
WAVELET SCATTERING AND GRAPH REPRESENTATIONS FOR ATOMIC STRUCTURES

By

Xavier Brumwell

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science, and Engineering – Doctor of Philosophy

2021



ABSTRACT

WAVELET SCATTERING AND GRAPH REPRESENTATIONS FOR ATOMIC STRUCTURES

By

Xavier Brumwell

Machine learning for quantum chemistry has been gaining much traction in recent years. In this

thesis, we address the problem of predicting the ground state energy from a collection of atoms

defined by their positions and charges. The ground state energy of an atomic structure is invariant

with respect to isometries and permutations. Additionally the energy is multiscale in nature and

varies smoothly with movements of the atoms. We develop a wavelet scattering model which

encodes all of these properties and scales better than commonly used computational chemistry

models. We first demonstrate that this representation has excellent predictive ability on amorphous

lithium silicon structures. We extend this model and improve its generalizability as displayed by

predictions on several types of lithium silicon systems which are not included in the model training.

Finally we take some of the principles from the wavelet scattering approach and apply them to a

graph based model to generate a rich representation. This requires developing novel ways to encode

the bond angle and multiscale aspects of the atomic structure for the graph. We test this model on

a data set of quantum molecular dynamics simulations and get results that are competitive with the

state of the art.



ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Matthew Hirn, for the guidance he has provided over

the span of my graduate program. He has been extremely helpful in my transition into the world

of research. He has also demonstrated patience and kindness that I hope to emulate toward others

throughout my life.

I would also like to thank the members of my committee for giving their time. Drs. Alex

Dickson, Mark Iwen, and Yue Qi have all been encouraging and helpful in their critiques and

suggestions.

I am grateful for the collection of students and postdocs with whom I have been able to work

over the last five years. Paul Sinz spent much time listening to my ideas and was always willing to

help out. Jialin Liu, Kwang Jin Kim, andMichael Swift were gracious collaborators frommaterials

science.

My wife, Emily, has been my greatest source of support. She has encouraged me through the

challenges and celebrated with me in the victories. She made sacrifices so that I could succeed.

I am thankful that God has blessed me with this opportunity. To Him be the glory.

iii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Scientific discovery: Inputs, outputs, and supervised machine learning . . . . . . . 1
1.2 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Machine Learning and Quantum Chemistry . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Necessary Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Adapting Machine Learning to Chemistry . . . . . . . . . . . . . . . . . . 9

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2 WAVELET SCATTERING . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 A Basis in Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Design of Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Combining Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Setting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Fast Frequency Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Prior Work on Scattering Transforms . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 3 LEARNING A MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 4 IMPROVING GENERALIZABILITY . . . . . . . . . . . . . . . . . . . . 44
4.1 Alteration of Our Previous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Extrapolation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Diffusion Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Large Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Bulk Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Ablation Study of Adaptations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER 5 THE PATH ON GRAPHS . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 Translating Voxels to Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Expanding Model Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Training with Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 6 AUGMENTING THE REPRESENTATION . . . . . . . . . . . . . . . . . 71
6.1 Inclusion of Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iv



6.2 The Coupling of Scales via Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.1 DiffPool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.2 Pooling in the Context of Atoms . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



LIST OF TABLES

Table 4.1: Numerical results for ML predictions on the test data from the amorphous
dataset and the three extrapolation tasks from the model trained only on the
amorphous data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4.2: Diffusion barriers (in eV) along various paths as predicted by our ML model
and DFT. Paths 1-5 start from the same Li0.2Si structure and path 6 is in Li0.5Si. 51

Table 4.3: Numerical results for ML predictions with only zero and first order features
(compared to zero, first, and second in Table 4.1) on the test data from the
amorphous dataset and the three extrapolation tasks from the model trained
only on the amorphous data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.4: Numerical results for ML predictions with the non-randomized model. The
models are trained without random feature selection at each step of the greedy
OLS algorithm, i.e., at each step all features are available for selection. . . . . . . 58

Table 4.5: The results are much worse than the other models considered for testing on the
extrapolation data. This is expected due to the nature of the sampling and the
way the effect that had on the model. . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 6.1: We compare seven methods across the molecules of MD17. SchNet was the
earliest application of a neural network on this data and was later adapted
to PaiNN. DimeNet was the first work to include angles explicitly within
the neural network framework and test on MD17. ACE and FCHL are the
state-of-the-art at the time of writing. . . . . . . . . . . . . . . . . . . . . . . . 78

vi



LIST OF FIGURES

Figure 1.1: Models trained on data generated from the function H = sin(G) + N (0, 0.25).
On the left, the learned model is highly unstable due to overfitting. In the
middle, the learned model is improved due to a higher number of training
points. On the right, the learned model is improved by restricting the number
of learnable parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2.1: Top row left to right: Density plot cross sections in the GI-plane of atomic
orbital wavelets for (=, ℓ, <) = (3, 0, 0), (3, 1, 0), and (3, 2, 0). Bottom Row:
Corresponding plots for the hydrogen atom orbitals (3B, 3?, and 33 orbitals,
respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.2: Cross-sections of the first order nonlinear, equivariant maps f(dG ∗k=ℓ 9 ) (D).
The log2 scales 9 = 0, 1, 2, 3, 4 increase from left to right, respectively, and
the angular quantum number ℓ = 0, 1, 2 from top to bottom, respectively, with
= = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.3: Cross-sections of the second order nonlinear, equivariant maps f(f(dG ∗
k=1ℓ1 91) ∗k=2ℓ2 92) (D) for (=1ℓ1 91) = (1, 3, 1), which is the second from the
top and second from the left in Figure 2.2. The log2 scale, 92, and ℓ2 vary the
same as in Figure 2.2, and =2 = 3. . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.4: This tree diagram displays the general structure of a wavelet scattering rep-
resentation. Each empty node is a 3D representation. Each filled in node
is a feature of the representation. Each split represents a choice among the
wavelets in the dictionary. Note that we can extract features from represen-
tations at any of the layers, and we can extend this structure as far down as
computation allows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.5: Molecule in state G = {(I: , ': )}:=1,6. The neighborhoods of each '8 repre-
sent where k0

1,0(D − '8) ≥ n>. For this molecule, we would set the minimum
width large enough so that the disc surrounding ': intersects the point '; . . . . 29

Figure 3.1: Histogram of training set energies versus concentration U in !8U(8. Color
indicates the number of training items in each bin on a logarithmic scale. . . . 39

Figure 3.2: Left: Regression RMSE vs model size. Left: weights vs model size . . . . . . . 40

Figure 3.3: Statistics of selected wavelet coefficients. From list to right: channel 2, power
@, scale pairing ( 91, 92). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



Figure 3.4: Histogram of training set energies versus concentration U in !8U(8. Color
indicates the number of training items in each bin on a logarithmic scale. . . . 42

Figure 4.1: Errors on the amorphous LiUSi database as a function of number of features
included in the model on a log-log scale. Error on the training set is shown
in red, the validation set is shown in green, and the test set is shown in blue.
The training error is a decreasing function of the number of features, whereas
the validation and testing curves are not. The value "★ that minimizes the
validation curve is the algorithm’s best estimate for the optimalmodel that best
balances under- and over-fitting of the training data. It has good agreement
with the minimum of the test error curve. . . . . . . . . . . . . . . . . . . . . . 45

Figure 4.2: Log-log plot of RMSE in diffusion barrier prediction averaged over the five folds. 50

Figure 4.3: Plots of the six diffusion barrier paths (blue) and (top row) model predictions
in red, (middle row) model predictions and test data shifted by their respective
starting-point energies �0, and (bottom row) convergence of models with
increasing number of features used for predictions of diffusion barrier curves.
The large radii circles coincide with fewer features used starting from a model
with a single feature. The models quickly converge in shape and progress
towards the red curve which is the aggregate model prediction. There is a
curve for each choice of number of features " ∈ {1, 21, 41}. . . . . . . . . . . 52

Figure 4.4: A log - log plot of average of RMSEs of models on the interpolation test
set and on all types of large states (scratch, 2x1x1, 2x2x2). Here, y-axis =
log(eV/atom), x-axis = log(number of features in models). The curves labeled
2x1x1, 2x2x2, and scratch on right are the RMSE of energy error predictions
of the 5 aggregate models separated by test folds. On the left panel, we see
that the location of the minimum (i.e., the optimal number of features) for
the interpolation test error is similar to the optimal number of features for the
extrapolation error on larger states, althoughmodel over-fitting is significantly
more costly for the larger states’ predictions. . . . . . . . . . . . . . . . . . . . 53

Figure 4.5: Energy per atom of hydrostatically strained LiUSi structures as a function
of volume per atom. Energies are shifted vertically to avoid overlap: U

increases down the vertical axis. Error bars on ML prediction show the
standard deviation of predictions of the the 5-fold cross-validated models for
each structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



Figure 4.6: (left) Comparison of DFT-calculated bulk modulus and ML-predicted bulk
modulus. Modulus was calculated through a parabolic fit to points within ±
4% strain of the energy minimum. Error bars on the ML prediction show
the standard deviation of fitted modulus across the 5-fold cross-validated
models. Averaging across the folds leads to a prediction with MAE of 3.3
GPa compared to the DFT values. (right) A log - log plot of average of
RMSEs of models on the interpolation test set from Section 4.1 and on bulk
modulus data. Here, y-axis = log(eV/atom), x-axis = log(number of features
in models). Green curve is the average of the RMSEs for each fold with
error bar given by the standard deviation over the five folds. As for the large
states (see Figure 4.2.2), we see that the location of the minimum (i.e., the
optimal number of features) for the interpolation test error is similar to the
extrapolation error for the bulk modulus states. . . . . . . . . . . . . . . . . . . 56

Figure 5.1: A toy example of the benefits of training with forces. For a two-atom system
we consider energy and force derived from the Lennard-Jones potential. The
y-axis measures energy and forces. The x-axis describes distance between
the two atoms. As the input to a three layer fully-connected network, we
take powers of the inverse distance: ( |'1 − '2 |−?)? : ? ∈ [1, . . . 9]. The
training cuts in the plots indicate the endpoints for the training sampling. In
the top left, we get good results for both energy and forces when training on
only energy over the full energy surface. However, in the bottom left, we
see that when the extreme energy regions of close distances are excluded, the
predictions are drastically worse. In the bottom right, we notice that with the
inclusion of forces, we are able to predict the close distance energies fairly
accurately without any training data from that region. . . . . . . . . . . . . . . 70

Figure 6.1: Filters learned for processing ethanol. The top third are from the first layer,
the middle third are from the second layer, and the bottom third are from the
third layer. For an intuitive ideal of how these are applied, consider '8 to be
at the center of the image and ' 9 to be just above '8. The color displays the
filter response as a function of the location of ': . . . . . . . . . . . . . . . . . 76

Figure 6.2: On the left, we see atoms forming two planes: U and V. The angle between
these planes is the torsion angle. If the atoms are pooled to the positions
on the right, then the angle between the new nodes will be a three-body
representation of the torsion angle. . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



CHAPTER 1

INTRODUCTION

1.1 Scientific discovery: Inputs, outputs, and supervised machine learning

Scientific inquiry is driven by learning the connection between inputs and outputs. For example:

to generate a mathematical proof, one must discover the path from assumption (input) to conclusion

(output) through the use of mathematical truths. Vaccines are created by leveraging scientific

knowledge about how a chemical input will behave and selecting a particular input configuration

such that the desired output (generation of antibodies) will be achieved.

The traditional approach to this discovery is through the derivation of closed form equations

which match the observations of a process. Whether the calculations are direct or iterative, at the

end there is some set of governing equations which describes with some accuracy the process.

The paradigm of machine learning is a departure from this standard practice [1, 2]. In supervised

machine learning, the purpose of the model design is to position oneself in reach of discovery.

Rather than writing down a solution to the problem, one devises a structure that has certain

flexibility, and that structure then will converge to the solution in ideal circumstances.

In a supervised machine learning setup, one has an input data space X and an output data space

(labels) Y. Let us assume that X ⊆ R3 and Y ⊆ R which is sufficient to cover many cases in

machine learning. One acquires a training set consisting of =C pairs drawn from X ×Y:

Training data = {(G8, H8) ∈ X × Y : 1 ≤ 8 ≤ =C} .

For a problem of interest in supervised machine learning, we assume that for any (G, H) ∈ X × Y,

there is an unknown function 5 : X → Y which relates G to H.

H = 5 (G) , ∀ (G, H) ∈ X × Y .

The goal in supervised machine learning is to infer the function 5 from the training data. In

order to construct a machine learning model, one must make an educated guess as to the type of

1



function 5 . This means selecting a space of functions, F , called the hypothesis space, to which the

machine learning model will be constrained. Then, using the training data, one selects a function

5★ ∈ F that best approximates 5 according to some selected metric. One commonly used method

is minimizing the mean squared error on the training set:

5★ = arg min
5̃ ∈F

1
=C

=C∑
8=1
|H8 − 5̃ (G8) |2 . (1.1)

There are several challenges with this approach. The function 5★ may be elusive, and it may be

incorrect. The first problem deals with optimization. While it is possible to derive closed-form

solutions directly in some cases, e.g. ridge regression, the high dimensional hypothesis space,

F , of many problems in supervised machine learning requires one to iteratively optimize as a

computationally tractable method of approximating 5★. Generally, this process is not guaranteed

to reach the best solution in the entire (global) function space, but will instead converge to a function

that is only locally optimal. Much research is focused on developing optimization methods which

converge to globally optimal functions with higher probability and speed [3, 4, 5].

Figure 1.1: Models trained on data generated from the function H = sin(G) + N (0, 0.25). On the
left, the learned model is highly unstable due to overfitting. In the middle, the learned model is
improved due to a higher number of training points. On the right, the learned model is improved
by restricting the number of learnable parameters.

The second problem is addressed through regularization. When training on noisy data, espe-

cially if the data set is small and the machine learning model has many degrees of freedom, it

is possible the model will adapt to the patterns in the noise. When this happens, the model is

2



"overfitted" to the training data, and is likely not the best predictor for the test data. Figure 1.1

shows an overfitted model and two solution pathways to avoid overfitting. Regularization imposes

additional restrictions on the parameterization of the model. Unlike the design of the machine

learning architecture, regularization does not block areas of the hypothesis space, but imposes

penalties on them. This changes our minimization process to

5★ = arg min
5̃ ∈F

1
=C

=C∑
8=1
|H8 − 5̃ (G8) |2 +Ω( 5̃ ) , (1.2)

for some penalty function Ω. If 5 is parameterized by weights, a common selection is a penalty

dependent on the magnitude of the weights. With smaller weights, or with fewer large weights, the

model is more stable to perturbations in the data and will generally be a smoother function.

These problems can only be mitigated if we have selected a reasonable hypothesis space. If

5 ∉ F , then we have restricted the hypothesis space unsuitably for the problem, and there will

be some irreducible error on the predictions. Even with the universal approximation theorems for

neural networks [6, 7, 8, 9, 10], certain network designs may preclude the ability to approximate

particular functions well. For this reason, one must take care in how the construction of the model

affects the hypothesis space by making design choices specific to the problem at hand.

1.2 The Curse of Dimensionality

Different elements related to machine learning have improved over time. The reaches of

computation have expanded. Optimization methods have become more refined. While we do

address these areas, our main contribution is in designing hypothesis spaces F for machine learning

algorithms. The appropriate hypothesis space can be vast in many machine learning problems. The

size of the hypothesis space scales with the dimension of the inputs and makes finding the optimal

model 5★ improbable in most situations. This problem - the curse of dimensionality - manifests

itself in twoways inmachine learning. The optimization takes place in a high-dimensional, typically

non-convex space, which means that convergence to the best solution is unlikely. Additionally, in

the absence of a carefully constructed hypothesis space F , one must have a number of training

points =C that grows exponentially in the number of input dimensions 3 to cover the input space.

3



Consider a Lipschitz function 5 (G). To get a good approximation of this function, we need

to sample well across its domain. If we consider a domain of [0, 1]3 and the ℓ∞-norm as the

distance measure, then to ensure that no point in the domain is no further than n to at least one

other point, we need to sample = = $ (n−3) points. Since 5 is Lipschitz, this also guarantees that

the approximation error will be less than �n where � is the Lipschitz constant of 5 . However,

the scaling of the sampling requirement is too much for problems in high dimensions. It can

be mitigated with increased smoothness of the underlying function, but typically one does not

have control to freely adjust the target function in machine learning problems, and furthermore,

to circumvent the curse of dimensionality the degree of smoothness would need to scale with

dimension 3, which is unrealistic.

In image processing [11], we can see a clear illustration of the problem of high dimensional

data and also a solution. For a problem in image classification one has the space of images X and

the class labels of the images Y. The function H = 5 (G) assigns a class label (e.g., cat, dog) to

each input image G. Here, the input data, which is an image, is quite high-dimensional since each

pixel is a separate dimension. For an # × # grayscale image, each data point is of dimension

3 = #2. A color image is even larger at 3 = 3#2 with standard practice being separation along

red, green, and blue color channels. However, the data exists on a geometric structure - the grid

- which can be leveraged to reduce the the dimension of the hypothesis space F . By convolving

an image with a filter, one assumes that the function which characterizes the interactions between

neighboring pixels is uniform across the image. This approach significantly reduces the dimension

of the functional space and has become the bedrock of modern image processing research.

Let us take an image G : Z2 → R and a filter ℎ : Z2 → R with small support around the origin.

Discrete convolution is defined as

G ∗ ℎ(D) =
∑
E∈Z2

G(E)ℎ(D − E), D ∈ Z2 (1.3)

With a translation C ∈ Z2 we define GC (D) = G(D − C). By convolving the filter with the translated

image and defining Ẽ = E − C we can show that the convolution operation is equivariant with respect

4



to translations.

(GC ∗ ℎ) (D) =
∑
E∈Z2

GC (E)ℎ(D − E)

=
∑
E∈Z2

G(E − C)ℎ(D − E)

=
∑
Ẽ∈Z2

G(Ẽ)ℎ(D − C − Ẽ)

= G ∗ ℎ(D − C) = (G ∗ ℎ)C (D) (1.4)

By constraining the hypothesis space, it is more computationally tractable to obtain a good approx-

imation 5★ of the true label function 5 if the constraint is appropriate.

In this case, the hypothesis space has been constrained to the space of functions which are

equivariant to translation. But to yield an image prediction, one needs an output which is invariant

with respect to translations. For most image classification tasks, the label has no dependence

on the position of the object of interest in the image. This means that the output of a neural

network predicting this label should have no dependence on translations. To move in that direction,

the set of convolved images are subsampled (commonly referred to as pooling), reducing the

dimension of the image. Nonlinearities are also included to increase the size of the hypothesis

space since convolution alone is a linear operator. Chaining convolutions against learned filters

with subsampling layers and nonlinearities results in a convolutional neural network [12, 13, 14].

Since each constituent function is at a minimum equivariant to translations, the composition of

these functions is also translation equivariant. Eventually, the subsampling will collapse the image

to a single pixel. With no space dimension, the result is translation invariant and can be the input

of a subsequent function which makes the image classification prediction.

There are two important things to note here that may not be immediately obvious. While

translation invariance is what is desired, there is a substantial portion of the model that is translation

equivariant. This is important because although global objects can move indiscriminately (a car

on the left side vs the right side of an image), there is directional information of consequence that

5



is contained in the local scale (tires below vs above the car body). The second point is in regards

to scales. Through the subsampling, we increase the effective size (receptive field) of the filters in

each layer of convolutions. By the end of the network, the filters are acting on global information.

