TMEM14 -0.08 -0.03 0.09 0.28 -0.14 -0.15 -0.79 -0.36 1.78E-35
A ab ab a a abc abc C bc
GSTA4 0.11 0.08 -0.02 0.30 0.34 -0.11 -042 0.11 1.99E-11
ab ab ab a a ab ab ab
ICK -0.02 0.10 0.02 0.44 0.23 -0.25 -0.66 0.04 4.90E-26
ab ab ab a ab bc C ab
FBXO09 0.02 0.10 -0.02 0.61 0.13 -0.06 -0.55 0.13 1.42E-21
bc bc bc a abc bc C ab
GCM1 -0.12 -0.06 0.03 035 -0.06 -0.10 -0.17 0.11 1.37E-05
a a a a a a a a
ELOVL5 0.04 0.11 -0.02 0.51 0.28 -0.20 -0.28 0.03 1.81E-12
ab ab b a ab b b ab
GCLC 0.02 -0.01 0.06 0.21 0.06 -0.26 -0.70 -0.12 1.37E-25
ab ab ab a ab ab b ab
KLHL31 -0.03 0.01 0.02 032 -0.02 -0.14 -0.36 0.13 5.98E-08
ab ab ab a ab ab b ab
LRRC1 -0.03 0.02 005 0.14 -0.13 -0.24 -059 0.08 2.03E-17
a a a a ab ab b a
DST 0.09 0.06 0.02 0.03 -0.10 -0.13 -0.40 -0.18 4.53E-08
a a ab ab ab ab b ab
KIAA158 -0.06 0.08 0.01 0.19 0.12 0.00 -0.58 0.16 2.59E-14
6 ab ab ab a ab ab b a
ZNF451 -0.04 0.10 0.01 0.36 -0.12 -0.03 -0.55 0.07 6.26E-15
a a a a ab a b a
BAG2 0.06 0.11 -0.06 0.17 0.08 0.24 -0.16 0.13 4.47E-08
ab ab b ab ab a b ab
PRIM2 -0.18 0.05 005 021 -005 -0.05 -053 -0.16 1.93E-15
ab a a a ab ab b ab
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Table B.1 (cont’d)

GusBpP4 -0.08 0.02 0.03 0.27 -0.07 -0.03 -0.57 0.00 1.83E-13

a a a a ab a b a

PHF3 0.01 0.13 -0.02 0.01 0.35 -0.06 -0.24 0.14 2.09E-05
a a a a a a a a

THSD7A 0.04 0.20 -0.13 0.42 0.55 0.35 0.20 0.18 1.35E-31
ab a ab a a a ab ab

INTS4P2 0.00 0.00 -0.05 0.13 -0.15 0.58 -0.01 -0.23 6.07E-21
b b b ab b a b b

ARHGEF -0.17 0.06 -0.03 0.14 0.38 0.20 0.15 0.03 1.05E-06
10 a a a a a a a a

HTRA4 -0.17 -0.07 0.03 -0.10 -0.09 0.23 -0.11 -0.14 2.05E-06
b ab ab ab ab a ab ab

DIP2C 0.02 -0.01 -0.02 -0.12 -0.01 0.35 -0.04 -0.13 1.46E-06
ab b b b b a b b

DNA2 0.02 0.00 -0.06 0.00 0.06 0.55 0.06 0.03 7.72E-18
b b b b ab a b b

HKDC1 -0.06 -0.07 -0.04 0.06 0.03 0.55 0.11 0.23 4.08E-20
b b b ab ab a ab ab

CTBP2 0.10 0.08 -0.10 0.13 0.08 0.51 0.17 0.09 5.97E-23
b b b ab b a ab b

FAM196 -0.04 -0.10 0.02 -0.09 0.04 0.39 -0.21 -0.33 9.00E-14
A b b b b ab a b b

CSNK2A -051 0.38 -0.08 0.23 0.18 0.22 0.20 0.21 8.41E-53
3 C a bc ab abc ab ab ab

FOLH1 0.06 0.14 -0.06 0.31 0.28 0.10 -0.13 0.10 6.03E-08
a a a a a a a a

MRPL16 -0.12 -0.13 0.00 -0.13 0.01 0.50 0.00 0.09 8.72E-17
b b b b ab a b ab

EIFIAD 0.23 0.07 -0.09 0.27 0.02 0.28 0.18 -0.21 5.57E-17
ab ab b ab ab a ab b

SF3B2 0.11 -0.03 -0.03 0.21 -0.20 0.21 0.07 -0.27 4.31E-06
a a a a a a a a

PACS1 -0.11 -0.07 0.01 0.06 -0.15 0.32 0.02 -0.26 4.39E-08
b b b ab b a ab b

KLC2 0.11 -0.03 -0.06 0.15 -0.06 0.58 0.05 -0.18 1.75E-22
b b b ab b a b b

RAB1B 0.04 -0.08 0.00 0.06 -0.29 0.42 -0.06 -0.40 5.73E-14
b b b ab b a b b

YIF1A 0.17 0.07 -0.05 0.00 -0.03 0.31 0.04 -0.42 3.28E-13
ab ab bc abc abc a abc C

BRMS1 0.15 0.05 -0.07 0.16 0.03 0.38 0.06 -0.22 1.47E-13
ab ab b ab ab a ab b

MRPL11 0.16 0.10 -0.07 0.19 0.00 0.28 0.06 -0.16 4.33E-11
ab ab b ab ab a ab b
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Table B.1 (cont’d)

PELI3  -0.02 -0.06

b b

DPP3 0.17 0.09
b b

BBS1 -0.12 -0.09
b b

ZDHHC2 0.08 0.04
4 b b

CCDC87 -0.02 -0.04
b b

CCs 0.04 -0.08
ab bc

RBM4  -0.01 -0.09
b b

Cllorf80 0.12 0.06
b b

RCE1 0.09 0.10
b b

PC 0.06 -0.12
ab b

LRFN4 0.19 0.09
ab b

RHOD -0.04 -0.01
b ab

KDM2A  0.03 -0.02
b b

GRK2 0.09 -0.05
b b

ANKRD1 0.11 0.01
3D b b

SSH3 0.09 0.04
b b

RAD9A 0.18 0.04
b bc

POLD4 -0.02 -0.06
bc bc

PPP1CA 0.12 -0.01
b bc

RPS6KB 0.13 -0.01
2 b b

CORO1B 0.07 -0.08
b bc

CABP4 -0.04 -0.10
b b

-0.03
-0.10
0.04
ab
-0.05
bc
-0.01
0.01
ab
0.00
-0.06
-0.11
-0.02
-0.09
-0.01
-0.06
-0.03
-0.08
-0.07
-0.09
bc
0.00
-0.06
bc
-0.06
-0.02
bc

-0.07
b

0.06

0.19
ab
0.06
ab
-0.03
bc
0.00
ab
-0.01
abc
0.07
ab
0.12
ab
0.31
ab
0.03
ab
0.01

0.13
ab
0.20

-0.11

0.17

0.21
ab
0.19

-0.17
bc
0.06
bc
0.08

-0.03
bc
-0.04
b

-0.23

-0.19

-0.51

-0.23
bc
-0.27

-0.13
bc
-0.30

0.14
ab
0.07

-0.07

0.21
ab
0.10
ab
-0.15

-0.23

0.11

0.13
ab
0.10
bc
-0.37
bc
-0.13
bc
0.13
ab
-0.42
bc
-0.40
bc
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0.60

