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ABSTRACT

GENERATIVE SIGNAL PROCESSING THROUGH MULTILAYER MULTISCALE
WAVELET MODELS

By

Jieqian He

Wavelet analysis and deep learning are two popular fields for signal processing. The scatter-

ing transform from wavelet analysis is a recently proposed mathematical model for convo-

lution neural networks. Signals with repeated patterns can be analyzed using the statistics

from such models. Specifically, signals from certain classes can be recovered from related

statistics. We first focus on recovering 1D deterministic dirac signals from multiscale statis-

tics. We prove a dirac signal can be recovered from multiscale statistics up to a translation

and reflection. Then we switch to a stochastic version, modeled using Poisson point pro-

cesses, and prove wavelet statistics at small scales capture the intensity parameter of Poisson

point processes. We also design a scattering generative adversarial network (GAN) to gen-

erate new Poisson point samples from statistics of multiple given samples. Next we consider

texture images. We successfully synthesize new textures given one sample from the texture

class through multiscale, multilayer wavelet models. Finally, we analyze and prove why the

multiscale multilayer model is essential for signal recovery, especially natural texture images.
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CHAPTER 1

INTRODUCTION

Wavelet analysis [4] and deep learning are two popular fields for signal processing. Wavelet

transforms can be used to extract information from many different kinds of signal data and

are related to harmonic analysis. In the 90’s, people used wavelets to analyze 2D signals and

do classification on texture images [5]. In [2], directional even and odd wavelets are used to

extract statistical features of texture images and reconstruct the images from such features.

In recent years, image processing has achieved great progress with the development of deep

learning, which uses deep neural networks (DNN) to process signals. One popular model

is the convolutional neural network (CNN), which achieves great performance on image

classification [1, 6, 7]. DNNs are not only used to do classification on high dimensional data,

but also to generate new data. A very deep neural network called VGG [1], which is pre-

trained over Imagenet [8], successfully synthesizes texture images from only one sample [3].

Another recent model is the Generative Adversarial Network (GAN) [9], which generates

signals that are from the same distribution of given data by training two networks in an

adversarial way. However, there is not enough theory to explain why deep learning works,

so these types of methods remain black boxes. Recently, theory was developed on the

scattering transform [10], which combines wavelet transforms and nonlinear operators to

capture features of signals. The process is similar to a CNN and it connects wavelet theory

to deep neural nets. So a new task is to understand deep neural networks through theory in

wavelet analysis.

The research contained in this thesis involves wavelet analysis and deep learning in signal

processing. Within this field, an interesting and difficult task is signal reconstruction. It

requires to extract all important features of signals and to develop efficient algorithms to

reconstruct the signals from such features. This thesis describes the use of modified scattering

transforms to synthesize 1D sparse signals and 2D texture images. It also reports a new

1



algorithm that combines GANs and scattering networks to generate 1D stochastic processes.

The relationship between filter size, model depth and signals is also discussed. Finally,

wavelet analysis on random fields is explored.

The remainder of this thesis is organized as follows. Chapter 2 introduces background

material. Chapter 3 describes work on 1D sparse signal analysis and synthesis. Chapter 4

explores multilayer scattering features on Poisson point processes, especially at small scales.

Chapter 5 presents a multiscale, multilayer model for texture image synthesis. Chapter 6

provides theoretical analysis on filter size, model depth and signal reconstruction. Chapter

7 discusses wavelet analysis on random fields.
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CHAPTER 2

BACKGROUND

This chapter introduces the background of stochastic processes, CNNs, GANs, wavelets, and

the scattering transform. In section 2.1, stochastic processes will be defined and properties

such as being stationary and ergodic will be discussed. Section 2.2 covers the background

of CNNs and a specific architecture VGG, to explain the basic operators needed to define

a CNN. Section 2.3 reviews the intuition and architecture of GANs. Section 2.5 introduces

the 1D and 2D wavelet family and wavelet transforms. The intuition of wavelet analysis in

signal processing will be briefly described. Section 2.6 reviews the definition and properties

of the scattering transform, which was recently proposed as a mathematical model for CNNs

that uses wavelet theory.

2.1 Stochastic processes

Stochastic processes are used to model signals from real life that exhibit randomness. A

stochastic process {Xt : t ∈ Rd} is a collection of random variables indexed by t. When

d > 1, the stochastic process is referred to as a random field. For d = 2, the process is often

used to model grey level texture images. The mean and covariance function of Xt is defined

as:

µX(t) = EXt, σX(s, t) = Cov(Xs, Xt)

Two processes X = {Xt : t ∈ Rd} and Y = {Yt : t ∈ Rd} are said to be equal in the sense of

distribution if for any index set {t1, t2, ..., tk} ⊂ Rd,

(Xt1 , Xt2 , ..., Xtk)
d
= (Yt1 , Yt2 , ..., Ytk)

A stochastic process is stationary if,

{Xt+h : t ∈ Rd} d
= {Xt : t ∈ Rd}, ∀h ∈ Rd.
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Stationarity implies the mean function µX(t) = µ is a constant that does not depend on t

and the covariance function σX(s, t) = σ(s − t) only depends on the difference between s

and t. A stochastic process has stationary increments if,

{Xt+h −Xh : t ∈ Rd} d
= {Xt −X0 : t ∈ Rd}, ∀h ∈ Rd.

Define the time average of X to be,

µ̂X,T =
1

2T

∫ T

−T
Xt dt,

and let σ2
X,T be the variance of µ̂X,T . A stationary process is said to be mean-ergodic if

lim
T→∞

σ2
X,T = 0,

which implies

lim
T→∞

E|µ̂X,T − µ|2 = 0.

From a practical perspective, if xt is a realization of Xt over a large interval [−T, T ], then

with high probability
1

2T

∫ T

−T
xt dt ≈ µ.

The ergodic property for d moments is defined in a similar way. If X is stationary and

ergodic, the statistics of the process can be derived from a single, sufficiently long, random

realization of this process. These properties become useful when we discuss the wavelet

statistics of texture images in the next few chapters.

2.2 Convolutional Neural Networks

CNNs are a special class of deep neural networks for dealing with data that has geometric

structure. A deep neural network is usually constructed with an input layer, an output

layer and many hidden layers. Each layer consists of a linear or affine operator and a

nonlinear operator. Training a network usually corresponds to learning the weights of the

linear operators. CNNs use convolution as the linear operator to detect local information and

4



use a pooling function for nonlinear downsampling. Figure 2.1 shows a specially designed

and pre-trained CNN called VGG. We now give an explicit definition of the operators in 2D

CNNs.

Given a discrete input signal x and a filter K in R2, the ordinary discrete convolution

operator is defined as:

(x ∗K)(i, i′) =
∑
m

∑
m′

x(m,m′)K(i−m, i′ −m′).

In a CNN, an image is always regarded as a three dimensional data, where the third dimension

is referred to as the channel dimension. For example, a grey scale image is regarded of size

N ×N × 1 and an RGB image is regarded as N ×N × 3. For a convolution layer in a CNN,

suppose we have the input x with n1 channels denoted as (xi)1≤i≤n1 and we would like the

output to have n2 channels; we need n1× n2 filters which are denoted as (Ki,j)1≤i≤n1,1≤j≤n2 .

The convolution layer specifically computes:

C(x)j =

n1∑
i=1

xi ∗Ki,j, 1 ≤ j ≤ n2

for each output channel j. In practice, the convolution filters to be learned are usually of

small size, such as 3 × 3 or 5 × 5. Good things about it include sparse interactions (each

pixel at the current layer is computed from localized output from the last layer), parameter

sharing (pixels are transformed with the same filters), and equivariance to translation (this

operation is commutative with translation). It is also efficient to detect the singularities of

a signal, such as the edges in an image.

This linear operation C(x) is usually followed by a nonlinear activation function in a

CNN. For example, a ReLU (Rectified linear unit) function g(x) = max{0, x} is used in the

VGG network. Other CNN networks also use logistic sigmoid and hyperbolic tangent as the

activation function. For classification tasks, a softmax function

softmax(x)i0 =
exp(xi0)∑
i exp(xi)

is used at the output layer to predict the probability of a data that belongs to class i0.
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A typical CNN layer may also have a pooling function. A max pooling returns the

maximum output of the corresponding rectangular neighborhood. The average pooling is

another popular pooling function. Pooling functions are used to represent the data with

localized summary statistics which are approximately invariant to local translations. Pooling

also increases the receptive fields, i.e., each output pixel contains information of more pixels

from the last layer. These properties are important for image processing.

Since each operator is defined explicitly, the gradient of the loss function over the weights

can be computed explicitly, which makes the training efficient with gradient descent. To

compute the gradient over weights and update the weights in gradient descent is known as

the back-propagation, where we need the computation of the gradient to flow backwards in

the network through the chain rule.

CNNs have shown great efficiency and accuracy in practical applications, such as natural

language processing, image classification and video recognition. Nowadays, people also use it

to reconstruct and generate high dimensional data from an unknown distribution. However,

there is not too much theory on why CNNs work so well. We try to interpret CNNs through

scattering transforms [10] in Section 2.6.

2.3 Generative Adversarial Networks

A very widely used model to learn the distribution of high-dimensional data is the Generative

Adversarial Network (GAN) [9] from deep learning. Figure 2.2 shows the structure of the

GAN which consists of two models: a generator and a discriminator. The two models are

trained in an adversarial way in which the generator generates fake data that looks like real

data and the discriminator tries to distinguish between the real data and generated data. If

trained successfully, the generator learns the real data distribution.

Suppose we have a discriminator D and a generator G. The generator G takes in a

random vector z that comes from a prior random distribution pz and outputs data G(z).

The discriminator D takes in real data x that comes from the real distribution pdata and fake
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Figure 2.1 A special pre-trained very deep CNN: VGG[1]

Figure 2.2 Structure of the GAN. The generator takes in a random vector z with lower
dimensions and tries to generate a new signal G(z) that comes from the same distribution
as the given data x. The discriminator takes in a signal G(z) or x and tries to output a
probability p of the signal coming from the real distribution.
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data G(z) that comes from the generated distribution pg and outputs D(x) and D(G(z)),

which represents the probability the data comes from the real distribution. The loss function

is defined through the binary cross entropy:

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))]

The goal is to find the D and G that solve the following minimax problem:

min
G

max
D

V (D,G)

The problem is solved by using gradient descent to update the parameters in the deep neural

networks D and G. The authors prove that the global optimal solution is achieved when

pg = pdata and D(x) = 1
2
. The GAN model does not learn the data distribution explicitly but

generates signals that come from the real data distribution, that is, the generated data is not

a real data but is similar to the real data. GANs have been widely used to generate natural

images. In [11], the authors train a GAN in a progressive manner by gradually adding more

layers in the training process and generates high resolution images. In [12], the model takes

in sentences and generates images that fit the description. GANs can also be used to repair

images with missing parts [13] or generate images with certain artistic style [14]. GANs are

useful for many applications.

2.4 Texture Synthesis using VGG and Style Transfer

In the previous section, we introduced GANs for generating new images. Another interesting

topic from image processing is style transfer, which aims to transfer the style of one image

to another. This is motivated by [3], where the authors generate a new texture image by

matching the multi-layer statistics of image features computed through VGG [1]. They

show the statistics from multiple deep layers is necessary to generate a new realization of the

texture. And the loss between such statistics is referred to as the style loss in later research

work.
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Figure 2.3 Process of using VGG features to synthesize texture images [1]

VGG is a very deep CNN with 16-19 layers. Figure 2.1 shows the architecture and

the definition for each layer is described in Section 2.2 when we reviewed the CNN. This

network has been pre-trained and showed great performance on image classification. Figure

2.3 shows the process of texture synthesis in [3] and the details will be described in the

following paragraph.

Suppose we have an input texture x0. The output at layer l is a matrix H l(x0) ∈ RNl×Ml

where Nl is the number of output channels in layer l and Ml is the size of output from each

channel. The authors use the gram matrix between channels as the summary statistics:

Gl(x0)ij =
∑
k

H l(x0)ikH
l(x0)jk

Features {G1(x0), G2(x0), ... GL(x0)} from multiple layers are used to represent the texture
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image x0. Define the loss function between two images x0 and x as:

loss(x0, x) =
∑
l

||Gl(x0)−Gl(x)||22

which is the summation of the l2 distance between gram matrices from each layer l. The

goal is to find x∗ that minimizes the loss:

x∗ = arg min
x

loss(x0, x).

By solving the problem above using gradient descent, they get back a new image which

has the same statistics but is different from the input. This can be thought of as generating

a new realization of one texture class from a given realization. Figure 2.4 shows the synthesis

results. The good performance of matching the gram matrix from multiple layers explains

that multi-layer statistics from the VGG network might capture general features of a class

of texture. This work motivates the work on style transfer and has shown great performance

[15]. It also inspired our work on texture synthesis in Chapter 5. However, it has poor

performance on reproducing natural images which have more localized geometric structure

and are not stationary.

2.5 Wavelets

Wavelet theory is an important field developed for signal processing [4]. The Fourier trans-

form of a function x ∈ L2(Rd) is defined as,

x̂(ω) =

∫
Rd
x(u)e−iu·ωdu, ∀ω ∈ Rd

and has the property

x̂ ∗ y = x̂� ŷ . (2.1)

One can recover the function x through the inverse Fourier transform:

x(u) =
1

(2π)d

∫
Rd
x̂(ω)eiu·ωdω, ∀ω ∈ Rd.
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Figure 2.4 Synthesis results with different layers. The last row shows the original images.
The first row shows synthesized image by matching statistics from only "conv1-1" layer
and the second shows that matching statistics from "conv1-1" and "pool1" layers and so
on. With only lower layer statistics, the synthesis lose information of the texture. Adding
statistics from deeper layers improves the performance, which proves higher layer statistics
are necessary to capture texture information. The last column shows result of a natural
image, which has more localized structure and is not stationary.
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A wavelet ψ ∈ L2(Rd) is defined as a function that is localized in space and frequency and

has zero average [4]: ∫
Rd
ψ(u)du = 0

It is normalized so that ‖ψ‖ = 1. We focus on the cases d = 1 and d = 2 in the following.

For d = 1, a family of wavelets is obtained by dilating ψ:

ψj(u) = 2−jψ(2−ju), j ∈ Z.

The 1D wavelet transform of a signal x ∈ L2(R) is defined as:

Wx = (x ∗ ψj(u))u∈R,j∈Z.

For d = 2, a family of wavelets is obtained by dilations and rotations:

ψj,θ(u) = 2−2jψ(2−jR−1
θ u), Rθ =

 cosθ −sinθ

sinθ cosθ


A 2D wavelet transform is defined as

Wx = (x ∗ ψj,θ(u))u∈R2,j∈Z,θ∈Θ⊂[0,π]

Usaully Θ = {kπ
K

: k = 0, . . . , K − 1}. Figure 2.5 shows a texture image and its wavelet

coefficients computed through Morlet wavelets. Figure 2.6 shows a family of 2D Morlet

wavelets in space and frequency. A 2D mother Morlet wavelet is defined as:

ψ(u1, u2) =
1

2πσ1σ2

exp
(
− 1

2
(
u2

1

σ2
1

+
u2

2

σ2
2

)
)
· exp(2πiξu1 − C), (u1, u2) ∈ R2

where σ1 and σ2 determine the scale of the mother wavelet at two directions and (ξ, 0)

determines the center frequency of the wavelet. The constant C ensures
∫
ψ(u1, u2)du1du2 =

0. A family of Morlet wavelets is obtained by dilation and rotation described above. As can

be seen, the Fourier transform of Morlet wavelets are essentially supported over different

bounded regions, which means wavelets are localized in the frequency field. With Equation

2.1, the wavelet transform in frequency can be written as:

Ŵx = (x̂� ψ̂j,θ)j,θ
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Figure 2.5 Left: A texture image of bricks with edges at direction 0, π/2. Right: The
wavelets of the texture computed through Morlet wavelets, shown in Figure 2.6. It shows
the texture has large response at θ = 0 and θ = π/2, tiny response at other angles, which
match the directions of the edges in the texture. Also, as the wavelet scale goes larger, the
response gets smoother.

Figure 2.6 Morlet wavelets (real part) with 8 different scales and 12 different rotations in
space and frequency. Left: 2D Morlet wavelet family (ψj,θ)j,θ in space. Middle: 2D Morlet
wavelet family in frequency, which is the Fourier transform of 2D Morlet wavelet family
(ψ̂j,θ)j,θ. Right: The summation |φ̂J(ω)|2 +

∑
λ∈Λ |ψ̂λ(ω)|2 which is almost a constant over

all frequencies, making an approximate Littlewood-Paley frame. This figure shows this
group of wavelets plus a low pass satisfy the Littlewood-Paley condition on a half plane
approximately, except for the boundary.

By multiplying x̂ with (ψ̂j,θ)j,θ, the wavelet transform can capture localized information of

the signal x in the frequency field.

Let λ = (j, θ) ∈ ΛJ = {(j, θ) : j ≤ J, θ ∈ Θ ⊂ [0, 2π]} where ΛJ is the index set for

wavelets and use ψλ to denote ψj,θ. Let φ be a low pass filter whose Fourier transform is

concentrated at low frequencies. Set φJ(u) = 2−2Jφ(2−Ju). The filters {φJ , (ψλ)λ} are said
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to be a Littlewood-Paley tight frame if:

|φ̂J(ω)|2 +
∑
λ∈ΛJ

|ψ̂λ(ω)|2 = 1, ∀ω ∈ R2

Define AJx = x ∗ φJ and W [λ]x = x ∗ ψλ. The wavelet transform can be written as

WJx = {AJx, (W [λ]x)λ∈ΛJ} and its norm is:

‖WJx‖2 = ‖AJx‖2 +
∑
λ∈ΛJ

‖W [λ]x‖2

If {φJ , (ψλ)λ} is a Littlewood-Paley tight frame, then ‖Wx‖2 = ‖x‖2. This shows the wavelet

transform preserves the norm of a signal x and the property can be proved using Plancherel

formula. We can define the dual wavelets as

̂̃
φJ(ω) := φ̂J(ω),

̂̃
ψλ(ω) := ψ̂λ(ω).

A signal x can be reconstructed from its wavelet transforms using the dual filters and the

formula

x = x ∗ φJ ∗ φ̃J +
∑
λ∈ΛJ

x ∗ ψλ ∗ ψ̃λ . (2.2)

2D Morlet wavelets are used in image processing since they have a strong response to

edges. Texture images always have edges distributed in a repeated pattern. Therefore the

statistics (especially mean and variance) of wavelet coefficients, which summarize global edge

information, may be used to analyze texture images.

2.6 Scattering transform

Convolutional neural networks work very well for signal processing, especially image process-

ing. However, why they work is not well understood and theory still remains to be developed.

In [10], the author comes up with a scattering transform, which can be viewed as a mathe-

matical model for CNNs. It has been used to achieve near state of the art results in the fields

of audio signal processing [16, 17, 18, 19, 20], computer vision [21, 22, 23, 24, 25, 26], and

quantum chemistry [27, 28, 29, 30], amongst others. The scattering transform is provably
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invariant to local (or global) translations of the input signal and is also Lipschitz stable to

the actions of diffeomorphisms on the input. These properties are motivated by the fact

that signals with translation or small deformation usually contain similar information (e.g.,

they are in the same class). On the other hand, high frequency information is needed to

distinguish one signal class from another, which motivated the use of nonlinear activation

functions and a deep architecture. This non-paramatric model helps us to understand CNNs

in a mathematical way.

Assume we have a real valued function x ∈ L2(Rd). Let Lc : L2(Rd) → L2(Rd), for

c ∈ Rd, be a translation operator:

Lcx(u) = x(u− c)

A map Φ on L2(Rd) is translation invariant if:

Φ(Lcx) = Φ(x), ∀x ∈ L2(Rd), c ∈ Rd

Let τ : Rd → Rd be a displacement function and Lτ : L2(Rd)→ L2(Rd) be a diffeomorphism

operator:

Lτx(u) = x(u− τ(u))

Let ∇τ(u) and Hτ(u) be the Jacobian and Hessian of τ . Define:

‖τ‖∞ = sup
u∈Rd
|τ(u)|, ‖∇τ‖∞ = sup

u∈Rd
‖∇τ(u)‖, ‖Hτ‖∞ = sup

u∈Rd
‖Hτ(u)‖

The map Φ is Lipschitz continuous to diffeomorphisms if there exists a constant C such that

‖Φ(x)− Φ(Lτx)‖ ≤ C‖x‖2(‖τ‖∞ + ‖∇τ‖∞ + ‖Hτ‖∞), ∀x ∈ L2(Rd)

The modulus of the Fourier transform Φ(x) = |x̂| is proved to be translation invariant but

not stable to diffeomorphisms. So we turn to wavelet transforms.

In this paragraph, we will explain the intuition of how the scattering transform is devel-

oped to satisfy the translation invariance property while preserving high frequency informa-

tion. The paper [10] proves it is also stable to diffeomorphism but we will omit the details.

15



Recall we defined λ = (j, θ) ∈ ΛJ , as well as the operators AJx = x ∗φJ and W [λ]x = x ∗ψλ

in section 2.2. Since AJx and W [λ]x are convolution operators, they commute with transla-

tions:

AJ(Lcx) = Lc(AJx), W [λ](Lcx) = Lc(W [λ]x)

Then translation invariance can be obtained by integrating x ∗ φJ or x ∗ ψλ. Also note that

the operator A is locally translation invariant in the sense that ‖A(Lcx)− A(x)‖ ≤ C·|c|·‖x‖
2J

since φJ is a low pass filter. This is essential because sometimes we want local translation

invariance instead of full translation invariance. Then instead of
∫
x∗ψλ, we could try to use

x ∗ ψλ ∗ φJ to obtain local translation invariance. However, since ψλ is a wavelet with zero

average, the integral
∫
x ∗ ψλ = 0. Also since the support of ψ̂λ and φ̂J have small overlap,

x ∗ ψλ ∗ φJ ≈ 0. Therefore we need a nonlinear operator. The scattering transform uses the

modulus since it is non-expansive. Then nontrivial global and local translation invariance

are obtained by ∫
|x ∗ ψλ| or |x ∗ ψλ| ∗ φJ .

Note that the modulus operator nonlinearly projects x∗ψλ from the high frequency field to the

low frequency field. Also note that
∫
|x∗ψλ| = ̂|x ∗ ψλ|(0) and ̂|x ∗ ψλ| ∗ φJ = ̂|x ∗ ψλ|φ̂J and

φ̂J is supported in low frequency field. However, the support of φ̂J is smaller than the support

of ̂|x ∗ ψλ|. Therefore, part of the information in ̂|x ∗ ψλ| gets lost in the above representation.

To recover it, we apply another wavelet transform over |x ∗ ψλ|. The information in |x ∗ ψλ|

is preserved by {|x ∗ ψλ| ∗ φJ , (|x ∗ ψλ| ∗ ψλ′)λ′}. The term |x ∗ ψλ| ∗ φJ is invariant to

translation while |x ∗ ψλ| ∗ ψλ′ recovers the lost high frequency information. By applying

another nonlinear operator and a low pass to |x∗ψλ| ∗ψλ′ , it also gets translation invariance.

We give the standard definition of scattering transform in the next paragraph.

Let p be a path sequence p = {λ1, λ2, ..., λm} ∈ Λm
J . Define U [λ]x = |x ∗ ψλ| for x ∈

L2(Rd). A scattering propagator is defined as the path-ordered product:

U [p] = U [λm]...U [λ2]U [λ1]
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Then the windowed scattering transform of x ∈ L2(Rd) for a path p is defined as:

SJ [p]x(u) = U [p]x ∗ φJ(u)

and is invariant to local translation. The scattering transform is defined as:

S̄[p]x =
1

µp

∫
U [p]x(u)du with µp =

∫
U [p]δ(u)du (2.3)

and is invariant to global translation. If the infinite set of finite paths p is defined as PJ , we

can denote:

SJ [PJ ]x = {SJ [p]x}p∈PJ or S̄[PJ ]x = {S̄[p]x}p∈PJ

The multi-layer structure preserves high frequency information. The author also proves the

scattering transform over PJ is stable to diffeomorphisms, i.e., for all τ ∈ C2(Rd) with

‖∇τ‖∞ ≤ 1
2
, there exists a constant C such that

‖SJ [PJ ]x− SJ [PJ ](Lτx)‖ ≤ C‖U [PJ ]x‖1(‖τ‖∞ + ‖∇τ‖∞ + ‖Hτ‖∞), ∀x ∈ L2(Rd)

where ‖U [PJ ]x‖1 =
∑+∞

m=0 ‖U [Λm
J ]x‖. The key point to the proof is the stability of the

wavelet transform which we omit here.

The scattering transform in L2(Rd) can be extended to stationary processes. If X(u) is

a stationary process, for all p = {λ1, λ2, ..., λm} ∈ Λm
J , U [p]X(u) is also stationary, and its

expected value does not depend on u. The expected scattering transform is defined as:

S̄[p]X = E(U [p]X) = E(||X ∗ ψλ1 ∗ · · · | ∗ ψλm|).

This definition replaces the normalized integral of the scattering transform in Equation 2.3

by an expected value. If X is also ergodic, the expected scattering transform is estimated

by computing the scattering transform of a realization x0(u) of X(u):

S̄[p]X ≈ 1

µp

∫
U [p]x0(u)du
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2.7 Signal recovery through statistical features

This section introduces the general types of problems we will consider in this thesis.

Given a deterministic signal x ∈ L2(Rd) or a stochastic process X(u) : u ∈ Rd, our goal

is to find a representation Φ(x) or Φ(X) that is translation invariant, i.e.,

Φ(Lcx) = Φ(x), or Φ(LcX) = Φ(X), ∀c ∈ Rd

where Lcx(u) = x(u− c) or LcX(u) = X(u− c). Typically we are interested in when Φ is a

CNN representation or a scattering representation.

For a deterministic signal x, we explore under what conditions can we recover x from Φ

up to translation, i.e.,

ifΦ(x) = Φ(x′), thenx′ = Lcx.

This aims to recover the exact signal up to translation. Chapter 3 explores this issue for

1D deterministic sparse signals. Similarly, Chapter 6 explores 2D deterministic line texture

images and frame-like texture images.

For a stochastic process X, we think of Φ as statistics, i.e.,

Φ(X) = E[Φ̃(X)]

for some function Φ̃. When X is ergodic, Φ(X) is usually estimated from a sample x ∼ X:

Φ(X) ≈ 1

(2T )d

∫
[−T,T ]d

Φ̃(x)

Given a sample x of X, we explore under what conditions can we generate another sample

x′ of X from Φ̃, i.e.,

if
1

(2T )d

∫
[−T,T ]d

Φ̃(x′) =
1

(2T )d

∫
[−T,T ]d

Φ̃(x), thenx′ ∼ X.

Chapter 4 explores the problem for X being a Poisson point process and we try to generate

new samples by learning the distribution of Φ(X). Chapter 5 suppose X to be a class of

texture images and we try to generate new samples x′ ∼ X given an estimate of Φ(X) from

one sample texture image x ∼ X.
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CHAPTER 3

CHARACTERIZING SPARSE SIGNALS THROUGH A HYBRID
SCATTERING TRANSFORM

3.1 Introduction

As reviewed in Section 2.6, the scattering transform is a mathematical model for CNNs that

is invariant to translation, stable to diffeomorphism and captures high frequency informa-

tion. These properties are essential for signal analysis as signals with translations and small

deformation are usually from the same class and high frequency information is important

to distinguish signals from one class to another. On the other hand, filters learned in the

early layers of CNNs typically resemble wavelets. But it usually requires a large dataset to

learn a CNN and it remains unclear why such models work well for different types of signals,

especially natural images.

The scattering transform and CNN both show great performance in image classification,

proving their ability to learn essential representations and distinguish different types of

signals. Another interesting task from machine learning is to understand how different these

representations are with dissimilar signals. This is referred to as the completeness of a model

in machine learning. A more complicated task from this topic is to find representations that

can be used to recover a signal. Intuitively this requires to learn all important information

contained in a signal.

Motivated by the structure of the scattering transform and CNNs, we propose a two-layer

hybrid scattering model to capture signals with isolated singularities in this chapter. In the

first layer, we apply a wavelet transform to sparsify the signal, while in the second layer, we

use a Gabor type filter to leverage this sparsity. More specifically,

• We propose a new model to capture the singularities of the input signal.

• We prove the Gabor measurements used in the second layer determine the locations
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and heights of a sparse signal.

• We provide an algorithm that successfully synthesizes 1D sparse signals using these

measurements up to translation and reflection.

In Section 3.2 we provide our model in detail, while in Section 3.3 we show our main theorems

and proofs. Section 3.4 describes our algorithm for sparse signal synthesis and Section 3.5

shows synthesis results. Section 3.6 summarizes our conclusions.

3.2 Model

Let y(t) with t ∈ R be a piecewise polynomial whose knots {ui}ki=1, ui < ui+1, are located

on the grid hZ = {hn : n ∈ Z} for some h > 0:

y(t) =
k∑
i=0

yi(t), where yi(t) =

 pi(t) t ∈ [ui, ui+1]

0 elsewhere

where {pi}ki=0 are a group of polynomials satisfying pi(ui+1) = pi+1(ui+1),∀i ∈ {0, 1, · · · k−1}.

