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ABSTRACT

LEARNING TO DETECT LANGUAGE MARKERS

By

Fengyi Tang

In the world of medical informatics, biomarkers play a pivotal role in determining the physical

state of human beings, distinguishing the pathologic from the clinically normal. In recent years,

behavioral markers, due to their availability and low cost, have attracted a lot of attention as

a potential supplement to biomarkers. “Language markers” such as spoken words and lexical

preference have been shown to be both cost-effective as well as predictive of complex diseases such

as mild cognitive impairment (MCI).

However, language markers, although universal, do not possess many of the favorable properties

that characterize traditional biomakers. For example, different people may exhibit similar use of

language under certain conversational contexts (non-unique), and a person’s lexical preferences may

change over time (non-stationary). As a result, it is unclear whether any set of language markers can

be measured in a consistent manner. My thesis projects provide solutions to some of the limitations

of language markers: (1) We formalize the problem of learning a dialog policy to measure language

markers as an optimization problem which we call persona authentication. We provide a learning

algorithm for finding such a dialog policy that can generalize to unseen personalities. (2) We apply

our dialog policy framework on real-world data for MCI prediction and show that the proposed

pipeline improves prediction against supervised learning baselines. (3) To address non-stationarity,

we introduce an effective way to do temporally-dependent and non-i.i.d. feature selection through

an adversarial learning framework which we call precision sensing. (4) Finally, on the prediction

side, we propose a method for improving the sample efficiency of classifiers by retaining privileged

information (auxiliary features available only at training time).
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CHAPTER 1

BACKGROUND

1.1 Biomakers and Their Limitations

In the world of medical informatics, biomarkers [1] play a pivotal role in determining the physical

state of human beings, distinguishing the pathophysiologic from the clinically normal. In most

chronic diseases such as congestive heart failure and Diabetes Mellitus, there exist biomarkers such

as brain natriuritic peptide and HbA1c that sufficiently captures the presence and the stage of disease

progression in almost all clinical populations [2, 3].

However, a key limitation of biomarkers is that they are very expensive to obtain. For example,

the average cost to a basic metabolic panel in the inpatient setting ranges from $300-$10,000 dollars

per patient per test [4]. Note that this is the cost of simply getting a baseline reading of metabolic

enzymes; complete metabolic panels and blood tests can often multiply the cost. In general, the

higher the granularity of the biomarker, the higher the cost. A computerized tomography (CT)

scan can reveal numerous respiratory pathologies but can range between $1,450 - 7,800 per person

depending on availability. As a result, much of the diagnostic decisions in medicine reside on the

physician’s judgement regarding cost-vs.-effectiveness: which biomarkers should be obtained for

which patients?

From the data mining perspective, the decision of “which biomarker to select for which patient”

corresponds to a feature selection problem in which each data sample (patient state information)

consists of only a sparse set of observed features due to cost constraints. However, this feature

selection problem is often treated in an ad-hoc manner in the practice: a mixture of insurance

policies, practitioner guidelines and human judgement dictate the manner in which we engage in

feature selection in the clinics. Naturally, two questions deserve our attention:

(1) Are there cheaper (but effective) alternatives to biomarkers?
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(2) Are there more effective ways to acquire clinical features?

1.2 Behavioral Markers as Alternatives

In recent years, behavioral markers have attracted a lot of attention as a potential supplement to

biomarkers. For example, in dementia progression, there exists a disease state clinically defined

as mild cognitive impairment (MCI) that precede noticeable memory loss and severe cognitive

decline [5]. In traditional Alzheimer Disease (AD), brain imaging is done to confirm diagnosis, but

intervention is futile at this stage because irreversible damage would have already occurred [6]. As a

result, much research efforts have been channeled toward early detection of MCI, when irreversible

changes have yet to occur. However, there is a tradeoff for using biomarkers in MCI detection: while

MCI can be detected by classic biomarker approaches such as brain imaging and cerebral spinal

fluid markers [7, 8, 9], the presence of such biomarkers correspond to the existence of irreversible

changes having already occurred in the patient. Thus, other measures of cognitive functions may be

needed for early detection of MCI.

Recently, there have been several works showing that behavioral markers [10, 11, 12] can provide

useful diagnostic signals for early stage MCI. For example, gait monitoring has been shown to

change in early MCI [13], enabling programs for at-home monitoring of behavioral changes [14].

However, in terms of cost of data acquisition, “language markers” such as spoken words [15] and

linguistic features [11] have been shown to be both low-cost as well as predictive of early MCI

states. Due to the ubiquity of language, the notion of developing high-performing language markers

presents a promising direction for alternative diagnostic markers.

1.3 Limitations of Language Markers

However, language markers, although universal, do not possess many of the favorable properties

that characterize biomakers. For example, there are several key properties allow a biomarker to be

generalizable across populations [16]:

• Universality: the feature of interest can be measured in everyone in the disease group.
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• Uniqueness: the feature of interest should differ between disease group and normal.

• Measurability: the feature can be measured consistently across everyone.

• Permanence: the feature remains invariant to time and algorithms used to measure it.

In the case of language markers, only universality is satisfied: one can potentially obtain linguistic

and speech features from text and audio recordings for everyone, barring disabilities. However,

language markers are certainly not unique: different people may exhibit similar use of language

under certain contexts. Language markers may also be transient. For example, a person’s word

choices changes throughout one’s lifetime. Depending on the environmental context (e.g., time of

day, the presence of other people), one’s choice of words and speech tone may differ greatly. As a

result, it is unclear whether any set of linguistic features can be measured in a consistent manner.

In spite of these limitations, however, language markers do provide ample signal for each of

these classic biometric categories. Even though speech is not unique, higher-level features composed

of language preferences – e.g., personality traits, use of idioms, pausing patterns – are regularly

used to distinguish one group of people from another. Beyond the individual identification, such

traits are regularly used for market segmentation and sentiment reports. Although language, and

perhaps even resulting higher-level features change over time, they often follow statistical patterns

of change. For example, it is well-known that human infants follow very stable patterns of language

acquisition: babbling starts at 6 months, first words start at 9 month to 1 year, vocabulary expansion

(250-900 words) by age 2, and can recite numbers and addresses by age 5. It is perhaps reasonable

to hypothesize that linguistic decline may follow predictable patterns in the elderly.

Finally, the issue of measurability provides a difficult challenge: how can we consistently

measure a set of language-related features in a person when language use itself is highly context

dependent? As a toy example, consider psychometric and cognitive tests, both of which rely heavily

on questionnaires and surveys. These would not work well for surveying language markers, as

certain features such as word choice, sentence structures and topics of interest are open observable

in unstructured, open-domain conversations. However, a completely open-domain conversation
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setting presents another layer of problems. The performance of automatic extraction of speech

markers depend on restricting the spoken words used to generate speech [17], as variations in

lexicon and sentence structure can introduce noise in the extracted acoustic features. Thus, there

seems to numerous points of potential conflict between the vast number of potential features that

comprise language markers. Additionally, it is unclear whether what questions would elicit what

set of linguistic or acoustic features. In order to tackle the problem of measurability, we have to

formally define the relationship between language markers of interest and the question contexts used

to elicit them.

1.4 Contributions

The goal of this thesis project is to provide solutions to the limitations of language markers. The

main contributions are summarized as follows:

• We formalize the problem of learning a question policy to measure linguistic features as

persona authentication. We provide an algorithm for finding such a question policy that can

generalize to unseen personalities.

• We apply the question policy on real-world data for MCI prediction and show that the proposed

pipeline improves prediction against supervised learning baselines.

• To address the challenges of permanence (i.e., temporally varying disease markers), we

introduce an effective way to do temporally-dependent and non-i.i.d. feature selection in

the clinical setting. Specifically, we propose “precision sensing”, an adversarial learning

framework that exploits the relationship between adversarial sample generation and classifier

performance to produce feature selection strategies that consider cross-sample and temporal

dependencies which make training examples non-i.i.d.

• Finally, on the prediction side, we propose a method for improving the sample efficiency

of classifiers. Specifically, we propose an algorithm that leverages privileged information

(linguistic features available only at training time) to supplement the lack of training labels.
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1.5 Proposed Research

Figure 6.1 provides an overview of the main components of our proposed pipeline. As noted before,

the goal is to learn a question policy to interact with users to obtain language markers. We will

summarize the key components below and discuss them in separate sections:

• State Representation: the actual representation of linguistic markers as a feature vector for

downstream tasks such as classification, feature selection, and question generation.

• Classifier: the prediction model trained by supervised learning. Labels of the prediction task

are provided for each sample, e.g., MCI = 1 or normal = 0.

• Question Policy: a second model used to acquire new training samples from the user; in other

words, its role is to do data acquisition. The output of the question policy can be discrete or

continuous variables, depending on the decoder used for NLG.

• Decoder: the NLG unit used to decode policy actions into human understandable language.

The decoder is an open-domain conversational model. The goal is to do conditional decoding

based on both conversational history and policy actions.

Figure 1.1: Proposed learning to interview pipeline.
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1.6 Question Policy

1.6.1 MCI Proof-of-Concept

Our first work introduces a preliminary pipeline for learning a question policy to ascertain linguistic

markers for the purposes of MCI diagnosis. We use this as a proof-of-concept and illustrate that our

“learning to interview” approach can indeed detect predictive signals that can be potentially more

informative than unstructured conversations with human interviewers.

Figure 1.2: Preliminary dialog agent trained by deep Q-learning (DQN) [18] to interview patients
for MCI screening.

Figure 1.2 provides a summary figure for the first work. Here, the prediction task is binary

classification of patient MCI status. The action space of the question policy is a discrete set of

questions. We simplify the problem setting such that NLG issues such as dialog consistency, felicity

of language generation, and multi-turn co-reference reasoning are not considered; the question

policy simply outputs a deterministic question (out of a pool of 107 possible questions) and obtains

a response generated by the skip-thought model [19] (user simulator in Figure 1.2). We use treat the

skip-thought embedding as the state input and learn the question policy using straight-forward DQN

over 107 actions. The reward function is hand-crafted: the agent receives a small negative reward

per turn to penalize lengthy conversations and a large positive reward at the end of conversations if

the skip-thought features of the dialog history results in correct prediction by the MCI classifier. We

compare this proposed framework against classifier performance on supervised learning data from

the original corpus. In addition to prediction accuracy, we also compare the length of conversations

needed (conversational efficiency) to obtain a threshold level of performance.
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1.6.2 Persona Authentication

In our second work, we formalize the problem of learning a question policy as person authentication.

Specifically, we break down persona authentication into two parts: persona identification, which

is inferring a set of persona features from a given dialog trajectory, and persona verification, the

problem of finding a second conversational model – we call it a question policy – to elicit dialog

trajectories for persona identification.

Problem 1. Persona Verification. Given a space of persona information P, persona verification is

the optimization objective:

min
\
E%∼P

[
L(g\ , %)

]
(1.1)

where L(·, ·) is the authentication loss:

L(g\ , %) = max{0, � + 3 (g\ , %+) − 3 (g\ , %−)} − log ?(g\)). (1.2)

%+ denotes persona facts that co-occur with trajectory g, %− the opposite. � specifies the desired

margin of separation, and g\ is the dialog trajectory generated by the question policy (\).

In the persona authentication chapter, we illustrate some promising theoretical guarantees

of our proposed optimization problem. For example, we show that estimators trained under the

authentication loss shown in Eqn. (6.5) maximizes the mutual information between the conversational

trajectory g generated by the policy and the persona information of the input agent (i.e., the user).

We then present a refined version of the original pipeline that is capable of handling open-domain

conversations, all the while directing the conversation toward the end goal of classification. The

overview figure is shown in Figure 1.3 which outlines the key components: verifier corresponds to

the question policy of interest, identifier corresponds to the state representation, and PersonaGPT

corresponds to the decoder. Details of conditional decoding, active learning of verifier action codes

and policy learning details are revealed in the persona authentication chapter. Empirically, we

illustrate that the learned policy outperforms human evaluators as well as unstructured conversation

policies in identifying personality traits through conversation.
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Figure 1.3: Persona Authentication pipeline.

Our question policy addresses the problem of measurability of language markers. We cannot

elicit the same set of linguistic features with the same set of questions, but we can obtain a question

policy that maximizes the mutual information between generated dialog responses and the user’s

salient characteristics.

1.7 Classifier

1.7.1 Precision Sensing

On the classifier front, we present two works that address various technical issues in medical

prediction tasks. First, language markers, like many other disease markers in medicine, suffer

from the issue of permanence: some disease markers fluctuate through time and require repeated

measurements to gain insight into temporal trends. While we cannot change the fact time-dependence

of certain disease markers, we can deal with the permanence issue by learning to detect stable

temporal patterns from data. Our third work introduces the precision sensing framework which

addresses this issue by leveraging the interaction between adversarial examples [20] and classifier

decision boundaries.

Definition 1. (Precision Sensing) The problem of precision sensing seeks a sensor tensor �∗ that

minimizes the empirical risk (ERM) [21] according to:

�∗ ∈ argmin
�8∈A

E%(-,. ) [! (ℎ(�8 � -8), H8)] ≈ argmin
�8∈A

1
<

∑
(-8 ,H8)∈D

! (H8, ℎ(�8 � -8)),
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where ℎ is a hypothesis class that maps ℎ : - → . , and ! (.) is a risk function that evaluates the

hypothesis mappings against the actual label.

Here, A denotes the space of sensing matrices, and each matrix �8 can be thought of as a

per-sample sensing matrix. From this perspective �8 describes the subset of sensed features across

time for each sample. Unlike regular feature selection which chooses the same subset of features for

sample, precision sensing builds the sensing tensor � incrementally: at each time step C, the sensing

matrix �(C) ∈ {0, 1}<×3 is computed across < samples for all 3 features. To learn �, we propose

the following loss to simultaneous learn the hypothesis function the sensing tensor:

min
\�

max
\�
{� (- − - � � (-))¬H − � (- − - � � (-))H︸                                                    ︷︷                                                    ︸

Feature Sensing

}+

+ ��H (� (- � � (-))︸                   ︷︷                   ︸
Classifier Reconstruction

) + V | |- − - � � (-) | |1︸                    ︷︷                    ︸
Budget Management

. (1.3)

In Eqn. (1.3), � represents the classifier and � is a recurrent neural network (RNN) that outputs the

elements of �(C)
8, 9
∈ 0, 1 for each sample 8 and each feature 9 at time C. We call this RNN the feature

sensor that not only takes into account the temporal dependence of features within a sample but also

the performance of � across samples. On the other hand, the classifier � learns to adapt its decision

boundary based on the cross entropy loss �� calculated based on decision function mapping from

the sensed features - � � (-) rather than the full set of features - .

Since the performance of � is coupled to �, we provide a co-training scheme for both models in

the Classifier chapter of the thesis. Figure 1.4a-1.4b gives an overview of the proposed co-training

scheme. Fig. 1.4a describes incremental generation of the sensing tensor � by the �. Fig. 1.4b

describes the minimax game between the � and �. � (top) tries to minimize the classification error

with sensed features - � � while � (bottom) tries to allocate � such that unsensed features lead to

misclassification. We prove that iterative gradient descent on Eqn. (1.3) converges to local Nash

Equilibrium points which are guaranteed to exist. In experiments, we show that precision sensing

outperforms SOTA baselines from active sensing on a benchmark mortality prediction task.
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Figure 1.4: Overview of co-training scheme between the feature sensor � and classifier �.

(a) Incremental generation of the sensing tensor.
(b) Minimax game between � and �.

1.7.2 Multitask LUPI

In addition to feature selection, the sample complexity of learning is especially important in medical

prediction tasks. For example, in electronic health records (EHR), we often find the distribution of

labels is highly skewed: there are numerous diseases with very few labels but an abundance of text

descriptions from literature. We propose a method for improving the sample efficiency of these

learning tasks by leveraging clinical linguistic markers as privileged information. Specifically, we

consider physician notes in the form of discharge summaries, linking standard medical terminologies

(i.e., UMLS codes [22]) with diagnostic findings in the EHR. UMLS codes are a set of standardized

medical concepts used by clinicians to describe physical findings of diseases and are used widely in

both the EHR as well as medical research [22]. [23] alluded at the idea that medical datasets also

contain vast amounts of privileged information in the physician notes, which serve to explain the

qualities of diseases that can greatly aid decision rules. For experiments, we consider the following

set of data for example features, PI, and labels:

• Example Features -: continuous time-series data (i.e. lab values, blood tests, imaging) and

discrete static variables (i.e. demographics information) that describe a patient.

• Privileged Information -∗: physician notes containing descriptions in natural language and

medical terms (UMLS concepts [22]) that summarize a particular visit for a patient.

• Target Task . : prediction tasks of interest, such as mortality (binary classification), disease

prediction (multi-task and transfer learning), ... etc.
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Formally, we consider a similar problem setting where we are given DCA08= = {(G8, G∗8 , H8)}<8=1.

We assume that there exists a set of vocabulary with size 3 that define the privileged information

(PI) space. G∗
8 9
= 1 if the 9 Cℎ term in the PI vocabulary is contained in the G∗

8
sample, G∗

8 9
= 0

otherwise. We also denote G∗
8
= {F1, ..., F: } as a decomposition of G∗

8
into : individual components

such that each F 9 ∈ {0, 1}3 is a one-hot vector, corresponding to a non-zero component in G∗
8
, and

G∗
8
= F1 + F2+, ..., +F: . In the following sections, we denote {F 9 }39=1 as the set of “words” that

compose the PI vocabulary. Thus, G∗
8
gives the co-occurrence label of each word F 9 ∈ {F 9 }39=1 with

respect to the sample G8.

We make no assumptions on the example features (-) with regards to data type. In practice, the

example features correspond to temporal features, each corresponding to a biomarker (e.g, lab test

value) measured at various time intervals. Finally, we define the multi-task learning objective as

learning H8 = {0, 1}� to be a set of � binary classification tasks.

Our approach to retaining privileged information in a multitask setting is to align PI features

(linguistic descriptions) with temporal features (biomarkers).

1. Build a dictionary of PI features and learn a distributed representation [24] over the PI

vocabulary.

2. Find a joint representation space (Φ) between the PI and example features.

3. Jointly learn the decision functions ℎ∗ : Φ→ . by feature-matching in the joint representation

space.

The first process uses unsupervised learning to embed the PI vocabulary into a vector space. The

second process allows for some of the privileged information to be retained at inference time, despite

not having direct access to the PI vectors. The third process allows for PI information for one task to

be transferred for other �-1 tasks in the label space. In the Classifier chapter, we will examine how

to achieve (1) - (3) in detail. We also provide analysis of how (3) can maintain the favorable LUPI

sample efficiency. We validate our multitask LUPI framework on multilabel classification tasks

using the MIMIC-III database [25] and compare with several prevalent transfer learning schemes.
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CHAPTER 2

REVIEW OF CURRENT RESEARCH

2.1 Language Markers in Mild Cognitive Impairment

Fraser et al. [1] introduced “linguistic markers” such as word count, use frequencies of certain

parts-of-speech, and sentiments as predictors of dementia in AD patients. Beyond summary

statistics, Asgari et al. [2] introduce word-level language markers which utilize expert provided

linguistic features such as socioeconomic context, presence of biological process, psychologic factors.

These linguistic dimensions are standardized as Liguistic Inquiry and Word Count (LIWC) [3]

features for over 5,000 English words. Beyond expert annotations, statistical properties of words

have been examined by a wide range of machine learning approaches such as topic modeling [4],

neural word2vec [5] and contextualized word embeddings [6]. More recently, sentence-level

representations such as Skip-Thought vectors [7] have shown capacity in representing phrase and

utterance level linguistic features such as semantic similarity, phrase relationships and user intentions.

Currently, the state-of-the-art (SOTA) representation of linguistic features reside in the recently

introduced transformer language models (LMs) [8]. For example, BERT encoders [9] have long

been shown to produce state-of-the-art results in language comprehension tasks – otherwise known

as natural language understanding (NLU). On the natural language generation (NLG) end, the GPT-2

decoder [10] has been shown to generate text that is difficult to distinguish from human text.

2.2 Dialog Systems

Central to our characterization of question contexts and language markers is the idea of a dialog

system: a conversational agent (a machine learning model) that generates text (prompts / questions)

to user input based on feedback signals from the user (responses). There are two main types of

dialog systems: task-oriented and open-domain. They can synonymous be thought of as structured

(task-oriented) and unstructured (open-domain) conversation. However, our problem is somewhere
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in the middle: our desired question policy should be able to adapt to a variety of conversation

types (open-domain), yet still service the goal of MCI diagnosis (task-oriented). We introduce the

crux of task-oriented vs. open-domain conversation before formalizing the semi-structured setting

mathematically in proceeding chapters.

2.3 Task-Oriented System

Task-oriented dialogue systems are typically designed for retrievaltasks in which users provide queries

and the chat-bot provides appropriate responses based on an external knowledge base [11, 12, 13],

or identifying correct answers by looking into vast amounts of documents [14, 15]. Such dialogue

systems are typically designed to be a pipeline containing a set of components including a language

understanding unit that parses the intention and semantics from the input from humans, a dialogue

manager that manages dialogue state tracking and policy learning, and a language generation unit

that generates response [11, 16, 17].

Similar to task-oriented dialog, our problem setting is goal-oriented: we want to find a dialog

policy that can lead to the correct classification of diseases. However, our problem setting differs

from task-oriented dialog in that (1) the question generation do not have fixed frames, and (2)

the user responses are certainly not constrained to specific tasks (e.g., hotel booking, movie

recommendations). In this regard, the actual NLG part of the task is an open-domain dialog problem.

2.4 Open-Domain Systems

Open-domain system refers to dyadic conversations without any constraints on the dialog structure

between the conversational agents. Open-domain dialogue generation has been formulated in two

ways: (1) as a statistical machine translation (SMT) [18, 19] task in which the goal is to output a

sequence of tokens y(C)1: in response to a sequence of tokens x(C)1: , and (2) as a ranking problem

where a response .C is selected among a list of candidate responses that best “matches” the query

-C [11]. Both approaches optimize over the maximum likelihood (MLE) objective:

maximize
.C

log ?(.C |-C).
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The main difference between the two approaches is that SMT is generative, because the response is

generated token-by-token, in nature while the ranking approach is discriminative due to requiring a

pool of candidates. But neither takes into account the history of the conversation, and as a result

both fail to capture dialogue transitions.

More recently, generative models such as HRED, VHRED and CVAE [20, 21, 22] try to capture

dialogue history to provide more contextualized decoding. These approaches apply MLE learning

to the objective:

maximize
.C

log ?(.C |-C , g1:C−1). (2.1)

Although this new objective encourages more response diversity, the dialogue agent still does not

have any mechanism of encouraging a consistent personality across multiple turns [23].

2.4.1 Personalized Response Generation

An emerging direction in open-domain dialogue systems is the rise of persona models, which

focus on generating responses that preserve a consistent set of personalities over the course of a

dialogue. For example, Li et al. [19] learns a speaker vector from which to condition the generation

process. In the PersonaChat dataset [23], each dialogue speaker is equipped with text descriptions

that characterize their persona. The standard objective of persona models can be expressed as:

maximize
.C

log ?(.C |-C , g1:C−1, %. ) (2.2)

where %. is the set of persona descriptions for the dialogue agent. Zhang et al. [23] and the ConvAI2

challenges [24] provided numerous approaches to incorporate the persona information into the

dialogue generation process. Our problem setting is similar to open-domain dialog in that the

user (patient) is allowed to generate arbitrary responses. Thus, our dialog agent must be able to

handle open-domain conversation and exhibit common-sense reasoning, multi-turn consistency and

response diversity – challenges that are featured in open-domain dialog.
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2.4.2 MCI Prediction via Utterance Data

[2] used a classical supervised learning framework to formulate MCI prediction as binary classifica-

tion problem. For each interview, a corpus was constructed using only the participant responses

to interviewer questions. For each participant, the response corpus over several interviews was

preprocessed into feature vectors using the Linguistic Inquiry & Word Count (LIWC) dictionary

[3]. The LIWC dictionary transforms each word in a given corpus to a 69-dimensional feature

vector with latent dimensions representing grammatical and semantic properties of each word. A

final 69-dimensional feature vector is then constructed at the end of the corpus by aggregation

of all previous LIWC vectors. The resulting feature representation is a < × 69 matrix. The best

performing classifier in this benchmark study uses linear support vector machines (SVM) with

ℓ1-norm regularization [2]. The resulting performance is 72.5% AUC over 5-fold validation.

2.4.3 Healthcare Applications of Dialog Systems

Dialogue systems have been widely adopted in the healthcare domain for various applications.

For example, chat-bots are available to assist the patient intake process [25], retrieve restaurant

accommodation information for young adults with food allergies [26], and perform dialogue

analysis and generation conversation to perform mental health treatment [27]. In the context of

Alzheimer’s disease research, [28] designed a virtual reality based chat-bot to evaluate memory

loss using predefined questions and answers. [29] discussed applications of chat-bots as caregiviers

for Alzheimer’s patients, providing safety, personal assistance, entertainment, and stimulation.

More recently, [30] introduced a computer avatar to ask a list of pre-defined questions from

neuropsychological tests to diagnose dementia. This work is closely related to our system as it

utilizes dialogue to glean disease-related information. However, one major issue in this approach

is that the questions were obtained from mini-mental state examination (MMSE) [31], which is

a confirmatory measure used to define clinical dementia (such as MCI) rather than a diagnostic

tool to predict it. It is more clinical meaningful to identify diagnostic markers associated with the

pathological pathways, such as lexical distribution associated with the cognitive changes for the
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purpose of diagnostic screening.

2.5 Beyond Linguistic Features

2.5.1 Acoustic Features

Beyond linguistic features, acoustic features such as mel-frequency cepstrum coefficients (MFCC)

have been shown to effectively predict MCI status [32, 33], especially when combined with linguistic

features. However, these studies are thus far limited to responses to structured conversations (e.g.,

responses to standardized cognitive tests and fixed questionnaires). It remains an open question

whether acoustic markers can be used in semi-structured conversations and combining both linguistic

and acoustic markers can improve the detection of MCI. Most predictive studies using acoustic

markers rely on either fixed prompts [33] or pronunciation tasks [32] to control for the differences in

linguistic contexts used in conversations. This is because variations in utterance lengths, word choices

and sentence structures can introduce variance in acoustic features independent of vocal differences.

In fact, Roark et al. points out that “narrow and topic-focused use of language” is important for

“more accurate” acoustic marker extraction [32]. However, while these studies suggest that acoustic

markers can have very high predictive value, the highly structured conversational settings may

restrict the effectiveness of linguistic markers. Traditionally, semi-structured conversational settings

have been used in linguistic marker studies because they reflect participant linguistic preferences in

open conversations (without fixed sentences). Therefore, we are interested in combining acoustic

and linguistic features in a synergistic way, despite the fact that the semi-structured setting introduces

interesting trade-offs between the stability of acoustic features and the expressiveness of linguistic

ones.

2.5.2 Personality Modeling

Persona modeling refers to non goal-oriented dialog, otherwise known as chit-chat dialogue systems.

Vinyals et al. [18] introduced a statistical machine translation (SMT) framework for sequence-to-

sequence modeling of dialogue turns, with neither dialogue-state tracking nor modeling long-term

20



dependence between turns. As a result, vanilla sequence-to-sequence models often fail to capture

long-term dependencies of dialogue responses and do not conform to a coherent “personality” in

conversations [23, 24]. Li et al.[19] introduced persona-based modeling which incorporates persona

information about a user as word embeddings. Recently, [23] extended this idea by building the

PersonaChat dataset to permit the modeling of persona-dependent dialogue trajectories that capture

both turn-based transitions as well as conditional response generation based on personalized text

profiles. Such an approach generated great interest in the research community. The main focus of

persona modeling has been how to incorporate persona information into the dialogue generation

process. For example, Song et al. [34] introduced a method for incorporating persona information

through variational autoencoders (VAE) with external memory, improving performance on automatic

evaluations. The ConvAI2 competition [24] provided a diverse sample of state-of-the-art model

architectures for persona modeling. However, as pointed out in the analysis of results from the

ConvAI2 (NeurIPS ’18) competition, a bottleneck of persona models remains the disparity between

automatic and human evaluation.