0.54

0.28

0.63

0.40

0.31

0.40

0.49

0.69

0.43

0.47

0.30

0.82

0.56

0.75

0.63

0.76

0.56

0.75

0.61

0.66

1.64
a

0.06

0.06

-0.07
ab
-0.04
bc
0.07
ab
-0.11
bc
-0.01

-0.07

0.10

0.05
ab
-0.01

-0.03

0.02

-0.11

-0.06

-0.10

-0.02
bc
-0.13
bc
-0.05
bc
0.04

0.00
bc
-0.15
b

-0.34

-0.17

-0.43

-0.52

-0.29

-0.50

-0.29

-0.31

-0.22

-0.12

-0.11

-0.28

-0.40

-0.26

-0.29

-0.34

-0.45

-0.49

-0.41

-0.49

-0.53

-1.06
Cc

1.59E-23

2.36E-27

1.69E-12

1.25E-30

1.31E-10

2.67E-11

2.04E-11

2.06E-19

4.34E-40

5.98E-12

8.26E-21

2.78E-06

6.02E-46

1.20E-20

1.54E-39

1.02E-29

1.33E-47

1.67E-25

1.86E-39

7.68E-30

1.20E-33

7.53E-
214



Table B.1 (cont’d)

TMEM13 -0.05 -0.10 -0.01 0.07 -035 0.70 -0.07 -0.43 2.53E-34

4 b b b b b a b b
AlP 0.06 -0.04 -0.02 -0.03 -0.08 0.54 -0.09 -0.56 2.70E-24
b bc b bc bc a bc C
PITPNM -0.08 -0.10 -0.05 -0.02 -0.32 151 -0.14 -1.03 6.17E-
1 b b b b bc a b C 181
CDK2AP 0.02 0.01 -0.03 0.00 -0.18 0.57 -0.03 -0.58 5.03E-26
2 b b bc bc bc a bc C
NDUFV1 0.06 0.00 -0.03 -0.04 -0.06 0.58 -0.08 -0.54 3.38E-26
b b b bc bc a bc C
NUDT8 -0.14 -0.06 0.02 0.10 0.02 0.27 -0.01 -0.33 1.31E-07
b ab ab ab ab a ab b
ALDH3B 0.01 -0.01 -0.05 0.25 0.12 0.54 -0.03 -0.08 2.38E-18
2 b b b ab ab a b b
UNC93B 0.01 -0.08 -0.07 -0.02 -0.40 1.66 -0.15 -1.22 6.81E-
1 b b b b b a b c 230
ALDH3B -0.01 -0.09 -0.07 -0.02 -0.37 1.72 -0.16 -1.28 6.74E-
1 b b b b b a b c 250
NDUFS8 0.05 0.00 -0.04 -0.03 -0.02 0.70 -0.06 -0.60 1.45E-37
b b bc bc bc a bc C
TCIRG1 0.00 -0.10 0.01 -0.07 0.03 0.40 -0.17 -0.37 1.32E-13
b b b b ab a b b
CHKA 0.07 0.00 -0.02 -0.21 -0.16 0.41 0.06 -0.66 1.82E-20
ab b b bc bc a ab C
KMT5B -0.01 -0.11 -0.01 0.15 -0.41 0.74 0.00 -0.73 9.19E-48
b b b b bc a b C
Cllorf24 0.01 -0.02 -0.06 0.07 -0.02 0.78 0.13 -0.54 1.21E-44
bc bc bc bc bc a b C
LRP5 -0.05 -0.12 -0.05 -0.08 -0.36 1.64 -0.11 -1.35 1.47E-
b b b b b a b c 233
PPP6R3 0.04 -0.06 -0.05 0.16 -0.23 0.89 0.02 -0.68 2.65E-61
b b b b bc a b C
TESMIN 0.07 0.01 -0.07 -0.05 -0.33 0.82 -0.01 -0.38 3.03E-45
b b b b b a b b
CPT1A -0.03 -0.14 -0.09 -0.08 -0.03 1.85 -0.04 -1.04 3.87E-
b b b b b a b c 270
MRPL21 0.02 -0.10 -0.11 0.01 -0.19 1.95 -0.06 -1.03 2.94E-
b b b b b a b Cc 303
IGHMBP -0.03 -0.11 -0.09 0.01 -0.15 1.76 -0.12 -0.91 1.02E-
2 b b b b bc a b C 236
MRGPR -0.02 -0.11 -0.01 0.36 -0.10 0.35 -0.08 0.05 1.44E-10
D ab ab ab a ab a ab ab
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Table B.1 (cont’d)

TPCN2

CCND1

ORAOV1

ANO1

FADD

PPFIAl

CTTN

SHANK?2

DHCRY

NADSYN
1
KRTAPS
-7
KRTAPS
-8
KRTAPS
-9
KRTAPS
-10
FAM86C
1
RNF121

NUMA1
LRTOMT
LAMTOR

1
ANAPC1
5
INPPL1

CLPB

-0.04
b
0.01
b
-0.01
b
-0.08
b
0.07
b
0.01
b
0.02
b
-0.10
b
0.13
b
-0.09
b
-0.01
b
-0.06
b
-0.09
b
-0.01
b
-0.02
b
-0.05
b
-0.11
b
-0.12
b
-0.10
b
-0.11
b
0.16
b
0.10
bc

-0.12
-0.15
-0.12
bc
-0.14
-0.05
bc

-0.11
-0.13
-0.09

0.08
-0.13
-0.04
-0.03
-0.04
-0.04

0.04
-0.03
-0.14
-0.08
-0.06
-0.03

-0.06

0.14
b

-0.10
b
-0.12
b
-0.12
bc
-0.12
b
-0.11
bc
-0.14
b
-0.13
b
-0.11
b
-0.09
bc
-0.06
b
-0.04
b
-0.03
b
-0.01
b
-0.01
b
-0.07
b
-0.03
b
-0.02
b
0.02
b
-0.01
b
0.02
b
-0.05
b
-0.10
cd

0.08
b
-0.11
b
-0.08
bc
0.05
b
0.18
b
0.17
b
0.08
b
0.25
b
0.00
bc
0.08
b
0.08
ab
0.07
ab
0.06
ab
-0.10
b
0.15
b
0.18
b
-0.01
b
0.02
b
0.08
b
0.02
b
0.01
b
0.14
bc

-0.18
b
-0.20
bc
-0.06
bc
-0.02
b
-0.04
bc
-0.10
b
-0.02
b
0.17
b
-0.21
bc
-0.03
b
-0.10
b
0.02
ab
-0.09
b
-0.05
b
-0.25
bc
-0.22
bc
-0.45
b
-0.40
bc
-0.36
bc
-0.19
bc
-0.13
bc
0.01
bcd
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1.97

2.14

2.00

2.12

1.43

2.10

2.02

1.78

0.73

1.67

0.59

0.50

0.45

0.44

0.93

0.79

1.55

0.61

0.75

0.46

0.76

0.74
a

-0.06
b
-0.12
b
-0.11
bc
-0.02
b
0.01
b
0.03
b
0.00
b
0.07
b
0.14
b
-0.09
b
0.02
b
-0.01
b
-0.05
b
-0.06
b
0.07
b
-0.02
b
-0.10
b
-0.11
b
0.01
b
-0.13
b
0.01
b
0.09
bc