However, it is not the information of every pairwise interaction of pixels, but the aggregates of

the interactions from small neighborhoods. The CNN captures the information from a variety of

scales, but restricts the hypothesis space to only operate on the interactions inside of neighborhoods

for each scale. We see from this example how dramatically the hypothesis space that we select can

constrain our model. This can be very helpful if the constraints are encoded so that the hypothesis

space is restricted but not collapsed beyond what is necessary.

1.3 Machine Learning and Quantum Chemistry

In this thesis, we look at the application of supervised machine learning to quantum chemistry.

This field has had explosive growth over the last several years yielding successful kernel-based

[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] as well as neural-network based models [26, 27, 28, 29,

30, 31, 32, 33, 34] for predicting physical properties of atomic structures. There are many things

we know to be true about chemical systems which can be leveraged in the learning process. The

input data in this case is the set of positions and charges for each atom in the system which we will

define as

G = {(/: , ': ) ∈ N × R3}#
:=1 (1.5)

for some atomic system G with # atoms. Our primary goal in this thesis will be to predict the

ground state energy of the atomic system using machine learning methods.

1.3.1 Necessary Chemistry

We begin by considering the basis for this type of data and the properties with which it is imbued.

The time-independent Schrödinger equation is a cornerstone of quantum chemistry [35], where �

is the Hamiltonian operator and Ψ is the wave function for an atomic system with #4 electrons and

6



# nuclei.

�Ψ(A1, A2, ...A#4 , '1, '2, ...'# ) = �Ψ(A1, A2, ...A#4 , '1, '2, ...'# ) (1.6)

Solving this eigenvalue problem efficiently and accurately for energy levels � is of intense interest

to the chemical community. The Hamiltonian is

� = −1
2

#4∑
8=1
∇2
8 −

1
2

#∑
�=1

1
"�
∇2
�
−
#4∑
8=1

#∑
�=1

/�

A8�
+
#4∑
8=1

#4∑
9>8

1
A8 9
+

#∑
�=1

#∑
�>�

/�/�

'��
(1.7)

where the terms are the kinetic and potential energy for the electrons (indexed by 8 and 9) and nuclei

(indexed by � and �).

The Born-Oppenheimer approximation constitutes a significant and commonly used reduction

of the Hamiltonian [36]. It operates on the idea that since the scale difference between the electrons

and nuclei is so significant, assuming fixed locations for the nuclei creates only minimal errors in

the model. This approximation reduces the Hamiltonian to the electronic Hamiltonian.

�4;42 = −
1
2

#4∑
8=1
∇2
8 −

#4∑
8=1

#∑
�=1

/�

A8�
+
#4∑
8=1

#4∑
9>8

1
A8 9

(1.8)

which has corresponding electronic wave function Ψ4;42. The second term from the Hamiltonian

disappears because the nuclei kinetic energy is zero and the fifth term, ( nucleus-nucleus repulsion)

is reduced to a constant. We include the latter when considering the total energy which is defined

as

�C>C = �4;42 +
#∑
�=1

#∑
�>�

/�/�

'��
(1.9)

To solve for the energy in the Schrödinger equation, one optimizes over the wave function

Ψ. This is tractable for only the smallest atomic systems. There are a variety of methods which

chemists use to compute molecular energies which offer a trade-off between high accuracy and low

computational cost. Methods that generate properties with usable accuracy will typically scale as

$ (#3) at best. There are many applications in chemistry where high throughput is necessary to

explore the chemical space sufficiently. There are also challenges in scaling to larger systems while

maintaining accuracy and keeping computational costs low. For these reasons, there will always be

a demand for better computational methods in quantum chemistry.

7



The variational method is one means of simplification that allows a faster approach to the

solution. It begins with the principle that the energy resulting from any guessed wave function will

necessarily be an upper bound on the true energy of the ground state. The set of wave functions is

first constrained to those which are physically qualified in that they are continuous everywhere and

quadratic integreble. At this point, it is still intractable to solve for the correct wave function so a

subset must be chosen in some reasonable way. Letting �1 denote the ground state energy,

�1 = infΨ∈H 〈Ψ, �Ψ〉 ≤ inf
Ψ∈H̃ 〈Ψ, �Ψ〉 , for H̃ ⊂ H (1.10)

where H is the Hilbert space of all possible wave functions and H̃ is the subspace defined by

the wave function method [37, 38]. It is not guaranteed that the optimal solution is contained in

the chosen subset, but it can still be a good approximation. However, the optimization remains

challenging because the wave function remains high dimensional. Due to this, it is only practical

to perform this method on small molecules and short timescales.

Density functional theory is another common approach which can be used for much larger

atomic structures [39, 40]. DFT replaces the problem of determining the wave function with the

problem of designing a functional to operate on the electronic density. For some electronic density

=(D) = #4
∫

3A2 · · ·
∫

3A#4 |Ψ(D, A2 · · · A#4 ) |
2, D ∈ R3 (1.11)

one minimizes

� (=) = � (=) +
∫
+ (D)=(D)3D (1.12)

for some pre-defined function � not depending on the system and

+ (D) =
#∑
:=1

/:

|D − ': |
(1.13)

Solving the minimization will yield the ground state energy. The accuracy of that energy depends

upon how well � is defined. Early implementations of this approach lacked in accuracy, but more

recent developments have allowed the method to be useful for a variety of chemical problems. DFT

is not accurate enough for precise computations on small molecules, and it scales as$ (#3) making

it computationally infeasible for the largest structures. But in the middle regime DFT is a popular

compromise to maintain good accuracy while computing properties on large structures.

8



1.3.2 Adapting Machine Learning to Chemistry

In order to efficiently create an effective machine learning representation in this context, one needs

to encode information from chemistry. The total dimension of an input system is 4# with ': ∈ R3

and /: ∈ N. The size of the output space depends on the desired property. The energy of a

molecule is a global feature which is then a single scalar per system. Predicting forces will yield an

output space of 3# - one three-dimensional vector per atom. For the present, let us consider energy

prediction. There are several properties of atomic systems that can be leveraged to reduce the

hypothesis space. In particular, the energy of an atomic system is invariant with respect to global

isometries. While pairwise distances between atoms matter, the locations of the atoms in space

are arbitrary, and therefore translation information can be removed to collapse the input dimension.

Similarly, reflections only imply a flip of the axis which has been placed upon the atomic system and

does not stem from the system itself. Rotations have to be treated more carefully. Taking the angles

of all atom triplets automatically puts us in $ (#3) scaling. But while a system is invariant with

respect to global rotations, local rotational information is important. It is true that all the angles

of a system can be recovered from the complete pairwise distances, but it is unnecessary to place

this burden on the learning algorithm when we know how to compute it. Aside from isometries,

we have permutations. In a CNN, the filters and element-wise functions operate on each pixel in

an identical manner. In an accurate representation of an atomic structure, each of the atoms should

be treated identically regardless of their position or ordering index in the representation. The only

allowable distinction is the atom type.

Scales are another aspect of the representation that must be considered. The nature of the

interactions between pairs of atoms depends on the distance between them. A representation that

captures this phenomena will have distinct portions dedicated to each length scale. This allows each

of the portions to have unique generating functions that represent that scale well. However, there

must be no discontinuity of the representation with respect to the atom positions. In particular, the

representation needs to be smooth as the interaction between pairs of atoms move between scales.

With some base knowledge of how a representation should act the question then is what

9



representation should be used for atomic systems so that it simultaneously carries the mentioned

invariants while maintaining the relevant information of the system. One could take
∑
: /: as a set

of features. This would be correctly invariant, but would be unable to distinguish between many

dissimilar molecules since it contains no geometric information. On the other hand, one could take

a sum over all the pairwise distances in the structure. This would also be appropriately invariant, but

the immediate collapse of information creates a representation that maps many dissimilar atomic

structures to the same point.

One of the earliest commonly cited works in the field of machine learning for quantum chem-

istry introduces the Behler-Parinello symmetry functions [26]. These functions encode the local

environment of each atom in a system and are made up of a sum over all atoms of a Gaussian

evaluated at the pairwise distance times a cutoff function,

�1
8 =

∑
9≠8

exp−[('8 9−'B)
2
52 ('8 9 ) (1.14)

where '8 9 is the distance between atoms 8 and 9 , [ and 'B are parameters, and 52 is a radial cutoff

function. A similar 3-body term in constructed as

�2
8 = 21−Z

∑
9 ,:≠8

(1 + _cos\8 9 : )Z exp
−[('2

8 9
+'2
8:
+'2

9 :
)
52 ('8 9 ) 52 ('8: ) 52 (' 9 : ) (1.15)

Each environment encoding� is passed through a neural network sharing parameters across atoms

to get atom-wise energy which is then summed for the system energy prediction. This network

is rudimentary but was significant in its advancement of the union of atomic systems with neural

networks.

In 2012, Rupp et al [17] created the Coulomb matrix representation which was among the

earliest works applying machine learning methods to atomic systems. The Coulomb matrix was

constructed as a representation for a molecule with entries

"8 9 =


0.5/2.4

8
∀ 8 = 9

/8/ 9

|'8−' 9 |
∀ 8 ≠ 9

 (1.16)

This is rotation and translation invariant since it only involves pairwise distances. However, this

matrix is permutation equivariant. To remedy this, they diagonalized the matrix and padded

10



zeros for smaller molecules. The property predictions are then made as a learned weighted sum

of Gaussians of the distances between the eigenvalues of the diagonalized matrices. While the

Coulomb matrix contains some useful information, it is ridged and collapses the information down

to # almost immediately. As a kernel-based method it is also very unlikely to predict well on

molecules with distant representations.

Shortly after the introduction of Couloumb matrices, Bartok et al proposed a new kernel-based

method called Smooth Overlap of Atomic Positions (SOAP) [18]. They examined various atomic

neighborhood descriptors and concluded that the similarity measure between two representations

is the most important facet of the predictive model. Their kernel is based on the inner product

of atomic neighbor densities which are constructed using a spherical harmonic expansion of atom

centered Gaussians. This inner product works out to be like rotating one local environment into the

other, making the representation rotation invariant without a prohibitively expensive optimization

over ($ (3), the group of 3D rotations. They demonstrate the faithfulness of their method by

optimizing over the descriptor to recover target atomic geometries.

The next step that many researchers in this field took was the jump to a neural network driven

approach. Kristof Schütt et al developed SchNet [41] which operates on the pairwise distances

computed over a set of basis functions along with a learned embedding of the atomic charges.

Operating on pairwise distances rather than positions removes all global translation and rotation

information. The network has shared weights across the atoms so there is no dependency upon

atom ordering. It has two types of modules which alternate: continuous-filter convolutions and

interaction blocks. The convolution blocks combine information between atoms to generate a set

of representations, and the interaction blocks combine the different representations to create rich

features for each atom. This cycle is repeated until the output layer. The output is the sum of

atom centered outputs which makes the algorithm permutation invariant. With many learn-able

weights, this method scales in accuracy with the size of the training data, performing poorly for

small training sets but yielding nice results when trained on a larger set. It also introduces the

ability to train with forces. The forces offer many additional labels per data point, and are the

11



negative derivative of the energy with respect to each atom position. We discuss this point in more

detail later.

Tensor-Field networks provide a nice advantage over the previous stated methods in using non-

angularly symmetric functions to process the molecules [34]. They use spherical harmonics as a

basis for their atom interaction functions to encode more complex interactions between the atoms

and a special nonlinearity to maintain equivariance with respect to rotations. They use a similar

framework to SchNet as the base model but apply it in a unique way by training to place a missing

atom from a molecule.

While an atomic graph with every pairwise distance defined is unique modulo isometries,

angular information is not guaranteed to be learned in a network. In addition to this, in many

cases researchers use only local pairwise distances which do not completely define the geometric

information of the systems. Recently, Klicpera et al [42] addressed this issue by including the angles

between bonded atoms as explicit inputs in a representation dubbedDimeNet . This inclusion results

in state-of-the-art performances in the small data training regime on several benchmark datasets.

1.4 Overview

Here are the basic components that make up our model and the questions that lead us to develop

the representation as we do. We begin with a set of training data {(G8, �1(G8))}
=C
8=1 consisting of =C

training points where each G8 = {(/ (8): , '
(8)
:
)}
#G8
:=1 is an atomic state with #G8 atoms and �1(G8) is

its ground state energy. We create a vectorized representation Φ = (qW (G))W∈Γ ∈ R|Γ| such that

|Γ|, the number of features in the representation, has no dependence on the number of atoms in the

system #G . Taking that representation, we wish to learn a model to predict the ground state energy

as

�̃1(G) =
∑
W∈Γ

FWqW (G) (1.17)

To create this model, we have to decide on several design components. In Chapter 2 we construct

the representation Φ(G) taking into consideration several physical properties we have described:

invariance to isometries, continuity with respect to atom positions, multi-scale, and invariance to

12



permutations.

In Chapter 3 we present a method to solve for the weights FW as well as a data set on which we

test our methods. In Chapter 4 we introduce several new types of atomic structure data. We adapt

the model fitting to be able to extrapolate well to the new data.

In Chapter 5 we shift paradigms and consider a new representation vector that has internal

learned components. We translate many ideas from the previous model and discuss the advantages

and drawbacks. In Chapter 6, we augment this model and demonstrate its predictive ability on a

benchmark data set.

1.5 Contributions

The choices that we make throughout this thesis have two primary motivations: speed and

accuracy. Our approach have some advantages over existing methods in each of these categories.

There are many representations for molecules that scale linearly with the number of atoms. The

key to achieving this scaling is typically to consider only local pairwise interactions. Our method

does not quite match this scaling for molecules. However, the proposed method encapsulates

all length scales of the atomic system and we do offer an advantage in the context of periodic

structures. Our method scales with the number of atoms in the unit cell while including the effects

of the boundary condition. There are few machine learning methods that consider how to represent

periodic structures, and none that offer the boundary effects without additional computational cost.

Our representation is relatively unique in that we capture higher order interactions without com-

binatorial scaling or restricting to neighborhoods. Many methods capture some of the information

from higher body terms, but we argue that this is diluted and not rich enough to properly capture the

information. Recently, more methods have been including three-body terms to their representations

[42, 41]. Our method includes an explicit consideration for higher body terms while maintaining

good scaling.

Finally, our methods also allow for expression in the spaces between atoms. While an atomic

structure is completely defined by the positions of the atoms, the space between the atoms is where

13



the electrons interact. Additionally, this allows us to represent long range interactions in a more

geometrically flexible way.

14



CHAPTER 2

WAVELET SCATTERING

2.1 A Basis in Image Processing

We now define a representation suitable for atomic structures. Recall that, for this type of data,

a data point can be characterized as G = {(/: , ': ) ∈ N × R3}#
:=1. To retain complete geometric

information, we encode the atomic structure as a 3D image. This places the set of atoms into a

single object and automatically gives us permutation invariance as the atoms are placed without

order. Without atom-based indexing, the inclusion of an atom for a particular feature will be entirely

based on its position. This allows higher-order interactions without the poor computational scaling

of explicitly combining the atoms into groups. This is a strength over many existing methods which

rely on indexing and may operate on selected pairs or at best triplets of atoms. If we use electronic

densities then developing a functional to operate on it will be similar to DFT. However, we select

something that can be computed in $ (#) time instead of $ (#3) time and does not rely on specific

chemical methods. Initially based on some earlier works [43, 44], we used a sum of atom-centered

Gaussians to create an image visually similar to an electronic density. After some analysis, we

found that placing Diracs at atom positions reduces the image complexity and gives similar results

dG (D) =
#∑
:=1

/:X(D − ': ) (2.1)

Using a single raised point for each atom removes the need for any hyperparameters. We can allow

greater expression if we replace /: with a function 2(/: ). In particular, we can design a function

which outputs 0 or 1 depending on the atom type generating images which include only select atom

types. We refer to this set of functions 2(/: ) as the channels.

Let

d2G (D) =
#∑
:=1

2(/: )X(D − ': ) (2.2)

15



denote the Dirac density with channel 2, and let C be the set of all channels. Set

−→d G = (d2G)2∈C (2.3)

so that −→d G collects all channels of our Dirac representation of x. Recall that our final goal is to

construct a representationΦ(G) ∈ R|Γ| that is invariant to translations, rotations, and reflection of the

atomic coordinates (': )#:=1 and is also invariant to indexing permutations. Since the intermediate

representation G → −→d G is invariant to index permutations, our goal moving forward is to construct

a mapping that takes as input a 3D image and outputs a vectorized representation of the image that

is invariant to translations, rotations, and reflections of the image, and whose dimension does not

depend on the number of voxels in the image. Let d : R3 → R be any 3D image, and let

d → ((d) ∈ R3 (2.4)

be such a representation. We may then take our representation of G to be

G → Φ(G) = (((d2G))2∈C ∈ R3 |C| (2.5)

We now begin describing how to construct the mapping (.

If we follow modern image processing techniques, we would input the images into a convolu-

tional neural network, constructed with convolution layers interspersed with pooling layers. There

are several issues with translating this method directly to our approach. In images, the orientation is

meaningful, whereas in molecules it is arbitrary. For example, in MNIST, a data set of handwritten

digits 0-9, the orientation is the difference between a 6 and a 9 [45]. In atomic structures, we want

to eliminate the effect that a rotation has on the model output. There are two primary options to

generate a model that matches the rotational invariance that atomic structures contain. The first

is data augmentation. In this case, one would include multiple rotated versions of each molecule

into the training set. While this would not guarantee that the model maps rotated molecules to the

same representation, it could encourage the model to make similar predictions for a single structure

at its various rotations. However, this increases the training burden significantly, and it seems

insensible to hope the model will be coerced to reflect something when we have the mechanics

16



to encode it ourselves. Additionally, since SO(3) is 3-dimensional, the number of additional data

points will be considerably more than in the case for images. Even if a sufficient number of data

points are included, the best that the representation could be is approximately rotation invariant.

Since this is mismatched with the precise rotation invariance in physics, this would present an

irreducible error in the representation. The second option is to put constraints on the filters and

network architectures which guarantee that the resulting representation is invariant to rotations.

One approach is to design an intermediate representation that is equivariant to rotations as this

ensures that no orientation information is added into or lost from the representation. We can then

derive an invariant representation from the equivariant one.

The discretization of the images adds a complexity to the pursuit of rotational invariance. Images

and our pseudo-densities both immediately suffer some loss of information in the conversion from

analog to discrete. When translating a continuous angularly symmetric filter to the discrete setting,

the error with respect to rotation invariance is inversely related to the filter size. Consider a 3x3

angularly symmetric filter. It is only rotation equivariant when considering rotations in 90 degree

increments. The error is significant for all other angles, however it can be reduced as the filter size

grows. Using stacks of small filters, like in typical image processing, would induce large errors on

the representation. For this reason, the filters that we will use will be defined on large grids, even

if they have a small receptive field.

Assuming then that we are using filters defined at many points, a gradient descent type training

process becomes intractable since we are in 3D. Defining these filters analytically gives us faster

computation, and they do not require training to optimize. If we select filters which represent the

systems well, then we only need machine learning to combine the representations.