2.5.3 Automatic Evaluation of Persona Models

The NeurIPS ’18 challenge [24] introduced several limitations for automatic evaluation of dialogue

quality. For example, that F1 and perplexity (PPL) scores do not consider temporal dependence of

text generation, nor the underlying semantics of generated texts. This was reflected in the fact that

performance of persona models on automatic evaluation was not predictive of performance against

human evaluation – the eventual competition winner scored relatively poorly compared to other top

models in the automatic evaluation category. Additionally, it was found that classical metrics such

as F1 score and hits@1 automatically favor ranking models over generative models. PPL, F1 and

Hits@1 also do not provide any information about the style of responses, for instance tendencies

to ask questions to human users or bias toward certain conversational topics. Previously, Xing

et al. [35] introduced a method of evaluating dialogue quality beyond classical metrics by using

a classifier to predict meta-data about the underlying persona (e.g., extroversion and personality
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traits). However, such an approach requires strong supervision for each persona, which is not readily

available for large dialogue corpus. Hu et al. [36] introduced the idea of using a discriminator as an

automatic evaluator of generated dialogues. Zhang et al. [37] extended the use of discriminators

to include language models for constraining the possible response outputs and policy gradients

to deal with discrete generator inputs. However, discriminator-based approaches focus mostly on

response-level coherence rather than coherence of the dialogue trajectory over multiple turns. In

this work, we introduce an automatic evaluation scheme that systematically addresses each of these

issues.

2.6 Feature Selection in Medical Informatics

One prominent problem in medical informatics is the problem of feature selection over disease

markers. Aside from the curse of dimensionality, biomarkers are expensive and cannot be obtained

for each patient at every timestep. A prime example of this phenomenon exists in the realm of medical

informatics, specifically electronic health records (EHR) dominated by time-series data. Yet this

hasn’t stopped EHR from sparking numerous research interests in recent years [38, 39, 40, 41, 42].

Time-series data in the EHR consists of features that are sampled at different levels of temporal

granularity (e.g., lab tests are sampled at longer time-scales than vital signs). Most of the time,

only a small subset of features are observed at any time-step, as it is prohibitively expensive for

the physician to obtain the full set of features for every patient for every time interval. In practice,

a form of active sensing [43] is implicitly done in an ad-hoc manner by physicians based on a

combination of inpatient work-flow, resource constraints, and domain expertise. As a result, the key

difficulty with EHR time-series data is that they almost always require re-sampling and imputation

due to large amounts of missing values. For example, consider the EHR setting, where at each

time-step, the physician has to decide how to allocate a constrained amount of tests/resources

among patients for some set of clinical tasks. In other words, the precision sensing problem for

time-series is in fact a resource distribution problem at each time-step, with a fixed observation

budget across a given set of samples. Since the querying process is applied across time rather
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than samples, any feature selection formulation must reflect both the temporal-dependency and the

budgetary-constraint of the querying process. Therefore it is no surprise that several recent works

have shown that temporal models trained on EHR data have fragile decision boundaries that are

susceptible to small perturbations [44, 45].

In later chapters, we present a framework called precision sensing to overcome the temporal

dependence and non-i.i.d. property of medical feature selection. We first introduce some related

works in active sensing below.

2.6.1 Active Sensing

Precision sensing typically falls under the suite of active data acquisition problems such as active

learning [46] (optimal experiment design) and active sensing [43], both of which attracted significant

research interest from the machine learning community. Techniques such as incremental feature

acquisition [47] and active sensing [43, 48] focus on selecting a subset of features by querying

the original data in an online manner, with the goal of reconstructing (sample, view) pairs that

maximize the mutual information of predictive classifiers. Note that the original active sensing

problem proposed by Yu et al. [43] operates on static feature sets rather than time-series data. More

recently, active sensing has been extended to time-series data by [48] and [49], but in a problem

setting very different from this paper. This is because both [48] and [49] manage not only a feature

selection budget across features, i.e., “data-streams”, but also across time. However, a separate

budget constraint is considered for each individual. Precision sensing presents an additional layer of

complexity—the sensor model has to consider budget constraints across samples. That is, we do

not make the i.i.d. assumption across data samples. In reality, a sensing strategy has to take into

account an accumulating budget across all samples in a data batch. Using the toy example from

[49], a physician may need to conserve the observation budget for one group of patients in order

to decrease uncertainty of predictions for another batch at future time points. Thus, our goal is to

dynamically adjust the allocation of a fixed observation budget across a time window and a set of

samples. In experiments, we compare our method against state-of-the-art (SOTA) active sensing
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methods.

2.6.2 Temporal Feature Selection

Classic statistical methods [50, 51], perturbation models [44] and attention-based techniques [52]

have also been applied to distill model-preferences over temporal features across time. Schulam [53]

and Saria et al. [54] proposed modeling temporal relevance of features by abstracting hierarchical

representations across time (e.g., population-level and subpopulation-level latent features). However,

all these strategies lack an active component because their sensing strategies neither adapt to

shifts in future data-streams nor do they incrementally build the future sensing strategy. While

Clertant [55], like Chang et al. [49], formulated the sensing problem in a Markov Decision Process

(MDP) framework, their proposed algorithm deals with the sequential selection of static features,

rather than temporal data. Moreover, perturbation models and temporal feature selection [56] are

specific to the hypothesis model that they are trained on. But ideally a sensing strategy should be

generalizable to different hypothesis classes and decision boundaries. We experimentally show how

our method maintains performance for different model types, including non-temporal models (e.g.,

feed-forward networks) as well as non-deep models (e.g., logistic regression).

2.7 Sample Efficiency and Privileged Information

Finally, we explore the issue of improving sample-efficiency in using disease markers for clinical

prediction. In classical supervised learning, the learner is presented with the training tuple

{(G8, H8)}<8=1 and performs an optimization task of finding the best model in a hypothesis space

ℎ : - ↦→ . to approximate some true 5 : - ↦→ . which explains the data. Given a new

task, knowledge transfer [57] is often applied to accelerate the learning process by distilling and

transferring relevant knowledge from previous tasks to the unseen one. Under classical formulations,

the learner incorporates prior information in one of several ways:

1. Direct transfer of parameters from old hypothesis models to the new task and fine-tuning [57]

the parameters.
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2. Learning multiple tasks (online or batched) related to the current task [58, 42].

3. Using the prior knowledge (i.e. a knowledge graph) to constrain the hypothesis space by

regularization [59].

4. Using representations (i.e. embeddings) of - and / or . from previous tasks for new tasks

[5, 60].

5. Accelerate learning rate and model compression by Distillation as typically seen in Teacher-

Student models [61].

In each of these settings, knowledge transfer operates directly within the - , . and H spaces to

improve generalization of information from old models to the new task.

Recently, Learning Using Privileged Information (LUPI) [62] has provided a new paradigm for

knowledge transfer. Under LUPI, the learner now interacts with a Teacher that provides privileged

information (PI) and is only available at training time. From the learner’s perspective, the training

set is now extended to the tuple {(G8, G∗8 , H8)}=8=1, and the testing set stays the same. Some examples

of PI include: 1) Future information that relates - and . . For example, using future stock prices

beyond the prediction window during training. 2) Auxiliary information describing the label space

that is available only to a subset of samples. For example, physician notes that accompany diagnostic

predictions which is only available after the diagnosis is made.

At a high-level, PI provides some similarity information between training samples from the

original feature space, and the Teacher hypotehsis serves as additional “explanations” of the

hypothesis space [63, 62]. As a result, [63] showed that the LUPI Teacher provides a principled way

to improve the generalization error of Student learners using agnostic PAC models, providing some

theoretical improvements in the number of samples required to achieve generalizability the new task

(i.e. improves sampling efficiency)

However, under the current state-of-art LUPI formulations such as [64, 65], PI is incorporated

by means of support vectors and dropout schemes, both of which fail to explore the underlying

similarity structure between samples in the PI space -∗. For example the mode distribution and
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pairwise similarity between points in the -∗ space is largely unused. The PI contributes as auxiliary

training features and kernel information, but all LUPI information is lost at inference time and

beyond. A significant question remains: can privileged information be retained for future tasks?

Ideally, we want the LUPI Teacher to incorporate PI in a way that is specific enough to inform

similarity between training samples yet general enough to be retained across future tasks. In the

following subsections, we highlight some of these differences as well as improvements over related

LUPI works.

2.7.1 Transfer Learning Review

Consider the transfer learning setting: Assume we are given a source domain D( = {X(, %( (-)}, a

source task T( = {Y(,H(}, a target domain D) = {X) , %) (-)}, and a target task T) = {Y) ,H) },

where X defines a feature space, %(-) defines its marginal distribution, Y defines a label space,

andH defines a space of hypothesis which best approximates an underlying function 5 : - ↦→ .

which explains the data. Transfer learning leverage knowledge in D( and T( to improve the learning

of ℎ∗
)
∈ H) , where D( ≠ D) or T( ≠ T) . Improving the learning of ℎ∗

)
can come in two ways:

(1) improving the sample complexity ofH) , or (2) improving the rate of convergence for finding

ℎ∗
)
∈ H) .

Transductive learning describes a situation where D( ≠ D) but T( = T) , which can occur either

due tomismatch in feature space, i.e. X( ≠ X) , or due to co-variate shift, i.e. %( (-) ≠ %) (-)[57, 66].

On the other hand, inductive learning describes a situation where D( = D) but T( ≠ T) , i.e. the

same domain but different tasks. Briefly, the various transfer learning approaches are summarized

in table 2.1.

2.7.2 Knowledge Transfer by Inductive Learning

A popular approach for solving the inductive learning problem is parameter sharing, whereby some

or all of the parameters of ℎ∗
(
∈ H( is recycled for the target model, and fine-tuning is applied to

accelerate the search for ℎ∗
)
∈ H) [57, 71]. For example, consider multi-task learning (MTL), where
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Table 2.1: Summary Table of Transfer Learning Approaches

Setting / Method Domain Targets Examples
Inductive learning D( = D) T( ≠ T)
Multi-task Learning Same Features Y( ≠ Y) [67]
Parameter Transfer Same Features T( ≠ T)

Relational Knowledge Relational Graph Y( ≠ Y) [59]
Transductive Learning D( ≠ D) T( = T)
Multi-View Learning X( ≠ X) Same Tasks [60, 68]
Sample Selection Bias %( (. |-) ≠ %) (. |-) Same Tasks [69]

Co-Variate Shift %( (-) ≠ %) (-) Same Task
Domain-Adaptation %( (-,. ) ≠ %) (-,. ) Y( = Y)

Unsupervised Learning D( ≠ D) T( ≠ T)
Feature Representation Transfer of q(-() → q(-) ) New or Old Tasks [5, 70]

multiple hypotheses are learned jointly for a set of related tasks [57]. Under this setting, the set

of tasks T1, ...T) are presumed to come from the same underlying distribution. Using the same

feature space - , a subset of the joint hypotheses space
⋃
:=1H: ⊂ {H1, ..H)−1} should presumably

accelerate the learning of the optimal hypothesis for the target task. Thus, by transferring parameters

from {H1, ..H)−1} toH) , convergence rate to the optimal ℎ∗
)
can be improved.

A disadvantage of MTL is the constraint on relatedness of tasks. For example, it is hard to

know beforehand which subset of tasks will contribute positively to the target, and poor selection

of parameter transfer can actually lead to negative transfer, leading to poor performance on the

target task [57]. By contrast, LUPI uses PI that is by definition specific to the current task. However,

unlike MTL, LUPI does not use a shared feature space between the PI and original data, i.e. - ≠ -∗

and cannot directly incorporate the Teacher hypothesis via direct parameter sharing.

In recent years, relational-knowledge provides an alternative approach to inductive learning by

incorporating domain-specific knowledge in the form of regularized priors for target tasks [59, 72].

In contrast to parameter-sharing, relational-knowledge is agnostic to the collection of source tasks

and should apply universally to all learning tasks given the same feature space - . This formulation

overcomes the limitation of task similarity in the former case, but it is also very expensive to

construct reliable relational-knowledge, such as knowledge graphs. By constraining the hypothesis

space of the target task with relational-knowledge, the speed of convergence can be improved.
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However, inductive learning techniques generally focus on improving either accuracy of prediction

or convergence rate rather than sample complexity. The main focus of LUPI, on the other hand, is to

provide some guarantees on improving the sample efficiency of the Student learner.

2.7.3 Knowledge Transfer by Transductive Learning

In contrast to inductive learning, transductive learning considers two sub-problems: X( ≠ X) and

%( (. |-) ≠ %) (. |-). Multi-view Learning (MVL) [60, 73] and Multi-modal Learning (MML)

[74, 75] are main methods which deal with the X( ≠ X) case, where the feature spaces differ

between the source and target domains. MVL is often involved in processing different subsets of

features describing the same set of samples, for example different channels of EEG signals for

neurological diagnostics [76]. MML deals with different modalities of data, for example picture

and text descriptions of a disease process [77]. Often times, both MVL and MML utilize some

form of data fusion, whereby some shared representation of the multiple source domains is used

together to predict the same target task [67]. One drawback of these approaches is that modalities

such as PI is unavailable at test time, leading to poor generalization of the hypothesis model since it

is conditioned on both - and -∗.

For example, suppose we have some data fusion model 6 : - × -∗ ↦→ / , and a hypothesis

function ℎ : / ↦→ . . At training time, both the PI and the original features are utilized to train

ℎ(6(G, G∗)) = H. At test time, however, since only - is available, 6(G, 0) may actually map to a

completely different set of features in / , leading to a biased ℎ(I) = H. In other words, if - is

under-utilized during training, ℎ(I) will likely lead to poor generalization at test time. Unfortunately,

since PI is by definition a more task-specific descriptor of . , this is the most likely case and presents

a limitation for data fusion methods for incorporating PI.

On the other hand, methods such as biased selection sampling [78] and Optimal Transport

[79] are used to deal with the same set of features, but their marginal distributions disagree,

i.e. %( (-) ≠ %) (-). This is otherwise known as co-variate shift [66], and recently generative

models such as [80, 81] and [82] have dominated the state-of-art. For example, VRADA and
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RadialGAN both attempt to learn a domain-invariant latent distribution s.t. %(/ |-() = %(/ |-) ),

and %( (. |/) = %) (. |/)[82, 80]. Methods such as [83] and [81] try to directly learn a mapping

between %(-) |-() so that samples from -( can be used to augment the training of ℎ(G) = H. These

generative models present a possible way of incorporating PI into the modeling process by learning

a domain-invariant latent representation or transformation function between - and -∗. However,

these models improve the hypothesis function by means of data augmentation (i.e. increasing

the samples available) rather than decreasing the sample complexity required to train an accurate

model. In this regard, LUPI is advantageous in that it provides a framework for decreasing the

samples necessary by leveraging the Teacher’s hypothesis function 5 ∗. This subtle different becomes

important when “big data” is not available for complex data problems, for example modeling rare

diseases in healthcare records.

2.7.4 Knowledge Transfer with Distributed Representations

Transfer of feature representations is another paradigm of transfer learning that extends beyond

inductive transfer [57]. Under this setting, no label information is available for either the source or

target domains. However, the underlying structure of the source domain -( can first be extracted

using unsupervised learning before applying to downstream tasks. A prime example of this can

be seen in the learning of distributed representations for words [5], which is widely used in NLP

applications by converting the feature space of words (which have no intrinsic distance or similarity

properties) into an embedding vector space where distance and similarity can be computed based on

co-occurrence frequencies. Several related methods have been applied in the context of medicine by

learning distributed representations for medical concepts obtained from large corpora of journal

publications [70], EHR notes [41], and medical claims [72]. This framework provides a tool for

understanding the structural properties of PI, which can then be transfered to improve the actual

learning task of estimating the optimal Student hypothesis function. However, tactful incorporation

of these embeddings may not be as simple, since the learning regime must be able to incorporate the

embedded information in the hypothesis somehow. Our methodology introduces a way to achieve
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this and incorporates both structural information about the PI as well as the Teacher hypothesis

function into the Student learning procedure.

2.7.5 Knowledge Transfer by Knowledge Distillation

A closely related concept to LUPI is knowledge distillation [61] in which a Teacher model outputs

are used as “soft-labels” to accelerate Student learning of the target task. Similar to LUPI, the

Teacher learns a more accurate model of the task, 5 ∗ : - ↦→ . , and the Student tries to learn a

“distilled” representation of the hypothesis space, where the VC-dimension of the Student hypothesis

space is less than that of the teacher [84]. By decreasing its VC-dimension, the Student learner can

improves its sampling efficiency at least by a constant factor. However, the Teacher model does

not incorporate PI, which provides a better prediction of the label than the original feature space.

Additionally, the original LUPI provides a more favorable generalization bound compared to model

distillation without the help of PI [84, 63].

2.7.6 Knowledge Transfer by LUPI

Finally, LUPI provides some performance guarantees with regard to the sample efficiency of the

Student learner, so long as the PI and the Teacher model satisfies some conditions [62, 63]. However,

the main drawback of current formulations of LUPI is that the PI used is highly specific to the task

at hand – no information is retained for related tasks. Our work applies elements of unsupervised

learning and transductive learning to alleviate this limitation of LUPI. Although recent works such

as [64] has generalized the LUPI framework to deep learning settings, our work extends LUPI to

allow for multi-task and transfer learning, enabling the generalization of a PI source to accelerate

the sample efficiency of many tasks.
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2.7.7 LUPI Preliminaries

Traditionally, LUPI is applied to training data of the form:

(G1, G
∗
1, H1), (G2, G

∗
2, H2)...(G<, G∗<, H<) ∈ Dtrain,

where G8 ∈ R= denotes example feature (EF) vectors from the original feature space, and G∗
8
∈ R=∗

denotes privileged information (PI) vectors from the privileged information space. DCA08= indicates

that the PI inputs are only available during training. H8 ∈ {−1, +1} denotes the ground truth labels

for inputs (G8, G∗8 ). LUPI then considers two pattern recognition problems:

• Using {(G8, H8)}<8=1, find rule ℎ(G8) = H8.

• Using {(G∗
8
, H8)}<8=1, find rule 5

∗(G∗
8
) = H8

Suppose that the 5 ∗(G∗
8
) = H can produce low generalization error, the LUPI task is to transfer

knowledge of rules in the -∗ space to improve learning in the - space. The original LUPI formulation

in [62] considers only SVM models, whereby the privileged information is incorporated into the

SVM objective as follows:

minimize
F,F∗

1
2
(F)F + _F∗)F∗) + �

∑<

8
(F∗)k(G∗8 ) + 1∗)

B.C. H8 (F)q(G) + 1) ≥ 1 − (F∗)k(F∗) + 1∗),

F∗)k(G∗) + 1∗ ≥ 0

Here, F and F∗ are the parameter vectors, and 1 and 1∗ are biases of the decision functions. k(.)

and q(.) are feature mapping kernels applied on PI and EF vectors, respectively. � > 0 and _ > 0

are hyperparameters which control the contribution of privileged information to the overall cost

function. � controls the contribution of the Teacher loss 5 ∗ : -∗ ↦→ . , while _ controls correction

of the parameter space by F∗)F∗.
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CHAPTER 3

SCALABLE DIAGNOSTIC SCREENING OF MCI USING DIALOG POLICY

3.1 Introduction

The progression of Alzheimer Disease (AD) has consistently been a heavy area of research in clinical

medicine because while the disease itself is incurable, early intervention at the prodromal phases of

the disease has proven to delay the onset of AD-related mental degeneration and systemic issues

for months to years [1, 2]. Consequently, much of the recent clinical research efforts have focused

on detecting early stages of mild cognitive impairment (MCI), which is a prodromal phase in AD

progression occurring months to years before visible mental decline begins [3]. If successfully

detected at this stage, intervention methods may confer numerous benefits in the longevity of

cognitive and physiological health of AD patients [1, 2].

Brain imaging, such as the structural magnetic resonance imaging (MRI), was shown to contain

prime markers of AD, capturing the physiologic changes in the AD pathological process [4, 5].

However, the identification of MCI from normal aging (NL) is particularly challenging due to the

fact that structural changes in the brain in this phase are minor and hard to detect through structural

MRI [6], even though decline in mental status and cognitive have already begun in most cases.

Recently, the structural connections among brain regions inferred from diffusion MRI have provided

promising predictive performance of MCI detection [7, 8], yet sketching brain networks via imaging

still remains rather prohibitively expensive and difficult to scale. Moreover, the high dimensionality

of brain imaging combined with small sample size usually imposes significant challenges in learning

algorithms and leads to unstable generalization performance.

On the other hand, behavior and social markers could offer a much more cost- effective option

for MCI detection [9, 10, 11, 12]. A recent clinical trial has studied differentiating early stage

MCI from NL cohort groups using transcripts of extensive conversations between patients and

trained interviewers [11]. In a recent preliminary study [12], the authors trained supervised learning
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models from the lexical distribution of the conversation, and showed that conversational responses

of MCI and NL patients take on different distribution under various conversational topics. The

success of [12] in predicting MCI using human dialogue introduced an alternative natural language

processing (NLP) approach to a classically clinically expensive problem. However, the use of

human interviewers still requires substantial amounts of interaction between trained staff which

incur significant expense in its current form. Thus, the bottleneck questions remain: (1) can we cut

down on the amount of conversations needed to achieve accurate prediction, (2) can we improve

upon baseline performance given limited cohort-specific data?

To address the aforementioned questions above, in this chapter we propose a novel reinforcement

learning (RL) framework, which learns a MCI diagnosis agent using only very limited amount

of offline human dialogue transcripts. The learned diagnosis agent can conduct subject-specific

conversation with humans, asking questions based on existing conversations to efficiently sketch

the lexical distribution and give high-performance MCI prediction. In order to facilitate RL using

offline transcripts, we introduce a dialogue simulator pipeline which generates new conversational

episodes that are less noisy and out-perform the original corpus for MCI prediction.

Our dialogue pipeline provides a self-contained framework for directing dialogue generation

for diagnostic screening which can potentially replace the need for human-expert interviews. Our

RL-agent learns optimal dialogue strategies that are adaptive to unseen users, enabling medically-

relevant NLP data to be generated on a large scale if deployed in a realistic setting. Furthermore,

data generated from our dialogue simulations may be used for data augmentation or to perhaps guide

the medical data collection process in the future. Ultimately, by greatly decreasing the cost of data

collection and the amount needed for high-level performance, we introduce a clinical direction that

is much more cost-effective and scalable to large-scale diagnostic screening and data collection. The

combination of NLP features with our reinforcement learning framework may extend the process of

diagnostic screenings to well beyond the confines of hospitals and primary care facilities.
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3.2 Methodology

3.2.1 Dialog Systems

Our approach is inspired by recent advancements in dialog systems. Dialog systems provide a

natural human-computer interface and have been an active research field for decades. Task-oriented

dialogue systems are typically designed for retrieval- tasks in which users provide queries and

the chat-bot provides appropriate responses based on an external knowledge base [13, 14, 15], or

identifying correct answers by looking into vast amounts of documents [16, 17]. Such dialogue

systems are typically designed to be a pipeline containing a set of components including a language

understanding unit that parses the intention and semantics from the input from humans, a dialogue

manager that manages dialogue state tracking and policy learning, and a language generation

unit that generates response [15, 18, 19]. While each of the components can be handcrafted or

trained individually, recent advances of deep learning allows end-to-end training [13, 14, 20, 20]

and significantly improves the performance and the capability to adapt to new domains [21]. The

end-to-end systems can be trained using supervised learning [13, 22] or reinforcement learning (RL),

by leveraging a user simulator [14, 20]. The main advantage of RL is that less training samples

are needed to learn the high-degree-of-freedom deep models. In our work, we design a simulator

to enable RL due to the limited amount of clinical data available for supervised training. We note

that even though our dialogue system also tries to achieve a task (identifying MCI patients), the

nature of our system is radically different from existing task-oriented dialogue systems: its goal is to

efficiently sketch a disease specific lexical distribution through asking subject-specific questions and

give classification results.

The framework we propose in this chapter involves the use of reinforcement learning to learn

the optimal set of questions c∗ to ask participants for the purposes of distinguishing MCI. On test

set, we generate new episodes from these questions for prediction rather than the original corpus.

To actualize the RL + dialogue simulation framework, we proposed a multi-step approach for

implementation which capitalizes on the vast existing knowledge of NLP research. In the following
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Figure 3.1: Overview of the proposed methodology.

section, we present the details of each component of the dialogue system. Figure 3.1 shows an

overview of the components of our experimental pipeline. Complete conversation from participants

are used to build user simulators. The simulators are then used to train an MCI diagnosis agent

(chat-bot), which conducts minimal turns of conversation with participants to sketches the lexical

distribution that is then used to perform MCI classification.

3.2.2 Overview of Pipeline

Our proposed framework contains three key learning modules: the user simulator, theMCI classifier

and the RL-agent. The proposed pipeline is illustrated in Figure 3.2. First, the user simulator is

trained by unsupervised learning, which simulates the distributed representation of user responses

given feasible question inputs. Next, the MCI classifier predicts the patient label based on the

averaged distributed representation of its corpus responses. The above two components and dialogue

manager comprise the training environment for the RL-agent. The dialogue manager utilizes the

user simulator and MCI classifier to handle the state transitions and also computes of the reward

based on the ground-truth labels from the training set and MCI classifier prediction. After training in

this environment, the RL-agent is able to deliver the optimal sequences of questions for training-set

users at various stages of conversations. During testing, the RL-agent produces query inputs to

the test-set user simulators, which represent the unseen users. Using these new queries, the user

simulators generate the corresponding distributed representation of test-set user responses for MCI
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Figure 3.2: Illustration of reinforcement learning components in our proposed approach.
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prediction. In the following subsections, we will present each component of the pipeline in detail

and demonstrate the effectiveness of the RL framework in improving prediction accuracy while

reducing conversational turns.

3.2.3 Construction of Turn-Based Dialogue

Since utterance data was collected in the form of conversational transcripts for each participant,

we must reconstructed turn-based dialogue from participant-responses. The participant responses

were unstructured while interviewer questions ranged over preset question topics, as illustrated below.

Interviewer: so what did you do yesterday?

Participant: i had yesterday morning i yesterday was a busy day for me. i im forgetting i went to

where did i go in the morning. well i went to albertsons yesterday...

Interviewer: what do you see in this picture?

Participant: we got a picture gosh. it looks like my uncle lou. but he never ...

Interviewer: when do you think this picture was taken?

Participant: this picture was probably eighteen seventy or something or nineteen twenty. so he

looks too old for war he must have been ...

In total there were well over 150 possible queries from the interviewers. However, for the

purposes of this study, we re-compiled the question list into 107 general questions which were

ubiquitous across all conversations. A snapshot of questions are in Table 3.1.
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Table 3.1: Examples of questions from conversations

Category Question
Activity Did you go outside lately?

So what did you do yesterday?
Social Did you run into any familiar faces lately?

Where did you have dinner?
Picture What do you see in this picture?

Where do you think this picture was taken?
Tech How are you with the computer?

