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ABSTRACT

DATA-DRIVEN MULTI-SCALE MODELING, ANALYSIS AND SIMULATION OF
ANOMALOUS MATERIALS

By
Jorge Luis Suzuki

Anomalous rheology is a material behavior that presents the fingerprint of power-laws, arising from
anomalous diffusion in microstructures, and observed in a range of complex materials. Such mi-
crostructures often display a fractal nature with sub-diffusive dynamics, e.g., of entangled polymer
chains, and defect interactions such as dislocation avalanches, cracks, and voids. The corresponding
macroscopic non-exponential behavior makes integer-order models to lack a compact representa-
tion of the small-scale physics. Furthermore, classical linear viscoelastic models require arbitrary
arrangements of Hookean/Newtonian elements, introducing a limited number of exponential re-
laxation modes that, at most, represent a truncated power-law approximation. While this may be
satisfactory for short times at engineering accuracy, such models often yield high-dimensional pa-
rameter spaces and lack predictability for multiple time/length-scales. In this scenario, Fractional
Calculus (FC) becomes an attractive modeling alternative since it naturally accounts for power-law
kernels in its integro-differential operators. This allows accurate and predictive modeling of soft
materials for multiple timescales, in which most standard models fail or become impractical.

In this work, a data-driven framework for efficient, multi-scale fractional modeling and failure of
anomalous materials is proposed. The overarching goal is to identify/construct efficient fractional
rheological models, especially for soft materials, undergoing nonlinear response and failure. To this
purpose, a fractional linear and nonlinear viscoelastic existence study is developed and employed
for the first time to urinary bladder tissues undergoing large strains. The framework is extended
to account for power-law viscoplastic behavior, and aiming for applications to larger systems, the
resulting models are solved through a new approach called fractional return-mapping algorithm, that
generalizes existing predictor-corrector schemes of classical elastoplasticity. Regarding the effects

of fractional constitutive laws on structural dynamics, a few developed models are incorporated



to beam and truss structures, where the effects of evolving constitutive laws on the anomalous
dynamics of systems are analyzed. Although FC became an effective modeling tool in the last few
decades, it requires careful considerations to satisfy basic thermodynamic conservation/dissipation
laws. To this end, the thermodynamic consistency of the developed visco-elasto-plastic models
with the addition of damage effects is proved. Furthermore, the associated energy release rate
due to crack/void formation is consistent with the employed fractional rheological elements, which
naturally introduces memory effects on damage evolution.

Fractional differential equations (FDEs) inherently carry a functional nonlocal dependency and
near-singular behaviors at bounded domains, which increases the computational complexity and
degenerates the global accuracy of many existing numerical schemes. Therefore, two numerical
contributions are proposed in the last part of the framework. The first one is a data-driven
singularity-capturing approach that automatically addresses the low solution regularity and yields
high accuracy for long time-integration. In the second contribution, fast implicit-explicit (IMEX)
schemes are developed for stiff/nonlinear FDEs, which are shown to have larger stability regions

than existing approaches.
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CHAPTER 1

INTRODUCTION

1.1 Power-Law Rheology: Anomalies Across Scales

Power-law rheology is a constitutive behavior observed in a wide range of complex materials. In
macro-rheology experiments, such power-law materials, also termed anomalous materials, exhibit
memory-effects by means of single-to-multiple power-law type of relaxation/creep in the form
J(t) o< t* and G(t) o< t~% (in time) and also power-law dynamic storage/dissipation (in frequency)
[6]. Therefore, contrary to the standard (exponential) material relaxation, the power-law scaling
parameter « often lies in the range 0 < a < 1. The mechanistic origins of macroscopic power-law
behavior is due to spatial and temporal anomalous sub-diffusive processes [7] in the multiscale
fractal-like micro-structure, where, for the temporal case, the mean squared displacement of micro-
structural constituents follows a non-linear scaling in time of the form (Ar)? o 2. Such behavior
has been experimentally observed in distinct classes of materials, i.e., such as bio-tissues [8—14],
polymers [15-17], soft glassy materials [18] and metals.

In this chapter, we outline a number of experimental evidences of such power-law phenomena
across multiple length- and time-scales, suggesting that biological and engineering materials physics
can either start, or evolve into anomalous states throughout their life cycle. We then briefly introduce
some definitions of fractional calculus employed in this work, followed by an introduction to
fractional viscoelasticity, where a key rheological model, called Scott-Blair element, is widely
applied as a fundamental building block for complex power-law rheology. Later on, a brief
literature survey is presented on fractional modeling applications to anomalous materials, followed

by the objectives and introductions to each contribution from this PhD dissertation.

Biological Cells and Tissues: Regarding the ‘micro-rheological’ evidence, the collective dynam-

ics of MCF-10A epithelial cell monolayers was studied by Nnetu ez al. [19] at different cell density



levels. Through the evaluation of mean-squared displacements (MSD) (r?y over time of single cell
motions, a ballistic motion was observed at low densities, that is, (r2) o 12 (see Fig. 1.1). As
the cell density is increased, single cell motion is suppressed due to crowding effects, leading to
sub-diffusive behavior. Such high cell density motion suppression is also termed caging, which
intermittently attains critical states, followed by relaxation. The rheology of human embrionic
stem cells (ESCs) under differentiation was studied by Pajerowski et al. [20], through aspiration
experiments using micro-pipettes at different pressures. The creep behavior of the cell nucleous
demonstrated distinct visco-elasto-plastic power-law scalings, where a value of @ = 0.2 was ob-
served for the plastic regime, independent of the applied pressure. It is discussed that such low

power-law exponent arises due to the fractal arrangement of chromatin inside the cell nucleus.
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Figure 1.1: (a) Mean square displacement of single cells within an epithelial cell monolayer under
different densities. () Evolution of the MSD exponent over time, showing a transition of diffusive
to sub-diffusive motions and transient, motion-arresting behavior at higher densities.

Studies on force-induced mechanical plasticity of mouse embrionic fibroblasts applied through
magnetic micro-beads were performed by Bonadkar et al. [21]. It was found across multiple
specimens that the visco-elastic relaxation and the permanent deformations followed a stochas-
tic, normally-distributed, power-law scaling S(w), with values ranging from g =~ 0 to 8 ~ 0.6.
The intrinsic microstructural mechanism of plastic deformation in the cytoskeleton is due to the

combination of permanent stretching and buckling of actin fibers.

Polymers and Engineering Bio-Materials: Wong er al. [22] studied the thermal motion of

colloidal tracer particles in entangled actin filament (F-actin) networks, under different actin con-
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Figure 1.2: (a) Scale-free creep behavior of embrionic stem cells nuclei under aspiration stresses.
For low values of stress AP, the creep behavior is fit by a single power law. For larger stresses, a
transition to plastic regime is observed at 7, /451ic &~ 8 —10 [s], with a creep exponent & ~ 0.2, for all
values of applied stresses. For short times, the creep exponent is higher and increases with stress,
suggesting a fluid-like behavior. (b) Different stages of nucleus aspiration, showing a visco-elastic
recovery (i1)-(iii), followed by irreversible plastic deformation (iv).

centrations and therefore network mesh sizes. They observed a sub-diffusive behavior of tracer
particles with radius comparable to the network mesh size. Such anomalous behavior happens due

to a similar caging behavior, where particles are intermittently trapped, followed by sudden jumps

(see Fig.1.3).
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Figure 1.3: (a) Mean squared displacement of colloidal tracer spheres with radius a = 0.25 [um]
in F-actin networks, indicating anomalous, sub-diffusive behavior when the sphere radius a is
comparable in size with the mesh size €. (b) Representative x — y (left) and y (right) trajectories of
particles of a 0.25 [um] particle in F-actin (¢ = 0.31 [um]) over 600 [s].

Regarding the influence of fractal micro-structures on the macroscopic properties of polymers,



Kapnistos et al. [23] found an unexpected tempered power-law relaxation behavior of entangled
polystyrene ring polymers, compared to the usual relaxation plateau of linear chain polymers (see
Fig.1.4a). Such behavior is justified through self-similar conformations of double-folded loops
the in ring polymers, instead of the reptation observed in linear chains. Jaishankar and McKinley
[24] studied the creep-ringing interface dynamics of acacia gum across four decades, showing the
long-time power-law creep dynamics, with an excellent fit obtained through a fractional Maxwell
model (see Fig. 1.4b).

We note that other material characteristics, such as composition/space-dependent heterogene-
ity can introduce distinct length-scale-dependent relaxation spectra, leading to the emergence of
multiple power-law response. Stamenovic [25] performed complex shear modulus G *(w) measure-
ments over six frequency decades w of cultured human airway smooth muscle (HASM) cells, and

observed two distinct power-law regimes separated by an intermediate plateau.
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Figure 1.4: (a) Tempered power-law relaxation of polystyrene entangled ring polymers (open
triangles and circles), and two power-law relaxation regimes of linear polymer chains (closed
triangles and circles). (b) Creep ringing experiments demonstrating the long-time power-law
behavior of acacia gum.

Crystalline Materials: Richeton et al. [26] investigated the emergence of intermittency and
dislocation avalanches in polycrystalline plasticity through acoustic emission (AE) experiments
on ice under creep compression. Their findings demonstrate that different from the scale-free,
close-to-critical dislocation dynamics of single crystals [27], the introduction of average grain sizes

< d > from the polycrystal microstructure led to a tempered power-law distribution of avalanche



sizes. While the exponential tempering cutoff changes with the averaged microstructure grain size,
the authors observed a constant power-law scaling for all samples. The evidence of such power-law
distributions of dislocation avalanches indicate the presence of stochastic effects in failure initiation,

which cannot be described by a single, deterministic power-law exponent throughout the material

life-cycle.
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Figure 1.5: (a) Microstructures of polycrystalline ice samples with varying averaged grain sizes <
d >. (Top left) 0.26 [mm], (top right) 0.87 [mm], (bottom left) 1.92 [mm], (bottom right) 5.02 [mm].
(b) Complementary cumulative probability distributions for acoustic emission amplitudes Aq in
polycrystalline samples with different average grain sizes. (fop) A tempered power-law fit in
the form P(> Ag) = Aaﬁ exp(—Ag/Ac¢) (black line) indicates a decrease in cutoff values A, for
decreasing grain sizes, while the power-law exponent S = 0.35 + 0.05 is similar for all samples.

(bottom) Coarse grained samples, leading to bimodal distributions for Ay.

Crack Formation and Propagation: Cracking behavior of heterogeneous materials under slow
loading display a stochastic nature, characterized by intermittent, jerky dynamics, with random
sudden jumps spanning over a broad range of time and length scales [28]. Bonamy et al. [29]
simulated the cracking dynamics at the interface between two brittle plates subject to slow external

loads. Their approach was based on a linear elastic fracture mechanics (LEFM) model for the crack



front with added Gaussian noise to account for media heterogeneity. Their results on spatially-
averaged crack front velocities indicate a Barkhausen-like noise indicative of intermittent, jerky
dynamics with power-law stochastic nature (see Fig.1.6a). Through scanning electron microscopy
(SEM) analysis of fractured metallic glasses (MGs), Gao et al. [30] reported the emergence of
fractal-like dimple structures. Utilizing a box counting algorithm, the authors evaluated fractal
dimensions in the range of 1.6 — 1.8 among different types of MGs. The formation of fractal
structures suggests that the fracture of MGs is a far-from-equilibrium process, forming a dissipation

structure due to the nonlinear, localized plastic flow dynamics at the crap tip.
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Figure 1.6: (a) Crack propagation dynamics of heterogeneous materials. (fop left) Time-series data
of spatially-averaged crack front velocities, showing intermittent bursts. (top right) Distribution of
normalized burst duration 7', with P(T) o T~%, @ = 1.43. (bottom left) Distribution of normalized
burst size S, with P(S) o« ST, with 7 = 1.25. (bottom right) Scaling of T with respect to S,
with 7' oc §% and a = 0.58. (b) SEM Fracture image of two different metallic glasses, showing a
fractal-like formation of dimple structures.

Given the aforementioned evidence of power-laws arising in a range of material classes, we
now focus on a brief introduction to definitions of fractional calculus, followed by its applications

towards constitutive modeling.



1.2 Definitions of fractional calculus

We start with some preliminary definitions of fractional calculus [31]. The left-sided Riemann-

Liouville integrals of order u, when 0 < u < 1, is defined, as

A,
L) Jxp (= s5)l=w

GEL N = ds, x> =xp, (1.1)

where x; denotes the lower integration limit and I'(-) represents the Euler gamma function, given
by:
(o]
I'(z) = J X1 exp(—x) dx.
0
The corresponding inverse operator, i.e., the left-sided fractional derivatives of order y, is then

defined based on Eq.1.1 as

ds, x>xp. (1.2)

ELDE @ = S e = e [ LY

T(1 =y dx )i, (= s)
Furthermore, the corresponding left-sided Caputo derivatives of order u € (0, 1) is obtained as

Ju RL lu_f _ 1 O]
L DNW = G L 005 | e

ds, x>xp. (1.3)

We note that power-law convolution kernels of the presented fractional operators (1.1)-(1.3) become
singular as x — xj . Furthermore, the definitions of Riemann-Liouville and Caputo derivatives are

linked by the following relationship, which can be derived by a direct calculation

fxr)
L1 = w)(x + xp)H

Grot ) = (DY), (1.4)

which denotes that the definition of the aforementioned derivatives coincide when dealing with ho-
mogeneous Dirichlet initial/boundary conditions. Finally, we introduce the two-parameter Mittag-
Leffler function E, ;(z), which generalizes a number of mathematical functions and is widely

present in solution of fractional differential equations [32]:

0 k
e
Ea,b(Z) = kEO m, Re(a) > 0, b € C, Z € C. (15)



1.3 Fractional Constitutive Modeling

Fractional differential equations (FDEs) have been successfully applied to describe the anoma-
lous rheology of distinct classes of materials, which share the fingerprint of power-laws either in
their fractal-like structure and/or response. Such power-law qualities are naturally embedded in the
kernel of fractional derivatives, which are integro-differential operators that interpolate between
their integer-order counterparts. In the following, we classify a few models and applications of

fractional calculus by material/effect type, namely, viscoelasticity, viscoplasticity and damage.

1.3.1 Visco-Elasticity:

The main focus of this Section is on the so-called Scott-Blair (SB) model, which is the fundamental
building block of anomalous rheology, from which a number of applied models are derived in the
literature. We start with the Boltzmann superposition integral for linear viscoelasticity, obtained
from the linear superposition of infinitesimal step strains 6&(¢) applied to a viscoelastic material
[32]:
t
o(t) = J G(t - 71)é(r)dr, (1.6)

—0

where & and o (¢) denote, respectively, the strain rate and stress. The convolution kernel G(z),
is a relaxation function, directly related to stress relaxation experiments under step strains. It is
traditionally modeled through combinations of Hookean springs and Newtonian dashpots, yielding
a multi-exponential relaxation in the form G(t) = Zﬁi | C; exp(—t/7;). In this particular choice of
kernel, (1.6) has an equivalent representation as a multi-term ordinary differential equation (ODE),
where derivative operators acting on stresses/strains are of integer-order.

Relaxation experiments across multiple time- and frequency-scales indicate that anomalous
materials exhibit memory effects in time for stress/strain responses, which translates into a sin-
gle power-law scaling in the form G(f) o« ¢, with @ € (0,1). This indicates that, contrary
to exponential relaxation forms, there is a spectrum of relaxation times arising from the mate-

rial microstructure [24], for which standard ODE models (e.g. generalized Maxwell model in



creep/relaxation representations) would require a large number of parameters.
The fundamental Scott-Blais fractional rheological building block element is obtained by sub-

stituting the power-law kernel G(¢) = Et~%/T'(1 — «) into (1.6), leading to the following form:

E t
o(t) = _OCOZ);YE(I) = m J_ (t—1) % (1) dr, (1.7)

which is equivalent to the Riemann-Liouville fractional derivative Bolgi)t”‘ £(¢) if the function &(t)

is sufficiently well behaved at 1 — —oo [33]. While this equivalence is satisfied for semi-infinite
domains, the choice of Riemann-Liouville and Caputo definitions matter when we introduce a
causal strain history and switch the lower bound of (1.7) from —oco to 0, which leads to two different

fractional Cauchy problems. For the Caputo definition, we have [32]:
o) = E%l)tas(t), t>0, O<a<l, &0)=eg. (1.8)
On the other hand, when employing Riemann-Liouville derivatives, we obtain:
o) =EREDYer), t>0, 0<a<l, RO e = e, (1.9)

where we remark that problem (1.8) is more commonly adopted due to the appearance of integer-
order initial conditions (ICs), while both aforementioned problems are equivalent in the presence
of homogeneous ICs. The SB element provides a constitutive interpolation between a Hookean
spring (@ — 0) and a Newtonian dashpot (@ — 1). The unique parameter pair (E [Pa.s¥], @) codes
snapshots of a dynamic process instead of an equilibrium state of the system [24]. Consequently
these properties are only associated to equilibrium states in the limit cases for the fractional order

«.

Mechanistic and thermodynamic interpretations. Apart from the Boltzmann integral repre-
sentation (1.6), characterized by an integro-differential nature, the SB element can also be obtained
through a continuous arrangement of canonical, Hookean and Newtonian elements, both from their
constitutive and free-energy levels [34, 35], making the notion of SB elements intrinsically incor-

porating an infinite number of relaxation times more evident. In [34], a hierarchical ladder-like



structure of standard Maxwell viscoelastic elements was employed. This structure led to a coupled
system of ODEs, which had an infinite continued fraction (a recursion of fractions) representation
in terms of the Maxwell model constants in the Laplace domain. Then, applying an inverse Laplace
transform, a fractional stress-strain relationship was recovered for homonegeous initial conditions,
therefore equivalent to both forms (1.8) and (1.9). In [35], an isothermal Helmholtz free-energy
density was derived for the SB element from the elastic energies of a discrete-to-continuum ar-
rangement of standard Maxwell branches, obtaining the following form for the free-energy ¢ as a
function of the strain:

oo 2 —1-a

t _
lﬂ(S):lI E(2) U eXP(—t Dé(s)ds| dz, Ez) = Ez
2Jo 0 Z

Fa)I(1 -a)’ (1.10)

where E denotes the relaxation spectrum. Therefore, (1.10) represents the amount of available
elastic energy to perform work from the SB element in the time domain, which cannot be directly
inferred from (1.8) and (1.9). Naturally, the two limit cases for @ are y/(g) — E g2 /2 when a — 0,
and ¥ (¢) — 0 when @ — 1. Furthermore, under suitable thermodynamic constraints, it is shown
that the SB element is thermodynamically admissible and that the Caputo representation of (1.9)

can be derived from (1.10) under continuum mechanics arguments.

Energy decoupling in the frequency domain. Similar to the aforementioned representations,
power-law structures also appear in viscoelastic dynamic properties and rheological experiments in
the frequency domain [24], such as the complex relaxation modulus, defined as the ratio between

the Fourier transform of stresses and strains:

G*(w) = Flol(w)

= el =G (w)+iG"(w), (1.11)

where w [s~!] denotes the frequency. The term G’ is the storage modulus, and G” denotes the loss
modulus, i.e., the stored and dissipated energy per cycle, respectively. Employing definition (1.11)

into (1.9), the dynamic modulus of the Scott-Blair element is obtained [36]:

G'(w) = Re(G*) = Ew® cos (“—2") . G’(w) = Im(G*) = Ew® sin (“—2”) , (1.12)
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which provides a clear storage/loss decomposition, with the value of @ determining whether the

material of interest is predominantly dissipative for certain frequency ranges.

Relationships to material microstructure and stochastic processes. The mechanistic origins
of macroscopic power-law behaviors in complex materials are due to spatial-temporal anomalous
sub-diffusive processes [7] in fractal micro-structures. We focus on the temporal case, in which the
MSD of micro-structural constituents follows a nonlinear scaling in the form (Ax>2 oc 1Y,

In [37] Bagley and Torvik provided a relationship between the complex shear modulus obtained
from the Rouse theory of polymer dynamics. They started with the result of Rouse’s theory for the

shear modulus, i.e.

2.2

w°T wTp
I ”

v o2 — > G (w) = wug + nkT E —2 5

Wy p=1 L+ 0T

N

where n denotes the number of molecules per unit volume, N is the number of monomers in the
polymer chain, T represents the absolute temperature, k is Boltzmann’s constant. The term 7,
denotes the relaxation times of the solution, which was approximated as 7, ~ 71/ p2 = 6(ug —
us)/( pznznkT), which is valid when the number of submolecules N is large. The terms pg and g
denote, respectively, the steady-flow viscosities of the solution and solvent. They further worked
on Rouse’s results, and by assuming the polymers chain and w7 to be sufficiently large, obtained

the following power-law form for the dynamic relaxation modulus:

1/2
« . 3 .
G (w) =iwus + E(uo - ,us)nkT] (zw)l/z. (1.14)

After applying the inverse Fourier transform, the above relationship leads to a Riemann-Liouville
representation between stresses-strains with @ = 1/2. Similar observations were also reported for
o (t) utilizing a Zimm model, where the inclusion of hydrodynamic interactions lead to a fractional
order a = 2/3.

In [38] Glockle and Nonnenmacher showed that fractional relaxation can be modeled by a special
type of continuous-time random walk (CTRW) describing a trapping problem due to entanglements

of polymer chains, thus slowing down the relaxation process. In their work, the random walkers, i.e.,
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the particles, are considered as packages of free volume that allow conformational reorientations
of chain segments, thus leading to relaxation. They obtained a waiting time distribution of such

particles through a Fox function representation in the form:

00 k -\ Bk+B+1
) ( ) , (1.15)

x(@) ~ Z BB

for which the leading term indicates that the CTRW waiting time corresponding to fractional

relaxation exhibits a Lévy-type decay in the form y(z) ~ A1

Connecting dynamic viscoelasticity across scales. A connection between power-laws propagat-
ing from micro- to macro-rheology was proposed in [39], with the use of a Generalized Stokes-
Einstein Relation (GSER) for spheres undergoing generalized Langevin dynamics in a viscoelastic

medium:

kT dIn{Ar%(1/w))

G @)l ~ ra(Ar2(1/w))1 + a(w)] atw) = dlnt

li=1/w> (1.16)

which is valid for spheres of radius a comparable to the length-scale of the embedding medium.
Here, the dynamic relaxation modulus G*(w) is related to a velocity memory function from
Langevin dynamics. Among a variety of representations for the GSER, (1.16) assumes a power-law
structure of the MSD with exponent «, which approaches zero when the sphere is confined by
elastic structures present in the complex fluid. Such power-law representation also reduces errors

near the frequency extremes when employing Laplace and Fourier transforms.

Physical interpretation of fractional orders. Despite existing connections between micro- and
macro-rheological properties, the physical interpretation of the emerging fractional orders has been
elusive. More recently, a connection between the fractional order and the fractal dimension of the
material microstructure was made by Mashayekhi ez al. [40], where the authors extended the Zimm
theory of polymer dynamics to fractal media as a bridge between the meso- and macro-scales. They
showed that the fractional order is a rate-dependent material property that is strongly correlated

with the fractal and spectral dimensions in fractal media.
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Figure 1.7: Comparison between standard and fractional order models. (a) Relaxation behavior of
Butyl rubber using experimental data from Scott-Blair. (b) Cole-Cole plot (G’ versus G”") for the
dynamic properties of acacia gum.

Regarding applications of fractional viscoelastic models for memory-dependent response in
biological tissues, Craiem et al. [10] employed fractional visco-elastic models to describe the
stress-relaxation response of human arteries. In [24] Jaishankar and McKinley fitted classical and
fractional Maxwell models to the 4 orders-of-magnitude relaxation data for highly anomalous butyl
rubber data from Scott-Blair e al. [41] (Fig.1.7 (a)), and observed that the three-parameter fractional
Maxwell model provided an excellent fit to the experimental data, while a multi-exponential,
integer-order Maxwell model required 6 parameters to provide a satisfactory fit. Moreover, using
the calibrated fractional relaxation parameters they obtained an accurate prediction of the creep
compliance for the same material, especially for long-time behavior. The second experiment from
[24] concerns the dynamic properties of acacia gum, a commonly used food preservative. In this
case, they compared a 4-parameter fractional Maxwell model with a single mode (3 parameter)
standard Maxwell model (Fig.1.7(b)) and demonstrated that while the fractional Maxwell model
captures a complex Cole-Cole behavior, its integer-order counterpart is unable to even estimate
the qualitative response. We refer the reader to [8, 42—45] for additional applications of fractional

calculus to bio-tissues and food rheology.
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1.3.2 Visco-Plasticity:

Several efforts were done in the last decade to employ fractional calculus to take into account
material heterogeneities and multi-scale effects influencing the plastic regime of distinct materials.
Of particular interest are three classes of fractional models: time-fractional, space-fractional and
stress-fractional.

Time-fractional approaches focus on introducing memory effects into non-equilibrium viscous
variables [1, 46], and consequently modeling power-laws in both viscoelastic and visco-plastic
regimes. This is of interest for polymers, cells, tissues, and metals, and this type of approach is
focused in Chapters 4, 5 and 6.

A three-dimensional space-fractional approach to elastoplasticity was developed in [47] to
account for spatial nonlocalities. The model is based on rate-independent elastoplasticity, and
nonlocal effects are accounted for through a fractional continuum mechanics approach, where the

strains are defined by a space-fractional Riesz-Caputo derivative of displacements u(x) in the form:

I'e-a

RC
(ZZ)Z = 2

(Sﬂf u(x) +(=1)" Sﬂz‘u(x)) ; (1.17)

with n = [a].

Finally, stress-fractional models for plasticity have found applicability in soil mechanics and
geomaterials that follow non-associated plastic flow [48, 49], i.e., the yield surface expansion in
the stress space does not follow the usual normality rule, and may be non-convex. The work by
[48] proposed a three-dimensional fractional visco-plastic model, where a fractional flow-rule with
order 0 < a < 1 in the stress domain naturally models non-associative plasticity. Interestingly, this
model recovers the classical Perzyna visco-plasticity as @ — 1, and the effect of the fractional flow
rule can be a compact descriptor of micro-structure anisotropy. Recently, a similar stress-fractional
model was developed [49], and successfully applied to soils under compression. We refer the reader

to the detailed review work by [50] for a review of uses fractional calculus in plasticity.
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1.3.3 Damage Mechanics:

There have also been recent efforts to include damage, ageing and failure effects into fractional
calculus frameworks. Existing formulations are focused on either adding classical failure frame-
works into existing fractional constitutive laws, or by developing fractional failure mechanisms.
Here, we mostly focus on the latter and start with the work by [51], that developed a variable order

viscoelastic model in the form:
_ C o(x,1)
o(x,1) = glalx, t))A(X),ODt e(x,1), (1.18)

where g(a(x, 1)) := (ac — alx, t))z/ 4 denotes a material degradation function with critical damage
ac, A(x) represents a space-dependent pseudo-property, and 0 < a(x,?) < ac is the variable
fractional order, also interpreted here as damage. Interestingly, this mixed interpretation for a(x, t)
makes it a multi-physics descriptor for anomalous damage, viscosity, and material ageing. The
evolution of a(x, ) is described by an integer-order phase-field equation, and the resulting model
is proved to be thermodynamically admissible.

A key aspect to develop failure models relies on consistent forms of damage energy release
rates, i.e., on obtaining the compatible operator for the loss of elastic energy, which is a nontrivial
task even for the simplest fractional constitutive law (1.8). This has been achieved by employing
the concept of fractional free-energy densities [35, 52, 53]. Alfano and Musto in [53] developed
a cohesive zone, damaged fractional viscoelastic Kelvin-Zener model, and studied the influence
of integer and fractional damage energy release rates on damage evolution. In this case, integer-
order energy loss considers Hookean-type rheology to compute the damage energy release rates,
which may be justified when Hookean elements are present in the viscoelastic constitutive law, but
incompatible for fully fractional cases (an arrangement of Scott-Blair elements). The corresponding

free-energy for the Scott-Blair element is given by:

E t rt
O Tl-a) JO JO (2t — 11 =) Y &(1))é(mp) dr1dTy, (1.19)

with 0 < @ < 1, which clearly carries a power-law behavior over time. Among their findings,

the authors obtained a rate-dependence of the fracture energy in terms of the fractional-order «,
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opening interesting directions towards failure of anomalous viscoelastic media such as polymers. In
this dissertation, fractional-order extensions to plasticity-induced damage and their thermodynamic
consistency are addressed in Chapter 5. Sumelka et al. in [54] also developed the idea of memory-
dependent damage for soft materials through a stress-driven time-fractional hyperelastic damage

model, with evolution equation in the following fractional nonlinear Cauchy form:

1 Ip
f_ltD,“D(x, f) = T—acp(5 ~ 1), (1.20)

where @ represents an overstress function in terms of a stress intensity /p, threshold stress 7p for
damage evolution, and a ramp function in Macaulay notation (.). The memory length is driven by
a time-scale /;, which was taken as a fraction of the total time 7. This model was applied with an
Ogden hyperelastic law to patient-specific three-dimensional abdominal aortic aneurysm (AA) for
critical zone identification, with obtained a = 0.75.

Additional work on variable-order models in the context of fractional damage, ageing and
failure include the following contributions. In [55] a variable-order viscoelastic creep model was
developed, where the evolution of the fractional order a(¢) dictates the process of concrete ageing.
The variable-order viscoelastic model developed in [56] employed a piecewise constant order
followed by two linear decreasing functions for a(#) successfully described the initial viscoelasticity,
softening and hardening of amorphous glassy polymers under compression. Finally, variable-order
operators also proved to be useful mathematical tools to determine the onset of fracture. [57]
employed a variable fractional order activation function for damage, where the sharp power-law
activation threshold induced by the fractional operator was successfully employed to determine
crack propagation and branching of brittle materials. We refer the reader to the recent review works
on the use of variable-order [58] and distributed-order [59] fractional models in viscoelasticity
and structural mechanics. In the distributed-order case, fractional derivatives are integrated with

respect to a distribution of fractional orders within a certain range of values.
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1.3.4 Key aspects in fractional models

Fractional models are able to code self-similar micro-structural features and therefore be applied to
the complex response of power-law materials in a compact mathematical language. The significant
advancement of numerical methods for FDEs since the 2000s allowed more efficient computations
of the history and long-range interactions induced by the integro-differential nature of fractional op-
erators. However, several multi-disciplinary challenges are still present when developing/employing
fractional models.

When compared to their standard, integer-order counterparts, fractional models demonstrated
to be highly suited, i.e., for soft material rheology, demonstrating better agreement with experi-
mental data over a wide range of time-scales without requiring the re-calibration of parameters.
However, new modeling approaches require careful consideration of physical consistency, which
should be properly addressed, e.g., by ensuring that conservation/dissipation laws are not violated.
Furthermore, it is important to determine the physical meaning of the fractional order of differen-
tiation for distinct models and systems, and whether multiple orders of differentiation are required
to account for system heterogeneity. Regarding the mathematical aspects, fractional operators do
not possess all the same properties as integer-order ones, which requires careful considerations
by researchers when developing new models. Furthermore, the inherent non-smoothness due to
single- to multiple- singularities nearby the initial time/boundaries of fractional systems degener-
ates the accuracy of many existing practical numerical schemes for FDEs, and poses additional
computational challenges on top of the history computations.

Given the aforementioned challenges, we aim to develop a multi-scale fractional modeling

framework, which takes into account the following multi-disciplinary elements:

* Reduced-Order Modeling: An essential aspect is to develop fractional models that ef-
fectively incorporate the smaller scale dynamics, non-localities and memory-effects into a
lumped element representation. Together with careful physical and thermodynamic consid-

erations, this allows researchers to construct fractional models with a significantly reduced
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number of material parameters.

* Machine Learning: In the development of data-infused models, machine learning tools are
fundamental to learn the underlying multi-scale stochastic processes occuring in anomalous
media and properly upscale such qualities in the language of the operator kernel and/or
the fractional model parameters. Here, we aim to develop fundamental modeling steps
of the framework, making the fractional models promptly available to be incorporated to a
machine-learning-based model form selection framework for future studies. In such, material
models and their most suited numerical methods for FDEs with pragmatic accuracy, would

be determined from nature of the data or desired design.

* Numerical Schemes: Due to the nature of fractional-order operators, time integration of
FDEs requires robust schemes that efficiently compute the history load and do not lose
accuracy due to the power-law singularities nearby the initial time. Furthermore, solutions
to stiff fractional systems undergoing non-linearities and the emergence of new operators
for which no numerical schemes are available pose additional challenges and require special

attention.

1.4 Outline of this Work

The main objective of this research is to develop a robust, physics- and mathematically-informed
multi-scale framework, where the anomalous multi-scale characteristics are incorporated in the
form of physics-preserving and mathematically consistent fractional operators. Although most
of the multi-scale focus in this work relates to the time-domain due to the capabilities of time-
fractional derivatives, some brief developments are motivated in the context of upscaling material
properties from microstructure simulations, which is of value for future studies involving fractional
viscoplasticity. In this sense, we focus on developing and employing mathematically complex, yet,
more compact operators that produce models with minimal number of parameters and uncertainty.

Concurrently, we aim on efficiently and accurately solving the corresponding fractional multi-term
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FDEs, which are determined from data-driven existence studies. The schematics of the proposed

framework is illustrate in Figure 1.8. This work is comprised of nine chapters, that are summarized

below.
| Physics Information | | Mathematically-Informed Modeling | | Simulation Outputs
Design Point Behavior » Data-Driven Fractional Model Selection* Selected Model ::: —uto sun-ozs
w - Existence study on admissible models U*(B; 2,8, €) 000 @ =0171
AN - Multi/distributed-order models e Bon \ 2070
T E S * Failure Analysis o
- Dynamu.: VlscojEIasto-.PIastm?y (a2, t,0) -
- Dislocation/void mediated failure o 0 w0 o 00
- Upscaled spatial/temporal effects Desired
Design » Visco-Elasto-Dynamics

Data-Driven Numerical Methods

* Machine-Learning of solution regularity
- Pragmatic accuracy from data

* Numerical method selection
- Direct, IMEX, Hybrid schemes

Figure 1.8: Schematics of the proposed studies in this work. Starting from physics information,
e.g., material design requirements and damage/failure processes, the main approaches of this thesis
focus on the development and existence studies of admissible, mathematically-informed fractional
models and corresponding data-driven numerical methods.

Chapter 2:

In this Chapter we provide some additional motivation regarding the emergence of power-laws
in plasticity. The end goal is to take initial steps towards stochastic dislocation-driven plasticity
and failure, to establish a bridge between molecular dynamics (MD) until reduced-order fractional
models at the continuum. The MD and DDD simulations would therefore emerge as important
tools for synthetic data generation to the developed stochastic models. Starting from a series
of canonical numerical experiments [60] through molecular dynamics (MD) simulations using
LAMMPS (https://lammps.sandia.gov) [61], we can estimate upscaled material parameters
necessary for carrying discrete dislocation dynamics (DDD) simulations of pure iron crystals using
ParaDis (https://ipo.1l1lnl.gov/technologies/paradis) [62].

At the MD level (atomistic-scale):
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» We start with two experiments on pure systems, i.e. a shear test on a block domain to obtain
the corresponding shear modulus G, and a tensile test in a nanowire to obtain the Poisson

ratio v.

* Dislocation-dependent parameters for DDD are obtained through two additional experiments:
An edge dislocation core radius r. test, obtained by analyzing influence radius of an edge

dislocation’s strain energy.

* The last experiment estimates the edge dislocation mobility M;, where the dislocation glide
motion is initiated through applied shear stresses, yielding the dislocation velocity and
allowing us to compute the mobility as a proportionality constant in a linear shear stress-
velocity relationship. The methodology employed in this experiment has been used for data
generation of probabilistic surrogate models for dislocation mobility [63], which are able to

propagate the mobility uncertainty for DDD approaches.

At the DDD level (meso-scale):

» After obtaining the required DDD input parameters for ParaDis, we perform strain-driven
tensile simulations employing constant strain rates in a periodic Fe cubic lattice. The DDD
simulations allow us to have an insight on the evolving fractal dislocation network, where
we obtain time-series data of collective dislocation velocities and therefore a power-law

distribution of acoustic energy.

* Finally, we obtain the homogenized stress-strain curve and dislocation density data, which
indicate the presence of ballistic effects on dislocation density growth, visco-plasticity and
stress intermittency. Such homogenized responses could be leveraged to identify parameters

of visco-elasto-plastic models at the continuum-level.

Chapter 3:
We introduce a data-driven fractional modeling framework for linear and nonlinear viscoelas-

ticity of porcine bladder tissue mechanics. From consecutive uniaxial multi-step relaxation exper-
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iments (up to 200% strains) of five distinct anatomical locations of porcine bladder, we determine
that the porcine urinary bladder has an anomalous relaxation character, with two power-laws dom-
inating the short and long time responses, as well as a nonlinear response under large strains. The
anomalous character is affected by intrinsic regional material composition and nonlinearities taking

place due to large strains. Our developed modeling approach is as follows:

 Starting with the first relaxation step, we develop the first component of our modeling
framework, which is an existence study to determine admissible candidate fractional linear
viscoelastic models that qualitatively describe the experimental relaxation behavior. Our
single relaxation results indicate that a fractional Maxwell model form with two fractional
orders emerges as the most suitable candidate, being able to capture both short- and long-term

behaviors and yielding the lowest fitting errors.

* For the multi-step relaxation case under large strains, we employ a four-parameter frac-
tional quasi-linear viscoelastic model, given by a multiplicative kernel decomposition of a
Scott-Blair relaxation function and an exponential elastic response of the true stress. Our
obtained results demonstrate that the employed fractional quasi-linear model, with a single
fractional order in the range @ = 0.25 — 0.30 for distinct bladder samples, is suitable for the
porcine urinary bladder, producing root mean squared errors below 2% without recalibration,

throughout all consecutive relaxation steps.

* Our analyzes demonstrate that fractional models arise as attractive tools to capture the bladder
tissue behavior under small-to-large strains and multiple time-scales, therefore being potential

alternatives to describe multiple stages of bladder functionality.

Chapter 4:
Experimental evidence supports the emergence of power-law scalings in stress relaxation,
permanent strains and dislocation avalanches of anomalous visco-elasto-plastic materials [11, 20,

21,26, 27]. Although space-fractional visco-plastic models have been developed for non-associative
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plastic flow and employed in the context of soil mechanics [64-66], time-fractional extensions
accounting for memory effects in order to capture some of the aforementioned power-law features
were still lacking in the literature.

In this Chapter, we make contributions in fractional rheological modeling by developing two
fractional-order models for uniaxial large strains and visco-elasto-plastic behavior of materials
in structural analysis. Here, the fractional operators seamlessly interpolate between the standard
elasto-plastic and visco-elasto-plastic models, taking into account the history (memory) effects of
the accumulated plastic strain to specify the state of stress. We summarize the contributions as

follows:

* We develop two models, namely M1 and M2, corresponding to visco-elasto-plasticity consid-
ering a rate-dependent yield function and visco-plastic regularization, respectively. Specif-
ically, we employ a fractional-order constitutive law that relates the Kirchhoff stress to the
Caputo time-fractional derivative of the strain with order § € (0,1). When 8 — O the
standard rate-independent elasto-plastic model with linear isotropic hardening is recovered
by the models for general loading, and when 8 — 1, the corresponding classical visco-plastic

model of Duvaut-Lions (Perzyna) type is recovered by the model M2 for monotonic loading.

* Since the material behavior is path-dependent, the evolution of the plastic strain is achieved
by fractional-order time integration of the plastic strain rate with respect to time. The plastic
strain rate is then obtained by means of the corresponding plastic slip and proper consistency

conditions.

* Finally, we develop the so called fractional return-mapping algorithm for solving the nonlin-
ear system of the equilibrium equations developed for each model. This algorithm seamlessly

generalizes the standard return-mapping algorithm to its fractional counterpart.

» We test both models for convergence subject to prescribed strain rates, and subsequently we
implement the models in a finite element truss code and solve for a two-dimensional snap-

through instability problem. The simulation results demonstrate the flexibility of fractional-
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order modeling using the Caputo derivative to account for rate-dependent hardening and
viscous dissipation, and its potential to effectively describe complex constitutive laws of

engineering materials and especially biological tissues.

Chapter 5:

As observed in a series of experimental studies, material failure is an anomalous process
where power-law scalings are observed in acoustic emissions experiments and self-similar fracture
surfaces through SEM imaging. Motivated by previous developments on coupling continuum
damage mechanics (CDM) and fractional constitutive laws [35, 53, 67-74], where damage variables
were assumed to evolve in an exponential fashion, we introduce an anomalous modeling of failure to
a fractional visco-elasto-plastic model [1, 75]. In order to provide a bridge between the self-similar
energy loss to the continuum-level, we aim on a consistent representation of the bulk damage energy
loss to be employed in a thermodynamically admissible fractional model.

The main contributions of this Chapter rely on a novel rheological development, where we
present a thermodynamically consistent, fractional visco-elasto-plastic model coupled with damage
for anomalous materials. The presented formulation obtains the constitutive equations from the
fractional Helmholtz free-energy potentials, and also addresses the thermodynamics of the model
M1 developed in Chapter 2. Furthermore, we develop a novel discretization for the free-energy
potentials, which provide the corresponding damage energy release rates that drive the damage

evolution. The main contributions of this Chapter are summarized as follows:

* The model utilizes Scott-Blair rheological elements for both visco- elastic/plastic parts.
The constitutive equations are obtained through Helmholtz free-energy potentials for Scott-
Blair elements, together with a memory-dependent fractional yield function and dissipation

inequalities.

* A memory-dependent Lemaitre-type damage is introduced through fractional damage energy

release rates.
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* For time-fractional integration of the resulting nonlinear system of equations, we develop
a first-order semi-implicit fractional return-mapping algorithm. We also develop a finite-
difference discretization for the fractional damage energy release rate, which results into
Hankel-type matrix-vector operations for each time-step, allowing us to reduce the computa-

tional complexity from O(N 3 to O(N?) through the use of Fast Fourier Transforms.

* Our numerical results demonstrate that the fractional orders for visco-elasto-plasticity play a
crucial role in damage evolution, due to the competition between the anomalous plastic slip

and bulk damage energy release rates.

Chapter 6:

Motivated by the existence of materials exhibiting multiple power-laws [23, 25] in the linear
visco-elastic range, as well as the nonlinear visco-elasticity of bio-tissues, we aim to develop
a generalized fractional visco-elasto-platic modeling framework, where, distinctively from the
preceding contribution, here a number of canonical fractional visco-elastic models can be taken

into account. Specifically:

* We develop a generalized, fractional return-mapping framework for power-law visco-elasto-
plasticity. In our approach, the fractional visco-elasticity can be accounted through canonical
combinations of Scott-Blair elements to construct a series of well-known fractional linear
visco-elastic models, such as Kelvin-Voigt, Maxwell, Kelvin-Zener and Poynting-Thomson.
We also consider a fractional quasi-linear version of Fung’s model to account for stress/strain

nonlinearity.

* The fractional visco-elastic models are combined with a fractional visco-plastic device, which
is currently not a trivial task in existing return-mapping approaches coupled with fractional

visco-elastic models involving serial combinations of Scott-Blair elements.