2.2 The Design of Filters

For this work, we use wavelets as our filters. Wavelets are zero-average filters which are

localized in both space and frequency [46]. Unlike in a learned convolutional network, here we

can directly control what types of information the different filters are encoding. The wavelets we

17



use must be defined in 3D and we construct them in two pieces: a radial function and a spherical

harmonic.

k<
Wℓ
(D) = &W (A).<ℓ (q, \), D = (A, q, \) ∈ R3 (2.6)

Since we are intending to obtain rotational equivariance with these filters, it is most natural to work

in spherical coordinates with radius A, azimuthal angle q ∈ [0, 2c], and polar angle \ ∈ [0, c]. We

select the spherical harmonics for specific angular properties, but the radial portion &W is free to

define. The spherical harmonic functions are indexed by parameters ℓ = 0, 1, 2, ... and −ℓ ≤ < ≤ ℓ.

After selecting a set of wavelets, we dilate the base wavelets to generate a set of wavelets that

operate at a variety of scales.

k<
Wℓ 9
(D) = 2−3 9k<

Wℓ
(2− 9D) (2.7)

We compute a wavelet transform as

,d = {d ∗ k<
Wℓ 9
(D) : W ∈ Γ, ℓ ≥ 0, |< | ≤ ℓ, 9 ∈ Z, D ∈ R3} (2.8)

Notice that the individual wavelet coefficient maps are defined using convolution.

(d ∗ k<
Wℓ 9
) (D) =

∫
d(C)k<

Wℓ 9
(D − C)3C (2.9)

By using convolutions, we get an intermediate representation which is equivariant with respect to

translations. The wavelet transform of the delta pseudo densities results in a set of 3D images with

the corresponding wavelet emitted at each atom location and scaled by the corresponding 2(/: )

coefficient.

(d2G ∗ k<Wℓ 9 ) (D) =
#∑
:=1

2(/: )k<Wℓ 9 (D − ': ) (2.10)

The interference patterns in the wavelet coefficients encode geometric properties of the atomic

structure G at various scales and angular frequencies. With the wavelet transform we can choose

the level of granularity for each of these parameters including many scales and a variety of angular

frequencies for a richer representation or only including a minimal set for fast computation.

18



When convolving an image with angularly symmetric filters, local angular information is

immediately discarded. While the rotational invariance is appropriate globally, it is too restrictive

when working with local atomic environments at the beginning of the model. We build our

wavelets with the spherical harmonics so that they are not angularly symmetric, but preserve

rotation information in a specific way. The wavelet transform with our wavelets is not equivariant

to rotations until we apply a special modulus [43, 44] to it which we define as

f(d ∗ kWℓ 9 ) (D) =
[

ℓ∑
<=−ℓ

|d ∗ k<
Wℓ 9
(D) |2

]1/2

(2.11)

Using the spherical harmonicswith the specialmodulus encodes local angular informationwhile

generating a representation that is equivariant to global rotations. We now prove this equivariance.

Theorem 1. The special modulus of the wavelet scattering transform using our wavelets is equiv-

ariant with respect to rotations.

f(!'d ∗ kWℓ 9 ) = !'f(d ∗ kWℓ 9 )

where !'d(D) := d('−1D) for ' ∈ ($ (3).

Proof. For the set of spherical harmonics .<
ℓ

with ℓ ≥ 0, −ℓ ≤ < ≤ ℓ we have

.<
ℓ

: (2 → C (2.12)

We begin with a density d : R3 → R. We have the related Wigner D-matrices �ℓ (') with size

(2ℓ + 1)x(2ℓ + 1). They are related to the spherical harmonics by

!'.
<
ℓ
=

ℓ∑
<′=−ℓ

�ℓ (')<,<′.<
′

ℓ
(2.13)

Let us define .ℓ : (2 → C2ℓ+1 collapsing the < parameter as

.ℓ (q, \) :=
(
.<
ℓ
(q, \)

)ℓ
<=−ℓ

(2.14)

Then by rewriting Equation (2.13) we have

!'.ℓ = �ℓ (').ℓ (2.15)

19



Note that �ℓ (') is a unitary matrix. With a wavelet defined as

k<
ℓ
(D) = &( |D |).<

ℓ

(
D

|D |

)
(2.16)

we consider a wavelet transform with the rotated image

!'d ∗ k<ℓ (D) =
∫
R3
d('−1H)k<

ℓ
(D − H)3H

Let G = '−1H, 3G = 3H

=

∫
R3
d(G)k<

ℓ
(D − 'G)3G

=

∫
R3
d(G)&( |D − 'G |).<

ℓ

(
D − 'G
|D − 'G |

)
3G

=

∫
R3
d(G)&( |'−1D − G |).<

ℓ

(
'('−1D − G)
|'−1D − G |

)
Consider then the special modulus

|f(!'d ∗ kℓ) (D) |2 =
ℓ∑

<=−ℓ

[∫
R3
d(G)&( |'−1D − G |).<

ℓ

(
'('−1D − G)
|'−1D − G |

)
3G

]2

=

ℓ∑
<=−ℓ

[∫
R3
d(G)&( |'−1D − G |).<

ℓ

(
'('−1D − G)
|'−1D − G |

)
3G

]
·
[∫
R3
d(H)&( |'−1D − H |).<

ℓ

(
'('−1D − H)
|'−1D − H |

)
3H

]
=

∫
R3

∫
R3
d(G)d(H)&( |'−1D − G |)&( |'−1D − H |)

·
ℓ∑

<=−ℓ
.<
ℓ

(
'('−1D − G)
|'−1D − G |

)
.<
ℓ

(
'('−1D − H)
|'−1D − H |

)
3G3H

20



Further examining the inner summation we have

ℓ∑
<=−ℓ

.<
ℓ

(
'('−1D − G)
|'−1D − G |

)
.<
ℓ

(
'('−1D − H)
|'−1D − H |

)
=

=

ℓ∑
<=ℓ

!
'−1.

<
ℓ

(
('−1D − G)
|'−1D − G |

)
!
'−1.

<
ℓ

(
('−1D − H)
|'−1D − H |

)
=

ℓ∑
<=ℓ

(
ℓ∑

<′=−ℓ
�ℓ ('−1)<,<′.<

′
ℓ

(
('−1D − G)
|'−1D − G |

))
(

ℓ∑
<′′=−ℓ

�ℓ ('−1)<,<′′.<
′′

ℓ

(
('−1D − H)
|'−1D − H |

))
=

ℓ∑
<=ℓ

[
�ℓ ('−1).ℓ

(
('−1D − G)
|'−1D − G |

)]
<

[
�ℓ ('−1).ℓ

(
('−1D − H)
|'−1D − H |

)]
<

=

〈
�ℓ ('−1).ℓ

(
('−1D − G)
|'−1D − G |

)
, �ℓ ('−1).ℓ

(
('−1D − H)
|'−1D − H |

)〉
=

〈
�ℓ ('−1)∗�ℓ ('−1).ℓ

(
('−1D − G)
|'−1D − G |

)
, .ℓ

(
('−1D − H)
|'−1D − H |

)〉
=

〈
I · .ℓ

(
('−1D − G)
|'−1D − G |

)
, .ℓ

(
('−1D − H)
|'−1D − H |

)〉
=

ℓ∑
<=−ℓ

.<
ℓ

(
('−1D − G)
|'−1D − G |

)
.<
ℓ

(
('−1D − H)
|'−1D − H |

)
Placing this back in the original equation, we get

|f(!'d ∗ kℓ) (D) |2 =
∫
R3

∫
R3
d(G)d(H)&( |'−1D − G |)&( |'−1D − H |)

·
ℓ∑

<=−ℓ
.<
ℓ

(
('−1D − G)
|'−1D − G |

)
.<
ℓ

(
('−1D − H)
|'−1D − H |

)
3G3H

=

ℓ∑
<=−ℓ

[∫
R3
d(G)&( |'−1D − G |).<

ℓ

(
'('−1D − G)
|'−1D − G |

)
3G

]2

=

ℓ∑
<=−ℓ

|d ∗ k<
ℓ
('−1(D)) |2 = |!'f(d ∗ kℓ) (D) |2

�

With the rotation equivariance demonstrated, we turn to the radial portion of our filters. The

21



wavelets we use have radial component

&=ℓ (A) =  =ℓ (V) |D |ℓ!
ℓ+1/2
=−ℓ−1( |D |

2/(2V2))4−|D |
2/(2V2) (2.17)

where  =ℓ is a normalizing factor that depends on V. We set V as a hyperparameter controlling the

width of the wavelets. !E
:
is an associated Laguerre polynomial. We use the Laguerre polynomials

so that our wavelets can be defined simply in frequency, a point which we discuss later. The constant

 =ℓ (V) is defined as

 =ℓ (V) =
2=−ℓ−1(= − ℓ − 1)!
(
√

2c)3V2=+1

√
4c

2ℓ + 1
(2.18)

Figure 2.1: Top row left to right: Density plot cross sections in the GI-plane of atomic orbital
wavelets for (=, ℓ, <) = (3, 0, 0), (3, 1, 0), and (3, 2, 0). Bottom Row: Corresponding plots for the
hydrogen atom orbitals (3B, 3?, and 33 orbitals, respectively).

Our wavelets are then defined as

k<
=ℓ
(D) = &=ℓ (A).<ℓ (q, \), = ≥ 1, 0 ≤ ℓ < =, |< | ≤ ℓ (2.19)

The wavelets are designed to imitate the hydrogen orbitals. Indeed, (=, ℓ) = (1, 0), (2, 0),

and (2, 1) correspond to the 1B, 2B, and 2? orbitals, respectively, with similar correspondences

for larger values of =. While the hydrogen atomic orbitals have exponential scaling, here, we

22



use a Gaussian function, which mimics the well-known Gaussian type orbitals from the quantum

chemistry literature [47, 48], designing our wavelet filters to be more localized decaying at 4−A
2
as

opposed to the 4−A radial decay of the hydrogen orbitals as seen in Figure 2.1.

Figure 2.2: Cross-sections of the first order nonlinear, equivariant maps f(dG ∗ k=ℓ 9 ) (D). The
log2 scales 9 = 0, 1, 2, 3, 4 increase from left to right, respectively, and the angular quantum
number ℓ = 0, 1, 2 from top to bottom, respectively, with = = 3.

2.3 Combining Scales

With a Fourier series, one has to compute responses over a large set of frequencies to get a

rich representation of an image. Similarly, we expand our wavelet basis to encode information at

a variety of scales by dilating the mother wavelet at various scales. The expansion of the filter

set to operate across scales means that we will have distinct representations for each scale. Small

filters will encode the interactions within atom neighborhoods, while large filters will encode the

distribution of atoms across the entire atomic structure as can be seen in Figure 2.2.

While separating the information from the atomic systems into different scales is useful, re-

combining these scales gives features even greater predictive ability. Since the special modulus is

23



equivariant to isometries, composing it with itself is also equivariant.

f(f(d ∗ k=1ℓ1 91) ∗ k=2ℓ2 92) =
©­«

ℓ∑
<=−ℓ2

|f(d ∗ k=1ℓ1 91) ∗ k
<
=2ℓ2 92

(D) |2ª®¬
1/2

(2.20)

Proposition 1.1. Let 5 , 6 : !1(R3) → !1(R3) be rotation equivariant maps. Then 5 ◦ 6 is also

rotation equivariant.

Proof. Since 5 is rotation equivariant we have

5 (!'d) = !' 5 (d) (2.21)

and similarly for 6. Therefore

( 5 ◦ 6) (!'d) = 5 (6(!'d))

= 5 (!'6(d))

= !' 5 (6(d))

= !' ( 5 ◦ 6) (d) (2.22)

�

Each subsequent layer will act on the 3D image from the previous layer instead of acting on the

input dirac pseudo-density. In Figure 2.3, we see that the coupling of scales gives us different, more

complex interference patterns between the atoms compared to the first layer wavelet coefficients.

The processing up to this point is quite similar to that of a CNN. We applied a filter, then a

nonlinearity, then another filter. However, there are several notable differences. In a CNN, one

learns the filters whereas we have designed filters to have specific properties. Our nonlinearity is

more complex than a standard CNN’s ReLU or sigmoid since we require the special modulus to get

rotation equivariance. We do not pool, because we want precise control of the resolution, and the

multiscale nature of our filters allows us to capture the various scales without pooling.

Here we apply some of the convention of image processing and require subsequent filters to

have a larger or equal scale of application compared to earlier layers. That means that we select

24



only combinations where 92 ≥ 91. A smaller wavelet in the first layer will aggregate information

between local atoms into neighborhoods. The larger second layer wavelet can then combine the

information across the different neighborhoods to get information that is representative of the whole

structure and has been built up hierarchically. Applying a large filter in the first layer collapses

information from across large portions of the image, and in doing this, they effectively diminish

the resolution of local neighborhoods. This is helpful to get a coarser representation of the entire

structure, but it would not be helpful to apply a smaller wavelet in the second layer because the

small scale interactions that the wavelet would capture have been destroyed.

Figure 2.3: Cross-sections of the second order nonlinear, equivariant maps
f(f(dG ∗ k=1ℓ1 91) ∗ k=2ℓ2 92) (D) for (=1ℓ1 91) = (1, 3, 1), which is the second from the top and
second from the left in Figure 2.2. The log2 scale, 92, and ℓ2 vary the same as in Figure 2.2, and
=2 = 3.

Prior to making predictions on the chemical properties, we need to convert the equivariant

feature maps we have built into invariant features. By integrating over the wavelet special mod-

ulus coefficients, we collapse location information within the system and turn all equivariance to

25



invariance,

‖f(d ∗ k=ℓ 9 )‖
@
@ =

∫
R3
|f(d ∗ k=ℓ 9 ) (D) |@3D (2.23)

‖f(f(d ∗ k_1) ∗ k_2)‖
@
@ =

∫
R3
|f(f(d ∗ k_1) ∗ k_2) (D) |

@3D (2.24)

where _1 = (=1, ℓ1, 91) and @ ∈ {1, 4
3 ,

5
3 , 2}. We refer to these as wavelet scattering coefficients

after [49]. The selection of the powers @ is motivated by the Thomas–Fermi–Dirac–vonWeizsacker

model in quantum chemistry, in which the 4/3 scaling is used to approximate the exchange energy,

the 5/3 scaling is used to approximate the kinetic energy, and the power of 2 encodes an additional

part of the kinetic energy and pairwise Coulombic interactions. The power @ = 1 is also used

since these integrals scale linearly with
∑
: /: . These features are now invariant with respect to

the isometries present in chemical structures.

Proposition 1.2. Let 5 : !1(R3) → !1(R3) be equivariant with respect to translations and

rotations. Then

q(d) =
∫
R3

5 (d) (D)3D, d ∈ !1(R3) (2.25)

is invariant to translations and rotations.

Proof. Let !Cd(D) := d(D − C) be the translation operator. Since 5 is equivariant to translations we

have

5 (!Cd) = !C 5 (d) (2.26)

Therefore

q(!Cd) =
∫
R3

5 (!Cd) (D)3D

=

∫
R3
!C 5 (d) (D)3D

=

∫
R3

5 (d) (D − C)3D (2.27)

Let E = D − C and 3E = 3D. Then

q(!Cd) =
∫
R3

5 (d) (E)3E

= q(d) (2.28)

26



Similarly for rotations we have

q(!'d) =
∫
R3

5 (!'d) (D)3D

=

∫
R3
!' 5 (d) (D)3D

=

∫
R3

5 (d) ('−1D)3D (2.29)

Now let E = '−1D and 3E = 3D. Then

q(!'d) =
∫
R3

5 (d) (E)3E

= q(d) (2.30)

�

Figure 2.4: This tree diagram displays the general structure of a wavelet scattering representation.
Each empty node is a 3D representation. Each filled in node is a feature of the representation.
Each split represents a choice among the wavelets in the dictionary. Note that we can extract
features from representations at any of the layers, and we can extend this structure as far down as
computation allows.

As can be seen in Figure 2.4, we do not lose the first order features through the scattering

process. All of the first order scattering coefficients are integrated and output from the algorithm

27



and then concatenated with the integrated second order scattering coefficients. We also add in

"zero-order" features that have no geometric information and only add up the charge information.

All together the scattering map ( is defined as

((d) := {‖d‖@@ ,

‖f(d ∗ k_1)‖
@
@ ,

‖f(f(d ∗ k_1) ∗ k_2)‖
@
@}_1,_2,@ (2.31)

where we recall _ = (=, ;, 9). Using ( and the intermediate representation −→d G of the atomic state

G, we define the representation Φ as

Φ(G) = (((d2G))2∈C (2.32)

This gives us a set of features with varying natures of interaction between the atoms. The framework

allows us to continue adding layers as much as is computationally feasible. Each subsequent

layer builds upon the previous layer in the same way. For the features that we compute, the

additional computation to go beyond two layers does not seem to have sufficient added value to the

representation to warrant inclusion.

2.4 Setting Parameters

With a theoretical basis of what we want to do, we now turn to the actual methods of imple-

mentation. Recall

dG ∗ k<=ℓ 9 (D) =
∑
:

/:k
<
=ℓ 9
(D − ': ) (2.33)

Let us assume 0 ≤ 9 ≤ �. We control the size of the base (smallest) 9 = 0 wavelet so that there will

be some interaction between the closest atoms. See Figure 2.5. Setting a smaller size would result

in a feature representation that contained no overlap between atoms and generated no interference

patterns, which would mean that the additional computation of the first order feature would provide

no more information than a zero order feature. Setting the base too large could remove the option

of learning small scale interactions. We compute the minimum distance between pairs of atoms

28



across the data set and denote it as Δ. To examine the smallest interaction, we take the wavelet

with minimal radial support as the base, setting = = 1, ℓ = 0. This cancels several terms from our

wavelet definition.

k0
1,0(D) = exp

(
− |D |

2

2V2

)
(2.34)

We then set n> << 1 as the minimum overlap. We select V to ensure

k0
1,0

(
Δ

2

)
= exp

(
− (Δ/2)

2

2V2

)
≥ n> (2.35)

This solves to

V ≥

√
(Δ/2)2

2ln(1/n>)
(2.36)

':
';

Figure 2.5: Molecule in state G = {(I: , ': )}:=1,6. The neighborhoods of each '8 represent where
k0

1,0(D − '8) ≥ n>. For this molecule, we would set the minimum width large enough so that the
disc surrounding ': intersects the point '; .

We then set our maximum scale 9 = � with a similar argument. We need to assess what

maximum scale of interaction is appropriate for each type of molecular data that we consider. For

the materials structures that are the primary consideration for this work, the maximum interaction

of consequence is approximately the same length as the side of the bounding box of the material.

If we use the same wavelet as before to ensure that the maximum scale, �, of every wavelet covers

the desired width, we have

k0
�,1,0(D) = 2−3� exp

(
− |2
−�D |2

2V2

)
(2.37)

29



Since this is a Gaussian, we can ensure a contribution to a feature from distant atoms by controlling

the standard deviation. In particular, we set 2 standard deviations to be equal to �4 = (1>GB8I4)/2.

�4 = 2�
√

2V (2.38)

� = log

(
�4

2
√

2V

)
(2.39)

We typically get a value 3 ≤ � ≤ 5 for structures we consider. These parameters fall into the

category of feature engineering.