We also assume that each of the piecewise polynomial components yi(t) has degree mi at

most m, i.e., 0 ≤ mi ≤ m. Let ψ be a mother wavelet with supp(ψ) ⊆ [−1, 1] that has m+ 1

vanishing moments, i.e., ∫ +∞

−∞
tkψ(t)dt = 0, ∀0 ≤ k ≤ m.

Since ψ has m+ 1 vanishing moments, one can show pi ∗ ψ(t) = 0. Let ψ`(t) be the dilated

wavelet:

ψ`(t) =
1

2`
ψ

(
t

2`

)
.

We have supp(ψ`) ⊆ [−2`, 2`]. Figure 3.1 gives an example of a wavelet with 4 vanishing

moments. Therefore we have y ∗ ψ`(t) = 0 for t /∈
⋃k
i=1[ui − 2`, ui + 2`] as {ui}i are the

singularities of y. Equivalently supp(ψ` ∗ y) is contained in
⋃k
i=1[ui − 2`, ui + 2`]. To further

promote sparsity, we next apply a max-pooling operator:

MP`z(t) =


z(t) if z(t) = maxt′∈[ti−2`,ti+2`]∩hZ z(t′)

0 otherwise
.
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Figure 3.1 A wavelet ψ of 4 vanishing moments.

(a) piecewise polynomial y(t)
with highest order of 3

(b) Convolution against wavelet
ψ`

(c) Sparse Signal from Max Pool-
ing

Figure 3.2 Wavelets sparsify piecewise polynomials on the interval [0, 1024].

Figure 3.2 shows the process of sparsifying a piecewise polynomial into a sparse signal with

wavelet ψ`. As summarized in the following theorem, this yields a linear combination of

Dirac delta functions.

Theorem 1. Assume that 2`+1 ≤ min1≤i≤k−1 |ui − ui+1|. Then,

MP`(|ψ` ∗ y|)(t) =
k∑
j=1

ajδvj(t).

for some a1, . . . , ak > 0, vj ∈ [uj − 2`, uj + 2`], 1 ≤ j ≤ k.

In our second layer, rather than use another wavelet, we use a Gabor filter

gs,ξ(t) = w

(
t

s

)
eiξt, (3.1)

where the parameters s and ξ determine the scale and central frequency of the filter and the

window function w is supported on an interval of unit length. It differs from a wavelet in

that the scale and frequency are separated in a gabor filter, giving more flexibility to adjust
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(a) Indicator function window (b) Gaussian window

Figure 3.3 Gabor filters used in the second layer (real parts)

these parameters independently. Note that with an appropriately chosen window function

w, Equation 3.1 includes dyadic wavelet families in the case that one selects s = 2` and

|ξ| = C/s . However, it also includes many other families of filters, including Gabor filters

used in the windowed Fourier transform. Next, we take the Lp norm for some integer p ≥ 1.

As a result, we obtain translation invariant hybrid scattering coefficients

{‖gs,ξ ∗MP`(|ψ` ∗ y|)‖p}s,ξ.

By design, these measurements are invariant to translations, reflections, and global sign

changes. We aim to investigate the ability of our measurements to characterize y up to these

natural ambiguities. The wavelet-modulus is known to be a powerful signal descriptor [31].

Therefore, in light of Theorem 1, we shall analyze the ability of the measurements

{‖gs,ξ ∗ x‖p}s,ξ (3.2)

to characterize sparse signals of the form

x(t) =
k∑
j=1

ajδvj(t). (3.3)

Furthermore, to supplement our theory, we show that the measurements (3.2) can be used

to reconstruct a sparse signal of the form (3.3) up to translations and reflections (see Figure

3.2).
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3.3 Theory and proofs

Let

x(t) =
k∑
j=1

ajδvj(t), v1 < v2 < · · · < vk. (3.4)

We first consider the support set {vj}kj=1, and let D(x) = {∆i,j = vj − vi : i < j} denote the

difference set as the pairwise distances of the Dirac locations {vj}kj=1. Let

fx,ξ(s) = ‖gs,ξ ∗ x‖pp

be the gabor measurements. The following theorem shows the singularities of the measure-

ments as a function of the scale s are contained in the pairwise distance set D(x).

Theorem 2. Let p ≥ 1 be an integer, and assume w(t) = 1[0,1](t). For i ≤ j, let

βi,j(ξ) =

j∑
`=i

a`e
iξ∆i,` (3.5)

Then, for every fixed ξ ∈ R, the function fx,ξ(s) is piecewise linear, and ∂2
sfx,ξ(s) is a grid-free

sparse signal whose support is contained in D(x). Specifically,

∂2
sfx,ξ(s) =

∑
d∈D(x)

 ∑
∆i,j=d

ci,j(ξ)

 δd,

where

ci,i+1(ξ) = |βi,i+1(ξ)|p − |βi+1,i+1(ξ)|p − |βi,i(ξ)|p (3.6)

and

ci,j(ξ) = |βi,j(ξ)|p + |βi+1,j−1(ξ)|p − |βi+1,j(ξ)|p − |βi,j−1(ξ)|p for j ≥ i+ 2. (3.7)

Proof. We first note that

|(gs,ξ ∗ x)(t)| =

∣∣∣∣∣
k∑
i=1

aigs,ξ(t− vi)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=1

aie
iξ(t−vi)1[vi,vi+s](t)

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=1

aie
−iξvi1[vi,vi+s](t)

∣∣∣∣∣ .
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For every subset I ⊆ {1, . . . , k}, let

RI(s) = {t : t ∈ [vi, vi + s] for all i ∈ I, t /∈ [vi, vi + s] for all i /∈ I},

i.e. let RI(s) be the set of t for which aie−iξvi1[vi,vi+s](t) is nonzero if and only if i ∈ I. Then,

since w(t) = 1[0,1](t) it is clear that for t ∈ RI ,

|(gs,ξ ∗ x)(t)| =

∣∣∣∣∣∑
i∈I

aie
−iξvi

∣∣∣∣∣ := yI(ξ).

Therefore,

fx,ξ(s) = ‖(gs,ξ ∗ x)(t)‖pp =
∑

I⊆{1,...k}

|yI(ξ)|p|RI(s)|. (3.8)

We will show that for all I ⊆ {1, . . . , k}, |RI(s)| is a piecewise linear function as a function

whose Dirac locations are contained in D(x).

First, we note that RI(s) = ∅ unless I has the form {i, i+ 1, . . . , j − 1, j} for some i ≤ j.

Therefore,

fs(ξ) =
k∑
i=1

k∑
j=i

|βi,j(ξ)|p|Ri,j(s)|, (3.9)

where, as in (3.5), βi,j(ξ) is given by

|βi,j(ξ)| =

∣∣∣∣∣
j∑
`=i

a`e
iξ∆i,`

∣∣∣∣∣ =

∣∣∣∣∣
j∑
`=i

a`e
iξv`

∣∣∣∣∣ ,
and Ri,j := R{i,...,j}. Now, turning our attention to Ri,j(s), we observe by definition that a

point t is in Ri,j(s) if and only if it satisfies the following three conditions:

v` ≤t ≤ v` + s for all i ≤ ` ≤ j,

t > vi−1 + s, and

t < vj+1.

Therefore, letting (a ∧ b) := max{a, b} and (a ∨ b) := min{a, b}, we see

Ri,j(s) = [xj, xi + s] ∩ [xi−1 + s, xj+1] = [xj ∨ (xi−1 + s), (xi + s) ∧ xj+1], (3.10)
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and

|Ri,j(s)| = ((xi + s) ∧ xj+1)− (xj ∨ (xi−1 + s)),

if the above quantity is positive and |Ri,j(s)| = 0 otherwise. It follows from (3.10) that

|Ri,j(s)| is a piecewise linear function, and that ∂2
s |Ri,j(s)| is given by

∂2
s |Ri,j(S)| = δ∆i,j

(s) + δ∆i−1,j+1
(s)− δ∆i−1,j

(s)− δ∆i,j+1
(s). (3.11)

In order for this equation to be valid for all 1 ≤ i < j ≤ k, we identify x0 and xk+1 with

−∞ and∞, and therefore, δ∆0,j
δ∆i−1,k+1

are interpreted as being the zero function since the

domain of f is (0,∞). Likewise δ∆i,i
= δ0 is interpreted as the zero function in the above

equation.

Combining (3.11) with (3.9) implies that ∂2
sfx,ξ(s) is a sparse signal with support con-

tained in D(x), and for d ∈ D(x),

∂2
sfx,ξ(d) =

∑
∆i,j=d

ci,j(ξ)

as desired.

The following example shows that, in general, the support of ∂2
sfx,ξ(s) may be a proper

subset of D(x).

Example 1. If p = 2 and

x(t) = δ1(t) + δ2(t) + δ3(t)− δ4(t),

then 2 ∈ D(x), but

∂2
sfξ(2) = 0.

Proof. For this choice of x, there are two pairs (i, j) such that ∆i,j = 2, namely (1, 3) and

(2, 4). Therefore, by Theorem 2,

∂2
sfξ(2) =

(
|β1,3(ξ)|2 + |β2,2(ξ)|2 − |β1,2(ξ)|2 − |β2,3(ξ)|2

)
+(

|β2,4(ξ)|2 + |β3,3(ξ)|2 − |β2,3(ξ)|2 − |β3,4(ξ)|2
)
.
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Inserting (a1, a2, a3, a4) = (1, 1, 1,−1), ∆i,i+1 = 1, and ∆i,i+2 = 2 into (3.5) implies that

∂2
sfξ(2) =

(
|1 + eiξ + e2iξ|2 + 1− |1 + eiξ|2 − |1 + eiξ|2

)
+(

|1 + eiξ − e2iξ|2 + 1− |1 + eiξ|2 − |1− eiξ|2
)

=|1 + eiξ + e2iξ|2 + |1 + eiξ − e2iξ|2 + 2− 3|1 + eiξ|2 − |1− eiξ|2

=0.

The last inequality follows from repeatedly applying the the trigonometric identities sin2(θ)+

cos2(θ) = 1 and cos(θ) = cos(2θ) cos(θ) + sin(2θ) sin(θ).

As illustrated by Example 1, the reason why ∂2
sfx,ξ(2) is equal to zero is because x is not

collision free, which is defined as follows. A signal x is collision free if |vi − vj| 6= |vi′ − vj′|

unless (i, j) = (i′, j′). With this assumption, it is known [32] that the support set {vj}kj=1

is determined (up to reflection and translation) by D(x). Specifically in the above example,

there are two different pairs of points (1, 3) and (2, 4) in the support set of x that are both

distance two from each other and c1,3(ξ) = −c2,4(ξ).When x is collision free, this cancellation

cannot occur, and as guaranteed by the following theorem the support set of ∂2
sfx,ξ(s) will

exactly be D(x). Therefore, our measurements with sufficiently many scales and only one

frequency completely characterize the support set of a sparse signal up to translation and

reflection.

Theorem 3. Assume that x is a collision-free k-sparse signal as in Equation (3.3) and that

p ≥ 1 is an integer. Then, for almost every ξ, ∂2
sfx,ξ is a sparse signal whose support is

exactly equal to D(x).

In order to prove Theorem 3, we will introduce a class of functions which we call Gen-

eralized Exponential Laurent Polynomials and state several lemmas about these functions.

For the proof of the lemmas in this section, please see the appendix.
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We call a function q(θ) a Generalized Exponential Laurent Polynomial if it can be written

as

q(θ) =
N∑
k=1

αke
iγkθ, θ ∈ [0, 2π) (3.12)

where N ≥ 1, αk, γk ∈ R, αk 6= 0, and γ1 < γ2 < . . . < γN . We let E be set of all such

functions. For q ∈ E , we refer to γN as the degree of q and let E(d) refer to the set of all

q ∈ E with degree d. Note that we do not assume that the γk’s are nonnegative or even

rational. Therefore, the degree of q may be negative. We let E0(d) denote the set of q ∈ E(d)

such that γ1 ≥ 0.

Lemma 1. Let q, q′ ∈ E ,

q(θ) =
N∑
k=1

αke
iγkθ and q′(θ) =

N ′∑
k=1

βke
iηkθ.

Then q = q′ if and only if N = N ′ and for all k = 1, . . . , N , αk = βk and γk = ηk.

Lemma 1 implies that if q ∈ E(d1) and q′ ∈ E(d2) then

qq′ ∈ E(d1 + d2). (3.13)

In particular, if q ∈ E0(d)

|q|2 = qq̄ ∈ E(d+ 0) = E(d). (3.14)

Furthermore, if d2 ≤ d1 then

(q + q′) ∈ E(d1), (3.15)

except, of course, if d1 = d2 and the lead coefficients of q and q′ are negatives of one another.

Lemma 2. Let p be an integer. For i = 1, 2, 3, 4, let qi ∈ E0(di) assume that d1 > d2, d3, d4.

Then the set of points such that

|q1|p + |q2|p = |q3|p + |q4|p (3.16)

has measure zero.
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Proof of Theorem 3. Under the assumption that x(t) is collision free, it suffices to show that

for all i ≤ j, ci,j(ξ) 6= 0 for almost every ξ ∈ R, where as in (3.6) and (3.7),

ci,i+1(ξ) = |βi,i+1(ξ)|p − |βi+1,i+1(ξ)|p − |βi,i(ξ)|p,

ci,j(ξ) = |βi,j(ξ)|p + |βi+1,j−1(ξ)|p − |βi+1,j(ξ)|p − |βi,j−1(ξ)|p

for j ≥ i+ 2, and

βi,j(ξ) =

j∑
l=i

ale
iξ∆i,l .

Observe that βi,j is a generalized exponential Laurent polynomial of the form introduced in

Equation 3.12, with degree ∆i,j. Therefore, when j ≥ i + 2, it follows from Lemma 2 that

ci,j vanishes on a set of measure zero since ci,j(ξ) = 0 implies

|βi,j(ξ)|p + |βi+1,j−1(ξ)|p = |βi+1,j(ξ)|p + |βi,j−1(ξ)|p.

In the case where j = i+ 1, we see that

ci,i+1(ξ) = |ai + ai+1e
−iξ∆i,i+1|p − |ai|p − |ai+1|p,

For any ξ such that ci,i+1(ξ) = 0, we see that ξ∆i,i+1 is a solution to

∣∣ai + ai+1e
iθ
∣∣2 − (|ai|p + |ai+1|p)2/p = 0.

Therefore, ci,i+1(ξ) vanishes on a set of measure zero because the left-hand side of the above

equation is a trigonometric polynomial.

Theorem 3 proves our measurements on a sparse signal x with one frequency and enough

scales locate the positions of diracs, i.e., the support of x, up to translation and reflection.

The strategy of selecting the scales is described in Section 3.4.

The following theorems shows with enough frequencies, our measurements also charac-

terize the heights {ai}i of x. Moreover, if the moments p is even, the number of frequencies

needed can be reduced. The proofs of the following theorems are described in appendix.
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Theorem 4. Let p ≥ 1 be an odd integer, let

x(t) =
k∑
j=1

ajδvj(t)

be a collision-free sparse signal, and let ~a = (a1, . . . , ak). Let ξ1, . . . , ξL be L frequencies chosen

independently at random from some probability distribution which is absolutely continuous

with respect to the Lebesgue measure for some L ≥ 4p + 2. Then, with probability one, the

following uniqueness result is true. Let

y(t) =
k∑
j=1

bjδuj(t) (3.17)

be any other sparse signal such that D(y) = D(x), and let ~b = (b1, . . . , bk). If ∂2
sfx,ξ`(d) =

∂2
sfy,ξ`(d) for all d ∈ D(x) and all 1 ≤ ` ≤ L and

∑k
i=1 |bi|p =

∑k
i=1 |ai|p, then ~b = ±~a and

therefore y(t) is equivalent to ±x(t) up to translation and reflection.

Theorem 5. Let p = 2p′ be an even integer, and let

x(t) =
k∑
j=1

ajδvj(t)

be a collision-free sparse signal, and let ~a = (a1, . . . , ak). Let ξ1, . . . , ξL be L frequencies chosen

independently at random from some probability distribution which is absolutely continuous

with respect to the Lebesgue measure for some L ≥ p + 2. Then, with probability one, the

following uniqueness result is true. Let

y(t) =
k∑
j=1

bjδuj(t) (3.18)

be any other sparse signal such that D(y) = D(x), and let ~b = (b1, . . . , bk). If ∂2
sfx,ξ`(d) =

∂2
sfx,ξ`(d) for all d ∈ D(x) and all 1 ≤ ` ≤ L and

∑k
i=1 |bi|p =

∑k
i=1 |ai|p, then ~b = ±~a and

therefore y(t) is equivalent to ±x(t) up to translation and reflection.

3.4 Algorithm

Theorems 3, 4 and 5 shows our measurements characterize the support of a sparse signal

x and the heights of the diracs. In this section, we describe our algorithm that uses such
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measurements to recover the signal (up to translation and reflection). Let x be a sparse

signal that is collision free,

x =
k∑
j=1

ajδvj(t)

Let

fx,ξ(s) = ‖gs,ξ ∗ x‖pp

be the measurements. Let Λ = {(ξj, sj)}j be the set of frequencies and scales we choose

to define the gabor filters. The strategy to choose different scales is discussed in the next

paragraph. With two signals x and x′, we define the loss between them as:

`(x, x′) =
∑

(ξ,s)∈Λ

(fx,ξ(s)− fx′,ξ(s))2

Given a target signal x, our goal is to find a new signal such that

x∗ = arg min
x′

`(x, x′) (3.19)

For simplicity, we choose p = 1 in our algorithm for synthesis.

Now we present a strategy of choosing the right set of scales. Let D(x) = {∆ij = |vi−vj|}

be the pairwise distance between the spikes of x. Since x is collision free, we know ∆ij 6= ∆i′j′

unless (i, j) = (i′, j′) except for ∆ii = 0, ∀i. Therefore, there are k(k−1)/2+1 unique elements

in D(x). Without loss of generality, we suppose 0 = d0 < d1 < · · · < dk(k−1)/2, di ∈ D(x),∀i

in the following context. We also assume x is periodic in numerical experiments. Therefore

dk(k−1)/2 ≤ n
2
. As stated in Theorem 3, fx,ξ(s) is a piecewise linear function of s and the

singularities locate exactly at D(x). When choosing the scales to compute the scattering

statistics, we need to ensure there is at least one scale between di and di+1,∀i. Therefore,

we compute the minimum pairwise distance of D(x), i.e.,

minDD = min
0≤i<k(k−1)/2

|di − di+1|,

and sample scales every minDD from 1 to n
2
. We also insert three scales between n

2
to n to

capture fx,ξ(s) in this interval. With this strategy, the scales are sampled and the relative

positions of the Diracs are captured.
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Figure 3.4 Choosing filter scales depending on the pairwise distance between signal spikes.
Left: A sparse signal with n = 128, three spikes and minDD = 8. Right: The blue spikes
show what are the pairwise distance. The orange spikes show what are the scales we choose.

Figure 3.4 gives one example of how we choose the scales. The left figure shows a signal

x with three spikes, where the spikes are located at u = 34, 78, 110. This gives the pairwise

distance set as D(x) = {0, 32, 44, 52} and minDD = 8. The blue spikes in right figure of

Figure 3.4 show D. With the logic described in the last paragraph, we sample the scales

every 8 integers from 1 to 64, and sample three scales from 65 to 128, which is shown in the

red spikes. As one can see, this strategy ensures there is at least one scale located between

di and di+1 for every i. In our experiment, we find two frequencies are enough to get the

algorithm to converge. Therefore we randomly choose two frequencies when defining the

filters. Our synthesis results are presented in the next section.

To solve the optimization problem in Equation 3.19, we initialize x′ to be a random

uniform noise and use gradient descent to update x′ until the loss is reduced. However,

in experiment, it is hard to match all target statistics together, therefore we propose a

greedy method to randomly match each statistic. We first randomly permute the parameter

set Λ. Then we choose the first {ξi1 , si1} to compute the target statistics and match it,

i.e., use gradient descent to update x′ until `1(x, x′) = (fx,ξi1 (si1) − fx′,ξi1 (si1))
2 is reduced.

Then we add in the next parameters {ξi2 , si2} and update x′ to reduce the loss `1(x, x′) =∑2
j=1(fx,ξij (sij)− fx′,ξij (sij))

2. We repeatedly add in the new parameters after the previous

ones are matched until all parameters are added to promote convergence. After adding in

all statistics and the process is converged, we reshuffle the parameter set Λ and repeat the
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process. This process is repeated several times to avoid local minimum. The next section

shows some of our numerical results.

3.5 Numerical results

Figure 3.5 shows our synthesis results for sparse signals with different number of diracs and

different minDD. Each row shows the result from one single test. The left column shows

the original signals while the right column shows the corresponding synthesized signals. All

signals are successfully synthesized up to translation, reflection or change of sign, proving

the completeness of our selected measurements on sparse signals.

3.6 Conclusion

In this chapter, we proposed a two-layer hybrid scattering model that characterize the sin-

gularities of piecewise polynomials. We proved our second layer measurements can be used

to capture the support and heights of sparse signals. We also designed an algorithm that use

such measurements to recover sparse signals and successfully synthesized the original signals

up to translation and reflection.
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(a) Original k = 2,minDD = 10. (b) Synthesized.

(c) Original k = 2,minDD = 22. (d) Synthesized.

(e) Original k = 3,minDD = 12. (f) Synthesized.

(g) Original k = 5,minDD = 6. (h) Synthesized.

Figure 3.5 Sparse signals reconstructed up to a global reflection and translation. Each row
shows the result from a single test. Left column: Original signals. Right column:
Synthesized signals.
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CHAPTER 4

SCATTERING STATISTICS OF GENERALIZED SPATIAL POISSON
POINT PROCESSES

4.1 Introduction

In the last chapter we presented our work on analyzing the generalized scattering transform

of deterministic sparse signals. In this chapter, we extend our work to stochastic processes.

A lot of signal data in learning tasks can be modelled as a stochastic process, including

texture discrimination [24], texture synthesis [33, 34], time series analysis (e.g., finance) [35],

and wireless networks [36]. In many scenarios it is natural to model the signal data as the

points of a (potentially complex) spatial point process. Furthermore, there are numerous

other fields, including stochastic geometry [37], forestry [38], geoscience [39] and genetics

[40], in which spatial point processes are used to model the underlying generating process

of certain phenomena (e.g., earthquakes). CNNs have shown impressive results on these

tasks. However, precise theoretical understanding of these results is lacking. Motivated by

the existing empirical results, as well as the potential for numerous others in yet untapped

research, we consider the capacity of CNNs to capture the statistical properties of spatial

point processes.

Recall the definitions from Section 2.6. The scattering transform consists of an alternating

cascade of linear wavelet transforms and complex modulus nonlinearities. In this chapter, we

examine a generalized scattering transform that utilizes a broader class of filters, which are

also the filters we used to analyze sparse signals in Chapter 3. But these filters still include

wavelets as a special case. Our main focus is on scattering architectures constructed with

filters that have small spatial support as is the case in most traditional CNNs.

Expected wavelet scattering moments for stochastic processes with stationary increments

were introduced in [41], where it is shown that such moments capture important statistical

34



information of one-dimensional Poisson processes, fractional Brownian motion, α-stable Lévy

processes, and a number of other stochastic processes. In this chapter, we extend the notion

of scattering moments to our generalized architecture, and in the process of doing so, we

recover many of the important small scale results in [41]. However, the main contributions

contained here consist of new results for more general spatial point processes, including

inhomogeneous Poisson point processes, which are not stationary and do not have stationary

increments. The collection of expected scattering moments is a non-parametric model for

these processes, which we prove captures important summary statistics of inhomogeneous,

compound spatial Poisson point processes.

The remainder of this chapter is organized as follows. Expected scattering moments

are introduced in Section 4.2. Sections 4.3 and 4.4 analyze the first-order and second-order

scattering moments of inhomogeneous, compound spatial Poisson point processes. Section

4.5 compares the scattering moments of one-dimensional Poisson processes to two self-similar

processes, fractional Brownian motions and the α-stable process. Section 4.6 presents stylized

numerical examples to highlight certain aspects of the presented theory. A short conclusion is

given in Section 4.8. All proofs are in the appendices, in addition to details on the numerical

work.

4.2 Expected Scattering Moments for Random Signed Measures

Let ψ ∈ L2(R) be a compactly supported mother wavelet with dilations ψj(t) = 2−jψ(2−jt),

let and X(t), t ∈ R, be a stochastic process with stationary increments defined on the real

line. In [41], first-order wavelet scattering moments are defined as SX(j) = E[|ψj ∗ X|],

where the expectation does not depend on t since if X(t) has stationary increments, then

X∗ψj(t) is stationary so long as ψj is a wavelet. Much of the mathematical analysis of wavelet

scattering moments relies on the fact that they can be rewritten as SX(j) = E[|ψj ∗ dX|],

where ψj is the primitive of ψj, i.e., dψj = ψj. This reformulation motivates us to define

scattering moments as the integration of a filter, which is not necessarily a wavelet, against
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a random signed measure Y (dt).

To that end, let w ∈ L2(Rd) be a continuous window function with support contained

in the unit cube [0, 1]d. Denote by ws(t) = w
(
t
s

)
the dilation of w, supported on the cube

Qs = [0, s]d, and set gγ(t) to be the Gabor-type filter with scale s and central frequency

ξ ∈ Rd,

gγ(t) = ws(t)e
iξ·t, γ = (s, ξ), t ∈ Rd . (4.1)

Recall that this is the same type of filter we defined in Section 3.2 from Chapter 3.

For a random signed measure Y (dt) we define the first-order Lp scattering moments,

1 ≤ p <∞, at location t as

S[γ, p]Y (t) := E[|gγ ∗ Y (t)|p] := E
[∣∣∣∣∫

Rd
gγ(t− u)Y (du)

∣∣∣∣p] . (4.2)

Note there is no assumption on the stationarity of Y (du), which is why these scattering

moments a priori depend on t. We define invariant (i.e., location independent) first-order

scattering coefficients of Y by

SY (γ, p) = lim
R→∞

1

(2R)d

∫
|ti|≤R

E[|gγ ∗ Y (t)|p] dt , (4.3)

if the limit on the right hand side exists.

We call Y a periodic measure if there exists T > 0 such that for any Borel set B, the

family of sets B + Tei = {b+ Tei : b ∈ B} satisfies

Y (B)
d
= Y (B + Tei), ∀ 1 ≤ i ≤ d ,

where {ei}i≤d is the standard orthonormal basis for Rd. In this case one can verify, by

approximating gγ with simple functions, that (gγ ∗ Y )(t+ Tei)
d
= (gγ ∗ Y )(t), and therefore

S[γ, p]Y (t+ Tei) = S[γ, p]Y (t), ∀ t ∈ Rd .

Thus the limit in (4.3) exists, and

SY (γ, p) =
1

T d

∫
QT

E[|gγ ∗ Y (t)|p] dt . (4.4)
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Note that in the special case when the distribution of Y (B) depends only on the Lebesgue

measure of B, then S[γ, p]Y (t) is independent of t and the above limit (4.3) exists with

SY (γ, p) = S[γ, p]Y (t) for any t ∈ Rd.

First-order scattering moments compute summary statistics of the measure Y based

upon its responses against the filters gγ. Higher-order summary statistics can be obtained

by computing first-order scattering moments for larger powers p, or by cascading lower-order

modulus nonlinearities as in a CNN. This leads us to define second-order scattering moments

by

S[γ, p, γ′, p′]Y (t) = E
[
||gγ ∗ Y |p ∗ gγ′(t)|p

′
]
.

First-order invariant scattering moments collapse additional information by aggregating the

variations of the random measure Y , which removes information related to the intermittency

of Y . Second-order invariant scattering moments augment first-order scattering moments by

iterating on the cascade of linear filtering operations and nonlinear | · |p operators, thus

recovering some of this lost information. They are defined (assuming the limit on the right

exists) by

SY (γ, p, γ′, p′) = lim
R→∞

1

(2R)d

∫
|ti|≤R

E
[
||gγ ∗ Y |p ∗ gγ′(t)|p

′
]
dt .

The collection of (invariant) scattering moments is a set of non-parametric statistical

measurements of the random measure Y . In the following sections, we analyze these moments

for arbitrary frequencies ξ and small scales s, thus allowing the filters gγ to serve as a model

for the learned filters in CNNs. In particular, we will analyze the asymptotic behavior of the

scattering moments as the scale parameter s decreases to zero.

4.3 First-Order Scattering Moments of Generalized Poisson Pro-
cesses

We consider the case where Y (dt) is an inhomogeneous, compound spatial Poisson point

process. Such processes generalize ordinary Poisson point processes by incorporating variable

charges (heights) at the points of the process and a non-uniform intensity for the locations
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of the points. They thus provide a flexible family of point processes that can be used to

model many different phenomena. In this section we consider first-order scattering moments

of these generalized Poisson processes. In Sec. 4.3.1 we provide a review of such processes,

and in Sec. 4.3.2 we show that first-order scattering moments capture a significant amount of

statistical information related these processes, particularly when using very localized filters.