* We then develop a general return-mapping procedure, which is fully implicit for linear visco-

elastic models, and semi-implicit for the quasi-linear case. Interestingly, we find that, in
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the correction phase, the discrete stress projection and plastic slip have the same form for
all considered models, although with different property and time-step dependent projection

terms.

* A series of numerical experiments is carried out with analytical and reference solutions to
demonstrate the convergence and computational cost of the proposed framework, which is

shown to be at least first-order accurate for general loading conditions.

* Our numerical results demonstrate that the developed framework is more flexible, preserves
the numerical accuracy of existing approaches, while being more computationally tractable in
the visco-plastic range due to a reduction of 50% in CPU time. Our formulation is especially
suited for emerging applications of fractional calculus in bio-tissues that present the hallmark

of multiple visco-elastic power-laws coupled with visco-plasticity.

Chapter 7:

Due to key developments in fractional constitutive laws and numerical methods for FDEs,
recently, a series of works analyzed the nonlinear vibration of fractional visco-elastic beams
[76—-80] under distinct material responses and boundary/loading conditions, where the numerical
solutions were based on the strong form of the resulting FDEs. However, from the rheology
standpoint, studying the effects of varying fractional orders, seen as evolving material properties,
e.g. softening, hardening, as well as their sensitivity and effects on the response of the system are
still lacking in the literature. Such view is fundamental for a model form selection of constitutive
laws from the available data or desired mechanical response of the system. In this Chapter, we
investigate the nonlinear vibration of a fractional viscoelastic Euler-Bernoulli cantilever beam,

subject to base excitation, where:

* The viscoelasticity takes the general form of a distributed-order fractional model, and the
beam curvature introduces geometric nonlinearity into the governing equation. We use
Hamilton’s principle to derive the governing equation of motion for specific material distri-

bution functions that lead to fractional Kelvin-Voigt viscoelastic model.
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* By spectral decomposition in space, the resulting governing time-fractional PDE reduces to a
nonlinear time-fractional ODE. We use direct numerical integration in the decoupled system,
in which we observe the anomalous power-law decay rate of amplitude in the linearized

model.

» We further develop a semi-analytical scheme to solve the nonlinear equations, using a method
of multiple scales as a perturbation technique. We replace the expensive numerical time

integration with a cubic algebraic equation to solve for frequency response of the system.

* We observe the super sensitivity of response amplitude with respect to the fractional model

parameters at free vibration, and bifurcation in steady-state amplitude at primary resonance.

Chapter 8:

Solutions to fractional models inherently exhibit non-smooth behavior, which significantly
deteriorates the accuracy and therefore efficiency of existing numerical methods. The basic building
block of fractional visco-elastic models, the Scott-Blair element can be mathematically expressed

as the following fractional nonlinear Cauchy equation:
CO%u(r) = f(t,u()), u(@)=ug, O0<a<l, (1.21)

which possesses single-to-multi power-law singular behavior nearby the left limit, i.e., t = a.
The nature of such singularity arises from the power-law kernel in the definition of the fractional
operator, with corresponding singular powers dependent on the regularity of the solution u(¢) and
the nonlinear right-hand-side f(z,u(t)). Therefore, constructions of more general visco-elastic
models require multi-term FDEs and consequently giving rise to multiple solution singularities.
Motivated by several works on addressing singularities for FDEs [5, 81-87], we develop the idea
of self-singularity-capturing methods for FDE.

In this Chapter we develop a two-stage data-infused computational framework for accurate
time-integration of single- and multi-term fractional differential equations. The steps and main

aspects of the framework are described as follows:
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* In the first stage, we formulate a self-singularity-capturing scheme, given available data for
diminutive time, experimentally obtained or sampled from an approximate numerical solution
utilizing a fine grid nearby the initial time. In this approach, the fractional differential equation
provides the necessary knowledge/insight on how the hidden singularity can bridge between

the initial and the subsequent short-time solution data.

* We develop a new self-singularity-capturing finite-difference algorithm for automatic deter-
mination of the underlying power-law singularities nearby the initial data, employing gradient

descent optimization.

* In the second stage, we can utilize the multi-singular behavior of solution in a variety of
numerical methods, without resorting to making any ad-hoc/uneducated guesses for the
solution singularities. Particularly, we employed an implicit finite-difference method, where
the captured singularities, in the first stage, are taken into account through some Lubich-like

correction terms, leading to an accuracy of order O(AP™9),

* We carry out a series of numerical tests, and our computational results demonstrate that the
developed framework can either fully capture or successfully control the solution error in
the time-integration of fractional differential equations, especially in the presence of strong

multi-singularities.

Chapter 9:

In addition to the near-singular behavior of FDEs nearby the initial time, requiring the devel-
opment of appropriate numerical methods (see Chapter 6), numerical solutions to nonlinear FDEs
are stiff and pose additional challenges regarding the stability of numerical methods, especially at
lower fractional order values. Furthermore, efficient long-time integration of nonlinear FDEs is
significantly challenging due to the integro-differential nature of the fractional operators. Since
the 80’s, many numerical methods were developed, such as finite-difference schemes [86, 88—93],

fractional Adams schemes [82, 94], spectral methods [95-102], correction methods [86], graded-
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mesh approaches [83—85], fast schemes [103—-107], among others. Fractional multi-step schemes
such as the Adams-schemes proved to be interesting alternatives for stiff FDEs [94, 108—114].

Although a significant amount of relevant works was developed, they usually address the
aforementioned singularity/performance/stability issues for stiff/nonlinear problems separately. In
this regard, there is still a need for numerical schemes aimed at stiff/nonlinear FDEs that I) efficiently
handle the numerical solution with low-regularity for both the solution u(¢) and nonlinear term
f(t, u(r)); II) present linear complexity with respect to the number of time-steps N; III) have
larger stability regions compared to the existing numerical schemes; I'V) mimick and generalize
the structure of existing integer-order multi-step schemes, widely employed by the scientists and
engineers to its fractional-order counterparts.

In this Chapter we develop two efficient first- and second-order implicit-explicit (IMEX) meth-
ods for accurate time-integration of stiff/nonlinear fractional differential equations with fractional

order a € (0, 1] in the form:
gD?u(t) =Au(t)+ f(t,u), @ €(0,1], t € (0,T]; u(0) = ugp, (1.22)

where 4 € C, ug € R4, and prove their convergence and linear stability properties. The main

aspects of this work are:

* The developed methods are based on a linear multi-step fractional Adams-Moulton method

(FAMM), followed by the extrapolation of the nonlinear force terms.

* In order to handle the singularities nearby the initial time, we employ Lubich-like corrections

to the resulting fractional operators.

* The obtained linear stability regions of the developed IMEX methods are larger than existing
IMEX methods in the literature. Furthermore, the size of the stability regions increase with

the decrease of fractional order values, which is suitable for stiff problems.

* We also rewrite the resulting IMEX methods in the language of nonlinear Toeplitz sys-

tems, where we employ a fast inversion scheme to achieve a computational complexity of
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O(N log N), where N denotes the number of time-steps.

* Our computational results demonstrate that the developed schemes can achieve global first-

and second-order accuracy for highly-oscillatory stiff/nonlinear problems with singularities.

Chapter 10: We present the concluding remarks and future steps of this work.
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CHAPTER 2

MULTI-SCALE ASPECTS: MOLECULAR DYNAMICS AND DISCRETE
DISLOCATION DYNAMICS

2.1 Introduction

Multi-scale materials modeling simulations are a rapidly growing scientific field, where it is
critical to accurately and efficiently bridge/propagate the properties/uncertainties between adjacent
length- and time-scales. Among several types of material imperfections that cause disturbances in
crystal structures, dislocations are line defects [2] that are naturally present from manufacturing until
failure of crystalline materials. Describing the small-scale buildup and dynamics of dislocations
can provide an important insight on early fatigue precursors [115, 116], which are beyond the
resolution of existing continuum models of fatigue damage. However, in order to accurately
propagate such early statistics of failure to the continuum for large-scale applications, consistent
and robust coupling frameworks between the atomistic and meso-scales are fundamental.

Molecular dynamics is a first-principle theory that explicitly describes the motion individual
atoms at small scales based on Newton’s second law. In the context of dislocations, MD has been
employed as an effective tool for the atomistic understanding of canonical types of dislocation
motion for diverse crystal structures and their corresponding mobilities [117-119], as well as the
estimation of core energies, responsible for dislocation self-interactions [60, 120].

In order to describe the complex arrangements and mechanics of dislocation networks developed
in larger systems (meso-scale), more computationally friendly approaches are necessary. Discrete
dislocation dynamics is a framework that describes the motion of these dislocation networks in the
same scale as scanning electron microscopy [4], making it a practical computational tool [62] that
allowed the discovery of new physics, such as dislocation multi-junctions [121], as well as synthetic
data generation.

In this work, we focus on dislocation-driven material visco-plasticity, where relevant properties
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to carry out meso-scale DDD simulations are physically informed through MD simulations at the
atomistic scale. Our main objective is to be able to utilize both methods in a robust way for data
generation and model calibration of probabilistic surrogates [63] and advection-diffusion models
of dislocation motion for future studies.

This chapter is organized as follows: In Section 2.2, we introduce some basic definitions of
dislocation theory. In Section 2.3 we introduce the theories of molecular dynamics and discrete

dislocation dynamics, followed by our numerical computations and results in Section 2.4.

2.2 Definitions of Dislocation Theory

We now present a few basic fundamental concepts and definitions of dislocation theory, which

form the basis of the employed computational frameworks.

2.2.1 Types of Dislocations

We present two basic types of dislocations, namely edge and screw dislocations, illustrated in the

cubic lattices of Figure 2.1 [2]:

* A positive edge dislocation (see Fig.2.1a, line DC) can be geometrically described by as-
suming that the bonds at surface ABCD are broken, separating the faces of the crystal, and
inserting an extra half-plane of atoms. The disturbance of the crystal structure only occurs
around the line DC. Conversely, a negative edge dislocation is obtained by performing the

same procedure at the bottom half of the lattice.

* A positive screw dislocation (see Fig.2.1b, line DC) can be geometrically described by
displacing both faces of ABCD relative to each other along the direction AB, which forms
a spiral-like surface of atoms around line DC. Conversely, a negative screw dislocation is

obtained by displacing both faces in ABCD along direction BA.

Although the aforementioned types are two canonic forms, in real crystal structures dislocations

have a mixed edge/screw nature [2].
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Figure 2.1: Hull and Bacon [2] (a) A positive edge dislocation, denoted by line CD, after inserting
an extra half-plane of atoms in ABCD. (b) A left-handed screw dislocation obtained from a
displacement of faces ABCD with respect to each other along AB. (c) A Burgers’ circuit enclosing
an edge dislocation (left), and the same circuit in a perfect crystal (right). The required closure
vector to complete the Burgers’ circuit is defined as the Burgers’ vector.

2.2.2 Burgers’ vector

An important definition in this work is the Burgers’ vector, denoted here by b = [b| b b3], and
defined as the closure failure between the Burgers’ circuits around the dislocation line and in a
perfect crystal (see Fig.2.1c). For edge dislocations, the orientation of b is normal to the dislocation
line, while for screw dislocations, such orientation is parallel to the dislocation line. For the body-
centered cubic (BCC) cells, which are the crystal structures of interest, the Burgers’ vector and

magnitude b are given, respectively, by:

b==[111], b=—2, 2.1

| =

where a denotes the inter-atomic spacing. The Burgers’ vector is intrinsically related to slip
mechanisms, i.e., motion of dislocations in elastic, continuum media. More specifically, the slip
direction is always parallel to b. Additionally, dislocation lines can end at the crystal boundaries,
but never inside the crystal. Therefore, dislocations must form closed loops or branch with
other dislocations inside a given crystal, which leads to the following necessary condition for n
interconnected dislocation branches:

b; =0, 2.2)

n
i=1
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2.2.3 Peach-Koehler forces

Let P € R3 be an arbitrary point on a given (straight or curved) dislocation line, under the effect
of a local stress field o. Furthermore, let & be the direction of a tangent line to the dislocation at

point P. Then the Peach-Koehler (PK) force per unit-length acting at P is given by [4]:
7K = (- b) x &, (2.3)

which is fully defined by the local stress field o, arising from surface traction forces, dislocation

interactions, or strain-producing defects.

2.3 Simulations of Dislocation Motion

Having a few fundamental aspects of dislocation theory defined in the previous section, we
now focus on the simulation of dislocation containing systems at the atomistic- and meso-scales.
Although other methods are available for the atomistic scale, such as Monte Carlo methods, we
employ Molecular Dynamics, since it allows us to simulate the real dynamics of atoms, and thus a
detailed description of dislocations, while preserving the Boltzmann statistics at small scales [4].
At the meso-scale, we employ Discrete Dislocation Dynamics, which discretizes and explicitly
describes the motion of dislocation lines and their networks in a continuum elastic medium. We
remark that although DDD is regarded as the discretization of a continuum model, the associated
length-scale is of order [ ~ 1077 -1073 [m], which can be interpreted as an intermediate scale that

bridges between micro- and macro-scales.

2.3.1 Atomistic scale: molecular dynamics

Consider a Hamiltonian system composed of N atoms of mass m and with positions denoted by the
set {r;} :=ry, I, ..., ry, velocity v; and momentum p; = mv;. The system is assumed to be at
a sufficiently high temperature 7" such that quantum effects are negligible. The total energy of the

system, i.e., the Hamiltonian is given by [4]:
N

H({r;, pip) = >

i=1

Ipi|?
2m

+ E({r;}), (2.4)
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where the first term on the right-hand-side represents the total kinetic energy, and V({r;}) represents

the total potential energy of the system. The classical equations of motion in Hamiltonian mechanics

are given by:
dr; O0H
el il 2.5
dt  0p; 2:5)
dpl' 0H
— = 2.6
dt or; 2.6)
Substituting (2.4) into (2.6), we obtain the equation of motion for every atom j =1, 2, ..., N in
the MD system:
drj vy
=— , 2.7
" dtz al'j ( )
which is equivalent to Newton’s second law, where the interatomic force is given by:
oV({ri})
fi=——"7T-"-—". 2.8
I or j ( )

Therefore, with appropriate definitions for the potential energy and therefore computations of the
interatomic force f;, MD simulations are carried out through the numerical integration of (2.7). We
refer the reader to [4] for additional details regarding numerical integration algorithms. The total
potential energy of the system can be written as the following atom-wise summation:

N-1 N

ILCCHED IR GH) rij = |r; —rjl, (2.9)

i=1 j=i+l
where ¢(r;;) denotes an interatomic potential between atoms i and j. A well-known pairwise
potential is the Lennard-Jones potential, which accounts for long-range attraction and short-range

repulsion, given by:

oL (1) = 4¢, [(?)12 - (@)6] , (2.10)

-
where the pair (21/ 60'0, eo) yields the minimum interatomic energy. Since the crystal structures in
our studies involve multiple atomic bonds, their lengths and orientations, we follow [60, 122] and
utilize a Ziegler-Biersack-Littmark potential that has been employed for Fe-C interactions, in the
form:

¢(r) = F(e! (r) + ¢?BLr) (1 - F(r)), 2.11)

34



where ¢ (r) denotes a bond-order Tersoff potential, ¢<BL a universal repulsive Ziegler-Biersack-

Littmark potential, and F(r) represents the Fermi-Dirac function given by:
1
L+exp [-bs(r—rp)]

where b ¢ and r ¢ are fitting parameters. We observe that F(r) — 1 as r is sufficiently large in

F@r) =

(2.12)

(2.11), thus making the Tersoff component of ¢(r) dominant at long-distance interactions.

2.3.2 Meso-scale: discrete dislocation dynamics

We now consider the theory of discrete dislocation dynamics [4], which essentially is a segment-
wise discretization of the dislocations (see Fig.2.2), with corresponding velocities interpolated
through a set of basis functions and nodal coefficients. Here we assume that the dislocations
have no mass. Therefore inertia effects are neglected and therefore the dislocation lines are in an
overdamped motion, i.e., their velocities have an instantaneous response due to applied forces. The
balance between the applied and drag forces leads to a linear system of equations to be solved for
the nodal velocity coefficients, where the matrix of coefficients codes the dislocation mobility in
the embedding elastic medium. This allows us to compute the collective motion of dislocation
networks and their associated non-Gaussian statistics due to their collective motion.

Figure 2.2 [3, 4] illustrates the segment discretizations of dislocations, assuming that each
segment connects two nodes denoted by i and j, with positions r; and r; and associated Burgers’
vector b;; with respect to the i — j direction. Therefore, the nodal positions and their segment
connectivities for the entire dislocation network can be fully specified by {r;, b;;}. Also, the nodal
velocities are denoted by v; and v;. The position at a given coordinate s defined between nodes i

and j are interpolated, respectively, in the following way:
r(s) = Ni(s)r; + Nj(s)r;, (2.13)

where N;(s) and N j(s) denote two piecewise linear interpolation functions that satisfy the collocation

properties at s = r; and s = r;. The velocity is interpolated in the same fashion as follows:

v(s) = Ni(s)v; + N;j(s)v;, (2.14)
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Figure 2.2: Discretization of dislocations, represented as a set of nodes connected through segments.
(a) Two dislocation loops (Sills et al. [3]). (b) A discretized dislocation network (Bulatov et al.

[4]).

Let C := {r;, b;;} be defined as the set of all dislocation nodes and segment Burgers’ vector of

the network. The total forces acting on node i are defined as following:

- _0Eio({1;; by }) _ _0Emt(C)' 2.15)

or; or;
The total energy of the network can be linearly decomposed in two parts: a non-local elastic
component E,;(C,r.) that accounts for interactions with others dislocation segments and the

elastic medium, and a local core component E.(C, r) accounting for nonlinear and singular effects

due to self-interactions nearby the dislocation line:
E1o1(C) = E¢(C, re) + Ec(C, re), (2.16)

where r. denotes the dislocation core radius, which acts as a cut-off parameter from linear elasticity
theory to isolate the the nonlinearities and singularies within the dislocation core, and can be
determined from atomistic simulations. By differentiating (2.16) with respect to the position r;, we

obtain the following decomposition of the nodal forces:
f; = £ + £, (2.17)

where flf”l and fl.c denote, respectively, the elastic and core forces acting on node i. Recall the

Peach-Kohler force (2.3) acting on a given position s over the dislocation line connecting nodes i
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and j,
tFK(s) = (o(s) - b) X &(s). (2.18)

Although not shown here for simplicity (see [4], Section 10.1.3), the internal stress field o is defined
as an integral over the entire dislocation network, which takes into account two Lamé parameters,
namely, the shear modulus G and the Poisson ratio v. The discrete elastic force can be computed in

terms of the PK force as the following integration over all segments connected to node i as follows:

1

ﬁ%§f”@m@ﬂ@. (2.19)
C

The computation of core forces f7 acting on node i is less trivial, and usually requires the
knowledge of the core energy E. to estimate its corresponding derivative. This is usually obtained
through atomistic simulations, where the total dislocation energy is computed, and the core energy
can be obtained through (2.16). Alternatively, the dislocation core radius r. can be obtained from
the total energy, and the core energy can be estimated analytically.

The last definition in order to compute the nodal dislocation velocities is the dislocation mobility,
which we employ as a linear constitutive relationship between a drag force f drag (que to the motion

resistance from the elastic medium) and the velocity v:
£7798(s) = —B(£(s)) - V(s), (2.20)

where B denotes the dislocation mobility tensor, which takes distinct forms according to the crystal
structure and edge/screw dislocations under glide and climb motions. For BCC metals, we consider

the following forms [62]:
BE)=Bs(I-¢é®E), when €| b (screw dislocation), (2.21)
with By denoting a drag coefficient for screw dislocations, and,
B(§) = Begm®m) + Beg(n®n) when £ Lb  (edge dislocation), (2.22)

where Beg and B, denote, respectively, the glide and climb drag coefficients for edge dislocations,

andn := b x &/||bx €|, m := n X €. In our numerical experiments, we will consider the same drag
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coeflicient for all aforementioned cases, denoted by B, which we obtain from an edge dislocation
glide MD experiment, and relate it to an edge dislocation glide mobility in the form M.¢ = B/b,
which is one of the input parameters of the DDD framework.

We now let £4" ive(s) be the driving force, which is comprised of a summation of elastic, core
and any other forces (e.g. chemical forces due to inclusions) acting on a point s of the dislocation

network. The balance of drag and driving forces is therefore given by:
£9rag (x) + £Arve (x) = 0, (2.23)

and therefore, using (2.20),
B£(S)) - v(s) = FrVe(x). (2.24)

The above equation is posed in weak form, by multiplying both sides by a test function N;(s) and
integrating with respect to the entire length of the dislocation network, leading to the following

equation to be solved for the velocity vector of each node i of the newtork:
> Bijvj=1, (2.25)
J
where the mobility matrix is given by:

B;; = jgc Ni($)B(&(s))N j(s) dL(s). (2.26)

2.4 Numerical Results

Following the studies from Lehtinen et al. [60], we perform a series of numerical experiments
using LAMMPS to estimate intrinsic BCC iron (Fe) material parameters required for DDD ParaDis
simulations, namely, shear modulus G, Poisson ratio v, dislocation core radius 7. and edge glide
dislocation mobility M,g. Other required parameters like the Burgers’ vector magnitude b and

dislocation core energy E. are computed through theoretical estimates.

38



2.4.1 Molecular dynamics

Figure 2.3 presents the employed MD systems for pure Fe-Fe interactions. An orthorhombic box
is employed for shear, mobility and core radius experiments (see Fig.2.3a), while a cylindrical
nano-wire is utilized for the Poisson ratio test (see Fig.2.3b). For all analyses, we equilibrated the
system in consideration to a reference temperature 7 = 750 [K]. We utilize the ZBL interatomic
potential (2.11) with the fitted parameters provided by Henriksson et al. [122]. The Burgers’
vector magnitude b can be determined theoretically using (2.1) as b = % = 0.2501 [nm], from
an inter-atomic spacing a = 0.2889 [nm]. We present the procedure for the remaining material

parameters below.

A
Yy
Upper
N
4 J/
xA\
Lower

(a) (b)

Figure 2.3: (a) Orthorhombic box with an edge dislocation in the center, employed as the MD
domain for the core radius, edge mobility, and shear (no dislocation) tests. (b) Cylindrical nano-
wire domain utilized for the Poisson ratio experiment.

2.4.1.1 Shear modulus

The shear modulus G is a property of the elastic medium required to compute the stress tensor
o in DDD frameworks. Therefore, we consider the system in Fig.2.3a in the absence of the edge
dislocation. The top and bottom layers of atoms are fixed in the y-direction, and a constant velocity

of vy = 0.2 [nm/ps] is imposed on the top layer. The corresponding force acting on the top layer
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and the shear strains 7y, are computed, allowing us to estimate the shear modulus G = 73.20 [G Pa]

through the slope of a linear fit of the small-strain region in Figure 2.4.

Stress Ty [GPa]
w » (&)} [}

N

——MD data
—Linear fit, G=73.20 [MPa]

=N

0 0.02 0.04 0.06 0.08 0.1
Strain Ty

Figure 2.4: Block-shear stress-strain MD experiment. The linear fit over a small strain range
Yxy < 0.05 yielded a shear modulus G = 73.20 [G Pal].

2.4.1.2 Poisson ratio

Figure 2.3b illustrates the MD domain for this experiment. The orientation of the BCC crystals
is [110] along the nano-wire’s axis. The initial length L of the wire is taken as Lo = 4Dy,
where D( denotes the initial diameter. The bottom layer of atoms in the nano-wire is fixed in all
directions. The wires were initially relaxed for = 20 [ps] at T = 750 [K] using a Berendsen-type
temperature control. After the temperature equilibration step, we impose a constant axial strain
rate £x = 0.001 [ps]. The engineering strains at the boundaries of the wire in the axial and radial
directions are defined, respectively, as Aey = AL/Ly and Ag, = AR/Rp. The Poisson ratio is
then computed as v = —ﬁ—‘z)r‘, by employing a moving average filter with N = 25 points on the raw

data and a linear fit over the small strain range. Figure 2.5 presents the obtained results, with an

estimated value of v = 0.378.

2.4.1.3 Edge dislocation radius and energy

The edge dislocation core radius r. around an infinite edge dislocation is defined as the distance

beyond which the dislocation-induced potential energy becomes sufficiently close to the total
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Figure 2.5: Nanowire tensile MD experiment. (left) Poisson coefficient estimation v = 0.378,
through a linear fit over the filtered data. (right) Obtained stress vs. strain results, yielding a
Young’s modulus £ =211.98 [G Pal].

potential energy V of a corresponding perfect lattice [123]. Therefore, we perform a minimization
on the system illustrated in Fig.2.3a with and without the edge dislocation and computed the
corresponding potential energies of atoms within a varying cylinder of radius r, centered at the
dislocation core (blue line). Figure 2.6 illustrates the obtained results, where we obtain a dislocation
core radius ro ~ 2.9 [b] with a relative error of less than 2% between the computed potential
energies. The dislocation core energy E. is later estimated using ParaDis’ defaults from the

estimated r.

2.4.1.4 Dislocation mobility

Following body-centered-cubic Fe-C simulations from [60], we generate synthetic dislocation
motion data in a pure Fe system and estimate the edge mobility property through MD simulations
utilizing the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [61]. All the
MD simulations in this work are run in 80 Intel Xeon Gold 6148 CPUs with 2.40GHz.

The MD system under consideration is illustrated in Fig. 2.7, consisting of a simulation box of

61 x 40 x 20 a-Fe unit cells with dimensions 25.14 X 26.96 x 24.06 [nm] in the x, y, z directions.
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Figure 2.6: Dislocation core radius estimation through the relative difference between the potential
energy of the system with a single edge dislocation (PE.) and a pure system (PE)). The estimate
r = 2.9[b] is obtained considering a moving average filter on the obtained data and a relative
difference of ~ 1.8% between both systems.

A straight edge dislocation with Burgers’ vector b = %[1, 1, 1] is generated by removing a (1,1, 1)
half-plane of atoms from the center of the box. The MD domain consists of 1353132 atoms
with periodic boundary conditions applied in the x and z directions, and shrink-wrapped boundary
conditions applied to the unit cells in the top- and bottom-planes along the y-direction. We perform
an NVE time-integration, where the system’s temperature is relaxed to 7 = 750 [K] through
velocity-rescaling for 100 [ps] (see Fig.2.8a). We utilize a combined Tersoff bond-order and
repulsive Ziegler-Biersack-Littmark (ZBL) interatomic potential, with corresponding parameters
from [122].

We apply shear stress values in the range 7 € [15, 100] M Pa to the top layer in Fig. 2.7a, parallel
to b, which induces a glide motion in the x-direction on the (1, 1, 0) plane. No temperature control
is enforced in this stage and we run the simulation over 1 [ns] with time-step size AtMD = 2 [fs].
The MD time-series data is saved every 100 time-steps and the atom positions are post-processed
utilizing the Polyhedral Template Matching (PTM) method [124] implemented in OVITO (https:
//www.ovito.org/) [125], which allows us to detect and track the lattice disturbance. We define
the dislocation position as the average of all x-coordinates of atoms belonging to the disturbed
region (dislocation core) in Fig.2.7a. Therefore, for every applied shear stress 7, we obtain a

position vector xMD (r) with 5000 data-points (see Fig. 2.8b) of size AMD = 9 [fs], from which
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(a) (b)

Figure 2.7: MD domain of the dislocation mobility test. (a) x — y plane, illustrating the edge
dislocation core as the lattice perturbation at the center. (b) 3D view of the MD domain with the
BCC lattice removed, showing the dislocation line along the z-axis.

we compute the corresponding velocity vMP through a linear fit. The obtained velocity from the
post-processed MD simulation can be related to the one-dimensional solution from dislocation

dynamics denoted by vy, and given by the following relationship:
ve=M-b-T. (2.27)

where M denotes the edge dislocation mobility, and b = V3a/2 represents the magnitude of b.
Equation (2.27) is obtained from the balance between the applied Peach-Kohler force induced

D _ vy and from the

by the shear stress 7 and the dislocation drag force. Therefore, setting vM
slope m = M - b of the velocity versus stress curve in Fig. 2.8c, we estimate the edge dislocation
glide mobility as M = m/b ~ 5931.3 [(Pa.s)_l], which is in good quantitative agreement (1.73%
difference) compared to the results obtained by Lehtinen et al.[60].

The presented dislocation mobility results obtained from MD simulations here were employed

for data generation for a graph-based coarse grained probabilistic surrogate model developed in

[63].

43



108 x10%

755 - 150

754 M— 18 == 15MPa] e © MD Data 1

753 54 —gg mga} Lt — Linear fit, M_ = 5931.3 [(Pa.s)"]
< > - a - _
% 752 e F —75[MPa] e 2100
St D) % 0F |- - 100 (MPa £
8 749 2 g k]

£ oa L 50

@ 748 3 5 >
= [

747 55 SR

T R R P~ L

745 0 0

0 20 40 60 80 100 0 200 400 600 800 1000 0 20 40 60 80 100
Time [ps] Time [ps] Stress [MPa]
(@) (b) ()

Figure 2.8: (a) Temperature and total energy for the equilibration step, (b) Edge dislocation position
xMD (1) and (c) mobility through MD simulations for distinct values of applied shear stresses 7
under 7' = 750 [K]. We observe an overdamped motion for the applied shear stress range and a
linear mobility relationship.

2.4.2 Discrete dislocation dynamics

Following the studies by Lehtinen er al. [120], we utilize the estimated parameters from the
MD experiments as inputs for 3D simulations in ParaDis. We assume the mobility of screw
dislocations My = Mg ~ 5931.3[1/(Pa.s)]. The domain consists of a BCC iron cube with length
L = 0.75 [um] periodic boundary conditions and temperature 7 = 750[K]. An initial random
configuration with 24 straight screw dislocations in the %(1 11) [110] slip system. The initial
dislocation density is 7.38 X 1013 [mz]. We impose distinct values of uniaxial strain rates &, and
illustrate the obtained results in Figure 2.9. We observe the a rate-dependent plastic behavior, with
a relaxation observed for all strain rates, followed by intermittent hardening, with the yield recovery
occurring at larger strains as the strain rate is increased. The dislocation density vs. total strain
plot indicates that the earlier onset of strain hardening for & = 100 [s~1] seems to be connected
by a ballistic dislocation density evolution, compared to higher strain-rates. Such results suggest
that dislocation interactions are quickly resolved at lower strain rates, leading to a faster relaxation
process, while an early arresting mechanism is more pronounced at higher strain rates.

Figure 2.10 illustrates three snapshots of the dislocation network formations at different time-
steps of the DDD simulations for & = 107 [s_1 ], from which we observe the evolution of the fractal

dislocation microstructure.
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Figure 2.9: DDD tensile tests in pure iron under different strain rates. (a) Rate-dependent stress
vs. strain response showing visco-plastic intermittent behavior after a hardening/relaxation phase.
(b) Dislocation density vs. time. (¢) Dislocation density vs. strain, showing a ballistic behavior for
lower strain-rates.

We also compute the average dislocation arm centroid velocity V(¢) time-series for the case
& =100 [s_l], as well as the instantaneous acoustic energy E(¢) = V(t)2 distribution, and present
the obtained results in Figure 2.11. We observe typical self-similar behavior of plasticity in single-
crystals, with intermittent avalanche energy bursts, given by the larger acoustic energy events. We
note that the notion of intermittency here relates to the rare events involving high velocity gradients,
which deviate from Gaussian statistics, and therefore leading to an acoustic energy distribution in

the form P(E) o« E~9, with observed power-law scaling & = 1.5.

(b)

Figure 2.10: DDD simulations of fractal dislocation network evolution at three different instants:
(a)t =2.44x10"12 5], (b) 1 = 7.46x 10710 [s], and (¢) r = 1.90x 10 [s]. The red dots represent
the dislocation arm (white lines) centroids.
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Figure 2.11: Computation of collective dislocation velocities for the DDD tensile test with
& = 10°[s71]. (a) Time-series data of collective disloaction velocity, indicating the presence
of intermittent, large energy bursts. (b) Acoustic energy histogram, where P(E) o E~9, with
0 = 1.5, consistent with experimental data for dislocation avalanches.
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CHAPTER 3

A DATA-DRIVEN FRACTIONAL MODELING FRAMEWORK FOR ANOMALOUS
RHEOLOGY: APPLICATION TO URINARY BLADDER TISSUE

3.1 Background

Bio-tissues are complex and multi-functional materials, optimized for their specific host or-
ganisms, and constrained by limited set of building blocks and available resources [126]. While
the mechanical behavior of a number of standard engineering materials (e.g., metals, polymers,
rubbers) is quite well-understood, there is still a significant effort towards bio-materials, where mi-
crostructure heterogeneities, randomness and small scale physical mechanisms lead to non-standard
and at times counter-intuitive responses. Power-law rheology is a complex response observed in
many bio-tissues such as arteries [8], cartilage [9, 10], lungs [11], smooth muscle [12], liver and
kidneys [13], red blood cell membranes [14], and other materials like cross-linked polymers [15],
gels [16, 17], soft glassy materials [18]. These power-law materials, also termed anomalous,
exhibit power-law scaling for creep/relaxation in the form J(¢) # and G(t) o 1P and also for
dynamic storage/dissipation in the frequency domain [6]. The origin of this power-law behavior
at the continuum level is due to (non-Fickian) sub-diffusive processes [7] in the corresponding
fractal-like micro-structures[127, 128].

The aforementioned anomalous non-exponential behavior usually requires a significant number
of material parameters when employing standard viscoelastic models. These consist of mechanical
arrangements of linear springs and Newtonian dashpots, which induces a finite number of relaxation
modes, which may lack predictability when performing outside the experimental time scales [9, 24].
In this regard, fractional models become attractive alternatives, since their integro-differential oper-
ators naturally utilize power-law convolution kernels, coding self-similar microstructural features in
a reduced-order mathematical language with smaller parameter spaces. Therefore, they have been

employed as compact and predictive models for a number of anomalous systems, such as biological
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materials [9—13], fluid turbulence [129-132], and instabilities [133]. We particularly note that such
predictability has been shown to extend across different experiments (relaxation/creep) in certain
cases [24]. Additionally, calibrating experimental data with a set of existing rheological models
leads to a material model selection problem, which is inherently ill-conditioned, since multiple
models can pragmatically yield similar errors when confronted to experiment. In this work, we
attempt to reduce this implicit ill-posedness by introducing fractional-order models as attractive
alternatives to their integer-order counterparts, and employed to urinary bladder (UB) tissue mod-
eling. Our fractional modeling framework aims to obtain compact mathematical models with a
reduced number of material model parameters, while introducing a minimal, but sufficient number
of fractional rheological elements that capture the qualitative response of multiple power laws and
minimizes the errors, also rigorously taking into account the corresponding power-law memory
effects.

The lower urinary tract, and especially the urinary bladder, is a highly dynamic organ system.
To ensure its proper function, the bladder needs to be able to significantly increase in size while
maintaining a low internal pressure, and this ability is dictated by the mechanics of the bladder
wall. Specifically, during filling, the bladder tissue must leverage its viscoelastic characteristics to
accommodate for large deformations without resulting in significant increase the luminal pressure.
When this behavior is compromise due to disease, the resulting increase in pressure might generate
a high-pressure urine reflux from the bladder to the kidneys, resulting in renal failure [134, 135].
To increase the complexity of the organ mechanics, the characteristics of the bladder differ between
different anatomical locations (i.e., dorsal, ventral, lateral, lower-body, trigone) [136, 137] and
orientations (i.e., longitudinal/apex-to-base and circumferential/transverse) [136—144]. To describe
the mechanical behavior of bladder tissue both hyperelastic [139, 140, 143—152] and viscoelastic
[141, 142, 153-166] models have been used in the literature. But due to the differences in
mechanical testing protocols as well as modeling, most of the results cannot be compared with
one another and often results in contradicting conclusions. While several pathologies of the lower

urinary tract are associated with dramatic changes of the mechanical behavior of the bladder wall
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[167], still much is unknown about the mechanisms that affect this organ, not just in diseased states
but in healthy as well. In this study, we focus on the healthy behavior of the porcine urinary bladder,
which a present work suggested is a good model for the human urinary bladder.

Although linear fractional visco-elasticity has been succesfully employed in a number of biome-
chanical applications, additional modeling considerations are necessary when dealing with other
material nonlinearities, such as large strains. This would imply that the material relaxation behav-
ior becomes strain dependent, and needs additional modeling considerations. For that purpose,
a well-known model is Fung’s quasi-linear-viscoelastic (QLV) theory[168], which considers a
multiplicative coupling between a linear visco-elastic relaxation and a nonlinear elasticity term.
Fractional extensions of Fung’s QLV theory have been developed and employed for modeling the
response of aortic valve cusp[169] and arterial walls[10].

To the authors’ best understanding, although existing studies have addressed the hyper-visco-
elastic behavior of urinary bladders, there are no studies in the literature confronting their power-
law response with fractional viscoelastic models. In this work we develop a data-driven fractional
modeling framework for linear and quasi-linear viscoelasticity to account for anomalous power-
law relaxation and large strains. We validate the developed framework for the first time in the
uniaxial relaxation of porcine urinary bladder (UB) tissue for a wide range of applied strains. The

characteristics of our experimental procedure are:

* We obtain the porcine urinary bladder uniaxial relaxation data from small-to-large strains of

five distinct anatomical locations.

* Our relaxation experiments are performed under increasingly larger strains, without interme-

diate unloading steps or tissue preconditioning.

* The mechanical response of the UB indicates nonlinear visco-elastic behavior with power-law

relaxation, characterizing an anomalous behavior.

Given the anomalous response of the urinary bladder tissue, we employ our anomalous modeling

framework as follows:
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* Our existence study considers a set of fractional building block models (Scott-Blair, fractional
Kelvin-Voigt, fractional Maxwell), which are selected according to the power-law nature of

the relaxation data.

* The fractional linear visco-elastic models provide sufficiently accurate fits for single-relaxation
steps under smaller strain levels, where the fractional Maxwell model with two fractional

orders is the most suited for the UB.

* For large strains under multiple applied strain steps, we employ a fractional quasi-linear
visco-elastic (FQLV) model based on Fung’s QLV theory, which is able to capture the entire
experimental range over four decades in time, with the presence of power-law relaxation and

strain-induced material nonlinearity.

The rest of the paper is organized as follows. In Section 3.2 we present the problem setup and
methodology, with the uniaxial UB stress relaxation data and our proposed fractional modeling
framework for biotissues, comprised of linear and quasi-linear fractional models. In Section 3.3,
we present our obtained linear viscoelasticity results for the UB relaxation under the first strain
step, and the fractional quasi-linear viscoelastic model for all consecutive strain steps, followed by

the discussions and potential improvements of the work.

3.2 Problem Setup and Methodology

3.2.1 Urinary bladder experimental relaxation tests

We utilize existing stress relaxation data from Dr. Roccabianca’s lab at at Michigan State University,
obtained from five samples of a single porcine UB, extracted from distinct anatomical locations as
shown in Fig.3.1(a). The locations are dorsal (D), lateral (L), lower body (LB), trigone (T), and
ventral (V). The samples were punched out with a 1 X 3 [cm] leather punch in the apex-to-base
direction as shown in Fig.3.1 (b). Each sample was clamped and subjected to five consecutive
stress relaxation stages, under prescribed step strains gg = {0.25, 0.50, 1.00, 1.50, 2.00} for 30,

45, 45, 45, and 45 minutes, respectively, as illustrated in Figs.3.1(c) and (d). Besides the strain
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inputs, the force denoted by F is measured by a 10 [/b] load cell throughout the duration of the test.
The cross-sectional area of each sample is calculated by taking top and side view pictures of the
sample at each strain level right after each strain applications. The pictures are converted to binary
images, which are processed in MATLAB to determine an approximate width b and thickness A
and thickness of each sample, at each strain level. The updated cross-sectional area is assumed
to remain constant throughout the relaxation at each strain level, and is evaluated as Adata — pp.

Given force and area time-series, the true strain is evaluated as 9979 (r) = Fdata ) pdatay),

LB: Lower Body
V : Ventral
L :Lateral
T : Trigone
D : Dorsal

Urethra Dissection

Plane

Figure 3.1: (a) Dissected porcine UB showing the distinct anatomical locations from which samples
were punched. (b) A diagram of the UB from the lateral view. (c,d) A representative sample under
clamped, uniaxial relaxation, respectively, in upper and side views, from which images are extracted
for area estimation.

Once the stress and strain time-series are obtained, we filter the data through a moving average
filter with a time-window of thirty neighbor data points. Figure 3.2 illustrates the relaxation curves
for all samples in linear and log-log scales. We observe a characteristic power-law scaling for long-
time behavior, which is evident in Fig.3.2 (b). As will be shown later through fractional model fits,
the relatively low scaling coefficient S indicates an anomalous behavior of predominantly elastic
nature, where the relaxation behaviors has a faster decay at lower time-scales, followed by a plateau
with low decay rates o ~ 1P at larger time-scales (i.e., t > 400 [s]). We also note that the trigone
and lower body specimens yielded higher stress levels, particularly at very high strains, while the
dorsal specimen yielded lower overall values. This is in accordance to stress-strain results obtained

by Korossis [136], that indicated statistically significant, higher collagen phase slopes for the lower
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body and trigone regions.
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Figure 3.2: Stress relaxation data for all UB samples. (a,b) - stress vs time data in linear and
logarithmic scales. (c,d) - successive step strain vs time data in linear and logarithmic scales. The
long-term power-law behavior becomes evident especially in the first relaxation step in (b), where
the slope of the black line is given by |B|~ 0.3.

We analyze the presence of strain dependency on the UB relaxation behavior, in order to
determine if the visco-elasticity is of non-linear nature. Therefore, we employ the definition of
linear relaxation modulus G(¢) [Pa], applied for each fixed strain application from experimental
data [170]:

Gdam(t) = O_data(t)/go.

Figure 3.3 illustrates the obtained relaxation moduli for all samples and relaxation steps. We
observe that although the relaxation moduli data for each sample collapse into a single curve for
go = {0.25, 0.50} (except for the trigone sample), the behavior of G is clearly not only time-
but also strain-dependent. Furthermore, the degree of nonlinearity is more pronounced for the
lower body and trigone samples, and less pronounced for the dorsal sample. Interestingly, we
notice two limiting power-law behaviors for short and long times. The short time behavior has a

power law of smaller magnitude 1, while the long time behavior is associated with a power-law
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of larger magnitude B, (see Fig.3.3(f)). Larger standard deviations for the long time power-law
were observed for the trigone region due to its distinct response for g = 0.25. We remark that this
analysis is just performed to infer the nonlinear relaxation quality the data, and we do not intend to
construct a master curve for each bladder sample.
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Figure 3.3: Normalized relaxation moduli for each bladder specimen under distinct applied strains:
(a) D, (b)L, (c)LB, (d) T, (e) V. The relaxation behavior seems to be approximately linear for most
specimens in the gq € [0.25,0.5] range. All specimens clearly demonstrate a dependency of both
time and applied strains for £y > 0.5, with largest variations observed in the LB and T samples.
Furthermore, the data indicates two distinct relaxation regimes with slower (r < 3 [s]) and faster
(t > 400 [s]) decays, respectively, with slopes 51 and S, illustrated in (f).