The final parameter that we calculate to set up thewavelet transform computation is the sampling

rate. This parameter is important because it dictates the aliasing error. Unlike a poor choice for �

or V, a sampling rate that is too low will result in corrupt data. Rather than feature engineering,

this decision controls the error on the representation. We set n0 << 1 smaller than than the other

bounds. To avoid aliasing we need the essential support of k̂<
=ℓ
(l) to be contained in the box

[−cB ,
c
B ]

3 where B is the sampling rate. Rather than restricting the frequency support of the wavelet,

which is determined by V, we address this by expanding the size of the frequency domain that we

compute. We need to solve for B which we do with a numerical optimizer.

k̂0
=,0(

c

B
, b, Z) =

(c
B

)2=−2
exp

(
−
V2 c

B
2

2

)
√

4c ≤ n0 (2.40)

The maximum frequency depends on the wavelet width V and, to a lesser degree, on the (=, ℓ)

parameters. A wider support in frequency is equivalent to denser sampling in space. We begin by

sampling at every Angstrom within the box, but increase the density to get the necessary resolution

to be able to represent the system with low aliasing errors. Our sampling on the chemical system

in space will be on the grid GG = {B0 : 0 ∈ Z3 : ‖0‖∞ ≤ �4} with !G grid points in length. In

frequency, evaluations are restricted to a grid ΩG ⊂ [−cB ,
c
B ]

3 , with again !G grid points along

each edge. We balance the selection of = so that we have diverse features, but the computational

cost is not too high.

For a typical set of systems that we process, we may set the overlap epsilon at n> = 0.1 and

the aliasing epsilon at n0 = 10−6. With = = {1, 2, 3}, we get V = 1.8, � = 4, and B = 0.1. The

30



average width of the unit cell of the structures is about 10 Angstroms. From this, we get a cube of

104 × 104 × 104 on which all the computations take place. Each voxel will correspond to a space

in the structure of volume 10−3 cubic Angstroms. To approximate the integral that collapses the

representations to isometry invariant features, we take a left-hand Riemann sum over the sampled

points in the box. In total we will end up with around 3,700 features per structure including zero,

first, and second order as well as the five density channels that we will introduce later.

2.5 Fast Frequency Calculations

Weperform significant portions of the computation for our representation in frequency to reduce

computational costs. Since we are working with mainly periodic materials, we need the boundary

conditions of the convolutions to be circular so that atoms on opposite sides of the box appear

next to each other. Due to the multiscale sizes of the wavelet filters k<
=ℓ 9

a direct computation

of the periodic convolution over the grid GG will require $ (!6
G) floating point operations. This

computational cost can be significantly reduced by carrying out these computations in frequency

space.

The Fourier transform of d2G ∗ k<=ℓ 9 is:

F [d2G ∗ k<=ℓ 9 ] (l) = k̂
<
=ℓ
(2 9l)

#G∑
:=1

2(/: )4−8l·': , (2.41)

where F [ℎ] (l) = ℎ̂(l) is the Fourier transform of the function ℎ ∈ L1(R3). The Fourier transform

of k<
=ℓ

can be computed analytically:

k̂<
=ℓ
(l) = (−8)ℓ

√
4c

2ℓ + 1
|l|2(=−1)−ℓ4−V

2 |l |2/2.<
ℓ
(l/|l |)

Therefore (2.41) can be evaluated directly for any l ∈ R3.

In particular we compute, via direct numerical evaluation, a tensor Ψ<
=ℓ 9
∈ C!G × C!G × C!G

defined as

Ψ<
=ℓ 9

= F [d2G ∗ k<=ℓ 9 ]
���
ΩG

(2.42)

31



Due to the discretization in (2.42), taking the inverse fast Fourier transform (iFFT) ofΨ<
=ℓ 9

recovers

the circular convolution d2G ~ k<=ℓ 9 evaluated on the spatial grid GG:

iFFT(Ψ<
=ℓ 9
) = dG ~ k<=ℓ 9

���
GG

(2.43)

The direct computation of Ψ<
=ℓ 9

requires �#G!3
G floating point operations, whereas the iFFT

calculation requires �!3
G log !G floating point operations. Therefore the total cost is reduced to

$ ((#G + log !G)!3
G).

First order wavelet scattering features are estimated by applying the pointwise nonlinear operator

f to (2.43) and estimating the integrals with a Riemann sum approximation. Second order wavelet

scattering features are computed by taking the fast Fourier transform (FFT) of f(dG ~ k=ℓ 9 )
��
GG

and computing the second circular wavelet convolution via frequency multiplication with a direct

evaluation of k̂<2
=2,ℓ2
(2 92l) on the grid l ∈ ΩG , followed by another iFFT, application of f, and

Riemann sum. The cost of each second order feature, given that (2.43) must already be computed

for the first order features, is $ (!3
G log !G).

Asymptotically one has !3
G = $ (#G) which implies that the cost of calculating Ψ<

=ℓ 9
is $ (#2

G ).

We can reduce the cost further by replacing d2G with

d̃2G (D) =
#G∑
:=1

2(/: )1(D − ': ) (2.44)

where 1 : R3 → R is a small, compactly supported bump function whose support only covers 2̃

voxels. The cost of constructing d̃G (D) is $ (#G). We then compute the FFT of d̃G (D), yielding

ˆ̃dG (l), in $ (!3
G log!G) = $ (#Glog#G) time. We then obtain Equation (2.41), and hence Ψ<

=ℓ 9
, by

computing ˆ̃dG (l)k̂<=ℓ 9 (l) for all l ∈ ΩG , which costs $ (!3
G) = $ (#G) computations. Thus the

total computational cost is

$ (#G) +$ (#Glog#G) +$ (#G) = $ (#Glog#G) (2.45)

which is smaller than $ (#2
G ).

One final consideration to note when examining the scaling is that the number of features is not

constant with the number of atoms. The number of first layer wavelets is the number of (=, ℓ) pairs

32



times the number of scales �. Of these, only � scales with #G , and it scales as

� = $ (log!3
G) = $ (log#G) (2.46)

Thus the number of floating point operations for the first layer is

$ (#Glog#G) ×$ (log#G) = $ (#G (log#G)2) (2.47)

In the second layer there are $ (�2) = $ ((log#G)2) wavelets, so the additional computational

complexity for the second layer is

$ (#G (log#G)3) (2.48)

However, for large atomic structures we do not need � to be large enough for the biggest wavelet to

cover the entire structure, but only so that the biggest wavelet covers the largest distance of relevant

interaction between two atoms. So for systems beyond a certain size, we may be able to avoid the

additional factors of log(#G) for the scaling.

The reason that we do not elect to compute this more efficient algorithm is that there is an error

induced by taking the FFT of d̃G (D). Small bumps in space will have a large frequency support.

Taking the FFT will wrap the high frequency portions around the cube creating interference. It

is possible that this issue could be mitigated to some degree by controlling the smoothness of the

bumps, but it cannot be eliminated since anything that is bounded in space has infinite frequency

support. By defining our pseudo density in frequency, we avoid this problem albeit at the cost of

missing an opportunity for improved scaling.

2.6 Prior Work on Scattering Transforms

The original scattering transform for general 3-dimensional signals was introduced by Mallat

in [49]. In that version of the scattering transform, the wavelets were formulated in Cartesian

coordinates and additional mother wavelets were generated via the 3-dimensional rotation group

action. Furthermore, the original scattering transform used the standard complex modulus as its

nonlinearity, not the special modulus, and was designed to be translation invariant. In [49] it was

also shown that the scattering transform is stable to diffeomorphism group actions.

33



Subsequent theoretical work on the scattering transform was developed in [50, 51, 52, 53].

Scattering transforms have been applied to problems in audio signal processing [54, 55, 56, 57, 58]

and image processing [59, 60, 61, 62, 63, 64, 65, 66]. The development of three-dimensional

scattering transforms for quantum chemistry was initiated in [67, 68]. Subsequent developments,

with a focus on applications to small organic molecules in equilibrium position, are contained in

[43, 44].

34



CHAPTER 3

LEARNING A MODEL

3.1 Linear Regression

With the wavelet scattering coefficients computed as a set of features that forms a rich repre-

sentation of an atomic system, what remains is to combine the information between them to form

a prediction of the energy. We elect to do this by using a linear regression. We would like to

choose the simplest model to combine the features in the expectation that this will improve the

generalizability. We first propose a model of the form

�̃ (G;F) =
∑
2,@

F2,@ ‖d2G ‖
@
@ +

∑
2,_,@

F2,_,@
| |f(d2G ∗ k_) | |

@
@

| |d2G | |
@
@

+
∑

2,_1,_2,@
F2,_1,_2,@

| |f(f(d2G ∗ k_1) ∗ k_2) | |
@
@

| |f(d2G ∗ k_1) | |
@
@

Here we divide each feature by the corresponding feature of one lower order to remove the depen-

dence on the number of atoms. This is only necessary when predicting a per atom quantity. We

simplify the denominator later. Taking a mean squared loss function, we would like to solve for

weights such that

F = arg inf

[
1
=C

=C∑
8=1
|� (G8) − �̃ (G8;F) |2

]
(3.1)

for =C data points in the training set. For now let us define the training feature matrix asΦ ∈ =C × |Γ|

for notational simplicity. The selection of the weights can be solved for via closed form

F = (Φ)Φ)−1Φ)� (-), (3.2)

where - = {G8}=C8=1.

However, there are several reasons why a simple least squares regression does not work well in

this case. Since some sets of features are computed similarly (ie same wavelet with different @),

the matrix of all features can have highly correlated columns. This means that the conditioning is

35



poor, and an inversion is not possible. Even when computing the weights via a reasonably chosen

decomposition, the set of non-regularized weights result in poor off-training predictions. We thus

need some type of regularization to reduce model volatility. We would also like the model to make

fast predictions once the weights are learned. If we can only compute a small set of the available

features for future data points, we can speed up computation significantly. For these reasons, we

use an ℓ0 regularized (sparse) regression, and selecting the maximum number of nonzero weights

as " , we rewrite Equation (3.1) as

F = arg inf
F̃

[
1
=C

=C∑
8=1
|� (G8) − �̃ (G8; F̃) |2 : | |F̃ | |0 ≤ "

]
(3.3)

Solving for the weights in an ℓ0 regression is NP-hard. Instead we use the iterative (greedy)

orthogonal least squares method selecting one feature for inclusion at a time [69]. We begin by

normalizing the features to have unit variance across the training data set. Then we select the

feature with maximal inner product against the normalized energy.

q: = arg sup
W∈Γ

〈
qW , � (-)

〉
(3.4)

We decorrelate the remaining features with respect to the selected feature q:

q̃W = qW −
〈
qW , q:

〉
q: (3.5)

We subtract the selected feature’s contribution from the energy.

�=4GC (-) = �?A4E (-) −
〈
�?A4E (-), q:

〉
q: (3.6)

After this, we re-normalize the remaining features and energy to have unit variance, and repeat the

selection process up to"<0G features. With the selected set of features, we set a new feature matrix

which contains only the "<0G selected columns of our original feature matrix. We then compute

the QR factorization of this matrix.

Φ̃ =


q:1 (G1) q:2 (G1) . . . q:"<0G

(G1)
...

...
. . .

...

q:1 (G=C ) q:1 (G=C ) . . . q:"<0G
(G=C )


= &'

36



where =C is the number of training points and [q:1 , . . . , q:"<0G
] are the greedily selected features.

We perform 5-fold cross validation to ensure that our results are representative of the whole

data set. In each fold a different 20% of the data is held out for testing. With the remaining 80% in

each fold, we further divide the data and remove 20% as validation data. The weights are learned

on the training data, the remaining 60% of the data in each split.

We will have a unique model for each number of features included in the regression. Since

"<0G can be chosen arbitrarily, we would like to find an " which minimizes the error on the test

set without using the test set. The error on the training set is minimized at " = "<0G , but for large

"<0G , the model may be overfitted to the training data resulting in a worse test error than a simpler

model. So instead, we use a set of validation data which are held out from the training up to this

point. On average, the " which minimizes the error on the validation set will also minimize the

error on the test set assuming the validation set is sampled from the same distribution as the test

set. For each possible " , we take the first " columns of the & matrix and solve for weights as in

Equation (3.1). Since & has orthonormal columns we have

F& = &
)� (-) (3.7)

We then compute a pseudo & matrix for the validation data points. Note that this will only return

reasonable results if the validation data is drawn from the same distribution as the training data.

&E0;83 = '
−1ΦE0;83 (3.8)

We restrict the columns of &E0;83 to the first " and apply the weights we learned from the training

data. Our model is then selected as

"∗ = arg inf
"

[
1
=E0;

=E0;∑
8=1
|� (G8) − �̃ (G8;F&) |2 : ‖F& ‖0 ≤ "

]
(3.9)

To make energy predictions from the test data, we have to compute a &C4BC the same as we did

for &E0;83 , again counting on the test data being drawn from the same distribution as the training

data. We then apply the model learned from the training and validation data and get a test data

37



energy prediction. For each test fold, we have four different training/validation splits of the non-test

data. Each of these splits gives a unique model. Averaging over these four models improves the

prediction on the test data. Averaging the errors on each of the five test folds gives our final error

results.

3.2 Data

The training, validation, and interpolation testing data for the machine-learned model consists

of amorphous LiUSi structures labeled by formation energies calculated using Density Functional

Theory (DFT). These structures are in cubic boxes under periodic boundary conditions containing

from 55 to 100 atoms, with lithium-to-silicon ratio U ranging from 0.1 to 3.75. Initial disordered

structures are generated by evolving random structures under ReaxFF [70] molecular dynamics

(MD) at 2500K for 10 ps, and ten different disordered structures are randomly picked from the

MD trajectory for each of the 37 chosen concentrations. The accuracy of the force field used to

obtain the initial amorphous structure is not important, due to the following DFT calculations. In

particular, each structure is fully relaxed at constant volume using DFT allowing the energy to

decrease to a stable minimum. The structures and formation energies along the relaxation paths

make up the amorphous dataset used in this work, which contains a total of 90,252 structures. A

histogram of the quantity of these structures by energy and concentration is shown in Figure 3.1.

We note that the structures are heavily concentrated near the endpoint of the relaxation, so we

expect the resulting model to do better on near-equilibrium amorphous structures. This is desirable

because the low-energy structures are more likely to arise in realistic simulations. We also calculate

voltages versus Li/Li+ [71, 72, 73] and radial distribution functions for Si-Si, Li-Si, and Li-Li pairs,

and find good agreement with similar data sets from the literature [74, 75] This confirms that our

amorphous structures are physically realistic.

Formation energies and relaxations were performed in the Vienna Ab initio Simulation Package

(VASP) using the Projector-AugmentedWave method and the PBE exchange-correlation functional

with a plane-wave energy cutoff of 500 eV. The Brillouin zone was sampled using the Gamma point

38



only during relaxation. After relaxation, the energies along each relaxation path were corrected for

:-point sampling errors by calculating the energy of each fully relaxed structure using a 3 × 3 × 3

Gamma-centered grid and applying the resulting constant shift to the rest of the structures in the

relaxation path. The mean absolute :-point sampling correction was 27 meV/atom. The total

1 2 3
in Li Si

0.2

0.0

0.2

0.4

0.6

0.8

E
* f

(e
V

/a
to

m
)

1

10

100

1000

#
 t

ra
in

in
g
 i
te

m
s

Figure 3.1: Histogram of training set energies versus concentration U in !8U(8. Color indicates
the number of training items in each bin on a logarithmic scale.

formation energy of a structure with NLi lithium atoms and NSi silicon atoms is defined based on

DFT total energies:

� 5 (LiNLiSiNSi) = �1(LiNLiSiNSi) − NLi� (Li) − NSi� (Si) ,

where �1(LiNLiSiNSi) is the total energy of the system, and � (Li) and � (Si) are the DFT total

energy per atom of elemental lithium and silicon, respectively. The structure LiNLiSiNSi has

reduced formula LiUSi with U = NLi/NSi and per-atom formation energy

�∗
5
(LiUSi) = � 5 (LiNLiSiNSi)/(NLi + NSi) . (3.10)

39



The per-atom formation energy is the quantity of interest for machine learning. Notice, though,

it includes the terms NLi� (Li) and NSi� (Si) which require no additional quantum mechanical

calculations beyond the one-time cost of computing � (Li) and � (Si). The difficulty is in computing

�tot(LiNLiSiNSi), which requires a costly DFT calculation for each new state. When fitting our

machine learned models, we regress the per-atom total energy, defined as:

�∗tot(LiUSi) = �tot(LiNLiSiNSi)/(NLi + NSi)

or

�∗tot(LiUSi) = �∗5 (LiUSi) +
U

1 + U� (Li) +
1

1 + U� (Si) .

Even though it is simple to convert total energies into per-atom total energies, we regress the

latter since per atom energies remove the effect of varying unit cell sizes and the number of atoms

per unit cell on the total energy. Since we use the squared loss as our measure of error when training,

regressing total energies would bias themodels towards systems containing larger numbers of atoms

since the total energy scales with the number of atoms.

Figure 3.2: Left: Regression RMSE vs model size. Left: weights vs model size

There are two publications which train neural networks on similar lithium silicon data sets

[74, 76], but wewere unable to attain their data to be able to compare results precisely. Comparisons

to these works seem reasonable, but the difference in that exact data being used could lead to

significantly different results.

40



3.3 Results

The precision of the formation energy of the data structures is 1.0 meV/atom. That level

designates our target error as anything below it constitutes learning the particular version of DFT

used to generate the data rather than the actual chemistry. There are several hyperparameters that

we select to set the collection of features. We use five density channels: lithium, silicon, valence,

ionic, and kinetic which we define for lithium (3) and silicon (14).

2; (3) = 3, 2; (14) = 0

2B (3) = 0, 2B (14) = 14

2E (3) = 1 2E (14) = 4

28 (3) = 2 28 (14) = 10

2: (3) =
√

3 2: (14) =
√

14

The lithium and silicon channels partition the state G along atom species, whereas the valence

and core channels separate the state G according to electron type. The kinetic channel gives us

a scaling of the charge that matches the kinetic portion of the energy. We use six wavelet scales

9 = [0, 1
2 , 1,

3
2 , 2,

5
2 ], the wavelets with 1 ≤ = ≤ 5, associated ℓ values, and @ = {1, 4/3, 5/3, 2}.

The second order scattering coefficients were restricted so that 92 ≥ 91 and (=2, ℓ2) > (=1, ℓ1).

Figure 3.3: Statistics of selected wavelet coefficients. From list to right: channel 2, power @, scale
pairing ( 91, 92).

Using first-order features exclusively, we obtained a mean absolute error of 2.1 meV/atom [77].

This error is significantly lower than current neural network models trained on similar data sets

41



[74, 76]. We see a significant improvement in performance when we include second-order features

in the model, reaching an MAE of 0.78 meV/atom. As can be seen in Figure 3.2 the error on the

training set decreases approximately as 1/" for " features included in the model. The validation

set error closely follows the training error which demonstrates that we are not learning only spurious

noise from the data, but that our model encodes chemical information. Even with a very sparse

model - " = 100 - we still achieve a reasonable RMSE of 5.8 meV/atom. We also see from the

figure that the weights decay very quickly.

Figure 3.4: Histogram of training set energies versus concentration U in !8U(8. Color indicates
the number of training items in each bin on a logarithmic scale.