4.3.1 Inhomogeneous, Compound Spatial Poisson Point Processes

Let λ(t) be a continuous function on Rd such that

0 < λmin := inf
t
λ(t) ≤ ‖λ‖∞ <∞ , (4.5)

and let N(dt) be an inhomogeneous Poisson point process with intensity function λ(t). That

is,

N(dt) =
∞∑
j=1

δtj(dt)

is a random measure, concentrated on a countable set of points {tj}∞j=1, such that for all

Borel sets B ⊂ Rd, the number of points of N in B, denoted N(B), is a Poisson random

variable with parameter

Λ(B) =

∫
B

λ(t) dt , (4.6)

i.e.,

P[N(B) = n] = e−Λ(B) (Λ(B))n

n!
,

and N(B) is independent of N(B′) for all sets B′ that do not intersect B. Now let (Aj)
∞
j=1

be a sequence of i.i.d. random variables independent of N , and let Y (dt) be the random

signed measure that gives charge Aj to each point tj of N , i.e.,

Y (dt) =
∞∑
j=1

Ajδtj(dt) . (4.7)

We refer to Y (dt) as an inhomogeneous, compound Poisson point process. For a Borel

set B ⊂ Rd, Y (B) has a compound Poisson distribution and we will (in a slight abuse of
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notation) write

Y (B) =

N(B)∑
j=1

Aj .

In many of our proofs, it will be convenient to consider the random measure |Y |p(dt) defined

formally by

|Y |p(dt) :=
∞∑
j=1

|Aj|pδtj(dt).

For a further overview of these processes, and closely related marked point processes, we

refer the reader to Section 6.4 of [42].

4.3.2 First-order Scattering Asymptotics

Computing the convolution of gγ with Y (dt) gives

(gγ ∗ Y )(t) =

∫
Rd
gγ(t− u)Y (du) =

∞∑
j=1

Ajgγ(t− tj) ,

which can be interpreted as a waveform gγ emitting from each location tj. Invariant scattering

moments aggregate the random interference patterns in |gγ ∗ Y |. The results below show

that the expectation of these interferences, for small scale waveforms gγ, encode important

statistical information related to the point process.

For notational convenience, we let

Λs(t) := Λ
(
[t− s, t]d

)
=

∫
[t−s,t]d

λ(u) du

denote the expected number of points of N in the support of gγ(t− ·). If λ(t) is a periodic

function in each coordinate with period T , then Λs(t) = Λs(t + Tei) for 1 ≤ i ≤ d and

therefore, the invariant scattering coefficients of Y may be defined as in (4.4).

Theorem 6. Let 1 ≤ p <∞ and suppose that Y (dt) is an inhomogeneous, compound Poisson

point process as defined above, where (Aj)
∞
j=1 is an i.i.d. sequence of random variables,

E[|A1|p] < ∞ and λ(t) is a continuous intensity function satisfying (4.5). Then for every

39



t ∈ Rd, every γ = (s, ξ) such that sd‖λ‖∞ < 1, and for every m ≥ 1.

S[γ, p]Y (t) =
m∑
k=1

e−Λs(t)
(Λs(t))

k

k!
E

[∣∣∣∣∣
k∑
j=1

Ajw(Vj)e
isξ·Vj

∣∣∣∣∣
p]

+ ε(m, s, ξ, t) , (4.8)

where the error term ε(m, s, ξ, t) satisfies

|ε(m, s, ξ, t)| ≤ Cm,p
‖λ‖∞
λmin

‖w‖ppE[|A1|p]‖λ‖m+1
∞ sd(m+1) (4.9)

and V1, V2, . . . is an i.i.d. sequence of random variables, independent of the Aj, taking values

in the unit cube Q1 and with density

pV (v) =
sd

Λs(t)
λ(t− vs) , v ∈ Q1 .

The main idea of the proof of Theorem 6 is to condition on N
(
[t− s, t]d

)
, which is the

number of points in the support of gγ, and to use the fact that

P
[
N
(
[t− s, t]d

)
> m

]
= O

((
sd‖λ‖∞

)m+1
)
, ∀ sd‖λ‖∞ < 1 .

Theorem 6 shows that even at small scales the scattering moments S[γ, p]Y (t) depend upon

higher-order information related to the distribution of the points, encapsulated by the term

(Λs(t))
k, regardless of the scattering moment p. However, the influence of the higher-order

terms diminishes rapidly as the scale of the filter shrinks, which is indicated by the bound

(4.9) on the error function. Theorem 6 also shows that pth scattering moments depend on

the pth moments of the charges, (Aj)
∞
j=1. The next result uses Theorem 6 to examine the

behavior of scattering moments for small filters in the asymptotic regime as the scale s→ 0.

Theorem 7. Let 1 ≤ p < ∞, and suppose that Y (dt) is an inhomogeneous, compound

Poisson point process satisfying the same assumptions as in Theorem 6. Let γk = (sk, ξk) be

a sequence of scale and frequency pairs such that limk→∞ sk = 0. Then

lim
k→∞

S[γk, p]Y (t)

sdk
= λ(t)E[|A1|p]‖w‖pp . (4.10)

Furthermore, if λ(t) is periodic with period T along each coordinate, then

lim
k→∞

SY (γk, p)

sdk
= m1(λ)E[|A1|p]‖w‖pp, where m1(λ) =

1

T d

∫
QT

λ(t) dt . (4.11)
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Theorem 7 is proved via asymptotic analysis of the m = 1 case of Theorem 6. The key

to the proof, which is similar to the technique used to prove Theorem 2.1 of [41], is that

in a small cube [t − s, t]d there is at most one point of N with overwhelming probability.

Therefore, when s is very small, with very high probability, |gγ ∗ Y |p(t) = (|gγ|p ∗ |Y |p) (t).

This theorem shows that for small scales the scattering moments S[γ, p]Y (t) encode the

intensity function λ(t), up to factors depending upon the summary statistics of the charges

(Aj)
∞
j=1 and the window w. Recall that Λ(B), defined in (4.6), determines the concentration

of events within the set B. Thus even a one-layer location dependent scattering network

yields considerable information regarding the underlying data generation, at least in the case

of inhomogeneous Poisson processes. However, it is often the case, e.g., [43], that invariant

statistics are utilized. In this case (4.11) shows that invariant scattering statistics mix the

mean of λ(t) and the pth moment of the charge magnitudes. However, we can decouple these

statistics as we now explain.

As a special case, Theorem 7 proves that for non-compound inhomogeneous Poisson

processes (i.e., Aj = 1 for all j ≥ 1), small scale scattering moments recover λ(t) or m1(λ),

depending on whether one computes invariant or time-dependent scattering moments. For

compound processes, we can add an additional nonlinearity, namely the signum function

sgn, which when applied to the Poisson point process in (4.7) yields,

Y (dt) = sgn[Y (dt)] =
∞∑
j=1

δtj(dt) .

Thus computing SY (γ, p) and the ratio SY (γ, p)/SY (γ, p) at small scales decouples the

mean of λ(t) from the pth moment of |A1|. We remark that the signum function is a simple

perceptron and is closely related to the sigmoid nonlinearity, which is used in many neural

networks. We further remark that the computation of SY constitutes a small two-layer

network, consisting of the nonlinear sgn function, the linear filtering by the collection of

filters gγ, the nonlinear pth modulus | · |p, and the linear integration operator.

If Y (dt) is a homogeneous Poisson process, then λ(t) is constant, meaning that (4.10) and
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(4.11) are equivalent. In the case of ordinary (non-compound) Poisson processes, Theorem

7 recovers the constant intensity. For periodic λ(t) and invariant scattering moments, the

effect of higher-order moments of λ(t) can be partially isolated by considering higher-order

expansions (e.g., m > 1) in (4.8). The next theorem considers second-order expansions and

illustrates their dependence on the second moment of λ(t).

Theorem 8. Let 1 ≤ p < ∞, and suppose Y (dt) is an inhomogeneous, compound Poisson

point process satisfying the same assumptions as in Theorem 6. If λ(t) is periodic with period

T in each coordinate, and if (γk)k≥1 = (sk, ξk)k≥1, is a sequence of scale and frequency pairs

such that limk→∞ sk = 0 and limk→∞ skξk = L ∈ Rd, then

lim
k→∞

(
SY (γk, p)

s2d
k E[|A1|p]E[|Vk|p]

− 1

T d

∫
QT

Λsk(t)

s2d
k

dt

)

= m2(λ)

(
E
[∣∣A1w(U1)eiL·U1 + A2w(U2)eiL·U2

∣∣p]
2‖w‖ppE[|A1|p]

)
, (4.12)

where m2(λ) = T−d
∫
QT
λ(t)2 dt; U1, U2 are independent uniform random variables on Q1;

and (Vk)k≥1 is a sequence of random variables independent of the Aj taking values in the

unit cube Q1 and with respective densities,

pVk(v) =
sdk

Λsk(t)
λ(t− vsk) , v ∈ Q1 .

We first remark that the scale normalization on the left hand side of (4.12) is s−2d,

compared to a normalization of s−d in Theorem 7. Thus even though (4.12) is written as a

small scale limit, intuitively Theorem 8 is capturing information at moderately small scales

that are larger than the scales considered in Theorem 7. This is further indicated by the

term multiplied against m2(λ) on the right hand side of (4.12), which depends on two points

of the process (as indicated by the presence of two charges A1 and A2).

Unlike Theorem 7, which gives a way to compute m1(λ), Theorem 8 does not allow one

to compute m2(λ) since it would require knowledge of Λsk(t) in addition to the distribution

from which the charges (Aj)
∞
j=1 are drawn. However, Theorem 8 does show that at mod-

erately small scales the invariant scattering coefficients depend non-trivially on the second
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moment of λ(t). This behavior at moderately small scales can be used to distinguish be-

tween, for example, an inhomogeneous Poisson point process with intensity function λ(t) and

a homogeneous Poisson point process with constant intensity λ0 = m1(λ), whereas Theorem

7 indicates that at very small scales the two processes will have the same invariant scattering

moments.

4.4 Second-Order Scattering Moments of Generalized Poisson Pro-
cesses

We prove that second-order scattering moments, in the small scale regime, encode higher-

order moment information about the charges (Aj)
∞
j=1.

Theorem 9. Let 1 ≤ p, p′ <∞ and q = pp′. Suppose that Y (dt) is an inhomogeneous Pois-

son point process satisfying the same assumptions as in Theorem 6 as well as the additional

assumption that E|A1|q <∞. Let γk = (sk, ξk) and γ′k = (s′k, ξ
′
k) be two sequences of scale and

frequency pairs such that s′k = csk for some fixed constant c > 0 and limk→∞ skξk = L ∈ Rd.

Then,

lim
k→∞

S[γk, p, γ
′
k, p
′]Y (t)

s
d(p′+1)
k

= Kλ(t)E[|A1|q] , (4.13)

where

K :=
∥∥gc,L/c ∗ |g1,0|p

∥∥p′
p′
,

is a constant depending on p, p′, c, L, and w. Furthermore, if λ(t) is periodic with period T

along each coordinate, then

lim
k→∞

SY (γk, p, γ
′
k, p
′)

s
d(p′+1)
k

= Km1(λ)E[|A1|q] . (4.14)

Note that the scaling factor s−d(p′+1) depends on p′ but not p. Intuitively this corresponds

to the behavior ‖|gγk |p ∗ gγ′k‖
p′

p′ ≈ s
d(p′+1)
k as sk → 0. Theorem 9 proves that second-order

scattering moments capture higher-order moments of the charges (Aj)
∞
j=1 via two pairs of

lower-order filtering and modulus operators. If p, p′ > 1, then q = pp′ will be larger than
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either p or p′ and the result above will give us information about the higher order moment

E|A1|q.

It is also useful to consider the p = 1 case. Indeed, in Sec. 4.5 below it is shown that first-

order invariant scattering moments can distinguish Poisson point processes from fractional

Brownian motion and α-stable processes, if p = 1, but may fail to do so for larger values of

p. However, Theorem 7 shows that first-order invariant scattering moments for p = 1 will

not be able to distinguish between the various different types of Poisson point processes with

a one-layer network at very small scales. Theorem 9 shows that a second-order calculation

that augments the first-order calculation with p = 1 and p′ > 1, will capture a higher-order

moment of the charges (Aj)
∞
j=1.

4.5 Poisson Point Processes Compared to Self Similar Processes

For one-dimensional processes (i.e., d = 1), we show that first-order invariant scattering

moments can distinguish between inhomogeneous, compound Poisson point processes and

certain self-similar processes. In particular, we show that if X(t) is either an α-stable pro-

cess or a fractional Brownian motion (fBM), then the corresponding first-order scattering

moments will have different asymptotic behavior for infinitesimal scales than in the case of a

Poisson point process. Similar results were initially reported in [41]; here we generalize those

results to the non-wavelet filters gγ defined in (4.1) and for general pth scattering moments,

and further clarify their usefulness in the context of the new results presented in Sec. 4.3 and

Sec. 4.4. As in [41], the proof will be based on the scaling relationships of these processes

and therefore will not be able to distinguish between α-stable processes and fBM1. The key

will be proving a lemma that says if a stochastic process X has a scaling relation, then that

scaling relation is inherited by integrals of deterministic functions against dX.

More precisely, for a stochastic process X(t), t ∈ R, we consider the convolution of the

1We note that [41] proves that second-order scattering moments defined with wavelet filters do distinguish
between α-stable processes and fBM, but we do not pursue this direction in this project as we are concerned
primarily with point processes.
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filter gγ with the noise dX defined by

gγ ∗ dX(t) =

∫
R
gγ(t− u) dX(u) ,

and define (in a slight abuse of notation) the first-order scattering moments at time t by

S[γ, p]X(t) = E[|gγ ∗ dX(t)|p] . (4.15)

In the case where X(t) is a compound, inhomogeneous Poisson (counting) process, Y = dX

will be a compound Poisson random measure and the scattering moments defined in (4.15)

will coincide with the first-order scattering moments defined in (4.2).

The following two theorems analyze the small scale first-order scattering moments when

X is either an α-stable process, for 1 < α ≤ 2, or fractional Brownian motion. Thus dX

will be stable Lévy noise or fractional Gaussian noise, respectively. These results show that

the asymptotic decay of the corresponding scattering moments is guaranteed to differ from

Poisson point processes, in the case p = 1. We also note that both α-stable processes and

fBM have stationary increments; therefore the scattering moments do not depend on time

and

S[γ, p]X(t) = SX(γ, p) = lim
R→∞

1

2R

∫
|u|≤R

E[|gγ ∗ dX(u)|p] du , ∀ t ∈ R .

Theorem 10. Let 1 ≤ p < ∞ and suppose X(t) is a symmetric α-stable process for some

p < α ≤ 2. Let γk = (sk, ξk) be a sequence of scale and frequency pairs such that limk→∞ sk =

0 and limk→∞ skξk = L ∈ R. Then,

lim
k→∞

SX(γk, p)

s
p/α
k

= E
[∣∣∣∣∫ 1

0

w(u)eiLu dX(u)

∣∣∣∣p] .
Theorem 11. Let 1 ≤ p < ∞, suppose X(t) is a fractional Brownian motion with Hurst

parameter 0 < H < 1. Assume that the window function w has bounded variation on [0, 1],

and let γk = (sk, ξk) be a sequence of scale and frequency pairs such that limk→∞ sk = 0 and

limk→∞ skξk = L ∈ R. Then,

lim
k→∞

SX(γk, p)

spHk
= E

[∣∣∣∣∫ 1

0

w(u)eiLu dX(u)

∣∣∣∣p] .
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The key to proving Theorem 10 and Theorem 11 is the lemma stated in Appendix 7.3,

which shows that if X(t) is a self-similar process, then, then stochastic integrals against dX

satisfy an identity corresponding to the scaling relation of X(t).

Together, these two theorems indicate that first-order invariant scattering moments dis-

tinguish inhomogeneous, compound Poisson processes from both α-stable processes and frac-

tional Brownian motion except in the cases where p = α or p = 1/H. In particular, if X is

a Brownian motion, then SX will distinguish X from a Poisson point process except in the

case that p = 2. For this reason, it appears that p = 1 is the best choice of the parameter p

for the purposes of distinguishing a Poisson point process from a self-similar process. In the

case of a multi-layer network, it is advisable to set p = 1. Larger values of p′ in the second

layer can then allow us to determine the higher moments of the arrival heights (Aj)
∞
j=1.

4.6 Numerical Illustrations

We carry out several experiments to numerically validate the previously stated results and

to illustrate their capacity for distinguishing between different types of random processes.

In all of the experirments below, we will hold the frequency ξ constant while we let the scale

s decrease to zero.

4.6.1 Homogeneous, compound Poisson point processes with the same intensi-
ties

We generated three different types of homogeneous compound Poisson point processes, all

with the same intensity λ(t) ≡ λ0 = 0.01. The three point processes are Y1 (ordinary), Y2

(Gaussian), and Y3 (Rademacher), where the charges are sampled according to (A1,j)
∞
j=1 ≡

1, (A2,j)
∞
j=1 ∼ N (0,

√
π/2), and (A3,j)

∞
j=1 ∼ Rademacher distribution (i.e., ±1 with equal

probability). The charges of the three signals have the same first moment E[|Ai,j|] = 1

and different second moment with E[|A1,j|2] = E[|A3,j|2] = 1 and E[|A2,j|2] = π
2
. Theorem

7 thus predicts that p = 1 invariant first-order scattering moments will not be able to
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distinguish between the three processes, but p = 2 invariant first-order scattering moments

will distinguish the Gaussian Poisson point process from the other two. Figure 4.1 illustrates

this point by plotting the normalized invariant scattering moments for p = 1 and p = 2.

Figure 4.1 First-order invariant scattering moments for three types of homogeneous com-
pound Poisson point processes with the same intensity λ0. Left: Top: ordinary Poisson
point process. Middle: Gaussian compound Poisson point process with normally distributed
charges. Bottom: Rademacher compound Poisson point process with charges drawn from the
Rademacher distribution. Middle: Normalized invariant scattering moments SY (s,ξ,1)/s‖w‖1
(i.e., p = 1), which all converge to 0.01 as s → 0 (up to numerical errors) since λ0E[|A1|]
is the same for all three point processes. Right: Normalized invariant scattering moments
SY (s,ξ,2)/s‖w‖22 (i.e., p = 2). In this case the ordinary Poisson point process and the Rademacher
Poisson point process still converge to the same value as s → 0 since E[|A1|2] = 1 for both
of them. However, the Gaussian Poisson point process converges to a different value since
E[|A1|2] = π/2 for this process.

4.6.2 Homogeneous, compound Poisson point processes with different intensi-
ties and charges

We consider two homogeneous, compound Poisson point processes with different intensities

and different charge distributions, but which nevertheless have the same first-order invariant

scattering moments with p = 1 due to the mixing of intensity and charge information in

(4.11). The first compound Poisson point process has constant intensity λ1 = 0.01 and

charges A1,j ∼ N (0, 1), whereas the second has intensity λ2 = 0.01/
√

2 and A2,j ∼ N (0, 2).

In this way, λ1E[|A1,j|] = λ2E[|A2,j|] = 0.01 ·
√

2/π ≈ 0.008, but λ1E[|A1,j|2] = 0.01 and

λ2E[|A2,j|2] = 0.01·
√

2 ≈ 0.014. Figure 4.2 plots the normalized invariant scattering moments

for p = 1 and p = 2.
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Figure 4.2 First-order invariant scattering moments for two homogeneous, Gaussian com-
pound Poisson point processes with different intensity and variance. Left: Top: Homoge-
neous compound Poisson point process with intensity λ1 = 0.01 and charges A1,j ∼ N (0, 1).
Bottom: Homogeneous compound Poisson point process with intensity λ2 = 0.01/

√
2 and

charges A2,j ∼ N (0, 2). The two point processes are difficult to distinguish, visually. Mid-
dle: Normalized invariant scattering moments SY (s,ξ,1)/s‖w‖1 (i.e., p = 1), which both converge
to approximately 0.08 up to numerical error, thus indicating that these moments cannot dis-
tinguish the two processes. Right: Normalized invariant scattering moments SY (s,ξ,2)/s‖w‖22
(i.e., p = 2). The two process are distinguished as s→ 0 since the values λ1E[|A1,j|2] = 0.01
and λ2E[|A2,j|2] ≈ 0.014 differ by a significant margin.

4.6.3 Inhomogeneous, non-compound Poisson point processes

We also consider inhomogeneous Poisson point processes. We use the intensity function

λ(t) = 0.01(1 + 0.5 sin(2πt/N)) to generate inhomogeneous process. To estimate S[γ, p]Y (t),

we average the modulus of the scattering transform at time t over 1000 realizations. Figure

4.3 plots the scattering moments for inhomogeneous process at different time.

Figure 4.3 First-order invariant scattering moments for inhomogeneous non-compound Pois-
son point processes. Left: Inhomogeneous non-compound Poisson point process with inten-
sity λ(t) = 0.01(1 + 0.5 sin(2πt/N)). Right: Scattering moments S[γ,p]Y (t)/s‖w‖pp for inhome-
geneous non-compound Poisson point process at t1 = N/4, t2 = N/2, t3 = 3N/4. Note that
λ(t1) = 0.015, λ(t2) = 0.01, λ(t3) = 0.005. The plots show that for inhomogeneous process,
scattering coefficients at time t converges to the intensity at that time.
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Figure 4.4 First-order invariant scattering moments for Brownian motion and Poisson point
process. Left: Top: Brownian motion with Hurst parameter H = 1/2. Bottom: Ordi-
nary Poisson point process. Middle: Normalized scattering moments for Brownian Motion
(SXBM (s,ξ,1)/‖w‖2E|Z|) and Poisson point process (SYpoisson(s,ξ,1)/λE|A|‖w‖1) at p = 1. This shows
the convergence rate of normalized scattering is

√
s for Brownian motion and s for Pois-

son process, indicating the 1st moment can distinguish Brownian motion and Poisson point
process. Right: Normalized scattering moments for Brownian Motion (SXBM (s,ξ,2)/‖w‖22) and
Poisson point process (SYpoisson(s,ξ,2)/‖w‖22) at p = 2. Both normalized scattering moments have
convergence rate s, so the 2nd moment scattering cannot distinguish the two processes.

4.6.4 Homogeneous, non-compound Poisson point process and self similar pro-
cess

We consider Brownian motion with Hurst parameter H = 1
2
and compare it with Poisson

point process with intensity λ = 0.01 and charges (A)∞j=1 ≡ 10. Figure 4.4 shows that the

2nd moments cannot distinguish between Brownian motion and Poisson point process while

the 1st moments can.

4.7 Scattering GAN

We are also interested in the capacity of scattering moments on Poisson point processes.

Ideally, we want to generate new signals through the scattering measurements and show the

realizations are from the given Poisson point process. We are less interested in synthesizing

one specific realization of the process but more interested in generating new realizations

through the distribution of scattering moments. Therefore, instead of minimizing the `2 loss

between scattering coefficients, which we did in Chapter 3, we use a GAN model to study

the high dimensional distribution of the scattering moments. Figure 4.5 shows the structure

of our model, where we insert a scattering propagator S between the generator G and the
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Figure 4.5 Scattering-GAN to study the capacity of scattering moments on Poisson point
process. Similar to ordinary GAN, the generator takes in a random vector z and generates
fake data y′. Also, the discriminator aims to distinguish fake representations from real. By
inserting a scattering module between G and D, the discriminator tries to distinguish S(y′)
from S(y). When the model trains successfully, S(y′) has the same distribution as S(y). By
checking the similarity between y′ and y, we learn the capacity of scattering moments.

discriminator D.

Given realizations {yi}i from a Poisson point process Y , suppose their scattering moments

{S(yi)}i are samples from an unknown high dimensional distribution PS. In the scattering

model, the discriminator tries to distinguish between the real scattering coefficients S(yi) and

fake ones S(y′i), while the generator is generating signals y′i that have scattering coefficients

S(y′i) that match S(yi). Figure 4.6 shows the generated signals from the scattering GAN

through a numerical experiment.

4.8 Conclusion

We have constructed Gabor-filter scattering transforms for random measures on Rd, and

stochastic processes on R. Our construction is closely related to [41], but extends their work

in several important ways. First, while our Gabor-type filters include dyadic wavelets as

a special case, they also include many other families of filters. We also do not assume

that the random measure Y is stationary, and consider compound, possibly inhomogeneous,

Poisson random measures on Rd, in addition to ordinary Poisson processes on R. We do

note however, that [41] provides a detailed analysis of self-similar processes and multifractal
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Figure 4.6 Generated signals through scattering GAN. We use realizations with length n =
212 from a homogeneous ordinary Poisson point process, i.e., λ(t) ≡ λ0 and Ai ≡ 1, as
training data. We use {2j/2}22

j=0 as scales for filters and apply a one-layer scattering operator
to compute the scattering moments. Sigmoid is applied at the last layer in the generator.
The generated signals are sparse, although not as sparse as training data. This is natural
since Sigmoid forces A′i ∈ (0, 1), thus E[A′i] < E[Ai]. According to theorem 6, λ′0 > λ0, which
we verified numerically.
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random measures, whereas we have primarily focused on models of random sparse signals.

We believe the results presented here open up several avenues of future research. Firstly, we

have assumed throughout most of this chapter that the points of our random measures were

distributed according to a possibly inhomogenous Poisson process. It would be interesting

to discover if our measurements can distinguish these signals from other point processes.

Secondly, it would be interesting to explore the use of these measurements for a variety of

machine learning tasks such as synthesizing new signals. In the next chapter, we describe

our work on using similar measurements for texture image synthesis.

52



CHAPTER 5

TEXTURE SYNTHESIS VIA PROJECTION ONTO MULTISCALE,
MULTILAYER STATISTICS

5.1 Introduction

In the last chapter, we presented our work on generalized scattering transforms of stochastic

processes. In practice, one class of signals that can be modeled by stochastic processes is

texture images. This is motivated from the fact that texture images usually contain a type

of random repetition of a potentially complex pattern. A natural task about texture images,

which is related to the completeness of a model, is the texture synthesis problem. This

task asks one to generate new, perceptually accurate, texture images given a limited (often

single) realization of the texture class in question. Within the field of image generative

models, the texture synthesis problem is appealing because it allows for types of statistical

analysis that are not possible in general image generation. Recent works have proposed to

use generative adversarial networks (GANs) [44] to perform texture synthesis and related

tasks [45, 46, 47, 48]. GANs are also used to expand non-stationary texture images [49],

proving the ability to capture large scale structures. Classically, texture synthesis models

fall into two categories [50]: (i) non-parametric patch rearrangement methods that extract

microscopic patterns from the reference image and randomly arrange these patterns in a new

image; and (ii) parametric statistic-matching models that extract a set of empirical statistics

from the reference texture, and generate a new image by selecting a random image with a

similar statistical profile.

This chapter addresses the second type of model based on statistical matching. In [51, 52],

the authors reproduce micro-textures by randomizing the phase of Fourier coefficients of the

input texture. In some other works, the filtered responses of texture images are matched

based on the maximum entropy principle [53, 54, 55, 56]. Such statistical models have two
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challenges: (i) What is the set of statistics needed to characterize a large class of textures?

and (ii) Given the statistical profile of a reference image, how does one generate a random

image with the same statistical profile? Gatys and collaborators [3] had great success in

addressing these two challenges by extracting the covariance statistics of the filter responses

at various layers of the VGG-19 network [1], and then generating a new image with matching

statistics via back-propagation and stochastic gradient descent, which is reviewed in Section

2.4. This work in turn inspired several subsequent methods, including [15, 57, 58, 59].

Despite the success of [3], though, the model is not perfect and many open questions

remain for statistics-based texture synthesis models. Indeed, in a follow up paper [60], it is

observed that high quality texture images can be synthesized using only a one-layer network

with random, multiscale filters and rectified linear unit (ReLU) nonlinearity. The combina-

tion of the two papers [3, 60] raises questions with respect to the trade-off between network

depth and the sizes of the receptive fields of the filters in the network. Additionally, putting

the use of random filters aside, the use of a single layer of multiscale filters parallels classical

work in the field that uses the statistics of multiscale wavelet coefficients to synthesize tex-

tures [61, 53, 2, 62]. Multi-scale CNN models are also designed to maintain high resolution

in texture synthesis [63, 64]. Among these methods, the algorithm of Portilla and Simoncelli

[2] is particularly notable for its use of statistics based on the modulus and phase of com-

plex wavelet valued coefficients, in addition to its impressive performance which is often still

bench-marked against today.

In this chapter we propose a multiscale, multilayer, nonlinear feature extractor for images

based upon real-valued wavelet transforms, which in turn yields a set of statistics for use in

texture synthesis. In addition to drawing inspiration from Portilla and Simoncelli [2] and

Gatys et al. [3], the model presented in this chapter also draws upon ideas from the wavelet

scattering transform [10], which itself has shown good results for the synthesis of gray-scale

textures [43]. Nevertheless, our algorithm has several novel aspects that we use to investigate

the texture synthesis problem, and which provide insight into image feature extraction via
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convolutional networks. More specifically:

• We provide an analysis of the types of filters required to obtain good synthesis results

when combined with the ReLU nonlinearity.