3.2.2 A Fractional Viscoelastic Modeling Framework for Anomalous Tissue Rheology

We develop an existence study to identify the admissible set of anomalous constitutive laws that
satisfy the quality of the experimental relaxation behavior, while shedding light on the corresponding
microstructural constituents associated to anomalous behavior. Starting with the Scott-Blair (SB)
model as the fundamental building block, we construct building block models through parallel
and serial combinations to obtain the fractional Kelvin-Voigt (FKV) and fractional Maxwell (FM)

models. In our approach, we take into account the anomalous qualities present in the experimental
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relaxation data and compare them with each of the candidate building block models. Each of
the models exhibit distinguished material complexities, such as distinct asymptotic behaviors of
relaxation G(¢), multiple power-law regimes, slower/faster relaxation at the asymptotic stages
[36, 171] and presence of material nonlinearities. In the last part of the existence study we classify
the candidate models in a “table of anomalous qualities", which together with obtained fitting errors

make part of the model selection procedure.

3.2.2.1 Fractional linear viscoelastic models

Given the experimental data presented in Section 3.2.1, we focus on the first relaxation step
(g0 = 0.25) of Figs.3.2 and 3.3 for our data-driven, linear visco-elastic framework. Our objective
is to demonstrate how fractional visco-elastic models are able to capture the UB relaxation with
simplistic mechanical arrangements and a small number of material parameters.

The rheological building block for our framework is the fractional Scort-Blair (SB) visco-elastic
element, which compactly represents an anomalous visco-elastic constitutive law connecting the
stresses and strains:

o) =E{De@), 1>0, £0)=0, 3.1)

with constant fractional order in the range 0 < @ < 1, which provides a material interpolation
between Hookean (¢« — 0) and Newtonian (@« — 1) elements. The operator %Z)ta 1 (-) represents
the time-fractional Caputo derivative given by:

t l/t,(S)

o ) i ds, (3.2)

D u(r) =

where I'(-) represents the Euler-gamma function[32]. The pair (@, E) uniquely represent the SB
constants, where the pseudo-constant E [Pa.s®] compactly describes textural properties, such as
the firmness of the material [24, 172]. In this sense E is interpreted as describing a snapshot of a
non-equilibrium dynamic process instead of an equilibrium state. The corresponding rheological
symbol for the SB model represents a fractal-like arrangement of springs and dashpots [6, 34], which

we interpret as a compact, upscaled representation of a fractal-like microstructure. Regarding the
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thermodynamic admissibility, we refer the reader to Lion[35] for the SB model, and Suzuki et
al.[75] for the combination of the SB element with more complex mechanisms of visco-plasticity
and damage. The relaxation function G(¢) [Pa] for the SB model is given by the following inverse
power-law form:

SB/xy ._ i -
G°"(1) = F(l—a/)t , (3.3)

which is the convolution kernel of the integro-differential form in (3.2). Figure 3.4(a) illustrates the
behavior of G558 (1), which is scale-free, i.e., a single power-law is present for all # > 0. We note that
although this relaxation response may seem to be oversimplified, it provides a flexible constitutive
interpolation able to, at the very least, take into account the long-term anomalous dynamics of
materials, such as the power-law 3, in Fig.3.3. This also allows the SB element to capture, in
limited time-scales, power-law behaviors induced by predominantly elastic microstructures, such

as collagen networks[169] with small a-values.
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Figure 3.4: Relaxation functions G(t) for the building block models under varying fractional
models and E; = 1, E» = 1. (a) Scott-Blair, (b) Fractional Kelvin-Voigt, and (c¢) Fractional
Maxwell. We note the progression from a single, scale-free power-law behavior for the SB model
to two dominating power-laws under small and large times for the FKV and FM models.

We utilize the SB model as our rheological building block, and define a set of “building block
models", which introduce a higher degree of material complexity through multiple law behaviors
for relaxation and therefore distinct anomalous regimes for small and large time-scales. This
multi-fractal type of behavior is characteristic of cells[25] and biological tissues[173], due to their

complex, hierarchical and heterogeneous microstructure. Here we consider only two canonical
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combinations of SB elements. Through a parallel combination, we obtain the fractional Kelvin-

Voigt (FKV) model, which has the following stress-strain relationship [34]:
o(t) =E; §D; le(t) + By §D, %), (3.4)

with > 0, £(0) = 0, and fractional orders 0 < ay,ap < 1 and associated pseudo-constants
Eq [Pa.s¥1] and B, [Pa.s*2]. The corresponding relaxation modulus G(¢) [Pa], is also an additive

form of two SB elements:

E E
GFKY (5 = Lo 2,
D= ey TTi-a

T2, (3.5)
Figure 3.4(b) illustrates the relaxation function G*XV for varying fractional orders. We notice a
response characterized by two power-law regimes, with a transition from faster to slower relaxation
slopes. The asymptotic responses for small and large time-scales are given by GFKV ~ 1722 a5
t — 0and GFKV <~ 721 as t — co. We note that this quality allows the FKV model to describe
materials that reach an equilibrium behavior for large times when @1 — 0, which is intuitive from
the mechanistic standpoint as one of the SB elements becomes a Hookean spring.

Finally, through a serial combination of SB elements, we obtain the fractional Maxwell (FM)

model[24], given by:
o (t) + (Eo/Ep) §D; 2 No(n) = By §D,%er), 1> 0, (3.6)

with 0 < @1 < ap < 1, and two sets of initial conditions for strains £(0) = 0, and stresses o (0) = 0.
We note that in the case of non-homogeneous ICs, there needs to be a compatibility conditions[32]
between stresses and strains at # = (. The corresponding relaxation function for this building block

model assumes a more complex, Miller-Ross form[24]:
G"M(1) = 1" Eqy-ay1-0 (——r“z“"l) : (3.7)

where E ;(z) denotes the two-parameter Mittag-Leffler function, defined as [32]:

0 k
<
Ea,b(Z) = kEO m, Re(a) > 0, b S C, Z € C. (38)
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Interestingly, the presence of a Mittag-Leffler function in (3.7) lead to a stretched exponential
relaxation for smaller times and a power-law behavior for longer times, as illustrated in Fig.3.4.
We also observe that the limit cases are given by GFM ~ @1 as t — 0 and G'M ~ =@
as t — oo, indicating that the FM model provides a behavior transitioning from slower-to-faster
relaxation. We refer the reader to the work by Bonfanti et al.[174] for a number of applications of
the aforementioned models. We notice that both FKV and FM models are able to recover the SB
element with a convenient set of pseudo-constants. Furthermore, we also outline more complex
building block models that yield more flexible responses, including three to four fractional orders,
such as the fractional Kelvin-Zener (FKZ), fractional Poynting-Thomson (FPT), and fractional
Burgers (FB), which in turn are able to recover the FKV and FM models. We refer the reader to

the works [34, 174, 175] for more details on such models.

3.2.2.2 Fractional quasi-linear viscoelastic modeling

The presented models in Section 3.2.2.1 provide candidates for power-law relaxation functions
that describe the anomalous visco-elastic dynamics of biotissues, however, in biological tissues the
stress-strain relationship usually becomes nonlinear as collagen fibers transition from entangled
to aligned with the applied load direction. Therefore, the visco-elastic behavior itself becomes
nonlinear and the relaxation function has an intrinsic dependency on the strain levels, as observed
in Fig.3.3 under successive large step-strain applications. To incorporate this additional effect to
our modeling framework, we follow [10, 168], and employ the following quasi-linear, fractional

visco-elastic model (FQLV):

00€(e)
oe

t
o(t,e)= I G(t-9) eds, 3.9
0

where the convolution kernel is given by a multiplicative decomposition of a reduced relaxation
function G(f) and an instantaneous, nonlinear elastic tangent response with stress ¢. In the work
by Craiem et al.[10], the reduced relaxation function has a fractional Kelvin-Voigt-like form with

one of the SB replaced with a Hookean element. Here, we assume a simpler rheology and adopt a
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Scott-Blair-like reduced relaxation in the form:
G@t)=Et ™ /I'(1 - ), (3.10)

with the pseudo-constant E with units [s*]. We adopt the same, two-parameter, exponential

nonlinear elastic part as in[10]:

oe) = A (eBS - 1), G.11)

with A having units of [Pa]. Substituting Equations 3.10 and 3.11 into Eq.3.9, we obtain:

_ EAB (! eBeWg(s)
o(t,e)= Fl-a) )y (=3 ds, (3.12)

which differs slightly from the linear SB model (3.1) in the sense that an additional exponential

factor multiplies the function being convoluted.

3.2.2.3 Numerical discretizations

We discretize the fractional Caputo derivatives in Equations 3.1-3.6 through an implicit L1 finite-
difference scheme[176]. Therefore, we consider a uniform time-grid with N time-steps of size At,
such that 7,, = nAt, withn =0, 1, ..., N. We remark that although the equations for each of the
building block models could be discretized utilizing fast schemes[106] and singularity capturing
approaches[177], the number of utilized data-points is not large, with N data - 3000 for the first
relaxation and N944 ~ 25000 for all steps. Also, we avoid the singularity nearby ¢ ~ 0 since the
first relaxation step is applied at approximately 80 seconds. Nevertheless, the non-smooth nature of
the loading would degenerate most of the existing numerical methods for FDEs, and we found that
the employed method in this work with the At described in Section 3.3 is sufficient for the accuracy
to reach the plateau of the experimental data, such that model error is dominant.

In the following, we present the discretized forms for each of our employed linear fractional vis-
coelastic models. For more details on the step-by-step discretization of the presented and more com-
plex models (including plasticity), we refer the reader to the work by Suzuki and Zayernouri[175].

Therefore, we have the following stresses for the SB model at t =7, 1:

Tni1 = C1 [ene1 = en + H e, (3.13)
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with constant Cy = E/(I'(2 — a)At%). For the KV model, we obtain:
one1 = Cq [8n+1 —&p+ 7‘(“15] +Cy [8n+1 —&p + 7-(0‘28] , (3.14)

with constants C| = E{/(I'(2 — a1)At?1) and Cy = E»(I'(2 — @»)At?2). Finally, for the FM model,

we have:
Cileps1 —en+H el + Cy oy — HY ™ %2 0]
1+Cy ’

with constants C; = Eq/(I'(2 — a1)At?*1) and Cy = (E{/E»)/(T'(2 — @y + ap)Ar*17?2). The history

(3.15)

Op+l =

terms " u in the above equations are given by the following form:
n
H'u =3 bjune1-j = un—j] .
J=1

with weights b := (j + Hi-v- J 1= Inthe following, we present the nonlinear modeling approach
for multiple relaxation steps.

The discretization for the FQLV model (3.12) employed in this work is shown in[175], which is
a straightforward, fully-implicit, L1 finite-difference approach with a trapezoidal rule employed on
the additional exponential factor. Therefore, the discretized stresses for the FQLV model are given

by:

oe
with constant C1 = EAB/(At*T'(2 — @)). The discretized history load in this case is given by:

of 00°
one1 = Cp exp(Bem%) (&p41 —&n) + HY | &, , (3.16)

do¢€

a —
H (8, 9e

n
) =2 eXP(BSH_H%) (En—k+1 — €n—k) bi (3.17)
k=1

with by, = (k+1)!=% - k1= and £.1= (¢i+&i4+1)/2. The presented discretization has an accuracy
2

of O(Atz‘“), and we refer the reader to[175] for simulations of numerical convergence.

3.2.3 Model optimization

We perform the model fits through a particle-swarm optimization (PSO) algorithm[178], which
was implemented in MATLAB. The adopted PSO parameters are a population Np,p = 30 and

Nj; = 1000 iterations for the linear cases and N;; = 100 iterations for the nonlinear cases. For the
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linear viscoelastic fits, we set the initial material pseudo-parameter in the 0 < E < 108 [Pa.s?],
and the fractional orders are constrained in the 0.0001 < @ < 0.9999 range, to ensure that the
employed fractional models are able to recover simpler fractional counterparts and also standard
rheological elements, if required by the experimental data. For nonlinear cases, we estimate ranges
for parameters A and B of the FQLV model by fitting the instantaneous stress response (3.11) to
each stress peak in every step-strain application of Fig.3.2. From this preliminary estimate, we have
obtained parameters in the ranges 10* < A < 10°[Pa] and 0 < B < 2, which are taken as input
parameter ranges for the PSO algorithm. For the relaxation parameters of the FQLV, as in[10],
we note that the nature of the power-law relaxation kernel, it is nontrivial to obtain a normalized
G(0™) = 1. Nevertheless, for the pseudo-constant we set the range 0 < E < 1 and for the fractional
order @ we employ the same range as the linear case.

Since the stresses 0994 (j) and strains £94'%(i) from the relaxation dataset are non-uniform in
time, we perform a linear (first-order accurate) interpolation of the strains gdatajy to an uniform
grid. We then utilize the input strains and compute the global best solution for stress for every
PSO iteration through (3.13), (3.14), (3.15), or (3.16). Then, we linearly interpolate the stress

back to the nonuniform grid to obtain ¢"*4¢/

. The time-step size for the uniform grid solution is
set to Ar = 0.495 [s], which is the minimum time interval between two consecutive data-points.
We verification purposes, we tested smaller step-sizes (At = 0.0495) and did not obtain improved
results. The cost function is defined as:
Ndata 2
L data model

Cost = Z(; (orlare — crpmodet) ™. (3.18)

1=

The adopted error measures in this work are the normalized least-squares error (LSE) and root

mean squared error (RMSE) between the experimental and mapped simulated stresses, which are
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respectively given by:

N 2
\/Z data data O_model)

N
\/Z data data)

Ndata data model 2
2 (‘Ti 0 )

1
RMSE = : x 100%.
max(o-data) Naata

LSE := x 100%,

Finally, all numerical simulations were run in a computer system with Intel Xeon Gold 6148 CPUs

with 2.40GHz.

3.3 Results and Discussion

3.3.1 Linear Viscoelasticity

Figure 3.5 illustrates the obtained fits for all bladder samples utilizing an SB model, for the first
strain step (¢g = 0.25). We observe very good fits for most samples, especially at larger time
scales, with an exception for the trigone (T) sample due to a sudden stress drop in the experimental
data. The fitting quality decreases for all samples at the early relaxation dynamics (nearby the
step-strain application), with the SB model underestimating the maximum values of stress peaks.
The obtained fractional orders lie in the 0.2 — 0.3 range (see Table 3.1), which are similar to the
observed long-term power law from the estimated experimental relaxation functions in Fig.3.3.
Furthermore, the least-squared errors lie in the 2% — 11% range, while the RMS errors are within
the 2% — 4% range. The higher values of the pseudo-constant and fractional order for the trigone
sample are likely due to the SB model accounting for both instantaneous and long-term response
over its limited set of two parameters. We also note that the FKV model pragmatically recovered
the SB model in all instances, where the PSO algorithm obtained optimal values for the fractional
orders that are close to the SB model. In addition, the optimal values for one pseudo-constant is

either set to zero, or the summation of E; and E, recovers the value of E for the SB model. This

61



indicates the a FKV model does not improve the bladder fit quality, and one would rather employ

a SB model with half the amount of material parameters under the same error levels.
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Figure 3.5: Obtained linear viscoelastic fits for the fractional SB model for all bladder samples and
the first strain step (g9 = 0.25).

Figure 3.6 illustrates the obtained fits for the FM model, where the added flexibility of the
underlying power-law/Mittag-Lefller relaxation response improves the fitting quality for both short
and long time-scales, yielding least squares errors as low as 2.08 %. The obtained parameters in
Table 3.1 indicate the presence of a predominantly elastic power-law @ in the 0.17 — 0.19 range,
and a predominantly viscous @y in the 0.74 — 0.99 range. Particularly, the FM model fit for the
trigone specimen indicates the recovery of a dashpot element, and thus the corresponding SB
element could be replace by a Newton element. Regarding pseudo-constant values, we note that E;
values have variations that qualitatively agree with the intensity of stress peaks, but E, values can
vary in several orders of magnitude, which could be due to the presence of multiple local minima or
the discrepancy between obtained fractional orders @,. In general, the dorsal and ventral samples
seem to be the most anomalous, as they present both fractional order values sufficiently far from

standard elements.

Figure 3.7 illustrates the pointwise relative errors between the SB and FM models and the
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Figure 3.6: Obtained linear viscoelastic fits utilizing a fractional Maxwell for all bladder samples
and first strain step (gg = 0.25).

experimental data for the first strain step. We notice that the SB element has similar errors as the
FM model in the 800 < ¢ < 1200 [s] range and larger errors for longer times for most samples. For
shorter time ranges, the SB model has larger errors (up to 1 order of magnitude) for all samples. This
reinforces the fact that the FM model is more descriptive of both early and long-term dynamics of
bladder relaxation, as the qualitative analysis and estimated experimental relaxation moduli suggest.
Furthermore, we also note that the better performance of the FM model is also attributed to better
approximating the loading ramp and the peak stress preceding the relaxation behavior.

We also employed more complex fractional linear viscoelastic models, such as fractional Kelvin-
Zener, Poynting-Thomson and Burgers’ (see [175] for the models and their corresponding dis-
cretizations). From our employed fitting procedure, all models either recovered or had the same

performance as the FM model.

3.3.2 Nonlinear Viscoelasticity

Figure 3.8 illustrates the obtained fits for the fractional QLV model under all consecutive strain

steps, where we observe a very good agreement with the experimental data. Except for the trigone
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Table 3.1: Obtained material parameters for all employed linear fractional models and UB samples.

Parameters Error %

Model Sample

Ei[kPa.s¥1] a7 Ej[kPa.s™2] ap LS RMS
SB 18.1901 0.226 - - 432 1.72
FKV 15.6574 0.225 2.42019 0.229 432 1.72 D
FM 14.7616 0.171 3976.90 0.743 229 091
SB 31.3077 0.219 - — 347 142
FKV 31.3462 0.220 0 0.503 347 141 L
FM 26.9311 0.186 48826.1 0.932 2.08 0.82
SB 41.6335 0.236 - - 5.33 198
FKV 33.2005 0.232 7.95429 0.252 534 199 LB
FM 33.0853 0.183 37339.9 0.935 323 1.20
SB 66.7689 0.278 - - 11.1  3.82
FKV 66.4714 0.278 0 0.907 1.1 3.83 T
FM 42.4338 0.170 36938.7 0.999 4.05 1.37
SB 34.9254 0.220 - - 321 1.24
FKV 34.9254 0.220 0 0.579 321 125 \Y%
FM 30.7605 0.188 19799.5 0.797 2.19 0.84

sample, all cases had higher deviations towards the final strain steps. Nevertheless, we note that the
error levels are below 6% (LSE) and 2% (RMSE) for the entire dataset, under 4 material parameters,
which are listed in Table 3.2. Furthermore, the obtained fractional-orders lie in the range 0.24 - 0.3
which are in accordance with the estimated power-laws in our a-priori analysis presented in Fig.3.3.
Particularly, the lowest fractional order was obtained for the trigone specimen, and highest for the
dorsal one. A slightly higher degree of nonlinearity is also recovered for the trigone and lower-body
samples due to the larger values of B.

Finally, Figure 3.9 illustrates the pointwise relative errors for the FQLV model under all bladder
samples and strain steps. We observe a similar error behavior as the SB model in Fig.3.7, particularly

for larger applied strains.
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Figure 3.7: Obtained pointwise errors for the linear SB and FM models for the first strain step: (a)
D, (b)) L,(c)LB, (d) T, (e) V.
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Figure 3.8: Obtained fits for the fractional QLV model under all strain steps: (a) D, (b)) L, (c¢) LB,
(d) T, (e) V. The fit quality was very good for all bladder samples, with more significant deviations
occuring on strain steps 4 and 5. The recovered fractional-orders in (f) are within the 0.2 < @ < 0.3
range, which is in accordance with the a-priori power-laws obtained from the relaxation moduli
data in Fig.3.3.
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Table 3.2: Obtained material parameters for the FQLV model with all UB samples.

Parameters Error %
Sample
A [kPa] B E [sa] a LSE RMSE
D 53.8823 0.7803 0.7298 0.2928 4.85 1.11
L 79.1646 0.8823 0.5677 0.2673 4.08 1.00
LB 74.5369 1.2192 0.3463 0.2510 4.17 1.00
T 63.4435 1.2642 0.3590 0.2419 5.61 1.44
A 59.3282 0.9449 0.6704 0.2732 4.74 1.16
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Figure 3.9: Obtained pointwise errors for the FQLV model under all strain steps: (a) D, (b)) L, (¢)
LB, (d) T, (e) V. The vertical gray lines represent the step strain application instants.

3.3.3 Discussion

To our best understanding, this was the first work in the literature addressing fractional visco-elastic

modeling to bladder tissues. From the results obtained for our building block models, the overall

lower range of fractional orders obtained for all linear/nonlinear models is 0.17 — 0.3, indicating a

predominantly elastic yet highly anomalous behavior with smaller decay rates at long times, i.e.,

the presence of far-from-equilibrium dynamics. A similar parametric range was obtained in other

anomalous systems such as arterial wall relaxation[10], aortic valve tissue[169], 1D and 3D brain
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artery walls under fluid-structure interactions[179, 180], canine and bovine liver tissue[181, 182],
and lung tissue[11]. As suggested by Doehring e al.[169], small a-values can be indications of
strong fractality in bio-tissue microstructure such as collagen fibers, which are vastly present in the
UB, and particularly with a larger network in the trigone region. The larger values of fractional
orders ap in the 0.74 — 0.99 range obtained by the fractional Maxwell model is similar to those
obtained for brain tissue relaxation[183] and human ear[184]. This indicates a significantly more
dissipative behavior, possibly compensating the highly-anomalous behavior provided by the smaller
fractional order a; for short time-scales, and thus better fitting the slower relaxation nearby the
load application. The transitional behavior from slower-to-faster relaxation slopes observed from
the UB specimens and captured by the FM model were also noticed in bio-tissues composed of
weakly cross-linked collagen networks[173]. We note that although the captured fractional orders
a1, ap for the FM model on the UB relaxation do not quantitatively match the slopes S, 8> for
Gdata(p) in Fig.3.3, these fractional orders refer to the asymptotic behaviors at t — 0 and t — oo,
as illustrated in our existence study in Fig.3.4, and it is likely that relaxation experiments under
a larger range of time-scales would yield a better quantitative agreement. For the purpose of our
existence study, we consider a qualitative agreement and small error levels to be sufficient to select
a valid candidate building block model.

The nonlinear visco-elastic behavior was well approximated by the employed FQLV model,
which decomposes the relaxation kernel in a multiplicative fashion into a power-law reduced
relaxation function and a tangent elastic stiffness described by an exponential elastic stress form.
This allowed the nonlinear part of our existence study to capture the complex rheology of the UB
with large applied strains (up to 200%) and RMS errors as low as 1%. In fact, Jokandan et al.[185]
observed an exponential-like stress-strain response in quasi-static tensile testing of porcine bladder
samples. Specifically, under relaxed states, the entangled configuration of collagen fibers yield a
linear stress strain relationship, but a nonlinear regime with much higher stress levels is attained
once the fibers align with the load direction and store most of the strain energy in the system.

Korossis et al.[136] attributed the linear region to be predominantly driven by elastin, and the
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nonlinear phase by collagen.

Our pointwise relative error analysis reinforced the idea that the FM model is more descriptive
of both slower early dynamics of the porcine bladder, but also the faster dynamics observed at
longer time-scales in the estimated experimental relaxation modulus. In our error analysis for the
nonlinear case, Fig.3.9 indicates a similar qualitative error behavior between the FQLV model and
the linear SB element in Fig.3.7, especially towards the larger strain regime, with higher errors in
the small and large times after the step-strain applications. This suggests that coupling a fractional
Maxwell-type reduced relaxation function to the existing framework would very likely improve our
results for the nonlinear case as it did in the linear one.

Regarding our developed framework, the existence study proved to be interesting to identify the
most proper fractional linear visco-elastic model for stress relaxation, which can later inform the
fractional quasi-linear viscoelastic model on the proper form of the reduced relaxation function.
For the UB, we conclude that while the SB, FKV and FM models yield errors in the same order
of magnitude, the FM model better captures the two power-law qualitative behavior of the data,
which is fundamental for both short- and long-term predictions of tissue response. Nevertheless,
the SB model provided satisfactory results for the observed experimental time-scale, and the FKV
model proved to be redundant and a source of ill-posedness in a model selection framework, since
it obtained the same performance as the SB model with twice as many parameters. Although
we cannot guarantee that the obtained model parameters provide a global minimum for the cost
function (3.18), we find our obtained fitting errors, increased number of material parameters, and
diverging qualitative behaviors between the experimental data in Fig.3.3 and the FKV relaxation
behavior from Fig.3.4 to be sufficient to exclude the FKV as a viable candidate for the UB. The
same analysis applies to other tested models not shown here, such as fractional Kelvin-Zener,
fractional Poynting-Thomson and fractional Burgers’ models[175], which consistently recovered
the FM model.

Regarding potential improvements, anisotropy of bladder samples has been observed in existing

studies[137], and therefore an interesting step would be to map the variation of fractional-orders for
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distinct sample orientations. Based on the obtained linear and nonlinear results, another interesting
aspect would be to incorporate a fractional Maxwell-type relaxation function to the fractional QLV
framework, similar to Doehring et al.[169] to better describe the initial relaxation process in each
strain step. However, due to the larger number of time-steps required by our dataset, an efficient
numerical method would be required to handle the resulting differ-integral with a Miller-Ross
relaxation kernel, or the FQLV framework would need to be developed in differential form, likely
as a system of equations comprised of an FDE solving for elastic stresses and a separate equation
for nonlinear elasticity. Finally, biaxial tests and models would give insight in the effects of shear
stress to the tissue behavior, and confronting creep predictions with experiments would allow one to
verify the consistency of the obtained parameters, as already succesfully done with other anomalous

materials[24].
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CHAPTER 4

FRACTIONAL VISCO-ELASTO-PLASTIC MODELS FOR STRUCTURAL ANALYSIS

4.1 Background

Fractional differential operators appear in many systems in science and engineering such as
visco-elastic materials [171, 186, 187], electrochemical processes [188] and porous or fractured
media [189]. For instance, it has been found that the transport dynamics in complex and/or disor-
dered systems is governed by non-exponential relaxation patterns [7, 190]. For such processes, a
time-fractional equation, in which the time-derivative emerges as O, u(t), appears in the continuous
limit. One interesting application of fractional calculus is to model complex elasto-plastic behavior
of engineering materials (e.g. [191, 192]). Recently, fractional calculus has been employed as
an effective tool for modelling materials accounting for heterogeneity/multi-scale effects to the
constitutive model [64—66], where the fractional visco-plasticity was introduced as a generalization
of classical visco-plasticity of Perzyna type [193]. The fundamental role of the formulation is
the definition of the flow rule by introducing a fractional gradient of the yield function. Also,
a constitutive model for rate-independent plasticity based on a fractional continuum mechanics
framework accounting for nonlocality in space was developed in [194].

Formulating fast and accurate numerical methods for solving the resulting system of fractional
ODESs/PDE:s in such problems is the key to incorporating such nonlocal/history-dependent models
in engineering applications. Efficient discretization of the fractional operators is crucial. Lubich
[86, 88] pioneered the idea of discretized fractional calculus within the spirit of finite difference
method (FDM). Later, Sanz-Serna [195] adopted the idea of Lubich and presented a temporal
semi-discrete algorithm for partial integro-differential equations, which was first order accurate.
Sugimoto [196] also employed a FDM for approximating the fractional derivative emerging in
Burgers’ equation. Later on, Gorenflo et. al. [197] adopted a finite-difference scheme by which

they could generate discrete models of random walk in such anomalous diffusion. Diethelm et
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al. proposed a predictor-corrector scheme in addition to a fractional Adams method [94, 108].
After that, Langlands and Henry [198] considered the fractional diffusion equation, and analyzed
the L! scheme for the time-fractional derivative. Sun and Wu [199] also constructed a difference
scheme with L™ approximation of the time-fractional derivative. Of particular interest, Lin and
Xu [91] analyzed a FDM for the discretization of the time-fractional diffusion equation with order
(2 - a). However, there are other classes of global methods (spectral and spectral element methods)
for discretizing fractional ODEs/PDEs (e.g., [95-97, 200]), which are efficient for low-to-high
dimensional problems. Furthermore, Zayernouri and Matzavinos developed a fractional family
of schemes, called fractional Adams-Bashforth and fractional Adams-Moulton method for high-
order explicit and implicit treatment of nonlinear problems [201]. There were recent developments
on meshless approaches applied to fractional-diffusion and space-fractional advection-dispersion
problems [202, 203]. Also, Chen [204] developed a new definition of fractional Laplacian and
applied to three-dimensional, nonlocal heat conduction.

The main contribution of the present work is to propose and solve two fractional-order mod-
els, namely M1 and M2, for uniaxial large strains and visco-elasto-plastic behavior of materials.
Both models account for fractional visco-elastic modeling by defining a stress-strain relationship
involving the Caputo time derivative of fractional-order, but have distinct formulations to model
the fractional visco-plasticity. For the model M1, visco-plasticity is achieved by including history
effects in time for the internal hardening parameter in the yield function, making it rate-dependent.
Differently from some works found in the literature [64—66], we do not modify the flow rule. The
model M2 accounts for a rate-independent yield function without an internal hardening parameter,
and the visco-plastic effect is achieved based on the approach of visco-plastic regularization used
in the classical visco-plastic model of Duvaut-Lions type (which is equivalent to Perzyna’s model).
Furthermore, the models consider different memory effects for visco-elasticity and visco-plasticity.
Both models are used within the framework of a time-fractional backward-Euler integration pro-
cedure with a fractional return-mapping algorithm, based on the classical models in the literature

[191, 192]. The developed algorithm seamlessly generalizes the standard return-mapping algorithm
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to its fractional counterpart, making it amenable for path-dependent visco-elasto-plastic analyses
in engineering and bio-engineering applications. We also present the standard nonlinear finite
element formulation for trusses and show that the only required modifications are in the stress
update procedure, which will be described in constitutive boxes for each model.

Several numerical analyses are performed to investigate the behavior of the models. We test
the algorithms presented in terms of convergence using a benchmark solution, then we perform
tests with cyclic strains to account for hysteresis behavior. Both models are implemented in the
context of finite element method (FEM) using an updated Lagrangean approach to solve a two-bar
snap-through problem. Because no analytical solutions are derived, we implemented the classical
one-dimensional models for elasto-plasticity with linear hardening and visco-plasticity of Duvaut-
Lions type, and we recover these limit cases for verification. We verify that both fractional-order
models recover the classical rate-independent elasto-plastic model for general loading/unloading
conditions, and also interpolate between plastic/visco-plastic behavior with the variation of the
fractional-order parameters. The obtained results show the flexibility of the fractional-order models
to describe the rate-dependent hardening and viscous dissipation. This motivates the application
of the models developed in this work to identify material parameters of complex constitutive laws

of engineering materials and biological tissues.

4.2 Kinematics of Large Visco-Elasto-Plastic Deformations

Consider the truss element with nodes 1, 2 illustrated in Figure 4.1a for the initial configuration
at time ¢ = 0, with coordinates vectors X;, X», length L, area A and volume V. The updated
configuration at time 7 is denoted with the current coordinates X1, X5, area a, volume v and normal
vector n. The terms uj, u, represent the nodal displacement vectors from the updated configuration
at time ¢ to a new configuration taking place at time ¢ + dt. Figure 4.1b shows the multiplicative
decomposition of the stretch A into visco-elastic AV¢ and visco-plastic AVP parts, with the latter

accounting for a visco-plastic updated length /7.
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(a) Truss element in 2D space. (b) Stretch decomposition.

Figure 4.1: (a) Kinematics of the truss in terms of initial and updated configurations; (b) Multi-
plicative decomposition of the stretch into visco-elastic and visco-plastic parts, taking place from
the initial to the updated configuration.

The updated length / and normal unit vector n are given by [205]

X2 — X]

L=y -x1)- (=x)), m==""—, 4.1
where the updated coordinates of the element nodes are denoted as
X1 X2
X] = , Xp = . (4.2)
VA y2

We consider the decomposition of the stretch illustrated in Figure 4.1b for the truss element

when subject to a change in configuration. The visco-elastic and visco-plastic stretches are given

by
e Lo 1Y 43
= VST 43
The total stretch is given by
[
A=2"2"P = T (4.4)

Applying the natural logarithm to the above equation, we obtain an additive decomposition given
by [191]
In(2) = In(2"¢) + In(1"7), 4.5)
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which is called logarithmic strain and is usually denoted as
e=¢&"+&"P. (4.6)

The logarithmic strain measure defined in Eq.4.5 is thermodynamically conjugate to the Kirchhoff
stress 7 [191], which will be addressed in the next section, along with the constitutive equations for

the visco-elasto-plastic models.

4.3 Fractional-Order Visco-Elasto-Plastic Models

We consider two visco-elasto-plastic models, called M1 and M2. The developed framework
for both models incorporates memory effects for the evaluation of visco-elasto-plastic large strains.
We present the mathematical formulation for each model and an efficient algorithm to solve the
nonlinear system of fractional-order differential equations, and remark on how the models recover
the classical local models.

To account for the memory effects in time, we modify the classical models presented in the
literature [191, 192]. The model M1 is a modification of classical elasto-plasticity with linear
hardening and the model M2 is a modification of visco-plasticity of Duvaut-Lions type. For this
purpose, we introduce Scott-Blair elements with fractional-order 8, which interpolate between
linear spring when 8 — 0 and viscous Newton element when 8 — 1 [171].

The memory effects for both models will be presented in the stress-strain relationship regarding
the visco-elastic part, which is evaluated for the entire time domain. To account for memory effects
in visco-plasticity, we will consider the Caputo time-fractional derivative in the yield function for
the model M1, while for the model M2 we will incorporate the memory effects via a separate
equation that describes the visco-plastic regularization. The memory for the fractional derivatives

describing visco-plasticity will be considered starting from the last attained yield stress.

4.3.1 Model M1

The model M1 is illustrated in Figure 4.2a, consisting of a Scott-Blair element with constant

E [Pa.sPE] and a fractional-order B for the visco-elastic part with corresponding visco-elastic
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strain €"¢. The visco-plastic device consists of a parallel combination of a Coulomb frictional
element with yield stress 7¥ [Pa], a linear hardening spring with constant H [Pa], a Scott-Blair
element with constant K [Pa.s8K | and fractional-order 8. The corresponding visco-plastic strain

is denoted by £"?. The term 7 [Pa] stands for the Kirchhoff stress. We start by rewriting Eq.4.6 in

H
K’BK EsBE
T
H /I
Y
I
&P g
(a) Diagram with rheological elements. (b) Stress versus strain response.

Figure 4.2: Visco-elasto-plastic model M1. (a) Constitutive diagram with the rheological elements
for visco-elasticity and visco-plasticity. (b) Stress versus strain response described by the yield
function (Eq.4.12), showing the expansion of the visco-elastic boundary from dE+ (point A) to
OEZ (point B) after exceeding the yield stress.

terms of the visco-elastic strain component:
e =g-¢"P. 4.7)
The history-dependent constitutive law for this model is assumed to be of the form:
r=E COPE@E)=E COPE(e-2P),  0<pr<l. (4.8)

To satisfy the homogeneous initial conditions for the Caputo time derivative, we assume the
given point of the material to have no initial strains, that is, e(t = 0) = £"¢(t = 0) = £"P(t = 0) = 0.
In this sense, we observe that the Riemann-Liouville definition (Eq.1.2) could also be employed,
since we consider homogeneous initial conditions. To designate a set of admissible stresses, we

define the following closed convex stress space:
Er ={r eR|f(r,0) <0}, (4.9)
where f : R X R — R represents the yield condition, defined by

f(, @) = |t|- 7" + Ha], (4.10)
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where

=+ K SOPK@),  0<pi<l, 4.11)

with a representing an internal hardening variable with initial condition a(f = 0) = 0, that is, we
assume no initial hardening. The term 77 denotes a yield stress which is updated according to
unloading conditions (¥ = 7¥ in the beginning of the process) and tp denotes the time of onset
of plasticity. The term 7%’ in Eq.4.11 can be interpreted as an updated yield stress accounting for
memory effects in visco-plasticity, while the term Ha represents a local hardening parameter.

The time ), for plasticity is reset when we unload the material from a visco-plastic state, and

the yield stress is updated to a new value 77’ Substituting Eq.4.11 into Eq.4.10, we obtain
fra) =~ + K tg@fff(a) + Hal. (4.12)

We do not consider different time derivative limits for Eq.4.8 because plastic strains inevitably
take place in the visco-elastic range. Notice that we included the Caputo derivative of order Sx
inside f(7, @), thus making the yield condition rate-dependent. The corresponding boundary of E+

is the convex set denoted by 0E,, given as
0Er = {t e R| f(1,) =0}, (4.13)

where f (7, @) = 0 is the so-called consistency condition in the classical elasto-plastic models. In
the present model, we assume that the hardening is isotropic in the sense that at any state of loading
the center of E; remains at the origin of the stress-strain domain. The expected stress versus
strain response based on Eqs.4.12 and 4.13 is presented in Figure 4.2b. The consistency condition
(Eq.4.13) will be addressed in incremental form in time to derive the visco-plastic solutions.
Moreover, similar to classical elasto-plasticity, the evolution of hardening is assumed to be linear

in terms of the visco-plastic strain rate. Therefore
@ = [&"P|, (4.14)
and the flow rule is not modified, and is given by

&P = ysign(7), (4.15)
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where vy denotes the amount of plastic slip, also with initial condition y(# = 0) = 0, and the term
sign(7) represents the direction of the plastic flow. Recalling Eq.4.12 and the definition of the
fractional derivative, when Sx — 0, we recover the limit case without rate effects (spring) and the
constant K accounts for the standard plastic modulus of rate-independent plasticity, with units of
[Pa]. On the other hand, if Sx — 1 we recover the limit case of a local integer-order derivative
(dashpot), where K would be equivalent to the material viscosity 7, with corresponding units of

[Pa.s].

4.3.2 Model M2

The schematic diagram of the model M2 is illustrated in Figure 4.3a, which consists of the same
elements as the model M1, except that we remove the linear hardening spring with constant H in

the visco-plastic part.

K, Bx
—1
T E.Be
i T
€VP | 8ve ‘
[ |
(a) Diagram with rheological elements. (b) Stress versus strain response.

Figure 4.3: Visco-elasto-plastic model M2 considering visco-plastic regularization. (a) Constitutive
diagram with the rheological elements for visco-elasticity and visco-plasticity. (b) Stress versus
strain response: path A-B described by the yield function (Eq.4.16), which is visco-elastic perfectly
plastic; path A-B’ with the stress response after the visco-plastic regularization (V-P-R) procedure
(Eq.4.18). The relaxation path B’-B occurs at constant strain levels and ¢t — oo (compared to the
relaxation time of the material).

The stress-strain relation for this model is the same as Eq.4.8. We consider the yield function
of perfect plasticity given by
f@) = |-, (4.16)

where we consider the yield stress 707 = 7¥ when 7 = 0 and update it when the material is unloaded

from visco-plastic behavior (more details will be addressed in Section 4.5). Because the model
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is based on visco-plasticity of Duvaut-Lions type, we use the idea of visco-plastic regularization
in [192] to take into account the memory effect of the visco-plastic strain £"” when we obtain an
over-stressed level f(1) > 0:

K SOPK(@EeP) =1 -1, (4.17)

where 7T is the relaxed stress whent — oo (compared to the natural relaxation time of the material).
Substituting the stress-strain relation from Eq.4.8 into Eq.4.17, and rearranging the visco-plastic

strains to the left-hand-side, we obtain
E D)+ K SDfK () = E GD/E (e) - 7o, 4.18)

The solution for this model involves determination of the rate-independent stress 7, by applying
the consistency condition to Eq.4.16 and substituting the result into Eq.4.18 to determine the visco-
plastic strains £'”. After that, the time-dependent stress can be determined from the constitutive
relation (Eq.4.8). Figure 4.3b presents the stress versus strain response in the relaxed state (path
O-A-B) described by the yield function (Eq.4.16) and the regularized state (path O-A-B’) achieved
with Eq.4.18. More details about this procedure will be presented after the time discretization
scheme. We note that when Sx — 1 in Eq.4.18 we recover the local first-order derivatives and

therefore the classical Duvaut-Lions formulation.

4.3.2.1 Remark about parameter H

We note that when we set the linear hardening parameter H = 0 in the model M1, we obtain the
same diagram for both models. However, the approaches are still different, since the model M1
considers the Caputo-time fractional derivative in the yield function (Eq.4.12) while the model
M2 uses a yield function of visco-elastic perfectly plastic behavior and accounts for visco-plastic

regularization with relaxation effects described by Eq.4.17.
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4.3.2.2 Remark about visco-elastic/plastic memory effects

The initial study of the presented models considered the entire time domain for the visco-plastic
equations (4.12, 4.18) without updating the yield stress 77. However, for model M1 it was observed
that due to long memory effects and no update in the yield stress, the visco-elastic range did not
expand in a isotropic way when cyclic loads were applied. Furthermore, for the model M2, we
obtained non-physical results for the visco-plastic part without updating the yield stress 77/ due to
lack of internal hardening combined with long memory on visco-plastic strains.

We consider the distinction between "visco-elastic time" and "visco-plastic time" a more natural
way of treating the memory effects, since in a general problem the material will not be in a visco-
plastic state (Eqs.4.13 and 4.18) at all times. On the other hand, the stress-strain relation (Eq.4.8)

is used regardless of the stress state.

4.4 Time Integration and Discretization in Space

For notation purposes, we denote variables at times #,, t,,41 by the lower-scripts ;, 41, respec-
tively. The governing equations on the equilibrium of a truss are discretized in time and space to

obtain (e.g., see [206])
Ypi1 =MDy (Uyy1 —uy) — bovy — b3ag] + Ry — Py =0, (4.19)

where we denote ¥,,,1 as the residual force vector, M as the global mass matrix for all nodes, R;,;;
as the global internal force vector dependent of the updated configuration with coordinates x;,,1,
which in turn depend on the displacements u,,,;. The term P, | represents the global external
nodal force vector. The terms a, and v, respectively, denote the global acceleration and velocity
vectors. More details regarding the Newmark scheme are presented in A.2 with the description
of the approximation coefficients b;. We do not consider a linear damping matrix in Eq.4.19
because the constitutive law will naturally introduce damping effects for both visco-elastic/plastic
contributions.

We note that our approach can be employed in the context of any standard numerical method
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e.g., finite element method (FEM), spectral element methods, etc. This is particularly true because
our history-dependent modeling results in a system of time-fractional equations. Hence, the spatial
domain can be always treated using available standard discretizations. However, the computation
of the incremental stresses needs special care as shown in the sequel.