-1.05
C
-0.86
Cc
-0.76
C
-0.82
C
-0.59
C
-0.86
C
-0.86
C
-0.84
C
-0.41
C
-1.25
C
-0.13
b
-0.03
b
-0.22
b
-0.26
b
-0.75
C
-0.94
C
-1.71
C
-0.81
C
-0.94
C
-0.72
C
-0.75
C
-0.57
d

2.27E-
302

1.82E-
147

0

0

3.59E-
244
5.83E-43
1.60E-
233
2.17E-20
4.14E-14
4.90E-12
1.00E-11
3.71E-70
6.34E-60
1.49E-
246
4.42E-40
1.23E-56
3.16E-25
5.98E-51

2.31E-50



Table B.1 (cont’d)

ARAP1 -0.08 -0.06 0.01 -0.11 -0.04 059 -0.15 -0.78 7.45E-36

bc bc b bc bc a bc C

STARD1 0.03 -0.05 -0.01 -0.09 -0.23 0.66 -0.09 -0.67 8.25E-37
0 b b b bc bc a bc C

ATG16L -0.06 -0.03 0.02 -0.01 0.11 0.34 -0.28 -0.52 1.68E-15
2 b b b b ab a b b

FCHSD2 -0.14 -0.08 0.03 0.02 -0.09 0.48 -0.17 -0.72 3.54E-28
bc b b b bc a bc C

ARHGEF -0.16 -0.10 0.05 -0.11 -0.14 0.31 -0.08 -0.48 4.06E-15
17 bc bc ab bc bc a abc C

RELT 0.03 0.05 -0.05 0.11 0.10 0.41 -0.01 -0.25 1.60E-11
b b b ab ab a b b

RABGA 0.07 0.00 -0.06 0.15 -0.30 0.73 0.14 -0.68 5.61E-46
b b b b bc a b C

MRPL48 0.06 0.06 -0.05 0.04 -0.18 0.55 0.16 -0.78 5.02E-35
b b b b bc a ab C

COA4 0.07 0.03 -0.05 0.03 -0.24 0.68 0.11 -0.94 9.29E-51
b b b b bc a b C

PAAF1 0.01 0.07 -0.03 -0.08 -0.16 0.54 0.00 -0.89 3.25E-36
b b b b bc a b C

UCP3 -0.16 0.00 0.01 0.03 -0.15 0.30 -0.01 -0.46 8.15E-11
b ab ab ab ab a ab b

c2Ccb3 -0.07 -0.02 -0.04 0.15 -0.32 0.74 0.14 -0.69 8.74E-47
b b b b bc a b C

PPME1 0.07 0.05 -0.09 0.12 -0.25 0.88 0.19 -0.66 4.14E-64
b b b b bc a b C

LIPT2 -0.02 0.03 -0.04 0.01 -0.45 0.52 0.21 -0.65 1.00E-28
b b b b bc a ab C

POLD3 -0.03 0.02 -0.06 0.32 -0.12 0.56 0.22 -0.56 5.18E-31
b b b ab bc a ab C

RNF169 -0.06 -0.05 -0.03 0.25 -0.26 0.63 0.11 -0.46 1.43E-30
bc bc bc ab bc a b C

XRRA1 -0.01 -0.08 0.00 0.01 -0.42 0.66 0.05 -0.91 3.25E-47
b b b b bc a b C

SPCS2 0.04 -0.01 -0.01 0.02 -0.24 055 -0.06 -1.04 4.36E-44
b b b b bc a b C

NEU3 0.01 -0.02 -0.02 0.04 -0.20 0.45 0.03 -0.43 4.20E-15
b b b ab b a ab b

ARRB1 -0.08 -0.06 -0.02 -0.11 -0.42 1.31 -0.02 -1.77 9.70E-

b b b b b a b Cc 200

RPS3 -0.05 -0.03 0.02 -0.08 -0.39 0.41 -0.05 -0.91 3.08E-30
b b b b bc a b C

UVRAG -0.10 0.02 -0.04 0.24 -0.48 0.69 0.11 -0.72 1.14E-44
b b b ab bc a b C

118



Table B.1 (cont’d)

THAP12 0.01 -0.02 -0.02 0.04 -044 060 0.13 -0.83 4.51E-39

b b b b bc a b C
EMSY -0.06 -0.07 -0.03 0.15 -0.31 0.69 0.08 -0.53 4.76E-36
bc bc b b bc a b C
LRRC32 -0.06 -0.05 -0.04 -0.05 -0.45 1.34 -0.03 -151 4.02E-
b b b b b a b c 180
TSKU -0.11 -0.12 0.02 0.02 -0.06 0.46 0.09 -0.53 6.54E-21
bc bc bc abc bc a ab C
ACER3 -0.06 0.00 -0.04 0.14 -0.15 0.66 0.11 -0.55 8.76E-34
bc b b b bc a b C
MYO7A -0.05 -0.05 -0.05 -0.03 -0.39 1.44 -0.03 -1.40 3.28E-
b b b b b a b c 189
PAK1 0.00 -0.02 -0.04 0.13 -0.55 0.70 0.06 -0.55 2.36E-38
b b b b C a b C
CLNS1A 0.08 0.04 -0.08 0.14 -0.42 0.82 0.14 -0.76 7.70E-61
b b b b bc a b C
AQP11 -0.01 -0.03 0.00 -0.16 -0.36 0.40 -0.02 -0.45 7.05E-14
b b b b b a b b
RSF1 -0.05 -0.06 -0.05 -0.02 -0.43 1.40 0.02 -1.26 1.19E-
b b b b b a b C 171
AAMDC -0.06 -0.03 0.00 -0.07 -0.27 0.51 -0.07 -0.68 5.25E-26
b b b bc bc a bc C
INTS4 -0.05 -0.01 -0.05 0.14 -0.36 0.99 0.06 -0.85 1.20E-79
b b b b bc a b C
NDUFC2 0.03 -0.05 -0.04 -0.07 -0.33 0.87 0.01 -0.83 5.68E-64
b b b b bc a b C
ALGS8 0.06 0.07 -0.09 0.02 -0.24 1.05 0.05 -0.84 1.48E-91
b b b b bc a b C
KCTD21 0.04 -0.08 -0.03 0.07 -0.20 0.80 -0.03 -0.74 2.07E-52
b b b b bc a b C
USP35 0.03 -0.04 -0.05 -0.11 -0.31 1.34 -0.07 -1.33 1.49E-
b b b b b a b c 165
NARS2 0.04 0.02 -0.03 0.09 -0.48 0.60 0.04 -0.75 4.23E-36
b b b ab bc a b C
CCDC77 0.11 0.03 -0.05 0.34 -0.24 0.01 0.10 0.22 1.02E-05
a a a a a a a a
WNK1 0.09 -0.01 -0.05 0.15 -0.34 0.28 0.08 0.11 1.27E-06
ab ab b ab b a ab ab
ADIPOR 0.12 0.00 -0.06 0.24 -0.40 0.31 0.12 0.14 8.02E-11
2 ab ab b ab b a ab ab
DCP1B -0.10 -0.03 0.05 0.00 -0.64 -0.08 -0.14 -0.08 1.78E-05
a a a a a a a a
FKBP4 0.21 -0.01 -0.08 0.14 -0.38 0.38 0.12 0.37 3.77E-20
ab bc C abc C a abc ab
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Table B.1 (cont’d)