Since our model is sparse, we can analyze the selected features to see what aspects made a

42



representation useful for the energy prediction. In Figure 3.3, we see that among the channels,

the lithium channel was selected most commonly. Representations in the lithium channel contain

no information of the silicon atoms, so this tells us that there is substantial information in the

distribution of the lithium atoms. This seems reasonable since the lithium concentration varies

throughout the data set and characterizes aspects of the structures properties. The four integration

powers are all included in the model suggesting that they are complementary in the information they

contain. In the scale plot, we see that large scales are not included very often, and in particular, our

model would be no worse off if we removed the largest scale. We see far more second order features

with coupled scales than large scale features. The second order features encode a more refined

wide reaching feature as the wavelet that aggregates local information does not have to match the

wavelet which aggregates the neighborhoods. Figure 3.4 gives us some additional information,

breaking the features into bins according to their corresponding wavelet (=, ℓ) pairing. We can use

this to reduce our computation so that only the most useful features are computed.

43



CHAPTER 4

IMPROVING GENERALIZABILITY

4.1 Alteration of Our Previous Model

Recall from Chapter 3 and Figure 3.1 we have a training database of 90,252 amorphous LiUSi

structures with DFT computed energies spread across 37 concentrations U, ranging from 0.1 to 3.75.

These structures correspond to 370 relaxation paths beginning at an initial set of 370 high energy

states, with 10 relaxation paths per concentration. In this section, we make some modifications to

our previous model. To simplify the form of the features used in the regression, we divide them by

the number of atoms of each state instead of by the norm of the lower order features.

�̃ (G;F) =
∑
2,@

F2,@
‖d2G ‖

@
@

#G
+

∑
2,_,@

F2,_,@
| |f(d2G ∗ k_) | |

@
@

#G

+
∑

2,_1,_2,@
F2,_1,_2,@

| |f(f(d2G ∗ k_1) ∗ k_2) | |
@
@

#G
(4.1)

While we achieve great predictive ability with the model from Chapter 3, there are several

directions in which we can improve it. Sampling data uniformly across the data is standard practice,

including in the machine learning for quantum chemistry field. However, the lithium-silicon data

set is time series data, and even though we are not making predictions over time, care must be taken

in the data sampling. There are many atomic systems which are extremely close, particularly in the

low energy portion of the training data. This gives an advantage in "generalizability" because if a

particular structure is set aside for testing, it is likely that we will include at least one other that is

only a slight deviation away in the training data.

Additionally, this sampling is unnatural to the data generation. The goal of machine learning

in quantum chemistry is to reduce the computational cost. If we require that the energy of every

structure in every relaxation path is computed, nothing is saved. Even though all of the lithium

44



silicon data has already been processed, we would like to demonstrate a method where we can

specify some portion that did not have to be computed for our method to work.

100 101 102 103

Number of Features

10 2

10 1
RM

SE
 (e

V/
at

om
)

Train
Valid
Test

Figure 4.1: Errors on the amorphous LiUSi database as a function of number of features included
in the model on a log-log scale. Error on the training set is shown in red, the validation set is
shown in green, and the test set is shown in blue. The training error is a decreasing function of the
number of features, whereas the validation and testing curves are not. The value "★ that
minimizes the validation curve is the algorithm’s best estimate for the optimal model that best
balances under- and over-fitting of the training data. It has good agreement with the minimum of
the test error curve.

There are two options which seem amenable to this goal. Since the simulations of the structures

begin at high energy and decrease to an equilibrium, one option is to take the high energy portion

only. The issue with this approach is that the model would be expected to make many energy

predictions below the energy range on which it is trained. It is unreasonable to expect good

performance. The other option is to sample across the relaxation paths. There are two advantages

to this form of sampling. It only requires the costly chemical computations to be done on a select

45



set of paths, and it displays a truer generalizability.

Using five-fold cross validation, we randomly partition the relaxation paths into five sets of 74

relaxation paths with two paths per concentration in each of the sets of 74. We place four of these

sets, 296 relaxation paths total, in the training/validation set, and one set of 74 paths in the test set.

We rotate through using each set separately as a test set, meaning that we carry out all numerical

experiments five times, each time with a different training/validation and test set split. Empirical

results indicate this training paradigm significantly restricts the degree to which themachine learned

model can fit non-physical spurious patterns in the data. We leave for future work developing a

model that can predict the entire relaxation path starting with the only the highest energy state.

We augment the learning process by leveraging empirical bootstrapping and feature bagging

[78]. Given an initial database of =C states and their energies (that does not include the withheld

testing set), the empirical bootstrap algorithm samples the database with replacement =C times to

obtain the training set. Those states not selected for the training set are placed in the validation

set. This approach allows us to construct many different models from one database, which are then

averaged. The resulting averagedmodel, which is still a linearmodel over the representationΦ(G), is

superior to any one individually fitted model since the averaging reduces random fluctuations in the

fitting process that result from spurious patterns in a single training set. In order for this averaging

process to have maximum effect, the weights of the individual models must be as uncorrelated as

possible.

Feature bagging, which is a prominent component of random forests, decorrelates the models

by restricting the greedy selection at each greedy step. In particular, at each greedy step in the OLS

algorithm, approximately
√
3 + 1 features are sampled without replacement from among the full

set of 3 features in Φ(G) plus the bias term, minus the features that have already been selected up

to that point. The OLS algorithm at each step must then select from among the sampled features,

which due to the randomness in the feature sampling, results in models that are significantly less

correlated. Indeed, in our own numerical experiments, the most significant features selected with

empirical bootstrapping, but without feature bagging, are very often identical. While restricting

46



the number of possible features at each greedy step means that each model has larger error on the

training set, the aggregated average model improves on the test set [78].

With the 296 training relaxation paths, we carry out the model fitting algorithm described in

Section 3.1 jointly with the bootstrapping and bagging. For the training set, we randomly select

according to a uniform distribution, with replacement, 296 relaxation paths from the training set.

Those paths selected more than once are repeated in the training set with the number of copies

equalling the number of times the path was selected. Those paths that are not selected are placed

in the validation set. The sparse linear model is trained using the greedy OLS algorithm with

randomized feature bagging, with the number of features " ranging from " = 1 to " = "max =

1000. We use = = 3, � = 4, @ ∈ {1, 4
3 ,

5
3 , 2}, and the five channels previously discussed. The

optimal number of features " = "★ is selected by minimizing the loss on the validation set. This

procedure is repeated 100 times, resulting in 100 sparse linear models of the form (4.1), which are

averaged together to yield the final model.

RMSE (meV/atom) MAE (meV/atom)
Relaxation paths 7.44 ± 0.49 5.52 ± 0.34
Diffusion 12.3 ± 0.50 11.7 ± 0.51
Large states 9.54 ± 0.25 6.81 ± 0.23
Bulk modulus 12.8 ± 1.36 8.92 ± 0.68

Table 4.1: Numerical results for ML predictions on the test data from the amorphous dataset and
the three extrapolation tasks from the model trained only on the amorphous data.

This final model is evaluated on the withheld test set. Figure 4.1 depicts the training, validation,

and testing errors as a function of the number of model features " . It indicates that best models

have, generally, between 64–256 features, with an average of 121 features per model, a small

number given that there are approximately 70,000 training structures. Furthermore, the validation

curve closely follows the test curve, indicating that our cross-validation procedure is nearly optimal

for this test data. The average root mean squared error (RMSE) and the average mean absolute

error (MAE) over the five test folds, along with the standard deviation, is reported in the first

row (relaxation paths) of Table 4.1. Despite the small number of features, the RMSE is 7.44

47



meV/atom and the MAE is 5.52 meV/atom, which is comparable to the results reported in [76] and

[74], both of which trained neural networks on lithium silicon data, and is small enough to be of

use in materials science applications. However, the model developed here is significantly simpler

than neural network models, being a linear model over multiscale, invariant features that utilize a

universal set of filters. As such, the model is adept at generalization, as reported in the next section.

We notice some significant differences between the results in Figure 4.1 and those in Chapter 3

on the left side of Figure 3.2. In the previous model, the validation curve never has a positive slope,

whereas for the model in this chapter, we see a divergence of the validation and training curves

at only 100 features. This has significant ramifications going forward. The models have similar

results for the training error indicating that our representation has good flexibility to be able to fit

the data. The difference in the validation error sheds light on the distribution of the lithium-silicon

data. When we randomly sample across all points, the validation and testing data are extremely

similar to the training data. When we sample between relaxation paths, the validation and testing

differ from the training data, and importantly, they differ in approximately the same way leading to

both reaching a minimum error at around 100 features. This is important for the following section

because we need the validation data to select a number of features that will lead to a model that

generalizes well.

4.2 Extrapolation Data

In order to test the machine learning model’s generalizability to extrapolation tasks, additional

DFT data are required to compare with the results of the machine learning model. We test three

different extrapolation tasks: prediction of migration barriers, energy prediction for systems with

larger unit cells, and prediction of elastic properties.

4.2.1 Diffusion Barriers

Diffusion barriers cannot be defined uniquely in amorphous structures due to the lack of order.

Rather, paths that move an atom from one favorable coordination environment to another through

48



a relatively unfavorable environment are abundant. An endpoint for such a pathway was found

by locating void spaces in the amorphous structure through Voronoi analysis and inserting a test

lithium atom at each void to find the most energetically favorable position. Nearby lithium atoms

to this void were subsequently identified, and the minimum-energy path (MEP) for each lithium

to travel to the void was calculated using the nudged elastic band (NEB) method [79]. The NEB

images along 6 calculated MEPs (for a total of 50 image structures) were used as testing data for

this extrapolation task. The primary quantity of interest is the migration barrier, i.e., the difference

between the lowest-energy and highest-energy points along the MEP.

One important application of atomistic simulation is the study of atomic migration from site

to site. The energetic barrier to migration determines diffusion constants and ionic conductivity.

The diffusion process may be simulated by directly tracking the mean square displacement using

molecular dynamics or by calculating the migration barrier and using the Nernst–Einstein relation-

ship. The first step in the explicit calculation is to find the minimum energy path (MEP) for an atom

to travel between two stable sites. This is typically done using optimization techniques such as the

Nudged Elastic Band (NEB) method. The barrier is defined as the energy difference between the

stable position and the highest-energy position (saddle point) along the MEP.

There are a number of reasons why calculation of diffusion barriers may present a challenge

for our ML model. Our present models do not predict forces, so they cannot be used with the NEB

for prediction of the path itself. We therefore simply predict energies along the DFT-calculated

MEP. A more fundamental challenge is the fact that the transition state structure, with one atom

in a high-energy state and the rest in relatively low-energy states, is qualitatively different from

the training items in the amorphous !8U(8 dataset. Calculation of diffusion barrier is thus an

extrapolation task. Furthermore, there is only one diffusing atom in the simulation box during

calculation of the diffusion barrier. This means that energy per atom is no longer the most relevant

measure of error. Instead, total energy differences between similar structures along the MEP are

the relevant quantity. Cancellation of systematic errors in DFT allows the calculation of energy

differences along diffusion paths with much higher accuracy than would be suggested based on the

49



accuracy of the method in total energy per atom [80]. It remains to be seen if similar cancellation

of errors can improve the accuracy of diffusion barriers predicted by an ML model.

100 101 102 103

Number of Features

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

RM
SE

 (e
V)

Barrier RMSE

Figure 4.2: Log-log plot of RMSE in diffusion barrier prediction averaged over the five folds.

To test the extrapolation of our model to diffusion barriers, void spaces were identified in !80.2(8

and !80.5(8 by Voronoi analysis. Candidate endpoint structures were created by moving nearby

lithium atoms into the voids and relaxing the resulting structure while keeping the target lithium

atom fixed. Six endpoints were identified in which the void space was a local optimum for the

lithium atom and in which the relaxation for the rest of the structure was minimal. These endpoints

were then used together with the original !8U(8 structures as the basis for NEB calculations. The

structures along the resulting NEB path were then passed to the ML model for comparison with the

DFT results.

The learning curves are shown in Figure 4.2. The RMSE for the diffusion path structures is

50



less smooth than the RMSE for test folds consisting of the relaxation paths in the amorphous !8U(8

data. Table 4.1, second row (diffusion), shows the RMSE and MAE of the per atom energy across

all diffusion barrier structures. The RMSE for these structures is about 12.3 meV/atom, which

is worse than on the relaxation path test but by less than a factor of two. Nevertheless, reduced

accuracy is expected given the extrapolative nature of the task.

Path Barrier (ML Model) Barrier (DFT)
1 0.228 0.226
2 0.819 0.341
3 2.256 2.139
4 0.230 0.402
5 2.613 2.224
6 0.326 0.354

Table 4.2: Diffusion barriers (in eV) along various paths as predicted by our ML model and DFT.
Paths 1-5 start from the same Li0.2Si structure and path 6 is in Li0.5Si.

However, these errors are not the diffusion barrier errors, which is the quantity of interest.

The energies along the diffusion paths are shown in Figure 4.3. The first row plots the absolute

energies for both the DFT calculation and the model prediction. The second row shifts the DFT

and predicted energy curves to both start at zero, to more easily compare and read off the barriers,

which are given in Table 4.2. The third row of Figure 4.3 plots the predicted energy curves as a

function of the number of model features " , showing the learning rate of the model with respect

to this task. The plots indicate that even with a small number of features, for example, " = 21

or " = 41, the energy curve and resulting barrier is qualitatively correct, with additional features

serving to refine the curves and better align the total energies.

Visual inspection of the energy along the diffusion paths shows that much of the error is

systematic. The !80.2(8 structures contain 60 atoms, so 12.3 meV/atom corresponds to 0.74 eV in

total energy. If these errors were random, we would expect at least 0.74 eV error in prediction of

the diffusion barrier. However, the curves show that the ML model can successfully distinguish

between small-barrier paths and large-barrier paths, and the MAE in barrier prediction is 0.20 eV.

While there is certainly room for improvement, we believe that these data show evidence that the

51



ML model is able to partially capture the physics involved in the diffusion process.

282

281

280

279

E t
ot

 (e
V)

318

317

316

315
test
prediction

    0

  1

  2

  3

E t
ot

E 0
 (e

V)

1

  0

  1
test
shifted prediction

284

282

280

278

E t
ot

 (e
V)

318

316

314
test
prediction
convergence

Figure 4.3: Plots of the six diffusion barrier paths (blue) and (top row) model predictions in red,
(middle row) model predictions and test data shifted by their respective starting-point energies �0,
and (bottom row) convergence of models with increasing number of features used for predictions
of diffusion barrier curves. The large radii circles coincide with fewer features used starting from
a model with a single feature. The models quickly converge in shape and progress towards the red
curve which is the aggregate model prediction. There is a curve for each choice of number of
features " ∈ {1, 21, 41}.

4.2.2 Large Structures

For a second extrapolation task, we consider testing on structures that are significantly larger than

the structures in the training set. Large structure testing data were generated by two methods:

independently relaxing larger AIMD-generated structures (the “from-scratch” method) or tiling

structures from the dataset, randomly perturbing all atomic positions by 0.1 Å, and performing

52



a single-point calculation (the “tiled” approach). The testing data consist of 37 from-scratch

structures, 40 2 × 2 × 2 tiled structures, and 108 2 × 1 × 1 tiled structures.

100 101 102 103

Number of Features

10 2

10 1

RM
SE

 (e
V/

at
om

)

all types
Test Fold

100 101 102 103

Number of Features

10 2

10 1

RM
SE

 (e
V/

at
om

)

scratch
2x1x1
2x2x2
Test Fold

Figure 4.4: A log - log plot of average of RMSEs of models on the interpolation test set and on all
types of large states (scratch, 2x1x1, 2x2x2). Here, y-axis = log(eV/atom), x-axis = log(number of
features in models). The curves labeled 2x1x1, 2x2x2, and scratch on right are the RMSE of
energy error predictions of the 5 aggregate models separated by test folds. On the left panel, we
see that the location of the minimum (i.e., the optimal number of features) for the interpolation
test error is similar to the optimal number of features for the extrapolation error on larger states,
although model over-fitting is significantly more costly for the larger states’ predictions.

It is desirable for an energy-predictor to generalize to structures in simulation cells with a

different size than the training set so that it can be applied to simulation cells large enough to

contain the geometries of experimental interest. As system size increases, the computation becomes

challenging to carry out with DFT, but the wavelet scattering transform and linear regression scales

efficiently with system size, and we are thus much less inhibited by large systems.

As discussed previously, the data for this task were generated by two different methods: “from

scratch” and “tiled.” The learning curves for each are shown in the right panel of Figure 4.2.2.

Since our model predicts global energies per atom, it gives the exact same result for a system that

is simply periodically duplicated. This suggests that the predictions made when extrapolating to

tiled systems that have been perturbed should maintain reasonable accuracy. This figure agrees

53



with this conjecture since the corresponding error lines follow a similar trajectory to the line

for the small system test data. This figure also shows that simpler models are favored for the

independently relaxed AIMD-generated systems (the “from scratch” systems). These systems are

less likely than the tiled systems to be similar to examples from the training set. The rapid increase

in error on large systems for higher model complexity illustrates the sensitivity of the task to over-

fitting. Nevertheless, as depicted in the left panel of Figure 4.2.2, the optimal number of features

for interpolation on amorphous !8U(8 data is approximately the same as the optimal number of

features for energy predictions on the collection of states with larger unit cells. From Table 4.1

(third row, “large states”), we see that while the prediction errors are higher for the larger systems,

it is not an unreasonable increase from errors on the smaller systems.

4.2.3 Bulk Modulus

Finally, we consider elastic property data. Elastic properties are another important output of

atomistic simulations. These are typically calculated by applying small strains to the system in

question and fitting elastic constants to the energy-versus-strain [80]. This too is an extrapolation

task for our model because uniformly expanded or compressed structures do not appear in the

training set. Testing data for this task were generated based on the lowest-energy structure at each

concentration by applying hydrostatic strain and varying the side-length of the simulation box from

−9% to 9%.

The bulk modulus K is calculated by fitting data near the minimum to the following equation:

 = +0
m2�

m+2 (4.2)

where + is the volume, +0 is the equilibrium volume, and � is the energy. In total, a bulk modulus

value is calculated at each of the 37 concentrations, based on a total of 333 structures under

hydrostatic strain.

The energy vs volume of the strained structures (Figure 4.5) shows remarkable agreement

between DFT and the ML model. The RMSE curves shown in Figure 4.6 and the average errors

54



Figure 4.5: Energy per atom of hydrostatically strained LiUSi structures as a function of volume
per atom. Energies are shifted vertically to avoid overlap: U increases down the vertical axis.
Error bars on ML prediction show the standard deviation of predictions of the the 5-fold
cross-validated models for each structure.

55



in the last row of Table 4.1 (bulk modulus) are also quite low. The predicted bulk modulus

of the structures is shown to decrease as a function of lithium content in Figure 4.6. The ML

method accurately captures lithiation induced softening of the silicon. Energy-vs-strain curves

along different deformation paths may also be used for the estimation of additional thermodynamic

parameters, including Young’s modulus, shear modulus free energies, and heat capacities through

the Debye–Grüneisen model [81, 82].