The equilibrium system (Eq.4.19) is linearized by employing Newton’s method using incre-

mental global displacements, defined as

uktl = uk 4 A (4.20)

n+l = “n+l

Accordingly, the updated global coordinates are given by

k+1 _ k+1
X1 =XntW 1, (4.21)

where the superscript k + 1 refers to the current iteration of the Newton’s method. The linearized
form of Eq.4.19 in the direction of a displacement increment Au is given by the following system

of equations:

n+l

biM + K§n+l] Au=-M [bl(uk — ) = by — ban| —RE |+ Py, . 4.22)

The terms u,, v,, a, are obtained from the last converged time step n. The term Kz is the tangent
stiffness matrix and is updated at each iteration k along with the internal force vector. In the linear
finite element spatial discretization, the element tangent stiffness for the current formulation is

given by (see [191])

K K
KO- TR (4.23)
Ky Ky
with,
K (xg —x1)° (x2 —x)(y2 = ¥1) 10
K11=_C 2 1 2 2 =1 +ﬂ ’ (4.24)

3
! (2 —x)D(2 —y1) (v2 —y1)? o 1

where the superscript (€) denotes the local elemental operation associated with the e-th element, and

Ky =K1, Kjp =Kj; = -Kj;. The term [/ denotes the current element length, x;, x2, y1, y2
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denote the element updated coordinates, o= denotes the Cauchy stress at the element, and K¢ is
given by
Kc=a—— —-2ao. (4.25)

The relation between the Kirchhoff and Cauchy stresses is given by 7 = % o. We note that there
is no assumption in the constitutive behavior, therefore the formulation presented in this section is
general. The local stress derivative in terms of strain in Eq.4.25 is known as tangent modulus, and
its computation will be addressed in the next section. Notice that this derivative is local in nature,
and comes from the linearized kinematics of the problem. The elemental internal force vector and

the corresponding mass matrix are given by

x2_'x1 2 0 1 0
Y2 = V1 AL |0 2 0 1
R® = 4% M@ = pT , (4.26)
x| - xo 1020
V1 = y2 0102

where p is the material density. In the next section we determine the current stress 7,,,; and tangent

modulus (%) for the fractional-order models.
€/ n+l

4.5 Fractional Return-Mapping Algorithms

We present the time-fractional backward-Euler integration procedure for both fractional models,
where a trial state is defined by freezing the internal variables and a fractional return-mapping
algorithm is obtained enforcing the proper conditions. For the model M1, the solution for the
plastic slip is given by a fractional-order differential equation. For the model M2 we solve a
fractional-order differential equation for the visco-plastic strain instead, using the idea of visco-
plastic regularization.

The backward-Euler procedure is implicit in time, unconditionally stable and is first-order
accurate. We assume that at time #,,, 1, with ¢ € [0, 7] all variables for the previous time step 7,
are known. We consider a strain increment Ag,;, which in the context of the standard finite element

method, can be obtained using Eqs.4.4 and 4.5 from an increase in element length A/, calculated

81



from the displacement increments Au (Eq.4.22). From the constitutive model point of view, we just
consider this increment to be known, regardless of being prescribed or obtained by the equilibrium

of the system. The strain for time ¢, is given by
Ensl = En + Agy. (4.27)
The stress-strain relation is given by
tye1 = E COPE (6 - &7) ( . (4.28)

1=lh4]

The incremental flow rule and evolution of the hardening parameter are, respectively, given by

P =gP + Aysign (1,41), (4.29)

n+l
Xpyl = an + Ay, (4.30)

where Ay denotes the plastic slip for the time interval [¢,, t,,,+1] under consideration. In our
fractional return-mapping algorithm, we make use of the so called trial state, where we freeze the
internal variables of the model at time ¢,,, in the following way:

vptrial vp trial _

€01 =&, ., Q| =an. 4.31)

Having the trial visco-plastic strain defined, we perform a trial visco-elastic stress given by

n+l

. jal
Ttrlal - E %DfE (8 _ gvplrza ) ‘ ’ (4.32)
1=ty

where we will keep the term &P trial instead of szp for notation purposes, since the time-fractional
Caputo derivative is evaluated at time #,,1. The trial state defined in Eq.4.31 will be substituted
in the discrete form of the fractional Caputo derivatives, which is presented in Section 4.5.1. The
result of Eq.4.32 is applied in a trial yield function f ;’; il‘ll in order to check if the stress state lies
within the visco-elastic or over the visco-plastic ranges, and perform the return-mapping procedure
if necessary.

The current visco-plastic reference time is denoted here as 7, |, and is updated when a new

+1°

yield stress is achieved from cyclic behavior. We introduce an auxiliary notation to track this
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visco-plastic time by using an incremental variable p,,. The initial value is considered to be
po = 0. In the incremental procedure, we account for the current time step p,,1 = O if the state
is visco-elastic. The value p,,; = n + 1 is set when the stress state exceeds the yield stress,
coming from a visco-elastic state. When the stress state is an increasing visco-plastic state (without

change of load direction), the visco-plastic time reference is the same as the previous step, that is,

Pn+1 = Pn-

4.5.1 Algorithm for the model M1

The yield function (Eq.4.12) at time ,,,1 is given by

B
S+l = |Tns1l= |77 + Hapyy + Ktp CD; K (@) ) ] . (4.33)
n+l1 l‘=l‘n+1
Considering the definition of the trial state, we obtain
furiel = [ttt |2 + Hay + K SOPK (a'7il)| +1] , (4.34)
n

trial

where the Caputo time-fractional derivative of « is taken starting from time p,,, because it

is the available information about the last known yield stress 7. If f7@ < 0 we are within

n+l
the visco-elastic range. Otherwise, we have an inadmissible stress indicating the onset of visco-
plasticity. We enforce the discrete consistency condition f,,,; = 0 to obtain the solution for Ay and

then to perform a projection of the trial stress onto the yield surface, as illustrated in Figure 4.4.

Substituting Eq.4.29 into Eq.4.28, and recalling Eq.4.32, we obtain

n+l

Tuer = 79— E COPE (Ay) ( sign (1) - (4.35)
=ty41

We can rewrite the above equation as

vt sign(rnsn) = [ sign@l ~ E GOIF ()| sien ). @436)
“n+
hence,
|Tps1 |+E %DfE (Ay) Ltm] sign(ty41) = |77 | sign(c !0, (4.37)
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The terms inside the brackets must be positive since Ay > 0 and E > 0, and therefore

sign(t,41) = sign(/7i/), (4.38)

+1

Substituting Eqgs. 4.35 and 4.30 into Eq.4.33 and recalling Eqs. 4.34 and 4.38, yields

fus1 = £ — gAY — ESDPE (Ay) ~K

n+l

CoPK (Ay) o (4.39)

t
I=lh41 Pn+1 =Ip+1

Applying the discrete consistency condition (f,;; = 0), we obtain the following fractional-order

differential equation for Ay

EGOE (ap| vk, COPK(ay)| v may= g (4.40)

l‘ 9
n+l Pn+l n+l n+l

which is a Volterra integral equation of second kind. The fractional return-mapping algorithm is

summarized in Box 4.1 for this model.

Figure 4.4: Schematic of stress update in the fractional return-mapping algorithm. The trial stress

T:::fl is projected to 7,,1. When unloading is performed from 7, the new yield stress is 77

instead of Y.
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Algorithm 4.1: Fractional return-mapping algorithm for the model M1.

Database at x € Q : {g, €"P, a, Ay, 7, T, pn}.
Enforce a strain increment Agy;:

Ensl = En + Ay

Trial state (freezing the visco-plastic state):

trial _  CPE _ vptrial
.. =E D, (8 e

RN

=lp41
if p, > 0 (last step was visco-plastic) then

=1+ Kt CD;BK (a,trial)‘
Pn

end if

trial trial
9: fn:lla = |Tn:lf |- [ + Hay]
10: if flzr ’lal < 0 (visco-elastic step) then

vp vp trial
1 =&, Upyl =An, Tpyl = Tnﬁ_lla » Pns1=0

2@

1=ty

*®

12: else

13:  if p, > 0O (increasing visco-plasticity) then
14: Pn+1 = Pn

15:  else

16: =17V

17: Pne1=n+1

18:  end if

19:  Solve for Ay:

20: E COZ)tﬂE (Ay) L_l + Ktpnﬁ@fK (Ay) L + H Ay = firial

=In+1 =In+l n+l
211 Tyyl = T’l;:_lfl -E %Z);BE (Ay) ‘ sign (T:lff’l) .
1=l
. vp _ VP . trial
222 & =& + Ay sign (Tn+1 )
23 ape =ap+ Ay

24: end if

The fractional derivatives present in the fractional return-mapping procedure are computed
implicitly using the finite difference method (FDM) developed in [91], where o@zy u(t) is discretized

as
1 B ultper—j) —ultn—j) 4

= + (4.41)
=tp,; L(2-v) j;) J (At)Y At

oDr (u(t)) ‘t

where rZ;“l < Cu(A1)*7Y and bj:=(+ DY — jl=v i =0,1,---,n. The term At denotes the

time increment size At = T/N, where T represents the total time and N denotes the number of

increments. Taking the first term j = 0 outside of the sum sign, we obtain

1
0D (uo)| _ = GTE ) M) — u) + H ], (4.42)

n
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where
n

H'u=>\bj[ultyri—) — ulta—j)] . (4.43)
j=1
Therefore, the use of the above equations allows us to write explicit expressions for u(¢,,,1). The use

of this scheme does not cause any loss of accuracy for this framework, because the backward-Euler

procedure is already first-order accurate. The discretization for the variables subject to the trial

trial(t

state u n+1) 1 given by

1

v, trial _ trial _ v
0D (u (t))Ltn+1 - BT |7 1) = ult) + Hu (4.44)

recalling that '™ (s,.1) = u(t,), we obtain

Hu

v, trial _
oDr (“ (t))‘m,m T AT2—v) (4.45)

Therefore, only the history term " u is taken into account. For the time-fractional derivatives in

the visco-plastic time reference, we consider

/ = — v
o 21 (1 ))|t=tn+1 T (AT -v) [ttner) = uttn) + - ] (4.46)
with
y =Pn+1
7‘([1,”+1u = ; b [”(tn+1—j) - u(tn_j)] , (4.47)

where only the n — p,,1 terms from the beginning of the current visco-plastic time reference are
taken into consideration. The trial state for this derivative is considered with the visco-plastic time

reference from the last configuration p,, and is denoted by

trial 7_{;l;nu
v (ytrial g ( S | N— 4.48
tpn 1 (” ()) t=typy  (AD)'TQ2-v) (49)
with
n—pn
t;nu = Z; bj [u(tn+l—j) - u(tn—j)] ) (4.49)
J=

leading to a complexity of mathematical operations of O(N 2.,
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4.5.1.1 Remark

Although Eq.4.12 indicates that when Sg — 1 we recover a local derivative operator, this is not
what happens due to the adopted algorithmic procedure. Applying Eq.4.48 for the trial state of the
internal hardening parameter, we obtain

Wﬁ[(

Bk ( trial ‘pn
D a = )
Ipn~"t ( ) ‘z‘:z‘n_'_l (At)ﬁKF(2 - BK)

a

(4.50)

Recalling Eq.4.47, when the fractional-order v — 1, the associated weights b i 0, and therefore
the above equation for the fractional derivative of @, vanishes. This asymptotic case, in fact, leads

to the following trial yield function:

trial
fn+1

= |7irial|_ [t + Hay| . (4.51)

n+l

Therefore, the only remaining hardening effect relies on the rate-independent linear hardening term
Ha,,. If we combine both effects S — 1 and H = 0, we obtain a limit case of asymptotic perfect
visco-plasticity, which will be observed in results of Section 4.6.2.

The above discussion shows that due to the employment of a trial state, there is no reason in
using a local first order derivative of the hardening parameter « in the definition of f(7, @), since
the term would vanish regardless of the material parameters. However, the inclusion of a fractional

derivative introduces memory effects that do not vanish, except when Sx — 1.

4.5.2 Algorithm for the model M2

We consider the same stress-strain relationship as the model M1, given by Eq.4.28. The incremental

yield function is given by

o+l = |Tn+1|_7y/’ (4.52)
with the corresponding trial function
it == (4.53)
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Substituting Eq.4.28 into Eq.4.52, and recalling Eqs.4.29 and 4.53, we obtain

n+l

for = S - EGOPE (ay)| (4.54)

With the discrete consistency condition (f,4+; = 0), we obtain the following fractional-order
differential equation:

1=ty .1

To calculate the rate-independent solution for stress, we use Eq.4.35 replacing 7,1 with Teo:

7o = 710~ EGDPE (Ay) )t_t SIgn( ’i’f’l). (4.56)

—'n+

Comparing Eqgs.4.56 and 4.55, we can rewrite Eq.4.56 as
Too = T’i’:?l ﬂgn(rmal) fé:’l‘ll 51gn(1-’”al)TY’ (4.57)

Therefore, the expression for 7 is given in a closed form. The algorithm to be used is of same
type as the model M1, but we consider an additional equation when solving for the visco-plastic
step, which is the incremental form of Eq.4.18, given by
E %Z)tﬁE (g"P) ‘t=tn+1 + Kter_(lj'Z)tBK (£"P) thn+] =E %Z)tﬂE (&) - - mgn(rmal) V.
(4.58)
Also, we use an auxiliary incremental loading function denoted by f,;"+1 to check for unloading

conditions in the visco-plastic range, in order to perform an update in the yield stress in case of

unloading:
froy = |l g, (4.59)

where 7, is the stress from the previous time step n. The fractional return-mapping algorithm
for the model M2 is summarized in Box 4.2, and the solution for the incremental fractional-order

equations for both models are presented in A.1.
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Algorithm 4.2: Fractional return-mapping algorithm with for the model M2.

1: Database atx € Q: {g, &P, v, v, 1, pn}.
2: Enforce a strain increment Agy;:
3: g,41 = En+Agy
4: Trial state (freezing the visco-plastic state):
: trial
5. Ttrml =E CZ)IBE c—g"l
n+1 0 4 t=t
trial trial yr nt
6: fn+l .= |Tn+l -7
7. if flzi’f‘l < 0 (visco-elastic step) then
vp vp trial
8 & 1€, Tn+l = Tnz_lfl Pn+1 =0
9: else
10:  if p, > O (increasing visco-plasticity) then
11: Pn+1 = Pn
12:  else
14:  end if
. *  _ |trial|_
15: fn+1*_ |Tn+1 | T”_ . . .
16: if f* < 0 (unloading during visco-plastic step) then
17: ™ = |1
18:  end if
19:  Perform visco-plastic regularization. Solve for E:;f I
20:
EGOPE ()| wk,, SO ()| =EGOME ()| —signlih e
I=tp4] Pn+1 I=lpy] I=lp4]
21: T4 =E %DIBE (s—s"p)‘ )
=lp4]

22: end if

4.5.3 Incremental tangent modulus

The computation of the tangent modulus present in the tangent stiffness matrix shown in Eq.4.25
is fundamental to achieve quadratic convergence for Newton’s method. In classical local models it
is obtained by differentiating the incremental equations of Boxes 4.1 and 4.2 in terms of €., to
achieve an expression in closed form [192]. However, we did not obtain explicit expressions for
such derivatives of the fractional-order equations presented for the models. Moreover, the tangent

modulus is local in nature, and therefore we compute it using a simple backward finite-difference
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procedure given by

(37’) _ T+l — Tn (4.60)
n+l

de €n+l — €n
where 7,,, is obtained from the fractional return-mapping procedure of Boxes 4.1 and 4.2. We
note that the first-order accuracy of such finite-difference approximation does not affect the overall
accuracy since our algorithm, in which the backward-Euler method is employed, is also first-order
accurate.

Regarding the stability of the proposed algorithms, we have employed an unconditionally
stable finite-difference method, developed in [91], for the discretization of time-fractional ODEs
in the fractional return-mapping algorithms. Moreover, the governing equations of motion are
integrated using a stable Newmark scheme, where the tangent modulus is computed using an

implicit backward-Euler method, see e.g., [192].

4.6 Results and Discussion

Three different analyses were performed to examine the developed models and algorithms. The
first one consists of a convergence analysis using a benchmark solution, since there exist no available
analytical solutions. The second test investigates the stress versus strain response of the models for
prescribed monotonic and cyclic strains at constant rates. The last one solves a two-member truss

with a snap-through instability with large strains and high strain rates.

4.6.1 Convergence analysis

A convergence analysis is performed for both models considering a reference benchmark solution
for the stress, denoted by 7;,. We consider the solution of Boxes 4.1 and 4.2 using prescribed strains.

The error for the approximate solution denoted by 7, is calculated using the L* norm as

_ ||Tap _Tb”L‘X’

E;co = 4.61)
L kA

The material properties used are E = 50 Pa.sPE, K = 50 Pa.sPK, B = 0.5, Bx = {0.3,0.7},

H = 0Pa and ¥ = 1Pa. The material parameters are chosen to give a nonlinear response
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for both visco-elastic/plastic ranges for the given strain rate, as shown in Figure 4.5. The final
time considered is 7 = 0.08 s with total monotonic strain € = 0.015, which gives a strain rate of
& =0.1875 s~ L. The benchmark solution uses N = 40960 time steps, which is equivalent to a time

increment size Ar = 1.95 x 1070 .

25
2,
g 1.5¢
7
o
» 1r 1
—M1,B,=03
---M1,8,=07
0.5} I
o M2,B, =03
A M2,B, =07
N L L T
GEI 0.005 0.01 0.015 0.02

Total Strain

Figure 4.5: Stress versus total strain curves for the benchmark solutions. The number of data points
for the model M2 is truncated for better visualization, since the results overlap with the model M1.
Both models provide the same qualitative results for monotonic strains for the considered values of

BE, Bk-

Figure 4.6 shows the L>-norm error of the approximate stress versus the time increment size
At. The error levels obtained for the model M2 are significantly smaller because this model does
not account for the integration of the internal variables @ and Avy, as presented in Box 4.2. This

also impacts the convergence rate, which is approximately linear for the model M1 but with slightly

higher rate for the model M2.
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Figure 4.6: L*-norm errors in 74, versus time step size At in both models M1 and M2, where,
BE =0.5.

4.6.2 Stress vs. strain response for prescribed strains

In order to show the influence of the fractional-order parameters Sg and Sk over the stress
response, we performed monotonic and cyclic tests for both models. The purpose is to show the
rate-dependency of the models according to the choice of the fractional-order parameters. For
validation purposes, we also show the expected recovery to the limit case of rate-independent linear
elasto-plasticity when S and Bk are close to zero (e.g. B8 = Bg = Bx = 0.01), as well as the

behavior when g — 1.

4.6.2.1 Monotonic strains

The first step of this test consists of showing the recovery of the classical models of linear elasto-
plasticity and visco-plasticity of Duvaut-Lions type. We consider the application of strain incre-
ments up to € = 0.4 with rate € = 0.05 s_l, where 7 = 8 5, and N = 500. The material properties
used are E = 50 Pa.sPE, K = 5 Pa.sPK . For classical linear elasto-plasticity we use H = 5 Pa and

for the classical Duvaut-Lions model we use n = SPa.s. Figure 4.7 shows the obtained results. We
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observe that the classical elasto-plasticity with linear hardening is recovered when Bg, Sx — 0.
The consideration of Sg — 1 did not recover the classical visco-plasticity for the model M1, as

expected from the algorithmic discussion presented in Section 4.5.1.1.

3 3r
—M1, B, =0.01 —M2, B, =0.01
2-5""M1’BK=0'99 2 5H---M2, BK=O.99
O EP,H=5Pa O EP,H=5Pa
ol EVP-DL I A EVP-DL

Stress [Pa]
o
Stress [Pa]
o

0.5¢ i 0.5¢

B

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Total strain Total strain
(a) Model M1 (b) Model M2

Figure 4.7: Stress versus strain responses for both models using S = 0.01. We observe that both
models recover the limit case of rate-independent elasto-plasticity (EP) when Sx — 0. However,
the classical visco-plasticity of Duvaut-Lions type (EVP-DL) is not recovered for the model M1
when g — 1. An asymptotic perfect visco-plastic solution is obtained instead.

The results for intermediate values of the fractional derivatives are shown in Figure 4.8.

‘© ‘©
o, o,
] A
o o
175] %)

05 — M1, [’)E =0.3, [’)K =03 05 — M2, BE =0.3, BK =03

—M1,B_=0.5, =05 —M2,8_=05,8,=0.5

0.25 Pe P 0.25 Pe P
—M1,B.=07,B, =07 —M2,3_=07,p,=07
OO 0.1 0:2 0:3 0.4 00 0.1 0:2 0:3 0.4
Total strain Total strain
(a) Model M1 (b) Model M2

Figure 4.8: Stress versus strain response for both models with g = Bgx. We observe the same
response for monotonic strains. The variation of the fractional-orders affects the rate-dependent
behavior for both visco-elastic and visco-plastic ranges. In this case, the increase of the fractional-
order led to higher stress levels in the visco-elastic range and also more hardening.

The effect of the linear hardening parameter H for constant values of K, Bk is presented in

Figure 4.9 for the model M1. Generally, this parameter H contributes to less nonlinearity in this
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example, but may be used in conjunction with higher values of Sk to provide more hardening when

convenient.

Stress [Pa]

---M1,H=0Pa
0.5 —M1,H=1Pa
—M1,H=25Pa
—M1,H=5Pa
00 0.1 0.2 0.3 0.4
Total strain

Figure 4.9: Stress versus total strain curves for the model M1 with g = Bx = 0.5, K = 5Pa/ sPK
and different values of H. We observe less nonlinearity and more dominant linear hardening as the
numerical value of H approaches K.

4.6.2.2 Cyclic strains

To compute the loading/unloading response of the models and analyse the cyclic hardening behavior,
we performed a cyclic test comprising three loading cycles. We start with a traction cycle from
e = 0 to &€ = 0.4, followed by unloading and compression cycle until £ = —0.4, from where we
increment the strains again up to & = 0.4. We consider the material parameters E = 100 Pa.sPE,
K = 50 Pa.sPK , H = 0 Pa. The prescribed strain rate is & = 0.005 s_l, with time parameters
T =400s and N = 10000.

The results for the cyclic tests are presented in Figure 4.10. We observe that both models give
the same qualitative results for the entire process for the considered material properties and strain

rate.
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Figure 4.10: Cyclic stress versus strain response for the models. We observe that due to the lack of
internal hardening for the model M2, the stress amplitudes are smaller. Also, the response of the
models after the first loading cycle is distinct.

Figure 4.11 shows the cyclic stress response considering two different relaxation times by
setting different ratios E/K, Bg = 0.8 and distinct strain rates. We observe that the stress response
becomes more different between the models as we increase the ratio £ /K and strain rate as well.
This distinct behavior is expected since for the model M1 we enforce the consistency condition
Jfu+1 = 0, which provides a fast visco-plastic relaxation for the time interval [z, t,,,1]. On the other
hand, the visco-plastic regularization procedure of the model M2 considers relaxation effects that

depend on the natural relaxation time of the material under consideration.
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Figure 4.11: Cyclic stress versus strain response for the models considering different ratios K/E,
Be =1.0x% 1073, Bk = 0.8. We observe higher stress values for the model M2 as we increase K /E,
which become more pronounced with higher strain rates.
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4.6.3 Two-member truss with snap-through effect

We consider the solution of the two-member truss presented in Figure 4.12a. The material properties
are E =2.1x 10" Pa.sPE, K = 1.0x 10! Pa.sPK, 77 =7.0x 108 Pa, p = 7.85x 1076 kg/mm?3,
v =0.5and A = 7.0mm?. A vertical force P(r) is applied at node 2, with the behavior over time
illustrated in Figure 4.12b. We consider total time 7 = {0.3, 1.0} s and we analyze the recovery
of classical elasto-plasticity for the models. Then, we will present the behavior for both models

considering the variation of intermediate values of the fractional-orders.

b P(t)
o P [kN}A
110 — — -
127 mm |
I
1 3 X |
I 220 mm 220 mm 4% ' :t [s]
| | 0.25
(a) Truss. (b) Load over time at node 2.

Figure 4.12: (a) Two-member truss. The snap-through phenomenon occurs when the vertical
displacement of node 2 is —127 mm. (b) Applied negative vertical force over time.

4.6.3.1 Behavior of the models when 8 — 0

Figure 4.13 shows the recovery of rate-independent elasto-plasticity with linear hardening for the
models, by setting small values of Sg = 1.0 X 107> and Bk = 1.0 x 1074, so that both Scott-Blair
elements in the visco-elastic/plastic devices recover linear springs. We do not try the recovery of
Duvaut-Lions elasto-visco-plasticity in this test for the models because of the previous observations
in Section 4.5.1.1, when Sg — 1 for the model M1, and the fact that the model M2 only recovers the

classical model for monotonic loading (because of the update of the yield stress when unloading).

96



x10°*

0 25
—M1, B =1e-5p, =1e-4 —M1, B =1e-5, B =1e-4
50} —M2, B, = 1e-5, B, = le-4 2[—M2,B_=1e-5,p, = 1e-4
— Elasto—plastic 1 5[l — Elasto-plastic
—-100}
£
£ G
= _150} =
£ % 05
& 200 8
.?‘21 » of
a _oenl
250 05
-300 4l
80 005 01 015 02 025 03 035 02 -015 —01 -005 0 005 01 015
Time [s] Strain
(a) Displacement versus time (b) Stress versus strain

Figure 4.13: Recovery of the models to rate-independent elasto-plasticity, At = 6.0 X 107 5. The
snap-through effect occurs at r = 0.089 s.

4.6.3.2 Variation of fractional-orders for the model M1

We consider a constant value of S = 1.0 X 10~* with variations of Bk (fractional elasto-visco-
plasticity order) to investigate the strain-herdening effect due to the Scott-Blair element in the
visco-plastic device. Figure 4.14 shows the results for displacement, stress and internal force. The
increasing hardening with the increase of Sk is observed from Figure 4.14a with the late occurrence
of the snap-through for Sx = 0.9 and larger amplitudes in displacement. The late snap-through
can be justified by the higher peak in the internal force in Figure 4.14c at approximately 60 mm
of vertical displacement. The hardening is also seen in Figure 4.14b with the larger visco-elastic

range.

97



x10* x10°

6 5
0 — M1, B_=1e-4,B, =0.1 —M1,B_=1e-4,B,=0.1
—MT1, B = fe-4,B, =0.1 5 M1 5_1 4 K—05 Pe B
_50 M1, B, = Te4,B, =05 . —M1, B, =1e-4,B, = 0. 4l —M1, B =Te-4,B, =05
—M1,B_=1e-4,B =09 —M1,B_=1e-4,B, =09
_-100 —M1, B = 1e-4, B, =09 E K = E K
€ 5 3 ki
E 150 o -
€ =2 g
(7]
£ 200 2 £
@ o 1 T
& & £
5 -250 0 3
@ c
2 =
-300 -1
-350 -2
400005 01 015 02 025 03 035 B2 -0.1 0 01 0.2 0.3 0 100 200 300 400
Time [s] Strain Displacement [-mm]
(a) (b) (©

Figure 4.14: Results for the model M1 considering Sg = 1.0 X 10~* and variation of Bk (a)
Displacement vs. time. (b) Stress vs. strain. (c) Internal force vs. displacement. We observe the
increased visco-plastic hardening and damping with the increase of Sk .

The results for longer time integration 7 = 1s using fg = 1.0 X 10~* and time increment
At = 1.0x 107* s are presented in Figure 4.15. We observe that due to the high strain rates, the
elastic domain expands significantly more with higher values of Sk, and no dissipation is observed
for the oscillations because the value of S is sufficiently small.
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Figure 4.15: Displacement versus time and stress versus strain for the model M1, T = 1y,
BE =1.0x 104 and variation of Bk.

We also considered the use of Sg = 0.1 to account for visco-elastic dissipation, with At =
1.0x1072 s. Figure 4.16a shows a very significant reduction in the displacement amplitudes for the
short time interval, where increasing the value of Sk led to more hardening. However, the use of a

fractional-order value Sg = 0.1 is high enough to suppress the oscillations for the considered time
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domain. Figures 4.16b and 4.16¢ also show a more pronounced visco-elastic relaxation behavior

for g = 0.5, 0.9.
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Figure 4.16: (a) Displacement vs. time, (b) stress vs. strain, and (c¢) internal force vs. displacement
for the model M1, B¢ = 0.1 and different values for Bg.

4.6.3.3 Variation of fractional-orders for the model M2

In the same way as the previous section, we tested the response of the truss for the model M2
using variation of the fractional-order parameters. Figure 4.17 shows the results obtained for
Be = 1.0 X% 10~% and variation of Bk-. We observe the same strain-hardening behavior as in the
model M1 before the snap-through. Moreover, the snap-through phenomenon for S = 0.9 occurs
at7 =~ 0.2 s, which is later than observed for the model M1 (Figure 4.14a). This is compatible with
the cyclic results presented in Section 4.6.2.2 with more rate-dependent hardening for the model

M2 when using higher relaxation times and strain rates combined with higher values for Sk .
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Figure 4.17: (a) Displacement vs. time, (b) stress vs. strain, and (c¢) internal force vs. displacement
for the model M2, B = 1.0 X 10~* and variation of Bk

The behavior for T = 1 s with Af = 1.0 x 1074 s

is shown in Figure 4.18, which is qualitatively

similar to the model M1, except for S = 0.9, where more hardening is observed for this case.
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Figure 4.18: Displacement versus time and stress versus strain for the model M2, S = 0.1.

Figure 4.19 shows that the use of a fractional-order S = 0.1 increased the visco-elastic

dissipation similarly to the model M1. The time

1.0 x 10™4s.

increment considered for this test was At =

We observe that the combination of this fractional-order for visco-elasticity with

Bk = 0.9 for the model M2 increased even more the hardening before the snap-through, occurring

att = 0.23 s (Figure 4.19a), compared to ¢ =~ 0.2 s (Figure 4.16a) for the model M1.

The behavior of the presented models for the snap-through problem is qualitatively similar to

another application in the literature for integer order visco-elasto-plastic formulation [207]. Also,
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the frequency response of the structure observed in Figures 4.14a and 4.17a due to higher effective
stiffness when using lower fractional-order S8 (Scott-Blair element with lower viscosity) is also

observed for linear single and multiple degree-of-freedom oscillators using fractional derivatives

[208-210].
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Figure 4.19: (a) Displacement vs. time, (b) stress vs. strain, and (c¢) internal force vs. displacement
for the model M2, S = 0.1 and different values for Sg.
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CHAPTER 5

A THERMODYNAMICALLY CONSISTENT, FRACTIONAL VISCO-ELASTO-PLASTIC
MODEL WITH HISTORY-DEPENDENT DAMAGE

5.1 Background

Accurate and predictive modeling of material damage and failure for a wide range of mate-
rials poses multi-disciplinary challenges on experimental detection, consistent physics-informed
models and efficient algorithms. Material failure arises in mechanical and biological systems as a
consequence of internal damage, characterized in the micro-scale by the presence and growth of
discontinuities e.g., microvoids, microcracks and bond breakage. Continuum Damage Mechanics
(CDM) treats such effects in the macroscale through a representative volume element (RVE) [211].
When loading plastic crystalline materials, an initial hardening stage is observed from motion, ar-
resting and network formation of dislocations, which is later overwhelmed by damage mechanisms,
e.g. multiplication of micro-cracks/voids, followed by their growth and coalescing, releasing bulk
energy from the RVE. Classical CDM models were proposed and validated in the past decades to
describe the mechanical degradation, e.g., of ductile, brittle, and hyperelastic materials [212, 213].
Particularly, Lemaitre’s ductile damage model [211, 213] has been extensively employed for plas-
ticity and visco-plasticity modeling of ductile materials. In such models, developing proper damage
potentials driven by the so-called damage energy release rate [211] is a critical step. More recently,
phase-field damage and failure models have been successfully applied in the context of brittle and
ductile failure of materials [214-218].

Modeling the standard-to-anomalous damage evolution for power-law materials has additional
challenges due to the non-Gaussian processes occurring on fractal-like media. Fractional consti-
tutive laws utilize Scott-Blair (SB) elements [172, 219] as rheological building blocks that model
the soft material response as a power-law memory-dependent device, interpolating between purely

elastic/viscous behavior. A mechanical representation of the SB element was developed by Schies-
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sel [34], as a hierarchical, continuous “ladder-like" arrangement of canonical Hookean/Newtonian
elements (see Figure 5.1). Later on, Schiessel [36] generalized several standard visco-elastic mod-
els (Kelvin-Voigt, Maxwell, Kelvin-Zener, Poynting-Thompson) to their fractional counterparts by
fully replacing the canonical elements with SB elements. Of particular interest, Lion [35] proved
the thermodynamic consistency of the SB element from a mechanically-based fractional Helmholtz
free-energy density.

With particular arrangements of SB and standard elements, fractional models were applied,
e.g., to describe the far from equilibrium power-law dynamics of multi-fractional visco-elastic
[8,24,43, 187,220, 221], distributed visco-elastic [222] and visco-elasto-plastic [1, 46, 48, 49, 223]
complex materials. Concurrently, significant advances in numerical methods allowed numerical
solutions to time- and space- fractional partial differential equations (FPDEs) for smooth/non-
smooth solutions, such as finite-difference (FD) schemes [86, 91], fractional Adams methods
[94, 112], implicit-explicit (IMEX) schemes [113, 224], spectral methods [99, 100], fractional
subgrid-scale modeling [225], fractional sensitivity equations [101], operator-based uncertainty
quantification [226] and self-singularity-capturing approaches [177].

Despite the significant contributions on fractional constitutive laws, few works incorporated
damage mechanisms. Zhang et al. [67] developed a nonlinear, visco-elasto-plastic creep damage
model for concrete, where the damage evolution was defined through an exponential function of
time. A similar model was proposed by Kang et al. [68] and applied to coal creep. Caputo and
Fabrizio [69] developed a variable order visco-elastic model, where the variable order was regarded
as a phase-field driven damage. Alfano and Musto [53] developed a cohesive zone, damaged
fractional Kelvin-Zener model, and studied the influence of Hooke/SB damage energy release rates
on damage evolution, motivating further studies on crack propagation mechanisms in visco-elastic
media. Tang et al. [70] developed a variable order rock creep model, with damage evolution as an
exponential function of time. Recently, Giraldo-Londofio ef al. [71] developed a two-parameter,
two-dimensional (2-D) rate-dependent cohesive fracture model.

A key aspect to develop failure models relies on consistent forms of damage energy release
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rates, usually appearing in the material-specific form of Helmholtz free-energy densities. For
standard materials, direct summations of elastic/hyperelastic free-energies of the system are used.
However, such process is non-trivial when modeling anomalous materials, due to the intrinsic
mixed elasticity/viscosity of SB elements. Fabrizio [72] introduced a Graffi-Volterra free-energy
for fractional models, but defined it without sufficient physical justification. Deseri et al. [73]
developed free-energies for fractional hereditary materials, with the notion of order-dependent
elasto-viscous and visco-elastic behaviors. Lion [35] derived the isothermal Helmholtz free-energy
density for SB elements using a discrete-to-continuum arrangement of standard Maxwell branches,
and employed it in the Clausius-Duhem inequality to obtain the stress-strain relationship. Later on,
Adolfsson et al. [74] employed Lion’s approach to prove the thermodynamic admissibility of the
SB constitutive law written as a Volterra integral equation of first kind.

To the authors’ best knowledge, only Alfano and Musto [53] coupled the fractional free-
energy density to a damage evolution equation in viscoelasticity, but fractional extensions of (non-
exponential) damage for visco-elasto-plastic materials are still lacking. In addition, for damage
models, efficient numerical methods for fractional free-energy computations are also virtually
nonexistent in the literature. A numerical approximation was done by Burlon et al. [227], through
a finite summation of free-energies from Hookean elements, which is a truncation of the infinite
number of relaxation modes carried by the fractional operators. Alfano and Musto [53] briefly
described how to discretize the SB free-energy using a midpoint finite-difference scheme. A
few numerical results were presented for damage evolution, but the authors did not describe the
discretizations and no accuracy is investigated for the numerical scheme.

In this work we develop a thermodynamically consistent, one-dimensional (1-D) fractional
visco-elasto-plastic model with memory-dependent damage in the context of CDM. The main

characteristics of the model follow:

* We employ SB elements in both visco-elastic and visco-plastic parts, respectively, with orders

BE, Bk € (0, 1), leading to power-law effects in both ranges.
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* The damage reduces the total free-energy of the model, while constitutive laws are obtained

through the Clausius-Duhem inequality.

* The yield function is time-fractional rate-dependent, while the damage potential is Lemaitre-
like. The damage energy release rate is taken as the SB Helmholtz free-energy density to

describe the anomalous bulk energy loss.

* We prove the positive dissipation, and therefore the thermodynamic consistency of the

developed model (see Theorem 5.4.4).

Since obtaining analytical solutions for the resulting nonlinear system of multi-term visco-
elasto-plastic fractional differential equations (FDEs) coupled with damage is cumbersome or even

impossible, we performed an efficient time-integration framework as follows:

* We develop a first-order, semi-implicit fractional return-mapping algorithm, with explicit
evaluation of damage in the stress-strain relationship and yield function. An implicit FD
scheme is employed to the ODEs for plastic and damage variables. The time-fractional
stress-strain relationship and yield function are discretized using the L.1 FD scheme from Lin

and Xu [91].

* We develop a fully-implicit scheme for the SB Helmholtz free-energy density, and hence to
the fractional damage energy release rate. We then exploit the structure of the discretized

energy and apply Fast Fourier Transforms (FFTs) to obtain an efficient scheme.

* The accuracy of free-energy discretization is proved to be of order O(Ar*>~P), and numerical
tests show a computational complexity of order O(N? log N), with N being the number of

time-steps.

The developed fractional return-mapping algorithm can be easily incorporated to existing finite
element (FE) frameworks as a constitutive box. Numerical tests are performed with imposed

monotone and cyclic strains, and demonstrate that:
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* Softening, hysteresis and low-cycle fatigue can be modeled.

* Memory-dependent damage energy release rates induce anomalous damage evolutions with
competing visco-elastic/plastic effects, without changing the form of Lemaitre’s damage

potential.

The developed model motivates applications to failure of biological materials [21], where
micro-structural evolution can be upscaled to the continuum through evolving fractional orders S,
Bk [40] and damage D. The memory-dependent fractional damage energy release rates motivate
studies on anomalous bulk-to-surface energy loss in damage accumulation/crack propagation of,
e.g., bone tissue, where intrinsic/extrinsic plasticity/crack-bridging mechanisms [228] lead to a
complex nature of failure.

This work is organized as follows: In Section 5.2 we present definitions of fractional operators.
In Section 5.3, we present the thermodynamics and rheology of SB elements. In Section 5.4, we
develop the fractional visco-elasto-plastic model with damage, followed by its discretization. A

series of numerical tests are shown in Section 5.5.

5.2 Definitions of Fractional Calculus

We start with some preliminary definitions of fractional calculus [31]. The left-sided Riemann-

Liouville integral of order 8 € (0, 1) is defined as

I
F(ﬁ) tr, (t_s)l_’g

where I" represents the Euler gamma function and 77, denotes the lower integration limit. The

S IOE s 1>, (5.1)

corresponding inverse operator, i.e., the left-sided fractional derivative of order g, is then defined

based on (1.1) as

RL B _d Rp,1-B . ir f(s)
(fLDt ) = dt( tLIf ) = —F(l "By di - P ds, t>ty.
Also, the left-sided Caputo derivative of order 8 € (0, 1) is obtained as
C o _ (RLA-pAf 1 Jf 1(s)
(tLDt f)(t) (ILJ} dl‘)(t) F(l—ﬁ) o0 (t—s):B ds, t > 1.
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The definitions of Riemann-Liouville and Caputo derivatives are linked by the following relation-

ship:
ftr)
L(1 =Byt +11)P

which denotes that the definition of the aforementioned derivatives coincide when dealing with

BLof £ = +( S P,

homogeneous Dirichlet initial/boundary conditions.

5.2.1 Interpretation of Caputo derivatives in terms of nonlocal vector calculus

In this section we show that the Caputo derivative can be reinterpreted as the limit of a nonlocal
truncated time derivative [229]. This fact establishes a connection between nonlocal initial value
problems and their fractional counterparts, which can benefit from the nonlocal theory.

Given a nonnegative and symmetric kernel function ps(s) = ps(|s|), a nonlocal, weighted,

gradient operator can be defined as [230]

o
Go f(1) = E“L%J F(B) = f(t = )sps(s) ds, (5.2)

when the limit exists in L2(0, T) for a function fe L%(0, 7). Itis common to assume that the kernel

function ps has compact support in [0, 6] and a normalized moment:

0
J s2ps(s)ds = 1. (5.3)
0

Here, the parameter 6 > 0 represents the extent of the nonlocal interactions or, in case of time
dependence, the memory span. In the nonlocal theory it is usually referred to as horizon.

Note that at the limit of vanishing nonlocality, i.e. as 6 — 0, G5 corresponds to the classical first
order time derivative operator % In this work, we are interested in the limit of infinite interactions,
i.e. as 0 — oo. Specifically, when the initial data f(¢) := f(0) for all # € (—oc0,0) and the kernel
function is defined as

Pools) = r(%ﬁ)fﬁ_z’ for B € (0, 1), (5.4)

the nonlocal operator G5 corresponds to the Caputo fractional derivative for ¢ > 0, for a piecewise

differentiable function f € C(—oco, T) such that /" € Ll(O, T) N C(0,T]. Formally,
Goo f(1) = (DL 1)), (5.5)
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Figure 5.1: (left) Schematics of the SB element recovering standard limit cases. (right) The SB
element seen as an infinite, hierarchical mechanical representation of canonical elements, coding
an infinite number of relaxation times. The pair (E, 8) represents a dynamic process of the material.

Note that a similar property holds true for fractional derivatives in space, see [231].

5.2.1.1 Note on well-posedness

Paper [229] analyzes the well-posedness of nonlocal initial value problems. More specifically,
it proves, under certain conditions on the parameters, that the following equation has a unique

solution and depends continuously upon the data.

Gsy+Hy=F t€(0,T],
(5.6)
y=G 1t€(-06,0),

for H > 0 and F and G in suitable functional spaces.

5.3 Thermodynamics of Fractional Scott-Blair Elements

We present the thermodynamic principles used in this work, and then we introduce the Helmholtz
free-energy density and constitutive law for the fractional SB element. Such fractional element
is the rheological building block of our modeling approach, providing a constitutive interpolation
between a Hookean (8 — 0) and Newtonian (8 — 1) element (see Figure 5.1). Furthermore, the
SB element can be interpreted as an infinite self-similar arrangement of standard Maxwell elements,

which naturally leads to fractional operators in the constitutive law [34].
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5.3.1 Thermodynamic principles

Let a closed system undergo an irreversible, isothermal, strain-driven thermodynamic process. We
analyze an infinitesimal material region at a position x and time ¢ of a continuum deformable body

B. Let the first law of thermodynamics in rate form [232] be defined as:
é=4—-w, 5.7

where é(x, 1) [J .s_l.kg_l] denotes the specific rate of internal energy, g(x, ) [J .s_l.kg_l] repre-
sents the rate of specific heat exchange and the term w(x, t) [J s hk g_l] denotes the stress power
transferred into the bulk due to external forces [233]. In this work, 7(x, ) represents the stress
state and & the strain rate. We also consider the second law of thermodynamics, postulating the

irreversibility of entropy production, given, in specific form, by:
§>4q/6, (5.8)

where $(x, 1) [J.s~1.kg~'.K~!] denotes the rate of specific entropy production and 6(x, t) = 6 [K]
represents the constant temperature. Let ¢/(x,7) : R Xx R¥ — R* be the Helmholtz free-energy
density with units [J m73, representing the available energy to perform work, defined by ¢ :=
p (e — 6s), with the rate form yy = p (é — 65) for the isothermal case. Combining the first and
second laws, respectively, (5.7) and (5.8), with i and taking the stress power W = —7&, we obtain

the Clausius-Duhem inequality, which states the non-negative dissipation rates [234]:
~y+1620, VxeB. (5.9)
Satisfying the dissipation inequality (5.9) is here taken as the necessary condition for the potential

Y and the stress 7 to be thermodynamically admissible.