Did you use your computer lately?
Unspecified <unspecified scheduling comment>

<unspecified picture comment>

We created a total of 16 question categories, including: greetings, activity check, living situation,

travel, entertainment, social, picture-related, tech, occupation, hobbies, family, pets, confirmation,

clarification, goodbye and unspecified comments. For some of these comments, we delexicalised

certain topic words such as “<activity>”, “<social topic>” in order to (1) control for domain

expansion [23] and (2) reduce model complexity of our user simulators. In the past, [23] and

[22] have shown the effectiveness of delexicalisation in controlling for domain expansion in user

simulators without sacrificing the contextual meaning of sentence queries. Additionally, we also

created unspecified comments category, which included comments that deviated from general

question prompts. These comments often result from interviewer follow-up on specific topics

mentioned by the user. We consolidated these comments into a single category to distinguish the

context-specific from general questions based on the corpus. However, we do demarcate the type of

unspecified comment used by the interviewer. For example, a follow-up comment to an occupational

story is tagged <unspecified occupational comment> whereas a follow-up comment about a health

concern is tagged <unspecified health comment>. The role of these comments serve to build rapport

and improve flow of conversation. In future studies we may look to generate user-specific grounding

statements for these slots [24]. Implemented in this way, the corpus is tokenized into turn-based

responses to questions for each user.
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3.2.4 Unsupervised Learning for User Simulator

To effectively capture contextual representation of user conversation style, we utilize vector

embedding of user corpus at the sentence-level representation [25, 26]. Given that we want to

capture the flow of the conversation from one response to the next, we implement skip-thought

embedding, which has shown effectiveness over large corporal datasets by capturing contextual

information of sentences given neighboring ones [25]. For encoding sentences, we use a model that

was pretrained on the BookCorpus dataset, which contains turn-based conversations from various

English novels [25]. For the decoder, we train skip-thought vectors to recover the original response

of the user during NLG portion of the pipeline.

Since each user has individual response styles to questions, we train a personalized user-simulator

for each user. For each user, the conversation corpus is divided into question-response turns. In our

dataset, for example, the number of turns per conversation ranged from 30-275 turns. We used a

multilayer perceptron (MLP) with 2 hidden layers of 512 output nodes each to train the user simulator.

We also introduce regularization with ℓ2-norm penalty to constrain model complexity. Because we

utilize preset questions by the interviewer, we use one-hot encoding of questions, denoted q8C ∈ R3 , as

input for training. Given the original skip-thought vector v8C , the user simulator serves as a function

which maps 5 : q8C ↦→ v8C . The output of the MLP is the skip- thought embedding representation of

the utterance, denoted 5 (q8C ; w8) ∈ R2. Here, 3 denotes the size of our question dictionary, 2 denotes

the dimension of skip-thought embeddings, w8 parameterizes the MLP model for the given user,

8 ∈ # denotes the user index and C ∈ ) denotes the turn number. The loss function of the MLP is

given by the mean- squared error (MSE) between the MLP output and original skip-thought vector

v8C ∈ R2:

! (w8) =
1
2

∑)

C=1

[
5 (@8C ; w8) − v8C

]2 + _
2
| |w8 | |2, ∀ 8 = 1, ..., #

In the case where questions are not preset, more state-of-art methods such as end-to-end recurrent

neural network systems can be deployed to train the user simulator instead [13, 27]. To evaluate

the performance of our user simulator, we computed the mean squared error on the outputs of the
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simulator and the original thought vector representation of the user response for each turn.

3.2.5 Reinforcement Learning Components

Again, let 2 denote the size of skip-thought embeddings and 3 denote the size of question dictionary.

We formulate the dialogue and task managers portions of the dialogue system into a standard RL

setting where an agent interacts with environment E over a finite number of steps. At time step C,

the agent receives a state sC and samples an action (asks a question) aC based on its current policy c.

The environment transitions to the next state sC+1 and the agent receives a scalar reward AC+1.

In this setting, the RL-agent tries to learn an optimal policy c∗ over all possible states, including

ones that are unseen by the agent during training. To do this, the agent has to learn an approximate

action-value function, which maps state-action pairs to expected future rewards [28]. Formally, the

action-value function is defined as follows:

&c (s, 0) = Ec
[∑)

C=1
WCAC |s, 0

]
,

where W ∈ [0, 1] is a discount factor and ) is the max # of turns.

3.2.5.1 Environment E

The environment in this case consists of the dialogue manager (DM), user simulator and MCI

classifier. DM is composed of the reward and state generating functions. In previous works, a task

manager, composed of a database and a query manager [15, 13], is used by the DM to generate

observations in retrieval tasks. In our case, however, the the user simulator and MCI classifier is

equivalent to the task manager and is used by the DM to generate observations. Here, the DM uses

the MCI classifier to (1) predict probabilities for both the MCI and the NL classes based on current

moving-average of skip-thought vectors at each turn, and (2) predict the label of the current user at

the end of the episode for reward calculation. The result of (1) is also used by the agent as part of

its internal state-representation. The result of (2) is used by the DM for credit assignment for the
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generated conversational episode. The MCI classifier is trained separately on the training set corpus

before the dialogue system phase.

3.2.5.2 Action aC ∈ R3

The RL-agent chooses its actions from a set of discrete actions consisting of 107 predefined questions,

where each question is represented by a one hot vector in R3 . It is worth noting that we use aC

and qC to differentiate the action taken by our RL-agent and the questions asked during the actual

interviews, respectively.

3.2.5.3 State sC ∈ R�

The state representation by the RL-agent is used to approximate the action-value function. There are

five main components of the state representation vector:

• Skip-thought vector of utterance at current turn: 5 (0C−1; w8), which is the output vector from

user simulator 5 given action 0C−1 at turn t.

• Moving average of skip-thought vectors across all utterances in current episode: 5̄C =

1
C

∑C−1
:=1 5 (0: ; w8)

• First hidden layer weights of user-simulator: w8 [:, 1]

• Predicted probability of current user for MCI and NL classes by classifier

• Number of turns above threshold: g.

The total dimension of the state vector is � = 22 + |w8 [:, 1] | + 3 = 10115. At each turn, the DM

queries the MCI classifier to output a probability vector composed of %(H8 = 0| 5̄C) and %(H8 = 1| 5̄C),

where H = 0 denotes NL and H = 1 denotes MCI. This 2-dimensional vector keeps track of the

classifier's confidence-level for MCI prediction based on the current moving-average of skip-thought

vectors generated from 1, 2, ..., C turns. Keeping track of classifier confidence incentivizes the
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RL-agent to terminate the conversation as soon as it reaches a threshold level of confidence for the

prediction task.

3.2.5.4 Reward A ∈ R

Since we want to minimize the number of dialogue turns, we designed the environment to output

a negative reward (-10) at every time step unless it reach a terminal state (e.g. when agent says

“goodbye”). At the terminal state, the reward depends on the classification using the averaged

skip-thought vector collected from this episodes. If the existing classifier is able to make the correct

prediction, the agent receives a positive reward (1000), otherwise it receives a moderately negative

reward (-500). We also set the maximum length of episodes ) = 35. Additionally, we added a

linearly increasing penalty for each passing turn where the classifier predicts with ≥ 0.65 probability

for either class (MCI/NL). We denote this penalty threshold as the number of turns above confidence

threshold (g). Formally, the reward function is defined as:

A =


−10 − 10g, for non-terminal state,

−500, terminal state with misclassification,

+1000, terminal state with correct prediction.

(3.1)

3.2.5.5 State transitions

The state transition function has two parts:

• Within User. The state transition rule between turns is characterized by:

%cB,B′ =
∑

0∈�
%(BC+1 = B′|BC = B, 0C = 0, c)

=
∑

0∈�
c(0 |B)%0B,B′

Given a policy c, the probability of the environment transitioning to state B′ at BC+1 depends

only on current state BC . Internally, the DM utilizes the user simulator to generate skip-thought

5 (0C ; w8) from 0C .
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• Between Users. In addition to state transitions within episodes, the state-generating function

changes between users, leading to different transition probabilities between similar states

among different users. To capture this, we apply two changes when training the RL-agent

on multiple users: (1) the first hidden layer weights w8 [:, 1] of each user are incorporated in

the state representation vector so that the RL-agent can distinguish between dissimilar users.

When used this way, the user simulator provides a means for the RL-agent to learn similar

policies for similar users and dissimilar policies for dissimilar users. (2) During training,

both the user simulator and classifier of the training environment is reset between users by

re-initializing the user simulator weights w8 to correspond to the new user.

3.2.5.6 Deep Q-Networks (DQN)

In this work, the action value function needs to estimate expected reward based on the high-

dimensional state representations as described in previous section. In order to approximate the action

value given different users and the complicated internal state changing during the conversation,

we learn a deep &-network parameterized by \E to tackle this challenging problem. The learning

procedure can be conducted by optimizing the loss function as follows:

! (\E) = EsC ,aC ,AC ,s′C+1 [(HC −&(sC , aC ; \E))], (3.2)

with

HC = AC + Wmaxa′
C+1
&(s′C+1, a

′
C+1; \′E), (3.3)

where \′E denotes the parameters of target &-network. In order to learn the estimator under complex

situations, two key ingredients were proposed in [29]: experience replay and fixed target &-network.

During the training, the &-network (\E) is updated in an online fashion by conducting the gradient

descent of Eqn. (3.2) while the target &-network (\′E) is fixed to compute the target values as in

Eqn. (3.3) and only updated after a certain number of iterations, which is essential to the convergence

of &-network in this work. We also observe when the experience replay samples minibatch from

previous experiences to update the &-network, the training performance stabilizes more consistently.
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3.2.5.7 Policy-masking

One challenge in our problem is creating an environment that can train the agent to produce responses

which best align with the flow of conversations. For example, an agent may learn that the question

“can you elaborate on that? ” is useful for generating a wide distribution of words from the user, but

it would not make sense to include that in the first sentence of a conversation or before relevant

topics are introduced. To achieve this, we created a policy-modifying function in which confirmation

and clarification type questions are masked from the policy set c at turn C if the action history of the

agent from 1, 2, ..., C − 1 does not include any questions from social, activity, tech, picture-related,

hobbies, occupation, travel, entertainment and family categories. At each turn, we keep track of

an action history vector cC ∈ R3 and construct a policy-masking vector iC ∈ R3 to be applied

element-wise over the agent's Q-value output. Specifically:

i
9
C =


0, if action 9 masked,

1, otherwise.
(3.4)

&′(sC) = iC � &(sC).

where the i 9C denotes the 9-th element in policy-masking vector iC . And &(sC) ∈ '3 represents

the action values of all 107 available actions given current state sC . Then the &′(sC) is valid action

values vector after the policy masking. To achieve effective masking, we assure the elements of

&(sC) is positive by using ReLU [30] as the activation function for the output layer of Q-network

and a step of pre-training on Q-network as described in following section.

3.2.6 Training the RL-Agent

We outline below the training procedure for our RL-agent. To expedite the learning process, we

first train the RL-agent over the original corpus from the training set. For each user, we perform

an initial pass through the entire corpus using the existing action history @1
8
, @2
8
, ...@)

8
to generate

episodes B1, 01, A1, ...0C , AC . We use these corpus-generated episodes to train the Q-estimator network.

This initialization procedure is motivated by previous studies which have cited the effectiveness
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Algorithm 1 RL-Training Protocol
Initialize replay memory D
Initialize Task Manager with classifier
Pre-train action-value function &
for 8 = 1, ..., # do

Initialize Environment E with User Simulator 58
Initialize E with true label for user 8
for 4?8B>34 = 1, ..., " do

Reset E Get the initial state s1.
for C = 1, ..., ) do

Obtain policy mask iC as Eqn. (3.4).
With probability n select a random action 0C
otherwise select 0C = max0 iC � &(BC , 0; \E )
Execute action 0C in E observe reward AC and state sC+1
Store transition (sC , aC , AC , s 9+1) in D
Sample random minibatch of (s 9 , a 9 , A 9 , s 9+1) from D
if terminal s 9+1 then
H 9 = A 9

else if non-terminal sC+1 then
H 9 = A 9 + Wmax′0 &(s 9+1, 0′; \ ′E )

end if
Perform a gradient descent step on (H 9 −&(s 9 ; 0 9 , \E ))2

end for
end for

end for

of pre-training with successful episodes so that the RL-agent can discover large terminal reward

signals in games with delayed rewards [31].

During training, we stabilize the target Q-network \′E for minibatch generation and transfer

weights from learning Q-network \E every 50 conversational episodes. During testing, we use the

RL-agent to generate new actions for each test set user 081, 0
8
2, ...0

8
C . New episodes are then generated

by each user simulator from each new action set c8 for prediction. These simulated episodes often

differ from the original corpus in both the questions asked by the agent as well as in the skip-thought

responses by the user.

3.3 Experiments

Evaluation of dialogue systems differ widely depending on the task. Previous works typically involve

using metrics such as perplexity and averaged reward per response to measure the quality of the
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natural language generation (NLG) phase of the dialogue system [15, 13, 18]. However, because

the utility of our framework comes from the quality of questions that the chat-bot generates for

the off-conversational task, we propose a framework of evaluation which emphasizes the agent’s

off-conversation performance. We gauge utility of the dialogue system by its ability to improve

(1) prediction accuracy against baseline techniques and (2) the number of turns needed to make

accurate prediction.

3.3.1 Data

Data used for this study was obtained from a randomized controlled behavioral clinical trial to

ascertain the effect of unstructured conversation on cognitive functions. Details of the study protocol

was explained in [32]. In this clinical study, conversational data was collected in Q&A format

for each participant during web-cam interviews with trained interviewers. Each participant was

interviewed multiple times over the course of 4-6 weeks, and dialogue responses were transcribed

for each interview session [12]. On average, there are 2.81 conversational episodes per participant,

and each conversation lasted between 30-45 minutes [12, 32]. MCI labels were generated using

clinical assessment of each participant's cognitive status by medical professionals [12, 32].

3.3.2 Baselines vs. RL Performance

We first compare the performance of several baseline classifiers for the MCI prediction task. For our

specific dataset, [12] had previously achieved benchmark performance of 72.5% AUC score on

5-fold validation while using linear SVMwith ℓ1-norm penalty and feature engineering by Linguistic

Inquiry and Word Count (LIWC) dictionary [12]. LIWC embeds each word into a 69-dimensional

word vector space with each dimension representing a latent feature of the English language [12].

Since 2013, various contextual representations of words and sentences have been proposed, many of

which have outperformed classical rule-based contexual embedding techniques [26, 25]. Distributed

representation such asWord2Vec allows for more flexible and corpus-dependent latent features to be

created for individual words [26]. More recently, Skip-thought vectors [25] have risen to popularity
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Table 3.2: Performance of baseline vs. RL on MCI prediction on 10
stratified shuffle splits

Model Feature AUC Sen. Specificity F1-Score
LR + ℓ1 RD 0.529 ± 0.132 0.380 ± 0.260 0.678 ± 0.105 0.361 ± 0.207
RFC RD 0.519 ± 0.057 0.080 ± 0.098 0.944 ± 0.075 0.120 ± 0.149

SVM + ℓ1 RD 0.551 ± 0.131 0.380 ± 0.227 0.722 ± 0.102 0.384 ± 0.214
SVM + ℓ2 RD 0.560 ± 0.050 0.320 ± 0.256 0.800 ± 0.185 0.322 ± 0.193

MLP RD 0.640 ± 0.193 0.110 ± 0.243 0.860 ± 0.189 0.162 ± 0.146
LR + ℓ1 W2V 0.638 ± 0.091 0.520 ± 0.204 0.756 ± 0.147 0.517 ± 0.127
RFC w2v 0.564 ± 0.110 0.340 ± 0.220 0.789 ± 0.144 0.374 ± 0.189

SVM + ℓ1 W2V 0.651 ± 0.103 0.560 ± 0.233 0.756 ± 0.130 0.541 ± 0.147
SVM + ℓ2 W2V 0.598 ± 0.116 0.440 ± 0.233 0.756 ± 0.171 0.449 ± 0.205

MLP W2V 0.680 ± 0.151 0.500 ± 0.500 0.511 ± 0.490 0.266 ± 0.266
LR + ℓ1 LIWC 0.703 ± 0.099 0.540 ± 0.237 0.867 ± 0.130 0.584 ± 0.152
RFC LIWC 0.641 ± 0.135 0.360 ± 0.250 0.922 ± 0.087 0.445 ± 0.273

SVM + ℓ1 LIWC 0.661 ± 0.125 0.600 ± 0.200 0.722 ± 0.200 0.572 ± 0.144
SVM + ℓ2 LIWC 0.712 ± 0.110 0.680 ± 0.204 0.744 ± 0.180 0.631 ± 0.135

MLP LIWC 0.689 ± 0.129 0.300 ± 0.458 0.767 ± 0.396 0.182 ± 0.285
LR + ℓ1 SKP 0.790 ± 0.112 0.680 ± 0.256 0.900 ± 0.116 0.707 ± 0.183
RFC SKP 0.608 ± 0.104 0.260 ± 0.220 0.956 ± 0.054 0.343 ± 0.259

SVM + ℓ1 SKP 0.783 ± 0.123 0.700 ± 0.241 0.867 ± 0.171 0.711 ± 0.190
SVM + ℓ2 SKP 0.797±0.122 0.660±0.269 0.933±0.102 0.716±0.189

MLP SKP 0.638 ± 0.138 0.600 ± 0.490 0.400 ± 0.490 0.316 ± 0.256
RL(T=1) SKP 0.607±0.109 0.380±0.166 0.833±0.134 0.447±0.172
RL(T=3) SKP 0.706±0.092 0.500±0.205 0.911±0.097 0.583±0.154
RL(T=5) SKP 0.707±0.072 0.480±0.133 0.933±0.102 0.594±0.129
RL(T=10) SKP 0.772±0.115 0.600±0.237 0.944±0.102 0.683±0.186
RL(T=15) SKP 0.798±0.115 0.640±0.265 0.956±0.102 0.714±0.190
RL(T=20) SKP 0.798±0.121 0.640±0.250 0.956±0.102 0.719±0.190
RL(T=25) SKP 0.808±0.111 0.660±0.254 0.956±0.102 0.732±0.184
RL(T=30) SKP 0.808±0.119 0.660±0.269 0.956±0.102 0.730±0.190
RL(T=35) SKP 0.818±0.102 0.680±0.204 0.956±0.102 0.761±0.140

Here, LR denotes sparse logistic regression classifier, RFC denotes random forest
classifier, SVM denotes support vector machines, andMLP denotes multi-layer
perceptron. For feature representation of corpus, RD represents raw distribution
of word counts. w2v denotes averaged 300-dimensionWord2Vec embeddings
across all words appearing in the corpus for each user [26]. LIWC denotes
the original rule-based embedding used by [12]. SKP denote averaged 4800-
dimension Skip-Thought vectors across all turn-based responses for each user
[25].

due to the ability to embed entire sentences into "thought vectors" that capture contextual meaning

and syntactic information from neighboring sentences. For this reason, we compare various word

and phrase embedding techniques to establish new baseline performances for our classification task.

The first four sections of Table 5.3 show the performance of these baseline classifiers. Using the

original LIWC representation, we were able to recover close to the 72.5% AUC baseline from the

original paper using SVM and LR classifiers. When implementing skip-thought embedding, we used

pre-trained skip-thought encoders by [25] to embed each user response across all conversational
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turns. The encoder was pre-trained on the BookCorpus dataset, which is a large collection of

novels pertaining to numerous literary genres. The advantage of pre-training on this dataset is that

BookCorpus contains an abundant number of turn-based dialogues between various character types.

These conversations capture a wide range of conversational response styles, idiosyncrasies and

temperaments. As seen in Table 5.3, the best performing baseline model was the SVM classifier

with ℓ2 norm, using Skip-Thought embedding as features. For this reason, we choose this classifier

for the RL portion of our pipeline. As a baseline reference, we also included performance using raw

word count distributions for all models.

We then evaluate the performance of our RL-agent across 10 stratified shuffle splits. Each split

uses 65% of data for training and 35% for testing. We compare the performance of RL-Agent when

manually restricting the number of questions to 1, 3, 5, 7, 10, 15, 20, 25, 30 and 35. By restricting

the number of turns, we can observe the number of questions needed to recover the original baseline

performance using the SVM classifier.

Figure 3.3: RL-Agent vs. Baseline w/ Variation on Turns.

The last section of Table 5.3 illustrates the performance of the RL-agent under various turn

constraints. Here, the turns notation RL(T=C) denote the number of questions the agent is allowed to
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ask before a prediction is made from the simulated user responses. It is important to note that turn 0

was set to greetings by default and was not counted toward the conversation.

We see from constraint conditions that the performance of our RL-agent started to surpass

baseline performances starting at 25 questions and was able to achieve comparable performance

using only 15 questions. At full conversation length of 35 turns, we were able to achieve 0.818

AUC, an improvement upon current and previous baselines. In comparison, the mean number

of conversational turns per user in the original corpus was 105.71. Additionally, since 2.81

conversations were conducted per user, we adjusted the number of turns allowed based on the mean

number of turns per conversation, which was 37.36 per user. For this reason, we set the upper bound

constraint to 35 questions, which is just slightly less than a full conversation with the user.

Figure 3.3 visualizes this relationship between performance and number of questions asked by

the RL-agent. We see that performance improvements with additional questions saturate after 15

questions. This was expected, as the highest-yield questions discovered by the RL-agent were asked

first during test conversations.

3.3.3 Evaluation of User Simulators

User simulators serve a pivotal role of simulating the user response in the RL training environment

[18, 33]. In previous works, the user simulators are evaluated based on accuracy of generated user

query to unseen bot responses [33, 18]. Metrics such as BLEU and perplexity are used at the NLG

phase of dialogue, as the generation of user query is pivotal in retrieval-type training systems.

In our case, however, the goal of the user simulator is quite different; the RL-agent is responsible

for generating queries while the output from the user simulator is actually an encoded thought-vector

of the user response, which is then used for state representation and downstream prediction purposes.

For this reason, we evaluate the performance of the user-simulator not on the decoding portion of

the dialogue system, but rather on the performance of the user-simulator in generating accurate

thought-vector version of the responses.

We compute mean-squared error (MSE) between the corpus Skip-Thought vector and user
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Figure 3.4: Distribution of mean squared error (MSE) across all user simulators.

simulation prediction at each turn. The resulting MSE scores are averaged across all turns for the

conversation. Given that each user has on average 2.81 conversations, we evaluate the performance

of the user simulator in a leave-one-out fashion: for each user, the simulator is trained on all

conversations except for the last one, which is used for evaluation. Figure 3.4 visualizes the

performance of user simulators. The mean MSE is 0.00495±2.93E-06, averaged across all test set

performances.

3.3.4 Top-Performing Policies

It is interesting to note that the simulated episodes by our RL-agent were able to provide a performance

boost for the prediction task. In this section, we look qualitatively at the types of questions at 5,

10, 15, 20 and 35 turns by RL-agent in comparison with the original corpus. We also compare the

performance of c∗@5, @10, @20, @30 and @35 with the performance using the first 5, 10, 20,

30 and 35 responses of the original corpus. Again, we note that responses to greeting and parting

queries such as “Hi” and “goodbye” are not counted toward prediction.

As shown in Table 3.3, the optimal policy c∗ learned by our framework outperformed the original

corpus for each turn constraint. For example, when our RL-agent asked only 5 questions to test set

users, the classifier was able to achieve 0.707 AUC and 0.594 F1 using the simulated response. In

contrast, using the first 5 questions from the original corpus for each test set user produced 0.504
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Table 3.3: Prediction @5, 10, 20, 30 and 35 Turns

Model AUC Sen Spec F1-Score
Corpus@5 0.504±0.070 0.120±0.098 0.889±0.099 0.175±0.145
Corpus@10 0.513±0.076 0.160±0.174 0.867±0.130 0.193±0.200
Corpus@20 0.614±0.077 0.340±0.254 0.889±0.131 0.382±0.223
Corpus@30 0.658±0.121 0.360±0.233 0.956±0.056 0.460±0.266
Corpus@35 0.699±0.125 0.420±0.244 0.978±0.044 0.539±0.248
c∗@5 0.707±0.072 0.480±0.133 0.933±0.102 0.594±0.129
c∗@10 0.772±0.115 0.600±0.237 0.944±0.102 0.683±0.186
c∗@20 0.798±0.121 0.640±0.250 0.956±0.102 0.719±0.190
c∗@30 0.808±0.119 0.660±0.269 0.956±0.102 0.730±0.190
c∗@35 0.818±0.102 0.680±0.204 0.956±0.102 0.761±0.140

AUC and 0.175 F1. When using the first full-length conversation with 35 turns, the original corpus

recovers an AUC score of 0.699, which is far from the performance of c∗@35. In Table 3.4, we

rank the most frequently appearing questions in c∗@5, c∗@10 and c∗@20.

Table 3.4: Most frequently questions in c∗@5, 10, 15 and 20

Turns Question Count
1-5 when did you start working? 40
1-5 so how long did you go out for? 37
1-5 when did you meet your SO? 28
1-5 <unspecified hobby comment> 24
1-5 what did you like about <activity>? 24
6-10 what was <occupation> like for you? 30
6-10 <unspecified tech comment> 28
6-10 when did <tech problem> start? 22
6-10 what do you see in this picture? 19
6-10 <unspecified picture comment> 19
10-15 what is your opinion on <social topic>? 42
10-15 did you see any shows lately? 38
10-15 how many people do you think can fit in this? 33
10-15 what you were doing during this time period? 30
10-15 what type of <hobby> do you do? 28
15-20 <goodbye> 27
15-20 where did you meet your so? 25
15-20 did you enjoy school? 24
15-20 anyone visit you lately? 24
15-20 what was the show about? 20
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c∗@5. The most effective question in c∗@5 appears to be “when did you start working”. In the

context of our problem, this question seems to generate the most polarizing responses from the

cohort. We also see that the RL-agent included a few elaboration questions such as “what did you

like about <activity>” and “why did you do that,” for some users to expand upon previous responses.

From the clinical perspective, it is also interesting to note that the RL-agent picks questions such as

“what did you do yesterday” and “how long did you go out for,” which are similar to questions used

clinically to assess immediate recall in MCI patients [34].

c∗@10. As seen in c∗@5, occupational questions were the most popular topic asked by the

RL-agent. This is also the case with c∗@10, where the RL-agent follows up the previous query with

an elaboration question regarding past occupational experiences. It is interesting to note that the

RL-agent transitions to picture-related questions, which are often used by the clinical interviewers

to facilitate creative responses by participants [12].

We also observe the RL-agent asking questions such as “<unspecified tech comment>” and

“when did <tech problem> start”. These were frequently asked questions during the course of the

original dialogue, as technical difficulties were often encountered with connection and webcam

issues during the interviews [12]. Unfortunately, the responses vary greatly and may at times

generate verbose responses from participants. The RL-agent did not seem to be able to recognize

this caveat during training.

c∗@20. As we approach questions 11 through 20, we arrive at mid- to late- dialogue for most

conversations. Overall, we observe more widespread topics during this portion of conversation. The

most polarizing question asked at this stage was “what is your opinion on <social topic>?” Here,

we used delexicalised slots [22] <social topic> to reduce model complexity, but the slots may be

substituted with a wide range of social topics from political trends to recent news.

Additionally, we observe that the RL-agent learns to say “goodbye” to terminate the conversation

early in numerous cases. As mentioned previously, we designed the state function to include the

predicted probability [0.0-1.0] of MCI by the classifier at each time-step. The environment penalizes
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the agent for additional turns in which the prediction probability exceeds 0.65 for either class. By

opting to terminate the episode, the RL-agent learns to avoid dragging on the dialogue unnecessarily

in cases where it is confident in the prediction.

One notable question in c∗@20 is “how many people do you think can fit in this?” This is

actually a picture-specific question related to one of the more provocative pictures. In fact, we

confirmed from the original corpus that it generated more follow-up response from users when

compared to other picture-related questions such as “when do you think this picture was taken?” and

“interesting, what makes you say that?”. By ranking this question highly, the RL-agent indirectly

prioritizes this picture over others in generating user responses. This exemplifies how the ranking of

questions by c∗ may be used to direct future data collection process.

c∗@35. When approaching the end of conversations, we notice that the questions asked by the

agent were more spread-out among the remaining choices. For this reason, we rank only the top 10

questions during the final 15 turns of simulated conversations.