0 1 2 3
 in Li Si

30

40

50

60

70

80

90

Bu
lk

 m
od

ul
us

 (G
Pa

)

DFT
ML prediction

100 101 102 103

Number of Features

10 2

10 1

RM
SE

 (e
V/

at
om

)

Bulk States
Test Fold

Figure 4.6: (left) Comparison of DFT-calculated bulk modulus and ML-predicted bulk modulus.
Modulus was calculated through a parabolic fit to points within ± 4% strain of the energy
minimum. Error bars on the ML prediction show the standard deviation of fitted modulus across
the 5-fold cross-validated models. Averaging across the folds leads to a prediction with MAE of
3.3 GPa compared to the DFT values. (right) A log - log plot of average of RMSEs of models on
the interpolation test set from Section 4.1 and on bulk modulus data. Here, y-axis = log(eV/atom),
x-axis = log(number of features in models). Green curve is the average of the RMSEs for each
fold with error bar given by the standard deviation over the five folds. As for the large states (see
Figure 4.2.2), we see that the location of the minimum (i.e., the optimal number of features) for
the interpolation test error is similar to the extrapolation error for the bulk modulus states.

4.3 Ablation Study of Adaptations

The model used in the previous two sections (hereafter referred to as the full model) has

numerical results on the test set summarized in Table 4.1 and the training method is described in

56



Section 4.1. The results of two alternative models on the various tasks of this work are listed in

Tables 4.3 and 4.4. The test folds of relaxation paths and LiUSi states of the diffusion, large states,

and bulk modulus states are identical in all three model comparisons.

The first alternative model (hereafter the 0-1 model) is trained identically to the full model

with five test folds (the test folds are identical for both models) and 100 randomly selected sets

of relaxation strings (with replacement) for training, but with only zero and first order wavelet

scattering features available for selection in training. This results in a total of 321 features (with

bias) to select from compared to 3741 in the full model. Note that at each step of the greedy OLS

training the best feature is chosen from
√

321 ≈ 17 features that are randomly selected from the

remaining unselected features compared to
√

3741 ≈ 61 in the full model. The model size "★

averaged over all 500 permutations of the training data is 121 in the full model and 108 for the

0-1 model, with standard deviations of 64 and 38, respectively. The numerical results for the 0-1

model are listed in Table 4.3. The performance is comparable on the relaxation paths. On the

diffusion states the 0-1 model has slightly better performance in RMSE and MAE, but the standard

deviation in MAE across the five folds is nearly double the full model. Furthermore, inspection

of the barriers computed by the 0-1 model reveals that they are in fact slightly worse than the full

model. The performance of the 0-1 model is significantly worse than the full model on the large and

bulk states, again with a large spread in errors. This indicates that we get a statistically significant

benefit by including second order features in the models.

RMSE (meV/atom) MAE (meV/atom)
Relaxation paths 8.04 ± 0.59 5.99 ± 0.39
Diffusion 11.8 ± 0.48 9.51 ± 0.95
Large states 14.0 ± 0.68 10.2 ± 0.42
Bulk modulus 39.5 ± 4.82 25.1 ± 2.92

Table 4.3: Numerical results for ML predictions with only zero and first order features (compared
to zero, first, and second in Table 4.1) on the test data from the amorphous dataset and the three
extrapolation tasks from the model trained only on the amorphous data.

The second alternative model (hereafter the non-randomized model) has the same features

available as the full model and the same five test folds as the prior two models. The training set

57



is randomly partitioned into four equally sized sets (selection by relaxation strings) with a model

trained for each selection of a set as validation and the remaining three for training (i.e., nested

five-fold cross validation, as in [83]). This results in four trainings for each test fold for a total of

20 models trained compared to the 500 trainings (five test sets with 100 training/validation splits)

of the full model. This non-randomized procedure ensures uniform representation of the strings in

the training, validation, and testing folds. During training of the non-randomized model the OLS

algorithm seeks the next best feature at each step from all remaining features rather than randomly

selecting a subset of features to choose from as in the prior two models. The average value of "★

is 153 for the non-randomized model with standard deviation of 82 across the 20 trainings. The

performance of this model is similar to the full model on relaxation paths but with significantly

larger spread of the errors between models on the diffusion, large, and bulk states. Thus the chance

of a catastrophic error is higher. Furthermore, the RMSE and MAE are significantly larger on the

bulk states. This indicates that the model over-fit the training data and did not generalize as well to

the extrapolation tasks. Randomized training in the full model appears to mitigate the possibility

of over-fitting.

RMSE (meV/atom) MAE (meV/atom)
Relaxation paths 7.50 ± 0.39 5.64 ± 0.28
Diffusion 11.6 ± 1.01 11.0 ± 1.03
Large states 9.78 ± 1.98 6.60 ± 0.81
Bulk modulus 16.6 ± 4.91 11.5 ± 3.55

Table 4.4: Numerical results for ML predictions with the non-randomized model. The models are
trained without random feature selection at each step of the greedy OLS algorithm, i.e., at each
step all features are available for selection.

For our final consideration of alternative models, we look back to the model used in Chapter

3 (hereafter the random sampling model). As mentioned in Section 4.1, the random sampling

model contains many more features (2855 ± 113 features) than the full model. This is due to

the validation data matching the training data much more closely. This causes a problem for the

generalization tasks. In Table 4.5, we can clearly see that the results are nowhere near the results

with the other models. We know that the random sampling model gets excellent results on the

58



original lithium-silicon data set. However, since it was not created with the goal of extrapolation,

we get a model which is not overfit in the traditional sense because the results on the training data

extend nicely to the testing data. The difference between the full model and the random sampling

model demonstrates that it is necessary to account for how the model will be used when selecting

the training process. Additionally, we see that minor concessions in interpolation error can lead to

significantly improved results in the extrapolation setting.

RMSE (meV/atom) MAE (meV/atom)
Diffusion 928 ± 4.00 928 ± 4.54
Large states 687 ± 57.2 662 ± 53.3
Bulk modulus 663 ± 11.9 674 ± 20.4

Table 4.5: The results are much worse than the other models considered for testing on the
extrapolation data. This is expected due to the nature of the sampling and the way the effect that
had on the model.

4.4 Conclusions

We have demonstrated a machine-learning model based on wavelet scattering that can achieve

an accuracy of 5.52 meV/atom (mean absolute error) in energy on the prediction of amorphous

!8U(8 structures. We have tested the generalizability of this energy predictor on three extrapolation

tasks: diffusion barriers, large systems, and bulk moduli. As expected based on the nature of

regression-based ML, if care is not taken to avoid over-fitting, the model performs poorly on

these extrapolation tasks. However, we have shown that a statistically based feature randomization

procedure, using the universal wavelet scattering features, can significantly enhance performance

on the extrapolation tasks without significant reduction in performance on the interpolative test set.

Although the present work is limited to amorphous !8U(8, it provides general lessons for those

wishing to apply ML models to new problems in chemical physics. This is often a daunting task

because ML is generally an interpolative technique. Before a model can be used, it must be trained

on large amounts of data similar to the task at hand. If the problem is new or challenging to

solve by conventional means, the generation of these data can be quite difficult. Extrapolation

from the well-known systems may be possible, but off-the-shelf ML models do not extrapolate

59



well. However, extrapolation performance can be greatly improved by taking a different approach

to training the ML model.

Simpler models generalize better. In our model, “simplicity” corresponds to the number of

features (wavelet scattering coefficients) used and the fact that these features provide unsupervised

descriptions of atomic states, but the concept is general. Validation sets are often used in machine

learning to choose a model complex enough to describe the training data but simple enough to

avoid over-fitting. By utilizing randomized feature selection and the aggregation of an ensemble of

models (bootstrapping), we obtain a robust and accurate model when applied to the aforementioned

extrapolation tasks. From this perspective, typical ML metrics such as testing and validation error

are not the only criteria for a “good” model.

In order to apply these principles to harder extrapolation tasks and to incorporate a priori

uncertainty quantification, it will be necessary to leverage statistical methods that allow one to

predict which properties will be difficult for the model, suggesting possibilities for efficient training

set expansion to further improve generalizability. Training set expansion could be automated using

“active learning,” allowing a model to improve itself based on problems presented to it. The linear

regressionmodel over unsupervised nonlinear wavelet scattering features is well positioned for such

future work, as it is relatively simple (compared to fully supervised neural networks) to incorporate

new data on the fly.

In future work, we will extend the model to include force predictions. Our energy predictions

are given as linear combinations of features that are each dependent on the atomic positions. The

features are differentiable and we can carry out this differentiation analytically, which opens up fast

force computations and fits the weights of our model to force data. In this case, all the methods of

our model would still be applicable. This has a computational advantage over features with learned

filters, which would likely use automatic differentiation. Including forces in the weight learning

process could affect the weights that are learned for the energy predictions as each system would

have 3#G more points of training data. We expect that this will boost the generalization ability of

the model. In this regard, training on forces will act as a regularizer for energy predictions.

60



Going beyond the basic predictions we initially made on the Lithium Silicon data base, here we

demonstrate the accuracy of the model across data not seen during training. This implies that we

are able to capture some true chemistry in our models.

61



CHAPTER 5

THE PATH ON GRAPHS

5.1 Translating Voxels to Points

We now consider an alternate approach that offers an improvement in the computation scaling

with the number of atoms. With an image in 3D space, we have a sampling of many points within

the box inside which the atomic structure exists. The representation scales as $ (#2) which is

better than most chemical methods, but less than desirable for some practitioners. As discussed in

Section 2.5, it is possible to make adjustments to the representation so that the scaling is improved

to $ (# (log#)X) for some X ≥ 1 with a large hidden constant. The density of sampling allows us

to characterize every point in that space. However, the points that we are specifically interested

in are the atom locations. The surrounding sampling is only useful insomuch as it contributes to

the richness of the representation of the atoms themselves and the interactions between atoms. We

now consider a point convolution approach with the atom locations as the only positions considered

[34].

Rather than a density, the point convolution approach operates on a matrix of differences of

positions of the atoms. This scales as $ (#2) since it contains every atom pair but it has a much

lower scaling prefactor than the voxel approach, and has further opportunity for improvement. The

most basic version is the matrix � ∈ R#×#×3 containing the pairwise distance vectors with a zero

diagonal.

� =


0 '1 − '2 . . . '1 − '#
...

...
. . .

...

'# − '1 '# − '2 . . . 0


Since all of the information in these matrices is relative to other atoms in the structure, � is globally

translation invariant. The matrix � is rotation equivariant for each entry. If a structure is rotated,

the vectors between pairs rotate correspondingly.

62



The distance matrix is a precise representation of the structure. In the voxel case, we have a

set resolution which controls the highest frequency information that will be preserved. Since the

frequency is bounded in the representation there will exist some small movement of the atoms

which will be undetectable in the representation. While this error may be acceptably low, defining

the atom positions as the points of interest removes any approximation.

Since the wavelets we designed for the voxel-based approach worked well to describe the

lithium-silicon structures, we retain them to apply to this representation. As output we get a vector

representation of the atomic structure. In this chapter we define point convolution as

d2G ∗ k_ ('8) =
#∑
:=1

d2G (': )k_ ('8 − ': ) =
#∑
:=1

2(/: )k_ (� [8, :]) (5.1)

which is the same convolution as before, but evaluated at '8 instead of D. Also, for wavelets with

small support in space, we can restrict the set of atom pairs on which we evaluate the summation

since distant atoms pairs would be essentially zero. This can result in $ (#) scaling as opposed to

$ (#2) scaling, but only for small wavelets.

Since each point in the input of this function depends on all the interactions with a particular

atom, the output is equivariant with respect to permutations. Unlike in the voxel approach, here,

we retain individual representations for each atom, but must treat them identically modulo atom

type. Also, unlike the voxel formulation, the point convolution is invariant to translations, not

equivariant.

The point convolutions with our wavelets are not immediately equivariant to rotations, and we

must apply the special modulus as before.

f(d ∗ k_) ('8) =
(

ℓ∑
<=−ℓ

|d ∗ k_ ('8) |2
)1/2

(5.2)

The application of the special modulus here makes the representation invariant to rotations rather

than equivariant to rotations. Note again, that this is a difference from the voxel scattering

representation. However, since this representation does not have a geometric underlying structure,

it is not immediately clear what information it contains. In particular, it is important to discern

63



if angular information is preserved or if the processing of the wavelet transform in this context

effectively reduces the wavelets to radial functions.

As a test, we consider a structure of three atoms. Each index in the representation contains a

feature that is determined by all three atoms.

d2G ∗ k_ ('8) = d2G (': )k_ ('8 − ': ) + d2G (' 9 )k_ ('8 − ' 9 ) (5.3)

In this case, the central angle of each is recoverable with a dictionary of sufficiently many wavelets.

∃(F_)_ such that
∑
_

F_d
2
G ∗ k_ ('8) = ∠ 98: (5.4)

With more than three atoms, the angular information is lost because Equation 5.3 becomes a

function of the distances between at least four atoms. This demonstrates that, while it is initially

accessible, angular information is collapsed almost immediately.

In the voxel approach, the entries of the intermediate representation which correspond to an

interaction between two or more atoms exist at the location of the interaction on the grid. In the

point convolution approach, that information is stored at the location of the central atom. This is

unfortunate because the contributions to the feature value lack a directional component. It would

be possible to place new nodes between atom locations to augment the geometric information,

but that would be harmful to the scaling of the algorithm and would present new challenges

for the implementation. At this point, the local information is significantly different from the

voxel approach. In the point convolution formulation, we do not have location mappings for the

contributions due to other atoms which is important to consider as we proceed into a second layer.

The scale-coupling layer will appear as

f(f(d2G ∗ k_1) ∗ k_2) ('8) =
©­«

ℓ2∑
<=−ℓ2

|f(d2G ∗ k_1) ∗ k
<
_2
('8) |2

ª®¬
1/2

=
©­«

ℓ2∑
<=−ℓ2

����� #∑
:=1

f(d2G ∗ k_1) (': )k
<
_2
('8 − ': )

�����2ª®¬
1/2

Note the difference in the flow of information. In the voxel approach, we begin at the atom

centers and emit a filter, then sum over the squared filter responses to get rotation equivariance.

64



The interactions between atoms is encoded in the space between them through the interference of

the wavelets. The second layer then combines information from everywhere within reach of the

wavelet to each grid point where the convolution is evaulated. In the point convolution approach,

the information regarding all neighbors (as defined by the filter support) is immediately gathered

to each atom center. In the second layer, we have each neighboring atom contribute its own

neighborhood’s information to the central atom.

Recall that the voxel scattering, before integration, is equivariant to translations and rotations and

invariant to permutations. By computing the integral of the voxel scattering maps we transformed

the isometry equivariantmaps into an isometry invariant representation. Here, the point convolution

scattering is the opposite; it is invariant to translations and rotations but equivariant to permutations.

Here, we need to collapse the permutation equivariant intermediate representations to permutation

invariant features instead of collapsing isometry equivariant representations to isometry invariant

features. We define the features with the same notation as before, but here instead of an integral we

sum over the entries of the representation vector.

‖f(d2G ∗ k_)‖
@
@ =

∑
8

|f(d2G ∗ k_) ('8) |@ (5.5)

‖f(f(d2G ∗ k_1) ∗ k_2)‖
@
@ =

∑
8

|f(f(d2G ∗ k_1) ∗ k_2) ('8) |
@ (5.6)

The resulting representation is permutation invariant.

If we continue to follow the approach from the previous chapters, we would now also use a

greedy linear regression to learn weights which combine the features and make predictions of the

energy. The improved scaling of the point convolution framework allows us more options for the

combination of the features. Due to the lack of interference patterns between the atoms, it seems

likely that these features are less expressive and need to be improved upon to get good results.

5.2 Expanding Model Flexibility

The computational efficiency of the point convolution approach allows us to place it into a

neural network framework. This has some advantages. We can learn weights at several points

65



along the algorithm. The first location is in the point convolution itself. We can apply the selection

of density channels that we developed, but 2(/: ) does not need to be a predetermined function of

the charge and can instead be a learned embedding of the charge. This is similar to what is done in

SchNet [41]. By creating a matrix with one-hot encoding for the atom type, we can learn a weight

matrix to apply to it which will yield representations which are consistent within each atom type

and unique among different atom types. More specifically, letX0 be the #G × 30 matrix, where 30

is the number of atom types, that consists of the one-hot encoding of each atom in G. Now let W0

be a 30 × 3̃0 learned weight matrix. ThenX0W0 defines 3̃0 channels of the state G.

In the scattering portion of the algorithm we can learn to combine first order representations

prior to the second convolution.

f(f(d ∗ k_1) ∗ k_2) ('8) =
©­­«

ℓ∑
<=−ℓ

������∑_1

F2,_1 (f(d
2
G ∗ k_1) ∗ k

<
_2
) ('8)

������
2ª®®¬

1/2

(5.7)

This can be linear as written above, but alternately, a nonlinearity can be applied and additional

layers can be added. This gives us more flexibility in the pairing of wavelets between the first

and second layer. It is also a computational advantage in that we can reduce the number of

representations coming from the first layer.

This neural network framework can also include a learned combination of representations to

yield the energy prediction in place of the greedy regression. This could be nonlinear and offers

more options for combining the resulting wavelet scattering features. We consider an intermediary

representation of size |Ξ| and consider weights Fb : b ∈ Ξ.

�̃ 5 (G) =
∑
b

FbReLU
∑
2,_,@

F
b

2,_,@
| |f(f(d2G ∗ k_1) ∗ k_2) | |

@
@ (5.8)

In this example we first apply a learned weight matrix which collapses the features to size Ξ. Then

we apply a nonlinearity followed by another weight matrix which collapses the features down to a

scalar to make the energy prediction.

Let us combine all of the previous considerations and examine this algorithm in matrix form for

clarity. Let X1 ∈ #G × 31 be the representation of G with 31 channels at layer 1. This is a matrix

66



of representations for each atom in the system. We have the matrix X0 ∈ #G × 30 which is the

1-hot encodings of atom types. This allows similar functionality but more flexibility compared to

the density channels that we developed in previous sections. Define  to be the number of wavelets

that we use. Let 	G ∈  × #G × #G be the tensor encoding wavelet point convolution operators.

This is Equation (5.1) acting on the matrix � across the full dictionary of wavelets except without

the channel function since we learn that separately. LetW1 ∈ 31 × 3̃1 be the learned weight matrix

which is independent of G. The matrix W1 combines channels to form new channels. We get an

intermediary matrix

X̃1 = 	GX1W1 ∈ R ×#G×3̃1 (5.9)

We take the special modulus of this matrix to get

f(X̃1) = f(	GX1W1) ∈ R ̃×#G×3̃1 (5.10)

where  ̃ is the number of (=, ℓ, 9) combinations we consider. We reshape the matrix so that we

have a two dimensional matrix

X1+1 = Reshape[f(X̃1)] ∈ #G ×  ̃ 3̃1+1 (5.11)

We then define 31+1 :=  ̃ 3̃1+1. We can repeat this process for � layers leading toX� ∈ #G × 3�.

Each layer refines the features of each atom and propagates them to the other atoms. We apply the

discrete @-norm to the #G dimension

qW (G) =
#G∑
8=1
|X� ['8, :] |@, W = (:, @), 1 ≤ : ≤ 3�, @ ∈ {1, 4

3
,

5
3
, 2} (5.12)

which gives the representation

Φ(G) = (qW (G))W∈Γ, |Γ| = 43� (5.13)

Then we also learn regression weights (in tandem with the weight matrices (W1)1, 0 ≤ 1 < �).