5.3.2 Helmbholtz free-energy density

We present the free-energy under consideration for the employed SB element, here referred to a

given material coordinate of a continuum body or a lumped mechanical system. We start with the
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fractional Helmholtz free-energy density developed by Lion [35], obtained through an integration of
a continuum spectrum of Maxwell branches leading to the following definition for /() : R — R*:

Y(e) = %L) E(z)

! t—s 2
J exp (— ) &(s) ds] dz, (5.10)
0 Z

where we the strain ¢ is taken as the state variable. The term E(z) : R* — R™ denotes the power-law

relaxation spectrum, given by

B E
r'(1 - prp)F+’

E(z) <B<1, EeR"

which with (5.10), codes an infinite number of relaxation times. The pseudo-constant E has units
[Pa.sP], where the unique pair (E, 8) codes a dynamic process instead of an equilibrium state of
the material [24]. Let D, denote the mechanical dissipation of the SB element. We introduce

the following Lemmas:

Lemma 5.3.1. The SB element stress-strain relationship 7(t) : R* — R resulting from (5.10) and
the Clausius-Duhem inequality (5.9) is given by
oo t t—s)\ . C B
7(t) = E(2) exp (——— | &(s)ds| dz = E y Dy (1), (5.11)
0 0 Z

where the Caputo definition for the fractional derivative is a consequence of the adopted free-energy.
The mechanical dissipation D, ,.,(€) : R — R* for the SB element is given by the following form:
o f t f— 2
Dinecn(&) =f E@ (J exp (——S) &(s) ds) dz. (5.12)
0o 2 0 Z

Proof. See Appendix B.1. [

Remark 5.3.2. The limit cases for the fractional free-energy (5.10) with respect to 3 are consistent
with the well-known stress-strain relationship (5.11). Therefore, W (&) recovers a fully conserv-
ing Hookean spring when limg_,o ¢ = E&2/2, and a fully dissipative Newtonian dashpot when
limg_, ¢ = 0. We refer the readers to [35, 73] for additional details regarding memory-dependent

free-energies.
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Figure 5.2: Damaged fractional visco-elasto-plastic model. (A) Constitutive diagram with visco-
elastic/plastic rheological elements. (B) Stress response showing the yield surface expansion
(hardening) and contraction (softening).

5.4 Fractional Visco-Elasto-Plastic Model with Damage

We develop a damage formulation for a fractional visco-elasto-plastic model (M1) by Suzuki
et al. [1]. The closure for the damage variable is obtained through a Lemaitre-type approach
[211, 213]. We later prove the thermodynamic consistency of the damage model, and hence for the

visco-elasto-plastic model (M1) as a limiting, undamaged case.

5.4.1 Thermodynamic formulation

The fractional visco-elasto-plastic device is illustrated in Figure 5.2. It consists of a SB element
with material pair (E, 8g) for the visco-elastic part, under a corresponding logarithmic visco-
elastic strain £¢(¢) : R* — R. The visco-plastic part is given by a parallel combination of a
Coulomb frictional element with yield stress ¥ [Pa] € R*, a linear hardening Hooke element with
constant H [Pa] € R*, and a SB element with material pair (K, Bg), with K [Pa.sPK] € R*, all
subject to a logarithmic visco-plastic strain £"”(¢) : R* — R and an internal hardening variable
a(t) : R* — R*. The entire device is subject to a Kirchhoff stress 7. The total logarithmic strain
is given by:

e(t)=&"(t) + &P (1). (5.13)

Let D(t) : R* — Qp, with Qp = [0, 1) be a time-dependent and monotonically increasing internal

damage variable representing the internal material degradation. Our model has the following
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assumptions:
Assumption 1. The visco-elastic response is linear, under an isothermal strain-driven process.

Assumption 2. There is a state coupling between the visco-elastic strains/hardening variable &€,
a, and damage D. However, the damage evolution is solely driven by the visco-elastic free-energy

potential.
Assumption 3. There is no state coupling between visco-elasticity and visco-plasticity.

Assumption 4. The damage D(t) and hardening a(t) are irreversible, i.e., there is no material

healing. Also, there are no crack closure effects.

Assumption 5. All state and internal variables are subject to homogeneous initial conditions, e.g.,

£(0) =¢£¢(0) = &"P(0) = @(0) = D(0) = 0.

Assumption (3) implies a linearity between the visco-elastic and visco-plastic free-energy

components, both multiplicatively coupled with damage.

5.4.1.1 Free-energy densities

We write the Helmholtz free-energy density ¥(£'¢, a, D) : RXR* x Qp — R™ for the model as:
W, @, D)= (1-D) (") +¢"P (@), (5.14)

where V¢("¢) : R — R* and ¢"P(a) : Rt — R* represent the undamaged visco-elastic and
visco-plastic free-energy densities. Utilizing (5.10) for the SB elements and the Hookean spring,

the free-energy density is given by:

o0 t _ 2
W, a, D)=1(1—D) I E(2) (J exp (—t—s)éve(s)ds) dz (5.15)
2 0 0 z
0o t f— 2
+J K(z)(J exp(——)c’z(s)ds) dz + Ha?|,
0 0 Z
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with the following relaxation spectra for visco-elasticity and visco-plasticity:

E - K

E@2) = o K@= G
I'(1 = BE)U(BE)ZPE I'(l - BT (Bg)FK

where 0 < B, Bk < 1.

Remark 5.4.1 (Recovery of classical free-energy potentials). Similar to the SB element case, we
recover the Hookean and Newtonian limit cases for the asymptotic values of Bg, Bx. Also, if
D — 0, we recover an undamaged case, and when D — 1, we have (1 — D)} — 0 (material

failure).

54.1.2 Constitutive laws

We use the Clausius-Duhem inequality (5.9) in the local form of classical thermodynamics of
internal variables, which induces near-equilibrium states for every time ¢ of the thermodynamic
process. However, the fractional free-energy densities introduce memory effects and therefore
far-from-equilibrium states in the scope of rational thermodynamics [72]. Using (5.14) and (5.13),

inequality (5.9) is given by:

—pY(e" a,D)+7 (8" +&"P) 2 0, (5.16)
where we evaluate i as follows:
(e, &%, a,&,D, D) = ailfe gV + g—Zd + %D' (5.17)

Similar to the proof of Lemma 5.3.1, the partial derivatives are obtained by chain and Leibniz rules.

For the first term on the RHS of (5.17), we have:

00 t _
4 ¢ =(1-D) U E(2) (J exp (—th)éve(s) ds) dz &

oeve 0 0

0 F 1 B 2
—J EQ@ (I exp (—t—s) &¥¢(s) ds) dz
0 z 0 4
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Recalling (5.12), we rewrite the above equation as:

00 t —
O e _(1-p) UO E2) (JO exp (—ITS) £"(s) ds) dz "

88\/6’

RIS C (5.18)

e

where Z)";fec h(sve) : R — R™* represents the visco-elastic mechanical energy dissipation, given by:
~ 2
©E@) (! t—s
ve vey _ _ .ve
Z)mgch(s ) = IO —~ (IO exp ( —~ ) E°°(s) ds) dz.

Similarly, we obtain the second term on the RHS of (5.17):

- R(Ha - (1 - D)Z):fzch

9 (), (5.19)

where R(t) : R* — R* represents the accumulated stress acting on the SB and Hooke elements on
the visco-plastic part due to the accumulated visco-plastic strains. Recalling Lemma 5.3.1, R(r)

reads:

o

0

t _
R(t) = (1-D) U R(2) (J exp (_th) a(s) ds) dz + Ha
0

=(1-D) [KngK(a)+Ha/].

On the other hand, the term Z);f; G R* — R7 denotes the visco-plastic mechanical energy
dissipation in the model, which is given by:
> 2
K@) ([’ t-s)\ .
Z):f;ch(a) = JO — (JO exp (_T) a(s) ds) dz.

Finally, the direct calculation of the last term on the RHS of (5.17) yields:

o . : .
a—l‘[;D = [Y7é(e"*) +Y"P(a)| D = Y(£", @)D, (5.20)
where YV¢(£V¢) : R —» R™ and Y"P (@) : R* — R™ denote, respectively, the visco-elastic/plastic

damage energy release rates. From (5.14), they are respectively given by:
2

o0 t _
YVe(e"®) = -V (") = —% JO E(2) (IO exp (_th) &¥¢(s) ds) dz. (5.21)
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o0 ! _ 2
Y (a) = —¢"P(a) = —% JO K(z) (IO exp (_t?s) a(s) ds) dz. (5.22)

We observe from the above result that, in principle, both visco-elastic and visco-plastic parts release
bulk energy with respect to damage. Inserting (5.18), (5.19) and (5.20) into (5.16), recalling Lemma

5.3.1, and dropping the function variables, we obtain:

T—(1- D)ECZ)’BE( Ve)] +78"P — Rar (5.23)

~YD+(1-D) (D), +D 0.

mec mech)

Since the strain rate £"¢ in (5.23) is arbitrary, without violating the inequality, we can set its

multiplying argument to zero, and obtain the following stress-strain relationship:
(1) = (1 - D)ESDPE (¢¥) (5.24)
and alternatively, using (5.13), we obtain:
(1) = (1- D)ESDPE (6 - £'7) (5.25)
and hence, the total energy dissipation (5.23) becomes:

~Ra =YD +(1-D) (D}, +D 0. (5.26)

mech)

Hence, we obtained the stress-strain relationships and dissipation potentials.

5.4.1.3 Evolution laws for visco-plasticity and damage

In order to obtain the kinematic equations for the internal variables, we define a combined hardening

and damage dissipation potential F (7,@,Y,D) : RXR* x R™ x R* — R, in the form [211, 213]:
F(tr,a,Y,D) = f(r,a,D) + Fp (Y, D), (5.27)
where f (7,a,D) : RxR* x R* — R~ U {0} represents a yield function, defined here as the

difference between the absolute value of the applied stress in the device and the stress acting on the
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visco-plastic part [1]:

f(x.0,D) = It - |1 = D)y’ +R]

= It = (1= D) | + XS DK (o) + Ha, (5.28)
which softens the visco-plastic stresses.

Lemma 5.4.2. The set of admissible stresses lies in a closed convex space (see Fig.5.2) with respect

to the associated thermodynamic variables T and R [211], given by:

Er={t eR|f(1,a,D) < 0}. (5.29)
The boundary of E+, denoted by E+, is the convex set given by:

0E; = {1 € R|f(r,a, D) = 0},
where f(1,a, D) = 0 denotes the yield condition in classical plasticity.

Proof. See Appendix B.3. [

The term Fp (Y'Y, D) : R~ x R* — R™ represents a damage potential driven by the plastic
strains and visco-elastic free-energy (see Assumption 2), where we adopt Lemaitre’s form for ductile
materials [211]:

S Yve s+1
FD(Y, D) = m (—T) , (530)

where S € R* [Pa] and s € R* represent material parameters, identified, e.g., by Cao et al. [235]
for a Zirconium alloy, and by Bouchard ef al. [236] for highly ductile metals. In the latter, an
inverse power-law form for Fp was defined with respect to the equivalent plastic strains to avoid
damage over-estimation. The sensitivity of Lemaitre’s model with respect to S and s was studied
by Roux and Bouchard [237].

From the defined yield function (5.28), and the principle of maximum plastic dissipation [192],

the following properties hold: i) associativity of the flow rule, ii) associativity in the hardening law,
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iii) Kuhn-Tucker complimentary conditions, and iv) convexity of E;. Therefore, we obtain a set of

evolution equations for €"?, a and D:

i of . ) of . . oFp .
vp - 2 = ——L D=-—_%2
9" YT TR ayve”

where (1) : R* — R denotes the plastic slip rate. For simplicity, we consider only variations of
the potential Fp with respect to the free-energy from the visco-elastic component for the damage
evolution. Evaluating the above equations using (5.28) and (5.30), we obtain, respectively, the

evolution for visco-plastic strains, hardening variable, and damage:

&P =sign(1)y, (5.31)
@ =7y, (5.32)

_ v (e
D_(I—D)( S) , (5.33)

where the first two evolution laws coincide with the ones defined for the model M1 by Suzuki et al.

[1] for fractional visco-elasto-plasticity.

Remark 5.4.3. The obtained nonlinear damage evolution (5.33) coincides with the local Lemaitre
form [211, 213]. However, due to the time-fractional form of Y'¢, power-law memory effects for

damage are introduced in the model.

Theorem 5.4.4 (Positive dissipation). The mechanical dissipation for the damaged, fractional

visco-elasto-plastic model is positive and given by,

(1-D®) |[TYy@) + DY (") + D’ (@)| -Y(",a)D(t) > 0,

e mech

where the above Clausius-Duhem inequality holds. Therefore, the defined Helmholtz free-energy
density (5.15), the obtained stress-strain relationship (5.25) and evolution equations (5.31)-(5.33)

of the developed model are thermodynamically admissible.

Proof. See Appendix B.2. 0
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5.4.2 Time-fractional integration

We develop two new algorithms for time-fractional integration of the developed model. The first
one is a semi-implicit fractional return-mapping algorithm, that can be implemented in zero- or
one- dimensional systems as a constitutive box. The second one is an FD discretization for the
fractional Helmholtz free-energy density and damage energy release rate Y (5.21). Lett € (0,T],

and an uniform time grid given by ¢, = nAt, withn =0, 1, ..., N and time-step size At = T/N.

5.4.2.1 Semi-implicit fractional return-mapping algorithm

We

employ a backward-Euler scheme considering all variables to be implicit, except the damage D in
the stress-strain relationship and yield function. We refer the readers to [236] for a comparison
between implicit/semi-implicit integer-order return-mapping algorithms. Such explicit treatment
of D weakly couples the damage and plastic slip, simplifying the visco-plastic time-integration.
Given known total strains &, at time #,, and a strain increment Ag, .1 we have g, = &, + Agy41-

The discrete form of the stress-strain relationship (5.25) reads:

Tyt = (1= DESDLE (6~ ") |1y (5.34)
The backward-Euler discretization of the flow rule (5.31) yields:
el =&, +sign(t,,1)Ay, (5.35)

with Ay = vy,,,1 — y» representing the plastic slip increment in the interval [#,, t,,,1]. Similarly, the

discretization of the hardening law (5.32) and the damage evolution (5.33) are given, respectively,

by
41 = an + Ay, (5.36)
N
Ay (Y

Dpy1=D , 5.37
n+1 nt I ( )

with the following discrete form for the damage energy release rate (5.21):

- 1 (™ - In+l to1—§ 2
=t =2 [ B ([ o[22 o] e
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Similarly, the yield function (5.28) evaluated at #,,,1 is given by:
furt = 1terl = (1= D) [ + KE DK @)lymy,,, + Hatnan | (5.38)

We utilize trial states, were we freeze the internal variables (except for damage) for the prediction
step at t,,,1. Therefore, we have:

vptrial vp trial

8n+1 =& Xy

=dpn.

The trial visco-elastic stress and yield function are given, respectively, by

trlal

il = (1= DS D E (e =7 limy - (5.39)
friillal |Ttr1al| (1-Dy) |7 +KC@ﬂK(atrla1)|[t Hatrial )

Substituting (5.35) into (5.34) and recalling (5.39), we obtain:

tus1 = T _ sign(r,,1)(1 - DYES DYE (Ay) |,y

T+l n+l’

where we observe that
|Tn+1| +(1 -Dy)E ngE (Ay) |t=t Slgn(Tn.,.]) _ |Tt”al|81gn(7'trlal)

Since the argument inside brackets on the LHS above is positive, we note that sign(t,;1) =

sign(rﬁf{’l ). Hence, we have the updated stress:
Turt = 79— sign( /791~ DYESDVE (M) |1y, (5.40)

Our last step is to derive the closure to for the plastic slip Ay. Substituting (5.40) and (5.36) into

(5.38), we obtain:

furt = £ — (1= D) [ESDPE (M) I1my,, | ~ESDIK (AY) |y, — HAY|.

n+l

Finally, setting the discrete yield condition f,,; = 0, we obtain the following multi-term fractional

differential equation for the plastic slip:

ftrlal

EgﬂtﬁE (Ay) |t=tn+1 + KthﬂK (Ay) |t=tn+1 +HAy = a Tl ) (5.41)
n
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After solving (5.41) for Ay, we directly update the internal variables a1 and slvﬁ |- The damage

update is done through Newton iteration. Let P;]i+1 given at a sub-iteration k:

ve \¥
n+ n+ k ’
1- Dn+1 S
with the following derivative, obtained analytically:
ap Ay anf 1
— = =tyel = L+ .
dDk (1-Dk )2
Therefore, the new iterated damage is given by:
k
Dk+1 k Pn+1

D —
n+l — n+l (dP/de) |t=tn+]

The developed fractional return-mapping algorithm is summarized in Algorithm 5.1.

5.4.2.2 Numerical discretization of fractional operators

The fractional derivatives in the fractional return-mapping Algorithm 5.1 are evaluated implicitly
using the L1 FD method [91]. Let u(¢) : R*¥ — R. The time-fractional Caputo derivative of order

0 < B < 11is discretized as:

CDPu@) L o YR e Rl A (5.42)
01 =t TQ-B) % J AtB Ar > ‘

where ijl < CuAtz_ﬂ and dj =+ 1)1_'3 - jl_ﬁ,j =0, 1,...,n. The above expression can be

rewritten and approximated as:

1
gD’ﬁu(t)L—t [un+1 —up+ Wﬂu] ,

=tpe1 ABT(2 - B)

where the so-called history term HPu is given by:

n
HPu=>"d; [ups1-j — un—;] - (5.43)
j=1
Using (5.42) does not cause any loss of accuracy for the return-mapping, since the backward-Euler

approach for internal variables is first-order accurate. For trial state variables u!” "1’1 = up, the

discretized Caputo fractional derivatives are given by:
HPu

C B, trial
D t N —
0o DO T AT - )

(5.44)
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Algorithm 5.1: Fractional return-mapping algorithm.

1: Database for ¢, £'?, a, Ay, Dy, and total strain &,,, .
trial

. VP — VP trial _

2 & =&n > an+1ﬂ n ;
[Vla
3 7 = (1= DES D E (e =67 ey,
ﬁ .

4 frZ-llal |Ttrlal| (1_ n) T +KCZ) K(a,trlal)lt tn+1 Ha,trlal

. trial
5. if f"v"}l < (v)pthen z
6: &1 =&n, Quil =p, Dy =Dn, Tpyr = ,Z_lf .
7. else
8:  Solve for Avy:
o1 BSDLE (AY) lymty, +ESDIK (A9 limy,, + HAY = £750 /(1 = D)

100 Typp = 70— sign(r!rialy(1 - MEgzﬁ%(Ayﬂﬁ%H

n+1
11: s;)lfl = 8np + sign(ty,4+1)Ay
122 ap4q =an+A'y
_ 2

13: Y"l’f_l = E(z) ( In+1 exp (—I”J’Tls) EVe(s) a’s) dz (Algorithm 5.2).
14:  while |Pk 1|> e do

k k Ay (Yan)

. _ _ n+
15 Pri1 = D1 =Pn =11 ( S )
n+1
k ay  (Tant)

. pk+l _ pk _ P

18:  end while
19: end if

|t=tn+1

Free-Energy/Damage Energy Release Rate: We now discretize the visco-elastic damage

energy release rate YV¢ = —/¥¢. We first rewrite (5.10) as [35]:

B £(sE(s2)
“w‘ﬂm—mJJ;m_ﬂ_nw

We then decompose the integral signs of (5.45) into a discrete summation of n integrals and

dsy ds». (5.45)

approximate £(7) using a backward-Euler scheme to obtain,

el £(51)E(sp)
I )
" ﬂU—ﬁ) (2ps1 = 51 = 52)P
E 1 1 Ag; 1Ag;
i J” IR dsidsy+ P, (5.46)
2(-p) "3) i=0 j= 0 A2 iy = 51 = 52)P

with Agr1 = €41 — €1
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Theorem 5.4.5. The local truncation error fZ“;l for (5.46) satisfies
Pl < cart P, (5.47)
where C denotes a constant depending only on the strain £(t).

Proof. See Appendix B.4. [

Let the first term of the RHS of (5.46) be the approximation tﬁ,fﬂ ~ Y(g,41) evaluated at
t = t,41. Performing a change of variables v{ =t,,1 — sy and v, =t,,,1 — 52, we obtain:
Ag; +1A8 i+l (Tn+l=i (Tn+1-j _
Uyt =B ZZ — I J (vi +v2) P dvydvs, (5.48)
i=0 j=0
with E* = E/(2I'(1 — B)). Using the symmetry between the indices of strains and integration limits

in (5.48), we obtain:

. Ae +1A8 i1 (l+l (Tj+1 _
¥’  =E Z(;Z:‘) e J f (v +v2) B dvydv,. (5.49)
1= j=

We can analytically evaluate the double integral sign in (5.49) to obtain:

t; 1 s 1
[ [ v vy
1y t;

At2P

1-B2-B8) [(i + )PP 26+ j+ 1P P a i+ 2R (5.50)

Substituting (5.50) into (5.49), we obtain the discrete free-energy density,

E
ZZ Denri = en-dene—j = n ) (5.51)

y° P
n+l T JABT(3 - B) i 2

with the following entries for the convolution weight matrix:
bg.” G+ P26+ j+ 12 B+ 22 B, i j=0,1,....n
We can also rewrite (5.51) as the following matrix-vector product:

o _ T
Ype1 = 2ABT(3 _B)A8n+1Bn+1A8n+1, (5.52)
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where we note that B, is an n X n Hankel matrix of convolution weights with 2n — 1 unique

entries bl(]’B ). The n x 1 vector Ag, 41 1s given by:

T
A&,1 = €441 — En> En—En—1> ---» E2— €1, €1 — &0l . (5.53)

Fast Computation of Matrix-Vector Products: The form (5.52) requires a full matrix-
vector product with complexity O(n?) for every time-step, and consequently O(N 3) for full time-
integration. Our aim is to reduce such complexity by leveraging the obtained matrix forms. Since B
is a Hankel matrix, it relates to a Toeplitz matrix T,,; | through B,,, 1 = T,,+1J,,+1, where J,,,| repre-
sents a reflection matrix with ones in the secondary diagonal and zero everywhere else. Therefore,
we obtain:

w,(;] = 3£+1Tn+1Jn+1A8n+l~ (5.54)

—A
2AtPT(3 - B)
The Toeplitz matrix has a circulant embedding of size 2n X 2n [238], fully described by a 2n X 1

vector of unique coefficients:

B _ ;B B 5)) B B ® 17
O = o b2 b0 b b bo’n_l] . (5.55)
Let the following zero-padded vector Astl, with size 2n X 1:
. f T
Ag),y = |(B8], Dt Ot | (5.56)
where As£ +1 = Jn+1A&,41 denotes the reflection of Ag,.1, given by:
Asl =g - _ _ Y 5.57
wel = €1 - €0, E2— €1, ..., En—En—1, Ensl enl . (5.57)
Finally, we obtain the fast form of (5.52) for every time-step #,,,1:
E
o _ = AT -1 B *
Vit = sarG =g T (T(cm) o ?‘(Asn+1)), (5.58)

where F(-) and F~1() denote, respectively, the forward and inverse FFTs and © represents the
Hadamard entry-wise product. Recalling YV¢(g"¢) = —yV¢(£"¢), the discrete damage energy

release rate is given by:

E T "
ve _ _ ve -1 (ﬁE) ve
Yn+1 - ZAZBEF(3 —ﬁE)Asn-"l?: (T(cl’l+1 ) © ?(Af)n_‘_l)) . (559)
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Algorithm 5.2: Fast computation of fractional damage energy release rate.

. . . BE) Be) ,.BE) BE)
1: Database: £'¢ and 2N — 1 coeflicients b0,0 R bO,N , bl,N S bN,N'

2: Compute Aa}‘flil using (5.53), and form Asl‘;i j using (5.56).
3: Compute the FFT T(Asl‘;_{; ).

4. Compute cl(ﬁ ’f ) using (5.55), using the known bBE) coefficients.
5: Compute the FFT F (c,(ﬁ tij )).
: _ E T 1 BE) *
Y = TR A T (P o Faere)).
7: return Y .
n+1
where,

AsYe = [s¢ — el ent =&, ..., b =&l &t —ebe], (5.60)
and with Asrvlfj being the reflected and zero-padded form of (5.60). Also, the vector c’(ﬁ f ) is given
by:

Be) _ [,,Be) . BE) BE) Bg) L BE) Bp) |7
e [bo’n BV b 0 bEE PP bo’n_l] : (5.61)
with bf.fE) G+ )2 BE 24+ D2 BE 4 i+ j+22PE andi, j =0, 1, ..., n. Algorithm

5.2 demonstrates the numerical evaluation of the damage energy release rate for every time-step
[ =1Ipi1-

Computational Complexity of the Developed Scheme: Employing (5.59) for full time-
fractional integration over Q yields a total computational complexity of O(N 2 log N), similar to the
O(N?) complexity of the employed L1 FD scheme for fractional Caputo derivatives. Furthermore,

the required storage for the developed scheme is O(N).

5.5 Numerical Tests

We present two qualitative examples with monotone/cyclic loads for the SB free-energy density
and the developed damaged, visco-elasto-plastic model, where we verify the convergence and
computational complexity of the developed algorithms. For convergence analyses, let u* and u®

be, respectively, the reference and approximate solutions in Q = (0, 7], for a specific time-step size
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At. The global relative error and convergence order are given, respectively, as:

[lu* — u| oo
err(Ar) = , L (Q), Order = log,
[lu*[| o)

err(At) ] (5.62)

err(At/2)
We consider homogeneous initial conditions for all model variables in all cases. The presented
algorithms were implemented in MATLAB R2019a and were run in a system with Intel Core

17-6700 CPU with 3.40 GHz, 16 GB RAM and Ubuntu 18.04.2 LTS operating system.

Example 1 (Convergence for Free-Energy Density). We start with two convergence tests for the
fractional Helmholtz free-energy density using fabricated solutions. The first one employs second-
order increasing monotone strains, and the second uses cyclic varying strains.

eMonotone Strains. Lett € (0,T], with total time T = 1[s]. We define the quadratic strain
form &(t) = (t/T)z. Therefore, analytical solution for the Helmholtz free-energy (5.10) can be

obtained directly as:

2288 +28 (B-9)]
I'G-p)

We set E = 100 [Pa.sP), and estimate the computational complexity of the direct (5.54) and fast

_B
T4]E82 2,

vr(e) =

(5.58) forms, with varying At. Figure 5.3 presents the approximate free-energy solution, where we
recover the standard limit cases of a Hookean spring (8 — 0) and a Newtonian dashpot ( — 1),
as well as second-order accuracy for the developed discretization. Figure 5.4 presents the obtained
O(N?) and O(N? log N) computational complexities, respectively, for the direct and FFT-based
free-energy time-integration schemes. The break-even point lies at N = 200 time-steps.

oCyclic Strains. We utilize a fabricated sinusoidal strain solution £(t) = &g sin(wt), with
t € (0, T), with amplitude €y and frequency w. The corresponding analytical solution for Y™ is
cumbersome, and therefore not shown here. We seteg =1, w =1 [s_l], T =50[s], B =0.5and
E = 1[Pa.s>), and start with a sufficient number of time-steps to capture the oscillation modes.
Figure 5.5 illustrates the obtained results, where we capture the highly oscillatory behavior for

both transient and steady-state parts with second-order accuracy.

Example 2 (Fractional Visco-Elasto-Plastic Model with Damage). We test our developed model

and fractional return-mapping algorithm subject to prescribed monotone/cyclic strains. The con-
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Figure 5.3: Numerical results for the free-energy computation with a quadratic form for (¢). (Left)
O vs strain with varying B. (Right) Relative error vs time-step size for varying 3, with second-order

accuracy.

10°

—_
o
w

CPU Time [s]
5—;

—&—Direct Mat-Vec
101 —Slope = 3
—©—FFT-Based
- - -Slope =2
1073 |

10! 102 108 10* 10° 108
Number of Time Steps N

Figure 5.4: CPU time vs number of time-steps of the developed time-integration schemes for the
fractional Helmholtz free-energy density under monotone strains.

vergence analysis is done with a benchmark solution and we analyze the quality of the anomalous
damage response with respect to the fractional orders B, Bk from visco-elasticity/plasticity under
different strain amplitudes/frequencies.

® Monotone Strains. Let £(t) = €t, where t € (0, T}, final time T = 0.03125 [s] and strain rate
& =0.64[s"1, and therefore &(T) = 0.02. We set Bg = 0.5, E = 50 [Pa.s">], K = 10 [Pa.sPK],
¥ =1[Pa), S = 1074 [Paland s = 1. A benchmark solution for the stress (see Fig.5.6) is computed

with time-step size At = 2720 5] and varying fractional orders By, where we observe that higher
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Figure 5.5: (A) Free-energy density computations for cyclic strains vs time, N = 3200 time-steps
and 8 = 0.5. (B) Convergence analysis showing second-order accuracy.
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Figure 5.6: Stress vs strain for the benchmark solution with time-step size At = 2720, BE =0.5and
different Bg values.

values for Bk led to increased hardening and damage for the prescribed strain rate. We observe
a linear convergence rate in Figure 5.7a, due to the employed backward-Euler discretization in the
fractional return-mapping algorithm. A second-order computational complexity for the fractional
return-mapping algorithm is also verified in Figure 5.7b. The influence of hardening and visco-
elastic damage energy release rate is shown in Figure 5.8. We observe that higher damage values
are obtained for g = 0.7, despite the higher accumulated plastic strains for lower values of B.

The higher damage is instead due to higher values of damage energy release rates shown in Figure
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Figure 5.7: Fractional visco-elasto-plastic model with damage under monotone strains. (A) First-
order convergence behavior. (B) Computational time vs number of time-steps, with second-order

computational complexity.
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Figure 5.8: Developed model under monotone strains: (A) Damage vs accumulated plastic strain,
with higher damage but less plasticity for higher Sg. (B) Damage energy release rate vs visco-elastic
strains, which are both larger for higher values of fractional order Sk .
5.8b for B = 0.7. We note that similar to the stress-strain response, the visco-elastic fractional
free-energy is power-law memory-dependent on the strain rates, therefore leading to the observed
anomalous behavior.

e Cyclic Strains. To investigate the interplay between the damage/hardening/viscosity and

hysteresis effects, we perform a constant rate loading/unloading cyclic strain test, mathematically
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expressed as:

2
e(t) = 284 arcsin (sin 2rwt)),
n

where € and w represent, respectively, the amplitude and frequency of total strains. Here, we
focus on low-cycle fatigue behavior, and therefore we set € = 0.1, and three strain frequencies
w = {2r, 4n, 8x} s, which correspond, respectively, to approximate absolute strain rates
of |€|= {2.51, 5.02, 10.05}. We set a total time T = 10[s], and for each frequency, we use
N = {8000, 16000, 32 000} rime-steps, corresponding to At = {1.25x1073, 6.25x 1074, 3.125x
10_4} [s]. The material parameters are set to E = 25 [Pa.s'BE], K =10 [Pa.s'BK], ¥ =1 [Pa],
S = 1[Pa] and s = 1, where we set the fractional order values Br = Bg = {0.3, 0.5, 0.7}.

The stress-strain hysteresis results are presented in Figure 5.9. We observe that higher fre-
quencies led to more softening in the model, while higher values of fractional orders BE, Bk led to
increased hardening, followed by softening. Such damage increase is illustrated in Fig. 5.10, where
we observe that higher Bg and Bk values led to increased plasticity for all cases, with a significant
increase of damage rates for Bg = Px = 0.5,0.7 when w = 8n. We also observe from Fig. 5.11
that due to the anomalous nature of the fractional visco-elastic free-energy potential, the damage
energy release rates substantially increase with higher fractional orders and loading rates, which
contribute to the observed higher values of damage. Therefore, for this model, higher material
viscosity in both visco-elastic and visco-plastic parts might be sufficient to yield lower values of
damage at low frequencies due to internal dissipation mechanisms, but at higher frequencies and

therefore more loading cycles, they lead to earlier material failure.
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Figure 5.9: Stress hysteresis response for cyclic strains with frequencies (A)-(C) w = 2n, (D)-(F)
w=4n,(G)-(I) w = 8n.
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Figure 5.10: Damage vs accumulated plastic strains with varying strain frequencies.
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CHAPTER 6

A GENERAL RETURN-MAPPING FRAMEWORK FOR FRACTIONAL
VISCO-ELASTO-PLASTICITY

6.1 Background

Experimental evidence suggests that complex material behavior may possess more than a
single power-law scaling in the viscoelastic regime, particularly in multi-fractal structures, which
are characteristic of cells [25] and biological tissues [173], due to their complex, hierarchical
and heterogeneous microstructure. For such cases, a single fractional rheological element is
not sufficient to capture the observed behavior, even if data suggests a linear viscoelastic behavior.
Stamenovié [25] measured the complex shear modulus of cultured human airway smooth muscle and
observed two distinct power-law regimes separated by an intermediate plateau. In [23] Kapnistos
et al. found an unexpected tempered power-law relaxation response of entangled polystyrene ring
polymers, compared to the usual relaxation plateau of linear chain polymers. Such behavior was
interpreted through self-similar conformations of double-folded loops the in ring polymers, instead
of the reptation observed in linear chains.

In addition to multiple viscoelastic power-law behaviors, there also exists evidence of bio-
plasticity in soft media [20, 21]. The creep behavior of human embrionic stem cells (ESCs) under
differentiation was studied by Pajerowski et al. in [20] through micro-aspiration experiments at
different pressures. The cell nucleous demonstrated distinguished visco-elasto-plastic power-law
scalings, with @ = 0.2 for the plastic regime, independent of the applied pressure. It is discussed
that such low power-law exponent arises due to the fractal arrangement of chromatin inside the
cell nucleus. Studies on force-induced mechanical plasticity of mouse embrionic fibroblasts were
performed by Bonadkar et al. in [21]. It was found that the viscoelastic relaxation and the
permanent deformations followed a stochastic, normally-distributed, power-law scaling S(w), with

values ranging from 8 = 0 to 8 = 0.6. The microstructural mechanism of plastic deformation in
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the cytoskeleton is due to the combination of permanent stretching and buckling of actin fibers.

Regarding existing modeling approaches of anomalous plasticity, several works employed frac-
tional calculus to account for the visco-plastic regimes of several classes of materials, and we
outline three of them: Time-fractional, space-fractional and stress-fractional. Time-fractional ap-
proaches focus on introducing memory effects into non-equilibrium viscous variables [1, 46], and
consequently modeling power-laws in both visco-elastic and visco-plastic regimes, which is of
interest for polymers, cells, and tissues. Suzuki et al. [1] developed a fractional visco-elasto-plastic
model that provides a constitutive interpolation between rate-independent plasticity and Perzyna’s
visco-plasticity by introducing a SB model acting the plastic regime, and utilizes a rate-dependent
yield function, which was later proved to be thermodynamically consistent in a further extension of
the model to account for continuum damage mechanics [75]. A three-dimensional space-fractional
approach to elastoplasticity was also developed by Sumelka [47] in order to account for spatial
nonlocalities. The model is based on rate-independent elastoplasticity, and nonlocal effects are ac-
counted through a fractional continuum mechanics approach, where the strains are defined through
a space-fractional Riesz-Caputo derivative of the displacements. Finally, stress-fractional models
for plasticity have found to be interesting for soil mechanics and geomaterials that follow non-
associated plastic flow [48, 49], i.e., the yield surface expansion in the stress space does not follow
the usual normality rule, and may be non-convex. Sumelka [48] proposed a three-dimensional
fractional visco-plastic model, where a fractional flow-rule with order 0 < @ < 1 in the stress
domain naturally models non-associative plasticity. Interestingly, this model recovers the classical
Perzyna visco-plasticity as @« — 1, and the effect of the fractional flow rule can be a compact
descriptor of micro-structure anisotropy. Later on, Sun and Sumelka [49] developed a similar
stress-fractional model, which was successfully applied for soils under compression. We refer the
reader to the interesting review work by Sun et al. [50] a review of fractional calculus applications
in plasticity.

In this work we develop a generalized fractional visco-elasto-plastic models, where the vis-

coplastic device can be coupled several existing fractional linear/nonlinear viscoelastic represen-
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tations. More specifically, we utilize a fractional viscoplastic device developed in [1, 75], which
is then couple with a series of linear fractional models, such as Scott-Blair (SB), Kelvin-Voigt
(FKV), Maxwell (FM), Kelvin-Zener (FKZ), Poynting-Thomson (FPT); and also a quasi-linear
model for large strains. Then, a generalized fractional return-mapping algorithm is proposed,
which overcomes existing difficulties in previous developments by first fully-discretizing all frac-
tional operators, and then performing the predictor-corrector procedure. More specifically, existing
approaches are built on the notion of employing the predictor-corrector approach before the full
discretization of fractional operators, while treating trial states for stress and internal variables to
be continuous functions of time. This prevents models with serial combinations of SB elements to
be incorporated in associated yield functions in a straightforward fashion. The main features of the

proposed framework are:

* We perform a full discretization of fractional viscoelastic models prior to the definition of
trials states, which allows a linear decomposition between final and trial stresses regardless

of the employed models.

* The fractional return-mapping algorithm is fully-implicit for linear viscoelastic rheology, and

semi-implicit for quasi-linear viscoelasticity.

* Due to the full-discretization before the return-mapping procedure, the operations involv-
ing the plastic-slip are memoryless, which resembles return-mapping steps from classical

elastoplasticity.

* The correction (return-mapping) step has the same structure regardless of the employed

viscoelastic models.

We carry out a number of numerical experiments involving fabricated and reference solutions
under monotone and general loading conditions, and observe a global accuracy ranging from O(Ar)

to O(A1>75), according to the regularity induced by the associated FDEs and loading conditions.
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This work is organized as follows. In Section 6.2 we present the mathematical definitions
employed in this work. In Section 6.3 we describe the considered linear/quasi-linear fractional
visco-elastic models, that are coupled with fractional visco-elasto-plasticity in Section 6.4. All
corresponding models are discretized and posed in a unified fractional return-mapping form in
Section 6.5. Convergence analyses and computational performance of presented models and

return-mapping algorithm are performed in Section 6.6.

6.2 Definitions of Fractional Calculus

We start with some preliminary definitions of fractional calculus [33]. The left-sided Riemann-

Liouville integral of order 8 € (0, 1) is defined as

L[ 6
F(,B)LL(t—s)l—ﬁds’ I

where I represents the Euler gamma function and 77, denotes the lower integration limit. The

EEP P =

corresponding inverse operator, i.e., the left-sided fractional derivative of order S, is then defined

based on (1.1) as

RL B _d R 1-B 1 ir f(s) .
(tLDt ) = dt(tLIt f)(t)_—r(l—ﬁ)dt " —(l‘—s)ﬁ ds, t>tf. (6.1)
Also, the left-sided Caputo derivative of order 8 € (0, 1) is obtained as
C B _(RL-pAf o 1 Jt 1(s) ,
G Dy O = L dt)(t) Ta-B )i, G=sp ds, t>1]. (6.2)

The definitions of Riemann-Liouville and Caputo derivatives are linked by the following relation-

ship:
fr) +(C
D(1-B)t+t)f 'L

which can be obtained through integration by parts followed by the application of Leibniz rule

ELof ) = 10} (6.3)
on (6.1). We note that the aforementioned derivatives coincide when dealing with homogeneous

Dirichlet initial/boundary conditions. Finally, we define the two-parameter Mittag-Leffler function

E, p(2) as [32]:

o0 k
<
Ea,b(Z) = kz(:) m, RE(CI) > 0, b S C, Z € C (64)

135



6.3 Fractional Visco-Elasticity

We present the linear and quasi-linear fractional visco-elastic models that we couple with the

visco-plastic return-mapping procedure.

6.3.1 Linear visco-elasticity

@) scott-Blair (SB) Self-similar mechanical @) Fractional Kelvin-Voigt (FKV)
i

E,p
_A_ ter,

@) Fractional Maxwell (FM) @) Fractional Kelvin-Zener (FKz) (&) Fractional Poynting-Thomson (FPT)

E
Efy E% B q"lg FLh 4

|E3’ ﬁ?)
i =Jerq |

Figure 6.1: Fractional linear viscoelastic models employed in this work, constructed from se-
rial/parallel combinations of SB elements. The SB building blocks naturally account for an infinite
fractal arrangement of Hookean/Newtonian elements. The fractional quasi-linear model employed
is not represented by a mechanical analogue, although the time-dependent component of the relax-
ation function has a SB-like representation.

Scott-Blair (SB) Model: The rheological building block for our framework is the fractional
Scott-Blair (SB) visco-elastic element, which compactly represents an anomalous visco-elastic

constitutive law connecting the stresses and strains:
o) = E%Dtﬂs(t), t>0, &0)=0, (6.5)

with pseudo-constant E; [Pa.sP] > 0 and constant fractional order in the range 0 < 8 < 1, which
provides a material interpolation between Hookean (8 — 0) and Newtonian (8 — 1) elements. The
pair (8, E) uniquely represent the SB constants, where the pseudo-constant E[Pa.sP] compactly
describes textural properties, such as the firmness of the material [24, 172]. In this sense E is
interpreted as describing a snapshot of a non-equilibrium dynamic process instead of an equilibrium

state. The corresponding rheological symbol for the SB model represents a fractal-like arrangement
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of springs and dashpots [6, 34], which we interpret as a compact, upscaled representation of a fractal-
like microstructure. Regarding the thermodynamic admissibility, we refer the reader to Lion[35]
for the SB model, and Suzuki et al.[75] for the combination of the SB element with more complex
mechanisms of visco-plasticity and damage. The relaxation function G(¢) [Pa] for the SB model is

given by the following inverse power-law form:

G5B(t) = B (6.6)

—_—t
It -a)
which is the convolution kernel of the differ-integral form in (6.5).

Fractional Kelvin-Voigt (FKV) Model: Through a parallel combination of SB elements, we

obtain the following stress-strain relationship [34]:
ot) =By COPle) +By CD2er), 150, £0)=0, 6.7)

with fractional orders 0 < f1,8> < 1 and associated pseudo-constants E; [Pa.sP1] > 0 and
E, [Pa.sﬁZ] > 0. The corresponding relaxation modulus G(¢) [Pa], is also an additive form of two

SB elements:

EZ _ﬁz

FKV . 1 -8
G OE Ry A B

(6.8)

Which has a response characterized by two power-law regimes, with a transition from faster to
slower relaxation. Assuming 8, > 1, the asymptotic responses for small and large time-scales are

given by GFKV « B2 ast — 0 and GFKY ~ Bl as 1t — .