Table 3.5: Table of top 10 ranked questions in final 15 turns of conversations

Rank Question Count
1 what is your opinion on using <new tech>? 112
2 did you do anything else? 106
3 so how long did you go out for? 98
4 what you were doing during this time period? 95
5 when do you think this picture was taken? 95
6 <goodbye> 94
7 anything new with you lately? 91
8 what did you like about it? 85
9 <unspecified picture comment> 76
10 how often do you <do activity>? 72

In this latter portion of c∗, we note that the RL-agent utilized more elaboration questions such as

“what do you like about it” and “how often do you <do activity>”. We also see that technology-related

questions such as “what is your opinion on using <new tech>” are included more often when

compared to topics such as occupation or social items. This indicates that tech-related questions
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may not be as high-yield in distinguishing MCI responses, as these questions are prioritized later

during conversation by the RL-agent.

3.4 Discussion and Conclusion

In this chapter, we introduce a RL framework for approaching a classically supervised learning

problem in clinical medicine, where the data is often noisy, scarce, and prohibitively expensive to

obtain. We show that a properly trained RL framework can (1) greatly cut down on the amount

of data needed to make accurate predictions, and (2) synthesize relevant new data to improve

performance.

To achieve this framework, we proposed a multi-step approach which capitalizes on the vast

existing knowledge of the human language and NLP research. First, we used a state-of-art distributed

representation to preprocess our data. We then set up a simulation environment for reinforcement

learning using supervised learning to create customized user simulators. Lastly, we utilize the

trained RL-agent to generate new questions from c∗ to obtain more targeted responses for our

prediction task.

A careful examination of the optimal policies discovered by our agent demonstrates that the

overall framework is self-contained for directing dialogue generation for diagnostic screening, which

can potentially replace the need for trained interviewers. Our trained RL-agent is able to discover

relevant questions to ask users where the agent has no prior experience of interaction. We also show

various clinical insights which could be deduced from observing the ranking of questions in c∗ at

various turn constraints.

In order for this framework to be effectively deployed in a realistic setting, a user-simulator that

could be trained online and in real-time should be considered. In its current form, our user-simulators

are trained offline, which may not be scalable to larger corpus and user volumes. Additionally, a

natural language generator phase may be needed to make the questions more adaptable to the natural

flow of human conversation. These will be areas of research we will explore in future studies.
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CHAPTER 4

SAMPLE EFFICIENT LEARNINGWITH PRIVILEGED INFORMATION

4.1 Introduction

In classical supervised learning, the learner is presented with the training tuple {(G8, H8)}<8=1 and

performs an optimization task of finding the best model in a hypothesis space ℎ : - → . to

approximate some true 5 : - → . which explains the data. Given a new task, knowledge transfer [1]

is often applied to accelerate the learning process by distilling and transferring relevant knowledge

from previous tasks to the unseen one. Under classical formulations, the learner incorporates prior

information in one of several ways:

• Direct transfer of parameters from old hypothesis models to the new task and fine-tuning [1]

the parameters.

• Learning multiple tasks (online or batched) related to the current task [2, 3].

• Using the prior knowledge (i.e. a knowledge graph) to constrain the hypothesis space by

regularization [4].

• Using representations (i.e. embeddings) of - and / or . from previous tasks for new tasks

[5, 6].

• Accelerate learning rate and model compression by Distillation as typically seen in Teacher-

Student models [7].

In each of these settings, knowledge transfer operates directly within the - , . and H spaces to

improve generalization of information from old models to the new task.

Recently, Learning Using Privileged Information (LUPI) [8] has provided a new paradigm for

knowledge transfer. Under LUPI, the learner now interacts with a Teacher who provides privileged

information (PI), which is available exclusively at training time. From the learner’s perspective,
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the training set is now extended to the tuple {(G8, G∗8 , H8)}<8=1, and the test set stays the same. Some

examples of PI include: 1) Future information that relates - and . . For example, using future stock

prices beyond the prediction window during training. 2) Auxiliary information describing the label

space that is available only to a subset of samples. For example, physician notes that accompany

diagnostic predictions which is only available after the diagnosis is made.

At a high-level, PI provides some similarity information between training samples from the

original feature space, and the Teacher hypothesis serves as additional “explanations” of the

hypothesis space [9, 8]. As a result, [9] showed that the LUPI Teacher provides a principled way

to improve the generalization error of Student learners using agnostic PAC models, providing

some theoretical improvements in the number of samples required to generalize to test set data (i.e.

improves sampling efficiency).

However, under the current state-of-art LUPI formulations such as [10] and [11], PI is incorporated

by means of support vectors and dropout schemes, both of which fail to explore the underlying

similarity structure between examples in the PI space -∗. For example the mode distribution and

pairwise similarity between points in the -∗ space is largely unused. The PI contributes as auxiliary

training features and kernel information, but much of the LUPI information is lost at inference time

and beyond. A significant question remains: can privileged information be retained for future

tasks?

Ideally, we want the LUPI Teacher to incorporate PI in a way that is specific enough to inform

similarity between training samples yet general enough to be retained across future tasks. As a

motivating example, consider the medical setting, where electronic health records (EHR) are often

sparse, noisy, and full of missing data. Complex tasks such as multi-task learning of many diseases

are often difficult to do because of the long-tail property of diseases – that is, diseases with very few

training samples (i.e. < 100) are very difficult to learn using EHR features alone. On the other hand,

medical research on rare diseases are often plenty – large volumes of clinical journals focus on text

descriptions of rare diseases in the medical setting. As a result, clinical texts such as discharge

notes are unavailable at inference time, but when used retrospectively during training can serve as a
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source of PI that allows for rare diseases to be learned with few examples.

In this work, we propose a LUPI formulation that achieves precisely this. First, we introduce the

idea of building a vocabulary of PI features by unsupervised learning using external data sources.

We then propose a mechanism for learning a joint representation between the PI information and

the original set of example features by exploiting their co-occurrence statistics in the training

data. We finally learn a shared decision function using a contrastive-loss to distinguish between

samples drawn from the joint latent space based on their labels for each task. In experiments, we

demonstrate the effectiveness of our method in retaining PI obtained from external data sources to

support multi-task prediction tasks in the EHR setting against other transfer learning methods. We

demonstrate that such an approach both improve the prediction accuracy as well as decrease the

samples required to train an accurate model, especially for rare-diseases.

4.2 Methodology

At a high-level, the main intuition behind our proposed method is to decompose the LUPI process

into three parts:

1. Build a dictionary of PI features and learn a distributed representation [5] over the PI

vocabulary.

2. Find a joint representation space (Φ) between the PI and example features.

3. Jointly learn the decision functions ℎ∗ : Φ→ . by feature-matching in the joint representation

space.

The first process uses unsupervised learning to embed the PI vocabulary into a vector space. The

second process allows for some of the privileged information to be retained at inference time, despite

not having direct access to the PI vectors. The third process allows for PI information for one task to

be transferred for other � − 1 tasks in the label space. In the following subsections, we will examine

how to achieve (1) – (3) in detail. We also provide analysis of how (3) can maintain the favorable

LUPI sample efficiency.

68



4.2.1 Building the PI vocabulary

First, we can define 6∗(F 9 ; \6∗) as an embedding function that maps 6∗ : -∗ → Φ. Note that G∗
8

consists of individual words, {F1, ..., F: }. So 6∗(F 9 ; \6∗) embeds each individual word in the PI

vocabulary rather than the PI samples (i.e., G∗
8
). The rationale behind 6∗(.) is to encode each word in

the PI vocabulary into a vector space so vector operations can be applied to the PI. We specifically

consider embedding function of the form,

6∗(F 9 ; \6∗) = F)9 \6∗. (PI Embedding)

Since each F 9 ∈ {0, 1}3 has F 9 : = 1 only when 9 = : , the F 9 vector simply selects the 9 Cℎ column

in \6∗. We restrict \6∗ ∈ R3×: so that \6∗ produces a lower-dimensional representation of each word

in the PI vocabulary. For this first step, we do not restrict the PI to come from the original dataset

{(G8, G∗8 , H8)}. In fact, we can learn the embedding \6∗ for our PI using any data source by applying

the following word-model:

(2>A4(F1, F2) =


1 if F1, F2 ∈ G∗8

0 otherwise
(Co-occurence)

6(F1, F2) = f{(\6∗F1)) (\6∗F2)} (Word Model)

L4<1 = ��� ((2>A4(F1, F2), 6(F1, F2)). (2)

Here, f(.) denotes the Sigmoid activation function, and ��� (.) denotes the binary cross-entropy

loss: −∑
8 [08 (;>618) + (1 − 08);>6(1 − 18)]. The cross-term (\6∗F1)) (\6∗F2) gives the similarity

between F1 and F2 in the embedding space, which is then scored against (2>A4(F1, F2) based on

whether F1, F2 both appear in G∗
8
. We note that the embedding loss L4<1 is trained separately from

the rest of the LUPI model since it is not specific to the dataset.

4.2.2 Learning the Joint Representation

Next, let us define 6(G8; \6) to be the embedding function that maps 6 : - → Φ. In this work, we

consider the following for 6(.) and 6∗(.):
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• Distributed representation of PI vocabulary, which captures its underlying manifold structure

and is obtained by unsupervised learning [5].

• Encoding of - into a fixed length vector by deep embedding methods such as [12].

For time-series - , we take the embedding functions to be a recurrent encoder neural network:

6(G8; \6) = '## (G8; \6) (EF Embedding)

The motivation behind using the embedding functions 6(G) and 6∗(F) is to extend the idea of

Student and Teacher kernels, which allow for the privileged information to provide information about

similarity between training samples in the feature space [9]. Using neural encoding for 6(G; \6)

allows such feature spaces to be represented by a fixed-length vector without losing the underlying

spatio-temporal information.

To find commonality between example features and PI, we introduce a matching function (`)

that maps each (6(G8), 6∗(F 9 )) pair onto the interval [0, 1], i.e., ` : Φ ×Φ→ [0, 1]3:

`(6(G8), 6∗(F 9 ); �) =
exp(max{0, [6(G8); 6∗(F 9 )]) �})∑3
?=1 exp(max{0, [6(G8); 6∗(F?)]) �})

. (3)

Here, [6(G8); 6∗(F 9 )] ∈ R2: denotes the concatenation of the 6(G8) and 6∗(F 9 ) embeddings in

the joint latent space. The parameter matrix � projects the pairs (6(G8), 6∗(F 9 )) onto R, and the

softmax activation normalizes the pairwise scores against other word-pairs in the PI vocabulary.

Thus, for each sample mapped from the feature space - , the matching function ` produces a set of

corresponding weights over all of the words in the PI vocabulary.

We make the key observation that for each word F 9 , the output weight of the matching

function should correspond to the 9 Cℎ component of the G∗
8
sample in the training data. That is,

`(6(G8), 6∗(F 9 ); �) ≈ G∗8 9 . Using this fact, we can learn the matching function by minimizing over

the following objective:

Lq (\6, \6∗ , �) = −
1
<3

<∑
8=1

3∑
9=1
[G∗8 9 log `8 (6(G8), 6∗(F 9 ); �)

+ (1 − G∗8 9 )log (1 − `8 (6(G8), 6∗(F 9 ); �))] . (4)
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Each component of the PI vector G∗
8
can thus be interpreted as providing an indicator label for

likelihood of the (G8, F 9 ) pair to occur together. The similarity control mechanism highlighted in

Eqn. 4 differs from the Kernel-matching mechanism mentioned previously in [9]. The limitation

of kernel-matching [9] is that two sets of Kernel weights need to be learned simultaneously: U for

 (G8, G) and V for  ∗(G∗8 , G∗). By contrast, our joint representation for G8 and G∗8 encourages a single

hypothesis model to be used to map ℎ∗ : Φ → . . Since matrix � captures the 6(G8) and 6∗(F∗9 )

interactions, it preserves the PI in the space of Φ and allows relevant PI to be retrieved at test time.

Finally, we obtain the augmented representation of G8 as a weighted combination of G∗ =

{6(F 9 )}39=1 and 6(G8):

q(G8) = 6(G8) +
3∑
9=1

`8 (6(G8), 6∗(F 9 ); �) · 6∗(F 9 ) (5)

One can think of G∗ as the set of basis vectors supporting the PI space (similar to frames for the PI

Kernel [9]). The augmented representation q(G8) contains both information from the original G8

as well as relevant information retrieved from G∗. Note that since the PI vectors G∗
9
∈ -∗ are not

directly used at testing time, each sample G8 ∈ DC4BC is mapped into Φ using 6(.), and the trained

`(.) selects the corresponding bases in G∗ to construct q8.

This is quite different from representation fusion methods [6, 13], which only try to learn a

shared representation space for input modalities -1, ..., -: , without a matching function to control

the contribution of each modality to the hypothesis. For example, we can take -1 to be the original

feature space and -2 to be the privileged information. At test time, when -2 is unavailable, -1

inputs with masked -2 components may be projected into a completely different location in the

shared representation space than if the -2 information were available. Furthermore, model fusion

methods [13] may also under-utilize the original feature space during training, as the PI contain

more information related to the target task.
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4.2.3 Coupling Decision Functions with Feature Matching

LUPI typically considers 2 hypothesis functions: the Student hypothesis ℎ : - → . , and Teacher

hypothesis 5 ∗ : -∗ → . . Since we have already addressed the problem of finding a common “frame

of reference” between the original feature space and the PI space by the matching function `, the

main focus for this portion of our method has to do with finding an efficient 5 ∗ that relates the

privileged information to the labels. Fortunately, we can directly approximate 5 ∗ : -∗ → . by a

function ℎ∗ : Φ→ . that maps samples from the joint representation space to the label space. This

is because Φ is constructed by embedding function 6∗(.) on -∗ and is an approximation of the

Kernel space for the privileged information.

In the case that the target task is classification, we can formulate ℎ∗ as a feature matching

problem between samples from Φ and . . Specifically, we can use contrastive loss [14] to find an

invariant representation ℎ∗ : Φ→ . and vice versa, by minimizing the distance between similar

samples drawn from the joint embedding space based on signals from the label space:

! (,, H8, G+8 , G−8 ) = (1 − H8)M, (G+8 , G−8 ) + (H8) (max{0, � −M, (G+8 , G−8 )}) (Contrastive)

L(,) = 1
(

∑(

8=1
! (,, (H8, G+8 , G−8 )8) (6)

where M, (G+, G−) = | |q(G+;,) − q(G−;,) | |2 refers to a parameterized distance metric with

respect to projections q(G+) and q(G−), and � is the slack variable which defines the margin of

separation between them. q(.) is simply the projection function from eqn. 5, which is parameterized

by, = [\6, \6∗ , �] from eqn. 4. Intuitively,M, finds the distance between augmented projections

of G+
8
and G−

8
, i.e., q(G+

8
) and q(G−

8
), which are compared by their labels H8. Given a training pair

(G8, G∗8 , H8), a set of : similarity samples (8 = {(G+8 , G−8 , H8) 9 }:9=1 is constructed around the (G8, H8)

pair, whereby G+
8
denotes samples with the same label as H8 = H+, and G−8 denotes samples with a

different label than H8 ≠ H−. Thus, G+ and G− denote positive samples (similar) and negative samples

(dissimilar), respectively.

A variety of negative sampling techniques can be used to obtain the set ( [15, 14, 16]. In

practice, we found picking 5 − 10 negative samples that are close to q(G8) and 5 − 10 samples that
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are far from q(G8) to be sufficient in creating ( for each training triplet (G8, G∗8 , H8). We refer the

reader to [14] and [15] for more information about the contrastive loss and the construction of (.

Finally, we combine the two portions of our learning task (i.e. representation learning and joint

hypothesis) into the optimization task:

min
Θ
L(,) + _Lq (\6, \6∗ , �) +Ω(,), (7)

where, = [\6, \6∗ , �] is the total set of parameters for the learning task. _ is the hyperparameter

which controls the trade-off between the contrastive loss to learn ℎ∗ and the representation loss in

eqn. 4. Ω(.) is the regularization term used to constrain the hypothesis space of the joint model.

4.3 Analysis of Sampling Efficiency

4.3.1 Results from Existing Agnostic Models

For an agnostic hypothesis model, such as non-linearly separable SVM, the generalization error

bound holds with 1 − X probability:

'(ℎ) ≤ '4<? (ℎ) +$∗(
√
Δ�log(</Δ�) − log X

<
), (VC-bound)

where |'(ℎ) − '4<? (ℎ) | = n ∈ [0, 1] is the generalization error represented by the difference

between expected and empirical training risks. Δ� is the VC-dimension of the given SVM model

class, < is the sample size, and X ∈ (0, 1), whereas under the SVM+ formulation in [9], the

generalization error is given by:

'(ℎ) ≤ '4<? ( 5 ∗) +$∗
(
(Δ� + Δ�∗)log( <

Δ�+Δ�∗ ) − log X
<

)
, (SVM+)

where '4<? ( 5 ∗) denotes the error rate of the Teacher’s hypothesis 5 ∗ : -∗ → . , and Δ�∗ denotes

the VC-dimension of the Teacher model. In the original SVM, the model needs to re-estimate <

slack variables for each training sample, in addition to the = parameters in F. At a high-level, the

hypothesis function 5 ∗ of the LUPI Teacher serves as a slack function which approximates these

slack variables for each G8, eliminating the need for the Student to estimate them during training

[9]. The number of estimations in the latter case reduces to O(< + =), rather than O(<=). As a
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result, the sampling efficiency improves from < ≤ O(Δ�+log(1/X)
n2 ) to < ≤ O(Δ� logΔ�+log(1/X)

n
) in

the number of samples required to achieve the same generalization error n .

4.3.2 Complexity of Proposed LUPI Method

In this section, we examine the sample complexity of our proposed LUPI method. For simplicity, let

us consider the classification setting where we are given a hypothesis classH of finite VC-dimensions

which define a set of functions mapping X to a label set {0, 1}, and let the 0 − 1 loss function define

the empirical risk. Let ΔH = 3 < ∞. By the fundamental theorem of PAC learning (Thm. 6.7

in [17]), there exist �1, �2 ∈ R such that:

1. H is agnostic PAC learnable and has the uniform convergence propertywith sample complexity

�1
3 + log(1/X)

n2 ≤ <(n, X) ≤ �2
3 + log(1/X)

n2 (Agnostic)

2. There exists a Realizable subsetHA such that the sample complexity is defined by

�1
3 + log(1/X)

n
≤ <(n, X) ≤ �2

3 log(1/n) + log(1/X)
n

. (Realizable)

The main difference between agnostic and realizable PAC models lies in whether the classifier

can completely classify a training set S = {(G8, H8)}<8=1. That is, the training error '4<? (ℎ) =
1
<

∑<
8=1 ! (ℎ(G8), H8) = 0 for the particular hypothesis class under some empirical risk minimization

(ERM) algorithm. On the other hand, when we have H8 ≠ ℎ(G8) for some training data, there exist

some examples for which the current hypothesis class can not successfully separate (i.e. cannot

realize an accurate ERM hypothesis with 0 empirical risk), suggesting that the optimal solution is

either not contained in the span of the given hypothesis class, or the ERM algorithm cannot converge

to the optimal solution in the hypothesis space. Fortunately,[18] introduces some conditions for

which a sample complexity between O( log(1/X)
n
) and O( log(1/X)

n2 ) is possible for some classes of

models. Specifically, Tsybakov showed that <(n, X) ≤ � 3 log(1/X)+log(1/X)
n=

, 1 < = < 2 exists under

two general scenarios:
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• When there is zero training error (ERM realizable).

• When the classification margin between the given hypothesis class and another realizable

hypothesis class is bounded.

LUPI qualifies the second Tsybakov condition by leveraging a realizable Teacher that provides a

mechanism to bound the margins of the Student ERM classifier. Specifically, [8] considers the case

where the Student hypothesis class H is non-realizable and the Teacher hypothesis 5 ∗ ∈ F ∗ is a

realizable classifier that approximates an Oracle classifier with zero-training error. [8] showed that

using kernel alignment between the Teacher and the Student, the latter can satisfy the Tsybakov

conditions, leading to a sample complexity that is comparable to the realizable case. [9] further

showed that, under some assumptions onH ∗, one can achieve O( log(1/X)
n
) ≤ <(n, X) ≤ O( log(1/X)

n2 )

so long as the Teacher classifierH ∗ has lower VC-dimension and training error thanH .

In our model, we provide the margin bounding mechanism by contrastive loss in Eqn. Contrastive.

Under the condition that the Teacher model 5 ∗(G∗) has a lower VC-dimension and H · ℎ(G) >

20�−M(G+, G−), the�−M(G+, G−) term from the Contrastive eqn. serves as the approximate slack

margin of the oracle classifier. To see this, let ? ∈ R and @ ∈ R be random values. Suppose that

? < 0, then either @ < 0 or ?−@ < 0 is true. We then also have %(? < 0) ≤ %(@ < 0)+%(?−@ < 0).

If we take ? = H · ℎ(G) and @ = H · 5 ∗(G∗), then with 1 − X probability, we can express the error

bounds of the Student and Teacher models as follows,

%(H · ℎ(G) < 0) ≤ %(H · 5 ∗(G∗) < 0) + %(H · ℎ(G) < H · 5 ∗(G∗)).

Under the contrastive loss in eqn. (Contrastive), we can re-formulate the above as:

%(H · ℎ(G) < 0) = %(H · 5 ∗(G∗) < 0) + %(H · ℎ(G) < � −M(G+, G−))

≤ %(H · 5 ∗(G∗) < 0) + O
(
Δ� + Δ 5 ∗ − ln X

<

)
=⇒ < ≤ O

( (Δ� + Δ 5 ∗ log(1/X) + log(1/X)
n=

)
,

where 1 < = < 2 if %(H · 5 ∗(G∗) < 0) is satisfied, i.e. if the Teacher model is realizable. We

note that although our proposed LUPI model is PAC learnable, i.e. has the uniform convergence
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property, we cannot bound the computational complexity of learning. Specifically, if we allow the

embedding components 6(.) and 6∗(.) to be non-convex functions, then finding the global optimum

for q(G) becomes an NP-hard problem. In other words, the above analysis only examine the sample

complexity bounds, but it does not provide insight into the computational runtime of learning, or the

actualization of the uniform convergence property.

4.4 Experiments

We empirically assess the effectiveness of our LUPI formulation for improving sample efficiency

and generalization performance in a multi-task setting. First, we consider performance accuracy

on numerous diagnostic prediction tasks, which are individually binary classification problems.

This allows us to evaluate the ability of our LUPI formulation to actually transfer the privileged

information to improve the learning efficiency in a multi-task setting. We benchmark the learning

accuracy of our method against the performance of various transfer learning baselines. We also

perform an ablation study on the privilege information components of our model to ascertain its

necessity. Finally, we perform prediction tasks on classes with only sparse examples – as defined by

≤ 100 training samples, and compare the sample efficiency of our model against select models from

other transfer learning paradigms.

For PI, we consider physician notes in the form of discharge summaries, linking standard medical

terminologies (i.e., UMLS codes [19]) with diagnostic findings in the EHR. UMLS codes are a set

of standardized medical concepts used by clinicians to describe physical findings of diseases and are

used widely in both the EHR as well as medical research [19]. [9] alluded at the idea that medical

datasets also contain vast amounts of privileged information in the physician notes, which serve to

explain the qualities of diseases that can greatly aid decision rules. For experiments, we consider

the following set of data for example features, PI, and labels:

• Example Features -: continuous time-series data (i.e. lab values, blood tests, imaging) and

discrete static variables (i.e. demographics information) that describe a patient.

• Privileged Information -∗: physician notes containing descriptions in natural language and
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medical terms (UMLS concepts [19]) that summarize a particular visit for a patient.

• Target Task . : prediction tasks of interest, such as mortality (binary classification), disease

prediction (multi-task and transfer learning), ... etc.

4.4.1 Datasets and Setup

Table 4.1 provides a brief summary of data sources for our experiments. For each data source,

we extract unique data modalities available in the dataset. MIMIC-III (Medical Information Mart

for Intensive Care) is a publicly available benchmark dataset for predictive modeling and clinical

decision support in the intensive care unit (ICU) setting [20]. It should be noted that MIMIC-III and

STRIDE datasets are EHR datasets, although STRIDE is comprised of clinical notes (PI vocabulary)

obtained from multiple EHR datasets over 19 years of data collection. Documents in table 4.1 refer to

literature sources, including medical claims [21] and research articles [22] that heavily utilize UMLS

codes. We refer to the clinical notes from EHR as the PI source, which we decomposed into lists of

UMLS codes. For example, a clinician’s note may contain a text description of pneumonia which

may utilize several UMLS codes such as (Lower Lobe Consolidation, Staph Aureus, Productive

Cough) as keywords.

Table 4.1: Summary of datasets used in this study

Database No. Patients UMLS ICD-9s Temporal
MIMIC-III 22, 043 928 148 40
STRIDE 4M 14, 256 None None

Documents 1.2M None 11, 245 None

MIMIC-III provides a rich source of temporal data, ranging from laboratory tests, vital signs and

respiratory parameters, all of which provide hourly resolution of descriptive features. For example

features, we use 40 physiologic features, including vital signs (i.e. heart rate, blood pressure, oxygen

saturation, temperature), blood tests (i.e. WBC count, platelets, INR) and respiratory parameters:

(i.e. PaO2/FiO2 ratio, PEEP). These temporal features are the source of example features (EF) for

our experiments, i.e. - = {G8}<8=1, G8 = {G
C
8
})
C=1. Preprocessing of these features include binning
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the time-series by hourly average of each feature and standardized feature values across all adult

patients.

Physician notes (the source of PI) in MIMIC-III exist in the form of discharge notes, which are

physician documentation of key findings relating to the patient’s hospital visit. We can represent

the PI as -∗ = {G∗
8
}<
8=1, where each G

∗
8
∈ {0, 1}3 represents a discharge note for the 8-th patient, in

the form of a 3 dimensional one-hot vector. Here, 3 is the total number of UMLS codes that are

found in all of our data sources (MIMIC-III, STRIDES, and Documents). One can think of the

UMLS codes as a set of basis features for the PI vectors. The rationale of using physician notes

as PI is that they are only available at the end of the hospital stay and contain copious amount of

valuable information regarding a wide array of clinical decision support tasks, such as physical

findings, periodic nurse observations, medical or surgical complications, and indicators for mortality

risk. During training, we can incorporate these notes into the learning regime, but they become

unavailable at inference time.

For labels, MIMIC-III provides a wide range of potential tasks. We focus on the prediction of

ICD-9 diagnostic codes, where are a set of diagnosis labels given to patients that identifies their

disease states. Each patient has a set codes that can be described by a label vector H8 ∈ {0, 1}� ,

where � denotes the total number of disease classes considered. ICD-9 prediction is in fact a

difficult multi-label classification problem among other clinical benchmark tasks due the fact that

the distribution of diseases often contain long tails [23]. In the typical case, a few diseases dominate

in high frequency while most diagnostic codes appear only a few times among all patients. As a

result, training samples are sparse for most diseases, leading to poor prediction beyond the most

frequent cases. Our experimental task is to leverage information from PI under a multi-task learning

setting to improve the learning efficiency for a large set of ICD-9 codes, especially ones in the tail

distribution (i.e. occurring with few samples in the dataset). We consider the diagnoses appearing in

at least 1% of admissions, leaving� = 148 ICD-9 group codes to formulate our multi-task prediction

as � classification tasks. We consider UMLS terms appearing at least 50 times in discharge notes,

leaving 3 = 928 UMLS terms to construct the PI vocabulary.
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4.4.2 Initial Baselines

We establish some baseline performance of various hypothesis models for our prediction tasks under

3 settings:

• Using only example features (EF only) to predict ICD-9 labels.

• Using only PI information to predict ICD-9 labels.

• Using both EF and PI information to predict ICD-9 labels.