�̃1(G) =
∑
W∈Γ

FWqW (G) (5.14)

67



Alternatively we can learn to combine the last layer of the representation with an artificial neural

network

�̃1(G) = ANN(Φ(G)) (5.15)

5.3 Training with Forces

We consider a different data set to test these methods. MD17 is a data set of molecular dynamics

trajectories on several small molecules (aspirin, benzene, ethanol, malonaldehyde, naphthalene,

salicylic acid, toluene, and uracil) [24, 84, 85]. The number of data points ranges from 150k

to nearly 1M for each molecule. The data includes energy in kcal/mol as well as forces in

kcal/mol/Angstrom. This data set has been used as a benchmark for many papers in this field

[17, 41, 86, 87, 88, 89].

Initially many researchers trained on a selection of 50k points per molecule. These points

are selected randomly from among all conformational geometries. The data is different from our

lithium silicon data in that there is a single trajectory for each molecule. Despite the time series

nature of this data, the standard practice for selecting training data does not take into consideration

the data generation. With only one simulation to sample from, sampling to the first 50k geometries

might be too restrictive to be able to predict the rest of the data points in the simulation.

In more recent years, researchers have reduced the training set size to only 1000 points.

The dramatic reduction is balanced through the use of forces in the training process. Forces offer

significant improvements in reducing the prediction errors on energy. In standard machine learning,

second-order gradient methods are desirable for their superior performance, but are typically not

used because of their computational cost. Methods like ADAM were introduced as a cheaper

substitute [3]. For machine learning in quantum chemistry, the benefits of computing a second

derivative are even greater because we are not trying to control the derivative of the gradient, but

instead we are trying to match the gradient to specific values.

?

=C∑
8=1
|�1(G8) − �̃1(G8) |2 + (1 − ?)

=C∑
8=1

1
#G8



∇�1(G8) − ∇�̃1(G8)


2 (5.16)

68



For an energy prediction �̃1 we can reformulate the optimization as minimizing a new loss (5.16)

with added hyperparameter 0 ≤ ? ≤ 1 which controls the balance between energy and forces.

At first we can see that minimizing (5.16) will regularize �̃1. Each training point which

originally had a single target will have 3# + 1 targets. Figure 5.1 gives an example of the benefit.

The resulting model will be more stable to perturbations. If the movement of a single atom had

too strong of an effect on the prediction, its corresponding force prediction would be too high.

Models with low losses will have to have smooth energy predictions. For the wavelet scattering

model, inclusion of the forces does not have benefits beyond regularization. With the representation

completely defined sans the linear combination, the model does not have much flexibility to learn

from the forces. However, when themodel has learnable layers throughout, the forces can contribute

to guiding the function to be more chemically accurate. One advantage of the wavelet scattering

method is that we can define the derivative analytically, but even so it compounds the prefactor on

the scaling which is already a bit high.

The addition of forces clearly adds computation in the training phase. Naively we multiply the

computational cost by 3# + 1. However, much of the computation overlaps. In the neural network

approach, we already compute the forces as the gradient of the energy. We add the second derivative

which we can compute once through the entire network and then multiply by the derivative of the

first layer with respect to the position once for each atom. This makes the additional computational

cost bearable.

At this point, the point convolution representation that we have developed is not very rich even

with the learned layers. With the rapid collapse of angular information and lack of geometric

flexibility, much of what made the wavelet scattering representation good has been lost. When

training this model (without forces) on the molecules in MD17, the results for seven of the eight

are not much better than predicting the mean for every data point. See Table 6.1. Our predictions

for benzene are very near to state-of-the-art. We present results of our representations’ predictions

on this data set in the following chapter. The results from the model in this section suggest that

for extremely symmetric structures, this representation can capture the perturbations of the atoms.

69



To get better results, we must add back information that the voxel wavelet scattering captured, in a

way that can be applied to the point convolution setting.

Figure 5.1: A toy example of the benefits of training with forces. For a two-atom system we
consider energy and force derived from the Lennard-Jones potential. The y-axis measures energy
and forces. The x-axis describes distance between the two atoms. As the input to a three layer
fully-connected network, we take powers of the inverse distance: ( |'1 − '2 |−?)? : ? ∈ [1, . . . 9].
The training cuts in the plots indicate the endpoints for the training sampling. In the top left, we
get good results for both energy and forces when training on only energy over the full energy
surface. However, in the bottom left, we see that when the extreme energy regions of close
distances are excluded, the predictions are drastically worse. In the bottom right, we notice that
with the inclusion of forces, we are able to predict the close distance energies fairly accurately
without any training data from that region.

70



CHAPTER 6

AUGMENTING THE REPRESENTATION

Inspired by molecular dynamics simulators, the energy of an atomic structure can be decomposed

into a sum over five parts [90].

� = �1>=3B + �0=6;4 + �C>AB8>= + �4;42CA>BC0C82 + �E0=34A,00;B (6.1)

In this equation, we have several different types of interactions represented. The first term encodes

pairwise interactions between nearby atoms. The second term captures three-body interactions

between neighboring atoms. The third term depends on the dihedral angles between the planes of

two pairs of bonded atoms. The fourth and fifth terms model the interactions between non-bonded

atoms which are farther apart. This decomposition of the energy is common in the context of force

fields. We consider it here to assess important elements for predicting the ground state energy of

molecules.

The wavelet scattering approach includes information from each of these terms in the voxel

representation. There are bonded and non-bonded terms depending on the scale of wavelet used, but

there is no direct separation of the representations into the terms in (6.1) (i.e. the large wavelets still

capture local interactions), and angles and torsion are implicit. With a point convolution approach,

we have flexibility to expand the representation to include these energy terms more directly.

Additionally, we can improve the scaling of the algorithm from the $ (#log(#)X) scaling of

the wavelet scattering approach. One can achieve $ (#) scaling when considering only the local

neighborhoods of each atom. This has been the primary approach for graph-based methods in

the field of machine learning for quantum chemistry [42, 41]. For message-passing based models

[31], information is propagated between edges of the molecular graph. In this way, the information

between distant atoms eventually interacts, but it has been diluted as it passes through each atom in

between them to the point that it is challenging to get an accurate representation of the long range

non-bonded interactions.

71



We would like a representation which encodes different scales explicitly. The best scaling

interaction scheme between atoms which contains information over multiple scales in a molecule is

$ (#). This is achieved by looking at only local interactions and then aggregating them by group to

form global representations. The fast multipole method is a computational technique that has been

widely adopted using this type of aggregation scheme over scales [91]. This is also similar to what

happens for a two-layer wavelet scattering representation. For the wavelet scattering approach, the

small filters are defined on a grid that is the same size as the large filters so there is no computational

savings. By stacking a small filter in the first layer with a large filter in the second layer, we encode

the coupling of scales. We can apply the same filters in the point convolution approach, but it will

not work the same. This is because the model is expressed only on atom locations and does not

have the ability to aggregate at a new location that represents atom neighborhoods. Additionally,

the point convolution approach applied with large filters scales as $ (#2).

We now look to improve the information content of the point convolution approach. The

proposed considerationswill also allowus to improve computation. We are committed to developing

a representation with $ (#) scaling, meaning that it can only consider atom neighborhoods instead

of all pairwise interactions. We propose three modifications to the learned point convolution

scattering introduced in Chapter 5.

1. We use only small filters (e.g., 9 = 0 only), which reduces the computational cost of a single

layer to $ (#) instead of $ (#2).

2. Using only small filters means only local information is encoded. Even by stacking layers

to go from local to global as in the message-passing framework [31], information is still lost

relative to a fully multiscale approach [42]. We therefore add in local 3-body angle terms to

the existing 2-body point convolution terms.

3. Even with the 3-body terms, the network is still missing higher body terms. Furthermore, in

order for the network to encode long range interactions, its depth would need to be equal to

the diameter of the molecular graph which in the worst case scales as $ (#), and hence the

72



overall cost is still $ (#2). In order to address both issues, we incorporate pooling into the

point-convolution scattering network using the DiffPool framework [92]. As we illustrate,

pooling between layers can transform many-body interactions into 2 and 3-body interactions.

Furthermore, if one pools on the order of half the previous layer’s atoms, then the depth of the

network will be $ (log#) and its computational complexity for evaluating a new molecule

will be $ (#).

6.1 Inclusion of Angles

While we desire global rotation invariance, the local rotation information is important to

represent bond angles well. This is included implicitly in the voxel approach through the wavelet

interference patterns between atom locations, but it is mostly lost in the pairwise graph approach.

Using �, instead of pairwise distances, we retain the orientation of the structure and compute the

angle ∠8 9 : from the vectors ' 98 and '8: . We can create a three-body representation as

dG �.<ℓ ('8, ' 9 , ': ) = .
<
ℓ
('8 − ' 9 ) + .<ℓ ('8 − ': ) (6.2)

We leave out the channels for now and will reintroduce them to the representation later on. This

representation is globally rotation invariant, but can recover the angle ∠ 98: with a large enough set

of filters (large ! for 0 ≤ ℓ ≤ !) indicating that it retains local rotation information. The issue with

this representation is that for large ℓ, there are many <’s to go over. An alternative approach is to

compute the angle explicitly and compute the spherical harmonic at < = 0 for various ℓ values.

This set of spherical harmonics have a term cancelled out which reduces them to the Legendre

polynomials %ℓ with a constant in front. These polynomials take the cosine of a single angle as

their argument. This approach reduces the computation but still forms an angular basis. Let us

redefine the diamond operator.

dG � %ℓ ('8, ' 9 , ': ) = %ℓ (cos(∠ 98: )) + %ℓ (cos(∠:8 9 )) (6.3)

The number of terms in the first formulation is #ℎ (! + 1)2 for #ℎ atoms in the neighborhood.

In the second formulation there are ! (#ℎ2 ) terms. If we take ! = 5 as an example, then the

73



second formulation is computationally superior for any #ℎ < 73. Since we are considering local

representations, we will never reach 73 atoms in a neighborhood. For this reason, we discontinue

computing over the entire set of <’s going forward and consider representations based on (6.3).

With a general notion of how we will approach the angular representation, we turn to the radial

representation. Within the neural network setting, rather than defining a set of radial functions, we

can learn them. When we defined the wavelets, we created them as complete filters comprised of

angular and radial terms. However, when learning filters, the radial portion can be divorced from

the angular portion of the representation. In the end, we want these terms to be united to form a

complete representation of the neighborhood. If we keep them together, we have representations

of the form

dG � �Wℓ ('8, ' 9 , ': ) = &W ( |'8 − ': |)%ℓcos(∠8 9 : )) (6.4)

where �Wℓ = (&W , %ℓ) and ∠8 9 : is the angle centered at '8 and defined by ' 9 and ': . Allowing

the radial and angular functions to act independently of one another we have access to functions

that combine various radial representations and various angular representation each before merging

the two. This can be linear as described below, but the learned weights could also be expanded to

multiple fully-connected layers with a nonlinearity.

dG � �\Wℓ ('8, ' 9 , ': ) =
∑
W

∑
ℓ

\Wℓ&W ( |'8 − ': |)%ℓcos(∠8 9 : )) (6.5)

While we can select and design filters that seemwell-suited for the task and perhaps achieve success,

having more flexibility for the model allows a better minimal error with the drawback that it requires

a more challenging optimization.

To create a simple model with much flexibility, we further simplify the representation and fix

the diamond notation.

dG � �\Wℓ ('8, ' 9 , ': ) =
∑
W1,W2

\W1W2 (�W1 ( |'8 − ': |)�W2 (cos(∠8 9 : ))) (6.6)

where �W is a Gaussian basis.

�W (A) = exp
− (A−W)

2

2f2 (6.7)

74



For the radial basis,�W1 is a set of Gaussian functions with W1 ranging from 0 to our cutoff distance.

The cutoff distance is a hyperparameter dictating the largest size of the atomic neighborhood. The

standard deviation is set so that the Gaussians overlap at one standard deviation from their mean.

For the angular basis we also use Gaussians but with W2 varying from -1 to 1 since they will act on

the cosine of the angle. These bases partition the interactions of the atoms based on their distances

and angles smoothly since the Gaussians overlap.

The set of representations that we get are filters that vary radially as well as angularly. A

selection of the learned filters can be seen in Figure 6.1. They are two-dimensional and symmetric

across the y-axis. The representations are invariant with respect to rotations because the filters

effectively rotate with the atoms.

Let us once more turn to matrix notation to describe this representation more clearly. We have a

matrixGΓ1 ∈ |Γ1 | ×#G ×#G which is a Gaussian basis of size |Γ1 | operating on pairwise distances

of the atoms |'8 − ': | and a matrixGΓ2 ∈ |Γ2 | × #G × #G × #G which is a Gaussian basis of size

|Γ2 | operating on the cosine of the angle centered at the atom in the second index cos(∠8 9 : ). We tile

GW1 to create a fourth dimension of size #G and take the outer product of these two representations.

GΓ1 ⊗GΓ2 ∈ R
|Γ1 |×#G×#G×#G×|Γ2 | (6.8)

which has entries

GW1 ( |'8 − ': ) |)GW2 (cos(∠8 9 : )), W1 ∈ Γ1, W2 ∈ Γ2, 1 ≤ 8, 9 , : ≤ #G (6.9)

and reshape to R|Γ1 |·|Γ2 |×#G×#G×#G before applying a learned weight matrix Θ̃1 ∈ R3̃1×|Γ1 |·|Γ2 |

to get

F̃1 = Θ̃1Reshape(GW1 ⊗GW2) ∈ R
3̃1×#G×#G×#G (6.10)

A single entry of F̃1 is dG � �\W1W2 ('8, ' 9 , ': ). To create filters which are nonlinear combinations

of the filters we have defined, we apply an activation function. We use the shifted softplus

following SchNet: BB?(F̃ ) = log(0.5 expF̃ +0.5) and then apply a second learned weight matrix

Θ1 ∈ R31×3̃1

F = Θ1BB?(F̃ ) ∈ R31×#G×#G×#G (6.11)

75



The matrix F can be viewed as the evaluations of a set of learned 2D filters on |'8 − ': | with an

orientation governed by the vector '8 9 .

Figure 6.1: Filters learned for processing ethanol. The top third are from the first layer, the middle
third are from the second layer, and the bottom third are from the third layer. For an intuitive ideal
of how these are applied, consider '8 to be at the center of the image and ' 9 to be just above '8.
The color displays the filter response as a function of the location of ': .

As in Section 5.2 we will refine this representation through multiple layers. At layer 1, we

76



have the atom-wise representation X1 ∈ R#G×31 and the matrix of three-body filter responses

F1 ∈ R31×#G×#G×#G defined as

F1 = Θ1BB?(Θ̃1Reshape(GW1 ⊗GW2)) (6.12)

We take the element-wise product of these matrices.

X̄1 (·, ·, 9 , :) =X)
1
� F1 (·, ·, 9 , :) (6.13)

We sum over the neighboring atoms since we needX1+1 to only have one atom index.

X̃1 =

#G∑
9 ,:=1

X̄1 (·, ·, 9 , :) (6.14)

Then we refine the atoms features further with two learned weight matrices and a shifted softplus

and add this toX1 in the style of a residual network [93].

X1+1 =X1 + Θ̄1BB?(Θ̂1X̃1) (6.15)

where Θ̂1 ∈ R3̄1×31 and Θ̄1 ∈ R3 |1×3̄1 . At the end of the final layer � we take the sum over the

atoms and learned a weighted combination of the features to make the energy prediction.

�̃1(G) = Θ�
#G∑
8=1

X� (6.16)

with Θ� ∈ R3� .

We test this algorithm on MD17 using a basis ten functions for the angles and ten functions

for the pairwise distances. The outer product of these leads to 100 unique basis filters which

the model learns to combine. A subset of these combinations are shown in Figure 6.1. We set

the number of layers at 3 and 31 = 128. We train on 1000 randomly sampled molecules for

each of the 8 molecule types in MD17, validate on 100, and test on the remainder. We weight

the training loss of form (5.16) to have a contribution of 0.99 from the forces and 0.01 from the

energy. Our representation matches the current state-of-the-art for the force predictions on ethanol,

malonaldehyde, naphthalene, salicylic acid, toluene, and uracil. The model that we evaluate the

test set on is selected as the set of weights which minimizes the validation error.

77



The most similar model to ours that we show in Table 6.1 is DimeNet [42]. We have better

results on forces for every molecule besides aspirin. We match DimeNet for predictions on energy

aside from aspirin, benzene, and malonaldehyde where their predictions are better. Our model is

fourth in average MAE for forces across the eight molecules. The three models that are superior are

ACE [89], FCHL [87], and PaiNN [88]. ACE is a linear atomic cluster expansion that constructs

bases up to four-body terms and designs a density trick to get rotational invariance. FCHL is a

representation based on histograms of the radial distribution of atoms and Fourier terms describing

the angular distribution of the atoms. PaiNN is an extension of SchNet which incorporates three-

body terms. In the following section, we consider an additional element which may be able to

further improve our results on MD17.

SchNet DimeNet FCHL PaiNN ACE Base Angular

Aspirin Energy
Forces

0.37
1.35

0.20
0.50

0.14
0.49

0.16
0.37

0.14
0.42

1.20 0.24
0.59

Benzene Energy
Forces

0.08
0.31

0.08
0.19

0.01
0.06

0.00
0.01

0.02 0.11
0.10

Ethanol Energy
Forces

0.08
0.39

0.06
0.23

0.02
0.14

0.06
0.23

0.03
0.17

0.40 0.05
0.14

Malonaldehyde Energy
Forces

0.13
0.66

0.10
0.38

0.03
0.24

0.09
0.32

0.04
0.26

1.75 0.22
0.29

Naphthalene Energy
Forces

0.16
0.58

0.12
0.22

0.03
0.15

0.12
0.08

0.02
0.12

0.20 0.13
0.14

Salicylic Acid Energy
Forces

0.20
0.85

0.13
0.37

0.04
0.22

0.11
0.21

0.04
0.22

1.38 0.13
0.23

Toluene Energy
Forces

0.12
0.57

0.10
0.22

0.04
0.20

0.10
0.10

0.03
0.15

1.40 0.10
0.13

Uracil Energy
Forces

0.14
0.56

0.12
0.30

0.01
0.10

0.10
0.14

0.03
0.15

1.43 0.11
0.14

Table 6.1: We compare seven methods across the molecules of MD17. SchNet was the earliest
application of a neural network on this data and was later adapted to PaiNN. DimeNet was the first
work to include angles explicitly within the neural network framework and test on MD17. ACE
and FCHL are the state-of-the-art at the time of writing.

78



6.2 The Coupling of Scales via Pooling

The message-passing framework or variations of it are popular as a basis for representations of

atomic structures. However, this approach is deficient in the encoding of long-range interactions.

This is documented in several papers [94, 95, 96]. If we consider alternative methods of aggregation

across scales, we may be able to encode long range interactions better. We look at pooling for

graphs. By allowing a graph to pool, we enable it to create new nodes which may be more accurate

representations for the location of interaction information. The new nodes act as neighborhood

features for the atoms averaging over the features and geometry of a set of local atoms. Graph

pooling allows us to move towards the wavelet scattering representation by creating a path for the

refinement of the geometric information of the atomic structure.