• We investigate the trade-off between network depth and the maximum scale of the

wavelet filters.

• We propose a CNN architecture that uses the ReLU nonlinearity and is provably

invertible at each layer, which in turn allows us to adapt the projection synthesis

algorithm of [2] to our setting.

• We demonstrate our theoretical findings numerically through example synthesized im-

ages, and also compare our results to [2] and [3].

In Section 5.2 we present our statistical model in detail, while Section 5.3 describes

our synthesis algorithm. Section 5.4 provides detailed numerical results, and Section 5.5

introduces implementation details. Section 5.6 contains a short conclusion.

5.2 Model

Set T2 := [−T, T ]2 and R+ := [0,∞), and let x : T2 → R+ be a texture image, which we shall

assume is in L2(T2). A statistics-based matching algorithm for texture synthesis specifies

a family of (nonlinear) functions Uk : L2(T2) → L2(T2) and extracts a family of empirical

statistics Sx from x based on

Sx = (Skx)k , Skx :=
1

(2T )2

∫
T2

Ukx(u) du .

A new texture y ∈ L2(T2) is synthesized by drawing y from the set of images with similar

statistical profiles:

y ∼ Ix := {z ∈ L2(T2) : ‖Sz − Sx‖ ≤ ε} . (5.1)

If x ∼ X, where (X(u))u∈T2 is a stochastic process, and if UkX is stationary and ergodic,

then Skx → E[UkX] as T → ∞. Thus, we can think of Skx as approximating the statistics

E[UkX] of the unknown process that generated x.
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The model (5.1) is appealing because the statistical profile Sx determines the texture

class. It is thus paramount to determine a good set of functions (Uk)k, and hence statistics

(Sk)k, the pursuit of which has ramifications in human and computer vision [65, 66, 67].

The method of Portilla and Simoncelli [2] defines the majority of their statistics by lever-

aging a complex valued wavelet transform and extracting statistics from the modulus and

phase of the resulting wavelet coefficients. The first layer of our model also uses multiscale

wavelet filters, but they are real valued and we replace the modulus and phase nonlinearities

with the ReLU nonlinearity. In Sections 5.2.1 and 5.2.2 we explain how the proper selection

of such wavelet filters, though, when combined with ReLU, can distinguish between certain

types of patterns in the same way that modulus and phase can.

On the other hand, Gatys et al. [3] define their statistics using the Gram matrices of

the filter responses at various layers in the VGG-19 network. The receptive field of the

filters of the VGG-19 network are small, only 3 × 3 pixels, but the depth and pooling of

the VGG-19 network allows such statistics to still capture complex multiscale patterns in

texture images. Akin to the VGG network, in Section 5.2.3 we expand our set of functions

Uk by computing a second wavelet transform and ReLU nonlinearity. Such a procedure is

inspired by the wavelet scattering transform [10], but as we will describe differs from the

scattering transform in several significant ways.

5.2.1 Wavelet filters

Let x̂(ω), for frequencies ω ∈ Ω := {πk/T : k ∈ Z2} ⊂ R2, denote the Fourier transform

of x: x̂(ω) :=
∫
T2 x(u)e−iu·ω du. A wavelet ψ ∈ L2(T2) is an oscillating waveform that is

localized in both space and frequency and has zero average. Inspired by previous work in

wavelet based image processing, as well as recent analyses of the filters of the VGG network

[68], we make use of three types of wavelets. Figure 5.1 shows the three wavelet families and

we will define the wavelets in the following context.

The first two are directional wavelet filters. We select one even directional filter and one
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Figure 5.1 Wavelet families. Upper: Even directional wavelets in space and frequency
(FFT). Middle: Odd directional wavelets in space and frequency (FFT). Lower: Omnidi-
rectional wavelets in space and frequency (FFT). Each block shows the wavelet family with
different scales and oscillations.
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odd directional filter:

ψe(u) := g(u) cos(ξ · u) ,

ψo(u) := g(u) sin(ξ · u) ,

where g is an even window function and ξ ∈ R2 is the central frequency of the wavelets.

These wavelets oscillate in the direction ξ and have localized Fourier transforms around ξ

and −ξ. These wavelets are rotated to obtain waveforms oscillating in different directions:

ψβθ (u) := ψβ(R−1
θ u) , β ∈ {e, o} ,

where Rθ ∈ SO(2) is the 2× 2 rotation matrix about the angle θ ∈ [0, π). We use M angles

θ ∈ ΘM := {mπ/M : 0 ≤ m < M}.

The third type of wavelet is based on the polar coordinate representation u = (r, ϕ) ∈

[0,∞)× [0, 2π), and oscillates along the angle parameter ϕ:

ψp` (u) := a`(u) cos(`ϕ) ,

where ` ∈ Z is the frequency of oscillation along the angle ϕ. If a`(u) = ã`(r), then the

function a` determines the frequency of oscillation of the filter along the radial parameter.

In this case, |ψ̂p(ω)| has an essential support in the shape of an annulus and the filter is

omnidirectional. We restrict 0 ≤ ` < L and select a`(u) = ã`(r) to be an oscillatory function

that oscillates at a frequency approximately proportional to L − 1 − `, ensuring that the

overall frequency support of ψp` is approximately fixed.

Directional filters such as ψeθ and ψoθ are common in image processing and various analyses

of CNN filters, e.g., [68], have shown that commonly used CNNs learn directional filters. In

Section 5.2.2 we will motivate the seemingly redundant choice of using both an even and odd

directional wavelet filter. By examining the filters of the VGG-19 network, though, one also

finds omnidirectional filters. In practice (see Section 5.4) we find that such filters improve

the quality of synthesized textures in which the image patterns do not align with a small

subset of directions.
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All wavelets are dilated at dyadic scales to obtain a multiscale family of waveforms:

ψβj,α(u) := 2−2jψβα(2−ju) , j ∈ Z , (α, β) ∈ {(θ, e), (θ, o), (`, p)} .

In our experiment, for directional wavelets, we use g = gσ as a gaussian function with

variance σ2. For the three wavelets, they all have local support both in space and frequency.

As j increase from 0 to J − 1 (from left to right in each block in Figure 5.1), the wavelet

has larger support in space and smaller support in frequency. For directional wavelets, the

wavelet support varies in directions with rotations (from top to bottom in each block) to

capture directional oscillations in images. For omnidirectional wavelets, the wavelet either

oscillates radially or angularly or both. The total number of oscillations is fixed across the

four wavelets.

Numerically, we may assume that x̂(ω) is supported on frequencies ω contained in

[−π, π]2. By design the collection of wavelet filters have collective frequency support in

a ball, which we can assume is the frequency ball of radius π. In this case we complement

the wavelet filters with two additional filters: (i) a non-negative low pass filter φ ∈ L2(T2)

that has Fourier transform essentially supported around the origin (since wavelets have zero

average); and (ii) a high pass filter h ∈ L2(T2) that has Fourier transform essentially sup-

ported outside of the frequency ball {ω ∈ Ω : |ω| ≤ π} (in other words, ĥ is supported in the

“corners” of [−π, π]2). The scales 2j of the wavelet filters are restricted to 0 ≤ j < J , where

J ≤ Jmax = O(log2 T ), and we dilate φ to the scale 2J via φJ(u) := 2−2Jφ(2−Ju).

The wavelet transform we use in this chapter computes the convolution of x with all the

aforementioned filters:

WJx := {x ∗ φJ , x ∗ h , x ∗ ψβj,α :

0 ≤ j < J, (α, β) ∈ {(θ, e), (θ, o), (`, p)}, θ ∈ ΘM , 0 ≤ ` < L} .

A group of filters {fk}k is said to form a frame for signals x such that supp(x̂) ⊂ [−π, π]2

if there exists two constants 0 < A ≤ B < +∞ such that:

A ≤
∑
k

|f̂k(ω)|2 ≤ B , ∀ω ∈ Ω ∩ [−π, π]2 .
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We can define the dual filters as ̂̃fk(ω) := f̂k(ω)∑
k |f̂k(ω)|2

. An image x can be reconstructed from

its filtrations by the filters {fk}k using the dual filters {f̃k}k and the formula:

x =
∑
k

x ∗ fk ∗ f̃k . (5.2)

For appropriately chosen parameters, the collection of filters used to define the wavelet

transform WJ forms a frame. As such, we can recover x from WJx using (5.2). This

property will be important in Section 5.3 for developing an algorithm by which to synthesize

a new texture.

5.2.2 First layer statistics

We extract directly from the image x the mean, variance, skewness, and kurtosis of the

image intensities (x(u))u∈T2 , in addition to the min/max intensities. We then consider the

low pass filtering x ∗ φJ . Since x(u) ≥ 0 and φJ(u) ≥ 0, the mean of x ∗ φJ is proportional

to the mean of x and does not need to be computed. We do add in the variance of the

values (x ∗ φJ(u))u∈T2 to Sx. We also add in the variance of the high pass coefficients

(x ∗ h(u))u∈T2 . These statistics are also used by Portilla and Simoncelli, and one can find

additional motivation for their usefulness in [2].

In order to simplify notation, let λ = (j, α, β) ∈ Λ be any admissible triplet for the

wavelets ψβj,α described in Section 5.2.1, and denote these wavelets by ψλ. Like the low pass

coefficients and the high pass coefficients, we could compute only the variance of the values

(x ∗ψλ(u))u∈T2 , but in doing so we would miss important correlations between patterns in x

at different scales, orientations, and angular frequencies, as captured by our wavelets. In fact,

results in [43] indicate that the using only the variance of wavelet coefficients does not result

in good texture synthesis for certain types of textures. An alternative would be to compute

the covariance between x ∗ ψλ and x ∗ ψλ′ , but the frequency localization of the wavelets

means that such statistics will be nearly zero, and hence meaningless, for most pairs (λ, λ′).

One possible solution is to apply a pointwise nonlinear function σ : R→ R+ to the wavelet
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coefficients, effectively pushing the high frequencies of x∗ψλ down to the low frequencies for

each λ, which in turn generates non-trivial correlations between x ∗ ψλ and x ∗ ψλ′ . In [2],

Portilla and Simoncelli decompose complex-valued wavelet coefficients into their modulus

and phase (two nonlinear transforms), and compute covariance-type statistics of the wavelet

modulus coefficients and of the phase coefficients. More recently, Zhang and Mallat [69]

developed a wavelet phase harmonic nonlinear transform (also for complex wavelets) and

used the resulting covariance statistics for texture synthesis of select gray-scale textures.

In this work we set σ(t) := max(0, t), which is the rectified linear unit (ReLU) nonlin-

earity. In order to obtain an invertible transform, we also multiply the wavelet coefficients

by ±1, thus yielding the nonlinear wavelet transform:

U1
Jx := {x ∗ φJ , x ∗ h , σ(γ · x ∗ ψλ) : γ = ±1, λ ∈ Λ} .

Since t = σ(t) − σ(−t), one can recover WJx from U1
Jx and hence one can recover x using

(5.2). We compute the Gram matrix correlation statistics between all pairs of nonlinear

coefficients in U1
Jx,

C1
x(λ, γ, λ′, γ′) :=

1

(2T )2

∫
T2

σ(γ · x ∗ ψλ(u))σ(γ′ · x ∗ ψλ′(u)) du (5.3)

with the exception of λ = λ′ and γ = −γ′ as C1
x(λ, γ, λ,−γ) = 0.

Note that |t| = σ(t)+σ(−t), and hence the statistics (5.3) subsume the covariance statis-

tics between wavelet absolute value coefficients, which are similar to the wavelet modulus

statistics computed in [2]. It was observed in [69] that the ReLU nonlinearity is related

to phase information in complex valued wavelet coefficients. In [2], Portilla and Simoncelli

motivate the inclusion of phase by considering two one-dimensional signals, a Dirac function

and a step function. These two signals cannot be distinguished by the wavelet modulus

coefficients alone. ReLU wavlet coefficients, on the other hand, can distinguish a Dirac func-

tion from a step function for either even or odd wavelets. However, the next theorem shows

they have trouble distinguishing the relative intensity of these functions unless even and odd

wavelets are used together.
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Theorem 12. Define y1(t) := δ(t) and y2(t) := 1[0,∞)(t). Let ψ̃e ∈ L2(R) be a one-

dimensional even wavelet, and let ψ̃o ∈ L2(R) be a one-dimensional odd wavelet. Define

the 2× 2 correlation matrices Cβ
yk

as:

Cβ
yk

(γ, γ′) :=

∫
R
σ(γ · yk ∗ ψ̃β(t))σ(γ′ · yk ∗ ψ̃β(t)) dt ,

for β ∈ {e, o} and γ ∈ {−1,+1}. Then Ce
y1
6= Ce

−y1 and Ce
y2

= Ce
−y2, while C

o
y1

= Co
−y1 and

Co
y2
6= Co

−y2.

Figure 5.2 shows examples of the wavelets and corresponding Fourier transforms.

Figure 5.2 1D wavelets. From left to right: 1D even wavelet, 1D odd wavelet, FFT (real
part) of even wavelet, FFT (imagery part) of odd wavelet.

In order to prove Theorem 12, we need the following lemma.

Lemma 3. Let f(u) be an odd function, we have∫
R
σ(γ · f)σ(γ′ · f) =

∫
R
σ(−γ · f)σ(−γ′ · f)

for γ, γ′ ∈ {−1,+1}.

Proof of Theorem 12. We first prove the theorem for the 1D Dirac function y1(t). First the

wavelet transform of y1 is:

y1 ∗ ψo(u) = ψo(u), y1 ∗ ψe(u) = ψe(u)

Figure 5.3 shows the wavelet transforms for y1 and −y1. Since ψo(u) is an odd function,

with Lemma 3 we have Co
y1

= Co
−y1 . However since ψe(u) is an even function, generally we

have Ce
y1

(+1,+1) 6= Ce
−y1(+1,+1). Therefore Ce

y1
6= Ce

−y1 . Figure 5.4 verifies this conclusion

numerically.
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Figure 5.3 Dirac functions and wavelet coefficients. Left: Two Dirac functions y1 and −y1.
Middle: Wavelet coefficients with the even wavelet. Right: Wavelet coefficients with the
odd wavelet.

Figure 5.4 Covariance matrix for diracs. Upper row from left to right: Ce
y1
, Ce
−y1 , C

e
y1
−Ce

−y1 .
Lower row from left to right: Co

y1
, Co
−y1 , C

o
y1
− Co

−y1 . This numerically verified that even
wavelet is able to distinguish the two dirac functions from the covariance statistics while odd
wavelet cannot.

Now we prove the theorem for the jump function y2(t). The wavelet transforms satisfy:

y2 ∗ ψβ(u) =

∫
R
y2(u− t)ψβ(t)dt =

∫ u

−∞
ψβ(t)dt (5.4)

for β ∈ {e, o}. Figure 5.5 illustrates the convolution of the even and odd wavelet with y2
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Figure 5.5 Jump functions and wavelet coefficients. Left: Two jump functions y2 and −y2.
Middle: Wavelet coefficients with the even wavelet. Right: Wavelet coefficients with the
odd wavelet.

and −y2.

Remark 1. Since ψe is an integrable even function, then f e(u) =
∫ u
−∞ ψ

e(t)dt is an odd

function.

Remark 2. Since ψo is an integrable odd function, then f o(u) =
∫ u
−∞ ψ

o(t)dt is an even

function.

Remark 1 with Lemma 3 shows we have Ce
y2

= Ce
−y2 . Remark 2 means that generally we

also have Co
y2
6= Co

−y2 . Figure 5.6 gives the numerical verification.

Theorem 12 shows both even and odd wavelets are necessary in our model. For images x,

the Dirac signal y1 is similar to a dividing line that separates two regions of the same shade,

which occurs in many types of texture images. This result shows that ReLU nonlinear wavelet

coefficient correlations, when computed with an odd wavelet, cannot correctly determine the

brightness of the dividing line relative to the regions it separates. Similarly, ReLU nonlinear

wavelet coefficients, when computed with an even wavelet, cannot determine whether the

color gradient across an edge is positive or negative. Numerical results illustrating these

effects are given in Section 5.4.1.
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Figure 5.6 Upper row from left to right: Ce
y2
, Ce
−y2 , C

e
y2
−Ce

−y2 . Lower row from left to right:
Co
y2
, Co
−y2 , C

o
y2
− Co

−y2 . This numerically verified that odd wavelet is able to distinguish the
two jump functions from the covariance statistics while the even wavelet cannot.

5.2.3 Second layer statistics

ReLU wavelet correlation statistics can be complemented by two-layer statistics that are

derived from feature maps that combine image information across scales before iterating the

operator U1
J . In particular, we compute

U2
Jx :=

{
U1
J

(
J−1∑
j=0

σ(γ · x ∗ ψβj,α)

)
: (α, β) ∈ {(θ, e), (θ, o), (`, p)},

γ = ±1, θ ∈ ΘM , 0 ≤ ` < L

}
.

and recall

U1
Jx := {x ∗ φJ , x ∗ h , σ(γ · x ∗ ψλ) : γ = ±1, λ ∈ Λ} .

We then compute the variance statistics of the low and high pass maps of U2
Jx, and the

correlation statistics between all pairs of the nonlinear wavelet maps contained in U2
Jx, with
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the same exceptions as in the first layer.

By iterating upon the map U1
J , the map U2

J bears some similarity to the wavelet scattering

transform [10]. However, there are several important differences. As already discussed, we

utilize the ReLU nonlinearity and a family of real valued wavelets, as opposed to complex

valued wavelets and the modulus nonlinearity. Furthermore, the map U1
J defined here is

invertible, unlike the scattering propagation operator. Finally, before iterating the map U1
J ,

we sum over the scale index j of the nonlinear maps σ(γ · x ∗ ψβj,α). This operation is akin

to a 1× 1 convolution operation in the VGG-19 CNN (and other CNNs), but unlike in the

VGG network in which the filters being summed over have receptive fields with the same

size, here we aggregate over nonlinear multiscale wavelet filtrations that allows our network

to link together correlated patterns at multiple scales. This operation also has the effect of

reducing the number of second layer maps, and hence statistics. Perhaps surprisingly, the

operator U2
J is also invertible under appropriate conditions on the wavelets defined in Section

5.2.1.

Theorem 13. If {φJ , h, ψoj,θ : 0 ≤ j < J, θ ∈ ΘM} forms a frame and if ĝ is non-negative,

radial, and a decreasing function of |ω|, then x 7→ {x ∗ φJ , x ∗ h , U2
Jx} is invertible.

Before proving Theorem 13, we first prove the following lemma.

Lemma 4. If {φJ , h, ψoj,θ : 0 ≤ j < J, θ ∈ ΘM} forms a frame and if ĝ is non-negative,

radial, and a decreasing function of |ω|, then {φJ , h,
∑J−1

j=0 ψ
o
j,θ : θ ∈ ΘM} also forms a

frame.

Proof of Lemma 4. With the definition of frame, we know there exist two constants 0 < A ≤

B <∞ such that:

A ≤ |φ̂J(ω)|2 + |ĥ(ω)|2 +
∑
j,θ

|ψ̂oj,θ(ω)|2 ≤ B, ∀ω ∈ Ω ∩ [−π, π]2 .

we need to prove there exist two constants 0 < A′ ≤ B′ <∞ such that:

A′ ≤ |φ̂J(ω)|2 + |ĥ(ω)|2 +
∑
θ

|
∑
j

ψ̂oj,θ(ω)|2 ≤ B′, ∀ω ∈ Ω ∩ [−π, π]2 .
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The upper bound always exists as long as we have a finite number of filters. Therefore we

only prove the lower bound. The key point is to prove:

∑
j

|ψ̂oj,θ(ω)|2 ≤ |
∑
j

ψ̂oj,θ(ω)|2,∀θ ∈ ΘM (5.5)

Without loss of generosity, we set θ = 0 and omit this notation in the following proof. Recall

the odd directional wavelet ψo(u) = g(u) sin(ξ · u), which has Fourier transform:

ψ̂o(ω) =
ĝσ(ω − ξ)− ĝσ(ω + ξ)

2i
(5.6)

Bringing equation (5.6) into equation (5.5), we need to prove:∑
j

|ĝσ,j(ω − ξ)− ĝσ,j(ω + ξ)|2 ≤ |
∑
j

ĝσ,j(ω − ξ)− ĝσ,j(ω + ξ)|2 (5.7)

If ĝ is non-negative, radial, and a decreasing function of |ω|, one can prove:

• If |ω − ξ| < |ω + ξ|, then ĝσ(ω − ξ) − ĝσ(ω + ξ) ≥ 0. For any such ω we also have

|2−jω − ξ| < |2−jω + ξ|, and ĝσ(2−jω − ξ)− ĝσ(2−jω + ξ) ≥ 0.

• If |ω − ξ| > |ω + ξ|, then ĝσ(ω − ξ) − ĝσ(ω + ξ) ≤ 0. For any such ω we also have

|2−jω − ξ| > |2−jω + ξ|, and ĝσ(2−jω − ξ)− ĝσ(2−jω + ξ) ≤ 0.

• If |ω − ξ| = |ω + ξ|, then ĝσ(ω − ξ) − ĝσ(ω + ξ) = 0. For any such ω we also have

|2−jω − ξ| = |2−jω + ξ|, and ĝσ(2−jω − ξ)− ĝσ(2−jω + ξ) = 0.

Then for all ω, ĝσ(ω− ξ)− ĝσ(ω+ ξ) and ĝσ,j(ω− ξ)− ĝσ,j(ω+ ξ) have the same sign for all j

(either non-positive or non-negative). One can prove: (
∑

i ai)
2 ≥

∑
i a

2
i if all the ai are non-

negative or non-positive. Therefore, equation (5.7) is true, and |
∑

j ψ̂
o
j,θ(ω)|2 ≥

∑
j |ψ̂oj,θ(ω)|2

for all θ. The lemma is proved.

With Lemma 4, now we prove Theorem 13.

Proof of Theorem 13. If {φJ , h, ψoj,θ : 0 ≤ j < J, θ ∈ ΘM} forms a frame, then

{φJ , h , ψβj,α : 0 ≤ j < J, (α, β) ∈ {(θ, e), (θ, o), (`, p)}, θ ∈ ΘM , 0 ≤ ` < L} .
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also forms a frame, i.e.,

x = x ∗ φJ ∗ φ̃J + x ∗ h ∗ h̃+
J−1∑
j=0

∑
α,β

x ∗ ψβj,α ∗ ψ̃
β
j,α, ∀x ∈ L2(T2) (5.8)

Therefore we can reconstruct
∑J−1

j=0 σ(γ · x ∗ ψβj,α) from U2
Jx. With t = σ(t)− σ(−t), we are

able to get
∑J−1

j=0 x ∗ψ
β
j,α, which can also be written as x ∗

∑J−1
j=0 ψ

β
j,α. At this point, we have

the following updated responses

{x ∗ φJ , x ∗ h, x ∗
J−1∑
j=0

ψβj,α, (α, β) ∈ {(θ, e), (θ, o), (`, p)}}

With Lemma 4, {φJ , h,
∑J−1

j=0 ψ
o
j,θ} forms a frame, then {φJ , h,

∑J−1
j=0 ψ

β
j,α} also forms a frame.

Therefore we can reconstruct the image x from the above responses:

x = x ∗ φJ ∗ φ̃J + x ∗ h ∗ h̃+
∑
α,β

x ∗
J−1∑
j=0

ψβj,α ∗
˜J−1∑
j=0

ψβj,α (5.9)

5.3 Synthesis algorithm

Since both operator U1
J and operator U2

J (combined with the low pass and high pass co-

efficients) are invertible, we can adapt the iterative projection algorithm of [2] in order to

synthesize a new texture x∗ with approximately the same statistical profile as x. We describe

our version of the projection algorithm in this section. Algorithm 1 summarizes the following

synthesis process.

Let us first collect the statistics described in Section 5.2:

• S0
Jx := six pixel intensity statistics, given by the mean, variance, skewness, kurtosis,

min, and max of (x(u))u∈T2 .

• S1
Jx := {Var(x ∗ φJ) , Var(x ∗ h) , C1

x}, which are the statistics derived from the first

layer coefficients.
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Algorithm 1 Projection algorithm for texture synthesis
Input reference image x ;
Output new texture image x∗ ;
compute target statistics SJx = (S0

Jx, S
1
Jx, S

2
Jx) ;

initialize: x∗ ← x0 (uniform noise) ;
x∗ ← mod_intensities(x∗, S0

Jx) ;
while error > ε do

compute U1
Jx
∗ = {U1

Jx
∗
φJ
, U1

Jx
∗
h, U

1
Jx
∗
ψ} ;

U1
Jx
∗
φJ
← mod_variance(U1

Jx
∗
φJ
,Var(x ∗ φJ)) ;

U1
Jx
∗
h ← mod_variance(U1

Jx
∗
h,Var(x ∗ h)) ;

U1
Jx
∗
ψ ← mod_correlation(U1

Jx
∗
ψ, C

1
x) ;

compute U2
Jx
∗ from U1

Jx
∗
ψ ;

U2
Jx
∗
φJ
← mod_variance(U2

Jx
∗
φJ
, S2

JxφJ ) ;
U2
Jx
∗
h ← mod_variance(U2

Jx
∗
h, S

2
Jxh) ;

U2
Jx
∗
ψ ← mod_correlation(U2

Jx
∗
ψ, S

2
Jxψ) ;

reconstruct U1
Jx
∗
ψ ← reconstruct_layer1(U2

Jx
∗
φJ
, U2

Jx
∗
h, U

2
Jx
∗
ψ) ;

reconstruct x∗ ← reconstruct_x(U1
Jx
∗
φJ
, U1

Jx
∗
h, U

1
Jx
∗
ψ) ;

x∗ ← mod_intensities(x∗, S0
Jx) ;

update error ‖SJx∗ − SJx‖ ;
end

• S2
Jx := {S2

JxφJ , S
2
Jxh , C

2
x}, which consists of the second layer low pass variances

(S2
JxφJ ) and high pass variances (S2

Jxh), and the second layer correlation statistics

between ReLU wavelet maps (C2
x).

Now let U1
Jxψ denote the collection of nonlinear ReLU wavelet coefficient maps of U1

Jx;

let U2
JxφJ denote the collection of second layer low pass maps; let U2

Jxh denote the collection

of second layer high pass maps; and let U2
Jxψ denote the collection of second layer nonlinear

ReLU wavelet coefficient maps. Given a reference image x, we start by computing its statis-

tical profile SJx = (S0
Jx, S

1
Jx, S

2
Jx). We then initialize our synthesized image with a random

noise image x0 where each x0(u) is an i.i.d. sample from the uniform distribution.

Let xt denote the synthesized image after t iterations. The algorithm first updates xt

by directly modifying its intensities (xt(u))u∈T2 so that S0
Jx

t = S0
Jx. It then computes U1

Jx
t

using the modified xt. The low pass coefficients xt ∗ φJ and the high pass coefficients xt ∗ h

are adjusted so that Var(xt ∗ φJ) = Var(x ∗ φJ) and Var(xt ∗ h) = Var(x ∗ h). All of these

69



steps are computed in the exact same fashion as [2]. Finally, the nonlinear coefficient maps

U1
Jx

t
ψ are adjusted to match the target correlation matrix so that C1

xt = C1
x; this step is

performed in a way that is similar to how [2] updates the wavelet modulus coefficients. If

the algorithm is using only first layer statistics, it then inverts U1
Jx

t to obtain xt+1, and the

process repeats itself.

On the other hand, if the algorithm is using second layer statistics, it then decomposes

the updated maps U1
Jx

t
ψ further by computing U2

Jx
t. The algorithm updates the collection

of second layer maps U2
Jx

t by matching S2
Jx

t to S2
Jx in a similar fashion as the first layer. At

this point, the algorithm inverts the updated collection {xt∗φJ , xt∗h , U2
Jx

t} using Theorem

13 to obtain xt+1.

5.4 Numerical Results

We implement several texture synthesis experiments with the goals of (i) numerically verify-

ing theoretical assertions made in previous sections; (ii) understanding the effect of hyper-

parameter choices on the quality of synthesized textures; and (iii) comparing to other com-

monly used algorithms. Our texture images are taken from DTD database1 and CG Texture

database2. Every image is resized to 256 × 256 for consistency. In our experiments, the

wavelet transform is implemented in the frequency field using the fast Fourier transform.

Therefore, we also periodize certain images to avoid border effect [70]. For directional

wavelets, we fix the total number of rotations as M = 4. For omnidirectional wavelets,

we fix the total number of oscillations at L = 4. The maximum scale is Jmax = 6. In the

following subsections, we numerically illustrate the advantages of using all three types of

filters (Section 5.4.1); we examine the role of the maximum scale 2J (Section 5.4.2); and

we compare the one-layer synthesis to the two-layer synthesis, thus examining the role of

network depth (Section 5.4.3). Finally, in Section 5.4.4 we also compare our results to Gatys

et al. [3] and Portilla and Simoncelli [2].