RHNO1 0.22 0.02

a ab

TULP3 0.14 0.01
a a

TSPAN9 -0.08 -0.10
a a

PARP11 -0.09 -0.06
a a

CCND2 -0.09 0.00
ab a

RAD51A 0.25 0.13
P1 ab ab

DYRK4 -0.16 -0.03
a a

AKAP3 -0.15 -0.11
ab ab

TNFRSF -0.02 -0.02
1A a a

LTBR 0.14 0.07
a a

NCAPD2 0.11 0.10
ab ab

GAPDH 0.16 0.11
a a

NOP2 0.15 0.13
ab ab

ING4 -0.04 -0.06
a a

ZNF384 0.01 0.05
a a

COPS7A 0.00 0.04
a a

MLF2 0.09 0.02
a a

CDCA3 0.27 0.17
a ab

USP5 0.06 0.09
a a

TPI1 0.17 0.13
a a

ATN1 0.03 -0.03
a a

Cl2orf57 -0.31 -0.22
b b

-0.07
ab
-0.05
0.06
0.05
0.08
-0.13
0.06
0.09
0.00
-0.06
-0.10
ab
-0.07
-0.09
0.04
-0.05
-0.04
-0.04
-0.14
-0.06
-0.08
ab
-0.02

0.11
a

0.24
0.30
-0.07
-0.19
-0.31
ab
0.41
-0.16
-0.20
ab
0.03
0.25
0.35
0.20
0.17
ab
0.25
0.22
0.21
0.06
0.31
0.17
0.25
0.08

-0.12
ab

-0.46
ab
-0.26
-0.36
-0.68
-0.28
ab
0.08
ab
-0.48
-0.34
-0.86
-0.25
-0.16
ab
-0.14
-0.19
-0.52
-0.46
-0.52
-0.45
0.23
ab
-0.36
-0.23
ab
-0.53

-0.56
b
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0.21
ab
0.15
a
-0.01
a
0.02
a
-0.38
b
0.25
ab
-0.10
a
-0.24
b
0.22
a
0.21
a
0.24
a
0.07
a
0.24
a
-0.18
a
0.25
a
0.17
a
0.23
a
0.27
a
0.15
a
0.00
ab
0.25
a
0.02
ab

0.13
ab
0.10
a
-0.28
a
-0.14
a
-0.22
ab
0.24
ab
-0.15
a
-0.10
ab
-0.05
ab
0.08
a
0.24
a
0.08
a
0.19
ab
-0.02
a
0.14
a
0.06
a
0.10
a
0.25
a
0.13
a
0.12
ab
0.04
a
-0.09
ab

0.05
ab
0.05
a
-0.06
a
-0.11
a
-0.20
ab
0.26
ab
-0.19
a
0.01
ab
0.06
a
-0.02
a
0.24
a
0.24
a
0.12
ab
-0.04
a
-0.02
a
0.22
a
0.10
a
0.31
a
0.27
a
0.25
a
0.10
a
-0.07
ab

4.58E-11

4.54E-06

4.44E-07

1.08E-06

5.54E-17

1.09E-27

8.96E-08

4.76E-12

2.66E-07

6.41E-08

1.92E-16

1.14E-08

1.03E-13

2.19E-05

3.32E-07

7.81E-06

9.65E-06

1.25E-33

9.67E-08

1.25E-10

3.65E-05

4.00E-24



Table B.1 (cont’d)

SCARNA 0.14 0.12
12 a a

EMG1 0.18 0.11
a a

LPCAT3 -0.07 0.05
b ab

NECAP1 0.11 -0.05
ab ab

CLEC4A 0.01 o0.01
ab ab

DDX12P 0.17 0.09
a ab

GABAR -0.11 -0.08
APL1 a a

MAGOH 0.19 0.16
B a a

LOH12C -0.13 -0.03
R2 a a

BORCS5 -0.01 0.04
a a

CREBL2 -0.10 -0.11
a a

GPR19 0.14 0.14
ab ab

DDX47 0.05 0.02
a a

FAM234 -0.04 0.01
B b b

WBP11 0.12 0.01
ab ab

STRAP 0.15 0.08
a a

DERA 0.01 0.05
a a

RECQL 0.11 0.04
a a

GOLT1B 0.18 0.04
a ab

CMAS 0.27 0.06
a ab

ETFRF1 -0.09 -0.10
a a

KRAS 0.12 0.02
a a

-0.07
-0.06
-0.04
-0.01
ab
-0.01
ab
-0.10
ab
0.05
-0.10
ab
0.05
-0.04
0.06
-0.11
-0.04
-0.05
-0.05
ab
-0.06
-0.03
-0.05
-0.07
ab
-0.07
0.07

-0.06
a

0.18

0.09

0.13
ab
0.00
ab
-0.03
ab
0.33

-0.02
0.12
ab
0.13
0.21
-0.06
0.13
ab
0.22
0.12
ab
0.15
ab
0.15
0.37
0.30
0.32
0.23
ab
0.17

0.31
a

-0.13
-0.19
-0.37
-0.67
-0.79
0.10
ab
-0.65
-0.16
ab
-0.59
-0.61
-0.70
0.21
ab
-0.54
-0.11
-0.60
-0.51
-0.29
-0.18
-0.16
ab
-0.45
-0.55

-0.26
a
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0.15 0.06
a a
0.08 0.08
a a
0.31 0.12
a ab
0.16 -0.02
a ab
0.21 -0.04
a ab
0.26 0.13
a ab
-0.13 0.11
a a
0.20 0.06
a ab
-0.12 -0.03
a a
0.13 0.16
a a
0.08 -0.12
a a
0.23 0.21
a ab
0.12 0.20
a a
0.41 0.07
a ab
0.23 0.10
a ab
0.10 0.17
a a
-0.04 0.22
a a
0.09 0.15
a a
0.13 0.18
ab ab
0.03 0.07
ab ab
-0.12 -0.20
a a
0.15 0.21
a a

0.01

-0.01

-0.03
ab
0.11
ab
0.07
ab
0.14
ab
0.00

0.26
-0.22
0.20
-0.17
0.37
0.16
0.13
ab
0.19
ab
0.17
-0.01
0.12
0.14
ab
0.19
ab
-0.12

0.15
a

1.25E-07

1.05E-06

1.34E-07

2.30E-05

4.06E-06

4.89E-15

1.48E-06

1.96E-15

1.54E-06

2.00E-06

1.86E-08

5.50E-19

3.30E-06

2.99E-10

1.13E-08

1.35E-08

2.47E-05

1.33E-05

6.73E-10

1.98E-11

6.68E-09

3.64E-08



Table B.1 (cont’d)

INTS13
MED21
DDX11
H3F3C
DNM1L
YARS2
ALG10
HOXC13
HOXC11
HOXCS8
GPR132
WASHS3P
MYO1C
NTN1
TRIM16L
ANKRD1
3B
SPACA3
SCARNA
17
ABCA7Y
EPS15L1
CEACA

M8
JOSD2

0.12
a
0.04
a
0.08
a
0.09
ab
0.13
a
0.16
a
0.01
ab
0.04
ab
-0.05
ab
-0.03
ab
-0.22
ab
-0.25
ab
-0.15
b
0.02
ab
-0.21
b
0.06
ab
-0.38
b
-0.27
ab
0.02
ab
-0.16
bc
-0.32
ab
-0.01
b