Fractional Maxwell (FM) Model: Through a serial combination of SB elements, we obtain the

fractional Maxwell (FM) model[24], given by:
E _
)+ = CoP2Plo) =By CO2e(), 150, (6.9)
1

with pseudo-constants E; [Pa.sﬁl] > 0, ]EQ[Pa.sﬁ 1] > 0, fractional orders 0 < 81 < B, < 1, with
0 < By — B1 < 1 and two sets of initial conditions for strains £(0) = 0, and stresses o(0) = 0. We

note that in the case of non-homogeneous ICs, there needs to be a compatibility conditions[32]
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between stresses and strains at 7 = 0. The corresponding relaxation function for this building block

model assumes a more complex, Miller-Ross form[24]:

- Ey p,-
GM@) =Byt P1Eg, g, 1-p, (—ﬁrﬁz ﬁl). (6.10)

Interestingly, the presence of a Mittag-Leffler function in (6.10) leads to a stretched exponential
relaxation for smaller times and a power-law behavior for longer times. We also observe that the
limit cases are given by G'M 7 Plast — 0and G'M ~ 17P2 as 1 — oo, indicating that the FM
model provides a behavior transitioning from slower-to-faster relaxation. We refer the reader to the
works [24, 174] for a number of applications of the aforementioned models. We notice that both

FKV and FM models are able to recover the SB element with a convenient set of pseudo-constants
and B = 5>.

Fractional Kelvin-Zener (FKZ) model: The fractional generalization of the standard linear solid
(SLS) model is given by a FM branch in parallel with a third SB element, given by the following
FDE:

E,E
By COf2 483 Cpf3 4 223 Cpf2 B3P g, 6.11)

E; O E,

1+ ZCDBZ B1:|O'(l)

with fractional orders 0 < 81 < 8> < 1 and conditions 0 < S, — 1 < land0 < B+ 53— B < 1,
pseudo-constants E [Pa.sﬁ 11> 0,E;3 [Pa.s'B3] >0,E, [Pa.sﬁZ] > 0 and same initial conditions
as the FM model. We note that the FM model is recovered when E3 = 0 and the FKV model is
recovered when setting E; = 0. The relaxation function is obtained in a straightforward fashion as

the summation of relaxation functions from the SB and FM models:

E E
FKZ /.~ ._ 1. =B —L4Pr-B . -
=F lEs _p 1 p. |— 2771 =l 3 12
G (1) 1t Br—B1.1-B1 ( Ezt )+ I _ﬁs)t , (6.12)

which leads to three inverse power-law regimes for short, intermediate and long times, according

to particular relationships between 51, 8>, B3 [36].

Fractional Poynting-Thomson (FPT) Model: Finally, we introduce our last fractional linear

visco-elastic model given by the serial combination between a FKV model and a SB element:

Lc P13, Bac ppa-p3 [ cnBi C 3
1+E 0O G ]a(t)—[El SOV By GO e, (6.13)
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with 0 < B3 < B < 1l and 0 < B3 < By < 1, additional conditions 0 < B; — B3 < 1 and
0 < By — B3 < 1, and pseudo-constants E; [Pa.sB1] > 0, E, [Pa.sP2] > 0, Ex [Pa.sP3] > 0 and
homogeneous initial conditions o (0) = 0 and £(0) = 0. Similar to the FKZ model, we recover the
FM one when setting either E; or E; to zero; although the FKV model cannot be recovered except

for the trivial case when o () = 0.

6.3.2 Quasi-Linear Fractional Visco-Elasticity

Although fractional linear visco-elastic models provide suitable relaxation functions that describe
the anomalous visco-elastic dynamics of a number of soft materials, at times, complex microstruc-
tural deformation mechanisms and large strains induce material nonlinearities, and hence the
relaxation function itself depends on the applied strain levels. To incorporate this additional effect,

we also consider the following quasi-linear, fractional visco-elastic model (FQLV) [10, 168]:

t e
o(t. &) =J Gt — 927 E s 4. (6.14)
0 oe

where the convolution kernel is given by a multiplicative decomposition of a reduced relaxation
function G(¢) and an instantaneous, nonlinear elastic tangent response with stress o¢. In the work
by Craiem et al.[10], the reduced relaxation function has a fractional Kelvin-Voigt-like form with
one of the SB replaced with a Hookean element. Here, we assume a simpler rheology and adopt a

Scott-Blair-like reduced relaxation in the form:
G@t)=Et ™ Y/I'(1 - ), (6.15)

with the pseudo-constant E with units [s*]. We adopt the same, two-parameter, exponential
nonlinear elastic part as in[10]:
o¢(e) = A (eBg _ 1) , (6.16)

with A having units of [Pa]. Substituting Equations 6.15 and 6.16 into Eq.6.14, we obtain:

_ EAB (! eBeWg(s)
o(t,e)= Fl-a) )y (=3 ds, (6.17)

which differs slightly from the linear SB model (6.5) in the sense that an additional exponential

factor multiplies the function being convoluted.
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6.4 Fractional Visco-Elasto-Plasticity

With all fractional viscoelastic models defined in Section 6.3, we couple any of them, subject
to a viscoelastic strain £"¢(¢), to the fractional viscoplastic device illustrated in Fig.6.2. The
viscoplastic device is composed of a parallel combination of a Coulomb element with initial yield
stress ¥ [Pa], a SB element with pseudo-constant K [Pa.sﬁK ] and fractional order Bk, and a
Hookean spring with constant H [Pa]. The entire visco-plastic part is subject to a visco-plastic
strain €"P(¢) : R* — R. In order to obtain the kinematic equations for the internal variables, we
start with an additive decomposition of the total logarithmic strain £(z) : R* — R acting on the
visco-elasto-plastic device:

e =)+ P (1)

H
—AMN—
( )
® @ 4 ® K, B
I} =1 /]

~—1 - @ —1 GY
Viscoelastic Viscoplastic
8VC SVP

Figure 6.2: Fractional visco-elasto-plastic model diagram. Here, any of the linear and quasi-linear
fractional viscoelastic models can be separately coupled with a fractional viscoplastic rheological
device.

The visco-plastic effects are accounted for through the definition of a memory- and rate-

dependent yield function f (o, @) : R x R* — R~ U {0} in the following form [1]:
flo,a) =] - 0¥ + kS DK (a)+Ha/]. (6.18)

Here, a € R* represents the internal hardening variable, and the above form accounts for isotropic
hardening. The set of admissible stresses lie in a closed convex space, where the associated

boundary respects the yield condition of classical plasticity (see [75], Lemma 4.1, setting the

140



damage as D = 0). From the defined yield function (6.18), and the principle of maximum plastic
dissipation [192], the following properties hold: i) associativity of the flow rule, ii) associativity
in the hardening law, iii) Kuhn-Tucker complimentary conditions, and iv) convexity. The set of

evolution equations for the internal variables £"? and « is obtained by:

. of . . af .
vp - 9
2 (90'% HR%

where y() : R* — R* denotes the plastic slip rate. Evaluating the above equations using (6.18),

we obtain the evolution for viscoplastic strains and hardening [1]:
&"P = sign(t)y, (6.19)
a=vy. (6.20)

Proposition 1. The closure for the plastic slip rate y(t) € R with a SB visco-elastic part of
constants (E, Bg), (K, Bg) and H (model M1 [1]) with homogeneous initial conditions for the
internal variables and their respective rates, i.e., €"P(0) = a(0) = y(0) = 0 and y(0) = 0 and
&P(0) = @(0) = y(0) = 0 is given by the following fractional Cauchy problem:

(0B
BECDPEy(t) + R EDPK (1) + Hy(1) = sign(o)E % +COPEs() 6.21)

Proof. See Appendix C.1. [l

6.5 A Class of Return-Mapping Algorithms for Fractional Visco-Elasto-
Plasticity

Given the presented viscoelastic and viscoplastic models, respectively, in Sections 6.3 and 6.4,
we now demonstrate now to solve each resulting system of nonlinear equations, according to the
choice of viscoelastic models. The considered fractional return-mapping approach in this work is
fully discrete, i.e., we first discretize all fractional derivatives using a finite-difference approach,
and then employ trial states for the internal variable in a predictor-corrector scheme.

We discretize the fractional Caputo derivatives in Equations 6.5-6.9 through an implicit L1

finite-difference scheme[176] and also through a fast time-stepping approach[106]. For simplicity,

141



we present here only the discretization using the L1 approach. Let € = (0,7] decomposed as a
uniform time-grid with N time-steps of size At, such that ¢, = nA¢, withn =0, 1, ..., N. The
time-fractional Caputo derivative of a real-valued function u(¢) € C? (Q)attimet = t,,, is therefore
discretized as [176]:

1

_ _ @ 2-p
= 3Ta 5 [tns1 — un + H u| + OAFP), (6.22)

§ O u®iey,,,
with history term H”u given by the following form:
1 B
HPu = Z bj [un+1—j - un—j] )
J=1

with weights b’f = (j+ DIA - j1=A,

6.5.1 Time-Fractional Integration of Visco-Elastic Models

In the following, we present the discretized forms for each considered fractional viscoelastic model

from Section 6.3, which are taken in a fully-implicit fashion.

Scott-Blair Model: Evaluating both sides of (6.5) at t = t,,, 1, we obtain:
Tl = By SDfIS(I)b:an,
which, applying (6.22), we directly obtain:
Ope1 = C38 |eps1 — en + HP1E| (6.23)

with strain history HP1e and constant C ISB shown in Appendix C.2 for the SB and next model

discretizations.

Fractional Kelvin-Voigt Model: Evaluating both sides of (6.7) at ¢ = ¢,,,1, we obtain:
B B
On+l = Elgﬂt lg(t)|t=tn+1 + Ezg@t 23(t)|t=tn+1 ,
which, applying (6.22), for the fractional derivatives of order 8 and 3;, leads to:

Opal = CIKV Entl — En +7‘(ﬂ18] + C§V [sn+1 —en + HP2e|. (6.24)
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Fractional Maxwell Model: Evaluating both sides of (6.9) at ¢ = ¢,,,1, we obtain:

CDﬁZ ﬁlo‘(t)|;=; =E, Oﬂﬁzs(f)h =1,

On+l +]E 0

which, applying (6.22), for the fractional derivatives of strains and stresses, leads to:

Y [epar — en+ HP2e] + CY o ~ HP2 10| .
Op+l = 1 + Céw s ( . )
with the emergence of a stress history term HP2 1o,
Fractional Kelvin-Zener Model: Evaluating both sides of (6.11) at ¢ = ¢,,,|, we obtain:
Tsl + = C@ﬂz P, =2 G0 % eWimy,,, +E3 GO ey,
L B2B3 ¢ o Br+B3-A
200 £ty
which, applying (6.22), for the fractional derivatives of strains and stresses, leads to:
et = (1+CKZ)! [sz (A8n+1 + 74/328) + Kz (A8n+1 + HP3 g) 626)

¢ CX7 (A1 + HEZPAP15) 4 CKZ (- HP2 P15 )|

Fractional Poynting-Thomson Model: Finally, we evaluate both sides of (6.13) and obtain:
C@ﬁl Bl oy, + =250 Powl, -,

On+l +

- E, %@ éWlimy | +En Oﬂﬁze@lt .

which, applying (6.22), for the fractional derivatives of strains and stresses, leads to:

Guer = L+ CFT 4 CETY Oy (Meyer + HP1E) + CT (Mo, + HP2e)

(6.27)
+ C;T (0‘n+1 +7‘[ﬂ1_ﬂ30') + CfT (O’n - Wﬁz_ﬁ30')] )

Fractional Quasi-Linear Visco-Elastic Model: The discretization for the FQLV model (6.17)

has a slightly different development than the preceding models. Nevertheless, it only involves a
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slight modification of the fully-implicit L1 difference approach by with a trapezoidal rule taken on

the exponential factor. More specifically, we evaluate the quasi-linear viscoelastic operator as:

EAB A, (Tk+1

I k+1 ~ &k
Optl = F(l—,B)Z (tne1 —9) eXP(BSk+%)(—At )ds,

with £.,17 (gi + €j41)/2. Following similar steps as in [176], we obtain the following discretized
2

stresses at t = t,,,1 for the FQLV model:

ClQLV

On+l =

o 00€
exp(Bsn+l) (epe1 —€n) + HT | &, 5 , (6.28)
2 &

with constant C lQLV = EAB/(At?T(2 — @)). The discretized history load in this case is given by:

oo

H (8 3 ) ZCXP(BS 1) (En—ka1 — En—i) bis (6.29)
& +2

with weights by = (k + 1)1~ — k172 Since the trapezoid approximation of the strains in the

exponential term are second-order accurate, the overall accuracy of the visco-elastic models is still

bounded by the native L1-difference approach, and therefore should be of O(A2™),

Remark 6.5.1. We note that except for the quasi-linear viscoelastic model, any of the aforemen-
tioned discretizations for linear models can recover existing classical counterparts by properly
setting 8; — 0 or B; — 1. In these cases, to achieve comparable performance to integer-order
models, history terms can be selectively disregarded and the corresponding discretization constants

can be adjusted to their integer-order counterparts.

6.5.2 Time-Fractional Integration of Visco-Plasticity

We start with the discretization of internal variables. Following [1], we assume a strain-driven

process with known total strains &,,,1 at time ¢,,, ;. The strain decomposition becomes:

_ e vp
Entl =€ T E, - (6.30)

The flow rule (6.19) is discretized through a first-order backward-Euler approach, which yields:

el =& +sign(t,41)AY a1 6.31)
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with Ay,,11 = vue1 — Yn representing the plastic slip increment in the interval [#,, t,,41]. Similarly,

the discretization of the hardening law (6.20) is given by
Upl = On + Aypy, (6.32)

Evaluating the yield function (6.18) at #,,,1 and employing discretization (6.22) for the hardening

variable, we obtain: is given by:

Y B
o1 = lops1| — [0' +Kg@; K(a)|,=,n+1 +Han+1]

o] - [aY +K* (ozn+1 —ap + wﬁKa) + Hozn+1] , (6.33)

with K* = K/(APKT(2 - Bk)).

The next step is to define trial states for the stress and yield functions, which is the core
idea to define the viscoelastic prediction phase, and the correction step after solving the internal
viscoplastic variables. Therefore, we freeze the internal variables for the prediction step at ;1.

Therefore the trial visco-plastic strains and hardening are given by:

trial .
g’P =g7, o'ral — o, (6.34)
In this token, the trial yield function is given by setting the above relationship for the hardening

variable into (6.33) to obtain:

n+l n+l

ftrial = |gtrial| _ [O_Y L K* (7_151((1,) + Ha/n] i (6.35)

In order to complete the return-mapping procedure, we need an explicit relationship between
the stresses 07,41 in terms of the known total strains &,,1. In order to achieve this, we solve for
the plastic slip Ay using a discrete consistency condition f,,1 = 0. We start with the trial stresses
for each presented fractional visco-elastic model by substituting the visco-plastic trial strain (6.34)

and (6.30) into (6.23)-(6.28), where we obtain, for each discretized model:
Scott-Blair:

oirial = 58 ey = e+ HPIE - &P (6.36)
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Fractional Kelvin-Voigt:

girial _ oKV [gn+1 — e+ HP(e - evp>] +cyY [en+1 —en + HP2(e - s”’)] . (637)

Fractional Maxwell:

CY [ens1 = en + HP2e = £"7)] + CY [0 — HP2 P10 ]

trial _

= , 6.38
n+l 1+ Cé” (©-39)
Fractional Kelvin-Zener:
o = CfP O (Aspar 26 =) ) 4 CFF (e + OB = D))
+ sz (A8n+1 + HP2B3 P (s - SVP)) + sz (0"1 - WBZ_BI‘T)] :
Fractional Poynting-Thomson:
ottt = (14 CET+ Iy O] (Asiy + 1 6= ")) + CLT (Ao + HP2 (=27 (6.40)

+CET (a,m + HPI -/33(7) o (a,, - 7—('32_'330)] .

Fractional Quasi-Linear Viscoelastic Model:

For this model, we follow a similar procedure of substituting the viscoelastic strains into (6.28),
however we evaluate the exponential term explicitly in time for all stages of the return-mapping

algorithm. Therefore, the corresponding trial state becomes:

. 0 e
otrial - COLY | exp(B(en — £37)) (£ns1 — 6n) + HO (a -, = )] . (64D

6.5.3 Generalized fractional return-mapping algorithm

From the aforementioned trial states, each discretized visco-elastic constitutive laws (6.23)-(6.28)

and recalling (6.31), one can show the following stress correction onto the yield surface:

Tyt = o8l sign(oriahyCYe (B, At, £)Aypi1, (6.42)
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where interestingly, all discretized, aforementioned visco-elastic models change the return-mapping
procedure by a scaling factor Cf (C, &, g,7) € R* acting on the Lagrange multiplier Ay, which

is given by, for each model:

cyB (Scott — Blair)
CIKV + C§V (FractionalKelvin — Voigt)
C{V[/(l + Céw) (FractionalMaxwell)

(C{(Z+C§Z+C§Z)/(1+sz) (FractionalKelvin — Zener)

(C{DT + CgT)/(l + C§T + CfT) (Fractional Poynting — Thomson)

ClQLV exp(B(en — sxp)) (FractionalQuasi — Linear — Viscoelastic).
(6.43)

Most of the above cases can be obtained through the derivation of the fractional Kelvin-Zener
model, from which the Scott-Blair, fractional Maxwell and fractional Kelvin-Voigt models can be
directly recovered, and note that the derivation for the fractional Poynting-Thomson and quasi-linear
viscoelasticity follow similarly in a straightforward fashion. Substituting the updated stresses (6.42)

into the discrete yield function (6.33) and recalling (6.35), we obtain:
fust = U0~ (Choy + 4 H) Ay

Enforcing the discrete yield condition f,,1 = 0, we obtain the solution for the discrete plastic slip:

ftrial

n+l1
” . (6.44)
C;ﬁw +K*+ H

Aypel =

6.5.3.1 Comparison of the return-mapping algorithm to existing approaches

In [1], trial states were defined prior to the discretization of fractional operators, and the correspond-

ing trial variables were taken as continuous functions of time, therefore making the return-mapping
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Algorithm 6.1: Fractional return-mapping algorithm.

1: Database for ¢, €7, o, a, and total strain &,,, 1.

trial .

. VP _ P trial _
L =En s Apyp T
3: Compute 0'” ial from (6.23)-(6.28) according to the selected fractional visco-elastic model.
4: fé:’l‘ll |0'm“l| [o’Y +K* (WBKQ) + Han]

) trial
5: if f%}1 < E/)pthen .

t

6: £, =&, Qnil =Qn, Opyl = a'n:’f .
7: else
8:  Return-Mapping:
9:  Compute C"e from (6.43) according to the selected fractional visco-elastic model.

100 Ayyyg = f”’“l (Cyay +K* +H)

11: Ope] = O_Irlal Slgn(O't”al)C

n+l
4 1%
12: Snil = 8np + sign(7,+1)Ay

13: auye1 =an+Ay
14: end if

procedure “semi-discrete”. Let the quantities (*) be the corresponding solutions for the procedure

developed in [1]. For the SB viscoelastic case, one has the following trial stresses at ¢ = ,,,1:

trlal

—tI'lal ECDﬁE(S )|t =

On+1 n+l1’

where, after employing the discretized plastic flow rule, the following relationship between the

corrected and trial stresses is obtained:

Gnet = 5~ Bsign(@re ) GOV E (An)limy, -

which can be explicitly be inserted in the discrete yield function to solve for the plastic slip rate.
While such procedure is straightforward for SB and FKV viscoelastic elements, it is non-trivial for
serial combinations such as the FM, FKZ and FPT models. For instance, if we follow the same

procedure for the FM model, we obtain:

Srial |, Bo=B1  ~ trial B2 ptrial
et + 2SO P G, =By GO - 87
which yields the following relationship between & and 57!
- — trial Br=B1 Firial C P2 ptrzal
(O'n+1 ~ 0,41 ) D (0 - Ni=t el -Ep OD (e - )|t=l‘n+1'
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We note that, different from the SB case, when a fractional viscoelastic model involving a serial
combination of SB elements cannot be incorporated to the yield function in differential form, unless
a full discretization is performed at this stage. This happens since the discretized yield function
(6.33) requires a closed description of 07, 1, which would require an equivalent Boltzmann represen-
tation for such models, which is impractical due to complex forms of relaxation kernels. Therefore,
our approach in this work carry trial states in already fully-discretized fractional operators, which
closely completely resembles classical elastoplastic approaches.

Regarding the obtained discretizations in this work, we note that the plastic slip (6.44) assumes
a simple form similar to rate-independent elasto-plasticity. As discussed above, in the return-
mapping procedure developed in [1], the trial states and plastic slip were assumed to have memory
in the discretization procedure, and therefore a fractional relaxation equation in the following form
was obtained:
E* (A)‘/n - fHﬂEA;?) +K* (A«yn — HPK A«y) + firial

B*+K*+ H ’

Aype1 = (6.45)

Furthermore, we observe that the obtained plastic slip discretization in this work has two less
history terms to be evaluated. Although this does not influence the computational complexity of
the original scheme, we show in the numerical examples that this fact still leads to about 50 %
less CPU time. Regarding the difference in stress solutions, let ¢ = 7, be the time-step of onset of
plasticity for the first time. Therefore, we have the following estimate:

E*

FrEea|© (WA - HKaT) - H (a7, - HPEs)] 6a6)

|O-p+l - &p+1| =

which shows that at such stage, both discretizations coincide when Sg = g and H = 0. In
the following Section, we verify such estimate by obtaining an analytical solution with the aid of

Proposition 1.

6.6 Numerical Tests

We present three convergence examples with different loading conditions to verify the employed

fractional visco-elastic models, the validity of the new fractional visco-plastic return-mapping
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algorithm, and the full visco-elasto-plastic response of the models. For the convergence analyses,
let u* and u® be, respectively, the reference and approximate solutions in Q = (0, T'], for a specific

time-step size Ar. We define the following relative error measures:

* 0
|u,—ul| |[[u*—ul|, >
erry(At) = M, err(At) = L7

m ” (6.47)
] IS

, Order = log,

err(Ar) ]
err(At/2)

We consider homogeneous initial conditions for all model variables in all cases. The presented
algorithms were implemented in MATLAB R2020b and were run in a system with Intel Core

17-8850H CPU with 2.60 GHz, 32 GB RAM and MacOS 11.5 operating system.

Example 3 (Convergence of fractional visco-elastic algorithms). We perform a convergence study
of the fractional visco-elastic component of our framework, under stress relaxation and monotone
loading experiments. For the experiments in this example, we set (E{,Ey,E3) = (1, 1, 1) and
(B1, B2, B3) = (0.3, 0.7, 0.1) for fractional linear visco-elastoc models, ensuring all fractional
derivatives are taken with an equivalent order B € (0, 1). For the fractional quasi-linear visco-
elastic model we set E =1, =03, A=1and B = 1.

For the stress relaxation test, we impose a step strain £(t) = H(t)eq, witheg = 1 for T = 1000 [s],
where H(t) denotes the Heaviside step function. We compare the obtained solutions att = T for
the SB, FKV, FM, and FKZ models to their corresponding relaxation functions (6.6), (6.8), (6.10),
and (6.12). The FPT and QLV models are not analyzed in this step, since their time-dependent
stress relaxation functions are not readily available, and they are instead analyzed under monotone
strains. The obtained results are illustrated in Fig.6.3a, where an expected linear convergence
behavior is obtained for all models, given the non-smooth nature of the stress relaxation solution.

For the monotone strain case, we set T = 1 and fabricate a solution for strains in the form
&(t) = er(t/T), with total applied strain fixed at & ¢ = 1. Since analytical solutions for all fractional
visco-elastic models are difficult to obtain, we compute a reference solution for each model, taken
with At = 277 [s). Particularly for the fractional QLV model, we utilize the the fabricated strain

function (1), to obtain the following analytical stress solution:

(- g, Bt)]

o2LV" (1) = EABP exp(Bt) [1 - T(-8)
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(a) Stress relaxation test. (b) Monotone strain test - fractional QLV.

Figure 6.3: Convergence analysis for the fractional visco-elastic models with known analytical
solutions. (a) A stress relaxation test with non-smooth step-strains, and material parameters
(E1,Ep,E3) = (1,1,1) and (Bq, B2,B3) = (0.3,0.7,0.1), yielding first-order convergence. (b)
Convergence for the fractional QLV model with a fabricated solution of linearly increasing strains
and material properties (E, 8, A, B) = (1,0.3, 1, 1). The slopes of the error curves are ¢ ~ 2 — 3.

where T'(-,-) denotes the upper incomplete gamma function. The convergence results for all
fractional visco-elastic models with respect to the reference numerical solution are presented in
Fig.6.4, while the results for the QLV model with analytical solution are illustrated in Fig.6.3b.
We observe for all both cases that the accuracy of the implemented and developed schemes is of
order O(At*™B). The difference in error slopes among models in Fig.6.4 is due to the highest
fractional order assigned to each model. For the SB and QLV models, the fractional order is set
as B = 0.3, and therefore the observed slope is q ~ 1.7. For all remaining models and choice
of fractional orders, the error slopes are determined by the fractional derivative of highest order,

which is By = 0.7 in this example, yielding g ~ 1.3.

Example 4 (Convergence of fractional visco-plastic algorithms). The purpose of this example
is to demonstrate the conditions where the presented plastic slip discretization (6.44), the form
(6.45) from [1] and their associated return-mapping algorithms are equivalent, and also provide
a numerical estimate for their difference when such conditions are not satisfied. For this purpose,

we test a monotone load where an analytical solution is available, and a case with a cyclic load
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Figure 6.4: Convergence analysis for all fractional visco-elastic models with (E, E,,E3) = (1,1, 1)
and (81, B2, 63) = (0.3,0.7,0.1). A cubic strain function was employed and a reference solution
with time-step size At = 217 Monotone loading test with convergence rates g ~ 1.3 for all models.

under high strain rates. For both cases, we set a SB visco-elastic part with E = 50 [Pa.s'BE],
K = 5[Pa.sPK].

For the monotone strain case, we start with a fabricated solution for strains in the form
e(t) = AP, with A = ep/T> [s™3). Here, & f denotes the total applied stress and T represents the
final simulation time. Utilizing the result of Lemma 1 and setting Bg = Bx =0 and oY = H = 0,

we obtain the following analytical solution for stresses:

. 6AEK 3 PE
o (1) = .
E+K I'(4 - BE)

(6.48)

We note that the proposed fabricated solution ensures that no internal variable is a linear function,
and therefore not computed exactly by the L1 discretization. We set e = 1, T = 1 [s], and therefore
A =1[s73]. Table 6.1 presents the obtained convergence results for the fabricated solution (6.48)
for both return-mapping algorithms and under the same fractional-orders Bg and Bg. We observe
that the errors coincide for this particular case, while the accuracy of order O(Ar*7P) of the L1
approach is also achieved. The computational times are illustrated in Fig.6.5, where the developed
fractional return-mapping approach, when using a SB visco-elastic element, is about 50% faster
than the original return-mapping approach from [1], since about half the amount of history terms

need to be computed.
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Table 6.1: Convergence behavior for the return-mapping Algorithm 6.1 obtained in this work and
the original approach from [1] for an FVEP device with a SB element.

BE =Bk =0.1 BE =Bk =0.5 BeE =Bk =0.9
At err(At) Order err(At) Order err(At) Order
279 3.2426e-06 - 90.2971e-05 - 1.3246e-03 -

27100 91853e-07 1.8197  3.3109e-05 1.4895  6.1875e-04 1.0981
2711 25845e-07 1.8294  1.1763e-05 1.4929  2.8884e-04 1.0991
2712 72323e-08 1.8374  4.1731e-06 1.4951  1.3479e-04 1.0995
2713 2.0145e-08 1.8440  1.4788¢-06 1.4966  6.2895e-05 1.0998
2714 55891e-09 1.8497  5.2369e-07 1.4977  2.9344e-05 1.0999

CPU time [s]

——OIld RM
——New RM

10.3 | | I
10° 10* 10° 108
Number of time steps N

Figure 6.5: CPU times for the developed fractional return-mapping algorithm and the original one
[1] for a SB visco-elastic part. The black line has slope g = 2.

Despite the identical results obtained for the monotone case and equal visco-elastic/plastic
fractional orders, this is not the case under general loading conditions. To demonstrate the
difference between the visco-elasto-plastic discretization o, developed in this work, and 0,41
from [1], we take the latter as a reference solution with At = 219 [s]and T = 1[s]. We also

consider o¥ = 10[Pal, BE = 0.3 and Bg = 0.7 with same pseudo-constants as the previous test

case. A constant rate loading/unloading cyclic strain test of the following form is employed:
2¢e A . .
&(t) = —= arcsin (sin (27rwt)) , (6.49)
n

where we consider a strain amplitude €4 = 0.25, and two strain frequencies of w = 1[Hz] and

w = 60[Hz]. The difference between both approaches is illustrated in Fig.6.6. Here, higher
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frequencies result in higher strain rates, and consequently a significant plastic strain history, even
after a number of hysteresis cycles. The obtained results confirm the estimates from (6.46), which
is already valid at the onset of plasticity. Furthermore, we observe that a tenfold increase in strain

rates approximately leads to a tenfold increase in the difference between both algorithms.

80

—1 cycle
——60 cycles

10-2 L \/

103 ¢

60 -

40

20 -

0F

Stress [Pa]

-20 1

—1 cycle

A0r ——60 cycles

-60

-80 I I I | | | 10—4 I | |
0.3 0.2 -0.1 0 0.1 0.2 0.3 106 107 104 10

Strain At
(a) Reference solution. (b) Endpoint error between both approaches.

Figure 6.6: Comparison between the presented return-mapping algorithm and the reference
approach from [1], under low and high frequency loading.

Example 5 (Convergence of fractional visco-elasto-plasticity). Finally, we perform a verification
on the entire fractional visco-elasto-plastic framework under cyclic strain. Since no fabricated
solutions are available, we employ reference solutions with time-step size At = 271851 Let
T = 1[s] with the same applied strains (6.49) as the previous example. The visco-elastic material
parameters are taken as (Ey,Ej,E3) = (50,50,50) and (B, B2, B3) = (0.3,0.7,0.1), and visco-
plastic parameters taken as K = 5, fg = 0.7, H = 0 and oV = 1. Figure 6.7 illustrates the
obtained convergence results, where all models except the FKV one showed a convergence rate
of order q ~ 1.3, which is compatible with the employed LI discretization scheme, and given
that By = B = 0.7. The FKV model achieved linear asymptotic convergence for the considered
example, which is the expected worst case scenario from the backward-Euler discretization of
internal variables. We believe the difference in convergence behavior between the FKV model

and the others could be due to the sharper response of the FKV model, due to a stiffer rheology
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combined with the nonlinear loading/unloading response. This combination of effects could result
in a lower solution regularity and therefore a lower convergence rate.

10 ¢

103 ¢

—+—QLVv

10 ‘ ‘ ‘
10° 10 107 107

At
Figure 6.7: Convergence analysis for the fractional visco-elasto-plastic models under cyclic loads.
Due to the particular choice of fractional orders (with 5y = Sx = 0.7 being dominant), we observed
convergence rates g ~ 1.3 for all models, except for the FKV. In the latter case, we observe a linear

convergence to the reference solution.
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(a) VEP reference solution. (b) VEP reference solution - FKV model.

Figure 6.8: Visco-elasto-plastic reference solutions for the employed models for the first 30 loading
cycles. We notice a similar behavior for most models under the choice of material parameters,
except for the FPT and FKV models. The FKV particularly yielded a very stiff response due to the
combination of high fractional order values and high strain rates.
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CHAPTER 7

ANOMALOUS NONLINEAR DYNAMICS BEHAVIOR OF FRACTIONAL
VISCOELASTIC STRUCTURES

7.1 Background

Nonlinearities are intrinsic in real physical systems, arising from multiple sources, such as
changes in geometry, material response (e.g., ageing), and boundary effects (e.g., emergence of
boundary-layers/shock). We focus on the analysis of nonlinear systems where anomalous dynamics
arise from nonlocal/history effects. Despite the existing “nearly-pure" systems, where standard
features evolve to anomalous qualities, e.g., laminar-to-turbulent flows [239, 240] and dislocation
pile-up in plasticity [116], in our study, the anomaly source is from the employment of extraordinary
materials.

Power-law rheology is a characteristic of a wide range of anomalous materials. This complex re-
sponse exhibits macroscopic memory-effects through single-to-multiple power-law relaxation/creep
[23] and dynamic storage/dissipation in visco-elasticity [6]. Such power-laws are multi-scale finger-
prints of spatio-temporal sub-diffusive processes in fractal-like micro-structures, where the mean
squared displacement of constituents/defects scales nonlinearly in time as (Ar)? o 12 [22]. When
subject to mechanical loads, such materials undergo micro-structural changes, e.g. rearrange-
ment/unfolding of polymer networks/chains [23], plastic stretching/buckling of micro-fibers [21],
formation, arresting, relaxation of dislocations [26], which propagate the evolving micro-rheology
to the larger scales. Classical (integer-order) viscoelastic models accurately fit exponential data
with a limited number of relaxation times [241]. However, a large number of relaxation time is
usually required to estimate complex hereditary behaviors observed for a broad class of anoma-
lous (non-exponential) materials. This yields high-dimensional parameter spaces, worsening the
conditioning of already ill-posed parameter estimations [242]. In addition, multi-exponential ap-

proximations are mere truncations of power-law relaxation [243], only providing accurate results
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for short times, thus lacking predictability and requiring recalibration for multiple time-scales [24].

Fractional differential equations (FDEs) are predictive tools for anomalous materials across
multiple time-scales. Nutting and Gemant [244, 245] showed that power law kernels are more
descriptive of creep/relaxation. Bagley and Torvik [246] proposed a link between fractional vis-
coelasticity and polymer dynamics through dynamic moduli. The building block of fractional
viscoelasticity is the so-called Scott-Blair (SB) element with fractional order 0 < @ < 1, that
interpolates between Hookean (@ — 0) and Newtonian (@ — 1) elements. Distinct arrange-
ments of SB elements model multiple experimentally observed power-laws through multi-term
FDEs. Such flexible and compact mathematical tool led to multi-disciplinary developments e.g.,
in bio-engineering[187, 247], visco-elasto-plasticity [1, 75], among others [248-250]. The most
general forms of viscoelasticity are described by distributed order differential equations (DODEs)
[251, 252], where fractional-order distributions (distributions of SB elements) code evolving, het-
erogeneous multi-scale material properties. DODEs were employed for anomalous diffusion in
[253-255] with applications also in control theory and signal processing [256, 257], vibration
[258], frequency domain analysis [259], and uncertainty quantification [260, 261]. We refer the
reader to [262] for a thorough review on applications of DODE:s.

Regarding the dynamics of anomalous beams, Labedzki ef al. [76] investigated the resonance
of Euler-Bernoulli piezoelectric beams by introducing fractional derivatives in the equation of
motion, and solved the strong form of the system using a Rayleigh-Ritz method. Ansari et al. [77]
studied the free vibration of a nonlocal, fractional Kelvin-Voigt (KV) Euler-Bernoulli nanobeam.
A direct Ritz method in space and a fractional Adams-Moulton scheme in time were employed,
observing increased damping for larger fractional orders. Under the same model, Faraji Oskouie
et al. [78] incorporated surface stress effects through the Gurtin-Murdoch theory. Recently, Eyebe
et al. [79] studied the nonlinear vibration of a nanobeam over a fractional Winkler-Pasternak
foundation, utilizing D’Alembert principle to obtain a nonlinear system of equations, solved by a
method of multiple scales. Lewandowski et al. [80] analyzed the nonlinear, steady-state vibration

of a fractional Zener beam, obtaining amplitude equations with explicit finite-element tangent
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matrices. The authors also studied the stability and parametric influence of their model.

An important application of interest is the dynamics of human’s outer hair cells inside the
fluid-filled cochlea of the inner ear. The corresponding structures are indeed ‘beam-shaped’ whose
dysfunction leads to sensorineural hearing loss. Direct measurements from the cochlea is not
possible, which makes computational modeling a valuable (noninvasive) tool to study the health
and function of the hair cells. The outer hair cells sit on the basilar membrane (i.e., the beam base)
and are embedded into the tectorial membrane at the other end. The sound transmission in the
cochlea leads to a pressure difference across the basilar membrane leading to the vibration of hair
cells [263]. The cochlea has been modelled previously based on a fractional-modeling approach
[187, 247]. The proposed distributed-order fractional modeling in the current work can be readily
employed in studying the fluid-induced vibrations of the hair cells, leading to new experiment
setups and sensor developments.

The sophistication of numerical methods allowed numerous applications of fractional models
in the last two decades, such as spectral methods for spatio-temporal discretization of FDEs
[264, 265] and DODEs [266]. Among many schemes for time-fractional integration [177, 267—
269], for simplicity, we outline the L1 finite-difference (FD) scheme by Lin and Xu [176] and
refer to [224] for a brief review of numerical methods for time-fractional ODEs. Despite the
existing works on nonlinear vibration of fractional viscoelastic beams, they employed direct Ritz
discretizations in the strong forms of the equations of motion, requiring more smoothness on basis
functions. Spectral methods for nonlinear fractional beam models with proper finite dimensional
function spaces suitable for fractional operators are still lacking. Furthermore, from the rheology
standpoint, studying the emergence of anomalous dynamics from evolving extraordinary material
properties and their sensitivity is fundamental for physics- and mathematically-informed learning
of constitutive laws from data, and also requires more attention.

In this work, we study how the evolving power-law rheology, in the language of fractional
constitutive laws lead to (counter-intuitive) anomalous dynamics in mechanical systems. Our

representation of choice is a geometrically nonlinear, fractional KV Euler-Bernoulli cantilever
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beam under free and forced vibration, where:

* The fractional KV model with order « is obtained from both the Boltzmann superposition

principle and general distributed-order viscoelasticity.

* Motivated by the effect of evolving fractal microstructures on macroscopic material dynamics,

we study the effects of fractional orders on the continuum response.

* We employ Hamilton’s principle to avoid a non-trivial decomposition of conservative (elastic)

and non-conservative (viscous) parts of SB elements.

* The weak form of the governing equation is obtained, followed by a single-mode approxima-

tion in space.

* We solve the resulting nonlinear system through a method of multiple scales, followed by a

sensitivity analysis of amplitude decay rates with respect to a.

Our numerical and semi-analytical experiments demonstrate several anomalous responses linked
to far-from-equilibrium dynamics, such as @-dependent hardening-like drifts in linear amplitude-
frequency behavior and long-term power law response. An interesting new result indicating a super
sensitivity of amplitude response with respect to @ was obtained, which could be potentially related
to the identification of early damage precursors, before the onset of macroscopic plasticity and cracks
[116]. Specifically, a softening-like behavior is observed until a critical a- value, followed by a
hardening-like response, both justified from the constitutive standpoint. This motivates the notion
of evolving anomalies, where the changing fractal material microstructure drives the fractional
operator form through « [40]. Finally, we observe the usual bifurcation behavior under steady-state
amplitude at primary resonance in the presence of geometrical nonlinearity, which is also driven
by material nonlinearity through the fractional order.

This work is organized as follows. In Section 7.2, we introduce the model assumptions,
fractional viscoelasticity definitions, the extended Hamilton’s principle, and obtain the strong/weak

forms of equation of motion under base excitation. We employ assumed modes in space to reduce
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the problem to a system of fractional ODEs. In Section 7.3, we obtain the linearized equation of
motion. Perturbation analysis in carried out Section 7.4 to solve the resulting nonlinear fractional

ODE.

7.2 Mathematical Formulation

We formulate our anomalous physical system and discuss the main assumptions utilized to

derive the corresponding equation of motion.

7.2.1 Nonlinear In-Plane Vibration of a Viscoelastic Cantilever Beam

Let the nonlinear response of a slender viscoelastic cantilever beam with symmetric cross-section,
subject to harmonic vertical base excitation denoted by v, (see Figures 7.1a and 7.1b). We
employ the nonlinear Euler-Bernoulli beam theory, where the geometric nonlinearities are taken
into account in the equations of motion. We consider the following kinematic and geometric

assumptions:

* The beam is inextensional, i.e., the strech along the neutral axis is negligible. The effects of
warping and shear deformation are ignored. Therefore, the strain states in the cross section

are only due to bending.

* The beam is slender with symmetric cross section, and undergoes purely planar flexural

vibration.

* The length L, cross section area A, mass per unit length p, mass M and rotatory inertia J of

the lumped mass at the tip of beam are constant.

* The axial displacement along length of beam and the lateral displacement are respectively

denoted by u(s, ) and v(s, 1).

* We consider the in-plane vertical vibration of the beam and reduce the problem to 1-

dimension.

160



1]y

(@) (b)

Figure 7.1: (a) In-plane kinematics of the cantilever beam subject to a base displacement v, (¢) with
respect to an inertial coordinate system (x, y, z). The terms u(s, t) and v(s, t) denote, respectively,
the axial and vertical displacements with respect to a (x”, y’, z’) coordinate system attached to the
base, and ¥ (s, 1) is the rotation angle about the z’-axis. (b) The total deformation of an arbitrary
(red) point, composed of an axial displacement u and vertical displacement v, as well as the
displacement due to rotation .

Figures 7.1a and 7.1b illustrates the kinematics of the cantilever beam under consideration. Let
(x,y, z) be an inertial coordinate system and (x’, y’, z’) be a moving coordinate system attached to
the base of the beam, such that (xé, ya, ZE)) = (0, vp,0). We note that both systems coincide when

the base displacement is zero, i.e., v,(f) = 0. Furthermore, a differential element of the beam

rotates about the z’-axis with an angle (s, ) to the coordinate system (£, n, ), where

es cos(y) sin(y) O)|ey
ep| =|—sin(y) cos(y) O ey

es 0 0 1 e,

and e; is the unit vector along the i ™ coordinate. The angular velocity and curvature at any point

s along the length of the beam at time ¢ can be written, respectively, as

i) i)
w(s, 1) = a—‘i’ es. pls,t)= a—"/s’ e.s (7.1)

Therefore, the total displacement and velocity of an arbitrary point of the beam with respect to the

inertial coordinate system takes the form:

r=(u—nsin@)) ex+ (v+v, +1n cos@yy)) ey, (7.2)
or _(Ou _ 0% v Ove _ 0¥
2 % Py COS((//)) ey + ((9t + Y Y sin(y) | ey. (7.3)
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Figure 7.2: Deformation of an arbitrary element of the beam. The initial configuration CD
translates, rotates and elongates to an updated configuration C*D*.