1https://www.robots.ox.ac.uk/ vgg/data/dtd/
2https://www.textures.com/
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5.4.1 Filter comparison

Theorem 12 proves both even and odd wavelets are important for texture synthesis. Figure

5.7 validates this theory numerically. We see, for example, that synthesis with odd wavelets

is prone to blurring edges and even flipping the colors of enclosed regions that should have

the same color (e.g., the last row of Figure 5.7). When using only even wavelets, images with

banded colors, for example the third row of Figure 5.7, are blurred. Synthesized images using

both even and odd wavelets are generally a clear improvement over their single wavelet-type

counterparts.

Figure 5.8 shows the necessity for using omnidirectional wavelets. The advantages are

clearest for rounded shapes or swirls. Such patterns have no clear direction. For example, in

the swirly texture in the last row of Figure 5.8, the omnidirectional wavelets do a better job

of reproducing the long swirls. The round-shaped pebbles and dots (rows one and three of

Figure 5.8) have smoother edges and a cleaner background when adding the omnidirectional

wavelets.

5.4.2 Comparison of maximum scale

Figure 5.9 shows synthesis results with different numbers of scales from the two layer model.

With J = 3, the statistics are not able to capture macroscopic patterns. Therefore the

edges of synthesized bricks (rows one and three) and frames (second to last row) are not

straight or continuous. The reproduced house (second row) and dots (third last row) are

more random compared to the original image. Larger scales can also capture longer swirls

(last row). However, J = 5 and J = 6 achieve equivalent perceptual accuracy, proving there

is no need to add in larger scales than J = 5. Indeed, the effective receptive field of the two

layer synthesis with J = 5 is equivalent to the single layer receptive field of Jmax = 6. We

also observe that using smaller scales gives more variety of the pattern arrangements, while

large scale statistics have the potential to duplicate the reference image.
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Figure 5.7 Synthesis results from one layer (J = 6) with different types of wavelet filters.
Left: Original image. Middle left: First layer synthesis results with only odd wavelets.
Middle right: First layer synthesis results with only even wavelets. Right: First layer
synthesis results with both even and odd wavelets.
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Figure 5.8 Synthesis results from two layers (J = 5) with/without omnidirectional wavelets.
Left: Original image. Middle: 2nd layer synthesis with even and odd wavelets. Right:
2nd layer synthesis with even, odd and omnidirectional wavelets.
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Figure 5.9 Synthesis results from two layers with different number of scales. Left: Original
image. Middle Left: 2nd layer synthesis results with J = 4. Middle Right: 2nd layer
synthesis results with J = 5. Right: 2nd layer synthesis results with J = 6.
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5.4.3 Layers analysis

For many texture images, the one-layer model can synthesize images of high quality. However

for images with more complicated structures, multiple layers can provide a boost in visual

quality. As discussed in [10], deeper layers decompose high frequency information that is

aggregated into large frequency bins with a single wavelet transform. Figure 5.10 shows

images that achieved better quality with second layer statistics. For most images, the one-

layer model captures general structures while the two-layer model refines the details, e.g.,

reproducing more accurate shapes, preserving long edges and swirls, fixing blurriness.

5.4.4 Methods comparison

We use even and odd directional wavelets, along with omnidirectional wavelets as our pre-

selected filters in our final model. We also set J = 5 and use the two-layer model. Our

results are compared with [2, 3] in Figure 5.11.

The textures synthesized by our model are generally equivalent to, or superior than, the

images synthesized by Portilla and Simoncelli [2]. In fact, while not depicted in Figure 5.11,

this result holds even if we restrict to one layer, indicating the combination of the ReLU

and the selection of even, odd, and omnidirectional filters may provide a more complete

statistical description of texture images.

With respect to Gatys et al. [3], the results are more nuanced. Our results are generally

superior for textures with long, rigid edges even though their model is much deeper than

our model. Additionally, textures with rigid patterns, but not necessarily long straight lines

(e.g., left, last row; right, rows five, eight, nine) also have visually more appealing synthesis

results via our method. These results can be attributed to the use of multiscale filters,

although, even then, the results of Section 5.4.2 suggest that such an analysis might be too

simplistic. For example, it is possible that a depth three wavelet network with J = 4 might

also achieve similar performance to our current implementation with two layers and J = 5,

which if so would raise questions with respect to other aspects of the VGG network.
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Figure 5.10 Synthesis results with one layer model and two layer model. Left: Original
image. Middle: 1st layer synthesis results. Right: 2nd layer synthesis results.
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Moving on we see that [3] obtains superior performance for images with long, non-rigid

curves, such as the pebbles and onions (left, rows three and nine), fireworks (left, row eight)

and swirling type images (right, rows seven and ten). Nevertheless, these results are in line

with the observations in Section 5.4.3, which suggested that these types of textures require

depth in order to capture their complex patterns.

Other images exhibit more subtle differences. For example, in the cracked earth image

(left, row four), the synthesized image of [3] creates a bold effect on the cracks that is not

present in the original. In the crossing image (left, row ten), the background illumination

pattern is only correctly preserved by our method. Lastly, the multi-colored dots (right, last

row) have a cleaner background with [3], but our method creates dots with colors that are

not present in the original image, thus showing greater variability.

5.5 Implementation details

In this section, we describe more implementation details and analysis on numerics.

5.5.1 Reduction of second layer statistics

Recall at the second layer we compute:

U2
Jx :=

{
U1
J

(
J−1∑
j=0

σ(γ · x ∗ ψβj,α)

)
: (α, β) ∈ {(θ, e), (θ, o), (`, p)}, θ ∈ ΘM , 0 ≤ ` < L

}
.

that is:

U2
Jx :=

{
J−1∑
j1=0

σ(γ1 · x ∗ ψβ1j1,α1
) ∗ φJ ,

J−1∑
j1=0

σ(γ1 · x ∗ ψβ1j1,α1
) ∗ h,

σ

(
γ2 ·

(
J−1∑
j1=0

σ(γ1 · x ∗ ψβ1j1,α1
)

)
∗ ψβ2j2,α2

)
:

(α1, β1), (α2, β2) ∈ {(θ, e), (θ, o), (`, p)}, γ1, γ2 ∈ {+1,−1}

}
.

In particular for the third item, we apply another layer of the wavelet transform to the first

layer responses. In numerical experiments for directional wavelets, we find
∑J−1

j1=0 σ(γ1 · x ∗
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Figure 5.11 Synthesis results compared to other models. Left: Original images. Middle
Left: Results from Portilla and Simoncelli [2]. Middle Right: Results from Gatys et al.
[3]. Right: Results from our two layer model.
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Figure 5.12 Synthesis results compared to other models. Left: Original images. Middle
Left: Results from Portilla and Simoncelli [2]. Middle Right: Results from Gatys et al.
[3]. Right: Results from our two layer model.
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ψβ1j1,θ1) is essentially supported at the direction θ = θ1. Therefore to reduce the number

of total statistics and save computation, we set θ2 = θ1, i.e., the second layer of directional

wavelets has the same direction as the first layer directional responses. We also add a residual

wavelet to keep track of the residual frequencies and match the variance. We numerically

verified with this restriction, there is little loss in the synthesized image quality.

5.5.2 Matching of second layer statistics

When we use the second layer statistics to synthesize texture images, we initialize the image

with the first layer result. This is also equivalent to matching the first layer statistics until

convergence, then matching both first layer and second layer statistics. In practice, we see

the synthesized image has better quality than matching both first and second layer statistics

from noise, i.e., matching both from the beginning.

Figure 5.13 compares the synthesized images using these two strategies. In particular,

the middle right column shows synthesized images initialized from first layer result and the

right column shows synthesized images initialized from noise. We notice matching only first

layer statistics significantly reduces the first layer loss and the learned images are already

well structured. Initialized from such images, second layer statistics refine the details. On

the other hand, initializing from noise fails to reduce the first layer loss to a very small value.

The synthesized images generally lose large structures and are not as good as results from

the other strategy.

5.5.3 Analysis of number of iterations

In this section we discuss the relationship among the number of iterations, loss, and image

quality. Figures 5.14, 5.15, 5.16 show the synthesis process of different textures. For all of

these tests, we run second layer synthesis and run for 600 iterations. We plot the logarithm

of the relative loss in these plots, i.e., log10(loss) where loss =
‖SiJx−S

i
Jx

?‖
‖SiJx‖

for i = 1, 2, x is

the reference image, and x? is the synthesized image.
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Figure 5.13 Left: Original images. Middle left: Images synthesized from first layer. Mid-
dle right: Images synthesized from second layer, initialized from first layer result. Right:
Images synthesized from second layer, initialized from uniform noise.
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Figure 5.14 shows the synthesis process of micro-textures plus flowers. We start from

noise to match the second layer to simplify the analysis. After iteration 0, the images

already look much better than noise, although the colors are not fully matched. At iteration

40, the second layer loss is reduced to approximately 10−3.5 and the synthesized images are

of high quality. As we continue the algorithm, at iteration 100 and 590, the images smoothly

shift from one sample to another sample which are from the same texture class and the loss

barely changed. In general, for such micro-textures, the algorithm converges fast and the

loss is reduced long before we stop.

Figure 5.15 shows the synthesis process for textures that have more structure. Still

we start from noise. At iteration 0, the colors are mismatched, similar to Figure 5.14. At

iteration 40 and 100, the colors are matched and general structures are learned, but the holes

and frames are not aligned perfectly. Also the relative loss is not reduced. Finally at iteration

590, the second layer loss is reduced to around 10−4 and the synthesized images are of good

quality. The algorithm on these types of images generally takes longer to converge than

for micro-textures. As the number of iterations increases, the image quality is continuously

improved.

Figure 5.16 shows the synthesis process of a texture that has intricate patterns. Here

we start from the first layer result to show how the second layer statistics improve the

image quality. At iteration 0, which is essentially the synthesized image from the first layer

experiment, there are barely swirls but only curves. As the algorithm goes on, we notice the

first layer loss actually increases while the second layer loss is decreasing. The increasing first

layer loss generally does not affect image quality so long as the second layer loss decreases.

By the last iteration, the synthesized image contains longer and smoother swirls.

5.6 Conclusion

We presented a unique texture synthesis algorithm that melds aspects of Portilla and Simon-

celli [2], Gatys et al. [3], and Mallat [10], while also incorporating new ideas on filter design,
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Figure 5.14 The synthesis process for different micro-textures plus flowers.
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Figure 5.15 The synthesis process for different macro-textures with rigid patterns.

Figure 5.16 The synthesis process when initializing from the first layer synthesis, for a texture
with complex patterns.
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multi-layer structure, and the invertibility of CNNs. Our numerical analysis provides insight

into the workings of statistics-based texture synthesis algorithms. Synthesized textures are

competitive with the state-of-the-art and in some cases superior to [3], thus providing a

potential alternative. Nevertheless, issues such as the trade-off between network depth and

filter scale are not fully resolved, and invite future research endeavors, which we will explore

in the next chapter.
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CHAPTER 6

MULTILAYER MODEL ANALYSIS

6.1 Introduction

In this chapter, we continue our analysis of the statistical texture synthesis model proposed

in Chapter 5. Intuitively, large filters and deep layers increase the size of receptive fields in

the network and preserve long range dependence of the image, but they do so in different

ways. From the numerical tests, we noticed the model with large filters keeps long straight

lines and the multilayer model preserves long curves. On the other hand, the one layer

wavelet model does not capture intricate curves and the multilayer VGG model struggles to

reproduce rigid patterns. There has also been a discussion on the trade-off between model

depth and the size of convolution filters in [15, 3].

In this chapter, we develop mathematical analysis on filter size and model depth. We

investigate certain types of texture classes and discuss the necessity of large filters. We also

discuss the relationship between model depth and the higher order derivatives of a signal.

Specifically we continue the analysis of Chapter 5 in the following ways:

• We proposed a model to represent the ReLU architecture.

• We provide new perspective on understanding the even and odd wavelets.

• We prove if the largest filter is not large enough to meet certain criteria, the gram

matrix fails to distinguish different textures.

• We prove with small filters, deep models intricately partition the high order derivatives

of the given signal.
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6.2 Multilayer multiscale model

6.2.1 Filters

Let φ : R2 → R be an low pass filter with the following conditions:

• φ(u) ≥ 0,∀u ∈ R2.

• φ is isotropic, i.e., φ(u) = φ(Rθu),∀θ. Rθ : R2 → R2 is the rotation operator (rotate

by θ).

• φ is compactly supported in [−a, a]2 ∈ R2.

Define the wavelet family {ψk,n}k,n such that

ψk,n(u) = D
(n)
~vk
φ(u) (6.1)

is the n-th derivative of φ along the direction ~vk where ~vk = Rθ(~v0), ~v0 = (1, 0), θ = kπ
K
. K

is the total number of rotations. The filters can also be dilated:

ψj,k,n(u) = 2−2jψk,n(2−ju), 0 ≤ j < J

Since
D

(n)
~vk
φj(u) = D

(n)
~vk

(2−2jφ(2−ju))

= 2−2j · 2−njD(n)
~vk

(φ(2−ju))

= 2−njψj,k,n(u),

we also have ψj,k,n(u) = 2njD
(n)
~vk
φj(u).

Remark 3. When n = 1, ψk,n is an odd directional wavelet with direction θ = kπ
K
; when

n = 2, ψk,n is an even directional wavelet with direction θ = kπ
K
.

The derivative wavelets defined in Equation 6.1 are not exactly the same directional

wavelets used in Chatper 5. The definition is different and the derivative wavelets has

compact support. However since the derivative wavelets at n = 1, 2 look similar to the
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directional wavelets, they can be thought of as a generalized version of directional wavelets

with more flexibility by adjusting n. Therefore in the following context, we are going to

analyze the filters from Chapter 5 through the derivative wavelets defined in Equation 6.1.

6.2.2 Wavelet transform

Let x : R2 → R be a 2D signal. The wavelet transform can be rewritten as

x ∗ ψj,k,n(u) = 2njx ∗D(n)
~vk
φj(u)

= 2njD
(n)
~vk

(x ∗ φj)(u)

The above equation shows the wavelet transform of a signal with a derivative wavelet equals

to the derivative of the signal convolved with the low pass up to a constant 2nj, which

depends on the dimension n and scale parameter j.

Lemma 5. If x is isotropic, i.e., x(u) = x(Rθu), ∀u, then x ∗ ψj,k1,n = x ∗ ψj,k2,n,∀k1, k2.

Proof. If x is isotropic, then

x ∗ ψj,k1,n(u) = 2njD
(n)
~vk1

(x ∗ φj)(u)

(x, φj are isotropic) = 2njD
(n)
~vk2

(x ∗ φj)(u)

= x ∗ ψj,k2,n(u)

6.2.3 Gram matrix

Recall in Chapter 5, we use the gram matrix between ReLU wavelet response to represent a

texture image for synthesis and achieved good performance. Here we generalize the definition
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for derivative filters. Define gram matrix as

Gx(j1,j2, k1, k2, n1, n2, ε1, ε2)

: = 〈ReLU(ε1 · x ∗ ψj1,k1,n1),ReLU(ε2 · x ∗ ψj2,k2,n2)〉

=

∫
R2

ReLU(ε1 · x ∗ ψj1,k1,n1(u)) · ReLU(ε2 · x ∗ ψj2,k2,n2(u))du

= 2n1j1+n2j2

∫
R2

ReLU
(
ε1 ·D(n1)

~vk1
(x ∗ φj1)(u)

)
· ReLU

(
ε2 ·D(n2)

~vk2
(x ∗ φj2)(u)

)
du

(6.2)

where ε1, ε2 ∈ {+1,−1}. In order to better analyze the correlation, we are going to decompose

the integral into the correlation and the integral support. Let

Ex(j1, j2, k1, k2, n1, n2, ε1, ε2) :=

{
u ∈ R2 :ε1 ·D(n1)

~vk1
(x ∗ φj1)(u) ≥ 0, ~vk1 = Rθ1~v0, θ1 =

k1π

K
,

ε2 ·D(n2)
~vk2

(x ∗ φj2)(u) ≥ 0, ~vk2 = Rθ2~v0, θ2 =
k2π

K

}
(6.3)

denote the ReLU support that the integral is integrated on. We can rewrite the gram matrix

as

Gx(j1,j2, k1, k2, n1, n2, ε1, ε2) =

ε1ε22n1j1+n2j2

∫
Ex(j1,j2,k1,k2,n1,n2,ε1,ε2)

D
(n1)
~vk1

(x ∗ φj1)(u) ·D(n2)
~vk2

(x ∗ φj2)(u)du
(6.4)

The following special cases include the statistical representations we computed at the first

layer for texture images in Chapter 5.

• Consider n1 = n2 = 0, there is no derivatives or directional derivatives. We can assume

k1 = k2 = 0. If x ≥ 0, e.g., natural images, then x ∗ φj ≥ 0. Then

Gx(j1, j2, 0, 0, 0, 0,+1,+1) =

∫
R2

x ∗ φj1 · x ∗ φj2dt

=
1

(2π)2

∫
C2

x̂ ∗ φj1(ω) · x̂ ∗ φj2
∗
(ω)dω

=
1

(2π)2

∫
C2

x̂(ω) · φ̂j1(ω) · x̂∗(ω) · φ̂j2
∗
(ω)dω

(suppose j1 ≥ j2) ≈ 1

(2π)2

∫
C2

|x̂(ω)|2 · |φ̂j1(ω)|2dω

= ‖x ∗ φj1‖2
2
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Therefore Gx(j1, j2, 0, 0, 0, 0,+1,+1) captures the `2 norm of the low pass responses.

• Gx(j1, j2, k1, k2, 1, 1, ε1, ε2) captures the odd wavelet gram matrix between different

angles and scales.

• Gx(j1, j2, k1, k2, 2, 2, ε1, ε2) captures the even wavelet gram matrix between different

angles and scales.

• Gx(j1, j2, k1, k2, 1, 2, ε1, ε2) captures the gram matrix between even and odd wavelets

cross angles and scales.

6.3 Texture with multiple straight lines

Recall in Figure 5.9 (fourth row) and Figure 5.11 (right, first row) from Chapter 5, our model

with large scale filters preserve long straight lines while both the model with only small scale

filters and the model from Gatys fail to do so. In this section, we consider a special class

of signals with parallel straight lines. We prove that multiscale, especially large scale filters,

are essential for recovering textures with long lines, which we define in the following.

Let x(u1, u2) =
∑
i

αi1δi(u1) where δi ∈ ∆ ⊂ R. Then we have the wavelet transform as

x ∗ ψj,k,n(u) = 2njD
(n)
~vk

(x ∗ φj)(u)

= 2njD
(n)
~vk

(
∑
δi∈∆

αi · φ1d
j (u1 − δi))

where u = (u1, u2) and φ1d
j is the one dimensional version of φj. Let ~v0 = (1, 0), ~v−1 = (0, 1).

Then

D
(n)
~v0

(x ∗ φj)(u) =
∑
δi

αi
dn

dun1
φ1d
j (u1 − δi)

D
(n)
~v−1

(x ∗ φj)(u) = 0
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Therefore for any ~vk = Rθk(~v0) = (cos θk, sin θk),

D
(n)
~vk

(x ∗ φj)(u) = cosn θk ·D(n)
~v0

(x ∗ φj)(u)

= cosn θk ·
∑
δi

αi
dn

dun1
φ1d
j (u1 − δi)

And also,

x ∗ ψj,k,n(u) = 2nj · cosn θk ·
∑
δi

αi
dn

dun1
φ1d
j (u1 − δi) (6.5)

6.3.1 Gram matrix

The gram matrix for this type of signal is

Gx(j1,j2, k1, k2, n1, n2, ε1, ε2)

: = 〈(ReLU(ε1 · x ∗ ψj1,k1,n1),ReLU(ε2 · x ∗ ψj2,k2,n2)〉

=

∫
Ex(j1,j2,k1,k2,n1,n2,ε1,ε2)

ε1ε22n1j1+n2j2 · cosn1 θk1 · cosn2 θk2
∑
δi

αi
dn1

dun1
1

φ1d
j1

(u1 − δi)

·
∑
δi

αi
dn2

dun2
1

φ1d
j2

(u1 − δi) du1

= ε1ε22n1j1+n2j2 · cosn1 θk1 · cosn2 θk2

∫
Ex(j1,j2,k1,k2,n1,n2,ε1,ε2)∑

δi1

∑
δi2

αi1αi2
dn1

dun1
1

φ1d
j1

(u1 − δi1)
dn2

dun2
1

φ1d
j2

(u1 − δi2) du1

(6.6)

Note

Ex(j1, j2, k1, k2, n1, n2, ε1, ε2) =

{
u ∈ R2 : ε1 · cosn1 θk1

∑
δi

αi
dn1

dun1
1

φ1d
j1

(u1 − δi) > 0,

ε2 · cosn2 θk2
∑
δi

αi
dn2

dun2
1

φ1d
j2

(u1 − δi) > 0

} (6.7)

Equation 6.7 shows the integral support only depends on u1. Moreover, it is contained in

the union of the band around u1 = δi. Our next section explores more on when J is small

and the bands don’t overlap among different δi.
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Besides the following remark shows, when the scales (j1, j2), derivative orders (n1, n2) and

signs (ε1, ε2) are fixed and only vary the filters’ directions (k1, k2), the gram matrix between

the two ReLU responses is proportional to a value that depends on k1, k2.

Remark 4. Gx(j1,j2,k1,k2,n1,n2,ε1,ε2)
Gx(j1,j2,k′1,k

′
2,n1,n2,ε1,ε2)

=
cosn1 θk1 ·cosn2 θk2
cosn1 θk′1

·cosn2 θk′2

Moreover, the following remark summarizes, when the angle θk1 = mπ+π
2
or θk2 = mπ+π

2
,

the gram matrix is zero.

Remark 5. If cosn1 θk1 = 0 or cosn2 θk2 = 0, then

Gx(j1, j2, k1, k2, n1, n2, ε1, ε2) = 0, ∀j1, j2, n1, n2, ε1, ε2.

6.3.2 Small J

Now let us assume J is small. Recall φ is supported in [−a, a], then φj has support [−2ja, 2ja]

and φJ−1 has support [−2J−1a, 2J−1a]. Let dmin demote the smallest pairwise distance be-

tween the diracs in x. The following theorem proves when J is small, the gram matrix cannot

distinguish one line texture from another under certain conditions.

Theorem 14. Let x1(u) =
∑

δi1∈∆1

αi11δi1 (u1) and x2(u) =
∑

δi2∈∆2

βi21δi2 (u1). Let d1
min and

d2
min denote the smallest pairwise distance between diracs of x1 and x2, respectively. Assume

φ is supported in [−a, a]. If 2Ja < dimin for i ∈ {1, 2} and
∑

δi1∈∆1

α2
i1

=
∑

δi2∈∆2

β2
i2
, then

Gx1 = Gx2.

Note the above theorem is related to Theorem 3 in Chapter 3. The 2D signal in this

section can be decomposed into a sparse signal along one direction and a constant along

another direction. Theorem 14 provides a necessary condition to distinguish two signals of

such type while Theorem 3 provides a sufficient condition to identify a 1D sparse signal.

Proof of Theorem 17. Consider the signal x1. When 2Ja < d1
min, φ1d

j1
(u1−δi) does not overlap

with φ1d
j2

(u1 − δi′) for any δi, δi′ ∈ ∆1, i 6= i′, 0 ≤ j1, j2 < J . Therefore the nonzero set from
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(6.7) can be decomposed into

Ex1(j1, j2, k1, k2, n1, n2, ε1, ε2) =
⋃
δi∈∆1

{
u ∈ R2 : ε1 · cosn1 θk1αi

dn1

dun1
1

φ1d
j1

(u1 − δi) > 0,

ε2 · cosn2 θk2αi
dn2

dun2
1

φ1d
j2

(u1 − δi) > 0

}
: ==

⋃
δi∈∆1

Exi1(j1, j2, k1, k2, n1, n2, ε1, ε2)

(6.8)

Note

Exi1(j1, j2, k1, k2, n1, n2, ε1, ε2) = Exi
′

1 (j1, j2, k1, k2, n1, n2, ε1, ε2)− δi′ + δi (6.9)

i.e., if

t′ ∈ Exi′1 (j1, j2, k1, k2, n1, n2, ε1, ε2),

then

t = t′ − δi′ + δi ∈ Exi1(j1, j2, k1, k2, n1, n2, ε1, ε2).

Also the argument inside the integral from Equation 6.6 is nonzero only along the diag-

onal:∑
δi1

∑
δi2

αi1αi2
dn1

dtn1
1

φ1d
j1

(t1 − δi1)
dn2

dtn2
1

φ1d
j2

(t1 − δi2) =
∑
δi1

α2
i1

dn1

dtn1
1

φ1d
j1

(t1 − δi1)
dn2

dtn2
1

φ1d
j2

(t1 − δi1)

(6.10)

Inserting (6.8) and (6.10) into (6.6) we get

Gx1(j1,j2, k1, k2, n1, n2, ε1, ε2)

= ε1ε22n1j1+n2j2 · cosn1 θk1 · cosn2 θk2∑
δi∈∆1

∫
Exi1(j1,j2,k1,k2,n1,n2,ε1,ε2)

α2
i1

dn1

dun1
1

φ1d
j1

(u1 − δi1)
dn2

dun2
1

φ1d
j2

(u1 − δi1)du1

= ε1ε22n1j1+n2j2 · cosn1 θk1 · cosn2 θk2∑
δi∈∆1

α2
i1

∫
Exi1(j1,j2,k1,k2,n1,n2,ε1,ε2)

dn1

dun1
1

φ1d
j1

(u1 − δi1)
dn2

dun2
1

φ1d
j2

(u1 − δi1)du1

(with (6.9)) = ε1ε22n1j1+n2j2 · cosn1 θk1 · cosn2 θk2

(∑
δi∈∆1

α2
i1

)
∫
Ex01(j1,j2,k1,k2,n1,n2,ε1,ε2)

dn1

dun1
1

φ1d
j1

(u1 − δ0)
dn2

dun2
1

φ1d
j2

(u1 − δ0)du1

(6.11)
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Figure 6.1 Two line texture images that have the same summation of height squared. Left:
x1(u) =

∑8
i=1 132i(u1), u ∈ [Z

⋂
[0, 256)]2. Right: x2(u) =

∑4
i=1

√
2 · 164i(u1), u ∈

[Z
⋂

[0, 256)]2.

Figure 6.2 The gram matrices and the difference for the two line textures in Figure 6.1. Left:
The gram matrix Gx1 between ReLU responses for texture x1. Middle: The gram matrix
Gx2 between ReLU responses for texture x2. Right: The difference between the two gram
matrices |Gx1 −Gx2|.

One can get similar results for x2 with
∑

δi∈∆1

α2
i1
substituted by

∑
δi∈∆2

β2
i1
. Then the conclusion

is proved.

Figure 6.1 and 6.2 verify Theorem 14 numerically. The two line textures x1(u) =∑8
i=1 132i(u1) and x2(u) =

∑4
i=1

√
2 · 164i(u1), u ∈ [Z

⋂
[0, 256)]2 both have summation

of height squared equal to 8. For the selected wavelet family, we choose J = 2 so that

2Ja < dmin where dmin = 32 in this example. Figure 6.2 shows there is little difference be-

tween the two gram matrices except for the numerical errors, thus verifying our conclusion

numerically.
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6.3.3 Deep layers

One may argue that the gram matrix fails in distinguishing the two signals due to the fact

that we only have one layer of convolution. In this section, we prove that even with multiple

layers, if the filters are tiny, the gram matrix still fails to distinguish different line textures.

Recall the first layer wavelet coefficients for the line texture:

x ∗ ψj,k,n(u) = 2nj · cosn θk ·
∑
δi

αi
dn

dun1
φ1d
j (u1 − δi) (6.12)

Remind σ(x) = (ReLU)(x). Let dn

dun1
φ1d
j,δi

(u) = dn

dun1
φ1d
j (u − δi) and � represent the element-

wise multiplication. The second layer response can be developed in a similar way:

σ(x ∗ ψj1,k1,n1) ∗ ψj2,k2,n2(u)

=σ(x ∗ ψj1,k1,n1) ∗ 2n2j2 ·D(n2)
~vk2

φj2(u)

=2n2j2D
(n2)
~vk2

[σ(x ∗ ψj1,k1,n1)] ∗ φj2(u)

=2n2j2 · cosn2 θk2 ·D
(n2)
~v0

[σ(x ∗ ψj1,k1,n1)] ∗ φj2(u)

=2n2j2 · cosn2 θk2 ·
(
σ′(x ∗ ψj1,k1,n1)�

dn2

dun2
[x ∗ ψj1,k1,n1 ]

)
∗ φj2(u)

=2n2j2 · cosn2 θk2 ·
(
σ′(2n1j1 · cosn1 θk1 ·

∑
δi

αi
dn1

dun1
1

φ1d
j1,δi

)�

dn2

dun2
[2n1j1 · cosn1 θk1 ·

∑
δi

αi
dn1

dun1
1

φ1d
j1,δi

]

)
∗ φj2(u)

=2n1j1+n2j2 · cosn1 θk1 · cosn2 θk2 ·
(
σ′(cosn1 θk1 ·

∑
δi

αi
dn1

dun1
1

φ1d
j1,δi

)�
∑
δi

αi
dn1+n2

dun1+n2
1

φ1d
j1,δi

)
∗ φj2(u)

When J is small such that dn

dun1
φ1d
j,δi

(u) do not overlap at different i, the last line of the above

equation equals to

2n1j1+n2j2 · cosn1 θk1 · cosn2 θk2 ·
∑
δi

αi

(
σ′(cosn1 θk1 ·

dn1

dun1
1

φ1d
j1,δi

)� dn1+n2

dun1+n2
1

φ1d
j1,δi

)
∗ φj2(u).