For each setting, a diverse set of hypothesis classes are used, including a standard recurrent neural

network (RNN) and feed forward perceptrons (MLP). The rationale behind these baselines is to

determine whether the PI indeed offers more information than the original feature-set based on

noisy timer-series data. Ideally, the Teacher hypothesis class �∗ should obtain lower empirical risk

while using lower model complexity (lower VC-dimension) compared to the Student hypothesis

classH without LUPI. Otherwise, the Student learner will not improve its sample complexity by

LUPI, and any improvements in prediction accuracy will likely result from a variance-reduction

mechanism (i.e. ensemble) rather than the LUPI mechanism. As a sanity check, we also included a

comprehensive Teacher model using EF + PI features, which should provide the best performance.

We note, however, that because the Teacher models use PI at test time, they are used to assess the

quality of PI rather than benchmark Student performance. In practice, PI is unavailable at test time,

so the Teacher models cannot be used for inference in a real-world setting. Table 4.2 summarizes

the performance of these baselines on held-out test set data.

Since ICD-9 predictions involve a large number of classes, we take both micro-averaged and

macro-averaged AUC as evaluation metrics. Macro-averaged AUC takes per-class average of AUC

scores, while micro-averaged AUC considers a single AUC score based on a roll-out of label classes

for each test set sample. We also include micro-averaged F1-score and micro-averaged area under

PRC to quantify the trade-off between precision and recall.

79



• RNN Student denotes the Student learner using the RNN model class conditioned exclusively

on EF, using the LSTM architecture as mentioned in [24].

• MLP Student denotes a feed-forward network conditioned on the final time-step of EF.

• MLP Teacher denotes the Teacher feed-forward network conditioned on PI only. Specifically,

we use a weighted sum of the PI embeddings for each G∗
8
= {F1, ..., F: }:

q(G∗8 ) =
1
:

∑:

9=1
F)9 \6∗

which maps each PI vector G∗
8
into a lower-dimensional representation space, and \6∗ denotes

the look-up matrix of embeddings obtained in the first step of our LUPI algorithm.

• Oracle Teacher denotes the Teacher model which uses both EF and PI for prediction.

ℎ(G8) = '## (G8)

5 ∗2 (G8, G∗8 ) = f(,ℎ2ℎ(G8) +,626(G∗8 ) + 12)

EF inputs are encoded into fixed-length vectors by a set of RNN layers and the PI features are

embedded into lower-dimensional space by 6(G∗) described previously. Since there are �

tasks (i.e., � outputs), a classifier layer is used to predict the 0 − 1 label for each ICD-9 code.

Here, we note that the embedding matrix \6∗ for learning the lower dimensional representation of

PI is obtained by the embedding mechanism highlighted in the PI Embedding equations. Taking

the set of UMLS concept codes as the PI vocabulary, we leverage the corpus available in STRIDE

and Documents datasets to learn the \6∗, conditioned on the UMLS codes. For example, given a

medical document consisting of a set of = relevant UMLS codes ®E = {F1, F2, ...F=}, we can train

the \6∗ for the UMLS codes by Eqn. 2, with the modified scoring function:

(2>A4(F1, F2) =


1 if F1, F2 ⊂ ®E

0 otherwise
(Co-occurence)
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Table 4.2: Comparison of performance across baseline models

Model Ma-AUC Mi-AUC Mi-F1 AUPRC
RNN Student 0.735 0.783 0.299 0.260
MLP Student 0.715 0.756 0.235 0.211
MLP Teacher∗ 0.824 0.868 0.446 0.432

Oracle Teacher∗ 0.845 0.882 0.497 0.510
(∗) denotes Teacher models using PI.

Note that each UMLS concept is represented by F8 ∈ {0, 1}3 , where F8 9 = 1 for the index

corresponding to the UMLS code. Thus, \6∗ [:, 8] gives the the distributed representation of 8Cℎ

UMLS concept. We train the embedding matrix \6∗ over STRIDE and Documents before applying

\6∗ on the MIMIC-III dataset for LUPI.

We see from table 4.2 that the PI provides strong signals for ICD-9 prediction. Micro-averaged

AUC and Macro-averaged AUC are denoted as Mi-AUC and Ma-AUC, respectively. Micro-averaged

F1-score and AUC of precision-recall curve are denoted as Mi-F1 and AUPRC, respectively. Large

differences exist between the Student baselines and the Teacher models across all performance

metrics, suggesting that the PI provides more information about the label space compared to the

original time-series features. Again, we emphasize here that discharge notes (PI) are generated

only after the diagnostic predictions have been made by clinicians, and thus the Teacher models

are actually not available at inference time. Interestingly, we also see that the Oracle teacher with

combined features provided additional performance boost compared to using PI exclusively as

features. This suggests that the temporal features provide some complementary information not

contained in the PI.

4.4.3 Comparison Against Other Transfer Learning Methods

Next, we benchmark performance for several existing transfer learning paradigms for incorporating

PI with the Student model: transductive learning, inductive learning, and model distillation. Under

the transductive framework, we treat the PI as auxiliary targets, much like target replication in [24].

We train a joint hypothesis model ℎ : - → -∗ ×. to map from the original EF space to the joint PI

and label space. By contrast, we incorporate -∗ as an auxiliary input for the inductive framework.
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We use data fusion to learn a joint representation 6 : - × -∗ → / before learning a hypothesis

function to predict ℎ : / → . . For model distillation, a Teacher network predicts a set of soft-labels

over the PI information, which the Student model uses as auxiliary input for the final prediction

model ℎ : - × -∗ → . . Details of the setup is explained below.

4.4.3.1 Multi-task learning

MTL is the representative transductive learning technique. There is only one source domain

D = {-, %(-)} and two target tasks: T( = {-∗, �} and T) = {.,H}. The MTL model learns a

joint model:

6: (G8) = "!%('## (G8;,A4?);,: ) (Shared Rep.)

ℎ2 (G8) = "!%('## (G8;,A4?);,2) (Individual Hyp.)

L")! =
1
<�

∑<

8=1

∑�

2=1
!. (ℎ2 (G8), H82)

+ _

3<

∑<

8=1

∑3

9=1
!-∗ (6 9 (G8), G∗8 9 ) (MTL Obj.)

where ,A4? is the shared weights for the representation model '## (G8;,A4?), ,: and ,2 are

task-specific weights for target hypothesis models. The MTL loss is composed of two parts: (1)

a loss component over the joint label space E[!. (ℎ(-), . )], and (2) a loss term over the joint PI

space E[!-∗ (6(-), -∗)]. _ is a hyperparameter which controls the trade-off between the multiple

objectives during learning. ! (.) denotes some evaluation criterion to approximate the 0 − 1 loss,

for example the binary cross-entropy (BCE) or mean squared error (MSE). We used BCE in the

proceeding experiments.

4.4.3.2 Data Fusion

For inductive learning, we used a variant of the Siamese Network [16] to achieve data fusion between

EF and PI. We use two parallel networks, 6 : - → / and 6∗ : -∗ → / and minimize the distance

82



Table 4.3: Comparison of performance across transfer learning models

Model Ma-AUC Mi-AUC Mi-F1 AUPRC
MTL 0.783 0.836 0.384 0.336

Distillation 0.738 0.793 0.289 0.245
Data Fusion 0.779 0.811 0.374 0.328

Ours 0.838 0.845 0.397 0.344

between 6(G) and 6∗(G∗) using the BCE loss. We then learn a hypothesis function ℎ : / → . .

6(G8) = '## (G8;,G) (EF Embedding)

6∗(G∗8 ) = "!%(G∗8 ;,G∗) (PI Embedding)

ℎ(G8, G∗8 ) = f(,66(G8) +,6∗6
∗(G∗8 ) + 16) (Joint Hyp.)

L/ (,G ,,G∗) =
∑<

8=1
��� (6(G8), 6∗(G∗8 )) (Fusion Loss)

L. (,6,,6∗) =
∑<

8=1
��� (ℎ(G8, G∗8 ), H8) (Task Loss)

L/ and L. are trained iteratively using alternating stochastic gradient descent (SGD). At test time,

a masking vector G∗C4BC = {0}3 is used to represent PI, as it is unavailable for inference. Thus,

ℎ(G8, G∗C4BC) = H8 is used for evaluation.

4.4.3.3 Distillation

Our distillation also contains two parts: a Teacher network trained to generate soft-labels for PI, and

Student network conditioned on the EF and PI soft-labels to predict the ICD-9 targets.

6(G8) = '## (G8;,) ) (Teacher)

ℎ2 (G8) = "!%( [6(G8); '## (G8;,'## )];,2) (Student)

L)( =
∑<

8=1

∑�

2=1
��� (ℎ2 (G8), H8) (Distillation Loss)

Here, [6(G8); '## (G8;,'## )] denotes concatenation of the PI soft-labels and the last hidden state

of the '## (G8). The joint T-S loss connects the Teacher and Student loss together, allowing the

two networks to be trained end-to-end.
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Table 4.3 summarizes the AUC and retrieval scores for our LUPI model against transfer learning

baselines. Micro-averaged AUC and Macro-averaged AUC are denoted as Mi-AUC and Ma-AUC,

respectively. Micro-averaged F1-score and AUC of precision-recall curve are denoted as Mi-F1

and AUPRC, respectively. We see that our LUPI formulation outperformed other transfer learning

baselines in all major performance metrics. Vanilla Data Fusion and MTL networks produced

comparable performances, and Distillation did not have significant improvement over the baseline

Student models that did not use PI. For Data Fusion, it is likely that since the PI contains a lot

more information than the original EF, the decision function of the hypothesis model ℎ(G, G∗) relied

heavily on access to PI.

Since PI is masked during testing due to unavailability, ℎ(G, {0}3) likely resulted in poor

generalization. Comparable results can be seen in MTL. The drop in performance is most likely due

to negative transfer [1] due to the wide range of tasks (ICD-9 codes) that contribute uniformly to the

multi-objective learning process. Unlike our LUPI, the PI is not used to inform similarity between

training samples from different tasks, which do not share the same support (i.e. different diagnosis

may come from very different underlying distributions). Thus, in both Data Fusion and MTL cases,

the PI is incorporated in a less efficient way than our proposed model.

Interestingly, we see that theMLP Teacher andOracle Teachermodels in Table 4.2) still provided

better AUC, F1 and AUPRC performances over the all transfer learning models, including our LUPI

model. This result suggests that the PI is more informative for diagnostic tasks compared to the

original EF, which is what enables the LUPI method to be effective. One possible explanation of

the predictive power of the PI is that the embeddings of the UMLS terms, which comprise the PI

vocabulary, are learned based on their co-occurrence with disease codes in public literature.

4.4.4 Performance with Sparse Examples

In addition to broad coverage of tasks, we evaluate the sample efficiency of our proposed model

against transfer learning baselines by considering the more rare diseases with very few training

samples. This is actually quite typical in the EHR setting, where diagnosis labels often have very
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Table 4.4: Performance of various models for 30 ICD-9 codes appearing less than 100 times in the
dataset

Model Ma-AUC Mi-AUC Mi-F1 AUPRC
RNN Student 0.628 0.639 0.104 0.096
MLP Teacher 0.821 0.833 0.212 0.196
Oracle Teacher 0.801 0.805 0.256 0.146

MTL 0.717 0.724 0.150 0.122
Distillation 0.729 0.738 0.158 0.149
Data Fusion 0.821 0.826 0.307 0.237

Ours 0.834 0.835 0.381 0.330

long tail distributions. We restrict our predictions to diagnostic codes appearing less than 100 times

in the training and test sets and examine the generalization of various modeling schemes.

In table 4.4, we see that performance decreased drastically for non-transfer learning models such

as the RNN Student and the Teacher models (both MLP and Oracle). Transfer learning schemes such

as MTL and Distillation also decreased greatly in F1-score and AUPRC. Interestingly, Data Fusion

method was able to outperform other transfer learning baselines in F1-score and AUPRC, suggesting

that learning a domain-invariant representation between the original features and the PI provided a

key improvement for sample efficiency. However, our LUPI model achieved the best performance

among all the models for long-tail tasks. In fact, its performance across stayed relatively consistent

among this subset of tasks compared to its performance on the original set of common diagnoses.

4.5 Discussion and Conclusion

In this chapter, we presented a novel LUPI framework for retaining PI in the multi-task setting to

improve sample complexity over a wide range of related tasks. The key idea was to learn a joint

representation of the original feature space and the PI by leveraging their co-occurrence information

in the data. Decomposing the PI into distributed representations of basis features was vital for the

realization of this mechanism. Experiments show that our proposed LUPI method can out-perform

baseline models and other transfer learning methods in multi-task learning scenarios, particularly in

situations where training samples are very rare (< 100 samples per task). In addition to improved

performance, we also provided sample complexity analysis that outline scenarios under which our
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LUPI method can provide similar benefits over traditional transfer learning approaches.
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CHAPTER 5

ADVERSARIAL PRECISION SENSING

5.1 Introduction

In many real-world applications, fully-observed datasets are difficult to obtain, especially for temporal

data, where observing the full set of features for all samples across time is simply too expensive. A

prime example of this phenomenon exists in the realm of medical informatics, specifically electronic

health records (EHR) dominated by time-series data. Yet this hasn’t stopped EHR from sparking

numerous research interests in recent years [1, 2, 3, 4, 5]. Time-series data in the EHR consists of

features that are sampled at different levels of temporal granularity (e.g., lab tests are sampled at

longer time-scales than vital signs). Most of the time, only a small subset of features are observed at

any time-step, as it is prohibitively expensive for the physician to obtain the full set of features for

every patient for every time interval. In practice, a form of active sensing [6] is implicitly done in an

ad-hoc manner by physicians based on a combination of inpatient work-flow, resource constraints,

and domain expertise. As a result, the key difficulty with EHR time-series data is that they almost

always require re-sampling and imputation due to large amounts of missing values. Therefore it is

no surprise that several recent works have shown that temporal models trained on EHR data have

fragile decision boundaries that are susceptible to small perturbations [7, 8].

To address this issue, we formulate the precision sensing problem setting as one that takes in

data-streams along the temporal dimension, rather than across samples. For example, consider the

EHR setting, where at each time-step, the physician has to decide how to allocate a constrained

amount of tests/resources among patients for some set of clinical tasks. In other words, the precision

sensing problem for time-series is in fact a resource distribution problem at each time-step, with a

fixed observation budget across a given set of samples. Therefore the querying process is applied

across time rather than samples, and any formulation must reflect both the temporal-dependency

and the budgetary-constraint of the querying process.
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In this work, we formulate the active sensing problem as a minimax game between two players:

• A Feature Sensor (FS) that generates a sensing tensor � over a temporal data-stream in an

online manner.

• A Progressive Learner (PL) that adjusts the decision boundary at each time-step to handle

sparser sets of features, allowing the FS model to improve its sensing strategy toward sparser

selections.

We then prove that our formulation reaches a local Nash equilibrium during co-training. Afterwards,

we evaluate the quality of the dynamic sensing strategy by training a diverse set of classifiers

on the resulting set of data with incomplete features and compare their performances against a

corresponding set of hypothesis models conditioned on the original dataset.

Our results show that classifiers conditioned on dynamically sensed data, i.e., incomplete data,

are able to maintain prediction accuracy, despite adhering to a strict budgetary constraint for sensing.

We show that unlike attention and perturbation models, the sensing strategy of the FS-Model

can be used to train many types of models, including deep models, shallow models, and even

non-temporal models, with minimal decrease in performance. In experiments, we demonstrate how

our budget-adaptive framework can be used to produce an active data acquisition strategy that can

be implemented in hospitals to deal with feature sensing under moving budgetary constraints.

5.2 Problem Formulation

5.2.1 Precision Sensing for Time-Series Data

Classic time-series data comes in the form: - = {G8}<8=1, G8 = {G
(C)
8
})
C=1, G

(C)
8
∈ R=, where < is the

number of samples, ) the number of time-steps, and = the number of features. Precision sensing

considers the case where - (C) =
{
G
(C)
8

}<
8=1
, G
(C)
8
∈ R=, is a feature matrix across the entire batch of

samples at time step C. At each time-step we are interested in finding a corresponding sensing matrix

�(C) ∈ {0, 1}<×= over the data matrix. During the observation period, a cumulative sensing tensor
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� = {�(C)})
C=1 is incrementally constructed according to the dynamics:

�(C+1) = � (- (1) � �(1) , . . . , - (C) � �(C)), (5.1)

for some update function � (.). Alternatively we can view �8 = {�(C)8 })C=1 as the subset of sensed

features across time for each sample. Under this view, we can formulate the precision sensing

objective as follows:

Definition 2. (Precision Sensing) The problem of precision sensing seeks a sensor tensor �∗ that

minimizes the empirical risk (ERM) [9] according to:

�∗ ∈ argmin
�8∈A

E%(-,. ) [! (ℎ(�8 � -8), H8)]

≈ argmin
�8∈A

1
<

∑
(-8 ,H8)∈D

! (H8, ℎ(�8 � -8)),

where ℎ is a hypothesis class that maps ℎ : - → . , and ! (.) is a risk function that evaluates the

hypothesis mappings against the actual label.

Here, A denotes the space of sensing matrices, and each matrix �8 can be thought of as a

per-sample sensing matrix. From this perspective �8 describes the subset of sensed features across

time for each sample.

Remark 1. Ideally the optimal sensing tensor � generates a partially-observed dataset: {( -̃8, H8)},

-̃8 = �
∗
8
� -8 such that %( -̃,. ) ≈ %(-,. ). That is, the joint distribution of the dynamically sensed

data produced by �∗ should match the joint distribution of the fully-observed dataset.

The key difference between existing methods and our approach is in the manner in which �

is generated. In feature selection for time-series, � is obtained by some form of sparse sensing

technique that statically assigns the same subset of features to be observed for each -8. By contrast

active sensing allows for � to be built in an individualized manner for each sample, yet still actively

sub-samples (sample, view) pairs during each co-training iteration. But since it only sub-samples a

small subset of examples, active sensing fails to consider an overarching budgetary constraint across

all the samples at each time-step.
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Figure 5.1: Overview of problem setting.

(a) Incremental generation of the sensing tensor.
(b) Minimax game between FS and PL.

5.2.2 Budget-Constrained Precision Sensing as Adversarial Optimization

At a high-level, the proposed adversarial framework works as follows:

• At each time-step, FS tries to “discard”, based on observations from previous time-steps,

features that lead to mis-classifcation.

• At the end of each observation window, the PL adjusts the decision boundary so that the

sensed features result in correct classification.

Fig. 5.1a describes incremental generation of the sensing tensor � by the FS. � is generated recurrently

by applying the sensor dynamics � (.), which is learned by the FS, where �(C) = � ( -̃ (1) , . . . , -̃ (C))

outputs �(C+1) at each time-step. Fig. 5.1b describes the minimax game between the FS and PL. PL

(top) tries to minimize the classification error with sensed features - � � while FS (bottom) tries

to allocate � such that unsensed features lead to misclassification. At the end of the observation

window, the PL adjusts the parameters of � to handle the updated input - � �, which now has a

different sparsity pattern than before, as shown in Fig. 5.1b. At equilibrium the PL will no longer be

able to improve its performance, provided that the FS has selected an optimal subset of features to

sense such that accuracy improvement is no longer possible given the observation budget.

Max-Margin Objective. More formally, the FS tries to solve the optimization problem:

max
\�

{
� (- − - � � (-))¬H − � (- − - � � (-))H, 0

}
s.t. �(C) ∈ {0, 1}<×=,

∑
8, 9 ,C

�
(C)
8 9
≤ � (5.2)
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where � (-) = [� ( -̃ (1)), � ( -̃ (2)), . . . , � ( -̃ ()))] = �. When �(C)
8 9
= 0, the j-th feature is masked

for the i-th sample at time C. We can think of -̂ = - − - � � as a subset of features that are

discarded by FS. Thus, -̃ = - � � is the resulting set of sensed (unmasked) features at the end

of the observation window. During training, the FS model ranks � (- − - � �)¬H higher than

� (- − - � �)H.We use ¬H8 to denote the case where the hypothesis produces the wrong class for

the 8−th sample. � denotes the budget constraint on �, and � (.)2 denotes the 2-th logit of the

hypothesis model output.

5.3 Proposed Method

Derivation of Eqn. 5.2 First, let us consider the popular adversarial setting of perturbation models

described in [10]:

minimize � (-, - + X)

s.t. � (- + X) ≠ H

- + X ∈ [0, 1]= (5.3)

where - is the original set of features, X is the perturbation to be applied to the feature space, � (.)

is a distance metric, and � (.) is a classifier. Under the perturbation setting, the � (- + X) ≠ H

term finds an adversarial set of samples, - + X, leading to misclassification, while � (-, - + X) is

a reconstruction term that limits the size of X such that it is not trivially large. Recent work (e.g.,

[7, 8]) leverages variants of this approach for ranking feature importance in complex feature spaces.

We develop a different set of reconstruction and modification objectives under a similar setting:

minimize L(� (- � �), H)

s.t. � (- − - � �) ≠ H,

∀8, 9 , C : �(C)
8 9
∈ {0, 1}, &

∑
8 9 :

�8 9 : ≤ � (5.4)

where � is the classifier and L a loss function on (-, H) pairs. � denotes a “sensing tensor” that

gives a component-wise indicator for whether feature 9 is sensed at time C for sample 8. Additionally,
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� gives a “budget constraint” for the sensing tensor �. Rather than reconstructing - ≈ - + X, we

learn the construction of � based on the recovery of %(H |-) ≈ %(H |- � �) through �. We also

update � and � at different rates—� is updated at the end of observation windows while � is

updated every time-step.

Thus, we formulate the active sensing problem of interest under a single mini-max objective:

min
\�

max
\�
{� (- − - � � (-))¬H − � (- − - � � (-))H︸                                                    ︷︷                                                    ︸

Feature Sensing

}+

+ ��H (� (- � � (-))︸                   ︷︷                   ︸
Classifier Reconstruction

) + V | |- − - � � (-) | |1︸                    ︷︷                    ︸
Budget Management

. (5.5)

Here � corresponds to � and � corresponds to a function to be learned from �. Meanwhile, ��H is

the cross-entropy loss w.r.t. H:

��H (G) = −
1
<

<∑
8=1
[H8log G8 + (1 − H8)log (1 − G8)] . (5.6)

5.3.0.1 Feature Sensor

We can decompose the update dynamics of the sensor generation process (�) into the following

components:

ℎ
(0)
8
= max{0,,Gℎ [- (0)8 ; 0]} (Initialization)

I
(C)
8
= max{0,,GI [-̃ (C)8 ;�C] +,Iℎℎ

(C−1)
8
} (Update Gate)

A
(C)
8
= max{0,,GA [-̃ (C)8 ;�C] +,Aℎℎ

(C−1)
8
} (Reset Gate)

ℎ̃
(C)
8
= tanh

{
,Gℎ [-̃ (C)8 ;�C] +,ℎℎ

(
A
(C)
8
� ℎ(C−1)

8

)}
(Transition)

ℎ
(C)
8
=

(
1 − I(C)

8

)
� ℎ(C−1)

8
+ I(C)

8
� ℎ̃(C)

8
(State Update)

�
(C+1)
8

= f

(
,ℎℎ

(C)
8
+ 10

)
(Sensor Output)

�C = �C−1 +
∑

8

∑
9
2 9 �

(C)
8 9

(Budget Update)
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where �C denotes the total observation cost at time C, corresponding to the total number of

observations in [�(1) , . . . , �(C)] across all samples. 2 9 denotes the cost of observing feature 9

(e.g., certain medical tests may be more costly to observe than others). [0; 1] ∈ R=+1 denotes

the concatenation of vector 0 ∈ R= and scalar 1 ∈ R. f(.) denotes a thresholding function (e.g.,

sigmoid activation) that maps the output of each �(C)
8 9
∈ [0, 1] feature component to {0, 1}, which is

done to satisfy the integer constraint in Eqn. 5.2 that �(C)
8 9
∈ {0, 1},∀8, 9 , C.

ℎ
(C)
8

serves as an internal state representation that considers every sensed features vector

-̃
(1)
8
, . . . , -̃

(C)
8

up to time C for sample 8, as well as the observation cost across samples at each

time-step, i.e., �1, . . . , �C . The gates I and A control the update rule of the memory state to prevent

gradient vanishing [11]. The weights \� = [,Gℎ,,Gℎ, . . . ,,ℎ=] are learned by optimizing over the

feature sensing portion of the objective function in Eqn. 5.5:

max
\�
{� (- − - � � (-))¬H − � (- − - � � (-))H}+ (5.7)

5.3.0.2 Progressive Learner

The PL serves to stabilize the reference hypothesis model � in response to the shift in sparsity

patterns observed in � (-). We note the time-scale difference between � and � updates: whereas

FS updates � at every time-step C, the PL updates � only at the end of an observation window

1, . . . , ) . Before � (.) is learned by the FS model, the decision function � is first initialized on a

small batch of fully-observed data {-8, H8}:8=1 ⊂ Dtrain, : � < to obtain an initial approximation of

the underlying %(. |-). Over time, the PL is gradually conditioned on � � - , with a progressively

sparser �.

To achieve this conditioning effect, we utilize a schedule sampling technique similar to [12],

where we pick the input to � based on a coin toss (�):

� (.) =


� (-) %(� = 1) = Y,

� (� (-) � -) %(� = 0) = 1 − Y.
(Scheduled Sampling)
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Here, Y denotes the probability of using the fully-observed - for training, and 1− Y is the probability

of using the masked version. Initialize Y = 1 for the first : iterations steps to obtain an unbiased

estimation. After : iterations, decay n according to:

Y = C − :/(C − : + exp(: − C)). (Y-Decay)

By decaying Y, the training distribution of the PL model shifts gradually from the fully-observed to

the sensed features. We pick a baseline Y = min{C − :/(C − : + exp(: − C)), 0.25} to ensure that PL

gets exposed to at least a small fraction of the fully-observed - during each training iteration. This

allows the PL to obtain a good initialization on the feature importance. The PL adjusts the decision

boundary by minimizing over the classifier reconstruction portion of Eqn. 5.5:

min
\�

��H (� (� (-) � -)) (5.8)

where each � (-8) is sampled from Eqn. Scheduled Sampling.

5.3.0.3 Budget-Manager

The strength of budget constraint is updated at each iteration by dual gradient ascent [13] for V

according to Eqn. 5.9:

VC+1 = VC + U(- − - � � (-)), (5.9)

where U denotes the learn rate for the dual variable V. We note that in real-world applications, the

budget V is usually set beforehand (e.g., by resource constraints). Thus, dual ascent on V gives an

option to continually shrink the observation budget until a minimum set of sensed features is realized.

However, this may not be needed in a realistic setting where the budget constraint is constant.

The intuition behind the V term follows by considering its extreme values. When V → 0, the

max-margin objective dominates. Consequently, the FS is incentivized to sense every feature, i.e.

�
(C)
8, 9
= 1,∀8, 9 , C, leading to the trivial solution where - � � → - . In contrast, as V → ∞ the

budget constraint dominates, and the FS is incentivized to choose �(C)
8, 9
= 0,∀8, 9 , C, leading to an

empty feature set. Thus, the V term serves as a trade-off parameter between �’s sparsity and sensing

performance. The training loop for FS, PL, and budget-manager is summarized in Algorithm 2.
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Algorithm 2 Co-training of FS and PL.
1: for number of total training iterations do
2: for : training steps do
3: Sample mini-batch of < samples {(-8, H8)}<8=1 from training data.
4: Generate < samples using �:

{-8 − -8 � � (-8), H8}<8=1.

5: Using Scheduled Sampling with Y-Decay, update \� by performing SGD on Eqn. 5.8
6: end for
7: for : training steps do
8: Update � parameters by projected gradient ascent on

∇\�max {/ (- − - � � (-))¬H
− / (- − - � � (-))H,−^}.

9: (Optional) Dual ascent on budget constraint V according to

V← V + U(- − - � � (-)).