0.12
a
0.02
a
0.09
a
0.00
ab
0.03
a
0.09
a
0.02
ab
0.22
ab
0.21
a
0.22
ab
0.09
ab
0.22
a
0.12
ab
0.05
a
0.08
ab
0.25
a
-0.01
ab
0.12
a
0.19
a
-0.20
c
0.02
ab
0.00
b

-0.07

-0.03

-0.07

-0.03
ab
-0.07

-0.06

-0.05
ab
-0.14

-0.10
ab
-0.10

-0.04
ab
-0.04
ab
-0.03
ab
0.03

-0.05

-0.12
ab
0.02
ab
0.01
ab
-0.08
ab
0.05

0.01
ab
-0.04
b

0.31

0.36

0.36

0.07
ab
0.38

0.27

0.36

0.43

0.33

0.26
ab
0.19

0.24

-0.06
ab
-0.09
ab
0.15
ab
0.27

0.12
ab
0.05
ab
0.21

0.01
bc
0.09
ab
0.13
ab

-0.21

-0.51

-0.15

-0.71

-0.34

-0.22

-0.25
ab
0.38
ab
-0.14
ab
-0.06
ab
0.35

0.36

-0.27

-0.24
ab
0.26
ab
0.31

-0.08
ab
0.14
0.15
ab
-0.47
0.33

-0.09
b
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0.01 0.18
a a
0.05 0.13
a a
0.17 0.11
a a
0.20 0.04
a ab
0.19 0.16
a a
0.05 0.06
a a
0.26 0.16
a ab
0.38 0.17
ab ab
0.28 0.19
a ab
0.31 0.06
a ab
0.18 0.18
a ab
-0.02 0.01
ab ab
0.26 0.06
a ab
-0.18 -0.37

ab b
0.29 0.43
a a
0.20 0.10
a ab
0.18 0.12
a a
-0.03 0.04
ab ab
0.21 0.06
a ab
0.35 0.02
a bc
0.13 0.19
a a
0.41 -0.01
a b

0.06

0.07

0.17

0.05
ab
0.11

0.07

0.05
ab
0.39

0.21
ab
0.15
ab
0.17
ab
0.07
ab
-0.04
ab
-0.06
ab
-0.04
ab
0.27

0.05
ab
-0.22
ab
0.00
ab
-0.28

-0.02
ab
-0.04
b

3.16E-08

2.47E-05

2.73E-09

4.35E-06

3.68E-10

2.30E-06

1.38E-08

7.99E-37

1.84E-21

3.51E-19

4.84E-10

4.07E-14

9.07E-08

1.54E-07

1.67E-17

3.07E-23

4.45E-13

6.98E-08

8.46E-12

6.44E-19

5.35E-10

2.56E-09



Table B.1 (cont’d)

FKBP1A
P1
DEFB12
6
C200rf96

ZCCHC3
SOX12
NRSN2
TRIB3
RBCK1
TBC1D2
0
CSNK2A
1
SRXN1
SLC52A
3
FAM110
A
PSMF1
TMEM74
B
C200rf20
2
SNPH
SDCBP2
FKBP1A
NSFL1C

SIRPA

-0.28
ab
-0.10
ab
-0.58
b
-0.86
c
-0.53
C
-0.54
c
-0.14
ab
-0.80
c
-0.91
C
-0.77
d
-0.44
b
-0.24
c
-0.51
b
-1.05
c
-0.12
ab
-0.18
ab
-1.77
e
-0.33
b
-0.76
b
-1.02
c
-0.25
b

0.19
0.10
ab
0.36
0.52
0.35
0.28
0.33
0.62
0.51
0.58
0.39
0.22
0.39
0.67
0.29
0.21
1.12
0.17
0.44

0.64

0.13
a

-0.02
ab
-0.07
ab
0.00
b
-0.04
b
-0.07
b
-0.03
b
-0.10
ab
-0.06
b
-0.04
b
-0.10
c
-0.10
b
-0.04
bc
-0.07
a
-0.07
b
-0.05
ab
-0.02
ab
-0.09
d
0.00
ab
-0.03
a
-0.08
b
0.00
ab

0.05
ab
0.34
a
0.02
ab
0.18
ab
0.09
ab
0.05
ab
-0.12
ab
0.05
b
0.11
b
0.24
abc
0.08
ab
0.06
abc
0.13
a
0.11
b
0.07
ab
-0.20
ab
0.04
cd
0.15
ab
0.05
a
0.27
ab
0.12
ab

0.29
a
0.13
ab
0.08
ab
0.36
ab
0.35
ab
0.26
ab
0.44
a
0.36
ab
0.21
ab
0.26
abc
0.31
ab
0.16
abc
0.49
a
0.44
ab
0.32
a
0.21
a
0.78
ab
0.14
ab
0.48
a
0.56
ab
0.02
ab
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0.07
ab
0.31
a
-0.08
b
-0.03
b
0.24
ab
0.12
ab
0.16
ab
-0.01
b
0.14
b
0.21
bc
0.25
ab
0.17
ab
0.22
a
0.20
b
-0.08
ab
-0.05
ab
0.21
bc
-0.10
ab
0.03
a
0.15
b
-0.04
ab

0.03
ab
0.19
ab
-0.07
b
0.20
ab
0.24
ab
0.17
ab
0.26
a
0.13
b
0.17
ab
0.28
ab
0.42
a
0.07
abc
0.10
a
0.27
b
0.06
ab
0.08
ab
0.24
bc
0.10
ab
0.22
a
0.22
b
-0.01
ab

-0.08
ab
0.05
ab
-0.12
b
0.09
ab
0.17
ab
0.17
ab
0.25
ab
0.09
b
0.09
b
0.27
abc
0.21
ab
-0.14
bc
0.23
a
0.11
b
-0.10
ab
-0.05
ab
0.26
bc
0.01
ab
0.11
a
0.28
ab
-0.11
ab

3.41E-11
7.72E-13
2.44E-47
1.21E-
111
5.60E-51
1.29E-38
4.92E-31
1.42E-
122
6.61E-
117
1.93E-
121
5.15E-57
1.34E-13
3.39E-53
3.66E-
186
2.59E-15
5.42E-09
0
3.23E-13
1.65E-83
1.93E-

175
8.68E-07



Table B.1 (cont’d)

STK35
TGM6
SNRPB
ZNF343
TMC2
NOP56
IDH3B
EBF4
PCED1A
VPS16
PTPRA
MRPS26
OXT
UBOX5
FASTKD
5
DDRGK1
ITPA
SLC4A1
1
C200rf19
4
ATRN
ADAMS33

HSPA12
B

-0.63
c
-1.82
e
-0.61
c
-0.81
c
-0.30
b
-0.64
c
-0.91
C
-0.40
b
-0.64
b
-0.92
c
-0.88
C
-0.76
c
-1.81
e
-0.90
c
-0.78
c
-0.84
c
-0.76
c
-0.37
b
-0.56
ab
-0.74
c
-1.83
e
-1.74
d