6.2.1 DiffPool

We consider the design of DiffPool which equips graph neural network (GNN) models with a

differentiable module to hierarchically pool graph nodes [92]. We temporarily redefine variables

for only this section. In the DiffPool framework, one has two matrices: the graph adjacency

matrix � and the feature matrix - ∈ R#×3 . Using these two, one computes subsequent features

using a GNN module which leads to a new matrix / ∈ R#×3′. Simultaneously, a pooling matrix

% ∈ R#×#′ is learned where #′ is the number of nodes for the next layer. Applying the softmax

row-wise limits the contribution of each old node to the set of new nodes, ( = softmax(%). We

apply the matrix ( as

-′ = ()/ ∈ R#
′x3′ (6.17)

�′ = () �( ∈ R#
′x#′ (6.18)

From this one has a new set of nodes which represent aggregations of nodes from the previous layer.

This new set remains permutation equivariant, but each original index now contributes to multiple

new indices. The process can be repeated until either one node remains or it can be concluded by

a summation over nodes as is done in the message-passing framework.

79



There are several complications that remain. The sequence for node size needs to be selected

as a hyperparameter. This may depend on the nature of the graph data and could significantly

affect the efficacy of the model. Additionally, Ying et al found that it was necessary to introduce

several loss terms to coerce the pooling towards good behavior. The first additional loss term is the

Frobenius norm ‖�1 − (1()1 ‖� . This encourages nearby nodes in layer 1 to contribute to nearby

nodes in layer 1 + 1. The second term is the entropy function over the rows of (. This helps each

node to contribute to few nodes in the next layer. We take the base that Ying et al have developed

and adapt it for application to graphs on atomic structures.

6.2.2 Pooling in the Context of Atoms

One of the main differences that we have to handle from the design of DiffPool is that our data

is not truly a graph. Rather than an adjacency matrix, we have � which is nonzero for every

non-diagonal entry. Additionally, our data is defined in R3 giving us greater geometric definition.

Taking our matrix of learned atom-centered representationsX1, we learn a matrix P as in Section

6.2.1. Applying the softmax, we get S. We apply this matrix as in (6.17) to get X1+1. However,

rather than applying S to an adjacency matrix, we apply it to the position matrixR ∈ #G ×3 which

results in a new position matrixR′ ∈ #′G × 3.

R′ = S)R (6.19)

With a set of refined positions, we can get a clear understanding of how the atoms contribute to

create new nodes.

This brings us to another point. The aggregation scheme here is similar to the aggregation across

scales in the wavelet scattering approach. The nodes in the second layer of the network represent

neighborhoods of atoms. Learning new features from the geometry of those nodes coupled with

the aggregation of features from the previous layer is similar to the second layer in the wavelet

scattering model. An advantage here is the lower computational cost which allows us to go beyond

two layers easily. If we collapse the nodes at layer 1 to half as many nodes at layer 1 + 1, then the

80



computational cost at each layer 1 is $ ( #G
21
). The summation over the layers resulting in a scaling

of $ (#G). This means that we are creating a global representation while scaling linearly with the

number of atoms in the structure.

Now let us consider an example of the advantages to this approach on the meso-scale. As

mentioned in Equation (6.1), there is a torsion term which we have not discussed. To include these

energy contributions, we must include two components: pooling and angles. While the intuition

behind the inclusion of these terms is clear, we will now show how the combination of them can

aid our model to represent true chemistry. Torsion is a four-body term which makes it challenging

to represent in a computationally tractable way. This is possible if one explicitly defines the bonds

between atoms, however that automatically restricts the conformational space to which the model is

applicable. Our model avoids explicit bonds, but still has the flexibility to capture torsion without

forcing the inclusion of every four-body term.

Take a molecule or atomic neighborhood with four atoms: '. We begin with four nodes in

layer 1. Rather than making a reduction of half the nodes, we have the flexibility to set layer 1 + 1

to contain three nodes. Any matrix S is possible for the model to learn given that the rows each

sum to 1. We consider

( =



1.0 0 0

0.5 0.5 0

0 0.5 0.5

0 0 1.0


(6.20)

The first node at layer 1 + 1 is the average of the first two nodes at layer 1. The second node at layer

1 + 1 is the average of the second and third nodes at layer 1. The third node at layer 1 + 1 is the

average of the third and fourth nodes at layer 1. This can be seen in Figure 6.2.

Now consider a representation acting on these three nodes. This representation will include an

angular term which acts upon the angle centered at the second node. This angle is a dihedral angle

which for bonded atoms is the torsion angle. We cannot guarantee that our model will learn this

way. In fact, it will likely not learn the precise weights necessary for the representation to process

81



the torsion angles. But, the model has the flexibility to do so, and beyond this, it can collapse even

higher order terms down to two or three node representations.

Figure 6.2: On the left, we see atoms forming two planes: U and V. The angle between these
planes is the torsion angle. If the atoms are pooled to the positions on the right, then the angle
between the new nodes will be a three-body representation of the torsion angle.

6.3 Conclusion

In the creation of this framework, we have developed the first machine learning representation

for atomic structures which has the ability to contain explicitly the four terms of the energy

decomposition in (6.1) and scales linearly with the number of atoms. We began by adapting a

wavelet scattering representation into a message-passing approach. This gives us $ (#G) scaling,

but at the cost of the representation quality. By adding local three-body terms, we include angle

information without degrading the scaling. Then by applying a graph pooling algorithm, we

expanding the representation to include many-body terms while avoiding the poor scaling of a

combinatorial selection over the atoms.

Several challenges remain. With the graph pooling approach, it is unclear howwell hyperparam-

eters will translate between atomic systems, particularly if they are of significantly different sizes.

Since we do not explicitly define a nice representation as in the wavelet scattering approach, we

depend on the optimization of the weights. There are certainly advantages to the wavelet scattering

82



approach over a graph neural network approach for the representation of atomic structures. Here

we have shown that through careful consideration, some of those advantages can be introduced to

a model that operates in the lightweight nature of a graph.

83



BIBLIOGRAPHY

84



BIBLIOGRAPHY

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New
York, 2016.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[3] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference for Learning Representations, San Diego, CA, USA, 2015.

[4] Yurii Nesterov. A method for solving the convex programming problem with convergence
rate o(1/:2). Dokl. akad. nauk SSSr, 269:373–398, 1983.

[5] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine
Learning, 2013.

[6] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2(4):303–314, 1989.

[7] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2):251–257, 1991.

[8] Ding-Xuan Zhou. Universality of deep convolutional neural networks, 2018.

[9] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks, 2018.

[10] Anastasis Kratsios and Eugene Bilokopytov. Non-euclidean universal approximation. In
NeurIPS, 2020.

[11] Wilhelm Burger and Mark James. Burge. Principles of digital image processing. Springer,
2013.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

85



[15] K. . Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to kernel-based
learning algorithms. IEEE Trans. Neur. Netw., 12(2):181–201, March 2001.

[16] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett.,
104(13):136403(4), 2010.

[17] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole von Lilienfeld.
Fast and accurate modeling of molecular atomization energies with machine learning. Phys.
Rev. Lett., 108(5):058301, January 2012.

[18] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environments.
Phys. Rev. B, 87(18):184115(16), May 2013.

[19] Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia, Katja
Hansen, Alexandre Tkatchenko, Klaus-RobertMüller, andO.Anatole vonLilienfeld. Machine
learning of molecular electronic properties in chemical compound space. New J. Phys.,
15:095003, 2013.

[20] Sandip De, Albert P. Bartok, Gabor Csanyi, and Michele Ceriotti. Comparing molecules and
solids across structural and alchemical space. Phys. Chem.Chem. Phys., 18(20):13754–13769,
2016.

[21] Alexander Shapeev. Moment tensor potentials: A class of systematically improvable inter-
atomic potentials. MMS, 14(3):1153–1173, 2016.

[22] Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schütt,
and Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force
fields. Sci. Adv., 3(5):e1603015, 2017.

[23] Felix Brockherde, Leslie Vogt, Li Li, Mark E Tuckerman, Kieron Burke, and Klaus-Robert
Müller. Bypassing the Kohn-Sham equations with machine learning. Nat. Commun., 8: ,
2017.

[24] Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, and Alexandre Tkatchenko. To-
wards exact molecular dynamics simulations with machine-learned force fields. Nat. Com-
mun., 9(1):3887, 2018.

[25] Tristan Bereau, Robert A. DiStasio, Alexandre Tkatchenko, and O. Anatole von Lilienfeld.
Non-covalent interactions across organic and biological subsets of chemical space: Physics-
based potentials parametrized frommachine learning. J. Chem. Phys., 148(24):241706, 2018.

[26] Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Phys. Rev. Lett., 98(14):146401(4), 2007.

[27] Jörg Behler. Neural network potential-energy surfaces for atomistic simulations. Chem.
Modell., 7(1):1–41, 2010.

86



[28] Kristoff T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus-Robert Müller, and Alexandre
Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nat. Commun.,
8:13890, 2017. arXiv:1609.08259.

[29] Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural
network for modeling quantum interactions. In NIPS 2017, pages 991–1001, 2017.

[30] Justin S. Smith, Olexandr Isayev, andAdrian E. Roitberg. ANI-1: an extensible neural network
potential withDFT accuracy at force field computational cost. Chem. Sci., 8:3192–3203, 2017.

[31] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML 2017, 2017.

[32] Truong Son Hy, Shubhendu Trivedi, Horace Pan, Brandon M. Anderson, and Risi Kondor.
Predicting molecular properties with covariant compositional networks. J. Chem. Phys.,
148(24):241745, 2018.

[33] Linfeng Zhang, Jiequn Han, HanWang, Roberto Car, andWeinan E. Deep potential molecular
dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett.,
120:143001, 2018.

[34] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor field networks: Rotation- and translation-equivariant neural networks
for 3d point clouds. arXiv:1802.08219, 2018.

[35] Eugen Merzbacher. Quantum mechanics. Wiley, 1998.

[36] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der Physik,
389(20):457–484, January 1927.

[37] Walter Kohn. Two applications of the variational method to quantum mechanics. Phys. Rev.,
71:635–637, May 1947.

[38] V. R. Pandharipande and H. A. Bethe. Variational method for dense systems. Phys. Rev. C,
7:1312–1328, Apr 1973.

[39] P.Geerlings, F. De Proft, andW.Langenaeker. Conceptual density functional theory. Chemical
Reviews, 103(5):1793–1874, 2003. PMID: 12744694.

[40] Kieron Burke. Perspective on density functional theory. The Journal of Chemical Physics,
136(15):150901, 2012.

[41] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. Schnet –
a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24):241722, 2018.

[42] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In International Conference on Learning Representations, 2020.

87



[43] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, and Stéphane Mallat. Solid har-
monic wavelet scattering: Predicting quantum molecular energy from invariant descriptors of
3D electronic densities. In NIPS 2017, pages 6540–6549, 2017.

[44] Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, Stéphane Mallat, and Louis Thiry.
Solid harmonic wavelet scattering for predictions of molecule properties. J. Chem. Phys.,
148:241732, 2018.

[45] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[46] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.
Academic Press, 3rd edition, 2008.

[47] Sigeru Huzinaga. Gaussian-type functions for polyatomic systems. i. The Journal of Chemical
Physics, 42(4):1293–1302, 1965.

[48] Robert F. Stewart. Small gaussian expansions of slater-type orbitals. The Journal of Chemical
Physics, 52(1):431–438, 1970.

[49] Stéphane Mallat. Group invariant scattering. Comm. Pure Appl. Math., 65(10):1331–1398,
October 2012.

[50] ThomasWiatowski and Helmut Bölcskei. Deep convolutional neural networks based on semi-
discrete frames. In Proceedings of IEEE International Symposium on Information Theory,
pages 1212–1216, 2015.

[51] PhilippGrohs, ThomasWiatowski, andHelmut Bölcskei. Deep convolutional neural networks
on cartoon functions. In IEEE International Symposium on Information Theory, pages 1163–
1167, 2016.

[52] ThomasWiatowski andHelmut Bölcskei. Amathematical theory of deep convolutional neural
networks for feature extraction. IEEE Transactions on Information Theory, 64(3):1845–1866,
2018.

[53] Wojciech Czaja and Weilin Li. Analysis of time-frequency scattering transforms. Applied
and Computational Harmonic Analysis, 2017. In press.

[54] Joakim Andén and Stéphane Mallat. Multiscale scattering for audio classification. In Pro-
ceedings of the ISMIR 2011 conference, pages 657–662, 2011.

[55] Joakim Andén and Stéphane Mallat. Scattering representation of modulated sounds. In
Proceedings of the DAFx 2012 conference, 2012.

[56] Joan Bruna and Stéphane Mallat. Audio texture synthesis with scattering moments.
arXiv:1311.0407, 2013.

[57] Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Transactions on Signal
Processing, 62(16):4114–4128, August 2014.

88



[58] Vincent Lostanlen and StéphaneMallat. Wavelet scattering on the pitch spiral. In Proceedings
of the 18th International Conference on Digital Audio Effects, pages 429–432, 2015.

[59] Joan Bruna and Stéphane Mallat. Classification with scattering operators. In 2011 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1561–1566, 2011.

[60] Laurent Sifre and StéphaneMallat. Combined scattering for rotation invariant texture analysis.
In Proceedings of the ESANN 2012 conference, 2012.

[61] Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering
for texture discrimination. In IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., June
2013.

[62] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(8):1872–1886, August 2013.

[63] X. Chen, X. Cheng, and S. Mallat. Unsupervised deep Haar scattering on graphs. In
Conference on Neural Information Processing Systems (NIPS), Montreal, Quebec, Canada,
2014.

[64] Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for texture classification.
arXiv:1403.1687, 2014.

[65] Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object classifica-
tion. In Proceedings in IEEE CVPR 2015 conference, 2015. arXiv:1412.8659.

[66] EdouardOyallon, EugeneBelilovsky, and SergeyZagoruyko. Scaling the scattering transform:
Deep hybrid networks. In Proceeding of the IEEE International Conference on Computer
Vision, pages 5619–5628, 2017.

[67] Matthew Hirn, Nicolas Poilvert, and Stéphane Mallat. Quantum energy regression using
scattering transforms. arXiv:1502.02077, 2015.

[68] Matthew Hirn, Stéphane Mallat, and Nicolas Poilvert. Wavelet scattering regression of
quantum chemical energies. MMS, 15(2):827–863, 2017.

[69] Thomas Blumensath and Mike E. Davies. On the difference between
orthogonal matching pursuit and orthogonal least squares. Online at
http://eprints.soton.ac.uk/142469/1/BDOMPvsOLS07.pdf, 2007.

[70] Thomas P Senftle, Sungwook Hong, Md Mahbubul Islam, Sudhir B Kylasa, Yuanxia Zheng,
Yun Kyung Shin, Chad Junkermeier, Roman Engel-Herbert, Michael J Janik, Hasan Metin
Aktulga, Toon Verstraelen, Ananth Grama, and Adri C T van Duin. The reaxff reactive
force-field: development, applications and future directions. npj Comput. Mater., 2(1):15011,
2016.

[71] Ying Yuan, Gregory Houchins, Pin-Wen Guan, and Venkatasubramanian Viswanathan. Un-
certainty quantification of first principles computational phase diagram predictions of li-si
system via bayesian sampling. arXiv:2003.13393 [cond-mat.mtrl-sci], 2020.

89



[72] MichaelW. Swift and Yue Qi. First-principles prediction of potentials and space-charge layers
in all-solid-state batteries. Phys. Rev. Lett., 122:167701, Apr 2019.

[73] Song-Mao Liang, Franziska Taubert, Artem Kozlov, Jürgen Seidel, Florian Mertens, and
Rainer Schmid-Fetzer. Thermodynamics of li-si and li-si-h phase diagrams applied to hydro-
gen absorption and li-ion batteries. Intermetallics, 81:32 – 46, 2017.

[74] Nongnuch Artrith, Alexander Urban, and Gerbrand Ceder. Constructing first-principles phase
diagrams of amorphous LiGSi using machine-learning-assisted sampling with an evolutionary
algorithm. J. Chem. Phys., 148:241711, 2018.

[75] T. D. Hatchard and J. R. Dahn. Study of the electrochemical performance of sputtered
Si1−GSnG films. J. Electrochem. Soc, 151(10):A1628, 2004.

[76] BerkOnat, EkinD. Cubuk, BradD.Malone, and EfthimiosKaxiras. Implanted neural network
potentials: Application to Li-Si alloys. Phy. Rev. B, 97:094106, 2018.

[77] Xavier Brumwell, Paul Sinz, Kwang Jin Kim, Yue Qi, and Matthew Hirn. Steerable wavelet
scattering for 3D atomic systems with application to Li-Si energy prediction. In NeurIPS
Workshop on Machine Learning for Molecules and Materials, Montreal, Canada, 2018.

[78] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richardson,
Charles K. Fisher, and David J. Schwab. A high-bias, low-variance introduction to Machine
Learning for physicists. Phys. Rep., 810:1–124, 2019.

[79] H. Jónsson, G. Mills, and K. W. Jacobsen. Nudged elastic band method for finding minimum
energy paths of transitions. In B. J. Berne, G. Ciccotti, and D. F. Coker, editors, Classical
and Quantum Dynamics in Condensed Phase Simulations, page 385. World Scientific, 1998.

[80] D. Sholl and J.A. Steckel. Density Functional Theory: A Practical Introduction. Wiley, 2009.

[81] Xiao-Gang Lu, Malin Selleby, and Bo Sundman. Calculations of thermophysical properties
of cubic carbides and nitrides using the debye–grüneisen model. Acta Mater., 55(4):1215 –
1226, 2007.

[82] Pin-WenGuan, Gregory Houchins, andVenkatasubramanian Viswanathan. Uncertainty quan-
tification of DFT-predicted finite temperature thermodynamic properties within the Debye
model. J. Chem. Phys., 151(24):244702, 2019.

[83] Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fazli, Matthias Rupp, Matthias
Scheffler, O. Anatole von Lilienfeld, Alexandre Tkatchenko, and Klaus-Robert Müller. As-
sessment and validation of machine learning methods for predicting molecular atomization
energies. J. Chem. Theory Comput., 9(8):3404–3419, 2013.

[84] Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, and Alexandre
Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature Commu-
nications, 8(1), 2017.

90



[85] Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schütt,
and Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force
fields. Science Advances, 3(5):e1603015, 2017.

[86] Stefan Chmiela, Huziel E. Sauceda, Igor Poltavsky, Klaus-Robert Müller, and Alexandre
Tkatchenko. sgdml: Constructing accurate and data efficient molecular force fields using
machine learning. Computer Physics Communications, 240:38–45, 2019.

[87] Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, and O. Anatole Von Lilienfeld.
Fchl revisited: Faster and more accurate quantummachine learning. The Journal of Chemical
Physics, 152(4):044107, 2020.

[88] Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for
the prediction of tensorial properties and molecular spectra. CoRR, abs/2102.03150, 2021.

[89] David Peter Kovacs, Cas van der Oord, Jiri Kucera, Alice Allen, Daniel Cole, Christoph
Ortner, and Gabor Csanyi. Linear atomic cluster expansion force fields for organic molecules:
beyond rmse. ChemRxiv, 2021.

[90] Andrew R. Leach. Molecular modeling: principles and applications. Prentice Hall, 2001.

[91] V Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of
Computational Physics, 60(2):187–207, 1985.

[92] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling, 2019.

[93] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[94] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[95] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 3538–3545. AAAI Press, 2018.

[96] Ladislav Rampášek and Guy Wolf. Hierarchical graph neural nets can capture long-range
interactions, 2021.

91