10: end for
11: end for

5.3.0.4 Inference

To perform inference, we train two sets of models for comparison. (1) A set of hypothesis models

ℎ( : - ↦→ . trained on the sensed dataset D( = {(� (-8) � -8, H8)}<8=1, generated using the FS.

(2) A set of hypothesis models ℎ trained on the original dataset {(-8, H8)}<8=1. The difference in

generalization error between ℎ( and ℎ quantifies the feature sensing strategy learned by the FS.

5.4 Analysis of Proposed Method

Optimizing FS, PL and Budget-Manager involves finding saddle points in a dynamic loss landscape.

Here, we prove the existence of fixed points in the proposed minimax game and their correspondence

with local Nash Equilibria (NE) [14]. At local NEs, FS and PL cannot improve allocation or accuracy

by local changes in � and �, respectively.
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5.4.1 Existence of Local Nash Equilibria

We can re-express Eqn. 5.5 into individual pay-off functions:

• �� (\�) = ��H [� (- � � (-))] gives the cost for the PL player.

• �� (\�) = {� (- − - � � (-))H − � (- − - � � (-))¬H}+ gives the cost for the FS, from the

minimizer’s point of view.

• �� (\�) =
∑
8 9 : �8 9 : − � defines the cost for the budget manager.

Let us define b := (\� , \� , V)) as a set of actions for the PL, FS and budget manager. Here, we

denote b1 = \� ∈ Γ1, b2 = \� ∈ Γ2, b3 = V ∈ Γ3 as the subset of parameters in b that individual

players can modify at each iteration, and Γ8 denotes the 8−th player’s action space.

We also define a potential function as a composition of the payoffs among the players:

q89 (b) := max{0, �8 (b) − �8 ( 9 , b¬8)}, 9 ∈ Γ8

where �8 ( 9 , b¬8) defines the cost of another policy 9 ≠ b8 for the 8−th player currently using b8

parameters. b¬8 indicating that other players retain the same actions. So the potential function

defines the cost-of-switching from the current policy to another, defined over each player’s action

space.

Finally, let us define the best response function [14] for each player:

58 (b8, 9) :=
b8 + q89 (b)

1 +∑
:∈Γ8 (q8: (b))

where 9 ∈ Γ8 corresponds to the alternative actions in the 8-th action space. We now introduce the

definition of Nash Equilibrium (NE) according to [14] for our problem:

Definition 3. Nash Equilibrium. b∗ is a Nash Equilibrium point of 5 (.) if it satisfies �8 (b8) ≤

�8 ( 9 , b¬8),∀8, 9 .

Lemma 1. Assuming that the domain of b is continuous and convex, there exists a fixed point of 5 ,

i.e., 58 (b∗8 , 9) = b∗8 ,∀8, 9 .
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Proof. The proposed best response function maps from 5 : Γ→ Γ and is a continuous mapping.

Furthermore, each sub-domain Γ8 is convex and compact. Compactness can be achieved through

regularization applied to � and �, in the form of budget-constraint, which serves to bound the size

of \� according to a V. So each Γ8 is closed and bounded, and by the Heine-Borel Theorem, each Γ8

is compact in '=8 . Thus, we can apply Brouwer’s fix point theorem from [15], and therefore ∃b∗ s.t.

5 (b) at 5 (b∗) = b∗. In other words, a fixed point exists.

Lemma 2. A point b∗ is a fixed point of 5 if and only if it is a Nash Equilibrium point.

Proof. First, suppose b∗ is a NE point. Then we have �8 (b∗8 ) ≤ �8 ( 9 , b∗¬8), ∀8, 9 . So it follows that

∀8, q8
9
(b∗
8
) = 0. Thus, we have 58 (b∗8 , 9) =

b∗
8
+0

1+0 = b
∗
8
,∀8, 9 , which defines a fixed point.

Conversely, suppose b∗ is a fixed point, i.e., 5 (b∗, 9) = b∗. Then for every 8, there is at least one

b∗
8
s.t. �8 (b∗8 ) ≤ �8 ( 9 , b∗¬8) (by definition of fixed point). For such b∗’s, we have

q89 (b∗) = 0

=⇒ 58 (b∗8 ) = b∗8 =
b∗
8
+ 0

1 +∑
: q

8
:
(b∗)

=⇒
∑
:

q8: (b
∗) = 0 =⇒ q8: (b

∗) ≡ 0, ∀: ≠ 9 ∈ Γ8 .

We have shown that ∀b∗ = 5 (b∗), such a point must also correspond to a NE point. �

Theorem 1. There exists at least one Nash Equilibrium point b∗ such that each player’s best

response does not deviate from b∗ with respect to the minimax objective in Eqn. 5.5. Furthermore,

the fixed points of the minimax objective correspond to local Nash Equilibrium points.

Proof. The result directly follows from combining Lemma 1 and 2 with Definition 3. �

We note that although local NE’s exist under our formulation, we do not show admissibility [16]

or interchangeability of the payoff values for such NE’s since the proposed game is non-zero sum.

However, the NE property implies that small, local changes to the budget allocation and classifier

decision boundary do not improve the performance under either objective.
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5.4.2 Convergence of Algorithm 2

One interesting challenge of our problem is that � and � are updated at different time-scales. We

now show that Algorithm 2 can converge to local NE’s, at least under some good initialization

schemes around the neighborhood of NE’s. We summarize the main result below.

Definition 4. The gradient operator for the FS and PL players is defined as follows:

b (C+1) = b (C) + U[(b (C)), [(b) =

©­­­­­«
−∇\� �� (\�)

Y∇\� �� (\�)

0

ª®®®®®¬
where U is the learning rate hyperparameter, and Y > 0 denotes an off-set parameter that scales the

update rate of the ∇\� component according to a faster time-scale.

We can verify that when ¤[ = 0 at some time ) , we have [ ≡ 0 =⇒ b (C+1) = b (C),∀C > ) , which

describes a fixed point b∗.

Theorem 2. Assuming the loss functions for each player is locally Lipschitz in b and piecewise

linear in C near a Nash Equilibrium point, the error dynamics ¤[ follows uniform asymptotic stability

and converges toward the origin at a rate of:

| |[(C) | | ≤ K(_ | |[(C0) | |, C − C0),

for some KL−class function (§4.4 in [17]) (K) and constant 0 < _ < ∞.

Proof. Here, we make the following assumptions:

• At a fixed budget constraint V, mV
mC
= 0.
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• �� and �� satisfy the following:

�� (\�) = !� (� (- � � (-)))

�� (\�) = !� (� (- − - � � (-)))

∇\� �� (\�) = !′� (� (- � � (-))) · ∇\�� (- � � (-))

∇\� �� (\�) = −!′� (� (- − - � � (-))) · ∇-� (- − - � � (-)) · ∇\�� (-)

where !� and !� are loss functions according to the labeled sample pairs {(-8, H8)}<8=1.

• !� and !� are bounded, locally Lipschitz in b and piecewise continuous in C near a local

fixed-point equilibrium.

We can thus express the error dynamics ¤[ (i.e., the update rule of [) as follows

¤[ =
©­­«
−∇2

\�
�� (\� ) −Y∇\� , \� �� (\� )

Y∇\� , \� �� (\�) Y2∇2
\�
�� (\�)

ª®®¬ [
−∇2

\�
�� (b� ) = −! ′′� (� (- � � (-))) · ∇\�� (- � � (-)) · ∇\�� (- � � (-)))

−∇\� , \� �� (b� ) = −! ′� (� (- � � (-))) · ∇\�� (- � � (-)) · (∇-� (- � � (-))) · ∇\�� (-)))

∇\� , \� �� (b�) = −! ′� (� (- − - � � (-))) · ∇-� (- � � (-)) · ∇\�� (-)∇\�� (- − - � � (-))
)

∇2
\�
�� (b�) = −! ′′� (� (- − - � � (-))) (∇-� (- � � (-)) · ∇-� (- � � (-)))

)∇\�� (-)∇\�� (-))

Next, around the equilibrium point at the origin, let us assume the following properties about

∇-� (-),∇\�� (-),∇\�� (-), i.e., the back-propagation terms:

=⇒ ∃0 < 21 < ∞ : ∇\�� (-) ≤ 21 | |∇\� �� (\� ) | | = 21 | |[1 | |

=⇒ ∃0 < 22 < ∞ : ∇\�� (-) ≤ 22 | |∇\� �� (\�) | | = 22 | |[2 | |

=⇒ ∃0 < W < ∞ : | |∇-� (-) | | ≤ W.
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Let us also assume that ∃23 > 0 : | |!′
8
(b) | | < 23, and ∃24 > 0 : | |!′′

8
(b) | | < 24, that is the first and

second order changes are bounded around the origin. We can thus re-express ¤[ as follows:

−∇\� , \� �� (b� ) = ∇\� �� (b� ) · ∇-� ( -̃) · ∇\�� (-))

∇\� , \� �� (b�) = −∇\� �� (b�)∇\�� ( -̂))

∇2
\�
�� (b�) = −! ′′� (� ( -̂)) · (∇-� ( -̂)∇-� ( -̂))

)

·∇\�� (-)∇\�� (-)) .

=⇒ ¤[ =

©­­­­­«
−! ′′

�
(� ( -̃)) · ∇\�� ( -̃)∇\�� ( -̃)) [1 + Y∇-� ( -̃) · ∇\�� (-)) [1[2

−Y∇\�� ( -̂)) [1[2 − Y2! ′′
�
(� ( -̂)) · (∇-� ( -̂)∇-� ( -̂)))∇\�� (-)∇\�� (-)) [2

ª®®®®®¬
Finally, we let us consider the Lyapunov function candidate:

+ ([) = 1
2
[2

1 +
1
2
[2

2

which satisfies the property + ([) > 0,∀[ ≠ 0. We can also see that ¤+ ([) < 0:

¤+ ([) = m+ ([)
m[

) m[

mC

=
©­­«
[1

[2

ª®®¬
) ©­­«
¤[1

¤[2

ª®®¬
= −! ′′� (� ( -̃)) · ∇\�� ( -̃)∇\�� ( -̃)) [2

1 + Y∇-� ( -̃) · ∇\�� (-)
) [2

1[2

− [Y∇\�� ( -̂)) [1[
2
2 − Y

2! ′′� (� ( -̂)) · (∇-� ( -̂)∇-� ( -̂))
)∇\�� (-)∇\�� (-)) [2

2]

≤ −232
2
1[

4
1 − (21 − W22)[2

1[
2
2 − Y

2242
2
2W

2[4
2.

Letting _ = min{232
2
1, Y

2242
2
2W

2}, we have

¤+ ([) ≤ −_ | |[ | |4 − (21 − W22)Y[2
1[

2
2

¤+ ([) ≤ −_ | |[ | |4 < 0, ∀W22
21

< 1.

By Theorem 4.2 of [17], we have uniform asymptotic stability for the error dynamics around the

NE, implying that the error term [(C) → 0 at the rate of

| |[(C) | | ≤ K(_ | |[(C0) | |, C − C0)
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for some KL−class function K and constant _ = min{232
2
1, Y

2242
2
2W

2}.

Theorem 4 assumes an initialization for b that is close to a local equilibrium point b∗, which

motivates the use of scheduled sampling on the PL model inputs as a pre-training step. We also

allow a fully-observed �(1)
8 9
= 1,∀8, 9 at C = 1 so that the FS observes a full set of features, as a good

initialization of the generation process depends heavily on the initially observed features.

5.5 Experiments

To gain intuition into the precision sensing mechanism, we first compare with several classic feature

selection schemes on synthetic data. We then compare performance of precision sensing with SOTA

active sensing methods on real-world medical data.

5.5.1 Synthetic Experiments

We evaluate the ability of the budget-constrained precision sensing (BCPS) to retrieve the underlying

temporal patterns on a set of synthetic time-series data. We generate a synthetic dataset consisting

of time-series data with labels: {-8, H8}1000
8=1 , -8 ∈ R100×10 (100 time-steps, 10 features), H8 ∈ {0, 1}.

The temporal signals were adapted from the UCI ML dataset [18], specifically the Pseudo Periodic

Synthetic Time Series Data Set. This dataset features 100, 000 samples of univariate time-series

data, generated from the stochastic periodic function:

5 (G) =
7∑
8=3

1
2

sin{2c(22+8 + rand(28))2}. (0 ≤ 2 ≤ 1) (5.10)

We expand this dataset by applying the generator equation across multiple channels (10), each with

a different initialization of 2. We sub-sampled 1000 of the generated time-series and aligned the data

such that each sample contained 100 time-steps and 10 features. We generate labels H8 according to

H8 =


1 | |� (-8) | | > 0

0 | |� (-8) | | ≤ 0,

where � (.) masks all features of - across time except for certain features at certain times. For

example, one configuration of � may emphasize the 0− 5Cℎ features from time-steps 20− 40 and the

9 − 10Cℎ features from time-steps 60 − 80. All other features at all other time-steps are masked with
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Figure 5.2: Recovery of feature relevance (�) by BCPS on synthetic data.

(a) Ground Truth (b) BCPS (c) Ground Truth (d) BCPS

high negative noise sampled from a Gaussian distribution. Our goal is to recover the true underlying

� (unmasked features) using the BCPS framework.

5.5.1.1 Recovery of � using BCPS

Table 5.1 gives an overview of the BCPS performance in recovering the relevant features posed by

� on the synthetic dataset. Here, the sparsity-level refers to the percentage of masked features in �

(ground-truth). We see that the specificity of the recovered features by BCPS remains high, despite

the increase in budgetary constraints. In general, the performance drops are not significant between

different levels of sparsity in �.

Figure 5.2 visualizes the performance of BCPS on several test-set samples with 80% sparsity in

�. We see that BCPS chooses to allocate sensing to early time-steps, and then accurately locates the

largest block of key observations in � related to predicting the target. From there, BCPS decides

whether to continue to observe future time-steps, as shown by Fig. 5.2d, or stop observations when it

is confident in the prediction, as shown by Fig. 5.2b. Interestingly, BCPS is capable of locating the

key observation blocks in � despite the discontinuity of the key block from the original time-steps,

as demonstrated by Figs. 5.2b and 5.2d.

Table 5.1: BCPS recovery performance vs. sparsity of sensing budget on synthetic data

Sparsity AUC F1 Sensitivity Specificity
20% 99.0 ± 0.0 98.1 ± 1 97.3 ± 1.1 99.7 ± 0.0
40% 98.2 ± 2.1 94.5 ± 3 90.2 ± 4.2 98.6 ± 1.0
60% 96.4 ± 1.1 91.7 ± 1 87.6 ± 3.1 97.9 ± 1.2
80% 94.4 ± 3.0 90.9 ± 1 84.4 ± 3.8 97.0 ± 1.1

105



Table 5.2: Comparison of predictive power of various sensing methods on synthetic data, under
80% sparsity in �

Model AUC F1 Sensitivity Specificity
Temporal Feature Selection 89.5 ± 3.9 81.2 ± 4.0 77.6 ± 4.8 85.7 ± 2.8

Self-Attention 93.3 ± 3.4 88.3 ± 3.2 87.0 ± 3.5 94.4 ± 2.0
BCPS 94.0 ± 0.9 90.4 ± 0.8 84.5 ± 3.6 96.9 ± 1.1

5.5.1.2 Comparison Against Other Sensing Methods

We compare BCPS against other sensing strategies on the synthetic dataset. Specifically, we

investigate (1) classification difference between sensing mechanisms, and (2) how they differ in

recovering feature contributions from �. We consider the following alternative models:

• Temporal Feature Selection: GRU model with ℓ1−regularization applied to input weights at each

time-step.

• Attention-Based Sensing: Self-attention model with a slight modification:

�8, 9 ,: =


1 �8, 9 ,: ≠ 0

0 Otherwise.

Because self-attention produces activations in the continuous [0, 1] range, wemake this adjustment

to use the non-zero activations as a proxy for feature utilization in self-attention.

Table 5.2 compares the performance of BCPS against other sensing methods on the synthetic

data. We fix the sparsity in � to be 80% for all models and compare prediction performance and

sensing patterns. As expected, BCPS and self-attention sensing strategies performed notably better

than temporal feature selection since the relevant features of � shifts across time.

The difference in the allocation of observations between BCPS and attention-based sensing is

relevant, so we further investigated it. In particular we compared the sensing patterns in BCPS and

attention activations against the ground truth � under a fixed sparsity pattern, see Table 5.2. Scores

are averaged over 5 evaluation runs and reported in the format Avg. ± STD. We considered a � with

some interesting properties:
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Figure 5.3: Heatmap comparisons of sensed features under a fixed �. Feature number 0-9 (x-axis)
vs. Timesteps 0-96 (y-axis).

(a) Ground Truth (b) BCPS (c) Attention Activations

• � has multiple, discontinuous blocks of key features whose observations are critical to the final

prediction of H.

• Different groups of features are prioritized in each key observation block.

• Multiple groups of features can be prioritized at the same time-step.

We see from Fig. 5.3 that only BCPS is capable of recovering the true underlying sets of key

features in �. The attention activations, on the other hand, cannot locate the discontinuous blocks of

contributory features, and as a result always uses a high observation budget, i.e., most features are

observed frequently across time, regardless of the true underlying sparsity in �. We also see from

Fig. 5.3b that although there exists a very large divide between the first block and future time-steps,

the FS model sparingly allocates observations across the large gap of non-contributory features

before allocating large amounts of observation resources toward the last few time-blocks.

5.5.2 MIMIC-III Experiments

We also evaluate our framework on MIMIC-III [19], a publicly available electronic health records

(EHR) dataset using temporal data collected from 22, 830 adult patients. For the prediction task, we

choose In-Hospital Mortality as the target. Given the first ) = 48 hours of observations (G (1)
8
, ...G

())
8

),

mortality risk assessment predicts mortality risk from) +1 until the end of the hospital stay. Because

patients have variable lengths of stay (LOS), we aligned the temporal sequences of patients by

the start of their hospital admit time and excluded patients who ha LOS less than 24 hours. We
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considered a set of 19 temporal features, split between metabolic laboratory panels (7), specialized

hematologic tests (6) and vital signs (6).

5.5.2.1 Baseline Classifiers

We consider a wide variety of hypothesis model classes for inference:

• Logistic Regression (LR): non-deep baseline.

• Multi-layer Perceptron (MLP): 3 fully-connected layers with 128 hidden units each.

• Gated Recurrent Units (GRU): a bi-directional GRU with 2 hidden layers and 128 nodes per layer.

• Self-Attention Model (Attn): a modified self-attention [20] model, where the inputs at each

time-step are modified by an attention mechanism [21] that combines pertinent information from

previous time-steps to attend to the most relevant part of the current feature space.

5.5.2.2 Performance on MIMIC-III

Table 5.3 summarizes the performance of the inference models conditioned on the original dataset.

Scores are averaged over 5 evaluation runs and reported in the format Avg. ± STD. We see that

that the temporal information is highly relevant to the mortality task. This is indicated by the

superior performance of recurrent models (GRU and self-attention GRU), which achieves higher

performance across all metrics compared to the non-temporal models (LR and MLP). Self-attention

model achieves the highest baseline performance compared to other models, but vanilla GRU results

were comparable.

Table 5.3: Baseline performance of inference models conditioned on the original data -

Model AUC F1 Sens. Spec.
MLP 74.0 ± 5.5 37.4 ± 4.2 65.0 ± 7.8 72.8 ± 3.3
LR 58.4 ± 0.7 28.3 ± 1.9 18.8 ± 1.7 97.9 ± 0.3
GRU 84.7 ± 1.2 45.2 ± 2.6 78.4 ± 3.3 74.8 ± 4.1
Attn 85.1 ± 1.8 45.5 ± 1.6 76.0 ± 2.2 79.8 ± 2.6
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Table 5.4: Performance of inference models conditioned on the masked data - � �

Model AUC F1 Sens. Spec.
MLP 74.2 ± 5.2 36.2 ± 5.1 69.6 ± 2.8 67.3 ± 6.2
LR 57.3 ± 0.7 25.6 ± 1.9 16.5 ± 1.5 98.2 ± 0.2
GRU 81.3 ± 2.2 42.4 ± 2.5 73.0 ± 5.4 74.4 ± 4.3
Attn 81.7 ± 1.2 41.1 ± 3.0 75.5 ± 3.2 72.6 ± 1.4
PL 82.9 ± 1.3 44.5 ± 2.4 74.3 ± 3.5 74.1 ± 1.2

5.5.2.3 Performance on Masked Data

Table 5.4 illustrates the performance of the same set of inference models trained and tested on

the incrementally sensed data {-8 � � (-8), H8}<8=1. The � (-) used for Table 5.4 is trained using a

budgetary constraint of 58.6% of available features across time. From Table 5.4, we see that both

recurrent models (GRU and Attn) have notable decrease in performance, with their AUCs dropping

by 2 − 4%, respectively. Conversely, the non-temporal models maintain their performance. Again,

scores are averaged across 5 evaluation runs. This contrast between temporal vs. non-temporal

models reveals that � (-) specifically maintains the temporal patterns in - related to the prediction

task at hand. We also see that the PL is able to achieve the highest performance on the sensed data,

despite having the same architecture as the GRU models. This is likely because the PL is trained on

a variety of sparsity patterns in � (-) during co-training.

5.5.3 Sparsity Trade-offs

We further investigate the relationship between the severity of the budget constraint, i.e., sparsity in

the generated sensing tensor, and the performance of the resulting dynamically sensed data. Here,

we define budget cost as the % of features utilized during the observation period () = 48 hours):

BudgetCost =
∑<

8

∑C

9

∑=

:
�8, 9 ,:/(< × C × =),

where we assume - ∈ R<×C×=. Fig. 5.4 summarizes the trade-off between performance and

budget constraints. Notably, the budget cost decreases from 89.3% to 58.3% while the AUC and

f1-scores only decreased by < 0.02. The greatest drop in performance occurred from 12.1%→ 6.5%.

This is presumably because at 6.5%, the FS allocates the observation budget at the first time-step
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only, sacrificing all of the temporal information within the data. Thus, we can see from Fig. 5.4

that V ∈ [1e-6, 1e-4] represents an optimal trade-off range. In practice, the V-constraint is usually

Figure 5.4: Trade-off between Budget Constraint (x-axis) vs. predictive power (y-axis). Budget
denotes the strength of budgetary constraint V.

predetermined based on real-world constraints. For example, a well-funded hospital may have access

to a large set of observations, say V = 54 − 6 (less constrained), whereas an under-funded clinic may

only be able to observe at the level of V = 54 − 5 (highly constrained).

5.5.4 Comparison Against SOTA Methods

Finally, we compare BCPS against other SOTA sensing strategies for temporal data:

• Deep Sensing [22]: Active sensing is done through an adaptive sampling scheme. Inference is

done using interpolation and imputation layers for the missing values.

• Dynamic Measurement Scheduling [23]: Active sensing is done by a dueling DQN network, and

inference is done using a pre-trained recurrent network.

We implement Deep Sensing (both single and multiple model settings) with the hyperparameter

settings described in the Appendix Section of [22]. For Dynamic Measurement Scheduling, we run

Algorithm 3 without meta-data, i.e., without age, demographics, or disease history, to obtain the

110



simulated dataset. In both cases, we use the same set of features and the same 48-hour observation

window. For each active sensing model we peform the following:

1. Pre-train a GRU model.

2. Synthesize new datasets using the active sensing strategy.

3. Test inference models (M-RNN for Deep Sensing) on synthetic datasets.

In Table 5.5, we report the best performance for each method with 50 − 60% observation budget,

which is the reported low end for the Deep Sensing work [22]. We use the 50 − 60% budget range

because each work uses its own hyperparameter (e.g., threshold g in [22] and _ in [23]), so it is

difficult to translate the threshold parameters to exact percentages in sparsity. Thus, we report the

best performance within the 50− 60% observation range of each model for fairness. From Table 5.5,

we can see that the combination of FS (for data generation) and PL (for adaptive classification)

maintains the best level of performance at higher budget constraints. Dynamic scheduling produces

comparable results to Deep Sensing.

We also plot the AUC-gain vs. sparsity trade-off for each approach in Figure 5.5. For that

experiment, we fix a pre-trained GRU to deliver the predictions at each sparsity level for the generated

data from each method. Our FS model produces measurements that maintained a higher level of

performance at each sparsity level. It is also notable that without variance reduction (e.g., using

multiple models), the imputation-prediction (M-RNN) framework of Deep Sensing has a large

drop off, especially with decreasing observation budget. Dynamic Scheduling performs best at

around 25%, which is consistent with the reported performance in [23]. However, we note that its

performance plateaus at increasing levels of observation.

Table 5.5: Comparison of precision sensing against SOTA active sensing method with sparsity
constraint of 50 − 60%

Sensing Model Inference AUC F1
Deep Sensing [22] M-RNN 76.0 38.5

Dynamic Scheduling [23] GRU 78.7 41.3
Ours (FS) Ours (PL) 82.9 44.5
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Figure 5.5: Comparison of AUC-gain against SOTA models.

5.6 Conclusion

In this chapter we formalize the precision sensing problem as an extension of active sensing and

illustrated its application in mortality risk prediction. Our formulation consists of a minimax game

between a dynamic feature sensor and an online classifier that reaches a local Nash equilibrium

during co-training. We empirical show that the sensing strategy is capable of maintaining predictive

performance while satisfying budget constraints. However, one limitation is that although we

show local Nash equilibriums exist, we cannot make statements about their admissibility and

interchangeability in payoff values [16]. Future works might consider other scheduled sampling

techniques for the PL model, which can greatly affect training stability and sample complexity under

the proposed setting.
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CHAPTER 6

PERSONA AUTHENTICATION

6.1 Introduction

In recent years, one promising approach to diverse and personalized dialog generation has been

persona models [1, 2, 3] which embed the so-called “persona” information (e.g., name, gender,

and self-descriptions) into neural conversational agents. While the goal of persona modeling is to

achieve human-level response diversity and character consistency, a critical yet often overlooked

factor is the sequence of prompts used to induce diversity in generated responses.

Consider the toy example in Table 6.1. Certain sequences of question prompts (from the verifier)

create a trail of generated responses that reveal more persona information, compared to non-specific

conversation (the random policy). Yet it is unclear a priori which sequence(s) of questions most

effectively reveal the dialog agent’s underlying persona. Moreover, a set of questions may be

effective for one persona but fail for others. Currently, long interactions with humans are necessary

to gain insight into persona model characteristics such as authenticity [3, 4], diversity [2], and

engagement [3].

In thisworkwe present a learning approach for interactingwith conversational agents. Specifically,

we introduce the persona authentication problem, where a model estimates the persona information

of an input agent by learning to deliver a sequence of questions that progressively reveal more

information about the agent throughout the course of the dialog. This is difficult because exact

search through the space of possible question sequences is infeasible. Therefore a model must

adaptively prune its set of potential questions based on the dialogue agent’s responses.

We further decompose persona authentication into two parts: persona identification, which

is inferring a set of persona features from a given dialog trajectory, and persona verification, the

problem of finding a second conversational model – we call it a question policy – to elicit dialog

trajectories for persona identification. To address the intractability of exact search through the space
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Table 6.1: Persona model responses can differ greatly depending on input questions

Persona Descriptions
1. I am a construction worker. 2. I enjoy building houses. 3. I have 5 cats.

4. my cats are very special to me.

Role Response Role Response
Verifier hello! what kind of work do you do? Random hello how are you today?
Model i build houses. Model great! i just got back from work.
Verifier that’s awesome. what do you do

outside of work?
Random me too. i’m a teacher at a high school.

Model i like to spend time with my cats. Model cool, what grade do you teach?

of dialog trajectories, we introduce a computationally tractable algorithm and show its asymptotic

convergence (in cumulative conversations) toward the full persona identification objective. The key

contributions of this work can be summarized as follows:

• We introduce the authentication loss and show that estimators trained to convergence under

this objective maximize the mutual information between dialog history and persona.

• Based on the authentication loss we learn a dialog verification model that effectively generates

question sequences to distinguish the persona of input models. Empirically, we show that the

question policies of the verification model adapt to out-of-distribution personas.