0.56

1.13

0.58

0.57

0.18

0.55

0.62

0.08

0.46

0.61

0.52

0.57

1.15

0.51

0.55

0.52

0.51

0.14

0.12

0.36

1.13

1.11
a

-0.13
-0.09
-0.12
-0.09

0.00

ab

-0.10
-0.06

0.03
-0.03
-0.08
-0.04
-0.06
-0.10
-0.03
-0.07
-0.01
-0.05

0.02

ab

0.02

-0.05

-0.09

-0.10
c

0.26
ab
0.02
cd
0.22
ab
0.21

0.00
ab
0.08

0.18

-0.13
ab
0.00

0.16

0.10

0.05

0.04
cd
-0.02

0.16
ab
-0.13

0.18
ab
-0.09
ab
0.12

0.17
ab
0.03
cd
0.08
bc

0.31
ab
0.76
ab
0.64

0.34
ab
0.10
ab
0.49
ab
0.42
ab
-0.20
ab
0.52

0.56
ab
0.27
ab
0.42
ab
0.76
ab
0.31
ab
0.40
ab
0.14
ab
0.39
ab
0.04
ab
0.16

0.17
ab
0.74
ab
0.73
ab
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0.33

0.26
bc
0.25
ab
0.24

0.03
ab
0.15
0.00
0.07
0.03
0.17
0.18
0.08
0.25
bc
0.22
ab
0.12
0.02
0.02
0.03
ab
0.15
0.32
0.24
bc

0.22
b

0.26
ab
0.25
bc
0.24
ab
0.21

-0.10
ab
0.22
ab
0.19

-0.07
ab
0.02

0.20

0.11

0.15

0.24
bc
0.11

0.20
ab
-0.02

0.17
ab
-0.02
ab
0.06

0.31

0.24
bc
0.26
b

0.39

0.28
bc
0.30
ab
0.16

-0.02
ab
0.29
ab
0.27
ab
0.17

-0.15
ab
0.25
ab
0.12

0.07

0.28
bc
-0.05

0.14
ab
-0.02

0.09
ab
-0.13
ab
-0.07
ab
0.13
ab
0.33
bc
0.37
b

4.34E-
109
0

8.01E-
109
8.30E-
123
3.89E-11

3.45E-96

1.62E-
143
1.39E-14

6.69E-69

2.78E-
148
6.66E-
115
3.16E-
106

0

1.43E-
115
1.38E-
107
3.47E-
104
1.49E-94
5.10E-13
2.36E-28
2.33E-78
0

0



Table B.1 (cont’d)

C20o0rf27
SPEF1
CENPB
CDC25B
AP5S1
MAVS
PANK?2
RNF24
SMOX
PRNP
PRND
SLC23A
2
TMEM23
0
PCNA
CDS2
PROKR2
GPCPD1
C200rf19
6
CHGB
TRMT6
MCMS8

CRLS1

-1.71
e
-0.36
b
-0.88
c
-0.27
ab
-0.87
c
-0.73
d
-0.94
c
-0.53
b
-1.79
e
-0.46
ab
-1.79
e
-0.54
b
-0.87
c
-0.48
b
-0.82
c
-1.82
e
-0.48
c
-0.63
C
-0.24
ab
-0.65
C
-0.45
b
-0.74
c

1.13
0.23
0.57
0.45
0.60
0.52
0.49
0.30
1.14
0.17
1.13
0.18
0.58
0.50
0.51
1.15
0.32
0.41
0.04
ab
0.63
0.48

0.56
a

-0.11
0.00
-0.04
-0.10
ab
-0.05
-0.06
-0.03
-0.05
-0.10
0.01
ab
-0.10
-0.01
ab
-0.05
-0.12
-0.06
-0.10
0.00
0.01
0.05
-0.13
-0.14

-0.04
b

0.07 0.81
cd ab
0.03 0.11
ab ab
0.07 0.37
b ab
0.18 0.49

ab a
-0.01 0.47
b ab
0.00 0.17
bc abc
0.19 0.38
ab ab
0.15 0.24
ab ab
-0.01 0.75
cd ab
0.13 0.31
a a
0.04 0.77
cd ab
0.16 0.16
ab ab
0.19 0.18
ab ab
0.31 0.58
a a
0.11 0.42
b ab
0.05 0.76
cd ab
0.11 -0.09
ab bc
-0.08 -0.09
b bc
-0.20 -0.24
ab ab
0.47 0.66
a a
0.39 0.53
a a
0.09 0.16
b ab

125

0.23
bc
-0.04

0.06

0.07
ab
0.03

0.24
ab
0.01

0.21
ab
0.23
bc
-0.04
ab
0.27
bc
0.22

0.13

0.17

0.28
ab
0.27
bc
-0.11
bc
-0.15
bc
-0.12
ab
0.14
ab
0.29

-0.05
b

0.25
bc
-0.03

0.06

0.14
ab
0.10

0.17
abc
0.19
ab
0.22
ab
0.23
bc
0.04

0.21
bc
0.04
ab
0.07

0.22

0.12

0.22
bc
-0.17
bc
-0.13
bc
-0.12
ab
0.23

0.28

0.13
b

0.32
bc
-0.05

0.16
ab
0.15
ab
0.04

0.02
bc
0.18
ab
0.06
ab
0.30
bc
0.01
ab
0.33
bc
0.06
ab
0.04

0.35

0.09

0.27
bc
0.05
ab
0.02
ab
0.05

0.37

0.33

-0.06
b

0
1.58E-16
2.18E-
121
4.42E-46
6.14E-
128
1.68E-95
1.77E-
118
6.54E-42
0
6.22E-21
0
2.17E-30
5.73E-
124
3.74E-78
1.04E-
108

0
2.83E-35
1.42E-59
1.59E-07
2.67E-
127
3.12E-81

3.67E-99



Table B.1 (cont’d)

LRRN4
FERMT1
BMP2
TMX4
PLCB1
PLCB4
ANKEF1
SNAP25
MKKS
SLX4IP
JAG1
BTBD3
SPTLCS3
TASP1
ESF1
NDUFAF
5
MACRO
D2
FLRT3
KIF16B
SNRPB2
BFSP1

DSTN

-1.82
e
-1.71
d
-0.31
b
-0.61
c
-0.37
b
-0.16
a
-0.48
C
-0.22
ab
-0.92
C
-0.43
c
-0.42
C
-0.58
c
-0.44
b
-0.75
c
-0.58
c
-0.81
c
-0.36
b
-0.35
b
-0.53
c
-0.74
c
-0.37
ac
-0.66
c

1.13

1.08

0.14

0.28

0.16

0.10

0.41

0.05

0.59

0.31

0.22

0.30

0.10

0.49

0.49

0.59

0.10

0.15

0.39

0.67

0.35

0.36
a

-0.09

-0.09

0.03
ab
0.02

0.00

0.04

-0.08
bc
0.04

-0.06

-0.07
bc
-0.02
bc
-0.02
bc
0.06

-0.05

-0.10

-0.06

0.06
ab
0.02
ab
-0.07
bc
-0.10

-0.07
abc
-0.02
b

0.02
cd
0.08
bc
0.10
ab
0.10
ab
0.17
a
-0.06
a
0.28
ab
0.12
a
0.20
ab
0.29
ab
0.19
ab
0.28
ab
0.16
a
0.26
ab
0.32
ab
0.21
ab
0.06
ab
0.20
a
0.22
ab
0.26
ab
0.26
ab
0.13
ab