We also let an arbitrary element CD with initial length ds on the neutral axis, located at a distance
s from the origin O of the moving system (x’, y’, z’), to deformation to an updated configuration
C*D* (see Fig. 7.2). The displacement components of points C and D are denoted by the pairs

(u,v) and (u + du, v + dv), respectively. The axial strain e(s, t) at point C is given by

_ds*—ds (s +du)? +dv? - ds
- ds ds

_ Ouy OV,
e _\/(1+8s) +( -1 (7.4)

Applying the inextensionality assumption, i.e. e = 0, (7.4) becomes

du v ,\ 1?2

Moreover, based on the assumption of negligible vertical shear strains, and using (7.5), we have the

following expression for the rotation:

_ -1 s _ -1 )
Y = tan T, o = tan e 2 (7.6)
3s (1 - (4y) )
Using the expansion tan" 1 (x) = x — %x3 + - - -, the curvature can be approximated up to third-order
terms as
ov ov 2.=1/2 1 ov 3 ov 2.=3/2
= (1 - (= — ()Y = (=
¥ as( (as)) 3(8s)( (8s)) +
ov 1 ovy, 10vsg dv 1 0vs
~ —(1+z(=))— (=) = —+ =(— 7.7
Hs( +2(8s) ) 3(8s) (9s+6((')s) 7.7)

Therefore, the angular velocity and curvature of the beam, i.e. %—f and g—f respectively, can be
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approximated as:

oy 9% 1 8%y 9%y 1 dv,

9t 91ds ' 2 91ds (_) 0195 ( ‘(_) ), (7.8)
oy 3% 1% dv, 1 ov.,

Bs 952 2052 s T+ 50~ 7.
ds  0s? 28s2(8s) SZ( ( )) (7.9)

By the Euler-Bernoulli beam assumptions a slender beam without vertical shear strains, the

strain-curvature relationship takes the form

oY(s,t)
n

(s, 1) =— 3

(7.10)

7.2.2 Linear Viscoelasticity: Boltzmann Superposition Principle

In this section, we start with a bottom-up derivation of our rheological building block, i.e., the
Scott-Blair model through the Boltzmann superposition principle. Then, in a top-bottom fashion,
we demonstrate how the fractional Kelvin-Voigt model is obtained from a general distributed-order
form. Assuming linear viscoelasticity, and applying a small step strain increase, denoted by d&(¢),

at a given time ¢ = 71, the resulting stress in the material is given by:
o(t) =Gt —1)oe(ry), >4, (7.11)

where G(¢) denotes the relaxation function. The Boltzmann superposition principle states that
resulting stresses from distinct applied small strains are additive. Therefore, the total tensile stress
of the specimen at time ¢ is obtained from the superposition of infinitesimal changes in strain at

some prior time 7, given as G (¢ — 7;)6&(7;). Therefore,

o) .
o) = > Gt 1)) ';(Tf)drj, (7.12)
Tj<t 7j

where the limiting case 67; — 0 yields the following integral form:
t
o(t) = J G(t —71)é(r)dr, (7.13)

-0

where £ denotes the strain rate.
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Figure 7.3: Classical viscoelastic models as a combination of spring (purely elastic) and dash-pot
(purely viscous) elements. Kelvin-Voigt (top) and Maxwell (bottom) rheological models.

7.2.2.1 Exponential Relaxation (Classical Models) vs. Power-Law Relaxation (Fractional
Models)

The relaxation function G(¢) is traditionally expressed as the summation of exponential functions

with different exponents and constants, which yields the so-called generalized Maxwell form as:
G(t)= >, Cie '/, (7.14)

For the simple case of a single exponential term (a single Maxwell branch), we have G(t) = Ee™! /T,

Therefore, in the case of zero initial strain (£(0) = 0), we have:

t
ot)=E J e DT &7 df, (7.15)
0

which solves the integer-order differential equation % = %%—? + %0’, where the relaxation time

constant 7 = n/E is obtained from experimental observations. The Maxwell model is in fact a
combination of purely elastic and purely viscous elements in series, as illustrated in Fig. 7.3.
By letting the relaxation function (kernel) in (7.13) have a modulated power-law form G(t) =

Eq g(a@)(t — 7)™ %, equation (7.13) for the stress takes the following form,

z‘ .
o(t)=Ey gla) I_ % dr. (7.16)

where E, denotes a pseudo-constant with units [Pa.s?]. If we choose the modulation g(a) =
ﬁ, then the integro-differential operator (7.16) gives the Liouville-Weyl fractional derivative
[270]. Although the lower integration limit of (7.16) is taken as —co, under hypothesis of causal

histories, which states that the viscoelastic body is quiescent for all time prior to some starting point
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t =0, (7.16) can be re-written as

(1) = £(0") 228 g @), Eqg(@) J (t —
= (0 —Eat‘i @ Lk, D e,
= E, "G50 &, (7.17)

where %Z)t“ and R(L)Z)f denote, respectively, the Caputo and Riemann-Liouville fractional deriva-
tives [270]. Both definitions are equivalent here due to homogeneous initial conditions for the

strain.

Remark 7.2.1. The constitutive equation (7.17) can be thought of as an interpolation between a
pure elastic (spring) and a pure viscous (dash-pot) elements, i.e., the Scott Blair element [1, 271—
273]. It should be noted that in the limiting cases of « — 0 and a — 1, the relation (7.17) recovers

the corresponding equations for spring and dash-pot, respectively.

7.2.2.2 Multi-Scale Power-Laws, Distributed-Order Models

In the most general sense, materials intrinsically possess a spectrum of power-law relaxations, and
therefore we need a distributed-order representation for the stress-strain relationship. Consequently,
the relaxation function G(¢) in (7.13) does not only contain a single power-law as in (7.16), but
rather a distribution over a range of values. Considering nonlinear viscoelasticity with material
heterogeneities, the distributed order constitutive equations over ¢ > 0 with orders @ € [@in, @max]
and B € [Bmin, Bmax] can be expressed in the general form as
Bmax Ymax
I ®(B;x,t,0) SDfO'(I) dp = Y(a;x,t,e)  Df e(t)da, (7.18)
min Tmin
in which the prescript * stands for any type of fractional derivative, and initial conditions also
depending on such definitions. The functions ®(S; x,t, o) and ¥(«;x, 1, €) can be thought of as
distribution functions, where @ — ¥(a;x,t,€) and 8 — D(B;x,t, o) are continuous mappings

in [@min> @max] and [Bmin, Bmax]. Furthermore, the dependence of the distributions on the (ther-
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modynamically) conjugate pair (o, €) introduces the notion of nonlinear viscoelasticity, and the

dependence on a material coordinate x induces material heterogeneties in space.

Remark 7.2.2. The pairs (amin, @max) and (Bmin, Bmax) are only the theoretical lower and
upper terminals in the definition of distributed order models. In general, the distribution function
O(B;x,t,0) and Y(a; x, t, €) can arbitrarily confine the domain of integration in each realization
of practical rheological problems and material design. If we let the distribution be summation of

some delta functions, then, the distributed order model becomes the following multi-term model.:

Po 8 Pe o
L+ > ap oD K| o) =|c+ D) b oD, % | ).
k=1 k=1
In order to obtain the fractional Kelvin-Voigt model, we let ®(8) = 6(8) and (@) = Exd(@) +

Eyé(a — aq) in (7.18), and therefore,

o(1) = Eeo £(t) + Eq *ED (1), @ €(0,1). (7.19)

7.2.3 Extended Hamilton’s Principle

We derive the equations of motion by employing the extended Hamilton’s principle

1]
(6T — 6W) dt =0,
1

where 6T and 6W denote the variations of kinetic energy and total work [274]. The only source
of external input to our system of interest is the base excitation, which is linearly superposed to
the beam’s vertical displacement v(#), and therefore contributes to the kinetic energy taken in the
inertial (Lagrangian) coordinate system. Hence, the total work only contains the internal work

done by the stress state, with the variation expressed as [275]
oW = j odedv, (7.20)
\Y
where the integral is taken over the whole system volume V.

Remark 7.2.3. Itis remarked in (7.2.1) that the fractional Scott-Blair elements exhibit both elasticity

and viscosity behaviors. There have been attempts in the literature to separate the conservative
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(elastic) and non-conservative (viscous) parts of fractional constitutive equations at the free-energy
level [276]. However, we note this separation in the time domain is not trivial for sophisticated
fractional constitutive equations, and therefore we choose to formulate our problem in terms of the

total work in order to avoid such additional complexities.

The full derivation of the governing equation using the extended Hamilton’s principle is given
in D.1. We recall that M and J are the mass and rotatory inertia of the lumped mass at the tip of
beam, p is the mass per unit length of the beam, I = IA 172 dA, and let m = % and E, = }%’o We
approximate the nonlinear terms up to third order and use the following dimensionless variables
e =I(L)l/z, El=E, (ﬁ)a/z, JF = L M = ﬂL pyt =L
and derive the strong form of the equation of motion. Therefore, by choosing a proper function

space V, the problem reads as: find v € V such that

0%v 9% [0%v 0%y dv, Laa% 1 dv,q 1 2 RL 8%
— —(1+=(=— SEr(o DY
PYERPY (as * 525 7+ G [8s2 ATl ’( ) D o2
o [ov 0*v,  dv d*v gy, 0%
S RA QST N A S 7.21
os (8s (as )+ "0s 952 OZ) 952 Vb ( )
which is subject to the following boundary conditions:
o =2 -
s=0 h ds ls o
9% gv 8%y
J (1 (—) )+
0t20s ds Os 81‘
|2 g, R | L) ahE 2 ko ) |
952 832 077 1os2 2°0s ' " os? s=1_ ,
M(‘92 o o azv(@) , Rkop [a_%( e3P 4g (2 REpp O
852 952 ds2 Er ds2
v 0%v 5 v 0% p o 0%
+ (% (@) +Era_ﬁ OD ﬁ) _ =0. (722)
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7.2.4 Weak Formulation

The common practice in analysis of numerical methods for PDEs are mostly concerned with linear
equations. Analyses for linear PDEs are well-developed and well-defined, however they are still
scarce for nonlinear PDEs. The linear theories are usually applicable to nonlinear problems if
the solution is sufficiently smooth [277]. We do not intend to investigate/develop analysis for our
proposed nonlinear model. Instead, by assuming smooth solution, we employ linear theories in our
analysis. Let v : R+ S Rfora e (0,1)and Q =[0,T] x [0, L]. Here, we construct the solution
space, B¢ (QQ), endowed with proper norms [265], in which the corresponding weak form of (7.21)

can be formulated. If we recall the equation (7.21) as E, then:
BY(Q) := {v e lmY@) U EdQ < oo} (7.23)
Q
where
lH@) = lH® (1; 12 (Q)) N LA  HAQ)),
0
% O}
s=0

HXQ) = |v e H*@)
o7 () = v €@V =35
We obtain the weak form of the problem by multiplying the strong form (7.21) with proper

test functions ¥(s) € B8Y(Q) and integrating over the dimensionless spatial computational domain

Qg = [0, 1]. The test functions satisfy the boundary conditions, i.e. ¥(0) = %(O) = 0. Therefore,

we obtain:
192y 8% [0%v 8%y v, RL 0%v 1 dv, 2 0%V
— vds+ — DY | —0+=(— — 2RL vds
Jo Btzv Jo ds2 (6s2 8s2( > 0= [6s2( ( ) )] ( ) Yy
1 2 1
0 [0v 07V, v 0°v g o 07V J
- —(— — "0D; —= | Vds = - d 7.24
JO as(as(as Cr g e 0P g ) T T T 729
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Integrating the above equation by parts, we obtain:

62 1
—‘[ vids
a2 Jo
+I 8%y a%(@) +E, RLpg [61/ 1(@) )] (_)m a@v 0%v 7 s
as2 952 9s T 071 g Er 952 ] 9s2 225
1.
Hov 0%v,  0v 0% pp o 0%y av a%
— (— )+ E— — S ds+ M(——
+IO ((9s (Gsz) + "3 952 OZ) 952 s + ( +vb)v
a3y o, 0%y !
J — = -V vds.
* (0[28 I+ ( )) Os (9t8s ) Os ls =1 Vb Jov S
By rearranging the terms, we get
% (! ov v v av, % 5\ 9V
- bds + M - -
o2 (“Ovv s+Mvv +J8s 0s s )+ (atzas(ﬁs) (étas) Os s
rl 52 2~ 1 2 2~
N J RLpg [92| 02 as
Jo 052 952 0 ds21 0s2
rl 92 25 1 2
N Q@zﬁdﬁj v avz‘”d (7.26)
Jo 852 0s” ds? ds 952 a
E, RLaﬁv@v 82 ZRLaa 8%v
— — — d
+200[<>] () of| 55|55
16v62vRL a@v ov s -
+E, JO a@ ODI [@]ad&‘:—\/b JO Vds+M©V w1l

7.2.5 Assumed Mode: A Spectral Approximation in Space

We employ the following modal discretization to obtain a reduced-order model of the beam.

Therefore,
N
(s, 1) = v (s, 1) = D qn(t) uls), (7.277)
n=1
where the spatial functions ¢,(s), n=1,2,---, N are assumed a priori and the temporal functions
qn(), n=1,2,---, N are the unknown modal coordinates. The assumed modes ¢, (s) in (7.27) are

obtained in D.4, by solving the corresponding linear eigenvalue problem of our nonlinear model.
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Subsequently, we construct the proper finite dimensional spaces of basis/test functions as:
VN=VN=span{¢n(x):n=1,2,---,N}. (7.28)

Since Viy = Vy € V =V, problem (7.26) read as: find vy € Vy such that

02 1

Fre Jo
162\21\7 82\7Nd L E Jl RLz)a [6 VN] azde
0 ds2 952 ’ ds2 1 952

J_NZN
+ ds Os

)+ (03\/1\/ 0vN 2+(9VN azvN 2) 5\71\]
s=1

0t28s( Js ds  O0tds Os

s =1

1 92 2~ 2
ﬁaVZN agN ) aavad +J 6(;/1\] (6 vN)2 Bde
0 Os N ) o Os 0s
& RLz)a [32\/]\7(8\11\7 2] 3 VN J (8\/]\] [(9 VN] (92VN ¢
2 Jo 977 | gs2 " Os ds2 1 952
1 ovy 82vN RL 32\/1\7 ov N
E — ——ds = -V ds+Mv
¥ rJo ds  Os? o1 [6s2] as b .[OVN SEEIN L)

(7.29)

for all vy € V.

7.2.6 Single Mode Approximation

In general, the modal discretization (7.27) in (7.29) leads to a coupled nonlinear system of frac-
tional ordinary differential equations. We note that while the fractional operators already impose
numerical challenges, these are increased by the presence of nonlinearities, leading to failure of
existing numerical schemes. However, without loss of generality, we can assume that only one

mode (primary mode) of motion is involved in the dynamics of system of interest.

7.2.6.1 Why is single-mode approximation useful?

Although single-mode approximations are simplistic in nature, they encapsulate the most funda-
mental dynamics and the highest energy mode in the motion of nonlinear systems. Furthermore,
as shown by numerous studies below, such approximation also proved capable of capturing the

complex behavior of structures.
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Azrar et al. [278] demonstrated sufficient approximations of single- and multi-modal repre-
sentation for the nonlinear forced vibration of a simply supported beam under a uniform harmonic
distributed force. Tseng and Dugundji [279] showed similar results between single and two mode
approximations for nonlinear vibrations of clamped-clamped beams far from the crossover region.
Loutridis et al. [280] implemented a crack detection method for beams using a single-degree-of-
freedom system with time varying stiffness. In [281], the effects of base stiffness and attached
mass on the nonlinear, planar flexural free vibrations of beams were studied. Lestari and Hanagud
[282] studied the nonlinear free vibrations of buckled beams with elastic end constraints, where the
single-mode assumption led to a closed-form solution in terms of elliptic functions.

Of particular interest, Habtour ef al. [116] detected and validated the response of a nonlinear
cantilever beam subject to softening due to local stress-induced, early fatigue damage precursors
prior to crack formation. Their findings demonstrate that the pragmatism of a single-mode ap-
proximation provides sufficient sensitivity of the amplitude response with respect to the nonlinear
stiffness, making their framework an effective practical tool for early fatigue detection. We also
refer the reader to [283-286] for additional applications.

Therefore, we let the anomalous dynamics of our system be driven by the fractional-order
a, and following the aforementioned studies, we replace (7.27) with the one-mode discretization
v = q(t) ¢(s) (where we let N = 1 and drop the subscript 1 for simplicity). Upon substituting in
(7.29), we obtain the unimodal governing equation of motion as (see D.2),

MG+ T (Gq*+aqh) +Kiq + E-C REDE g + 2%,y ¢ +—r2 Z (R%)@z“ 7> +3q* *L O q) = —MpVp,
(7.30)

in which
1
M = J ¢2ds+ M @2(1) +J §'2(), F =J¢* ),
0
1 1 1
K =C = J ¢"% ds, K, =Cp = J ¢’ ¢"% ds, M, = J dds+ M p(1). (7.31)
0 0 0

Remark 7.2.4. We note that one can isolate any mode of vibration ¢,(s), n=1,2,---, N (and not

necessarily the primary mode) by assuming that ¢,(s) is the only active one, and thus, end up with
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similar equation of motion as (7.30), where the coefficients in (7.31) are obtained based on the
active mode ¢y, (s). Therefore, we can also make sense of (7.30) as a decoupled equation of motion

associated with mode ¢y(s), in which the interaction with other inactive modes is absent.

7.3 Linearized Equation: Direct Numerical Time Integration

We linearize our equation of motion for the cantilever beam by assuming small motions (see

D.3), and obtain the following form:

. . L0 v(L,0)
+Erc; BLDg v ky g =—mpiy,  q0) = U . g(0) = (7.32)
q r€l o0& d 149 bVb, 4 #(L) q #(L)

with the coefficients
C e M,
= —t k)= =, =2 7.33
T=M =M b= T (7.33)

The linearized, unimodal form (7.32) is equivalent to the vibration of a lumped fractional Kelvin-
Voigt rheological element, and can be thought of as a fractional oscillator, shown schematically in

Fig.7.4. Let a uniform time-grid with N time-steps of size At, such that ¢, = nAt,n =0, 1, ..., N.

———ANAANAN A/ q(t)

. —h

Figure 7.4: Lumped representation of the system as a fractional damper, with constants E; ¢; and
fractional order a.

We employ the following equivalence relationship between the Riemann-Liouville and Caputo

definitions:

a a q(0)
Rldz)t C[(f) = %Z)t q(l) + m (7.34)

Substituting (7.34) into (7.32), evaluating both sides implicitly at # = #,,,1, and approximating the

time-fractional Caputo derivative through an L1-difference scheme [176], we obtain:

q0

— |+k = —mpV , (7.35
M- on”, 19n+1 = =MpVp ps1, (7.35)

Gne1t+Ercy (Cln+1 —qn+t ﬂaé]n+1) +

AtCT(2 — a)
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where H¢

kel = Z? ;(% = b j(qn—j+1—qn-;) represents the discretized history term, with a-dependent

convolution coefficients b; = (j + 1)* — j*. We approximate the acceleration ¢, and velocity

Gn+1 through a Newmark-£ method as follows:
Gn+1 = a1 (qn+1 — qn) — a2qgn — azgn, (7.36)

Gn+1 = a4 (Gns1 — qn) + asqgn + agdn, (7.37)

with approximation coefficients given by
1 1 1-28 Y Y Y
where we choose 8 = 0.5, y = 0.25 for unconditional stability. Inserting (7.36) into (7.35), we
obtain the following closed form for g,,,1:
(a1 + E¥) qn + axgn + azdn — mpVp py) — E” [7{,(,’” + 40 (;:(;l]

a1+E*+kl

dn+1 = (7.38)

with E* = (E; ¢;)/(At*T'(2 — a)). We observe that since the Newmark method is second-order
accurate with respect to Az, the overall accuracy is dominated by the accuracy of the L1 scheme,
which is of O(Atz_“). We also observe that a discretization of a Caputo-variant of the FDE (7.32)
is recovered if we remove the term gg(1 — @)/(n + 1)* from (7.38).

We consider two numerical tests. In the first one, we solve the above system under harmonic
base excitation, and in the second one, we consider a free-vibration response. For both tests, we set
E; =1 and consider the lumped mass at the tip, with M = J = 1, that is, we utilize (D.56) for ¢(s),

which yields the coeflicients ¢; = k; = 1.24.

7.3.1 Harmonic Base Excitation

We solve (7.32) in the presence of base excitation in the harmonic form vy, = apsin(wpt), where
wp € [0.5,3.5]and aj, = 0.01 denote, respectively, the base frequency and displacement amplitude.
The coefficient mj;, = —0.042 is calculated through (7.33) and (7.31). We employ homogeneous

initial conditions, i.e., ¢(0) = 0, ¢(0) = 0, and set the time ¢ € (0, 100], with step size At = 1073.
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The maximum displacement amplitude after reaching the steady state response of the system is
evaluated. Figure 7.5 illustrates the amplitude vs base frequency response with respect to varying
fractional orders @. We observe the existence of a critical point at w; = 1 that changes the
dissipation nature of the fractional order parameter. Regarding the maximum observed amplitudes,
increasing the fractional order in the range a € [0.1, 0.4], decreases and slightly shifts the amplitude
peaks to higher (right) frequencies (an anomalous quality). On the other hand, as the fractional
order is increased in the range a € [0.5, 0.6], the peak amplitudes slightly shift towards the lower
(left) frequencies, which is also observed in standard systems with the increase of modal damping

values.

— a=01
2 a=02
a=03
a=04
a=0.5

a=06
—— Natural Frequency

05 1.0 1.5 20 25 3.0 35
Wh

Figure 7.5: Anomalous change of the maximum amplitude vs frequency at the tip of the beam in
presence of harmonic base excitation for different fractional order . The solid black line represents
the standard, undamped natural frequency of the system.

7.3.2 Free Vibration

Following the observed anomalous amplitude vs. base frequency behaviors and presence of a
critical point nearby the standard natural frequency of the system illustrated in Figure 7.5, we solve
(7.32) in a free-vibration setting employing Riemann-Liouville and Caputo definitions, where we

set ¥, = 0, and ¢(0) = 0.01, g(0) = 0. Figure 7.6 (left) illustrates the obtained results for g(¢)
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for varying fractional orders using a Riemann-Liouville definition. We observe an a-dependent
amplitude decay, which converges to a classical integer-oder oscillator as « — 1. Furthermore,
an anomalous transient region is observed at the short time-scale ¢ € [0.1, 1]. On the other hand,
in Figure 7.6 (right), anomalies are present at large time-scales through a (far-from-equilibrium)
power-law relaxation, while the short-time behavior is “standard-like". Such contrast between
the obtained results provides interesting insights towards modeling desired anomalous ranges in
such power-law materials. By replacing the fractional damper with a classical integer-order one
(see Fig.7.7), we notice that neither anomalous dynamics are present. The obtained results are in
agreement with the power-law and exponential relaxation kernels described in Sec.7.2.2. We note
that since the fractional element provides a constitutive interpolation between spring and dash-pot
elements (see Sec.7.2.2 for more discussion and references), it contributes to both effective stiffness
and damping ratio of the system, and therefore increasing values of @ (decreasing stiffness), yield
a reduction in the frequency response.

Fractional linear oscillators are also considered in [287] for systems with memory, where their
interaction with a fluctuating environment causes the time evolution of the system to be intermittent.
The authors in [287] apply the Koopman operator theory to the corresponding integer order system
and then make a Levy transformation in time to recover long-term memory effects; they observe a
power-law behavior in the amplitude decay of the system’s response. Such an anomalous decay rate
has also been investigated in [288] for an extended theory of decay of classical vibrational models
brought into nonlinear resonances. The authors report a “non-exponential” decay in variables
describing the dynamics of the system in the presence of dissipation and also a sharp change in the

decay rate close to resonance.

7.4 Perturbation Analysis of Nonlinear Equation

We use perturbation analysis to investigate the behavior of a nonlinear system, where we reduce
a nonlinear fractional differential equation to an algebraic equation to solve for the steady state

amplitude and phase of vibration.
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Figure 7.6: Anomalous linear free vibration modal displacement vs. time. (Left) Riemman-
Liouville definition with short-time anomalies. (Right) Caputo definition with long-time anomalies.
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Figure 7.7: Classical linear free vibration modal displacement vs. time under varying values of E,.

7.4.1 Method of Multiple Scales

To investigate the dynamics of the system described by (7.30), we use the method of multiple scales
[289, 290]. The new independent time scales and the integer-order derivative with respect to them

are defined as

0

T, =€mt, Dy = —,
m 9T,

m=0,1,2,---. (7.39)

Itis also convenient to utilize another representation of the fractional derivative (see [291 |, Equation

5.82), which according to the Rieman-Liouville fractional derivative, is equivalent to the fractional

power of the operator of conventional time-derivative, i.e. R%Z)ta = (%)“. Therefore,

d d 2 RL d 1

—=Dg+€eD{+--+, — =D-+2eDoDi+---, DY =(—)=D¥+eaD¥ 'D{ +---

7 0 1 2 0 0D oD =( 7 t) 0 o Di
(7.40)
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The solution g(¢) can then be represented in terms of series expansion:

q(To, Ty, -) = oMo, Ty, - -) + €q1(To, Ty, - - ) + €2qo(To, Ty, -+ -) + - - (7.41)

We assume that the coefficients in the equation of motion have the following scaling

K C Kl Cui
M =€ myy, M =k; = w%, M =€y, Wn =ekyj, Mn =€y, (7.42)
and the base excitation —% v}, is @ harmonic function in the form € F cos(€2¢). Thus, (7.30) can

be expanded as

(D3 +2€DoD 1 +--)(qo+€qy +- ) +€mpy (D} +2eDoD 1 +--)(qo+eqy ++-+)
X (qo+€q1 +-- ) +empy(qo+eqy+- )
X (Do + €Dy +++)qo+eqy ++))” +wd (qo+eqr +- )
+eE,c (D8+eaDg_lD1 +--)qgo+eqr+--)+2e€ky (go+eqy+---)
3

3 (7.43)

1 _ 3
+ EEEr cnt (D + €aDyy DI+ )qo+eqy+--) + EEEr cni(qo

+eqr+--e)? [(Dg + ea/Dg_lDl +--)(go+e€qq+-- -)] = € F cos(QTy).

By collecting similar coefficients of zero-th and first orders of €, we obtain the following equations

0(e) : D3qo +wiqo =0, (7.44)
O(ely D(Z)QI + wéé]l = —2DoD1q0 — mpy; (CI%D%CIO + 610(D0610)2) —Erc;Dyqo —2kp qS
1 3
~ 5 Ercu Diqp - S Ercul qiD3 qo + F cos(QTp). (7.45)

The solution to (7.44) is of the form
q0(To, Ty) = A(T}) €070 4 c.c (7.46)

where “c.c" denotes the complex conjugate. By substituting (7.46) into the right-hand-side of (7.45),
we observe that different resonance cases are possible. In each case, we obtain the corresponding
solvability conditions by removing the secular terms, i.e. the terms that grow in time unbounded.
Then, we utilize the polar form A = %a el ¢, where the real valued functions a and ¢ are the

amplitude and phase lag of time response, respectively. Thus, the solution g(¢) becomes
q(t) = a(et)cos(wgt + p(et)) + O(e), (7.47)

where the governing equations of a and ¢ are obtained by separating the real and imaginary parts.
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7.4.1.1 Case 1: No Lumped Mass At The Tip

In this case, M = J = 0, and thus, given the form (D.57) for the eigenfunctions ¢(s) in D.4, the
coefficients are computed as M = 1, K; = C; = 12.3624, M;, = 0.782992, and K,;; = C,; =

20.2203. We consider the following cases:

e Free Vibration, F = 0: Super Sensitivity to «
In this case, the beam is not externally excited and thus, F = 0. By removing the secular terms

that are the coefficients of ¢/ 070 in the solvability condition, we find the governing equations of

solution amplitude and phase as

d 1 3

d_;ll =-FE, wg_l sin(a/g) (5 cra+ 3 Cnl 613) ) (7.48)
d 1 3 3

a1 = 3e Eret T cos () + Jen Erof T eos () @+ Jopl k. (149

We can see from the first equation (7.48) that the amplitude of free vibration decays out, where the
decay rate 77 = c; Ey wg_l sin(a%) directly depends on values of the fractional derivative @ and

the coefficients E; (see Fig. 7.8). We introduce the sensitivity index Sz, as the partial derivative
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Figure 7.8: Nonlinear anomalous free vibration of a viscoelastic cantilever beam with no lumped
mass at the tip and E, = 0.1. The rate of amplitude decay strongly depends on the fractional order

a, where a rapid decay is observed as « is increased (left). On the other hand, for increasing «, the
phase lag ¢(€t), increases in the lower range of @, and decreases in the higher range of «

of decay rate with respect to «, i.e.

dry n _
STd’a = E =§Cl Er (x)g

! cos(a%) e Er o] sin(a/%) log(wo). (7.50)
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Figure 7.9: Anomalous super-sensitivity of the decay rate 7; with respect to @ under free vibration.
Increasing @ when @ < ., leads to higher dissipation and decay rate. The reverse effect is observed
when @ > a.r. Here, the notions of softening/hardening are associated to high/lower decay rates
as « is increased (introducing extra viscosity).

The sensitivity index is computed and plotted in Fig. 7.9 for the same set of parameters as in

Fig. 7.8. There exists a critical value

2 m
= S — Sl

where (dS+ o /da) = 0. We observe in Fig.7.9 that by increasing @ when @ < @, i.e. introducing
more viscosity to the system, the dissipation rate, and thus decay rate, increases; this can be
interpreted as a softening (stiffness-decreasing) region. Further increasing @ when a > a¢r, will
reversely results in decrease of decay rate; this can be interpreted as a hardening (more stiffening)
region. We also note that @, solely depends on value of w, given in (7.42), and even though
the value of E, affects decay rate, it does not change the value of @.,. Therefore, the region of
super-sensitivity, where the anomalous transition between softening/hardening regimes takes place
only depends on the standard natural frequency of the system.

Although the observed hardening response after a critical value of @ in Fig.7.9 might seem
counter-intuitive at first, we remark that here the notions of softening and hardening have a mixed
nature regarding energy dissipation and time-scale dependent material stress response, which have
anomalous nature for fractional viscoelasticity. Similar anomalous dynamics were also observed
in ballistic, strain-driven yield stress responses of fractional visco-elasto-plastic truss structures

[1,292]. In the following, we demonstrate two numerical tests by purely utilizing the constitutive
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response of the fractional Kelvin-Voigt model (7.19) to justify the observed behavior in Fig.7.9 by
employing the tangent loss and the stress-strain response under monotone loads/relaxation.
Dissipation via tangent loss: By taking the Fourier transform of (7.19), we obtain the so-called

complex modulus G* [270], which is given by:

G* () = Eco + Eq® (cos (ag) +isin (a%)) : (7.52)

from which the real and imaginary parts yield, respectively, the storage and loss moduli, as follows:

G'(w) = Eco + Eqw® cos (ag) . G"(w) = Eqw®sin (a%) ,

which represent, respectively, the stored and dissipated energies per cycle. Finally, we define the
tangent loss, which represents the ratio between the dissipated/stored energies, and therefore related

to the mechanical damping of the anomalous medium:

E,w% sin (aﬂ)
tanglos - C @ 7 ’

= = (7.53)
G'w) g4 E,w? cos (a/%)

We set w = wq and E, = 1 and demonstrate the results for (7.53) with varying fractional orders
a. We present the obtained results in Fig.7.10 (left), where we observe that increasing fractional
orders lead to increased dissipation per loading cycle with the increase of the tangent loss, and
the hardening part (@« > a.) is not associated with higher storage in the material. Instead, the
increasing dissipation with @ suggests an increasing damping of the mechanical structure.

Stress-time response for monotone loads/relaxation: In this test, we demonstrate how increasing
fractional orders for the fractional model leads to increased hardening for sufficiently high strain
rates. Therefore, we directly discretize (7.19) utilizing an L1-scheme [176] in a uniform time-grid
and set E = 1, E4 = 1. We also assume the following piecewise strain function: &(¢) = (1/24)t,
for 0 < t < 2.5 (monotone stress/strain), and &(¢) = 1/10 for 2.5 < ¢t < 6 (stress relaxation). The
obtained results are illustrated in Fig.7.10 (right), where we observe that even for relatively low
strain rates, there is a ballistic region nearby the initial time where higher fractional orders present

higher values of stress, characterizing a rate-dependent stress-hardening response. However, due to
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the dissipative nature of fractional rheological elements, the initially higher-stress material softens

after passing a critical point, due to its faster relaxation nature.

4 - 027
- —G'(w)
& —G”(w)
23} |—tan(s's5) 0.15+
= —_
s g
© )
S1t 0.05
©
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Fractional order « Time [s]

Figure 7.10: (Left) Storage and loss moduli, and tangent loss for the fractional Kelvin-Voigt model
at wq with varying fractional-orders and E, = 1. (Right) Stress-time response under a monotone
load with constant strain rate undergoing ballistic hardening response for short-time and higher «,
followed by a stress relaxation.

e Primary Resonance Case, Q ~ w

In the case of primary resonance, the excitation frequency is close to the natural frequency of the
system. We let Q = w( + € A, where A is called the detuning parameter and thus, write the force
function as %F e AT1 1w T0 4 ¢ ¢ . In this case, the force function also contributes to the secular

terms. Therefore, we find the governing equations of solution amplitude and phase as

d 1 3 1
a7 =~ Ereg ! sine3) (5 €ra+genl a3) +fwp! STy — ), (759
de 1 3 3

a _dY()“Dl =5¢1 E, wg_l cos(?) a+enl Ey wg_l COS(%) a’ + I w61 ki @ (7.55)

1 -
— 5f wg' cos(ATy - @),

in which the four parameters {a, E;, f, A} mainly change the frequency response of the system.

The equations (7.54) and (7.55) can be transformed into an autonomous system, where the 77 does
not appear explicitly, by letting

’y=AT1—g0.
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: da _ dp _ :
The steady state solution occur when Ty = a1y = 0, that gives

nt 3) = S Gy, (7.56)
8 2(1)0

a-1_. X [C]
E; w 51n(7)(5a+

c _ na
(A g, wg 1 COS(T)) a—

_ T _
: (cn, Er ™ cos(5) + ! knl) &=L costy), (7.57)

3
4 2(1)0

and thus, by squaring and adding these two equations, we get

2
3
[%Er wf ' sin(Sha + =LE, 0§~ sin5) a3] +[(a-FEr0f ™ cos(F) a
2 2

3 _ na _
-3 (cnl Er ™! 003(7)+w01 kn,) a3] = 4f7§' (7.58)

This can be written in a simpler way as

312 312

[A1a+A2a] +[B1a+Bza] -C, (7.59)

where

c . T« 3c -1 . T«
Ay = LE, wg_l sm(T), Ay = 8”1 Er 0¥ ! sm(T),

2 0
2
cl a—1 na 3 ( a—1 na _1 ) f
Bi=A-—E —), By=-—- E —)+ kp), C=-—.
1 5 Er Wy cos( > ) 2 4 Cnl Ly W cos( > ) Wy knl 40)%
Hence, the steady state response amplitude is the admissible root of
(A3 + B3)a® + (2414 + 2B By)a* + (AT + BDa® - C =0, (7.60)

which is a cubic equation in a2. The discriminant of a cubic equation of the form ax3+bx2+cx+d = 0
is given as ¢ = 18abcd —4b3d +b%c? —4ac? —27a%d?. The cubic equation (7.60) has one real root
when ¥ < 0 and three distinct real roots when ¢ > 0. The main four parameters {«, E, f, A} dictate
the value of coefficients {A{, Ap, By, By, C}, the value of discriminant ¢}, and thus the number of
admissible steady state amplitudes. We see that for fixed values of {a, E,, f}, by sweeping the
detuning parameter A from lower to higher excitation frequency, the stable steady state amplitude
bifurcates into two stable branches and one unstable branch, where they converge back to a stable
amplitude by further increasing A. Fig. 7.11 (left) shows the bifurcation diagram by sweeping

the detuning parameter A and for different values of @ when E, = 0.3 and f = 1. The solid and
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dashed black lines are the stable and unstable amplitudes, respectively. The blue lines connect the
bifurcation points (red dots) for each value of @. We see that the bifurcation points are strongly
related to the value of @, meaning that by introducing extra viscosity to the system, i.e. increasing
the value of @, the amplitudes bifurcate and then converge back faster. Figure 7.11 (right) shows the
frequency response of the system, i.e. the magnitude of steady state amplitudes versus excitation
frequency. As the excitation frequency is swept to the right, the steady state amplitude increases,
reaches a peak value, and then jumps down (see e.g. red dashed line for « = 0.4). The peak

amplitude and the jump magnitude decreases as « is increased.

7 =08 1
a=07: 09r
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Figure 7.11: Primary resonance of the viscoelastic cantilever beam with no lumped mass at the tip.

Steady state amplitude (right) and its bifurcation diagram (/eft) by changing the detuning parameter
A for different values of @ and E, = 0.3, f = 1.

The coeflicient E, = % is the proportional contribution of fractional and pure elastic element.
At a certain value while increasing this parameter, we see that the bifurcation disappears and the
frequency response of system slightly changes. Fig. 7.12 shows the frequency response of the
system for different values of {a, E,} when f = (0.5. In each sub-figure, we let « be fixed and then
plot the frequency response for E, = {0.1,0.2,---, 1}; the amplitude peak moves down as E, is
increased. For higher values of E;, we see that as « is increased, the amplitude peaks drift back to

the left, showing a softening behavior in the system response.
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Figure 7.12: Frequency-Response curve for the case of primary resonance in the viscoelastic
cantilever beam with no lumped mass at the tip. Each sub-figure corresponds to a fixed value of
a and f when E, = {0.1,0.2,---,1}. As effect of fractional element becomes more pronounced,
i.e. @ and E;, increase, the corresponding amplitude peaks decrease and shift towards the lower
frequency range.

7.4.1.2 Case 2: Lumped Mass At The Tip

In this case, M = J = 1, and thus, given the functions ¢{(x) in Appendix D.4, the coefficients
are computed as M = 1+ 70.769J + 7.2734M, g = 5008.25, K; = C; = 98.1058, M, =
—0.648623 — 2.69692M, and K;;; = C,;; = 2979.66. Similar to Case 1, we consider the following

cases:

e Free Vibration, F =0
Following the same steps as in Case 1, we see that the equation governing amplitude preserve its

structure, but the governing equation of phase contains an extra term accommodating the m,,;.

d 1 3
d—;fl =-E, a)g_l sin(ag) (5 cia+ 3 Cnl 613) , (7.61)
d 1 3 3 1
d_ﬁl =5¢I E, wg_l cos (%) + Cnl E, wg_l cos (%) a? + 1 w61 k a® - 7 Ml 90 a>.
(7.62)

This extra term does not significantly alter the behavior of phase and the whole system.
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¢ Primary Resonance Case, Q ~ w
Similar to the free vibration, we see that the equation governing amplitude preserves its structure

while the governing equation of phase contains an extra term accommodating the m,,;

d 1 3 1
d_;ll =-F, wg_l sin(a%) (5 cra+ 3 Cnl a3) + Ef a)61 sin(AT] — ¢), (7.63)
d _ na _ na 3 _
a d—;’fl =5¢1 E; wy ! cos(j)a + Cnl Er wy ! 005(7) a’+ 1 wol ky a’
1, 1 3
— Ef Wy cos(AT| — ) — 7 Ml Wo A’ (7.64)

Transforming the equations into an autonomous system by letting y = AT| — ¢, we obtain the

governing equation of steady state solution as

2
3
[%Er oy sin(ya+ g sm@)az] [(A- e cos")) a
2 2
3 _ na _ 1 f
—Z (Cl’ll E, (,L)g 1 COS(T) + (,L)O1 kl’ll + g my; (,L)O) a3] = W, (765)

which, similar to Case 1, can be written as
(A3 + B3)a® + (2A1 Ay + 2B By)a* + (AT + BHa® - C = 0,

where all the Ay, Ay, By, and C are the same as in Case 1, but

3 _
By = ——|cu Er wy !

na _ 1
] COS(T) + wol knl + -mywo -

3

The corresponding cubic equation can be solved to obtain the bifurcation diagram and also the
frequency response of the system. However, in addition to Case 1, we have an extra parameter m,,;

which affects the response of the system.
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CHAPTER 8

A SELF-SINGULARITY-CAPTURING APPROACH FOR FRACTIONAL
DIFFERENTIAL EQUATIONS

8.1 Background

Fractional differential equations (FDEs) have been successfully applied in diverse problems
that present the fingerprint of power-laws/heavy-tailed statistics, such as visco-elastic modeling of
bio-tissues [8, 10, 43, 187, 293], cell rtheology behavior [12], food preservatives [24], complex
fluids [128], visco-elasto-plastic modeling for power-law-dependent stresses/strains [1, 223, 294],
earth sciences [295], anomalous diffusion in Sephadex™gels [296], among others.

The increasing number of works involving fractional modeling in the past two decades is
largely due to the development of efficient numerical schemes for fractional-order/partial differential
equations (FDEs/FPDEs). Starting with Lubich’s early works [86, 88] on finite-difference schemes,
and followed by several developments, e.g., on discretizing Burger’s equation [196], fractional
Adams methods for nonlinear problems [94, 108, 112, 113], and fractional diffusion processes [30,
91, 197, 199]. Also, other classes of global methods were developed, such as spectral methods for
FDEs/FPDEs [95-101,297-299], distributed-order differential equations (DODEs) [260, 261, 266],
and also mesh-free schemes, such as the improved singular boundary method (SBM) developed by
Chen and Gu [300]. Of particular interest, we highlight a family of fast convolution schemes for
time-fractional integrals/derivatives, initially developed by Lubich [103]. In such schemes, instead
of a direct discretization by splitting the fractional operator in N uniform time-integration intervals,
it is split in exponentially increasing intervals, reducing the overall computational complexity from
O(N?) to ~ O(N log N). Furthermore, the power-law kernels are computed through a convolution
quadrature using complex integration contours [103—-105, 301, 302]. The storage requirements are
also reduced from O(N) to = O(log N). Recently, Zeng .et.al [5] developed an improved version of

the scheme using a Gauss-Laguerre convolution quadrature, which utilizes real-valued integration
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contours. In the same work, the authors also addressed the short memory principle and applied
Lubich’s correction terms [86], leading to a more accurate and stable fast time-stepping scheme.
We also refer readers to other classes of fast schemes for time-fractional operators that make use
of the resulting matrix structures [303], kernel compression [304], and divide-and-conquer fast
finite-difference schemes [305].

There have also been works on ‘tunable accuracy’, spectral collocation methods for FDEs/FPDEs
that utilize singular basis functions [96, 102, 306]. Zayernouri and Karniadakis [96] developed an
exponentially accurate spectral collocation method utilizing fractional Lagrange basis functions,
given by the product of a singular term with real power u and a smooth part given by Lagrange
interpolands. Zeng .et.al [306] later generalized the scheme for variable-order FDEs/FPDEs with
endpoint singularities and demonstrated that a proper tuning of the power u enhanced the accuracy
of the numerical solutions. Lischke .et.al [102] developed a Laguerre Petrov-Galerkin method for
multi-term FDEs with tunable accuracy and linear computational complexity. Despite the high
precision obtained by fine-tuning the bases in the developed works, such numerical accuracy is
extremely sensitive to the ’single’-singularity basis parameter 4 and no self-capturing scheme was
developed to find its correct, application-specific value.

In order to deal with weak singularities nearby the initial time, Brunner and Tang [81] developed
graded mesh approaches with spline collocation methods to a first-order Volterra integro-differential
equation arising in fluid dynamics. Later on, graded meshes were incorporated in usual finite-
difference discretizations for FDEs [82-85]. In such schemes, a nonuniform time-grid with #,, =
(nAt)" is utilized instead the uniform counterpart, where r denotes a grading parameter which
optimal value is crucial to obtain the theoretical accuracy and convergence rates of the corresponding
original schemes. Recently, stability issues of graded meshes were addressed by Stynes .et.al [85]
in a reaction-diffusion problem, where they obtained an optimal grading parameter of r = (2—a)/a.
Zeng .et.al [5] compared the performance of the optimally graded meshes developed by Stynes
.et.al [85] against their developed fast time-stepping scheme with Lubich’s correction scheme [86].