The term inside the big parenthesis is supported in [δi−2j1a, δi+2j1a]. With the convolution

with φj2 , the support is [δi − 2j1+j2a, δi + 2j1+j2a]. This term is equivariant to translations

on δi. Therefore when we apply the ReLU and gram matrix at the second layer, we get the
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same conclusion as the first layer result. Define

G2x(λ, λ′) =

∫
σ(ε2 ·σ(ε1 ·x ∗ψj1,k1,n1) ∗ψj2,k2,n2)(u) ·σ(ε′2 ·σ(ε′1 ·x ∗ψ′j1,k1,n1

) ∗ψ′j2,k2,n2
)(u)du

where λ = (j1, k1, n1, ε1, j2, k2, n2, ε2).

Theorem 15. Let x1(u) =
∑

δi1∈∆1

αi11δi1 (u1) and x2(u) =
∑

δi2∈∆2

βi21δi2 (u1). Let d1
min and

d2
min denote the smallest pairwise distance between diracs of x1 and x2, respectively. Assume

φ is supported in [−a, a]. If 22Ja < dimin for i ∈ {1, 2} and
∑

δi1∈∆1

α2
i1

=
∑

δi2∈∆2

β2
i2
, then

G2x1 = G2x2.

More generally, define Gmx to be the m-layer gram matrix. We have

Theorem 16. Let x1(u) =
∑

δi1∈∆1

αi11δi1 (u1) and x2(u) =
∑

δi2∈∆2

βi21δi2 (u1). Let d1
min and

d2
min denote the smallest pairwise distance between diracs of x1 and x2, respectively. Assume

φ is supported in [−a, a]. If 2mJa < dimin for i ∈ {1, 2} and
∑

δi1∈∆1

α2
i1

=
∑

δi2∈∆2

β2
i2
, then

Gmx1 = Gmx2.

Proof. Let Smx[λ1, . . . , λm](u) = σ(. . . σ(x1∗ψλ1) · · ·∗ψλm)(u) denote them-th layer response

of x. Let fm[δi, λ1, . . . , λm](u) = σ(. . . σ(1δi ∗ ψλ1) · · · ∗ ψλm) be the multilayer response at

the m-th layer of the line function. Note 1δi(u) = 1δi(u1). Then the m-th layer response of

line signal x1 is:

Smx1[λ1, . . . , λm](u) =
∑
δi1∈∆1

αi1fm[δi1 , λ1, . . . , λm](u)

Since φ is supported in [−a, a]2, for any 0 ≤ j < J , φj is supported in [−2J−1a, 2J−1a]2.

Therefore fm[δi1 , λ1, . . . , λm] is supported in the band: {u ∈ R2 : t1 ∈ [−2m(J−1)a, 2m(J−1)a}.

The gram matrix for the line function is :

Gm1δi [λ1, . . . , λm, λ
′
1, . . . , λ

′
m] =

∫
fm[δi1 , λ1, . . . , λm](u) · fm[δi1 , λ

′
1, . . . , λ

′
m](u)du

Note Gm1δi [λ1, . . . , λm, λ
′
1, . . . , λ

′
m] remains a constant when changing δi. Since 2mJa < dimin

for i = 1, 2, fm[δi1 , λ1, . . . , λm] does not overlap with fm[δi′1 , λ1, . . . , λm] for any δi1 6= δi′1 .
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With all of these facts,

Gmx1[λ1, . . . , λm, λ
′
1, . . . , λ

′
m] =

∫ ∑
δi1∈∆1

αi1fm[δi1 , λ1, . . . , λm](u)·

∑
δi1∈∆1

αi1fm[δi1 , λ
′
1, . . . , λ

′
m](u)

=
∑
δi1∈∆1

α2
i1

∫
fm[δi1 , λ1, . . . , λm](u) · fm[δi1 , λ

′
1, . . . , λ

′
m](u)

= (
∑
δi1∈∆1

α2
i1

)Gm1δ [λ1, . . . , λm, λ
′
1, . . . , λ

′
m]

We get similar result for x2. Therefore, Gmx1 = Gmx2.

Theorem 16 shows interesting relationship between model depth m, largest filter scale J

and the minimum distance dmin between the lines. It also matches the observation of Figure

5.9 (fourth row, sixth row) from Chapter 5. According to Figure 5.9, when J = 4 the model

is not able to identify the relative positions of the long lines while J = 5 and J = 6 fix the

issue and are able to reproduce the lines. Motivated by Theorem 16, to avoid the inability

to distinguish such textures, one can either increase filter size J or increase model depth m

to break the condition 2mJa < dimin. Note the VGG model is deep but is still not able to

reproduce long lines (Figure 5.11, left, fifth row; right, first row). We infer this is resulted

from the pooling function and invite further research.

6.4 Frame-like texture

In this section we analyze another type of textures. Figure 6.3 shows one sample from this

class.

Let x(u1, u2) =
∑

δi∈∆1

αi1δi(u1) +
∑

ξi∈∆2

βi1ξi(u2). The wavelet transform for this signal is:

x ∗ ψj,k,n(u) = 2njD
(n)
~vk

(x ∗ φj(u))

= 2nj
[

cosn θk
∑
δi∈∆1

αi
dn

dun1
φ1d
j (u1 − δi) + sinn θk

∑
ξi∈∆2

βi
dn

dun2
φ1d
j (u2 − ξi)

]
Insert it into the gram matrix at Equation 6.2 we get:
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Figure 6.3 Frame texture.

Gx(j1,j2, k1, k2, n1, n2, ε1, ε2)

= ε1ε22n1j1+n2j2 ·
[

cosn1 θk1 · cosn2 θk2

∫
Ex

∑
δi1

αi1
dn1

dun1
1

φ1d
j1

(u1 − δi1) ·
∑
δi2

αi2
dn2

dun2
1

φ1d
j2

(t1 − δi2) du1du2

+ cosn1 θk1 · sinn2 θk2

∫
Ex

∑
δi1

αi1
dn1

dun1
1

φ1d
j1

(u1 − δi1) ·
∑
ξi2

βi2
dn2

dun2
2

φ1d
j2

(u2 − ξi2) du1du2

+ sinn1 θk1 · cosn2 θk2

∫
Ex

∑
ξi1

βi1
dn1

dun1
1

φ1d
j1

(u2 − ξi1) ·
∑
δi2

αi2
dn2

dun2
2

φ1d
j2

(u1 − δi2) du1du2

+ sinn1 θk1 · sinn2 θk2

∫
Ex

∑
ξi1

βi1
dn1

dun1
2

φ1d
j1

(u2 − ξi1) ·
∑
ξi2

βi2
dn2

dun2
2

φ1d
j2

(u2 − ξi2) du1du2

]
(6.13)
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where Ex denotes

Ex(j1,j2, k1, k2, n1, n2, ε1, ε2) =

{
u ∈ R2 :

ε1

[
cosn1 θk1

∑
δi∈∆1

αi
dn1

dun1
1

φ1d
j1

(u1 − δi) + sinn1 θk1
∑
ξi∈∆2

βi
dn1

dun1
2

φ1d
j1

(u2 − ξi)
]
> 0,

ε2

[
cosn2 θk2

∑
δi∈∆1

αi
dn2

dun2
1

φ1d
j2

(u1 − δi) + sinn2 θk2
∑
ξi∈∆2

βi
dn2

dun2
2

φ1d
j2

(u2 − ξi)
]
> 0

}
(6.14)

If θk ∈ {0, π2}, cos θk = 0 or sin θk = 0. Therefore if θk1 , θk2 ∈ {0, π2}, the four items in

Equation 6.13 only have one that is nonzero:

• If θk1 = θk2 = 0, only the first item is nonzero. Ex can be simplified as:

Ex(j1, j2, k1, k2, n1, n2, ε1, ε2) =

{
u ∈ R2 :ε1 cosn1 θk1

∑
δi∈∆1

αi
dn1

dun1
1

φ1d
j1

(u1 − δi) > 0,

ε2 cosn2 θk2
∑
δi∈∆1

αi
dn2

dun2
1

φ1d
j2

(u1 − δi) > 0

}
Then with the same analysis as Theorem 14, the gram matrix can be simplified as:

Gx(j1, j2, k1, k2, n1, n2, ε1, ε2) =ε1ε22n1j1+n2j2 · cosn1 θk1 · cosn2 θk2 · (
∑
δi

α2
i )·∫

Ex0u1

dn1

dun1
1

φ1d
j1

(u1 − δ0) · d
n2

dun2
1

φ1d
j2

(u1 − δ0) du1

(6.15)

where Ex0
u1

= {u ∈ R2 : ε1 cosn1 θk1α0
dn1

du
n1
1
φ1d
j1

(u1 − δ0) > 0, ε2 cosn2 θk2α0
dn2

du
n2
1
φ1d
j2

(u1 −

δ0) > 0

• Similarly if θk1 = θk2 = π
2
, the gram matrix is simplified as:

Gx(j1, j2, k1, k2, n1, n2, ε1, ε2) =ε1ε22n1j1+n2j2 · sinn1 θk1 · sinn2 θk2 · (
∑
ξi

β2
i )·∫

Ex0u2

dn1

dun1
2

φ1d
j1

(u2 − ξ0) · d
n2

dun2
2

φ1d
j2

(u2 − ξ0) du2

(6.16)
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• If θk1 = 0, θk2 = π
2
, Ex can be simplified as:

Ex(j1, j2, k1, k2, n1, n2, ε1, ε2) =

{
u ∈ R2 :ε1 cosn1 θk1

∑
δi∈∆1

αi
dn1

dun1
1

φ1d
j1

(u1 − δi) > 0,

ε2 sinn2 θk2
∑
ξi∈∆2

αi
dn2

dun2
2

φ1d
j2

(u2 − δi) > 0

}
:= Exu1⊗Exu2

The gram matrix is simplified as:

Gx(j1, j2, k1, k2, n1, n2, ε1, ε2)

=ε1ε22n1j1+n2j2 · cosn1 θk1 · sinn2 θk2∫
Ex

∑
δi1

αi1
dn1

dun1
1

φ1d
j1

(u1 − δi1) ·
∑
δi2

βi2
dn2

dun2
2

φ1d
j2

(u2 − ξi2) du1du2

=ε1ε22n1j1+n2j2 · cosn1 θk1 · sinn2 θk2∫
Exu1

∑
δi1

αi1
dn1

dun1
1

φ1d
j1

(u1 − δi1) du1 ·
∫
Exu2

∑
δi2

βi2
dn2

dun2
2

φ1d
j2

(u2 − ξi2) du2

=ε1ε22n1j1+n2j2 · cosn1 θk1 · sinn2 θk2·

(
∑
δi1

αi1) ·
∫
Ex0t1

dn1

dun1
1

φ1d
j1

(u1 − δ0) du1 · (
∑
δi2

βi2) ·
∫
Ex0u2

dn2

dun2
2

φ1d
j2

(u2 − ξ0) du2

(6.17)

• If θk1 = 0, θk2 = π
2
, the gram matrix is simplified as:

Gx(j1, j2, k1, k2, n1, n2, ε1, ε2)

=ε1ε22n1j1+n2j2 · sinn1 θk1 · cosn2 θk2·

(
∑
ξi1

βi1) ·
∫
Ex0u2

dn1

dun1
2

φ1d
j1

(u2 − ξ0) du2 · (
∑
δi2

αi2) ·
∫
Ex0u1

dn2

dun2
1

φ1d
j2

(u1 − ξ0) du1

(6.18)

With the analysis above we have the following theorem:

Theorem 17. Let x(u) =
∑

δi1∈∆1

αi11δi1 (u1)+
∑

δi2∈∆2

βi21δi2 (u2) and x′(u) =
∑

δi1∈∆′1

α′i11δi1 (u1)+∑
δi2∈∆′2

β′i21δi2 (u2). Let dmin and d′min denote the smallest pairwise distance between parallel

lines of x and x′, respectively, either along u1 or u2. Assume φ is supported in [−a, a]2 and

θk ∈ {0, π2}. If 2Ja < dmin and 2Ja < d′min, then Gx = Gx′ with the following conditions:
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•
∑

δi1∈∆1

α2
i1

=
∑

δi1∈∆′1

α′2i1

•
∑

ξi2∈∆2

β2
i2

=
∑

ξi2∈∆′2

β′2i2

•
∑

δi1∈∆1

αi1 ·
∑

ξi2∈∆2

βi2 =
∑

δi1∈∆′1

α′i1 ·
∑

ξi2∈∆′2

β′i2

Theorem 17 explains the observation of Figure 5.9 (seventh row) from Chapter 5. When

J = 4, the gram representations are not able to reproduce the cross lines in the frame texture

while larger J resolves the issue.

6.5 Multilayer model

In this section, we discuss the properties of multilayer ReLU model. In the following context

we use σ(f) := ReLU(f).

Let x : R → R and φ : R → R to be a one dimensional low pass filter with φ(u) ≥ 0.

Define the wavelets

ψn(u) = φ(n)(u), u ∈ R

By rescaling we get a wavelet family {ψj,n}j,n:

ψj,n(u) = φ
(n)
j (u)

Note ψj,n(u) = 2nj d
n

dun
φj(u). Then for the one layer wavelet coefficients we have

x ∗ ψj,n = x ∗ 2nj
dnφj
dun

= 2nj · ( d
n

dun
x ∗ φj) = 2nj · x(n) ∗ φj

If j is small, i.e., φj is a tiny filter which is usually the case in CNNs, the convolution with

φj can be regarded as a local smoothing operator. The above wavelet coefficients captures

the n-th order of derivative of x.

6.5.1 Multilayer ReLU model

Now we consider deeper layers of ReLU responses. The following lemma is an essential

property needed about the n-th order derivatives of ReLU function. Note d
du

[σ(f(u))] =

101



σ′(f(u)) · f ′(u) and σ′(c · f) = σ′(f) if c > 0. Since σ(n)(f) = 0, ∀n > 1, we have the

following lemma:

Lemma 6. dn

dun
σ(f(u)) = σ′(f(u)) · f (n)(u).

Proof. We use induction to prove the statement. First we know d
du

[σ(f(u))] = σ′(f(u))·f ′(u)

which aligns with the statement at n = 1. Suppose for n− 1, we have

dn−1

dun−1
σ(f(u)) = σ′(f(u)) · f (n−1)(u)

Consider n,

dn

dun
σ(f(u)) =

d

du

(
dn−1

dun−1
σ(f(u))

)
=

d

du

(
σ′(f(u)) · f (n−1)(u)

)
= σ′′(f(u)) · f (n−1)(u) + σ′(f(u)) · f (n)(u)

(since σ′′(f(u)) = 0) = σ′(f(u)) · f (n)(u)

We prove the conclusion.
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Let us first look at the second layer model

σ(ε1 · x ∗ ψj1,n1) ∗ ψj2,n2 = σ(ε1 · x ∗ ψj1,n1) ∗ 2n2j2 · d
n2

dun2
φj2

= 2n2j2 · d
n2

dun2

[
σ(ε1 · x ∗ ψj1,n1) ∗ φj2

]
= 2n2j2 · d

n2

dun2

[
σ(ε1 · x ∗ ψj1,n1)

]
∗ φj2

= ε12n2j2 · σ′(ε1 · x ∗ ψj1,n1)�
dn2

dun2

[
x ∗ ψj1,n1

]
∗ φj2

= ε12n2j2 · σ′(ε1 · x ∗ ψj1,n1)�
dn2

dun2

[
x ∗ 2n1j1

dn1

dun1
φj1

]
∗ φj2

= ε12n1j1+n2j2 · σ′(ε1 · x ∗ ψj1,n1)�
dn1+n2

dun1+n2

[
x ∗ φj1

]
∗ φj2

= ε12n1j1+n2j2 · σ′(ε1 · x ∗ ψj1,n1)�
[
x(n1+n2) ∗ φj1

]
∗ φj2

= ε12n1j1+n2j2 · σ′(ε1 · 2n1j1 · x(n1) ∗ φj1)�
[
x(n1+n2) ∗ φj1

]
∗ φj2

= ε12n1j1+n2j2 · σ′(ε1 · x(n1) ∗ φj1)�
[
x(n1+n2) ∗ φj1

]
∗ φj2

(6.19)

With the definition of ReLU, we know σ′(ε1 · x(n1) ∗ φj1) 6= 0 only when ε1 · x(n1) ∗ φj1 > 0.

If φj1 is tiny enough, the condition is approximately ε1 · x(n1) > 0. Therefore it can be

concluded that σ(ε1 · x ∗ ψj1,n1) ∗ ψj2,n2 captures the (n1 + n2)-th order of derivative of x at

where ε1 ·x(n1) > 0. With similar logic, we can prove the following theorem for deeper layers

of ReLU models.

Theorem 18. Let fk be the k-layer ReLU response, i.e., fk = σ(. . . σ(ε2 · σ(ε1x ∗ ψj1,n1) ∗

ψj2,n2) . . . ) ∗ ψjk,nk . Then

fk = (
k−1∏
i=1

εi) · 2
k∑
i=1

niji
{
σ′k−1 �

[
. . . σ′1 � (x

(
k∑
i=1

ni)
∗ φj1) · · · ∗ φjk−1

]}
∗ φjk (6.20)

where σ′k = σ′(εk · fk).

Proof. We use induction to prove the theorem. First for k = 2, we prove the conclusion in
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(6.19). Suppose the statement holds for k − 1, let us consider the case for k:

fk = σ(εk−1fk−1) ∗ ψnk,jk

= 2nkjk
dnk

dunk

[
σ(εk−1fk−1)

]
∗ φjk

= εk−1 · 2nkjk
[
σ′(εk−1fk−1)� dnk

dunk
fk−1

]
∗ φjk

(6.21)

Since
dnk

dunk
fk−1 =

dnk

dunk
σ(εk−2fk−2) ∗ ψjk−1,nk−1

= σ(εk−2fk−2) ∗ dnk

dunk
ψjk−1,nk−1

= σ(εk−2fk−2) ∗ dnk

dunk
(2nk−1jk−1

dnk−1

dunk−1
φjk−1

)

= σ(εk−2fk−2) ∗ (2nk−1jk−1
dnk−1+nk

dunk−1+nk
φjk−1

)

=
1

2jk−1nk
σ(εk−2fk−2) ∗ ψjk−1,nk−1+nk

Let f ∗k−1 = σ(εk−2fk−2) ∗ ψjk−1,nk−1+nk , the only difference between f ∗k−1 and fk−1 is that in

f ∗k−1 the last filter substitute nk−1 with nk−1 + nk. Insert this change into (6.20), we get

f ∗k−1 = (
k−2∏
i=1

εi) · 2
nkjk−1+

k−1∑
i=1

niji
{
σ′k−2 �

[
. . . σ′1 � (x

(
k∑
i=1

ni)
∗ φj1) · · · ∗ φjk−2

]}
∗ φjk−1

Therefore

dnk

dunk
fk−1 = (

k−2∏
i=1

εi) · 2
k−1∑
i=1

niji
{
σ′k−2 �

[
. . . σ′1 � (x

(
k∑
i=1

ni)
∗ φj1) · · · ∗ φjk−2

]}
∗ φjk−1

Insert this into Equation 6.21 we prove the theorem.

The above theorem concludes interesting results about very deep neural networks. In

most CNNs, the convolution filters are of small size, which aligns with the case when jk are

all small. In that case, the convolutions with φj can be regarded as tiny local smoothing

operators that we can ignore for now. The theorem concludes that under this condition, the

k-layer ReLU model captures (
k∑
i=1

ni)-th order derivatives of x at where (
l∏

i=1

εi) · x
(
l∑
i=1

ni)
>

0, ∀1 ≤ l < k. High order derivatives are preserved based on fine partitions of low order

derivatives. Specifically when the filters are tiny, n usually equals to 0 or 1. If n is exactly 1,
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the theorem proves that the n-th layer deep model preserves the n-th order derivatives of x

based on partitions of i-th order derivatives for 0 < i < n. If n is either 0 or 1, the theorem

implies similar conclusions. If n is exactly 0, i.e., all the filters are small low pass filters,

the deep model is less related to derivatives of x. In general, deep models smooth out either

the signal or the high order derivatives of the signal. Also deep layers increase the receptive

fields, thus incorporating information from more neighbor pixels and preserving long range

dependence.
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CHAPTER 7

RANDOM FIELDS

A random field refers to a random function over an arbitrary domain, e.g., Rd. The function

value at each point in the domain can be think of as a random variable. And the function

values at different points usually have some correlation. On the other hand, texture images

from the same class usually have similar repeated patterns but generally different, which

can be reflected from the correlation and randomness of a random field. Therefore random

fields can be used to model texture images. In this chapter, we show more of our work

on scattering transform on random fields. We extend the work in [43] to d dimensional

space. We also discuss the relationship between scattering moments and power spectrum of

a stochastic process.

7.1 Scattering moments of self-similar processes

Before we introduce the scattering moments of random fields, we first show and prove the

following properties of random fields that are stationary or has stationary increments. Let

ψ(u) : u ∈ Rd be a wavelet, i.e.,
∫
Rd ψ(u)du = 0.

Lemma 7. If {X(u)}u∈Rd has stationary increments, {X ∗ ψ(u)}u∈Rd is stationary.

Proof. for all u and v:

X ∗ ψ(u) =

∫
X(u− u′)ψ(u′)du′

(since ψ has zero average) =

∫
X(u− u′)ψ(u′)du′ −X(u)

∫
ψ(u′)du′

=

∫
(X(u− u′)−X(u))ψ(u′)du′

d
=

∫
(X(v − u′)−X(v))ψ(u′)du′

=

∫
X(v − u′)ψ(u′)du′

= X ∗ ψ(v)
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Therefore, X ∗ ψ(u)
d
= X ∗ ψ(v)∀u, v, and thus {X ∗ ψ(u)}u∈Rd is stationary.

Remark 6. Similarly if {X(u)}u∈Rd is stationary, {X ∗ ψ(u)}u∈Rd is stationary.

Let σ be a modulus operator or a ReLU operator, i.e., σ(x) = |x| or σ(x) = ReLU(x).

Let {ψj,θ}j,θ be a family of wavelets where

ψj,θ(u) = 2−djψ(2−jR−θu), ∀u ∈ Rd.

The following theorem explores the first order scattering moments of self similar processes.

Theorem 19. Suppose {X(u)}u∈Rd is a self similar process of order H and has stationary

increments. The first order m-th scattering moments of {X(u)}u∈Rd satisfy:

E[σm(X ∗ ψj1,θ1)]
E[σm(X ∗ ψθ1)]

= 2mHj1 (7.1)

Moreover, if {X(u)}u∈Rd is isotropic:

E[σm(X ∗ ψj1,θ1)]
E[σm(X ∗ ψ)]

= 2mHj1 (7.2)

Proof.

X ∗ ψj1,θ1(u) =

∫
Rd
X(u′) · ψj1,θ1(u− u′)du′

=

∫
Rd
X(u′) · 2−nj1ψθ1(2−j1(u− u′))du′

(let v′ = 2−j1u′) =

∫
Rd
X(2j1v′) · 2−nj1ψθ1(2−j1u− v′))2nj1dv′

(since X is self similar) d
=

∫
Rd

2Hj1X(v′) · ψθ1(2−j1u− v′))dv′

= 2Hj1X ∗ ψθ1(2−j1u)

(7.3)

Since X is stationary, we have X ∗ ψθ1(u) is stationary. Therefore E[σm(X ∗ ψθ1(2−j1u))] =

E[σm(X ∗ ψθ1(u))] and the first result develops naturally.
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Moreover, if {X(u)}u∈Rd is isotropic:

X ∗ ψθ1(u) =

∫
Rd
X(u′) · ψθ1(u− u′)du′

=

∫
Rd
X(u′) · ψ(R−1

θ1
(u− u′))du′

(let v′ = R−1
θ1
u′) =

∫
Rd
X(Rθ1v

′) · ψ(R−1
θ1
u− v′)dv′

(since X is isotropic) d
=

∫
Rd
X(v′) · ψ(R−1

θ1
u− v′)dv′

= X ∗ ψ(R−1
θ1
u)

Since X ∗ ψ is stationary, E[σm(X ∗ ψ(R−1
θ1
u))] = E[σm(X ∗ ψ(u))], we verified the second

result.

Theorem 19 implies that for a self similar process of order H with stationary increments,

if we think of E[σm(X ∗ ψθ1)] as a normalization term, the first order scattering moments is

proportional to a value determined by the scale j of the wavelet, the moments m and H.

Moreover if the process is isotropic, the normalization term is substitute by E[σm(X ∗ψ)] and

the scattering moments are invariant to the rotation parameter θ. It provides a necessary

condition for identifying a self similar process and also captures the order parameter H of

the process through the first order scattering moments. In general, this theorem indicates

the pattern of scattering moments of a self similar process. The following theorem explores

more about the second order scattering moments of such processes. Since it involves rotation

difference, we focus on R2 for simplification in the following theorem.

Theorem 20. Suppose (X(u))u∈R2 is a self similar process of order H and has stationary

increments. The second order scattering moments satisfy:

E[σ(σ(X ∗ ψj1,θ1) ∗ ψj2,θ2)]
E[σ(X ∗ ψj1,θ1)]

=
E[σ(σ(X ∗ ψθ1) ∗ ψj2−j1,θ2)]

E[σ(X ∗ ψθ1)]
(7.4)

Moreover, if (X(u))u∈R2 is isotropic:

E[σ(σ(X ∗ ψj1,θ1) ∗ ψj2,θ2)]
E[(X ∗ ψj1,θ1)]

=
E[σ(σ(X ∗ ψ) ∗ ψj2−j1,θ2−θ1)]

E[σ(X ∗ ψ)]
(7.5)
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Proof. From Theorem 19 we have X ∗ ψj1,θ1(u)
d
= 2Hj1X ∗ ψθ1(2−j1u). Therefore:

σ(X ∗ ψj1,θ1) ∗ ψj2,θ2(u) =

∫
R2

σ(X ∗ ψj1,θ1(u′)) · ψj2,θ2(u− u′)du′

d
=

∫
R2

σ(2Hj1X ∗ ψθ1(2−j1u′)) · ψj2,θ2(u− u′)du′

(let v′ = 2−j1u′) =

∫
R2

σ(2Hj1X ∗ ψθ1(v′)) · ψj2,θ2(u− 2j1v′)2nj1dv′

=

∫
R2

σ(2Hj1X ∗ ψθ1(v′)) · ψj2−j1,θ2(2−j1u− v′)dv′

= 2Hj1σ(X ∗ ψθ1) ∗ ψj2−j1,θ2(2−j1u)

Since σ(X ∗ψ1) is stationary, from Remark 6 we have σ(X ∗ψ1)∗ψ2 is stationary. Therefore:

E[σ(σ(X ∗ ψj1,θ1) ∗ ψj2,θ2)]
E[σ(X ∗ ψj1,θ1)]

=
2Hj1E[σ(σ(X ∗ ψθ1) ∗ ψj2−j1,θ2)]

2Hj1E[σ(X ∗ ψθ1)]

=
E[σ(σ(X ∗ ψθ1) ∗ ψj2−j1,θ2)]

E[σ(X ∗ ψθ1)]

The first result if verified. If (X(u))u∈R2 is isotropic:

σ(X ∗ ψθ1) ∗ ψj2−j1,θ2(u) =

∫
R2

σ(X ∗ ψθ1(u′)) · ψj2−j1,θ2(u− u′)du′

d
=

∫
R2

σ(X ∗ ψ(R−1
θ1
u′)) · ψj2−j1,θ2(u− u′)du′

(let v′ = R−1
θ1
u′) =

∫
R2

σ(X ∗ ψ(v′)) · ψj2−j1,θ2(u−R−1
θ1
v′)dv′

=

∫
R2

σ(X ∗ ψ(v′)) · ψj2−j1,θ2−θ1(Rθ1u− v′)dv′

= σ(X ∗ ψ) ∗ ψj2−j1,θ2−θ1(Rθ1u)

Therefore:
E[σ(σ(X ∗ ψθ1) ∗ ψj2−j1,θ2)]

E[σ(X ∗ ψθ1)]
=

E[σ(σ(X ∗ ψ) ∗ ψj2−j1,θ2−θ1)]
E[σ(X ∗ ψ)]

We verified the second result.