0.73
ab
0.70
ab
0.07
ab
-0.17
bc
-0.16
ab
-0.68
a
0.17
abc
-0.04
ab
0.30
ab
0.22
abc
0.16
abc
0.14
abc
-0.20
ab
0.29
ab
0.45
ab
0.45
ab
-0.09
ab
0.06
ab
0.18
abc
0.62
ab
0.40
a
0.18
ab
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0.25
bc
0.22
b
-0.23
b
-0.14
b
-0.01
ab
-0.22
a
0.30
a
-0.08
ab
0.09
b
0.32
a
0.13
abc
-0.03
bc
-0.24
ab
0.08
b
0.20
ab
0.00
b
-0.22
ab
-0.11
ab
0.25
a
0.00
b
-0.03
abc
0.04
ab

0.21
bc
0.22
b
-0.06
ab
0.02
ab
0.08
a
-0.17
a
0.10
abc
-0.21
ab
0.19
b
0.18
abc
-0.07
bc
0.16
ab
-0.16
ab
0.11
b
0.18
ab
0.08
b
-0.12
ab
-0.15
ab
0.13
abc
0.17
b
0.23
ab
0.12
ab

0.25
bc
0.21
bc
-0.02
ab
0.03
ab
-0.03
ab
-0.09
a
0.06
abc
-0.07
ab
0.22
ab
0.08
abc
0.13
abc
0.12
abc
-0.03
ab
0.08
b
0.21
ab
0.18
ab
-0.20
ab
0.14
ab
0.18
ab
0.24
ab
0.26
ab
0.08
ab

0

0
6.35E-13
1.08E-42
3.30E-14
6.38E-11
3.15E-56
3.55E-06
3.32E-
139
4.54E-41
1.37E-22
2.76E-44
4.76E-23
2.45E-89
1.21E-80
2.31E-
117
4.52E-17
8.51E-15
1.10E-55
1.35E-
133
3.55E-38

1.05E-57



Table B.1 (cont’d)

RRBP1
SNX5
SNORD1
7
MGME1
ZNF133
DZANK1
POLR3F
RBBP9
SEC23B
SMIM26
DTD1
LINCO006
52
SLC24A
3
RIN2
NAA20
CRNKL1
DEFB12
7
C200rf97
ZCCHC4
SOX13
NRSN3

TRIB4

-1.72
e
-0.79
c
-0.42
b
-0.68
C
-0.81
c
-0.51
C
-0.75
c
-0.74
c
-0.63
c
-0.90
C
-0.58
c
-0.16
b
-0.19
ab
-0.46
b
-0.61
c
-0.73
c
-0.10
ab
-0.58
b
-0.86
c
-0.53
C
-0.54
c
-0.14
ab

1.09
0.46
0.25
0.58
0.55
0.42
0.60
0.43
0.37
0.58
0.46
0.30
0.09
0.31
0.60
0.50
0.10
ab
0.36
0.52
0.35
0.28

0.33
a

-0.09
-0.02
-0.04
ab
-0.13
-0.07
-0.04
bc
-0.09
-0.02
-0.03
bc
-0.03
-0.04
-0.04
0.03
ab
-0.04
-0.13
-0.07
-0.07
ab
0.00
-0.04
-0.07
-0.03

-0.10
ab

0.07
cd
0.06

0.10

0.41

0.22
ab
0.14
ab
0.32
ab
0.25
ab
0.06
ab
0.09

0.12
ab
-0.04

-0.04
ab
0.15
ab
0.25

0.23
ab
0.34

0.02
ab
0.18
ab
0.09
ab
0.05
ab
-0.12
ab

0.78
ab
0.30
ab
0.41

0.71

0.53
ab
0.07
abc
0.45
ab
0.10
ab
0.02
abc
0.26
ab
0.26
ab
-0.05

-0.02
ab
0.23
ab
0.53
ab
0.15
ab
0.13
ab
0.08
ab
0.36
ab
0.35
ab
0.26
ab
0.44
a
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0.22
bc
0.07

0.18

0.25
ab
0.11

0.01
bc
0.09

-0.03

0.14
ab
-0.02

-0.18

-0.07

-0.01
ab
0.05
ab
0.27

0.20
ab
0.31

-0.08

-0.03

0.24
ab
0.12
ab
0.16
ab

0.20
bc
0.11
ab
0.18

0.31

0.15

-0.10
bc
0.15

0.02

0.08
ab
0.05

0.16
ab
-0.11

-0.30

0.11
ab
0.22

0.15
ab
0.19
ab
-0.07

0.20
ab
0.24
ab
0.17
ab
0.26
a

0.26
bc
-0.13

0.01
ab
0.25
ab
0.15
ab
0.09
ab
0.23
ab
0.06
ab
0.08
ab
0.01

0.19
ab
0.07
ab
-0.15
ab
0.07
ab
0.22

0.15
ab
0.05
ab
-0.12

0.09
ab
0.17
ab
0.17
ab
0.25
ab

0

7.95E-87

1.50E-28

9.72E-
124
5.22E-
113
5.46E-50

1.19E-
117
2.23E-76

1.19E-55

5.27E-
126
1.65E-66

1.24E-15

2.92E-07

1.21E-32

3.61E-
110
5.95E-93

-7.80E-
11
-7 .88E-
11
-7.96E-
11
-8.03E-
11
-8.11E-
11
-8.19E-
11



Table B.1 (cont’d)

RBCK?2

TBC1D2
1
CSNK2A
2
SRXN2

SLCBH52A
4
FAM110
A
PSMF2

TMEM74
B
C200rf20
3
SNPH

SDCBP3

FKBP1A

NSFL1C

SIRPA

MUC6

KAT14

LOC653
566
LOC100
270804
LOC100
130987
ProSAPI
P1
LOC645
332
LOC100
289673

-0.80
c
-0.91
c
-0.77
d
-0.44
b
-0.24
c
-0.51
b
-1.05
c
-0.12
ab
-0.18
ab
-1.77
e
-0.33
b
-0.76
b
-1.02
c
-0.25
b
-0.11
b
-0.83
C
-0.02
b
-0.42
b
0.01
b
-0.35
b
-0.11
bc
-0.12
ab

0.62
a
0.51
a
0.58
a
0.39
a
0.22
a
0.39
a
0.67
a
0.29
a
0.21
a
1.12
a
0.17
a
0.44
a
0.64
a
0.13
a
0.15
ab
0.50
a
-0.03
b
0.37
a
-0.10
b
0.27
a
0.00
b
0.12
ab

-0.06
b
-0.04
b
-0.10
c
-0.10
b
-0.04
bc
-0.07
a
-0.07
b
-0.05
ab
-0.02
ab
-0.09
d
0.00
ab
-0.03
a
-0.08
b
0.00
ab
-0.06
b
-0.03
b
-0.01
b
-0.04
b
-0.01
b
0.00
b
0.00
b
-0.07
ab