They demonstrated that, for a nonsmooth solution, Lubich’s correction scheme using M = 3 terms
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yielded competitive results with similar convergence rates and smaller errors than the optimally
graded mesh approach. Zeng .et.al [5] further observed that when « is close to zero, utilizing
Lubich’s correction scheme is even more efficient than the graded mesh approach with optimal r
in [85].

The accuracy and efficiency of the aforementioned numerical schemes strongly depend on
the regularity of the solution. To address such problem, a correction method was introduced by
Lubich [86], which utilizes M correction terms with singular powers o, withk =1, ..., M, given
regularity assumptions for u(¢). The corresponding correction weights are obtained through the
solution of a Vandermonde-type linear system of size M. Given a convenient choice of singular
powers, some developed schemes were able to attain their theoretical accuracy with non-smooth
solutions [5, 87], where the evaluation of correction weights can have the same computational
complexity of the original methods, e.g., by employing Fast Fourier Transforms. However, such
works utilize ad-hoc choices of oy, even without prior knowledge of the regularity of the solution.
According to Zeng .et.al [5], for such cases, a reasonable choice would be o = 0.1k, which
could improve the numerical accuracy when strong singularities are present, and without loss of
accuracy when there is enough regularity for u(¢#). However, such procedure could still lead to
arbitrary choices of o, far from the true singularities of the solution. There are higher chances of
approximating the singularities by increasing the number of correction terms, but using M > 9 terms
induces a large condition number on the Vandermonde system (see Figure 8.2a), and consequently
large residuals, leading to large errors when computing the correction weights, which are propagated
to the discretized fractional operator [307].

Regarding the numerical solution of FDEs with correction terms, let N be the total number of
time-steps with size Ar. For the first M time-steps, prior information of the numerical solution for
u(t), see (8.19), is required. The procedure proposed in [5] involves the solution of a sub-problem
with time domain ¢ € (0, MAt] using a time-step size T = A% and one correction term to obtain
the numerical solution unN forn = 1,..., M. However, the choice of smaller step size T even

for a short time might be too expensive, and the numerical solution for the M initial time-steps
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might experience total loss of accuracy in the presence of strong singularities, not captured by
the single guessed correction term. Such deficiencies outline the need for I) Capturing the multi-
singularities of u(¢) and II) Efficient and accurate schemes that incorporate all captured singularities
for time-integration of the (most crucial) initial M time-steps.

The main contribution of the present work is to develop a two-stage data-infused computational
framework for accurate time-integration of FDEs. In Stage-I, we formulate a self-singularity-

capturing framework where:

* The scheme utilizes available data for initial diminutive time (application-oriented), and self-
captures/determines multi-singular solution behaviors through the knowledge introduced by
the FDE and its corresponding fractional operators. No knowledge of the analytical solution
is required a-priori, and some of the numerical tests throughout this work sample from

analytical solution points only for verification purposes.

* We develop a new (finite-difference based) algorithm for automatic determination of the
underlying power-law singularities nearby the initial data, employing gradient descent op-
timization. Despite the several aforementioned schemes to address the singularities of the
FDE solutions, our choice here is to introduce such singularities through Lubich’s correction

method [86].

* We introduce the capturing scheme for M correction terms and construct a hierarchical,
self-capturing framework. We test the framework for the particular case of up to § = 3

singularities and M = 3 correction terms.

* The self-capturing procedure makes use of two stopping criteria for the error minimization,
namely € (for solution error) and € (for gradient norm error), where the numerical con-
vergence with respect to € defines if the singularities are captured. Numerical convergence
towards the tolerance €] defines if additional correction terms are needed to capture the true

solution singularities.
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In Stage-1I we utilize the captured multi-singularities for the full time-integration of the FDE in
question, where a variety of the aforementioned numerical methods could be, in general, employed.
At this stage, no knowledge of the solution data is required, but only the usual forcing terms. Our

approach is explained as the following:

* To handle the numerical solution of the FDE using multiple correction terms, we develop
an implicit finite-difference method, where we solve a linear system of size M for the first
M time-steps. Therefore, we incorporate the captured singular behavior up to the desired

precision €, without the need of using a fine time-grid;
« We numerically show that the developed methodology has order O(Ar3~%).

We perform a set of numerical tests, where we demonstrate that the developed scheme is able
to capture multiple singularities using a few number of time-steps, which can later be utilized for
efficient time-integration of FDEs with relatively large time-step size At, being much more accurate
than ad-hoc choices of singularities when the regularity of the solution is unknown. The successful
capturing of singularities motivates the development of kernel- and knowledge-based refinement
of time-grids nearby the initial time [85], especially with values of @ close to zero, as well as
self-construction of basis function spaces using Miintz polynomials [308, 309] for spectral element
methods for FDEs/FPDEs [101].

This paper is organized as follows: Section 8.2 introduces the definitions for fractional operators
and the FDE in consideration. In section 8.3 we develop the two-stage framework for efficient time-
integration of FDEs, where we start with the self-singularity-capturing scheme (Stage-I) in Section
8.3.1, followed by the finite-difference scheme for solution of FDEs (Stage-II) in Section 8.3.2
using the captured singularities. The numerical results with discussions for self-capturing up to

three singularities are shown in Section 8.4.
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8.2 Definitions

We start with some preliminary definitions of fractional calculus [31]. The left-sided Riemann-

Liouville (RL) integrals of order @ € R, with 0 < @ < 1 and ¢ € R, is defined, as

RO

D(@) Ja (t - s)l=

RLTY)1) = ds, t>a, (8.1)

where I" represents the Euler gamma function and a denotes the lower integration limit. The
corresponding inverse operator, i.e., the left-sided RL fractional derivatives of order a, is then

defined based on (8.1) as

d
REDy)1) = E<R’af,l‘“v><t) =

t
! dj 'S4 s a (8.2)

T(l—a)dt ), (t—s)
Furthermore, the corresponding left-sided Caputo derivatives of order u € (0, 1) is obtained as

V/(s)

t—s)a >

d
C D)) = (Ré‘ftl_“d—:)(x) = F(l — I ( t>a. (8.3)

The definitions of Riemann-Liouville and Caputo derivatives are linked by the following relation-

ship, which can be derived by a direct calculation

v(a)
I'ad—-ao)(-a)”

RLD) 1) = +(EDM)), (8.4)

which denotes that the definition of the aforementioned derivatives coincide when dealing with
homogeneous Dirichlet initial/boundary conditions.

We now introduce the Cauchy problem to be solved in this work and its corresponding well-
posedness (see Theorem 3.25(i) [310] with n = 1). Let C(€2) be the space of continuous functions
u(t) in Q = [a, b] with the norm:

lullc) = maXlu(l)l
Also, let 0 < @ < 1 and y € R*, with y < a. We define C,(Q) to be the following weighted space

of continuous functions:

Cy(Q) = {gO] (t —a)’'g(1) € C(), lIgllc,= It =) 'g®llc},
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Let G be an open setin R, and let a function f(z, u(?)) : (a,b]XG — R, such that f(z, u(r)) € C(L2)
and is Lipschitz continuous with respect to any u(¢) € G. Let the fractional Cauchy problem of
interest given by:
g@tau(t) = f(t,u(t)), u(a)=ugp. (8.5)
Given the aforementioned conditions, there exists a unique solution for (8.5) in the following space
of functions:
C(Q) = {u(t) € C(Q)] SDFu(t) € C(Q)}.

The corresponding solution with respect to u(¢) equivalent to the following Volterra integral equa-
t fs,u(s)

—~ds, with a <t < b. We remark that
a (t—s)l-a

tion of second kind: u(t) = ug + F(la) f
for other particular forms of (8.5), the corresponding Volterra equation of second kind con-
tains Mittag-Lefller functions E,(z), which are defined through infinite sums and thus are not
computationally-friendly. Therefore, we choose to work with the presented form, since the devel-
oped self-singularity-capturing framework can be extended for other FDEs in a straightforward way,
without resorting to computationally expensive hyper-geometric functions. Furthermore, although
the existence and uniqueness of Cauchy problems has been investigated [108, 310-312], yet, there is
no comprehensive framework to understand the singular behavior of the solution given any general
St u@) € Cy(Q). The developed formulation in this work is suitable for problems where a few
initial discrete data points are known from u(¢) and f(z, u(t)).

Due to the employed finite-difference discretization over the RL derivative in this work (see

Section 8.3.1.2), we choose to rewrite (8.5) using (8.4) to obtain:

KaDIu(n) = S u(0) - 5 a”)‘zt — (8.6)

As will be shown in the next sections, the developed scheme is able to capture singularities with a

minimal number of time-steps, i.e. with restricted data for a short period of time.

8.3 Two-Stage Time-Integration Framework

In this section, we develop the two-stage framework for efficient time-integration of FDEs.

We start with Stage-I, where the singularity-self-capturing scheme is presented for S singularities,
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Stage-I: Short-Time Data  Stage-Ili: Full FDE Integration
Q = [to, t5] Q = [to, tn]

t=ty tg tN

Figure 8.1: In Stage-I, the scheme captures the singularities for the short time-domain €, given
the short initial data. In Stage-II, the framework uses the singularities obtained in Stage-I for full
time-integration of the FDE over Q.

computed over a small number of initial data points denoted by N. Then, after the multi-singular
solution behavior is learned, we present the developed solution for FDEs in Stage-II, where the

subsequent full time-integration of the FDE is carried out over N time steps (see Figure 8.1).

8.3.1 Stage-I: Self-singularity-capturing stage

We develop the self-singularity-capturing framework, starting with M correction terms for the
initial time-steps N, at which data is available. We then utilize the developed algorithm in a

self-capturing approach, through a hierarchical and iterative fashion.

8.3.1.1 Minimization method

Letr € Q, with Q = (70, 5], where N denotes the number of initial short data points, such that

N > M, and let o € RM be the following correction-power (singularity) vector:

T
o=|oy, oo, ..., om] .

We define an error function E : RM — R™*, given by:

N 2
E@)=>] (u;f“m —ul (0')) , (8.7)
n=1

where unN (o) denotes the o--dependent numerical solution of u(t) at ¢t = ¢,, and uf,l‘”“ represents

the known initial shot-time data. Figure 8.1 illustrates the integration domain Q for Stage-I, where
the error function (8.7) is evaluated for a short time. We apply an iterative gradient descent scheme

in order to find o* that minimizes (8.7). Let ok be known at the k-th iteration. We compute the
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updated value o**1 for iteration k + 1 in the following fashion [313]:
where yk denotes the following two-point step size for the k—th iteration, given by [314]:

(o* - ak—l)T [VE(0*) - VE(ok1)]

k
yro= . (8.8)
ky _ k—1y112
|IVE(o*) - VE(o )||L2(RM)
The gradient VE : R* — RM of the error function is givenby VE (o) = [0E /0o, 0E/do>, ..., 8E/(90'M]T,

where, instead of obtaining a closed form for the derivatives (which would implicitly involve the dif-
ferentiation of ufv ), we utilize complex-step differentiation. Therefore, lete; = [0, 0, ..., 1, ..., O]T

be a vector in R of zeros, with a unit value in the j-th entry. Therefore, we have the following:

Im(E(0o +iAcej))

=1,2, ..., M, i=+/(-1 .
AO' ] s s s l ( )9 (89)

VE(0); ~

which only requires the additional evaluation of the error function perturbed by Ao, which can be
taken, e.g., as 10~1%. Given two numerical tolerances e and €1, we iterate and find a new o+l
while both criteria E(o-¥*1) > € and ||[IVE (O'k)| |> €1 are true. The latter criterion is introduced to
minimize our error function, while the former is used for error control in our self-capturing scheme.
As will be shown in the next sections, the criterion ||VE(o%)||< €1 is satisfied for small €; even

when M < S, but the criterion E(o**!) < € will only be satisfied when we use enough correction

terms (see Section 8.3.1.3) to fully capture the S number of power-law singularities.

8.3.1.2 Numerical scheme for short-time integration

In the singularity-capturing scheme, given o, in order to compute the error in (8.7) and the

N

gradient (due to the error perturbation) (8.9), we need to compute the numerical solution u;,

for n = 1, ..., N initial data points over time-intervals Atz. For this purpose, we employ the
finite-difference discretization with corrections presented in [86] for the fractional RL derivative.

Including correction terms, the discretization of the left-sided RL fractional derivative of order a,
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evaluated at time ¢ = ¢,, with initial time a = 0, has the following form:
RL . RL(@M) N
OD?u(tN[:tn ~ 0@[ u (t)|t=tn'

The above approximation is augmented by the so-called Lubich’s correction terms, which is given

by:
M
M
RLy@M N = RLpayNip| 4 Z‘f W (o) (uf’ - uo) , (8.10)
]:
with n = 1,...,N. The term Wj,n((r) denotes the correction weights, which depend on the

correction powers o € RM . We assume a power-law solution singularity about ¢ = 0, driven by the
power-law kernel of the RL fractional derivative, i.e., u|peqrpy = ZQ/L L € k. If o = {O’k}ﬁ | are

t=0
known, the RL fractional derivative of each singular term, ”k, can be obtained by:

k=1,...,M, (8.11)

M
RL ya (0 o T +op) op-a
oD; 761y, +j§1WJJltj Ttror—a)"

where the first term on the left-hand side of (8.11) denotes the discretized RL fractional derivative
of 7k, while the right-hand side represents the exact fractional derivative of 7k, evaluated at

t = t,. Equation (8.11) can be written as:

M
I'(1 +oy) - 1 rL
Vi Wi, = Tk=* - —— "D Tk)|,_, 8.12
jZ=1f KITIN T + o — o)A At%k 071 =y (8.12)
withk =1,..., M, where Vi j= Jj%k denotes a Vandermonde matrix with size M x M. Therefore,
to obtain the starting weights W; ,,, the above linear system has to be solved foralln =1, ..., N.

Substituting (8.10) into (8.6), we obtain the following discrete form for the FDE:

M
u
REDI N O imgy + D W) (ul = ) = =0 = e, (8.13)
. J (1 - a)?

withn=1, ..., N.
In order to discretize R%Z)ta ulV (1), we follow the difference scheme developed in [5], which
is based on a second-order interpolation of u(#) for the fractional RL integral (8.1), similar to the

L1-2 scheme for fractional Caputo derivatives developed in [30]. Therefore, when evaluating (8.1)
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at t = t,, we split it into local £ and history H parts as follows:

n n=2 (4]
RELUN 1))y, = J k(tn — ™ (s)ds+ > k(tn — s)u™ (5) ds, (8.14)

| k=01

L(u,tn) H(u,tn)
with the kernel k(r) = 1*~!/T'(@). The function ™V (r) is approximated in an implicit fashion using

Lagrange interpolands l;p ) () of order p:

p ' Pos_y
uMtn) > 1P = S0P,y with [P0 =[] — (8.15)
7=0 i=0 1/~ i
i#]

Substituting (8.15) into (8.14), and evaluating the convolution integrals, we obtain the following

approximations for the local and history parts, respectively, as

p
@), N _ (), N
L0 —;Odj Uyt j—p> (8.16)
) N _ DD N @ N .03 N
n,a _
H we= ZO (bn—l—juj + bn—l—juj+1 +bn_1_j”j+2) . (8.17)
]:

where the corresponding a- and Az- dependent coefficients dﬁ.p ) and bg.l), bg.z), b§.3) are presented in
E.1. In our computations, we make use of p = 1 (piece-wise linear approximation) for the local part
LDy when n = 1 (first time-step), and p = 2 for n > 1 (subsequent time-steps). The fractional

RL derivative can be obtained from the above discretization by setting —1 < @ < 0. Therefore:
REDUN 1))y, ~ L DuN + H OOy N, (8.18)

Finally, substituting (8.18) into (8.13), and recalling (8.16), we obtain the discretized form for our
FDE:
P

M
(p), N = N . N Uo _ pdat
E dj' I/tn+j_p + 7'{(” a)lxt + .2_1 W],n(()') (I/l] - MO) - m = na a, (819)

Jj=0 J

withn=1,...,N.

Remark 8.3.1. Among a variety of available schemes, adopted the discretization of fractional

operators introduced in [5] using Lubich’s correction terms. However, in [5], the authors did not
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perform a fully implicit computation of the second term on the left-hand-side of (8.13) when M > 1.
Instead, they obtained the solutions forn = 1, ..., M using a fine, uniform time-grid with time-step
size T = At? and M = 1 correction term. We observe that using such a fine initial time-grid might
be computationally expensive and ineffective when strong singularities are present (e.g. u(t) = to'*,
withQ < o™ < 1 —a). In our developed scheme, we treat such term in a fully implicit fashion, where
we solve a small linear system with M unknowns to obtain unN forn=1,..., M. This ensures a

proper inclusion of all M singularities in all time-steps near t = 0.

We present here the developed finite-difference scheme to solve the discretized FDE (8.19) for
the particular case of M = 3. Here, we solve a small linear system for the fully-implicit computation
at the first 3 time-steps, that is, r = {At, 2At, 3At}, which is obtained by expanding (8.19) for each
of the time-steps, where we use p = 1 for the first one, with H (L=a)yN = (0 and p = 2 for the
subsequent ones. The expansions are presented as follows:

First time-step t = At:

1
(dﬁ )+W1,1)“]1V+ (Wa,1) ud + (W 1) ) = £ = ryug, (8.20)
—_— _ ~—— ——
Al A2 A13
with,
1 At~
r =d(())_ (Wl’l +W2,1 +W3’1 +m)

Second time-step t = 2Az:

2 2 2 3
0 e )l 42 )l 1

2
~——
o Ay A23
N (8.21)
with,
, | (2Ar)™®
ry=d® + b - Wia+War+ Wan+ vy |-
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Third time-step r = 3A¢:

2 1 2 2 2 3
e LR e e

A3] A3
+(dD + b5 + W) ul = plare — g, (8.22)
A33
with,
3Ar)7¢
ry = b( ) (W1’3 +Wo3+ W33+ 1(_‘(1—_)(” . (8.23)

Therefore, from (8.20)-(8.23), we solve the following linear system for n < 3:

A A Al |uf fd“m r|

Ar1 Ax A uév = fdata ~ |rp| “0- if n <3. (8.24)

Az An Ass||uf| | |

Remark 8.3.2. To obtain the solutions for M = 2, we only need to remove the third row/column of
the coefficient matrix A, and set Wy 3 = W3 | = Wp 3 = W35 = 0in (8.20)-(8.23). Also, we observe
that the correction terms lead to a full matrix of coefficients, which is reduced to a lower-triangular

form for the uncorrected case.

NNN

Uy, Uy are known and we solve for u in the usual

For the remaining time-steps (n > 3), u

(but still implicit) time-stepping fashion, as follows:

d t (2) —a), N
e Zd U, 2+j ﬂ(n a)u
S W —ugy 202} 142 i3 << (8.25)
s J (1 -a)

Remark 8.3.3. The current formulation can be extended for a larger number of correction terms;
however, using M > 9 will incur in an ill-conditioned system for (8.11). This fact was first analyzed
by Diethelm .et.al [307] and later numerically shown by Zeng .et.al [87], which would incur in

significant errors when computing the weights Wy ; and consequently propagate the errors to the
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operator discretization. In that sense, we choose M = 3 to capture the most critical singularities

while keeping a small condition number and small residual for the linear system (8.11).

8.3.1.3 Stage-I algorithm

The Stage-1 framework is described in Algorithm 8.1, which learns about the singularities of the
solution using small N. The M captured singularities o~ are utilized to initialize an FDE solver in
Stage-II (see Section 8.3.2).

Algorithm 8.2 summarizes the main steps for the numerical scheme to capture the singularities

of ydata data gor qiminutive times at fixed M.

8.3.1.4 Computational complexity of stage-I

We recall that in the presented scheme, the error function (8.7) is evaluated N;; times, which is
the number of iterations until convergence of the minimization scheme. The complexity of this

N over N time-steps.

error function is dominated by the time-integration of the numerical solution u
For the first M time-steps, we use (8.24) and solve the corresponding linear system, which costs
O(M?3). For the remaining N — M time-steps we use (8.25), where the dominant cost is due to
the direct numerical evaluation of the fractional derivatives, that is, O(N — M )2). Therefore, the
computational complexity of the entire scheme is O((M 34 (N-M )2)N,',). Howeyver, here we use
M < 3, and therefore the asymptotic complexity becomes O(N 2Nj;). Furthermore, N is assumed
to be small due to the short-time data, and we show in Section 8.4 that we are able to capture

singularities with N = O(M), which makes the presented scheme numerically efficient, as long as

a large number of iterations for convergence is not required.

Remark 8.3.4. We observe that since N is small, there is no need to use fast time-stepping schemes
in Stage-1, since the break-even point between fast and direct schemes usually lies in a range of

moderate number of time-steps (e.g. about 0(10% for the fast scheme in [5]). Therefore, for
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Algorithm 8.1: Stage-I Self-Singularity-Capturing Scheme for FDEs.

1: Known data about 59474 fdata for [ time-steps of size Af.

2: Set M =1, initial guess o = 0 and numerical tolerances €, €].

3: while M < 3 do

4:  Estimate al.(k), i=1,..., M using Algorithm 8.2 and obtain the error £ (O'(k)).

5. if E(c®) < e then

6: The singularities were captured within the specified tolerance e.
7: break

8: else

0: Additional correction terms needed: Set M = M + 1.
10: if M == 2 then
11: Set initial guess o© = [0, O'l(k) ]T.
12: else if M == 3 then
13: Set initial guess o© = [o{k), oék), (ofk) + oék))/Z]T.
14: end if
15:  endif

16: end while
17: return M, o, E(0).

Algorithm 8.2: Stage-I Singularity Capturing Algorithm (with M correction terms).

1: Initial guess oY, 70, compute Wy, ; using (8.11) and E(O’O) using (8.7), (8.24), (8.25).
2: while E(0%) > € and ||VE(c%)||> €] do

3:  Compute the perturbation ok + iAaej forj=1,2,..., M.

4:  Compute VE(O’k) using (8.9), (8.11), (8.7), (8.24), (8.25).

5:  Compute yk using (8.8) and update okl = gk ’kaE(O'k).

6: end while

7: return o, E(0).

Algorithm 8.3: Complete solution framework for FDEs.

1: Stage-I: Self-Singularity-Capturing
Given data for u44!@ fdata for N time-steps, capture o using Algorithm 8.1.
Stage-I11: Numerical solution of the FDE
Let N be the total number of time-steps. Compute W, ; using (8.12).
Solve unN forn=1,..., M using (8.24).
for n = 4 until N do
Solve for unN using (8.25).
end for

small N, fast schemes would decrease the performance of Stage-I, and would only be beneficial for

Stage-11.
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8.3.2 Stage-II: Integration of FDEs with the captured singularities

Once the multi-singular behavior of the solution is captured through the framework presented in
Section 8.3.1.3 and Algorithm 8.1, a variety of numerical methods for FDEs can be implemented
(e.g. other finite-difference and fast convolution schemes), incorporating the captured singularities.
Here, to solve the FDE (8.6), we use the developed implicit finite-difference scheme presented in
Section 8.3.1.2, and given by expressions (8.24) and (8.25) for t € Q = [#(, t], using N time-steps
of size At (not necessarily the same time-step size as Stage-I). The solution procedure is described
in Algorithm 8.3.

The computational complexity of Stage-II depends exclusively on the employed numerical
discretization for the FDE. We utilize the same time-integration scheme as in Stage-I, for N time-
steps. Therefore, recalling (8.24) and (8.25), we have a complexity of O(M 34 (N-M )2). However,

since M << N, the asymptotic computational complexity of Stage-II becomes O(N 2).

8.4 Numerical Results

We start with Stage-I with a computational analysis of the correction weights (see Section 8.4.1),
followed by the capturing scheme for particular case of a single time-step and correction term (see
Section 8.4.2). Then, we test the singularity-capturing Algorithm 8.2 for M = 1, 2 and the self-
capturing Algorithm 8.1 for M = 3 (see Section 8.4.3). We also utilize the two-stage framework
with random singularities and compare the accuracy of the entire time-integration framework with
the captured singularities against ad-hoc choices through a comparison between the obtained error
functions E(o) (see Section 8.4.4.1). In all aforementioned tests, if not stated otherwise, we use the

data _ 1€t and fdata

method of fabricated solutions, that is, we take u = £ where we assume

the following solution:
S *

u (=311, o R, (8.26)
Jj=1

with homogeneous initial condition u¢*?(0) = 0. The term S denotes the number singularities/terms

in u®* (), and 0']’5‘ represents prescribed singularities to be captured. From the defined analytical
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solution, we obtain the forcing term using a direct calculation, given by [31]:

F(1+O') *

.-

S
FrO= 2D m (8.27)
Jj=1

(1+0' - )

The numerical examples in this work are presented for verification of the developed framework,
where u®*’ and f¢* represent synthetic data for the Cauchy problem. In practice, only Stage-I of
the framework utilizes experimental data for diminutive time to capture the multi-singularities, and
Stage-II utilizes the captured singularities for the full time-integration of the FDE.

Furthermore, we test Stage-1 of the framework for a multi-term FDE (see Section 8.4.4.2) and
the two-stage framework for a one-term FDE with a singular-oscillatory solution (see Section
8.4.5). Finally, we test the developed framework against a nonlinear FDE and demonstrate its
effectiveness when the solution data is sampled from a fine time-grid nearby the initial time (see
Section 8.4.6). The developed algorithms were implemented in MATLAB R2018b, and were run
in a laptop with Intel Core 17-8650U CPU with 1.90 GHz, 16 GB RAM and Windows 10 operating

system.

8.4.1 Numerical behavior of correction weights

We investigate the behavior of the initial correction weights W, ; and the condition number for
the Vandermonde matrix V presented in (8.12). Figure 8.2a illustrates the condition numbers for
Vmxar using different choices for o, namely o = ak when the regularity of u(z) is known, and
o = 0.1k when it is unknown. We also illustrate the behavior of the correction weights using
M = 1 with respect to the time-step size A¢ and fractional order @ (corresponding to fractional
differentiation/integration) in Figures 8.2b and 8.3. We observe that for « = 0.5 (fractional
differentiation), Wj ;| increases in magnitude as Ar decreases. On the other hand, for @ = 0.5
(fractional integration), it starts with Wj 1 ~ 0.2 for A7 = 1, and decreases with Az. For fractional
integration, only positive correction weights are observed, that decrease slower with respect to n,

but with all values decreasing to zero as At decreases.
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Figure 8.2: (a) Condition numbers for different choices of powers 0. We observe that the choice
o = 0.1k for unknown regularity of u(z) [5] leads to the highest condition number, where at most
M = 9 correction terms can be used with double precision arithmetic. (b) First correction weight
Wy 1 with respect to Az.
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Time step number n Time step number n
(@ a=0.5, 0, =009. (b) @ =-0.5, o =0.9.

Figure 8.3: Initial weights Wy , for different time-step sizes Az, with corrections for fractional
differentiation/integration (a) @ = 0.5 (fractional differentiation), where the initial weights have a
larger magnitude that quickly decreases in the first time-steps, indicating that they are most relevant
near t = 0. (b) @ = —0.5 (fractional integral).

8.4.2 Single time-step and correction term

We present the numerical results for a particular case of Stage-I in E.2 for § = 1 singularity and
M =1 correction term, with a closed-form for the correction weights (see (E.8)). Let the time
domain Q = [0, At], with fractional-order and time-step size kept constant, respectively, at @ = 0.5

and At = 0.01 in this section. Figure 8.4 presents the convergence behavior for O'i" = 0.5, and
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Figure 8.4: Convergence behavior with o = 0.5 and initial guesses o© = {0.0001, 1.05} and
time-step size At = 0.01.
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Figure 8.5: Convergence behavior with o* = 0.1 and initial guesses ol = {0.0001, 1.1} and
time-step size At = 0.01.

Figure 8.5 illustrates the obtained results using O'ik = 0.1. We observe that in both cases, the scheme
captures the power O'ik from the analytical solution, with a relatively small number of iterations.
Furthermore, we observe an overshooting in the iterative procedure for initial guess o =11,
but nevertheless, the scheme still converges within machine precision. Figures 8.6 and 8.7 show,
respectively, the results for § = 2 with o' = 0.1, 0f = 0.2 and § = 3 with o} = 0.1, 0] = 0.3,
0'3* = (0.5. We observe that the converged values for o are closer to o}, which is the most critical

singularity for the chosen u®*!(t).

Since the converged values for o captured intermediate values between the defined singularities
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Figure 8.6: Convergence behavior with 0';‘ =0.1, o'; = (.2, initial guesses o© ={0.001,0.5} and
time-step size At = 0.01. The converged value for the singularity o =~ 0.1377 is between O'ik , 0'5‘ .
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Figure 8.7: Convergence behavior with o = 0.1, oy = 0.3, o3 = 0.5, initial guesses o0 =
{0.001, 0.5} and time-step size At = 0.01. The converged value for the singularity is o ~ 0.1856.

0'{‘ , 0'; , og‘ for the choice of Az = 0.01, we analyze the convergence behavior of o= with respect to

At. We present the obtained results in Figure 8.8 for two different sets of singular values, and we

observe for the defined range of Az, that o lies between the singularities o}, 0';‘ , 0';‘ , and converge

to the strongest singularity (in this case Ui" ) as At — 0.
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Figure 8.8: Converged values for the singularity o vs time-step size At with two choices of

8.4.3 Singularity capturing for M correction terms

We systematically test the capturing Algorithm 8.2 for multiple correction terms M = 1,2,3

and multiple defined singularities S = 1,2,3 in u’,

The tests are presented in an incremental
fashion for M, where we show the capabilities of Algorithm 8.2 to capturing/approximating the
singularities. We then demonstrate how the self-capturing framework defined in Algorithm 8.1
successfully determines the singularities for S = 3 and M = 3, where we compare the obtained
errors with ad-hoc choices for o using random strong singularities. Throughout this section, we
keep the fractional order fixed at @ = 0.5, as well as short time-domain Q =10, 1], and perturbation
Ao =10~ for the complex step differentiation. For all cases, we define a tolerance € = 1013 for
E (o) and unless stated otherwise, €] = 1014 for [|[VE(0)||. We choose a smaller tolerance for the
norm of the error gradient (since the E (o) is defined with the norm ||.||%) to make sure that E (o)
is always minimized before we introduce additional correction terms in the self-capturing Stage-I.
We also use y¥ = 1073 for initialization in Algorithm 8.2. For cases where M = §, we compute the

component-wise relative error of the converged o*, which we define as:

|0'”.‘—0'(k)|
EO'_ J -] >
= j=1,...,M,

/ o7
J

where k denotes the iteration number when convergence is achieved, i.e., E (O'(k)) <E€.
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Figure 8.9: Second-order asymptotic convergence behavior for M = 1 correction term, § = 1
singularity with value (ri" = 0.1. The obtained relative error for the converged o7 is Eif =

2.290 x 1078,

8.4.3.1 One correction term

We consider M = 1 and N = 100 initial data-points. Figures 8.9, 8.10 and 8.11 present the obtained
results, respectively, for § = 1, 2, 3 singularities, using Algorithm 8.2. We observe that, when
S = M, we can capture singularities within machine precision. When M < §, we are still able to
find a minimum for E (o) with an intermediate value for o7, similar to the results obtained for the
simplified case in Section 8.4.2. Furthermore, when S > 2, or the initial guess o© s far from
the true singularity, the iterative procedure assumes the typical zig-zag behavior of the gradient

descent scheme.

8.4.3.2 Two correction terms

We consider M = 2, where we first analyze the behavior of the error function E (o) using S = 2 singu-
larities (see Figure 8.12). Then, we use Algorithm 8.2 to capture the singularities o* = [0.1, 0.3] T
(see Figure 8.13), where we observe a more pronounced zig-zag behavior for convergence, com-
pared to M = 1. We also obtain estimates of 0, 0» when dealing with S = 3 singularities, namely
o* = [0.1, 0.3, O.S]T (see Figure 8.14). Of particular interest, we observe that the obtained

singularities lie in the range of the true singularities, which are useful observations to define initial
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Figure 8.10: Convergence behavior for M = 1, S = 2 with o* = [0.1, 0.3]T. With the plateau
in error and o due to gradient convergence within the tolerance €;. The scheme converges to an
“intermediate" value o= ~ 0.153, between the true singularities.
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Figure 8.11: Convergence behavior for M = 1, § = 3 with o* = [0.1, 0.3, 0.5]T. In for both
initial guesses, the scheme converges to an “intermediate" value o ~ 0.184, which is closer to the
strongest true singularity O'i" =0.1.

guesses for cases with three correction terms and singularities.

8.4.3.3 Three correction terms

We test the case for M = 3, using S = 1, 2, 3. In this analysis, we use N = 3 initial data points.
Figures 8.15 and 8.16 illustrate, respectively, the obtained results for S = 1, 2 using Algorithm 8.2.

We observe a quadratic convergence rate for § = 1, similar to Fig.8.9, but with a few more iterations.
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Figure 8.12: Error function E(o) for M =2, S = 2, with 0';‘ =0.1, o'; = (.3. Two minima occur at

o* =[0.1, 0.3]7 =[0.3, 0.1]7, corresponding to the true singularities. We set o # o to avoid
a singular matrix in linear system (8.11).
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Figure 8.13: Two correction terms M = 2 and two singularities S = 2, with o* = [0.1, 0.3]7. The
obtained converged values are o = [0.299974, 0.099990]7, which correspond to component-wise
relative errors E7 = [8.61, 9.94]7 x 107°.

Furthermore, for M = 2, we observed a small change in the final value of o3, but nevertheless,
capturing the two singularities o', 0'; is sufficient to minimize E(o’) when § = 2.

The numerical convergence of Algorithm 8.2 towards the correct singularities o becomes
much more difficult when using S = M = 3. Therefore, we make use of the self-capturing

approach summarized in Algorithm 8.1, which incrementally solves the minimization problem

using M = 1,2, 3 and use the respective output singularities as initial guesses for the subsequent
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Figure 8.14: Two correction terms M = 2 and three singularities S = 3, with o* = [0.1, 0.3]T
and €; = 10~ The converged values are o0 = [0.112635, 0.420495]T, which are closer to
the stronger singularities oy = 0.1 and o3 = 0.5. The approximate singularities still lead to an
approximation error of 1.47 X 10711,

10° 1 -+ + + + + + +
09f =8,
—9—02
——0,
07t
© 0.5 o
03}
0.1 M/E__,_a——e—e—e—a
‘ ‘ ‘ ‘ ‘ ‘ o & ‘ ‘ ‘ ‘ ‘ |
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Iteration Number Iteration Number
(a) Error vs iteration number. (b) o vs iteration number

Figure 8.15: Results for M = 3, S = 1. The obtained relative error for o is Ei‘ = 4.869 x 1078,
The components 0, 0 remained practically constant.

number of correction terms M = M + 1. We present the obtained results in Fig.8.17. We observe
that the scheme converges to the true singularities with errors for o up to 0.024, but nevertheless,
they yield an approximation error for ulV of 10715,

We also test the influence of the number of initial data points N in Stage-I over the number

of iterations N;; and number of corrections terms M. For this purpose, we set S = 3 singularities

with values o* = [0.1, 0.3, 0.5]7 and we fix At = 0.1[s], @ = 0.5, € = 10713, ¢ = 10710,
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Figure 8.16: Results for M = 3, § = 2. The obtained converged values are o =
[0.099997, 0.299995, 0.939015]7, where o1, oo captured the singularities, respectively with
errors EY = 3.07 X 107 and EJ =1.65X% 1072,
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Figure 8.17: Results for M = 3, § = 3 using € = 10715, The converged values are
o = [0.099, 0.498, 0.293]7, which correspond to component-wise relative errors EY =
[0.014, 0.005, 0.024].

We then vary N in Algorithm 8.1 and analyze the convergence behavior and computational time,
which are presented in Table 8.1. We observe that the variation of N did not affect the number of
captured singularities M, but the choice N = 37 significantly increased the number of iterations.
We also observe that despite the similar number of iterations N;; obtained for 31 < N < 35 the
computational time increases with N due to the computational complexity of Stage-I. Therefore,

we consider N = O(M) an appropriate choice, as the singularities o* are captured with less
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computational cost, which is suitable when diminutive initial data is available.

Table 8.1: Influence of N in Stage-I of the developed framework.

N M N; Computation Time [s] E(o)
33 74 0217 9.863015 x 1014
32 3 44 0.293 2.101287 x 10~ 14
33 3 51 0.617 9.433562x 10714
3% 3 62 2251 9.037342x 10714
3 3 98 11.346 9.101754 x 1014
36 3 52 180.719  1.550662 x 10~ 14
37 3 445 1275.168 8.823108 x 10714

8.4.4 Random singularities

We perform two numerical tests involving random power-law singularities, where we define three
strong singularities o, 0';, og‘ randomly sampled from a uniform distribution U0, 1/2). We

employ the self-singularity-capturing procedure in the context of single- and multi- term FDEs.

8.4.4.1 FDEs with random singularities

We test the two-stage framework for efficient time-integration of (8.6). We then compute u*(¢)
and f*(t), respectively using (8.26) and (8.27), and use the self-capturing framework presented in
Algorithm 8.1. We then compare the approximation error E(o) with the choice o = 0.1k defined
in [5] when the singularities are unknown. Although our framework has no explicit information
about the generated random singularities, we present them for verification purposes, which are

given by:
o* = [0.0172230402514543, 0.219372179828199, 0.190779228546504]7 .

We set N = 3 with Az = 1/3, and therefore, Q = [0, 1], € = 10715, and ¢; = 10713 to Algorithm
8.3. Stage-I of the framework (Algorithm 8.1) converges with £ (0%)) =2.96 x 10716 with M =2

correction terms, with obtained values:

o = [0.0187990387914248, 0.206944449676742]T , (8.28)
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Figure 8.18: Comparison of error vs time for long time-integration between the captured singular-
ities and o, = 0.1k for different values of time-step size At.

with elapsed computational time of 0.169 [s]. After capturing the singularities within the desired
precision e, we enter Stage-II and compute the numerical solution 1™ (r) using the captured o for
multiple, longer time-integration domains €. We remark that when using an ad-hoc choice of fixed

o = 0.1k with 4 correction terms, that is,
o=[0.1, 0.2, 0.3, 0.4]7, (8.29)

we obtain an approximation error E(07) = 5.25 x 107> over N = 4 time-steps. We use the captured
powers (8.28) and the predefined ones (8.29) for longer time-integration. The obtained results are
presented in Figure 8.18, where we observe how using 3 time-steps to capture the singularities
leads to precise long time-integration with a large time-step size At = 1/3 (blue curve). On the
other hand, the errors for o = 0.1k are much larger, and also do not improve with smaller Ar due

to the presence of very strong singularities.

8.4.4.2 Multi-term FDEs with random singularities

In this section we show how the scheme in Stage-I can be applied for multi-term fractional differential

equations. Let the following multi-term FDE:

Na
REpMu() = ft,u(),  u©) =ug, 0<ay<1. (8.30)
=1
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where «; denotes the N, multi-fractional orders with / = 1,...N,. Using the approximation
(8.10), and assuming the same powers o for the correction weights for all fractional derivatives,

we obtain:

8 rLar N Y% ap N 5
2. oD, ‘u (t)l;:;,ﬁzf IZ;‘WJ’” (0) (uj —uo) = 17, (8.31)
= ]: =

where we use the superscript (¢;) in W](.(jf) to denote the distinct sets of correction weights due to
the fractional order a; through (8.12). The entire minimization scheme is identical, since it depends
on the solution data for u(z). In order to solve (8.31) with the developed scheme in Stage-I, due to
the linearity of (8.30), we only need to replace the initial correction weights Wy, ;, and a-dependent
coeflicients d, b; in (8.24) and (8.25) with the following summations:

Na

Na Naf
Vo= (@) Ap) _ (pap) 7)) _ (k.ap) _
Wn,,—l_1 w, i d; _12—1: dr, b _12_1] b, k=123

We utilize the fabricated solution (8.26) in (8.30), which yields the following force term:

Noa S I'(1+0%) o —a
fext(t) — — J t J l_ (832)
%‘Jgf F(1+0'j - aj)

We set N, = 3 fractional orders {aq,ap, @3} = {0.3,0.5,0.7}, and identically to Section

8.4.4.1, we sample the following random singularities from (0, 1/2):
o* = [0.13924910943352420, 0.2734407596024919, 0.4787534177171488]7 .

Also, we set N =3 with At = 1/3and Q = [0,1], e = 5 x 10713, and ¢; = 10714, with 0 = 1073

to Algorithm 8.1, where the scheme converges with the following approximate singularities:
o =[0.1469249923105880, 0.4869203803691072, 0.3066386453671829]T .

Figure 8.19 presents the obtained results for each M in the self-capturing procedure, where we
observe that the scheme does not fully capture the true singularities, but provides sufficiently good
approximations to obtain errors as low as E(o) = 2.31 X 10713, The elapsed computational time

is 10.65 [s], due to the larger number of iterations Nj; required for convergence of Stage-I.
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Figure 8.19: Singularities o vs iteration number for a multi-term FDE with N, = 3 in Stage-I
for each M in Algorithm 8.1. (a) M = 1, with error E(o) = 1.10 X 107, (b) M = 2, with error
E(o) = 3.83x 10713, and (¢c) M = 3 with convergence at E(¢o") = 2.31 x 10”15, The black
horizontal lines correspond to the true random singularities in the solution.

8.4.5 Singular-oscillatory solutions

We also test the two-stage framework sampling data points from a fabricated solution for (8.6),

defined as the following multiplicative coupling between a power-law and oscillatory parts:
() = 17 cos(wi), (8.33)

with homogeneous initial condition #¢**(0) = 0. The corresponding right-hand-side is analytically

obtained as:
£ = 117 7 [eapFg(aM: bV; c4t?) + c30482 p Fy(@®; b P; 4t | (8.34)

with ¢y = —29"7 42T (1 + 0*), cy = 8 (@ — 0¥ — 1), 3 = —=4(1 + )2 + *) and ¢4 = —w?/4.

Also, qu represents the regularized, generalized hypergeometric function given by [315]:

- Fy(ay,...,ap;b1,...,bg;2)
F se..,dpib1,...,bg; =4 P 9 ,
pFqar,....apiby 9> T(by).. T(by)

where, for the particular case (8.34), we have:

1+c™) (Q+o* 2— * (3- *
a(1)={( +£T ), ( +20' )}’ b(1)={%, ( 02"‘0' ), ( C¥2+0' )},

3 * 4 * 4_ * 3_ *
a(2)={( +20' )’ ( +20' )}’ b(2)={%,( 02+0' )’( 02+0' )}.
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We fix the fractional order a = 0.5, frequency w = 107 and randomly sample o-* from a uniform
distribution U(0, 1/3) and obtain a value o™ = 0.242648195440154. For Stage-1, we consider

N = 3 data points with Q = [0,0.01], with Ar = 3/100[s]. Furthermore, we set € = 10711,

€] = 10~ and yo =1073. Using Algorithm 8.1 with a slight initial guess modification for o©
when M =2 in line 11 to 0@ =[1, a'ik)]T (since the developed framework is mainly oriented to

strong singularities), we capture the following two singularities:
o = [0.2427452349772425, 2.220682758797950]7 ,

where the first converged singularity is an approximation to the randomly sampled value for o*.