Theorem 20 implies that, for a self similar process with order H, the second order

scattering moments E[σ(σ(X ∗ ψj1,θ1) ∗ ψj2,θ2)] normalized by the first scattering moments

E[σ(X ∗ ψj1,θ1)], is determined by the scale difference j2 − j1 where j1, j2 are the scales of

the two wavelets at the two layers. Moreover, if the process is isotropic, the second order
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scattering moments is also determined by the rotation difference θ2− θ1, where θ1, θ2 are the

rotations of the two wavelets at the two layers. This theorem provides another necessary

condition for identifying a self similar process. It describes the pattern of the second order

moments and the parameter H is also captured in such statistics.

7.2 Power spectrum

Definition 1. Suppose {X(u)}u∈Rd is a stationary process with zero mean. The covariance

of X is defined as RX(τ) = EX(0)X(τ). Then the power spectrum of {X(u)}u∈Rd is defined

as:

RX

∧
(ω) = F(RX)(ω) =

∫
Rd
RX(τ)e−iτωdτ

Lemma 8. Suppose {X(u)}u∈Rd is a stationary process and ψ is a wavelet. Let Y (u) =

X ∗ ψ(u). It can be proved that Y is also stationary from Remark 1. Then

RY

∧
(ω) = RX

∧
(ω)|ψ

∧
(−ω)|2 (7.6)
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Proof.

RY

∧
(ω) =

∫
RY (τ)e−iτωdτ

=

∫
E[Y (0)Y (τ)]e−iτωdτ

=

∫
E[X ∗ ψ(0)X ∗ ψ(τ)]e−iτωdτ

=

∫
E[

∫
X(u) · ψ(−u)du ·

∫
X(v) · ψ(τ − v)dv]e−iτωdτ

(by Fubini’s Thm.) = E
∫ ∫ ∫

X(u) · ψ(−u) ·X(v) · ψ(τ − v) · e−iτωdudvdτ

= E
∫ ∫

X(u) · ψ(−u) ·X(v) · [
∫
ψ(τ − v) · e−iτωdτ ]dvdu

(let τ ′ = τ − v, dτ ′ = dτ) = E
∫ ∫

X(u) · ψ(−u) ·X(v) · [
∫
ψ(τ ′) · e−i(τ ′+v)ωdτ ′]dvdu

= E
∫ ∫

X(u) · ψ(−u) ·X(v) · ψ̂(−ω) · e−ivωdvdu

(let v = u+ v′, dv = dv′) = ψ̂(−ω)E
∫ ∫

X(u) · ψ(−u) ·X(u+ v′) · e−i(u+v′)ωdv′du

(by Fubini’s Thm.) = ψ̂(−ω)

∫ ∫
ψ(−u)E[X(u) ·X(u+ v′)] · e−i(u+v′)ωdv′du

= ψ̂(−ω)

∫ ∫
ψ(−u) ·RX(v′) · e−i(u+v′)ωdv′du

= ψ̂(−ω)ψ̂(−ω)RX

∧
(ω)

= |ψ̂(−ω)|2RX

∧
(ω)

Lemma 9. Let {X(u)}u∈Rd be a stationary process and let {ψj}j be a group of wavelets that

are complex analytic. Suppose
∑

j |ψ
∧

j|2(ω) +
∑

j |ψ
∧

j|2(−ω) = 2,∀ω. Then

∑
j

E|X ∗ ψj|2 = VarX

Proof. Let Yj = X ∗ ψj. From Lemma 8,

RYj

∧
(ω) = RX

∧
(ω)|ψj
∧

(−ω)|2
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Therefore, ∑
j

RYj

∧
(ω) =

∑
j

RX

∧
(ω)|ψj
∧

(−ω)|2

= RX

∧
(ω)
∑
j

|ψj
∧

(−ω)|2

=


2RX

∧
(ω), ω < 0

0, ω > 0

Taking the inverse Fourier transform at τ = 0 of both sides, we get∑
j

RYj(0) =
1

2π

∫ ∞
−∞

RY

∧
(ω)dω =

2

2π

∫ 0

−∞
RX

∧
(ω)dω = RX(0)

Since RX(0) = VarX ∑
j

Var(Yj) = VarX

Since ψj is a wavelet, EYj = EX ∗ ψj = 0. We have the result:∑
j

E|X ∗ ψj|2 =
∑
j

E|Yj|2 =
∑
j

Var(Yj) = VarX

Remark 7. Note if σ(x) = ReLU(x), then |X ∗ ψj|2 = σ2(X ∗ ψj) + σ2(−X ∗ ψj) when X

and ψj are both real valued. Then Lemma 9 can be extended to the ReLU operator:∑
j

E[σ2(X ∗ ψj)] +
∑
j

E[σ2(−X ∗ ψj)] = VarX

7.3 Power spectrum and scattering equivalence

For now let us work on R. Define ψλ(t) =
√
λψ(λt) for any λ ∈ (0,∞), and assume ψ is

admissible, meaning that

Cψ :=

∫ ∞
0

|ψ
∧

(ω)|2

ω
dω <∞ .

Let (X(t))t∈R be a stationary process. Define the first order quadratic scattering moments

of X as:

SX(λ) := E|X ∗ ψλ|2 , ∀λ ∈ (0,∞) .
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Theorem 21. Let X, Y be two real-valued stationary processes.

R
∧

X(ω) = R
∧

Y (ω) a.e. ω ∈ R ⇐⇒ SX(λ) = SY (λ) ∀λ ∈ (0,∞) .

To prove the theorem, we need Lemma 2.1 from [71], which we restate in the following.

Lemma 10. Let f ∈ L2(R) be continuous and assume f(ω) = f(−ω). ψ̂ has compact

support and satisfy Condition 1. Then∫
f(ω)|ψ̂λ(ω)|2dω = 0∀λ > 0 =⇒ f = 0 a.e.

Condition 1. Define

|ψ̂+
λ (ω)|2 = (|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2) · 1(ω ≥ 0).

If for any finite sequence {ωi}ni=1 of distinct positive frequencies, the collection {|ψ̂+
λ (ωi)|2}ni=1

are linearly independent functions of λ, we say the wavelet ψ satisfies the linear independence

condition.

Proof of Theorem 21. =⇒:

If ψ is a wavelet, then from Lemma 8, we have:

R
∧

X(ω) = R
∧

Y (ω) a.e. ω ∈ R =⇒ R
∧

X∗ψλ(ω) = R
∧

Y ∗ψλ(ω) a.e. ω ∈ R,∀λ

Then by taking inverse Fourier tansform of the power spectrum we have:

RX∗ψλ(τ) = RY ∗ψλ(τ) ∀τ ∈ R, λ

Let τ = 0, we have:

E|X ∗ ψλ|2 = E|Y ∗ ψλ|2

which proves this direction.
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⇐=:

E|X ∗ ψλ(t)|2 = E
∫
X(u) · ψλ(t− u)du

∫
X(v) · ψλ(t− v)dv

= E
∫ ∫

X(u) ·X(v) · ψλ(t− u) · ψλ(t− v)dudv

(Let v = u+ τ) = E
∫ ∫

X(u) ·X(u+ τ) · ψλ(t− u) · ψλ(t− u− τ)dudτ

=

∫ ∫
EX(u)X(u+ τ) · ψλ(t− u) · ψλ(t− u− τ)dudτ

=

∫ ∫
RX(τ) · ψλ(t− u) · ψλ(t− u− τ)dudτ

=

∫
ψλ(t− u) ·

∫
RX(τ) · ψλ(t− u− τ)dτdu

=

∫
ψλ(t− u) ·RX ∗ ψλ(t− u)du

(Let t = 0 and v = −u) =

∫
ψλ(v) ·RX ∗ ψλ(v)dv

(By Plancherel Thm.) =

∫
RX ∗ ψλ
∧

(ω) · ψλ
∧

(ω)dω

=

∫
RX

∧
(ω) · ψλ
∧

(ω) · ψλ
∧

(−ω)dω

=

∫
RX

∧
(ω) · ψλ
∧

(−ω) · ψλ
∧

(−ω)dω

=

∫
RX

∧
(ω) · |ψλ
∧

(−ω)|2dω

=

∫
RX

∧
(−ω) · |ψλ

∧
(ω)|2dω

(RX

∧

is even) =

∫
RX

∧
(ω) · |ψλ
∧

(ω)|2dω

If SX(λ) = SY (λ), we have: ∫
(RX

∧
−RY

∧
)(ω) · |ψλ

∧
(ω)|2dω = 0

According to Lemma 11 stated in the following, we have RX

∧
(ω) = RX

∧
(−ω). For stationary,

real-valued X, Lemma 8 implies E|X ∗ψλ(t)|2 =
∫
RX

∧
(ω) · |ψλ
∧

(ω)|2dω for all ψ. Suppose ψλ
∧

is an indicator function supported in interval [a, b], we know the integration of RX

∧
in interval

[a, b] is positive. By taking arbitrary a and b, we can conclude that RX

∧
is positive almost

everywhere. With Lemma 10, we prove the result.
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Lemma 11. If X is stationary and real-valued, we have RX is real-valued and RX(τ) =

RX(−τ). Then we also have RX

∧
is real-valued and RX

∧
(ω) = RX

∧
(−ω)

Proof. Since

RX(τ) = EX(0)X(τ) = EX(−τ)X(0) = RX(−τ)

RX(τ) is real-valued and even.

For RX

∧
,

RX

∧
(ω) =

∫
RX(τ)e−iτωdτ =

∫
RX(τ) cos(τω)− i ·RX(τ) sin(τω)dτ

Since RX is even and sin() is odd, we know the imagery part is 0. Therefore, RX is real-

valued.

RX

∧
(−ω) =

∫
RX(τ)eiτωdτ =

∫
RX(−τ)eiτωdτ =

∫
RX(v)e−ivωdv = RX

∧
(ω)

we proved the result.

Theorem 21 demonstrates the power spectral is equivalent to the scattering moments of

a real-valued stationary process. In particular, two processes with the same power spectrum

is equivalent to, the two processes has the same first order second scattering moments for

any scattering parameter λ. Since a stationary process is determined by its power spectrum,

this theorem provides a necessary and sufficient condition for identifying such processes.
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PROOF FOR CHAPTER 3

The Proof of the Lemmas

The Proof of Lemma 1. By linearity, it suffices to show that p is not the zero function unless

α1 = . . . , αN = 0. We will consider the case where |γN | > |γk| for all k = 1, 2, . . . , N − 1.

The other cases, where |γ1| > |γk| for all 2 ≤ k ≤ N or where |γ1| = |γN | > |γk| for all

2 ≤ k ≤ N − 1 are similar. The n-th derivative of p is given by

p(n)(x) =
N∑
k=1

αkγ
n
ke

iγkx.

Therefore,

lim
n→∞

p(n)(0)

γnN
= αN ,

so in particular, there exists n such that p(n)(0) 6= 0, and therefore p is not uniformly zero.

The proof of Lemma 2. In the case where p = 2m is even, then by (3.13) and (3.14), |pi|2m ∈

E(mdi) for each i. Therefore, since d1 > d2, d3, d4, it follows from (3.15) that

|p1|2m + |p2|2m − |p3|2m − |p4|2m

is an element of E(md1) and therefore vanishes on a set of measure zero. Now consider the

case where p = 2m+ 1 is odd. Squaring both sides of (3.16) implies

p5 = 2(|p1p2|2m+1 − |p3p4|2m+1),

where p5 := |p1|4m+2 + |p2|4m+2 − |p3|4m+2 − |p4|4m+2. Thus, squaring both sides again gives

p6 := 8|p1p2p3p4|2m+1

where p6 = p2
5 − 4|p1p2|4m+2 − 4|p3p4|4m+2. Therefore, squaring both sides one final time

implies that

p2
6 − 64|p1p2p3p4|4m+2 = 0.
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However, since d1 > d2, d3, d4, repeatedly applying (3.13), (3.14), and (3.15), we see that

(p2
6 − 64|p1p2p3p4|2) ∈ E(4md1) and therefore vanishes on a set of measure zero.

In addition to the lemmas from Chapter 3, we also need the following lemmas to prove

Theorem 5 and 4.

Lemma 12. Let m ≥ 1 be an odd integer, and let a, b, c, d, C ∈ R, a, b, c, d 6= 0. Let

p(θ) = a + beiθ, and q(θ) = c + deiθ. If there are more than 4m distinct θ ∈ [0, 2π] such

that

|p(θ)|m − |q(θ)|m = C,

then ab = cd and a2 + b2 = c2 + d2.

Lemma 13. Let m ≥ 1 be an integer (not necessarily odd) and let a, b, c, d, C ∈ R, γ >

0, κ 6= 0, 1. Then the set of θ such that

∣∣a+ beiθ + cei(γ+1)θ
∣∣m − ∣∣∣∣κa+

1

κ
beiθ + κcei(γ+1)θ

∣∣∣∣m = C (7)

has measure zero.

The Proof of Lemma 12. If θ is a solution to

|p(θ)|p − |q(θ)|p = C,

then

|p(θ)|2p − |q(θ)|2p − C2 = 2|q(θ)|pC.

Therefore, f(θ) = 0, where f : R→ R is the function defined by

f(θ) :=
(
|p(θ)|2p − |q(θ)|2p − C2

)2 − 4|q(θ)|2pC2.

Since

|p(θ)|2 = a2 + b2 + 2ab cos(θ) and |q(θ)|2 = c2 + d2 + cd cos(θ), (8)
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f(θ) is a trigonometric polynomial of degree at most 2p which by assumption has more than

4p zeros in [0, 2π]. This implies that f(θ) is uniformly zero. By (8)

f(θ) =
(
(a2 + b2 + 2ab cos(θ))p − (c2 + d2 + 2cd cos(θ))p − C2

)2 − 4C2(c2 + d2 + 2cd cos(θ))p

and so setting the cos2p(θ) coefficient equal to zero implies

0 = (2papbp − 2pcpdp)2

which implies ab = cd since p is odd. If p ≥ 3, then 2(p − 1) > p. Therefore, using the

binomial formula and setting the cos2(p−1)(θ) coefficient of f(θ) equal to zero implies((
p

p− 1

)
(a2 + b2)(2ab)p−1 −

(
p

p− 1

)
(c2 + d2)(2cd)p−1

)2

= 0,

but since ab = cd this implies that a2 + b2 = c2 + d2. On the other hand, if p = 1, using the

fact that ab = cd we see that

f(θ) =
(
a2 + b2 − (c2 + d2)− C

)2
= 4C2(c2 + d2 + 2cd cos(θ)

Therefore, f(θ) can only be uniformly equal to zero if C = 0 and a2 + b2 = c2 + d2.

The Proof of Lemma 13. Let

p(θ) = a+ beiθ + cei(γ+1)θ and q(θ) = κa+
1

κ
beiθ + κcei(γ+1)θ.

Then by (7) we see

|p(θ)|p = |q(θ)|p + C,

Squaring both sides yields,

|p(θ)|2p − |q(θ)|2p − C2 = 2|q(θ)|pC,

and therefore if θ satisfies (7) it is a solution to f(θ) = 0, where

f(θ) :=
(
|p(θ)|2p − |q(θ)|2p − C2

)2 − 4|q(θ)|2pC2 = 0.

119



f(θ) is an element of the class E of generalized exponential polynomials introduced earlier.

Therefore, it will follow that f vanishes on a set of measure zero as soon as we show that f is

not uniformly zero. We will verify that that the lead cofficient of f is nonzero unless c = ±1.

Using the trigonometric identities sin2(x) + cos2(x) = 1 and cos(x − y) = cos(x) cos(y) +

sin(x) sin(y) we see that

|p(θ)|2 = a2 + b2 + c2 + 2ab cos(θ) + 2bc cos(γθ) + 2ac cos((γ + 1)θ)

and likewise

|q(θ)|2 = κ2a2 +
1

κ2
b2 + κ2c2 + 2ab cos(θ) + 2bc cos(γθ) + 2κ2ac cos((γ + 1)θ).

Therefore, the lead coefficient of f(θ) vanishes if and only if κ2 = 1.

The Proof of Theorem 4

Proof. Choose ξ1, ξ2, . . . , ξL i.i.d. from any probability distribution which is absolutely con-

tinuous with respect to the Lebesgue measure. Since x is collision free, with probability one,

each of the ξ`∆i,i+1(x) are distinct modulo 2π, i.e.

ξ`∆i,i+1(x) 6≡ ξ`′∆i′,i′+1(x) mod 2π (9)

for all 1 ≤ i, i′ ≤ k − 1 and 1 ≤ `, `′ ≤ L, except when (i, `) = (i′, `′).

Assume these ξ`∆i,i+1 are distinct, and let y(t) be any signal defined as in 3.17 such that

D(y) = D(x) =: D, and ∂2
sfx,ξ`(d) = ∂2

sfy,ξ`(d) for all d ∈ D and for all 1 ≤ ` ≤ L − 1, and∑k
i=1 |bi|p =

∑k
i=1 |ai|p. Note that y(t) depends on ξ1, . . . , ξL−1, but is independent of ξL. By

CITE TURNPIKE and the assumption that x(t) and y(t) are collision free, the fact that

D(x) = D(y) implies that the support sets of x and y are equivalent up to translation and

reflection, so we may assume without loss of generality that ∆i,j(x) = ∆i,j(y) =: ∆i,j for all

1 ≤ i ≤ j ≤ k. We will show that ~b must be given by

bi =


1
c
ai if i is odd

cai if i is even
,
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where c = ±1 or

|c|p =

∑b k+1
2
c

i=1 |a2i−1|p∑b k
2
c

i=1 |a2i|p
. (10)

Next, we will show that, with probability one, if c satisfies 10, but c 6= ±1, that ∂2
sfx,ξL(∆1,3) 6=

∂2
sfy,ξL(∆1,3). Since y(t)

(
and therefore ~b

)
was chosen to depend on ξ1, . . . , ξL−1, but not ξL,

these two facts together will imply that, with probability one, if y(t) is any signal such that

D(y) = D(x) =: D, and ∂2
sfx,ξ`(d) = ∂2

sfy,xi`(d) for all d ∈ D and all 1 ≤ ` ≤ L, then ~b = ±~a

and therefore y is equivalent to ±x up to reflection and translation.

(3.6) implies that for all 1 ≤ ` ≤ L− 1 and all 1 ≤ i ≤ k − 1 we have

|ai + ai+1e
iξ`∆i,i+1|p − |ai+1|p − |ai|p = ∂2

sfx,ξ`(∆i,i+1)

= ∂2
sfy,ξ`(∆i,i+1)

= |bi + bi+1e
iξ`∆i,i+1 |p − |bi+1|p − |bi|p.

Therefore, for all 1 ≤ i ≤ k − 1, ξ1∆i,i+1, . . . , ξL−1∆i,i+1 are all L − 1 solutions, which are

distinct modulo 2π, to

|ai + ai+1e
iθ|p − |bi + biθi+1|p = |bi|p + |bi+1|p − |ai|p − |ai+1|p.

Since L− 1 ≥ 4p, Lemma 12 implies that

aiai+1 = bibi+1 (11)

and

a2
i + a2

i+1 = b2
i + b2

i+1 (12)

for all 1 ≤ i ≤ k − 1. It follows from (11) that

bi =


1
c
ai if i is odd

cai if i is even,
(13)

where c := a1
b1
. Combining (13) with the assumption that

k∑
i=1

|ai|p =
k∑
i=1

|bi|p
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implies that either c = ±1 or that c satisfies (10). Now, we will show that, with probability

one, if c satisfies (10), but c 6= ±1, then ∂2
sfξL [x](∆1,3) 6= ∂2

sfξL [y](∆1,3).

By 3.7, if ∂2
sfξL [x](∆1,3) = ∂2

sfξL [y](∆1,3), then

|a1 + a2e
iξL∆1,2 + a3e

iξL∆1,3 |p + |a2|p − |a2e
iξL∆1,2 + a3e

iξL∆1,3|p − |a1 + a2e
iξL∆1,2|p

=|b1 + b2e
iξL∆1,2 + b3e

iξL∆1,3|p + |b2|p − |b2e
iξL∆1,2 + b3e

iξL∆1,3|p − |b1 + b2e
iξL∆1,2 |p. (14)

But combining (11) and (12) implies that for all i either (ai, ai+1) = ±(bi, bi+1) or (ai, ai+1) =

±(bi+1, bi). In either case, we have that

|a1 + a2e
iξL∆1,2 | = |b1 + b2e

iξL∆1,2| and |a2e
iξL∆1,2 + a3e

iξL∆1,3| = |b2e
iξL∆1,2 + b3e

iξL∆1,3|.

Combining this with (14) gives

|a1 + a2e
iξL∆1,2 + a3e

iξL∆1,3|p + |a2|p = |b1 + b2e
iξL∆1,2 + b3e

iξL∆1,3|p + |b2|p. (15)

However, by Lemma 13 the set of ξL ∈ R such that (15) holds has measure zero, unless

c = ±1. Since we assumed that the distribution of ξL was absolutely continuous with

respect to the Lebesgue measure, this completes the proof.

The Proof of Theorem 5. The proof is quite similar to the proof of Theorem 4. Choose

ξ1, . . . , ξL i.i.d from any probability distribution which is absolutely continuous with respect

to the Lebesgue measure, and again note that with probability one each of the ξ`∆i,i+1 are

distinct modulo 2π. Let y(t) be any signal defined as in (3.18) such that D(y) = D(x) =: D,

and ∂2
sfξ` [x](d) = ∂2

sfξ` [y](d) for all d ∈ D and for all 1 ≤ ` ≤ L − 1, and
∑k

i=1 |bi|p =∑k
i=1 |ai|p. As before, we may assume that ∆i,j(x) = ∆i,j(y) =: ∆i,j for all 1 ≤ i ≤ j ≤ k.

Since ∂2
sfξ` [x](∆i,i+1) = ∂2

sfξ` [x](∆i,i+1) if follows from (3.6) that for all 1 ≤ ` ≤ L,

1 ≤ i ≤ k − 1,

|ai + ai+1e
iξ`∆i,i+1|2m − |ai|2m − |ai+1|2m = |bi + bi+1e

iξ`∆i,i+1 |2m − |bi|2m − |bi+1|2m.

Therefore, for all 1 ≤ i ≤ k − 1, ξ1∆i,i+1, . . . , ξL−1∆i,i+1 are L− 1 solutions to

h(θ) := |ai + ai+1e
iθ|2m − |bi + bi+1e

iθ|2m + |bi|2m + |bi+1|2m − |ai|2m − |ai+1|2m = 0
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which are distint modulo 2π. Using the facts that

|ai + ai+1e
iθ|2 = a2

i + a2
i+1 + 2aiai+1 cos(θ) and |bi + bi+1e

iθ|2 = b2
i + b2

i+1 + 2bibi+1 cos(θ)

we see that

h(θ) = (a2
i + a2

i+1 + 2aiai+1 cos(θ))m − (b2
i + b2

i+1 + 2bibi+1 cos(θ))m + b2m
i + b2m

i+1 − a2m
i − a2m

i+1

is a trigonometic polynomial of degree at most m with at least L − 1 distinct roots. Since

L− 1 ≥ 2m+ 1 > 2m, this implies that h must be uniformly zero. In particular, setting the

lead coefficient equal to zero implies

(aiai+1)m = (bibi+1)m

for all 1 ≤ i ≤ k− 1. Using the binomial theorem and setting the cosm−1(θ) coefficient equal

to zero gives

(a2
i + a2

i+1)m−1aiai+1 = (b2
i + b2

i+1)m−1bibi+1.

Combining the last two equations gives

a2
i + a2

i+1 = b2
i + b2

i+1 and aiai+1 = bibi+1.

As in the proof of Theorem 4, these two facts imply that

bi =


1
c
ai if i is odd

cai if i is even

for c = a1
b1
, and the assumption that

k∑
i=1

|ai|p =
k∑
i=1

|bi|p

implies that either c = ±1 or

|c|p = ±
∑b k+1

2
c

i=1 |a2i−1|p∑b k
2
c

i=1 |a2i|p
. (16)

As in the proof of Theorem 4 it follows from Lemma 13 if c satisfies (16), but c 6= ±1, then

∂2
sfξL [x](∆1,3) 6= ∂2

sfξL [y](∆1,3) with probability one. Therefore, the proof is complete.
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PROOF FOR CHAPTER 4

Proof of Theorem 6

To prove Theorem 6 we will need the following lemma.

Lemma 14. Let Z be a Poisson random variable with parameter λ. Then for all α ∈ R,

m ∈ N,

E
[
Zα

1{Z>m}
]

=
∞∑

k=m+1

e−λ
λk

k!
kα ≤ Cm,αλ

m+1 , ∀ 0 < λ < 1 .

Proof. For 0 < λ < 1 and k ∈ N, e−λλk ≤ 1. Therefore,

E
[
Zα

1{Z>m}
]

=
∞∑

k=m+1

e−λ
λk

k!
kα

= λm+1

∞∑
k=0

e−λ
λk

(k +m+ 1)!
(k +m+ 1)α

≤ λm+1

∞∑
k=0

(k +m+ 1)α

(k +m+ 1)!

= Cα,mλ
m+1 .

Proof. [Theorem 6] Recalling the definitions of Y (dt) and S[γ, p]Y (t), and setting Ns(t) =

N
(
[t− s, t]d

)
, we see

S[γ, p]Y (t) = E
[∣∣∣∣∫

[s−t,t]d
w

(
t− u
s

)
eiξ·(t−u) Y (du)

∣∣∣∣p]

= E

∣∣∣∣∣∣
Ns(t)∑
j=1

Ajw

(
t− tj
s

)
eiξ·(t−tj)

∣∣∣∣∣∣
p ,

where t1, t2, . . . tNs(t) are the pointsN(t) in [t−s, t]d. Conditioned on the event thatNs(t) = k,

the locations of the k points on [t−s, t]d are distributed as i.i.d. random variables Z1, . . . , Zk

taking values in [t− s, t]d with density

pZ(z) =
λ(z)

Λs(t)
, z ∈ [t− s, t]d .
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Therefore, the random variables

Vi :=
t− Zi
s

take values in the unit cube Q1 = [0, 1]d and have density

pV (v) =
sd

Λs(t)
λ(t− vs) , v ∈ Q1 .

Note that in the special case that N is homogeneous, i.e. λ(t) ≡ λ0 is constant, the Vi are

uniform random variables on Q1.

Our proof will be based off of conditioning on Ns(t). For Ns(t) = k ≥ 1,

E

∣∣∣∣∣∣
Ns(t)∑
j=1

Ajw

(
t− tj
s

)
eiξ·(t−tj)

∣∣∣∣∣∣
p

: Ns(t) = k

 = E

[∣∣∣∣∣
k∑
j=1

Ajw(Vj)e
isξ·Vj

∣∣∣∣∣
p]

≤ ‖λ‖∞
λmin

kpE[|A1|p]‖w‖pp , (17)

where (17) follows from (i) the independence of the random variables Aj and Vj; (ii) the fact

that for any sequence of i.i.d. random variables Z1, Z2, . . .,

E

[∣∣∣∣∣
k∑

n=1

Zn

∣∣∣∣∣
p]
≤ kp−1E

[
k∑

n=1

|Zn|p
]

= kpE[|Z1|p] ;

and (iii) the fact that

E[|w(Vi)|p] =

∫
Q1

|w(v)|ppV (v) dv ≤ ‖λ‖∞
λmin

‖w‖pp .

Therefore, since P[Ns(t) = k] = e−Λs(t) · (Λs(t))k/k!,

E

∣∣∣∣∣∣
Ns(t)∑
j=1

Ajw

(
t− tj
s

)
eiξ·(t−tj)

∣∣∣∣∣∣
p =

=
∞∑
k=0

e−Λs(t)
(Λs(t))

k

k!
E

∣∣∣∣∣∣
Ns(t)∑
j=1

Ajw

(
t− tj
s

)
eiξ·(t−tj)

∣∣∣∣∣∣
p

: Ns(t) = k


=
∞∑
k=1

e−Λs(t)
(Λs(t))

k

k!
E

[∣∣∣∣∣
k∑
j=1

Ajw(Vj)e
isξ·Vj

∣∣∣∣∣
p]

=
m∑
k=1

e−Λs(t)
(Λs(t))

k

k!
E

[∣∣∣∣∣
k∑
j=1

Ajw(Vj)e
isξ·Vj

∣∣∣∣∣
p]

+ ε(m, s, ξ, t) ,
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where

ε(m, s, t, ξ) :=
∞∑

k=m+1

e−Λs(t)
(Λs(t))

k

k!
E

[∣∣∣∣∣
k∑
j=1

Ajw(Vj)e
isξ·Vj

∣∣∣∣∣
p]

.

By (17) and Lemma 14, if s is small enough so that Λs(t) ≤ sd‖λ‖∞ < 1, then:

ε(m, s, ξ, t) =
∞∑

k=m+1

e−Λs(t)
(Λs(t))

k

k!
E

[∣∣∣∣∣
k∑
j=1

Ajw(Vj)e
isξ·Vj

∣∣∣∣∣
p]

≤ ‖λ‖∞
λmin

E[|A1|p]‖w‖pp
∞∑

k=m+1

e−Λs(t)
(Λs(t))

k

k!
kp

≤ Cm,p
‖λ‖∞
λmin

E[|A1|p]‖w‖pp(Λs(t))
m+1

≤ Cm,p
‖λ‖∞
λmin

E[|A1|p]‖w‖pp‖λ‖m+1
∞ sd(m+1) .