• We present a way to incorporate question policies into language model (LM) based dialog

models, e.g., GPT-2, without sacrificing the felicity and consistency of the original LM model.

6.2 Why Model Persona?

One of the long-term goals of this work is toward general conversational authentication. Biometric

authentication has traditionally relied on physical measures such as fingerprints and facial recognition

to determine the identity of human beings [5, 6]. Importantly, physical features such as facial

structures and fingerprints are largely stationary; a standard procedure can be used to collect

stationary features and scaled to entire populations without the need for personalization. By contrast,

“soft” biometrics such as using personal information to verify identity require some degree of

personalization. For example, password retrieval or reset procedures often ask users to answer
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security questions for which they design, or to answer a set of adaptive tests such as visual Captchas

or re-tagging photos. While these tests are personalized, they are not adaptive in the sense that the

test itself is predetermined before it is delivered to the user.

To this end, conversational authentication can be viewed as an adaptive extension of traditional

biometrics based authentication. In particular, we are interested in finding an algorithmic approach

to deliver automated and adaptive tests to survey whether the conversational behavior of an input

agent (e.g., human users, spam bots, etc.) matches a set of personal information provided by the

user (which roughly corresponds to “persona facts” in the PersonaChat dataset). Given such an

authenticator, we can explore a much larger space of tests (e.g., the space of adaptive questions

rather than the space of predefined personalized questions) to survey more complicated behavior.

This is especially relevant if we want to generalize beyond simple persona facts such as “I have a

dog named radar” to more complicated facts such as the capacity to deliver satirical responses or the

use of specific generational grammatical structures (e.g., millennial or “Gen Z” lexicon). In other

words, we see general conversational authentication as the linguistic analog of visual captcha turing

tests. Toward this goal, persona authentication – learning a policy to deliver identifying questions –

is a necessary stepping stone because it presents an algorithmic approach (through dialog policy) as

opposed to human interviewers using handcrafted linguistic features, which is the only alternative at

the moment, and does not scale.

6.2.0.1 Applications

One potential application of conversational authentication is speaker verification for conversational

agents, human or chatbot. In many real-world settings, speaker information such as audio and

video may not be readily available. In such cases, the verifier network provides a way of speaker

identification via text. One can think of persona verification as a way of obtaining a linguistic

“fingerprint” of speakers based on the manner in which they converse under different question

policies. For example, human speakers seeking access to personal data may go through a short

conversation with the authenticator in order to see whether the person trying to access private data
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has the correct identity.

Verification is a critical issue in the modern era of cybersecurity. Consider for example the

arrival of Deep Fakes [7] – synthetically generated videos of people doing actions that may be

outside the context of their persona. The use of only voice and video identifiers may not be enough

to truly assess whether a person’s physical features match with their actions. In this regard, we

try to introduce the idea that the problem of verification may entail much more than just matching

physical / biological features. This is why we approach the problem from the point of a question

policy, a verification process that is dynamic and stochastic rather than static and deterministic.

In the latter case, technical advances in modern AI can “game” physical features which are fixed

points in some classifier space. In the former case, however, an impersonator must do much more.

To fool a dynamic authentication procedure, one has to find fixed points in policy space, which

involves sequential decision-making rather than one-time classification using facial recognition and

fingerprint features.

6.2.0.2 Authenticator Example

To give a concrete example of a use case, we provide an example conversation of conversational

authentication in which an authenticator surveys the persona facts relevant to a user who engages in

an 8 turn conversation. In this example, the user is a persona model (personalized chatbot) rather than

a human user. Table 6.2 shows an example conversation between the learned authenticator model

and an input persona model (PersonaGPT). Turn 1 and 8 highlight the importance of incorporating

question codes as context for decoding: rather than hard-coding questions, an authenticator must also

answer questions from the PersonaGPT model as to not disrupt the flow of conversation. Since the

authenticator is not given any persona facts, it must make up an answer to PersonaGPT questions on

the fly. For example, the authenticator states that its favorite color is green and that it is unemployed

in order to answer queries in addition to proposing questions.

In this particular conversation, the authenticator question codes are: talk about work for the first

3 turns, ask about hobbies for the next 2 turns, talk about politics for turn 6, talk about travel for
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turn 7, and talk about age and gender in turn 8. When question codes are repeated, the authenticator

model is able to avoid the same question twice – instead, it expands upon the existing knowledge in

the conversation (e.g., ex-military, works in a shipyard). Note that when as context, the question

codes function as one-to-many mappings. For example, “talk about travel” may correspond to a

much larger set of topics other than traveling as a hobby. The authenciator may ask where the input

agent lives, where they are from, etc. Similarly, “ask about age and gender” has much more to do

with questions related to identity and appearance rather than strictly age and gender alone.

Table 6.2: An example of interaction between the learned authenticator policy and PersonaGPT
over an 8-turn conversation

Role Response
Authenticator hello there what kind of work do you do?
PersonaGPT hi there i am ex military. what do you do for a living?
Authenticator nothing much. what do you like about your job?
PersonaGPT i am a shipyard worker.
Authenticator what’s your dream job?
PersonaGPT to be a navy seal one day.
Authenticator that sounds exciting! do you have any hobbies?
PersonaGPT my hobby is volunteering with the bunny rescue.
Authenticator do you have any other hobbies?
PersonaGPT yes i help out at the local bunny rescue.
Authenticator do you follow politics?
PersonaGPT yes i follow politics. i donate a part of my salary to charity each month.
Authenticator where are you from?
PersonaGPT i’m from the united states. what’s your favorite color?
Authenticator my favorite color is green. how old are you?
PersonaGPT i’m 20 what about you?

Persona Facts
1. I donate a part of my salary to charity each month. 2. I work fulltime in a shipyard.
3. I volunteer my time with a local bunny rescue. 4. I’m ex military.

5. My favorite color is navy blue.

6.2.0.3 Challenges

Table 6.2 reveals two main challenges to learn an adaptive authentication policy:
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1. At the turn-level, a policy must be able to incorporate turn-level goals into its decoding.

However, the decoding algorithm has to remain open-domain in order to be flexible enough to

handle a wide range of conversational topics and styles. For this reason, we turn to generative

decoding rather than ranking models.

2. An objective function has to capture the relationship between the responses generated by

a policy and persona facts at the dialog-level. One can think of the dialog-level objective

function as informing turn-level goals to guide the decoding process.

6.3 Problem Setting

6.3.1 Notation

Let D = {g8}=8=1 be a set of dyadic dialog samples. Each dialog follows the form g = {-,. }, where

- = (-C))C=1 denotes the sequence of source responses and . = (.C))C=1 denotes the sequence of

target responses. Each response is composed of a sequence of tokens, represented as (x(C)
:
) 
:=1

(source tokens) and (y(C)
:
) 
:=1 (target tokens). To be consistent with state-of-the-art (SOTA) dialog

model decoders [8, 9], we use Byte-Pair Encoding (BPE) [10] for tokenization. Additionally, )

signifies the maximum number of turns in a dialogue sample,  the maximum number of tokens

per response. If a response consists of : <  tokens, then we take : + 1 through  tokens to be

empty (“PAD”) tokens (with similar logic applying to dialog turns). As a shorthand, we write gC to

denote the dialogue trajectory (-1, .1, . . . , -C , .C) up to turn C, with .1:C to signify the sequence of

responses .1, . . . , .C . Similarly y1:: represents the ordered sequence of tokens up to token y: .

6.3.2 Persona Identification

The standard objective of persona models is:

max
.C

log ?(.C |-C , g1:C−1, %. ), (6.1)

where %. is the set of persona descriptions for the dialog agent. Zhang et al. [2] and the ConvAI2

challenges [11] provided numerous ways to incorporate persona information into the dialogue

121



generation process. Recently, generative persona models [12, 8] have been shown to be effective

at contextualized decoding by incorporating persona % as language model context. Due to their

effectiveness, we only consider generative persona models in this chapter.

To identify a persona from a given trajectory, we formulate the persona identification problem:

Problem 2. Persona Identification. Given an input dialogue trajectory g, find the persona % that

maximizes the mutual information between % and g. More formally, the optimization objective is

max
%

� (%, g) = max
%

� (g) − � (g |%) = min
%

� (g |%), (6.2)

where � (·) is entropy and % ∈ R< is a vector in the space of possible personas.

Persona identification seeks a fixed-length representation of persona information that captures

the consistency of generated responses. In other words, a personalized dialog agent has to not only

generate diverse responses (high entropy � (g)), but it must also stay consistent to a persona profile

throughout multiple turns of conversation, minimizing � (g |%). One challenge is that it is unclear

how to arrive at a set of questions -1:) to generate the input trajectory g. For example, certain sets

of questions may always result in generic responses, regardless of the agent quality. Thus, problem 2

requires a way to constrain the question policy so that, given the right set of questions, the persona

of the dialog agent can be elicited.

6.3.3 Persona Verification

We addresses the above issue by formulating question generation as an optimization problem. A

naive attempt may be to propose the following objective:

max
g

� (g, %) = max
g
� (g) − � (g |%) (6.3)

However, we will show in the following section that Eqn (6.3) is intractable to optimize directly due

to the partition function in the second term. We will first present a more feasible objective below

and show its asymptotic convergence toward Eqn (6.3) in the next section. Suppose that the inputs
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to a verification model are dialog agents, i.e. trained persona models parameterized by different

personas. We define the persona verification problem as follows:

Problem 3. Persona Verification. Given a space of persona information P, persona verification is

the optimization objective:

min
\
E%∼P

[
L(g\ , %)

]
(6.4)

where L(·, ·) is the authentication loss:

L(g\ , %) = max{0, � + 3 (g\ , %+) − 3 (g\ , %−)} − log ?(g\)). (6.5)

%+ denotes persona facts that co-occur with trajectory g, %− the opposite. � specifies the desired

margin of separation, and g\ is the dialog trajectory generated by the question policy (\).

The first term of Eqn. (6.5) approximates Eqn. (6.2) through a triplet loss using negative sampling

over the space of possible personas. The rationale behind the first term is to address the intractability

of solving for Eqn. (6.2) directly. In Section 6.3.4, we show that this triplet loss component converges

to the mutual information term in Eqn. (6.2).

The second term in Eqn. (6.5) gives the likelihood of the trajectory. In order to minimize the

second term, a verification algorithm has to generate queries with high likelihood under a given

language model, e.g. GPT-2. If either the input agent or the question policy generate nonsensical

responses, then the resulting ?(g\) will be close to zero. For the rest of the chapter, we will refer to

“identifier” as a model used to solve the identification problem and “verifier” to denote a model used

to solve the verification problem.

6.3.4 Analysis of Persona Authentication Objective

Now we analyze the relationship between Eqn. (6.5) and the mutual information between % and g.

First, we assume that for a given persona %, the density function for ?(g |%) follows the probability

density function (PDF) of a Gibbs distribution:

?(g |%) = exp[−V� (g, %)]∫
g′∈D exp[−V� (g′, %)]

,

123



where � (g, %) is an energy function which scores the un-normalized co-occurrence likelihood of a

specific dialogue trajectory g and persona %. V is the temperature term which controls the overall

entropy of the distribution. We choose the Gibbs distribution because of its expressiveness and

common use in contrastive learning [13]. Then we can express the mutual information between g

and % as:

� (g, %) = � (g) − � (g |%) = −Eg [log ?(g)] + Eg,%
[
V� (g, %) − log

∫
g′∈D

exp[−V� (g′, %)]
]
.

(6.6)

In Eqn. (6.6), the first term on the RHS corresponds to the entropy of dialog trajectories (diversity

of generated responses), which is determined by the decoding quality of the input agent. The second

term depends on our question policy and our estimation of %. Trajectories under % depend on the

question policy since the input agent maximizes ?(.C |-C , gC−1, %). Since % is not known by the

policy beforehand, it is estimated each turn by the identifier. Unfortunately, directly estimating the

entire second term is difficult – the partition function of the conditional distribution requires us to

integrate over the space of trajectories, an intractable task.

We thus propose a local density estimation of the conditional density ?(g |%) as follows: let

%̃N =
1

=+ (�=)
∑=

8=1
 (i(g8), k(%), �=), (6.7)

denote an empirical estimate of ?(g |%) using = sampled trajectories. k and i are embedding

representations of % and g, respectively. + (�=) =
∫
N�= (%)

3%′ gives the volume of a neighborhood

ball of radius �= around k(%).  is a kernel function (which we show to be a valid kernel function

in Supplemental Materials) designed as follows:

 (g, %, �=) =


1 if 3 (i(g), k(%)) ≤ �=

0 else
. (6.8)

We now present the main theorem of our analysis.

Theorem 3. (Convergence of %̃# )

If Eqn. 6.5 (authentication loss) is minimized with 0 loss over D = {g8}=8=1 and P = {% 9 }
<
9=1, then
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%̃# asymptotically converges to ?(g |%), i.e.,

lim
=→∞

%̃# = ?(g |%) (6.9)

when the following conditions hold:

lim
=→∞

=+ (�=) = ∞, lim
=→∞

+ (�=) = 0, lim
=→∞

:

=
= 0, (6.10)

where : is the expected number of samples that fall within #�= (%).

The proof is provided in the Supplemental Materials. The goal of the identifier model is to learn

the embedding functions i and k:

i, k = arg min
i,k

1
=:

=∑
8=1

:∑
9=1

max {0, � + 3 (i(g), k(%8)) − 3 (i(g), k(% 9 ))}, (6.11)

where %8 ∈ P+, and each % 9 belongs to the set of : negative persona samples.

6.4 Proof of convergence of Thm. 1

We first state some assumptions about the density function ?(g |%). Unless otherwise stated, we

assume that there exists some joint embedding space H for which we are comparing g ∈ D and

% ∈ P. Specifically, let us assume that here exists some optimal mapping functions i∗ and k∗ that

maps g and % toH , respectively, i.e.,

i : D → H , k : P → H

whereH ⊆ R=. With some abuse of notation, we refer to i(g) by g and k(%) by % in the following

analyses for simplicity.

Assumption 1. (Locally Constant Density)

We assume that within a local neighborhoodN� (%) of radius� around persona vector %, trajectories

g are indistinguishable. Formally, ∀%, %′, ∃0 < � < ∞:

3k (%, %′) ≤ � =⇒ 3i (?(g |%′), ?(g |%)) = 0,

for some distance functions 3k , 3i. For simplicity, we will consider the Euclidean distance for 3k

and total variational divergence for 3i.
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We will use N� (%) to denote the neighborhood set around % for which the above condition is

satisfied.

Assumption 2. (Continuity and topological properties)

The conditional density ?(g |%) is Lipschitz continuous over the supporting setH for both g and for

%. Furthermore, we assume that ?(g |%) is simply-connected.

Next, we define ?(g |N (%)) as the probability that trajectory g will fall in the neighborhood

N(%) around a given persona %. Specifically, we consider the case where = trajectories are sampled,

: of which fall into N(%).

Definition 5. (Neighborhood Density) We define the neighborhood density around a persona vector

% as the probability that a trajectory g falls into the neighborhood N(%) as defined by

%N = ?(g |N (%)) =
∫
N(%)

?(g |%′)3%′. (6.12)

Furthermore, given a set of i.i.d. = trajectories {g1, . . . , g=}, the probability that : such trajectories

fall in N(%) follows the binomial distribution:

: ∼
(
=

:

)
%N

: (1 − %N ))1−: . (6.13)

At this point, there is one key issue: how do we calculate : , which needs to somehow “count”

the trajectory-persona pairs that fall into the same neighborhood? We can conceptualize : as the

image of some counting function of the form

 : (g, %, �) → R

where  is normalized over the domainH . For this purpose, we construct a kernel density function

for : as follows: given a persona vector %, let

:= =

=∑
8=1

 (g8, %, �=)
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be the output of the kernel function  over = sampled trajectories D = {g1 . . . g=} from ?(g |%).

Here, �= denotes the sample neighborhood size N(%) around % satisfying the constraint

�= = max
g8 ,g9∈D

3 (g8, g9 )

for Euclidean distance 3 (·, ·) from Assumption 1. Given embeddings i(g) and k(%), we propose

the following kernel density function  (g, %, �=):

 (g, %, �=) =


1 if 3 (i(g), k(%)) ≤ �=

0 else
. (6.14)

Lemma 3. (Validity of the proposed kernel density)

Let+ (�) =
∫
#� (%)

3%′ denote the volume of the neighborhood with radius� around %. The counting

function  described by Eqn. (6.14) is a valid kernel density function satisfying

∀= > 0,∀g, % ∈ P :  (g, %, �=) ≥ 0 (6.15)

∀= > 0 :
1

+ (�=)

∫
H
 (g′, %, �=)3g′ = 1. (6.16)

Proof. Condition 6.15 is observed by the definition of  from Eqn. 6.14.  (g, %, �) > 0 over the

entire supporting set for g, % and constants �= and 0 everywhere else. For condition 6.16, see that

 integrates to + (�) over the domain of g:∫
H
 (g′, %, �)3g′ =

∫
N� (%)

1 · 3%′ = + (�). (by definition in Eqn. (6.14))

From our construction of  , we know that  (g, %, �=) = 0 everywhere except in neighborhood

N� (%). Thus, the integral
∫
H  (g

′, %, �)3g′ reduces to integrating over N� (%). �

We now present the main theorem of our analysis. First, let us denote i∗, k∗ as functions

satisfying the empirical objective:

i∗, k∗ = arg min
i,k

1
=:

=∑
8=1

:∑
9=1

max {0, � + 3 (i(g), k(%8)) − 3 (i(g), k(% 9 ))}. (6.17)
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Theorem 4. (Convergence of %̃# )

Let %N be the empirical estimate of %# using the kernel density estimator:

%̃N =
1

=+ (�=)

=∑
8=1

 (g8, %, �=). (6.18)

If Eqn. (6.17) (authentication loss) is satisfied with 0 loss over D = {g8}=8=1 and P = {% 9 }
<
9=1, then

%̃# asymptotically converges to ?(g |%), i.e.,

lim
=→∞

%̃# = ?(g |%) (6.19)

when the following conditions hold:

lim
=→∞

=+ (�=) = ∞, lim
=→∞

+ (�=) = 0, lim
=→∞

:

=
= 0, (6.20)

where : is the expected number of samples that fall within #�= (%).

Proof. From Eqn. (6.13), we see that : ∼ Binomial(=, %N ). Thus, we have E[:] = =%N , where

E[:] is the expected number of samples : that fall within N�= (%) from a random sample of =

trajectories. Observe that:

%N =

∫
N� (%)

?(g |%′)3%′ =
∫
N� (%)

?(g |%)3%′ (by Assumption 1)

= ?(g |%)
∫
N� (%)

3%′ = ?(g |%) · + (�). (6.21)

Additionally, if the authentication loss in �@=. (6.17) is satisfied with 0 loss, then we have

 (g, %, �) = 1 ⇐⇒ 3 (i(g), k(%)) < � ⇐⇒ g ∈ #� (%) ⇐⇒ : = 1.

By the strong law of large numbers, we have

lim
=→∞

=∑
8=1

 (g8, %, �=) = Eg [ (g, %, �=)] =
∫
H
 (g, %, �=) · ?(g |%)3g

=

∫
H
: · ?(g |%)3g = E[:] . (6.22)

For a given =, we can combine E[:] = =%N with Eqns. (6.21) and (6.22) to obtain:

E[:]
=

= %N = ?(g |%) · + (�=).

=⇒ lim
=→∞

%̃# =
E[:]
=+ (�=)

= ?(g |%).
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Figure 6.1: Overview of authentication pipeline.

Although + (�=) → 0, the first condition in Eqn. (6.20) guarantees that =→∞ faster. Intuitively,

+ (�=) → 0 means that the size of the contrastive margin should shrink with increasing number of

training samples, but the rate of shrinking must be slower than the =. Similarly, : →∞ since the

number of observed trajectories falling into N� (%) increases monotonically with =. However, the

third condition in Eqn. (6.20) ensures that %N converges at all. �

6.5 Methodology

Figure 6.1 summarizes the key components of our authentication pipeline. The identifier model

represents the current conversation history as state input to the verifier. The verifier outputs a

distribution c(·|BC) over the action space. The sampled action from c(·|BC) is converted to a question

code and incorporated into PersonaGPT to decode the next question. We will refer to the full

authentication pipeline as “authenticator” for short. Once we can estimate % based on the learned

representation i of the dialog history, we can learn a question policy \ under the authentication

objective (Eqn. 6.5). Toward that goal, we first present an effective way to do incorporate the

question policy i.e. (-C))C=1, as context for conditional decoding using SOTA LM-based dialog

models, e.g. the GPT-2 architecture. This requires us to define an action space of control codes [14]

to contextualize the decoder during question generation. We describe an active learning approach to

learn such an action space. Then, we present the verifier model details and provide an algorithm for

129



learning the question policy.

6.5.1 Action Space as Control Codes

Since the goal of the verifier is to generate a sequence of questions (-C))1=C , we can describe the

token-level likelihood of each question -C as:

?(x(C)1:: |-C ,gC−1, %) ≈ ?( x(C)1::︸︷︷︸
decoded tokens

| -C︸︷︷︸
question at C

, i(gC−1)︸  ︷︷  ︸
history embedding

) (6.23)

Unlike the persona model, the verifier does not have access to the actual persona % of the input

model. Instead, the identifier model provides an estimated version i(gC−1) based on dialog history.

In Eqn. (6.23), -C is the output of the verifier at each turn, but we need an effective way to

represent -C for conditional decoding. Inspired by control codes [14], we represent -C as question

codes of the form:

<|act|> ask about pets. <|sep|>

Special tokens <|act|> and <|sep|> are used as delimiters for question codes. In the above

example, we used “ask about pets” as an example of a question code that corresponds to one of many

discrete actions that can be outputted by the verifier. The question code represents the raw text to be

incorporated before the dialog history in the GPT-2 architecture during decoding. In experiments, we

use 11 actions and their corresponding question codes as shown in Table 6.3. We have empirically

found that these questions cover the majority of conversational topics in PersonaChat. Note, however,

that one can apply our question code framework to arbitrarily defined questions.

Table 6.3: The action space of the verifier featuring 11 total actions (turn-level goals)

Action Space
1. ask about family. 2. ask about pets.
3. talk about work. 4. talk about traveling.

5. ask about age and gender. 6. talk about hobbies.
7. talk about music. 8. talk about food.
9. talk about movies. 10. talk about politics.

11. ask about marital status. -
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6.5.2 Explanation of Prefix Codes

In total there are 11 possible discrete actions that the authenticator network can output. Each action

corresponds to a particular phrase to be incorporated as prefix to PersonaGPT. However, PersonaGPT

can take arbitruary persona information for conditional decoding. Consider the following toy

example:

<|p1|>I like dogs.<|sep|> <|start|> hi! how are you doing today?<|eos|>

The prefix code starts with <|p1|> and ends with <|sep|> to denote the persona input %. The

text following <|start|> denotes the conditional decoding targets of the LM.

6.5.3 Conditional Decoding

In order to maintain felicity and consistency of decoding, we use a common LM to do natural

language generation for both the persona model and the verifier. Specifically, we use the GPT-2

medium [15] architecture as the baseline LM for conditional decoding of both the verifier question

codes as well as persona inputs. We will refer to this general-purpose conditional decoder as the

PersonaGPT model, which will be used as the persona model when persona facts are used as prefix

code and as the question decoder when verifier questions are used as prefix code.

In addition to question codes, we also introduce 3 special tokens: <|p1|> and <|p2|> to denote

the persona (source and target, respectively), and <|start|> as a delimiter between the control codes

and dialog history. We find that by using <|p1|> and <|p2|> to delimit source and target personas,

the LM is able to attend to <|p1|> related personas for odd-numbered responses and <|p2|> related

ones for even-numbered responses. We first fine-tune PersonaGPT on the PersonaChat dataset [2]

with persona inputs as prefix code and the dialog history as the conditional decoding targets.

6.5.3.1 Active Learning

In order to learn conditional decoding of question codes, we also fine-tune PersonaGPT on a small

dataset of human-PersonaGPT conversations constructed using active learning. Algorithm 3 outlines

131



said active learning procedure. In terms of sample complexity, we are able to fine-tune \!" to

do reliable conditional decoding with 1,200 8-turn conversations. This actively learned dataset of

question code examples will be made publicly available.

Algorithm 3 Active Learning with PersonaGPT
Require PersonaGPT \!" fine-tuned on persona inputs, action space of question codes
A.
1: Initialize active learning dataset D.
2: for total number of mini-batches do
3: for mini-batch 8 do
4: while conversation not done do
5: Sample question code -C ∼ A.
6: Decode x(C)1:: using \!" .
7: if x(C)1:: not satisfactory: then
8: Provide human inputs z1:: .
9: Update D ← D⋃(-C , gC−1, z1:: ).
10: Gradient descent on (gC−1, -C , z1:: ) to update \!" .
11: else
12: Continue.
13: end if
14: end while
15: end for
16: end for

For the gradient descent step of Algorithm 3, we split the parameters of PersonaGPT (\!") into 4

groups: fast group (consisting of special tokens), slow group (consisting of positional codes), freeze

group (embedding weights for normal tokens), and the rest of the parameters. We set the initial

learn rates of each group as follows: fast group (U = 5e-4), slow group (1e-6), freeze group (1e-9),

and the rest (5e-5). This technique is inspired by natural gradients [16, 17], which provide much

better performance in terms of learning rate (and hence number of samples needed to fine-tune).

However, the full Fischer Information matrix is intractable to learn explicitly; instead, we design a

diagonal matrix " , with entries corresponding to the learn rates of the different groups (4 different

initial rates). The gradient descent update is then:

\!" ← \!" − "∇\!" � (\!")
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Empirically, we find that this scheme allows PersonaGPT to incorporate question codes without

sacrificing felicity of decoded responses.

6.5.4 Learning the Question Policy

Since we do not have direct supervision over the newly introduced question codes, we learn the

question policy \ using deep Q-learning (DQN) [18]. Because of the inference time associated

with using GPT-2 based architectures to decode, the sample generation cost of full conversations is

non-trivial. That is why we choose to use value-based learning instead of policy gradient – indeed

sample efficiency is maximized by off-policy methods such as Q-learning [19]. Since Q-learning

tends to suffer from high-variance during early stages of training, we use the human-PersonaGPT

conversations collected during active learning as an approximation of expert policies. By pretraining

the Q-function on expert trajectories, we can explore the high-value states early, leading to more

stable Q-functions.

Markov Decision Process (MDP).We formulate the verifier learning task as an MDP:

• S (state space): BC = [i(gC−1); C], embedding of dialog history up to current turn concatenated

with the current turn count C.

• A (action space): 0C ∼ c( · |BC) is a sampled question code from the output of the verifier model at

each turn.

• T (transition): BC+1 = [i(gC−1
⋃

y(C)1:: ); C + 1] where y(C)1:: is the decoded response by the input

conversational agent.

• ' (reward function): The reward function is

A (BC) = −L(gC , %) (6.24)

where L is the authentication loss (Eqn. (6.5)) as a function of the history up to turn C and the

persona of the input agent.
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Verifier Network. The verifier architecture is a feed-forward network with 2 hidden layers of 512

hidden units each. The logits layer of the verifier corresponds to the Q-value over each action,

defined as:

&(BC , 0C) = A (BC) + Wmax
0
&(BC+1, 0).

Since we are dealing with finite-horizon MDPs, we set the discount factor W = 1. The final output

layer is a softmax over the Q-value logits:

c( · |BC) = softmax ( 5 (BC ; \)) .