0.05

0.11

0.24
abc
0.08
ab
0.06
abc
0.13

0.11

0.07
ab
-0.20
ab
0.04
cd
0.15
ab
0.05

0.27
ab
0.12
ab
0.43

0.04

0.05

0.13
ab
0.10
ab
0.09
ab
-0.08
bc
0.27
a

0.36
ab
0.21
ab
0.26
abc
0.31
ab
0.16
abc
0.49

0.44
ab
0.32

0.21

0.78
ab
0.14
ab
0.48

0.56
ab
0.02
ab
0.17
ab
0.20
ab
-0.29
bc
0.28
ab
-0.27

-0.10
-0.40
bc

0.50
a
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-0.01

0.14

0.21
bc
0.25
ab
0.17
ab
0.22

0.20

-0.08
ab
-0.05
ab
0.21
bc
-0.10
ab
0.03

0.15
-0.04
ab
0.10
ab
0.08
0.67
0.03
0.54
-0.16
0.50

0.24
a

0.13

0.17
ab
0.28
ab
0.42

0.07
abc
0.10

0.27

0.06
ab
0.08
ab
0.24
bc
0.10
ab
0.22

0.22

-0.01
ab
-0.04
ab
0.10

0.03

-0.04

-0.03

0.06
ab
-0.06
bc
0.16
ab

0.09

0.09

0.27
abc
0.21
ab
-0.14
bc
0.23

0.11

-0.10
ab
-0.05
ab
0.26
bc
0.01
ab
0.11

0.28
ab
-0.11
ab
0.32
ab
0.14
ab
-1.04

-0.05

-0.49

-0.25

-0.53

0.23
ab

-8.27E-
11
-8.34E-
11
-8.42E-
11
-8.50E-
11
-8.57E-
11
-8.65E-
11
-8.73E-
11
-8.81E-
11
-8.88E-
11
-9E-11

-9.04E-
11
-9.12E-
11
-9.19E-
11
-9.27E-
11
1.99E-12

4.33E-
101
2.59E-53
2.85E-36
2.12E-23
9.78E-23
2.62E-22

3.90E-14



Table B.1 (cont’d)

LOC730
101
ATPGD1

WASH5P

C200rf46

C19o0rf22

SuUV420
H1
LINCO15
12
LOC149
837
SINHCA
F
LOC100
134868
LOC642
846
KIAA102
6
LOC374
443

-0.06
ab
-0.04
b
-0.25
ab
-0.06
ab
-0.08
b
-0.13
b
-0.02
ab
-0.22
b
0.08
a
-0.21
b
0.11
a
0.10
a
-0.09
b

-0.08
ab
0.09
ab
0.21
a
0.17
a
0.01
b
-0.11
b
-0.01
ab
0.15
a
0.09
a
0.17
a
0.05
a
-0.03
a
-0.07
b

0.06
ab
-0.07

-0.03
ab
-0.07
ab
-0.04

0.04
ab
0.04

0.02
ab
-0.04

-0.01
ab
-0.07
0.03

0.00
b

0.28

0.32
ab
0.23

0.29

0.30
ab
-0.06
ab
-0.02
ab
-0.16
ab
0.40

0.13
ab
0.25
0.09

0.05
ab

0.23
ab
0.27
ab
0.17
ab
-0.04
ab
-0.05

-0.39

0.02
ab
-0.14
ab
-0.37

0.10
ab
0.10
-0.03

-0.28
b

-0.10
ab
0.36

-0.04
ab
0.19

0.38

0.23

-0.02
ab
0.00
ab
-0.11

-0.10
ab
0.18
-0.22

0.31
a

-0.47

0.02
ab
0.01
ab
0.10
ab
0.00

-0.01
ab
-0.53

-0.14
ab
0.17

0.01
ab
0.11
-0.29

0.00
b

-0.15
ab
0.09
ab
0.04
ab
0.21

-0.07
-0.38
0.04
-0.16
ab
0.05
-0.02
ab
0.11
0.01

-0.02
b

4.63E-14

1.63E-13

3.19E-12

7.38E-12

2.20E-10

2.32E-10

2.49E-10

3.95E-08

6.33E-08

2.18E-07

1.25E-06

2.81E-06

6.53E-06
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Figure B.1l: Clustering of tumor samples (no constraints). Tumor clusters were
obtained by sequential application of tSNE and DBSCAN algorithm for 5,408 samples
from 33 cancer types. The contours reflect cluster membership, and the points’ colors
and shapes represent similar anatomical sites and cancer types, respectively. After
removing the first two, the two-dimensional tSNE projection was obtained from the first
50 principal axes of the extended omic matrix. Extended omic matrix contained appended
values of gene expression, DNA methylation, and copy humber variant intensity. Integers
represent individual clusters. Clusters were also annotated in terms of their most enriched

histological/molecular subtypes.
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Figure B.2: Re-classification of tumors and previously reported molecular

subtypes.

131



J Clusters

1a @ 5ab
2a Gab

1.0

s

=]
3p O 7a
O B8a

4a

08

Survival Probability
08
1

07

06

. p-value: 5e-10
T T T T 1
0 1 3 4 5

Time (Years)

Figure B.3: Survival curves by pan-cancer tumor clusters. The figure shows Kaplan-
Meier curves highlighting the survival probability by time in years for each cluster. Log-
rank tests were performed to determined significant differences between curves. The
legend shows the results of multiple comparisons between survival curves. Statistical
differences are represented with different letters.
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Figure B.4. Re-classification of tumors reveals differences in sample type. The
relative position and number of primary, normal, and metastatic tissue samples are
shown. The figure at the left shows the location of the samples by clusters. The figure at

the right shows the relative proportion of sample types by cluster.
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Figure B.5: Expression and copy numbers for transcription factors and targets. The
expression and copy number variation by genes is shown by cluster (C1-8). The colors
by gene name represent groups defined by different transcription factors and their targets
(e.g., black represents the group of FOXM1 and its targets KRAS and SPTBN2). TFs
names are shown with italic and larger font sizes. The number at the left of the
dendrogram represents a grouping of genes based on k-means clustering.
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Figure C.1. Plots of singular values trajectories. A) Scree plot by latent SVD
dimension. B) Cumulative proportion of variance explained by latent dimension. C) First
empirical partial derivative of singular values by latent dimension. D) Second empirical
partial derivative of singular values by latent dimension. The points and bars in each
panel represent average and standard deviations (SD) from 1x10° bootstrap repetitions
of the sparse SVD applied to the matrix of phenotypic variables.
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Figure C.3: Annotated Manhattan plot for PEB 1
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PEB 2: Active, small body size, meat, and veggies intake
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Figure C.4: Annotated Manhattan plot for PEB 2

PEB 3: Active, large body size, high blood triglycerides and glucose
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Figure C.5: Annotated Manhattan plot for PEB 3
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PEB 4: Average body size, meat intake
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Figure C.6: Annotated Manhattan plot for PEB 4

PEB 5: Active, largely vegetarian
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Figure C.7: Annotated Manhattan plot for PEB 5
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Tissues with Transcription Histone
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Figure C.8: Summary of previously reported information for genes in Figure 4.4.
Each row in the heatmap corresponds to gene mapping onto a significant peak from the
GWAS on each PEB variable. The first sets of panels summarize the average effects of
significant GWAS peaks with cis-eQTL in GTEx. The color of each cell represents the
magnitude and sign of the cis-eQTL effect on the expression of that gene in each of a set
of tissues. The order of the subpanels corresponds to a broader aggrupation of tissues in
main organs and systems: digestive, reproductive-urinary, neuro-muscular; skin, and
adipose tissues, circulatory and glandular. The following panels correspond to results
from epigenomic experiments conducted in previous studies. The second panel shows
where the peak was in a zone of positive DNasel activity (as captured by ATAC-seq
assays). The Third panel shows whether transcription factors were bound to the region
(as captured by CHIP-seq assays. Each column represents a broad classification of
transcription factors within families representing binding motifs. The last panel shows the
presence of evidence for histone modifications (as captured by CHIP-seq). Each column
represents a different histone mark.
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