Proof of Theorem 7

Proof. [Theorem 7] Let (sk, ξk) be a sequence of scale and frequency pairs such that

limk→∞ sk = 0. Applying Theorem 6 with m = 1, we obtain:

Sγk,pY (t)

sdk
= e−Λsk (t) Λsk(t)

sdk
E
[∣∣A1w(V1,k)e

isξ·V1,k
∣∣p]+

ε(1, sk, ξk, t)

sdk

= e−Λsk (t) Λsk(t)

sdk
E[|A1|p]E[|w(V1,k)|p] +

ε(1, sk, ξk, t)

sdk
,

where we write V1,k = V1 to emphasize the fact that the density of V1,k is:

pVk(v) =
sdk

Λsk(t)
λ(t− vsk) .

Using the error bound (4.9), we see that:

lim
k→∞

ε(1, sk, ξk, t)

sdk
= 0 .

Furthermore, since 0 ≤ Λsk(t) ≤ sdk‖λ‖∞, we observe that:

lim
k→∞

e−Λsk (t) = 1 ,
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and by the continuity of λ(t),

lim
k→∞

Λsk(t)

sdk
= lim

k→∞

1

sdk

∫
[sk−t,t]d

λ(u) du = λ(t) . (18)

Finally, by the continuity of λ(t), we see that

pVk(v) ≤ ‖λ‖∞
λmin

and lim
k→∞

pVk(v) = 1 , ∀ v ∈ Q1 . (19)

Therefore, by the bounded convergence theorem,

lim
k→∞

E[|w(V1)|p] = lim
k→∞

∫
Q1

|w(v)|ppVk(v) dv =

∫
Q1

|w(v)|p lim
k→∞

pVk(v) dv = ‖w‖pp .

That completes the proof of (4.10).

To prove (4.11), we assume that λ(t) is periodic with period T along each coordinate and

again use Theorem 6 with m = 1 to observe,

SY (sk, ξk, p)

sdk
= E[|A1|p]

1

T d

∫
QT

e−Λsk (t) Λsk(t)

sdk

∫
Q1

|w(v)|ppVk(v) dv dt+
1

T d

∫
Q1

ε(1, sk, ξk, t)

sdk
dt .

By (4.9), the second integral converges to zero as k →∞. Therefore,

lim
k→∞

SY (sk, ξk, p)

sdk
= E[|A1|p]‖w‖pp

1

T d

∫
QT

λ(t) dt ,

by the continuity of λ(t) and the bounded convergence theorem.

Proof of Theorem 8

Proof. [Theorem 8] We apply Theorem 6 with m = 2 and obtain:

Sγk,pY (t) = e−Λsk (t)Λsk(t)E[|A1|p]E[|w(V1,k)|p] (20)

+ e−Λsk (t) (Λsk(t))
2

2
E
[∣∣A1w(V1,k)e

iskξk·V1,k + A2w(V2,k)e
iskξk·V2,k

∣∣p]+ ε(2, sk, ξk, t) ,

where Vi,k, i = 1, 2, are random variables taking values on the unit cube Q1 = [0, 1]d with

densities,

pVk(v) =
sdk

Λsk(t)
λ(t− vsk) .
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Dividing both sides in (20) by s2d
k ‖w‖ppE[|A1|p] and subtracting Λsk (t)

s2dk

E[|w(V1,k)|p]

‖w‖pp
yields:

Sγk,pY (t)

s2d
k ‖w‖

p
pE[|A1|p]

− Λsk(t)

s2d
k

E[|w(V1,k)|p]
‖w‖pp

=
e−Λsk (t)Λsk(t)− Λsk(t)

s2d
k

E[|w(V1,k)|p]
‖w‖pp

(21)

+ e−Λsk (t) (Λsk(t))
2

s2d
k

E
[∣∣A1w(V1,k)e

iskξk·V1,k + A2w(V2,k)e
iskξk·V2,k

∣∣p]
2‖w‖ppE[|A1|p]

+
ε(2, sk, ξk, t)

s2d
k ‖w‖

p
pE[|A1|p]

.

Using the error bound (4.9),

lim
k→∞

ε(2, sk, ξk, t)

s2d
k ‖w‖

p
pE[|A1|p]

= 0 , (22)

at a rate independent of t. Recalling (19) from the proof of Theorem 7, we use the fact that

limk→∞ pVk ≡ 1 and the bounded convergence theorem to conclude,

lim
k→∞

E
[∣∣A1w(V1,k)e

iskξk·V1,k + A2w(V2,k)e
iskξk·V2,k

∣∣p] = E
[∣∣A1w(U1)eiL·U1 + A2w(U2)eiL·U2

∣∣p] ,
(23)

where Ui, i = 1, 2, are uniform random variables on the unit cube and L = limk→∞ skξk.

Similarly,

lim
k→∞

E[|w(V1,k)|p]
‖w‖pp

= 1 . (24)

Lastly, recalling that sk → 0 as k →∞ and using (18) from the proof of Theorem 7, we see

lim
k→∞

e−Λsk (t)Λsk(t)− Λsk(t)

s2d
k

= lim
k→∞

(
Λsk(t)

sdk

)
lim
k→∞

(
e−Λsk (t) − 1

sdk

)
= λ(t) lim

k→∞

(
e−Λsk (t) − 1

sdk

)
= −λ(t)2 . (25)

Now we integrate both sides of (21) over QT and divide by T d. Taking the limit as

k →∞, on the left hand side we get:

lim
k→∞

1

T d

∫
QT

(
Sγk,pY (t)

s2d
k ‖w‖

p
pE[|A1|p]

− Λsk(t)

s2d
k

E[|w(V1,k)|p]
‖w‖pp

)
dt

= lim
k→∞

(
SY (sk, ξk, p)

s2d
k ‖w‖

p
pE[|A1|p]

− E[|w(V1,k)|p]
‖w‖pp

1

T d

∫
QT

Λsk(t)

s2d
k

dt

)
= lim

k→∞

(
SY (sk, ξk, p)

s2d
k E[|w(V1,k)|p]E[|A1|p]

− 1

T d

∫
QT

Λsk(t)

s2d
k

dt

)
,
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where we used the definition of the invariant scattering moments and (24). On the right

hand side of (21), we use (24), (25) and the dominated convergence theorem to see that the

first term is:

lim
k→∞

1

T d

∫
QT

e−Λsk (t)Λsk(t)− Λsk(t)

s2d
k

E[|w(V1,k)|p]
‖w‖pp

dt = lim
k→∞

1

T d

∫
QT

e−Λsk (t)Λsk(t)− Λsk(t)

s2d
k

dt

= − 1

T d

∫
QT

λ(t)2 dt .

Using (18), (23), and the bounded convergence theorem, the second term of (21) is:

lim
k→∞

1

T d

∫
QT

e−Λsk (t) (Λsk(t))
2

s2d
k

E
[∣∣A1w(V1,k)e

iskξk·V1,k + A2w(V2,k)e
iskξk·V2,k

∣∣p]
2‖w‖ppE[|A1|p]

dt

=
E[|A1w(U1)eiL·U1 + A2w(U2)eiL·U2|p]

2‖w‖ppE[|A1|p]

(
1

T d

∫
QT

λ(t)2 dt

)
.

Finally, the third term of (21) goes to zero using the bounded convergence theorem and (22).

Putting together the left and right hand sides of (21) with these calculations finishes the

proof.

Proof of Theorem 9

Proof. [Theorem 9] As in the proof of Theorem 6, let Ns(t) = N
(
[t− s, t]d

)
denote the

number of points in the cube [t− s, t]d. Then since the support of w is contained in [0, 1]d,

(gγk ∗ Y ) (t) =

∫
[t−sk,t]d

w

(
t− u
sk

)
eiξk·(t−u) Y (du) =

Nsk (t)∑
j=1

Ajw

(
t− tj
sk

)
eiξk·(t−tj) ,

where t1, t2, . . . , tNsk (t) are the points of N in [t−sk, t]d. Therefore, in the event that Nsk(t) =

1,

| (gγk ∗ Y ) (t)|p = (|gγk |p ∗ |Y |p) (t) ,
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and so, partitioning the space of possible outcomes based on Nsk(t), we obtain:

| (gγk ∗ Y ) (t)|p = | (gγk ∗ Y ) (t) · 1{Nsk (t)=1} + (gγk ∗ Y ) (t) · 1{Nsk (t)>1}|p

= | (gγk ∗ Y ) (t) · 1{Nsk (t)=1}|p + | (gγk ∗ Y ) (t) · 1{Nsk (t)>1}|p

= (|gγk |p ∗ |Y |p) (t) · 1{Nsk (t)=1} + | (gγk ∗ Y ) (t) · 1{Nsk (t)>1}|p

= (|gγk |p ∗ |Y |p) (t) + | (gγk ∗ Y ) (t) · 1{Nsk (t)>1}|p − (|gγk |p ∗ |Y |p) (t) · 1{Nsk (t)>1}

= (|gγk |p ∗ |Y |p) (t) + ek(t) ,

where

ek(t) := | (gγk ∗ Y ) (t) · 1{Nsk (t)>1}|p − (|gγk |p ∗ |Y |p) (t) · 1{Nsk (t)>1}

Using the above, we can write the second order convolution term as:

(
gγ′k ∗ |gγk ∗ Y |

)
(t) =

(
gγ′k ∗ |gγk |

p ∗ |Y |p
)

(t) +
(
gγ′k ∗ ek

)
(t) .

The following lemma implies that
(
gγ′k ∗ ek

)
(t) decays rapidly in Lp

′ at a rate independent

of t.

Lemma 15. There exists δ > 0, independent of t, such that if sk < δ,

E
[∣∣(gγ′k ∗ ek) (t)

∣∣p] ≤ C(p, p′, w, c, L)
‖λ‖∞
λmin

‖λ‖2
∞s

d(p′+2)
k .

Once we have proved Lemma 15, equation (4.13) will follow once we show,

lim
k→∞

E
[∣∣(gγ′k ∗ |gγk |p ∗ |Y |p) (t)

∣∣p′]
s
d(p′+1)
k

= K(p, p′, w, c, L)λ(t)E[|A1|q] . (26)

Let us prove (26) first and postpone the proof of Lemma 15. We will use the fact that

the support of gγ′k ∗ |gγk |
p is contained in [0, sk + s′k]

d. Let s̃k := sk + s′k, Nk(t) := Ns̃k(t),

Λk(t) := Λs̃k(t), and let t1, t2, . . . , tNk(t) be the points of N in the cube [t − s̃k, t]
d. We

have that P[Nk(t) = n] = e−Λk(t) (Λk(t))n

n!
, and conditioned on the event that Nk(t) = n, the

locations of the points t1, . . . , tn are distributed as i.i.d. random variables Z1(t), . . . , Zn(t)
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taking values in [t− s̃k, t]d with density pZ(t)(z) = λ(z)
Λk(t)

. Therefore the i.i.d. random variables

Ṽ1(t), . . . , Ṽn(t) defined by Ṽi(t) := t− Zi(t) take values in [0, s̃k]
d and have density

pṼ (t)(v) =
λ(t− v)

Λk(t)
, v ∈ [0, s̃k]

d .

Now, we condition on Nk(t) to see that

E
[∣∣(gγ′k ∗ |gγk |p ∗ |Y |p) (t)

∣∣p′] =E


∣∣∣∣∣∣
Nk(t)∑
j=1

|Aj|p
(
gγ′k ∗ |gγk |

p
)

(t− tj)

∣∣∣∣∣∣
p′


=
∞∑
n=1

e−Λk(t) (Λk(t))
n

n!
· (27)

E


∣∣∣∣∣∣
Nk(t)∑
j=1

|Aj|p
(
gγ′k ∗ |gγk |

p
)

(t− tj)

∣∣∣∣∣∣
p′

: Nk(t) = n


=
∞∑
n=1

e−Λk(t) (Λk(t))
n

n!
E

∣∣∣∣∣
n∑
j=1

|Aj|p
(
gγ′k ∗ |gγk |

p
)

(Ṽj(t))

∣∣∣∣∣
p′


=e−Λk(t)Λk(t)E[|A1|q]E
[∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))

∣∣∣p′] (28)

+
∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
E

∣∣∣∣∣
n∑
j=1

|Aj|p
(
gγ′k ∗ |gγk |

p
)

(Ṽj(t))

∣∣∣∣∣
p′
 .

(29)

The following lemma will be used to estimate the scaling of the term in (28).

Lemma 16. For all t ∈ Rd,

lim
k→∞

s̃dk

s
d(p′+1)
k

E
[∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))

∣∣∣p′] = ‖gc,L/c ∗ |g1,0|p‖p
′

p′ . (30)

Furthermore, there exists δ > 0, independent of t, such that if sk < δ then

s̃dk

s
d(p′+1)
k

E
[∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))

∣∣∣p′] ≤ 2
‖λ‖∞
λmin

C(p, p′, w, c, L) . (31)
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Proof. Making a change of variables in both u and v, and recalling the assumption that

s′k = csk, we observe that

s̃dk

s
d(p′+1)
k

E
[∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))

∣∣∣p′]
=

s̃dk

s
d(p′+1)
k

∫
Rd
pṼ (t)(v)

∣∣∣∣∫
Rd
w

(
v − u
s′k

)
eiξ
′
k·(v−u)

∣∣∣∣w( u

sk

)∣∣∣∣p du∣∣∣∣p′ dv
= s̃dk

∫
Rd
pṼ (t)(skv)

∣∣∣∣∫
Rd
w

(
sk(v − u)

s′k

)
eiskξ

′
k·(v−u)|w(u)|p du

∣∣∣∣p′ dv
=

∫
Rd

s̃dkλ(t− skv)

Λk(t)

∣∣∣∣∫
Rd
w

(
u− v
c

)
eis
′
kξ
′
k·(u−v)/c|w(u)|p du

∣∣∣∣p′ dv . (32)

The continuity of λ(t) implies that

lim
k→∞

s̃dkλ(t− skv)

Λk(t)
= 1 , ∀ v ∈ [0, 1 + c]d .

Furthermore, the assumption 0 < λmin ≤ ‖λ‖∞ <∞ implies

s̃dkλ(t− skv)

Λk(t)
≤ ‖λ‖∞

λmin

, ∀ k ≥ 1 . (33)

Therefore, (30) follows from the dominated convergence theorem and by the observation that

the inner integral of (32) is zero unless v ∈ [0, 1 + c]d. Equation (31) follows from inserting

(33) into (32) and sending k to infinity.

Since

lim
k→∞

Λk(t)

s̃dk
= λ(t) ,

the independence of Ṽ1(t) and A1, the continuity of λ(t), and Lemma 16 imply that taking

k →∞ in (28) yields:

lim
k→∞

e−Λk(t)Λk(t)E[|A1|q]E
[
|gγ′k ∗ |gγk |

p(Ṽ1(t))|p′
]

s
d(p′+1)
k


= lim

k→∞

(
e−Λk(t) Λk(t)

s̃dk
E[|A1|q]

s̃dk

s
d(p′+1)
k

E
[
|gγ′k ∗ |gγk |

p(Ṽ1(t))|p′
])

= K(p, p′, c, w, L)λ(t)E[|A1|q] .
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The following lemma shows that (29) is O
(
s
d(p′+2)
k

)
(and converges at a rate independent

of t), and therefore completes the proof of (4.13) subject to proving Lemma 15.

Lemma 17. For all α ∈ R there exists δ > 0, independent of t, such that if sk < δ, then

∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
nαE

∣∣∣∣∣
n∑
j=1

|Aj|p
(
gγ′k ∗ |gγk |

p
)

(Ṽj(t))

∣∣∣∣∣
p′


≤ C(p, p′, w, c, α, L)
‖λ‖∞
λmin

‖λ‖2
∞E[|A1|q]sd(p′+2)

k .

Proof. For any sequence of i.i.d. random variables, Z1, Z2, . . . , it holds that

E

[∣∣∣∣∣
k∑

n=1

Zn

∣∣∣∣∣
p]
≤ kp−1E

[
k∑

n=1

|Zn|p
]

= kpE [|Z1|p] .

Therefore, by Lemma 14, Lemma 16, and the fact that the Ṽj(t) and Ai are i.i.d. and

independent of each other, we see that if sk < δ, where δ is as in (31),

∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
nαE

∣∣∣∣∣
n∑
j=1

|Ai|p
(
gγ′k ∗ |gγk |

p) (Ṽj(t))

∣∣∣∣∣
p′


≤
∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
nαnp

′E
[
|A1|q

∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))
∣∣∣p′]

=
∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
np
′+αE[|A1|q]E

[∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))
∣∣∣p′]

=E[|A1|q]E
[∣∣∣(gγ′k ∗ |gγk |p) (Ṽ1(t))

∣∣∣p′] ∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
np
′+α

≤C(p, p′, w, c, L)
‖λ‖∞
λmin

E[|A1|q]
s
d(p′+1)
k

s̃dk

∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
np
′+α

≤C(p, p′, w, c, L, α)
‖λ‖∞
λmin

E[|A1|q]
s
d(p′+1)
k

s̃dk
(Λk(t))

2

≤C(p, p′, w, c, L, α)
‖λ‖∞
λmin

‖λ‖2
∞E[|A1|q]sd(p′+2)

k ,

where the last inequality uses the fact that Λk(t) ≤ s̃dk‖λ‖∞ = (1 + c)dsdk‖λ‖∞.

We will now complete the proof of the theorem by proving Lemma 15.
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Proof. [Lemma 15] Since

ek(t) = | (gγk ∗ Y ) (t)1{Nsk (t)>1}|p − (|gγk |
p ∗ |Y |p) (t)1{Nsk (t)>1},

we see that

∣∣gγ′k ∗ ek(t)∣∣ ≤ ∣∣gγ′k ∗ (∣∣(gγk ∗ Y )1{Nsk (·)>1}
∣∣p) (t)

∣∣+
∣∣gγ′k ∗ ((|gγk |p ∗ |Y |p)1{Nsk (·)>1}

)
(t)
∣∣ .

First turning our attention to the second term, we note that∣∣∣gγ′k ∗ ((|gγk |p ∗ |Y |p)1{Nsk (·)>1}
)

(t)
∣∣∣

=

∣∣∣∣∣
∫

[t−s′k,t]d
w

(
t− u
s′k

)
eiξ
′
k·(t−u) (|gγk |

p ∗ |Y |p) (u)1{Nsk (u)>1} du

∣∣∣∣∣
≤ 1{Nk(t)>1}

∫
[t−s′k,t]d

w

(
t− u
s′k

)
(|gγk |

p ∗ |Y |p) (u) du

= 1{Nk(t)>1}
(
gs′k,0 ∗ |gγk |

p ∗ |Y |p
)

(t). (34)

since Nsk(u) ≤ Nsk+s′k
(t) = Ns̃k(t) = Nk(t) for all u ∈ [t− s′k, t]d. Therefore, conditioning on

Nk(t), if sk < δ,

E
[∣∣gγ′k ∗ ((|gγk |p ∗ |Y |p)1{Nsk (·)>1}

)
(t)
∣∣p′]

≤ E
[∣∣1{Nk(t)>1}

(
gs′k,0 ∗ |gγk |

p ∗ |Y |p
)

(t)
∣∣p′]

=
∞∑
n=2

e−Λk(t) (Λk(t))
n

n!
E

∣∣∣∣∣
n∑
j=1

|Aj|p
(
gs′k,0 ∗ |gγk |

p) (Ṽj(t))

∣∣∣∣∣
p′


≤ C(p, p′, w, c, L)
‖λ‖∞
λmin

‖λ‖2
∞E[|A1|q]sd(p′+2)

k

by Lemma 17. Now, turning our attention to the first term, note that

|(gγk ∗ Y )(t)|p 1{Nsk (t)>1} ≤ Nsk(t)
p−1 (|gγk |

p ∗ |Y |p) (t)1{Nsk (t)>1} .
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Therefore, by the same logic as in (34)∣∣∣gγ′k ∗ (∣∣(gγk ∗ Y )1{Nsk (·)>1}
∣∣p) (t)

∣∣∣
≤
∫

[t−s′k,t]d
w

(
t− u
s′k

)
Nsk(u)p−1 (|gγk |

p ∗ |Y |p) (u)1{Nsk (u)>1} du

≤ 1{Nk(t)>1}Nk(t)
p−1

∫
[t−s′k,t]d

w

(
t− u
s′k

)
(|gγk |

p ∗ |Y |p) (u) du

≤ 1{Nk(t)>1}Nk(t)
p−1
(
gs′k,0 ∗ (|gγk |

p ∗ |Y |p)
)

(t) .

So again conditioning on Nk(t), and applying Lemma 17, we see that if sk < δ

E
[∣∣gγ′k ∗ (∣∣(gγk ∗ Y )1{Nsk (·)>1}

∣∣p) (t)
∣∣p′]

≤
∞∑
n=2

e−Λk(t) (Λk(t))
k

n!
np−1E

∣∣∣∣∣
n∑
j=1

|Aj|p
∣∣∣(gs′k,0 ∗ |gγk |) (Ṽj(t))

∣∣∣p∣∣∣∣∣
p′


≤ C(p, p′, w, c, L)
‖λ‖∞
λmin

‖λ‖2
∞E[|A1|q]sd(p′+2)

k .

This completes the proof of (4.13). Line (4.14) follows from integrating with respect to

t, observing that the error bounds in Lemmas 15 and 16 are independent of t, and applying

the bounded convergence theorem.

Proofs of Results from Section 4.5

In order to prove Theorems 10 and 11, we will need the following lemma which shows that the

scaling relationship of a self-similar process X(t)induces a similar relationship on stochastic

integrals against dX(t).

Lemma 18. If X is a stochastic process that satisfies the scaling relation

X(st)
d
= sβX(t) (35)
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for some β > 0, then for any measurable function f : R→ R,∫ s

0

f(u) dX(u)
d
= sβ

∫ 1

0

f(su) dX(u) .

Proof. Let X = (X(t))t∈R be a stochastic process satisfying (35), and let Pn = {0 = tn0 <

tn1 < . . . < tnKn = 1} be a sequence of partitions of [0, 1] such that

lim
n→∞

max
k

{
|tnk − tnk−1|

}
= 0.

Then, by the scaling relation (35),∫ s

0

f(u) dX(u) = lim
n→∞

Kn−1∑
k=0

f(stnk)
(
X(stnk+1)−X(stnk)

)
d
= sβ lim

n→∞

Kn−1∑
k=0

f(stnk)
(
X(tnk+1)−X(tnk)

)
= sβ

∫ 1

0

f(su) dX(u) .

We will now use Lemma 18 to prove Theorems 10 and 11.

Proof. [Theorem 10] Let X = (X(t))t∈R be the α-stable process, p < α ≤ 2. Since X has

stationary increments, its scattering coefficients do not depend on t and it suffices to analyze

E [|(gγk ∗ dX)(0)|p] = E
[∣∣∣∣∫ 0

−sk
gγk(u) dX(u)

∣∣∣∣p] = E
[∣∣∣∣∫ sk

0

gγk(u) dX(u)

∣∣∣∣p] ,
where the second equality uses the fact the distribution of X does not change if it is run in

reverse, i.e.

(X(t))t∈R
d
= (X(−t))t∈R

It is well known that X(t) satisfies (35) for β = 1/α. Therefore, by Lemma 18

E [|(gγk ∗ dX)(0)|p] = E
[∣∣∣∣∫ sk

0

w

(
u

sk

)
eiξku dX(u)

∣∣∣∣p] = s
p/α
k E

[∣∣∣∣∫ 1

0

w(u)eiξksku dX(u)

∣∣∣∣p] .
So,

E [|(gγk ∗ dX)(0)|p]
s
p/α
k

= E
[∣∣∣∣∫ 1

0

w(u)eiξksku dX(u)

∣∣∣∣p] .
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The proof will be complete as soon as we show that

lim
k→∞

(
E
[∣∣∣∣∫ 1

0

w(u)eiξksku dX(u)

∣∣∣∣p])1/p

=

(
E
[∣∣∣∣∫ 1

0

w(u)eiLu dX(u)

∣∣∣∣p])1/p

.

By the triangle inequality,∣∣∣∣∣
(
E
[∣∣∣∣∫ 1

0

w(u)eiξksku dX(u)

∣∣∣∣p])1/p

−
(
E
[∣∣∣∣∫ 1

0

w(u)eiLu dX(u)

∣∣∣∣p])1/p
∣∣∣∣∣

≤
(
E
[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p])1/p

.

Since 1 ≤ p < α, we may choose p′ strictly greater than 1 such that p ≤ p′ < α, and note

that by Jensen’s inequality

(
E
[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p])1/p

≤

(
E

[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p′
])1/p′

,

and since X(t) is a p′-integrable martingale, the boundedness of martingale transforms [72]

(see also [73]) implies(
E

[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p′
])1/p′

≤ Cp′ sup
0≤u≤1

∣∣w(u)
(
eiξksku − eiLu

)∣∣E [|X1|p
′
]
≤ Cp′ |skξk − L|‖w‖∞E

[
|X1|p

′
]
,

which converges to zero by the continuity of w on [0, 1] and the assumption that skξk con-

verges to L.

Proof. [Theorem 11] Similarly to the proof of Theorem 10, it suffices to show that if a

(X(t))t∈R is fractional Brownian motion with Hurst parameter H, then

lim
k→∞

(
E
[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p])1/p

= 0 .

However, fractional Brownian motion is not a semi-martingale so we cannot apply Burkholder’s

theorem as we did in the proof of Theorem 10. Instead, we use the following result first es-

tablished in [74] (see also [75], p. 48) which states that if x(u) is any (deterministic) function
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with bounded variation, and y(u) is any function which is α-Hölder continuous, 0 < α < 1,

then ∫ 1

0

x(u) dy(u)

is well-defined as the limit of Riemann sums and∣∣∣∣∫ 1

0

x(u) dy(u)− x(0) (y(1)− y(0))

∣∣∣∣ ≤ Cα‖x‖BV ‖y‖α ,

where ‖ · ‖BV and ‖ · ‖α are the bounded variation and α-Hölder seminorms respectively. For

all k, the function hk(u) := w(u)
(
eiξksku − eiLu

)
:= w(u)fk(u) satisfies, hk(0) = 0 and

‖hk‖BV ≤ ‖w‖∞‖fk‖BV + ‖w‖BV ‖fk‖∞ .

One can check that the fact that skξk converges to L implies that fk converges to zero in

both L∞ and in the bounded variation seminorm, and that therefore that ‖hk‖BV converges

to zero.

It is well-known that fractional Brownian motion with Hurst parameter H admits a

continuous modification which is α-Hölder continuous for any α < H. Therefore,

E
[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p] ≤ Cp
α‖hk‖

p
BVE [‖X‖pα] .

Lastly, one can use the Garsia-Rodemich-Rumsey inequality [76], to show that

E[‖X‖pα] <∞ .

for all 1 < p <∞. For details we refer the reader to the survey article [77]. Therefore,

lim
k→0

E
[∣∣∣∣∫ 1

0

w(u)
(
eiξksku − eiLu

)
dX(u)

∣∣∣∣p] = 0

as desired.

Remark 8. The assumption that w has bounded-variation was used to justify that the

stochastic integral against fractional Brownian motion was well defined as the limit of Rie-

mann sums because of its Hölder continuity and the above mentioned result of [74]. This

allowed us to avoid the technical complexities of defining such an integral using either the

Malliavin calculus or the Wick product.
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Details of Numerical Experiments

Definition of Filters

For all the numerical experiments, we take the window function w to be the smooth bump

function

w(t) =


exp

(
− 1

4t−4t2

)
, t ∈ (0, 1)

0, otherwise.

Therefore for γ = (s, ξ), our filters are given by

gγ(t) = eiξtw(t) =


eiξte−s

2/(4ts−4t2), t ∈ (0, s)

0, otherwise
.

Frequencies

In all of our experiments, we hold the frequency, ξ, which we sample uniformly at random

from (0, 2π), constant while allowing the scale to decrease to zero.

Simulation of Poisson point process

We use the standard method to generate a realization of a Poisson point process. For

Poisson point process with intensity λ, the time interval between two neighbor jumps follows

exponential distribution:

∆j := tj − tj−1 ∼ Exp(λ) .

Therefore, taking the inverse cumulative distribution function, we sample the time interval

between two neighbor jumps through:

∆j = − logUj
λ

,

where Uj are i.i.d. uniform random variables on [0, 1], and assign the charge Aj to the jump

at location tj.
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For inhomogeneous Poisson process with intensity funciton λ(t), we simulate the time

interval based on the proposition from [78]. First define the cumulated intensity:

Λ(t) =

∫ t

0

λ(s)ds ,

then generate the location of jumps tj by the following algorithm:

Algorithm 2 Algorithm for simulating inhomogeneous Poisson point process
initialize V = 0, t = 0
while t < N do

generate U ∼ U([0, 1])
V ← V − logU
t = inf{v : Λ(v) < V }
deliver t
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