We first pretrain the verifier with imitation learning [20] on the human-PersonaGPT data collected

during active learning. Specifically, we use the following loss function during pretraining:

\ = arg min
\

Eg

[ )∑
C=1
−0∗C log c(0C |BC) + ‖ 5 (BC ; \) −&∗(BC , 0C)‖2

]
, (6.25)

where 0∗C is the expert action while visiting BC during active learning. To stabilize learning, we

use a twin-delayed Q-learning scheme inspired by [21]. In addition to the verifier, we keep a

target-network \′ with parameters equal to a stochastically-weighted average (SWA) [22] of \. We

thus define the pretraining Q-targets &∗(·, ·) as follows:

&∗(BC , 0C) = A (BC) + W&\ ′ (BC+1, 0∗C+1), (6.26)

where 0∗
C+1 is the next action taken by the expert (i.e. the human-policy). At the end of each gradient

update for \, the target network is updated according to:

\′← [\ + (1 − [)\′, (6.27)

where [ = 1/(# + 1) and # is the number of training iterations.

We then run Algorithm 4 with regular Q-targets and an annealed Y-greedy sampling strategy

to promote exploration in early conversations. We fix each synthetic conversation to 8 turns and

fine-tune the logits layer of 5 ( · ; \), i.e. the Q-values, using gradient descent after each conversation.
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Algorithm 4 Verifier Training
1: Initialize question policy and target networks \, \′.
2: for each persona model % ∈ P do
3: while conversation not done do
4: Sample -C ∼ softmax

(
5 (BC ; \)

)
.

5: Decode -C into tokens x(C)1:: .
6: Obtain response H (C)1:: from PersonaGPT conditioned on persona %.
7: Store (BC , 0C , BC+1, AC) in B.
8: end while
9: Sample mini-batch of (BC , 0C , BC+1, AC) tuples from B.
10: Calculate Q-values using target network and update \ using gradient descent.
11: Update target network using Eqn. (6.28).
12: end for

6.5.5 Model and Training Details

All models were written using PyTorch [23]. The PersonaGPT model was written using the

HuggingFace Transformers package [9]. In terms of GPU usage, all models were trained using

a single 11Gb NVIDIA GTX 1080 Ti. For experiment 4.1, the GPT-2 baseline, DialoGPT and

PersonaGPT were fine-tuned on the PersonaChat dataset for 3 epochs, each taking between 13-16

hours of wall clock time. For each model, the AdamW [24] was used with an initial learn rate of

5e-5 and a linear decay schedule.

For experiment 4.2, all identifier models were trained for 10 epochs. The BoW feed forward

network (MLP) consisted of 2 hidden layers, 300 units each and a dropout rate of 0.2 between the

layers. BoE, the MLP architecture consisted of 2 layers, 1024 units each with a dropout rate of

0.2 between layers. For the LSTM model, the input embedding size is 30, 1 LSTM layer is used

with 600 hidden units. For the BERT and GPT-2 models, the transformer (feature representation)

layers were frozen, and additional 2-layer MLP modules were added to each model for training, each

consisting of 1024 units per layer. The identifier model is a 2-layer MLP with 1024 units each with

a dropout rate of 0.2 between layers. All identifier models were trained using Adam [25] optimizer

with learn rate of 1e-3.

The verifier network consists of a 3-layer MLP with 512 hidden units and dropout rate of

0.1 between layers. Tanh activation is used in place of ReLU, as we found Tanh to empirically
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outperform the latter in our use case. Note that the output layer size is 11 (corresponding to the size

of the action space, i.e., number of question codes). This output layer is trained to fit the Q-targets

during Q-learning, and an additional softmax layer is added to shape the Q-values into a probability

distribution from which to sample the actions for decoding responses. The verifier network was

pre-trained on the active learning data over 10,790 conversational turns for 3 epochs, totally between

3.5-4 wall clock hours. For Q-learning, the verifier was trained for 3 simulated conversations per

training set persona, totalling 22 hours of wall clock time over 3,846 total conversations and 30,768

conversational turns. After each conversation during the DQN training loop, the Q-value layers are

fine-tuned over the replay buffer for 3 epochs. For SWA, at the end of each gradient update for \, the

target network is updated according to:

\′← [\ + (1 − [)\′, (6.28)

where [ = 1/(# + 1) and # is the number of training iterations. For Y-greedy, we set the initial

Y0 = 0.5, Ymin = 0.05, and decay factor to 2048.

6.6 Data

The main dataset used for this experiment was the PersonChat dataset [2] which consists of 17,877

training conversations and 999 test conversations. The training set consists of 1282 personas, which

are profiles (sets) of 3-5 persona facts generated from a set of 6127 distinct facts. The test set

consists of 129 personas consisting of 674 facts that are unseen in the training data.

6.6.0.1 Pretraining

The PersonaGPT model is based off of the DialoGPT model [8] which was trained on Reddit

conversations. DialoGPT is based off of the GPT-2 model [15], which was pretrained on a diverse

set of text corpus, including Wikipedia articles, fiction books and news articles. The premise

of language modeling is that pretraining on a diverse range of dialog corpus yields a very large

supporting set of context tokens for which conditional probabilities can be calculated from. GPT-2

training accounted for “quality documents” (i.e., eliminated certain corpus samples based on some
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internal quality metrics) but did not account for negative transfer between different corpus types

(i.e., fiction books vs. Wiki articles) [26, 15]. Interestingly, GPT-2 has been shown to generalize to

more complicated tasks such as abstract summarization and general QA with few training samples,

and sometimes do well in a zero-shot setting [15].

6.6.0.2 Fine-tuning on PersonaChat

Like the GPT-2, DialoGPT was trained to decode multi-turn dialog as a straight forward language

modeling task; responses between speakers are separated by ‘EOS‘ (end-of-sentence) tokens to

denote switching of speakers. The main difference between PersonaGPT and DialoGPT is the use

of special tokens to format input responses. Specifically, PersonaGPT formats persona facts as

prefix tokens using bidirectional attention (no masking). <|p1|>| and <|p2|> special tokens are

introduced to denote the current speaker turn. Like task-oriented special tokens such as tl;dr, $ and

extract, the different persona special tokens denote the different speaker tasks (i.e., decoding person

1’s responses vs. person 2’s responses).

6.6.0.3 Self-Play

After training the PersonaGPT decoder, we continue to use PersonaChat as a source of training

and testing persona profiles. However, we no longer use the conversations in PersonaChat to do

active learning or reinforcement learning. For example, we sample training persona profiles to

parameterize PersonaGPT, but use the decoded PersonaGPT tokens as ground truth when training

the dialog policy using reinforcement learning. Similarly, we compare the decoded PersonaGPT

tokens with human responses (ground truth) when incorporating the turn-level goals (as action code

prefixes). Using self-play between the PersonaGPT and the dialog policy, we can generate new

conversational episodes unseen from the training data (PersonaChat). This effectively allows us

to explore the space of question sequences (i.e., the sequence of turn-level goals) to minimize the

Authenticator Loss in Eqn. (6.5).
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6.7 Experiments

We assess the proposed authentication system through its ability to answer the following questions:

(Q1) How well can PersonaGPT use control codes?

(Q2) How well can the identifier predict persona?

(Q3) How well can the learned question policy distinguish persona models?

6.7.1 Conditional Decoding Evaluation

To answer Q1 we evaluate the capacity of PersonaGPT for controlled decoding in two settings: (1)

automatic evaluation of PersonaGPT against SOTA persona models, and (2) human evaluation

of human-PersonaGPT interactions. For automatic evaluation, we follow the ConvAI2 challenge

automatic evaluation criterion of perplexity (PPL) and F1-score (F1) [11]. The following baselines

are included for comparison: the Seq2seq baseline from the PersonaChat paper [2], the best

performing generative model [12] on automatic evaluation from the ConvAI2 challenge, and the

recently released DialoGPT model [8]. Since PersonaGPT is based off of the GPT-2 architecture,

we include the vanilla GPT-2 LM (without control tokens) as well as a DialoGPT model fine-tuned

on the PersonaChat dataset as additional baselines. Table 6.4 shows that PersonaGPT outperforms

both baselines and SOTA in conditional decoding, as measured by PPL (lower is better) and F1

(higher is better).

Table 6.4: Automatic evaluation of PersonaGPT against existing SOTA persona models

Model PPL F1
Seq2seq Baseline [2] 29.8 16.18

Wolf et al. [12] 16.3 19.5
GPT-2 Baseline 99.45 5.76
DialoGPT [8] 56.6 12.6

DialoGPT (Fine-tuned) 11.4 22.7
PersonaGPT 10.2 43.4
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Table 6.5: Human Evaluation of PersonaGPT and DialoGPT

Model Consistency Coverage Engagineness Felicity
DialoGPT (Fine-tuned) 2.83 (1.40) 1.15 (0.68) 2.90 (0.79) 3.16 (1.16)

PersonaGPT 3.07 (1.34) 3.03 (1.31) 3.29 (0.95) 3.40 (1.11)

Human evaluations were collected using a platform that allows anonymous users to have short,

8-turn conversations with an unknown (either DialoGPT or PersonaGPT) persona model. In total,

we collected 100 full conversations (800 total responses). After each conversation, the evaluator is

asked to rate the agent in several categories:

• Consistency (1-5): how much did the agent’s responses agree with each other? 1 = conflicting,

5 = perfectly consistent.

• Engagingness (1-5): how engaging were the agent’s responses? 1 = aloof, generic; 5 =

informative, rapport-building.

• Coverage (1-5): how many of the personality facts did the agent exhibit correctly? 1 = less

than 20%, 5 = 100%.

• Felicity (1-5): how sensible are the agent’s responses? 1 = non-sensible, 5 = grammatically

and semantically correct.

In Table 6.5, we compare PersonaGPT with the best performing baseline, the fine-tuned DialoGPT.

We report the average ratings for each metric along with the standard deviation in parenthesis.

Interestingly, the biggest difference between the two models are the coverage scores. On average,

PersonaGPT exhibits 60+% of persona traits correctly during conversation, whereas DialoGPT

exhibits around 20-40%. To illustrate some finer points of their differences, we provide example

human-agent interactions in the Supplemental Materials.
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6.7.2 Persona Identifier Evaluation

To answer Q2, we evaluate the identifier model based on the accuracy of the estimated persona i(g),

given the input trajectory. We train i and k on conversations collected with 1,283 unique training

personas from the PersonaChat dataset. Each persona consists of 3-5 persona facts, which are drawn

from a pool of 6,735 unique persona facts. At test time we use a nearest neighbor model to retrieve

the top-k relevant persona facts from the pool of 6,735 facts. There are 129 test set personas (i.e.,

collection of 3-5 persona facts) that are not present in the training set. Since there is no overlap

between the training and testing personas, we are evaluating the identifier network’s capability to

represent out-of-distribution persona information. We compare the identification model against

several baselines:

• Bag-of-Words (BoW): sum of one-hot vectors of the tokens in the dialogue trajectory.

• Bag-of-Embeddings (BoE): sum of GloVe embeddings [27] of dialog tokens.

• LSTM: long short-term memory (LSTM) network [28, 29] over dialog tokens.

• MLP-BERT: feed-forward network trained on averaged sentence-level embeddings obtained

from BERT’s [30] representation of dialog history.

• MLP-GPT: feed-forward network trained on the last GPT-2 hidden state.

The baseline models (BoW, BoE, LSTM, MLP-BERT, MLP-GPT) are all trained using binary

cross-entropy loss over each of the 6,735 possible persona facts (0 = not present in persona, 1 =

present in persona). At test time, the top-k logits of the outputs are used to obtain the relevant

personas. We use the following information-retrieval metrics to evaluate each model:

prec@k = |%̂
⋂

% |/:

rec@k = |%̂
⋂

% |/|% |.

Here, | · | denotes the cardinality of a set. %̂ is the set of retrieved persona facts (either based on

nearest neighbors or top-k logits), and % is the ground truth set of persona facts.
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Table 6.6: Performance of various identifier models on observed dialog trajectories from PersonaChat

Model Prec@1 Prec@5 Rec@5 Rec@10
BoW 33.8 25.3 28.3 49.4
BoE 37.7 26.9 30.1 51.0
LSTM 42.7 29.2 32.7 53.2
BERT 37.6 26.6 29.9 51.1
GPT-2 30.8 24.5 27.3 48.3

Identifier 86.2 58.3 65.3 82.8

Table 6.6 summarizes the results of the various identifer models. Our identifier model clearly

outperforms the baselines. Although a wide variety of embedding methods were used to represent

dialog history, their results are quite similar. The key difference appears to be the authenticator loss

used to train our identifier (Eqn. 6.17).

6.7.3 Evaluation of Authentication Policies

We answer Q3 by evaluating the full authentication pipeline performance based on generated dialog

between the authenticator and various input personamodels. We fix the PersonGPTmodel parameters

\!" for conditional decoding. We generate synthetic conversations between the authenticator and

each of the 129 unseen test set persona profiles. For each test set conversation, prec@k and rec@k

scores are reported based on the estimated persona (using the learned identifier). We compare with

the following baseline policies:

• LM: fine-tuned DialoGPT model without any input persona traits during decoding.

• Persona Model: another persona model with randomly sampled persona profiles.

• Random Policy: uniformly sample a question from the action space at each turn.

• Human Policy: using the aforementioned platform, we collect a second set of 100 human-

PersonaGPT conversations where the user is not given the persona traits beforehand. At the

end of each conversation, the user selects a ranked list of guesses from a list of 20 candidates

persona traits to match the input agent’s profile.
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Table 6.7 compares the various authentication policies. Interestingly, using even the random policy

of uniformly sampling the actions can be more revealing than non-goal oriented dialog such as LM

and persona. In many of the generated conversations between LM-PersonaGPT and PersonaGPT-

PersonaGPT, the two models expand upon 1 or 2 topics without ever discussing other topics relevant

to their personas. In contrast, by often forcing the input agent to switch topics, the random policy

ignores signals of relevant persona information. Meanwhile, we find that our authentication policy

strikes a balance between both worlds: it covers more persona traits as measured by rec@5 and

rec@10 while covering at least 1 relevant persona trait in the majority of conversations.

Table 6.7: Comparison of verification policies on various input persona models

Policy Prec@1 Prec@5 Rec@5 Rec@10
LM 57.4 40.0 45.1 67.4

Persona 69.8 39.1 44.0 63.5
Random 72.9 42.3 48.3 70.2
Human 68.6 56.0 63.0 -
Ours 83.7 53.0 59.9 80.9

For human policy, we are unable to obtain an accurate rec@10 for human evaluations since

a non-trivial number of participants selected less than 10 choices out of 20 candidates. Since

human evaluators were instructed to guess the persona beforehand, it appears that some level of

goal-orientation can improve the diversity (in terms of persona coverage) of generated conversations.

However, our verifier policy is able to discover more effective ways of interaction compared to non

goal-oriented and human policy baselines. In the next section, we provide snapshots of generated

conversations between PersonGPT and various authentication policies.

6.7.4 Ablation Study

In addition to the PersonaGPT model, we are also interested in the performance of the authenticator

policy against other input models. For example, how well does our policy fair against models

with less capacity to incorporate persona information? What about against models with lower

decoding quality? We generate several synthetic conversations between our authenticator and several

variations of persona models:
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• Full Persona: full persona model.

• Weak Persona: persona model with higher nucleus sampling size (? ∈ [0.30−0.8]) [31] to capture

less sensible models.

• Transition Model: model with either randomly initialized or no persona inputs (defaults to

non-personalized decoding).

We use the transition model to serve as a baseline in which persona information is not incorporated

in the input dialogue agent. Additionally, we include a “weak persona” model baseline, which in

corporates persona information but suffers from decreased overall felicity. We randomly sample

persona inputs from the full set of 1, 412 personas and report the mean prec@k and rec@k

performance across generated conversations. Table 6.8 compares authenticator performance against

these persona model variants. As expected, the non-personalized transition model did not conform

to given persona profiles, and the authenticator was most affected by the drop in personalization. By

contrast, the authenticator was still able to maintain some performance against a much less felicitous

persona model.

Table 6.8: Authenticator performance against variations of the input persona model

Input Model Prec@1 Prec@5 Rec@5 Rec@10
Transition 17.1 17.1 19.4 40.6

Weak Persona 79.8 49.5 55.9 74.1
Full Persona 86.0 53.2 60.0 77.8

6.8 Generated Conversations

In this section, we provide snapshot of conversations between human-PersonaGPT with full

knowledge of persona (conditional decoding evaluation), human-PersonaGPT conversation without

persona knowledge (authentication setting), human-DialoGPT interaction, PersonaGPT self-play,

and authenticator-PersonaGPT interaction. Furthermore, we include snapshots from the API

interface for the different experimental settings.
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6.8.0.1 Human-Agent Interactions

Figure 6.2 illustrates the set of instructions given to the user when they first start an experiment with

the persona model. Note that the actual persona model is randomly selected to be either the baseline

model (DialoGPT) or PersonaGPT. In this evaluation setting, the user is given the full persona of its

partner beforehand. After 8 turns of conversation, the user is asked to rate the conversation based on

Figure 6.2: Experiment 1 (conditional decoding evaluation) instructions.

metrics described in the Experiment Section. This interface is shown in Figure 6.3.

Table 6.9 provides a point of comparison with human-DialoGPT over the course of an 8-turn

conversation. Although DialoGPT is capable of also incorporating persona information, it does not
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Figure 6.3: Experiment 1 post conversational survey.

make the transition between persona facts as frequently. In this case, appearance details (short hair)

and pets (living with two dogs) get ignored completely in favor of gym and running. Empirically,

we find that both models seem to struggle with negatives (e.g., I hate apples vs. I like apples),

particularly when the adjective used are somewhat neutral.

Table 6.9: An interactive example of human-DialoGPT conversation over 8 turns

Role Response
Human hello, how are you?

DialoGPT i’m good thank you. how about you?
Human doing well. where do you go to the gym?

DialoGPT the gym i usually go to is the weight room.
Human got it. what weights do you lift?

DialoGPT i like to lift weights at the weight room. i am in the process of training.
Human training for what?

DialoGPT i am training for running. i am trying to get better at it.
Human got it. i run as well.

DialoGPT i’m trying to get better at the weight room, but i’m not sure yet
Human not sure about what?

DialoGPT i mean i am pretty sure i am not sure. what about you
Human i do not lift weights, but i probably should

DialoGPT well if you think you are good, then why not try
Human i do not own weightlifting equipment

DialoGPT do you have a job you could look into?

Persona Facts
1. I go to the gym regularly. 2. I’ve short hair.

3. I like doing the treadmill and rowing machine. 4. Two dogs live with me.
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Table 6.10 shows an example of an 8-turn dialog between a human evaluator and PersonaGPT.

We note that PersonaGPT, along with other persona models we have evaluated, seem to struggle

with exact numbers. For example, although the persona says 100 years of age, PersonaGPT may give

95 as shown here. Turn 6 shows a situation in which PersonaGPT changes the topic in conversation

to a topic relevant to its persona. Its persona enjoys “wine and dancing in the moonlight”, and it

seems to steer the conversation toward this topic from the current discussion about age and lifespans.

Figure 6.4 shows the instructions for the human policy evaluation. In this setting, the user is asked to

Table 6.10: An interactive example of human-PersonaGPT conversation over 8 turns (prior knowledge
of persona given, conditional decoding evaluation)

Role Response
Human hey how are you

PersonaGPT i’m great, thanks. and you?
Human doing good have to finish a paper, what do you do for a living?

PersonaGPT i’m in between jobs right now, but i’m strong for my age.
Human and what age would that be

PersonaGPT i’m 95 but i’ve always been strong for my age
Human 24 but 95 shouldnt you be considering retirement

PersonaGPT yes. but i am really into the idea of live forever

Human huh what is your estimated lifespan or
do you not have biological constraints like that

PersonaGPT i’m 95. and you?
Human uhh i already told you that i’m 24

PersonaGPT that’s old enough. do you drink wine?
Human from time to time only red tho

PersonaGPT red wine? you must be quite the drinker.
Human uhh idk how you made that leap

PersonaGPT because i drink a lot

Persona Facts
1. I am very strong for my age. 2. I feel like I might live forever.

3. I am 100 years old. 4. I like to drink wine and dancein the moonlight.

guess the persona of their partner without prior knowledge. The question policy is fully determined

by the user, and they are asked to rank the persona facts (out of 20 candidates) after 8 turns.

The ranking interface is shown in Figure 6.5.

Table 6.11 gives an example interaction between a participant and PersonaGPT during human
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Figure 6.4: Experiment 2 (human policy evaluation) instructions.

policy evaluation. In this setting, the user is asked to guess the persona of their partner without

prior knowledge. The question policy is fully determined by the user, and they are asked to rank the

persona facts (out of 20 candidates) after 8 turns. We find that human policies tend to be closer to

non goal-oriented dialog than learned policies. Users often ask follow-up questions for clarification

as seen in turns 5 and 8.

When the question ventures outside of the persona facts (turn 6), we find that PersonaGPT is

able to find interesting answers despite missing the corresponding information in its context. It

is interesting to note that PersonaGPT is capable of adapting to misspellings e.g.,“her” instead of

“here” and inconsistent punctuations.

6.8.0.2 PersonaGPT Self-Play

Table 6.12 illustrates an example conversation between two PersonaGPT models contextualized by

different persona facts. Although used as a baseline question policy, we notice that simply using

another persona model to conduct conversation does not always lead to revealing conversations
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Figure 6.5: Experiment 2 post conversational survey.

about the underlying persona of either agents. For Bot 1, 2 out of the 5 persona facts are discussed

throughout the course of conversation whereas only 1 persona fact is revealed about Bot 2 (the input

persona model to be authenticated). Notice that since Bot 1 is the lead, it drives the conversation

toward topics within its set of persona facts. We notice that this is common in the general case: when

another persona model is used as a question policy, it tends to drive the conversation toward its set

of persona facts. Thus, the question policy performs well insomuch as the persona facts are similar.

6.8.0.3 Consent

We obtained IRB approval for the data collection. When users register for the experiment, the

following agreement and potential risk statements are required to be read and signed off on before

user registration.

You will be asked to engage in an 8-10 turn, short dialog with a chatbot. The chatbot has 4-5

personality traits, which will be revealed to you at the start of the experiment. At the end of the

conversation, you will be asked to rate the chatbot on a series of performance metrics.

148



Table 6.11: An interactive example of human-PersonaGPT conversation over 8 turns (persona
information not known a priori, user asked to guess)

Role Response
Human hey whats poppin

PersonaGPT hello, i’m just hanging out here, you?
Human same her got some work to do today

PersonaGPT what do you do? i’m a finance major
Human im a phd student in computation biology

PersonaGPT nice do you like it?
Human its okay has its ups and downs. what do you think of finance

PersonaGPT i do not have a whole lot of money right now,
but i plan on going back in a few years.

Human no i meant the major

PersonaGPT i’m not sure what i want to do after i graduate,
but i want to go to business school

Human ohh how many kids do you want?
PersonaGPT i’d love to have 10, but it is a lot of work. do you have kids?

Human nope too young maybe someday
PersonaGPT i’d like to have kids one day, maybe i’ll get some

Human like buy them?
PersonaGPT maybe one day, yeah. what do you do for fun?

Persona Facts

1. I drive a BMW. 2. I graduated from Yale in 2011
with a degree in finance.

3. I plan to go to business school next year. 4. My parents are very wealthy bankers.

Purpose of This Experiment. The purpose of this research study is to evaluate the performance

of several state-of-the-art open-domain conversational agents developed through various learning

algorithms. Automatic evaluation of conversational agents has proven to be difficult, and thus

human evaluation is necessary to assess the performance of these agents.

Your rights to participate, say no, or withdraw. Participation is voluntary, you may choose

not to participate at all, or you may refuse to participate in certain procedures or answer certain

questions or discontinue your participation at any time without consequence.
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Table 6.12: An example of self-play between two randomized PersonaGPT models

Role Response
Bot 1 hi there, do you like broadway?
Bot 2 i love it! you ever played on broadway?
Bot 1 no i haven’t. but it sounds like fun. where do you work?
Bot 2 i work in retail. how about you?
Bot 1 i am a psychology major. that’s awesome!
Bot 2 oh that sounds like a tough major.
Bot 1 do you have any pets?
Bot 2 yes, i’ve a pet turtle. do you have any pets?
Bot 1 i have one dog. he’s a collie mix.
Bot 2 oh i love dogs, they are so cute.
Bot 1 do you have any other hobbies?
Bot 2 i am an expert on chewing gum.
Bot 1 oh that’s interesting! do you enjoy doing it?
Bot 2 i do, but it does not make me gassy. i could live with that.
Bot 1 it helps with gas. makes sense.
Bot 2 do you go for runs?

Persona 1 Persona 2
1. I am a psychology major. 1. I don’t pick up my toys.
2. I enjoy broadway shows. 2. I have a pet turtle.

3. I’m a Steelers fan. 3. I like to play with my dolls.
4. My favorite band is the Avett Brother. 4. My best friend lives next door.

6.9 Social Impact

Beyond the positive impacts, there are numerous potential avenues for misuse of the proposed

technology. We list some notable ones below:

• Mistakes in persona identification can result in mistakes in granting / denying services for

persons or groups of persons. For example, persona facts (or sets) for which the persona

identifier possesses higher error rates can potentially lead to poor access for those potential

users.

• Similarly, verifier errors (e.g., poor questions delivered) with certain actions (e.g., talk about

hobbies, talk about travel) may have disproportionate less consequences compared to more

sensitive topics (e.g., talk about gender, talk about politics).
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• Although the verifier is meant to do authentication, it can potentially be abused to conduct

conversations for the purposes of mining persona information. For example, an application

using the verifier can abuse building rapport with human users to mine personal information.

We did not explore ways to prevent this type of misuse, but future work must focus on either

counter-measures or methods of prevention against such cases.

• Algorithmic authentication and persona modeling can potentially greatly accelerate the

development of human-like dialog generation. Deployment considerations of conversational

authentication must carefully consider the impact of persona modeling on the potential

increase in the capacity for general chatbots to conduct deceptive / exploitative interactions

(e.g., impersonation, personalized advertising, political manipulation) and their potentially

detrimental impact on human labor conditions.

Additionally, note that since the persona models used in our experiments are built from a language

model pretrained on large-scale datasets, they have been shown to contain various cultural biases

[32, 33]. Finetuning on PersonaChat certainly do not alleviate these issues, as the personas

themselves were not curated against such biases. For example, the term “gender” used in this study

is defined as gender perceived by the annotators of the PersonaChat dataset. Its interpretation may

not generalize to other real world settings.

6.10 Conclusion and Discussion of Limitations

In this paper we proposed an authentication pipeline whose questions increase the mutual information

between the dialogue trajectory and an input agent’s underlying persona features. Nonetheless, there

are several limitations to our current approach. For example, our approach assumes “good faith" – it

cannot handle persona models that intentionally hide their persona characteristics. Additionally,

more sophisticated verification should distinguish between direct and indirect expressions of persona.

For example, a bot with the persona “I like to tell jokes" may embody the persona through sarcasm

rather than through self-description.
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Finally, there are some intrinsic limitations with respect to the language modeling approach

for generative dialog. In Table 6.10, we illustrated a case in which PersonaGPT fails to portray

precise persona facts such as “100 years old” vs. “95 years old”. In general, GPT-based LMs

suffer from this trade-off between sensibility of responses (i.e., lack of repetitive or degenerate

responses) vs. precision of the decoded responses. This is simply due to the top-k and nucleus

sampling approaches for decoding, which uses randomization through noise to prevent degenerate

responses. The injection of noise in the response decoding process intrinsically produces a barrier

to precision. Alternative approaches for repetition penalty can potentially eliminate this trade-off.

Additionally, GPT-based models also suffer from high time-costs at inference time. This is because

auto-regressive decoding with self-attention costs $ ( 2) where  is the total number of tokens in

the dialog history. Empirically, we found that quantization and model compression helped during

employment (<1 second per response on CPU), but the benefit cannot compare to bringing the

inference cost to linear time. In order to scale to long dialogs (e.g., conversations that lasts 20+

turns), some form of compression of dialog histories (e.g., dialog level latent code) may be needed

to decrease the dependence on previous tokens.
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